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Abstract. In this thesis, we review the classical theory of Stokes phenom-
enon, and its extension to unfoldings of irregular singularities following the

work of J. Hurtubise and C. Rousseau. We then consider the approach to clas-

sification of singular systems using groupoids, presented by M. Gualtieri, S. Li,
and B. Pym, and how this extends to unfoldings. In particular, we introduce

the unfolded twisted pair groupoid, which serves as the universal domain of

definition for generic analytic unfoldings of linear differential systems with an
irregular singularity at the origin.

Résumé. Dans ce mémoire, nous passons en revue la théorie classique du

phénomène de Stokes, et son extension à des déploiements de singularités

irrégulières selon les travaux de J. Hurtubise et de C. Rousseau. Nous consi-
dérons ensuite l’approche à la classification de systèmes singuliers en utilisant

des groupöıdes, telle que présentée dans le travail de M. Gualtieri, S. Li, et

B. Pym, et l’extension de cette théorie à des déploiements. En particulier,
nous introduisons le déploiement du groupöıde de paires tordu, qui sert de

domaine universel de définition pour des déploiements génériques de systèmes

différentiels linéaires avec une singularité irrégulière à l’origine.
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“I have been doing what I guess you won’t let me do when we
are married, sitting up till 3 o’clock in the morning fighting hard
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Introduction

The theory of linear systems of meromorphic ODEs on a Riemann surface has a
rich history that goes back to the mid-19th century, indeed predating much of our
language for the modern theory of linear algebra. This field of study continues to
be explored and developed today, and is intimately connected with various incar-
nations of the Riemann-Hilbert correspondence, the study of moduli spaces of flat
connections on bundles over a surface, and modern theories of resurgence, among
other topics.

Locally, such systems take the form

(0.1) y′ =
A(x)

xk+1
· y

where A is a square matrix function that is holomorphic at the origin, and A(0) 6= 0.
The integer k is often referred to as the Poincaré rank of the singularity. In the
case when the singularity is only apparent (k ≤ −1), classical theorems of linear
equations ensure that (0.1) admits a general power series solution that converges
in the neighbourhood where A is holomorphic. If the singularity is regular, and
in particular whenever the system (0.1) is Fuchsian (k = 0), the method of Frobe-
nius series can be employed to find a general solution. (Already small subtleties
arise with resonance, when eigenvalues of A(0) are found to be equivalent modulo
N, but a generalized version of the Frobenius method will then suffice.) Solutions
around regular singularities are generically multivalued. If the singularity is ir-
regular, which is the generic situation when (0.1) is non-Fuchsian (k ≥ 1), the
characterization of solutions becomes a much more difficult and subtle problem. In
particular, the search for any series solutions will almost always lead to divergent
results. In the prototypical example of Airy’s equation, it was rather famously
observed by George Stokes, around 1850, that such divergent results could in fact
be used to accurately approximate a true analytic solution, namely Airy’s inte-
gral representation. Apparently it was Poincaré himself who decades later was the
first to realize that these strictly formal (divergent) series solutions could be inter-
preted as asymptotic expansions of actual (holomorphic) solutions. He was able to
demonstrate this for a certain class of equations, and indeed was the first to offer
a precise meaning of the notion of ‘asymptotic series’. By the mid-20th century
(see for example [1]), it was well-known that in the neighbourhood of an irregular
singularity, one can define a collection of sectors surrounding the pole, on each of
which the system (0.1) has a unique solution whose asymptotic expansion is given
by the formal series solution. On sectorial overlaps, these solutions are linked by
the so-called Stokes matrices (Stokes data, or Stokes factors). The fact that the
Stokes data is in general non-trivial is known as the Stokes phenomenon.

For considering the moduli space of germs of systems of the form (0.1), it is
typically useful to work in the category where germs are considered equivalent
when related by a locally holomorphic gauge transformation, y 7→ g(x)y. With
this convention in place, at a regular singularity the local system, generically at
least, is characterized by its monodromy representation up to integer shifts in the
eigenvalues of the residue matrix. At an irregular singularity, additional formal
invariants are needed as well as the Stokes data. One could rephrase these results
in terms of the Riemann-Hilbert correspondence, which in its most basic form
states that there is natural equivalence between flat connections on a surface (or a
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manifold) X and representations of its fundamental groupoid Π1(X). Locally then,
flat connections with a single simple pole on X will correspond to monodromy
representations around the pole, while flat connections with a higher order pole
will correspond to monodromy representations plus additional local data related to
the asymptotic behaviour of solutions.

At an irregular singularity, one approach to classification taken in [9, 10] is to
analytically deform the system (0.1), splitting the single pole of order k + 1 into
multiple generically distinct and hence Fuchsian singular points. The moduli space
of this family of so-called generic unfoldings is described in [10] as a combination
of local monodromy data near each Fuchsian point, plus a collection of transition
maps which generalize the Stokes matrices. One particularly appealing aspect of
this description of the moduli space is the natural emergence of surrounding sectors
which generalize the Stokes sectors around an irregular singularity.

Another approach to classification of singular systems is presented in [17] and
makes crucial use of the notion of holomorphic Lie groupoids. For flat meromor-
phic connections on X with poles bounded by an effective divisor D, one no longer
has a simple correspondence to representations of Π1(X) (solutions are generically
singular at and multivalued around D). Nor does one have a simple correspon-
dence to monodromy representations of the punctured curve (i.e. representations
of Π1(X \D)), due to the emergence of the Stokes factors. The main result of [17]
is to demonstrate a new correspondence between these meromorphic connections
and representations of a novel family of Lie groupoids over X, denoted in [17] by
Π1(X,D). The result is succinctly summarized in [17] as follows, “The importance
of the Lie groupoid Π1(X,D) is best explained by the fact that the fundamental so-
lution of any meromorphic system with singularities bounded by D, while singular
along X, is actually smooth when viewed as a function on the 2-dimensional com-
plex manifold Π1(X,D). In other words, the groupoid is the universal domain of
definition for fundamental solutions to such systems.” Local parameterizations of
Π1(X,D) are explicitly constructed in [17] as the Stokes groupoids and the twisted
pair groupoids. A remarkable implication of the groupoid viewpoint is that one
naturally obtains a new method of resummation. The strictly formal series solu-
tions at an irregular singularity can be pulled back to the groupoid, resulting in a
holomorphic groupoid representation that defines a convergent universal solution.

———
In Section 1, we review the classical theory of Stokes phenomenon, and the

local analytic classification of linear ordinary differential systems with an irregular
singularity. We explore in detail two canonical examples of systems which exhibit
Stokes phenomenon. In Section 2, we review the analytic classification of systems
with an unfolded irregular singularity. This chapter closely follows the results of
[9, 10]. In particular, we give a concise review of the emergence of the Douady–
Sentenac domains. In Section 3, we begin by briefly reviewing the theory of Lie
groupoid representations, and summarizing some of the main results from [17]. We
then review the construction of the Stokes groupoids and the twisted pair groupoids
using a blowup procedure. We also explore in detail one example of how these
groupoids can be applied to the problem of resummation. Finally, we introduce
the unfolded twisted pair groupoid, which generalizes the twisted pair groupoid of
[17], and show that this groupoid is the universal domain of definition for generic
analytic unfoldings of irregular singularities.
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1. Classical Theory of Irregular Singularities

1.1. Gauge Transformations. Let A(x) be an N × N matrix of holomorphic
germs at the origin in C. Supposing that A(0) 6= 0, consider the system of linear
differential equations

(1.1) y′ =
A(x)

xk+1
· y, y ∈ CN ,

for non-negative integer k. For k = 0 the singularity at the origin is Fuchsian and
therefore a regular singularity [1], while for k > 0 the singularity generally becomes
irregular.

Let us assume that the system is non-resonant i.e. we impose the generic condi-
tion that for k > 0 the eigenvalues of A(0) are distinct (for k = 0 we impose that
A(0) is diagonalizable with eigenvalues distinct modulo the non-zero integers) [2].
Non-resonance implies that the singularity at the origin will be irregular for k > 0.
Without loss of generality we assume that A(0) is diagonal (one performs a change
of basis).

This ensures that the system can be taken to a diagonal normal form, through
a unique formal gauge transformation y 7→ g(x)y that is equal to the identity at
the origin. That is, there exists a unique formal series of the form g(x) = I +O(x)
bringing (1.1) into a polynomial form

(1.2) y′ =
1

xk+1
(Λ0 + Λ1x+ . . .+ Λkx

k) · y, y ∈ CN ,

where the Λj are diagonal matrices, and Λ0 = A(0) (see for example [1], [2]). The
N(k+ 1) entries of Λ0, . . . ,Λk comprise the system’s formal data and are uniquely
determined from the original germ A(x). The normal form (1.2) has a diagonal
fundamental matrix solution

(1.3) eΛ(x), where Λ(x) ≡ Λ0
x−k

−k
+ . . .+ Λk−1

x−1

−1
+ Λk log(x).

The solution (1.3) is holomorphic on the universal cover of the punctured plane
C×. In practice, one may prefer restricting to a single sheet by specifying a branch
of log(x).

Remark 1.1. Fix a branch of log(x) and let Y (x) be a germ of fundamental solution
to (1.2). There exists a unique C ∈ GLN (C) such that Y (x) = eΛ(x)C, and so the
analytic continuation of Y (x) in a loop around the origin (counterclockwise) results
in e2πiΛkY (x). Hence Y (x) extends to a fundamental solution on all of C× if and
only if Λk is an integer matrix.

As a consequence of formally gauging to normal form, we see that system (1.1)
has a canonical formal fundamental solution

(1.4) yf = g−1(x) eΛ(x) =
( ∞∑
n=0

Fnx
n
)
eΛ(x), F0 = I.

Our description of yf as canonical is explained in the following remark.

Lemma 1.2. Naturally, one could ask for another formal fundamental solution to
(1.1) of the form

(1.5) Yf =
( ∞∑
n=0

Gnx
n
)
e∆(x), G0 = I,



UNFOLDING THE TWISTED PAIR GROUPOID 9

where ∆(x) is diagonal, and each diagonal element ∆(x)ii is a linear combination
of log(x) and negative integer powers of x. It will be shown that ∆(x) = Λ(x) and
moreover Yf = yf .

Proof. As is the case for actual fundamental solutions to (1.1), it is likewise true
that formal fundamental solutions (i.e. of log-exponential type, see [1]) are unique
modulo the right action of GLN (C). Thus we must have Yf = yf C for some
nonsingular C. This yields componentwise relations

(1.6)
(
I +O(x)

)
ij
e∆(x)jj−Λ(x)ii = Cij , 1 ≤ i, j ≤ N.

The entry Cij may vanish only if i 6= j, implying that

e∆(x)ii−Λ(x)ii → Cii 6= 0 , as |x| → 0.

This can only be possible if ∆(x)ii = Λ(x)ii and hence Cii = 1. It then follows
from (1.6) (and our assumption of non-resonance) that Cij = 0 for i 6= j. Note that
this argument holds in the k = 0 case just as well as for k > 0. �

This also proves our earlier claim that the formal normalizing series g(x) is uniquely
determined by setting g(0) ≡ I.

Remark 1.3. The general formal series G(x) = G0 +O(x) bringing (1.1) to normal
form must satisfy G0Λ0G0

−1 = Λ0. For k > 0 this implies that G0 ≡ D is diagonal,
and we can write D−1G(x) = I+O(x). This expression also brings (1.1) to normal
form, hence it must be equal to g(x) by uniqueness. Thus the system’s formal data
truly is gauge invariant!

For k = 0, it is a well-known classical result that yf represents an actual fun-
damental solution, i.e. the sum in (1.4) has a non-zero radius of convergence [1]
pg. 117. However, the formal solution yf will not be convergent in general. In
particular, for k > 0 the gauge transformation generally turns out to be a divergent
series, i.e. the sum in (1.4) has zero radius of convergence.

In the Fuchsian case (k = 0), one obtains a true fundamental solution to (1.1),

yf =
(
I +

∞∑
n=1

Fnx
n
)
eΛ0 log(x) =

(
I +

∞∑
n=1

Fnx
n
)
xA(0),

holomorphic on the universal cover of
{
x ∈ C : 0 < |x| < R

}
for some R > 0.

Notice that the singularity at the origin is regular.

1.2. Stokes Phenomenon. Having completely characterized all solutions to (1.1)
in the case when k = 0, let us assume for the remainder of this chapter that k > 0.
If the canonical solution yf should fail to converge, it turns out that this strictly
formal object yf will represent the asymptotic expansion of some true solution to
(1.1), as x→ 0 on appropriately chosen sectors of the form

(1.7) Ω =
{
x ∈ C : 0 < |x| < ρ, θ1 < arg(x) < θ2

}
,

where ρ is strictly less than the radius of convergence of the germ A(x).
In order to make this statement more precise, first recall that the eigenvalues of

A(0) = diag(λ1, . . . , λN ) are distinct. By permuting coordinates of y and perform-
ing a rotation x 7→ eiθx if necessary, we may assume that

(1.8) <(λ1) > . . . > <(λN ).
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The Stokes rays are the half-lines determined by the condition

(1.9) <
[
λi − λj
xk

]
= 0 (i 6= j).

Hence, there are 2k Stokes rays associated with each eigenvalue pair (λi, λj), i < j.
For any sector Ω of the form (1.7), we shall call it a Stokes sector precisely when
it contains exactly one Stokes ray from each eigenvalue pair (λi, λj), i < j, and its

closure Ω does not contain any additional Stokes rays. It is not too difficult to see
that the punctured disk D×ρ =

{
x ∈ C : 0 < |x| < ρ

}
can be openly covered by 2k

Stokes sectors, each having an angular opening greater than π
k . In particular, for

any given direction θ, we can find a sufficiently small ε > 0 such that

(1.10) Ω1 =
{
x ∈ C : 0 < |x| < ρ, θ + ε < arg(x) < θ +

π

k
+ 2ε

}
is a Stokes sector, and then so is each of the rotated sectors

(1.11) Ωn = ei(n−1)πk Ω1, for n = 1, . . . , 2k.

The main importance of Stokes sectors is summarized by the following classical
statement [1], [2], [3], [4].

Theorem 1.4. If Ω is a Stokes sector, then there exists a unique fundamental
solution ψ of (1.1) such that

(1.12) ψ ∼ yf in Ω (as x→ 0).

The precise meaning of (1.12) is as follows. For any m ∈ N, there exists a positive
real number Cm,Ω such that

(1.13)

∣∣∣∣∣∣∣∣ψ(x)e−Λ(x) −
m−1∑
n=0

Fnx
n

∣∣∣∣∣∣∣∣ < Cm,Ω |x|m for all x ∈ Ω.

It is important to note that the theorem generically fails on larger sectors, whose
closure contains more than N(N − 1)/2 Stokes rays.

This indicates that, in general, the Stokes sectors represent the “widest possible”
sectors on which one is guaranteed to find an actual solution ψ asymptotic to yf
throughout the entire sector. Conversely, on narrower sectors, the uniqueness of
ψ may fail. This failure is known as the Stokes phenomenon. To examine this

phenomenon further, let us consider the collection of Stokes sectors {Ωn}2kn=1 defined
at (1.11). By Theorem 1.4, for each n = 1, . . . , 2k there exists a unique fundamental
solution ψn of (1.1) such that ψn ∼ yf in Ωn. We shall refer to ψn as the canonical
solution on Ωn.

Remark 1.5. Due to the multivaluedness of eΛ(x), each canonical solution ψn is
really only unique up to a choice of branch of log(x). It will be instructive to
continue our discussion in the universal covering space,

D̃×ρ =
⋃
n∈Z

Ωn.

In particular then Ω2k+1 6= Ω1 but rather Ω2k+1 is the adjacent sheet over Ω1. Let
ψ2k+1 and ψ1 be the canonical solutions on Stokes sectors Ω2k+1 and Ω1 respectively.
Combining Theorem 1.4 with Remark 1.1, we conclude that

(1.14) ψ2k+1(xe2πi)e−2πiΛk = ψ1(x), ∀x ∈ D̃×ρ .
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This indicates how canonical solutions on any two sectors Ωj and Ωj+2k are related
via the so-called formal monodromy matrix e2πiΛk .

Still working in the universal cover,1 each sectorial intersection Ωn ∩ Ωn+1

(for n = 1, . . . , 2k) has an angular opening of ε and contains no Stokes rays. On
intersections, one has both asymptotic relations:

(1.15) ψn ∼ yf , ψn+1 ∼ yf in Ωn ∩ Ωn+1.

The fundamental solutions must be related by constant matrices Sn ∈ GLN (C),

(1.16) ψn+1 = ψn Sn, for n = 1, . . . , 2k,

and these 2k matrices, S1, . . . , S2k, are called the Stokes matrices.

Each Stokes matrix Sn is completely characterized by N(N−1)
2 parameters, as

can be deduced from the asymptotic relations of (1.15):

eΛ(x)Sne
−Λ(x) =

(
ψn(x)e−Λ(x)

)−1
ψn+1(x)e−Λ(x) → I as x→ 0, x ∈ Ωn ∩ Ωn+1,

yielding componentwise relations

(1.17) lim
x→0

eΛ(x)ii(Sn)ij e
−Λ(x)jj = δij , x ∈ Ωn ∩ Ωn+1, 1 ≤ i, j ≤ N.

We immediately have that (Sn)ii = 1, for i = 1, . . . , N . Fixing any pair of indices
i 6= j, we have

(1.18) lim
x→0

(Sn)ij exp

(
x−k

−k
(λi − λj)

)
= 0, x ∈ Ωn ∩ Ωn+1.

Since <
(
x−k(λi − λj)

)
is bounded away from zero on the intersection Ωn ∩ Ωn+1,

it follows that (at least) one of (Sn)ij or (Sn)ji must vanish. It is conventional
[5] to choose Stokes sectors such that the first intersection Ω1 ∩ Ω2 contains the
ray {x : arg(x) = 0} in the universal cover. This is always possible since R+ is
not a Stokes ray by (1.8). Our choice of ordering (1.8) furthermore implies that
Sn is upper triangular when n is odd, and lower triangular when n is even. The

remaining N(N−1)
2 entries of Sn are uniquely determined by the specific system

(1.1) in question — up to a fixing of gauge (see (1.20)).
The N(N − 1)k complex parameters which fully characterize S1, . . . , S2k are

collectively known as the Stokes data of system (1.1). As we shall see below, this
data is in general nontrivial (non-zero).

1.3. Monodromy Representation. The monodromy associated with ψ1 is the
constant matrix M ∈ GLN (C) such that ψ1(xe2πi) = ψ1(x)M for all x in the
universal cover of D×ρ . The existence of such an M follows directly from the fact

that both ψ1(x) and its analytic continuation ψ1(xe2πi) are fundamental solutions
to (1.1). By (1.14) and (1.16), one may write M in terms of the Stokes matrices as

(1.19) M = e2πiΛk · (S2k)−1 · . . . · (S1)−1.

1Of course, in practice there is no need to continually work in the universal cover. For example,
one can slit the punctured disk D×

ρ along some direction arg(x) = θ0 such that the slit lies in Ω1

but not in any neighbouring Stokes sector. Then fix the branch cut of log(x) to be along the slit.

The slit disk can be written as the union of sectors:

Ω1|arg(x)>θ0 ∪ Ω2 ∪ . . . ∪ Ω2k ∪ Ω2k+1|arg(x)<θ0+2π .

The canonical solutions ψ1, . . . , ψ2k+1 provide asymptotic solutions all the way around the slit

disk, with the Stokes matrices S1, . . . , S2k linking solutions on intersections and the formal mon-
odromy matrix e−2πiΛk linking solutions over the branch cut.
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It is easily verified that M generates a linear representation of the fundamental
group π1(D×ρ ). By replacing ψ1 7→ ψ1C, where C ∈ GLN (C), it follows that the
monodromy of any arbitrary fundamental solution to (1.1) is conjugate to M and
hence provides an equivalent representation of π1(D×ρ ).

One thus has a well-defined and invariant quantity M associated to the germ of
a system (1.1):

Definition 1.6. The monodromy group or monodromy representation M of the
system (1.1) (or of its singularity) is the subgroup 〈M〉 ⊂ GLN (C) modulo a global
conjugacy in GLN (C).

This definition involves some notational abuse as M is neither a group nor a
representation, but rather an entire conjugacy class of subgroups.

The monodromy representation M is inherently gauge invariant, by definition.
To see this more explicitly, any valid change of gauge must take the form g(x) 7→
Dg(x) where D is an invertible diagonal matrix (see Remark 1.3). Correspondingly,
canonical solutions are transformed according to ψn 7→ ψnD

−1 and so the Stokes
matrices are transformed according to the simultaneous conjugation

(1.20) Sn 7→ DSnD
−1, n = 1, . . . , 2k,

leaving M unchanged.

1.4. Analytic Classification. We have already seen (by Remark 1.3) that our
system (1.1) is completely characterized by its formal data {Λ0, . . . ,Λk} up to a
formal gauge equivalence. That is to say, given any other holomorphic germ B(x)
defining the meromorphic system

(1.21) z′ =
B(x)

xk+1
· z, z ∈ CN , B(0) = A(0),

the formal data of (1.1) and (1.21) will coincide precisely when there exists a formal
gauge transformation G(x) between the two systems

(1.22) y 7→ G(x)y = z.

This gauge transformation is unique up to its leading term G(0) which must be an
invertible diagonal matrix. Recall that the condition on G(x) to formally gauge
between the two systems is equivalent to asking that the following equality hold
formally

(1.23)
B(x)

xk+1
= G(x)

A(x)

xk+1
G−1(x) +

dG(x)

dx
G−1(x).

To seek a local holomorphic gauge equivalence between the two systems (1.1)
and (1.21), the Stokes matrices will play a crucial role. Recall that in the Fuchsian
case, we have already seen that any formal gauge equivalence (1.22) is necessarily
holomorphic at the origin.

In the presence of irregular singularities, the relationship between holomorphic
and formal gauge equivalence becomes more subtle.

Definition 1.7. The Stokes data {S1, . . . , S2k} of system (1.1) and the Stokes
data {S1, . . . ,S2k} of system (1.21) are said to be equivalent when related by a
simultaneous diagonal conjugation of the form (1.20) i.e.

(1.24) Sn = DSnD
−1, n = 1, . . . , 2k.
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Theorem 1.8. The two systems (1.1) and (1.21) are locally holomorphically gauge
equivalent precisely when they have identical formal data and equivalent Stokes data.

That is to say, given that (1.1) and (1.21) are formally gauge equivalent, then
the gauge transformation is convergent if and only if the respective sets of Stokes
matrices are equivalent.

Proof. Let gA(x) and gB(x) be the unique formal gauge transformations of the form
I + O(x) carrying (1.1) and (1.21) to their respective normal forms. The normal
forms are identical since the formal data is identical. Assume there exists some
G(x) which obeys (1.23) and is holomorphic at the origin. Then both gA(x) and
the composition gB(x)G(x) are formal gauge transformations which take (1.1) to
normal form. Hence, by Remark 1.3 there exists some invertible diagonal matrix
D such that DgA(x) = gB(x)G(x).

Let ψn and φn denote the (unique) canonical solutions on sector Ωn for the
systems (1.1) and (1.21) respectively. One has that

ψn ∼ g−1
A (x)eΛ(x) = G−1(x)g−1

B (x)eΛ(x)D in Ωn.

By the uniqueness of the canonical solutions, it follows that

φn(x) = G(x)ψn(x)D−1, n = 1, . . . , 2k + 1.

The Stokes matrices Sn of (1.21) are then easily calculated to be

(1.25) Sn = φ−1
n φn+1 = Dψ−1

n ψn+1D
−1 = DSnD

−1, n = 1, . . . , 2k.

To prove the converse direction, let us assume that (1.25) holds for some diagonal
matrix D. Then let

(1.26) h(x) := φ1(x)Dψ−1
1 (x).

Observe that h(x) is both holomorphic and invertible on the universal cover D̃×ρ .
By its construction, h(x) provides a gauge transformation from system (1.1) to
system (1.21). Indeed, a quick computation reveals that

(1.27) h(x)
A(x)

xk+1
h−1(x) +

dh(x)

dx
h−1(x) =

B(x)

xk+1
, x ∈ D̃×ρ .

It remains to be shown that h(x) is holomorphic and invertible at the origin. Our
first step will be to demonstrate that h(x) descends to a holomorphic function on
the punctured disk D×ρ by verifying that its monodromy is trivial. The monodromy
matrix of h(x) is calculated with the help of equations (1.19) and (1.25) to be

h−1(x)h(xe2πi) = ψ1(x)D−1φ−1
1 (x)φ1(xe2πi)Dψ−1

1 (xe2πi)

= ψ1(x)D−1
(
e2πiΛkS−1

2k . . .S−1
1

)
Dψ−1

1 (xe2πi)

= ψ1(x)
(
e2πiΛkS−1

2k . . . S
−1
1

)
ψ−1

1 (xe2πi)

= ψ1(xe2πi)ψ−1
1 (xe2πi)

= I.

Next, we shall demonstrate that the singularity of h(x) at the origin is removable.
Notice that

h(x) = φ1(x)DS1D
−1DS−1

1 ψ−1
1 (x)

= φ1(x)S1D (ψ1(x)S1)
−1

= φ2(x)Dψ−1
2 (x)
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and similarly,

h(x) = φn(x)Dψ−1
n (x), n = 1, . . . , 2k, x ∈ D×ρ .

By (1.13), as well as the fact that systems (1.1) and (1.21) share formal data, it
follows that

h(x) = φn(x)e−Λ(x)D
(
ψn(x)e−Λ(x)

)−1

→ D as x→ 0, x ∈ Ωn,

for each n = 1, . . . , 2k. Hence,

h(x)→ D as x→ 0, x ∈ D×ρ .

By applying the Riemann removable singularity theorem, the proof is completed
by setting h(0) ≡ D and noting that D is invertible. �

Corollary 1.9. Our original (non-resonant) system (1.1) is locally holomorphically
gauge equivalent to its normal form, if and only if the Stokes data is trivial i.e.
S1 = . . . = S2k = I. Equivalently, the canonical formal solution yf is an actual
fundamental solution to (1.1) precisely when the Stokes data is trivial.

Theorem 1.8 provides us with a notion of the moduli space of the family of
systems of the form (1.1) (non-resonant and for fixed k > 0). Namely, that up
to holomorphic equivalence, the system (1.1) is completely characterized by the
N(k + 1) parameters of Λ0, . . . ,Λk (the formal data) and the N(N − 1)k parame-
ters of S1, . . . , S2k (the analytic or Stokes data), modulo a simultaneous diagonal
conjugacy on the Stokes data which reduces the total number of parameters by
N − 1. (Of course, we have already seen that when k = 0 the moduli space is sim-
ply the set of possible residue matrices A(0) = Λ0.) A natural question arises, as to
what sorts of Stokes matrices might actually be realized as the Stokes data set of
some system (1.1). In other words, we wish to identify which points in the moduli
space can be realized. The answer turns out to be that each point is realized. This
is the content of the following theorem due to Birkhoff [5].

Theorem 1.10. For k > 0, specify any desired set of (non-resonant) formal data
Λ0, . . . ,Λk. Then for any set of unipotent and alternating upper/lower triangular
matrices S1, . . . , S2k, there exists some system of the form (1.1) with the prescribed
formal data and having S1, . . . , S2k as its Stokes matrices.

Thus, we see that the triangularity properties derived above are not only neces-
sary, but sufficient conditions for characterizing Stokes data of the generic system.
Theorem 1.10 seems to imply that the generic non-resonant system (1.1) for k > 0
is practically guaranteed to exhibit Stokes phenomenon and have a divergent formal
normalizing series.

Example 1.11. Let us attempt to find an extremely simple system of the form
(1.1) exhibiting Stokes phenomenon. If A(x) =

∑∞
n=0 x

nAn is diagonal, then (1.1)

is trivially integrable, and the canonical solution yf = exp
(∫ A(x)

xk+1

)
is convergent.

Hence we set N = 2 and k = 1 for the present example. Next we must specify some
non-diagonal germ A(x) such that A0 is diagonal and obeys (1.8). An obvious and
simple choice would be

A(x) =

[
1 0
0 0

]
+ x

[
0 1
0 0

]
,
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hence defining the system

(1.28) y′ =
1

x2

[
1 x
0 0

]
y, y ∈ C2.

In order to determine the formal normalizing series g(x) of system (1.28), let us
first consider the simpler gauge transformation y 7→ (I + xM)y which carries the
system (1.28) to

(1.29)

y′ =

(
(I + xM)

A0 + xA1

x2
(I − xM) +O(1)

)
y

=

(
A0

x2
+
A1 +MA0 −A0M

x
+O(1)

)
y.

Demanding that A1 +MA0 −A0M be a diagonal matrix will lead to the following
componentwise relations

(1.30) Mij =
A1ij

λi − λj
, i 6= j.

The diagonal entries of M remain undetermined, and we may freely set them equal
to zero. Hence we have

M =

[
0 1
0 0

]
,

and one may verify that (1.29) reduces precisely to

y′ =

(
A0

x2
+M

)
y.

This process may be repeated indefinitely, and the following statement can be
proven by direct calculation. For any n ≥ 0 the system

y′ =

(
A0

x2
+ n!xn−1M

)
y

will be carried to the system

y′ =

(
A0

x2
+ (n+ 1)!xnM

)
y

by applying the gauge transformation y 7→
(
I + n!xn+1M

)
y. Composing these

gauge transformations in sequence yields the desired formal normalizing series

(1.31)

g(x) = lim
n→∞

(I + n!xn+1M) . . . (I + x2M)(I + xM)

= I +
∞∑
n=0

n!xn+1M.

This is the unique formal series I+O(x) which carries (1.28) to its gauge-invariant
normal form

(1.32) y′ =
A0

x2
y.

Remark 1.12. For the generic non-resonant system (1.1), the proof of existence
of a formal normalizing series closely resembles our methods above, see [1], [2],
[5]. In the resonant case, when eigenvalues of A(0) are not all distinct, the formal
normalizing series g(x) (and the canonical formal solution yf ) must be modified to
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include fractional powers of x. This occurs for example in the famous case of Airy’s
equation.

The normal form (1.32) indicates that the formal data of system (1.28) is

Λ0 =

[
1 0
0 0

]
, Λ1 =

[
0 0
0 0

]
.

Hence the canonical formal fundamental solution to (1.28) is

(1.33)

yf = g−1(x) eΛ(x) =
(
I −

∞∑
n=0

n!xn+1M
)
e−Λ0/x

=

[
e−1/x −

∑∞
n=1(n− 1)!xn

0 1

]
.

Since yf is clearly divergent, we expect that Stokes phenomenon will occur, as
predicted by Corollary 1.9.

The two Stokes rays are defined by <(±1/x) = 0 and coincide with the positive
and negative imaginary half-lines. In accordance with our convention that Ω1 ∩Ω2

should contain the ray {arg(x) = 0}, we let

Ω1 =
{
x ∈ C̃× : −3π/2 + ε < arg(x) < π/2− ε

}
for some fixed ε ∈ (0, π/2). Rotating the sector by π we obtain

Ω2 =
{
x ∈ C̃× : −π/2 + ε < arg(x) < 3π/2− ε

}
and an additional rotation by π produces

Ω3 =
{
x ∈ C̃× : π/2 + ε < arg(x) < 5π/2− ε

}
.

On each of these Stokes sectors, Theorem 1.4 predicts the existence of a unique
fundamental solution ψn such that ψn ∼ yf in Ωn. Let us attempt to find these
canonical solutions and verify their uniqueness explicitly. The following solution to
(1.28) is easily obtained by using an integrating factor. At any x0 6= 0, the matrix
function

Ψx0(x) =

e−1/x e−1/x
∫ x
x0

e1/z

z dz

0 1


is a germ of fundamental solution to (1.28), extending uniquely to a fundamental

solution on the universal cover C̃×. The result can be generalized slightly as follows.
Consider taking the limit of Ψx0(x) as |x0| → 0 along a path which becomes tangent
to the ray {x : arg(x) = −π} ⊂ Ω1. The resulting limit function, denoted by ψ1(x),

is a well-defined fundamental solution to (1.28) on C̃×. As proven in Appendix A,
this solution ψ1(x) is indeed the desired canonical solution on Stokes sector Ω1.

Remark 1.13. The asymptotic relationship ψ1 ∼ yf does not continue to hold
in the larger sector {−3π/2 < arg(x) < π/2}, although it does remain valid in
{−3π/2 < arg(x) < π/2 − ε} (see Appendix A for details). In particular, this
would imply by the residue theorem that e−1/x 2πi→ 0 along the purely imaginary
ray iR+.
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If we instead take the limit of Ψx0
(x) as |x0| → 0 along a path which becomes

tangent to the ray {x : arg(x) = π} ⊂ Ω2 ∩ Ω3, then we obtain another funda-
mental solution which we denote by ψ2(x). By the same arguments (as given in
Appendix A), we see that ψ2(x) is the desired canonical solution on both of the
Stokes sectors Ω2 and Ω3. That is to say that ψ2 ∼ yf in Ω2 ∪ Ω3. This immedi-
ately implies that the second Stokes matrix is trivial, i.e. S2 = I. The remaining
Stokes matrix S1 can be calculated with the help of the residue theorem, and we
find that

S1 = ψ−1
1 (x)ψ2(x) =

1 −2πi Resz=0

(
e1/z

z

)
0 1

 =

1 −2πi

0 1

 .
The Stokes matrices have the anticipated triangular structure. Furthermore, as
predicted by (1.19) the monodromy matrix of solution ψ1(x) is indeed given by

M = e2πiΛ1 · (S2)−1 · (S1)−1 = (S1)−1 =

1 2πi

0 1

 .
Thus we have completely characterized the Stokes phenomenon of system (1.28).
The quintessential Stokes behaviour is summarized by the observation that any
asymptotic solutions to (1.28) cannot be analytically extended indefinitely around
the origin, without breaking the asymptotics. One has that ψ2 ∼ yf in any compact
subsector of {−π/2 < arg(x) < 5π/2}, but not in the entire open sector. Equiva-
lently, ψ1 ∼ yf in any compact subsector of {−5π/2 < arg(x) < π/2}, but fails on
the entire open set. We reiterate that this result is equivalent to the well-known
asymptotic expansion of the special function E1(x), as noted in Appendix A.

Example 1.14. One of the most famous examples of Stokes phenomenon arises
from Airy’s equation

(1.34)
d2y

dx2
= xy.

Indeed, this is the original problem studied by Stokes himself over 150 years ago
[13]. He observed that a certain solution to (1.34) (essentially what is now called
Ai(x)) could be well-approximated for |x| � 0 through the strategic truncation
of divergent series, but that divergent series of two different forms were needed in
sectorial neighbourhoods of R+ and R− respectively.2

Finding solutions to Airy’s equation is equivalent to solving the coupled system

(1.35) y′ =

[
0 x
1 0

]
y, y ∈ C2.

The singularity at x = ∞ can be moved to the origin by substituting z = 1/x,
leading to the system

(1.36)
dy

dz
=

1

z3

[
0 −1
−z 0

]
y.

2In his own words [13], “When [<(x) or <(−x)] is at all large, the [asymptotic] series are

at first rapidly convergent, but they are ultimately in all cases hypergeometrically divergent.

Notwithstanding this divergence, we may employ the series in numerical calculation, provided we
do not take in the divergent terms.” He further states that, “The integral [asymptotic series] will

have different forms according as [the real part of x] is positive or negative.”
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This system (1.36) is in the form of (1.1), but importantly it is resonant, as the
characteristic equation of A(0) has a double root at z = 0. The resonance can
be dealt with, and in fact removed completely, by means of a so-called shearing
transformation, a diagonal gauge transformation of the form

(1.37) y 7→ Z(z) y =

[
1 0
0 z−β

]
y, β ∈ Q+,

at the cost of increasing the order of the singularity at z = 0. This strategy, hinted
at in Remark 1.12, can always be used to remove any resonances occurring in the
generic linear system. Further details can be found in [5] and a complete analysis
in [3]. In the present case, the unique value to eliminate resonance is β = 1/2,
leading to the gauge-transformed system

(1.38)
dy

dz
=

[
0 −z−5/2

−z−5/2 − 1
2z
−1

]
y.

Introducing another change of variables s =
√
z (arbitrarily choosing the principal

branch) the system becomes

(1.39)
dy

ds
=

1

s4

[
0 −2
−2 −s3

]
y.

This system is non-resonant, having leading order eigenvalues λ = ±2. Performing
a change of basis

(1.40) y 7→ P−1y, where P =

[
−1 1
1 1

]
,

we finally obtain

(1.41)
dy

ds
=

1

s4

([
2 0
0 −2

]
− s3

2

[
1 1
1 1

])
y,

which is in the originally assumed form of (1.1) with k = 3.

The Canonical Formal Solution. In order to obtain asymptotic solutions to
system (1.41), we should like to calculate its formal normalizing series, which is
uniquely of the form

(1.42) g(s) = I + s3M +O(s6).

Following the same methods as outlined in (1.29) to (1.30), one can determine the
off-diagonal entries of M (while the diagonal entries remain unknown).

(1.43) M =

[
· − 1

8
1
8 ·

]
This is already sufficient to see that the (diagonal) normal form of (1.41) is

(1.44)
dy

ds
=

1

s4

([
2 0
0 −2

]
− s3

2

[
1 0
0 1

])
y.

A more detailed analysis, provided in Appendix B, will solve for the missing diagonal
entries of M , allowing us to write down the canonical formal fundamental solution
to (1.41), out to one term beyond the leading order,

(1.45)

yf (s) =

(
I − s3

[
− 1

48 − 1
8

1
8

1
48

]
+O(s6)

)[
s−1/2 exp (− 2

3s
−3) 0

0 s−1/2 exp ( 2
3s
−3)

]
.
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The Stokes Sectors. According to (1.9), the Stokes rays of system (1.41) are de-

fined by <(±4s−3) = 0 and hence occur along the rays
{

arg(s) = (2n+1)
6 π : n ∈ Z

}
.

There are 2k = 6 Stokes rays in the s-plane. Recall that a Stokes sector in the
s-plane is one whose closure contains precisely one of these rays. On any such
sector, the system (1.41) has a unique fundamental solution ψ(s) that is asymp-
totic to yf (s) (by Theorem 1.4).

Let us rephrase this in terms of the variable z. On any sectorial region of the
z-plane, adherent to the origin and whose closure contains precisely one of the three
rays

{
arg(z) = π, ±π3

}
, there exists a unique fundamental solution ψ(

√
z) that is

asymptotic to yf (
√
z) as z → 0. Rephrasing in terms of the original variable x, on

any sectorial region of the x-plane, adherent to the point at ∞ and whose closure
contains precisely one of the three rays

{
arg(x) = π, ±π3

}
, there exists a unique

fundamental solution ψ(1/
√
x) that is asymptotic to yf (1/

√
x) as x→∞.

Going back to the original system (1.35), let us denote one of its arbitrary fun-
damental solutions by

(1.46) Y (x) =

[
y′1 y′2
y1 y2

]
.

Observe that y1(x) and y2(x) are linearly independent scalar solutions to Airy’s
equation (1.34). Tracing back our steps through the various gauge transformations,
we see that ψ(s) is a fundamental solution to (1.41) if and only if

ψ(s) = P−1Z(z)Y (x),

for some fundamental solution Y (x) of the form (1.46). Finally, by combining this
result with our statement from the preceding paragraph, we conclude that on any
sectorial region of the x-plane, whose closure contains precisely one of the three
rays

{
arg(x) = π, ±π3

}
, there exists a unique solution Y (x) of the form (1.46) such

that

(1.47) P−1Z (1/x) Y (x) ∼ yf
(
1/
√
x
)

(as x→∞).

Referring to (1.45), this is equivalent to

(1.48)

[
y′1(x) y′2(x)
√
x y1(x)

√
x y2(x)

]
∼ P yf

(
1/
√
x
)

=

([
−1 1
1 1

]
+
x−3/2

48

[
−7 −7
−5 5

]
+O(x−3)

)[
exp (− 2

3x
3/2) 0

0 exp ( 2
3x

3/2)

]
x1/4.

One particular consequence is that on the sector {−π+ ε < arg(x) < π
3 − ε} in the

x-plane, for any ε > 0, there exists a unique solution y1(x) to Airy’s equation such
that

(1.49) y1(x) ∼ e−
2
3x

3/2

x1/4

(
1− 5

48
x−3/2 +O(x−3)

)
as |x| → ∞.

Moreover, the same can be said for the sector {−π3 +ε < arg(x) < π−ε}. Since the
Stokes matrix S1 linking solutions over R+ is upper triangular by (1.8), it follows
that the asymptotic relation (1.49) remains valid on all of {−π+ε < arg(x) < π−ε}.
Furthermore, any other linearly independent solution to Airy’s equation must blow
up as x → ∞, following from (1.48). In other words, we have found the asymp-
totic expansion (away from R−) of the unique solution to Airy’s equation (up to a
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rescaling) which remains finite as x→∞. The function y1(x) is typically denoted
by 2
√
πAi(x).3

Notice that (1.49) cannot remain valid on all of {−π < arg(x) < π}. The
multivalued terms would result in two different asymptotic expansions for y1(x)
along the negative real axis, contradicting the fact that solutions to (1.35) are
entire functions. This observation implies (through Corollary 1.9) that the gauge
series (1.42) is divergent.

As a bonus, we can use these results to obtain the asymptotics of y1(x) in a secto-
rial neighbourhood of R−. One can verify that both of y1(xe±2πi/3) are additional
solutions to Airy’s equation. Their asymptotic expansions are obtained directly
from (1.49), on sectors which avoid the rays π

3 and −π3 , respectively. The asymp-
totics will show that the two new solutions are independent. Hence y1(x) is some
linear combination of y1(xe2πi/3) and y1(xe−2πi/3). Appealing to the asymptotics
as x→∞, as well as the fact that y1(x) is analytic at the origin, one obtains

y1(x) = −e−2πi/3 y1(xe−2πi/3)− e2πi/3 y1(xe2πi/3).

Both terms on the right-hand side have their asymptotic expansions valid on the
common sector {| arg(−x)| < 2π

3 − ε}, but care must be taken in that their argu-

ments differ by 2π. This leads to the following relation valid on {| arg(x)| < 2π
3 −ε}.

(1.50)

y1(−x) ∼ −e−2πi/3 e
2
3 (eπix)3/2

(eπix)1/4 e−πi/6
− e2πi/3 e

2
3 (e−πix)3/2

(e−πix)1/4 eπi/6

=
eπi/4 e−

2
3 ix

3/2

x1/4
+
e−πi/4 e

2
3 ix

3/2

x1/4

=
2 sin

(
2
3x

3/2 + π
4

)
x1/4

.

Precisely on the ray arg(x) = 0, this is no longer a bona fide asymptotic relationship,
as the ratio between sides of (1.50) is unbounded near zeros of the oscillating
approximating function. However, on this ray the absolute error is readily seen to
be bounded by 5

24x
−7/4, which follows from (1.49).

2. Unfolding the Singularity

Let us consider a generic unfolding of the non-resonant system (1.1) having an
irregular singularity (k > 0). Up to a translation in x, the generic splitting of the
repeated root of xk+1 is parameterized by ε ∈ Ck, with the monomial xk+1 in (1.1)
being replaced by the polynomial

(2.1) pε(x) = xk+1 + εk−1x
k−1 + . . .+ ε1x+ ε0.

The roots of pε(x) are generically distinct, with repetition of roots occurring along
the polynomial discriminantal locus {ε : ∆(ε) = 0}, where ∆(ε) is the discriminant

3By the same reasoning, we may obtain the asymptotic expansion of solution y2(x) valid on all

of {−π
3

+ ε < arg(x) < 5π
3
− ε}. This linearly independent solution is not proportional to Bi(x),

but rather to Ai(xe−2πi/3).
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of pε(x). Note that the discriminantal locus is of real codimension 2. This leads us
to consider the so-called deformed system

(2.2) y′ =
A(ε, x)

pε(x)
· y,

where A(ε, x) is an analytic germ at the origin in Ck+1 and we will impose that
A(0, x) = A(x). The deformed system reduces to (1.1) in the limit that ε→ 0, and
we say that (2.2) defines a generic analytic unfolding of system (1.1). This family
of unfoldings has been studied for example in [7] and more recently in [8, 9, 10]. As
we shall see, the formal invariants of the unfolded system are relatively easy to
identify, and reduce analytically to the formal data of the original system (1.1) in the
limit that ε→ 0. A complete set of analytic invariants of the unfolded system can
also be obtained. In [7], these analytic invariants are described as generalizations of
the Stokes matrices, and are shown to converge to the usual Stokes data as ε→ 0,
at least within certain proper subdomains of the parameter space i.e. along some
(but not all) paths in the parameter space which approach ε = 0. In [8, 9] these
results are extended and proven to hold on a full neighbourhood of ε = 0, thus
establishing the complete moduli space for the family of generically unfolded sys-
tems (2.2). In [10], the question of which moduli can be realized is answered, thus
providing an analog of Theorem 1.10 for the generically unfolded system.

In [7], [8], [9], [10], the unfolded system is investigated by introducing an ad-
ditional complex parameter t and rewriting (2.2) as the following pair of coupled
equations

(2.3) ẏ = A(ε, x) · y

(2.4) ẋ = pε(x).

By investigating these two equations separately, we will outline how the complete
set of formal and analytic invariants for the unfolded system can be obtained.

2.1. The Scalar Equation. We begin by studying integral curves of the scalar
equation

(2.5) ẋ =
dx

dt
= xk+1 + εk−1x

k−1 + . . .+ ε1x+ ε0

on CP1. The trajectories of interest will be those x(t) which are images of Im(t) =
constant. That is, we consider the complex flow in x-space as foliated by real flow
lines. The trajectories are of course implicitly solvable by

(2.6) t(x) =

∫
dx

pε(x)
.

For ε = 0 one finds that t − t0 = − 1
kxk

and the real trajectories converge to the
origin in x-space as Re(t)→ ±∞. In particular, the real flow along Im(t) = Im(t0)
will reach ∞ in x-space at the finite time t0. The multivaluedness of x(t) implies
that this real flow line through Im(t0) naturally divides x-space into 2k congruent
sectors, as pictured in Figure 1 for k = 3. As a function on CP1 the mapping x(t) is
multivalued with branch points at 0 and ∞. (The inverse mapping t(x) is a degree
k covering of CP1 ramified at 0 and ∞.)
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(a) Centred at the origin in x-space (b) Centred at infinity in x-space

Figure 1. Real flow lines of the scalar equation (2.5) (ε = 0).
At Im(t) = Im(t0) the real trajectories are rays emanating from 0
and ∞.

Remark 2.1. One can already see how the real flow lines of the scalar equation
(2.5) naturally reproduce the 2k Stokes sectors of Section 1.2. This behaviour will
persist for generic values of ε, and the corresponding generalized Stokes sectors
will be discussed in further detail below in Section 2.2.

Next we consider the phase portrait for generic ε �= 0. We shall restrict ourselves
to the complement of the discriminantal locus, namely

(2.7) Σ0 = {ε : ∆(ε) �= 0}

where the k + 1 singular points of (2.2) are Fuchsian. Near infinity in x-space, the
real trajectories of (2.5) will be asymptotically similar to those of Figure 1(b) since
pε(x) ∼ xk+1.4 One has 2k distinguished trajectories called separatrices alternately
emanating from and reaching ∞. Following each separatrix either forwards or
backwards from infinity, it must eventually land at one of the roots xl of pε(x) or
return to the point at infinity. (The phase portrait contains no limit cycles.) The
former case is the generic one, while the latter case describes a homoclinic orbit i.e.
a real flow line emerging from ∞ in x-space and flowing back to itself in finite time.
In the absence of homoclinic orbits, each root xl is either the source of one or more
separatrices (Re(t) → −∞) or the sink of one or more separatrices (Re(t) → ∞).
No root xl can simultaneously be a source and a sink (since ε ∈ Σ0).

Remark 2.2. In the absence of homoclinic orbits, the fact that each root xl must be
tied to some separatrix can be proved combinatorially by induction on k. Make use
of the observation that separatrices do not cross (real flow lines do not intersect)

4A full proof of the stability of the phase portrait near x = ∞ can be found in [11]. Heuristically,
for large |x| one has that

dt =
dx

pε(x)
=

dx

xk+1

1(
1 + εk−1x−2 + . . .+ ε0x−k−1

) =
dx

xk+1

(
1 +O(x−2)

)
.
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and that each xl may be a source or a sink but not both. For an analytic proof of
this fact, see Propositions 1.4.1 and 1.5.1 of [11].

Classifying roots xl as either attracting or repelling (the nearby real flow lines)
is rather simple:

(i) xl is attracting (i.e. is a sink) precisely when Re(p′ε(xl)) < 0.

(ii) xl is repelling (i.e. is a source) precisely when Re(p′ε(xl)) > 0.

(iii) xl is a center (neither attracting nor repelling) precisely when p′ε(xl) ∈ iR.

Note that p′ε(xl) 6= 0 by distinctness of the roots. The case of xl being a center
implies the existence of a homoclinic orbit (by Remark 2.2), as will be discussed
in further detail below. The above claims are easily verified by considering the
linearized equation near xl

(2.8) ẋ = pε(x) = p′ε(xl)(x− xl) +O
(
(x− xl)2

)
.

Integrating (2.8) implies that for some non-zero constant C we have

(2.9) x− xl ∼ C exp
(
p′ε(xl) t

)
as x→ xl.

Generic real flow lines are thus asymptotic to logarithmic spirals near each singular
point xl, with trajectories spiraling inwards when xl is a sink and outwards when
xl is a source. The direction of the spiraling is determined by the sign of Im(p′ε(xl),
with nearby trajectories becoming straight lines when p′ε(xl) ∈ R (one has a radial
node). In the case when p′ε(xl) ∈ iR the spiraling phase portrait near xl bifurcates
into periodic orbits, asymptotically similar to concentric circles centred about xl.

Homoclinic orbits will occur precisely when the parameter ε ∈ Σ0 lies on a certain
real codimension 1 set known as the bifurcation locus. On the bifurcation locus, the
roots x1, . . . , xk+1 can be partitioned into two non-empty sets I1 and I2 such that

(2.10)
∑
l∈I1

1

p′ε(xl)
∈ iR.

The case when |I1| = 1 corresponds to xl being a center. Notice also that one
always has

k+1∑
l=1

1

p′ε(xl)
= −Res x=∞

(
1

pε(x)

)
= 0.

The necessity of condition (2.10) can then be verified by integrating dx
pε(x) along any

homoclinic orbit and applying the residue theorem.5 Following from the work of
Douady and Sentenac [11], the bifurcation locus partitions Σ0 into a certain num-
ber of connected components called DS domains. (The closure of the bifurcation
locus partitions the entire parameter space Ck into the same number of connected
components.) Each DS domain Ss ⊂ Σ0 is simply connected, and the total number
of DS domains is given by the k-th Catalan number

(2.11) Ck =
1

k + 1

(
2k

k

)
.

5The condition is sufficient when k = 1 or k = 2 (there is a center and thus a homoclinic orbit)
but not when k ≥ 3. That is to say, for any k ≥ 3 there exist partitionings of the form (2.10)

when no homoclinic orbits appear.
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The nontrivial observation that Ss is simply connected is proven by Douady and
Sentenac [11] where they construct an explicit biholomorphism from Ss to Hk,
where H is the upper half-plane.

Remark 2.3. For k = 1 the bifurcation locus is precisely R>0. For k = 2 the
situation is already significantly more complicated. The bifurcation diagram for
k = 2 is described in detail in [12].

2.2. Generalized Sectors. The following construction is outlined in [10] and is
largely due to the work of Douady and Sentenac [11]. Further outlines of the
construction can be found in [14], [15], [16]. Throughout this discussion, it may be
helpful for readers to refer to Figure 2 below. Away from the bifurcation locus, let
Γε denote the collection of all 2k separatrices (including their endpoints). CP1\Γε
consists of k connected components or zones. Each zone is adherent to two roots
of pε(x) (one sink xω and one source xα) and each separatrix lies on the boundary
of one or two zones. All real trajectories within a given zone emerge from xα and
terminate at xω. By arbitrarily selecting any one such trajectory per zone, we form
a tree graph G whose k + 1 vertices are the roots of pε(x). The complement of
G ∪ Γε in CP1 consists of 2k connected components. That is, the tree graph along
with the collection of separatrices serves to divide x-space into 2k open sectors,
cyclically labelled clockwise around infinity, Ω+

1,ε, Ω−1,ε, . . . , Ω+
k,ε, Ω−k,ε, as pictured

in Figure 2. Topologically, each sector Ω±j,ε is a triangle whose three sides are formed

by: an incoming separatrix (real trajectory from xα to∞; mapped to from [−∞, t0]
in t-space), an outgoing separatrix (real trajectory from ∞ to xω; mapped to from
[t0,∞] in t-space), and a real trajectory from xα to xω (mapped to from a horizontal
line in t-space). Looking outwards from the origin, sectors of the form Ω+

j,ε have
their incoming separatrix on the right-hand side and their outgoing separatrix on
the left. (For sectors of the form Ω−j,ε this orientation is reversed.)

This construction generalizes the previous decomposition of CP1 into 2k congru-
ent sectors, which naturally arose when ε = 0 (see Figure 1). Indeed, the congruent
sectors (of Figure 1) are recovered (and the tree graph vanishes i.e. collapses to a
single point) in the limit that ε → 0 within any given DS domain Ss. Due to the
alternating incoming/outgoing nature of the separatrices around infinity, there is a
natural sectorial pairing that uniquely matches each Ω+

j,ε with some Ω−σ(j),ε (i.e. the

closure of any zone is equal to the closure of Ω+
j,ε ∪ Ω−σ(j),ε for some j ∈ {1, . . . , k}.)

Keeping in mind that zones are disjoint, the number of valid sectorial pairings can
be enumerated by taking 2k equally spaced points on a circle (representing the
‘ends’ of zones) and counting the number of ways to connect them pairwise using
k non-intersecting chords. This enumeration bijects to the set of valid parenthesis
expressions that consist of k pairs of parentheses. The number of possibilities is
given by the k-th Catalan number (2.11). Each DS domain Ss is hence uniquely
associated with some sectorial pairing. The sectorial pairing σ is a locally constant
function of the roots, i.e. locally constant on Σ0 away from the bifurcation locus,
and so we say that σ is a combinatorial invariant of pε(x).6

6A currently unresolved problem is noted by K. Pilgrim in [16], “A. Douady has asked whether

there exists an algorithm which, given σ, produces some explicit polynomial whose combinatorial
invariant is σ.” The topology of the bifurcation locus becomes sufficiently twisted such that finding

an explicit representative point from any given DS domain is not at all obvious.
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Figure 2. Real flow lines of the scalar equation (2.5) with ε ∈ Σ0

and k = 4 (centred at the origin in x-space). The 8 separatrices
are pictured as directed coloured arrows, while edges of the tree
graph G are pictured as dotted lines.

Passing through the bifurcation locus (from one DS domain into another), the
points of attachment of separatrices to the roots of pε(x) change, and a new sectorial
pairing emerges. This process can be observed in the following example.

Example 2.4. Here we consider the case when k = 3 and the four roots of pε(x)
are colinear. The line containing the roots necessarily passes through the origin,
and forms an angle θ with the real axis. One can show analytically that bifurcation
occurs if and only if θ = ±π

6 or π
2 . The angular regions (−π

2 ,−
π
6 ), (−

π
6 ,

π
6 ), and

(π6 ,
π
2 ) correspond to 3 distinct DS domains.

The particular case of colinear roots ±eiθ, ±2eiθ is pictured in Figure 3 for var-
ious values of θ ∈ [0, π

3 ]. The six separatrices are depicted as coloured arrows,
while generic real flow lines are shown in grey. At θ = 0 each root is a radial node
(Figure 3(a)). Increasing the angle, real trajectories begin to exhibit spiraling be-
haviour (Figures 3(b)(c)) until at θ = π

6 (on the bifurcation locus) three homoclinic
orbits appear (Figure 3(d)) and every root is a center. Following the bifurcation, a
new sectorial pairing emerges (see Figure 3(e)). Each root that was previously a sink
is now a source, and vice versa. Finally at θ = π

3 each root is again a radial node
(Figure 3(f)). The interested reader can visit youtube.com/watch?v=7xjrkKaHBZk
to see a video of this bifurcation occurring (and links to other examples).

https://youtu.be/7xjrkKaHBZk
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(a) θ = 0, each root is a radial node. (b) θ = π/8

(c) θ = 2π/13, approaching the bifur-
cation locus.

(d) θ = π/6, three homoclinic orbits
appear. Each root is a center.

(e) θ = π/5, the sectorial pairing has
changed.

(f) θ = π/3, each root is a radial node.

Figure 3. Passing through the bifurcation locus (see Example 2.4).
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As a final remark for this section, we note that bifurcation (the existence of ho-
moclinic orbits) does not necessarily imply the existence of centers. As an example,
consider the case when pε(x) = x4 + 1. There is a homoclinic orbit running along
the real axis, but none of the four roots of pε(x) are centers. Consequently, singular
points (roots of pε(x)) maintain their respective attracting/repelling behaviour as
one passes through the bifurcation locus. This type of bifurcation can only occur
for k ≥ 3. The interested reader can visit youtube.com/watch?v=GZ0jWqqBCVs
to see a video of this bifurcation occurring.

2.3. The Vector Equation. We now turn our attention to the vector equation
(2.3)

ẏ = A(ε, x) · y.
Without loss of generality, we may assume that

(2.12) A(ε, x) = Λ(ε, x) + pε(x)R(ε, x),

where

(2.13) Λ(ε, x) =

k∑
n=0

Λn(ε)xn,

the matrices Λ0(ε), . . . ,Λk(ε) are diagonal and analytic in ε at the origin, and
R(ε, x) is a matrix of holomorphic germs at the origin in Ck+1. This is achieved by
holomorphically gauging the deformed system (2.2) to its so-called prenormal form
as outlined in the following remark.

Remark 2.5. Recall that we have by assumption that A(0, 0) is diagonal with dis-
tinct eigenvalues λ1, . . . , λN whose real parts are ordered according to (1.8). Thus
within a sufficiently small neighbourhood of (ε, x) = (0, 0), the eigenvalues of A(ε, x)
remain distinct and there exists a change of basis matrix P (ε, x) depending holo-
morphically on (ε, x) that will diagonalize A(ε, x). The matrix function P (ε, x) can
be found with the help of the implicit function theorem, as described in [9]. We
may impose that P (0, 0) = I. Performing the locally analytic gauge transformation
y 7→ P (ε, x)−1y takes the deformed system (2.2) to

y′ =

(
D(ε, x)

pε(x)
+
∂P (ε, x)−1

∂x
P (ε, x)

)
· y,

where D(ε, x) is diagonal and holomorphic in ε and x at the origin. Dividing by
the degree k + 1 polynomial pε(x) yields

D(ε, x) = pε(x)Q(ε, x) + Λ(ε, x),

whereQ(ε, x) is holomorphic at the origin and the remainder term Λ(ε, x) is uniquely
determined and in the form of (2.13). Notice that Λ(0, 0) = diag(λ1, . . . , λN ). Re-
defining terms, the system is written in its prenormal form

(2.14) y′ =

(
Λ(ε, x)

pε(x)
+R(ε, x)

)
· y,

proving the assertion of (2.12). Note that the diagonalizing matrix function P (ε, x)
is defined up to the right action of any diagonal matrix K(ε, x) holomorphic and
invertible at the origin, while the polynomial term Λ(ε, x) remains invariant.

https://youtu.be/GZ0jWqqBCVs
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Before we look for solutions to the vector equation (2.3), let us see how the
prenormal form determines a complete set of formal invariants for the generically
unfolded system (2.2). In [9] it is shown (using an extension of the methods applied
in Appendix B) that there exists a formal gauge transformation y 7→ (I + g(ε, x))y,
that is, g(ε, x) is a formal power series in ε0, . . . , εk−1, x with zero constant term,
carrying the prenormal form (2.14) to

(2.15) y′ =
Λ(ε, x)

pε(x)
· y.

This diagonal system (2.15) is the formal normal form of the generic unfolding (2.2).
Moreover, the formal normal form is uniquely determined from the unfolding. This
generalizes the previous normal form (1.2) which is recovered in the limit ε → 0.
Indeed, our previous formal classification of system (1.1) is nothing but a special
case of the following theorem, fully proven in [9].

Theorem 2.6. Two systems (2.2) are formally gauge equivalent if and only if
they share the same Λ(ε, x) in prenormal form. Hence, the N(k + 1) entries of
Λ0(ε), . . . ,Λk(ε), each of which is holomorphic in ε at the origin, constitute a com-
plete set of formal invariants for the unfolded system (2.2).

Remark 2.7. If we additionally assume that ε ∈ Σ0, then (2.15) can be expanded
in terms of its residue matrices

(2.16) y′ =
k+1∑
l=1

Ul
(x− xl)

· y,

where

Ul =
Λ(ε, xl)

p′ε(xl)
, for l = 1, . . . , k + 1.

The system (2.16) has a fundamental solution

y =

k+1∏
l=1

(x− xl)Ul ,

where the monodromy matrix around each singular point xl is given by e2πiUl .
We have already seen that near any singular point xl (for fixed ε ∈ Σ0), the local
formal and analytic data of (2.14) is given by the diagonal matrix Ul, assuming
there are no resonances. That is, assuming the eigenvalues of Ul are distinct mod-
ulo N. In other words, one can use the Frobenius method to find a convergent
series yl = (I +O(x− xl)) (x− xl)Ul that solves (2.14) holomorphically in a slit
neighbourhood of xl. Glutsuk has shown in [7] that certain7 Stokes matrices of the
unperturbed system (1.1) are recovered as the limit (ε→ 0) of transition operators

between the various {yl}k+1
l=1 . Importantly, care is taken to avoid values of ε which

lead to any resonances. In the case of resonances, the fundamental solution yl is no
longer valid (not even formally) and must be modified so that Ul contains additional
off-diagonal entries, leading to extra logarithmic terms in the solution [1], [2].

The present approach to finding a basis of solutions to (2.3) (and hence (2.2))
deals with this difficulty of resonant values in parameter space, by appealing to the

7With only k+ 1 independent transition operators among the fundamental solutions {yl}k+1
l=1 ,

only k + 1 Stokes matrices (or Stokes matrix products) are recovered [7]. This in fact turns out
to be equivalent to recovering all the Stokes data of (1.1).
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following theorem of Levinson (see [1], pg. 92). This is the approach utilized in [9]
where it is a key step in determining the analytic modulus of the generic unfolding.

2.4. Solving the Vector Equation.

Theorem 2.8. As stated in [9], [10]. Let a system of linear differential equations
of the form

(2.17) ẏ =
(

Λ̃0(ε) + Λ̃(ε, t) + P (ε, t)
)
y

be given on the real line, for which Λ̃0 is diagonal, with distinct real parts of the

eigenvalues, Λ̃(ε, t) is also diagonal, with limit zero at t =∞ and

(2.18)

∫ ∞
0

∣∣∣∣ ddt(Λ̃(ε, t)
)∣∣∣∣ dt <∞, ∫ ∞

0

|P (ε, t)| dt <∞.

Then, setting λi(ε, t), i = 1, . . . , N , to be the successive eigenvalues of Λ̃0(ε)+Λ̃(ε, t),
there exist t0 ∈ (0,∞) and solutions φi,ε(t) of the system for t ∈ (t0,∞) with

(2.19) lim
t→∞

φi,ε(t) · exp

(
−
∫ t

t0

λi(τ)dτ

)
= vi(ε),

for vi(ε) a non-zero eigenvector of Λ̃0(ε) corresponding to λi(ε,∞), proportional to
the standard basis vector ei.

Let xω be a sink of pε(x), with ε ∈ Σ0 fixed away from the bifurcation locus. We
can apply the above theorem by setting

Λ̃0(ε) = Λ(ε, xω), Λ̃(ε, t) = Λ(ε, x(t))− Λ(ε, xω), P (ε, t) = pε(x)R(ε, x(t)),

and solving (2.17) along a separatrix (or any real trajectory) which terminates at
xω (t =∞). Indeed, for sufficiently small ε the eigenvalues of

Λ(ε, xω) = Λ0(ε) + . . .+ Λk(ε)(xω)k

maintain the ordering on their real parts,

(2.20) <(λ1(ε,∞)) > . . . > <(λN (ε,∞)).

Integrating along the separatrix, the convergence of both integrals (2.18) follows
from the fact that trajectories are logarithmic spirals (2.9) whose tail length∫ xω

x0

|dx| = |Cp′ε(xω)|
∫ ∞
t0

∣∣exp
(
p′ε(xω) t

)∣∣ dt
is finite precisely when Re(p′ε(xω)) 6= 0. This is the case since xω is not a center.

Along (t0,∞) we obtain solutions {φi,ε(t)}Ni=1 to the vector equation (2.3), thus
providing solutions φi,ε|t(x) to (2.2) along the chosen separatrix in x-space. The
matrix Φε(t) with columns φ1,ε(t), . . . , φN,ε(t) is a fundamental solution, and the
columns are ordered in the sense that φi,ε(t) is exponentially dominant over φi+1,ε(t)
as t→∞.8 Of course, multiplying time by −1, the theorem also yields asymptotic
solutions ϑi.ε(t) along any separatrix reaching a source xα (as t → −∞). The
asymptotic ordering is then reversed, with ϑi+1,ε(t) exponentially dominant over

8For any 1 ≤ j ≤ N , the componentwise ratio
Φε(t)j,i+1

Φε(t)i,i
= O(|t|−m) for each m ∈ N.
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ϑi,ε(t) (as t→ −∞). Let Θε(t) denote the matrix with columns ϑ1,ε(t), . . . , ϑN,ε(t).
We may then define two complete flags of subspaces within the space of solutions:

(2.21)
Wi(xω) =< φN−i+1, . . . , φN >,

Wi(xα) =< ϑ1, . . . , ϑi > .

It is clear that

W1(xω) ⊂W2(xω) ⊂ . . . ⊂WN (xω),

and

W1(xα) ⊂W2(xα) ⊂ . . . ⊂WN (xα),

where the nesting order corresponds to the increasing asymptotic growth rates of
solutions.

Recall that each generalized sector Ω±j,ε has two bounding separatrices: one in-

coming and one outgoing (see Figure 2). Along each bounding separatrix, we have
a complete flag of solutions (either Wi(xω) or Wi(xα)). Both flags extend analyti-
cally into the entire generalized sector (at least within some disk Dρ = {|x| < ρ},
containing the roots of pε(x), where A(ε, x) remains analytic). Furthermore, the
flags are transverse for sufficiently small ε (see Remark 2.9). In particular, one has
that the i-th intersection

(2.22) WN−i+1(xω) ∩Wi(xα)

is of dimension one.

Remark 2.9. The solutions φi,ε of Theorem 2.8 are analytic in ε within any DS
domain Ss, and continuous up to the boundary ∂Ss away from the bifurcation locus;
in particular, solutions have a continuous limit at ε = 0. This follows directly from
Levinson’s proof of the theorem, as explained in [9]. Continuity in ε ensures that
the flag structure is preserved locally. Hence, to see that the flags are transverse
in a neighbourhood of ε = 0 (within any DS domain), it suffices to show that they
are transverse at ε = 0. This will follow from our construction in Section 1.2 of
the canonical solutions ψn on Stokes sectors Ωn for n = 1, . . . , 2k. It will suffice
to provide the argument for Ω+

1,0 (which is contained in Ω2 by our convention that

Ω1 ∩ Ω2 ⊃ R+). At ε = 0, the expression (2.19) reduces to

lim
x→0

Φ0(x) · e−Λ(x) = D,

where Λ(x) is defined as in (1.3), the matrix D is diagonal and invertible, and the
limit is taken along the ray {arg x = πi/k}. Similarly, for t→ −∞ one obtains

lim
x→0

Θ0(x) · e−Λ(x) = D′,

where the limit is taken along R+. An analogous argument to the one given at
(1.18) demonstrates that Φ0 and the canonical solution ψ2 are related by a lower
triangular matrix, while Θ0 and ψ2 are related by an upper triangular matrix.

Φ0(x) = ψ2(x) · CL Θ0(x) = ψ2(x) · CU

Hence, at ε = 0 the flags (2.21) are transverse — they are simply the standard and
opposite flags in terms of columns of ψ2. (In particular, the i-th column of ψ2 is a
basis for the i-th intersection (2.22).)
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Let vi be a non-zero element of (2.22), then the matrix V ±j,ε,Ss with columns

v1, . . . , vN is a fundamental solution to (2.2) on the generalized sectorial region
Ω±j,ε ∩Dρ, and uniquely defined up to the right action of diagonal invertible ma-

trices. The 2k fundamental solutions V +
1,ε,Ss

, V −1,ε,Ss , . . . , V
+
k,ε,Ss

, V −k,ε,Ss depend an-
alytically on ε within the relevant DS domain Ss. Since these solutions extend
analytically beyond their domain’s boundary, i.e. can be made to overlap on sepa-
ratrices as well as on edges of the tree graph,9 one has constant transition matrices
linking solutions as follows (indices are defined modulo k).

V +
j,ε,Ss

= V −j−1,ε,Ss
· CUj,ε,Ss

V −j,ε,Ss = V +
j,ε,Ss

· CLj,ε,Ss
The matrices CUj,ε,Ss ∈ GLN (C) (respectively CLj,ε,Ss), j = 1, . . . , k, compare so-

lutions along separatrices attached to repelling (respectively attracting) singular
points, and are upper triangular (respectively lower triangular) as can be shown
using (2.19), (2.20) and (2.22). These matrices are called the generalized Stokes
matrices [10]. There are 2k of them associated with each DS domain, in which they
will depend analytically on ε and have a continuous invertible limit at ε = 0 (see
Remark 2.9).

The transition matrices relating solutions along edges of the tree graph G are
called gate matrices and defined as follows:

V −σ(j),ε,Ss
= V +

j,ε,Ss
· CGj,σ(j),ε,

where the permutation σ is the sectorial pairing described previously. Since any
edge of G has its endpoints located at one sink and one source, the matrices
CGj,σ(j),ε, j = 1, . . . , k, are both upper and lower triangular, i.e. they are diag-

onal.10

2.5. Normalization. Unlike the Stokes matrices of Chapter 1, the diagonal entries
of the generalized Stokes matrices remain undetermined, and one is required to
provide an appropriate normalization. One could ask that each generalized Stokes
matrix be equal to I along the diagonal, in hopes of recovering the Stokes data of
the unperturbed system (1.1) as ε → 0. This motivates the following choice for
a normalization, as in [9, 10]. Recall that each solution V ±j,ε,Ss is defined up to a

9For simplicity, consider Ω+
1,ε which is mapped to biholomorphically from a strip {c0 < Im(t) <

c1} in t-space via (2.6). Without loss of generality, the lower boundary coincides with the real

axis (c0 = 0), and t = 0 maps to ∞ in x-space. Consider the expanded strip {−δ < Im(t) <
c1 + δ} \ {iR≤0}, i.e. avoiding the negative imaginary axis, and observe that the biholomorphism

extends to this new simply connected region (with horizontal paths mapping to real trajectories).

The fundamental solution V +
1,ε,Ss

will extend to this expanded domain accordingly (within Dρ).

10As noted in [10], within any zone, namely biholomorphic to a horizontal strip in t-space,

the flags maintain their asymptotics i.e. are “independent of the real flow line chosen.” Relating
Φε(t) along R to its analytic continuation along the parallel line Im(t) = β, one can conclude

from (2.17) that Φε(t+ iβ)Φ−1
ε (t)→ exp

(
iβΛ(ε, xω)

)
as t → ∞. Thus, (2.19) continues to hold

as Re(t)→∞ along lines in t-space parallel to and neighbouring the real axis: the limit remains

finite, non-zero and proportional to vi(ε). (Similarly, for xα as t → −∞.) The gate matrices are

then seen to be diagonal, as they compare solutions on an overlap region in x-space containing
real trajectories adherent to both xω and xα, where solutions must respect the asymptotics of

both flags Wi(xω) and Wi(xα).
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diagonal scaling

(2.23) V ±j,ε,Ss 7→ V ±j,ε,Ss ·Dε,Ss .

One asks that Dε,Ss be analytic in ε within Ss and have a continuous invertible limit
at ε = 0. Fix any such scaling for the columns of V +

1,ε,Ss
. Each remaining V ±j,ε,Ss is

then uniquely determined by imposing that the diagonal part of every generalized
Stokes matrix be equal to the identity, with the exception of CU1,ε,Ss whose diagonal

part is to be determined by monodromy conditions, and must equal e−2πiΛk(ε), as
explained below. Rather than considering solutions over a ramified domain (as with
the canonical solutions of Chapter 1), here we are specifying a determination of the
logarithm by taking branch cuts along the entire tree graph G as well as along the
single separatrix bordering Ω+

1,ε and Ω−k,ε. In particular, one has that

V −k,ε,Ss(xe
2πi) · CU1,ε,Ss = V +

1,ε,Ss
(x),

relating the two solutions over the branch cut which lies along the separatrix. The
monodromy around all k + 1 singular points is immediately seen to be

(2.24) M = (CLk,ε,Ss)
−1 · (CUk,ε,Ss)

−1 · . . . · (CL1,ε,Ss)
−1 · (CU1,ε,Ss)

−1.

Around a single singular point xl (adherent to a given generalized sector Ω±j,ε), the

monodromy of V ±j,ε,Ss is equal to the product of various CUj,ε,Ss and CGj,σ(j),ε matrices

or their inverses when xl is a source, and is equal to the product of various CLj,ε,Ss
and CGj,σ(j),ε matrices or their inverses when xl is a sink. (Refer to Figure 2.) Hence

the diagonal part of the monodromy is equal to the product of the gate matrices
surrounding xl when it is a sink (respectively the inverse gate matrices when xl
is a source). On the other hand, the standard theory of Fuchsian singularities
reveals that the diagonal part of the monodromy is equal to the formal monodromy
around xl, namely e2πiUl (defined in Remark 2.7). This result holds true regardless
of whether or not the Fuchsian singular point is resonant, as proved in Appendix C.
It follows by inductively moving through the tree graph that

diag(CU1,ε,Ss) =
k+1∏
n=1

e−2πiUn ,

which by the residue theorem is equal to

exp

(
2πi Res x=∞

(
Λ(ε, x)

pε(x)

))
= exp

(
− 2πiΛk(ε)

)
,

as claimed above. Lastly, we note that any change in scale (2.23) of the columns of
V +

1,ε,Ss
(for any fixed DS domain) results in a global conjugation of the normalized

generalized Stokes matrices

CL,Uj,ε,Ss
7→ D−1

ε,Ss
· CL,Uj,ε,Ss

·Dε,Ss .

The gate matrices remain unaffected.
With the above convention for normalization in place, it follows by Remark

2.9 that the Stokes data S1, . . . , S2k of the unperturbed system (1.1) — modulo
a simultaneous diagonal conjugacy as in (1.24) — is recovered as the limit of the
(normalized) generalized Stokes matrices when ε→ 0 within any DS domain. Fur-
thermore, we have the following theorem establishing a complete set of analytic
invariants for the generically unfolded system.
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Theorem 2.10. [9] Two generic unfoldings (2.2), i.e. of the system (1.1) with a
non-resonant irregular singularity, are analytically gauge equivalent if and only if
they share the same Λ(ε, x) in prenormal form (i.e. have the same formal data)
and satisfy the following condition:

For each DS domain Ss, s = 1, . . . , Ck, there exists a diagonal invertible matrix
Ks(ε), depending analytically on ε ∈ Ss, with a continuous invertible limit at ε = 0,

such that the two collections {CL,Uj,ε,Ss
} and {CL,Uj,ε,Ss

} of normalized generalized Stokes

matrices (corresponding to the two unfoldings) satisfies

(2.25) Ks(ε)C
L,U
j,ε,Ss

= C
L,U
j,ε,Ss

Ks(ε).

In particular, a generic unfolding is analytically gauge equivalent to its formal nor-
mal form (2.15) if and only if all the generalized Stokes matrices are diagonal.
(Notice the analogy to Theorem 1.8 and its Corollary 1.9.)

The necessary direction of the proof follows directly from Theorem 2.6 plus our
above construction of the normalized generalized Stokes matrices. Proof of suffi-
ciency is much more involved, and this is the main result of [9]. We briefly comment
on the general strategy. One is required to construct an analytic equivalence be-
tween the two unfoldings. This can be done on each DS domain Ss, but then must
be extended to ‘fill in’ the surrounding bifurcation locus, as well as along the dis-
criminantal locus ∆(ε) = 0. The idea is to allow DS domains to become ramified
and intersect one another, by considering the complex flow of (2.4) to be foliated
along lines which are slanted, i.e. no longer restricted to be parallel to R. The
analytic equivalence is further extended to a generic subset of ∆(ε) = 0 (where
precisely two singular points coincide) by the results of [8]. Lastly, the remaining
points in ∆(ε) = 0 are filled in using Hartogs’ theorem. Hence, one obtains an an-
alytic equivalence between the two unfoldings on an entire neighbourhood of ε = 0
in the parameter space, and within some disk Dρ in x-space.

We conclude this section with a final note on the moduli space. An analytic
modulus for the family of generic unfoldings (2.2) is provided by Theorem 2.10, but
the natural question remains as to which points in the moduli space can be real-

ized. That is, given a collection {CL,Uj,ε,Ss
} (of normalized alternating–lower/upper

triangular matrices, analytic in ε ∈ Ss, with continuous invertible limits at ε = 0,
and continuous limits up to the boundary ∂Ss away from the bifurcation locus),
does this collection correspond to the set of normalized generalized Stokes matrices
of some unfolding (2.2)? The answer11 is in the affirmative, as shown by the results

of [10], provided that the collection {CL,Uj,ε,Ss
} satisfy certain conditions on the mon-

odromy representations which they define (via taking products of CUj,ε,Ss , C
L
j,ε,Ss

,

CGj,σ(j),ε as described at (2.24)). Essentially the monodromy representations over

intersecting DS domains must be the same, that is, conjugate to one another, and
this conjugacy must become trivial as singular points coalesce ε → 0 (see [10] for
details).

3. The Stokes Groupoids

Recall from Chapter 1 that the locally meromorphic system (1.1) is taken to an
integrable, diagonal form by a formal gauge transformation y 7→ g(x)y. Although
the gauge series is generically divergent for positive Poincaré rank (k > 0), it does

11This can be viewed as the ‘unfolded version’ of Birkhoff’s classical result of Theorem 1.10.
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provide a complete asymptotic expansion of actual fundamental solutions to (1.1),
valid on sectors surrounding and adherent to the origin. It is well-known that
certain techniques do exist by which the purely formal solution can be transformed
to an actual one, by resumming the series (e.g. Borel resummation). Here in this
chapter, we shall explore a more recent technique, developed in [17] (2013), by which
the divergent gauge series g(x) is rather simply and directly manipulated to yield
actual solutions to a given system (1.1). The main technique from [17] involves
redefining the problem of solving (1.1), and viewing solutions as lying within a
higher-dimensional universal domain that is endowed with a particular analytical
groupoid structure.

Many of the particular groupoid domains of interest are defined and explicitly
constructed in [17]. These groupoids serve as the universal domains of definition
for systems, such as (1.1), with singularities bounded by an effective divisor on a
curve. In particular, the groupoids have representations which serve as universal
solutions to the system, in that they provide parallel transport isomorphisms to
solve the system along arbitrary paths in the punctured curve. Furthermore, the
representations remain smooth over points where the system becomes singular, and
they can be constructed from strictly formal solutions. Adding to the collection of
groupoids studied in [17], here we define the groupoid that is relevant for analyz-
ing the generically unfolded system of Chapter 2. Lastly, we briefly comment on
possible connections between this new perspective and analytic invariants of the
unfolding, as well as its monodromy representation.

We begin by reformulating the original problem using a more modern terminol-
ogy, both for simplicity and to be consistent with [17]. Let X be a Riemann surface,
and D an effective divisor on X. Then let E be a vector bundle over X of rank N .
A connection ∇ on the bundle E is a C-linear map between sections

∇ : E → E ⊗ Ω1
X

such that the Leibniz rule is satisfied. Notice that the connection is necessarily flat
since X is a Riemann surface (one can locally solve ODEs uniquely). We will be
interested in the case when ∇ is meromorphic with poles bounded by D, i.e. we
replace Ω1

X above with Ω1
X(D).12

Setting X = C and D = (k + 1) · 0, the problem of finding fundamental solu-
tions to (1.1) is equivalent to finding a basis of E that is flat with respect to the
meromorphic connection defined by

(3.1) ∇ := d− A(x)

xk+1
dx.

Any trivialization of E will generically be singular along D, and multivalued on the
punctured space X \D. The Leibniz rule is indeed satisfied, since for any section
s ∈ E and any f ∈ OX one has that ∇(fs) = f(∇s) + s ⊗ df by the product rule
for the exterior derivative. Conversely, by selecting a local smooth frame for E , it
can be shown that any meromorphic connection on E has the local form of (3.1).

3.1. Lie Groupoid Representations.

Definition 3.1. A (holomorphic) Lie groupoid (on X) is a groupoid whose set
of objects X and set of arrows G are complex manifolds. The source and target

12That is to say, E is a vector bundle over X whose generic smooth sections are allowed to
become singular along D.
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maps s, t : G→ X are holomorphic submersions, and the composition of arrows is
smooth.

A simple example of a Lie groupoid on X is the pair groupoid Pair(X) whose
set of arrows is Pair(X) = X × X. The source and target maps are given by the
canonical projections, and the set of identity arrows is the diagonal embedding.
The composition of arrows is defined by

(x, y) · (y, z) = (x, z).

Definition 3.2. A Lie groupoid G is source-simply connected if each fiber of the
source map s : G→ X is connected and simply connected.

The canonical example of a source-simply connected Lie groupoid is the fun-
damental groupoid Π1(X) which is defined to be the set of all paths in X up to
homotopy and with fixed endpoints; it is the covering space of X×X corresponding
to the diagonal subgroup of π1(X) in π1(X×X). Source-simply connectedness fol-

lows from the fact that any source fiber s−1({x}) of Π1(X) is isomorphic to {x}×X̃
with the target map given by

t : (x, y) 7→ π(y),

where π : X̃ → X is the universal covering map. For example, the fundamental
groupoid of the circle is the infinite cylinder, corresponding to the diagonal copy of
Z in π1(S1 × S1) = Z× Z, and the source (or target) fibers are embedded lines.

Π1(S1) ∼= S1 × R

Definition 3.3. Let G be a Lie groupoid on X, and let E be a vector bundle over
X. A representation of G is a smooth homomorphism Ψ : G→ Hom(s∗E , t∗E) that
respects the composition of groupoid arrows.13 That is, for any groupoid element
g ∈ G, the map

(3.2) Ψ|g : s∗E → t∗E
is an isomorphism between source and target fibers of E , and for any pair of com-
posable arrows g1, g2 ∈ G, one has

Ψ|g1 ◦Ψ|g2 = Ψ|g1◦g2 .

The representation Ψ can be viewed as a parallel transport between fibers of E ,
with zero curvature, i.e. the transport along a path γ : I → X depends only on the
homotopy class of γ. Hence, as long as the underlying groupoid is connected, i.e.
any two points in X are connected by a groupoid arrow, then Ψ is automatically
also a representation of the fundamental groupoid Π1(X). This is equivalent to
one direction of the Riemann-Hilbert correspondence; that flat connections on X
correspond to representations of Π1(X).

For the remainder of this chapter, we fix the notation that (E ,∇) → (X,D)
denotes a vector bundle E over a Riemann surface X, along with a meromorphic
connection ∇ whose poles are bounded by the divisor D. Unlike the usual parallel
transport defined by integrating ∇, which generically becomes singular over D,
there exist certain representations Ψ which will extend smoothly over points of
D, provided that we choose the appropriate groupoid G. The explicit construction

13In the case thatX is a single point, this definition naturally reduces to that of a representation
of a Lie group.
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of such groupoids, for various cases of punctured surface (X,D) is given in [17].
In the case that D is a single point on C (connections of the form (3.1)), the
appropriate groupoids will be described explicitly in the following section.

Proposition 3.4. Let ψ be a flat basis of (E ,∇) → (X,D). That is, ∇ψ = 0 on
the universal cover of X \D. Then the expression

(3.3) Ψ := t∗ψ · (s∗ψ)−1

gives a representation of the fundamental groupoid Π1(X \D).

Generically, the expression (3.3) is multivalued on X \D, and singular at points
of D, and thus does not define a representation of any groupoid on X. The following
theorem assures that, for certain groupoids, it does.

Theorem 3.5. [17] Let (X,D) be a Riemann surface equipped with effective divisor.
Then there exists a source-simply connected Lie groupoid G on X such that:

(i) G|X\D ∼= Π1(X \D),

(ii) For any flat basis ψ of (E ,∇) → (X,D), the expression Ψ = t∗ψ · (s∗ψ)−1

is a representation of G.

By definition, then Ψ is single-valued, smooth and invertible on G. We say that
(E ,∇)→ (X,D) integrates to a representation of G.

The groupoid G from the above theorem is described heuristically in [17] as
consisting of all homotopy classes of paths in X \ D, together with a space of
limiting paths (i.e. a Lie group of loops) over each point of D.14 More specifically,
each point of D constitutes an individual groupoid orbit (see Lemma 3.12 of [17]),
as must be the case in order for (3.3) to be non-singular.

The remarkable point of Theorem 3.5 is that Ψ = t∗ψ ·(s∗ψ)−1 extends holomor-
phically over D, when written on the appropriate groupoid. Even more remarkable
is that the representation Ψ can be computed using a strictly formal flat basis ψ;
it need not be an actual (analytic) solution. This will be discussed further below
and applied in Example 3.14.

3.2. The Stokes Groupoids. Here we shall construct the groupoids predicted by
Theorem 3.5, in the case when D is a single point on X = C, bounding a pole of
degree k at the origin (i.e. D = k · 0). These constructions are due to [17].

Definition 3.6. Sto1 is the Lie groupoid on C whose set of arrows is given in terms
of coordinates {(x, u) ∈ C× C}, with source and target maps defined by

s : (x, u) 7→ x

t : (x, u) 7→ exp(u)x.

The composition of arrows is given by

(x2, u2) · (x1, u1) = (x1, u1 + u2).

Note that arrows are compatible precisely when s(x2, u2) = t(x1, u1).

14This is hinting that a blowup procedure may be useful for parameterizing G. Indeed this is
one of the strategies adopted in [17].
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It is straightforward to verify that Sto1 is indeed a Lie groupoid on C. Note
that Sto1 is source-simply connected, with each source fiber being isomorphic to C.
There are two distinct groupoid orbits: the point at the origin, and its complement
in C. Also note that the restriction of Sto1 to C× gives a parameterization of the
fundamental groupoid Π1(C×).

One can obtain another Lie groupoid on C by performing a blowup of Sto1 along
its singleton orbit.15 The new groupoid Sto2 will have coordinates {(x′, u′) ∈ C× C}
such that x′ = x and u = x′u′ (in relation to the coordinates of Sto1). The source
and target maps are then given by

s : (x′, u′) 7→ x′

t : (x′, u′) 7→ exp(x′u′)x′.

Note that Sto2 is source-simply connected, has the same orbits as Sto1, and its
restriction to C× is again isomorphic to Π1(C×).

By iteratively performing this blowup procedure, we obtain the following family
of Stokes groupoids :

Definition 3.7. For k ∈ N, Stok is the Lie groupoid on C whose set of arrows is
given in terms of coordinates {(x, u) ∈ C× C}, with source and target maps defined
by

s : (x, u) 7→ x

t : (x, u) 7→ exp(uxk−1)x.

The composition of arrows is given by

(x2, u2) · (x1, u1) = (x1, u2 exp((k − 1)u1x
k−1
1 ) + u1).16

Each groupoid Stok is source-simply connected, and has the same orbits as Sto1,
and for each k ∈ N one has that Stok|C× ∼= Π1(C×). Indeed the results of [17] (see
Proposition 5.1, and Theorem 4.1) assert that (E ,∇) → (C, k · 0) integrates to a
representation of Stok.

Hence, given any flat basis ψ of (E ,∇)→ (C, k · 0) (even a strictly formal one!)
the expression Ψ = t∗ψ · (s∗ψ)−1 is a representation of Stok. Note that Ψ is inde-
pendent of our choice of basis ψ. The representation Ψ is then holomorphic at each
point (x, u) ∈ C× C of Stok, and invertible everywhere. Although ψ is generically
a multivalued function, the single-valuedness of Ψ is ensured by imposing that
Ψ = I along the identity bisection; Ψ|u=0 = I.

Example 3.8. For fixed a ∈ C and fixed k ∈ N, consider the rank 1 bundle
(E ,∇)→ (C, k · 0) with connection

∇ = d+ ax−kdx.

Choosing a flat basis amounts to fixing any non-zero multiple of

ψ1 = x−a, for k = 1,

ψk = exp

(
ax−(k−1)

k − 1

)
, for k > 1.

15This idea is generalized in Theorem 3.14 of [17].
16This follows from the necessary condition for composing arrows that s(x2, u2) = t(x1, u1).



38 RYAN BOYCE

The corresponding representations of Stok are then computed to be

(3.4)
Ψ1 := t∗ψ1 · (s∗ψ1)−1 = e−au, for k = 1,

Ψk := t∗ψk · (s∗ψk)−1 = e−aSk , for k > 1,

where the function Sk is given by

Sk(x, u) =
1− e−(k−1)uxk−1

(k − 1)xk−1
.

Notice that the singularity of Sk at x = 0 is removable. Hence, for each k ∈ N,
the corresponding representation Ψk is indeed holomorphic, single-valued, and in-
vertible (non-zero) on Stok, i.e. at each point (x, u) ∈ C× C.

Remark 3.9. We emphasize that the smoothness of t∗ψ · (s∗ψ)−1 over D is not
guaranteed, and one must compute over the appropriate groupoid. Consider the
connection ∇ = d + x−2dx whose kernel is spanned by ψ = e1/x. Over Sto1,
the expression

t∗ψ · (s∗ψ)−1 = exp

(
e−u − 1

x

)
is singular at x = 0 (and thus is not a representation of Sto1). On the other hand,
t∗ψ · (s∗ψ)−1 gives a representation of Stok′ for each integer k′ ≥ 2. This is a
consequence of the fact that Sto1 is naturally covered by Stok′ :

Proposition 3.10. If (E ,∇)→ (C, D) integrates to a representation of Stok, then
it also integrates to a representation of Stok+1. This follows from the fact that
there is a canonical smooth groupoid homomorphism Stok+1 → Stok given by
(x, u) 7→ (x, ux).

3.3. The Twisted Pair Groupoids. As an alternative to the Stokes groupoids,
we present another family of groupoids having the property that (E ,∇)→ (C, k ·0)
integrates to representations of them. The following definition is taken from [17].

Definition 3.11. For k ∈ N, the twisted pair groupoid Pair(C, k · 0) is the Lie
groupoid on C whose set of arrows is the complement of the curve 1 + uxk−1 = 0
in C× C, with source and target maps defined by

s : (x, u) 7→ x

t : (x, u) 7→ (1 + uxk−1)x.

The composition of arrows is given by

(x2, u2) · (x1, u1) =
(
x1, u1 + u2(1 + u1x

k−1
1 )k

)
.

Example 3.12. The first twisted pair groupoid Pair(C, 1 · 0) is simply the action
groupoid C× nC (objects are acted on by the torus).

The relationship between Pair(C, k · 0) and Stok is as follows. While both
groupoids have the same orbits, namely the point at the origin and its comple-
ment in C, the twisted pair groupoid fails to be source-simply connected, and
generic source fibers are isomorphic to C×. The twisted pair groupoid is canon-
ically covered by the Stokes groupoid, via the smooth groupoid homomorphism
E : Stok → Pair(C, k · 0) defined by

(3.5) E(x, u) =

(
x,
eux

k−1 − 1

xk−1

)
.
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Notice that E is smooth over x = 0 since the singularity of (3.5) is removable. Thus
if (E ,∇) → (C, k · 0) integrates to a representation ΨPair of Pair(C, k · 0), then it
also integrates to a representation of Stok — the representation of Stok is simply
the pullback

ΨStok := E∗ΨPair.

Since E is not invertible, the converse statement is false in general. However, (3.5)
is of course locally invertible, with a smooth multivalued inverse given by

(3.6) (x, u) 7→
(
x,

log(1 + uxk−1)

xk−1

)
,

branching around the locus {1 + uxk−1 = 0} on the boundary of Pair(C, k · 0).
Thus, given a representation ΨStok of Stok, one can pull back via (3.6) to ob-
tain a (possibly) multivalued expression ΨPair which integrates (E ,∇) → (C, k · 0)
locally.

In particular, while (E ,∇) → (C, k · 0) may fail to integrate to a representa-
tion of Pair(C, k · 0) (due to t∗ψ · (s∗ψ)−1 possessing some non-trivial monodromy
around the locus 1 + uxk−1 = 0), it does integrate to a local representation of
Pair(C, k · 0) in the following sense: at any point (x, u) ∈ Pair(C, k · 0), the expres-
sion ΨPair = t∗ψ · (s∗ψ)−1 is holomorphic and invertible, and thus extends smoothly
to a neighbourhood of (x, u) on which it is single-valued and invertible.

Indeed, this result is expected since Stok ∼ Pair(C, k · 0) for |u| � 1. The two
groupoids are locally isomorphic to one another along their identity bisections.

Example 3.13. For the rank 1 bundle defined in Example 3.8, the corresponding
representations of Pair(C, k · 0) are

(3.7)
Ψ1 := t∗ψ1 · (s∗ψ1)−1 = (1 + u)−a, for k = 1,

Ψk := t∗ψk · (s∗ψk)−1 = e−aTk , for k > 1,

where the function Tk is given by

Tk(x, u) =
1− (1 + uxk−1)−(k−1)

(k − 1)xk−1
,

and is holomorphic on Pair(C, k · 0). The expression Ψ1 is really a representation
of Pair(C, 1 · 0) only when a ∈ Z (when the monodromy is trivial). Otherwise, Ψ1

is a local representation of Pair(C, 1 · 0). For each k > 1, however, Ψk is a true
representation of Pair(C, k · 0).

3.4. Resummation. Consider two bundles (E1,∇1) and (E2,∇2)→ (C, k ·0), with
respectively flat bases ψ1 and ψ2. In the language of Chapter 1, these are two locally
defined singular systems of Poincaré rank k − 1, having respective fundamental
solution matrices ψ1 and ψ2. We have already seen that the expressions

Ψ1 := t∗ψ1 · (s∗ψ1)−1, Ψ2 := t∗ψ2 · (s∗ψ2)−1

are representations of Stok (smooth, invertible and single-valued on the groupoid),
and are independent of the choices of bases. As mentioned previously, the flat
bases ψj need not be convergent solutions; if ψj is a strictly formal solution, i.e.
∇jψj = 0, then one obtains the same representation Ψj (see Theorem 5.3 of [17]).
The implication for resummation is immediate. Assume that the two systems are
related by a formal gauge transformation ψ1 7→ g(x)ψ1 (as in Chapter 1). That is,
∇1ψ1 = 0 and ∇2(gψ1) = 0, where the latter equality holds formally and g is an
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invertible formal power series centered at the origin. Then the above representation
Ψ2 can alternatively be computed using the formal solution as follows

(3.8)

Ψ2 = t∗(gψ1) · (s∗(gψ1))−1

= t∗g · t∗ψ1 · (s∗ψ1)−1 · (s∗g)−1

= t∗g ·Ψ1 · (s∗g)−1.

The content of Theorem 5.3 ([17]) is that one may compute Ψ2 using an actual flat
basis ψ2, or the purely formal flat basis gψ1; the resulting representation will be the
same. Hence (3.8) is holomorphic, invertible and single-valued on Stok despite the
divergent nature of g. If for example ∇1 is a diagonal connection, then Ψ1 is easily
computable, and then so is Ψ2 via (3.8). With the representation Ψ2 in hand, one
can reconstruct an (actual) flat basis ψ2 of (E2,∇2) → (C, k · 0) from the parallel
transport isomorphisms (3.2). Namely, from the condition that for any x0 ∈ C×,
one has

(3.9) Ψ2(x0, u) · ψ2(x0) = ψ2(t(x0, u))

over the groupoid Stok.

Example 3.14. Consider the pair of meromorphic rank 2 connections

∇1 = d+
1

x2

[
−1 0
0 0

]
dx, ∇2 = d+

1

x2

[
−1 −x
0 0

]
dx.

A flat basis trivializing the diagonal connection ∇1 is readily seen to be given by

ψ1 =

[
e−1/x 0

0 1

]
.

As we saw in Example 1.11, a flat basis trivializing ∇2 is given in terms of the
exponential integral (see Appendix A). Here we recover this basis of solutions,
using the resummation method outlined above.

From Example 1.11, a formal gauge transformation carrying the diagonal system
∇1ψ = 0 to the non-diagonal system ∇2ψ = 0 is provided by

ψ 7→
[
1 f(x)
0 1

]
ψ,

where f(x) = −
∑∞
n=0 n!xn+1. Hence, a formal flat basis trivializing ∇2 is given

by [
1 f
0 1

]
ψ1

(see (1.31) and (1.33)). The corresponding groupoid representations Ψ1,Ψ2 are
defined on Sto2, but for ease of computation it is preferable to compute over the
twisted pair groupoid Pair(C, 2 · 0). This choice is justified by our discussion fol-
lowing Example 3.12 above.17

Ψ1 = t∗ψ1 · (s∗ψ1)−1 =

[
e−1/(x+ux2) 0

0 1

] [
e1/x 0

0 1

]
=

[
eu/(1+ux) 0

0 1

]
This corresponds to the calculation at (3.7) for k = 2. Observe that Ψ1 is holo-
morphic, invertible and single-valued on Pair(C, 2 · 0) (i.e. at all points (x, u) such

17In particular, the representations will be holomorphic at the point (0, 0) ∈ Pair(C, 2 · 0), but
may fail to be single-valued when extended to the entire (non-source-simply connected) groupoid.
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that 1 +xu 6= 0). Following [17] (see Example 5.5), it is convenient to introduce an
(invertible) change of variables on the groupoid, defined by setting µ = u(1+ux)−1.
Then, by applying (3.8) the representation Ψ2 is computed to be

Ψ2 =

[
1 t∗f
0 1

]
·Ψ1 ·

[
1 −s∗f
0 1

]
=

[
eµ t∗f − eµs∗f
0 1

]
.

While this expression is ostensibly a purely formal sum in the two variables (x, µ),
centered at (0,0), we expect from the above theory that it in fact has some non-
zero radius of convergence; hence yielding a germ Ψ2 of some holomorphic function
at (0,0).18 Let us show that this is indeed the case. The target map in the new
coordinates is t(x, µ) = x(1− µx)−1 and thus

(3.10) t∗f = −
∞∑
n=0

n!
xn+1

(1− µx)n+1
.

Next, consider the geometric expansion (1− µx)−1 =
∑∞
k=0(µx)k and differentiate

on both sides, n times with respect to µ, to obtain the following formal equality of
series

n!xn(1− µx)−n−1 =
∞∑
k=0

(k + n)!

k!
(µx)kxn.

Inserting the result into (3.10) yields

t∗f = −
∞∑
n=0

∞∑
k=0

(k + n)!

k!
(µx)kxn+1 = −

∞∑
j=0

j∑
k=0

j!

k!
µkxj+1

which is of course divergent for x 6= 0. But while t∗f and eµs∗f are both purely
formal, their difference

(3.11)

t∗f − eµs∗f =
∞∑
j=0

j!xj+1

(
eµ −

j∑
k=0

µk

k!

)

=
∞∑
j=0

∞∑
k=0

xj+1µj+k+1

(j + 1)(j + 2) . . . (j + k + 1)

is easily seen to be convergent for |µx| < 1 by the comparison test. Furthermore,
it can be shown (see Appendix D) that (3.11) is the Laurent series expansion of

(3.12) ρ(x, µ) = e
xµ−1
x

(
E1(xµ−1

x )− E1(− 1
x )
)
,

centered at the point (0, 0), where E1 is the standard exponential integral

E1(x) :=

∫ ∞
x

e−t

t
dt.

That is to say, ρ(x, µ) is the unique analytic extension of the germ (3.11) to the
entire groupoid Pair(C, 2 · 0). Although E1(x) is multivalued on C×, with branch
points at 0 and∞, the combination (3.12) is indeed holomorphic (and single-valued)
on |µx| < 1 (see Appendix D for details). The apparent singularity of ρ(x, µ) at
x = 0 is thus removable. When extended to all of Pair(C, 2 · 0), the function

18Again, we note that the use of the particular groupoid Sto2 (or any other groupoid locally
isomorphic to it near the origin (0,0)) is essential. Computing Ψ2 over a generic Lie groupoid (e.g.

Sto1), the expression t∗f − eµs∗f remains non-convergent.
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ρ(x, µ) becomes multivalued, branching around the set of deleted groupoid arrows,
{(x, µ) : xµ− 1 = 0}, as anticipated in footnote 17.

We note that this re-expression of (3.11) in terms of ‘special functions’ is not of
particular relevance to the present resummation theory, although it will allow for
us to easily check that our final basis of solutions below corresponds to that which
was found in Example 1.11.

Finally, we are ready to construct an actual flat basis ψ2 that trivializes ∇2. It
is easy to check that, up to the right action of GL2(C), the basis can be written as

(3.13) ψ2 =

[
h η
0 1

]
,

where h(x) and η(x) are holomorphic functions on C̃×, which remain to be deter-
mined. Fixing any x0 ∈ C× and then performing the parallel transport (3.9) will
solve for the two unknown functions in terms of their initial conditions at x0.

(3.14)

h(x) = h(x0) e
1
x0
− 1
x

η(x) = η(x0) e
1
x0
− 1
x + ρ

(
x0,

1
x0
− 1

x

)
= η(x0) e

1
x0
− 1
x + e−

1
x

(
E1(− 1

x )− E1(− 1
x0

)
)

One then has a germ ψ2(x) at x0 of fundamental solution trivializing ∇2, which

extends analytically to a solution on C̃×. Right-multiplying (3.13) by the appropri-
ate element of GL2(C) (or equivalently by specifying initial conditions), it follows
that one particular flat basis trivializing ∇2 is given by

(3.15) ψ2(x) =

[
e−

1
x e−

1
x E1(− 1

x )

0 1

]
,

which is precisely the basis of solutions found in Example 1.11.
This resummation method is entirely general, and can be used to construct ex-

plicit fundamental solutions to the generic non-Fuchsian system (1.1), in terms
of a Laurent series in powers of x, convergent on a full neighbourhood of x0 6= 0
and hence holomorphically extendable to a solution on the universal cover of the
punctured disk. In some sense then, this resummation method resembles the Frobe-
nius method for determining power series solutions to the Fuchsian system. The
trade-off here is that the germ of fundamental solution produced by resumming is
a local object at x0, and it may be difficult to explicitly determine its analytic con-
tinuation. (Of course in the present example, this was not the case.) The resum-
mation process is illustrated again in Example 5.6 of [17] for the case of Airy’s
equation.

Remark 3.15. As a final remark, we note that the equivalence of (3.11) and (3.12),
proved explicitly by the complicated calculations of Appendix D, can instead be
viewed as a direct consequence of the resummation theory of [17]. (Our work in
Appendix D then serves to verify the theory.) On the one hand, (3.15) is a funda-
mental solution matrix following from Example 1.11 (solving with an integrating
factor). On the other hand, following from Example 3.14, so is[

e−
1
x ρ

(
x0,

1
x0
− 1

x

)
0 1

]
,
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where ρ(x, µ) is defined to be the convergent double series (3.11). Since ρ(x, 0) = 0
and any two fundamental solutions are related by the right action of GL2(C), it
will follow that

ρ
(
x0,

1
x0
− 1

x

)
= e−

1
x

(
E1(− 1

x )− E1(− 1
x0

)
)
.

The identities applied in Appendix D (e.g. Lemma 4.2) can then be seen as a
consequence of the general resummation theory. One might conjecture that fur-
ther identities (combinatorial, hypergeometric, etc.) may find novel new proofs by
applying Theorem 5.3 from [17] to solve various non-Fuchsian systems.

3.5. Unfolding the Twisted Pair Groupoid. Recall in Chapter 2 we examined
the deformed system (2.2),

y′ =
A(ε, x)

pε(x)
· y, y ∈ CN ,

which we referred to as the generic unfolding of (1.1). Our investigations culmi-
nated in the statement of Theorem 2.10 (proved in [9]) which gave an analytic
modulus for the entire family of generic unfoldings, in terms of formal data plus
the generalized Stokes data. Also recall that

pε(x) = xk+1 + εk−1x
k−1 + . . .+ ε1x+ ε0 =

k+1∏
l=1

(x− xl)

has k+ 1 generically distinct roots, x1, . . . , xk+1, with repetition of roots occurring
along the discriminantal locus ∆(ε) = 0. Let us now define the effective divisor

Dε := 1 · x1 + . . .+ 1 · xk+1 =

k+1∑
l=1

1 · xl

on C, and the meromorphic connection

∇ε := d− A(ε, x)

pε(x)
dx,

whose poles are bounded by Dε. In Chapter 2 we used Theorem 2.8 to construct
various flat bases V ±j,ε,Ss(x) of the bundle (E ,∇ε) → (C, Dε). These solution bases
were related via the so-called generalized Stokes matrices and the gate matrices.

For the purpose of analyzing solutions by means of a universal parallel transport
that extends smoothly over Dε, Theorem 3.5 tells us that there exists some source-
simply connected Lie groupoid Gε on C such that (E ,∇ε) → (C, Dε) integrates to
a representation of Gε. Then for any flat basis ψ (e.g. any solution V ±j,ε,Ss), the

expression Ψ = t∗ψ · (s∗ψ)−1 is single-valued, holomorphic and invertible on Gε.
Furthermore, the orbits of Gε will necessarily consist of the individual points of Dε

(the roots of pε(x)) as well as their complement C \Dε.
Just as the source-simply connected Stokes groupoids Stok are parameterized by

means of the universal covering

exp : C→ C×,
any explicit description of the source-simply connected groupoid Gε will necessitate
uniformizing the (k + 1)-punctured space C \ {x1, . . . , xk+1}. In the case when
k = 1, this can be accomplished by means of elliptic modular functions,

λ : H→ C \ {x1, x2},
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and indeed this is the strategy adopted in Sections 4.2 and 4.3 of [17]. For k ≥ 2,
one requires a more general class of uniformizing functions of the form

π : H→ C \ {x1, . . . , xk+1}.
An explicit description of Gε is thus rather complicated. Here we shall introduce

a different approach to obtaining a smooth parallel transport of solutions. Let us
instead modify the twisted pair groupoid Pair (C, (k + 1) · 0) by unfolding it. We
shall obtain a new groupoid Pair(C, Dε) on C which, although is no longer source-
simply connected (and hence condition (i) of Theorem 3.5 fails, i.e. we only obtain
‘local paths’), it will have the property that (E ,∇ε)→ (C, Dε) integrates to a local
representation of Pair(C, Dε). As defined earlier in Section 3, this implies that at
any g ∈ Pair(C, Dε) the expression Ψ = t∗ψ · (s∗ψ)−1 is holomorphic and invertible,
and thus extends smoothly to a neighbourhood of g on which it is single-valued and
invertible. In other words, we have a locally defined holomorphic parallel transport
that extends to the divisor Dε.

Definition 3.16. For k ∈ N and any fixed ε ∈ Ck, the unfolded twisted pair
groupoid Pair(C, Dε) is the Lie groupoid on C whose set of arrows is given in terms
of coordinates {

(x, u) ∈ C× C : fl(x, u) 6= 0, l = 1, . . . , k + 1
}
,

where

fl(x, u) = 1 + u
k+1∏
j=1
j 6=l

(x− xj,ε), for l = 1, . . . , k + 1,

with {xj,ε = xj : j = 1, . . . , k + 1} being the (possibly repeated) roots of pε(x), and
with source and target maps defined by

(3.16)
s : (x, u) 7→ x

t : (x, u) 7→ x+ pε(x)u.

The composition of arrows is then given by

(3.17) (x′, u′) · (x, u) =

(
x, u+

pε
(
x+ pε(x)u

)
pε(x)

u′

)
.

Remark 3.17. Just as the twisted pair groupoids were constructed by iteratively
blowing up the pair groupoid along the origin, the unfolded twisted pair groupoid
can be viewed as a blowup of the pair groupoid along pε(x) = 0.

It is straightforward to verify that Pair(C, Dε) is indeed a Lie groupoid on C,
except perhaps to check that the arrow composition is smooth. This is obviously
the case away from any zeros of pε(x), and at any given zero xl the singularity is
removable:

lim
x→xl

pε
(
x+ pε(x)u

)
pε(x)

= fl(xl, u) = 1 + p′ε(xl)u.

The limit may be computed by exploiting the known factorization of pε(·).
Defining Z(fl) = {(x, u) : fl(x, u) = 0} to be the zero-locus of fl, one can describe

the coordinate space of Pair(C, Dε) as the complement of ∪k+1
l=1 Z(fl) in C2. Each

zero-locus Z(fl) is an affine variety. The various zero-loci are generically pairwise
disjoint, and will coincide precisely when corresponding roots of pε(x) coalesce:
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Proposition 3.18. Let l,m ∈ {1, . . . , k + 1} and so xl, xm are roots of pε(x).
Then {

xl 6= xm =⇒ Z(fl) ∩ Z(fm) = ∅,
xl = xm =⇒ Z(fl) = Z(fm).

The second statement is obvious, while the contrapositive of the first statement is
easily proven by using the fact that

fl(x, u) = 1 +
pε(x)

x− xl
u for x 6= xl.

At the confluence of all roots, i.e. when ε → 0 and hence Dε → (k + 1) · 0, the
twisted pair groupoid of Definition 3.11 is recovered,

Pair(C, Dε) −→ Pair (C, (k + 1) · 0) .

That is to say that as ε → 0, the generically disjoint loci Z(f1), . . . , Z(fk+1) all
coalesce to form the single curve {1 + uxk = 0}, and the groupoid target map
(3.16) and corresponding arrow composition law (3.17) smoothly reduce to that of
the twisted pair groupoid Pair (C, (k + 1) · 0) (see Definition 3.11).

Remark 3.19. In order for (E ,∇ε)→ (C, Dε) to integrate to a local representation
of Pair(C, Dε), it is a necessary condition that the orbits of Pair(C, Dε) consist of
each individual point of Dε as well as their complement C \ Dε. This is indeed
the case, and is a consequence of our imposition that fl(x, u) 6= 0 on Pair(C, Dε)
for each l = 1, . . . , k + 1.19 In particular, let us assume that xl is a zero of pε(x) of
order n. Then

s−1({xl}) = t−1({xl}) =

{{
(xl, u) : u 6= −1

p′ε(xl)

}
if n = 1,

{(xl, u) : u ∈ C} if n > 1.

Moreover, any two points in C \Dε are joined by a unique groupoid arrow.

Let us reiterate that the unfolded twisted pair groupoid Pair(C, Dε) is defined
over the entire parameter space ε ∈ Ck including along ∆(ε) = 0, and we have
already observed that at ε = 0 one recovers the familiar twisted pair groupoid. In
fact, a more general statement is true regarding the local structure of the unfolded
twisted pair groupoid.

Proposition 3.20. Fix k ∈ N and ε ∈ Ck. Let xl be a zero of pε(x) of order
n ∈ {1, . . . , k+ 1}. Then at the identity arrow (xl, 0) ∈ Pair(C, Dε), we have a local
isomorphism

Pair(C, Dε)
∼=−→ Pair (C, n · 0)

such that (xl, 0) 7→ (0, 0). In other words, near a zero of pε(x) of order n, Pair(C, Dε)
‘looks like’ the twisted pair groupoid of order n, locally.

Proof. Let us temporarily adopt a new notation and use tε and t0 to denote the re-
spective target maps of Pair(C, Dε) and Pair (C, n · 0). It will suffice to demonstrate
that tε and t0 have the same local behaviour.

19 Incidentally, the condition fl(xl, u) 6= 0 also ensures that the target map (3.16) is indeed a
submersion at xl, as required by Definition 3.1.



46 RYAN BOYCE

First observe that there exists a neighbourhood U ⊂ Pair(C, Dε) of (xl, 0) such
that the map φ : U → Pair (C, n · 0) defined by

φ : (x, u) 7→
(
x− xl ,

k+1∑
j=n

p
(j)
ε (xl)

j!
(x− xl)j−nu

)
is a biholomorphism from U → φ(U). This follows from the fact that the Jacobian
determinant

det Jφ|(xl,0) =
p

(n)
ε (xl)

n!
6= 0.

Next, let ϕ be the automorphism of C defined by

ϕ : x 7→ x− xl,
and then note that

t0 = ϕ ◦ tε ◦ φ−1 : φ(U)→ C.
In other words, we have explicitly found local charts φ and ϕ to show that the
groupoid target maps tε and t0 are equivalent holomorphic mappings, i.e. they look
the same locally. Lastly, we remark that in the case n = k + 1 one has φ = id. �

Recall from our previous discussions on the twisted pair groupoid that (E ,∇)→
(C, k · 0) integrates to a local representation of Pair(C, k · 0). One recalls here that
the poles of ∇ are assumed to be bounded by the divisor k · 0. An immediate
consequence of Proposition 3.20 is then the following result:

Theorem 3.21. Fix k ∈ N and ε ∈ Ck. Then (E ,∇ε) → (C, Dε) integrates to
a local representation of Pair(C, Dε). That is to say, given any flat basis ψ of
(E ,∇ε)→ (C, Dε) the parallel transport isomorphisms

Ψ|g : s∗E → t∗E , g ∈ Pair(C, Dε)

defined by the expression Ψ = t∗ψ · (s∗ψ)−1 are locally holomorphic and invertible
on the unfolded twisted pair groupoid Pair(C, Dε).

We can explicitly verify Theorem 3.21 in the case when ∆(ε) 6= 0, that is when
Dε consists of k + 1 distinct points. When s(g) /∈ Dε then Ψ = t∗ψ · (s∗ψ)−1

is obviously holomorphic and invertible in a neighbourhood of g, since ψ is a flat
basis of ∇ε. As usual, single-valuedness of Ψ near g is ensured by imposing that
Ψ = I along the identity bisection; Ψ|u=0 = I. When s(g) ∈ Dε (i.e. s(g) =
xl is a root of pε(x)) then the claim that Ψ is holomorphic and invertible at g
(or even well-defined) must be verified. Recall that xl is a singular point of the
corresponding Fuchsian system (∇εψ = 0) and so there are two cases to consider:
whether s(g) = xl is non-resonant or resonant.

In the former case, and as discussed in Remark 2.7, a flat basis ψ is provided in
terms of a Frobenius series

ψ(x) = (I +O(x− xl)) (x− xl)Ul ,

where Ul is the diagonal matrix given by Λ(ε,xl)
p′ε(xl)

. The convergent series ψ is a

fundamental solution on a slit neighbourhood of xl. We may now easily compute
the local representation Ψ as follows:

Ψ(x, u) = (I +O(x− xl + pε(x)u)) (x− xl + pε(x)u)
Ul (x− xl)−Ul (I +O(x− xl))

= (I +O(x− xl + pε(x)u)) (fl(x, u))
Ul (I +O(x− xl)) .
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We should like to verify that Ψ is holomorphic and invertible at any fixed (xl, u) ∈
Pair(C, Dε). Indeed this is the case since Ψ(xl, u) = (fl(xl, u))

Ul and fl 6= 0 on
Pair(C, Dε). (The series converges in a neighbourhood of (xl, u) and log(fl) is holo-
morphic there.)

In the latter case when xl is resonant, a flat basis ψ takes the form described in
Appendix C. Namely, by applying a change of basis if necessary, we can assume that
the real parts of the eigenvalues αi of the diagonal residue matrix Ul are ordered

<(α1) ≥ . . . ≥ <(αN ).

Then a flat basis ψ can be written as

ψ(x) = (I +O(x− xl)) (x− xl)Ul(x− xl)N ,
where N is strictly upper triangular (hence nilpotent) and satisfies the condition

(3.18) Nij = 0 unless αi − αj ∈ N.

Again the convergent series ψ is a fundamental solution on a slit neighbourhood of
xl. The local representation Ψ can then be computed:

Ψ(x, u) = (I +O(x− xl + pε(x)u)) (x− xl + pε(x)u)
Ul (x− xl + pε(x)u)

N

(x− xl)−N (x− xl)−Ul (I +O(x− xl))

= (I +O(x− xl + pε(x)u)) (x− xl)Ul (fl(x, u))
Ul (fl(x, u))

N

(x− xl)−Ul (I +O(x− xl)) .
Again, we should like to verify that Ψ is holomorphic and invertible at any fixed
(xl, u) ∈ Pair(C, Dε). It suffices to show that

Φ(x, u) := (x− xl)Ul (fl(x, u))
Ul (fl(x, u))

N
(x− xl)−Ul

is holomorphic and invertible at (xl, u). The matrix entries of Φ(x, u) are computed
to be

Φ(x, u)ij = (x− xl)αi−αj (fl(x, u))
αi (δij + ξ(x, u)ij) , i, j = 1, . . . , N,

where

ξ(x, u) = N log fl(x, u) + 1
2!N

2 log2 fl(x, u) + . . .

is a finite sum and strictly upper triangular. Recalling that fl 6= 0 on Pair(C, Dε),
we immediately see that Φ(x, u) is invertible at (xl, u) and that each matrix entry
not lying above the diagonal is holomorphic at (xl, u). Thus it remains to show
that each matrix entry Φ(x, u)ij , with i < j, is holomorphic at (xl, u). It suffices
to demonstrate this for the single matrix element Φ(x, u)1N (the remaining cases
are proved analogously). If α1 − αN ∈ N, then we are done and Φ(x, u)1N is
holomorphic at (xl, u). Hence, let us assume that α1 − αN /∈ N. Our goal is then
to show that

N1N = (N 2)1N = . . . = (N N−1)1N = 0.

Let m ∈ {1, 2, . . . , N − 1}. The matrix entry (Nm)1N can be expressed as∑
1=i0<i1<...<im=N

Ni0i1Ni1i2 . . .Nim−1im ,

summing over all appropriate tuples. Therefore, if (Nm)1N 6= 0 then there exists
some fixed tuple, 1 = i0 < i1 < . . . < im = N , such thatNi0i1Ni1i2 . . .Nim−1im 6= 0.
But this would imply that none of Ni0i1 , Ni1i2 , . . . , Nim−1im vanish and hence
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α1−αN ∈ N by (3.18), which is a contradiction. In other words, either α1−αN ∈ N
(and Φ(x, u)1N is holomorphic at (xl, u)) or Φ(x, u)1N = 0.

———
To summarize the novel results of this section, we have explicitly parameterized

the so-called unfolded twisted pair groupoid Pair(C, Dε), and have shown that it
serves as the universal domain of definition for any system that is meromorphic
on C with a finite number of poles. The source-simply connected extension of
Pair(C, Dε) is described rather abstractly in Theorem 4.1 of [17], in terms of a
collection of charts which individually cover each singular point of the system (where
the groupoid locally looks like Ston). The presently described groupoid Pair(C, Dε),
on the other hand, is given in terms of one global chart. However, while Pair(C, Dε)
does integrate the corresponding system, i.e. the canonical representation Ψ =
t∗ψ · (s∗ψ)−1 remains locally holomorphic and invertible over the groupoid, the
unfolded twisted pair groupoid (like the twisted pair groupoid) is a local object
over C; it fails to be source-simply connected and hence only parameterizes local
paths in the punctured plane.

Recall that the Stokes groupoid Stok+1 serves as the universal domain of defini-
tion for locally meromorphic systems of the form (1.1),

y′ =
A(x)

xk+1
· y.

Among other implications, this means that universal solutions to (1.1) can be con-
structed from strictly formal (divergent) solutions. It has been remarked by M.
Gualtieri that the Stokes groupoids can be used to recover the Stokes data of sys-
tem (1.1), and that indeed this must be the case since the groupoid representation
Ψ captures the full solution of the singular system. This suggests that the un-
folded twisted pair groupoid Pair(C, Dε) may prove useful for extracting analytic
invariants of the generic unfolding of (1.1),

y′ =
A(ε, x)

pε(x)
· y.

In other words, that the generalized Stokes matrices of Chapter 2 can be extracted
from the representations of Pair(C, Dε). It is currently unknown to the author by
what means this may be accomplished.
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4. Appendices

Appendix A. In regards to Example 1.11, in order to demonstrate that ψ1 ∼ yf
in Ω1, it suffices to show that∣∣∣∣∣e−1/x

∫ x

0−

e1/z

z
dz +

m−1∑
n=1

(n− 1)!xn

∣∣∣∣∣ = O (|x|m) ,

as x→ 0 in Ω1, for all m ∈ N.

For any m ∈ N, repeated integration by parts yields∫ x

0−

e1/z

z
dz = −e1/x

(
x+ x2 + . . .+ (m− 1)!xm

)
+

∫ x

0−
m! zm−1e1/zdz,

and so it remains to be shown that∣∣∣∣e−1/x

∫ x

0−
m! zm−1e1/zdz

∣∣∣∣ = O (|x|m) ,

as x→ 0 in Ω1, for all m ∈ N.

Consider evaluating the integral along a contour γ in Ω1, where γ is the concate-
nation of a straight line path in R− from 0− to −|x|, followed by a circular path in
{z ∈ Ω1 : |z| = |x|} from −|x| to x. For x ∈ Ω1 such that −3π/2 + ε < arg(x) ≤ 0,
the modulus

∣∣e1/z
∣∣ is an increasing function along the contour γ, and so we obtain

the following bound∣∣∣∣e−1/x

∫ x

0−
m! zm−1e1/zdz

∣∣∣∣ ≤ m! |x|m−1

∫ x

0−
|dz| ≤ m! |x|m(1 + π).

Otherwise 0 < arg(x) < π/2− ε and the modulus
∣∣e1/z

∣∣ begins to decrease after γ
crosses the positive real axis. In this case, apply the residue theorem to obtain the
following bound∣∣∣∣e−1/x

∫ x

0−
m! zm−1e1/zdz

∣∣∣∣ ≤ ∣∣∣e−1/x 2πi
∣∣∣+m! |x|m(1 + π).

In the sectorial region of arg(x) ∈ (0, π2 − ε), it is clear that
∣∣e−1/x

∣∣ = O(|x|m) for
each m ∈ N, and so the proof that ψ1 ∼ yf in Ω1 is complete. Moreover, these
same estimates demonstrate that the asymptotic relationship ψ1 ∼ yf continues to
hold in {−3π/2 < arg(x) < π/2− ε}, but fails in {−3π/2 < arg(x) < π/2}.

Remark 4.1. We note that the above numerical estimates on error terms are rather
crude and can be improved, see for example [6]. Furthermore,∫ x

0−

e1/z

z
dz = E1(−1/x), x ∈ Ω1,

where E1 is the standard exponential integral

E1(x) :=

∫ ∞
x

e−t

t
dt,

albeit with its branch cut defined along the positive imaginary axis rather than
the more commonly chosen principal branch. Our claim that ψ1 ∼ yf in Ω1 is
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confirmed by citing the standard asymptotic expansion of the analytic extension of

E1(x) to C̃× (see [6])

E1(x) ∼ e−x

x

∞∑
n=0

(−1)n n!

xn
as x→∞, | arg(x)| ≤ 3π

2
− δ (<

3π

2
).

Lastly, the uniqueness of the canonical solution ψ1 is proven as follows. Any
fundamental solution to (1.28) must be equal to ψ1(x)C for some nonsingular

C =

[
c1 c2
c3 c4

]
.

If ψ1(x)C ∼ yf (x), then the asymptotic condition (1.13) necessitates that

ψ1(x)Ce−Λ(x) =

[
c1 + c3E1(−1/x) e−1/x (c2 + c4E1(−1/x))

c3e
1/x c4

]
−→ I,

as x→ 0 in Ω1. It follows immediately that C = I.

Appendix B. In regards to Example 1.14, let us rewrite the system (1.41) as

(4.1)
dy

ds
=

Λ0 + s3A3

s4
y,

where

Λ0 =

[
2 0
0 −2

]
, A3 = −1

2

[
1 1
1 1

]
.

A gauge transformation of the form y 7→ (I + s3G)y carries the system to

(4.2)
dy

ds
=

(
(I + s3G)

Λ0 + s3A3

s4
(I − s3G+ s6G2) + 3s2G+O(s5)

)
y.

As previously mentioned in the example, system (4.2) is diagonalized up to order
s−1 precisely when

G =

[
a − 1

8
1
8 b

]
, a, b ∈ C.

This leads to

dy

ds
=

(
Λ0 + s3Λ3

s4
+ s2

(
GA3 −A3G−GΛ0G+ Λ0G

2 + 3G
)

+O(s5)

)
y,

where Λ3 is the diagonal part of A3. Computation of the s2 coefficient yields

(4.3)

3a+ 1
16 −a2 −

3
8

− b
2 + 3

8 3b− 1
16

 ,
which is diagonal precisely when a = − 3

4 and b = 3
4 . A further gauge transforma-

tion of the form y 7→ (I + s9F )y will suffice to diagonalize the s5 term, without
affecting terms of lower order. Proceeding by induction, there exists a gauge series
I + s3G+

∑∞
n=0 s

9+3nFn carrying the system (4.1) to

dy

ds
=

(
Λ0 + s3Λ3

s4
+H(s)

)
y,

where H(s) =
∑∞
n=0 s

2+3nHn and each Hj is diagonal. (H0 is given by (4.3).) A

final gauge transformation y 7→ e−
∫
H(s) y will take us to the normal form (1.44).
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To leading order, the complete gauge series g(s) bringing (4.1) to normal form is
thus calculated to be

I + s3
(
G− 1

3
H0

)
+O(s6) = I + s3

[
− 1

48 − 1
8

1
8

1
48

]
+O(s6).

Notice how this process can be used to compute the formal normalizing series g(s)
out to arbitrary order, using nothing but basic matrix algebra.

Appendix C. As mentioned in Remark 2.7, in a neighbourhood of the non-
resonant Fuchsian singular point xl (adherent to the generalized sector Ω±j,ε) the

corresponding solution V ±j,ε,Ss must take the form

(I +O(x− xl)) (x− xl)Ul · T, T ∈ GLN (C).

Applying a change of basis if necessary, it suffices to assume that the real parts of
the eigenvalues αi of the diagonal residue matrix Ul are ordered

<(α1) ≥ . . . ≥ <(αN ).

In the case when xl is resonant, the solution V ±j,ε,Ss takes the form

(I +O(x− xl)) (x− xl)Ul(x− xl)N · T, T ∈ GLN (C),

where N is strictly upper triangular (hence nilpotent) and satisfies the condition

Nij = 0 unless αi − αj ∈ N,

see for example [2], [5]. Next, the asymptotics (2.19) of Theorem 2.8 indicate that
the limit

lim
x→xl

V ±j,ε,Ss(x) · exp

(
−
∫ x

x0

Λ(ε, x)

pε(x)
dx

)
is diagonal and invertible, with the limit being taken along the separatrix which
borders Ω±j,ε and reaches xl. Taking the residue expansion of the integrand (see

(2.16)), it follows that

lim
x→xl

V ±j,ε,Ss(x) · (x− xl)−Ul

is diagonal and invertible. This limit can in fact be taken along any ray of constant
local argument (as per footnotes 9 and 10) and the result remains diagonal and
invertible. Thus in either case, whether xl is resonant or non-resonant, the ordering
on eigenvalues of Ul implies that T is upper triangular. It remains to compute the
diagonal part of the monodromy matrix M of solution V ±j,ε,Ss . In the non-resonant
case, one has

M = T−1 e2πiUl T

and hence

diag(M) = e2πiUl .

In the resonant case, note that

(x− xl)N = I +N log(x− xl) +
1

2
N 2 log2(x− xl) + . . .



52 RYAN BOYCE

is a finite sum, and observe that the commutator
[
e2πiUl , N

]
= 0. The monodromy

around xl is then computed to be

M = T−1 e2πiUl e2πiN T

= T−1 e2πiUl
(
I + 2πiN + . . .+

(2πi)N−1

(N − 1)!
N N−1

)
T

= T−1 e2πiUl T,

where the last equality follows since N T = 0. Again we find that

diag(M) = e2πiUl ,

precisely as claimed.

Appendix D. Here it will be shown that the double series (3.11),

∞∑
j=0

∞∑
k=0

xj+1µj+k+1

(j + 1)(j + 2) . . . (j + k + 1)
,

is indeed the Laurent series expansion of the function

ρ(x, µ) = e
xµ−1
x
(
E1(xµ−1

x )− E1(− 1
x )
)
,

about the point (0, 0). The exponential integral

E1(− 1
x ) =

∫ x

0−

e1/z

z
dz

is of course multivalued, branching around 0 and ∞, and so it is not obvious that
ρ(x, µ) is holomorphic at the origin. Let us demonstrate that this is indeed the
case. Consider the restricted domain S = {<(x) > 0} ∩ {0 < |xµ| < 1} which is a
subset of Pair(C, 2 · 0). On this region, one has that∣∣∣arg(x)− arg

(
x

1−xµ

)∣∣∣ < π

2
.

The integral representation of the function

ρ(x, µ) = e
xµ−1
x

∫ x(1−xµ)−1

x

e1/z

z
dz

is in general not well-defined, and depends on the homotopy class of the contour
of integration. However, this discrepancy is resolved for ρ(x, µ)|S since the contour
then never crosses R−, by the previous inequality. This implies that one may
integrate term by term, to obtain the following series representation, valid on S.

(4.4) ρ(x, µ)|S = e
xµ−1
x

(
−Log(1− xµ) +

∞∑
k=1

1− (1− xµ)k

xkk k!

)
Since the right-hand side is holomorphic on {0 < |xµ| < 1}, it follows by the
identity theorem that (4.4) extends from S to remain valid on all of {0 < |xµ| < 1}.

It is now clear that ρ(x, µ) is multivalued on Pair(C, 2 · 0), branching around the
locus {xµ − 1 = 0} of deleted groupoid arrows. It is also clear that ρ(x, 0) = 0,
but one notices a singularity at x = 0. This singularity is in fact removable, as will
be made clear by proceeding with finding the Laurent series expansion of ρ(x, µ).
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By naively applying Taylor series and binomial expansions, we obtain the following
series representation valid on {0 < |xµ| < 1}.

ρ(x, µ) =

( ∞∑
j=0

(xµ− 1)j

xjj!

)( ∞∑
i=1

(xµ)i

i
+
∞∑
k=1

1− (1− xµ)k

xkk k!

)

=
∞∑
j=0

∞∑
i=1

j∑
n=0

(xµ)n+i−j (−1)j−n

i j!

(
j

n

)
µj︸ ︷︷ ︸

(i)

−
∞∑
j=0

∞∑
k=1

j∑
n=0

k∑
m=1

(xµ)n+m (−1)j−n+m

xj+k j! k k!

(
j

n

)(
k

m

)
︸ ︷︷ ︸

(ii)

The second expression (ii) can be rearranged by noting that all powers of x are
non-positive. One may define a new index λ = j + k− n−m ∈ Z≥0. Then for any
fixed λ, one has that l := j − n ∈ {0, 1, . . . , λ}, allowing us to rewrite (ii) as

∞∑
λ=0

∞∑
n=0

∞∑
m=1

λ∑
l=0

(xµ)−λ (−1)l+m µλ+n+m

(n+ l)! (λ+m− l) (λ+m− l)!

(
n+ l

n

)(
λ+m− l

m

)

=
∞∑
λ=0

∞∑
n=0

∞∑
m=1

λ∑
l=0

(xµ)−λ (−1)l+m µλ+n+m

(λ+m− l)n!m! l! (λ− l)!

=

∞∑
λ=0

∞∑
n=0

∞∑
m=1

(xµ)−λ (−1)m+λ µλ+n+m

n! (m+ λ)!m
.

This last equality follows by applying the following identity.

Lemma 4.2. Let n be a non-negative integer, and let m ∈ N. Then
n∑
k=0

(−1)k

k! (n− k)! (m+ k)
=

1

m(m+ 1)(m+ 2) . . . (m+ n)
.20

Proof. Consider the following meromorphic function on C

Fn(x) :=
1

x(x+ 1)(x+ 2) . . . (x+ n)
.

The function has a partial fraction decomposition (residue expansion) of the form

Fn(x) =
a0

x
+

a1

x+ 1
+ . . .+

an
x+ n

.

On the other hand, for x /∈ {0,−1,−2, . . .} one has that

Fn(x) =
Γ(x)

Γ(x+ n+ 1)
.

Hence, for each k = 0, 1, . . . , n, we can compute

ak = lim
x→−k

(x+ k)Fn(x) =
Res x=−k Γ(x)

Γ(n− k + 1)
=

(−1)k

k! (n− k)!
.

20This is a special case of the Chu-Vandermonde identity. It can also be restated as a special

case of Gauss’ hypergeometric theorem, namely that 2F1(−n,m;m+ 1; 1) =
Γ(m+1)Γ(n+1)
Γ(m+1+n)Γ(1)

.



54 RYAN BOYCE

Evaluating the function at x = m completes the proof. �

Meanwhile, expression (i) can be broken into the sum of two parts, according to
whether powers of x are positive or non-positive. Expression (i) is then equal to

∞∑
λ=1

∞∑
j=0

j∑
n=0

(xµ)λ (−1)j−n

(λ+ j − n) j!

(
j

n

)
µj +

∞∑
λ=0

∞∑
i=1

∞∑
n=0

(xµ)−λ (−1)λ+i

i (λ+ n+ i)!

(
λ+ n+ i

n

)
µλ+n+i.

All non-positive integer powers of x from expressions (i) and (ii) perfectly cancel,
and we are left with the result that

ρ(x, µ) =
∞∑
λ=1

∞∑
j=0

j∑
n=0

xλµλ+j (−1)j−n

(λ+ j − n) (j − n)!n!
, |xµ| < 1.

Another application of Lemma 4.2 then yields that

ρ(x, µ) =
∞∑
λ=1

∞∑
j=0

xλµλ+j

λ(λ+ 1)(λ+ 2) . . . (λ+ j)
.

Indeed this is the same Laurent series expansion written at (3.11), precisely as
claimed.
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