
Diversity Enriched Option-Critic:
Learning Option Abstractions using Diversity in Option

Behavior.

Anand Kamat

School of Computer Science
McGill University, Montreal

August 31, 2020

A thesis submitted to McGill University in partial fulfilment

of the requirements of the degree of Master of Science.

c©Anand Kamat; 2020

i

Acknowledgements

Firstly, I would like to express my sincere gratitude to Prof. Doina Precup

for giving me the opportunity to work under her supervision and guidance. I

am deeply grateful for her precious insights and continuous support throughout

my master’s program. I applaud her enthusiasm to share her knowledge and

expertise with the research community and her students. I would like to thank

everyone in Mila and the Reasoning and Learning (RL) Lab with whom I had

the privilege to work and share my enthusiasm; those who gave me the freedom

to fail, think and grow to become a better version of myself. Last but not the

least, I would like to thank my family: my parents and my sister for supporting

me throughout my journey at McGill. Their confidence and belief in me has

helped me every step of the way.

ii

Abstract

Temporal abstraction allows reinforcement learning agents to represent knowl-

edge and develop strategies over different temporal scales. The option-critic

framework has been demonstrated to learn temporally extended actions, rep-

resented as options, end-to-end in a model-free setting. However, feasibility

of option-critic remains limited due to two major challenges, multiple options

adopting very similar behavior, or a shrinking set of options that are relevant

to the task. These occurrences not only void the need for temporal abstrac-

tion, they also suppress performance. This thesis proposes an approach to

tackle these problems by learning a diverse set of options online. We introduce

an information-theoretic intrinsic reward, which augments the task reward, as

well as a novel termination objective, in order to encourage diversity in the

option set. We show empirically that our proposed approach achieves state-

of-the-art performance for learning options on several discrete and continuous

control tasks, not only outperforming option-critic by a wide margin, but also

PPO. Furthermore , we show that our approach sustainably generates robust,

reusable, reliable and interpretable options, in contrast to option-critic.

iii

Résumé

Les actions abstraites temporellement aide agents d’apprentissage par ren-

forcement représenter les connaissances et élaborer des stratégies sur une large

gamme d’échelle temporelle. Il a été démontré que le cadre d’option-critic ap-

prend des actions étendues dans le temps, représentées comme des options,

de bout en bout dans un environnement modèle-free. Cependant, la faisabil-

ité de option-critic reste limitée en raison de deux défis majeurs, de multi-

ples options adoptant un comportement très similaire ou d’un ensemble réduit

d’options pertinentes pour la tâche. Ces événements annulent non seulement le

besoin d’abstraction temporelle, mais suppriment également les performances.

Cette thèse propose une approche pour aborder ces problèmes en apprendre un

ensemble diversifié d’options. Nous introduisons une récompense intrinsèque

l’information-théorique, qui augmente la récompense de la tâche, ainsi qu’un

nouvel objectif de résiliation, afin d’encourager la diversité dans l’ensemble

d’options. Nous montrons empiriquement que notre approche proposée per-

met d’atteindre des performances de pointe sur plusieurs tâches de contrôle

discrètes et continues, non seulement surpassant de loin l’option-critic, mais

également PPO. De plus, nous montrons que notre approche génère durable-

ment des options robustes, réutilisables, fiables et interprétables, contrairement

à l’option-critic.

Contents

Contents iv

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Overview . 4

2 Background 6

2.1 Reinforcement Learning . 6

2.1.1 Policy Iteration . 8

2.1.2 Temporal Difference Learning 10

2.1.3 On-Policy and Off-Policy Methods 10

2.1.4 Policy Gradient . 12

2.2 Temporal Abstraction . 13

2.3 Intrinsic Motivation . 19

2.4 Information Theory . 21

2.5 Deep Reinforcement Learning . 24

2.5.1 Proximal Policy Optimization Algorithms 25

iv

CONTENTS v

2.5.2 Proximal Policy Option-Critic (PPOC) 26

3 Intrinsically Motivate Diversity 28

3.1 Encourage Diversity While Learning 29

3.2 Experiments . 31

4 Encourage Diversity in Termination 34

4.1 Empirical Evaluation . 38

4.1.1 Tabular Four-rooms Navigation Task 38

4.1.2 Continuous Control Tasks . 41

4.1.3 Sparse Reward Tasks . 44

4.2 Option Relevance . 47

4.3 Transfer Properties . 50

4.3.1 HalfCheetah Hurdle . 51

4.3.2 Hopper Ice Wall . 53

4.3.3 TMaze Continuous . 55

4.4 Interpreting Option Behavior . 56

4.4.1 TMaze . 57

4.4.2 OneRoom . 58

4.4.3 Hopper-v2 . 59

4.5 Effects of Varying the Number of Options 60

5 Conclusion 65

Bibliography 67

A Implementation Details 72

A.1 Implementation Details . 72

A.1.1 Choice of Underlying algorithm 72

A.1.2 Tabular Case . 73

CONTENTS vi

A.1.3 Non-Linear Function Approximation Case 73

List of Tables

A.1 Hyper-parameters for Tabular Four-rooms task 73

A.2 Common hyper-parameters across all continuous control tasks 74

A.3 Learning rates for various continuous control tasks 75

A.4 Trade-off value for various control tasks 75

A.5 Common hyper-parameters across all Miniworld tasks 76

A.6 Learning rates for various Miniworld tasks 76

vii

List of Figures

2.1 Agent-environment Interaction in RL . 6

2.2 Policy Iteration . 9

2.3 Options help analyze the underlying MDPs which constitute the SMDP

(Sutton, Precup, and Singh 1999). SMDPs emulate temporal abstraction

as the can be composed by variable length transitions. 14

2.4 Option-Critic Architecture (Bacon, Harb, and Precup 2017). The

switch indicating the active option ω is selected by the policy over op-

tion. Only when the option terminates does the policy over option select

a new option. 16

2.5 Reinforcement Learning with reward shaping. The agent seeks to

maximize the returns as a combination of task reward rt and pseudo-

reward bt. The pseudo-reward may be dependent on of independent from

the environment based on how it is defined. However, the pseudo-reward

doesn’t directly relate to the task problem that the agent is attempting to

solve. 20

2.6 DQN Architecture (Mnih et al. 2015) . 25

viii

LIST OF FIGURES ix

3.1 Empirical Results of DEOC compared against OC for 2 million

steps (1 Iteration = 2048 steps). Trade-off value (τ) is 0.7 for HalfCheetah-

v2 (Fig 3.1(a) while τ is 0.2 for remaining tasks. Plot is an average of 20

independent runs. 32

3.2 Illustrations showing the gaits learned by DEOC and Option-

Critic (OC). Unlike OC where the agent flips over and slides on its back,

DEOC almost always learns to run upright. 33

4.1 Visualization of Terminations for different options after 1000 episodes.

Darker colors correspond to higher termination likelihood. Both TDEOC

and OC show higher terminations around hallways. 40

4.2 Four-rooms transfer experiment with four options. After 1000

episodes, the goal state, is moved from the east hallway to a random lo-

cation in the south east room. TDEOC recovers faster than OC with

a difference of almost 70 steps when the task is changed. Each line is

averaged over 300 runs. 41

4.3 TDEOC results on standard Mujoco tasks recorded for four million

steps (1 Iteration = 2048 steps). Plots are averaged over 20 independent

runs. 43

4.4 TDEOC results on standard Humanoid-v2 task implemented in Mu-

joco recorded for ten million steps (1 Iteration = 2048 steps). Plots are

averaged over 20 independent runs. 44

4.5 Screenshots depicting the Miniworld environments. 45

4.6 TDEOC results on standard Miniworld tasks recorded for two mil-

lion steps except for OneRoom task which is recorded for half a million

steps (1 Iteration = 2048 steps). Plots are averaged over 20 independent

runs. 46

LIST OF FIGURES x

4.7 Option activity for standard HalfCheetah-v2 task implemented in

Mujoco recorded for two million steps (1 Iteration = 2048 steps). Plots

are averaged over 20 independent runs. 49

4.8 Option activity for standard Mujoco tasks implemented in Mujoco

recorded for ten million steps for Humanoid-v2 while other simulations

were run for two million steps (1 Iteration = 2048 steps). Plots are averaged

over 20 independent runs. 50

4.9 Option activity for standard Miniworld tasks recorded for two million

steps (1 Iteration = 2048 steps). Plots are averaged over 20 independent

runs. 51

4.10 TDEOC results for HalfCheetahHurdle-v0 task implemented in Mu-

joco. After a 1000 iterations the height of the hurdle is increased from 1.2m

to 2.0 metres. Each line is an average of 20 independent runs (1 Iteration

= 2048 steps). 52

4.11 TDEOC results for HopperIceWall-v0 task implemented in Mujoco.

After a 500 iterations the block is moved 0.5 metres away from the agent’s

starting position. Each line is an average of 20 independent runs (1 Itera-

tion = 2048 steps). 54

4.12 TDEOC results for TMaze-v0 transfer task implemented in Mujoco.

After a 100 iterations the most frequent goal is removed. Each line is an

average of 20 independent runs (1 Iteration = 2048 steps). 55

4.13 Visualizations on TMaze task using two options (marked red and

yellow respectively in (a) and (b)). Option terminations localize in the

vertical hallway where the agent has yet to decide which goal to navigate

towards. 58

4.14 Option trajectories in OneRoom task. The first options scans the

environment for the goal while the other option moves forward towards it. 59

LIST OF FIGURES xi

4.15 Sample trajectory of the Hopper-v2 task. Terminations are localized

near states where the agent is in the air. Both options collaborate to ensure

proper posture and balance prior to descending. 60

4.16 TDEOC results on four Mujoco tasks with varying number of

options. Sample complexity keeps growing with increasing the number of

options. Each line is an average of 20 runs. 61

4.17 Option-Critic results on four Mujoco tasks with varying number

of options. Each line is an average of 20 runs. 62

4.18 TDEOC and OC results on four Mujoco tasks with three options.

Each line is an average of 20 runs. 63

4.19 TDEOC and OC results on four Mujoco tasks with four options.

Each line is an average of 20 runs. 64

1
Introduction

1.1 Motivation

Humans are capable of learning very complex real world tasks owing to our ability

to conceive actions over a wide range of temporal scales. Consider a task of going

to work in the morning. This task can be decomposed into sub tasks such as: get-

ting ready, having breakfast and driving to work. Each of these lower level actions

may require varying time steps to complete. Now, we can further decompose getting

ready into tasks such as brushing the teeth, taking a shower, getting dressed and so

on. Similarly, it is possible to keep breaking down these tasks to even simpler ones

up until the exact motion of limbs or even the contraction of muscle fibres required

to perform them. This example illustrates how humans carry out everyday tasks by

thinking hierarchically and creating objectives over a different temporal scales. Mak-

ing decisions at each step requires autonomous foresight and planning over multiple

time scales. The ability to think and plan hierarchically helps us explicate and solve

problems by reducing complexity of choosing actions while generating shorter and

more interpretable plans. It is interesting to note that humans can learn and plan

tasks over several temporal scales without any explicit instructions on how to cre-

ate sub tasks and strategize over them. Learning and planning at multiple levels of

temporal abstraction has a strong appeal to the reinforcement learning and artificial

1

CHAPTER 1. INTRODUCTION 2

intelligence research community.

There has been a lot of interest in hierarchical reinforcement learning and tempo-

ral abstraction for the past few decades (Sacerdoti 1974; Sutton 1985; Iba 1989; Korf

1983). Temporal abstraction has shown to improve exploration (Mann, Mankowitz,

and Mannor 2014) in learning, benefit planning, increase robustness to environment

perturbations and aid in transfer problems (Sutton, Precup, and Singh 1999; Ba-

con, Harb, and Precup 2017). Decomposing task over multiple temporal scales also

improves interpretibility (Sutton, Precup, and Singh 1999). Over the years several ap-

proaches to conceptualize temporal abstraction for reinforcement learning have been

proposed (Singh 1992; Parr and Russell 1998; Sutton, Precup, and Singh 1999; Vezh-

nevets et al. 2017). The option framework (Sutton, Precup, and Singh 1999; Precup

2000) is one of the most effective formalization of temporal abstraction to learn and

plan with temporally extended actions. An option is a subroutine which is selected to

run until a specified condition is met, upon which it terminates and allows a chance

for a better option to be selected.

The option-critic architecture (Bacon, Harb, and Precup 2017) is a gradient-based

framework capable of learning both the intra-option policies as well as the termina-

tion functions end-to-end without explicitly providing any sub-goals. Option-critic

demonstrated the effectiveness of temporal abstraction in learning interpretable and

reusable skills on several tasks. However, as with most reinforcement learning algo-

rithms, option-critic solely relies on rewards explicitly received from the environment

based on the agent’s experience. As a consequence, options often begin collapsing in

various ways, for example options becoming primitive actions, a single option learning

to solve the entire task and dominating the others, or several options becoming similar.

These degeneracies negatively impact the agent’s ability to re-use the learned option

set in new situations. Such degeneration is to be expected as all Markov-Decision

Processes (MDPs) can be solved using primitive actions. However, degeneracies void

the need for temporal abstraction and heirarchial learning in reinforcement learn-

CHAPTER 1. INTRODUCTION 3

ing agents. There have been attempts to tackle the problem of options collapsing

onto multiple copies of the optimal policy (Bacon, Harb, and Precup 2017; Haru-

tyunyan et al. 2019) as well as ensuring options do not shrink too much over time

(Harb et al. 2018). However, finding a solution that can easily generalize over a wide

range of tasks is still an ongoing challenge. Furthermore, for most of the techniques

used for learning options, the agent lacks motivation for learning useful, robust yet

interpretable options since maximizing expected returns is all that drives the learn-

ing framework. The need for temporal abstraction is best realized when the agent

learns specialized options intuitively which can be effectively reused and exploited for

learning a task.

In this thesis, we tackle the problem of constructing a diverse set of options. Di-

versity in options refers to options learning mutually distinct behavior. An option’s

behavior is indicated by its intra-option policy. Diverse options can be exploited

to increase exploration as well as robustness in learning challenging tasks (Gregor,

Rezende, and Wierstra 2016; Eysenbach et al. 2018; Harutyunyan et al. 2019). A com-

mon approach for encouraging diversity in a policy is entropy regularization (Williams

and Peng 1991; Mnih et al. 2016), but it does not capture the idea of the set of options

itself containing skills that differ from each other and hence often fails to produce de-

sired results. We use intrinsic motivation to address this issue. Using auxiliary rewards

has shown encouraging results promoting useful properties such as exploration and

performance (Ng, Harada, and Russell 1999; Singh et al. 2010; Bellemare et al. 2016).

In this work, we introduce an auxiliary reward which, when combined with the task

reward encourages diversity in the policies of options. We empirically show how this

diversity can help options explore better on several standard continuous control tasks.

We then focus on the termination component of options. Option critic’s termina-

tion objective (Bacon, Harb, and Precup 2017) aims to maximize expected returns

by validating the option with the highest value at a given state. Unfortunately, this

prevents the sub-optimal option to be selected and trained which is often the cause for

CHAPTER 1. INTRODUCTION 4

option degeneration. Our approach suggests that instead of having options compete

for selection, adequate exploration of all available options should be encouraged so

long as they exhibit diverse behavior. In this work, we propose a novel information

theoretic termination objective which, coupled with our proposed intrinsic reward

bonus , produces robust, task relevant options. We test this new objective quantita-

tively and qualitatively in a classic tabular setting as well as several standard discrete

and continuous control tasks.

1.2 Thesis Overview

The thesis begins with motivation behind pursuing this which is articulated in this

chapter. The required prerequisites are covered in Chapter 2. The background begins

with a basic overview of reinforcement learning and various techniques developed

in the field such as Policy Iteration, Temporal Difference Learning, On-Policy and

Off-Policy Methods and Policy Gradient. Section 2.2 outlines temporal abstraction

and the options framework in the context of learning temporally extended actions in

reinforcement learning. The option-critic architecture is presented as an end-to-end

learning framework capable of learning the components of options such as intra-option

policies as well as the termination conditions without explicitly defined sub-goals.

Section 2.3 focuses on intrinsic motivation and its benefits in model-free reinforcement

learning algorithms. The section also reiterates relevant literature in the field that

support its validity in influencing the way agent behave. Concepts of information

theory are described in section 2.4. Section 2.5 contains a brief overview of Deep

Reinforcement Learning (Deep RL). The section highlights recent developments in

deep RL and presents algorithms such as Proximal Policy Optimization (PPO) which

are used in the empirical analysis for this thesis.

The thesis revolves around the idea of diversity in options as a significant factor

in learning useful, robust and interpretibile options. Chapter 3 explores how diversity

CHAPTER 1. INTRODUCTION 5

directly affects the way options are learned in a model-free setting. Using concepts of

information theory, a pseudo-reward is derived which is coupled with the task reward

to encourage overall diversity in options. The benefits and effects of incorporating

diversity directly into the reward signal are studied using simulated experiments on

continuous control tasks.

Chapter 4 focuses on diversity to define the scope of options. A termination

objective built around the idea of identifying states where options can grow most

diverse is proposed. The new termination objective coupled with the proposed intrin-

sic motivator not only encourage diversity in options, but also drastically improves

overall performance. The termination objective also offers additional benefits such

as promoting options to remain relevant to the task, better transfer capabilities, and

improved interpretability of option’s behavior. All the above mentioned properties are

empirically tested on a wide range of tasks to show a consistent and general learning

pattern.

Finally, chapter 5 presents the highlights of the thesis. The conclusion also men-

tions the shortcomings as well as viable future direction for this work.

2
Background

2.1 Reinforcement Learning

Reinforcement learning (RL) is a framework inspired by behavioral psychology (Sut-

ton 1985) developed to learn tasks involving sequential decision making. It involves

taking sequential actions which are learned from experience gathered by interacting in

an environment. Much like trial-and-error learning, an agent attempts various actions

on the environment and strengthens actions yielding positive or successful responses,

given in the form of rewards, received from the environment. The agent’s objective is

to maximize the cumulative rewards.

The agent-environment interaction process is visualized in Fig 2.1 (Sutton and Barto

2018).

Figure 2.1: Agent-environment Interaction in RL

6

CHAPTER 2. BACKGROUND 7

The problem setting in reinforcement learning is modeled as a Markov Decision

Process (MDP) which consists of:

• Set of states S

• Set of actions A

• Scalar discount factor γ ∈ [0, 1)

• Reward function r : S × A → R

• A transition function T : S ×A× S → [0, 1]

Policy (π) is a function which defines how an agent selects actions. A stochastic policy

is defined as π : S ×A → [0, 1] i.e the policy outputs the probability of taking an

action At at state St. In this thesis we focus on the objective of learning a policy to

optimize the expected return Vπ(s): S → R which is called the value function.

Vπ(s) = Eπ
[
rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 +

]
= Eπ

[∞∑
k=0

γkrt+k+1

∣∣∣∣St = s

]

= Eπ
[
rt+1 + γVπ(st+1)

∣∣∣∣St = s
]

=
∑
a

π(a|s)
∑
s′,r

p(st+1 = s′, r|s, a) [r + γVπ(s′)] ,∀s ∈ S

(2.1)

where Eπ[·] denotes the expected value of the term. It is possible to bootstrap the

value estimate of the next state to evaluate the current value function. This recursive

relationship create a Bellman equation (Bellman 1954) which is often exploited in

reinforcement learning. The bellman equation can be solved to obtain optimal value

CHAPTER 2. BACKGROUND 8

function shown in Eq 2.2. The optimal value function V*(s) can be defined as the

cumulative discounted return following an optimal policy.

V ∗(s) = max
π

Vπ(s)

= max
a

E
[
rt+1 + γV ∗(st+1)

∣∣∣∣St = s, At = a
]

= max
a

p(st+1 = s′, r|s, a) [r + γV ∗(s′)]

(2.2)

Since the above value function (Vπ(s)) depends on the state, it is also referred to

as state-value function. We can also define the state-action value function (Qπ(s, a))

also referred to as Q-value function.

Qπ(s, a) = Eπ
[
rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 +

]
= Eπ

[∞∑
k=0

γkrt+k+1

∣∣∣∣St = s, At = a

]

= r(s, a) + γ
∑
s′
p(st+1 = s′|st = s, at = a)

∑
a′
π(st+1, a

′)Qπ(s′, a′)

Q∗(s, a) = max
π

Qπ(s, a)

= r(s, a) + γ
∑
s′
p(st+1 = s′|st = s, at = a) max

a′
Q(s′, a′)

(2.3)

The optimal Q-value (Q*(s,a) is the expected discounted return following the

optimal policy (π*) given a state s and an action a. It is often useful to use the

advantage function Aπ(s, a) which measures how useful action a is compared to the

expected return when following a policy π.

Aπ(s, a) = Qπ(s, a)− Vπ(s) (2.4)

2.1.1 Policy Iteration

The key idea of reinforcement learning is to exploit value functions to search and

learn good policies. In general, this process is broken down into two phases: the

CHAPTER 2. BACKGROUND 9

policy evaluation phase often referred to as the prediction problem in RL, and the

policy improvement phase or the control problem in RL. Policy evaluation refers to

computing the value function for a policy π. The value function assesses the policy

and is useful in finding better policies. In the case of policy improvement, the value

function is used to greedily update the policy π such that the updated policy π′,

is better than the former policy (Vπ′(s) ≥ Vπ(s)). The policy iteration involves two

simultaneous processes, the policy evaluation and the policy iteration. The interacting

processes are shown in Figure 2.2 (Sutton and Barto 2018). The objective of RL is

to learn a policy so as to maximize the expected return.

Figure 2.2: Policy Iteration

Policy iteration without explicit knowledge of the environment dynamics or a

model is referred to as model-free RL. If the environment transitions and the reward

function are known, the algorithm is referred to as model-based RL. Learning in RL

can occur in an online as well as an offline case. Offline learning is used when envi-

ronment data is limited where as in the case of online learning the agent is able to

interact with the environment to gather data. In this thesis, we focus on the online

learning problem. A challenge faced in online learning is sample efficiency, which is

to learn a generalized policy without requiring large amount of data.

CHAPTER 2. BACKGROUND 10

2.1.2 Temporal Difference Learning

Temporal difference (TD) learning is a central concept in RL. TD learning combines

ideas from Monte Carlo, which involves learning from gathering experience, and dy-

namic programming, involving bootstrapping estimates from other estimates without

waiting for the final outcome. The TD prediction update (Sutton and Barto 2018) is

given as:

V (St) = V (St) + α [Rt+1 + γV (St+1)− V (St)] (2.5)

where α is a learning rate. This update is called the TD(0) or one-step update

as only the value-estimate from the next state is used in each update. The term

Rt+1 + γV (St+1) − V (St) is called the TD error. The TD(λ) algorithm averages

multi-step or n-step updates. The n-step updates are each weighted proportional to

lambdan−1, where λ ∈ [0,1] and is normalized by a factor of 1-λ. λ-return (Sutton

and Barto 2018) is defined as:

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gt:t+n (2.6)

2.1.3 On-Policy and Off-Policy Methods

There are two common approaches used in control tasks: on-policy methods and

off-policy methods. On-policy methods involve evaluating or improving the policy

that is used to interact with the environment, whereas off-policy methods evaluate

or improve a policy different from that used to generate the data (Sutton and Barto

2018). In this thesis, we use on-policy methods for all our algorithms.

A common on-policy TD control method is Sarsa (Sutton and Barto 2018). Instead

of the state value function Vπ(s) for the current behavior policy, sarsa estimates the

state value function Qπ(s, a). The one step (TD(0)) update is given by:

Qπ(st, at)→ Qπ(st, at) + α [rt+1 + γQπ(st+1, at+1)−Qπ(st, at)] (2.7)

CHAPTER 2. BACKGROUND 11

The update is done after every transition from a non-terminal state (St). If (St+1) is

terminal, then Qπ(st+1, at+1) is defined as zero. This method gets its name from the

quintuple of events (St, At, Rt+1, St+1, At+1) which spells out Sarsa.

While on-policy methods learn the same policy which interacts with the environ-

ment, off-policy methods attempt to estimate and improve a target policy while a

separate policy called behavior policy, is used to generate the experience data by in-

teracting with the environment. This behavior policy is often an exploratory policy.

Off-policy methods use a correction term to account for the discrepancy between the

two policies. One of the most common techniques is to use importance sampling. The

importance sampling ratio for a trajectory starting from time t to T is given by:

ρt:T−1 =
T−1∏
k=t

π(Ak|Sk)
µ(Ak|Sk)

(2.8)

where π is the target policy and µ is the behavior policy. The importance sampling

ratio helps estimate the expected value of the target policy using returns from a

behavior policy:

E [ρt:T−1Gt|St] = Vπ(St) (2.9)

One of the most popular off-policy TD control method is the Q-Learning method

(Watkins and Dayan 1989). The one-step update is given as:

Qπ(st, at)→ Qπ(st, at) + α
[
rt+1 + γmax

a
Qπ(st+1, a)−Qπ(st, at)

]
(2.10)

The action value function Q, directly approximates the optimal action-value function

Q* independent of the policy being followed (Sutton and Barto 2018). Q-Learning

is considered off-policy as the state value function Q learns from actions that may

be outside the scope the target policy. In this thesis on-policy methods are used for

empirical evaluations both in the tabular as well as the non-linear function approxi-

mation case.

CHAPTER 2. BACKGROUND 12

2.1.4 Policy Gradient

So far we have considered tabular methods where it is possible to calculate and store

the values for each state of the MDP. Tabular cases use a lookup table to store Q(s,a)

values for each state action pair. However, these cases don’t easily scale to tasks

with arbitrarily large and high dimensional state space. An example of such tasks

are navigation tasks with image data as input. We cannot expect to find an optimal

policy or the optimal value function even with a limit of infinite computational time.

Instead, it is useful to learn a function which approximates the solution using limited

computational resources.

Policy gradient methods learn a parameterized policy that can act on an environment

without consulting a value function. Although a value function may still be used

to learn a policy, it is not required to select an action. A parameterized policy is

represented by π(a|s, θ) ∈ [0,1] for the probability that action a is taken given the

current state s with parameter θ ∈ Rd′ . The policy parameters are updated based on

the gradient of a performance objective J (θ) with respect to the policy parameter.

θt+1 = θt + α∇Ĵ (θt) (2.11)

where ∇Ĵ (θt) is the stochastic estimate whose gradient approximates the gradient

of the performance measure (Sutton and Barto 2018). Policy gradient methods apply

as long as π(a|s, θ) is differentiable with respect to its parameters i.e. as long as

∇θπ(a|s, θ) exists and is always finite. Actor-critic methods learn both a policy and

a value function. Actor-critic methods are online, incremental learning algorithms.

CHAPTER 2. BACKGROUND 13

The one step actor critic update (Sutton and Barto 2018) is:

θt+1 = θt + α
(
Gt − V̂ (St, w)

) ∇θπ(At|St, θt)
π(At|St, θt)

= θt + α
(
Rt+1 + γV̂ (St+1, w)− V̂ (St, w)

) ∇θπ(At|St, θt)
π(At|St, θt)

= θt + αδt
∇θπ(At|St, θt)
π(At|St, θt)

(2.12)

2.2 Temporal Abstraction

Humans have a remarkable ability to overcome arduous tasks by learning, planning

and representing knowledge hierarchically. Temporal abstraction can help scale rein-

forcement learning tasks by decomposing the problem space over different temporal

scales. There has been a lot of development in formalizing temporal abstraction for

reinforcement learning. The MAXQ method (Dietterich 1998) decomposes the target

MDP into a hierarchy of smaller MDPs. The value function of the target MDP was

computed using a combination of the value functions of the smaller MDPs. Hierarchi-

cal abstract machines (HAM) (Parr and Russell 1998) learns hierarchies by imposing

constraints on the policies. Developing abstract MDPs (Hauskrecht et al. 1998) has

shown to break the original MDP’s state space allowing macro actions to learn policies

over specific regions. The abstract MDP approximates the original MDP in such a

way that it can be solved more efficiently. FeUdal networks (Vezhnevets et al. 2017)

proposed an architecture to learn policies belonging to a hierarchy. The framework

employs a manager module and the worker module. The manager generates goals

which are enacted by the worker. FeUdal networks were shown to be advantageous in

long-term credit assignment tasks. Hierarchical Actor-Critic (HAC) (Levy, Platt, and

Saenko 2018) framework was shown to effectively learn multiple levels of hierarchy

simultaneously accelerating learning when compared to non-hierarchical frameworks.

The options framework (Sutton, Precup, and Singh 1999; Precup 2000) is one of the

most widely used frameworks formalizing temporal abstraction. Options are tempo-

CHAPTER 2. BACKGROUND 14

rally extended actions which act on a lower temporal resolution. Options and an MDP

together form a semi-Markov Decision Process (SMDP) (Sutton, Precup, and Singh

1999). Hence the option framework inherit most of the useful properties of SMDPs

for learning variable length macro-actions or options.

Figure 2.3: Options help analyze the underlying MDPs which constitute the SMDP
(Sutton, Precup, and Singh 1999). SMDPs emulate temporal abstraction as the can
be composed by variable length transitions.

Option is a triple (Io, πo, βo) defined using:

• Initiation set Io ⊆ S

• Intra-option policy πo : S ×A → [0, 1]

• Termination function βo : S → [0, 1]

An option o can be selected at a state permitted by the initiation set, i.e s if s ∈ S

and s ∈ Io. Upon selection, the agent’s behavior under an option is depended on

the option’s policy called the Intra-option policy. The termination function βo deter-

mines if the option terminates, upon which the agent selects another option. This

call-and-return model executes until the episode terminates. The policy which selects

an option from the set of options is referred to as policy over options (πΩ). Primitive

action frameworks can be seen to be a special form of the options framework where

CHAPTER 2. BACKGROUND 15

each option terminates in one step. In this thesis, we assume that all options are

available everywhere such that Io∈O = S where O is the set of all options.

Learning options end-to-end has been a big challenge mainly because it is difficult

to define what constitutes a good option. Several approaches have been proposed to

tackle the option discovery problem (Mann, Mankowitz, and Mannor 2014; Stolle and

Precup 2002). The option-critic architecture is a gradient-based framework capable

of learning options end-to-end. The intra-option policies as well as the termination

functions are learned using the expected return objective. All the options are learned

simultaneously in an online, model-free setting. The intra-option policy weights and

the termination weights are assumed to be independent. Option-critic empirically

demonstrated the benefits of temporal abstractions in context of exploration, reusabil-

ity of specialized skills and interpretability of options.

The option-value function QΩ(s, o) = S × O → R is the value of executing an

option in the context of state and option (Bacon, Harb, and Precup 2017)

QΩ(s, o) =
∑
a

πo,a(a|s)QU(s, o, a) (2.13)

where QU : S × O ×A → R is the value of executing an action in the context of

a state-option pair.

QU(s, o, a) = r(s, a) + γ
∑
s′
p(s′|s, a)U(o, s′) (2.14)

The function U(o, s′) : O × S → R is the option value upon entering state s’

(Sutton, Precup, and Singh 1999).

U(o, s′) = (1− βo(s′))QΩ(s′, o) + βoVΩ(s′) (2.15)

Option critic derived the intra-option gradient optimizing the expected return

objective. The intra-option policy gradient theorum (Bacon, Harb, and Precup 2017)

states that given a set of Markov options with stochastic and differentiable intra-

CHAPTER 2. BACKGROUND 16

Figure 2.4: Option-Critic Architecture (Bacon, Harb, and Precup 2017). The
switch indicating the active option ω is selected by the policy over option. Only when
the option terminates does the policy over option select a new option.

option policies, the gradient of the expected discounted return with respect to their

parameters θ and initial condition (s0, o0) is:

∑
s,o

µΩ(s, o|s0, o0)
∑
a

∂πo,θ(a|s)
∂θ

QU(s, o, a) (2.16)

where µΩ(s, o|s0, o0) is a discounted weighting of state-option pairs starting from

(s0, o0).

The termination gradient theorem (Bacon, Harb, and Precup 2017) states that given

a set of Markov options with stochastic and differentiable termination functions, the

gradient of the expected discounted return with respect to their parameters ν and

CHAPTER 2. BACKGROUND 17

initial condition (s1, o0) is:

−
∑
s′,o

µΩ(s′, o|s1, o0)∂βo,ν(s
′)

∂ν
AΩ(s′, o) (2.17)

where AΩ(s′, o) is the advantage function over options. AΩ(s′, o) = Q(s′, o) −

VΩ(s′). The advantage function offers and intuitive interpretation to the gradient up-

date. If the value of the executing option is sub-optimal with respect to the expected

value of all options, the gradient correction increases thereby promoting termination.

The termination update hence validates the best possible option at each state. The

paper illustrates in a simple tabular task how option terminations aid interpretable

and specialized abstractions which can be reused in similar tasks.

However, since theoretically any MDPs can be solved using primitive actions, options

began defaulting to primitive actions. This phenomenon is commonly referred to as

degeneracy in options. Options may degenerate in two ways: a single option performs

the entire task without ever terminating, or options may terminate in every step and

keep switching at every step. Degeneracy is counterproductive as it voids the need

for temporal abstraction in any task along with surrendering all the useful properties

of learning options. In an effort to prolong degeneration, a deliberation cost inspired

by bounded rantionality framework (Harb et al. 2018), was introduced which penal-

ized frequent option terminations. Although deliberation cost succeeded in delaying

degeneracy, it was heavily depended on the parameter.

Another limitation of termination gradient can be attributed to the presence of the

advantage function in the update, which validates the option with the highest value

without exploring the other options sufficiently. Selecting the best available option

without adequately exploring others isn’t a good strategy. Termination critic (Haru-

tyunyan et al. 2019) emphasised the need to decouple the terminations from the

expected return objective. The paper proposed that terminations should focus on the

compressibility of the option’s encoding.

The termination gradient also doesn’t prioritize learning the variety of states where

CHAPTER 2. BACKGROUND 18

options need to focus their terminations. Identifying and exploiting critical states

where options can develop better and useful abstractions can improve exploration,

performance, transfer abilities as well as interpretability.

In this thesis, we draw attention to diversity in options. Diversity in options refers

to options learning mutually distinct behavior as indicated by its intra-option policy.

Current practices involve using an entropy regularizer (Williams and Peng 1991; Mnih

et al. 2016) for policy over options updates which increases the stochasticity of the

policy encouraging all options to be explored sufficiently. However, since entropy reg-

ularizer doesn’t relate to the intra-option policies directly, it often fails to produce the

desired results. We propose that diversity in options can be used for defining the scope

of option’s abstractions. Our method identifies certain critical states in the trajectory

which are capable of generating diverse option trajectories and encourages options to

terminate there. These states represent regions where the agent can exploit diversity

in options for exploration and stability. Over the years, identifying bottleneck states

as useful sub-goals for directing options, has had lot of success (McGovern and Barto

2001; Stolle and Precup 2002; Bacon 2013). Our approach can be seen to target the

bottleneck states characterized by diversity in options. Unsupervised skill discovery

has shown to be capable of learning challenging tasks using an information theoretic

objective (Eysenbach et al. 2018). Our algorithm however, is also capable of learn-

ing the task simultaneously. Combining deep skill chaining with option-framework

autonomously was shown to generate sequentially connected and spatially localized

options in a model-free setting (Bagaria and Konidaris 2020). In our approach, we

do not impose any restriction on option’s initiation which is quite useful in transfer

settings.

CHAPTER 2. BACKGROUND 19

2.3 Intrinsic Motivation

Reinforcement learning usually involves maximizing expected return based on the

rewards explicitly received from the environment. However, in many instances the re-

ward function fails to capture all the necessary information that may help the agent’s

decision. Use of conventional reinforcement learning algorithms is often limited to

learning overly simplified tasks or tasks which require a large amount of training expe-

rience. More often than not, the agent is required to learn tasks where these properties

are rarely observed. Large and complex task domains lead to poor sample efficiency

and the agent may even fail to explore the environment exhaustively. Algorithms,

in such instances, can benefit from complementary incentives drawn from intrinsic

motivation. Intrinsic motivation has been researched extensively in psychology and

neuroscience (Harackiewicz and Elliot 1993; Sansone and Harackiewicz 2000; Deci

and Ryan 2010). Intrinsic motivation is defined as the incentive drawn from a source

separate from the task incentives. Intrinsic motivation and reward modifications have

been very successful in inducing certain desirable properties in reinforcement learning

algorithms. A common one step update in RL using reward augmentation can be

represented by the following formula:

Qπ(st, at)← Qπ(st, at) + α [rt+1 + bt+1 + γQπ(st+1, at+1)−Qπ(st, at)] (2.18)

where rt is the task reward and bt is the pseudo reward. Reward shaping for the

computational-oriented perspective of reinforcement learning can be seen as analogous

to the concept of operation conditioning from psychology. Reward shaping can aid

the temporal credit assignment problem by making correct behavior apparent through

immediate and localised incentives.

Count based pseudo rewards have shown to improve exploration in several tasks

(Bellemare et al. 2016; Ostrovski et al. 2017; Tang et al. 2017; Machado, Bellemare,

and Bowling 2018). Pseudo-counts refer to approximate state visitation counts by

the agent during its trajectories. This measure can be useful to encourage the agent

CHAPTER 2. BACKGROUND 20

Figure 2.5: Reinforcement Learning with reward shaping. The agent seeks
to maximize the returns as a combination of task reward rt and pseudo-reward bt.
The pseudo-reward may be dependent on of independent from the environment based
on how it is defined. However, the pseudo-reward doesn’t directly relate to the task
problem that the agent is attempting to solve.

to explore states which have been inadequately explored. Self-supervised prediction

errors have also shown to help the agent explore better. Ng, Harada, and Russell 1999

formulated reward function modifications which leaves the optimal policy unaffected.

Zheng, Oh, and Singh 2018 defined a intrinsic reward function whose parameters can

be learned without providing any knowledge of the task. Coupling primary task re-

ward with intrinsic motivation can also increase robustness and generalization (Singh

et al. 2010). Intrinsic motivation can even replace task reward to engineer task inde-

pendent behavior. Skills learned independent of the task reward can used as a prior

to learn challenging tasks (Eysenbach et al. 2018). Our work on intrinsic motivation

draws inspiration from similar methods to encourage diversity in options with the

major difference of distinguishing options through their behaviors instead of states.

In our approach we use a pseudo-reward bonus to encourage options to learn diverse

behaviors.

CHAPTER 2. BACKGROUND 21

2.4 Information Theory

Information theory is a field that primarily deals with deriving fundamental theoretical

limits on achievable performance when communicating information over channels and

then development of schemes that provides performance that is reasonable good in

comparison with the optimal performance as given by the theory. Information theory

can be viewed as a branch of applied probability theory. Information theory was

introduced to find limits on signal processing and communications operations such as

data compression (Shannon 1948). A key measure of information theory is entropy.

Entropy measures a random variable’s (RV) self-information or uncertainty inherent

in the random variable. Self-information is the level of information associated with an

event or the outcome of a random variable. Given a random variable X, with possible

outcomes xi, each with probability PX(xi), the entropy H(X) of X is given by:

H(X) = −
∑
i

PX(xi)logPX(xi)

=
∑
i

PX(xi)IX(xi)

= E[IX]

= E [−log(P (X))]

(2.19)

where IX is the self-information of the random variable X and IX(xi) is the self-

information related to a particular outcome. For a stochastic source of data, a lower

probability value of an event occurring carries more information than high probability

events. Entropy hence relates to the information of a random variable. Information

and entropy have also been used to measure the unpredictability of an outcome.

Joint entropy is the measure of uncertainty associated with a set of random variables.

The joint entropy H(X,Y) of two random variables X and Y is given as:

H(X, Y) = −
∑
x∈X

∑
y∈Y

P (x, y)log[P (x, y)] (2.20)

CHAPTER 2. BACKGROUND 22

The conditional entropy measures the information associated for the outcome of a

random variable X given a random variable Y. The conditional entropy H(X|Y) is

given by:

H(X|Y) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y)logp(x|y) = −
∑
x,y

p(x, y)logp(x|y) (2.21)

Mutual information measures the amount of information that can be obtained

about one random variable by observing another. The mutual information I of X

relative to Y is given by:

I(X;Y) =
∑
y∈Y

∑
x∈X

p(x, y)log p(x, y)
p(x)p(y) (2.22)

A few useful properties in information theory are:

H(X|Y) = H(X, Y)−H(Y) (2.23)

I(X;Y) = H(X)−H(X|Y)

= H(X) +H(Y)−H(X, Y)

= I(Y ;X)

(2.24)

Cross entropy between two probability distributions p and q measures the average

information for an estimated optimized probability distribution q rather than true

distribution p. Cross entropy is commonly used to measure the difference between

two probability distributions. Cross entropy can be seen to be related to Kullback-

Leibler divergence or KL divergence. KL divergence between two distributions P and

Q is given by:

DKL(P ||Q) =
∑
x∈X

p(x)log
(
P (x)
Q(x)

)
(2.25)

KL divergence is also called relative diversity. Cross entropy measures the total en-

tropy between distributions. It is important to not that cross entropy and joint

CHAPTER 2. BACKGROUND 23

entropy are very different terms. Cross entropy of the distribution q relative to p is

given by:

H(p, q) = H(p) +DKL(p||q)

= −
∑
x∈X

p(x)logq(x)
(2.26)

Reinforcement learning algorithms have benefited greatly from concepts from in-

formation theory. Entropy regularization (Williams and Peng 1991; Mnih et al. 2016)

have been used to increase the stochasticity of policies. Increasing the entropy of the

policy promotes exploration and selection of diverse actions fairly. Entropy regular-

ization contributes significantly in the overall performance of the algorithm especially

in non-linear function approximation setting. Maximum entropy model-free methods

have produced state of the art results on continuous control tasks as well as real-world

robotic control (Haarnoja et al. 2017; Haarnoja et al. 2018). Maximum entropy frame-

works in a hierarchical reinforcement learning framework generated diverse skills in

the absence of task related reward (Eysenbach et al. 2018). Using the learned diverse

skills as a prior was shown to be useful to learn challenging continuous control tasks.

Entropy-based methods in policy gradient methods reduces the likelihood of the pol-

icy to get stuck in local optimum.

In this thesis, we use the properties stated above to incorporate the notion of diver-

sity in options in the learning framework. We show that diversity motivated learning

improves the exploration as well as overall performance of the algorithm. We also

use the diversity term in defining an option’s abstraction to exploit diversity further.

We empirically show how diversity plays a role in learning useful and stable options.

We also show how diversity in options helps identify and learn events faster over an

agent’s trajectories.

CHAPTER 2. BACKGROUND 24

2.5 Deep Reinforcement Learning

Over the years, reinforcement learning has become increasingly popular due to its

success in solving challenging sequential decision making tasks. Emergence of deep

learning allowed learning representations from complex high-dimensional input data

such as images made up of thousands of pixels. With the aid of deep learning, RL

has been able to achieve learn policies in a way similar to the way humans learn to

perform decision making tasks. Certain deep RL algorithms have shown super-human

performance in playing Atari games from pixels (Mnih et al. 2015). Deep RL is the

key to bring RL techniques to the real-world applications such as robotic control, self-

driving automobiles, drug discovery, finance and more. Despite the endless learning

possibilities that deep learning brought to the field, deep RL still faces some important

challenges. Scaling RL to complex tasks requires learning good generalized policies

which which is able to handle perturbations and out of context data better. Learning

representations from high dimensional data requires a lot of data, which is often too

expensive to generate. It is hence crucial to develop sample efficient algorithms which

can still achieve acceptable performance.

The deep Q-network(DQN) algorithm (Mnih et al. 2015) demonstrated strong perfor-

mance in a model-free online setting solely learning from pixel bases images. Convolu-

tion neural networks (CNN) are used to learn a representation from the observations.

DQN used a replay buffer to store experience from past trajectories. The experience

was collected using an ε-greedy policy. To reduce variance, a mini-batch populated

uniformly from the replay buffer was used for updates instead of using values from a

single transition. DQN achieved super-human performance on several Atari learning

environments. Policy gradient methods which optimize a policy using the maximum

expected return objective us a first order method which approximates the function to

be quite smooth which is often not the case. Taking large steps in the direction of

maximizing returns can cause instability and hurt performance. Trust Region opti-

CHAPTER 2. BACKGROUND 25

Figure 2.6: DQN Architecture (Mnih et al. 2015)

mization methods aim at improving the policy in a controlled way. The changes in

the policy are restricted using the KL-divergence between the action distributions.

Bounding the size of policy update also enforces bounds in changes in state distribu-

tions thereby guaranteeing policy improvement. TRPO (Schulman et al. 2015) is one

of the most popular algorithms which uses constrained updates. The TRPO policy

update is given by:

max
∆θ

Es∼ρπθ ,a∼πθ

[
πθ+∆θ(s, a)
πθ(s, a) Aπθ(s, a)

]

subject to E [DKL (πθ(s, ·)||πw+∆w(s, ·))] ≤ δ) (2.27)

where δ ∈ R is a hyper-parameter and Aπ is the advantage function. TRPO uses

a conjugate gradient with KL constraint to optimize the objective function.

2.5.1 Proximal Policy Optimization Algorithms

Although TRPO emphasises the benefits of using second order methods for policy

optimizations, second order methods are naturally more complicated. TRPO is also

quite sensitive to architectures which include noise or parameter sharing. To alle-

viate these problems while maintaining the reliability of of TRPO, Proximal Policy

Optimization (PPO) algorithms were introduced (Schulman et al. 2017). Instead of

using the KL constraint, PPO uses a penalty in the form of clipped probability ratios

which forms a pessimistic estimate of the policy’s performance. PPO is an on-policy

algorithm where the same policy is used to generate samples as well as for policy

CHAPTER 2. BACKGROUND 26

improvements. The surrogate objective for conservative policy iteration (CPI) used

in TRPO is:

LCPI(θ) = E
[
πθ(at, st)
πθold(at, st)

At

]
= E [rt(θ)At] (2.28)

where rt(θ) = πθ(at,st)
πθold (at,st) .

The objective used for PPO is:

Lclip(θ) = Et [min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)] (2.29)

where ε is a hyperparameter. The second term in the objective discourages rt from

moving outside the interval [1 − ε, 1 + ε]. Taking the minimum of the clipped and

unclipped objective ensures the final pbjective is a lower bound or pessimistic with

respect to the unclipped objective. PPO methods are first order methods, making

them simper and easier to implement than TRPO. PPO also shows better sample

complexity when tested empirically. On a wide suite of tasks including continuous

control tasks implemented in Mujoco and discrete control tasks from Atari learning

environment, PPO achieves state of the art performance. We use PPO as a baseline

for all out experiments in this thesis.

2.5.2 Proximal Policy Option-Critic (PPOC)

Learning options end-to-end for non-linear function approximation case not only im-

proves exploration and performance, but also interpretability of agent’s learning (Ba-

con, Harb, and Precup 2017; Harb et al. 2018). In section 2.5.1 we discuss the bene-

fits of proximal policy optimization algorithms for model-free reinforcement learning.

Proximal Policy Option-Critic (PPOC) (Klissarov et al. 2017) uses the PPO objective

for intra-option policy updates. PPOC is capable of learning options end-to-end on a

suite of continuous control tasks using the Mujoco simulator. PPOC uses a network

for value function as well as termination function and another network for intra-option

policy updates as well as policy over option updates. To prolong degeneration, besides

CHAPTER 2. BACKGROUND 27

using the deliberation cost (Harb et al. 2018), PPOC reuses samples of options which

are inadequately selected. The option improvement updates in PPOC are defined as:

Intra-option policy update:

θπ ← θπ + αθπ
∂Lt(θ)PPO

∂θπ
(2.30)

where Lt(θ)PPO is the PPO objective.

Termination function update:

θβ ← θβ + αθβ
∂β(st)
∂θβ

(A(st, ot) + η) (2.31)

where η is the deliberation cost and (A(st, ot) is the advantage function.

Policy over option update:

θΩ ← θΩ + αθΩ
∂Ω(ot|st)
∂θΩ

(A(st, ot)) (2.32)

Critic update:

θw ← θw + αθw
∂(Gt −Qπ(st, aa)2)

∂θw
(A(st, ot)) (2.33)

where Gt is the return.

PPOC outperformed PPO on several standard Mujoco tasks with a learning hori-

zon of 1 million steps showing better sample efficiency. PPOC also demonstrated

significantly better performance on transfer tasks. Benefits of learning options are

can be better appreciated in certain tasks where a hierarchical architecture can be

exploited. For our empirical results we use PPOC as a baseline. We also incorporate

our algorithm within the PPOC code-base.

3
Intrinsically Motivate Diversity

Option-critic is one of the most popular frameworks used to learn options end-to-

end. The algorithm learns options solely using rewards explicitly received from the

environment which are used to optimize expected return. This however, does not

incentivize options to learn useful, desirable properties such as diversity in options,

often leading to different options learning similar behavior. An option set comprising

of similar options would imply similar decision sequences irrespective of which option

is selected. A diverse option set can be useful in the agent’s exploration as each option

can specialize to different state space thereby effectively decomposing the problem’s

complexity. Diversity can also increase the stochasticity of the policy over options

promoting options to remain relevant and useful to the task. In this chapter, we draw

inspiration from intrinsic motivation to develop a pseudo-reward complementing the

task reward which encourages options to maximize diversity. We also show how the

maximum diversity objective improves exploration as well as overall performance on

several continuous control tasks.

28

CHAPTER 3. INTRINSICALLY MOTIVATE DIVERSITY 29

3.1 Encourage Diversity While

Learning

A challenge in reinforcement learning is to learn a holistic policy where the agent seeks

to acquire useful traits while optimizing returns to improve performance, robustness

and interpretibility. A good reward function, can capture more than just information

required to perform the task. Engineering an appropriate reward signal while design-

ing environments is very challenging, as in classical reinforcement learning the agent

only seeks to maximize expected return. Humans often adopt strategies which offer

intrinsic benefits such as for enjoyment or comfort. These abstract feelings aren’t

really useful in performing everyday tasks, still they play an important role in how

humans make decisions. In reinforcement learning, intrinsic motivation deals with

methods where the agent acknowledges actions which increase intrinsic gains such as

exploration or safety. In this thesis, we derive a term which represents the diversity

of options at a given state, and incorporate it within the reward function with the

intention of increasing overall diversity in options.

While most relevant literature on learning diverse options (Gregor, Rezende, and

Wierstra 2016; Eysenbach et al. 2018; Harutyunyan et al. 2019) use states to distin-

guish and localize options, we instead look directly at an option’s behavior to assess

its diversity. This idea is well suited when all options are available everywhere, when

the state information is imperfect (for example, because the latent representation of

the state is still being learned), and when the agent aims to transfer knowledge across

tasks. The accessibility to all options at any given state allows the agent to effectively

reuse specialized options (Bacon, Harb, and Precup 2017). Consider a locomotion task

where the agent is required to leap over several hurdles in its trajectory. An option

specialized for leaping over hurdles can be selected whenever the agent encounters a

hurdle throughout its trajectory as its initiation is never restricted. Hence, reusabil-

CHAPTER 3. INTRINSICALLY MOTIVATE DIVERSITY 30

ity of options require a relaxed initiation set in model-free learning. Reusability of

specialized options have also been useful in transfer tasks. An example of a transfer

task could be displacing the hurdles from the above example after a few episodes of

training. We study reusability and transfer characteristics of options in chapter 4.

Unlike most diversity based approaches where skills are learned in an unsupervised

setting (Gregor, Rezende, and Wierstra 2016; Eysenbach et al. 2018), our approach

is capable of learning the task simultaneously while encouraging diverse option poli-

cies. For simplicity of exposition, we use two options in our notation in this chapter;

however the approach can be easily extended to any number of options. An empirical

study with varying number of options are presented in Section 4.5.

We construct our pseudo reward function using concepts from information theory.

Maximizing the entropy of a policy prevents the policy from quickly falling into a

local optimum and has been shown to have substantial improvements in exploration

and robustness (Williams and Peng 1991; Mnih et al. 2016; Haarnoja et al. 2018). We

maximize the entropy H(Aπ1 | S) and H(Aπ2 | S) where H is the Shannon entropy

computed with base e and A represents respective action distributions. Since we

want want different options behave differently from each other at a given state, we

maximize the divergence between their action distributions H(Aπ2 ;Aπ2 | S). This

aligns with our motivation that skill discrimination should rely on actions. Lastly, we

seek to maximize the stochasticity of the policy over options H(OπΩ | S) to explore

all available options at S. Combining all the above terms, we get the following pseudo

reward Rbonus:

Rbonus = H(Aπ1 | S) +H(Aπ2 | S) +H(OπΩ | S) +H(Aπ2 , Aπ2 | S)

(3.1)

The first three terms in Eq 3.1 aim to increase the stochasticity of intra-option

policies as well as policy over options while the fourth term encourages overall diversity

CHAPTER 3. INTRINSICALLY MOTIVATE DIVERSITY 31

in the option set. Since we use entropy regularization for intra-option policies as well

as policy over options updates in all our experiments, we omit H(Aπ1 | S),H(Aπ2 | S)

and H(OπΩ | S) from our pseudo reward. Implementation details are provided in

Appendix A.

We incorporate this objective within the standard RL framework by augmenting

the reward function to include the pseudo reward bonus from Eq (3.1):

Raug(St, At) = (1− τ)R(St, At) + τRbonus(St) (3.2)

where R is the task reward function, Rbonus is the pseudo reward bonus which

stems from Eq (3.1) and τ is a hyper-parameter which controls relative importance of

the diversity term against the reward. As the trade-off, τ increases, the agent increases

its priority of discriminating options over learning the task. The proposed reward

augmentation yields the maximum diversity objective. The standard RL objective

can be recovered in the limit as τ → 0.

3.2 Experiments

To study the effects of augmenting the reward with a bonus intended for promot-

ing diverse option behaviors, we test our algorithm, Diversity Enriched Option-Critic

(DEOC), against Option-Critic (OC) on several classic continuous control tasks im-

plemented in Mujoco (Todorov, Erez, and Tassa 2012).

We use the Proximal Policy Option-Critic (PPOC) (Dhariwal et al. 2017; Klissarov

et al. 2017) codebase to build our algorithms as well as for OC and PPO baselines.

The reward augmentation is shown in Algorithm 1. We use the same hyper-parameter

settings across all 20 seeds in all our experiments throughout the thesis to test sta-

bility. Since it is imperative that the task reward is not outweighed by Rbonus, we

scale down Rbonus by a factor of five (which is selected using a coarse hyper-parameter

tuning) for all non-linear function approximation tasks. This ensures the agent always

CHAPTER 3. INTRINSICALLY MOTIVATE DIVERSITY 32

prioritizes learning the task over diversifying options. We plot the results for 1000

iterations to contrast differences in sample efficiency. Results with longer horizons are

presented in the chapter 4 where we test the stability of all algorithms.

((a)) HalfCheetah-v2 ((b)) Walker2d-v2

((c)) Ant-v2 ((d)) Hopper-v2

Figure 3.1: Empirical Results of DEOC compared against OC for 2 million
steps (1 Iteration = 2048 steps). Trade-off value (τ) is 0.7 for HalfCheetah-v2 (Fig
3.1(a) while τ is 0.2 for remaining tasks. Plot is an average of 20 independent runs.

Figure 3.1 show that introducing the auxiliary reward bonus improves sample effi-

ciency as well as performance. The most significant impact was noticed in HalfCheeetah-

v2 where a good exploration strategy plays a huge impact. OC learns a gait where the

agent first flips over and slides on its back. Through this, the agent avoids tripping

and losing balance. Unfortunately, not only does this gait limit the agent’s ability to

progressively run faster, it also limits its adaptability to changes or obstacles in the

environment. For example, sliding on the back makes it difficult to leap over hurdles

and obstacles which may be present in the agent’s trajectory. HalfCheetah-v2 presents

itself as a limitation of Proximal Policy based algorithms. Learning to exploit diverse

skills prevents the agent to prematurely adopt the first viable strategy it happens

CHAPTER 3. INTRINSICALLY MOTIVATE DIVERSITY 33

upon by increasing exploration and encouraging the agent to further explore all skills.

DEOC manages to almost always run upright, achieving significantly higher speeds

and returns. From Fig 3.1(a) we can observe DEOC outperforms OC by almost 2000

cumulative rewards. Figure 3.2 shows a screenshot of the gaits learned by both DEOC

and OC. Videos of all our experiments are provided in our website 1. Implementation

details are provided in Appendix A.1.3

((a))Diversity Enriched Option-
Critic (DEOC)

((b)) Option-Critic (OC)

Figure 3.2: Illustrations showing the gaits learned by DEOC and Option-
Critic (OC). Unlike OC where the agent flips over and slides on its back, DEOC
almost always learns to run upright.

1https://sites.google.com/view/deoc/home

https://sites.google.com/view/deoc/home

4
Encourage Diversity in Termination

In chapter 3, we empirically demonstrate how encouraging diversity in option policies

while learning, significantly improves exploration and performance of option-critic.

However, unlike primitive action policies where all actions are available at every

step, options execute for variable time steps until a termination condition is met,

during which, all other options remain dormant. Due to this, the maximum entropy

objective fails to be as effective with options as with primitive action policies. Al-

though having options terminate at every time step may solve this problem, it renders

the use of options moot. Additionally, option-critic’s termination function solely val-

idates the best option, suppressing other potentially viable options which may also

lead to near-optimum behavior. As a consequence, at a given state, only the best cur-

rent option gets updated, eventually leading to a single option dominating the entire

task. Diverse skills can only be useful if all available skills are justly explored and

selected. If an option remains dominant throughout the episode without terminating,

the agent cannot reap the benefits of temporal abstraction nor learning diverse skills.

Noise in value estimates or state representations may also cause an option to termi-

nate and consequently lead to the selection of a sub-optimal option. We discuss how

selecting a sub-optimal option around “vulnerable” states can be catastrophic and

also severely hurt performance. In our case, despite Rbonus(s, a) encouraging diverse

options, option-critic’s termination function prevents exploiting this diversity due to

34

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 35

inadequate exploration of all relevant options.

In this chapter we present a novel termination objective which no longer aims to

maximize the expected discounted returns, but focuses on the option’s behavior and

identifying states where options are distinct, while still being relevant to the task. Our

proposed objective encourages all options available at a given state to be explored so

long as they exhibit diverse behavior. Not only does the algorithm achieve significant

improvements in performance and robustness, it offers better interpretibility as to the

behavior of each option.

The termination component of the option’s framework signifies the purview of

an option to the task. There has been a lot of interest in defining the termination

condition such that options can learn useful strategic behavior (Sutton, Precup, and

Singh 1999; Bacon 2013; Bacon, Harb, and Precup 2017; Bacon 2018; Harutyunyan

et al. 2019). However, understanding what makes an option useful in a context of

learning a task is quite subjective, which is why this this remains an ongoing chal-

lenge. Option-critic derived the termination gradient (Eq (2.17)) from the maximum

expected return objective. The termination gradient theorem indicates that an option

may terminate while its value is sub-optimal as compared to another. However, since

primitive actions are sufficient for solving any MDP, options begin defaulting to prim-

itive actions. This degeneration in option-critic algorithms can be explained through

the advantage function in the objective. The termination likelihood of an option only

increases while the value of the current option is sub-optimal when compared to the

value of another. A consequence that follows is that at a given state the worse option

is quickly suppressed without adequate exploration while the best available option

keeps improving. Eventually, this often leads to a single option dominating the entire

task. If the agent ceases to switch options altogether, the need for temporal abstrac-

tion is lost along with its advantages in exploration, robustness, transfer and overall

performance.

Noise in value estimates or state representations may also cause an option to

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 36

terminate and consequently lead to the selection of a sub-optimal option. Due to

lack of sufficient exploration of the sub-optimal option, selecting it around certain

vulnerable states may severely hurt performance. Vulnerable states in this context

refers to states where taking an sub-optimal action can lead to catastrophic outcomes

and the end of the episode. Consider the standard Hopper-v2 experiment evaluated

in chapter 3. While hopping, it becomes vital to ensure perfect balance while landing.

Hence, states immediately prior to landing are very sensitive to the agent’s actions,

where even a slight misalignment can cause the episode to terminate. The agent

may not be able to afford selecting a sub-optimal option at these states especially

when the sub-optimal option hasn’t been explored and updated adequately around

these states. In this section we present a termination objective which, unlike the

termination gradient theorem, no longer aims to maximize the expected discounted

returns, but focuses on option’s behavior and identifying states where options are

capable of behaving quite distinctly while still being relevant to the task.

Owing to the points discussed above, we build our objective function to oblige the

following two conditions:

• Options should identify and terminate in states where options tend

to grow diverse. Most tasks have certain critical states which can inspire

diverse behaviors. For example in the classic four-rooms task (Sutton, Precup,

and Singh 1999), these can be the hallways around which different options can

easily adopt different navigation strategies such as entering the room or turning

back, depending on the location of the goal state. (Bacon, Harb, and Precup

2017) have demonstrated terminations localized around hallways leads to better

performance in transfer settings. Allowance of the agent’s ability to sustain

diverse skills can be interpreted as its ability to decompose the breadth of the

task using diverse yet relevant options. This property is very useful to scale

algorithms to more complex tasks.

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 37

• The diversity metric used in the termination objective should capture

the diversity relative to other states in the sampled trajectories. We

wish terminations to focus on states where options are most diverse, relative to

other observed states. This makes sense as diversity in options can be better

exploited for exploration and stability around these states. In the context of

using skills to decompose the scope of the problem, identifying states which

inspire the most diverse options can help the agent exploit options to learn the

most challenging sections of the tasks. Offering more than one useful options

around these states not only increases robustness and performance, it reduces

the sample complexity when compared to exploring all available skills on all

states in its trajectory. In the following sections we also discuss the potential of

this property to identify events or changes in the trajectory.

The termination objective we maximize becomes:

L(θβ) = E
[
β(St, Ot)D(St)

]
(4.1)

The term D(St) indicates the relative diversity of options at a given state. To compute

D(St), we use samples of auxiliary reward (Rbonus(St)) defined in Eq (3.1) which is a

measure of how diverse options are at a given state. Rbonus(St) however, is a positive

term, which would consequently always increase the termination likelihood for any

state. We mitigate this by standardizing (with a mean (µ) of zero, and standard

deviation (σ) of one), the Rbonus(St) samples collected in the buffer, to obtain D(St).

D(St) = Rbonus(St)− µRbonus
σRbonus

(4.2)

Not only does this solve the issue of constant termination at all states, we also scale the

updates relative to the diversity values of other states in the buffer. Terminating while

options are most diverse encourages both options to be selected fairly and explored

by the policy over options. Note that as with Rbonus(St), D(St) is independent of the

termination parameters.

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 38

Hierarchical frameworks are believed to be the key behind scaling reinforcement

learning to exceedingly challenging tasks due to its ability to decompose the problem

space using specialized skills. The options framework has the potential to uphold this

property so long as options remain relevant, mutually distinct and specialized. Our

diversity motivated termination objective identifies regions where highest relative di-

versity can be sustained and learns specialized useful options to achieve better control

and performance. An added advantage of using relative diversity is the agent’s ability

to respond to events or obstacles in its trajectory. An example of such an event could

be the presence of a hurdle in a locomotion task. Such events mark some of the most

sensitive and vulnerable states in the environment. Relative diversity D(St), in our

objective, is capable of identifying states around the events causing both options to

collectively explore and learn the event.

4.1 Empirical Evaluation

We evaluate the effects of the new termination objective on several tasks to test its

performance and stability. We introduce Termination-DEOC (TDEOC) algorithm

presented in Algorithm 1. Detailed description of all the tasks are provided in Ap-

pendix E.

4.1.1 Tabular Four-rooms Navigation Task

We first test our algorithm TDEOC, on the classic four-rooms navigation task (Sut-

ton, Precup, and Singh 1999) where Bacon, Harb, and Precup 2017 demonstrated

the model-free learning and transfer capabilities of options against primitive action

frameworks. For our four-rooms experiments, we reuse the implementations by Ba-

con, Harb, and Precup 2017. Initially the goal is located in the east hallway and

the agent starts at a uniformly sampled state. After 1000 episodes, the goal state is

moved to a random location in the lower right room. The goal state yields a reward

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 39

Algorithm 1 Termination-DEOC (TDEOC) algorithm with tabular intra-option Q-
Learning
Initialize policy over options (πΩ)
Initialize intra-option policy (πo)
Initialize termination function (βo)
st ← s0
Choose ot according to πΩ(ot|st)
repeat
Choose at according to πo(at|st)
Take action at in st and observe st+1 and rt
Compute rbonus(st)
r′t = (1− τ)rt + τ rbonus(st)
if ot terminates in st+1 then
Choose new ot+1 according to πΩ(·|st+1)

else
ot+1 = ot

end if
D(st)← Standardized samples of rbonus(st).
Options Evaluation:
δ ← r′t - QU(st, ot, at)
δ ← δ + γ(1 − βot(st+1))QΩ(st+1, ot) +
γβot(st+1)maxot+1QΩ(st+1, ot+1)

QU(st, ot, at)← QU(st, ot, at) + αδ
Options Improvement:
θπ ← θπ + αθπ

∂logπot (at|st)
∂θ

QU(st, ot, at)
θβ ← θβ + αθβ

∂βot (st+1)
∂ν

D(st+1)
until st+1 is terminal

of +1 while all other states produce no rewards. The action the agent selects can fail

with a probability of one third (1
3) and instead a random action is taken. Augment-

ing the reward with Rbonus for tasks with very sparse rewards can cause the agent

to prioritize diversifying options over learning the task. To mitigate this, we avoid

the reward augmentation step in the current four-rooms task. The relative diversity

term D(St) requires standardizing Rbonus samples at every time step. However, in a

tabular setting using a buffer to record samples at every step severely affects the time

complexity of the algorithm. Instead of standardizing the diversity values (Rbonus)

at every step, we update a moving sum of all values observed in the current run and

center Rbonus samples around the moving mean instead. Not only does this offer bet-

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 40

ter time complexity than the alternative, it maintains the paradigm of the proposed

termination objective. Implementation details are provided in Appendix A.1.2.

((a)) Termination-DEOC (TDEOC)

((b)) Option-Critic (OC)

Figure 4.1: Visualization of Terminations for different options after 1000
episodes. Darker colors correspond to higher termination likelihood. Both TDEOC
and OC show higher terminations around hallways.

The termination probabilities of both Option-Critic (OC) and TDEOC are visual-

ized in Fig 4.1. The darker colors represents higher termination probabilities while the

darkest colors represent the walls of the environment. TDEOC identifies the hallways

as the ‘bottleneck’ states. These states represent regions where options can grow most

diverse relative to other states observed by the agent. Hallways seem to be the most

intuitive regions to define sub-goals which both Option-Critic as well as TDEOC seek

to define options’ terminations. Fig 4.2 compares the learning and transfer perfor-

manaces of OC and TDEOC. Both TDEOC and OC have nearly the same learning

rate for the first 1000 episodes. Upon changing the goal state, we notice TDEOC

recovers faster than OC by almost 70 time steps. Such a difference is quite drastic

in tabular evaluations between algorithms with near identical learning frameworks.

Not only does TDEOC recover faster than OC, it also exhibits lower variance, indi-

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 41

((a)) Termination-DEOC (TDEOC) VS OC

Figure 4.2: Four-rooms transfer experiment with four options. After 1000
episodes, the goal state, is moved from the east hallway to a random location in the
south east room. TDEOC recovers faster than OC with a difference of almost 70 steps
when the task is changed. Each line is averaged over 300 runs.

cating a more confident strategy. In order to achieve fair results, hyper-parameters

of both algorithms are tuned separately and the best configurations are used to plot

the results in Fig 4.2.

4.1.2 Continuous Control Tasks

Next, we show the advantages of a diversity-targeted termination in the non-linear

function approximation setting using standard Mujoco (Todorov, Erez, and Tassa

2012) tasks. Since PPOC uses a replay buffer to collect samples from the current

policy we can easily standardize the Rbonus samples. We evaluate the algorithms on

longer learning horizons (than in Fig 3.1) to contrast stability along with overall per-

formance. The average results from 20 runs are plotted (Fig 4.3). Details about the

implementation and the hyper-parameters are provided in Appendix A.1.3.

We evaluate the performance of TDEOC against Option-Critic (OC), PPO (Schulman

et al. 2017) and the DEOC algorithm defined in chapter 3. Not only does TDEOC

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 42

significantly outperform OC and DEOC, it also exceeds the performance of PPO

which boasts state-of-the-art performance with on-policy learning on most of these

tasks. In most of the tasks presented in Fig 4.3, PPO has consistently performed

better than OC. However, TDEOC manages to exploit diverse specialized options to

decompose the challenging and sensitive regions of the tasks thereby achieving much

better performance and significantly lower variance. Environments where better ex-

ploration strategies impact performance greatly, such as HalfCheetah-v2, Walker2d-v2

and Ant-v2, TDEOC accumulates as much as 2000 average rewards more than OC.

Another interesting observation is that while OC and DEOC quickly stagnate to a

sub-optimal solution, TDEOC keeps on improving. We believe the reason for such

stagnation is sub-optimal option selection caused by terminating due to noisy value

estimations. Learning tasks where the balance is crucial, it can be disastrous to select

an option which hasn’t been adequately trained. We can observe for continuous con-

trol tasks that during the initial stages, one of the options quickly dominates over the

entire task preventing the other option to be selected and explored. Consequently,

any noise-related option terminations occurring henceforth would most likely lead to

the selection of the sub-optimal option and a sub-optimal action which follows. Tak-

ing a bad action can be catastrophic in states where the ‘balance’ is vital. Not only

does this phenomenon prevent further improvement, it often negatively affects perfor-

mance. This can be observed in tasks such as Walker2d-v2 (Fig 4.3(b)) and Hopper-v2

(Fig 4.3(d)). There is a noticeable dip in the performance of OC and DEOC algo-

rithms in the later stages of training. TDEOC on the other hand encourages both

options to remain relevant to the task complementing each other to progressively im-

prove performance. PPOC uses entropy regularization for policy over options updates

to promote both options to be adequately explored and trained around states of ter-

minations. TDEOC manages to generate diverse yet cooperative option trajectories

to stabilize vulnerable regions of the task. This explains why TDEOC manages to

handle environment perturbations more robustly. We study the critical states which

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 43

inspire diversity in section 4.4. Continuously grooming both options to remain rele-

vant and useful impacts sample complexity of the algorithm. We study each option’s

relevant activity pertaining to the task in section 4.2. Since the termination gradient

suppresses the worse option from being selected and explored, the dominant option

ceases to terminate throughout the episode. This phenomenon is particularly evident

in continuous control tasks such as those presented in Fig 4.3. Learning a single policy

would naturally prove to be more sample efficient than learning multiple intra-option

policies. Due to this, TDEOC exhibits slower rate of learning in most Mujoco tasks

during the earlier stages to learning.

((a)) HalfCheetah-v2 ((b)) Walker2d-v2

((c)) Ant-v2 ((d)) Hopper-v2

Figure 4.3: TDEOC results on standard Mujoco tasks recorded for four million
steps (1 Iteration = 2048 steps). Plots are averaged over 20 independent runs.

Since TDEOC manages to outperform OC and PPO in all the four tasks, we opt

to test its capabilities on a more challenging task. We consider the Humanoid-v2 task

also implemented in Mujoco. Humanoid-v2 is an exceedingly challenging task which

most algorithms fail to learn satisfactorily. The agent is not only required to balance

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 44

on two legs, it is also required it to move forward as fast as possible while maintaining

this balance. PPO currently produces state-of-the-art results for a model-free on-

policy algorithm. We test TDEOC along with OC and DEOC on Humanoid-v2 and

the results are presented in Fig 4.4. TDEOC surpasses the performance of OC and

DEOC by almost 2500 average rewards. An even more interesting observation is that

TDEOC even manages to outperform PPO with a difference of around 800 average

rewards.

Figure 4.4: TDEOC results on standard Humanoid-v2 task implemented in
Mujoco recorded for ten million steps (1 Iteration = 2048 steps). Plots are averaged
over 20 independent runs.

4.1.3 Sparse Reward Tasks

In section 4.1.2, we consider continuous control tasks. In this section, we evalu-

ate TDEOC on discrete 3D control tasks using pixel data stream as input. The tasks

are implemented using Miniworld’s gym simulation (Chevalier-Boisvert 2018). At any

state agent is required to select one of four actions: turn right, turn left, move forward

and move backwards. We develop a network to develop state features using a Con-

volutional Neural Network (CNN) discussed in chapter 2. The network architecture

is made to resemble the PPO network for atari environments (Schulman et al. 2017).

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 45

We consider the T-Maze, Sidewalk and OneRoom environment from Miniworld. All

these environments use a sparse reward signal produced only when the agent happens

upon the goal. Due to the presence of sparse reward, as with the four-rooms task, we

do not augment the reward with Rbonus(St), but still compute it for termination up-

dates. DEOC runs are also omitted due to the same. The OneRoom environment is a

((a)) Sidewalk

((b)) TMaze (Discrete) ((c)) OneRoom

Figure 4.5: Screenshots depicting the Miniworld environments.

closed rectangular room with a goal object placed randomly within it. At the start of

the episode the agent is initiated randomly at a location inside the room. The agent

requires to scan the room, and once it has the goal object in sight, navigate towards

it. All Miniworld environments yield a reward of +1 when the goal is reached and no

rewards given for all other states. The T-Maze environment contains a T-junction.

The agent is randomly placed at a location in the vertical hallway and the goal in

the form of a red box is randomly placed at the either ends of the horizontal hallway.

The agent is required to first move towards the end of the vertical hallway, scan for

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 46

the goal and navigate towards it. The Sidewalk environment consists of a path with

one side opening to the road. If the agent moves outside the sidewalk and onto the

road, the episode terminates. The goal is placed at the end of the pathway while the

agent is initiated at the beginning of the sidewalk. Screenshots of the environments

are presented in Fig 4.5

((a)) Sidewalk

((b)) TMaze (Discrete) ((c)) OneRoom

Figure 4.6: TDEOC results on standard Miniworld tasks recorded for two
million steps except for OneRoom task which is recorded for half a million steps (1
Iteration = 2048 steps). Plots are averaged over 20 independent runs.

Empirical results are presented in Fig 4.6. We observe that while OC stagnates

to a sub-par solution for both the tasks, TDEOC manages to learn a better solution

faster. Most algorithms find sparse reward problems very difficult to solve owing to

the vast multi-step exploration strategy which is only validated by a simple reward,

making efficient credit assignment challenging. Being a single policy framework, PPO

not only performs better than OC, it also exhibits better sample efficiency. However,

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 47

despite carrying the added complexity of learning a hierarchy, TDEOC manages to

surpass the performance of PPO in Sidewalk. Achieving good results in Sidewalk re-

lies on the agent’s ability to move quickly towards the goal without deviating onto the

street. TDEOC has already shown to perform better in tasks consisting of vulnerable

and sensitive states which can prompt an episode to terminate. We can also observe

significantly lower variance in TDEOC plots when compared to those with OC and

PPO. Unlike continuous control tasks, OC in Miniworld environments don’t experi-

ence the same degeneration. Both options remain relevant throughout the learning

cycle. However, TDEOC learns intuitive and interpretable options which explains why

TDEOC achieves better performance. We study the option’s interpretibility in sec-

tion 4.4. The implementation details and hyper-parameters are provided in Appendix

A.1.3.

4.2 Option Relevance

The ability to decompose the problem space of the task using multiple policies can

help scale reinforcement learning to more complex and challenging tasks. We discuss

this property briefly in section 4.1.2. Considering the option’s framework, each option

can be specialized to solve a subset of the task in a way that offers better general-

ized performance, interpretability and reusability of these options. In the context of

model-free learning, learning options end-to-end in this manner is exceedingly chal-

lenging. We mention in section 4.1.2 that options often undergo degeneration where

the algorithm begins defaulting to primitive actions over temprally-extended actions.

In this thesis, we seek to promote every option’s relevance towards the task in fo-

cus. Option-critic often tends to suppress the worse option quickly such that a single

option performs the entire task without termination. The usefulness of temporal ab-

straction is voided once the agent begins performing the task using a single option.

For this reason, it is important to encourage all available options to remain relevant

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 48

and useful in the context of performing a task. In this section, we study the effects

of our proposed termination objective on each option’s relevance.

We first consider the HalfCheetah-v2 task. In section 4.1.2, we study that TDEOC

significantly outperforms OC for this particular task. Figure 4.7 plots each option’s

relevance for both TDEOC and OC. An option’s relevance is computed in terms of

how many steps that option was active in an iteration or in other words, the number

of steps taken by said option in an iteration. The dominant option, which is the most

active of the two options is labelled as Opt1 while the other is names Opt2. Figure

4.7 shows that the most active option quickly dominates ceasing to terminate at all.

The least active option on the other hand is barely selected. TDEOC on the other

hand, shows both options to be much better sampled and explored. The repeated and

consistent selection of both options indicates that both options are useful to solve the

task. The tiny fluctuations in the plots belonging to OC represent erratic and tiny

chances of the least dominant option to be selected. This validates our assumption

that wrongful terminations caused by factors such as noisy value estimates or state

representations can lead to the selection of the sub-optimal option (Opt2). Selecting

Opt2 without adequately exploring and training it can hurt performance significantly.

Since TDEOC encourages diverse options using the intrinsic reward defined in Eq

(3.2) and the diversity motivated termination objective defined in Eq (4.1), TDEOC

manages to learn specialized options localized near states where options can grow

most diverse. As mentioned earlier, the ability to sustain diverse options can be seen

as options decomposing the problem space by learning diverse strategies around states

causing termination. This ability also contributes towards the improved performance

of TDEOC when compared to OC. Figure 4.8 visualizes option relevance of the re-

maining Mujoco tasks. All the other tasks exhibit the same pattern as that observed

in Fig 4.7. In all the other Mujoco experiments OC almost always lets one of the

option dominates while the other option is not explored sufficiently. TDEOC on the

other hand always allows both options to remain useful. In the Humanoid-v2 task,

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 49

Figure 4.7: Option activity for standard HalfCheetah-v2 task implemented in
Mujoco recorded for two million steps (1 Iteration = 2048 steps). Plots are averaged
over 20 independent runs.

OC suggests a more progressive strategy encouraging a more relevant Opt2. However

this is most likely caused frequent termination due to high variance and noise due to

the added complexity of the task. This reason is validated by the performance curve

shown in Fig 4.4. If each option switch contained strategic value, OC would have

demonstrated much better performance than what it displays.

We also plot the relevance of options for discrete control tasks implemented in

Miniworld. Option-critic in discrete control tasks doesn’t suppress the worse option

very quickly. For this reason the difference in performance isn’t as drastic as that

observed in continuous control tasks. However, there is still a considerable difference

between TDEOC and OC. TDEOC always shows a more equitable selection of both

options than OC. This may attribute in the slight improvement in performance of

TDEOC against OC. However, we believe the major reason for this difference in

performance is due to the generation of more interpretable and reusable options.

Please refer to Appendix A for implementation details.

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 50

((a)) Walker2d-v2 ((b)) Ant-v2

((c)) Hopper-v2 ((d)) Humanoid-v2

Figure 4.8: Option activity for standard Mujoco tasks implemented in Mujoco
recorded for ten million steps for Humanoid-v2 while other simulations were run for
two million steps (1 Iteration = 2048 steps). Plots are averaged over 20 independent
runs.

4.3 Transfer Properties

A key advantage of using options in reinforcement learning is to learn generalized

skills which can be reused in similar tasks. In section 4.1.1, we studied this property

in the tabular four-rooms task. In this section, we further test our objective on cer-

tain continuous control tasks where adapting to changes in the task is essential. The

benefits of using options are best observed in tasks where hierarchical representation

can be exploited. For transfer trials, we compare our algorithm (TDEOC) against

Option-Critic (OC) and PPO. The three tasks represent different conditions for adap-

tation and recovering from events or changes in the environment.

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 51

((a)) Sidewalk

((b)) TMaze (Discrete) ((c)) OneRoom

Figure 4.9: Option activity for standard Miniworld tasks recorded for two million
steps (1 Iteration = 2048 steps). Plots are averaged over 20 independent runs.

4.3.1 HalfCheetah Hurdle

Through this experiment we evaluate the ability of the agent to react to changes in

an event further down the trajectory. We reuse the HalfCheetah-v2 simulation from

Mujoco. A hurdle of height 0.12 metres is placed 10m away from the agent’s starting

position. After 1000 iterations, the height of the hurdle is increased by 0.8 metres

(to 2 metres). We use the gym-extensions package (Henderson et al. 2017) to add

the hurdle and sensors in the environment. The agent’s sensor only picks up the

presence of the hurdle when it is a metre away. The sensor data indicating distance

to the hurdle is incorporated into the observation data and its value indicates the

distance between the agent and the hurdle. Not only does the agent need to establish

a high velocity running strategy to maximize returns, it should be able to adapt to the

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 52

((a)) HalfCheetahHurdle-v0

((b)) Iterations<1000 ((c)) Iterations>1000

Figure 4.10: TDEOC results for HalfCheetahHurdle-v0 task implemented in
Mujoco. After a 1000 iterations the height of the hurdle is increased from 1.2m to 2.0
metres. Each line is an average of 20 independent runs (1 Iteration = 2048 steps).

hurdle by quickly learning a leaping technique without flipping over before crossing

the wall. Although the agent can learn to move forward on its back, flipping over

before crossing the hurdle would make leaping over the hurdle exceedingly difficult.

The initial performance of TDEOC, OC and PPO are consistent with experiments

on standard Mujoco tasks evaluated in section 4.1.2. TDEOC attains a much higher

velocity than OC and PPO prior to changing the height of the hurdle. Upon increasing

the height of the hurdle we observe TDEOC recovers much better from the difference in

the drop at the 100th iteration. Not only does TDEOC recover better, it also manages

to keep improving while OC fails to show much improvement after the change in the

hurdle’s height. Option-critic however, performs significantly better than PPO both

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 53

in learning the task of leaping over a hurdle and its adaptation upon the change in

height. A performance achieved by TDEOC is especially difficult to achieve when

the agent has learned to perform the initial task with significant speed as achieved

by TDEOC. At higher speeds it becomes very easy for the agent to flip over or trip

upon encountering the hurdle and these instances can affect performance significantly.

TDEOC is able to respond to such a change better by terminating around the hurdle

region and stabilizing the jump. TDEOC hence retains all the advantageous properties

of learning options including the ability to adapt to changes and events observed along

the trajectory.

4.3.2 Hopper Ice Wall

We consider the Hopper-v2 environment from Mujoco for this experiment as balance

is one of the most vital elements in the task. Our experiments presented in section

4.1.2 show that in the firsts few iterations TDEOC only shows a slight improvement

in performance over OC. We now study how TDEOC and OC which, while exhibiting

comparable performance before the change, recover once a change is induced. We

again use the gym extensions (Henderson et al. 2017) to add a friction-less block with

dimensions (0.25, 0.4, 0.12) corresponding to its length, width and height respectively,

2.8 metres away from the agent’s starting position. The agent is required to learn how

to jump over the block, slide over it without losing balance and resume hopping after.

After 500 iterations, the block is moved 0.5 metres away from the agent’s starting

position. Such a change requires the agent to re-evaluate its technique for jumping

onto the block and not losing balance when making contact with it. For an environ-

ment such as this, even a small change in its location affects the outcome significantly.

The sensor again only notifies the agent of the upcoming object when it is within one

metre from it. From figure 4.11(a), we can observe that OC and TDEOC indeed do

demonstrate comparable performance for the firsts 500 iterations. Both TDEOC and

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 54

((a)) HopperIceWall-v0

((b)) Iterations<500 ((c)) Iterations>500

Figure 4.11: TDEOC results for HopperIceWall-v0 task implemented in Mu-
joco. After a 500 iterations the block is moved 0.5 metres away from the agent’s
starting position. Each line is an average of 20 independent runs (1 Iteration = 2048
steps).

OC significantly outperform PPO. After the change is induced in the environment,

TDEOC learns to stabilize itself better than OC as well as PPO. TDEOC’s ability

to recover better than OC despite showing similar performance before validates that

TDEOC’s learning strategy is more generalized with useful and specialized options

which aid easier transfer. OC however, performs significantly better than PPO. An-

other observation retrieved from Fig 4.11(a) is that TDEOC besides being able to

recover faster than OC and PPO, also manages to keep improving.

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 55

((a)) TMaze(Continuous)

((b)) Iterations<100 ((c)) Iterations>100

Figure 4.12: TDEOC results for TMaze-v0 transfer task implemented in Mu-
joco. After a 100 iterations the most frequent goal is removed. Each line is an average
of 20 independent runs (1 Iteration = 2048 steps).

4.3.3 TMaze Continuous

Next we consider a continuous control task with a sparse reward. We have evalu-

ated the performance of T-Maze from Miniworld in section ?? with discrete action

space and a visual input. We now study the transfer abilities of a similar task with

continuous control space (Khetarpal et al. 2020) shown in Fig 4.12. There are two

goals located at both ends of the hallway each producing a reward of +1. After 100

iterations, the goal most visited is removed forcing the agent to seek the other goal.

The agent’s actions are indicated by directional forces applied on the ball. The reward

annealing step used by Miniworld experiments is also omitted. The agent receives a

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 56

reward of +1 irrespective of the number of steps taken to reach it. Due to the sparse

reward problem, we do not augment the reward function withRbonus but still compute

it to estimate the terminations. Using this task, we can evaluate the agent’s ability

to seek an orthogonal solution than its current strategy quickly. Before the most

frequent goal is removed, we observe TDEOC manages to outperform OC and PPO

exhibiting better learning as well sample efficiency (Fig 4.12(a)). Upon removing the

most frequent goal, OC recovers much significantly faster than TDEOC as well as

PPO. However, TDEOC quickly surpasses OC and achieves a much better final per-

formance. We reason the performance with illustrations of how option terminations

are localized in section 4.4.

4.4 Interpreting Option Behavior

Hierarchical reinforcement learning algorithms can be used to learn specialized lower-

tier policies which can offer better interpretibility and understanding of the agent’s

learning paradigm. With the emergence of deep learning, efficient interpretibility

during learning becomes challenging. Using a set of specialized options can not only

help understand each option’s contribution towards learning the task but also how

they behave with respect to other options. An efficient use of options can help the

agent learn a more general set of policies which can improve the agent’s ability to

adapt to changes or perturbations in the environment as demonstrated in section

4.3. An intuitive representation of specialized options can help develop algorithms

which can learn increasingly complex tasks without the same strain on computing

resources. Learning intuitive and interpretable options in the context of model-free

learning is an ongoing challenge. Note that for all the experiments presented in this

thesis, there has been no restriction or assumption imposed on an option’s initiation

set. The models are also initiated without any prior information related to the task

indicating an end-to-end approach in learning options without any expert guidance

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 57

or supervision.

The proposed termination objective (Eq (4.1)) can be interpreted as a function

for identifying bottle-neck states where options grow most diverse. In this section,

we study how how each option behaves in the context of learning a task using the

proposed termination objective. In previous sections we have stressed the importance

of identifying and learning certain critical states in the environment. In this section,

we visualize each option’s spatial orientation thereby highlighting such states and shed

light on how such representation proves advantageous to performance.

4.4.1 TMaze

In section 4.3.3, we demonstrated the transfer capabilities of TDEOC in the TMaze

task (Khetarpal et al. 2020) with continuous control. Empirical analysis shows that

TDEOC’s final performance exceeds that of OC and PPO both prior the change in

the task as well as after the change in the task. We now collaborate the empirical

results with visualizations which represent how options are localized on a trajectory.

The spatial orientations of options are mainly influenced by the termination condition.

We visualize on such run (Fig 4.13). We can observe that terminations are localized

in the straight hallway towards the T-junction. This seems to be a very intuitive

representation as the choice of navigating to either of the goals is still open in that

hallway. This implied the presence of two drastically diverse navigation strategies

corresponding to the routes to both the goals from the straight hallway. Once the

agent determines which goal it wants to navigate to, a single option is selected to

navigate to that goal without terminations. Hence the most diverse options originate

at the region where terminations are localized. The trajectories visualized in Fig 4.13

acknowledge this theory with both options clearly distinct both spatially as well as in

behavior. Alternatively, another region where options can be most diverse is the T-

junction itself. In this scenario, a single option can navigate till the junction without

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 58

terminating, and the choice of goal to navigate to is taken at the junction where

terminations can localize. Another interesting observation is that the terminating

region remains practically unchanged upon removing the most frequent goal. This

signifies that the strategy adopted by the agent prior to the change was intuitive

as well as general enough to retain its orientation even when the task undergoes a

change. The termination objective hence helps give rise to intuitive and reusable

option behaviors which explain the transfer capabilities of TDEOC.

((a)) Trajectory before task change ((b)) Trajectory after most frequent
goal is removed

((c)) Terminations for option 1 (βo1) ((d)) Terminations for option 2 (βo2)

Figure 4.13: Visualizations on TMaze task using two options (marked red
and yellow respectively in (a) and (b)). Option terminations localize in the vertical
hallway where the agent has yet to decide which goal to navigate towards.

4.4.2 OneRoom

We now analyze the options learned in the OneRoom environment from Miniworld.

We show in Fig 4.6 that TDEOC achieved a better performance when compared

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 59

to OC. We now visualize how options localize on a trajectory. Note that TDEOC

doesn’t impose any spatial restrictions on option’s initiation which is why the spatial

arrangement of options may keep changing slightly throughout the learning cycle or

accross runs. We visualize one such trajectory (Fig 4.14). One option learns to scan

the room by turning on the spot, and upon observing the goal in its visual scope,

the second option navigates towards it. This seems to be a very intuitive strategy

generated by distinguishing options by behavior. Not only does this retain both

options to remain useful, it also exploits them in a way which benefits performance

as well interpretibility.

Figure 4.14: Option trajectories in OneRoom task. The first options scans the
environment for the goal while the other option moves forward towards it.

4.4.3 Hopper-v2

In section 4.1.2, we show that not only does TDEOC demonstrate better performance,

it also handles perturbations in the environment better. We evaluate how two options

collectively help stabilize the agent and observe the states where such stability is

crucial. We consider the Hopper-v2 simulation from Mujoco. From Fig 4.15, we

can see that options terminate when the agent is in the air just before descending.

Naturally such an instance in the agent’s trajectory is extremely vital as even a

slight mistake can cause the agent to lose balance and cause the episode to end.

TDEOC manages to employ both the options around these states to complement

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 60

each other thereby achieving robust control. Hence, TDEOC is capable of achieving

better performance while showing much lower variance.

Figure 4.15: Sample trajectory of the Hopper-v2 task. Terminations are lo-
calized near states where the agent is in the air. Both options collaborate to ensure
proper posture and balance prior to descending.

4.5 Effects of Varying the Number of

Options

Option-critic framework assumes the number of options to be learnt, to be a hyper-

parameter. Generalization of an reinforcement learning algorithm to variable learning

parameters adds to its value. Option-critic is capable of learning any number of op-

tions specified by the user without any explicit changes to its framework. However,

easily scaling to more options without compromising too much on performance and

sample complexity is still a challenge. Moreover, the algorithm should be able to

specifically use all the options instead of a select few to perform the task. In this

section, we show that our approach not only easily generalizes to variable number of

options, it is still able to outperform option-critic on respective number of options

(Fig. 4.18 and Fig. 4.19). The differences in performance in Fig. 4.16 and Fig.

4.17 is owed to the increased sample complexity while learning more options. This

phenomenon is particularly evident in TDEOC results. This is due to the fact that

TDEOC encourages all available options to remain relevant which consequently re-

quires more samples to achieve comparable performance benchmark. The effect of

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 61

varying options is not as significant in the case of option-critic as it still suffers from

degeneration where a single option quickly dominates over the entire task. To ensure

reproducible results and fair comparisons, the choice of the hyper-parameter, num-

ber of options, for all experiments presented in the paper relied mainly on previously

tested experiments (refer Appendix A.1). We reuse the PPOC codebase (Dhariwal

et al. 2017; Klissarov et al. 2017) for all our experiments involving non-linear function

approximation. PPOC has only been tested on two options (Klissarov et al. 2017) as

of yet which is why evaluations using two options are conducted throughout the rest

of the thesis. However, our approach easily generalizes to any number of options.

((a)) Ant-v2 ((b)) HalfCheetah-v2

((c)) Hopper-v2 ((d)) Walker2d-v2

Figure 4.16: TDEOC results on four Mujoco tasks with varying number of
options. Sample complexity keeps growing with increasing the number of options.
Each line is an average of 20 runs.

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 62

((a)) Ant-v2 ((b)) HalfCheetah-v2

((c)) Hopper-v2 ((d)) Walker2d-v2

Figure 4.17: Option-Critic results on four Mujoco tasks with varying number
of options. Each line is an average of 20 runs.

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 63

((a)) Ant-v2 ((b)) HalfCheetah-v2

((c)) Hopper-v2 ((d)) Walker2d-v2

Figure 4.18: TDEOC and OC results on four Mujoco tasks with three op-
tions. Each line is an average of 20 runs.

CHAPTER 4. ENCOURAGE DIVERSITY IN TERMINATION 64

((a)) Ant-v2 ((b)) HalfCheetah-v2

((c)) Hopper-v2 ((d)) Walker2d-v2

Figure 4.19: TDEOC and OC results on four Mujoco tasks with four options.
Each line is an average of 20 runs.

5
Conclusion

In this thesis we highlight the importance of diversity in learning options. Using con-

cepts of information theory, we derived a information-theoretic pseudo-reward which

measures how diverse two options are based on their behavior at any given state. This

pseudo-reward coupled with the task reward encouraged options to grow diverse while

simultaneously being able to learn the task. We present Diversity Enriched Option-

Critic (DEOC), which encourages options to adopt diverse strategies to improve an

agent’s exploration and performance solely using reward augmentation.

We then propose a novel termination objective which focuses on identifying states

in an environment where options can be most diverse. These critical states represent

bottle-neck states in the environment which are often the most crucial and sensi-

tive states in the environment. The proposed termination objective encourages both

options to be fairly and adequately explored around these states while increasing di-

versity. Since the proposed termination objective doesn’t rely on validating the best

available option, both options remain relevant and useful to the task. We present

Termination-DEOC (TDEOC), a diversity-motivated learning algorithm combining

the intrinsic reward augmentation of DEOC as well as the new termination objective.

We empirically demonstrate that not only does TDEOC exhibits improved exploration

as well as overall performance on a wide array of tasks, it also handles environment

perturbations better by stabilizing the sensitive and vulnerable regions of the envi-

65

CHAPTER 5. CONCLUSION 66

ronment using a set of diverse yet useful options. This is also the reason why TDEOC

results show lower variance when compared to OC. Not only does TDEOC outperform

OC on standard control tasks, it also retains all the useful properties presented by OC

such as transfer capabilities and interpretibility. TDEOC has consistently surpassed

the results achieved by OC on all the transfer tasks performed. Visualizations of

option behavior for TDEOC show a very intuitive learning representations of option

behaviors. Its ability to identify the bottleneck states also allows TDEOC to quickly

identify and learn events and changes in the environment throughout its trajectory.

This property is quite useful in scaling up learning to longer learning horizons. It

is interesting to note that TDEOC manages to achieve all the results without any

restriction on option’s initiation, without any explicit prior knowledge nor any expert

supervision.

Despite all the advantages that TDEOC offers, its biggest shortcoming is sample

efficiency. Since TDEOC explores all available options around states sparking termi-

nations, sample complexity would keep increasing with an increase in the number of

options. An elegant solution to this would be to restrict the number of option choices

at a given state using an attention-based approach such as interest functions. Such a

strategy can easily help the algorithm learn longer horizon tasks with multiple events

uniquely over the agent’s trajectory while preserving its ability to reuse specialized

options upon recurrence on any event. The issue of sample complexity can also be

somewhat mitigated using an off-policy learning architecture such as Soft Actor-Critic

instead of an on-policy algorithm such as PPOC.

Bibliography

Bacon, Pierre-Luc (2013). “On the bottleneck concept for options discovery”. PhD

thesis. Masters thesis, McGill University, 2013.

— (2018). “Temporal Representation Learning”. PhD thesis. PhD thesis, McGill Uni-

versity, 2018.

Bacon, Pierre-Luc, Jean Harb, and Doina Precup (2017). “The option-critic architec-

ture”. In: Thirty-First AAAI Conference on Artificial Intelligence. 2017.

Bagaria, Akhil and George Konidaris (2020). “Option Discovery using Deep Skill

Chaining”. In: International Conference on Learning Representations. 2020. https:

//openreview.net/forum?id=B1gqipNYwH.

Bellemare, Marc et al. (2016). “Unifying count-based exploration and intrinsic mo-

tivation”. In: Advances in Neural Information Processing Systems. 2016, 1471–

1479.

Bellman, Richard (Nov. 1954). “The theory of dynamic programming”. In: Bull. Amer.

Math. Soc. 60.6, 503–515. https://projecteuclid.org:443/euclid.bams/

1183519147.

Chevalier-Boisvert, Maxime (2018). gym-miniworld environment for OpenAI Gym.

https://github.com/maximecb/gym-miniworld. 2018.

Deci, Edward L and Richard M Ryan (2010). “Intrinsic motivation”. In: The corsini

encyclopedia of psychology, 1–2.

67

https://openreview.net/forum?id=B1gqipNYwH
https://openreview.net/forum?id=B1gqipNYwH
https://projecteuclid.org:443/euclid.bams/1183519147
https://projecteuclid.org:443/euclid.bams/1183519147
https://github.com/maximecb/gym-miniworld

BIBLIOGRAPHY 68

Dhariwal, Prafulla et al. (2017). OpenAI Baselines. https://github.com/openai/

baselines. 2017.

Dietterich, Thomas G (1998). “The MAXQ Method for Hierarchical Reinforcement

Learning.” In: ICML. Vol. 98. Citeseer. 1998, 118–126.

Eysenbach, Benjamin et al. (2018). “Diversity is All You Need: Learning Skills without

a Reward Function”. In: CoRR abs/1802.06070. arXiv: 1802.06070. http://

arxiv.org/abs/1802.06070.

Gregor, Karol, Danilo Jimenez Rezende, and Daan Wierstra (2016). “Variational in-

trinsic control”. In: arXiv preprint arXiv:1611.07507.

Haarnoja, Tuomas et al. (2017). “Reinforcement learning with deep energy-based poli-

cies”. In: Proceedings of the 34th International Conference on Machine Learning-

Volume 70. JMLR. org. 2017, 1352–1361.

Haarnoja, Tuomas et al. (2018). “Soft actor-critic: Off-policy maximum entropy deep

reinforcement learning with a stochastic actor”. In: arXiv preprint arXiv:1801.01290.

Harackiewicz, Judith M and Andrew J Elliot (1993). “Achievement goals and intrinsic

motivation.” In: Journal of personality and social psychology 65.5, 904.

Harb, Jean et al. (2018). “When waiting is not an option: Learning options with a

deliberation cost”. In: Thirty-Second AAAI Conference on Artificial Intelligence.

2018.

Harutyunyan, Anna et al. (2019). “The Termination Critic”. In:

Hauskrecht, M et al. (1998). “Hierarchical solutions of MDPs using macro-actions”.

In: Proc. UAI. Vol. 98. 1998.

Henderson, P. et al. (2017). “Benchmark Environments for Multitask Learning in

Continuous Domains”. In: ICML Lifelong Learning: A Reinforcement Learning

Approach Workshop.

Iba, Glenn A (1989). “A heuristic approach to the discovery of macro-operators”. In:

Machine Learning 3.4, 285–317.

https://github.com/openai/baselines
https://github.com/openai/baselines
https://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1802.06070

BIBLIOGRAPHY 69

Khetarpal, Khimya et al. (2020). “Options of Interest: Temporal Abstraction with

Interest Functions”. In: Proceedings of the Thirty-Fourth AAAI Conference on

Artificial Intelligence (AAAI-20).

Klissarov, Martin et al. (2017). “Learnings Options End-to-End for Continuous Action

Tasks”. In: ArXiv abs/1712.00004.

Korf, Richard E (1983). Learning to solve problems by searching for macro-operators.

Tech. rep. CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COM-

PUTER SCIENCE, 1983.

Levy, Andrew, Robert Platt, and Kate Saenko (2018). “Hierarchical reinforcement

learning with hindsight”. In:

Machado, Marlos C, Marc G Bellemare, and Michael Bowling (2018). “Count-based

exploration with the successor representation”. In: Proceedings of the 34th AAAI

Conference on Artificial Intelligence (AAAI 2020).

Mann, Timothy, Daniel Mankowitz, and Shie Mannor (22–24 Jun 2014). “Time-

Regularized Interrupting Options (TRIO)”. In: Proceedings of the 31st Interna-

tional Conference on Machine Learning. Ed. by Eric P. Xing and Tony Jebara.

Vol. 32. Proceedings of Machine Learning Research 2. Bejing, China: PMLR, 22–24

Jun 2014, 1350–1358. http://proceedings.mlr.press/v32/mannb14.html.

McGovern, Amy and Andrew G. Barto (2001). “Automatic Discovery of Subgoals in

Reinforcement Learning Using Diverse Density”. In: Proceedings of the Eighteenth

International Conference on Machine Learning. ICML ’01. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 2001, 361–368. isbn: 1558607781.

Mnih, Volodymyr et al. (2015). “Human-level control through deep reinforcement

learning”. In: Nature 518.7540, 529–533.

Mnih, Volodymyr et al. (2016). “Asynchronous Methods for Deep Reinforcement

Learning”. In: ICML. 2016.

http://proceedings.mlr.press/v32/mannb14.html

BIBLIOGRAPHY 70

Ng, Andrew Y, Daishi Harada, and Stuart Russell (1999). “Policy invariance under

reward transformations: Theory and application to reward shaping”. In: ICML.

Vol. 99. 1999, 278–287.

Ostrovski, Georg et al. (2017). “Count-based exploration with neural density models”.

In: Proceedings of the 34th International Conference on Machine Learning-Volume

70. JMLR. org. 2017, 2721–2730.

Parr, Ronald and Stuart J Russell (1998). “Reinforcement learning with hierarchies

of machines”. In: Advances in neural information processing systems. 1998, 1043–

1049.

Precup, Doina (2000). Temporal Abstraction in Reinforcement Learning. 2000.

Sacerdoti, Earl D (1974). “Planning in a hierarchy of abstraction spaces”. In: Artificial

intelligence 5.2, 115–135.

Sansone, Carol and Judith M Harackiewicz (2000). Intrinsic and extrinsic motivation:

The search for optimal motivation and performance. Elsevier, 2000.

Schulman, John et al. (2015). “Trust Region Policy Optimization”. In: ICML. 2015.

Schulman, John et al. (2017). “Proximal Policy Optimization Algorithms”. In: ArXiv

abs/1707.06347.

Shannon, Claude E (1948). “A mathematical theory of communication”. In: Bell sys-

tem technical journal 27.3, 379–423.

Singh, Satinder P (1992). “Scaling reinforcement learning algorithms by learning vari-

able temporal resolution models”. In: Proceedings of the Ninth International Ma-

chine Learning Conference. 1992, 406–415.

Singh, Satinder et al. (2010). “Intrinsically motivated reinforcement learning: An evo-

lutionary perspective”. In: IEEE Transactions on Autonomous Mental Develop-

ment 2.2, 70–82.

Stolle, Martin and Doina Precup (2002). “Learning Options in Reinforcement Learn-

ing”. In: Abstraction, Reformulation, and Approximation. Ed. by Sven Koenig and

BIBLIOGRAPHY 71

Robert C. Holte. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, 212–223.

isbn: 978-3-540-45622-3.

Sutton, Richard S (1985). “Temporal Credit Assignment in Reinforcement Learning.”

In:

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An introduc-

tion. MIT press, 2018.

Sutton, Richard S, Doina Precup, and Satinder Singh (1999). “Between MDPs and

semi-MDPs: A framework for temporal abstraction in reinforcement learning”. In:

Artificial intelligence 112.1-2, 181–211.

Tang, Haoran et al. (2017). “OpenAI Xi Chen, Yan Duan, John Schulman, Filip

DeTurck, and Pieter Abbeel.# exploration: A study of count-based exploration

for deep reinforcement learning”. In: Advances in neural information processing

systems 30, 2753–2762.

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “Mujoco: A physics engine for

model-based control”. In: 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE. 2012, 5026–5033.

Vezhnevets, Alexander Sasha et al. (2017). “FeUdal Networks for Hierarchical Rein-

forcement Learning”. In: ICML. 2017.

Watkins, Christopher JCH and Peter Dayan (1989). “Q-learning”. In: Machine learn-

ing 8.3-4, 279–292.

Williams, Ronald J and Jing Peng (1991). “Function optimization using connectionist

reinforcement learning algorithms”. In: Connection Science 3.3, 241–268.

Zheng, Zeyu, Junhyuk Oh, and Satinder Singh (2018). “On learning intrinsic rewards

for policy gradient methods”. In: Advances in Neural Information Processing Sys-

tems. 2018, 4644–4654.

A
Implementation Details

A.1 Implementation Details

A.1.1 Choice of Underlying algorithm

Our proposed termination objective relies on diversity estimates drawn from a well

updated policy in order to identify the states where options tend to grow most di-

verse. This property is best observed in on-policy algorithms where samples from

the same policy is used for policy evaluation and policy improvement. PPO is the

state-of-the-art on-policy algorithm which is why it was used as the underlying al-

gorithm. Although off-policy algorithms such as TD3 or SAC may achieve superior

performance, these methods draw sample from a large buffer (mostly of capacity

one million samples) which may even contain samples from the initial random pol-

icy, which dilutes TDEOC’s ability to target most diverse states. Also, unlike PPO,

TD3 and SAC have only been implemented for continuous control tasks while PPO

has also been tested on discrete control tasks such as Miniworld (Chevalier-Boisvert

2018). Another significant reason for choosing PPO is because option-critic had al-

ready been implemented using PPO updates (PPOC) (Dhariwal et al. 2017; Klissarov

et al. 2017) and had been tested extensively making our experiments standard, fair

and reproducible.

72

APPENDIX A. IMPLEMENTATION DETAILS 73

A.1.2 Tabular Case

For our four-rooms experiments, we reuse the implementations by bacon2017option.

Augmenting the reward with Rbonus for tasks with very sparse rewards can cause the

agent to prioritize diversifying options over learning the task. To mitigate this, we

avoid the reward augmentation step in all our sparse reward tasks including the four-

rooms task. Instead of standardizing the diversity values, use update a moving sum

of all values observed in the current run and center the diversity around the moving

mean instead. For more than three options, the diversity is computed by sampling

six pairs of options and averaging the respective cross entropy. The sole reason of

this is to avoid computing the mean of all samples at every step. Each algorithm is

averaged over 300 runs. The code has been attached in the submission folder.

Hyper-parameter TDEOC OC
Termination lr 5e-2 1e-1
Intra-Option lr 1e-2 1e-2

Critic lr 5e-1 5e-1
Action Critic lr 5e-1 5e-1

Discount 0.99 0.99
Max Steps 1000 1000

No of Options 4 4
Temperature 1e-3 1e-3

Table A.1: Hyper-parameters for Tabular Four-rooms task

A.1.3 Non-Linear Function Approximation Case

We provide the implementation details as well as the hyper-parameters for all our

non-linear function approximation cases. The hyper-parameters for PPO and OC

are consistent with those suggested in baselines and Klissarov2017LearningsOE re-

spectively. We use two critics for our algorithms (DEOC and TDEOC) as used by

bacon2017option in their tabular case implementation. All our plots are averaged over

20 independent runs with the error bounds representing 0.5 of the standard deviation.

APPENDIX A. IMPLEMENTATION DETAILS 74

A.1.3.1

For standard Mujoco tasks, we incorporate our algorithm within the PPOC code

(Klissarov et al. 2017). The pseudo reward bonus is scaled down depending on the

task with the intention of prioritizing task reward. The diversity term is calculated

using cross entropy, as stated in the Eq. (3.1). We compute the softmax of the action

distribution before computing the cross entropy to ensure Rbonus remains positive. As

mentioned earlier, for the TMaze(continuous) task, we avoid augmenting the reward

with the diversity term. As for the HalfCheetahWall-v0 and HopperIce-v0, we reuse

the resources provided by (Henderson et al. 2017). The obstacle is observed in the

agent’s state space only when the agent is within one metre of the obstacle. The

learning rate for TDEOC is slightly slower than OC to allow the algorithm sufficient

time to learn the bottleneck states. We average runs over 20 sequential seeds starting

from seed 10 for our results.

Hyper-parameter Value
Termination lr 5e-7

Termination lr TMaze(Continuous) 5e-8
Timesteps per batch 2048

Optim epochs 10
Clip param 0.2

Entropy coefficient 0.0
Gamma 0.99
Lambda 0.95

Lr schedule constant

Table A.2: Common hyper-parameters across all continuous control tasks

A.1.3.2

For Miniworld tasks, we use the code provided by baselines (Dhariwal et al. 2017)

for Atari environments and implement the PPOC networks consistent with (Klissarov

et al. 2017) within. The objective of the Sidewalk task is for the agent to navigate

to a goal object placed at the end of the street. The episode terminates and the

APPENDIX A. IMPLEMENTATION DETAILS 75

Environment TDEOC DEOC OC
Ant-v2 1e-4 3e-4 3e-4

HalfCheetah-v2 1e-4 3e-4 3e-4
Hopper-v2 1e-4 3e-4 3e-4
Walker2d-v2 1e-4 3e-4 3e-4
Humanoid-v2 3.33e-5 1e-4 1e-4

HalfCheetahWall-v0 1e-4 nan 1e-4
HopperIceWall-v0 1e-4 nan 1e-4

TMaze (Continuous) 3e-5 nan 1e-4

Table A.3: Learning rates for various continuous control tasks

Environment Trade-off
Ant-v2 0.2

HalfCheetah-v2 0.7
Hopper-v2 0.2
Walker2d-v2 0.2

HalfCheetahWall-v0 0.6
HopperIceWall-v0 0.4

TMaze (Continuous) 0.0

Table A.4: Trade-off value for various control tasks

environment resets if the agent strays away from the path onto the street. The

OneRoom task can be perceived as a simpler version of the Sidewalk task, solely

consisting of navigating to the goal object placed randomly anywhere in the room.

As for the TMaze environment, the objective is to navigate to a goal object placed

randomly at either ends of the horizontal bottom hallway. Due to discrete action

space, diversity is computed by taking the softmax of the logits of the policy network.

Rest of the implementation is consistent with the continuous control case discussed

above. Due to the sparse reward situation, we again do not augment the reward

with the diversity term. Like in the continuous control case, we average runs over 20

sequential seeds starting from seed 10 for our results. The hyper parameters used are

given below:

APPENDIX A. IMPLEMENTATION DETAILS 76

Hyper-parameter Value
Termination lr 5e-7

Timesteps per batch 2048
Optim epochs 4

Entropy coefficient 0.1
Clip Param 0.2
Gamma 0.99
Lambda 0.95

Lr schedule linear

Table A.5: Common hyper-parameters across all Miniworld tasks

Environment TDEOC OC
MiniWorld-OneRoom-v0 1e-4 3e-4
MiniWorld-Sidewalk-v0 1e-4 3e-4
MiniWorld-TMaze-v0 1e-4 3e-4

Table A.6: Learning rates for various Miniworld tasks

	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Thesis Overview

	2 Background
	2.1 Reinforcement Learning
	2.1.1 Policy Iteration
	2.1.2 Temporal Difference Learning
	2.1.3 On-Policy and Off-Policy Methods
	2.1.4 Policy Gradient

	2.2 Temporal Abstraction
	2.3 Intrinsic Motivation
	2.4 Information Theory
	2.5 Deep Reinforcement Learning
	2.5.1 Proximal Policy Optimization Algorithms
	2.5.2 Proximal Policy Option-Critic (PPOC)

	3 Intrinsically Motivate Diversity
	3.1 Encourage Diversity While Learning
	3.2 Experiments

	4 Encourage Diversity in Termination
	4.1 Empirical Evaluation
	4.1.1 Tabular Four-rooms Navigation Task
	4.1.2 Continuous Control Tasks
	4.1.3 Sparse Reward Tasks

	4.2 Option Relevance
	4.3 Transfer Properties
	4.3.1 HalfCheetah Hurdle
	4.3.2 Hopper Ice Wall
	4.3.3 TMaze Continuous

	4.4 Interpreting Option Behavior
	4.4.1 TMaze
	4.4.2 OneRoom
	4.4.3 Hopper-v2

	4.5 Effects of Varying the Number of Options

	5 Conclusion
	Bibliography
	A Implementation Details
	A.1 Implementation Details
	A.1.1 Choice of Underlying algorithm
	A.1.2 Tabular Case
	A.1.3 Non-Linear Function Approximation Case
	A.1.3.1
	A.1.3.2

