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ABSTRACT

This thesis presents a complete solution to Hilbert's tenth
problem =~ i.e., the result that there is no algorithm to determine if
an arbitrary diophantine equation has a solution in integers. This

solution is contained in Chapters III, IV and V.

Chapter II is an intuitive introduction to recursion theory.
Chapter III deals with some applications of results of Chapter IT to
exponential diophantine equations, made by M. Davis, H. Putnam and
J. Robinson. In Chapters IV and V two proofs are given of the result
that exponentiation is diophantine. These are due to Ju. V. Matijasevi®
and M. Davis. Chapter VI is an atbtempt by the author to analyze the

results of the two preceding chapters.
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CHAPTER I

Introduction

In 1900 Hilbert [5] gave the following problem as the tenth in his

famous list of problems:

Given a diophantine equation with any number of unknown
quantities and with integral coefficients: To devise a
process according to which it can be determined by a finite
number of operations whether the equation is solvable in
integers.

In other words, we are asked to find a general algorithm to answer questions
of the form: Does the diophantine equation P(X;,e..,Xp) =0 have a
solution in integers? Here P 1is a polynomial in X;,...,%X, with integer

coefficients.

The work of Gddel caused mathematicians to modify Hilbert's statement
of the problem and to ask instead whether such a general algorithm exists.
This question has recently been answered in the negative, i.e.,

There is no general algorithm to determine if an arbitrary
diophantine equation has a solution in integers.

Chapter IT of this thesis gives an intuitive introduction to recursion

theory which closely follows the survey article by Julia Robinson [10],

{ T important theorems by Gddel and Davis.

Chapter III is concerned with applications of Chapter II to exponential
diophantine equations. (An exponential diophantine equation is similar to a
diophantine equation except that variables may occur as exponents.) These
applications were begun by Julia Robinson [9] and continued by her, M. Davis
and H. Putnam [3]. The main result of Chapter III is:

There is no general algorithm to determine if an arbitrary
exponential diophantine equation has a solution in integers.
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In Chapters IV and V we show that exponentiation is diophantine,
which completes the negative solution to Hilbert's tenth problem. We give
two proofs of this result: the original proof due to Matijasevi€ [7], from
which the result follows by a theorem of Julia Robinson (Chapter V); and a

modified form of Matijasevié's proof due to M. Davis [2] (Chapter IV).

Chapter VI contains no formal mathematics. It does contain some
conjectures by the author on the ideas which led Matijasev_:'LE to his results

and attempts to show how Davis modified those results to gebt his solution.

L.
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CHAPTER IT

Computing and Listing

We first look at pairs and sequences of natural numbers. Cantor showed
that there is a one-one correspondence between the set of natural numbers and
the set of ordered pairs of natural numbers. A function which gives such a

one-one correspondence is the function
J: Nx N—IN

IGy) =% (x +9)? + 3+ y)

(The function values are easily seen to be integers.)

We have J(0,0) = 0 ,
J(x+1l,y-1), if y>o0,
J(x,y) +1=9 -
J(0,x +1), if y=0.

S0 J maps the set of ordered pairs of natural numbers onto the set of

natural numbers and J is one-one. We have the following table of values

of J : y
J(x,¥y) 0 1 2 3 L
0 0 1 3 6 10 ..
1 2 L 7 1l.. :
x 2 5 8 12.. !
3 9 l? ee o
L 11; e o

The equation u =g @(u),L(u)) uniquely determines two inverse functions

K and L. (e.g., K(8) =2,1(8) =1.)

As an example of the usefulness of such functions, suppose S is the

range of a function F(x,y) of two variables. Then S is also the range of
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Gg(u) = FQ{(U.) ,L(u)) which is a function of one variable. Since

F(x,y) = G@’(x,y)) we can recover F from G .

If R(x,y) is a binary relation, we may represent R(x,y) by a set S
of natural numbers using the equivalence R(x,y) iff J(x,y) ¢ S .
A sequence of sets of natural numbers, Sy,S;,+.. may be represented by a
single set S of natural numbers by the correspondence x ¢ Sn iff

J(n,X) € S °

Pairing functions also provide a system of numbering diophantine
equations. A diophantine equation is an equation of the form
F(XpsXyseee) = G(XgsXq4e0.) where F and G are terms built up from
X5 3%y 5.+« and natural numbers by addition and multiplication. We may also

write a diophantine equation in the form P(x;,X;,++.) =0 where P(=F-G)

} is a polynomial with integral coefficients.

We number the terms %5,Ty,... built up from variables and natural

numbers by addition and multiplication as follows:

=n
Ten ?

Tan+1 T2
Tin+z2 " K(n) * “L(n) ?
Tan+z - K@) T "L(n) .
Then we number the equations, the nth equation being TK(n) = TL(n) « Thus

the eighth equation is 0 + 0 = x, , for example.

Finally we give a method of representing finite sequences of natural

- numbers due to Gddel.

R g



Definition 2.1 Rem(x,y) 1is the least non-negative remainder of x

divided by y . i.e., Rem(x,y) = z iff there is a natural number n such

that x =ny +z with O0< sz <y.
Lemma 2.2 (Gddel 1931) For every finite sequence Sp,S1;ece,S, Of
natural numbers there are natural numbers a and d such that

St=Rem<a,l+(t+l)d> for t =0,1,...,k . (1)

Proof (1) is equivalent to a = sy mod(1 + (t + l)d)) and

O<s, <1+ (t +1)d for t = 0,1,ce.,k « We choose for d a multiple
of k! which is large enough to ensure that d > Sy, for all t <k. In
this way the inequalities will be satisfied. We now show that the moduli
are relatively prime, for suppose p prime, p|(1 + (t + 1)d) and

p|(1 + (t* +1)d) with t,t’ <k and t# t’ . (We suppose t >t/ .)
Then p|(1 + (t +1)d) - (1 + (t/ +1)d) , i.e., p|(t - t’)d with
0<t-t"<k. If p|(t-1t’) then plk! so p|d but if p|d then
pf(1 + (t +1)d) . Contradiction. Since the moduli are relatively prime,
we can find a common solution to the congruences a = s, mod(1l + (t + 1)d)> R
0 < t < k by the Chinese remainder theorem.

We now turn to the problem of either finding a "general method"
(i.e., an algorithm) to determine if an arbitrary diophantine equation has
a solution in integers or of showing that there is no such general method.
Intuitively, by a 'general method" we mean a finite set of instructions

which describe how to start from an arbitrary diophantine equation

P(xl,...,xn) = 0 and to finish (after a finite number of steps) with the
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correct answer to the question: Does P(xl,...,xn) = 0 have a solution?
The instructions must be the kind that could be given to a compubter to

carry out, devoid of any element of ingenuity or chance. (Although we do not
ask that they are necessarily practical or place any restriction on the time

or space needed to carry them out.)

Before the work of Godel, the notion of "general method" was not
mathematically precise and it was therefore not possible to ask whether such
a method existed. On the other hand, if a correct method had been found,
Hilbert's tenth problem [5] would have been solved without having to ask
precisely what was meant by a "general method". Probably this correct
method would have been effective. We now try to formulate the notion of

"general method",

Suppose we number all diophantine eQuations in a systematic way
(e.g., the one that has already been described). Then given any n we can
write down the nth equation and given an equation we can write down its
number (or one of them since some equations may occur more than once). Let
S be the set of numbers of equations which have solutions. Then a method
to tell whether or not an arbitrary natural number n is in S would give

a method to tell whether or not an arbitrary diophantine equation has a

solution.

A set S 1is called computable if there is a method to decide whether
n e S or not for any arbitrary natural number n . A method is a finite
set of instructions which for each natural number n specifies a calculation
which ends with the answer "yes" or ™"no" to the question: Does n belong
to the set being computed? This is intuitively what is meant by a computable

set. Later we give a mathematical characterisation of such sets.



A set L of natural numbers is called listable if there is a method
of listing the members of L . A list is a finite or infinite sequence,
possibly with repetitions. A method of listing a set of numbers is a set of
instructions giving a completely mechanical calculation which may or may not
terminate. TFrom time to time during the calculation a number is given as

being the next on the list so we place it next on the list.

A function F(Xq,e.. ,xn) defined for all natural numbers and whose

range is a subset of the natural numbers is called computable if we can

mechanically calculate F(xy,... ,xn) for any n-tuple of natural numbers.

We now prove some results concerning computable and listable sets and

computable functions.

Lerma 2.3 A set S of natural numbers is computable iff S and

S(=I\8) are both listable.

Proof If S is computable, the method for computing S can be modified
to interchange "yes" and "no" answers so S is also computable. Since every

computable set is clearly listable, S and S are listable.

If S and S are listable and both are infinite sets we can make a
single list by albernating an element from the list of S and an élement
from the list of §. To see if n e S or not we see if n occurs in an
even or an odd position on the new list. (It must occur eventually and
always in an even position or always in an odd one.) If either S or S
is finite then clearly they are both computable. (If S is finite we can tell

if ne S or not by inspection,)



Lemma 2.L The range of a computable function is listable and conversely ‘

every non-empty listable set S 1is the range of a computable function.

Proof If F is a computable function of one variable then we can list
F(O),F(1),F(2)ees « If F is a computable function of k variables then
we can agree on an ordering of k~tuples (using the J function, iterated,

for example) and list the function values in the appropriate order.

If S is a non-empty listable set then S is either finite, in which
case we choose a function F which becomes constant or else S is infinite
and we define F(n) to be the nP number on the list of S . In each case,

F is computable.

Lemma 2.5 A function F(x) is computable iff {J x,F(x)>} (i.e., the

graph of F ) is listable.

Proof If F is a compubtable function then clearly J x,F(x)) ‘is a

computable function also. From Lemma 2.l the range of J x,F(x)) is

listable.

Conversely, suppose the graph of a function G 1is listable. To
calculate G(n) we list the members of the graph of G until some number u

is listed which has XK(u) =n . Then G(n) = L(u) .

Suppose that L is a mathematical language such that we can give
instructions in L for listing any listable set. We may assume that L has
only a finite number of symbols. We also assume that we can recognise
suitable instructions in I and that the calculations given are a sequence
of steps of finite length. (These assumptions can be justified but we do not

do so here. See [10].)
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Lemma 2.6 There is a listable set U such that {Uy,U;,...} is the

class of listable sets, and where we have k ¢ U, Aff J(n,k) e U .

Proof Let Iy,I1,I5,... be a numbering of suitable sets of instructions
in I, (We could order the sets of instructions by the total number of
synbols occurring in each set and then use a lexicographical ordering among
those of the same length, for example.) and let U,,U;,Uz,... be the
corresponding listable sets. We now carry out the instructions from the

sets I5,I1,... 1in the sequence:

:I.St instruction from I, ,
2nd " "I,
lst " " I, ,
Brd " 1 IO 3
2nd " U A
15% " " I, , etc.

When an instruction from I, says that n is the next number on the list
of Um , we place J(m,n) on the list of U . Thus U is listable and

has the required property.

Lemma 2.7 There is a listable set which is not computable.
Proof Iet U be as in Lemma 2.6. ILet D = {nlnsUn} . To list D we

list U and whenever we have J(n,n)eU we put n on the list of D .

Thus D is listable. If D is computable then D is listable so D

L[}
o]

for some i, i.e., for all n, nel; iff J(n,n) §U iff ngU . This

must hold for n =31 which is impossible so D is not computable.
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Recursive Functions

We now define mathemagtically a class of number-theoretic functions

which we identify with computable functions.

A function is called primitive recursive if it can be obtained from
initial functions by repeated (finite) substitubtion and recursion.
The initial functions are:
(1) the zero function O  of n variables with
On(xl,...,xn) =0 for n>0,
(2) the successorl function S with S(x) =x +1 ,

(3) for every n and every k with 1< k< n , the identity

function I, of n variables with Ink(xl,...,xn) =X .

A function F of n wvariables is obtained by substitution from a
function A of m variables and m functions Bi,... By of n variables
if Fxyseee,x) = A(Bl(xl,. o ,xn),. ..,Bm(xl,. .o ,xn)> .

We can obtain by substitution the functions

SO (Xy 500 ,xn) s SSOn(xl,. . ,xn) sese
i.e., all constant functions. If we want to introduce extra variables or
change the order of variables in order that substitutions may be made, we can
do so using the identity functions. For example, suppose we wish to define
F(x,y,z) such that F(x,y,z) = B(z,%) . We put

F(x,y,2) = B@:ss(x,y,z) s 131(X,Y,Z)> .



A function F of n + 1 variables is obtained by recusion from a

function A of n varigbles and a function B of n + 2 wvariables if
F(xl,...,xn,o) = A(xl,f..,xn) s
F(Xlsﬂ‘ﬁxn’S.V) =B X]_s'":xn:Y:F(xls"':xn:yD .

We give some examples of primitive recursive functions:

XxX+y:x+0=x,x+8y=8(x+y) .

X y:x-0=0,x*8y=x-y+x.

Xy. XO:l, xsy.=}(y-.x.
We define sgnx = 0o ([ 91f% 2 %) (where 0° =1 by definition) and

and we see that sgn x can be obtained from u’ by substitution. The

predecessor function P can be obtained by recursion as: PO = 0,PSx =x .

X-y 1f x-y=> 0

We define x-=~y as x-=y = { 0 otherwise

. We can obtain x-=y
by recursion thus:
x=0=x and x~=~Sy =P(x=~y) .

Then |x - y| = (x=~y) + (y=x) by substitution, and we can define
Rem(x,y) as follows:

Rem(O0,y) = 0 ,

Rem(sx,y) = (‘:‘ Rem(x,y))- sgn|y - S Rem(x,y)]| .
(1t yTSx then sgn|y - S Rem(x,y)| =1 and Rem(Sx,y) = S Rem(x,y) .

If y|sx then sgnly - S Rem(x,y)| = 0 and Rem(Sx,y) =0 .)

11.
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If A(Xyseee ,xn,y) is primitive recursive then the functions B and

C given by:

B(useees%gs2) = ) AQkwseers%,7)
y<a

C(xl,...,xn,z) = T|- A(X:L,---:Xn:.’)’)
y<z

are also primitive recursive for they are obtained as follows:
B(Xp 500 ,xn,O) = A(Xyyeee ,xn,O) s

B(xl,...,xn,Sz) = B(xl,...,xn,z) + A(xl,...,xn,Sz)

C(Xl"" ,Xn,O) = A(Xl‘,.--,xn,O) ]

C(Xl,...,xn,SZ) = C(Xl,-..,xn,z) hd A(Xl,oa-,xn,sz) °

All the functions which arise naturally in number theory can be shown
to be primitive recursive. It is clear that e%rery primitive recursive
function is computable for if F is defined by substitution and recursion,
we have a way to compute F . The converse is false for we may number all
primitive recursive functions of one variable F,,F,,... in a systematic
way depending on how they are generated by substitution and recursion. We
define G by

a(t) = Ft(t) +1 .
G 1is not Fn for any n so G cannot be primitive recursive, but clearly

G 1is computable.
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A function F of n variables is general recursive if there are
primitive recursive functions A of one variable and B of n + 1
variables such that

F(xl,...,xn) = Ap,y{B(xl,...,xn,y) =0} ,
where for every n-tuple of natural numbers XyseeesX, there is a natural
nurber y such that B(xl,...,xn,y) =0 and ;Ly{B(xl,...,xn,y) = 0} is
the least y such that B(xi,...,xn,y) =0 (if there were no such y ,

wy{see} would be undefined).

A general recursive function is computable for in order to compute

13.

F(xl,...,xn) we compute B(xl,.o.,xn,o), B(xl,...,xn,l),... until we reach

the first y such that B(xl,...,xh,y) = 0 (we are assured that:such a y

exists). We can compute these values since B 1is primitive recursive. Then

F(xl,...,xn) = A(y) and since A is computable, F is computable.

We cannot apply the same argument as in the case of primitive recursive

functions to show that there is a computable function which is not general

recursive since there is no method of listing all general recursive functions.

From now on we accept the contention:

Church's Thesis Every computable function is general recursive.

and identify computable and general recursive functions. (Clearly we cannot

prove Church's Thesis since computability is an intuitive concept and not

precisely defined.)



Recursively Enumerable Sets and Relations

A set of natural numbers is recursively enumerable if it is empty or
if it is the range of a primitive recursive function of one variable.
A relation R(Xpjess ,xn) is recursively enumerable if it is empty or if
there are n primitive recursive functions of one variable Fy,... ’Fn such
that R(Xy,ee. ,xn) iff there is a natural number m such that
X, =F(m) A eee A X, = Fn(m) .

Since a primitive recursive function is computable and we have shown
that the range of a computé.ble function is listable (Lemma 2.l), it follows

that every recursively enumerable set is listable. (Conversely we have the

contention:

Bvery listable set is recursively enumerable.

(which is equivalent to Church's Thesis).

From now on we identify listable sets and recursively enumerable sets.
It follows that the range of a general recursive function is recursively
enumerable. A set is recursive if both it and its complement are recursively

enumerable. So we identify recursive sets with computable sets.

Gddel's Theorem and Davis' Theorem

4 formula is arithmetical if it is built up by means of logical
symbols (Vv ,3,~,A,V) from equations of the form a =b , a +b = ¢
and @b = ¢ where a, b and ¢ are variables or symbols for particular

numbers. Relations defined by arithmetical formulas are called arithmetical.
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In 1931 G6del proved that the relation given by F(Xp,e.. ,xn) =y
where F is any primitive recursive function is arithmetical. It follows
that every recursively enumerable set is arithmetical, for let S be any
recursively enumerable set. Then there is a primitive recursive function F
of one variable such that S is the range of F . Suppose R(x,¥y)
iff F(x) =y . Then ye S iff (Ix) (‘E‘(x) =y> iff  (3x) Q?—i(x,y)) and since
R(x,y) is arithmetical, so is (3x) (R(x,y)) . Also, every recursively
enumerable relation is arithmetical, for suppose R(x,y) is a binary
recursively enumerable relation. Then there are primitive recursive
functions F and G of one variable such that R(x,y) iff
(3n) (x =Fn) ANy = G(n)> . Since each of the conjuncts is arithmetical,

so is R(x,y) . The proof for recursively enumerable relations of higher

N

degree is similar.

We may use bounded quantifiers in arithmetical formulas since
(3x < y)[...] is equivalent to (@x,t)[x +t =y A .e.] and (vx < y)l...]
is equivelent to (vx){(@t)(x =y +1 +t) V... } (either x>y or ... ).

We now prove Godel's theorem in a strengthened form due to M. Davis.

Theorem 2.8 (GSdel-Davis) Every relation given by F(X;,... X)) =¥
where F 1is a primitive recursive function can be expressed by an

arithmetical formula in which the universal quantifiers are all bounded and

there are no negation signs.
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Proof If F is a primitive recursive function then F is either an
initial function or is obtained by substitution and/or recursion from
initial functions. We show that the theorem holds if F is an initial
function and that it holds if ¥ is obtained by substitution or recursion
from functions that satisfy the theorem. (i.e., the proof is by induction on

the number of substitutions or recursions necessary to obtain F from the

initial functions.)

I. (Induction basis) If F is an initial function then the theorem

holds for F .

We have On(xl,...,xn) =y iff y =0,
Sx =y iff y=x+1,
Ink(xl’""xn) =y iff y=x .
II.. if F(xl,...,xn) = B@l(xl,...,xn),...,Am(xl,...,xn)) where

Ay..s ,Am and B satisfy the theorem then F satisfies the theorem.

We have F(xl,...,xn) =y iff

(Z-lzl,...,zm)[z1 =Al(x1,...,xn) Neos /\zm=Am(x1,...,xn) /\y=B(z1,...,zm)] .

By the inductive hypothesis, each of the equations on the right side of the

equivalence can be replaced by formulas of the required kind so F satisfies

the theorem.
I1I. If F(xl,...,xk,O) = A(xl,..o,xk) and

F(xl,...,xk,yd-l) =B xl,.,.,xk,y,F(xl,...,xk,y))

where A and B satisfy the theorem then F satisfies the theorem.
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For a fixed y , tho sequence Ug,ese. ,uy 1 is completely determined

by the equations:
Uy = A(Ky,eee %)
Uy = B(x:l.a'--’xk,osuo) s

= B.(Xlsn‘:xk:l:u.l) s (1)

= B(X:L:"':xk:y‘lauy_l) )
v +1 = B(x]_:"'3x1{sY9uy) .

If Ugseseslly 4y satisfy (1) then F(xl,...,xk,t) =1

% for t<y+1.

So by Godel's ILemma (2.2) there are natural numbers a and d such that
u, = Rem(a,l + (t + 1)d) for O<t<y+1. (We actually have one more

equation than we need.) Thus F(X;,e.. ,xk,y) =z iff

(3a,d) [Rem(a,l +d) = A(xl,...,xk) Az = Rem(a,l+(y+1)d) A
(2)
(vt < y-l)(Rem(a,l+(t +2)d) =B xl,...,xk,t,Rem(a,l*‘ (t +1)d))>] .

Also
Rem(u,1 + v) = w iff (3r,q)<u =(Ql+v)r+wAw+q-= > .

So each of the equations on the right side of the equivalence in (2) can be

replaced by a formula of the required kind and F satisfies the theorem.

Theorem 2.9 (Davis) Every recursively enumerable relation can be put

in the form

AN (vu<y)@3Vvy < F)eeo (:-lvk < y)(P(xl,. o0 9% 3T UsV 5 s .,vk) = O>
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where P 1is a polynomial with integral coefficients. Conversely a relation
defined by a formula of this form is recursively enumerable.

(This is called the Davis normal form of a recursively enumerable relation.)

Proof Using Theorem 2.8, we may assume that any recursively enumerable
relation is given by a formula built up from diophantine equations by
conjunctions, disjunctions, existential quantifiers and bounded universal

quantifiers. We show how to reduce such a formula to the required form.

1. If all the quantified variables are distinct, the Godel-Davis formula
is equivalent to the formula obtained by writing all the quantifiers at the

beginning of the formula in the same relative order and leaving the rest of

the formula unchanged.

2. A formula which is built from equations by conjunctions and

disjunctions is equivalent to a polynomial equal to zero, since

A=0AB=0 iff A2 +B® =0
and A=0VB=0 iff AB=0.
3. We have the following equivalences:

x>y iff (Iz)(x =y +1 + z)
and x>y iff @Qz)(x =y + )

and we could use the bounded quantifier (3z < x) in both cases.

h. A formula of the form
(vt < x)(Bul,...,uk)(vz < x‘-)(3v1,...,vg)(P = 0)
is equivalent to
(3ay,eeer8y,d1,000,4 ) (VE < x)(v2 < x’)(3u1,...,u.k,v1,...,v£)

[, = Remla,,1 + (t + 1)d1> Noeoo Ny = Rem(a.k,l + (bt + 1)dk> NP =0],
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where the two universal quantifiers are adjacent. We see that
31:'-':ak:d1:---:dk can be chosen so that Upseeesly are arbitrary numbers
depending on t for each t with t <x . We can use the equivalence
Rem(u,l + v) =w iff (Er,q)@ =(L+v)r+wAW+4q =V>
together with reductions 1 and 2 to reduce the formula to the form
(3..) (vt < x)(vz <x/)(3...) (7 =0) ,

where P’ 1is some polynomial with integral coefficients.

5. A formula of the form (Vu < x)(vv < x/)(3w)(P = 0) is equivalent
to a formula with one universal quantifier, viz.,

3z)(vr < z)(3Ju,v,w) [z =J(x,x" )Ar=J(u,v)A(u>xVVv >x’VP =O)] ,
where we use the fact that if u<x and v < x/ then J(u,v) < J(x,x’)
(from the definition of J ). Also 2z = J(x,x’) is equivalent to
2z = 2J(x,x’) which has integral coefficients. We use reductions 2 and 3 to
obtain an equivalent formula of the form (Iz)(vr < z)(3u,v,w,s,t)(P” =0) ,
where P’ is some polynomial with integral coefficients.
6. Thus given any recursively enumerable relation in the Gddel-Davis

form, we first apply reductions 1, 2 and 3 wherever possible and then use

reductions L and 5 repeatedly to obtain a formula in the form
(Ele,...,xk)(vu < z)(3v1,...,vg)(P =0) ,

where P dis some polynomial with integer coefficients.

7. A formula of the form

(3%,5) (Vu < 2)(3v1,00.,7, ) (P = 0)



is equivalent to

@) (7e < ) (@Wa,eeesmex,7,) (b = 33x3),2) A (@ >z v P =0) .

Using reduction 7 repeatedly we obtain a formula of the form

(30) (v < W) (FVa,e.e,v ) (B = 0)

which is equivalent to

Gy)lvu < 7))@V < 7)ee. (A, < 7)(Ew < ¥)(3z < 7)(3t < ¥)

[y=dw,z2) A(u=w+1+tvP =0)].

Applying reduction 2 we at last obtain the Davis normal form.

Conversely, if x ¢ S is defined by:

xe S iff (Ey)(va<y)(3vy < 3)e..@v < 7)(P =0) ,

then S is recursively enumerable, for let G(x,y) be defined by

ey = ) TT e T Pmpuvseeesm) 3

usy v, £y Ve <V

then G is primitive recursive and x ¢ S iff (3Jy) Q}(x,y) = O) .

[This is similar to the reasoning in statement 2 of Davis' theorem for

(:—1x<x~')<1=(x) = o) iff [ P(x) =0;

x < x7

(vx < x')(p(x) - o) ire Z PR(x) = 0 . ]

x < x/

Hence if S# @ , let a be a particular element of S. (If S

is recursively enumerable by definition.) Then

B(x,y) = 97 x v (sgn a(x,) -2

2,

20,
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is primitive recursive. Now x ¢ S iff (Jy) Q}(x,y) = O) . Let this y be

Yy - Soif sz,H(x,yx) =0%.x +0+a =x and if

6(x,y) #0 , H(x,y) =0-x+1l-.a=a. If x§S, Hxy) =0:x+1l-a=a

for all y . ©So

S is the range of H and therefore S is recursively

enumerable.
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CHAPTER III

Diophantine and Exponential Diophantine Relations

A diophantine equation is an equation of the form
A(xl,...,xn) = B(xl,...,xn) where A and B are terms built from
particular natural numbers and the variables Xj,ese 5%y by addition and
multiplication. We may also write such an equation in the form
P(xl,...,xn) = 0 where P is a polynomial in Xj,e..,X, with integer
coefficients. Hilbert's statement [5] of the tenth problem was for integer
solutions to diophantine equations but it can be shown that the corresponding
problem for solutions in the natural numbers is equivalent to the original
problem. For suppose we could solve the problem for ‘solutions in the
natural nunbers. Then the diophantine equation P(Xy,e.. ,xn) =0 has a
solution in integers iff one of the oK equations P(+Xq,... ,ixn) = 0 has
a solution in natural numbers. Let Q(x;,ee. ,xn) be formed by multiplying
together the oK polynomials P(i-xl,...,i-xn) . Then P(xl,...,xn) =0 has a
solution in integers iff Q(Xqje.s ,xn) = 0 has a solution in natural
nunbers. Conversely, since Lagrange's theorem (c.f. [4], p. 300) states that
every non-negative integer can be written as the sum of four squares,
P(xl,...,xn) = 0 has a solution in natural numbers iff

P(uf + v +wl + 28,000,058 + Vfl WS+ 2121) = 0 has a solution in integers.

We note that if we have equations Ai = Bi s 1 =1,0es,n then

A, =B,and A, =B; and ... and An =B, is equivalent to the single equation
n

Z (Ai-Bi)z =0. Also A, =B, or A;=B; or ... or A =B, 1is equivalent
=]

n
to the single equation TT (Ai -Bi) = 0. In this way we can combine
v 1
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systems of diophantine or exponential diophantine equations into a single

equation.

A set S of natural numbers is diophantine iff there is a polynomial
P(0yXqgeee ,xk) with integer coefficients such that neS iff there are
natural numbers X;,...,X, such that P(n,xl,...,xk) =0 . A relation
R(Fp 500 ,yn) is diophantine iff there is a polynomial P(yq,ec. sTpoKasene ,xk)
with integer coefficients such that R(yy,e.. ,yn) iff there are natural

numbers Xj,ess,X  such that P(yl,...,yn,xl,.._.,xk) =0.

We give some simple diophantine relations:

a<b iff there is a natural number n such that a +n =5 .
a<b iff there 1s a natural number n such that a +1 +n =5,
alb iff there is a natural number n such that na =b .

aTb iff there are natural numbers x and y such that

b=ax+y and 0<y<a or a=0 and b >0 ;
iff there are natural numbers x,y,z,u,v such that
b=ax+y and y=1+2 and a=y +1 +u

or a=0 and b =1+v ;

iff there are natural numbers x,y,z,u,v such that

(-ax-p)= + (7-1-2) (2-y-1-w?)(s* + (b-1-m)7) = 0.

ged(a,b) =1 iff there are natural numbers u and v such that ua =1 + vb .

An exponential diophantine equation is an equation that can be put in

the form E(xl,...,xk) = F(xl,...,xk) where E and F are terms built from
particular natural numbers and the variables X;,... X by addition,

multiplication and exponentiation.

A set 3 of natural numbers is exponential diophantine iff there is an
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exponential diophantine equation E(n,X;,... ,xk) = F(n,Xyyeee ,xk) which
has a solution for =Xj,... 5%y in natural numbers iff neS . Exponential

diophantine relations are defined analogously.

Lemma 3.1 (Robinson) [9,10p. 98] The relation m = (?) is exponential

diophantine (where m,n,r are natural numbers).
Proof We establish the following result:
_ n,.n(r-1) -n n-+r
[2 (1+2 iy - 282 (L+27™%] + 0 (1)

( [x] 4is the greatest integer in x .) Suppose n >0 and r >0 . Then

expanding by the binomial theorem,

ey -2 Y ()
=0
r
2T nyn n\ n(r-t) n(r-t) (2)
v § e § s z

t=r+l

n
We show that Z (f;) on(r=t) o7 |
t=r+1

), @7

t=r+l

I

(:32) 7™ +(L3,) e s (B
((Fa) + ((52) 27 e+ (F0)
(e22) (o) v () -

Since r > 1 , the terms on the R.H.S. of (2) with factors of (g) and (2)

n
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r
must occur in Z (ﬁ) 2n(r-'b) . It is well known that
t=0

21’1

(i.e., a set of n elements has 2" subsets)

@@+
and as (g) =1, G‘)

n

<1l.

n
n>0, Z G_f) oP(r-t) < omn 1y = 2
ter+l 2

-1
n

r
Therefore [27F(1+2"%)P] = Z (2) on(r-t) .
t=0

r-1 n

Z (fcl) 2n(r—l—t) . Z (2) 2n(:r'-l-t)
t=0 t

similarly, 2T (1.0

=r

A

r-1 n
Z (n) 2n(r—l—’c.) 2. -1

t oft
t=0

r-1

(@)=
t=0

A

r
5o l:zn(r-l)(l’i_z-n)n] - z (2) 2n(r-l-t) .
+=0

r
Thos  22[2™MT1) (1 420 - z (2) 22(r=t) .14 therefore
£=0

2P (1 +2 )P - PR 1) (1 42B)Py - (?.) 2Arer) @) (if n+x>0

then 0%*F = 0 ). So we have established (1) if n>0 and r >0 .
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If r =0 then [2°F(1+2 M) o Ppo(r=1)(y 4pomyny , oo¥r
= [(L+2™) - R @+2™] + 0" .
If n =0 also then the above becomes [1] - [1] +1 =1 = (8) .

(By convention 0° =1 .)

If n >0 the above becomes

[(’8) +G‘> oM., +<2) 2‘“2] -2t [(g) 2™ +(§1) oM L+ (2) 2'n(n+l)] +0

=1-2n0+o=1=(3).

If n=0 and r >0 we define G}) =0 . (1) is easily verified in this

case also.

To show that the relation m = (I;) is exponential diophantine we use

the fact that if b >0,

[%]=c iff bec<sa <b(c+l) . (3)
Let x = [znr(l_l_z—n)n] 3y = [2n(r—l)(1 +2-n)n] .
(L)
Then @ =m=x-2%+ ™", fron (1)
_ nr . n(r-1)
but 2"F(1+2™HT = %ﬁ? (22 +1)" ang 2MTD)(1.omyn o 2 e (2™ +1)"
= —— (2" +1)" .

So using (3), (L) is equivalent to

m=x-2ny+0n+r

2 2
Mx < 2™ (21 41)? < 2P (x+1)
n ,n< nr,.n n n.n<
P My < P! < 2" (1)
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Thus, m = (?) iff there are natural numbers x and y which satisfy the
above conditions. Equivalently, m = (1;) iff there are natural numbers

X,¥,u,v,W,z such that:

m+2ny=x+0n+r

and | oMy 4y = TR )R

and TP A1) 41 sy = 2P (x + 1)
and ot . 2n2y + W= 2nr(2n +l)n

and TR 41 41+ g = 2R, Zn%(y +1) .

As previously remarked, we may combine these five equations into a single
exponential diophantine equation with three parameters m, n and r which has

a solution in natural numbers iff m = (?) .

Lemma 3.2 (Robinson) [9,10 p. 99] The relation m = n! is exponential
diophantine.
Proof We need the inequalities: a) l]-e <1+26 for 0<69 <%‘- s

k

and b) (1+6)¥ <1 +2% for 0<6 <1 (where ke N).

Proofs a) If o<e<%— then O<92<%9 , S0 20% <@ .,

Therefore 1 <1 +6 -206° ; i.e., 1< (1 - 6)(1 +20) .

1
1-6

<1+206.

GRGI G
OO 0.

Since 1 -6 >0,

1]

b) Now (1+6)K

and since 0<g <1, <k> <k>e t oeee (k>ek -1 s SO (1+6)k <1+2% .



We now show that for any s > (2n)n+l , nl!
n n n-1
s’ _s enl(s-n)! _s n!(s-n)!
For n>0, (s =T G = D
n
n-1
s n!

TGD(G-2) - (5-(®-D))

me < n(551)(s%2) - (smiemy)

and 1 <— = R for 1< r<n-1l,

S=-Tr 1—2 l_g
S S

o m (325)(527) - (smdbmm) <=(Fe) -

1-2
s

-

Now if s > (20)™, clearly o© <3< ']zL‘ )

s? 1 \" n -
so n! <(é—<n!(._n) <n!(1 + 2(75-)) from a)
1-=
2) :

n

S

(2

(1)) - (i)

<n! (1 + Zn(?-sg>) from b) .

n n

- « !
Thus, f—s- <nt! + ?——%Il—-n— , but n12® < 2. "
)

n n

and SS <n! +1, i.e., n! = SS o We may write m =
) @

s n ) . n_ /(s s

(n>m< s < (n)(m.-i-l) s leee, s = (n>m +r and r <(n) .

so n!2%(2n) < (2n)

n

S

—— as
5

)

28.

S

Y
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Thus m = n! iff there are natural nunbers r, s and t such that

s > (2n)n+:L
and b = (S)
1

and sn =mt + r
and r<t;

S

i.e., m =n! iff there are natural numbers r,s,t,u,v such that

n+l

s = (2n) +1+u
and t=(s>
) n
and sn=m‘b+r
and r+l1+v==t.

We have shown in Lemma 3.1 that the relation t

(i) is exporential

diophantine and it follows that the relation m = n! is exponential

diophantine.

Corollary 3.3 (Matijasevi€) [8] The set of primes is exponential
diophantine.

Proof To show this we use Wilson's theorem and its converse, viz.:

If p is prime then (p-1)! = -1 (modp) . If p>1 and
(p-1)!

i

-1 (mod p) then p is prime. (See [6], pp. Lli-L5.) So we may

write: p is prime iff there are positive integers b,u,Z such that

p=1+u
and L = (p-1)!
and £ =pb-1.

29.
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with ¢ >r . ILet x Dbe a real number with 0 <x <1 . Then expanding

(1+x)* around x = 0 by Taylor's theorem with Lagrange's form for the
T

remainder, we have (1+x) = 2 (3') xd + (ril) xr+1<1 + Gx)a_(rﬂ) for
J=0 |

some 6 with 0<9<1l. Ilet «

§>r and let x = a™® where a is an

- a a—2j . i a—2(r+l) 1+ ea-2 a-r-1
L J/ \r +1
j=

integer, a >1 . Then (1+a~3)*

SO

r
2 ea) = ) (DT (2 )M e T @)
J. r+l
§=0

r r-1
Let S(Ix,(a) = z (c;) 227234 | g S(;__l(a) = Z((;)aQr-zg—l , and
j:o j:o

r-1

i (3) 22T-23 _ Z (3:) 272
j=0 j=0
@)=+ (). @

As a>r, (roj_]_) - ole _:8‘ ;.:.Dga-r) > 0 and the remainder term in (1),

[}

~1l.a a
a Sr(a) - aSr_l(a)

namely (ril) a~t (1+ ea"z)a_r-l , is positive. Furthermore,

ccr+l( -l) (a- )
a _ a °tc a r+l -
(r+1)_ (xr + I <c » and 1.<(1+6a7%) <2 so
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(1 +0a=®)¥ Tl = ()T - L Lo 2. % for some p o with
oL B
1 . 1 1 1 a=r 1 1
§<[3<1- Since 1<§<2,§<§B-<1,SO 0<pB --2?--2?<1,
i.e., (1 + ea_g)a-r-l < & . Therefore,
so we may write (1) as
a2r+1(1 + a‘2>a = s%(a) + o’ &L a1 0 (3)
for some 6/ with 0 <6’/ <1 . In a similar fashion,
r-1l
(o) = T (@ L (e e
J=0
for some ¢ with O <¢ <1 . Therefore
2r—11+-go:_o: r o g-1 00 N
a a = Sr-l(a) + ¢’ a a (L)

for some ¢’ with 0 < ¢’ <1 . We show that for a suitable choice of a ,

S‘;,(a) and S‘;’__l(a) are integers. Consider

(?) = @)ﬁ'_l) --j.' (‘g-- (j-l)> ) P(P‘q)(p-2q)'.,, (p-q(j-l))

at 3t
If qrrlla , (and thus q']j!]a for j = 0,1,...,r ) then each term in

2 2

S%(a) and in Sg_l(a) is an integer (the smallest power of a appearing in

each sum is a%* ), We also show that for a suitable choice of a , the
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remainder terms in (3) and (L) are less than 1. The remainder term in (3)
T
is o (%)rﬂ' -2-3- < 1 if a> pr+l 2P | and the remainder term in (L) is
2

d
¢'<l;i)r-2—a-<1 if a>p ™ 2P, Thus, if o¥ri|a and a >p° 't 2P

>

then [azm'l(l + a‘z)%] = S?(a) , and [a2r-l(l +a= >§} = S%_l(a) .

So we have shown that the relation R(s,t,p,q,r) which holds among natural

numbers s,t,p,q,r iff

is equivalent to the relation R(s,t,p,q,r) which holds iff there is a

natural number a such that

2
and g.c.d.(s,t) =1
and a > pr+l oP
S
and a" - rlla
and a% = [a2r+l(1 + a‘2>g] - az[azr—l(l + a‘2>§:] (from (2) ).
2

The condition u = [qu] is equivalent to u? < v&P < (u+1)q which

is exponential diophantine and the other conditions given above have



g

already been shown to be exponential diophantine. Thus we have proved that

n
the relation m = [ (c + dk) is exponential diophantine.
k=1
n
gorollary 3.5 The relation m = || (c - k) is exponential
k=0
diophantine.
Proof Either ¢ =k for some k with O <k <n , in which case a

factor in the product is zero, or c¢ >n and there is a natural nunber x

such that ¢ =n +x +1 , i.e., x =c¢c -~ (n +1) . In this case,

]

n
T (e-k)

k=0

(c=0)(c-1) ... (c~-n)
(c-—(n+1) + (n+1))(c-(n~+1) +n) ces (c-(n +1)+l)

- (x+(n+1))(x+n> (x+l)

n+l

=TT (x+k) .

k=1

n

Thus, m = [[ (c~-k) iff there is a natural number x such that

k=0
either c+x=n and m=0,
n+l
or c=n+x+1 and m= [ (x+k) .
k=1

A1l these conditions have been shown to be exponential diophantine and thus

n
m = T] (c-k) is exponential diophantine.
k=0

3L.
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Lerma 3.6 (Davis, Putnam, Robinson) [3,10 p. 103] (Let x stand for
Xy geeesX, .) Let P(x,y,u,vl,...,vk) be a polynomial with integral
coefficients. ILet Q(x,y) be any polynomial with integral coefficients
such that

Q) =¥ (1)
and

(vu < y) (Vvl < Y) see (VVk < Y)(lP(X:Y:u:V:L:"':Vk)I < Q(X’y)> . (2)
Then
(va < 7)(@vs < 3) +ev (@7 < P POGTSRTL e 57) = O) 3)

is equivalent to

(Hc,t,al,...,ak)[t = Q(x,y)! A L+ (c+1)t = .rr (léh(m-+1)t)

mn<y

N1+ (c+1)t|P(xs75Cs81 5000 ’ak)

ANL+(e+1)t| JT (ax=3) A «oe
J<y

A2+ (e 1) TT (-9 ] - (1)
i<y

(Note: k is a natural number which depends only on the number of variables

in P , so for any given polynomial P, k 1is a constant.)
Proof

We note first that the conditions t = Q(x,y)! and

(5)
1+(c+1)t = T (1+(mv+1)t> uniquely determine + and c .

n<y
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If m<y and m <y and mz m then we show that
geCeds (1 + (m+1)t,1 + (m +l)t) = 1. For suppose p prime, p|<l+(m +1)t>
and p[(l + (m’-+1)t.) , (we suppose m >m’), then
p|(l+(m +l)t> - (l+(m’ '.+l)t> s i.ee, pl(m-m')t with O<m-w <7y.
If plm-w then p|t because t = Q(x,y)! and Q(x,y) =y from (1) and
(5). But clearly, if p|t then pfl+(m +1)t , so

(1-+ (m+1)t , 1+(m +1)~t,) =1, ()

Also, since l+(c+1)t = T (l-+(m +1)t> ,

m<y

1+ (c+1)t

1

0 mod@.*(m*-l)‘r)) s

-1+(1 + (m+l)t> @od(l +(m +1)t>)

(m+1)% mod (1+(m.+1)t) ,

(c+1)t

1

i

and since g.c.d. (t,l+(m+1)t) =1,

c+1l

il

m+1 mod <1+(m+l)t> ,

i.es, c=mmod{1l+(m +l)t> . (7)
Furthermore, if p prime, p|<l+(m-+1)t> then g.c.d.(p,t) =1, and t=Q(x,¥y)!,
s0 pTQ(x,y)! , which implies that p > Q(x,y) >y . Hence, by (2),

p > lP(x,y,u,vl,...,vk)l for all u,Vy,ees,Vy

(8)

less than or equal to y .
Now we prove the equivalence of (3) and (L).

(L) implies (3) Suppose (L) holds. Iet u <y and let p be prime,
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p|l+(u+1)t . (Since l#(c+1)t = T[ <l+(m'+1)t> » clearly
mn<y

pKl +(c +1)t) .) As previously remarked, p >y . Put v, = Rem(ai,p)
for i =1l...k. (i.e., a; =v; modp and O<v; <p .) Since

1
(1 +(c +1)t>

_ﬂ_ (ai - j) fOI' i = loook K} p _]_l- (ai - j) fOI' i = 1oook °

i<y J<y
Thus for each 1 = l...k , there is some j, <y such that plai - J; >
S0 aiEviEjimodp,andsince vi<p and ji<y<p,

we must have v. = J.
i i

i}

so v, <y . From (7)), ¢

u mod(l +(u+ l)t)

and hence ¢ = umod p . Thus, since a. = Vi mod p

m

P(Xs¥sUsVyseee ’Vk) = P(X,¥5Cs87 5000 ’ak) 0 (mod p)

(l +(c +l)t> and (1 +(c +1)t)

ot (since p

P(x,¥5Cs81 500053 ) by assumption).

We have shown in (8) that p > |P(x,¥,0Vasee0,7 )| 50 P(x,¥,u,715000,v) = 0.

(3) implies (L) Suppose (3) holds. Let t and c¢ be determined by (5).

By hypothesis, for every u < y there are vqi,... sV S Y such that
P(X¥5UVy5000,7,) = O . We denote the vy,...,v, corresponding to a
particular u by Vgaoee s o Ve * We have shown that if u, # ug ,

(1 +(u +1)t , 1+ (uy +l)t> = 1 . Thus by the Chinese remainder theorem,

the system of congruences 2.

i}

Vi1 mod(l + (u + 1)t) s u<y, have a

common solution which is wnique mod || (l +(u +l)t) . Let this common
u<y

solution be a; . We proceed similarly to find Bpseeesdy s

i.e., al,..;,ak satisfy a, = vui<mod(lv+ (u+l)t)> s U<y, (9)
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Hence P(x,y,c,al,...,ak) = P(X’y’vui""’vuk) =0 mod(l ._-l-\.(ur-f—l)t) for
each u<y . But since the moduli are relatively prime, this implies that

T (1 + (u + 1)t>

u<y

P(X,¥5Cs81 5000 ’ak) )

i.e., l"’(c+1)t|P(X:Y:c;al9"-5ak) .
Also, from (9), for each u<y and for each i with l<i<k,

1+ (u +l)t|a.l -v < ¥y by hypothesis. So using (6),

., and V.
ui u

1

T (l+(u+l)t> T (a;=3) for i=1luk,

u<y i<y

icee, 14+(c+1)8| T (a; =) for i =1l..k,
J<y

and we have established (l).

Theorem 3.7 (Davis, Putnam, Robinson) [3,10 p. 105] Every recursively

enumeragble relation is exponential diophantine.

Proof Let R(Xqjeee ,xn) be a recursively enumerable relation. So by
Theorem 2.9 there is a polynomial P(x,y,u,vl,...,vk) such that R(xl,...,xn)
iff (Ay)(Pu< y)(3Ivy < Feos (:-]vk < y)(P(x,y,u,vl,...,vk) = O) . We make the
following changes in P :

1) replace the coefficients by their absolute value,

2) substitute y for each of the variables u,v,,... sV

3) add y to the resulting polynomial.
Let the new polynomial obtained be Q(x,y) . Clearly Q(x,y) satisfies
conditions (1) and (2) of Lemma 3.6. Therefore, by Lemma 3.6, R(X1,000,%))
iff there is a natural nunber y satisfying the relation given by (1) of

Lemma 3.6. We have shown that each of the relations occurring in () is
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exponential diophantine so R(Xj,e.. ,xn) is exponential diophantine.

In the next chapter we show that the relation a = {Bu is diophantine.
It follows that all the relations which have been shown to be exponential

diophantine are diophantine. We also have the following corollary.

Corollary 3.8 There is a particular diophantine equation

P(n,X3, 000 ,xk) = 0 for which there is no general method to tell, for an
arbitrary natural number n , whether P(n,x, ""’X‘k) = 0 has a solution

for ZX3,...,%, in natural numbers.

Proof Let S be a recursively enumerable set which is not recursive.
By Theorem 3.7, S is exponential diophantine and hence diophantine. So
there is a diophantine equation P(n,xl,...,xk) =0 such that neS iff
P(n,xl,...,xk) = 0 has a solution for =Xy,...,x, e N . If there were a
general method to tell, for an arbitrary n & N, whether P(n,xl,...,xk) =0
has a solution or not then there would be a general method to tell whether

neS or not. This implies that S is recursive. Contradiction.

Remark This is actually a stronger result than the fact that there is
no general method to tell whether an arbitrary diophantine equation has a

solution.
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CHAPTER IV

The Relation « = B* is Diophantine (Davis)

Unless the context indicates otherwise, all arguments are positive

integers.

We need some preliminary results concerning solutions to Pell's

equation in the form:

x° - (af-1)y" = 1 Le(1)

with a>1, ae Z.
For n>0,ne Z , define xn(a) and yn(a) by:
x (a) + y (a)Va®-1 = (a + Var-Dnt. L. (i1)
We write x = for xn(a) and y'n for yn(a) if the meaning is clear.

By equating rational and irrational parts in L.(ii) ({/a® -1 is irrational)

we have:
X =133 =0,
X Taj;y i,
and also
Xoyp T 28X =X 0 5 Ypuq T 2a¥, -V, L.(iii)
Proof for L. (iii) By induction on n .
For n=1:x, +y,/a”-1=(a +y/a"-1)2 = 2a® - 1 + 2a\/a®-1,

SO X, =2a° -1;y, =22 . Bub 22° =1 =2a+a~-13;2a=2a-1-0.
Therefore X, = 2ax, ~ X, ; Yo = 28y, -~ Yo - Assume the result for
n=m-=1. We wish to show that this implies that

Fal - 28Ky = X9 3 Yy T 28y, = Ype1
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(a + Va® - l)m".:L

2
Now, Xt ymﬂ\/a -1

(a + Va2-1)™a + Va= - 1)

n

(xm + ;ym\/a2 -1)(a + V/a%-1) ,

but by hypothesis, X, S2axy 4 =X o5 ¥y T2 g " Yoo s

S0 Xy + Vg VAT = [(2axy g - %y 0) + (e, - ¥ ) VA I)(a + VA D)

B [Za(xm—l +ym—lm) = (xm_2 Vo \/22___]-_)](3 +\/3'2-'Ti)

[2a(a s VESD™L D (o + VEECT -1)m‘2](a + V)
= 2a(a + 1/—az,_l)m - (a + r——-az_l)m-l

= 2a(xm /Y a®-1) - (%1 * Va1V a® - 1)

(Za.xm - xm-l) + (2ay, - ym—l) Vac-1.

Thus, x = 2axm -

m+l -1 3 Tmel = 28y = Ipq -

(Consequently X = 28K = X003 ¥ g T2y, - Vg $)

Thus the sequences {xn} and {yn} are determined completely.

It is well known (cf. [6], pp. 137-143) that natural numbers x and y
satisfy L.(i) iff there is a natural number n such that x = X 357 ST,

It also follows from L.(i) that g.c.d. (xn,yn) =1 , for any common divisor

of x and y, must divide the L.H.S. of L.(i) and hence must divide 1 .

On occasion we wWwrite d = a® -1 . The "de Moivre" formula states that

(%, + 7 VO(x, + 7, V) = (x, * Ty VD) -
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n

[Proof  (w, * 7, V) (xy + 7,V = (a +VaF-D)%(a +Va"-1)"

(a ++a=-1)*™
- xn‘l'm * yn"rmﬁ' ]

Multiplying out the L.H.S. gives xx +dy vy + (xmyn + ymxn) vd= X+ Ty +m\/?1— .
Hence,

XX + =x :
n m dynym n+m °

L. (iv)
*n " In*n T Tnwm
For m =1 , this gives
X = XX tdyyn =xa+ (af=-1y, ;
Le(v)
Tp+1 = ¥y FNX) T Ay, tx, .
Lemma LA Y|y iff nlt .
Proof a) For each n , yn| Yy for all k.

By induction on k . For k =1 the result is clear. Assume the

result for k = s . We wish to show that this implies that ynlyn(s+l) .

Now Tn(s+1) ~ Ins+n - Tns®n T In*ns from L. (iv). By hypothesis, Ynl Tns
and since ynlyn s ;an(y X +.anns) > SO yn|yn(s+l) *

ns n

b) If yn[yt then n|t .

Suppose ynlyt but n"’t . Then we may write t=ng+r with O<r <n.

NoW ¥y = Yngar = ¥p¥ng * Vo¥nq TFOM b-(iV). Bub [y, and y |y,
s0 yn]yran » and since g.c.d. (ynq’an) =1, .anyr - This is a

contradiction since r < n dimplies Yy < Yy by definition of the ¥, -



k=1

Lerma LB a) ¥y = kX Ty, mod (v,)° ,

k-1
b) Yo = K%, ynmod(az-l),

I}

c) Yy k mod (a-1) .

Proof We have x, + ynkﬁ= (a + \/az—l)n'k

[(a +Va?-1)™¥

]

(x, +v, v~

Expanding by the Binomial Theorem,

k k\ k-1 k\ k=2
xpe + TV = 5+ () A v+ (§) 27 G, vD?
k k-1 k
e+ (5) % GV ¢ VD)
- ) Oad L Orte

J even J odd

k j=1

Therefore = (k xk_lyj d%
erefore y . i) *a N .
371
J odd

kxﬁ-l ¥y, mod d , since every

Hl

— 1 K-1
Thus, Ve = kx, TV, mod (yn)a‘ » and ¥,
term in % after the first is congruent to zero in both cases. Setting
= 1 in the last congruence gives ¥ = kxl yl mod (a®-1) ,
ie., ¥ =ka " mod (a®~1), and since a® - 1 = (a-1)(a+1) ,
k-1

¥, = ka "“mod (a-1) . But a -1= (a-l)(ak_2 P a+1)
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s0 a-l[ak-l - 1 . Therefore ak-l = 1lmod (a~-1) and =k mod (a=1) ,
Lemma L.l a) yﬁlyn._yn .

b) For all t , if yilyt then ynlt .
Proof a) Setting k = ¥, in Lemma LB a), we have

-1 -1
=" v md (7)° , s (7 Ply.. - oK
yn-yn =% n Int” 5 8 In yn-yn nn °

A
- n . 2
Therefore ¥yZ2|y, 7, yEx, » and since yZ|y2 , ¥2ly, ¥, -

b) If y‘rallyt then ynlyt so n|t by Lemma LA.
k=1
Therefore t = nk for some ke Z2+ So y. =¥, = kx "y, mod (:)rn)‘3 by
k-1 R
Lemma LB a). As above, :yfllynk - kx 7y, » and by assumption, yﬁlynk
S0 yzlkxk-l Therefore | k=1 and since ( ) =1 |k and
n/**n In* ynkxn *noIn s Ipl¥

thus y [t .
n

Lemma L. 2 For each k , y . = =¥} 5 . mod (yk + yk+l) for all

u<ki+1l,

Proof By induction on u .

If u =0 wehave y + yk+1|yk F Vs 1 5O Vi = =Fypyq mod (Yk * yk‘i-l) .

]

If u

1, as above Vi = Vyeqy mod (yk * Ve +1) Assume the result for

u=j=2 and for u=7j-1 (j=>2). Thus,
Tier(=1) = Tier1-(3-1) ™08 T * Veag) 5 Loes i * T g * Niewa~(5-1)
S0 T * y1«:+1|2a(3'1«:+.j-1 * Va1-(3-1)? *

Also y, + yk+llyk+j-2 + yk+1-(,j-2) (hypothesis for u = j=2) .
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Therefore y, + .Vk_,_ll 23('.Yk+j_1 + yk+l-(j—1)) - (yk+j-2 * yk+l—(j—2)) ?
le., ¥ * yk+ll (23Yk+j_1 - yk.+j_2) + (2ayk+2—j - yk-+3-j) :
THUS ¥y * Vieyql Ty * Vyag-y (using L.(iii) ),

and yk+j = -yk+1—,j mod (yk + yk+l) .

Lerma 4.3 a) Yy = O mod (7 * ¥ q) s
b) Yo E -1 mod (yk + yk+1) s
c) Yopsp = 1 mod (yk + yk+l) .
Proof a) From Lemma 4.2 with u =k+1 , 0 = =¥o = Yy 4 Mod (yk+yk+1) .
b) From Lemma 4.2 with u =k , -1 = -y; = Yy Mod .(yk + yk+1) .

c) Yoo = 2ay2k+l = Yy = 0 - (-1) =1 mod (yk + ykd-l) .

Lemma L.L The numbers y; , with 0 <i < 2k+1 , are incongruent

mod (yk + yk+l) .

Proof For i < k the y; are increasing and less than half the
modulus. For k'+l <i<2k+1, each v is congruent to a unique -y:j
with 1< j <k by Lemma 4.2 and these are all incongruent as above. We
cannot have y, = =¥ mod (yk + yk-+l) s, i<k ,l< j<k, for this implies
that y + yk+1,yi + 7y and 0 <y, + Vs <V * Ty (v; end y; ave each
less than half the modulus).



Lemma Lo.5 For every n , ¥, .o . =¥, mod (v + yk+1) for each k.
Proof By induction on n .
If n=0,7y,=0% yy, md (yk + ykﬂ) (Lerma L.3(2) ).

If n =1,y =1=7yy,,md (y +¥.,) (Lema L3(c) ).
Assume the result for n =m-2 and for n =m=~-1 (m>2).

S0 ¥y * yk+1|y(m-1)+2k+l T Y-l 0

and therefore y, + ¥ +1] Qa(y(m-l) a0kl = Tpp1) o

Also y, + yk+1[y(m-2)+2k+1 - Yo (hypothesis for n =m=2) .
Therefore ¥y + ¥y 1220V (ng)soki = Yned) = Tmez)worss = Ype2)
1. e, Te ¥ yk+1' (zaym+2k - ym+2k-l) - (zaym-l - ym—2) ‘

ThUS ¥y * Fieuq | Tpaoray = Fp (using Le(dii) ) ,

and Yy ona = Ty med (3 *+ Fpeyq) -

TLemma L. 6 If a=bmod ¢ then yn(a) = yn(b) mod c .
Proof By induction on n .
If n=0, y,(a) =0 =y,(b) »

If n=1, y,(a) =1 =y,(b) .

Assume the result for n = j-1 andfor n=j=-2 (j>2).
S0 ¥54(a) =yy(b) mod ¢, tee., cly._;(a) = Y510 >

so clzaéyj_l(a) - yj-l(b)) .

Also Clyj_g(a) - yj-Z(b) (hypothesis for n = j=-2),

Therefore c|2a Qj_l(a) - yj_l(b)>—€y'j_2(a) - yj_z(b)>

L6,
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e, of(2ar;_1(a) - 7, 5()) - (2ar, 1 () - ;,®) -

Thus clyj(a) - yj(b) (using L.(iii) ) and yj(a) = yj(b) mod ¢ .
Lemma L.7 Let v<yl(a) , pla) + Fyeap(@)[m-2a

and let yn(m) = v mod (yk(a) + ¥y +]_(a)) . Then there is a j such that

v = yj(a) and n = j mod (2k +1) .

Proof Clearly, m= amod (m-a) . Thus by Lemma L.6 ,
Yo(m) = y(a) mod (m-a) . Since y,(a) + ykﬂ(a)lm-a ,

Ty(m) = y,(a) mod <yk(a) + ykﬂ_(a)) . From Lemma L.5 we can find a j with

0 < j < 2 such that yj(a) = yn(a) = v mod (yk(a) + yk+1(a)) . This j is
unique by Lemma L.l . We show that we must have j <k . For suppose

j=k+r with 1 <r<k. Then vEyk+r(a)§-yk+l_r(a) mod (yk(a) +yk+l(a)) s
with ¥y <y . < ¥ 5 by Lemma L.2 . Thus yk(a) + yk+1(a)]v + yk+l-r(a) .
But the yi(a) are increasing so 0 < yk+l-r(a) < yk+l(a) . Also, v < yk(a)
so 0<v + yk+l-r(a) < ‘yk(a) + yk+l(a) . Contradiction. Thus we must have

v = yj(a) mod (yk(a) + yk+1(a)) where Jj <k . And since both sides of the

congruence are less than the modulus, v = yj(a) . Clearly n= jmod (2k+1) .

Note If n is odd then yn(a) is odd because y,(a) =1 and

yn(a) = Zayn_l(a) - yn_z(a) . Thus yn+1(a) = yn_l(a) mod 2 .

Lemma ). 8 Toksr = Wean * 3 Gy ~ T)
Proof We have Ypin = %o * F9n from L.(iv),

S0 Yoeay = NiFpay * V41X ¢ Now x o = ax +dy  from Lo (v),
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and therefore TVors1 = yk(axk + d,yk) + Viea1%x

]

WX * (8% -1y * BT

= ay(x +am) * BT -V :
Also, ¥ 4 = ay *+ ¥ from Lo (¥),
S0 Vppa = Widka * Bk " Tk

T Vi (8% * ®) - TR

J -
y12<+1 Ik

n

(yk‘l'l + yk) (yk+1 - yk) .
Lerma L9 geCode (yk+1 * Vs Tyeul - yk) =1.

Proof Suppose p is prime and | (¥ *+ B )s Pl (T - %) -

Then p|(Fyq * B) = Ty = ) » Leee, |2y ,q and pl2y .

NoWw ¥y, 1S odd so Lemma .8 implies that p dis odd.

Therefore p]yk_+1 and p]yk - But since ¥, . =ay *x (from L.(v) ),

we must have plxk « This is a contradiction since g.c.d. (xk,yk) =1,
Lemma L.10 Iet 2s +1|2n +1 . Then

(Toq * TN Gpg # 7)) 204 (34 - 7| g - %)

Proof Let 2n+1 = g(2s41) . Since 2n+1 is odd, q must be odd.
The proof is by induction on q . If g =1 the result is clear.

Assume the result for g, odd. We show that this implies the resulﬁ for

g=0qy +2. Set 2n; 41 =q,(2s+1) , 2n+1 =q(2s +1) = q.(2s+1) + 2(2s +1)

=2n, +14+2(2s+1) o Then n=mn, +2s + 1.
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Therefore Jp. + ¥, = y(n1+1)+(2s+1) * yn3_+(2s+ZI.) *

B Vpan = Fm ¥ Ko 3 Yok T (e * Vid Wiy = %) Y 4o () and

Lemma L.8.

80 Fpu1 I = (T s1%0s41 * Yosar®ny41) * U Fosan * n, Yogu1)
B X23-!-1(yn1-!-1 + ynl) * y25+1(Xn1+1 + xnl)
B x2$+1(yn1+1 * ‘an) * (y5+1 * ys)(ys+1 - ys)(xn1+l * an) °
By hypothesis, (y, at ys)] (ynl a ynl) so (ys at ys) divides the
ReHseSe with + .
Also, (¥, - )l (yn1+1 - ynl) s0 (¥g,y - ¥g) divides the R.H.S. with - .
Therefore (Y . + ¥ ) (g * 7)) amd (Fguq - T ) (Tpeq - 7)) -
Lenma L.11 et 2n+1 = (2s 4-1)372S+ZL .
Then (Y uq = V)% (T = ¥py) and (v +70% (g + 3 -
Also g.c.d. (ys+l =¥y s Ypg * yn) = gecede (Yguq * g 5 Tpuy - Yp) =1

Proof Ilet £ = Va1 ~ Vs &’ =ys+l+:y's;

we

N=Vp = Tn 3N S *9, -

Now y2k+l = (yk'!'l + yk) (yk'l'l = yk) (I'emma )-1'8):

2\2 2 . = =
so (227)° = (yy549)% 5 MV =3, o T(2541) 5, 4 °

and since yi]yn (Lemma L.1), (£47)3| () .

oyn
since 2n+1 = (2s+1) ¥,o 43 » 25 +1|2n+l so by Lemma L.10, £[N and 27|’ .
To show that g.c.d. (£,N) = gec.d. (£’,N) =1 , suppose p is prime

and pl|¢ , p|N’ . This implies that p|N since ¢|N . This is a
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contradiction since g.c.d. (N,N*) =1 by Iemma L4.9. So g.c.d. (£,N%) =1
and similarly g.c.d. (£*,N) =1 . To show that 22|N and (&’)2|W ,

suppose p 1is prime and p|¢ , so p®|£® . Then p?|(££’)® so p?(NV) .
Since ¢|N , p|N and by Lemma ko9, g.ced. (N,N’) =1 . Therefore p?[N ,

and thus £%|N . similarly (£/)3|N .
We next show that the relation v = yu(a) is diophantine.

Consider the Diophantine equations:

u+j=-1l=v I
p+(a=-1l)g=vs+r II a.
g=v+t IT b.
p? - (a® = 1)g® =1 11T
h+(:a.+1)g=bé>+(a,+1)q>’a IV a.
h+(a-1)g=cQ>+(a.-1)c92 IV b,
h® = (a® = 1)g® =1 v
m=é1+(a+l)g)z+a. Vi
m=f(p+(a-l)q)+l VII
X =-(m®-1)y° =1 VIII
y=(@-(p+(a-La)+u I
y=(e-l)(h+(a+l)g)+v X

We show that v = yu(a) iff T to X have a solution in the remaining

arguments.
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I to X implies v = yu(a) .

IIT and V imply that there are s and k such that

b Xs(a) 2 @7 ys(a) D)

h=x/(a) , g = 5(a) .

We know that y_..(a) = x (a) +ay (a) from L.(v),

so that y ..(a) - y,(a) = x,(a) + (a-1)y,(a) =p + (a-1)q .
Similarly 3, (a) - 7(a) =h + (a=1)g .

Also y_,q(a) +y,(a) =x,(a) + (a+l)y(a) =p + (a+l)q,

and ¥, ,4(a) +y(a) =h+ (a+l)g.

Let ¥, (2) -v(a) =p +(a=1)q =¢

Yoe(a) + v (a) =p + (a+l)q =4

L. (vi)
Ti41(@) -7 (a) =h + (a-1)g =N
Fy(8) + T(a) =B + (a+l)g =W
FromI we get u<vo.
From IT a. we get £ =p + (a~1l)g=v+r ,s0 v<4£. Lo (vii)

From II b, we get v<g.

+

From IV a., W =h + (a+1)g =b@ (ad—l)cb2 =Db(e’)®, so (&) .

From IV b., similarly, N = c£®, so £%|N .
Using Lemma 4.8, (y2s+1)2 = (£¢’)® and Yor+1 = NN’ , so (’83')2'NN' s

i.eo L (y25'+l)2l ka_'.l °

By Lemma L.1 b) , [2k +1 ,

o541

and therefore 2|2k+1 . Lo (viii)
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From VI, m =N’z + a2 so m= a mod N’.
Lo (ix)
From VII, m=ff +1 so m=1lmod & .
From VIIT y = yn(m) for some n .
Also, IX gives y = (d-1)2+u so y=umod £ ,
LL-(X)

and X gives y = (e-1)N/ +v so y=vmod N .
Now v<g-= yk(a) by L. (vii) .

Since yk+1(a) + yk(a) =N and m

il

a mod N from l.(ix),

we have y, -(a) +y (a)lm-a .
k+1 k

il

Also, y =y, (m) = vmod N from L. (x), i.e., y (m) = v mod (ykﬂ(a)» + yk(a)) o
Thus we have the hypotheses of Lemma l.7 and so v = yj(a) with

n=jmod (2k +1) .

Since £|2k+1 by l.(viii), n= jmod £ . Lo (i)

From Lemma LB c), yn(m) =nmod (m-1) ,

and since m=1mod £ from L.(ix), £|m-1

and y = yn(m) =nmod £ . Le(xii)

From 4.(x), y=umodé ,so u=y=n

Jmod £ .

L]

From L.(vii), u<¢ and jsyj(a) =v <

so we must have u =j and v = yu(a) 0

v = yu(a) implies I to X.

et v = yu(a) o We show how to satisfy I to X. Since v > u we can

satisfy I. Choose s such that ys(a) >v and put p = xs(a) 5Q = ys(a) .
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This satisfies IT a). (Since a>1, p + (a=1)g>qg>v .) Choose k

such that 2k+1 = y2$+1(25 +1) (so k>s ) andput h = xk(a) 5 = yk(a) o
Then g > q >V and we can satisfy IT b). Equations IIT and V are also
satisfied. We write equations l.(vi) as before. From Lemma l.1ll we get

22|N , (£’)®|N’ , which gives IV a) and IV b). Also from Lemma L.11,

(N’,2) =1 , so by the Chinese remainder theorem we can find an m such that
m=amodN and m=1mod £ where m is unique mod (N’2) . We choose
such an m >a ., Thus VI and VII can be satisfied (with z>1, £>1

since m > a ). To satisfy VIII set x = xu(m) 3y < yu(m) .

Sincel m=amod N’ , yu(m) = yu(a) mod N by Lemma L.b.

Thus y = yu(m) = yu(a) =v (mod N’) , i.e., y = v mod N/ , which satisfies X.
Also, ¥y = yu(m) = umod (m-1) by Lemma LB c),

and since m= 1mod £ , i.e., £|m-1, y=umod £ , and IX can be satisfied.

We now give the Diophantine definition of a =g . We use the

following results:

Lemma .12 x,(a) - yn(a) (a=-y) = " mod (2ay - y2 - 1)

Proof By induction on n .

If n=0, x,(a) -y.(a)(a-y) =1 and y° =1 so the result is clear.

If n=1, x(a) -y,(a)(a~y) =a - (a-y) =y =y! and the result is clear.

Assume the result for n =m-1 and for n=m-2 (m> 2).
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Using the difference equation l.(iii),
%,(8) = 7(2) @ -3) = (e, ;@) = % p(8)) - (2a3,5 (@) - 3 (@) (2-7)
= 28,1 (@) - 3, @) (a-9) = (mp(a) = 3, @)@ -7))

28'ym—:l. - Ym-2 mod (ZELY - y:a - 1) by the inductive

It

hypothesis.

But 2ay" - y" - ¥ = " (2ay - 52 - 1),

m-1 mn m=2
- -y

so 2ay y = 0O mod (2ay - y° - 1),

ice., 2aym-1 - ym-2 = y" mod (2ay - y® - 1) .

S0 x(2) - 7 (2)(a-y) = ¥ mod (2ay - ¥° - 1) .

We have xm+l(a) = Zaxm(a) - xm_l(a) « Now a>1, xm(a) >1 and
the x are increasing so xm+l(a) > axm(a) .
Thus xn(a) > axn_l(a) > azxn_z(a) > eee > anxo(a) = a® since x(a) = 1.
Lo (xiii)
We also need the following inequality for y > 1 :

a>y" implies 2ay -y -1>y" (where n>1 ). Lo (xiv)

n+l _

For 2ay -~ (y° + 1) > 2y y2 -1 (since a >y~ )

> 2yn+l - yn+1 _ yn (since y > 1)

4
>y - =iy - 1) .

So 2ay-y2—l>yn (since y>1).



We now adjoin six more equations to equations I to X:
W - (a® - L)v® =1 XI

we=v(a=-8) =a+(y=-1)(2p -p* ~-1) XII

@ +8 =2 -p7 -1 1T

B +Z =m XIV a)
u+ =7 XIV b)
a® - (® = 1)(n~-12BR =1 XV .

We show that o = Bu iff T to XV have a solution in the remaining

arguments.

I to XV imply a=(3u

We have show that T to X imply v = yu(a) o From XI, w= xu(a) .
From Lemma .12, w - v(a - ) = % mod (228 - % - 1) ,
but from XIT, w ~ v(a - B) = ¢ mod (2ag - g2 - 1) ,

so a =p"mod (2a - p? - 1) .

From XIII, o <2a8 - g% -1 . FromXIV a), B <m and

from XIVb), u<mn. From XV, we can find an n such that

a=xn(n);(n-l)6 yn(n),a.ndsince a>1l,n>0,

From Lemma LB c), yn(n)Enmod (m-12),

but since yn(n)=(n-l)6‘='0mod(n-l),nEOmod(n-l)e
As n>1 we must have n>mn - 1.

From l.(xiii), a=xn('q)>nn>nn-l, since n>n -1 and f>1.
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But from above, B <m and u<mn so a> nn_l > pn—l > pu .

We have a >p" and if B >1, 2ag - p2 - 1 > g% from L.(xiv).

Since we already have a« = B mod (2ag - B2 = 1) and o <2a8 - p2 - 1,
this implies that « =" . If B =1 then a =1 mod (2a - 2)

and since o <2a - 2 from XIIT, @ =1.

cc=[3u implies I to XV

Given a=]3u',set n>p,n>u,a=xn_l(n).

Then yn_l(h)~ (M ~=1) md (n -1) from Lemma LB c)

m

0 mod (m - 1)

and we can satisfy XV. By this choice of 7 we can also satisfy XIV a) and
XIV b). To satisfy XIII, if B >1 we use L.(xiv). Since o =p" and

a = x_n_l(qq) > -nn-l > pn-l > g%, a >p" and the result follows as before.
If B=1l,a =1 and since a>1, ¢ <2a -2 so XIIT follows directly.
Using Iemma L.12 we can satisfy XI and XIT with w = xu(a) s V= yu(a) .

We have already shown that with this choice of u, a, v, I to X can be

satisfied.
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CHAPTER V

The Relation a = Bu is Diophantine (Matijasevié and Robinson)

Lower case Latin letters are used as variables ranging over the
positive integers with the exception of i and J which range over the

non-negative integers.

We first prove some results concerning Fibonacci numbers, which are

defined as follows:
0 =05 01 =150, 70, T,
(pj is called the .jth Fibonaceci nunber. From the definition it is clear that

€neq = Pp (in fact ¢, =¢, onlywhen n =1 e

We may also write Opog T Ons1 T O

®p T Ons1 T Op-1

Lemma 5.1 @p(p4) T 0oy = 9o(n-1)
Eroof Pon+2 ~ Pop+l * %on

= 200y *02p1
= 205, * (tpzn - cp2n_2) from above
= 30o, - ?2(n-1)

Gorollary O2(n-1) = Mon " P2(n+1)



Lemma 5.2 ‘P2(k+,j) = -(p2(k+l--j) (mod Oop * q)2k+2) 20 j<k+1.
Proof By induction on j .

58.

For j =0 and j =1 the result is clear, since ¢y * 0y .n]0p * Popsn *

Suppose the result holds for j =4 and for J =£+1.

We show that this implies that ¢, + ‘P2k+2lq’2(k+£+2) * 05 (k41-(g42)) °
By hypothesis, ¢y + ‘p2k+2|‘p2(k-+e 1) + 02 (k+1-(£+1))

and gy * <92k+2l“’2(k+z) * P2 (k+1-2)

SO @i * ¢2k+2’3(¢2(k+e+1) * ‘Pz(k.+1-(e+1))) - (“"’2(k+e) * ‘P2(k+1-43))

o * Popanl (3‘P2(k+z+1) - ‘Pz(k+z)) * (3‘P2(k+1-(z+1)) - ‘Pz(k+1-e))

Opp @2k+21‘p2(k+8-+2) * 0o (k+1-(242)) from Lemma 5.1 and its Corollary.

Proof By induction on Jj .
If j=20

s Po(2k+1+3) ~ P2(2k+1) T P2(k+k+1)

im

00 (k1= (kc41)) (O4 0oy * Ogp4p) BY Lemma 5.2.

i

0o (mod oo + 0oy ,0)

and (pO=O.

IF 3715 0(onensg) T 92(2ke2) T F2(2kc41) T O2(2k) PV Lemma 5ol .

From above, (P2(2k+l) =0 (mOd ‘PZk + @21{4.2) 2



SO ®p(opap) = o(2k) (MOA @ * G0y

i

0o (k) (MOd Vg * Vpieun)

il

9y (mOd Gy + 0py4p) -
Suppose that the result holds for j =£¢ and for j=4+1.

_ We show that this implies that ¢, + <P2k.,.2|‘P2(2k+1+(42+2)) T 9o(g42) *

By hypothesis, oy + 0oinl00(21a14(p41)) = P2(g41)
and o * ‘sz+2|"’2(21<+1+3) - %y 0
5O gy * ‘sz+2’3(‘°2(21<+1+(3+1)) = 0(g+1)) T @o(o14g) T P2g) o

Cox * ‘°2k+2|(3‘P2(2k+1+(3+1)) - ¢2(2k+l+£)) - (3¢2(z+1) = 0gp) »

O * OorrelPo(orra(ge2)) T 92(g4p) Y Lemma S.1.

Lemma 5.L Po((2k+1)i+j) = P23 (mod gpy + 0gy49)
Proof By induction on i .
If 1 =0 the result is trivial.

If 1i=1, 92(2k+1+§) = 5 (mod Py * (p2k+2) by Lemma 5.3 .
Suppose that the result holds for i =¢ .
Then  @p((2k41)(£+1)+3) T P2((2k+1)e+(2k1+5))

= 05 (oa14g) (MOQ @pp * Opy4p) DY the inductive

hypothesis

= 2% (mod Pop * ‘P2k+2) by Lemma 5.3 .
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Corollary to Lemmas 5.4 and 5.2

9y Tor 0<j<k
4’2((2k-+1)i+j) = |

Oop * Popo = ¢2(2k-+1-j) for k+l < j< 2k .
Proof The first congruence follows from Lemma 5.l .

For the second: o, ((2k+l)i+j> = 05 (m0d @y, *+ ©py4p) by Lemma 5.k
and for k+l1 < j< 2k, o5 = w2€{+(j—k)> .

So q’2<(2k+1)i+3 = ¢2Q<+(j-k)) (mod @5y * 9op40)

it

-(p2<k+1—(j-k)> (]TIOd (pzk + (sz_,_z) by Lemma 5.2

~P2(2k+1-3) (mod 0oy + 0 4)

i

o * Porap T P2(2k+1-3) MOd Ot Ogup) -
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Definition For each m> 2 , Ym,O =0 ; Ym,l =1; Ym,n+l = mYm,n - Ym,n-l .
Lemma 5.5 If m>2, dm-3 then Ym,j = 0y (mod &) .

Proof By induction on J .

Since Ym,O =0 = ®g and Ym,l =] = ®o s the result is clear for j =0

and j=1.

Suppose the result holds for j =k and for J =k+1.
We show that this implies that it holds for j =k+2 .

By hypothesis, Ym,k = Qo (mod d)



S0 Tk = n¥ okl T ¥,k

= MY o1y T O (mod d)

m

30 a(ke1) T P2k * (M3 0oy (mod d)
= 3¢ 2(k+1) " Do (mod d) since djm=-3
= 0(k42) (mod d4) by Lemma 5.1.

Lemma 5.6 If the numbers k,m,n,v are such that

m>2,v=< Popaq 2 ((ng + ‘P2k+2)|(m"3) ’ Ym,n =v (mod Pop * (P2k+2)

then there exist numbers i,j such that v = 05 » 1 = (2k+1)i~+j .

Proof Setting d = ¢, *+ ¢p 4o » We have the hypotheses of Lemma 5.5 ,

w
o
=
I

m,n = Pon (mod @5, + ¢py 45) - Using the division algorithm we may

il

write n = (2k+1)i+j with O0< j< 2k .

Therefore v = Ym,n = ®o( (2K41)i+j) (mod Oop * q)2k+2) .

If 0< j<k then by the corollary to Lemmas 5.l and 5.2 ,
VE 0p5 (mod ooy * 0pp40) -
Since v < ®op+] < Popesn and (p2j < Pop 3 both sides of * are less than

the modulus. Thus v = ¢p5 -

If k+1< j< 2k then by the corollary to Lemmas 5.4 and 5.2 ,

VE =0 o(ops1-g) (MmOd 0np * 0 yp)

with 1< 2k+1-j <k (leer, 1< 0pepp sy < 0g) -

THUS Qo * QoulV + Op(ops1_g) VIR L <Vt 05005y < 0o * Oopun

which is impossible.
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Lemma 5.7 If m>2, ¢|m=-2 then ijzj (mod 2) .
T— 3
Proof By induction on J .

For j=0 and Jj =1 the result is trivial.
Suppose that the result holds for j =k and for j =k+1.
So, by hypothesis, ¥ , =k (mod 2)
3
and T k41 =k+1 (mod 2) .

Then ¥, weo = ™¥p ka1 =~ n,k

mk~+1) -k (mod ¢)

(m=2)k +k + (m=-2) +2 (mod £)

mn

k +2 (mod £) since £|m-2.

2 - i
Lemma 5.8 0541 ~ 93054 ~ 05 = (-1
Proof By induction on i .

For i =0, ¢f - o1 - 05 =1 = (-1)°

and for 1 =1, ¢% - @9 - =1-1-1= (-1),

Suppose that the result holds for i =k .

2 - - 2 = - 2 -
Then 0F.p = Opafke2 ~ el = (Prap T Oea1)” T Oariae ~ i

- - 2 - 202
(oag * 0 = 9p)® * Qe (0 * ) = 2

1l

% * 9 T 9kel

= - 2 - -
(-1) ((Pk'*'l Pr+1%k (912{)

]

(-1)(-1)k by the inductive hypothesis

= (-)FH .
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Lemma 5.9 If the numbers Jj,k are such that (k® - jk - j®)R =1
then there is a nunber i such that J = 05 3 k = ®547 *
Proof (We recall that j= 0O ', k > 1 by a previous remark.)

We see that (k® - jk - j®)2% = 1 dimplies that j <k .
For if k2 - jk - jR =1 then k® - j3=1+3jk>1 so k>3 .
If j =0 it is impossible to find a k with k® - jk - j® = -1 50 in this
case we must have j >0 .
We have k® = j® + jk -1, so k® > j® since jk>1, i.e., k>J .
The proof of the lemma is by induction on j+k .
If j+k=1 then j=0,k=1, 80 j=05,k=0; -
Suppose that J and k are such that (k® - jk - j®)® = 1 and suppose also
that the result holds for all j* and k’ for which
((k')2 - j'k’ - (,3")2>2 =1 with j* +k <j +k.

(We may assume J >0 since j =0 dimplies k =1 and this is our

inductive basis.)

Set Jy =k-J sk =3

@-z

(# + 3 - k2)

Then Jj, >0 , k; >0 and

]

(kf - Jiky - 3D i(k=-3) - (k-j>z)2

[}

(k® - 3k = j®)® = 1.
Furthermore, Jj, +kq =k <J +k.
Therefore, by the inductive hypothesis there is a number i such that

Ji =05 5 k1 S5, SO J @5, and k=i v =05, -

Y
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2 - 2 =
Lemma 5.10 For each m> 2 , Ym,i+1 mYm,iYm,iﬂ YRy 1.
Proof By induction on 1i .
For i = =1.

2 _ 2
5 Ym,l IrN“‘fm,lllrm,o * Ym,o

i = 2 _ 2
For 1 =1, Ym,? mYm,z‘lfm’l + Ym,l

m®-m +1=1,
Suppose the result holds for i =k .
Then Y2 y.o = M ¥ wee * ¥pka)

= (¥ s = Tnad® " W ey (0% 0 = T p) TRk

= ern,kﬂ+1 - Ym,kym,k at Y]ﬁ,k = 1 by the inductive hypothesis.
Lemma 5.11 If the numbers j,k,m are such that

m>2, j<k, k¥ - mjk + j® =1 then there is a number i such that

J = Ym,i s k= Ym,i+l .
Proof Suppose m=> 2 .

The proof of the lemma is by induction on Jj+k .

If j+k =1 then j=0,k =1 so J=T%

mo o K=Y

m,1

Suppose that j and k are such that j <k, k® -mjk + j° =1 and
suppose also that the result holds for all j’ and k’ for which J’' <¥k’ ,
(k)2 - mj?k’ + (§*)® =1 with j’ +k’ <j +k .

Iet J, = mj-k , k =J .

Then k§ - mj ky, + j§ = j% - m(mj-k)j + (mj-k)® = J° +k® - mjk = 1.

Since j<k, j(j-k) <0 so 1=%kR -mjk + j®>j(j-k) , k¥ ~ mjk > -jk ,

and therefore mj -k < j since k>0, i.e., Ji <k &
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Furthermore, Jj; +k, <2k, =2j< J + k . Therefore, by the inductive

hypothesis there is a number i such that Jj, = Ym,i s kg = Ym,i+1
0 J T ¥paa @d KT " s T Tnaee

Lemma 5.12 .. g.c.d. ((pi,¢pi+l) =1,

Proof By induction on 1 .

The result is clear if 1 =0 and if i =1 .

Suppose that the result holds for i =k .

NOW  @puo = @pyq * 0 by definition.

Suppose that Dpe40 and Pres have a common divisor d>1.

Since d|(pk+2 and dl(pk+1 s dl(pk+2 = Oy s Leen, d|q>k , which implies

that g‘c.d. ((pk’(pk’i'l) >1.

So we have shown that g.c.d. (‘Pk+1 s q)k+2) >1 implies g.c.d. (‘Pk’q)k*l-l) >1.

The contrapositive of this statement gives the required result.

Lemma 5.13 Q145 = 93795 * 050547 *

Proof By induction on j .
For j =1 the formula becomes P547 = 05907 F 0500 T 057 tO; T 05
by definition.

For Jj =2 the formula becomes Pipp = G510 * 0303 = 05 1 * 20,

SO0 T ia1 T P4

by definition.
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Suppose the result holds for j =k and for jJj=k+1
SO @43 T 0119 T 94941
O3 4541~ 94-1%41 T PiCke2
Adding the two equations we have
Oiaa2 T Piake * Piakel T 91-1(0k * Oan) * 05 (0 * Opup)

T 050t 030pya

Lemma 5.1 If m|n then o |e -
Proof Let n=mk .

The proof is by induction on k .
For k = 1 the result is clear.

Suppose the result holds for k = ¢ , i.e., “’ml‘Pme .

We show that this implies that (pm|<pm( p41) *

On(2+1) ~ meam " Pme-1%m * OmePps1 OV Lemma 5.13 .

since ¢ lo. and ¢ |¢ , by hypothesis, o | Pnp-1®m ¥ PrpPra1 >

i.e., ‘pm"pm(ﬂ _,_1) .
Lemma 5.15 gec.de (o,0.) = Ys.cod. (n,m) °
Proof Suppose m >n .

We apply the Euclidean algorithm to find g.c.d. (m,n) (cf. [6], pp.1L-15) .



We have:
m=9gyn +r; where O0<r; <n
n=rq +r,; where 0 <r, <r,
Ty = TpQ + 7T where 0 <rz; < r,
.
L

L T T where 0 <77, < re .

Tomr ~ Tt

and g.c.d. (m,n) = Ty .

So g.c.d. (cpm,cpn) = g.c.d. ((qun-+rl"pn)

= g.c.d. ) using Lemma 5.13 ,

((qun-l‘Prl T @qon®r, +1:%n
= g.c.d. ((pqon_l(prl,(pn) since q’nl(pqon by Lemma 5.1} .

But by Lemma 5.12, g.c.d. (‘pqon’(pqon-l) =1, so g.c.d. ((pn,(pqon_l) =1,

Therefore g.c.d. (qam,(pn) = g.c.d. ((prl,q)n) .

Writing =n = r,q, + r, we repeat the process to obtain:

g.c.d. (q)rl,q)n) = g.c.d. ((prz,q)rl) .

Similarly, g.c-g.o ((P ,(p ) = g.C.q.- ((P P10 )
. r°%r, * MPrg?ry

g.c.d. ((P P ) g.c.de (0, ,0 )
Toer Ttee Ty Tom

SO g.c.do ((pm,q)n) = g'c'd' ((prt’(prt ) *
-1

But :c'tl:r',t’_1 so using Lemma 5.1} ,

gecede (0,0 ) = gecede (0., 50 )
m’¥n rr T,

" ®g.c.d.(m,n) .
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~ i
Lemma 5.16 Pipe1 = P41 (mod ‘Pn) .
Proof By induction on i .
For i1 =

0 . we have ¢, =1 = ((pn+l)° .

"

For i =1 , the result is clear.

Suppose that the result holds for i =k .
®(l)ndl " O(kn+l)4n ~ Gknln * Pne1Ppes PV Lemma 5.13

= Cyn+1%n+1 (mod (Pn)

1]

((pn +l)k(Pn 41 (mod q)n) by the inductive hypothesis

k+l

= (pp47) (mod ¢,) -
Lemma 5.17 = me_ gL (mod o2)
—_— Omn = M P ®n/-
Proof By induction on m .

If m=1, m@n@ﬁ = ople 3)° =0y -
Suppose the result holds for m =k .
Then ¢(y41)n = @(kn+1) +(n-1)
= O®n1 t 0n+1%n by Lemma 5.13
= Oen(Ona " 0p) * Opnaatp
Using Lemma 5.1 , tp?lltpkntpn , and from Lemma 5.16 , Ppna] = (pi’{l'*'l (mod (pn) 5

so there is an integer c such that ¢, . = co, + ‘Pi{ﬁl .
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Therefore ¢(k+l)n = Qpn®Pn+1 * P1n+19n (mod ¢i)

k
Pun®ps1 T (C0p * Opuq)e, (mod )

K
VrPnl * %y (mod op)

m

k k . . .
Ko 0 g + 0 490, (mod ¢ﬁ) by the inductive hypothesis

il

k
(k+1)e 0,7 (mod %) .

2 .
Lemma 5.18 ¢S|¢rs iff q)slr .
Proof Suppose ¢§\¢rs .

r-1
Then ¢, = rogpg,; (mod ¢F) by Lemma 5.17 ,

2 I'-l
so ¢%|ro 0 .y >

lr r-1
sl TP ©

But by Lemma 5.12 , g.c.d. (050 49) =1, s0 @slr .
Suppose ¢S|r .
. — r-1 -
Then ¢§Lr¢s and since ¢, = T o, (mod¢Z) , ¢ =0 (mod %) ,

3 2
le.€ .
«Ce, ¢S|¢rs

gorollary If ¢§|¢t then @slt .
Proof Since ¢s|¢t , gec.d. (@S,¢t) =0y -

But from Lemma 5.15 , g.c.d. (¢S,¢t) = 0g.c.d.(s,8) ? SO ST g.c.d. (s,t) ,

which implies that s|t .
Therefore there is an integer r such that t = rs .

By Lemma 5.18 , ¢s|r so ¢s|t .



Lerma 5.19 20,5, < @ (n+1) < 395p (for n > 0) .
Proof From Lemma 5.1 , Oo(n+1) = 305, - Po(n-1) * and since the ¢,

are all non-negative, 0, (n+1) < 3@2n .

Again from Lemma 5.1 , 205, = ®2(n+1) * P2(n-1) ~ ®2n

= 0o(n41) * 92(n-1) = (Pop1 * ¥op-2)

T %2(n+1) T ®on-1°
But 2n-1 is odd and the smallest Fibonacci number of odd subscript is
o, =1, so 2(921,1 < (Pz(n.,.l) .

n-1

Lerma 5.20 n<?2 < g, < 3 (forn >0) .
Proof By induction on n .

If n =1 the result is clear.

Suppose the result holds for n =m .

m-1

If m< 2 m

, clearly m+1 < 27 .

m-1
If 2" < ¢, , then 2" < 2p, < Op(msq) Y Lemma 5.19 .

If Com < 3" then ‘p2(m+1) < 3<p2m < 3m+1 by Lemma 5.19 .
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Theorem 5.21 V= 0oy iff there exist positive integers

g,h,2,m,x,y,%2 such that:

u<sv</y I
42 - pz - 2R =1 11
g - gh-h® =1 II1

22|g I

2| (m-2) v

(2h+g)|(m=-23) VI

X -mxy +y° =1 VIL
2| (x-u) VIII
(2h+g) [(x~-v) X

I to IX imply v = Poy

Suppose that the numbers w,v,g,h,f,m,x,y,z satisfy conditions I to IX.

By Lemma 5.9 it follows from II that there is a number s such that

i=‘PS: 2% 059 5.(1)

Also by Lemma 5.9 , it follows from IIT that there is a number k’ such

that h = Opr 5 8 % Opsryq ¢

Lemma 5.8 implies that k%’ is even so there is a number k with 2k = k’
such that
h = Poy 5 & = Popyy * 5.(ii)
8o Zh +g = 205 * 0pp1 T Oop * Popap ¢
2 3 2
From IV, 4£%|g , i.e., q’sl(p2k+l s
so by the corollary to Lemma 5.18 , (ps|2k +1 ,

iceo, £|2k+1. S.(iii)
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From I, v <{¢ and since v is a positive integer,

222 . 5. (iv)

From V, £|m=-2 so

m>2. 5.(v)

Since £ >2 , £® > ¢ and since £®|g from IV, g >4% , s0 £ <f¢°<g,

leees, £ <Qopyq - S5.(vi)
By Lemma 5.11 , it follows from 5.(v) and VII that there is a number n such

that

X = Ym,n Se(vii)
(Note: We do not in fact have the hypothesis of Lemma 5.11 corresponding to
"j < k", However, either x <y or y < x and since the L.H.S. of the

equation x® - mxy + y° =1 is symmetric in x and y then either

X = Ym,n’ y = Ym,n+1 or x = Ym,n’ y= Ym,n—l . It is not necessary in this

proof to specify which of the alternatives holds.)
We have: m=2,

V<8 < Qopyg s (from I and 5.(vi) )

ch+g = oo * Oopup o

S0 Qg * <p2k+2|m - 3, (from VI)
and gy + ¢2k+2|x - v , (from IX)

le€ey 0o + ‘92k+2|Ym,n_v s

i.e., Ym,n = v (mod gop + 9oy o)



Thus by Lemma 5.6 there are numbers i and Jj such that

V =gy, 0= (k)i

Also, m>2, ¢|lm-2 , (from V) so by Lemma 5.7 ,

x =
Tlrm,n

n (mod £) .

=}

By VIII, #|x-u, i.e., X =¥ _ =

m,n (mod 2) ,

so n=u (mod £) (from 5.(ix) ).
From 5.(iii), £|2k+1 and from 5.(viii), n = (2k+1)i +j

so n=J (mod£) , and therefore u=j (mod 2) .

From 5.(viii), v = Py and from Lemma 5.20 , j < 9p5 SO j<v.

Since usv<¢ (fromI), j<¢£¢ and u<£ ,s0 u=j and v =

V= 0o, implies T to IX

Suppose V = g, . By Lemma 5.20 , U< gy, SO ULV

73.

5. (viii)

5. (ix)

Poy

Set ¢ = Ogee1? 2~ Pgg where s is chosen large enough to make v < ¢ .

Thus we have satisfied I. By Lemma 5.8 , II holds.
PUb & = 0p(6g41) 2 B = @ (6s41)-1 °

By Lemma 18, since £[|& , i.e., ‘Pés+1” s

(pgs+1| Pp(6s+1) i.e., £%|g and IV is satisfied.

Since ¢z = 2 and by Lemma 5.15 ,

g.c-do ((p65+l,(p5) = (pg‘c.d.(és’!_l,B) = [OF] =1 ) 2 is Odd.
Therefore £(6s+1) -1 is even and by Lemma 5.8 ,

g2 - hg - e = (-1)¥(65* 1)L _ 1 | 0 177 is satisfied.
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By Lemma 5.12 , g.c.d. (h,g) =1 and since ¢ is odd and 2|g ,

g.c.do (2h+g,f) = 1.

Thus by the Chinese remainder theorem, the congruences m= 2 (mod ¢)
and m=3 (mod 2h+g) have a common solution. (Clearly we can choose
this m such that m> 2 .) This satisfies V and VI.

Set x = Ym,u’ vy = ‘l’m,u+1 :

By Lemma 5.10 , VIT is satisfied.

By Lemma 5.7 , x =¥ __ =u (mod £) so 2| (x-u) and VIII is satisfied.
:]

Since 2h+g|m-3 , You = P2u (mod 2h +g) by Lemma 5.5 ,

icee, X=v (mod 2h+g) , so 2h+g|x~v and IX is satisfied.

The fact that exponentiationis diophantine follows from this theorem

using Lemma 5.20 and the following theorem by J. Robinson [9,10 pp. 108-110].

Lerma 5.22 (Robinson) There is a diophantine relation R(a,u) such that

(i) if R(a,u) then us> a®

(ii) if a >1 and u>a2a then R(a,u) .

In fact we may take for R(a,u) the relation between a and u which

holds iff there exist x and y such that

x? - (a® -1)(a-1)%y2 = 1

© e 6

x>1
u>ax.
Proof suppose R(a,u) holds. Since x > 1 it follows from @

that a >1. So there is an n >0 such that x = xn(a) and
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(a-1)y = y(a) . By Lemma LB (¢) , y(a) =n (mod a-1) .

But yn(é) 0 (mod a-1l) so n=0 (mod a-1) and since n>0,n>a-~1.

By @, u>ax , SO U> axa_l(a) since the x  are increasing.

a% (by L.(xiii) ) so wsa.a®?t , .60, u>a®.

A%

But xn(a)
Now suppose that we have a > 1.
a
To satisfy () and () we set x = xa_l(a) A O] (which is a
positive integer from Lemma LB (c) ).
To satisfy (3) we want u> a- x,_4(a) .
Now xn(a) is the rational part of (a +a® - 1)" and since Va= - 1 <a ,

x (a) < (22) < a2n (since a'=2 ).

Hence a-x, ,(a) <a- 22(aml) < %

To satisfy @ we want u> a- Xa-l(a) so if we take

u>a’® and a>1 then R(a,u) .
Theorem 5.23 (Robinson) If there is a diophantine relation S(p,q)
such that

(iii) if S(p,q) then p>1 and q<p° ,

k

(iv) for every k there are p and q with S(p,q) and q >p ,

then the relation r = st is diophantine.
Proof We show that r = st with s >0, t >0 iff there are natural

numbers a,x,y and z such that



s>0,t>0
R(s+t +1,2as~-s®-1)
S(a,z)
x<z ,y>0, xzf(az-l)yz =1

Rem(y,a=-1) =t

© @0 006

Rem x-(a-s)y,2a5-52-3)= T

Suppose @—@ are sabisfied.
Since R(s+t+1l,2as-s®-1) and s >0, t >0 , it follows from
Lemma 5.22 that 2as-s®-13 (s+t+1)S*0* = g6 |
Since S(a,z) then a>1 and z<a® so x<a® and y>0.
Hence x = xn(a) and y = yn(a) for some n >0 (from @).
Since xn(a) >a" and x = xn(a) < a® we must have n<a .
Since Rem(y,a-1) =1t , yn(a) =1t (mod a-1) with 0<t <a-1

and since t >0 ,0<t <a-~-1.

But v, (a)

m
(a]

(mod a~-1) (Lemma LB (¢) ) and O <n<a=-1.

Therefore n =%t (mod a-1) and we must have n =1t .

So x=x(a) , v =y (a) -
Since Rem@c-(a-s)y,Zas-sz-]>=r,
x-(a-s)y=r (mod 2as-s®-1) with O<r <2as-s*-1.

t

But by Lemma L.12 , xt(a) - y_b(a)(a -s) = s  (mod 2as -s®-1)

so r= s’ (mod 2as~s® ~1) and r<2as-sz—l,st<2as-sz-l.

Therefore » = st .
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Now suppose :r-=st with s >0, t>0.

Conditions (iii) and (iv) ensure that for every k there are infinitely

many p and q with S(p,q) and q>pk .

Hence we can choose a sufficiently large such that

R(s+t+1,2as~-s*-1) , t <a-1 and such that for some =z ,

S(a,z) and =z > a%v .

For this choice of a , z > xt(a) . Hence if we take x = xt(a) sy = yt(a) R

conditions () to () will be satisfied.

To show that S(u,v) (which holds iff v = Pou ) satisfies the

hypotheses of Theorem 5.23 , we must show that:

(a) If S(u,v) then v<u".

(b) For every k there are u and v with S(u,v) and v >ut.

From Lemma 5.20 we have Oy < 3% so if v = Poy 5 (a) is satisfied.

To satisfy (b) we show that for every k there is a u such that

uk < 2u--l k u-1

. We want uw <2 5 1.0, klogu < (u-1)log 2 ,

. k (u - 1) . .

i.e., Tog 2 < Toz o (both logarithms are positive).

Since  lim =— l.. for any given k we can make -1 as large as
U o log u ? log u g

required. By Lemma 5.20 , ou-L o ¢, and the result follows.

Note: Matijasevi€ [8] has since given a proof that the relation r = s?
is diophantine which is based on his previous work with Fibonacci numbers

and does not use Theorem 5.23 .
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CHAPTER VI

This chapter will contain no formal mathematics. It is a series of
conjectures by the author. We try to suggest how Matijasevié was led to
Theorem 5.21 and what led Davis to produce his modification of Matijasevit's

argument.

Julia Robinson [9,10] gave several sets of conditions which would lead
to a diophantine definition of exponentiation but nowhere in her paper and

article or in the paper by Davis, et al. [3], is there any mention of

Fibonacci numbers.

It is hard to suggest the order of the events which led Matijasevid
to his results. Firstly, it is fairly easy to see that the relation S(u,v) ,
which holds iff v = Ooy 3 satisfies Julia Robinson's inequalities

(see Theorem 5.23 and the remarks at the end of Chapter V).
We refer to the section of the theorems of Matijasevi€ and Davis which
show that

Diophantine {v = Oy ]

equations V= 'Vu(,a)

as the first part of the proof and to the converse as the second part. The

basic steps of the first part of each of these theorems follow the pattern:
1) show 4|2k+1 ,
2) show v = 95 OF V= yj(a) s
3) show j =u using £]2k+1.

Consider the first part of the theorem by Matijasevi¥. An important

requirement to prove this was a result similar to Lemma 5.6 — certain
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diophantine conditions under which v = ®o3 Matijasevi@ noticed that for
the Pon there are 2k +1 equivalence classes mod ((ka + (p2k+2) and
that the ®op f£all into these classes in a regular manner, i.e., their
behaviour is similar to the integers mod n . (See Lemma 5., and the
corollary to Lemmas 5.4 and 5.2 . It is easy to prove that the numbers (péi
with 0< i < ?2k+1 are incongruent mod ((p2k + (p2k+2) . The proof is
analogous to the proof of Lemma L.l .) This result suggested that by taking
V < Qo4 » the condition v = ¢, mod (@ *+ q)2k+2) would force the

result v = LY (cf. latter part of proof of Lemma 5.6). In order to
obtain the condition v = ¢, mod ((p2k + Oop +2) ; Matijasevi®@ needed sequences
(the Ym,n ) giving Lemmas 5.5 and 5.7 (Lemma 5.7 is needed later to show

that uw =j ). We suggest how Matijasevit found such LA

4]
The ®o, are the solutions for y of the Pell equation: xR -5y =1 .
Consider the Pell equations: x®-(m?-L)y® =)L for m> 3 . For each
m> 3 , the Ym,n are precisely the solutions for y of the corresponding
Pell equation: xR -(m®-))y® =1 (see [6],p. 45). (From Lemma 5.1 it is
easy to see that YB,n = 0op .) Furthermore, for the Pell equation:
x®~(a®-1)y® =1, a result analogous to Lemma 5.7 was proved by Julia

Robinson [9] (here given as Iemma 4B (c¢) ). For m=2 , ¥ =n and

m,n
Lemmas 5.5 and 5.7 are trivial.
The other major result necessary to prove the first part of the theorem

is the result M |2k 41" and to obtain this result, Matijasevid searched for

and found the corollary to Lemma 5.18 .

Finally (and essentially) by the very nature of the problem, Matijasevid

had to obtain the ¢; and the Yo.n 25 solutions to diophantine equations to
b

L



80.

prove the first part of the theorem. Conversely, for the second part,

the ¢, and the Ym,n had to satisfy diophantine equations. This is the
importance of Lemmas 5.8, 5.9, 5.10 and 5.11. . Lemma 5.8 is a well-known
result (see [11], p. 11, equation (12) ) and perhaps it suggested its
converse (Lemma 5.9). ILemma 5.10 could be found by generalizing the result
for m =3 (found from ILemma 5.8) and Lemma 5.11 is the cdnverse of

Lemma 5.10 . The relationship given in Lemma 5.8 also has the property that
we are able to distinguish between Fibonacci numbers of even and odd

subscript, a fact which is essential in the proof of the first part of the

theorem.

The second part of the theorem is relatively easy to obtain once the
first part has been proved. It uses some known properties of Fibonacci

.nu:mbers and relies on a clever choice of £ and g .

The analogies between the proofs of Matijasevi® and M. Davis
immediately become apparent. Julia Robinson used the Pell equation:
x2 -(a® -1)y® = 1 in the proof of Theorem 5.23 . In fact she showed [9]
that if the relation v = Xu( a) 1is diophantine then exponentiation is
diophantine. This, together with the previous remarks concerming Pell's
equation must have suggested .the modification of Matijasevi®'s proof to
M. Davis. He found that just as Matijasevi@ had considered congruences

1‘bh

mod (q>2k + (p2k+2) (i.e., mod the KB e s solutions in y of

x® ~5y® =), he could obtain similar results by considering congruences
mod (yk(a) + yk+l(a)) (i.e., mod the K 4k o+ 1B solutions in y of
x°-(a®-1)y® =1 ). Lemmas LA, LB, L.1-4.7 are almost exact parallels of
Lemmas 5.1-5.7, 5.1, 5.18 and the corollary to Lemma 5.18 . (The ¥, (m)

are analogous to the ¥ . [when m is variable] and the y, (a) are
2
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analogous to the o, = YS,n [when we consider a and m as constant].
However, in the latter case, the constant a can be any integer greater than
1 vwhereas the constant m has the value 3 .) However, to obtain the
result "Z]2k +1" in the first part of his theorem and to satisfy IV a. and
IV b. and get (N’,£) =1 in the second part, Davis needed to consider

properties of the y.l(a) for odd i .



[1]

[2]

[3]

[L]

[5]

[6]

[7]

(8]

[91]

[10]

(11]

82.

BIBLIOGRAPHY

Davis, léIarbin, Computability and Unsolvability. McGraw-Hill, New York,
1958.

Davis, Martin, "An Explicit Diophantine Definition of the Exponential
Function", Comm. Pure Appl. Math., XXIV (1971), 137-1L5.

Davis, Martin, Putnam, Hilary, and Robinson, Julia, "The decision
problem for exponential diophantine equations", Ann. of Math., 7k
(1961), L25-L436.

Hardy, G.H., and E.M. Wright, An Introduction to the Theory of Numbers,
3rd edition. New York: Oxford University Press, 195l.

Hilbert, Davis, "Mathematische Probleme. Vortrag, gehalten auf dem
internationalen Mathematiker — Kongress zu Paris 1900",
Nachr. K. Ges. Wiss. Gottingen, Math. Phys. Kl. 1900, 253-297.
Reprinted, Arch. Math. Phys., 3s, 1 (1901), LL-63, 213-237.
English translation, Bull. Amer. Math. Soc., 8 (1901-1902), L37-L79.

LeVeque, William J., Topics in Number Theory, Volume 1. Addison~Wesley,
Reading, Mass., 1956.

Matijasevi&, Ju. V., "Enumerable sets are diophantine®, Dokl. Acad. Nauk
SSSR, 191 (1970), 279-282. (In Russian.) (Improved)
English translation, Soviet Math. Dokl., 11 (1970), 354-357.

Matijasevi®, Ju. V., '"Diophantine representation of the set of prime
numbers", Dokl. Acad. Nauk SSSR, 196 (1971), 770-773. (In Russian.)
English translation, Soviet Math. Dokl., 12 (1971), 249-25kL.

Robinson, Julia, "Existential definability in arithmetic!, Trans. Amer.
Math. Soc., 72 (1952), L37-LL9.

Robinson, Julia, "Diophantine decision problems", M.A.A. Studies in
Mathematics, Vol. 6 (Studies in Number Theory, edited by

Vorob'ev, N.N., Fibonacci Numbers. Blaisdell, New York, 1961.




