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Abstract

The problem of vertex coloring holds an important place in engineering as it models situa-

tions in which a number of shared resources must be minimized and distributed across the

_ sub-components of a system. The objective is to ensure 2 valid and cost effective implemen-
tation of the overall system. The problem surfaces in a great number of applications, many

' . of which fall within the area of d.lgltgll systems design. However, despite its wide range

‘ - -
of applications, vertex[coloring remains one of the most complex optimization problems

known and to this day no efficient method has been shown to provide optimal answers in
all msta.nces of the general case. : ‘ )

This dissertation e};plores cha.ractéristics of optimality of vertex?_col:c:rings, bounds on the
chromatic number a.nd: coloring heurfstics The first few characteristics are based around
the fundamental and res:dua.l nodes of an optimal coloring. An ex a.uuna.tlon of the subset
of furdamental nodes Wl]l reveal necessa.ry subgraph properties for a.n optimal coloring and
its graph; one of which is based on hempe chains. In turn, this h.a,ds to a bound relating

the chromatic number and the number of odd cycles in a graph.

Subsequently, a ccmtmuous varla_.ble formulation of the vertex cdloring problem is pre-

f !
sented along with an ;jmalysis of its solution space. The characterization of the space illus-
trates the problem’s cr;)mplexity a.ndf the nature of its local minima relates to the Gallai-Roy

theorem. The results given will have algorithmic significance since their proofs are construc-
; ‘ .

tive. | ,'
|

The WWI pair of vertex colormg heuristics is then disclosed. The algorithms are based

I
on successive compressmns of pairs of non-adjacent nodes each reduung the problem in-
I

'
I
]
|
]
i
]



stance by one node until a complete graph is obtained. The criteria for selecting pairs of
nodes concentrate on the affinity and conflict values calculated from structural properties
of the graphs. The heuristics are justified by upper bounds on the chromatic number and
approximation arguments. It is demonstrated that some compressions preserve the chro-
matic number or the maximal clique size of a graph, thus resulting into some identifiably
optimal selections by the algorithms. Ultimately, this leads to the characterization of a
class of perfect graphs. Finally, a set of benchmarks for the WWI algorithms on random
graphs and k-colorable random graphs is given and favorable comparisons are offered with

existing algorithms.

“



Résumé

La coloration des graphes joue un role important en ingénierie car elle représente les
situations ol une quantité minimale de ressources similaires doit étre allouée aux sous-
composantes d’un systéme. L’objectif est d’assurer un faible cofit total au sysi;éme. Une
multitude de problémes est directement reliée a la coloration, dont plusieurs se sftuent dans
la conception des systémes digitam;. Cependant, malgré la grande variété d’applications
pratiqueé et 'attention particuliere que le probleme a regu au cours des ans, la coloration
des graphes demeure un des problémes les plus complexes de la recherche opérationnelle et

' pour lequel il n’existe toujours pas de méthode de résolution optimale qui soit efficace.

Cette these étudie la coloration par le biais des caractéristiques d’une coloration op-
timale, des bornes sur P'index chromatique d’un graphe et d’heuristiques. Les premiéres
caractéristiques examinées se rattachent aux sommets fondamentaux et résiiduels d_’uné

_coloration. L'analyse du sous-ensemble des sommets fondamentaux identifie pl,‘usieurs.pro-
priétés structurelles nécessaires 3 une coloration optimale, dont I'une est basée sur les
chaines de Kempe. Cette dernitre observation méne 3 une borne reliant 1"index chroma-

tique et le nombre de circuits impairs d’un graphe.

S_ubséquem:ﬁent, le probléme de coloration des graphes est formulé et analysé sur un es-
pace continu. La caractérisation de 'espace des solutions illustre la complexité du probléme
avec I’appui d'un résultat qui établit un lien entre les minimums locaux et le théoréme de
Gallai et Roy. Les résultats présentés ont des implications algorithmiques étant donné la

nature constructive de leurs preuves.

Pour terminer, une paire d’heuristiques de coloration est dévoilée. Les algorithmes

i



procédent par la compression successive de sommets non-adjacents jusqu’a ce qu'un graphe
complet soit obtenu. Les principes de compressions sont fondeés sur les propriétés struc-
turelles d’affinité et de conflit d’un graphe. Des arguments d’approximation ainsi que des
bornes sur l'index chromatique servent 3 justifier les décisions heuristiques. En ocutre, il
est démontré que certaines compressions préserv ot l'index chromatique ou la clique max-
imale d’un graphe tout en permettant une réduction optimale du probleme. Cect meéne
3 la caractérisation d’un ordre de graphes parfaits. Finalement, une batterie de tests sur
des graphes alléatoires sert de comparaison favorable entre les algorithmes présentés et des

algorithmes provenant d’autres sources.
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Claim of originality

The core of the original work is located in chapters 3 , 4 , 5 and appendices A , B, C.
Chapter 2’s contribution is to provide a classification of compression algorithms on the

properties of order, adaptability and localization.

o Chapter 3 introduces the concept of fundamental nodes on which the main contribu-
tions are theorem 3.2, corollary 3.4 and the algorithm of appendix B. Theorem 3.2 is
a necessary characteristic of optima.l vertex colorings identifying structural properties
of graphs and their colorings. Corollary 3.4 is a cubic bound relating the chromatic
number and the number of odd cycles in a graph. This bound has further consequences
in the heuristic designs of chapter 5. The proofs of the characteristics of optimality in
chapter 3 are constructive and can be used as refinements for sub-optimal colorings.

Appendix B provides such an algorithm for a refinement on fundamental nodes in
O(IV]?). |

» The theoretical content of chapter 4 is original with exception to theorem 4.3 and
corollary 4.2 which can be demonstrated as consequences of the known Gallai-Roy the-
orem (theorem 2.3). The chapter begins with a transformation of the vertex coloring
problem into a continuous variable mathematical formulation (theorems 4.1 and 4.2).
Observations are then made on the nature of the solution space {corollary 4.1, propo-
sitions 4.1 and 4.2, a.nd corollary 4.3). The introduction of colored stratifications led
to a new and constructive proof to the necessary charateristic of optimality of theo-

rem 4.3. In turn this proof led to.the refinement algorithm of appendix C. Finally

i vii



theorem 4.4 fully characterizes the local minima of the coutinuous variable represen-

tation and it relates them to the Gallai-Rov theorem.

Chapter 5 concerns two new vertex coloring heuristics: WWI on affinities and WWlon
conflicts. The implementation described in appendix A provides a mechanism which
permits the algorithms to operate one order of magnitude faster (in the number of
ﬂ'ertices) than other algorithms bascd on similar metrics. The use of the chromatic
number preserving cofnpressions of theorem 5.2 and the approximation of a second
order criterion via propositions 5.3 and 5.4 is also novel. The theoretical conséquences
of the algorithms are new results as well: theorems 5.3 and 5.4, and the algorithmically

identifiable perfect graphs of section 5.6.
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Chapter 1

Introduction

From 2 fundamental standpoint the goal of the engineering process is to seek solutions
to practical problems and subsequently apply them. Quite often there is more than one
solution offering itself to a given problem and the process also entails finding the best
possible one given a determined set of criteria. In that respect the engineering process
is directly comparable to 2 mathematical optimization process for which the goal is to
determine the best possible solution given objectives and constraints. Due to the wide
spectrum of engineering problems, the complexity of the optimization models that underlie
engineering varies greatly. Some problems have simple and elegant solutions whereas others
elude us entirely due to their complexity. Furthermore, the very nature of the complexity

is jtself a variant from problem to problem.

Particular problems are difficult because their criteria and ob jectives' are nebulous and
intangible. For such problems precise or quantitative mathematical formulations are dif-
ficult if not impossible. Some examples of such engineering problems are software quality
metrics problems [Glas92] or the slew of problems that fuzzy logic or neural networks have
attempted to address [Wels94]. These cases correspond to the optimization problems for
which it is hard to generate a model of abstraction or to prioritize the multiple objectives

and criteria imposed.’ And hence they are problems of high modeling complexity.

But there are also a great number of highly complex engineering problems for which



there are clear, precise and even concise mathematical formulations. Their complexity
arises because there are no known methods to compute their optimal solutions efficiently
within a limited set of resources. These are the problems of high computational complexity.
Some of the problems within this category deal with infinite solution spaces from which it is
sometimes difficult to generate 2 solution let alone determine whether a solution encountered
is indeed an optimal one. For example the many questions of systems theory which lead to

non-linear formulations on continuous variable representations [PaWig§].

But one does not need to go to such extremes to find problems for which no compu-
tationally efficient methods are known. For example, several problems of combinatorial
nature have finite solution spaces on which optimal solutions can be found within finite
time and resources [GaJo79, Gibb85]). However "they still fall within the computationally
complex category because of the sheer magnitude of their solution spaces and the inefficient
methods we have to prune them. It is the prohibitive amount of resources (often the time
resource) demanded by current tools which renders impractical the goal of a guaranteed op-
timal solution. The core of this work will concentrate on such a problem which has several
practical occurrences in engineering,” namely the vertex coloring of graphs. This specific
problem is of importance since an adequate solution method, even if sub-optimal, has an

impact on a very broad class of practical problems [GaJd?Q].

It is important to point out that the categorization of complexity into modeling com-
plexity and computational complexity used herein is not a formal classification but rather
a descriptive tool to highlight the two principal sources of difficulty found in practical
optimization. Nor are the two categories mutually exclusive as: some tenacious problems

confront us with both the modeling and computational difficulties.

1.1 Focusing on Digital System Synthesis

In order to bring the pofﬁts of the previous section to a further depth, the scope is now
reduced to the particular optimization issues found in the synthesis of digital systems. Over

the last few decades computer automation has become a ﬁecessity' for the design of digital



systems. This is a direct result of the explosion in size of digital systems and the shortened
time cycles alloted for their production [Sher93]. Automation tools have seen their level of
abstraction steadily augment to meet the increasing demands of designers. The Y-diagram
of figure 1.1 first introduced by Gajski and Kuhn [GaKu83]} is a succinct depiction of the
levels of abstraction which have appeared over the years. The extent of an abstraction is
established from the distance of its corresponding ring to the center of the chart. At the
lower levels of abstractions, such as the circuit or logic levels, one must go through the
tedium and detail of transistors, differential equations, boolean equations, logic gates and
polygons of materials to produce a circuit. At a higher level such as the algorithmic one
it ideally suffices to produce an algorithmic description of a design to automatically churn
out a circuit corresponding to it. And therefore, the use of higher levels of abstraction has
the effect of shortening and simplifying the design cycle as one does not have to dedi;a.te

as much time to details as opposed to concepts [MiLD92)].

System Level

Behavioral . _ Structural
Domain S0 JERETET Domain

System Specs

Atgor'}mms c13_u, Memory

Reglster ’1\-ar|sfer Specs

Tranststors §

= Polygon Groups

.......... Stindard Cens/Subceu i

"""""""
.................

Physical Domain

~ Figure 1.17Y-chart illustrating the levels of abstraction in digital design automation
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However the introduction of several layers of abstraction has generated several problems
of high modeling complexity within the field of digital synthesis, especially at the higher
levels of abstractions. As well, the discrete structure of digital systems leads to many integer
optimization and combinatorial problems of great computational complexity (although at
the lowest levels there are many problems of a continuous variable since many models ate
based on classical physics). As a consequence, one of the main factors impeding the progress
of digital design automation is the need for advancement in optimization techniques, In
fact, if one foregoes the satisfaction of constraints and optimization criteria associated with
the general problems of digital synthesis then relatively simple mechanisms exist to derive a
physical circuit from a system’s description in a high level language such as VHDL [Perr91,
Merm92, GDWL92]. Much of the difficulty arises in the fulfiliment of constraints and

optimization methods.

1.1.1 Modeling Complexity

In high level synthesis, the issues surrounding modeling complexity are numerous. The op-
timization process deals with intangible constraints such as reusability, modularity, upgrad-
ability of designs [GDWL92, MiLD92] and thus it becomes tentative to model such objec-

tives on automation tools based on computational platforms. Other objectives such as

‘design testability and verifiability are also hard to quaﬁtify unless restricted to specific sets

of faults and assumptions [MiLD92, GhDN92].

Furthermore, there is also the multi-objective nature of the problefns encountered. QOp-
timal values are simultaneously desired for multiple dimensions such as monetary cost,
silicon area and timiﬁg [KuDe92, GDWL92]. This poses difficult modeling problems as
there is no complete mathematical methodology to deal with multiple objectives. One of
the widely used methods to t1'-eat multi-objectives is akin to lexicographical optimization
techniques [Zlob78] in which the objectives are prioritized and a sequence of optimizations
is conducted on each objective. Such is the case with the sequencing approach to partition-
ing, allocation and scheduling found in many high-level synthesjs‘tools\[KuDeQ?, GDWL92,
THKRS3]. Another approach employed transforms ‘the multiple ob jectivés into a single



objective through a weighted cost function on the original objectives. Many examples of
this can be found in the clustering algorithms of high-level synthesis [MiLD92, LaTh89].
As well there exists other multicriteria techniques such as Pareto optimization [Pal896]
which have yet to be explored iﬁ digital synthesis. Unfortunately the point of contention
with these techniques is that they may very well bypass significant portions of the solution
regions. The selection of a satisfactory model becomes a laborious task as different methods
generate solutions often differing in optimality. Although prevalent in high level synthesis,
multi-criteria problems occur at all levels of abstraction of digital synthesis and present the
same difficulties. At the lower level it is the tradeoff between area and timing which is most

evident.

There are other elements of modeling complexity as well. For example the design
representations made available to the designer restrict the possible forms of expressions
of a design and impose further constraints on the solution space [GDWL92, KuDe92].
Similar drawbacks exist with the internal representations selected for synth;esis computa-
tions [GDWL92, MiLD92]. Overall, these combined factors contribute to render digital

design automation rich in model complexity issues.

1.1.2 Computational Complexity

As well, digital synthesis is certainly not exempt of computationally complex problems.
As previously stated, the discrete structure of digital systems produces several integer and
mixed integer optimiza.tion_ problems; many of which fall within the classes of NP complete
or NP hard problems [Gaio79]. To name a few, the general formulations of wire routing,
logic minimization, scheduling, allocation, finite state minimization, partitioning, bind-
ing [ASDN92, MiLD92, Sher03, GDWL92] all contain NP hard or NP complete problems and
they span across all levels of abstraction in synthesis. In fact most optimization problems
of synthesis [Sher93] are NP hard or NP complete and quite a few directly translate to inte-
ger linear programs [NéWoSS] or well known graph theoretical problems such as maximum
clique, vertex coloring, steiner tree problem, and hamiltonian circuit [GaJo79, Gibb85]. As

with all NP type problems, this implies that there are no known algorithms which provably



solve them optimally within polynomial time of the instance sizes. And nor do we know if
such algorithms do exist. However, aigorithms of exponential time complexity can be used
to generate optimal answers, Unfortunately, they become much too slow as input instances
grow in size and thus alternative methods must be found ior the larger cases that occur in

practice.

Several algorithmic techniques are used to address the synthesis problems for which no
optimal polynomial time algorithms are known. One approach consists in finding poly-
nomial time approximation algorithms which guarantee solutions within bounds of the
optimal solutions [Sher93]. Another is to use polynomial time heuristics shown to be effec-
tive through benchmarking and theoretical justifications but which are without guarantees

of optimality. The heuristic approach is by far the most common one used in synthesis.

There also exist special case algorithms which concentrate on subspaces of the prob-
lems for which optimal polynomial timelsolution generétors are known. For instance,
there are many types df perfect graphs which have polynomial time solutions to prob-
lems otherwise NP complete in the most general case [Golu80]. Although there are some
synthesis problems which are alwiys guaranteed to generate instances within these special
cases [HaSt71, Gavr72, KuPa87], these problems are the rare exceptions. In most situations
where specialized algorithms are uéed, the original problems cannot be directly associated
with special cases. Instead the constructs are artificially modified and constraints added
so that the problem instances generated meet the requirements of an optimally solvable
special case. For example, most of the Olympus synthesis system [KuDe92) operates under
that principle. However, due to the additional constraints introduced, the optimal answers
to the modified problems may very well be suboptimal answers to the original problems.
Therefore the method compares to heuristics as it provides no guarantee of optimality. In
fact, many heuristics are designed by extending the methods which-dé.re provably correct for

special cases [Sher93].

Advances in integer linear programming (ILP) methods {NeWo88] have made it prac-
tical to utilize integer programming tools to solve limited size synthesis problems opti-

mally [GeEl90]. Although these new methods remain exponential in the worst case, they
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do operate sufficiently fast on small but significant cases. Finally, probabilistic algorithms
such as simulated annealing [PFTV88] and simulated evolution [Sher83] have been wused
on a number of complex synthesis problems. They do provide quality answers for prob-
lems such as partitioning or scheduling but their excessive run time often renders them
impractical [GDWL92].

1.2 Vertex Coloring

Given the importance of optimization in the field of synthesis it is imperative that the topic
occupies a significant part of the synthesis research areas. However, undertaking work
which tackles all of the aforementioned issues at once would be overwhelming. Instead
much of the synthesis research concentrates on specific optimization problems for which the
objectives are less broad but more tangible. Such is the case with this dissertation which
concentrates its effort on the combinatorial prdblem of vertex coloring. The problem is
of importance'since it has several occurrences in the digital systems synthesis area and it
belongs to the NP-complefe class of problems. It is one of the most persistent problems
even amongst the NP-complete problems as it falls within a group for which there are no
likely satisfactory approximation algorithms [LuYa94]. Yet sub-optimal solutions translate
direy‘.ﬂj} into digital systems of larger area, poorer perfofmaane, and higher cost. Therefore,
there are imminent needs for finding better heuristics and further understanding of the
problem. Two specific instances of vertex coloring are now used to exemplify synthesis
applications in which the probiem is found.

1.2.1 Channel Routing Example

One of the first synthesis applications involving vertex coloring was channel routing [HaSt71].
As an abstract example consider the printed circuit board (PCB) of figure 1.2. The board
consists of 3 rows of 4 integrated circuits which must be interconnected. Vertical wires are
made to run on one side of the board and the horizontal wires on the opposite. Junctions

between horizontal and vertical wires are achieved by contacts (vias) drilled into the board.



Between each row of circuits there are horizontal spaces in which five wire channels can run
in parallel. The same applies for vertical spaces between circuit columns. Each channel can
be made to run several disconnected wire segment as long as they occupy disjoint regions

of the channel.

At first, an algorithm attempting to minimize connection distances is used to decide
the general path of connections by determining which horizontal and vertical spaces the
wires will run through. For example the eight interconnection paths shown on figure 1.3

are desired for a single PCB.

Vertical Space
-

Horizontal I ——

- Space —_—

channels

]

Figure 1.2: A PCB board to route

Once the general paths are determined, channel assignment foliows. For each horizontal
and vertical space on the board the wire segments running through it are extracted. The
goal of channel routing is to minimize the number of channels needed to run all the wire
segments failing within a given space, Returning to figure 1.3 consider the eight wire
segments labeled A through H located on the horizontal space between the first and second
row of circuits. The wire segments E and H can run on the same channel as they occupy
different sectors of the space. However A and E cannot share a common channel as they

both run through a common part of the horizontal space. A table indicating whether or

o
¥

5

b
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(c) (4)

Figure 1.3: Set of wires to channel route




not each pair of wire segments can share a channel is easily produced. From this table a
conflict graph is generated. Each node of the graph represents a given wire segment and
each edge denotes that two segments cannot share a common wire channel. The conflict
. graph for the horizontal space between first row and second row of circuits in figure 1.3

is given in figure 1.4. The ensuing task consists of labeling the nodes of the graph (wire

Figure 1.4: Conflict graph for wire segments

segments) with the fewest possible labels (channel numbers) so that no two adjacent nodes
carry the same identifier (no short circuits). In this particular case the minimal number
of labels is four and a possible solution is to label A,B with 1; E,F,H with 2; G,D with 3;
and finally C with 4. The resulting channel routing is shown on figure 1.5. The exercise
of labeling the nodes of the graph with the fewest possible labels is equivalent to that of

vertex coloring.

1.2.2 Register Allocation

Register allocation is the task of minimizing the number of register elements needed to
implement a given set of computations. The immediate gain in finding optimal solutions

is to use the least possible silicon area in the case of digital synthesis [MiLD92], or im-
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Figure 1.5: A channel routing

proved efficiency in the case of compiled softwé.re [CACCS81, AhSUS86] as more variables are
stored into CPU registers as opposed to slower sforage. Consider the sequence of instrue-
tions shown on figure 1.6 (a) with v, va, vy, vs, v10 a5 input variables and v;,v, as output
variables [GDWL92]. Assume the dataflow graph for the hardware schedule is shown in
figure 1.6 (b). The dashed lines delimit clock periods within which several operations may
Tun in. parallel if they are not interdependent on their values. At each period the registers
are read for input and then written to once the results are computed. Each operation
outcome is associated with the variable below its operation circle. The line segments of
figure 1.6 (c) show the useful lifetimes of the variables; the times at which variables convey
desired information. Two variables which are not simult'élhéously live during any time seg-
ment may share the same register. Such is the case for vg and v for example. However two
variables which are both live at any given moment must be stored into distinct registers.
For example v, and v are in conflict. Extending this idea, a conflict graph is built by
letting nodes represent variables and edges pairs of variables which overlap in time. In
the example of figure 1.6 the conflict graph is shown in (d). The minimization task in-
volves labeling the nodes with the fewest labels possible such that no two adjacent nodes
get the same identifier. Nodes sharing a label are then made to share a register. For the
graph of figure 1.6 (d) at least five labels are required and one possible labeling is v;,vs
with 1; va, vg, %y, with 25 24, vs with 3; vg, vr with 4; and vs,v10 With 5. Once again this

minimization exercise is equivalent to vertex coloring.

11
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input vy, v2, vy, Vs, Y10

vz = U1 + V2
Vs = U3 X Vs
Ur = U3 — V4

Ug = U3+ U5 -

Vg = v + Ur

P11 = V0 + Vs

v = ¥s + V11
Vg = Ug == Vo

return vy, v

Vs

L501

th Yy Uz Vs Us Vg U7 Vg Vg o Unl
N A PO AU -

Figure 1.6: Register allocation example
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1.2.3 Other problems related to vertex coloring

In addition to the examples given in the previous sections vertex coloring has other oc-
currences in digital synthesis. Functional units such as adders, multipliers, or any other
combinatorial function can be allocated by reformulating the problem to vertex color-
ing [GDWL92]. As well interconnection unit allocation (buses and multiplexers) can be
reduced to vertex coloring [TsSi86]. Scheduling problems involving mutually exclusive
events also reduce to vertex coloring. All of the aforemertioned problems exemplify the

great importance of the vertex coloring in the digital synthesis framework.

But vertex coloring does not limit itself to synthesis. It models optimization and oper-
ations research problems in which the resources utilized by a system must be brought to a
minimal number. Colors, each representing a resource, are distributed zcross the parts of
the system so that the system’s functional objective is achieved. Different parts may share
a resource to reach their respective subgoal; however there are constraints guided by phys-
ical impossibility that prohibit some parts from sharing a common resource. Finding the
minimal number of resources which satisfies both the constraints and the parts composing
the system consists of the vertex coloring problem. The nature of the systems modeled by
vertex coloring varies greatly: from map coloring [Berg73] to class scheduling [Gibb85] with
our attention particularly set on the occurrences in digital systems design. And so does the

meaning of the colors vary greatly: from time units to materials.

1.3 A Brief Dissertation outline

Now that the practical importance of the vertex coloring problem has been stressed, the
rema.ixﬁng chapters of this dissertation will concentrate on the specifics of vertex coloring.
At first a theoretical study of the problem will be presented followed by practical heuristics
resting on the theory. Chapter 2 will introduce basic definitions and some work related
to the theoretical and practical elements of subsequent chapters. Chapter 3 delves into
necessary characteristics of optimal colorings. Chapter 4 will provide a structural analysis

of the solution space and highlight its complexity. Finally, chapter 5 and the appendices are

13



dedicated to vertex coloring heuristics based upon the theoretical work of previous chapters.
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Chapter 2
Defining Vertex Coloring

The probIem of vertex coloring is not a recent one and it has been extensively studied
over the last sesquicentenary [BiLW786]. The collection of published works on the subject
represents an immense library and it would be futile to attempt a complete overview within
this dissertation. Instead the overview presented within this chapter will concentrate on
results directly relevant to the core of the subsequent work. For compendia of results on

vertex coloring the reader is referred to.[Lova'?Q, Berg73, GrWaT77, Tome85, Golu80].

2.1 Definitions

This section presents definitions and examples which have direct bearing on the work pre-
sented thereafter. For the remainder, the graph theoretical notation and terminology fol-
lowed can be found in [Gibb85, Bigg85]. Simple, finite, undirected graphs are dealt with
throughout. There will be other definitions introduced in upcoming chapters but they wil

pertain specifically to the sections which contain them.

‘Definition 2.1 (Vertex Coloring Problem) Given an undirected graph G = (V, E) with
vertices

V = {v,vs... ,vﬂ}
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and the edges defined on pairs of adjacent verlices
E C {ex = {v, 05} | vy v 3 v}
a veriex coloring C is a mapping from the vertices to a subset S of natural numbers
C:Vw~—» SCN
which must satisfy the following condition:
{vi,9;} € E = C(w) # C(y;)
Hence if two vertices are adjacent then they cannot be assigned the same integer.
As a pictorial aid, the integers in S are often directly associated with distinct colors of the
visible spectrum. This is where the problem derives its name from. Figures 2.1 and 2.2

show graphs and their respective colorings; the vertices being represented by nodes, the

edges by line segments and the colors being associated with nodes.

111 Green v

Yellow

Green

Red

Vg

5 V4
Yellow Blue

Figure 2.1: A graph and a coloring

Definition 2.2 (Optimal Vertex Coloring) For a graph G = (V, EY as given in defini-
tion 2.1, an optimal vertexr coloring C is one which minimizes the cardinality of 5:
min |5}
such that
C:V~— S§CN
A
Clu) #C(v;) Vd{wv} € E
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Figure 2.2: Another graph and its coloring

Note that there may be several vertex colorings which are optimal for a given graph. How-
ever there is only one possible optimal value to the minimum |§| (the minimum number of

colors).

Definition 2.3 (Chromatic Number) For a graph G= (V, E) as given in definitions 2.1
and 2.2, the optimal value of |S| is called the chromatic number x(G).

The graph of figure 2.1 is optimally colored since vertices vy, v4,v5, v are fully intercon-
nected and form a complete subgraph; therefore they each must have a different color. The

chromatic number is 4 for this particular graph.

7,_/—' ,

\‘\ "/’1./" .
Definition 2.4 (Degree) The degree d(v) of-c-.:z?ett,egév_:f:i*?rdhﬁﬂé{of vertices which are
adjacent to it. The mazimum degree A(G) of a graph G = (V, E) is the mazimum of all

vertez degrees in the graph: A(G) = max, cv d(v;).

Definition 2.5 (Edge Complement E°) Given a graph G = (V, E) as in definition 2.1,

the set E° is called the edge complement and is defined as follows:
Ee = {('U,-,‘Uj) € Vx Vl {1},',0_,-} ¢ .E}

Note that E° consists of ordered pairs whereas E does not. For example both (»;,vs) and-
{vs,1n) € E°for the graph of figure 2.1. This property will simplify upcoming definitions,
especially that of conflict.
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Definition 2.6 (Affinity) The affinity o of ¢ graph G = (V, E) is a mapping from the

edge complement to the netural numbers:
a: B — N
such that:
a(vi,v) =

|{’Uk 3 V! {'U,‘,'Uk} € E A {’Uj,'Uk} S E}l

In other words, the affinity between two vertices v; and v; is the number of vertices which
are adjacent to both. Note the symmetry: a(v,v;)} = a(v;,w). In figure 2.1, o(v,,2) =

a(vs, 1) = 1.

Definition 2.7 (Conflict) The conflict v of a graph G = (V, E) is a mapping from the

edge complement to the natural numbers:
v Ef = N

such that:
7(1)1'1 UJ') =

o € V| {tu} € E A {v,0} ¢ E}

So, the conflict between two vertices v; and v; is the number of vertices which are adjacent

to v; but not to v;. In figure 2.1 4(v1,v3) = 2 and 7(va,v1) = 1.

Definition 2.8 (Compression Transformation) Suppose an undirected graph G = (V, E)
which is not complete. Then consider a graph G' = (V', E') oblained by removing any two
non adjacent vertices v; and v; in G and replacing them with a single vertex v; ; connecied
to all the adjacencies of v; and v;. Graph G' has one less verler and it is said lo be oblained
from a compression of vertices v; and v; on G to a vertez v;; in G’ In the new graph G'

we have:

V= (V\ {v, 051U {vi 3}
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and
E' = { {Uﬁvﬂ',j} [ 3{”:1 'U:'} €EEV {”cavj} € E }U

(E\ {{vas v} € El(va = i) V (v = v;)})

The compression is denoted as

(G 10,05 G 1 o)

We notice that in the literature a compression is also known as a contraction-connection [Berg73].
It is different from an elementary contraction or a contraction [Berg73] [Gibb83]. Figure 2.3
shows a compression of vertices v, and vs of the graph in figure 2.1. Compressions are in-

strumental in the design of some vertex coloring algorithms.

v1,3 U2

Vs .
U5 V4

Figure 2.3: A compression of vertices v; and v; in figure 2.1

Definition 2.9 (Clique) A cligue of a graph G = (V, E) is a subset of the vertices W =
{wi,wa, ..., wx} CV such thatV w;,w; € W 3 {w;,w;} € E. W has k elements then

it 1s said to be a k-clique.

Definition 2.10 {Clique number) The cligue number of ¢ graph G = (V,E) is the
mazimum size of all cliques in G. Let W be the set of all cligues in G and let w(G) be the

symbolic representation for the mazimal clique number. Then:

G)= W,
w(G) p?..leaffvl I
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Definition 2.11 (Perfect Graph) A graph is perfect if and only if the chromatic num-
ber of the graph x{G) is equal to its cligue number w(G): X(G) = w(G).

Definition 2.12 (Path) A path is a sequence of vertices (v1,vo,...,v,) such that con-
secutive vertices are adfacent and all vertices are distinct. If p is even then it is an even

path, otherwise it is an odd path.

Definition 2.13 (Cycle) A cycle is a sequence of vertices (vy,va,. » Uds Ugpr ) Such that
consecutive vertices are adjacent and all vertices are distinct except for vy = vyy,. If d is
even then it is coined an even cycle, otherwise it is an odd cycle. d is the length of the
cycle and if d = 3 then we also refer fo the cycle as a triangle. A cycle is sometimes called

¢ circuit.

Figure 2.1 depicts a perfect graph since the chromatic number is 4 and {»,,v4,v5, vs} form

a clique of size 4. On the same graph, (v,, vs, vs, v4, v1) forms an even cycle of length 4.

Definition 2.14 (Orientation) An orientation of en undirected graﬁh G =(V,E)is
the transformation of each of ils edges into an ordered pair called a directed edge. Under
an orientation each {v,, v} € E becomes one of (va, 1) or (vs,v,) and thus there are 27!
possible orientalions to a graph. Given an orientation, ¢ directed path is a path in which

pairs of successive nodes are directed edges of the orientation.

Definition 2.14 will be of use when discussing the forthcoming Gallai-Roy theorem and

related results.

2.2 Algorithmic Complexity s

As demonstrated in [GaJo79] the vertex coloring problem belongs to the NP-complete class
where no polynomial time solution has been found which will solve it under all instances.
And nor do we know if one exists. Furthermore, vertex coloring appears tc be a problem

which cannot be approximated [Gibb85). As opposed to some other NP-complete problems,
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such as edge coloring [Vizi64, Gibb85], there is no known polynomial time approximation
algorithm that guarantees solutions to vertex coloring within a reasonable bound of the
optimal answer. And unless P=NP then no such approximation exists. The first result in
this direction was shown in [GaJo79]. It was demonstrated that if there is a polynomial
time approximation to vertex coloring which is certain to return a number of colors within a
factor of two of the optimal answer (for any graph in general) then there exists an optimal
polynomial time algorithm for vertex coloring and P=NP. Short of proving P=NP, this
result is quite negative in critical applications such as hardware synthesis. But, as will be

discussed shortly, the forecast gets even grimmer.

Qver the last two decades there has been 2 concerted effort to improve the performance
of approximation algorithms for vertex coloring. Much of the research has focused on

improving the performance ratio metric:

Definition 2.15 (Performance Ratio of Vertex Coloring Algorithms) Let ¢ be a ver-
tez coloring algorithm performing on a class of graphs C. For any graph G € C, define

- ¢(G) to be the number of colors returned by algorithm ¢ for graph G and let x(G) be the
chromatic number of G. A bound B is a performance ratio of the vertez coloring algorithm
¢ over the class C if it i; provable that

%E%% £B V¥V GeCcC

B is not necessarily a constant and it is often the case that a bound is known to ewist
within the order of a function f(n) where n is the number of vertices. In such cases the

performance ratio is expressed as O(f(n)).

After demonstrating the poor performance ratio of many graph coloring heuristics on
the general problem, Johnson [John74] proposed an algorithm-with a performance ra-

tion in the order of O(2;). A decade later Widgerson [Wigd83] produced an algorithm

of performance ratio O(n®T) for the class of graphs with chromatic number smaller or
equal to k (k-colorable graphs). To date the best known performance ratio is of the or-
der O(l%féi’;s-?ﬁ) {Hallo3) for'general graphs. The specialized class of 3-colorable graphs
has also been examined as it represents a subclass for which the problem remains NP
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complete. A recent result for three colorable graphs has yielded an algorithm of perfor-
mance ratio O(nf log® n) [Blum94]. It was in turn bested by the performance ratio of
min{O(A% log% A),O(ntlogn)} [KaMS95) where A is the maximum- degree. Although
these results have theoretical significance they have little practical value since the ratio be-
comes rapidly Jarge with increasing graph size and thus provides little in terms of practical

guarantees.

By demonstrating the following theorem Lund and Yannakakis [LuYa93, LuYa94] have

dismissed all aspirations of finding a constant or well behaved performance ratio:

Theorem 2.1 There is an € > 0 such that verter coloring cannot be approzimated in

polynomial time with performance ratio n® unless P=NP,

Proof The proof can be found in [LuYa94). (]

Consequently, unless P=NDP, there is little hope of finding approximation algorithms
which have significantly better performance bounds than those previously discussed. Fur-
thermore, unless some specific classes of problems are shown to satisfy equivalence proper-
ties, the exponent € of theorem 2.1 can be shown to be strictly greater than 1% [BeSu93] #t
the least. The dire outcome of theorem 2.1 is that, unless P=NP, thé performance ratio of
approximation algorithms is certain to diverge with increasing graph size and further work
to improve the best known ratio can only achieve a better rate of change to the divergence.
The main criticism of theorem 2.1 is that it does not apply to the specific cases in which

the input instances are guaranteed to be of the k-colorable class for small & [BeSu93). -

Due to the hardness of the problem, algorithms prdmising better bounds on special-
ized classes of graphs have been investigated. Polynomial time algorithms which Opérate
on some classes of perfect graphs have been proposed to color their respective subclass
optimally [Golu80, Sher93]. As well, the important class of planar graphs can be col-
ored in linear time within a performance ratio of 3 [ChNS80]. There are also probabilis-
tie techniques‘ which are known to be efficient on some simple distributions of random
grq.phs [WilfB4]. Unfortunately much of the practical cases are not covered by these re-

stricted algorithms and broader solutions must be found. Finally, there have been attempts
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to find an efficient exponential time algorithm to optimally color a graph G(V, E) of rea-
sonably small size but the best result to date has yielded a time complexity in the order of
O(|E{IVI(1 + ¥/3)V1) [Lawl76].

In later chapters, a pair of practical vertex coloring heuristics will be presented. They are
called the WWI! algorithms. Instead of aiming at improving the overall performance ratio,
the algorithms will concentrate on identifying substeps which are provably optimal during

the coloration of a particular graph. Most often optimal substeps cannot be found and the

algorithms fall back onto heuristics based on theoretical bounds of the chromatic number

and checks on characteristics that optimal colorings must obey. Through their mechanism
of operation the WWI algorithms focus on the particular instances under computation
rather than providing guarantees for classes of graphs. Nevertheless it will be shown that

they can be used to identify some perfect graphs which they color optimally.

2.3 A Bound on the Chromatic Number and Characteristics

of Optimality

Most bounds on the chromatic number are only valid for graphs obeying a strict set of
properties. However there are a few, yet weaker, bounds which are applicable to all graphs
in general and thus can be used in all cases of heuristic decision making. The following
bound is probably the most inked bound on the chromatic number due to its generality

and the simplicity of its proof:

Theorem 2.2 Given e graph G = (V, E) with mazimum degree A(G), the chromatic num-
ber x(G) is bounded above by the following condition:

- x(G) £ A(G)+1

Proof See [Gibb85] for a proof. | ‘ A |

The name was chosen to reflect the resemblance between the algorithms’ mechanisms and the alliances
of the Great War in which countries with common interests and few divergent ones sided with each other

out of convenience.
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As an example for the graph of figure 2.2 the usage of theorem 2.2 yields y < 541 = 6.
Theorem 2.2 will play a role in the WWTI algorithms but it will be of little significance. A
quadratic bound on the number of edges and a cubic bound on the number of odd cycles

shall play the key parts.

Short of enumerative and exponential methods, there are no known sufficient conditions
which universally determine whether or not a coloring is optimal. However there does exist
a set of necessary coaditions which optimal colorings must satisfy and for which coloring
solutions can be verified efficiently. One such characteristic of optimality is the Gallai-Roy

theorem and it will have direct bearing on the work of chapter 4:

Theorem 2.3 [Gallai-Roy] Consider a graph G(V, E)} with chromatic number x(G). For
each orientation of its edges there exists a directed path with x(G) vertices. Furthermore

there ezists an orientation for which there is no directed path with more than x{G) vertices.

Proof See [Berg73] for a proof. | m;

For example, since the chromatic number of figure 2.1 is 4 it is certain that there will
be a directed path of length 4 on any orientation of its edges. Theorem 2.3 will be revisited
in a form which deals with colorings as opposed to directed paths. As well it will be related

to a property of the local minima in the vertex coloring solution space.

Another well known result on structural properties classifies the entire class of two

colorable graphs:

Theorem 2.4 A graph G(V, E) can be colored with two colors if and only if it contains no
odd cycles.
Proof See [CLiu68] for a proof. , o

Beyond two colors there are no known structural characteristics such as that of the-

orem 2.4 which clearly delimit the chromatic number. As previously stated the optimal

coloring of 3-colorable graphs remains an NP-complete problem and thus the prospect of

’.ﬁnding a structural property which fully characterizes 3-colorable graphs is not promising,.
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Furthermore it has even been shown that the four coloring of 3-colorable graphs is also
NP-complete [KhLS92]. As for 2-colorable graphs they can be optimally colored within
polynomial time and in fact one of the two WWI algorithms will serendipitously achieve
that goal. Chapter 3 will further highlight the structural importance of odd cycles with a

result relating the chromatic number and odd cycles.

2.4 Studying the solution space

The sheer difficulty of coloring graphs warrants an examination of the solution space in-
volved. A detailed study of the solution space is the object of chapter 4. It will be conducted
by transforming the graph coloring problem into a non-linear ma.themaii_cal program over

a continuous space.

It will be apparent that graph coloring is closely related to the problem of mapping a set
of variables subject to a partial ordering [ARHUS2] onto a smallest possible set of values.
However in a partial ordering the inequalities relating pairs of variables are of type <,>;
thus predetermining an order between two variables. In vertex coloring the inequalities are
of type z; # z;, therefore leaving it undetermined whether z; > z; or z; < %; when the
problem is specified. It is this single ngn-deterministic difference which renders graph color-
ing much more difficult. Leaving the order of the inequalities undetermined fundamentally
changes the solution space of graph coloring with respect to the pé,rtial ordering problem
due to a combinatorial explosion of the possible solution regions in hyperspace. The partial
order problem onto a smallest set of values is confined to a single solution region and it can
be solved in polynomial time (in the number of variables) by using a tool such as linear

programming [Khac79] or even simpler.

The solution space study will reveal additional necessary conditions which optimal col-
orings must obey and it proposes a simple and rapid algorithm which will improve any
coloring which does not meet them. The algorithm may be used as a post-processing

refinement to heuristics or it can be used to color graphs directly.
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2.5 More on Algorithms

2.5.1 Greedy Algorithm

The most widespread technique to color graphs is the greedy algorithm [Bigg$5). Although
it yields a poor performance it is easy to implement and has an efficient time complexity
of O(JV]*). In addition the algorithm belongs in the proof of several theorems. It proceeds
by sequentially traversing a set of vertices {v;, ¥s,...,7,} in order and coloring each vertex
to the first color unused by its adjacent predecessors. The following is a description of the
algorithm in which 5 represents the set of colors adjacent to a vertex and C the coloring
itself:

Get A graph G = (V, F)
// Color the graph
Cln) —1
fori=2to n do
S+—¢
forj=1toi—1do
if {v;,v;} € E then
§ — Su{C(v;)}

k1
while k € S do
E—k+1
C('U;) — k
Return ¢

In chapter 4 the greedy algorithm will be used to establish a property of the solution
space and in appendix C it is modified to provide an alternate solution for the verification

of a necessary characteristic of optimal colorings.

2.5.2 Coloring through compressions

The vertex coloring algorithms that are of interest within this dissertation are all based on a
mechanism which follows from these simple observations on compressions. The observations

are evident but their proofs have been included for sake of completeness.
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Observation 2.1 Let G' = (V', E’) be a graph obtained from a compression on an incom-
plete graph G(V,E). Let v; and v; be the vertices of V' compressed into v;; in V'. Then

the following statements hold:

(A) Let Q, be a vertex coloring of G'. The color assignment C, defined on G such that
Colve) = Qalw} VYo € V\{w, v}

and Cy(v;) = Co(v;) = Qalvi ;)
is a vertez coloring of G.

(B) Let C, be a verter coloring of G and let & be a color which is not used in C,. The color

assignment @), defined on G' such that
Qu(vi) = Colvr) Vor € V'\ {vi5}

and Qb(v:',j) =K
is a verter coloring of G'.

(C) Let C. be a vertez coloring of G with C.(v;) = C.(v;). The color assignment Q. defined
on G' such that
Qc(v) = Ce(vx) Vo € V'\{w;}

and Q.(v ;) = Ce(w) = Ce(v;)

is a vertez coloring of G'.

Proof

(A): It will be shown that Ca(v.) # Ca(vy)¥{v:, vy} € E. Consider an arbitrary edge
{vz,,} € E. {v,,v,} # {w,2;} since two nodes must be nén-adjacent to be compressed.
If v, € {vi,v;} then {v,,v;;} € E’ by the definition of compression. And since Q, is
a coloring, it follows that Q.(v,) # Q.(v:;). From the assignment C, it follows that
Calvy) = Qalvy) and Ca(v:) = Qu(w;;), thus Cuo(vz) # Calvy). Hence Culv,) # Colvy) if
vz € {v,v;}. Similarly Ca(v:) # Ca(vy) if vy, € {v;,v;}. Finally if both v, and v, differ
from v; and v; then {vz,v,} € E' = Qa(v:) # Qa(v,). It follows that Co(v;) = Qa(v,,) and
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Celvy) = Qalwy), thus Co{v:) # Cu(vy). Therefore in all possible cases it has been shown
that C,(v:z) # Ca{vy) and C, is thus a valid coloring.

(B): Consider an arbitrary edge {vz.v,} € E'. If v. = v;; then Qu(v:) = ~ and
Qu(vy) = Cs(vy). Since & is not a color used in Cy it follows that Qu(v:) # Qu(vy). Similarly,
Qo(vz) # Qo(vy) if vy = ;5. If both v: and v, are different from v; ; then {v;,v,} € E and
Co(v:) # Co(vy). Since @o(v.) = Cy(v:) and Qu(wy) = Cy(vy) then Qu(uz) # Qu(vy). This
covers all possibilities and thus Qu(vz) # Qu(wy)V{v-,v,} € E'. This implies that Q, is a

coloring.

(C): Let {v.,v,} € E'. I both v, and v, are different from v;; then {v.,v,} € E.
Therefore Ce(v:) # Cc(vy). This implies Q.{v.) # Gc{vy). If v = v;; then either {v;,v,} €
E or {v;,v,} € E. Since Cc{v:) = Ce(v;) then Cc(vy) # Ce(w:) and Co(v,) # Ccv;). But
Qe(v:) = Qclv:;) = Celw) = Cc(vj). Hence Q(vz) # Qc(vy). Similarly, Q.(v:) # Qc(vy} if
vy = v;,;. Therefore if {vz,v,} € E' then Q.(v:) # Qc(v,) and Q. is a coloring,. O

Via observation 2.1 (A) an algorithm can reduce the vertex coloring problem of a graph
G by making an appropriate selection of two non-adjacent vertices and compressing them
into a graph G’. In turn the graph G’ is compressed and this procedure is repeated until
a complete graph results. The action of compressing two non-adjacent nodes results in
assigning them the same color in the final coloring. The number of nodes remaining on the
complete graph determines the number of colors required by the algorithm. This intuitive

technique for coloring graphs has long been used, see [Berg73] for example.

Figure 2.4 shows an example of the use of observation 2.1 (A) on a graph borrowed
from [Bigg85). By repeatedly using observation 2.1 (A) one can construct a coloring for the
graph in (a) through successive compressions leading to (d). A possible coloring result is
C(#%) = red, C(v;) = C(vs) = green and C(v;) = C(v4) = C(vs) = blue. A practical way
to achieve this is by keeping track of the compressions through the indices of the vértices.
Vertices with a common color in the original graph are grouped under the index of a vertex
in the final graph. For this particular example the coloring returned is an optimal one but

that is not always the case.
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What distinguishes compression heuristics (and in fact most vertex coloring algorithms)
is the criteria used to select which pair of nodes to compress at each step. A simple scheme
shall soon be presented to classify compression algorithms under general terms. But prior to

that the description of a well known compression algorithm is given as a detailed example.

v
v2 v
| UG @ US | vs @
Us V4
(2)

2
4

v
Us V3,
(b)
(3 Vg 7 Uas
V3,4,6 < Vaa6 @
Us (C)
Figure 2.4: Coloring through compressions

2.5.3 Tseng’s Algorithm

Tseng’s algorithm [TsSi86] is a clique partitioning heuristic and it is not a vertex color-
ing algorithm per se. However clique partitioning and vertex coloring are two equivalent
problems related through the éomplement of a graph and thus it is possible to directly
translate Tseng’s algorithm into a vertex coloring algorithm with little effort. For unifor-
mity and clarity the version of Tseng’s algorithm presented herein is an adapted version
for vertex coloring which was obtained from the clique partitioning counterpart described
in [GDWL92, MiLD92]. As with the WWTI algorithms, Tseng’s algorithm is based on affin-
ity and conflict calculations (although [T'sSi86] uses the values and terminology of common

" neighbors and total neighbors instead). A stepwise description of Tseng’s heuristc follows:
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1. Calculate all the affinities and conflicts for all pairs of non-adjacent vertices in the

the graph.

2. This step involves finding a pair of non-adjacent vertices as candidates for compres-
sion. If this is the first compression step or if a compression is no longer possible
with the vertex resulting from the previous compression step then find the pair of
non-adjacent vertices v; and v; with the minimum sum of affinities and conflicts:
av;, v;) + 7(v, v;) + (), ;). Otherwise if v, was the resulting vertex from the last
compression then find the vertex v, which is non-adjacent to v. and which yields the
minimal sum: a(ve, vi) +7(vk, ve) + (v, v ). In the plausible case that several vertex
pairs offer themselves as best compression candidates then select the pair v,,, v, with

the maximal affinity o(v,,v.) amongst them.
3. Compress the pair of vertices found in step 2.
4. Recalculate all the affinities and conflicts in the newly compressed graph.

5. Unless the compressed graph is complete, return to step 2.

In Tseng’s algorithm there is no need to distinguish on the direction of conflict as
(v, v;) and ¥(v;,v;) are always lumped into a sum. But in the WWI algorithms the
separate contributions are crucial and thus Tseng’s algorithm has been expressed in such

terms for ease of comparison between the algorithms.

Tseng’s heuristic has widespread use in digital hardware CAD systems. Compared to
other known graph coloring heuristics it is of a slow time complexity of O(|V|?| E*|) because
affinity and conflict values must be recalculated after each compression step. Despite its
good performance, the large complexity of the algorithm renders it less appropriate for
applications which are less critical of the quality of results as opposed to their promptness

(such as register allocation in standard software compilers).

As a speed up, Springer and Thomas [SpTh94] have recently introduced the EGAD
heuristic based on the model of Tseng’s algorithm. EGAD operates in O(|V||E*|). However
it targets graphs with structures close to that of comparability graphs. In [SpTh94] it is
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demonstrated that EGAD yields a performance similar to Tseng’s heuristic for the problem

of bus allocation.

The WWI algorithms presented in chapter 3 have a worst case performance bound of
O(|V|?) and operate in a time directly proportional to O(|V||E¢|). As with Tseng’s heuristic,
the WWI algorithms also operate on a re-evaluation of the affinities and conflicts at each
compression step. However a significant speed improvement over the existing version of
Tseng’s algorithm is possible due to a more efficient method for recalculating the affinities
and conflicts at each step. The technique is disclosed in appendix A and it can be applied
to improve Tseng’s algorithm to O([V|®) as well. Finally, benchmarks on random graphs

will be used to compare the performance of the WWI algorithms over Tseng’s algorithm.

2.5.4 A Classification of Compressions: order, adaptability and localiza-

tion

Vertex coloring heﬁristics are akin to approxirﬁating functions through Taylor series. Higher
order Taylor series approximations signify better answers at the cost of a greater computa-
tional complexity. Similarly a notion of order can be brought to vertex coloring. Heuristics
which base their compression decisions on large subgraph structures surrounding the com-
pression pair can yield better results but they do so at the expense of a greater time spent
" exploring for the preferable choice. Algorithms which look at the immediate adjacencies of
a pair of compression candidates are coined first order compressions. Algorithms which go
beyond and examine the adjacencies of adjacencies of compression pairs are second order
algorithms. And so on; the order being the maximal depth of the adjacencies being exam-
ined. By this definition Tseng’s algorithm is clearly a first order algorithm since it depends
upon affinity and conflict values. So are the WWI algorithms since they are also based
on the same metrics. Chapter 5 will briefly discuss a second order algorithm of superior
performance but the resulting computational complexity renders it slow and impractical. |
Instead, one of two WWI algorithms will be a first order approximation of this second order

algorithm.

For general graphs, affinities and conflicts fully determine the nature of the first order
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neighborhood of a potential compression pair and thus many first order algorithms can be
described with these metrics. Finding the best criteria based on these values remains the
main design issue of first order algorithms. As for designing algorithms of higher order the
tradeoff for time complexity becomes rapidly costly and the useful range of the algorithms

becomes limited to the smaller input cases.

The comparison with Taylor series can be taken further. Heuristics designed to work
well for graphs resembling those of a particular class are comparable to adjusting the point
about which a Taylor series is taken. Points nearby the Taylor series’ origin are better
approximated than those distant. Similarly the graphs of a structure unrelated to those of

a specialized algorithm are less likely to be properly colored.

The next means which can be used to distinguish compression algorithms is their adapt-
ability. All the algorithms presented in this thesis are adaptive because after each com-
pression step the affinities and conflicts are readjusted to refiect the compressed graph. As
such adaptive algorithms take profit of the past history of decisions made by the algorithm
but they do so at the expense of time cdmple)dty. Algorithms which do not readjust these
values but rely on the initial values of the problem throughout the compression steps are
non-adaptive. In appendix A it is demonstrated that a non-adaptive version of the WWI
algorithrus or Tseng’s algorithm can be implemented in the time complexity of yma.t'ri'x

multiplication.

Finally there is a need to distinguish between a localized compression scheme versus
a globalized one. A localized algorithm performs all of its compressions about a single
vertex until it is no longer possible to compress on that vertex. Then and only then does
it proceed to a new vertex. The sequence of compressions from ﬁgﬁre 2.4 is localized since
the compressions always occur on the last compressed vertex until it is adjacent to all
nodes of the graph. Had v, and vs been compressed in (b) instead of v34 and vg then the
localization rules would have been violated as there were still compressions possible with
v34. From the second step of Tseng’s algorithm it is clear that it is a localized algorithm.
Algorithms which do not limit themselves to compressions on the last compressed vertex
are globalized algorithms.
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Localized algorithms do limit the selection of compressions amongst those possible with
the last compressed vertex but the restriction of choices does not necessarily have a negative
impact on the performance of the algorithms. For example, Tseng’s algorithm performs
much worse if globalized. In the case of the WWI algorithnis, one will operate globally and
the other locally. As it will be demonstrated localized algorithms tend to have a better
behavior on graphs with a high edge density.
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Chapter 3

Some Characteristics of the

Chromatic Number

This chapter discusses necessary characteristics of an optimal coloring based on the concept
of fundamental nodes (defined later). For colorings which do not meet the optimality crite-
* ria, methods are presented to re(_iuce the number of colors and an algorithm is introduced.
This will lead to a theorem on bicolored paths within a graph and an upper bound on
the chromatic number with respect to the number of odd cycles. These results also have

relevance in the design of the algorithms in chapter 5.

3.1 A First Characteristic

The following theorem is closely related to the theory of the y-critical subgraphs [Berg73]
~ and could be derived as a result of that theory. The characteristic the theorem introduces

forms the basis of the results presented thereafter:

Theorerﬁ 3.1 Let G = (V, E) be a graph and let C be an optimal coloring which uses the
- set of colors S. For each s € S there ezxists a node v; € V. which has color C (%) = s and

- which is adjacent to at least one node of each other color of §\ {s} under coloring C.
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Proof Let € be an optimal coloring with the set of colors S and suppose s € § is a color
for which there is no vertex »; € V with C(v;) = s which is adjacent to at least one node of
all other colors different from s in C. Then it is possible to construct a coloring @ having

one less color than C:

First assign a color in @ to all the nodes colored different from s in C.
Qv;)=C(v;) Vv, € V 3: Cly;)#s

Such a partial assignment on ¢ is valid as C itself is a valid coloring. At this point, nodes

having color s in C have not been assigned a color in Q.

Recall that-there is no vertex v, with C(%) = s, connected to a vertex of all other
colors in §\ {s}. This implies that for each node »; with C(v;) = s there is at least one’
color o € 5\ {s} for which all nodes v, with C(v:) = o have the property that {v;, v} € E.
- For each such v; one can assign it the color of a respective ¢ (Q(v;) = o) since no edge
can exist between v; and all other nodes with color ¢ or s in €, and only nodes of color ¢
or s in C can be assigned a color ¢ in Q. This completes the coloring of all nodes in Q.
Therefore Q is a vertex coloring of G which uses colors S \ {s} as its set of colors. This

contradicts that C is an optimal coloring. Reductio ad absurdum. ‘ 0

The proof of thedrem 3.1 has practical use since it is constructive, After a heuristic
returns a coloring, a check of thedrem 3.1 can be done and if the coloring fails the criterion
then a better coloring can be rapidly extracted with an algorithmic test. Such an algorithm
is presented in appendix B and it operates in the order of O(|VI?) for time complexity.
The algorithm can also be used to color graphs directly as well. For the benchmarks and
heuristics of chapter 5 this simple check on optimality improves the coloring of many graphs

of a reasonable size (more than 25 nodes).

For example, as shown in {Bigg85) if one colors the graph of figure 3.1 by using the greedy
coloring algorithm one finds the coloring C with: Cln) =C{va) =0, C(w) =C(wa) =1,
C(vs) = 2 and C(vs) = 3. By theorem 3.1 this cannot be an optimal coloring since there
is no vertex of color 0 which is connected to a node of all other colors. v; is not adjacent

to any nodes of color 2 and v is not adjacent to any nodes of color 1. Therefore one can
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obtain a coloring with one less color by letting v; have color 2 and v have color 1. That is

Qv2) = Q(vs) = Q(va) =1, Q(z1) = Q(ws) = 2 and Q(v5) = 3.

Vg 3

s Uy

Figure 3.1: An example for theorem 3.1

One can now provide a simple prdof to the following known bound on the chromatic

number of a graph:

Corollary 3.1 Let G(V, E) be a graph with chromatic number x(G) and let ¢ -be a natural
number. If x(G) > ¢ then the number of vertices in G with degree > c—-11is > ¢. -

Proof Let C be an optimal coloring of a graph with chromatic number x(G). € must use
X(G) colors and ¢ be an integer smaller or equal to x(G). By theorem 3.1 for each color
used in C there is a vertex v with an adjacency to nodes of all other colors in €. There
are x¥(G) such nodes (one for each color) and they must have degree of at least y(G') — 1

s0 that a connection is possible to nodes of all other colors. Since ¢ £ x(G) it follows that

the graph hds at least ¢ nodes of degree ¢ — 1 or more. Hence the corcllary is proven. 0O

Corollary 3.1\i)s‘ not a new result. The contrapositive was shown earlier, see [Berg73] for
a proof. The I‘Eb(illt has been included because it is a simple consequence of theorem 3.1
and the proof relies on elementary mathematics. In figure 3.1 the graph fails the condition
of corollary 3.1 for x(G) > 4 since it does not have at least 4 vertices of degree 3 or more.
However it passes the test for x(G) = 3. Hence the chromatic number of that particular
graph is at most 3. In chapter 5, corollary 3.1 will be used iﬁ the proof of another bound

on the chromatic number.
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Interestingly, it also is possible to derive an even stronger check for optimality from
theorem 3.1. It is based on distinguishing the nodes which are adjacent to nodes of all

other colors but their own:

Definition 3.1 Let C be a coloring of a graph G = (V,E). And let S be the set of colors
used by C. V s; € § define the following sets:

Fe(ss)={v|VseS\{s},3wa{v,w}€E A C(w) = s}
Rc(s,') = { v l C('l]) =5 A v Q Fc(si)} ’ (31)

Fe(s;) is called the set of fundamental nodes of color s; cm't:i' Rels:)-is ihe set of residual

nodes of color s;.

The residual nodes of any color can always be assigned different colors since each has at
least one color to which it is not adjacent. And only fundamental nodes will be left in the

color from which the residuals were assigned. Taken a bit further this observation yields:

Corollary 3.2 Let C be a coloring of a graph G = (V, E) using the set of colors S. Con-
sider cases for which there are two colors s; and s; in § such that no edge ezists between a
fundamentle node df Fe(s:) and Fe(s;). If there is a recoloring of all nodes in Ro(s;) such

that no node in Rc(s;) becomes fundamental then C is not an optimal coloring.

Proof Recolor all nodes in Re(s;) which are adjacent to color s; in a way that no node
of Re(s;) becomes fundamental. Then recolor all nodes in lRC(.s_,-) which are adjacent to
a node of color s;. This leaves no edge between nodes of color s; and s; and therefore all
nodes of color §; and s; can be regrouped under one color. Hence resulting ia a coloring

which uses one less color thaii=C-zud thus contradicting that C is optimal. - 0
B \‘. )

The proof is again constructive. and an algorithm can be devised to perform a check.
As an example, the graph of figure 2.2 colored with C(v1) = 3,C(#2) =:C(vs) = C(ws) =
2,C(v3) = C(vs) = C(t}-,-) = 1 and C(vs) = 0. The figure shows that only 3 colors are

‘required and therefore € is not an optimal coloring. But C still obeys the characteristic: of
optimality of theorem 3.1 since Fo(3) = {m}, Fo(2) = {2}, Fo(1) = {vs} and F(0) =
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{vs}. However note that there is no edge between v, and v; and thus no edge exists
between the elements of l-""lc(Q) and Fg(1). Furthermore ii is possible to recolor the nodes
of Re(2) = {v4, vs} which are adjacent to color 1 without making any nodes of Rs(1) =
{vs, vz} fundamental: let C'(v,) = C*(vs) = 3. Now recolor the nodes of Re{l) = {wve, v7}
which are adjacent to color 2: let C'(vs) = 0. The result is that the remaining nodes of
color 2 ({v,}) and color 1 ({vs,v7}) are mutually non-adjacent. Hence a common color 2
may be chosen for {v,,vs,v7}. This yields a new coloring C'(v,) = C'(vy) = C'(vs) = 3,
C'(va) = C'(v3) = C'(vr) = 2,C'(vg) = C'(v5) = 0 which requires only three colors and the
outcome is shown on figure 2.2. An interestihg challenge is to find a coloring for a graph

which meets the conditions of corollary 3.2 but which is not optimal.

3.2 Going further with fundamental nodes

Another question of interest pertains to thé subgraph structures relating the fundamepta.l
nodes in a coloring. It is well known that not all graphs are perfect i.e. they might not
contain a complete subgraph with as many nodes as the chromatic number. Similarly it is
not a necessary condition that there is an edge between the fundamental nodes of any two

distinct colors in an optimal coloring. The cycle graph of figure 3.2, with the fundamental

nodes in box, lustrates this. Using the technique of Kempe chains [Kel879, Gibb8s, n

BiLW76] we can show that for an optimal coloring C there must lie a particularly colored

path between the fundamental nodes of eafch pair of colors. We use the term bicoloring as

-

in [Berg73] instead of Kempe chain.
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Definition 3.2 (Bicolored Path) Let C' be ¢ :oloring using the set of colors § for a
graph G = (V, E). A bicolored path over two colors s,,8, € S is a path such that the
colors of successive nodes in the path alternate between s, and s,. The length of a bicolored

path is the number of nodes in the path.

Theorem 3.2 Let C be an optimal coloring using the set of colors S for a graph G = (V, E).
For any iwo colors $,,5, € § there must exist a bicolored path from a fundamental node of

Fe(s,) to one in Fo(sy).

Proof Suppose there are two colors 8i,8; € 5 such that no bicolored path exists between
a fundameni@.l node of F¢(s;) and one in Fg(s;). With this stipulation, corsider a funda-
mentzl node f € Fo(s;) and the subgraph G, = (V;, E;) consisting of all nodes and edges

ini’G’ that are on a bicolored path fro_m f over colors s; and s; in coloring C.

Clearly, every; node of V will exther be of color s; or s;. It is possible to modify coloring
C to ' by recolormg all nodes of color s; in V; to s; and all nodes of color s; in V; to s;
while all the other nodes of V \ V; preserve their color from C. Thjs is because any node
of V'\ V; which is adjacent to a node in V; must have a color different from s; or s;. Hence
interchanging colors in V; cannot cause any coloring conflicts and C' is a valid optinial

coloring of G since it uses the same number of colors as C.

Vi ca.nnot' have any fundamental nodes of Fe(s;), otherwise there would be a bicolored
‘path from f € Fg(s;) to a fundamental node of Fo(s;) and that would contradict the initial
assumption. Therefore all nodes of color s; in V; are in Rc(sj) “And since each node of
color s; in Gy is adjacent to at least one node of color 5; then it must be that each is
non-a.djé.ceﬂt to a color different from s; under coloring C. Therefore when nodes of R¢(s;)
in V; are recolored to s; in C’ they each will remain non-adjacent to the same color to
which they were not adjacent in C since no modifications are brought to colors other than
s; and s; in the transformation from C to C'. Hence nodes of color s; in V; colored
‘with Call become nodes of Rei(s;). In a similar manner, all nodes of Re(s;) which

are also in V become nodes of Bei(s;).

i
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And the nodes of Re(s;) which are in ¥\ ¥; must remain residual in C'. Otherwise;
suppose that there is a node r € R¢(s;) such that » € V\V, and r € Fe(s;). Since
7 € Rc(s:) there is at least one color s to which r is not adjacent in C. If s # s; then r will
not be adjacent to s in C’ since the set of nodes of color s in C” is the same as in € and thus
r could not be fundamental in C’. So s; must be the only color to which r is not adjacent
in C. However only a node ' of color s; in € can change color to s; in ¢’ for r to gain
a neighbor of color s; so that it becomes fundamental. But this implies that two adjacent
nodes 7,7’ both have color s; under coloring C and that would contradict that C is a valid
coloring. Hence r cannot exist and all nodes of Rc(s;) also in V' \ V; are residual in

Rei(s;). Similarly all nodes of Re(s;) also in V' \ V; are residual nodes in Re(s;).

Node f and all other nodes of F¢(s;) also in V; become fundamental nodes in
Fer(s;). This is because they are recolored to s; as all other nodes of color s; in V;. And
their neighbors different from color s; in €' are retained in C' as they p‘reserve their color
from C to ¢'. And the adjacent nodes of color s; in C are recolored to s; in ¢’ since they
must alis be in V;. Therefore nodes of Fe(s;) also in ¥ are adjacent to all colors but s; in

C' and they become fundamental nodes of Fei(s;).

And nodes of F¢(s;) also in V \ V; are nodes of Fc:(s.) IfveV\Viand visa
node of F¢(s;) then none of its adjacencies of color s; in C isa node of ;. All adjacencies
of v wlﬁch have color s; must also be in V'\ v; and they will therefore preserve their color
in ¢’. And all other nodes adjacent to v but colored differently from s; in C will also keep
their coloring intact in C' since the transformation from € to C’ only affects nodes of color
s; and s;. Therefore v remains adjacent to all colors but s; in ¢’ and it is a fundamental

node of Fei(s;). Similarly all fundamental nodes of FC(SJ‘) also in V\ V; are in Foi(s;).

. This implies that all nodes of Fg(s;) are in Fei(s;) since there are no nodes of Fe(s;)

in V¢. So far we have shown that:
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vEV\V; A vERe(s;) = v €& Reosy) 1)
vEV, A v € Re(s;) = v € Reols;) 2)
veV\Vy A vERe(si) = v € Reu(si) 3)
veV, A Clv)=3s; = v € Res:i) 4)
veEVy A vE Fels;)) = v € For(s;) 5)

vE Fc(sjj = v € Fei(s;) 6)

v EV\V; A veEFol(s;) = v € Falsy) 7)
v=f=>v € Forls;) 8)

vE Fe(s;) =>veV\1, 9)

Therefore covering all possibilities for nodes of color s; and s; in C’. Since only implication
(7) produces vertices in Fei(s;) it must be that any element of Fe+(s;) is also an element of
Fe(s;) i.e. Fe(s;) C Fe(s;). Furthermore, by implication (8), there is_'one node v = f €
Fe(s;) such that v = f ¢ Fca(S;). And, by implication (5), there are perhaps more such
nodes. Hence there are strictly fewer fundamental nodes of color s; in €' and Fe(s;) C

Felsi).

Now we will show that there cannot be a bicolored path between nodes of Fe:(s;) and
Foi(s;). First notice that if a bicolored path over colors s; and s; exists under coloring C’

then the same bicolored path also exists under C since the transformation from C to C’

- only recolors some nodes of color s; to s; and vice versa.

Now suppose there is a bicolored path in C’ between v € Fei(s;) and w € Fei(s;). From

the implications above we note that: ' ("
(a) u € Fe(s;) (see 7 above)
(b) weV\V;AwE Fe(s;) (see 6 and 9)
' or

we Vi Awe Fe(s;)  (see 5)

We treat both cases of w separately and show contradiction.

Ifwe V\V_, A w € Fe(s;) then there is a bicolored path in €’ between a node

u € Fe(s;) and a node w € Fo(s;). Since a bicolored path over s; and s; in C’ is also a
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bicolored path over s; and s; in C then there is a bicolored path between u € Fe(s;) and
a node w € Fg(s;) under coloring C. This contradicts the initial assumption that such a

path does not exist and thus this case cannot occur.

If w € V; Aw € Fe(s;). Since there is a bicolored path in €’ between u and w over s;
and s; then there is at least one bicolored path p, from w to u over s; and s; in C. But
since w € 1} there is also at least one bicolored path p, from f to w in C. p» prolonged by
py forms a bicolored path over s; and s; from f to u under coloring C and therefore u € V.

This contradicts that « € V' \ V; and thus this case cannot occur either.

Therefore there cannot be a bicolored path from a node of Fe.(s;) to a node of Fei(s;)
in C'. Hence from ¢ another .0ptimal coloring €' was generated which has at least one less
fundamental node of color s; and which alse has no bicolored path between an element of
Fei(s;) and one in Fg:(s;). This was achieved by selecting an arbitrary f € Fo(s;) and
performing a recoloring about it. Emulating the procedure by selecting a node f' € Fei(s;)
and performing another recoloring will yield a coloring C" which has at least one less
fundamental node of color s; than €’ and which also has no bicolored path between nodes
of Fcr(s;) and Feu(s;). Repeatedly applying the same procedure will eventually lead to
# coloring C* which has no fundamental node of color s;. By theorem 3.1, C* cannot be
an optimal coloﬁng and it can easily be transformed in a coloring C which uses one less
color by recoloring the residual nodes of color s; in C*. Since C* does not use more colors
than C, it follows that C cannot be an optimal coloring and a contradiction arises. Hence
there must always be at least one bicolored path between the fundamental nodes of any

two colors of an optimal coloting. 0

Clearly the optimal coloring of figure 3.2 obeys theorem 3.2 as there is a bicolored path
between all fundamental nodes, notably one of length 8 between v, and v,,. Unlike the case
illustrated in the figure, when there is more than one fundamental vertex of each color it is
not always the case that there is a subset of fundamental nodes, one from each color, such
that all vertices in the subset are mutually interconnected by a bicc;lored path. Since the
proof of theorem 3.2 is constructive, it is straightforward to implement an algorithm which

improves a coloring which does not meet the cha.ra,cfer';stic by emulating the proof. And

42



although the characteristic is in a sense weaker than that of corollary 3.2, an algorithm to

check for the characteristic of theorem 3.2 is easier to implement efficiently.

No work based on Kempe chains should go without an attempt to simplify Appel and
I-Iakeﬁ’s lengthy enumerative proof of the four colorability of maps [ApHa77]. However we
were unable to prove or disprove the existence of a subgraph of a graph which has the same
chromatic number but has an optimal coloring with only one fundamental node of each

color:

Corollary 3.3 A plenar graph G which has an optimal vertez coloring requiring only one

fundamental vertez of each color has chromatic number x(G) < 4.

Proof Suppose such a planar graph requires 5 or more colors. Then consider an optimal
coloring C which requires only one fundamental node of each color. And especially consider
an arbitrary set of 5 of these fundamental vertices, say { Fus fon Fao fo fs}. By theorem 3.2
there must be a bicolored path between all possible pairs of {fi, f2, fs, fa, fs}-

For the same reason that it is impossible to draw a complete graph of 5 nodes without
crossing two edges joining 4 distinct vertices it is also impossible to draw the bicolored
paths between all pairs of {fi, f2, fa, fa, fs} Without crossing two of the paths joining four
distinct elements of {fi, fo, fa,' fa, fs}. Let one of the intersecting paths be from w; to w;
‘and the other be from w; to wy such that {wy, wy, w3, wa} C {f1, for fos fa, f5}-

The bicolored path from w; to w, only has nodes of color C(w,) and C{w,) whereas
the path from ws to w; only has nodes of color C(w3) and C(w,). Therefore the crossing
of the paths cannot occur at a node and edges must be crossed. Thus contradicting that

the graph is planar. . 0

A necessary and sufficient condition for a graph to be two colorable is that it holds no
cycles (or circuits) of odd length (theorem 2.4 [CLiu68, Bigg85]). For that reason the value
of the chrom#tic number of a graph can be interpreted as a measure of the odd cycles and
their interdependence. The following consequence to theorem 3.2 places a lower bound on

the number of odd cycles that a graph of chromatic number x(G) must have.
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Corollary 3.4 (1) Let G = (V, E) be a graph with chrematic number x. Then there is a

connected component H of G which has at least

x(x = 1){(x—-2)
6

odd cycles.

(2) Let G be a graph with 1 odd cycles. If ¥ > 1 then the chromatic number x of G
obeys the following upper bound:

Otherwise, for 1 = 0 then x < 2.

Proof (1) First consider the cases for which x > 3. Since G has chromatic number y then

there must exist a connected subgraph H of G with chromatic number y.

One by one, remove selected vertices of H and their incident edges such that the chro-
matic number of the resulting graph remains at . Repeat the procedure until it is no
longer possible to remove a vertex without reducing the chromatic number to x — 1. The
outcome will be a graph H, from which we can remove an arbitrary vertex v, to obtain a
x — 1 colorable graph Hj. Optimally color H] with C} and transform C} into an optimal
coloring C, of H, by adding a new color for v;. Since v, is the onljf vertex of its color in C,
it follows that all fundamental nodes of the x — 1 remaining colors in C, must be adjacent
to v;. By theorem 3.2 it follows that there are at least

x-1{x—-2)
2
distinct bicolored paths between the fundamental nodes of these x — 1 colors. Since these
| particular bicolored paths begin and terminate at fundamental nodes of different color it
follows that they must have even length. And since the beginniné and terminating nodes
of these paths are both adjacent to v, it follows that there must be:

(x=Dx=2) _ (x=(0)-D(x—(0) = 2)
2 2
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odd cycles including v, in H,.

Now consider H{ again and continue removing vertices until it is no longer possible to
do so without reducing the chromatic number to x — 2. Call the resulting graph H» and
consider the ()x —2) colorable graph Hj in which an arbitrary vertex v, is removed from H,.
Color H} with an optimal coloring C} which can be transformed into an optimal coloring
C, of H, by adding a new color for v.. With an argument similar to that used in H, there

must be at least:

{(x—2)(x-3) _ (x(U—Uu (1)-2)
2

distinct odd cycles which include vertex v+ in H.. Furthermore since v, is not in H| and

thus Ha, it follows that these new cycles are all different from those about v, in Hj;.

This procedure can be repeated until a 3 colorable graph H,_s for which a vertex Vy—3

must have at least: 7 '
1_ - (x~-3)-D(x-(x-38)-2)
2 2
distinct odd cycles all different from those in the previous steps. We stop at three colors

since the subseqﬁent two colorable graph has no bicolored paths when a sufficient number
of vertices are removed to render it 1 colorable. Summing up the contributions we get that

there are at least:

x=(0-Dx=-0)=-2) x-O-Dx=-1)=2)
2 2

(x=(x=38)-x-(x-8)-2)
2

+...+

-;-z: (X~ G+ D)x - (14 2)) = XX D=2 (32)

odd cycles in H for x 2 3. The summation was reduced using the following properties of
integers: 1n, i = 28l and 77 42 = Bletllndl) o

'I‘he formula is also valid for x = 1 or x = 2 since it vanishes at those points. Hence a
graph G of chromatic number y must have a connected component with at least

x(x = 1)(x ~2)
6 _

odd cycles. : ' ¢
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{2) Let ¢ be the largest number of odd cycles in a connected component. The formula

derived in (1) indicates that:

x(x - lg(x— 2) <

which transforms into the following polynomial inequality:

X =3 +2x -6 <0

For ¢ = 0 we must have y < 2 since the largest root of the polynomial is at y* = 2 and the

polynomial remains of strictly positive value for all ¥ > 2.

By using Cardano’s method [Cal545] one can determine that the above cubic has only

one real root for all $ > 1= and it is located at

X =1+ {/;w VR c/sw— Ve =

Therefore it follows that for ¥ > 1

x < ll " (/:;¢+ Jewr- =+ ;/w - /@y - -§T—J

The integer ficor is taken since x must be an integer. a

For example the graph G of figure 3.1 has only two odd cycles: (vy,vs,%,9,) and
(va, v, Vs, Vg, ¥1, v2). From corollary 3.4 we compute that x(G) < 13.4348) = 3. It is not
always that the bound is so tight. Mofeover, although the statement of corollary 3.4 does
not directly state it, it is clear from the proof that the cycles must also obey a particular
arrangement in the graph. Finally, corollary 3.4 will play a useful role in the design of the
algorithms of chapter 5.

3.3 Some possibilities

Theorems 3.1 , 3.2 and corollary 3:2 suggest heuristic techniques to improve colorings. For.
example, consider the subgraph made up the fundamental nodes. If a better coloring is to
be found then that particular subgraph must be colored with fewer colors. An improve-

ment heuristic could concentrate on re-coloring that subgraph and then proceed with the -
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rest of the graph in the case that a better coloring can be found for the subgraph. This
can be viewed as an approximation to finding a <-critical subgraph. Other techniques can
concentrate on recoloring residual nodes so that the conditions of theorems 3.1, 3.2 or corol-
lary 3.2 become violated. In fact such recoloring methods could provide ascent direcfions

for techniques such as simulated annealing [PFTV88] or neural networks [TaLe91).

3.4 A brief recapitulation

This chapter presented necessary characteristics of an optimal coloring along with some up-
per bounds on the chromatic number. In all cases constructive proofs of the characteristics
were given so that they have practical use as refinement algorithms to coloring heuristics.
A simple and efficient coloring refinement algorithm was detailed in appendix B to validate

this claim.
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Chapter 4

A Structural Study of the Solution
Space

This chapter demonstrates that although the solution space of vertex colormg problems

can be quite vast, there exists a representation for which the space is very regula,r and
well behaved. Thus chspe]lmg beliefs that this problem of class NP is solved on irregular
and rough solution spaces ( [KuDe92]). The mathematical programming termmology used
throughout the chapteris asin [Na,z.aST]. The results that will be presented are not the first
attémpt to bring discrete NP complete problems to continuous variable representations, for
some other examples see [PaRo87]. Nor is it the first attempt to bring graph coloring to
a ﬁlathema,tical prog‘ramining model. In {TCHu69} graph coloring is transformed into an

integer linear programming model.

4.1 Mathematical programming models

The following theorem introduces a continuous variable mathematical programming model - -

for vertex coloring:

Theorem 4.1 .S’uppose the gmph G= (V E) wzth [V| == must be vertex r‘olored and as-_ ;

sume without loss of genemhtu that the veruces are mde:::ed from1to n: V {-ul, '02, o v,,}'.



To each v; € V associate a real variable z; € R. Let x* = [2},23,...,%] be an optimal

solution to the following real valued mathematical program:

min z,

such that
l#; —z;] = 1 YV {v,v;} € E
0<z; £, Yy € V{n}

Then the coloring C* defined as
[C™(21), €7 (v2), - -, C(wa)] = [[z1) s l22] 5 - 2]

ts an aptimal coloring of G.

Proof We shall demonstrate the validity of this formulation by a sequence of transforma-
tions over definition 2.2. In this definition C(v;) and C(v;) are integers and the condition
that C(v;) # C(ﬁ_,-j can be replaced by the condition that |C(v;) — C(w;)] > 1. Also since
"C(») € NYvy € V the constraint C(w) 2. 0 can be added and the problem can be
restated as:
min {5]
such that ‘
C: Ve~ S CN

|C(wi) = C(w;)] 2 1 VA{w,v} € E

0K Cy) Yo eV
Without loss of generality one can impose that the integérs in S must be'coﬁsecutive starting
. with 0. This is becaﬁse a coloring riot obeying this rule can be trivially transformed into a
| cbloring which does. In such a case minimizing | S| is equivalent to minimizing the maximum

_integer (cdlor) attributed to any node and the problem can be expressed as:

min(maxyev C(%))

 such that |
. . C:iVeSCcN
e =) 2 1Y fu,) € B
o 0 < Clv;) Vo € v
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Since the colors of a graph can always be permuted amongst groups of nodes having the
same color there is no loss in predetermining one vertex to have the highest possible color.
Let this vertex be v;. This implies that min(max,.ev C(v:;)) = C(w) and that C(v;) <
Clvi)Ve; € VN{wn}. AlsoC:V — § C Ncan be changed to C(v;) € NVuv; € V.
Hence a solution to & '
min C(v;)
such that
|C(v)~C(v;)| =2 1 V{wm,v} € E (4.1)
0< Cvy;) <C(m)Vy; € V\{n}
Cln) € NVoy € V
will provide an optimal coloring for the graph. The formulation in program 4.1 is almost
that of the theorem statement with the exception to the added constraint that variables

must be integers. The remainder of the proof concentrates on removing this constraint.
Consider the less tightly constrained program in which the variables can be real valued:
| min iy
such that
fzei—z1 > 1 V{v,v} € E
OS $JS.’B1 V’Uj € V\{TJ]_}

(42)

and suppose x° = [z],23,...,%;] is an optimal solution. Now‘ consider the point y* € N°
defined as

y' =02t = lal) ls2) - Lanl]
First notice that z; — z; > 1 = |z] — |2;] 2 1 V2,2 € R. This result is easily extended
tolzm—z| 2 1= ]~ %)) 2 1Vz,2 € Rby 6b5erving the symmetry in the property.
From the last observation a conclusion is that point y* must obey all the constraints with

absolute values in program 4.2 since x" is itself a feasible point. .
Then also notice that 0 <z<n = 0L |z] £ |a) ¥z, € R. Through this
observation and the relationship of y* with the feasible point x" it follows that y* obeys

all the remaining constraints of progi:a.m 4.2, Hence y* is a feasible point of program 4.2.

Since y~ consists of integers it is also a feasible solution of 4.1.
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Sin-n x7 is an optimal solution to the minimization problem in 4.2 it follows that the
optimal value of the objective function is z]. But at feasible point y~ the value of the

objective function is y; = |z]] € z]. Therefore y* must also be an optimal solution of i.2.

In addition to the integer constraints, program 4.1 has all the constraints that pro-
gram 4.2 has. Therefore it must be that the set of feasible points of 4.1 is a subset of those
in 4.2. Hence the objective function cannot yield a better value in program 4.1 than in 4.2
since any optimal point of 4.1 would also be in 4.2. Since y~ is an optimal solution of 4.2

and it is also a feasible solution of 4.1 it follows that y* must be an optimal solution to 4.1.

Therefore the coloring C* obtained through

[C™(n), C™(v2);- .-, C7(wa)] = [L21], w3} 5+ - s |20 ]]

is an optimal coloring of graph G and the graph coloring can be resolved by solving 4.2 and

then transforming the solution as demonstrated here. T a

Asx=[n-1, n— 2,...,0] is always a feasible solution to the program in theorem 4.1

. : ‘then fhere always exists a non-empty feasible space to the program. Note that the choice:af
v as a vertex colored with the highest possible value was arbitrary. |V|—1 other programs

could have been derived with each other vertex having the highest possible va.]ue And in

fact it is the union of all the |V| solution spaces which covers all possible vertex colorlngs

for a graph. The following addresses the problem of the k-colorability of a graph:

Theorem 4.2 Suppose the graph G = (V, E) with |V| = n must be vertez colored and as-
sume without loss of generality that the vertices are indexed from1ton : V = {v,vy,..5 0}
And let k be an integer such that 1 < k < n. Graph G = (V, E) can be colored with k or

fewer colors if and only if there ezxists a point

x = [z1,Z2,...,2,] € R® 3:

. lze — 25| 2 1 V{?J,, =Ey \

ST ‘ 0 < =; k'—l Vv e Vi
o /

I

IA

Proof (=) If the graph can be colored in leos than or equa.l to k colors it will be'demon-
strated that the point ex.lsts in real space. Let C be an optimal colormg of the graph G
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and let S be the set of colors it uses. Suppose |§| = h. Since the chromatic number of G
is k or smaller it must be that h < k. Let dg, d;.....ds_, be distinct elements of S. Then

construct the color assignment D as follows:

D(‘U,') =0 ¥ou: 3: C(‘U,‘) = dy
D(v) =1 Yo 3 Cloy)=ds

D('U.') =h-1 V¥ I e C('U,-} = dh_]_

D assigns the same integer only to those nodes which have a common color in C. Therefore
it follows that:

D(w) # D(v;) ¥ {w,v;} € E
And since D maps to integers, |
D)= D(»)l 2 1 ¥ {woy} € E (43)
Furthermore from the nature of the assignment D, .
0 < ED(v,-) < b1 VL.- eV
Since h < & it follows that |
0 < D(v) < k-1 Vo, €V (4.4)
Now consider the i:oint x € R"such that
x = [1,%9,. .. ,2,) = [D(w1), D(wa), ... ,D(v,,)]

Because properties 4.3 and 4.4 hold, x obeys all the criteria of the theorem statement.
Hence the existence of a point has been verified.

{<«=) Suppose 3 x = {2,,24,...,2,] € R" such that — , -

l:E,'—.'BJ" > 1 V'U,',‘UJ' c F
0 <z €£k-1Vy eV

Now consider the color assignment C such that

[C(21),C(wa)s -+, Cwa)) = [[24] s [22] 5+, |2n]]

IR
A2TF
o !

(

Vi
.
N
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Since
¥ {v,v;} € E, |z; — 4
= |C(w) = C(v;)

1= flo) - )] 21

2
> 1 = C(TJ,')#C(‘UJ;)

This implies that ' is a coloring for G. Also note that:

Vo, e V0 €3 €k-1=20<K I_ZL’,J < k-1
= 0 < C('U;) < k-1

Becanse there are only k integers from 0 to k — 1 it must be that C requires k or fewer

colors. And therefore graph G can be colored with & or fewer colors. . O

A simple consequence of the previous two theorems characterizes the solution space

structure in the fo].lowing way:

Corollary 4.1 The programs of theorem 4. 1 and 4.2 have feaszble solutzon spaces whzch

“are the union of a _ﬁmte number of disjoint convex regions in hyperspace.

i

Proof If the absolute values are dropped from their respective constraints then the programs

of 4 1 and 4.2 become linear programs for which the feasible region is convex.

First notlce that the constraints with absolute values are of type |%: — v;] = 1 and that
this implies that 5 —y; > L or Y5 — ¥ 2 1. Note that the or” is excluswe since only ore of

yi—y; = lory - v > 1 may hold true; representmg that there could e two subprograms

for deﬁrﬁng the feas_:ble regions. The subprograms are constructed by selecting a constraint

of type | — ;] 2 1in the original program and replacing it by y; —y; > 1 in one subprogram
and %; — i 2 1 in the other with all the dthér constraints preserved. Clearly these two
subprograms have disjint feasible region. But the union of their feasible regions is equal to
that of the original problem since any point feasible in the original problem is also feasible
in one; of the suoproblems and any point which is not in the fea.s1b1e region of the original

problem is not feas1b1e in both the subprograms.

I there are other ccmstramts w1th absolite values left one can further d_w1de each of

. the two subprogra,ms by selectmg another absolute value constraint and applymg; the same

principle as before. This will yield 4 subprograms which ha.ve disjoint spaces but for which
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k.

the union of their feasible spaces is equal to that of the original feasible space. One can

repeat this procedure until the constraints with absolute values are all exhausted leaving
only linear constraints finally. Since there are |F| constraints with absolute values in the
original program this will result in 28! programs with disjoint feasible regions. And since
these remaining programs are all linear programs it follows that each of them has a convex
feasible region. Therefore the feasible spaces of the programs in theorems 4.1 and 4.2 can
be expressed as the union of 2 finite number of convex and disjoint regions in hyperspace.

And the corollary has been demonstrated. ' . O

This last proof justifies the earlier claim that the graph coloring problem can be trans-
formed into one for which the solution space is vast but well behaved and regular. TFur-
thermore if differentiability is a concern then a constraint of type |z; — ;] > 1 can be

repla.ced by the equivalent constraint that (z; — z;)* 2 1 without affecting any of the other

- properties. Also it is a consequence that there cannot be any saddle pomts since all the

regmns are co;vnx '

From the proof of coro]la:y 4.1, a speciﬁc‘ convex solution region is fully determ'i‘n'éd
by the sign of the expressions within the absolute values of the constraints'. I one is
to actually carry out the comstruction of the 213I programs as described in the proof of .
corollary 4.1, it can be noted that for many g;a.phs several of the resulting linear programs
will have nuﬂ feasible spaces. To calcu_la.te a bound on the number of non-empty convex

regions the reader is referred to a discussion on chromatic polynomials in [Gibb85].

4.2 A Slight MOdiﬁceition

A slight modﬂicatmn to the program of theorem 4.2 ensures that. the program will have

feasible regions with interior pomts It relies upon the following two observations.

Propos:tmn 4.1 Let G = (V,E) be a graph with |V| =naendV = {'ul,vg, . ;v,.} Also

. let k be an integer such that 1 < k<n and € be a real number such that 0 Le< l Then

'A graphical interpretation of”‘--onvex reglon is a directed graph with t.he same nodes amd edges in "’

Iy
which the edges assume the dJrect.mn from the lowest colored node t.o the h)ghest. colored node. i

=y - 54 | S

"
i

o

-



the following holds:

1 x=[zy,22,...,2,] € R* 3:
|3:,' - .’L‘_.,'I > 1 v {'U;, ’UJ'} e E : (45)
0 <z, £ k-1 VYVy €V

if and only if

3 y=[y17y'.!:"'1yn] € R* 3:
lgs =yl 2 1 V{w,v} € E _ (4.6)
0 €y k-1l4e Vv, €V

Proof (=) Since € > 0, any feasible point of program 4.5 is also a feasible solution of
program 4.6 as program 4.6 is the same as program 4.5 with the exception to some con-
straints being slacker. So it only remains to be shown that if there exists 2 feasible point

for program 4.6 then there is also a feasible point in program 4.5.

. R (<) Suppose ¥ = (4, Y2+ : Y] IS 2 feasible point to program 4.6 and then consider
| the point: )
x = [z, Tay mn] = [I_yl_l I.y"_l " l.yﬂ.]] b %

With the same argument as in the proofs of theorems 4.1, 4:2 the pomt x satisfies all the

" constraints with absolute value expresswns “And since -

Vo€V, 0Syi<holde= 0< |y < [koitel
= 0<z;<k-1 '

Because k — 1 is a natural number and 0 < €< 1 and z; is the integer part of y; it follows
tha.t 0 < a:, < E—1 Vv € V. Hence x is a feasible pomt of program 4.5 and the

e ’ propos:tmn is proven. - ‘ ' a

Therefore, in the light of theorem 4.2 and proposition 4.1, if one wishes to verify if
a graph G = (V, E)'can be colored with k or fewer colors then one can use program 4.6
7- instead o{ program 4.5. The advantage of program 4.6 is that if e is strictly greater than 0

“\\ then thg’f'f_easible regions of program 4.6 have || dimensions containing interior points.
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Proposition 4.2 Let G = (V, E) be a graph with |V| =n and V = {vy,2....,1,}. Also

let k be an integer such that 1 < k < n and ¢ be a real number such that 0 < € < 1. If the

following program has feasible regions

3 x=[%,%2...,2,) € R* 3:
i =23l 2 1 V{v,v} € E (4.7)
¢ < I Sk—1+€ Vo, € V

then each of the feasible regions are n dimensional and they have interior points.

Proof Suppose there exist feasible solutions. Let x" = [z1,75 ... ,25] bevan arbitrary
feasible solution to program 4.7. Then y° = [4), 9%, .-, 9] = "[ Lzt ], @3] s ey [0 )] is also
a feasible point. Note that feasible points y® and x" are within the same convex feasible
region (same argument as in corollary 4.1) since all the absolute value expressions have
arguments of the same sign for points X" and y°. We now proﬁeed to construct n other
feasible points y!,y3,...,y" also \\;ithin_i the same convex region. The individual cogrdinates

to each of the points are calculated as follows:
Vij 1<ign1<jsn
N if ¥ < yf with j #
=1 W+e ifi=j
P e Hyl s

It is a matter of bookkeeping to verify that y',y?,...,y™ are also feasible po'uﬂié and that

they are ali distinct since ¢ > 0. Also, they all lie within the same feasible region as x”

‘and y° since they do not change the signs of the arguments within the absolute value

expressions.

-~ Furthermore the point a.ss';ignment ensures that the vectors @, = y! — y%, &, = y* -
v ..., W, =y — y° are linearly independent. Briefly, this is shown through a Gaussian
elimination on the matrix W whose rows are w,,...,w,. The elimination first targets 2
node ; of the highest color at y° and uses the jth row of W (i.e. 10;) to eliminate the

Jth coordinate on the other rows. The remaining coordinates are elimi_né.ted, in the order of
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the coordinates of the highest value (color) down to those of the lowest value at y°. If the
kth coordinate is being eliminated then the kth row should ke used to annihilate the kth
coordinate on the other rows. This results in a matsix whose rows form a standard basis
for R™ and therefore w,,...,w, are linearly independent. In the assignment of the y}’s
it is import.ant that the coordinates incremented by ¢ ‘1ﬁust have the yith entry strictly
greater than the yYth entry unless i = j; otherwise linear independence could no longer be

guaranteed.

Therefore there are n linearly independent feasible directions from point y° and the
n dimensional simplex formed by points y°,¥%,...,¥" is contained in the convex feasible
region under study since any convex combination of these points is also feasible. Hence
the feasible region which contains x*,y% ¥*,...,¥" is n dimensional and it therefore has
interior points. Since x* was an arbitrary feasible point the last statement holds for all

feasible regions of the program. ' Y O

The graph of figure 4.1 (a) is used to illustrate the discussion in proposition 4.2. Fig- .

ure 4.1 (b) holds the nizthematical program to verify if this graph can be colored with

two colors and recall that € is a.real number such that 0 < € < 1. Clearly the point
y' = [1,0,0} is a feasible point to this problem. Using the same construction as in propo-
sition 4.2, three other feasible points are generated: y! = [1 +60, 0], y*=[1+¢,¢0],and"
¥® =[1 + ¢,0,¢. These points yield the following linearly iﬁaepenaent feasible directions
from point y%: 1 = [e, OI, 0], @ = [e, €, 0], 3 = [€,0, ¢. Figure 4.1 (c) shows the 3-D simplex
formed by points y°,y1,y2,y3. Figure 4.2 gives an example of the necessity to have € > 0

to ensure that the feasible regions are n-dimensional. Figure 4.2 (a) is the example graph

-and (b) gives the associated program to verify that it can be colored with two or fewer

colors. Figure 4.2 (c) clearly shows that if € = 0 then the feasible region only consists of
two points. When ¢ > 0°as in figure 4.2 (d) then the feasible regions (highlighted) become

n-dimensional. Proposition 4.2 adds even further to the well behavedness of the feasible

“space both from the point' of view of program stability and numerical stability. It should

be apparent at this sta.é;e that choosing € as close'f.—-:s ‘possible to 1 will yield the highest

possible volumes for the feasible regions. Having the guarantee of a feasible n-dimensional

volume gives the feasible point event a finite, non-zero probability within the n-dimensional
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A

ey — 22} > 1
ley —zal > 1
0 <21 £ 1+4¢
0 € 22 £ 14¢
0 € z3 < 1+¢
V2 U3

(a) (b)

.
(c)
€ €
[1+6¢0,¢ '

[1+¢0,0]

z0,

Figure 4.1: A simple 3 vertex graph
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Ry

|2y —z2] > 1
zL x2 0 €21 £ 1+¢
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(b)
2:3—:6121
(C) (031) Iy — L2 >1
€=

(1,0) (1 +¢,0)

Figure 4.2: The effect of ¢
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hypercube of side £ — 1 4+ . This can be of importance if one wishes to apply search or

pseudo-random techniques on the programs. Also the presence of interior points can be

of importance if non-linear programming techniques are attempted on the programs. Fi- -
nally note that there is a similar modification which can be brought to the programs of

theorem 4.1.

4,3 Refinement method

In addition to being a tool to solve for colorings directly, the mathematical programs can be
used to refine colorings produced by some heuristics. An interesting queétion pertains as to
whether or not the colorings returned by some heuristics are guaranteed to be local minima
of the convex feasible region within which their solutions lie. If not then 2 post processing
check based on linear programming can be performed to ensure that any coloring returtied is
at least a local minimum. For example, the WWT heuristics of chapter 5 can return feasible
colorings which are not necessarily the local minimum of their convex feasible region. As an
ﬂlustra,tion recall the graph of figure 2.2 for which the program to obtain the best coloring
would be: |
i 8 min ,
such that

|z1—2a] 21, |Zy—23| 21, |21 ~28]21

|22 —26] 21, |E2—za| 21, |25— 25|21

lea—zal 21, |za—2z6|21, |za—27] 21

|zs —z6l 21, |zs—25] 21, |z7—zs] 21

0<2:; <y, 1=2,3,...8

As it will be shown, one of the WWTI heuristics returns a non-optimal coloring for this

particular graph:

Cln)=3
C(v2) = C(vg) = C(vg) = 2
Clvs) = C(vs) = C{vr) =1
C(vg) =0

fﬁ.‘l{,’/
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With respect to the mathematical program the coloring C is a feasible point in space. But
is C' the best point within the convex region within which it lies ? First note that the
coloring C' predetermines the signs within all of the absolute values of the program and
thus fully specifies its convex region. The answer to the question is obtained by dropping
all the absolute values and adjusting the subtraction operations so that they ;‘eﬂect that of

the coloring:

min z;

such that
Ty—2221, 212321, 2 -2s21, 22— 21
s Ty~Tg2 1, Ts—2321, 33—z 21, T4—-2Ts21
zg—zy 21, Ts~-2621, .'L's—-’ﬂgz-l, Tr—Tg 2 1

Y0<y <, i=23,...8

Whén solving the above program the optimal objective function value was found to be 2 and
Ia. f)oint which yielded it wasx = [2,1,1, 2,2;0,1, 0].; thereby revealing that the graph can be
colored with 3 instead of 4 colors. This has the implication that the ‘WWI heuristics may
not even stop at a point which is a 10cal minimuin of the programming space. However
if the graph colorings obtai‘neci‘ by WWI are always post-processed by a linear program
then it is certain that at least a local minimum will have been achieved. This situation is
depicted in figure 4.3 (a) whii:h shows that the feasible point obtained by WWI can possibly
be different from the local minimum of the convex feasible region in which it is contained.
However the diagram in (b) shows that after solving the associated linear program it implies
- the resulting point will indeed be the minimum of the region. The next section will present’
a specialized algoritlfm to solve for these programs without having to resort to generalized

linear programming methods.

Unfoi‘tuna.tely if the minimum point toﬂ the convex region is not a global minimum to
the coloring problem then the only way to achieve a better cbloring is to enter another
feasible convex region. Since the regions are disjoint this means that the search for a better -
solution requires that an infeasible region of real space must be traversed before another -
feasible region is entered. This, in turn, implies that some graph coloring constraints must

be violated in the hope that eventually a better coloring can be found. This is a difficult

i
S o
-;
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problem and instead we have settled for a heuristic (WWI) which tends to find a feasible
solution within a “good” feasible region and then refine them so that a local minimum
is ensured. The importance of a “good” feasible region is crucial since it follows from .
upcoming coroliary 4.3 that the ratio of a local minimum value of colors over the global
minimum number of colors required can be proportional to the number. of vertices and thus

can become arbitrarily large as the graph size increases.

An advantage of the mathematical programming approach is that the problems which
lead to a graph coloring formulation are often associated with secondary constraints which
are not directly related to the problem. The linear programming methodology is very

_suitable for the introduction of other constraints. One'shou‘ld first solve the problem while
ignoring these constraints if the initial heuristic used is hard to adapt to take:ini;o account
the secondary constraints. Then once the linear progrm;}‘{ingr‘g‘tage is introduced the
constraints should be added. Furthermore the addjtioﬁal costs incurred while introducing -

the secondary constraints will become apparent.

z1

@ ' (b)

Figure 4.3: The local minimum‘migh.t\; not be achieved

4.4 Relating Characteristics of Optimality

This section links up' the local minima of the mathematical programs of theotem 4.1 and
a known characteristic of optimality of graph colorings. Furthermore, efficient refinement
algorithms will be provided to ensure that the characteristic is met. The results that we

present require the following definition:

Definition 4.1 (Color Stratification) Suppose a graph G = (V,E) and a coloring C

“which uses a set of m colors K = {ky,ks,... ,km}. Let Il be an ordering of the colors in .
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K, Il = (7,72,... ,%m) where each ; corresponds to a distinct color in K. The color

stratification of G with respect to coloring C and ordering 11 is the graph

S=(V,&) where
E={{v,,m}€E |} 37 >3 lgigmflwith
C Cluy=m A Clw) = migr}

_The color stratification is denoted as L{G,C,1I).

An important interpretation of the _colof stratification £(G,C,II} is that of a st;.atiﬁed
graph in which each étra.tum (Tow) possésses all the nodes assigned to a same color in C.
The rows of nodes are stacked in the order of I and the edges preserved in the stratified
graph are only those that span across adjacent rows (s_uccéssive colors in II). Figure 4.4 is
the_ color stratification £(G, C, (0,1,2,3)) for the graph in figure 2.2 colored with C(v;) =
é,C(;ug_) = C(w) = C(vs) = 2, C(vs) = C(ve) = C(vs) = 1 and C(vs) = 0 obtained using
WWL. ‘ h S '

. The motivation for the colored. stratification is that it represents a two dimensional

.' projection of the active constraints in the programs of theorems 4.1 and 4.2. Thg':edges
retained in the stratification represent the absolute value constraints which delimit - the
: feasible j)oi_nt at which the cqlpring lies in the solution space. -

L

Ty = 3
Ta = 2
Mg = 1
{.T': ‘.".‘/”/"’1‘5
™ = 0 /




Definition 4.2 (Colored Path) Given a graph G = (V,E} and a coloring C, a colored
path is a sequence of nedes in G such that successive nodes in the sequence are linked by an-
edge in E and each node in the sequence has a distinct color in C. The length of a colored
path is the number of nodes in the sequence. The stem of a colored path is the first node

in the sequence of nodes.

As an example in figure 2.2, P = (v,, g, v2) is a colored path of length 3 which stems at v,.

Now suppose a graph G = (V, E) and a coloring € which uses m colors. Let § = (V, &
be a stratification of G to which coloring C is also applied {C is also a valid coloring of
the stratified graph since £ C E). Clearly the only way that a colored path of length m
can exist.on the stratification is if there is a colored path which stems from the bottom
row to the top row by travérsing each row successively. This is because only edges between
vertices of adjacent rows ‘aIe preserved al'f;"tgi‘backtra.cking is impossible since colors can only
be used once in a colored path. On the"s}:fra.tiﬁed graph of figure 4.4, where m = 4, there
are 10 colored paths of length 4 since there are no colored paths stemming at the bottom
‘row and terminating at the top row. For‘_that very reason it is possible to declare that the
coloring associated with the stratification of figure 4.4 is not optimal. This last assertion
is based on a theorem that will be presented shortly. The theorem is a characteristic of

optimality which could be extracted as a consequence of theorem 2.3 and as such it does not

represent a new finding. However the proof mechanism differs leading to the’ development

" of an aigorithm and a relation between characteristics of optiméilify. For the sake of clarity

we now point out that when we refer to a colored path on a étratiﬁcation\ L{G,C, )it is

always with respect to the coloring on which the stratification is based: C.

Theorem 4.3 Let G = (V, E) be a graph and C be a coloring of G using m colors. If C is

an optimal coloring of G then every stratification of G colored with C has a colored path of
length m. ‘ '

" Proof The proof is by contradiction. Suppose there is a graph G = (V, E) and optimal
coloring C using m colors for which there is a stratification which has no colored path of
length m. Then there is an ordering Il = (7,%2,... ,My) to the colors in € for which the

stratification £(G, C,II) does not have a colored path of length m.
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In the stratification L(G,C,II) consider the longest colored paths which terminate at
a node of color 7,. Since the stratification only preserves the edges of £ between nodes
of successive colors in II, it must be that all longest colored paths leading to a node of
color T Mmust start at nodes of the same color, say =, traversing the colors in the order
Ty Wz4ls--« 3 Wm_1sFm. Otherwise would imply that two longest colored paths leading to

color 7,, could have different length, contradicting that both are of maximal length.

‘Because all longest colored paths ending at a node of color 7, all start from a node of
color 7., they each have length m — z + 1. Since there are no colored paths of length m in
L(G,C,TI) it follows that z > 2. Therefore 7., is 2 color used in C. The remainder of the
proof will make extensive use of the availability of #,., in C.

Now. consider a vertex v, of color 7 in C which is at the stem of a longest colored path

= (Vgy Vz4ls- -+ » Um—1, Um ) terminating at a node v, of color C{vm) = T, in L(G, C,II).
It follows that v, does not have an edge in & to '-my node of color 7._; in €. Since the
choice of v. was arbitrary it follows that all nodes oi color 7, which stem a longest colored
path to a node of color 7 in £(G, C, 1) do not have any edges in E to nodes colored with
Ty—y 0 O This means that all the nodes stemming a longest colored path te;j;_niii'é."cing at
a node of coior ‘T in L(G,C, 1) could have bEEI\l colored with 7,_, instead of .. It is

precisely this alternate coloring C' of G which now retains our attention:

’ fpeey HC(@)=m,and v

i stems a longest colored
Yov €V, C'(n) = - path to a node of color

fmin L(G,C,TI).
C(v) otherwise "

‘\

With coloring ", there are three possxble cases which can be distinguished. Ea.ch will

contradict that C is an optimal coloring of G.

1. If the longest colored paths\"\whiéh terminate at a node of color 7, in
£{G,C,Il) have length 1 (i.e. m; = 7,) then all nodes of color 7 as each node on-its

own forms a path of length 1. Thernfore all nodes of color Mo in C are transferred to m_;

~in C'. Hence, for the case z = m, it has been coni.ra.d.lctea ‘that C is an 0pt1ma.l coloring:
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2. If the longest colored paths terminating at a node of color =, in £(G,C,1I)
have length > 1 and all nodes of color =, stem a longest colored path to color
Tm then all nodes of color 7, in C are colored with #;_, in C'. As in case 1, C' requires

one less color than C and therefore C cannot be an optimal coloring,.

3. If the longest colored paths leading to a node of color 7., in £(G,C,I) have
length > 1 and not all nodes of color 7, stem a longest colored path to a node

of color 7, then it follows that €’ uses the same number of colors as C.

However the stratification £{G,C",1I) has longest colored pa,ths terminating at color
Tm Which are one shorter than those in £(G, C,II). This is because all nodes of color =,
stemming a longest colored path terminating at nodes of color 7, in £(G, C, II) have beén
moved to color 7._; in C'. By moving these nodes to color 7,_, they effectively have been
disconnected from all colored paths leading to color 7, since none of these nodes can share
an edge with nodes of color 7, in C’ (otherwise coloring C could not have been valid since
the nodes were all regronped under color #; within C). And none of the nocies rerﬁajning

with color 7z in C”’ could possibly stem a colored path to a node of color 7, in £(G,C’, IT)

Therefore no colored path of length m — z + 1 terminating at a node of color 7, exists in

C’. Hence it must be that the longest colored paths terminating at nodes of color 7, in
L(G,C’, 11} are shorter than those in £(G,C, ). Sinée any such path in £(G,C,II) with
its stem removed from the beginning of the path is also present in £L{G, C"', II), it follows
that the longest colored paths terminating at a node of color 7, are exactly one shorter in

£(G, ¢, T0).

This last observation is important since it gua'ra,ntees that C’ can be transformed into
a coloring C” in the same way that C was transformed into C'. Repeatedly applying

similar transformations to generate new colorings will eveutua.lly produce a coloring C*

falling within case 1 or 2. 'I‘ha.t is because each time case 3 is encountered in the successive

transformations we are guaranteed that the length of longest colored paths leading to a
node of color 7, decreases by one (in the corresponding stratifications). Hence even if case
2 never occurs throughout the transformations it is‘lgua.ranteed that case 1 will ultimately
be reached when the length of the longest colored paths to color w1]l have shrunk t5

A

‘



1. Therefore there will then be a coloring C* of & which uses one less color than C, thus

contradicting that C' is an optimal coloring.

Hence in all the three possible cases it has been demonstrated that C is not an optimal
coloring of G if there is a stratification of & and C which does not have a colored path of

length m. O

The proof of theorem 4.3 is once again constructive as it provides a simple mechanism
to produce a better coloring from one which does not meet the characteristic of optimality.
It is easy to devise an algorithm from the proof’s methodology and figure 4.5 gives an
example of the steps involved for the stratification of figure 4.4. In figure 4.4 there is only
one longest colored path leading to a node of color 3 and that is P = (vs, v2,v;1) stemming
at vg of color 1. Bringing vs down to color 0 results in the stratification of figure 4.5 (a) in
which the only longest colored path to a node of color 3 is P= (va,v,) of length 2. In turn,
v, is brought down to color 1 and the resulting stratification is shown on figure 4.5 (b). In

that particular stratification the longest colored path to a node of color 3 is P = (v;) of

: ' length 1. This signifies that the next transformation will produce a coloring which requires
. one less color since case 1 of the proof has now been met. When v; is lowered to color 2 the
{;\\\‘ stra‘.tiﬁcatiqn of figure 4.5 (¢) has three colors and C* with C*(v;) = C*(vy) = C“({;“s) =2,
L C*(vs) = C*(vg) = C*(vs) = 1 and C*(uvs) = C*(vs) = 0 is 2 better coloring for the graph

of figure 2.2 than the one proposed ir the stratification of figure 4.4. The followmg is an

‘ mterestmg corollary to theorem 4.3:

Corollary 4 2 Suppose a graph G = (V, E) and let C be a coloring of G usmg the set of

e S !

colors K. If C is an optzmal coloring then Jor each of the possible | K|! orderings of the
colors in K there is a colored path in G colored with C which traverses the colors in that

precise order.
L
Proof Each of the [&|! ordermgs of the colors has a corresponding colored stratification
of G and C. If C is an optimal coloring then each of the stratifications has a colored path
which traverses the colors of K in the same order as the stratification’s ordering. Since the
 stratifications are formed with the same set vertices as G and a subset of the edges in G, it

w—._"—ﬂ

follows that any path in any of the stratiﬁca.tlons is also in G Therefore it must be that G
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has a colored path which traverses the colors in all the possible orderings since there exists

such paths in the stratifications. |

For example on the graph of figure 2.2, which is optimally colored, the six colored
paths P, = (v7,v8,v1), Po = (v7,%s, %), Ps = (¥s,v2,%1), Py = (vs,v5,03), P5 = {¥1, v, ¥s),
P = (v, vg,v3) all traverse the three colors in a different order. However the condition
of corollary 4.2 is not a sufficient one. The coloring of figure 4.6 shows a colored path for
all color permutations yet 1t is sub-optimal. As it will be shown in the :;/"pcoming theorem

this unfortunately blurs further the distinction between a coloring which is only a local

optimum and one which is a global optimum. This despite corollary 4.2’s imposition of a

i possibly exponential number of constraints on a coloring. Appendix C presents a pair of

e
4

Figure 4.6: A sub-optimal coloring

simple algorithms to ensure a colored path one of which is based on the greedy heuristic of
section 2.5.1. The other algorithm is based on the proof of theorem 4 3 and it operates on
the input of a graph, a coloring and an ordering to Jle colors. H the griph has a colored
path which traverses the colors as in the ordenng then the algorithm will return a coloring
whichirequires the same number of colors as the one passed. Otherwise it will generate a
coloring that requires fewer colors. The algorithm does not concern itself with finding nodes
stemming longest colored paths as these are artifacts of the proof. Instead, it proceeds by
indiscriminately recoloring all the nodes which it can. Both algorithms are of quadratic

time complexity in the number' of vertices.

The remainder of this section concerns itself with a theoretical result relating the pro-.

'

gramming approach and theorem 4.3. ' Eg

..’\' ‘1

Theorem 4.4 Consider the graph G = (V, E) with |V| = n and the vertices ind;g_med from

lton: V = {vl,v-_;,../.(,v,,}. ‘With each v; € V associate a real variable z; € R and

ot
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define the following real valued program:
min
such that
lzi—z;] 2 1 ¥V {w,v} ¢ E
0 < z; 2, Vo € Vi{wm}

(4.8)

(1) If x* = [:é;,a:;, ..., &3] 15 a local minimum of program {.8 then the coloring C* with

[C7(1), C™(w2),-- -, C™(wa)] = [L23] s [23] - - [20]]

has a colored path of length C*(w,)+1 which traverses the colors in the order 0,1,... ,C"(v,).

(2) Let C' be a coloring of G arranged so that C'(v,) is the color with the highést in-
teger value in the et of colors used by C': § = {0,1,...,C'(w))}. If C’ has a col-
ored path of length C'(v,) + 1 which traverses the colors in the order 0, 1, ,C'(v,) then

x' = [C'(v), C'(v2),...,C'(v,)] is a local minimum of program 4.8.

Proof Recall from corollary 4.1 that program 4.8 has a feasible solution space which is

divided into disjoint convex regions. Therefore the local minima of program 4.8 are simply

. o . —_
-the minimal points from each of the convex regions. Also recall that the characteristic

distinguishing the convex' regions was that a point X in real space can only obey one of

z; — x; > 1 or z; — ; > 1 when it is subject to the constraint |z; — z;| > 1.

(1) The proof is by contradiction. Suppose x" is a local minimum but C* does not have:,,
a colored path traversing the colors in the order 0,1,...,C"(% ) By corollary 4.2 C* is
not an optimal coloring and it is possible to transform C* into a coloring & which requires

fewer colors by using the algorithm of appendix C and the ordering II = {0,1,...,C*(»)). -

Node v; will not necessarily have the highést valued color in C. Howevér,‘beca,use vy
is of the highest color in C*, the algorithmic transformation from C* to'C ensures that

v, cannot have a.ny-édges to nodes of color.values above it in €. Hence it is possible to

transform € inte € by recoloring v, to have the highest color in C: : \\Cﬂ\l
‘ ~ . [¢ S VYo eVi{p |
maXyev (C(vi)) v = 0
YT
o N
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The algorithm proceeds by removing the highest ranked colors while it preserves the lower
ranked ones. Therefore, since € uses fewer colors that C~ it follows that (»,) < C*(v;).

More precisely C uses the colors 0,1,...,C(w,).

Now consider the point:
% = [C(v),C (), . ..,C(vn)]

Because v; has the highest color in Citisa consequence that X obeys all the constraints of
type z; < z, in program 4.8. Furthermore X obeys all the constraints with absolute values
in 4.8, otherwise € would not be a valid coloring of . Finally, since € uses the colors
0,1,... ,5‘(-01), all constraints of type 0 £ z; are also satisfied by X. Hence X obeys all the

-constraints and it is therefore a feasible point of program 4.8.

The manner in which the algorithm transforms coloring C* into C is by repeatedly
changing the color of a node to that of the previous color in the ordering when there are no
conflicting edges. Qperations of t'ilis nature never toggle the sign of the arguments within
- any of the absolute value expressions of program 4.8. The same observation applies to
the trivial transformation from C to €. Therefore it follows that % is in the same convex
region as x". Since ¥, < zj, it cannot be that x* is a minimum of its convex region.
Therefore a point x* cannot be a local minimum of program 4.8 if its a.s‘s'dcia.ted coloring
ct does not have a colored path of length C*(v;)+1 which traverses the colors in the order

0,1,...,C*(v). Taken to its contrapositive this last conclusion justifies claim (1).

{2) Let P = (¥po,Vpys+++ s Upeu,,,) b€ 2 colored path which traverses the colors in the
order 0,1,...,C"(v,) when C’ colors G. Since sequential nodes in the path must be-adjacent .

it follows that the following are constraints are in program 4.8: ‘

|m?: _'mpol =1

/ 7 I"s;: - mml 21

L ‘ ‘ Tpeiguyr ~ Tpeipy| 2 1
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The point x' = [C'(1),C"(va), . .-, C'(wa)] must have 2, = C'(z,,) = 0.2y, = C'(wp,) =
1,..., x;c,m) = C'(v, c'(v;)) = C'(v,) ; otherwise path P would not traverse the colors in
the stated order. Therefore, in the convex region in which x' lies (x' is clearly a feasible
point), all the feasible points have the following absolute value constraints oriented in these

directions:

Tp, — Tpg 21
Tp, = Tp, = 1

>1

.2';?&'("1)-1 ~ Troinyy =
From which the following constraint implicitly holds:
mpc,(u > C ('Ul)

Now since z,, > 0 is also 2 constraint, it follows that all points of the convex region of x'

must satisfy:

xpcr(.,” o (vl)

' Furthermore 11 2 Tpciy is also a constraint. Therefore z; > C'(v,) for all points which
3

lie in the same convex region as x'. This implies that x’ with 2| = C'(v;) has the best
possible value for the objective function of program 4.8 within its feasible regioi’i‘?’ Hence x'

is a minimum point of its convex region and it is a local minimum of program 4.8. 0

“~I1 Theorem 4.4 fully characterizes the local minima of the programs of theorem 4.1 .

Furthermore case (2) eliminates the need to perform general linear programming once a v
feasible region has been entered. It only suffices to pass alpoint of the convex region to
the algorithm of appendix C and a (local) minimum will be returned. The a.lgonthm of
appendlx C also can be used to test the existeace of a path for several poss:ble orders*to
the colors. For the case of graphs for which we have a coloring with few colors to start v)lth

then there are only & few orderings to check (in the case of four colors: 4! + 2 = 12).

An immediate consequence of theorem 4.4 concerns the disparity between local minimum

values. It is shown in a.ppéndix C that the greedy algorithm of section 2.5.1 always yields -
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a coloring which obeys the conditions of theorem 4.4. Consequently the greedy algorithm
always generates a coloring which is local minimum to its feasible region. Furthermore, it
can easily be demonstrated that the greedy algorithm may yield colorings whose ratio of
colors used versus the chromatic number of a graph can become arbitrarily large [BrBr87,
Gibb85). Hence,

Corollary 4.3 For the programs of theorem {.1, the ratio of local minimum values from
the convez regions over the chromatic number can be proportional to the number of vertices
and thus become arbitrarily large with increasing graph size. Furthermore conver regions of

similar local minimum valves are clustered together.

This further portrays the difficulty of the solution space of graph coloring as divided
regions in which the heights of the summits can vary greatly. The reasoning as to why
convex regions of similar minimal values are clustered together follows from toggling the
sign of a single absolute value argument defining a convex region. Such an operation can
only produce a neighboring feasible region which requires one more color, one.less or an

equal number of colors at its local minimum.

" Finally the characteristics of this section also suggest refinement heuristics for vertex
coloring. Efforts can be spent on attempting to find a color permutation which has no
longest colored path by stacking color strata with the intention to disrupt the colored paths
as much as possible. Or target the residual nodes along the colored. paths so as to break

the paths wher they are recolored.

4.5 Conclusion

A study of the solution space for a representation of the graph coloring problem was con-
ducted. A chéracteriza.tion for the local minima of the space 'was found and the possible
disparity of their values was shown. Although the individual solution regions were shown '
to be well behaved, the study aisq highlights the complexity introduced by the inequalities

of type # and theh:\\ divisive outcome on the solution space.
“ o -
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Finally, a characteristic of optimality was derived and related to the known Gallai-
Roy theorem (see theorem 2.3). The constructive proof of the characteristic yielded the

refinement algorithm of appendix C.

R
rd \". .
;
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Chapter 5

Algorithms

This chapter presents the pair of WWI coloring algorithms, one of which is primarily based
on the a.fﬁnity metric while the other focuses on the conflict metric (defined in chapter 2).
Both heuristics color graphs through compressions but they differ in their compression
selection criteria. WWI on affinities uses the globalized compression approach of chapter 2
and is designed to target graphs of low edge densities. WWI on conflicis aims at graphs of

higher edge density and uses a localized compression scheme.

New observations will be presented to provide a theoreticai platform for the algorithms.
After which the heuristics will be discussed in detail and examples will be provided. Im-
piementa.tion details are revealed in appendix A. Comparative benchmarks and theoretical
consequences of the algorithms occupy the remainder of the chapter. The results will justify
claims made about the algorithms. The final note being on <lasses of perfect graphs which
the algorithms address.

5.1 Further Observations

The following results are instrumental in the design of the algorithms. Along with results
from previous chapters, their purpose is to justify the compression criteria used by both
WWI on affinities and WWI on conflicts. The terminology used is that of chapter 2.
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Lemma 5.1 A graph G' = (V', E') obtained from a compression on G = (V, E) has fewer
or the same number of edges:

|E] < |E|

Proof Assume the compression removes vertices v; and v; in V and adds »;; to V'. By the
definition of compression, E' is constructed by removing all edges with an incidence to v
or v; in £ and then adding one edge from ;; to each adjacency of v; or v; in G. Since the
number of nodes which are adjacent to v;; can only be smaller than or equal to the number
of edges incident to v; or v;, it follows that the number of edges added to v;; can only be

smaller or equal to the number of edges removed. Hence it must be that |E’| < |E|. O

Lemma 5.2 A graph G’ = (V', E') obtained from a compression on G = (V, E) obeys the

following chromatic number relationship:
x(GN) -1 £ x(G) £ x(G)

Proof Observation 2.1 (A) provides a mechanism to transform any vertex coloring of G’
into a vertex co}dring of G without intfoducing any new colors. This of course includes
all optimal colo:é;mgs of G’ and therefore, given any optimal coloring of G’ there exists a
coloring of G wzifth the same number of colors. A direct.i:onsequence of this is that the

chroma.tic'\ﬁu.r\n‘rl’;er of G cannot be larger than that of G":
L

-t
E:r

v - x(6) £ x(G)

Observation 2.1 (B) provides a method to transform any vertex coloring of G into a vertex
coloring of G! while introducing at most one new color. Which means that for each optimal
vertex-coloring of G requiring x{G) colors there exists a coloring of G’ requiring x(G) + 1

colors. Therefore it must be that x(G') < x{G) + 1 which can be rewritten as:
x(@) -1 < x(G)

This completes the proof as all inequalities have been verified. ]
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7And since ¢ is always positive the lower bound never has any. practical use and it shall be

Theorem 5.1 Given a graph G = (V, E), the chromatic number x(G) is bounded above by

1+ \/_1+8|E'|J
2

the following condition:

X(G) < [

Proof If the graph G is cbmplete then x(G) = [V| and |E| = lﬁl_(_lé_’]-_ll and the theorem

statement holds since:

‘ TSy
x(G)-—~lV|=uvu=[1+ﬁ+z 2 J

i

If the graph G is not complete then one can apply a compression transformation on G. And
if the resulting graph is not complete then another compression can be applied. Clearly
this process can Be repeated until a complete graph G" is reached. Suppose graph G” has
¢ vertices. Since it is complete then it has &‘27»-1-1 edges. And by lemma 5.1 the number
of edges in G" must be smaller or equal to that of G since each compression step taken
to arrive at G" ensures the number of edges will never increase. Therefore the following
inequality holds: |
efc

—~——2_—1) < |E|

= f—c-2[E £ 0

fe

 For the inequality to hold it must be that:

5 < ¢

1-yTF8E] _ . _ 1+ /IFBE
= 2

Since ¢ is an integéi", the statement can be strengthened to:

[1—“——12“_—8@] chlll_@‘l_ .

dropped. Because G” is a complete graph its chromatic nuijlber is x(G") = ¢. Hence we

have: . :

. 14+ /1+8E]
. x(G") S‘ [—""2——J .

-
[

7
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By lemma 5.2 it must be that the chromatic number of G is sialler or equal to the chromatic
number of G” since G was obtained through successive compressions on G and the lemma
ensures that the chromatic number will never decrease with compressions (\(G) < x(GN).
Therefore x(G) < x{G") which implies

‘ 1+ 1+ 8B
=

Alternatively the result can be shown using corollary 3.1. However the proof is less
illustrative of the npcoming compression algorithms. If G = (V, E) has chromatic number
x(G) then by corollary 3.1 it follows that there are at least x{G) nodes of degree y(G) -1

or more in the graph. Hence the sum of the degrees for these particular nodes is at least

- x{G{x(G)~1). By Euler’s observation [Bigg85] the sum of the degrees for the entire graph

is 2|E| and therefore it must be that:
GG -1) < 20E| = x(G) - x(G)-2/E|<0

By solving for the roots of the quadratic and remembering that x(G) is positive and integral:

«(G) < [H__.___ \/1+SIEiJ

a

In the case of the graph of ﬁgﬁ‘re'.;.'"}, the usage of theorem 5.1 tells us that x < lUﬂz@j =
4. Tt is not always the case that the bound is this tight.

Theorem 5.2 Suppose two non-adjacent vertices v; and v; ir a graph G = (V, E) such
that the conflict v(v;,v;) = 0 or 7(v;,%;) = 0. Then there exists an optimal graph coloring

C which assigns the same color to v; and v; : C(v:) = C(v;).

Proof Suppose an optimal graph coioring Cope of G = (V,E). I Cope{wi) = Cope(;)
then the theorem is verified. So the remainder of the prool concentrates on the case that

Cope(i) # Cope(v5)-

Now suppose that ¥(v;,v;) = 0 and consider the following color assignment C' to the

vertices in V:

Clve) = Cope(ve) Yvr € V\ {v;}
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C(®1) = Cone(23)

In the assignment C it is clear that both v; and v; have the same color. Since all vertices
other than v; preserve their color from C,, it must be that all pairs of adjacent vertices
which exclude v; must have different colors in assignment C. So one only needs to show
that vertices adjacent to v; have a different color to that of v; to determine that C is a

graph coloring.

In C,p: all adjacent vertices to v; must be a of different color to v;. This is also true
in C since all these vertices carry over their color. Because (v, v;) = 0 it is true that
all adjacencies of »; a.1:e also adjacencies of v;. And since v; is of the same coior as v; in
C it must be that all adjacencies of v; are of a different color than v;. Therefore it has
been verified that all adjacent vertices in G do not have a color match. Hebce C is a graph
coloring, And since it uses the same number of colors as Cope this implies that it also is an
optimal graph coloring. Therefore the theorem holds for y(;,v;) = 0. The argument for

~(v;,v;) = 0 is identical with the roles of v; and v; reversed. Hence the theorem holds. O

By the very nature of the proof which constructs an optimal coloring with v; and v; to
be of the same color from any optimal coloring with v; and v; differing in color, this implies
that there are at least as many optimal colorings with »; and v; matching as there are some
where »; and v; disagree. Hence the use of theorem 5.2 when coloring graphs will not make
~ optimal solutions “harder” to find. In the graph of figure 2.3 7(v2,v5) = 0. By theorem 5.2

there is an optimal coloring of this graph with v, and vs matching in color.

Corollary 5.1 If there are two non adjacent vertices v;,v; in a graph G = (V, E) such that
the conflict ¥(v;,v;) = 0 or v(v;,v) = 0 then the graph G’ obtained from a compression of

“v;,v; on G has:

x(G") = x(G)

Proof By theorem 5.2, graph G has an optimal coloring with v; and v; in the same color.
By observation 2.1 (C} this optimal coloring can be transformed into a vertex coloring of

G’ without using any new colors o the x(G) used in the optimal coloring. Therefore it
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must be that x(G") € x(G). But by lemma 5.2 x(G) < x(G’). Hence it can only be that:
x(G') = x(G)

O

Corollary 5.1 will have an important role in the algorithms presented in the next section.
In conjunction with observa.tién 2.1 (A) and compressions, it can be used to construct the
coloring of a graph G from that of a compressed graph G’. In figure 2.4 {(a) ¥(vs,v4) = 0
and the vertices v and v; are compressed for the graph in (b). In (b) (v 4, v) = 0 and
the vertices v34 and vs are compressed. In (c¢) ¥(vs,v2) = 0 and there is a compression on
v, and vs to yield the complete graph in {d) with chromatic number 3. Since the conditions
of corollary 5.1 held at each compression step it must Be that the chromatic number of the
original graph is 3. It is interesting to note that as compressions progress, conflict between
two arbitrary vertices may shrink to 0. For example in figure 2.4 (a) one can note that
¥(vs,v2) # 0. Yet after a few compressioﬁs which transform the graph into (¢) one notes
that y(vs,v2) = 0. It is this particular property of conflicts which renders corollary 5.1

useful in the algorithms.

Although they may appear intuitively obvious from the previous discussions, the fol-
lowing results will play a direct role in the design of the algorithms. That is why their

presentation is given in detail.

Proposition 5.1 If a graph G - (V, E) undergoes a compression on two non-adjacent
vertices v; and v; and the fesulting graph is G' = (V’,E') with ¢ new vertez v;; then the

degree of v; ; in G’ is related to the following values in G:
d(vi) = e, v) + 1(v0,v3) + 1(v5, %)

" Proof In G’ v;; is connected to any vertex v; or v; was connected to in G. Since :EJ,' and
v; a;é not adjacent in G and that they are the only two vertices to vanish in G’, we are
guaranteed that all their adjacencies will be preservéii;in G' and that v;; can be connected
to them. The vertices for which v; and v; are a.dja;:ent to can be separated into three

- distinct groups:
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1. Nodes adjacent to both v; and v;. v;; will gain one adjacency in G’ for each one

of these nodes in G. By the definition of affinity there are a(v;, v;) such nodes.

2. Nodes adjacent to v; but not v;. v;; will gain one adjacency in G’ for each one

of these nodes in G. By the definition of conflict there are ¥{v;, v;) such nodes.
3. Nodes adjacent to v; but not v;. v;; will gain one adjacency in G’ for each one
of these nodes in G. By the definition of conflict there are y(v;, v;) such nodes.

Summing up the contributions to v; ; one gets d(v; ;) = a(v;, v;) + 7(vi, v;) + Y(v;,%). O

Proposition 5.2 If a graph G = (V, E) undergoes e compression on two non-adjacent

vertices v; and v; and the resulting graph is G' = (V', E') then

|E] - 1B'] = afv:, vy)

Proof By the definition of compression, all the edges connected to »; and v; in G are lost

and the edges connected to v;; in G’ are gained. So:
VE| = |E'| = d(v) + d(v;) — d(vi;)

Now d(v;) is the number of vertices a&jacent to both »; and v;, (v, v;), in addition to the
number oi; vertices adjacent to v; but ‘not v;, Y(vi,v;). Hence d(v;) = a(v;, v;) + (v, v;).
Similarly, d(v;) = a(w,v;) + v(v;, ). And from proposition 5.1 d(wv;) = ofv;,v;) +
(v, ;) + (v, v;). Therefore, by substitution,
|B| = |E'| = + o(ws, v5) + 7 (v, v5)
+ a(v;, v;) + (v, )
= o(v;,9;) — (v, v5) — 1(v5. %)

= a(v;, v;) (5.1}, |
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Proposition 5.3 Let G = (V, E) be a graph which is not complete. Consider the compres-

sion of two non-adjacent vertices v; and v;. Let
Lij={ri{w.7} € E A {77} € E}

rj,f = {7 I {vjv‘T} €L A {vl's'T} ¥ E}

The number of adjacencies between the conflicts of v; end v;:

H{7e> 75} € E|7a € Ty Ay, € 553

represents the number of new triangles introduced by the compression. New triangles are

triangles which were not present in the graph before the compression.

Proof New triangles must involve v; ; otherwise they would have existed in the graph prior
to compression. Since all adjacencies of v; ; stem from adjacencies of v; and v; it follows that
all triangles involving v; ; include two adjacent nodes which must belong in the affinities and
conflicts of v; and v;. If both the nodes completing the triangle with v; ; are affinities of ;
and v; then one triangle will be lost through the compression; see figure 5.1 (a). If the one
of the nodes is an affinity and the other in I[;; or T';; then the triangle is preserved thrbugh
compression. Similarly if both nodes are in I'; ; or both nodes are in I';;. However if one
node is in ['; ; and the other in I';; then a new triangle is created through the compression.
This is illustrated in figure 5.1 (b). =

Proposition 5.4 Let G = (V, E) be a graph which is not complete. Consider the com-
pression of two non-adjacent vertices v; and v;. And upper bound on the number of new

triangles created by the compression is y(wv;, v;) - Y(v5, v:).

Proof Clearly |T; ;|- [T;.:l = ¥(w, v;) -¥(v;, %) is the maximal number of edges between the

elements of disjoint sets I'; ; and I';; of proposition 5.3. a

5.2 WWI Algorithms

The pair of WWI algorithms is detailed in this section. As previously discussed, WWI

based on affinities is a globalized compression algorithm which targets low edge density
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Figure 5.1: (a) A triangle is lost (b) A new triangle is created

graphs requiring few colors. By considering compression choices throughout the graph the
algorithm’s decisions are considerably better than if the search is limited to specific vertices.
On the other hand, WWI on conflicts is a localized compression algorithm which aims at
graphs of higher edge densities. At higher densities localized compressions are preferable
since each compression runs a greater risk of increasing the chromatic number but a sequence
of compressions about a single vertex can only increase the chromatic number by at most
one. Therefore a loéalized compressidn mechanism provides further guarantees on graphs

of higher density.

5.2.1 WWI on Affinities

WWTI on affinities uses three criteria to determine which nodes are compressed at each stage

of the algorithm. They are rarked in order of importance:

1. First the graph is examined for any pair of non-adjacent vertices % and v; for which

¥(vi,v;) = 0 or ¥(v;,%;) = 0. If such a pair exists thén v; and v; are compressed.
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2. If no situation of C conflict exists then two nodes v; and #; with the largest possible

affinity e(v;,v;) within the graph are selected to be compressed.

3. If several pairs of nodes v; and v; have maximal affinity then they are distinguished
by the sum of their conflicts (i, 9:) + 7(v;,%). A pair with the largest affinity and

then the smallest conflict sum is selected.

Criterion 1 is based on corollary 5.1 which guarantees that sich a selection is an optimal
choice by preserving the chromatic number. If zero conflicts are not present in the graph
then the algorithm uses criterion 2. By proposition 5.2 the number of edges lost in the
compressed graph is equal to the affinity of the compressed nodes in the graph prior to
compression. Selecting a pair leading to the largest possible edge loss works in favor of the
bound introduced in theorem 5.1. If several pairs of nodes have the highest affinity then one
which has the smallest possible conflict sum is selected. In the light of proposition 5.1 this
will create the compressed vertex with the smallest possible degree a.mongs:t*the nodes of
higheét affinity and this will therefore work in favor of the bound of theorem 2.2. After each
compression the affinities and conflicts are recalculated to reflect those of the compressed
graph. Finally, criterion 2 can also be justiﬁed as a greedy stép to keep the longest possible

list of compression candidates for the next iteration.

Appendix A provides an implementation of WWI on affinities with an efficient method
to recalculate conflicts and affinities. The resulting algorithm is of order O(|V[®) in the

worst case.

5.2.2 WWI on Conflicts

The properties of affinity and conflict which drive the first order compression selection pro-
cess only depend on the immediate neighbors of the compressed vertices. By concentrating
on larger subgraph structures, such as those found in 2nd order criteria, a heuristic decision
relies on more information and as such it could lead to better selections. Howaveruﬁhe anal-
ysis involved for second order selections is of greater complexity and the price is a worsened

time performance for each compression of the algorithm.
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In light of proposition 5.3 and corollary 3.4, a justifiable second order criterion is the
number of edges between the conflict nodes of compression candidates. As previously
observed, the compression of two vertices having the minimal value for this particular
criterion is a greedy step towards introducing the fewest possible new triangles in the
compressed graph (see proposition 5.3). In turn, the number of triangles influences the
number of odd cycles on which the chromatic number depends (see corollary 3.4). As well,
another theoretical justification for thils criterion will be found in the upcoming perfect
class discussion and the conflict free lemma (see lemma 5.6). Finally, empirical evidence

will show that this method provides better results at the cost of a larger time complexity.

Because of the lure of improved performance from the second order algorithm, a natural
goal is to search for a first order criterion which is an approximation to the second order one.
Such an algorithm would have the time complexity of the first order affinity and conflict
calculations while targeting performance results near those of the second order. That it

precisely what WWTI on conflicts sets out to achieve.

For the number of edges between the conflict nodes of two'vertices v; and v; there
is. a clear upper bound at y(v;,v;) * ¥(v;, %) as demonstrated in proposition 5.4. Since
this bound is based on first order values of conflict it can be used as a rapid indicator of
the maximal number new triangles inserted by a compressibn. Furthermore if edges are
uniformly distributed on the graph then the product of conflicts is proportional to the
number of new triangles created via a compression. And therefore y(v;, ;) - ¥(v;, %) is used

as a first order approximation to the aforementioned second order criterion.

At each compression step the criteria for WWI on conflicts are:

1. If there are possible compressions which include the last vertex compressed then
only consider compreésion candidates including that vertex. Otherwise consider all
candidates. This is a localized algorithm. ‘ ’

2. Compress the nodes »; and v; with the smallest conflict product: y(v;,v;) - ¥(v5, w).
At the same time this serendipitously gives priority to (optimal) zero conflict com-

pressions.
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3. If several pairs of vertices share the minimal value of conflict product then select

amongst them the pair with the highest affinity.

4. If there is still no outstanding pair of vertices then select a pair with smallest sum of

conflicts amongst the competing pairs remaining after 2 and 3.

The algorithm which uses the product of conflicts is the same as that in the WWI
on affinities discussion except that the sub-algorithm of section A.2 was adjusted for the
new criteria. Since the product of conflicts also stems from a first order calculation the
complexity of the algorithm remains at O(jV]®). Empirical evidence will be provided to

show that the first order approximation achieves its objective of emulating the second order.

5.2.3 Discussion on Algorithms

Tseng’s algorithm [T'sSi86) discussed in chapter 2 has metrics similar to affinity and conflict

in its operaﬁion. Their algorithm addresses the related problem of clique partitioning. The

. : algorithms differ as theirs is localized of the graphs whereas WWI on affinities is global-
' ized and WWI on conflicts is localized, the node selection criterion differs, the theoretical
justifications and outcomes of the algorithms also differ. Finally, the WWTI algorithms op-

‘erate in the worst case time order of O(|V|%) whereas the algorithm in [TsSi86] is of order

O(|V]*|E¢|). However, using the same technique as i appendix A, Tseng’s algorithm could

also be implemented in O(IVP;. The method is universal to all conflict and affinity calcu-

lations. The benchmarks will demonstrate that the WWT algorithms actually operate in a

time proportional to O(|V||E°|) (this becomes intuitively obvious in appendix A when it is

shown that only the edge complement needs to be traversed at each compression step).

5.3 An Example of WWI on Affinities at Work

Figure 5.2 shows an example of a graph being colored with the WWI on affinities algorithm.
Figure 5.2 (a) shows the graph to color and the affinity-conflict table for that particular
graph. Since there are no conflicts with zero value in the graph the algorithm turns to
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finding the pair of vertices with the highest possible affinity. Three pairs of nodes have
the highest affinity, namely {vas,vs}, {va, vz}, {vs.v7}. however only one has the minimal
sum of conflicts and that is {vs, ve} with 4(vs, v3) + (v, v3) = 2. Therefore vs and vs are
compressed and the resulting graph is shown in figure 5.2 (b) along with its affinity-conflict
table. At that stage nodes v; and v; ¢ are compressed since they have the highest affinity of
the graph and no zeto conflicts are present. The resulting graph is shown in figure 5.2 (c).
The affinity conflict table is uniform throughout because of the symmetry between elements
of the edge complement. Clearly it does not matter which pair is selected at this point but
the algorithm proceeds by arbitrarily selecting the pair vs and vs. This yields the graph
of figure 5.2 (d). From which the selection of nodes v4 and vs is optimal since these nodes
are in 2 zero conflict situation (in fact both v(vs,vs) = 0 and y(vg,v4) = 0). Compressing
vy and vg produces another symmetric graph, that of figure 5.2 (e}. Compressing the
nodes vy and vs ¢ returns the graph of figure 5.2 (f). Finally compressing nodes v, and v, 4
results in the complete graph of figure 5.2 (g). Therefore the graph of figure 5.2 (a) can be
colored with 3 colors with C(v,) = C(vs) = C(vg) = 2, C(va) = C(ws) = C(wg) = 1 and
C(vs) = C(vs) = C(vy) = 0. ‘

5.4 Implications of WWI on affinities

_The following results provide theoretical indication that WWT on affinities is well suited for

graphs of low edge density and small chromatic number.

Theorem 5.3 Let G = (V, E) be a graph such that its chromatic number is x(G) < 2. The

WWI on affinities algorithm returns an optimal coloring for G.

Proof The algorithm proceeds by first finding pairs of nodes v; and v; such that y(v;,v;) = 0
or 7(v;,v;) = 0. If such a pair of nodes exists then it compresses both nodes to.a common
color. As demonstrated in theorem 5.2 this assignment is optimal and thus the proof only

needs to concentrate on the cases that such a pair does not exist.

In the case that zero conflict pairs do not exist then the algorithm selects two nodes

v,% € G which have the highest affinity and it then compresses them into the same
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Figﬁre 5.2: WWI on affinities example
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color.

If e(v,,v,) > 0 then it will be shown that v, and v; must have the same color in any
optimal coloring and that the assignment in WWTI on affinities is therefore correct. Suppose
that v, and v, have different colors in an optimal coloring C for G. Since x(G) £ 2 and
v, and vy are of different colors then it must be that all other nodes in the optimal color
assignment C are of the color of v, or v, so that the number of colors does not exceed 2.
But since a(v,,v,) > 0 there exists a node 2, which is adjacent to both v, and vy. For C
to be a valid vertex coloring it must be that v, is a third color from that of v, and v,. This
contradicts that-C is an optimal coloring. Therefore it must be that v, and v, are assigned

the same color if a{v,,v,) > 0 and this is precisely what WWI on affinities does.

If a(v,,v;) = 0 then it can be shown that there exists an optimal coloring with u,
and v, having the same color. Ouly the case of ¥{v,,v;) > 0 or 7(vy,v,) > 0 must be
considered; otherwise, by virtue of theorem 5.2, fhe algorithm would have compressed the
two nodes to a same color by its first selection criterion. Since ¥(vp,vg) > 0 there exists at
least one node v, which is adjacent to v, but not v,. Similarly there is at least one node -
vg adjacent to v, but not v,. This situation is illustrated in the partial graph of figure 5.3.

Now suppose that v, has another neighbor v, different from w,. Then either v, is also

Vo Vq

i‘\ :
\“‘:E:-\

Figure‘ 5.3: A partial graph with dependencies between v, vy, ¥4, v

connected to v, or it is not. The two situations are illustrated in figure 5.4 (a) and (b)-.
The scenario in figure 5.4 (2) is impossible since a(v,,%) > 1 and this would contradict
that the maximum affinity in the graph is 0. And the scenario in (b} cannot hold either
since the subgraph shown requires at least three colors and this would contradict x(G) £2.

Hence v, cannot have any other neighbors and y(vy, v} = 1. Similarly v, cannot have any
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other adjacencies than v3. Also v, cannot have other adjacencies because if another vertex

Vg Vg

() (i)

Figure 5.4: Two possibilities with v,

v; would be adjacent to v, then v, and vs would share v, in their affinity and this would
contradict that the maximal affinity in the graph would be 0. By a similar argument vg
cannot have any other adjacencies. Therefore vertices v,,v, and vg, v, form subgraphs of
size 2 disconnected from the rest of G as shown in figure 5.3. And clearly there must exist
an optimal coloring with v, and v, having the same color. Hence the theorem stands for

all possible cases. O

A trivial consequence of theorem 5.3 is that if WWTI on affinities returns a coloring of
three colors for any given graph then that is an optimal coloring for the graph. In addition
WWI on affinities colors graphs consisting of disconnected cycles optimally (cycles which

do not have nodes in common):
Lemma 5.8 Cycles are optimally colored by WWI on affinities.

Proof Even cycles require 2 colors and by invoking theorem 5.3 they will be optimally
colored. Odd cycles require three colors and a proof by induction is used to show that they

will be colored optimally.

Firstly note that an odd cycle of 1enéth 2(1) + 1 (a triangle) is colored optimally by
WWI on affinities. Secondly, assume that all odd cycles of length 2(k) +'1 are colored
optimally by the algorithm. We now proceed to show that odd cycles of length 2(k +1}+1

are colored optimally.
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As a preliminary, define the operator @ so that a & b= (a + b) mod (2(k + 1)). Label
the nodes in the cycles so that the cycle is (wg, wy,. .. , Wagks1), Wo). For an odd cycle the
maximum affinity between any pair of non-adjacent vertices is 1 and there are no situations
of zero conflict. An affinity of 1 exists between the following pairs of vertices: w; and
Wiga ¥ 0 << 2(k+1). Hence, for some 0 < j < 2(k + 1), WWI on affinities will
compress vertices w; and w;gs. Once w; and w;g, are compressed, vertex wjg; will have
only one adjacency: w; ;g2 Furthermore w;g, will have zero conflict with w;e_; and wjea.
Because of the zero conflict, the algorithm’s next step will be to compress w;g; With w;g—,
or Wjg: with Wigs. In both cases the resulting graph is an odd cycle of length 2(k) +1
which WWI on affinities will color optimally by the induction hypothesis. (|

Theorem 5.4 Any graph consisting of the union of disconnected cycles is colored optimally
by WWI on affinities.

Proof The algorithm first reduces each cycle to a clique before compressing nodes of dif-

ferent cycles since there is 0 affinity between nodes on disconnected cycles. By lemma 5.3,

each cycle is optimally reduced to a clique of size 2 or 3. The algorithm will then proceed

to compress pairs of cliques until only one clique remains. It is easy to verify that the
comptression steps of two disconnected cliques into a single clique are optimal. Hence the

resulting coloring will always be optimal. ' O

5.4.1 A Heuristic

Although the WWI algorithms are quite efficient, they are only heuristics and they do not .
necessarily provide optimal graph colorings. To demonistrate this we use the interesting
graph of figure 5.5 (a). As shown on the graph it is possible to color the graph with three
colors and since cycles of length three are within the graph then it must be that x = 3.
This graph has an interesting property that if a coloring C' is an optimal colo'ring then
C(v2) # C(vs) and C(vs) = C(vg) hold true.

If one performs WWI on affinities for this graph then there is the possibﬂjfy that the
optimal coloring will not be obtained. From the affinity and conflict table of figure 5.5 (b)
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one can notice that there are no 0 conflicts in the graph. So the algorithm will proceed
selecting a pair of vertices with the largest affinity, in this case 2. There are four pairs
with affinity 2 but the pair of v and vg is dropped since it has a conflict sum higher than
the other three pairs. This leaves the algorithm with three equally rated pairs in a tie for
compression. The equally rated pairs best satisfying the criteria of WWI on affinities are
highlighted in the table. Unfortunately the pair of v2 and vs is amongst the choices with
afvg, v5) = 2, 7(v2,95) = 1 and 7¥(vs,v2) =.1. If the pair of v, and vs is selected then
the resulting graph is shown in figure 5.5 (¢). From there the compression of vs and v,
is ranked highest with a(vs,v7) = 1, y(vs,v7) = 1 and y(vs,v6) = 1. This results in the
graph of figure 5.5 (d) which has two equally good candidates for a compression: v; and
vg for ¥(vs, v3) = 0 or vy and ve 5 for y(vs, v-__;'s) = 0. The graph in figure 5.5 (e) shows the
result of compressing v4 and vy 5. From that point both v(vs,7¥1) = 0 and (v 7,va) = 0.
Compressing vs 7 and v; results in the complete graph of ﬁgﬁre 5.5 (f). At this point WWI
on affinities reports 4 colors and a coloring € with C(v;) = 3, C(v:) = C(vy) = C(vs) = 2,
C(va) = C(vs) = C(v7) = 1 and C(wg) = 0. Clearly the number of colors required by WWI

on affinities is not optimal for this particular case.

5.5 Benchmarks

Two sets of extensive benchmarks are provided to demonstrate the efficiency of the algo-j
rithms. The first concerns the widely benchmarked random graphs v hile the other is on

the hard to color k-colorable random graphs.

5.5.1 Random Graphs

To appraise the performance of the WWI algorithms we use random graphs to collect
statistics [A1SE92, Boli88, BoEr76]. A random graph G(n,p) is generated given a number
of nodes » and a probability p of an edge between any pair of nodes. The tables in figure 5.6

and 5.7 are a compilation of averages on the number of colors, the number of zero conflict

- compressions, the fraction of zero conflict compressions over the number of compressions,
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the number of conflict free compressions detected, the fraction of conflict free compressions
over the total number of compressions, and the average execution times used by WWI on
affinities and WWI on conflicts. The exact meaning of these specialized compressions will
be introduced in section 5.6 but for the present purpose it suffices to state that they are

known to preserve the chromatic number or the maximal clique number.

In addition the number of colors used by the widely known greedy [Bigg85, Gibb85)
algorithm is also supplied in figure 5.6. The greedy algorithm is used as a comparison since
it is often benchmarked against and thus it is a useful yardstick. In figure 5.7 the number
of colors for Tseng’s algorithm is given (see chapter 2). The results were averaged over
100 graphs for each value of (n,p) and were computed on Sun SparcStations 10 model 41
with 32MB RAM and 1MB cache running SunQS 4.1.3. The WWT algorithms are fastest
on complete graphs and are slowest when there are no edges. The execution times listed
include the operating system’s maint'ena.nce time and can be improved if performed on
machines with lesser loads than the ones available to us. The execution times also include
several consistency checks and each coloring undergoes a post-processing verification. ¥rom
the tables one can extrapolate that the execution time is about C-(1—p)-|V|® where C is a
constant dependent on the computer architecture. For our particular architecture C = lus
for WWI on a:fﬁniﬁes, and for a Gateway 2000 4DX2-66V peréona.l computer with 12MB
RAM, 256KB cache running the Linux 1.0 operating system C = 1.4us. If p is interpreted
as the edge density then it can be replaced by p = ﬁ%‘m and the formula becomes a
useful predictor of the execution time. As implemented, the WWI algorithms operate in a
time proportional to O(|V||E€|).

For graphs of a small number of nodes there is a good number of perfect graphs which
are reported to be optimally colored by the WWTI algorithms since conflict free compressions
are used throughout the coloring process. However, as the number of nodes increases, these
graphs become less frequent and quickly get skewed out in the extremal edge density regions

(such as shown in figure 5.6 and 5.7 for n = 25 at p = 0.05 and p = 0.95).

Furthermore, from the benchmarks for the low values of p (p = 0.05,0.25) it becomes

apparent that there can be alarge disparity between the number of conflict free compressions |
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and zero conflict compressions. Conflict free compressions involve a costly second order
check which is a superset to the conditions of theorem 5.2. Instead of aiming the search
criteria at conflict free compressions directly, the WWI algorithms only verifies for conflict
free compressions once compreésion pairs ha.vé already been selected on the basis of other
criteria. This is in. order to keep the time complexity at O(|V]®). Therefore, if one is
willing to tradeoff on the overall time complexity of the algorithms, there can be a definite
advantage in a direct search for conflict free compressions instead of performing the a
posteriori detection currently implemented in the WWI algorithms; especially in the case

of low edge densities.

It is clear throughout the benchmarks that WWI on conflicts provides a superior perfor-
mance to Tseng’s algorithm and that WWI on affinities does provide better results at lower
edge densities than WWI on conflicts, However, random graphs do not make a particularly
rigid test despite their popular use in benchmarks. The random graph benchmarks do

| provide a distinction between WWI on affinities, WWI on conflicts and Tseng’s algorithm
but the differences are sometimes minor, especially in the very high edge density cases of
p = 0.95. The next subsection will provide a-more stringent set of benchmarks which will

result in substantial differences between the algorithms.
L

5.5.2 k-Colorable Random Graphs

It has been shown that random graphs [AISE92, Wi}f84, Boll88, BoEr76] are relatively easy
to color and that even the greedy algorithm will perform relatively well on them. As a
more stringent test on the algorithm, we use k-colorable random graphs as proposed by
Turner [Turn88] to benchmark WWI. A k-colorable random graph G(n,k,p) consists of a
random experiment which first generates a k-colorin.g on n nodes and then produces edges

with a probability of p between nodes of different colors.

Figures 5.8 (a),(b),(c}),(d) plot the performance of five algorithms for p = 0.5. Fifty
k-colorable graphs were generated for each value of &k plotted and the average ratio of the -
number of colors returned by the algorithms over k is given. Clearly the WWI algorithms
outperform the greedy a.lgorithni and the Brélaz algorithm by a wide margiﬁ (for the latter
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l P= 0.0SI WWIon Zero Zero ; Conflict | Conflict | Exec.
Affinities | Conflict | Conflict Free Free | Time | Greedy
n | # Colors | Comp. % | Comp. % | (secs) | # Colors
25 2.35 19.56 86.3 22.5 99.3 | 0.015 2.87
100 4.1 42.35 44.]1 68.62 TL6 | L.124 5.29
250 6.35 76.81 315 117.24 48.1 | 14.37 8.43
500 9.57 | 119.45 243 | 174.34 35.5 | 120.7 12.65
1000 14.96 192.14 19.5 256.5 26.0 | 911.2 19.62
1p =0.25 I WWIon Zero Zero | Conflict | Conflict | Exec.
Affinities j Conflict | Conflict Free Free | Time | Greedy
n | # Colors | Comp. % | Comp. . % | (secs) | # Colors
25 -4.33 10.85 525 14.8 71.6 | 0.017 5.31
100 9.76 26.19 29.0 33.26 36.8 | 0.828 12.46
250 18.08 48.02 20.7 56.88 24.5 | 10.19 23.05
500 30.44 79.15 16.9 88.84 18.9 | 87.19 38.39
1000 52.74 | 130.77 13.8 | 142.42 15.0 | 748.2 64.94
l p= 0.50| WWI on Zero Zero | Conflict | Conflict | Exec, _
Affinities | Conflict | Conflict Free Free | Time | Greedy
n | # Colors | Comp. % | Comp. % | {secs) | # Colors
25 6.70 9.00 491 10.85 59.2 | 0.008 8.09
100 17.05 21.23 25.6 24.10 29.0 | 0.472 21.37
250 34.10 40.84 18.9 44.22 205| 7.03 42.19
500 59.73 68.59 15.3 72.64 16.1. 61.20 72.64
1000 106.83 | 117.60 13.2 | 12183 13.7 | 482.3 126.68 |

Figure 5.6: Benchmark results for random graphs and WWI on affinities
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l pP= 0.?5[ WWI on Zero Zero | Conflict | Conflict | Exec.
‘Affinities | Conflict | Conflict Free Free | Time | Greedy
n | # Colors | Comp. % | Comp. % | (secs) | # Colors
25 10.21 8.91 60.2 9.68 65.4 | 0.004 11.78
100 27.38 18.78 258 20.46 28.1 | 0.210 33.37
- 250 57.17 37.28 19.3 38.95 20.1 | 3.17 68.47
500 102.16 | ~ 65.83 16.5 67.62 17.0 | 26.09 121.5
1000 186.15 | 112.04 13.7 113.8 14.0 ; 2304 216.63
l p= 0.95| WWI on Zero Zero | Conflict | Conflict | Exec.
. Affinities | Conflict | Conflict Free Free | Time Greedy
n | # Colors | Comp. % | Comp. % | (secs) | # Colors
25 17.19 T.77 99.5 7.78 99.6 | 0.001 17.81
100 47.65 21.38 40.8 22.16 42.3 | 0.047 54.9
250 100.85 4283 28.7 43.77 29.3 | 0.651 119.36
500 180.48 78.94 24.7 79.68 249 5.26 216.33
1000 331.68 97.3 14.5 08.29 14.7 | 39.34 | ~ 389.56

Figure 5.6: Benchmark results for random graphs and WWI on affinities (continued)
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l p= 0.05, WWI on Zero Zero | Conflict | Conflict | Exec.
Conflicts | Conflict | Conflict Free Free | Time Tseng
n | # Colors | Comp. % | Comp. % | (secs) | # Colors
25 2.35 19.94 88.0 22.47 99.1 | 0.016 2.56
100 4.3 41.17 43.0 59.99 62.7 1.08 4.77
250 7.14 40.66 16.7 62.92 25.9 | 15.45 7.38
500 10.66 43.35 8.85 64.21 13.1 | 125.1 11.02
1000 16.13 47.35 4.81 67.31 6.84 | 980.2 16.76
I p= 0.25| WWIon Zero Zero | Conflict | Conflict | Exec. ‘
Contflicts | Conflict | Condflict Free Free | Time Tseng
n | # Colors | Comp. % | Comp. % | (secs) | # Colors
25 4.56 10.91 53.2 13.44 65.6 | 0.012 4.80
100 10.49 13.92 15.5 16.85 . 18.8 | 0.722 10.92
250° 19.37 17.69 7.67 20.83 9.03 | 10.9 19.87
500 31.55 25.04 5.34 27.82 5941 91.6 32.32
1000 52.99 35.90 3.79 38.94 4,11 ] 744.1 53.92
i p=0.50 I WWI on Zero Zero | Conflict | Conflict | Exec.
Conflicts | Conflict | Conflict Tree Free ! Time Tseng
n | # Colors | Comp. % | Comp. % | (secs) | # Colors
25 6.79 8.42 46.2 9.63 52.8 | 0.008 7.26
100 17.3 12.44 15.0 13.84 16.7 | 0.463 18.37
250 33.96 20.13 9.3 21.64 100 7.31 35.77
500 57.91 31.21 7.05 32.55 736 | 61.8 60.63
1000 101.15 50.0 5.56 51.37 5.71 | 504.2 104.72

Figure 5.7: Benchmark results for random graphs and WWI on conflicts
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p=0.75| WWlon Zero Zero | Conflict | Conflict [ Exec.

Conflicts | Conflict | Conflict Free Free | Time Tseng
n | # Colors | Comp. % | Comp. % | (secs) | # Colors
25 10.08 9.5 63.63 10.15 68.01 | 0.005 10.46
100 27.17 13.65 18.7 14.96 20.5 | 0.228 28.79
250 54,95 25.71 13.17 26.84 13.75 4.93 57.90
500 96.47 43.11 10.68 4426 10.97 | 28.34 101.08
1000 172.09 | ~ 69.43 8.39 70.47 8.51 | 267.11 179.27

I p= 0.95| WWI on Zero Zero | Coniflict | Conflict | Exec. ‘
Conflicts | Conflict | Conflict Free | Free | Time Tseng

. 1| # Colors { Comp. % | Comp. % | (secs) | # Colors

25 17.13 7.81 99.3 7.85 99.7 | 0.002 17.19

100 47.28 23.19 43.9 24.02 45.5 | 0.052 48.09
250 99.25 39.04 25.9 39.90 26.5 | 0.766 99.62

500 175.38 68.33 21.0 69.30 21.3 | 5.56 178.42
1000 321.89 92.19 13.6 93.25 13.7 | 47.35 321.80

- Figure 5.7: Benchmark results for random graphs and WWI on corflicts (continued)
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we have taken the statistics from [Turn88)). WWI on conflicts clearly outperforms all other
algorithms by a large margin. WW1I on affinities, designed for lower edge densities, becomes

outperformed by Tseng’s algorithm as n gets large.

Figures 5.9 and 5.10 show the effect of varying p for » = 128 and »n = 256. Reducing
p shifts the worst case performance peak to smaller k while thinning it out. Eventually at
p = 0 the peaks will vanish and the curves will behave as |+]. Increasing p shifts the worst
case performance peak to higher values of k£ while flattening it out. Ulti.ma.tely, atp=1

the performance ratio will never exceed 1 and all graphs will be colored optimally.

The benchmarks of figures 5.8 and 5.9 and 5.10 show that WWI on conflicts is clearly
the better algorithm with exception to the lower edge densities when WWI on affinities
.performs better. At lower edge densities, p = 0.15 and p = 0.3, WWI on conflicts does
not provide a significant improvement over Tseng’s algorithm; however, the performance

difference becomes clearly apparent when p increases.

5.5.3 The first order approxifnation to the second order

The graph of figure 5.11 provides. a sample of the 2nd order zlgorithm minimizing the
new triangles introduced at each compression step and the extent of the a.ﬁproximation
achieved with WWI on conflicts. Although it does not provide results which are identiczﬂ,
the curve for WWI on conflicts tightly follows that of the second order algorithm. With
lower edge probability the bound of proposition 5.4 becomes less tight and consequentially
the approximation becomes a bit less accurate. This is another indicator as to why WWIon
contlicts does better at higher edge densities. As a possible improvement a better first order
approximation would involve a mechanism to keep track of the probabilistic distribution of

edges between conflict nodes.

The implementation of the second order algorithm is identical to that of WWT on
affinities found in appendix A except that the sub-algorithm of section A.2 was modified
to count the number of edges between the conflict nodes. Furthermore, if two pairs of
nodes present the same number of edges between their conflict nodes then the pair with
the highest affinity is selected. |
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- 5.6 Perfect class

This section devotes itself to defining a class of perfeét graphs which lends itself well to

compression style coloring algorithms. The following lemmas and definitions are key in

characterizing the class.

Lemma 5.4 Suppose a graph G = (V, E) which is not complete. A compression of two non-

adjacent vertices in G to a graph G' = (V', E') has the following clique number relationship:

w(G) € w(@) £ w(G)+1

Ifv; and v; are the two compressed vertices and w(G’) = w(G)+1 then v;; is in all mazimal
cliques of G'.

Proof Let v;,v; € V be the two compressed vertices in G and let v;; be the compressed

vertex in G (> (G : w,;5G" : ;7)) First it is shown that w(G') 2 w(G) by dividing the
proof into three distinct cases: '
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1. If there is a clique W, of maximum size in G with v; ¢ W] and v; € W, then

W) is also 2 clique in G’ since all vertices in W, are preserved in G’ as well as the
edges by the definition of a compression. So for this case we are ensured that there

will be a clique of size w(G) in G".

. If there is a clique W, of maximum size in G such that »; € W, then there

will also be a clique of size w(G) in G’. Clearly v; € W, since a compression of »; and
v; implies that {v;,v;} ¢ E and this would contradict that W> is a clique. We now
argue that the set of vertices Wi = (Wy \ {v;}) U {v;;} is a clique in G'. This is so
because all vertices in W} \ {v; ;} remain fully interconnected in G’ and vertex v; ; has
all the adjacencies of v; by the definition of compression. Since |Wj| = [Wa2| = w(G)
it follows that G* has a clique of size w(G) for this particular case.

. If there is a maximal size clique including vertex v; in G then the argument

given in case 2 with the roles of v; and v; reversed ensures that graph G’ has a clique
of size w(G).

The three cases cover all possibilities for the location of a maximal clique in G and therefore

one is always ensured that there will be clique of size w(@) in G'. Hence

w(G) < w(G")

Now suppose there is a clique W' of size |[W'| > w(G) in G'. It must be that »;; € W’
otherwise W' would also be a clique in G since all the nodes and the edges connecting
vertices different from v;; in G' are inherited from G (by the definition of compression).
Andif W' is a clique in G then this would contradict that |W’| > w(G). However note that
W = W'\ {v;;} is a clique in G since the vertices in W are fully interconnected in G’ and
this implies that ;‘.hey must be fully interconnected in & by the definition of a compression.
Therefore there is always a clique W in G with |W|+ 1= W] if |W’| > w(G). Hence

W(G) < w(G) +1

This completes the proof. O
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Definition 5.1 (Zero Conflict Compression) Let G = (V, E) be a graph which is not
complete. A compression on two non-edjacent vertices v; and v; is a zero conflict com-

pression if and only if

1o v;) =0V 7(v;,0) =0

Lemma 5.5 Suppose a graph G = (V, E) is not complete. If a zero conflict compression
ezists on two non-adjacent vertices in G then a compression of the two verlices yields a

graph G' = (V*, E") with the following clique number relation with G:

w(G') = w(@)

Proof Since a zero conflict compression exists there are two vertices v; and v; in' G such
that y{;, v;) =0or 7(vj, ;) = 0. Let v;; be the compressed vertex in graph G’ = (V’, E’)
obtained from a compression v; and v; (> (G : v,v;; G’ : v;;)). Suppose there is a clique

W’ of size |W'| > w(G) in G'. By lemma 5.4, it must be that »;; € W'.

Now notice that if ¥(v;, v;) = 0 then the set of nodes adjacent to v;; in G’ is identical to
the set of nodes adjacent to v; in G. Therefore it can only be that W = (W'\ {v;;}) U {v;}
is a clique in @ since all nodes which are different from v;; in W’ exist in G and they
are fully interconnected by the definition of compression. Similarly if y(v;,%;) = 0 then
W o= (W'\ {v:;} U {%}) is a clique in G.

Therefore if y(v;, v} = 0 or ¥(v;, ;) = 0 then there is a clique W in graph G such that
|W} = |W’|. This contradicts that a clique W’ with |W’| > w(G) can exist in G’'. Hence

w(@) < w(G)
Lemma 5.4 demonstrates that w(G') > w(G) so it must be that

w(6) = w(G)
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Definition 5.2 (Zero Conflict Graph) Let G® = (V, E) be a graph. If there exists a
sequence of compressions from G°: '
= (G0, 050 G 2 viy )

1. L
= (G 10,05, G 1 vy )

k-2 k=1,
b (G M 'us'k_-_n ‘vjk_z'l G - vik—:,jk—z)

k1. k.
(G T v 0 G v )

which leads to a complete graph G* and for which each compression is a zero conflict

'

compression: : S
k-1 . ' :
/\ (7(vin v} =0 V ¥(v5,,,%,}=0)

m=0

then G® is a zero conflict graph.
For example the graph of figure 2.4 (a) is a zero conflict graph.

Definition 5.3 (Zero Conflict Class) Z is the class of all zero confliét graphs:

Z={G|G isa zero go"hﬁict graph }
Theorem 5.5 All graphs in the zero conflict class Z are perfect.

Proof Let G € Z. Consequently there must exist a sequence of zero conflict compressions
A{rom G such that a complete graph G” is ultimately reached. By repeated use of lemma 5.5,

one for each compression of the sequence, it must be that
w(G) =w(G") (5.2)

For any graph it must be that the chromatic number is larger than the clique number i.e.
for graph G this implies x(G) 2 w(G). By equation 5.2 we conclude that x(G) 2 w(G").
But since G" is a complete graph it follows that x(G") = w(G"). So it follows that

x(G) 2 x(G") (53)
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But lemma 5.2 implies that a compressed graph can only have a chromatic number greaﬁer
or equal to the chromatic number of the graph prior to compression. Repeated use of

lemma 5.2, one for each compression in the sequence, implies that

x(G) £ x(G") (5.4)

From equations 5.3 and 5.4 it must be that x{(G) = x(G"). But as it has already been
argued X(G") = w(G") and w(G") = w(G). Hence it follows that

x(G) = w(G)

and G is therefore a perfect graph. a

The WWI algorithms keep track of all zero conflict compressions and declare a graph
of class Z if all compressioné performed were of zero conflict type. If a graph was not fully
compressed with zero conflict compressions but a high percentage of the compressions were'
of zero conflict type then the resulting coloring can only be off the optimal goal by a few

colors in the worst case.

The proof of theorem 5.5 purposely avoids the result of corollary 5.1 so that the proof
becomes generic to any type of compression which preserves the cligue number of the graph.
This generic property is now used to prove a class of perfect graphs which is more general
than Z.

‘Definition 5.4 (Conflict Free Compression) Let G = (V, E) be a graph which is not

complete. Consider the compression of two non-adjacent vertices v; and v;. Let
Lij={7{w,7} € E A {v;,7} € E}

Tii={7|{v;,7} € E A {vi,7} ¢ E}

The compression of v; and v; is a conflict free compresgion if and only if

{‘Tl"'TJ} &' E V v [ ri,j: "YJ. e I‘.':.
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Lemma 5.6 Suppose a graph G = (V, E) which is not complete and two non-adjacent
vertices v; and v; such that the compression > (G : v;,v;;G @ v ;) to a graph G’ s a
conflict free compression. Then

Ww(G") = w(G)

Proof Define I'; ; and T';; as in definition 5.4. Also define the set of all vertices adjacent
to both v; and v;:
Aﬂ'.J' = {a I {‘U;.,Q} EE A {TJJ',C!} € E}

Since the cotapression of v; and v; is a conflict free compression there cannot be an edge
between a vertex of I';; and one in T;;. Also notice that the adjacencies of v; in G are

represented by the set I'; ; U A; ; and the adjacencies of vJ; are I';; U A; ;.

Now suppose there is a clique W’ in G with a size |W/| > w(G). By lemma 5.4, it must
be that v;; € W’. Since v;; € W’ it must be that W’ € T;;UT;;U4; ;U{v;;}. Otherwise
a node outside the superset would not be adjacent to v;; (by definition of compression)
and this would contradict that W' is a clique. Furthermore since no edges exist between
elements of I';; and T;; it follows that W' cannot have vertices in both sets. Otherwise
would contradict that W' is a clique. Therefore it must be that W’ C T;; U A; 5 U {v;}

or W' G Ty U A U{ug)e |

IfW’' C Ii;UA;;U{v;} then it must be that Wy = (W'\ {9;;})U {v;} is a clique in
G because as previously noted v; is adjacent to all nodes of I'; ; U 4;; in G and all edges
existing between vertices of T; ;U 4; ; in G’ are also in present in G (this follows from the
definition of compression). Clearly |W;| = |[W’|. Similarly if W’ C T;; U 4;; U {v;} then
W = (W'\ {v;;}) U {v;} is a clique in G. And once again |W,| = |W'|. )

Therefore in all cases it has been shown that a clique of size [W'| exists in G. This
contradicts that |W’| > w(G). This implies that

w(G') < w(G)
Lemma, 5.4 demonstrates that w(G") > w(G) so it must be that
w(G") = w(G)
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Definition 5.5 (Conflict Free Graph) A graph G° is a conflict free graph if there

ezists a sequence of compressions from G°:

0. ral O
-~ (G . vl'orvjoiG . viodo)

- ((;1 : Ut'ﬂv.fz;Gg : vl'x.jx)

k-2, . k=1,
- (G N TP G . vfk—:..fk—a)
k=1, WAL
> (G . vig-:: T"J‘k—ﬂ G . U‘k—h‘ik—l)

which leads to a complete graph G* and for which each compression in the sequence is a

conflict free compression.

Definition 5.6 (Conflict Free Class) F is the class bf all conflict free graphs:

F ={G| G is a conflict free graph }
Theorem 5.6 All graphs in the conflict free class F are perfect.

Proof Let & € F and emulate the proof of theorem 5.5 but use lemma 5.6 instead of
lemma 5.5 to argue that w(G) = w(G"). " 0

Since all zero conflict compressions also satisfy the definition of a conflict free compres-
sion, it follows that Z C . An example which illustrates that £ # F is the graph of
figure 5.5 (a). Clearly from the table in figure 5.5 (b) this graph does not belong to class
Z. However-it does belong to class F. The compression of v3 and vy is conflict free since
nd edges can be found between the vertices of ['s 7 = {v;,vs} and T'73 = {v,4}. Figure 5.12

shows a remaining sequence of conflict free compressions which lead to a 3-clique.

In comparison to zero conflict compressions, conflict free compressions take longer to
identify since edges incident to the conflict vertices of the compression candidates must

also be examined. Because of the additional time complexity they introduce, conflict free
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" vy X o U237
Vs 8 vs,8 ' V5,8

Figure 5.12: A sequence of conflict free COmpressions

compressions are not directly sought after by the WWI algorithms. Instead, the current

implementations of WWI only identify conflict free compressions once they have occurred.

At thé cost of missing several conflict free compressions, this has the benefit that no ad-

ditional time complexity is introduced. If a graph is colored exclusively with conflict free

(a.nd zero conflict) compressions then the WWI algorithms will declare the graph to be
optimally colored. i

Let G be a graph to be colored and G” be the clique resﬁlting from successive com-
pressions using a WWI algorithm. An easily verified formula is x(G") — x(G) < C ~ F
where C is the number of compressions performed by WWI, F is the number of conflict
free compressions, and x(G") is the number of colors returned by the WWI heuristic. For a
graph chiefly compressed with conflict free compressions this gives a tight lower bound on
the chromatic number. However, in general, this formula has only been found to be useful

on graphs of very small size.
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5.7 Improving the WWI Algorithms

As of yet, the development of the WWI algorithms has led to a first order compression
which preserves the chromatic number and the clique number of a graph (zero conflict com-
pressions). And we have only found a second order compression (conflict free compression)
which preserves the clique number of a graph. Finding the existence of other first order
and second order compressions (or even higher order compressions) which are chromatic
number and clique number preserving would be an asset to any graph coloring algorithm
since they permit problem reduction without loss (or the identification of perfect graphs).
Identifying optimal or profitable compressions at each step is the guiding design principie
behind the WWI1 algorith&us as opposed to algorithms designed with an overall performance
bound in mind.

Finally, there are necessary characteristics of optimality which an optimal coloring must
obey. It is possible to Tun some post-processing checks on these characteristics and then
-improve the coloring if they are not met. A few checks which can be run in O(|V|?) time
complexity are presented in appéndices B and C. The WWI heuristics do not always
meet these characteristics and applying the checks does_ enhance a small percentage of the

colorings returned.

o

5.8 | Conclusion

This chapter has presented fast and efficient algorithms for the vertex coloring of graphs.
The approach used was to take advantage of bounds on the chromatic number (bounds on
the number of edges, the degreé of nodes, the number of odd cycles) and cdﬁpression steps
which are guaranteed to preserve the chromatic number or the maximal clique number of
a graph. Some theoretical outcomes of the algorithm, such as a class of perfect graphs,
were discussed. It must also be stressed that a good part of the algorithm’s efficiency is
due to its adaptive nature which enables it to take into account the important structural
changes which occur as the assignment of colors (compressions) progresses. Finally, a set

of benchmarks was presented to illustrate the practicality and efficiency of the algorithms

113



on classes random graphs.

®



Chapter 6
Conclusion

In retrospect, this dissertation examined the vertex coloring problem via necessary charac-
teristics of optimality, bounds on the chromatic number, a structural study of the solution
space and practical coloring heuristics. Chapter 1 introduced the problem from the per-
spective of optimization issues confronting digital systems design and practical occurrences
of vertex coloring in synthesis. Chapter 2 formally defined the problem and provided known
results in complexity, algorithms and characteristics of vertex coloring. The compression
mechanism used by the WWI algorithms was first detailed in chapter 2 and a general

classification of compressions based on adaptability, order and localization was preseﬁted.

Chapter 3 established characteristics of optimality on a property of fundamental nodes -
which all optimal colorings must satisfy. This led to a strict set of bicolored paths which
must lie between between the fundamental nodes of all optimal colorings. In turn, a cubic
bound relating the chromatic number and the number of odd cycles in a graph was obtained.
This bound eventually played an important role in the design of the WWI on conflicts
algorithm of chapter 5. Derivations of the characteristics were achieved through constructive
methods which had a direct algorithmic applicability as coloring refinements tow heuristics.
Appendix B exemplifies such a refinement. ’

Chapter 4 gave a transformation of the vertex coloring problem into a continuous vari-

able mathematical formulation. The resulting solution space did prove to have nice prop-
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erties as it consisted of the union of disjoint convex regions. However, subsequent results
were indicators of the complexity of vertex coloring. It was shown that there can be a
great disparity between the local minima of the solution space since the ratio between the
number of colors at a local minimum and the chromatic number can be directly propor-
tional to the graph instance sizes. Furthermore, there can be an exponential number of
local minima. An examination of active constraints on the mathematical programs led
to the formulation of color stratifications and a characteristic of optimality closely related
to the Gallai-Roy theorem. The characteristic dictates a set of colored paths which must
be present within an optimal coloring. The constructive proof provided for that partic-
ular characteristic brought the algorithmic check of appendix C. Additional observations

resulted into a complete' characterization of the local minima of the real valued problem.

Lastly, chapter 5 yieldéd two vertex coloring heuristics based upon the first order prop-
erties of conflicts and affinities. The algorithms were founded on theoretical bounds of the
chromatic number, maximal clique number and chromatic number preserving compressions,
and approximlé,tion arguments over a second order criterion. Appendix A supplied an effi-
cient implementation of thé algorithms due to a rapid method to re-evaluate conflicts and

~ affinities after each compression. Then followed a set of benchmazrks on random graphs and
k-colora.blé random graphs which justified some claims of efficiency and generated favoi-
‘able comparisons with existing algorithms. WWT on affinities was shown to perform well
on graphs of low edge density whérea.s WWI on conflicts was superior for the remaining

graphs. Finally, a class of perfect graphs was identified.

6.1 Possible directions

From this work there remains several avenues to be explored. From the algorithmic per-
spéctive, the WWI algorithms could be parallelized because of the vectorial (matrix) and
independent nature of some of their operations. With the use of parallelism an even more
 efficient version of WWI could be achieved. As well, a computationally efficient imple-
mentation of the second order algorithm of chapter 5 could be obtained with the aid of
“parallelism. o | | ' ‘

116



An other direction to pursue is the search for new chromatic number and maximal
cligue number preserving compression. These would result in an immediate retribution as
they provide a means of optimal problem reduction. Given the generic proof mechanism of
section 5.6, the discovery of any such compression also expands the space of algorithmically
recognizable perfect graphs. Furthermore, the characterization of such compressions also
provides directions in which to develop new heuristics. The availability of a larger set of

such compressions can only result in a better overall performance.

The search for higher order bounds, such as the quadratic bound of theorem 5.1 and
the cubic bound of corollary 3.4, results in the identification of significant factors on which
the chromatic number of a graph is dependent and supplies guidance in the selection of

heuristics. Efforts to find such bounds proved to be profitable and are a good direction

'to undertake. Similarly the search for constructive proofs of necessary characteristics of

optimality yields algorithmic mechanisms to refine sub-optimal colorings. For example, an
implementation of the proof of theorem 3.2 on bicolored paths is an obvious direction to

explore.

7]
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Appendix A

WWI Implementation

Our implementa,tion of the WWI on affinities algorithm is described in this appendix. It
will be evident in the upcoming discussion that it is possible to attain a more efficient
implementation at the expense of implementation obscurity. As for the implémenta.tion of
WWI on conflicts, it is identical with exception to the criteria of section A.2 which must

reflect those of section 5.2.2.

The implementation depends on four main data structures generated each time a graph

| G = (V,BYwith V = {vy, v, ... , v, } and |V| = = is passed as an instance to the algorithm.

The first is the » x n adjacency matrix A. Each element of the adjacency matrix is

initially defined as follows:'
0 if {'D,', 'Uj} € E
1 if {’U,',UJ'} ek
: d
After each compression the adjacency matrix is adjusted to reflect the edges in the com-

pressed graph.

The second structure is C, the set of colors used by the algorithm. C is implemented as
a linked list of integers. For each compression a color is removed from C {0 indicate that

the two compressed nodes have been assigned a common color. Initially, each node has a -
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different color corresponding to its node index. Figure A.1 (a) shows the initial assignment
of C. When two nodes v; and v; are compressed, it is the highest index which is removed
from the list. If i <  then j would be removed. from the list. For that reason the list of
colors can 2lso be interpreted as a list of indices for the vertices remaining in the graph.
Each time two vertices v; and v‘,; with ¢ < j are compressed, they are replaced by a vertex
v; in the compressed graph and v; has the adjacencies of v; and v; in the graph prior to
compression. ¥or example the graph of figure 2.4 (c) would have the color list shown in
figure A.1 (b).

The third structure is the n-entry vector K which keeps track of the color of each node
in the initial graph.
K(i) = k if the color of vertex v; is k

For the graph of figure 2.4 (c) the color vector K is shown in figure A.1 (c).

The last data structure is the list EC which is used to store the edge complement. Each
ec € EC represents a pair in the edge complement and it has five parameters associated
with it: -eclo, ec.hi, ec.aff, ec.condh, ec.conhl. eclo and ec.hi are the indices of a pair 6f
non-adjacent vertices in a graph. ec.aff, ec.conlh and ec.con.hl represent the affinity and
conflicts between the vertices. Suppose two non-adjacent nodes v4 and vs with a(v,,vs) = 3,
7(vs,vs) = 1 and ¥(vs,v4) = 2. The entry ec for v4 and v5 in EC would have ec.lo = 4,
ec.hi = 5, ec.aff = 3, ec.condh = 1, ec.con.hl = 2. The distinction between lo and hi
indicates that we sort the vertices of a pair based on the indices. However, this is not of
importance to the proper behavior of the algorithm. Examples for EC are the tables in
figure 5.2 and figure 5.5 (b) with the exception that vertices with a composite index such
as v3¢ would be represented by a single index, in this particular case 3 would be used for

V3 5.'

Finally the algorithm uses an integer to count the number of colors required by the
algorithm. It is represented by the variable x. The following gives a general description
of the WWI algorithms. Subsequently a detailed description will be given along with a
complexity analysis of the algorithm.

0. Assume a simple undirected graph G = (V, E)
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(a) Initial Color List C

1 2 3 5
l

(b) Color list for figure 2.4 (c)
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(¢) Node colors for the graph of figure 2.4 (c)

Figure A.1: Data structure examples

1. Initialize C, K, EC, A, x as defined above

2  while (EC #0) do

2.1
2.2
2.3
24
2.5
2.6

Find the best compression vgptio, Vopt.hi
Adjust EC for the compression

Adjust the adjacency matrix A

Remove opt-hi from list C .
Color nodes of opt.hi color to optlo in K

x — x—1

2. end while

3. Return x,C. K

iterated once for each compression performed on the graph. For each iteration the two
best nodes for compression are selected according to the criteria discussed in section 5.2.
The edge complement list is then modified to reflect the new affinities and conflicts after
the compression has taken place. The adjacency matrix is also adjusted, the color list is

reduced by one colof, and the number of colors required by the.algorithm is diminished by

The initialization step colors each node with a different color, it finds all the affinities
and conflicts between non-adjacent pairs of a graph G = (V, E). The while loop is then
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one each time a compression is performed.

A.1 Initialization

The following describes in detail the initialization stage:

// Initialize C, K and A
C — B
for i — 1 to |V| do
C e CU{‘i}
K(z) — 1
A(i,5) « 0
end for

fori— 1to|V|-1do
for j «— 4+ 1to|V]|do
if {v;,;} € E then
Al — 1
AGLS — 1
else
A(i,j)~0
A(G,i) < 0
end if
end for
end for

// Initialize EC
EC+D
for i « 1to |[V]—1do
for j « i+1to|V]|do
if A(7,7) = 0 then
eclo — ¢
ec.hi — j
ec.aff — 0
ec.conlh « 0
ec.conhl — 0
for k — 1 to]V] do
if A(3,k)=1 A A(j,k)=1 then
ec.aff «— ecaff4+1 :
else if A(3,k)=1 A A(j,k) =0 then
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ec.condh « ec.condh +1
else if A(i,k)=0 A A(j,k)=1then
ec.con_hl « ec.conhl +1
end if
end for
EC — ECU {ec}
end if
end for
end for

// Each node starts with a distinct color
x — Vi

When analyzing the complexity of the initialization stage it is clear that the attention
should be concentrated on the triple-nested loop which generates EC. Ignoring the body
within the second loop one can notice that the two external loops will iterate in the order of
O(IV[?). And clearly the body within the conditional of the second loop will execute |EC]
times. For each iteration of the conditional body there will be a traversal of the |V| vertices
A to find the affinity and conflicts of the two non—adjé.cent vertices. Hence the execution of
the initialization is within the order of O(|V|* + |EC|- |V]) where 0 < |EC| £ i.Y.L(]%’.L:}).

Our actual implementation differs as it takes advantage of the symmetry of the adjacency
* matrix and the mechanism to calculate the affinities and conflicts is slightly more efficient
as it takes advantage of the possible sparsity of the adjacency matrix. However, in the
worst case, it preserves the same complex.ify. There is a more efficient technique which we

have not exercised for reasons of implementation ease. First define the matrix A:

0 if A(,§)=1

A@ﬂ={1ﬁA@ﬁ=0

and then consider the following matrix products (T denotes the matrix transpose operation):
F=zA AT=A.-A=A°

G=A-ZT=A-Z
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It is easy to verify the following relations:

v, v;) = F(i,7) if{v,v} ¢ E
"}'(TJ,', 'UJ') = G(Z.j) if {'U;, ‘Uj} &’ E
d(v) = F(i,1) YoyueV

Therefore it is possible to calculate the affinities and confiicts through matrix multiplica-
tions. Several algorithms have recently been published to multiply matrices in efficient
times [BrB:87]. For example, using Strassen’s algorithm one could calculate the affinities
and conflict in the order of O(|V|*®!) [Stra69)].

A.2 Finding the best compression

We now discuss algorithm to find the best possible compression in the graph according to
the criteria of section 5.2. The algorithm traverses list EC and stores the indices of the

best compression in variables optlo and opt-hi. In this particular case the conditions are
for WWI on affinities.

// Finding the best compression
max.affinity — —1 '
for each ec € EC do
if ec.condh =0 VvV ec.conhl = 0 then
optdo «— ec.lo
opt.hi «— ec.hi
break out of for loop
else if ec.aff > max_affinity then
max-affinity + ec.aff
min_conflict « ec.conlh + ec.con.hl
optlo « eclo
opt_hi « ec.hi
else if ec.aff = max affinity A
min_conflict > ec.conlh + ec.con_hi then
min_conflict «~ ec.conlh -+ ec.con_hl
optlo « ec.lo
opt.hi +— ec.hi
end if '
end for
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Since the body of the loop only executes O(1) type operations it is clear that the
algorithm to find the best compression is O(|EC|) where 0 < {EC| £ m—‘-]-_.‘,ﬂ:ﬂ For WWI
on conflicts simply replace the criteria with those of section 5.2.2 and ensure that the search
is localized.

A.3 Adjusting EC

Once the two nodes voptlo and Vopthi have been selected to be compressed, WWI proceeds

by adjusting EC to reflect the new affinities and conflicts in the compressed graph. FEle-

ments of EC are separated into six disjoint cases and each case is treated differently (see

figures A.2, A.3 for diagrams of the cases as they are described):

ot

. e¢ € EC such that eclo = opt.hi or ec.hi = opthi: ec will be deleted from EC

since ¥opthi Will be compressed with vgp3, and we therefore only need to retain the

non-adjacencies with voptlo.

. ec € EC such that eclo = optlo, ec.hi # opt_hi and A(ec.hi,opthi) = 1: ec will be

deleted since the compression of voptle and vepthi Will place an edge between veclo

and ve.hi. See figure A.2 (a).

. e¢ € EC such that ec.hi = optlo, ec.lo # opt_hi and A(ec.lo,opthi} = 1: ec will be

deleted for the same reason as in case 2. See figure A.2 (b).

. ec € EC such that eclo = optlo, ec.hi # opthi and A(ec.hi,opthi) = 0: ec is

prese'rved in the compressed graph (see figure A.2 (c)). However the affinity and
conflicts of vecio and vecnhi need to be recalculated. This is done by traversing the

adjacencies of vecto and Vechi in the compressed graph.

. ec € EC such that ec.hi = optlo, ec.lo # opt_hi and A(ec.lo,opthi) = 0: ec will be

preserved (see figure A.2 (d)) but the affinity and conflicts need to be recalculated as

in case 4.

130



6. ec € E such that both eclo and ec.hi are different from opt.do and opt.hi: E° will
be preserved and the affinity and conflicts between vecio and ve.p; need to be re-
calculated. Figure A.3 shows that there are 16 possible cases each identifiable by
the presence or absence of edges and that the affinities and conflicts can be ad-
justed with simple increment and decrement operations. Based on the values of
A(ec.lo, optlo),A(ec.lo, opthi),A(ec.hi, 6pt_lo) and A(ec.hi,opt.hi} which distinguish
the cases, it is easy to build a truth t.able or a Karnaugh map to generate conditions
that will implement the appropriate increment and decrement operations. As it will
be demonstrated, this observation yields a substantial performance gain with respect
to recalculating the affinity and conflicts by traversing the adjacencies of ;). and

Vec.hi-

The following is the algorithm to adjust EC:

/ /Readjust EC for the compression

//of Voptdo and Vopt.hi
for each ec € EC do

// Case 1.
if ec.lo = opt_hi V ec.hi = opt_hi then
EC — EC\ {ec}

// Case 2. .
elseifec.lo = optlo A A(ec.hi,opt-hi) =1 then
EC +— EC\ {ec}

// Case 3.
elseifec.hi = optlo A A(ec.lo,opt.hi) =1 then
EC — EC\ {ec}

// Case 4. ‘
elseifec.lo = optdo A A(ec.hi,opt_hi) = 0 then
ec.aff — 0 :
ec.condh — 0
ec.conhl — 0 .
// Traverse the compressed nodes
for each c€ C do
if A(ec.hi,e)=1A

131



(A(optlo,e) = 1V A(opt_hi,c) = 1) then
ec.aff — ec.aff +1

eise if A(ec.hi,¢)=1A
(A(optlo,c) =0 A A(opt_hi,c) =0) then
ec.con.hl « ec.conhl + 1

else if A(ec.hi,e)=0A
(A(optlo,c) = 1V A(opthi,e) = 1) then
ec.conlh « ec.conlh+ 1

end if

end for

//Case 3.
elseifec.hi = optlo A A(ec lo,opt_hi) = 0 then
ec.aff — 0 '
ec.condh « 0
ec.conhl — 0
// Traverse the compressed nodes
for each c € C do
if A(eclo,e}=1A
(A(optlo,c) =1V A(opt_lu ¢} = 1) then
ec.aff — ec.aff +1
else if A(ec.lo,c) = 1A
(A(optdo, ¢) = 0 A A(opthi,c) = 0) then
ec.conlh — ec.conlh + 1
else if A(eclo,c)}=0A
(A(optlo,c) =1V A(opt-hi,c) = 1) then
ec.conhl « ec.conhi 4 1
end if
end for

/] Case 6.
else
//%1, 22, T3, %4, Y1, Y2 aTE boolea.ns
z, — A{eclo,optlo) =1
22 «— Afeclo,opthi) =1
z3 «— Afec.hi,optlo) =1
z4 «— A(ec.hi,opt.hi) =1
n— A2
Y2 — 23y
if (32 Axgh e~ (-’El vV .7:4))\/
(zyAzah~ (T2 V 33)) then
ec.aff «— ec.aff + 1
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ec.conlh — ec.condh -1
ec.con h] — ec.conhl — 1

else if y; A (~ y») then
ec.conlh — ec.condh —1

else if (~ y;) A y» then
ec.con hl — ec.conhl —1

else if y; A y» then
ec.aff — ecaff—1

end if

end if
end for

A complexity analysis of the adjustment of |EC| follows. Clearly if one was to ignore
the nested loops within cases 4 and 5 then the re-adjustment would be within the order
of | EC]|. But the nested loops must be taken into account. For that reason the attention
of the reader is shifted to two observations. Since node vguyni cannot be non-adjacent to
more than |V| — 1 other nodes then case 1 cannot be satisfied more than |V| — 1 times
when the re-adjustment proceeds. Similarly because vope o can only be non-adjacent to at
most {V| — 2 nodes different from wvopeni, cases 2,3,4 and 5 put together can only account
for at most |V| — 2 iterations of the main loop. Therefore |[V| — 2 is an upper bound on the
number of times the loops of cases 4 and 5 will be visited. Since the loops of cases 4 and 5
require a traversal of the vertices and there are at most |V/| vertices at any time, the time
spent within these loops is within the order of O{|V|?). Therefore the full re-adjustment of
the whole of |EC| is in the order of O(|EC|+ [V'|?). Since 0 £ |EC| £ L"LI_(I.:‘?’_[:.H it follows
that the full re-adjustment is the order of O(|V|?). Since cases 1 to 5 can only be visited
aX\ ost 2|V| — 3 times during the whole execution of the main loop it follows that most of
the burden will usually be carried out by case 6. Fortunately the technique used to adjust
the r{fﬁnity and conflicts in case 6 is within the order of O(1), thus resulting in an efficient
adjugtment for the whole of EC.

A.4 Adjusting A,C, K, x
Adjusting A, C’, K, x is straightforward and it can be done in the order of O(|V|):
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Before After
Compression Compression
Vee.hi Vee.hi.:
: el
Vezclo = Voptlo Vopt.hi Yeclo = Yyptlo
Yec.lo Yec.lo
(b)
. !
Vec.hi = Voptdo Yopt.hi Vec.hi = Ygpt o
Vec.hi Vec.hi
. .
(c) _
. . *
Veelo = VYoptldo Vopt.hi Veelo = Ygpt.to
Ve lo Veclo
- Y
(d)
. . .
Veehi = Yoptlo Vopt.hi Yechi = Ygptlo
Figure A.2: Cases 2,3,4 and 5.
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Before After Before After
Compression | Compression Effect Compression | Compression Effect
"cc‘lo UECihi. “ccilo v“-.hi ) ur:c‘]o Vee hi Uccilo Vec,hi
No effect No effect -
L ] L] vf [ ] e § K "
Voptlo Uopt.hi optlo Voptdo Vopthi optlo /
Yeclo  Veehi | Veclo "er-'-.hi Yeclo Veehi | Vecdo VPeehi | ine ecoaft
No effect \/. ‘aec ec.con.th
" v, ) A d Al
Voptdo Vopt.hi- optlo Yoptdo Vopthi ot lo ec ec.con
Veela “cc.h: Veelo Uﬂc-lﬁ Verlo  Veehi Vorio  Veckhi
\ N No effect '\/ No effect
r

Yoptlo Vopt.hi

’
Vopt o

.
Vaptdo Vopthi

YVeelo vec.l‘u.

/g

VYoptlo Vopthi

Veedo |t Yec hi

’
t"cn:t.lo

dec ec.conth

Veclo  Veohi

i/

VYopilo Vopihi

dec ec.conlth

T

Ucc lo  Vechi

oy
i

Vaedo  Vechi
[ ]

Vgelo  Vechi

1"mtho Vopt hi

opt_lo

No effect /I dec ec.con.hl
Voptlo Uop:.h: opt..lo ' Yoptdo Vopthi Yoptde
Veclo Vechi | Veelo Yeehi Yeclo  Vechi Veclo ~ Vechi
I/. '\/ No effect VI . \/ dec ec.con.hl
Yoptlo Vopt.hi Voptlo - Voptlo "othu Vapt.lo 0 '
Vecdo Vechi | Veelo:, Veel M | inc ec.aff Veelo  Vechi | Veclo  Pechi
I : .
>< ;, - dec ec.conlh 7 >4 \/ “dec. ec.con.hl
Yoptlo Vopt.hi opr...lo dec ec.conhl . ‘\‘\ :

Vecle Veehi

X
K

Voptlo Yopt.hi

Yeelo - vcc hi

opt.lo

dec ec.condh

Yeedo  Veehi

X
e

optdo  Vopthi

Vee,lo vﬂchl

upt Jo

dec ec.afl

inc = increment dec = decrement

inc = increment dec = decrement

“—,-F@’ure A3: Case 6 e
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// Adjusting A, C, K, x

// For A
for 2ach ¢ € C do
if A(opt-hi,c) =1 then
A(optldo,c) « 1
-A(c,optlo) ~ 1
end if
end for

[/ For C
for each c € C do
if ¢ = opt.hi then
C e C\{e}
break out of loop
end if
end for

// For K

. fOI‘!!— 1to |V|do

1f K (i) = opthi then
E(i) «~ optlo

end if

and for

J

//'Forx ' - W
x+—x=1 - :

A.5 Complexity of the implementation

The overview of the algorithm is revisited and it is annotated with the complexities of the

’ steps w1thm the while loop:

Get a gra.ph G= (V E) to color
Initialize C .K EC, A, 'x

- while’ (EC ;é f)do |
O(IEC |} Find the best compression voptlos Yoptohi -
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O(lV]*) Adjust EC for the compression
O(|V])  Adjust the adjacency matrix A
O(lV]) Remove opt.hi from list C
O(|V])  Color nodes of opt_hi color to eptlo in K
o(1) x — x-1
end while

Return x,C K

Clearly the step that re-adjusts |EC| at O(|V[?) dominates the body of the loop and
therefore one iteration can be executed within the order of O(JV]?). Notice that the lcop
cannot have more that |V| iterations since each iteration corresponds to a compression
and there cannot be more than {V| — x(G) compressions for a graph. Otherwise would
contradict that the chromatic number is x(G). Hence the execution of the loop is of the
order of O(|V|®). Since the proposed initialization is of the ovder of O(JV|* + |EC|- |V]) it
follows that the loop is the dominant factor and the WWI algorithms are of order O(|V|*).
However since the maximum possible value of |EC| is M-uzﬂ—'-ll the time spent initializing
the structures can be comparable to the time spent performing all the compressions. Our
experimehts validate this and that is why techniques improving the initialization complexity
are of importance. Since the complexity of the "g:lgorithm strongly depends on |.EC' l, it is
apparent that the algorithm should perform best when |EC| is smallest. This in turn
implies that WWI will perform at: its best when the graph has a high edge population
and it will perform at its worst in a graph void of any edges. This also has been veriﬁ@*\:
experimentally. A final note pertains to the first two steps within the body of the loop (2.1

“and 2.2). Both of these steps are closely related as they require a traversal of EC. To save
on execution time we have folded both of these steps into a.single iteration over EC in our

actual implementation.

137



Appendix B
Fundamental Node Refinement

This appendix presents a simple a.lgorithm which refines a coloring so that the optimality
characteristic of theorem 3.1 is met. The algorithm requires a graph G =.(V,E) and a
coloring C using the set of colors S as input. It returns a.reﬁned coloring C’ using the set
of colors §’. We need three specialized structures: L,R and adj_color. L(s) represents the
set of nodes assigned to color s; R(v) is a color to which vertex v can be recolored or has
value none if no such color exists; and adj_color(t) is either irue or false if a particular

vertex under study is adjacent to a node of color ¢. The algorithm proceeds as follows:

- // Obtain the input
 Get A graph G = (V, E),
A coloring C using the set of colors §;
// Copy over the coloring
¢'<C . .
5§ ' (3
/] Regroup nodes with same color
for each s € § do
L(s) ~ D
end for
. for each v € V do ‘
L(C'(v)) « L(C'(v))u {v}
end for - :
/ {Recolor the nodes”
for each s € S do // S,not §’
fundamental_s «— false
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for each v € L(s) do
for each t € §' do
adj-color(t) — false
end for
adj_color(s) « true
for each w e V do
ifv#wA {v,w} € E then
adj_color(C'(w)) « true
end if
end for
R(v) + none
for each t € 5’ do
if adj_color(t) = false then
R{v) — ¢
end if
end for
if R(v) = none then
fundamental_s — true
break // out of for loop
end if
end for
if fundamental_s = false then
for each v € L(s) do
C’'(v) — R(v)
L(R(v)) — L(R(s)) U {v}
end for
S5« 5'\{s} // § is a subset to S
end if
end for
// Return the result
return C', 5’

It is easy to verify that if a coloring C of a graph G = (V, E) already meets the
characteristic of optimality of theorem 3.1 then the refinement will be achieved in time -
complexity of order O([V|2). This is because the two outer loops of the recoloring code will
only traverse each vertex once while investigating the color of its neighbors. However, if the
characteristic of optimality is not met then vertices will be recolored and therefore some
nodes might be traversed more than once. For the algorithm to remain of order O(|V|?)

for all input instances the following rule must be imposed:
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¢ Loops which traverse the elements of 5’ must do so in the same order in which the

elements appear in the loop over §.

This guarantees that a node will never be visited more than twice. A node v of color s,
will be visited twice if it is recolored to color s, when s; precedes s, in the order that the
elements of § are traversed. If, when the vertices of color s; are visited, vertex v needs to
be recolored once more, then it can only be to a color s3 which precedes s, in thé ordering.
This is because the loop which assigned R(v) to s» in the first recoloring ensured that 82
was the highest possible color to which v was not adjacent (under the condition that the
elements of S5’ were traversed in the same order as they appear in the loop which traverses
S). Therefore v is adjacent to all colors beyond s, and it must be reassigned to a color
prior to s; of if it is to be recolored. Hence, v can only be visited twice and the algorithm
is O(|V|*) for all input instances. The ordering constraint implies the most natural way
in which to implement the algorithm but it is important that it be specified otherwise the
algorithm would be of order O([V[a)l. The worst case occurs when a graph with no edges
is presented with a different color for each node. In that particular case all nodes but one
will be visited twice. Finally, to color a graph from scratch simply provide a coloring with

each node a different color.
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Appendix C

Colored Path Refinement

This appendix presents an algorithm which ensures that a graph has a colored path which -
traverses the colors of a coloring in the precise order of a color permutation prescribed
to it. Three arguments are expected as input: a graph G = (V, E),.a. coloring C and a
permutation II of the colors in €. And two outputs are produced: a new coloring C' and an
-integer x which represents the number of colors in C’. ' is guaranteed to have a colored
‘path which traverses the colors in the order of II and it will use fewer colors than C if the
latter does not have such a path to start with. Otherwise C’ will require the same number

of colors as C.

Ounly one specialized structure is used by the algorithm and that is structure L which is
used to represent the colored stratification £(G, C,1I). Each L(s) represents the nodes of a
specific stratum, i.e. all the nodes which share color s in the set of colors S. The following

is the algorithm in its entirety:

// Obtain the input
Get A graph G = (V,E),
‘A coloring C using the set of colors S,
A color ordering I = (my, 72,...,js);
// Initialize number of colors
x — |S1+1
// Regroup the nodes of same color in C
for each s € S do
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L(s) — 0
end for
foreach v € V do
L(C(v)) + L(C(v))u {v}

end for
// Create the path by altering the coloring
do

X+—x=-1

for i =2 to x do
for each v € L(m;) do
lower v « true
for each w € L(m_,) do
if {v,w} € E then
lower v — false

end if
end for
if lower_v = true then
L{m;) « L(m)\ {v}
L(mi—y) ~ L(mi—y) U {v}
~end if
end for

-end for
while (L(r,) = 0)
//Create the new coloring C’
fori=11to x do
for each v € L(m;) do
C'(v) — T
end for
end for
// Return the result
return C’; x

Each iteration of the do-while loop removes one golor off the original coloring (the
highest ra.nkéti\\g::g)lor in II which rema.{ns). The iterations terminate when the graph has a
colored path in the order of the colors of II. The triply nested loop for loop traverses the
stratification (L) in a manner similar to that of the H‘f‘mf of theorem 4.3. The outermost
for loop traverses the strata one by one starting from ¥1\1e 9nd lowest to the highest ranked
stratum. The middle lobp traverses each vertex of a pa.rt\icula,r stratum while the innermost

loop verifies that it is not adjacent to any vertices of the stratum below. If such is the case
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then the vertex is automatically recolored to the color of the stratum below.

Although that would be sufficient, the algorithm does not limit itself to recoloring
nodes which stem a longest colored path to the highest ranked color. Instead, it proceeds
by changing the color of all nodes which are not adjacent to nodes of the previous stratum.
By doing so, nodes stemming the longest colored path will be included in the recolored

nodes and the algorithm remains simple and efficient.

For each iteration of the do loop each vertex will be traversed once and the nodes on the
strata below will be examined for adjacencies. Therefore the algorithm is of the complexity

O{|V|?) for each color it removes.

C.1 Greedy Algorithm

The greedy algorithm (as described in section 2.5.1) and the sequential élgorithm [Gibh85)
both share a property with respect to colored paths. If they prodﬁce a coloring using the
range of colors from 1 to £ then it is certa.iﬁ that they will return a coloriﬁg which has
a colored path on the color permutation II = (1,2,...,%). This is becaﬁSe the coloring
mechanisms of the algorithms attribute color j to a node if and only if it is adjacent.
to at least one from each color in 1 to j — 1. Therefore if one selects a node of color
k then it must be adjacent to at least one node of color k = 1 which in turn must be
adjacent to one node of color & — 2 a:ad. so on until color 1 is reached; thus forming a
colored path over the permutation IT = (1,2,...,k) of colors. Hence it is pointless to run a
refinement over the permutation II = (1,2,..., k) if the graph is originally colored with the
greedy algorithm. Interestingly, by theorem 4.4 this also implies that the greedy algorithm
will always result in a coloring wh;ich is a local minimum of its feasible region. But the
emplacement of that feasible region can be quite undesirable. Given the poor efficiency of
the greedy algorithm [BrBr87] it is best to avoid the gfeedy heuristic to irﬁtially‘ colorr a
graph if possible. |

However the greedy heuristic can be used as a refinement to ensure that a colored path

does indeed exist for a particular graph coloring and a permutation of its colors. And as_

143



with the previous algorithm if the path does not exist then the coloring returned by the
greedy refinement is certain to require fewer colors. Our constructive proof of this resembles
that of theorem 4.3 and relies on the properties of the greedy algorithm. The proof given
in theorem 4.3 was preferred since it constructs a coloring in the same feasible region as
the original coloring of our programming formulation and that was needed for the proof
of the subsequent result which characterizes the local minima (theorem 4.4). The greedy

refinement is very likely to produce a coloring in another feasible region.

To use greedy heuristic as a refinement on a coloring C and a coloring permutation
'= (%1, 72, ... , 7k} it suffices modify the algorithm in section 2.5.1 so that the nodes are
traversed in the order of their colors in the permutation: nodes of color 7, first, then m,, ...,

and finally 7, (no importance needs to be attached on the order amongst nodes of the same

color). The colors must be traversed in the order of the permutation as well. This results

in an O(|V|?) refinement regardiess of the number of colors removed by the algorithm.
However the greedy refinement traverses the adjacencies of all colors for each vertex unlike
the previous algorithm which only concerns itself with the nodes of the color strata below

it.
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