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ABSTRACT 

Navigation systems have become a crucial tool in large-scale agricultural operations. Such 

systems are available commercially; however, they are expensive and are not compatible with all 

models of tractors. The objective of this study was to develop an affordable quick-install camera 

system which was capable of acting as a guidance system capable of controlling the movement of 

a tractor for row crop cultivation and fertilization during the early stages of crop growth. 

Computer analysis of video streams is a technique which has only recently become an inexpensive 

method for obtaining guidance information. The technique has the particular advantage of 

utilizing the same equipment to sense a variety of different guiding features with minor user-

level software changes. In this study, a computer-vision guidance system was developed to run 

on an Intel Atom D525 nanocomputer. A low-cost RGB-NIR camera was mounted to the front 

of the tractor, perpendicular to the ground and in line with the crop row to be followed to obtain 

a video stream of the plants passing underneath the vehicle. An application developed using the 

Python OpenCV platform was used to segment the crops from the soil and weeds, identify the 

lateral offset of the plant rows, and subsequently adjust the tractor’s power-assisted steering 

accordingly via an adaptive PID controller. The adjustments were made by a stepper motor 

mounted on the front window of the tractor using suction cups. Unlike other similar systems, 

this mechanism that rests on the center of the steering wheel allows for quick and effortless 

installation and represents an inexpensive, entry-level precision agriculture solution. The 

computer vision system was tested successfully for travel speeds up to 11 km/h on tarmac under 

varying ambient light using a green garden hose to emulate a crop row. 
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ABRÉGÉ 

Les systèmes de navigation sont devenus des outils cruciaux sur les grandes exploitations 

agricoles. Ces systèmes sont sur le marché, mais ils sont coûteux et ne sont compatibles qu’avec 

les tracteurs les plus récents. Par conséquent, l'objectif de cette étude était de développer un 

système de caméra abordable capable d'agir comme un système de guidage pour les cultures en 

rangs afin d’aider aux opérations de sarclage et d’application d’intrants durant les premiers stades 

de croissance des cultures. L'analyse par ordinateur des flux vidéo est une technique qui n'est que 

récemment devenue une abordable pour obtenir des informations de guidage. La technique a 

notamment pour avantage d'utiliser le même équipement pour détecter une variété de différents 

paramètres de guidage avec très peu d’implication de l’utilisateur, permettant ainsi à ce dernier 

de consacrer plus d’attention à d’autres tâches. Une caméra RVB (rouge, vert, bleu) à faible coût 

a été installée à l'avant d’un tracteur en ligne avec un rang de culture pour obtenir un flux vidéo 

des plantes passant sous l'équipement. La plate-forme Python OpenCV a été utilisée afin de 

développer une application pour distinguer les cultures du sol et des mauvaises herbes, de 

mesurer le décalage latéral du tracteur avec les rangées de plantes, puis d’ajuster la servodirection 

du tracteur en conséquence à l’aide d'une structure PID (proportionnelle, intégrale, dérivée) 

adaptative. Les ajustements étaient effectués par un moteur pas-à-pas installé au pare-brise du 

tracteur à l'aide de ventouses. Contrairement aux systèmes similaires, ce mécanisme qui repose 

sur le centre du volant du tracteur permet une installation rapide et facile, et représente une 

solution d’agriculture de précision d'entrée de gamme peu coûteuse. Le système de vision 

artificielle a été testé avec succès pour des vitesses de déplacement jusqu'à 11 km/h sur le tarmac 

en utilisant un boyau d’arrosage afin d’imiter un rang de culture.
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1. INTRODUCTION 

1.1 Overview 

Steering agricultural machinery in the field to perform various farming operations is hard for 

machinery operators because of the long hours of tedious, repetitive tasks at low speeds. Among 

those tasks, guiding the tractor along crop rows without damaging plants requires much 

attention and is one of the leading causes of operators’ fatigue. Becker et al. 1983 even reported 

that steering might be the most significant load on the mental capacities of an operator 

performing a field operation. With the adoption of attention-hungry equipment such as row crop 

cultivators (figure 1-1) or sprayers, it becomes necessary for producers wanting to increase their 

productivity to find alternatives to traditional vehicle guidance. Palmer & Matheson, 1988 

determined that as much as 10% of crop production costs could be saved by improving the 

navigation accuracy of field equipment. 

Figure 1-1: Row crop cultivation on an organic operation. 
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1.2 Justification 

There is little doubt that big farming operations are embracing and massively adopting auto-

guidance technologies. A survey by the Department of Agricultural Economics of Purdue 

University (Erickson & Widmar 2015) shows that GNSS guidance systems were adopted by 83% 

of the respondents in 2015 while only 61% had adopted them in 2013. The question here is 

whether smaller-scale, labour-intensive farms from developed and developing countries will ever 

adopt these technologies. For some, today’s precision technology is still too expensive to be 

worth the cost (Dobbs 2013); however, as smaller, more modular equipment becomes widespread 

even the leanest operations may be able to change their practices.  

 

When it comes to the automated guidance of agricultural vehicles, crop producers are faced with 

many options, such as global navigation satellite systems (GNSS) based guidance, or alternatives, 

including Light Detection and Ranging (LIDAR), ultrasonic, mechanical, and optical guidance 

systems. Among these, optical guidance has received significant attention as it is both relatively 

inexpensive and has an immense potential for further research and development, including 

different co-applications such as crop phenotyping.  

 

Researchers have applied computer vision to guide agricultural vehicles for a wide diversity of 

field operations, with significant interest in cultivation, fertilization, spraying and harvest 

operations. In an optical guidance system, image-processing algorithms determine the position 

of the vehicle about the target (e.g. a crop row) and the vehicle trajectory is corrected by 

automatic steering control. 
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1.3 Research Objectives 

The ultimate goal of this research was to equip farmers with a camera-based semi-automated 

steering system. The system has to be adaptable to different crops or tasks, be compatible with 

diverse agricultural vehicles equipped with power steering, be installed within five minutes 

without any pre-installation and lastly yet importantly, be inexpensive. The specific objective 

was to design and to test a commercially viable quick-install auto-steering system run by a simple 

control algorithm: a modified proportional-integral-differential (PID) control capable of guiding 

an unladen agricultural tractor to within a 95th percentile lateral error within ±5 cm of a desired 

path at speeds from 1 to 3 m/s on level tarmac or firm soil surfaces. 
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2. LITERATURE REVIEW 

 

This section presents some of the literature related to guidance sensors for agricultural vehicles, 

automated steering systems and aids, and vehicle guidance algorithms to provide background 

information related to research presented in this thesis. 

2.1 Posture sensors for agricultural vehicles 

Inventions to help an agricultural vehicle driver space his/her planted rows uniformly started 

appearing in the 1870s (Heraud & Lange 2009) with patents regarding row markers, foam 

markers, aids for manual steering, automatic steering sensors, and auto steering systems. Posture 

(or positioning) sensors for agricultural vehicles with a few minor exceptions can be classified 

into four main categories: mechanical, ultrasonic, navigational, and optical.  

Mechanical guidance systems are a contact type of guidance mechanisms that utilize existing 

features such as a crop row or a cultivation furrow. These systems are inexpensive as costs are 

restricted to the sensing and control devices. Snyder, 1885 invented a system called “furrow pilot” 

that automatically steered a tractor engine based on a previously formed furrow. The system and 

its successors were mostly used for tillage applications. Parish & Goering, 1970 developed a 

hydrostatic self-propelled vehicle with an automatic steering system based on a crop sensor. The 

latter consisted of two microswitches operated by the upward pressure of the hay. The system 

integrated an allowable dead band: if the edge of the standing crop lay outside the dead band, the 

switches sent a correction signal. Kirk, 1974 in his thesis described the development of a marker-

follower guidance system for farm tractors that leaves a furrow-marker which is followed on the 

next pass. Field tests on a cultivated field showed the system to have good following 

characteristics on both straight and curved paths with maximum front wheel tracking error of  
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1 - 2” (2.54 – 5.08 cm). The system showed decent stability at speeds up to 6 miles/h on straight 

paths and was capable of  following a 15-foot radius turn at 2.5 miles/h. This guidance system, 

with proper adaptation, could be used for most tillage and seeding operations. Examples of 

commercial products which have entered the industry in the past decade are the Claas Auto Pilot 

(CLAAS KGaA mbH, Harsewinkel, Germany) and the John Deere AutoTrac RowSense (Deere 

& Company, Moline, USA) (Figure 2-1). Mechanical systems are straightforward and affordable; 

however, they protrude from the vehicle and are a nuisance during headland operations and road 

transportation. Another considerable disadvantage lies in the fact that they require a physical 

feature that is strong enough to be sensed thus ruling out emerging row crops.  

 

Ultrasonic devices calculate the distance from the time taken for an ultrasonic signal to reach 

and be reflected back from a target. Warner & Harries, 1972 have used them to detect the last 

furrow for the next run during cultivation; however, an inadequate reflectance of ultrasound was 

obtained from soil, convincing the authors that it would be better to adopt optical methods for 

identifying the guideline to be followed. Mcmahon et al. 1987 used an array of ultrasonic sensors 

Figure 2-1: Claas Auto Pilot (left) (CLAAS KGaA mbH, 2016), and John Deere AutoTrac RowSense 

(right) (Deere & Company, 2016). 
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to measure the position of apple trees to guide a harvester vehicle. Kirk & Krause, 1976 reported 

that ultrasonic sensors failed to obtain sufficient reflection from the crop edge to operate 

successfully and guide their swather. An infrared photoelectric sensor was found to be the best 

for their particular application.  

 

The most recurrent approach to precise automated navigational guidance involves global 

navigation satellite systems (GNSS), and it was first proposed by Larsen et al. 1988. The 

American Global Positioning System (GPS) and its Russian equivalent GLONASS are 

worldwide radio-navigation systems that consist of constellations of 24 or more satellites and 

several ground stations. GNSS receivers have different levels of accuracy: inexpensive receivers 

($100) such as the ones found in cellular devices can determine one’s position to within 15 m 

(Heraud & Lange 2009). More expensive receivers that can use a second signal (L1/L2 bands) 

have a 1-m accuracy using differential GNSS. The most accurate GNSS receivers using a 

technique named real-time kinematic (RTK) can position within a few centimeters and are worth 

tens of thousands of dollars.  The use of the latter was pioneered by O’Connor et al. 1996 for 

automatic steering of a tractor along straight lines. The accuracy of the RTK GNSS method is 

better than a 2.5 cm standard deviation 95% of the time(Easterly et al. 2010). Several patents 

were subsequently issued, leading to a fast adoption of navigational guidance that has had a 

significant effect on agricultural practices. The main drawback to GNSS guidance systems other 

than their prohibitive pricing is their “blindness” concerning existing features such as crop rows, 

residue rows, windrows or swaths, and furrows which could lead to errors in guidance unless the 

entirety of previous field operations were conducted using GNSS guidance. 
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Studies on optical guidance systems date as far back as the 1980s. Reid & Searcy, 1987 reported 

on the development of techniques that provide a well-segmented image of crop and soil 

background. They used near-infrared filters and an auto-iris lens, which kept the lighting level 

constant, to allow accurate segmentation. However, their work did not extend to vehicle 

guidance signals. Marchant & Brivot, 1995 investigated the problem of deriving vehicle guidance 

information (offset and heading angle) from images of crops grown in rows. They used the Hough 

transform to calculate the offset and orientation about the row structures. They combined 

information coming from three row segments to increase performance. Typical errors were 12.5 

mm of offset and 1.0 degree of angle at a forward speed of 2 m/s. Billingsley & Schoenfisch 1995 

used the chrominance signal (the color information of a picture) from a color camera to acquire 

an image representing the ‘‘greenness’’ in the image. To find line structures they used a cost 

function to find the best fit lines on several rows. A geared DC motor was used to steer a small 

tractor. They evaluated the performance of their system based on response to an initial error of 

0.5 m at different speeds. Gerrish et al. 1997 installed a computer-vision guidance system on a 

full-size, modern tractor. A control point in the image was used as a reference to determine the 

angle at which the front steering wheels should be turned. They compared the performance of 

the system with steering by experienced human operators. In a test of skill, the human operators 

were more precise than automatic guidance at 12.9 km/h. At 4.8 km/h, however, automatic 

guidance was as skillful as the humans. Slaughter et al. 1999 demonstrated that color 

segmentation and an algorithm based upon the median of the spatial distribution of the seed line 

could be used with off-the-shelf computer-vision hardware to develop a real-time guidance 

system for row crop cultural practices such as cultivation. The precision of the system was 

comparable to that of a manually-guided cultivator and was demonstrated at a ground speed of 

up to 16 km/h under low weed loads.  
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Okamoto et al. 2002 developed an automatic guidance system for a weeding cultivator. A color 

charged-couple device (CCD) camera acquired the row crop images, and by processing the images 

in the computer, determined the offset between the machine and the target crop row. The 

weeding machine was steered through the crop row using an electro-hydraulic steering 

controller. Han et al. 2004 developed a row segmentation algorithm based on k-means clustering 

to segment crop rows. This information was next used to steer a tractor. The guided tractor was 

able to perform field cultivation in both straight and curved rows. However, quantitative 

performance evaluation of the automatically guided tractor had not been completed. 

Another research was to develop a row detection algorithm for a stereovision-based agricultural 

machinery guidance system. The algorithm consisted of functions for stereo-image processing, 

elevation map creation and navigation point determination. The method developed first 

reconstructed a three-dimensional crop elevation map from a stereovision image of crop rows 

and searched for optimal navigation points from the map (Kise et al. 2005). Matias & Gil 2007 

looked for a solution to guide an agricultural vehicle with independence of the task. Their system 

was based on a segmentation algorithm that used an optimum threshold function in terms of 

minimum quadratic value over a Fisher linear discriminant. This system has achieved positive 

results in the sense of segmentation in addition to guiding a vehicle in a real world environment 

successfully. However, conditions of non-uniform illumination raised the rate of errors; therefore, 

the system became confused because of the irregularities shadows of the terrain or external 

factors. It was also observed that the effect of irregular vegetation made the system inefficient 

when the difference of texture between the processed and non-processed areas was insignificant, 

as in tilling. 

The common denominator among all the previous studies is the use of a fixed forward field of 

view (“far FOV”) camera arrangement. The latter works adequately in the case of tall, mature 
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plants; however, it has its limitations with small plants and is inadequate when used for turning 

at the end of the row. For this purpose, Xue et al. 2012 implemented two FOV modes to 

complement the far FOV: the ‘‘near FOV’’ for small plants, and the ‘‘lateral FOV’’ used in turning 

a robot. A fuzzy logic control scheme was used to guide the robot. The method was tested while 

the vehicle successfully traveled through a distance of 30 m towards the end of a crop row in 

three replications. RTK-GNSS data was collected to evaluate de guidance performance and 

showed a maximum guidance error of 15.8 mm and stable navigational behavior.  

Stanhope et al. 2014 developed an inexpensive webcam-based system which is capable of 

supplementing the mechanical guidance system for row crop cultivation during the early stages 

of crop growth. A computer-vision cultivator guidance system was developed for a 700 MHz 

ARM minicomputer to control a mechanical guidance system. The Python OpenCV platform 

was used to develop an application to identify the lateral offset of the plant rows and to adjust 

the hydraulic steering accordingly. The guidance system performed sufficiently for travel speeds 

up to 6 km/h in grain corn, green bean, and soybean fields under varying ambient light and crop 

conditions. Examples of commercial products which have entered the industry in the past years 
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are the Claas Cam Pilot (CLAAS KGaA mbH, Harsewinkel, Germany) and the John Deere 

AutoTrac Vision (Deere & Company, Moline, USA) (Figure 2-2). 

2.2 Automated steering systems and aids 

Automated or aided guidance of agricultural vehicles can take various forms, including manual 

guidance with a lightbar, automatic steering systems that tap into the vehicle’s steering electro-

hydraulic valve or that use electric motor drives, depending on the investment. An example of a 

commercial lightbar used for guidance is the John Deere GreenStar Lightbar System (Deere & 

Company, Moline, USA) (Figure 2-3) which represents a straightforward and cost-effective 

guidance solution that comprises a GNSS receiver, a user interface, and path planning 

algorithms. It can readily be transferred between machines; however, it does require the operator 

to keep his/her eyes on the lightbar and hands on the steering wheel at all times. Typical accuracy 

for manual guidance ranges from 5 or 10 cm to 30 cm pass-to-pass, depending on the driver’s 

coordination (Heraud & Lange 2009). Automatic steering, or auto-steer, is a much more complex 

system that typically requires a GNSS receiver, a user interface, path planning algorithms, 

vehicle steering actuators and manual override detectors, steering angle sensors, control 

Figure 2-2: Claas Cam Pilot (left) (CLAAS KGaA mbH 2016) and John Deere AutoTrac Vision (right) 

(Deere & Company 2016). 
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algorithms and controller, terrain compensation, and other sensors. Although automatic steering 

offers many benefits such as increased accuracy, increased operating speed, ability to concentrate 

on other tasks and reduced fatigue, it is nonetheless significantly more complex and costly than 

the lightbar system and is difficult to transfer between machines as it requires the latter to be 

equipped with electro-hydraulic steering valves. Examples of successful commercial auto-steer 

systems are the Trimble Autopilot (Trimble Navigation, Ltd., Sunnyvale, USA) and the John 

Deere AutoTrac (Deere & Company, Moline, USA). Electric motor drives are most commonly 

used in universal steering kits, typically for tractors that are not equipped with electro-hydraulic 

steering valves. In these systems, an electric motor actuator is used to move the steering wheel 

to steer the vehicle. Installation time is shorter due to the less intrusive nature of the systems, 

and they can therefore easily be transferred from one vehicle to another. Examples of successful 

commercial electric motor drive systems are the Trimble EZ-Steer (Trimble Navigation, Ltd., 

Sunnyvale, USA) (Figure 2-3), which consists of a friction wheel on the peripheral area of the 

steering wheel, and the John Deere AutoTrac Universal 200 (ATU) (Deere & Company, Moline, 

USA) (Figure 2-3), which consists of a simple belt mechanism.                                   

Figure 2-3: John Deere Lightbar (left) (Deere & Company 2016), Trimble EZ-Steer (middle)(Trimble 

Navigation 2016), and John Deere ATU (right) (Deere & Company 2016). 
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2.2 Vehicle control algorithms 

Control algorithms use the information relayed from the path-planning algorithms (lateral offset, 

heading error) to compute steering adjustments that must be accomplished by the vehicle 

steering system (Heraud & Lange 2009). Many control algorithms have been developed over the 

past decades, and some common methods are discussed here.  

 

The PID algorithm (proportional-integral-differential) is a tuning-based control algorithm that 

has yielded practical results in previous works (Subramanian et al. 2006, Benson et al. 2003) and 

that assumes that the tractor’s kinematics can be approximated as a first or second-order 

differential equation. In Benson et al. 2003, PID was used to calculate the actuator command 

signal based on the heading offset. The performance of the controller was comparable to that of 

manual steering. However, the maximum speed at which the controller could operate was 1.3 

m/s. Fuzzy logic controllers (“fuzzy” refers to the fact that the logic involved can deal with 

concepts that can be expressed as “partially true” as opposed to “true” or “false”) have also been 

used to control steering of agricultural vehicles (Cho & Ki 1999), and sometimes in conjunction 

with PID (Kodagoda et al. 2002). In Cho & Ki 1999, a fuzzy logic controller and computer-vision 

were used for guiding an autonomous sprayer vehicle through orchards. The input information 

to the fuzzy logic controller was given by both computer-vision and ultrasonic sensors. A 

combination of Fuzzy logic and PID control worked well for guiding a tractor through crop rows 

and repeatedly outperformed conventional PID schemes (Kodagoda et al. 2002). 

 

Another approach to agricultural vehicle guidance algorithms is to use model-based control 

algorithms. The latter consists of developing a mathematical model of the vehicle’s dynamics and 

using a feedback controller to control the mathematical model.  To ensure these models are 
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independent of the make, type and size of the vehicle, a simple two-degree-of-freedom (DF) 

“bicycle model” approach is widely used throughout literature (Feng et al. 2004; Alleyne & 

DePoorter 1997; Derrick & Bevly 2009; Lenain et al. 2006; Gomez-Gil et al. 2011; Stombaugh et 

al. 1999; Choi et al. 1990; O’Connor et al. 1996). This model has one input (steering angle) and 

one output (lateral position) and requires the guidance dynamics of the vehicle to be quantified 

beforehand. Stombaugh et al. 1999 successfully tested a classical model-based controller that 

provided guidance of a two-wheel-drive agricultural tractor to within 16 cm of the desired path 

at speeds up to 6.8 m/s after experimentally quantifying the guidance dynamics of the tractor.
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3. MATERIALS AND METHODS 

3.1. Design of system components 

3.1.1 Preliminary design 

An outdoor USB CMOS camera (dust-tight, water-tight) with 640x480 pixel resolution 

(Shenzhen Yufei Technology Co., Ltd, Shenzhen, China) was mounted to the front of a 95 hp 

New Holland T5050 (New Holland Agriculture, Turin, Italy) tractor in-line with a crop row (381 

mm to the left of the centerline of the tractor, and 730 mm to the front of the steering axle) to 

obtain a video stream of the plants under the tractor (Figure 3-1). It is to note that the system is 

calibrated by physically locking the camera above the area where the feature to be followed would 

normally pass.  The camera had a lens with a 6-mm focal point, which translates to a 43° 

Figure 3-1: Camera mounted to the bumper bar of the experimental tractor. 
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horizontal field of view and 32.3° vertical field of view at the standard 1.33 aspect ratio. This field 

of view provided approximately 1.15 mm/pixel resolution when mounted 1.0 m above the ground 

and oriented orthogonally to the direction of travel. A checkered board with 67 mm x 67 mm 

squares was used to validate the pixel to mm conversion (Figure 3-7). 

The sensor was capable of automatically adjusting exposure and aperture settings for varying 

lighting conditions and could process images at a rate of approximately 25-30 frames/s. 

Although the software was optimized for the Intel Atom D525 processor (Intel Corporation, 

Santa Clara, USA) in a potentially marketable iteration, it was actually run on an Intel i7 powered 

VMC3501-K (NEXCOM International Co., Ltd, Taipei, Taiwan) with integrated touchscreen 

displaying a graphical interface to the tractor operator to ease the process of altering the code 

during tuning runs. Steering control was achieved with a Phidgets 1067 bipolar stepper 

controller (Figure 3-2) (Phidgets Inc., Calgary, Canada) and a 12V, 2.8A, 46.6 kg-cm geared 

bipolar stepper motor (Dongzheng Motor Co., Ltd, Dongyang City, China) equipped with an 

external optical rotary encoder that produced 300 cycles per revolution. An Arduino UNO 

microcontroller board (Figure 3-2) (Arduino, Somerville, USA) based on the Atmel 

ATmega328P microcontroller (Atmel, San Jose, USA) was used to read the signal from the rotary 

encoder. The stepper motor apparatus was fixed onto the tractor steering wheel via a RAM ball-

grip positioning arm (National Products Inc., Seattle, USA) made of marine grade aluminum and 

capable of holding a mass of 4.5 kg. The positioning arm was mounted to the front window of 

the tractor using lock-to-grip suction cups capable of holding up to 60 kg (Figure 3-3). A steering 

wheel hub adapter was designed and fabricated using additive manufacturing. The installation of 
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the entire system took well under five minutes and could easily be done without tools in a 

commercially viable iteration. 

Figure 3-3: Drawing of the wheel hub adapter (left) and the quick-install steering mechanism (right). 

Figure 3-2: Stepper motor controller and microcontroller (left), and joystick (right). 
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The tailored ABS steering hub adapter offered many advantages such as light weight (less than 

200 g), robustness, low cost, and adaptability to any steering wheel (Figure 3-4). A momentary 

pushbutton switch mounted on a Tenco JH-D400X-R4 joystick (Tenco Technology Company 

Ltd., Shenzhen, China) allowed to switch easily between the automatic and manual modes of the 

steering system and offered the operator the ability to manually control the gain of the steering 

algorithm if needed. The ergonomic joystick, which relied on a 10 kΩ potentiometer, was used 

to steer the tractor manually when performing headland operations (Figure 3-2). The system 

was inexpensive compared with other guidance solutions already on the market. The price of the 

Figure 3-4: Additional steering hub configurations. 



 

18 

guidance system as depicted in Figure 3-5 -omitting the GNSS receiver and the wheel angle 

sensor- was just under $1,100USD (Intel Atom CPU setup) (details in APPENDIX C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5: Steering system diagram 
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3.1.1.1 Instrumentation 

Relative position measurements performed with the vision sensor were synchronized with 

geographic locations to validate measurements obtained during different passes. An RTK-level 

GNSS receiver located above the camera (1.52 m above the ground) was used to acquire 

geographic longitude and latitude (Figure 3-6), time, and GNSS signal quality parameters to 

serve as a comparison for the guidance system performance. The RTK-level GNSS receiver for 

both the rover and the base stations was a Trimble AgGPS 542 (Trimble Navigation, Ltd., 

Sunnyvale, USA), and the base station was located less than 500 m from the test track. 

Figure 3-6: RTK antenna mounted above the camera and king pin angle potentiometer. 
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During development stage, a rotary potentiometer was used as a wheel angle sensor to validate 

the linear relationship assumption between steering wheel angle and actual wheel king pin angle 

(Figure 3-6). Figure 3-7 illustrates the relationship between steering wheel encoder value and 

king pin potentiometer value.     

Figure 3-7: Steering wheel encoder value versus kingpin potentiometer value. 
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3.1.2 Final design 

The outdoor USB CMOS camera (dust-tight, water-tight) with 640x480 pixel resolution 

(Shenzhen Yufei Technology Co., Ltd, Shenzhen, China) used for the Stage 1 experiment during 

the summer of 2015 was replaced by a Logitech HD Webcam C270 set to a 640x480 pixel 

resolution (Figure 3-8) (Logitech International S.A., Lausanne, Switzerland) to address issues 

with degrading image quality over time. The new camera had a lens with a 4-mm focal point, 

which translates to a 60° field of view. This field of view provided approximately 1.38 mm/pixel 

resolution when mounted 1.0 m above the ground and oriented orthogonally to the soil surface. 

A checkered board with 67 mm x 67 mm squares was used to validate the pixel to mm conversion. 

(Figure 3-9). Once again, the sensor was capable of automatically adjusting exposure and 

Figure 3-8: Logitech camera mounted to the bumper bar of the experimental tractor for 

Stage 2 experiment. 



 

22 

aperture settings for varying lighting conditions and could process images at a rate of 

approximately 25-30 frames/s. 

 

 

 

 

 

 

 

Figure 3-9: Checkered board used for pixel to mm conversion. 
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3.3. Guidance algorithm development 

3.3.1 Crop row tracking 

To detect the lateral offset of the crop row, a Python (Python Software Foundation, Delaware, 

USA) application based upon the research by Stanhope et al., 2014 was developed using the 

OpenCV image processing library. The plants were segmented from inorganic matter and crop 

residue in each image by converting from the RGB color space to the Hue-Saturation-Intensity 

(HSI) color space (OpenCV, 2014) to simplify color analysis and reduce the complexity of 

applying band-pass image filters. By converting to a de-correlated color-space, the image’s hue, 

intensity, and color saturation were calculated according to: 

 

𝐻𝑖𝑗 =

{
 
 

 
          60 ∙ (

𝐺𝑖𝑗−𝐵𝑖𝑗

𝐼𝑖𝑗−𝑚𝑖𝑛(𝑅𝑖𝑗,𝐺𝑖𝑗,𝐵𝑖𝑗)
)           𝑖𝑓 𝐼𝑖𝑗 = 𝑅𝑖𝑗

120 + 60 ∙ (
𝐵𝑖𝑗−𝑅𝑖𝑗

𝐼𝑖𝑗−𝑚𝑖𝑛(𝑅𝑖𝑗,𝐺𝑖𝑗,𝐵𝑖𝑗)
)      𝑖𝑓 𝐼𝑖𝑗 = 𝐺𝑖𝑗

240 + 60 ∙ (
𝑅𝑖𝑗−𝐺𝑖𝑗

𝐼𝑖𝑗−𝑚𝑖𝑛(𝑅𝑖𝑗,𝐺𝑖𝑗,𝐵𝑖𝑗)
)      𝑖𝑓 𝐼𝑖𝑗 = 𝐵𝑖𝑗

                                            (1) 

 

𝑆𝑖𝑗 = {

                       0                       𝑖𝑓 𝐼𝑖𝑗 = 0

𝐼𝑖𝑗−𝑚𝑖𝑛(𝑅𝑖𝑗,𝐺𝑖𝑗,𝐵𝑖𝑗)

𝐼𝑖𝑗
     𝑖𝑓 𝐼𝑖𝑗 ≠ 0

                                                 (2) 

 

𝐼𝑖𝑗 = max (𝑅𝑖𝑗 , 𝐺𝑖𝑗 , 𝐵𝑖𝑗)                                                                  (3) 

 

where Iij = intensity, Hij = hue, and Sij = saturation parameters; Rij = red, Gij = green, and Bij = 

blue value for a pixel in the ith column and jth row.  
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Based on these decolorized parameters, a Band Pass Plant Detection (BPPD) method was 

incorporated to segment plant foliage (pixels with hue from yellow-green to blue-green): 

 

𝐵𝑃𝑃𝐷𝑖𝑗 = {
1   𝑖𝑓 𝐻𝑖𝑗 > 𝐻𝑚𝑖𝑛 ∧ 𝐻𝑖𝑗 < 𝐻𝑚𝑎𝑥 ∧ 𝑆𝑖𝑗 > 𝑚𝑒𝑎𝑛(𝑆) ∧ 𝐼𝑖𝑗 > 𝑚𝑒𝑎𝑛(𝐼)

0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                   
               (4) 

 

Where Hmin = minimum hue (30, corresponding to yellow-green color); Hmax = maximum hue 

(120, corresponding to blue-green color).  

Once converted to the BPPD matrix, column summation (CS) in the direction of travel was 

calculated using: 

 

𝐶𝑆𝑖 = ∑ 𝐵𝑃𝑃𝐷𝑖𝑗
𝑛𝑗
𝑗=0

                                             (5) 

where CSi = ith column (vertical pixel array) summation; nj = the number of utilized rows 

(horizontal pixel arrays). 

This summation results in a 1-D array representing the lateral distribution of BPPD values 

within the image. The lateral offset of the crop was determined by applying a high-pass filter to 

the CS array according to: 

 

𝐶𝐼𝑖 = {
𝑖                          𝑖𝑓 𝐶𝑆𝑖 ≥ 𝑚𝑒𝑎𝑛(𝐶𝑆) + 2 ∙ 𝑠𝑡𝑑(𝐶𝑆)

𝑁 𝐴⁄                   𝑖𝑓 𝐶𝑆𝑖 < 𝑚𝑒𝑎𝑛(𝐶𝑆) + 2 ∙ 𝑠𝑡𝑑(𝐶𝑆)
                        (6) 

 

where CIi = column index vector filled with column numbers i indicating columns with relatively 

high values of CSi. 
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Lastly, the offset (in pixels) from the center of the camera’s field of view was calculated using the 

median of valid column numbers according to: 

 

𝑂𝑓𝑓𝑠𝑒𝑡 = {
𝑚𝑒𝑑𝑖𝑎𝑛(𝐶𝐼) −

𝑛

2
                       𝑖𝑓 𝑐𝑜𝑢𝑛𝑡(𝐶𝐼) > 0

𝑖𝑚𝑎𝑥(𝐶𝑆) −
𝑛𝑖

2
                              𝑖𝑓 𝑐𝑜𝑢𝑛𝑡(𝐶𝐼) = 0

                      (7) 

 

where Offset = the number of pixels shift of the crop row with respect to the center of the camera; 

ni = the number of columns (image in pixels) (Figure 3-10). 

 

 

 

Figure 3-10: Row detection demonstration. Reprinted with permission by Stanhope (2014). 



 

26 

3.3.2 Ground speed estimation 

To adjust the steering dynamics as a function of ground speed, a prototype computer-vision 

ground speed detection function was developed based on current work by Stanhope et al. The 

function was incorporated within the guidance software framework and runs in parallel to the 

row segmentation function. This approach allows the single camera to serve a dual purpose and 

removes the requirement of a GNSS receiver, radar device, or “fifth wheel.” The ground speed 

algorithm uses two consecutive frames of the video stream to identify key points using the SURF 

algorithm (Speeded Up Robust Features) (Bay et al. 2006) (Figure 3-11). Next, k-means nearest 

neighbor matching on the 128-dimensional descriptors of each key-point finds matching key 

points between the two images (Figure 3-12).  Lastly, the average velocity of the matching key 

Acquire Image 
Pick two 

consecutive frames 
Find key points 

using SURF 

Estimate Ground 
Speed (v) 

K-means finds 
matching keypoints 
between two frames 

Measure positional 
change 

Average 
frame rate 
of camera 

Figure 3-11: Flowchart of the ground speed estimation. 
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points was calculated by determining the positional change in projected (Okamoto et al. 2002) 

multiplied by the average frame-rate of the camera (Stanhope, 2015). 

3.3.3 Preliminary control algorithm 

For actuation of the steering wheel, an adaptive proportional-integral-derivative (PID) control 

system was designed. For this style of control, a suitable choice of proportional-integral-

derivative (PID) gains and relationship between the steering amplitude and groundspeed was 

necessary in order to produce acceptable behavior of the steering system. The PID gains were 

established to provide similar steering behavior to that of a human operator by following a simple 

iterative testing protocol for travel speeds from 0.5 m/s to 2.5 m/s. 

Firstly, a simple proportional control style was tested. Next, the groundspeed adaptive 

component was implemented with the gain K being linear and negatively proportional to the 

ground speed. Once basic functionality was achieved, derivative control based on a projected 

error was implemented to prevent overshoots (Figure 3-13). Lastly, a relatively small integral 

component was included to reduce residual steady-state lateral error (Figure 3-14). The desired 

steering wheel angle was obtained from: 

Figure 3-12: Keypoints matching on consecutive frames for ground speed estimation. Reprinted with 

permission by Stanhope (2014). 
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𝜃𝑤 = (𝐾0 − 𝐾𝑣 ∗ 𝑣(𝑡)) ∗ (𝐾𝑃𝜀(𝑡) + 𝐾𝐼𝑇𝑠
∑ 𝜀(𝑖)𝑡
𝑡−𝑇𝐼

𝑇𝐼
+ 𝐾𝐷𝑇𝑠

∑ 𝜀(𝑖)−𝜀(𝑖−1)𝑡
𝑡−𝑇𝐷

𝑇𝐷
)                      (8) 

 

assuming: 𝜃𝑎 ∝ 𝜃𝑤 

 

where 𝜃𝑤= steering wheel angle, 𝜃𝑎 = actual wheel angle, K0 = minimum gain (0.3), Kv = slope 

of gain (0.15); v = ground speed, KP = proportional gain (2.5), KI = integral gain (0), KD = 

derivative gain (8.5), t = time or instantaneous time, e = lateral error or offset, TS = time between 

samples, TI = number of seconds used for averaging in the integral, TD = number of seconds 

used for averaging in the derivative.  

 

Figure 3-13: Stage 1 algorithm demonstration. 
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The stepper motor velocity was set to 8000 steps/s; the acceleration was set to 22000 steps/s2 

and the number of averages, N, was set to 5. The output min and output max were set to 0 and 

20000 respectively. 
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Figure 3-14: Flowchart of Stage 1 PID control algorithm. 
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3.3.4 Final control algorithm 

Analysis of the results from Stage 1 experiment showed that the estimated lateral error data was 

noisy due to vibration effects and possibly required filtering to increase the signal-to-noise ratio 

and prevent jumpy behavior of the stepper motor. A second-order Savitzky-Golay filter was 

hence implemented in the program and applied to the lateral error estimation data points before 

the regression was conducted (Figure 3-15). The second-order Savitzky-Golay filter can only 

take odd numbers of measurements; therefore, nine frames and 21 frames were chosen instead of 

10 frames and 20 frames for assessing the effect of time projection length on the performance of 

the guidance system (in a commercial iteration, the control of time projection length would be 

available to the operator). Additionally, the proportional component of the PD control algorithm 

was dropped because deemed unnecessary to achieve stability and two dissimilar differential 

coefficients took turns whether the tractor was drifting away from its target or closing in towards 

it (Figure 3-16). The degree of the polynomial regression of preceding lateral error 

measurements was increased from 1 to 2 as it more accurately defines the motion of a vehicle. 

Figure 3-15: Illustration of the Savitzky-Golay filter. 
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Lastly, groundspeed estimation and scaling were taken out to fully assess the effect of projection 

time length. The two differential gains K1 and K2 were established by following a simple iterative 

testing protocol for travel speeds from 1 m/s to 3 m/s. A new approach to controlling the 

steering wheel was adopted for Stage 2: the controller now receives a target rotational velocity 

as a command rather than a positional change as this method was considered arbitrary because 

it had a different effect on the steering depending on the previous wheel position (Figure 3-17).  

 

 

Figure 3-16: Projection algorithm illustrations. Top left: approaching from the right-hand side. Bottom left: 

approaching from the left-hand side. Top right: drifting towards the right-hand side. Bottom right: drifting 

towards the left-hand side. Magenta dots represent unfiltered data.  
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The desired steering wheel rotational velocity was obtained from: 

if |P>I|: KD = K1  

else: KD = K2 

if P = 0: 𝜔𝑤 = 0 

𝜔𝑤 = 𝐾𝐷 ∗ (𝑃 − 𝐼)                                                         (9) 

 

assuming: 𝜔𝑎 ∝ 𝜔𝑤 

where 𝜔𝑤= steering wheel rotational velocity, 𝜔𝑎 = actual wheel rotational velocity, P = current 

smoothed offset, I = integral of projected values, KD = derivative gain, K1 = derivative approach 

coefficient (80), K2 = derivative drift coefficient (160), t = time or instantaneous time, e = lateral 

error or offset, TS = time between samples, TD = number of steps used for averaging in the 

derivative (9 or 21 steps).  
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This time the stepper motor maximum velocity was set to 3000 steps/s and the acceleration to 
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Figure 3-17: Flowchart of Stage 2 PID control algorithm. 
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15000 steps/s2. The output min and output max were set to 0 and 1000000 respectively. 

3.3 Experimental setup Stage 1 

Two row arrangements were designed to test the guidance system on a straight path and a 

sinusoidal path (Figure 3-19). A green garden hose was used as an artificial row as it offered the 

possibility to be reconfigured on demand and the advantage of keeping the same appearance 

throughout trials (Figure 3-18). It also made it easier to obtain repeated lateral error estimates. 

It was clamped down on the tarmac surface to ensure immovability during passes. The tractor 

was first positioned at the end of the path with the camera centered over the row and the front 

wheels turned straight forward. The tractor moved forward, and the auto-guidance and data 

Figure 3-18: Stage 1 test track with the experimental tractor at the far end. 



 

35 

acquisition systems were engaged. The tractor traveled along the row until it reached the end of 

the segment. After entering the next pass, the auto-guidance system was engaged until the 

tractor reached the end. After that the operator again took control and manually steered the 

tractor for the headland maneuver. Test runs were conducted at a travel speed of 2,5 ± 0,2 m/s. 

Each combination of hose arrangement and direction was tested three times, resulting in 12 total 

test runs. All the test runs were completed within a two-hour period (a few minutes were 

necessary between tests to reposition the tractor). Data points were taken from each run as 

described above and saved to a .csv file in order to calculate the path mean absolute lateral error, 

the RMSE, and the 95th percentile. The RMSE was calculated per Eq.9: 

𝑅𝑀𝑆𝐸 = √∑
𝑒𝑖
2

𝑁
𝑁
𝑖=1                                                     (9) 

where 𝑒𝑖  = lateral error based on camera offset detection.  

Figure 3-19: Arrangement of the two test layouts for the garden hose, on tarmac with the North arrow. 
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3.4 Experimental setup Stage 2 

The two row arrangements were elongated to 120 m in order to obtain more data on each run 

and the amplitude of the curved track was increased to 4 m (Figure 3-20). The green garden hose 

was used again as an artificial row. Test runs were conducted at travel speeds of 1,0 ± 0,2 m/s, 

2,0 ± 0,2 m/s and 3,0 ± 0,2 m/s. Each combination of hose arrangement, direction of travel, 

speed and projection time length was randomly tested four times, resulting in 96 total test runs. 

Two repetitions were completed on 29 June 2016 in the late afternoon under cloudy skies and 

two repetitions on 30 June 2016 in the morning under cloudless shiny skies (the light conditions 

were not controlled for).  

 

Figure 3-20: Stage 2 curved and straight test tracks. 
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4. RESULTS AND DISCUSSION 

4.1 Stage 1 test 

The performance measures are shown in Table 1 for both the straight and curved paths at 2.5 

m/s, which turned out to be the fastest speed at which the system was showing stable behavior 

and minimal hunting oscillation. Figure 4-1 demonstrates that the performance of the vision 

guidance system at a speed of 2.5 m/s in the straight and the curved path system was visually as 

good as a human driving the tractor. The Stage 1 vision guidance had a 95th percentile error over 

the straight track of 16.7 cm whereas the 95th percentile error on the curved track was 20.6 cm 

as shown in Table 1.  

 

Based on this experiment, the machine vision algorithm clearly segmented the path to be 

traversed. However, the lateral offset data appeared noisy, and the use of a linear regression 

might have created aberrations in the predicted errors, resulting in unstable behavior. Control 

enhancements are implemented in Stage 2 to improve the guidance system performance further 

to attain the aforementioned 5 cm target. 
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Table 1: Results from Stage 1 test. 

 

 

Figure 4-1: Performance of guidance system on the straight path. 
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Figure 4-2: Performance of guidance system on the curved path. 

4.2 Stage 2 test 

Table 2 presents a summary of all 24 combinations of the 96 test runs (4 repetitions), including 

the number of records for both the straight and curved paths at speeds of 1 m/s up to 3 m/s, 

which turned out to be the fastest speed at which the system was showing stable behavior and 

minimal hunting oscillation. All 96 data sets were cropped to start and end at roughly the same 

geographical coordinates. The 95th percentile lateral errors were computed. Data was analyzed 

according to the GLM (Generalized Linear Model; ANOVA) procedure of SAS (SAS Institute, 

Cary, USA), as well as the MIXED procedure. The models used involved the trajectory factor 

(Straight or Curved), the direction factor (East-west or West-east), the speed the tractor was 

driven at (1 m/s, 2 m/s or 3 m/s), and the number of projection frames factor (9 frames or 21 

frames). All the factors were treated as fixed. There were exactly four repetitions for each of the 

24 different combinations of factors. The dependent variable in this experiment was the 95th 

percentile lateral error in centimeters for each of the 96 runs (see Table 3). 
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A standard Tukey’s range test was performed to determine significant differences between 

combinations. Significance was determined with α ≤ 0.05. As can be seen, there was a noticeably 

smaller discrepancy between the straight and curved track results as compared with the Stage 1 

experiment. In fact, the statistical analysis has shown that they are only significantly different at 

α = 0.05 at a speed of 2 m/s. Trials at 1 m/s and 3 m/s showed no significant difference between 

the straight and curved configurations. 

Table 2: Results from Stage 2 test. 
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Table 3: ANOVA of 95th percentile lateral error (cm) (Stage 2 experiment). 

Source df MS p-value 

Trajectory 1 80.377031 0.0039 

Direction 1 18.003383 0.1622 

Speed 2 1200.649938 <.0001 

Frames 1 0.00208 0.9879 

Trajectory*Speed 2 32.16723 0.0335 

Speed*Frames 2 125.924111 <.0001 

Trajectory*Direction*Speed*Frames 14 4.916887 0.8977 

Error 72 9.027846   

 

All three speeds yielded significantly different mean 95th percentile errors with 1 m/s just shy of 

attaining the 5-cm objective with 5.5 cm. 2 m/s had an 11.0 cm mean 95th percentile error, 3 m/s 

stood at 17.7 cm. A 17.7 cm 95th percentile error is acceptable under certain circumstances and 

is comparable to the performance of a manual guidance system (manual guidance ranges from 5 

or 10 cm to 30 cm pass-to-pass according to Heraud & Lange 2009); nonetheless, it is imperfect 

and could certainly be improved further. It is to note; however, that the placement of the position 

sensor (camera) was the same as that of the control point as the camera performed both tasks. 

Having a second camera as a control point on the front axle of the tractor (730 mm behind the 

position sensor) might have reduced phase lag. 

 

There was no statistically significant difference between East-West trials and West-East trials 

at α = 0.05, which was expected.  
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The statistical analysis confirmed that there was a significant interaction between the speed the 

tractor was traveling at and the number of projection frames. Linear regressions of the 95th 

percentile lateral error as a function of ground speed on Figures 4-4 and 4-5 reveal that the 

performance of the guidance system was better at 1 m/s and 21 frames than at nine frames and 

that it was better at 3 m/s and nine frames than at 21 frames. There was no significant difference 

at 2 m/s between nine frames and 21 frames, suggesting that the actual number of projected 

frames at that speed should have been somewhere between nine and 21. These results clearly 

demonstrate the linear relationship between lateral error and speed and the necessity for an 

adjustable length of projection (number of projected frames) as a negative linear function of speed, 

which would easily be implemented using the groundspeed estimation algorithm.  

 

During the tuning phase of the guidance system, it became evident that a slightly bigger steering 

actuator capable of faster accelerations would improve the performance of the system at higher 

speeds. A bigger motor would also allow the guidance system to work on smaller vehicles that 

are not equipped with power steering. 
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Figure 4-3: 95th percentile lateral error versus speed on the straight track. 

 

 

Figure 4-4: 95th percentile lateral error versus speed on the curved track. 
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4.3 Future improvements 

Several uncontrollable variables such as soil conditions, terrain slope, and travel speed can have 

a substantial effect on agricultural vehicle dynamics. An inventive method for addressing the 

non-linear nature of the steering system and eliminating the necessity to constantly re-tune the 

guidance algorithm parameters (e.g., when switching between tractors) is to use an adaptive 

control system. Q-learning (Watkins & Dayan 1992) is a model-free reinforcement learning 

technique that would be suitable for this kind of control system. Q-learning is based on the 

principle of a reward mechanism meaning that, for a given action, the resulting behavior of a 

system is classified and subsequently rewarded or punished. A reward is attributed to the 

actions which resulted in positive behavior for a particular state of the system (e.g., adjusting 

gain offsets due to bias) whereas a punishment is attributed to the actions that led to negative 

behavior (e.g., high gains resulting in overshooting). Eventually, the learning process 

converges towards a non-linear response matrix which adapts to the current working 

environment of the system. Applications of adaptive controllers in agriculture have the 

potential to improve performance and reduce calibration when working with varying vehicle 

configurations and field conditions. 

Future work will also bring the guidance system to the field to assess performance in presence 

of uneven ground conditions and while pulling implements. More compact designs will be 

evaluated, and improvements to ergonomics and manufacturability of the system will be 

implemented. 
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5. CONCLUSION 

 

A universal quick-install computer vision guidance system was developed for following row 

crops. The camera that was used as a posture sensor was also used as a control point, and the 

system was tested on the tarmac with a garden hose, following an original evaluation protocol. 

The guidance system matched or surpassed commercially available systems regarding 

performance. However, only at 1 m/s did the guidance system reach the target 5 cm 95th 

percentile lateral error. Although the system does not offer the highest level of precision, its 

simple yet robust algorithm, its ergonomic features, its ease of installation and its versatility 

make it a serious contender in the arena of guidance systems. For the fertilizer and phytosanitary 

products application, it might increase profitability and protect the environment by reducing the 

overlaps, misses and damage to row crops.  
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APPENDIX A: Python Code 

""" 

Row Assist 

Precision Agriculture and Soil Sensing Group (PASS) 

McGill University, Department of Bioresource Engineering 

 

""" 

 

__author__ = 'Trevor Stanhope' 

__version__ = '1.0' 

 

## Libraries 

import Image 

import cv2, cv 

from src import CVGS 

import serial 

import json, ast 

import numpy as np 

import scipy.signal as sig 

import thread 

import gps 

import sys, os, time 

from datetime import datetime 

from ctypes import * 

from time import sleep 

from Phidgets.PhidgetException import PhidgetErrorCodes, PhidgetException 

from Phidgets.Events.Events import AttachEventArgs, DetachEventArgs, 

ErrorEventArgs, InputChangeEventArgs, CurrentChangeEventArgs, 

StepperPositionChangeEventArgs, VelocityChangeEventArgs 

from Phidgets.Devices.Stepper import Stepper 

sys.settrace 

 

## Constants 

CONFIG_FILE = "settings.json" 

 

## Class 

class RowAssist: 

 

    def pretty_print(self, task, msg, *args): 

        try: 

            date = datetime.strftime(datetime.now(), "%H:%M:%S.%f")     

            output = "%s\t%s\t%s" % (date, task, msg) 

            print output   

        except: 

            pass 

 

    def __init__(self, config_file): 

         

        # Load Config 

        self.pretty_print("CONFIG", "Loading %s" % config_file) 

        self.config = json.loads(open(config_file).read()) 

        for key in self.config: 

            try: 

                getattr(self, key) 
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            except AttributeError as error: 

                setattr(self, key, self.config[key]) 

 

        self.bgr1 = np.zeros((640, 480, 3), np.uint8) 

        self.bgr2 = np.zeros((640, 480, 3), np.uint8) 

        self.cv_speed = 0.0 

 

        # Initializers 

        self.run_threads = True 

        self.init_log() # it's best to run the log first to catch all events 

        self.init_camera() 

        self.init_display() 

        self.init_cv_groundspeed() 

        self.init_stepper() 

        self.init_controller() 

        self.init_pid() 

        self.init_gps() 

        self.init_qlearner() 

 

    ## Initialize Display 

    def init_display(self): 

        thread.start_new_thread(self.update_display, ()) 

     

    ## Initialize Ground Speed Matcher 

    def init_cv_groundspeed(self): 

        """ 

        Initialize CV GroundSpeed 

        """ 

        self.pretty_print('GSV6', 'Initializing Groundspeed Matcher ...') 

        try: 

            self.CVGS = CVGS.CVGS() 

            thread.start_new_thread(self.update_groundspeed, ())   

        except Exception as e: 

            raise e 

     

    # Initialize QLearner 

    def init_qlearner(self): 

        """ 

        Initialize Q-Learner 

        """ 

        self.pretty_print('QLRN', 'Initializing Q-Learner ...') 

        try: 

            """ 

            X: STEERING_WHEEL POSITION 

            Y: ERROR 

            """ 

            self.qmatrix = np.zeros((self.OUTPUT_MAX, self.CAMERA_WIDTH, 3), 

np.uint8) 

        except Exception as e: 

            raise e 

                 

    # Initialize Camera 

    def init_camera(self): 

        """ 

        Initialize Camera 

        """ 

        # Setting variables 
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        self.pretty_print('CAM', 'Initializing CV Variables ...') 

        self.pretty_print('CAM', 'Camera Width: %d px' % self.CAMERA_WIDTH) 

        self.pretty_print('CAM', 'Camera Height: %d px' % self.CAMERA_HEIGHT) 

        self.pretty_print('CAM', "Camera Rotated: %s" % 

str(self.CAMERA_ROTATED)) 

        if self.CAMERA_ROTATED: 

            self.CAMERA_CENTER = self.CAMERA_HEIGHT / 2 

        else: 

            self.CAMERA_CENTER = self.CAMERA_WIDTH / 2 

        self.pretty_print('CAM', 'Camera Center: %d px' % self.CAMERA_CENTER) 

        self.pretty_print('CAM', 'Camera Depth: %d cm' % self.CAMERA_DEPTH) 

        self.pretty_print('CAM', 'Camera FOV: %f rad' % self.CAMERA_FOV) 

        self.pretty_print('CAM', 'Ground Width: %d cm' % self.GROUND_WIDTH) 

        self.pretty_print('CAM', 'Error Tolerance: +/- %d cm' % 

self.ERROR_TOLERANCE) 

        self.PIXEL_PER_CM = self.CAMERA_WIDTH / self.GROUND_WIDTH 

        self.pretty_print('CAM', 'Pixel-per-cm: %d px/cm' % 

self.PIXEL_PER_CM) 

        self.PIXEL_RANGE = int(self.PIXEL_PER_CM * self.ERROR_TOLERANCE)  

        self.pretty_print('CAM', 'Pixel Range: +/- %d px' % self.PIXEL_RANGE) 

  

        # Set Thresholds      

        self.threshold_min = np.array([self.HUE_MIN, self.SAT_MIN, 

self.VAL_MIN], np.uint8) 

        self.threshold_max = np.array([self.HUE_MAX, self.SAT_MAX, 

self.VAL_MAX], np.uint8) 

         

        # Attempt to set each camera index/name 

        self.pretty_print('CAM', 'Initializing Camera ...') 

        self.camera = None 

        self.bgr = None 

        self.mask = None 

        self.camera_idx = 0         

        try: 

            while self.camera == None: 

                cam = cv2.VideoCapture(self.camera_idx) 

                cam.set(cv.CV_CAP_PROP_SATURATION, self.CAMERA_SATURATION) 

                cam.set(cv.CV_CAP_PROP_FRAME_HEIGHT, self.CAMERA_HEIGHT) 

                cam.set(cv.CV_CAP_PROP_FRAME_WIDTH, self.CAMERA_WIDTH) 

                for i in range(10): 

                    (s, bgr) = cam.read() 

                if s: 

                    self.camera = cam 

                elif self.camera_idx > 3: 

                    print "NO CAMERA ATTACHED!" 

                    exit(1) 

                else: 

                    self.camera_idx += 1 

        except Exception as error: 

            self.pretty_print('CAM', 'CAM ERROR: %s' % str(error)) 

 

    # Initialize PID Controller 

    def init_pid(self): 

        self.pretty_print('PID', 'Initializing Control System') 

        # Initialize variables 

        try: 

            self.estimated = 0 
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            self.projected = 0 

            self.pretty_print('PID', 'Default number of samples: %d' % 

self.NUM_SAMPLES) 

            self.offset_history = [0] * self.NUM_SAMPLES 

            self.pretty_print('PID', 'Setup OK') 

        except Exception as error: 

            self.pretty_print('PID', 'ERROR: %s' % str(error)) 

     

    # Initialize Log 

    def init_log(self): 

        self.pretty_print('LOG', 'Initializing Log') 

        self.LOG_NAME = datetime.strftime(datetime.now(), self.LOG_FORMAT) 

        self.pretty_print('LOG', 'New log file: %s' % self.LOG_NAME) 

        gps_params = ['gps_lat', 'gps_long', 'gps_speed', 'gps_alt', 

'gps_quality', 'gps_satellites'] 

        nongps_params = ['time', 'hz', 'offset', 'est', 'proj', 'diff', 

'velocity', 'steps', 'encoder'] 

        if self.GPS_ON:     

            self.log_params = gps_params + nongps_params 

        else: 

            self.log_params = nongps_params 

        try: 

            self.log = open('logs/' + self.LOG_NAME + '.csv', 'w') 

            # Write config settings 

            for k,v in self.config.iteritems(): 

                self.log.write(k + ',' + str(v) + '\n')     

            # Write headers 

            self.log.write(','.join(self.log_params + ['\n'])) 

            self.pretty_print('LOG', 'Setup OK') 

            self.vid_writer = cv2.VideoWriter('logs/' + self.LOG_NAME + 

'.avi', cv.CV_FOURCC('M', 'J', 'P', 'G'), self.CAMERA_FPS, 

(self.CAMERA_WIDTH, self.CAMERA_HEIGHT), True) 

        except Exception as error: 

            raise error 

     

    # Initialize Controller 

    def init_controller(self): 

        self.pretty_print('CTRL', 'Initializing controller ...') 

        try: 

            self.pretty_print('CTRL', 'Device: %s' % str(self.SERIAL_DEVICE)) 

            self.pretty_print('CTRL', 'Baud Rate: %s' % 

str(self.SERIAL_BAUD)) 

            self.controller = serial.Serial(self.SERIAL_DEVICE, 

self.SERIAL_BAUD, timeout=0.05) 

            self.angle = 0 

            self.angle_rate = 0 

            self.encoder = 0 

            self.encoder_rate = 0     

            self.encoder_rate_prev = 0 

            thread.start_new_thread(self.update_controller, ()) 

            self.pretty_print('CTRL', 'Setup OK') 

        except Exception as error: 

            self.pretty_print('CTRL', 'ERROR: %s' % str(error)) 

            exit(1) 

             

    # Initialize Stepper 

    def init_stepper(self): 
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        # Constants 

        self.pretty_print('STEP', 'Output Minimum: %d' % self.OUTPUT_MIN) 

        self.pretty_print('STEP', 'Output Maximum: %d' % self.OUTPUT_MAX) 

 

        # Create 

        try: 

            self.pretty_print("STEP", "Creating phidget object....") 

            self.stepper = Stepper() 

        except PhidgetException as e: 

            self.pretty_print("STEP", "Phidget Exception %i: %s" % (e.code, 

e.details)) 

 

        # Open 

        try: 

            self.pretty_print("STEP", "Opening phidget object....") 

            self.stepper.openPhidget() 

        except PhidgetException as e: 

            self.pretty_print("STEP", "Phidget Exception %i: %s" % (e.code, 

e.details)) 

         

        # Settings 

        try: 

            self.pretty_print("STEP", "Configuring stepper settings ...") 

            self.stepper.setOnAttachHandler(self.StepperAttached) 

            self.stepper.setOnDetachHandler(self.StepperDetached) 

            self.stepper.setOnErrorhandler(self.StepperError) 

            

self.stepper.setOnCurrentChangeHandler(self.StepperCurrentChanged) 

            self.stepper.setOnInputChangeHandler(self.StepperInputChanged) 

            

self.stepper.setOnPositionChangeHandler(self.StepperPositionChanged) 

            

self.stepper.setOnVelocityChangeHandler(self.StepperVelocityChanged)   

        except PhidgetException as e: 

            self.pretty_print("STEP", "Phidget Exception %i: %s" % (e.code, 

e.details)) 

 

        # Attach 

        try: 

            self.pretty_print("STEP", "Attaching stepper motor ...") 

            self.stepper.waitForAttach(1000) 

        except PhidgetException as e: 

            self.pretty_print("STEP", "Phidget Exception %i: %s" % (e.code, 

e.details)) 

            try: 

                self.stepper.closePhidget() 

            except PhidgetException as e: 

                self.pretty_print("STEP", "Phidget Exception %i: %s" % 

(e.code, e.details)) 

            exit(1) 

        else: 

            self.DisplayDeviceInfo() 

             

        # Engage 

        try: 

            self.pretty_print("STEP", "Engaging stepper motor ...") 



 

55 

            self.output = (self.OUTPUT_MIN + self.OUTPUT_MAX) / 2 

            self.stepper.setCurrentPosition(0, (self.OUTPUT_MIN + 

self.OUTPUT_MAX) / 2) 

            self.stepper.setTargetPosition(0, (self.OUTPUT_MIN + 

self.OUTPUT_MAX) / 2) 

            self.stepper.setEngaged(0, False) 

            self.stepper.setVelocityLimit(0, self.VELOCITY) 

            self.stepper.setAcceleration(0, self.ACCELERATION) 

            self.stepper.setCurrentLimit(0, self.AMPS) 

        except Exception as error: 

            self.pretty_print("STEP", "ERROR: %s" % str(error)) 

            exit(2) 

             

    # Initialize GPS 

    def init_gps(self): 

        """ Initialize GPS """ 

        self.pretty_print('GPS', 'Initializing GPS ...') 

        self.gps_latitude = 0 

        self.gps_longitude = 0 

        self.gps_altitude = 0 

        self.gps_speed = 0 

        self.gps_quality = 0 

        self.gps_satellites = 0 

        try: 

            self.gps = serial.Serial(self.GPS_DEVICE, self.GPS_BAUD) 

            thread.start_new_thread(self.update_gps, ()) 

            self.pretty_print("GPS", "GPS connected") 

        except Exception as err: 

            self.pretty_print('GPS', 'WARNING: GPS not available! %s' % 

str(err)) 

 

    ## Update Learner 

    def update_learner(self, ph1, e, group): 

        self.qmatrix[ph1,e,:] = self.qmatrix[ph1,e,:] + group 

        return group 

 

    ## Capture Image 

    def capture_image(self): 

        """ 

        1. Attempt to capture an image 

        2. Repeat for each capture interface 

        """ 

        try: 

            (s, bgr) = self.camera.read() 

            if s is False: 

                self.pretty_print('CAM', 'ERROR: Capture failed') 

                bgr = None 

        except KeyboardInterrupt: 

            raise KeyboardInterrupt 

        except Exception as e: 

            raise e 

        self.bgr2 = self.bgr1  

        self.bgr1 = bgr # Update the BGR (raw) 

        if self.CAMERA_ROTATED: 

            return np.rot90(bgr) 

        else: 

            return bgr 
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    ## Plant Segmentation Filter 

    def plant_filter(self, bgr): 

        """ 

        1. RBG --> HSV 

        2. Set minimum saturation equal to the mean saturation 

        3. Set minimum value equal to the mean value 

        4. Take hues within range from green-yellow to green-blue 

        """          

        if bgr is not None: 

            try: 

                hsv = cv2.cvtColor(bgr, cv2.COLOR_BGR2HSV) 

                self.threshold_min[1] = 128 #np.percentile(hsv[:,:,1], 100 * 

self.SAT_MIN / 256 # overwrite the saturation minima 

                self.threshold_min[2] = np.percentile(hsv[:,:,2], 100 * 

self.VAL_MIN / 256) # overwrite the value minima 

                self.threshold_max[1] = 255 #np.percentile(hsv[:,:,1], 100 * 

self.SAT_MAX / 256) # overwrite the saturation minima 

                self.threshold_max[2] = np.percentile(hsv[:,:,2], 100 * 

self.VAL_MAX / 256) # overwrite the value minima 

                mask = cv2.inRange(hsv, self.threshold_min, 

self.threshold_max) 

                #kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3)) 

                #mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) 

            except KeyboardInterrupt: 

                raise KeyboardInterrupt 

            except Exception as e: 

                raise e 

        return mask 

         

    ## Find Plants 

    def find_offset(self, mask): 

        """ 

        1. Calculates the column summation of the mask 

        2. Calculates the 95th percentile threshold of the column sum array 

        3. Finds indicies which are greater than or equal to the threshold 

        4. Finds the median of this array of indices 

        5. Repeat for each mask 

        """ 

        if mask is not None: 

            try: 

                column_sum = mask.sum(axis=0) # vertical summation             

                centroid = int(np.argmax(column_sum) - self.CAMERA_CENTER + 

self.CAMERA_OFFSET)                    

                idx = centroid 

            except KeyboardInterrupt: 

                raise KeyboardInterrupt 

            except Exception as error: 

                self.pretty_print('OFF', '%s' % str(error)) 

        else: 

            idx = self.CAMERA_OFFSET 

        return idx 

         

    ## Best Guess for row based on multiple offsets from indices 

    def estimate_error(self, idx): 

        """ 

        Calculate errors for estimate, average, and differential 
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        """ 

        try: 

            t = range(0, self.T1_COEF) # the time frame in the past 

            t_plus = range(self.T1_COEF + 1, self.T1_COEF + self.T2_COEF) # 

the time frame in the future 

            self.offset_history.append(int(idx)) # add most recent raw value 

to history 

            while len(self.offset_history) > self.NUM_SAMPLES: 

                self.offset_history.pop(0) # trim history to specified length 

            smoothed_values = sig.savgol_filter(self.offset_history, 

self.T1_COEF, 2) 

 

            # Estimated 

            e = int(smoothed_values[-1]) # get latest 

            if e > self.CAMERA_CENTER: e = (self.CAMERA_CENTER) - 1  

            elif e < -self.CAMERA_CENTER: e = -self.CAMERA_CENTER 

 

            # Projected 

            spline_filtered = np.polyfit(t, smoothed_values[-self.T1_COEF:], 

deg=self.REGRESSION_DEG) 

            projected_vals = np.polyval(spline_filtered, t_plus) 

            de = np.mean(np.gradient(smoothed_values[-self.T1_COEF:])) 

            ie = int(np.mean(projected_vals)) # integral error 

            if ie > self.CAMERA_CENTER: ie = (self.CAMERA_CENTER) 

            elif ie < -self.CAMERA_CENTER: ie = -self.CAMERA_CENTER 

        except Exception as error: 

            self.pretty_print("ROW", "Error: %s" % str(error)) 

        return e, ie, de 

                 

    ## Calculate Output (Supports different algorithms) 

    def calculate_output(self, e, ie, de, v, d_phi, d_phi_prev): 

        """ 

        Calculates the PID output for the stepper 

        Arguments: est, proj, diff, speed 

        Requires: OUTPUT_MAX, OUTPUT_MIN, CENTER_OUTPUT 

        Returns: output 

        """ 

        # Version 1 (Two-Stage D)  

        if self.VERSION == 1: 

            if e < 0: 

                if e < ie: 

                    output = self.OUTPUT_MAX 

                    velocity = abs(e - ie) * self.VELOCITY * 

self.D_APPROACH_COEF 

                else: 

                    output = self.OUTPUT_MIN 

                    velocity =  abs(e - ie) * self.VELOCITY * 

self.D_DRIFT_COEF 

            elif e > 0:           

                if e > ie: 

                     output = self.OUTPUT_MIN 

                     velocity = abs(e - ie) * self.VELOCITY * 

self.D_APPROACH_COEF 

                else: 

                    output = self.OUTPUT_MAX 

                    velocity = abs(e - ie) * self.VELOCITY * 

self.D_DRIFT_COEF 
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            else: 

                velocity = 0 

                output = self.stepper.getCurrentPosition(0) 

 

        # Version 2  

        elif self.VERSION == 2: 

            if e < 0: 

                if e < ie: 

                    output = self.OUTPUT_MAX 

                    velocity = abs(e - ie) * self.D_APPROACH_COEF 

                else: 

                    output = self.OUTPUT_MIN 

                    velocity =  abs(e - ie) * self.D_DRIFT_COEF 

            elif e > 0:           

                if e > ie:                      

                    output = self.OUTPUT_MIN 

                    velocity = abs(e - ie) * self.D_APPROACH_COEF 

                else: 

                    output = self.OUTPUT_MAX 

                    velocity = abs(e - ie) * self.D_DRIFT_COEF 

            else: 

                velocity = 0 

                output = self.stepper.getCurrentPosition(0) 

 

        # limit velocity to VELOCITY_MAX 

        if velocity > self.VELOCITY: velocity = self.VELOCITY 

 

        return int(output), int(velocity) 

         

    ## Read Controller 

    def update_controller(self): 

        """ Get info from controller """ 

        a = time.time() 

        b = time.time() 

        while self.run_threads: 

            event = None 

            try: 

                s = self.controller.readline() 

                event = json.loads(s) 

                b = time.time() # end timer 

                if event is not None: 

                    self.encoder = event['a'] 

                    self.angle = event['b'] 

                    self.encoder_rate = (event['a'] - self.encoder) / (b - a) 

                    self.encoder = event['a'] 

            except Exception as error: 

                print str(error) 

            a = time.time() # reset timer 

 

    ## Set Stepper 

    def set_stepper(self, output, velocity): 

        """ Set Stepper, returns the dead-reckoning number of steps/position 

""" 

        phi_current = self.stepper.getCurrentPosition(0) 

        try: 

            if self.stepper.isAttached(): 
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                # Set Target Position 

                self.stepper.setTargetPosition(0, output) 

 

                # Set Velocity 

                self.stepper.setVelocityLimit(0, abs(velocity)) 

 

        except KeyboardInterrupt: 

            raise KeyboardInterrupt 

        except Exception as e: 

            self.close_stepper() 

            raise e 

        return phi_current 

 

    ## Get Groundspeed 

    def get_groundspeed(self, images): 

        """ Get the current groundspeed """ 

        return self.cv_speed # Return current speed 

 

    ## Write to Log 

    def write_to_log(self, sample): 

        """ 

        Write results to the log 

        """ 

        a = time.time() 

        try:           

            data = [str(sample[k]) for k in self.log_params] 

            newline = ','.join(data + ['\n']) 

            self.log.write(newline) 

        except KeyboardInterrupt: 

            raise KeyboardInterrupt 

        except Exception as e: 

            self.pretty_print("LOG", str(e)) 

            raise Exception("Failed to write to file document") 

        b = time.time() 

                     

    ## Update GPS 

    def update_gps(self):   

        """ 

        1. Get the most recent GPS data 

        2. Set global variables for lat, long and speed 

        """ 

        while self.run_threads: 

            try: 

                sentence = self.gps.readline() 

                sentence_parsed = sentence.rsplit(',') 

                nmea_type = sentence_parsed[0] 

                if nmea_type == '$GPVTG': 

                    self.gps_speed = float(sentence_parsed[7]) 

                elif nmea_type == '$GPGGA': 

                    self.gps_latitude = float(sentence_parsed[2]) 

                    self.gps_longitude = float(sentence_parsed[4]) 

                    self.gps_altitude = float(sentence_parsed[9]) 

                    self.gps_quality = float(sentence_parsed[6]) 

                    self.gps_satellites = float(sentence_parsed[7]) 

            except Exception as e: 

                self.gps_latitude = 0.0 

                self.gps_longitude = 0.0 
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                self.gps_altitude = 0.0 

                self.gps_speed = 0.0 

                self.gps_quality = 0 

                self.gps_satellites = 0 

     

    ## Estimate groundspeed (THREADED) 

    def update_groundspeed(self, wait=0.05, hist_length=3): 

        """ Needs: bgr1 and bgr2 """ 

        self.speed_hist = [0] * hist_length 

        while self.run_threads: 

            time.sleep(wait) # don't run too fast 

            try: 

                bgr1 = self.bgr1 

                bgr2 = self.bgr2 

            except Exception as e: 

                raise e 

            try: 

                if not np.all(bgr1==bgr2): 

                    cv_speed = 0 #self.CVGS.get_velocity(bgr1, bgr2, 

fps=self.CAMERA_FPS) 

                    self.speed_hist.reverse() 

                    self.speed_hist.pop() 

                    self.speed_hist.reverse() 

                    self.speed_hist.append(cv_speed) 

                    self.cv_speed = np.mean(self.speed_hist) 

            except Exception as error: 

                self.pretty_print('CVGS', 'CV001: %s' % str(error)) 

 

    ## Update Display (THREADED) 

    def update_display(self): 

        """ Flash BGR capture to user """ 

        try: 

            cv2.namedWindow("test") 

            while self.run_threads: 

                try: 

 

                    # Draw Display 

                    bgr = np.dstack((self.mask, self.mask, self.mask)) 

                    bgr[:, self.CAMERA_CENTER,:] = 255 

                    bgr[:, self.CAMERA_CENTER - self.PIXEL_RANGE, 0] = 255 

                    bgr[:, self.CAMERA_CENTER + self.PIXEL_RANGE , 0] = 255 

                    # draw estimated position 

                    bgr[:,self.estimated + self.CAMERA_CENTER, 0] = 0 

                    bgr[:,self.estimated + self.CAMERA_CENTER, 1] = 255 

                    bgr[:,self.estimated + self.CAMERA_CENTER, 2] = 0 

                    # draw projected position 

                    bgr[:,self.projected + self.CAMERA_CENTER, 0] = 0 

                    bgr[:,self.projected + self.CAMERA_CENTER, 1] = 0 

                    bgr[:,self.projected + self.CAMERA_CENTER, 2] = 255 

                    cv2.imshow("test", bgr) 

                    if cv2.waitKey(5) == 27: 

                        pass  

 

                    # Grab the raw image to write to video 

                    if self.CAMERA_ROTATED: 

                        self.vid_writer.write(self.bgr1) 

                except Exception as error: 
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                    self.pretty_print('DISP', 'ERROR: %s' % str(error)) 

                    time.sleep(1) 

        except Exception as error: 

            self.pretty_print('DISP', 'ERROR: %s' % str(error)) 

             

    ## Close Controller 

    def close_stepper(self): 

        """ 

        Close Controller 

        """ 

        self.pretty_print('SYSTEM', 'Closing Stepper ...') 

        try: 

            self.stepper.setEngaged(0, False) 

            self.stepper.closePhidget() 

        except Exception as error: 

            self.pretty_print('STEP', 'ERROR: %s' % str(error)) 

     

    ## Close 

    def close(self): 

        """ 

        Function to shutdown application safely 

        1. Close windows 

        2. Disable stepper 

        3. Release capture interfaces  

        """ 

        self.pretty_print('SYSTEM', 'Shutting Down Now!') 

        self.run_threads = False 

        try: 

            self.close_stepper() ## Disable stepper 

        except Exception as error: 

            self.pretty_print('STEP', 'ERROR: %s' % str(error)) 

        try: 

            self.controller.close() ## Disable Arduino 

        except Exception as error: 

            self.pretty_print('ARD', 'ERROR: %s' % str(error)) 

        try: 

            self.camera.release() ## Disable camera 

        except Exception as error: 

            self.pretty_print('CAM', 'ERROR: %s' % str(error)) 

        try: 

            self.vid_writer.release() ## Safely close video writer 

        except Exception as error: 

            self.pretty_print('VID', 'ERROR: %s' % str(error)) 

        cv2.destroyAllWindows() ## Close windows 

         

    ## Run   

    def run(self): 

        """ 

        Function for Run-time loop 

        1. Get initial time 

        2. Capture image 

        3. Generate mask filter for plant matter 

        4. Calculate indices of rows 

        5. Estimate row from image 

        6. Get number of samples 

        7. Calculate lateral error after filtering 

        8. Send output response to stepper 
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        9. Throttle to desired frequency 

        10. Log results to DB 

        11. Display results 

        """ 

        start_time = time.time() 

        iterations = 0 

        while self.run_threads: 

            iterations += 1 

            if time.time() - start_time > self.DURATION: 

                self.close()        

            try: 

                a = time.time() 

                bgr = self.capture_image() 

                mask = self.plant_filter(bgr) 

                self.bgr = bgr 

                self.mask = mask 

                if (bgr is not None) and (iterations > self.START_DELAY): 

                    self.stepper.setEngaged(0, True) 

                    cv_speed = self.get_groundspeed(bgr) 

                    offset = self.find_offset(mask) 

                    (est, proj, diff) = self.estimate_error(offset) 

                    encoder = self.encoder 

                    encoder_rate = self.encoder_rate 

                    encoder_rate_prev = self.encoder_rate_prev 

                    angle = self.angle 

                    output, velocity = self.calculate_output(est, proj, diff, 

cv_speed, encoder_rate, encoder_rate_prev) 

                    self.encoder_rate_prev = encoder_rate 

                    steps = self.set_stepper(output, velocity) 

 

                    # Cleanup for Logging 

                    if output == self.OUTPUT_MIN: velocity = -1 * velocity 

                    elif output == self.OUTPUT_MAX: velocity = velocity 

 

                    self.estimated = est 

                    self.projected = proj 

                    b = time.time() 

                    hz = (1 / float(b-a)) 

                    sample = { 

                        'offset' : offset,  

                        'est' : est, 

                        'proj' : proj, 

                        'diff' : diff, 

                        'angle' : angle, 

                        'encoder' : encoder, 

                        'encoder_rate' : encoder_rate, 

                        'velocity' : velocity, 

                        'steps' : steps, 

                        'time' : datetime.strftime(datetime.now(), 

self.TIME_FORMAT), 

                        'hz' : hz, 

                        'cv_speed' : cv_speed, 

                        'gps_long' : self.gps_longitude, 

                        'gps_lat' : self.gps_latitude, 

                        'gps_alt' : self.gps_altitude, 

                        'gps_speed' : self.gps_speed, 

                        'gps_quality' : self.gps_quality, 
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                        'gps_satellites' : self.gps_satellites 

                    } 

                    if self.LOGFILE_ON: 

                        self.write_to_log(sample) 

                    if hz < 20: print "WARNING! LOW CAMERA FPS!" 

                    if self.VERBOSE: 

                        self.pretty_print("STEP", "%d Hz\t%d px\t%2.1f 

px\t%2.6f,%2.6f DMS" % (hz, est, proj, self.gps_latitude, 

self.gps_longitude)) 

                else: 

                    time.sleep(0.01) 

            except KeyboardInterrupt as error: 

                self.run_threads = False 

                self.close()     

                break 

            except UnboundLocalError as error: 

                print "RUN " + str(error) 

            except Exception as error: 

                print "RUN " + str(error) 

 

    # Information Display Function 

    def DisplayDeviceInfo(self): 

        self.pretty_print("STEP", "%8s, %30s, %10d, %8d" % 

(self.stepper.isAttached(), self.stepper.getDeviceName(), 

self.stepper.getSerialNum(), self.stepper.getDeviceVersion())) 

        self.pretty_print("STEP", "Number of Motors: %i" % 

(self.stepper.getMotorCount())) 

 

    # Event Handler Callback Functions 

    def StepperAttached(self, e): 

        attached = e.device 

        self.pretty_print("STEP", "Stepper %i Attached!" % 

(attached.getSerialNum())) 

 

    def StepperDetached(self, e): 

        detached = e.device 

        self.pretty_print("STEP", "Stepper %i Detached!" % 

(detached.getSerialNum())) 

 

    def StepperError(self, e): 

        try: 

            source = e.device 

            self.pretty_print("STEP", "Stepper %i: Phidget Error %i: %s" % 

(source.getSerialNum(), e.eCode, e.description)) 

        except PhidgetException as e: 

            self.pretty_print("STEP", "Phidget Exception %i: %s" % (e.code, 

e.details)) 

 

    def StepperCurrentChanged(self, e): 

        source = e.device 

        #self.pretty_print("STEP", "Stepper %i: Motor %i -- Current Draw: 

%6f" % (source.getSerialNum(), e.index, e.current)) 

 

    def StepperInputChanged(self, e): 

        source = e.device 

        #self.pretty_print("STEP", "Stepper %i: Input %i -- State: %s" % 

(source.getSerialNum(), e.index, e.state)) 
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    def StepperPositionChanged(self, e): 

        source = e.device 

        #self.pretty_print("STEP", "Stepper %i: Motor %i -- Position: %f" % 

(source.getSerialNum(), e.index, e.position)) 

 

    def StepperVelocityChanged(self, e): 

        source = e.device 

        #self.pretty_print("STEP", "Stepper %i: Motor %i -- Velocity: %f" % 

(source.getSerialNum(), e.index, e.velocity)) 

         

## Main 

if __name__ == '__main__': 

    session = RowAssist(CONFIG_FILE) 

    session.run() 
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APPENDIX B: Arduino Code 

#define MODE_PIN 13 

#define STEERING_PIN A1 

#define WHEEL_ANGLE_PIN A2 

#define SENSITIVITY_PIN A0 

#define BIAS_PIN A3 

#define ENCODER_A_PIN 2 

#define ENCODER_B_PIN 3 

#define BUFFER_LENGTH 128 

#define BAUD 9600 

 

int steering_min = 100; 

int steering_max = 500; 

int steering = 330; 

int sensitivity = 330; 

int bias = 330; 

int angle = 512; 

int mode =0; 

int mode_counter = 0; 

int mode_limit = 0; 

char output[BUFFER_LENGTH]; 

int encoder = 0; 

 

void setup() { 

  Serial.begin(BAUD); 

  pinMode(MODE_PIN, INPUT); 

  digitalWrite(MODE_PIN, HIGH); 

  attachInterrupt(0, counter, CHANGE); // set encoder interrupt 

  pinMode(STEERING_PIN, INPUT); 

  pinMode(SENSITIVITY_PIN, INPUT); 

  pinMode(BIAS_PIN, INPUT); 

  pinMode(WHEEL_ANGLE_PIN, INPUT); 

} 

 

void loop() { 

  if (!digitalRead(MODE_PIN)) { 

    if (mode_counter > mode_limit) { 

      mode_counter = 0; 

      if (mode) { 

        mode = 0; 

      } 

      else { 

        mode = 1; 

      } 

    } 

    else { 

      mode_counter++; 

    } 

  } 

  else { 

    mode_counter = 0; 

  } 

  steering = analogRead(STEERING_PIN); 

  if (steering < steering_min) { 
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    steering = -1; 

  } 

  else if (steering > steering_max) { 

    steering = 1; 

  } 

  else { 

    steering = 0; 

  } 

  sensitivity = analogRead(SENSITIVITY_PIN); 

  bias = analogRead(BIAS_PIN); 

  angle = analogRead(WHEEL_ANGLE_PIN); 

  sprintf(output, "{'mode':%d, 'steering':%d, 'sensitivity':%d, 'bias':%d, 

'encoder':%d, 'angle':%d}", mode, steering, sensitivity, bias, encoder, 

angle); 

  Serial.println(output); 

  Serial.flush(); 

}; 

 

void counter(void) { 

  if (digitalRead(ENCODER_A_PIN) == HIGH) {  

    if (digitalRead(ENCODER_B_PIN) == LOW) {   

      encoder++; // CW 

    }  

    else { 

      encoder--; // CCW 

    } 

  } 

  else   // must be a high-to-low edge on channel A                                        

  {  

    // check channel B to see which way encoder is turning   

    if (digitalRead(ENCODER_B_PIN) == HIGH) {    

      encoder++; // CW 

    }  

    else { 

      encoder--; // CCW 

    } 

  }  

} 
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APPENDIX C: Cost (USD) of the guidance system components. 

Quantity Component Unit Price USD Amount 

1 2 POS Cable  $17.50   $17.50  

1 2 POS Panel  $11.40   $11.40  

1 Arduino UNO  $25.79   $25.79  

1 Ball Grip Positioning Arm Component  $19.41   $19.41  

1 Ball Grip Positioning Arm Component  $56.07   $56.07  

2 Ball Grip Positioning Arm Component  $16.66   $33.32  

1 Ball Grip Positioning Arm Component  $40.86   $40.86  

1 Ball Grip Positioning Arm Component  $25.04   $25.04  

1 Brackets and Fasteners  $50.00   $50.00  

1 Camera  $35.95   $35.95  

1 Camera Bracket  $12.95   $12.95  

1 Intel Atom CPU  $339.85   $339.85  

1 Waterproof Enclosure  $28.91   $28.91  

1 ABS Hub Adapter  $5.00   $5.00  

1 Joystick  $32.99   $32.99  

1 Laser Cutting of Enclosure  $30.00   $30.00  

1 Stepper Motor  $44.00   $44.00  

1 Stepper Motor Controller  $95.00   $95.00  

1 Suction Cups  $53.92   $53.92  

2 USB Cables  $15.90   $31.80  

1 USB Connector Female  $11.52   $11.52  

1 USB Connector Male  $23.94   $23.94  

2 USB Panel Mount Connectors  $15.00   $30.00  

1 Wiring   $10.00   $10.00  

   Total Cost:   $1,065.22 

 


