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Abstract. 

We study the natural L2-metrics on moduli spaces of monopoles, or alternately of 

rational maps from CP1 into flag manifolds. We prove estimates showing that for 

SU(2) these metrics are asymptotic to flat metrics arising from a "particle" description 

of these moduli spaces. More precisely, there is a natural separation parameter r for 
these particles and we prove that the metric is within cr-I of the flat metric, and that 

the curvature is bounded by cr-3 , with c a constant. Also, the spectral curves of the 

monopoles approach the spectral curves of distinct charge one monopoles exponentially 

fast. We give some comments on how these estimates should extend to the .case SU(N). 

We also examine the twistor construction of these metrics for the case of SU(N) 
monopoles with maximal symmetry breaking. In particular, we calculate the symplectic 

form associated to this construction. 

Resume. 

Nous etudions la metrique L 2 naturelle sur les espaces de modules de monopoles, 
qui sont aussi des espaces de modules d'applications rationnelles de CP1 dans des 

varietes de drapeaux. Nous obtenons des estimes, qui permettent de demontrer que, 

pour SU(2), ces metriques sont asymptotiques a des metriques plates qui proviennent 

d'une description de ces espaces de modules en termes de particules. Plus precisement, 

il existe un parametre de separation r pour ces particules, et nous montrons que la 

metrique est distante de Cr-I de la metrique plate, et que la COUrbure est bornee par 

cr-3
, c une constante. Aussi, les courbes spectrales des monopoles approximent a un 

taux exponentielles courbes spectrales des monoi>oles de charge un. Nous discutons 
de !'extension de ces estimes au cas SU(N). 

N ous considerons aussi le construction twistorielle de ces metriques pour la cas de 

monopoles SU(N) avec brisure maximale de symetrie. En particulier, nous calculous 
la forme symplectique associee a cette construction. 
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I. Introduction 

The concept of a magnetic monopole, as an isolated point-source of magnetic charge 

was introduced by Dirac [1931]. Such a point-particle is an essential (nonsmoothable) 
singularity in the magnetic field and as such is physically unacceptable. The basic 
reason for this is the linearity of Maxwell's equations which follows from their U(1) 
gauge invariance. 

On the other hand the unified theories in which the abelian gauge group U(1) of 
Maxwell's theory is replaced by non-abelian groups like SU(2) admit solutions to the 
field equations that look asymptotically like Dirac monopole but are smoothed out and 

have finite energy. The first such a non-abelian monopole was discovered in 1975 by 

Bogomolny [1976] and Prassad and Sommerfeld [1975]. It is a static monopole in R 3 

of charge 1. It is unique up to gauge transformations and translations in R 3 . This 
discovery encouraged the search for multimonopoles, i.e. monopoles of charge greater 
than 1. Such a multimonopole should be an approximation of a superposition of well 
separated 1-monopoles. The first proof of their existence was given along these lines 
by Taubes ( Jaffe and Taubes [1980]). The first actual solution was produced by Ward 
[1981] by twistor methods. The monopole equations, called Bogomolny equations, are 
a dimensional reduction of self-dual Yang-Mills equations on R 4 and therefore the 
twistor methods of Penrose and Ward can be used. This construction was given a 

more geometrical form by Hit chin [1982]. He showed in particular that a monopole is 
determined by an algebraic curve - the spectral curve - in T P 1 • 

In all these approaches checking the non-singularity of a solution was a major diffi­
culty. Nahm [1982] used an infinite-dimensional version of the ADHM construction 

of instantons to replace the Bogomolny equations by a system of ordinary differential 
equations for which the non-singularity of the monopole can be seen directly. The 
full proof of the naturai equivalence between the SU(2) monopoles and solutions to 
Nahm's equations was given by Hitchin [1983]. 

At the same time there had been an interest in the space of all monopole solutions, 
modulo gauge equivalence- the moduli space. Taubes [1983],[1985] established the ex­
istence and smoothness of the moduli space, its dimension and asymptotic properties 

of the energy functional. The actual structure of the moduli space of SU(2) monopoles 

was first analysed for charge 2 by Hurtubise [1983] using the spectral curve descrip­

tion. In the case of an arbitrary charge k it was Donaldson [1984] who identified a 
circle bundle over the moduli space with the space of based rational maps from C P 1 
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to itself. This isomorphism was given by Donaldson via Nahm's equations and it was 
Hurtubise [1985] who defined the rational map directly in terms of the monopole. It 
is worth pointing out that both monopoles and rational maps represent the minima of 
certain energy functionals which allows a Morse-theoretic approach to their structure 
(Taubes (1984]). 
The monopoles exist also for other classical groups like SU(N) and their construction 
was first analysed by Murray [1984]. From some of them, that have maximal sym­
metry breaking at infinity, we can expect a particle-like behaviour similar to SU(2) 
monopoles. For these the equivalence with the solutions to Nahm's equations was es­
tablished by Hurtubise and Murray [1989] and the isomorphism of the moduli space 
with the space of based rational maps into flag varieties by Hurtubise [1989]. 
The interest in moduli spaces of monopoles and in particular in their natural L2

-

metric was given a major impact by a conjecture concerning the motion of low-energy 
monopoles made by Manton (1982]. His conjecture, whose proof requires some infinite­
dimensional analysis, is that the motion of low-energy monopoles should be given 
approximately by geodesic motion on the moduli space. Using this assumption, Atiyah 
and Hitchin [1988] analysed the metric for charge 2 monopoles and found some inter­
esting facts about the scattering of two monopoles. 
It is therefore important to know the metric structure for moduli spaces of monopoles. 
The natural L2-metric is hyperkiihler which in particular implies that we can encode 
the metric data in a holomorphic form, the twistor space. Thus to find the hyperkahler 
metric on a moduli space of monopoles one has only (in principle) to find its corre­
sponding twistor space. This was done for SU(2) monopoles by Atiyah and Hitchin 
[1988]. It is perhaps worth pointing oU:t that the Donaldson isomorphism gives rise 
to a hyperkahler metric on the space of rational maps, a fact which is difficult to see 
directly. 

We want, therefore, to study the natural L2-metric on the moduli spaces of monopoles. 
This separates into two problems. One is to study the asymptotic behaviour of the met­
ric which, in view of Manton's conjecture, gives an information on the motion of well 
separated monopoles. In particular we would like to know whether the metric reflects 
the fact that the multimonopoles are an approximate superposition of charge 1 SU(2) 
monopoles, i.e. particles. The results of Atiyah and Hitchin [1988] and Connell [1991] 
show that this is the case for SU(2) monopoles of charge 2 and SU(3) monopoles of 
charge (1, 1) (on the other hand the results of Dancer [1993] seem to indicate this not 
being true for SU(3) monopoles of charge (2, 1) with non-maximal symmetry break-
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ing). Their results show also that the metric becomes the flat product metric at the 
rate of the inverse of the separation distance of particles, while the curvature as the 
cube of it. 

We would like to show eventually that this fact is true for SU(N) monopoles (with 
maximal symmetry breaking) with arbitrary charges. Here, however, we do it for SU(2) 
monopoles of arbitrary charge. In fact, we show that the Donaldson isomorphism be­
tween the moduli space Mk of monopoles of charge k and the space of based rational 
maps of degree k on CP1 is an asymptotic isometry between Mk and (C x C)k in 
the natural coordinates provided by this isomorphism. 

We are aided in this by the fact that the moduli spaces of SU(2) monopoles and the 
space of of gauge equivalent solutions to Nahm's equations are isometric (Nakajima 
[1991]) (the similar fact for N > 2 is not known). This leads us to study the asymp­
totic behaviour of solutions to Nahm's equations. We o~tain precise estimates, e.g. we 
show the exponential decay of the solutions. This allows us to show that the metric 
on the moduli space of monopoles approximates the flat product metric a,t the rate of 
the inverse of the separation distance of particles (in the natural coordinates provided 
by Donaldson's isomorphism), while the curvature.as the cube of it. 

We also show that the spectral curve of a monopole, which is the "controlling element" 
in the particle picture becomes the union of spectral curves of 1-monopoles exponen­
tially fast. 

We then indicate how our proof of the asymptotic behaviour of the metric on the 
moduli space of solutions to SU(2) monopoles can be adapted to the SU(N) case. 
In this case the Nahm's equations are defined on several intervals; our analysis of the 
metric will carry on each of them - there remains question of matching the solutions 
on different intervals. 

All of this can be seen from the point of view of rational maps. The monopole metrics 
can be thought of as natural hyperkahler metrics on the spaces of rational maps from 
CP1 into flag manifolds. These spaces have many interesting topological properties, 
e.g. they are stable homotopy equivalent to the spaces of all based maps of fixed degree 
from CP1 into flag manifolds (Segal [1976]). 

The other problem we are dealing with is to give the twistor space description of the 
moduli spaces of SU(N) monopoles with maximal symmetry breaking. This involves 
the knowledge of the symplectic form on rational maps given by the Donaldson iso­
morphism. In the case N = 2, Atiyah and Hitchin [1988] were able to circumvent it 
by showing that the metric is irreducible, i.e. the symplectic form must be the desired 
one. In case of arbitrary N one cannot appeal to a similar fact (there is no unique axi-
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symmetric monopole in every direction). We therefore calculate the symplectic form 
directly from the Nahm's equations which gives us the full twistor.space description of 
the moduli spaces of SU(N) monopoles with maximal symmetry breaking (modulo a 
Plancherel type theorem on isometry between the moduli spaces of SU(N) monopoles 
and Nahm's equations). 

1.1 Magnetic monopoles 

In this section we recall the basic notions on magnetic monopoles after Atiyah and 
Hitchin [1988]. 

The data for an SU(N) magnetic monopole consists of a connection A on the (trivial) 
principal bundle 

p 

l 
R3 

and a section <P ( Higgs field) of the associated ad joint bundle 

which minimize the action 

where FA is the curvature of A, dA - the exterior covariant derivative and ISI 2 = 

tr S* S. 

This condition is equivalent to the action being finite and (A, <P) satisfying the Bogo­
molny equation 

Finiteness of the action implies in turn that <P has a limit over S!, (the sphere of 
radial directions): 

<1>
00 

: S 2 
--7 su( N) 

whose image lies in some adjoint orbit of SU(N). 
Such an orbit is of the form 

SU(N)fC(T) 
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where T is a torus in SU(N) and C(T) -its centralizer. 
If T is a maximal torus, we say that the monopole has maximal symmetry breaking at 
infinity. We will be considering only monopoles with maximal symmetry breaking. 
Since the image of <1> 00 lies in a single orbit, -i<l>00 has q ( q = dim T + 1) distinct real 

eigenvalues 

/11 < ... < /1q 

with some multiplicities. In the case of maximal symmetry breaking q = N and all' 
these multiplicities are 1. 

Moreover, the map 

<l>oo : S2 
-t SU(N)j C(T) 

defines an element of the second homotopy group 

1r2 ( SU(N)/ C(T)) 

which is isomorphic to zq-t. Hence we get q- 1 integers 

mt, ... , mq-l 

called magnetic charges of the monopole. 

We frame the monopoles, i.e. we fix a basis at some point at infinity (say corre­
sponding to the x3-axis) and consider only the monopoles whose Higgs field is diagonal 
there with the eigenvalues /1i ordered as above. 
The gauge group acts on the space of all monopoles and the framing condition is pre­
served by gauge transformations that are 1 at the basepoint. 
The moduli space is now defined by identifying the gauge equivalent monopoles: 

{ 
framed monopoles } 

Mm1, ... ,mq-1 = of charge mt, ... 'mq-1 Y{ group of based gauge } 

transformations 

In the case of maximal symmetry breaking it is known (Hurtubise [1989]) that Mmb···,mN_1 
is a smooth manifold of dimension 4(m1 + ... + mN ). 

We can define a natural metric on the moduli space of monopoles. 
First of all we have a metric on the space M of all monopoles: if (A, <I>) is monopole 
with A = A1 dx1 + A2 dx2 + A3 dx3 , and ( a1 , a2, a3, <P) is an infinitesimal variation of 
(A, <I>) ,then we can put 

11 (a, a,, a,,</>) 11' ~- JR' tr (t,a! H') 
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·The gauge group acts on M as isometries, so we can define the metric on Mm1 , ••• ,mN_1 

as follows: each element (a, <P) of TMm1·····mN-1 has a representative (ab a2, a3, ~) E 

TM orthogonal to infinitesimal gauge transformations; we define the norm of (a, <P) 

to be the norm of this representative. 

With this choice of metric, Mm11 ... ,mN_1 becomes a Riemannian manifold. The metric 

has a very special property: it is hyperkiihler. This means that it is Kahler with 

respect to three complex structures I, J, K that define an action of unit imaginary 

quaternions. It is quite easy to see this action: we can think of ( a1 , a2 , a3 , <P) as the 

element <P + ia1 + ja2 + ka3 of a quaternionic vector space. 

Consider now SU(2) monopoles of charge 1. Their moduli space has dimension 4 

and if we divide out by the circle factor (U(1) action preserves the framing) we get a 

space diffeomorphic to R3
• We can therefore think of an SU(2) monopole of charge 1 

as a point in R3
• Correspondingly we could think of an SU(N) monopole of charge 

(mll ... , mN_t) as an approximate superposition of m1 + ... +m N-I charge 1 SU(2)­

monopoles, i.e. as a sum of particles, with the approximation getting better if the 

particles are far apart. Indeed, the results of Taubes[1985] for N = 2 indicate that 

there is an asymptotic region of the moduli space in which the energy of a monopole 

approximates the energy of such superposition. 

We proceed to give an equivalent description of the moduli space of the monopoles. 

1.2 N ahm 's equations 

There is a generalized Fourier transform, called Nahm transform, obtained by coupling 

Dirac's equation with a connection. For details we refer to Nahm[1982], Hitchin[1983], 

Hurtubise and Murray[1989] or Nakajima [1991]. It gives a natural equivalence (in 

fact a diffeomorphism) between the moduli space Mm11 ... ,mN_1 and the (moduli) space 

N'm11 ••• ,mN-l of gauge equivalent matrix valued functions on R: 

If the framing for Mm1 , ... ,mN_1 was J.lt < ... < J.lN, then the matrices Ti have rank 

mi on the interval (J.Lj,J.li+I), and are 0 outside of (J.Lt,J.LN). The matrices Ti(t) are 

skew-symmetric and they satisfy Nahm's equations: 

't +~[To, Ti] + ~ L Eijk[Tj, Tk] = 0 (1.1) 
j,k=1,2,3 
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for i = 1, 2, 3, i.e. 

Tt +~[To, Tt] + [T2, T3] = 0 

and similar two equations given by a cyclic permutation of indices 1, 2, 3. 

We can think of ( T0(t), T1(t), T2(t), T3(t)) as components of an (anti-self-dual) If3-

invariant connection on R'. It is then clear that the gauge group of unitary functions 

9(t) acts as follows: 
rr' rr' -1 1 . -1 
.Lo ~ 9.Lo9 - 7,99 

Ti ~ 9Ti9-1 i = 1, 2, 3 
(1.2) 

The final part of Nahm's data are the boundary conditions at points lli· In general 

these can be quite complicated, so we postpone the SU(N)-case until the section 3.1 

and concentrate for the time being on the case N = 2, i.e. SU(2) monopoles. 

In this case we have just two eigenvalues P,t, p.2 which we can take to be ±1 and one 

magnetic charge m1 = k. Therefore Ti-s are now u(k)-valued functions on (-1, 1). 

They are analytic in a neighbourhood of [-1, 1] with the exception of ±1 where 

T~, T2 , T3 have simple poles with the residues defining the k-dimensional irreducible 

representation of su(2). For instance res T1 is conjugate to 

k-1 0 0 --4-

0 _k-3 0 
4 

(1.3) 

0 

0 0 k-1 
-4-

The framing condition for monopoles corresponds now to a choice of unit vectors v_, v+ 

at -1, + 1 the - ( k~ 1 
) -eigenspace of res±1 T1 • 

The gauge group consists of analytic functions 

g(t): [-1, 1] --. U(k) 

which act on Ti-s by (1.2) and on the vectors V± by 

v_ --. 9( -1)v_ 

v+--. g(l)v+ 

H we now identify the gauge equivalent 6-tuples 
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we obtain a manifold N~e diffeomorphic to the moduli space M~e of charge k SU(2) 

monopoles. 

We would like to define a metric on N~e. The natural candidate is the L2-metric on 

[-1, 1]. First, however, we must fix the residues of Ti-s so that the variations will not 

have poles. We can use part of gauge freedom to put the residues of T1 , T2, T3 into the 

standard form of the representation of su(2). We can also fix the boundary vectors to 

be V± = (1, 0, ... 'of. We allow then only gauge transformations that are 1 at ±1. 

This gives us an alternative description of N~e: 

{ 
solutions to Nahm's equations } 

N~e = with fixed residues and boundary vectors y . 
{ 

gauge transformatiOns } 
that are 1 at ±1 

Now we can describe the tangent space to N~e as the space of infinitesimal variations 

(t 0 , ••• , t4 ) (i.e. functions that satisfy linearized Nahm's equations) which are orthog­

onal to infinitesimal gauge transformations in the L2-scalar product. This defines a 

Riemannian metric on N~e : 

As for monopoles, it is a hyperka.hler metric. In fact, since the Nahm transform is 

analogous to the Fourier transform it is not surprising that it is an isometry: 

Theorem 1.2.1 (Nakajima(1991]) The Nahm transform 

is an isometry. 

Maciocia (1992] proved a similar theorem for instantons. 
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1.3 Complex structure and rational functions 

Because of the above theorem of Nakajima, we can study the metric properties of the 

moduli space of solutions to Nahm's equations instead of the moduli space of magnetic 

monopoles. We would like to compare the metric on Nk to the one of a simpler 

manifold. It is well known (Donaldson [1984]) that Nk is diffeomorphic to the space 

of degree k based rational functions from CP1 into itself. Similar result was shown by 

Hurtubise [1989] for SU(N) monopoles. Let us indicate how such a diffeomorphism is 

realised. 

We will have, in fact, a 2-dimensional sphere of such natural diffeomorphisms; one 

for each direction in R3 (see section 1.4). Choosing such a direction corresponds to 

choosing an isomorphism (compatible with the usual metrics) R3 = R x C which 

allows to introduce complex coordinates (t + ipt,Pz + iP3) and to write the matrices 

Ti-S in a similar fashion: if the direction chosen is, say, the positive x1-axis, we put 

def 1 ("' ·r ) a def 1 (T ·r ) a = 2 .to+ t 1 ' JJ = 2 2 + t 3 (1.4) 

Had we chosen the x2-axis instead, we would have put a= i(T0+iT2), {3 = i(T3+iT1). 

Having chosen a and {3, we can write Nahm's equations as 

~{3 = 2[{3, a] 

:t(a +a*)+ 2[a,a*] + 2[{3,{3*] = 0 

(complex equation)( 1.5) 

(real equation) (1.6) 

Let us recall from the previous section that we fixed the residues at ±1. The residues 

of a, {3 become 

k-1 0 0 0 0 0 --4-

0 k-3 0 61 0 0 --4-

resa = , res{J = 0 (1.7) 

0 
0 0 k-1 0 0 sk-1 0 4 

h c. - (i(k-i))l/2 w ere v,- 4 • 

We also fixed the boundary vectors to be 

v:~: = (l,o, ... ,of (1.8) 

Following Donaldson [1984] and Hurtubise[1989] we adopt the following definition 
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Definition 1.3.1 i} A real Nahm complex is a pair (o,/3) of gl(k)-valued functions, 

smooth on ( -1, 1), satisfying there {1.5} and (1.6} and having simple poles at ±1 with 

residues given by {1. 7). 
ii) a Nahm complex is a pair (o,/3) of gl(k)-valued functions, smooth on (-1,1), 

satisfying there (1.5} and having simple poles at ±1 with residues given by (1. 7). 

It is obvious that we have 

Nk = { real Nahm complexesy 

{ 
unitary gauge transformations } 
that are 1 at ±1 

where the action of the unitary gauge group is given by 

(1.9) 

On the other hand the complex equation (1.5) is preserved by complex gauge transfor­

mations, i.e. gl(k)-valued functions g(t), even the ones that are singular at ±1. The 

essence of Donaldson's proof is the fact that in every complex gauge orbit of a Nahm 

complex there is a unique orbit of real Nahm complexes. To define the map 

it is therefore enough to define a complex gauge invariant map from the space of Nahm 

complexes to the space of rational functions. This is done as follows (we follow here 

Hurtubise [1989] whose description is equivalent to Donaldson's [1984]): 

By a singular gauge transformation we can always transform any Nahm complex into 

a regular one; then we can solve the equation 

iJ = 2og 

with g( -1) = 1 (this is equivalent to making o = 0 or, in other words, to choosing a flat 

connection). The complex equation implies then that /3 becomes constant. Consider 

the resulting Nahm complex (O,.B,v-,v+)· We can define a covector s by 

(1.10) 

Now we define a rational function of degree k on CP1 by 

. (1.11) 
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It is clear that I( oo) = 0. As we mentioned before Donaldson showed that .N~c 

is diffeomorphic to the space Rat~c ( CP1
) of such based rational functions (in fact 

Donaldson showed a natural equivalence; the diffeomorphism was proved by Boyer and 

Mann [1988]). 

A function 

can be written as a quotient 

l(z) = p(z) 
q(z) 

of polynomials p of degree ~ k- 1 and q of degree k. Moreover p, q cannot have a 

common factor. Therefore, if {3 is a pole of I, then p({j) =I 0. If the poles of I are 

distinct, say {31 , ... , f3~c, then 

( f3t' ... 'f3~c, p(f3t)' ... 'p({jk ) (1.12) 

are good local coordinates on Rat~c (CP1 ) and hence on .N~c. Moreover, Atiyah and 

Hitchin [1988] showed that the symplectic structure on M~c is, in these coordinates 

equal to 

(1.13) 

This suggests that we should be comparing the L2-metric on .N~c with the flat metric 

given in coordinates (1.12) by 

(1.14) 

This metric has also another natural interpretation. Let a rational function l(z) be 

defined by (1.11 ). The poles of I are given by the eigenvalues of {3. If the eigenvalues 

are distinct we can diagonalize {3 to get, say 

The vector v_ (which is cyclic) can be changed by a constant diagonal gauge trans­

formation to be 

(1, ... ,1)T 

The covector s, defined by (1.10), is then equal to 

s = (rr (f3t - f:J;t1
, ••• , rr (/3"- fJ;t1

) 

j~l j~k 

15 
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c It follows from (1.11) that the vector v+ must be equal to 

If we. perform the gauge transformation 

exp { -diag (p(f3i) )(1 + t)} 

we will get a N ahm complex 

(a:d,/3d,W±) (1.16) 

where a:d = diag (a:i), a:i =! lnp(j3i), /3d= diag (f3i), W± = (1, ... , If. 
The space of Nahm complexes of the form (1.16) is acted on only by the permutation 

matrices and gauge transformations of the form em,.-i(t+l). As this is a discrete group, 

( a:11 ;311 •.• , a:k, f3k) form local coordinates on the subset of .Nk where the eigenvalues 

of j3 = T2 + iT3 are distinct (the complex equation implies that the eigenvalues of j3 

are independent oft). Moreover the flat product metric given by 

(1.17) 

is the one given by (1.14). 

What is really nice is that a complex of the form (1.16) also satisfies the real Nahm 

equation (1.6). This will give us a tool when estimating the behaviour of real Nahm 

complexes. 

Let us denote the space of constant diagonal Nahm complexes of the form (1.16) with 
distinct /3i-S (modulo permutation matrices and gauge transformation em,.i(t+l)) by 

.Nf. It is locally isometric to (C x C)k (it is simply the nonsingular subset of the 
k-fold symmetric product on C x C). We have a map 

which is a local di:ffeomorphism. We will show that this map is an asymptotic isometry 

where the metric on .Nf is flat, given by (1.17) or equivalently (1.14). This corresponds 

to the particle-like behaviour mentioned at the beginning of this introduction. 

It will follow from our results that the metric on Mk approaches the flat metric as 

a function of the separation distance between these points, i.e. as the function of 

r del mini:#j I.Bi- ,Bjl + la:i- O:jl· This has been known for charge 2 monopoles (Atiya.h 

and Hitchin [1988]). Their results show also that the rate of the approximation is like 

the inverse of r, which is therefore the best possible result and which we will match. 
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1.4 Twistor space construction and the spectral curve 

A hyperka.hler manifold admits a remarkable way of encoding the metric (local) data 

in a holomorphic (global) form. This generalizes the Penrose non-linear graviton con­

struction [1976]. It is perhaps worth pointing out that since the holonomy group of 

a hyperkahler manifold is a subgroup of Sp( n ), its Ricci tensor vanishes, so we may 

think of such a manifold as a (vacuum) solution to Einstein's equations. 

We begin by reviewing the results of Hitchin et al. [1987] for an arbitrary hyperka.hler 

manifold M471
• As we already noted in the previous section there is no canonical way 

of choosing a complex structure on a hyperkahler manifold; there is a 2-sphere of them. 

The idea of the twistor space is to incorporate all these structures into one complex 

structure on a larger manifold called the twistor space of M 471
• 

The twistor space Z of M 471 is defined to be the product manifold 

z = M471 
X S2 

equipped with the almost complex structure 

I = (a I + bJ + cK, I o) 

at the point (m, a, b, c) , where Io is the standard complex structure on S2 • It follows 

from the Newlander-Nirenberg theorem that this structure is integrable, so Z is a 

complex manifold of dimension 2n + 1. Moreover the projection 

(1.18) 

is holomorphic and each copy (m, CP1
) of the projective line is a holomorphic section 

of this projection with normal bundle isomorphic to C2
" ® 0(1), where 0(1) is line 

bundle on Z pulled back from the unique line bundle of degree 1 on CP1 • With respect 

to a standard covering of CP1 by two open affine sets it has transition function e-1' 
where e is a complex affine coordinate. 

Since the metric is hyperka.hler we have three symplectic forms corresponding to the 

complex structures I, J and K: if ( , ) denotes the scalar product, then w1(s, t) = 
(Is, t), w2(s, t) = (Js, t), wa(s, t) = (Ks, t). We can construct then a symplectic form 

on each fibre of (1.18) by setting 

(1.19) 

Its quadratic dependenee on e means that globally it is a holomorphic section of 
2 . 

A T; ® 0(2), where TF denotes the tangent bundle along the fibres. 
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The last piece of information needed to encode the metric is a. real structure. The 

antipodal map on the 2-sphere induces an antiholomorphic involution r : Z ~ Z and 

the sections of the form (m, S2
) are preserved by this real structure. 

It turns out that the above holomorphic data is enough to recover the metric. We have 

the following 

Theorem 1.4.1 (Hitchin, Karlhede, Lindstrom, Rocek [1987]} Let Z2n+I be a 

complex manifold such that 

i) z is a holomorphic fibre bundle p : z ~ CP1 over the projective line; 

ii) the bundle admits a family of holomorphic sections each with normal bundle iso­

morphic to C2
n 0 0(1); 

iii) there exists a holomorphic section w of A2Tf. 0 0(2) defining a symplectic struc­

ture on each fibre; 

iv) Z has a real structure r compatible with i), ii), and iii) and inducing the antipodal 

map on CP1 • 

Then the parameter space of real sections is a 4n-dimensional manifold with a natural 

hyperkiihler metric for which Z is the twistor space. 

0 

The twistor space for magnetic monopoles can be described in terms of the space of 

rational maps. For SU(2} monopoles this was done by Atiya.h and Hitchin [1988]. In 

section 3.1 we will do it for SU(N) monopoles with maximal symmetry breaking. 

To give Atiyah and Hitchin's description of the twistor space Zk of the moduli space 

Mk of charge k SU(2) monopoles, we have to recall the definition of the spectral curve 

of a monopole after Hitchin [1983]. It is a compact algebraic curve r in the tangent 

bundle TP1 of the projective line which lies in the linear system I0{2k)l. In terms of 

a monopole it is defined by the scattering of certain differential operator. In terms of 

Nahm's equations r is defined by the equation: 

det ( 71- 2f3(t)- (o:(t) + o:*(t)) ( + 2/3*(t)(2) = 0 {1.20) 

where ( is a standard coordinate on CP1
, and 71 ~ 71(djd() the associated fiber 

coordinate in T pt. 

f is independent oft, since Nahm's equations are isospectral. An important property 

of f is the fact that the line bundle .L2 over TP1 , defined by the transition function 

exp(271/(), is trivial over r. 
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0 

We can recover the monopole from the spectral curve by choosing a special trivialization 

of L2 over f. We can also recover the solution to Nahm's equations in terms of a flow 

on the Jacobian over r (Krichever method for solving non-linear differential equations). 

Now the description of the twistor space for SC(2) monopoles can be stated: 

Theorem 1.4.2 {Atiyah, Hitchin) Let Mk be the moduli space of based SU(2) 

monopoles of charge k, and Zk its twistor space. Then, 

i) Zk is obtained by taking two copies of CxRatk (CP1 ), parametrized by ((,p(z)fq(z)) 

and ( (, p( z) jq( z)) , and identifying over ( =F 0 by: 

( = C' , q ((,) = C"q(z) , ji (:,) = e-'•l<p(z) modulo q(z) 

ii) a mono pole determines a section of zk by its spectral curve r: the equation of the 

curve gives the denominator of the rational map and a trivialization of L2 over r the 

numerator, 

iii) the holomorphic section w of A 2TP, ® 0(2) is defined by 

where Pi {resp. /3i) are the roots of q (resp. q), 

iv) the real structure is defined by 

r(() = -(-1 , T (p(z)) = ( -l)k(-2kP( -z(-
2
) 

q(z) q(-z(-2) 
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11 Asymptotic behaviour of the SU(2) monopole 

metrics 

This entire chapter is devoted to proving that the L2-metric on the moduli space .Nk 

of solutions to N ahm's equations is asymptotically the product metric on ( C x C)k. 

In section 1.3 we defined the natural coordinates (ad, /3d) on .Nk, provided by the 

Donaldson isomorphism 

where ad, /3d are constant diagonal matrices 

We will show that, if 

r ~f min 1/3·- /3·1 +la·- a·i i:f:j t J t J 

then the metric at (a, (3) differs less than co;st from the flat product metric at ad, f3d 

while the curvature is bounded by cor~st. These results appear in sections 4 and 5 

respectively. In section 3 we will get estimates on the behaviour of the spectral curves. 

In all proofs the constants are generic, i.e. they may take different values in different 

formulas. 

Let us define symbols which will appear throughout the chapter: 

for 1 ~ i,j ~ k; 

R = max~j 

Notice that 

r = min~· 
i:f:j J 

Finally: 

F(a,(3) = ft (a+ a*)+ 2 [a, a*]+ 2 [(3,(3*] 

11.1 An approximate gauge 

Consider an element of Sk(C x C) with a representative (ad,f3d) = (ai,f3i)i<k E 

(C x C)k. If all f3i-s are different, then a small neighbourhood in Sk(C x C) c:n be 
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identified with a neighbourhood of (ad, /3d) in (C x C)k or with a neighbourhood of 

any (a1r(i), f311"(i))i5;k where 1r is a permutation. We will choose one such permutation, 

having special properties, and we will be dealing with a neighbourhood of (ad, f3d) in 
(C X C)k. 

Then we will put the right poles in (ad, (3d) "by hand" (i.e. by an explicitly given gauge 

transformation g) in such a way that the resulting complex (a,~) almost satisfies 
the real equation. We also get precise estimates for the entries of ( 0:, ~) which can 

be differentiated with respect to tangent directions. What we do· here therefore is 

constructing a manifold ih di:ffeomorphic to an open neighbourhood U of (ad, /3d). 
This manifold with the natural £ 2 metric introduced in section 1. is asymptotically 

(i.e. the bigger r the better the approximation) isometric to U C (C x C)k. Later on 

we will be able to show that the di:ffeomorphism (or rather immersion) 

is also an asymptotic isometry. 

We use Taubes' idea of cluster decomposition- we group together (ai, f3i)-s that are 

relatively close together. Let us recall the pertinent definitions and facts from [Taubes 
1985]. 

Definition 1.1 Let X = { Xt, ... , xk} be a finite subset of a normed space and let 

R = diam X . A molecule is a subset Y of X satisfying the following two conditions: 

i) diam y < R o/-IYI+t where IYI denotes the cardinality of y . 
ii) Y is maximal among subsets of X with property i}. 

We have the following fact the proof of which we give for completeness: 

Lemma 1.2 (Taubes) 

i) Each x E X is contained in a unique molecule 

ii) Also, X contains at least two molecules 

iii} If Y is a molecule, then . dist(Y,X- Y) ~ R O)k-IYI+t 

Proof: For an x E X consider the family S of subsets of X containing x and 

satisfying i}. As { x} E S, S is nonempty. Observe that if}!, Y; E S and Yl -::/= Y;, 
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then Yt u Y2 E s. Indeed, as X E Yt n Y2, we have for z, wE Yt u }'2: 

(
1)k-1Yd+t (1)k-IY2I+t lz- wl $ lz- xl + lx- wl $ R 2 + R 2 

~ 
2
R m •--(IY,!,IY,I)+t ~ R m •--(IYii.IY,I) 

However IYi U Y21 ~ max (IYtl, 11-21) + 1, since Yt =/: }'2. 
Hence Yi U Y2 E S and so there is a unique maximal element of R which must be a 
molecule. 
Since the diameter of a molecule is less than !diam X, X must contain at least two 
molecules. I I 
Finally, if y is a molecule' y E Y, X rt y and IY- xl < !Rot- y ' then for any 
zE Y 

(
1)k-IYI+t 1 ( 1)k-IYI ( 1)k-<IYI+t>+I lz- xl :5 lz- Yl + IY- xl < R 2 + 2R 2 :5 R 2 

so Y U { x} satisfies i) which is a contradiction. 

0 

We will think now of X as the space {Re O'i, ,Bi} i:5k for a fixed (ad, .8d) E ( C x C)k . 
For notational convenience we will identify X and the set of indices { 1, ... , k}. We 
define inductively a permutation of indices according to the following scheme: 
We have two possibilities: either diam {.Bi} > ~diam X or not. 
In the first case let us find a molecule Y among {,Bi} and permute the indices so that 
Y=1, ... ,1YI. 
In the second case we have diam {Reai} > ~diamX. There are then Reaj1 <Re an 
such that IReaiJ- Reanl > 4

1kdiamX and such that there is no j with Reai E 
(ReainRean). Put Y = {i; Reai :5 ReaiJ and again permute the indices so that Y=l, ... ,IYI. 
Now we repeat the process inside Y and X- Y. This way we can show: 

Lemma 1.3 For every (ad,,Bd) there is a permutation after which the set of indices 
will satisfy the following: 

i} for any i,j = 1, ... , k, i < j, we have either I.Bi- .Bil 2:: C~j or Reai - Reai > cD .. 
.l.l.jJ' 

ii} for any i,j = 1, ... , k, i > j and any m 2:: i, n $ j, Rm,n 2:: c~h 
iii) there is an I < k such that either for all i > I, j ::; I, I.Bi- ,8il 2:: eR or for all 
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i > 1, j ~ 1, Reoi- Reo; ~cR. 
The constant c > 0 can be taken to be (2t)k+2. 

0 

Let us assume the following definition 

Definition 1.4 A matrix valued function o (resp. /3) defined in a neighbourhood of 
a point p E R has Nk-type pole at p if its residue is equal there to the matrix res o 
(resp. res/3) of (/.1. 7). 

Now we will define a gauge transformation which will give correct poles to (o,/3) 
and almost solve the real equation. Let 

z = 1 ±t 

Proposition 1.5 Let (ad, f3d) be an element of ( C x C)k with f3i-s all different and 
satisfying assertions i)-iii) of Lemma 1.3. There is a smooth lower-triangular gauge 
transformation g on ( -1, + 1) such that the resulting ( a,i3) := g( a, /3) has Nk-type 
poles at ±I and satisfies for z ~ 1 : 
i) li:t··(z)- o·l < K " t- z' 
ii) zli:ti;(z)l, z!Pi;(z)l ~ Ke-IIR;iz for some K,s > 0 independent of(ad,/3d), 
iii) there is a lower-triangular gauge transformation g, smooth on [ -1, 1], having real 
diagonal, with g( ±1) = 1, such that ( o, /3) = g( a}3) satisfies the real equation and 
g, g-1 are bounded independently of(ad,/3d) on [-1, l]. 

Observe that ii) implies that for t E [ -1 + ~1 , 1 - ~J 

li:ti;(t)l ' I.Bi;(t)l ~ K R;;e-dl;i(I+t) + K R;;e-IIRsj(I-t) 

Estimates of this type will be crucial in analyzing the asymptotic behaviour of the 
metric. 

We will show in the process of proving the above proposition that the estimates 
can be differentiated with respect to the tangent directions, namely we will show the 
following 
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Proposition 1.6 The gauge transformationg of Proposition 1.5 can be extended smoothly 
on a neighbourhood of ( aa, f3a) so that if ( aa, ba) is an element of norm 1 of the tangent 
space at ( aa, f3a) then the corresponding 

will satisfy: 
i} laii(t)- ail :5 K e-,r(I+t) + K e-•r(l-t) 

ii} laii(t)l :5 Ke-•R;j(l+t) + Ke-"R;j(I-t) if i > j, 
iii) for 1 ~ z = 1 ± t, z ~~;j{z)l :5 K e-•R;Jz, 

iv) bii = bi 
v} lbij(t)l :5 Ke-•R;i(I+t) + Ke-"R;j(I-t) if i > j 
with constants K, s independent of ( aa, f3a). 

Proof of Propositions 1.5 and 1.6: We assume that 1.5 and 1.6 hold for charges 
less than k (the statements are trivial for k = 1 ). For the purpose of induction we will 
prove slightly more namely in addition to i)-iii) of Proposition 2.4 (a,i3) will satisfy 
the following: 
iv} for t E [-1, -1/2], 

with Ei$k qij = -(k + 1- 2i)/2, rij E {Rmni m,n :5 k}, Pi(z) bounded by KR, its 
derivative bounded by K R2

, zpi(z) bounded; finally qij, Pi(z) independent of (aa, f3a), 
v) for t E [1/2, l.], Oii(t)- oi =- (aii( -t)- ai) 
vi) I Oij I :5 K R if i > j, 
vii) ~~iii:5KR2 if i>j, 
viii) !Piil :5 KR if i > j + 1 

ix) !Pi+t,i =t= (t~t) I :5 K R 
x) the solution w(t) to w =- IIF(a,,B)II with w(±1) = 0 is bounded on [-1, 1]. 

First of all let us show that x) implies iii). The norm of g can be estimated by the 
norm of g*g, which, as a hermitian matrix, can be estimated by the maximum of its 
eigenvalues. It follows from Donaldson's result [1984], Lemma (2.10) that 

~2 lnmax{ eigenvalues of g*g(t)};:;: -IIF(a,,B)(t)ll 
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- ::
2

lnmax{ eigenvalues of g-1_q*-1(t)} 2: -IIF(a,~)(t)ll 

and from the following simple comparison theorem which we will use repeatedly 

Lemma 1. 7 Let x, y be two real-valued functions defined on an interval [a, b] such 
that 

x(a) ~ y(a), x(b) ~ y(b) 

y = F(t)y + h(t) 

x 2: F(t)x + h(t) 

for some functions F, h with F being non-negative. Then, for all t E [a, b] 

x(t) ~ y(t) 

Proof: First of all there cannot exist a point at which x(t) 2: y(t) and 
x(t)- y(t) < 0. Therefore the function x- y is convex on any interval on which 
x 2: y, in particular on any maximal interval with this property. However at the 
endpoints of such maximal interval x- y ~ 0. Therefore x- y ~ 0 everywhere. 

We are going therefore to prove Proposition 1.5 i),ii), Proposition 1.6 and the 
inductive assumptions iv)-x). 

0 

Let l be the number < k given by Lemma 1.3 iii). Let g' be the gauge 
transformation of Proposition 1.5 and 1.6 corresponding to ( ( ai )i::=;h (Pi )i::=;i) and g 11 

similar gauge transformation corresponding to ( ( ai )i>l, (f3i )i>l). Let (a', ~') and 
(a"'~") be the resulting complexes. 
Let us put 

( 

(a', iJ') 
(a, /1) := 0 

Define similarily (a, b) satisfying assertions of Proposition 1.6. 
Observe that both (a, ;1) and (a, b) are lower-triangular and 

diag f3 = /1d , diag b = bd 
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c ' We will consider first the situation near one of the poles, say -1, i.e. we put 

z=t+1 

We will define several gauge transformations, the table of which is provided on page 
30. 

First of all we create the Nk-type poles in o: by the diagonal gauge transformation 
given by: 

0 

d(z) = (1.1) 
I 

O C-e:C-Rz)) 2 

Observe that this does not change f3 nor does it change O:ij for i > j. Call this new 
complex ( o, i3). Now we create correct poles of correct order in i3 by a gauge 
transformation of the form 1 + n, with 

n= ( ~ n (1.2) 

where n is an ( k - 1) x 1 block. Let us show first a simple fact: 

Lemma 1.8 Let o: and f3 be lower-triangular and meromorphic and let o: have the 
Nn-type poles at 0. Assume that fori- j > 1 the term r(i-j) does not OCCU1' in the 
Laurent expansion of /3ii. If o: ,/3 satisfy the complex equation, then /3ii is regular if 
i>j+l. 

PROOF: From the complex equation we have in this case: 

PiA z) = 2/3ij( O:jj - o:id + L, f3iJ+•o:i+•J - E O:iJ+•/3j+.,i 
a~l a~l 

Let p = i - j > 1 and assume that f3.t is regular if 1 < s - t < p. Suppose that 
/3ij = at-r(l + t ·regular function). Then the above equation yields 
-art-r-1 = -apt-r-1 so we get a contradiction unless r $ 0. 

0 
Observe also that if n, n' are both of the form (1.2), then nn' = 0 and so 
(1 + n)-1 = 1- n + n2

- ••• = 1- n. Therefore under the action of 1 + n 
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0 We choose an n which not only creates poles of correct order in P but also does not 
change o, i.e. n satisfies the equation 

n = 2[n,o] 

The general solution to this equation is given inductively by 

(
Cij + lz (2 L ni,j+aOj+s,j- 2 L Oi,i-sni-a,j) (u(2&jj- 2oii)f

1 dr) 0:(2&jj-2&ii)(z) 
0 s>l a>I 

- - (1.3) 

where u(g), for g(z) a function having a simple pole with residue pat z = 0, is the 
unique solution of the equation 

such that 

'IimzPu(g)(z) = 1 z-o 
Observe that u(2aii- 2aii)(z) has a pole of order i- j. 
Since we require [n, Plt+l,l to have a pole of residue Dt, we must put 

6, 
Ct+t,t = !3 !3 

I- l+I 
(1.4) 

and the in order to satisfy the condition of Lemma 1.8 we must have 

(1.5) 

Therefore, as /3i # /3i for j # i, it is possible to find a gauge transformation 1 + n 
with n of the form (1.2) such that o does not change and P becomes fi + [n, P]. 
From now on we have to separate the proof in two cases according to the alternative 
in Lemma 1.3 iii). The reason for this is that if for all i > l, j $ l, 
Reai ~ Reai ~eR, then n has automatically an exponential decay while in the 
other case we will have to introduce such a decay artificially. Let us therefore 
introduce formally two. cases: 
a) for all i > l, j $ 1, Re ai - Re ai ~ eR 
b) for all i > I, j $ I, I.Bi - .Bi I ~ eR 

Continuation of the proof in case a): 
We would like to estimate B = [n, P]. Observe that B satisfies 

iJ = 2[B, a] 
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0 and hence Bi;(z) is given by equations (1.3) with C,+I,l = 6, and Ci; = 0 if i > j + 1 
(as Bi; is then regular). Hence 

B,+I,l = u(2au - 2ai+I,I+I) 

so, by integrating the estimate in the inductive assumption iv), and recalling the 
gauge transformation ( 1.1), 

where l:q; = ~ -1, r; > 0, r 5lr;l 5 Rand p(z) = J; Pl(r) is a bounded function 
(as rp1(r) is bounded). 
We want to estimate the above function. Namely we have: 

Lemma 1. 9 Let 

( R )q (1-e-riz)qJ f(z) = - . IT . e-sRz 1-eRz r· ) 

where q; > 0, E q; = q, r; > 0, lr;l 5 R, s > 0. Then J,hf' are bounded with the 
bounds depending only on q and s. 

PROOF: It is enough to consider f with just one j and q = 1, i.e. 

R 1- e-rz 
f(z) = 1 - e-Rz r e-sRz 

with R 2::: r, s > 0. Let us put u = Rz, .\ = ~ so that 

!( ) 
_ 1 1 - e-.xu __ 

u -- e .\ 1- e-u 

To prove the lemma it is enough to show that f( u ), d:;: 1 are bounded independently of.\. 

First of all, if u 5 1, then there must be a bound independent of,\ as the set of u, A is 
compact and f(t) is continuous at A= 0 or u = 0. 
If u 2::: 1, 1- e-u;:::: 1- e-1

;:::: ~,so f(u) 5 ~ (1- e--'u) e-•u. The maximum of the 
right-hand side occurs at the point u0 where 
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which shows that f is bounded. 
Now: 

For u ~ 1 

,\ -.\u 

(In!)' (u) = 1 ~ e-.\u ----s 1- e-u 

1 - e-.\u > 1 -e-.\ > !,x - -e 
as ,\ ~ 1. Hence, for u ~ 1, (In f)' ( u) is bounded. 
If u ~ 1 then again we have a continuous function defined on the compact set 
.X~ 1, u ~ 1. 

0 

Using this lemma and the fact that Rea1+1- Rea1 ~eR we get (e.g. takings= ~c) 
the following estimate 

Re-IIRz 
Bl+I,l(z) = 

1 
_ e-Rzf(z) 

where j,~J' are bounded, /(0) = h 
Now we want to estimate 

for i > j + 1. First of all we show an estimate similar to {1.6): 

(1.6) 

(1.7) 

where /ij is bounded. We will show it by induction on i - j. We can estimate just one 
term of the form: 

(foz BiJ+~~(r)ai+IIJ(r) (u(2aii- 2oii)r1 dr) u(2aii- 2o;i)(z) {1.8) 

Observe that u(2ojj- 2o;;)(z) can be written as 

m p(z) 2(oj-o;)z 
R ( r )n"' [( R ) l-1 

( 1 - e-r,.z) q,. l (1 - e-Rz) IT 1 - e-r,.z 1- e-Rz . IT rm . e e 

where Eqm = ~ -1, Enm = i- j -1, nm ~ 0, rm > 0, r ~ rm $Rand p(z) 
bounded. 
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c Table of gauge transformations 

block-diagonal (a, {3) 

diagonal gauge 
transformation d 
of (1.1) 

(a, P) such that: P = f3; 
strictly lower-triangular parts 

of a and a are the same; 
a has Nk-type poles 

1 + n of (1.2) 

a does not change 
P gets poles of correct order 

diagonal 

gauge transfor­
mation of (1.11) 

(&,p) having Nk-type poles 
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c Call the expression in the square brackets 9ij(z). Observe that gi/ is bounded (as 
rm $ R). Hence, using the inductive assumption on IBi..i+•l and the bound 
lai+s,jl $ KR we get 

The product TI (t-er:mr rm is an increasing function so it can be majorized by its 
value at z. Therefore the absolute value of (1.8) can be majorized by 

( r K Re -sRr e2Re(a;-Cl'j )r dT) R gi"( z )e2Re(aj-a;)z lo 1- e-Rz 3 

which is less than 

which is 
K (l- e(2Re(a,-a;)+sR)z) R 9i·(z)e_,nz (1.9) 1- e-Rz 3 

As Lemma (2.8) guarantees that gij{z)e-t"Rz is bounded, takings small enough 
proves ( 1. 7). We can say more. We have 

and 

I _ e<2Re(a,-a,)+s)z $ K Rz 

Rz 
----=nz=- $ K + Rz 1- e-

These two facts and (1.9) allow us to improve (1. 7) to 

IB .. I < CRe_,nz IJ -

fori> j +I. 
Observe that the residues of P +Bare not correct. We can them change by a 
diagonal gauge transformation of the form 

where his a constant diagonal matrix depending only on k and/. 
Call the resulting complex (&,p). It has Nn-type poles and 

(&, P) = (a,P) +(a, P) 
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where 
R -Rz 

Oii(z) = qi 
1 
~ e-Rz + PiRe-Rz 

loi;(z)l $ KRe-IIRz if i > j 

l6:i;(z)l $ K R 2e-<Rz if i > j 

/3ii = o 

1?.1 ( ) s -•Rzl < KR -11Rz ,vi+I,i z - ;-e _ e 

l/3i,;(z)l $ K Re-11Rz if i > j + 1 

where all the constants are independent of (ad, /3d)· 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

Of all these facts maybe (1.16) in case when i = l requires an explanation. It follows 
from (1.6), the fact that lf(z)- 11 $ K Rz and the following simple observations: 

11-~z-Rzl $ K + Rz 

I R _!l<KR 1- e-Rz z -
These also allow us to replace (1.12) by 

I. ( ) qi -Rz I < R'R -Rz O:ii z - -e _ e z (1.18) 

(1.19) 

Observe that the inductive assumption and the above estimates imply that ( &, P) 
satisfies conditions i),ii) of Proposition 1.5 as well as the conditions iv),vi),vii),viii) 
and ix) of the inductive assumption. It is not yet our complex (o, /3) as it is defined 
only on [-1, -1/2]. 
To estimate (a,b) note that for any i,j 

d ~i is bounded (1.20) 

Now: O:ij i > j changed only after the gauge transformation (1.11) which is bounded 
and its tangent directions derivatives behave like K ze- 11Rz which together with the 
inductive assumption vi) gives us 1.6 ii) for t E [-1, -1/2] and i :/; j. Similarily vii) 
implies 1.6 iii). For 1.6 i) notice that O:ii changed by gauge transformations (1.1) and 
(1.11), differentials of which satisfy 1.6 i) and 1.6 iii) fori= j. Finally 2.5 v) will 
follow from differentiating the formulas (1.3),(1.4),(1.5). 
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c Let g denote the gauge transformation that took us from (a:,/3) to (&,p). g is defined 
on [-1, -1/2]. We want to extend g onto [-1, 1]. Notice that if we put g(t) = g( -t) 
fot t E [1/2, 1], then the resulting & has .N~c-type poles at 1 but the residue of Pis 
negative of what it should be. We can change this however by a diagonal gauge 
transformation D which is 1 at -1 and at + 1 satisfies 

(1.21} 

We want to preserve the exponential decay and so we define Di for even j as 

Di(t) = exp { ~1ri(1 + t}e-R(I-t)} (1.22) 

Since g and all its derivatives (both in the t-direction as well as in the tangent 
directions} at ±l are bounded by e-•R we can extend smoothly g onto [-1, 1] so that 
the resulting (a, ,B) satisfies Proposition 1.5 i),ii),iv)-ix) as well as Proposition 1.6. 
There remains the problem of x}. 
We want to show that the lower-triangular gauge transformation g that solves the 
real equation and 9(±1} = 1 has bounded logarithm. Observe that we can first act on 
(a, ,B) by the diagonal unitary gauge transformation U 0 = e2ilmc:rc~t which removes the 
imaginary part of diag a (but, as it is unitary, it does not change 11 F( a, ,B) 11 ) and 
then by u;gu0 which is also 1 at ±1. Obviously estimates on g and u;gu0 are the 
same. Therefore in what follows we can assume that a;i is real for all i. We have 

F( &, P) = F( a:, /3} + 6: + 6: • + 2[a:, &*] + 2[&, a:*]+ 2[&, &*] + 2[/3, ,8•] + 2[,8, p•] + 2[,8, ,8•] 

As the poles of (a, ,B) define a representation of su(2), the second order poles of 
F( a, ,B) must vanish. Similarily they vanished in F( a:, /3). Moreover, since we have 

l_.!_e-cJRz _ _.!_e-ClRz' < KR e-min{c1oc2}Rz 
z2 z2 - z 

and because of the inductive estimates iv)-ix) for ( o:, /3) as well as the estimates 
(1.13)-(1.17},(1.18) and (1.19) for (o,/J) we have 

IIF(&,p)(t)- F(o:,/3)(t)ll $ lK+Rte-•R(l+t) + KR2e-•R(I+t) 

fortE [-1, -1/2]. Since we extended (&,p) onto [1/2, 1] by symmetry and on 
[-1/2, 1/2] by a gauge transformation which is bounded by e-•R (and so is its 
derivative), we get 

'I
F( a ,B)(t)- F( o: /3)(t)ll < . K R e-•R(I+t)+K R2e-•R(I+t)+ K R e-•R(t-t)+K R2e-•R(t-t) ' ' - (1 + t) (1 - t) 
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c We want to prove x) . Observe that the solution w to w = -IIF(O:, /J>II, w(±1) = 0 
satisfies lw(z)l :::; lw(z)l where w is the solution to 
it=- IIF(a,,B)II -IIF(0:,/3)- F(a,,B)Ij, tii(±1) = 0. w can be written as w1 + w2 
where Wt,2(±1) = 0 'tOt= -IIF(a,,B)II, w2 = -IIF(o,~)- F(a,,B)II· From the 
inductive assumption w1 is bounded on [-1, 1). On the other hand the above 
estimate for IIF(&, P)(t)- F(a, ,B){t)ll and Lemma 2.6 give us ( writing out the 
explicit boundary-value solution of w = -h(t)) that lw2(t)l :5 
!(1- t) J~1(1 + r) (d~-~)e-&R(l+T) + KR2e-&R(l+T) + (~~)e-&R(1-T) + KR2e-•R(1-T)) dr + 1(1 + t) r1(1 _ r) ( KR e-&R(I+T) + K R2e-&R(I+T) + KR e-&R(1-T) + K R2e-•R(1-T)) dr 2 Jt (l+T) (1-T) 

Observe that the integrals 

1t (1 + r) ( K R e-&R(l+T) + K R2e-•R(I+T)) dr 
-1 (1 +r) 

1\1- r) ( KR e-•R(1-T) + KR2e-&R(I-T)) dr t (1-r) 
are bounded on [-I, 1]. To estimate the remaining part notice that if we write 
I + T = ( 1 - T) + 2r and 1 - T = ( 1 + T) - 2r, then we have to estimate 

(1 - t) 1t 2r ( K R e-•R(1-T) + K R2e-•R(1-T)) dr 
-I (I-r) 

(1 + t) {
1 
-2r ( K R e-•R(l+T) + K R 2e-•R(l+T)) dr lt (1 + r) 

Of course it is enough to estimate one of them. As 1 - t $ 1 -Ton (-1, t], it follows 
that the first expression is $ 

1 t2r K Re-11R(1-T) dr +(I - t) 1 t2r K R 2e-•R(I-T) dr -1 -1 

The first term is obviously bounded while the second one is equal to 

(1- t)2KRe-•R<I-T>It 
s -1 

which is also bounded on [-I, 1). This shows that w2(t) is bounded fortE [-I, I) 
which proves x). 

We still have to consider the boundary vectors. We started with two complexes (il,/3') and (cl',/3"). The boundary vector v± = (I,O, ... ,O)T at ±1 for (ii,/3') 
determines the unique solution (the one with maximal decay rate) to the equation 

~'(z) = -2ct(z)v'(z) 
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such that 
1-1 I -lim z--rv (z) = v'± 

z-+0 

and similarily for ( 0:", P"). We can take linear combination of these two solutions to 
get a solution v( z) to 

v(z) = -2a(z)v(z) (1.23) 
We have to show that after acting by g (see page 30) the solution v(z) satisfies 

I. -!.::!. A ( ) ( o o)r Im Z 2 V Z = 1, , ... , 
z-+0 (1.24) 

In (1.11) we can take the (1, I)-entry of 6 to be 0. Therefore it is enough to show 
that we get vector (1.24) after acting by (1 + n)d (see page 30). This gauge 
transformation is determined, up to a constant matrix commuting with a, by the 
order of poles and the residues it gives to (a, /3) and by leaving the strictly 
lower-triangular part of a unchanged. We express (1 + n)d differently, namely as the 
composition 

(1 + n)d = (1 + m)-1(1 +M) d{l +m) 

and we proceed to .explain the meaning of each of them. First of all there is a regular 
gauge transformation 1 +m with m strictly lower-triangular such that a becomes 
diagonal. Moreover m(O) = 0. Observe that the resulting v(z) satisfies 

Vj( z) = 0 if i # 1' I + 1 

This follows from the fact that if a is diagonal with Nrtype poles, v(z) satisfies 1-1 . (2.18) and limz ...... o z-r-•vi(z) = 0, then Vi{z) = 0. Now we act by 

- lr-1 lr-1 I I d(z) =diag(z-r, ... ,z-2 ,z-2, ... ,z-2) 

giving the NA:-type poles to a. Then we act by the gauge transformation 1 +M, M 
strictly lower-triangular, that gives the NA:-type poles to /3, does not change a {as M= [a, M]) and keeps /3ij{O) equal to 0 if i > j + 1. Observe that M1+I,l has a pole 
of order I at 0. This means that M1+1,l v1 ( z) and v1+1 ( z) both are of the form (lr-1)-1-1 
z 2 • (analytic function). Therefore if, before 1 +M we act by a diagonal gauge 
transformation C which for z = 0 has first I entries equal to 1 and next k - I to some 
appropriate c, then we can make MI+I,tVt(z) + cvl+1(z) = z "-~1+ 1 

• (analytic function). 
As a is still diagonal, the previous argument shows that the resulting 
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Notice also that the gauge transformation C we defined above commutes with d( 1 + m) and therefore we can replace ( 1 = n )d by ( 1 + n )dC. Also observe that C is the same at +1 as at -1, so we can act by a constant gauge transformation which commutes with a and /3, so it will not change them. 
Returning to v(z) we see that it satisfies (1.24). Therefore v(z) = (1 + mt1(z)v(z) also satisfies (1.24) (as m is regular). However (1 + mt1(1 + M)d(1 +m)= (1 + n)d so we do get the correct boundary vectors. 
We have proved Proposition 1.5 and 1.6 in case a). 

Continuation of the proof in case b): 
To give (a, P) correct exponential decay we consider the gauge transformation 

R" le 1+n(z)e- z 

Observe that since n = 2(n,a], a becomes 

a+ ~kRk zk-le-R"z" n(z) 

while P becomes 

p + [n, P]e-R"z" 
In order to estimate ~kRkzk-le-R"z"n(z) we have to improve the estimates for n(z). We want 

(1.25) 
Observe that since l/3i- /3il ;::: eR fori >I, j $ l, (1.4) and (1.5) give us 

IC· ·I < K R-<i-i) IJ -

Recall now the expression for <:r(2aii- 2aii)(z) from part a): 

where l:q& = ~ -1, En$= i- j -1, n6 ;::: 0, r6 > 0, r $lr6 1 $Rand p(z) bounded. Call the expression in the square brackets 9ii(z). As Lemma 1.9 shows gij{z)e- 6Rz is bounded. Because of the above estimate on ICi;l as well as the fact that . 

r6z < K + R RzeCRz $ e(C+I)Rz 1- e-r.z - z' 
we get 

(1.26) 
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0 We want similar estimates for the other terms of ni;(z), i.e. for 

(foz 2ni,i+,ai+,,i (u(2a;;- 2aii)f1 
dr) u(2aii- 2a;;)(z) 

Observe that (1.26) gives us the desired estimate for nk+I,k: 

I I K CRz 
nk+I,k $ Rz e 

Notice that using the Mean Value Theorem we get 

foz 2ni,i+,ai+,,i (u(2aii- 2aii)f1 dr = 2n;,i+,(r)ai+,,i(r)(u(2aii- 2a;;)(r))-1 
• z 

for some 0 < r < z. 
Using now the inductive assumption (lni,j+8 {r)l $ d{,.)~~r_.), the fact that 
lai+,,il $ K R, the formula for u(2aii- 2aii)(r) and Lemma 1.8 we get that the norm of 
2ni.;+,(r)ai+s,i(r) (u(2aii- 2aii)(r))-1 

· z can be majorized by 

Rz 1- e-R-r (1- e-r • .,.)n. -- IT ·KeCR-r (Rr)P R r, 

where p < i- j, L:n, = i- j- 1, n, ~ 0, r, > 0 and r $lr,l $ R. 
We can rewrite it as 

Now, as l-~~R,. is bounded and both 1 - e-r • .,. and ~:_:-=.;;; are increasing functions, and the expression in the square brackets is increasing, we get that 

From this it follows that 

I (foz 2niJ+•ai+•.i (u(2aii- 2aii))-1 
dr) u(2a;j- 2ai;)(z)l $ (

1
!! :-.:Rz)PecRz 

Now we can use the simple facts 

1 < 1 CRz 
1- e-Rz- Rze 

1 < _!__ecRz 
- Rz 
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c to show finally {1.25). 

We also want to estimate nii· We know that n = 2[n, a] and as laiil $ K R if i > j 
and laid $ ~ ecRz + K R, it follows that 

{1.27) 

Now we would like to estimate B = [n,.BJ. First of all {1.6) gets replaced by 

B = R j(z)e2(a,-2a,+1 )z 1+1,1 1 - e-Rz (1.28) 

where J, hf' are bounded and f(O) = 61. 
Bii fori> j + 1 is given by the formula (1.3) (as B = 2[B, a] ) but with Cii = 0. Repeating the arguments for nii we can show now inductively: 

IB··I < KRecRz l) - (1.29) 

Now if we correct the residues by a diagonal gauge transformation of the form 

creating thus the complex (0:, ~) which we can write as 

then (1.25) and (1.27) together with the fact that i- j $ k- 2 if i > l,j $ I, and together with the following fact 

give us: 

l&ij(z)l $ KRe-•Rz if i > j 

!&ii(z)l $ KR2e-•Rz if i > j 
We also have, like in the case a) 

laii(z)- ~ e-Rzl $ K &-Rz 

~~ii(z) + ~!e-Rzl ~ ~Re-Rz + KR2e-Rz 

38 

(1.30) 

(1.31) 

(1.32) 

(1.33) 

(1.34) 



(1.29) together with (1.30) lead 

~~i)z)j $ K Re- 11Rz if i > j + 1 

Finally we also have 

/3ii = 0 

l/3i+I,i(z)- ~e-Rzl $ KRe-Rz 
if i =I= k. 
There remains problem of ~l+I,l(z). We know that it is equal to 

We can improve (1.30) to 

{1.35) 

( 1.36) 

(1.37) 

where g, h9 are bounded and g(O) = 1. Then in the same way as for (1.16) we get 

( 1.38) 

The above estimates for (a,~) are the same as in case a) therefore we can prove 
Proposition 1.5 i),ii) and iv)-x) in the same way. Differentiating with respect to 
tangent directions is also done the same way (we use again (1.20) so we can prove Proposition 1.6. The analysis of the boundary vectors is exactly the same which ends the proof of Propositions 1.5 and 1.6. 

0 
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0 

2.2 Exponential decay of the solutions to Nahm's equations 

In this section we will analyze Nahm's equations and get estimates on their solutions. 
This in turn will let us get estimates on the gauge transformation g defined in 
Proposition 1.5 iii). 

We consider (a, j3) = g( a, j3). a and j3 are lower triangular on ( -1, 1) and are the 
result of a smooth (on ( -1, 1)), lower triangular gauge transformation gg 
(Proposition 1.5) acting on (ad, /3d)· Let us express gg in the form 

d(1 + n) 

where d is diagonal and n is strictly lower-triangular. d(1 + n) can be also written as 

u:vod(1 + n )uo 

where u0 , V 0 are the diagonal unitary gauge transformations e2ilmad , ei,Im In cl, 

d = v~d and n = u0nu~. 
Therefore, instead of ad, we can start with u0 ( ad) = Re ad and consider 

(2.1) 

(a, j3) is lower-triangular, has real diagonal, satisfies the real equation and is 
complex-gauge equivalent to (ad, /3d)· It differs from (a,j3) of Proposition 1.5 iii) by a 
unitary diagonal gauge transformation u~vo which does not affect the estimates on 
the stictly lower-triangular part of (a, j3) nor on the real part of the diagonal. 

The goal of this section is to prove 

Proposition 2.1 Let z = 1 ± t. There are constants s > 0, K, depending only on the 
charge k, such that for any i > j and z :::; 1 

Observe that a corollary follows immediately 

Corollary 2.2 There are constants s > 0, K, depending only on the charge k, such 
that for any i > j and t E [ -1 + ~i, 1 - i;J 

iaij(t)i , if3ij(t)i ::S: K ~je-sR;j(l-t) + K Rije-sR;j(l+t) 

40 



We also would like to say something about the diagonal part of a (observe that the 
diagonal part of (3 is = (3d)· We have 

Proposition 2.3 Let z = 1 ± t. There is a constant K, depending only on the 
charge k, such that for z ::; 1 and i ::; k 

We want to remark that Proposition 2.1 is equivalent to the following two facts 

Proposition 2.4 There are constants s > O,C, K, depending only on the charge k, 
such that for any i > j and t E [-1 + ~i,1- ~J 

loi;(t)l ' lf3i;(t)1 ::; K R;;e-IIR;j(I-t) + K R;je-IIR;J(I+t) 

Proposition 2.5 Let z = 1 ± t. There is a constant K, depending only on the 
charge k, such that for z ::; 1 and all i > j 

It is clear that Proposition 2.1 implies 2.4 and 2.5. It is also clear that 2.4 implies 
that the estimates of 2.1 hold for z ~ i . Then however, changing K and s, 2.5 IJ implies they hold for all 0 ::; z ::; 1. 
Therefore we are going to prove Propositions 2.3, 2.4 and 2.5. 
Before starting the proof let us make some remarks. We consider molecules (cf. 
Def.1.1) in the set 

X = { (Re ai, (3i) ; i = 1, ... , k} 
If Y is a subset of X we will identify Y with the set of indices { i; (Reai, f3i) E Y }. We will use the following symbol (Y C X): 

l(Y) =X X X- (Y X y u Y' X Y') (2.2) 

Let Y be a molecule in X. First of all we want to prove Propositions 2.4 and 2.5 for 
(i,j) E /(Y). Observe that Lemma 1.2 gives us 

if (i,j) E I(Y), then ~; ~ ot R (2.3) 
We have the following lemma that reduces the exponential decay to the o(l) decay: 
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Lemma 2.6 There are t: > 0, s > 0 such that for every a< band every molecule Y, if 

for all t E [a, b], then 

fortE [a, b] and (i,j) E /(Y). 

Note that (2.3) and the fact that R 2::: R;j imply that for (i,j) E /(Y) R-decay is 
equivalent to Rt;-decay. 
Proof: In our gauge a is lower triangular with real entries on the diagonal. 
Therefore the real equation 

(a+ a*)+ 2[a,a'"] + 2(19,19'"] = 0 

gives us an equation for a. If M is a matrix, put 

MA = strictly lower triangular part of M + !diagonal of M 

The equation for a can be written then as 

6: = 2(a'", a] A + 2(19'", t9JA 

We can differentiate this and the complex equation to get 

a - 2 ( (2[a'", a] A+ 2[19'", ,B]A)'", a]A + 2 [a'", 2[o'", a]A + 2[,8'", 19]A ]A 
+2[2[a'",,B'"),,B)A + 2(,8'",2[,B,a)]A 

~ - 2[2[,8,a],a] + 2[,8,2[a'",a]A+2(19'",P]A] 

(2.4) 

The terms on the right are products of three entries of a and p. Let us write down 
those terms in the equation for O:i3, (i,j) E /(Y), in which two of the entries are 
diagonal. We get none from the first bracket ; the second bracket gives 
4laii - aii 1

2 
a,i + 4( a,, - a33 )(fti -Pi ),813 ; there is no such terms in the third bracket 

2 - -and finally the fourth one contributes 4l.8i- ,83! aii + 4({3,- {3j),B,3(aii- aii)· 
Therefore the total sum of such terms is 
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Similarily writing out such terms in the equation for f3ij gtves 

4 ( iaii- ajjl2 + lf3i- f3jl 2
) f3ij + 4(f3i- (3j)aij(ajj- aii) + 4(f3i- {3j)(aii- ajj)aij 

= 4 ( iaii - aii 1
2 + lf3i - f3il

2
) f3ii 

All the other terms involve at least two nondiagonal entries. One of them must have 
coordinates belonging to I(Y) while the other one will have, by assumption, norm 
:::; fR. Also by assumption la,, - Re a, I :::; fR. We have the exactly symmetric 
situation for (a*, (3*). Therefore, if 

then the above equations for a, ffi, a*, ;3• give US an equation for X of the form 

x = Dx + E(t)x 

where D is diagonal and 

(2.5) 

while every entry of E has norm :::; f.R2
• This means that, if f. is sufficiently small, we 

get 

llxll 2 = 2Re(x,x) + 2(x,x) ~ 2Re(x,x) = 2Re( (D + E)x,x) ~ s2R2 llxll 2 (2.6) 

where we use (2.3) for the last inequality. Now Lemma 2.6 proves the result. 

0 

Therefore we want to show that lf3- .8dl, la- Read! are small for 
t E [ -1 + ~, 1 - ~] if C is large. First of all let us prove it for the diagonal part of a. 

Lemma 2. 7 For every f. > 0 there is a C depending only on f. such that for any 
number M 

11 diaga(t)- Readll $ f.M 

for every t in [-1 + z_, 1 - Z. ]. 

If M is not large enough the interval [ -1 + ~, 1 - ~] can be empty. 
Proof: We can write, according to Proposition 1.5 iii), 

diaga(t)- Read= Rediag&(t)- Read - !:t lnd 
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c 

where lnd is bounded on [-1, 1] and independently of (ad, /3d)· It follows from 

Proposition 1.5 i) that Rediag a(t)- Read satisfies the assertions of our lemma. On 

the other hand, as ln dk is bounded independently of (ad, /3d), for every E > 0 there is 

a C independent of (ad, /3d) such that l(ftlndk)(t)l ~EM at least once on any 

interval of length Z.. 
Hence there are points toE [-1, -1 + Z.J, t1 E [1- z_, l] such that 

d - d -
l(culndk)(to)l ~EM , l(dtlndk)(t1)1 ~EM 

There!ore the same conclusion holds for akk -Re ak (i.e. there are points to, it at 

which akk - Re ak satsfies the above inequalities). 

Now the diagonal part of the real equation 

(a+ a*)+ 2[a,a*] + 2[/3,/3*] = 0 

gives, in the case of a lower-triangular (a, f3), the following equations 

- aii = L: (laij 1
2 + lf3ijl

2
) - L: (lajil

2 + lf3jin (2.7) 
i>j j>i 

This gives, as a and f3 are lower-triangular, 

-akk > 0 

-aick - ak-i,k-1 > 0 

(2.8) 

-akk - ... - ai1 > 0 

Therefore we get 

-EM~ -(akk(to)- Reak) ~ -(akk(t)- Reak) ~ -(akk(h)- Reak) ~EM 

for all t E [to, it]. 
We can repeat now the process with ln Jk + ln dk_1 (i.e. find two points at which the 

derivative is :::; tM ... ) and so on, proving the fact. 

D 

This lemma implies Proposition 2.3. 

Proof of Proposition 2.3: Take t = 1 and the corresponding C given by the above 

lemma. If t E ( -1, 0], put z = 1 + t and M = Q_ It follows that at t 
. z ' 

11 diaga(t)- Readll ~M, so z ·11 diaga(t)- Readll ~C. The result fort= 0 

follows from continuity of za(t). The arguments fortE [0, 1] are the same. 

0 

For nondiagonal entries we have 
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Lemma 2.8 For every t, h > 0 there is a C depending only on t, h such that for any 
number M 

!_',~~ ( f,; [<>;;(t)[
2 + (,8;;{1)[2

) dt $ hM 

where p. denotes the measure of a set. 

Proof: Let us take some 11 > 0 and a C given by Lemma 2. 7 for f = ~. We will show 
that if 11 is small enough, C will satisfy the assertions of this lemma. Let 

From (2.8) we know that Xi is an increasing function fori= 0, ... , k- 1. From our 
choice of C we know that 

on [-1 + ~' 1- ~]. Therefore if 

then 

Hence 
2vv Jl·<­rt- M 

However (2. 7) gives us 

Xo - L lokj 12 + 1.8kj 12 

j<k 

X1 - L (lok-1,i1 2 + I.8A:-1JI 2
) + L (lok,jl 2 + I.8A:,jl) (2.9) j<k-1 j<k-1 

which shows that 

I' { t E (-1+ ~,I - ~] ; t; (<>;;(t)[2 + (,8;;(t)( 2 ;e: ..fii M'} $ K '{; 
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c where K depends only on charge k. This proves that C satisfies the first condition of 
the lemma if v is small relative to f, 8. 
Now 

!
1
-:xi =xi(l-Z.)-xi(-l+Z.) ~2vM 

-1+11 

so (2.9) proves the second condition if v is small. 
0 

We will apply the last two lemmas to the equation (2.5). First let us prove a fact in a 
more general setting: 

Lemma 2.9 Let y(t) be defined on an interval I and satisfies there a differential 
equation 

iJ = L(t)y + G(t)y + h(t) 

where L, G, h are continuous and for some numbers M, s 

IILII ~ sM , i IIG(t)11
2 ~ sM , llhll ~ sM2 

There is a constant K depending only on s, such that if f. is such that 

p{t E I; l!y(t)ll ~ fM} ~ ;_, 

then 

lly(t)ll ~ Kf.M 

for all t E I. 

Proof: Let toE I be such that lly(to)ll > f.M. Then it follows from the assumption 
that there is a point a E I such that lto- al < ~ and lly(a)ll ~ f.M. The basic 
estimate for linear equations (cf. [Hartman, Lemma IV.4.1]) gives, for any t 

Since the £ 1-norm is bounded by £ 2-norm times the square root of the length of the 
interval, J:o IIG(r)ll dr ~ y'si. It follows that 

0 
The next result will, in view of Lemma 2.6, prove Proposition 2.4 for (i,j) E I(Y). 
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0 

Lemma 2.10 For every t > 0 there is a C, depending only on t, such that for all 
M ?_ R and all t E [ -1 + ~, 1 - Z.] 

Proof of Lemma 2.10: Take v < 1 and let C1 be given by Lemma 2.3 for t: = v , 
C2 be given by Lemma 2.5 for ~: = v, li = v. Let C = max{C~, C2}. We will show 
that if v is small enough, then C satisfies the assertions of the lemma. 
Observe that our choice of v guarantees that 

for all t E [ -1 + Z., 1 - Z.] (2.10) 

J.L{tE [-1+ z_,1- Z.]; ~laij(t)1 2 +I,Bij(t)l 2 
?_vM

2
} ~v 

t>J 

(2.11) 

L1

1~: ( ~ laij(t)l
2 

+ I,Bij(tW) dt ~ vM 
M t>J 

(2.12) 

We can write equation (2.4), its conjugate, the complex Nahm's equation and its 
conjugate as an equation for 

It has the form 

iJ = L(t)y + G(t)y (2.13) 

where the entries of L are of the form app - arr , ,Bp - fJr or their conjugates while the 
entries of G are of the form apr, ,Bpr or their conjugates with p > r. Hence 
IILII ~ 2R. Since M?_ R, (2.10)-(2.12) imply that y, L, G satisfy conditions of 
Lemma 2.9 with h = 0 and~:= P-JV for some P depending only on the charge k. 
Therefore IIYII ~ P-Jl/M and this together with (2.10) gives 

0 

Remark Proposition 2.5 is now also proved for (i,j) E J(Y). Indeed, setting 
M=~ (the same way as in the proof of Proposition 2.3), we can see that z ·laij(z)l, 
z ·I,Bij(z)l are bounded for z ~ ~· Then however, by Proposition 2.4, they are 
bounded for all z ~ 1 (as z Re-sRz is bounded by }e). 
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where every entry of h involves as a factor an entry of a or {3 with coordinates 
belonging to l(Y). Therefore, arguing as for the function g(z), we can assume that 

Similarily if an entry of E has a factor with coordinates not in Y x Y, then it must 
have another factor with coordinates belonging to l(Y). Therefore, again by the 
above considerations, such an entry of E must satisfy 

on [a, b]. All other entries of E must satisfy the above inequality because of the 
assumption. 
This time instead of (2.6), we get 

where we used the fact that 

Dii ;?: (~)le R(Y)2 

Since, by Cauchy-Schwartz inequality, we have ( ' denotes ~) 

we get from this and (2.15) that 

and the result follows from Lemma 1. 7 as in Lemma 2.6. 
0 

Therefore we will get estimates of Propositions 2.4 and 2.5 for/(}}) if we can prove 
Lemma 2.10 with R replaced by R(Y). 

Lemma 2.12 For every f > 0 there is a C such that for all (i,j) E Y x Y and all 
M;?: R(Y), t E (-1 + ~,1- ~] 

11 (a(t)- Read)ii 11 , 11 ((3(t)- f3d)ijll ~ t:R(Y) 
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Proof: Let us proceed as in the proof of Lemma 2.10. Because of the remark 
following Lemma 2.10, the result is proven for M > R; we can assume that 
R(Y) ~ M ~ R. This time the equation for 

is of the form 

iJ = L(t)y + G(t)y + h(t) 

where the entries of h are given by products of two entries of o:, {3 with coordinates in 
I(Y). Therefore (cf. the considerations on the function g(z) in the proof of Lemma 
2.10) we can assume that Jlh(t)JI ~ tM2 on the interval [-1 + ~' 1- ~]. The result 
follows, as before, from Lemma 2.9. 

0 

We have shown the estimates of Propositions 2.4 and 2.5 to hold for/(}'}). 
Inductively we can prove the same way that there are constants C, s > 0 depending 
only on the charge k such that for any sequence 

X :::> Y :::> Yt :::> ••. :::> Ym (2.16) 

where Yn+I is a molecule in Yn the estimates of Propositions 2.4 and 2.5 hold for any 
(i,j) E J(Ym)· 

However for any i = 1, ... , k, there is a sequence (2.16) such that n Yn = {i}. Since 
I ({i}) = { (i,j); j # i}, this proves Propositions 2.4 and 2.5. 

0 
As a corollary we get estimates on the gauge transformation 9 of Proposition 1.5 iii). 
Let us express 9 as 

9 =(I+ n)d 
with d real-diagonal and fi stristly lower-triangular. 

Corollary 2.13 Let z = 1 ± t. There are constants s > O,K, depending only on the 
charge k, such that for any i > j and z ~ 1 

ln;i(z)l ~ K e-6R;,z 

z liiii(z)l ~ K e-6Rt;z 

z ~~~(lnJ)II ~ K 
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c 

Proof: The third of these estimates follows immediately from Proposition 1.5 i) and 
Proposition 2.3 (recall from the beginning of this section how we altered (o:,fj). 
For n let us show first an estimate similar to Proposition 2.4, namely that there is a 
constant C such that for all t E [ -1 + f.

1 
, 1 - f.

1
] 

(2.17) 

Observe that as In J is bounded, the strictly lower-triangular part of 

still satisfies the exponential decay estimates of Proposition 1.5 ii) and therefore it 
follows from this and Proposition 2.4 that there is a constant C such that for all 
t E [-1 + .Q_ 1 - .£..] 

R.;J ' R.;; 

(2.18) 

Now recall that ( o:d, Pd)were permuted so that Lemma 1.3 is satisfied. If we take now 
i = j + 1, then we have 

Pi,i-1- Pi,i-1 = iii,i-1 (Pi-1- fii) ' O:i,i-1- Oi,i-1 = iii,i-1 (&i-l,i-1- Oji) - !Ai,i-1 

(2.19) 
According to Lemma 2.3 ii) we can either have IPi-1 - ,8;1 ::::: cR;,i-1 or 
Re O:i-1 < Re O:i. In the first case the first of the equations ( 2.19) and the estimate 
(2.18) imply (2.17). In the second case, as c $ h we must have 
Reo:i-1- Reo:i $ -cR;,i-1· As Ojj = O:jj, we get from Proposition 2.3 that there is a 
constant C such that for all t E [ -1 + R.;~- 1 , 1 - R;~- 1 ] 

Re (&i-t.i-1- &ii)- (Reo:i-1- Reo:i) $ fRt,i-1 

with t: as small as necessary. Then from the second of equations (2.19), integrating, 
we get for t E [-1 + R.:-1 , 1- R;~-1 ] 

liii,i-1(t)1 $ {lni,i-1 (-1 + R.;~_JI + j_tl+ c 2l&i,i-1 -ai,i-t1) e-2(c-!)Ri,i-t{t+t-R;.~-1) 
R,,,_1 

Now (2.17) for i = j + 1 follows from (2.18) and the fact that n is bounded. As n is 
bounded on [-1, 1], by changing sand K we can assume that (2.17) holds for 
i = j + 1 on all of [-1, 1]. This is equivalent to first of the estimates of our 
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statement. Now we get from (2.18) and the second of the equations (2.19) the second 
of the estimates of our corollary for i = j + 1. 
Now, let i = j + 2. We have 

The second term on the right-hand side of this equality is, in view of (2.18) and 
(2.17) fori = j + 1, bounded by 

This however, because of Lemma 1.3 ii) (and the triangle inequality), is < 

so, if I.Bi-2- .Bil ~ c~.i-2 we get (2.17) for i = j + 2 as before. The case when 
Re O'i-2 < Re O'i also follows along the same lines. We can see now how the statement 
follows by induction on i - j. 

0 
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0 

2.3 Asymptotic behaviour of the spectral curve 

From the estimates of the previous section we immediately get a result on the 
behaviour of the spectral curve of a monopole. Since this is important, we are going 
to phrase it separately. Recall from section 1.4 that the spectral curve is defined in 
terms of Nahm complexes by 

det (ry- 2f3(t)- (a(t) + a*(t)) ( + 2f3*(t)(2
) = 0 

and its definition is independent of t. Therefore, if we take t = 0 it follows from 
Proposition 2.1 and the fact that ( varies over a compact set that the spectral curve 
approaches the union of spectral curves of 1-monopoles exponentially fast. This 
corresponds to the monopole being approximated by a configuration of particles. 
The precise result is: 

Proposition 3.1 There are constants K, s > 0 independent of (ad, /3d), such that 
the spectral curve of the monopole corresponding to a Nahm complex (a, /3) is within 
K e-sr of the union of spectral lines, i. e curves of the form 'I] = a(2 + b( + c. 

D 
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0 2.4 Asymptotic behaviour of the metric 

We would like to estimate how much the metric tensor on .Nit: differs from the product 
metric on ( C x C)k . Recall from Section 2. that we constructed a manifold 
Nk = Nk( (ad, /3d)) diffeomorphic to a neighbourhood of (ad, /3d) on which the natural 
metric introduced in Section 1. differs from the product metric by co;•t. Indeed, from 
Proposition 1.6 we know that the image (a, b) under the tangent diffeomorphism of 
an element (ad, bd) E Ta4 ,pAC x C)k of norm 1 satisfies pointwise estimates: 

for some K, s > 0 independent of (ad, /3d)· Integrating this gives, as ad, bd are 
constant and bounded by 1, 

for some C independent of (ad, /3d)· 

(4.1) 

In this section we want to show that the metric on .Nk differs from the one on Nk by 
co;•t. Consider the way the tangent space T(a,p).Nk is obtained. Starting with 
(a,i3) E Nk we have a gauge transformation g such that g(a,i3) = (a,/3). We can 
extend g to a neighbourhood of (a, /3), or as we are interested only in the tangent 
space at the particular point (a,fj), we can extend g on an infinitesimal 
neighbourhood of (a, /3) and obtain gauge transformations of the form 

(I+ sp)g (4.2) 

where p is an infinitesimal gauge transformation and s the infinitesimal tangent 
directions parameter. By considering the action of ( 4.2) on a + sa, [3 + sb we see 
that a, b change as follows 

a I-+ gag-1 
- ~P- (a, p] b I-+ g"bg-1 - [/3, p) (4.3) 

p must be such that the resulting a, b are in the tangent space to .NJ:. From the 
construction of the tangent space (cf. Section 1) we know that (a, b) must be 
orthogonal to the infinitesimal gauge directions, i.e. if p is any infinitesimal gauge 
transformation with p(±l) = 0, then 

{

1

1 
tr ( (!p+ [a,p])* a+ [f3,p]*b) = 0 
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0 Integrating by parts gives 

11

1 tr (a- 2[a*, a]- 2[,8*, b]) p* = 0 

Since this is true for any p, we have 

a= 2[a*,a]+ 2[,B*,b] ( 4.4) 

Observe that if we add this equation to its adjoint, we get the linearization of the real 
Nahm's equation. (a, b) must also satisfy the linearization of the complex Nahm's 
equation: 

b = 2[,8, a]+ 2[b, a] (4.5) 

Finally notice that as all elements of Nk have the correct .Nk-type poles and any 
gauge transformation that preserves them is = 1 at ±1 (up to an irrelevant central 
matrix) we must have 

,0(±1) = 0 (4.6) 

Equations (4.4),(4.5) and (4.6) determine ,0. For notational purposes let us write 

a = gag-1 
, b = gbg-1 

our aim is to show that there is a constant C independent of (ad, ,Bd) such that 

11
1 

tr (a* a + b* b) - 11 

tr (a* a + b* b) 1 ~ c 
-1 -1 7' 

We want estimates on ,0. First of all we have 

Proposition 4.1 FortE [-1,1], 

II,O(t)il ~ ~ 

where K depends only on charge k. 

Proof: We want to show 

ft2 II,DII 2:: - llh( t) 11 (4.7) 

where 

h(t) =a- 2[a*,a]- 2[,B*,b] 

Let u be ~ unitary gauge transformation that makes a hermitian. Then a becomes 
uau*, b 1-+ ubu*, ,0 1-+ upu*, h(t) 1-+ uh(t)u*. In particular II,OII, llh(t)ll do not change. 
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0 Therefore we can assume that a = a*. The equation ( 4.4) is satisfied and if we plug 
( 4.3) into it, we get 

a- !P- [a, iJl- [a,PJ = 2[a*, aJ- [a*, pJ- 2 [a*, [a, iJl J + 2[,8* ,bJ- 2 [,B*, [,a, iJJ J ( 4.s) 

As a = a* the terms involving p cancel and a = [,B*, ,B], so we get 

p = 4 [,B*, [,B, p]] + 4 [a*, [a, p]] - 2 [ [,B*, ,8], p] + h ( t) (4.9) 

Now, if M is a matrix then the adjoint of the linear operator 

[M,] 

IS 

[M*, ] 

Moreover the commutator of two such operators [M, ], [N, ] is 

[[M,N], ] 

(Jacobi's identity). 

Hence if we put A= [a, ], B = [,8, ] and we split B into the sum of a hermitian H 
and skew-hermitian S, we can write (4.9) as 

p = ( 4 H* H + 4 S* S + 4 A* A) p + h( t) 

or 

p = D(t)p + h(t) 

where D ~f 4 H* H + 4 S* S + 4 A* A is positive definite. This implies (see (2.6)) that 
(I= ~): 

(111>11 2
)" ~ 2111>'11 2 

- 211 hi I 111>11 
Now ( 4. 7) follows from the fact that 

(11~>11 2r = 211~>11" 11~>11 + 2 (ll~>ll'r ~ 211~>11" 11~>11 + 211~>'11 2 

We get now from Lemma 1. 7 and from ( 4.6) that 

11/>(t)ll ~ ~(1- t) [
1 

(1 + r) llh(r)ll dr + ~(1 + t) 1\1- r) llh(r)ll dr (4.10) 

Therefore we need to estimate llh(t)ll· Let us go back to the gauge in which a is 
lower-triangular. Observe that a= [99-I,gag- 1] + gag-1 • The latter term can be 
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0 estimated from Proposition 1.6 while the first one and all other terms in the formula 

for h(t) consist only of commutators and so they do not involve products of two 

diagonal elements. Therefore Propositions 1.6, 2.1 and Corollary 2.13 together with 

~j ~ r give us for z :::; 1, z = 1 ± t: 

Z llh(z)ll :::;Ke-srz ( 4.11) 

for some constants K, s depending only on k. From this and 4.10 we get 

11 10 r K 
lliJ(t)ll:::; _/1+r)(1-r]illh(r)ll dr:::; _/1+r)2llh(r)ll dr+ lo 2(1-r) llh(r)ll dr ~-:;: 

We can improve the estimates as follows: 

Proposition 4.2 There are constants C, K, and s depending only on charge k such 

that i#j and tE [-1+~,1-~] 

11 p(t) 11 ~ ~ (e-sR;j(l+t) + e-sR;j(l-t)) 

Proof: Let us look at the equation ( 4.8). If we take C very large we can assume 

(Proposition 2.1) that for t E [-1 + ~' 1- ~] 

( 4.12) 

It will follow then using Proposition 4.1 that the equation ( 4.8) gives the following 
equation for 

X= (Pii)(i,j)El(Y) 

(recall the definition of I(Y) from section 2.2) 

x = D(t)x + E(t)x + G(t) 

where 

( 4.13) 

Indeed, it follows from the simple observation that in each of the terms on the 

right-hand side of the equation ( 4.8) for (Pii )(i,j)El(Y) at least one factor must have 
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c 

c 

coordinates belonging to I(Y) and from (4.12) and Proposition 4.1. Now the result 
follows for (i,j) E I(Y) as in Lemma 2.11 froin the simple observation that 

Re(Dx + Ex,x) + (x,x) = ll± + !E*xll 2 

+ Re(Dx- ~EE*x,x) 

so that 

~;2 llxll2 ~ 2Re(Dx- ~EE*x,x) + (G(t),x) 

Then we can continue the proof of inductively as for Proposition 2.1. 

0 

We get the following corollary 

Corollary 4.3 There are constants C, K, and s depending only on charge k such 

that for t E [ -1 + ~, 1 - ~] 

11 [a, p](t) 11 , 11 [,8, p](t) 11 ::S K ( e-sr(I+t) + e-sr(l-t)) 

Proof: It follows from the last proposition that we can take C large enough so that 

for t E [ -1 + ~' 1 - ~] we have both ( 4.12) and 

(4.14) 

Now we can just multiply these estimates noticing that as we are estimating the 

bracket of two quantities the terms that are products of two diagonal entries cancel. 

0 

We can also estimate the derivative of p. 

Proposition 4.4 There are constants C, K independent of (ad, ,Bd), such that for 
all t E [-1 + Q 1 - Q] 

r' r 

Proof: Let us look again at the equation ( 4.8). Treating p as a known function we 
can write as an equation for p : 

p = [a*- a, p] + f(t) ( 4.15) 
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c 

If we take C large enough for (4.12) and (4.14) to hold, we will get the following 

estimate for t E [-1 + ~' 1- ~] 

llf(t)ll:::; Kre-sr(l+t) + Kre-sr(l-t) ( 4.16) 

From ( 4.15) we get 

{it(p, p) = 2 Re (p, p) = 2 Re (f(t), p) 

since [a*- a, ] is skew-hermitian. Hence 

I~ IIPIII :::; 2 11J(t)11 
This and 4.16 imply that the result will follow if we can show that there is a constant 

M such that for any (ad, /3d) and any (a, b) there is a point toE [-1 + ~' 1- ~] such 
that 

Let us look again at ( 4.8). If we change 

1 1 
a(t), f3(t) r-+ -a(tjr), -a(tjr) ' a(t), b(t) r-+ a(tfr), a(tjr) 

r r 

then (4.8) is satisfied on [-r, r] by the function 

p(t) = rp(tjr) 

But now our "dilated" a, f3 are bounded uniformly in (ad, f3d) on [-r + C, r- C] 
(from (4.12), so is p (from Proposition 4.1) and so is h(t) (Proposition 1.6). 
Therefore, fortE [-r + C,r- C], 

( 4.17) 

where K1 depends only on k. We also know from Proposition 4.1 that 

llfJII :::;K 

where K depends only on k. 

Suppose there is an interval I C [ -r + C, r - C] of length 1 at every point of which 

Then ( 4.1 7) implies that on I 
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0 Then it follows from [Hartman, Remark 1 following Corollary XII 5.1] that there is a 

constant M depending only on K and K1 such that for all t E J, 

Thus we get a point at which 

However 

p(t) = p(tjr) 

so the result follows. 

0 

The last fact together with Corollary 4.3 give us 

Corollary 4.5 There are constants C, K independent of (ad, /3d), such that for all 

t E [-1 + Q 1 - Q] 
r' r 

lla((l 11 , llb(t)ll 5: K 

0 

We are finally able to prove the asymptotic behaviour of the metric tensor 

Theorem 4.6 The metric tensor on Nk differs asymptotically from the one on Sk N1 

by co~st, i.e. there is a constant K independent of (ad, /3d) such that for all 

(ad,bd) E T(Ota,f3a)SkNl and corresponding (a, b) E T( 01 ,f3).Nk 

~~ l. tr(aa' + bb') - ~ (la;l 2 + lb;l') I S ~ ~ (la;i' + lb;l') 

Proof: Of course we can assume 

k 

L (lail 2 + lbil 2
) = 1 

i=l 

Recall that 
1 A -a =gag- , b = gbg-1 
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and therefore, from ( 4.3) 

( 4.18) 

The estimates of Proposition 1.6 and Corollary 2.13 show that 

11 (a- ad)(t) 11 + 11 (b- bd)(t) 11:::; K (e-sr(l+t) + e-sr(l-t)) (4.19) 

for all t E [-1, 1] and for some K, s depending only on the charge k. 
Now observe that for any t1, t2 E [-1, 1], 

1
t2 AA 

tr(aa* + bb*) = 
tl 1t2 lt2 

tr ( aa* + bb*) + !tr ( ap* +a* p) ( 4.20) 
~ ~ 

+ 1t2 

tr ( (~P + [a, p]) (~P + [a, Pl) * + [/3, P] [/3, p]*) 
tl 

Indeed it follows by plugging (4.18) into the integral on the left-hand side, integrating 

by parts the terms ap* , a* p, and then grouping together products that involve p 
only once and using (4.4). In particular (4.20) and (4.6) give 

~~1 tr (aa* + bb*):::; ~~1 tr (aa* + bb*) - tr (a(t)p*(t) + a(t)*p(t)) ( 4.21) 

11 

tr (aa* + bb*):::; 11 

tr (aa* + bb*) + tr (a(t)p*(t) + a(t)*p(t)) (4.22) 

This and ( 4.19) show that there is a constant K depending only on k such that for 

any C 

1-I+~ 11 K 2C 
_

1 
tr ( aa* + bb*) + 

1
_£ tr ( aa* + bb*) ~ -:;: + --:;:- ( 4.23) 

r 

Since the integral of L: (lail 2 + lbil 2
) over the same set is :::; 2rc, we only have to 

estimate the metric on [-1 + ~' 1- ~] for a suitable C. Note that if C is large 
enough for the conclusion of Corollary 4.5 to hold, then (4.20), (4.19) and Proposition 
4.1 imply that all we have to estimate is 

j_
1

1~~ tr ( (~P +[a, p]) (~P +[a, p])* + [/3, p] [/3, p]*) 
r 

However, if C is large enough for the conclusion of Corollary 4.3 (as well as. 

Proposition 4.4) to hold, then 

j_
1

1~: tr { (!P +[a, p]) OP +[a, p]) * + [/3, p] [/3, p]*- ~PP*) ~ ~ 
r 
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0 for some K depending only on k. Therefore all we have to estimate is 

1
1-~ tr PP* 

-I+-; 

Integrating by parts and using the fact that, due to our choice of C, 11 p ( -1 + ~) 11, 

liP (1- ~) 11 ~ ~, 11 P ( -1 + ~) 11, 11 p (1- ~) 11 ~ K leaves us with the integral 

1
1-£ 

r tr pp* 
-I+~ 

Now recall the equation ( 4.15) for p together with the estimate ( 4.16). This, 
Proposition 4.4 and the fact that we can take C large enough for ( 4.12) to hold, 
implies that 

11 p(t) 11 ~ Kr (e-sr(l+t) + e-sr(1-t)) 

for all t E [-1 + ~' 1- ~] and for some K, s depending only on the charge k. 
This and Proposition 4.1 imply finally that 

1-£ K 

1 ~ trpp* <-
-1+-; r 

which proves the result. 

D 

This is a good place to include pointwise estimates for (a, b) which we will use when 
estimating the curvature. 

Proposition 4. 7 There are constants C, K independent of (ad, f3d) J such that for 

all t E [ -1 + ~, 1 - ~] and i =J- j 

llaij(t)ll, llbij(t)ll ~ Ke-sr(I+t) + Ke-sr(1-t) 

Proof: Let us put 

If we differentiate equations ( 4.4) and ( 4.5), we get an equation for x of the form 

x = D(t)x + g(t) 
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0 If we take now C large enough so that for t E [-1 + ~' 1- ~] 

for i =/= j and 

( 4.25) 

fori= 1, ... , k, then, using Corollary 4.5, we can assume that for t E [-1 + ~' 1- ~] 

and the result follows as in Lemma 2.11. 

D 
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c 2.5 The curvature 

In this section we will show that the curvature tensor on Nk decays asymptotically 
as cor~st • More precisely we have 

Theorem 5.1 There is a constant K depending only on charge k such that if 
Xd, Yd, Zd, Wd are vector fields of norm 1, defined in a neighbourhood of (ad, /3d) and 
X, Y, Z, W are corresponding vector fields on .Nk, then 

K I (R(X, Y)Z, W) I ::; r 3 

where R denotes the curvature tensor. 

We will prove this by comparing the curvature on Nk with the zero curvature of a 
certain fiat (infinite-dimensional) manifold. Let us recall that the .Nk arises as a 
quotient manifold of the manifold .N of all solutions to Nahm's equations. On the 
other hand .N is embedded in the fiat manifold A of all paths a, j3: [-1, 1]--+ gl(k) 
with .Nk-type poles at ±1. 
The maps 

are a Riemannian submersion and immersion, respectively. 

First, let us compare the curvature tensor on Nk with the one on .N. Since 1r is a 
Riemannian submersion, the tangent space of N at (a, f3) splits into the horizontal 
and vertical parts, the horizontal one being the lift of the tangent space of .Nk. The 
proof of the following fact can be found in Klingenberg [1982] (Theorem 1.11.12). 

Theorem 5.2 (O'Neill) If X, Y,Z, Ware vector fields on .Nk, X, Y, Z, W their 
horizontal lifts to .N, R, R the curvature tensors on .Nk, .N respectively, then 

(R(X,Y)Z,W) = (R(X,Y)Z,W)-~([x,z]v,[Y,W]v) 

+~ ( [Y, z]v, [X, w]v)- ~ ( [Z, wt, [X, Y]v) 

where v denotes the vertical part of a vector field. 

0 
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0 

Therefore we want to show that the norm of the vertical component of the bracket of 
two horizontal vector fields on N is ~ c;3/~t. More precisely we will show the 
folloowing 

Proposition 5.3 There is a constant K depending only on charge k such that if 

Xd, Yd are vector fields defined in a neighbourhood of (ad, /h) with 

and X, Y are corresponding vector fields on Nk, then 

Before proving this we will say few things about vector fields on N . Since the value 
of the vertical component of the bracket of horizontal vector fields at a given point 
depends only on the values of the vector fields at that point, we can consider 
infinitesimal version of vector fields. 

To have such an infinitesimal version of a vector field X (at (a,(3) we must specify 
the value of X at (a,(3), i.e. a tangent vector (a, b), and the differential of X in the 
tangent directions, i.e. a function 

T(a,(3)N 3 ( u, V) 1------7 (A, B) E T(a,(3,u,v,) (TN) 

We can think of X as assigning to a point ( s denotes an infinitesimal parameter) 

a+ su, (3 + sv 

of an infinitesimal neighbourhood of (a, (3) the tangent vector 

(a + sA, b + sB) E T (a+su,f3+sv)N 

The fact that (a + sA, b + sB) is a tangent vector imposes certain conditions. In 
fact, as we are interested only in horizontal vector fields, we require (a +sA, b + sB) 
to satisfy equations ( 4.4) and ( 4.5) (with a, (3 replaced by a + su , (3 + sv). This 
leads to the following equations for A = A( u,·v ), B = B( u, v ): 

A= 2 [a*, A]+ 2 [(3*, B] + 2 [u*, a] + 2 [v*, b] 
B = 2 [(3, A]+ 2 [B, a]+ 2 [v, a]+ 2 [b, u] 
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0 Suppose we have a second horizontal vector field Y given by 

(a + su, f3 + sv) ~-------+ (a'+ sA', b' + sB') 

Then X o Y at (a, (3) is given by the differential of X in the direction 

Y( a, (3) = (a', b'), i.e. 

X o Y (a, (3) = (A( a', b'), B(a', b')) 

Therefore we get from (5.1) that the components A= A( a', b'), B = B(a', b') of 
X o Y (a, (3) satisfy 

Hence 

A = 2 [a*, A]+ 2 [(3*, B] + 2 [a'*, a]+ 2 [b'*, b] 
B = 2 [(3, A]+ 2 [B, a]+ 2 [b', a]+ 2 [b, a'] 

(P, Q) :=[X, Y](a, (3) =(X o Y- Y oX)( a, (3) 

satisfies the equations 

P = 2 [a*, P] + 2 [(3*, Q] + 2 [a'*, a]- 2 [a*, a'] + 2 [b'*, b] - 2 [b*, b'] 
Q = 2 [(3, P] + 2 [Q, a] 

(5.2) 

(5.3) 

Note that if we add the first equation to its conjugate, we get that P, Q satisfy the 

linearized Nahm's equations, i.e. (P, Q) E T(a,(J)N, as it should. 
We want to estimate the vertical part of (P, Q). Notice that as (P, Q)v is a vertical 
tangent vector on N it must be of the form 

(P, Qt = ( !P +[a, p], [(3, pJ) 

where p is an infinitesimal gauge transformation; in particular p( ±1) = 0. 
We want to get estimates for p similar to the ones of section 2.4. 

(5.4) 

Lemma 5.4 There are constants C, K and s depending only on the charge k such 
that if X, Y correspond to Xd, Yd - vector fields defined in a neighbourhood of 
(ad, f3d) with 11 Xd (ad, f3d) 11 = 11 Yd (ad, f3d) 11 = 1, then p given by 5.4 satisfies: 

11 p(t) 11 ::; ~ for all t E [-1, 1] 
11 Pii(t) 11::; ~ (csr(Ht) + e-sr(l-t)) 

11 [a, p](t) 11 , 11 [(3, p](t) 11 ::; ~ ( e-sr(l+t) + e-sr(l-t)) 

11 p(t) 11 ::; ~ 

for i f j and t E [ -1 + ~, 1 - ~] 
for . t E [-1 + ~, 1 - ~l 
for t E -1 + Q 1 - Q J' r' r 
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Proof: First of all, since the horizontal part of (P, Q) =[X, Y](a, (3) satisfies the 
homogeneous version of equations (5.3), the vertical part must satisfy the full 

equations (5:3). If we plug (5.4) in the first of the equations (5.3), we will get a 

second order equation for p which is exactly the same as equation ( 4.8) except that 

h(t) is given now by 

h(t) = 2 [a'*, a]- 2 [a*, a']+ 2 [b'*, b]- 2 [b*, b'] (5.5) 

It follows, the same way as in the proof of Proposition 4.1 that 

llp(t)ll :::; 11

1 (1 + 7)(1- T) llh(T)II dT 

Let us estimate this expression. First of all from the Schwartz inequality we have for 

any C 

D+\?(1+ r)(!- r) llh(r)ll dr S, I.C+~ 4(1+ r)2 dr 
112 

·ID+~ llh(r)112 dr 1

112 

The £ 2-norm of h(t) is majorized by the product of £ 2-norms of (a, b) and (a', b'). 
Since these correspond to elements of T ad,f3d ( C x C)k of norm 1, they satisfy the 

estimates of section 2.4. It follows from ( 4.23) that the above expression is :=:; ~ 
where K depends only on C and k. 

Similar result holds for the integral over [ 1 - ~, 1] . Therefore to prove the first of our 
assertions we have to estimate 

Now notice that as h(t) is defined by brackets, all the terms have as a factor an 
off-diagonal entry of a, b, a' or b'. Proposition 4. 7 and Corollary 4.5) imply then that 
for t E [-1 + Q 1 - Q] 

r' r 

11 h(t) 11 :::; K (e-sr(I+t) + e-sr(1-t)) 

it follows now easily that the above integral is bounded by ~. 
r 

We proved our first statement. 

The proofs of the remaining three are completely analogous to the proofs of 

Propositioh 4.2, Corollary 4.3 and Proposition 4.4. 

D 

Now we can prove Proposition 5.3. 
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c Proof of Proposition 5.3: We have to estimate 

11 (P,Q) 11 

where 

( A A) def (1 o [ l) P,Q = 2P+[a,p], (3,p 
We will show that for any t1, t2 E ( -1, 1) 

2 t 2

tr (PP*+QQ*) =!tr (Pp*+P*p)it
2

- t 2

tr(h(r)p*+h(r)*p) (5.7) ltl tl ltl 

where h(t) is given by (5.5). To see this, integrate 

tr ( (P- !P- [a, pJ) (P- !P- [a, pJ)* + ( Q -,[(3, Pl) ( Q- [(3, PJ)*) 

which is obviously = 0. On the other hand it can be written as 

2tr (PP*+ QQ*) -tr (!Pp*+ P [a,p]* + Q [(3,pJ*) -tr (!Pp*+ P [a,p]* + Q [(3,pJ*)* 

Now integrating by parts Pp* and using the first of equations (5.3) proves (5.7). 
Let us integrate now 

tr (PP*+ QQ*) 
over [-1, l]. Using (5.7) we can integrate this separately over [-1, -1 + ~] , 
[-1 + ~' 1- ~], [1- ~' 1] . Then the estimates of Lemma 5.4, (5.6) and the fact 
that p(±1) = 0 show: 

Proposition 5.3 is now proved. 

0 

We have showed now that the curvature tensor on .Afk differs from the one on N by 
~. We have to show similar r~sult for the immersion T 

the curvature of N is related to the curvature of A by the Gauss equation (Kobayashi 
and Nomizu [1969], Proposition VII.4.1). We recall that for a Riemannian immersion 
.A!~ A with connection V on A the second fundamental form h(X, Y) of two 
vector fields on .N is the part of V x Y orthogonal to T.Af . The equation of Gauss 
can be then stated as follows; 

68 



0 

Theorem 5.5 (Gauss) If X, Y,Z, Ware vector fields on N, R, R the curvature 

tensors on N, A respectively, then 

(R(X,Y)Z, W) = (R(X,Y)Z, w)-
( h(X, Z), h(Y, W)) + ( h(Y, Z), h(X, W)) 

0 

We have to show therefore that the second fundamental form h satisfies 

K 
11 h(X, Y) 11 s; r3/2 (5.8) 

for some constant K depending only on charge k and for any tangential horizontal 

vector fields X, Y on N that correspond to vector fields Xd, Yd defined in a 

neighbourhood of (ad, {3d) with 11 Xd (ad, f3d) 11 = 11 Yd (ad, f3d) 11 = 1. 
Since A is flat 

'\7xY=XoY 

Hence we have to estimate 

(X o Y )1. 

For horizontal vector fields X, Y, X o Y (a, {3) =(A, B) satisfies equations (5.2). Let 
us write these as 

(A, B) can be written as 

A= 2 [a*,A] + 2 [{3*,B] + p(t) 

B = 2 [{3,A] + 2 [B,a] + q(t) 

in such a way that (A1 , B1 ) satisfies: 

A~= 2 [a*, A1] + 2 [{3*, B1] + p(t) 

B1 = 2 [{3, A1] + 2 [B11 a] 

A2 = 2 [a*, A2] + 2 [{3*, B2] 
B2 = 2 [{3, A2] + 2 [B2, a]+ q(t) 

(5.9) 

(5.10) 

This means that (A1, B1) and ( -B;, A;) both satisfy the linearised complex Nahm's 
equation ( 4.5) (in the hyperkahler setting this corresponds to writing a vector 

v ETA as v1 + jv2 with vb v2 both are in the 0-set of a complex moment map). 
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However a vector satisfying the linearised complex Nahm's equation can be made to 
satisfy the equation ( 4.4) by a complex infinitesimal gauge transformation. Indeed 
such a vector can be thought of as being tangent to the space of N ahm complexes in 
the sense of Definition 1.3.1. It is the essence of Donaldson's construction that in 
every complex orbit of a Nahm complex there is (unique) real Nahm complex. 
Thus we have two complex infinitesimal gauge transformations p1 , p2 (with 
PI(±l) = p2(±I) = 0) such that 

(Ab B1)- (~PI+ [a, PI], [,8, P11) 

and 

are horizontal vector fields. 

Let us put 

(Ab ill)= (~h + [a,p1], [,B,p1l) 

(A2,B2) = (!P2 + [a,p2], [,B,p2J) 
We have 

Moreover, both (A1,B1) and (A2,B2) satisfy equations (5.9) which are essentialy 
the same as (5.3) with p(t) satisfying the same estimates as h(t) given by (5.5). 
Therefore the proof of Lemma 5.4 and Proposition 5.3 will carry for ( A1, B1 ) and 
( A2, B2) without any changes. Therefore 

which proves (5.8). 
Theorem 5.1 is now proved. 

D 
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Ill. SU(N) case 

3.1 Nahm complexes for SU(N) monopoles with maximal 
symmetry breaking 

The purpose of this section is to give a brief overview of the results of Hurtubise and 
Murray[1989] and Hurtubise[1989]. 
Let us consider the moduli space of based SU(N) monopoles with eigenvalues of the 
Higgs field at infinity being 111 < ... < f.LN and magnetic charges mt, ... , mN_1 • As 
we mentioned in section 1.2, such monopoles correspond to solutions To, Tt, T2 , T3 to 
Nahm's equations on the interval (f.lt, f.LN) with rank Ti = mj on the interval 
(f.lj, lli+l)· We describe now the the boundary behaviour in this case after Hurtubise 
and Murray [1989]. 
As in the SU(2)case we define o: and f3 by (1.4) so that the Nahm's equations 
become the "real" equation (1.6) and the complex one (1.5). 
The boundary behaviour at f.lj depends on the value of the jump mj ,.- mj_1 • We say 
that f.Lj is superior (respectively inferior, neutra~ boundary point of the interval 
(f.lj, f.li+l), if mj > mj-1 (respectively <, =). 
We also say that f.Lj+1 is superior (respectively inferior, neutra~ boundary point of 
the interval (f.li, lli+l), if mj > mi+l (respectively <, = ). 
At a boundary point f.lj , we denote by 
- k or kj the absolute value lmi - mj_1 j of the jump 
- m or mj the maximum of { mi, mj_1 } 

- m or mj the minimum { mh mi-d 
- O:j, /3i the restriction of o:,/3 to [f.lj,f.lj+t] 

Remark: The points /11,/1N are superior with k1 = m1, kN_1 = mN_1. 

We can use a part of gauge freedom to fix the boundary conditions as follows: at a 
boundary point f.L, setting z = t- f.l, one has: 
- if f.l is inferior or neutral, O:j ,(3j are analytic at z = 0 
- if 11 is superior, splitting cmj as cm:. EB Ck, one has, near z = 0: 

( 
y z(k-1)/2V ) ( p . z(k-1)/2Q ) 

o:i = · z(k-1)12W X ' /3i = z(k-1)12 R S (1.1) 
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with: i) Y, V, W and P, Q, R analytic at z = 0, 
ii) X, S are meromorphic, with simple poles at z = 0, and residues (1.7) 

Furthermore, ail J3i satisfy patching conditions at lli: 

If lli is not neutral, then the limits of a, f3 from the inferior side are equal to 
Y(O), P(O) of (1.1) 
If lli is neutral, one has limits a±, f3± from both sides of lli; 
there then exist column vectors u, w in cmj with 

f3+- f3_ = -~UWT 

(a+ + a~) - (a_ + a~) = ~ ( -U{}T + WWT) 

(1.2) 

(1.3) 

The above conditions fully describe Nahm's construction for SU(N) monopoles with 
maximal symmetry breaking. As in Definition (1.3.1) we define a real Nahm complex 
to be 

(a, /3, U, W) = (a, /3, {U(fl), W(11); 11 a neutral boundary point}) 

Since we fixed some of the boundary conditions, the space of such N ahm complexes 
will have to be acted on by a smaller gauge group. Let us define three gauge groups: 

- the group g of complex gauge transformations g which, at a superior boundary point 
preserve the decomposition Cm = C!!!:. EB Ck with the upper-diago~al block being 

equal 

to the limit of g from the inferior side and the off-diagonal blocks have derivatives 
0 ( z(k-l)/2); 

- the subgroup gc C g of those that at a superior boundary point have the 
lower-diagonal block equal to identity; 
- gR C gc of unitary gauge transformations. 

Note that a g E g will act on U, W by 

U ----+ gU , W ----+ (gT) -l W 

We put 

Nmt, ... ,mN-l = { real Nahm complexes }/ 
. gR 

We have then (Hurtubise & Murray [1989]) 
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As for SU(2) monopoles, there is a correspondence between the moduli space of 
SU(N) monopoles and based rational maps 

F: CP
1 

f---+ SU(N'Jfr 

where T is a maximal torus. This was proved by Hurtubise[1989]. From there we 
also take a description of such rational maps suited to our purposes. 
Let E be the trivial rank N bundle over CP1 , with a fixed global basis 
{ell ... , eN}. One can define a standard flag of subbundles: 

Et= {0}, Et= ( ei), Et= ( e1, e2), 

Let Et denote the "anti-standard" flag: 

A based rational map CP1 ---+ SU(N)IT can be thought of as a flag 
E; C E:; C ... C E"N_1 c'E of subbundles of E such that E; coincides with 
at oo, i.e. F(oo) = .E+. 
If the map F is of degree m= (m1, ... , mN_I), one has that E; I E;_1 is the line 
bundle O(kN-i+I), where ki = (mi- mi-1 ); on the other hand, Et I Et_1 ~ 0. The 
sum Et + EN-i is equal to E except over a finite set of points, and so the sheaf 

is supported on a finite set of points. Similarly, the sheaf 

Pi ~r EI(Et_1 + Et_J 

(1.4) 

(1.5) 

is a line bundle ( rv O(mi)) away from supp (Qi) n supp (Qi-1). Futhermore one has 
exact sequences: 

0 ---+ 0 ---+ pi ~ Qi ---+ 0 
p· 

0---+ O(ki) ---+Pi ~ Qi-1 ---+ 0 

One has then an exact sequence (Hurtubise [1989], Proposition 3.5): 

p1 

------EB Q1 
p2 ---- EB 

------EB Q2 
0 ---+ E ---+ ---+0 

PN-1 EB 
EB ---------- QN-1 

PN 
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0 where the map between the second and third terms is of the form 
(at, ... , aN) ~----+ ( 1r1( a1) - P2( a2), 1r2( a2) - P3( a3), ... , 7rN-1 ( aN-1) - PN( aN)). This, in 
fact, is an equivalent way of describing rational maps CP1 --+ SU(N)/T (Hurtubise 
[1989], Proposition (3.5)): a based rational map CP1 --+ SU(N)/T of degree 
(mt, ... , mN_1) can be thought of as an equivalence class under automorphisms of 
pairs (S, e), where S is an exact sequence of 0-modules of the form (1.8) with: 
- e = (et, ... , eN) is a basis of E at oo with ei E Pi 
- Qi supported over a finite set of points not including oo and h0 (CP1

, Qi) = mi 

-Pi, Qi fitting into exact sequences (1.6) and (1.7). 

If the rational map is generic, in the sense that every point in U~11 supp Qi has 
multiplicity 1, then, for each i, we can take a section trivializing Pi away from oo 
and its restriction to Qi as a basis of H 0 (CP\ Qi). In this basis, the map 

is given by 

(1, ... '1) 

i.e. simple evaluation, while the map 

is given by 

( 
1 m;) Pi,··· ,pi 

for some (pl, ... ,pi;) E C*. 

To summarize, we think of a generic rational map as being of the form 

pi 
1, ... ,1 

Qi 
0--+E--+ --+ 0 ' where 

11 (1.9) 
1 mi 

pi+l 
P;•···•P; 

Qi 

Finally let us recall from Hurtubise [1989] how do we associate such a rational map to 
a generic Nahm complex. For any Nahm complex Qi is supported over the 
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eigenvalues of f3i. We can regularize a Nahm complex at every superior boundary 
point: if J.l is such a point, setting z = t - J.l we act by the gauge transformation 

d. (1 1 . -(k-1)/2 -(k-3)/2 (k-1)/2) 1ag , ... , , z , z , ... , z (1.10) 

Then, for a generic (i.e. with all eigenvalues of multiplicity 1) Nahm complex the 
above choice of the map Pi -+ Qi corresponds to choosing at each point fli a basis in 
which {3j is diagonal. We have a section of Pi given by the vector 

(1, ... ,1l 

On the other hand to find the map Pi+l -+ Qi we have to parallel transport the 
diagonal basis of f3i from J.li to J.li+I and evaluate the above section of Pi+I in Qi. 
Th. . h b 1 m; 1s g1ves us t e num ers Pi, ... ,Pi . 
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3.2 The symplectic form c;tnd the twistor space 

Consider now the moduli space N'm1 , ... ,mN-I described in the previous section. We 
can define a natural L2-metric on this manifold. This time however we have to take 
into consideration the vectors U, W at neutral boundary points. The metric will have 
the form 

1JJ.N tr(da*da+df3*df3) + L tr (dU*dU +dWdWT) (2.1) 
Il-l neutral 

boundary 
points 

As always with the metric defined on a moduli space, one calculates it on 
representatives which are orthogonal to infinitesimal gauge transformations~ Recall 
from section 2.4 that in the SU(2) case this meant that an element (a, b) E T( 01 ,f3)Nk 
had to satisfy the equation (4.4). In the SU(N) case an element of the tangent space 
will be of the form 

(a, b, u, w) = (a, b, { u(11 ), w(!l); 11 a neutral boundary point}) 

In addition to the equation ( 4.4) the orthogonality condition will also give us now a 
condition for the jump of a at every neutral point. It is not difficult to see, by a 
calculation similar to the one in section 2.4, that we get 

- T a+-a-=-U*u+Ww (2.2) 

Remark: In contrast with the SU(2) casen it is not known whether the manifolds 
Nm 11 ••• ,mN-I and Mm11 ••• ,mN-I are isometric. 

The above L2-metric on Nm1 , .•. ,mN_1 is hyperkahler. Therefore it can be described by 
means of the twistor space construction of section 1.4 and that is what we are going 
to do in this section. The only ingredient that is not immediate is the complex 
symplectic structure on N'm 1 , ••• ,mN-I. Since we have three noncommuting complex 
structures I, J, K on N'm1 , ••. ,mN_1 , we get three symplectic forms Wt,W2,w3 , where, if 
( , ) denotes the scalar product, w1(s, t) =(Is, t) and similarily for the other two 
ones. Recall from section 1.4 that the complex symplectic form, relevant for the 
twistor space construction, is 

76 

http:bounda.ry


0 First of all we should write down the action of I, J, K on an element (a, b, u, w) of 
the tangent space. We express it as an element of a quaternionic vector space 
(a+ bj, u + wj). This is the same as writing a variation (to, t1, t2, t3) of a solution to 
N ahm's equations as t0 + it I + jt2 + kt3 . We can also write 
u = !( ui + iu2), w = !{ WI + iw2) with u1, u2, w1, w2 being purely imaginary. The 
scalar product given by (2.1) can be written then (up to a constant factor) as 

where p, varies over neutral boundary points (as in (2.1)). 
Now, in general, if ( s1, s 2, s3, s4f = si + is2 + js3 + ks4 E Hm, then it is easy to see 
that j acts by 

while k 

Hence 

w(s,s) = (js,s) +i(ks,s) -s38I + s4s2 + si83- s2s4 + i(s48I- s3s2 + s2s3 + si84) 
(si+ is2, 83 + is4)- (si+ i82, s3 + is4) 

Therefore, from (2.3) 

w((a,b,u,w), (a,b,u,w)) =111-Ntr (ab-ab) +tr (uul -wTu) (2.4) 
11-1 

which can be written as 

1
11-N 

w = tr (da 1\ d(J) + trdU 1\ dWT 
Il-l 

(2.5) 

We would like to calculate this form in terms of the corresponding rational map. We 
are going to do it for a generic N ahm complex, i.e. for the open dense set where all 
eigenvalues of (3 have multiplicity 1. 
Notice that the form is invariant under a global (i.e. depending only on t) 
conjugation by a complex gauge transformation, i.e. under an element of g. 
On the other hand if we act by a gauge transformation changing with (a, (3, U, W), 
the form may change. We are going to choose a sequence of gauge transformation 
which leave the form (2.5) invariant and which will lead us ultimately to an extremely 
simple form of (a, (3, U, W ). 
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Let us see how does an infinitesimal gauge transformation change the symplectic 
form. An infinitesimal gauge transformation is of the form 

1 + sp 

where s is an infinitesimal tangent directions parameter. Such a gauge 
transformation acts on (a, b, u, w) E T(a,{3,U,w)Nmt. ... ,mN-l by 

(2.6) 

a f-----7 a- ~p- [a, p] , b f-----7 b- [,8, p] , u f-----7 u + pU , w f-----7 w- pTW (2.7) 

We have 

Lemma 2.1 The symplectic form {2.4) is invariant under gauge transformations 
which belong to 9c. 

Proof: Since, as we observed, a global (i.e. depending only on t) conjugation does 
. not change the symplectic form, we only have to consider an infinitesimal gauge 
transformation, i.e. a (1 + sp) E 9c. Such a p at a superior boundary point will 
have its lower-diagonal block equal to 0. 
First let us consider how the part of the symplectic form given by the integral changes 
under any complex infinitesimal gauge transformation, i.e. a (1 + sp) E Q. Let 

( ii, b, u, w) 

be the result of the action of (1 + sp) on (a, b, u, w ), (a, b, u, w)) given by (2. 7). Let 
us use the notation 

V=~ -2[a, 

We have then 

J::t tr (ab - ba) - I::t tr (ab - ab) = 

I::t tr ( -~Vpb- a[,B, ,0] +~V p [,8, ,0]) + I::lN tr (-~V ,Ob- a[,B, p] + Vp [,8, p]) = 
J::t tr (~P Vb +,0[,8, a]- ~P ([V ,8, ,0] + [,8, V ,0])) + 
I::t tr ( -~,0 \lb- p[,B, a] -~V ,0 [,8, Pl) 
+ ~ L~I tr (- pb + ,Ob + p[,B' ,0] ) r·-

1-t•+ 
which is just 

N ~-

~ L tr (-pb + ,Ob + p[,B, ,0] ) 
i=l 1-ti+ 
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0 because \lb = 2[,8, a] , \lb = 2[,8, a] , V ,8 = 0. 
Therefore 

for any (1 + sp) E 9. 
Notice that if (1 + sp) E 9c, then the expression 

( -pb + pb + p[,B, p]) ~~;_ 
~;+ 

(2.9) 

vanishes at any superior (or inferior) boundary point /-li, as the upper-diagonal block 
of p is continuous and the lower-diagonal one is 0 at f.li. Therefore the lemma will be 
proved if we show that at a neutral boundary point f.l the expression (2.9) cancels 
with 

tr (uJ,T -ulft) -tr (uwT -wTu) 
However, from ( 2. 7), we have that the last expression is equal to 

Using now (1.2) and its linearization we see that the expression indeed cancels with 
(2.9). 

Now we can find a gauge transformation defined on all of Nm1 , ••. ,mN_
1 

which does not 
change w and such that the resulting variations bare upper-triangular. 
Observe that, that taking any cyclic vector v (this is possible because of the 
genericity assumption) and· setting g-1 = ( v, (3v, ... , (3m-lv), where m= rank ,8, will 
give us (cf. Hurtubise[ ], Proposition (1.15) ): 

0 0 Po 

1 P1 
g,Bg-1 = (2.10) 

0 Pm-2 
1 Pm-1 

for some Po, ... ,Pm-1· Such a gauge transformation is not, however, in 9c, so the 
symplectic form may change. We have to proceed differently. 
First we need a technical lemma. 
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Lemma 2.2 Let {3 be of the form (2.10) and suppose an ME gl(m) satisfies 
e~M = 0, i,e. 

Mu ... . . . M1m 

M--
Mm-1,1 Mm-1,m 

0 0 

Then: 

i) If [{3, M] is upper-triangular, then M is strictly upper-triangular; 
ii) If [{3, M] is constant, then M is constant; 
iii) If [{3, M] = 0, then M= 0; 
In particular gl(m) decomposes into the commutator of {3 and the annihilator of e~. 

Proof: All three facts follow easily after we write down the commutator for such 
{3,M: 

0 0 M12 M1m L:i M1iPi 

[,B,M] = 
Mu M1m 

Mm-12 Mm-1m Ei Mm-1,iPi ' ' 
Mm-1,1 Mm-1,m 0 0 0 

Now we have: 

Lemma 2.3 There is a gauge transformation g = g(t,a,,B), defined for generic 
(a, ,B), which is a composition of a diagonal gauge transformation g1 which depends 
only on t and g2 E 9c such that after acting by g the resulting Nahm complex 
satisfies: 

0 

i) if fl is a superior boundary point, then the limit ,B(fl-) of ,8 from the inferior side 
is of the form (2.10) while the limit from the superior side is 

f3(Jr) G 

,B(fl+) = 0 0 1 * * 
0 1 

0 
* 

0 0 1 * 
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ii} if 11 is a neutral boundary point, then one-sided limits f3(f.l±) of B are of the 
form (2.10} and the vector W = W(f.l) is equal to em= (0, ... ,0,1?. 

Note that a gauge transformation of the described form will not change the 
symplectic form and, because of the second assertion in ii), the part dU 1\ dWT of 
the symplectic form will be now 0. 
Proof: First of all let us define 91 • At a neutral or inferior boundary point 11 put 
91 (f.l) = 1 ; in a neighbourhood of a superior boundary point 11 , setting z = t - f.l, 
put 91(z) = diag (1, ... , 1, z-(k-1)12, ... , z(k-1)12) (see (1.10). Now extend this onto 
[f.lb /lN]· At a superior boundary point {3 becomes of the form (cf. Hurtubise[1989], 
Proposition (1.15)): 

f3(p,-) G 

/3(/1+) = f1 fm * * (2.11) 
0 h1 

0 * 
0 0 hk-1 * 

Obviously we can modify this by a diagonal gauge transformation depending only on 
t so that the entries below the diagonal in the lower-diagonal block are all 1. 
Now we are seeking g2 • Obviously it is enough to define it at boundary points. The 
definition of 9c permits arbitrary values at a neutral or inferior boundary point 
while at a superior boundary point such a gauge transformation is of the form 

(2.12) 

where h is the limit from the inferior side. 
Such a gauge transformation conjugates a matrix of the form 

to 
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0 

First, by genericity assumption, we can find an h such that h(J-h-1 becomes of the 
form (2.10). (3+ is still of the form (2.11). Now we want to find h' so that (2.12) 
conjugates (3+ to the form described in the statement of our lemma. This equivalent 
to demanding that h' commutes with (3- and F h'-1 = (0, ... , 0, 1) . The existence 
of such a h' follows from Lemma 2.2. 
There remains problem of a neutral boundary point. We have to know if we can 
conjugate both (3_ and (3+ to the form (2.10) by the same matrix. 
Let us recall how we find a matrix h that conjugates some (3 to the form (2.10). We 
choose any cyclic vector v and put 

h-1 = (v,(Jv, ... ,(Jm-lv) 

Therefore we can conjugate both (3_ and (3+ by the same h providing there is a 
cyclic (for both (3_ and (3+) vector v such that 

(3~ v = (3~ v for i = 1, ... , m - 1 

Since, by the genericity assumption, (3_ and (3+ have disjoint spectra, one of them, 
say (3_, is invertible. If we diagonalise (3_, we see that W must be cyclic for (3_; 
otherwise the spectra of (3_ and (3+ are not disjoint. Hence the vector 

is cyclic for (3_. If we write (3_ in the basis 

( v, (Jv, ... , (Jm-lv) 

we see that it is of the form (2.10). However, in this basis 

w = (0, ... ,0,1) 

so (3+ differs from (3_ only in the last column. Hence (3+ is also of the canonical 
form (2.10). 

0 

Therefore we are now in a gauge in which 

{f.LN 
w = },. tr da 1\ d(J 

f.Ll 
(2.13) 

and onesided limits of d(J at any boundary point are upper-triangular. 
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0 

Let us calculate this on a particular interval (P.i, J.li+l). On such an interval we can 
conjugate j3 so that it is of the form (2.10). Moreover, since j3 is of the form 
described in the last lemma, we can do this by a gauge transformation g that is 
upper-triangular at boundary points. 

Let us take a particular ( a0 , f3o) and calculate w at this point. In an infinitesimal 
neighbourhood of ( a0 , f3o), g can be written as 

g = (1 + sp)g0 

where 

First of all go, as a global conjugation leaves w invariant, and as it is 
upper-triangular at the ends, d/3 stays upper-triangular there. On the other hand 
after acting by 1 + sp: 

( 

dpo ) 
dj3 = 0 : 

dpm-1 

Suppose that we started with (a,b)(a,b) in the tangent space at 9o(ao,f3o)· We 
A 

know that b, b are upper-triangular at P,i, J.li+l· If we take the differentials p, p of g 

in the directions given by (a, b) (a, b), we will get 

b- [(3, p] = b 

b- [/3, p] = b 
where b, b are the corresponding differentials of j3 in the form (2.10) and therefore 
have only la~t column nonzero. 

Since b, b, b, b are all upper-triangular at J.li, Jli+l? it follows from Lemma 2.2i) that 
p, p are strictly upper-triangular at P,i, J.li+l· However, according to (2.8), we have 
now 

(2.14) 

where a= a- ~,0- [ao, p] and similarily for ~-
We can see that the expression on the right-hand side of the formula is = 0, as, at P,i 

and J.li+l, p, p are strictly upper-triangular, b, b are upper-triangular, so the first 
two terms vanish and, as f3o is of the form (2.10), the commutator [/30 , p] IS 

upper-triangular, so the third term vanishes as well. 
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Therefore, on the interval (J.Li, J.li+1 ), we are now in the gauge, which we will call 
V-gauge, in which f3 is of the form (2.10) (in particular constantin t) and the 
symplectic form is given by 

[11-i+l 
w = J11-, tr da 1\ df3 (2.15) 

For a generic a, f3 we can go to another gauge, which we call D-gauge, in which f3 is 
diagonal. The passage from the V-gauge to the D-gauge is given by a gauge 
transformation that is constant in t. The difference between two integrals is given 
again by a formula (2.14) and we observe that the expression on the right hand side is 
the same at both ends, so it vanishes. Therefore the symplectic form in the D-gauge 
is still given by (2.15). Now, because of the complex equation, a in the D-gauge 

commutes with B, so it is diagonal. Let the eigenvalues of j3 on (J.Li, J.Li+d be 

(31 (3m; 
i ' ... ' i 

and let a in this gauge be: 

Let us take the gauge transformation Pi that makes a = 0 and is 1 at /li (i.e. the 
parallel transport of the diagonal basis from J.li to J.li+I); setting z = t-11-; we can 

11-i+l -1-'i 
write this gauge transformation as 

Pi(z) = diag (p}(z), ... ,pi'(z)) = diag ( efoz at(z), ... , efoz a;"'(z)) 

It follows that the symplectic form is 

dpt(1) 1 dpi'(1) m 
w= ~(J) l\df3i + ... + ~'( 1 ) l\dj3i' p, . p, 

This extends to all of (J.Lb J.LN ). Let us identify this expression in terms of the rational 
map. We have to know what is (pt(1), ... ,pi'(1) ). To arrive at this form of w we 
did the following: on each interval (J.Li, J.li+I) we made f3 constant, then we 
diagonalized it and finally we set a to 0 by a gauge transformation that is 1 at J.li. 

Making (3 constant and diagonalizing it at J.li corresponds, in terms of the description 
in previous section, to choosing the basis of sections of Qi which are restrictions of 

some section trivializing Pi away from oo. Therefore in this basis the map 

is given by 

1, ... ' 1 
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0 On the other hand to evaluate this section of Pi+l in Qi, we have to parallel 
transport the basis of Qi from /-li to 1-li+I· That is what the gauge transformation Pi 
does. It follows that the map 

is given by 

Therefore, we have 

Proposition 2.4 On the open dense subset of Nm1 , ••• ,mN_1 where the eigenvalues of 
f3 are distinct, the symplectic form {2.5) is given in terms of the corresponding 
rational map {1.9) by 

0 

This result allows us to give the full description of the twistor space for Nm1 , ... ,mN_1 • 

The symplectic form was the only missing ingredient. 
Let T P 1 denote the tangent bundle to CP1 and let ( be an affine coordinate on 
CP1 and rt the associated fibre coordinate. Let 0( k) denote the lift to T P 1 of the 
line bundle O(k) on CP1 and let D.~,(k) be the line bundle over TP1 with 
transition function exp(pq/()(k from {( =J 0} to {( =J oo}. Finally let 
r : T P 1 ---+ T P 1 denote the real structure 

(2.16) 

The twistor space Z of the manifold Nm, ... ,mN_1 is obtained by taking two copies of 
based rational maps C x Rat (CP1 , SU(N)/T), parametrized by 

pl 

EB ---- Ql 
p2 ---- EEl ----(, 0---+E---+ 
EEl Q2 

---+0 
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where Pi, Qi are sheaves over CP1 with affine coordinate "',and 

p1 

------EB Q1 
p2 ----- EB 

------EB Q2 
---+0 (, 0---+E---+ 

with the CP1 parameter ij. We identify these over ( =J 0, (, "'' ij =J oo by: 

·e~'-i'1/( (m;+mi-1 

Qilii 
·e~'-i'Y//( (m;+mi-1 

QiiT/ Pil 11 ( = ,-1 ij = "1/(2 ' ' l l l 
TJ 

"' TJ 

This also identifies the maps ?ri, ?ri of (1.6) and Pi, Pi of (1. 7) by writing down 
corresponding commuting diagrams. 
Next we need a family of sections. According to Hurtubise and Murray [1989] a 
monopole determines tautologically a bundle E over T P1 and two flags of 
subbundles Et, Ei- over TP1

. Proceeding as in (1.4) and (1.5) we get an exact 
sequence of sheaves over TP1 (see Hurtubise and Murray [1989], Proposition 1.12) 

with: 

- Qi supported over a compact curve in the linear system I0(2mi)l 
- Ker(Pi---+ Qi) = Lll-i(-ki) while Ker(Pi---+ Qi-d = Lll-i(ki) 
- the map between the second and third terms is of the form 
(at, ... ,aN) 1-+ (a1- a2, a2 - a3, ... ,aN-1 - aN) 
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0 This is a section of our twistor space. The real structure is the one coming from T P 1 

((2.16)) and it preserves the above sections as Hurtubise and Murray [1989] have 
shown. The section w of A2TP, ® 0(2) is given in each of the trivializations (, ( by 
Proposition 2.4. One can check., using a description of a generic monopole given in 
Hurtubise and Murray [1989] (eq. (1.14)), that it is indeed a section of A2TP, ® 0(2). 

0 
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0 3.3 Asymptotics of the metric in the SU(N) case- an 
example 

This section is an indication of how we plan to extend the results of Chapter 11 to the 
case of SU(N) Nahm complexes with maximal symmetry breaking. 
In this case we have several intervals and we have to match the solutions to the real 
equation according to the prescription of section 3.1. 
We can do this explicitly; we can construct an approximate gauge in the sense of 
section Ill with exponential decay of (&.,!;) away from the boundary points. If we 
could show that Propositions 2.1.5 and 2.4.1 still hold, i.e. g, p are bounded 
(uniformly in (a, (3), we could carry out the analysis of sections 2.2, 2.4 and 2.5 on 
each interval without many changes. Also, it is enough to know that g, and p are 
bounded at each boundary point. We are going to show on an example ( SU(3) 
monopoles of charge (2, 1)) how one could attempt to prove this. 

Let us then consider the case of N = 3, i.e. two intervals, say (-1,0) and (0,1) and 
two charges m< m. Let us discuss the main problem in this case. 
We can construct an approximate gauge in the sense of section ILl such that &., [; 
match at 0 and have the exponential decay on each interval ( -1, 0) and ( 0, 1). 
However we do not know that the gauge transformation g that solves the real 
equation (and preserves the matching) is = 1 at 0. All we know from the results of 
Hurtubise [1989] is that there is a gauge transformation g E 9c which does it. The 
value of g*g at 0 is determined by choosing g(±l) = 1 but we do not know what it 
IS. 

Notice, however, that if a satisfies the matching conditions at 0, then g is C1 (in 
the sense that the upper-diagonal block of g is C1 ) . Indeed, since both a and 
a = g&.g-1 

- l99-1 satisfy the matching conditions we get from the equation 

g = 2(g&.- ag) 

and the fact that g is block-diagonal at 0 that the upper-diagonal block of g is C1 • 

Therefore we can still apply the Donaldson's convexity argument (see just before 
Lemma 2.1.7) to the eigenvalues of g (as the lower-diagonal block of g(O) = 1 ). This 
however is not enough to show that g(O) is bounded independently of (ad, f3d) since 
IIF(a,/3)11 is decaying exponentially only away from -1,0, 1, not just -1, 1. We 
could, however, try to improve the convexity argument by showing a stronger its 
version. Let .us sketch this in the simplest case of charge (2, 1) (higher charges 
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0 involve cluster decomposition as for the SU(2) case). 
We start with two diagonal complexes, one of charge 2, say 

another of charge 1, (a3,,83).We assume that ,82 # ,81. In order not to consider two 
cases, as in the proof of Proposition 1.5, we will further simplify and consider the 
region where ai-s stay bounded while 

tends to oo. Let us also put 

R ~ max{ I,Bi- ,Bil; i # j, i,j = 1,2,3} 

First we use a permutation: 

if 1,83- fJ1I > 1,83 - fJ2I, we permute ,81 and fJ2· 
Now we would like to match ,8-s at 0, i.e. we are looking for a 2 X 2 matrix M such 
after conjugating the charge 2 complex by M the (1, I)-entry becomes ,83. Since we 
would like eventually to show that the gauge transformation taking us from the 
diagonal complex to the solution of real equation approaches 1, we choose M to be 
of the form: 

(3.1) 

Then we have 

Therefore 

(3.3) 

Because of the above permutation, I ST I < 1. We also have (1 - ST) = ~ , so, 
~ writing fJ1 - ST ,82 = fJ1 - fJ2 + (1 - ST),82 and similarily for the (2, 2)-entry, we get: 

(3.4) 

Now we are looking for a gauge transformation near and on the left of 0 which will be 
=M at 0 and will give the proper matching conditions to a. We are looking for a 
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0 gauge transformation of the form (3.1) where S and T are now functions of t. It 
follows that we must have 

(we can see how the differences of ai-S come into play). Therefore i'T-1 is bounded 
by (STr1

, so by R. We can now multiply the off-diagonal terms of our gauge 
transformation by e-R

2
t

2 
(same way as in case b) in the proof of Proposition 1.5). It 

follows that our gauge transformation approaches 1 as esRt (t < 0) and that the 
resulting a, s satisfy 

11 F(a,S)(t)ll :s; R2esRt 

for t < 0. On the other hand near t = -1 we can use Proposition 1.5 (or rather its 
proof) to find a gauge transformation approaching 1 as e 8 R 12 (1+t) , giving the correct 
poles and such that 

11 F( a, S)(t) 11 :s; R~2e-sRt2(1+t) 

We can extend these to a gauge transformation on [-1, 0] so that 

Now we would like to estimate g that solves the real equation or rather, as in 
Proposition 1.5, lnmax{ eigenvalues of g*g(t)} and 
lnmax{ eigenvalues of g-1g*-1 (t)}. Let us put 

and let us diagonalize h on [0, 1] (his diagonal on [0, 1]) by a unitary factor, so that 

We can do this if the eigenvalues of h are different and then extend by continuity 
giving us a weak version of the inequality we are aiming for. A unitary factor acts on 
F( a, S) by conjugation, so it does not change its norm. From the real equation we 
get then 

Since x2 is 1 at 0, x2 will be bounded by the arguments of Proposition 1.5. The 
above equation for x1 will give us an inequality of the form 
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c The problem is that f(t) is decaying exponentially only away from -1, 0,1, and it 
becomes large(~ R2

) near 0. We are going to argue that F(t) also becomes large 
near 0, so that a convexity argument of the type given in Lemma 1. 7 can be used. 
Indeed, suppose that F(t) is small (compared toR) for some t near 0. This means 
that I,B21 (t)l and I,B12(t)l (in the basis in which h(t) = g*g(t) is diagonal) are small 
compared to R. Then, however, [,B*(t), ,B(t)] has norm small compared to R2 • As this 
last expression gets conjugated by a unitary gauge transformation, its norm does not 
change under such a gauge transformation. It follows that 

is small compared to R2 (as t is close to 0), where ,8° is given by (3.2) or (3.4). 
However 

From (3.2) we have 

while from (3.4) 

Since only the product of S and T is determined, we can choose S, T so that 

and then we have 

~~,8~1 ~
2 

-~,8~2 ~
2

~2: ~R2 

since R = l.82- .Btl or R = 1,83- .82l· This shows that F(t) fort near 0 cannot be 
small compared toR and so g is bounded. Similar argument will work for p. 

0 

It is possible that since we are missing just the boundness of a gauge transformation 
at one point, a variational argument would be more suitable. The author will not 
shave until he solves this problem. 
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