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ABSTRACT: In the ensemble Kalman filter (EnKF), the covariance localization radius is usually small when assimilating
radar observations because of high density of the radar observations. This makes the region away from precipitation diffi-
cult to correct using only radar data stating “no echo” if no other observations are available, as there is no reason to correct
the background. To correct errors away from innovating radar observations, a multiscale localization (MLoc) method
adapted to dense observations like those from radar is proposed. In this method, different scales are corrected successively
by using the same reflectivity observations, but with a different degree of smoothing and localization radius at each step. In
the context of observing system simulation experiments, single and multiple assimilation experiments are conducted with
the MLoc method. Results show that the MLoc assimilation updates areas that are away from the innovative observations
and improves on average the analysis and forecast quality in single cycle and cycling assimilation experiments. The forecast
gains are maintained until the end of the forecast period, illustrating the benefits of correcting different scales.
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observations

1. Introduction

One of the uses of data assimilation (DA) systems is to gen-
erate initial conditions for numerical weather prediction
(NWP) models by optimally combining a short-range forecast
and observations. For convective-scale forecasting, ensemble-
based DA methods (Houtekamer and Zhang 2016) such as
the ensemble Kalman filter (EnKF) have been widely used in
research and operational centers for their ability to easily esti-
mate and use flow-dependent covariances. Numerous studies
have documented the benefits of applying the EnKF for con-
vective-scale forecasting (e.g., Schwartz et al. 2015). However,
the higher computational cost associated with running high-
resolution NWP models limits the number of ensemble mem-
bers that can be used. Since ensemble-based DA methods
compute the error covariances from the members, the limited
ensemble size affects the accuracy of error relationships in the
covariance matrix due to sampling errors (Necker et al. 2020).
As error covariances generally diminish with distance, so does
the accuracy with which they can be computed given a limited
ensemble size. To avoid problems associated with noisy corre-
lations at large distances, covariance localization (Hamill et al.
2001; Houtekamer and Mitchell 2001) is implemented in the
EnKF systems. The localization radius determines the dis-
tance beyond which the error covariances are deemed
untrustworthy and are set to zero; hence, any state variable
outside this radius is not updated by the observational infor-
mation. The magnitude of the covariance localization depends
upon the ensemble size (Lorenc 2003), the density of the
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observations (Periafiez et al. 2014), the effective resolution of
the NWP model (Miyoshi and Aranami 2006; Buehner and
Shlyaeva 2015) and the type of the observation and the state
variable (Anderson 2007).

Traditional assimilation approaches have been designed to
make the best use of point observations that were often
spaced by hundreds of kilometers. These sparse point obser-
vations are often assimilated with a localization radius of
0(1000) km for synoptic modeling. In contrast, weather
radars provide dense observations both spatially and tempo-
rally, requiring much smaller localization radii. Operational
radars measure the spatial distribution of hydrometeors in
precipitation-producing storms in great detail. Radar observa-
tions, when assimilated using the EnKF, have been shown to
improve the quality of short-range forecasts (Aksoy et al.
2009, 2010; Dowell et al. 2011). One shortcoming of radar
observations is that they do not provide much direct informa-
tion on dynamically and thermodynamically important fields
that influence the future evolution of storms, thus making
properly assimilating radar data a challenging task (Fabry and
Meunier 2020). Furthermore, the horizontal localization
radius used in the EnKF for radar DA is usually in the range
of 520 km (Sobash and Stensrud 2013, and references
therein) given model resolutions of 1-3 km. This is because,
with high data density and limited ensemble size, the localiza-
tion radius must be reduced to prevent over constraining the
analysis (this is known as the rank problem; Lorenc 2003).
Indeed Ying et al. (2018) and references therein showed that
smaller localization radii perform best for a relatively small
ensemble size. Since radar provides its best information in
rainy areas, a shorter localization leaves regions away from
echo areas uncorrected. And given the clustered nature of
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radar echoes, the innovative information being only available
where precipitation occurs, a shorter localization radius
restricts the propagation of radar information from echo-
dense locations to echo-sparse locations. Since convective-
scale models resolve small- to large-scale flows, it is critical to
constrain errors that are present at all these scales.

To reduce errors across multiple scales using ensemble-based
DA methods, multiscale localization methods are being actively
researched and adopted by the DA community (e.g., Caron and
Buehner 2018; Caron et al. 2019). Zhang et al. (2009) proposed
the successive covariance localization method, where the obser-
vation density and localization radius depends on the scale to be
corrected. The errors at synoptic scales were corrected by assim-
ilating a small subset of radar super-observations (also known
as super-obbing; Weng and Zhang 2012) with a large localiza-
tion radius. In scale-dependent localization (Buehner 2012;
Buehner and Shlyaeva 2015), different localization radii are
applied to different range of spatial scales in the background
error covariances, and all the observations are assimilated in
one go. Miyoshi and Kondo (2013) proposed a dual-localization
(DL) method, in which independent analyses are produced by
applying appropriate localization radii and then combined to
generate the final analysis. To obtain the synoptic-scale correc-
tion in the DL method, the background ensemble perturbations
were spatially smoothed and synoptic observations were assimi-
lated with a wider localization radii. Yang et al. (2017) demon-
strated the benefits of the DL method by applying it to improve
the prediction of an actual heavy rainfall event. The multiscale
alignment method of Ying (2019) showed value in reducing dis-
placement errors across scales. Wang et al. (2021) proposed the
so-called multiscale local gain form ensemble transform Kalman
filter. The study noted that the multiscale method gained pre-
dictability by 12 h to 1 day. None of these methods have explic-
itly smoothed both the observations and background ensembles
to correct larger scales patterns, however. Yet we believe such
an approach has merit, because patterns of large-scale covari-
ance between observations and state variables are more likely
to be revealed by using averaged observations than by using
point observations as well as by computing covariances using
smoothed backgrounds. Note that this is somewhat similar to
the multiscale approach of Ying (2020) who used spectrally fil-
tered observations and backgrounds. We also believe that for
the highly structured precipitation fields at convective-scale, spa-
tial smoothing should perform better than spectral filtering for
high-resolution grids because it does not assume periodicity:
convective precipitation is generally organized in spatial struc-
tures such as cells and clusters; their evolution will therefore be
driven by local fields and not by periodic structures such as
waves. Radar data are very amenable to such an approach, as
averaged reflectivity can be used to correct large-scale features,
while for smaller scales, high-resolution reflectivity can be
assimilated.

We believe both the backgrounds and observations should
be smoothed for the proper extraction of the distant correla-
tions needed to correct fields far away from innovative obser-
vations. Our goal in this work is to evaluate the performance
of such an approach relative to the traditional single-scale
assimilation for a few convective events.
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2. Method

To overcome the limitations of using a small and single
localization radius when assimilating radar reflectivity obser-
vations for convective-scale forecasting, a new assimilation
approach referred to as MLoc (described in section 2b) is pre-
sented and evaluated: first, the larger scales are corrected by
aggressively smoothing both the background state and reflec-
tivity observations and allowing the correction to be spread
over the whole domain by not applying any localization given
that the domain size is not much larger than the smoothing
radius; then, similarly, a smaller smoothing radius for interme-
diate scales is applied with a medium value of localization;
and finally, the high-resolution backgrounds and observations
at all scales are used with a small localization radius. The per-
formance of this method is compared with a traditional single
localization (SLoc) experiment in the context of observing
system simulation experiments (OSSE) in a perfect-model
setup. We chose to use an OSSE-based approach because we
lack observations to evaluate the performance of both meth-
ods for fields other than precipitation.

a. NWP model and DA system

The NWP model chosen for this study is the Weather
Research and Forecasting (WRF) v4.0.2 (Skamarock et al.
2019) Model with the Advanced Research WRF (ARW)
dynamical core. The model horizontal grid is 150 km X 150
km with a horizontal grid spacing of 1 km and 51 model levels
in the vertical direction. The model microphysics follows the
Thomson scheme (Thompson et al. 2008), the longwave and
shortwave radiation schemes are the Rapid Radiative Trans-
fer Model for Global Climate Models (RRTMG; Iacono et al.
2008), the land surface model scheme is the Unified Noah
land surface model (Tewari et al. 2004), and the Mellor—
Yamada—Janji¢ (MYJ) planetary scheme (Janji¢ 1994) is used
in the boundary layer. The cumulus parameterization is
switched off. The dry potential temperature 0 is used in the
dynamics (use_theta_m = 0); therefore, the WRF variables
perturbation dry potential temperature “T” and perturbation
moist potential temperature THM are the same, and both are
the perturbation dry potential temperature.

For the experiments, the High-Resolution Rapid Refresh
(HRRR) model analysis is used to generate 51 ensemble
members using the three-dimensional variational approach
with the CV3 option of the WRF Data Assimilation
(WRFDA) system. Among the generated 51 members, a
member is randomly chosen to be the Truth (nature) and the
remaining 50 members are used for the OSSE experiments.
To spin up the dynamics, 1-h forecasts are produced for all
50 members before starting the assimilation experiments
(Fig. 1). These 50 members will be used as background for all
of the DA experiments.

The proper handling of boundary conditions (BC) required
a few manipulations to ensure that the Truth and the mem-
bers did not have similar BC by design. A WRF boundary file
is generated from the HRRR analysis with updates every 1 h
for a 4-h forecast for the nature run. Then the BC for the
Truth is set to the BC from HRRR plus a time-independent

Unauthenticated | Downloaded 06/19/23 07:44 PM UTC



MARCH 2022

t

SODHI AND FABRY

591

1
! Truth (4-hr)

t+1

Background 01 ‘

Background 02 ‘

HResB1

ﬁ Member 00
t (randomly chosen)
HRRR WRFDA —" Member 01
analysis (CV3) —’{ Member 02

—I—'{ Member 50

Background 50 ‘

11

FI1G. 1. Flowchart depicting the process of creating the initial conditions for the Truth and
background runs.

deviation corresponding to the difference between the Truth
member (randomly selected) and the HRRR analysis at initial
time. For specifying the BC of members, we faced a technical
difficulty that required us to modify default BC tendencies. A
single template WRF boundary file is generated from the
HRRR analysis that is then used to create 50 WRF boundary
files, one per member. These boundary files are later updated
with the information from the corresponding member using
the Data Assimilation Research Testbed (DART) program
update_wrf_bc. But when the BC are updated by update_
wrf_bc for all members, the tendencies are recomputed by
default such that the BC at the end time become identical for
all members. To prevent this BC spread collapse at the end
time, we updated the tendencies such that the BC at end time
become the BC of the HRRR at the end time plus the devia-
tion between the member and the ensemble mean at the ini-
tial time. In other words, the BC at the end time become such
that the mean for all BC is the HRRR analysis at the end
time and the ensemble spread of the BC is identical to the
spread at the initial time.

For the DA, the ensemble adjustment Kalman filter
(EAKF; Anderson 2001) within the DART (Anderson et al.
2009) is used. The Gaspari and Cohn (1999) function is used
for covariance localization. Synthetic radar reflectivity obser-
vations from nine model eta levels (0.949, 0.818, 0.706, 0.519,
0.404, 0.297, 0.241, 0.1976, 0.1553) are directly harvested from
the Truth. We assume that we have radar observations avail-
able everywhere in the domain. The state variables of WRF
updated by the EAKF are the perturbation geopotential PH;
the perturbation dry air mass in column MU; the surface pres-
sure PSFC; the three components of wind “U,” “V,” and
“W?; the perturbation potential temperature T/THM; and the
mixing ratios of water vapor QVAPOR, rainwater QRAIN,
cloud water QCLOUD, graupel QGRAUP, snow QSNOW,
and ice QICE. The radar forward operator in DART is not
used to compute the reflectivity values; therefore, the reflec-
tivity variable (REFL_10CM) is included among the state var-
iables during assimilation, and DART will have direct access
to the REFL_10CM fields in the background members during
the assimilation process. For all experiments conducted in this
paper, the REFL_10CM field in the Truth and in the back-
ground members are calculated using Reisner et al. (1998).
The values of reflectivity below 5 dBZ are set to 5 dBZ. It is
assumed that the observation errors are uncorrelated, and the
errors are added to the observations by randomly drawing a

value from a Gaussian distribution with 0 mean and a speci-
fied error variance of 9 dB(Z%) [3-dB(Z) standard deviation].

b. Multiscale localization (M Loc) method

A three-step MLoc method is designed with the imperfect
assumption that there is no cross correlation between errors
at different scales. These three steps are performed one after
the other (iteratively) where the analysis from the previous step
becomes the background of the next step while using the same
set of observations. In the first two steps, a two-dimensional
Gaussian filter (GF) is used with different width r to smooth (in
the x and y directions) the REFL_10CM and the other WRF
state variables excluding the hydrometeor fields (QRAIN,
QCLOUD, QGRAUP, QSNOW, QICE) in the background
members. Synthetic observations are obtained by taking
REFL_10CM with added measurement errors [0” = 9 dB(Z?)]
and smoothing them with the same GF. The hydrometeor varia-
bles are excluded from the state variables during assimilation
in steps 1 and 2; that is, they will not be updated by the filter.
The reason for doing so will be explained in section 3a. Spatial
smoothing ensures the suppression of small-scale (high fre-
quency) variability, revealing the existence of weak covariances
at large and intermediate scales. The third step is to correct
errors of all fields (state variables) at all scales by using the back-
ground and observations at their original resolutions.

Since the same observations with the same observation
error are used three times (number of assimilation steps;
n = 3) to compute three innovations, their weight must be
reduced by a factor of 3 at each step for assimilation to
remain optimal (this is a similar approach to what was done
by Emerick and Reynolds (2013) in the context of an ensem-
ble smoother with multiple data assimilations). As a result,
instead of 9 dB(Zz), the stated observation error in the final
high-resolution step will be given by

)

obs

=9n [dB(Z)]. (1)
At larger scales, the fields are smoothed with a GF with a
width r, and those smoothed data will have a stated observa-
tion error given by

2 =

obs

%n [dB(22)],

@

with 777 representing the equivalent number of pixels being
smoothed at 1-km resolution by the GF if r is in kilometers.
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FIG. 2. Flowchart of the large-scale correction step. The middle-
scale correction step is algorithmically similar to this one except for
the less aggressive filter of the smoother.

The MLoc assimilation hence proceeds as follows (see also
the flowchart of step 1 in Fig. 2): The 50 high-resolution back-
grounds at step 1 (HResB1) and the observations with their
errors are first smoothed using the GF; that is, each back-
ground member field that is included in the state variables
(PH, MU, PSFC, U, V, W, T/THM, and QVAPOR) and the
resulting simulated observations (REFL_10CM) are smoothed
and so is REFL_10CM in the Truth. The radius of smoothing
in this step is large enough (r = 50 km) relative to the domain
size (150 km X 150 km) that only one observation per obser-
vation level from the middle of the domain is assimilated, and
the error for each observation is given by Eq. (2). Given the
small domain size, localization is not applied for this step,
allowing the observational information to influence all the
grid points. These smoothed fields and observations are then
used by the DA system to compute smoothed increments to
background fields. After assimilation, the smoothed analysis
and the smoothed background are used to extract increments
and estimate a new analysis using
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XA = XuB + (Xsa — XsB), 3)

for dynamical and thermodynamic fields. In Eq. (3), X is a
generic symbol for all of the dynamical and thermodynamic
state variables (PH, MU, PSFC, U, V, W, T/THM, and QVA-
POR) modified by the assimilation, and the subscripts HA,
HB, SA, and SB are for high-resolution analysis, high-resolu-
tion background, smoothed analysis, and smoothed back-
ground, respectively. The resulting fields from Eq. (3) are
hence the analysis after step 1 (HResA1) for which the large-
scale patterns are corrected. The HResAl generated in the
first step will become the background (HResB2) in step 2. In
the second step, the HResB2 and the observations with their
errors are then smoothed with » = 5 km. The cutoff radius is
30 km in the horizontal plane and 3 km in the vertical direc-
tion. The synthetic reflectivity is extracted every 15 km (hori-
zontal) with the observation error calculated using Eq. (2).
The rest of the procedure of producing the analysis (HResA2)
by the end of the second step is similar to that of step 1. At
the end of the second step, the updated state variables are PH,
MU, PSFC, U, V, W, T/THM, and QVAPOR. The third step is
a normal DA procedure (without smoothing) where the analysis
(HResA2) of the previous step becomes the background of the
current step (HResB3). In this step, hydrometeor fields are also
included in the state variables. The cutoff radius in the horizontal
plane and vertical direction is 3 km. The synthetic reflectivity
observations are extracted every 1 km (horizontal) from the
Truth, and the error associated with the observations is calcu-
lated from Eq. (1). The final analysis (HResA3) is used to pro-
duce forecasts for the MLoc experiments.

The choices for the localization scales, data density, and
number of scales of assimilation are dictated by several con-
straints. First at any scale, the radius of influence (ROI; 2 X
cutoff radius) must be such that the number of independent
constraints influencing any grid point does not vastly exceed
the number of members so as not to collapse the ensemble
spread (Lorenc 2003). Therefore, for an ensemble of 50 mem-
bers, the ROI is limited to about 3 times the data spacing
(6 times the data spacing for the cutoff radius; Gaspari and
Cohn 1999). Second, since we want the corrections done with
one smoothing radius to be as independent as possible from
those done with the next smoothing radius, the next scale
should be on the order of 10 times the smoothing radius from
the previous one (because the cutoff diameter is 12 times the
data density). Given our domain size, this imposes a three-
scale approach, roughly an order of magnitude apart. In the
vertical direction, at smaller scales, the cutoff radius of 3 km
was chosen from work by Dowell et al. (2011) and Dawson
et al. (2012). It is also appropriate to use the same localization
distance in the vertical than in the horizontal on the grounds
that, at such scales, error correlation patterns become more
isotropic in three dimensions. But once the horizontal
smoothing exceeds 50 km, such a vertical cutoff radius does
not make sense, and it was removed for the largest scales to
allow the smoothed observations to innovate the whole atmo-
sphere (all vertical levels). Our choice was guided by these
principles, although no specific effort was done to fine-tune
the values, because work by Ying et al. (2018) shows that

Unauthenticated | Downloaded 06/19/23 07:44 PM UTC



MARCH 2022 SODHI AND FABRY 593

Case 1: Distributed showers
20180515 19 UTC +1hr +2 hr +3hr

33.50N ‘%@)w :

33.00N

32.50N

98.5W  98.0W  97.5W 98.5W 9.0W 97.5W 98.5W  98.0W  97.5W 98.5W  98.0W  97.5W

Case 2: Scattered showers

20190501 18 UTC +1 hr +2 hr +3 hr
34.50N : & . =
S ‘e
. o o
® o .
-
34.00N
L
A
33.50N
98.5W  98.0W  97.5W 98.5W  98.0W  97.5W 98.5W  98.0W  97.5W 98.5W  98.0W  97.5W
Case 3: Nightime mesoscale convective system
20190407 08 UTC +1 hr +2 hr +3 hr
28.25N
27.75N
27.25N

99.0W 98.5W 98.0W 99.0W 98.5W 98.0W 99.0W 98.5W 98.0W 99.0W 98.5W 98.0W

Case 4: Daytime mesoscale convective system
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FIG. 3. Time evolutions of composite reflectivity plots for all of the cases (Truth) considered in this study, where
composite reflectivity is the peak reflectivity in the column. The four cases are (top) distributed showers, (top middle)
scattered showers, (bottom middle) nighttime mesoscale convective storms, and (bottom) daytime mesoscale convec-
tive storms. The start of assimilation time is shown as “YYYYMMDD HH” UTC, where Y, M, D, and H denote year,
month, day, and hour, respectively. Note the coverage of precipitation echoes at the initial time and 2 h after because
these influence the relative performance of multiscale assimilation as compared with the single-scale one.
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FIG. 4. Comparison, given the reflectivity for (a) the Truth and (b) the background of a selected member of case 1 at
eta level 0.818, between the change in potential temperature resulting from DA using (c) SLoc and (d) MLoc at that

same eta level.

selecting ROI £50% away from optimum still yields good results.
We did not perceive that the exact tuning of those parameters
would change the results significantly, and we saw this work as a
proof of concept rather than as an optimization exercise that will
require many more cases. If data were only available in a subset
of the domain, smoothing of observations and of simulated obser-
vations and state variables could be limited to those regions, and
the rest of the process would continue as described above.

c. Experimental design

To evaluate the performance of the MLoc method, an SLoc
assimilation experiment is undertaken to act as a reference. It

is similar to the third step of the MLoc method; that is, the
cutoff radius is 3 km in both the horizontal and vertical
directions, and observations are extracted every 1 km from
the Truth. In SLoc, the observation error variance is set to
9 dB(Z?). For the selection of localization radius, experi-
ments with cutoff radius of 3, 6, and 9 km with a fixed verti-
cal cutoff radius of 3 km were conducted. It was found in
the experiments that after multiple assimilation cycles, the
3-km cutoff radius performed better (results not shown)
than other experiments. Factors such as the number of
observations near each grid point (rank problem/degree of
freedom; Lorenc 2003) and model resolution were also
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FIG. 5. Base-10 logarithm of rainwater mixing ratio (QRAIN) at analysis time for (a) the Truth and (b) the
background, as well as after the first assimilation using (c) SLoc and (d) MLoc for the same member and eta level as

in Fig. 4.

considered while making the choice for the cutoff radius in the
single localization experiments as well as the choice of cutoff
radius and data density for the multiscale experiments.

The four cases chosen for the experiments are shown in
Fig. 3. These cases have varied convective structures to test
the performance of the MLoc method in different conditions.
Two separate experiments are performed. First, to understand
how the MLoc performs initially, a single cycle experiment
for both MLoc and SLoc is conducted after which a forecast
of 1 his generated and results are compared for both the anal-
ysis and the forecast. Then, a cycling experiment is conducted
to evaluate the performance of the approach in the context of
cycled assimilation.

3. Results
a. Single cycle assimilation experiment

For case 1 (distributed showers), Fig. 4 shows the reflectiv-
ity field of the Truth, the background, and the potential tem-
perature 6 increments (analysis minus background) at eta
level 0.818 for a selected member after the assimilation of
radar reflectivity observations at one time. Since the reflectiv-
ity field of the background (Fig. 4b) is different from that of
the Truth, both assimilation approaches are able to add incre-
ments relative to the background where radar echoes are
observed (Fig. 4a). However, the increments in SLoc are con-
fined to the areas where reflectivity values are different
between the background and the observations due to the use

Unauthenticated | Downloaded 06/19/23 07:44 PM UTC



596

33.50N

33.00N

32.50N

33.50N

33.00N

32.50N @ E - ‘.‘

98.5W 98.0W 97.5W

MONTHLY WEATHER REVIEW

VOLUME 150

b) Forecast (CNTL)

ST T LY SO e

n=0.818
33.50N 1 |

33.00N i . :

32.50N LY

o S
98.0W

97.5W

d) Forecast (MLoc)

33.50N

33.00N

32.50N

98.0W

98.5W

M 2T

-5.0 -45 -40 -35

-3.0

-25 =20 -15

log10(QRAIN)

FIG. 6. Base-10 logarithm of QRAIN after a 1-h forecast for (a) the Truth, (b) the CNTL (forecast without assimilation
of any observations), (c) SLoc, and (d) MLoc for the same member and eta level as in Fig. 4.

of a smaller localization radius. In comparison, for the MLoc
approach designed to correct fields at different scales, the
increments resulting from observations are spread farther
from the precipitation observations and are also smoother.
For the same case and member and at the same eta level,
the base-10 logarithm of rainwater mixing ratio after assimila-
tion is shown in Fig. 5. Because of the good correlation
between reflectivity and QRAIN, the DA system placed
QRAIN in the domain almost identically in both assimila-
tion approaches. The most notable differences are slightly
smoother fields and a small extension of very weak rainfall in
the MLoc experiment relative to the SLoc one, but even these
are difficult to visually detect in Fig. 5. To assess the perfor-
mance of both experiments after the first assimilation, the
model is run multiple times for an hour using successively

as initial conditions the original backgrounds without
assimilation, and the SLoc and MLoc analyses. These are
then compared with the Truth run. Figure 6 illustrates the
resulting QRAIN field of the member shown in Figs. 4
and 5. For the SLoc assimilation approach (Fig. 6¢), the
QRAIN field that had almost similar structure as the Truth
at analysis time (Fig. 5c v. Fig. 5a) largely reverted to the pre-
assimilation trajectory of the background (Fig. 6b). It can be
inferred that the fields that drive the precipitation process
were not adjusted correctly to sustain the convection placed
in the model domain during assimilation. In contrast, the
forecast from the MLoc approach, though still far from the
Truth run, is visually closer to it with more of the added con-
vection surviving after an hour. The key difference between
SLoc and MLoc is that the fields in MLoc have also received
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FIG. 7. Comparison of ensemble-averaged RMSE of CNTL (forecast without assimilation of any observations),
SLoc, and MLoc for (a) U-component wind (WRF variable U), (b) QRAIN, (c) water vapor mixing ratio (QVA-
POR), and (d) potential temperature (6) fields for all cases.

large- to medium-scale increments, whereas in SLoc only
small-scale patterns were updated.

A more quantitative evaluation was then performed. The
ensemble-averaged root-mean-square error (RMSE) for all
variables x for both SLoc and MLoc were computed using

, 4)

RMSE = L 3" lZN](xf —u)
Mm=1 Nn=1 " "

where M is the total number of ensemble members, N is the
total number of grid points in a member, and the superscripts
t and f'stand for Truth and forecast respectively. The RMSE is
calculated for the WRF U-component wind U, rainwater mixing
ratio (QRAIN), water vapor mixing ratio (QVAPOR), and
potential temperature 6 fields for all cases. Then, the RMSE
ratio, which is the ratio of ensembled-averaged RMSE of MLoc
and SLoc, is given by

RMSE
RMSE 40 = WEI\;EW . (%)
0C

Figure 7 shows the RMSE for all the cases from analysis
time up to 1-h forecast for U, QRAIN, QVAPOR, and 6
fields. At analysis time, the RMSE for MLoc is smaller than
for SLoc for U, 6, and particularly QVAPOR, while for
QRAIN, SLoc performance is better. However, by the end of

the 1-h forecast, the MLoc-based forecast shows improvement
over that of the SLoc. For all the fields but QVAPOR, it is
worth noting that the difference between MLoc and SLoc is
small at analysis time, but keeps increasing over the forecast.
To further examine this, the RMSE ratio is shown in Fig. 8.
Interestingly, the gains of MLoc over SLoc are generally larg-
est at the end of the 1-h forecast experiment. This further
illustrates the importance of propagating increments to non-
precipitating areas to achieve better forecasts with radar data
assimilation and demonstrates that large-scale corrections add
value to the forecast. Overall, for all the cases except case 1
(distributed showers) after the single cycle assimilation, MLoc
improved over SLoc, with the highest gain in QVAPOR and
the least gain in QRAIN for short forecast times; at longer
forecast times, improvements in rain forecasts become the
largest of all the fields considered.

The hydrometeors can be updated either using additive
increments [Eq. (3)] or multiplicative increments [Xpa =
Xug(Xsa/Xsg)), the latter having the advantage of not creating
negative precipitation and of boosting/lowering mixing ratios in
cells. However, the hydrometeor fields were not updated in
the first two steps because it was found that when additive
[Eq. (3)] or multiplicative increments were added to the
high-resolution backgrounds the performance of MLoc deterio-
rated. Our hypotheses for such a performance degradation are
as follows:
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1) When additive innovation is used, weak positive and neg-
ative hydrometeor fields are added over large regions,
resulting in either their removal for negative fields by the
model or the DA system, leading to a bias in hydrometeor
mixing ratio, or their evaporation and associated cooling
for weak positive fields, creating a cool and moist bias.

When multiplicative innovation is used, large positive pre-
cipitation innovations are concentrated in a few existing

2)

localized storms, creating unphysical background fields
for the next assimilation step.

Thus, while optimum estimation theory would suggest inno-
vating the hydrometeor fields, we could not find the best way
to do it for the first two steps. We hence reluctantly chose not
to innovate the hydrometeor fields at larger scales.

b. Cycling assimilation experiment

Cycling experiments were then conducted. Since large-scale
precipitation does not change as rapidly as precipitation at
smaller scales and since the benefit of using the MLoc method
comes from correcting errors at larger scales, the assimilation
is performed every 30 min and the results of the experiments
are shown after 2 h of cycling, that is, five assimilation cycles
for both MLoc and SLoc experiments. Figure 9 shows the
RMSE ratio for a 1-h forecast after the final assimilation for
all the cases. For the Distributed shower case (case 1) MLoc
performance is poorer than SLoc, whereas MLoc performs

better than SLoc for the other cases. For the Daytime MCS
case (case 4), SLoc performs better than MLoc for § whereas
MLoc performs better than SLoc for U, QVAPOR, and
QRAIN. For the Distributed shower case (case 1) the perfor-
mance of SLoc became gradually better than that of MLoc
starting 30 min into the forecast; we believe that this can be
attributed to the fact that, over many assimilation cycles, most
of the domain is covered with precipitation and hence the
SLoc is able to increment the grid points all over the model
domain. Furthermore, the performance of SLoc was almost
similar even in the single cycle experiment in most of the
dynamical variables. A new experiment for case 1 was per-
formed in which the Truth was drier and the precipitation did
not cover the whole model domain. It was found that the MLoc
performed better (results not shown) than SLoc in all the fields.
This further illustrates the value of multiscale assimilation as the
information from the storms is propagated to distant grid points.

4. Summary and conclusions

To improve forecasts at convective scales, lowering errors
at medium to large scales is important. In contrast to synop-
tic-scale modeling, convective-scale modeling suffers from the
combination of a rapid growth of forecasts errors and a lack
of diversity of dense observations to constrain initial condi-
tions. The convection and its associated precipitation, which
are responsible for much of the initial growth of forecast
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FIG. 9. Asin Fig. 8, but for forecast lead time of 1 h after the final assimilation.

errors (Zhang et al. 2006), need to be adequately constrained
with observations. High-resolution precipitation observations
from radar contain information on smaller scales; this is
important to correct small-scale errors. However, due to the
clustered nature of precipitation, innovative observations are
not available everywhere, if we ignore clear air echoes, and
thus errors at large scales are difficult to correct. Furthermore,
we believe the information from clear air echoes and that from
large-scale precipitation are complementary: one provides direct
constraints on winds; the other is better at indirectly constraining
humidity fields (e.g., Fig. 9). Although with the use of larger
localization radius in the EnKF, information could be spread
from stormy regions to distant grid points, past experience has
shown that the forecast skill is still poor, thus studies have rec-
ommended the use of shorter localization when assimilating
radar observations. One reason for this is that the shorter corre-
lation length scale for convection makes long-distance updates
difficult to make because of sampling noise, which is why shorter
localization radii are typically used; the correlation between
fields are short-lived, resulting in continuous variability of rela-
tionships between them. Using information from the convec-
tively active regions to correct fields in clear sky areas, where
one can presume that errors are largely Gaussian and small, is
likely to degrade the analysis quality. Alternatively, to spread
information to distant grid points, inspiration can be drawn
from techniques such as super-obbing. The benefits of averaging
quantities are that they not only suppress small-scale variability
but also increase the correlation length scales between fields

that can therefore be used to correct patterns over larger scales
thanks to the use of larger localization radii.

To this end, in this paper, a new multiscale localization
method named MLoc is developed wherein at each successive
step different scales are corrected. This is achieved by
smoothing the background members and observations (where
the radius of smoothing depends on the scales of interest) for
computing large- to medium-scale corrections. Finally for cor-
recting all scales including the small scales, no smoothing is
applied. The analyses obtained at each step are used as back-
grounds for the next step. In doing so, by the end of the multi-
scale localization method, the final analyses obtained have
multiple scales corrected. For this method, the EAKF is used to
assimilate radar observations. Single cycle assimilation experi-
ments and cycling assimilation experiments are conducted. In
the cycling experiments, i.e., for the 2-h period, the SLoc and
MLoc are cycled 5 times with an interval of 30 min between
assimilation cycles. In general, for both the single cycle and
cycling assimilation experiments, the multiscale approach pro-
duced superior forecasts, especially for longer lead times and
when precipitation covers a small fraction of the domain. This
multiscale approach is particularly adapted to radar (reflectivity)
and satellite observations as both have high temporal and spatial
resolutions that can be easily smoothed. The results from these
experiments here corroborate the conclusion from previous
multiscale localization studies that multiscale assimilation
improves forecast skill. When assimilating only radar reflectivity
using single-scale approaches, the precipitation field is improved
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at analysis time, but the other fields are not sufficiently corrected
when a short localization radius is used with a small ensemble
size. MLoc adds value because new information concerning a
precipitation pattern can change fields 100 km away while it oth-
erwise would change state variables at most 10-20 km away. To
increase the localization radius by a factor of 10 would require
significantly larger ensemble.

While the large- and medium-scale correction with the
MLoc method helps provide lasting gains in predictability,
considerable errors in convective-scale forecasting remain.
Small-scale patterns significantly contribute to the error
growth due to their chaotic nature. When the NWP model is
integrated forward in time, the small-scale errors dominate
initially, contaminating the forecast. The lack of dense and
diverse observations limits the error correction at these scales.
While increasing the ensemble size is a solution, it is not easily
feasible because of the cost associated with running high-reso-
lution NWP model. To reduce error in convection with radar
observations, more pragmatic measures may need to be
explored when using the ensemble Kalman filter.
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