

Development of a Quick-Install Auto-Steering System

for Agricultural Vehicles

Antoine Pouliot

Department of Bioresource Engineering

Macdonald Campus of McGill University

Montréal, Québec

December 2016

A thesis submitted to McGill University in partial fulfillment of the requirements for

the degree of Master of Science

©Antoine Pouliot, 2016

ii

ABSTRACT

Navigation systems have become a crucial tool in large-scale agricultural operations. Such

systems are available commercially; however, they are expensive and are not compatible with all

models of tractors. The objective of this study was to develop an affordable quick-install camera

system which was capable of acting as a guidance system capable of controlling the movement of

a tractor for row crop cultivation and fertilization during the early stages of crop growth.

Computer analysis of video streams is a technique which has only recently become an inexpensive

method for obtaining guidance information. The technique has the particular advantage of

utilizing the same equipment to sense a variety of different guiding features with minor user-

level software changes. In this study, a computer-vision guidance system was developed to run

on an Intel Atom D525 nanocomputer. A low-cost RGB-NIR camera was mounted to the front

of the tractor, perpendicular to the ground and in line with the crop row to be followed to obtain

a video stream of the plants passing underneath the vehicle. An application developed using the

Python OpenCV platform was used to segment the crops from the soil and weeds, identify the

lateral offset of the plant rows, and subsequently adjust the tractor’s power-assisted steering

accordingly via an adaptive PID controller. The adjustments were made by a stepper motor

mounted on the front window of the tractor using suction cups. Unlike other similar systems,

this mechanism that rests on the center of the steering wheel allows for quick and effortless

installation and represents an inexpensive, entry-level precision agriculture solution. The

computer vision system was tested successfully for travel speeds up to 11 km/h on tarmac under

varying ambient light using a green garden hose to emulate a crop row.

iii

ABRÉGÉ

Les systèmes de navigation sont devenus des outils cruciaux sur les grandes exploitations

agricoles. Ces systèmes sont sur le marché, mais ils sont coûteux et ne sont compatibles qu’avec

les tracteurs les plus récents. Par conséquent, l'objectif de cette étude était de développer un

système de caméra abordable capable d'agir comme un système de guidage pour les cultures en

rangs afin d’aider aux opérations de sarclage et d’application d’intrants durant les premiers stades

de croissance des cultures. L'analyse par ordinateur des flux vidéo est une technique qui n'est que

récemment devenue une abordable pour obtenir des informations de guidage. La technique a

notamment pour avantage d'utiliser le même équipement pour détecter une variété de différents

paramètres de guidage avec très peu d’implication de l’utilisateur, permettant ainsi à ce dernier

de consacrer plus d’attention à d’autres tâches. Une caméra RVB (rouge, vert, bleu) à faible coût

a été installée à l'avant d’un tracteur en ligne avec un rang de culture pour obtenir un flux vidéo

des plantes passant sous l'équipement. La plate-forme Python OpenCV a été utilisée afin de

développer une application pour distinguer les cultures du sol et des mauvaises herbes, de

mesurer le décalage latéral du tracteur avec les rangées de plantes, puis d’ajuster la servodirection

du tracteur en conséquence à l’aide d'une structure PID (proportionnelle, intégrale, dérivée)

adaptative. Les ajustements étaient effectués par un moteur pas-à-pas installé au pare-brise du

tracteur à l'aide de ventouses. Contrairement aux systèmes similaires, ce mécanisme qui repose

sur le centre du volant du tracteur permet une installation rapide et facile, et représente une

solution d’agriculture de précision d'entrée de gamme peu coûteuse. Le système de vision

artificielle a été testé avec succès pour des vitesses de déplacement jusqu'à 11 km/h sur le tarmac

en utilisant un boyau d’arrosage afin d’imiter un rang de culture.

iv

ACKNOWLEDGMENTS

The author would like to acknowledge everyone who contributed at any level to the achievement

of this thesis. Special thanks to Trevor Stanhope for his indispensable help with software

development; thanks to Scott Manktelow for his friendly smile every morning, for the

handcrafting lessons and his technical support in the construction of the various projects; and

thanks to Paul Meldrum and the whole farm crew for their help with the field experiments.

Thanks to Dr. Mark Lefsrud for his support and guidance as a committee member.

Partial funding for this research was provided through the Natural Sciences and Engineering

Research Council of Canada (NSERC) Discovery Grants Program.

I would like to thank my friends, and most importantly my family, for their unconditional support

through my entire academic path. I am grateful to the research team colleagues that have made

this journey rich and special, and I would especially like to thank my supervisor, Dr. Adamchuk,

for his professional support. I am leaving behind good friends and colleagues, and taking

unforgettable memories with me.

Je dédie ce document, mais surtout le travail et le cheminement qu’il représente,

à mes parents.

v

CONTRIBUTION OF AUTHORS

The author of this thesis was responsible for the invention of the quick-install auto-steering

system and the development and evaluation of the optical guidance system. Trevor Stanhope, a

master student under the supervision of Dr. Adamchuk, and the author are responsible for the

elaboration of the entirety of the guidance software. The author designed and carried out the

experimental and analytical work to meet the research objectives of this thesis. The author is also

responsible for the preparation of the manuscript serving as a base for this thesis. Dr. Viacheslav

Adamchuk, an Associate Professor in Department of Bioresource Engineering of McGill

University, is the thesis supervisor. He created the idea for this research and offered scientific

advice and technical guidance throughout the study. He is also responsible for editing and

reviewing the prepared manuscript.

Dr. Adamchuk and Trevor Stanhope were coauthors on the Optical Guidance ASABE conference

paper.

 Publication related to the thesis

Pouliot, A., Stanhope, T.P., Adamchuk, V.I. A quick-install tractor guidance system relying on

computer vision. 2015 New Orleans, Louisiana United States of America July 26-29, 2015.

vi

 TABLE OF CONTENTS

ABSTRACT .. ii

ABRÉGÉ .. iii

ACKNOWLEDGMENTS ..iv

CONTRIBUTION OF AUTHORS .. v

TABLE OF CONTENTS ...vi

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

LIST OF ABBREVIATIONS AND SYMBOLS .. xi

1. INTRODUCTION ... 1

1.1 Overview ... 1

1.2 Justification ... 2

1.3 Research Objectives .. 3

2. LITERATURE REVIEW .. 4

2.1 Posture sensors for agricultural vehicles .. 4

2.2 Automated steering systems and aids ... 10

2.2 Vehicle control algorithms .. 12

3. MATERIALS AND METHODS .. 14

3.1. Design of system components.. 14

3.1.1 Preliminary design ... 14

3.1.1.1 Instrumentation .. 19

3.1.2 Final design ... 21

vii

3.3. Guidance algorithm development ... 23

3.3.1 Crop row tracking .. 23

3.3.2 Ground speed estimation .. 26

3.3.3 Preliminary control algorithm .. 27

3.3.4 Final control algorithm .. 30

3.3 Experimental setup Stage 1 ... 34

3.4 Experimental setup Stage 2 ... 36

4. RESULTS AND DISCUSSION ... 37

4.1 Stage 1 test .. 37

4.2 Stage 2 test .. 39

4.3 Future improvements ... 44

5. CONCLUSION ... 45

REFERENCES .. 46

APPENDIX A: Python Code ... 50

APPENDIX B: Arduino Code .. 65

APPENDIX C: Cost (USD) of the guidance system components. .. 67

viii

LIST OF TABLES

Table 1: Results from Stage 1 test. ... 38

Table 2: Results from Stage 2 test. ... 40

Table 3: ANOVA of 95th percentile lateral error (cm) (Stage 2 experiment). 41

/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302211

ix

LIST OF FIGURES

Figure 1-1: Row crop cultivation on an organic operation. ... 1

Figure 2-1: Claas Auto Pilot (left) (CLAAS KGaA mbH, 2016), and John Deere AutoTrac

RowSense (right) (Deere & Company, 2016). .. 5

Figure 2-2: Claas Cam Pilot (left) (CLAAS KGaA mbH 2016) and John Deere AutoTrac Vision

(right) (Deere & Company 2016). .. 10

Figure 2-3: John Deere Lightbar (left) (Deere & Company 2016), Trimble EZ-Steer

(middle)(Trimble Navigation 2016), and John Deere ATU (right) (Deere & Company 2016). . 11

Figure 3-1: Camera mounted to the bumper bar of the experimental tractor. 14

Figure 3-2: Stepper motor controller and microcontroller (left), and joystick (right). 16

Figure 3-3: Drawing of the wheel hub adapter (left) and the quick-install steering mechanism

(right). .. 16

Figure 3-4: Additional steering hub configurations.. 17

Figure 3-5: Steering system diagram ... 18

Figure 3-6: RTK antenna mounted above the camera and king pin angle potentiometer........... 19

Figure 3-7: Steering wheel encoder value versus kingpin potentiometer value. 20

Figure 3-8: Logitech camera mounted to the bumper bar of the experimental tractor for Stage 2

experiment. ... 21

Figure 3-9: Checkered board used for pixel to mm conversion. .. 22

Figure 3-10: Row detection demonstration. Reprinted with permission by Stanhope (2014). ... 25

Figure 3-11: Flowchart of the ground speed estimation. ... 26

Figure 3-12: Keypoints matching on consecutive frames for ground speed estimation. Reprinted

with permission by Stanhope (2014). .. 27

Figure 3-13: Stage 1 algorithm demonstration. ... 28

Figure 3-14: Flowchart of Stage 1 PID control algorithm. .. 29

Figure 3-15: Illustration of the Savitzky-Golay filter. ... 30

Figure 3-16: Projection algorithm illustration. Approaching: left. Drifting: right. Magenta dots

represent unfiltered data. ... 31

Figure 3-17: Flowchart of Stage 2 PID control algorithm. .. 33

Figure 3-18: Stage 1 test track with the experimental tractor at the far end. 34

/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302221
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302222
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302222
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302223
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302223
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302224
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302224
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302225
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302226
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302227
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302227
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302228
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302229
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302230
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302231
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302232
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302232
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302233
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302234
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302235
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302236
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302236
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302237
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302238
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302239
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302240
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302240
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302241
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302242

x

Figure 3-19: Arrangement of the two test layouts for the garden hose, on tarmac with the North

arrow. ... 35

Figure 3-20: Stage 2 curved and straight test tracks. .. 36

Figure 4-1: Performance of guidance system on the straight path. .. 38

Figure 4-2: Performance of guidance system on the curved path.. 39

Figure 4-3: 95th percentile lateral error versus speed on the straight track. 43

Figure 4-4: 95th percentile lateral error versus speed on the curved track. 43

/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302243
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302243
/Volumes/Secondary/School/University/Master/Thesis/260407743_Pouliot_Antoine_BioresourceEng_thesis_FinalDraft.docx#_Toc469302244

xi

LIST OF ABBREVIATIONS AND SYMBOLS

b abscise of a linear function

BPPD Band-Pass Plant Detection

CCD Charge-Coupled Device

CMOS Complementary Metal-Oxide-Semiconductor

CPR Count Per Revolution

CS Column Summation

df degrees of freedom

e lateral error or offset

FOV Field of View

GLONASS GLObalnaya NAvigatsionnaya Sputnikovaya Sistema

GNSS Global Navigation Satellite System

GPS Global Positioning System

HIS Hue-Saturation-Intensity

IR Infrared

LIDAR a portmanteau of “light” and “radar”

NMEA National Marine Electronics Association

PID Proportional-Integral-Derivative

RGB Red-Green-Blue

RMSE Root Mean Square Average

RPM Revolutions Per Minute

RTK Real-Time Kinematic

S/N Signal-to-Noise ratio

SURF Speeded Up Robust Features

xii

t time

VRT Variable Rate Technologies

θ angular position

ω angular velocity

1

1. INTRODUCTION

1.1 Overview

Steering agricultural machinery in the field to perform various farming operations is hard for

machinery operators because of the long hours of tedious, repetitive tasks at low speeds. Among

those tasks, guiding the tractor along crop rows without damaging plants requires much

attention and is one of the leading causes of operators’ fatigue. Becker et al. 1983 even reported

that steering might be the most significant load on the mental capacities of an operator

performing a field operation. With the adoption of attention-hungry equipment such as row crop

cultivators (figure 1-1) or sprayers, it becomes necessary for producers wanting to increase their

productivity to find alternatives to traditional vehicle guidance. Palmer & Matheson, 1988

determined that as much as 10% of crop production costs could be saved by improving the

navigation accuracy of field equipment.

Figure 1-1: Row crop cultivation on an organic operation.

2

1.2 Justification

There is little doubt that big farming operations are embracing and massively adopting auto-

guidance technologies. A survey by the Department of Agricultural Economics of Purdue

University (Erickson & Widmar 2015) shows that GNSS guidance systems were adopted by 83%

of the respondents in 2015 while only 61% had adopted them in 2013. The question here is

whether smaller-scale, labour-intensive farms from developed and developing countries will ever

adopt these technologies. For some, today’s precision technology is still too expensive to be

worth the cost (Dobbs 2013); however, as smaller, more modular equipment becomes widespread

even the leanest operations may be able to change their practices.

When it comes to the automated guidance of agricultural vehicles, crop producers are faced with

many options, such as global navigation satellite systems (GNSS) based guidance, or alternatives,

including Light Detection and Ranging (LIDAR), ultrasonic, mechanical, and optical guidance

systems. Among these, optical guidance has received significant attention as it is both relatively

inexpensive and has an immense potential for further research and development, including

different co-applications such as crop phenotyping.

Researchers have applied computer vision to guide agricultural vehicles for a wide diversity of

field operations, with significant interest in cultivation, fertilization, spraying and harvest

operations. In an optical guidance system, image-processing algorithms determine the position

of the vehicle about the target (e.g. a crop row) and the vehicle trajectory is corrected by

automatic steering control.

3

1.3 Research Objectives

The ultimate goal of this research was to equip farmers with a camera-based semi-automated

steering system. The system has to be adaptable to different crops or tasks, be compatible with

diverse agricultural vehicles equipped with power steering, be installed within five minutes

without any pre-installation and lastly yet importantly, be inexpensive. The specific objective

was to design and to test a commercially viable quick-install auto-steering system run by a simple

control algorithm: a modified proportional-integral-differential (PID) control capable of guiding

an unladen agricultural tractor to within a 95th percentile lateral error within ±5 cm of a desired

path at speeds from 1 to 3 m/s on level tarmac or firm soil surfaces.

4

2. LITERATURE REVIEW

This section presents some of the literature related to guidance sensors for agricultural vehicles,

automated steering systems and aids, and vehicle guidance algorithms to provide background

information related to research presented in this thesis.

2.1 Posture sensors for agricultural vehicles

Inventions to help an agricultural vehicle driver space his/her planted rows uniformly started

appearing in the 1870s (Heraud & Lange 2009) with patents regarding row markers, foam

markers, aids for manual steering, automatic steering sensors, and auto steering systems. Posture

(or positioning) sensors for agricultural vehicles with a few minor exceptions can be classified

into four main categories: mechanical, ultrasonic, navigational, and optical.

Mechanical guidance systems are a contact type of guidance mechanisms that utilize existing

features such as a crop row or a cultivation furrow. These systems are inexpensive as costs are

restricted to the sensing and control devices. Snyder, 1885 invented a system called “furrow pilot”

that automatically steered a tractor engine based on a previously formed furrow. The system and

its successors were mostly used for tillage applications. Parish & Goering, 1970 developed a

hydrostatic self-propelled vehicle with an automatic steering system based on a crop sensor. The

latter consisted of two microswitches operated by the upward pressure of the hay. The system

integrated an allowable dead band: if the edge of the standing crop lay outside the dead band, the

switches sent a correction signal. Kirk, 1974 in his thesis described the development of a marker-

follower guidance system for farm tractors that leaves a furrow-marker which is followed on the

next pass. Field tests on a cultivated field showed the system to have good following

characteristics on both straight and curved paths with maximum front wheel tracking error of

5

1 - 2” (2.54 – 5.08 cm). The system showed decent stability at speeds up to 6 miles/h on straight

paths and was capable of following a 15-foot radius turn at 2.5 miles/h. This guidance system,

with proper adaptation, could be used for most tillage and seeding operations. Examples of

commercial products which have entered the industry in the past decade are the Claas Auto Pilot

(CLAAS KGaA mbH, Harsewinkel, Germany) and the John Deere AutoTrac RowSense (Deere

& Company, Moline, USA) (Figure 2-1). Mechanical systems are straightforward and affordable;

however, they protrude from the vehicle and are a nuisance during headland operations and road

transportation. Another considerable disadvantage lies in the fact that they require a physical

feature that is strong enough to be sensed thus ruling out emerging row crops.

Ultrasonic devices calculate the distance from the time taken for an ultrasonic signal to reach

and be reflected back from a target. Warner & Harries, 1972 have used them to detect the last

furrow for the next run during cultivation; however, an inadequate reflectance of ultrasound was

obtained from soil, convincing the authors that it would be better to adopt optical methods for

identifying the guideline to be followed. Mcmahon et al. 1987 used an array of ultrasonic sensors

Figure 2-1: Claas Auto Pilot (left) (CLAAS KGaA mbH, 2016), and John Deere AutoTrac RowSense

(right) (Deere & Company, 2016).

6

to measure the position of apple trees to guide a harvester vehicle. Kirk & Krause, 1976 reported

that ultrasonic sensors failed to obtain sufficient reflection from the crop edge to operate

successfully and guide their swather. An infrared photoelectric sensor was found to be the best

for their particular application.

The most recurrent approach to precise automated navigational guidance involves global

navigation satellite systems (GNSS), and it was first proposed by Larsen et al. 1988. The

American Global Positioning System (GPS) and its Russian equivalent GLONASS are

worldwide radio-navigation systems that consist of constellations of 24 or more satellites and

several ground stations. GNSS receivers have different levels of accuracy: inexpensive receivers

($100) such as the ones found in cellular devices can determine one’s position to within 15 m

(Heraud & Lange 2009). More expensive receivers that can use a second signal (L1/L2 bands)

have a 1-m accuracy using differential GNSS. The most accurate GNSS receivers using a

technique named real-time kinematic (RTK) can position within a few centimeters and are worth

tens of thousands of dollars. The use of the latter was pioneered by O’Connor et al. 1996 for

automatic steering of a tractor along straight lines. The accuracy of the RTK GNSS method is

better than a 2.5 cm standard deviation 95% of the time(Easterly et al. 2010). Several patents

were subsequently issued, leading to a fast adoption of navigational guidance that has had a

significant effect on agricultural practices. The main drawback to GNSS guidance systems other

than their prohibitive pricing is their “blindness” concerning existing features such as crop rows,

residue rows, windrows or swaths, and furrows which could lead to errors in guidance unless the

entirety of previous field operations were conducted using GNSS guidance.

7

Studies on optical guidance systems date as far back as the 1980s. Reid & Searcy, 1987 reported

on the development of techniques that provide a well-segmented image of crop and soil

background. They used near-infrared filters and an auto-iris lens, which kept the lighting level

constant, to allow accurate segmentation. However, their work did not extend to vehicle

guidance signals. Marchant & Brivot, 1995 investigated the problem of deriving vehicle guidance

information (offset and heading angle) from images of crops grown in rows. They used the Hough

transform to calculate the offset and orientation about the row structures. They combined

information coming from three row segments to increase performance. Typical errors were 12.5

mm of offset and 1.0 degree of angle at a forward speed of 2 m/s. Billingsley & Schoenfisch 1995

used the chrominance signal (the color information of a picture) from a color camera to acquire

an image representing the ‘‘greenness’’ in the image. To find line structures they used a cost

function to find the best fit lines on several rows. A geared DC motor was used to steer a small

tractor. They evaluated the performance of their system based on response to an initial error of

0.5 m at different speeds. Gerrish et al. 1997 installed a computer-vision guidance system on a

full-size, modern tractor. A control point in the image was used as a reference to determine the

angle at which the front steering wheels should be turned. They compared the performance of

the system with steering by experienced human operators. In a test of skill, the human operators

were more precise than automatic guidance at 12.9 km/h. At 4.8 km/h, however, automatic

guidance was as skillful as the humans. Slaughter et al. 1999 demonstrated that color

segmentation and an algorithm based upon the median of the spatial distribution of the seed line

could be used with off-the-shelf computer-vision hardware to develop a real-time guidance

system for row crop cultural practices such as cultivation. The precision of the system was

comparable to that of a manually-guided cultivator and was demonstrated at a ground speed of

up to 16 km/h under low weed loads.

8

Okamoto et al. 2002 developed an automatic guidance system for a weeding cultivator. A color

charged-couple device (CCD) camera acquired the row crop images, and by processing the images

in the computer, determined the offset between the machine and the target crop row. The

weeding machine was steered through the crop row using an electro-hydraulic steering

controller. Han et al. 2004 developed a row segmentation algorithm based on k-means clustering

to segment crop rows. This information was next used to steer a tractor. The guided tractor was

able to perform field cultivation in both straight and curved rows. However, quantitative

performance evaluation of the automatically guided tractor had not been completed.

Another research was to develop a row detection algorithm for a stereovision-based agricultural

machinery guidance system. The algorithm consisted of functions for stereo-image processing,

elevation map creation and navigation point determination. The method developed first

reconstructed a three-dimensional crop elevation map from a stereovision image of crop rows

and searched for optimal navigation points from the map (Kise et al. 2005). Matias & Gil 2007

looked for a solution to guide an agricultural vehicle with independence of the task. Their system

was based on a segmentation algorithm that used an optimum threshold function in terms of

minimum quadratic value over a Fisher linear discriminant. This system has achieved positive

results in the sense of segmentation in addition to guiding a vehicle in a real world environment

successfully. However, conditions of non-uniform illumination raised the rate of errors; therefore,

the system became confused because of the irregularities shadows of the terrain or external

factors. It was also observed that the effect of irregular vegetation made the system inefficient

when the difference of texture between the processed and non-processed areas was insignificant,

as in tilling.

The common denominator among all the previous studies is the use of a fixed forward field of

view (“far FOV”) camera arrangement. The latter works adequately in the case of tall, mature

9

plants; however, it has its limitations with small plants and is inadequate when used for turning

at the end of the row. For this purpose, Xue et al. 2012 implemented two FOV modes to

complement the far FOV: the ‘‘near FOV’’ for small plants, and the ‘‘lateral FOV’’ used in turning

a robot. A fuzzy logic control scheme was used to guide the robot. The method was tested while

the vehicle successfully traveled through a distance of 30 m towards the end of a crop row in

three replications. RTK-GNSS data was collected to evaluate de guidance performance and

showed a maximum guidance error of 15.8 mm and stable navigational behavior.

Stanhope et al. 2014 developed an inexpensive webcam-based system which is capable of

supplementing the mechanical guidance system for row crop cultivation during the early stages

of crop growth. A computer-vision cultivator guidance system was developed for a 700 MHz

ARM minicomputer to control a mechanical guidance system. The Python OpenCV platform

was used to develop an application to identify the lateral offset of the plant rows and to adjust

the hydraulic steering accordingly. The guidance system performed sufficiently for travel speeds

up to 6 km/h in grain corn, green bean, and soybean fields under varying ambient light and crop

conditions. Examples of commercial products which have entered the industry in the past years

10

are the Claas Cam Pilot (CLAAS KGaA mbH, Harsewinkel, Germany) and the John Deere

AutoTrac Vision (Deere & Company, Moline, USA) (Figure 2-2).

2.2 Automated steering systems and aids

Automated or aided guidance of agricultural vehicles can take various forms, including manual

guidance with a lightbar, automatic steering systems that tap into the vehicle’s steering electro-

hydraulic valve or that use electric motor drives, depending on the investment. An example of a

commercial lightbar used for guidance is the John Deere GreenStar Lightbar System (Deere &

Company, Moline, USA) (Figure 2-3) which represents a straightforward and cost-effective

guidance solution that comprises a GNSS receiver, a user interface, and path planning

algorithms. It can readily be transferred between machines; however, it does require the operator

to keep his/her eyes on the lightbar and hands on the steering wheel at all times. Typical accuracy

for manual guidance ranges from 5 or 10 cm to 30 cm pass-to-pass, depending on the driver’s

coordination (Heraud & Lange 2009). Automatic steering, or auto-steer, is a much more complex

system that typically requires a GNSS receiver, a user interface, path planning algorithms,

vehicle steering actuators and manual override detectors, steering angle sensors, control

Figure 2-2: Claas Cam Pilot (left) (CLAAS KGaA mbH 2016) and John Deere AutoTrac Vision (right)

(Deere & Company 2016).

11

algorithms and controller, terrain compensation, and other sensors. Although automatic steering

offers many benefits such as increased accuracy, increased operating speed, ability to concentrate

on other tasks and reduced fatigue, it is nonetheless significantly more complex and costly than

the lightbar system and is difficult to transfer between machines as it requires the latter to be

equipped with electro-hydraulic steering valves. Examples of successful commercial auto-steer

systems are the Trimble Autopilot (Trimble Navigation, Ltd., Sunnyvale, USA) and the John

Deere AutoTrac (Deere & Company, Moline, USA). Electric motor drives are most commonly

used in universal steering kits, typically for tractors that are not equipped with electro-hydraulic

steering valves. In these systems, an electric motor actuator is used to move the steering wheel

to steer the vehicle. Installation time is shorter due to the less intrusive nature of the systems,

and they can therefore easily be transferred from one vehicle to another. Examples of successful

commercial electric motor drive systems are the Trimble EZ-Steer (Trimble Navigation, Ltd.,

Sunnyvale, USA) (Figure 2-3), which consists of a friction wheel on the peripheral area of the

steering wheel, and the John Deere AutoTrac Universal 200 (ATU) (Deere & Company, Moline,

USA) (Figure 2-3), which consists of a simple belt mechanism.

Figure 2-3: John Deere Lightbar (left) (Deere & Company 2016), Trimble EZ-Steer (middle)(Trimble

Navigation 2016), and John Deere ATU (right) (Deere & Company 2016).

12

2.2 Vehicle control algorithms

Control algorithms use the information relayed from the path-planning algorithms (lateral offset,

heading error) to compute steering adjustments that must be accomplished by the vehicle

steering system (Heraud & Lange 2009). Many control algorithms have been developed over the

past decades, and some common methods are discussed here.

The PID algorithm (proportional-integral-differential) is a tuning-based control algorithm that

has yielded practical results in previous works (Subramanian et al. 2006, Benson et al. 2003) and

that assumes that the tractor’s kinematics can be approximated as a first or second-order

differential equation. In Benson et al. 2003, PID was used to calculate the actuator command

signal based on the heading offset. The performance of the controller was comparable to that of

manual steering. However, the maximum speed at which the controller could operate was 1.3

m/s. Fuzzy logic controllers (“fuzzy” refers to the fact that the logic involved can deal with

concepts that can be expressed as “partially true” as opposed to “true” or “false”) have also been

used to control steering of agricultural vehicles (Cho & Ki 1999), and sometimes in conjunction

with PID (Kodagoda et al. 2002). In Cho & Ki 1999, a fuzzy logic controller and computer-vision

were used for guiding an autonomous sprayer vehicle through orchards. The input information

to the fuzzy logic controller was given by both computer-vision and ultrasonic sensors. A

combination of Fuzzy logic and PID control worked well for guiding a tractor through crop rows

and repeatedly outperformed conventional PID schemes (Kodagoda et al. 2002).

Another approach to agricultural vehicle guidance algorithms is to use model-based control

algorithms. The latter consists of developing a mathematical model of the vehicle’s dynamics and

using a feedback controller to control the mathematical model. To ensure these models are

13

independent of the make, type and size of the vehicle, a simple two-degree-of-freedom (DF)

“bicycle model” approach is widely used throughout literature (Feng et al. 2004; Alleyne &

DePoorter 1997; Derrick & Bevly 2009; Lenain et al. 2006; Gomez-Gil et al. 2011; Stombaugh et

al. 1999; Choi et al. 1990; O’Connor et al. 1996). This model has one input (steering angle) and

one output (lateral position) and requires the guidance dynamics of the vehicle to be quantified

beforehand. Stombaugh et al. 1999 successfully tested a classical model-based controller that

provided guidance of a two-wheel-drive agricultural tractor to within 16 cm of the desired path

at speeds up to 6.8 m/s after experimentally quantifying the guidance dynamics of the tractor.

14

3. MATERIALS AND METHODS

3.1. Design of system components

3.1.1 Preliminary design

An outdoor USB CMOS camera (dust-tight, water-tight) with 640x480 pixel resolution

(Shenzhen Yufei Technology Co., Ltd, Shenzhen, China) was mounted to the front of a 95 hp

New Holland T5050 (New Holland Agriculture, Turin, Italy) tractor in-line with a crop row (381

mm to the left of the centerline of the tractor, and 730 mm to the front of the steering axle) to

obtain a video stream of the plants under the tractor (Figure 3-1). It is to note that the system is

calibrated by physically locking the camera above the area where the feature to be followed would

normally pass. The camera had a lens with a 6-mm focal point, which translates to a 43°

Figure 3-1: Camera mounted to the bumper bar of the experimental tractor.

15

horizontal field of view and 32.3° vertical field of view at the standard 1.33 aspect ratio. This field

of view provided approximately 1.15 mm/pixel resolution when mounted 1.0 m above the ground

and oriented orthogonally to the direction of travel. A checkered board with 67 mm x 67 mm

squares was used to validate the pixel to mm conversion (Figure 3-7).

The sensor was capable of automatically adjusting exposure and aperture settings for varying

lighting conditions and could process images at a rate of approximately 25-30 frames/s.

Although the software was optimized for the Intel Atom D525 processor (Intel Corporation,

Santa Clara, USA) in a potentially marketable iteration, it was actually run on an Intel i7 powered

VMC3501-K (NEXCOM International Co., Ltd, Taipei, Taiwan) with integrated touchscreen

displaying a graphical interface to the tractor operator to ease the process of altering the code

during tuning runs. Steering control was achieved with a Phidgets 1067 bipolar stepper

controller (Figure 3-2) (Phidgets Inc., Calgary, Canada) and a 12V, 2.8A, 46.6 kg-cm geared

bipolar stepper motor (Dongzheng Motor Co., Ltd, Dongyang City, China) equipped with an

external optical rotary encoder that produced 300 cycles per revolution. An Arduino UNO

microcontroller board (Figure 3-2) (Arduino, Somerville, USA) based on the Atmel

ATmega328P microcontroller (Atmel, San Jose, USA) was used to read the signal from the rotary

encoder. The stepper motor apparatus was fixed onto the tractor steering wheel via a RAM ball-

grip positioning arm (National Products Inc., Seattle, USA) made of marine grade aluminum and

capable of holding a mass of 4.5 kg. The positioning arm was mounted to the front window of

the tractor using lock-to-grip suction cups capable of holding up to 60 kg (Figure 3-3). A steering

wheel hub adapter was designed and fabricated using additive manufacturing. The installation of

16

the entire system took well under five minutes and could easily be done without tools in a

commercially viable iteration.

Figure 3-3: Drawing of the wheel hub adapter (left) and the quick-install steering mechanism (right).

Figure 3-2: Stepper motor controller and microcontroller (left), and joystick (right).

17

The tailored ABS steering hub adapter offered many advantages such as light weight (less than

200 g), robustness, low cost, and adaptability to any steering wheel (Figure 3-4). A momentary

pushbutton switch mounted on a Tenco JH-D400X-R4 joystick (Tenco Technology Company

Ltd., Shenzhen, China) allowed to switch easily between the automatic and manual modes of the

steering system and offered the operator the ability to manually control the gain of the steering

algorithm if needed. The ergonomic joystick, which relied on a 10 kΩ potentiometer, was used

to steer the tractor manually when performing headland operations (Figure 3-2). The system

was inexpensive compared with other guidance solutions already on the market. The price of the

Figure 3-4: Additional steering hub configurations.

18

guidance system as depicted in Figure 3-5 -omitting the GNSS receiver and the wheel angle

sensor- was just under $1,100USD (Intel Atom CPU setup) (details in APPENDIX C).

Figure 3-5: Steering system diagram

19

3.1.1.1 Instrumentation

Relative position measurements performed with the vision sensor were synchronized with

geographic locations to validate measurements obtained during different passes. An RTK-level

GNSS receiver located above the camera (1.52 m above the ground) was used to acquire

geographic longitude and latitude (Figure 3-6), time, and GNSS signal quality parameters to

serve as a comparison for the guidance system performance. The RTK-level GNSS receiver for

both the rover and the base stations was a Trimble AgGPS 542 (Trimble Navigation, Ltd.,

Sunnyvale, USA), and the base station was located less than 500 m from the test track.

Figure 3-6: RTK antenna mounted above the camera and king pin angle potentiometer.

20

During development stage, a rotary potentiometer was used as a wheel angle sensor to validate

the linear relationship assumption between steering wheel angle and actual wheel king pin angle

(Figure 3-6). Figure 3-7 illustrates the relationship between steering wheel encoder value and

king pin potentiometer value.

Figure 3-7: Steering wheel encoder value versus kingpin potentiometer value.

21

3.1.2 Final design

The outdoor USB CMOS camera (dust-tight, water-tight) with 640x480 pixel resolution

(Shenzhen Yufei Technology Co., Ltd, Shenzhen, China) used for the Stage 1 experiment during

the summer of 2015 was replaced by a Logitech HD Webcam C270 set to a 640x480 pixel

resolution (Figure 3-8) (Logitech International S.A., Lausanne, Switzerland) to address issues

with degrading image quality over time. The new camera had a lens with a 4-mm focal point,

which translates to a 60° field of view. This field of view provided approximately 1.38 mm/pixel

resolution when mounted 1.0 m above the ground and oriented orthogonally to the soil surface.

A checkered board with 67 mm x 67 mm squares was used to validate the pixel to mm conversion.

(Figure 3-9). Once again, the sensor was capable of automatically adjusting exposure and

Figure 3-8: Logitech camera mounted to the bumper bar of the experimental tractor for

Stage 2 experiment.

22

aperture settings for varying lighting conditions and could process images at a rate of

approximately 25-30 frames/s.

Figure 3-9: Checkered board used for pixel to mm conversion.

23

3.3. Guidance algorithm development

3.3.1 Crop row tracking

To detect the lateral offset of the crop row, a Python (Python Software Foundation, Delaware,

USA) application based upon the research by Stanhope et al., 2014 was developed using the

OpenCV image processing library. The plants were segmented from inorganic matter and crop

residue in each image by converting from the RGB color space to the Hue-Saturation-Intensity

(HSI) color space (OpenCV, 2014) to simplify color analysis and reduce the complexity of

applying band-pass image filters. By converting to a de-correlated color-space, the image’s hue,

intensity, and color saturation were calculated according to:

𝐻𝑖𝑗 =

{

 60 ∙ (

𝐺𝑖𝑗−𝐵𝑖𝑗

𝐼𝑖𝑗−𝑚𝑖𝑛(𝑅𝑖𝑗,𝐺𝑖𝑗,𝐵𝑖𝑗)
) 𝑖𝑓 𝐼𝑖𝑗 = 𝑅𝑖𝑗

120 + 60 ∙ (
𝐵𝑖𝑗−𝑅𝑖𝑗

𝐼𝑖𝑗−𝑚𝑖𝑛(𝑅𝑖𝑗,𝐺𝑖𝑗,𝐵𝑖𝑗)
) 𝑖𝑓 𝐼𝑖𝑗 = 𝐺𝑖𝑗

240 + 60 ∙ (
𝑅𝑖𝑗−𝐺𝑖𝑗

𝐼𝑖𝑗−𝑚𝑖𝑛(𝑅𝑖𝑗,𝐺𝑖𝑗,𝐵𝑖𝑗)
) 𝑖𝑓 𝐼𝑖𝑗 = 𝐵𝑖𝑗

 (1)

𝑆𝑖𝑗 = {

 0 𝑖𝑓 𝐼𝑖𝑗 = 0

𝐼𝑖𝑗−𝑚𝑖𝑛(𝑅𝑖𝑗,𝐺𝑖𝑗,𝐵𝑖𝑗)

𝐼𝑖𝑗
 𝑖𝑓 𝐼𝑖𝑗 ≠ 0

 (2)

𝐼𝑖𝑗 = max (𝑅𝑖𝑗 , 𝐺𝑖𝑗 , 𝐵𝑖𝑗) (3)

where Iij = intensity, Hij = hue, and Sij = saturation parameters; Rij = red, Gij = green, and Bij =

blue value for a pixel in the ith column and jth row.

24

Based on these decolorized parameters, a Band Pass Plant Detection (BPPD) method was

incorporated to segment plant foliage (pixels with hue from yellow-green to blue-green):

𝐵𝑃𝑃𝐷𝑖𝑗 = {
1 𝑖𝑓 𝐻𝑖𝑗 > 𝐻𝑚𝑖𝑛 ∧ 𝐻𝑖𝑗 < 𝐻𝑚𝑎𝑥 ∧ 𝑆𝑖𝑗 > 𝑚𝑒𝑎𝑛(𝑆) ∧ 𝐼𝑖𝑗 > 𝑚𝑒𝑎𝑛(𝐼)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4)

Where Hmin = minimum hue (30, corresponding to yellow-green color); Hmax = maximum hue

(120, corresponding to blue-green color).

Once converted to the BPPD matrix, column summation (CS) in the direction of travel was

calculated using:

𝐶𝑆𝑖 = ∑ 𝐵𝑃𝑃𝐷𝑖𝑗
𝑛𝑗
𝑗=0

 (5)

where CSi = ith column (vertical pixel array) summation; nj = the number of utilized rows

(horizontal pixel arrays).

This summation results in a 1-D array representing the lateral distribution of BPPD values

within the image. The lateral offset of the crop was determined by applying a high-pass filter to

the CS array according to:

𝐶𝐼𝑖 = {
𝑖 𝑖𝑓 𝐶𝑆𝑖 ≥ 𝑚𝑒𝑎𝑛(𝐶𝑆) + 2 ∙ 𝑠𝑡𝑑(𝐶𝑆)

𝑁 𝐴⁄ 𝑖𝑓 𝐶𝑆𝑖 < 𝑚𝑒𝑎𝑛(𝐶𝑆) + 2 ∙ 𝑠𝑡𝑑(𝐶𝑆)
 (6)

where CIi = column index vector filled with column numbers i indicating columns with relatively

high values of CSi.

25

Lastly, the offset (in pixels) from the center of the camera’s field of view was calculated using the

median of valid column numbers according to:

𝑂𝑓𝑓𝑠𝑒𝑡 = {
𝑚𝑒𝑑𝑖𝑎𝑛(𝐶𝐼) −

𝑛

2
 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡(𝐶𝐼) > 0

𝑖𝑚𝑎𝑥(𝐶𝑆) −
𝑛𝑖

2
 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡(𝐶𝐼) = 0

 (7)

where Offset = the number of pixels shift of the crop row with respect to the center of the camera;

ni = the number of columns (image in pixels) (Figure 3-10).

Figure 3-10: Row detection demonstration. Reprinted with permission by Stanhope (2014).

26

3.3.2 Ground speed estimation

To adjust the steering dynamics as a function of ground speed, a prototype computer-vision

ground speed detection function was developed based on current work by Stanhope et al. The

function was incorporated within the guidance software framework and runs in parallel to the

row segmentation function. This approach allows the single camera to serve a dual purpose and

removes the requirement of a GNSS receiver, radar device, or “fifth wheel.” The ground speed

algorithm uses two consecutive frames of the video stream to identify key points using the SURF

algorithm (Speeded Up Robust Features) (Bay et al. 2006) (Figure 3-11). Next, k-means nearest

neighbor matching on the 128-dimensional descriptors of each key-point finds matching key

points between the two images (Figure 3-12). Lastly, the average velocity of the matching key

Acquire Image
Pick two

consecutive frames
Find key points

using SURF

Estimate Ground
Speed (v)

K-means finds
matching keypoints
between two frames

Measure positional
change

Average
frame rate
of camera

Figure 3-11: Flowchart of the ground speed estimation.

27

points was calculated by determining the positional change in projected (Okamoto et al. 2002)

multiplied by the average frame-rate of the camera (Stanhope, 2015).

3.3.3 Preliminary control algorithm

For actuation of the steering wheel, an adaptive proportional-integral-derivative (PID) control

system was designed. For this style of control, a suitable choice of proportional-integral-

derivative (PID) gains and relationship between the steering amplitude and groundspeed was

necessary in order to produce acceptable behavior of the steering system. The PID gains were

established to provide similar steering behavior to that of a human operator by following a simple

iterative testing protocol for travel speeds from 0.5 m/s to 2.5 m/s.

Firstly, a simple proportional control style was tested. Next, the groundspeed adaptive

component was implemented with the gain K being linear and negatively proportional to the

ground speed. Once basic functionality was achieved, derivative control based on a projected

error was implemented to prevent overshoots (Figure 3-13). Lastly, a relatively small integral

component was included to reduce residual steady-state lateral error (Figure 3-14). The desired

steering wheel angle was obtained from:

Figure 3-12: Keypoints matching on consecutive frames for ground speed estimation. Reprinted with

permission by Stanhope (2014).

28

𝜃𝑤 = (𝐾0 − 𝐾𝑣 ∗ 𝑣(𝑡)) ∗ (𝐾𝑃𝜀(𝑡) + 𝐾𝐼𝑇𝑠
∑ 𝜀(𝑖)𝑡
𝑡−𝑇𝐼

𝑇𝐼
+ 𝐾𝐷𝑇𝑠

∑ 𝜀(𝑖)−𝜀(𝑖−1)𝑡
𝑡−𝑇𝐷

𝑇𝐷
) (8)

assuming: 𝜃𝑎 ∝ 𝜃𝑤

where 𝜃𝑤= steering wheel angle, 𝜃𝑎 = actual wheel angle, K0 = minimum gain (0.3), Kv = slope

of gain (0.15); v = ground speed, KP = proportional gain (2.5), KI = integral gain (0), KD =

derivative gain (8.5), t = time or instantaneous time, e = lateral error or offset, TS = time between

samples, TI = number of seconds used for averaging in the integral, TD = number of seconds

used for averaging in the derivative.

Figure 3-13: Stage 1 algorithm demonstration.

29

The stepper motor velocity was set to 8000 steps/s; the acceleration was set to 22000 steps/s2

and the number of averages, N, was set to 5. The output min and output max were set to 0 and

20000 respectively.

Acquire Image

Segment Image

Estimate Offset
𝑒(𝑡)

Estimate Ground
Speed (v)

Adjust Stepper

Linear
Regression of N

values

Scale by KP

𝜌 = 𝐾𝑃 ∙ 𝑒(𝑡)

Project Offset at
TP in Future
𝑒(𝑡 + 𝑇𝑃)

Scale by KD

𝛿
= 𝐾𝐷 ∙ 𝑒(𝑡 + 𝑇𝑃)

Sum
𝜑 = 𝜌 + 𝛿

Scale by function of groundspeed

𝜃𝑡 = 𝜑 ∙ (𝐾0 − 𝑣𝐾𝑉)

Limit to Output
Range MIN/MAX

KP

KD

K0, KV

TP(v)

N

Figure 3-14: Flowchart of Stage 1 PID control algorithm.

30

3.3.4 Final control algorithm

Analysis of the results from Stage 1 experiment showed that the estimated lateral error data was

noisy due to vibration effects and possibly required filtering to increase the signal-to-noise ratio

and prevent jumpy behavior of the stepper motor. A second-order Savitzky-Golay filter was

hence implemented in the program and applied to the lateral error estimation data points before

the regression was conducted (Figure 3-15). The second-order Savitzky-Golay filter can only

take odd numbers of measurements; therefore, nine frames and 21 frames were chosen instead of

10 frames and 20 frames for assessing the effect of time projection length on the performance of

the guidance system (in a commercial iteration, the control of time projection length would be

available to the operator). Additionally, the proportional component of the PD control algorithm

was dropped because deemed unnecessary to achieve stability and two dissimilar differential

coefficients took turns whether the tractor was drifting away from its target or closing in towards

it (Figure 3-16). The degree of the polynomial regression of preceding lateral error

measurements was increased from 1 to 2 as it more accurately defines the motion of a vehicle.

Figure 3-15: Illustration of the Savitzky-Golay filter.

31

Lastly, groundspeed estimation and scaling were taken out to fully assess the effect of projection

time length. The two differential gains K1 and K2 were established by following a simple iterative

testing protocol for travel speeds from 1 m/s to 3 m/s. A new approach to controlling the

steering wheel was adopted for Stage 2: the controller now receives a target rotational velocity

as a command rather than a positional change as this method was considered arbitrary because

it had a different effect on the steering depending on the previous wheel position (Figure 3-17).

Figure 3-16: Projection algorithm illustrations. Top left: approaching from the right-hand side. Bottom left:

approaching from the left-hand side. Top right: drifting towards the right-hand side. Bottom right: drifting

towards the left-hand side. Magenta dots represent unfiltered data.

32

The desired steering wheel rotational velocity was obtained from:

if |P>I|: KD = K1

else: KD = K2

if P = 0: 𝜔𝑤 = 0

𝜔𝑤 = 𝐾𝐷 ∗ (𝑃 − 𝐼) (9)

assuming: 𝜔𝑎 ∝ 𝜔𝑤

where 𝜔𝑤= steering wheel rotational velocity, 𝜔𝑎 = actual wheel rotational velocity, P = current

smoothed offset, I = integral of projected values, KD = derivative gain, K1 = derivative approach

coefficient (80), K2 = derivative drift coefficient (160), t = time or instantaneous time, e = lateral

error or offset, TS = time between samples, TD = number of steps used for averaging in the

derivative (9 or 21 steps).

33

This time the stepper motor maximum velocity was set to 3000 steps/s and the acceleration to

Acquire Image

Segment Image

Estimate offset
𝑒(𝑡) and insert it into a

circular array of length N

Fit D-order polynomial to
smoothed values

Project offset for TP steps in

future 𝑒(𝑡 + 𝑇𝑃)

Scale by K1

TP steps

N

Smooth with Savitzky-Golay

filter

Set Max

rotational

acceleration

Get current offset (P)

smoothed values

D

T
P

steps

Get integral (I) of projected

values

If |P>I|

Scale (P-I) by K
2

Set target rotational

velocity to

𝜔𝑤 = 𝐾𝐷 ∗ (𝑃 − 𝐼)

Figure 3-17: Flowchart of Stage 2 PID control algorithm.

34

15000 steps/s2. The output min and output max were set to 0 and 1000000 respectively.

3.3 Experimental setup Stage 1

Two row arrangements were designed to test the guidance system on a straight path and a

sinusoidal path (Figure 3-19). A green garden hose was used as an artificial row as it offered the

possibility to be reconfigured on demand and the advantage of keeping the same appearance

throughout trials (Figure 3-18). It also made it easier to obtain repeated lateral error estimates.

It was clamped down on the tarmac surface to ensure immovability during passes. The tractor

was first positioned at the end of the path with the camera centered over the row and the front

wheels turned straight forward. The tractor moved forward, and the auto-guidance and data

Figure 3-18: Stage 1 test track with the experimental tractor at the far end.

35

acquisition systems were engaged. The tractor traveled along the row until it reached the end of

the segment. After entering the next pass, the auto-guidance system was engaged until the

tractor reached the end. After that the operator again took control and manually steered the

tractor for the headland maneuver. Test runs were conducted at a travel speed of 2,5 ± 0,2 m/s.

Each combination of hose arrangement and direction was tested three times, resulting in 12 total

test runs. All the test runs were completed within a two-hour period (a few minutes were

necessary between tests to reposition the tractor). Data points were taken from each run as

described above and saved to a .csv file in order to calculate the path mean absolute lateral error,

the RMSE, and the 95th percentile. The RMSE was calculated per Eq.9:

𝑅𝑀𝑆𝐸 = √∑
𝑒𝑖
2

𝑁
𝑁
𝑖=1 (9)

where 𝑒𝑖 = lateral error based on camera offset detection.

Figure 3-19: Arrangement of the two test layouts for the garden hose, on tarmac with the North arrow.

36

3.4 Experimental setup Stage 2

The two row arrangements were elongated to 120 m in order to obtain more data on each run

and the amplitude of the curved track was increased to 4 m (Figure 3-20). The green garden hose

was used again as an artificial row. Test runs were conducted at travel speeds of 1,0 ± 0,2 m/s,

2,0 ± 0,2 m/s and 3,0 ± 0,2 m/s. Each combination of hose arrangement, direction of travel,

speed and projection time length was randomly tested four times, resulting in 96 total test runs.

Two repetitions were completed on 29 June 2016 in the late afternoon under cloudy skies and

two repetitions on 30 June 2016 in the morning under cloudless shiny skies (the light conditions

were not controlled for).

Figure 3-20: Stage 2 curved and straight test tracks.

37

4. RESULTS AND DISCUSSION

4.1 Stage 1 test

The performance measures are shown in Table 1 for both the straight and curved paths at 2.5

m/s, which turned out to be the fastest speed at which the system was showing stable behavior

and minimal hunting oscillation. Figure 4-1 demonstrates that the performance of the vision

guidance system at a speed of 2.5 m/s in the straight and the curved path system was visually as

good as a human driving the tractor. The Stage 1 vision guidance had a 95th percentile error over

the straight track of 16.7 cm whereas the 95th percentile error on the curved track was 20.6 cm

as shown in Table 1.

Based on this experiment, the machine vision algorithm clearly segmented the path to be

traversed. However, the lateral offset data appeared noisy, and the use of a linear regression

might have created aberrations in the predicted errors, resulting in unstable behavior. Control

enhancements are implemented in Stage 2 to improve the guidance system performance further

to attain the aforementioned 5 cm target.

38

Table 1: Results from Stage 1 test.

Figure 4-1: Performance of guidance system on the straight path.

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25 30 35 40 45 50

L
A

T
E

R
A

L
 D

IS
P

L
A

C
E

M
E

N
T

,
M

DISTANCE FROM START, M

SEW1 SEW2 SEW3 SWE2 SWE3

39

Figure 4-2: Performance of guidance system on the curved path.

4.2 Stage 2 test

Table 2 presents a summary of all 24 combinations of the 96 test runs (4 repetitions), including

the number of records for both the straight and curved paths at speeds of 1 m/s up to 3 m/s,

which turned out to be the fastest speed at which the system was showing stable behavior and

minimal hunting oscillation. All 96 data sets were cropped to start and end at roughly the same

geographical coordinates. The 95th percentile lateral errors were computed. Data was analyzed

according to the GLM (Generalized Linear Model; ANOVA) procedure of SAS (SAS Institute,

Cary, USA), as well as the MIXED procedure. The models used involved the trajectory factor

(Straight or Curved), the direction factor (East-west or West-east), the speed the tractor was

driven at (1 m/s, 2 m/s or 3 m/s), and the number of projection frames factor (9 frames or 21

frames). All the factors were treated as fixed. There were exactly four repetitions for each of the

24 different combinations of factors. The dependent variable in this experiment was the 95th

percentile lateral error in centimeters for each of the 96 runs (see Table 3).

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

0 10 20 30 40 50 60 70 80

N
O

R
T

H
IN

G
,

M

EASTING, M

CEW1 CEW2 CEW3 CWE1 CWE2 CWE3

40

A standard Tukey’s range test was performed to determine significant differences between

combinations. Significance was determined with α ≤ 0.05. As can be seen, there was a noticeably

smaller discrepancy between the straight and curved track results as compared with the Stage 1

experiment. In fact, the statistical analysis has shown that they are only significantly different at

α = 0.05 at a speed of 2 m/s. Trials at 1 m/s and 3 m/s showed no significant difference between

the straight and curved configurations.

Table 2: Results from Stage 2 test.

41

Table 3: ANOVA of 95th percentile lateral error (cm) (Stage 2 experiment).

Source df MS p-value

Trajectory 1 80.377031 0.0039

Direction 1 18.003383 0.1622

Speed 2 1200.649938 <.0001

Frames 1 0.00208 0.9879

Trajectory*Speed 2 32.16723 0.0335

Speed*Frames 2 125.924111 <.0001

Trajectory*Direction*Speed*Frames 14 4.916887 0.8977

Error 72 9.027846

All three speeds yielded significantly different mean 95th percentile errors with 1 m/s just shy of

attaining the 5-cm objective with 5.5 cm. 2 m/s had an 11.0 cm mean 95th percentile error, 3 m/s

stood at 17.7 cm. A 17.7 cm 95th percentile error is acceptable under certain circumstances and

is comparable to the performance of a manual guidance system (manual guidance ranges from 5

or 10 cm to 30 cm pass-to-pass according to Heraud & Lange 2009); nonetheless, it is imperfect

and could certainly be improved further. It is to note; however, that the placement of the position

sensor (camera) was the same as that of the control point as the camera performed both tasks.

Having a second camera as a control point on the front axle of the tractor (730 mm behind the

position sensor) might have reduced phase lag.

There was no statistically significant difference between East-West trials and West-East trials

at α = 0.05, which was expected.

42

The statistical analysis confirmed that there was a significant interaction between the speed the

tractor was traveling at and the number of projection frames. Linear regressions of the 95th

percentile lateral error as a function of ground speed on Figures 4-4 and 4-5 reveal that the

performance of the guidance system was better at 1 m/s and 21 frames than at nine frames and

that it was better at 3 m/s and nine frames than at 21 frames. There was no significant difference

at 2 m/s between nine frames and 21 frames, suggesting that the actual number of projected

frames at that speed should have been somewhere between nine and 21. These results clearly

demonstrate the linear relationship between lateral error and speed and the necessity for an

adjustable length of projection (number of projected frames) as a negative linear function of speed,

which would easily be implemented using the groundspeed estimation algorithm.

During the tuning phase of the guidance system, it became evident that a slightly bigger steering

actuator capable of faster accelerations would improve the performance of the system at higher

speeds. A bigger motor would also allow the guidance system to work on smaller vehicles that

are not equipped with power steering.

43

Figure 4-3: 95th percentile lateral error versus speed on the straight track.

Figure 4-4: 95th percentile lateral error versus speed on the curved track.

R² = 0.9517

R² = 0.9318

0.0

5.0

10.0

15.0

20.0

25.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

9
5

th
p
e
rc

e
n
ti
le

 e
rr

o
r,

 c
m

Speed, m/s

T = 9 T = 21 Linear (T = 9) Linear (T = 21)

R² = 0.9609

R² = 0.9498

0.0

5.0

10.0

15.0

20.0

25.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

9
5

th
p
e
rc

e
n
ti
le

 e
rr

o
r,

 c
m

Speed, m/s

T = 9 T = 21 Linear (T = 9) Linear (T = 21)

44

4.3 Future improvements

Several uncontrollable variables such as soil conditions, terrain slope, and travel speed can have

a substantial effect on agricultural vehicle dynamics. An inventive method for addressing the

non-linear nature of the steering system and eliminating the necessity to constantly re-tune the

guidance algorithm parameters (e.g., when switching between tractors) is to use an adaptive

control system. Q-learning (Watkins & Dayan 1992) is a model-free reinforcement learning

technique that would be suitable for this kind of control system. Q-learning is based on the

principle of a reward mechanism meaning that, for a given action, the resulting behavior of a

system is classified and subsequently rewarded or punished. A reward is attributed to the

actions which resulted in positive behavior for a particular state of the system (e.g., adjusting

gain offsets due to bias) whereas a punishment is attributed to the actions that led to negative

behavior (e.g., high gains resulting in overshooting). Eventually, the learning process

converges towards a non-linear response matrix which adapts to the current working

environment of the system. Applications of adaptive controllers in agriculture have the

potential to improve performance and reduce calibration when working with varying vehicle

configurations and field conditions.

Future work will also bring the guidance system to the field to assess performance in presence

of uneven ground conditions and while pulling implements. More compact designs will be

evaluated, and improvements to ergonomics and manufacturability of the system will be

implemented.

45

5. CONCLUSION

A universal quick-install computer vision guidance system was developed for following row

crops. The camera that was used as a posture sensor was also used as a control point, and the

system was tested on the tarmac with a garden hose, following an original evaluation protocol.

The guidance system matched or surpassed commercially available systems regarding

performance. However, only at 1 m/s did the guidance system reach the target 5 cm 95th

percentile lateral error. Although the system does not offer the highest level of precision, its

simple yet robust algorithm, its ergonomic features, its ease of installation and its versatility

make it a serious contender in the arena of guidance systems. For the fertilizer and phytosanitary

products application, it might increase profitability and protect the environment by reducing the

overlaps, misses and damage to row crops.

46

REFERENCES

Alleyne, a. & DePoorter, M., 1997. Lateral displacement sensor placement and forward velocity

effects\non stability of lateral control of vehicles. Proceedings of the 1997 American Control

Conference (Cat. No.97CH36041), 3(June), pp.1593–1597.

Bay, H., Tuytelaars, T. & Van Gool, L., 2006. SURF: Speeded up robust features. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 3951 LNCS, pp.404–417.

Becker, W.J., Shoup, W.D. & Sinden, J.V., 1983. Field measurement and analysis of operator

speed-load stress. , (ASAE Paper No. 83-1628).

Benson, E.R., Reid, J.F. & Zhang, Q., 2003. Machine Vision-Based Guidance System for an

Agricultural Small-Grain Harvester. Transactions of the ASAE, 46(4), pp.1255–1264.

Billingsley, J. & Schoenfisch, M., 1995. Vision-guidance of agricultural vehicles. Auton Robot

Autonomous Robots, 2(1), pp.65–76.

Cho, S.I. & Ki, N.H., 1999. Autonomous Speed Sprayer Guidance Using Machine Vision and

Fuzzy Logic. Transactions of the ASAE, 42(4), pp.1137–1144.

Choi, C.H., Erbach, D.C. & R.J., S., 1990. Navigational Tractor Guidance System. Transactions of

the ASAE, 33(3), pp.699–706.

CLAAS KGaA mbH, 2016. Smart Equipment. Available at:

http://www.claasofamerica.com/product/precision-farming/smart-equipment/cam-pilot

[Accessed July 20, 2016].

Deere & Company, 2016. Guidance Systems. Available at:

https://www.deere.ca/en_CAF/products/equipment/agricultural_management_solutions

/guidance_systems/guidance_systems.page [Accessed July 20, 2016].

Derrick, J.B. & Bevly, D.M., 2009. Adaptive steering control of a farm tractor with varying yaw

rate properties. ROB Journal of Field Robotics, 26(6–7), pp.519–536.

Dobbs, T., 2013. Farms of the Future Will Run on Robots and Drones. PBS Online. Available at:

http://www.pbs.org/wgbh/nova/next/tech/farming-with-robotics-automation-and-

sensors/ [Accessed March 12, 2016].

Easterly, D.R. et al., 2010. Using a vision sensor system for performance testing of satellite-based

tractor auto-guidance. Computers and Electronics in Agriculture, 72(2), pp.107–118.

Erickson, B. & Widmar, D.A., 2015. 2015 Precision Agricultural Services: Dealership Survey Results,

47

Available at: http://agribusiness.purdue.edu/files/resources/2015-crop-life-purdue-

precision-dealer-survey.pdf.

Feng, L., He, Y. & Zhang, Q., 2004. Dynamic Trajectory Model of a Tractor-Implement System

for Automated Navigation Applications. , 1(701), pp.66–88.

Gerrish, J.B. et al., 1997. Self-steering Tractor Guided by Computer-vision. , 13(517), pp.559–

563.

Gomez-Gil, J. et al., 2011. Development and validation of globally asymptotically stable control

laws for Automatic tractor guidance. Applied Engineering in Agriculture, 27(6), pp.1099–1108.

Han, S. et al., 2004. A guidance directrix approach to vision-based vehicle guidance systems.

Computers and Electronics in Agriculture, 43(3), pp.179–195.

Heraud, J. a. & Lange, A.F., 2009. Agricultural automatic vehicle guidance from horses to GPS:

How we got here, and where we are going. ASABE Distinguished Lecture Series - Agricultural

Automatic Vehicle Guidance from Horses to GPS: How We Got Here, and Where We are Going,

(913), pp.1–67. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-

76749105599&partnerID=tZOtx3y1.

Kirk, T.., 1974. A furrow-following tractor guidance system. , 1974(c), pp.1–60. Available at:

http://ecommons.usask.ca/handle/10388/etd-09032008-131205.

Kirk, T.G. & Krause, A.E., 1976. Swather Edge Guide Steering Control System.

Kise, M., Zhang, Q. & Rovira Más, F., 2005. A Stereovision-based Crop Row Detection Method

for Tractor-automated Guidance. Biosystems Engineering, 90(4), pp.357–367.

Kodagoda, K.R.S., Wijesoma, W.S. & Teoh, E.K., 2002. Fuzzy speed and steering control of an

AGV. IEEE Trans. Contr. Syst. Technol. IEEE Transactions on Control Systems Technology,

10(1), pp.112–120.

Larsen, W.E., Tyler, D.A. & Nielsen, G.A., 1988. Field navigation using the global positioning

system (GPS).

Lenain, R. et al., 2006. High accuracy path tracking for vehicles in presence of sliding: Application

to farm vehicle automatic guidance for agricultural tasks. Autonomous Robots, 21(1), pp.79–

97.

Marchant, J.A. & Brivot, R., 1995. Real-Time Tracking of Plant Rows Using a Hough

Transform. Real-Time Imaging, 1(5), pp.363–371.

Matias, P.M. & Gil, J.G., 2007. Automatic Guidance of a Tractor Using Computer Vision. Lecture

notes in computer science., (4815), pp.169–176.

48

McMahon, C.B., Tennes, B.R. & Burkhardt, T.H., 1987. System Using Ultrasonic Sensors. ,

pp.87–89.

O’Connor, M. et al., 1996. Automatic steering of farm vehicles using GPS. Precision Agriculture,

pp.767–777.

Okamoto, H. et al., 2002. Automatic guidance system with crop row sensor. Transactions of the

Asabe, (701), pp.307–316.

OpenCV, 2014. Open Source Computer Vision Library. , Ver. 2.4.7.

Palmer, R.J. & Matheson, S.K., 1988. Impact of navigation on farming. , (ASAE Paper No.

881602).

Parish, R.L. & Goering, C.E., 1970. Developing an Automatic Steering System for a Hydrostatic

Vehicle.

Reid, J. & Searcy, S., 1987. Vision-based guidance of an agriculture tractor. Control Systems

Magazine, IEEE, 7(2), pp.39–43.

Slaughter, D.C., Chen, P. & Curley, R.G., 1999. Vision Guided Precision Cultivation. Precision

Agriculture Precision Agriculture, 1(2), pp.199–217.

Snyder, W.H., 1885. Furrow Pilot: Traction Engine.

Stanhope, T., Adamchuk, V. & Desperrier Roux, J., 2014. Computer vision guidance of field

cultivation for organic row crop production. , 7004.

Stombaugh, T., Benson, E. & Hummel, J., 1999. Guidance control of agricultural vehicles at high

field speeds. Transactions of the ASAE, 42(2), pp.537–544. Available at:

http://elibrary.asabe.org/azdez.asp?JID=3&AID=13387&v=42&i=2&CID=t1999&T=2

%5Cnhttp://cat.inist.fr/?aModele=afficheN&cpsidt=1241029.

Subramanian, V., Burks, T.F. & Arroyo, A.A., 2006. Development of machine vision and laser

radar based autonomous vehicle guidance systems for citrus grove navigation. Computers

and Electronics in Agriculture, 53(2), pp.130–143.

Trimble Navigation, L., 2016. EZ-Steer assisted steering system. Available at:

http://www.trimble.com/agriculture/ez-steer.aspx?dtID=overview/ [Accessed July 20,

2016].

Warner, M.G.R. & Harries, G.O., 1972. An ultrasonic guidance system for driverless tractors.

Journal of Agricultural Engineering Research, 17(1), pp.1–9. Available at:

http://www.sciencedirect.com/science/article/pii/S0021863472800118.

Watkins, C.J. & Dayan, P., 1992. Q-learning. In Machine learning. pp. 279–292.

49

Xue, J., Zhang, L. & Grift, T.E., 2012. Variable field-of-view machine vision based row guidance

of an agricultural robot. Computers and Electronics in Agriculture, 84(0), pp.85–91.

50

APPENDIX A: Python Code

"""

Row Assist

Precision Agriculture and Soil Sensing Group (PASS)

McGill University, Department of Bioresource Engineering

"""

__author__ = 'Trevor Stanhope'

__version__ = '1.0'

Libraries

import Image

import cv2, cv

from src import CVGS

import serial

import json, ast

import numpy as np

import scipy.signal as sig

import thread

import gps

import sys, os, time

from datetime import datetime

from ctypes import *

from time import sleep

from Phidgets.PhidgetException import PhidgetErrorCodes, PhidgetException

from Phidgets.Events.Events import AttachEventArgs, DetachEventArgs,

ErrorEventArgs, InputChangeEventArgs, CurrentChangeEventArgs,

StepperPositionChangeEventArgs, VelocityChangeEventArgs

from Phidgets.Devices.Stepper import Stepper

sys.settrace

Constants

CONFIG_FILE = "settings.json"

Class

class RowAssist:

 def pretty_print(self, task, msg, *args):

 try:

 date = datetime.strftime(datetime.now(), "%H:%M:%S.%f")

 output = "%s\t%s\t%s" % (date, task, msg)

 print output

 except:

 pass

 def __init__(self, config_file):

 # Load Config

 self.pretty_print("CONFIG", "Loading %s" % config_file)

 self.config = json.loads(open(config_file).read())

 for key in self.config:

 try:

 getattr(self, key)

51

 except AttributeError as error:

 setattr(self, key, self.config[key])

 self.bgr1 = np.zeros((640, 480, 3), np.uint8)

 self.bgr2 = np.zeros((640, 480, 3), np.uint8)

 self.cv_speed = 0.0

 # Initializers

 self.run_threads = True

 self.init_log() # it's best to run the log first to catch all events

 self.init_camera()

 self.init_display()

 self.init_cv_groundspeed()

 self.init_stepper()

 self.init_controller()

 self.init_pid()

 self.init_gps()

 self.init_qlearner()

 ## Initialize Display

 def init_display(self):

 thread.start_new_thread(self.update_display, ())

 ## Initialize Ground Speed Matcher

 def init_cv_groundspeed(self):

 """

 Initialize CV GroundSpeed

 """

 self.pretty_print('GSV6', 'Initializing Groundspeed Matcher ...')

 try:

 self.CVGS = CVGS.CVGS()

 thread.start_new_thread(self.update_groundspeed, ())

 except Exception as e:

 raise e

 # Initialize QLearner

 def init_qlearner(self):

 """

 Initialize Q-Learner

 """

 self.pretty_print('QLRN', 'Initializing Q-Learner ...')

 try:

 """

 X: STEERING_WHEEL POSITION

 Y: ERROR

 """

 self.qmatrix = np.zeros((self.OUTPUT_MAX, self.CAMERA_WIDTH, 3),

np.uint8)

 except Exception as e:

 raise e

 # Initialize Camera

 def init_camera(self):

 """

 Initialize Camera

 """

 # Setting variables

52

 self.pretty_print('CAM', 'Initializing CV Variables ...')

 self.pretty_print('CAM', 'Camera Width: %d px' % self.CAMERA_WIDTH)

 self.pretty_print('CAM', 'Camera Height: %d px' % self.CAMERA_HEIGHT)

 self.pretty_print('CAM', "Camera Rotated: %s" %

str(self.CAMERA_ROTATED))

 if self.CAMERA_ROTATED:

 self.CAMERA_CENTER = self.CAMERA_HEIGHT / 2

 else:

 self.CAMERA_CENTER = self.CAMERA_WIDTH / 2

 self.pretty_print('CAM', 'Camera Center: %d px' % self.CAMERA_CENTER)

 self.pretty_print('CAM', 'Camera Depth: %d cm' % self.CAMERA_DEPTH)

 self.pretty_print('CAM', 'Camera FOV: %f rad' % self.CAMERA_FOV)

 self.pretty_print('CAM', 'Ground Width: %d cm' % self.GROUND_WIDTH)

 self.pretty_print('CAM', 'Error Tolerance: +/- %d cm' %

self.ERROR_TOLERANCE)

 self.PIXEL_PER_CM = self.CAMERA_WIDTH / self.GROUND_WIDTH

 self.pretty_print('CAM', 'Pixel-per-cm: %d px/cm' %

self.PIXEL_PER_CM)

 self.PIXEL_RANGE = int(self.PIXEL_PER_CM * self.ERROR_TOLERANCE)

 self.pretty_print('CAM', 'Pixel Range: +/- %d px' % self.PIXEL_RANGE)

 # Set Thresholds

 self.threshold_min = np.array([self.HUE_MIN, self.SAT_MIN,

self.VAL_MIN], np.uint8)

 self.threshold_max = np.array([self.HUE_MAX, self.SAT_MAX,

self.VAL_MAX], np.uint8)

 # Attempt to set each camera index/name

 self.pretty_print('CAM', 'Initializing Camera ...')

 self.camera = None

 self.bgr = None

 self.mask = None

 self.camera_idx = 0

 try:

 while self.camera == None:

 cam = cv2.VideoCapture(self.camera_idx)

 cam.set(cv.CV_CAP_PROP_SATURATION, self.CAMERA_SATURATION)

 cam.set(cv.CV_CAP_PROP_FRAME_HEIGHT, self.CAMERA_HEIGHT)

 cam.set(cv.CV_CAP_PROP_FRAME_WIDTH, self.CAMERA_WIDTH)

 for i in range(10):

 (s, bgr) = cam.read()

 if s:

 self.camera = cam

 elif self.camera_idx > 3:

 print "NO CAMERA ATTACHED!"

 exit(1)

 else:

 self.camera_idx += 1

 except Exception as error:

 self.pretty_print('CAM', 'CAM ERROR: %s' % str(error))

 # Initialize PID Controller

 def init_pid(self):

 self.pretty_print('PID', 'Initializing Control System')

 # Initialize variables

 try:

 self.estimated = 0

53

 self.projected = 0

 self.pretty_print('PID', 'Default number of samples: %d' %

self.NUM_SAMPLES)

 self.offset_history = [0] * self.NUM_SAMPLES

 self.pretty_print('PID', 'Setup OK')

 except Exception as error:

 self.pretty_print('PID', 'ERROR: %s' % str(error))

 # Initialize Log

 def init_log(self):

 self.pretty_print('LOG', 'Initializing Log')

 self.LOG_NAME = datetime.strftime(datetime.now(), self.LOG_FORMAT)

 self.pretty_print('LOG', 'New log file: %s' % self.LOG_NAME)

 gps_params = ['gps_lat', 'gps_long', 'gps_speed', 'gps_alt',

'gps_quality', 'gps_satellites']

 nongps_params = ['time', 'hz', 'offset', 'est', 'proj', 'diff',

'velocity', 'steps', 'encoder']

 if self.GPS_ON:

 self.log_params = gps_params + nongps_params

 else:

 self.log_params = nongps_params

 try:

 self.log = open('logs/' + self.LOG_NAME + '.csv', 'w')

 # Write config settings

 for k,v in self.config.iteritems():

 self.log.write(k + ',' + str(v) + '\n')

 # Write headers

 self.log.write(','.join(self.log_params + ['\n']))

 self.pretty_print('LOG', 'Setup OK')

 self.vid_writer = cv2.VideoWriter('logs/' + self.LOG_NAME +

'.avi', cv.CV_FOURCC('M', 'J', 'P', 'G'), self.CAMERA_FPS,

(self.CAMERA_WIDTH, self.CAMERA_HEIGHT), True)

 except Exception as error:

 raise error

 # Initialize Controller

 def init_controller(self):

 self.pretty_print('CTRL', 'Initializing controller ...')

 try:

 self.pretty_print('CTRL', 'Device: %s' % str(self.SERIAL_DEVICE))

 self.pretty_print('CTRL', 'Baud Rate: %s' %

str(self.SERIAL_BAUD))

 self.controller = serial.Serial(self.SERIAL_DEVICE,

self.SERIAL_BAUD, timeout=0.05)

 self.angle = 0

 self.angle_rate = 0

 self.encoder = 0

 self.encoder_rate = 0

 self.encoder_rate_prev = 0

 thread.start_new_thread(self.update_controller, ())

 self.pretty_print('CTRL', 'Setup OK')

 except Exception as error:

 self.pretty_print('CTRL', 'ERROR: %s' % str(error))

 exit(1)

 # Initialize Stepper

 def init_stepper(self):

54

 # Constants

 self.pretty_print('STEP', 'Output Minimum: %d' % self.OUTPUT_MIN)

 self.pretty_print('STEP', 'Output Maximum: %d' % self.OUTPUT_MAX)

 # Create

 try:

 self.pretty_print("STEP", "Creating phidget object....")

 self.stepper = Stepper()

 except PhidgetException as e:

 self.pretty_print("STEP", "Phidget Exception %i: %s" % (e.code,

e.details))

 # Open

 try:

 self.pretty_print("STEP", "Opening phidget object....")

 self.stepper.openPhidget()

 except PhidgetException as e:

 self.pretty_print("STEP", "Phidget Exception %i: %s" % (e.code,

e.details))

 # Settings

 try:

 self.pretty_print("STEP", "Configuring stepper settings ...")

 self.stepper.setOnAttachHandler(self.StepperAttached)

 self.stepper.setOnDetachHandler(self.StepperDetached)

 self.stepper.setOnErrorhandler(self.StepperError)

self.stepper.setOnCurrentChangeHandler(self.StepperCurrentChanged)

 self.stepper.setOnInputChangeHandler(self.StepperInputChanged)

self.stepper.setOnPositionChangeHandler(self.StepperPositionChanged)

self.stepper.setOnVelocityChangeHandler(self.StepperVelocityChanged)

 except PhidgetException as e:

 self.pretty_print("STEP", "Phidget Exception %i: %s" % (e.code,

e.details))

 # Attach

 try:

 self.pretty_print("STEP", "Attaching stepper motor ...")

 self.stepper.waitForAttach(1000)

 except PhidgetException as e:

 self.pretty_print("STEP", "Phidget Exception %i: %s" % (e.code,

e.details))

 try:

 self.stepper.closePhidget()

 except PhidgetException as e:

 self.pretty_print("STEP", "Phidget Exception %i: %s" %

(e.code, e.details))

 exit(1)

 else:

 self.DisplayDeviceInfo()

 # Engage

 try:

 self.pretty_print("STEP", "Engaging stepper motor ...")

55

 self.output = (self.OUTPUT_MIN + self.OUTPUT_MAX) / 2

 self.stepper.setCurrentPosition(0, (self.OUTPUT_MIN +

self.OUTPUT_MAX) / 2)

 self.stepper.setTargetPosition(0, (self.OUTPUT_MIN +

self.OUTPUT_MAX) / 2)

 self.stepper.setEngaged(0, False)

 self.stepper.setVelocityLimit(0, self.VELOCITY)

 self.stepper.setAcceleration(0, self.ACCELERATION)

 self.stepper.setCurrentLimit(0, self.AMPS)

 except Exception as error:

 self.pretty_print("STEP", "ERROR: %s" % str(error))

 exit(2)

 # Initialize GPS

 def init_gps(self):

 """ Initialize GPS """

 self.pretty_print('GPS', 'Initializing GPS ...')

 self.gps_latitude = 0

 self.gps_longitude = 0

 self.gps_altitude = 0

 self.gps_speed = 0

 self.gps_quality = 0

 self.gps_satellites = 0

 try:

 self.gps = serial.Serial(self.GPS_DEVICE, self.GPS_BAUD)

 thread.start_new_thread(self.update_gps, ())

 self.pretty_print("GPS", "GPS connected")

 except Exception as err:

 self.pretty_print('GPS', 'WARNING: GPS not available! %s' %

str(err))

 ## Update Learner

 def update_learner(self, ph1, e, group):

 self.qmatrix[ph1,e,:] = self.qmatrix[ph1,e,:] + group

 return group

 ## Capture Image

 def capture_image(self):

 """

 1. Attempt to capture an image

 2. Repeat for each capture interface

 """

 try:

 (s, bgr) = self.camera.read()

 if s is False:

 self.pretty_print('CAM', 'ERROR: Capture failed')

 bgr = None

 except KeyboardInterrupt:

 raise KeyboardInterrupt

 except Exception as e:

 raise e

 self.bgr2 = self.bgr1

 self.bgr1 = bgr # Update the BGR (raw)

 if self.CAMERA_ROTATED:

 return np.rot90(bgr)

 else:

 return bgr

56

 ## Plant Segmentation Filter

 def plant_filter(self, bgr):

 """

 1. RBG --> HSV

 2. Set minimum saturation equal to the mean saturation

 3. Set minimum value equal to the mean value

 4. Take hues within range from green-yellow to green-blue

 """

 if bgr is not None:

 try:

 hsv = cv2.cvtColor(bgr, cv2.COLOR_BGR2HSV)

 self.threshold_min[1] = 128 #np.percentile(hsv[:,:,1], 100 *

self.SAT_MIN / 256 # overwrite the saturation minima

 self.threshold_min[2] = np.percentile(hsv[:,:,2], 100 *

self.VAL_MIN / 256) # overwrite the value minima

 self.threshold_max[1] = 255 #np.percentile(hsv[:,:,1], 100 *

self.SAT_MAX / 256) # overwrite the saturation minima

 self.threshold_max[2] = np.percentile(hsv[:,:,2], 100 *

self.VAL_MAX / 256) # overwrite the value minima

 mask = cv2.inRange(hsv, self.threshold_min,

self.threshold_max)

 #kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))

 #mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)

 except KeyboardInterrupt:

 raise KeyboardInterrupt

 except Exception as e:

 raise e

 return mask

 ## Find Plants

 def find_offset(self, mask):

 """

 1. Calculates the column summation of the mask

 2. Calculates the 95th percentile threshold of the column sum array

 3. Finds indicies which are greater than or equal to the threshold

 4. Finds the median of this array of indices

 5. Repeat for each mask

 """

 if mask is not None:

 try:

 column_sum = mask.sum(axis=0) # vertical summation

 centroid = int(np.argmax(column_sum) - self.CAMERA_CENTER +

self.CAMERA_OFFSET)

 idx = centroid

 except KeyboardInterrupt:

 raise KeyboardInterrupt

 except Exception as error:

 self.pretty_print('OFF', '%s' % str(error))

 else:

 idx = self.CAMERA_OFFSET

 return idx

 ## Best Guess for row based on multiple offsets from indices

 def estimate_error(self, idx):

 """

 Calculate errors for estimate, average, and differential

57

 """

 try:

 t = range(0, self.T1_COEF) # the time frame in the past

 t_plus = range(self.T1_COEF + 1, self.T1_COEF + self.T2_COEF) #

the time frame in the future

 self.offset_history.append(int(idx)) # add most recent raw value

to history

 while len(self.offset_history) > self.NUM_SAMPLES:

 self.offset_history.pop(0) # trim history to specified length

 smoothed_values = sig.savgol_filter(self.offset_history,

self.T1_COEF, 2)

 # Estimated

 e = int(smoothed_values[-1]) # get latest

 if e > self.CAMERA_CENTER: e = (self.CAMERA_CENTER) - 1

 elif e < -self.CAMERA_CENTER: e = -self.CAMERA_CENTER

 # Projected

 spline_filtered = np.polyfit(t, smoothed_values[-self.T1_COEF:],

deg=self.REGRESSION_DEG)

 projected_vals = np.polyval(spline_filtered, t_plus)

 de = np.mean(np.gradient(smoothed_values[-self.T1_COEF:]))

 ie = int(np.mean(projected_vals)) # integral error

 if ie > self.CAMERA_CENTER: ie = (self.CAMERA_CENTER)

 elif ie < -self.CAMERA_CENTER: ie = -self.CAMERA_CENTER

 except Exception as error:

 self.pretty_print("ROW", "Error: %s" % str(error))

 return e, ie, de

 ## Calculate Output (Supports different algorithms)

 def calculate_output(self, e, ie, de, v, d_phi, d_phi_prev):

 """

 Calculates the PID output for the stepper

 Arguments: est, proj, diff, speed

 Requires: OUTPUT_MAX, OUTPUT_MIN, CENTER_OUTPUT

 Returns: output

 """

 # Version 1 (Two-Stage D)

 if self.VERSION == 1:

 if e < 0:

 if e < ie:

 output = self.OUTPUT_MAX

 velocity = abs(e - ie) * self.VELOCITY *

self.D_APPROACH_COEF

 else:

 output = self.OUTPUT_MIN

 velocity = abs(e - ie) * self.VELOCITY *

self.D_DRIFT_COEF

 elif e > 0:

 if e > ie:

 output = self.OUTPUT_MIN

 velocity = abs(e - ie) * self.VELOCITY *

self.D_APPROACH_COEF

 else:

 output = self.OUTPUT_MAX

 velocity = abs(e - ie) * self.VELOCITY *

self.D_DRIFT_COEF

58

 else:

 velocity = 0

 output = self.stepper.getCurrentPosition(0)

 # Version 2

 elif self.VERSION == 2:

 if e < 0:

 if e < ie:

 output = self.OUTPUT_MAX

 velocity = abs(e - ie) * self.D_APPROACH_COEF

 else:

 output = self.OUTPUT_MIN

 velocity = abs(e - ie) * self.D_DRIFT_COEF

 elif e > 0:

 if e > ie:

 output = self.OUTPUT_MIN

 velocity = abs(e - ie) * self.D_APPROACH_COEF

 else:

 output = self.OUTPUT_MAX

 velocity = abs(e - ie) * self.D_DRIFT_COEF

 else:

 velocity = 0

 output = self.stepper.getCurrentPosition(0)

 # limit velocity to VELOCITY_MAX

 if velocity > self.VELOCITY: velocity = self.VELOCITY

 return int(output), int(velocity)

 ## Read Controller

 def update_controller(self):

 """ Get info from controller """

 a = time.time()

 b = time.time()

 while self.run_threads:

 event = None

 try:

 s = self.controller.readline()

 event = json.loads(s)

 b = time.time() # end timer

 if event is not None:

 self.encoder = event['a']

 self.angle = event['b']

 self.encoder_rate = (event['a'] - self.encoder) / (b - a)

 self.encoder = event['a']

 except Exception as error:

 print str(error)

 a = time.time() # reset timer

 ## Set Stepper

 def set_stepper(self, output, velocity):

 """ Set Stepper, returns the dead-reckoning number of steps/position

"""

 phi_current = self.stepper.getCurrentPosition(0)

 try:

 if self.stepper.isAttached():

59

 # Set Target Position

 self.stepper.setTargetPosition(0, output)

 # Set Velocity

 self.stepper.setVelocityLimit(0, abs(velocity))

 except KeyboardInterrupt:

 raise KeyboardInterrupt

 except Exception as e:

 self.close_stepper()

 raise e

 return phi_current

 ## Get Groundspeed

 def get_groundspeed(self, images):

 """ Get the current groundspeed """

 return self.cv_speed # Return current speed

 ## Write to Log

 def write_to_log(self, sample):

 """

 Write results to the log

 """

 a = time.time()

 try:

 data = [str(sample[k]) for k in self.log_params]

 newline = ','.join(data + ['\n'])

 self.log.write(newline)

 except KeyboardInterrupt:

 raise KeyboardInterrupt

 except Exception as e:

 self.pretty_print("LOG", str(e))

 raise Exception("Failed to write to file document")

 b = time.time()

 ## Update GPS

 def update_gps(self):

 """

 1. Get the most recent GPS data

 2. Set global variables for lat, long and speed

 """

 while self.run_threads:

 try:

 sentence = self.gps.readline()

 sentence_parsed = sentence.rsplit(',')

 nmea_type = sentence_parsed[0]

 if nmea_type == '$GPVTG':

 self.gps_speed = float(sentence_parsed[7])

 elif nmea_type == '$GPGGA':

 self.gps_latitude = float(sentence_parsed[2])

 self.gps_longitude = float(sentence_parsed[4])

 self.gps_altitude = float(sentence_parsed[9])

 self.gps_quality = float(sentence_parsed[6])

 self.gps_satellites = float(sentence_parsed[7])

 except Exception as e:

 self.gps_latitude = 0.0

 self.gps_longitude = 0.0

60

 self.gps_altitude = 0.0

 self.gps_speed = 0.0

 self.gps_quality = 0

 self.gps_satellites = 0

 ## Estimate groundspeed (THREADED)

 def update_groundspeed(self, wait=0.05, hist_length=3):

 """ Needs: bgr1 and bgr2 """

 self.speed_hist = [0] * hist_length

 while self.run_threads:

 time.sleep(wait) # don't run too fast

 try:

 bgr1 = self.bgr1

 bgr2 = self.bgr2

 except Exception as e:

 raise e

 try:

 if not np.all(bgr1==bgr2):

 cv_speed = 0 #self.CVGS.get_velocity(bgr1, bgr2,

fps=self.CAMERA_FPS)

 self.speed_hist.reverse()

 self.speed_hist.pop()

 self.speed_hist.reverse()

 self.speed_hist.append(cv_speed)

 self.cv_speed = np.mean(self.speed_hist)

 except Exception as error:

 self.pretty_print('CVGS', 'CV001: %s' % str(error))

 ## Update Display (THREADED)

 def update_display(self):

 """ Flash BGR capture to user """

 try:

 cv2.namedWindow("test")

 while self.run_threads:

 try:

 # Draw Display

 bgr = np.dstack((self.mask, self.mask, self.mask))

 bgr[:, self.CAMERA_CENTER,:] = 255

 bgr[:, self.CAMERA_CENTER - self.PIXEL_RANGE, 0] = 255

 bgr[:, self.CAMERA_CENTER + self.PIXEL_RANGE , 0] = 255

 # draw estimated position

 bgr[:,self.estimated + self.CAMERA_CENTER, 0] = 0

 bgr[:,self.estimated + self.CAMERA_CENTER, 1] = 255

 bgr[:,self.estimated + self.CAMERA_CENTER, 2] = 0

 # draw projected position

 bgr[:,self.projected + self.CAMERA_CENTER, 0] = 0

 bgr[:,self.projected + self.CAMERA_CENTER, 1] = 0

 bgr[:,self.projected + self.CAMERA_CENTER, 2] = 255

 cv2.imshow("test", bgr)

 if cv2.waitKey(5) == 27:

 pass

 # Grab the raw image to write to video

 if self.CAMERA_ROTATED:

 self.vid_writer.write(self.bgr1)

 except Exception as error:

61

 self.pretty_print('DISP', 'ERROR: %s' % str(error))

 time.sleep(1)

 except Exception as error:

 self.pretty_print('DISP', 'ERROR: %s' % str(error))

 ## Close Controller

 def close_stepper(self):

 """

 Close Controller

 """

 self.pretty_print('SYSTEM', 'Closing Stepper ...')

 try:

 self.stepper.setEngaged(0, False)

 self.stepper.closePhidget()

 except Exception as error:

 self.pretty_print('STEP', 'ERROR: %s' % str(error))

 ## Close

 def close(self):

 """

 Function to shutdown application safely

 1. Close windows

 2. Disable stepper

 3. Release capture interfaces

 """

 self.pretty_print('SYSTEM', 'Shutting Down Now!')

 self.run_threads = False

 try:

 self.close_stepper() ## Disable stepper

 except Exception as error:

 self.pretty_print('STEP', 'ERROR: %s' % str(error))

 try:

 self.controller.close() ## Disable Arduino

 except Exception as error:

 self.pretty_print('ARD', 'ERROR: %s' % str(error))

 try:

 self.camera.release() ## Disable camera

 except Exception as error:

 self.pretty_print('CAM', 'ERROR: %s' % str(error))

 try:

 self.vid_writer.release() ## Safely close video writer

 except Exception as error:

 self.pretty_print('VID', 'ERROR: %s' % str(error))

 cv2.destroyAllWindows() ## Close windows

 ## Run

 def run(self):

 """

 Function for Run-time loop

 1. Get initial time

 2. Capture image

 3. Generate mask filter for plant matter

 4. Calculate indices of rows

 5. Estimate row from image

 6. Get number of samples

 7. Calculate lateral error after filtering

 8. Send output response to stepper

62

 9. Throttle to desired frequency

 10. Log results to DB

 11. Display results

 """

 start_time = time.time()

 iterations = 0

 while self.run_threads:

 iterations += 1

 if time.time() - start_time > self.DURATION:

 self.close()

 try:

 a = time.time()

 bgr = self.capture_image()

 mask = self.plant_filter(bgr)

 self.bgr = bgr

 self.mask = mask

 if (bgr is not None) and (iterations > self.START_DELAY):

 self.stepper.setEngaged(0, True)

 cv_speed = self.get_groundspeed(bgr)

 offset = self.find_offset(mask)

 (est, proj, diff) = self.estimate_error(offset)

 encoder = self.encoder

 encoder_rate = self.encoder_rate

 encoder_rate_prev = self.encoder_rate_prev

 angle = self.angle

 output, velocity = self.calculate_output(est, proj, diff,

cv_speed, encoder_rate, encoder_rate_prev)

 self.encoder_rate_prev = encoder_rate

 steps = self.set_stepper(output, velocity)

 # Cleanup for Logging

 if output == self.OUTPUT_MIN: velocity = -1 * velocity

 elif output == self.OUTPUT_MAX: velocity = velocity

 self.estimated = est

 self.projected = proj

 b = time.time()

 hz = (1 / float(b-a))

 sample = {

 'offset' : offset,

 'est' : est,

 'proj' : proj,

 'diff' : diff,

 'angle' : angle,

 'encoder' : encoder,

 'encoder_rate' : encoder_rate,

 'velocity' : velocity,

 'steps' : steps,

 'time' : datetime.strftime(datetime.now(),

self.TIME_FORMAT),

 'hz' : hz,

 'cv_speed' : cv_speed,

 'gps_long' : self.gps_longitude,

 'gps_lat' : self.gps_latitude,

 'gps_alt' : self.gps_altitude,

 'gps_speed' : self.gps_speed,

 'gps_quality' : self.gps_quality,

63

 'gps_satellites' : self.gps_satellites

 }

 if self.LOGFILE_ON:

 self.write_to_log(sample)

 if hz < 20: print "WARNING! LOW CAMERA FPS!"

 if self.VERBOSE:

 self.pretty_print("STEP", "%d Hz\t%d px\t%2.1f

px\t%2.6f,%2.6f DMS" % (hz, est, proj, self.gps_latitude,

self.gps_longitude))

 else:

 time.sleep(0.01)

 except KeyboardInterrupt as error:

 self.run_threads = False

 self.close()

 break

 except UnboundLocalError as error:

 print "RUN " + str(error)

 except Exception as error:

 print "RUN " + str(error)

 # Information Display Function

 def DisplayDeviceInfo(self):

 self.pretty_print("STEP", "%8s, %30s, %10d, %8d" %

(self.stepper.isAttached(), self.stepper.getDeviceName(),

self.stepper.getSerialNum(), self.stepper.getDeviceVersion()))

 self.pretty_print("STEP", "Number of Motors: %i" %

(self.stepper.getMotorCount()))

 # Event Handler Callback Functions

 def StepperAttached(self, e):

 attached = e.device

 self.pretty_print("STEP", "Stepper %i Attached!" %

(attached.getSerialNum()))

 def StepperDetached(self, e):

 detached = e.device

 self.pretty_print("STEP", "Stepper %i Detached!" %

(detached.getSerialNum()))

 def StepperError(self, e):

 try:

 source = e.device

 self.pretty_print("STEP", "Stepper %i: Phidget Error %i: %s" %

(source.getSerialNum(), e.eCode, e.description))

 except PhidgetException as e:

 self.pretty_print("STEP", "Phidget Exception %i: %s" % (e.code,

e.details))

 def StepperCurrentChanged(self, e):

 source = e.device

 #self.pretty_print("STEP", "Stepper %i: Motor %i -- Current Draw:

%6f" % (source.getSerialNum(), e.index, e.current))

 def StepperInputChanged(self, e):

 source = e.device

 #self.pretty_print("STEP", "Stepper %i: Input %i -- State: %s" %

(source.getSerialNum(), e.index, e.state))

64

 def StepperPositionChanged(self, e):

 source = e.device

 #self.pretty_print("STEP", "Stepper %i: Motor %i -- Position: %f" %

(source.getSerialNum(), e.index, e.position))

 def StepperVelocityChanged(self, e):

 source = e.device

 #self.pretty_print("STEP", "Stepper %i: Motor %i -- Velocity: %f" %

(source.getSerialNum(), e.index, e.velocity))

Main

if __name__ == '__main__':

 session = RowAssist(CONFIG_FILE)

 session.run()

65

APPENDIX B: Arduino Code

#define MODE_PIN 13

#define STEERING_PIN A1

#define WHEEL_ANGLE_PIN A2

#define SENSITIVITY_PIN A0

#define BIAS_PIN A3

#define ENCODER_A_PIN 2

#define ENCODER_B_PIN 3

#define BUFFER_LENGTH 128

#define BAUD 9600

int steering_min = 100;

int steering_max = 500;

int steering = 330;

int sensitivity = 330;

int bias = 330;

int angle = 512;

int mode =0;

int mode_counter = 0;

int mode_limit = 0;

char output[BUFFER_LENGTH];

int encoder = 0;

void setup() {

 Serial.begin(BAUD);

 pinMode(MODE_PIN, INPUT);

 digitalWrite(MODE_PIN, HIGH);

 attachInterrupt(0, counter, CHANGE); // set encoder interrupt

 pinMode(STEERING_PIN, INPUT);

 pinMode(SENSITIVITY_PIN, INPUT);

 pinMode(BIAS_PIN, INPUT);

 pinMode(WHEEL_ANGLE_PIN, INPUT);

}

void loop() {

 if (!digitalRead(MODE_PIN)) {

 if (mode_counter > mode_limit) {

 mode_counter = 0;

 if (mode) {

 mode = 0;

 }

 else {

 mode = 1;

 }

 }

 else {

 mode_counter++;

 }

 }

 else {

 mode_counter = 0;

 }

 steering = analogRead(STEERING_PIN);

 if (steering < steering_min) {

66

 steering = -1;

 }

 else if (steering > steering_max) {

 steering = 1;

 }

 else {

 steering = 0;

 }

 sensitivity = analogRead(SENSITIVITY_PIN);

 bias = analogRead(BIAS_PIN);

 angle = analogRead(WHEEL_ANGLE_PIN);

 sprintf(output, "{'mode':%d, 'steering':%d, 'sensitivity':%d, 'bias':%d,

'encoder':%d, 'angle':%d}", mode, steering, sensitivity, bias, encoder,

angle);

 Serial.println(output);

 Serial.flush();

};

void counter(void) {

 if (digitalRead(ENCODER_A_PIN) == HIGH) {

 if (digitalRead(ENCODER_B_PIN) == LOW) {

 encoder++; // CW

 }

 else {

 encoder--; // CCW

 }

 }

 else // must be a high-to-low edge on channel A

 {

 // check channel B to see which way encoder is turning

 if (digitalRead(ENCODER_B_PIN) == HIGH) {

 encoder++; // CW

 }

 else {

 encoder--; // CCW

 }

 }

}

67

APPENDIX C: Cost (USD) of the guidance system components.

Quantity Component Unit Price USD Amount

1 2 POS Cable $17.50 $17.50

1 2 POS Panel $11.40 $11.40

1 Arduino UNO $25.79 $25.79

1 Ball Grip Positioning Arm Component $19.41 $19.41

1 Ball Grip Positioning Arm Component $56.07 $56.07

2 Ball Grip Positioning Arm Component $16.66 $33.32

1 Ball Grip Positioning Arm Component $40.86 $40.86

1 Ball Grip Positioning Arm Component $25.04 $25.04

1 Brackets and Fasteners $50.00 $50.00

1 Camera $35.95 $35.95

1 Camera Bracket $12.95 $12.95

1 Intel Atom CPU $339.85 $339.85

1 Waterproof Enclosure $28.91 $28.91

1 ABS Hub Adapter $5.00 $5.00

1 Joystick $32.99 $32.99

1 Laser Cutting of Enclosure $30.00 $30.00

1 Stepper Motor $44.00 $44.00

1 Stepper Motor Controller $95.00 $95.00

1 Suction Cups $53.92 $53.92

2 USB Cables $15.90 $31.80

1 USB Connector Female $11.52 $11.52

1 USB Connector Male $23.94 $23.94

2 USB Panel Mount Connectors $15.00 $30.00

1 Wiring $10.00 $10.00

 Total Cost: $1,065.22

