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Abstract

The aim of this thesis is to extend the theoretical framework of nonequilibrium electronic transport
to incorporate quantum effects in disordered mesoscopic systems. Our theoretical methods are de-
veloped based on the diagrammatic perturbation technique formulated with the Keldysh nonequi-
librium Green’s functions. Given the real-space Hamiltonian of the transport system together with
thermal reservoir parameters, we seek to compute the electronic structure and the charge current
taking the various quantum effects into account. Following this methodology, the three most im-
portant and ubiquitous disordered mesoscopic effects are addressed, viz. weak localization, energy
relaxation, and the Altshuler-Aronov (AA) effect, all of which give rise to corrections to the clas-
sical Drude description of electronic transport. Specialized theoretical methods are developed for
the respective physical effects. For weak localization we develop a Cooperon-based diagrammatic
scheme using the so-called dual fermion (DF) technique in order to take into account nonlocal in-
terference processes which have been neglected in the prevailing coherent potential approximation
(CPA). Numerical simulations have shown that, compared to CPA, our DF method yields more ac-
curate results for transport properties of disordered quantum wires, and that in particular it is able
to predict the negative magnetoresistance effect which is a signature of weak localization. The en-
ergy relaxation in disordered interacting wires is tackled with a self-consistent GWW-CPA scheme.
Using this computational method we study how the energy distribution of interacting electrons
evolves under increasing interaction and external field strengths. In addition, the same compu-
tational scheme is also employed to simulate the Coulomb drag effect between parallel quantum
wires. The interesting dependence of nonequilibrium drag current on the chemical potentials of
reservoirs is discussed. As to the AA effect, the original diagrammatic formulation by Altshuler
and Aronov is generalized to the real-space Keldysh formalism. Then, both theoretical and numer-
ical diagram calculations show that for a disordered wire at nonequilibrium the AA effect leads
to anomalous DOS corrections at its respective Fermi energies, and that the magnitudes of these
(local) DOS corrections are position-dependent. The AA effect on transport properties is also

analyzed, which shows nontrivial behaviors with respect to system sizes and bias voltages.



Résumeé

L’ objectif de cette these est d’étendre le cadre théorique du transport électronique pour incorporer
les effets quantiques dans les systemes mésoscopiques désordonnés. Nos méthodes théoriques
sont développées sur la base de la technique de perturbation formulée avec les fonctions de Green
hors d’équilibre. En utilisant I’hamiltonien de I’espace réel ainsi que des parametres du réservoir
thermique, nous cherchons a calculer la structure électronique et le courant de charge en tenant
compte des différents effets quantiques. Les trois effets mésoscopiques désordonnés les plus im-
portants et les plus répandus sont abordés, viz. la localisation faible, la relaxation d’énergie et
I’effet de Altshuler-Aronov (AA), qui donnent lieu a des corrections de la description classique
par Drude du transport électronique. Des méthodes théoriques spécialisées sont développées pour
les effets physiques respectifs. Pour la localisation faible, nous développons un schéma de dia-
gramme basé sur Cooperon en utilisant la technique dite du fermion dual (DF) afin de prendre
en compte les processus d’interférence non locaux qui ont été négligés dans I’approximation du
potentiel cohérent (CPA), qui prévaut. Des simulations numériques ont montré que, par rapport a
la CPA, notre méthode de DF donne des résultats plus précis pour les propriétés de transport de fils
quantiques désordonnés, et qu’elle est notamment capable de prédire I’effet de magnétorésistance
négatif, ce qui est la signature de localisation faible. La relaxation d’énergie dans les fils en in-
teraction est abordée avec un schéma auto-cohérent GW -CPA. A I’aide de cette méthode, nous
étudions comment la distribution de 1’énergie des €lectrons en interaction évolue sous I’effet de
I’interaction croissante et de 1’intensité du champ externe. De plus, le méme schéma de calcul
est également utilisé pour simuler I’effet de trainée de Coulomb entre des fils paralleles. On dis-
cute la dépendance intéressante du courant de trainée sur les potentiels chimiques des réservoirs.
En ce qui concerne I’effet de AA, la formulation diagrammatique originale d’ Altshuler et Aronov
est généralisée au formalisme de Keldysh dans ’espace réel. Ensuite, les calculs théoriques et
numériques montrent que pour un fil hors d’équilibre, 1’effet AA conduit a des corrections de DOS
anormales a ses énergies de Fermi respectives, et que I’ampleur de ces corrections (locales) dépend
de la position. L’effet AA sur les propriétés de transport est également analysé, ce qui mene a des

comportements non triviaux aux tailles de systeme et tensions.
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Statement of Originality

This thesis is aimed to extend the existing simulation framework for electronic transport to incor-

porate the quantum effects in disordered mesoscopic systems. The main contributions include:

e Formulation of the general diagrammatic scheme to calculate disorder-averaged Green’s

function correlators (Section[2.2.2). The theoretical framework was published in Ref.[1].

o The real-space Keldysh version of the dual fermion formalism, and the associated Cooperon-
based diagrammatic scheme (Section [3.3.2)). This was published in Ref.[2].

e The self-consistent GWW-CPA numerical scheme to study energy relaxation effects (Chapter
M). This, together with its application to Coulomb drag between quantum wires, was reported
in Ref.[3]. Besides, the electron-hole relation in the linear response Coulomb drag has been

generalized to the nonlinear transport regime (Appendix [C).

e Diagrammatic formalism and its numerical implementation for Altshuler-Aronov effects in

short nonequilibrium wires (Chapter[5). The main results were reported in Ref.[4].

Apart from the above contributions focused by this thesis, during the course of my PhD study
I have also studied the transient transport of disordered quantum dots. The associated work was
published in Ref.[5].
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Notation and abbreviations

ZMa2 T SONYITEAFESNROASs a3

CPA
DF
DOS

disorder-averaged product of n Green’s functions
dimension

diffusion constant

electron charge

Fermi-Dirac distribution

Green’s function

conductance

Hamiltonian

charge current

energy current

Boltzmann constant
diagrammatic kernel

wire length, diagrammatic ladder
electronic polarization
propagator of particle density
temperature

bare Coulomb potential

bias voltage

impurity potential

screened e-e interaction, wire width
cumulant of impurity potential
electrical conductivity
self-energy

Altshuler-Aronov

coherent potential approximation
dual-fermion

density of states
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Chapter 1
Introduction

A generic transport system is composed of (at least) two particle reservoirs sandwiching a device
sample in the middle, as schematically illustrated in Fig[I.I] The reservoirs have their respective
temperatures and chemical potentials that are well defined at thermal equilibrium. In a real-life
experimental setup, these reservoirs typically correspond to electric leads or electrodes that bridge
between the device and the outer circuit. The device structure at the center is where our interest
lies; it can be any material ranging from single molecules to macroscopic chunks. Electrons enter
and exit the central device region via particle exchange with the reservoirs. The central task of a
transport experiment is to characterize the electric response of the given system, and the objective
of theoretical modeling consists in identifying the dominant physical processes which lead to such

transport behaviors and thence making further predictions.

In theoretical analyses, the reservoirs can be simply treated as noninteracting quasiparticles, as

admitted by the celebrated Fermi liquid theory [6] of metals, while in the central region electrons

,\/\/\,\»g\/\/\’
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Figure 1.1: Schematic of a generic transport structure. The blue areas represent electronic reservoirs, and
the yellow block represents the mesoscopic sample of interest. Note that such a system division is purely
conceptual: the interfaces between the device and reservoirs may not coincide with those of real materials. In
the central area, electrons (black wavy lines) may interact with impurities (cross) or themselves via Coulomb

potential (red wavy line).
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Figure 1.2: (a) Scanning electron microscope image of a silver wire fabricated using electron-beam
lithography and deposition techniques. The wire is connected to external reservoirs made of large metallic
pads. The probe, made of aluminum and connected to the wire through a tunnel contact, serves to investigate
the local electronic structure of the wire. (b) Schematic of the transport system. Figure courtesy of Refs.[10,

11].

may encounter much messier situations such as materials imperfections, many-body interaction,
and scattering off other quasiparticles (e.g. phonons). Phenomenologically, the effectiveness of
certain elementary scattering process can be characterized by its associated length scale (i.e. mean
free path), and the relative magnitudes of these length scales with respect to the sample-specific
parameters determine the overall features of the manifested transport physics, as well as the suit-
able theoretical formalism in order to describe them. For example, in macroscopic materials the
electronic transport typically exhibits a diffusive behavior as classical particles. This is because
the electron-phonon mean free path is by orders smaller than the sample size. Local equilibriums
are established under continuous dissipation of electronic energy into the phonon reservoir through
the Joule heating process, and as such the kinetics of the electronic system is well described by
the semiclassical Boltzmann equation [[7]. In the other extremity that the device is made of a small
molecule, its transport should be instead addressed within the quantum scattering formalism [, 9]
where electrons are rather pictured as wave beams transmitted along leads subject to scattering off

the molecule.

The notion of mesoscopic transport applies to the generic regime where the wave nature of
electrons plays an important role in determining the transport properties, and their dynamics must
be accounted for through the quantum equation of motion. Although mesoscopic physics is not
tied with any particular geometric length scales, preparing a mesoscopic sample does often require
downsizing the sample size (L). As an example, Fig[T.2[a) shows a scanning electron microscope
image of a pum-scale silver wire operated in the mesoscopic regime [11]. The wire is connected
to two electronic reservoirs made of large metallic pads. Its transport response can be directly

measured by applying a voltage difference between the reservoirs. Besides, to investigate the
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Chapter 1. Introduction

electronic structure in the wire, a probe is added on the side, which forms a tunnel junction with
the wire. The local electronic structure at the junction can be thus probed with the differential
tunnel conductance dI/dV (see illustration in Fig), which is approximately proportional to
the local density of states (DOS) of the wire [[12]]. Using the same apparatus as in Fig[I.2[b) but
with a superconducting probe, one is able to infer the one-electron energy distribution function by
deconvoluting dI /dV with the known superconductor DOS [13H15]. For nanoscale mesoscopic
structures, the on-chip probe is usually replaced with a scanning tunneling microscope, which
offers an atomic level resolution of DOS measurement |16, 17]].

Apart from a small sample dimension, mesoscopic devices are often operated at sufficiently
low temperatures so as to freeze most collective excitations, especially to suppress phonon modes
that may severely destruct the phase coherence of electrons. Therefore, the remaining pertinent
scattering processes are often associated with the ubiquitous electron-electron (e-e) and electron-
impurity interactions.

This thesis is focused on mesoscopic systems which contain disordered impurities in the atom-
istic structure. In contrast to e-e scattering, the restriction of momentum conservation is lifted for
the e-impurity scattering, and therefore the latter can deflect electrons more effectively. An impor-
tant parameter that measures the effectiveness of e-impurity scattering is the ratio A/l between
the Fermi wavelength and the elastic mean free path. In the weakly disordered limit A\p/ly < 1,
impurities are far apart and thus the scattering events could be regarded nearly independent, render-
ing electronic motion diffusive from a local point of view. Nevertheless, static impurities without
internal degrees of freedom deflect electrons elastically, so that the electronic phase coherence is
preserved, and interferences between scattered waves amount to additional contributions to the
transport process. They turn out to be not so negligible even if \p < [y < L, because interfer-
ences can extend across the entire sample in the mesoscopic regime and somehow do not cancel
out. For nonmagnetic impurities in normal metals, the interference induced quantum correction to

the diffusive conductivity[] so called weak localization, can be estimated to the leading order [[12]]:

RN (Ly —ly) d=1
—mte’h nLy/ly d=2

o = (1.1)
where L, (typically [, < L) denotes the dephasing length due to a weak magnetic field, the
intrinsic e-e interaction, or e-phonon scattering. The effect of weak localization can typically
be characterized by the phenomenon of negative magnetoresistance in mesoscopic conductors, as

illustrated in Fig[I.3|(a). The plot shows the magnetoconductance curve for a short one-dimensional

!For non-interacting Fermi-gas, the conductivity is given by the classical formula o4 = 2Dy, where D is diffu-

sion coefficient and v/ is electronic density of states at the Fermi energy.
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Figure 1.3: (a) Magnetoconductance curve for a short (~1um) one-dimensional channel fabricated in
silicon MOSFET [18]]. Inset: device schematic. (b) Temperature dependence of longitudinal conductivity
for a doped quantum well formed by GaAs-Ing 15Gag g5 As heterostructures [[19]]. (c) Suppression of tunnel
conductance between a 29um-long aluminum wire and a thick film [20]. Inset: device schematic. Figure

courtesy of Refs.[[18H20]].

channel fabricated in a silicon MOSFET [18]. The conductance is lowest at zero magnetic field
due to impurity induced localization; it increases with an increasing field because of the increasing
dephasing rate (corresponding to decreasing L,) which suppresses the interferences contributing

to localization.

Going beyond the single-particle formalism, we next discuss the impacts of e-e scattering on
electronic transport. In Fermi liquid based systems, major effects of e-e interaction have already
been removed through the renormalization procedure, and the residual part can thus be tackled
perturbatively. Under the weak interaction assumption, three particular many-body effects are
usually considered for mesoscopic transport, viz. energy relaxation, many-body dephasing, and the
Altshuler-Aronov (AA) effect [21]. Because of the low temperature setting and the quasiparticle
basis, energy relaxation is often considered ineffective in the mesoscopic regime, except under a
nonlinear condition. In this case the existence of separate Fermi surfaces would largely drive the
relaxation process and thus distorts the electronic structure [14)]. Compared to energy relaxation,
dephasing is believed to be more ubiquitous since it does not necessitate a considerable amount
of energy transfer [22| 23]. Rather, dephasing arises from the interaction between an electron
and the fluctuating electric field in the background formed by other electrons: part of the phase
information becomes intractable when ensemble average is taken over this fluctuating field [24].
This effect often serves as an upper bound for certain physical processes to which interferences
are important, such as the weak localization discussed in Eq.(I.T). Whereas energy relaxation and

phase decoherence exist in many-electron systems with or without disordered impurities, the AA
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Chapter 1. Introduction

effect is specific to disordered systems. As first elucidated by Altshuler and Aronov [21], due to e-e
interaction, the nonuniform potential formed by impurities can reshape the charge distribution in
the system, which acts as extra scatterers to individual electrons. The thus scattered waves interfere
with those from static impurities, leading to additional conductivity suppression to the same order
as Eq.(L.T)). In particular, AA showed that this conductivity suppression can be written in the same
form as Eq.(I.I) (up to a numeric prefactor), with Ly replaced by the thermal diffusion length
Ly = \/W. One thus immediately sees that the AA effect should induce a conductivity
correction dependent on temperatures. This has indeed been confirmed by experiments [19, 25~
271, as illustrated in Fig[I.3|b) [19], which shows a logarithmic temperature dependence for a two-
dimensional quantum well. Apart from its impact on electric conductivity, at low temperatures the
AA mechanism also leads to drastic changes in the electronic structure around the Fermi surface
[21]]. Figure [I.3(c) displays the differential tunnel conductance of a disordered aluminum wire
placed over a thick electrode [20]. As can be seen, with decreasing temperature, states at the Fermi
energy tend to get depleted. Such phenomenon, so-called “zero bias anomaly”, has also been

observed in other low-temperature disordered systems [28-31].

The two theoretical formalisms that serve as workhorses in mesoscopic physics are the Kubo
formula and the nonequilibrium Green’s functions [32, |33]]. The Kubo formula is based on the
equilibrium fluctuation-dissipation theorem which relates the linear response coefficients (i.e. dis-
sipation) to the noises in corresponding observables. Many basic understandings about mesoscopic
transport were originally derived from the Kubo formula, including the conductivity correction
aforementioned in Eq.(I.1)) [21} 34]. The Kubo formalism is most conveniently implemented in
the reciprocal space with virtually infinite systems, namely the system size is presumed to be
greater than any other length scales in the problem, whereby many-body diagram calculations can
be much simplified. Recent advances in nanotechnology have shrunk electronic devices down to
a scale where the material structures, including those of the reservoirs, can be engineered at an
atomistic level [35-37]. This constantly growing field therefore calls for modeling methods which
function directly in the real space. However, naively applying the Fourier transform to existent
diagrammatic schemes formulated in reciprocal space does not necessarily permit meaningful re-
sults in the real space; in particular, additional diagrams are often needed in order to ensure the
most basic conservation laws [38, [39]. Most importantly, nanodevices can be easily driven into
the nonlinear regime, to which the Kubo formalism is just inapplicable. In order to address these
problems, we shall employ the nonequilibrium Green’s function technique, which offers a unified
approach to systems both in and out of equilibrium. What’s more, its numerical compatibility

makes it by far the most promising framework for ab initio device simulations [40, 41]].
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Chapter 1. Introduction

The central spirit of this thesis is adapting already existent concepts of mesoscopic transport to
the nonequilibrium Green’s function formalism, devising simulation methods in conjunction with
numerical models, and studying what would become of those many-body quantum effects when
the finiteness of sample size becomes relevant (e.g. Ly, L+ > L) or when the system enters a
nonlinear transport regime. Throughout the course, we shall constantly accentuate the importance
of charge conservation, which should be used as a guideline to construct our theoretical formalism
and also to serve as a sanity check for our numerical results.

The organization of the thesis is as follows.

In Chapter 2, we review the general nonequilibrium Green’s function theory for systems in the
presence of e-e interaction and disordered impurities. Diagram rules are given under the framework
of many-body perturbation. The general theoretical formalism is adapted to the mesoscopic trans-
port problem by noticing that the effect of electronic reservoirs simply amounts to a self-energy
term in the finite central region, and thus the charge current can be calculated from nonequilibrium
Green’s functions within a finite dimension.

Chapter 3 specializes in disordered systems where e-e interaction is neglected. Two subjects are
addressed there: quantum diffusion and (weak) localization. We start heuristically by reviewing
the basic physical pictures underlying these processes using the notion of quantum paths. We
then introduce the numerical methods of the coherent potential approximation (CPA) and the dual
fermion (DF) theory, which respectively deal with the diffusion and localization processes. CPA
is essentially an effective mean field theory, and DF can be regarded as a diagrammatic extension
to CPA that takes nonlocal interferences into account. The two methods are implemented on a
discrete lattice model, and their performances are evaluated.

In Chapter 4, we formulate the self-consistent GW-CPA scheme which captures the energy
relaxation effect of nonlinear transport in systems containing both e-e interaction and disordered
impurities. The numerical formalism is applied to studying the electronic energy distribution [14]
and the Coulomb drag effect [42]] in quantum wire systems.

In Chapter 5, the AA effect due to coupling between e-e interaction and impurity scattering is
investigated using Keldysh diagram techniques. In particular, we analyze its impact on the conduc-
tance and the local DOS of nonequilibrium short wires. Theoretical and numerical calculations in
this chapter are performed at zero temperature, so that the system size L, instead of L, becomes
the dominant cutoff length scale for long-ranged correlations.

We relegate a few technical details to the appendices, which cover the topics of numeric Fourier
transform, the Green’s function techniques under weak disorder, and the electron-hole symmetry

in nonequilibrium Coulomb drag.



Chapter 2
Green’s function formalism

The theoretical formulation of this chapter is based on the following Hamiltonian:
. . 1
H(t) = /drdr’¢T(r)H0(r, ' H)Y(r') + / drv(r, t)n(r) + 5 / dedr'U (v, v, t)n(r)n(r"), (2.1)

where 1& denotes the field operator, n is the density operator, U denotes the two-body e-e interac-
tion, v is some external scalar potential, and H represents the kinetic energy:

Hy(ry,1o,t) = L <1Vr1 + gA(1“17f)>25(1‘1 —Ty), (2.2)
2m c

A being the vector potential. Although in this thesis only steady states will be studied, for the

convenience of theoretical formulation we have assigned a time dependency to the Hamiltonian

(2.1). We say that a system is noninteracting when U = 0, and that it is disordered if the functional

form of v(r) is drawn from a statistical ensemble.

The theoretical complexity implicated in the Hamiltonian is on two aspects. First, the
presence of two-body interaction renders the Hamiltonian non-quadratic, and thus its eigenstates
cannot be expressed as a Slater determinant [6] of single-particle states. In order to diagonalize
the Hamiltonian and obtain the many-body eigenstates, one needs its expression on a basis of Fock
states, whose dimension however grows exponentially with system size. The quest for exact many-
body eigenstates becomes even less feasible in a transport system since it technically contains
infinite degrees of freedom: the many-body wavefunctions extend into the reservoirs even though
the projected Hamiltonian is quadratic therein. The second complexity comes from the uncertainty
of the potential distribution v(r) when the system is disordered. Extra efforts are needed in this
case to average the targeted physical property over an ensemble of v(r), since there is no a priori
justification whether a few selected configurations would be representative enough, especially for

mesoscopic samples which often lack the so-called self-averaging property [6]. Of course, one may
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Chapter 2. Green’s function formalism

follow the brute-force approach that repeats the calculations under different v(r)-configurations
and take average at the end. However, it is usually not sensible to do so, simply because of the

huge disorder-ensemble size.

In this thesis, we use the Green’s function method [33, 43] to deal with these difficulties.
This method exploits the fact that most experimental observables can be naturally expressed with
Green’s functions and that computing exact many-body eigenstates is often unnecessary. However,
this does not grant any easiness to computing the Green’s functions. To alleviate the problem, in
this thesis we shall only focus on the physical scenario where the many-body electronic structure
is still dominated by the quadratic Hamiltonian and the possible v(r)-configurations are not too
far from a certain reference. Under these conditions the Green’s functions can be computed in a

perturbative manner, and we know how to exactly evaluate each individual term in the series.

In this chapter, we wish to keep our theoretical formulation at a generic level. We shall review
the general Green’s function framework and walk through the derivations of the perturbation series
for generic systems containing disorder and e-e interaction. Nevertheless, we note that any pertur-
bation series is subject to a truncation in practice. A general principle is that the specific truncation
scheme should be associated with the specified physical effect under investigation. This amounts

to the subjects of later chapters.

2.1 Keldysh formalism

The Keldysh formalism is a commonly used theoretical framework to deal with quantum systems
driven out of equilibrium, and it serves as the basis for Green’s functions to be properly defined.
In this formalism, it is assumed that the system was initially prepared in a thermodynamically
equilibrium state (specified by a temperature 7" and a chemical potential x) in the remote past, and
then undergoes an evolution governed by the Hamiltonian H (¢). During the evolution the system is
kept from exchanging particles with its environment. According to the basic quantum mechanics,

the expectation value of an observable can hence be expressed as O(t) = Tr [ﬁOAH(t)}, where p

is the density matrix e ##" /Tr [G*BHM} with § = = and Y = H(t = —o0) — uN. Ou(t)

denotes the corresponding operator in the Heisenberg picture, which is related to its Schrodinger
counterpart through Oy (t) = U(—00,t)O(t)U(t, —o0). The evolution operator U is defined as

A

T, e—ifff dt' H(t') Cty >t
Ulta, t1) =

_ P — (2.3)
j—vt e—lft12 dt H(t) , t2 < tl



Chapter 2. Green’s function formalism

Figure 2.1: Keldysh contour [44].

where T, (T}) is the chronological (anti-chronological) ordering operator which moves quantities

with later (earlier) time arguments to the left]]

2.1.1 Complex-time contour

To facilitate further theoretical formulations, Keldysh introduced the idea of complex-time contour
in his seminal paper [45]. The Keldysh contour (see Fig[2.I) consists of two counter-directional
lines along the real-time axis plus a vertical line which runs between —oo and —oo — i5 [44]]. The

contour version of the Hamiltonian is defined as

H(r) = H(t), 7=t +i0"
e HM 7€ [—00 —if3, —0]

and accordingly, the evolution operator on the contour is defined as

. TQd/H /
TT e lle T H(T) , To > T

A~

U(r,m) = (2.4)

— H Tld IH ’
T’T €+1f72 T H ) , To < T

where 7, > 77 (7 < 71) means that 7, is later (earlier) than 7, along the direction specified on
the contour. As such, the time-evolution of operators within the Heisenberg picture can be readily

generalized to the contour framework:

~

On(r) = U(—00,7)0(1)U(7, —00). (2.5)
Hence one can re-express the expectation value of O(t) using the contour formula:

Tr T, {eiifc dT/H(TI)O(T)}
Tr T. {e—ifc dq—/H(q—/)} )

O(t) = <OH(T —t io+)> - (2.6)

where T, is the chronological ordering operator defined on the contour, its order being specified by

the arrows in Fig[2.1] The concise form of Eq.(2.6) shows the virtue of using the Keldysh contour.

"For fermion field operators, every swap of two adjacent operators yields a factor of —1.

9



Chapter 2. Green’s function formalism

Using the from of Eq.(2.6), the contour version of the general nth-order Green’s function is defined
as [133]]

GM(@,... 1,0y =i" <TT {@Hu) ()l () . .1/3}_1(1')}> XD
where the shorthand notation 1 = r; 7y is used. Technically G is encoded with all the n-particle
correlations in a many-body system, and thus many physical quantities and observables can be
directly extracted from it. For example, the particle density is equal to —iG(r7,r7") and the

current density [33]]

_ : 2
i(et) = tim DYV =V G oy € A e Gler o). 2.8)

r—r’ 2m m

The two-particle Green’s function G® is often related to linear-response coefficients such as the
dielectric polarizability and the electrical conductivity [32,33]]. Higher-order Green’s functions can
be used to calculate nonlinear susceptibilities [46] and sample-to-sample fluctuations in disordered

systems [12,47]. Using the equation of motion of the field operator:

] =

d@ZI;(TrT) [ . } (2.9)

Uu(rr), H(7)
= / dr' Ho(v, v, 7)du(x'r) + v(er)dbu(rr) + / dr'U (v, v/, 7)o (v/7 )by (r7)
in conjunction with the definition (2.7)), one gets the following relation between G and G®):
d
id—G(rlﬁ, I‘27’2) = 5(1‘1 — I‘2>5(7‘1 — 7'2) + /dI‘lHo(I'l, I',, Tl)G<I'/7'1, r27_2)

71

+v(ry7)G(r171, T27) — i/dT’dr’U(rl, I‘/,T,)G(z)(l‘lﬁ, v'7 oy, ¥'7). (2.10)

We notice that this equation becomes closed for G when U = 0. In this case it is possible to get
an exact solution given the potential v(r). Nevertheless, in the presence of e-e interaction the yet
intangible G gets involved. In fact all the Green’s functions G satisfy a hierarchy of equations
of motions [33], which become closed only if a truncation is imposed at certain level. We shall

review one of the most popular truncation schemes in Sec[2.3.1] below.

2.1.2 Real-time formalism

The complex-time formalism often leads to concise forms in theoretical formulations, but for actual
calculations it is more convenient to work with real-time variables, especially for systems in steady

states since the real-times can then be transformed into the Fourier space.

10



Chapter 2. Green’s function formalism

Depending on how the two complex-time arguments are arranged on the contour, one can
introduce the following real-time one-particle Green’s functions under the analytic continuation
T—t+i0%:

[ ¢"(1.2) = -i(T {dn()dh@)})  mmec
G>(1,2) = —i {u(1)df (2 C C_
G2 - (1,2) = —i @%H( )sz( ) T €Cy,m € o1
G<(1,2) = +i (¢} (2)du(1) neC_,nel,
\ GT(L?) =-1 <Tt {T/AJH(U AL(Q)}> 1,72 € Cy

where C_ (C) denotes the forward (backward) branch. The time-ordered (G") and anti-time-
ordered (GT) Green’s functions have a causal structure and satisfy the same equation of motion as
for the contour Green’s function [33]. In particular, G plays a central role in the zero-temperature
formalism of many-body theory [32], as it is encoded with information on virtual quantum excita-
tions. On the other hand, the lesser (G<) and greater (G~) Green’s functions respectively represent
the correlations of electrons and holes. Their Fourier transforms with respect to the time differ-
ence (t; — t2) in a steady state are energy distributions of particle occupation. Assuming the exact
eigenstates of the many-body Hamiltonian (denoted as |m, n) below) are known, the equilibrium

G< can be expressed as

G< (I‘l, Iy, w) = l/dt eiw(tlih) <?$IJ{I<I'2152)12H(I'1751)>
i / dt €S (n g (£, 0) [m) (m] €7 (xy, 0)e 1 |n) 2.12)

_27ri
- Z

mn

([ (x5, 0) [m) (m] b(x, 0) [n) 6w + By, — B, )e=PEnmin)

and G~ has a similar expression:

G (r1,02,0) = — 2 S (0l (03, 0) m) ] 901, 0) In) St By By e En ) 2.13)

mn

It can be seen that the summands in Egs.(2.12) and (2.13)) vanish unless N,, = N, — 1 and

E,, = E, — w. This leads to an important relation at equilibrium:
G~ (w) = =P MG (w). (2.14)

Making use of the Fermi-Dirac distribution f(w, T, 1) = [e*“~#)+1]~, one obtains from Eq.(2.14):

GS(w) =if(w)A(w), (2.15a)
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G~ (w) = —i[l — f(w)]A(w), (2.15b)
where A(w) = i[G” (w) — G<(w)] is a Hermitian matrix termed the spectral function in the litera-
ture [44]].

To further analyze their mathematical relations, we organize the four real-time Green’s func-
tions in a matrix form:
) GT(rity,roty) G<(rity, Taoty)

G5, (T171, T2T) = . ) (2.16)
G> (I'ltl, I'gtg) GT (I'ltl, I'th)

where the subscript s denotes an extra degree of freedom which tracks the branch of the corre-
sponding time variable. Invoking the definition (2.11)), one can easily verify that the four Green’s
functions are in fact linear dependant: G>(1,2) + G<(1,2) = GT(1,2) + GT(1,2). The extra
degree of freedom can be removed by introducing the retarded (R), advanced (A), and Keldysh (K)

Green'’s functions defined as follows:

GR(1,2) = 0(t; — 1) [G™(1,2) — G=(1,2)], (2.17a)
GA(1,2) = 0(t, — 1) [G=(1,2) — G=(1,2)], (2.17b)
GX(1,2) = G7(1,2) + G<(1,2). (2.17¢)

To reveal the mathematical structure underlying these Green’s functions, we organize them in a

triangular matrix:

é(1 %) — G®(1,2) 2G<(1,2) 2.18)
’ 0 GA(1,2) '
A
By definitions, the two representations G and (D} are related through the rotation
A >
G= RlUZGRQ, (219)

where

R |20 gt |t V|tV (2.20)
VG I T T ;0 B T IR I R | '

The triangular form of Eq.(2.18)) is especially useful when one deals with convolutional integrals

between complex-time functions. To see this, consider the integral
D(r,7') = / dr1drA(T, 71)B(11,72)C(72, T') (2.21)
c

along the Keldysh contour. This can be converted to real-time integrals by means of the matrix
representationﬂ

B) ) B) )

D= A(Uz B)(Uz C>7 (222)

2 The time convolutions are implied in the matrix multiplications.

12
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where o, is inserted because the integral direction on C'; is backward. Upon inserting the iden-
A ATA A
tity R1Ro=1, we arrive at D = A B C. Then, exploiting the properties of triangular matrix

multiplication, we get

DR = ARBRCR, (2.23a)
DA = AABACH, (2.23b)
D< = A<SBACH + ARB<C* + ARBRC<, (2.23¢)

It is easy to verify that Eq.(2.23¢) also holds if the < superscript is replaced with > or K. The
generalization of Eqgs.(2.23) to a serial convolution of any number of functions should be straight-
forward. The general rule is that, for retarded or advanced functions, one simply carries out the
convolutions on the real-axis such as in Eq.(2.23a), whereas for the lesser functions one multiplies
them following the sequence R...R < A...A and moves < from left to right for each term. This

procedure is often termed “analytic continuation” in the literature [44]].

2.2 Impurity scattering and disorder-average

In this section, we study the Green’s functions of non-interacting electrons subject to an external
potential v(r). Without this potential and in absence of e-e interaction, a reference Green’s function

(Gy) can be introduced via the simplified equation of motion:

. d / / /
1EG0(r1ﬁ, ro7y) = 0(r; — re)d(m — 7o) + /dr Hy(ry, ', 7)Go(r' 1, r070). (2.24)
1

The solution to Eq.(2.10) with v # 0,U = 0 can hence be written as:
GU(]_, 2) = Go(l, 2) + /dI‘ngGO(l, 3)1)(3)GU(3, 2), (225)

where the subscript v is used to remind that the solution G, is dependent on v(r). Thinking of the
objects in Eq.(2.25]) as matrices expressed in the time-space (r7) basis, we can formally write G,

as
1

GU:T.
Gy —v

(2.26)

This gives the formal solution to the one-particle Green’s function under a given v(r). In this case,
knowing G, is also adequate for calculating G at any n. However, in many situations v(r) is
not specified in the physical problem, but is rather stochastically drawn from a statistical ensemble

described by some probability distributions. A concrete example is the electric potential induced by

13



Chapter 2. Green’s function formalism

impurities in a materialE] These impurities can be dopants, vacancies, or surface roughness, which
are usually not controllable in experiments, and whose distributions vary from sample to sample.
In this case computing Green’s functions under one single v(r) is not very meaningful, and rather
we seek to calculate the disorder-average of G(™). Nevertheless, it is not so easy to calculate the
disorder-average in a compact and analytic form. This is already implicated by Eq.(2.26) since
the potential v(r) appears in the denominator. One could imagine that things would only get more
complicated for higher-order Green’s functions G since it consists of products of GG,,. Therefore,
this section is devoted to deriving a tractable yet approximate approach to the disorder-average

problem, using the diagrammatic technique.

2.2.1 One-particle Green’s function

Our approach starts with the serial form of G, i.e. G, = Gy + GovGy + GovGovGy + - - -, and
thence the disorder-average of G, equals the sum of disorder-averages of individual terms in the
series. Whereas the average of the first two terms is trivial, starting from the third term, products
of random variables get involved. Assuming v(r) is spatially uncorrelated, the averages of these

products read

o(r)o(rs) = o(ry) - o(ra) + [U(rlf —o(m) | 6(ry — 1) (2.27a)

+0(ry — r3)7 @ (r2)v(ry) 4 6(r1 — r3)y @ (r1)v(ry)
4 8(r) — 2)8(rs — 13) [U(rl)g — 3u(ry)? - o) + 20(ry) (2.27b)
'Y(";(rl‘l) ]
v(ry)v(ry)v(rs)v(ry) = -+, (2.27¢)

where (™ is the nth cumulant of the probability distribution of v(r).

The averaging procedure for G,, can be visualized diagrammatically by Fig[2.2] where each di-
agram consists of a number of solid lines representing Gy and dashed lines representing v(r). Upon
disorder-average the dashed lines are contracted forming multi-terminal vertices whose values are
one of the cumulants (™). Diagrams are formed by arranging these building blocks in ways that

are topologically different. Note that for conciseness we have set v(r) = 0 since the expectation

3In this thesis we only consider impurities that are static and do not have internal degrees of freedom. Thus they

interact with electrons only elastically.

14
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Figure 2.2: Diagrammatic representation of the perturbation series of disorder-averaged Green’s function.
Solid lines represent the reference Green’s function G, and dashed lines represent cumulants of the disorder

potential.

value v(r) can always be taken into the reference Hamiltonian. The resultant diagrams in Fig
thus do not contain “dangling” v(r)-lines. The evaluation of a diagram requires integrating over

all the spatial and time arguments at the intersections. For example, Fig[2.2|c) represents

/ drydrodrdrodr|dTyGo(rT, 1171 )Go(r171, ToT2)Go(raTe, T171)

X Go(I'lTl,, rQTQ,)GO (I‘QTQ/, I',T/)’}/(Q) (I‘l)’}/(2) (I'Q) . (228)

We notice in Fig[2.2] that there are two types of diagrams which appear redundant, as repre-
sented by Fig[2.2(d) and (f). Indeed, both Fig[2.2(d) and (f) are composed of two copies of (a): in
Fig[2.2(d) the two (a)-diagrams are placed side by side, and in Fig[2.2]f) one is nested in the other.
Diagrams having these two features are respectively termed reducible and non-skeleton diagrams
in the literature [48]]. The other diagrams, which are irreducible and skeleton, can be grouped to-
gether and formally written as GyX ¢, G, where X is called self-energy. Note that we think of X as
a function of the Green’s function to be inserted in the diagrams. Hence the series of Fig[2.2] in-
cluding reducible and non-skeleton diagrams, can be produced by iterating the following (Dyson)

equation:

G(1,2) = Go(1,2) +/d3d4G0(1,3)EG(3,4)G(4, 2), (2.29)

where the notation > indicates that the Y-diagrams are now constructed with the full Green’s
function, thereby producing all the nesting diagrams such as in Fig2.2(f). In some sense Eq.(2.29)
can be viewed as a self-consistent equation for the exact disorder-averaged Green’s function GG
consisting of all the terms in Fig2.2[f), but ¥ itself represents an infinite series of diagrams.

Therefore, Eq.(2.29) is unsolvable unless X is truncated or only partially summed. Possible yet

15
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Figure 2.3: A diagram for the disorder-average product of two Green’s functions. Impurity potentials
(dashed lines) are connected upon disorder-average. Certain connection schemes generate reducible dia-
grams which can be split by cutting through two solid lines (Green’s functions) without touching any dashed

lines.

approximate solutions to Eq.(2.29) will be the topic of Chapter [3] where we shall consider some

specific physical effects and devise our approximation schemes for the self-energy accordingly.

2.2.2 General Green’s function correlators

As mentioned above, many physical quantities are related with higher-order Green’s functions

G™, or more elementary, the disorder-average of products of one-particle Green’s functions:
CMA1,22, - nn') = (G,(11)G,(22)) - - - Gy (nn)) (2.30)

where (- - - ) denotes averaging over the ensemble of v(r). Note that, since every G, on the right-
hand side explicitly depends on a common v(r), the correlator C™) cannot be simply decoupled
as (G,(11")) - (G,(22')) - - - (G, (nn)). Instead we need to apply the same diagrammatic strategy
as used in Sec[2.2.1] i.e. expanding (G, with respect to v and then contracting v to form cumulant
vertices. This procedure is illustrated in Fig using the C® correlator. We notice that, in
the particular contraction scheme shown on the right hand side of Fig[2.3] there is a self-energy
diagram at the top which can be absorbed into the Green’s function line; this part is automatically
removed once the self-consistent Green’s function [see Eq.(2.29)] is used in the diagrammatic
construction. Another notable thing is that, if we cut along the line labeled by “2” without touching
any dashed lines, the diagram can be simply split in two. Diagrams having this particular feature

is said to be two-particle reducible. With this observation one can write down a general expression
for C2):

C? (11,22") = G(11")G(22) + G(13)G(42") K (3654)C'® (61, 25), (2.31)
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Figure 2.4: This diagram shows that adding a G-line to a reducible C'®)-diagram cannot yield a self-
energy diagram. In the figure, each grey area represents a bundle of dashed impurity-lines. The upper and
lower G-lines are joined on the right side through an additional line. The resulting diagram has a nesting

part as marked by the red frame, resembling Fig[2.2[f) which is excluded from the self-energy.

where G is the self-consistent Green’s function and the repeated indices in the last term are in-
tegrated over. In fact, Eq. would become exact if the kernel function K(? included all the
two-particle irreducible diagrams. Nevertheless, similar to the situation of the self-energy ., it is
impossible to enumerate every K (?) diagram.

Equation (2.31)), termed Bethe-Salpeter equation in the literature [33]], can be regarded as the
generalization of the Dyson equation to C'®). Their recursive kernels, i.e. ¥ and K ?), in fact
have the following relation: each K (?-diagram can be generated by removing a Green’s function
line from a certain ¥-diagram. This procedure can be mathematically denoted as K® = 6% /6G.
To see this relation, consider a two-particle reducible diagram as shown in Fig[2.4] where the two
grey blocks represent certain arrangement of intersecting impurity lines. The two Green’s functions
are then connected by adding another on the right side. We thus obtain a diagram for the one-
particle Green’s function. This diagram is apparently non-skeleton (and hence not a self-energy
diagram) since the block marked in the dashed frame can be absorbed into the Green’s function.
This observation implicates that diagrams generated from §%/0G must be two-particle irreducible
and hence belongs to K (?) by definition. For example, removing one of the three G-lines of the
second Y.-diagram in Figa) respectively leads to the /(¥ -diagrams in the red dashed frame of
Figb). In the other way around, connecting the two Green’s functions in a K (?)-diagram leads
to a ¥-diagram. However, note that this procedure might map several K (?)-diagrams to a single
-diagram.

The concept of diagrammatic reducibility can be generalized to diagrams containing more
Green’s functions. In Fig a few reducible diagrams of higher-order C'™) are displayed. All
of them can be split in two by cutting only two Green’s function lines without touching any
dashed lines. We hence define K™ as the irreducible diagrams which have n edges (n G-
lines). Apparently, any nth order reducible diagram can be constructed by assembling a number
of K")(n' < n) diagrams. Moreover, akin to the relation between ¥ and K, a K("-diagram

can be generated by removing a Green’s function from certain K ("~"-diagram. This procedure is
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Figure 2.5: The hierarchy of irreducible K (") diagrams. Diagrams enclosed in dashed frames of the same
color are related via the Green’s function removal procedure as described in the text. Note that the second
equality in each line is only for illustration purpose and is not exact. For instance, all the three diagrams in
the red frame would be mapped to the second ¥ diagram upon linking the two solid lines, and thus that >

diagram is triple counted.

Figure 2.6: More examples of reducible diagrams, which can be split by cutting two solid lines (Green’s

functions) without touching dashed lines (impurity vertices).
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Figure 2.7: Diagrammatic schemes for disorder-averaged correlators defined by Eq.(2.30), up to n = 4.

Same diagram blocks are marked by same colors.

illustrated in Fig[2.5] Diagrams enclosed in dashed frames of the same color are related via the
Green’s function removal procedure. Those in a same frame are called sibling diagrams below, in
that they are derived from a same (parent) diagram.

With these understandings, we can formulate a hierarchy of diagrams that correspond to C') of
different n (see Fig, which involves all K*)-diagrams up ton’ < n. Asillustrated in Fig a
C(+1)_diagram can be generated by replacing a G-line in a C'""-diagram with the C'®)-correlator.
One can easily check that applying this procedure to each C(™-diagram yields all the C'"*+1-
diagrams, which cover all possible connection patterns of impurity lines that are topologically
different. To write down the mathematical expressions of C'™), we first introduce the following

two auxiliary diagram blocks:
A®(11'22) = §(11)6(22') + K@ (1122)CP(11'22) (2.32)

A®(117,22/,33") = A®(3'3'11)G(33') AP (22'33) + CP(3'3'1T) K ¥ (11', 22,33 ) (2'2'33)
(2.33)
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Figure 2.8: Remove a Green’s function (red) from an edge of a C' (")_diagram, and attach C'®) to the

opening. This procedure yields a C("*1)-diagram.

as illustrated in Figa) and (d) respectively. Using A® and A®) we then write down the ex-

pressions for C'®) and C¥

C®(11',22',33") = A® (11,22, 33")CP(11'22), (2.34)
CW(11/,22/,33,44") = A® (22,44, 11")C'? (22'44) A®) (44,2'2', 33)
+ AB)(33, 1’1’,22) (11’33’ )A<3>(11 33, 44"
— GAH AP @ NT)GAT)AP(1'1'22)G(22)) AP (2'2'33)G(33) AP (3'3'44)
+ KW(I1",22,33,44)C@ (@ 411)0P(1'1'22)C? (2'2'33) 0P (3/3'44). (2.35)

In principle one could continue going upward along the hierarchy, but the expressions for C'™
would become increasingly more complicated. Here we have only listed the expressions up to
C®: these should suffice for most quantum transport applications.

In practice the real difficulty of calculating C'™ lies in the fact that one cannot enumerate all
the irreducible kernels on any level. One thus resorts to certain truncation schemes on the infinite
diagram series, which leads to an approximation of C'™). It needs to be pointed out that such
truncation schemes are not arbitrary; they need to follow certain rules. First of all, if a certain kernel
is taken into account for a calculation, so should be its siblings [1]. That is to say, kernel diagrams
in Fig[2.5] that are grouped in a same frame should be taken or discarded simultaneously. This
rule is especially important if the computed quantity is associated with certain conservation laws
[33,49]. This point will be further discussed in Sec The second rule is that, if a theoretical
formalism involves C™ of different n, the proper kernels used to construct C'™-diagrams of
larger n are the descendants of those selected for lower n [[1]. Thus a diagrammatic scheme is

totally determined by the self-energy diagrams being selected. To illustrate this rule we consider
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linear transport calculations which typically involve the C'®-correlator. Suppose the two diagrams
as presented in Figa) are selected for the self-energy. Then K (? should accordingly consist
of the four diagrams listed in Fig[2.5(b) (no more, no less). Another concrete example is the
calculation of conductance fluctuation in disordered quantum dots, which can be expressed in the
form of either (G<G<) (C®) [50] or (GRGAGRG*) (C™) [47]. Therefore one can use either the
diagram series of Fig[2.7(a) or those in Fig[2.7(c) to compute the same quantity. It was shown in
Ref.[1] that results from these two approaches would be consistent only if the approximate kernels

used in the respective diagrammatic schemes are related through the second rule aforesaid.

2.3 Electron-electron interaction

In the same spirit as how impurity scattering was addressed in the last section, we also seek to cal-
culate the e-e interaction effects using a tractable perturbation series. In this section we shall first
present the theory of Hedin equations [S1] which serves to systematically generate the diagram-
matic series to an arbitrary order with respect to the interaction strength. We will also demonstrate

how to compute the diagrams by means of the real-time Green’s functions introduced in Sec[2.1.2]

2.3.1 Hedin equations

The starting point is again the equation of motion Eq.(2.10). Note that, in the presence of electron-
electron interaction, Eq.(2.10) is not a closed equation for the one-particle Green’s function G in
that G® is also involved. The latter can be expressed on a formal level with only one-particle quan-
tities by employing the functional derivative technique [49,52]. To be specific, we take derivative
of the Green’s function with respect to the external potential v, which only couples to the electron
. . . . . o, . . . 5 —i dT’ 7_/ .
density in .the Hamiltonian. Using the definition l) and the identity 575 7c {e7t]edr () =
_1TC {6_1 fc dT/H(T/)n(]_> - .}’ we get
0G(1,2)
GP(1,3;2,37) = G(1,2)G(3,3") — —~ 2.36
(7)7) (’)(’) 67)(3)’ ( )
which is then used to replace the G in Eq.(2.10). To further simplify Eq.(2.10) we introduce the
interaction self-energy:
0G(1,4)
dv(3)

where G~ should be understood as an operator such that GG~ = 1, or more explicitly

Yee(1,2) = i/d3d4 U(1,3) G 1(4,2), (2.37)

/d3 G(1,3)G71(3,2) = 6(1, 2). (2.38)
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Using Eqs.(2.36) and (2.37)), we then rewrite Eq.(2.10) as

d
id—G(rlTl, roTy) = 0(ry —19)d(m — 7o) + /dr’Ho(rl, v’ 71)G(r 11, ro7s)

71

+ [VH + U] (I‘lTl)G(I'lTl, 1'27'2) + / dT,dr,Eee(rlTl, I'/T,)G(I'/T,, I'2T2), (239)

where the Hartree potential V(1) = —i [ d3 U(1,3)G(3,3%). To proceed we utilize Eq.(2.38)
and replace the derivative in Eq.(2.37) with

0G(1,2) 6G71(4,5)
503) —/d5d4 G<1’4)—6v(3) G(5,2). (2.40)
Then, by using the chain rule, we get
-1
Yee(1,2) = —i/d3d4 U(1,3)G(1,4)6GT((34)’2) (2.41)
. 6G~1(4,2) 6V (5) / —06G71(4,2)
=—i [ d3d4d5 U(1,3)G(1,4 - = d4ds5 W(1,5)G(1,4) ——=———
7 e T L) 4 =,
where V = Vu +vand B
_ V()
W(1,2) = /d3U(1,3) 50(3) (2.42)

The quantity ¢ 1% /v represents the total potential change in response to the external potential, and
thus it equals the inverse dielectric function ¢! of the system. In this sense, W represents an
effective two-body interaction which takes into account the dielectric environment comprised of
surrounding electrons. This effective interaction can be further expressed in a recursive form if we

continue to unfold 6V /Jv:

W(1,2) = /dS U(1,3) [5(2,3) + 5;21*((32))}
= U(1,2) + / d3 U(1,3) [ / d4d5§g((?) ?;((35)>U(4, 2)
=U(1,2) + / ddds W (1,5)P(5,4)U(4,2), (2.43)
where
() _ G 5G1(3,4)
P(1,2) = TR o / d3d4 G(1,3)—W(2) G(4,17) (2.44)

is the polarization. The quantity —0G~'/8V, which shows up in both Eq.(2.41) and (2.44), is

termed the vertex function, denoted as A, in the following. Using Eq.(2.39) we can express A as

§G1(1,2) 0Xee(1,2)
e _5(1’2)5(1’3)+—5V(3) .

Ao = — (2.45)
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Figure 2.9: Diagrammatic form of the Hedin equations (see the main text). Solid lines represent Green’s

functions and single wiggle lines represent the bare e-e interaction.

By further using the chain rule §%./0V = (§%../0G)(3G/6V') and Eq.(2.40), we get a recursive
relation (the Bethe-Salpeter equation) for A.:

0%ee(1,2)
3G (4, 5)

Equations (2.41), (2.43), (2.44), and (2.46) as a whole are termed the self-consistent Hedin

equations in the literature [51]]. Their diagrammatic representation is shown in Fig[2.9] Although

Aee(1,2,3) = 6(1,2)4(1,3) +/d4d5d6d7 G(4,6)G(7,5)Mee(6,7,3). (2.46)

every object in these equations is essentially a functional of the Green’s function, this formally
exact equation system cannot be solved in a closed form. The reason is that the functional form of
Yee[G], which lies in the heart of Eq.(2.46), cannot be known a priori, and in fact the functional
itself is to be determined by the outcome (if ever accessible) of the Hedin equations. Naively one
might think of using a numerical approach to solve the Hedin equations iteratively. However, this
is again impractical because the terms generated by the iteration would grow rapidly in amount
and soon be out of control. Even worse is that the generated series is not guaranteed to have a
convergent behavior [33]]. Therefore, in practical applications of the Hedin equations, one often
truncates the A, series by hand or selectively sums up its subset using certain advanced techniques

(e.g. Parquet scheme [54])

2.3.2 Diagrammatic formalism

Figure [2.10] displays the self-energy series expanded from the Hedin equations with respect to the
bare e-e interaction, sorted by the number of interaction lines. Figure 2.10(a) and (b) correspond
to the Hartree-Fock approximation [33], (c) comes from expanding the screened potential 11/, and
(d),(e) both arise from the vertex correction. The rules to translate these diagrams into mathemat-

ical expressions can be easily deduced from the Hedin equations: Each solid line represents G, a
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(a) (b) (c) (d) (€)

Figure 2.10: Perturbation series of the self-energy (Xe.) generated from the Hedin equations (cf. Fig[2.9).

S3t3 S4t4
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N7 T
s N__7

(b")

Figure 2.11:  Self-energy diagrams in the presence of both interaction and impurity scattering. Those in
the second row are obtained after disorder-average. Note that, due to different combinations of the impurity
lines, after disorder-average there could exist multiple diagrams having the same structure on the interaction
part, e.g. (b’) and (b”).

wiggle line represents iU/, and each closed G-loop [e.g. in Fig[2.10(a,c,e)] yields a factor of —1
[33].

In the situation where the physical system is subject to both interaction and impurity scatter-
ing, we need to combine the diagrammatic scheme for disorder-average with that of Fig[2.10] To
this end, we regard the external potential v(r) as a perturbation and thus expand the Green’s func-
tion with respect to it. This adds new diagrammatic elements on top of Fig[2.10] as illustrated in
Fig[2.T1| (first row). Disorder-average amounts to contracting the impurity lines by their cumu-
lants, just as demonstrated in Sec[2.2.1] Diagrams yielded from this procedure are illustrated in
the second row of Fig[2.11} In particular, we will see in Chapter [5 that Figs[2.11[a’,b’) play an

important role in the so-called Altshuler-Aronov effects [21]].

A diagram is computed by integrating over all internal variables. Special attention should
be paid to the time variables as they lie on the Keldysh contour, where the two branches have

opposite integration directions. To alleviate the inconvenience that the time variables run on op-
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posite branches, we utilize the matrix representation Eq.(2.16) and assign a branch index s(—/+)
together with a real-time variable to each diagrammatic vertex (see Fig[2.10c). As such the inte-
gration direction can now be tracked by the sign of s. Accordingly, the interaction line now reads
-1sU and the impurity line (before contraction) reads —sv in this representation. Cautions should
be taken in that one cannot draw a direct correspondence from the thus computed diagrams to the
self-energy under the contour representation (E}). To see this we consider a self-energy diagram
attached to two external Green’s functions. Such a diagram is supposed to give é o % o é ac-
cording to Eq.(2.22). However, the o, matrices at the two terminals of the self-energy diagram are
not included in the diagrammatic rule formulated above. Therefore the diagram being computed

actually corresponds to

, > ¥R 4 ¥< —¥<
¥ =0,%0, = (2.47)
-¥> Y>3k
For the similar reason the wiggle line represents
: WR 4 W= W= WwRw=<  —Ww<
W =o, 0, = (2.48)
W> W> _ WR —W> W> _ WR

which bears the same form as Eq.. In practice it is more convenient to compute Wk <>,
since Eq.(2.43) consists of only convolutional integrals of the form Eq.(2.21), and then transform
to Eq.(2.48) for further calculations.

To be concrete, a calculation example on Fig[2.10|c) is given in the following. This diagram is

evaluated as (without showing the spatial variables explicitly):

Z dtgdt4 [—islU(sltl, 83t3)5(81, 83)5(t1 — tg)] [—iSQU(SQtQ, S4t4)6(82, S4)5(t4 — tg)]

83,54

X G (5111, 52l) [—2G(s3t3, Sata)G(sata, ssts)], (2.49)

where the factor 2 comes from the spin degeneracy. As an example, we show the derivation of its
lesser component E(<C) from the above expression. To this end we set s; = —, s, = + and take into

account the minus sign as indicated in Eq.(2.47) (top right corner). This leads to

Zé)(rltl, roty) = Q/drgdr4U(r1 —13)U(ry — v4)G=(r1t1, vate) G (r3ty, aty) G™ (rata, v3ty),
(2.50)
which agrees with the expression derived from the Langreth rules [S5]. The reason why we bother
reformulating the diagrams with the s indices instead of using the Langreth rules [33}44] directly
is that the former approach turns out more feasible for numerical programming, especially for

complex diagrams such as Figs[2.T1(a’,b’).
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|Hl|'

(2) (b)

Figure 2.12: A first-order diagram of Luttinger-Ward functional (®[G]) with (a) only e-e interaction, (b)

coexistence of disorder-average.

2.4 Conserving approximation

As can be seen from previous sections, the accuracy of a diagrammatic scheme, either for the
disorder-average problem or for the e-e interaction, largely depends on the selection of self-energy
diagrams. On the one hand, the selected >.-diagrams should at least incorporates the concerned
physical process, which varies among different systems and problems. On the other hand, as
a general rule, quantities computed in an approximate approach should yet satisfy certain exact
relations on a fundamental level. For quantum transport problems it is most important that the
computed currents or coefficients fulfil the conservation laws [32, [33]]. In this section we present
the Kadanoff-Baym scheme [49, |52]] which offers a tractable approach to generating sets of .-
diagrams such that the computed transport currents at the one-particle level are guaranteed to be
continuous. We also formulate a set of Ward identities to be used to check the conserving property
of general n-particle correlators [see Eq.(2.30)], which are closely related to transport coefficients
not addressed within the Kadanoff-Baym theory.

2.4.1 Kadanoff-Baym scheme

The Kadanoff-Baym scheme starts by constructing the Luttinger-Ward functional [33]] which is
often denoted as ®[G]. In its diagrammatic visualization (see Figl2.12) ®[G] consists of closed
Green’s function loops with connections of interaction vertices. Whereas the original paper by
Baym and Kadanoff [49] only considered the e-e interaction effect, their theory can be readily
generalized to the coexistence of disorder-average [34] (e.g. Fig[2.12b). Having specified a set
of ®-diagrams, one then derives the self-energy by individually removing G-lines from each ®-
diagram in the set. For example, the diagram of Fig[2.T1(b’) is generated from Fig[2.12(b). This
process is much similar to how the disorder-average kernels are derived from the self-energy (see

Sec[2.2.2)). In mathematical form it can be expressed as

el
$(1,2) = W[l]ﬂ (2.51)
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To see this scheme indeed lead to the conservation of charge current, we start with a reformu-
lation of the equation of motion (2.39). In Eq.(2.39) we notice that the time derivative is applied
to the first time argument 7;. Alternatively, it can be applied to 7, as well, and as such one obtains

an equivalent pair of equations of motion:

i%G(l, %) — /dB (Ho(1,3) + S(1,3)]G(3,2) = 6(1,2). (2.52a)
- 1%0(1, 2) - /d3 G(1,3)[Ho(3,2) + (3,2)] = 8(1,2). (2.52b)

Note that the equations of motion must be understood as self-consistent equations for G in that >
is implicitly a functional of G. Subtracting Eq.(2.52b) from Eq.(2.52a)) and utilizing the definition

of Hy [see Eq.(2.2)], one gets

[16% + id%} G(1,2) + (V1 + V) - %G(l, )~ 5L (7, AQ)
+ Vo A(2) +2A(1) - Vi +2A(2) - V5]G(1,2) — 23;2 [A(1)* — A(2)%)G(1,2)
— /d3 [X(1,3)G(3,2) — G(1,3)%(3,2)). (2.53)

Setting ro75 — ry7; " and making use of the relation (2.8)), one can rewrite the left hand side as

dn(l) V1 — VQ lq dn<r1t1) .

- =262 - Lamea | =L g, .

i +V; [( 5 G(1, ))21+ - ()G(1,17) 7y Ve, - jrity)
(2.54)

Hence one gets a sufficient condition for the particle number to conserve:
/d2 [X(1,2)G(2,17) — G(1,2)%(2,17)] = 0. (2.55)

In the Kadanoff-Baym scheme, this condition is automatically satisfied. This can be seen by per-
forming a gauge transformation G(1,2) — ¢¢MG(1,2)e ). Since the Green’s functions in a
®-diagram form closed loops, the ®-functional is invariant under this gauge transformation. Tak-

ing ¢ infinitesimal, one gets
0=46P[G] = i/dldQ Y(1,2)G(2,1M)[0(2) — ¢(1)]
= —i/d1d2 [B(1,2)G(2,17) — G(1,2)2(2,17)]¢(1) (2.56)

Finally, because of the arbitrary choice of ¢, Eq.(2.55) must hold. In fact, the Kadanoff-Baym
scheme also ensures the continuity of other quantities, such as momentum, angular momentum,

and energy. For a comprehensive discussion on this topic, the reader is referred to Ref.[33]].
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2.4.2 Ward identity

Whereas the Kadanoff-Baym theory concerns the conservation properties of direct observables
that are encoded in the one-particle Green’s function, some quantities measured in experiments,
such as response functions, are rather associated with higher-order Green’s functions and are thus
subject to more sophisticated conservation criteria other than the ®-functional derivablility. A
common method to check whether conservation laws are respected in calculations of response
functions consists in using the Ward identity. As a relation between different correlation functions
the Ward identity was originally formulated in the context of quantum electrodynamics [56]. Akin
to Eq.(2.55), the Ward identity can also be derived from the gauge invariance of the underlying
quantum field [S6]; thus it implicates conservation laws. The machinery of this theory was later
transferred to the condensed matter physics, with several variations depending on the physical
problems [32]. In the following, we restrict ourselves to the disorder-average problem of nonin-
teracting systems. We shall show that the formalism developed in Sec[2.2.2] for Green’s function
products satisfies a particular type of Ward identity and thus meets conservation requirements.

To formulate the Ward identity we first define a function
T(I‘l, o 21, 22) = [Go(rl, ro; 22)]_1 — [G()(I'l, To; Zl)]_l, (257)

where G is the Matsubara Green’s function [32] of the disorder-free medium (assuming a steady
state): the analytic continuation of 2 — w =4 i0% leads to GE(w) and G#(w) respectively. It is
easy to see that for a closed system Y (z1, z2) simply reduces to (2o — 21)d(r; — r2). However, for
systems subject to open boundary conditions (e.g. connected to electrodes), Y'(z1, z9) = 22 — 21 +
Yiead(21) — Liead(22) Where Yje.q is the lead self-energy (see below in Sec. Assuming the
impurity scattering is elastic, Y (z1, 22) also equals to G, (22) — G,(z1) where G, is the Green’s

function under a given disorder configuration. Thus Eq.(2.57) can be rearranged as
GU<21)T(21,22)GU(22) = Gv(zl) - GU(ZQ). (258)

One is then free to continue multiplying G, on both sides of Eq.(2.58), and after taking disorder-
average over v and invoking the definition Eq.(2.30)), one arrives at a Ward identityﬂ

/ n / . / / / .
/drm drm+10( )(rlarl y 21y Yo, o, 20Ty, Ty 7Zn)T<rm 7rm+1; Zm7zm+1)

_ n—1 1 . / X /
- C( )( =1 Tm—1,2m—15 Ymy Tm+1 5 2ms Ym+42: 'm42 5 @m+2 )

n—1 / . / . !
- C( )( -1 Tm—1, Zm—15 Tm, I‘m—‘rl y Am4+15 rm+27 | ) s Am42 " ) (259)

“This identity under n = 2, 3 has been previously discussed in Refs.[46}57] in the context of the coherent potential

approximation.
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Figure 2.13: Illustration for Eq.(2.60) .

Notice that on the right hand side the two C'™~Y) differ only by one z-argument. This identity
needs be satisfied no matter what approximation scheme is used. A similar relation holds for the

irreducible kernels:
/ n / . ! ! / . / .
/drm dI‘m+1K( )(1'1, Iy, 21, I'p,Tg, 29Iy, Iy 7271) [G(rm y 415 Zm) - G(I'm y 415 Zm-i—l)]

= K(n_l)( Ty, I'm—1/> Zm—15 T'm, rm+1/7 Zmy Ym+2, rm+2/> Zm+2 " )

— K(”_l)(' T 1, Tty Zme15 T Tt Zmt s Tme2, Tma2’s Zmi2 o0 ) (2.60)
This relation follows from the fact that K™ can be generated by removing a Green’s function from
K®=1)_ More clearly, we visualize the right-hand side of Eq.(2.60) by Figl2.13| where a K ©®)-
diagram is used for illustration. The red line represents [G(r,,, Trmi1; 2m) — G(tn), i1 Zms1)]s
its migration from one end of the m-th edge to the other end follows from the identity

X1 Xy Xy = NYao oYy = [(X1 = Vi)Yo Yol + [X0(Xp — Ya) VsV,
+o (XX (X = Y] (2.61)

We notice that, once these red lines are removed respectively, one gets the corresponding K ("=%-

diagrams. Hence Eq.(2.60) is proved.
The same logic can as well apply to Eq.(2.59) since a C™-diagram can be obtained by replac-
ing a Green’s function in C*~1 with C® (see Fig[2.8). Therefore it only remains to show

/dr1/dl‘20(2)(1‘1,1‘1/, 21, 1‘2,1"2/, ZQ)T(rl/7r2§ 21, 22) = G(I‘1>I'2/, 21) - G(rl,l‘z/, 22)7 (2.62)

1.e. the Ward identity for n = 2, in order to verify that any approximation constructed with the
scheme of Fig[2.5|indeed satisfies the identity (2.59) for all n. To this end, we start by rewriting
the left hand side of Eq.(2.62) as

/ drllerG(rl, I‘ll, Zl) [T(I’ll, g 21, 2'2) + A(I’ll7 g 21, 2’2)] G(I‘Q, 1'2,, 2’2). (263)
Using the recursive structure of Eq.(2.3T)), we obtain an equation for the A object defined in (2.63)):

/. . / 2 . / ! 1 /
A(I'071‘0 721722) = /drldr2 K! )(1‘071'1721, ry,To ,Zz) /dr1 dI‘zG(I‘hI‘l 721)
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X [Y(ry',19; 21, 22) + A(r1, 125 21, 22)] G(ra, 12, 29). (2.64)

Since G~! = G;' — ¥ (T being the self-energy from disorder-average), we replace the T in
Eq.2.64) by G~'(22) — G7'(21) + X(22) — ©(z1). Then, making use of Eq.(2.60) at n = 2
(noticing K" = %), we obtain from Eq.(2.64): A(z1, 2,) = %(21) — %(2,). Finally, expressing
the T and A in with G and ¥, we find that yields G(z1) — G(22), which is the right
hand side of Eq.(2.62). Hence Eq.(2.62) is proved, along with Eq.(2.59) for all n.

In the following we use the linear-response polarization P® [see Eq.] as an example to
illustrate how the Ward identity is related with charge conservation. Given a disorder configuration
v and in the absence of e-e interaction, the polarization is written as

PR(r, v/ w) = /%[f(e) — fe+w)]GAX 1, e)GR(r, 1 e + w)

+ fe+w)GMY 1, e)GA (r, 1) e +w) — f(e)GR(Y 1, e)GR(r, 1/, e + w), (2.65)

where we have made use of the equilibrium relation G<(¢) = f(¢)[G*(¢) — G®(¢)]. Integrating r
over the whole space and applying Eq. with Y = 2, — 21, we find [ drP®(r,r’,w) = 0. This
indicates that the total density variation in response to an arbitrary perturbation of external field
should always be zero, thereby complying with the charge conservation law. Apparently applying
disorder-average to Eq.(2.65)) should preserve this conservation property; this is guaranteed by
the identity Eq.(2.62). Applications of higher-order Ward identities are less common but do exist
in some cases: they are related with some nonlinear-response coefficients [46] or cross-device

fluctuations [47]].

2.5 Transport model

This section demonstrates the implementation of the Green’s function framework on finite transport
systems which exchange particles and energy with the environment. The overall goal is to use the
Green’s functions to compute the charge current in such systems given the steady status of their

environment.

2.5.1 System partition

A theoretical model for calculating transport properties needs to respect the fact that electronic
transport is a physical process which depends both on the sample size and on the time scale of
experimental measurements. In this thesis we consider ergodic transport systems in the sense that

a particle injected into the sample (or device) will traverse its entire space during the time period of
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Figure 2.14: Schematic of the transport model. The simulation box is divided into three regions: left lead,
device, and right lead. The mesoscopic structure of interest is placed in the device region, and the leads are
assumed to have certain periodic structures that extend to infinity. The chemical potential and temperature
in leads are given by the respective electrodes to which they are connected. The system is further sliced into

“principal layers” such that the underlying non-interacting Hamiltonian does not couple nonadjacent layers.

measurement and fully explore its boundaries. This is a valid assumption since the systems to be
studied are assumed to be mesoscopic and at a steady state (corresponding to long time periods).
In this scenario, it is thus necessary to include in the model not only the device itself but also a
careful treatment of its environment. A common practice is to put in the simulation box the device
structure of interest together with the metallic leads connected at the two ends (see Fig[2.14)) [40].
The leads are assumed to have a strict periodic structure that extends to infinity. As the leads are
eventually linked with the respective electrodes, they are set at equilibrium with given chemical
potentials and temperatures, and hence serve as electronic reservoirs for the device. Furthermore,
electrons in the leads are assumed to form a Fermi liquid such that the electronic structure therein
can be described by a quadratic Hamiltonian. For practical reasons the system is also sliced into
“principal layers” stacked along the transport direction such that the underlying non-interacting
Hamiltonian does not couple nonadjacent layers [S8]].

Under these considerations, the total Hamiltonian hence takes the following form in real-space:

Hy, Hip O
Hpr, Hpp Hpr
0 Hrp Hgr

where the subscripts L/D/R denote left/device/right respectively. Note that the off-diagonal blocks

have zero entries except at the lead-device contacts, and that both Hy;, and Hyrg have a tridiagonal

form ~ _ _ _
Hoo Hoy
Ho H Hyy Ho Ho
Hyp, = w0 , Hgr =
H10 Ho() H01 HlU HOO
i Hyp Hyp | i ' |
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due to the principal layer scheme.

2.5.2 Block Green’s functions

Similar to the Hamiltonian, the Green’s function can also be viewed as a block matrix in the real-

space:
G Gup Gir
G=| Gp. Gpp Gor
Gr. Grp Grr

As will be clear later, the central quantities in a quantum transport problem are the block Green’s
functions G1,p, Grp, and Gpp: Grp and Ggp turn out to be associated with the currents through
the leads, and Gpp contains the statistical information about the device region of our interest. In
this subsection, we follow the equation of motion technique [44] to obtain the compact expressions
of these Green’s functions.

We first seek to write down the equation of motion for Gyp. To this end, we utilize Eq.(2.39)
with the restriction that the spatial coordinate r; is placed in the left lead and r, in the device

region. After some straightforward algebra on the matrix product HyG, we getﬂ

d
id—TlGLD(l,Z) = /d3 [Hi(1,3)Grp(3,2) + Hip(1,3)Gpp(3,2)] . (2.66)

Note that, in writing down this equation, we have invoked the presumption that the leads are free
of disorder or interaction. To solve this equation of motion, we use again the strategy which was

employed as in Eq.(2.25): namely we express Gip as
Gip(1,2) = / d3d4Gorr(1,3)Hip(3,4)Gpp (4, 2), (2.67)

where G, is a reference Green’s function satisfying

d
i Gou(1,2) :5(172)+/d3HLL(1,3)G0LL(3,2). (2.68)
1 L

Physically speaking, Gy, represents the solution of the equilibrium semi-infinite lead when it
is detached from the rest of the system. The retarded component G, is solved by applying
Eq.(2.23a)) to Eq.(2.68), and after performing a time-frequency Fourier transform, we obtain the
matrix solution G& ; (w) = [w+i0T—Hyy]~!. As Hyy, is tridiagonal in the principal layer represen-

tation, this matrix inversion can be computed exactly using the standard recursive algorithm [S9],

>The other block Grp satisfies the same set of equations with L replaced with R.
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or by using the eigen-spectral representation [60] G 1 (r1,r2,w) = Y 1 Yi(r1)vg(rs)/(w —
ex +107). Once G&; is solved, G and G can be calculated readily using Eq.(2.15).

Next, we place the spatial coordinates r; and ry of Eq.(2.39) both inside the device region. As
such, only the central block of HyG is involved: HyG — HppGrp + HppGpp + HprGrp,
which can be brought to a more compact form by defining >, = Hp G, Hyp and Yg =
HprGorrHrp- These two quantities are often termed the lead self-energies [44, 60]. Note
that these self-energies have the same size as Hpp and, in order to calculate them, we only
need the Gy, or Gorr matrix blocks at the first principal layer of the lead. Hence H\G —

(Xr + 21, + Hpp)Gpp, and we obtain a closed-form equation of motion for Gpp:

i%GDD(M) 26(1,2)+/d3 [Hop(1,3) + Ziet(1,3)] Gon (3, 2), (2.69)
1 D

where > also includes the effects from disorder-average and e-e interaction, i.e. o = X, +
Sk + Yais + Yee. Following the analytic continuation procedure as in Eq.(2.23)), we gef(]

GEp(w) = [w— Hpp — IR, (w)] 7, (2.70a)

Gop(w) = (1+ GPpSiy) Gopp (1 + S Gop) + Ghp (W) S5 (W) Gpp (w). (2.70b)

2.5.3 Charge current calculation

The charge current (per spin) flowing out of the left lead is defined by

dN; i
L = _E[Hv NL]7

I = —t
LT T )

where N, = || dript(r)y(r) is the total number operator of the left lead. Since interaction is
assumed confined within the central device region, N, commutes with all parts of the total Hamil-

tonian except for Hpr, and Hyp. Hence the current can be expressed as

I, = %G/Ldrl/DdIé [HLD(I'I,I'Q) <?@T(F1)@ZJ(F2)> — Hpy(ra,11) <¢A}T(T2)1&(I‘1)>]

2e

2e
= ERQ [TI' HDLGED(tyt)] = h

/dwRe [Tr HpLGrp(w)], (2.71)

The first term on the right hand side of Eq.(2.70b)) usually vanishes in real calculations. Using the relation Gsop =
—f(w—up)(GEp — Giop ) together with Eq.(2.70a), this term can be rearranged to 2in f (w — up ) GS Gy, where
n(— 07) is the regularization factor introduced from time casuality. Assuming all states have a finite life-time due

to either interaction or coupling to the reservoirs, the product GR G, should not depend on 7, and hence this term
should vanish [55]).
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Chapter 2. Green’s function formalism

where the trace operates over the real-space. In obtaining the second line, we have used the original
definition of G< and its anti-Hermitian feature. Applying the rules of Eq.(2.23c) to Eq.(2.67), we
get Hp, Gy = G HLpGp + G 1 HipGrp- Substituting this relation into Eq.(2.71) and using

the definition of ¥y, = Hpy,G o1 Hip, we obtain
2
n=2 / dwRe Tr [SF ()Gip (@) + SR (w) G (w)] - 2.72)

This formula signifies that, in order to calculate the current, one only needs to compute some real-
space integrals confined in the device region. The impact from other degrees of freedom in the
lead is encoded in the YJf, self-energy, which has the same size as Hpp and has no dependence on
the interaction or disorder within the central device.

It is possible to cast Eq.(2.72) into a physically more transparent form. To this end, we apply
the identity Re Tr[M] =3Tr[M + MT] to the integrand of Eq. and use the fact G — G< =
GR — GA:

1
Re Tr [X5Gpp + E1'Gp) = ETT (25 (Gpp — GEp) + (5F — 1) Gp)]
1
= §Tr =25 Gop + 27 Gop) - (2.73)
Hence we obtain an equivalent formula for calculating the current:

I, = > / dwTr X5 (w)Gpp(w) — Xf (w)G5p (w)] - (2.74)

The physical picture implied by Eq.(2.74)) is quite clear: The second (first) term in the integrand
represents the hole (electron) current as X7 (X)) represents the hole (electron) transfer rate from
the lead to the device and G5, (G5 represents the available hole (electron) states in the device.
The current through the right lead I can be derived in exactly the same way.

Suppose the temperature is set at zero and j;, > pig. In the energy window pp, > w > pg, 37
must vanish, and hence only the first term in Eq.(2.74) retains, which equals (2ilm¥})G5,. When
interaction is omitted, G5, = GRp, (—2ilmER)GHp,. Thus the integrand of Eq.(2.74) becomes

e

G(w) = 42 Tr [ImXg (w) Gpp (w)Im TR () Gop ()] (2.75)

i.e. the conductance of the system. More generally, the conductivity of a noninteracting system
reads 275 5 5

Opw = _QEmQQ /drdr'Re {%GR(r,r’,gp)%GA(r',r,sp) . (2.76)

The derivation of Eq.(2.76)) involves the linear response Kubo formalism, for which the reader is
referred to Refs.[[12] [60].
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Figure 2.15: A discrete ribbon-shaped lattice which simulates a quantum wire. The grey areas denote the
electrodes. [ denotes the principal layer index. L and W denote the numbers of sites in the longitudinal and
transverse directions respectively. Note that disorder and e-e interaction are restricted in the central region

(black).

Apart from the currents through the leads, the current at the interface between adjacent princi-
pal layers can also be calculated. To this end, we take time derivative of N; = [, dript () (r), ie.
the total number operator of the /th principal layer. Since N; commutes with the total Hamiltonian
except for ;4 and H; 44, similar to the case in Eq., we get

d(N;)  2e
dt h

The first term on the right hand side is identified as the current flowing into the /th layer from the

/ dwRe [Tr Hi_1 Gy (w) — Tr Hy1 Gy y(w)] - (2.77)

(I — 1)th layer, while the second term represents the outgoing current on the other side. This leads
to another useful formula for calculating the current:
2
L= { dwRe [Tr H_1,G5,, (w)] - (2.78)
For a theoretical calculation which respects conservation laws, the value of I; should be indepen-

dent of [; besides the relation I; = I}, = —Ig must hold.

2.5.4 Discretization

In this subsection we construct a necessary numerical model in order to implement the theories
we develop in this thesis. To this end we discretize the real-space with an orthogonal grid (see
Fig2.15). The Coulomb interaction is thus written as U;; = ua/|r; — r;|, where a is the lattice
constant, v is a scale parameter, and ¢(j) is a site label. To regularize U;; at ¢ = j, we note that
for a spinless fermionic system the Hartree and Fock contributions exactly cancel each other at
1 = j, and thus we can simply set U;; = 0. For electrons on the other hand, the interaction between
opposite spin components could retain at ¢ = j. In this case we parameterize the onsite interaction

as Upn 1y, which replaces the ill defined Coulomb interaction at ¢ = j.
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Figure 2.16: Band structures of the lattice systems defined in Fig under the perfect condition, i.e.

without disorder or interaction. Note that we have shifted the band centers to the energy zero point.

The kinetic energy is associated with the Laplacian V* = 97 + 95 + 07 which, if restricted in

one-dimension, is discretized as [60]]

[GQF} o F —2F 4+ Fi
r=ja

+ O(a?). (2.79)

0x? a?

We notice that at this level of finite difference approximation the kinetic energy only couples
the lattice sites which are nearest neighbors, with a coupling coefficient ¢ = h?/2ma?. In the
absence of disorder and interactions, the band structures of thus defined lattice are illustrated in
Fig[2.16 with different 1. In the presence of magnetic field, the coupling needs to be modified by
multiplying an additional phase factor [60]:

exp [EA (r; — rz)] : (2.80)

where A is vector potential.

To sum up, we obtain the following Hamiltonian for the discrete lattice [cf. Eq.(2.1)]:

H=> &cle;+ ) v + % > Uity + 3 Ugiapiiay, (2.81)
i\j i i#j i

which is also known as the Anderson-Hubbard model in the literature [32] This model is widely
studied in the condensed matter physics as it serves as a prototypical platform for the studies of a
broad spectrum of quantum phases. In particular, in chapter 3| we shall neglect the e-e interaction
terms in Eq.(2.81) and study the most elementary scattering processes off the random potential v;.

The interaction associated effects will be discussed later on in chapters [ and 5]
The Feynman diagrams formulated in this chapter using the continuum model can be translated
into the discrete representation in a straightforward manner: one simply replaces the continuous

variables r with the discrete site indices ¢, and integration f dr with summation ) _, [33].

"The model reduces to the Anderson or the Hubbard model respectively in absence of e-¢ interaction or disorder.
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Chapter 2. Green’s function formalism

2.6 Summary

In this chapter, we have reviewed the nonequilibrium Green’s function formalism based on the
Keldysh complex-time contour. Whereas the Green’s functions are exactly solvable under a quadratic
Hamiltonian, they do not have a closed-form solution in general systems that contain a disordered
potential or subject to the e-e interaction. In order to address these two effects, perturbation series
have been formulated with the aid of the diagram technique. We have also demonstrated how to
compute the diagrams in these series using the real-time Green’s functions which are numerically
more advantageous. Care needs to be taken in the selection of diagrams as they need to meet
certain requirements. Here we have focused on the requirements associated with the conservation
laws. In particular the Kadanoff-Baym theory was reviewed, which ensures the thus constructed
diagrams to be conserving at the one-particle level. We have also formulated a set of Ward iden-
tities for the disorder-averaged Green’s function products. These identities are implicitly related
to the conservation laws and are useful for checking the theoretical consistency of a diagrammatic
scheme. Finally, to connect with the modeling of real-world mesoscopic devices, we demonstrated
how to use the Green’s function to calculate the steady-state currents in finite systems subject to

an open boundary condition.
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Chapter 3
Quantum diffusion and localization

From a microscopic point of view, a large class of transport phenomena are essentially a higher-
level reflection of the underlying carrier distribution in the momentum space. Neglecting interac-
tions between the carrier, a system with translational invariance in the real-space must hence be
trivial in the context of transport physics, because of momentum conservation. The translational
invariance can be broken by inducing randomly distributed impurities, each producing a localized
potential in its vicinity. For a classical particle travelling in such a disordered medium, its momen-
tum would be randomized after a series of scattering events, and hence its probability migration
can be well described by the Drude (drift-diffusion) formula [7] at the macroscopic level. The same
picture remains valid for a quantum particle as long as it stays in the classical regime, namely when
its wavelength A is much smaller than the mean separation [, between impurities (A < [y). How-
ever in mesoscopic samples which are typically semiconducting materials, A could be relativley
large so that the condition A < [y is not necessarily met. Therefore in this regime the particle
should rather be treated as a wave. The major difference between a classical particle and a wave
when they are scattered off a series of impurities is that the wave interferes with itself. It turns out
that this interference can usually lead to an enhanced backscattering counteracting on the diffusive
flow, also known as the localization effect in the context of electronic transport| As a result, the
measured conductance of a disordered mesoscopic sample is typically lower than according to the
Drude theory.

This chapter is devoted to reviewing the mesoscopic transport theory of weakly disordered
systems where the transport is dominated by the diffusive process. The (weak) localization effect

is taken into account as a perturbation correction to the diffusion. We shall demonstrate how to

"For certain exotic materials having an unconventional band structure, the interference due to multiple scattering

may instead lead to a suppressed back scattering, i.e. anti-localization [61]].
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Figure 3.1: Diagrams for different trajectories contributing to the propagation probability. Arrowed lines
represent the propagators G and dots are scatterers. (a) a general pair of trajectories with no alignment. (b)
a pair of identical trajectories. (c) a loop trajectory and its time-reversal counterpart. (d) a trajectory with a

loop insertion.

describe these physical effects using the diagrammatic language developed in Chapter[2] Moreover,
noticing that most understandings on mesoscopic diffusion and localization are derived within the
linear response Kubo formalism [[12], a central task of this chapter is therefore to reformulate these
theories in the more general Keldysh formalism applicable in nonequilibrium. The reformulation
enables us to adapt the coherent potential approximation [38,62]] and the dual fermion method [2]

to addressing diffusion and localization in finite open structures modeled in real space.

3.1 General picture

Heuristically, the wavefunction of a particle propagating from r to r’ is written as the following

superposition of path-integrals:

U(r,r') = Z /dr1 oo drnGR (e, 1) v(r) GR (11, 12)v(1)
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Chapter 3. Quantum diffusion and localization

x - 0(ry_1)GR(rn_1, tn)o(ry)GR (ry, 1), (3.1)

where v(r) denotes the randomly distributed static potential, and G®(r, r’) is the propagator free
of scattering. The propagation probability is hence | ¥ (r,r’)|* which consists of a sum over all the
pairs of paths connecting r to r’.

Since it is impossible to enumerate every path pair, we wish to be able to pick out those of
%

major contribution to |W(r,r')|*. To this end, we first rule out those pairs with a large part of

misalignment in the real-space, as illustrated in Fig[3.T(a). The reason is that such a pair carries

a dephasing factor e*(L2—L1)

, where k is the wavenumber and L, » are the trajectory lengths; this
factor varies randomly from path to path and sample to sample, thus making no net contribution.
What’s more, trajectories made of differing scatters cannot survive disorder-average whatsoever,
because at any noncommon scatter we get W = 0 (see Sec. With these considerations we
can therefore focus only on those pairs of trajectories that overlap in the real-space. Such a pair
can be simply realized by putting together two identical trajectories, as shown in Fig[3.1(b). This

group of trajectories amount to the following quantity, termed the “diffuson” in the literature [12]:
> /dr1 o dey|GR(r, 1) o) |GR(xy, 1) Po(rs) - - |GR(en, ©) 2 = P(r, ), (3.2)
N=1

which clearly shows a structure describing sequential scatterings that are independent on each
other. Therefore P(r,r’) corresponds to the classical diffusion. Using its diagrammatic represen-
tation (right panel of Fig), we see that P(r,1’) is closely related to the C® correlator, when
its kernel K is approximated to the lowest order.

Notice that pairing up identical trajectories is not the only way to eliminate the phase mis-
alignment. For any path that intersects itself, one can reverse the scattering order around the loop,
and the thus generated trajectories are phase aligned. This procedure is illustrated in Fig[3.1fc).
Now consider the return probability |¥(r,r)|* under time-reversal symmetry, i.e. G%(r;,ry) =
G®(ry,11). One can see that |¥(r, r)|? becomes twice as much as P(r,r) when the reversal tra-
jectories such as Fig[3.1c) are taken into account. In other words, due to the interference of

2, the return probability of a quantum

time-reversal paths which comes from the cross terms in | ¥
particle gets enhanced. This is precisely the origin of the weak localization effect. Diagrammat-
ically the interference between time-reversal paths is usually represented by a maximal cross as
shown in Fig[3.1|(c), also known as the “Cooperon” in the literature [12]. The cross can be untan-
gled by reversing one of the GR-lines, and the result would be identical to the diffuson P under
time-reversal symmetry.

There is one thing we need to clarify before closing this section: that the return probability

of particle propagation gets doubled by the Cooperon process does not contradict the fact that
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Chapter 3. Quantum diffusion and localization

Figure 3.2: First-order disorder self-energy. The dashed object represents the cumulant ~2).

the weak localization might only amount to a subleading correction to the diffusion-dominated
electrical conductance. The reason is that the conductance is essentially a nonlocal quantity and is
thus not directly associated with |¥(r, r)|?. We illustrate in Fig]3.1(d) a diagram pertaining to the
weak localization correction to the nonlocal |V (r,r")|?. The Cooperon is located at the middle of
the path way and is linked with two diffusons. As shown in the dashed box, in general some degree
of trajectory misalignment could occur at the intersection, thereby lowering the return probability

at that point effectively.

3.2 Propagator formalism

In this section we put the qualitative pictures described above into some real calculations. We shall
continue thinking of the particles as propagating waves extending in the disordered medium. In
comparison to the locator formalism to be shortly introduced in Sec[3.3] the propagator picture
used here may not be ideal for computations of numerical models, but it is useful for analytical
discussions. Specifically we shall derive the energy distribution function of electrons in a diffusive
conductor, which will be invoked in subsequent chapters, and the semiclassical Drude conductiv-
ity using only the lowest-order approximation. On top of that, the Cooperon contribution to the
electrical conductivity will be calculated and analyzed using the diagram technique.

Throughout the calculations we shall limit ourselves to the weak disorder scenario, i.e. A < .
Under this assumption the diagram series of Fig[2.2] becomes perturbative, and hence we can start

with the lowest-order diagram Fig[3.2] which is written as
YR(r,1',e) = 6(r — ')y (r)GR(x, 1, ¢), (3.3)

i.e. the first Born approximation. We notice that the diagonal of —ImG™® /7 is just the local density
of states v (r, £). Therefore, when transformed into the momentum space, Eq.(3.3) gives
1
27 0 (8 )

The quantity 7y introduced above has the physical meaning of (momentum) relaxation time. In

Im¥R(k,e) = —mp(e)y = : (3.4)

writing down the above equation, we have assumed a uniformly disordered system such that the
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Figure 3.3: Recursive relation for the lesser Green’s function G<. Each dashed line represents a factor
of 'y(2) which measures the scattering rate. Solid lines represent either retarded (blue) or advanced (red)

Green’s functions. Black dots represent the lesser lead self-energy X1.

density of states (1), as well as the cumulant (), is position independent. Plugging Eq.(3.4) into

Eq.(2.29), we get
1

e—FB(k) £’

279 (8)

GRA(k,e) = (3.5)

where ReX® has been absorbed into the band dispersion E(k). Since //7, represents an energy
scale much smaller than the Fermi energy in the weak scattering limit, Eq.(3.5) yields a quasi-
particle spectrum sharply peaked at ¢ = F(k) where the peak width ~ 7; .

Since in the presence of impurities the particle propagation is subject to random scattering,
invoking the classical picture we would imagine the nonequilibrium transport being diffusive. It
turns out that, within the first order approximation, quantum particles are predicted to also follow
this diffusive behavior, i.e. quantum diffusion. To see this we shall calculate the distribution
function in a disordered conductor. To this end we utilize Eq., 1.e.

G=< (ry,re,8) = /GR(rl, r,e) [Urp(r,e) + B5.(r, )] G2 (r, vy, €)dr, (3.6)

where Y7 is the lead self-energy and X3 (r,e) = 7G< (r,r,¢) is the lesser self-energy under
the lowest-order approximation. A recursive relation for G< is implied in Eq.(3.6)), as can be
visualized by the diagram shown in Fig[3.3] One then immediately notices the diffuson (ladder)
structure which we introduced in Sec3.11
Assuming the diagonal G<(r,r, <) can be written in the form 27if(r, €)vy(e), we obtain from
Eq.(3.6)
if(r)= / P(r,r',w=0)Sx(r")dr, (3.7)
s

where the integral is limited at the interfaces between the device and the reservoirs since lead self-
energies vanish elsewhere. In Appendix [B|it is shown that the diffuson P is the Green’s function
of the classical diffusion equation (B.12). Therefore the distribution function f should satisfyf]

DV?f(r,e) = iX5(r,€)d(x) +iXg (r,e)d(z — L), (3.8)

2The device-reservoir interfaces are placed at = 0, L respectively.
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Figure 3.4: (a) Schematic of a disordered conductor sandwiched between electric leads (reservoirs). The
voltage drops linearly across the wire, corresponding to the classical Drude transport. (b) Electronic energy
distribution in the conductor [see Eq.(3.9)]. The blue and the red curves represent the distributions in the

right and the left leads respectively, and the black curve represents that at the position x.

. . .k k'o
O4q=1J J+J J
K k'

Figure 3.5: Diagram expansion for the linear conductivity formulated under the first-order approximation.
The recursive kernel here, obtained by differentiating the self-energy (see Fig[3.2)) over Green’s function, is

simply the lowest-order cumulant v(2) (dashed line).

where D is diffusion coefficient. On the right hand side of Eq.(3.8)), the lead self-energies serve
as the particle source or drain, depending on the relative values of their chemical potentials to
e. This is consistent with the physical interpretation which we gave to ¥° R in writing down the
charge current formula (2.74)): it represents the particle exchange rate between the device and the
reservoirs. Since V2f(r,e) = 0 away from the interfaces, f varies linearly within the device.
The boundary condition for f is such that it connects continuously with the respective equilibrium

distributions in reservoirs. We hence obtain

x
fle,x) = f(e,0)+ 7 [f(e, L) = f(e,0)] (3.9)
1 _
where f(£,0) = [exp‘};B B+ 1] ,fle, L) = [expi;B R+ 1} . The derived distribution function
is illustrated in Fig[3.4]

The above analysis is based on a picture where the system consists of a finite structure sand-
wiched between non-equilibrated reservoirs (leads). For very large structures the leads can be
dropped out of the picture and one should instead use the Kubo formula (2.76)) to compute the

linear response conductivity. Assuming translational invariance, it is then convenient to Fourier
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(b) (©)

Figure 3.6: Cooperon diagrams for describing the localization effect. (a) Luttinger-Ward ®-diagram. (b)
Self-energy. (c) Two-particle kernel K (2). Note that the vertical flip of (c) should also be included in K (),

which we omit showing here.

transform Eq.(2.76)):
e*h?

- 21m?2()

wa

> koky' (GR(k K, €)GA K k). (3.10)
kK’

Under the first order approximation, the irreducible kernel & ) for calculating the average product
of two Green’s functions is simply the lowest-order cumulant . Hence the conductivity can be
formulated with the ladder diagram shown in Fig[3.5] It turns out that the second part of this
diagram should be dropped out, because the momenta k, and k!, are summed over separately. The

only contributing term is thus the one without ladder dressing, where k, = k... Therefore,

e*h? dk 5 &
= k,e)G*(k,¢) = 2Dy, 11
o 27Tm2/(27r)dkx G*(k,e)G"(k,e) = e* Dy (3.11)

The k-integration is performed with the aid of Eqs.(B.3) and (B.9). The result of Eq.(3.11)) co-
incides with the classical Drude formula. We have thus confirmed that the lowest-order diagram
Fig[3.2]indeed leads to a diffusive description of charge transport in disordered media.

As discussed in Sec[3.1] a full description of charge transport in disordered media needs to take
into account the localization effect from Cooperon processes. To this end one has to go beyond the
lowest-order approximation (Fig[3.2). Following the standard Kadanoff-Baym scheme, we start by
drawing the Luttinger-Ward diagram of Cooperon, which is presented as the maximum crossing
diagram in Figa). The self-energy and the two-particle kernel K (?) are hence derived from it
by removing Green’s function lines. The results are shown in Fig[3.6(b,c).

According to the general theory presented in Sec[2.2.2] the calculation of the Green’s function
product involved in the Kubo formula Eq. requires iterating K (? along the particle-hole
channel. However, invoking the same argument as in getting to Eq.(3.T1), one finds Fig[3.7(a)

being the only diagram that contributes. Note that, for visual convenience, the maximum cross
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Figure 3.7: (a) Conductivity diagram associated with the Cooperon process. (b) Illustration of the internal

(ladder) structure of the Cooperon.

is disentangled in Fig[3.7(a) by flipping the direction of one of the Green’s function lines. The
resulting Cooperon ladder Fig[3.7(b) has a similar structure as that of diffuson, except that for
Cooperon the directions of the two Green’s functions are parallel. Under time-reversal symmetry,
GR(k,e) = G®(—k, ¢), and therefore L simply equals the diffuson ladder in the limit Ql, < 1,
ie.

1

Note that here () is the total momentum of the two particles instead of their difference [cf. Eq.
(B.TI)]. The fact that L is dominated by small () signifies that the Cooperon is a measurement of

the long-range correlation between antiparallel waves, i.e. k ~ —K'.
Using Eqs.(B.5) and (B.9), the diagram of Fig[3.7(a) is hence evaluated as

oc ~ 27rm2 / (27T)dkac [G (k7 E)G (k7 5)] / (27T)d£0(w - Oa Q) - 7Th (271_)d )
(3.13)

which amounts to a negative correction to the diffusive conductivity. It is important to notice that

the last (-integral in Eq.(3.13]) diverges in lower limit for dimensions d < 2 and in upper limit for
all dimensions. The latter can be easily regularized by imposing the cutoff @) < 1/, as required
under the diffusive approximation. The lower cutoff can be naturally approximated by the inverse

system size L~'. We thus obtain

_2p-1(7 _ _
JC:{ Eh YL —1) d=1 G

—nte?hInL/ly d=2

This result seems to suggest that the conductivity of a low-dimensional disordered system tend

to vanish (or even go negative) as L grows. In fact this bizarre finding is not a nonsense: using
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scaling analysis, Abraham et al.[63] pointed out that in d < 2 no macroscopic transport is al-
lowed in disordered systems with an arbitrary impurity concentration. This so-called “Anderson
localization” phenomenon [64] is a general quantum effect due to long-range interferences. Nev-
ertheless, in real materials the interference is always cut off by certain dephasing effects, such as
density fluctuation, electron-phonon scattering, or external magnetic fields. In macroscopic sam-
ples the dephasing length L4 is much smaller than the sample size, and thus the lower bound of
the Cooperon wavevector (()) should be replaced with L;l, which is usually invariant against in-
creasing the sample size. We shall not further elaborate on the physical formalism for describing
the intrinsic dephasing processes. The reader is referred to Refs.[12, 23] for detailed reviews on

this topic.

3.3 Locator formalism

Whereas the above analyses based on the propagator formalism have succeeded in capturing the
global features of quantum diffusion and weak localization, yet the propagator picture is not re-
ally practical for numerical computations. The reason is two twofold. First of all, the accuracy
of the above formalism drops quickly as the disorder strength (i.e. v(?)) increases. Secondly, the
numerical transport model (Fig[2.13) studied in this thesis does not even admit the r — k Fourier
transform, due to the lack of translational invariance. In order to address these issues, we switch
from the propagator view to a local perspective, which takes the Green’s function of an isolated
single site, namely the locator [48}65-67], as reference while treating the intersite hopping pertur-
batively. The motivation for the locator formalism is that, when disorder increases, electrons tend
to localize more, and hence locators become more suitable for describing the electronic structures.
In fact, for a binary alloy wherein the random onsite potential v; = +wv, the locator becomes the
exact solution to the problem in the limit v/ >> 1 [48]], where ¢ is the intersite hopping amplitude.
In the other limit v/§ < 1, as will be shortly seen, the locator formalism is also able to generate
the exact global Green’s function for the disordered medium.

To formally develop the locator formalism, we start over from the v-dependent Green’s function

as formulated in Eq.(2.26). Written in the upper-triangular form [see Eq.(2.18)],

G} G
v (3.15)

-1
| w—v—H —Hy
0 GA|

0 w—v— Hy

Without loss of generality, [, denotes a disorder-independent matrix, including but not limited to
the underlying Hamiltonian: for example [, could incorporate the lead self-energy. Trivially, one
is allowed to introduce an arbitrary matrix A(w) such that G, (w) = [w—v—A(w)+A(w)— Ho| .
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Figure 3.8:  Diagrammatic series in the locator formalism for the disorder-averaged Green’s function

(cf. Fig . Doubly dashed lines represent locator cumulants ("), and solid lines represent the } matrix

(defined in the main text).
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Figure 3.9:  (a) Index layout in the locator cumulants. (b) &(2) can be expanded as a local ladder series

where the grey stripes are K (2)-kernels for the Bethe-Salpeter equation.

Here we choose A to be diagonal in the real-space and to also adopt the upper-triangular form
of Eq.. With notations V = Hy — A and g, = [w — A — v]7}, G, can be rewritten as
G, = [g;' — V]7!. The quantity g, is thus identified as the locator under a given onsite potential,
and A; can hence be interpreted as a self-energy that encodes the coupling between the ith site and
its surrounding environment.

The disorder-average over G, is carried out in a similar manner as in Sec[2.2.T} we first expand
itas G, = gy + 9,V 9s + 9,V 39, Vg, + - - -, and then take averages on each individual term in the
series. The result can be visualized by the diagrams of Fig[3.§] (cf. Fig[2.2). Similar to Eq.(2.27),

here we make use of the locator cumulants, which are defined such as

~(2) . ~k:1k’1/k‘2k‘2/ _ k1k1/k2k2/ o k:lk‘ll kzk‘2/
,y : Wiwe — Jiwiwe w1 iwy ) (3. 16a)
~(3) . ~kikykokyrksksr  kikyrkaokorkskar N kikyr kokgrksks . kokor kikyrksks N kaksr kikqrkakys
Y . TWiwaws T Jiwiwaws w1 twWows wo twiw3 w3 W1 w2
kikyr kokor ksks
29, iy iy (3.16b)

where k is a binary index corresponding to the two-by-two matrix structure of Eq.(2.18). Dia-
grammatically 5(™ can be represented by a vertex with n “legs”; each leg is attached with two
k indices and one frequency, as illustrated in Fig[3.9] Given the value of A at the ith site, the
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disorder-averaged locators g; are computed as follows:

(w—vi— AN (= v = AR) AT (W — v, — AR

Fikys =

gi; = [w—v— Ai(“)]kllkll = 0 ( AA)_l )
W —U; — i

(3.17a)

gmtehe — Ju) — v, — Ai(wlﬂl;lk’l we — v; — Az’(m)];;;k;a (3.17b)

where the average is individually taken over the random potential v; at each site.

Formally the exact disorder-averaged Green’s function can be obtained by summing up the
diagram series of Fig[3.§] under any A. However, since in practice the diagram series is always
subject to truncations, the value of A needs be uniquely determined by the computational scheme,
for otherwise the value of the incomplete diagrams would acquire a A-dependence. To address this
problem, we notice that in the locator formalism one actually has two ways to obtain the Green’s
function at a single site: either using the locator g; or taking the diagonal of the global Green’s
function G;. It would only make sense if g; = ;. This condition will thus be used to determine
A in both the coherent potential approximation (CPA) and the dual fermion (DF) method to be

introduced below.

3.3.1 Coherent potential approximation

CPA was first introduced by Soven [68] and Taylor [69] in the propagator formalism using the
T-matrix expansion technique. Its equivalent locator representation was later completed by Leath
[70]. Whereas the original objective of CPA was to compute the equilibrium electronic structures
of alloys, its underlying idea was leveraged by Velicky [57] who formulated a theory to calculate
the disorder-average two-particle Green’s function so that the linear transport coefficients could be
accessed. It turns out that Velicky’s single-site 7-matrix approach and the diagrammatic approach
of Sec[2.2.2) eventually lead to the same result under CPA [1]]. CPA has continued attracting at-
tentions along with the expanding applications of ab initio materials simulations [71H73l]. The
generalization of CPA to nonequilibrium mesoscopic transport was derived by Runge et al.[74]
and Ke et al.[62] independently. In particular, Ke et al. integrated this nonequilibrium theory
into an ab initio simulator applicable to arbitrary device structures. The parallel locator version of
nonequilibrium CPA was later given by Zhu et al.[S8].

Using the locator language, CPA consists in neglecting all the diagrams which involve cumu-
lants. In other words, the only terms to retain in CPA are g + gVg + gVgVg + - - -, where g is
the average locator defined in Eq.(3.17a). As such the global disorder-averaged Green’s function
is approximated by G = [¢g~! — V|~!. The CPA algorithm can be summarized by the following

48



Chapter 3. Quantum diffusion and localization

equations:
gi = (w—v; — Ay, (3.18a)
G=[g "=V, (3.18b)
Gii = Gi, (3.18¢)

where every variable should be understood as a two-by-two matrix complying with Eq.(2.18)). The
difficulty in solving the above equations is two-fold. Firstly, due to their nonlinearity, in general it
is impossible to write down a closed-form solution for this set of equations. Therefore, one often
seeks a numeric solution by using an iterative algorithm. A second difficulty lies in the asymmetric
relation between A and g, namely g can be readily computed given A but not the other way around.
This is fatal to the iterative algorithm because it needs a map from g back to A in order to close the
loop. To overcome this second difficulty, an intermediate variable > (diagonal) is introduced such

that Ez =W — AZ — gl-_l, 1.€.

[ A ] _ | w= A=Vt g7/ (gted) — AT (3.19)
0 XA 0 w—AN—1/g}
Hence the CPA equations can be reformulated as [S8]]
AR =w -3} - 1/G}, (3.20a)
SR—w— AR 1 /(W — v — AR (3.20b)
GR = [w— H} — 28, (3.20c)
which concern the retarded part, together with
AT =G5 /(GEGS) — =7, (3.21a)
55 = (w—vi— AR) AR (w — v — AN T/(GRGE) — AT, (3.21b)
G = G¥Z< + HY)GA, (3.21c)

which concern the lesser part. The three equations concerning the retarded (lesser) part can be
solved in an iterative fashion starting from an initial guess of X& (3<). The solution is obtained
once a numeric convergence is reached.

Whereas the object ¥ was introduced in Eq.(3.19) merely as an auxiliary variable, comparing
Egs. (3.20c) and (3.21¢) to Eq.(2.70) we see that ¥ seems to play a role of self-energy in the

context of disorder-average. To justify this interpretation and to better understand CPA, we seek

a diagrammatic representation of X in terms of the formalism established in Sec[2.2] To this end
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we expand the right-hand side of Eq.(3.17a) with respect to v; taking (w — A;) ™! as the reference
Green’s function. This yields visually the same series of diagrams as in Fig[2.2] when average is
taken over v;. However, here all the spatial indices should be restricted on the site :. This diagram

series therefore amounts to the following self-consistent quantity:

gi = (w—A; — Sie(g:) 7, (3.22)

where Y, consists of all the irreducible diagrams of Fig[2.2] restricted on one single site. These
diagrams are certainly derivable from the Luttinger-Ward ®-diagrams as they share the same dia-
grammatic topologies with the exact ones.

Comparing Eq.(3.22) to Eq.(3.19), one easily identifies .. with ;. Suppose A; can be elim-
inated from Eq.(3.22) by using Eq.(3.17a)); we are then left with a relation between g; and Y.,
which basically defines the function ¥,(g;). Therefore, we not only have found the diagram se-
ries for the CPA self-energy, but also have established its functional relation to the local Green’s
function through the intermediate parameter A;. Furthermore, since in CPA the A; is tuned so
that g; = Gy;, one gets G = [w — Y, (Gyi) — Ho) ™! which fulfills the self-consistent condition of
Eq.(2.29). Hence CPA complies with the Kadanoff-Baym theory and thus bears all the conserving
properties.

As the CPA self-energy is exact for the one-particle locator, its derivative 9% /0g should yield
the exact K (?)-kernel for the two-particle locator when plugged into the Bethe-Salpeter equation
Eq.(2.31). Here we study the case when k; = ki = 1 and ks = ky = 2 in Eq.(3.17b). The
locator thus obtained is denoted by gf* = (w — v; — AR) ' (w — v; — AM) ™" Inserting gR* into
Eq.(2.31), we obtain the kernel

K =1/(gltgl) — 1/gi™. (3.23)

In what follows we shall prove that the CPA self-energy and K* satisfy the identity (2.60), as

required by theoretical consistency. To this end we use the definition of locators to get

gt == AN~ w—u— AN

= (A =AM (w =0 = AR (w— v — AN = (AF - AM)g (3.24)

We then substitute (X2 4+ 1/g* — SR — 1/gR) for (AR — A%) above. After some rearrangement,
Eq.(3.24) gives 1/(g%gl) — 1/gf* = (R — $4) /(g% — ¢), which equals K** in view of
Eq.. Therefore, ¥; and K satisfy the identity atn = 2.

Using the notation of g2, we rewrite Eq. as

w

S5 = AFgrM/ (gltgl) — 1/, (3.25)
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Using the relation ASgR* = g= from Eq.(3.174) and recognizing the quantity in the square bracket
as K, we get ©F = KA. Substituting this relation into Eq.(3.21c) and letting Hy = X7,
we arrive at a recursive equation for G of the same structure as Eq. li with 7»(2)

)

KEFA As KR2 is also a local object, we see that the G under CPA can be expressed with the

replaced by

diffuson and so that CPA in fact leads to a diffusive description of the transport system.

From the discussion above, we see that CPA fits well in both propagator and locator formalisms.
On the one hand, the propagator formalism gives a natural picture taking disordered potential as
the perturbation, which explains why CPA is accurate in the weak disorder limit. On the other
hand, the intersite hopping becomes negligible in the strong limit of binary disorder [48], and thus
CPA simply yields the locators at each site, which produce the split bandstructure featured by lo-
calized electronic systems. Therefore, the perturbation expansion with respect to either disordered
potential or intersite hopping turns out fairly effective under CPA. What’s more, the locator formu-
lation also reveals the mean-field nature in CPA: the A; quantity plays the role of an effective field
akin to the Weiss field in the classical context of Ising model [75]. More precisely, CPA belongs
to a category of dynamical mean-fields in that the local quantum fluctuations are fully taken into
account by the frequency dependent locators. In practice the performance of CPA drops as the
system dimension decreases [48]. This is in fact a common feature of mean-field theories with a
short-range coupling between local degrees of freedom. As there are less neighbors at lower di-
mensions, the importance of spatial fluctuations rises and leads to an increasing demand of going
beyond mean-field approximations [76]. With this motivation, we introduce in the following the
dual fermion method, which computes a perturbation correction to CPA by taking into account

more diagrams from the series of Fig[3.§]

3.3.2 Dual fermion method

The dual fermion (DF) method was recently introduced by Rubtsov et al. in the context of strongly
correlated fermions on the Hubbard lattice 77/, 78] Its original usage was for correcting the dy-
namical mean-field solution [75] of electronic structure by incorporating nonlocal fluctuations on
all length scales. Later on, Terletska et al.[82] adapted the DF theory to the disorder-averaging
problem for equilibrium lattices, and remarkable improvements over CPA were obtained in the
results of one-particle density of states and linear response conductivities. With the continuous

development during recent years, the DF technique has also been utilized to facilitate other theo-

3In fact, even before the term “dual fermion” was coined, its mathematical foundation, i.e. the Hubbard-
Stratonovich transformation, had already been applied to the Hubbard model and other many-body systems in several
works [79-81]).
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(b)

(c)

Figure 3.10: Diagrams for the dual lesser self-energy <. Solid lines represent dual Green’s functions G
and double dashed lines are cumulants 4(2). These diagrams are divided into three groups according to the

position of G<. Note that in (c) G< is nested inside a vertex 5(2).

retical problems of great importance, such as the Kondo quantum dot [83]], the phase diagram of
the equilibrium Anderson-Hubbard model [84], etc.

Whereas the DF theory was originally formulated in the path-integral language [77, 82], when
restricted to the noninteracting disordered system, the theory simply reduces to a diagrammatic
resummation scheme in terms of the locatorsf_r] Our objective here is to sum up all the diagrams
of Fig[3.8] which bear the maximally crossing structure as demonstrated in Fig[3.6(b). To this end
we choose the diagrams as presented in Fig[3.10] which are one-particle irreducible in the locator

formalism. The solid lines therein should represent
Go=V1-9, (3.26)

which we call the reference DF Green’s function. Note that G, absorbs all the dangling g-locators
in the diagrams. Analogous to the theory as presented in Sec[2.2.1| we can take the diagrams of
Fig as a self-energy S and require it to be self-consistent with the DF Green’s function [cf.

Eq.(2.70)]: B
GR = [(VR)‘1 R ER] (3.27a)

4A formal correspondence between the dual fermion theory and the more ancient linked cluster formalism has been
discussed in Ref.[85]].
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G< = (1+ GRE®)GS (1 + AGH) + GRE<GA. (3.27b)
In order to write down the expression of 3, we first define the following ladder notation:
LY = 7Y+ Y(GE 0 GI) LYY, (3.28)

where e represents the element-wise multiplication (in the real-space), and X and Y are either R
or A. To illustrate, the notation 4% would refer to the case that Eq. is computed under
ki = ki = 1 and ky = ko = 2. Using the notation £XY, the retarded dual self-energy can hence
be written as

SR — LRR o [GR]T, (3.29)

where “T” denotes matrix transpose. For >< one needs to apply the R < A pattern as explained in
Sec , and thus X< equals the sum of the following three parts (also see Fig :

(a) = L™ o [G]T, (3.30a)

(b) = [ﬁRR(éR ek )ERA} o [GRT + [L‘RA(GA . (;<)LAA] o [GMT, (3.30b)

(©) = {[L™ (G 0 G + TM1+ (G 0 GNLMf o [GH]F
+ {[ﬁRR(éR e GM) +13R<[1 4+ (G* o éA)zRA]} o [GR]T. (3.30c)

Since in terms of the diagrammatics G is terminated with ) at either end while the original Green’s

function G is terminated with g, a simple relation between G and G follows:
G=V'Gyt-yL (3.31)

The flowchart of a DF calculation is presented in Fig[3.11] The program consists of two self-
consistent loops. The outer one concerns the agreement between the local Green’s functions,
ie. Gy = g;, same as in CPA. This consistency is achieved by adjusting A;. The inner loop
calculates a self-consistent pair of the dual Green’s function and the self-energy under a given A;.
The whole algorithm starts with an initial guess of A; and computes the locators using Eq.(3.17),
together with the local self-energy >, [via Eq.] and cumulant 7 [via Eq.]. Then the
reference Green’s function G is computed via Eq. and is inserted in the dual self-energy
diagrams [see Egs. 1} and ]. The computed X is plugged into Eq. to generate a
dual Green’s function G, which is then plugged back into the diagrams of Fig This process
is iterated until both G and > converge. The converged G is then converted to the Green’s function
G in the original lattice space by means of Eq.(3.31). At this point, we check whether the real-

space diagonal of GG meets the criterion GG;; = g; at each site, where g; is the locator computed at
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initial
guess

compute
locators

update A —>

Figure 3.11: Flowchart of the dual fermion computation.

(a) (b)

Figure 3.12: (a) A Luttinger-Ward diagram corresponding to the second diagram of Fig a). (b) Cutting

a Green’s function line inside (2. The grey stripes are K (?)-kernels for the ladder-series of 5(2).

the beginning of the algorithm. If not, we update A; using Egs. (3.20a) and (3.2Ta)). The whole

procedure is iterated until G;; = gzﬂ Since for noninteracting systems the Green’s functions at

different energies are decoupled, the above algorithm can be run parallelly over energies.

Before closing this section, we wish to point out that charge conservation is not in general
guaranteed in the DF method. Although the dual self-energy )y (Fig can be derived from a
Luttinger-Ward diagram in terms of the dual Green’s function G, we note that it is the original
Green’s function G that carries the physical information, and it does not seem to inherit the ®-
derivability through the mapping . A Luttinger-Ward diagram corresponding to the dual ¥
is plotted in Fig[3.12(a). Removing one of the solid lines therein leads to the second diagram of
Figa). However, since ¥ is defined as the two-particle locator minus the product of two
one-particle locators [see Eq.], according to Eq. 7 can be expanded as a ladder se-

ries as illustrated in Fig[3.9(b). The Kadanoff-Baym scheme requires that each Green’s function in

Note that a different self-consistent criterion for choosing A was used in the original DF literature [77)]. Here we
use the same criterion as in CPA, i.e. G;; = ¢;, because in practice we find it leading to a better charge conserving

performance.
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Figure 3.13: I — V relation of a biased one-dimensional chain with L = 30a,W = 1. v is the onsite

disordered potential. Inset: schematic of the lattice model.

a Luttinger-Ward diagram be deleted one by one in order to obtain the self-energy, but apparently
the diagrams of Fig miss those generated from cutting Green’s functions inside the ¥ ladder,
as illustrated in Fig[3.12|(b). Therefore, the dual self-energy proposed here is incomplete in terms
of ensuring charge conversation. In fact, it still remains an open question in the locator formalism
as for how to devise conserving approximations based on the diagram expansion technique. In nu-
merical simulations the charge conservation can be investigated by comparing currents computed at
different principal layers [see Eq.(2.78))]. When charge is strictly conserved, these currents should
be equal. However, in practice we find a (slight) deviation of < 0.04% among the currents when
using the DF method. In particular, the self-consistent conditions as demonstrated in Fig[3.11|are

found helpful in reducing the current deviation.

3.4 Numerical studies

The CPA and the DF method are numerically implemented on the discreet lattice described in
Sec[2.5.4] Here the e-e interaction is turned off and the temperature is set at zero. To model sub-
stitutional disorder, we add a binary random number v to the onsite potential v; in the scattering
region. As discussed above, the DF method does not strictly preserve charge conservation. There-
fore, in calculating charge currents, we take the mean over all the principal layers within the central
region, i.e. [ = Zf\il I;/N.

As our first numerical application of this thesis, we compute the I — V' curve (Fig[3.13) for a
biased one-dimensional chain with L = 30, W = 1 using both CPA and DF. The disorder degree
is adjusted by varying the v parameter from 0.2¢ to 0.4¢. We rigidly shift the band structures in
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Figure 3.14: Disorder-averaged electronic conductance calculated with different methods: exact (red),
CPA (green), and dual fermion (blue). The systems considered here are one-dimensional chains with W = 1
and three different L. The disorder strength is adjusted via v. The Fermi energy Er at which the conductance
is calculated is swept from —2.0¢ to 2.06. Some of the blue curves are cut off at certain energies because

the DF algorithm tends to diverge around band edges.

the leads according to the applied bias voltage, and assume a linearly dropping electrical potential
across the scattering region. The Fermi energy in either lead is fixed at 1.0¢ away from the shifted
band center. From Fig[3.13] we see that both CPA and DF predict an ohmic linear I — V relation,

but DF yields a lower conductance than CPA and this discrepancy increases with an increasing v.

In order to examine which of the two methods is more accurate, we compute the linear conduc-
tance [see Eq.(2.79)] using both CPA and DF, and compare their results with the exact one obtained
from a brute-force average over the entire disorder ensemble: the conductance is computed one by
one for each of the 2> configurations and the mean value is taken at the end. We show in
Fig[3.14] the results for a few different structures and disorder strengths (v). Note that the Fermi
energy Fr at which the conductance is calculated is swept from —2.0€ to 2.0€. Let us first look at
the exact results (red curves). We see that each conductance profile G(E) can be divided into three
characteristic regions: center (E € [—v, +v]), edge (F € [—2¢, —2¢ + v] U [2 — v, 2£]), and wing
(E € [-2§ + v,—v] U [v,2¢ — v]). The exact result exhibits a bump in the center and a kink on
the edge, which becomes especially noticeable when v > 0.4£. Besides, in the wing region, the
exact G(F) profile appears rather smooth. From the green curves in Fig we see CPA yield
a smooth and round G(F) profile across the entire energy window, missing the fine details seen
in the exact solution. This is typical for a diffusive approximation, because both the DOS and the

classical scattering rate vary smoothly over the energy [[12]]. Noteworthily, CPA tends to overes-
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timate the conductance in the wing and the edge region, and this overestimation gets more severe
as the disorder strength v or the channel length L increases. This finding supports the theoretical
analyses in Sec[3.2]and signifies the incompleteness of CPA for not taking into account interfering
processes. Since the Cooperon process is most important in one dimension, DF can be expected to
effectively correct the CPA result. This is indeed the case as shown by our numerical simulation.
As can be seen in Fig[3.14] DF is especially successful in the wing region, where a quantitative
agreement with the exact result can be achieved. Besides, DF captures the “bump” at the center
of G(F) profiles, whereas CPA totally misses it. Although the DF method is constructed as a per-
turbation correction to the diffusive CPA using the same maximally crossing diagrams just as in
the weak localization theory presented in Sec[3.2] we believe that, due to the self-consistent loops
and the locator reformulation, DF represents more than just the weak localization. For according
to the weak localization theory, as L increases the negative correction to the one-dimensional con-
ductance would remain constant [[12]], which we know untrue since the Anderson transition [|86]]
must set in at some point. On the contrary, Fig[3.14] shows that the correction given by DF grows
as L increases, which is more reasonable. Apart from the success achieved by DF, we also notice a
performance drop and that the algorithm could even fail to converge in the vicinity of band edges.
This is also the region where CPA makes the most overestimation in comparison to the exact re-
sult. Invoking the phenomenological picture developed earlier in this chapter, we note that both
the Fermi wave vector kr and the mean free path [y drop to zero at the band edge (also see Fig.4.1
of Ref.[87]), rendering the weak disorder scenario invalid. It is well known that perturbation-based
methods such as DF cannot handle the strong localization, and more sophisticated techniques ought
to be employed [88, 89].

In the classical transport theory the conductivity should be a constant in a uniformly doped
material, and accordingly the resistance R of a quasi-one-dimensional conductor increases linearly
with its length. We would expect this classical relation to stay true for CPA since it essentially
describes the diffusive transport. On the other hand, Eq.(3.14) indicates that the quantum conduc-
tivity correction due to the weak localization features a L dependence, rendering the 12 — L relation
nonlinear. These predictions are verified by our simulation. Figure [3.15]displays the R — L re-
lations of our disordered lattices under a few different widths W and random potential v. The
resistance is calculated as the inverse of disorder-averaged conductance, which is computed with
either CPA or DF. The electronic Fermi energies are set at 1.0 away from the lowest sub-band
edges (see Fig2.16). We find that the DF method produces a nonlinear R — L relation which

can be approximately described by the following formula (also see the logarithmic inset plots in
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Figure 3.15: R — L relations computed with CPA and DF under a few different widths ¥ and random po-
tential v. The electronic Fermi energies are set at 1.0 away from the lowest sub-band edges (see Fig)2.16).

Insets: logarithmic plots of the same data.

Fig3.15):

R=Ry+ %La, (3.32)

where Ry stands for the ballistic limit 2/ 2¢?, ( is a function of the disorder strength v, and o ~ 1.1.
The power-law growth indicated by Eq.(3.32)) is a consequence of the use of infinite ladder series in
our self-energy construction; had we truncated the series, we would instead obtain a much slower
increase in R. Note that in the case of strong localization where L is larger than the localization
length [[12]], R — L should follow a much faster exponential relation [90], which is yet beyond the
applicable regime of DF.

As explained in Sec[3.1] the Cooperon process that leads to localization particularly relies on
the time reversal trajectories. When a (weak) magnetic field is added perpendicular to the trajectory
plane, the time reversal symmetry is broken, and hence one would expect a suppression in the
localization effect and a rise in the electric conductance. This phenomenon is termed the negative
magnetoresistance in the literature [[12]. To simulate this effect we apply a static magnetic field
perpendicular to the lattice plane of our model and simply switch our hopping amplitude to the
form of Eq.(2.80). Suppose the x and z axes are set parallel to the transport and the magnetic field
respectively, the vector potential is thus written A= (By,0,0). We use a structure of W = 3, L =
50 with v = 0.35¢ as the test bedﬁ and apply both DF and CPA to compute its resistance under

5Note that the magnetic effect cannot be manifested in a strict one-dimensional system, such as W = 1, because

of the absence of magnetic flux.
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Figure 3.16: Electrical resistance calculated with (a) DF and (b) CPA at different Fermi energies (Er) in
the presence of a perpendicular magnetic field (B). The simulated system is a 3 x 50 (W x L) square lattice

with binary disorder whose strength v = 0.35£. A sketch of the system setup is displayed at the top.

varying field strength and Fermi energy. The result is displayed in Fig[3.16] As can be clearly seen,
DF succeeds in predicting a decreasing resistance as the magnetic field gets stronger, i.e. negative

magnetoresistance, whereas CPA predicts an opposite (implausible) tendency.

3.5 Summary

In this chapter we reviewed the mesoscopic transport theory of quantum diffusion and the weak
localization correction in disordered systems with randomly distributed scattering centers. The
two physical phenomena turn out to be respectively associated with the processes represented by
the diffuson (ladder) and the Cooperon (maximally crossing) diagrammatic objects. In order to
implement the theories on numerical models, we switched to the locator formalism which does
not assume translational symmetry and naturally permits a higher degree of disorder. Using the
locator language the coherent potential approximation (CPA) was introduced, which amounts to
a local mean-field approximation for the electronic structure and a diffusive description for the
transport. We then used the dual fermion (DF) technique to sum up the Cooperon diagrams in the
locator series in order to introduce a localization correction on top of CPA. Our simulation results
showed that the DF method is indeed effective and more accurate than CPA. In particular, DF cap-
tures the nonlocal effects that lead to the localization effect. Notwithstanding its success, the DF

method still has a hard time in the strong localization regime, which is in fact ubiquitous for all
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perturbation-based methods. Analogous to the strong correlation problem of interacting fermions,
renormalization techniques [88] should be in order for accurately describing the electronic trans-

port subject to strong localizations.
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Chapter 4
Energy relaxation due to e-e interaction

The electron-electron (e-e) interaction is an effect one must take notice of when discussing many-
electron systems. Different from the scattering off static impurities, e-e interaction is intrinsic to
any many-electron systems. By convention, effects of e-e interaction are divided into three parts:
Hartree, Fock (exchange), and correlation. As already explained in Sec[2.3.1] the Hartree repre-
sents the simplest interaction effect, i.e. the electric mean-field set up by the charge distribution
in the system; therefore it is classical. In terms of the diagrammatics formulated in Sec[2.3.T] the
Hartree effect corresponds to the diagram of Fig[2.10[(a). The effect derived from Fig[2.10(b) is
termed the Fock (exchange) effect. Though not obvious from the diagram, the physical origin of
the exchange effect is in fact the celebrated Pauli exclusion principle of identical particles. Trans-
lating Fig[2.10((b) into its mathematical formula, we get the following self-energy for the exchange

effect:
de

YR (ry, o) :iU(rl,I'Q)/G<(I'1,I'2,8)% 4.1)
As can be readily seen, the exchange self-energy is energy independent and thus can be regarded
as a hermitian correction to the non-interacting Hamiltonianﬂ Since both Hartree and Fock self-
energies are hermitian, they can be used, in conjunction with the non-interacting Hamiltonian, to
set a reference electronic structure of the interacting system, which is composed of well-defined
energy-eigenstates.

The rest of the (infinite number of) diagrams generated by the Hedin equation thus constitute
the so-called correlation effect, which is separated from Hartree and Fock in that its self-energies
are non-hermitian, energy dependent, and hence cannot be written in a mean-field form. The
concept of correlation encompasses a broad spectrum of many-body effects, from the elementary

e-e scattering process which fits in the perturbation framework and on which we shall focus in this

"Note that the exchange self-energy acquires spin-dependence in a spin-nondegenerate system.
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chapter, to strongly correlated matters such as the Mott insulator, for which the theoretical tools
developed in this thesis do not suffice.

As correlation effects generally cannot be expressed in closed forms, the typical methodology
is classifying them by their particular many-body phase and using certain representative model as
basis to capture the main physics of the corresponding system. One celebrated theoretical model
on this aspect is the Fermi liquid (attributed to Landau), which has gained great success in de-
scribing normal metals with a simple Fermi surface. Low-energy (compared to the Fermi energy)
excitations in a Fermi liquid are represented by the creation or annihilation of nearly independent
quasiparticles, whose life-time (i.e. inverse energy uncertainty) is much longer than the time scale
of external perturbations [6]. A quasiparticle state is not an exact eigenstate of the interacting sys-
tem. Rather, it must be understood as a superposition of states with energies confined in a finite
range inverse to its life-time. The proper way to introduce the quasiparticle concept is via the renor-
malization procedure [6, 91-93]], which yields an effective Hamiltonian for the original system at
a desired energy scale. Parameters such as the particle mass and the interaction strength would
be redefined as a result of renormalization. As can be anticipated, the renormalized interaction
would typically be weaker than in the original system, thus rendering the new model dominated
by its quadratic part, which defines the underpinning quasiparticle spectrum. It is at this point that
one may feel safer applying the perturbation techniqueE] Therefore, when interpreting the results
presented in this chapter, one should bear in mind that the system we are looking at is assumed to
bear the Fermi liquid nature at the background.

As the system we study in this thesis is the quantum wire, it should be mentioned that the Fermi
liquid formalism is believed to break down in strict one-dimension, where the electrons occupy the
lowest sub-band only. The reason for the breakdown lies in the particular “nested Fermi surface”
feature of the one-dimensional system, which renders its low-energy excitations all governed by
certain collective modes (i.e. charge or spin density waves) instead of individual quasiparticles
[6, 94]. This phase of matter is referred to as the Luttinger liquid in the literature. It is usually
described using the bosonization procedure [94], which is by no means covered by this thesis.
However, we notice that the condition for building up a system featuring the phase of Luttinger
liquid is demanding. In particular it requires a sufficiently long piece of wire, which is typically
on the scale of micrometers [95, 96]. Therefore, in order to justify using Fermi-liquid as the base

here, we assume our model system is too short to host a Luttinger liquidE] Besides we note that the

2 Although the renormalized Hamiltonian dismisses the original bare electrons and relies on the introduced quasi-

particles, it should in principle contain as much information in terms of the physical observables.
3The breakdown of Fermi-liquid in one-dimension can be diagnosed by calculating the polarization P of the

noninteracting 1D Fermion gas. One finds that P would diverge in the long wavelength and low frequency limit [97]].
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electrodes to which the wire is coupled should always be regarded as Fermi-liquid reservoirs.

The e-e interaction as a perturbation is responsible for two particular physical effects in dis-
ordered mesoscopic conductors, i.e. dephasing and energy relaxation. The dephasing effect is
usually associated with the Cooperon process as discussed in Chapter 3] As explained there, the
enhanced return probability of electrons due to Cooperon relies on the phase alignment between
time-reversal trajectories. This phase alignment retains in the presence of a static electric field
but is not robust against a dynamically fluctuating field [12]. In the presence of e-e interaction,
an intrinsic dynamic field can be induced due to the screening effect among interacting electrons
and thus impacts the Cooperon process [23]. Nevertheless, this effect amounts to a correction to
transport coefficients that is subleading to the weak localization and the Altshuler-Aronov effect
(see chapters [3] and [5| respectively), and thus it is not discussed in this thesis.

The energy relaxation is a more general phenomenon which simply arises from the energy
exchange during the e-e interaction process. Since e-e interaction alone conserves both the total
momentum and the energy of the system, the energy relaxation effect is best manifested in the
single-particle (energy) distribution function rather than in transport coefficients. An important
aspect of energy relaxation in mesoscopic conductors is that the electrons injected from the out-
of-equilibrium reservoirs have a tendency of equilibration in the interacting region. In particular
this effect leads to an energy distribution of the particle occupation that is fundamentally different
from the noninteracting case, showing the nonequilibrium electrons’ efforts to equilibrate. What’s
more, the equilibration process could become collaborative when there are other wires placed
nearby, even if the e-e interaction is the only way for these wires to “cross-talk”. Interestingly
the equilibration in one nonequilibrium wire can be facilitated at the price of driving others out of
equilibrium. These physical effects and the associated theoretical formalism are what this chapter

1s devoted to.

4.1 The GW method

In order to derive a practical numerical scheme we simplify the Hedin formalism (see Sec[2.3.T))
by neglecting the vertex correction A.. (see Fig[2.9). The resulting approximate self-energy thus
reads

Yeo(1,2) = iG(1,2)W(1,2). (4.2)

The polarization involved in the calculation of the screened e-e interaction W is accordingly ap-
proximated as

P(1,2) ~ —iG(1,2)G(2,17). (4.3)
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Figure 4.1:  (a) ®-diagram and (b) self-energy under the GW approximation. The double-wiggle line

b)

represents the screened e-e interaction W, see Fig[2.9]

We hence obtain a closed set of (simplified) Hedin equations which can be solved numerically.
The resulting formalism was coined the GWW approximation [33]] as its self-energy has the form
of Eq.(4.2). As can be seen from Figldl.T| the GW self-energy is obviously ®-derivable and is
thus suitable for transport calculations where a set of conservation properties are desired [55].
Although the GW theory was originally proposed for metallic systems of a high electron density,
in practice it often shows a fair versatility for other systems such as semiconductors [98]] and
molecular transport junctions [99]. Overall the GW method is a good compromise between the
physical accuracy and computational efforts. In the following we present in detail the numerical
procedure of our transport calculation that involves both e-e and e-impurity scattering.

As per Eq.(2.70) we first write down the Green’s functions in the scattering region with the

discrete basis set:

GR(W) = [WINxN —H— EER - EE - E% - 22 - EgpA] _la (4.4a)

G< (W) = GR[ZSR + 5§ + B5pa] GM, (4.4b)

where H is the Hamiltonian within the central scattering region, >.; g denotes the total lead self-
energy, >y denotes the classical Hartree potential, >x denotes the exchange self-energy [see
Eq.(@.1)], X¢ is the correlation self-energy approximated in the form of Eq.(4.2)), and X¢py is
the disorder-induced self-energy to be computed by the coherent potential approximation (CPA,
see chapter E[) Note that only H, >y, and Yx are Hermitian and w-independent.

To calculate > we need first the polarization which is expressed as
</> . dw' </> N >/<
Py (w) = -2 EG” (w+w) G5 (W), (4.5a)

P57 (1) = =26~ ()65 (1), (4.5b)
in the frequency and time domains respectively. Using the Kramers-Kronig relation [S5], the
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(a) (b) (c)

i

Figure 4.2: The Green’s function and other intermediate variables (i.e. P, W, X) are stored as 3D-arrays
in our numerical program, the third dimension being the frequency w. (b): slicing view at a given w. (c):
slicing view at a given pair of real-space indices 5. The numerical program is parallelized as per either of

the two views.

retarded component is obtained from

d /135 N _ R< !
Bl (t) =6(t) [P; (t)— B ()], (4.6b)

where © denotes the Heaviside step function. The polarization is computed with the Fourier trans-
form approach [55]]. The Green’s functions G</> obtained in the frequency domain (see Fig)
are Fourier transformed into the time domain (Figld.2t), where the computations simply become
element-wise products as can be seen from Eq.(4.5b). A brief outline of the numeric Fourier trans-
form technique is given in appendix [A] We also employ the zero-padding technique [100] to the
frequency series of G</>(w) and P</>(w) to improve the numeric accuracy. The elongated series
for G</>(w) are at least four times as long as the original, and for P</>(w) a longer padding (six
times) is used. The reason for using a longer padding for P</>(w), whose Fourier image is used
to compute Eq., is that the real part of P®(w) in fact decays very slowly as w increases. The
outcoming numeric value of ReP®(w) obtained from the above procedure always decays to zero
at the two ends of the frequency series. Therefore, if no zero-padding were used, ReP?(w) could
be severely underestimated at large w.

Using the matrix notation, the screened interaction is expressed as
W (w) = [I = UP*w)] ', (4.7a)
W< (w) = WR (w) P</> (w) WA (w), (4.7b)
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Figure 4.3: Flowchart of the numerical scheme. The main flow is marked by the black arrows. The inser-
tions labeled by dashed arrows represent the mixing operation, which involves the historical results of the
corresponding quantity computed during previous iterations. Either the Green’s function or the correlation
self-energy (3¢) can be used as the mixing operand. Note that the CPA solver, employed to compute the

disorder self-energy, contains a second layer of iteration in itself. This part of algorithm is presented in

Sec3.3.11

where U is the interaction matrix parameterized as U;; = ua/|r; — r;|. Using the same Fourier

transform based method as in Eq.(4.5a)), the correlation self-energy is calculated by

Xl (@) =i / Vo5 W)W W), (4.82)
Sl (t) =Gy (t) Wi (). (4.8b)

The retarded component X is again obtained from the Kramers-Kronig relation (4.6b), where
P should be replaced by . Without disorder-average, one can simply insert the computed
exchange-correlation self-energies back to Eq.(#.4) and hence closes the set of Hedin equations.
However, in order to take into account disorder scattering on an equal footing with the e-e inter-
action, we need to add an extra step which carries out the self-consistent CPA computation, as
illustrated in the flowchart Fig/.3] During this nested CPA calculation, the exchange-correlation
self-energies are put in the H, object defined in Egs. and (3.21c). The resulting coupled
CPA-Hedin equation effectively generates an infinite series of diagrams as exemplified in Fig[4.4]
Note that all these diagrams are non-crossing in that each diagram block is embedded within an-
other block of higher level: they do not include crossing diagrams such as Fig[2.TT(b").

Our numerical program consists in iterating the loop shown in Fig4.3| until a numerical con-
vergence is reached. We note that the convergence is essential for the conservation properties, as
asserted by the Kadanoff-Baym theory. To facilitate this process one could adopt a mixer, whose
simplest form reads

G<(e) = BGoys () + (1 = BG™(e). (4.9)

where G, denotes the input Green’s function used to compute the interaction self-energies, and

Gout denotes the output of the CPA nested iteration which follows the ¥ computation. The left

66



Chapter 4. Energy relaxation due to e-e interaction

Figure 4.4: Exemplary Green’s function diagram generated by the self-consistent scheme as formulated

in the main text (also see Figi4.3).

G S P W
XB(w) = (XM w))' v v Y
(w):(XR( w))* v v
X =—(XPw) v v v v
X (w) = —(X~(-w))’ v oV

Table 4.1: Symmetry relations. X represents a matrix expressed with real-space basis, which can be G,
3, Por W. A check mark means that the quantity of the corresponding column satisfies the relation of the

corresponding row.

hand side of Eq.(.9) then becomes the input of the subsequent iteration. Alternatively one can
mix the interaction self-energy by using the same formula Eq.(#.9); the major advantage of doing
so is that, in comparison with G®<, Eg’< is much smoother as a function of energy, thus numer-
ically more stable. In practice the GIW scheme presented here converges much more slowly than
the disorder solver. To accelerate the convergence, more sophisticated mixers, such as the Pulay
algorithm [101} [102] employed in Refs.[3, 55], can be an option. However, we notice that the
Pulay algorithm does not always guarantee a convergence. Apart from the mixer, we find it useful
to impose the symmetry relations listed in Table[4.T} this helps on the robustness of the iterative
program. These symmetry relations regarding G, 32, P, W can be easily derived from their basic

definitions.

4.2 Applications

We implement the numerical method presented above on the discrete lattice model which we es-
tablished in Sec[2.5.4] and, as applications, we study specifically the energy distribution function

of particle occupation and the Coulomb drag effect in nonequilibrium quantum wires.
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Figure 4.5: Energy distribution of particle occupation at the middle of a nonequilibrium wire (L = 40a).
The setup of our model is detailed in the main text. Subplots (a) and (b) respectively show the evolution
of the energy distribution under different bias and e-e interaction strength u. The results in (a) are obtained
under u = 0.4¢

4.2.1 Nonequilibrium energy distribution

In mesoscopic physics the degree of energy relaxation is often measured by a length scale L,
which is interpreted as the mean free path between successive inelastic e-e scattering events [22].
If Ly, > L, L being the wire length in between electronic reservoirs (leads), electrons could barely
have a chance to exchange energy before reaching the reservoirs, and thus the system is effectively
noninteracting and nonlinear. In the other limit L;, < L, the inelastic scattering becomes so
frequent that local equilibrium is established on the scale of L;, in the wire, and hence the local
energy distribution of particle occupation displays an equilibrium profile [14]]. In the intermediate
range of inelastic scattering, the energy distribution then interpolates between the two limit cases.
As the energy distribution of particle occupation is measurable by experiments [14], it is a practical
approach to probing the inelastic scattering or the energy relaxation rate of interacting electrons.
The numerical method presented in this chapter provides a natural access to this energy distribution
function since it can be simply read off from the diagonal of ImG<(¢), according to its definition
(2.T1). It is worth noting that the self-consistent procedure for computing the correlation self-
energy is essential for observing the characteristics of energy relaxation on ImG=<(¢) profile; this
procedure solves an integral equation equivalent to the more widely used kinetic (differential)
equation [14, 44].

To demonstrate we set up a one-dimensional lattice model with W = 1, L = 40a (see
Fig{2.15). The disorder is modeled by a binary random variable v = £0.5¢, where £ is the hopping
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amplitude, and the bare e-e interaction is modeled as U;; = ua/|z; — x|, i # j. The temperature
in the leads is set at zero and the chemical potentials are set at the band-structure center. When a
voltage is applied to the lead, accordingly its band-structure, together with the chemical potential,
gets shifted in a rigid manner. Besides, the Hartree potential between the leads is assumed lin-
ear in our simulation; this is often a good approximation in the presence of both disorder and e-e
interaction [[60].

The particle occupation at the middle of the wire under different voltage bias and e-e interaction
strengths u is displayed in Figld.5 The two sharp drops in each curve correspond to the two
Fermi surfaces at the lead chemical potentials; they would be smeared at a finite temperature. The
signature of energy relaxation consists of the slope between the drops and the tail above the higher
Fermi energy. In particular, we note that the “tail” must vanish at equilibrium even in the presence
of interactions, as guaranteed by the one-particle fluctuation-dissipation relation [44]. Therefore
this “tail” signifies a pure nonequilibrium effect of energy excitation. Both the “tail” and the
slope increase with an increasing bias (Figld.5p) or an increasing interaction strength (Figid.5p).
Indeed, increasing these two parameters amounts to an enhancement of the equilibration process.
In the sense of energy relaxation, the effect of increasing bias can be interpreted as a phase-space

augmentation to facilitate the e-e scattering.

4.2.2 Coulomb drag

Coulomb drag [42] refers to the phenomenon that a charge current (or an open-circuit voltage) is
induced in an otherwise equilibrium conductor when it is placed beside another conductor which is
driven out of equilibrium (Fig[4.6), even though there is no particle exchange between the two. The
Coulomb drag is a true e-e correlation effect in that the Hartree-Fock does not contribute: the elec-
trostatic and exchange effects merely induce a Hermitian correction to the noninteracting Hamil-
tonian, and therefore the equilibrium conductor would stay equilibrium. The first-order physical
process contributing to the drag effect thus comes from the diagram depicted in Fig[2.10|c), which
is also the lowest-order contribution to the quasiparticle relaxation rate in a many-electron system
[12]. Indeed, the Coulomb drag can be viewed as a manifestation of the elementary scattering of
correlated electrons in the special case that they are spatially separated. From this point of view,
the drag current is just a result of momentum transfer between interacting conductors since charge
current is entirely determined by the momentum distribution [103}104]. Nevertheless, we classify
Coulomb drag as an energy relaxation effect in this chapter because the momentum transfer in-
volved in the drag process is always associated with certain amount of energy transfer. The reason

is that there is only one single Fermi surface in the dragged conductor and, without inter-conductor
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Figure 4.6: Left panel: Schematic diagram of the Coulomb drag setup. A potential bias is applied across
the active wire and the drag current is measured in the passive wire. The Feynman diagram in the plot repre-
sents the lowest order process responsible for the drag effect, corresponding to the self-energy of Fig[2.10|c).
Right panel: potential profile in the wires. Blue lines represent the electrostatic (Hartree) potential which
rigidly shifts energy levels of the noninteracting Hamiltonian. Red lines represent chemical potentials mea-

sured with respect to the band structure center of respective leads.

interactions, all states below the Fermi energy are filled (assuming zero temperature). Therefore,
for a change in momentum, an electron in the dragged conductor must jump over the Fermi surface,

which necessitates some energy exchange.

Another perspective to the Coulomb drag physics consists in relating the drag current to the
classical or quantum fluctuations in the driving conductor. Specifically, as suggested by early theo-
retical works [[105,106] specializing in the linear response Coulomb drag, the dc drag current could
be interpreted as a rectification of the thermal charge fluctuation (represented by the polarization)
in the driving conductor. As a result the linear Coulomb drag exists only at a finite temperature. On
the other hand, recent studies on double quantum dots [42, 107, [108]] have pointed out a new di-
rection of the Coulomb drag physics at zero temperature: instead of the nearly equilibrium thermal
fluctuations, the drag current can also be driven by the shot noise of finite mesoscopic conductors
in the nonlinear regime. With this understanding, Coulomb drag has been further proposed as a

noise sensing technique for nanoscale circuits [42]].

In terms of diagrammatics, both equilibrium and nonequilibrium charge fluctuations are unit-
edly represented by the polarization diagram in Fig[2.10(c). Thus they are treated on an equal

footing in our nonequilibrium formalism. In accordance with the previous linear-response analyses
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[105; 106, [109] on the Coulomb drag, we keep only the lowest-order diagram for our simulations,
i.e. truncating the W series at Fig[2.10(c). We note that higher-order drag effects [42, [110] and
in particular the drag in non-Fermi-liquids [111H113] have arisen as an active field of research
recently. These advanced topics are not accounted for by the formalism presented here.

After the brief survey on Coulomb drag theory, we now set up a minimal numerical model to
simulate the Coulomb drag effect in mesoscopic wires. As sketched in Figl4.6] the system consists
of two parts. The upper subsystem (referred to as the active wire in the following) is subject to
an external bias V()| i.e. the band structures in the corresponding leads differ by a rigid shift
of eV (@, On the other hand, the lead band structures and the chemical potentials in the lower
subsystem (passive wire) are set aligned, so that it would be at equilibrium when the interwire
interaction is turned off. Besides, we assume a linear Hartree potential (see Figi.6) between
each pair of the leads, and the temperature is set at zero in all leads. Both wires are modeled by
the discrete lattice with identical hopping amplitude &, lattice constant a, and a binary impurity
energy v. In the real-space the two wires are placed parallel to each other: we stack together
two copies of the lattice defined in Fig[2.15] In our simulations the interwire distance is fixed at a
and no interwire hopping is allowed. In order to analyze the elementary Coulomb drag physics we

remove the intrawire e-e interaction and assume an interwire interaction of the form

He.= Y. - A@a®), (4.10)

i€active,jEpassive \/(SL’z — Ij)2 -+ (yl — yj>2 + a?

where 4, j are restricted within the central scattering region. The following formula [cf. Eq.(2.74)]

is used to compute the charge current through any of the four leads denoted by «:
I, = % / deTr [B5(6)G™ () — £2 ()G ()] 4.11)

Note that the lead chemical potentials ;(*P), which are measured with respect to band centers, are
set equal in either wire. In our simulations the chemical potentials and the bias voltages are treated
as independent model parameters. For later reference we also formulate the energy current [60] as

follows:

1 < > > <
Jo = 7 /5 CTr[E5(e)G7(e) — X2 (e)G™ ()] de. (4.12)

Conservation laws supposedly lead to Iﬁ“) + I}({“) = Iﬁp ) 4 II({’ ) = 0 (i.e. charge conservation in
respective wires) and Jﬁa) + Jéa) + Jﬁp ) + Jf({p ) =0 (1.e. total energy conservation), which can be
utilized as numeric accuracy criteria for our simulations.

To illustrate the Coulomb drag physics, we first carry out our numerical simulation for a pair of

wires with L = 10, W = 1 under a fixed activation bias V(¢ = 0.8¢ /e (while leaving the chemical
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Figure 4.7: Left panel: integrand of Eq. for the left lead of the passive wire, at (%/P) = —1, 0, 1¢
(corresponding to green, black, blue curves) respectively. Right panel: electron occupation at the middle
of the two wires when u(“/p) is set at —1.0¢. Other model parameters: v = 0.26, u = 1.0¢, Vi) =
0.8¢/e, L =10a, W = 1.

potentials 1.(*P) variable). As expected the presence of the active wire would drive the passive one
out of equilibrium. To gain insights we plot in Figl4.7 the energy spectrum of the charge current
in the passive wire, i.e. the integrand of Eq., in the following denoted by i(¢). In the figure
the typical profile of i(¢) is illustrated under three different chemical potentials p(*/?) = —1,0, 1¢,
situated in the lower half, center, and the upper half of the band-structure correspondingly. We
notice that i) () is in general neither positive nor negative definite: the current carried by the
excited electrons above the Fermi energy is always accompanied by a countercurrent (commonly
pictured as the hole drag current in the literature [42]) which comes from the depleted states just
below the Fermi energy, and their subtraction amounts to the net measurable drag current in the
electrodes. An absolute cancelation occurs when £(*/?) is set at zero, i.e. the band center In
Fig the shaded areas under the profile of i) () at u(%/P) = 0 exactly cancel, resulting in a
zero drag current. However, note that a zero drag current does not mean that the passive wire
remains equilibrium in this case. We shall shortly see that its nonequilibrium status can also be
identified by the energy flow. In contrast to the 1(*/?) = ( case, nonzero drag currents are obtained
at u(@/?) = —1,1¢. Interestingly, although the two i(P) (¢) profiles do not match, they in fact amount
to equal drag currents. This is a result from the following more general relation which applies to

systems with electron-hole symmetric band-structures:

7@ (M(a)’ ,U(p)) - —I(”)(—u(“), M(p)) — _JW (,U(a), _M(p)) — [(p)(_u(a)7 _Iu(p))7 (4.13)

“In fact, absolute cancelations can occur when either of 11(%?) is set at the band center, see Eq. l)
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Figure 4.8: Relation between the passive charge current I(P) (blue curves), the interwire energy current
J® (red curves), and the chemical potentials x(?), (@), The e-e interaction is set at u = 1.0&, and the
wire length L = 10a. For results in subplot (c), a wire width of W = 2a is used (W = 1 for the others).
Note that only half of the energy range is shown here because the other half can be deduced with the parity

relation Eq.(#.13).

where the drag current /) is viewed as function of ;(*?) at given V(). The proof of Eq.(4.13) is
given in appendix [C| It should be pointed out that the relation (4.13]) may not hold if certain higher

order diagrams or physical processes are taken into account [[110].

As stated above, the energy relaxation effect is essential for Coulomb drag. To concretize this
point we plot in Figl4.7|the particle occupation in the active and passive wires respectively. As can
be seen, the occupation in the active wire is similar to that of an isolated nonequilibrium wire. In
contrast, the occupation in the passive wire shows only one “cliff” at 11(*/?). The lack of a nonzero
energy window for transport results in the smallness of its drag current. Another noticeable feature
on the occupation profile is the “tail” at ¢ > ;(%/P); it signifies the presence of energy relaxation

due to interaction with the active wire.

In the following we shall further analyze the relation between the drag current and the chemical
potentials. Under a relatively small bias voltage V' = 0.04¢/e and disorder strength v = 0.02¢, the

charge current 7 in the passive wire and the energy current J between two wires are computed
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Figure 4.9: Local density of states in the passive wire under two different activation bias voltages. The
y-axes of the plots represent positions along the wire in the interaction region. The chemical potentials
p(@/P) = —1.8¢. Other model parameters are same as those for Fige,f).

with varying chemical potentials (4 = ;(*)). The result is displayed in Figa). We see that
I®) is noticeably pronounced when 1(%/?) is close to 2¢, which is the band edge. This behavior was
first observed in the study of ballistic wires using the Boltzmann equation approach [[114, [1135]]: it
was found that the low group velocities around the band edge together with a small interwire
momentum transfer lead to an enhanced Coulomb matrix, and hence produce a drag current peak.
Figure {4.8|(a) indicates that the band-edge associated drag peak preserves in our model whose
interaction region is rather constrained, much smaller than the thermal length, and hence it might
have a different origin. It was argued in Ref.[42] that this drag peak may be instead related to
the mesoscopic shot noise which is also peaked at band edges. Overall one could understand the
drag peak based on the simple fact that the electron-hole asymmetry, which lies in the heart of drag
effects, reaches maximum at band edges. The evolution of this drag peak in response to other model
parameters is as follows. Increasing the disorder strength (Fig/[4.8b) and the bias voltage (Fig[4.8f)
respectively decreases and increases the overall drag current, while its peak near the band edge
retains. Further increasing the bias V(®) however degrades this peak structure, as illustrated by
Fig[4.8|f). This observation can be explained by the smearing of the van Hove singularity due to
enhanced energy relaxation at high bias voltage. To concretize this reasoning we plot in Fig[4.9]
the local DOS of the passive wire under V(® = 0.2¢/e and 0.8¢/e respectively. The glowing
area in Fig[d.9((a) then corresponds to the van Hove DOS singularity of one-dimensional materials,
and clearly it fades out at V(@ = (0.8¢/e. Figure d) shows the result when p(P) is fixed at
1.2¢ and we sweep ;(“) only. Although the drag current in this case is overall much smaller than
that in Fig[4.8fe), it still preserves the peak structure at the band edge. In addition to strict one-

dimensional wires, the Coulomb drag in wires whose electronic structure consists of two bands is
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Chapter 4. Energy relaxation due to e-e interaction

also computed; the result is displayed in Figl4d.8|(c). We observe an additional peak situated at the
sub-band edge, which agrees with the prediction by previous theoretical works [[114,[115].

So far we have been focusing on the charge current in our Coulomb drag model. Recent theo-
retical works have shown a growing interest in the energy flow (or near-field heat transfer in some
contexts) between insulated many-electron systems [L10, [116, [117]. As indicated in Eq.(#.12),
our formalism is also applicable to computing the energy current. For the numerical model used
here, the interwire energy currents (from the active wire to the passive wire) are computed and
plotted in Figl4.8|along with the charge currents. As can be seen, the two currents are highly cor-
related. Indeed, a higher energy transfer rate can drive a larger drag current. However, note that
energy currents can exist even if there is zero charge current in the passive wire. For example at
the electron-hole symmetric point (%/?) = 0, the charge current I?) = 0, as a result of Eq.,
while the energy current can be nonzero, as best illustrated by Fig[4.8{c). In fact, even if the driving
bias is set at zero, i.e. V(@ = 0, there can be a nonzero energy flow between the wires, given a

temperature difference.

4.3 Summary

We have formulated a practical numerical method for simulating Fermi-liquid-based many-electron
systems, in the presence of both e-e interaction and disorder. Specifically we approximate the
many-body correlation effect by discarding the vertex correction in the Hedin equations. The re-
sulting so-call GW scheme consists of a closed set of equations which can be solved efficiently
with a self-consistent numerical program. Besides, its ®-functional derivablility ensures conserva-
tion laws to hold. The numerical formalism was applied to simulating the energy relaxation effects
in mesoscopic wires, which require a self-consistent treatment of the correlation self-energy. The
energy relaxation in single wires is manifested in the energy distribution of particle occupation: the
inelastic e-e scattering tends to drive a nonequilibrium system toward a locally equilibrium state.
Signatures of this process can be readily seen on the G*< profile obtained from the self-consistent
calculation. In particular, the equilibration was found enhanced as either the bias or the e-e inter-
action is increased, in qualitative agreement with experimental results [[14]. We have also studied
a very interesting energy relaxation effect in pairs of mesoscopic wires, namely the Coulomb drag
effect. Using numerical results we have elucidated the strong dependence of Coulomb drag on the
electron-hole asymmetry which comes from the underlying band structures. We also pointed out
a potential usage of our formalism to investigate the near-field energy transfer between interacting

systems.
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Altshuler-Aronov effects

The Altshuler-Aronov (AA) effects refer to two experimental discoveries in mesoscopic metallic
systems, i.e. the zero-bias anomaly [29, [118]] and the temperature-dependent quantum correction
to conductivities (25, [119]. The former phenomenon concerns the strong density of states (DOS)
depletion at the Fermi energy of disordered low-dimensional samples. It is manifested as a dip on
the differential conductance (d/dV’) profile obtained from tunnel junction measurements where
the disordered sample forms a tunnel contact with the reference electrode. The zero-bias simply
refers to the equilibrium situation where the two Fermi energies are aligned and thus the DOS at the
Fermi energy of the disordered sample is probed. Notably, this tunnel conductance dip gets deeper
rapidly as the temperature decreases. Removing the tunnel contact and measuring the conductivity
of the disordered sample on its own, one finds a similar temperature dependency These two
phenomena turn out to be closely related [12] and essentially arise from the same physical process
which involves the interplay between disorder scattering and e-e interaction. In the following we
set up a heuristic picture to illustrate this very important physical process based on the works of
Refs.[23]120].

In Sec[3.1]it was argued that, for a pair of paths making nonzero contribution to the two-point
propagation probability upon disorder-average, they must pass through the same set of impurity
sites. However, this restriction can be relaxed in the presence of e-e interaction: Even spatially sep-
arated paths can be paired up and yield a nonzero interference that affects the probability propaga-
tion. To see this, consider a single impurity placed in the middle of an electron gas (Fig/5.Tp). The
induced potential disturbance reconstructs the surrounding electron distribution, which thus acts

as an additional scattering source to electrons passing through the medium. The red path shown

Usually the conductivity measurement mixes in the contribution from the weak localization effect. To separate
out the temperature dependence due to the AA effect, one could apply a magnetic field. Unlike the weak localization,

the AA effect is unsusceptible to phase misalignment.

76



Chapter 5. Altshuler-Aronov effects

.Y
Y

(a) (b) (c)

Figure 5.1: (a) Illustration of the two associated scattering processes. A single impurity is placed at the
center of the circle, and it induces a charge redistribution in the vicinity. The resulting potential fluctuation
acts as additional scattering source to the electrons (blue curve). (b) Diagrammatic representation of (a). (c)

Generalization of (b) for a system containing multiple random impurities.

in Fig[5.1(a), which scatters off the impurity itself, and the blue one experiencing the Coulomb
potential created by the charge “ripples’ﬂ thus form an interfering pair to be counted in the to-
tal probability propagation. Notably, this contribution survives under the disorder-average over
impurity potential, because the charge redistribution is correlated to the impurity.

The scattering process described above is translated into the diagram shown in Fig[5.1[(b). The
green part represents the electron density correction due to the presence of impurity, and it is
connected to the blue line via a wavy curve which stands for the direct Hartree interaction. Figure
5.1]c) is a generalization to Fig[5.1[(b) for systems containing multiple random impurities. In this
case, taking disorder-average amounts to attaching the impurity (dashed) lines that are rooted on
the green ring to those on the arrowed lines. The resultant diagram is reminiscent of the self-
energy which we showed before in Fig[2.1T(a’), from which Fig[5.1|c) can be formally derived. In
fact, the physical process described here has a Fock counterpart which should also be taken into
account on an equal footing. Although the Fock process is not as easily visualized as in Fig[5.1(a),
its diagrammatic representation is readily available, as given by Fig2.TT(b’). The self-energies of
Figs. Ma’) and |T1_ka’) thus constitute the foundation of the Altshuler-Aronov formalism.

The interaction induced suppression to the DOS and conductivity of diffusive conductors was
first elucidated by Altshuler and Aronov using the perturbative linear-response approach [21,121].
As in d < 2 this suppression develops a singularity at the zero temperature, the AA effect is
believed to be a precursor of the much more complicated Anderson-Mott transition [122]. The

implication of a phase transition signifies the necessity of renormalization treatments, which were

These ripples are commonly known as the Friedel oscillation in many-electron systems [32]].
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henceforth developed in Refs.[123H125].

The investigation of AA effects in finite nonequilibrium structures was initiated by Nagaev
[126], who analytically derived an expression for the nonlinear current in diffusive metallic con-
tacts. Part of Nagaev’s development will be reviewed below in this chapter. Using a quasiclassical
approach, Schwab et al.[[127] analyzed the nonlinear transport in nanowires of different character-
istic ratios Ly /L, where Ly = \/W is the thermal diffusion length. Aiming to generalize
the zero-bias anomaly at nonequilibrium, Gutman et al.[128] considered a disordered film with its
longitudinal size smaller than the energy relaxation length. Specifically, using matrix-field anal-
yses, they found that the DOS anomaly should split in two at the electrode Fermi energies, and
that the anomalies are smeared by certain dephasing effect due to the bias-induced fluctuations of
internal electromagnetic fields.

The main objective of this chapter is to establish a diagrammatic formalism that computes the
AA corrections in nonequilibrium numerical models without phenomenological parameters typi-
cally invoked in theoretical analyses. We shall stick closely to the original diagrammatics formu-
lated in Ref.[21], which is focused on the most elementary interaction process between diffusive
electronsE] Before getting into the implementation details of our numerical formalism, we shall
first derive some analytical results that will give us a preliminary idea about what becomes of the

AA effect in finite nonequilibrium systems.

5.1 Theoretical analyses

Our theoretical model consists of a short wire sandwiched between two ideal electrodes, i.e. the
continuous version of Fig2.15 The wire length L should be much longer than the electron-
impurity mean free path (/y), so that the transport is mostly diffusive and that the energy distri-
bution of electrons follows the diagram in Fig[3.4] Throughout our analyses the e-e interaction
will be treated as a first-order perturbation.

Before getting into the analytical derivation, it would be helpful to review the various char-
acteristic length scales in the problem. First, because of momentum relaxation, wavefunctions of
single-particle states are confined in a spatial region bounded by [,. However, the particle density
could correlate in space over a distance much larger than /y. This type of long-range correlation is
associated with the diffuson and is usually characterized by a classical length scale L., = \/D—/w
as can be obtained from Eq.(B.T1) of Appendix B. In the following, we shall see that the ratio

between L, and the sample size (L) plays an important role in the interaction correction to DOS.

3The Cooperon process contributes a modification to the AA effects, as discussed in Refs.[21[129].
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At nonzero temperatures, the thermal diffusion length L, = \/W would come into play,
which was used to cutoff the macroscopic sample size in the original work [21]]. For short meso-
scopic wires it is reasonable to set Ly > L, so that Ly becomes irrelevant effectively. In addition
to the diffuson, another long-range object could be the Coulomb interaction, whose spatial scope
depends specifically on the charge carrier density and the system dimension. Nevertheless, it is
essentially the long-range nature of the diffuson that is responsible for the singularities in the in-
teraction induced corrections, whereas different models of e-e interaction merely result in some
additional prefactors [[12, 21]].

The above length scale analysis should suffice when the e-e interaction is treated only to the
first order. However, if one were to go beyond this approximation level, other length scales, such
as the energy relaxation length and the dephasing length [22], would come into the picture and
further complicate the problem. These higher-order effects will not be considered in this section,
but they will be revisited in Sec/5.3|by means of numerical investigation. Analytical results of this
section apply to short diffusive wires where the dominant cutoff length scale is the wire length

itself.

5.1.1 Density of states

The first-order DOS correction due to interaction can be written as
1
ov(e) = ——Im[GR(e)XR(e)GR ()], 5.1)
T

where G® denotes the non-interacting (retarded) Green’s function and ¥ denotes the Hartree-

Fock self-energy

YR(ry, 1, 8) = —2i6(r; — 1) / ;i_w /dr G<(r,r,w)U%(ry,r,0)
m
d

+ 1/ 2_(«&) [G<(I'1,I'2,E — w)UR(I‘l,I'Q,CL)> + GR(rl,FQ,g - w)U<(I‘1,I'2,LU):| . (5.2)
s

Plugging Eq.(5.2) into Eq.(5.1) and then taking disorder average, we find the following Green’s
function correlators to be calculated: (GRG<GR) and (GRGRGR). The lesser Green’s function
can be expanded in the form GRoGR - .. vG<v - -- GAvGA. The diagram for calculating averages
of three Green’s functions follows that in Fig[2.7(b). When disorder-average is taken under the
first Born approximation, the K (?) four-point vertex reduces to a single dashed line (see Fig,
and diffuson ladders are formed in the three corners. Note that the & ®) kernel vanishes here since
a single impurity line does not contain internal Green’s functions. When evaluating the ladder

series, we are only concerned about those corresponding to (GRG*) since any pair of G® would
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p
(a)
Figure 5.2: Diagrams for the Hartree (a) and Fock (b) corrections to the electronic density of states.

The capital letters (e.g. R) mark macroscopic spatial coordinates based on a length scale greater than the

impurity-electron mean free path.

result in a small factor (ep7) ™! [see Eq.]. The resulting diagrams are given in Fig Note
that we have discarded the correlator (GRGRGR) and omitted the vertex correction in the bottom
corner. In addition, G< is pushed to the leftmost in order to avoid having GRG®. The resulting
ladder series is evaluated as v(GRG™)y = P/(271y7¢), where P denotes the diffusion propagator
as defined in Eq.(B.12).

On the one hand, the ladder series that show up in the diagrams represent diffuson propagators
which are long-range objects varying on a length scale greater than the microscopic mean free path
(lp). On the other hand, the Green’s functions decay exponentially over a distance of ;. With this
observation, those diagram blocks between the diffusons can be calculated separately: they can be
“detached” from the diffusons. For instance the triangular block at the bottom of either diagram is

sandwiched between two diffusons, and therefore it can be written as

/drldrgGR(R, ri, )G (ry, 1y, — w)GR(rsy, R, €)

= / ddkd [G™(k, 5)}2GA(k —q,e —w) = I* = 2rmiyy(e) 77, (5.3)
(27)

where r; and r, are integrated independently on the diffusons, because of their scale difference. In
performing the k-integration above, we have used the techniques developed in Appendix [B| Note
that the g-dependence in the above integral has been discarded: if not, the expansion technique
of Eq. should be used, which would lead to an extra factor of ¢l,, small under the diffusive
approximation.

Figure [5.3| displays a closer view of the diagram blocks which contain the interaction vertex.

Since these blocks are also sandwiched between diffusons, they can be evaluated in the same way
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R R
OV <>

< A
Fock Hartree

Figure 5.3: Close view of the diagram blocks which contain the e-e vertex in Fig[5.2] R, A, < denote

retarded, advanced, and lesser (Green’s function) respectively. The black dots mark the joints with diffusons.

as Eq.(5.3)). For the diagram on the left hand side of Fig[5.3] we can write down the expression

dk < , R
[/ O 0Re —)6 0)

Note that the R’-dependence in G=< should not be overlooked since it could vary on a macroscopic

d
URR/, R, w) [/ 'k G ke —w)GR(ke)| . (5.4)

(2n)"

length scale. To proceed we approximate G< as
G (kR',e —w) ~ f(e —w,R) [G*(k,e —w) — G¥(k,e —w)], (5.5)

where f is given by the diffusive distribution (3.9)). The remaining k-integrals in (5.4)) thus read

d’k A R QN LIV2 (9, )2
[/ (zﬂ)dG (k,e —w)G (ka)] ~ (I')? = (2mvm)2. (5.6)

Here the w-dependence has been discarded since it would give rise to terms carrying a factor of

wTy, Which is again small in the diffusive limit.
The diagram on the right hand side of Fig[5.3|reads

/d(r1 — 1) {/ dr'G=<(ry,1" e — w)GR(r',rg,g)} UR(r; —1ry,0)
X [/ dr"GA ey, 1" e — (.U)GR<I'H,I'2,€)} . (5.7)

The reason why we integrate over the difference (r; — ry) instead of [ dr;dr, separately is that
the e-e vertex is surrounded by the Green’s functions and its center must be constrained in the
microscopic region: (r; + ry)/2 = R’ = R”. To proceed we again adopt the approximation
Eq.(5.5), and hence the integrals in the brackets of amount to

2
[/ GR(ry, )G/ ry)dr’ | = (17-0 [GR(rl,rz) — GA(rl,rz)])2 - [2TOImGR(r1,r2)}2,
(5.8)
where the first equality follows directly from Eq.(3.5). To simplify the notation, we introduce a
function as follows:
ImGR
a(r) = _ImGr) = cosV2mer - exp(—r/2ly), d=1 5.9

TV
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where the second equality follows from the Fourier transform of Eq.(3.5)) in one-dimension. Ap-
parently «(r) is a short-range function bounded by [y. Thus the interaction block in the Hartree
diagram contains a factor of [ o?(r)UR(r, 0)dr, where the long-range part of the Coulomb poten-
tial is cut off by /y. Besides, note that only the static potential U®(r, Q2 = 0) counts here, since in
the Hartree diagram the interaction vertex is connected to a closed fermion loop which conserves
energy.

Collecting all the pieces in Fig[5.2] we get

Sv(e,R) = —%Im / dwdR'dR"P(R, R, w) f(e — w, R)
x [URR/,R",w) —2FUS(R' — R")]P(R",R,w). (5.10)

The F factor arises from the e-e vertex in the Hartree diagram:

[P (x)UR(r)dr
F= J UR(r)dr

(5.11)

where U = [ UR(r)dr = UR(q = 0). Since a(r) is a short-range function decaying in space, the
value of F falls in between O and 1. For very strong screening, namely when the screening length
is shorter than the Fermi wavelength, / = 1, while in the opposite limit F/ = 0. It is important
to notice that the actual value of F affects the sign of dv. Evaluating Eq.(5.10) also requires the
knowledge of UR(R/,R”,w). According to the dynamic screening theory in the diffusive limit
[12], the effective interaction is approximated as U"(q, w) &~ (—iw + Dq?)/(2v9Dg¢?) in Fourier
space. To simplify the calculation of Eq.(5.10) and to meanwhile allow for cross-validations with

our numerical formalism, we omit the w-dependency and hence adopt a local interaction model:
Uo(Rl — RQ) = (2V0)_15(R1 — Rz) (512)

When restricted to one-dimension, Eq.(5.10) reads

L
ov(e,x) = 2];; 1Im/dw/0 da' f(e — w,2) [Pz, 2, w)]. (5.13)

The diffuson P takes the one-dimensional form [see Eq.(B.15)]

,y _ Lwsinh(zn/Ly) sinh(L — @) /L,
Pz, 2’ w) = — Sinb(L/L.) : (5.14)

where x,, = min(z,2’), z); = max(z,2’), and L, = \/iD/w sets the length scale of a diffusive
mode with frequency w. Using the linear expression of f(e, x), we rewrite the DOS correction in

two parts:
ov = (1 — 2?)(6V1 + (SV2>, (515)
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Figure 5.4: Schematic profile of the interaction-induced DOS anomaly in a disordered finite wire. The
energy reference is set at the Fermi level. Ery, represents the Thouless energy 2D /L%, See Eq.(5.18)) for

mathematical details.

where
1
ovy(e,z) = _ERG [P.(e — €V/2) + Py(e + €V/2)], (5.16a)
e+eV/2 L .
dva(e, ) = Im / d_w/ dx’x_—L/z[P(a:, 2w (5.16b)
27 J, L
e—eV/2

Let us first look at the first part 61, which is simply proportional to the recurrence probability
ReP,—r (w). Since ReP,(w) is an even function peaked at w = 0, dv; is symmetric in ¢ and has
two cusps at ¢ = +el//2 under an external bias. The cusp depth dv; (deV//2) varies with . To see
this, we set w at zero and hence obtain

ReP,(w = 0) = % (1 . %) . (5.17)

Therefore v (£eV//2) is deepest at x = L /2, and around the cusp

(5.18)

hL/2L
51/1(w,L/2):—Re{tan / “’},

81/ —iDw
where w = e+ ¢eV//2. The result of Eq.(5.18) is visualized in Fig[5.4] On the contrary, §1, (+eV/2)
vanishes at the ends of the wire. The underlying physical picture is that, the closer particles get to
the boundaries, the more tendency they will be absorbed by the reservoirs and never return to the
interacting region.

At a fixed x/L ratio, 6v4(+eV/2) is proportional to L. This implies a DOS singularity when

the thermodynamic limit . — oo is taken. To see this singularity on the energy axis, we set
x = 2’ = L/2 at first and then get ReP(w) = 1/v/8Dw from Eq.(5.14) in the limit L >> L.
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0.02

-0.02 |

0 0.5 1

Figure 5.5: Plot of the function ¢(y) = (1 — 2y)(y — 1)%y*(4y* — 4y — 1), which we invoke in Eq.(5.23).

Thus at equilibrium we have dv,(¢) = —(47v/2De)~", which reproduces the well-known “zero-
bias anomaly” (as ¢ — 0) first elucidated by Altshuler and Aronov [21]. In real materials, this
singularity is cut off by the thermal diffusion length \/W at a finite temperature. In the
present work which is mainly focused on short wires, this anomaly is simply cut off by the system
size [see Eq.(5.18)].

The second part dvs, [see Eq.(5.16b)] exists only at nonequilibrium, and it contributes a sub-
leading modulation on top of dv;. The spatial integral in Eq.(5.16D) yields

Lo —L/2 2 Lt
/ / — w '1
/0 do—p P o) = S (/L) (5.19)
2¢ L —2 20 2x(L — L—
X [(1 - COShL_i T L xsinhL—i +$(wa)) sinh? wa — (v = (L —x))

Nevertheless, the remaining frequency integral cannot be performed analytically. To proceed we
simplify the result of Eq. in the low bias limit eV < AD/L?*(= Ery), where Ery, is known
as the Thouless energy in the literature. In this limit, the frequency (w) to be integrated over the
bias window [see Eq.(5.16b)] is bounded by /iw < Ery,. Therefore the diffuson P can be expanded
with respect to the small parameter L/ L,,:

L, J L

[Pz, o', W) = =221 — Zy)? + T B2 (1= 2p) 222 4+ 2%, — 285,) + -+, (5.20)

where the notation  stands for /L. The spatial integral of Eq.(5.19) thus reduces to

L I L/2
Im / dx’%[P(a:,x’,w)]z
0

et | [ @ 1 - 0P - ane
~ IlM——" r — rT\xr — X r — 4r)axr
3D212 |/,

" /m (@ ~ D[ ~ D2 + 7 - 20’
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L5
=-Im——— L), LK L,. 5.21
The < function is a polynomial as shown in Fig/5.5] The same result can also be obtained directly

by expanding the right hand side of Eq.(5.19) with respect to L/L,,. Performing the remaining
frequency integration in Eq.(5.16b):

e+eV/2
dv eVe

-1 L2 2 = " — 22
o / “ 21 2wD’ (5-22)

e—eV/2

we hence arrive at
son(e.) ~ V5 @/D), eV < B (5.23)
e, r) = 3607TD3§ T , € Th .

in the low bias limit. We notice that ¢(x/L), as well as dv», is an odd function with respect to

= L/2, and that it vanishes at z = 0, L. This particular x-dependence is in fact a generic
property which can be easily deduced from Eq.(5.19). In addition, dv, is also an odd function of
e, which can be deduced from Eq.(B.13) since flipping the sign of w is equivalent to taking the
conjugate (and since dv, concerns only the imaginary part of the associated integrand).

If we are only concerned about 61, around the cusps of the DOS correction, namely dv(£|n+
eV//2|), we can alternatively apply the nonlinear limit L > L, to Eq.(5.19), which then reduces to
L3 (2x — L)/(8LD?) for 0 < |z — L/2| < L/2. As such, we get

W

237_ 6V+77 d
(£ |n+eV/2],z) = 8LD2 Im/ “2

T
2z L ( 1
87TL\/ 2D \/ﬁ VeV +n

Both linear and nonlinear results suggest that the DOS correction should have a profile such that
|0v(eV /2, z)| is greater (lesser) than |dv(—eV/2, z)|if x < L/2 (x > L/2), assuming the chemical

) , Ern < 1. (5.24)

potential of the left lead is higher. This point will be verified by our numerical simulation (see
Fig[5.16] below). Besides, whether the interaction effect develops peaks or cusps on the DOS
profile depends on the sign of (2F — 1) [see Eq.]. It turns out that, for bulk metals, the AA
effect always results in a negative DOS correction (i.e. a cusp) when the dynamic part of screened

e-¢e interaction is taken into account [[12]].

5.1.2 Charge current

According to Eq.(2.8)) the charge current can be expressed as

— hm —V)G<(r,1',e). (5.25)

27‘(‘ r—r’
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(b)

Figure 5.6:  Diagram for the exchange (Fock) correction to charge current. These diagrams were first
given in Ref.[126].

To comply with existing literatures [126}127]], we use the general relation G< = (GX—GR+G4) /2
to replace the G'< in the above equation. Since (G® — G*) is symmetric under time reversal sym-
metry, it makes no contribution when (V' — V) is applied. Thus our objective becomes calculating

the interaction correction to G¥. To the first order in e-e interaction, the correction to G¥ reads
OGX ~ GRERGK + GESAGA + GRERGH, (5.26)

where the convolution relation as shown in Eq.(2.23c)) is employed. Note that the first two terms on
the right hand side of Eq.(5.26) contribute equally to the current since GELRGK = —[GEEAGA]T.
With G¥ instead of G'<, the retarded self-energy is expressed as [cf. Eq.(5.2)]

d
YR (ry,1y,6) = —id(r; — rg)/ﬁ/dr GX(r,r,w)UR(ry,r,0)

i [d
+ % / % [GK(rla Iy, € — W)UR(rlv r27w) + GR(rbr?v €—- w)UK(rl’ r27w)} ’ (5.27)

and the Keldysh self-energy:

1 [ d
ZK(rl,rg,s) = %/ﬁ [GK(rl,rg,e — w)UK(rl,rg,w)} . (5.28)

The terms containing U* should be discarded when the AA effect is the prime concern, because
they amount to higher order (in terms of the inverse dimensionless conductance given by Ohm’s
law) corrections related with the dephasing effect [23]]. Thus the remaining terms in Eq.(5.26) all
have the form GKUR,

Applying the same disorder-average technique as demonstrated in Sec[5.1.1] we obtain Fig[5.6|
for the charge current correction. These diagrams were first obtained and calculated in Ref.[126].

Note that we have omitted showing the corresponding Hartree diagrams since they can be easily
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produced by reconnecting the interaction line (see Fig[5.3)). To simplify the current vertex which
contains the operator (V' — V), we apply to it the Fourier transform (r — r’) — k. As such, the

charge current correction is now written

/ / — k., 0G"(k,£,R), (5.29)

assuming the electric field is applied along .
Analogous to Eq.(5.5), the G¥ in Fig[5.6]is approximated as

F
G¥(kR,¢) =~ F(e,R) [G*(k,e) — GR(k,e)] = (fT R) G4 (k,)GR(k, ), (5.30)
0
where F'(e, R) is given by
x e—eV/2 «x e+eV)/2
F =(1-— h————— + —tanh———. 31
(g,2) ( L) tan T + Ltan T (5.31)

The diagram blocks which contain the e-e interaction vertex can be evaluated in the same way as in
Sec)5.1.1} except that here G¥ is substituted for G<. The evaluation of the bottom block connected

with the current vertex requires a bit more elaboration: the one in Fig[5.6(a) reads

/ (2dk>d h:f (k, E)GA(k —q,c —w)GX(ke, R) &
/ (j:)d(vk ) (—vie @)[6H (k)] [ (K, e)}QF(;OR) - —67r1/073§%F(5, R), (532)

where the Taylor expansion Eq.(B.7) and the identity Eq.(B.9) have been used. Note that, due to
the presence of the current vertex, only the anisotropic terms are kept. Same techniques are applied

to Fig[5.6(b), where the corresponding block is evaluated as

dk . A 3 dk’
/ Ve P @G 2] <)y / e

~ 27w073”§qmF(5, R). (5.33)

GAK — q,e — w)G¥(K'eR)

Should we keep adding dashed lines to Fig[5.6(b) in the middle, we would generate terms of the
form GAGA ~ 1, /€ [see Eq. ], which could thus be neglected. Figure c) amounts to zero
under the isotropic approximation of Eq.(5.30):

dk hk,
/ y (k,e)G"(ke, R) = 0. (5.34)
(2r)? m
Collecting all the pieces of Fig/5.6|and taking into account its Hartree counterpart, we arrive at
. Devy / " / /
Jj(R) = — Im [ dedw | dR'AR"F(e,R)P(w,R,R")F(e —w,R’)
T

87



Chapter 5. Altshuler-Aronov effects

x [UMR/,R",w) — 2FUS(R’ — R")]VrP(w,R",R) - &. (5.35)

The z - VR operator is a real-space translation of the ig, factor generated from Eq.(5.32).

In the following, we shall show that the interaction correction to the linear conductivity, which
was derived in Ref.[21] using Kubo formula, can be reproduced from the general expression of
Eq.(5.35). To this end, we first notice that in the linear-response regime (kg7 > €V)

F0<€ + €V) - F()(é) ~ GV%F()(E), (536)

where Fy(¢) = tanh(e/2kgT’), and hence

/F(e, z)F(e —w,2')de — v /dsFo(s —w)Fy/(e)x + Fy(e)Fy' (e —w)x’

w 0 €
— . de tanh —— = < tanh
T x)/ =ran zk;BTae M ks T

) . (5.37)

Next, the resulting factor (x — z’) is put together with P(w, R, R’), thereby yielding

(973( q)

(x —2")P(w,R,R') — o0,

= —2iDq, P*(w, q) (5.38)

after Fourier transform, where Eq.(B.11) has been invoked to obtain the second equality. The
spatial integrations in Eq.(5.35)) can hence be performed using the convolutional theorem of Fourier
transform. The result indicates a linear relation between the current and the bias voltage. Reading

off their ratio, we get the conductivity correction:

2upe? D? 0 d _
502_% / dw— <wcoth d ) / (2:)dq21m [(UR(qw) — 2FT)P3(qw)], (5.39)

which is the original linear-response result obtained by Altshuler and Aronov [12,21]. For d < 2

Eq.(5.39) leads to a singular suppression to the conductivity as temperature approaches zero [21].
For a finite wire sandwiched between electrodes, one has to compute the spatial integrals in

Eq.(5.39) directly in real-space. To simplify our calculation, we adopt Eq.(5.12) again and thus

obtain

(1 —2F)D

ol =
21

Im/dwd&?/de e, 2)P(w,z,2")F(e — w,2")0,P(w,2’,z)  (5.40)

in one-dimension. At this point, it is important to notice that the result of Eq.(5.40) explicitly de-
pends on the coordinate x, thus breaking the current continuity. This issue results from the various

approximations we have made in order to simplify our diagram calculation. As a compromise, one
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Figure 5.7: 6I — V curve generated from Eq.(5.44) for a disordered wire at zero temperature. §7 is the

charge current correction to the first order in e-e interaction.

could either take the average value L' [ §1(x)dx or simply use 6I(x = L/2) to get an unbiased
result. It can be shown that these two approaches will make no qualitative difference in the end.

Here we choose the latter approach, i.e. 0 = §I(xz = L/2).
To proceed from Eq.(5.40) we plug in

9 , sinh(m//l[)w_) C}?Sh(L—I)/Lw > 1
e — —Dsinh(L/Ly) )
8$P<x’x 7w) { COSh(m/Lw)sinh(L—.Z’/)/Lw’ T < x/ (541)

Dsinh(L/Ly)

Besides, the e-integration yields

Moo (3 ) 4 V) (90 — [)(22) — L), [hw| < eV

542
sgn(w) 2 (2 — x) + (eV — hw), |hw| > eV 642

/F(5>93)F(€ —w,2)de = {

at zero temperature (or in the limit k3T < eV’). The spatial integral in Eq.(5.40) thus readﬂ

L
0
/ (x — 2" YP(w, z, 2" ) =—P(w, 2, x)dz’ (5.43)
0 Ox
L3 2(L —x) 21> 2z
_ - T e G2 (P N L
16D%sinh?(L/ L.,) [Sm L, ( Tz Lw) +z x)} !

where x will be set at /2 in the following. The remaining w-integration can be simplified with

Im fj;o dw — 2Im f0+oo dw since w enters the integrand through P which satisfies P(—w) =

14y2/2—coshy

P(w)*. To further simplify the notation, we introduce y = L/L,, T(y) = , and

sinh y
b= +/eVL2/(ihD). As such Eq. li is rewritten as
0o b
(1 -2F)eD ieV L? / T(y) /
51 = I dy — [ T()dy b . 5.44
2w L2 " "D y? Y (y)dy (5-44)
b 0

2Those terms in Eq.(5.42) which are not linear to (z — ') do not contribute once either z = L/2 is applied or the

average is taken over x.
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The remaining integrals in Eq.(5.44)) are evaluated numerically. Note that the integrals are carried
out along 0 — (400 — ico) and that the integrands are analytic functions on the complex plane.
Besides, the first integral above can be split in two for numeric convenience: fboo — fbM —1/M,
since Y (y) approaches —1 rapidly. The computed §/ — V' curve is plotted in Fig Evidently,
the only relevant energy scale involved in Eq. is the Thouless energy Ety, = hD/L?. Nev-
ertheless, the 0/ — V' curve appears linear over a large range of the ratio eV/Ery,, with a slight
tendency to bend down at a high eV// Ey, ratio.

The asymptotic behavior of Eq.(5.44) is as follows. At high voltages eV > Ery, Eq.(5.44)

reduces to
N (2F —1)e |[DeV
0l ~ - ShIZ’ eV > By, (5.45)

and in the low bias limit, the linear conductance correction is obtained: G = ddI/dV ~ 0.4(2F —

1)e?/h. If we were to use a bare local potential, i.e. Uy =~ U§(R; — Ry), we would instead get
6G ~ (0.8¢*/h)Uw,. (5.46)

This latter scenario is more relevant to our numerical model, since the interaction strength can
be treated as an input parameter therein. Interestingly, these asymptotic behaviors of 9/, derived
under the local interaction model, turn out to be very similar (up to a prefactor) to the result of
Ref.[126], which was derived with a dynamically screened interaction.

The result that §G is independent on the system size L signifies a divergence in the linear
conductivity do in the L — oo limit, since do = §G - L in one-dimension. This result is consistent
with the original AA theory [12, 21], in which the system is assumed to be thermodynamic so that

the limit L — oo is applied at first, and then the divergence in do is observed as T — 0.

5.2 Numerical implementation

In the previous section of analytical calculations, a few simplifications have been made in order to
facilitate the derivations. For example, the quasi-equilibrium assumption that we imposed through
Eq., and that all the correlators of the form (GRGY) were discarded so as to simplify the
diagrams. Moreover, in calculating those diagrams, we divided them rigidly into long or short
ranged blocks and conquered them in a separate manner. By doing so, we have completely over-
looked the coupling at the intermediate scales: those blocks are meant to be connected smoothly
after all. A crucial dissatisfaction caused by these simplifications was seen to be the charge current
discontinuity as manifested by Eq.(5.40).
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Figure 5.8: Deriving the Fock-exchange self-energy from the corresponding Luttinger-Ward diagram. In
(b) a G-line is removed from inside of a K (?)-kernel (grey rectangle), which produces a K®) (the grey
hexagon). The ¢, 7, k indices denote real-space sites, w denotes frequency, and s denotes contour branch.
The wiggly line represents the e-e interaction, which is chosen to be either bare or screened by the procedure

indicated in Figl4.1]in our numerical calculations below.

Figure 5.9: Hartree self-energy diagrams.
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Figure 5.10: Demonstration of the index layout for two-particle Green’s functions. Note that a different
indexing convention was used in Sec

To remove the unnecessary simplifications and to restore the current continuity, we shall place
our numerical calculations on a more solid ground. To this end, we follow the more rigorous
Kadanoff-Baym procedure and re-derive the self-energy diagrams from the first-order ®-diagrams
dressed by diffuson [34]]. Figure |5.8|illustrates this procedure when applied to the Fock-exchange
diagram. In the figure each line represents the disorder-averaged Green’s function generated from
the self-consistent CPA calculation. The grey stripes are the diffuson ladder composed of K (-
kernels (see details below). Since the K (¥-kernel under CPA contains Green’s functions in itself,
removing such an internal G-line leads to a K (®-diagram, as demonstrated by Figb). The
exchange self-energy should be the sum of Fig[5.§[(a) and (b). The Hartree diagrams are derived in
a similar fashion; they are shown in Fig[5.9] In the following we shall go through the computational
scheme for these diagrams.

As stated in Sec[2.3.2] for numerical computations it is more convenient to work under the

Green’s function representation Eq.(2.16)) instead of the triangular form Eq.(2.18). To this end, we
)

need to first transform the impurity locator defined in Eq.(3.17a) to its G-representation by using
Eq.(2.19). The two-particle locator is redefined accordingly as [cf. Eq.(3.17b)]

g(ZL (5152, 5354) = Gorw (51, 53)Gorer (54, 52) (5.47)

where the indices have been rearranged as per Fig[5.10] The Bethe-Salpeter equation for the loca-

tors are thus written

91(220/(51327 5354) = [g * Gliww (5152, S354)

+ [ * Gliwwr (5152, S3/Sa) - Kffb(SySy, S1/89/) - gff,)w/(SySz/, s3s4),  (5.48)

where [g * gliww (S152, $354) = Giw(5153)giwr (S452), and note that all the repeated s-indices should
be summed over. Viewing g®, [g* g], and K as 4 x 4 matrices, we can hence express K (?) using

@) (@) - /
Eq.(548): K;” =[g*g];" — ( ) , for each pair of w, w'.

)

In order to calculate K Z-(S) we make use of the fact that it must satisfy the diagrammatic equation

of Fig2.7(b) [also see Eq.(2.34)] when all the objects therein are restricted on the local site [1]].
(n)

) ’

The correlators C™ in Fig are accordingly replaced with the disorder-averaged locators g
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Figure 5.11: Diagrammatic illustration for Eq. |D gz(g) is the third order locator averaged over the local

potential.
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Figure 5.12: (a) Recursive relation for the vertex correction. (b) Dressed e-e interaction.

which are computed in a similar fashion as Eq.(5.47). To solve for Ki(g) we multiply the matrix
—1
<g§2)) on both sides of Figb) from all three directions, and thence obtain

Ki(jz.zw’(‘sls?? 8354, S556) = QSLM(SP%H 56153/, S4/S27) '9552371(51527 51/51) '9552371(53'54'7 5354)
: 953271(55’56’7 5536) - [9 * 9%1/(51827 5552/) : giw/<34’32’> : [9 * 9]@1/(5634/, 8384),
(5.49)

as illustrated in Fig[5.T1]

Another building block of Fig[5.§]is the disorder-induced vertex correction

A (81528, 505) = 0sy 550515005 + ngj,(slsg, S1897) (G % Gy (817821, S354Kk) - Ny (8354K, S07 ),
(5.50)
where [G * Gluw (ssoi, s3sak) = G (i, k) - G2 (k,4), as illustrated in Fig[5.12(a). Under
each pair of w,w’, Aisa4N x 2N matrixﬁ] and can be solved from the linear equation . The
diffuson dressed polarization is thus written [cf. Eq.(2.44)]
o dw' . .
P (i, j) = / — |G * Gloguwr o (51517, 5354K) - Ay wr (5354K, 527). (5.51)

17

4N is the number of lattice sites between leads. The notation ss3s4k, as a matrix index, should be interpreted as
(83+2'S4+4-k).
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PR<A are then obtained by using the transformation (2.19)), which allows for computing the
screened interaction with Eq.(4.7). As can be seen in Figl5.8] the interaction vertex W is sub-
ject to being dressed with A at the ends:

Woow (81831, $2547) = Ay (81831, sk) - st_lw/(kz, 1) - Auro(84527, 8'1), (5.52)

as illustrated in Fig/5.12|b). Collecting all the pieces, we get the exchange part of the self-energy
(Fig[5.8) as follows:

o dw' . . . dw' oo, . S5 s
ng,ff(%]):—/Q -G (i, §) - W, ’(31332,82S4J)+/2—mGw1,2(2,])-le_j,(z,j)

- 51']‘ / ;ZUJ ([G * G]W[G * G]) <S483i, 8685i) . K(g) ,<8685, 5483, 3281), (553)

1 ww’ twww

where the GW self-energy (the second term on the right hand side) without disorder vertices has
been excluded, for it is computed in a separate routine. In order to write down the expression
for the Hartree part (Fig/5.9), we introduce the following new diagrammatic elements, viz. the

ladder-sum
L= Iiy—KPG*G) K, (5.54)

where K denotes a 4N x 4N diagonal block matrix with ith block being K 52) , and the interaction
block

Ouwr (515178, S2524") = G293 (i, 7) - G2°2(4,i) - G2 (¢, ) - GX™V (5,4) - W™ (4, 57), (5.55)

which resembles the diagram on the right in Fig[5.3] Note that the Hartree diagram only concerns
the static interaction W, whose frequency is set at zero. Given the expressions for all building

blocks, Fig[5.9]is thence translated into

Yuo(i,g) = / — G2 (i, k) - GOV (ki) - GOV () - WY (4, 1) - Lo (S353k, S289/7)

dw’

+/ i G5382 ) - GZQ’IS:SI (j/7 k) ’ GZI'/S2,<i7j/) : W yr (] ] ) Eww’<3131’i, 8383'/€>
d ! S 1S / . . .
+/ G ,J) - [LOL],,, (51511, 5252]) (5.56)
dw’

iwww’

0y [ SEKE) (o5, 515, 25) - (1 + (G GIL)OLIG * G] + 1), (4550, 56551),

with spin degeneracy already taken into account. Note that, if one wishes to calculate %<, the

transformation (2.47)) needs to be applied to the results of Egs.(5.53) and (5.56).
The physical quantities such as DOS and charge current are extracted from the Green’s func-

tion, whose first order correction (6G) involves a disorder-average of the form C'®). According to
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the theory of Secf2.2.2, every pair of G-lines in the C'®)-diagram need to be dressed with a ladder

series. Therefore, G is written
6G(1,2) = CP(12,34) - [Su+2x](3,4), (5.57)
where
CP(12,34) = G(1,3)G(4,2) + G(1,1)G(2,2)L(1'2,34)G(3,3)G(4,4)). (5.58)

The composite index (e.g. 1) denotes a tuple (4, s), and the index layout of C'® here corresponds
to Fig[5.10| (cf. Fig[2.7a). Note that the vertex correction procedure of Eq.(5.57) is particularly

important for ensuring charge conservation in transport calculations.

5.3 Numerical studies

The numerical formalism presented above is implemented with the lattice model as introduced in
Sec[2.5.4] To make correspondence with the short wire model analyzed in Sec[5.1] in our simula-
tions we consider strict one-dimensional systems with ' = 1. Besides, the temperature is always
set at zero.

We start with the simplest interacting model where the nonlocal interaction is omitted, i.e.
Ui+; = 0. Since the local interaction arises from electrons of opposite spins, the Fock contribution
vanishes to the first order in Uy. This scenario corresponds to setting / = 1 in the analytical
results presented in Eqs.(5.13)) and (5.44). The second order correction in Uy involves a dressed e-
e interaction of the form U PU, where P is the polarization addressed in Eq.(5.5T)). In the diffusion
approximation, it can be shown that [12]

Dg?

_— 5.5
—iw + Dg? (5.59)

P(q,w) = 2,

In the low frequency regime where the AA effect sets in, P(q,w) tends to be constant. In other
words, P is short-ranged in real space, and hence the second order correction effectively con-
tributes a numeric factor to the bare interaction Uy. The same argument can be applied to all the
bubble diagrams in the series of screened interaction (see Figl4.T). Therefore, at this point, we only
keep the first order correction in Uy, and, since F = 1 in this case, we foresee a positive correction
to both the DOS and the charge current.

Figure [5.13a) displays the computed charge current correction in a one-dimensional lattice
with L. = 40a. As can be seen, the overall 0/ — V' trend agrees very well with the analytical pre-

diction Fig[5.7] and in particular its nonlinear tendency appears minor. 61 — V' curves under three
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Figure 5.13: §1 — V relation calculated using the discrete lattice model under the setting Uy = £, U;; = 0
and a binary disorder. 1 stands for the charge current correction to the first order in Up. (a) The system size
is set at L = 40a while the disorder strength is varied by tuning the impurity potential v. (b) Results for
L = 30a, 50a under v = 0.3€.

different disorder strengths are plotted in Fig/5.13(a), from which we see that 0 decreases with
an increasing disorder strength. This behavior can be understood with Eq.(5.45), as the nonlin-
ear current correction is proportional to /D, where D stands for diffusion constant. In the linear
regime, as indicated by Eq.(5.46), the conductance is proportional to the noninteracting DOS (1),
which decreases with an increasing disorder strength. In contrast to the disorder strength, the wire
length L is found less effective to d7, as illustrated in Fig/5.13(b). Indeed the linear conductance
correction Eq.(5.46) has no dependency on L. Nevertheless, the nonlinear current predicted by
Eq. is proportional to L~!, which explains the slight drop of 61 at large V as L increases.

In the following we investigate the AA correction to the DOS profile. As discussed in Sec/5.1.1]
the DOS correction is overall dominated by the symmetric part v, which can be well represented
by the result at the middle of the chain [see Eqs.(5.16a) and (5.18)]. The numerical result from our
simulation is displayed in Fig[5.14] The solid curves mark the nonequilibrium results obtained un-
der a bias of V' = 0.4¢/e. Those obtained under zero bias with otherwise same system parameters
are marked by the dashed curves. Firstly, we notice that the peaks of dv align very well with the
respective Fermi energies of the leads, with the exception of short wires [e.g. the black curve in
Fig/[5.14(b)] whose linear-nonlinear crossover sets in at a much higher bias due to its large Thouless
energy. For those curves that clearly display the nonlinear feature, i.e. those with split peaks, their
peak values are nearly half of those obtained in equilibrium, which is consistent with Eq.(5.16a).
Furthermore, the peak values increase with increasing disorder strength [see Fig[5.14(a)], and par-
ticularly they increase linearly versus the system size L [see Fig/5.14(b)]. These observations can
be well understood with Eq.(5.17). To investigate the contribution from the asymmetric part v,
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Figure 5.14: DOS corrections at the middle of the model wire. The interaction is assumed to be local.
The solid lines mark the nonequilibrium results obtained under V' = 0.4¢/e. The dashed lines mark the
corresponding results obtained in equilibrium (i.e. V' = 0). (a) The system size L is fixed while the disorder

strength v varies. (b) The other way around.

(a)  Local Density of States x10>  (b)
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Figure 5.15: (a) Complete profile of the local DOS correction as a function of position and energy in a
system of L = 40a, U;; = 0, and v = 0.5¢. (b) Cut at = 10a. (c) Cut at e = +eV//2.
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Figure 5.16: DOS correction from the Fock contribution (Fig/5.8) at the middle of the model wire (L =
40a,v = 0.5¢). The interaction takes the form U;; = wa/|x; — x;|. Blue curve: The bare interaction
Ui is used in the diagram. Red curve: Screening is taken into account via Eq.(4.7) where the polarization
P is dressed with vertex correction. Green curve: The screened interaction is calculated with the bare

polarization, i.e. without vertex correction. Dashed curves: corresponding equilibrium results.

[see Eq.(5.16b)], we plot the full profile of v (e, x) at a given L and v [see Fig a)]. In par-
ticular we observe that, away from the middle point z = L /2, the two peak values of §v are not

equal [see Fig[5.15(b)], and that their relative heights [see Fig/5.15[c)] have the z-dependancy as
theoretically predicted in Sec/5.1.1]

So far we have seen that the numerical results for the local interaction model agrees very well
with our theoretical prediction. In what follows, we switch to a long-range interaction modeled by
Uy = 0,U;; = ua/|x; — x|, which was not accounted for by the theoretical analyses of Sec[5.1]
In particular we shall investigate the effects of many-body screening and the associated energy
relaxation on the DOS correction in our model system. To this end, we compute the effective
interaction using Eq.(4.7)), with a polarization either dressed by the diffuson or not, and substitute
the dynamic interaction into the diagrams of Fig[5.8] Figure [5.16displays the result calculated for
the Fock contribution to the DOS correction. Since the Fock contribution corresponds to F = 0 in
Eq.(5.19), it gives rise to cusps (negative corrections) instead of peaks in the DOS profile. Both the
red and the green curves in Fig/5.16|are obtained with the screening effect being taken into account.
The difference is that, for the red curves a dressed polarization [see Eq.(5.51)] is used where the
disorder vertex correction is included, whereas the bare polarization is used for the green curves.
Both results show a screening induced suppression of the DOS correction in comparison to that
calculated with the bare interaction (blue curves). We also observe that the screening with dressed
polarization (red curves) appears less effective. This reflects the fact that diffusion in general tends

to hinder the screening process.
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Figure 5.17: Energy relaxation effects on the DOS correction under differing bias voltages (a) and inter-
action strengths (b). The dashed curves represent the self-consistently computed energy distributions at the
middle of the wire [see Figld.5]]. The AA correction to DOS is computed with the diagram of Fig[5.8| using
the self-consistent Green’s function which corresponds to the dashed result. The solid curves are given by

the self-consistent Green’s function minus the AA correction.

Thus far our diagram calculations have relied on the disorder-average, yet noninteracting Green’s
function. This approach is only valid when the energy relaxation length is much longer than L.
Ideally the effect of energy relaxation should be determined self-consistently within the numerical
formalism. To this end, we employ the self-consistent GW-CPA scheme as presented in chapter
M) and insert the thus generated Green’s function into the diagram of Fig[5.8|to compute the DOS
correction. We carry out computation based on the result of Figid.5 Figure displays the
DOS with AA correction taken into account. From Fig/[5.17(a) it can be observed that the AA
correction tends to be suppressed as the bias increases. This effect can be attributed to the smeared
step function in the energy distribution (dashed curves): one can see from Eq.(5.13) that the DOS
anomaly depends on the sharpness of the distribution function f(£). Such mechanism is akin to the
temperature induced smearing of DOS anomaly as reported in Ref.[130]. The effect of increasing
interaction strength is two-fold. First, it enhances the equilibration process just like the effect of
bias increase, as already explained in Sec[4.2.1] Second, the enhanced energy relaxation tends
to smear the zero-frequency peak of the diffuson, since the diffusive motion of single particles no
longer conserves energy in the presence of inelastic e-e scattering. Consequently, as the interaction

increases, the two-cusp structure in the DOS profile tends to be smeared [see the black curve in

Fig[5.17(b)].
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5.4 Summary

In this chapter we developed a real-space diagrammatic formalism for computing the Altshuler-
Aronov (AA) effects on the DOS and the electronic transport of mesoscopic structures. Different
from macroscopic samples, in finite mesoscopic systems the AA effects are subject to the nonlinear
external bias and the cutoff due to system size. Specifically, we found that in short diffusive wires
the DOS anomaly should split in two at the respective lead Fermi energies, and that it grows
linearly with respect to the wire length. In addition, in the nonlinear transport regime, the value
of the DOS correction acquires a nonsymmetric position-dependence along the wire. Effects of
dephasing and energy relaxation have also been considered using the screened interaction and
self-consistent iterations. Both effects were found to smear the interaction induced DOS anomaly.
Under the locally interacting model, the charge current correction was computed to the first order
in interaction. Its magnitude was found to decrease with an increasing disorder strength or system

length.
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Conclusions

Based on the nonequilibrium Green’s functions and the many-body perturbation technique, we
have developed a practical formalism to compute a variety of quantum effects in disordered meso-
scopic systems. To ensure the property of charge conservation on transport quantities, we have
applied the Kadanoff-Baym scheme to our theoretical constructions, which start with a certain
Luttinger-Ward diagram and generate self-energy diagrams by respectively removing each Green’s
function line from it. In the Keldysh formalism, the Feynman diagrams have the same structures as
their equilibrium counterparts, except that at each vertex an extra index is introduced to track the
branches of the Keldysh contour. We have implemented the real-space Green’s function formal-
ism on a ribbon-like lattice model, which numerically simulates a quasi-one-dimensional meso-
scopic system. In our transport calculations, the effects of electronic reservoirs are taken care of
by treating part of the lattice as thermal equilibrium leads, whose self-energies are exactly com-
puted. Following this methodology we have studied three particular quantum effects in disordered
mesoscopic systems: weak localization, energy relaxation, and the Altshuler-Aronov effect. In

particular, the last two are many-body effects associated with the e-e interaction.

For noninteracting disordered systems, we implemented the coherent potential approximation
(CPA) and the dual fermion (DF) method respectively to calculate the quantum diffusion and lo-
calization effects in dc transport coefficients. We showed that CPA corresponds to a diffusion
approximation in the transport calculation, while DF incorporates the Cooperon process responsi-
ble for the localization effect. From numerical simulations it was found that both methods predict
linear I — V relations for a uniformly disordered quantum wire. Whereas DF performs better than
CPA overall, there exists certain disorder strength threshold beyond which numerical instability
could occur in DF computations. Besides, we noticed that the DF method does not strictly respect

the law of charge current continuity. To remedy this inaccuracy the computed current needs be av-
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eraged along the transport system. When disorder is weak enough, one could alternatively replace
all double-dashed lines in Fig[3.10] with single-dashed lines (see Fig[3.2)); the resulting diagram-
matic scheme for the real fermion strictly follows the Kadanoff-Baym scheme and thus respects

conservation laws.

Combining CPA with GW approximation, we developed a self-consistent formalism for inter-
acting disordered systems. In particular we employed this formalism to study the energy relaxation
effects in nonequilibrium quantum wires. By calculating the electronic energy distribution we
found that the two separate Fermi surfaces in nonequilibrium wires tend to be smeared due to en-
ergy relaxation, and that electrons can be excited to energy levels that are thermally forbidden. The
energy relaxation collaborative between a pair of interacting wires leads to Coulomb drag, which
was also simulated using our GW-CPA method. The simulation result suggested that around the
linear transport regime the drag current peaks whenever the chemical potential sweeps across a
band edge. It was also hinted that the drag charge current is closely associated with the energy
transfer rate between the wires. Another theoretical achievement on Coulomb drag physics is that
we have formulated an electron-hole symmetric relation for nonequilibrium drag currents: if the
noninteracting Hamiltonian bears the electron-hole symmetry, the drag current is an odd function

of the chemical potential.

Apart from scattering off static impurities, electrons also interact with the charge ripples in-
duced by the disordered potential. The interference between the two processes leads to the Altshuler-
Aronov (AA) effect which hinders electronic transport and suppresses the density of states at the
Fermi energy. According to the conventional theory for macroscopic systems, the AA effect relies
on a correlation length scale set by thermal diffusion. Our analysis showed that the AA effect per-
sists in short mesoscopic wires where the correlation is yet cut off by the sample length. Because
of this cutoff, the anomalous DOS correction is largely smeared, and it splits in two when the
external bias is much greater than the Thouless energy. Besides, numerical computations showed
that the inelastic scattering due to e-e interaction may further smear the DOS correction. As to the
charge current correction, our result obtained under a local interaction model shows an asymptotic
behavior in agreement with previous study [126] which adopted a screened long-range Coulomb

potential.

This thesis has only focused on a limited number of quantum effects in disordered mesoscopic
systems; some other subleading yet important many-body effects have not been covered. For
example, the decoherence due to e-e interaction may suppress the Cooperon process. Taking this
effect into account, the qualitative weak localization correction to electric conductivity (in one-
dimension) should now read 6o = —e?h ' LyL/(Ly+L) [cf. Eq.(L.1)], according to Matthiessen’s
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rule [23]. In addition, the Cooperon process also induces a correction to the AA effect [129]. The
description of these physical effects involves more complex diagrams, which we shall address
in future works. We also look forward to integrating the numerical methods developed in this
thesis into an ab initio simulation framework, and eventually applying it to realistic materials of

interesting structures.
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Appendix A

Fourier transforms

In this thesis we adopt the following (continuous) Fourier transform convention:

700 = [ F(xjexp(-ik- vy’

dk

(2m)

f(r) = / F(R)exp(ik - 1)

d

f(w) = / F(t)exp(iwt)dt

dw

t) = —iwt
70 = [ flpexp(-iut)
The discrete (or the fast) Fourier transform and its inverse are defined as

N-1

y=FFT(z) = yp = » ;07"

J=0

N-1
v =IFFT(y) = 2; = N> 0"
k=0

(A.la)

(A.1b)

(A.2a)

(A.2b)

(A.3a)

(A.3b)

where 2 = exp(27i/N) and N is the number of sampling points on the signal. The discrete

Fourier transform has the property that v, v = y; and x;, v = ;. Namely the algorithm is based

on the assumption that the signal y(¢) is periodic over the received segment 7' = N At, At being

the time interval between sampling points. Accordingly, the frequency interval on the spectrum

x(w) equals Aw = 27/T, and the spectrum spans from 0 to 27 /At. The purpose of introducing

the discrete Fourier transform is to numerically compute Eq.(A.2)) in an efficient way.

In the conventional theory of signal processing, times and frequencies are positive quantities.

However, in many physical problems they can be negative. Think about the Green’s functions
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Figure A.1: Left: the swap operation on numeric arrays. Right: the signal curve is shifted by half

the period.

which have been used a lot in this thesis. They can have well defined negative time or frequency
arguments. For this reason, we need some extra operations about the Green’s functions so as to
fit them in the FFT algorithm. To be concrete we introduce the swap operation as illustrated in
Fig/A.1] Usually the numerically computed Green’s functions, in either time or frequency domain,
have values on both sides of the zero point. Such kind of numeric series is denoted as f. (see
Fig[A.T), whose center is located at the zero point. To adapt the thus presented Green’s function to
the FFT algorithm, we sometimes need to swap its left half with its right half. The resulting series
is denoted as fj, whose first element corresponds to the zero-point value of the original Green’s
function, and whose middle element corresponds to the first one in f..

The continuous Fourier transform in Eq.(A.2b) is discretised as

f (tO + k’At /fc —1w(to+kAt) gw ~ Z fc wo + ]AOJ) wo—i-]Aw)(to-‘rk’At)’ (A4)

where wy = —Aw - N/2 is the lower bound of the frequency window in which f.(w) is evaluated.

According to the FFT convention we set ¢ty = 0 and hence obtain from Eq.(A.4)
AW J=N/2)k
fo(kAt) = Z F((G = N/2)Aw) - Q¢ (A.5)

To proceed we split the sum in the middle:

N—-1 N/2—-1
w , i Aw
folkAt) = —— > fe(G = N/2)Aw) - Q70 N/Q”“+2— > LG = N/2)Aw) - Q0N
j=N/2 j=0
Aw =2 , Aw Rl
=5 D2 Jelli = N/2)Aw) - Q0N L S5 B LG+ N/2)Aw) - QU
J=N/2 j=0
N/2-1 N-1
Aw , . Aw , L Aw
=5 > foljAw) - Q J’“+§ > f(jAw) - QI = - FFTfo(w).  (A6)
j=0 j=N/2
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In the second line the periodic assumption of f. is utilized, and in the third line f,. is swapped to f;.
Note that the resulting series f; starts at £ = 0. To obtain the standard form where the zero-point
sits at the center, we have to swap f, again back to f.. Note that the Fourier transform of the
convolutional integral Eq.(.5D)) is formulated under the f, representation.
The integral in Eq.(A.24)) is carried out in a similar way:
N-1

folwo + jAW) = / felt)e @0t I8Nt m AL fo((k — N/2)At) - QUNDE=N) (A7)

k=0
Swapping both f.(w) and f.(¢) to their f, representations, we get

N-1 N-1

4 , 2T
Aw) = At ((k — N/2)AL) - QIEN2) = Ag kAL) - Q% = Z—IFFTfy(t).
i) = A3 (k= N/ > fulkse) - = PP ()
(A.8)
After performing the numerical FFT, we swap f(w) back to the standard order (f.).
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Diffusive approximation

In theoretical analyses it is often convenient to assume an isotropic band dispersion, i.e. E(k) —

E(k). Hence the frequently encountered k-integration can be simplified as

dk ds2

where S¢ denotes the surface area of the d-dimensional unit sphere: S¢ = 2, 27, 47 ford = 1,2, 3

respectively. As an application, let us compute the following integral:

d%k 2 ™ vo(w) "y V()
/(%)d[GR(k,e)] _/0 (€_w+i/270)2dw N (B.2)

In completing the w-integral we made the observation that its major contribution comes from the

region w ~ &, since €7y > h in the weak disorder limit. If one of the retarded Green’s functions in
Eq.(B.2) is replaced with G*,

/ (Czlw];d F )G ) = /0 ) (e—w+ i/;on()c)u()sdLj w—i/2m) T B3

where v(g) = [2714(e)70(2)] ", In computing the integral above, again we have made use of

the fact that the integrand decays rapidly away from w = e. Therefore, the numerator is set at
a constant 1(¢), and the residual theorem is invoked with a contour surrounding the upper half
complex plane.

Noteworthily, the integral of Eq.(B.3) is greater than that of Eq.(B.2) by a factor of £7y. More

generally one often encounters integrals of the form

/ (jjjd [GR(k,e)]" [G (k,e)]" = ™. (B.4)
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q,0

e-0

Figure B.1: Diagram for the integral of Eq.(B.6).

This nevertheless can always be reduced by using the identity
GR(k, )G (k,e) = ing(e) [GR(k,e) — G*(k,e)] . (B.5)

The values of /""" can be looked up in Table V of Ref.[131].

Next we consider the integral

dlk
Pola,w) = / k6N kg e (B.6)

which is diagrammatically depicted in Fig/B.1] To proceed we employ the Taylor expansion
Gk —q,e —w) = GAk, ) + (w — vie- @) [GA(k, ©)]* + (vie- @)? [GA(k, &)]° + -+, (B.T)

where vy, = A~V F is the group velocity. We then get

2
v
Po(q,w) ~ IV +wl? + jcff b3 = (1 +iwry — D-¢*10) /7, (B.8)

where D. = v?7y/d is simply the diffusion coefficient. To get the coefficient in front of I* we

used the identity

A o :
/S—dk(k-ql)(k-qg) =42 (B.9)

In chapter 3 we see that the diffusion process is described by the correlator <GRGA> which is

expanded as a recursive ladder series. Therefore,

1 . 2m(e)
Pyl—~  —iw+ D.¢*

<G’RGA> — L(w,q) =Py + PoyL = wTo, qlyg < 1. (B.10)

The approximation drawn above is valid under the condition wTy, gly < 1, i.e. when the period of
the driving field is much longer than the characteristic time or length scale of impurity scattering.
This condition is termed the diffusive limit in the literature, which defines the classical regime of
diffusive transport. More precisely, the probability propagation of a single particle (at energy ¢) is
written as P. = (2m1p(e))~ (GRG*) [12]]. Therefore,

Pa(w,q) = (—iw + DqQ)_l, w0, qly < 1, (B.11)
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where the subscript “d” represents “diffusion”, and the € argument is omitted since in practice it
usually equals the Fermi energy. In real-space, Eq.(B.T1) transforms to

2

. 0 / /
(—M—DW) Pa(r,r’,w) =d(r — 1), (B.12)

which is just the classical diffusion equation. In fact Eq.(B.12) can be shown to be valid as well in
systems that lack translational invariance [12].

As an application of Eq.(B.12), we consider a diffusive wire subject to the absorbing (Dirichlet)
boundary condition, i.e. Pq(z,z’,w) = 0 at x(z") = 0(L). This standard textbook problem has the

following solution:

, sin(nmx/L)sin(nma’/L)

= — . B.13
Pa(e,a',w) =73 2n2D/L% — w ®.13)

n>0

Using the mathematical identity

h - 1
Z cosnr T Cos '6l(7T |z) - (B.14)
n2+a2 2a sinh 7ma 2a?
n>0
we obtain
L, cosh(L — |z — 2'|)/L,, — cosh(L — |z + 2'|)/ L,
)
pd(l', x ,(.U) - 2D Slnh(L/Lw)

_ Lusinh(n/Ly) - sinh(L - xM)/Lw, (B.15)

D sinh(L/L,)

where z,, = min(z, '), v); = max(z,2'), and L, = +/iD/w. The square root follows the
convention that the result falls in the right half of the complex plane.

Because of the momentum relaxation, the single-particle Green’s function G*/4 is spatially
confined within a region on the scale of /. For studying the single-particle dynamics (e.g. impurity-
electron scattering), it suffices to focus only on a local region. Since the system is assumed to
be macroscopically homogeneous, microscopic properties such as the relaxation time or cross-
sections are uniform in the space. However, there are certain macroscopic objects that vary on a
length scale greater than [,. One example is the diffusion propagator discussed above. Interest-
ingly, although the GRG* pair depicted in Fig is definitely short-ranged in real-space, when
many of such pairs are strung together they form a long-ranged object. Another important quantity
that varies in space macroscopically is the statistical distribution, which is encoded in the nonequi-

librium Green’s functions G*/>/ < To conceptually separate the short and the long-ranged parts

'Note that the Green’s functions are gauge-dependent. Suppose we have a static electric field represented by a
scalar potential linear in the space. In this case we obtain Green’s functions which also vary in the space. However, if
the scalar potential is replaced with a vector potential A (¢t) = Et, the resulting Green’s functions would be spatially

independent. The reader is redirected to Ref.[44] as for how to construct gauge-invariant Green’s functions.
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of a given two-point function, one often employs the Wigner transformation [44, 60]. To this
end we express the Green’s function G(ry, ro; £) using the center of mass and relative coordinates

R = (r; + r2)/2,r = (r; — rs), and then perform the Fourier transform
GR,k;e) = /G(R,r;e)exp(—ik-r)dr. (B.16)

Within this representation, the charge current can be expressed as

. e de dk < _

where A is vector potential of magnetic field. Note that, in contrast to G® or G*, G¥>< have an
explicit dependency on the macroscopic spatial coordinate R, because of the particle occupation

f(R, €) in nonequilibrium.
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Electron-hole symmetry in nonequilibrium

Coulomb drag

It has been known that the linear response drag (charge) current due to the elementary e-e scatter-
ing exists only under certain electron-hole asymmetric conditions [42, 104, [106l]. Taking undoped
graphene as an example, when its occupation is set right at the electron-hole symmetric point, i.e.
the Dirac point, the Coulomb drag was predicted to vanish [132][] In addition, the drag currents are
equal when the chemical potential is set at mirroring points with respect to the electron-hole sym-
metric point. In this appendix, we show that this relation can be generalized to the nonequilibrium

case. To be specific, for the system setup as illustrated in Fig[4.6] the drag current satisfies
7@ (M(a)’ M(p)) — _[(p)(_#(a)’ M(p)) — 7 (M(a)’ _M(p)) — [(p)(_u(a)’ _ﬂ(p))’ (C.1)

given the sufficient condition that (i) the atomic structure and the hopping Hamiltonian of both sub-
systems bear inversion symmetry about the center of the device, (ii) independent on the chemical
potentials, the electrostatic potential in the active wire is odd about the center of the device while
that in the passive wire is zero everywhere, and (iii) the leads of respective subsystems are identical
and have an electron-hole symmetric band structure. In the presence of disordered impurities,
in Eq.(C.1) should be understood as the disorder-average drag current, and Eq.(C.I) remains true
providing that the probability distribution of the impurity potential is even: p(e;) = p(—¢;). The
proof of Eq.(C.I) is given in the following.

The noninteracting Hamiltonian of a two-terminal transport model has the following block-

Nevertheless, we note that recent experiments showed an unexpected nonzero drag current at the graphene charge-
neutrality point [[133]], which has been associated with disordered charge puddles due to materials imperfections 110,
134].
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tridiagonal form:

Ho,i
H., .1 H,_.+V_., H, _ .1

H, = H p-m H, 1

H,m1 Hum+ Ve Hypma

Hm+1,m

where m labels the principle layers, H denotes the corresponding hopping matrices, and V repre-
sents the diagonal potential matrices. In the active wire we have imposed V_,,, = —V,,, while in
passive wire we have V = 0. For a real-space model with structural inversion symmetry, we have
H,,, = H_,, _,. In this case, eigenvectors of H, emerge in pairs with opposite eigenvalues: Pro-
viding ¥(¥) is a certain eigenvector satisfying HyW %) = ¢(*) W (%) one can derive its pairing eigen-
vector W(=%) which satisfies HyW (%) = (=) W(=#) where e(-*) = —¢(*) and w(__i”)* = @/)l(”)m, i
being a real-space index and 7 being a vector whose explicit form, although mathematically deriv-
able, does not need to be known. Since Hj, is real and because of the inversion symmetry, we have
|z/1(__f)] = |1/JZ-(H)| and thus the value of 7); can only be —1 or 1. Such eigenvector pairing reflects
the physical picture that, if ¥(*) corresponds to an electron scattering state incident from one side
of the device, on the other half of the spectrum there should equally exist a hole state, denoted by
(%) incident from the other side.

Using the Lehmann representation, the retarded noninteracting Green’s function can be for-

mally written as [60]

¢(n)¢(n)*
v
GOz]( ) 2{ E— E(”) +10+ (CZ)
Using the symmetry of the wavefunction, we further get
—k) (—K)x *

v5G

R s i J
Gy (E) = —nin; | ) gyl I (C.3)

K

The quantity in the bracket is easily recognized as Gfy (—E). Thus we find Gff;;(E) =

—n;n;|G&_;,_;(—E)]*. Similarly, taking into account the respective Fermi-Dirac distributions in

0,—2,—j

the leads, the lesser Green’s function can be written as [[135]]

Giy(BE) =1 D f(E—p1a) Y 6(E — e)pPpl, (C.4)
a=LR KEQ
With some straightforward algebra, we can continue writing

S B) =1 Y i1 = f(—E 4 pa)] Y 0(—E — e =)yt

e KEQ
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= 1" [Ga—i,—j(—ﬂa _E)]*a (C5)

where we have used the identities 0(z) = §(—z)and 1/(e"+1) = 1—1/(e~*+1). In the particular
case V = 0, in addition to the electron-hole symmetry, there emerges another pair of scattering
states incident from opposite directions with the same energy and flipped wavefunctions. This
leads to the relations G\, (E) = G, _;(F) and Gé{f(E) = G(i/_?_j(E).

Putting everything into context, upon flipping the sign of the chemical potential in the active
wire (1 — —p(®) while keeping 1P fixed, we have the noninteracting Green’s functions change

in the following way:

G (W), B) = GEP (=, E) (C.6)

G (W@, B) = =2 (— @, B) (C.6b)
G (1, B) = —nm; [foﬁf?j(—u(“)’ —E)} ) (C.6¢)
ij(“) (1@, B) = nm; [sz(-fi)j(— u@ E)] . | .60

where we have omitted the O subscript as later on we will see that the interacting Green’s func-
tions also follow these relations. The argument ;(P) has also been omitted for simpler notations.

Plugging Eqs.(C.6b) and (C.6d) into Eq.(4.54) and making use of the fact n? = 1, we get

*

P50 (), B) = P (), B) = [~ P20 (<), ~ )| (C.7)

—%=J —%=J
Applying Eq.(C.7) to the Kramers-Kronig relation (.6a), we find

P'F'{(p/a) (/,L(a)7 E) — PR(P/Q) (—ILL(a), E) (CS)

) )

In our Coulomb drag calculations, we take W ~ V PV. Therefore, according to Eq.@, in
conjunction with Egs.(C.6b) and (C.6d)), we have

SV (), B) = 5550 (—u, B), (C.9)
EE(Z (1), B) = nimy [Eég,_j(—u(“), —F)

Using the Kramers-Kronig relation (4.6a)) again, we get
S (W, B) = 58P, (—p ), B), (C.10)

R(a a R(a a
ZC,(U) (N( )a E) = —nmn; [ZC,(—)L—]'(_M( )7 —E)]

*
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Applying the relations , , and to the recursive form of the Dyson equation GF =
GE + GRERGE + - - Pl and the Keldysh equation [44] G< = (1 + GRER)G5 (1 + GREE) +
GRYSGRT,) we immediately get back to Eq.. In the presence of disorder, the CPA iteration
needs to be carried out as well. Using Eq.(C.0) together with the Eq.(3.18)), one can easily ver-
ify that Xcps follows the same relations as in Eqs.(C.9) and (C.10), providing that the impurity
potential probability is an even function with respect to both the energy and the spatial position.
Therefore, the relations in Eq.(C.6) stay true throughout the self-consistent calculation. Now we

can draw conclusion about how the drag current changes when ;(% is flipped:
Iﬁp) (M(a)’ M(p)) :/dETr[G>(p) (M(“),M(p))zf(p) _ <) (M(a)’ﬂ(p))zi@)]
:/dETl"[G>(p)(—,u(a),M(p))EFi(p) _ G<(p)(_'u(a)’ u(p))E?{(P)]
=1 (=, 1) = —IP (=, ), (C.11)

where we have used the charge conservation law I, + Iz = 0 and the simple fact about the lead

</>(p) (E) — 2</>(P)‘

self-energy: X% R i ;(E) due to the structural symmetry.

In the other situation where ;(% is fixed while 1(”) is flipped instead, one can derive

GP® (0| BY = py, [G?/<<p> (=, — E)} 7

v )

L (9, B) = nayy |25 (-, -B)] (C.12)

which leads to the other half of Eq. Ii Iﬁp) (), )y = —Iﬁp) (@), —pP)).

2Taking the second term in the Dyson equation as an example, G&gz)Ele(a)Gggj) (', E) = [(=nimw) G0R7(_ag7_k
R(a R(a a * R(a R(a R(a a % .
(—ﬁkﬂz)2_§¢7)_z(—Wzﬂj)Gof_l),_j(—,u( ) —E)* = (—min;) [Govﬁ,?y_kz_ﬁf’lleof_{_j(—m ), —E)]*. Repeated in-
dices are summed over.
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