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Abstract

The aim of this thesis is to extend the theoretical framework of nonequilibrium electronic transport

to incorporate quantum effects in disordered mesoscopic systems. Our theoretical methods are de-

veloped based on the diagrammatic perturbation technique formulated with the Keldysh nonequi-

librium Green’s functions. Given the real-space Hamiltonian of the transport system together with

thermal reservoir parameters, we seek to compute the electronic structure and the charge current

taking the various quantum effects into account. Following this methodology, the three most im-

portant and ubiquitous disordered mesoscopic effects are addressed, viz. weak localization, energy

relaxation, and the Altshuler-Aronov (AA) effect, all of which give rise to corrections to the clas-

sical Drude description of electronic transport. Specialized theoretical methods are developed for

the respective physical effects. For weak localization we develop a Cooperon-based diagrammatic

scheme using the so-called dual fermion (DF) technique in order to take into account nonlocal in-

terference processes which have been neglected in the prevailing coherent potential approximation

(CPA). Numerical simulations have shown that, compared to CPA, our DF method yields more ac-

curate results for transport properties of disordered quantum wires, and that in particular it is able

to predict the negative magnetoresistance effect which is a signature of weak localization. The en-

ergy relaxation in disordered interacting wires is tackled with a self-consistent GW -CPA scheme.

Using this computational method we study how the energy distribution of interacting electrons

evolves under increasing interaction and external field strengths. In addition, the same compu-

tational scheme is also employed to simulate the Coulomb drag effect between parallel quantum

wires. The interesting dependence of nonequilibrium drag current on the chemical potentials of

reservoirs is discussed. As to the AA effect, the original diagrammatic formulation by Altshuler

and Aronov is generalized to the real-space Keldysh formalism. Then, both theoretical and numer-

ical diagram calculations show that for a disordered wire at nonequilibrium the AA effect leads

to anomalous DOS corrections at its respective Fermi energies, and that the magnitudes of these

(local) DOS corrections are position-dependent. The AA effect on transport properties is also

analyzed, which shows nontrivial behaviors with respect to system sizes and bias voltages.
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Résumé

L’objectif de cette thèse est d’étendre le cadre théorique du transport électronique pour incorporer

les effets quantiques dans les systèmes mésoscopiques désordonnés. Nos méthodes théoriques

sont développées sur la base de la technique de perturbation formulée avec les fonctions de Green

hors d’équilibre. En utilisant l’hamiltonien de l’espace réel ainsi que des paramètres du réservoir

thermique, nous cherchons à calculer la structure électronique et le courant de charge en tenant

compte des différents effets quantiques. Les trois effets mésoscopiques désordonnés les plus im-

portants et les plus répandus sont abordés, viz. la localisation faible, la relaxation d’énergie et

l’effet de Altshuler-Aronov (AA), qui donnent lieu à des corrections de la description classique

par Drude du transport électronique. Des méthodes théoriques spécialisées sont développées pour

les effets physiques respectifs. Pour la localisation faible, nous développons un schéma de dia-

gramme basé sur Cooperon en utilisant la technique dite du fermion dual (DF) afin de prendre

en compte les processus d’interférence non locaux qui ont été négligés dans l’approximation du

potentiel cohérent (CPA), qui prévaut. Des simulations numériques ont montré que, par rapport à

la CPA, notre méthode de DF donne des résultats plus précis pour les propriétés de transport de fils

quantiques désordonnés, et qu’elle est notamment capable de prédire l’effet de magnétorésistance

négatif, ce qui est la signature de localisation faible. La relaxation d’énergie dans les fils en in-

teraction est abordée avec un schéma auto-cohérent GW -CPA. À l’aide de cette méthode, nous

étudions comment la distribution de l’énergie des électrons en interaction évolue sous l’effet de

l’interaction croissante et de l’intensité du champ externe. De plus, le même schéma de calcul

est également utilisé pour simuler l’effet de traı̂née de Coulomb entre des fils parallèles. On dis-

cute la dépendance intéressante du courant de traı̂née sur les potentiels chimiques des réservoirs.

En ce qui concerne l’effet de AA, la formulation diagrammatique originale d’Altshuler et Aronov

est généralisée au formalisme de Keldysh dans l’espace réel. Ensuite, les calculs théoriques et

numériques montrent que pour un fil hors d’équilibre, l’effet AA conduit à des corrections de DOS

anormales à ses énergies de Fermi respectives, et que l’ampleur de ces corrections (locales) dépend

de la position. L’effet AA sur les propriétés de transport est également analysé, ce qui mène à des

comportements non triviaux aux tailles de système et tensions.
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Statement of Originality

This thesis is aimed to extend the existing simulation framework for electronic transport to incor-

porate the quantum effects in disordered mesoscopic systems. The main contributions include:

• Formulation of the general diagrammatic scheme to calculate disorder-averaged Green’s

function correlators (Section 2.2.2). The theoretical framework was published in Ref.[1].

• The real-space Keldysh version of the dual fermion formalism, and the associated Cooperon-

based diagrammatic scheme (Section 3.3.2). This was published in Ref.[2].

• The self-consistent GW -CPA numerical scheme to study energy relaxation effects (Chapter

4). This, together with its application to Coulomb drag between quantum wires, was reported

in Ref.[3]. Besides, the electron-hole relation in the linear response Coulomb drag has been

generalized to the nonlinear transport regime (Appendix C).

• Diagrammatic formalism and its numerical implementation for Altshuler-Aronov effects in

short nonequilibrium wires (Chapter 5). The main results were reported in Ref.[4].

Apart from the above contributions focused by this thesis, during the course of my PhD study

I have also studied the transient transport of disordered quantum dots. The associated work was

published in Ref.[5].
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Notation and abbreviations

C(n) disorder-averaged product of n Green’s functions

d dimension

D diffusion constant

e electron charge

f Fermi-Dirac distribution

G Green’s function

G conductance

H Hamiltonian

I charge current

J energy current

kB Boltzmann constant

K(n) diagrammatic kernel

L wire length, diagrammatic ladder

P electronic polarization

P propagator of particle density

T temperature

U bare Coulomb potential

V bias voltage

v impurity potential

W screened e-e interaction, wire width

γ cumulant of impurity potential

σ electrical conductivity

Σ self-energy

AA Altshuler-Aronov

CPA coherent potential approximation

DF dual-fermion

DOS density of states
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Chapter 1

Introduction

A generic transport system is composed of (at least) two particle reservoirs sandwiching a device

sample in the middle, as schematically illustrated in Fig.1.1. The reservoirs have their respective

temperatures and chemical potentials that are well defined at thermal equilibrium. In a real-life

experimental setup, these reservoirs typically correspond to electric leads or electrodes that bridge

between the device and the outer circuit. The device structure at the center is where our interest

lies; it can be any material ranging from single molecules to macroscopic chunks. Electrons enter

and exit the central device region via particle exchange with the reservoirs. The central task of a

transport experiment is to characterize the electric response of the given system, and the objective

of theoretical modeling consists in identifying the dominant physical processes which lead to such

transport behaviors and thence making further predictions.

In theoretical analyses, the reservoirs can be simply treated as noninteracting quasiparticles, as

admitted by the celebrated Fermi liquid theory [6] of metals, while in the central region electrons

X

Figure 1.1: Schematic of a generic transport structure. The blue areas represent electronic reservoirs, and

the yellow block represents the mesoscopic sample of interest. Note that such a system division is purely

conceptual: the interfaces between the device and reservoirs may not coincide with those of real materials. In

the central area, electrons (black wavy lines) may interact with impurities (cross) or themselves via Coulomb

potential (red wavy line).
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Chapter 1. Introduction
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Figure 1.2: (a) Scanning electron microscope image of a silver wire fabricated using electron-beam

lithography and deposition techniques. The wire is connected to external reservoirs made of large metallic

pads. The probe, made of aluminum and connected to the wire through a tunnel contact, serves to investigate

the local electronic structure of the wire. (b) Schematic of the transport system. Figure courtesy of Refs.[10,

11].

may encounter much messier situations such as materials imperfections, many-body interaction,

and scattering off other quasiparticles (e.g. phonons). Phenomenologically, the effectiveness of

certain elementary scattering process can be characterized by its associated length scale (i.e. mean

free path), and the relative magnitudes of these length scales with respect to the sample-specific

parameters determine the overall features of the manifested transport physics, as well as the suit-

able theoretical formalism in order to describe them. For example, in macroscopic materials the

electronic transport typically exhibits a diffusive behavior as classical particles. This is because

the electron-phonon mean free path is by orders smaller than the sample size. Local equilibriums

are established under continuous dissipation of electronic energy into the phonon reservoir through

the Joule heating process, and as such the kinetics of the electronic system is well described by

the semiclassical Boltzmann equation [7]. In the other extremity that the device is made of a small

molecule, its transport should be instead addressed within the quantum scattering formalism [8, 9]

where electrons are rather pictured as wave beams transmitted along leads subject to scattering off

the molecule.

The notion of mesoscopic transport applies to the generic regime where the wave nature of

electrons plays an important role in determining the transport properties, and their dynamics must

be accounted for through the quantum equation of motion. Although mesoscopic physics is not

tied with any particular geometric length scales, preparing a mesoscopic sample does often require

downsizing the sample size (L). As an example, Fig.1.2(a) shows a scanning electron microscope

image of a µm-scale silver wire operated in the mesoscopic regime [11]. The wire is connected

to two electronic reservoirs made of large metallic pads. Its transport response can be directly

measured by applying a voltage difference between the reservoirs. Besides, to investigate the
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Chapter 1. Introduction

electronic structure in the wire, a probe is added on the side, which forms a tunnel junction with

the wire. The local electronic structure at the junction can be thus probed with the differential

tunnel conductance dI/dV (see illustration in Fig.1.2b), which is approximately proportional to

the local density of states (DOS) of the wire [12]. Using the same apparatus as in Fig.1.2(b) but

with a superconducting probe, one is able to infer the one-electron energy distribution function by

deconvoluting dI/dV with the known superconductor DOS [13–15]. For nanoscale mesoscopic

structures, the on-chip probe is usually replaced with a scanning tunneling microscope, which

offers an atomic level resolution of DOS measurement [16, 17].

Apart from a small sample dimension, mesoscopic devices are often operated at sufficiently

low temperatures so as to freeze most collective excitations, especially to suppress phonon modes

that may severely destruct the phase coherence of electrons. Therefore, the remaining pertinent

scattering processes are often associated with the ubiquitous electron-electron (e-e) and electron-

impurity interactions.

This thesis is focused on mesoscopic systems which contain disordered impurities in the atom-

istic structure. In contrast to e-e scattering, the restriction of momentum conservation is lifted for

the e-impurity scattering, and therefore the latter can deflect electrons more effectively. An impor-

tant parameter that measures the effectiveness of e-impurity scattering is the ratio λF/l0 between

the Fermi wavelength and the elastic mean free path. In the weakly disordered limit λF/l0 � 1,

impurities are far apart and thus the scattering events could be regarded nearly independent, render-

ing electronic motion diffusive from a local point of view. Nevertheless, static impurities without

internal degrees of freedom deflect electrons elastically, so that the electronic phase coherence is

preserved, and interferences between scattered waves amount to additional contributions to the

transport process. They turn out to be not so negligible even if λF � l0 � L, because interfer-

ences can extend across the entire sample in the mesoscopic regime and somehow do not cancel

out. For nonmagnetic impurities in normal metals, the interference induced quantum correction to

the diffusive conductivity,1 so called weak localization, can be estimated to the leading order [12]:

δσ =

{
−e2h−1(Lφ − l0)

−π−1e2h−1lnLφ/l0

d = 1

d = 2
(1.1)

where Lφ (typically l0 � Lφ) denotes the dephasing length due to a weak magnetic field, the

intrinsic e-e interaction, or e-phonon scattering. The effect of weak localization can typically

be characterized by the phenomenon of negative magnetoresistance in mesoscopic conductors, as

illustrated in Fig.1.3(a). The plot shows the magnetoconductance curve for a short one-dimensional
1For non-interacting Fermi-gas, the conductivity is given by the classical formula σd = e2Dν0, where D is diffu-

sion coefficient and ν0 is electronic density of states at the Fermi energy.
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Figure 1.3: (a) Magnetoconductance curve for a short (∼1µm) one-dimensional channel fabricated in

silicon MOSFET [18]. Inset: device schematic. (b) Temperature dependence of longitudinal conductivity

for a doped quantum well formed by GaAs-In0.15Ga0.85As heterostructures [19]. (c) Suppression of tunnel

conductance between a 29µm-long aluminum wire and a thick film [20]. Inset: device schematic. Figure

courtesy of Refs.[18–20].

channel fabricated in a silicon MOSFET [18]. The conductance is lowest at zero magnetic field

due to impurity induced localization; it increases with an increasing field because of the increasing

dephasing rate (corresponding to decreasing Lφ) which suppresses the interferences contributing

to localization.

Going beyond the single-particle formalism, we next discuss the impacts of e-e scattering on

electronic transport. In Fermi liquid based systems, major effects of e-e interaction have already

been removed through the renormalization procedure, and the residual part can thus be tackled

perturbatively. Under the weak interaction assumption, three particular many-body effects are

usually considered for mesoscopic transport, viz. energy relaxation, many-body dephasing, and the

Altshuler-Aronov (AA) effect [21]. Because of the low temperature setting and the quasiparticle

basis, energy relaxation is often considered ineffective in the mesoscopic regime, except under a

nonlinear condition. In this case the existence of separate Fermi surfaces would largely drive the

relaxation process and thus distorts the electronic structure [14]. Compared to energy relaxation,

dephasing is believed to be more ubiquitous since it does not necessitate a considerable amount

of energy transfer [22, 23]. Rather, dephasing arises from the interaction between an electron

and the fluctuating electric field in the background formed by other electrons: part of the phase

information becomes intractable when ensemble average is taken over this fluctuating field [24].

This effect often serves as an upper bound for certain physical processes to which interferences

are important, such as the weak localization discussed in Eq.(1.1). Whereas energy relaxation and

phase decoherence exist in many-electron systems with or without disordered impurities, the AA
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Chapter 1. Introduction

effect is specific to disordered systems. As first elucidated by Altshuler and Aronov [21], due to e-e

interaction, the nonuniform potential formed by impurities can reshape the charge distribution in

the system, which acts as extra scatterers to individual electrons. The thus scattered waves interfere

with those from static impurities, leading to additional conductivity suppression to the same order

as Eq.(1.1). In particular, AA showed that this conductivity suppression can be written in the same

form as Eq.(1.1) (up to a numeric prefactor), with Lφ replaced by the thermal diffusion length

LT =
√

~D/kBT . One thus immediately sees that the AA effect should induce a conductivity

correction dependent on temperatures. This has indeed been confirmed by experiments [19, 25–

27], as illustrated in Fig.1.3(b) [19], which shows a logarithmic temperature dependence for a two-

dimensional quantum well. Apart from its impact on electric conductivity, at low temperatures the

AA mechanism also leads to drastic changes in the electronic structure around the Fermi surface

[21]. Figure 1.3(c) displays the differential tunnel conductance of a disordered aluminum wire

placed over a thick electrode [20]. As can be seen, with decreasing temperature, states at the Fermi

energy tend to get depleted. Such phenomenon, so-called “zero bias anomaly”, has also been

observed in other low-temperature disordered systems [28–31].

The two theoretical formalisms that serve as workhorses in mesoscopic physics are the Kubo

formula and the nonequilibrium Green’s functions [32, 33]. The Kubo formula is based on the

equilibrium fluctuation-dissipation theorem which relates the linear response coefficients (i.e. dis-

sipation) to the noises in corresponding observables. Many basic understandings about mesoscopic

transport were originally derived from the Kubo formula, including the conductivity correction

aforementioned in Eq.(1.1) [21, 34]. The Kubo formalism is most conveniently implemented in

the reciprocal space with virtually infinite systems, namely the system size is presumed to be

greater than any other length scales in the problem, whereby many-body diagram calculations can

be much simplified. Recent advances in nanotechnology have shrunk electronic devices down to

a scale where the material structures, including those of the reservoirs, can be engineered at an

atomistic level [35–37]. This constantly growing field therefore calls for modeling methods which

function directly in the real space. However, naively applying the Fourier transform to existent

diagrammatic schemes formulated in reciprocal space does not necessarily permit meaningful re-

sults in the real space; in particular, additional diagrams are often needed in order to ensure the

most basic conservation laws [38, 39]. Most importantly, nanodevices can be easily driven into

the nonlinear regime, to which the Kubo formalism is just inapplicable. In order to address these

problems, we shall employ the nonequilibrium Green’s function technique, which offers a unified

approach to systems both in and out of equilibrium. What’s more, its numerical compatibility

makes it by far the most promising framework for ab initio device simulations [40, 41].
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Chapter 1. Introduction

The central spirit of this thesis is adapting already existent concepts of mesoscopic transport to

the nonequilibrium Green’s function formalism, devising simulation methods in conjunction with

numerical models, and studying what would become of those many-body quantum effects when

the finiteness of sample size becomes relevant (e.g. Lφ, LT > L) or when the system enters a

nonlinear transport regime. Throughout the course, we shall constantly accentuate the importance

of charge conservation, which should be used as a guideline to construct our theoretical formalism

and also to serve as a sanity check for our numerical results.

The organization of the thesis is as follows.

In Chapter 2, we review the general nonequilibrium Green’s function theory for systems in the

presence of e-e interaction and disordered impurities. Diagram rules are given under the framework

of many-body perturbation. The general theoretical formalism is adapted to the mesoscopic trans-

port problem by noticing that the effect of electronic reservoirs simply amounts to a self-energy

term in the finite central region, and thus the charge current can be calculated from nonequilibrium

Green’s functions within a finite dimension.

Chapter 3 specializes in disordered systems where e-e interaction is neglected. Two subjects are

addressed there: quantum diffusion and (weak) localization. We start heuristically by reviewing

the basic physical pictures underlying these processes using the notion of quantum paths. We

then introduce the numerical methods of the coherent potential approximation (CPA) and the dual

fermion (DF) theory, which respectively deal with the diffusion and localization processes. CPA

is essentially an effective mean field theory, and DF can be regarded as a diagrammatic extension

to CPA that takes nonlocal interferences into account. The two methods are implemented on a

discrete lattice model, and their performances are evaluated.

In Chapter 4, we formulate the self-consistent GW -CPA scheme which captures the energy

relaxation effect of nonlinear transport in systems containing both e-e interaction and disordered

impurities. The numerical formalism is applied to studying the electronic energy distribution [14]

and the Coulomb drag effect [42] in quantum wire systems.

In Chapter 5, the AA effect due to coupling between e-e interaction and impurity scattering is

investigated using Keldysh diagram techniques. In particular, we analyze its impact on the conduc-

tance and the local DOS of nonequilibrium short wires. Theoretical and numerical calculations in

this chapter are performed at zero temperature, so that the system size L, instead of LT , becomes

the dominant cutoff length scale for long-ranged correlations.

We relegate a few technical details to the appendices, which cover the topics of numeric Fourier

transform, the Green’s function techniques under weak disorder, and the electron-hole symmetry

in nonequilibrium Coulomb drag.
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Chapter 2

Green’s function formalism

The theoretical formulation of this chapter is based on the following Hamiltonian:

H(t) =

∫
drdr′ψ̂†(r)H0(r, r′, t)ψ̂(r′) +

∫
drv(r, t)n̂(r) +

1

2

∫
drdr′U(r, r′, t)n̂(r)n̂(r′), (2.1)

where ψ̂ denotes the field operator, n̂ is the density operator, U denotes the two-body e-e interac-

tion, v is some external scalar potential, and H0 represents the kinetic energy:

H0(r1, r2, t) =
1

2m

(
i∇r1 +

q

c
A(r1t)

)2

δ(r1 − r2), (2.2)

A being the vector potential. Although in this thesis only steady states will be studied, for the

convenience of theoretical formulation we have assigned a time dependency to the Hamiltonian

(2.1). We say that a system is noninteracting when U = 0, and that it is disordered if the functional

form of v(r) is drawn from a statistical ensemble.

The theoretical complexity implicated in the Hamiltonian (2.1) is on two aspects. First, the

presence of two-body interaction renders the Hamiltonian non-quadratic, and thus its eigenstates

cannot be expressed as a Slater determinant [6] of single-particle states. In order to diagonalize

the Hamiltonian and obtain the many-body eigenstates, one needs its expression on a basis of Fock

states, whose dimension however grows exponentially with system size. The quest for exact many-

body eigenstates becomes even less feasible in a transport system since it technically contains

infinite degrees of freedom: the many-body wavefunctions extend into the reservoirs even though

the projected Hamiltonian is quadratic therein. The second complexity comes from the uncertainty

of the potential distribution v(r) when the system is disordered. Extra efforts are needed in this

case to average the targeted physical property over an ensemble of v(r), since there is no a priori

justification whether a few selected configurations would be representative enough, especially for

mesoscopic samples which often lack the so-called self-averaging property [6]. Of course, one may

7



Chapter 2. Green’s function formalism

follow the brute-force approach that repeats the calculations under different v(r)-configurations

and take average at the end. However, it is usually not sensible to do so, simply because of the

huge disorder-ensemble size.

In this thesis, we use the Green’s function method [33, 43] to deal with these difficulties.

This method exploits the fact that most experimental observables can be naturally expressed with

Green’s functions and that computing exact many-body eigenstates is often unnecessary. However,

this does not grant any easiness to computing the Green’s functions. To alleviate the problem, in

this thesis we shall only focus on the physical scenario where the many-body electronic structure

is still dominated by the quadratic Hamiltonian and the possible v(r)-configurations are not too

far from a certain reference. Under these conditions the Green’s functions can be computed in a

perturbative manner, and we know how to exactly evaluate each individual term in the series.

In this chapter, we wish to keep our theoretical formulation at a generic level. We shall review

the general Green’s function framework and walk through the derivations of the perturbation series

for generic systems containing disorder and e-e interaction. Nevertheless, we note that any pertur-

bation series is subject to a truncation in practice. A general principle is that the specific truncation

scheme should be associated with the specified physical effect under investigation. This amounts

to the subjects of later chapters.

2.1 Keldysh formalism

The Keldysh formalism is a commonly used theoretical framework to deal with quantum systems

driven out of equilibrium, and it serves as the basis for Green’s functions to be properly defined.

In this formalism, it is assumed that the system was initially prepared in a thermodynamically

equilibrium state (specified by a temperature T and a chemical potential µ) in the remote past, and

then undergoes an evolution governed by the HamiltonianH(t). During the evolution the system is

kept from exchanging particles with its environment. According to the basic quantum mechanics,

the expectation value of an observable can hence be expressed as O(t) = Tr
[
ρ̂ÔH(t)

]
, where ρ̂

is the density matrix e−βHM
/Tr

[
e−βH

M
]

with β = 1
kBT

and HM ≡ H(t = −∞) − µN . ÔH(t)

denotes the corresponding operator in the Heisenberg picture, which is related to its Schrödinger

counterpart through ÔH(t) = Û(−∞, t)Ô(t)Û(t,−∞). The evolution operator Û is defined as

Û(t2, t1) =

 Tt

{
e−i

∫ t2
t1
dt′H(t′)

}
, t2 > t1

T̄t

{
e−i

∫ t2
t1
dt′H(t′)

}
, t2 < t1

(2.3)

8
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o o-
τ

τ'

C-

C+

Figure 2.1: Keldysh contour [44].

where Tt (T̄t) is the chronological (anti-chronological) ordering operator which moves quantities

with later (earlier) time arguments to the left.1

2.1.1 Complex-time contour

To facilitate further theoretical formulations, Keldysh introduced the idea of complex-time contour

in his seminal paper [45]. The Keldysh contour (see Fig.2.1) consists of two counter-directional

lines along the real-time axis plus a vertical line which runs between −∞ and −∞− iβ [44]. The

contour version of the Hamiltonian is defined as

H(τ) =

{
H(t), τ = t± i0+

HM, τ ∈ [−∞− iβ,−∞]

and accordingly, the evolution operator on the contour is defined as

Û(τ2, τ1) =

 Tτ

{
e
−i

∫ τ2
τ1

dτ ′H(τ ′)
}
, τ2 > τ1

T̄τ

{
e

+i
∫ τ1
τ2

dτ ′H(τ ′)
}
, τ2 < τ1

(2.4)

where τ2 > τ1 (τ2 < τ1) means that τ2 is later (earlier) than τ1 along the direction specified on

the contour. As such, the time-evolution of operators within the Heisenberg picture can be readily

generalized to the contour framework:

ÔH(τ) = Û(−∞, τ)Ô(τ)Û(τ,−∞). (2.5)

Hence one can re-express the expectation value of Ô(t) using the contour formula:

O(t) ≡
〈
ÔH(τ = t± i0+)

〉
=

Tr Tτ

{
e−i

∫
C dτ

′H(τ ′)Ô(τ)
}

Tr Tτ
{
e−i

∫
C dτ

′H(τ ′)
} , (2.6)

where Tτ is the chronological ordering operator defined on the contour, its order being specified by

the arrows in Fig.2.1. The concise form of Eq.(2.6) shows the virtue of using the Keldysh contour.

1For fermion field operators, every swap of two adjacent operators yields a factor of −1.
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Using the from of Eq.(2.6), the contour version of the general nth-order Green’s function is defined

as [33]

G(n)(1, . . . , n; 1′, . . . , n′) ≡ i−n
〈
Tτ

{
ψ̂H(1) . . . ψ̂H(n)ψ̂†H(n′) . . . ψ̂†H(1′)

}〉
, (2.7)

where the shorthand notation 1 ≡ r1τ1 is used. Technically G(n) is encoded with all the n-particle

correlations in a many-body system, and thus many physical quantities and observables can be

directly extracted from it. For example, the particle density is equal to −iG(rτ, rτ+) and the

current density [33]

j(rt) = lim
r→r′

e~(∇r′ −∇r)

2m
G(rτ, r′τ+) +

ie2

m
A(rt)G(rτ, rτ+). (2.8)

The two-particle Green’s function G(2) is often related to linear-response coefficients such as the

dielectric polarizability and the electrical conductivity [32, 33]. Higher-order Green’s functions can

be used to calculate nonlinear susceptibilities [46] and sample-to-sample fluctuations in disordered

systems [12, 47]. Using the equation of motion of the field operator:

i
dψ̂H(rτ)

dτ
=
[
ψ̂H(rτ), H(τ)

]
(2.9)

=

∫
dr′H0(r, r′, τ)ψ̂H(r′τ) + v(rτ)ψ̂H(rτ) +

∫
dr′U(r, r′, τ)n̂H(r′τ)ψ̂H(rτ)

in conjunction with the definition (2.7), one gets the following relation between G and G(2):

i
d

dτ1

G(r1τ1, r2τ2) = δ(r1 − r2)δ(τ1 − τ2) +

∫
dr′H0(r1, r

′, τ1)G(r′τ1, r2τ2)

+ v(r1τ1)G(r1τ1, r2τ2)− i

∫
dτ ′dr′U(r1, r

′, τ ′)G(2)(r1τ1, r
′τ ′; r2τ2, r

′τ ′+). (2.10)

We notice that this equation becomes closed for G when U = 0. In this case it is possible to get

an exact solution given the potential v(r). Nevertheless, in the presence of e-e interaction the yet

intangible G(2) gets involved. In fact all the Green’s functions G(n) satisfy a hierarchy of equations

of motions [33], which become closed only if a truncation is imposed at certain level. We shall

review one of the most popular truncation schemes in Sec.2.3.1 below.

2.1.2 Real-time formalism

The complex-time formalism often leads to concise forms in theoretical formulations, but for actual

calculations it is more convenient to work with real-time variables, especially for systems in steady

states since the real-times can then be transformed into the Fourier space.

10
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Depending on how the two complex-time arguments are arranged on the contour, one can

introduce the following real-time one-particle Green’s functions under the analytic continuation

τ → t± i0+:

G(1, 2)→



GT(1, 2) ≡ −i
〈
Tt

{
ψ̂H(1)ψ̂†H(2)

}〉
τ1, τ2 ∈ C−

G>(1, 2) ≡ −i
〈
ψ̂H(1)ψ̂†H(2)

〉
τ1 ∈ C+, τ2 ∈ C−

G<(1, 2) ≡ +i
〈
ψ̂†H(2)ψ̂H(1)

〉
τ1 ∈ C−, τ2 ∈ C+

GT̄(1, 2) ≡ −i
〈
T̄t

{
ψ̂H(1)ψ̂†H(2)

}〉
τ1, τ2 ∈ C+

(2.11)

where C− (C+) denotes the forward (backward) branch. The time-ordered (GT) and anti-time-

ordered (GT̄) Green’s functions have a causal structure and satisfy the same equation of motion as

for the contour Green’s function [33]. In particular, GT plays a central role in the zero-temperature

formalism of many-body theory [32], as it is encoded with information on virtual quantum excita-

tions. On the other hand, the lesser (G<) and greater (G>) Green’s functions respectively represent

the correlations of electrons and holes. Their Fourier transforms with respect to the time differ-

ence (t1 − t2) in a steady state are energy distributions of particle occupation. Assuming the exact

eigenstates of the many-body Hamiltonian (denoted as |m,n〉 below) are known, the equilibrium

G< can be expressed as

G<(r1, r2, ω) = i

∫
dt eiω(t1−t2)

〈
ψ̂†H(r2t2)ψ̂H(r1t1)

〉
= i

∫
dt eiωt

∑
mn

〈n|ρψ̂†(r2, 0) |m〉 〈m| eiHtψ̂(r1, 0)e−iHt |n〉 (2.12)

=
2πi

Z

∑
mn

〈n|ψ̂†(r2, 0) |m〉 〈m| ψ̂(r1, 0) |n〉 δ(ω + Em − En)e−β(En−µNn),

and G> has a similar expression:

G>(r1, r2, ω) = −2πi

Z

∑
mn

〈n|ψ̂†(r2, 0) |m〉 〈m| ψ̂(r1, 0) |n〉 δ(ω+Em−En)e−β(Em−µNm). (2.13)

It can be seen that the summands in Eqs.(2.12) and (2.13) vanish unless Nm = Nn − 1 and

Em = En − ω. This leads to an important relation at equilibrium:

G>(ω) = −eβ(ω−µ)G<(ω). (2.14)

Making use of the Fermi-Dirac distribution f(ω, T, µ) = [eβ(ω−µ)+1]−1, one obtains from Eq.(2.14):

G<(ω) = if(ω)A(ω), (2.15a)

11
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G>(ω) = −i[1− f(ω)]A(ω), (2.15b)

where A(ω) ≡ i[G>(ω)−G<(ω)] is a Hermitian matrix termed the spectral function in the litera-

ture [44].

To further analyze their mathematical relations, we organize the four real-time Green’s func-

tions in a matrix form:

⊃
Gs1s2(r1τ1, r2τ2) =

[
GT(r1t1, r2t2) G<(r1t1, r2t2)

G>(r1t1, r2t2) GT̄(r1t1, r2t2)

]
, (2.16)

where the subscript s denotes an extra degree of freedom which tracks the branch of the corre-

sponding time variable. Invoking the definition (2.11), one can easily verify that the four Green’s

functions are in fact linear dependant: G>(1, 2) + G<(1, 2) = GT(1, 2) + GT̄(1, 2). The extra

degree of freedom can be removed by introducing the retarded (R), advanced (A), and Keldysh (K)

Green’s functions defined as follows:

GR(1, 2) = θ(t1 − t2) [G>(1, 2)−G<(1, 2)] , (2.17a)

GA(1, 2) = θ(t2 − t1) [G<(1, 2)−G>(1, 2)] , (2.17b)

GK(1, 2) = G>(1, 2) +G<(1, 2). (2.17c)

To reveal the mathematical structure underlying these Green’s functions, we organize them in a

triangular matrix:
∆

G(1, 2) =

[
GR(1, 2) 2G<(1, 2)

0 GA(1, 2)

]
(2.18)

By definitions, the two representations
∆

G and
⊃
G are related through the rotation

∆

G = R1σz
⊃
G R2, (2.19)

where

R1 =
1√
2

[
2 0

1 1

]
,R2 =

1√
2

[
1 0

−1 2

]
, σz =

[
1 0

0 −1

]
(2.20)

The triangular form of Eq.(2.18) is especially useful when one deals with convolutional integrals

between complex-time functions. To see this, consider the integral

D(τ, τ ′) =

∫
C

dτ1dτ2A(τ, τ1)B(τ1, τ2)C(τ2, τ
′) (2.21)

along the Keldysh contour. This can be converted to real-time integrals by means of the matrix

representation:2

⊃
D =

⊃
A(σz

⊃
B)(σz

⊃
C), (2.22)

2 The time convolutions are implied in the matrix multiplications.
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where σz is inserted because the integral direction on C+ is backward. Upon inserting the iden-

tity R1R2= I, we arrive at
∆

D =
∆

A
∆

B
∆

C. Then, exploiting the properties of triangular matrix

multiplication, we get

DR = ARBRCR, (2.23a)

DA = AABACA, (2.23b)

D< = A<BACA + ARB<CA + ARBRC<. (2.23c)

It is easy to verify that Eq.(2.23c) also holds if the < superscript is replaced with > or K. The

generalization of Eqs.(2.23) to a serial convolution of any number of functions should be straight-

forward. The general rule is that, for retarded or advanced functions, one simply carries out the

convolutions on the real-axis such as in Eq.(2.23a), whereas for the lesser functions one multiplies

them following the sequence R...R < A...A and moves < from left to right for each term. This

procedure is often termed “analytic continuation” in the literature [44].

2.2 Impurity scattering and disorder-average

In this section, we study the Green’s functions of non-interacting electrons subject to an external

potential v(r). Without this potential and in absence of e-e interaction, a reference Green’s function

(G0) can be introduced via the simplified equation of motion:

i
d

dτ1

G0(r1τ1, r2τ2) = δ(r1 − r2)δ(τ1 − τ2) +

∫
dr′H0(r1, r

′, τ1)G0(r′τ1, r2τ2). (2.24)

The solution to Eq.(2.10) with v 6= 0, U = 0 can hence be written as:

Gv(1, 2) = G0(1, 2) +

∫
dr3τ3G0(1, 3)v(3)Gv(3, 2), (2.25)

where the subscript v is used to remind that the solution Gv is dependent on v(r). Thinking of the

objects in Eq.(2.25) as matrices expressed in the time-space (rτ ) basis, we can formally write Gv

as

Gv =
1

G−1
0 − v

. (2.26)

This gives the formal solution to the one-particle Green’s function under a given v(r). In this case,

knowing Gv is also adequate for calculating G(n)
v at any n. However, in many situations v(r) is

not specified in the physical problem, but is rather stochastically drawn from a statistical ensemble

described by some probability distributions. A concrete example is the electric potential induced by
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impurities in a material.3 These impurities can be dopants, vacancies, or surface roughness, which

are usually not controllable in experiments, and whose distributions vary from sample to sample.

In this case computing Green’s functions under one single v(r) is not very meaningful, and rather

we seek to calculate the disorder-average of G(n). Nevertheless, it is not so easy to calculate the

disorder-average in a compact and analytic form. This is already implicated by Eq.(2.26) since

the potential v(r) appears in the denominator. One could imagine that things would only get more

complicated for higher-order Green’s functions G(n)
v since it consists of products of Gv. Therefore,

this section is devoted to deriving a tractable yet approximate approach to the disorder-average

problem, using the diagrammatic technique.

2.2.1 One-particle Green’s function

Our approach starts with the serial form of Gv, i.e. Gv = G0 + G0vG0 + G0vG0vG0 + · · · , and

thence the disorder-average of Gv equals the sum of disorder-averages of individual terms in the

series. Whereas the average of the first two terms is trivial, starting from the third term, products

of random variables get involved. Assuming v(r) is spatially uncorrelated, the averages of these

products read

v(r1)v(r2) = v(r1) · v(r2) +
[
v(r1)2 − v(r1)

2
]

︸ ︷︷ ︸
γ(2)(r1)

δ(r1 − r2) (2.27a)

v(r1)v(r2)v(r3) = v(r1) · v(r2) · v(r3) + δ(r1 − r2)γ(2)(r1)v(r3)

+ δ(r2 − r3)γ(2)(r2)v(r1) + δ(r1 − r3)γ(2)(r1)v(r2)

+ δ(r1 − r2)δ(r2 − r3)
[
v(r1)3 − 3v(r1)2 · v(r1) + 2v(r1)

3
]

︸ ︷︷ ︸
γ(3)(r1)

(2.27b)

v(r1)v(r2)v(r3)v(r4) = · · · , (2.27c)

where γ(n) is the nth cumulant of the probability distribution of v(r).

The averaging procedure for Gv can be visualized diagrammatically by Fig.2.2, where each di-

agram consists of a number of solid lines representingG0 and dashed lines representing v(r). Upon

disorder-average the dashed lines are contracted forming multi-terminal vertices whose values are

one of the cumulants γ(n). Diagrams are formed by arranging these building blocks in ways that

are topologically different. Note that for conciseness we have set v(r) = 0 since the expectation

3In this thesis we only consider impurities that are static and do not have internal degrees of freedom. Thus they

interact with electrons only elastically.

14



Chapter 2. Green’s function formalism

γ(2) γ(3) γ(2) γ(2) γ(4)

...

r1 r2
r r'

γ(2) γ(2)

γ(2) γ(3) γ(2)γ(3) γ(2) γ(3) γ(2)γ(3)

(a) (b) (c) (d)

γ(2)

(e) (f)

(g) (h) (i) (j)

Figure 2.2: Diagrammatic representation of the perturbation series of disorder-averaged Green’s function.

Solid lines represent the reference Green’s functionG0, and dashed lines represent cumulants of the disorder

potential.

value v(r) can always be taken into the reference Hamiltonian. The resultant diagrams in Fig.2.2

thus do not contain “dangling” v(r)-lines. The evaluation of a diagram requires integrating over

all the spatial and time arguments at the intersections. For example, Fig.2.2(c) represents∫
dr1dr2dτ1dτ2dτ

′
1dτ

′
2G0(rτ, r1τ1)G0(r1τ1, r2τ2)G0(r2τ2, r1τ1

′)

×G0(r1τ1
′, r2τ2

′)G0(r2τ2
′, r′τ ′)γ(2)(r1)γ(2)(r2). (2.28)

We notice in Fig.2.2 that there are two types of diagrams which appear redundant, as repre-

sented by Fig.2.2(d) and (f). Indeed, both Fig.2.2(d) and (f) are composed of two copies of (a): in

Fig.2.2(d) the two (a)-diagrams are placed side by side, and in Fig.2.2(f) one is nested in the other.

Diagrams having these two features are respectively termed reducible and non-skeleton diagrams

in the literature [48]. The other diagrams, which are irreducible and skeleton, can be grouped to-

gether and formally written as G0ΣG0G0, where Σ is called self-energy. Note that we think of Σ as

a function of the Green’s function to be inserted in the diagrams. Hence the series of Fig.2.2, in-

cluding reducible and non-skeleton diagrams, can be produced by iterating the following (Dyson)

equation:

G(1, 2) = G0(1, 2) +

∫
d3d4G0(1, 3)ΣG(3, 4)G(4, 2), (2.29)

where the notation ΣG indicates that the Σ-diagrams are now constructed with the full Green’s

function, thereby producing all the nesting diagrams such as in Fig.2.2(f). In some sense Eq.(2.29)

can be viewed as a self-consistent equation for the exact disorder-averaged Green’s function G

consisting of all the terms in Fig.2.2(f), but Σ itself represents an infinite series of diagrams.

Therefore, Eq.(2.29) is unsolvable unless Σ is truncated or only partially summed. Possible yet
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1

2

1 1'

22'

Figure 2.3: A diagram for the disorder-average product of two Green’s functions. Impurity potentials

(dashed lines) are connected upon disorder-average. Certain connection schemes generate reducible dia-

grams which can be split by cutting through two solid lines (Green’s functions) without touching any dashed

lines.

approximate solutions to Eq.(2.29) will be the topic of Chapter 3, where we shall consider some

specific physical effects and devise our approximation schemes for the self-energy accordingly.

2.2.2 General Green’s function correlators

As mentioned above, many physical quantities are related with higher-order Green’s functions

G(n), or more elementary, the disorder-average of products of one-particle Green’s functions:

C(n)(11′, 22′, · · · , nn′) = 〈Gv(11′)Gv(22′) · · ·Gv(nn
′)〉 , (2.30)

where 〈· · · 〉 denotes averaging over the ensemble of v(r). Note that, since every Gv on the right-

hand side explicitly depends on a common v(r), the correlator C(n) cannot be simply decoupled

as 〈Gv(11′)〉 · 〈Gv(22′)〉 · · · 〈Gv(nn
′)〉. Instead we need to apply the same diagrammatic strategy

as used in Sec.2.2.1, i.e. expanding Gv with respect to v and then contracting v to form cumulant

vertices. This procedure is illustrated in Fig.2.3 using the C(2) correlator. We notice that, in

the particular contraction scheme shown on the right hand side of Fig.2.3, there is a self-energy

diagram at the top which can be absorbed into the Green’s function line; this part is automatically

removed once the self-consistent Green’s function [see Eq.(2.29)] is used in the diagrammatic

construction. Another notable thing is that, if we cut along the line labeled by “2” without touching

any dashed lines, the diagram can be simply split in two. Diagrams having this particular feature

is said to be two-particle reducible. With this observation one can write down a general expression

for C(2):

C(2) (11′, 22′) = G(11′)G(22′) +G(13̄)G(4̄2′)K(2)(3̄6̄5̄4̄)C(2) (6̄1′, 25̄) , (2.31)
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Figure 2.4: This diagram shows that adding a G-line to a reducible C(2)-diagram cannot yield a self-

energy diagram. In the figure, each grey area represents a bundle of dashed impurity-lines. The upper and

lower G-lines are joined on the right side through an additional line. The resulting diagram has a nesting

part as marked by the red frame, resembling Fig.2.2(f) which is excluded from the self-energy.

where G is the self-consistent Green’s function and the repeated indices in the last term are in-

tegrated over. In fact, Eq.(2.31) would become exact if the kernel function K(2) included all the

two-particle irreducible diagrams. Nevertheless, similar to the situation of the self-energy Σ, it is

impossible to enumerate every K(2) diagram.

Equation (2.31), termed Bethe-Salpeter equation in the literature [33], can be regarded as the

generalization of the Dyson equation (2.29) toC(2). Their recursive kernels, i.e. Σ andK(2), in fact

have the following relation: each K(2)-diagram can be generated by removing a Green’s function

line from a certain Σ-diagram. This procedure can be mathematically denoted as K(2) = δΣ/δG.

To see this relation, consider a two-particle reducible diagram as shown in Fig.2.4, where the two

grey blocks represent certain arrangement of intersecting impurity lines. The two Green’s functions

are then connected by adding another on the right side. We thus obtain a diagram for the one-

particle Green’s function. This diagram is apparently non-skeleton (and hence not a self-energy

diagram) since the block marked in the dashed frame can be absorbed into the Green’s function.

This observation implicates that diagrams generated from δΣ/δG must be two-particle irreducible

and hence belongs to K(2) by definition. For example, removing one of the three G-lines of the

second Σ-diagram in Fig.2.5(a) respectively leads to the K(2)-diagrams in the red dashed frame of

Fig.2.5(b). In the other way around, connecting the two Green’s functions in a K(2)-diagram leads

to a Σ-diagram. However, note that this procedure might map several K(2)-diagrams to a single

Σ-diagram.

The concept of diagrammatic reducibility can be generalized to diagrams containing more

Green’s functions. In Fig.2.6 a few reducible diagrams of higher-order C(n) are displayed. All

of them can be split in two by cutting only two Green’s function lines without touching any

dashed lines. We hence define K(n) as the irreducible diagrams which have n edges (n G-

lines). Apparently, any nth order reducible diagram can be constructed by assembling a number

of K(n′)(n′ ≤ n) diagrams. Moreover, akin to the relation between Σ and K(2), a K(n)-diagram

can be generated by removing a Green’s function from certain K(n−1)-diagram. This procedure is
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Figure 2.5: The hierarchy of irreducible K(n) diagrams. Diagrams enclosed in dashed frames of the same

color are related via the Green’s function removal procedure as described in the text. Note that the second

equality in each line is only for illustration purpose and is not exact. For instance, all the three diagrams in

the red frame would be mapped to the second Σ diagram upon linking the two solid lines, and thus that Σ

diagram is triple counted.

Figure 2.6: More examples of reducible diagrams, which can be split by cutting two solid lines (Green’s

functions) without touching dashed lines (impurity vertices).
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C C

C

C

Figure 2.7: Diagrammatic schemes for disorder-averaged correlators defined by Eq.(2.30), up to n = 4.

Same diagram blocks are marked by same colors.

illustrated in Fig.2.5. Diagrams enclosed in dashed frames of the same color are related via the

Green’s function removal procedure. Those in a same frame are called sibling diagrams below, in

that they are derived from a same (parent) diagram.

With these understandings, we can formulate a hierarchy of diagrams that correspond toC(n) of

different n (see Fig.2.7), which involves allK(n′)-diagrams up to n′ ≤ n. As illustrated in Fig.2.8, a

C(n+1)-diagram can be generated by replacing a G-line in a C(n)-diagram with the C(2)-correlator.

One can easily check that applying this procedure to each C(n)-diagram yields all the C(n+1)-

diagrams, which cover all possible connection patterns of impurity lines that are topologically

different. To write down the mathematical expressions of C(n), we first introduce the following

two auxiliary diagram blocks:

A(2)(11′22′) = δ(11′)δ(22′) +K(2)(11̄2̄2′)C(2)(1̄1′22̄) (2.32)

A(3)(11′, 22′, 33′) = A(2)(3̄′3′11′)G(3̄3̄′)A(2)(22′33̄) + C(2)(3̄′3′11̄)K(3)(1̄1′, 22̄′, 3̄3̄′)C(2)(2̄′2′33̄)

(2.33)
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x

Figure 2.8: Remove a Green’s function (red) from an edge of a C(n)-diagram, and attach C(2) to the

opening. This procedure yields a C(n+1)-diagram.

as illustrated in Fig.2.7(a) and (d) respectively. Using A(2) and A(3) we then write down the ex-

pressions for C(3) and C(4):

C(3)(11′, 22′, 33′) = A(3)(11̄, 2̄2′, 33′)C(2)(1̄1′22̄), (2.34)

C(4)(11′, 22′, 33′, 44′) = A(3)(22̄, 4̄′4′, 11′)C(2)(2̄2̄′4̄4̄′)A(3)(44̄, 2̄′2′, 33′)

+ A(3)(33̄, 1̄′1′, 22′)C(2)(1̄1̄′3̄3̄′)A(3)(11̄, 3̄′3′, 44′)

−G(4̄4̄′)A(2)(4̄′4′11̄)G(1̄1̄′)A(2)(1̄′1′22̄)G(2̄2̄′)A(2)(2̄′2′33̄)G(3̄3̄′)A(2)(3̄′3′44̄)

+K(4)(1̄1̄′, 2̄2̄′, 3̄3̄′, 4̄4̄′)C(2)(4̄′4′11̄)C(2)(1̄′1′22̄)C(2)(2̄′2′33̄)C(2)(3̄′3′44̄). (2.35)

In principle one could continue going upward along the hierarchy, but the expressions for C(n)

would become increasingly more complicated. Here we have only listed the expressions up to

C(4): these should suffice for most quantum transport applications.

In practice the real difficulty of calculating C(n) lies in the fact that one cannot enumerate all

the irreducible kernels on any level. One thus resorts to certain truncation schemes on the infinite

diagram series, which leads to an approximation of C(n). It needs to be pointed out that such

truncation schemes are not arbitrary; they need to follow certain rules. First of all, if a certain kernel

is taken into account for a calculation, so should be its siblings [1]. That is to say, kernel diagrams

in Fig.2.5 that are grouped in a same frame should be taken or discarded simultaneously. This

rule is especially important if the computed quantity is associated with certain conservation laws

[33, 49]. This point will be further discussed in Sec.2.4.2. The second rule is that, if a theoretical

formalism involves C(n) of different n, the proper kernels used to construct C(n)-diagrams of

larger n are the descendants of those selected for lower n [1]. Thus a diagrammatic scheme is

totally determined by the self-energy diagrams being selected. To illustrate this rule we consider
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linear transport calculations which typically involve the C(2)-correlator. Suppose the two diagrams

as presented in Fig.2.5(a) are selected for the self-energy. Then K(2) should accordingly consist

of the four diagrams listed in Fig.2.5(b) (no more, no less). Another concrete example is the

calculation of conductance fluctuation in disordered quantum dots, which can be expressed in the

form of either 〈G<G<〉 (C(2)) [50] or
〈
GRGAGRGA

〉
(C(4)) [47]. Therefore one can use either the

diagram series of Fig.2.7(a) or those in Fig.2.7(c) to compute the same quantity. It was shown in

Ref.[1] that results from these two approaches would be consistent only if the approximate kernels

used in the respective diagrammatic schemes are related through the second rule aforesaid.

2.3 Electron-electron interaction

In the same spirit as how impurity scattering was addressed in the last section, we also seek to cal-

culate the e-e interaction effects using a tractable perturbation series. In this section we shall first

present the theory of Hedin equations [51] which serves to systematically generate the diagram-

matic series to an arbitrary order with respect to the interaction strength. We will also demonstrate

how to compute the diagrams by means of the real-time Green’s functions introduced in Sec.2.1.2.

2.3.1 Hedin equations

The starting point is again the equation of motion Eq.(2.10). Note that, in the presence of electron-

electron interaction, Eq.(2.10) is not a closed equation for the one-particle Green’s function G in

thatG(2) is also involved. The latter can be expressed on a formal level with only one-particle quan-

tities by employing the functional derivative technique [49, 52]. To be specific, we take derivative

of the Green’s function with respect to the external potential v, which only couples to the electron

density in the Hamiltonian. Using the definition (2.7) and the identity δ
δv(1)

TC
{
e−i

∫
C dτ

′H(τ ′) · · ·
}

=

−iTC
{
e−i

∫
C dτ

′H(τ ′)n(1) · · ·
}

, we get

G(2)(1, 3; 2, 3+) = G(1, 2)G(3, 3+)− δG(1, 2)

δv(3)
, (2.36)

which is then used to replace the G(2) in Eq.(2.10). To further simplify Eq.(2.10) we introduce the

interaction self-energy:

Σee(1, 2) = i

∫
d3d4 U(1, 3)

δG(1, 4)

δv(3)
G−1(4, 2), (2.37)

where G−1 should be understood as an operator such that GG−1 = 1, or more explicitly∫
d3 G(1, 3)G−1(3, 2) = δ(1, 2). (2.38)
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Using Eqs.(2.36) and (2.37), we then rewrite Eq.(2.10) as

i
d

dτ1

G(r1τ1, r2τ2) = δ(r1 − r2)δ(τ1 − τ2) +

∫
dr′H0(r1, r

′, τ1)G(r′τ1, r2τ2)

+ [VH + v](r1τ1)G(r1τ1, r2τ2) +

∫
dτ ′dr′Σee(r1τ1, r

′τ ′)G(r′τ ′, r2τ2), (2.39)

where the Hartree potential VH(1) ≡ −i
∫
d3 U(1, 3)G(3, 3+). To proceed we utilize Eq.(2.38)

and replace the derivative in Eq.(2.37) with

δG(1, 2)

δv(3)
= −

∫
d5d4 G(1, 4)

δG−1(4, 5)

δv(3)
G(5, 2). (2.40)

Then, by using the chain rule, we get

Σee(1, 2) = −i

∫
d3d4 U(1, 3)G(1, 4)

δG−1(4, 2)

δv(3)
(2.41)

= −i

∫
d3d4d5 U(1, 3)G(1, 4)

δG−1(4, 2)

δṼ (5)

δṼ (5)

δv(3)
= i

∫
d4d5 W (1, 5)G(1, 4)

−δG−1(4, 2)

δṼ (5)
,

where Ṽ = VH + v and

W (1, 2) =

∫
d3U(1, 3)

δṼ (2)

δv(3)
. (2.42)

The quantity δṼ /δv represents the total potential change in response to the external potential, and

thus it equals the inverse dielectric function ε−1 of the system. In this sense, W represents an

effective two-body interaction which takes into account the dielectric environment comprised of

surrounding electrons. This effective interaction can be further expressed in a recursive form if we

continue to unfold δṼ /δv:

W (1, 2) =

∫
d3 U(1, 3)

[
δ(2, 3) +

δVH(2)

δv(3)

]
= U(1, 2) +

∫
d3 U(1, 3)

[∫
d4d5

δn(4)

δṼ (5)

δṼ (5)

δv(3)
U(4, 2)

]
= U(1, 2) +

∫
d4d5 W (1, 5)P (5, 4)U(4, 2), (2.43)

where

P (1, 2) =
δn(1)

δṼ (2)
= −i

δG(1, 1+)

δṼ (5)
= i

∫
d3d4 G(1, 3)

δG−1(3, 4)

δṼ (2)
G(4, 1+) (2.44)

is the polarization. The quantity −δG−1/δṼ , which shows up in both Eq.(2.41) and (2.44), is

termed the vertex function, denoted as Λee in the following. Using Eq.(2.39) we can express Λee as

Λee = −δG
−1(1, 2)

δṼ (3)
= δ(1, 2)δ(1, 3) +

δΣee(1, 2)

δṼ (3)
. (2.45)
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= Σee

= + Λee +

= + P
W

+ ...

Figure 2.9: Diagrammatic form of the Hedin equations (see the main text). Solid lines represent Green’s

functions and single wiggle lines represent the bare e-e interaction.

By further using the chain rule δΣee/δṼ = (δΣee/δG)(δG/δṼ ) and Eq.(2.40), we get a recursive

relation (the Bethe-Salpeter equation) for Λee:

Λee(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d4d5d6d7

δΣee(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Λee(6, 7, 3). (2.46)

Equations (2.41), (2.43), (2.44), and (2.46) as a whole are termed the self-consistent Hedin

equations in the literature [51]. Their diagrammatic representation is shown in Fig.2.9. Although

every object in these equations is essentially a functional of the Green’s function, this formally

exact equation system cannot be solved in a closed form. The reason is that the functional form of

Σee[G], which lies in the heart of Eq.(2.46), cannot be known a priori, and in fact the functional

itself is to be determined by the outcome (if ever accessible) of the Hedin equations. Naively one

might think of using a numerical approach to solve the Hedin equations iteratively. However, this

is again impractical because the terms generated by the iteration would grow rapidly in amount

and soon be out of control. Even worse is that the generated series is not guaranteed to have a

convergent behavior [53]. Therefore, in practical applications of the Hedin equations, one often

truncates the Λee series by hand or selectively sums up its subset using certain advanced techniques

(e.g. Parquet scheme [54])

2.3.2 Diagrammatic formalism

Figure 2.10 displays the self-energy series expanded from the Hedin equations with respect to the

bare e-e interaction, sorted by the number of interaction lines. Figure 2.10(a) and (b) correspond

to the Hartree-Fock approximation [33], (c) comes from expanding the screened potential W , and

(d),(e) both arise from the vertex correction. The rules to translate these diagrams into mathemat-

ical expressions can be easily deduced from the Hedin equations: Each solid line represents G, a
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...

(a) (b) (c) (d) (e)
s1t1 s2t2

s3t3 s4t4

Figure 2.10: Perturbation series of the self-energy (Σee) generated from the Hedin equations (cf. Fig.2.9).

+ +� ...

+ +

(a) (b)

(a') (b') (b'')

Figure 2.11: Self-energy diagrams in the presence of both interaction and impurity scattering. Those in

the second row are obtained after disorder-average. Note that, due to different combinations of the impurity

lines, after disorder-average there could exist multiple diagrams having the same structure on the interaction

part, e.g. (b’) and (b”).

wiggle line represents iU , and each closed G-loop [e.g. in Fig.2.10(a,c,e)] yields a factor of −1

[33].

In the situation where the physical system is subject to both interaction and impurity scatter-

ing, we need to combine the diagrammatic scheme for disorder-average with that of Fig.2.10. To

this end, we regard the external potential v(r) as a perturbation and thus expand the Green’s func-

tion with respect to it. This adds new diagrammatic elements on top of Fig.2.10, as illustrated in

Fig.2.11 (first row). Disorder-average amounts to contracting the impurity lines by their cumu-

lants, just as demonstrated in Sec.2.2.1. Diagrams yielded from this procedure are illustrated in

the second row of Fig.2.11. In particular, we will see in Chapter 5 that Figs.2.11(a’,b’) play an

important role in the so-called Altshuler-Aronov effects [21].

A diagram is computed by integrating over all internal variables. Special attention should

be paid to the time variables as they lie on the Keldysh contour, where the two branches have

opposite integration directions. To alleviate the inconvenience that the time variables run on op-
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posite branches, we utilize the matrix representation Eq.(2.16) and assign a branch index s(−/+)

together with a real-time variable to each diagrammatic vertex (see Fig.2.10c). As such the inte-

gration direction can now be tracked by the sign of s. Accordingly, the interaction line now reads

-isU and the impurity line (before contraction) reads −sv in this representation. Cautions should

be taken in that one cannot draw a direct correspondence from the thus computed diagrams to the

self-energy under the contour representation (
⊃
Σ). To see this we consider a self-energy diagram

attached to two external Green’s functions. Such a diagram is supposed to give
⊃
Gσz

⊃
Σσz

⊃
G ac-

cording to Eq.(2.22). However, the σz matrices at the two terminals of the self-energy diagram are

not included in the diagrammatic rule formulated above. Therefore the diagram being computed

actually corresponds to

Σss′ = σz
⊃
Σσz =

[
ΣR + Σ< −Σ<

−Σ> Σ> − ΣR

]
(2.47)

For the similar reason the wiggle line represents

W ss′ = σz

[
WR +W< W<

W> W> −WR

]
σz =

[
WR +W< −W<

−W> W> −WR

]
(2.48)

which bears the same form as Eq.(2.47). In practice it is more convenient to compute WR,<,>,

since Eq.(2.43) consists of only convolutional integrals of the form Eq.(2.21), and then transform

to Eq.(2.48) for further calculations.

To be concrete, a calculation example on Fig.2.10(c) is given in the following. This diagram is

evaluated as (without showing the spatial variables explicitly):∑
s3,s4

∫
dt3dt4 [−is1U(s1t1, s3t3)δ(s1, s3)δ(t1 − t3)] [−is2U(s2t2, s4t4)δ(s2, s4)δ(t4 − t2)]

×G(s1t1, s2t2) [−2G(s3t3, s4t4)G(s4t4, s3t3)] , (2.49)

where the factor 2 comes from the spin degeneracy. As an example, we show the derivation of its

lesser component Σ<
(c) from the above expression. To this end we set s1 = −, s2 = + and take into

account the minus sign as indicated in Eq.(2.47) (top right corner). This leads to

Σ<
(c)(r1t1, r2t2) = 2

∫
dr3dr4U(r1 − r3)U(r2 − r4)G<(r1t1, r2t2)G<(r3t1, r4t2)G>(r4t2, r3t1),

(2.50)

which agrees with the expression derived from the Langreth rules [55]. The reason why we bother

reformulating the diagrams with the s indices instead of using the Langreth rules [33, 44] directly

is that the former approach turns out more feasible for numerical programming, especially for

complex diagrams such as Figs.2.11(a’,b’).
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(a) (b)

Figure 2.12: A first-order diagram of Luttinger-Ward functional (Φ[G]) with (a) only e-e interaction, (b)

coexistence of disorder-average.

2.4 Conserving approximation

As can be seen from previous sections, the accuracy of a diagrammatic scheme, either for the

disorder-average problem or for the e-e interaction, largely depends on the selection of self-energy

diagrams. On the one hand, the selected Σ-diagrams should at least incorporates the concerned

physical process, which varies among different systems and problems. On the other hand, as

a general rule, quantities computed in an approximate approach should yet satisfy certain exact

relations on a fundamental level. For quantum transport problems it is most important that the

computed currents or coefficients fulfil the conservation laws [32, 33]. In this section we present

the Kadanoff-Baym scheme [49, 52] which offers a tractable approach to generating sets of Σ-

diagrams such that the computed transport currents at the one-particle level are guaranteed to be

continuous. We also formulate a set of Ward identities to be used to check the conserving property

of general n-particle correlators [see Eq.(2.30)], which are closely related to transport coefficients

not addressed within the Kadanoff-Baym theory.

2.4.1 Kadanoff-Baym scheme

The Kadanoff-Baym scheme starts by constructing the Luttinger-Ward functional [33] which is

often denoted as Φ[G]. In its diagrammatic visualization (see Fig.2.12) Φ[G] consists of closed

Green’s function loops with connections of interaction vertices. Whereas the original paper by

Baym and Kadanoff [49] only considered the e-e interaction effect, their theory can be readily

generalized to the coexistence of disorder-average [34] (e.g. Fig.2.12b). Having specified a set

of Φ-diagrams, one then derives the self-energy by individually removing G-lines from each Φ-

diagram in the set. For example, the diagram of Fig.2.11(b’) is generated from Fig.2.12(b). This

process is much similar to how the disorder-average kernels are derived from the self-energy (see

Sec.2.2.2). In mathematical form it can be expressed as

Σ(1, 2) =
δΦ[G]

δG(2, 1+)
. (2.51)
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To see this scheme indeed lead to the conservation of charge current, we start with a reformu-

lation of the equation of motion (2.39). In Eq.(2.39) we notice that the time derivative is applied

to the first time argument τ1. Alternatively, it can be applied to τ2 as well, and as such one obtains

an equivalent pair of equations of motion:

i
d

dτ1

G(1, 2)−
∫
d3 [H0(1, 3) + Σ(1, 3)]G(3, 2) = δ(1, 2), (2.52a)

− i
d

dτ2

G(1, 2)−
∫
d3 G(1, 3)[H0(3, 2) + Σ(3, 2)] = δ(1, 2). (2.52b)

Note that the equations of motion must be understood as self-consistent equations for G in that Σ

is implicitly a functional of G. Subtracting Eq.(2.52b) from Eq.(2.52a) and utilizing the definition

of H0 [see Eq.(2.2)], one gets[
i
d

dτ1

+ i
d

dτ2

]
G(1, 2) + (∇1 +∇2) · ∇1 −∇2

2m
G(1, 2)− iq

2mc
[∇1 ·A(1)

+∇2 ·A(2) + 2A(1) · ∇1 + 2A(2) · ∇2]G(1, 2)− q2

2mc2
[A(1)2 − A(2)2]G(1, 2)

=

∫
d3 [Σ(1, 3)G(3, 2)−G(1, 3)Σ(3, 2)]. (2.53)

Setting r2τ2 → r1τ1
+ and making use of the relation (2.8), one can rewrite the left hand side as

− dn(1)

dτ1

+∇1 ·
[(
∇1 −∇2

2m
G(1, 2)

)
2=1+

− iq

mc
A(1)G(1, 1+)

]
= −dn(r1t1)

dt1
−∇r1 · j(r1t1).

(2.54)

Hence one gets a sufficient condition for the particle number to conserve:∫
d2 [Σ(1, 2)G(2, 1+)−G(1, 2)Σ(2, 1+)] = 0. (2.55)

In the Kadanoff-Baym scheme, this condition is automatically satisfied. This can be seen by per-

forming a gauge transformation G(1, 2) → eiφ(1)G(1, 2)e−iφ(2). Since the Green’s functions in a

Φ-diagram form closed loops, the Φ-functional is invariant under this gauge transformation. Tak-

ing φ infinitesimal, one gets

0 = δΦ[G] = i

∫
d1d2 Σ(1, 2)G(2, 1+)[φ(2)− φ(1)]

= −i

∫
d1d2 [Σ(1, 2)G(2, 1+)−G(1, 2)Σ(2, 1+)]φ(1) (2.56)

Finally, because of the arbitrary choice of φ, Eq.(2.55) must hold. In fact, the Kadanoff-Baym

scheme also ensures the continuity of other quantities, such as momentum, angular momentum,

and energy. For a comprehensive discussion on this topic, the reader is referred to Ref.[33].
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2.4.2 Ward identity

Whereas the Kadanoff-Baym theory concerns the conservation properties of direct observables

that are encoded in the one-particle Green’s function, some quantities measured in experiments,

such as response functions, are rather associated with higher-order Green’s functions and are thus

subject to more sophisticated conservation criteria other than the Φ-functional derivablility. A

common method to check whether conservation laws are respected in calculations of response

functions consists in using the Ward identity. As a relation between different correlation functions

the Ward identity was originally formulated in the context of quantum electrodynamics [56]. Akin

to Eq.(2.55), the Ward identity can also be derived from the gauge invariance of the underlying

quantum field [56]; thus it implicates conservation laws. The machinery of this theory was later

transferred to the condensed matter physics, with several variations depending on the physical

problems [32]. In the following, we restrict ourselves to the disorder-average problem of nonin-

teracting systems. We shall show that the formalism developed in Sec.2.2.2 for Green’s function

products satisfies a particular type of Ward identity and thus meets conservation requirements.

To formulate the Ward identity we first define a function

Υ(r1, r2; z1, z2) ≡ [G0(r1, r2; z2)]−1 − [G0(r1, r2; z1)]−1, (2.57)

where G0 is the Matsubara Green’s function [32] of the disorder-free medium (assuming a steady

state): the analytic continuation of z → ω ± i0+ leads to GR
0 (ω) and GA

0 (ω) respectively. It is

easy to see that for a closed system Υ(z1, z2) simply reduces to (z2 − z1)δ(r1 − r2). However, for

systems subject to open boundary conditions (e.g. connected to electrodes), Υ(z1, z2) = z2− z1 +

Σlead(z1) − Σlead(z2) where Σlead is the lead self-energy (see below in Sec.2.5.2). Assuming the

impurity scattering is elastic, Υ(z1, z2) also equals to Gv(z2) − Gv(z1) where Gv is the Green’s

function under a given disorder configuration. Thus Eq.(2.57) can be rearranged as

Gv(z1)Υ(z1, z2)Gv(z2) = Gv(z1)−Gv(z2). (2.58)

One is then free to continue multiplying Gv on both sides of Eq.(2.58), and after taking disorder-

average over v and invoking the definition Eq.(2.30), one arrives at a Ward identity:4∫
drm

′drm+1C
(n)(r1, r1

′, z1; r2, r2
′, z2 · · · rn, rn′, zn)Υ(rm

′, rm+1; zm, zm+1)

= C(n−1)(· · · rm−1, rm−1
′, zm−1; rm, rm+1

′, zm; rm+2, rm+2
′, zm+2 · · · )

− C(n−1)(· · · rm−1, rm−1
′, zm−1; rm, rm+1

′, zm+1; rm+2, rm+2
′, zm+2 · · · ). (2.59)

4This identity under n = 2, 3 has been previously discussed in Refs.[46, 57] in the context of the coherent potential

approximation.
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+ +

Figure 2.13: Illustration for Eq.(2.60) .

Notice that on the right hand side the two C(n−1) differ only by one z-argument. This identity

needs be satisfied no matter what approximation scheme is used. A similar relation holds for the

irreducible kernels:∫
drm

′drm+1K
(n)(r1, r1

′, z1; r2, r2
′, z2 · · · rn, rn′, zn) [G(rm

′, rm+1; zm)−G(rm
′, rm+1; zm+1)]

= K(n−1)(· · · rm−1, rm−1
′, zm−1; rm, rm+1

′, zm; rm+2, rm+2
′, zm+2 · · · )

−K(n−1)(· · · rm−1, rm−1
′, zm−1; rm, rm+1

′, zm+1; rm+2, rm+2
′, zm+2 · · · ). (2.60)

This relation follows from the fact thatK(n) can be generated by removing a Green’s function from

K(n−1). More clearly, we visualize the right-hand side of Eq.(2.60) by Fig.2.13, where a K(3)-

diagram is used for illustration. The red line represents [G(rm
′, rm+1; zm)−G(rm

′, rm+1; zm+1)];

its migration from one end of the m-th edge to the other end follows from the identity

X1X2 · · ·Xn − Y1Y2 · · ·Yn = [(X1 − Y1)Y2 · · ·Yn] + [X1(X2 − Y2)Y3 · · ·Yn]

+ · · ·+ [X1X2 · · · (Xn − Yn)] . (2.61)

We notice that, once these red lines are removed respectively, one gets the corresponding K(n=4)-

diagrams. Hence Eq.(2.60) is proved.

The same logic can as well apply to Eq.(2.59) since a C(n)-diagram can be obtained by replac-

ing a Green’s function in C(n−1) with C(2) (see Fig.2.8). Therefore it only remains to show∫
dr1
′dr2C

(2)(r1, r1
′, z1; r2, r2

′, z2)Υ(r1
′, r2; z1, z2) = G(r1, r2

′, z1)−G(r1, r2
′, z2), (2.62)

i.e. the Ward identity for n = 2, in order to verify that any approximation constructed with the

scheme of Fig.2.5 indeed satisfies the identity (2.59) for all n. To this end, we start by rewriting

the left hand side of Eq.(2.62) as∫
dr1
′dr2G(r1, r1

′, z1) [Υ(r1
′, r2; z1, z2) + Λ(r1

′, r2; z1, z2)]G(r2, r2
′, z2). (2.63)

Using the recursive structure of Eq.(2.31), we obtain an equation for the Λ object defined in (2.63):

Λ(r0, r0
′; z1, z2) =

∫
dr1dr2

′K(2)(r0, r1, z1; r2
′, r0

′, z2)

∫
dr1
′dr2G(r1, r1

′, z1)
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× [Υ(r1
′, r2; z1, z2) + Λ(r1

′, r2; z1, z2)]G(r2, r2
′, z2). (2.64)

Since G−1 = G−1
0 − Σ (Σ being the self-energy from disorder-average), we replace the Υ in

Eq.(2.64) by G−1(z2) − G−1(z1) + Σ(z2) − Σ(z1). Then, making use of Eq.(2.60) at n = 2

(noticing K(1) ≡ Σ), we obtain from Eq.(2.64): Λ(z1, z2) = Σ(z1) − Σ(z2). Finally, expressing

the Υ and Λ in (2.63) with G and Σ, we find that (2.63) yields G(z1) − G(z2), which is the right

hand side of Eq.(2.62). Hence Eq.(2.62) is proved, along with Eq.(2.59) for all n.

In the following we use the linear-response polarization PR [see Eq.(2.44)] as an example to

illustrate how the Ward identity is related with charge conservation. Given a disorder configuration

v and in the absence of e-e interaction, the polarization is written as

PR(r, r′, ω) =

∫
dε

2πi
[f(ε)− f(ε+ ω)]GA

v (r′, r, ε)GR
v (r, r′, ε+ ω)

+ f(ε+ ω)GA
v (r′, r, ε)GA

v (r, r′, ε+ ω)− f(ε)GR
v (r′, r, ε)GR

v (r, r′, ε+ ω), (2.65)

where we have made use of the equilibrium relation G<(ε) = f(ε)[GA(ε)−GR(ε)]. Integrating r

over the whole space and applying Eq.(2.58) with Υ = z2− z1, we find
∫
drPR(r, r′, ω) = 0. This

indicates that the total density variation in response to an arbitrary perturbation of external field

should always be zero, thereby complying with the charge conservation law. Apparently applying

disorder-average to Eq.(2.65) should preserve this conservation property; this is guaranteed by

the identity Eq.(2.62). Applications of higher-order Ward identities are less common but do exist

in some cases: they are related with some nonlinear-response coefficients [46] or cross-device

fluctuations [47].

2.5 Transport model

This section demonstrates the implementation of the Green’s function framework on finite transport

systems which exchange particles and energy with the environment. The overall goal is to use the

Green’s functions to compute the charge current in such systems given the steady status of their

environment.

2.5.1 System partition

A theoretical model for calculating transport properties needs to respect the fact that electronic

transport is a physical process which depends both on the sample size and on the time scale of

experimental measurements. In this thesis we consider ergodic transport systems in the sense that

a particle injected into the sample (or device) will traverse its entire space during the time period of
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+_

Figure 2.14: Schematic of the transport model. The simulation box is divided into three regions: left lead,

device, and right lead. The mesoscopic structure of interest is placed in the device region, and the leads are

assumed to have certain periodic structures that extend to infinity. The chemical potential and temperature

in leads are given by the respective electrodes to which they are connected. The system is further sliced into

“principal layers” such that the underlying non-interacting Hamiltonian does not couple nonadjacent layers.

measurement and fully explore its boundaries. This is a valid assumption since the systems to be

studied are assumed to be mesoscopic and at a steady state (corresponding to long time periods).

In this scenario, it is thus necessary to include in the model not only the device itself but also a

careful treatment of its environment. A common practice is to put in the simulation box the device

structure of interest together with the metallic leads connected at the two ends (see Fig.2.14) [40].

The leads are assumed to have a strict periodic structure that extends to infinity. As the leads are

eventually linked with the respective electrodes, they are set at equilibrium with given chemical

potentials and temperatures, and hence serve as electronic reservoirs for the device. Furthermore,

electrons in the leads are assumed to form a Fermi liquid such that the electronic structure therein

can be described by a quadratic Hamiltonian. For practical reasons the system is also sliced into

“principal layers” stacked along the transport direction such that the underlying non-interacting

Hamiltonian does not couple nonadjacent layers [58].

Under these considerations, the total Hamiltonian hence takes the following form in real-space:
HLL HLD 0

HDL HDD HDR

0 HRD HRR


where the subscripts L/D/R denote left/device/right respectively. Note that the off-diagonal blocks

have zero entries except at the lead-device contacts, and that both HLL and HRR have a tridiagonal

form

HLL =


. . . . . .
. . . H00 H01

H10 H00 H01

H10 H00

 , HRR =


H00 H01

H10 H00 H01

H10 H00
. . .

. . . . . .


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due to the principal layer scheme.

2.5.2 Block Green’s functions

Similar to the Hamiltonian, the Green’s function can also be viewed as a block matrix in the real-

space:

G =


GLL GLD GLR

GDL GDD GDR

GRL GRD GRR


As will be clear later, the central quantities in a quantum transport problem are the block Green’s

functions GLD, GRD, and GDD: GLD and GRD turn out to be associated with the currents through

the leads, and GDD contains the statistical information about the device region of our interest. In

this subsection, we follow the equation of motion technique [44] to obtain the compact expressions

of these Green’s functions.

We first seek to write down the equation of motion for GLD. To this end, we utilize Eq.(2.39)

with the restriction that the spatial coordinate r1 is placed in the left lead and r2 in the device

region. After some straightforward algebra on the matrix product H0G, we get5

i
d

dτ1

GLD(1, 2) =

∫
d3 [HLL(1, 3)GLD(3, 2) +HLD(1, 3)GDD(3, 2)] . (2.66)

Note that, in writing down this equation, we have invoked the presumption that the leads are free

of disorder or interaction. To solve this equation of motion, we use again the strategy which was

employed as in Eq.(2.25): namely we express GLD as

GLD(1, 2) =

∫
d3d4G0LL(1, 3)HLD(3, 4)GDD(4, 2), (2.67)

where G0LL is a reference Green’s function satisfying

i
d

dτ1

G0LL(1, 2) = δ(1, 2) +

∫
L

d3HLL(1, 3)G0LL(3, 2). (2.68)

Physically speaking, G0LL represents the solution of the equilibrium semi-infinite lead when it

is detached from the rest of the system. The retarded component GR
0LL is solved by applying

Eq.(2.23a) to Eq.(2.68), and after performing a time-frequency Fourier transform, we obtain the

matrix solutionGR
0LL(ω) = [ω+i0+−HLL]−1. AsHLL is tridiagonal in the principal layer represen-

tation, this matrix inversion can be computed exactly using the standard recursive algorithm [59],

5The other block GRD satisfies the same set of equations with L replaced with R.
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or by using the eigen-spectral representation [60] GR
0LL(r1, r2, ω) =

∑
k∈L ψk(r1)ψ∗k(r2)/(ω −

εk + i0+). Once GR
0LL is solved, G<

0LL and G>
0LL can be calculated readily using Eq.(2.15).

Next, we place the spatial coordinates r1 and r2 of Eq.(2.39) both inside the device region. As

such, only the central block of H0G is involved: H0G → HDLGLD + HDDGDD + HDRGRD,

which can be brought to a more compact form by defining ΣL = HDLG0LLHLD and ΣR =

HDRG0RRHRD. These two quantities are often termed the lead self-energies [44, 60]. Note

that these self-energies have the same size as HDD and, in order to calculate them, we only

need the G0LL or G0RR matrix blocks at the first principal layer of the lead. Hence H0G →
(ΣR + ΣL +HDD)GDD, and we obtain a closed-form equation of motion for GDD:

i
d

dτ1

GDD(1, 2) = δ(1, 2) +

∫
D

d3 [HDD(1, 3) + Σtot(1, 3)]GDD(3, 2), (2.69)

where Σtot also includes the effects from disorder-average and e-e interaction, i.e. Σtot = ΣL +

ΣR + Σdis + Σee. Following the analytic continuation procedure as in Eq.(2.23), we get6

GR
DD(ω) =

[
ω −HDD − ΣR

tot(ω)
]−1

, (2.70a)

G<
DD(ω) = (1 +GR

DDΣR
tot)G

<
0DD(1 + ΣA

totG
A
DD) +GR

DD(ω)Σ<
tot(ω)GA

DD(ω). (2.70b)

2.5.3 Charge current calculation

The charge current (per spin) flowing out of the left lead is defined by

IL = −edNL

dt
= − ie

~
[H,NL],

where NL =
∫

L
drψ̂†(r)ψ̂(r) is the total number operator of the left lead. Since interaction is

assumed confined within the central device region, NL commutes with all parts of the total Hamil-

tonian except for HDL and HLD. Hence the current can be expressed as

IL =
ie

~

∫
L

dr1

∫
D

dr2

[
HLD(r1, r2)

〈
ψ̂†(r1)ψ̂(r2)

〉
−HDL(r2, r1)

〈
ψ̂†(r2)ψ̂(r1)

〉]
=

2e

~
Re [Tr HDLG

<
LD(t, t)] =

2e

h

∫
dωRe [Tr HDLG

<
LD(ω)] , (2.71)

6The first term on the right hand side of Eq.(2.70b) usually vanishes in real calculations. Using the relationG<
0DD =

−f(ω−µD)(GR
0DD−GA

0DD) together with Eq.(2.70a), this term can be rearranged to 2iηf(ω−µD)GR
DDG

A
DD, where

η(→ 0+) is the regularization factor introduced from time casuality. Assuming all states have a finite life-time due

to either interaction or coupling to the reservoirs, the product GR
DDG

A
DD should not depend on η, and hence this term

should vanish [55].
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where the trace operates over the real-space. In obtaining the second line, we have used the original

definition of G< and its anti-Hermitian feature. Applying the rules of Eq.(2.23c) to Eq.(2.67), we

get HDLG
<
LD = G<

0LLHLDG
A
DD +GR

0LLHLDG
<
DD. Substituting this relation into Eq.(2.71) and using

the definition of ΣL = HDLG0LLHLD, we obtain

IL =
2e

h

∫
dωRe Tr

[
Σ<

L (ω)GA
DD(ω) + ΣR

L (ω)G<
DD(ω)

]
. (2.72)

This formula signifies that, in order to calculate the current, one only needs to compute some real-

space integrals confined in the device region. The impact from other degrees of freedom in the

lead is encoded in the ΣL self-energy, which has the same size as HDD and has no dependence on

the interaction or disorder within the central device.

It is possible to cast Eq.(2.72) into a physically more transparent form. To this end, we apply

the identity Re Tr[M ] =1
2
Tr[M + M †] to the integrand of Eq.(2.72) and use the fact G> −G< =

GR −GA:

Re Tr
[
Σ<

LG
A
DD + ΣR

LG
<
DD

]
=

1

2
Tr
[
Σ<

L (GA
DD −GR

DD) + (ΣR
L − ΣA

L )G<
DD

]
=

1

2
Tr [−Σ<

LG
>
DD + Σ>

LG
<
DD] . (2.73)

Hence we obtain an equivalent formula for calculating the current:

IL =
e

h

∫
dωTr [Σ<

L (ω)G>
DD(ω)− Σ>

L (ω)G<
DD(ω)] . (2.74)

The physical picture implied by Eq.(2.74) is quite clear: The second (first) term in the integrand

represents the hole (electron) current as Σ>
L (Σ<

L ) represents the hole (electron) transfer rate from

the lead to the device and G<
DD (G>

DD) represents the available hole (electron) states in the device.

The current through the right lead IR can be derived in exactly the same way.

Suppose the temperature is set at zero and µL > µR. In the energy window µL > ω > µR, Σ>
L

must vanish, and hence only the first term in Eq.(2.74) retains, which equals (2iImΣR
L )G>

DD. When

interaction is omitted, G>
DD = GR

DD(−2iImΣR
R)GA

DD. Thus the integrand of Eq.(2.74) becomes

G(ω) = 4
e

h
Tr
[
ImΣR

L (ω)GR
DD(ω)ImΣR

R(ω)GA
DD(ω)

]
, (2.75)

i.e. the conductance of the system. More generally, the conductivity of a noninteracting system

reads

σxx = − e2~3

2πm2Ω

∫
drdr′Re

[
∂

∂x
GR(r, r′, εF)

∂

∂x′
GA(r′, r, εF)

]
. (2.76)

The derivation of Eq.(2.76) involves the linear response Kubo formalism, for which the reader is

referred to Refs.[12, 60].
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W

a

1 2 3l= N-2 N-1 N

L

Figure 2.15: A discrete ribbon-shaped lattice which simulates a quantum wire. The grey areas denote the

electrodes. l denotes the principal layer index. L and W denote the numbers of sites in the longitudinal and

transverse directions respectively. Note that disorder and e-e interaction are restricted in the central region

(black).

Apart from the currents through the leads, the current at the interface between adjacent princi-

pal layers can also be calculated. To this end, we take time derivative of Nl =
∫
l
drψ̂†(r)ψ̂(r), i.e.

the total number operator of the lth principal layer. Since Nl commutes with the total Hamiltonian

except for Hl±1,l and Hl,l±1, similar to the case in Eq.(2.71), we get

d〈Nl〉
dt

=
2e

h

∫
dωRe

[
Tr Hl−1,lG

<
l,l−1(ω)− Tr Hl,l+1G

<
l+1,l(ω)

]
. (2.77)

The first term on the right hand side is identified as the current flowing into the lth layer from the

(l− 1)th layer, while the second term represents the outgoing current on the other side. This leads

to another useful formula for calculating the current:

Il =
2e

h

∫
dωRe

[
Tr Hl−1,lG

<
l,l−1(ω)

]
. (2.78)

For a theoretical calculation which respects conservation laws, the value of Il should be indepen-

dent of l; besides the relation Il = IL = −IR must hold.

2.5.4 Discretization

In this subsection we construct a necessary numerical model in order to implement the theories

we develop in this thesis. To this end we discretize the real-space with an orthogonal grid (see

Fig.2.15). The Coulomb interaction is thus written as Uij = ua/|ri − rj|, where a is the lattice

constant, u is a scale parameter, and i(j) is a site label. To regularize Uij at i = j, we note that

for a spinless fermionic system the Hartree and Fock contributions exactly cancel each other at

i = j, and thus we can simply set Uii = 0. For electrons on the other hand, the interaction between

opposite spin components could retain at i = j. In this case we parameterize the onsite interaction

as U0n̂i↑n̂i↓, which replaces the ill defined Coulomb interaction at i = j.
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Figure 2.16: Band structures of the lattice systems defined in Fig.2.15 under the perfect condition, i.e.

without disorder or interaction. Note that we have shifted the band centers to the energy zero point.

The kinetic energy is associated with the Laplacian ∇2 = ∂2
x + ∂2

y + ∂2
z which, if restricted in

one-dimension, is discretized as [60][
∂2F

∂x2

]
x=ja

≈ Fj+1 − 2Fj + Fj−1

a2
+O(a2). (2.79)

We notice that at this level of finite difference approximation the kinetic energy only couples

the lattice sites which are nearest neighbors, with a coupling coefficient ξ = ~2/2ma2. In the

absence of disorder and interactions, the band structures of thus defined lattice are illustrated in

Fig.2.16 with different W . In the presence of magnetic field, the coupling needs to be modified by

multiplying an additional phase factor [60]:

ξij =
~2

2ma2
exp

[
ie

~
A · (ri − ri)

]
, (2.80)

where A is vector potential.

To sum up, we obtain the following Hamiltonian for the discrete lattice [cf. Eq.(2.1)]:

H =
∑
i,j

ξijc
†
icj +

∑
i

vin̂i +
1

2

∑
i 6=j

Uijn̂in̂j +
∑
i

U0n̂i↑n̂i↓, (2.81)

which is also known as the Anderson-Hubbard model in the literature [32].7 This model is widely

studied in the condensed matter physics as it serves as a prototypical platform for the studies of a

broad spectrum of quantum phases. In particular, in chapter 3 we shall neglect the e-e interaction

terms in Eq.(2.81) and study the most elementary scattering processes off the random potential vi.

The interaction associated effects will be discussed later on in chapters 4 and 5.

The Feynman diagrams formulated in this chapter using the continuum model can be translated

into the discrete representation in a straightforward manner: one simply replaces the continuous

variables r with the discrete site indices i, and integration
∫
dr with summation

∑
i [33].

7The model reduces to the Anderson or the Hubbard model respectively in absence of e-e interaction or disorder.
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2.6 Summary

In this chapter, we have reviewed the nonequilibrium Green’s function formalism based on the

Keldysh complex-time contour. Whereas the Green’s functions are exactly solvable under a quadratic

Hamiltonian, they do not have a closed-form solution in general systems that contain a disordered

potential or subject to the e-e interaction. In order to address these two effects, perturbation series

have been formulated with the aid of the diagram technique. We have also demonstrated how to

compute the diagrams in these series using the real-time Green’s functions which are numerically

more advantageous. Care needs to be taken in the selection of diagrams as they need to meet

certain requirements. Here we have focused on the requirements associated with the conservation

laws. In particular the Kadanoff-Baym theory was reviewed, which ensures the thus constructed

diagrams to be conserving at the one-particle level. We have also formulated a set of Ward iden-

tities for the disorder-averaged Green’s function products. These identities are implicitly related

to the conservation laws and are useful for checking the theoretical consistency of a diagrammatic

scheme. Finally, to connect with the modeling of real-world mesoscopic devices, we demonstrated

how to use the Green’s function to calculate the steady-state currents in finite systems subject to

an open boundary condition.
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Quantum diffusion and localization

From a microscopic point of view, a large class of transport phenomena are essentially a higher-

level reflection of the underlying carrier distribution in the momentum space. Neglecting interac-

tions between the carrier, a system with translational invariance in the real-space must hence be

trivial in the context of transport physics, because of momentum conservation. The translational

invariance can be broken by inducing randomly distributed impurities, each producing a localized

potential in its vicinity. For a classical particle travelling in such a disordered medium, its momen-

tum would be randomized after a series of scattering events, and hence its probability migration

can be well described by the Drude (drift-diffusion) formula [7] at the macroscopic level. The same

picture remains valid for a quantum particle as long as it stays in the classical regime, namely when

its wavelength λ is much smaller than the mean separation l0 between impurities (λ � l0). How-

ever in mesoscopic samples which are typically semiconducting materials, λ could be relativley

large so that the condition λ � l0 is not necessarily met. Therefore in this regime the particle

should rather be treated as a wave. The major difference between a classical particle and a wave

when they are scattered off a series of impurities is that the wave interferes with itself. It turns out

that this interference can usually lead to an enhanced backscattering counteracting on the diffusive

flow, also known as the localization effect in the context of electronic transport.1 As a result, the

measured conductance of a disordered mesoscopic sample is typically lower than according to the

Drude theory.

This chapter is devoted to reviewing the mesoscopic transport theory of weakly disordered

systems where the transport is dominated by the diffusive process. The (weak) localization effect

is taken into account as a perturbation correction to the diffusion. We shall demonstrate how to

1For certain exotic materials having an unconventional band structure, the interference due to multiple scattering

may instead lead to a suppressed back scattering, i.e. anti-localization [61].
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Figure 3.1: Diagrams for different trajectories contributing to the propagation probability. Arrowed lines

represent the propagators GR and dots are scatterers. (a) a general pair of trajectories with no alignment. (b)

a pair of identical trajectories. (c) a loop trajectory and its time-reversal counterpart. (d) a trajectory with a

loop insertion.

describe these physical effects using the diagrammatic language developed in Chapter 2. Moreover,

noticing that most understandings on mesoscopic diffusion and localization are derived within the

linear response Kubo formalism [12], a central task of this chapter is therefore to reformulate these

theories in the more general Keldysh formalism applicable in nonequilibrium. The reformulation

enables us to adapt the coherent potential approximation [58, 62] and the dual fermion method [2]

to addressing diffusion and localization in finite open structures modeled in real space.

3.1 General picture

Heuristically, the wavefunction of a particle propagating from r to r′ is written as the following

superposition of path-integrals:

Ψ(r, r′) =
∞∑
N=1

∫
dr1 · · · drNGR(r, r1)v(r1)GR(r1, r2)v(r2)
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× · · · v(rN−1)GR(rN−1, rN)v(rN)GR(rN , r
′), (3.1)

where v(r) denotes the randomly distributed static potential, and GR(r, r′) is the propagator free

of scattering. The propagation probability is hence |Ψ(r, r′)|2 which consists of a sum over all the

pairs of paths connecting r to r′.

Since it is impossible to enumerate every path pair, we wish to be able to pick out those of

major contribution to |Ψ(r, r′)|2. To this end, we first rule out those pairs with a large part of

misalignment in the real-space, as illustrated in Fig.3.1(a). The reason is that such a pair carries

a dephasing factor eik(L2−L1), where k is the wavenumber and L1,2 are the trajectory lengths; this

factor varies randomly from path to path and sample to sample, thus making no net contribution.

What’s more, trajectories made of differing scatters cannot survive disorder-average whatsoever,

because at any noncommon scatter we get v(r) = 0 (see Sec.2.2.1). With these considerations we

can therefore focus only on those pairs of trajectories that overlap in the real-space. Such a pair

can be simply realized by putting together two identical trajectories, as shown in Fig.3.1(b). This

group of trajectories amount to the following quantity, termed the “diffuson” in the literature [12]:
∞∑
N=1

∫
dr1 · · · drN |GR(r, r1)|2v(r1)|GR(r1, r2)|2v(r2) · · · |GR(rN , r

′)|2 ≡ P(r, r′), (3.2)

which clearly shows a structure describing sequential scatterings that are independent on each

other. Therefore P(r, r′) corresponds to the classical diffusion. Using its diagrammatic represen-

tation (right panel of Fig.3.1b), we see that P(r, r′) is closely related to the C(2) correlator, when

its kernel K(2) is approximated to the lowest order.

Notice that pairing up identical trajectories is not the only way to eliminate the phase mis-

alignment. For any path that intersects itself, one can reverse the scattering order around the loop,

and the thus generated trajectories are phase aligned. This procedure is illustrated in Fig.3.1(c).

Now consider the return probability |Ψ(r, r)|2 under time-reversal symmetry, i.e. GR(r1, r2) =

GR(r2, r1). One can see that |Ψ(r, r)|2 becomes twice as much as P(r, r) when the reversal tra-

jectories such as Fig.3.1(c) are taken into account. In other words, due to the interference of

time-reversal paths which comes from the cross terms in |Ψ|2, the return probability of a quantum

particle gets enhanced. This is precisely the origin of the weak localization effect. Diagrammat-

ically the interference between time-reversal paths is usually represented by a maximal cross as

shown in Fig.3.1(c), also known as the “Cooperon” in the literature [12]. The cross can be untan-

gled by reversing one of the GR-lines, and the result would be identical to the diffuson P under

time-reversal symmetry.

There is one thing we need to clarify before closing this section: that the return probability

of particle propagation gets doubled by the Cooperon process does not contradict the fact that
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r

Figure 3.2: First-order disorder self-energy. The dashed object represents the cumulant γ(2).

the weak localization might only amount to a subleading correction to the diffusion-dominated

electrical conductance. The reason is that the conductance is essentially a nonlocal quantity and is

thus not directly associated with |Ψ(r, r)|2. We illustrate in Fig.3.1(d) a diagram pertaining to the

weak localization correction to the nonlocal |Ψ(r, r′)|2. The Cooperon is located at the middle of

the path way and is linked with two diffusons. As shown in the dashed box, in general some degree

of trajectory misalignment could occur at the intersection, thereby lowering the return probability

at that point effectively.

3.2 Propagator formalism

In this section we put the qualitative pictures described above into some real calculations. We shall

continue thinking of the particles as propagating waves extending in the disordered medium. In

comparison to the locator formalism to be shortly introduced in Sec.3.3, the propagator picture

used here may not be ideal for computations of numerical models, but it is useful for analytical

discussions. Specifically we shall derive the energy distribution function of electrons in a diffusive

conductor, which will be invoked in subsequent chapters, and the semiclassical Drude conductiv-

ity using only the lowest-order approximation. On top of that, the Cooperon contribution to the

electrical conductivity will be calculated and analyzed using the diagram technique.

Throughout the calculations we shall limit ourselves to the weak disorder scenario, i.e. λ� l0.

Under this assumption the diagram series of Fig.2.2 becomes perturbative, and hence we can start

with the lowest-order diagram Fig.3.2, which is written as

ΣR(r, r′, ε) = δ(r− r′)γ(2)(r)GR(r, r, ε), (3.3)

i.e. the first Born approximation. We notice that the diagonal of−ImGR/π is just the local density

of states ν0(r, ε). Therefore, when transformed into the momentum space, Eq.(3.3) gives

ImΣR(k, ε) = −πν0(ε)γ ≡ − 1

2τ0(ε)
. (3.4)

The quantity τ0 introduced above has the physical meaning of (momentum) relaxation time. In

writing down the above equation, we have assumed a uniformly disordered system such that the
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... G<= + +  Σ<LR

Figure 3.3: Recursive relation for the lesser Green’s function G<. Each dashed line represents a factor

of γ(2) which measures the scattering rate. Solid lines represent either retarded (blue) or advanced (red)

Green’s functions. Black dots represent the lesser lead self-energy Σ<
LR.

density of states (ν0), as well as the cumulant (γ), is position independent. Plugging Eq.(3.4) into

Eq.(2.29), we get

GR,A(k, ε) =
1

ε− E(k)± i
2τ0(ε)

, (3.5)

where ReΣR has been absorbed into the band dispersion E(k). Since ~/τ0 represents an energy

scale much smaller than the Fermi energy in the weak scattering limit, Eq.(3.5) yields a quasi-

particle spectrum sharply peaked at ε = E(k) where the peak width ∼ τ−1
0 .

Since in the presence of impurities the particle propagation is subject to random scattering,

invoking the classical picture we would imagine the nonequilibrium transport being diffusive. It

turns out that, within the first order approximation, quantum particles are predicted to also follow

this diffusive behavior, i.e. quantum diffusion. To see this we shall calculate the distribution

function in a disordered conductor. To this end we utilize Eq.(2.70b), i.e.

G< (r1, r2, ε) =

∫
GR(r1, r, ε) [Σ<

LR(r, ε) + Σ<
dis(r, ε)]G

A(r, r2, ε)dr, (3.6)

where Σ<
LR is the lead self-energy and Σ<

dis(r, ε) = γG< (r, r, ε) is the lesser self-energy under

the lowest-order approximation. A recursive relation for G< is implied in Eq.(3.6), as can be

visualized by the diagram shown in Fig.3.3. One then immediately notices the diffuson (ladder)

structure which we introduced in Sec.3.1.

Assuming the diagonal G<(r, r, ε) can be written in the form 2πif(r, ε)ν0(ε), we obtain from

Eq.(3.6)

if(r) =

∫
S

P(r, r′, ω = 0)Σ<
LR(r′)dr′, (3.7)

where the integral is limited at the interfaces between the device and the reservoirs since lead self-

energies vanish elsewhere. In Appendix B it is shown that the diffuson P is the Green’s function

of the classical diffusion equation (B.12). Therefore the distribution function f should satisfy2

D∇2f(r, ε) = iΣ<
L (r, ε)δ(x) + iΣ<

R(r, ε)δ(x− L), (3.8)

2The device-reservoir interfaces are placed at x = 0, L respectively.
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Figure 3.4: (a) Schematic of a disordered conductor sandwiched between electric leads (reservoirs). The

voltage drops linearly across the wire, corresponding to the classical Drude transport. (b) Electronic energy

distribution in the conductor [see Eq.(3.9)]. The blue and the red curves represent the distributions in the

right and the left leads respectively, and the black curve represents that at the position x.
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Figure 3.5: Diagram expansion for the linear conductivity formulated under the first-order approximation.

The recursive kernel here, obtained by differentiating the self-energy (see Fig.3.2) over Green’s function, is

simply the lowest-order cumulant γ(2) (dashed line).

where D is diffusion coefficient. On the right hand side of Eq.(3.8), the lead self-energies serve

as the particle source or drain, depending on the relative values of their chemical potentials to

ε. This is consistent with the physical interpretation which we gave to Σ<
L/R in writing down the

charge current formula (2.74): it represents the particle exchange rate between the device and the

reservoirs. Since ∇2f(r, ε) = 0 away from the interfaces, f varies linearly within the device.

The boundary condition for f is such that it connects continuously with the respective equilibrium

distributions in reservoirs. We hence obtain

f(ε, x) = f(ε, 0) +
x

L
[f(ε, L)− f(ε, 0)] , (3.9)

where f(ε, 0) =
[
exp ε−µL

kBT
+ 1
]−1

, f(ε, L) =
[
exp ε−µR

kBT
+ 1
]−1

. The derived distribution function

is illustrated in Fig.3.4.

The above analysis is based on a picture where the system consists of a finite structure sand-

wiched between non-equilibrated reservoirs (leads). For very large structures the leads can be

dropped out of the picture and one should instead use the Kubo formula (2.76) to compute the

linear response conductivity. Assuming translational invariance, it is then convenient to Fourier
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...
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... ...
(a) (b) (c)

Figure 3.6: Cooperon diagrams for describing the localization effect. (a) Luttinger-Ward Φ-diagram. (b)

Self-energy. (c) Two-particle kernel K(2). Note that the vertical flip of (c) should also be included in K(2),

which we omit showing here.

transform Eq.(2.76):

σxx =
e2~3

2πm2Ω

∑
k,k′

kxkx
′ 〈GR(k,k′, ε)GA(k′,k, ε)

〉
. (3.10)

Under the first order approximation, the irreducible kernelK(2) for calculating the average product

of two Green’s functions is simply the lowest-order cumulant γ. Hence the conductivity can be

formulated with the ladder diagram shown in Fig.3.5. It turns out that the second part of this

diagram should be dropped out, because the momenta kx and k′x are summed over separately. The

only contributing term is thus the one without ladder dressing, where kx = k′x. Therefore,

σd =
e2~3

2πm2

∫
dk

(2π)d
kx

2GR(k, ε)GA(k, ε) = e2Dν0. (3.11)

The k-integration is performed with the aid of Eqs.(B.3) and (B.9). The result of Eq.(3.11) co-

incides with the classical Drude formula. We have thus confirmed that the lowest-order diagram

Fig.3.2 indeed leads to a diffusive description of charge transport in disordered media.

As discussed in Sec.3.1, a full description of charge transport in disordered media needs to take

into account the localization effect from Cooperon processes. To this end one has to go beyond the

lowest-order approximation (Fig.3.2). Following the standard Kadanoff-Baym scheme, we start by

drawing the Luttinger-Ward diagram of Cooperon, which is presented as the maximum crossing

diagram in Fig.3.6(a). The self-energy and the two-particle kernel K(2) are hence derived from it

by removing Green’s function lines. The results are shown in Fig.3.6(b,c).

According to the general theory presented in Sec.2.2.2, the calculation of the Green’s function

product involved in the Kubo formula Eq.(3.10) requires iterating K(2) along the particle-hole

channel. However, invoking the same argument as in getting to Eq.(3.11), one finds Fig.3.7(a)

being the only diagram that contributes. Note that, for visual convenience, the maximum cross
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Figure 3.7: (a) Conductivity diagram associated with the Cooperon process. (b) Illustration of the internal

(ladder) structure of the Cooperon.

is disentangled in Fig.3.7(a) by flipping the direction of one of the Green’s function lines. The

resulting Cooperon ladder Fig.3.7(b) has a similar structure as that of diffuson, except that for

Cooperon the directions of the two Green’s functions are parallel. Under time-reversal symmetry,

GR(k, ε) = GR(−k, ε), and therefore LC simply equals the diffuson ladder in the limit Ql0 � 1,

i.e.

LC(ω,Q) =
γ

τ0

1

−iω +DQ2
. (3.12)

Note that here Q is the total momentum of the two particles instead of their difference [cf. Eq.

(B.11)]. The fact that LC is dominated by small Q signifies that the Cooperon is a measurement of

the long-range correlation between antiparallel waves, i.e. k ≈ −k′.

Using Eqs.(B.5) and (B.9), the diagram of Fig.3.7(a) is hence evaluated as

σC ≈
e2~3

2πm2

∫
dk

(2π)d
k2
x

[
GR(k, ε)GA(k, ε)

]2 ∫ dQ

(2π)d
LC(ω = 0,Q) = − e

2

π~

∫
Q−2dQ

(2π)d
,

(3.13)

which amounts to a negative correction to the diffusive conductivity. It is important to notice that

the last Q-integral in Eq.(3.13) diverges in lower limit for dimensions d ≤ 2 and in upper limit for

all dimensions. The latter can be easily regularized by imposing the cutoff Q < 1/l0, as required

under the diffusive approximation. The lower cutoff can be naturally approximated by the inverse

system size L−1. We thus obtain

σC =

{
−e2h−1(L− l0)

−π−1e2h−1lnL/l0

d = 1

d = 2
(3.14)

This result seems to suggest that the conductivity of a low-dimensional disordered system tend

to vanish (or even go negative) as L grows. In fact this bizarre finding is not a nonsense: using
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scaling analysis, Abraham et al.[63] pointed out that in d ≤ 2 no macroscopic transport is al-

lowed in disordered systems with an arbitrary impurity concentration. This so-called “Anderson

localization” phenomenon [64] is a general quantum effect due to long-range interferences. Nev-

ertheless, in real materials the interference is always cut off by certain dephasing effects, such as

density fluctuation, electron-phonon scattering, or external magnetic fields. In macroscopic sam-

ples the dephasing length Lφ is much smaller than the sample size, and thus the lower bound of

the Cooperon wavevector (Q) should be replaced with L−1
φ , which is usually invariant against in-

creasing the sample size. We shall not further elaborate on the physical formalism for describing

the intrinsic dephasing processes. The reader is referred to Refs.[12, 23] for detailed reviews on

this topic.

3.3 Locator formalism

Whereas the above analyses based on the propagator formalism have succeeded in capturing the

global features of quantum diffusion and weak localization, yet the propagator picture is not re-

ally practical for numerical computations. The reason is two twofold. First of all, the accuracy

of the above formalism drops quickly as the disorder strength (i.e. γ(2)) increases. Secondly, the

numerical transport model (Fig.2.15) studied in this thesis does not even admit the r→ k Fourier

transform, due to the lack of translational invariance. In order to address these issues, we switch

from the propagator view to a local perspective, which takes the Green’s function of an isolated

single site, namely the locator [48, 65–67], as reference while treating the intersite hopping pertur-

batively. The motivation for the locator formalism is that, when disorder increases, electrons tend

to localize more, and hence locators become more suitable for describing the electronic structures.

In fact, for a binary alloy wherein the random onsite potential vi = ±v, the locator becomes the

exact solution to the problem in the limit v/ξ � 1 [48], where ξ is the intersite hopping amplitude.

In the other limit v/ξ � 1, as will be shortly seen, the locator formalism is also able to generate

the exact global Green’s function for the disordered medium.

To formally develop the locator formalism, we start over from the v-dependent Green’s function

as formulated in Eq.(2.26). Written in the upper-triangular form [see Eq.(2.18)],[
GR
v G<

v

0 GA
v

]
=

[
ω − v −HR

0 −H<
0

0 ω − v −HA
0

]−1

(3.15)

Without loss of generality, H0 denotes a disorder-independent matrix, including but not limited to

the underlying Hamiltonian: for example H0 could incorporate the lead self-energy. Trivially, one

is allowed to introduce an arbitrary matrix ∆(ω) such thatGv(ω) = [ω−v−∆(ω)+∆(ω)−H0]−1.
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γ(2)g ~ γ(3)

V

~

...

Figure 3.8: Diagrammatic series in the locator formalism for the disorder-averaged Green’s function

(cf. Fig.2.2). Doubly dashed lines represent locator cumulants γ̃(n), and solid lines represent the V matrix

(defined in the main text).
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k1 k1'
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...=
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Figure 3.9: (a) Index layout in the locator cumulants. (b) γ̃(2) can be expanded as a local ladder series

where the grey stripes are K(2)-kernels for the Bethe-Salpeter equation.

Here we choose ∆ to be diagonal in the real-space and to also adopt the upper-triangular form

of Eq.(2.18). With notations V = H0 − ∆ and gv = [ω − ∆ − v]−1, Gv can be rewritten as

Gv = [g−1
v − V ]−1. The quantity gv is thus identified as the locator under a given onsite potential,

and ∆i can hence be interpreted as a self-energy that encodes the coupling between the ith site and

its surrounding environment.

The disorder-average over Gv is carried out in a similar manner as in Sec.2.2.1: we first expand

it as Gv = gv + gvVgv + gvVgvVgv + · · · , and then take averages on each individual term in the

series. The result can be visualized by the diagrams of Fig.3.8 (cf. Fig.2.2). Similar to Eq.(2.27),

here we make use of the locator cumulants, which are defined such as

γ̃(2) : γ̃
k1k1′k2k2′
iω1ω2

= g
k1k1′k2k2′
iω1ω2

− gk1k1′iω1
g
k2k2′
iω2

, (3.16a)

γ̃(3) : γ̃
k1k1′k2k2′k3k3′
iω1ω2ω3

= g
k1k1′k2k2′k3k3′
iω1ω2ω3

− gk1k1′iω1
g
k2k2′k3k3′
iω2ω3

− gk2k2′iω2
g
k1k1′k3k3′
iω1ω3

− gk3k3′iω3
g
k1k1′k2k2′
iω1ω2

+ 2g
k1k1′
iω1

g
k2k2′
iω2

g
k3k3′
iω3

, (3.16b)

where k is a binary index corresponding to the two-by-two matrix structure of Eq.(2.18). Dia-

grammatically γ̃(n) can be represented by a vertex with n “legs”; each leg is attached with two

k indices and one frequency, as illustrated in Fig.3.9. Given the value of ∆ at the ith site, the

47



Chapter 3. Quantum diffusion and localization

disorder-averaged locators gi are computed as follows:

g
k1k1′
iω = [ω − vi −∆i(ω)]−1

k1k1′
=

[
(ω − vi −∆R

i )
−1

(ω − vi −∆R
i )
−1

∆<
i (ω − vi −∆A

i )
−1

0 (ω − vi −∆A
i )
−1

]
,

(3.17a)

g
k1k′1k2k

′
2

iω1ω2
= [ω1 − vi −∆i(ω1)]−1

k1k′1
[ω2 − vi −∆i(ω2)]−1

k2k′2
, (3.17b)

where the average is individually taken over the random potential vi at each site.

Formally the exact disorder-averaged Green’s function can be obtained by summing up the

diagram series of Fig.3.8 under any ∆. However, since in practice the diagram series is always

subject to truncations, the value of ∆ needs be uniquely determined by the computational scheme,

for otherwise the value of the incomplete diagrams would acquire a ∆-dependence. To address this

problem, we notice that in the locator formalism one actually has two ways to obtain the Green’s

function at a single site: either using the locator gi or taking the diagonal of the global Green’s

function Gii. It would only make sense if gi = Gii. This condition will thus be used to determine

∆ in both the coherent potential approximation (CPA) and the dual fermion (DF) method to be

introduced below.

3.3.1 Coherent potential approximation

CPA was first introduced by Soven [68] and Taylor [69] in the propagator formalism using the

T -matrix expansion technique. Its equivalent locator representation was later completed by Leath

[70]. Whereas the original objective of CPA was to compute the equilibrium electronic structures

of alloys, its underlying idea was leveraged by Velický [57] who formulated a theory to calculate

the disorder-average two-particle Green’s function so that the linear transport coefficients could be

accessed. It turns out that Velický’s single-site T -matrix approach and the diagrammatic approach

of Sec.2.2.2 eventually lead to the same result under CPA [1]. CPA has continued attracting at-

tentions along with the expanding applications of ab initio materials simulations [71–73]. The

generalization of CPA to nonequilibrium mesoscopic transport was derived by Runge et al.[74]

and Ke et al.[62] independently. In particular, Ke et al. integrated this nonequilibrium theory

into an ab initio simulator applicable to arbitrary device structures. The parallel locator version of

nonequilibrium CPA was later given by Zhu et al.[58].

Using the locator language, CPA consists in neglecting all the diagrams which involve cumu-

lants. In other words, the only terms to retain in CPA are g + gVg + gVgVg + · · · , where g is

the average locator defined in Eq.(3.17a). As such the global disorder-averaged Green’s function

is approximated by G = [g−1 − V ]−1. The CPA algorithm can be summarized by the following
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equations:

gi = (ω − vi −∆i)−1, (3.18a)

G = [g−1 − V ]−1, (3.18b)

Gii = gi, (3.18c)

where every variable should be understood as a two-by-two matrix complying with Eq.(2.18). The

difficulty in solving the above equations is two-fold. Firstly, due to their nonlinearity, in general it

is impossible to write down a closed-form solution for this set of equations. Therefore, one often

seeks a numeric solution by using an iterative algorithm. A second difficulty lies in the asymmetric

relation between ∆ and g, namely g can be readily computed given ∆ but not the other way around.

This is fatal to the iterative algorithm because it needs a map from g back to ∆ in order to close the

loop. To overcome this second difficulty, an intermediate variable Σ (diagonal) is introduced such

that Σi = ω −∆i − g−1
i , i.e.[
ΣR
i Σ<

i

0 ΣA
i

]
=

[
ω −∆R

i − 1/gR
i g<i /(g

R
i g

A
i )−∆<

i

0 ω −∆A
i − 1/gA

i

]
(3.19)

Hence the CPA equations can be reformulated as [58]

∆R
i = ω − ΣR

i − 1/GR
ii, (3.20a)

ΣR
i = ω −∆R

i − 1/(ω − vi −∆R
i )
−1
, (3.20b)

GR = [ω −HR
0 − ΣR]−1, (3.20c)

which concern the retarded part, together with

∆<
i = G<

ii/(G
R
iiG

A
ii)− Σ<

i , (3.21a)

Σ<
i = (ω − vi −∆R

i )
−1

∆<
i (ω − vi −∆A

i )
−1
/(GR

iiG
A
ii)−∆<

i , (3.21b)

G< = GR(Σ< +H<
0 )GA, (3.21c)

which concern the lesser part. The three equations concerning the retarded (lesser) part can be

solved in an iterative fashion starting from an initial guess of ΣR (Σ<). The solution is obtained

once a numeric convergence is reached.

Whereas the object Σ was introduced in Eq.(3.19) merely as an auxiliary variable, comparing

Eqs. (3.20c) and (3.21c) to Eq.(2.70) we see that Σ seems to play a role of self-energy in the

context of disorder-average. To justify this interpretation and to better understand CPA, we seek

a diagrammatic representation of Σ in terms of the formalism established in Sec.2.2. To this end
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we expand the right-hand side of Eq.(3.17a) with respect to vi taking (ω −∆i)
−1 as the reference

Green’s function. This yields visually the same series of diagrams as in Fig.2.2 when average is

taken over vi. However, here all the spatial indices should be restricted on the site i. This diagram

series therefore amounts to the following self-consistent quantity:

gi = (ω −∆i − Σloc(gi))
−1, (3.22)

where Σloc consists of all the irreducible diagrams of Fig.2.2 restricted on one single site. These

diagrams are certainly derivable from the Luttinger-Ward Φ-diagrams as they share the same dia-

grammatic topologies with the exact ones.

Comparing Eq.(3.22) to Eq.(3.19), one easily identifies Σloc with Σi. Suppose ∆i can be elim-

inated from Eq.(3.22) by using Eq.(3.17a); we are then left with a relation between gi and Σloc,

which basically defines the function Σloc(gi). Therefore, we not only have found the diagram se-

ries for the CPA self-energy, but also have established its functional relation to the local Green’s

function through the intermediate parameter ∆i. Furthermore, since in CPA the ∆i is tuned so

that gi = Gii, one gets G = [ω − Σloc(Gii)−H0]−1 which fulfills the self-consistent condition of

Eq.(2.29). Hence CPA complies with the Kadanoff-Baym theory and thus bears all the conserving

properties.

As the CPA self-energy is exact for the one-particle locator, its derivative ∂Σ/∂g should yield

the exact K(2)-kernel for the two-particle locator when plugged into the Bethe-Salpeter equation

Eq.(2.31). Here we study the case when k1 = k1′ = 1 and k2 = k2′ = 2 in Eq.(3.17b). The

locator thus obtained is denoted by gRA
iω = (ω − vi −∆R

i )
−1

(ω − vi −∆A
i )
−1. Inserting gRA

iω into

Eq.(2.31), we obtain the kernel

KRA
i = 1/(gR

i g
A
i )− 1/gRA

i . (3.23)

In what follows we shall prove that the CPA self-energy and KRA
i satisfy the identity (2.60), as

required by theoretical consistency. To this end we use the definition of locators to get

gR
i − gA

i = (ω − vi −∆R
i )
−1 − (ω − vi −∆A

i )
−1

= (∆R
i −∆A

i )(ω − vi −∆R
i )
−1

(ω − vi −∆A
i )
−1

= (∆R
i −∆A

i )gRA
i . (3.24)

We then substitute (ΣA
i + 1/gA

i − ΣR
i − 1/gR

i ) for (∆R
i −∆A

i ) above. After some rearrangement,

Eq.(3.24) gives 1/(gR
i g

A
i ) − 1/gRA

i = (ΣR
i − ΣA

i )/(gR
i − gA

i ), which equals KRA
i in view of

Eq.(3.23). Therefore, Σi and KRA
i satisfy the identity (2.60) at n = 2.

Using the notation of gRA
iω , we rewrite Eq.(3.21b) as

Σ<
i = ∆<

i g
RA
i [1/(gR

i g
A
i )− 1/gRA

i ]. (3.25)
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Using the relation ∆<
i g

RA
i = g<i from Eq.(3.17a) and recognizing the quantity in the square bracket

as KRA
i , we get Σ<

i = KRA
i G<

i . Substituting this relation into Eq.(3.21c) and letting H<
0 = Σ<

LR,

we arrive at a recursive equation for G<
i of the same structure as Eq.(3.6), with γ(2)

i replaced by

KRA
i . As KRA

i is also a local object, we see that the G<
i under CPA can be expressed with the

diffuson and so that CPA in fact leads to a diffusive description of the transport system.

From the discussion above, we see that CPA fits well in both propagator and locator formalisms.

On the one hand, the propagator formalism gives a natural picture taking disordered potential as

the perturbation, which explains why CPA is accurate in the weak disorder limit. On the other

hand, the intersite hopping becomes negligible in the strong limit of binary disorder [48], and thus

CPA simply yields the locators at each site, which produce the split bandstructure featured by lo-

calized electronic systems. Therefore, the perturbation expansion with respect to either disordered

potential or intersite hopping turns out fairly effective under CPA. What’s more, the locator formu-

lation also reveals the mean-field nature in CPA: the ∆i quantity plays the role of an effective field

akin to the Weiss field in the classical context of Ising model [75]. More precisely, CPA belongs

to a category of dynamical mean-fields in that the local quantum fluctuations are fully taken into

account by the frequency dependent locators. In practice the performance of CPA drops as the

system dimension decreases [48]. This is in fact a common feature of mean-field theories with a

short-range coupling between local degrees of freedom. As there are less neighbors at lower di-

mensions, the importance of spatial fluctuations rises and leads to an increasing demand of going

beyond mean-field approximations [76]. With this motivation, we introduce in the following the

dual fermion method, which computes a perturbation correction to CPA by taking into account

more diagrams from the series of Fig.3.8.

3.3.2 Dual fermion method

The dual fermion (DF) method was recently introduced by Rubtsov et al. in the context of strongly

correlated fermions on the Hubbard lattice [77, 78].3 Its original usage was for correcting the dy-

namical mean-field solution [75] of electronic structure by incorporating nonlocal fluctuations on

all length scales. Later on, Terletska et al.[82] adapted the DF theory to the disorder-averaging

problem for equilibrium lattices, and remarkable improvements over CPA were obtained in the

results of one-particle density of states and linear response conductivities. With the continuous

development during recent years, the DF technique has also been utilized to facilitate other theo-

3In fact, even before the term “dual fermion” was coined, its mathematical foundation, i.e. the Hubbard-

Stratonovich transformation, had already been applied to the Hubbard model and other many-body systems in several

works [79–81].
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Figure 3.10: Diagrams for the dual lesser self-energy Σ̃<. Solid lines represent dual Green’s functions G̃

and double dashed lines are cumulants γ̃(2). These diagrams are divided into three groups according to the

position of G̃<. Note that in (c) G̃< is nested inside a vertex γ̃(2).

retical problems of great importance, such as the Kondo quantum dot [83], the phase diagram of

the equilibrium Anderson-Hubbard model [84], etc.

Whereas the DF theory was originally formulated in the path-integral language [77, 82], when

restricted to the noninteracting disordered system, the theory simply reduces to a diagrammatic

resummation scheme in terms of the locators.4 Our objective here is to sum up all the diagrams

of Fig.3.8 which bear the maximally crossing structure as demonstrated in Fig.3.6(b). To this end

we choose the diagrams as presented in Fig.3.10, which are one-particle irreducible in the locator

formalism. The solid lines therein should represent

G̃0 = (V−1 − g)−1, (3.26)

which we call the reference DF Green’s function. Note that G̃0 absorbs all the dangling g-locators

in the diagrams. Analogous to the theory as presented in Sec.2.2.1, we can take the diagrams of

Fig.3.10 as a self-energy Σ̃ and require it to be self-consistent with the DF Green’s function [cf.

Eq.(2.70)]:

G̃R =
[
(VR)

−1 − gR − Σ̃R
]−1

(3.27a)

4A formal correspondence between the dual fermion theory and the more ancient linked cluster formalism has been

discussed in Ref.[85].

52



Chapter 3. Quantum diffusion and localization

G̃< = (1 + G̃RΣ̃R)G̃<
0 (1 + Σ̃AG̃A) + G̃RΣ̃<G̃A. (3.27b)

In order to write down the expression of Σ̃, we first define the following ladder notation:

LXY = γ̃XY + γ̃XY(G̃X
ω • G̃Y

ω )LXY, (3.28)

where • represents the element-wise multiplication (in the real-space), and X and Y are either R

or A. To illustrate, the notation γ̃RA would refer to the case that Eq.(3.16a) is computed under

k1 = k1′ = 1 and k2 = k2′ = 2. Using the notation LXY, the retarded dual self-energy can hence

be written as

Σ̃R = LRR • [G̃R]T, (3.29)

where “T” denotes matrix transpose. For Σ̃< one needs to apply the R < A pattern as explained in

Sec.2.1.2, and thus Σ̃< equals the sum of the following three parts (also see Fig.3.10):

(a) = LRA • [G̃<]T, (3.30a)

(b) =
[
LRR(G̃R • G̃<)LRA

]
• [G̃R]T +

[
LRA(G̃A • G̃<)LAA

]
• [G̃A]T, (3.30b)

(c) =
{

[LRA(G̃R • G̃A) + 1]γ̃<A[1 + (G̃A • G̃A)LAA]
}
• [G̃A]T

+
{

[LRR(G̃R • G̃R) + 1]γ̃R<[1 + (G̃R • G̃A)LRA]
}
• [G̃R]T. (3.30c)

Since in terms of the diagrammatics G̃ is terminated with V at either end while the original Green’s

function G is terminated with g, a simple relation between G̃ and G follows:

G = V−1G̃V−1 − V−1. (3.31)

The flowchart of a DF calculation is presented in Fig.3.11. The program consists of two self-

consistent loops. The outer one concerns the agreement between the local Green’s functions,

i.e. Gii = gi, same as in CPA. This consistency is achieved by adjusting ∆i. The inner loop

calculates a self-consistent pair of the dual Green’s function and the self-energy under a given ∆i.

The whole algorithm starts with an initial guess of ∆i and computes the locators using Eq.(3.17),

together with the local self-energy Σi [via Eq.(3.19)] and cumulant γ̃(2) [via Eq.(3.16a)]. Then the

reference Green’s function G̃0 is computed via Eq.(3.26) and is inserted in the dual self-energy

diagrams [see Eqs. (3.29) and (3.30)]. The computed Σ̃ is plugged into Eq.(3.27) to generate a

dual Green’s function G̃, which is then plugged back into the diagrams of Fig.3.10. This process

is iterated until both G̃ and Σ̃ converge. The converged G̃ is then converted to the Green’s function

G in the original lattice space by means of Eq.(3.31). At this point, we check whether the real-

space diagonal of G meets the criterion Gii = gi at each site, where gi is the locator computed at
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Figure 3.11: Flowchart of the dual fermion computation.

(a) (b)

Figure 3.12: (a) A Luttinger-Ward diagram corresponding to the second diagram of Fig.3.10(a). (b) Cutting

a Green’s function line inside γ̃(2). The grey stripes are K(2)-kernels for the ladder-series of γ̃(2).

the beginning of the algorithm. If not, we update ∆i using Eqs. (3.20a) and (3.21a). The whole

procedure is iterated until Gii = gi.5 Since for noninteracting systems the Green’s functions at

different energies are decoupled, the above algorithm can be run parallelly over energies.

Before closing this section, we wish to point out that charge conservation is not in general

guaranteed in the DF method. Although the dual self-energy Σ̃ (Fig.3.10) can be derived from a

Luttinger-Ward diagram in terms of the dual Green’s function G̃, we note that it is the original

Green’s function G that carries the physical information, and it does not seem to inherit the Φ-

derivability through the mapping (3.31). A Luttinger-Ward diagram corresponding to the dual Σ̃

is plotted in Fig.3.12(a). Removing one of the solid lines therein leads to the second diagram of

Fig.3.10(a). However, since γ̃(2) is defined as the two-particle locator minus the product of two

one-particle locators [see Eq.(3.16a)], according to Eq.(2.31) γ̃(2) can be expanded as a ladder se-

ries as illustrated in Fig.3.9(b). The Kadanoff-Baym scheme requires that each Green’s function in

5Note that a different self-consistent criterion for choosing ∆ was used in the original DF literature [77]. Here we

use the same criterion as in CPA, i.e. Gii = gi, because in practice we find it leading to a better charge conserving

performance.
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Figure 3.13: I − V relation of a biased one-dimensional chain with L = 30a,W = 1. v is the onsite

disordered potential. Inset: schematic of the lattice model.

a Luttinger-Ward diagram be deleted one by one in order to obtain the self-energy, but apparently

the diagrams of Fig.3.10 miss those generated from cutting Green’s functions inside the γ̃(2) ladder,

as illustrated in Fig.3.12(b). Therefore, the dual self-energy proposed here is incomplete in terms

of ensuring charge conversation. In fact, it still remains an open question in the locator formalism

as for how to devise conserving approximations based on the diagram expansion technique. In nu-

merical simulations the charge conservation can be investigated by comparing currents computed at

different principal layers [see Eq.(2.78)]. When charge is strictly conserved, these currents should

be equal. However, in practice we find a (slight) deviation of < 0.04% among the currents when

using the DF method. In particular, the self-consistent conditions as demonstrated in Fig.3.11 are

found helpful in reducing the current deviation.

3.4 Numerical studies

The CPA and the DF method are numerically implemented on the discreet lattice described in

Sec.2.5.4. Here the e-e interaction is turned off and the temperature is set at zero. To model sub-

stitutional disorder, we add a binary random number ±v to the onsite potential vi in the scattering

region. As discussed above, the DF method does not strictly preserve charge conservation. There-

fore, in calculating charge currents, we take the mean over all the principal layers within the central

region, i.e. I =
∑N

l=1 Il/N .

As our first numerical application of this thesis, we compute the I − V curve (Fig.3.13) for a

biased one-dimensional chain with L = 30,W = 1 using both CPA and DF. The disorder degree

is adjusted by varying the v parameter from 0.2ξ to 0.4ξ. We rigidly shift the band structures in
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Figure 3.14: Disorder-averaged electronic conductance calculated with different methods: exact (red),

CPA (green), and dual fermion (blue). The systems considered here are one-dimensional chains withW = 1

and three differentL. The disorder strength is adjusted via v. The Fermi energyEF at which the conductance

is calculated is swept from −2.0ξ to 2.0ξ. Some of the blue curves are cut off at certain energies because

the DF algorithm tends to diverge around band edges.

the leads according to the applied bias voltage, and assume a linearly dropping electrical potential

across the scattering region. The Fermi energy in either lead is fixed at 1.0ξ away from the shifted

band center. From Fig.3.13 we see that both CPA and DF predict an ohmic linear I − V relation,

but DF yields a lower conductance than CPA and this discrepancy increases with an increasing v.

In order to examine which of the two methods is more accurate, we compute the linear conduc-

tance [see Eq.(2.75)] using both CPA and DF, and compare their results with the exact one obtained

from a brute-force average over the entire disorder ensemble: the conductance is computed one by

one for each of the 2W×L configurations and the mean value is taken at the end. We show in

Fig.3.14 the results for a few different structures and disorder strengths (v). Note that the Fermi

energy EF at which the conductance is calculated is swept from −2.0ξ to 2.0ξ. Let us first look at

the exact results (red curves). We see that each conductance profile G(E) can be divided into three

characteristic regions: center (E ∈ [−v,+v]), edge (E ∈ [−2ξ,−2ξ + v]∪ [2ξ− v, 2ξ]), and wing

(E ∈ [−2ξ + v,−v] ∪ [v, 2ξ − v]). The exact result exhibits a bump in the center and a kink on

the edge, which becomes especially noticeable when v > 0.4ξ. Besides, in the wing region, the

exact G(E) profile appears rather smooth. From the green curves in Fig.3.14, we see CPA yield

a smooth and round G(E) profile across the entire energy window, missing the fine details seen

in the exact solution. This is typical for a diffusive approximation, because both the DOS and the

classical scattering rate vary smoothly over the energy [12]. Noteworthily, CPA tends to overes-
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timate the conductance in the wing and the edge region, and this overestimation gets more severe

as the disorder strength v or the channel length L increases. This finding supports the theoretical

analyses in Sec.3.2 and signifies the incompleteness of CPA for not taking into account interfering

processes. Since the Cooperon process is most important in one dimension, DF can be expected to

effectively correct the CPA result. This is indeed the case as shown by our numerical simulation.

As can be seen in Fig.3.14, DF is especially successful in the wing region, where a quantitative

agreement with the exact result can be achieved. Besides, DF captures the “bump” at the center

of G(E) profiles, whereas CPA totally misses it. Although the DF method is constructed as a per-

turbation correction to the diffusive CPA using the same maximally crossing diagrams just as in

the weak localization theory presented in Sec.3.2, we believe that, due to the self-consistent loops

and the locator reformulation, DF represents more than just the weak localization. For according

to the weak localization theory, as L increases the negative correction to the one-dimensional con-

ductance would remain constant [12], which we know untrue since the Anderson transition [86]

must set in at some point. On the contrary, Fig.3.14 shows that the correction given by DF grows

as L increases, which is more reasonable. Apart from the success achieved by DF, we also notice a

performance drop and that the algorithm could even fail to converge in the vicinity of band edges.

This is also the region where CPA makes the most overestimation in comparison to the exact re-

sult. Invoking the phenomenological picture developed earlier in this chapter, we note that both

the Fermi wave vector kF and the mean free path l0 drop to zero at the band edge (also see Fig.4.1

of Ref.[87]), rendering the weak disorder scenario invalid. It is well known that perturbation-based

methods such as DF cannot handle the strong localization, and more sophisticated techniques ought

to be employed [88, 89].

In the classical transport theory the conductivity should be a constant in a uniformly doped

material, and accordingly the resistanceR of a quasi-one-dimensional conductor increases linearly

with its length. We would expect this classical relation to stay true for CPA since it essentially

describes the diffusive transport. On the other hand, Eq.(3.14) indicates that the quantum conduc-

tivity correction due to the weak localization features a L dependence, rendering theR−L relation

nonlinear. These predictions are verified by our simulation. Figure 3.15 displays the R − L re-

lations of our disordered lattices under a few different widths W and random potential v. The

resistance is calculated as the inverse of disorder-averaged conductance, which is computed with

either CPA or DF. The electronic Fermi energies are set at 1.0ξ away from the lowest sub-band

edges (see Fig.2.16). We find that the DF method produces a nonlinear R − L relation which

can be approximately described by the following formula (also see the logarithmic inset plots in
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Figure 3.15: R−L relations computed with CPA and DF under a few different widths W and random po-

tential v. The electronic Fermi energies are set at 1.0ξ away from the lowest sub-band edges (see Fig.2.16).

Insets: logarithmic plots of the same data.

Fig.3.15):

R = R0 +
ζ(v)

W
Lα, (3.32)

whereR0 stands for the ballistic limit h/2e2, ζ is a function of the disorder strength v, and α ≈ 1.1.

The power-law growth indicated by Eq.(3.32) is a consequence of the use of infinite ladder series in

our self-energy construction; had we truncated the series, we would instead obtain a much slower

increase in R. Note that in the case of strong localization where L is larger than the localization

length [12], R − L should follow a much faster exponential relation [90], which is yet beyond the

applicable regime of DF.

As explained in Sec.3.1, the Cooperon process that leads to localization particularly relies on

the time reversal trajectories. When a (weak) magnetic field is added perpendicular to the trajectory

plane, the time reversal symmetry is broken, and hence one would expect a suppression in the

localization effect and a rise in the electric conductance. This phenomenon is termed the negative

magnetoresistance in the literature [12]. To simulate this effect we apply a static magnetic field

perpendicular to the lattice plane of our model and simply switch our hopping amplitude to the

form of Eq.(2.80). Suppose the x and z axes are set parallel to the transport and the magnetic field

respectively, the vector potential is thus written ~A = (By, 0, 0). We use a structure of W = 3, L =

50 with v = 0.35ξ as the test bed,6 and apply both DF and CPA to compute its resistance under

6Note that the magnetic effect cannot be manifested in a strict one-dimensional system, such as W = 1, because

of the absence of magnetic flux.
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Figure 3.16: Electrical resistance calculated with (a) DF and (b) CPA at different Fermi energies (EF) in

the presence of a perpendicular magnetic field (B). The simulated system is a 3× 50 (W ×L) square lattice

with binary disorder whose strength v = 0.35ξ. A sketch of the system setup is displayed at the top.

varying field strength and Fermi energy. The result is displayed in Fig.3.16. As can be clearly seen,

DF succeeds in predicting a decreasing resistance as the magnetic field gets stronger, i.e. negative

magnetoresistance, whereas CPA predicts an opposite (implausible) tendency.

3.5 Summary

In this chapter we reviewed the mesoscopic transport theory of quantum diffusion and the weak

localization correction in disordered systems with randomly distributed scattering centers. The

two physical phenomena turn out to be respectively associated with the processes represented by

the diffuson (ladder) and the Cooperon (maximally crossing) diagrammatic objects. In order to

implement the theories on numerical models, we switched to the locator formalism which does

not assume translational symmetry and naturally permits a higher degree of disorder. Using the

locator language the coherent potential approximation (CPA) was introduced, which amounts to

a local mean-field approximation for the electronic structure and a diffusive description for the

transport. We then used the dual fermion (DF) technique to sum up the Cooperon diagrams in the

locator series in order to introduce a localization correction on top of CPA. Our simulation results

showed that the DF method is indeed effective and more accurate than CPA. In particular, DF cap-

tures the nonlocal effects that lead to the localization effect. Notwithstanding its success, the DF

method still has a hard time in the strong localization regime, which is in fact ubiquitous for all
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perturbation-based methods. Analogous to the strong correlation problem of interacting fermions,

renormalization techniques [88] should be in order for accurately describing the electronic trans-

port subject to strong localizations.
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Energy relaxation due to e-e interaction

The electron-electron (e-e) interaction is an effect one must take notice of when discussing many-

electron systems. Different from the scattering off static impurities, e-e interaction is intrinsic to

any many-electron systems. By convention, effects of e-e interaction are divided into three parts:

Hartree, Fock (exchange), and correlation. As already explained in Sec.2.3.1, the Hartree repre-

sents the simplest interaction effect, i.e. the electric mean-field set up by the charge distribution

in the system; therefore it is classical. In terms of the diagrammatics formulated in Sec.2.3.1, the

Hartree effect corresponds to the diagram of Fig.2.10(a). The effect derived from Fig.2.10(b) is

termed the Fock (exchange) effect. Though not obvious from the diagram, the physical origin of

the exchange effect is in fact the celebrated Pauli exclusion principle of identical particles. Trans-

lating Fig.2.10(b) into its mathematical formula, we get the following self-energy for the exchange

effect:

ΣR
X(r1, r2) = iU(r1, r2)

∫
G<(r1, r2, ε)

dε

2π
(4.1)

As can be readily seen, the exchange self-energy is energy independent and thus can be regarded

as a hermitian correction to the non-interacting Hamiltonian.1 Since both Hartree and Fock self-

energies are hermitian, they can be used, in conjunction with the non-interacting Hamiltonian, to

set a reference electronic structure of the interacting system, which is composed of well-defined

energy-eigenstates.

The rest of the (infinite number of) diagrams generated by the Hedin equation thus constitute

the so-called correlation effect, which is separated from Hartree and Fock in that its self-energies

are non-hermitian, energy dependent, and hence cannot be written in a mean-field form. The

concept of correlation encompasses a broad spectrum of many-body effects, from the elementary

e-e scattering process which fits in the perturbation framework and on which we shall focus in this

1Note that the exchange self-energy acquires spin-dependence in a spin-nondegenerate system.
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chapter, to strongly correlated matters such as the Mott insulator, for which the theoretical tools

developed in this thesis do not suffice.

As correlation effects generally cannot be expressed in closed forms, the typical methodology

is classifying them by their particular many-body phase and using certain representative model as

basis to capture the main physics of the corresponding system. One celebrated theoretical model

on this aspect is the Fermi liquid (attributed to Landau), which has gained great success in de-

scribing normal metals with a simple Fermi surface. Low-energy (compared to the Fermi energy)

excitations in a Fermi liquid are represented by the creation or annihilation of nearly independent

quasiparticles, whose life-time (i.e. inverse energy uncertainty) is much longer than the time scale

of external perturbations [6]. A quasiparticle state is not an exact eigenstate of the interacting sys-

tem. Rather, it must be understood as a superposition of states with energies confined in a finite

range inverse to its life-time. The proper way to introduce the quasiparticle concept is via the renor-

malization procedure [6, 91–93], which yields an effective Hamiltonian for the original system at

a desired energy scale. Parameters such as the particle mass and the interaction strength would

be redefined as a result of renormalization. As can be anticipated, the renormalized interaction

would typically be weaker than in the original system, thus rendering the new model dominated

by its quadratic part, which defines the underpinning quasiparticle spectrum. It is at this point that

one may feel safer applying the perturbation technique.2 Therefore, when interpreting the results

presented in this chapter, one should bear in mind that the system we are looking at is assumed to

bear the Fermi liquid nature at the background.

As the system we study in this thesis is the quantum wire, it should be mentioned that the Fermi

liquid formalism is believed to break down in strict one-dimension, where the electrons occupy the

lowest sub-band only. The reason for the breakdown lies in the particular “nested Fermi surface”

feature of the one-dimensional system, which renders its low-energy excitations all governed by

certain collective modes (i.e. charge or spin density waves) instead of individual quasiparticles

[6, 94]. This phase of matter is referred to as the Luttinger liquid in the literature. It is usually

described using the bosonization procedure [94], which is by no means covered by this thesis.

However, we notice that the condition for building up a system featuring the phase of Luttinger

liquid is demanding. In particular it requires a sufficiently long piece of wire, which is typically

on the scale of micrometers [95, 96]. Therefore, in order to justify using Fermi-liquid as the base

here, we assume our model system is too short to host a Luttinger liquid.3 Besides we note that the

2Although the renormalized Hamiltonian dismisses the original bare electrons and relies on the introduced quasi-

particles, it should in principle contain as much information in terms of the physical observables.
3The breakdown of Fermi-liquid in one-dimension can be diagnosed by calculating the polarization P of the

noninteracting 1D Fermion gas. One finds that P would diverge in the long wavelength and low frequency limit [97].
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electrodes to which the wire is coupled should always be regarded as Fermi-liquid reservoirs.

The e-e interaction as a perturbation is responsible for two particular physical effects in dis-

ordered mesoscopic conductors, i.e. dephasing and energy relaxation. The dephasing effect is

usually associated with the Cooperon process as discussed in Chapter 3. As explained there, the

enhanced return probability of electrons due to Cooperon relies on the phase alignment between

time-reversal trajectories. This phase alignment retains in the presence of a static electric field

but is not robust against a dynamically fluctuating field [12]. In the presence of e-e interaction,

an intrinsic dynamic field can be induced due to the screening effect among interacting electrons

and thus impacts the Cooperon process [23]. Nevertheless, this effect amounts to a correction to

transport coefficients that is subleading to the weak localization and the Altshuler-Aronov effect

(see chapters 3 and 5 respectively), and thus it is not discussed in this thesis.

The energy relaxation is a more general phenomenon which simply arises from the energy

exchange during the e-e interaction process. Since e-e interaction alone conserves both the total

momentum and the energy of the system, the energy relaxation effect is best manifested in the

single-particle (energy) distribution function rather than in transport coefficients. An important

aspect of energy relaxation in mesoscopic conductors is that the electrons injected from the out-

of-equilibrium reservoirs have a tendency of equilibration in the interacting region. In particular

this effect leads to an energy distribution of the particle occupation that is fundamentally different

from the noninteracting case, showing the nonequilibrium electrons’ efforts to equilibrate. What’s

more, the equilibration process could become collaborative when there are other wires placed

nearby, even if the e-e interaction is the only way for these wires to “cross-talk”. Interestingly

the equilibration in one nonequilibrium wire can be facilitated at the price of driving others out of

equilibrium. These physical effects and the associated theoretical formalism are what this chapter

is devoted to.

4.1 The GW method

In order to derive a practical numerical scheme we simplify the Hedin formalism (see Sec.2.3.1)

by neglecting the vertex correction Λee (see Fig.2.9). The resulting approximate self-energy thus

reads

Σee(1, 2) ' iG(1, 2)W (1, 2). (4.2)

The polarization involved in the calculation of the screened e-e interaction W is accordingly ap-

proximated as

P (1, 2) ' −iG(1, 2)G(2, 1+). (4.3)
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Figure 4.1: (a) Φ-diagram and (b) self-energy under the GW approximation. The double-wiggle line

represents the screened e-e interaction W , see Fig.2.9.

We hence obtain a closed set of (simplified) Hedin equations which can be solved numerically.

The resulting formalism was coined the GW approximation [33] as its self-energy has the form

of Eq.(4.2). As can be seen from Fig.4.1, the GW self-energy is obviously Φ-derivable and is

thus suitable for transport calculations where a set of conservation properties are desired [55].

Although the GW theory was originally proposed for metallic systems of a high electron density,

in practice it often shows a fair versatility for other systems such as semiconductors [98] and

molecular transport junctions [99]. Overall the GW method is a good compromise between the

physical accuracy and computational efforts. In the following we present in detail the numerical

procedure of our transport calculation that involves both e-e and e-impurity scattering.

As per Eq.(2.70) we first write down the Green’s functions in the scattering region with the

discrete basis set:

GR(ω) =
[
ωIN×N −H − ΣR

LR − ΣR
H − ΣR

X − ΣR
C − ΣR

CPA

]−1
, (4.4a)

G< (ω) = GR [Σ<
LR + Σ<

C + Σ<
CPA]GR†, (4.4b)

where H is the Hamiltonian within the central scattering region, ΣLR denotes the total lead self-

energy, ΣH denotes the classical Hartree potential, ΣX denotes the exchange self-energy [see

Eq.(4.1)], ΣC is the correlation self-energy approximated in the form of Eq.(4.2), and ΣCPA is

the disorder-induced self-energy to be computed by the coherent potential approximation (CPA,

see chapter 3). Note that only H , ΣH, and ΣX are Hermitian and ω-independent.

To calculate ΣC we need first the polarization which is expressed as

P
</>
ij (ω) = −2i

∫
dω′

2π
G
</>
ij (ω + ω′)G

>/<
ji (ω′) , (4.5a)

P
</>
ij (t) = −2iG

</>
ij (t)G

>/<
ji (−t), (4.5b)

in the frequency and time domains respectively. Using the Kramers-Kronig relation [55], the
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i
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ω

G
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Figure 4.2: The Green’s function and other intermediate variables (i.e. P,W,Σ) are stored as 3D-arrays

in our numerical program, the third dimension being the frequency ω. (b): slicing view at a given ω. (c):

slicing view at a given pair of real-space indices ij. The numerical program is parallelized as per either of

the two views.

retarded component is obtained from

PR
ij (ω) = i

∫
dω′

2π

P>
ij (ω′)− P<

ij (ω′)

ω − ω′ + i0+
, (4.6a)

PR
ij (t) = Θ(t)

[
P>
ij (t)− P<

ij (t)
]
, (4.6b)

where Θ denotes the Heaviside step function. The polarization is computed with the Fourier trans-

form approach [55]. The Green’s functions G</> obtained in the frequency domain (see Fig.4.2b)

are Fourier transformed into the time domain (Fig.4.2c), where the computations simply become

element-wise products as can be seen from Eq.(4.5b). A brief outline of the numeric Fourier trans-

form technique is given in appendix A. We also employ the zero-padding technique [100] to the

frequency series of G</>(ω) and P</>(ω) to improve the numeric accuracy. The elongated series

for G</>(ω) are at least four times as long as the original, and for P</>(ω) a longer padding (six

times) is used. The reason for using a longer padding for P</>(ω), whose Fourier image is used

to compute Eq.(4.6b), is that the real part of PR(ω) in fact decays very slowly as ω increases. The

outcoming numeric value of RePR(ω) obtained from the above procedure always decays to zero

at the two ends of the frequency series. Therefore, if no zero-padding were used, RePR(ω) could

be severely underestimated at large ω.

Using the matrix notation, the screened interaction is expressed as

WR (ω) =
[
I − UPR(ω)

]−1
U, (4.7a)

W</> (ω) = WR (ω)P</> (ω)WA(ω), (4.7b)
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,
GR,<

CPA
 solver

G

ΣC
R,<

R,<

Figure 4.3: Flowchart of the numerical scheme. The main flow is marked by the black arrows. The inser-

tions labeled by dashed arrows represent the mixing operation, which involves the historical results of the

corresponding quantity computed during previous iterations. Either the Green’s function or the correlation

self-energy (ΣC) can be used as the mixing operand. Note that the CPA solver, employed to compute the

disorder self-energy, contains a second layer of iteration in itself. This part of algorithm is presented in

Sec.3.3.1.

where U is the interaction matrix parameterized as Uij = ua/|ri − rj|. Using the same Fourier

transform based method as in Eq.(4.5a), the correlation self-energy is calculated by

Σ
</>
C,ij (ω) = i

∫
dω′

2π
G
</>
ij (ω − ω′)W</>

ij (ω′) , (4.8a)

Σ
</>
C,ij (t) = iG

</>
ij (t)W

</>
ij (t) . (4.8b)

The retarded component ΣR
C is again obtained from the Kramers-Kronig relation (4.6b), where

P should be replaced by ΣC. Without disorder-average, one can simply insert the computed

exchange-correlation self-energies back to Eq.(4.4) and hence closes the set of Hedin equations.

However, in order to take into account disorder scattering on an equal footing with the e-e inter-

action, we need to add an extra step which carries out the self-consistent CPA computation, as

illustrated in the flowchart Fig.4.3. During this nested CPA calculation, the exchange-correlation

self-energies are put in the H0 object defined in Eqs. (3.20c) and (3.21c). The resulting coupled

CPA-Hedin equation effectively generates an infinite series of diagrams as exemplified in Fig.4.4.

Note that all these diagrams are non-crossing in that each diagram block is embedded within an-

other block of higher level: they do not include crossing diagrams such as Fig.2.11(b’).

Our numerical program consists in iterating the loop shown in Fig.4.3 until a numerical con-

vergence is reached. We note that the convergence is essential for the conservation properties, as

asserted by the Kadanoff-Baym theory. To facilitate this process one could adopt a mixer, whose

simplest form reads

GR,<(ε) = βGR,<
out (ε) + (1− β)GR,<

in (ε), (4.9)

where Gin denotes the input Green’s function used to compute the interaction self-energies, and

Gout denotes the output of the CPA nested iteration which follows the ΣC computation. The left
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Figure 4.4: Exemplary Green’s function diagram generated by the self-consistent scheme as formulated

in the main text (also see Fig.4.3).

G Σ P W

XR(ω) =
(
XA(ω)

)†
X X X X

XR(ω) =
(
XR(−ω)

)∗
X X

X</>(ω) = −
(
X</>(ω)

)†
X X X X

X<(ω) = −(X>(−ω))∗ X X

Table 4.1: Symmetry relations. X represents a matrix expressed with real-space basis, which can be G,

Σ, P or W . A check mark means that the quantity of the corresponding column satisfies the relation of the

corresponding row.

hand side of Eq.(4.9) then becomes the input of the subsequent iteration. Alternatively one can

mix the interaction self-energy by using the same formula Eq.(4.9); the major advantage of doing

so is that, in comparison with GR,<, ΣR,<
C is much smoother as a function of energy, thus numer-

ically more stable. In practice the GW scheme presented here converges much more slowly than

the disorder solver. To accelerate the convergence, more sophisticated mixers, such as the Pulay

algorithm [101, 102] employed in Refs.[3, 55], can be an option. However, we notice that the

Pulay algorithm does not always guarantee a convergence. Apart from the mixer, we find it useful

to impose the symmetry relations listed in Table.4.1; this helps on the robustness of the iterative

program. These symmetry relations regarding G,Σ, P,W can be easily derived from their basic

definitions.

4.2 Applications

We implement the numerical method presented above on the discrete lattice model which we es-

tablished in Sec.2.5.4 and, as applications, we study specifically the energy distribution function

of particle occupation and the Coulomb drag effect in nonequilibrium quantum wires.
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Figure 4.5: Energy distribution of particle occupation at the middle of a nonequilibrium wire (L = 40a).

The setup of our model is detailed in the main text. Subplots (a) and (b) respectively show the evolution

of the energy distribution under different bias and e-e interaction strength u. The results in (a) are obtained

under u = 0.4ξ

4.2.1 Nonequilibrium energy distribution

In mesoscopic physics the degree of energy relaxation is often measured by a length scale Lin

which is interpreted as the mean free path between successive inelastic e-e scattering events [22].

If Lin � L, L being the wire length in between electronic reservoirs (leads), electrons could barely

have a chance to exchange energy before reaching the reservoirs, and thus the system is effectively

noninteracting and nonlinear. In the other limit Lin � L, the inelastic scattering becomes so

frequent that local equilibrium is established on the scale of Lin in the wire, and hence the local

energy distribution of particle occupation displays an equilibrium profile [14]. In the intermediate

range of inelastic scattering, the energy distribution then interpolates between the two limit cases.

As the energy distribution of particle occupation is measurable by experiments [14], it is a practical

approach to probing the inelastic scattering or the energy relaxation rate of interacting electrons.

The numerical method presented in this chapter provides a natural access to this energy distribution

function since it can be simply read off from the diagonal of ImG<(ε), according to its definition

(2.11). It is worth noting that the self-consistent procedure for computing the correlation self-

energy is essential for observing the characteristics of energy relaxation on ImG<(ε) profile; this

procedure solves an integral equation equivalent to the more widely used kinetic (differential)

equation [14, 44].

To demonstrate we set up a one-dimensional lattice model with W = 1, L = 40a (see

Fig.2.15). The disorder is modeled by a binary random variable v = ±0.5ξ, where ξ is the hopping

68



Chapter 4. Energy relaxation due to e-e interaction

amplitude, and the bare e-e interaction is modeled as Uij = ua/|xi − xj|, i 6= j. The temperature

in the leads is set at zero and the chemical potentials are set at the band-structure center. When a

voltage is applied to the lead, accordingly its band-structure, together with the chemical potential,

gets shifted in a rigid manner. Besides, the Hartree potential between the leads is assumed lin-

ear in our simulation; this is often a good approximation in the presence of both disorder and e-e

interaction [60].

The particle occupation at the middle of the wire under different voltage bias and e-e interaction

strengths u is displayed in Fig.4.5. The two sharp drops in each curve correspond to the two

Fermi surfaces at the lead chemical potentials; they would be smeared at a finite temperature. The

signature of energy relaxation consists of the slope between the drops and the tail above the higher

Fermi energy. In particular, we note that the “tail” must vanish at equilibrium even in the presence

of interactions, as guaranteed by the one-particle fluctuation-dissipation relation [44]. Therefore

this “tail” signifies a pure nonequilibrium effect of energy excitation. Both the “tail” and the

slope increase with an increasing bias (Fig.4.5a) or an increasing interaction strength (Fig.4.5b).

Indeed, increasing these two parameters amounts to an enhancement of the equilibration process.

In the sense of energy relaxation, the effect of increasing bias can be interpreted as a phase-space

augmentation to facilitate the e-e scattering.

4.2.2 Coulomb drag

Coulomb drag [42] refers to the phenomenon that a charge current (or an open-circuit voltage) is

induced in an otherwise equilibrium conductor when it is placed beside another conductor which is

driven out of equilibrium (Fig.4.6), even though there is no particle exchange between the two. The

Coulomb drag is a true e-e correlation effect in that the Hartree-Fock does not contribute: the elec-

trostatic and exchange effects merely induce a Hermitian correction to the noninteracting Hamil-

tonian, and therefore the equilibrium conductor would stay equilibrium. The first-order physical

process contributing to the drag effect thus comes from the diagram depicted in Fig.2.10(c), which

is also the lowest-order contribution to the quasiparticle relaxation rate in a many-electron system

[12]. Indeed, the Coulomb drag can be viewed as a manifestation of the elementary scattering of

correlated electrons in the special case that they are spatially separated. From this point of view,

the drag current is just a result of momentum transfer between interacting conductors since charge

current is entirely determined by the momentum distribution [103, 104]. Nevertheless, we classify

Coulomb drag as an energy relaxation effect in this chapter because the momentum transfer in-

volved in the drag process is always associated with certain amount of energy transfer. The reason

is that there is only one single Fermi surface in the dragged conductor and, without inter-conductor
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Figure 4.6: Left panel: Schematic diagram of the Coulomb drag setup. A potential bias is applied across

the active wire and the drag current is measured in the passive wire. The Feynman diagram in the plot repre-

sents the lowest order process responsible for the drag effect, corresponding to the self-energy of Fig.2.10(c).

Right panel: potential profile in the wires. Blue lines represent the electrostatic (Hartree) potential which

rigidly shifts energy levels of the noninteracting Hamiltonian. Red lines represent chemical potentials mea-

sured with respect to the band structure center of respective leads.

interactions, all states below the Fermi energy are filled (assuming zero temperature). Therefore,

for a change in momentum, an electron in the dragged conductor must jump over the Fermi surface,

which necessitates some energy exchange.

Another perspective to the Coulomb drag physics consists in relating the drag current to the

classical or quantum fluctuations in the driving conductor. Specifically, as suggested by early theo-

retical works [105, 106] specializing in the linear response Coulomb drag, the dc drag current could

be interpreted as a rectification of the thermal charge fluctuation (represented by the polarization)

in the driving conductor. As a result the linear Coulomb drag exists only at a finite temperature. On

the other hand, recent studies on double quantum dots [42, 107, 108] have pointed out a new di-

rection of the Coulomb drag physics at zero temperature: instead of the nearly equilibrium thermal

fluctuations, the drag current can also be driven by the shot noise of finite mesoscopic conductors

in the nonlinear regime. With this understanding, Coulomb drag has been further proposed as a

noise sensing technique for nanoscale circuits [42].

In terms of diagrammatics, both equilibrium and nonequilibrium charge fluctuations are unit-

edly represented by the polarization diagram in Fig.2.10(c). Thus they are treated on an equal

footing in our nonequilibrium formalism. In accordance with the previous linear-response analyses
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[105, 106, 109] on the Coulomb drag, we keep only the lowest-order diagram for our simulations,

i.e. truncating the W series at Fig.2.10(c). We note that higher-order drag effects [42, 110] and

in particular the drag in non-Fermi-liquids [111–113] have arisen as an active field of research

recently. These advanced topics are not accounted for by the formalism presented here.

After the brief survey on Coulomb drag theory, we now set up a minimal numerical model to

simulate the Coulomb drag effect in mesoscopic wires. As sketched in Fig.4.6, the system consists

of two parts. The upper subsystem (referred to as the active wire in the following) is subject to

an external bias V (a), i.e. the band structures in the corresponding leads differ by a rigid shift

of eV (a). On the other hand, the lead band structures and the chemical potentials in the lower

subsystem (passive wire) are set aligned, so that it would be at equilibrium when the interwire

interaction is turned off. Besides, we assume a linear Hartree potential (see Fig.4.6) between

each pair of the leads, and the temperature is set at zero in all leads. Both wires are modeled by

the discrete lattice with identical hopping amplitude ξ, lattice constant a, and a binary impurity

energy ±v. In the real-space the two wires are placed parallel to each other: we stack together

two copies of the lattice defined in Fig.2.15. In our simulations the interwire distance is fixed at a

and no interwire hopping is allowed. In order to analyze the elementary Coulomb drag physics we

remove the intrawire e-e interaction and assume an interwire interaction of the form

He−e =
∑

i∈active,j∈passive

u√
(xi − xj)2 + (yi − yj)2 + a2

n̂
(a)
i n̂

(p)
j , (4.10)

where i, j are restricted within the central scattering region. The following formula [cf. Eq.(2.74)]

is used to compute the charge current through any of the four leads denoted by α:

Iα =
e

h

∫
dεTr [Σ<

α (ε)G>(ε)− Σ>
α (ε)G<(ε)] . (4.11)

Note that the lead chemical potentials µ(a,p), which are measured with respect to band centers, are

set equal in either wire. In our simulations the chemical potentials and the bias voltages are treated

as independent model parameters. For later reference we also formulate the energy current [60] as

follows:

Jα =
1

h

∫
ε · Tr [Σ<

α (ε)G>(ε)− Σ>
α (ε)G<(ε)] dε. (4.12)

Conservation laws supposedly lead to I(a)
L + I

(a)
R = I

(p)
L + I

(p)
R = 0 (i.e. charge conservation in

respective wires) and J (a)
L + J

(a)
R + J

(p)
L + J

(p)
R = 0 (i.e. total energy conservation), which can be

utilized as numeric accuracy criteria for our simulations.

To illustrate the Coulomb drag physics, we first carry out our numerical simulation for a pair of

wires with L = 10,W = 1 under a fixed activation bias V (a) = 0.8ξ/e (while leaving the chemical
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Figure 4.7: Left panel: integrand of Eq.(4.11) for the left lead of the passive wire, at µ(a/p) = −1, 0, 1ξ

(corresponding to green, black, blue curves) respectively. Right panel: electron occupation at the middle

of the two wires when µ(a/p) is set at −1.0ξ. Other model parameters: v = 0.2ξ, u = 1.0ξ, V (a) =

0.8ξ/e, L = 10a, W = 1.

potentials µ(a,p) variable). As expected the presence of the active wire would drive the passive one

out of equilibrium. To gain insights we plot in Fig.4.7 the energy spectrum of the charge current

in the passive wire, i.e. the integrand of Eq.(4.11), in the following denoted by i(ε). In the figure

the typical profile of i(ε) is illustrated under three different chemical potentials µ(a/p) = −1, 0, 1ξ,

situated in the lower half, center, and the upper half of the band-structure correspondingly. We

notice that i(p)(ε) is in general neither positive nor negative definite: the current carried by the

excited electrons above the Fermi energy is always accompanied by a countercurrent (commonly

pictured as the hole drag current in the literature [42]) which comes from the depleted states just

below the Fermi energy, and their subtraction amounts to the net measurable drag current in the

electrodes. An absolute cancelation occurs when µ(a/p) is set at zero, i.e. the band center.4 In

Fig.4.7 the shaded areas under the profile of i(p)(ε) at µ(a/p) = 0 exactly cancel, resulting in a

zero drag current. However, note that a zero drag current does not mean that the passive wire

remains equilibrium in this case. We shall shortly see that its nonequilibrium status can also be

identified by the energy flow. In contrast to the µ(a/p) = 0 case, nonzero drag currents are obtained

at µ(a/p) = −1, 1ξ. Interestingly, although the two i(p)(ε) profiles do not match, they in fact amount

to equal drag currents. This is a result from the following more general relation which applies to

systems with electron-hole symmetric band-structures:

I(p)(µ(a), µ(p)) = −I(p)(−µ(a), µ(p)) = −I(p)(µ(a),−µ(p)) = I(p)(−µ(a),−µ(p)), (4.13)

4In fact, absolute cancelations can occur when either of µ(a,p) is set at the band center, see Eq.(4.13).
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Figure 4.8: Relation between the passive charge current I(p) (blue curves), the interwire energy current

J (p) (red curves), and the chemical potentials µ(p), µ(a). The e-e interaction is set at u = 1.0ξ, and the

wire length L = 10a. For results in subplot (c), a wire width of W = 2a is used (W = 1 for the others).

Note that only half of the energy range is shown here because the other half can be deduced with the parity

relation Eq.(4.13).

where the drag current I(p) is viewed as function of µ(a,p) at given V (a). The proof of Eq.(4.13) is

given in appendix C. It should be pointed out that the relation (4.13) may not hold if certain higher

order diagrams or physical processes are taken into account [110].

As stated above, the energy relaxation effect is essential for Coulomb drag. To concretize this

point we plot in Fig.4.7 the particle occupation in the active and passive wires respectively. As can

be seen, the occupation in the active wire is similar to that of an isolated nonequilibrium wire. In

contrast, the occupation in the passive wire shows only one “cliff” at µ(a/p). The lack of a nonzero

energy window for transport results in the smallness of its drag current. Another noticeable feature

on the occupation profile is the “tail” at ε > µ(a/p): it signifies the presence of energy relaxation

due to interaction with the active wire.

In the following we shall further analyze the relation between the drag current and the chemical

potentials. Under a relatively small bias voltage V = 0.04ξ/e and disorder strength v = 0.02ξ, the

charge current I(p) in the passive wire and the energy current J between two wires are computed
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Figure 4.9: Local density of states in the passive wire under two different activation bias voltages. The

y-axes of the plots represent positions along the wire in the interaction region. The chemical potentials

µ(a/p) = −1.8ξ. Other model parameters are same as those for Fig.4.8(e,f).

with varying chemical potentials (µ(p) = µ(a)). The result is displayed in Fig.4.8(a). We see that

I(p) is noticeably pronounced when µ(a/p) is close to 2ξ, which is the band edge. This behavior was

first observed in the study of ballistic wires using the Boltzmann equation approach [114, 115]: it

was found that the low group velocities around the band edge together with a small interwire

momentum transfer lead to an enhanced Coulomb matrix, and hence produce a drag current peak.

Figure 4.8(a) indicates that the band-edge associated drag peak preserves in our model whose

interaction region is rather constrained, much smaller than the thermal length, and hence it might

have a different origin. It was argued in Ref.[42] that this drag peak may be instead related to

the mesoscopic shot noise which is also peaked at band edges. Overall one could understand the

drag peak based on the simple fact that the electron-hole asymmetry, which lies in the heart of drag

effects, reaches maximum at band edges. The evolution of this drag peak in response to other model

parameters is as follows. Increasing the disorder strength (Fig.4.8b) and the bias voltage (Fig.4.8e)

respectively decreases and increases the overall drag current, while its peak near the band edge

retains. Further increasing the bias V (a) however degrades this peak structure, as illustrated by

Fig.4.8(f). This observation can be explained by the smearing of the van Hove singularity due to

enhanced energy relaxation at high bias voltage. To concretize this reasoning we plot in Fig.4.9

the local DOS of the passive wire under V (a) = 0.2ξ/e and 0.8ξ/e respectively. The glowing

area in Fig.4.9(a) then corresponds to the van Hove DOS singularity of one-dimensional materials,

and clearly it fades out at V (a) = 0.8ξ/e. Figure 4.8(d) shows the result when µ(p) is fixed at

1.2ξ and we sweep µ(a) only. Although the drag current in this case is overall much smaller than

that in Fig.4.8(e), it still preserves the peak structure at the band edge. In addition to strict one-

dimensional wires, the Coulomb drag in wires whose electronic structure consists of two bands is

74



Chapter 4. Energy relaxation due to e-e interaction

also computed; the result is displayed in Fig.4.8(c). We observe an additional peak situated at the

sub-band edge, which agrees with the prediction by previous theoretical works [114, 115].

So far we have been focusing on the charge current in our Coulomb drag model. Recent theo-

retical works have shown a growing interest in the energy flow (or near-field heat transfer in some

contexts) between insulated many-electron systems [110, 116, 117]. As indicated in Eq.(4.12),

our formalism is also applicable to computing the energy current. For the numerical model used

here, the interwire energy currents (from the active wire to the passive wire) are computed and

plotted in Fig.4.8 along with the charge currents. As can be seen, the two currents are highly cor-

related. Indeed, a higher energy transfer rate can drive a larger drag current. However, note that

energy currents can exist even if there is zero charge current in the passive wire. For example at

the electron-hole symmetric point µ(a/p) = 0, the charge current I(p) = 0, as a result of Eq.(4.13),

while the energy current can be nonzero, as best illustrated by Fig.4.8(c). In fact, even if the driving

bias is set at zero, i.e. V (a) = 0, there can be a nonzero energy flow between the wires, given a

temperature difference.

4.3 Summary

We have formulated a practical numerical method for simulating Fermi-liquid-based many-electron

systems, in the presence of both e-e interaction and disorder. Specifically we approximate the

many-body correlation effect by discarding the vertex correction in the Hedin equations. The re-

sulting so-call GW scheme consists of a closed set of equations which can be solved efficiently

with a self-consistent numerical program. Besides, its Φ-functional derivablility ensures conserva-

tion laws to hold. The numerical formalism was applied to simulating the energy relaxation effects

in mesoscopic wires, which require a self-consistent treatment of the correlation self-energy. The

energy relaxation in single wires is manifested in the energy distribution of particle occupation: the

inelastic e-e scattering tends to drive a nonequilibrium system toward a locally equilibrium state.

Signatures of this process can be readily seen on the G< profile obtained from the self-consistent

calculation. In particular, the equilibration was found enhanced as either the bias or the e-e inter-

action is increased, in qualitative agreement with experimental results [14]. We have also studied

a very interesting energy relaxation effect in pairs of mesoscopic wires, namely the Coulomb drag

effect. Using numerical results we have elucidated the strong dependence of Coulomb drag on the

electron-hole asymmetry which comes from the underlying band structures. We also pointed out

a potential usage of our formalism to investigate the near-field energy transfer between interacting

systems.
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Altshuler-Aronov effects

The Altshuler-Aronov (AA) effects refer to two experimental discoveries in mesoscopic metallic

systems, i.e. the zero-bias anomaly [29, 118] and the temperature-dependent quantum correction

to conductivities [25, 119]. The former phenomenon concerns the strong density of states (DOS)

depletion at the Fermi energy of disordered low-dimensional samples. It is manifested as a dip on

the differential conductance (dI/dV ) profile obtained from tunnel junction measurements where

the disordered sample forms a tunnel contact with the reference electrode. The zero-bias simply

refers to the equilibrium situation where the two Fermi energies are aligned and thus the DOS at the

Fermi energy of the disordered sample is probed. Notably, this tunnel conductance dip gets deeper

rapidly as the temperature decreases. Removing the tunnel contact and measuring the conductivity

of the disordered sample on its own, one finds a similar temperature dependency.1 These two

phenomena turn out to be closely related [12] and essentially arise from the same physical process

which involves the interplay between disorder scattering and e-e interaction. In the following we

set up a heuristic picture to illustrate this very important physical process based on the works of

Refs.[23, 120].

In Sec.3.1 it was argued that, for a pair of paths making nonzero contribution to the two-point

propagation probability upon disorder-average, they must pass through the same set of impurity

sites. However, this restriction can be relaxed in the presence of e-e interaction: Even spatially sep-

arated paths can be paired up and yield a nonzero interference that affects the probability propaga-

tion. To see this, consider a single impurity placed in the middle of an electron gas (Fig.5.1a). The

induced potential disturbance reconstructs the surrounding electron distribution, which thus acts

as an additional scattering source to electrons passing through the medium. The red path shown

1Usually the conductivity measurement mixes in the contribution from the weak localization effect. To separate

out the temperature dependence due to the AA effect, one could apply a magnetic field. Unlike the weak localization,

the AA effect is unsusceptible to phase misalignment.
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(a) (b) (c)

Figure 5.1: (a) Illustration of the two associated scattering processes. A single impurity is placed at the

center of the circle, and it induces a charge redistribution in the vicinity. The resulting potential fluctuation

acts as additional scattering source to the electrons (blue curve). (b) Diagrammatic representation of (a). (c)

Generalization of (b) for a system containing multiple random impurities.

in Fig.5.1(a), which scatters off the impurity itself, and the blue one experiencing the Coulomb

potential created by the charge “ripples”2 thus form an interfering pair to be counted in the to-

tal probability propagation. Notably, this contribution survives under the disorder-average over

impurity potential, because the charge redistribution is correlated to the impurity.

The scattering process described above is translated into the diagram shown in Fig.5.1(b). The

green part represents the electron density correction due to the presence of impurity, and it is

connected to the blue line via a wavy curve which stands for the direct Hartree interaction. Figure

5.1(c) is a generalization to Fig.5.1(b) for systems containing multiple random impurities. In this

case, taking disorder-average amounts to attaching the impurity (dashed) lines that are rooted on

the green ring to those on the arrowed lines. The resultant diagram is reminiscent of the self-

energy which we showed before in Fig.2.11(a’), from which Fig.5.1(c) can be formally derived. In

fact, the physical process described here has a Fock counterpart which should also be taken into

account on an equal footing. Although the Fock process is not as easily visualized as in Fig.5.1(a),

its diagrammatic representation is readily available, as given by Fig.2.11(b’). The self-energies of

Figs. 2.11(a’) and 2.11(b’) thus constitute the foundation of the Altshuler-Aronov formalism.

The interaction induced suppression to the DOS and conductivity of diffusive conductors was

first elucidated by Altshuler and Aronov using the perturbative linear-response approach [21, 121].

As in d ≤ 2 this suppression develops a singularity at the zero temperature, the AA effect is

believed to be a precursor of the much more complicated Anderson-Mott transition [122]. The

implication of a phase transition signifies the necessity of renormalization treatments, which were

2These ripples are commonly known as the Friedel oscillation in many-electron systems [32].
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henceforth developed in Refs.[123–125].

The investigation of AA effects in finite nonequilibrium structures was initiated by Nagaev

[126], who analytically derived an expression for the nonlinear current in diffusive metallic con-

tacts. Part of Nagaev’s development will be reviewed below in this chapter. Using a quasiclassical

approach, Schwab et al.[127] analyzed the nonlinear transport in nanowires of different character-

istic ratios LT/L, where LT =
√

~D/kBT is the thermal diffusion length. Aiming to generalize

the zero-bias anomaly at nonequilibrium, Gutman et al.[128] considered a disordered film with its

longitudinal size smaller than the energy relaxation length. Specifically, using matrix-field anal-

yses, they found that the DOS anomaly should split in two at the electrode Fermi energies, and

that the anomalies are smeared by certain dephasing effect due to the bias-induced fluctuations of

internal electromagnetic fields.

The main objective of this chapter is to establish a diagrammatic formalism that computes the

AA corrections in nonequilibrium numerical models without phenomenological parameters typi-

cally invoked in theoretical analyses. We shall stick closely to the original diagrammatics formu-

lated in Ref.[21], which is focused on the most elementary interaction process between diffusive

electrons.3 Before getting into the implementation details of our numerical formalism, we shall

first derive some analytical results that will give us a preliminary idea about what becomes of the

AA effect in finite nonequilibrium systems.

5.1 Theoretical analyses

Our theoretical model consists of a short wire sandwiched between two ideal electrodes, i.e. the

continuous version of Fig.2.15. The wire length L should be much longer than the electron-

impurity mean free path (l0), so that the transport is mostly diffusive and that the energy distri-

bution of electrons follows the diagram in Fig.3.4. Throughout our analyses the e-e interaction

will be treated as a first-order perturbation.

Before getting into the analytical derivation, it would be helpful to review the various char-

acteristic length scales in the problem. First, because of momentum relaxation, wavefunctions of

single-particle states are confined in a spatial region bounded by l0. However, the particle density

could correlate in space over a distance much larger than l0. This type of long-range correlation is

associated with the diffuson and is usually characterized by a classical length scale Lω =
√
D/ω,

as can be obtained from Eq.(B.11) of Appendix B. In the following, we shall see that the ratio

between Lω and the sample size (L) plays an important role in the interaction correction to DOS.

3The Cooperon process contributes a modification to the AA effects, as discussed in Refs.[21, 129].
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At nonzero temperatures, the thermal diffusion length LT =
√

~D/kBT would come into play,

which was used to cutoff the macroscopic sample size in the original work [21]. For short meso-

scopic wires it is reasonable to set LT � L, so that LT becomes irrelevant effectively. In addition

to the diffuson, another long-range object could be the Coulomb interaction, whose spatial scope

depends specifically on the charge carrier density and the system dimension. Nevertheless, it is

essentially the long-range nature of the diffuson that is responsible for the singularities in the in-

teraction induced corrections, whereas different models of e-e interaction merely result in some

additional prefactors [12, 21].

The above length scale analysis should suffice when the e-e interaction is treated only to the

first order. However, if one were to go beyond this approximation level, other length scales, such

as the energy relaxation length and the dephasing length [22], would come into the picture and

further complicate the problem. These higher-order effects will not be considered in this section,

but they will be revisited in Sec.5.3 by means of numerical investigation. Analytical results of this

section apply to short diffusive wires where the dominant cutoff length scale is the wire length

itself.

5.1.1 Density of states

The first-order DOS correction due to interaction can be written as

δν(ε) = − 1

π
Im[GR(ε)ΣR(ε)GR(ε)], (5.1)

where GR denotes the non-interacting (retarded) Green’s function and ΣR denotes the Hartree-

Fock self-energy

ΣR(r1, r2, ε) = −2iδ(r1 − r2)

∫
dω

2π

∫
dr G<(r, r, ω)UR(r1, r, 0)

+ i

∫
dω

2π

[
G<(r1, r2, ε− ω)UR(r1, r2, ω) +GR(r1, r2, ε− ω)U<(r1, r2, ω)

]
. (5.2)

Plugging Eq.(5.2) into Eq.(5.1) and then taking disorder average, we find the following Green’s

function correlators to be calculated: 〈GRG<GR〉 and 〈GRGRGR〉. The lesser Green’s function

can be expanded in the form GRvGR · · · vG<v · · ·GAvGA. The diagram for calculating averages

of three Green’s functions follows that in Fig.2.7(b). When disorder-average is taken under the

first Born approximation, the K(2) four-point vertex reduces to a single dashed line (see Fig.3.2),

and diffuson ladders are formed in the three corners. Note that the K(3) kernel vanishes here since

a single impurity line does not contain internal Green’s functions. When evaluating the ladder

series, we are only concerned about those corresponding to 〈GRGA〉 since any pair of GR would
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Figure 5.2: Diagrams for the Hartree (a) and Fock (b) corrections to the electronic density of states.

The capital letters (e.g. R) mark macroscopic spatial coordinates based on a length scale greater than the

impurity-electron mean free path.

result in a small factor (εFτ)−1 [see Eq.(B.2)]. The resulting diagrams are given in Fig.5.2. Note

that we have discarded the correlator 〈GRGRGR〉 and omitted the vertex correction in the bottom

corner. In addition, G< is pushed to the leftmost in order to avoid having GRGR. The resulting

ladder series is evaluated as γ〈GRGA〉γ = P/(2πν0τ
2
0 ), where P denotes the diffusion propagator

as defined in Eq.(B.12).

On the one hand, the ladder series that show up in the diagrams represent diffuson propagators

which are long-range objects varying on a length scale greater than the microscopic mean free path

(l0). On the other hand, the Green’s functions decay exponentially over a distance of l0. With this

observation, those diagram blocks between the diffusons can be calculated separately: they can be

“detached” from the diffusons. For instance the triangular block at the bottom of either diagram is

sandwiched between two diffusons, and therefore it can be written as∫
dr1dr2G

R(R, r1, ε)G
A(r1, r2, ε− ω)GR(r2,R, ε)

=

∫
ddk

(2π)d
[
GR(k, ε)

]2
GA(k− q, ε− ω) ≈ I2,1 = −2πiν0(ε)τ0

2, (5.3)

where r1 and r2 are integrated independently on the diffusons, because of their scale difference. In

performing the k-integration above, we have used the techniques developed in Appendix B. Note

that the q-dependence in the above integral has been discarded: if not, the expansion technique

of Eq.(B.7) should be used, which would lead to an extra factor of ql0, small under the diffusive

approximation.

Figure 5.3 displays a closer view of the diagram blocks which contain the interaction vertex.

Since these blocks are also sandwiched between diffusons, they can be evaluated in the same way
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RR

< A < A

R R

Fock Hartree

Figure 5.3: Close view of the diagram blocks which contain the e-e vertex in Fig.5.2. R, A, < denote

retarded, advanced, and lesser (Green’s function) respectively. The black dots mark the joints with diffusons.

as Eq.(5.3). For the diagram on the left hand side of Fig.5.3, we can write down the expression[∫
ddk

(2π)d
G<(kR′, ε− ω)GR(kε)

]
UR(R′,R′′, ω)

[∫
ddk

(2π)d
GA(k, ε− ω)GR(kε)

]
. (5.4)

Note that the R′-dependence in G< should not be overlooked since it could vary on a macroscopic

length scale. To proceed we approximate G< as

G<(kR′, ε− ω) ≈ f(ε− ω,R′)
[
GA(k, ε− ω)−GR(k, ε− ω)

]
, (5.5)

where f is given by the diffusive distribution (3.9). The remaining k-integrals in (5.4) thus read[∫
ddk

(2π)d
GA(k, ε− ω)GR(kε)

]2

≈ (I1,1)2 = (2πν0τ0)2. (5.6)

Here the ω-dependence has been discarded since it would give rise to terms carrying a factor of

ωτ0, which is again small in the diffusive limit.

The diagram on the right hand side of Fig.5.3 reads∫
d(r1 − r2)

[∫
dr′G<(r1, r

′, ε− ω)GR(r′, r2, ε)

]
UR(r1 − r2, 0)

×
[∫

dr′′GA(r1, r
′′, ε− ω)GR(r′′, r2, ε)

]
. (5.7)

The reason why we integrate over the difference (r1 − r2) instead of
∫
dr1dr2 separately is that

the e-e vertex is surrounded by the Green’s functions and its center must be constrained in the

microscopic region: (r1 + r2)/2 = R′ = R′′. To proceed we again adopt the approximation

Eq.(5.5), and hence the integrals in the brackets of (5.7) amount to[∫
GR(r1, r

′)GA(r′, r2)dr′
]2

=
(
iτ0

[
GR(r1, r2)−GA(r1, r2)

])2
=
[
2τ0ImGR(r1, r2)

]2
,

(5.8)

where the first equality follows directly from Eq.(3.5). To simplify the notation, we introduce a

function as follows:

α(r) = −ImGR(r)

πν0

= cos
√

2mεr · exp(−r/2l0), d = 1 (5.9)
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where the second equality follows from the Fourier transform of Eq.(3.5) in one-dimension. Ap-

parently α(r) is a short-range function bounded by l0. Thus the interaction block in the Hartree

diagram contains a factor of
∫
α2(r)UR(r, 0)dr, where the long-range part of the Coulomb poten-

tial is cut off by l0. Besides, note that only the static potential UR(r,Ω = 0) counts here, since in

the Hartree diagram the interaction vertex is connected to a closed fermion loop which conserves

energy.

Collecting all the pieces in Fig.5.2, we get

δν(ε,R) = −ν0

π
Im

∫
dωdR′dR′′P(R,R′, ω)f(ε− ω,R′)

× [UR(R′,R′′, ω)− 2FŪδ(R′ −R′′)]P(R′′,R, ω). (5.10)

The F factor arises from the e-e vertex in the Hartree diagram:

F =

∫
α2(r)UR(r)dr∫
UR(r)dr

, (5.11)

where Ū =
∫
UR(r)dr = UR(q = 0). Since α(r) is a short-range function decaying in space, the

value of F falls in between 0 and 1. For very strong screening, namely when the screening length

is shorter than the Fermi wavelength, F = 1, while in the opposite limit F = 0. It is important

to notice that the actual value of F affects the sign of δν. Evaluating Eq.(5.10) also requires the

knowledge of UR(R′,R′′, ω). According to the dynamic screening theory in the diffusive limit

[12], the effective interaction is approximated as UR(q, ω) ≈ (−iω + Dq2)/(2ν0Dq
2) in Fourier

space. To simplify the calculation of Eq.(5.10) and to meanwhile allow for cross-validations with

our numerical formalism, we omit the ω-dependency and hence adopt a local interaction model:

U0(R1 −R2) = (2ν0)−1δ(R1 −R2). (5.12)

When restricted to one-dimension, Eq.(5.10) reads

δν(ε, x) =
2F − 1

2π
Im

∫
dω

∫ L

0

dx′f(ε− ω, x′)[P(x, x′, ω)]
2
. (5.13)

The diffuson P takes the one-dimensional form [see Eq.(B.15)]

P(x, x′, ω) =
Lω
D

sinh(xm/Lω) sinh(L− xM)/Lω
sinh(L/Lω)

, (5.14)

where xm = min(x, x′), xM = max(x, x′), and Lω =
√

iD/ω sets the length scale of a diffusive

mode with frequency ω. Using the linear expression of f(ε, x), we rewrite the DOS correction in

two parts:

δν = (1− 2F)(δν1 + δν2), (5.15)
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Figure 5.4: Schematic profile of the interaction-induced DOS anomaly in a disordered finite wire. The

energy reference is set at the Fermi level. ETh represents the Thouless energy ~D/L2. See Eq.(5.18) for

mathematical details.

where

δν1(ε, x) = − 1

4π
Re [Px(ε− eV/2) + Px(ε+ eV/2)] , (5.16a)

δν2(ε, x) = Im

ε+eV/2∫
ε−eV/2

dω

2π

∫ L

0

dx′
x′ − L/2

L
[P(x, x′, ω)]

2
. (5.16b)

Let us first look at the first part δν1, which is simply proportional to the recurrence probability

RePx=x′(ω). Since RePx(ω) is an even function peaked at ω = 0, δν1 is symmetric in ε and has

two cusps at ε = ±eV/2 under an external bias. The cusp depth δν1(±eV/2) varies with x. To see

this, we set ω at zero and hence obtain

RePx(ω = 0) =
x

D

(
1− x

L

)
. (5.17)

Therefore δν1(±eV/2) is deepest at x = L/2, and around the cusp

δν1(ω, L/2) = −Re

{
tanhL/2Lω

8π
√
−iDω

}
, (5.18)

where ω = ε±eV/2. The result of Eq.(5.18) is visualized in Fig.5.4. On the contrary, δν1(±eV/2)

vanishes at the ends of the wire. The underlying physical picture is that, the closer particles get to

the boundaries, the more tendency they will be absorbed by the reservoirs and never return to the

interacting region.

At a fixed x/L ratio, δν1(±eV/2) is proportional to L. This implies a DOS singularity when

the thermodynamic limit L → ∞ is taken. To see this singularity on the energy axis, we set

x = x′ = L/2 at first and then get ReP(ω) = 1/
√

8Dω from Eq.(5.14) in the limit L � Lω.
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ς

Figure 5.5: Plot of the function ς(y) = (1− 2y)(y− 1)2y2(4y2− 4y− 1), which we invoke in Eq.(5.23).

Thus at equilibrium we have δν1(ε) = −(4π
√

2Dε)−1, which reproduces the well-known “zero-

bias anomaly” (as ε → 0) first elucidated by Altshuler and Aronov [21]. In real materials, this

singularity is cut off by the thermal diffusion length
√
~D/kBT at a finite temperature. In the

present work which is mainly focused on short wires, this anomaly is simply cut off by the system

size [see Eq.(5.18)].

The second part δν2 [see Eq.(5.16b)] exists only at nonequilibrium, and it contributes a sub-

leading modulation on top of δν1. The spatial integral in Eq.(5.16b) yields∫ L

0

dx′
x′ − L/2

L
[P(x, x′, ω)]

2
=

L4
ω

8LD2sinh2(L/Lω)
(5.19)

×
[(

1− cosh
2x

Lω
− L− 2x

Lω
sinh

2x

Lω
+

2x(L− x)

L2
ω

)
sinh2L− x

Lω
− (x→ (L− x))

]
.

Nevertheless, the remaining frequency integral cannot be performed analytically. To proceed we

simplify the result of Eq.(5.19) in the low bias limit eV � ~D/L2(= ETh), where ETh is known

as the Thouless energy in the literature. In this limit, the frequency (ω) to be integrated over the

bias window [see Eq.(5.16b)] is bounded by ~ω � ETh. Therefore the diffusonP can be expanded

with respect to the small parameter L/Lω:

[P(x, x′, ω)]
2

=
L2

D2
x̃2
m(1− x̃M)2 +

L4

3D2L2
ω

x̃2
m(1− x̃M)2(x̃2

m + x̃2
M − 2x̃M) + · · · , (5.20)

where the notation x̃ stands for x/L. The spatial integral of Eq.(5.19) thus reduces to

Im

∫ L

0

dx′
x′ − L/2

L
[P (x, x′, ω)]

2

≈ Im
L5

3D2L2
ω

[∫ x/L

0

(x̃′ − 1/2)[x̃′(x̃− 1)]
2
(x̃′2 + x̃2 − 2x̃)dx̃′

+

∫ 1

x/L

(x̃′ − 1/2)[x̃(x̃′ − 1)]
2
(x̃′2 + x̃2 − 2x̃′)dx̃′

]
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= −Im
L5

180D2L2
ω

ς(x/L), L� Lω. (5.21)

The ς function is a polynomial as shown in Fig.5.5. The same result can also be obtained directly

by expanding the right hand side of Eq.(5.19) with respect to L/Lω. Performing the remaining

frequency integration in Eq.(5.16b):

− Im

ε+eV/2∫
ε−eV/2

L−2
ω

dω

2π
=
eV ε

2πD
, (5.22)

we hence arrive at

δν2(ε, x) ≈ eV L5

360πD3
ς(x/L), eV � ETh (5.23)

in the low bias limit. We notice that ς(x/L), as well as δν2, is an odd function with respect to

x = L/2, and that it vanishes at x = 0, L. This particular x-dependence is in fact a generic

property which can be easily deduced from Eq.(5.19). In addition, δν2 is also an odd function of

ε, which can be deduced from Eq.(B.13) since flipping the sign of ω is equivalent to taking the

conjugate (and since δν2 concerns only the imaginary part of the associated integrand).

If we are only concerned about δν2 around the cusps of the DOS correction, namely δν2(±|η+

eV/2|), we can alternatively apply the nonlinear limit L� Lω to Eq.(5.19), which then reduces to

L3
ω(2x− L)/(8LD2) for 0 < |x− L/2| < L/2. As such, we get

δν2(± |η + eV/2| , x) ≈ ±2x− L
8LD2

Im

∫ eV+η

η

L3
ω

dω

2π

= ± 2x− L
8πL
√

2D

(
1
√
η
− 1√

eV + η

)
, ETh � η. (5.24)

Both linear and nonlinear results suggest that the DOS correction should have a profile such that

|δν(eV/2, x)| is greater (lesser) than |δν(−eV/2, x)| if x < L/2 (x > L/2), assuming the chemical

potential of the left lead is higher. This point will be verified by our numerical simulation (see

Fig.5.16 below). Besides, whether the interaction effect develops peaks or cusps on the DOS

profile depends on the sign of (2F − 1) [see Eq.(5.15)]. It turns out that, for bulk metals, the AA

effect always results in a negative DOS correction (i.e. a cusp) when the dynamic part of screened

e-e interaction is taken into account [12].

5.1.2 Charge current

According to Eq.(2.8) the charge current can be expressed as

j(r) =
e~
2m

∫
dε

2π
lim
r→r′

(∇′ −∇)G<(r, r′, ε). (5.25)
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Figure 5.6: Diagram for the exchange (Fock) correction to charge current. These diagrams were first

given in Ref.[126].

To comply with existing literatures [126, 127], we use the general relationG< = (GK−GR+GA)/2

to replace the G< in the above equation. Since (GR −GA) is symmetric under time reversal sym-

metry, it makes no contribution when (∇′−∇) is applied. Thus our objective becomes calculating

the interaction correction to GK. To the first order in e-e interaction, the correction to GK reads

δGK ≈ GRΣRGK +GKΣAGA +GRΣKGA, (5.26)

where the convolution relation as shown in Eq.(2.23c) is employed. Note that the first two terms on

the right hand side of Eq.(5.26) contribute equally to the current since GRΣRGK = −[GKΣAGA]†.

With GK instead of G<, the retarded self-energy is expressed as [cf. Eq.(5.2)]

ΣR(r1, r2, ε) = −iδ(r1 − r2)

∫
dω

2π

∫
dr GK(r, r, ω)UR(r1, r, 0)

+
i

2

∫
dω

2π

[
GK(r1, r2, ε− ω)UR(r1, r2, ω) +GR(r1, r2, ε− ω)UK(r1, r2, ω)

]
, (5.27)

and the Keldysh self-energy:

ΣK(r1, r2, ε) =
i

2

∫
dω

2π

[
GK(r1, r2, ε− ω)UK(r1, r2, ω)

]
. (5.28)

The terms containing UK should be discarded when the AA effect is the prime concern, because

they amount to higher order (in terms of the inverse dimensionless conductance given by Ohm’s

law) corrections related with the dephasing effect [23]. Thus the remaining terms in Eq.(5.26) all

have the form GKUR.

Applying the same disorder-average technique as demonstrated in Sec.5.1.1, we obtain Fig.5.6

for the charge current correction. These diagrams were first obtained and calculated in Ref.[126].

Note that we have omitted showing the corresponding Hartree diagrams since they can be easily
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produced by reconnecting the interaction line (see Fig.5.3). To simplify the current vertex which

contains the operator (∇′ − ∇), we apply to it the Fourier transform (r − r′) → k. As such, the

charge current correction is now written

δj(R) = i
e~
m

∫
dε

2π

∫
dk

(2π)d
kxδG

K(k, ε,R), (5.29)

assuming the electric field is applied along x̂.

Analogous to Eq.(5.5), the GK in Fig.5.6 is approximated as

GK(kR, ε) ≈ F (ε,R)
[
GA(k, ε)−GR(k, ε)

]
=
F (ε,R)

iτ0

GA(k, ε)GR(k, ε), (5.30)

where F (ε,R) is given by

F (ε, x) =
(

1− x

L

)
tanh

ε− eV/2
2kBT

+
x

L
tanh

ε+ eV/2

2kBT
. (5.31)

The diagram blocks which contain the e-e interaction vertex can be evaluated in the same way as in

Sec.5.1.1, except that hereGK is substituted forG<. The evaluation of the bottom block connected

with the current vertex requires a bit more elaboration: the one in Fig.5.6(a) reads∫
dk

(2π)d
~kx
m

GR(k, ε)GA(k− q, ε− ω)GK(kε,R) ≈∫
dk

(2π)d
(vk · x̂)(−vk · q)

[
GA(k, ε)

]3[
GR(k, ε)

]2F (ε,R)

iτ0

= −6πν0τ
3v

2
F

d
qxF (ε,R), (5.32)

where the Taylor expansion Eq.(B.7) and the identity Eq.(B.9) have been used. Note that, due to

the presence of the current vertex, only the anisotropic terms are kept. Same techniques are applied

to Fig.5.6(b), where the corresponding block is evaluated as∫
dk

(2π)d
(vk · x̂)(−vk · q)

[
GA(k, ε)

]3
GR(k, ε)γ

∫
dk′

(2π)d
GA(k′ − q, ε− ω)GK(k′εR)

≈ 2πν0τ
3v

2
F

d
qxF (ε,R). (5.33)

Should we keep adding dashed lines to Fig.5.6(b) in the middle, we would generate terms of the

form GAGA ∼ ν0/ε [see Eq.(B.2)], which could thus be neglected. Figure 5.6(c) amounts to zero

under the isotropic approximation of Eq.(5.30):∫
dk

(2π)d
~kx
m

GR(k, ε)GK(kε,R) ≈ 0. (5.34)

Collecting all the pieces of Fig.5.6 and taking into account its Hartree counterpart, we arrive at

δj(R) = −Deν0

π
Im

∫
dεdω

∫
dR′dR

′′
F (ε,R)P(ω,R,R′)F (ε− ω,R′)
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× [UR(R′,R′′, ω)− 2FŪδ(R′ −R′′)]∇RP(ω,R′′,R) · x̂. (5.35)

The x̂ · ∇R operator is a real-space translation of the iqx factor generated from Eq.(5.32).

In the following, we shall show that the interaction correction to the linear conductivity, which

was derived in Ref.[21] using Kubo formula, can be reproduced from the general expression of

Eq.(5.35). To this end, we first notice that in the linear-response regime (kBT � eV )

F0(ε+ eV )− F0(ε) ≈ eV
∂

∂ε
F0(ε), (5.36)

where F0(ε) = tanh(ε/2kBT ), and hence∫
F (ε, x)F (ε− ω, x′)dε→ V

L

∫
dεF0(ε− ω)F0

′(ε)x+ F0(ε)F0
′(ε− ω)x′

=
eV

L
(x− x′)

∫
dε tanh

ε− ω
2kBT

∂

∂ε
tanh

ε

2kBT

=
2eV

L
(x′ − x)

∂

∂ω

(
ωcoth

ω

2kBT

)
. (5.37)

Next, the resulting factor (x− x′) is put together with P(ω,R,R′), thereby yielding

(x− x′)P(ω,R,R′)→ i
∂P(ω,q)

∂qx
= −2iDqxP2(ω,q) (5.38)

after Fourier transform, where Eq.(B.11) has been invoked to obtain the second equality. The

spatial integrations in Eq.(5.35) can hence be performed using the convolutional theorem of Fourier

transform. The result indicates a linear relation between the current and the bias voltage. Reading

off their ratio, we get the conductivity correction:

δσ = −2ν0e
2D2

πd

∫
dω

∂

∂ω

(
ωcoth

ω

2kBT

)∫
dq

(2π)d
q2Im

[
(UR(qω)− 2FŪ)P3(qω)

]
, (5.39)

which is the original linear-response result obtained by Altshuler and Aronov [12, 21]. For d ≤ 2

Eq.(5.39) leads to a singular suppression to the conductivity as temperature approaches zero [21].

For a finite wire sandwiched between electrodes, one has to compute the spatial integrals in

Eq.(5.35) directly in real-space. To simplify our calculation, we adopt Eq.(5.12) again and thus

obtain

δI = −(1− 2F)De

2π
Im

∫
dωdε

∫
dx′F (ε, x)P(ω, x, x′)F (ε− ω, x′)∂xP(ω, x′, x) (5.40)

in one-dimension. At this point, it is important to notice that the result of Eq.(5.40) explicitly de-

pends on the coordinate x, thus breaking the current continuity. This issue results from the various

approximations we have made in order to simplify our diagram calculation. As a compromise, one
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Figure 5.7: δI − V curve generated from Eq.(5.44) for a disordered wire at zero temperature. δI is the

charge current correction to the first order in e-e interaction.

could either take the average value L−1
∫
δI(x)dx or simply use δI(x = L/2) to get an unbiased

result. It can be shown that these two approaches will make no qualitative difference in the end.

Here we choose the latter approach, i.e. δI = δI(x = L/2).

To proceed from Eq.(5.40) we plug in

∂

∂x
P(x, x′, ω) =

{
sinh(x′/Lω) cosh(L−x)/Lω

−D sinh(L/Lω)
, x > x′

cosh(x/Lω) sinh(L−x′)/Lω
D sinh(L/Lω)

, x < x′
(5.41)

Besides, the ε-integration yields∫
F (ε, x)F (ε− ω, x′)dε =

{
2~ω
L

(x′ − x) + (eV−~ω)
L2 (2x− L)(2x′ − L), |~ω| ≤ eV

sgn(ω)2eV
L

(x′ − x) + (eV − ~ω), |~ω| > eV
(5.42)

at zero temperature (or in the limit kBT � eV ). The spatial integral in Eq.(5.40) thus reads2∫ L

0

(x− x′)P(ω, x, x′)
∂

∂x
P(ω, x′, x)dx′ (5.43)

=
L3
ω

16D2sinh2(L/Lω)

[
sinh

2(L− x)

Lω

(
1 +

2x2

Lω
2 − cosh

2x

Lω

)
+ x→ (L− x)

]
,

where x will be set at L/2 in the following. The remaining ω-integration can be simplified with

Im
∫ +∞
−∞ dω → 2Im

∫ +∞
0

dω since ω enters the integrand through P which satisfies P(−ω) =

P(ω)∗. To further simplify the notation, we introduce y = L/Lω, Υ(y) = 1+y2/2−cosh y
sinh y

, and

b =
√
eV L2/(i~D). As such Eq.(5.40) is rewritten as

δI =
(1− 2F)eD

2πL2
Im

 ieV L2

~D

∞∫
b

Υ(y)

y2
dy −

b∫
0

Υ(y)dy

 . (5.44)

2Those terms in Eq.(5.42) which are not linear to (x− x′) do not contribute once either x = L/2 is applied or the

average is taken over x.
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The remaining integrals in Eq.(5.44) are evaluated numerically. Note that the integrals are carried

out along 0 → (+∞− i∞) and that the integrands are analytic functions on the complex plane.

Besides, the first integral above can be split in two for numeric convenience:
∫∞
b
→
∫M
b
−1/M ,

since Υ(y) approaches −1 rapidly. The computed δI − V curve is plotted in Fig.5.7. Evidently,

the only relevant energy scale involved in Eq.(5.44) is the Thouless energy ETh = ~D/L2. Nev-

ertheless, the δI − V curve appears linear over a large range of the ratio eV/ETh, with a slight

tendency to bend down at a high eV/ETh ratio.

The asymptotic behavior of Eq.(5.44) is as follows. At high voltages eV � ETh, Eq.(5.44)

reduces to

δI ≈ (2F − 1)e

π

√
DeV

2~L2
, eV � ETh, (5.45)

and in the low bias limit, the linear conductance correction is obtained: δG = dδI/dV ≈ 0.4(2F−
1)e2/h. If we were to use a bare local potential, i.e. U0 ≈ Uδ(R1 −R2), we would instead get

δG ≈ (0.8e2/h)Uν0. (5.46)

This latter scenario is more relevant to our numerical model, since the interaction strength can

be treated as an input parameter therein. Interestingly, these asymptotic behaviors of δI , derived

under the local interaction model, turn out to be very similar (up to a prefactor) to the result of

Ref.[126], which was derived with a dynamically screened interaction.

The result that δG is independent on the system size L signifies a divergence in the linear

conductivity δσ in the L→∞ limit, since δσ = δG ·L in one-dimension. This result is consistent

with the original AA theory [12, 21], in which the system is assumed to be thermodynamic so that

the limit L→∞ is applied at first, and then the divergence in δσ is observed as T → 0.

5.2 Numerical implementation

In the previous section of analytical calculations, a few simplifications have been made in order to

facilitate the derivations. For example, the quasi-equilibrium assumption that we imposed through

Eq.(5.30), and that all the correlators of the form 〈GRGR〉 were discarded so as to simplify the

diagrams. Moreover, in calculating those diagrams, we divided them rigidly into long or short

ranged blocks and conquered them in a separate manner. By doing so, we have completely over-

looked the coupling at the intermediate scales: those blocks are meant to be connected smoothly

after all. A crucial dissatisfaction caused by these simplifications was seen to be the charge current

discontinuity as manifested by Eq.(5.40).
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Figure 5.8: Deriving the Fock-exchange self-energy from the corresponding Luttinger-Ward diagram. In

(b) a G-line is removed from inside of a K(2)-kernel (grey rectangle), which produces a K(3) (the grey

hexagon). The i, j, k indices denote real-space sites, ω denotes frequency, and s denotes contour branch.

The wiggly line represents the e-e interaction, which is chosen to be either bare or screened by the procedure

indicated in Fig.4.1 in our numerical calculations below.
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Figure 5.9: Hartree self-energy diagrams.
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Figure 5.10: Demonstration of the index layout for two-particle Green’s functions. Note that a different

indexing convention was used in Sec.2.2.2.

To remove the unnecessary simplifications and to restore the current continuity, we shall place

our numerical calculations on a more solid ground. To this end, we follow the more rigorous

Kadanoff-Baym procedure and re-derive the self-energy diagrams from the first-order Φ-diagrams

dressed by diffuson [34]. Figure 5.8 illustrates this procedure when applied to the Fock-exchange

diagram. In the figure each line represents the disorder-averaged Green’s function generated from

the self-consistent CPA calculation. The grey stripes are the diffuson ladder composed of K(2)-

kernels (see details below). Since the K(2)-kernel under CPA contains Green’s functions in itself,

removing such an internal G-line leads to a K(3)-diagram, as demonstrated by Fig.5.8(b). The

exchange self-energy should be the sum of Fig.5.8(a) and (b). The Hartree diagrams are derived in

a similar fashion; they are shown in Fig.5.9. In the following we shall go through the computational

scheme for these diagrams.

As stated in Sec.2.3.2, for numerical computations it is more convenient to work under the

Green’s function representation Eq.(2.16) instead of the triangular form Eq.(2.18). To this end, we

need to first transform the impurity locator defined in Eq.(3.17a) to its
⊃
G-representation by using

Eq.(2.19). The two-particle locator is redefined accordingly as [cf. Eq.(3.17b)]

g
(2)
iωω′(s1s2, s3s4) = gviω(s1, s3)gviω′(s4, s2)

vi
, (5.47)

where the indices have been rearranged as per Fig.5.10. The Bethe-Salpeter equation for the loca-

tors are thus written

g
(2)
iωω′(s1s2, s3s4) = [g ∗ g]iωω′(s1s2, s3s4)

+ [g ∗ g]iωω′(s1s2, s3′s4′) ·K(2)
iωω′(s3′s4′ , s1′s2′) · g(2)

iωω′(s1′s2′ , s3s4), (5.48)

where [g ∗ g]iωω′(s1s2, s3s4) = giω(s1s3)giω′(s4s2), and note that all the repeated s-indices should

be summed over. Viewing g(2), [g ∗g], andK(2) as 4×4 matrices, we can hence expressK(2) using

Eq.(5.48): K(2)
i = [g ∗ g]−1

i −
(
g

(2)
i

)−1

, for each pair of ω, ω′.

In order to calculateK(3)
i we make use of the fact that it must satisfy the diagrammatic equation

of Fig.2.7(b) [also see Eq.(2.34)] when all the objects therein are restricted on the local site [1].

The correlators C(n) in Fig.2.7 are accordingly replaced with the disorder-averaged locators g(n)
i ,
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Figure 5.11: Diagrammatic illustration for Eq.(5.49). g(3)
i is the third order locator averaged over the local

potential.
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Figure 5.12: (a) Recursive relation for the vertex correction. (b) Dressed e-e interaction.

which are computed in a similar fashion as Eq.(5.47). To solve for K(3)
i we multiply the matrix(

g
(2)
i

)−1

on both sides of Fig.2.7(b) from all three directions, and thence obtain

K
(3)
iωωω′(s1s2, s3s4, s5s6) = g

(3)
iωωω′(s1′s5′ , s6′s3′ , s4′s2′) · g(2),−1

iωω′ (s1s2, s1′s2′) · g(2),−1
iωω′ (s3′s4′ , s3s4)

· g(2),−1
iωω (s5′s6′ , s5s6)− [g ∗ g]−1

iωω′(s1s2, s5s2′) · giω′(s4′s2′) · [g ∗ g]−1
iωω′(s6s4′ , s3s4),

(5.49)

as illustrated in Fig.5.11.

Another building block of Fig.5.8 is the disorder-induced vertex correction

Λωω′(s1s2i, s0j) = δs1s2δs1s0δij +K
(2)
iωω′(s1s2, s1′s2′) · [G ∗G]ωω′(s1′s2′i, s3s4k) ·Λωω′(s3s4k, s0j),

(5.50)

where [G ∗G]ωω′(s1′s2′i, s3s4k) = G
s1′s3
ω (i, k) · Gs4s2′

ω′ (k, i), as illustrated in Fig.5.12(a). Under

each pair of ω, ω′, Λ is a 4N × 2N matrix4 and can be solved from the linear equation (5.50). The

diffuson dressed polarization is thus written [cf. Eq.(2.44)]

P s1s2
ω (i, j) =

∫
dω′

iπ
[G ∗G]ω+ω′,ω′(s1s1i, s3s4k) · Λω+ω′,ω′(s3s4k, s2j). (5.51)

4N is the number of lattice sites between leads. The notation s3s4k, as a matrix index, should be interpreted as

(s3 + 2 · s4 + 4 · k).
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PR,<,A are then obtained by using the transformation (2.19), which allows for computing the

screened interaction with Eq.(4.7). As can be seen in Fig.5.8, the interaction vertex W is sub-

ject to being dressed with Λ at the ends:

W̃ωω′(s1s3i, s2s4j) = Λωω′(s1s3i, sk) ·W ss′

ω−ω′(k, l) · Λω′ω(s4s2j, s
′l), (5.52)

as illustrated in Fig.5.12(b). Collecting all the pieces, we get the exchange part of the self-energy

(Fig.5.8) as follows:

Σs1s2
X,ω (i, j) = −

∫
dω′

2πi
Gs3s4
ω′ (i, j) · W̃ωω′(s1s3i, s2s4j) +

∫
dω′

2πi
Gs1s2
ω′ (i, j) ·W s1s2

ω−ω′(i, j)

− δij
∫
dω′

2πi

(
[G ∗G]W̃ [G ∗G]

)
ωω′

(s4s3i, s6s5i) ·K(3)
iωωω′(s6s5, s4s3, s2s1), (5.53)

where the GW self-energy (the second term on the right hand side) without disorder vertices has

been excluded, for it is computed in a separate routine. In order to write down the expression

for the Hartree part (Fig.5.9), we introduce the following new diagrammatic elements, viz. the

ladder-sum

L = (I4N −K(2)[G ∗G])−1K(2), (5.54)

whereK(2) denotes a 4N×4N diagonal block matrix with ith block beingK(2)
i , and the interaction

block

Θωω′(s1s1′i, s2s2′i
′) = Gs1s3

ω (i, j) ·Gs3s2
ω (j, i′) ·Gs2′s3′

ω′ (i′, j′) ·Gs3′s1′
ω′ (j′, i) ·W s3s3′

0 (j, j′), (5.55)

which resembles the diagram on the right in Fig.5.3. Note that the Hartree diagram only concerns

the static interaction W0 whose frequency is set at zero. Given the expressions for all building

blocks, Fig.5.9 is thence translated into

Σs1s2
H,ω (i, j) =

∫
dω′

πi
Gs1s3
ω (i, k) ·Gs3′s1′

ω′ (k, i′) ·Gs1′s2′
ω′ (i′, j) ·W s1s1′

0 (i, i′) · Lωω′(s3s3′k, s2s2′j)

+

∫
dω′

πi
Gs3s2
ω (k, j) ·Gs2′s3′

ω′ (j′, k) ·Gs1′s2′
ω′ (i, j′) ·W s1s1′

0 (j, j′) · Lωω′(s1s1′i, s3s3′k)

+

∫
dω′

πi
G
s1′s2′
ω′ (i, j) · [LΘL]ωω′(s1s1′i, s2s2′j) (5.56)

+ δij

∫
dω′

πi
K

(3)
iωωω′(s6s5, s4s3, s2s1) · [(I + [G ∗G]L)Θ(L[G ∗G] + I)]ωω′(s4s3i, s6s5i),

with spin degeneracy already taken into account. Note that, if one wishes to calculate ΣR,<, the

transformation (2.47) needs to be applied to the results of Eqs.(5.53) and (5.56).

The physical quantities such as DOS and charge current are extracted from the Green’s func-

tion, whose first order correction (δG) involves a disorder-average of the form C(3). According to
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the theory of Sec.2.2.2, every pair of G-lines in the C(3)-diagram need to be dressed with a ladder

series. Therefore, δG is written

δG(1, 2) = C(2)(12, 34) · [ΣH+ΣX](3, 4), (5.57)

where

C(2)(12, 34) = G(1, 3)G(4, 2) +G(1, 1′)G(2′, 2)L(1′2′, 3′4′)G(3′, 3)G(4, 4′). (5.58)

The composite index (e.g. 1) denotes a tuple (i, s), and the index layout of C(2) here corresponds

to Fig.5.10 (cf. Fig.2.7a). Note that the vertex correction procedure of Eq.(5.57) is particularly

important for ensuring charge conservation in transport calculations.

5.3 Numerical studies

The numerical formalism presented above is implemented with the lattice model as introduced in

Sec.2.5.4. To make correspondence with the short wire model analyzed in Sec.5.1, in our simula-

tions we consider strict one-dimensional systems with W = 1. Besides, the temperature is always

set at zero.

We start with the simplest interacting model where the nonlocal interaction is omitted, i.e.

Ui 6=j = 0. Since the local interaction arises from electrons of opposite spins, the Fock contribution

vanishes to the first order in U0. This scenario corresponds to setting F = 1 in the analytical

results presented in Eqs.(5.13) and (5.44). The second order correction in U0 involves a dressed e-

e interaction of the form UPU , where P is the polarization addressed in Eq.(5.51). In the diffusion

approximation, it can be shown that [12]

P (q, ω) ≈ 2ν0
Dq2

−iω +Dq2
. (5.59)

In the low frequency regime where the AA effect sets in, P (q, ω) tends to be constant. In other

words, P is short-ranged in real space, and hence the second order correction effectively con-

tributes a numeric factor to the bare interaction U0. The same argument can be applied to all the

bubble diagrams in the series of screened interaction (see Fig.4.1). Therefore, at this point, we only

keep the first order correction in U0, and, since F = 1 in this case, we foresee a positive correction

to both the DOS and the charge current.

Figure 5.13(a) displays the computed charge current correction in a one-dimensional lattice

with L = 40a. As can be seen, the overall δI − V trend agrees very well with the analytical pre-

diction Fig.5.7, and in particular its nonlinear tendency appears minor. δI − V curves under three
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Figure 5.13: δI − V relation calculated using the discrete lattice model under the setting U0 = ξ, Uij = 0

and a binary disorder. δI stands for the charge current correction to the first order in U0. (a) The system size

is set at L = 40a while the disorder strength is varied by tuning the impurity potential v. (b) Results for

L = 30a, 50a under v = 0.3ξ.

different disorder strengths are plotted in Fig.5.13(a), from which we see that δI decreases with

an increasing disorder strength. This behavior can be understood with Eq.(5.45), as the nonlin-

ear current correction is proportional to
√
D, where D stands for diffusion constant. In the linear

regime, as indicated by Eq.(5.46), the conductance is proportional to the noninteracting DOS (ν0),

which decreases with an increasing disorder strength. In contrast to the disorder strength, the wire

length L is found less effective to δI , as illustrated in Fig.5.13(b). Indeed the linear conductance

correction Eq.(5.46) has no dependency on L. Nevertheless, the nonlinear current predicted by

Eq.(5.45) is proportional to L−1, which explains the slight drop of δI at large V as L increases.

In the following we investigate the AA correction to the DOS profile. As discussed in Sec.5.1.1,

the DOS correction is overall dominated by the symmetric part δν1, which can be well represented

by the result at the middle of the chain [see Eqs.(5.16a) and (5.18)]. The numerical result from our

simulation is displayed in Fig.5.14. The solid curves mark the nonequilibrium results obtained un-

der a bias of V = 0.4ξ/e. Those obtained under zero bias with otherwise same system parameters

are marked by the dashed curves. Firstly, we notice that the peaks of δν align very well with the

respective Fermi energies of the leads, with the exception of short wires [e.g. the black curve in

Fig.5.14(b)] whose linear-nonlinear crossover sets in at a much higher bias due to its large Thouless

energy. For those curves that clearly display the nonlinear feature, i.e. those with split peaks, their

peak values are nearly half of those obtained in equilibrium, which is consistent with Eq.(5.16a).

Furthermore, the peak values increase with increasing disorder strength [see Fig.5.14(a)], and par-

ticularly they increase linearly versus the system size L [see Fig.5.14(b)]. These observations can

be well understood with Eq.(5.17). To investigate the contribution from the asymmetric part δν2
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Figure 5.14: DOS corrections at the middle of the model wire. The interaction is assumed to be local.

The solid lines mark the nonequilibrium results obtained under V = 0.4ξ/e. The dashed lines mark the

corresponding results obtained in equilibrium (i.e. V = 0). (a) The system size L is fixed while the disorder

strength v varies. (b) The other way around.
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Figure 5.15: (a) Complete profile of the local DOS correction as a function of position and energy in a

system of L = 40a, Uij = 0, and v = 0.5ξ. (b) Cut at x = 10a. (c) Cut at ε = ±eV/2.
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Figure 5.16: DOS correction from the Fock contribution (Fig.5.8) at the middle of the model wire (L =

40a, v = 0.5ξ). The interaction takes the form Uij = ua/|xi − xj |. Blue curve: The bare interaction

Uij is used in the diagram. Red curve: Screening is taken into account via Eq.(4.7) where the polarization

P is dressed with vertex correction. Green curve: The screened interaction is calculated with the bare

polarization, i.e. without vertex correction. Dashed curves: corresponding equilibrium results.

[see Eq.(5.16b)], we plot the full profile of δν(ε, x) at a given L and v [see Fig.5.15(a)]. In par-

ticular we observe that, away from the middle point x = L/2, the two peak values of δν are not

equal [see Fig.5.15(b)], and that their relative heights [see Fig.5.15(c)] have the x-dependancy as

theoretically predicted in Sec.5.1.1.

So far we have seen that the numerical results for the local interaction model agrees very well

with our theoretical prediction. In what follows, we switch to a long-range interaction modeled by

U0 = 0, Uij = ua/|xi − xj|, which was not accounted for by the theoretical analyses of Sec.5.1.

In particular we shall investigate the effects of many-body screening and the associated energy

relaxation on the DOS correction in our model system. To this end, we compute the effective

interaction using Eq.(4.7), with a polarization either dressed by the diffuson or not, and substitute

the dynamic interaction into the diagrams of Fig.5.8. Figure 5.16 displays the result calculated for

the Fock contribution to the DOS correction. Since the Fock contribution corresponds to F = 0 in

Eq.(5.15), it gives rise to cusps (negative corrections) instead of peaks in the DOS profile. Both the

red and the green curves in Fig.5.16 are obtained with the screening effect being taken into account.

The difference is that, for the red curves a dressed polarization [see Eq.(5.51)] is used where the

disorder vertex correction is included, whereas the bare polarization is used for the green curves.

Both results show a screening induced suppression of the DOS correction in comparison to that

calculated with the bare interaction (blue curves). We also observe that the screening with dressed

polarization (red curves) appears less effective. This reflects the fact that diffusion in general tends

to hinder the screening process.
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Figure 5.17: Energy relaxation effects on the DOS correction under differing bias voltages (a) and inter-

action strengths (b). The dashed curves represent the self-consistently computed energy distributions at the

middle of the wire [see Fig.4.5]. The AA correction to DOS is computed with the diagram of Fig.5.8 using

the self-consistent Green’s function which corresponds to the dashed result. The solid curves are given by

the self-consistent Green’s function minus the AA correction.

Thus far our diagram calculations have relied on the disorder-average, yet noninteracting Green’s

function. This approach is only valid when the energy relaxation length is much longer than L.

Ideally the effect of energy relaxation should be determined self-consistently within the numerical

formalism. To this end, we employ the self-consistent GW-CPA scheme as presented in chapter

4 and insert the thus generated Green’s function into the diagram of Fig.5.8 to compute the DOS

correction. We carry out computation based on the result of Fig.4.5. Figure 5.17 displays the

DOS with AA correction taken into account. From Fig.5.17(a) it can be observed that the AA

correction tends to be suppressed as the bias increases. This effect can be attributed to the smeared

step function in the energy distribution (dashed curves): one can see from Eq.(5.13) that the DOS

anomaly depends on the sharpness of the distribution function f(ε). Such mechanism is akin to the

temperature induced smearing of DOS anomaly as reported in Ref.[130]. The effect of increasing

interaction strength is two-fold. First, it enhances the equilibration process just like the effect of

bias increase, as already explained in Sec.4.2.1. Second, the enhanced energy relaxation tends

to smear the zero-frequency peak of the diffuson, since the diffusive motion of single particles no

longer conserves energy in the presence of inelastic e-e scattering. Consequently, as the interaction

increases, the two-cusp structure in the DOS profile tends to be smeared [see the black curve in

Fig.5.17(b)].
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5.4 Summary

In this chapter we developed a real-space diagrammatic formalism for computing the Altshuler-

Aronov (AA) effects on the DOS and the electronic transport of mesoscopic structures. Different

from macroscopic samples, in finite mesoscopic systems the AA effects are subject to the nonlinear

external bias and the cutoff due to system size. Specifically, we found that in short diffusive wires

the DOS anomaly should split in two at the respective lead Fermi energies, and that it grows

linearly with respect to the wire length. In addition, in the nonlinear transport regime, the value

of the DOS correction acquires a nonsymmetric position-dependence along the wire. Effects of

dephasing and energy relaxation have also been considered using the screened interaction and

self-consistent iterations. Both effects were found to smear the interaction induced DOS anomaly.

Under the locally interacting model, the charge current correction was computed to the first order

in interaction. Its magnitude was found to decrease with an increasing disorder strength or system

length.
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Conclusions

Based on the nonequilibrium Green’s functions and the many-body perturbation technique, we

have developed a practical formalism to compute a variety of quantum effects in disordered meso-

scopic systems. To ensure the property of charge conservation on transport quantities, we have

applied the Kadanoff-Baym scheme to our theoretical constructions, which start with a certain

Luttinger-Ward diagram and generate self-energy diagrams by respectively removing each Green’s

function line from it. In the Keldysh formalism, the Feynman diagrams have the same structures as

their equilibrium counterparts, except that at each vertex an extra index is introduced to track the

branches of the Keldysh contour. We have implemented the real-space Green’s function formal-

ism on a ribbon-like lattice model, which numerically simulates a quasi-one-dimensional meso-

scopic system. In our transport calculations, the effects of electronic reservoirs are taken care of

by treating part of the lattice as thermal equilibrium leads, whose self-energies are exactly com-

puted. Following this methodology we have studied three particular quantum effects in disordered

mesoscopic systems: weak localization, energy relaxation, and the Altshuler-Aronov effect. In

particular, the last two are many-body effects associated with the e-e interaction.

For noninteracting disordered systems, we implemented the coherent potential approximation

(CPA) and the dual fermion (DF) method respectively to calculate the quantum diffusion and lo-

calization effects in dc transport coefficients. We showed that CPA corresponds to a diffusion

approximation in the transport calculation, while DF incorporates the Cooperon process responsi-

ble for the localization effect. From numerical simulations it was found that both methods predict

linear I − V relations for a uniformly disordered quantum wire. Whereas DF performs better than

CPA overall, there exists certain disorder strength threshold beyond which numerical instability

could occur in DF computations. Besides, we noticed that the DF method does not strictly respect

the law of charge current continuity. To remedy this inaccuracy the computed current needs be av-
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eraged along the transport system. When disorder is weak enough, one could alternatively replace

all double-dashed lines in Fig.3.10 with single-dashed lines (see Fig.3.2); the resulting diagram-

matic scheme for the real fermion strictly follows the Kadanoff-Baym scheme and thus respects

conservation laws.

Combining CPA with GW approximation, we developed a self-consistent formalism for inter-

acting disordered systems. In particular we employed this formalism to study the energy relaxation

effects in nonequilibrium quantum wires. By calculating the electronic energy distribution we

found that the two separate Fermi surfaces in nonequilibrium wires tend to be smeared due to en-

ergy relaxation, and that electrons can be excited to energy levels that are thermally forbidden. The

energy relaxation collaborative between a pair of interacting wires leads to Coulomb drag, which

was also simulated using our GW -CPA method. The simulation result suggested that around the

linear transport regime the drag current peaks whenever the chemical potential sweeps across a

band edge. It was also hinted that the drag charge current is closely associated with the energy

transfer rate between the wires. Another theoretical achievement on Coulomb drag physics is that

we have formulated an electron-hole symmetric relation for nonequilibrium drag currents: if the

noninteracting Hamiltonian bears the electron-hole symmetry, the drag current is an odd function

of the chemical potential.

Apart from scattering off static impurities, electrons also interact with the charge ripples in-

duced by the disordered potential. The interference between the two processes leads to the Altshuler-

Aronov (AA) effect which hinders electronic transport and suppresses the density of states at the

Fermi energy. According to the conventional theory for macroscopic systems, the AA effect relies

on a correlation length scale set by thermal diffusion. Our analysis showed that the AA effect per-

sists in short mesoscopic wires where the correlation is yet cut off by the sample length. Because

of this cutoff, the anomalous DOS correction is largely smeared, and it splits in two when the

external bias is much greater than the Thouless energy. Besides, numerical computations showed

that the inelastic scattering due to e-e interaction may further smear the DOS correction. As to the

charge current correction, our result obtained under a local interaction model shows an asymptotic

behavior in agreement with previous study [126] which adopted a screened long-range Coulomb

potential.

This thesis has only focused on a limited number of quantum effects in disordered mesoscopic

systems; some other subleading yet important many-body effects have not been covered. For

example, the decoherence due to e-e interaction may suppress the Cooperon process. Taking this

effect into account, the qualitative weak localization correction to electric conductivity (in one-

dimension) should now read δσ = −e2h−1LφL/(Lφ+L) [cf. Eq.(1.1)], according to Matthiessen’s
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rule [23]. In addition, the Cooperon process also induces a correction to the AA effect [129]. The

description of these physical effects involves more complex diagrams, which we shall address

in future works. We also look forward to integrating the numerical methods developed in this

thesis into an ab initio simulation framework, and eventually applying it to realistic materials of

interesting structures.

103



Appendix A

Fourier transforms

In this thesis we adopt the following (continuous) Fourier transform convention:

f(k) =

∫
f(r)exp(−ik · r)ddr (A.1a)

f(r) =

∫
f(k)exp(ik · r)

ddk

(2π)d
(A.1b)

f(ω) =

∫
f(t)exp(iωt)dt (A.2a)

f(t) =

∫
f(ω)exp(−iωt)

dω

2π
(A.2b)

The discrete (or the fast) Fourier transform and its inverse are defined as

y = FFT(x)→ yk =
N−1∑
j=0

xjΩ
−j·k (A.3a)

x = IFFT(y)→ xj = N−1

N−1∑
k=0

ykΩ
j·k (A.3b)

where Ω = exp(2πi/N) and N is the number of sampling points on the signal. The discrete

Fourier transform has the property that yk+N = yk and xj+N = xj . Namely the algorithm is based

on the assumption that the signal y(t) is periodic over the received segment T = N∆t, ∆t being

the time interval between sampling points. Accordingly, the frequency interval on the spectrum

x(ω) equals ∆ω = 2π/T , and the spectrum spans from 0 to 2π/∆t. The purpose of introducing

the discrete Fourier transform is to numerically compute Eq.(A.2) in an efficient way.

In the conventional theory of signal processing, times and frequencies are positive quantities.

However, in many physical problems they can be negative. Think about the Green’s functions
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Figure A.1: Left: the swap operation on numeric arrays. Right: the signal curve is shifted by half

the period.

which have been used a lot in this thesis. They can have well defined negative time or frequency

arguments. For this reason, we need some extra operations about the Green’s functions so as to

fit them in the FFT algorithm. To be concrete we introduce the swap operation as illustrated in

Fig.A.1. Usually the numerically computed Green’s functions, in either time or frequency domain,

have values on both sides of the zero point. Such kind of numeric series is denoted as fc (see

Fig.A.1), whose center is located at the zero point. To adapt the thus presented Green’s function to

the FFT algorithm, we sometimes need to swap its left half with its right half. The resulting series

is denoted as f0, whose first element corresponds to the zero-point value of the original Green’s

function, and whose middle element corresponds to the first one in fc.

The continuous Fourier transform in Eq.(A.2b) is discretised as

fc(t0 + k∆t) =

∫
fc(ω)e−iω(t0+k∆t)dω

2π
≈ ∆ω

2π

N−1∑
j=0

fc(ω0 + j∆ω) · e−i(ω0+j∆ω)(t0+k∆t), (A.4)

where ω0 = −∆ω ·N/2 is the lower bound of the frequency window in which fc(ω) is evaluated.

According to the FFT convention we set t0 = 0 and hence obtain from Eq.(A.4)

f0(k∆t) =
∆ω

2π

N−1∑
j=0

fc((j −N/2)∆ω) · Ω−(j−N/2)k. (A.5)

To proceed we split the sum in the middle:

f0(k∆t) =
∆ω

2π

N−1∑
j=N/2

fc((j −N/2)∆ω) · Ω−(j−N/2)k +
∆ω

2π

N/2−1∑
j=0

fc((j −N/2)∆ω) · Ω−(j−N/2)k

=
∆ω

2π

N−1∑
j=N/2

fc((j −N/2)∆ω) · Ω−(j−N/2)k +
∆ω

2π

N/2−1∑
j=0

fc((j +N/2)∆ω) · Ω−(j+N/2)k

=
∆ω

2π

N/2−1∑
j=0

f0(j∆ω) · Ω−j·k +
∆ω

2π

N−1∑
j=N/2

f0(j∆ω) · Ω−j·k =
∆ω

2π
FFTf0(ω). (A.6)
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In the second line the periodic assumption of fc is utilized, and in the third line fc is swapped to f0.

Note that the resulting series f0 starts at t = 0. To obtain the standard form where the zero-point

sits at the center, we have to swap f0 again back to fc. Note that the Fourier transform of the

convolutional integral Eq.(4.5b) is formulated under the fc representation.

The integral in Eq.(A.2a) is carried out in a similar way:

fc(ω0 + j∆ω) =

∫
fc(t)e

i(ω0+j∆ω)tdt ≈ ∆t
N−1∑
k=0

fc((k −N/2)∆t) · Ω(j−N/2)(k−N/2). (A.7)

Swapping both fc(ω) and fc(t) to their f0 representations, we get

f0(j∆ω) = ∆t
N−1∑
k=0

fc((k −N/2)∆t) · Ωj(k−N/2) = ∆t
N−1∑
k=0

f0(k∆t) · Ωjk =
2π

∆ω
IFFTf0(t).

(A.8)

After performing the numerical FFT, we swap f0(ω) back to the standard order (fc).
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Diffusive approximation

In theoretical analyses it is often convenient to assume an isotropic band dispersion, i.e. E(k) →
E(k). Hence the frequently encountered k-integration can be simplified as∫

ddk

(2π)d
=

∫
dE ν0(E)

∫
dΩk

Sd
, (B.1)

where Sd denotes the surface area of the d-dimensional unit sphere: Sd = 2, 2π, 4π for d = 1, 2, 3

respectively. As an application, let us compute the following integral:∫
ddk

(2π)d
[
GR(k, ε)

]2
=

∫ ∞
0

ν0(ω)

(ε− ω + i/2τ0)2dω ≈
ν0(ε)

ε
. (B.2)

In completing the ω-integral we made the observation that its major contribution comes from the

region ω ∼ ε, since ετ0 � ~ in the weak disorder limit. If one of the retarded Green’s functions in

Eq.(B.2) is replaced with GA,∫
ddk

(2π)d
GR(k, ε)GA(k, ε) =

∫ +∞

0

ν0(ω)dω

(ε− ω + i/2τ0)(ε− ω − i/2τ0)
≈ γ(ε)−1, (B.3)

where γ(ε) = [2πν0(ε)τ0(ε)]−1. In computing the integral above, again we have made use of

the fact that the integrand decays rapidly away from ω = ε. Therefore, the numerator is set at

a constant ν0(ε), and the residual theorem is invoked with a contour surrounding the upper half

complex plane.

Noteworthily, the integral of Eq.(B.3) is greater than that of Eq.(B.2) by a factor of ετ0. More

generally one often encounters integrals of the form∫
ddk

(2π)d
[
GR(k, ε)

]m[
GA(k, ε)

]n ≡ Im,n. (B.4)
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Figure B.1: Diagram for the integral of Eq.(B.6).

This nevertheless can always be reduced by using the identity

GR(k, ε)GA(k, ε) = iτ0(ε)
[
GR(k, ε)−GA(k, ε)

]
. (B.5)

The values of Im,n can be looked up in Table V of Ref.[131].

Next we consider the integral

P0(q, ω) =

∫
ddk

(2π)d
GR(k, ε)GA(k− q, ε− ω) (B.6)

which is diagrammatically depicted in Fig.B.1. To proceed we employ the Taylor expansion

GA(k− q, ε− ω) = GA(k, ε) + (ω − vk · q)
[
GA(k, ε)

]2
+ (vk · q)2

[
GA(k, ε)

]3
+ · · · , (B.7)

where vk = ~−1∇kE is the group velocity. We then get

P0(q, ω) ≈ I1,1 + ωI1,2 +
v2
ε

d
q2I1,3 = (1 + iωτ0 −Dεq

2τ0)/γ, (B.8)

where Dε = v2
ετ0/d is simply the diffusion coefficient. To get the coefficient in front of I1,3 we

used the identity ∫
dΩk

Sd
(k̂ · q1)(k̂ · q2) =

q1 · q2

d
. (B.9)

In chapter 3 we see that the diffusion process is described by the correlator
〈
GRGA

〉
which is

expanded as a recursive ladder series. Therefore,〈
GRGA

〉
→ L(ω,q) = P0 + P0γL =

1

P−1
0 − γ

≈ 2πν0(ε)

−iω +Dεq2
, ωτ0, ql0 � 1. (B.10)

The approximation drawn above is valid under the condition ωτ0, ql0 � 1, i.e. when the period of

the driving field is much longer than the characteristic time or length scale of impurity scattering.

This condition is termed the diffusive limit in the literature, which defines the classical regime of

diffusive transport. More precisely, the probability propagation of a single particle (at energy ε) is

written as Pε = (2πν0(ε))−1
〈
GRGA

〉
[12]. Therefore,

Pd(ω,q) =
(
−iω +Dq2

)−1
, ωτ0, ql0 � 1, (B.11)
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where the subscript “d” represents “diffusion”, and the ε argument is omitted since in practice it

usually equals the Fermi energy. In real-space, Eq.(B.11) transforms to(
−iω −D ∂2

∂r′2

)
Pd(r, r′, ω) = δ(r− r′), (B.12)

which is just the classical diffusion equation. In fact Eq.(B.12) can be shown to be valid as well in

systems that lack translational invariance [12].

As an application of Eq.(B.12), we consider a diffusive wire subject to the absorbing (Dirichlet)

boundary condition, i.e. Pd(x, x′, ω) = 0 at x(x′) = 0(L). This standard textbook problem has the

following solution:

Pd(x, x′, ω) =
2

L

∑
n>0

sin(nπx/L) sin(nπx′/L)

π2n2D/L2 − iω
. (B.13)

Using the mathematical identity∑
n>0

cosnx

n2 + a2
=

π

2a

cosh a(π − |x|)
sinhπa

− 1

2a2
, (B.14)

we obtain

Pd(x, x′, ω) =
Lω
2D

cosh(L− |x− x′|)/Lω − cosh(L− |x+ x′|)/Lω
sinh(L/Lω)

=
Lω
D

sinh(xm/Lω) · sinh(L− xM)/Lω
sinh(L/Lω)

, (B.15)

where xm = min(x, x′), xM = max(x, x′), and Lω =
√

iD/ω. The square root follows the

convention that the result falls in the right half of the complex plane.

Because of the momentum relaxation, the single-particle Green’s function GR/A is spatially

confined within a region on the scale of l0. For studying the single-particle dynamics (e.g. impurity-

electron scattering), it suffices to focus only on a local region. Since the system is assumed to

be macroscopically homogeneous, microscopic properties such as the relaxation time or cross-

sections are uniform in the space. However, there are certain macroscopic objects that vary on a

length scale greater than l0. One example is the diffusion propagator discussed above. Interest-

ingly, although the GRGA pair depicted in Fig.B.1 is definitely short-ranged in real-space, when

many of such pairs are strung together they form a long-ranged object. Another important quantity

that varies in space macroscopically is the statistical distribution, which is encoded in the nonequi-

librium Green’s functions GK/>/<.1 To conceptually separate the short and the long-ranged parts
1Note that the Green’s functions are gauge-dependent. Suppose we have a static electric field represented by a

scalar potential linear in the space. In this case we obtain Green’s functions which also vary in the space. However, if

the scalar potential is replaced with a vector potential A(t) = Et, the resulting Green’s functions would be spatially

independent. The reader is redirected to Ref.[44] as for how to construct gauge-invariant Green’s functions.

109



Appendix B. Diffusive approximation

of a given two-point function, one often employs the Wigner transformation [44, 60]. To this

end we express the Green’s function G(r1, r2; ε) using the center of mass and relative coordinates

R = (r1 + r2)/2, r = (r1 − r2), and then perform the Fourier transform

G(R,k; ε) =

∫
G(R, r; ε)exp(−ik · r)dr. (B.16)

Within this representation, the charge current can be expressed as

j(R) =
e

m

∫
dε

2πi

∫
dk

(2π)d
(~k− eA)G<(R,k; ε), (B.17)

where A is vector potential of magnetic field. Note that, in contrast to GR or GA, GK,>,< have an

explicit dependency on the macroscopic spatial coordinate R, because of the particle occupation

f(R, ε) in nonequilibrium.
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Electron-hole symmetry in nonequilibrium
Coulomb drag

It has been known that the linear response drag (charge) current due to the elementary e-e scatter-

ing exists only under certain electron-hole asymmetric conditions [42, 104, 106]. Taking undoped

graphene as an example, when its occupation is set right at the electron-hole symmetric point, i.e.

the Dirac point, the Coulomb drag was predicted to vanish [132].1 In addition, the drag currents are

equal when the chemical potential is set at mirroring points with respect to the electron-hole sym-

metric point. In this appendix, we show that this relation can be generalized to the nonequilibrium

case. To be specific, for the system setup as illustrated in Fig.4.6, the drag current satisfies

I(p)(µ(a), µ(p)) = −I(p)(−µ(a), µ(p)) = −I(p)(µ(a),−µ(p)) = I(p)(−µ(a),−µ(p)), (C.1)

given the sufficient condition that (i) the atomic structure and the hopping Hamiltonian of both sub-

systems bear inversion symmetry about the center of the device, (ii) independent on the chemical

potentials, the electrostatic potential in the active wire is odd about the center of the device while

that in the passive wire is zero everywhere, and (iii) the leads of respective subsystems are identical

and have an electron-hole symmetric band structure. In the presence of disordered impurities, I(p)

in Eq.(C.1) should be understood as the disorder-average drag current, and Eq.(C.1) remains true

providing that the probability distribution of the impurity potential is even: p(εi) = p(−εi). The

proof of Eq.(C.1) is given in the following.

The noninteracting Hamiltonian of a two-terminal transport model has the following block-

1Nevertheless, we note that recent experiments showed an unexpected nonzero drag current at the graphene charge-

neutrality point [133], which has been associated with disordered charge puddles due to materials imperfections [110,

134].
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tridiagonal form:

H0 =



. . . H−m−1,−m

H−m,−m−1 H−m,−m + V−m H−m,−m+1

H−m+1,−m
. . . Hm−1,m

Hm,m−1 Hm,m + Vm Hm,m+1

Hm+1,m
. . .


where m labels the principle layers, H denotes the corresponding hopping matrices, and V repre-

sents the diagonal potential matrices. In the active wire we have imposed V−m = −Vm while in

passive wire we have V = 0. For a real-space model with structural inversion symmetry, we have

Hmn = H−m,−n. In this case, eigenvectors of H0 emerge in pairs with opposite eigenvalues: Pro-

viding Ψ(κ) is a certain eigenvector satisfying H0Ψ
(κ) = ε(κ)Ψ(κ), one can derive its pairing eigen-

vector Ψ(−κ) which satisfies H0Ψ
(−κ) = ε(−κ)Ψ(−κ), where ε(−κ) = −ε(κ) and ψ(−κ)∗

−i = ψ
(κ)
i ηi, i

being a real-space index and η being a vector whose explicit form, although mathematically deriv-

able, does not need to be known. Since H0 is real and because of the inversion symmetry, we have

|ψ(−κ)
−i | = |ψ(κ)

i | and thus the value of ηi can only be −1 or 1. Such eigenvector pairing reflects

the physical picture that, if Ψ(κ) corresponds to an electron scattering state incident from one side

of the device, on the other half of the spectrum there should equally exist a hole state, denoted by

Ψ(−κ), incident from the other side.

Using the Lehmann representation, the retarded noninteracting Green’s function can be for-

mally written as [60]

GR
0,ij(E) =

∑
κ

ψ
(κ)
i ψ

(κ)∗
j

E − ε(κ) + i0+
. (C.2)

Using the symmetry of the wavefunction, we further get

GR
0,ij(E) = −ηiηj

[∑
κ

ψ
(−κ)
−i ψ

(−κ)∗
−j

−E − ε(−κ) + i0+

]∗
. (C.3)

The quantity in the bracket is easily recognized as GR
0,−i,−j(−E). Thus we find GR

0,ij(E) =

−ηiηj[GR
0,−i,−j(−E)]∗. Similarly, taking into account the respective Fermi-Dirac distributions in

the leads, the lesser Green’s function can be written as [135]

G<
0,ij(µ,E) = i

∑
α=L,R

f(E − µα)
∑
κ∈α

δ(E − ε(κ))ψ
(κ)
i ψ

(κ)∗
j . (C.4)

With some straightforward algebra, we can continue writing

G<
0,ij(µ,E) = ηiηj

∑
α

i [1− f(−E + µα)]
∑
κ∈α

δ(−E − ε(−κ))ψ
(−κ)∗
−i ψ

(−κ)
−j
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= ηiηj
[
G>

0,−i,−j(−µ,−E)
]∗
, (C.5)

where we have used the identities δ(x) = δ(−x) and 1/(ex+1) = 1−1/(e−x+1). In the particular

case V = 0, in addition to the electron-hole symmetry, there emerges another pair of scattering

states incident from opposite directions with the same energy and flipped wavefunctions. This

leads to the relations GR
0,ij(E) = GR

0,−i,−j(E) and G</>
0,ij (E) = G

</>
0,−i,−j(E).

Putting everything into context, upon flipping the sign of the chemical potential in the active

wire (µ(a) → −µ(a)) while keeping µ(p) fixed, we have the noninteracting Green’s functions change

in the following way:

G
R(p)
ij (µ(a), E) = G

R(p)
−i,−j(−µ(a), E) (C.6a)

G
</>(p)
ij (µ(a), E) = G

</>(p)
−i,−j (−µ(a), E) (C.6b)

G
R(a)
ij (µ(a), E) = −ηiηj

[
G

R(a)
−i,−j(−µ(a),−E)

]∗
(C.6c)

G
<(a)
ij (µ(a), E) = ηiηj

[
G
>(a)
−i,−j(−µ(a),−E)

]∗
, (C.6d)

where we have omitted the 0 subscript as later on we will see that the interacting Green’s func-

tions also follow these relations. The argument µ(p) has also been omitted for simpler notations.

Plugging Eqs.(C.6b) and (C.6d) into Eq.(4.5a) and making use of the fact η2
i = 1, we get

P
<(p/a)
ij (µ(a), E) = P

<(p/a)
−i,−j (−µ(a), E) =

[
−P>(p/a)
−i,−j (−µ(a),−E)

]∗
. (C.7)

Applying Eq.(C.7) to the Kramers-Kronig relation (4.6a), we find

P
R(p/a)
ij (µ(a), E) = P

R(p/a)
−i,−j (−µ(a), E). (C.8)

In our Coulomb drag calculations, we take W ≈ V PV . Therefore, according to Eq.(4.8), in

conjunction with Eqs.(C.6b) and (C.6d), we have

Σ
</>(p)
C,ij (µ(a), E) = Σ

</>(p)
C,−i,−j(−µ

(a), E), (C.9)

Σ
<(a)
C,ij (µ(a), E) = ηiηj

[
Σ
>(a)
C,−i,−j(−µ

(a),−E)
]∗
.

Using the Kramers-Kronig relation (4.6a) again, we get

Σ
R(p)
C,ij (µ(a), E) = Σ

R(p)
C,−i,−j(−µ

(a), E), (C.10)

Σ
R(a)
C,ij (µ(a), E) = −ηiηj

[
Σ

R(a)
C,−i,−j(−µ

(a),−E)
]∗
.
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Applying the relations (C.6), (C.9), and (C.10) to the recursive form of the Dyson equation GR =

GR
0 + GR

0 ΣR
CG

R
0 + · · · 2 and the Keldysh equation [44] G< = (1 + GRΣR

C)G<
0 (1 +GRΣR

C)† +

GRΣ<
CG

R†, we immediately get back to Eq.(C.6). In the presence of disorder, the CPA iteration

needs to be carried out as well. Using Eq.(C.6) together with the Eq.(3.18), one can easily ver-

ify that ΣCPA follows the same relations as in Eqs.(C.9) and (C.10), providing that the impurity

potential probability is an even function with respect to both the energy and the spatial position.

Therefore, the relations in Eq.(C.6) stay true throughout the self-consistent calculation. Now we

can draw conclusion about how the drag current changes when µ(a) is flipped:

I
(p)
L (µ(a), µ(p)) =

∫
dETr[G>(p)(µ(a), µ(p))Σ

<(p)
L −G<(p)(µ(a), µ(p))Σ

>(p)
L ]

=

∫
dETr[G>(p)(−µ(a), µ(p))Σ

<(p)
R −G<(p)(−µ(a), µ(p))Σ

>(p)
R ]

=I
(p)
R (−µ(a), µ(p)) = −I(p)

L (−µ(a), µ(p)), (C.11)

where we have used the charge conservation law IL + IR = 0 and the simple fact about the lead

self-energy: Σ
</>(p)
L,ij (E) = Σ

</>(p)
R,−i,−j(E) due to the structural symmetry.

In the other situation where µ(a) is fixed while µ(p) is flipped instead, one can derive

G
</>(p)
ij (µ(p), E) = ηiηj

[
G
>/<(p)
ij (−µ(p),−E)

]∗
,

Σ
</>(p)
L,ij (µ(p), E) = ηiηj

[
Σ
>/<(p)
L,ij (−µ(p),−E)

]∗
, (C.12)

which leads to the other half of Eq.(C.1): I(p)
L (µ(a), µ(p)) = −I(p)

L (µ(a),−µ(p)).

2Taking the second term in the Dyson equation as an example, GR(a)
0,ik Σ

R(a)
kl G

R(a)
0,lj (µ(a), E) = [(−ηiηk) G

R(a)
0,−i,−k

(−ηkηl)ΣR(a)
−k,−l(−ηlηj)G

R(a)
0,−l,−j(−µ(a),−E)]∗ = (−ηiηj) [G

R(a)
0,−i,−kΣ

R(a)
−k,−lG

R(a)
0,−l,−j(−µ(a),−E)]∗. Repeated in-

dices are summed over.
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[83] E. Muñoz, C. J. Bolech, and S. Kirchner, Universal Out-of-Equilibrium Transport in Kondo-

Correlated Quantum Dots: Renormalized Dual Fermions on the Keldysh Contour, Phys.

Rev. Lett. 110, 016601 (2013).

[84] P. Haase, S.-X. Yang, T. Pruschke, J. Moreno, and M. Jarrell, Dual-fermion approach to the

Anderson-Hubbard model, Phys. Rev. B 95, 045130 (2017).

[85] G. Li, Hidden physics in the dual-fermion approach: A special case of a nonlocal expansion

scheme, Phys. Rev. B 91, 165134 (2015).
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[89] J. Kroha, T. Kopp, and P. Wölfle, Self-consistent theory of Anderson localization for the

tight-binding model with site-diagonal disorder, Phys. Rev. B 41, 888 (1990).

121



Bibliography

[90] T. Markussen, R. Rurali, A.-P. Jauho, and M. Brandbyge, Scaling Theory Put into Practice:

First-Principles Modeling of Transport in Doped Silicon Nanowires, Phys. Rev. Lett. 99,

076803 (2007).

[91] L. G. Caron and C. Bourbonnais, Two-cutoff renormalization and quantum versus classical

aspects for the one-dimensional electron-phonon system, Phys. Rev. B 29, 4230 (1984).

[92] C. Bourbonnais and L. G. Caron, Renormalization group approach to quasi-one-

dimensional conductors, in Series on Advances in Statistical Mechanics (World Scientific,

1991).

[93] R. Shankar, Renormalization-group approach to interacting fermions, Rev. Mod. Phys. 66,

129 (1994).

[94] T. Giamarchi, Quantum physics in one dimension, vol. 121 (Oxford university press, 2004).

[95] Y. Jompol, C. Ford, J. Griffiths, I. Farrer, G. Jones, D. Anderson, D. Ritchie, T. Silk, and

A. Schofield, Probing spin-charge separation in a Tomonaga-Luttinger liquid, Science 325,

597 (2009).

[96] H. Ishii, H. Kataura, H. Shiozawa, H. Yoshioka, H. Otsubo, Y. Takayama, T. Miyahara,

S. Suzuki, Y. Achiba, M. Nakatake, et al., Direct observation of Tomonaga–Luttinger-liquid

state in carbon nanotubes at low temperatures, Nature 426, 540 (2003).

[97] J. Voit, One-dimensional Fermi liquids, Rep. Prog. Phys 58, 977 (1995).

[98] M. Grumet, P. Liu, M. Kaltak, J. Klimes, and G. Kresse, Beyond the quasiparticle approxi-

mation: Fully self-consistent GW calculations, Phys. Rev. B 98, 155143 (2018).
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