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Abstract

The problem of vertex coloring hoIds an important place in engineering as it models situa­

tions in which a number of shared resources must be minimized and distributed across the

sub-components of a system. The objective is to ensure a valld and cost effective implemen­

tation of the overaJl sys~em. The problem surfaces in a great number of applications, many

of which faJl within th~ area of digit'!-l systems design. However, despite its wide range
i

of applications, vertex icoloring remains one of the most complex optimization problems

known and to this day 1no efficient method has been shown to provide optimal answers in

aJl instances of the general case.

This dissertation explores characteristics of optimality of vertex: colorings, bounds on the

chromatic number and coloring heuristics. The first few characteristics are based around
,

the fundamental and residual nodes of an optimal coloring. An e>:arnination of the subset
l , , l ,

offur.damental nodes ':Vill reveal necessary subgraph properties for, an optimal coloring and

its graph; one of which is based on Kempe chains. In turn, this l:ads to a bound relating

the chromatic number' and the num~er of odd cycles in a graph.
i i

Subsequently, a continuous vari~ble formulation of the vertex coloring problem is pre-, '

sented along with an halysis of its ~olution space. The characterization of the space illus-

trates the problem's complexity an~ the nature of its local minima relates to the GaJlai-Roy

theorem. The results ~iven will havJ algorithmic significance since their proofs are construc-
, 1

tive. 1 i
1 r C~'
l' ,

The WWI pair o~vertex colori~gheuristics is then disclosed. The algorithms are based

on successive comprJssions of pair~ of non-adjacent nodes each reducing the problem in-
1 1 ;

1 !
i
1

!
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stance by one node until a complete graph is obtained. The criteria for selecting pairs of

nodes concentrate on the aflinity and conflict values calculated from structural properties

of the graphs. The heuristics are justified by upper bounds on the chromatie number and

approximation arguments. It is demonstrated that sorne compressions preserve the chro­

matie number or the maximal clique size of a graph, thus resulting into sorne identifiably

optimal selections by the algorithms. U1timately, this leads to the c.llaracterization of a

dass of perfect graphs. Finally, a set of benchmarks for the WWI algorithms on random

graphs and k-colorable random graphs is given and favorable comparisons are offered with

existing algorithms.
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Résumé

La coloration des graphes joue un rôle important en ingénierie car elle représente les

situations où une quantité minimale de ressources similaires doit être allouée aux sous­

composantes d'un système. L'objectif est d'assurer un faible coût total au système. Une

multitude de problèmes est directement reliée à la coloration, dont plusieurs se situent dans

la conception des systèmes digitaux. Cependant, malgré la grande variété d'applications

pratiques et l'attention particulière que le problème a reçu au cours des ans, la coloration

des graphes demeure un des problèmes les plus complexes de la: recherche opérationnelle et

pour lequel il n'existe toujours pas de méthode de résolution optimale qui soit efficace.

Cette thèse étudie la coloration par le biais des caractéristiques d'une coloration op­

timale, des bornes sur l'index chromatique d'un graphe et d'heuristiques. Les premières

caractéristiques examinées se rattachent aux sommets fondamentaux el résiduels d'une

coloration. L'analyse du sous-ensemble des sommets fondamentaux identifie plusieurs pro­

priétés structurelles nécessaires à une coloration optimale, dont l'une est basée sur les

chaînes de Kempe. Cette dernière observation mène à une borne reliant l'index chroma­

tique et le nombre de circuits impairs d'un graphe.

Subséquemment, le problème de coloration des graphes est formulé et analysé sur un es­

pace continu. La caractérisation de l'espace des solutions illustre la complexité du problème

avec l'appui d'un résultat qui établit un lien entre les minimums locaux et le théorème de

Gallai et Roy. Les résultats présentés ont des implications algorithmiques étant donné la

nature constructive de leurs preuves.

Pour terminer, une paire d'heuristiques de coloration est dévoilée. Les algorithmes

iii



• procèdent par la compression successive de sommets non-adjacents jusqu'à ce qu'un graphe

complet soit obtenu. Les principes de compressions sont fondés sur les propriétés struc­

turelles d'affin.ité et de confut d'un graphe. Des arguments d'approximation ainsi que des

bornes sur l'index chromatique servent à justifier les décisions heuristiques. En outre, il

est démontré que certaines compressions préserv' nt l'inde.x chromatique ou la clique ma..x·

imale d'un graphe tout en permettant une réduction optimale du problème. Ceci mène

à la caractérisation d'un ordre de graphes parfaits. Finalement, une batterie de tests sur

des graphes alléatoires sert de comparaison favorable entre les algorithmes présentés et des

algorithmes provenant d'autres sources.
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Claim of originality

The core of the original work is located in chapters 3 , 4 , 5 and appendices A , B , C.

Chapter 2's contribution is to provide a classification of compression algorithms on the

properties of order, adaptability and locaJization.

• Chapter 3 introduces the concept of fundamental nodes on which the main contribu­

tions are theorem 3.2, corollary 3.4 and the algorithm of appendix B. Theorem 3.2 is

a necessary characteristie of optimal vertex colorings identifying structural properties

of graphs and their colorings. Corollary 3.4 is a cubie bound relating the chromatie

number and the number ofodd cycles in a graph. This bound has further consequences

in the heuristic designs of chapter 5. The proofs of the characteristics of optimaJity in

chapter 3 are constructive and can be used as refinements for sub-optimal colorings.

Appendix B provides such an algorithm for a refinement on fundamental nodes in

O(lVI 2 ).

• The theoretiea.\ content of chapter 4 is original with exception to theorem 4.3 and

corollary 4.2 which can be demonstrated as consequences of the known Gallai-Roy the­

orem (theorem 2.3). The chapter begins with a transformation of the vertex coloring

problem into a continuous variable mathematieal formulation (theorems 4.1 and 4.2).

Observations are th~ made on the nature of the solution space (corollary 4.1, propo-,.
sitions 4.1 and 4.2, and corollary 4.3). The introduction of colored stratifications led

to a new and constructive proof to the necessary charateristic of optimaJity of theo­

rem 4.3. In turn this proof led tothe refinement algorithm of appendix C. Finally,
vii
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theorem 4.4 fully characterizes the local minima of the continnons variable represeu·

tation and it relates them to the Gallai-Roy theorem.

• Chapter 5 conceras two new vertex coloring heuristics: ,V,VI on affinities and WWI on

conflicts. The implementation described in appendix A provides a mechanism which

Dermlts the algorithms to operate one order of magnitude faster (iu the llumber of

vertices) than other algorithms basd on similar metrics. The use of the chromatic

llumber presp.rving compressions of theorem 5.2 and the approximation of a se~olld

order criterion via propositions 5.3 and 5.4 is also nove\. The theoretical consequences

of the algorithms are new results as weil: theorems 5.3 and 5.4, and the algorithmically

identifiable perfect graphs of section 5.6.

\'.

vüi



•
Contents

Abstract

Résumé

Acknowledgements

Claim of originality

1 Introduction

1.1 Focusing on Digital System Synthesis .

1.1.1 Modeling Complexity ...

1.1.2 Computational Complexity

1.2 Vertex Coloring . . . . . . . . . . .

1.2.1 Channel Routing Example .

1.2.2 Register Allocation . . . . . . . .

1.2.3 Other problems related to vertex coloring

1.3 A Brief Dissertation outline . . . . . . . . . . . .

2 Defining Vertex Coloring

2.1 Definitions .

ix

i

iii

v

vii

1

2

4

5

7

7

10

13

13

15

15



2.2 A.lgorithmic Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 A Bound on the Chromatic Number and Characterislics of Optimality 23

2.4 Studying the solution space 25

2.5 More on A.lgorithms .. . 26

2.5.1 Greedy Algorithm 26

2.5.2 Coloring through compressions 26

2.5.3 Tseng's Algorithm . . . . . . . 29

2.5.4 A Classification of Compressions: order, adaptability and localization 31

3 Sorne Characteristics of the Chromatic Number 34

3.1 A First Characteristic . . . . . . . . . 34

3.2 Going further with fundamental nodes 38

3.3 Some possibilities ...

3.4 A brief recapitulation

4 A Structural Study of the Solution Space

4.1 Mathematical programming models .

4.2 A Slight Modlfication

4.3 Refinement method . .

4.4 Relating Characteristics of Optimality

4.5 Conclusion .

5 Aigorithms

5.1 Further Observations.

5.2 WWI Algorithms ...

x

46

47

48

48

54

60

62

73

75

75

82



• 5.2.1 WWI on Affinities

.5.2.2 WWI on Conflicts

.5.2.3 Discussion on Algorithms

5.3 An Example of WWI on Affinities at Work

5.4 Implications of WWI on affinities

5.4.1 A Heuristic

5.5 Benchmarks ....

5.5.1 Random Graphs

5.5.2 k-Colorable Random Graphs

5.5.3 The first order approximation to the second order

5.6 Perfect class .

5.7 Improving the WWI Algorithms

5.8 Conclusion .

6 Conclusion

6.1 Possible directions

Bibliography

A WWI Implementation

11..1 Initialization .

11..2 Finding the best compression

11..3 Adjusting EC . . . . .. .

11..4 Adjusting A,C,K,X

11..5 Complexity of the implementation

xi

83

84

86

86

87

92

93

93

96

101

105

113

113

115

116

118

124

127

129

130

133

136



•

•

B Fundamental Node Refinement

C Colored Path Refinement

C.l Greedy Algorithm ...

xii

138

141

143



•
List of Figures

1.1 Y-chart illustrating the levels of abstraction in digital design automation. 3

1.2 A PCB board to route . . . . 8

1.3 Set of wires to channel route 9

1.4 Conflict graph for wire segments 10

1.5 A channel routing ..... 11

1.6 Register allocation example 12

2.1 A graph and a coloring. . . . . 16

2.2 Another graph and its coloring 17

2.3 A compression of vertices VI and Va in figure 2.1 19

2.4 Coloring through compressions ..... . . . . . 29

3.1 An example for theorem 3.1 . . 36

3.2 A cycle of chromatic number 3 38

4.1 A simple 3 vertex graph 58

4.2 The effect of €. • . • • • 59

4.3 The local minimum might not be achieved . 62

4.4 An e.xample color stratification . 63

xiii



• 4.5 Refining a coloring ...

4.6 A sub-optimal coloring .

5.1 Triangles and compressions

5.2 WWI on affinities e;'{ample .

5.2 WWI on affinities example (continued) .

5.3 A partial graph with dependencîes between vp , V q , Va, V~

5.4 Two possibilities with V, .

5.5 Diamond Graph .....

5.6 Benchmark results for random graphs and WWI on affinities

5.6 Benchmark results for random graphs and WWI on affinities (continued).

5.ï Benchmark results for random graphs and WWIon conflicts .

5.ï Benchmark results for random graphs and WWI on conflicts (continued) .

5.8 Benchmark results for n = 128,256,512,1024 and p = 0.5

5.9 Benchmark results for n = 128 and p = 0.15,0.3, 0.70,0.85

5.10 Benchmark results for n = 256 and p = 0.15,0.3,0.70,0.85

5.11 2nd order approximation on 128 nodes and p = 0.5

5.12 A sequence of conflict free compressions

A.1 Data structure examples

A.2 Cases 2,3,4 and 5.

A.3 Case 6 .

xiv

68

69

83

88

89

90

91

94

9ï

98

99

100

102

103

104

105

112

126

134

135



Chapter 1

Introduction

From a fundamental standpoint the goal of the engineering process is to seek solutions

to practical problems and subsequently apply them. Quite often there is more than one

solution offering itse1f to a given problem and the process also entalls finding the best

possible one given a determined set of criteria. In that respect. the engineering process

is directly comparable to a mathematical optimization process for which the goal is to

determine the best possible solution given objectives and constraints. Due to the wide

spectrum of engineering problems, the complexity of the optimization mode!s that underlie

engineering varies greatly. Some problems have simple and elegant solutions whereas others

elude us entirely due to their complexity. Furthermore, the very nature of the complexity

is }.tself a variant frorn problem to problem.

Particular problems are difficult because their criteria and objectives are nebulous and

intangible. For such problems precise or quantitative mathematical formulations are dif·

ficult if not impossible. Some examples of such engineering problems are software quality

metrics problems [Glas92] or the slew of problems that fuzzy logic or neural networks have

attempted to address [Wels94]. These cases correspond to the optimization problems for

which it is hard to generate a mode! of abstraction or to prioritize the multiple objectives

and criteria imposed.·· And hence they are problems of high modeling complexity.

But there are also a great number of highly complex engineering problems for which

1



• there are clear, precise and even concise mathematical formulations. Their comple:I:ity

arises because there are no known methods to compute their optimal solutions efficientlr

witlün a limited set of resources. These are the problems of high computationai complexity.

Sorne of the problems witlün this category deal with infinite solution spaces from which it is

sometimes difficult to generate a solution let alone determine whether a solution encountered

is indeed an optimal one. For example the many questions of systems theory which lead to

non-linear formulations on continuous variable representations [PaWi88].

But one does not need to go to such extrernes to find problems for wlùch no cornpu­

tationaIly efficient methods are known. For example, several problems of combinatorial

nature have finite solution spaces on which optimal solutions can be found within finite

time and resources [GaJo79, Gibb85]. However they still faIl within the computationaIly

comple."I: category because of the sheer magnitude of their solution spaces and the inefficient

methods we have to prune them. It is the prohibitive amount of resources (often the time

resource) demanded by current tools which renders impractical the goal of a guaranteed op·

timal solution. The core of this work will concentrate on such a problem which has several

practical occurrences in engineering,' namely the vertex coloring of graphs. This specifie

problem is of importance since an adequate solution method, even if sub-optimal, has an

impact on a very broad class of practical problems [GaJo79].

It is important to point out that the categorization of complexity into modeling corn·

plexity and computational complexity used herein is not a formal classification but rather

a descriptive tool to lüghlight the two principal sources of difficulty found in practical

optimization. Nor are the two categories mutuaIly exclusive as sorne tenacious problems

confront us with both the modellng and computational difficulties.

1.1 Focusing on Digital System Synthesis

In order to bring the. poilits of the previous section to a further depth, the scope is now

reduced to the particular optimization issues found in the synthesis of digital systems. Over

the last few decades computer automation has become a necessity for the design of digital

2



• systems. This is a direct result of the explosion in size of digital systems and the shortened

time c:'cles alloted for their production [Sher93]. Automation tools have seen their level of

abstraction steadily augment to meet the increasing demands of designers. The Y-diagram

of figure 1.1 first introduced by Gajski and Kuhn [GaKu83] is a succinct depiction of the

levels of abstraction wruch have appeared over the years. The extent of an abstraction is

established from the distance of its corresponding ring to the center of the chart. At the

lower levels of abstractions, such as the circuit or logic levels, one must go through the

tedium and detail of transistors, differential equations, boolean equations, logic gates and

polygons of materials to produce a circuit. At a rugher level such as the algorithmic one

it ideally suflices to produce an algorithmic description of a design to automatically churn

out a circuit corresponding to it. And therefore, the use of higher levels of abstraction has

the effect of shortening and simplifying the design cycle as one does not have to dedicate

as much time to detalls as opposed to concepts [MiLD92].

Structural
Domain

....
....

.....'Bloëk/Chip

'cnip'ïB~~"

"Mâëi-o-cell ......

System Level...., , .....

.........

.........

....

.....

\.

Behavioral
Domain

Aigorithmic Level ... .. . .
......... . ,... Register Tr~~~er'~vel .

System Specs.. . ".......... .

Algqtithms ,,' Logi~.Le.. vel C'\U, Memory
... ... Pr~cessor1 Subsystem

Register Tfa,nsfer/Specs/ .......,',
f .... / . . Circuit Level AL,U. R~l;isters\
.:Boolean Equatlons._ ", . .... . '. . .
: . . . ' G,ates, F:lip-Flt;>ps
i Di~erent~ Eq~tions:: 'iransi~tors \ \

\ \ ~ /':'
.... p~iygo~ .broup~i

". ,Stâ~~~ c~ri~/SU~'~:1l .. .1 '
.... ,,' ....:'

Physical Domain

Figure 1.1:>Y-chart illustrating the levels of abstraction in digital design automation
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• However the introduction of severallayers of abstraction has generated several problems

of high modeling comple.:dty within the field of digital synthesis, especially at the higher

levels of abstractions. As weil, the discrete structure of digital systems leads to many integer

optimization and combinatorial problems of great computational comple.:dty (although at

the lowest levels there are many problems of a continuous variable since many models are

based on classical physics). As a consequence, one of the main factors impeding the progress

of digital design automation is the need for advancement in optimization techniques. In

fact, if one foregoes the satisfaction of constraints and optimization criteria associated with

the general problems of digital synthesis then relatively simple mechanisms exist to derive a

physical circuit from a system's description in a high levellanguage such as VHDL [Perr91,

Merm92, GDWL92]. Much of the difficulty arises in the fulfillment of constraints and

optimization methods.

1.1.1 Modeling Complexity

In high level synthesis, the issues surrounding modeling comple.xity are numerous. The op·

timization process deals with intangible constraints such as reusability, modularity, upgrad-

ability of designs [GDWL92, MiLD92] and thus it becomes tentative to model such objec.,

tives on automation tools based on computational platforms. Other objectives such as

design testability and verifiability are also hard to quantify unless restricted to specific sets

of faults and assumptions [MiLD92, GhDN92].

Furthermore, there is also the multj·objective nature of the problems encountered. Op­

timal values are simultaneously desired for multiple dimensions such as monetary cost,

silicon area and timing [KuDe92, GDWL92]. This poses difficult modeling problems as

there is no complete mathematical methodology to deal with multiple objectives. One of

the widely used methods to treat multi-objectives is akin to lexicographical optimization

techniques [Zlob78] in which the objectives are prioritized and a sequence of optimizations

is conducted on each objective. Such is the case with the sequencing approach to partition­

ing, allocation and scheduling found in many high-level synthesis toolsJKuDe92, GDWL92,

THKR83]. Another approach employed transformsthe multiple objectives into a single

4



• objective through a weighted cost function on the original objectives. Many examples of

this can be found in the clustering algorithms of high-level synthesis [MiLD92, LaTh89].

As well there exists other multicriteria techniques such as Pareto optimization [Pa1896]

which have yet to be explored in digital synthesis. Unfortunately the point of contention

with these techniques is that they may very well bypass significant portions of the solution

regions. The selection of a satisfactory model becomes a laborious task as different methods

generate solutions often differing in optimality. Although prevalent in high level synthesis,

multi-criteria problems occur at allievels of abstraction of digital synthesis and present the

same difliculties. At the lower level it is the tradeoffbetween area and timing which is most

evident.

There are other elements of modeling complexity as well. For example the design

representations made avallable to the designer restrict the possible forms of expressions

of a design and impose further constraints on the solution space [GDWL92, KuDe92].

Similar drawbacks exist with the internal representations selected for synthesis computa­

tions [GDWL92, MiLD92]. Overall, these combinedfactors contribute to render digital

design automation rich in model complexity issues.

1.1.2 Computational Complexity

As well, digital synthesis is certainly not exempt of computationally complex problems.

As previously stated, the discrete structure of digital systems produces several integer and

mixed integer optimization problemsj many of which fail within the classes of NP complete

or NP hard problems [GaJ079]. To name a few, the general formulations of wire routing,

logic minimization, scheduling, allocation, finite state minimization, partitioning, bind­

ing [A~'DN92, MiLD92, Sher93, GDWL92] all contain NP hard or NP complete problems and

they span across allievels of abstraction in synthesis. In fact most optimization problems

of synthesis [Sher93] are NP hard or NP complete and quite a few directly translate to inte­

ger linear programs [NeW088] or well known graph theoretical problems such as maximum

clique, vertex coloring, steiner tree problem, and hamiltonian circuit [GaJ079, Gibb85]. As

\Vith all NP type problems, this implies that there are no known algorithms which provably

5



solve them optima1ly within polynomial time of the instance sizes. And nor do we know if

such algorithms do exist. However, aigorithms of exponential time complexity can be used

to generate optimal answers. Unfortunately, they become much too slow as input instances

grow in size and thus alternative methods must be found [or the larger cases that occur in

practice.

Several algorithmic techniques are used to address the synthesis problems for which no

optimal polynomial time algorithms are known. One approach consists in finding poly­

nomial time approximation algorithms which guarantee solutions within bounds of the

optimal solutions [Sher93]. Another is to use polynomial time heuristics shown to be effec­

tive through benchmarking and theoretical justifications but wlùch are without guarantees

of optimality. The heuristic approach is by far the most common one used in synthesis.

There also erist special case algorithms wlùch concentrate on subspaces of the prob­

lems for which optimal polynomial time solution generators are known. For instance,

there are many types of perfect graphs wlùch have polynomial time solutions to prob­

lems otherwise NP complete in the most general case [GoluSO]. Although there are sorne

synthesis problems wlùch are always guaranteed to generate instances within these special

cases [HaSt71, Gavr72, KuPaS7], these problems are the rare exceptions. In most situations

where specialized algorithms are used, the original problems cannot be directly associated

with special cases. Instead the construets are artificia1ly modified and constraints added

so that the problem instances generated meet the requirements of an optimally solvable

special case. For example, most of the Olympus synthesis system [KuDe92J operates under

that principle. However, due to the additional constraints introduced, the optimal answers

to the modified problems may very weil be suboptimal answers to the original problems.

Therefore the method compares to heuristics as it provides no guarantee of optimality. In

fact, many heuristics are designed by extending the methods wlùch are provably correct for

special cases [Sher93].

Advances in integer linear programming (ILP) methods [NeWoSS] have made it prac­

tical to utilize integer programming tools to solve limited size synthesis problems opti.

mally [GeEI90]. Although these new methods remain exponential in the worst case, they

6
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1)

do operate sufficiently fast on small but significant cases. Finally, probabilistic algorithms

such as simulated annealing (PFTV88] and simulated evolution [Sher93] have been ,,"sed

on a number of complex synthesis problems. They do provide quality answers for prob­

lems such as partitioning or scheduling but their excessive run time often renders them

impractical [GDWL92].

1.2 Vertex Coloring

Given the importance of optimization in the field of synthesis it is imperative that the topic

occupies a significant part of the synthesis research areas. Rowever, undertaking work

which tackles ail of the aforementioned issues at once would be overwhelming. Instead

much of the synthesis research concentrates on specifie optimization problems for which the

objectives are less broad but more tangible. Such is the case with this dissertation which

concentrates its effort on the combinatorial problem of vertex coloring. The problem is

of importance since it has several occurrences in the digital systems synthesis area and it

belongs to the NP-complete c1ass of problems. It is one of the most persistent problems

even amongst the NP-complete problems as it falls within a group for which there are no

likely satisfactory approximation algorithms [LuYa94]. Yet sub-optimal solutions translate

dire.c.tly into digital systems oflarger area, poorer performance, and higher cost. Therefore,

there are imminent needs for finding better heuristics and further understanding of the

problem. Two specifie instances of vertex coloring 'are now used to exemplify synthesis

applications in which the problem is found.
(;

~\
1.2.1 Channel Routing Example

One of the first synthesis applications involving vertex coloring was channel routing [RaStn].

As an abstract example consider the printed circuit board (PCB) of figure 1.2. The board

consists of 3 rows of 4 integrated circuits which must be interconnected. Vertical wires are

made to run on one side of the board and the horizontal wires on the opposite. Junctions

between horizontal and vertical wires are achieved by contacts (vias) drilled into the board.

7



• Between each row of circuits there are horizontal spaces in wlùch five wire channels can run

in parallel. The sarne applies for vertical spaces between circuit columns. Each channel can

be made ta run several disconnected wire se.gment as long as they occupy disjoint regions

of the channel.

At first, an algorithrn attempting ta rrünimize connection distances is used ta decide

the general path of connections by determining which horizontal and vertical spaces the

wires will run through. For e.xample the eight interconnection paths shawn on figure 1.3

are desired for a single PCB.

Vertical Space
e 31

D ~hannel~ D
D D D D

Horizontal!
Space

D D D D

Fignre 1.2: A PCB board to route

Once the general paths are deterIIÙned, channel assignment follows. For each horizontal

and vertical space on the board the wire segments running through it are extracted. The

goal of channel routing is to IIÙniIIÙze the number of channels needed to run all the wire

segments falling within a given space. Returning to figure 1.3 consider the eight wire

segments labeled A through H located on the horizontal space between the first and second

row of circnits. The wire segments E and H can run on the same channel as they occupy

different sectors of the space. However A and E cannat share a common channel as they

both run through a common part of the horizontal space. A table indicating whether or

8
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o

1o

o

o 0
A

o 0

o 0

o

o

o

o
H

D

D

(h)

o
o 0

F
o

(a)

•

(c) (d)

Figure 1.3: Set of wires to channel route
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• not each pair of wire segments can share a channel is easily produced. From this table a

confiict graph is generated. Each node of the graph represents a given wire segment and

each edge denotes that two segments cannat share a common wire channel. The confiic!

graph for the horizontal space between first ra\\' and second ra\\' of circuits in figure 1.3

is given in figure lA. The ensuing task consists of labeling the nodes of the graph (wire

G~----C

F

Figure lA: Conflict graph for wire segments

segments) with the fewest possible labels (channel numbers) sa that no two adjacent nodes

carry the same identifier (no short circuits). In this particular case the minimalnumber

oflabels is four and a possible solution is ta label A,B with 1; E,F,H with 2; G,D with 3;

and finally C with 4. The resulting channel routing is shawn on figure 1.5. The exercise

of labeling the nodes of the graph with the fewest possible labels is equivalent to that of

vertex coloring.

1.2.2 Register Allocation

Register allocation is the task of minimizing the number of register elements needed to

implement a given set of computations. The immediate gain in finding optimal solutions

is ta use the least possible silicon area in the case of digital synthesis [MiLD92], or im-

10
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,;.:

C
4

G
3

D
2

E F H

A
1

B

Figure 1.5: A channel routing

proved efliciency in the case of compiled softwar.e [CACC8l, AhSU86] as more variables are

stored into CPU registers as opposed to slower storage. Consider the sequence of instruc­

tions shown on figure 1.6 (a) with VI> V2, V., V6, V,O as input variables and V" V2 as output

variables [GDWL92]. Assume the dataflow graph for the hardware schedule is shown in

figure 1.6 (b). The dashed lines delimit clock periods within which several operations may

run in parallel if they are not interdependent on their values. At each period the registers

are read for input and then written to once the results are computed. Each operation

outcome is associated with the variable below its operation circle. The line segments of

figure 1.6 (c) show the usefullifetimes ofthe variables; the times at which variables convey

desired information. Two variables which are not simulfaneously live during any time seg­

ment may share the same register. Such is the case for V6 and Vs for example. However two

variables which are both live at any given moment must be stored into distinct registers.

For example VI and V6 are in conflict. Extending this idea, a conflict graph is built by

letting nodes represent variables and edges pairs of variables which overlap in time. In

the example of figure 1.6 the conflict graph is shown in (d). The minimization task in­

volves labeling the nodes with the fewest labels possible such that no two adjacent nodes

get the same identifier. Nodes sharing a label are then made to share a register. For the

graph of figure 1.6 (d) at least five labels are required and one possible labeling is V" Vs

with 1; V2, Vs, Vll with 2; V., Vs with 3; V6, Vr with 4; and V9, VlO with 5. Once again this

minimization exercise ls equivalent to vertex coloring.

11
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V3 = v, +V2

VS=V3 XVS

Vi = V3 - V4

Vs = V3 +Vs

Vg = V, +Vr

Vu = VlO -;- Vs

V, = Vs +Vu

V2=VS-Vg

V.

[)Vg

Vu

Vs

(d)

Vs

Vr

(a)

(b)

R

__ Yi
R

___ YI
R

(c)

Figure 1.6: Register allocation example
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1.2.3 Other problems related to vertex coloring

In addition to the examples given in the previous sections vertex coloring has other oc­

currences in digital synthesis. Functional units such as adders, multipliers, or any other

combinatorial function can be allocated by reformulating the problem to vertex color­

ing [GDWL92]. As well interconnection unit allocation (buses and multiplexers) can be

reduced to vertex coloring [TsSi86]. Scheduling problems involving mutually exclusive

events also reduce to vertex coloring. Ali of the aforementioned problems exemplify the

great importance of the vertex coloring in the digital synthesis framework.

But verte., coloring does not limit itself to synthesis. It models optimization and oper­

ations research problems in which the resources utilized by a system must be brought to a

minimal number. Colors, each representing a resource, are distributed ~.cross the parts of

the system so that the system's functional objective is achieved. Different parts may share

a resource to reach their respective subgoal; however there are constraints guided by phys­

ical impossibility that prohibit sorne parts from sharing a common resource. Finding the

minimal number of resources which satisfies both the constraints and the parts composing

the system consists of the vertex coloring problem. :The nature of the systems modeled by

vertex coloring varies greatly: from map coloring [Berg73] to class scheduling [Gibb85] with

our attention particularly set on the occurrences in digital systems design. And 50 does the

meaning of the colors vary greatly: from time units to materials.

1.3 A Brief Dissertation outline

Now that the practical importance of the vertex coloring problem has been stressed, the

remaining chapters of this dissertation will concentrate on the specifies of vertex coloring.

At first a theoretical study of the problem will be presented followed by practical heuristics

resting on the theory. Chapter 2 will introduce basic definitions and sorne work related

to the theoretical and practical elements of subsequent chapters. Chapter 3 delves into

necessary characteristics of optimal colorings. Chapter 4 will provide a structural analysis

of the solution space and highlight its complexity. Finally, chapter 5 and the appendices are

13



• dedicated to verte." coloring heuristics based upon the theoretical work of previons chaptcrs.
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Chapter 2

Defining Vertex Coloring

The problem of verte.x coloring is not a recent one and it has been extensively studied

over the last sesquicentenary [BiLW76]. The collection of published works on the subject

represents an immense library and it would be futile to attempt a complete overview within

this dissertation. Instead the overview presented within this chapter will concentrate on

results directly relevant to the core of the subsequent work. For compendia of results on

vertex coloring the reader is referred to [Lova79, Berg73, GrWa77, Tome85, Golu80].

2.1 Definitions

This section presents definitions and examples which have direct bearing on the work pre­

sented thereafter. For the remainder, the graph theoretical notation and terrninology fol­

lowed cau be found in [Gibb85, Bigg85]. Simple, finite, undirected graphs are dealt with

throughout. There will be other definitions introduced in upcoming chapters but they will

pertain specifically to the sections which contain them.

. Definition 2.1 (Vertex Coloring Problem) Given an undirected graph G = (V, E) with

vertices

15



• and the edges defined on pairs of adjacent vertices

E ç {ek = {v;, v;} 1v;, Vi E F}

a verte", coloring C is a mapping from the vertices ta a subset 5 of natum! numbers

C:F>->5cN

which must satisfy the following condition:

{v;,v;} E E :} CCv;) i- CCvi)

Hence if two vertices are adjacent then they cannat be assigned the same integer.

As a pictorial aid, the integers in 5 are often directly associated with distinct colors of the

visible spectrum. This is where the problem derives its name from. Figures 2.1 and 2.2

show graphs and their respective colorings; the vertices being represented by nodes, the

edges by line segments and the colors being associated with nodes.

Red

Green

....----=::. V4
YeUow Blue

Green

Figure 2.1: A graph and a colormg

Definition 2.2 (Optimal Vertex Coloring) For a groph G = (V, E) as given in defini­

tian 2.1, an optimal verte", colDring C is one which minimizes the cardinality of 5:

min 151
such that

C:V>->5cN

1\

CCv;) i- CCvi) "1 {v"vi} E E

16
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v, ()---tlt-----(}--.. Vs

Vs

Figure 2.2: Another graph and its coloring

Note that there may be several vertex colorings which are optimal for a given graph. How­

ever there is only one possible optimal value to the minimum IBI (the minimum number of

colors).

Definition 2.3 (Chromatic Number) Fora graph G = (V,E) as given in definitions 2.1

and 2.2, the optimal value of IBI is called the chromatic number X(G).

The graph of figure 2.1 is optimally colored since vertices v" V4, Vs, V6 are fully intercon­

nected and form a complete subgraph; therefore they each must have a different color. The

chromatic number is 4 for this particular graph. /'
\\ //

Definition 2.4 (Degree) The degree d(v) orG.~!'~".te±'::::='·ftum~rof vertices which are

adjacent to it. The ma",imum degree .6.(G) of a graph G = (V, E) is the maximum of ail

vertex degrees in the graph: .6.(G) = max.;EV d(v,).

Definition 2.5 (Edge Complement E') Given a graph G = (V, E) as in definition 2.1,

the set E' is called the edge complement and is defined as fol/ows:

Note that E' consists of ordered pairs whereas E does not. For example both (VI> V3) and

(V3, VI) E E' for the graph of figure 2.1. This property will simplify upcoming definitions,

especially that of confiict.
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Definition 2.6 (Affinity) The affinitya of a graph G = (V, E) is a mapping from the

edge complement ta the natural numbers:

,,: E' ...... N

such that:

In other words, the aflinity between two vertices Vi and Vj is the number of vertices which

are adjacent ta bath. Note the symmetry: "(Vi,Vj) = "(l'j,Vi). In figure 2.1, a(vlov3) =

a(Vs, VI) = 1.

Definition 2.7 (Conflict) The confiict "1 of a graph G = (V, E) is a mapping fram the

edge complement ta the natural numbers:

"1: E' ...... N

such that:

Sa, the conflict between two vertices Vi and Vj 1s the number of vertices which are adjacent

ta Vi but not ta Vj. In figure 2.1 "1( Vlo vs) = 2 and "1(Vs, VI) = 1.

Definition 2.8 (Compression Transformation) Suppose an undirected graph G =(V, E)

which is not complete. Then consider a graph G' = (V', E')obtained by removing any two

non adjacent vertices Vi and Vj in Gand replacing them with a single vertex Vi,j conneded

to ail the adjacencies ofVi and Vj. Graph G' has one less vertex and it is said ta be obtained

from a compression of vertices Vi and Vj on G ta a vertex Vi,j in G'. In the new graph G'

we have:

18



• and

The compression is denoted as

>- (G: Vi, Vj; G' : Vi,j)

We notice that in the literature a compression is also known as a contraction-connection [Berg73].

It is different from an elementary contraction or a contraction [Berg73] [Gibb85]. Figure 2.3

shows a compression of vertices V, and V3 of the graph in figure 2.1. Compressions are in­

strumental in the design of sorne vertex coloring algorithms.

Figure 2.3: A compression of vertices V, and V3 in figure 2.1

Definition 2.9 (Clique) A clique of a graph G = (V, E) is a subset of the vertices W =

{w"w" ... ,Wk} ~ V such that'l Wi,Wj E W 3 {w;,Wj} E E. IfW has k elements then

it is said to be a k-clique.

Definition 2.10 (Clique number) The clique number of a graph G = (V,E) is the

maximum size of ail cliques in G. Let W be the set of ail cliques in G and let w(G) be the

symbolic representation for the maximal clique number. Then:

w(G) = max IW;\
w,eW

19
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• Definition 2.11 (Perfect Graph) A graph is perfect if and only if the chromatic nllm­

ber of the graph x(G) is equal ta its clique number w(G): x(G) =w(G).

Definition 2.12 (Path) A path is a sequence of vertices (v" v" ... ,vr) such that con­

secutive vertices are adjacent and ail vertices are distinct. If p is even then it is an even

path, otherwise it is an odd path.

Definition 2.13 (Cycle) .4 cycle is a sequence of vertiees (v" v" ... , Vd, Vd+» such that

consecutive vertices are adjacent and ail vertices are distinct except for VI = Vd+ l' If d is

even then it is coined an even cycle, otherwise it is an odd cycle. d is thelength of the

cycle and if d = 3 then we also refer ta the cycle as a triangle. JI cyde is sometimes calied

a circuit.

Figure 2.1 d"picts a perfect graph since the chromatic number is 4 and {VI, v." vs, vs} [orm

a clique of size 4. On the same graph, (VI, vs, vs, v., VI) forms an even cycle of length 4.

Definition 2.14 (Orientation) An orientation of an undirected graph G = (li, E) is

the transformation of each of its edges into an ordered pair called a directed edge. Under

an orientation each {v., Vb} E E becomes one of (v., Vb) or (Vb' v.) and thus there are 21B1

possible orientations ta a graph. Given an orientation, a directed path is a path in which

pairs of successive nodes are directed edges of the orientation.

Definition 2.14 will be of use when discussing the forthcoming Gallai-Roy theorem and

related results.

2.2 Algorithmic Complexity

As demonstrated in lGaJ079] the vertex coloring problem belongs to the NP-complete class

where no polynomial time solution has been found which will solve it under ail instances.

And nor do we know if one exists. Furthermore, vertex coloring appears to be a problem

which cannot be approximated [Gibb85]. As opposed to some other NP-complete problems,
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• such as edge coloring (Vizi64, Gibb85], there is no known polynomial time approximation

algorithm that guarantees solutions to vertex coloring within a reasonable bound of the

optimal answer. And unless P=NP then no such approximation exists. The first result in

tlùs direction was shown in [GaJ079]. It was demonstrated that if there is a polynomial

time approximation to vertex coloring which is certain to return a number of colors within a

factor of two of the optimal answer (for any graph in general) then there exists an optimal

polynomial time algorithm for vertex coloring and P=NP. Short of proving P=NP, this

result is quite negative in critical applications such as hardware synthesis. But, as will be

discussed shortly, the forecast gets even grimmer.

Over the last two decades there has been a concerted effort to improve the performance

of approximation algorithms for vertex coloring. Much of the research has focused on

improving the performance ratio metric:

Definition 2.15 (Performance Ratio of VertexColoring Algorithms) Let </J be a ver­

tex coloring algorithm performing on a class of graphs C. For any graph GEe, define

</J(G) to be the number of colors retumed by algorithm </J for graph G and let x(G) be the

chromatic number of G. A bound B is a performance ratio of the vertex coloring algorithm

</J over the class C if it is provable that

</J(G) < B
x(G) -

"V GEe

B is not necessarily a constant and it is often the case that a bound is known to exist

within the order of a function f( n) where n is the number of vertices. In such cases the

performance ratio is expressed as OUen»~.

After demonstrating the poor performance ratio of many graph coloring heuristics on

the general problem, Johnson [John74] proposed an algorithm' with a performance ra­

tion in the order of OCc;n)' A decade later Widgerson [Wigd83] produced an algorithm

of performance ratio O(nr-r) for the c1ass of graphs with chromatic nurnber smaller or

equal to k (k-colorable graphs). To date the best known performance ratio is of the or­

der o(n(:~~~,:!\~)') [Hall93] forgeneral graphs. The specialized c1ass of 3-colorable graphs

has also been e.xamined as it represents a subc1ass for which the problem remains NP
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• complete. A recent result for three colorable graphs has yielded an u1gorithm of perfor.

mance ratio O(n~ log~ n) [B1um94]. It was in turn bested by the performance ratio of

min{O(ldlog! b.),O(nilogn)} [KaMS95) where b. i8 the ma:I:imum degree, Although

these results have theoreticaI significance they have little practicaI vaIue since the ratio be·

cornes rapidly large with increasing graph size and thus provides little in terms of practical

guarantees.

By demonstrating the following theorem Lund and Yannakakis [LuYa93, Lu Ya94] have

dismissed aIl aspirations of finding a constant or well behaved performance' ratio:

Theorem 2.1 There is. an € > 0 such that vertex colo";ng cannot be approximated in

polynomial time with performance ratio n' unless P=NP.

ProofThe proof can be found in [LuYa94]. 0

Consequently, unless P=NP, there is little hope of finding approximation aIgorithms

which have significantly better performance bounds than those previously discussed. Fur·

thermore, unless sorne specifie classes of problems are shown to satisfy equivalence proper·

ties, the exponent € oftheorem 2.1 can be shown to .be strictly greater than 1~ [BeSu93) at

the least. The dire outcome of theorem 2.1 is that, unless P=NP, the performance ratio of

approximation aIgorithms is certain to diverge with increasing graph size and further work

to improve the best known ratio can only achieve a better rate of change to the divergence.

The main criticism of theorem 2.1 is that it does not apply to the specifie cases in which

the input instances are guaranteed to be of the k-colorable c1ass for smaIl k [BeSu93].

Due to the hardness of the problem, a1gorithms promising better bounds on special­

ized classes of graphs have been investigated. PolynomiaI time a1gorithms which operate

on sorne classes of perfect graphs have been proposed to color their respective subclass

optimaIly [GoluSO, Sher93]. As weil, the important dass of planaI' graphs can be col­

ored in linear time within a performance ratio of ~ [ChNSSO]. There are aIso probabilis­

tic techniques which are known to be efficient on sorne simple distributions of random

graphs [Wilf84]. Unfortunately much of the practicaI cases are not covered by these re­

stricted aIgorithms and broader solutions must be found. FinaIly, there have been attempts
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• to find an efficient exponential time algorithm to optimally color a graph CCV, E) of rea­

sonably small size but the best result to date has yielded a time complexity in the order of

O(IEIIVI(l + 0)1V1) [LawI76].

In later chapters, a pair of practical verte..\: coloring heuristics will be presented. They are

called the WWI' algorithms. Instead of aiming at improving the overall performance ratio,

the algorithms will concentrate on identifying substeps which are provably optimal during

the coloration of a particular graph. Most often optimal substeps cannot be found and the

algorithms fall back onto heuristics based on theoretical bounds of the chromatic number

and checks on characteristics that optimal colorings must obey. Through their mechanism

of operation the WWI algorithms focus on the particular instances under computation

rather than providing guarantees for classes of graphs. Nevertheless it will be shown that

they can be used to identify sorne perfect graphs which they color optimally.

2.3 A Bound on the Chromatic Number and Characteristics

• of Opthnality

Most bounds on the chromatic number are only valid for graphs obeying a strict set of

properties. However there are a few, yet weaker, bounds which are applicable to ail graphs

in general and thus can be used in ail cases of heuristic decision making. The following

bound is probably the most inked bound on the chromatic number due to its generality

and the simplicity of its proof:

Theorem 2.2 Civen a graph C = (V,E) with maximum degree .6.(C), the chromatic num­

ber x(C) is bounded above by the following condition:

x(C) ::; .6.(C) +1

Proo! See [Gibb85] for a proof. o

•
1.The name was chosen ta reflect. the resemblance between the algorithms' mechanisms and the alliances

of the Great War in which countries with common interests and few divergent ones sided with each other

out of converuence.
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• As an example for the graph of figure 2.2 the usage of theorem 2.2 yields X :s:; 5+1 = 6.

Theorem 2.2 will play a role in the WWI algorithms but it will be of little signilicance. A

quadratic bound on the number of edges and a cubic bound on the I1umber of odd cycles

shall play the key parts.

Short of enumerative and exponential methods, there are no knowIl sllfficient conditions

which universally determine whether or not a coloring is optimal. However there does exist

a set of necessary conditions which optimal colorings must satisfy and for which coloring

solutions can be verified efficiently. One such characteristic of optimality is the Gallai-Roy

theorem and it will have direct bearing on the work of chapter 4:

Theorem 2.3 lGaUai-Roy] Consider a graph G(V,E) with chromatic nllmber X(G). For

each orientation of its edges there exists a directed path with X(G) vertices. FlIrthermore

there exists an orientation for which there is no directed path with more than x(G) vertices.

Proof See [Berg73] for a proof. o

For a,ample, since the chromatic number of figure 2.1 is 4 it is certain that there will

be a directed path of length 4 on any orientation of its edges. Theorem 2.3 will be revisited

in a form which deals with colorings as opposed to directed paths. As weil it will be related

to a property of the local minima in the vertex coloring solution space.

Another well known result on structural properties classifies the entire class of two

colorable graphs:

Theorem 2.4 A graph G(V, E) can be colored with two colors if and only if it contains no

odd cycles.

Proof See [CLiu68] for a proof. o

Beyond two colors there are no known structural characteristics such as that of the­

orem 2.4 which clearly delimit the chromatic number. As previously stated thê optimal

coloring of 3-colorable graphs remains an NP-complete problem and thus the prospect of

.. finding a structural property which fully characterizes 3-colorable graphs is not promising.
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• Furthermore it has even been shown that the four coloring of 3-colorable graphs is also

NP-complete [KhLS92J. As for 2-colorable graphs they can be optimally colored within

polynomial time and in fact one of the two WWI algorithms will serendipitously achieve

that goal. Chapter 3 will further highlight the structural importance of odd cycles with a

result relating the chromatic number and odd cycles.

2.4 Studying the solution space

The sheer difficulty of coloring graphs warrants an examination of the solution space in­

volved. A detailed study of the solution space is the object of chapter 4. It will be conducted

by transforming the graph coloring problem into a non-linear mathematical program over

a continuous space.

It will be apparent that graph coloring is closely related to the problem of mapping a set

of variables subject to a partial ordering [AhHU82] onto a smallest possible set of values.

However in a partial ordering the inequalities relating pairs of variables are of type <,>j

thus predetermining an order between two variables. In vertex coloring the inequalities are

of type Xi # Xi, therefore leaving it undetermined whether Xi > Xi or xi < Xi when the

problem is specified. It is tlùs single n.~n-deterministic difference which renders graph color­

ing much moré difficult. Leaving the order of the inequalities undeterrnined fundamentally

changes the solution space of graph coloring with respect to the partial ordering problem

due to a combinatorial explosion of the possible solution regions in hyperspace. The partial

order problem onto a smallest set of values is confined to a single solution region and it can

be solved in polynomial time (in the number of variables) by using a tool such as linear

programming [Khac79] or even simpler.

The solution space study will reveal additional necessary conditions which optimal col­

orings must obey and it proposes a simple and rapid algorithm which will improve any

coloring which does not meet them. The algorithm may be used as a post-processing

refinement to heuristics or it can be used to color graphs directly.
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2.5 More on Aigorithms

2.5.1 Greedy Aigorithm

The most widespread technique to color graphs is the greedy algorithm [Bigg85]. Although

it yields a poor performance it is easy to implement and has an efficient time complexity

of O(WI'). In addition the algorithm belongs in the proof of several theorems. It proceeds

by sequentially traversing a set of vertices {VI' v" ... , vn } in order and coloring each verte:,

to the first color unused by its adjacent predecessors. The following is a description of the

algorithm in which 5 represents the set of colors adjacent to a verte:, and C the coloring

itself:

Get A graph G = (V, E)
/ / Color the graph
C(VI) - 1
for i = 2 ta n do

5-0
for j = 1 ta i - 1 do

if {v" v;} E E then
S ;- 5 U {CCv;)}

k - 1
while k E S do

k-k+l
C(Vi) - k

Return C

In chapter 4 the greedy algorithm will be used to establish a property of the solution

space and in appendix C it is modified to provide an alternate solution for the verification

of a necessary characteristic of optimal colorings.

2.5.2 Coloring through compressions

The vertex coloring algorithms that are of interest within this dissertation are all based On a

mechanism which follows from these simple observations on compressions. The observations

are evident but their proofs have been inc1uded for sake of completeness.
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• Observation 2.1 Let G' = (V', E') be a graph obtained from a compression on an incom­

pIete graph G(V, E). Let Vi and Vj be the vertices of V compressed into Vi,j in V'. Then

the following statements hold:

(A) Let Qc be a vertex coloring of G'. The color assignment Cc defined on G such that

and CcCVi) = Cc(Vj) = Qc(Vi,j)

is a vertex coloring of G.

(B) Let Cb be a vertex coloring of G and let" be a color which is not used in Cb • The color

assignment Qb defined on G' such that

is a vertex coloring of G',

(C) Let Cc be a vertex coloring of G with CcCVi) = CcCVj). The color assignment Qc defined

on G' such that

Qc(Vk) = Cc(Vk) 'VVk E V' \ {Vi';}

and Qc(Vi,j) = CcCVi) = Cc(Vj)

is a vertex coloring of G'.

Proof

(A): It will he shown that C.(v:) ;6 C.(vy)'V{v:,vy} E E. Consider an arhitrary edge

{v:,vy} E E. {v.,vy};6 {v;,Vj} since two nodes must he n~n-adjacent to he compressed.

If v. E {Vi,Vj} then {Vy,Vi,;} E E' hy the definition of compression. And since Q. is

a coloring, it follows that Qc(vy) ;6 Q.(Vi,j). From the assignment C. it follows that

C.(vy) = Q.(vy) and CcCv:) =Q.(Vi,j), thus C.(v:) ;6 C.(vy). Hence C.(v:) ;6 C.(vy) if

v: E {Vi,V;}. Similarly C.(v:);6 Cc(vy) if vy E {Vi,Vj}. Finally ifhoth v: and vy differ

from Vi and Vj then {v:,vy} E E' => Q.(v:);6 Q.(vy). It follows that C.(v:) =Q.(v:) and
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• C.(Vy) = Q.(Vy), thus C.(v.) f. C.(vy). Thereforein ail possible cases it has been shawn

that C.(v.) f. C.(vy) and C, is thus a valid coloring.

(B): Consider an arbitrary edge {v.,vy} E E'. If v. = Vi,j then Qb(1'r) = t< and

Qb(vy) = Cb(vy). Since t< is not a color used in Cbit follows that Qb(l'r ) f. Qb(Vy). Similarly,

Qb(vx) f. Qb(l'y) if vy = Vi,j' If bath Vx and vy are different from Vi J then {v" vy} E E and

Cb(vx) f. Cb(vy). Since Qb(V.) = Cb(vx) and Qb(Vy) = Cb(vy) then Qb(Vx) f. Qb(Vy). This

covers al! possibilities and thus Qb(Vx) f. Qb(Vy)V'{v.,vy} E E'. This implies that Qb is a

coloring.

(C): Let {vx,vy} E E'. If bath Vx and vy are different from Vi,j then {vx,vy} E E.

Therefore Cclvx) f. Cclvy). This implies Q,(vx) f. Q,(vy). If v" = ViJ then either {Vi, Vy} E

Eor {Vj,Vy} E E. Since CcCVi) = C,(Vj) then C,(vy) f. CclVi) and C,(vy) f. C,(Vj). But

Q,(vx) = Q,(Vi,j) = CcCVi) = C,(Vj). Hence Q,(vx) f. Q,(vy). Similarly, Q,(vx) f. Q,(vy) if

vy = Vi,j' Therefore if {v", vy} E E' then Q,(vx) f. Q,(vy) and Q, is a coloring. 0

Via observation 2.1 (A) an algorithm can reduce the vert..." coloring problem of a graph

G by making an appropriate selection of two non-adjacent vertices and compressing them

into a graph G'. In turn the graph G' is compressed and this procedure is repeated until

a complete graph results. The action of compressing two non-adjacent nodes results in

assigning them the same color in the final coloring. The number of nodes remaining on the

complete graph determines the number of colors required by the algorithm. This intuitive

technique for coloring graphs has long been used, see [Berg73] for example.

Figure 2.4 shows an example of the use of observation 2.1 (A) on a graph borrowed

from [Bigg85]. By repeatedly using observation 2.1 (A) one can construct a coloring for the

graph in (a) through successive compressions leading to (d). A possible coloring result is

C(v,) = red, C(V2) = C(vs) = green and C(V3) = CCv,) = C(V6) = blue. A practical way

to achieve this is by keeping track of the compressions through the indices of the vertices.

Vertices with a common color in the original graph are grouped under the index of a vertex

in the final graph. For this particular example the coloring returned is an optimal one but

that is not always the case.
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• What distinguishes compression heuristics (and in fact most vertex coloring algorithms)

is the criteria used to select which pair of nodes to compress at each step. A simple scheme

shall soon be presented to classify compression algorithms under general terms. But prior to

that the description of a well known compression algorithm is given as a detailed example.

v

Vs

Vs

(a) V4

(c)

Vs

V3,4,6

(b) V3,4

(d)

Figure 2.4: Coloring through compressions

2.5.3 Tseng's Algorithm

Tseng's algorithm [TsSi86] is a clique partitioning heuristic and it is not a vertex color­

ing algorithm per se. However clique partitioning and vertex coloring are two equivalent

problems related through the complement of a graph and thus it is possible to directly

translate Tseng's algorithm into a vertex coloring algorithm with little effort. For unifor­

mity and clarity the version of Tseng's algorithm presented herein is an adapted version

for vertax coloring which was obtained from the clique partitioning counterpart described

in [GDWL92, MiLD92]. As with the WWI algorithms, Tseng's algorithm is based on affin­

ity and conflict calculations (although [TsSi86] uses the values and terminology of common

neighbors and total neighbors instead). A stepwis~ description of Tseng's heuristc follows:

29



• 1. Calculate all the affinities and canflicts far all pairs af nan-adjacent vertices in the

the graph.

2. This step involves finding a pair of non-adjacent vertices as candidates for compres­

sion. If this is the first compression step or if a compression is no longer possible

with the vertex resnlting from the previous compression step then find the pair af

non-adjacent vertices V; and Vj with the minimum sum of affinities and conflicts:

<:l(V;,Vj) +'f(v;,Vj) +'f(Vj,v;). Otherwise if V, was the resnlting verte:" from the last

compression then find the vertex 'Ok which is non-adjacent to v, and which yields the

minimal sum: <:l(V" 'Ok) +'f( 'Ok, V,) +'f(V" 'Ok). In the plausible case that several vertex

pairs offer themselves as best compression candidates then select the pair Vm , 'Un \Vith

the maximal affinity <:l(Vm , 'On) amongst them.

3. Compress the pair of vertices found in step 2.

4. Recalculate all the affinities and conflicts in the newly compressed graph.

5. UnIess the compressed graph is complete, return to step 2.

In Tseng's algarithm there isno need to distinguish on the direction of conflict as

'f(v;,Vj) and 'f(Vj,v,) are always lumped into a sumo But in the WWI algorithms the

separate contributions are crucial and thus Tseng's algorithm has been expressed in such

terms for ease of comparison between the algorithms.

Tseng's heuristic has widespread use in digital hardware CAD systems. Compared to

other known graph coloring heuristics it is of a slow time complexity of O(1V12IE'1) because

affiuity and conflict values must be recalcnlated after each compression step. Despite its

good performance, the large complexity of the algorithm renders it less appropriate for

applications which are less critical of the quality of resnlts as opposed to their promptness

(such as register allocation in standard software compilers).

As a speed up, Springer and Thomas [SpTh94] have recently introduced the EGAD

heuristic based on the model afTseng's algorithm. EGAD operates in O(IVIIE'I). However

it targets graphs with structures close to that of comparability graphs. In [SpTh94] it is
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demonstrated that EGAD yields a performance similar to Tseng's heuristic for the problem

of bus allocation.

The WWI algorithms presented in chapter 5 have a worst case performance bound of

O(IVI3 ) and operate in a time directly proportional to O(IVIIECI). As with Tseng's heuristic,

the WWI algorithms also operate on a re-evaluation of the affinities and conflicts at each

compression step. However a significant speed improvement over the existing version of

Tseng's algorithm is possible due to a more efficient method for recalculating the aflinities

and conflicts at each step. The technique is disclosed in appendix A and it can be applied

to improve Tseng's algorithm to O(IVI3) as weil. Finally, benchmarks on random graphs

will be used to compare the performance of the WWI algorithms over Tseng's algorithm.

2.5.4 A Classification of Compressions: order, adaptability and localiza­

tion

Verte.x coloring heuristics are akin to approximating functions through Taylor series. Higher

order Taylor series approximations signify better answers at the cost of a greater computa·

tional complexity. Similarly a notion of order can be brought to verte.x coloring. Heuristics

which base their compression decisions on large subgraph structures surrounding the com­

pression pair can yield better results but they do so at the expense of a greater time spent

. exploring for the preferable choice. Algorithms which look at the Immediate adjaccncies of

a pair of compression candidates are coined first order compressions. Algorithms which go

beyond and exantine the adjacencies of adjacencies of compression pairs are second order

algorithms. And so oni the order being the maximal depth ofthe adjacencies being exam·

ined. By this definition Tseng's algorithm is clearly a first order algorithm since it depends

upon aflinity and conflict values. So are the WWI algorithms since they are also based

on the sarne metrics. Chapter 5 will briefly discuss a second order algorithm of superior

performance but the resulting computational complexity renders it slow and impractical.

Instead, one of two WWI algorithms will be a first order approximation of this second order

algorithm.

For general graphs, aflinities and conflicts fully deterrnine the nature of the first order
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• neighborhood of a potential compression pair and thus maJlY first order algorithms can be

described with these metrics. Finding the best criteria based on these values remains the

main design issue of first order algorithms. As for designing algorithms of higher order the

tradeoff for time complexity becomes rapidly costly and the useful range of the algorithms

becomes limited to the smaller input cases.

The comparison with Taylor series can be taken further. Reuristics designed to work

well for graphs resembling those of a particular class are comparable to adjusting the point

about which a Taylor series is taken. Points nearby the Taylor series' origill are bett,er

approximated than those distant. Similarly the graphs of a structure unrelated to those of

a specialized algorithm are less likely to be properly colored.

The next means which can be used to distinguish compression algorithms is their adapt­

ability. Ali the algorithms presented in this thesis are adaptive because after each corn·

pression step the aflinities and conflicts are readjusted to refiect the compressed graph. As

such adaptive algorithms take profit of the past history of decisions made by the algorithm

but they do so at the expense of time complexity. Algorithms which do not readjust these

values but rely on the initial values of the problem throughout the compression steps are

non-adaptive. In appendix A it is demonstrated that a non-adaptive version of the WWI

algorithms or Tseng's algorithm can be implemented in the time complexity of matrix

multiplication.

Finally there is a need to distinguish ,between a localized compression scheme versus

a globalized one. A localized algorithm performs all of its compressions about a single

vertex until it is no longer possible to compress on that vertex. Then and only then does

it proceed to a new vertex. The sequence of compressions from figure 2.4 is localized since

the compressions always occur on the last compressed vertex until it is adjacent to all

nodes of the graph. Rad V, and Vs been compressed in (b) instead of '113,4 and V, then the

localization ruIes would have been violated as there were still compressions possible with

'113.4' From the second step of Tseng's algorithm it is clear that it is a localized algorithm.

Algorithms which do not limit themselves to compressions on the last compressed vertex

are globaJized algorithms.
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•

Localized algorithms do limit the selection of compressions amongst those possible with

the last compressed vertex but the restriction of choices does not necessarily have a negative

impact on the performance of the algodthms. For example, Tseng's algorithm performs

much worse if globalized. In the case of the WWI algorithms, one will operate globally and

the other locally. As it will be demonstrated localized algorithms tend to have a better

behavior on graphs with a high edge density.
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Chapter 3

Sorne Characteristics of the

Chrornatic Number

This chapter discusses necessary characteristics of an optimal coloring based on the concept

of fundamental nodes (defined later). For colorings which do not meet the optimality crite­

ria, methods are presented to reduce the number"of colors and an algorithm is introduced.

This will lead to a theorem on bicolored paths within a graph and an upper bound on

the chromatic number with respect to the number of odd cycles. These results also have

relevance in the design of the algorithms in chapter 5.

3.1 A First Characteristic

The following theorem is closely related to the theory of the -y-critical subgraphs [Berg73)

and could be derived as a result of that theory. The characteristic the theorem introduces

forms the basis of the results presented thereafter:

Theorem 3.1 Let G = (V, E) be a graph and let C be an optimal coloring which uses the

. set of colors S. For each sES there exists a node VI EV which has color C(VI) = sand

which is adjacent to at least one node of each other color of S \ {s} under coloring C.
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•

Proof Let C be an optimal coloring with the set of colors S and suppose sES is a color

for which there is no vertex Vi E V with CCVi) = s which is adjacent ta at least one node of

ail other colors different from s in C. Then it is possible ta construct a coloring Q having

one less color than C:

First assign a color in Q ta ail the nodes colored different from s in C.

Such a partial assignment on Q is valid as C itself is a valid coloring. At this point, nodes

having color s in C have not been assigned a color in Q.

Recall thatthere is no vertex Vi, with CCVi) = s, connected ta a vertex of ail other

colors in S \ {s}. This implies that for each node Vj with C(Vj) = s there is at least one

color q E S \ {s} for which ail nodes Vk with C(Vk) = q have the property that {vi> vd If. E.

For each such Vj one can assign it the color of a respective q (Q(Vj) = q) since no edge

can exist between Vj and ail other nodes with color q or s in C, and only nodes of color q

or s in C can be assigned a color q in Q. This completes the coloring of ail nodes in Q.

Therefore Q is a vertex coloring of G which uses colors S \ {s} as its set of colors. This

contradictsthat C is an optimal coloring. Reductio ad absurdum. 0

The proof of theorem 3.1 has practical usesince it is constructive. After a heuristic

returns a coloiing, a check of theorem 3.1 can be done and if the coloring fails the criterion

then a better coloring can be rapidly extracted with an algorithmic test. Such an algorithm

is presented -in appendix Band it operates in the arder of O(1V12 ) for time complexity.

The algorithm can also be used ta color graphs directly as weil. For the benchmarks and

heuristics of chapter 5 this simple check on optimality improves the coloring of many graphs

of a reasonable size (more than 25 nodes).

For example, as shownin [Bigg85] if one colors the graph of figure 3.1 by using the greedy

colo~ingalgorithm one finds the coloring C with: CCv,) = C(V3) = 0, C(V2) = CCv,) = 1,

C(vs) = 2 .and C(vs) = 3. By theorem 3.1 this cannot be an optimal coloring since there

is no vertex of color 0 which is connected to a node of ail other colors. v, is not adjacent

ta any nodes of color 2 and V3 is not adjacent ta any nodes of color 1. Therefore one can
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• obtain a coloring with one less color by letting v, have color 2 and Vs have color 1. That is

Q(V2) = Q(V3) = Q(v.) = l, Q(v,) = Q(vs) =2 and Q("6) = 3.

Figure 3.1: An example for theorem 3.1

One can now provide a simple proof to the following known bound on the chromatic

number of a graph:

Corollary 3.1 Let G(V, E) be a graph with chromatie number x(G) and let e be a natllral

number. If x(G) 2': e then the number of vertiees in G with degree 2': e - 1 is 2': c.

Proof Let C be an optimal coloring of a graph with chromatic number x(G). C must usc

x(G) colors and c be an integer smaller or equal to x(G). By theorem 3.1 for each color

used in C there is a vertex v with an adjacency to nodes of all other colors in C. There

are x(G) such nodes (one for each color) and they must have degree of at least x(G) - 1

50 that a connection is possible to nodes of all other colors. Since e ::; X(G) it follows that
,"'the graph h\\5 at least e nodes of degree e - 1 or more. Hence the corollary is proven. 0

COrOllary~!S not a new result. The contrapositive was shown earlier, see [Berg73] for·
)1

a proof. The rd'ùlt has been included because it is a simple consequence of theorem 3.1

and the proof r'kes on elementary mathematics. In figure 3.1 the graph fails the condition

of corollary 3.1 for X( G) 2': 4 since it does not have at least 4 vertices of degree 3 or morc.

However it passes the test for X(G) = 3. Hence the chromatic number of that particular

graph is at most 3. In chapter 5, corollary 3.1 will be used in the proof of another bound

on the chromatic number.
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• Interestingly, it also is possible ta derive an even stronger check for optimality from

theorem 3.1. It is based on distinguishing the nodes which are adjacent ta nodes of all

other colors bu t their own:

Definition 3.1 Let C be a colaring of a graph G = (lf, E). And let S be the set of colors

used by C. ';f Si E S define the following sets:

Fc(Si) = {v l ';f s E S\ {s;},3 w 3: {v,w} E E /\ C(w) = s}

Rc(s;) = { v 1 C(v) = Si /\ v (t FC(Si)} (3.1)

•

Fc(Si) is called the set of fundamental nodes of color Si ancl)l,.,(s;);o the set of residua/

nodes of color Si.

The residual nodes of any caler can always be assigned different colors since each has at

least one color ta which it is not adjacent. And only fundamental nodes will be left in the

caler from which the residuals were assigned. Taken a bit further this observation yields:

Corollary 3.2 Let C be a c%ring of a graph G = (V, E) using the set of c%rs S. Con­

sider cases for which there are two c%rs Si and Sj in S such that no edge exists between a

fundamentill node of FC(Si) and Fc(sj). Ifthere is a recoloring of ail nodes in Rc(Si) such

that no no<!e in R c(sJ becomes fundamental then C is not an optima/ coloring,

Proof Recolor all nodes in Rc (s;) which are adjacent to caler Sj in a way that no node

of R c (Sj) becomes fundamental. Then recolor all nodes in R c (Sj) which are adjacent ta

a node of color Si' This leaves no edge between nodes of caler Si and Sj and therefore all

nodes of coler Si and Sj can be regrouped under one color. Hence resulting in a coloring

which uses one less color tliaIFC-a:nd thus contradicting that C is optimal. 0
. \'

The proof is again constructive and an algorithm can be de,:ised to perform a check.

As an e."ample, the graph of figure 2.2 colored with C(VI) = 3,C(112) = 'C(v.) = C(vs) =
2,C(vs) = C(V6) = C(v,) = 1 and C(vs) = O. The figure shows that only 3 colors are
.'
required and therefore C is not an optimalcoloring. But C still obeys the characteristic of

optimality of theorem':3.1 since Fc (3) = {v,}, Fc(2) = {V2}, Fc (l) = {vs} and Fc(O) =
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•

•

{vs}. Howe"er note that there is no edge between v, and V3 and thus uo edge exists

between the elements of Fc(2) and Fe (l). Furthermore ;', is possible to recolor the nodes

of Rc(2) = {v., vs} which are adjacent to color 1 without making any nodes of Re (l) =

{v"v,} fundamental: let C'(V.) = C'(vs) = 3. Now recolor the nodes of Re (1) = {v"v,}

wlùch are adjacent to color 2: let C'(v,) = O. The result is that the remaiuing "odes of

color 2 ({v,}) and color 1 ({V3, v,}) are mutually non-adjacent. Hence a common color 2

may be chosen for {V"V3'V,}. This yields a new coloring C(v,) = C'(V4) = C'('vs) = 3,

C'(V,) = C'(t'3) = C'(v,) = 2,C'(,;,) == C'(vs) = 0 which requlres ouly three colors and t.he

outcome is shown on figure 2.2. An interesting challenge is to find a coloring for a graph

wlùch meets the conditions of corollary 3.2 but which is not optimal.

3.2 Going further with fundamelltal110des

"Another question of interest pertains ta thê subgraph structures relating the fundamental

nodes in a coloring. It is well known that not all graphs are perleet i.e. they might uot

contaiu a complete subgraph with as many nodes as the chromatic number. Similarly it is

not a necessary condition that there is an edge between the fundamental nodes of any two

distinct colors in an optimal coloring. The cycle graph of figure 3.2, with the fundamental

nodes in box, illustrates this. Vsing the technique of l.\empe chains [Ke1879, Gibb85, ('.

BiLW76] we can show that for an optimalcoloring C there must lie a particularly colored
l'

path between the fundamental nodes of ea;ch pair of colors. We use the term bicoloring as

in [Berg73] instead of Kempe chain. ,..

1

lJ: : :~". i
1 Vw 1
l ..:..

Figure 3.2: A cycle ofchromôl.tic number 3
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• Definition 3.2 CBicolored Path) Let C be a :oloring using the set of colors S for a

graph G = (V, E). A bic%red path over two colors Sa, Sb E S is a path such that the

colors of successive nodes in the path alternate between Sa and Sb. The /ength of a bicolored

path is the number of nodes in the path.

Theorem 3.2 Let C be an optimal coloring using the set of colors S for a graph G = CV, E).

For any' ,wo c%rs Sa, Sb E S there must exist a bicolored path from a fundamental nade of

Fe(sa) ta one in FeCSb).

Proof Suppose there are two colors S;, Sj E S such that no bicolored path exists between

a fundamental node of FeCs;) and one in FeCsj). With this stipulation, consider a funda­

m~Dt<J node f E FeCs;) and the subgraph Gf = (Vf , Ef ) consisting of an nodes and edges

inlG that are on a bicolored path from f over colors S; and Sj in coloring C.

Clearly, every-node of Vf will either be ,)f color Si or Sj. It is possible to modify coloring
~ c: ~.

C to Cf by recoloring aU nodes of color Si in Vf to Sj and all nodes ,ofmlor Sj in V, to Si

while aU the other nodesof V \ Vf preserve their color from C. This is because any node

of V \ Vf which is adjacent to a node in Vf must have a color different from Si or Sj' Hence

interchanging colors in Vf cannot cause any coloring conflicts and Cf is a valid optimal

coloring of G since it uses 'the same number of colors as C.

Vf ~annot'have any fundamental nodes of Fe(sj), otherwise there would be a bicolored

path from f E Fe(Si) to a fundamental node of Fe (Sj) and that would contradict the initial
, ,,-~'::_, \,,'

assumption. Therefore aU nodes of color Sj in Vf are in ReCsj). And since each node of

color Sj in Gf is adjacent to at least one node of color Si then it must be that each is

non-adjacent to a color different from Si under coloring C. 'Iherefore when nodes of ReCSj)

in Vf are recolored to Si in Cf they each will remain non-adjacent to the same color to

which they were not adjacent in C since no modifications are brought to colors other than

s; and Sj in the transformation from C to C'. Hence nodes of color Sj in Vf colored

with Cali become nodes..of Re,Cs;). In a similar manner, all nod.,s of ReCSi) which

are also in Vi become nodes of Re'CSj).
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• And the nodes of Rc(si) which are in V \ "i must remain residual in C'. Otherwise;

suppose that there is anode r E Rc(s;) such that r E V \ V/ and r E Fc,(si)' Since

r E Rc(si) there is at least one color S to which ris not adjacent in C. If s f Sj then r will

not be adjacent to S in C' since the set of nodes of color S in C' is the same as in C and thus

r could not be fundamental in C'. So Sj must be the only coler to which r is not adjacent

in C. However only anode r' of coler Si in C can change color to Sj in C' for r to gain

a neighbor of color Sj 50 that it becomes fundamental. But this implies that two adjacent

nodes r, r' both have color s, under coloring C and that would contradict that C is a valid

coloring. Hence r cannot e.-dst and aU nodes of Rc(si) also in V \ V/ are residual in

Rds,). SimilarlyaIl nodes of Rc(sj) aIso in V \ V/ are residual nodes in Rc,(sj).

Node f and aU other nodes of Fc(si) also in V/ become fundamental nodes in

Fc,(sj). This is because they are recolored to Sj as al! other nodes of c<;>lor Si in ''1. And

their neighbors different from color Sj in C are retained in C' as they preserve their coler

from C to C'. And the adjacent nodes of coler Sj in C are recolored to s, in C' sinee they

must ali»"be in V/. Therefore nodes of Fc(s,) also in V/ are adjacent to al! colors but Sj in

C' and they become fundamental nodes of Fc,(sj).

And nodes of Fc(s,) aIso in V \ V/ are nodes of Fg,(si). If v E V \ V/ and v is a

node of Fc (s,) then none of its adjacencies of coler Sj in C is a node of V/. All adjacencies

of v which have coler Sj must also be in V \ "! and they wni therefore preserve their coler

in C'. And al! other nodes adjacent to v but colored differently from Sj in C will also keep

their coloring intact in C' since the transformation from C to C' only affects nodes of color

S, and Sj' Therefore v remains adjacent to al! colors but s, in C' and it is a fundamental

node of Fc{si). Sirnilarly al! fundamental nodes of Fc(sj) also in v:\ V/ are in Fc,(sj).

, This implies that aIl nodes of Fc(sj) are in Fc,(sj) since there are no nodes of Fc(sj)

in V/. So far we have shown that:
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vEV\Vf fi v E Rc(sj) => v E Rc,(sj) 1)

v E Vf fi v E Rc(si) => v E Rc,(sj) 2)

VEV\Vf fi v E Rc(si) => v E Rc'(Si) 3)

v E Vf fi CCV) = Sj => v E Re-(si) 4)

vE Vf fi v E Fc(s;) => v E Fc,(sj) 5)

v E Fc(sj) => v E Fc,(sj) 6)

VEV\Vf fi v E Fc(si) => v E Fc,(si) 7)

v= f=> v E Fc,(sj) 8)

v E Fc(sj) => v E V \ Vf 9)

Therefore covering ail possibilities for nodes of color Si and Sj. in C'. Since only implication

(7) produces vertices in Fc,(si) it must be that anyelement of Fc,(si) is also an element of

Fc(s;) i.e. Fc,(si) ç;; Fc(si)' Furthermore, by implication (8), there is one node v = f E

Fc(s;) such that v = f rf. Fc,(si)' And, by implication (5), there are perhaps more sucb

nodes. Rence there are strictly fewer fundamental nodes of color Si in C' and FC,(Si) C

FC(Si)'

Now we will show that there cannot be a bicolored path between nodes of Fc' (Si) and

FC'(Sj). First notice that if a bicolored path over colors Si and Sj exists under coloring C'

then the sarne.bicolored path also exists under C since the transformation from C to C'

only recolors sorne nodes of color Si to Sj and vice versa.

Now suppose there is a bicolored path in C' between fi E Fc'(s;) and w E Fc,(sj). From

the implications above we note that: CI
(a) fi E FC(Si)

(b) W E V\ Vf fi w E Fc(sj)

or

w E Vf fi w E Fc(s;)

(see 7 above)

(see 6 and 9)

(see 5)

We treat both cases of w separately and show contradiction.

If w E V \ Vf fi w E Fc(sj) then there is a bicolored path in C' between anode
,

fi E Fc(si) and anode w E Fc(sj). Since a bicolored path over Si and Sj in CI is also a
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• bicolored path over Si and Sj in C then there is a bicolored path between Il E FC(Si) and

anode W E Fc(sj) under coloring C. This contradicts the initial assumption that sncll a

path does not exist and thus this case cannot occur.

If W E VJ /1 W E FC(Si). Since there is a bicolored path in C' between Il and tu OVer Si

and Sj then there is at least one bicolored path P, from W to Il over Si and Sj in C. But

since W E VJ there is also at least one bicolored path P2 from f to w in C. P2 prolollged by

P, forms a bieolored path over Si and Sj from f to Il under coloring C and therefore Il E FJ•

This contradicts that Il E V" \ VJ and thus this case cannot oecur either.

Therefore there cannot be a bicolored path from a node of Fc'(s,) to a node of Fc,(sj)

in C'. Helice from C another optimal coloring C' was generated which has at least olle less

fundamentalllode of coler S, and which also has 1I0 bicolored path between an element of

Fco(si) and one in Fc,(sj). This was achieved by selecting an arbitrary f E Fc(s,) and

performing a recoloring about it. Emulating the procedure by selecting anode J' E Fc'(s,)

and performing another reeoloring will yield a coloring C" which has at least one less

fundamental node of color S, than C' and which also has no bicolored path between nodes

of Fe" (Si) and FC"(Sj). Repeatedly applying the same procedure will eventually lead to

a eoloring C' which has no fundamental node of color Si. By theorem 3.1, C' cannot be

an optimal coloring and it cao easily be transformed in a coloring ë which uses one less

color by recoloring the residual nodes of color Si in C·. Since C' does not use more colors

than C, it follows that C cannot be an optimal coloring and a contradiction arises. Henee

there must always be at least one bicolored path between the fundamental nodes of any

two colors of an optimal coloring. 0

Clearly the optimal coloring of figure 3.2 obeys theorem 3.2 as there is a bicolored path

between al! fundamental nodes, notably one oflength 8 between Vb and VW' Unlike the case

illustrated in the figure, when there is more than one fundamental vertex of each color it iB

not always the case that there is a subset of fundamental nodes, one from each color, Buch

that al! vertices in the subset are mutually interconnected by a bicolored path. Since the

proof of theorem 3.2 is constructive, it is straightforward to implement an algorithm which

improves a coloring which does not meet the characteristic by emulating the proof. And
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• although the characteristic is in a sense weaker than that of corollary 3.2, an algorithm to

check for the characteristic of theorem 3.2 is easier to implement efficiently.

No work based on Kempe chains should go without an attempt to simplify Appel and

Haken's lengthy enumerative proof of the four colorability of maps [ApHa77]. However we

were unable to prove or disprove the existence of a subgraph of a graph which has the same

chromatic number but has an optimal coloring with ouly one fundamental node of each

color:

Corollary 3.3 A planar graph G which has an optimal vertex coloring requiring only one

fundamental vertex of each color has chromatic number x(G) ::; 4.

Proof Suppose such a planar graph requires 5 or more colors. Then consider an optimal

coloring C which requires only one fundamental node of each color. And especially consider

an arbitrary set of 5 of these fundamental vertices, say {f" J" Is, J., J.}. By theorem 3.2

there must be a bicolored path between ail possible pairs of {fil J" Is, J., J.}.

For the same reason that it is impossible to draw a complete graph of 5 nodes without

crossing two edges joining 4 distinct vertices it is also impossible to draw the bicolored

paths between ail pairs of {f" J" Is, J., J.} without crossing two of the paths joining four

distinct elements of {J, ,12' Is, J.J.}. Let one ofthe intersecting paths be from W, to w,

and the other be from W3 to W. such that {WIl W2, W3, w.} S;; {JIl J2J3' J., J.}.

The bicolored path from W, to w, only has nodes of color C(Wl) and C(w,) whereas

the path from W3 to w. only has nodes of color C(W3) and C(w.). Therefore the crossing

of the paths cannot occur at a node and edges must be crossed. Thus contradicting that

the graph is planar. 0

A necessary and sufficient condition for a graph to be two colorable is that it holds no

cycles (or circuits) of odd length (theorem 2.4 [CLiu68, Bigg85]). For that reason the value

of the chromatic number of a graph can be interpreted as a measure of the odd cycles and

their interdependence. The following consequence to theorem 3.2 places a lower bound on

the number of odd cycles that a graph of chromatic number x(G) must have.
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• Corollary 3.4 (1) Let G = (If, E) be a gmph lVlth chromatjc number X. Thell thel"€ ls a

connected component H of G whlch has at least

X(X - l)(X - 2)
6

odd cycles.

(2) Let G be a graph with 'l/J odd cycles. Ifl/J;: 1 then the chromatlc numbe7' X of G

obeys the following upper bound:

Otherw;se, for 'Ij; = 0 then X ::; 2.

Proof (1) First consider the cases for which X ;: 3. Since G has chromatic number X then

t.here must exist a connected subgraph H of G with chromatie number X.

One by one, remove selected vertiees of H and their incident edges such that the cluo­

matie number of the resulting graph remains at X. Repeat the procedure until it is no

longer possible to remove a vertex without reducing the chromatie number to X - 1. The

outcome will be a graph H, from which we can remove an arbitrary vertex Vt to obtain a

X - 1 colorable graph Hf. OptimaJly color Hf with C; and transform Cf into an optimal

coloring C, of H, by adding a new color for Vt. Since Vt is the oruy vertex of its color in Ct

it follows that aJl fundamental nodes of the X - 1 remaining colors in Cl must be adjacent

to V,. By theorem 3.2 it follows that there are at least

(X-1)(X-2)

2

distinct bieolored paths between the fundamental nodes of these X - 1 colors. Since these

partieular bicolored paths begin and terminate at fundamental m>des of different color it

follows that they must have even length. And since the beginning and terminating nodes

of these paths are both adjacent to V, it follows that there must be:

(X - l)(X - 2) (X - (0) - l)(X - (0) - 2)
=2 2
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(3.2)

• odd cycles including VI in Hl'

Now consider Hf again and continue removing vertices until it is no longer possible to

do so without reducing the chromatic number to X - 2. Call the resulting graph H, and

consider the (X - 2) colorable graph H~ in which an arbitrary vertex V, is removed from H,.

Color H~ with an optimal coloring C~ which can be transformed into an optimal coloring

C, of H, by adding a new color for V,. With an argument similar to that used in Hl there

must be at least:
(X - 2)(X - 3) (X - (1) - l)(X - (1) - 2)

=
2 2

distinct odd cycles which include vertex V, in H,. Furthermore since VI is not in Hf and

thus H" it follows that these new cycles are all different from those about VI in Hl'

This procedure can be repeated until a 3 colorable graph H x-3 for which a vertex VX-3

must have at least:
2·1 (X - (X - 3) - l)(X -(X - 3) - 2)
-2-= 2

distinct odd cycles all different from those in the previous steps. We stop at three colors

since the subsequent two colorable graph has no bicolored paths when a sufficient number

of vertices are removed to render it 1 colorable. Sumrulng up the contributions we get that

there are at least:

(X - (0) - l)(X - (0) - 2) (X - (1) - l)(X - (1) - 2)
2 + 2

(X - (X - 3) - l)(X - (X - 3) - 2)+... + 2

= ~ I:(x -(i + l))(X - (i +2)) = X(X - l)(X - 2)
2.=0 6

odd cycles in H for X ;:; 3. The summation was reduced using the following properties of

integers: I:?=l j = nCn,+1) and I:?:l j' = nCn+I~C'n+I). Co

The formula is also valld for X = 1 or X = 2 since it vanishes at those points. Hence a

graph G of chromatic number X must have a connected component with at least

X(X - l)(X - 2)
6

odd cycles.
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• (2) Let 1/J be the largest number of odd cycles in a connected component. The formula

derived in (1) indicates that:
X(X - l)(X - 2) < .1.

6 - '1'

wruch transforms into the following polynomial inequality:

X3
- 3X' + 2X - 61/J ::; 0

For 1/J = 0 we must have X ~ 2 since the largest root of the polynomial is at x· = 2 and the

polynomial remains of strictly positive value for ail X> 2.

By using Cardano's method (Ca1545) one can determine that the above cubic has only

one real root for aIl1/J > 9./0 and it is located at

Therefore it follows that for 1/J ~ 1

The integer floor is taken since X must be an integer. o

For example the graph G of figure 3.1 has only two odd cycles: (v" V" V6, vil and

(v"V6'VS, v., v" v,). From corollary 3.4 we compute that X(G) ::; L3.4348J = 3. lt ls not

always that the bound is so tight. Moreover, although the statement of corollary 3.4 does

not directly state it, it is clear from the proof that the cycles must also obey a particular

arrangement in the graph. Finally, corollary 3.4 will play a useful role in the design of the

algorithms of chapter 5.

3.3 Sorne possibilities

Theorems 3.1 , 3.2 and corollary 3.2 suggest heuristic techniques to improve colorings. For

example, consider the subgraph made up the fundamental nodes. If a better coloring is to

be found then that particular suhgraph must he colored with fewer colors. An improve·

ment heuristic could concentrate on re-coloring that suhgraph and then proceed with the
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• rest of the graph in the case that a better coloring can be found for the subgraph. This

can be viewed as an approximation to finding a 1'-critical subgraph. Other techniques can

concentrate on recoloring residual nodes so that the conditions of theorems 3.1 ,3.2 or corol­

lary 3.2 become violated. In fact such recoloring methods could provide ascent directions

for techniques such as simulated annealing [PFTV88] Or neural networks [TaLe91].

3.4 A brief recapitulation

This chapter presented necessary characteristics of an optimal coloring along with sorne up­

per bounds on the chromatic number. In all cases constructive proofs of the characteristics

were given so that they have practical use as refinement algorithms to coloring heuristics.

A simple and efficient coloring refinement algorithm was detailed in appendix B to validate

this daim.
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•
Chapter 4

A Structural Study of the Solution

Space

This chapter demonstrates that although the solution space of vertex coloring problems

can be quite vast, there exists a representation for which the space is very regular and

well behaved. Thus clispelling beliefs that this problem of class NP is solved on irregular

and rough solution spaces ( [KuDe92]). The mathematical programming terminology used

throughout the chapter is as in [Naza87]. The results that will be presented are not the first

attempt to bring cliscrete NP complete problems to continuous variable represelltations, for

sorne other examples see [PaRo87]. Nor is it the first attempt to brillg graph coloring to

a mathematical programmîllg mode!. In [TCHu69] graph ~olorillg is transformed intoan

integer linear programming mode!.

4.1 Mathematical programming models

The following theorem introduces a continuous .variable mathematical programming model

for ver;tex coloring:

Theorem 4.1 Suppose the graph G = (V,E) with IVI =nmustbeverte~colored and as'

sume without loss ofgenerality thatth~ vertices are indexedfrom 1 to n : V· = {VI> v., ... , vn }.



•

•

To each Vi E V associate a real variable Xi E IR. Let x' = [xi, x;, ... ,x~l be an optimal

solution to the following real valued mathematical program:

min Xl

such that

IXi - Xj 1 2: 1 If {Vi, vil E E

a :s Xj :s Xl If Vj E V \ {vd

Then the coloring C' defined as

[C'(VI),C'(V2)""'C'(Vn )] = [lx;J, lx;J ,... , lx~J]

is an optimal coloring of G.

Proof We shall demonstrate the validity ohhis formulation hy a sequence of transforma­

tions over definition 2.2. In this definition C(Vi) and C(Vj) are integers and the condition

that C(Vi) i C(Vj) can he replaced hy the condition that IC(Vi) - C(vj)1 2: 1. AIso since

C(Vi) E N If Vi E V the constraint C(Vi).2: a can he added and the prohlem can he

restated as:

min ISI
such that

C:V ..... SCN

[C(Vi) - C(vj)1 2: 1 If {Vi,Vj} E E

a :s C(Vj) If Vj E V

Without 105s ofgenerality one can impose that the integers in S must he consecutive starting

with O. This is hecause a coloring not obeying this rule can he trivially transformed into a

coloring whicb does. In sucb a case minimizing ISI is equivalent to minimizing the maximum

integer (color) attributed to any node and the problem can he expressed as:

min(max.iEV C(Vi))

such that

C:V ..... ScN

IC(vi) - C(vj)1 .2: 1· If {Vi,Vj} E E

a :s C(Vj) If Vj E V
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• Since the colors of a graph can always be permuted amongst groups of nodes having the

same color there is no loss in predetermining one vertex ta have the highest possible color,

Let this vertex be V" This implies that min(ma.'<v,ev C(Vi)) = CCv,) and that C(Vj) :s
C(v,)\lVj E V\{v,}.AlsoC:V 1-" S C NcanbechangedtoC(vj) E N\;Ivj E V.

Hence a solution ta

min C(v,)

such that

IC(Vi)-C(Vj)[ 2: 1 \;1 {Vi,Vj} E E

0::; C(Vj) ::; C(v,) \;1 Vj E V \ {VI}

CCVi) E N \;1 Vi E V

(4.1)

will provide an optimal coloring for the graph. The formulation in program 4.1 is almost

that of the theorem statement with the exception to the added constraint that variables

must be integers. The remainder of the proof concentrates on removing thls constraint.

Consider the less tightly constrained program in wlùch the variables can be real valued:

such that

IXi-Xjl 2: 1 \;1 {Vi,Vj} E E

0::; Xj::; X, \1 Vj E V \ {VI}

and suppose x· = [xi, X;, ... ,X~] is an optimal solution. Now consider the point y.

defined as

y. = [y;,y;, ... ,y~] =[Lx;J, Lx;J , ... , Lx~Jl

(4.2)

E Nn

'.

First notice that Zi - Zj 2: 1 =? Lz;J - LZjJ 2: 1 \;1Zi, Zj E R. This result is easily extended

to IZi - Zjl2: 1 =? 1 Lz;J - LZjJ 1 2: 1 \;Izi,Zj ER by observing the symmetry in the property.

From the last observation a conclusion is that point y. must obey al! the constraints with

absolute values in program 4.2 since x· is itse1f a feasible point.

Then also notice that 0 ::; Zj ::; ZI =? 0::; LZjJ ::; LZIJ \1 Zj, ZI E R. Through this

observation and the relationslùp of y. with the feasible point x· it follows that y. obeys

al! the remaining constraints of program 4.2. Hence y. is a feasible point of program 4.2.

Since y·consists of integers it is also a feasihle solution of 4.1.
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• Sin' e x" is an optimal solution to the minimization problem in 4.2 il. follows that the

optimal value of the objective function is xi. But at feasible point y" the value of the

objective function is Yi = lxij :s xi. Therefore y' must also be an optimal solution of ·1.2.

In addition to the integer constraints, program 4.1 has ail the constraints that pro­

gram 4.2 has. Therefore it must be that the set of feasible points of 4.1 is a subset of those

in 4.2. Rence the objective function cannot yield a better value in program 4.1 than in 4.2

since any optimal point of 4.1 would also be in 4.2. Since y. is an optimal solution of 4.2

and it is also a feasible solution of 4.1 it follows that y" must be an optimal solution to 4.1.

Therefore the coloring C· obtained through

[C"(VI),C"(V2)""'C"(Vn )] = [lxij, lx;j , ... , lx~j]

is an optimal coloring of graph G and the graph coloring can be resolved by solving 4.2 and

then transforming the solution as demonstrated here. 0

As x = [n - 1, n - 2, ... ,0] is always a feasible solution tG the program in theorem 4.1

then there always exists a non-empty feasible space to the program. Note that the choice:~f

VI as a vertex colored with the highest possible value was arbitrary. 1V1- 1 other programs
, ~

cou!d have been derived with each other vertex having the highest possible vaJ}le. And in
,,";.~:::

fact it is the union of ail the IVI solution spaces which covers ail possible vertex co!orings

for a graph. The following addresses the problem of the k-colorability of a graph:

Theorem 4.2 Suppose the graph G == (V, E) with IVI = n must be vertex colored and as­

sume without loss ofgenerality that the vertices are indexedfrom 1 to n : V = {VI> Vz, •• ;'" vn }.

And let k be an integer such that 1 :s k :s n. Graph G = (V, E) can be colored with k or

fewer colors if and anly if there exists a point

x = [XI>X2,'" ,xn ] E Rn 3:

lx; - xjl ~ 1 V'{,v;,.vr}=E.,.",E
/" ~o < X· < k -,1 V' V· E VI_ 1 _ / t

!
"

Praof (=» If the graph can be colored in lJ.:~ than or equal to k colors it will be- demon­
li

strated that the point exists in real space. Let C be an optimalcoloring of the graph G
/
i
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• and let 5 be the set of colors it uses. Suppose [5[ = h. Since the chromatic number of G

is k or smaller it must be that h :s k. Let do, d" ... ,dh_l be distinct elements of 5. Then

construct the color assignment D as follows:

D(v;) =0

D(v;) =1

I;f V; 3: GCv;) = do

I;f Vi 3: C(v;) = d,

D(v;) =h-1 I;fVi 3: C(vi)=dh_l

D assigns the same integer only to those nodes which have a common color in G. Thereforc

it follows that:

D(v;) l' D(vj) I;f {v;, Vj} E E

And since D maps to integers,

ID(Vi)-D(Vj)l2: 1 I;f{v;,v;} E E

Furthermore from the nature of the assignment D,

o :sD(Vi) :s h - 1 I;f V; E V

Since h :s k it follows that

o :s .D\Vi) :s k - 1 I;f Vi E V

Now consider the point x E IRn such that

x = [x"x" ... ,xnJ = (D(VI),D(v,), ... ,D(vn )]

(4.3)

(4.4)

Because properties 4.3 and 4.4 hold, x obeys all the criteria of the theorem statement.

Hence the existence of a point has been verified.

e$=) Suppose 3 x = [X"X2'." ,xnJ E IRnsuch that

lx; - Xjl 2: 1 I;f Vi,Vj E E

o :s x; :s k - 1 I;f Vi E V

Now consider the color assignment G such that

[G(VI),G(V2),···,G(Vn )] = [Lx,J, LX 2J ,... , LxnJ]

...-;



• Since

'V {!li, V;} E E, lx; - x;1 ~ 1 =} Ilx;J - Lx;J 1 ~ 1

=} IC(v;) - C(v;)1 ~ 1 =} C(Vi) '1 C(v;)

This implies that l' is a coloring for G. Also note that:

'V Vi E V, 0 :5 Xi :5 k - 1 =} 0 :5 Lx;J :5 k - 1

=} 0 :5 C(Vi) ::; k-1

Because there are only k integers from 0 to k - 1 it must be that C requires k or fewer

colors. And therefore graph G can be colored with k or fewer colors. 0

A simple consequence of the previous two theorems characterizes the solution space

structure in the fol1owing way:

Corollary 4.1 The programs'7J/ theorem 4.1 and 4.2 have feasible solution spaceswhich

are the 'union of a finite number of disjoint convex regions in hyperspace.

ProofIfthe absolute values are dropped from their respective constraints then the programs

of4.1 and 4.2 become linear programs for which the feasible region is convex.

First notice that the constraints with absolute vaiues are of type IYi - Yil 2: 1 and that

this iinplies that Yi - Yi ~ 1 or Yi - Yi ~ 1. Note that the "or" is exclusive since only Due of

Yi - Yi ~ 1 or y; - Yi ~ 1 may hold true; representing thatthere conlcfbe two subprograms

for definlng the feasible regions. The subprogr~sare constructed by selecting a constraint

of type IYi-Yil ~ lin the original program and replacing il: by Yi-Yi ~ lin one subprogram

and Yi - Yi ~ 1 in the otherwith al! the other constraints preserved. Clearly these two

subprograms have disj(;Înt feasible region. But the union of their feasible regions is equal to

that of the original problem since any point feasible in the original problem is also feasible

in on~;9f theslibproble~s and any point \"hich is not in the feasible region of the o~iginal

probl~m is not feasible in both the subprograms.

If there are other constraints with absollite vaiues left one can further divide each of

the tw'1. subprograms by selecting aD.other absolute vaiue constraint and applying the same

principle as before. This will yield 4 subprograms which ha.ve disjoint spaces but for which
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•

•

the union of their feasible spaces is equal to that of the original feasible space. One can

repeat this procedure untH the constraints with absolute values are ail exhausted leaving

only linear con5traints final!y. Since there are lEI constraints with absolute values in the

original prograrn this will result in 2181 prograrns with disjoint feasible regions. And since

these remaining programs are al!linear programs it follows that each of them has a convex

feasible region. Therefore the feasible spaces of the programs in theorems 4.1 and 4.2 can

be e..-qlressed as the union of a finite number of convex and disjoint regions in hyperspace.

And the corollary has been demonstrated. 0

This last proof justifies the earlier daim that the graph coloring problem can be trans­

formed into one for which the solution space is vast but weil behaverl and reglliar. Fur­

thermore if differentiability is a concern then a constraint of type IXi - xjl ~ 1 can be

replaced by the eqnivalent constraint that (Xi - Xj)' ~ 1 without affecting any of the othBr

properties.Also it is a consequence that therecannot be any saddle points since al! the
',,-. \.

reglOns are conv~x.

From the proof of corollary 4.1, a specific convex solution region is fully determined

by the sign of the expressions within the absolute values of the constraints' . If one is

to actual!y carry out the construction of the 21E1 programs as described in the proof of
- !'- ,..\ '. .

corollary 4.1, Jt can be noted that for many g,aphs several of the resulting linear prograrns

will have nul! feasible spaces. To calculate a bound on the number of non,empty convex

regions the reader is referred to a .diScussion on chromatic polynomials in [Gibb85J.

A.2 A Slight Modification

A slight modification to the prograrn of theorem 4.2 ensures that the program will have

feasible regions \Vith interior points. It relies upon the following two observations.

Proposition 4.1 LetG = (V,E) be a graph with IVI = n and V = {V"V2"" ,vn }. Also

let' k be an integer Buch that 1 ::; k.::; n and 1: be a real number such tlia! 0":5 1: < 1. Then

1A graphical interpretation' 0r-:':~::onvex r~gion is a directed graph with tlte"samenodes ,~ edges'in

wruch the .edges assume the direeti;n from the lowest colored,node .!o the rughest Jolored Dodit
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• the following holds:

3 x = [XbX2,'" ,xnJ E IRn 3:

IXi - xii 2: 1 'V {Vi,vi} E E

0 ~ Xi ~ k-1 'V Vi E V

if and only if

3 Y = [y" Y,,·· . ,Yn] E IRn 3:

IYi - Yil 2: 1 'V {Vi, Vi} E E

0 ~ Yi ~ k-1+E 'V Vi E V

(4.5)

(4.6)

Proof (~) Since E 2: 0, any feasible point of program 4.5 is also a feasible solution of

program 4.6 as program 4.6 is the same as program 4.5 with the exception to some con­

straints being .slacker. So it only remains to be shown that if thereexists a feasible point

for program 4.6 then theœ is also a feasible point in program 4.5.

(Ç:) Suppose y = [YI' y" • .. , Yn] is a feasible point to program 4.6 and then consider

the point:

x= [x"x" ••• ,xn ].= [Ly.j, Ly,J ,... , Ly"Jl
i,'

:'
With the same argument as in the proofd:pf theorems 4.1, 4:2 the point x satisfies al! the

, ''.~,- ,-'

constraints with absolute value e.xpressions. And since

'V Vi E V, 0 ~ Yi:5 k - 1 +E ~ 0 ~ Ly;J ~ Lk - 1 + EJ
~ 0 ~ Xi ~ k-1

Because k - 1 ls a natural number and 0 ~ E < 1 and Xi is the integer part of Yi it follows

that:. 0 ~ Xi ~ k - 1 'V Vi E V. Rence x is a feasible point of program 4.5 and the

proposition is proven. o

Therefore, in the light of theorem 4.2 and proposition 4.1, if one wishes to verify if

a graph G = (V, E) 'can he colored with k or fewer colors then one can use program 4.6

instead ofprogram 4.5. The advantage of program 4.6 is that if E is strictly greater than 0

",\, then the/feasible regions of program 4.6 have IVI dimensio~s containing interior points.
l, -::..
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• Proposition 4.2 Let G = (11, E) be a graph with IFI = n and F = {u" v, .... ,u,,}. Also

let k be an integer such that 1 :s k :s n and f be a real number such that 0 < f < 1. If the

following program has feasible regions

IXi-Xjl ~~ 1 V {Vi,Vj} E E

o :s Xi :s k - 1 +f V Vi E V

then each of the feasible regions are n dimensional and they have interior points.

(4,7)

Proof Suppose there exist feasible solutions. Let x' = [xi ,:ri, ... ,x~] bean arbitrary

feasible solution to program 4.7. The!1 yO = [y~, y~, ... , y~J = [Lx;J, Lx;J ,... , Lx;.J1is also

a feasible point. Note that feasible"points yO and x' are witrun the same conve:" feasible

region (same argument as in corollary 4}) since all the absolute value expressions have

arguments of the same sign for points x' and yO. We now proceed to construct n other

feasible points y', y', ... ,yn also witrun' the same convex region. The individual coordinates

to each of the points are calculated as follows:

V i,j 1 ~ i :s n, 1 :s j :s n. 1yJ . if yJ :s .y? with j i i
Yi = yJ+f ifi=j

. yJ+f ifyJ>y?

It is a matter ofbookkeeping to verify thaty' ,y', ... ,yn are also feasible points and that

they are all distinct since f > O. AIso, they alllie witrun the sam~ feasible region as x'

and yO since they do not change the signs of the arguments within the absolute value

expressions.

co Furthermore the point assignment ensures that the vectors W, = y' - yO, W2 = y2 ­

yO, ... ,wn = yn _ yO are linearly independent. Briefly, trus is shown through a Gaussian

elimination on the matrix W whose rows are w" .. . ,wn • The elimination first targets a

node Vj of the rughest color at yO and uses the jth row of W (i.e, Wj) to eliminate the

jth coordinate on the other rows. The remaÏIüng coordinates are eliminatedeÏn the order of
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• the coordinates of the highest value (color) down to those of the lowest value at yo. If the

',th coordinate is heing eliminated then the kth row should k used to annihilate the kth

coordinate on the other rows. This results in a matrLx whose rows fo:m a standard hasis

for IR" and therefore w" ... ,w" are linearly independent. In the assignment of the yj's
it is important that the coordinates incremented hy E iûust have the !Ioth entry strietly

greater than the y?th entry unless i = j; otherwise linear independence could no longer he

guaranteed.

Therefore there are n linearly independent feasihle directions from point yo and the

n dimensional simplex formed hy points yO, y' , ... ,y" is contained in the eonvex feasihle

region under study, sinee any eonvex comhination of these points is also feasihle. Hence

the feasihle region which contains x·,yO,y" ... ,y" is n dimensional and it therefore has

interior points. Since x' was an arhitrary feasihle point the last statement holds for ail

feasihle regions of the program. o

The graph of figure 4.1 (a) is used to iIlustrate the discussion in proposition 4.2. Fig­

ure 4.1 (h) holds ,the IÎi;,t..!Iematicai program to verify if this graph can he colored with

two colors and recall that E is a, real numher such that 0 < E < 1. Clearly the point

yO = [1,0,0] is a feasihle point to this prohlem. Using the~e construction as in propo­

sition 4.2, three other feasihle points are generated: y' = [1 +},E, 0, 0], y2 = [1 + E, E, 0], and'

yS = [1 + E, 0, El. These points yield the following linearly independent feasihle directions

from point yO: W, = [E, 0, OJ, W2 = [E, E, 0], Ws = [E, 0, E]. Fighre 4.1 (c) shows the 3-D simplex

formed hy points yO, y' ,y2, yS. Figure 4.2 gives an example of the necessity to have E > 0

to ensure that the feasihle regions are n-dimensiona!. Figure 4.2 (a) is the example graph

. i'nd (h) gives the associated program to verify that it can he colored with two or fewer

colors. Figure 4.2 (c) clearly shows that if E = 0 then the feasihle region only consists of

two pgints. When E > oas in figure 4.2 (d) then the feasihle regions (highlighted) hecome,.
n-dimensiona!. Proposition 4.2 adds even further to the well hehavedness of the feasihle

space hothfrom the point of view of program stahility and numerica! stahility. It should

he apparent at this stage that choosing E as closé,")possihle to 1 will yield the highest
"

possihle volumes for the feasihle regions. Having the guarantee of a feasihle n-dimensiona!

volume gives the fea:sihle point event a finite, non-zero prohahility within the n-dimensiona!
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VI IXI-x,1 ;:: 1

IXI - x31 ;:: 1

a ~ Xl ~ 1+<

a ~ X, ~ 1+<
a ~ X3 ~ 1+<

V3

/
\~

(a)

(c)

[1 + <, 0, <l

[1+ <, 0, 0]

Xf

(b)

< <

[1,0,0]
[1+<,<,0]

:".

Figure 4.1: A simple 3 vertex graph
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(a)

1"1 - "21 2: 1
o :S "1 :S 1+ <
o :S "2 :S 1+ <

(b)

(c) (0,1)~--,

<=0

(1,0)

"2 - "1 2: 1

(0,1+<)
(0,1)

(d)
0«<1

(1 +<, <)

(1,0) (1 + <, 0)

Figure 4.2: The effect of €
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• hypercube of side k - 1 + €. This can be of importance if one wishes to apply search or

pseudo-random techniques on the programs. Also the presence of interior points can be

of importancf" if non-linear programming techniques are attempted on the programs. Fi­

nally note that there is a similar modification which can be brought to the progl'ams of

theorem 4.1.

4.3 Refinement method

In addition to being a tool to solve for colorings directly, the mathematical programs can be

used to refine colorings produced by some heuristics. An interesting question pertains as to

whether or not the colorings returned by some heuristics are guaranteed to be local minima

of the convex feasible region within which their solutions lie. If not then a post processing

check based on linear programming can be performed to ensure that any coloring returned is

at least a local minimum. For example, the WWI heuristics of chapter 5 can return feasible

colorings which are not necessarily the local minimum of their convex feasible region. As an

illustration recall the graph of figure 2.2 for which the program to obtain the best coloring

would be:,
q
\\ min Xl
\~"

such that

lx, - x21 ;::: l, lx, - x31 ;::: l, 1'" - xsl ;::: 1

IX2 - x51 ;::: l, 1"2 - "si;::: l, 1"3 - "5\ ;::: 1

IX3 - "s\ ;::: 1, 1'" - "51 ;::: l, \'" - "71 ;::: 1

1"5 - "51 ;::: l, Ixs - "si;::: l, 1"7 - xsl ;::: 1

o~ "i ~ '" i = 2,3, ...8

As it will be shown, one of the WWI heuristics returns a non-optimal coloring for this

particular graph:

C(v,) = 3

C(V2) = C(v.) = C(V5) = 2

C(V3) =C(V5) =C(V7) =1

C(vs) = 0
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With respect to the mathematical program the coloring C is a feasible point in space. But

is C the best point within the convex region within which it lies? First note that the

coloring C predetermines the signs within all of the absolute values of the program and

thus fully specifies its convex region. The answer to the question is obtained by dropping

all the absolute values and adjusting the subtraction operations 50 that they reflect that of

the coloring:

min Xl

such that

Xl - X2 ;:: 1, X, - X3 ;:: 1, X, - Xs ;:: 1, X2 - Xs ;:: 1

X2 - Xs ;:: 1, Xs - X3 ;:: 1, X3 - xe;::: 1, X4 - Xs ;::: 1

X4 -' X7 ;:: 1, Xs - Xs ;:: 1, Xs - xe;::: 1, X7 - xs;::: 1

o=:; Xi S Xl i = 2,3, ...8

When solvin;; the above program the optimal objective function value was found to be 2 and

a point which yielded it was x = [2,1,1,2,2,0,1,0]; thereby revealing that the graph can be

colored with 3 instead of 4 colors. This has the implication that the WWI heuristics may

not even stop at a point which is a local minimum of the programming space. However

if the graphcolorings obtained by WWI are always post-processed by a linear program

then it is certain that at least a local minimum will have been aclUeved. This situation is

depicted in figure 4.3 (a) whiêh shows that the feasible point obtained by WWI can possibly

be different from the local minimum of the convex feasible region in which it is contained.

However the diagram in (b) shows that after solving the associated linear program it implies

the resulting point will indÈ!éd be the minimum of the region. The next section will present'

"a specialized algorithm to solve for these programs without having to resort to generalized

linear programming methods.

Unfortunately if the minimum point to the convex region is not a giobal minimum to

the coloring problem then the only way to achieve a better coloring is to enter another

feasible convex region. Since the regionsare disjoint this means that the search for a better

solution requires that an infeasible region of real space must be traversed before another '

feasible region is entered. This, in turn, implies that some graph coloring constraints must

be violated in the hope that eventually a better coloring can be found. This is a ~cult
'/

-~.,
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• problem and instead we have settled for a heuristic (WVYI) which tends to find a feasible

solution within a "good" feasible region and then refine them 50 that a local minimum

is ensured. The importance of a "good" feasible region is crucial since it follows from

upcoming coroliary 4.3 that the ratio of a local minimum value of colors over the global

minimum number of colors reqnired can be proportional to the number of vertices and thus

can become arbitrarily large as thegraph size increases.

An advantage of the mathematical programming approach is that the problems which

lead to a graph coloring formulation are often associated with secondary constraints which

are not directly related to the problem. The linear pro!(ramminB: methodology is very

suitable for the introduction of other constraints. One should first solve the problem wlùle

ignoring these constraints if the initial heuristic used is hard to adapt to take into account
. .. ~",

the secondary constraints. Then once the linear programmhlg'c.~tage is introduced the

constraints sho:uld be added. Furthermore the additional costs incurred while iiltroducing'

the secondary constraints will become apparent.

(al

Xl

(b)

Figure 4.3: The local minimum migh~'not be achieved

4.4 Relating Characteristics of Optimality

This section links up the local minima of the mathematical programs of theorem 4.1 and

a known characteristic of optimality of graph colorings. Furthermore, efficient refinement

aigorithms will be provided to ensure that the characteristic is met. The results thal we

present reqnire the foliowing definition:

Definition 4.1 (Color Stratification) Suppose a graph G = (V, E) and a c%ring C

which uses a set of m c%rs K = {k" k2, ••• ,km}. Let II be an ordering of the c%rs in
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J(, II = (,," 71'" • •• , 7rm ) where each 7ri corresponds ta a di.iinct color in J(. The c%r

stratification of G with respect ta coloring C and ordering II ls the graph

s = (V, E) where

E = {{v., Vb} E E 1 3i 3 1::; i ::; m - 1 with

C(v.) = 7ri /1 C(Vb) = 7ri+l}

The color stratification is denoted as .c(G, C, II).

An important interpretation of the colot stratification .c(G,C,II) is that of a stratified

graph in which each stratum (row) possesses al! the nodes assigned to a same color in C.

The rows of nodes are stacked in the,order of II and the edges preserved in the stratified

graph are only those that span across adjacent rows (successive colors in II). Figure 4.4 is

the color stratification .c(G, C, (0, 1, 2, 3)) for the graph in figure 2.2 colored with C(v,) =

3,C(v,) = C(v.) = C(vs) = 2, C(V3) = C(vs) = C(vr) = 1 and C(vs) = 0 obtained using

WWI.

The motivation for the colored stratification is that it represents a two dimensional

projection of the active constraintsin the programs of theorems 4.1 and 4.2. The"edges
_, '0" _'

retained in the stratification represent the absolute value constraints which delirnlt the

feasihle point at which the cql?ring lies in the solution space.
'~ ~:

71". = 3

Vs

Vr 71"2 = 1

71"1 = 0

Figure 4.4: An example color stratification
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Definition 4.2 (Colored Path) Gillen a graph G = (1l, E) and a coloring C. a c%red

path is a sequence of nodes in G such ihat s"ccessive nodes in the sequence al'e linked by an

edge in E and each node in the sequence has a distinct color in C. The /ength of a col07'ed

path is the number of nodes in the sequence. The stem of a c%red path is the first node

in the sequence of nodes.

As an example in figure 2.2, P = (v., V6, v,) is a colored path of length 3 which stems at 'V.,.

Now suppose a graph G = (V, E) and a coloring C which uses m colors. Let S = (l', t:)

be a stratification of G to which coloring C is also applied (C is also a valid coloring of

the stratified graph since E S;; E). Clearly the only way that a colored path of length TIl

can exist on the stratification is if there is a colored path which stems from the bottom

row to the top row by traversing each row successively. This is'because only edges between

vertices of adjacent rows are preserved a.f,';.' backtracking is impossible since colors can only

be used once in a colored path. On the'stratified graph of figure 4.4,where m = 4, there

are no colored paths oflength 4 since there are no colored paths stemming at the bottorn

row and terminating al; the top row. For that very reason it is possible to declare that the

coloring associated with the stratification of figure 4.4 is not optimal. This last assertion

is based on a theorem that will be presented shortly. The theorem is a characteristic of

optimality which could be extracted as a consequence of theorem 2.3 and as such it does not

represent a new finding. However the proof mechanism differs leading to the development

of an algorithm and a relation between characteristics of optimiility. For the sake of clarity

we now point out that when we .efer to a colored path on a stratification, .c(G, C, Il) it is

always with respect to the coloring on which the stratification is based: C.

Theorem 4.3 Let G = (V, E) be a graph and C be a c%ring of G using m c%rs. If C is

an optima/ coloring of G then every stratification of G colored with Chas a c%red path of

length m.

, Proof The proof is by contradiction. Suppose there is a graph G = (V, E) and optimal

coloring C using m colors for which there is a stratification which has no colored path of

length m. Then there is an or~ering II = (11'1> 11'2"" ,11'm) to the colors in C for which the

stratification .c(G,C,II) does not have a colored path oflength m.
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In the stratification .c(G, C, II) consider the longest colored paths which terminate at

a node of color "m' Since the stratification only preserves the edges of E between nodes

of successive colers in II, it must be that ail longest colored paths leading to a node of

color "m must start at nodes of the same color, say"" traversing the colors in the order

"" "=H.... ,"m-" "m' Otherwise wouId imply that two longest colored paths leading to

coler "m could have different length, contradicting that both are of maximal length.

Because ail longest colored paths ending at a node of color "m ail start from a node of

coler "" they each have length m - x + 1. Since there are no colored paths of length m in

.c(G, C, II) it follows that x ;:: 2. Therefore "=-1 is a color used in C. The remainder of the

proof will make extensive use of the avaiIability of "=-1 in C.

Now consider a vertex v= of color "= in C which is at the stem of a longest colored path

Pr = (v" v=+" . .. , vm _" vm ) terminating at a ~ode Vm of color C(vm ) = "m in .c(G, C, II).
":'"

It follows that v= does not have an edge in E to: ~ny node of color "=-1 in C. Since the
~ \

choice of v= was arbitrary it follows that ail nodes oholor "= which stem a longest colored

path to a node of color "m in .c(G, C, II) do not have any edges in E to nodes colored with

"=-1 in C. This means that ail the nodesstemming a longest colored path terIcinating at

a node of color'''m in .c(G,C,II) could have bee~ colored with "=-1 instead of "=. It is

preclsely this alternate coloring Cf of G which now retains our attention:

"=-1 if C(v) = "= and v
stems a longest colored

'V v € V, Cf(v) = path to a node of color

"m in .c(G,C,II).

C (v ) otherwise
\ ,
\\

With coloring Cf, there are three possibie cases which can be distinguished. Each will

contradict that C is an optimal coloring of G.
\',\ .

1. If the longest colored paths 'whiCh terminate at a node of color "m in

.c(G,C,II) have length 1 (i.e. ':"= = 1rm) then aIl nodes of color 1r= as each node onits

own forms a path of length 1. Therp.fore ail nodes of COIOT.1r= in C are transferred to "=-1
',' 1\':' :,~'::',

in C'. Rence, for the case x = m, it has been coni;radictecfthat C is an optimal coloring;
~' ,~
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2. If the longest colored paths terminating at a node of color rom in ,qG, C, II)

have length > 1 and ail nodes of color "" stem a longest colored path to color

1i'"m then aU nodes of color ÎÏ: inC are colored with ÎÏ:r_l in C'. As in case 1, C' requires

one less color than C and therefore C cannot be an optimal coloring.

3. If the longest colored paths leading to a node of color rom in L(G, C, II) have

length > 1 and not ail nodes of color ,,= stem a longest colored path to anode

of color rom then it follows that C'uses the same number of colors as C.

However the stratification .C(G, C', II) has longest colored paths terminating at color

rom which are one shorter than those in -.c(G, C, II). This is because al! nodes of color 11""

stemrning a longest colored path terrninating at nodes of color rom in L(G, C, II) have been

moved to color 11"=_1 in C'. By moving these nodes to color 11""_1 they effectively have been

disconnected from al! colored paths leading to color "m since none of these nodes cali share

an edge with nodes of color 11"= in C' (otherwise coloring C could not have been valid since

the nodes were al! regrouped under color ,,= within Cl. And none of the nodes remaining

with color ,,= in C' could possibly stem a colored path to a node of color 1I"m in L(G, C', II)

Therefore no colored path of length m - x + 1 terrninating at a node of color "m exists in

C'. Hence it must be that the longest colored paths terrninating at nodes of color 11"m in

L(G,C', II) are shorter than those in L(G,C,II). Since any such path in L(G,C,II) with

\\ its stem removed from the beginning of the path is also present in L(G, C', II), it follows

that the longest colored paths terminating at a node of color 11"mare exactly one shorter in ('

.C(G, C', II).

This laSt observation is important since it guarantees that C' can be transformed into

a coloring C" in the same way that C was transformed into C'. Repeatedly applying

similar transformations to generate new colorings will evelltual!y produce a coloring C·
"falling within Case 1 or 2. ,\That is because each time case 3 is encountered in the successive

transformations we are guaranteed that the length of longest colored paths leading to a

node of color rom decreases by one (in the corresponding stratifications). Hence even if case

2 never occurs throughout the transformations it is guaranteed that case 1 will :ultimately

be reached when the length of the longest colored paths to color rom will have shrunk tG
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• 1. Therefore there will then be a coloring C* of G which uses one less color than C, thus

contradkting that C is an optimal coloring.

Hence in all the three possible cases it has been demonstrated tha~ C is not an optimal

coloring of G if there is a stratification of G and C which does not have a colored path of

length m. 0

The proof of theorem 4.3 is once again constructive as it provides a simple mechanism

to produce a better coloring from one which does not meet the characteristk of optimality.

It is easy to devise an algorithm from the proof's methodology and figure 4.5 gives an

e.xample of the steps involved for the stratification of figure 4.4. In figure 4.4 there is only

one longest colored path leading to a node of color 3 and that is P = (V6, v" VI) stemming

at V6 of color 1. Bringing Vs down to color 0 results in the stratification of figure 4.5 (a) in

which the only longest colored path to a node of color 3 is P = (v" VI) oflength 2. In turn,

V, is brought down to color l and the resulting stratification is shown on figure 4.5 (b). In

that partkular stratification the longest colored path to a node of color 3 is P = (VI) of

length 1. This signifies that the next transformation will produce a coloring which requires

one less color since case l of the proof has now been met. When VI is lowered to color 2 the

stràtification of figure 4.5 (c) has three colors and C* withC*(vI) = C*(V4) = C*(~~) = 2,

C*(v,) = C*(vs) = C*(V7) =l and C*(V6) =C*(vs) = 0 is a better coloring for the graph

of figure 2.2 than the one proposed in the stratification of figure 4.4. The following is an

interesting corollary to theorem 4.3:

Corollary .A.~ Suppos~,a graph G = (V"l) and let C be a coloring of G using the set of

c%rs K. If C is an 6ptima/ c%ring then for each of the possible [KI! orderings of the

colors in K there is a colored path in G c%red with C which traverses the c%rs in that

precise order. "-,
'.\

1\

Proof Each of the jKI! orderings of the colors has a corresponding colored stratification

of Gand C. If C is an optimal coloring then each of the stratifications has a colored path

which traverses the colors of K in the same order as the stratification's ordering. Since the

stratifications are formed with the same set vertices as G and a subset of the edges in G, it
:...::..":::::.' .

follows that any path in any of the stratifications is also in G. Therefore it must be that G
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(e)

Figure 4.5: Refining a coloring
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• has a colored path which traverses the colors in ail the possible orderings since there exists

such paths in th.' stratifications. o

For example on the graph of figure 2.2, which is optimally colored, the six colored

paths P, = (V7, Vs, v,), P2 = (~7' v., vs), Ps = (vs, V2, Vl), p. = (vs, vs, vs), Ps = (VI> V2, vs),

Ps = (v" Vs, vs) ail traverse the three colors in a different order. However the condition

of corollary 4.2 is not a sufficient one. The coloring of figure 4.6 shows a colored path for

ail coler permutations yet it is sub-optimal. As it will be shown in the ~','pcoming theorem

this unfortunately blurs further the distinction between a coloring which is only a local

. optimum and one which is a global optimum. This despite corollary 4.2's imposition of a

'possibly exponential number of constraints on a coloring. Appendix C presents a pair of

Figure 4.6: A sub-optimal coloring

simple algorithms to ensure a colored path, one of which is based on t:he greedyheuristic of

section 2.5.1. The other algorithm is'based on the proof oftheorem 4.3 and it operates on
\\~

the input of a graph, a coloring and an ordering to the colors. li the gtâph has a colored
r:

path which traverses the colors as in the ordering theri the algorithrn will return a coloring
..,"

which"requîres the same number of colors as the one passed. Otherwise it will generate a

coloring that requîres fewer colors. The algorithm does not concern itself with finding nodes

stemming longest colored paths as these are .artifacts of the proof. Instead, it proceeds by

indiscriminately recoloring ail the nodes which it cano Both algorithms are of quadratic

time complexity in the number' of vertices.

The remainder of this section concerns itself with a theoretical result relating the pro-

gramming approach and theorem 4.3. /\
0, ••.•

~ ~ 0
Theorem 4.4 Consider the graph G = (V, E) with IVI = n and the vertices ind};xed from

1 to n: V = {Vl,V2''';''Vn }. With each Vi E V associate a real variable Xi E IR and
..../..
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define the following real valued program:

min Xl

such that

lx; - xii;::: 1 'V {Vi, Vi} E E

o ::; xi ::; x, 'V vi E 11 \ {v,}

(1) Ifx' = [xi, x;, ... , x~l is a local minimum of program 4.8 then the colo7'ing C' with

[C'(v,), C'(V2)"'" C'(vn )] = [lxiJ , lx;J ,... , lx~j]

has a colored path of length C'(v,)+l which traverses the colors in the order 0,1, ... , C'('v,).

(2) Let C' be a coloring of G arranged so that C'(v,) is the color with the highest in·

teger value in thes,~t of colors used. by C': S = {O, 1, ... , C'(v,)}. If C' !las a col­

ored path of length c,"(v,) +1 which traverses the ~0107's in the order 0,1, c••• , C'CV1) t!len

x' = [C'(v,),C'(V2)"" ,C'(vn )] is a local minimum ofprogram 4.8.

Proof Recall from coroilary 4.1 that program 4.8 has a feasible solution space wlùch is

dlvided into dlsjoint convex regions. Therefore the local minima of program 4.8 are simply

the minimal points from each of the convex regioJs. Aiso recall that the characteristic

dlstingnishing the convex'·'regions, was that a point x in real space can only obey one of,
; .

Xi - Xi ;::: 1 or Xj - Xi ;::: 1 wheri it is sui;ject to the constraint lx; - Xj 1;::: 1.

(1) The proof is by contradiction. Suppose x' is a local minimum but C' does not have,~,~,:

a colored path traversing the colors in the order 0,1, ... ,C'(v,). By coroilary 4.2 C' i~'

""ot an optimal coloring and it is possible to transform C' into a coloring ë which requires

fewer colors by using the algorithIri of appendlx C and the ordering TI = (0,1, ... ,C' (v,)).

Node v, will not necessarily have the Iùghest valued color in ë. Rowever,hecause VI

is of the Iùghest color in C', the algorithmic transformation from C' to ë ensures that

v, cannot have anyedges to nodes of color,,~:-lues above it in ë. Rence it is possibleto

transform ë into ê by recoloring v, to have the Iùghest color in ë:
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The algorithm proceeds by removing the highest ranked colors while it preserves the lower

ranked ones. Therefore, since ê uses fewer colors that C· it follows that ê(v,) < C·(VI).

More precise1y ê uses the colors 0, l, ... , ê(vI).

Now consider the point:

51= [ê(v.),ê(V2)' ... ,ê(vn )]

Because VI has the highest coler in ê it is a consequence that xobeys all the constraints of

type Xj ~ XI in program 4.8. Furthermore x obeys all the constraints with absolute values

in 4.8, otherwise ê would not be a valid coloring of G. Finally, since ê uses the colors

0,1, ... ,ê(vI)' all constraints of type a~ Xj are also satisfied by 51. Renee xobeys all the

constraints and it is therefore a feasible point of program 4.8.

The manner in which the algorithm transforms coloring C· into ë is by repeatedly

changing the coler of anode to that of the previous coler in the ordering when there are no

conflicting edges. Operations of this nature never toggle the sign of the arguments within

any of the absolute value e."pressions of program 4.8. The same observation applies to

the trivial transformation from ë to ê. Therefore it follows that x is in the same convex

region as x'. Since XI < xi, it cannot be that x' is a minimum of its.convex region.
... ,.'

The~efore a point x' cannot be a local minimum of program 4.8 if its associated coloring

C· does not have a colored path oflength C'(VI) +1 which traverses the colors in the order

0, l, ... , C·(v.). Taken to its contrapositive this last conclusion justifies claim (1).

(2) Let P = (vpo> vp" • •• , vpc,(,) be a colored path which traverses the colors in the

order 0, l, ... , C'(vd when C' colors G. Since sequential nocles in the path must beadjacent

it follows that the following are constraints are in program 4.8:

Ixp , - xpoi 2: 1

li~. - xp ,l2: 1
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• The point x' = [C'(Vl),C'(V2)"" ,C'(v.)] must have x~o = C'(vpo ) = a,x;" = C'(v",) =

1, ... , X~CI(Vl) = C'(vPC1(Vd) = C/Cvd ; othenvise path P would not traverse the calors in

the stated order. Therefore, in the convex region in which x' lies (x' is clearly a feasible

point), al! the feasible points have the following absolute value constraints oriellted in these

directions:

x· -x >1
PC'(vd-1 PC'(vt> -

From which the following constraint implicitly holds:

Now since xpo 2: ais also ~: constraint, it fol\ows that al! points of the conva, region of x'

must satisfy:

XpC't"d 2: C'(v,)

Furtherrpor~i:l 2: xpc't"d is also a constraint. Therefore x, 2: C'(Vl) for al! points which
....~::. \\

lie in the sam€' convex region as x'. This implies that x' with x~ = C'(Vl) has the best
"possible value for the objective function of program 4.8 within its feasible region'; Hence x'

is a minimum point of its convex region and it is a local minimum of program 4.8. 0

c.:-:;::.., Theorem 4.4 fully characterizes the local minima of the programs of theorem 4.1 .

Furthermore case (2) ellminates the need to perform generallinear programming once a oC'

feasible region has been entered. It oniy suffices to pass a point of the convex region to

the,;algorithm of appendix C and a (local) minimum will be returned. The algorithm of

appendix C also can be used to test the existbD.ce of a path for several possible order.s'to
\.\

the colors. For the case of graphs for which we have a coloring with few colors to start vïith

then there are oniy a few orderings to check (in the case of four colors: 4! + 2 = 12).

An i=ediate consequence of theorem 4.4 concerns the disparity between local minimum

values. It is shown in appendix C that the greedy algorithm of section 2.5,.1 always yields
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• a coloring which obeys the conditions of theorem 4.4. Consequently the greedy algorithm

always generates a coloring which is local minimum to its feasible region. Furthermore, it

can easily be demonstrated that the greedy algorithm may yield colorings whose ratio of

colors used versus the chromatic number of a graph can become arbitrarily large [BrBr87,

Gibb85]. Hence,

Corollary 4.3 For the programs of theorem 4.1, the ratio of local minimum values /rom

the convex regions over the chromatic number can be proportional ta the number of vertices

and thus become arbitrarily large with increasing graph size. Furthermore convex regions of

similar local minimum values are clustered together.

This further portrays the difliculty of the solution space of graph coloring as divided

regions in which the heights of the summits can vary greatly. The reasoning as to why

convex regions of similar minimal values are elustered together follows from toggling the

sign of a single absolute value argument defining a convex region. Such an operation can

only produce a neighboring feasible region which requîres one more color, oneJess or an

equal number of colors at its local minimum.

Finally the characteristics of this section also suggest refinement heuristics for vertex

coloring.Efforts can be spent on attempting to find a color permutation which has no

longest colored path by stacking color strata with the intention to disrupt the colored paths

as much as possible. Or target the residual nodes along the colored paths so as to break

the paths wher. they are recolored.

4.5 Conclusion

A study of the solution space for a representation of the graph coloring problem was con­

ducted. A characterization for the local minima of the space was found and the possible

disparity of their values was shown. Although the individual solution regions were shown

to be well behaved, the study also highlights the complexity introduced by the inequalities

of type # and thei~}l-ivisiv~outcome on the solution space.
\.J -
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• FinaIly, a characteristic of optimality was derived and related to the known Gallai­

Roy theorem (see theorem 2.3)_ The constructive proof of the characteristic yielded the

refinement algorithm of appendix C.

,,;~

r~;'

L._:":'
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Chapter 5

Algorithms

This chapter presents the pair of WWI coloring algorithms, one ofwhich is primaxily based

on the aflinity metric while the other focuses on the conflict metric (defined in chapter 2).

Both heuristics color graphs through compressions but they differ in their compression

selection criteria. WWlon ajJinities uses the globalized compression approach of chapter 2

and is designed to target graphs of low edge densities. WWlon conflicts aims at graphs of

higher edge density and uses a localized compression scheme.

New observations will be presented to provide a theoretical platform for the algorithms.

After which the heuristics will be discussed in detail and examples will be provided. Im­

plementation details are revealed in appendix A. Comparative benchmarks and theoretical

consequences of the algorithms occupy the remainder of the chapter. The results will justify

daims made about the algorithms. The final note being on 'classes of perfect graphs which

the algorithms address.

5.1 Further Observations

The following results are instrumental in the design of thE algorithms. Along with results

from previous chapters, their purpose is to justify the compression criteria used by both

WWI onaflinities and WWI on conflicts. The terminology used is that of chapter 2.
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Lemma 5.1 A graph G' = (11', E') obtained from a compression on G = (F, E) has fewer

or the same number of edges:

IE'I :0; lEI

Proof Assume the compression removes vertices Vi and Vj in 11 and adds Vi,j to \1'. By the

definition of compression, E' is constructed by removing all edges with an incidence to 'Vi

or Vj in E and then adding one edge from Vi,j to each adjacency of Vi or Vi in G. Since the

number of nodes which are adjacent to Vi,j can only be smaller than or equal to the number

of edges incident to Vi or Vj, it follows that the number of edges added to Vi,j can only be

smaller or equal to the number of edges removed. Hence it must be that IE'I :0; lEI. 0

Lemma 5.2 .4 graph G' = (\1', E') obtained from a compression on G = (11, E) obeys the

following chromatic number relationship:

x(G') - 1 :0; x(G) :0; x(G')

Proof Observation 2.1 (A) provides a mechanism to transform any vertex coloring of G'

into a vertex co\oring of G without introducing any new colors, This of course includes

all optimal colo~~ings of G' and therefore, given any optiI)'al coloring of G' there exists a

coloring of G wfth the same number of colors. A direct 'èonsequence of this is that the

chromaticnvmber of G cannot be larger than that of G':
ù ::

'. 'i
!: ,:
\~ x(G) :0; x(G')

Observation 2.1 (B) pro~:Jdes a method to transform any vertex coloring of G into a vertex

coloring of G' .while introducing at most one new color. Which means that for each optimal

vertex.coloring of G requiring x(G) colors there exists a coloring of G' requiring x(G) +1

colors, Therefore it must be that X(G') :0; X(G) +1 which can he rewritten as:

x(G') - 1 :0; X(G)

This completes the proof as all inequalities have been verified.
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• Theorem 5.1 Given a graph G == (V, E), the chromatic number X(G) is bounded above by

the following condition:

Proof If the graph G is complete then x(G) == IVI and lEI == IVHI;H) and the theorem

statement holds since:

. II + J1 +8 . IVJ(I~I 1) j
X(G) == IVI == LIVI J== 2-

== lU JI: 8 'IEI j
If the graph G is not complete then one can apply a compression transformation on G. And

if the resulting graph is not complete then another compression can be applied. Clearly

this process can be repeated until a complete graph G" is reached. Suppose graph Gif has

c vertices. Since it is ~omplete then it has *;1) edges. And by lemma 5.1 the number

of edges in Gif must be smaller or equal ta that of G since each compression step taken

ta arrive at Gif ensures the number of edges will never increase. Therefore the following

inequality holds:

ccc; 1) ::; lEI

=> c2
- C - 21EI ::; 0

For the inequality ta hold it must be that:

1- Ju 81EI < U JU 81EI
2 ::; c - 2

Since c is an integer', the statement can be strengthened to:

\.'

,-.-

,,(And since c is always positive the lower bound never has any, practical use and it shali be
-. ~~

dropped. Because Gif is a complete graph its chromatic 1l11inber is x(Gif) == e. Renee we

have:

II +0/12+ 81EI jx(Gif) ::; v
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• By lemma 5.2 it must be that the chromatic number of Gis smaller or equal to the chromatic

number of Gn since G" was obtained through successive compressions on G and the lemma

ensures that the chromatic number will never decrease with compressions (\:(G) :s X(G')).

Therefore X( G) :s X(Gn ) which implies

X(G) S lU J~+SIEI J

Alternatively the result can be shown using corollary 3.1. Rowever the proof is less

illustrative of the upcoming compression algorithms. If G = (11, E) has chromatic number

X(G) then by corollary 3.1 it follows that there are at least x(G) nodes of degree x(C) - 1

or more in the graph. Rence the sum of the degrees for these particular nodes is at least

X(G)(X(G) - 1). By Euler's observation [Bigg85] the sum of the degrees for the entire graph

is 21EI and therefore it must be that:

x(G)(x(G) - 1) :s 2\EI => X(G)2 - X(C) - 21EI :s 0

By sobing for the roots of the quadratic and remembering that X( G) is positive and integral:

X(G) :s l1 +J~+81Elj
o

In the case ofthe graph offig~re'=:2 the usage oftheorem 5.1 tells us that X :s ll±f"J =

4. It is not always the case that the bound is this tight.

Theorem 5.2 Suppose two noa-adjacent vertices Vi and Vj if' a graph G = (V, E) such

that the conftict '"f(v.. Vj) = 0 or '"f(Vj, Vi) = O. Then there exists an optima/ graph c%ring

C which assigns the sarne c%r,to Vi and Vj : C(Vi) = C(Vj)'

Proof Suppose an optimal graph coloring Cop, of G = (V,E). If Cop,(Vi) = Cop,(Vj)

then the theorem is verified. So the remainder of the proof concentrates on the case that

Copt(Vi) # Cop,(Vj).

Now suppose that '"f(Vi, Vj) = 0 and consider the following color assignment C to the

vertices in V:
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•

In the assignment C it is clear that both Vi and vi have the same color. Since aU vertices

other than Vi preserve their color from Cop , it must be that aU pairs of adjacent vertices

which exclude Vi must have different colors in assignment C. So one only needs to show

that vertices adjacent to Vi have a different color to that of Vi to determine that C is a

graph coloring.

In Cop, aU adjacent vertices to vi mu't be a of different color to vi' This is also true

in C since aU these vertices carry over their color. Because 7(Vi, Vi) = 0 it is true that

aU adjacencies of Vi are also adjacencies of vi' And since Vi is of the same color as vi in

C it must be that aU adjacencies of Vi are of a different color than Vi. Therefore it has

been verified that aU adjacent vertices in G do not have a color match. R~he C is a graph

coloring. And since it uses the same number of colors as Ccp, this implies that it also is an

optimal graph coloring. Therefore the theorem holds for 7(Vi, vi) = O. The argument for

7(vi' Vi) = 0 is identical with the roles of Vi and Vj reversed. Rence the theorem holds. 0

By the very nature of the proof which constructs an optimal coloring with Vi and Vi to

be of the same color from any optimal coloring with Vi and vi differing in color, this implies

that there are at lea~t as many optimal colorings with Vi and vi matching as there are sorne

where vi and vi disagree. Rence the use of theorem 5.2 when coloring graphs will not make

optimal solutions "harder" to find. In the graph of figure 2.37(V2' vs) = O. By theorem 5.2

there is an optimal coloring of this graph with V2 and Vs matching in color.

Corollary 5.1 If there are two non adjacent vertices Vi, Vi in a flraph G =(V, E) such that

the conflict 7(Vi, Vi) '" 0 or 7(vi> Vi) = 0 then the graph G' obiained fram a compression of

Vi, Vi on G has:

x(G') = X(G)

Proof By theorem 5.2, graph G has an optimal coloring with Vi and vi in the same color.

By observation 2.1 (C) this optimal coloring can be transformed into a vertex coloring of

G' without using any new colors to the x(G) used in the optimal coloring. Therefore it
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•

•

must he that x(G') ::; x(G). But hy lemma 5.2 x(G) ::; x(G'). Hence it can only be that:

x(G') = X(G)

o

Corollary 5.1 will have an important role il< the algorithms presented in the next section.

In conjunction with observation 2.1 (A) and compressions, it can be used to construct the'

coloring of a graph G from that of a compressed graph G'. In figure 2.4 (a) "1'(V3,V.) = 0

and the vertices V3 and v. are compressed for the graph in (b). In (b) "1'(V3," vs) = 0 and

the vertices V3,4 and Vs are compressed. In (c) "1'(VS,V2) = 0 and there is a compression on

V2 and Vs to yield the complete graph in (d) with chromatic number 3. Since the conditions

of corollary 5.1 held at each compression step it must be that the chromatic number of the

original graph is 3. It is interesting to note that as compressions progress, confiict between

two arbitrary vertices may shrink to O. For example ,in figure 2.4 (a) one can note that

"1'( Vs, V2) "# O. Yet after a few compressions which transform the graph into (c) one notes

that "1'(Vs, V2) = o. It is this particular property of conflicts which renders corollary 5.1

useful in the algorithms.

Although they may appear intuitively obvious from the previous discussions, the fo1­

lowing results will play a direct role in the design of the algorithms. That is why their

presentation is given in detail.

Proposition 5.1 If a graph G = (V, E) undergoes a compression on two non-adjacent

vertices v. and vi and the resulting graph is G' = (V', E') with a new vertex ViJ then the

degree of V',i in G' is related to the following values in G:

Proof In G', v',j is connected to any vertex v. or vi was connected to in G. Slnce Vi and

Vj are not adjacent ln G and that they are the only two vertices to vanish in G', we are

guaranteed that all their adjacencies will be preserved/n G' and that ViJ can be connected

to them. The vertices for which Vi and vi are adjacent to can be separated into three

distinct groups:
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• 1. Nades adjacent ta bath Vi and Vj' Vi.j will gain one adjacenc)' in G' for each one

of these nodes in G. By the definition of affinity there are a(Vi, Vj) such nodes.

2. Nades adjacent ta Vi but not Vj' Vi,j will gain one adjacency in G' for each one

of these nodes in G. By the definition of conflict there are 1'(Vi, Vj) such nodes.

3. Nades adjacent ta Vj but not Vi' Vi'; will gain one adjacenc)' in G' for each one

of these nodes in G. By the definition of conflict there are 1'(Vj, Vi) such nodes.

5umming up the contributions to Vi,j one gets d(Vi';) = a(V" Vj) +'Y(Vi, Vj) + 'Y(Vj, Vi)' 0

Proposition 5.2 If a gmph G = (V, E) llndergoes a compression on two non-adjacent

vertices Vi and Vj and the reslllting gmph is G' = (V', E') then

IEI- IE'I = a(Vi, Vj)

Proof By the definition of compression, ail the edges connected to Vi and Vj in Gare 10st

and the edges connected to Vi'; in G' are gained. 50:

IEI-IE'1 = d(Vi) +d(vj) - d(Vi,j)

Now d(vi)is the number of vertices adjacent to both Vi and Vj, a(vi, Vj), in addition to the

number of vertices adjacent to Vi but not Vj, 'Y(Vi, Vj). Hence d(Vi) = a(Vi, Vj) +'Y(Vi, Vj)'

Similarly, d(vj) = a(vi,Vj) + 'Y (Vj, Vi). And from proposition 5,1 d(Vi,j) = a(vi,Vj) +
'Y(Vi, Vj) +'Y(Vj, Vi)' Therefore, by substitution,

IEI- IE'I = +a(V" Vj) +1'(v" Vj)

+a(V" Vj) +'Y(Vj, Vi)

- a(Vi, Vj) - 'Y(Vi, Vj) - 'Y(Vj, Vi)

= a(vi,Vj)

81
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• Proposition 5.3 Let G = (V, El be a graph which is not complete. Consider the compres­

sion of two non-adjacent vertices Vi and Vj. Let

f',j=hl{Vi,,}EE Il {Vj,,} !jE}

fj,i=hl{vj,,}EE Il {vi,-tl!jE}

The number of adjacencies between the confiicts of Vi and Vj:

represents the number of new trianqles introduced by the compression. New triangles are

triangles which were not present in the graph before the compression.

Proof New triangles must involve Vi'; otherwise they would have existed in the graph prior

to compression. Since ail adjacencies ofVi,j stem from adjacencies of Vi and Vj it foilows that

ail triangles involving Vi,j include two adjacent nodes which must belong in the afliIÙties and

confticts of Vi and Vj' If both the nodes completing the triangle with Vi,j are afliIÙties of Vi

and Vj then one triangle will be lost through the compression; see figure 5.1 (a.). If the one

of the nodes is an a.flinity and the other in fi,j or f j " then the triangle is preserved through

compression. Similarly if both nodes are in fi,j or both nodes are in fj,i' However if one

node is in f,,; and the other in fj,i then a new triangle is created through the compression.

This is illustrated in figure 5.1 (b). 0

Proposition 5.4 Let G = (V, E) be a graph which is not complete. Consider the com­

pression of two non-adjacent vertices Vi and Vj' And upper bound on the number of new

triangles created by the compression is ,(Vi, Vj) . ,(Vj, Vi).

Proof Clearly Ifi,jl'Ifj,il = ,(Vi, Vj) . ,(V;, Vi) is the maximal number of edges between the

e1ements of disjoint sets fi,j and fj,i of proposition 5.3. 0

5.2 WWI Algorithms

The pair of WWI algorithms is detailed in this section. As previously discussed, WWI

based on afliIÙties is a globalized compression algorithm which targets low edge density
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Figure 5.1: (a) A triangle is lost (b) A new triangle is created

graphs requiring few colors. By considering compression choices throughout the graph the

algorithm's decisions are considerably better than if the search is limited to specific vertices.

On the other hand, WWI on conflicts is a localized compression algoritlun which aims at

graphs of higher edge densities. At higher densities localized compressions are preferable

since each compression runs a greater risk of increasing the chromatic number but a sequence

of compressions about a single vertex can only increase the chromatknumber by at most

one. Therefore a localized compression mechanism provides further guarantees on graphs

of higher density.

5.2.1 WWI on Affinities

WWI on aflinities uses three criteria ta determine which nodes are compressed at each stage

of the algorithm. They are ranked in order of importance:

1. First the graph is examined for any pair of non-'adjacent vertices Vi and v; for which

I(Vi, v;) = 0 or I(V;, Vi) = O. If such a pair exists th~n Vi and v; are compressed.
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• 2. If no situation of Œconflict exists then two nodes Vi and Vj with the largest possible

affinity a(vi,Vj) within the graph are selected to be compressed.

3. If several pairs of nodes Vi and Vj have maximal affinity then they are distinguished

by the sum of their conflict~ I(Vi, 17.') +I(Vj, Vi). A pair with the largest affinity and

then the smallest conflict sum is selected.

Criterion 1 is based on corollary 5.1 which guarantees that slOch a selection is an optimal

choiee by preserving the chromatie number. If zero conflicts are not present in the graph

then the algorithm uses criterion 2. By proposition 5.2 the number of edges lost in the

compressed graph is equal to the affinity of the compressed nodes in the graph prior to

compression. Selecting a pair leading to the largest possible edge loss works in favorof the

bound introduced in theorem 5.1. If several pairs of nodes have the highest affinity then one

which has the smallest possible conflict sum is selected. In the light of proposition 5.1 this

will create the compressed verta, with the smallest possible degree amongs{ the nodes of

highest affinity and this will therefore work in favor of the bound of theorem 2.2. After each

compression the affinities and conflicts arerecalculated to reflect those of the compressed

graph. Finally, criterion 2 can also be justified as a greedy step to keep the longest possible

list of compression candidates for the next iteration.

Appendix A provides an implementation of WWI on affinities with an efficient method

to recalculate confticts and aflinities. The resulting algorithm is of order O(1V13 ) in the

worst case.

,.•

5.2.2 WWI on Conflicts

The properties of aflinity and conflict which drive the first order compression selection pro­

cess only depend on the immediate neighbors of the compressed vertiees. By concentrating

on larger subgraph structures, such as those found in 2nd order criteria, a heuristie decision

relies on more information and as sucb it could lead to better selections. However the anal­

ysis involved for second order selections is ofgreater complexity and the priee is a worsened

time performance for each compression of the algorithm.

84



• In light of proposition 5.3 and corollary 3.4, a justifiable second order criterion is the

number of edges between the conflict noc\es of compre~sion candidates. As previollsly

observed, the compression of two vertices having the minimal value for this particular

criterion is a greedy step towards introducing the fewest possiLle new triangles in the

compressed graph (see proposition 5.3). In tum, the nllmber of triangles influences the

number of odd cytles on which the chromatic number depends (see corollary 3.4). As well,

another theoretical justification for trus criterion will be found in the upcoming perrect

class discussion .and the conflict free lemma (see lemma 5.6). Finally, empirical evidence

will show that trus method provides better results at the cost of a larger time complexity.

Because of the lure of improved performance from the second order algorithm, a natural

goal is to search for a first order criterion wruch is an approximation to the second order one.

Such an algorithm would have the time complexity of the first order aflinity and conflict

calculations while targeting performance results near those of th~ second order. That it

precisely what WWlon conflicts sets out to achieve.

For the number of edges between the conflict nodes of two vertices Vi and Vj there

is a clear upper bound at ')'(Vi, Vi) • ')'(vi> Vi) as demonstrated in proposition 5.4. Since

this bound is based on first order values of conflict it can be used as a rapid indicator of

the maximal number new triangles inserted by a compression. Furthermore if edges are

uniformly distribllted on the graph then the product of conflicts is proportional to the

number ofnew triangles created via a compression. And therefore ')'(v;, vi) •')'(Vj , Vi) is lIsed

as a first order approximation to the aforementioned second order criterion.

At each compression step the criteria for WWI on conflicts are:

1. If there are possible compressions wruch include the last vertex compressed then

only consider compression candidates including that vertex. Otherwise consider all

candidates. Trus is a localized algorithm.

2. Compress the nodes Vi and Vj with the smallest conflict product: ')'(vi,vi) • ')'(Vj, Vi)'

At the same time trus serendipitously gives priority to (optimal) zero conflict com·

pressions.
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• 3. If several pairs of vertices share the IIÙnimal value of conilict product then select

amongst them the pair with the highest affinity.

4. If there ;s still no outstanding pair of vertices the!! select a pair with smallest sum of

conflicts amongst the competing pairs remaining after 2 and 3.

The algorithm which uses the product of conilicts is the same as that in the WWI

on affinities discussion except that the sub-algorithm of section A.2 was adjusted for the

new criteria. Since the product of conilicts also stems from a first order calculation the

complexity of the algorithm remains at O(1V13
). Empirical evidence will be provided to

show that the first order approximation achieves its objective of ernulating the second order.

5.2.3 Discussion on Algorithms

Tseng's algorithm [TsSi86] discussed in chapter 2 has metrics similar to affinity and conilict

in its operation. Their algorithm addresses the related problem of clique partitioning. The

algorithms difrer as theirs is localized of the graphs whereas WWI on affiniiies is global­

ized and WWI on conilicts is localized, the node selection criterion differs, the theoretical

justifications and outcomes of the algorithms also differ. Finally, the WWI algorithms op­

erate in the worst case time order of O(1V13) wher,:as the algorithm in [TsSi86] is of order

O(IVI'IEcl). However, using the same technique a:s in appendix A, Tseng's algorithm could
i,

also be implemented in O(1V13
). The method is universal to all conilict and affinity calcu-

lations. The benchmarks will demonstrate that the WWI algorithms actually operate in a

time proportional to O(IVIIEcl) (this becomes intuitively obvious in appendix A when it is

shown that only the edge complement needs to be traversed at each compression step).

5.3 An Example of WWI on Affinities at Work

Figure 5.2 shows an e.'Cample of a graph being colored with the WWI on affinities algorithm.

Figure 5.2 (a) shows the graph to color and the aflinity-conilict table for that particular

graph. Since there are noconilicts with zero value in the graph the algorithm turns to
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• finding the pair of vertices with the highest possible affinity. Three pairs of nodes have

the highest aflinity, namely {V3' V6}, {V3, vr}, {v" vr}, however only one has thE minimal

sum of con:fiicts and that is {V3, V6} with ,(V3, vs) +,(V6, V3) = ~. Therefore V3 anè v, are

compressed and the resulting graph is shown in figure 5.2 (b) along \Vith its affinity-confliet

table. At that stage nodes Vr and V3,' are compressed since they have the highest aflinity of

the graph and no zero conillcts are present. The resulting gra;>h is shown in figure 5.2 (c).

The aflinity conillct table is uniform throughout because of the symmetry between elements

of the edge complement. Clearly it does not matter which pair is selected at this point but

the algorithm proceeds by arbitrarily selecting the pair Vs and v•. This yields the graph

of figure 5.2 (d). From which the selection of nodes v. and Vs is optimal since these nodes

are in a zero conillct situation (in fact both ,(v., vs) =a and ,(vs, v.) =0). Cornpressing

v. and Vs produces another symmetric graph, that of figure 5.2 (e). Compressing the

nodes V2 and vs,. retums the graph of figure 5.2 (f). Finally compressing nodes VI and v.,s

results in the complete graph of figure 5.2 (g). Therefore the graph of figure 5.2 (a) can be

colored with 3 colors with C(vtl = C(v.) = C(vs) = 2, C(V2) = C(vs) = C(v.) = 1 and

C(V3) =CCv,) =C(vr) =O.

5.4 Implications of WWI on affinities

.The following results provide theoretical indication that WWI on affinities is well suited for

graphs of low edge density and small chromatie number.

Theorem 5.3 Let G = (V, E) be a graph such that its chromatic number is x(G) :5 2. The

WWI on affinities algorithm retums an optimal coloring for G.

ProofThe algorithm proceeds by first finding pairs ofnodesv; and Vj such that ,(v;, Vj) = 0

Or ,(vi> Vi) = O. If such a pair of nodes exists then it compresses both nodes to a common

color. As demonstrated in theorem 5.2 this assignment is optimal and thus the proof only

needs to concentrate on the cases that such a pair does not exist.

In the case that zero conillct pairs do not exist then the algorithrn selects two nodes

vP' vq E G which have the highest aflinity and it then compresses them into the same
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Vs

Iva
V, VI VI VI VI VI V2 V2

EC lib' .V4' .... "Vs' 'v'';' 'vs "V9 'ï}3' .'V4'Vs

a(va , Vb) l l l 0 0 0 l l
')'(va, Vb) l l l 2 2 2 l l

')'(Vb, va) 3 3 2 4 2 2 2 3

Iv
a V2 t/2 V2 V2 V3 V3 V3 V3

EC 'Vb' ... . ... " ..... ..... ..... ..... .....
Vs V7 Vs V9 Vs V7 Vs V9

a(va , Vb) l 0 0 0 2 2 0 0
')'(va, Vb) l 2 2 2 l l 3 3
')'(Vb, Va) 3 4 2 2 l 2 2 2

Be I~~·
V. v. Vs Vs Vs Vs Vs

..... .... .....
Vb Vs V9 Vs V9 V7 Vs V9

a(va , Vb) l l l l 2 0 0
')'(va , Vb) 3 3 3 3 l 3 3
')'(Vb. va) l l l l 2 2 2

Vs

Vs

(a)

Va VI VI· VI VI VI V2 V2 V2 V2
Be ..... ..... ...... ... ...... ..... ..... ..... ..... .....

Vb V. Vs V7 Vs V9 V. Vs V7 Vs

a(va. Vb) l l 0 0 0 l l 0 0
')'(va•Vb) l l 2 2 2 l l 2 2
')'(Vb. va) 2 2 4 2 2 2 2 4 2

Va V2 V. V. Vs Vs V7 Vs V9
Be ..... ..... ..... ..... ..... ..... .....

Vb V9 Vs V9 Vs V9 VS,6 Vs, V3,

a(va, Vb) 0 l l l l 2 0 0
')'(Va, Vb) 2 2 2 2 2 2 2 2
')'(Vb. Va) 2 l l l l 2 4 4

(b)

Figure 5.2: WWI on affinities example
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1 V,

VI VI VI vI V2 t12Ec ....
V4 Vs Vs V~

..V4 VsVb

a(Va, Vb) 1 1 1 1 1 1
"I(Va, Vb) 1 1 1 1 1 1
"I(Vb, va) 1 1 1 1 1 1

1Va
V2 V2 V4 V4 V5 V5

E
C

'Vb' Vs .Vg" Vs v. iis V9

a(v., Vb) 1 1 1 1 1 1
"I(V.,Vb) 1 1 1 1 1 1
"I(Vb, va) 1 1 1 1 1 1

(c)

VI

>;:---""V5,9

Vs

1Va
VI VI VI V2 V2 V2 V4

Ee 'vi' ........ . .. ,....
V4 Vs VS,9 V4 Vs VS,9 Vs

a(v., Vb) 1 1 1 1 1 1 2
"I(V., Vb) 1 1 1 1 1 1 0
"I(Vb, va) 1 1 2 1 1 2 0

(d)

V, VI VI V2 V2
E' 00'" ..... .... .... . .... '

Vb V4,8 VS.9 V4,8 vS,9

a(v., Vb) 1 1 1 1
"I(V"Vb) 1 1 1 1
"I(Vb, Va) 1 1 1 1

(e)

(f)

Va VI
E' ..... .....

Vb V4,8

a(v., Vb) 2
"I(V., Vb) 0
"I(Vb, va) 0 V2,5,9 V3,6,7

(g)

Figure 5.2: WWI on aflinities example (continued)
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• color.

If a(vP' Vq) > 0 then it will be shown that vp and vq must have the same color in any

optimal coloring and that the assignment in WWlon affinities is therefore corcect. Suppose

that vp and vq have different colors in an optimal coloring C for G. Since x(G) ::; 2 and

vp and vq are of different colors then it must be that all other nodes in the optimal color

assignment C are of the color of vp or vq so that the number of colors does not exceed 2.

But since a(vp , Vq) > 0 there exists anode Vr which is adjacent to both vp and Vq. For C

to be a valid vertex coloring it mu;t be that Vr is a third color from that of vp and Vq. This

contradicts that·C is an optimal coloring. Therefore it must be that vp and vq are assigned

the same color if a(vp , Vq) > 0 and this is precise1y what WWI on affinities does.

If a(vP' Vq) = 0 then it can be shown that there exists an optimal coloring with vp

and vq having the same color. Only the case of ,(vp, Vq) > 0 or ,(vq , vp) > 0 must be

considered; otherwise, by virtue of theorem 5.2, the algorithm would have compressed the

two nodes to a same color by its first selection criterion. Since ,(vP' Vq) > 0 there exists at

least one node Va which is adjacent to vp but not Vq. Shnilarly there is at least one node

vp adjacent to vq but not vp ' This situation is illustrated in the partial graph of figure 5.3.

Now suppose that vp has another neighbor v, different from Va' Then either V, is also

Vp V/3..--....' ..--........
Vq

Figure 5.3: A partial graph with dependencies between vP' Vq, Va, Vp

connected to Va or it is not. The t~o situations are illustrated in figure 5.4 (a) and (b).

The scenario in figure 5.4 (a) is impossible since a(vQ,v,) ~ 1 and this would contradict

that the ma..ximum affinity in the graph is O. And the scenario in (b) cannot hold either

since the subgraph shown requires at least three colors and this would contradict x(G) ::; 2.

Renee vp cannot have any other neighbors and ,(vp,vq) = 1. Similarly vq cannot have any
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• other adjacencies than vil' Also va cannot have other adjacencies because if a",other vertex

(a) (b)

Figure 5.4: Two possibilities with v,

v, would be adjacent to Va then Vp and v,. would share Va in their affinity and this would

contradict that the ma:dmal affinity in the graph would be O. By a similar argument vil

cannot have any other adjacencies. Therefore vertices Va, vp and vp, vq form subgraphs of

size 2 disconnected from the rest of G as shown in figure 5.3. And clearly there must exist

an optimal coloring with vp and vq having the same coler. Renee the theorem stands for,.
all possible cases. 0

A trivial consequence of theorem 5.3 is that if WWI on affinities retuflls a coloring of

three colors for any given graph then that is an optimal coloring for the graph. In addition

WWI on affinities colors graphs consisting of disconnected cycles optimally (cycles which

do not have nodes in common):

Lemma 5.3 Cycles are optimally colored by WWI on affinities.

Proof Even cycles require 2 colors and by invoking theorem 5.3 they will be optimally

colored. ûdd cycles require three colors and a proof by induction is used to show that they

will be colored optimally.

Firstly note that an odd cycle of length 2(1) + 1 (a triangle) is colored optimally by

WWI on affinities. Secondly, assume that all odd cycles of length 2(k) +' 1 are colored

optimally by the algorithm. We now proceed to show that odd cycles of length 2(k +1) +1

are colored optimally.
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• As a preliminary, define the operator el so that a e b= (a + b) mod (2(k +1)). Label

the nodes in the cycles so that the cycle is (wo, W" • .. , W'(k+l)' wo). For an odd cycle the

maximum affinity between any pair of non-adjacent vertices is 1 and there are no situations

of zero conflict. An affinity of 1 exists between the following pairs of vertices: Wi and

WiEll2 If 0::; i ::; 2(k + 1). Hence, for sorne 0 ::; j ::; 2(k + 1), WWI on affinities will

compress vertices Wj and WjEll2' Once Wj and WjEll' are compressed, vertex WjEllI will have

only one adjacency: Wj,jEll" Furthermore Wjel will have zero conflict with WjEll-1 and Wje3'

Because of the zero conflict, the algorithm's next step will be to compress Wjel with Wje-I

or Wjel with WjEll3' In both cases the resulting graph is an odd cycle of length 2(k) + 1

which WWI on affinities will color optimally by the induction hypothesis. 0

Theorem 5.4 Any graph consisting of the union of disconnected cycles is colored optimally

by WWI on affinities.

ProofThe algorithm first reduces each cycle to a clique before compressing nodes of dif­

ferent cycles since there is 0 affinity between nodes on disconnected cycles. By lemma 5.3,

each cycle is optimally reduced to a clique of size 2 or 3. The algorithm will then proceed

to compress pairs of cliques until only one clique remains. It is easy to verify that the

compression steps of two disconnected cliques into a single clique are optimal. Hence the

resulting coloring will always be optimal.

5.4.1 A Heuristic

o

Although the WWI algorithms are quit.. efficient, they are only heuristics and they do not

necessarily provide optimal graph colorings. To demonstrate this we use the interesting

graph of figure 5.5 (a). As shown on the graph it is possible to color the graph with three

colors· and since cycles of length three ar.e within the graph then it must be th'!-t.X = 3.

This graph has an interesting property that if a coloring C is an optimal coloring then

C(v,) # C(vs) and C(V6) = C(vs) hold true.

If one performs WWI on affinities for this graph then there is the possibility that the

optimal coloring will not be obtained. From the affinity and conflict table. of figure 5.5 (b)
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• one can notice that there are no 0 confiicts in the graph. So the algorithm \Vill proceed

selecting a pair of vertices \Vith the largest aflinity, in this case 2. There are four pairs

\Vith affinity 2 but the pair of V6 and Vs is dropped since it has a conflict sum higher than

the other three pairs. This leaves the algorithm \Vith three equally rated pairs in a tie for

compression. The equally rated pairs best satisfying the criteria of WWI on affinities are

highlighted in the table. Unfortunately the pair of V2 and Vs is amongst the choices \Vith

0«V2' vs) = 2, l'(V2,VS) = 1 and l'(VS,V2) = 1. If the pair of V2 and Vs is selected then

the resulting graph is shown in figure 5.5 (c). From there the compression of v, and V7

is ranked highest with 0« V" V7) = l, l'(V6, V7) = 1 and l'(V7, V6) = 1. This results in the

graph of figure 5.5 (d) which has two equally good candidates for a compression: v, and

Vs for l'(v., vs) = 0 or v. and V2,S for l'(v., V2,S) = O. The graph in figure 5.5 (e) shows the

result of compressing v. and V2,S' From that point both l'(V6,7, V,) = 0 and l'(V,,7' V3) = O.

Compressing V',7 and V3 results in the complete graph of figure 5.5 (f). At this point WWI

on affinities reports 4 colors and a coloring C with C(Vl) = 3, C(V2) = CCv,) = C(vs) = 2,

C(V3) = C(vs) = C(V7) = 1 and C(vs) = O. Clearly the number of colors reqnired by WWI

on affinities is not optimal for this particular case.

5.5 Benchmarks

Two sets of extensive benchmarks are provided to demonstrate the efficiency of the algo­

rithms. The first concerns· the widely benchmarked random graphs v hile the other is on

the hard to color k-colorable random graphs.

5.5.1 Random Graphs

To appraise the performance of the WWI algorithms we use random graphs to collect

statistics [AlSE92, BollSS, BoEr76]. A random graph G(n,p) is generated given a number

of nodes n and a probability p of an edge between any pair of nodes. The tables in figure 5.6

and 5.7 are a compilation of averages on the number of colors, the number of zero conflict

compressions, the fraction of zero conflict compressions over the number of compressions,
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Va Vs Va Vs V. V4 Vs V6 V6
EC

Vb
..

V. V6 V7 Vs Vs V7 V7 Vs

"'(Va. Vb) 0 1 1 1 1 1 1 2
'l'(Va• Vb) 3 2 2 1 1 2 2 1

'l'(Vb, va) 2 2 1 2 4 1 1 3

V7

(a)

Vs

T·::·
V1 V1 V, V1 V2 v2 V2 V2

EC
V4' 'VS' 'V6 vi v-i 'tis ii7

V4
Vs

v.
n(val Vb) 0 li 1 1

~t.i
1 :tf2J 1

4!i:;;,,~

'l'(Va. Vb) 3 2 2 2 ~lj 2
:I~i ;; .;1'~~

'l'(Vb. va) 2 !'i.~ 2 1 il'll" 1 !'~l 1
V2 Vs :$",~~; ~.t4 ~:~p,",!,

(b)

VS,?

(c) (d)

V6,?

(e)

V2,4,5

(f)
Vs

Figure 5.5: Diamond Graph
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• the number of conflict free compressions detected, the fraction of confiict free compressions

over the total number of compressions, and the average e."ecution times used by '-V'WI on

aflinities and WWI on conflicts. The exact meaning of these specialized compressions will

be introduced in section 5.6 but for the present purpose it suffices to state that they are

known to preserve the chromatic number or the ma.."imal clique number.

In addition the number of colors used by the wide!y known greedy [Bigg85, Gibb85)

algorithm is also supplied in figure 5.6. The greedyalgorithm is used as a comparison since

it is often benchmarked against and thus it is a useful yardstick. In figure 5.7 the lIumber

of colors for Tseng's algorithm is given (see chapter 2). The results were averaged over

100 graphs for each value of (n,p) and were computed on Sun SparcStations 10 mode! 41

with 32MB RAM and 1MB cache running SunOS 4.1.3. The WWI algorithms are fastest

on complete graphs and are slowest when there ar~ no edges. The e."ecution times listed

include the operating system's maintenance time and cali be improved if performed on

machines with lesser loads than the ones available to us. The execution times also include

several consistency checks and each coloring undergoes a post-processing verification. From

the tables one can extrapolate that the execution time is about C· (1- p). IVI" where C is a

constant dependent on the computer architecture. For our particular architecture C "" 1Jls

for WWI on aflinities, and for a Gateway 2000 4DX2·66V personal computer with 12MB

RAM, 256KB cache running the Linux 1.0 operating system C "" 1.4Jls. If p is interpreted

as the edge density then it can be replaced by p "" 1V1:1~~'1 and the formula becomes a

useful predictor of the execution time. As implemented, the WWI algorithms operate in a

time proportional to O(IVIIEcl).

For graphs of a smalI number of nodes there is a good number of perfect graphs which

are reported to be optimalIy colored by the WWI algorithms since conflict free compressions

are used throughout the coloring process. However, as the number of nodes increases, these

graphs become less frequent and quickly get skewed out in the extremal edge density regions

(such as shown in figure 5.6 and 5.7 for n =25 at p =0.05 and p =0.95).

Furthermore, from the benchmarks for the low values of p (p = 0.05,0.25) it becomes

apparent that there can be a large disparity between the number of conflict free compressions
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and zero confiict compressions. Conflict free compressions involve a costly second order

check which is a superset to the conditions of theorem 5.2. Instead of aiming the search

criteria at conflict free compressions directly, the WWI algorithms only verifies for conflict

free compressions once compression pairs have already been selected on the basis of other

criteria. This is in order to keep the time complexity at O(IVI3
). Therefore, if one is

willing to tradeoif on the overall time complexity of the algorithms, there can be a definite

advantage in a direct search for conflict free compressions instead of performing the a

posteriori detection currently implemented in .the WWI algorithms; especially in the case

oflow edge densities.

It is clear throughout the benchmarks that WWI on conflicts provides a superior perfor­

mance to Tseng's algorithm and that WWI on affinities does provide better results at lower

edge densities than WWI on conflicts. However, random graphs do not make a particularly

rigid test despite their popular use in benchmarks. The random graph benchmarks do

provide a distinction between WWI on affinities, WWI on conflicts and Tseng's algorithm

but the differences are sometimes minor, especially in the very high edge dcnsity cases of

p = 0.95. The next subsection will provide a more stringent set of benchmarks which will

result in substantial differences·between the algorithms.
\\

5.5.2 k-Colorable Random Graphs

It has been shown that random graphs [AlSE92, Wilf84, Bo1l88, BoEr76] are relatively easy

to color and that even the greedy algorithm will perform relatively wel1 on them. As a

more stringent test on the algorithm, we use k-colorable random graphs as proposed by

Turner [Turn88] to benchmark WWI. A k-colorable random graph G(n, k, p) consists of a

random experiment which first generates a k-coloring on n nodes and then produces edges

with a probability of p between nodes of different colors.

Figures 5.8 (a),(b),(c),(d) plot the performance of five algorithms for p = 0.5. Fifty

k-colorable graphs were generated for each value of k plotted and the average ratio of the

number of colors returned by the algorithms over k is given. Clearly the WWI algorithms

outperform the greedy algorithm and the Brélaz algorithm by a wide margin (for the latter
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Ip=0.051 WWIon Zero Zero Conflict Conflict Exec.

Affinities Conflict Conflict Free Pree Time Greedy
n if Colors Comp. % Comp. % (secs) if Colors

25 2.35 19.56 86.3 22.5 99.3 0.015 2.87
100 4.1 42.35 44.1 68.62 71.6 1.124 5.29
250 6.35 76.81 31.5 117.24 48.1 14.37 8.43
500 9.57 119.45 24.3 174.34 35.5 120.7 12.65

1000 14.96 192.14 19.5 256.5 26.0 911.2 19.62

Ip= 0.251 WWlon Zero Zero Conflict Conflict Exec.
Affinities Conflict Conflict Pree Pree Time Greedy

n if Colors Comp. % Comp. % (secs) if Colors
25 4.33 10.85 52.5 14.8 71.6 0.017 5.31

100 9.76 26.19 29.0 33.26 36.8 0.828 12.46
250 18.08 48.02 20.7 56.88 24.5 10.19 23.05
500 30.44 79.15 16.9 88.84 18.9 87.19 38.39

1000 52.74 130.77 13.8 142.42 15.0 748.2 64.94

Ip=0.501 WWlon Zero Zero Conflict Conflict Exec.

Affinities Conflict Conflict Pree Pree Time Greedy
n if Colors Comp. % Comp. % (secs) if Colors

25 6.70 9.00 49.1 10.85 59.2 0.008 8.09
100 17.05 21.23 25.6 24.10 29.0 0.472 21.37
250 34.10 40.84 18.9 44.22 20.5 7.03 42.19
500 59.73 68.59 15.3 72.64 16.1, 61.20 72.64

1000 106.83 117.60 13.2 121.83 13.7 482.3 126.68

Figure 5.6: Benchmark results for random graphs and WWI on aflinities
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•

Ip=0.751 WWlon Zero Zero Conflict Conflict Exec.
Affinities Conflict Conflict Free Free Tirne Greedy

n # Colors Comp. % Comp. % (secs) # Colors
25 10.21 8.91 60.2 9.68 65.4 0.004 11.78

100 27.38 18.7.8 25.8 20.46 28.1 0.210 33.37
250 57.17 37.28 19.3 38.95 20.1 3.17 68.47
500 102.16 65.83 16.5 67.62 17.0 26.09 121.5

1000 186.15 112.04 13.7 113.8 14.0 239.4 216.63

Ip = 0.951 WWlon Zero Zero Conflict Conflict Exec.
Aflinities Conflict Conflict Free Free Tirne Greedy

n # Colors Comp. % Comp. % (secs) # Colors
25 17.19 7.77 99.5 7.78 99.6 0.001 17.81

100 47.65 21.38 40.8 22.16 42.3 0.047 54.9
250 100.85 42.83 28.7 43.77 29.3 0.651 119.36
500 180.48 78.94 24.7 79.68 24.9 5.26 216.33

1000 331.68 97.3 14.5 98.29 14.7 39.34 389.56

Figure 5.6: Benchmark results for random graphs and WWI on aflinities (continued)
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/p = 0.05/ WWIon Zero Zero Conflict Conflict Exec.

Conflicts Conflict Conflict Free Free Time Tseng
n # Colors Comp. % Comp. % (secs) # Colors

25 2.35 19.94 88.0 22.47 99.1 0.016 2.56
100 4.3 41.17 43.0 59.99 62.7 1.08 4.77
250 7.14 40.66 16.7 62.92 25.9 15.45 7.38
500 10.66 43.35 8.85 64.21 13.1 125.1 11.02

1000 16.13 47.35 4.81 67.31 6.84 980.2 16.76

!p= 0.251 WWlon Zero Zero Conflict Confiict Exec.
Conflicts Conflict Conflict Free Free Time Tseng

n # Colors Comp. % Comp. % (secs) # Colors
25 4.56 10.91 53.2 13.44 65.6 0.012 4.80

100 10.49 13.92 15.5 16.85 18.8 0.722 10.92
250· 19.37 17.69 7.67 20.83 9.03 JO.9 19.87
500 31.55 25.04 5.34 27.82 5.94 91.6 32.32

1000 52.99 35.90 3.79 38.94 4.11 744.1 53.92

Ip= 0.501 WWlon Zero Zero Conflict Conflict Exec.

Conflicts Conflict Conflict Free Free Time Tseng
n # Colors Comp. % Comp. % (secs) # Colors

25 6.79 8.42 46.2 9.63 52.8 0.008 7.26
100 17.3 12.44 15.0 13.84 16.7 0.463 18.37
250 33.96 20.13 9.3 21.64 10.0 7.31 35.77
500 57.91 31.21 7.05 32.55 7.36 61.8 60.63

1000 101.15 50.0 5.56 51.37 5.71 504.2 104.72

Figure 5.7: Benchmark results for random graphs and WWI on conflicts
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Ip = 0.751 WWIon Zero Zero Conflict Conflict Exec.
Conflicts Conflict Conflict Free Free Time Tseng

n # Colors Comp. % Comp. % (secs) # Colors
25 10.08 9.5 63.63 10.15 68.01 0.005 10.46

100 27.17 13.65 18.7 14.96 20.5 0.228 28.79
250 54.95 25.71 13.17 26.84 13.75 4.93 57.90
500 96.47 43.11 10.68 44.26 10.97 28.34 101.08

1000 172.09 69.43 8.39 70.47 8.51 267.11 179.27

Ip- 0.95 1 WWlon Zero Zero Conflict Conflict Exec.

Conflicts Conflict Conflict Free Free Time Tseng
n # Colors Comp. % Comp. % (secs) # Colors

25 17.13 7.81 99,3 7.85 99.7 0.002 17.19
100 47.28 23.19 43.9 24.02 45.5 0.052 48.09
250 99.25 39.04 25.9 39.90 26.5 0.766 99.62
500 175.38 68.33 21.0 69.30 21.3 5.56 178.42

1000 321.89 92.19 13.6 93.25 13.7 47.35 321.80

Figure 5.7: Benchmark results for random graphs and WWI on conflicts (continued)
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• we have taken the statistics from [Turn88]). WWIon conflicts clearly outperforms all other

algorithms by a large margin. WWIon aflinities, designed for lower edge densities, becomes

outperformed by Tseng's algorithm as n gets large.

Figures 5.9 and 5.10 show the effect of varying p for n = 128 and n = 256. Reducing

p shifts the worst case performance peak to smaller k while thimùng it out. Eventually at

p = 0 the peaks will varùsh and the CUIves will behave as liJ. Increasing p shifts the worst

case performance peak to higher values of k while f1atterùng it out. Ultimately, at p = 1

the performance ratio will never jlXceed 1 and all graphs will be colored optimally.

The benchmarks of figures 5.8 and 5.9 and 5.10 show that WWI on conflicts is clearly

the better algorithm with exception to the lower edge densities when WWI on affirùties

performs better. At lower edge densities, p = 0.15 and p = 0.3, WWI on conflicts does

not provide a sigrùficant improvement over Tseng's algorithm; however, the performance

difference becomes clearly apparent when p increases.

5.5.3 The first order approximation to the second order

The graph of figure 5.11 provides a sample of the 2nd order algorithm nùrùrrùzing the

new triangles introduced at each compression step and the extent of the approximation

aclùeved with WWI on conflicts. Although it does not provide results which are identical,

the CUIve for WWI on conflicts tightly follows that of the second order algorithm. With

lower edge probability the bound of proposition 5.4 becomes less tight and consequentially

the approximation becomes a bit less accurate. This is another indicator as to why WWI on

conflicts does better at higher edge densities. As a possible improvement a better first order

approximation would involve,a mecharùsm to keep track ofthe probabilistic distribution of

edges between conflict nodes.

The implementation of the second order algorithm is identical to that of WWI on

aflinities found in appendix A except that the sub-algorithm of section A.2 was modified

to count the number of edges b,etween the conflict nodes. Furthermore, if two pairs of

nodes present the same number of edges between their conflict nodes then the pair with

the highest aflinity Is selected.
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Figure 5.9: Benchmark results for n = 128 and p = 0.15,0.3, 0.70,0.85

·e 103



•
Pllrlormanr;o 01 AlgorltIvnllorn..:!56l1l'ld p.O.?

o.,

r- ,
!
111.5

~ ......,....---...... "'~""

- WWI on AtlIrillas, PHIl 1Il1.49 Ior k"'27
_Grwdy~.i-kIll3.56lork.'2

.,."':.\ '';''~,.i,',',. ·wWl on cO.IlIicb,p.lIk IH.25lork-a:J· .. •
, _. TSung AIgoImvn, pgak 111.30 lor~'>g.:lO,

, : .. ,..
.' ', .',.: .;. \,,~<~ ~.

: ~..
: ...... ~ ...,.,,,

,

50....2025::1035
k~gl3ph"

_ WWlonNlW\lll8S.l*Ik '" I.tolor k-6

- GrNltf .-Jgod!hm. p$ak i.13.87Iorki3 ,.

~ WWI on CCnIlk'b, poek al 1.BIlIot l<oo6

-.TIlGhO Algo~ poUlt B'9 lor ~.

"·,3.5 '\· ,, ,, ,, ,, ,· ,, ,,

(a) (c)

,
....~.""~" ....

l.'

••

50

.~.....

..
-----

.."

.... -:-

'" " '",--

....;

.: .;,.

""
,

o.,

,.,

Po~ 01 AlgoIllhms for l'-:sa and pooll.3
"r--""-""':':::::::;==""'::::;:=':;==;'::::::"-~---,

,\ ,;,. WW1onAfll_~'11.11Olorkoolo:
.:" ·:.....'Ql'MdY~;PGilnllui-lork;,"
, \ ~ 'oWo'lonCOrllkts,peakltl:rg"lork.1C1

: ..... ~:T-.g·~:~.lU3~rb10;·, ,, ,
.: :,' ", \:

·1· "!" ...\.. "!
1 :\

, '
r- ..\; . "" ....,
l "
1 ~,,,,

),:
! '•-1,5

(b) (d)
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5.6 Perfeet class

Tlùs section devotes itself to defining a class of perfect graphs whicll lends itseif weil to

compression style coloring algorithms. The following lemmas and definitions are key in

characterizing the class.

Lemma 5.4 Suppose a graph G = (V, E) which is not complete. A compression of two non­

adjacent vertices in G to a graph G' = (V', E') has the following clique number relationship:

w(G) :5 w(G') :5 w(G) +1

If Vi and Vj are the two compressed vertices and w(G') = w(G)+1 then vi,; is in ail maximal

cliques of G'.

Proof Let Vi, Vj E V be the two compressed vertices in G and let ViJ be the compressed

vertex in G' (>- (G: V;, Vj; G' : ViJ))' First it is shown that w(G');::; w(G) by dividing the

proof into three distinct cases:
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• 1. If there is a clique W I of maximum size in G with Vi ~ W I and Vj ~ W I then

Wl is also a clique in G' sinee an vertices in W I are preserved in G' as weil as the

edges by the definition of a compression. So for this case we are ensured that there

will be a clique of size w(G) in G'.

2. If there is a clique W, of maximum size in G such that Vi E W, then there

will also be a clique of size w(G) in G'. Clearly Vj ~ W, since a compression of Vi and

Vj implies that {Vi, Vj} ~ E and this would contradict that W, is a clique. We now

argue that the set ofvertices W~ = (W, \ {Vi}) U {Vi,j} is a clique in G'. This is so

because an vertices in W~ \ {Vi,j} remain fully interconnected in G' and vertex Vi,j has

aU the adjacencies of Vi by the definition of compression. Since IW~I = \W,[ = w(G)

it foUows that G' has a clique of size w(G) for this particular case.

3. If there is a maximal size clique including vertex Vj in G then the argument

given in case 2 with the roles of Vi and Vj reversed ensures that graph G' has a clique

of size w(G).

The three cases coyer an possibilities for the location of a maximal clique in G and therefore

one is always ensured that there wili be clique of size w(G) in G'. Renee

w(G) :0; w(G')

Now suppose there is a clique W' ofsize [W'I > w(G) in G'. It must be that Vi,j E W'

otherwise W' would also be a clique in G since an the nodes and the edges connecting

vertices dîfferent from Vi,j in G' are inherited from G (by the definition of compression).

And if W' is a clique in G then this would contradict that IW'I > w(G). Rowever note that

W = w' \ {Vi,j} is a clique in G since the vertices in W are fully interconnected in G' and

this implies that they must be fully interconnected in G by the definition of a compression.

Therefore there is always a clique Win G with IWI +1 = IW'I if IW'I > w(G). Renee

w(G'):O; w(G) + 1

Tlùs completes the proof.
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• Definition 5.1 (Zero Conflict Compression) Let G = (V, E) be a graph which is not

complete. A compression on two non-adjacent vertices Vi andvj is a zero confiiet com­

pression if and only if

,(Vi,Vj)=O V ,(Vj,V;) = 0

Lemma 5.5 Suppose a graph G = (V, E) is not complete. If a zero conflict compression

exists on two non-adjacent vertices in G then a compression of the two vertices yields a

graph G' = (V', E') with the following clique number relation with G:

w(G') = w(G)

Proof Since a zero conflict compression exists there are two vertices Vi and Vj in G such

that ,(Vi, Vj) = 0 or 7(Vj, Vi) = O. Let Vi,j be the compressed vertex in graph G/ = (V', E')

obtained from a compression Vi and Vj (>- (G : Vi, Vj; G' : Vi,j)). Suppose there is a clique

W' of size IW'\ > w(G) in G'. By lemma 5.4, it must be that v;J E W'.

Now notice that if7(Vi, Vj) = 0 then the set of nodes adjacent to vi,i in G' is identical to

the set of nodes adjacent to vi in G. Therefore it can only be that W = (W/ \ {ViJ}) U{vi}

is a clique in G since al! nodes which are different from vi,i in W' exist in Gand they

are fully interconnected by the definition of compression. Similarly if 7(vi' Vi) = 0 then

W = (W' \ {vi,i} U {Vi}) is a clique in G.

Therefore if 7(Vi, vi) = 0 Or 7(V;, Vi) = 0 then there is a clique Win graph G such that

\Wj = IW'I. This contradicts that a clique W' with \W/I > w(G) can exist in G'. Rence

w(G') ::; w(G)

Lemma 5.4 demonstrates that w(G') ;:: w(G) so it must be that

w(G') = w(G)

o
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• Definition 5.2 (Zero Conflict Graph) Let GO = (V,E) be a gmph. If there exists a

sequence of compressions from GO:

>- (Go: Vio' via; Gl
: VioJo)

>- (G l
: Vil' Vit; G2

: Vit,;"t)

which leads to a complete gmph Gk and for which each compression is a zero conf/ict

compression:
k-l

1\ ( ')'(Vim, vim) =0 V ')'(vim, v;m) =0 )
m=O

then GO is a zero conflict graph.

For example the graph of figure 2.4 (a) is a zero confiict graph.

Definition 5.3 (Zero Conflict Class) Z is the c1ass of ail zero conf/id graphs:

Z = {G 1 G is a zero cohf/ict graph }

Theorem 5.5 Ali graphs in the zero conf/iet c1ass Z are perfecto

Proof Let GEZ. Consequently there must exist a sequence of zero conflict compressions

from G such that a complete graph G" is ultimately reached. By repeated use oflemma 5.5,

one for each compression of the sequence, it must be that

w(G) =w(G") (5.2)

For any graph it must be that the chromatie number is larger than the clique number i.e.

for graph G this implies X(G) ;:: w(G). By equation 5.2 we conclude that X(G) ;:: w(G':).

But since G" is a complete graph it follows that X(G") = w(G"). So it follows that

x(G) ;:: X(G")
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• But lemma 5.2 implies that a compressed graph cau only have a chromatic number greater

or equal to the chromatic number of the graph prior to compression. Repeated use of

lemma 5.2, one for each compression in the sequence, implies that

x(G) :$ X(GU) (5.4)

From equations 5.3 and 5.4 it must be that X(G) = X(GU). But as it has already been

argued x(GU) = w(GU) and w(GU) = w(G). Hence it follows that

x(G) = w(G)

and G is therefore a perfect graph. o

The WWI algorithms keep track of aJl zero conflict compressions and declare a graph

of class Z if aJl compressions performed were of zero conflict type. If a graph was not fully

compressed with zero conflict compressions but a high percentage of the compressions were

of zero conflict type then the resnlting coloring can only be off the optimal goal by a few

colors in the worst case.

The proof of theorem 5.5 purposely avoids the resnlt of corollary 5.1 50 that the proof

becomes generic to any type of, compression which preserves the clique number of the graph.

This generic property is now used to prove a class of perfect graphs which is more general

than Z.

Definition 5.4 (Conflict Free Compression) Let G = (V, E) be a graph which is not

complete. Consider the compression of two non-adjacent vertices Vi and Vj. Let

The compression of Vi and Vj is a confiict free compression if and only if
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• Lemma 5.6 Suppose a graph G = (V, E) which is not complete and two non-adjacent

vertices Vi and Vj such that the compression >- (G : Vi, Vj; G' : Vi,j) to a graph G' i.1 a

conflict free compression. Then

w(G') = w(G)

Proof Define fi'; and fj,i as in definition 5.4. Also define the set of al! vertices adjacent

to both Vi and Vj:

Ai,j = {o 1 {Vi,O} E E 1\ {vj,o} E E}

Since the coupression of Vi and Vj is a conillct free compression there cannot be an edge

between a vertex of fi'; and one in fj,i' Also notice that the adjacencies of Vi in G are

represented by the set fi,j U Ai,j and the adjacencies of Vj are fj,i U Ai';'

Now suppose there is a clique W' in G' with a size IW'[ > w(G). By lemma 5.4, it must

be that Vi'; E W'. Since Vi,j E W' it must be that W' ç fi,jUfj,iUAi,jU{Vi,j}' Otherwise

anode outside the superset would not be adjacent to Vi,j (by definition of compression)

and this would contradict that W' is a clique. Furthermore since no edges exist between

elements of fi,; and f;,i it follows that W' cannot have vertices in both sets. Otherwise

would ~ontradict that W' is a clique. Therefore it must be that W' ç fi,j U Ai'; U {Vi,;}

or W' ç fj,i UA;,; U{Vi,;}.

If W' ç fi'; UAi,; U {Vi,;} then it must be that W, = (W' \ {Vi,;}) U {Vi} is a clique in

G because as previously noted Vi is adjacent to al! nodes of fi,; UAi,; in G and al! edges

existing between vertices of fi,; U Ai'; in G' are also in present in G (this follows from the

definition of compression). Clearly \W,I = IW'I. Similarly if W' ç f;,i UAi'; U{Vi;Jt then

W, = (W'\ {Vi,;}) U {Vj} is a clique in G. And once again IW,I = IW'I.

Therefore in al! cases it has been shown that a clique of size IW'I exists in G. This

contradicts that IW'I > w(G). This implies that

w(G') ~ w(G)

Lemma 5.4 demonstrates that w(G') ~ w(G) so it must be that

w(G') =w(G)
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Definition 5.5 (Conflict Free Graph) .4 graph GO is a conflict free graph if there

exists a sequence of compressions from GO:

which leads to a complete graph Gk and for which each compression in the sequence is a

conflict free compression.

Definition 5.6 (Conflict Free Class) Fis the class of ail conflict free graphs:

F = {G 1 G is a conflict free graph }

Theorem 5.6 Ail graphs in the conflict iree class F are perfecto

Proof Let G E F and emu1ate the proof of theorem 5.5 but use lemma 5.6 instead of

le=a 5.5 to argue that w(G) = w(G"). 0

Since aJl zero conflict compressions also satisfy the definition of a conflict free compres­

sion, it follows that Z S; F. An example which illustrates that Z # F is the graph of

figure 5.5 (a). Clearly from the table in figure 5.5 (b) this graph does not belong to class

Z. However it does belong to class F. The compression of Va and V7 is conflict free since

no edges can be found between the vertices of r a,7 = {v" vs} and r 7,a = {v,}. Figure 5.12

shows a remaining sequence of conflict free compressions which lead to a 3·c!ique.

In comparison to zero conflict compressions, conflict free compressions take longer to

identify ~ince edges incident to the conflictvertices of the compression candidates must

also be examined. Because of the additional time complexity they introduce, conflict free
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Figure 5.12: A sequence of conflict free compressions

compressions axe not directly sought after by the WWI algorithms. Instead, the CUITent

implementations of WWI oilly identify conflict free compressions once they have occurred.

At the cost of missing several conflict free compressions, this has the benefit that no ad­

ditional time complexity is introduced. If a graph is colored exclusively with conflict free

(and zero conflict) compressions then the WWI algorithms will declaxe the graph to be

optimally colored.

Let G be a graph to be colored and Gif be the clique resulting from successive com­

pressions using a WWI algorithm. An easily verified formula is x(Gif) - x(G) $ C - F

where C is the number of compressions performed by WWI, F is the number of conflict

free compressions, and x(Gif) is the number of colors returned by the WWI heuristic. For a

graph chiefly compressed with conflict free compressions this gives a tight lower bound on

the chromatic number. However, in general, this formula has oilly been found to be useful

on graphs of very small size.
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• 5.7 Improving the WWI Algorithms

As of yet, the development of the WWI algorithms has led to a first order compression

which preserves the chromatic number and the clique number of a graph (zero conflict com­

pressions). And we have only found a second crder compression (conflict free compression)

which preserves the clique number of a graph. Finding the e:-dstence of other first order

and sécond order compressions (or even higher order compressions) which are chromatic

number and clique number preserving would be an asset to any graph coloring algorithm

since they permit problem reduction without loss (or the identification of perfect graphs).

Identifying optimal or profitable compressions at each step is the guiding design principle

behiD.d the WWI algorithms as opposed to algorithms designed with an overall performance

bound in mind.

Finally, there are necessary characteristics of optimality which an optimal coloring must

obey. It is possible to run some post-processing checks on these characteristics and then

improve the coloring if they are not met. A few checks which can be run in O(IVI') time

complexity are presented in appendices B and C. The WWI he~ristics do not always

meet these characteristics and applying the checks does enhance a small percentage of the

colorings returned.

5.8 Conclusion '"1/

This chapter has presented fast and efficient algorithms for the vertex coloring of graphs.

The approach used was to take advantage of bounds on the chromatic number (bounds on

the number of edges, the degree of nodes, the number of odd cycles) and compression steps

which are guaranteed to preserve the chromatic number or the maximal clique number of

a graph. Some theoretical outcomes of the algorithm, such as a class of perfect graphs,

were discussed. It must also be stressed that a good part of the algorithm's efficiency is

due to its adaptive nature which enables it to take into account the important structural

changes which occur as the assignment of colors (compressions) progresses. FinaJly, a set

of benchmarks was presented to illustrate the practicality and efficiency of the algorithms

113



•

•

on classes random graphs.

!
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Chapter 6

Conclusion

In retrospect, this dissertation examined the vertex coloring problem via necessary chamc­

teristies of optimality, bounds on the chromatie number, a structural study of the solution

space and practieal coloring heuristics. Chapter 1 introduced the problem from the per­

spective of optimization issues confronting digital systems design and practical occurrences

of vertex coloring in synthesis. Chapter 2 formally defined the problem and provided known

results in complexity, algorithms and characteristies of vertex coloring. The compression

mechanism used by the WWI algorithms was first detailed in chapter 2 and a general

classification of compressions based on adaptability, order and localization was presented.

Chapter 3 established characteristies of optimality on a property of fundamental nodes

which ail optimal colorings must satisfy. This led to a strict set of bicolored paths which

must lie between between the fundamental ~odes of ail optimal colorings. In turn, a cubic

bound re1ating the chromatie number and the number of odd cycles in a graph was obtained.

This bound eventually played an important role in the design of the WWI on conflicts

algorithm of chapter 5. Derivations of the characteristics were achieved through constructive

methods which bd a direct algorithmic applicability as coloring refinements to heuristics.

Appendix B exemplifies such a refinement.

Chapter 4 gave a transformation of the vertex coloring problem into a continuous vari­

able mathematieal formulation. The resulting solution space did prove to have niee prop-
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• erties as it consisted of the union of disjoint convex regions. However, subsequent results

were indicators of the complexity of vertex coloring. It was shown that there can be a

great disparity between the local minima of the solution space since the ratio between the

number of colors at a local minimum and the chromatie number can be directly propor­

tional to the graph instance sizes. Furthermore, there can be an exponential number of

local minima. An examination of active constraints on the mathematieal programs led

tothe formulation of coler stratifications and a characteristie of optimality dosely related

to the Gallai-Roy theorem. The characteristie dictates a set of colored paths which must

he present within an optimal coloring. The constructive proof provided for that partie­

ular characteristie brought the algorithmie check of appendix C. Additional observations

resulted into a complete characterization of the local minima of the real valued problem.

Lastly, chapter 5 yielded two vertex coloring heuristics based upon the first order prop­

.erties of conflicts and affinities. The algorithms were founded on theoretieal bounds of the

chromatie number, maximal clique .number and chr6matie number preserving compressions,

and approximation arguments over a second order criterion. Appendix A supplied an effi­

cient Implementation of the algorithms due to a rapid method to re-evaluate conflicts and

affinities after each compression. Then followed a set of benchmarks on random graphs and

k-colorable random graphs which justified some daims of efficiency and generated favor­

able comparisons with existing algorithms. WWI on affinities was shown to perform well

on graphs of low edge density whereas WWI on conflicts was superior for the remaining

graphs. Finally, a dass of perfect graphs was identified.

6.1 Possible directions

From this work there remains several avenues to be explored. From the algorithmic per­

spective, the WWI algorithms could be parallelized because of the vectorial (matrix) and

independent nature of some of their operations. With the use of parallelism an even more

efficient version of WWI could be achieved. As well, a computationally efficient impIe­

mentation of the second order algorithm of chapter 5 couldbe obtained with the aid of

parallelism.
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• An other direction to pursue is the search for new chromatic number and ma.-dmal

clique number preserving compression. These would result in an immediate retribution as

they provide a means of optimal problem reduction. Given the generic proof mechanism of

section 5.6, the discovery of any such compression also e:l:pands the space of algorithmica1ly

recognizable perfect graphs. Furthermore, the characterization of such compressions also

provides directions in which to develop new heuristics. The availability of a larger set of

such compressions can only result in a better overa1l performance.

The search for higher order bounds, such as the quadratic bound of theorem 5.1 and

the cubic bound of corollary 3.4, results in the identification of significant factors on which

the chromatic number of a graph is dependent and supplies gnidance in the selection of

heuristics. Efforts to find such bounds proved to be profitable and are a good direction

to undertake. Similarly the search for constructive proofs of necessary characteristics of

optimality yields algorithmic mechanisms to refine sub-optimal colorings. For example, an

implementation of the proof of theorem 3.2 on bicolored paths is an obvious direction to

explore.
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Appendix A

WWI Implementation

Our implementation of the WWI on affinities algorithm is described in this appendix. It

will be evident in the upcoming discussion that it is possible to attain a more efficient

implementation at the expense of implementation obscurity. As for the implementation of

WWI on conflicts, it is identical with exception to the criteria of section A.2 which must

refiect those of section 5.2.2.

The implementation depends on four main data structures generated each time a graph

G = (V, E) with V ={Vl' V2,'" ,vo } and !VI = n is passed as an instance to the algorithm.

The first is the n x n adjacency matrix A. Each element of the adjacency matrix is

initially defined as follows:

1
0 if{v;,v;} It E

A(i,j) = 0 ~f i = j .

1 lf{V;,Vj} E E
Il

After each compression the adjacency matrix is adjusted to refiect the edges in the com-

pressed graph.

The second structure is C, the set of colors used by the algorithm. C is implemented as

a linked list of integers. For each compression a color.is removed from C ~o indicate that

the two compressed nodes have been assigned a common color. Initially, each node has a
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different color corresponding to its node index. Figure A.1 (a) shows the initial assignment

of C. When two nodes Vi and Vj are compressed, it is the highest inde:" which is remo\'ed

from the list. If i < j then j would be remo\'ed, from the list. For that reason the list of

colors can also be interpreted as a list of indices for the vertices remaining in the graph.

Each time two vertices Vi and Vj with i < j are compressed, they are replaced by a verte..x

vi in the compressed graph and vi has the adjacencies of Vi and Vj in the graph prior to

compression. For example the graph of figure 2.4 (c) would have the color list shown in

figure A.l (b).

The third structure is the n-entry vector J( which keeps track of the color of each node

in the initial graph.

J((i) = k if the color of verte..x Vi is k

For the graph of figure 2.4 (c) the color vector J( is shownin figure A.1 (c).

The last data structure is the list EC which is used to store the edge complement. Each

ec E EC represents a pair in the edge complement and it has five parameters associated

with it: ec.lo, ec.hi, ec.aff, ec.conJh, ec.con..hl. ec.lo and ec.hi are the indices of a palr of

non-adjacent vertices in a graph. ec.aff, ec.conJh and ec.con..hl represent the affinity and

conflicts between the vertices. Suppose two non-adjacent nodes v, and Vs with 0« v" vs) =3,

I(V" vs) = 1 and I(VS, v,) = 2. The entry ec for v, and Vs in EC would have ec.lo = 4,

ec.hi = 5, ec.aff = 3, ec.conJh = 1, ec.con.hl = 2. The distinction between 10 and hi

indicates that we sort the vertices of a pair based on the indices. However, this is not of

importance to the proper behavior of the algorithm. Examples for EC are the tables in

figure 5.2 and figure 5.5 (b) with the exception that vertices with a composite index such

as Va,6 would be represented by a single index, in this particular case 3 would be used for

Finally the algorithm uses an integer to count the number of colors required by the

algorithm. It is represented by the variable X. The following gives a general description

of the WWI algorithms. Subsequently a detailed description will be given along with a

complexity analysis of the algorithm.

O. Assume a simple und1rected graph G =(V, E)
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Cini~ ...~

(a) Initial Color List C

(b) Color list for figure 2.4 (c)

(c) Node colors for the graph of figure 2.4 (c)

Figure A.1: Data structure examples

1. Initialize C, K, EG, A, X as defined above

2 while (EG i- 0) do
2.1 Find the best compression vopt.!o, Vopt.hi

2.2 Adjust EG for the compression
2.3 Adjust the adjacency matrix A
2.4 Remove opt.hi from list G
2.5 Color nodes of opt.hi color to optlo in K
2.6 X +- X-1
2. end while

3. Return X,G,K

The initialization step colors each node with a different color, it finds an the a.fIinities

and conflicts between non-adjacent pairs of a graph G = (V, E). The while loop is then

iterated once for each compression performed on the graph. For each iteration the two

best nodes for compression are selected according to the criteria discussed in section 5.2.

The edge complement list is then modified to refiect the new a.fIinities and conflicts after

the compression has taken place. The adjacency matrix is also adjusted, the color list is

reduced by one color, and the number of colors required by thealgorithm is diminished by
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• one each time a compression is performed.

A.l Initialization

The following describes in detail the initialization stage:

/ / Initialize C, K and A
C ;- rh
for i ;- 1 ta IVI do

C ;- CU{i}
K(i) +- i
A(i, i) +- 0

end for

for i ;- 1 ta IVI - 1 do
for j +- i +1 ta IVI do

if {Vi, Vj} E E then
A(i,j) +- 1
A(j, i) +- 1

else
A(i,j) +- 0
A(j, i) ;- 0

end if
end for

end for

/ / Initialize EC
EC +- rh
for i ;- 1 ta IVI - 1 do

for j +- i +1 ta IVI do
if A(i,j) = 0 then

ec.lo +- i
ec.hi +- j
ec.aff;- 0
ec.conJh ... 0
ec.conJù +- 0
for k ... 1 tolVI do

ifA(i,k) = 1 A A(j,k)=lthen
ec.aff +- ec.aff+1

else if A(i,k) == 1 AA(j,k) = 0 then
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• ec.conlh <- ec.conlh +1
else if A(i,k) = 0 Il A(j,k) = 1 then

ec.con1J.l <- ec.con1J.l +1
end if

end for
EC <- EC U {ec}

end if
end for

end for

/ / Each node starts with a distinct color
X <- IVI

When analyzing the complexity of the initialization stage it is clear that the attention

should be concentrated on the triple-nested loop which generates EC. Ignoring the body

within the second loop one can notice that the two externalloops will iterate in the order of

D(IVI'). And clearly the body within the conditional of the second loop will execute IECI

times. For each iteration of the conditional body there will he a traversal of the [VI vertices

to find the affinity and conflicts of the two non-adjacent vertices. Hence the execution of

the initialization is within the order of D(IVI' + IECI·IVIJ where 0::; IECI ::; IVHI~H).

Our actual implementation differs as it takesadvantage of the symmetry of the adjacency

matrix and the mechanism to calculate the affinities and conflicts is slightly more efficient

as it takes advantage of the possible sparsity of the adjacency matrix. However, in the

\Vorst case, it preserves the same complexity. There is a more efficient technique which we

have not e.:<ercised for reasons of implementation ease. First define the matrix A:

A(i,j) = { 0 if A(i,j) = 1
1 if A(i,j) = 0

and then consider the following matrix products (T denotes the matrix transpose operation):

F = A· AT = A· A = A'

-T -
G= A·A = A·A
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It is easy to verify the following relations:

a(Vi, v;) = F(i,j) if {Vi, Vi} y! E

1(Vi,vi) = G(i,j) if {v;, v;} y! E

d(Vi) = F(i,i) '</ Vi E V

Therefore it is possible to calculate the affinities and conflicts through matrix multiplica­

tions. Several algorithms have recently been published to multiply matrices in efficient

times [BrBr87]. For e.."(ample, using Strassen's algorithm one could calculate the affinities

and conflict in the order of G(WI,·8') [Stra69].

A.2 Finding the best compression

We now discuss algorithm to find the best possible compression in the graph according to

the criteria of section 5.2. The algorithm traverses list EC and stores the indices of the

best compression in variables optJo and opt..hi. In this particular case the conditions are

for WWI on affinities.

/ / Finding the best compression
max..affinity <- - 1
for each ec E EC do

if ec.conlh = 0 V ec.con..hl = 0 then
optJo <- ec.lo
opt..hi <- ec.hi
break out of for loop

else if ec.aff > max..affinity then
max..affinity <- ec.aff
min.conflict <- ec.conlh + ec.con..hl
optJo <- ec.lo
opt..hi <- ec.hi

else if ec.aff = max..affinity fi
min.conflict > ec.conlh +ec.con..hi then

min.conflict <- ec.conlh + ec.con..hl
optJo <- ec.lo
opt..hi <- ec.hi

end if
end for
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• Since the body of the loop only executes 0(1) type operations it is clear that the

algorithm to find the best compression is O(IECI) where 0 ::; IECI ::; !VHI~I-l). For WWI

on conflicts simply replace the criteria with those of section 5.2.2 and ensure that the searcb

is localized.

A.3 Adjusting EC

Once the two nodes VoptJo and Vopt.hi have been selected to be compressed, WWI proceeds

by adjusting EC to refiect the new aflinlties and conflicts in the compressed graph. Ele­

ments of EC are separated into six disjoint cases and eacb case is treated differently (see

figures A.2, A.3 for diagrams of the cases as they are described):

1. ec E EC sucb that ec.lo = opt.lù or ec.hi = opt.lù: ec will be deleted from EC

since Vopt.hi will be compressed with VoptJo and we therefore only need to retain the

non-adjacencies with VoptJo'

2. ec E EC sucb that ec.lo = optJo, ec.hi # opt.lù and A(ec.hi,opt.lù) = 1: ec will be

deleted since the compression of VoptJo and Vopt.hi will place an edge between V.do

and V.c.hl. See figure A.2 (a).

3. ec E EC sucb that ec.hi = optJo, ec.lo # opt..hi and A(ec.lo,opt.lù) = 1: ec will be

deleted for the same reason as in case 2. See figure A.2 (b).

4.ec E EC sucb that ec.lo = optlo, ec.hi t- opt..hi and A(ec.hi,opt.lù) = 0: ec is

preserved in the compressed graph (see figure A.2 (c)). However the aflinity and
~:.

confilcts of V.do and V.c.hi need to be recalculated. This is done by traversing the

adjacencies of V.do and V••.hi in the compressed graph.

5. ec E EC such that ec.hi = optJo, ec.lo # opt..hi and A(ec.lo, opt.lù) = 0: ec will be

preserved (see figure A.2 (d)) but the aflinity and confilcts need to be recalcnlated as

in case 4.
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6. ec E E such that both ec.lo and ec.hi are different from optJo and optl\Î: E' will

be preserved and the aflinity and conflicts between V,o.Io and V",hi lIeed to be rc­

ca1culated. Figure A.3 shows that there are 16 possible cases each identifiable by

the presence or absence of edges and that the affinities and conflicts cali be ad­

justed with simple increment and decrement operations. Bascd on the values of

A(ec.lo, optJo),A(ec.lo, optlLi),A(ec.hi, optJo) and .4.(ec.ru, optlti) wruch distinguish

the cases, it is easy to build a truth table or a Karnaugh map to generate conditions

that will implement the appropriate increment and decrement operations. As it will

be demonstrated, trus observation yields a substantia1 performance gain with respect

to reca1culating the aflinity and conflicts by traversing the adjacencies of V".Io alld

Vec.hi·

The following is the a1gorithm to adjust EC:

IIReadjust EC for the compression
Ilof VoptJo and Vopt.hi

for each ec E EC do

Il Case l.
if ec.lo = optlLi V ec.hi = optlLi then

EC <- EC \ {ec}

Il Case 2.
else ifec.lo = optJo /1 A(ec.hi, optlLi) = 1 then
,EC <- EC \ {ec}

Il Case 3.
eise ifec.ru = optJo /1 A(ec.lo, optlLi) = 1 then

EC <- EC \ {ec}

Il Case 4.
elseifec.lo = optJo /1 A(ec.ru,optlLi) = 0 then

ec.aff <- 0
ec.conJh <- 0
ec.con.h1 <- 0
Il Traverse the compressed nodes
for each c E C do

if A(ec.ru, c) = 1 /1
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• (A(optJo, c) = 1 v A(opt-hi, c) = 1) then
ec.aff +- ec.aff+ 1

else if A(ec.hi, c) = 1A
(A(optJo, c) = 0 A A(opUù, c) = 0) then

ec.con..hl <- ec.con..hl +1
else if A(ec.hi, c) = 0 A

(A(optJo,c) = 1 v A(opUù,c) = 1) then
ec.conlh <- ec.conlh +1

end if
end for

/ /Case 5.
else ifec.hi = optlo A A(ec.lo, opt..hi) = 0 then

ec.aff <- 0
ec.conlh <- 0
ec.con..hl ~ 0
/ / Traverse the compressed nodes
for each cEe do

if A(ec.lo,c) = lA
(A(optJo,c) = 1 V A(opt..hi,c) = 1) then

ec.aff <- ec.aff+1
else if A(ec.lo, c) = 1 A

(A(optJo,c) = 0 AA(opt..hi,c) = 0) then
ec.conlh <- ec.conlh +1

else if A(ec.lo, c) = 0 A
(A(optJo, c) = 1 V A(opt..hi, c) = 1) then

ec.con..hl <- ec.con..hl +1
end if

end for

/ / Case 6.
else

/ /XI, X:'h X3' X4, Yb Y2 are booleans
X, <- A(ec.lo,optlo) = 1
X~ <- A(ec.lo, opt..hi) = 1
X3 <- A(ec.hi, optlo) = 1
X. <- A(ec.hi, opt..hi) = 1
Y, ~ X, A X2

Y2 +- X3 A X4

if (X2 A X3A ~ (Xl Vx.»v
(Xl Ax./\ N (X2 V X3» then
ec.aff <- ec.aff+1
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• ec.conJh ~ ec.conlh - 1
ec.conJù ~ ec.conll1 - 1

else if y, fi (~ y,) then
ec.conJh ~ ec.conlh - 1

else if (~ y,) fi y, then
ec.conJù ~ ec.con1l1 - 1

else if y, fi y, then
ec.aff <- ec.aff - 1

end if
end if

end for

A comple..xity analysis of the adjustment of IEGI follows. Clearly if one was ta ignore

the nested loops within cases 4 and 5 then the re-adjustment woilld he within the arder

of IEGI. But the nested loops must he taken into account. For that reason the attention

of the reader is shifted ta two observations. Since node Vopt.hi cannat be non-adjacent ta

more than IYI - 1 other nodes then case 1 cannot be satisfied more than IVI - 1 times

when the re-adjustment proceeds. Similarly because VoptJo can only be non-adjacent ta at

most IVI - 2 nodes different from Vopt.hi> cases 2,3,4 and 5 put together can only account

for at most IVI- 2 iterations ofthe main loop. Therefcre IVI- 2 is an upper bound on the

number of times the loops of cases 4 and 5 will be visited. Since the loops of cases 4 and 5

reqillre a traversal of the vertices and there are at most IVI vertices at any time, the tirne

spent within these loops is within the order of O(IYI'). Therefore the full re-adjustment of

the whole of IEGI is in the order of O(IEGI + IVI'). Since O:S IEGI :s !VI.(I~!-l) it follows

that the full re-adjustmentis the arder of O(IYI'). Since cases 1 to 5 can oilly be visited

~st 21Y1 - 3 times during the whole execution of the main loop it follows that most of

the ~,den will usually be carried out by case 6. Fortunately the technique used ta adjust

the ,jJ{nity and confl.icts in case 6 is within the order of 0(1), thus resulting in an efficient
\;

adjustment for the whole of EG.

A.4 Adjusting A, C, K, X

Adjusting A, G, K,X is straightforward and it can be done in the order of O(IVI):
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Before After
Compression Compression

Vec.hi Vec.hi

(a) ~ '>
T
l•

vedo =VoptJo Vopt.hi Veda =V~PtJo

veda veda

(b) ~ l•
Vec.hi = VoptJo Vopt.hi Vec.hi = V~PtJo

Vec.hi Vec.hi
• •

(c)

• • •
Veda = VoptJo Vopt.hi Vec.la = V~PtJo

Vec.Jo Vec.lo
• •

(d)

• • •
t'ec.hi = VoptJo Vopt.hi Vec.hi = V~PtJo

Figure A.2: Cases 2,3,4 and 5.
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Before Arter ElfcctCompression Compression

t'ec.lo vocr Vec.lo t'cc.hi
• • ,/ No effect•

t'optle t'opt.hi t'opelo 1

Vec.lo t'cc.hi tlcc.lo Vcc.hi ine èc.aff

l l \/ ,'\le<: ec.conJh

t'opele Vopt.hi VOlJtlo clec cc.conJl1

Vec.la Vce.hi Ve~:to Vcc.hi

~ V No effect
t'optle Vopt.hi vopt.lo

vedo vcc.hi vec.la vcc.hi

N V clec ec.conJh
voptJo Vopt.hi voptJo .--..----

vcc.lo vcc.hi vcc.lo vcc.hi

/I • ,/ dec l!:c.conJtI
vopUo Vopt.hi voptJo

Vcc.lo vec.hi vcc.lo vcc.hi

~ .. V dec l!:c.conJtI
voptJo Vopt.hi voptJo

vcc.lo vcc.hi Vcc.lo vcc.hi

><1 V '·'ace l!:c.conJtI
vontJo Vont.hi vooeJo ..

\ vcc.lo vcc.hi vcc.lo Vcc.hi

I><I V dec ec.aff
~' voptJo Vopt.hi voptJo

inc =increment dec =decrement

No effed

No effect

Effect

No effect

clec ec.conJh

Noeffect

No effect

Vec.1o Vce.hi
• •

..\.fter
Compression

Befere
Compression

.. ,.
t'optle t'opt.hi t'opdo

Veda tlee.hi Veda vee.hi

V V
t'optle Vopt.hi t'opele

ine =increment dec = decrement

Veda t'ec.hi Vec.lo Vec.hi

l : )..
t'opele t'opt..h; t'optle

Vcc.lo Vce.hi Veda:" t'cc.hi ine ec.affX V clec ec.conJh )

f-:,V"'o"'-'n.,l"'o!....,::.V"'on""''''J,'''i+,...,.'",o':'p",l;;:o'-:-:-I....:d"''''.:...;'"c,,.co:.:.;:nJt=.1....:,\
V"f><hi V'~i \

t'optle Vopt.hi t'optle

\\ ,,~~.~

I\-Figure A.3: Case 6.

c
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• Il Adjusting A,C,K,X

Il For A
for each cEe do

if A(optJù,c) = 1 then
A(optlo, c) _ 1
A(c,optlo) +- 1

end if
end for

Il For C
for each c E C do

if c '" optJù then
C - C\ {c}
break out ofloop

end if
end for

Il F.-or K f
fori\;- 1 to IVI do

if K( i) = optJù then
K(i) +- optlo .

end if
<md for

Il For X
X-X-1

A.5 Complexity of the implementation

The overview of the algoritllk is revisited and it is annotated with the complexities of the

"steps within the while loop:

Get a graph G = (V, E) to color

Initialize C,K, EC, A, X

while(EC# 0) do
O(IECI) Find the best compression VoptJo, Vopt.hi
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• O(IVI') Adjust EG for the compression
O(IVD Adjust the adjacency matrix A
o(IVD Remove opt..hi from list G
o(IVD Color nodes of opt..hi color to optJo in J(

0(1) X ;- X-1
end while

Return x, G,. J(

Clearly the step that re-adjusts \EGI at 0(1V12 ) dominates the body of the loop and

therefore one iteration can be e.:œcuted within the order of O(IVI'). Notice that the !cop

cannot have more that IVI iterations since each Iteration corresponds to a compression

and there cannot be more than IVI - X( G) compressions for a graph. Otherwise would

contradict that the chromatic number is X(G). Hence the e.,xecution of the loop is of the

order of 0(1V13
). Since the proposed initialization is of the o,'der of 0(1V12 + jEGI·IVD it

follows that the loop is the dominant factor and the WWI aIgorithms are of order 0(1V13
).

However since the maximum possible value of IEGI is IVHI~I-l) the time spent initializing

the structures can be comparable to the time spent performing aIl the compressions. Our

experiments validate this and that is why technique5improving the initialization complexity
I;~ .

are of importance. Since the. complexity of the 'aIgorithm strongly depends on IEGI, it is

apparent that the aIgorithm should perform best when [EGI is smaIlest. This in turn

implies that WWI will perform at its best when the graph has a high edge population
("­

and it will perform at its worst in a graph void of any edges. This aIso has been verifk~

experimentaIly. A final note pertains to the first two steps within the body of the loop (2.1

and 2.2). Both of these steps are elosely related as they require a traversai of EG. To save

on execution time we have folded both of these steps into a. single Iteration over EG in our

actuaI Implementation.
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Appendix B

Fundamental Node Refinement

This appendix presents a simple algorithm which refines a coloring so that the optimality

characteristic of theorem 3.1 is met. The algorithm requires a graph G =. (V, E) and a

coloring C using the set of colors S as input. It returns a refined coloring C' using the set

of colors S'. We need three specialized structures: L,R and adj..color. L(s) represents the

set of nodes assigned to color Si R(v) is a color to which vertex v can be recolored or has

value none if no such color existsi and adj"color(t) is either true or fa/se if a particuJar

vertex under study is adjacent to a node of color t. The algorithm proceeds as follows:

/ / Obtain the input
Get A graph G = (V, E),

A coloring C using the set of colors Si
/ / Copy over the coloring
C';- C
S';- S
/ / Regroup nodes with same color
for each sES do

L(s) ;- 0
end for
for each v E l' do

L(C'(v)) <- L(C'(v))U {v}
end for
/ /Recolor the nodes
for each sES do / / S, not S'

fundamentaLs <- false '
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• for each v E L(s) do
for each tES' do

adj_c%r(t) ~ fa/se
end for
adj_c%r(s) ;- true
for each w E V do

if v # w A {v, w} E E then
adj..c%r(C'(w)) ;- true

end if
end for
R(v) ;- none
for each tES' do

if adj_c%r(t) = fa/se then
R(v) +- t

end if
end for
if R(v) = none then

fundamentaLs +- true
break / / out of for loop

end if
end for
if fundamentaLs = fa/se then

for each v E L(s) do
C'(v) ;- R(v)
L(R(v)) +- L(R(v») U {v}

end for
S' +- S' \ {s} / / S' is a subset to S

end if
end for
/ / Return the result
return C',S'

It is easy to verify that· if a coloring C of a graph G = (V, E) already meets the

characteristic of optimaJity of theorem 3.1 then the refinement will be achieved in time .

complexity of order O(1V12 ). This is because the two outer loops of the recoloring code will

only traverse each vertex once while investigating the color ofits neighbors. However, if the

characteristic of optimaJity is not met then vertices will be recolored and therefore sorne

nodes might be traversed more than once. For the algorithm to remain of order O(1V1 2
)

for al! input instances the following rule must be imposed:
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• Loops which traverse the elements of S' must do sa in the same arder in which the

elements appear in the loop over S.

This guarantees that a node will never be visited more than twice. A node v of color s,

will be visited twice if it is recolored ta color s, when s, precedes s, in the arder that the

elements of Sare traversed. If, whe'! the vertices of color s, are visited, vertex v needs ta

be recolored once more, then it can only be ta a color S3 which precedes s, in the ordering.

This is because the loop which assigned R(v) ta S2 in the first recoloring ensured that s,

was the highest possible color ta which v was not adjacent (under the condition that the

elements of S' were traversed in the same arder as they appear in the loop which traverses

S). Therefore v is adjacent ta a1l colors beyond s, and it must be reassigned ta a color

prior ta s, of if it is ta be recolored. Hence, v can only be visited twice and the aigorithm

is O( IVI') for a1l input instances. The ordering constraint implies the most natural way

in which to implement the algorithm but it is important that it be specified otherwise the

aigorithm wonld be of arder O(IVI3
). The worst case occurs when a graph with no edges

is presented with a different color for each node. In that particular case a1l nodes but one

will be visited twice. Fina1ly, ta color a graph from scratch simply provide a coloring with

each node a different color.

140



Appendix C

Colored Path Refinement

This appendix presents an algorithm which ensures that a graph has a colored path wlùch

traverses the colors of a coloring in the precise order of a color permutation prescribed

to it. Three arguments are expected as input: a graph G = (V, E), a coloring C and a

permutation II ofthe colors in C. And two outputs are produced: a new coloring C' and an

integer X which represents the number of colors in Cf. C'is guaranteed to have a colored

path which traverses the colors in the order of II and it will use fewer colors than C if the

latter does not have such a path to start with. Otherwise C' will require the same number

of colors as C.

Only one specialized structure is used by the algorithm and that is structure L which is

used to represent the colored stratification .c(G, C, II). Each L(s) represents the nodes of a

specifie stratum, i.e. al! the nodes which share color s in the set of colors S. The following

is the algorithm in its entirety:

/ / Obtain the input
Get A graph G = (V,E),

A coloring C uslng the set of colors S,
A color ordering II = (11"11 11"2, ••• ,11"151);

/ / Initialize number of colors
X+- \S\+ 1
/ / Regroup the nodes of Saffie color in C
for each sES do
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L(s) ~ 0
end for
for each v E V do

L(C(v)) .... L(C(v))u{v}
end for
/ / Create the path by altering the coloring
do

X""X-l
for i = 2 ta X do

for each v E L(rri) do
lower_v .... true
for each w E L(rr;_l) do

if{v,w} E E then
lower_v .... false

end if
end for
if lower_v = true then

L(rr;) .... L(rr;) \ {v}
L(rr;_l) .... L(rri_l) U{v}

end if
end for

end for
while (L(rrx ) = 0)
/ / Create the new coloring C'
for i = 1 ta X do

for each v E L(1I";) do
C'(v) .... 11";

end for
end for
/ / Return the result
return C', X

Each iteration of the do-while l~op removes one folor off the original coloring (the

highest ranke4.?10r in II which remalns). The iterations terminate when the graph has a

colored path in the order of the colors of lI. The triply nested loop for loop traverses the

stratification (L) in a manner similar to that of the proof of theorem 4.3. The outermost
"for loop traverses the strata one by one starting from the 2nd lowest to the highest ranked
~ -

stratum. The middle loop traverses each vertex of a particular stratum while the innermost

loop verifies that it is not adjacent to any vertices of the stratum below. If sucb is the case

142



•

•

then the vertex is automatically recolored to the color of the stratum below.

Although that would be sufficient, the 31gorithm does not limit itself to recoloring

nodes which stem a longest colored path to the highest ranked color. Instead, it proceeds

by changing the color of ail nodes which are not adjacent to nodes of the previous stratum.

By doing 50, nodes stemming the longest colored path will be included in the recolored

nodes and the 31gorithm remains simple and efficient.

For each iteration of the do loop each vertex will be traversed once and the nodes on the

strata below will be examined for adjacencies. Therefore the 31gorithm is of the comple.Xity

G(1Y1 2
) for each color it removes.

C.I Greedy Algorithm

The greedy 31gorithm (as described in section 2.5.1) and the sequenti31 31gorithm [Gibb85]

both share a property with respect to colored paths. If they produce a coloring using the

range of colors from 1 to k then it is certain that they will return a coloring which has

a colored path on the color permutation II = (1,2, ... ,k). This is because the coloring

mechanisms of the 31gorithms attribute color j to a node if and only if it is adjacent.

to at least one from each color in 1 to j - 1. Therefore if one selects a node of color

k then it must be adjacent to at least one node of color k - 1 which in turn must be

adjacent to one node of color k - 2 and 50 on until color 1 is reachedj thus forming a

colored path over the permutation II = (1,2, , k) of colors. Hence it is pointless to run a

refinement over the permutation II = (1,2, , k) if the graph is originally colored with the

greedy 31gorithm. Interestingly, by theorem 4.4 this 31so implies that the greedy 31gorithm

will 31ways result in a coloring which is a 10c31 minimum of its feasible region. But the

emplacement of that feasible region can be. quite undesirable. Given the poor efficiency of

the greedy 31gorithm [BrBr87] it is best to avoid the greedy heuristic to initially color a

graph if possible.

However the greedy heuristic can be used as a refinement to ensure that a colored path .

does indeed eXist for a particular graph coloring and a permutation of its colors. And as.
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• with the previous algorithm if the path does not exist then the coloring returned by the

greedy refinement is certain to require fewer celors. Our constructive proof of this resembles

that of theorem 4.3 and relies on the properties of the greedy algorithm. The proof given

in theorem 4.3 was preferred since it constructs a coloring in the same feasible region as

the original coloring of our programming formulation and that was needed for the proof

of the subsequent resnlt which characterizes the local miuima (theorem 4.4). The greedy

refinement is very likely to produce a coloring in another feasible region.

To use greedy heuristic as a refinement on a coloring C and a coloring permutation

n'= (11"1> 11"2,' •• ,11".) it suffices modify the algorithm in section 2.5.1 so that the nodes are

traversed in the order of their colors in the permutation: nodes of coler 11"1 first, then 11"2, ••• ,

and finally 11". (no importance needs to be attached on the order amongst nodes ofthe same

color). The colors must be traversed in the order of the permutation as weil. This results

in an D(1Y1 2 ) refinement regardless of the number of colors removed by the algorithm.

However the greedy refinement traverses the adjacencies of ail colors for each vertex unlike

the previous algorithm which only concerns itself with the nodes of the color strata below

it.

::::
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