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Abstract
One of the earliest results in Extremal Combinatorics is Mantel’s theorem from 1907

which says that the largest triangle-free graph on a given number of vertices is the

complete bipartite graph with sizes of partition classes as equal as possible. In 1961

Turán asked the analogous question for 3-uniform hypergraphs - what is the largest

3-uniform hypergraph on a given vertex set with no tetrahedron? To this date, this

number is unknown even asymptotically. Since the original question by Turán a new

branch in Combinatorics, called hypergraph Turán-type problems, emerged.

A typical Turán-type problem for an r-uniform hypergraph F asks for the max-

imum number of edges in an r-uniform hypergraph on given number of vertices

without a copy of F ; this number is called the Turán number of F . The major part

of this thesis is devoted to such problems. In particular, we generalize and extend

the classical stability method; a method pioneered by Erdős and Simonovits that is

ubiquitous in the study of Turán-type problems. The developed method, referred

as local stability method, is generically applicable and is of independent interest. In

particular, it allows us to find new Turán numbers of several families of hypergraphs.

Furthermore, we solve a conjecture of Frankl and Füredi from 1980’s by determining

the Turán number of a hypergraph called generalized triangle, for uniformities five

and six.

In the final part of the thesis we make some progress on one of the old conjectures

of Erdős which states that every triangle-free graph on n vertices contains a subset of

n/2 vertices that spans at most n2/50 edges. We prove the conjecture under several

natural assumptions, improving and generalizing previous results of of Keevash,

Krivelevich and Sudakov.
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Abrégé
L’un des premiers résultats en Combinatoire Extrémale est le théorème de Mantel

de 1907: le plus grand graphe sans triangle sur un certain nombre de sommets est le

graphe biparti complet avec des classes de séparation ayant des tailles aussi égales

que possible. En 1961 Turán a posé la question analogue sur les hypergraphes 3-

uniforme: quel est le plus grand hypergraphe 3-uniforme sur un ensemble de sommets

dépourvu de tétraèdre? À ce jour, ce nombre est inconnu, même asymptotiquement.

La question initiale de Turán a poussé à la création d’une nouvelle branche de la

Combinatoire, portée sur l’étude des problèmes similaires, dits de type Turán, sur

les hypergraphes.

Un problème typique de type Turán pour un hypergraphe r-unforme demande

le nombre maximum d’arêtes dans un hypergraphe r-uniforme sur le nombre de

sommets sans copie de F , nombre appelé nombre de Turán. La majeure partie de

cette thèse est consacrée à de tels problèmes. En particulier, nous généralisons et

étendons la méthode de stabilité classique initiée par Erdős et Simonovits et qui est

omniprésente dans l’étude des problems de type Turán. La méthode développée, ap-

pelé méthode de stabilité locale, est génériquement applicable et présente un intérêt

indépendant. En particulier, elle nous permet de trouver de nouveaux nombres de

Turán pour plusieurs familles de hypergraphes. En outre, nous résolvons une con-

jecture de Frankl et Füredi de 1980 par la détermination du nombre de Turán d’un

hypergraphe appelé triangle généralisé pour des uniformités de cinq ou six.

Enfin, dans la dernière partie de la thèse, nous faisons des progrès sur une an-

cienne conjecture de Erdős qui postule que tout graphe de n sommets sans trian-

gles contient un sous-ensemble de n/2 sommets qui produit au plus n2/50 arêtes.

Nous prouvons cette conjecture sous plusieurs hypothèses naturelles, améliorant et

généralisant ainsi des résultats antérieurs de Keevash, Krivelevich et Sudakov.
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Chapter 1

Introduction

I
n this chapter we introduce basic notation, give some brief historical

overview of the subject, describe the problems studied and state our

main results.

1.1. Notation

A hypergraph F is a pair (V (F), E(F)), where V (F) is a finite set whose elements

are called vertices and E(F), the edge set, is a collection of subsets of V (F). We

denote v(F) = |V (F)| and e(F) = |E(F)|. The cardinality of the vertex set is

called the order of F and the cardinality of E(F) is the size of F . When there is

no confusion we will abbreviate E(F) by F , that is, we identify the hypergraph F

by its edge set. If we write F ∈ F , it means F is an edge from E(F). We call a

hypergraph r-uniform or simply, r-graph if all the edges have exactly r elements.

As a separate case, 2-graphs are called graphs. To make a distinction between 2-

graphs and r-graphs, r ≥ 3, we use different style letters (for example, G and F

correspondingly).

The (edge) density of an r-graph F is defined as follows:

d(F) = |F|(
n
r

) .
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For a family of r-graphs F, we denote by Fn the subfamily of r-graphs on n vertices.

We use the notation m(F,n) to denote the size of the largest r-graph in Fn, that is,

m(F,n) = max
F∈Fn

|F|.

We say that an r-graph F covers pairs if every pair of vertices is contained in

an edge. For 2-graphs, these graphs are called cliques. An r-graph F is complete if

every r-subset of the vertex set is an edge. We denote by Kt the complete graph on

n vertices and by K(r)
t the complete r-graph on t vertices, for r ≥ 3. An r-graph F

is said to be k-partite if its vertex set V (F) can be partitioned into k sets so that

every edge in the edge set E(F) of F consists of a choice of at most one vertex from

each partition class. We denote by Ks,t the complete bipartite graph with partition

classes of sizes s and t. For general r ≥ 3, we denote by K(r)
t1,t2,...,tk the complete

k-partite r-graph with partition classes of sizes t1, t2, . . . , tk.

For any r-graph F we define the operation of blowing up as follows. Suppose

v(F) = k. Given any natural numbersm1,m2, . . . ,mk, we denote by F(m1,m2, . . . ,mk)

the blowup of F on m = ∑k
i=1 mi vertices, that is, we replace every vertex vi of F by

an independent set of size mi and each edge by the corresponding complete r-partite

r-graph. If for every i, j ∈ [k] |mi − mj| ≤ 1, then the blowup is called balanced.

When m1 = m2 = · · · = mk = m, the blowup is denoted simply by F(m).

Given two r-graphs F and H, we say that they are isomorphic if there is an edge-

preserving bijective map between the vertex sets, that is a map f : V (H) → V (F)

such that for any r-tuple I ⊆ V (H), f(I) ∈ F if and only if I ∈ H. For two r-graphs

F and G on the same vertex set, the edit distance between them, denoted by d(F ,G),

is defined as

d(F ,G) = |F4G|.

A hypergraph (graph)H is a subhypergraph (subgraph) of another hypergraph (graph)

F if V (H) ⊆ V (F) and E(H) ⊆ E(F). For simplicity we use the term subgraph both

for hypergraphs and graphs. For an r-graph F and a subset X ⊆ V (F) we denote

by F [X] the induced subgraph of F by X, that is, the r-graph on vertex set X with

edge set being those edges of F that contain only the vertices in X. In an r-graph

20



F , the link of the vertex v is defined as LF(v) = {I|I ∪ {v} ∈ F and v /∈ I}. More

generally, the link of any tuple I is defined as, LF(I) = {J |J∩I = ∅ and I∪J ∈ F}.

For two hypergraphs F andH, F is calledH-free if it does not contain a subgraph

isomorphic to H. For an r-graph F and a family of r-graphs H, we say that F is

H-free if F is H-free for every H ∈ H. For a family of r-graphs F, we denote by

Forb(F) the family of all F-free r-graphs. When F = {F} for some r-graph F , we

simply write Forb(F) instead of Forb(F).

1.2. Turán-type Problems For Graphs

In Extremal Combinatorics a typical problem asks to determine or estimate the size

of the largest configuration with a given property. One of the earliest results in this

area, Mantel’s Theorem [Man07] determines the size of the largest graph without a

triangle, that is, K3.

Theorem 1.2.1 (Mantel, [Man07]). If G is a triangle-free graph on n vertices then

e(G) ≤ bn2/4c.

This is clearly the best possible, as one may partition the set of n vertices into

two sets of size bn/2c and dn/2e and form the complete bipartite graph between

them (in other words, the balanced blowup of an edge on n vertices). This graph

has no triangles and bn2/4c edges. Turán’s Theorem [Tur61] from 1941 generalizes

this result to all complete graphs Kt.

Theorem 1.2.2 (Turán, [Tur61]). If G is a Kt+1-free graph on n vertices then

e(G) ≤ b (t−1)n2

2t c.

This bound is tightly achieved by the balanced blowup of Kt on n vertices. Since

Turán’s theorem, many similar problems, often referred as Turán-type problems, have

emerged.

For a family of r-graphs F the Turán number ex(n,F) is defined to be the largest

number of edges in an F-free r-graph on n vertices. The definition of the Turán

number for a single r-graph F is analogous. A typical Turán-type problem asks to

find ex(n,F) for a given r-graph F and for all n (or for all sufficiently large n).
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For an r-graph F , we define the family of extremal examples as the family of all

r-graphs achieving the bound ex(n,F), that is G ⊂ Forb(F) such that for any n

(or for all sufficiently large n), m(n,G) = ex(n,F) and m(n,G) < ex(n,F), where

G = Forb(F) \G. Note that typically this family G is much smaller and has some

precise descriptive structure. For example, it can be derived from Theorem 1.2.2

that for F = Kt+1, the family G is the family of all balanced blowups of Kt.

A classical result in Extremal Graph Theory, obtained by Erdős, Stone and

Simonovits, determines ex(n,F) asymptotically for any family F of 2-graphs, except

the ones containing some bipartite graph.

Theorem 1.2.3 (Erdős, Stone, Simonovits, [Erd81, ES46]). For any finite family

of 2-graphs F, there exists n0 such that for all n ≥ n0,

ex(n,F) =
(

1− 1
minF∈F χ(F )− 1

)
n2

2 + o(n2),

where χ(F ) is the chromatic number of the graph F .

However, when the family F does contain a bipartite graph the theorem only tells

us that ex(n,F) = o(n2). To demonstrate how little we know about these numbers,

note that Turán numbers are not known even for as simple graphs as C8 (the cycle

on eight vertices) and K4,4 (the complete bipartite graph with four vertices on each

side). These numbers have applications also outside of Extremal Graph Theory,

such as Additive Combinatorics [EN77, Woo04] and Geometry [Erd46]. The follow-

ing celebrated Zarankiewicz problem is related to the Turán numbers of complete

bipartite graphs, Ks,t.

Let Z(m,n, s, t) be the largest integer for which there is an m× n matrix of 0’s

and 1’s containing Z(m,n, s, t) 1’s without an s× t submatrix consisting entirely of

1’s. In 1951 Zarankiewicz posed the problem of determining Z(n,n, 3, 3) for n ≤ 6.

While this original problem was solved shortly afterwards, the general problem of

determining Z(m,n, s, t) is widely open. It is not hard to see that this problem

is equivalent to determining the maximum number of edges in a Ks,t-free bipartite

graph with partition classes having sizes equal to n and m.

The most general bound on the numbers ex(n,Ks,t) were obtained by Kővári, Sós
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and Turán [KST54] who showed that for all s ≤ t, ex(n,Ks,t) = Os,t(n2−1/s). As for

lower bounds, constructions matching this upper bound were found by Erdős, Rényi

and Sós [ERS66] for s = t = 2, for s = t = 3 by Brown [Bro66] and for t ≥ s = 2 by

Füredi [F9̈6] (these results determine the right constants as well). For more general s

and t optimal constructions matching Kővári–Sós–Turán bound up to a constant are

only known when t is sufficiently larger than s [ARS99, KRS96]. These are geometric

constructions based on algebraic hypersurfaces of bounded degree with no grids of

size s×t. In such finite geometric construction there is a d-dimensional space, where

each vertex is joined to some collection of t-dimensional subspaces that contain it.

Here the degrees are around nt/d and the construction has around n1+(t/d) edges.

This motivated the following conjecture of Erdős and Simonovits which proposes

that one can always find such almost extremal constructions.

Conjecture 1.2.1 (Erdős, Simonovits, [Erd81, ES82]). For any finite family of

2-graphs G which contains a bipartite graph there exists a rational r > 0 and an

absolute constant c > 0 such that

lim
n→∞

ex(n,G)
n1+r = c.

Erdős and Simonovits also considered the following problem which can be viewed

as the inverse of the one above.

Conjecture 1.2.2 (Erdős, Simonovits, [Erd81]). For every rational number r ∈

(1, 2) there exists a graph G such that ex(n,G) = θ(nr).

While the first conjecture seems to be still far from its solution, a recent work of

Bukh and Conlon [BC] suggests a positive answer to Conjecture 1.2.2. They showed

that Conjecture 1.2.2 holds if in the statement we replace the single graph G by

a family of graphs G. Their proof is yet another application of random algebraic

method, which has been extensively used in Turán-type problems for bipartite graphs

(see [ARS99, BBK11, Buk, KRS96]).

To conclude, determining the asymptotics of Turán numbers for bipartite graphs

remains among the hardest problems in Extremal Combinatorics. An interested
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reader is referred to a comprehensive survey by Füredi and Simonovits on this sub-

ject [FS13].

1.3. The Turán Density and Its Properties

Using a simple averaging argument it is easy to see that for any family of r-graphs

F, the ratios
(
n
r

)−1
ex(n,F) form a non-increasing sequence of real numbers in [0, 1],

therefore their limit

π(F) := lim
n→∞

ex(n,F)(
n
r

)
exists. Indeed, by averaging over all n-vertex subsets in an r-graph on n+ 1 vertices

we obtain:

ex(n+ 1,F) ≤
(
n+ 1
n

)
ex(n,F)(
n+1−r
n−r

) = n+ 1
n+ 1− r ex(n,F),

which implies that ex(n+1,F)
(n+1

r ) ≤ ex(n,F)
(n

r)
. (This argument is originally by Katona,

Nemetz and Simonovits [Kat75].) π(F) is called the Turán density of F. The defini-

tion of Turán density for a single r-graph F is analogous. Observe that Turán density

of the family F captures the asymptotic behaviour of ex(n,F) unless π(F) = 0. So

for every family of r-graphs F, the first natural question is to determine π(F). The

answer to such question is usually referred as the (Turán) density result for the fam-

ily F. The second question is to determine ex(n,F) for all n (or for all sufficiently

large n). Such a result on ex(n,F) is called the (Turán) exact result for the family

F. Frequently one first obtains the density result, then the exact one. So now let us

see when is the density result non-trivial, that is, when does a family F of r-graphs

have non-zero Turán density?

If for an r-graph F , π(F) = 0 both F and the corresponding problem of deter-

mining ex(n,F) are called degenerate. As mentioned in the previous section, note

that all bipartite graphs are degenerate. For general r ≥ 2, it is easy to see that

π(F) > 0 if F is not an r-partite r-graph, since then the balanced blowup of an

r-edge on n vertices gives a non-zero lower bound on π(F). In fact, it shows that
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for every such F , π(F) ≥ r!
rr . Erdős [Erd64] proved that the opposite holds as well.

Theorem 1.3.1 (Erdős, [Erd64]). For any r ≥ 2 and any t ≥ 1, there exists

c = c(r, t) > 0 and n0 = n0(r, t) such that for all n ≥ n0,

ex
(
n,K(r)

t,t,...,t

)
≤ cnr−

1
tr−1 ,

where K(r)
t,t,...,t is the complete r-partite r-graph with partition classes of size t.

It is easy to see that Theorem 1.3.1 implies that π
(
K(r)
t,t,...,t

)
= 0 and hence,

π(F) = 0 for every r-partite r-graph. Now for any finite family of r-graphs F, π(F) ≤

minF∈F π(F) holds. (This inequality might be strict, we discuss this phenomenon

at the end of the section). Hence, if F contains an r-partite r-graph then π(F) = 0

by Theorem 1.3.1. It is easy to check that the opposite holds as well. If F does not

contain any r-partite r-graph then the balanced blowup of an r-edge on n vertices

gives a non-zero-lower bound on π(F), just as for a single graph case. So the only

degenerate graphs are the r-partite r-graphs. Consequently, a family of r-graphs

π(F) has non-zero Turán density if and only if it does not contain any r-partite

r-graph.

Theorem 1.3.1 shows that there are no Turán densities in the range (0, r!
rr ), the

numbers in this interval are called jumps. Let the set of all possible Turán densities

for r ≥ 2 be denoted by Γr, that is,

Γr = {π(F) : F is a family of r-graphs }.

Erdős-Stone-Simonovits Theorem stated earlier, completely characterizes Γ2. It says

that

Γ2 =
{

0, 1
2, 2

3, . . . , m− 1
m

, . . .
}

.

For general r ≥ 3, such a characterization is unknown. We say that a real number

α ∈ [0, 1) is a jump for r, if there exists c = c(α) > 0 such that Γr ∩ (α,α + c) = ∅.

Equivalently, α ∈ [0, 1) is a jump for r, if there exists c = c(α) > 0 such that for any

ε > 0 and any integer m, m ≥ r there exists n0 = n0(ε,m) such that any r-graph

G on n ≥ n0 vertices with e(G) ≥ (α + ε)
(
n
r

)
contains a subgraph H on m vertices
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with e(H) ≥ (α + c)
(
m
r

)
. From Erdős-Stone-Simonovits Theorem it follows that

every α ∈ [0, 1) is a jump for 2-graphs. Note that Theorem 1.3.1 implies that every

α ∈ [0, r!
rr ) is a jump for all r ≥ 2. The famous jumping constant conjecture of Erdős

says that each α ∈ [0, 1) is a jump for all r ≥ 2. This was disproved by Frankl and

Rödl [FR84]. They showed that for each r ≥ 3 an infinite sequence of non-jumps

exists. Until recently not much else was known about the structure of Γr, for r ≥ 3.

In 2012, Pikhurko [Pik14] obtained crucial results on the structure of these sets.

In particular, he showed that they have cardinality of the continuum, thus proving

that the sets of non-jumps for each r ≥ 3 have cardinality of the continuum as well.

However, still many questions remain unanswered in this area. For example, the

next two questions are credited to Erdős [Erd64]. Is r!
rr a jump for r ≥ 3? What are

the smallest non-jumps for each r ≥ 3?

We conclude this section by a small discussion of what is called, the non-

prinicipality of Turán densities for r ≥ 3. For any finite family of 2-graphs G, Erdős-

Stone-Simonovits theorem (Theorem 1.2.1) implies that π(G) = minG∈G π(G). So

we say that the Turán density for graphs is principal. The same is not true for

r-graphs, when r ≥ 3. Balogh [Bal02] showed a family of 3-graphs F such that

π(F) < minF∈F π(F), thus proving a conjecture of Mubayi and Rődl [MR02]. In

fact, even a family of two hypergraphs may be non-principal. Indeed, Mubayi and

Pikhurko [MP08] showed the existence of such families for every r ≥ 3.

1.4. Turán-type Problems for Hypergraphs

The very first Turán-type result for hypergraphs is the famous Erdős-Ko-Rado the-

orem (published in 1961 but proved in 1938, see [Erd87]). An r-graph is called

intersecting if it contains no two disjoint edges.

Theorem 1.4.1 (Erdős, Ko, Rado [EKR61]). If F is an intersecting r-graph on

n ≥ 2r vertices then

|F| ≤
(
n− 1
r − 1

)
.

In contrast to graphs, Turán-type problems turn out to be much harder for

hypergraphs. In 1961 Turán [Tur61], as a natural generalization of his result on
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complete graphs, proposed to determine the Turán numbers of complete r-graphs

on t vertices, K(r)
t , for r ≥ 3. To this date none of these numbers are known even

assymptotically for any t > r ≥ 3. Erdős offered $500 for the solution of any case

and $1000 for a general solution. The surveys of De Caen [DC91] and Sidorenko [Sid]

contain most of the known bounds on these numbers. Some progress on special cases

have been achieved in the past two decades but the best general known bound is

still from 1980’s by De Caen.

Theorem 1.4.2 (De Caen, [Cae83]). For any n ≥ t ≥ r,

ex
(
n,K(r)

t

)
≤
(
n

r

)
−

(
n
r

)
(
t−1
r−1

) × n− t+ 1
n− r + 1.

As for special cases, the most studied one is the first non-trivial one, that is,

t = 4, r = 3. In [Tur61] Turán conjectured that ex
(
n,K(3)

4

)
is obtained for the

graph T (3)
4 (n) defined as follows. Equipartition the vertex set [n] into V1,V2,V3. A

triple is an edge in T (3)
4 (n) if and only if it either intersects all Vi’s or contains two

vertices of Vi and one from V(i+1) mod 3. It is easy to check that T (3)
4 (n) has edge

density 5/9 and every four vertices span at most three edges, hence we get a lower

bound π
(
K(3)

4

)
≥ 5/9. Turán conjectured that this is the exact value of π

(
K(3)

4

)
.

Conjecture 1.4.1 (Turán, [Tur61]). π
(
K(3)

4

)
= 5

9 .

Many people worked on this problem, including Katona, Nemetz, Simonovits,

de Caen, Giraud, Chung and Lu, Razborov and others, but the problem remains

unsolved up to this date. The main difficulty lies in the non-uniqueness of the con-

jectured extremal examples, as proven by Brown [Bro66] and Todorov [Tod84]. In

fact, Kostochka [Kos82] showed that if Conjecture 1.4.1 is true, then there are ex-

ponentially many non-isomorphic K(3)
4 -free graphs achieving the conjectured bound.

The current best known on π
(
K(3)

4

)
is by Razborov [Raz10], who used the Flag

Algebra method to obtain the bound π
(
K(3)

4

)
≤ 0.561666.

After Turán’s original question on K(r)
t , people started to study Turán numbers

of other hypergraphs, which on top of being interesting on their own, also helped

the community to develop various methods in this area, in hopes of being useful for
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attacking the original problem. Nevertheless, the Turán numbers are exactly known

only for a handful number of hypergraphs. The survey of Keevash [Kee11a] includes

all such numbers known up to 2011. It is also worth to mention that almost all of

these numbers are only known for sufficiently large n, for smaller n these problems

are much harder, at least the methods available in the literature do not apply.

1.5. A Quick Glimpse Into The Methodology

In the course of recent years, many powerful methods have been developed in the the-

ory of Turán-type problems, including but not limited to the stability method, flag

algebras, algebraic and probabilistic methods. See the survey of Keevash [Kee11a]

for in-depth overview of all these methods. In this thesis we mainly use the sta-

bility method. It is a powerful tool for problems when the extremal (conjectured)

configuration is unique. For graphs it was introduced in late 1960’s by Erdős and

Simonovits who obtained the stability result for Turán’s theorem.

Theorem 1.5.1 (Erdős, Simonovits, [Sim68]). For any ε > 0 there exists δ > 0

such that if G is a Kt+1-free graph with at least (1− δ) ex(n,Kt+1) edges then there

exists a partition of the vertices of G, say {P1,P2, . . . ,Pt} such that

t∑
i=1

e(G[Pi]) < εn2.

Turán’s theorem implies that the largest Kt+1-free graph on given number of

vertices is the balanced blowup of Kt. So, informally speaking, this stability result

says that any Kt+1-free graph G on n vertices with approximately ex(n,Kt+1) many

edges is “close” to the balanced blowup of Kt with respect to the edit distance.

In general, the stability method allows us to obtain the exact result for a family of

hypergraphs (graphs) or a single hypergraph (graph) once the corresponding stability

result is settled, given that the (conjectured) extremal configuration is unique. For

any Turán-type problem the method has two main steps. First, one shows that

every graph or hypergraph that has edge density close to the optimal (conjectured)

one, has approximately the “correct” structure. The second step is to show that any
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imperfection in the structure leads to a suboptimal configuration.

For hypergraphs the stability method was first used by Keevash and Mubayi

in [KM04]. The same year, Füredi, Simonovits [FS05] and Keevash, Sudakov [KS05a]

independently applied stability approach to determine the Turán number of the

Fano plane, the finite projective plane of order two, thus proving a conjecture of

Sós from 1976. After that, this method became more popular in hypergraph Turán

theory([FPS05, FPS06, KS05b, Mub06, Pik08, Pik05]), even for degenerate problems

([KM10, MV07]). We further discuss the method in Chapter 3.

Together with stability approach, we also use the Lagrangian function. For hy-

pergraphs it was introduced independently by Frankl and Rödl [FR84] and Sidorenko

[Sid87], generalizing the work of Motzkin and Straus [MS65], who used the La-

grangian function for graphs to give a new proof of Turán’s Theorem. The La-

grangian of an r-graph F is defined as follows:

λ(F) = max
µ∈M(F)

∑
F∈F

∏
v∈F

µ(v),

whereM(F) is the set of all probability distributions on the vertex set V (F), that

is, the set of functions µ : V (F) → [0, 1] such that ∑v∈V (F) µ(v) = 1. One can

think of the Lagrangian of an r-graph as the probability of sampling an edge given

some distribution on vertices. We describe how Lagrangians are used for Turán-type

problems in full detail in Section 2.2. But let us here mention one of its properties

to give a glimpse how the Turán density of an r-graph is linked to the Lagrangian

of some family of r-graphs.

For any two r-graphs F and G, any edge-preserving map ϕ : V (F) → V (G) is

called homomorphism, that is, for every F ∈ F , ϕ(F ) ∈ G. If such a map exists

we say that F admits a homomorphism to G. G is called F -hom-free if there is no

homomorphism from F to G. For a family of r-graphs F, we say that G is F-hom-free

if G is F -hom-free for every F ∈ F. The following lemma was first established by

Frankl, Rödl [FR84] and independently by Sidorenko in [Sid87].

29



Lemma 1.5.2. For any family F of r-graphs,

π(F) = r! sup
G∈Forbhom(F)

λ(G),

where Forbhom(F) is the family of all r-graphs that are F-hom-free.

In this thesis we develop a generalization of the classical stability method by

utilizing the Lagrangian function; we call it local stability method (see Chapter 3).

This method is a tool to obtain the exact Turán result from the corresponding

Turán density result. One does so by proving stability around the extremal family

and stability in weighted (Lagrangian) setting (this is obtained using the density

result). Then further reductions allow to prove the stability only in some local

neighbourhood of the extremal configuration. In the method we also use the so-called

symmetrization procedure, whose pioneers were Zykov [Zyk49] and Sidorenko [Sid87].

1.6. Our Results

We study Turán-type problems for hypergraphs and a conjecture of Erdős on triangle-

free graphs. In particular, we develop previously mentioned local stability method

and apply it to find new Turán numbers for several hypergraphs. Next we discuss

all our results briefly.

1.6.1. The Turán Number Of The Generalized Triangle

The generalized triangle, Tr is an r-graph on vertex set {1, 2, . . . , 2r− 1} with three

edges, {1, 2, . . . , r}, {1, 2, . . . , r− 1, r+ 1} and {r, r+ 1, . . . , 2r− 1}. (Alternatively,

once could adopt a more symmetric definition, that is, with edges {1, 2, . . . , r},

{r, r + 1, . . . , 2r − 1}, {1, 2, . . . , r − 1, 2r − 1}, but we adopt the first version as it

is easier to think of as an “extension” of two edges sharing (r − 1)-vertices.) The

origins of the question on the Turán number of the generalized triangle, go back to

Katona [Kat75]. As a generalization of Mantel’s theorem for graphs, he proposed to

study the Turán number of the family of all r-graphs with three edges such that one

edge contains the symmetric difference of the other two (denoted by Tr, r ≥ 3). For

30



r = 3 this question was answered by Bollobás in [Bol74] who showed that the Turán

number of this family is the same as the one for the family where we require two of

the edges intersect in exactly (r − 1) points. More formally, Σr is defined to be the

family of all r-graphs with three edges D1,D2,D3 such that |D1 ∩D2| = r − 1 and

|D14D2| ⊆ D3. Bollobás also conjectured that the Turán numbers of the families

Tr and Σr are the same for all r ≥ 3, which turned out not to be the case, as shown

by Shearer in [She96] (the conjecture fails starting r ≥ 10). However, the analogous

question for Σr and Tr remains open. In [FF89], where Frankl and Füredi showed

that these numbers are asymptotically the same, also posed the following conjecture.

Conjecture 1.6.1 (Frankl, Füredi, [FF89]). For every r ≥ 3, there exists some n0

such that for all n ≥ n0, ex(n, Tr) = ex(n, Σr).

Frankl and Füredi also showed that the conjecture is true for r = 3 by deter-

mining the Turán number of T3. The conjecture for r = 4 follows from the results

of Pikhurko [Pik08] and Sidorenko [Sid87]. In Chapter 4 we determine the Turán

numbers of T5 and T6 for large n which together with density results obtained by

Frankl and Füredi [FF89] verify the conjecture for r = 5, 6. Recall that a Steiner

system S(m, r, t) is an r-graph on m vertices such that every t-set is contained in a

unique r-edge.

Theorem 1.6.1. There exists n0 such that for all n ≥ n0, ex(n, Tr) = ex(n, Σr)

for r = 5, 6. Moreover, there exists some n0 := n0(r) such that for all n ≥ n0 the

extremal graphs are the balanced blowups of unique Steiner systems S(11, 5, 4) and

S(12, 6, 5), for r = 5 and r = 6, respectively.

1.6.2. Turán Numbers of Some Extensions

The methods developed in this thesis are more generally applicable for determining

Turán numbers of so-called extensions. A pair of vertices of a hypergraph or a

graph is called uncovered if it is not contained in any edge. Given an r-graph G,

the extension of G, denoted by Ext(G), is an r-graph defined as follows. For every

uncovered pair P in G we add r − 2 new vertices vP1 , vP2 , . . . , vPr−2 to V (G), and add

the edge P ∪ {vP1 , vP2 , . . . , vPr−2} to G. For example, the generalized triangle is the
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extension of the r-graph on [r+ 1] with two r-edges, sharing (r− 1) vertices. In this

section we state our results on Turán numbers of extensions of certain graphs. Our

first result is related to the famous Erdős-Sós conjecture from 1962.

Conjecture 1.6.2 (Erdős, Sós). If G is a simple graph of order n with average

degree more than k − 2, then G contains every tree on k vertices as a subgraph.

This conjecture has been verified for several families of trees, and in early 1990’s

the proof of the conjecture for large enough k was announced by Ajtai, Komlós,

Simonovits and Szemerédi. We say that a tree is an Erdős-Sós-tree if it satisfies

the conjecture. Given a 2-graph G, define the (r − 2)-expansion of G to be the

r-graph obtained by adding (r − 2) vertices to G and enlarging each edge of G to

contain these vertices. In [Sid89] Sidorenko obtained the Turán density result for

the extensions of (r − 2)-expansions of sufficiently large Erdős-Sós-trees.

Theorem 1.6.2 (Sidorenko, [Sid89]). For every r ≥ 2, there exists Mr such that if

T is an Erdős-Sós-tree on t ≥Mr vertices then π(Ext(T )) = r!(t+ r− 3)−r
(
t+r−3
r

)
,

where T is the (r − 2)-expansion of T .

Note that the quantity (t+r−3)−r
(
t+r−3
r

)
above is the Lagrangian of the complete

r-graph on (t+ r− 3) vertices. In Chapter 5 we prove the following exact version of

Theorem 1.6.2.

Theorem 1.6.3. For every r ≥ 2, there exists Mr such that the following holds.

Let T be an Erdős-Sós-tree on t ≥Mr vertices and let T be the (r− 2) expansion of

T . Then there exists n0 such that the balanced blowup of K(r)
t+r−3 on n vertices is the

unique Ext(T )-free r-graph on n vertices with the maximum number of edges for all

n ≥ n0.

The next result concerns extensions of a different class of sparse hypergraphs.

Let K̄(r)
t denote the edgeless r-graph on t vertices. Mubayi [Mub06] determined the

Turán density of Ext(K̄(r)
t ) and Pikhurko [Pik05] obtained the corresponding exact

result.

Theorem 1.6.4 (Pikhurko, [Pik05]). For every t > r ≥ 3 there exists n0 such that

the balanced blowup of K(r)
t on n vertices is the unique Ext(K̄(r)

t+1)-free r-graph on

n ≥ n0 vertices with the maximum number of edges.
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Keevash [Kee11a] considered the following generalization of the above problem.

Let F be any r-graph that covers pairs, and let F+t be obtained from F by adding

new isolated vertices so that v(F+t) = t. (We have ∅+t = K̄(r)
t , where ∅ denotes the

null r-graph.) Keevash generalized the density argument from [Mub06] as follows.

Theorem 1.6.5 (Keevash, [Kee11a]). Let F be an r-graph that covers pairs with

v(F) ≤ t+ 1. If π(F) ≤ r!t−r
(
t
r

)
, then π(Ext(F+(t+1))) = r!t−r

(
t
r

)
.

We obtain the exact version of a slight weakening of Theorem 1.6.5.

Theorem 1.6.6. Let F be an r-graph that covers pairs with v(F) ≤ t. If π(F) <

r!t−r
(
t
r

)
then there exists n0 such that the balanced blowup of K(r)

t on n ≥ n0 vertices

is the unique Ext(F+(t+1))-free r-graph on n vertices with maximum number of edges.

The proofs of Theorem 1.6.3 and Theorem 1.6.6 share a common part; the local

stability around extremal configurations, therefore we prove these results in the same

chapter, Chapter 5.

1.6.3. The Turán Number of The Extension of a Two-Matching

Let M2
(r) be the r-graph on [2r] with two disjoint edges, that is, a two-matching.

In [HK13] Hefetz and Keevash found the Turán number of Ext(M2
(3)) and showed

that the unique extremal graphs are the balanced blowups of K(3)
5 on n vertices, for

large enough n. In the same paper, Hefetz and Keevash also posed the question of

determining the Turán number of Ext
(
M2

(r)
)
, for r ≥ 4 and suggested that the

extremal configurations are star-like objects. Let us define them formally.

We say that a partition (A,B) of the vertex set of an r-graph F is a star-partition

if for every F ∈ F , |F ∩A| = 1. We say that F is a star if it admits a star-partition.

We denote by S(r)(n) the r-graph on n vertices that is a star and has the maximum

possible number of edges. It is easy to check that |S(r)(n)| =
(
1− 1

r

)r−1 (n
r

)
+ o(nr)

and, moreover, if (A,B) is a star-partition of S(r)(n), then |A| = n
r

+ o(n). Hefetz

and Keevash conjectured that for r ≥ 4 and large enough n, the extremal graph for

Ext
(
M2

(r)
)
is S(r)(n). We settle this conjecture positively.
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Theorem 1.6.7. For every r ≥ 4, there exists n0 := n0(r) such that for all n ≥ n0,

the largest Ext
(
M2

(r)
)
-free r-graph on n vertices is unique and is S(r)(n).

1.6.4. Erdős’s Conjecture On Sparse Halves

Mantel’s theorem implies that every graph on n vertices with more than n2/4 edges

contains a triangle. The following generalization of Mantel’s theorem was first stud-

ied by Erdős, Faudree, Rousseau and Schelp [EFRS94]. Suppose for given 0 < α ≤ 1

every set of αn vertices of a graph spans more than βn2 edges. What is the smallest

β = β(α) such that every such graph necessarily contains a triangle? In particular,

one of the old and favorite conjectures of Erdős is on β(1
2). We say that a graph has

a sparse half if there is a set of bn/2c vertices that spans at most n2/50 edges.

Conjecture 1.6.3 (Erdős, [Erd75b]). Every triangle-free graph has a sparse half.

Here the bound 1/50 is tight, it is achieved by the balanced blowup of C5, the

cycle on five vertices, and the balanced blowup of the Petersen graph. To the best

of our knowledge, no other extremal examples are known.

In [Kri95a] Krivelevich proved that the conjecture holds if 1/50 is replaced by

1/36. He also showed that it is true for triangle-free graphs with minimum degree at

least 2n/5. Later, Keevash and Sudakov [KS06a] showed that the conjecture holds

for graphs with average degree 2n/5. We improve on these previous results in three

directions.

Theorem 1.6.8. Every triangle-free graph on n vertices with minimum degree at

least 5n/14 has a sparse half.

Theorem 1.6.9. There exists some constant α > 0 such that every triangle-free

graph on n vertices with average degree (2/5− α)n has a sparse half.

Theorem 1.6.10. There exists δ > 0 such that if a triangle-free graph on n vertices

is in the δ-neighbourhood (w.r.t. edit distance) of the balanced blowup of the Petersen

graph, then it has a sparse half.
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1.6.5. Summary

Despite substantial technical differences in our methods for graphs and hypergraphs

they still have some similarities in fashion, in the spirit of recent results of Lovász [Lov11]

and Razborov [Raz13a]. To explain, let us mention that Lovász [Lov11] proved the

Sidorenko conjecture locally in the neighborhood of the conjectured extremal exam-

ple, and Razborov [Raz13a] accomplished a similar goal for the Caccetta-Häggkvist

conjecture. And in this sense, some of our results can also be viewed as proving cer-

tain conjectures around some local neighbourhoods of extremal examples. But for

hypergraphs, in addition, we also establish a framework which under some technical

conditions allows one to derive the global result from its local version.

The rest of this thesis is organized as follows. Chapter 2 is a brief review of

some results in Extremal Graph Theory which we will be used in the subsequent

chapters. In Chapter 3 we develop the local stability method. Afterwards we apply

this method to prove Theorems 1.6.1, 1.6.3, 1.6.6, 1.6.7 in Chapters 4, 5 and 6

respectively. Chapter 7 is devoted to Erdős’s conjecture on sparse halves. Finally

in Chapter 8 we discuss some directions for future research.
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Chapter 2

The Lagrangian Function

T
he main motivation behind this chapter is to show the applications

of the Lagrangian function in Turán-type problems. To do so, we

discuss a notion in combinatorics called supersaturation, discovered

by Erdős and Simonovits [ES83] in 1983. Then we introduce weighted graphs and

show how certain parameters are related in weighted and non-weighted setting, in

particular for families of graphs which are closed under the operation of taking

blowups.

2.1. Supersaturation and Homomorphisms

Suppose we are given two r-graphs F and H on n vertices where n is some large

number. If we know that G has density slightly above the Turán density of F then

G must contain a copy of F by definition. The supersaturation tells us that in fact

G contains many copies of F , not just one.

Lemma 2.1.1 (Erdős, Simonovits, [ES83]). For any r-graph F and ε > 0 there exist

δ > 0 and n0 such that if G is an r-graph on n ≥ n0 vertices with |G| > (π(F)+ε)
(
n
r

)
then G contains at least δ

(
n

v(F)

)
copies of F .

Supersaturation is quite useful in Turán-type problems, for example, it can be

used to show that blowing up does not change the Turán density of a graph. The
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following lemma is folklore (see, for example, [Kee11b]). Recall that for an r-graph

F , F(m) denotes the balanced blowup of F on m v(F) vertices where each vertex

is being replaced by an independent set of size m.

Lemma 2.1.2. For any m ∈ N and any r-graph F , π(F) = π(F(m)).

Let us recall the definition of homomorphisms from Section 1.1. For any two

r-graphs F and G, any edge-preserving map ϕ : V (F) → V (G) is called homomor-

phism, that is, for every F ∈ F , ϕ(F ) ∈ G. G is called F -hom-free if there is no

homomorphism from F to G. For a family of r-graphs F, we say that G is F-hom-free

if G is F -hom-free for every F ∈ F.

Fact 2.1.3. G is F-hom-free if and only if for every integer m, G(m) is F-free.

It is natural to try to extend the notions of Turán number and the Turán den-

sity for homomorphisms. Let exhom(n,F) be the maximum number of edges in an

F -hom-free r-graph on n vertices and πhom(F) = limn→∞ exhom(n,F). However,

Lemma 2.1.2 and Fact 2.1.3 together imply that πhom(F) = π(F). Using this,

we can actually approximate the Turán density of any r-graph. Let us show how

F -hom-free graphs can be used to give a lower bound on π(F).

Given an r-graph F , fix some N and suppose G is a largest F -hom-free r-graph

on N vertices with α
(
N
r

)
edges. It follows that π(F) ≤ α. On the other hand, since

G is F -hom-free, for any m the blowup G(m) is F -free, hence

π(F) ≥
αmr

(
N
r

)
(
mN
r

) = α
r−1∏
i=1

(
1− i

N

)
.

This gives an approximation of π(F) with an error-term of cardinality O( r2

N
). Of

course, the larger N , the better the approximation, but even for small values of N it

can be hard to find such a graph G. In this perspective, the theory of flag algebras

developed by Razborov [Raz07] gives more sophisticated search techniques.
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2.2. Lagrangians

The Lagrangian function for hypergraphs was introduced independently by Frankl

and Rödl [FR84] and Sidorenko [Sid87], generalizing the work of Motzkin and

Straus [MS65], who used the Lagrangian function for graphs to give a new proof

of Turán’s Theorem in 1965. In this section we prove some standard properties of

the Lagrangian and provide some simple applications of the Lagrangian method for

Turán-type problems.

Let F be an r-graph, recall the definition of M(F) from the introduction, it

is the set of all probability distributions on V (F), that is, the set of functions

µ : V (F) → [0, 1] such that ∑v∈V (F) µ(v) = 1. Let us also remind the definition of

the Lagrangian λ(F) of an r-graph F :

λ(F) := max
µ∈M(F)

λ(F ,µ),

where λ(F ,µ) = ∑
F∈F

∏
v∈F µ(v). For a family of r-graphs F, the Lagrangian is

defined as λ(F) := supF∈F λ(F). Note that we can look at λ(F ,µ) as a multivariable

function of variables µv := µ(v), v ∈ V (F). For an r-graph F and any µ ∈ M(F)

we define the support of µ to be the following subset of vertices:

suppF(µ) := {v ∈ V (F)|µ(v) > 0}.

We skip the index F whenever the graph F is clear from the context. The

following properties of Lagrangians were first established in [FR84] and [Sid87], we

include the proof for completeness. Recall that for X ⊆ V (F), F [X] stands for the

subgraph of F induced by X.

Lemma 2.2.1. Let F be an r-graph. Suppose µ∗ ∈ M(F) is such that λ(F) =

λ(F ,µ∗) and supp(µ∗) is minimal, then

(i) F [supp(µ∗)] covers pairs,

(ii) ∂λ(F ,µ)
∂µv
|µ∗ = rλ(F), for every v ∈ supp(µ∗),
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Proof. Suppose F [supp(µ∗)] does not cover pairs. Let v1 and v2 be such that they

are not contained in any edge together. Then for any µ ∈ M(F), we can express

λ(F ,µ) as follows:

λ(F ,µ) = a · µv1 + b · µv2 + c,

where a, b and c are polynomials not depending on the variables µv1 and µv2 . Let

µi ∈M(F) be defined as follows,

µi(v) =



µ∗(v), if v 6= v1, v2

0, if v = vi,

µ∗(v1) + µ∗(v2), otherwise.

Since a·µv1+b·µv2 ≤ (µv1+µv2) max{a, b}, it follows that λ(F ,µ∗) ≤ max{λ(F ,µ1),λ(F ,µ2)},

therefore there exists µ with λ(F ,µ) = λ(F ,µ∗) and µv1 = 0 or µv2 = 0, which con-

tradicts to the minimality of supp(µ∗). Thus, there is no such pair of vertices v1,

v2.

By the minimality of supp(µ∗), µ∗ is an interior extremal point, therefore the

partial derivatives ∂λ(F ,µ)
∂µv
|µ∗ are equal for all v ∈ supp(µ∗). (This easily follows

using Lagrangian multipliers and by the definition of the feasibility region of the

Lagrangian function). Now let c := ∂λ(F ,µ)
∂µv
|µ∗ , then clearly

rλ(F ,µ∗) =
∑

v∈supp(µ∗)

∂λ(F ,µ)
∂µv

|µ∗µ∗(v) = c
∑

v∈supp(µ∗)
µ∗(v) = c · 1 = c,

as desired.

Corollary 2.2.2. For any 2-graph G, λ(G) = 1
2

(
1− 1

r−1

)
, where r := min{t : Kt /∈

G}.

Proof. A covering 2-graph is complete, hence Lemma 2.2.1 implies that the La-

grangian of a 2-graph is achieved on its maximum clique. It is easy to check that for

a clique on r vertices, the Lagrangian is achieved with the uniform measure, that is,

λ(Kr) =
(
r
2

)
1
r2 = 1

2

(
1− 1

r

)
. This finishes the proof.

Observe that the Turán theorem follows easily from Corollary 2.2.2 using the
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simple fact that for any r-graph F , |F| ≤ λ(F)nr. (The above argument essentially

repeats the proof of Motzkin and Straus [MS65]). Now let us show how the Turán

density for any family is related to the Lagrangian function. The following lemma

was first established by Frankl, Rödl in [FR84] and independently by Sidorenko in

[Sid87].

Lemma 2.2.3. For any family F of r-graphs,

π(F) = r! sup
G∈Forbhom(F)

λ(G),

where Forbhom(F) is the family of all r-graphs that are F-hom-free.

Proof. Let G ∈ Forbhom(F). First we show that π(F) ≥ r!λ(G). Any blowup (not

necessarily balanced) of G is F -free . Let m1,m2, . . . ,mv(G) be any integers with

m = ∑v(G)
i=1 mi. We have

π(F) ≥ lim
n→∞

|G(nm1,nm2, . . . ,nmv(G))|(
mn
r

) = r!λ(G,µ0),

where µ0 ∈ M(G) with µ0(vi) = mi

m
. This holds for any choice of integers mi,

that is, for any rational µ ∈ M(F). Since every non-rational µ ∈ M(F) can be

approximated by a sequence of rational µn ∈M(F), it follows that π(F) ≥ r!λ(G).

Now let us show the other direction. If ξ ∈M(G) denotes the uniform measure,

then

λ(G) ≥ λ(G, ξ) = |G|
v(G)r = |G|

r!
(

v(G)
r

) −O( 1
v(G)

)
= 1
r!d(G)−O

(
1

v(G)

)
,

where d(G) denotes the edge density of the graph G (recall the definition from the

introduction). But since π(F) = πhom(F), then π(F) is the limit supremum of d(G)

over all F -hom-free G and hence, λ(G) ≥ π(F)
r! , as desired.

We can further restrict the search of the graphs achieving the bound π(F) as

follows. We say that an r-graph F is dense if for every proper subgraph F ′, λ(F ′) <

λ(F). Note that dense graphs must cover pairs by Lemma 2.2.1. Thus we obtain

the following corollary from Lemma 2.2.3.
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Corollary 2.2.4. For any family F of r-graphs,

π(F) = r! sup
G∈Forbdense

hom (F)
λ(G),

where Forbdense
hom (F) is the family of all dense r-graphs that are F-hom-free.

Lemma 2.2.3 is very useful for determining Turán densities of graphs or families.

For example, classical Erdős-Stone Theorem is easily implied by it.

Corollary 2.2.5 (Erdős, Stone, [ES46]). Let F be a family of 2-graphs, then

π(F) = 1
2

(
1− 1

minF∈F χ(F)− 1

)
.

Proof. The result easily follows from Lemma 2.2.3 and from the fact that for any r

and any graph F , Kr is F -hom-free if and only if χ(F) > r.

Now let us show an application of the Lagrangian function to a Turán-type

problem for hypergraphs. Let Σr be defined as the family of all r-graphs with three

edges D1,D2,D3 such that |D1∩D2| = r−1 and D14D2 ⊆ D3. For demonstration,

we show Sidorenko’s argument on the Turán number of Σ4 for all n multiples of four.

Theorem 2.2.6 (Sidorenko, [Sid87]). ex(n, Σ4) =
(
n
4

)4
for all 4|n.

Proof. Let F be a Σ4-free graph on n vertices. It is enough to show that λ(F) ≤ 1/44.

Indeed, then from the definition of the Lagrangian it follows that |F| ≤
(
n
4

)4
and

as for the lower bound, the balanced blowup of K(4)
4 on n vertices clearly does not

contain any graph in Σ4.

Now let µ ∈ F be such that λ(F) = λ(F ,µ). Let X = supp(µ) and m = |X|. By

Lemma 2.2.1, F [X] covers pairs. Since F is Σ4-free, it follows that for any F ,F ′ ∈

F [X], |F ∩ F ′| ≤ 2. Thus for any two vertices u, v ∈ X, the links LF(u),LF(v) are

pairwise disjoint. The latter implies for any such pair u, v, the polynomials ∂λ(F ,µ)
∂µu

,
∂λ(F ,µ)
∂µv

have no common term. Thus, by Lemma 2.2.1 (ii),

4mλ(F) =
∑
v∈X

∂λ(F ,µ)
∂µv

≤
∑

1≤i<j<k<m
µvi
µvj

µvk
≤ m−3

(
m

3

)
,
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where the last inequality holds because∑1≤i<j<k<m µvi
µvj

µvk
is the third elementary

symmetric polynomial with m variables. From here it follows that

λ(F) ≤ (m− 1)(m− 2)
4!m3 ,

which is less than or equal to 1/44 unless m = 5 and moreover, the equality is

achieved only for m = 4. Thus it remains to show that m = 5 case cannot happen.

Indeed, for F [X] to cover pairs on m = 5 vertices it must have at least two edges,

hence there exist two edges F ,F ′ ∈ F [X] with |F ∩F ′| = 3. Then, there must be an

edge F ′′ covering the pair of vertices {u, v} = F4F ′. The edges F ,F ′,F ′′ together

induce a copy of a graph in Σ4.

From this result it follows that the balanced blowup of K(4)
4 , is an extremal

example for Σ4-free graphs, when n|4. In fact, Sidorenko [Sid87] showed that this

holds for all n large enough and even more, the balanced blowup of K(4)
4 on n

vertices is the unique extremal example. For these results, he used the so-called

symmetrization trick. The main idea is the following. For any r-graph F defined

by some forbidden configurations (f.e. Σ4-free) if there exist some two vertices that

are not covered by a common edge, we can delete one and clone the other without

introducing any forbidden subgraph nor decreasing the size of F . In fact, one can

apply this symmetrization operation to sets of vertices. For example, for Σ4-free

graphs, Sidorenko showed that for large enough n, any such graph on n vertices

with maximum edge density either can be “symmetrized” to a hypergraph on at

most four vertices that covers pairs (hence, it is K(4)
4 ) or to a hypergraph with small

minimum degree. In the latter case one can remove a vertex from this graph and

apply induction to the rest of the graph.

The essential idea of the symmetrization is to modify the graph until we reach

the optimal configuration (the one obtained by the Lagrangian argument) and then

show that the original graph is obtained from it by just blowing up the vertices

appropriately. So one can think of the symmetrization as a tool to obtain the Turán

number from the Lagrangian result.

However, in many cases the symmetrization alone does not give the desired
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result. One approach is to combine it with some kind of stability arguments. For

example, in [Pik05] Pikhurko used this approach to determine the Turán number

of the generalized triangle of uniformity four. In particular, he proved that Σ4-

free graphs are stable (we skip the rigorous definition of his notion of stability for

brevity). The problem with the symmetrization argument itself is that it is not clear

why it should preserve the property of being close to a 4-partite 4-graph? Could not

the deleting and cloning a large set of vertices change the graph structure sharply?

It might if we delete-clone a vertex of small degree. To overcome this potential

problem, Pikhurko suggested to iteratively and constantly remove vertices whose

degree becomes too small at any step of the symmetrization. This ensures that at

every deletion-cloning step we have the large minimum degree. Then, when reversing

one step, each undeleted vertex must have many incident edges, which forces all of

them to fit perfectly into the 4-partition.

In Chapter 3 we utilize the symmetrization further and prove a theorem (The-

orem 3.2.4), which provides a general framework for all families closed under the

operation of taking blowups to obtain stability from the Lagrangian result. For this

to work, we only require the stability to hold in some “local” setting. Note that our

argument also allows us to overcome the above discussed potential problem of low

degree vertices. For the proof we use the probabilistic method and induction.

2.3. Clonable Families

In this section we assume that all families of hypergraphs are closed under isomor-

phism. Let us first give an alternative definition of blowups of graphs. We say that

an r-graph G is obtained from an r-graph F by cloning a vertex v to a set W if

F ⊆ G, V (G) \ V (F) = W \ {v} and LG(w) = LF(v) for every w ∈ W . We say that

G is a blowup of F if G is isomorphic to an r-graph obtained from F by repeatedly

cloning and deleting vertices. We denote the set of all blowups of F by B(F). We

say that a family F of r-graphs is clonable if every blowup of any r-graph in F,

also lies in F. The Hypergraph Removal Lemma [Gow07, RS06a] (which we state in

Chapter 3) allows one to restrict many arguments related to Turán-type problems
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to clonable families, and some of the more general results of this paper hold for all

clonable families.

Let us introduce another class of hypergraph families, which are important for

us. For a family of r-graphs F, let

m(F,n) := max
F∈F

v(F)=n

|F|.

We say that F is smooth if there exists limn→∞m(F,n)/nr. For a smooth family

F we denote the above limit by m(F). Our first lemma establishes a connection

between clonable and smooth families.

Lemma 2.3.1. Every clonable family is smooth.

Proof. Let F be a clonable family of r-graphs. Let

d := lim sup
n→∞

m(F,n)
nr

.

We need to show that for every 0 < ε < 1 there exists N > 0 such that m(F,n)/nr ≥

d − ε for every n ≥ N . Let F ∈ F be chosen so that |F| ≥ (d − δ) v(F)r for

δ := ε/(d + 1). Let s := v(F). For a positive integer k, let F (k) be an r-graph

obtained by cloning every vertex of F to a set of size k. Then F (k) ∈ F, v(F (k)) = ks

and |F (k)| = kr|F| ≥ (d− δ)(ks)r. Therefore, for n ≥ (s− 1)r/δ, we have

m(F,n)
nr

≥ (d− δ)
(
sbn/sc
n

)r
≥ (d− δ)

(
1− s− 1

n

)r
≥ (d− δ)

(
1− (s− 1)r

n

)
≥ (d− δ)(1− δ) ≥ d− ε,

as desired.
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2.4. Weighted Graphs

For any r-graph F and any µ ∈M(F), we call the pair (F ,µ) a weighted graph. We

define the density λ(F ,µ) of a weighted graph (F ,µ), by

λ(F ,µ) :=
∑
F∈F

∏
v∈F

µ(v).

Note that the Lagrangian of F is just the density of the largest weighted graph

(F ,µ), over all µ ∈M(F).

If an r-graph F ′ is obtained from an r-graph F by cloning a vertex u ∈ V (F) to

a set W , µ ∈ M(F), µ′ ∈ M(F ′), then we say that (F ′,µ′) is a one vertex blowup

of (F ,µ), if µ(v) = µ′(v) for all v ∈ V (F) \ {u} and µ(u) = ∑
w∈W µ′(w). We say

that (F ′,µ′) is a blowup of (F ,µ) if (F ′,µ′) is isomorphic to a weighted r-graph

which can be obtained from (F ,µ) by repeatedly taking one vertex blowups. Two

weighted graphs (F ,µ) and (F ′,µ′) are isomorphic if there exists an isomorphism

ϕ : V (F) → V (F ′) between F and F ′ such that µ′(ϕ(v)) = µ(v) for every v ∈

V (F). As in the case of unweighted graphs, we generally do not distinguish between

isomorphic weighted graphs. We denote by B(F ,µ) the family of weighted graphs

isomorphic to the blowups of (F ,µ).

Remark 2.4.1. An r-graph F ′ is a blowup of F with V (F) = [n] if and only if there

exists a partition {P1,P2, . . . ,Pn} of V (F ′) such that {v1, v2, . . . , vr} ∈ F ′, vj ∈ Pij
for j ∈ [r] if and only if {i1, i2, . . . , ir} ∈ F . When F is understood from the context

we refer to P = {P1,P2, . . . ,Pn} as a blowup partition of F ′. If F covers pairs, that

is, for every u, v ∈ V (F), there exists some F ∈ F containing u and v, then the

blowup partition is unique up to the order of parts and its elements are the maximal

independent sets in F .

Let us also note that a weighted r-graph (F ′,µ′) is a blowup of (F ,µ) if and only

if there exists a partition as above with the additional property ∑v∈Pi
µ′(v) = µ(i),

for every i ∈ [n].

Next we define the notion of distance between graphs both in unweighted and

weighted setting. Recall that the edit distance for two unweighted graphs F and
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G on the same vertex set is defined as d(F ,G) = |F4G|. For an r-graph F and a

family of r-graphs H, let dH(F) be the edit distance from F to H, defined as

dH(F) = min
H∈H

v(H)=v(F)

|F4H|.

To define the distance between weighted graphs, we need couple of steps. If F1,F2

are two r-graphs such that V (F1) = V (F2) and µ ∈M(F1)(=M(F2)), we define

d′(F1,F2,µ) :=
∑

F∈F14F2

∏
v∈F

µ(v).

We define the distance between general weighted r-graphs (F1,µ1) and (F2,µ2), as

d((F1,µ1), (F2,µ2)) := inf d′(F ′1,F ′2,µ),

where the infimum is taken over all r-graphs F ′1,F ′2, with V (F ′1) = V (F ′2) and

µ ∈ M(F ′1) = M(F ′2) satisfying (F ′i ,µ) ∈ B(Fi,µi) for i = 1, 2. If (F ,µ) is a

weighted r-graph and F is a family of r-graphs we define the distance from (F ,µ) to

F as

dwF (F ,µ) := inf
F ′∈F,µ′∈M(F ′)

d((F ,µ), (F ′,µ′)).

Remark 2.4.2. Note that dw is not distance unless we identify any two weighted

graphs (F1,µ0) and (F2,µ0), where µ0 ≡ 0. Indeed, otherwise there would exist

distinct graphs with distance zero.

We write dF(F ,µ) instead of dwF (F ,µ), except for the cases when we want to em-

phasize the difference between weighted and unweighted distance. Next we explore

how weighted and unweighted distances are related.

For an r-graph F , let ξF ∈ M(F) denote the uniform distribution on V (F),

that is, ξF(v) = 1/ v(F ) for every v ∈ V (F). We will omit the index and write

ξ instead of ξF when F is understood from the context. It is easy to bound the

weighted distance of (F , ξ) to a family H by a function of unweighted distance as

dH(F , ξ) ≤ 1
nr dH(F). The other direction is more involved and we present it below.
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Lemma 2.4.1. For any clonable family H, if F is a graph with v(F) = n then

dH(F) ≤ r!n
n− r2

(
n

r

)
dwH(F , ξ).

Proof. Choose an arbitrary 0 < ε < 1 and let d := dwH(F , ξ). Let (B,µ) be a blowup

of (F , ξ) such that there exists H ∈ H satisfying d((B,µ), (H,µ)) ≤ d+ ε.

Let P = {P1,P2, . . . ,Pn} be a blowup partition of V (B). Suppose v1, v2, . . . , vr
are chosen independently at random from V (H) according to the distribution µ. Let

A be the event that that {v1, v2, . . . , vr} is a transversal of P , that is, |{v1, v2, . . . , vr}∩

Pj| ≤ 1 for every Pj ∈ P . Since µ(Pi) = 1/n for every 1 ≤ i ≤ n, we have

P [A] =
r−1∏
i=0

(
1− i

n

)
≥
(

1− r

n

)r
≥ 1− r2

n
.

Thus, it follows that

P [{v1, v2, . . . , vr} ∈ B4H | A] ≤ r!(d+ ε)n
n− r2 . (2.1)

Now consider v1, v2, . . . , vn to be chosen independently at random according to

the distribution given by µ, such that vi ∈ Pi for every i ∈ [n]. Let H′ and B′ be the

random subgraphs induced by {v1, v2, . . . , vn}, respectively, in H and B. It follows

from (2.1) and the linearity of expectation that

E [|B′4H′|] ≤ r!(d+ ε)n
n− r2

(
n

r

)
. (2.2)

As B′ is isomorphic to F , the inequality (2.2) implies the lemma.

Lemma 2.4.2. For every weighted r-graph (F ,µ) there exists a sequence {Fn} of

blowups of F , such that v(Fn)→n→∞ and

(i) limn→∞
|Fn|

v(Fn)r = λ(F ,µ)

(ii) limn→∞
dH(Fn)
v(Fn)r = dH(F ,µ) for every clonable family H.

Proof. Let µn ∈ M(F) be a sequence of rational measures such that µn → µ. For

every n, consider (F ,µn) and choose kn integer such that µn(v)kn is an integer for
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every v ∈ V (F). Let Fn be an r-graph obtained by cloning v ∈ V (F) to a set of

size µn(v)kn. Then, clearly, v(Fn) = kn and |Fn| = λ(F ,µn)krn. Now both (i) and

(ii) follow easily, (in particular, (i) does because λ(F , ·) is continuous).

We can use Lemma 2.4.2 to establish the following connection between the pa-

rameters we explore in weighted and unweighted settings.

Lemma 2.4.3. If F is clonable, then λ(F) = m(F).

Proof. By Lemma 2.3.1, m(F) = limn→∞
m(F,n)
nr is finite. For any n,

λ(F) ≥ sup
F∈F

λ(F , ξF) ≥ m(F,n)
nr

,

therefore it follows that λ(F) ≥ m(F).

For the other direction we use Lemma 2.4.2. We may assume that λ(F) =

λ(F ,µ) for some F ∈ F, µ ∈ M(F). (Otherwise, we select a sequence Fm such

that λ(Fm) → λ(F) and similar but slightly more technical arguments follow.) By

Lemma 2.4.2 we get a sequence Fn with v(Fn) → ∞ such that the conditions (i)

and (ii) hold. For any such Fn with v(Fn) = kn we have

m(F, kn)
krn

≥ |Fn|
krn

.

Taking the limit on both sides as n→∞ and using the fact that kn →∞ as n→∞,

we get m(F) ≥ λ(F ,µ) = λ(F).
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Chapter 3

Local Stability Method

I
n this chapter we formalize and extend the notion of classical sta-

bility method, which is ubiquitous in the analysis of Turán-type

problems. To summarize, we establish a generic method which al-

lows one to obtain exact Turán numbers from Turán density results. One does so by

proving stability around the extremal family and stability in weighted setting (the

latter is obtained using the density result). Then further reductions allow to prove

the stability only in some local neighbourhood of the extremal configuration.

3.1. Classical Stability Method

In general, for any r-graph F there are two questions we are interested in. The first

one is to determine π(F), the second is to determine ex(n,F) for large n. We refer to

the corresponding results as density result and exact result. The stability method is

a tool to obtain the exact result from the density one. The idea is to use the density

result to prove an approximate structure theorem for graphs with density close to

the maximum possible, and then to find the exact structure that has maximum size

among the approximate structures. This method was first introduced for graphs by

Erdős and Simonovits in 1966 who obtained the stability result for Turán’s theorem.

Theorem 3.1.1 (Erdős, Simonovits, [Sim68]). For every ε > 0 there is δ > 0 such

that if G is a Kt+1 -free graph with at least (1− δ)ex(n,Kt+1) edges then there is a
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partition of the vertices of G, say {V1,V2, . . . ,Vt}, with
∑t
i=1 e(G[Vi]) < εn2.

While such stability results are interesting on their own, they are more commonly

used to prove the exact result, meaning, to show that all maximal F -free graphs have

the same (conjectured) optimal structure. For example, it is easy to obtain Turán’s

theorem for sufficiently large n from Theorem 3.1.1 (although note that originally

Turán’s theorem was proven much earlier). So how would we do it? Suppose we

have a graph G on n vertices that is Kt+1-free and has ex(n,Kt+1) edges. Our goal

is to show that in fact this graph is identical to the balanced blowup of Kt, that

is, Kt(n). By Theorem 3.1.1 it follows that we can partition the vertex set of G

into t parts, {V1,V2, . . . ,Vt}, such that ∑t
i=1 e(G[Vi]) < εn2. Then we show that

if any of these possible εn2 edges are present in G, then we will get a suboptimal

configuration since the graph has to be Kt+1 -free. The idea is that every edge that

is contained in a partition class Vi for some 1 ≤ i ≤ t, forces many edges between

Vi and other partition classes to be missing, which leads to G having in total less

edges than ex(n,Kt+1).

The described approach is an instance of the general strategy how the stability

result is used to obtain the exact result. For any Turán-type problem, the stability

result implies that any graph with maximum edge density has approximately the cor-

rect structure and what is left to do is to show that actually there cannot be any per-

turbations at all. Now let us discuss an example of stability result for hypergraphs.

As we mentioned earlier in the introduction, one of the first applications of stability

method was to determine the Turán number of the Fano plane [FS05, KS05a]. The

Fano plane, denoted by PG2(2), is the unique 3-graph with 7 vertices and 7 edges, in

which every pair of vertices is contained in a unique triple. It can also be described

as the projective plane over the field with two elements, F2. It has 7 vertices, which

can be identified with the non-zero vectors of length 3. It has 7 edges, corresponding

to the lines of the plane. A triple {x, y, z} is an edge if x + y = z. In 1976 it was

conjectured by Sós [S7́6] that

ex(n, PG2(2)) =
(
n

3

)
−
(
bn/2c

3

)
−
(
dn/2e

3

)
. (3.1)
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It is easy to check that the Fano plane is not 2-colorable, and therefore any 2-

colorable hypergraph cannot contain the Fano plane. Equipartition [n] into two

parts and take all the triples that intersect both of them. Clearly, this is the largest

2-colorable 3-uniform hypergraph on n vertices. Sós [S7́6] also conjectured that

this is the unique extremal graph achievieng the bound in (3.1). In 2005, this

conjecture was independently proved by Keevash and Sudakov [KS05a] and Füredi

and Simonovits [FS05], for all sufficiently large n. Let us state the stability theorem

for graphs that do not contain the Fano plane as stated in [KS05a].

Theorem 3.1.2 (Keevash, Sudakov, [KS05a]). For every ε > 0 there exists δ >

0 such that if H is a 3-graph that does not contain the Fano plane, has at least

(1 − δ)3
4

(
n
3

)
edges, there exists a partition of V (H), say {A,B}, so that e(H[A]) +

e(H[B]) < εn3.

Let us discuss how the exact result for the Fano plane is derived from Theo-

rem 3.1.2. It follows the general template mentioned earlier. Take any graph H

which does not contain the Fano plane and has maximum possible density. By the

stability result it follows that F has approximately the optimal structure so we can

consider “the best” partition of V (H). Fix such a partition of the vertex set of H,

say {A,B}. Any edge that is completely contained in A or in B is considered to be

“bad” and all the vertices that are in many “bad” edges are also “bad”. The last

two steps, that actually require most of the work are used to show that there are

no “bad” vertices and then, using that, to prove that there cannot be any “bad”

edges in H. This outline is the most general pattern (but not the only one) that is

followed to derive the exact result from the corresponding stability theorem.

Now that we have discussed how classic stability results look like, let us put this

notion of stability in a more general setting. Recall that for a family of r-graphs F,

m(F,n) := max F∈F
v(F)=n

|F|. Let F and H be two families of r-graphs. In the following

discussion, one should think about F being the family of all r-graphs that are G-

free, for some r-graph G and the family H being the family of (conjectured) extremal

examples. Typically H is a substantially more structured subfamily of F, and our

goal is to show that m(F,n) = m(H,n) for sufficiently large n. Also recall that
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dH(F) is the edit distance of an r-graph F from the family H, that is,

dH(F) := min
H∈H

v(F)=v(H)

|F4H|.

Using Theorem 3.1.1 and Theorem 3.1.2 as a guide, we can formulate classical sta-

bility as follows in our terminology.

Definition 3.1.3 (Classical Stability). We say that the family F is H-stable if for

every ε > 0 there exists δ > 0 such that for all F ∈ F with v(F) = n and |F| ≥

m(H,n)− δnr one has dH(F) ≤ εnr.

So for example, in this language, Theorem 3.1.1 says that F is H-stable with F

being the family of Kt+1-free graphs and H being the family of all blowups of Kt.

As we have already shown, if we prove that F is H-stable then it implies that

every graph in F with maximum density has approximately the same structure and

then we still need to get rid of possible small proportion of perturbations to prove

the exact structure. In the next section we define a different kind of stability which,

in particular, allows us to obtain the exact result directly from the stability result.

3.2. Our Stability

Definition 3.2.1 (Our Stability). We say that F is H-stable if there exists some

α > 0 and n0 ∈ N such that for all F ∈ F with v(F) = n ≥ n0 we have

|F| ≤ m(H,n)− αdH(F).

Observe that our notion of stability is stronger in two respects:

• It implies linear dependence between δ and ε in Definition 3.1.3.

• It is meaningful in the regime dH(F) = o(nr), allowing us to compute Turán

numbers exactly. Note that if F is H-stable using our definition thenm(H,n) ≥

m(F,n) for sufficiently large n.
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To make this disinction perhaps a name like “sharp stability” would have been more

appropriate, however we simply use the term “stability”, for brevity. So from now

on whenever we say F is H-stable we mean as in Definition 3.2.1.

Remark 3.2.1. Note that in the above definition of stability decreasing the parame-

ter α makes the definition weaker, in contrast to more common behavior (the smaller

the parameter, the more restrictive the definition). Rewriting (3.2) as

dH(F) ≤ m(H,n)− |F|
α

,

one can see more clearly that our notion of stability gives a bound on the edit distance

as a constant multiple of the distance between the sizes of F and the densest graph

in H.

So now let us discuss how do we obtain stability? One of the novel ideas in this

thesis is to provide a general framework which can be used to obtain the stability

for any Turán-type problem from its local version. We define local stability next.

Definition 3.2.2 (Local Stability). For ε,α > 0, we say that F is (H, ε,α)-locally

stable if there exists n0 ∈ N such that for all F ∈ F with v(F) = n ≥ n0 and

dH(F) ≤ εnr we have

|F| ≤ m(H,n)− αdH(F). (3.2)

We say that F is H-locally stable if it is (H, ε,α)-locally stable for some ε,α > 0.

Note that F-is H-stable if it is (H, 1,α)-locally stable for some α > 0. In Sec-

tion 3.4 we show how to obtain that stability from local stability. To state this result

we need to introduce the notion of weakly weight-stability which can be viewed as

the analogue of classical stability (Definition 3.1.3) for weighted graphs.

Definition 3.2.3 (Weak Weight-Stability). We say that F is H-weakly weight-stable

if for every ε > 0 there exists δ > 0 such that for every F ∈ F and µ ∈ M(F) if

λ(F ,µ) ≥ λ(H)− δ, then dH(F ,µ) ≤ ε.

Theorem 3.2.4. Let F,H be clonable families of r-graphs. Let F∗ consist of all

r-graphs in F that cover pairs. If F∗ is H-weakly weight-stable and F is H-locally

stable then F is H-stable.
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This result can be considered as a generalization of the symmetrization argument

by Sidorenko [Sid89] which we discussed in Chapter 2. Note that the symmetrization

was modified and employed by Pikhurko [Pik08] and Hefetz and Keevash [HK13]

for some special cases. However, Theorem 3.2.4 provides us with a generic tool

to obtain stability from local stability for clonable families. Both of the imposed

conditions (i.e. local stability of F and weak weight-stability of F∗) depend only on

the forbidden subgraph, so the tool is universally applicable. For example, to obtain

Mantel’s theorem (for large n) using Theorem 3.2.4, we would need to check only

one condition. Indeed, in this case F is the family of all triangle-free graphs, H is

the family of all bipartite graphs and F∗ contains a single graph - {K2}. Hence, F∗

is trivially H-weakly weight stable as K2 ∈ H. So we only need to check that F is

H-locally stable. A demonstration of this part can be found in Section 3.6 where we

show how to prove local stability more generally, for Kt-free graphs.

3.3. How Stability and Weight-Stability Are Re-

lated?

In this section we define several notions of stability in weighted setting and describe

their relations to the corresponding stability notion in unweighted setting.

First let us discuss weakly weight-stability which can be viewed as the analogue

of classical stability (Definition 3.1.3) for weighted graphs.

Definition 3.3.1 (Weak Weight-Stability). We say that F is H-weakly weight-stable

if for every ε > 0 there exists δ > 0 such that for every F ∈ F and µ ∈ M(F) if

λ(F ,µ) ≥ λ(H)− δ, then dH(F ,µ) ≤ ε.

One can also consider the analogue of the stability from Definition 3.2.1, and we

do so.

Definition 3.3.2 (Weight-Stability). We say that F is H-weight-stable if there exists

α > 0 such that for every F ∈ F and µ ∈M(F), λ(F ,µ) ≤ λ(H)− αdH(F ,µ).

Note that the analogous observation to the one in Remark 3.2.1 holds in this

setting, in particular, weight-stability is a stronger notion than weak weight-stability
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(thus, we use the word “weak”). Next we exploit the relations of stabilities in

weighted and unweighted settings. First we show that for clonable families stability

implies weight-stability.

Lemma 3.3.3. Let F,H be two clonable families. If F is H-stable then F is H-

weight-stable.

Proof. Let α > 0 be such that F is (H,α)-stable. We show that F is (H,α/4)-weight-

stable. Suppose F ∈ F, µ ∈M(F). We show that

λ(F ,µ) ≤ λ(H)− α

4 dH(F ,µ). (3.3)

By Lemma 2.4.2 there exists a blowup of F , say B ∈ F, with v(B) = n sufficiently

large such that the following inequalities hold:

3
4dH(F ,µ) ≤ dH(B)

nr
≤ 5

4dH(F ,µ), (3.4)

λ(F ,µ)− α

4 dH(F ,µ) ≤ |B|
nr

. (3.5)

We can also assume that n is large enough such that

m(H,n)
nr

≤ m(H) + α

4 dH(F ,µ). (3.6)

By (H,α)-stability of F, we have

|B| ≤ m(H,n)− αdH(B). (3.7)

Finally, we have

λ(F ,µ)
(3.5)
≤ |B|

nr
+ α

4 dH(F ,µ)
(3.7)
≤ m(H,n)− αdH(B)

nr
+ α

4 dH(F ,µ)
(3.6)
≤ m(H) + α

4 dH(F ,µ)− 3α
4 dH(F ,µ) + α

4 dH(F ,µ)

= λ(H)− α

4 dH(F ,µ),
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implying (3.3), as desired.

Next we show that for clonable H, local stability together with weight-stability

implies stability.

Lemma 3.3.4. Let H be a clonable family. If the family F is H-locally stable and

H-weight-stable, then F is H-stable.

Proof. Let α, ε > 0 be such that the family F is (H, ε,α)-locally stable and (H,α)-

weight-stable. We will show that F is (H,α/4)-stable, that is, for every F ∈ F with

n := v(F) sufficiently large,

|F| ≤ m(H,n)− α

4 dH(F). (3.8)

We can assume that dH(F) > εnr, since otherwise (3.8) holds because F is

(H, ε,α)-locally stable.

By Lemma 2.3.1 the family H is smooth. We choose n to be sufficiently large so

that (
1− r2

n

)
nr ≥ 1

2r!
(
n

r

)
,

and

m(H,n) ≥
(
m(H)− αε

4

)
nr.

Using Lemmas 2.4.3, 2.4.1, the inequalities above and the fact that F is (H,α)-

weight-stable, we have

|F|
nr

= λ(F , ξF) ≤ λ(H)− αdwH(F , ξ)

≤
(
m(H,n)
nr

+ αε

4

)
− α

(
1− r2

n

)
dH(F)
r!
(
n
r

)
≤
(
m(H,n)
nr

+ αε

4

)
− αdH(F)

2nr

= (m(H,n)− α/4dH(F)) + α/4(εnr − dH(F))
nr

≤ m(H,n)− αdH(F)/4
nr

,

implying (3.8).
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Now let us introduce local stability in weighted setting.

Definition 3.3.5 (Local Weight-Stability). For ε,α > 0, we say that F is (H, ε,α)-

locally weight-stable if for every F ∈ F,µ ∈ M(F) such that dH(F ,µ) ≤ ε, we

have

λ(F ,µ) ≤ λ(H)− αdH(F ,µ).

We say that F is H-locally weight-stable if F is (H, ε,α)-locally weight-stable for

some choice of ε and α.

Note that F is H-weight-stable if F is (H, 1,α)-locally weight-stable for some choice

of α. Note that the analogue of Lemma 3.3.3 holds in local setting, as we show next.

Lemma 3.3.6. Let F,H be two clonable families. If F is H-locally stable then F is

H-locally weight-stable.

Proof. Let ε,α > 0 be such that F is (H, ε,α)-locally stable. We show that F is

(H,α/4, 4ε/5)-locally weight-stable. Suppose F ∈ F, µ ∈ M(F) are such that

dH(F ,µ) ≤ 4ε/5. We show that

λ(F ,µ) ≤ λ(H)− α

4 dH(F ,µ). (3.9)

By Lemma 2.4.2 there exists a blowup of F , say B ∈ F, with v(B) = n sufficiently

large such that the following inequalities hold:

3
4dH(F ,µ) ≤ dH(B)

nr
≤ 5

4dH(F ,µ), (3.10)

λ(F ,µ)− α

4 dH(F ,µ) ≤ |B|
nr

. (3.11)

We can also assume that n is large enough such that

m(H,n)
nr

≤ m(H) + α

4 dH(F ,µ). (3.12)

From (3.10) it follows that dH(B) ≤ εnr, thus by (H, ε,α)-local stability of F, we

have

|B| ≤ m(H,n)− αdH(B). (3.13)
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Finally, we have

λ(F ,µ)
(3.11)
≤ |B|

nr
+ α

4 dH(F ,µ)
(3.13)
≤ m(H,n)− αdH(B)

nr
+ α

4 dH(F ,µ)
(3.12)
≤ m(H) + α

4 dH(F ,µ)− 3α
4 dH(F ,µ) + α

4 dH(F ,µ)

= λ(H)− α

4 dH(F ,µ),

implying (3.9), as desired.

Remark 3.3.1. By our results it follows that when F and H are clonable families

the stability implies weight-stability, however for the opposite to hold, Lemma 3.3.4

requires local stability. Although we do not have any examples of clonable F and

H such that only weight-stability does not imply stability, but we suspect that local

stability is a necessary condition.

And our final lemma of this section is an auxiliary lemma which we use in the

proof of Theorem 3.2.4.

Lemma 3.3.7. For any two families F and H, if F is H-weakly weight stable and

H-locally weight-stable, then F is H-weight-stable.

Proof. Let ε, β > 0 be such that F is (H, ε, β)-locally weight-stable. Since F is H-

weakly weight-stable, there exists γ > 0 such that if F ∈ F and µ ∈M(F) are such

that λ(F ,µ) ≥ λ(H)− γ, then dH(F ,µ) ≤ ε. We claim that F is (ε,α)-weight-stable

with α = min (β, γ).

Indeed, for graphs F ∈ F, µ ∈M(F) with dH(F ,µ) > ε we have

λ(F ,µ) ≤ λ(H)− γ ≤ λ(H)− αdH(F ,µ),

and, otherwise, we have

λ(F ,µ) ≤ λ(H)− βdH(F ,µ) ≤ λ(H)− αdH(F ,µ),

as desired.
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3.4. Stability From Local Stability (Symmetriza-

tion)

In this section we prove Theorem 3.2.4 using the relations between different notions

of stabilities proved in the previous section.

Proof of Theorem 3.2.4. By Lemma 3.3.4, it suffices to show that F is H-weight-

stable. By Corollary 3.3.6, F is H-locally weight-stable (and hence, also F∗ is H-

locally stable). It follows from Lemma 3.3.7 that F∗ is H-weight-stable. Choose

ε,α > 0 such that F∗ is (α, ε)-weight-stable and F is (H, ε,α)-locally weight-stable.

Define δ := αε/2. We will prove that for every F ∈ F and µ ∈M(F) such that

λ(F ,µ) ≥ λ(H)− δ, (3.14)

we have

dH(F ,µ) ≤ ε. (3.15)

Note that this statement implies that F is (H, δ)-weight-stable as F is (H, ε,α)-locally

weight-stable and δ ≤ α.

The proof is by induction on v(F). The base case of induction is trivial. For the

induction step, first suppose that F ∈ F∗, then we have

dH(F ,µ) ≤ λ(H)− λ(F ,µ)
α

≤ δ

α
≤ ε,

as F∗ is (H,α)-weight-stable and δ ≤ αε.

Thus we assume that F 6∈ F∗ and there exist v1, v2 ∈ V (F), such that the

pair {v1, v2} is not contained in any edge of F . We assume that µ(v1) 6= 0 and

µ(v2) 6= 0, since otherwise the conclusion follows from the induction hypothesis. We

will consider a family of probability distributions on V (F) defined as follows. For

t ∈ [0, 1], let µt ∈ M(F) be defined by µt(v) = µ(v) for all v ∈ V (F) \ {v1, v2},

µt(v1) = t(µ(v1) +µ(v2)), and µt(v2) = (1− t)(µ(v1) +µ(v2)). Note that µ = µx, for

x := µ(v1)/(µ(v1) + µ(v2)). As µ(v1) 6= 0 and µ(v2) 6= 0, it follows that x 6∈ {0, 1}.
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Note that (F ,µ0) and (F ,µ1) can be considered as weighted r-graphs on v(F)−1

vertices and, therefore, the induction hypothesis is apllicable to them. Moreover,

λ(F ,µ) = xλ(F ,µ0) + (1− x)λ(F ,µ1). (3.16)

If λ(F,µi) < λ(H)−δ for i = 1, 2, then by (3.16), λ(F ,µ) < λ(H)−δ, in contradiction

with (3.14). Thus, without loss of generality, we assume that λ(F,µ0) ≥ λ(H) − δ.

By the induction hypothesis we have dH(F ,µ0) ≤ ε.

Now suppose for a contradiction that dH(F ,µ) > ε. Note that dH(F ,µt) is a

continuous function of t. (The measure µt depends continuously on t, and dH(F , ·) is

a continuous function onM(F)) Thus there exists y ∈ [0,x] such that dH(F ,µy) = ε.

Since F is (H, ε,α)-locally weight-stable, we have

λ(F ,µy) ≤ λ(H)− αε. (3.17)

On the other hand,

λ(F ,µy) = x− y
x

λ(F ,µ0) + y

x
λ(F ,µx)

≥ x− y
x

(λ(H)− δ) + y

x
(λ(H)− δ) = λ(H)− δ > λ(H)− αε, (3.18)

as δ < αε. The contradiction between inequalities (3.17) and (3.18) concludes the

proof.

3.5. Local Stability From Vertex Local Stability

Often in the applications of the stability method, we may assume that the degrees

of the vertices of any graph with maximum density are essentially the same. For

example, below is a variant of stability result for the graphs without Fano plane,

which was proven by Füredi and Simonovits in [FS05].

Theorem 3.5.1 (Füredi, Simonovits, 2005). There exist some n0 and δ > 0 such

that if F is a 3-graph on n ≥ n0 vertices, does not contain a copy of the Fano

plane and |LF(v)| > (3/4− δ)
(
n
2

)
for every vertex v ∈ V (F), then there exists some
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X ⊆ [n] such that F ⊆ F(X,X), where F(X,X) is the 3-graph on [n] such that the

edge set is the set of all triples meeting both X and X.

Note that given this stability result, the approach to obtain the exact result is

not very different from the one discussed earlier, in Section 3.1. One still needs to

show that if there is any imperfection, then in fact, F has smaller density, which

implies a contradiction with the minimum degree assumption. For this to work

we should first show that the minimum degree assumption is valid; this is a fairly

standard observation common in the literature. In this section we put this in a

general setting and show that in most cases one can indeed assume that the degrees

of vertices are large. So we introduce the notion of vertex local stability which is a

weaker version of local stability since the requirements imposed on the family are

stronger. However, for clonable families we show that stability can be derived from

this version.

Definition 3.5.2 (Vertex Local Stability). Let H be a smooth family of r-graphs.

For ε,α > 0, we say that a family F of r-graphs is (H, ε,α)-vertex locally stable if

there exists n0 ∈ N such that for all F ∈ F with v(F) = n ≥ n0, dH(F) ≤ εnr, and

|LF(v)| ≥ (rm(H)− ε)nr−1 for every v ∈ V (F), we have

|F| ≤ m(H,n)− αdH(F).

We say that F is H-vertex locally stable if F is (H, ε,α)-vertex locally stable for some

ε,α.

Our main result of the section is the following.

Theorem 3.5.3. Let F,H be families of r-graphs such that H is clonable. If F is

H-vertex locally stable, then F is H-locally stable.

The proof of Theorem 3.5.3 is based on the following two auxiliary lemmas which

we prove first.

Lemma 3.5.4. Let F be a clonable family of r-graphs. Then for every ε > 0 there

exist δ > 0 and n0 ∈ N satisfying the following. For every F ∈ F with v(F) = n ≥ n0
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and |F| ≥ (m(F)− δ)nr there exists X ⊆ V (F) such that |X| ≥ (1− ε)n and

∣∣∣|LF(v)| − rm(F)nr−1
∣∣∣ ≤ εnr−1

for every v ∈ X.

Proof. Clearly, it is enough to prove the lemma for sufficiently small ε. Thus we

assume without loss of generality that max{ε, ε2r2m(F)} < 1. We show that δ :=

(ε6 − ε8r2m(F))/(1 + r + r2) satisfies the lemma for sufficiently large n0. Let X ⊆

V (F) be the set of all v ∈ V (F) satisfying

∣∣∣|LF(v)| − rm(F)nr−1
∣∣∣ ≤ εnr−1.

To prove that |X| ≥ (1− ε)n, we first show the following claim.

Claim 3.5.5.

|LF(v)| ≤ (rm(F) + ε2)nr−1

for every v ∈ V (F).

Proof. Suppose for a contradiction that

|LF(v)| > (rm(F) + ε2)nr−1

for some v ∈ V (F). Let n′ := d(1 + ε4)ne and let F ′ be obtained from F by cloning

v into a set of size dε4ne+ 1. We have F ′ ∈ F, as F is clonable. For sufficiently large

n, we have

m(F,n′) ≤ (m(F) + δ)n′r ≤ (m(F) + δ)(1 + ε4r + ε8r2)nr. (3.19)

On the other hand,

m(F,n′) ≥ |F ′| > |F|+ ε4n(rm(F) + ε2)nr−1

≥ (m(F)− δ)nr + ε4(rm(F) + ε2)nr. (3.20)
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But now (3.19) and (3.20) together imply that

ε6 − δ < δ(1 + ε4r + ε8r2) + ε8r2m(F),

which contradicts to our choice of δ. Thus, the claim holds.

By the preceding claim we have that

|LF(v)| < (rm(F)− ε)nr−1

for all v ∈ V (F) \X. Now suppose for a contradicton that |X| < (1− ε)n. Then

|F| = 1
r

 ∑
v∈V (F)\X

|LF(v)|+
∑
v∈X
|LF(v)|


<

1
r

(
(n− |X|) (rm(F)− ε) + |X|

(
rm(F) + ε2

))
nr−1

= m(F)nr + ε

r
((1 + ε)|X| − n)nr−1

< m(F)nr − ε3

r
nr

≤ (m(F)− δ)nr,

a contradiction.

Lemma 3.5.6. Let F be a clonable family of r-graphs. Then for every ε > 0 there

exist n0 ∈ N such that for all n2 ≥ n1 ≥ n0, we have

m(F,n2) ≥ m(F,n1) + (n2 − n1)(rm(F)− ε)nr−1
1

Proof. Consider F1 ∈ F with v(F1) = n1 such that |F1| = m(F,n1). For large enough

n1 we have

m(F,n1) ≥
(
m(F)− ε

r

)
nr1.

By averaging, there exists v ∈ V (F1) such that

|LF1(v)| ≥ (rm(F)− ε)nr−1
1 . (3.21)
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Let F2 be obtained from F1 by cloning v to a set of size n2− n1 + 1. As F2 ∈ F, we

have

m(F,n2) ≥ |F2| ≥ |F1|+ (n2 − n1) (rm(F)− ε)nr−1
1

= m(F,n1) + (n2 − n1) (rm(F)− ε)nr−1
1 ,

as desired.

Proof of Theorem 3.5.3: Let ε,α be such that F is (F′, ε,α)-vertex locally stable. We

choose constants ε′, ε′′ such that 0 < ε′ � ε′′ � ε so that the inequalities throughout

the proof are satisfied. Let α′ := min{α, 2ε′′r2(1−m(H))}. We will show that F is

(H, ε′,α′)-locally stable.

Consider F ∈ F with V (F) = [n] and dH(F) ≤ ε′nr. We assume that

|F| ≥ m(H,n)− ε′nr,

since otherwise the result follows, as α′ < 1. Let H ∈ H be such that |F4H| =

dH(F). For large enough n, we have |H| ≥ (m(H)− 3ε′)nr. By Lemma 3.5.4 applied

to H with ε = ε′′, there exists X ⊆ [n] with |X| ≥ (1 − ε′′)n such that for each

v ∈ X, ∣∣∣|LH(v)| − rm(H)nr−1
∣∣∣ ≤ ε′′nr−1. (3.22)

Consider the set

J = {v ∈ V (F) : |LF(v)| < (rm(H)− (2r2 + 1)ε′′)nr−1}.

We will show that J has relatively small size. From the definition of J and X, it

follows that for each v ∈ J ∩X, we have |LF(v)4LH(v)| ≥ ε′′nr−1. Thus,

|J ∩X|ε′′nr−1 ≤
∑

v∈V (F)
|LF(v)4LH(v)| = r|F4H| ≤ ε′rnr,

and therefore, |J | ≤ |J ∩ X| + |J \ X| ≤ ( ε′r
ε′′

+ ε′′)n ≤ 2ε′′n. Let F ′ := F|V (F)\J ,
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H′ := H|V (F)\J and n′ := n− |J |. We have

dH(F ′) ≤ |F ′4H′| ≤ |F4H| ≤ ε′nr ≤ εn′r. (3.23)

Also, for every v ∈ V (F) \ J , we have

|LF ′(v)| ≥ |LF(v)| − |J |nr−2 ≥
(
rm(H)− 2r2ε′′ − 3ε′′

)
nr−1

≥ (rm(H)− ε)n′r−1. (3.24)

Since F is (H, ε,α)-vertex locally stable, (3.23) and (3.24) imply that

|F ′| ≤ m(H,n′)− αdH(F ′). (3.25)

Let H′′ ∈ H be such that |H′′4F ′| = dH(F ′). Let H0 be obtained from H′′ by

blowing up a vertex in V (F) \ J to a set of size n− n′ + 1. We have

|F4H0| ≤ |F ′4H′′|+ |J |nr−1. (3.26)

By Lemma 3.5.6, for sufficiently large n, we have

m(H,n) ≥ m(H,n′) + (n− n′)
(
rm(H)− ε′′

1− 2rε′′

)
n′r−1

≥ m(H,n′) + |J |
(
rm(H)− ε′′

1− 2rε′′

)
(1− 2rε′′)nr−1. (3.27)

Now we are ready to put all the obtained inequalities together to show that F is

(H, ε′,α′)− locally stable.
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|F| ≤ |F ′|+ |J |(rm(H)− (2r2 + 1)ε′′)nr−1

(3.25)
≤ m(H,n′)− αdH(F ′) + |J |(rm(H)− (2r2 + 1)ε′′)nr−1

(3.27)
≤ m(H,n)− |J |

(
rm(H)− ε′′

1− 2rε′′

)
(1− 2rε′′)nr−1

− α|F ′4H′′|+ |J |(rm(H)− (2r2 + 1)ε′′)nr−1

= m(H,n)− α|F ′4H′′| − 2ε′′r2(1−m(H))|J |nr−1

≤ m(H,n)− α′|F ′4H′′| − α′|J |nr−1

(3.26)
≤ m(H,n)− α′|F4H0|

≤ m(H,n)− α′dH(F),

as desired.

Corollary 3.5.7. Let F,H be clonable families of r-graphs. Let F∗ consist of all

r-graphs in F that cover pairs. If F∗ is H-weakly weight-stable and F is H-vertex

locally stable then F is H-stable.

Proof. The result follows from Theorem 3.2.4 and Theorem 3.5.3 as a corollary, using

the fact that clonable families are smooth (Lemma 2.3.1).

Our final result of the section allows one to prove vertex local stability with

respect to the subfamily H′ of those graphs who attain the maximum density under

some technical condition. Note that this subfamily H′ may not be clonable at all

while we typically require H to be so. So it turns out that for vertex local stability,

being closed under taking blowups is not a necessary condition. However, note that

it is crucial in our proof of Lemma 3.5.3, that is, for deriving local stability from

vertex local stability.

Lemma 3.5.8. Let F,H,H′ be families of r-graphs such that H is smooth and H′ ⊆ H.

If H′ is such that

(i) m(H′) = m(H),
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(ii) for every H ∈ H there exists H′ ∈ H′ such that V (H′) = V (H) and H′ ⊆ H,

then if F is H′-vertex locally stable, then it is also H-vertex locally stable.

Proof. Let ε′,α > 0 be such that F is (H′, ε′,α)-vertex locally stable. We show that

F is (H, ε′4 ,α)-vertex locally stable. Denote ε = ε′/4 and assume n is sufficiently

large. Suppose F ∈ F is such that v(F) = n and dH(F) ≤ εnr, and |LF(v)| ≥

(rm(H)−ε)nr−1, for every v ∈ V (F). Then we also have |LF(v)| ≥ (rm(H′)−ε)nr−1,

for every v ∈ V (F) but to be able to apply (H′, ε′,α)-vertex local stability, we need

to bound the distance dH′(F) by ε′nr. That is what we do next.

Let H ∈ H be such that V (H) = V (F) and dH(F) = |H4F|. We have

|F| = 1
r

∑
v∈V (F)

|LF(v)| ≥
(
m(H)− ε

r

)
nr.

Therefore, |H| ≥ (m(H)− 2ε)nr. Let H′ ∈ H such that V(H′) = V (H) and H′ ⊆ H.

Then by definition of m(H′),

|H′| ≤ m(H′,n) ≤ (m(H′) + ε)nr = (m(H) + ε)nr.

Therefore, |H4H′| ≤ 3εnr. Hence,

dH′(F) ≤ |H′4F| ≤ |H′4H|+ |H4F| ≤ 4εnr = ε′nr.

Hence, by (H, ε′,α)-vertex local stability, we get that

|F| ≤ m(H′,n)− αdH′(F) ≤ m(H,n)− αdH(F),

where the last inequality holds because dH′(F) ≥ dH(F) andm(H′,n) ≤ m(H,n).

We use Lemma 3.5.8 in Chapter 6, in the proof of Theorem 6.2.
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3.6. An Application: Erdős-Simonovits Stability

Theorem

In this section we give a sample application of the techniques we developed thus far.

Recall the classical Erdős-Simonovits stability theorem which can be stated in our

language as follows, where here by stability we mean as in Definition 3.1.3.

Theorem 3.6.1 (Erdős, Simonovits, [Sim68]). Let t ≥ 2 be a fixed positive integer,

then Forb(Kt) is B(Kt−1)-stable.

To demonstrate how the local stability method can be used to derive the exact

Turán result from Turán density result, we prove Theorem 3.6.1 but with the stability

notion as in Definition 3.2.1. As discussed in Remark 3.2.1 this will be a stronger

statement and moreover, will imply Turán’s theorem directly. Note that in the proof

we use only the Turán density result for the cliques.

Theorem 3.6.2 (Turán, [Tur61]). For any t ≥ 3, π(Kt+1) = 1− 1
t
.

Proof. Let F := Forb(Kt), H := B(Kt−1) and F∗ be the family of graphs in F that

cover pairs. Obviously both F and H are clonable. By Theorem 3.2.4 we need to

show that F is H-vertex locally stable and that the family F∗ is H-weakly weight-

stable. Now let us look at the graphs in the family F∗ closer, observe that these

are just all the cliques on at most (t− 1) vertices. This family is trivially H-weakly

weight-stable. So for the theorem to hold we only need to show that F is H-vertex

locally stable.

We will show that F is (H, ε, 1)-vertex locally stable, that is, there exist ε > 0,

n0 ∈ N such that if F ∈ F satisfies v(F) = n ≥ n0, dH(F) ≤ εn2 and

|LF(v)| ≥
(
t− 2
t− 1 − ε

)
n, (3.28)

for every v ∈ V (F), then |F| ≤ m(H,n) − dH(F). In fact, we prove a stronger

statement. We show that if the above conditions hold then there exists H0 ∈ H such

that F ⊆ H0, that is, F is (t− 1)-partite.
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Remark 3.6.1. An even stronger result was proved by Andrásfai, Erdős and Sós [AES74].

They show that the condition dH(F) ≤ εn2 is unnecessary, and (3.28) suffices to de-

duce that F is (t − 1)-partite for ε < 1
(3t−4)(t−1) . We, however, include the proof

which exploits the bound on the distance from F to H to demonstrate our method.

Let 0� ε� δ � γ � 1/t be chosen to satisfy the inequalities appearing further

in the proof and let n be sufficiently large. Given F as above, let H ∈ H be such

that V (H) = V (F) and |F4H| = dH(F). Since, dH(F) ≤ εn2, we have

|H| ≥ |F| − εn2 ≥
(
t− 2
t− 1 − 3ε

)
n2

2 . (3.29)

Let P = {P1,P2, . . . ,Pt−1} be the blowup partition of V (H). It is easy to see

that (3.29) implies that ∣∣∣∣|Pi| − n

t− 1

∣∣∣∣ ≤ γn,

for all i ∈ [t − 1] with an appropriate choice of ε � γ (for a similar proof, see

Lemma 3.9.1 or Lemma 6.2.2).

Next we show that the neighborhood of every vertex in F is “close” to the

neighborhood of some vertex in H. For v ∈ V (F), let I(v) = {i | |N(v)∩Pi| ≥ γn},

where N(v) denotes the neighborhood of v. Then (3.28) implies that |I(v)| ≥ t− 2

for every v ∈ V (F). Suppose that |I(v)| = t − 1, and choose Qi ⊆ N(v) ∩ Pi so

that |Qi| = γn for i ∈ [t − 1]. For simplicity, we assume that γn is an integer. Let

Q = ∪i∈[t−1]Qi ⊆ N(v). Then F|Q is Kt−1-free and, therefore, Theorem 3.6.2 implies

that if n is large enough,

|F|Q| ≤
(t− 3)((t− 1)γn)2

2(t− 2) + δn2 (3.30)

On the other hand, H|Q is balanced (t− 1)-partite, thus,

|H|Q| ≥
(t− 2)((t− 1)γn)2

2(t− 1) . (3.31)
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Combining (3.29) and (3.30), we deduce that

|F4H| ≥ |F|Q4H|Q|

≥
(
t− 2
t− 1 −

t− 3
t− 2

) ((t− 1)γn)2

2 − δn2 > εn2.

This contradiction implies that |I(v)| = t− 2 for all v ∈ V (F).

Finally, we construct a partition P ′ = {P ′1,P ′2, . . . ,P ′t−1} of V (F) so that F ⊆ F ′′,

where F ′′ is a blowup of Kt−1 with the blowup partition P ′. Define P ′i := {v ∈

V (F) | i 6∈ I(v)} for i ∈ [t − 1]. Note that (3.28) and the bounds on the size of Pj
imply that

|N(v) ∩ Pj| ≥ n/(t− 1)− (t− 1)γn

for every v ∈ P ′i , i 6= j. It follows that, if v, v′ ∈ P ′i , then {v, v′} 6∈ F . (Otherwise,

F|N(v)∩N(v′) is Kt−2-free and |N(v) ∩N(v′) ∩ P ′j| ≥ n/(t− 1)− (2t− 1)γn for every

j ∈ [t−1]\{i}. This leads to a contradiction using an argument completely analogous

to the one used in the preceding paragraph.) Thus, F ⊆ F ′′, as desired.

3.7. Extending Local Stability Method For Non-

Clonable F

Theorem 3.2.4 provides us with a tool to obtain the stability of the family from its

local stability when the family under consideration is clonable. However, the family

F is typically non-clonable. In this section we overcome this obstacle and obtain the

analogous tool for general F.

The trick is to consider the maximal clonable subfamily of F instead. We define

the core of F to be

core(F) = {F ∈ F |B(F) ⊆ F}.

As an application of Hypergraph Removal Lemma we are able to derive the stability

of a family from its local stability when its core is stable. For these purposes, we need

the following corollary of the Hypergraph Removal Lemma and a classical result of

Erdős.
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Lemma 3.7.1 (Rődl, Skokan [RS06b]). For every r-graph G and ε > 0 there exists

δ > 0 such that every r-graph on n vertices which contains at most δnv(G) copies of

G can be made G-free by removing at most εnr edges.

Corollary 3.7.2 (Erdős, [Erd64]). For every r-graph H, a blowup B ∈ B(H) of H

and δ > 0 there exists n0 such that any r-graph on n ≥ n0 vertices that does not

contain B contains at most δnv(H) many copies of H.

Lemma 3.7.3. Let G be a finite family of r-graphs, and let F = Forb(G). Then for

every ε > 0 there exists n0 ∈ N such that for every F ∈ F with v(F) = n ≥ n0 there

exists F ′ ∈ core(F) with V (F ′) = V (F) and F ′ ⊆ F such that

|F ′| ≥ |F| − εnr.

Proof. Let H be the family of all minimal graphs H such that B(H) 6⊆ F. It is easy

to see that H is finite. In particular every element of H is a subgraph of some graph

in G: For every H ∈ H there exists BH ∈ G ∩B(H).

By Lemma 3.7.1 there exists δ > 0 such that for every H ∈ H every r-graph on n

vertices which contains at most δnv(H) copies of H can be made H-free by removing

at most ε
|H|n

r edges. By Corollary 3.7.2 there exists n0 such that for every n ≥ n0

and every H ∈ H every BH-free graph F on n ≥ n0 vertices contains at most δnv(H)

copies of H. Hence, by removing at most εnr edges from any graph F ∈ F on n ≥ n0

vertices, we can obtain a subgraph F ′ of F , which is H-free. We have F ′ ∈ core(F),

as desired.

The following result establishes the desired connection between the stability of

the family F and the stability of the core(F).

Theorem 3.7.4. Let G,H be families of r-graphs, such that G is finite, and let

F = Forb(G). If core(F) is H-stable and F is H-locally stable, then F is H-stable.

Proof. Let ε,α > 0 be chosen such that F is (H, ε,α)-locally stable and core(F) is

(H,α)-stable. We claim that F is (H,α/2)-stable. Let F ∈ F with v(F) = n ≥ n0,
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where n0 is chosen sufficiently large. We want to show that

|F| ≤ m(H,n)− αdH(F). (3.32)

If dH(F) ≤ ε, then since F is (H, ε,α)-locally stable, (3.32) holds directly. Now we

may assume dH(F) > ε. By Lemma 3.7.3, applied with ε′ = α
2(α+1)ε, there exists

F ′ ⊆ F such that |F ′| ≥ |F| − ε′nr. Hence,

dH(F) ≤ dH(F ′) + ε′nr.

On the other hand, since core(F) is H-stable, we have

|F ′| ≤ m(H,n)− αdH(F ′) ≤ m(H,n)− α(dH(F)− ε′nr).

Putting all this together, we get

|F| ≤ |F ′|+ ε′nr

≤ m(H,n)− α(dH(F)− ε′nr) + ε′nr

≤ m(H,n)− α

2 dH(F)−
(
α

2 dH(F)− (α + 1)ε′nr
)

≤ m(H,n)− α

2 dH(F),

where in the last inequality we used that dH(F) > εnr.

We can further simplify the conditions of Theorem 3.7.4 when the family H is

clonable.

Corollary 3.7.5. Let G,H be families of r-graphs, such that G is finite, H is clon-

able. Let F = Forb(G) and F∗ be the subfamily of all r-graphs in core(F) that cover

pairs. If F is H-vertex locally stable and F∗ is H-stable then F is H-stable.

Proof. Theorem 3.5.3 implies that F is H-locally stable. In particular, it implies the

local stability of core(F). But the family core(F) is clonable, thus Theorem 3.2.4

applies and it follows that core(F) is H-stable. Finally Theorem 3.7.4 implies that

F is H-stable.
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3.8. Applications of Local Stability Method for

Extensions

Recall the definition of extensions from introduction. Given an r-graph G, the

extension of G, denoted by Ext(G), is an r-graph defined as follows. For every

uncovered pair P in G we add r − 2 new vertices vP1 , vP2 , . . . , vPr−2 to V (G), and add

the edge P ∪ {vP1 , vP2 , . . . , vPr−2} to G. It turns out that for any F = Forb(Ext(G)),

core(Forb(F) is easy to describe structurally, thus allowing us to further simplify

Theorem 3.7.5.

A weak extension of an r-graph G is an r-graph obtained from G by adding a

new edge through every uncovered pair of vertices which could contain up to (r− 2)

new vertices. Note that in particular, Ext(G) is a weak extension of G. We denote

by WExt(G) the family of all weak extensions of the graph G.

Lemma 3.8.1. Let G be an r-graph and F = Forb(Ext(G)). Then

(i) core(F = Forb(WExt(G)), and

(ii) If F∗ is a family of all graphs in Forb(WExt(G)) which cover pairs, then F∗ ⊆

Forb(G).

Proof. (i) We only show that Forb(WExt(G)) ⊆ core(F), the other direction is

similar. Let F ∈ core(F). We claim that F is WExt(G)-free. Suppose not and

there exists H ∈WExt(G) such that F contains a copy of H. H contains a copy of

G and for every uncovered pair of vertices u, v in this copy, there exists some edge

H ∈ H such that u, v ∈ H. Iteratively clone all the vertices in the set H \{u, v} and

do this for every such u, v. The resulting graph will be a blowup of F , containing a

copy of Ext(G), a contradiction.

(ii) Let F ∈ F∗. Suppose it contains a copy of G. Since F covers pairs, every

pair of vertices in this copy is covered by some edge in F , thus creating a copy of

some graph in WExt(G), a contradiction.

This lemma together with Theorem 3.7.5 implies the desired simpler tool for
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deriving stability from local stability for all families F which are of form F =

Forb(Ext(G)) for some r-graph G.

Theorem 3.8.2. Let G be an r-graph, F and H be two families of r-graphs such

that F = Forb(Ext(G)) and H is clonable. Suppose F∗ is the family of all r-graphs

in Forb(G) that cover pairs and the following conditions hold:

(C1) F is H-vertex locally stable,

(C2) F∗ is H-weakly weight-stable.

Then F is H-stable. In particular, there exists n0 ∈ N such that if F ∈ F satisfies

v(F) = n and |F| = m(F,n) for some n ≥ n0 then F ∈ H.

Proof. The result follows directly from Corollary 3.7.5 and Lemma 3.8.1.

Finally, let us restate our main results from Section 1.6 in the language of ex-

tensions. By applying Theorem 3.8.2, we are able to determine the Turán numbers

of the following graphs or families of graphs, for large enough n.

(1) The extension of two r-edges sharing (r− 1)-vertices, for uniformities r = 5, 6.

(2) The extension of two disjoint r-edges (that is, a two matching), for all r ≥ 4.

(3) The extension of the r-graph F+t for any r-graph F that covers pairs and

t ≥ v(F), where the graph F+t is obtained from F by adding new isolated

vertices such that v(F+t) = t.

(4) Recall that the l-expansion of a 2-graph G is an (l + 2)-graph obtained from

G by adding l vertices and enlarging each edge of G using these vertices. For

r ≥ 3, we determine the Turán numbers of the extensions of (r−2)-expansions

of sufficiently large Erdős-Sós-trees (recall that these are the trees that satisfy

Conjecture 1.6.2).
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3.9. Some Properties of Dense Blowups and Transver-

sal Lemma

In this section we prove some auxiliary lemmas which are common for our proofs of

local stabilities of certain families (more specifically, in the proofs of Theorem 4.2.1

and Theorem 5.2.2). In the following discussion, one should think of F as being the

forbidden graph, H being the graph whose balanced blowups are the (conjectured)

extremal examples.

Recall that for an r-graphH, ξH ∈M(H) denotes the uniform measure on V (H).

Let B := B(H) denote the family of all blowups of the graph H and for each B ∈ B,

let P(B) denote the corresponding blowup partition. We say that an r-graph H is

uniquely dense if λ(H) is uniquely achieved on some µ ∈ M(H). We denote such

µ by µ∗H. Suppose V (H) = {1, 2, . . . ,m}, for a blowup B ∈ B we denote by Pi

the partition class in P(B) corresponding to the vertex i ∈ V (H). We say that

B ∈ B(H) is (ε,µ)-trimmed for some ε ∈ (0, 1), µ ∈M(H) if

∣∣∣∣∣ |Pi|v(B) − µ(i)
∣∣∣∣∣ ≤ ε,

for every i ∈ [t]. Furthermore, we simply say B is ε-trimmed if B is (ε, ξH)-trimmed.

Our first lemma ensures that if a blowup of a uniquely dense graph has density

close to the maximum possible, then the blowup partition is trimmed with respect

to the measure maximizing the Lagrangian of the graph H.

Lemma 3.9.1. Given r ≥ 2, let H be a uniquely dense r-graph. For every ε > 0

there exists δ > 0 such that if B ∈ B(H) with v(B) = n and |B| ≥ (m(B) − δ)nr,

then B is (ε,µ∗H)-trimmed.

Proof. Suppose V (H) = {1, 2, . . . ,m}, we define µ(i) = |Pi|
n
, for every i ∈ [m].

Clearly, µ ∈ M(H). For our purposes, it suffices to show that ||µ− µ∗||∞ ≤ ε. We

have

λ(H,µ∗) ≥ λ(H,µ) = |B|
nr
≥ m(B)− δ = λ(B)− δ = λ(H,µ∗)− δ, (3.33)
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where in the second equality we used the fact that λ(B) = m(B) since B is clonable

(see Lemma 2.4.3). But λ(H, ·) is a continuous function and H is uniquely dense,

therefore for every ε > 0 there exists δ > 0 such that if

λ(H,µ∗) ≥ λ(H,µ) ≥ λ(H,µ∗)− δ,

then ||µ− µ∗||∞ ≤ ε, as desired.

We say that an r-graph H is balanced if λ(H) = λ(H, ξH). In our proofs we only

use the following direct corollary of Lemma 3.9.1, which says that if a blowup of a

uniquely dense and balanced graph has density close to the maximum possible, then

the blowup partition is almost an equipartition.

Corollary 3.9.2. Given r ≥ 2, let H be a uniquely dense and balanced r-graph.

For every ε > 0 there exists δ > 0 such that if B ∈ B with v(B) = n and |B| ≥

(m(B)− δ)nr, then B is ε-trimmed.

To state our second auxiliary lemma, we need few more definitions. For an r-

graph H with V (H) = [m], we say that B ∈ B(H) is α-dense for some α ∈ (0, 1), if

|Pi| ≥ αn, for every i ∈ [m].

Given a collection of sets X = {X1,X2, . . . ,Xk} we say that a set F is X -

transversal if |Xi ∩ F | ≤ 1 for every 1 ≤ i ≤ k. We say that an r-graph F is

X -transversal if every F ∈ F is X -transversal.

Recall that for two r-graphs F and H, we say that H is F -hom-free if there is no

homomorphism from F to H. We say that H is F -hom-critical if H is F -hom-free

but there exists an edge F ∈ F such that there exists a homomorphism from F\F to

H. More specifically, if F is such an edge in F , we say that H is (F ,F )-hom-critical.

For an r-graph F and an edge F ∈ F , we say that the pair (F ,F ) is loose if the

vertices of F can be partitioned into two sets, Fc and Ff , such that

• |Fc| = 2, the vertices of Fc do not share any edge other than F ,

• every vertex of Ff is not contained in any edge other than F .

The vertices in Ff are called free, the vertices in Fc are called critical.
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Our next lemma says that if H is F -hom-free then given any large blowup B ∈ B

and an F -free r-graph G on the same vertex set such that every vertex has only a

small portion of neighbours in G which are non-neighbours in B, then F is P(B)-

transversal. This lemma is quite useful for us. Why? Suppose we are given such

F , G and B and also we know that both B and G have density very close to the

maximum possible one (i.e. m(n,B)), then we would like to show that the edit

distance between G and B is small. In particular, we need to show that the number

of bad edges is small, that is, those edges which are in F but not in B. Our next

result tells us that there are no non-transversal bad edges, which helps us to bound

the number of total bad edges.

Lemma 3.9.3. Given r ≥ 2, let F and H be two r-graphs such that (F ,F ) is loose

for some F ∈ F , H is vertex transitive, (F ,F )-hom-critical and covers pairs. For

every α > 0 there exist ε > 0 and n0 ∈ N such that if G is an F-free r-graph and

B ∈ B(H) with V (G) = V (B) := V , v(G) = v(B) = n ≥ n0 such that

• B is α-dense,

• |LB(v) \ LG(v)| ≤ εnr−1, for every v ∈ V ,

then G is P(B)-transversal. Moreover, if G ′ is an F-free r-graph such that G ⊆ G ′,

then G ′ is also P(B)-transversal.

Proof. Assume V (H) = [t]. Since H is vertex transitive, in particular, it is also

regular, let d := |LH(i)|, for some i ∈ [t]. Let P := P(B) = {P1,P2, . . . ,Pt}

and suppose F = {c1, c2, f1, . . . , fr−2}, where c1, c2 are the critical vertices and

f1, . . . , fr−2 are the free ones. Let m be the smallest integer such that H(m) (recall

that H(m) is the balanced blowup of H with m vertices in each partition class)

contains a copy of F \F . Such a finite m exists by Fact 2.1.3. Throughout the proof

we assume n is sufficiently large, in particular, m� n. Choose ε� min{α, 1
m

, 1
t
}.

It suffices to verify only the last conclusion of the lemma. We assume, for a

contradiction, that there exists a non-transversal edge G ∈ G ′, with v1, v2 ∈ G ∩ Pj
for some j. Without loss of generality, assume j = 1. We will show that G ′ \ G

contains a copy of F \F such that v1 plays the role of c1 and v2 plays the role of c2.

Together with G this copy will induce a copy of F , yielding the desired contradiction.
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Let ϕ be a homomorphism from F \ F to H. Since c1 and c2 are contained

in no edge together in F \ F , H is vertex transitive and covers pairs, we may

assume ϕ(c1) = ϕ(c2). Furthermore, sinceH is vertex-transitive, we may also assume

ϕ(c1) = ϕ(c2) = 1.

We sample m vertices from Pi \G uniformly at random for every i = 2, . . . , t and

(m − 2) vertices from P1. Let R be the subgraph of G ′ induced by these vertices,

v1 and v2. Note that the same vertices together induce H(m) in B which contains

a copy of F \ F . Thus, it suffices to show that with a positive probability every

P-transversal r-tuple I ⊆ V (R) is an edge of G if it is an edge in B. Therefore, it is

enough to show that

1. If I is a set of r− 1 vertices sampled uniformly at random from distinct parts

of P − {P1} then

P [I ∪ {vi} ∈ B \ G] < 1
4tr−1mr−1

for i = 1, 2, and

2. If I is a set of r vertices sampled uniformly at random from distinct parts of

P then

P [I ∈ B \ G] < 1
4trmr

for i = 1, 2.

Let us show that both conditions hold. First note that because B is α-dense, the

following statements follow easily.

• |B| ≥ e(H)αrnr = αrdt
r
nr,

• |LB(v)| ≥ dαr−1nr−1, for every v ∈ V .

Thus, for any I as in (1), we have

P [I ∪ {vi} ∈ B \ G] ≤ |LB(vi) \ LG(vi)|
|LB(vi)|

≤ εnr−1

dαr−1nr−1 �
1

trmr
,

and thus the probability that a transversal r-tuple containing vi is in B \ F is

80



sufficiently small. Similarly, for I as in (2), we have

P [I ∈ B \ G] ≤ |B \ G|
|B|

≤
ε
r
nr

αrdt
r
nr

= ε

αrdt
� 1

trmr
.

So, with positive probability R induces a copy of F \ F in G, as desired.

For our purposes we only need the following corollary from Lemma 3.9.3.

Corollary 3.9.4. Given r ≥ 2, let F and H be two r-graphs such that (F ,F ) is

loose with some F ∈ F , H is vertex transitive, uniquely dense and balanced, (F ,F )-

hom-critical and covers pairs. There exist ε > 0 and n0 ∈ N such that if G is an

F-free r-graph and B ∈ B(H) := B with V (G) = V (B), v(G) = v(B) = n ≥ n0 such

that

• |B| ≥ (m(B)− ε)nr,

• |LB(v) \ LG(v)| ≤ εnr−1, for every v ∈ V ,

then G is P(B)-transversal. Moreover, if G ′ is an F-free r-graph such that G ⊆ G ′,

then G ′ is P(B)-transversal.

Proof. Assume V (H) = [t]. Since H is vertex transitive, in particular, it is also

regular, let d := |LH(i)|, for some i ∈ [t]. It is easy to see that m(B) = d
rtr−1 .

Let ε3.9.2 = 1
2t and δ3.9.2 be derived from Lemma 3.9.2 applied with ε = ε3.9.2.

Let ε3.9.3 be derived from Lemma 3.9.3 applied with α = 1
2t and finally choose

ε = min{δ3.9.2, ε3.9.3}. Then we have

|B| ≥
(

d

rtr−1 − ε
)
nr ≥

(
d

rtr−1 − δ3.9.2

)
nr,

hence B is ε3.9.2-trimmed. Thus for every i ∈ [t] and Pi ∈ P(B), |Pi| ≥
(

1
t
− ε3.9.2

)
n ≥

n
2t . On the other hand, for every v ∈ V ,

|LB(v) \ LG(v)| ≤ εnr−1 ≤ ε3.9.3n
r−1,

thus we can apply Lemma 3.9.3 and obtain that G is P(B)-transversal.
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Chapter 4

The Turán Number of the

Generalized Triangle

T
he generalized triangle, is the r-graph on vertex set [2r − 1] with

edges {1, 2, . . . , r} , {1, 2, . . . , r−1, r+1} and {r, r+1, . . . , 2r−1}. In

this chapter we obtain the Turán number of the generalized triangle

for uniformities five and six, thus solving a conjecture of Frankl and Füredi from

1980’s. We use the local stability method described in the previous chapter and

Turán density results obtained earlier by Frankl and Füredi [FF89].

4.1. The History

Let Tr be the family of all r-graphs with three edges such that one edge contains

the symmetric difference of the other two. As a generalization of Turán’s theorem,

Katona suggested to determine ex(n,T3). This question was answered by Bollobás

in early 1970’s.

Theorem 4.1.1 (Bollobás, [Bol74]). For any n ≥ 3,

ex(n,T3) =
⌊
n

3

⌋
×
⌊
n+ 1

3

⌋
×
⌊
n+ 2

3

⌋
.

Moreover, the complete balanced 3-partite 3-graph on n vertices, K(3)
3 (n), is the
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unique extremal graph.

In the same paper Bollobás also conjectured that the same result holds for all

r ≥ 4. While the conjecture fails in general (Shearer showed that it does so for all

r ≥ 10, [She96]), Sidorenko proved this conjecture for r = 4 and, in fact, he showed

something much stronger. Let Σr be the family of all r-graphs with three edges

D1,D2,D3 such that |D1 ∩D2| = r − 1 and D14D2 ⊆ D3. Clearly, Σr ⊆ Tr for all

r, and Σr = Tr, for r = 2, 3. The question on the Turán number of the family Σr

goes back to De Caen [DC85]. In [FF83] Frankl and Füredi determined ex(n, T3).

Then De Caen [DC85], while giving an alternative proof of ex(n, T3), suggested to

look at the Turán numbers of the families Σr for general r.

Theorem 4.1.2 (De Caen [DC85], Frankl and Füredi [FF83]). For any n > 3000,

ex(n, Σ3) = ex(n, T3) =
⌊
n

3

⌋
×
⌊
n+ 1

3

⌋
×
⌊
n+ 2

3

⌋
.

Morever, the complete balanced 3-partite 3-graph on n vertices, K(3)
3 (n), is the unique

extremal graph.

In [Sid87] Sidorenko determined the Turán number of Σ4 (actually he also re-

proved the above mentioned result on Σ3).

Theorem 4.1.3 (Sidorenko, [Sid87]). ex(n,T4) = ex(n, Σ4) =
⌊
n
4

⌋
×
⌊
n+1

4

⌋
×
⌊
n+2

4

⌋
×⌊

n+3
4

⌋
for all n ≥ 4. Moreover, the complete balanced 4-partite 4-graph on n vertices,

K(4)
4 (n), is the unique extremal graph.

Much later Keevash and Mubayi [KM04] showed that in Theorem 4.1.3 one can

take n0 = 33. Using the supersaturation techinque of Erdős and Simonovits [Erd81]

(it also follows from our Lemma 3.7.3), it can be shown that

ex(n, Tr)− ex(n, Σr) = o(nr).

In [FF89] Frankl and Füredi conjectured that these numbers actually are the

same for all sufficiently large n.
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Conjecture 4.1.1 (Frankl, Füredi, [FF89]). For every r ≥ 2, there exists n0 :=

n0(r) such that for all n ≥ n0

ex(n, Tr) = ex(n, Σr).

The conjecture is trivially true for r = 2, for r = 3 it follows from Theorem 4.1.2.

Recently it was proven for r = 4 by Pikhurko [Pik08]. He determined the Turán

number of T4 which together with Theorem 4.1.3 verifies Conjecture 4.1.1 for r = 4.

Theorem 4.1.4 (Pikhurko, [Pik08]). There exists some n0 such that for all n ≥ n0,

ex(n, T4) =
⌊
n
4

⌋
×
⌊
n+1

4

⌋
×
⌊
n+2

4

⌋
×
⌊
n+3

4

⌋
. Moreover, the complete balanced 4-partite

4-graph on n vertices, K(4)
4 (n), is the unique extremal graph.

Here we show that Conjecture 4.1.1 is true for r = 5 and r = 6. Recall that

an (m, r, t)-Steiner system is an r-graph on m vertices such that every t-tuple is

contained in a unique r-tuple. More generally, an (m, r, t)-partial Steiner system is

an r-graph on m vertices such that every t-tuple is contained in at most one r-tuple.

It is easy to see that every (m, r, r − 1)-partial Steiner system is Σr-hom-free. The

opposite is also true, if an r-graph is Σr-hom-free then it must be an (m, r, r − 1)-

partial Steiner system for some m. Thus, by Lemma 2.2.3,

π(Σr) = r!supGλ(G),

where the supremum is taken over all (m, r, r − 1)-partial Steiner systems, for all

m. Independently, Frankl and Füredi [FF89] and Sidorenko [Sid87] proved that one

can reduce the search of the optimal partial Steiner systems to a finite set.

Theorem 4.1.5 (Frankl and Füredi [FF89] and Sidorenko [Sid87]). For any r ≥ 3,

π(Σr) = r!supGλ(G),

where the supremum is taken over all (m, r, r− 1)-partial Steiner systems with m ≤
rr

r! .

Using this result, Frankl and Füredi determined the Turán density of Σ5 and
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Σ6. Before we state their result, note that it was proved by Cameron and Van

Lint [CVL75] that the Steiner systems with parameters (11, 5, 4) amd (12, 6, 5) are

unique. These are alternatively called Witt designs in the literature. We will denote

them by S5 and S6 respectively.

Theorem 4.1.6 (Frankl, Füredi, [FF89]). π(Σ5) = 720
114 and π(Σ6) = 55

123 . Moreover,

for r = 5, 6 there exists some n0 := n0(r) such that for all n ≥ n0 the unique

extremal graphs are the balanced blowups of S5 and S6 if 11|n and 12|n, for r = 5, 6,

respectively.

In the same paper Frankl and Füredi also gave the following asymptotic result

for general r ≥ 7.

Theorem 4.1.7 (Frankl, Füredi, [FF89]). For all r ≥ 7,

(
1 +O

( 1
n

))
nr

r!
(
r
2

)
e1+ 1

r−1
< ex(n, Σr) <

nr

r!e
(
r−1

2

) .

We prove Conjecture 4.1.1 for r = 5 and r = 6 using Theorem 4.1.6. In fact, we

prove much more general result from which Theorem 4.1.10 follows using another

result by Frankl and Füredi on the properties of S5 and S6. Recall the definitions

of an r-graph being uniquely dense and balanced from Section 3.9. We say that

an r-graph H is uniquely dense if λ(H) is uniquely achieved on some µ ∈ M(H)

and H is balanced if such measure µ is in fact the uniform measure on V (H), that

is,ξH. For family of r-graphs F if there exists only one graph F ∈ F such that

λ(F) = λ(F) = λ(F ,µ) for some µ ∈ F, then we call such a graph F the unique

Lagrangian maximizer of the family F. Now we are ready to state the aforementioned

results of ours and Frankl and Füredi. Let F∗r be the subfamily of all r-graphs in

Forb(Σr) that cover pairs.

Theorem 4.1.8. Let m ≥ r ≥ 3 and S be an (m, r, r − 1)-Steiner system that is

uniquely dense and balanced. If S is the unique Lagrangian maximizer of F∗r, then

Forb(Tr) is B(S)-stable.
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Theorem 4.1.9 (P. Frankl, Z. Füredi, [FF89]). F∗5 and F∗6 have unique Lagrangian

maximizers; these are S5 and S6, respectively. Furthermore, S5 and S6 are both

balanced and uniquely dense.

Our main theorem of this section follows.

Theorem 4.1.10. There exists n0 such that for all n ≥ n0, ex(n, Tr) = ex(n, Σr)

for r = 5, 6. Moreover, there exists some n0 := n0(r) such that for all n ≥ n0

the extremal graphs are the balanced blowups of S5 and S6, for r = 5 and r = 6,

respectively.

Proof. The result follows directly from Theorem 4.1.8 and Theorem 4.1.9. Indeed,

together these two results imply that Forb(Tr) is B(Sr)-stable for r = 5, 6. By

Remark 3.2.1, this implies that the exact result holds.

Sketch of the proof of Theorem 4.1.8: To prove the theorem, we use the local sta-

bility method and the corresponding tools for extensions developed in Section 3.8.

Recall that Tr = Ext(Dr), where Dr denotes the r-graph with two edges D1,D2 such

that |D1 ∩D2| = r− 1. Also note that the family Forb(Tr) is not clonable. Thus we

follow the framework that Theorem 3.8.2 provides.

We need to prove that given an (m, r, r− 1)-Steiner system S which is uniquely

dense and balanced and is the unique Lagrangian maximizer of F∗r, the following two

conditions hold.

(C1) Forb(Tr) is B(S)-vertex locally stable,

(C2) The family F∗r is B(S)-weakly weight-stable. (Note that here we are using the

fact that F∗r is also the subfamily of Forb(Dr) of graphs covering pairs.)

In Section 4.2 we prove that (C1) holds and in fact, for this we only need S to be

balanced and uniquely dense (Theorem 4.2.1). The property of S being the unique

Lagrangian maximizer of F∗r is only used for (C2). The latter we prove in Section 4.3

(Theorem 4.3.1, note that here we do not require S to be balanced).
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4.2. Local Stability of Forb(Tr)

The main result of this section, stated below, applies to all balanced and uniquely

dense Steiner systems. Recall that we say that a Steiner system S is balanced if

λ(S) = λ(S, ξS), where ξS is defined to be the uniform distribution on V (S). We

say that S is uniquely dense if ξS is the only measure µ ∈ M(S) achieving the

equality λ(S) = λ(S,µ).

Theorem 4.2.1. If S is a balanced and uniquely dense (m, r, r− 1)-Steiner system

for some m ≥ r ≥ 3, then Forb(Tr) is B(S)-vertex locally stable.

For the proof we use the auxillary lemmas developed in Section 3.9. First let

us verify that Tr and S satisfy the required conditions. Indeed, any (m, r, r − 1)-

Steiner system is clearly vertex transitive and covers pairs. Recall that Tr has

three edges, D1,D2,D3 such that D1 = {1, 2, . . . , r}, D2 = {1, 2, . . . , r − 1, r + 1},

D3 = {r − 1, r + 1, . . . , 2r − 1}. It is easy to see that (Tr,D3) is loose.

Lemma 4.2.2. For any m ≥ r ≥ 3, every (m, r, r − 1)-Steiner system is (Tr,D3)-

hom-critical.

Proof. Let S be an (m, r, r − 1)-Steiner system. If there was a homomorphism ϕ

from Tr to S, then it would have to map the vertices r and r + 1 to two different

points, because of the edge D3. But then ϕ(1),ϕ(2), . . . ,ϕ(r − 1) together with

ϕ(r) and ϕ(r + 1) would create an (r − 1)-tuple contained in two different edges, a

contradiction. However, one can easily map Tr \ D3 to any edge in S, this creates

the desired homomorphism.

In addition to the mentioned tools developed in Section 3.9, we need the following

“embedding lemma” which says that for every Tr-free r-graph G with sufficiently

large minimum degree there exists a blowup B0 of S such that every vertex of G has

“similar” neighborhoods in G and B0. The proof of this lemma contains the bulk of

technical difficulties involved in proving Theorem 4.2.1.

Lemma 4.2.3. For givenm ≥ r ≥ 3, let S be a uniquely dense, balanced (m, r, r−1)-

Steiner system. For every ε > 0 there exist δ > 0 and n0 ∈ N such that the following

holds. If G is a Tr-free r-graph with v(G) = n ≥ n0,
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• dB(S)(G) ≤ δnr,

• |LG(v)| ≥
( (m−1

r−2 )
(r−1)mr−1 − δ

)
nr−1, for every v ∈ V (G),

then there exists B0 ∈ B with V (B0) = V (G) := V such that for every v ∈ V

|LG(v)4LB0(v)| ≤ εnr−1.

Proof: We denote B := B(S), d(m, r) := (m−1
r−2 )

(r−1)mr−1 . It is easy to see that m(B) =
d(m,r)
r

. Let ε3.9.4 be chosen to satisfy Lemma 3.9.4 applied with H = S and F = Tr.

We choose constants

0 < δ � ε3.9.2 � γ � min{ε3.9.4, ε}

to satisfy the constraints appearing further in the proof. Let δ3.9.2 be chosen to

satisfy Corollary 3.9.2 applied with ε = ε3.9.2 for H = S and F = Tr. We also

impose on δ the condition δ � δ3.9.2.

Let B ∈ B be such that |G4B| = dB(G), and let P = {P1,P2, . . . ,Pm} be the

blowup partition of B. First note that

|G| = 1
r

∑
v∈V
|LG(v)| ≥

(
d(m, r)

r
− δ

r

)
nr−1.

Thus,

|B| ≥ |G| − δnr ≥
(

d(m, r)
r

− δ3.9.2

)
nr−1,

therefore, by Corollary 3.9.2, B is ε3.9.2-trimmed. Now consider the set

J :=
{
v ∈ V | |LG(v)4LB(v)| > γnr−1

}
,

these are the vertices which have potentially very different neihbourhoods in B and

in G. Since the distance between G and B is small, it is natural to expect that the
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set J is also small. Indeed,

|J |γnr−1 <
∑
v∈V
|LG(v)4LB(v)| = r|G4B| ≤ δrnr.

Let δ1 := δr/γ, then |J | ≤ δ1n, by the above. Let G ′ := G|V \J , n′ = v(G ′),

B′ := B|V \J , P ′j := Pj \ J for each j ∈ [m], and P ′ = {P ′1,P ′2, . . . ,P ′m}. The graph

G ′ satisfies the assumptions of Lemma 3.9.4. Indeed, for every v ∈ V \ J ,

|LG′(v)4LB′(v)| ≤ γnr−1 ≤ ε3.9.4(1− δ1)r−1nr−1 ≤ ε3.9.4(n′)r−1.

Similarly, |G|′ ≥
(

d(m,r)
r
− ε3.9.4

)
(n′)r−1. Thus both G ′ and G are P ′-transversal by

Lemma 3.9.4. Our next goal is to extend B′ to a blowup B0 of S with V (B0) = V , as

follows. For each u ∈ J we will find a unique index ju ∈ [m], such that u “behaves”

as the vertices in the partition class P ′ju , and add the vertex u to this partition class.

By doing so for all vertices of J , we will extend the partition P ′, and since J has

relatively small size, this operation will not increase the degrees of vertices in G ′

drastically. So let us fix some u ∈ J and show that such an index ju exists.

For I ⊆ [m], |I| = r − 1, let

EI(u) := {G ∈ G |u ∈ G, |G ∩ P ′i | = 1 for every i ∈ I}.

We construct an auxiliary (r−1)-graph L(u) with V (L(u)) = [m] such that I ∈ L(u)

if and only if |EI(u)| ≥ γnr−1. We aim to show that there exists a unique ju ∈ [m]

such that L(u) is isomorphic to the link graph of ju in S. Note that because of

vertex transitivity of S, for all j ∈ [m], the (r − 1)-graphs LS(j) are all isomorphic.

Claim 4.2.4. |L(u)| ≥ d(m, r)mr−1.

Proof. Denote by EJ(u) the set of all the edges in G that contain u and at least one
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other vertex from J . Clearly, |EJ(u)| ≤ |J |nr−2 ≤ δ1n
r−1. Therefore,

(d(m, r)− δ)nr−1 ≤ |LG(u)| ≤ |EJ(u)|+
∑

I∈L(u)
|EI(u)|+

∑
I /∈L(u)

|EI(u)|

≤ δ1n
r−1 + |L(u)|

( 1
m

+ ε3.9.2

)r−1
nr−1 + γ

(
m

r − 1

)
nr−1.

It follows that

|L(u)| ≥ d(m, r)mr−1

(1 + ε3.9.2m)r−1 −
(δ + δ1 + γ/(r − 1)!)mr−1

(1 + ε3.9.2m)r−1

> d(m, r)mr−1 − 1,

where the last inequality holds, as long as ε3.9.2, δ, δ1 and γ are sufficiently small

compared to 1/mr. It follows that |L(u)| ≥ d(m, r)mr−1.

For j ∈ [m], let

Lj(u) =
{
v ∈ P ′j

∣∣∣∣|LG(u, v) ≥ γ

2n
r−2
}

,

K =
{
j
∣∣∣∣|Lj(u)| < γ

2n
}

.

Claim 4.2.5. If j ∈ I ∈ L(u), then j /∈ K.

Proof. Suppose the opposite holds, that is, there exists I ∈ L(u) and j ∈ I such

that j ∈ K. Then

|EI(u)| ≤ |Lj(u)|nr−2 + |P ′j \ Lj(u)|βnr−2 <
γ

2n
r−1 + γ

2n
r−1 = γnr−1,

a contradiction.

By the claim above if we prove that |K| = 1, then ju ∈ K will be the index of

the partition class we were looking for, that is, L(u) is isomorphic to LS(ju) and

for every (r − 1)-tuple I ⊆ [m] with ju ∈ I, |EI(u)| < γnr−1. More importantly, ju
is unique satisfying all this properties. So let us prove that K is singleton. We do

so in two steps, first we show that it is not empty, then we show that if it had to

contain more than one index, then we would get a copy of Tr in G.
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Claim 4.2.6. |K| 6= ∅.

Proof. Fix I ∈ L(u). As S is a Steiner system, there exists unique j such that

I ∪ {j} ∈ S. We claim that j ∈ K. Assume not, and further assume, without loss

of generality, that I = {1, 2, . . . , r− 1}. Then there exists {v1, v2, . . . , vr−1} ∈ EI(u)

and vr ∈ Lj(u), such that {v1, v2, . . . , vr−1, vr} ∈ G. Otherwise, for every G ∈ EI(u)

and every v ∈ Lj(u), (G \ {u}) ∪ {v} is a missing edge and that would imply

|G4B| ≥ |EI(u)||Lj(u)| ≥ γnr−1 · γn > δnr,

a contradiction.

Let v1, v2, . . . , vr−1, vr be as above. Since G is Tr-free, every edge in F that con-

tains both u and vr, must also contain a vertex among {v1, v2, . . . , vr−1}. Therefore,

we must have |L(u, vr)| ≤ (r − 1)nr−3, while, by definition of Lj(u), |L(u, vr)| ≥

γnr−2, yielding a contradiction when n is large enough. Thus K 6= ∅.

Claim 4.2.7. |K| = 1.

Proof. Let k := |K|, we have already shown that k ≥ 1. Suppose for a contradiction

that k ≥ 2. Let A be a P ′-transversal (r − 2)-tuple. We want to show that

|L(A ∪ {u})| ≤
( 1
m

+ ε3.9.2 + γ(m− 1)
)
n. (4.1)

Suppose that there exist j1 6= j2 such that |L(A∪{u})∩Pj1| ≥ γn and |L(A∪{u})∩

Pj2| ≥ γn. Since G is Tr-free, for every v1 ∈ L(A∪{u})∩Pj1 and v2 ∈ L(A∪{u})∩Pj2 ,

we must have

|L(v1, v2)| ≤ (r − 1)nr−3.

It follows that

|F4B| ≥ γ2n2
(( 1

m
− ε3.9.2

)r−2
nr−2 − (r − 1)

(
n

r − 3

))

≥1
2γ

2
( 1
m
− ε3.9.2

)r−2
nr > δnr,

which is a contradiction. Thus, no such j1 and j2 exist, and (4.1) follows.

92



Using (4.1), we obtain an upper bound on EI(u), for every (r−2)-tuple I ⊆ [m].

Without loss of generality, suppose I = {1, 2, . . . , r − 2}. We apply (4.1) to every

A ∈ [n]r−2 which is I-transversal in G. As

r−2∏
j=1
|Pj| ≤

(
n

m
+ ε3.9.2n

)r−2
,

we derive

|EI(u)| ≤
( 1
m

+ ε3.9.2

)r−2 ( 1
m

+ ε3.9.2 + γ(m− 1)
)
nr−1. (4.2)

And finally, we are ready to derive an upper bound on the size of LG(u), which

will contradict the initial assumption |LG(u)| ≥ (d(m, r)− δ)nr−1:

|LG(u)| ≤ |EJ(u)|+
∑

I⊆[m],|I|=r−1
I∩K=∅

|EI(u)|+
∑

I⊆[m],|I|=r−1
I∩K 6=∅

|EI(u)|

≤ |J |nr−2 + 1
r − 1

∑
I⊆[m],|I|=r−2

I∩K=∅

|EI(u)|

+
∑
j∈K

(
|Lj(u)|nr−2 + (n− |Lj(u)|)γnr−2

)
(4.2)
≤ 1

r − 1

(
m− s
r − 2

)( 1
m

+ ε3.9.2

)r−2 ( 1
m

+ ε3.9.2 + γ(m− 1)
)
nr−1

+ δ1n
r−1 + 2γmnr−1

≤


(
m−2
r−1

)
mr−1 + γ

+ 2γm+ δ1

nr−1

< (d(m, r)− δ)nr−1,

a contradiction. Thus, k = 1.

As discussed earlier, Claim 4.2.7 implies that for every u ∈ J there exists unique

ju such that L(u) ' LS(ju). We extend the blowup B′ as we discussed earlier. For

every j ∈ [m], define

P 0
j := P ′j ∪ {u ∈ J | ju = j}.

Let B0 ⊇ B′ be the blowup of S with the blowup partition P0.
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Finally we are ready to show that for every v ∈ V , |LB0(v)4LG(v)| ≤ εnr−1.

Indeed, if v ∈ V \ J , then

|LB0(v)4LG(v)| ≤ |LB′(v)4LG′(v)|+ |J |nr−2

≤ γnr−1 + δ1n
r−1 ≤ εnr−1.

We now consider v ∈ J . Since G is P ′-transversal and by the choice of jv, it follows

that for every G ∈ LG\B0(v), either G ∩ J 6= ∅, or there exists I 6∈ L(v) such that

G ∈ LI(v) (recall that for all such I, jv ∈ I). Thus,

|LG\B0(v)| ≤ δ1n
r−1 +

((
m

r − 1

)
− |L(v)|

)
γnr−1 <

ε

4n
r−1. (4.3)

Finally,

|LG(v)4LB0(v)| = 2|LG\B0(v)|+ |LB0(v)| − |LG(v)|
(5.1)
≤ ε

2n
r−1 + d(m, r)

( 1
m

+ ε3.9.2 + δ1

)r−1
nr−1 − (d(m, r)− δ)nr−1

≤ εnr−1.

This concudes the proof.

Proof of Theorem 4.2.1. We denote B(S) simply by B and d(m, r) := (m−1
r−2 )

(r−1)mr−1 .

Our goal is to show that there exist ε,α,n0 > 0 such that the following holds. If

G ∈ Forb(Tr) with v(G) = [n], n ≥ n0 such that dB(G) ≤ εnr, and |LG(v)| ≥

(d(m, r)− ε)nr−1 for every v ∈ V (G), then

|G| ≤ m(B,n)− αdB(G). (4.4)

In fact, we show that one can take α = 1
2 . Now we specify dependencies between

constants used further in the proof. Let ε3.9.4 be taken to satisfy Lemma 3.9.4.

Define ε3.9.2 := 1
4m . Let δ3.9.2 be taken to satisfy Lemma 3.9.2 applied with ε = ε3.9.2

and H = S. We choose 0� ε� ε4.2.3 � min{δ3.9.2, ε3.9.4} to satisfy the inequalities

appearing in the proof. Furthermore, we will use ε < δ4.2.3/2, where δ4.2.3 is chosen
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to satisfy Theorem 4.2.3 applied with ε4.2.3, H and Tr.

We can assume that

|G| ≥
(

d(m, r)
r

− 2ε
)
nr ≥

(
d(m, r)

r
− δ4.2.3

)
nr,

since otherwise the result follows directly with α = 1. By Theorem 4.2.3 there exists

B ∈ B with V (B) = V (G) := V such that

|LF(v)4LB(v)| ≤ ε4.2.3n
r−1

for every v ∈ V .

We call the edges in G \ B bad, the edges in B \ G missing and, finally, the edges

in G ∩ B good. Let P = {P1,P2, . . . ,Pm} be the blowup partition of B. By our

assumptions,

|G| ≥
(

d(m, r)
r

− ε3.9.4

)
nr

and |LG(v)4LB(v)| ≤ ε4.2.3n
r ≤ ε3.9.4n

r for every v ∈ V . Thus by Lemma 3.9.4 all

bad edges in G are P-transversal.

Also note that since

|B| ≥ |G| − |G4B| ≥
(

d(m, r)
r

− 2ε− ε4.2.3

r

)
nr ≥

(
d(m, r)

r
− δ3.9.2

)
nr,

hence B is ε3.9.2-balanced.

Generalizing the notions of bad, good and missing edges, we introduce the fol-

lowing notation. For every I ⊂ V with 0 ≤ |I| ≤ r, we denote

A(I) := {G ∈ B \ G|I ⊆ G},

B(I) := {G ∈ G \ B|I ⊆ G},

a(I) := |A(I)| and b(I) := |B(I)|. So a(I) and b(I) respectively denote the number

of missing and bad edges that the tuple I is in. We have G4B = A(∅) ∪ B(∅) and
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|G4B| = a(∅) + b(∅). It is easy to see that for every I, such that 0 ≤ |I| ≤ r − 1,

the following inequalities hold

∑
j /∈I

a(I ∪ {j}) ≥ a(I) ≥ 1
r

∑
j /∈I

a(I ∪ {j}), (4.5)

∑
j /∈I

b(I ∪ {j}) ≥ b(I) ≥ 1
r

∑
j /∈I

b(I ∪ {j}). (4.6)

It is not hard to see that to derive the inequality (4.4) it suffices to show that

a(∅) ≥ 3b(∅). Let us assume for a contradiction that b(∅) > 1
3a(∅). Our next claim

shows that we can bound the number of bad edges that contain some i-tuple from

above by the proportion of the missing edges that contain any of its (i−1)-subtuples.

Claim 4.2.8. There exists c > 0 such that for every I ⊆ V (F), 1 ≤ |I| ≤ r, and

every I ′ ⊂ I with |I ′| = |I| − 1, we have a(I ′) ≥ cb(I)n.

Proof. We proceed by induction on r − |I|. We prove that for each 1 ≤ i ≤ r, and

every I ⊆ [n] with |I| = i there exists ci > 0 such that for all I ′ ⊂ I and |I ′| = i− 1,

we have a(I ′) ≥ cib(I)n. This clearly implies the claim.

We start the base case: |I| = r and we assume that I is a bad edge, as otherwise

the statement is trivial. Without loss of generality, assume I = {v1, v2, . . . , vr},

where vj ∈ Pj, and I ′ = {v1, v2, . . . , vr−1}. Since I is a bad edge, it means that

{1, 2, . . . , r} /∈ S which implies that {1, 2, . . . , r−1, k} ∈ S for some k 6= r. Without

loss of generality, we assume k = r + 1.

Let N := L(I ′) ∩ Pr+1. For every u ∈ N , we have

a(u, vr) ≥ (min
i
|Pi|)r−2 − |L(u, vr)|.

However, every edge that covers u and vr, must have a non-empty intersection with

{v1, v2, . . . , vr−1}, as F is Tr-free, therefore

|L(u, vr)| ≤ (r − 1)nr−3.
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On the other hand, sinceB is ε3.9.2-balanced, we have

a(vr) ≥ |N |
((

n

m
− ε3.9.2n

)r−2
− (r − 1)nr−3

)
.

But a({vr}) ≤ ε4.2.3n
r−1 and we have

|N | ≤ 2ε4.2.3(
1
m
− ε3.9.2

)r−2n = 2ε4.2.3

(4m
3

)r−2
n ≤ n

2m ,

for sufficiently large n. The latter directly implies that a(I ′) ≥ |Pr+1 \ N | ≥ n
4m ,

thus concluding the proof of the base case with cr = 1
4m .

We now turn to the induction step. For every I ′ ⊂ I with |I ′| = |I| − 1 we have

ra(I ′)
(4.5)
≥

∑
I′⊂J,
|J|=i

a(J) ≥
∑

I′⊂J,J 6=I
|J|=i

ci+1b(J ∪ I)n
(4.6)
≥ ci+1b(I)n,

where the second inequality follows from th induction hypothesis. Thus a(I ′) ≥

cib(I)n, where ci := ci+1
r
> 0, as desired.

Let c be as in Claim 4.2.8. Then a(∅) ≥ cb(v)n for every v ∈ V (F). Direct

averaging shows that for every I ⊆ V (F) with 0 ≤ |I| ≤ r− 1 and every c′ > 0 such

that b(I) > c′a(I), there exists v /∈ I such that b(I ∪{v}) > c′a(I ∪{v}). Therefore,

since b(∅) > 1
3a(∅), there exists v1 ∈ V (F) such that b(v1) > 1

3a(v1). Similarly,

a(v1) ≥ cb(v1, v) for every v ∈ V (F) \ {v1}, and there exists v2 ∈ V (F) \ {v1}, such

that b(v1, v2) > 1
3a(v1, v2). Applying this argument iteratively, we get the following

series of inequalities:

a(∅) ≥ cb(v1)n > c

3a(v1)n ≥ c2

3 b(v1, v2)n2 >
c2

9 a(v1, v2)n2 ≥ . . .

>
cr−1

3r−1a(v1, v2, . . . , vr−1)nr−1 ≥ cr

3r−1 b(v1, v2, . . . , vr)nr

>
cr

3r a(v1, v2, . . . , vr)nr.

In particular, b(v1, v2, . . . , vr) > 0, i.e. b(v1, v2, . . . , ir) = 1. Thus,

a(∅) > cr

3r−1n
r ≥ ε4.2.3

r
nr ≥ |F4B|,
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a contradiction.

4.3. Weak Stability From Lagrangians

In this section we prove that if S is a uniquely dense (m, r, r − 1)-Steiner system

and is the unique Lagrangian maximizer of the family F∗r, the subfamily of Forb(Dr)

that cover pairs (or equivalently, the subfamily of Forb(Σr) covering pairs), then

(weak) stability in weighted setting holds. That is, if F ∈ F∗r and λ(F ,µ) is “close”

to λ(F) = λ(S,µ∗S), for some µ ∈M(F), then (F ,µ) is “close” to B(S) in weighted

setting.

Theorem 4.3.1. Let m ≥ r ≥ 3, S be an (m, r, r − 1)-Steiner system that is

uniquely dense. If S is the unique Lagrangian maximizer of F∗r, then F∗r is B(S)-

weakly weight-stable.

Theorem 4.3.1 together with Theorem 4.1.9, implies the weak weight-stability of

the corresponding subfamilies of Forb(D5) and Forb(D6).

Corollary 4.3.2. F∗5, F∗6 are respectively B(S5) and B(S6)-weakly weight-stable.

So it remains to prove Theorem 4.3.1. The latter is obtained as a corollary

from the following more general statement. For simplicity we call the r-graphs not

containing Dr thin. A family of r-graphs is called thin if every member is thin, or

equivalently, if F is a subfamily of Forb(Dr).

Theorem 4.3.3. If F∗ is a thin family such that λ(F∗) = λ(F∗) for some F∗ ∈ F,

then it is F∗∗-weakly weight-stable, where

F∗∗ = {F∗|supp(µ) | F∗ ∈ F∗, λ(F∗,µ) = λ(F∗) for some µ ∈M(F∗)}.

The proof of this result mainly relies on the continuity of the Lagrangian function

and the property of the family Forb(Dr), not having an (r − 1)-tuple contained in

more than one edge.

Proof. We will consider infinite r-graphs in the proof of this theorem. Let FN denote

the family of r-graphs such that V (F) = N for every F ∈ FN and every finite
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subgraph H of a graph in FN is obtained from a subgraph of a graph in F∗ by adding

isolated vertices. Clearly, FN is thin. We enhance FN with a metric ς defined as

follows. For F ,F ′ ∈ FN, let ς(F ,F ′) := 1/2k, where k is the minimum integer such

that F|[k] 6= F ′|[k]. Note that (FN, ς) is compact.

Let

M(N) := {µ : N→ R+ | µ(1) ≥ µ(2) ≥ µ(3) ≥ . . . ,
∞∑
i=1

µ(i) ≤ 1}.

It is not hard to verify that M(N) is compact with L1 norm ‖ · ‖1. Let X be the

product of (FN, ς) and (M(N), ‖ · ‖1).

Note that every pair (F ,µ) with F ∈ F∗,µ ∈M(F) naturally corresponds to an

element of X, as we can assume that V (F) = [v(F)] and µ(i) ≥ µ(j) for all i ≤ j,

i, j ∈ V (F). For (F ,µ) ∈ X the density λ(F ,µ) := ∑
F∈F

∏
v∈F µ(v) is defined as

before.

Claim 4.3.4. λ is continuous on X.

Proof. It is easy to see that

|λ(F ,µ)− λ(F ,µ′)| ≤ ‖µ− µ′‖1

for every F ∈ FN and all µ,µ′ ∈ M(N). Thus, it suffices to show that for all

F ,F ′ ∈ FN and every ε > 0 there exists N ∈ N such that if F ′|[N ] = F|[N ] then

|λ(F ,µ)− λ(F ′,µ)| ≤ ε for every µ ∈ M(N). We show that N := d 1
ε(r−1)!e satisfies

the above. Let H := F ′|[N ] = F|[N ]. It suffices to show that λ(F ,µ) ≤ λ(H,µ) + ε.

We have

λ(F ,µ)− λ(H,µ) =
∑

F∈F ,F 6⊆[N ]

∏
i∈F

µ(i)

≤ µ(N + 1)
∑

I⊆N(r−1)

∏
i∈I
µ(i)

≤ µ(N + 1) 1
(r − 1)!

(∑
i∈N

µ(i)
)r−1

≤ 1
N(r − 1)! ≤ ε,

as desired. Note that in the second inequality above we use the fact that F is
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thin.

It follows from the above claim that

λ(F∗) = max
(F ,µ)∈X

λ(F ,µ), (4.7)

as every (F ,µ) ∈ X is a limit of a sequence of weighted graphs in F∗. Let

X∗∗ = {(F ,µ) ∈ X | F|supp(µ) ∈ F∗∗},

That is, X∗∗ is a set of weighted graphs in X with finite support, coinciding with

some graph in F∗∗ on its support.

Claim 4.3.5. If λ(F ,µ) = λ(F∗) for some (F ,µ) ∈ X, then (F ,µ) ∈ X∗∗.

Proof. Suppose for a contradiction that there exists some (F ,µ) ∈ X\X∗∗ such that

λ(F ,µ) = λ(F∗). By definition of F∗∗, it follows that supp(µ) must be infinite, and

hence, supp(µ) = N, since µ is non-decreasing. As λ(F , ν) considered as a function

of ν is maximized at ν = µ we have

∂λ(F , ν)
∂ν(i)

∣∣∣∣
ν=µ

= rλ(F∗),

for every i ∈ N. Thus, we have

∑
J∈N(r−1),|J |=r−1

J∪{i}∈F

∏
j∈J

µ(j) = rλ(F∗) (4.8)

for every i ∈ N. To show that (4.8) cannot hold we employ an argument similar

to the one used in the proof of the previous claim. Choose an integer N such that

N > 1
r(r−2)!λ(F∗) , and let i be such that |F ∩ [N ]| ≤ r−2 for every F ∈ F with i ∈ F .
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Then

∑
J∈N(r−1),|J |=r−1

J∪{i}∈F

∏
j∈J

µ(j) ≤ µ(N + 1)
∑

K∈N(r−2),|K|=r−2

∏
j∈K

µ(j)

≤ 1
N(r − 2)! < rλ(F∗).

This contradiction finishes the proof of the claim.

Now we are ready to finish the proof. We will show that for every ε > 0 there

exists δ > 0 such that for every F ∈ F∗ and µ ∈M(F), if λ(F∗,µ) ≥ λ(F∗)−δ, then

dF∗∗(F∗,µ) ≤ ε. (Clearly λ(F∗)=λ(F∗∗) so the above implies the theorem.) Abusing

notation slightly we consider pairs (F ,µ) as above as elements of X.

From continuity of λ and Claim 4.3.5 it follows that for every ε > 0 there exists

δ > 0 such that for every (F ,µ) ∈ X satisfying λ(F∗,µ) ≥ λ(F∗) − δ there exists

(F∗∗,µ∗∗) ∈ X∗∗ such that F|[n] = F∗∗|[n] for all n ≤ 2
ε
(r − 1)! + 1.

Following the argument in Claim 4.3.4, let H := F|[N ](= F∗∗|[N ]), for N :=

d2
ε
(r − 1)!e. As in Claim 4.3.4 we have

λ(F ,µ∗)− λ(H,µ∗) ≤ 1
N(r − 1)! ,

λ(F∗∗,µ∗)− λ(H,µ∗) ≤ 1
N(r − 1)! .

Finally, we have

dF∗∗(F∗,µ∗) ≤ d((F∗,µ∗), (H,µ∗)) + d((H,µ∗), (F∗∗,µ∗))

≤ (λ(F∗,µ∗)− λ(H,µ∗)) + (λ(F∗∗,µ∗)− λ(H,µ∗))

≤ 2
N(r − 1)! ≤ ε,

as desired.

Proof of Theorem 4.3.1. We only need to show that the family F∗∗ is not empty un-

der the assumptions on S and F∗r. Indeed by assumptions, we know that λ(S,µ∗S) ≥

λ(F∗,µ) for every F∗ ∈ F∗r, µ ∈ M(F∗) and, further, the equality holds only when
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F∗ is isomorphic to S and µ = µ∗S . Therefore F∗∗ = {S} and F∗r is S-weakly weight

stable, which in its turn trivially implies B(S)-weak weight stability.

4.4. Proof of Theorem 4.1.8

Proof of Theorem 4.1.8. By Theorem 3.8.2, we need to show that the following con-

ditions hold.

(C1) Forb(Tr) is B(S)-vertex locally stable.

(C2) The subfamily of Forb(Dr) of graphs covering pairs is B(S)-weakly weight

stable.

(C1) holds by Theorem 4.2.1. (C2) holds by Theorem 4.3.1. This finishes the

proof.
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Chapter 5

Turán numbers of Two Families

I
n this chapter we study Turán numbers of two families of hyper-

graph extensions. Keevash [Kee11a] and Sidorenko [Sid89] have

previously determined Turán densities of these families. We deter-

mine their Turán numbers using the local stability method.

5.1. History

Our first main result is connected to the famous Erdős-Sós conjecture from 1963

(Conjecture 1.6.2), which asserts that if G is a simple graph of order n with average

degree more than k − 2, then G contains every tree on k vertices as a subgraph.

This conjecture has been verified for several families of trees, and in early 1990’s

the proof of the conjecture for large enough k was announced by Ajtai, Komlós,

Simonovits and Szemerédi. We say that a tree is an Erdős-Sós-tree if it satisfies the

conjecture. Recall the definition of expansions from Section 1.6. Given a 2-graph G,

the (r − 2)-expansion of G is the r-graph obtained by adding (r − 2) vertices to G

and enlarging each edge of G to contain these vertices. In [Sid89] Sidorenko proved

the following.

Theorem 5.1.1 (Sidorenko, [Sid89]). For every r ≥ 2, there exists Mr such that if

T is an Erdős-Sós-tree on t ≥Mr vertices then π(Ext(T )) = r!(t+ r− 3)−r
(
t+r−3
r

)
,

where T is the (r − 2)-expansion of T .
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We prove the following exact version of Theorem 5.1.1.

Theorem 5.1.2. For every r ≥ 2, there exists Mr such that the following holds.

Let T be an Erdős-Sós-tree on t ≥ Mr vertices and let T be the (r − 2)-expansion

of T . Then there exists n0 such that for all n ≥ n0, K(r)
t+r−3(n) is the unique largest

Ext(T )-free r-graph on n vertices.

Our second result concerns extensions of a different class of sparse hypergraphs.

Let K̄(r)
t denote the edgeless r-graph on t vertices. Mubayi [Mub06] determined

π(Ext(K̄(r)
t )) and Pikhurko [Pik05] obtained the corresponding exact result.

Theorem 5.1.3 (Pikhurko,[Pik05]). For every t > r ≥ 3 there exists n0 such that

for all n ≥ n0, K(r)
t (n) is the unique largest Ext(K̄(r)

t+1)-free r-graph on n vertices.

Keevash [Kee11a] considered the following generalization of the above problem.

Let F be any r-graph that covers pairs, and let F+t be obtained from F by adding

new isolated vertices so that v(F+t) = t. (We have ∅+t = K̄(r)
t , where ∅ denotes the

null r-graph.) In [Kee11a] Keevash, generalizing the density argument from [Mub06],

proved the following.

Theorem 5.1.4 (Keevash, [Kee11a]). Let F be an r-graph that covers pairs with

v(F) ≤ t+ 1. If π(F) ≤ r!t−r
(
t
r

)
, then π(Ext(F+(t+1))) = r!t−r

(
t
r

)
.

We obtain the exact version of a slight weakening of Theorem 5.1.4.

Theorem 5.1.5. Let F be an r-graph that covers pairs with v(F) ≤ t. If π(F) <

r!t−r
(
t
r

)
then there exists n0 such that K(r)

t (n) is the unique Ext(F+(t+1))-free r-graph

on n vertices with maximum number of edges for all n ≥ n0.

Our proofs of Theorems 5.1.2 and 5.1.5 share a common part. Both graphs

Ext(T ) and Ext(F+(t+1)) belong to a general class of graphs, which we call sharply

t-critical. In the next section we prove a theorem establishing the local stability of

Forb(F) for all such F . Then we prove the stability in weighted setting separately

for Forb(Ext(T )) and Forb(Ext(F+(t+1))) in Sections 5.3 and 5.4, respectively.
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5.2. Local Stability of Sharply Critical Graphs

We say that an r-graph F is strongly t-colorable, if the vertices of F can be colored in

t colors such that every edge contains no two vertices of the same color. Equivalently,

F is strongly t-colorable if and only if K(r)
t is not F -hom-free. Recall that an r-

graph is t-colorable if the vertices can be colored in t colors such that no edge is

monochromatic. For r = 2 the definitions of strong t-colorability and t-colorability

coincide, but for r ≥ 3 they differ.

We say that F is t-critical if F is not strongly t-colorable, but there exists an

edge F ∈ F such that F \F is strongly t-colorable. We are interested in a subfamily

of t-critical graphs. Let us remind the reader few definitions from Section 3.9.

Recall that for two r-graphs F and H, we say that H is F -hom-free if there is no

homomorphism from F to H. We say that H is F -hom-critical if H is F -hom-free

but there exists an edge F ∈ F such that there exists a homomorphism from F\F to

H. More specifically, if F is such an edge in F , we say that H is (F ,F )-hom-critical.

For an r-graph F and an edge F ∈ F , we say that the pair (F ,F ) is loose if the

vertices of F can be partitioned into two sets, Fc and Ff , such that

• |Fc| = 2, the vertices of Fc do not share any edge other than F ,

• every vertex of Ff is not contained in any edge other than F .

The vertices in Ff are called free, the vertices in Fc are called critical.

Definition 5.2.1. For an r-graph F and v ∈ F ∈ F , we say that the triple (F ,F , v)

is a t-spike if

(i) (F ,F ) is loose and v is a critical vertex in F ,

(ii) LF(v) is a matching,

(iii) K(r)
t is (F ,F )-hom-critical,

(iv) for every L ⊆ [t][r−1] with |L| ≥
(
t−1
r−1

)
such that L is not isomorphic to K(r−1)

t−1 ,

there exists a mapping

ϕ : V (F) \ {v} → [t] such that
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(a) ϕ|F−v (i.e. ϕ restricted to the r-graph F−v) is a homomorphism to K(r)
t .

(b) for every I ∈ LF(v), ϕ(I) ∈ L and |ϕ(I)| = r − 1.

We say that F is sharply t-critical if there exist v ∈ F ∈ F such that (F ,F , v) is a

t-spike. Note that for 2-graphs the technical definition above simplifies considerably.

Indeed if F is a 2-graph which is not t-colorable, and v ∈ F ∈ F are such that F \F

is t-colorable, then (F ,F , v) trivially is a t-spike. We are now ready to state the

main result of this section.

Theorem 5.2.2. For t ≥ r ≥ 2, if an r-graph F is sharply t-critical then Forb(F)

is B
(
K(r)
t

)
-vertex locally stable.

Theorem 5.2.2 and the remark preceding it imply that for every t-critical 2-graph

F the family Forb(F) is B(Kt)-vertex locally stable. Thus, by Corollary 3.5.7, as

a consequence of Theorem 5.2.2 we obtain a classical theorem of Simonovits, which

using our language can be stated as follows.

Corollary 5.2.3 (Simonovits, [Sim68]). Let F be a t-critical 2-graph. Then Forb(F)

is B(Kt)-stable.

For the proof of Theorem 5.2.2 we use the tools developed in Section 3.9. In par-

ticular, if F is sharply t-critical then clearly Corollary 3.9.2 and Corollary 3.9.4 are

applicable to F and K(r)
t . As in the case of the generalized triangle (Lemma 4.2.3),

here also we need an auxiliary lemma which allows us to find a “good embedding”

of every large F -free graph, meaning that if G is an F -free graph with large mini-

mum degree and has a small edit distance to the family B(K(r)
t ) then we can find a

blowup B ∈ B on the same vertex set as G such that every vertex has almost the

same neighbourhoods in G and B.

Lemma 5.2.4. For t ≥ r ≥ 2, let F be a sharply t-critical r-graph. Then for

every ε > 0 there exist δ > 0 and n0 ∈ N such that if G is an F-free r-graph with

v(G) = n ≥ n0 such that

• d
B(K(r)

t )(G) ≤ δnr,

• |LG(v)| ≥
((t−1

r−1)
tr−1 − δ

)
nr−1,
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then there exists B0 ∈ B(K(r)
t ) with V (B0) = V (G) := V such that for every v ∈ V

|LG(v)4LB0(v)| ≤ εnr−1.

Proof. Denote B := B(K(r)
t ) and d(t, r) = (t−1

r−1)
tr−1 . It is easy to see that m(B) = d(t,r)

r
.

Let ε3.9.4 be derived from Corollary 3.9.4 applied with H = K(r)
t and F . Given ε, we

choose the constants ε3.9.2, δ, β, γ as follows

0 < δ � ε3.9.2 � γ � β � min
{
ε3.9.4, ε, 1

v(F)

}
.

Let δ3.9.2 be derived from Corollary 3.9.2 with respect to F and K(r)
t applied with

ε = ε3.9.2, we also impose on δ the condition δ � δ3.9.2. Let B ∈ B be such that

|G4B| = dB(B). First note that

|G| = 1
r

∑
v∈V (G)

|LG(v)| ≥
(

d(t, r)
r
− δ

r

)
nr.

Because of the choice δ � δ3.9.2 we get

|B| ≥ |G| − δnr ≥
(

d(t, r)
r
− δ3.9.2

)
nr,

therefore B is ε3.9.2-trimmed. The first part of the proof goes along the same lines

as in Lemma 4.2.3. We consider the set of “non-behaving” vertices, that is,

J =
{
v ∈ V

∣∣∣|LG(v)4LB(v)| > γnr−1
}

and can derive the bound |J | ≤ δr
γ
n easily. Then we consider G ′ := G|V \J , n′ = v(G ′),

B′ := B|V \J ,P ′ = P|V \J . Just as in Lemma 4.2.3, we can show that the graph G ′

satisfies the assumptions of Lemma 3.9.4 and obtain that both G ′ and G are P ′-

transversal.

Using these properties, we extend B′ to a blowup B0 ∈ B with V (B0) = V , as

follows. For each u ∈ J we find a unique index ju ∈ [m], such that u “behaves” as

the vertices in the partition class P ′ju , and add the vertex u to this partition class.
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For I ⊆ [t], |I| = r − 1, let

EI(u) := {G ∈ G |u ∈ G, |G ∩ P ′i | = 1 for every i ∈ I}.

We construct an auxiliary (r−1)-graph L(u) with V (L(u)) = [t] such that I ∈ L(u)

if and only if |EI(u)| ≥ βnr−1. We aim to show that L(u) is isomorphic to K(r−1)
t−1 .

Just as in Claim 4.2.4, we can show that |L(u)| ≥ d(t, r)tr−1. Next we consider the

sets

Lj(u) =
{
v ∈ P ′j

∣∣∣|LG(u, v) ≥ β

2n
r−2
}

,∀j ∈ [t]

K =
{
j
∣∣∣|Lj(u)| < β

2n
}

.

Just as we did in Claim 4.2.5 we can obtain the following claim.

Claim 5.2.5. If j ∈ I ∈ L(u) then j /∈ K.

So if we prove that L(u) ' K(r−1)
t−1 it follows that there exists a unique ju such

that every I /∈ L(u) contains ju.

Note that in difference to the proof of Lemma 4.2.3, we use a probabilistic ar-

gument to show that L(u) is isomorphic to K(r−1)
t−1 rather than a deterministic one.

We do so using sharp t-criticality of F , in particular, the existence of a map as in

Definition 5.2.1-(iv).

Claim 5.2.6. L(u) is isomorphic to K(r−1)
t−1 .

Proof. If it is not the case, let vc ∈ F ∈ F be such that (F ,F , vc) is a t-spike. Let

ϕ : V (F) \ {vc} → [t]

be as in Definition 5.2.1. Let ρ : V (F)→ V (G) be a random map such that ρ(vc) =

u, and let ρ(w) be chosen uniformly at random in Pϕ(w) for every w ∈ V (F) \ vc.

We will show that with probability bounded away from zero as a function of β and

independent on n, the map ρ maps all edges of F to edges of G. It will follow that

G is not F -free yielding the desired contradiction.

If I ∈ F , vc 6∈ I then
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P [ρ(I) /∈ G] ≤ 2γtr , as in Lemma 3.9.3. Thus,

P [ρ(I) /∈ G for some I ∈ F such that v 6∈ I] ≤ 2γ v(F)rtr � β.

If I ∈ LF(v) then P [ρ(I ∪ {v}) ∈ G] ≥ β. As LF(v) is a matching it follows that

the events {ρ(I ∪ {v}) ∈ G}I∈LF (vc) are independent. Thus

P [ρ(I) ∈ G for every I ∈ LF(vc)] ≥ β|LH(vc)|.

The desired conclusion follows.

From the claim above it follows that |K| = 1. For every u, let ju be the unique

index in the corresponding set K. As discussed above, we extend the blowup B′ as

follows. For every j ∈ [t], define

P 0
j := P ′j ∪ {u ∈ J | ju = j}.

Let B0 ⊇ B′ be the blowup of H with the blowup partition P0. Now we are ready

to show that for every v ∈ V , |LB0(v)4LG(v)| ≤ εnr−1. If v ∈ V \ J , then

|LB0(v)4LG(v)| ≤ |LB′(v)4LG′(v)|+ |J |nr−2

≤ γnr−1 + δr

γ
nr−1 ≤ εnr−1.

We now consider v ∈ J . Since G is P ′-transversal and by the choice of jv, it follows

that for every G ∈ LG\B0(v), either G ∩ J 6= ∅, or there exists I 6∈ L(v) such that

G ∈ LI(v). Thus,

|LG\B0(v)| ≤ δr

γ
nr−1 +

((
m

r − 1

)
− d

)
βnr−1 <

ε

4n
r−1. (5.1)
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Finally,

|LG(v)4LB0(v)| = 2|LG\B0(v)|+ |LB0(v)| − |LG(v)|
(5.1)
≤ ε

2n
r−1 + d

(
1
m

+ ε3.9.2 + δr

γ

)r−1

nr−1 − (d− δ)nr−1

≤ εnr−1,

as desired. This finishes the proof of the theorem.

Proof of Theorem 5.2.2: Suppose v ∈ F ∈ F are such that (F ,F , v) is a t-spike.

We denote B = B
(
K(r)
t

)
and d(t, r) := (t−1

r−1)
tr−1 . Note that m(B) = d(t,r)

r
.

Let ε3.9.4 be obtained from Corollary 3.9.4 applied to F ,F and K(r)
t . Let δ5.2.4

be obtained from Theorem 5.2.4 applied with ε = ε3.9.4 to F , F and K(r)
t .

We want to show that there exist ε,α,n0 > 0 such that for every G ∈ Forb(F)

with v(G) = n ≥ n0, such that dB(G) ≤ εnr, and |LG(v)| ≥ (d(t, r)− ε)nr−1 for

every v ∈ V (F), we have

|G| ≤ m(B,n)− αdB(G).

We claim that α = 1 and ε = min{ ε3.9.4
4 , δ5.2.4

2 } are as required.

We may assume |G| ≥ (m(B)−2ε)nr, as otherwise the result follows with α = 1.

Hence,

|G| ≥ (m(B)− 2ε)nr ≥ (m(B)− δ5.2.4)nr

and can apply Theorem 5.2.4 and obtain B ∈ B with V (B) = V (G) := V such that

for every v ∈ V , |LG(v)4LB(v)| ≤ ε3.9.4n
r−1.

On the other hand,

|B| ≥ |G| − |G4B| ≥ (m(B)− 2ε)nr − ε3.9.4

r
nr ≥ (m(B)− ε3.9.4)nr

Hence now we can apply Corollary 3.9.4 to G and B and obtain that G is P(B)-

transversal. And therefore, G ⊆ B and thus, |G| = |B| − |B \ G| ≤ m(B,n)− dB(G),

as desired.
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5.3. Proof of Theorem 5.1.2

Let T denote the (r − 2)-expansion of the tree T . By Theorem 3.8.2, it suffices to

prove that

(C1) Forb(Ext(T )) is B(K(r)
t+r−3)-vertex locally stable,

(C2) Forb(T ) is B(K(r)
t+r−3)-weakly weight-stable.

By Theorem 5.2.2, the following lemma establishes that (C1) holds.

Lemma 5.3.1. If T is a tree on t ≥ 3 vertices, then Ext(T ) is sharply (t+ r − 3)-

critical.

Proof. Let v be a leaf of T , and let F be an edge of Ext(T ) − T containing v.

We show that (Ext(T ),F , v) is a (t + r − 3)-spike. Let u be the unique vertex in

(F ∩ V (T ))−{v}. Note that v(T ) = t+ r− 2, and every pair of vertices in V (T ) is

covered in Ext(T ). Condition (i)-(iii) in Definition 5.2.1 are easy to verify. Indeed,

Ext(T ) is not strongly (t+r−3)-colorable, but Ext(T )−F is, since one can use the

same color on u and v. Also since v is adjacent to the unique vertex in T , LExt(T )(v)

is trivially a matching.

It remains to verify (iv). For L ⊆ [t+ r − 3](r−1) such that |L| ≥
(
t+r−4
r−1

)
and L

is not isomorphic to K(r−1)
t+r−4 we define mapping ϕ : V (Ext(T )) \ {v} → [t + r − 3]

satisfying condition (iv) in the definition of a t-spike as follows.

Consider the subgraph T ′ of Ext(T ) induced by the vertex set V (Ext(T )) \

(V (LExt(T )(v)) \ V (T )). Then T ′ is strongly (t+ r − 3)-colorable. Let ϕ be defined

on V (T ′) so that ϕ is a strong (t+r−3)-coloring of T ′, and moreover, ϕ(L−{v}) ∈ L

for the unique edge L ∈ T ′ such that v ∈ L. It follows that (iv-a) holds for ϕ.

It remains to extend ϕ so that it satisfies (iv-b). For every w ∈ V (T ) − {u, v}

there exists a unique I ∈ LExt(T )(v) such that w ∈ I. Since L is not isomorphic to

K(r−1)
t+r−4, there exists L ∈ L such that ϕ(w) ∈ L. We extend ϕ to I − {w} so that

ϕ(I) = L. Clearly, the resulting map ϕ : V (Ext(T ))→ [t+r−3] satisfies (iv-b).

The following theorem shows that (C2) holds, thus completing the proof of The-

orem 5.1.2.
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Theorem 5.3.2. For every r ≥ 2 there exists real Mr such that, if T is an Erdős-

Sós-tree on t ≥Mr vertices, then Forb(T ) is B(K(r)
t+r−3)-weakly weight-stable.

The proof of Theorem 5.3.2 relies on a result by Sidorenko [Sid89]. Its statement

involves a function

fr(x) = 1
(x+ r − 3)r

(
x+ r − 3

r

)
t− 2
x− 2.

Let us first note the following useful observations concerning fr(x) from [Sid89]:

(F1) The function fr(x) is strictly decreasing for sufficiently large x,

(F2)

fr(x) = 1
r

(
x+ r − 4
x+ r − 3

)r−1
fr−1(x), and

(F3) λ(K(r)
t+r−3) = fr(t).

Theorem 5.3.3 ([Sid89, Lemma 3.3]). For r ≥ 2 let Mr be such that fr(x) is

decreasing for x ≥Mr. If T is an Erdős-Sós-tree on t ≥Mr vertices then λ(F ,µ) ≤

fr(x) for every F ∈ Forb(T ),µ ∈ M(F) with x = max {t, 1
γ
− r + 3} and γ =

maxv∈V (F) µ(v). In particular, λ(Forb(T )) = fr(t).

Given an r-graph F , u, v ∈ V (F) and µ ∈ M(F), let λu(F ,µ) = ∑
I∈LF (u) µ(I),

and let λu,v(F ,µ) = ∑
I∈LF (u,v) µ(I). The following technical lemma is useful in the

proof of Theorem 5.3.2.

Lemma 5.3.4. For every ε > 0 there exists δ > 0 such that if F is an r-graph,

u ∈ V (F), µ ∈M(F), λ(F ,µ) ≥ λ(F)−δ and µ(u) ≥ ε, then λu(F ,µ) ≥ rλ(F)−ε.

Proof. We assume without loss of generality that ε < 1, and let δ = (ε3 − ε4)/r.

Suppose for a contradiction that λu(F ,µ) < rλ(F) − ε. We have rλ(F ,µ) =∑
v∈V (F) µ(v)λv(F ,µ). Thus, there exists u′ ∈ V (F) \ {u} such that λu′(F ,µ) ≥

rλ(F).

Let µ′ ∈M(F) be defined as follows. Let µ′(u′) = µ(u′) + ε2, µ′(u) = µ(u)− ε2,
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and let µ′(v) = µ(v) for every v ∈ V (F)− {u,u′}. We have

rλ(F ,µ′) =
∑

v∈V (F)
µ′(v)λv(F ,µ′)

= rλ(F ,µ) + ε2(λu′(F ,µ)− λu(F ,µ))− ε4λu,u′(F ,µ)

> rλ(F ,µ) + ε3 − ε4

≥ rλ(F)− rδ + ε3 − ε4

≥ rλ(F),

a contradiction.

In the rest of the section it will be convenient for us to occasionally consider

subprobabilistic measures on the vertex set of a graph, rather than probabilistic ones.

For an r-graph F , letM≤1(F) ⊃M(F) denote the set of functions µ : V (F)→ R+

such that µ(V (F)) ≤ 1. The density λ(F ,µ) and the distance d((F ,µ), (F ,µ′)) for

µ,µ′ ∈M≤1(F) are defined as in Section 2.4. Moreover, it is easy to check that the

following result holds.

Fact 5.3.5. For any r-graph F and µ,µ′ ∈M≤1(F),

(i) |λ(F ,µ)− λ(F ,µ′)| ≤ ||µ− µ′||1,

(ii) d((F ,µ), (F ,µ′)) ≤ ||µ− µ′||1.

All the technical work in the proof of Theorem 5.3.2 is accomplished in the

following lemma.

Lemma 5.3.6. For every r ≥ 2 there exists Mr such that if T is the (r − 2)-

expansion of an Erdős-Sós-tree T on t ≥ Mr vertices then the following holds. For

every ε > 0 there exists δ > 0 such that if F ∈ Forb(T ), µ ∈M(F) with λ(F ,µ) ≥

λ(Forb(T )) − δ, then there exists S ⊆ V (F) such that µ(S) ≥ 1 − ε, and F [S] is

isomorphic to K(r)
t+r−3.

Proof. First note that, by Theorem 5.3.3, λ(Forb(T )) = 1
(t+r−3)r

(
t+r−3
r

)
. The proof

is by induction on r. The base case is r = 2. In this case we have T = T and
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λ(Forb(T )) = t−2
t−1 . For any 2-graph F , by Corollary 2.2.2, λ(F) = ω−2

ω−1 , where ω

is the size of the maximum clique of F . Thus, if F and µ ∈ M(F) are such that

λ(F ,µ) ≥ (1 − δ) t−2
t−1 , it follows that ω = t − 1 given that δ is sufficiently small.

However, the graph F is T -free, and therefore every complete subgraph of F of size

t− 1 is a component of F . Note that if F = F1 ∪ F2 and V (F1) ∩ V (F2) = ∅ then

λ(F ,µ) ≤ µ(V (F1))2λ(F1) + µ(V (F2))2λ(F2).

Thus if C is a clique on (t− 1) vertices in F , then

(1− δ)t− 2
t− 1 ≤ λ(F ,µ)

≤ µ(V (C))2λ(C) + (1− µ(V (C))2λ(F − C)

≤ t− 2
t− 1

(
µ(V (C))2 + (1− µ(V (C))2

)

It follows that 2µ(V (C))(1 − µ(V (C))) ≤ δ. Therefore if we take S = V (C), it is

routine to check that δ = ε− ε2 satisfies the theorem in the base case.

We move on to the induction step. Let Mr be chosen so that fk(x) is strictly

decreasing for x > Mr and k ≤ r. This choice is possible by (F1). By the induction

hypothesis there exists δr−1 > 0 such that the claim holds for the (r− 3)-expansion

of T . The parameters 0 < δ � δ′′ � ε′ � δr−1 � 1 will be chosen to satisfy the

inequalities (occasionally implicit) appearing further in the proof.

Let u ∈ V (F) be such that µ(u) = maxv∈V (F) µ(v), and let γ = µ(u). Suppose

that γ < 1/(t + r − 3). Then by Theorem 5.3.3 and our assumptions we have

fr(t) − δ ≤ λ(F ,µ) ≤ fr(1/γ − r + 3). This inequality and the choice of Mr imply

that

γ ≥ 1− ε′
t+ r − 3, (5.2)

as long as δ is sufficiently small compared to ε′. By Lemma 5.3.4 we have

λu(F ,µ) ≥ rλ(F)− ε′/2 ≥ rfr(t)− ε′, (5.3)

once again assuming that δ is sufficiently small compared to ε′ for the conditions of
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Lemma 5.3.4 to be satisfied.

Let T ′ be the (r − 3)-expansion of the tree T , and let F ′ = LF(u). Then F ′

is T ′-free. Let µ′ ∈ M(F ′) be given by µ′(v) = µ(v)
1−γ , for every v ∈ V (F ′). Using

(5.2),(5.3) and (F2) we have

λ(F ′,µ′) = λu(F ,µ)
(1− γ)r−1 ≥

(
t+ r − 3

t+ r − 4 + ε′

)r−1
(rfr(t)− ε′)

=
(

t+ r − 4
t+ r − 4 + ε′

)r−1
fr−1(t)− ε′

(
t+ r − 3

t+ r − 4 + ε′

)r−1
≥ fr−1(t)− δr−1,

where the last inequality holds for ε′ sufficiently small compared to δr−1. By the

choice of δr−1 there exists S ′ ⊆ V (F)\{u} with |S ′| = t+r−4 such that µ′(S ′) ≥ 1−ε.

Let S = S ′ ∪ {u} then

µ(S) = µ(u) + µ′(S ′)(1− µ(u)) ≥ 1− ε.

It remains to show that F [S] is complete. We assume without loss of generality

that ε is sufficiently small. Let F∗ = F [S], and let µ∗ = µ|S. Then µ∗ ∈ M≤1(F∗).

Also define µ′ ∈ M≤1(F) as µ′(v) = µ(v), for any v ∈ S and zero, otherwise. By

Fact 5.3.5,

λ(F∗,µ∗) = λ(F ,µ′) ≥ λ(F ,µ)− ‖µ− µ′‖ ≥ fr(t)− δ − ε = λ(K(r)
t+r−3)− (δ + ε).

It follows that F∗ is isomorphic toK(r)
t+r−3, as long as ε and δ are sufficiently small.

Lemma 5.3.6 directly implies Theorem 5.3.2, as follows.

Proof of Theorem 5.3.2: Let B = B(K(r)
t+r−3). For every ε > 0 we need to show

the existence of δ > 0 such that if F ∈ Forb(T ), µ ∈ M(F) with λ(F ,µ) ≥

λ(Forb(T )) − δ, then dB(F ,µ) ≤ ε. Let δ be chosen so that Lemma 5.3.6 holds.

Then there exists S ⊆ V (F) such that µ(S) ≥ 1− ε, and F∗ := F [S] is isomorphic

to K(r)
t+r−3. Let µ′ ∈ M≤1(F) be the measure obtained from µ by setting µ′(v) = 0
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for every v ∈ V (F) \ S. Then,

dB(F ,µ) ≤ d((F∗,µ|S), (F ,µ)) = d((F ,µ′), (F ,µ)) ≤ ε,

as desired.

5.4. The proof of Theorem 5.1.5

Just as we did in the previous section, using Theorem 3.8.2 we only need to verify

that for every r-graph F that covers pairs and t ≥ v(F), the following two conditions

hold.

(C1) Forb(Ext(F+(t+1))) is B(K(r)
t )-vertex locally stable,

(C2) Forb(F+(t+1)) is B(K(r)
t )-weakly weight-stable.

By Theorem 5.2.2, the following lemma establishes (C1).

Lemma 5.4.1. If F is an r-graph that covers pairs, then for any t ≥ v(F), the

r-graph Ext(F+(t+1)) is sharply t-critical.

Proof. Let H = Ext(F+(t+1)). Consider v ∈ V (F+(t+1)) \ V (F) and let H be any

edge containing v. We will show that (H,H, v) is a t-spike. Conditions (i)-(iii) in

the Definition 5.2.1 are easy to verify. In particular, H \H is strongly t-colorable.

Indeed, let ϕ be an an arbitrary coloring of V (F+(t+1)) \ {v} by t colors. We define

the the colors of vertices in V (H) \ V (F+(t+1)) ∪ {v} as follows.

Let w ∈ V (F+(t+1)) be the unique vertex different from v such that w ∈ H. Color

v with the same color as w. For every edge H ′ ∈ H \F , which contains exactly two

vertices of V (F+(t+1)), say u1,u2, color the (r − 2)-tuple H \ {u1,u2} arbitrarily by

the colors in [t] not used on u1 and u2. Since all these (r − 2)-tuples are disjoint, it

is easy to see that ϕ is a strong t-coloring of H \H.

Consider L ⊆ [t] with |L| ≥
(
t−1
r−1

)
with L not isomorphic to K(r−1)

t−1 . We define

the map ϕ : V (H) \ {v} → [t] satisfying the conditions (iv-a) and (iv-b) as follows.

Consider the subgraph H′ of H induced by the vertex set V (H) \ V (LH(v)) ∪

V (F+(t+1)). Let ϕ|V (H′) be any strong t-coloring of H′. Then (iv-a) holds. For every
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I ∈ LH(v), let w be the unique vertex in (I ∩ V (F+(t+1))) \ {v}. Since L is not

isomorphic to K(r−1)
t−1 , there exists L ∈ L such that w ∈ L. Extend ϕ to I \ {w} so

that ϕ(I) = L. The resulting map ϕ satisfies (iv-b).

Lemma 5.4.2. Let F be an r-graph that covers pairs, and let t be such that t ≥ v(F)

and π(F) < r!λ(K(r)
t ). Let G∗ be the family of all r-graphs in Forb(F+(t+1)) which

cover pairs. Then G∗ is B(K(r)
t )-weakly weight-stable.

Proof. If G ∈ G∗, then either v(G) ≤ t or G is F -free, as otherwise we get a copy

of F+(t+1) using the property of G covering pairs. We want to show that for every

ε > 0 there exists δ > 0 such that if G ∈ G∗, µ ∈ M(G) and λ(G,µ) ≥ λ(K(r)
t )− δ,

then d
B(K(r)

t )(G) ≤ ε. We prove something even stronger.

Let T be the family of all r-graphs on at most t vertices not isomorphic to K(r)
t ,

and let λ∗ = max{λ(T), π(F)/r!}. Then λ∗ < λ(K(r)
t ). For our purposes, it suffices

to show that, if λ(G) > λ∗ for some G ∈ G∗, then G is isomorphic to K(r)
t .

If v(G) ≤ t then G is isomorphic to K(r)
t , as otherwise λ(G) ≤ λ(T). Thus we

assume v(G) > t. Then G is F -free, and, as F covers pairs, it follows that B(G) is

F -free. Thus, π(F) ≥ supB∈B(G)
|B|

(v(B)
r ) . On the other hand, it is easy to see for any

graph G,

λ(G) = sup
B∈B(G)

|B|
v(B)r .

Thus, we obtain λ(G) ≤ π(F)
r! ≤ λ∗, a contradiction.

Acknowledgements

1. As the referee pointed out, “critical” hypergraphs have been considered prior to

our work. In [BBH+16], the authors describe a family of “critical” r-graphs for

which they can prove that the balanced blowup of the complete graphs are the

extremal examples (see, Theorem 2 in [BBH+16]. Their notion of “criticality”,

on top of similar conditions as (i) and (ii) in Definition 5.2.1, also requires the

stability in classical setting to hold (i.e. as in Definition 3.1.3). In comparison,

we exploit sufficient conditions ((iii) and (iv) in Definition 5.2.1) to obtain

stability (as in Definition 3.2.2).
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Chapter 6

The Turán number of the

extension of a two matching

I
n [HK13] Hefetz and Keevash determined the the Turán number of

a 3-uniform matching of size two, the extremal graphs are the bal-

anced blowups of the complete 3-graph on five vertices. In the same

paper they also conjectured what is the Turán number of an r-uniform matching of

size two, for r ≥ 4. In this chapter we affirmatively settle their conjecture.

6.1. History

Recall that M2
(r) is the r-graph with two disjoint edges. In [HK13] Hefetz and

Keevash found the Turán number of Ext(M2
(3)).

Theorem 6.1.1 (Hefetz, Keevash, [HK13]). There exists n0 such that for all n ≥ n9,

the largest Ext(M2
(3))-free 3-graph on n vertices is unique and is the balanced blowup

of K(3)
5 .

We study the Turán number of Ext
(
M2

(r)
)
for r ≥ 4. We say that a partition

(A,B) of the vertex set of an r-graph F is a star-partition if for every F ∈ F ,

|F ∩A| = 1. We say that F is a star if it admits a star-partition. For fixed partition

(A,B), we denote by S(r)(A,B) the maximal r-graph with a star-partition (A,B).
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We denote by S(r)(n) the r-graph on n vertices that is a star and has the maximum

possible number of edges. It is easy to check that |S(r)(n)| =
(
1− 1

r

)r−1 (n
r

)
+ o(nr)

and, moreover, if (A,B) is a star-partition of S(r)(n), then |A| = n
r

+o(n). Our main

result of this chapter follows.

Theorem 6.1.2. For every r ≥ 4, there exists n0 := n0(r) such that for all n ≥ n0,

the largest Ext
(
M2

(r)
)
-free r-graph on n vertices is unique and is S(r)(n).

In difference to other graphs or families whose Turán numbers we studied in this

thesis, the Turán density of Ext
(
M2

(r)
)
, r ≥ 4 was not known prior to our research.

As for r = 3, Hefetz and Keevash determined the Turán density of Ext(M2
(3)).

It turns out that the Turán density of the graphs Ext
(
M2

(r)
)
is related to the

Lagrangian of the family of intersecting r-graphs, that is, the graphs in which every

two edges intersect. A version of the following lemma for r = 3 is present in [HK13]

[Theorem 4.1].

Lemma 6.1.3. For all r ≥ 3, π
(
Ext

(
M2

(r)
))

= r!λ(H), where H is the family of

all intersecting r-graphs.

Proof. By Corollary 2.2.4, π
(
Ext

(
M2

(r)
))

= r! supH λ(H), over all dense Ext
(
M2

(r)
)
-

hom-free r-graphs H. Clearly every intersecting r-graph is Ext
(
M2

(r)
)
-hom-free.

Let us show the other direction.

Suppose H is dense Ext
(
M2

(r)
)
-hom-free r-graph. Suppose there are two dis-

joint edges F1 and F2 in H. Since dense graphs cover pairs, for every pair of vertices

v1 ∈ F1 and v2 ∈ F2, there exists an edge covering them, thus creating a homomor-

phic copy of Ext
(
M2

(r)
)
, a contradiction.

Thus, to find the Turán density of Ext
(
M2

(r)
)
, one needs to determine the

supremum of Lagrangians over all intersecting r-graphs. For r = 3, Hefetz and

Keevash did so in [HK13] and showed that the maximum Lagrangian among all

intersecting 3-graphs is uniquely achieved by K(3)
5 . It is perhaps natural to suspect

the analogous result to hold for r ≥ 4, that is, is it true that the maximum La-

grangian over all intersecting r-graphs is achieved by K(r)
2r−1? As observed in [HK13]

this is not true. A better candidate is the following. We say that an intersecting
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r-graph is principally intersecting if there exists a vertex contained in all edges. Let

P(r)(n) be the complete principally intersecting r-graph on n + 1 vertices. It is

easy to see that limn→∞ λ(P(r)(n)) = 1
r!(1 − r)r−1 while λ(K(r)

2r−1) = 1
(2r−1)r

(
2r−1
r

)
and 1

r!(1 − r)
r−1 > 1

(2r−1)r

(
2r−1
r

)
, for r ≥ 4. Hefetz and Keevash conjectured that

the graphs P(r)(n) assymptotically achieve the supremum of Lagrangians over all

intersecting r-graphs. In [NW16], Norin and Watts settled this conjecture in much

stronger sense, which we use in the proof of Theorem 6.1.2.

Theorem 6.1.4 (Norin, Watts, [NW16]). For every r ≥ 4, there exists a constant

cr such that if H is an intersecting but not principally intersecting r-graphs, then

λ(H) < 1
r!

(
1− 1

r

)r−1
− cr.

In the rest of the chapter we denote by S the the family of all r-uniform stars and

by F the family Forb
(
Ext

(
M(r)

2

))
. Clearly S is clonable, hence by Theorem 3.8.2

if we show that the following two conditions hold:

(C1) F is S-vertex locally stable,

(C2) the family F∗ of all r-graphs in Forb(M(r)
2 ) that cover pairs is S-weakly weight

stable,

then it would follow that F is S-stable. Once we established this, it is easy to derive

Theorem 6.1.2. In the next section we show that (C1) holds. Section 6.3 contains

the final proof of Theorem 6.1.2, including the proof of (C2) which is derived from

Theorem 6.1.4.

6.2. Vertex Local Stability of Forb
(
Ext

(
M2

(r)
))

In this section we use the following notations for the normalized degree and edge

density in S(r)(n), dr := 1
(r−1)!

(
1− 1

r

)r−1
, er := 1

r!

(
1− 1

r

)r−1
. Recall thatS denotes

the family of all r-uniform stars and F := Forb
(
Ext

(
M(r)

2

))
.It is easy to see λ(S) =

er. The main result of this section follows.

Theorem 6.2.1. For every r ≥ 4, F is S-vertex locally stable.
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In fact, we will prove that F is S′-vertex locally stable, where S′ ⊆ S is the

family of all S(r)(A,B) for all possible partitions (A,B). It is easy to see that by

Lemma 3.5.8, this implies Theorem 5.2.2. Our next section contains some auxiliary

lemmas which we use in the main proof several times.

6.2.1. Auxiliary Lemmas

Our first lemma is analogous to Lemma 3.9.2; it ensures that if a large S ∈ S has

density close to the maximum possible (i.e. er nr), then the star-partition of S is

almost as “balanced” as the one for S(r)(n). More precisely, recall the definition of

ε-trimmed from Section 3.9. We utilize this notion in this case as well. We say that

a star with star-partition (A,B) is ε-trimmed, if
∣∣∣ |A|
n
− 1

r

∣∣∣ ≤ ε.

Lemma 6.2.2. For every r ≥ 4 and every ε > 0 there exist δ > 0 and n0 ∈ N such

that the following holds. If S ∈ S on n ≥ n0 vertices such that |S| ≥ (er−δ)nr,

then S is ε-trimmed.

Proof. Consider the complete principally intersecting r-graph on |B| + 1 vertices,

that is P(r)(|B|) (note that |B| = Ω(n), otherwise the size of S is much smaller

than assumed). For simplicity, we denote it by P . Let v be the vertex common for

all edges. Assign µ(v) = |A|
n

and for all u 6= v, let µ(u) = 1
n
. Clearly, µ ∈ M(P).

Moreover,

|S| ≤ |A|
(
|B|
r − 1

)
= nr ·

(
|B|
r − 1

)
|A|
n
· 1
nr−1 = λ(P ,µ)nr.

On the other hand, it is easy to see that er = limn→∞P(r)(n) and since we assume

n is sufficiently large, it follows that er ≥ λ(P ,µ∗)− δ, where µ∗ ∈M(P) is defined

as µ∗(v) = 1
r
and µ∗(v) = 1−1/r

|B| for every other u 6= v. So we obtain that

λ(P ,µ∗) ≥ λ(P ,µ) ≥ λ(P ,µ∗)− 2δ, (6.1)

but λ(P , ·) is a continuos function with a unique maximum achieved at µ∗, therefore,

for every ε > 0 there exists δ > 0 such that if (6.1) holds then ||µ− µ∗||∞ ≤ ε, from

which it follows that
∣∣∣ |A|
n
− 1

r

∣∣∣ ≤ ε, as desired.
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Our second lemma provides a necessary condition for an r-graph to be Ext
(
M2

(r)
)
-

free. A version of this lemma for r = 3 can be found in [HK13].

Lemma 6.2.3. For every r ≥ 3 there exists c6.2.3 > 0 and n0 such that the following

holds. Let F be an r-graph on n ≥ n0 vertices, F1 and F2 be two disjoint edges of

F and v1 ∈ F1, v2 ∈ F2. If there exists an edge F such that F ∩ (F1 ∪ F2) = {v1, v2}

and for every u1 ∈ F1,u2 ∈ F2, {u1,u2} 6= {v1, v2}, |LF(u1,u2)| ≥ c6.2.3n
r−3, then F

contains a copy of Ext
(
M2

(r)
)
.

Proof. For any such u1,u2 the number of edges that contain both u1 and u2 and

another vertex from F1 ∪ F2 ∪ F is at most (3r − 4)nr−3. Also, for a fixed (r − 2)-

tuple disjoint from the vertices of F1∪F2∪F , the number of edges that contain u1, u2

and at least one vertex from this tuple is bounded by (r−2)nr−3. Therefore, if every

such pair is in at least ((3r − 4) + (r2 − 1)(r − 2))nr−3 edges then we can greedily

pick distinct z1, z2, . . . , zr−2 such that {u1,u2, z1, z2, . . . , zr−2} ∈ F and moreover,

for different pairs u1,u2 the sets {z1, z2, . . . , zr−2} are disjoint. Thus, together with

the edge F , these vertices induce a copy of Ext
(
M2

(r)
)
in F .

Corollary 6.2.4. For every r ≥ 3 there exists c6.2.4 > 0 and n0 such that the

following holds. Let F be an r-graph on n ≥ n0 vertices, F1 and F2 be two disjoint

edges of F . If for every u1 ∈ F1,u2 ∈ F2, |LF(u1,u2)| ≥ c6.2.4n
r−3, then F contains

a copy of Ext
(
M2

(r)
)
.

We use the notation ce := ce(r) as the maximum of the two constants derived

from Lemma 6.2.3 and Corollary 6.2.4. Our next two lemmas together provide a

tool for finding pairs of vertices which are in many “missing” edges.

Lemma 6.2.5. Given r ≥ 4 and 0 < ε < 1, let F ∈ F and S ∈ S′ be two r-graphs

with V (F) = V (S) and |F4S| ≤ εnr. Suppose S has a star-partition (A,B) and

C ⊆ A,D ⊆ B, 0 < α, β < 1 satisfy the following conditions:

(i) |C| ≥ αn,

(ii) |D| ≥ βn,

(iii) ε < αβr−1

2(r−1)r−1 ,
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then for large enough n the r-graph F ′∩S ′ has a matching of size at least γn, where

F ′ = F [C ∪D], S ′ = S[C ∪D] and γ = αβr−1(r−1)!
4(r−1)r−1 .

Proof. Let M be the maximal matching of the graph F ′ ∩ S ′. Note that

|F ′| ≤ |M |+ |M |
(
|C|+ |D|
r − 1

)
≤ 2|M | nr−1

(r − 1)! . (6.2)

On the other hand,

|S ′| = |C|
(
|D|
r − 1

)
≥ αn

(
βn

r − 1

)
≥ αβr−1

(r − 1)r−1n
r. (6.3)

By initial assumptions we have |F ′4S ′| ≤ |F4S| ≤ εnr, which together with (6.2)

and (6.3) implies

|M | ≥
(
αβr−1(r − 1)!
2(r − 1)r−1 −

ε(r − 1)!
2

)
n ≥ αβr−1(r − 1)!

4(r − 1)r−1 n,

as desired.

Lemma 6.2.6. Given r ≥ 4 and 0 < ε, ε′,α, β < 1, let F ∈ F and S ∈ S′ be two

r-graphs on n vertices with |F4S| ≤ εnr. Suppose S is ε′-trimmed, L is a set of

disjoint (r− 1)-tuples, L ⊆ LF(v) for some vertex v, such that V (L) ⊆ B and M is

some matching of the r-graph F ∩ S such that v /∈ M . If the following conditions

hold:

(i) |L| ≥ αn,

(ii) |M | ≥ βn,

(iii) L and M are disjoint,

(iv) ε ≤ min
{
αβ(1− 1

r
−ε′)r−2

4(r−2)r−2 , αβ( 1
r
−ε′)(1− 1

r
−ε′)r−3

4(r−2)r−2

}
,

then for large enough n there exists u ∈ V (M) such that |LF(u, v)| < cen
r−3.

Proof. Suppose the lemma does not hold and for every u ∈ V (M), |LF(u, v)| ≥

cen
r−3. Let (A,B) be the star-partition of S. For every F1 ∈ F such that F1 = {v}∪I

for some I ∈ L and F2 ∈M by Corollary 6.2.4 there exists a pair of vertices w1 ∈ F1
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and w2 ∈ F2 such that w1 and w2 together are in less than cenr−3 edges. Note that

by our initial assumption, w1 6= v. Thus, w1 ∈ B. On the other hand, w2 ∈ A

or w2 ∈ B. By pigeonhole principle we may assume that at least |M |2 many such

w2 ∈ F2 are from A. Thus,

|F4S| > |L| |M |2

(
(1− 1

r
− ε′)r−2nr−2

(r − 2)r−2 − cenr−3
)

≥
αβ(1− 1

r
− ε′)r−2

4(r − 2)r−2 nr

≥ εnr,

which is a contradiction.

Remark 6.2.1. Note that for Lemma 6.2.5 and Lemma 6.2.6 to hold it is enough

to require that ε � α, β � 1. Thus, these are the conditions that we ensure in the

applications of the lemmas.

6.2.2. Proof of Theorem 6.2.1

Recall that S′ is the subfamily of S of all S(r)(A,B), for all possible partitions

(A,B). It is easy to see that m(S′) = m(S), because in particular, S′ contains

S(r)(n) for every n. Moreover, if we have a star S with partition (A,B), then

S ⊆ S(r)(A,B), hence we can apply Lemma 3.5.8 to F,S and S′ and obtain that

if we prove that F is S′-vertex locally-stable, then it would follow that F is also

S-vertex locally stable. To escape the notation overload, we will use the notation

S instead of more precise S′.

So we want to show that there exist ε,α > 0 and n0 ∈ N such that if F ∈ F

with v(F) = n ≥ n0, such that

• dS(F) ≤ εnr,

• |LF(v)| ≥ (dr−ε)nr−1 for every v ∈ V (F),

then

|F| ≤ m(S,n)− αdS(F).
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In fact, we show that α can be taken to be one. Consider such an r-graph F ∈ F

and let S := S(r)(A,B) ∈ S with V (S) = A ∪ B and |F4S| = dS(F). We call an

edge F ∈ F A-bad if |F ∩ A| ≥ 2, B-bad if F ⊆ B and simply bad if it is either

A-bad or B-bad. We call an edge F ∈ F good if it is not bad. We say that an edge

F is missing if F ∈ S but F /∈ F . Since the distance between F and S is “small” we

expect the number of bad edges to be “small” as well. In fact, we show that there

are no bad edges in F at all. It is easy to see that this finishes the proof. Indeed, in

that case we have that F \ S = ∅, thus

|F| = |S| − |S \ F| ≤ m(S,n)− |F4S|,

as desired. The main idea behind proving that there cannot be any bad edges is that

every bad edge forces “a lot of” edges to be missing to preserve Ext
(
M2

(r)
)
-freeness,

thus contributing to the distance between F and S. However, the formal proof of

this statement requires several steps.

First we prove that every vertex is in “many” good edges (Section 6.2.3). This

is relatively easy to do; we only use the fact that |F4S| is “small”. Next we show

that there are no bad vertices, where a vertex is bad if it is contained in “many”

bad edges. This is where the main bulk of our work is concentrated; here we use

the first step and the fact that every vertex has very similar degrees in F and S

(Section 6.2.4). Finally, we derive that there are no bad edges (Section 6.2.5). Now

we are ready to start the formal proof.

Let ε, ε6.2.2,µ > 0 be real numbers satisfying ε � µ � ε6.2.2 � 1. Let δ6.2.2

be derived from Lemma 6.2.2 applied with ε6.2.2. In addition to all the constraints

imposed on ε, we also require that ε ≤ δ6.2.2/3. Let F and S be as discussed in the

sketch of the proof. We may assume that |F| ≥ (er−2ε)nr, since otherwise we are

done. It follows that

|S| ≥ |F| − εnr ≥ (er−3ε)nr ≥ (er−δ6.2.2)nr.

So we can apply Lemma 6.2.2 to S and obtain that it is ε6.2.2-trimmed. We say

that vertex v is bad if it is contained in at least 2µnr−1 bad edges. For a vertex v,
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g(v) and b(v) will denote the number of good and bad edges that v is contained in,

respectively. More generally, we also use the notation g(I) and b(I) for any tuple I

to denote the number of good and bad edges that I is in. We say that an edge F is

(k,A)-bad for some 2 ≤ k ≤ r, if |F ∩ A| = k.

6.2.3. Every Vertex Is In Many Good Edges

Lemma 6.2.7. For every v ∈ V , g(v) ≥ µnr−1.

Proof. Suppose not and there exists v ∈ V with g(v) < µnr−1. We consider two

cases.

Case 1: v ∈ A. If v is in at least µnr−1 (2,A)-bad edges, then consider a new

star-partition (A′,B′) where A′ := A \ {v} and B′ := B ∪{v}. Note that edges that

do not contain v preserve their “goodness” or “badness” with respect to the new

partition. Among the edges that contain v, the ones that are (2,A)-bad become

good, edges that are good become B′-bad and all the edges that are (k,A)-bad for

some k ≥ 3 become (k − 1,A′)-bad. Thus, the total number of bad edges with

respect to star with the star-partition (A′,B′) are less than the ones with S. This

contradicts to the choice of S, thus v must be contained in less than µnr−1 (2,A)-bad

edges. Now the following is an upper bound for the total number of (k,A)-bad edges

for all k ≥ 3 that v may be contained in.

r−1∑
k=2

(
|A|
k

)(
|B|

r − 1− k

)
=

r−1∑
k=0

(
|A|
k

)(
|B|

r − 1− k

)
−
(
|B|
r − 1

)
−
(
|A|
1

)(
|B|
r − 2

)

≤ nr−1

(r − 1)! −

(
1− 1

r
− ε6.2.2

)r−1
nr−1

(r − 1)! −

(
1
r
− ε6.2.2

) (
1− 1

r
− ε6.2.2

)r−2
nr−1

(r − 2)! + Cnr−2

≤ (dr−ε− 2µ)nr−1,

for large enough n. (See Section 6.4 for details.) Thus we obtain

|LF(v)| ≤ g(v) + b(v) < µnr−1 + (d(r)− ε− 2µ)nr−1 + µnr−1

≤ (dr−ε)nr−1,
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a contradiction.

Case 2: v ∈ B. This case is very similar to the previous one. We can assume

that v is in less than µnr−1 B-bad edges. Otherwise, consider a new star-partition

(A′,B′), where A′ := A ∪ {v} and B′ := B \ {v}; the total number of bad edges is

less with respect to (A′,B′) than with (A,B), which contradicts to the choice of S.

Now we can bound the total number of A-bad edges that v is in, as follows.

b(v,A) =
r−1∑
k=2

b(v,A, k) ≤
r−1∑
k=2

(
|A|
k

)(
|B|

r − 1− k

)

< (dr−ε− 2µ)nr−1,

just as in the previous case. And similarly, |LF(v)| ≤ g(v) + b(v) < (dr−ε)nr−1.

This finishes the proof of the lemma.

Now let us define the good neighbourhood of a vertex v, denoted by Ng(v) as

follows. If v ∈ A, then let Ng(v) be all the vertices u in B such that g(u, v) ≥ cen
r−3.

If v ∈ B, then Ng(v) is the set of all vertices in A ∪ B with the same property. In

comparison, note that in S for every vertex v in A, Ng(v) = B and for v ∈ B,

Ng(v) = A ∪B \ {v}. Because of the small distance between F and S, it is natural

to expect the good neighbourhoods of vertices to have relatively large size in F as

well. We are able to derive this easily from Lemma 6.2.7.

Corollary 6.2.8. For every v ∈ V , |Ng(v)| ≥ (1− 1
r
)µn.

Proof. We can use a simple counting argument as follows. For both v ∈ A or v ∈ B,

we can write

µnr−1 ≤ g(v) ≤
∑

u∈Ng(v)
g(v,u) +

∑
u/∈Ng(v)

g(v,u) ≤ |Ng(v)|nr−2 + cen
r−2,

and therefore,

|Ng(v)| ≥ µn− ce ≥
(

1− 1
r

)
µn.

for sufficiently large n. Note that this bound can be easily improved but for our
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purposes we only need to show that Ng(v) contains positive proportion of vertices,

meaning of order n.

Corollary 6.2.9. If v ∈ A, then there exists a set of disjoint (r − 1)-tuples, L ⊆

LF(v), such that V (L) ⊆ B and |L| ≥ µ
r
n.

Proof. Let L be the maximal set of pairwise disjoint (r− 1)-tuples I ⊆ B such that

{v} ∪ I are good edges. Then, using Lemma 6.2.7 we get

µnr−1 ≤ |L|+ (r − 1)|L|nr−2 ≤ r|L|nr−2,

thus |L| ≥ µ
r
n, as desired.

6.2.4. No Bad Vertices Exist.

Analogous to the notion of the good neighbourhood, we can consider the bad neigh-

bourhood of a vertex v, denoted by Nb(v), as follows. For v ∈ A, let Nb(v) to be all

the vertices u ∈ A such that b(u, v) ≥ cen
r−3. For v ∈ B, let Nb(v) to be all the

vertices u ∈ A ∪ B such that b(u, v) ≥ cen
r−3. Note that in S no vertex has a bad

neighbourhood. So we would like to show that in F these sets have relatively small

sizes. This is easy to do, the proof is analogous to the proof of Corollary 6.2.8.

Lemma 6.2.10. If v is a bad vertex then |Nb(v)| ≥ 2
(
1− 1

r

)
µn.

However, just Lemma 6.2.10 itself is not enough to show that there are no bad

vertices. We need to consider the cases when a vertex is in many A-bad or B-bad

edges separately. For these purposes we use the following lemma whose proof goes

along the lines of the Corollary 6.2.8 and Corollary 6.2.9 together. For a vertex v,

let bA(v) and bB(v) denote the number of A-bad and B-bad edges v is contained in,

respectively.

Lemma 6.2.11. If bB(v) ≥ µnr−1, then |Nb(v)∩B| ≥ (1− 1
r
)µn and there exists a

set of disjoint (r − 1)-tuples, L ⊆ LF(v), such that V (L) ⊆ B and |L| ≥ µ
r
n.

And now we are ready to prove the main result of this section.
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Lemma 6.2.12. There are no bad vertices.

Proof. Suppose there exists a bad verttex v. We consider two cases.

Case 1: v ∈ A or (v ∈ B and bB(v) ≥ µnr−1).

By Corollary 6.2.9 and Lemma 6.2.11 in this case there exists L ⊆ LF(v) with

V (L) ⊆ B such that |L| ≥ µ
r
n. We may assume |L| = µ

2rn by choosing a smaller

subset of it. Our plan is to apply Lemma 6.2.6 with v, L and some matching M of

F ∩ S that is disjoint from L.

We need to find a large enough matching M such that for every u ∈ V (M),

|LF(u, v)| ≥ cen
r−3. This would contradict to the conclusion of Lemma 6.2.6, thus

proving that v cannot be a bad vertex. So in the next steps, we are going to find

such a matching M using Lemma 6.2.5.

If v ∈ A then let C = Nb(v) and choose D ⊆ Ng(v) with |D| = (1− 1
r
)µ2n disjoint

from L. If v ∈ B, let C = Ng(v) and choose D ⊆ Nb(v) with |D| = (1 − 1
r
)µ2n. In

both cases this is possible to do since the number of vertices that are contained in

L is bounded by (1 − 1
r
)µ2n and for v ∈ A, |Ng(v)| ≥ (1 − 1

r
)µn while for v ∈ B,

|Nb(v)| ≥ (1− 1
r
)µn.

Now we are ready to apply Lemma 6.2.5 with C,D and a matching M of the

subgraph F [C ∪D] ∩ S[C ∪D] of size at least γn, where we can guarantee ε � γ

by our choice of ε � µ. Next we apply Lemma 6.2.6 with L and M and derive a

contradiction, since for every u ∈ V (M), |LF(u, v)| ≥ cen
r−3. Note that here we are

using the fact that ε� µ, γ.

Case 2: v ∈ B and b(v,B) < µnr−1.

Our goal is to find a subgraph of F which contributes to the edit distance with

S more than εnr. This contradiction would finish the proof. Here is an outline.

(1) Let η := µ
2( 1

r
+ε6.2.2)2 . We construct an auxilary graph G on A where (a1, a2) ∈

E(G) if and only if b(v, a1, a2) ≥ ηnr−3. We show thatG is dense (Claim 6.2.13).

(2) Next we consider the vertices in G of large degree, namely, we let L = {a ∈

A|dG(a) ≥ η|A|}. It is easy to see that |L| ≥ η|A|.

(3) We consider a maximal matching M of F(A,B \ {v}), let us denote AM =

V (M) ∩A and BM = V (M) ∩B. We show that M must cover almost all the
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vertices of A. (Claim 6.2.14). It follows that M has linear intersection both

with L and with the neighbourhood of every vertex in L (Corollary 6.2.15).

(4) Then we show that for some pairs of edges of M we can find a pair of vertices

which are in many missing edges (Claim 6.2.16). And finally, using the bounds

on L andM we can derive that the number of such pairs is large, thus showing

that these missing edges contibute to the edit distance between F and S more

than we are allowed to have, that is, εnr.

Claim 6.2.13. |E(G)| ≥ η|A|2.

Proof. Since b(v,B) < µnr−1, it follows that b(v,A) ≥ µnr−1. Hence we can bound

the number of A-bad edges that v is in from above as follows.

µnr−1 ≤ b(v,A) ≤
∑

u1,u2∈A
b(v,u1,u2)

=
∑

(u1,u2)∈E(G)
b(v,u1,u2) +

∑
(u1,u2)/∈E(G)

b(v,u1,u2)

≤ |E(G)|nr−3 + ηnr−2.

Therefore, for sufficiently large n,

|E(G)| ≥ µn2 − ηn ≥ µ

2n
2 = η

(1
r

+ ε6.2.2

)2
n2 ≥ η|A|2.

Claim 6.2.14. |M | ≥ (1− η
2)|A|.

Proof. Suppose the claim does not hold, and there exists a set C ⊆ A such that

|C| ≥ η
2 |A| and C is uncovered by M . It follows that if we let D := B \ BM then

the graph F [C ∪D]∩S[C ∪D] is empty since otherwise we could have extended M .
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Since |BM | < (r − 1)(1− η
2)|A| we have

|D| = |B| − |BM |

> |B| − (r − 1)
(

1− η

2

)
|A|

≥
(

1− 1
r
− ε6.2.2

)
n− (r − 1)

(
1− η

2

)(1
r
− ε6.2.2

)
n

=
(
ε6.2.2(r − 2) + η

2

(
1− 1

r
− ε6.2.2(r − 1)

))
n := ξn.

It follows that

|F4S| ≥ |C|
(
|D|
r − 1

)

≥ η

2 |A|
|D|r−1

(r − 1)r−1

≥
η(1

r
− ε6.2.2)ξr−1

2(r − 1)r−1 nr

> εnr,

a contradiction.

Corollary 6.2.15. |L ∩ AM | ≥ η
2 |A| and |NG(a) ∩ AM | ≥ η

2 |A| for every a ∈ L.

Claim 6.2.16. For every a1, a2 ∈ AM with ai ∈ Fi ∈ M , i = 1, 2, if a1a2 ∈ E(G)

then there exists a pair of vertices {u,w} 6= {a1, a2} with u ∈ F1,w ∈ F2 such that

|LF(u,w)| < cen
r−3.

Proof. We claim that there exists an edge which intersects F1 and F2 only at a1

and a2, respectively. This is because b(v, a1, a2) ≥ ηnr−3 by definition of G. On the

other hand, the number of those edges that contain v, a1, a2 and some other vertex

from Fa1 ∪Fa2 is bounded by (2r− 2)nr−4 < ηnr−3, for sufficiently large n. So there

exists an edge that contains v, a1, a2 and otherwise is disjoint from F1 ∪ F2. Let us

denote this edge by Fa1,a2 . Now we can apply Lemma 6.2.2 with F1,F2 and Fa1,a2

and obtain such a pair {u,w} with the desired property.

For every a ∈ L∩AM we can apply Claim 6.2.16 with every a′ ∈ NG(a)∩AM , thus

obtaining at least η|A|/2 pairs of vertices {u,w} 6= {a, a′} such that |LF(u,w)| <
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cen
r−3. Using Corollary 6.2.15, we know that the number of such pairs is at least

|L∩AM |×η|A|/2
2 (note that here we are using the fact that M is a matching and every

pair (a, a′) is counted only twice). Note that for every pair (a, a′) there are three

possible cases for the pair {u,w}; either both u,w are from B or u = a and w ∈ B

or u ∈ B and v = a′. By pigenhole principle and, without loss of generality, we can

assume that in at least one third of the cases the pair is from B. Thus, for at least
η2|A|2

12 pairs {u,w}, we have

|LS(u,w) \ LF(u,w)| ≥ |A|
(
|B|
r − 3

)
− cenr−3

≥

(
1
r
− ε6.2.2

)
(1− 1

r
− ε6.2.2)r−3nr−2

(r − 2)r−3 − cenr−3

≥

(
1
r
− ε6.2.2

)
(1− 1

r
− ε6.2.2)r−3nr−2

2(r − 2)r−3 ,

assuming n is large enough. Therefore,

|F4S| ≥ η2 |A|2

12 ·

(
1
r
− ε6.2.2

)
(1− 1

r
− ε6.2.2)r−3

2(r − 2)r−3 nr−2

≥ η2

(
1
r
− ε6.2.2

)3
(1− 1

r
− ε6.2.2)r−3

24(r − 2)r−3 nr

> εnr,

a contradiction. This shows that v cannot be a bad vertex, thus concluding the

proof.

Now that we have proved that there are no bad vertices, we can show that for

every vertex v ∈ V there are only small number of vertices with whom v is in many

missing edges. For a vertex v ∈ A, we define its missing neighbourhood, denoted by

Nm(v), to be all the vertices u ∈ B such that g(u, v) < cen
r−3. For vor v ∈ B, Nm(v)

is the set of all vertices u ∈ V such that |LF(u, v)| < cen
r−3. Note that we can relate

the good and missing neighbourhoods of vertices as follows. For v ∈ A, Nm(v) =

B \ Ng(v) and for v ∈ B, Nm(v) = (A ∪B) \ Ng(v), where Ng(v) = Ng(v) ∪ {v}.

In comparison, note that in the graph S the missing neighbourhoods are empty for
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all vertices since for v ∈ A, Ng(v) = B and for v ∈ B, Ng(v) = A ∪ B. Thus, it is

natural to expect that the corresponding sets are small in F . That is what we prove

next.

Corollary 6.2.17. For every v ∈ V , |Nm(v)| ≤ 1
12r!

(
1− 1

r

)r
n.

Proof. Assume v ∈ A. Let B′ = B\Nm(v). Since we have proved that b(v) < 2µnr−1

we have that

g(v) = |LF(v)| − b(v) ≥


(
1− 1

r

)r−1

(r − 1)! − ε− 2µ

nr−1

On the other hand, we can upper bound all the good edges that contain v and some

other vertex u ∈ Nm(v) easily by |Nm(v)|cenr−3. The number of all the remaining

good edges that contain v is bounded by
(
|B′|
r−1

)
. Hence we obtain

g(v) ≤ |Nm(v)|cenr−3 +
(
|B′|
r − 1

)
≤ εn+ |B

′|r−1

(r − 1)!

So we can put together the upper and lower bounds on g(v) and obtain that

|B′|r−1

(r − 1)! ≥


(
1− 1

r

)r−1

(r − 1)! − 2ε− 2µ

nr−1

≥ 1
(r − 1)!

((
1− 1

r

)r−1
− 2(r − 1)!(ε+ µ)

)
nr−1

≥ 1
(r − 1)!

(
1− 1

r
− 2(r − 1)!(ε+ µ)

)r−1
nr−1.

Therefore,

|Nm(v)| = |B| − |B′|

≤
(

1− 1
r

+ ε6.2.2

)
n−

(
1− 1

r
− 2(r − 1)!(ε+ µ)

)
n

= (ε6.2.2 + 2(ε+ µ)(r − 1)!)n

≤ 1
12r!

(
1− 1

r

)r
n.
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The analysis of v ∈ B is analogous but slightly more technical since we need to

consider the sets Nm(v) ∩A and Nm(v) ∩B, however, the same inequality holds by

our choice of constants ε, ε6.2.2,µ� 1. We skip the proof of this case for brevity.

The non-existence of bad vertices also allows us to give an absolute bound on

the number of disjoint (r− 1)-tuples that are in good edges with a vertex in A, thus

improving the bound given by Corollary 6.2.9. We will use this in the next section.

Corollary 6.2.18. For every vertex v ∈ A there exists a set of disjoint (r−1)-tuples,

L, such that every for every I ∈ L, I ∪ {v} is a good edge and |L| ≥ 1
r!

(
1− 1

r

)r
n.

Proof. Let L be the maximal set of pairwise disjoint (r− 1)-tuples I ⊆ B such that

{v} ∪ I are good edges in F . Then, on one hand, we have

g(v) = |LF(v)| − b(v) ≥ (d(r)− ε− 2µ)nr−1.

On the other hand,

g(v) ≤ |L|+ (r − 1)|L|nr−2 ≤ r|L|nr−2.

Thus,

|L| ≥ 1
r

(dr−2µ− ε)nr ≥ 1
r

(
1− 1

r

)
dr n = 1

r!

(
1− 1

r

)r
n.

6.2.5. No Bad Edges Exist.

Lemma 6.2.19. There are no bad edges.

Proof. Suppose there is one, say F . First suppose F is a B-bad edge, that is,

F ⊆ B. Let C = A \ ∪v∈FNm(v),D = B \ ∪v∈FNm(v). We claim that there exists

a good edge F ′ contained in F [C ∪ D]. In particular, note that this edge will be

disjoint from F . Indeed, by Lemma 6.2.17, we have |C| ≥
(

1
r
− ε6.2.2 − θ

)
n and

|D| ≥
(
1− 1

r
− ε6.2.2 − θ

)
n, where θ = 1

12(r−1)!

(
1− 1

r

)r
. And hence if there is no
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such an edge then

|F4S| ≥ |F [C ∪D]4S[C ∪D]|

≥ |C|
(
|D|
r − 1

)

≥
(1
r
− ε6.2.2 − θ

) (1− 1
r
− ε6.2.2 − θ

)r−1

(r − 1)r−1 nr

> εnr,

a contradiction. Now we can apply Corollary 6.2.4 to F and F ′ and obtain a pair

of vertices u ∈ F and w ∈ F ′ with |LF(u,w)| < cen
r−3. But this pair cannot exist

by the definition of C and D.

So we may assume F is an A-bad edge. Hence it contains at least two vertices

from A, let them be a1, a2 ∈ F . We show that there exist two disjoint good edges

F1 and F2 such that F1 and F2 intersect F only at a1 and a2 and for both i = 1, 2,

every v ∈ Fi \ {ai}, the condition v /∈ ∪u∈F3−i
Nm(u) holds. Observe that if such

edges exists then we can apply Lemma 6.2.3 to F ,F1 and F2 and obtain a pair of

vertices v ∈ F1,w ∈ F2 such that {v,w} 6= {a1, a2} and |LF(u,w)| < cen
r−3. But

this contradicts to the properties of F1 and F2. So it remains to prove the existence

of such edges.

Let L1 and L2 be the maximal number of disjoint (r − 1)-tuples that are in a

good edge with a1 and a2, respectively. By Corollary 6.2.18, |Li| ≥ 1
r!

(
1− 1

r

)r
n.

Now let D := B \ (Nm(a1) ∪Nm(a2) ∪ F ). By Lemma 6.2.17,

|D| ≥ |B| − 1
6r!

(
1− 1

r

)r
n− r

≥
(

1− 1
r
− ε6.2.2

)
n− 1

6r!

(
1− 1

r

)r
n− ε6.2.2n

≥
(

1− 1
r

+ ε6.2.2

)
n− 1

2r!

(
1− 1

r

)r
n

≥ |B| − 1
2 |Li|.

Hence, D contains at least half of the (r − 1)-tuples of each Li. Thus, for both
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i = 1, 2 we can find L′i ⊂ Li such that V (L′i) ⊂ D, |L′i| = |Li|
4 and L′1 and L′2 are

disjoint. If we cannot find the desired edges F1 and F2, it means that for every pair

of (r − 1)-tuples I1 ∈ L′1 and I2 ∈ L′2 there exist some pair of vertices u ∈ I1 and

w ∈ I2, such that |LF(u,w)| < cen
r−3. On the other hand,

|LS(u,w)| = |A|
(
|B|
r − 2

)
≥
(1
r
− ε6.2.2

)(
1− 1

r
− ε6.2.2

)r−3 1
(r − 2)r−2n

r−2.

Therefore,

|F4S| ≥ |L′1||L′2|
((1

r
− ε6.2.2

)(
1− 1

r
− ε6.2.2

)r−3 nr−2

(r − 2)r−2 − cen
r−3
)

≥ 1
8(r!)2

(
1− 1

r

)2r (1
r
− ε6.2.2

)(
1− 1

r
− ε6.2.2

)r−3 nr

(r − 2)r−2

> εnr,

a contradiction. So the desired edges F1 and F2 exist, and we can apply Lemma 6.2.3

as described earlier. So there are no A-bad edges and hence, no bad edges at all.

As we have discussed earlier, this finishes the proof.

6.3. The proof of Theorem 6.1.2

As we discussed earlier, using Theorem 3.8.2, we need to verify that conditions

(C1) F is S-vertex locally stable,

(C2) the family F∗ of all r-graphs in Forb(M(r)
2 ) that cover pairs is S-weakly weight

stable,

hold. The first one does as we showed in the previous section (Theorem 6.2.1). Now

let us show that the family F∗ is S-weakly weight stable. Note that every graph in

F∗ is intersecting. We need to show that for every ε > 0 there exists δ > 0 such that

if F ∈ F∗, µ ∈ M(F) with λ(F ,µ) ≥ λ(S) − δ then dS(F ,µ) ≤ ε. Choose δ = cr,

where cr is derived from Theorem 6.1.4. Then if

λ(F ,µ) ≥ λ(S)− δ = 1
r!

(
1− 1

r

)r−1
− cr,
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then F is principally intersecting. Let v ∈ V (F) be the vertex contained in all the

edges of F , then clearly ({v},V (F) \ {v}) is a star-partition for F , thus F ∈ S,

hence, dS(F ,µ) = 0.

So by Theorem 3.8.2, F is S-stable. In particular, for all sufficiently large n,

if F ∈ F and |F| = m(F,n) then F ∈ S. But S(r)(n) ∈ S gives a lower bound

on m(F,n) and moreover, |S(r)(n)| = m(S,n). Thus, |F| = m(F,n) = m(S,n) =

S(r)(n) and, furthermore,F is isomorphic to S(r)(n). This finishes the proof.

6.4. Proof of A Numerical Lemma

Lemma 6.4.1. For every r ≥ 4, there exist constants ε, β ∈ (0, 1), β � ε such that

1
(r − 1)! −

(
1− 1

r
− ε

)r−1

(r − 1)! −

(
1
r
− ε

) (
1− 1

r
− ε

)r−2

(r − 2)! ≤

(
1− 1

r

)r−1

(r − 1)! − β.

Proof. Let us rewrite the inequality as follows.

1 + β(r − 1)! ≤ 2
(

1− 1
r
− ε

)r−1
+
(

1− 1
r

)r−1
− ε(r − 2)

(
1− 1

r
− ε

)r−2
.

We can choose ε small enough such that

1 < 2
(

1− 1
r
− ε

)r−1
+
(

1− 1
r

)r−1
. (6.4)

This is true because for fixed r, if we consider the function f(ε) = 2
(
1− 1

r
− ε

)r−1
+(

1− 1
r

)r−1
, then f(0) = 3

(
1− 1

r

)r−1
> 1. (Since as r increases the sequence(

1− 1
r

)r−1
decreases and its limit is 1/e.) Hence, by continuity we can always

choose small enough ε for (6.4) to hold. Then by making ε even smaller we can

guarantee

1 < 2
(

1− 1
r
− ε

)r−1
+
(

1− 1
r

)r−1
− ε(r − 2)

(
1− 1

r
− ε

)r−2
.

After choosing ε, we can always choose β small enough such that the final in-

equality holds.
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Chapter 7

On a conjecture of Erdős on sparse

halves

E
rdős [Erd75a] conjectured that every triangle-free graph G on n

vertices contains a set of bn/2c vertices that spans at most n2/50

edges. Krivelevich proved the conjecture for graphs with minimum

degree at least 2
5n [Kri95b]. In [KS06b] Keevash and Sudakov improved this result to

graphs with average degree at least 2
5n. We strengthen these results by showing that

the conjecture holds for graphs with minimum degree at least 5
14n and for graphs

with average degree at least
(

2
5 − ε

)
n for some absolute ε > 0. Moreover, we show

that the conjecture is true for graphs which are close to the Petersen graph in edit

distance.

7.1. Background

In this chapter we consider the edge distribution in triangle-free graphs. One can

consider the following generalization of Mantel’s theorem first studied by Erdős,

Faudree, Rousseau and Schelp in [EFRS94].

Suppose for given 0 < α ≤ 1 every set of αn vertices of graph G spans more

than βn2 edges. A natural question arises - what is the smallest β = β(α) such that

every such graph G necessarily contains a triangle? In particular, one of the Erdős’
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old and favorite conjectures says that β(1
2) = 1

50 . The bound 1/50 is obtained on

the balanced blowup of C5, the cycle on five vertices, and the balanced blowup of

the Petersen graph. We say G contains a sparse half if there exists a set of bn/2c

vertices in G that spans at most n2/50 edges.

Conjecture 7.1.1 (Erdős, [Erd75b]). Every triangle-free graph has a sparse half.

v10 v7

v9

v6

v8

v3

v5 v2

v4

v1

Figure 7.1: A sparse half in the uniform blowup of Petersen graph.

In his paper [Kri95b] Krivelevich proved that the conjecture holds if n2/50 is

replaced by n2/36. He also showed that it is true for triangle-free graphs with

minimum degree 2
5n. In Section 7.3 we improve this result by proving the following

theorem.

Theorem 7.1.1. Every triangle-free graph on n vertices with minimum degree 5
14n

contains a sparse half.

Our proof of Theorem 7.1.1 is mainly based on the structural characterization

of these graphs established by Jin, Chen and Koh in [CJK97, Jin95]. We also use

some averaging arguments similar to the ones used in [KS06b, Kri95b].

Sudakov and Keevash [KS06b] improved the result of [Kri95b] showing that the

conjecture holds for graphs with average degree 2
5n. In Section 7.5 we extend their

result as follows.
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Theorem 7.1.2. There exists γ > 0 such that every triangle-free graph on n vertices

with at least (1
5 − γ)n2 edges contains a sparse half.

Finally, we study the validity of the conjecture in the neighborhood of the known

extremal examples, in the following sense. To the best of our knowledge, the uniform

blowups of the Petersen graph and C5 are the only known examples for which the

conjecture is tight. In Section 7.4 we develop a set of tools which allow us to prove

the it for the classes of graphs which are close to a fixed graph in edit distance. In

Section 7.6 we use these tools to verify the conjecture for graphs which are close

to the Petersen graph, while Theorem 7.1.2 shows that it also holds for graphs

close to the 5-cycle. These results can be considered as a proof of a local version

of the conjecture, in the spirit of recent results of Lovász [Lov11], which proves

the Sidorenko conjecture locally in the neighborhood of the conjectured extremal

example, and Razborov [Raz13b], which accomplishes a similar goal for the Caccetta-

Häggkvist conjecture.

7.2. Notation and Preliminary Results

In this section we introduce some notation specifically for 2-graphs. In a graph G,

we denote by N(v) the neighborhood of a vertex v ∈ V (G) and by dG(v) (or just

d(v)) the degree of v. The maximum and the minimum degrees of the graph are

denoted by ∆(G) and δ(G), respectively.

We also consider weighted graphs in a slightly different setting. We say that

ω : V (G) → (0, 1) is a weight function on G if ∑v∈V (G) ω(v) = 1. Observe that we

do not allow w(v) to be zero or one for any v ∈ V (G). (This is done for technical

reasons and could have been avoided with some extra work in the proofs following.)

As before, the pair (G,ω) is called a weighted graph. The weight ω(e) of an edge

e = (u, v) in (G,ω) is defined as ω(u) · ω(v). For a set X of vertices or edges of

G let ω(X) := ∑
x∈X ω(x). The degree of a vertex v in a weighted graph (G,ω) is

defined as ω(N(v)). The minimum degree of the weighted graph (G,ω) we denote

by δ(G,ω).

We call a real function s : V (G) → R+ a half of (G,ω) if s(v) ≤ ω(v) for every
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v ∈ V (G), and s(V (G)) = 1/2. If in addition to these conditions also s(E(G)) ≤ 1
50

then s is called a sparse half. Note that this is different from the definition of a

sparse half for unweighted graphs but Lemma 7.2.1 gives the connection between

these two notions. As in earlier chapters of this thesis, we use ξG (or simply ξ) to

denote the uniform weight on the vertex set, that is ξ(v) = 1
v(G) , for every v ∈ V (G).

The weighted graph (G, ξ) we call uniformly weighted G.

Lemma 7.2.1. If (G, ξ) has a sparse half, then so does G.

Proof. We claim that, if (G, ξ) has a sparse half, then it has a sparse half s such

that s(v) = 0 or s(v) = 1
n
for all v ∈ V (G) except for possible one vertex.

Indeed, let us choose a sparse half s of G such that the number of vertices

v ∈ V (G) such that either s(v) = 0 or s(v) = 1
n
is maximum. We show that there

exists at most one vertex u such that 0 < s(u) < 1
n
.

Suppose not and there exist u, v ∈ V (G) such that 0 < s(u), s(v) < 1
n
. We

define a new half s′ : V (G) → R+. Let s′ be the same as s on all vertices of

G, except u and v. Without loss of generality, suppose s(N(u)) ≤ s(N(v)). Let

δ = min{s(u), 1
n
− s(v)} and define s′(u) = s(u) − δ and s′(v) = s(v) + δ. We will

show that s′ is a sparse half.

Suppose that u and v are adjacent, then

s′(E(G)) = s(E(G))−
∑

x∈N(u)
x 6=v

δs(x) +
∑

y∈N(v)
y 6=u

δs(y) + s′(u)s′(v)− s(u)s(v)

= s(E(G))−
∑

x∈N(u)
x 6=v

δs(x) +
∑

y∈N(v)
y 6=u

δs(y)− δs(v) + δs(u)− δ2

= s(E(G))− δ (s(N(u))− s(N(v)))− δ2 < s(E(G)).

The calculation in the case when u and v are non-adjacent is similar.

It follows that s′ contradicts the choice of s. Hence for all vertices v of the graph

except maybe one vertex either s(v) = 0 or s(v) = 1
n
. Let S = {v ∈ V (G) | s(v) =

1/n}. It follows from the above that |S| ≥ bn/2c. It is easy to see that E(G[S]) ≤

n2s(E(G)) ≤ n2/50. It follows that S ia a sparse half in G, as desired.

Lemma 7.2.1 allows us to work with weighted graphs, which proves convenient.
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We prove that every weighted triangle-free graph with minimum degree at least 5/14

contains a sparse half. Our proof uses structural characterization of these graphs

found by Jin, Chen and Koh in [CJK97, Jin95]. To state their result we need a few

additional definitions.

Let ϕ : V (G) → V (H) be a surjective homomorphism and let ω be a weight

function on G. We define a weight function ωϕ on H in the following way. For every

vertex v ∈ V (H), let ωϕ(v) := ω(ϕ−1(v)). The next lemma shows that a sparse half

in a homomorphic image of the graph G can be lifted to a sparse half in the graph

G.

Lemma 7.2.2. Let G,H be graphs and let ϕ : V (G) → V (H) be a surjective

homomorphism. Then for any weight function ω, if (H,ωϕ) has a sparse half, then

so does (G,ω).

Proof. Let ω be a weight function on G and let sH be a sparse half on (H,ωϕ).

Define

sG(u) := ω(u)
ωϕ(ϕ(u))sH(ϕ(u))

for every u ∈ V (G) It is easy to check that s is a sparse half of G.

Now let us introduce the family of the graphs that plays a key role in our results.

For an integer d ≥ 1, let Fd be the graph with

V (Fd) = {v1, v2, ..., v3d−1},

such that the vertex vj has neighbors vj+d, . . . , vj+2d−1, these values taken modulo

3d−1. Throughout this paper whenever we deal with Fd graphs, we always take the

indices of the vertices modulo 3d− 1. In [Jin95] it is shown that every triangle-free

graph G of order n with minimum degree δ(G) > 10n/29 contains a homomorphic

copy of F9 and hence is 3-colorable. In [CJK97] Chen, Jin and Koh proved that every

triangle-free graph of order n, with chromatic number χ(G) ≤ 3 and minimum degree

δ >
⌊

(d+1)n
3d+2

⌋
admits a homomorphism to Fd. Therefore, the following theorem holds.

Theorem 7.2.1 (Chen, Jin, Koh [CJK97], [Jin95]). Every triangle-free graphs of

order n with minimum degree at least 5
14n admits a homomorphism to F4.
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Figure 7.2: The graph F3

To use Lemma 7.2.1 and Theorem 7.2.1 together we need to make sure that the

homomorphism in the statement of Theorem 7.2.1 is surjective. Fortunately, this is

not difficult if we allow ourselves to change the target graph.

Lemma 7.2.3. Let ϕ be a homomorphism from graph G to Fd, d ≥ 2. Then either

ϕ is surjective or G admits a homomorphism to Fd−1.

Proof. Suppose ϕ is a homomorphism from graph G to Fd that is not surjective.

Let Vi = ϕ−1(vi) for all i = 1, 2, . . . , 3d− 1. Without loss of generality suppose V1 is

empty. Define a mapping ϕ′ : V (G)→ V (Fd−1) as follows,

ϕ′(v) =



vi−1, if v ∈ Vi and 2 ≤ i ≤ d− 1

vd−1, if v ∈ Vd ∪ Vd+1,

vi−2, if v ∈ Vi and d+ 2 ≤ i ≤ 2d− 2

v2d−3, if v ∈ V2d−1 ∪ V2d,

vi−3, if v ∈ Vi and 2d+ 1 ≤ i ≤ 3d− 1,

It is easy to check that ϕ′ is a homomorphism from G to Fd−1.

In the next section we show that for 1 ≤ d ≤ 4 the weighted graph (Fd,ω) with

minimum degree at least 5/14, has a sparse half for any positive weight function

ω. In particular, if ϕ : V (G) → Fd is a surjective homomorphism, (Fd, ξ) has a

sparse half. By Lemmas 7.2.1 this implies that graph G has a sparse half. Hence
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the Theorem 7.1.1 will follow from the results of the next section and the results we

have introduced.

7.3. Weighted triangle-free graphs with minimum

degree at least 5
14

Theorem 7.3.1. Let d ≤ 4 be a positive integer and let (Fd,ω) be a weighted graph

with the minimum degree at least 5/14. Then (Fd,ω) has a sparse half.

Proof. The argument is separated into cases based on the value of d.

d=1: Suppose V (F1) = {v1, v2} then since ω(v1) + ω(v2) = 1, either ω(v1) ≥ 1
2 or

ω(v2) ≥ 1
2 , therefore v1 or v2 supports a sparse half in (F1,ω).

d=2: Let V (F2) = {v1, v2, . . . , v5}. If any two consecutive vertices together have

total weight at least 1/2, then they induce an independent set, which means that

they support a sparse half.

Now suppose that no two consecutive vertices have total weight at least 1/2,

then any three consecutive vertices have total weight at least 1/2. We define the

following halves si for each i = 1, 2, . . . , 5 on the vertices of the graph and prove

that there is at least one sparse half among them.

si(v) =



ω(v), if v = vi or v = vi+1,

1
2 − (ω(vi) + ω(vi+1)) , if v = vi+2,

0, otherwise.
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Figure 7.3: A sparse half in uniformly weighted C5

Note that

si(E(G)) = ω(vi) (1/2− (ω(vi) + ω(vi+1))) . (7.1)

Summing up the equations (7.1) over all i = 1, . . . , 5, we get

5∑
i=1

si(E(G)) = 1/2−
5∑
i=1

ω(vi) (ω(vi) + ω(vi+1))

= 1
2 −

1
2

5∑
i=1

(ω(vi) + ω(vi+1))2

≤ 1
2 −

1
2 · 5 ·

4
25 = 1

10,

using Jensen’s inequality for the function x2. Thus one of the functions si is a sparse

half.

Note that the proof above did not use the minimum degree condition, while we

use it in the other two cases.

d=3: Let F3 = {v1, v2, . . . , v8}. As the minimum degree of (F3,ω) is at least 5/14,

we have

ω(vj) + ω(vj+1) + ω(vj+2) ≥ δ(F3,ω) ≥ 5/14, (7.2)

for all j = 1, 2, . . . , 8. Summing these inequalities for j = i, i + 1 and j = i + 2, we

obtain ω(vj) ≥ 1/14 for j = 1, 2, . . . , 8.

As in the case of d = 2, if there exist three consecutive vertices of total weight

at least 1/2, then we are done, since they induce an independent set. Suppose not,

then every five consecutive vertices have total weight more than 1/2. We define the
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following halves si, for each i = 1, 2, . . . , 8 on the vertices of the graph and prove

that there is at least one sparse half among them.

si(v) =



ω(v), if v = vi+1, vi+2, vi+3

1
2

(
1
2 − (ω(vi+1) + ω(vi+2) + ω(vi+3))

)
, if v = vi or v = vi+4,

0, otherwise.

Claim 7.3.1. For each i = 1, 2, . . . , 8, si is a half.

Proof. It suffices to show that

1
2

(1
2 − (ω(vi+1) + ω(vi+2) + ω(vi+3))

)
≤ ω(vi),

1
2

(1
2 − (ω(vi+1) + ω(vi+2) + ω(vi+3))

)
≤ ω(vi+4).

By symmetry it suffices to prove the first inequality. By (7.2) we get that

1
2

(1
2 − (ω(vi+1) + ω(vi+2) + ω(vi+3))

)
≤ 1

2 ·
(1

2 −
5
14

)
= 1

14 ≤ ω(vi).

This finishes the proof of the claim.

We relegate the proof of the following lemma, which ensures that one of the

halves si is sparse, to the Section 7.7.

Lemma 7.3.2. Let 1/14 ≤ xi ≤ 1 for i = 1, 2, . . . , 8. If ∑8
i=1 xi = 1 and xi +xi+1 +

xi+2 ≥ 5/14 for every i, then there exists an i such that

1
2

(1
2 − (xi + xi+1 + xi+2)

)
(xi + xi+2) + 1

4

(1
2 − (xi + xi+1 + xi+2)

)2
≤ 1

50. (7.3)

d=4: Let F4 = {v1, v2, . . . , v11}. The minimum degree condition gives us the fol-

lowing inequality

ω(vi) + ω(vi+1) + ω(vi+2) + ω(vi+3) ≥ 5/14, (7.4)
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for all i = 1, 2, . . . , 11. It follows, as in the case d = 3, that ω(vi) ≥ 1/14 for all i.

If any of four consecutive vertices have total weight at least 1/2, then we are done,

since they induce an independent set.

For every i = 1, 2, . . . , 11 by (7.4), we have ω(vi+5)+ω(vi+6)+ω(vi+7)+ω(vi+8) ≥

5/14, ω(vi+9) ≥ 1/14 and ω(vi+10) ≥ 1/14 , therefore

ω(vi) + ω(vi+1) + · · ·+ ω(vi+5) ≤ 1/2.

It follows that

ω(vi) + ω(vi+1) + · · ·+ ω(vi+6) ≥ 1/2,

for all i = 1, 2, . . . , 11. This allows us to define halves si in the following way:

si(v) =



ω(v), if v = vi+1, vi+2, vi+3, vi+4,

1
2

(
1
2 − (ω(vi+1) + ω(vi+2) + ω(vi+3) + ω(vi+1))

)
, if v = vi or v = vi+5,

0, otherwise.

As in the previous case, it is easy to verify that each si is a half, and the following

lemma proved in the Section 7.7 implies that at least one of these halves is sparse.

Lemma 7.3.3. Suppose given are x1,x2, . . . ,x11 reals such that 1/14 ≤ xi ≤ 1 for

each i = 1, 2, . . . , 11 and ∑11
i=1 xi = 1. If xi + xi+1 + xi+2 + xi+3 > 5/14 for every i,

then there exists an i such that

1
2

(1
2 − (xi+1 + xi+2 + xi+3 + xi+4)

)
(xi+1 + xi+4)

+ 1
4

(1
2 − (xi+1 + xi+2 + xi+3 + xi+4)

)2
≤ 1/50.

Proof of Theorem 7.1.1. Let G be a triangle-free graph on n vertices with minimum

degree ≥ 5n/14. By Lemma 7.2.1 it suffice to prove that the uniformly weighted

graph (G, ξ) has a sparse half. By Theorem 7.2.1 and Lemma 7.2.3, the graph

G admits a surjective homomorphism ϕ to Fd for 1 ≤ d ≤ 4. Clearly, (Fd,ωϕ) has
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minimum degree ≥ 5/14 and thus has a sparse half by Theorem 7.3.1. Theorem 7.1.1

now follows from Lemma 7.2.2.

7.4. Uniform sparse halves, balanced weights and

disturbed graphs

The purpose of this section is to develop a set of tools, which under fairly general

circumstances allow us to show that graphs “close” to a fixed graph have sparse

halves. A number of technical definitions will be necessary. We start by a variant

of the definition of edit distance (see e.g. [LS10]).

Definition 7.4.1. Given a graph G of order n and a graph H, we say that G is

ε-close to H, if there exists a blowup B of H on V (B) = V (G) such that

• |E(G4B)| ≤ εn2,

• B is ε-trimmed, that is, if {V1,V2, . . . ,Vk} is the blowup partition of B, then∣∣∣|Vi| − n
k

∣∣∣ ≤ εn.

We will also need a stronger notion of distance defined as follows.

Definition 7.4.2. Given a graph G and F ⊆ E(G), we say that D ⊆ V (G) is an

ε-controlling set for F , if |D| ≤ ε|V (G)| and every edge in F has at least one end

in D. We say that the graph G′ is an ε-disturbed graph of G for some 0 < ε < 1, if

the following conditions hold:

1. V (G′) = V (G),

2. there exists an ε-controlling set for E(G′)− E(G) in G′,

3. |NG′(v) \NG(v)| ≤ ε|V (G)| for every vertex v ∈ V (G).

Let H be a graph. Let N (H) be the set of neighborhoods of vertices of H, and let

I(H) be the set of maximum independent sets of H. Let I∗(H) = I(H) − N (H).

We construct a graph H∗ as follows. Let V (H∗) = V (H) ∪ I∗(H), let H be an

induced subgraph of H∗, and let every I ∈ I∗(H) be adjacent to every v ∈ I
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and no other vertex of H∗. We say that a weighted graph (H∗,ω) is ε-balanced if

|ω(v)−1/|V (H)|| ≤ ε for every v ∈ V (H) and ω(v) ≤ ε for every v ∈ V (H∗)−V (H).

We are now ready for our first technical result.

Theorem 7.4.1. Let H be a maximal triangle-free graph. For every ε > 0 there

exists δ such that if G is a triangle-free graph which is δ-close to H then there exists

a graph G′ and a homomorphism ϕ from G′ to H∗ with the following properties

(i) G is ε-disturbed graph of G′,

(ii) (H∗,ωϕ) is ε-balanced,

(iii) ϕ is a strong homomorphism, that is uv 6∈ E(G′) implies ϕ(u)ϕ(v) 6∈ E(H∗)

for every pair of vertices u, v ∈ V (G′).

Proof. We assume that V (H) = {1, 2, . . . , k}. We show that δ > 0 satisfies the

theorem if (k + 2)
√
δ ≤ min(ε, 1/k). Let B be as in Definition 7.4.1 and V =

(V1,V2, . . . ,Vk) be the corresponding partition of V (G). Let n := |V (G)|, F :=

E(G)4E(B) and let J be the set of all vertices of F incident to at least
√
δn edges

in F ′. We have δn2 ≥ |F | ≥ 1
2

√
δn|J |. It follows that |J | ≤ 2

√
δn.

We define a map ϕ : V (G)→ V (H∗), as follows. If v ∈ Vi \ J for some i ∈ V (H)

then ϕ(v) := i. Now consider v ∈ J and let

I0(v) := {i ∈ V (G) | |N(v) ∩ Vi| >
√
δn}.

Then I0(v) is independent, as otherwise there exist i, j ∈ [k], such that ij ∈ E(H),

|N(v) ∩ Vi| >
√
δn and |N(v) ∩ Vj| >

√
δn. As G is triangle-free it follows that

|E(B)4E(G)| > εn2, contradicting the choice of B. Let I(v) be a maximal inde-

pendent set containing I0(v), chosen arbitrarily. Let ϕ(v) = i, if I(v) = NH(i) for

some i ∈ V (H), and let ϕ(v) = I(v), otherwise.

Let G′ be the graph with V (G′) = V (G) and the vertices uv ∈ E(G′) if and only if

ϕ(u)ϕ(v) ∈ E(H∗). Then ϕ is a strong homomorphism from G′ to H∗. For i ∈ V (H)

we have Vi − J ⊆ ϕ−1(i) ⊆ Vi ∪ J and, therefore, ||ϕ−1(i)|/n− 1/k| ≤ δ + 2
√
δ. For

I ∈ V (H∗) \V (H) we have |ϕ−1(I)| ≤ |J | ≤ 2
√
δn. Thus (ii) holds, as ε ≥ δ+ 2

√
δ.
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It remains to verify (i). We will show that J is an ε-controlling set for F ′ :=

E(G) \ E(G′) for δ sufficiently small. First, we show that every edge of F ′ has an

end in J . Indeed suppose that uv ∈ E(G) for some u ∈ Vi, v ∈ Vj with i, j ∈ V (H)

not necessarily distinct and ij 6∈ E(H). Then there exists h ∈ V (H) adjacent

to both i and j, as H is maximally triangle-free. It follows that both v and u

have at least (1/k − δ −
√
δ)n neighbors in Vh and share a common neighbor if

2(1/k − δ −
√
δ) > 1/k. Thus our first claim holds, as δ +

√
δ < 1/k.

Consider now v ∈ J and let N ′(v) be the set of neighbors of v in V (G) \ V (J)

joined to v by edges of F ′. Then |N ′(v) ∩ Vi| ≤
√
δn for every i ∈ V (H) by the

choice of ϕ(v). It follows that |N ′(v)| ≤ k
√
δn. Therefore v is incident to at most

(k + 2)
√
δn edges in F , as |J | ≤ 2

√
δn. Thus J is an ε-controlling set for F ′, as

(k + 2)
√
δn ≤ ε.

We say that H is entwined if I∗(H) is intersecting. Note that the graph Fi is

entwined for every i, as I∗(H) is empty. It is routine to check that the Petersen

graph is entwined. We say that the graph G of order n is c-maximal triangle-free if

it is triangle-free and adding any new edge to G creates at least cn triangles. The

following lemma follows immediately from definitions.

Lemma 7.4.3. Let H be an entwined triangle-free graph, and let 0 < ε < 1/|V (H)|.

If (H∗,ω) is ε-balanced then it is (1/|V (H)| − ε)-maximal triangle-free.

Definition 7.4.4. For a weighted graph (G,ω) we call a distribution s defined on

the set of halves of (G,ω) a c-uniform sparse half for some 0 < c ≤ 1, if

1. for every edge e ∈ E(G) E [s(e)]) ≥ c ω(e),

2. E [s(E(G))] ≤ 1
50 .

Whenever we refer to c-uniform sparse halves in unweighted graphs, they are

understood as the c-uniform sparse halves in the corresponding uniformly weighted

graphs.

Theorem 7.4.2. Let 0 < c < 1 be real, let G′ be a c-maximal triangle-free graph

and let G be a triangle-free c2

2(1+c)-disturbed graph of G′. If G′ has a c-uniform sparse

half then G has a sparse half.
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Proof. Let ε = c2

2(1+c) . Let F = E(G) \ E(G′) and let M be a maximal matching in

F . let |M | = δn for some 0 ≤ δ ≤ 1/2. Since G is an ε-disturbed graph of G′, it

has an ε-controlling set for F . Let D be the minimum one. Let V (M) be the set

of ends of the edges in M . By the choice of M every edge of F has at least one

end in V (M). It follows that |D| ≤ |V (M)| = 2|M |. By the third condition in the

definition of ε-disturbed graph, |F | ≤ εn|D| ≤ 2δεn2.

Let F ′ := E(G′) \E(G). For an edge e ∈M , let T (e) be the set of edges f ∈ F ′,

such that the only vertex of V (M) that f is incident to is an end of e. Let u, v be the

ends of e. By the c-maximality of G′, we have |NG′(u)∩NG′(v)| ≥ cn for every pair

of vertices u, v ∈ V (G′) non-adjacent in G′. Since e ∈ E(G) and G is triangle-free,

for every vertex w ∈ NG′(u) ∩ NG′(v), either uw ∈ F ′ or vw ∈ F ′. It follows that

|Te| ≥ |NG′(u) ∩NG′(v)| − |V (M)| ≥ (c− 2δ)n. Thus |F ′| ≥ (c− 2δ)n · δn.

Let s be a c-uniform sparse half in the graph G′. Then

E [s(E(G))− s(E(G′))] = E [s(F )− s(F ′)]

= E [s(F )]− E [s(F ′)] ,

by linearity of the expectation. We have

E [s(F ′)] =
∑
e∈F ′

E [s(e)] ≥
∑
e∈F ′

c ω(e) = c
∑
e∈F ′

1
n2 ≥

c|F ′|
n2 .

On the other hand,

E [s(F )] =
∑
e∈F

E [s(e)] ≤
∑
e∈F

ω(e) = |F |
n2 .

Finally, note that δ ≤ ε, since every edge in M has at least one of its ends in D.

Hence,

E [s(E(G))− s(E(G′))] ≤ |F |
n2 −

c|F ′|
n2 ≤ 2δε− c(c− 2δ)δ

= δ(2δc+ 2ε− c2) ≤ 0,

where the last inequality holds, as 2δc + 2ε − c2 ≤ 2(1 + c)ε − c2 = 0. Therefore,
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E [s(E(G))] ≤ E [s(E(G′))] ≤ 1
50 , and the graph G has a sparse half by Lemma 7.2.1.

We are now ready to prove the main result of this section.

Theorem 7.4.3. Let H be an entwined maximal triangle-free graph. Suppose that

there exists α > 0 such that, if (H∗,ω) is α-balanced, then (H∗,ω) has an α-uniform

sparse half. Then there exists δ > 0 such that every triangle-free graph G which is

δ-close to H has a sparse half.

Proof. Let ε := min
(

1
3|V (H)|2 , α2

2(1+α)

)
, and let δ be chosen so that there exist ϕ and

G′ satisfying the conclusion of Theorem 7.4.1. The weighted graph (H∗,ωϕ) has

an α-uniform sparse half, as ε ≤ α. Therefore, the graph G′ has an α-uniform

sparse half. By Lemma 7.4.3, the graph (H∗,ωϕ) is (1/|V (H)| − ε)-triangle-free.

Therefore, the graph G′ is ε-triangle-free, because ϕ is a strong homomorphism. Let

c := min(α, 1/2|V (H)|). Then ε ≤ c2/(2(1+c)) and c ≤ 1/|V (H)|−ε, by the choice

of ε. It follows that the conditions of Theorem 7.4.2 are satisfied for G′ and G. Thus

G has a sparse half, as desired.

7.5. Triangle-free graphs with at least (1/5− γ)n2

edges

In order to establish the conjecture for the triangle-free graphs with average degree(
2
5 − γ

)
n we separate the cases when the graphs under consideration are close in the

sense of Definition 7.4.1 to the blowup of C5 and when they are not. In the second

case, we use the result of Sudakov and Keevash [KS06b] that can be rephrased in

the following way.

Theorem 7.5.1. Let G be a triangle-free graph on n vertices such that one of the

following conditions holds

(a) either 1
n

∑
v∈V (G) d

2(v) ≥
(

2
5n
)2

and ∆(G) <
(

2
5 + 1

135

)
n, or

(b) ∆(G) ≥
(

2
5 + 1

135

)
n and 1

n

∑
v∈V (G) d(v) ≥

(
2
5 −

1
125

)
n.
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Then G has a sparse half.

The next theorem represents the main technical step in the proof of Theo-

rem 7.1.2.

Theorem 7.5.2. For every ε > 0 there exists δ > 0 such that the following holds.

If G is a triangle-free graph with |V (G)| = n and |E(G)| ≥ (1
5 − δ)n

2 then either

(i) G is ε-close to C5,

(ii) or at least δn vertices of G have degree at least
(

2
5 + δ

)
n,

(iii) or there exists an F ⊆ E(G) with |F | ≤ εn2 such that the graph G \ F is

bipartite.

The proof of Theorem 7.5.2 uses the following technical lemmas.

Lemma 7.5.1. For δ > 0 let G be a graph with |V (G)| = n and |E(G)| ≥ (1
5−δ)n

2.

Then either

(1) at least δn vertices have degree at least (2
5 + δ)n,

(2) or at most 2
√
δn vertices have degree at most (2

5 − 2
√
δ)n.

Proof. Suppose that the outcome (1) does not hold. Let sn be the number of vertices

that have degree at most (2
5 − 2

√
δ)n. Then

2
(1

5 − δ
)
n2 ≤ 2|E(G)| =

∑
v∈V

d(v)

=
∑
v∈V

d(v)≤( 2
5−2
√
δ)n

d(v) +
∑
v∈V

( 2
5−2
√
δ)n<d(v)<( 2

5 +δ)n

d(v) +
∑
v∈V

d(v)≥( 2
5 +δ)n

d(v)

< sn
(2

5 − 2
√
δ
)
n+ (1− s)n

(2
5 + δ

)
n+ δn2 =(2

5 −
√
δs+ 2δ − sδ

)
.

Thus −2δ < 2δ − 2s
√
δ − sδ, and

s <
4δ

2
√
δ + δ

< 2
√
δ,

as desired.
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Lemma 7.5.2. Let H be a graph on n vertices with minimum degree at least(
2
5 − δ

)
n. Let ϕ be a surjective homomorphism from H to C5.

(1
5 − 3δ

)
n ≤ |ϕ−1(v)| ≤

(1
5 + 2δ

)
n, (7.5)

for every v ∈ V (C5).

Proof. Let the vertices of C5 be labelled v1, v2, . . . , v5 in order and let Vi := ϕ−1(vi)

for i = 1, 2, . . . , 5. Then

|Vi|+ |Vi+1| ≥
(2

5 − δ
)
n (7.6)

|Vi+2|+ |Vi+3| ≥
(2

5 − δ
)
n (7.7)

|Vi+4|+ |Vi| ≥
(2

5 − δ
)
n, (7.8)

therefore

|Vi|+
(2

5 − δ
)
n+

(2
5 − δ

)
n ≤ |Vi|+ (|Vi+1|+ |Vi+2|) + (|Vi+3|+ |Vi+4|) ≤ n,

which gives us the desired upper bound.

For the lower bound summing inequalities (7.6)-(7.8) we get

n+ |Vi| ≥
5∑
j=1
|Vj|+ |Vi| ≥ 3

(2
5 − δ

)
n,

which gives |Vi| ≥
(

1
5 − 3δ

)
n, as desired.

Proof of Theorem 7.5.2. We show that δ := (ε/40)2 satisfies the theorem for ε ≤ 1.

We apply Lemma 7.5.1. The first outcome of Lemma 7.5.1 corresponds to the

outcome (ii) of the theorem. Therefore we assume that the second outcome holds:

There exists |S| ≤ ε
20n such that every vertex in V (G) − S has degree at least(

2
5 −

ε
20

)
n in G. It follows that G′ := G \ S has the minimum degree at least(

2
5 −

ε
10

)
n.

Since
(

2
5 −

ε
10

)
n ≥ 3

10 |V (G′)|, the result of Chen,Jin and Koh quoted before

Theorem 7.2.1 implies that there exists a homomorphism ϕ from G′ to C5. Let
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V (C5) = {v1, v2, . . . , v5} and Vi = ϕ−1(vi) for each i = 1, 2, . . . , 5.

If the homomorphism ϕ is not surjective then by Lemma 7.2.3 the graph G′ is

bipartite and therefore the graph G∗ = (V (G),E(G′)) is also bipartite. We have

|E(G)| − |E(G′)| ≤ |S|n ≤ εn2. Thus outcome (iii) holds. Hence we can suppose

that the homomorphism ϕ is surjective. Applying Lemma 7.5.2 to the graph G′ with

δ = ε
10 , we get that (1

5 −
2ε
5

)
n ≤ |Vi| ≤

(1
5 + ε

5

)
n. (7.9)

Let V := (V1∪S,V2, . . . ,V5) be a partition of V (G). From (7.9) we have
∣∣∣|Vi| − n

5

∣∣∣ ≤
εn. Let B be as in Definition 7.4.1. Then

|E(G4B)| ≤ |S|n+ (|E(B)| − E(G′)) ≤ ε

20n
2 + n2

5 −
1
2

(2
5 −

ε

10

)(
1− ε

20

)
n2

≤ εn2.

Thus outcome (i) holds.

If outcome (i) of Theorem 7.5.2 holds our goal is to apply Theorem 7.4.3. To

do that we need to ensure that a c-balanced weighting of C5 has a c-uniform sparse

half for some c > 0.

Theorem 7.5.3. A (1/50)-balanced weighted graph (C5,ω) has a (1/30)-uniform

sparse half.

Proof. Let δ := 1/50, let V (C5) = {v1, v2, . . . , v5} and let E(C5) = {vivi+2}5
i=1, as

in the proof of Theorem 7.3.1. We define a distribution on the set of halves of the

graph C5. Recall the halves si, 1 ≤ i ≤ 5 that we have defined earlier in the proof

of the Theorem 7.3.1.

Let the probability mass of the distribution s be 1
5 on every si, i = 1, 2, . . . , 5.

We show that s is a 1
30 -uniform sparse half. Let us begin by showing that E [s(e)]) ≥

1
30 ω(e) for every e ∈ E(C5). Let e = (vi, vi+2), then

E [s(e)] = 1
5 · ω(vi)

(1
2 − (ω(vi) + ω(vi+1))

)
.
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hence

E [s(e)] ≥ 1
5

(1
5 − δ

)(1
2 − 2

(1
5 + δ

))
= 1

5 ·
(1

5 − δ
)( 1

10 − 2δ
)

.

On the other hand,

ω(e) = ω(vi) · ω(vi+2) ≤
(1

5 + δ
)2

.

Thus it suffices to show that

1
5

(1
5 − δ

)( 1
10 − 2δ

)
≥ 1

30

(1
5 + δ

)2
,

which can be easily verified. It is shown in the proof of Theorem 7.3.1 that E [s(E(G))] ≤
1
50 . Thus s is a 1

30 -uniform sparse half of G, as claimed.

We need a final technical lemma.

Lemma 7.5.3. For every δ > 0 there exists a γ > 0 such that if G is a graph on

n vertices with at least
(

1
5 − γ

)
n2 edges and at least δn vertices of degree at least

(2
5 + δ)n then

1
n

∑
v∈V (G)

d2(v) ≥
(2

5n
)2

.

Proof. Suppose that G contains αn vertices of degree at most 2
5n and βn vertices of

degree at least
(

2
5 + δ

)
n. We may assume that the average degree of G is less than

2
5n, as otherwise lemma clearly holds. Thus

2
5n > (1− α− β) 2

5n+ β
(2

5 + δ
)
n,

hence α > 5
2βδ ≥

5
2δ

2. We have

n
∑

v∈V (G)
d2(v)−

 ∑
v∈V (G)

d(v)
2

= 1
2
∑
u6=v

(d(u)− d(v))2

≥ αδ
(2

5 + δ − 2
5

)2
n4 >

5
2δ

5n4.
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Hence

1
n

∑
v∈V (G)

d2(v) ≥ 1
n2

 ∑
v∈V (G)

d(v)
2

+ 5
2δ

5n2 ≥ 4
(1

5 − γ
)2
n2 + 5

2δ
5n2

≥ 4
25n

2 +
(5

2δ
5 − 8

5γ
)
n2 ≥ 4

25n
2,

if we choose γ = 25
16δ

5.

Proof of Theorem 7.1.2. By Theorem 7.5.3, α = 1/50 satisfies the conditions in

the statement of Theorem 7.4.3 for H := C5. Thus by Theorem 7.4.3 there exists

0 < ε ≤ 1/50 such that every triangle-free graph G that is ε-close to C5 has a

sparse half. Let δ be such that Theorem 7.5.2 holds, and finally let γ be such that

Lemma 7.5.3 holds. We show that Theorem 7.1.2 holds for this choice of γ.

We distinguish cases based on the outcome of Theorem 7.5.2 which holds for G.

Case (i): If G is ε-close to C5 then the theorem holds by the choice of ε.

Case (ii): Now suppose that at least δn vertices of G have degree at least
(

2
5 + δ

)
n.

If ∆(G) ≥
(

2
5 + 1

135

)
n then Theorem 7.5.1 (b) implies that there is a sparse half in

G. Therefore we assume that ∆(G) <
(

2
5 + 1

135

)
n. By Lemma 7.5.3 and the choice

of γ we have 1
n

∑
v∈V (G) d

2(v) ≥
(

2
5n
)2
. Hence Theorem 7.5.1 (a) implies that there

is a sparse half in G.

Case (iii): Lastly, suppose there exists an F ⊆ E(G) with |F | ≤ εn2 such that

the graph G′ = (V (G),E(G) \ F ) is bipartite with bipartition (U ,V ). Then either

|U | ≥ n
2 or |V | ≥ n

2 . Without loss of generality suppose |U | ≥ n
2 . The set U is

independent in G′, while in G it might not be, but |E(G[U ])| ≤ |F | ≤ εn2 ≤ n2

50 .

Hence U supports a sparse half in graph G.

7.6. Neighbourhood of the Petersen Graph

The uniform blowup of the Petersen graph, is an extremal example for Conjec-

ture 7.1.1, that is every set of bn/2c vertices spans at least n2/50 edges. Here we

show that the Conjecture 7.1.1 holds for any graph that is close to a uniform blowup

Petersen graph in the sense of Definition 7.4.1. By Theorem 7.4.3 it is enough to
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show that sufficiently balanced blowups of P ∗ have uniform sparse halves.

v10 v7

v9

v6

v8

v3

v5 v2

v4

v1

w1

w5

w4

w3

w2

Figure 7.4: The graph P∗.

Lemma 7.6.1. Let the weighted graph (P ∗,ω) be (1/500)-balanced then it has a
1
80-uniform sparse half.

Proof. For δ := 1/500 and let the vertices of P ∗ be labeled as on Figure 7.4, where

V := V (P ) = {v1, v2, . . . , v10} and W := V (P ∗) \ V (P ) = {w1,w2, . . . ,w5}. We

define a collection {si,j}i∈[5],j∈[4] of halves of (P ∗,ω). Fix i ∈ [5] and consider the

vertex wi. Let Mi := V \ N(wi) and not that Mi induces a matching of size three.

Choose vertices {vi1 , vi2 , vi3} ⊆ V (Mi) such that they are independent and there

exists a unique wij 6= wi such that every v ∈ V (Mi)\{vi1 , vi2 , vi3} is adjacent to wij .

Note that for every i there exists four such choices of {vi1 , vi2 , vi3}, fix one of them
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and assign

si,j(wq) =



ω(wq), if q = i,

1
4ω(wq), if q = ij,

0, otherwise.

and

si,j(vk) =



0, if vk /∈ V (Mi)

ω(vk), if k = j1, j2, j3,

1
3

(
1
2 − (ω(vi1) + ω(vi2) + ω(vi3) + ω(wi) + 1

4ω(wij ))
)

, otherwise.

It is easy to check that every si,j is a half. Let s be a distribution concentrated on

{si,j}i∈[5],j∈[4] with each of the halves having the same probability 1/20. We show

that s is a (1/80)-uniform sparse half for ω.

First, we show that E [s(e)]) ≥ 1
80 · ω(e) for every edge e ∈ E(P ∗). It can be

routinely checked that for our choice of δ one has

1
3

(1
2 − (ω(vi1) + ω(vi2) + ω(vi3) + ω(wi) + 1

4ω(wij ))
)
≥ 1

3ω(vk), (7.10)

for every vk ∈ V (Mi) \ {vi1 , vi2 , vi3}. If both ends v, v′ of e ∈ E(P ∗) lie in V then,

using (7.10), we have

E [s(e)] ≥ 4
20 ·

1
3ω(v)ω(v′) = 1

15ω(e) ≥ 1
80ω(e).

If e joins v ∈ V and w ∈ W the

E [s(e)] ≥ 3
20 ·

1
4ω(wi) ·

1
3ω(vj) = 1

80ω(e)

It remains to prove that E [s(E(G))] ≤ 1
50 . Note that,

si,j(E(G)) =
(1

2 − (ω(vi1) + ω(vi2) + ω(vi3) + ω(wi) + 1
4ω(wij ))

)
×

×
(1

4ω(wij ) + 1
3 (ω(vi1) + ω(vi2) + ω(vi3))

)
.
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We finish the proof using the following technical lemma, the proof of which is

included in the appendix.

Lemma 7.6.2. Suppose given are x1,x2, . . . ,x10, y1, y2, . . . y5 reals and

L(yi) = {xi+1,xi+2,xi+4,xi+5,xi+8,xi+9},

for each 1 ≤ i ≤ 5 such that 0 ≤ xi ≤ 1 , 0 ≤ yj ≤ 1 and ∑10
i=1 xi +∑5

j=1 yj = 1. If

there exists some 0 < δ ≤ 1
90 such that xi ≥ 1

10 − δ for each i = 1, 2, . . . , 10 then

∑
i 6=j

xi,j1 ,xi,j2 ,xi,j3
∈L(yi)∩L(yj )

(1
2 − xi,j1 − xi,j2 − xi,j3 − yi −

1
4yj

)(1
4yj + 1

3
(
xi,j1 + xi,j2 + xi,j3

))
≤ 2

5.

(7.11)

It is easy to see that E [s(E(G))] ≤ 1
50 . follows from Lemma 7.6.2 applied with

xi := ω(vi) and yj := ω(wj). Thus s is a 1/80-uniform sparse half, as claimed.

As promised, Lemma 7.6.1 implies the main theorem of this section.

Theorem 7.6.1. There exists δ > 0 such that any triangle-free graph G on n vertices

which is δ-close to the Petersen graph P has a sparse half.

Proof. The theorem follows from Theorem 7.4.3, as the Petersen graph satisfies the

rquirements of that theorem with α = 1/500 by Lemma 7.6.1.

7.7. Proofs of Numerical Lemmas

Proof of Lemma 7.3.2

Suppose the Lemma is false. Then for each i = 1, 2, . . . , 8

1
2

(1
2 − xi − xi+1 − xi+2

)
(xi + xi+2) + 1

4

(1
2 − xi − xi+1 − xi+2

)2
>

1
50. (7.12)

Summing up these inequalities over all i = 1, 2, . . . , 8 we get that
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8
50 <

8∑
i=1

1
2

(1
2 − xi − xi+1 − xi+2

)
(xi + xi+2) +

8∑
i=1

1
4

(1
2 − xi − xi+1 − xi+2

)2

= 1
2

8∑
i=1

xi −
8∑
i=1

(xi + xi+1 + xi+2)xi + 1
4 ·

1
4 · 8−

1
4

8∑
i=1

(xi + xi+1 + xi+2)

+ 1
4

8∑
i=1

(xi + xi+1 + xi+2)2

= 1
2 −

8∑
i=1

(xi + xi+1 + xi+2)xi + 1
2 −

3
4 + 1

4

8∑
i=1

(xi + xi+1 + xi+2)2

= 1
4 −

1
4

8∑
i=1

xi
2 − 1

2

8∑
i=1

xixi+2.

(7.13)

Let us find the maximum value under the conditions of the lemma. To find the

maximum value of the expression in (7.13), we need to find the minimum value of

S := 1
4

8∑
i=1

xi
2 + 1

2

8∑
i=1

xixi+2.

Claim 7.7.1. For every 1 ≤ i ≤ 8

xi+1 + xi+2 + xi+3 < 0.394

Proof. By inequality (7.12)

1
2

(1
2 − (xi+1 + xi+2 + xi+3)

)
(xi+1 + xi+3) + 1

4

(1
2 − (xi+1 + xi+2 + xi+3)

)2
>

1
50.

Let α = xi+1 + xi+2 + xi+3. Then xi+1 + xi+3 = α− xi+2 ≤ α− 1
14 . Therefore

1
2

(1
2 − α

)(
α− 1

14

)
+ 1

4

(1
2 − α

)2
= −α

2

4 + α

28 + 5
112 >

1
50,

which reduces to the inequality

α2

4 −
α

28 −
69

2800 < 0.
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This quadratic inequality gives us the desired α < 0.393412 bound.

It is easy to check that the following claim is true.

Claim 7.7.2.

S ≥ 1
2

4∑
i=1

zi
2 +

4∑
i=1

zizi+2,

where zi = (xi + xi+4)/2 for all 1 ≤ i ≤ 4.

Claim 7.7.3. For every 1 ≤ i ≤ 4, zi > 0.106.

Proof. For every 1 ≤ i ≤ 4 we have

1 = (xi + xi+4) + (xi+1 + xi+2 + xi+3) + (xi+5 + xi+6 + xi+7)
(7.7.1)
< 2zi + 2 · 0.394,

therefore zi > 0.106.

Let β = z1 + z3. Then

S
(7.7.2)
≥ 1

2(z1 + z3)2 + 1
2(z2 + z4)2 + z1z3 + z2z4

= 1
2β

2 + 1
2

(1
2 − β

)2
+ z1z3 + z2z4

(7.7.3)
≥ 1

2β
2 + 1

2

(1
2 − β

)2
+ 0.106 · (β − 0.106) + 0.106

(1
2 − β − 0.106

)
= β2 − 1

2β + 0.155528

> 0.093

The last two inequalities hold because for fixed β the expression z1z3 + z2z4 achieves

its minimum value when z1 = z2 = 0.106, z3 = β − 0.106 and z4 = 1
2 − β − 0.106.

The expression β2 − 1
2β + 0.155528 achieves its minimum for β = 1

4 . It follows from

the inequality above that

1
4 −

1
4

8∑
i=1

xi
2 − 1

2

8∑
i=1

xixi+2 = 1
4 − S <

8
50,

a contradiction that finishes the proof of the lemma.
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Proof of Lemma 7.3.3

Suppose the lemma is false. Then for all 1 ≤ i ≤ 11 we have

1
2

(1
2 − (xi+1 + xi+2 + xi+3 + xi+4)

)
(xi+1 + xi+4)

+ 1
4

(1
2 − (xi+1 + xi+2 + xi+3 + xi+4)

)2
> 1/50.

Summing these inequalities for 1 ≤ i ≤ 11 we obtain

11
50 <

11∑
i=1

1
2

(1
2 − (xi+1 + xi+2 + xi+3 + xi+4)

)
(xi+1 + xi+4)

+
11∑
i=1

1
4

(1
2 − (xi+1 + xi+2 + xi+3 + xi+4)

)2

= 1
4

11∑
i=1

(xi+1 + xi+4)−
11∑
i=1

(xi+1 + xi+2 + xi+3 + xi+4)xi+1

+ 11
16 −

1
4

11∑
i=1

(xi+1 + xi+2 + xi+3 + xi+4) + 1
4

11∑
i=1

(xi+1 + xi+2 + xi+3 + xi+4)2

= 3
16 −

11∑
i=1

(xi+1 + xi+2 + xi+3 + xi+4)xi+1 + 1
4

11∑
i=1

(xi+1 + xi+2 + xi+3 + xi+4)2

= 3
16 + 1

2

11∑
i=1

xi(xi+1 − xi+3)

≤ 3
16 + 1

2

( 11∑
i=1

xixi+1 −
11
196

)
.

(7.14)

We claim that

f(x1, . . . ,x11) :=
11∑
i=1

xixi+1 ≤
77
784.

Indeed, consider any pair (xi,xj), such that j 6= i± 1, let α = xi + xj is fixed. Note

that f is linear as a function of (xi,xj). Therefore f(xi,xj) achieves its maximum

value on the region R := {0 ≤ xi ≤ 1/14 for 1 ≤ 1 ≤ 14, ∑1
i=1 1xi = 1}, when

xi = 1
14 and xj = α − 1

14 , or when xj = 1
14 and xi = α − 1

14 . Thus f attains its

maximum on R when all variables are equal 1
14 except possibly two of them whose

indices are consecutive, without loss of generality, say x10 and x11. It is easy to see

that the maximum is achieved for x10 = x11 = 5
28 and is equal to 77

784 , as claimed.
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Thus (7.14) implies

11
50 <

3
16 + 1

2

( 11∑
i=1

xixi+1 −
11
196

)
≤ 3

16 + 1
2 ·
( 77

784 −
11
196

)
= 327

1568 <
11
50,

a contradiction that finishes the proof.

Proof of Lemma 7.6.2

Let Y := ∑5
i=1 yi. Summing inequalities (7.11) over all i, j such that i 6= j and

xi,j1 ,xi,j2 ,xi,j3 ∈ L(yi) ∩ L(yj). We get

∑
i,j 6=i

(1
2 − (xi,j1 + xi,j2 + xi,j3 + yi + 1

4yj)
)(1

4yj + 1
3
(
xi,j1 + xi,j2 + xi,j3

))

= 1
8
∑
i,j 6=i

yj −
1
4
∑
i,j 6=i

yj
(
xi,j1 + xi,j2 + xi,j3

)
+ 1

6
∑
i

(xi,j1 + xi,j2 + xi,j3)

− 1
3
∑
i,j

(
xi,j1 + xi,j2 + xi,j3

)2
− 1

3
∑
i,j

(
yi + 1

4yj
) (

xi,j1 + xi,j2 + xi,j3

)
− 1

4
∑
i,j
yj

(
yi + 1

4yj
)

≤ 1
2Y − 3Y

( 1
10 − δ

)
+ (1− Y )− 36(1− Y )2

60 − 5Y
( 1

10 − δ
)

= 2
5 −

Y

10 −
3
5Y

2 + 8δY

≤ 2
5,

since δ ≤ 1
90 .
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Chapter 8

Conclusion and Future Research

I
n this chapter we summarize the work presented in this thesis and

shortly discuss some possible further applications of the presented

methods.

8.1. Quick Summary

In this thesis we presented a generic method which allows one to obtain the Turán

number of a family of hypergraphs or a hypergraph once the corresponding Turán

density result is known. This method can be viewed as a generalization of the

classical stability method, pionereed by Erdős and Simonovits in 1960’s. We do so

by utilizing the Lagrangian function of graphs and generalizing the symmetrization

procedure, initiated by Zykov and Sidorenko. The method alows us to obtain new

Turán numbers of several families which all lie in a general class of graphs, called

extensions. We believe the method can be universally applicable to derive new Turán

numbers from density results. In the next section we consider one such possible

application.
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8.2. Future Research

Recall the family Σr defined in the Chapter 4; it is the family of all r-graphs with

three edges such that two of them share (r− 1) vertices and the third edge contains

the symmetric difference of the first two. In other words, Σr = WExt(Dr) where

Dr is the r-graph on [r + 1] with two edges sharing (r − 1) vertices. In [Sid87],

Sidorenko considered a generalization of this family. Let D(r)
t denote the r-graph on

[t+ r − 1] and edges {1, . . . , r − 1, i}, for every i ∈ [t+ r − 1] \ [r − 1], that is, D(r)
t

is the r-graph with t edges sharing some (r− 1)-tuple and otherwise being disjoint.

Clearly, Σr = WExt(D(r)
2 ). Sidorenko [Sid87] considered the Turán number of the

family WExt(D(r)
t ) for general r and t.

To state the main results from [Sid87] let us use the following notation. We

denote Σ(r)
t = WExt(D(r)

t ) and αr(n) = n1−r(n − 1)(n − 2) · · · · · (n − r + 2). It is

not hard to see that the function αr(n) decreases for sufficiently large n. Let Nr be

the value of n when the function αr(n) starts decreasing. The results from [Sid87]

on ex(n, Σ(r)
t ) can be summarized as follows.

Theorem 8.2.1 (Sidorenko, [Sid87]). For given r, t and n, the largest Σ(t)
r -free graph

on n vertices is K(r)
t+r−2(n), the balanced blowup of K(r)

t+r−2, if

(1) r ≤ 3 and any t,n,

(2) r = 4, t = 2 and any n,

(3) for any t ≥ Nr and any n which is a multiple of t+ r − 2,

(4) for any t ≥ Nr and all sufficiently large n.

Note that (1) is equivalent to Mantel’s theorem and the result of Bollobás men-

tioned in Chapter 4, Theorem 4.1.1, taken together. As for (2), we already stated

this result of Sidorenko in Chapter 4, Theorem 4.1.3. Now let us discuss (3) and

(4). As Sidorenko observed in his paper, the condition of requiring t to be large

enough with respect to r for r ≥ 5 is necessary. Indeed, when r = 5, t = 2, we get

Σ5 for which the extremal graphs turn out to be the balanced blowups of Steiner
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system (11, 5, 4), as Frankl and Füredi showed (see Theorem 4.1.6) rather than the

balanced blowups of K(5)
5 .

Motivated by the family Σ(r)
t , we suggest to consider the following generalization

of the generalized triangle, T (r)
t = Ext(D(r)

t ). Note that the generalized triangle, Tr
is simply T (r)

2 . By Lemma 3.8.1, we know that π(T (r)
t ) = π(Σ(r)

t ). We suggest the

following generalization of Conjecture 4.1.1.

Conjecture 8.2.1. For any integers r ≥ 2 and t ≥ 2, there exists n0 := n0(r) such

that for all n ≥ n0,

ex(n, T (r)
t ) = ex(n, Σ(r)

t ).

To support Conjecture 8.2.1, let us show that it is true for the values of param-

eters that Theorem 8.2.1 covers. Recall that an (m, r, q,λ)-design is an r-graph on

m vertices such that every q-tuple is contained in exactly λ edges. It was a long-

standing conjecture of Steiner from 1853 that such designs exist for all sufficiently

large m if the neccessary divisibility conditions hold (these are
(
q−i
r−i

)
divides λ

(
m−i
r−1

)
for every 0 ≤ i ≤ r−1). In [Kee14] Keevash proved that Steiner’s conjecture is true.

Let F∗ be the family of r-graphs in Forb(D(r)
t ) that cover pairs. Using our ideas

from Chapter 4 we believe that the following result must follow.

Theorem 8.2.2. For given m, r ≥ 2, t ≥ 2 let D be a (m, r, r− 1, t− 1)-design that

is uniquely dense and balanced. If D is the unique Lagrangian maximizer of F∗, then

Forb(T (r)
t ) is B(D)-stable.

We shortly discuss here how this result follows along the same lines as the proof

of Theorem 4.1.8. Let B = B(D). Following Theorem 3.8.2, we would like to show

that the following two conditions hold.

(C1) Forb(T (r)
t ) is B-vertex locally stable,

(C2) The family F∗ is B-weakly weight-stable.

To prove (C1), one can follow exact same steps as in Section 4.2. It is not hard

to see that T (r)
t is D(r)

t -hom-critical. Hence, the tools developed in Section 3.9 are

applicable. Next, we can obtain an embedding lemma that allows to embed every
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large T (r)
t -free graph into a blowup of D, meaning that if G is an T (r)

t -free graph

with large minimum degree and has a small edit distance to the family B then we

can find a blowup B ∈ B on the same vertex set as G such that every vertex has

almost the same neighbourhoods in G and B. The steps to pursue are along the lines

of the proof of Theorem 4.2.3, just a little bit more technical. To finish the proof of

(C1), the only next key step is to obtain the analogous statement as in Claim 4.2.8,

that is, to show that we can bound the number of bad edges that contain some

i-tuple from above by the proportion of the missing edges that contain any of its

(i−1)-subtuples. This is also true along the same lines as in the proof of Claim 4.2.8,

except that it gets more technical in computations.

Now let us discuss the proof of (C2). To this end, we can prove that a result

analogous to Theorem 4.3.3 holds. For an integer k, we say that an r-graph is k-thin

if every (r − 1)-tuple is contained in at most k edges.

Theorem 8.2.3. For any fixed integer k, if F∗ is a k-thin family such that λ(F∗) =

λ(F∗) for some F∗ ∈ F∗, then it is F∗∗-weakly weight-stable, where

F∗∗ = {F∗|supp(µ) | F∗ ∈ F∗, λ(F∗,µ) = λ(F∗) for some µ ∈M(F∗)}.

Given Theorem 8.2.2, we can verify Conjecture 8.2.1 for some cases. Clearly the

graph K(r)
t+r−2 is (t+ r− 2, r, r− 1, t− 1)-design and is balanced and uniquely dense.

Also note that from the results of [Sid87] it can be implied that the following holds.

Theorem 8.2.4 (Sidorenko, [Sid87]). For positive integers t, r ≥ 2, K(r)
t+r−2 is the

unique Lagrangian maximizer of the family F∗ when r ≤ 4 or t ≥ Nr.

Thus, by Theorem 8.2.2 and Theorem 8.2.4 we can derive the following result

which confirms Conjecture 8.2.1 in certain cases.

Theorem 8.2.5. For integers r ≥ 2, t ≥ 2 such that either r ≤ 4 or t ≥ Nr, there

exists n0 such that the largest T (r)
t -free graph on n ≥ n0 vertices is the balanced

blowup of K(r)
t+r−2, that is, K

(r)
t+r−2(n).

Lastly, we would like to discuss the first case that is different from the question of

the Turán number of the generalized triangle and also, the extremal graph is not the
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balanced blowup of K(r)
t+r−2. Let r = 5, t = 3. Let D11 be a design with parameters

(11, 5, 4, 2). It is easy to see that

λ(D11) =
2
(

11
4

)
5 · 1

115 > 6 · 1
65 = λ(K(5)

6 ).

In fact, we suspect that that the balanced blowups of D11 are the extremal graphs

for the question of Turán number of T (5)
3 and Σ(5)

3 .

Conjecture 8.2.2. There exists some n0 such that for all n ≥ n0,

ex(n, Σ(5)
3 ) = ex(n, T (5)

3 ),

and, moreover, for all such n the largest Σ(5)
3 -free and T (5)

3 -free r-graphs are the

balanced blowups of D11.

To prove the above conjecture, one needs in particular, to show that D11 is the

unique Lagrangian maximizer for the corresponding family F∗. The calculation that

shows that the Lagrangian maximizer must have 6 ≤ m ≤ 11 vertices, is quite easy.

The only m among these for which the divisibility conditions hold with respect to

parameters (m, 5, 4, 2) is m = 6 and m = 11. Further work is required to show that

the partial designs with these parameters (that is, every 4-tuple is contained in at

most two edges) on the vertices 7 ≤ m ≤ 10 and which cover pairs have smaller

Lagrangian than D11.
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