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Abstract 

A family of sets S = (S ~ , S2, .•• ,Sm) is a k-fold caver for set T if each element of T is 

contained in at least k members of S. This thesis examines partitions of S such that each 

part is ô. cover for T. It is mainly concerned with extremal problems of the type ''find the 

smallest k such that every k-fold cover can be partitioned into two l-fold covers". 

In general, no such k exists. li elements of T are points in the plane and sets of Sare 

straight lines then k is at least 4. If T is the interior of a sim.ple polygon and S a family 

of convex or star-shaped sets then there does not always exist a "perfect" partition of the 

cover_ This shows that computing a minimum si~· k-fold cover for a polygon does not 

reduce to combining minimum size thinner cavers. 
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Résum.é 

Une famille d'ensembles S = (St, 52, ... , Sm) forme une k-couverture d'un ensemble T si 

chaque élément de T est présent dans au moins k membres de S. Ce mémoire se penche sur 

les partitions de S telles qu~ chaque partie forme une couverture de T. Sa préoccupation 

principale réside en des problèmes du genre "trouvez le plus petit k tel que chaque k· 

couverture peut être divisée en deux l-couvertures". 

En général, un tel k n'existe pas. Si les éléments de T sont des points dans le plan et 

les ensembles de S sont des droites alors k vaut au moins 4. Si T représente l'intérieur 

d'un polygone simple et S une famille d'ensembles convexes ou "étoilés" alors il n'existe 

pas toujours une partition "parfaite" de la couverture. Ceci démontre que trouver une k

couverture minimale pour un polygone n'équivaut pas à combiner des couvertures minimales 

d'ordre inférieur. 
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Chapter 1 

Introduction 

Polly had a diet problem ([Chv83]). She wanted illl economical way of getting the energy, 

protein and calcium she needed and used linear programming to solve it. She then went 

shopping and bought foods ta meet her requirements for a week. fier shopping list is shawn 

in the table below along with the nutritional contents of each food. (To keep the example 

simple, a. serving either contains the daily requirement or a negligible quantity of each of 

the three nutrients.) Ta her great surprise, 3he is not able to plan seven daily meals. Her 

problem is known as a decompositwn problem. 

Food Nb of servings Energy Protein Calcium 

bJught 

chicken 2 .; ..; 
whole milk 2 .; .; 
cherry pie 1 .; 
eggs 3 ..; .; 
park with beans 2 .; ..; .; 

This thesis aims at the study of covering problems, which aside from being an interesting 

source of mathematical queries ([T77,St78,Pac80,Pac86,Rog64,CS88]) find themselves the 

abstraction for diverse problems of a more applied natur~. They occur in the minimization 

of switching functions for the logical design of digital machines or in the Dimer problem 

of crystal physics ([D74]), for example. Computer science also provides a good number 

of them in the field of robotics or in areas using polygon decomposition such as pattern 
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- CHAPTER 1. INTRODUCTION 2 

Figure 1: A source of examples for covers. 

recogaition and computer graphies ([FP75,M72,082,Pav77,KS85]). The investigation will 

emphasize certain geometric covering problems wrich arise in computational geometry, a 

growing branch of computer science which involves designing algorithms to solve problems 

of a geometric nature. Coverin~ points with tines in the plane and coverin~ the interior of 

a. simple polygon, known as the "Art Gallery" problem, will be considered. 

A family of sets S = (SI, S2,"" Sm) is a. k-fold cover for set T if each element of T is 

cOlltained in at least k members of S. The sets SI, S2, .. . , Sm are not necessarily distinct. 

The size of a k-fold cover is the number of members of S, namely m. A l-foid cover will 

often be referred to as a simple cot,'er, whereas the term cover used alone should be taken 

to mean k-fold covers in general. 

Consider the set T = {a,b,c,d} tcgether with sets SI = {a,b,d}, S2 = {a,b,c,d} and 

S3 = {c, d} as represented in frgure 1. The familles (SI. S3) and (S2) fonn simple covers 

of size 2 and 1, respectively, for set T. Family (SI, 82 , S3) forros a. 2-fold cover of size 3 

for Tj note that it is perfectly vaUd to say that (S1I S2, S3) forms a simple cover for T, 

although the strongest statement is usually expectcd. In the text, it should be assumed 

that statements made about covers are the strongest possible. A 4-fold cover of size 4 for 

T can be realized by (S2,S2,S2,S2). 
Various questions can be asked about covers. For instance, quite obviùusly and as 

illustrated in some of the previous examples, k-fold covers for a fixed set do not necessarily 

---------~_._~~ .. -



CHAPTER 1. INTRODUCTION 3 

have the sarne size. Therefore, finding minimum size covers should deserve sorne attention. 

Moreover, applications of covers are often optimizati0n problems looking for such results. 

That issue will lJe addressed in chapter 4 wh en taking up covers of polygo.L's. 

Another kind of inquiry involvE's decompositions of covers. On top (.)f being of high 

combinatorial interest, as shall be seen from the pMt and ongoing efforts in this area, it 

appears in several applied problems wruch will be discussed throughout. That second type 

of question will be the main tC'pic of the thesis. 

The remainder of this chapter provides the notions and elementary results nec~ssary for 

the Test. Chapter 2 presents a trcWsformation of the decomposition prohlem into coloring of 

hypergraphs, which is used to achieve some of the results. It also presents results on covers 

in general and gives an account of the related work. The last two chapters contain most 

of the original material. Chapter 3 looks into decompositions of covers of points by tines. 

It includes an interesting opep prohlem on the multiplicity needed for a caver to admit a 

certain decomposition. Chapter 4 investigate!> prime covers for polygons. The difficulty 

involved in computing minimum size k-fold covers is illustrated hy 02xhibiting a family of 

polygons having prime minimum size covers. 

What is meant oy decomposition will now be made more precise. Let familles of sets SI 

and S2 be respectively k1- and k2-fold COV2rs for set T. SI is said to be thinner than S2 jf 

kt is less than k2• This definition hecomes rather intuitive if a k-fold cover is visuallzed as 

k layers on T. Note that this relation between covers only makes sense if the covered set, 

T, is the same. 

Broadly speaking, a decomposition of a cover is simply a partition of the family of sets. 

The type of decomposition which will be considered here proàuces thinner covers. This 

means that instead of any partitioning into components with no connection to covers, the 

decomposition will in a way preserve the covering property since each part will in turn form 

a cover. 

Let {SI,S2, ... ,Sr} he a partition of a k-fold cover S for set T. Define ki as th~ largest 

integer sa that S, forms a ki-fold cover for T. If S, does not e {en form a simple cover then 

ki is set ta zero. Partition {St,S2, ... ,Sr} is a perfect jactorization of S if L~=1 ki = k. 

Tlùs summation cannot possibly he greater than k but may he less than k in whieh \-ase 

{SI, S2, ... ,Sr} will sim ply he referr~d to as a factorization. Renee, every partition is 

considered a factorization of some sort. Finally, S is said to be a prime cover if it does not 

admit a perfeet factorization, aside from the trivial {S}. 
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Figure 2; A prime 2-fold cover. 

A few examples will help to illustrate these new concepts. Coming back to the sets of 

figure 1, consider again the 2-fold cover (SbS2,S3). Partition {(Sb S3), (S2)} is a perfect 

factorization of it since each of the two parts forms a I-fold cover, where~s {(SI), (S2, S3)} 

is just a factorizat:~n berause (S2, S3) forms a I-fold caver and (Sd i:; not a cover at 

all. Furthermore, the ':!xistence of {(S1, S3), (S2)} guarantees that ~SI, S2, S3) is not prime. 

Perfect factorizations do not have ta be composed of simple covers: {(S2, S2, S2), (S2)} and 

{(S2, S2), (S2, S2)} bath qualify as perfect factorizatioùs of 4-fold caver (S2, S2, S2, S2). 

Simple covers sueh as (Sb S3) are obviously !,r:.ne but primality is not restricted to 

I-fold covers. Consider sets SI = {a,b}, S2 = {a,e}, S3 = {b,c} and T = {a,b,c} which 

are depicted in figure 2. FhlIlÎly (St. S2, S3) is a pdme 2-fold cover for T. A non-trivial 

factorization of this family will have at most \lne part containing more than one set h.tt it 

is easily seen that at least two sets arc needed for a cover and sa the factorization at best 

includes a single I-fold cover. 

This may be an indication that for a lot of covers it is impossible to find a perfect 

factorization. Yet it would be niCE: to have a way of expressing ho\', abundantly a caver 

lends itself to decomposition. The existence of a perfect faetorization for a cover says that 

it decomposes efficlently into thinner covers, in the sense that the sum of the parts is as 

powerful as the whole. If on the contrary only corn mon factorizations are possible, nothing 

is learned about efficiency beeause the term factorization is too genera1.: as mentioned 

previously, any partition meets the requirements. 

An evaluation of the efficiency of a factorization based on the number of I-fold covers, 

2-fold covers, 3-fold covers and sa forth is both very aceurate and very messy, especially 

when used to compa"f covers. Im<'lgine deciding between a pair of 9-fold covers, one whose 
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CHAPTER 1. INTRODUCTION 5 

"best" fa.ctorization includes a 6-fold cover and a 2-fold cover, the other, a 3-foid cover with 

two 2-fold covers and a simple cover. 

A more reasonable measure might be the number of thinner covers. This is certainly 

easier to manipulate: a !>est jactorization of a, k-fold cover will be one with the large&t number 

of thinner covers and the k-fold caver whose best factorization has a larger number will be 

considered more efficient in its decomposition. Note that under this measure, a k-fold cover 

with a perfect factorization do es not automatically have a more efficient de composition than 

a prime k-fold cove .... 

It may seem a bit arbitrary, even misleading, to ignore the "thickness" of the covers and 

to consider three l-fold covers better than two 5-fold covers, but for the type of problem 

motivating this investigation it is precisely what is desired. 

AlI that is asked of the constituents of a decomposition is that theyeath form a cover, 

be it l-fold or 5-fold, caring only about the transfer of the covering property. For example, 

in an art gallery you might have video cameras set up 50 that each painting is monitored 

by at least four cameras (a 4-fold cover), in case of malfunctions. One day, due to budget 

cuts. it is decided to reduce the use of these very unreliable cameras by grouping them 

into shifts required to watch over all the paintings, thus distributing the wear evenly. The 

problem consists of creating as many shifts (simple covers) as possible to keep the wear to 

a minimum. 

It is now time to formalize things a bit. Define F(T,S) as the largest integer r such 

that family S forming a cover for set T can be factorized into r simple covers for T. Tied 

with this issue are preoccupations of computal.ional efficiency such as designing algorithms 

to compute F(T, S) and also output the simple covers. A first step in that direction usually 

involves a study of the extrema! properties of the mathematical object to be manipulated, so 

as to give an idea of the potential difficulties connected with the elaboration of an algorithm 

or what to expect in terms of worst-case results and time complexity. 

The bulk of the thesis will be spent on that first step while looking into the following. 

Call fer) the smallest k such that F(T,S) is at least r for every set T and every k-fold cover 

S for T. In other wOl'ds, a f(r)-fold cover is guaranteed to be factorizable into r simple 

covers. Recall the sets associated with figure 2, where family (SI, S2, S3) was a prime 2-fold 

cover. Since F(T,(S1!S2,S3)) = 1 it must be that f(2) exceeds 2. 

To conclude this introdut:tory chapter, investigations related to covers but which are 

not in the main stream of this study will be mentioned. A good number of efforts have 
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been put in along the Unes of minimum size covers ([T77]). They deal with a set to be 

covered which is infinite and so look for minimum density k-fold covers, typically covero of 

the plane with equal circles. Alternatively, resembling de compositions of k-fold covers, the 

reconstruction of a smaller (k - l)-fold cover with sets obtained through set operations on 

the original ones leads to a theorem with interesting corollaries by preserving an incidence 

property ([St78]). 
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Chapter 2 

Covers 

2.1 The Hypergraph Approach 

This section offers a transformation of covering problems which will greatly facilitate the in

vestigation of J(.). Let T be a finite set {tl! t2, ... ,tn} and 8 a finite family (Sl!S2, ... ,Sm) 

of non-empty subsets of T. An instance of a cover can then be viewed as a hypergraph 

H = (T,8) where T is the set of vertices and 8 the family of edges. Now consider 

its dual hypergraph H* = (S, 'T) with S = {SbS2,'" ,sm} (respectively representing 

SlI S2, ... , Sm) and T = (Tl! T2 , ... , Tn) (respectively representing tl! t2,'''' tn) for which 

we define T, = {Si: t, ES,}. 

For instance, the dual of the hypergraph represented in figure 1 would have edges Ta = 

{SlI S2}, Tb = {Sl,S2}, Tc = {S2,S3} and Td = {Sl!S2,S3}, with each S, mapped to Si and 

each i E T to T,. 

What does a factorization look like in the dual hypergraph? Consider a factorization of 

S into r covers Sl,82 , ••• ,Sr. Since ea.ch S, forms a caver for T, for every t, ET there is a 

Si("I) E S, containing it. This means that in the dual, T, contains Si(j,/) and so has (the dual 

of) a representative from each S" Viewing the factorization as a coloring of the members 

of 8 (and their dual) in r colors, a factorization of S into T covers, in H, corresponds to a 

coloring of the elements of S in r colors so that every color is present in each T" in H*. 

Figure 1 illustrates this parallel on the hypergraph of figure 1 and its dual described earlier. 

This duality had already been pointed out in [Pac80] which introduced these decompo

sition problems. Unfortunately. the condition for a coloring to be valid in the dual problem 

does not agree with the usual notion of a va.lid coloring of a hypergraph. A hypergraph is 

7 
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H 

Figure 1: The factorization of2-fold coyer (St, S2, S3) into two simple covers {(Sb S3), (S2)} 
(left) and the dual coloring in two colors (right). 

r-colorable if we can color its vertices in r colors so that none of its edges is monochromatic. 

Therefore an edge only needs to include two different colors as opposed to all of them. Note 

however that for 2-colorability the distinction vanishes. Hence, the following: 

Fact 2.1.1 A caver S for set T is factorizable into two covers iff the corresponding dual 

hypergraph H* is 2-colorable. 

What advantage is there in reformulating the problem as a hypergraph coloring and 

why emphasize the case r = 2? Hypergraphs are more familiar than covers, having been 

studied from various angles ([B73]), and the results that were gathered provide tools to 

tackle the problem. For instance, extensive work has been done on 2-colorable hypergraphs 

([B73,Se74,FL72,FL74]), which can certainly be used forfactorizations into two eovers sinee 

in that case the notion of a valid coloring is the same. Findings will also have a tendency 

to be more elegant in the dual . 

. Just as not every coyer can be factorized into two covers (fig. 2, chapter 1), not all hypt::r

graphs are 2-colorable. While the question of 2-colorable graphs has long been completely 

dolved by showing them equivalent to graphs without odd-Iength cycles ([K36]), results on 
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2-colorable hypergraphs remain partial. They mainly consist of sufficiency conditions. A 

restriction on H* can be derived from the nature of covers. 

Fact 2.1.2 Set S forms a k-fold cover for T iff every edge of H*, the dual of H = (T,S), 

has size at least k. 

PROOF It will be directIy shown that the two are equivalent, starting in the dual 

H* = (S, T). 

Vi E {1,2, .•. ,n} ITjl ~ k, Tj ET 

~ Vi E {1,2, ... ,n} I{Si ES: tJ E Si}1 > k,by definition ofTj 

~ Vi E {1,2, .•. ,n} I{Si ES: tj E Sdl ~ k, tj ET 

~ S forms a k-fold cover for T 

o 

This means that to look at al1 k-fold covers, it is equivalent to consider all hypergraphs 

satisfying the corresponding lower bound on the size of their edges. That will be useful in 

the upcoming investigation of f( .). 
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2.2 Unconstrained Covers 

First considered are covers in general, i.e. on which no additional constraint is put. Wha.t 

is understood by constraint consists of a restriction on the covering sets. The constraints 

that will be introduced in the following chapters will have a geometric origin. 

As a function of r, fO is quite obviously monotone increasing and non-trivial starting 

at r = 2. It therefore makes sense to start with f(2) which will provide a lower bound for 

the rest. Approaching the problem in the dual, both facts of the preceding section can be 

combined to express f(2). It was a statement about all k-fold covers and their factorization, 

which facts 2.1.2 and 2.1.1 respectively dualize. It is now the smallest integer k such that 

every hypergraph H = (V, &) with 1 E 1 ~ k V E E E, is 2-colorable. 

Theorem 2.2.1 fer), r> 1, does not exist for tmconstrained covers. 

PROOF It is sufficient ta show that f(2) do es not exist, using a construction stated in 

[Pac80]. Consider hypergraph (V,E) with V = {1,2, ... ,2k -1} and & = {E ç V: lEI = 
k}. By definition it obeys the restriction on tr.e size of the edges. Furthermore, regardless 

of the value of k, it will be shawn that no 2·coloring of it exists. 

By the Pigeon-Hole principle, at least k elements of V have the same color, say navy 

blue. By the definition of &, we can find an edge who se elements are ail navy blue. Hence 

it is not 2-colorable and f(2) does not exist. 0 

Notice that the hypergraph constructed for k = 2 in the proof of theorem 2.2.1 yields 

precisely the 2-fold cover of figure 2 in chapter 1, which was already known not to factorize 

into two simple covers. Already for k = 3 the corresponding caver increases in complex· 

ity. Hypergraph (S, T), S = {Sl,S2,83,S4,SS}, T = ( Tl = {SI,S2,S3}, T2 = {Sl,S2,S4}, 

T3 = {SI,8Z,ss}, T4 = {SI,S3,S4},'''' TlO = {S3,S4,SS}) dualizes to 3-fold cover S = ( 
{tl, t2, t3, t4, ts, t6}, {tl , t2, t3, t7, tB, tg}, {t l , t4, t s , t7, tB, tlO}, {t2, t4, t6, t7, tg, t lO }, {t3, t s , t6, tB, t9, tlO}) 

for T = {tl, t2, ... , tlO}' 
So there is no k large enough for all k·fold covers to be at least factorizable into two 

simple covers. Nevertheless, a special case of unconstrained covers unveils a more positive 

outcome, aided by a result on 2-colorability. 

Theorem 2.2.2 If each pair of elements of T must he present in exactly one set of an 

unconstrained caver S then f(2) = 4. 
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v 

Figure 2: Hypergraphs of the forro (EU {v}, {E} U {{v,w}: w E E}), lEI ~ 2, 

PROOF In the dual hypergraph, the expression of this special case becomes "each pair of 

edges have exactly one point in common". A result, apparently due to Lovasz ([L 79] [probleru 

13.35]), describes ail such hypergraphs which are not 2-colorable. They consist of hyper

graphs of the form (E U {v}, {E} U {{v,w}: w E E}), lEI ~ 2 (figure 2) and the Fano 

plane (figure 3). Since hypergraphs of the first type have edges of size 2 and every edge 

of the Fano plane has size 3, a lower bound of 4 on the size of th~ edges will only leave 

2-colorable hypergraphs. 0 

Those hypergraphs of figures 2 and 3 happen to have a isomorphic dual and so represent 

as weil the covers which are not factorizable into two simple covers. 

One might find the condition associated with theorem 2.2.2 very restrictive but in fact 

the class of co vers satisfying it seems quite rich. Theorems about the existence of Steiner 

triple systems and projective planes serve as witnesses to that. These two notions can 

be unified under balanced block designs. A (m,n,k,r,À)-design consists of a set T of n 

eleroents and a family S of m subsets of T such that: 

• each subset consists of exactly r elements. 

• each element appears in exactly k subsets. 

• each pair of elements appears in exactly À subsets. 

It is easy ta see that family S of a (m, n, k, r, À)-design forms a k-fold caver for set T. 



CHAPTER 2. CO VERS 12 

x 

y w z 

Figure 3: The Fano plane, with edges xuz, xvy, ywz, xtw, Y tu, ztv and uvw. 

Furthermore if >. = 1 then it satisfies the condition of the theorem. Balanced black designs 

do not exist for ail combinations of the parameters but there are theorems proving the 

existence of some of them. Two of these theorems, respectively about Steiner triple systems 

and projective planes, are now stated in the language of balanced black designs. They can 

bath be found in their original form in [Rob84]. 

Theorem 2.2.3 There is a (m,n,k,3,1)-design if and orny if n = 3 or n = 6: + 1 or 

n = 6i + 3, i ~ 1. 

(For Steiner triple systems, m = n("t,-l) and k = 7\21 .) 

Theorem 2.2.4 If i is a power of a prime then there is a (i2 + i+ 1, i 2 + i+ 1, i + 1, i+ 1, 1)

design. 

Simply judging from these two theorems, theorem 2.2.2 involves an abundance of covers 

for various values of k. 
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2.3 Sorne Known Results on Geometrie Covers 

The results mentioned in this section appear in rpac80,Pac86]. There has been sorne lVork 

on constrained covers in which the set T ta be covered is a Euclidean space and S a family 

of convex sets. 

In the one-dimensional case El, the Euclidean straight line, is covered by intervals. 

This constraint leads to fer) = r, i.e. a k-fold coyer can always be factorized into k simple 

covers. It is not hard to see with a construction of the simple covers. Consider sweeping 

El from left to right with a line L, ma.intaining k intervals intersecting Land incrementally 

building the k covers. lnitially all the intervals are in S. The k intervals intersecting L are 

kept in CURRENT and once they are removed from it they are put in OLD. CURRENT is 

initialized with k intervals whose left endpoint is -00. Whenever L meets the right endpoint 

of one of the current intervals (if several of them have the same right endpoint, they are 

handled one by one), that interval must be "followed" by one covering the immediate right 

of L. Such an interval must exist in S or else that part of El will only be (k - l)-covered. 

That new interval cannot alreaày be committed to a simple coyer since those either are in 

CURRENT or have their right endpoint to the left of L and are in OLD. Renee k disjoint 

covers are formed. 

Factorization already becomes much more complicated in two dimensions. A result 

identical to theorem 2.2.1. namely that f( r) (r > 1) does not exist, is obtained for cavers 

of the plane with convex sets. It essentially uses the same hypergraphs as in the proof of 

that theorem and chooses a suitable planar embedding. The vertices are put on a circular 

arc and the edges consist of the convex hull of their elements. Sorne more sets are added 

ta sufficiently coyer the rest of the plane. Figure 4 exhibits a partial embedding of the 

hypergraph for k = 3. 

Nevertheless, it has been proved that if the covering .sets are translates of a centrally 

symmetric convex polygonal domain, fer) does existe Whether it exists for translates of a 

circle is still open. 
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Figure 4: Sets SI and 54, part of a 3-fold cover of the plane by convex sets. 



Chapter 3 

Covering Points with Lines 

3.1 Introduction 

ln a warehouse, hoops are held in n huge heaps according to hue. A system of m straight 

rails has heen installed on the ceiling, each with a mobile ho ok to handle the hoops. So 

that severa! manipulations (::mld he performed on a heap simultaneously, the system was 

designed to insure k rails over each hue. Unfortunately, the fact that a hook operator can 

only do one thing at a time was overlooked. It is decided to distribute the rails among 

operators in such a way that each may reach all heaps. The foreman would like to know 

how many workers she will need. 

This is another geometricaUy constrained covering prohlem, taking place in the plane as 

in the preceding chapter but where T is now a finite set of points and S a family of straight 

lines, a special case of convex sets. As a set, a line will contain aU the element& of T with 

which it is incident. A caver obeying that geometric constraint will he called a point-line 

caver. Figure 1 gives an example of such a caver. 

As with unconstrained covers, some admit a perfect factorization while others dan't. 

Partition ({Ll,L2,Ls),(L3,L4,L6,L7)} reprecients a perfect factorizatian far the 3-foid 

caver of figure 1 while the prime 2-fold cover of figure 2 in chapter 1 can easily he drawn 

with its covering sets as straight lines. 

The consèraint might influence resuIt.s on 1(·), though. Since that prime cover can he 

adapted, 1(2) must be greater than 21 hut the construction in the preof of theorem 2.2.1 can 

no longer he generalized to all k. For instance, the 3-foid cover exhihited contains distinct 

sets {tbt2,t3,t4,ts,+6} and {t 1 ,t2,t3,t7,tS,tg} which can only he represented as the same 

15 
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L2 

L3-------~F_--------~--------~~--------

Figure 1: Lines (L1!L2'"'' LT) form a 3-foid cover for points {PJ.,P2, ... ,Ps}. 

line, being both incident with distinct puints t b t2 and t3. 

That brings to light 3. property of the sets of family S for this constrained covering 

problem. Two sets contain either no common element, one common element or aIl the 

same elements, since two points uniquely determine a tine. In order to better express the 

problem in terms of hypergraphs, c.lemma about covers in general will be introduced. First, 

ta an instance of a. k-fold caver S for a set T corresponds a reduced cover S' for a set T', 

obtained through the following procedure: 

1. S':= Sj T' := Tj 

2. li a set appears more than once in S' then remove every occurrence of it and remove 

from T' ail the elements it covered. 

3. Update the sets in S' 50 that they do not contain elements which have been removed 

from T'. 

4. Repeat from step 2 until S' remains unchanged. 

For example, 2-fold cover S = ({a, b,c}, {a,b,d},{ c, dl, {c, dl, {a, e, j}, {e,g}, {f,g}) for set 

T = {a,b,c,d,e,f,g} successively becomes S' = ({a,b},{a,b},{a,e,j},{e,g},{f,g}), T' = 



{ 

1 
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{a,b,e,j,g} and finally S' = ({e,j},{e,g},{j,g}), T' = {e,j,g}. Note that the reduced 

cover remains k-fold. (It should be pointed out that the reduced cover may be empty, i.e. 

S' = 0, T' = 0. Nevertheless, this does not pose a problem if it is agreed that such an 

instance forms a k-fold cover for any k.) 

Lemma 3.1.1 A cover is factorizable into two simple covers ifJ its corresponding reduced 

cover is factorizable into two simple covers. 

PROOF As was just introduced, let pairs S,T and S',T' respectively represent the instance 

of the cover and of jts re<.luced cover. 

=>: Let {SI. S2} be a factorization of S into two simple covers for T. Define Si ~f {Si nT' : 

S, E St} and S2 ~ {S, nT': S, E S2}. Note that S' == {S, nT': S, ES}. It follows from 

the definitions that {S~,SD is a facto:ization r.f S' into two simple covers for T'. 

~: Let {S~,Sn be a Ïactûrization of S' intC' two siÏnple COVE'_S for T'. The idea is to 

complete familles Sf and S2 into covers for T wit~ sets from S \ S' chosen to cover T \ T' 

since every set in S \ S' appears at least twice and 50 identical sets can be distributed to 

Si aILd S2' 

Because the sets are updated while computing the reduced cover, getting the two cov

ers for T actually involves performing the reduced-cover procedure backwards in order to 

recuperate the original sets from S: sets are gradually re::l.Ugmented to their initial form as 

reintroduced G.upllcate sets get rustributed between the two covers and removed elements 

reappear. o 

According to lemma 3.1.1, if a k-fold cover containing dupllcate sets is not factorizable 

into two simple covers then there exists another k-fold cover (its reduced cover) which cannot 

be fa.ctorized either. It is therefore sufficient wh';!n investigating f(2) to consider covers in 

which the covering sets are distinct. Applying this to the point-llne covering problem, 

two sets now have at most one element in common. The corresponding hypergraph thus 

becom€s easier to formulate: H = (T,S), IS, n SJI :s; 1 'VS"SJ E S,i f:. j. This is not 

a total characterization of the problern though, because sorne of these hypergraphs do not 

represent covers of points by straight lines. The geometry inherent to the problem, namely 

that there e.:dsts a placement of the vertices of the hypergraph on the plane in which vertices 

belonging to the same edge arr::! collinear, do es not find a translation in the combinatorial 

language. A perfect example of this fiaw within the hypergraph formulation is the Fano 



- CHAPTER 3. COVERING POINTS WITH LINES 18 

plane already encountered in chapter 2. Any representation of it inc1udes at least one edge 

which is not straight (see figure 3 in chapter 2) even though no pair of edges have more 

than one common vertex. 

3.2 Bounds on 1(2) 

The hypergraph approach nevertheless embodies necessary conditions for these constrained 

covers and might thus provide an upper bound for 1(2) or at least orient the search for 

answers. Since the transposition of the problem involves the dual hypergraph, the constraint 

must be dualized as weil. From two sets have at most one elemei1t in common it becomes 

two elements are contained in at most one common set which really means the !'alY'~ thing. 

The first version will be used because it is more convenient. 

This yields a more restrictive version of what was introduced at the beginning of section 

2.2: the smallest integer k such that every hype16Taph H = (V, î) with lEI ~ k V E E î 

and lE, n EJI ~ 1 'VEi,EJ E E,i '1 j, is 2-colorable. 

It has been pointed out before that 1(2) > 2. The Fano plane would be a good candidate 

to show 1(2) > 3 if its dual admitted a straight-line planar embedding but :u; mentioned 

earlier it is its own dual. Fortunately, a. minor modification of the Fano plane produces a 

dual which is drawable in str~ght lines while preserving the relevant features. 

Theorem 3.2.1 1(2) > 3 for point-line covers. 

PROOF Consider the hypergraph with edges ({x,u,z}, {x,v,y}, {y,w,x}, {x,t,w}, 

{y,t,u}, {z,t,v}, {u',v,w}, {u.v',w}. {u,v,w'} ,{u',v',w'}) as represented in figure 2. It 

can be obtained from the Fano plane by replacing edge {u, v, w} by {u', v, w}, {u, v', w}, {u, v, w'} 

and {u', v', w'}. 
Each of its edges has size 3 and no two share more than one vertex. Furthermore it 

is not 2-colorable, as will be argued now. Assigning colors to {t,u,v,w,x,y,z} first, it is 

not hard to see that u, v and w must have the same color for the assignment to be valid. 

But then u', v' and w' must share the other color because of ed.ges {u', v, w}, {u, v', w} and 

{ 'U, V, w'}, making {u', v', w'} monochromatic and the coloring invalid. 

Finally, its dual can be drawn with straight lines in the plane, as shown in figure 3. 0 

It was suggested before that results were more elegant in the dual and this last situation 

serves ta illustrate it. Obtaining the 3-fold cover directly seems ta require a lot more insight. 
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u' 

~'--------~~--~----~ 

z 

v' 

Figure 2: A modification of the Fano plane for theorem 5.2. 

(, 
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Figure 3: A 3-fold cover of points by Unes which is not fa.ctoriza.ble into two simple covers. 
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The next result requires knowledge of Ramsey theory. An r-subset is a subset of size r. 

A K~ is a hypergraph on n vertices whose edges are aIl the r·subsets of its vertex set. A 

special case of Ramsey's Theorem ([G80)) says thc..t. given integers n',r, there always exist3 

an integer n large enough that if to each edge of a K~ is assigned one of 2 colors, a n'-subset 

of the vertices whose spanned edge::: are all of the same color can be found. That integer 

n is called a Ramsey number and denoted R( n', r). An elegant special case of the theorem 

states that if a graph contains sufficiently many vertices (~R(n',2)) then it must contain 

either a complete set or an independent set of vertices of size n'. 

TheoreIIl 3.2.2 For any integer k > 1, there exists a hypergmph (V,E) with lEI ~ k VE E 

E and lE, n E)I :S 1 VE"Ej El', i =f. j, which is not 2-colomble. 

P ROOF This is a direct consequence of a very nice application of Ramsey theory by 

Lova.sz [L 79, problem 14.24]. 

Starting from X = {l, 2, ... ,R(k, k -l)}, construct V = {v ç; X: Ivl = k - l} and 

E = {E ç V: 1 El = k, 1 UVEE vi = k}, the vertices and edges of the hypergraph. In other 

words, to each (k - l)·subset of X corresponds a vertex of V and to each k·subset of X 

corresponds an edge of E composed of the k vertices (( k - 1 )-su bsets) spanned by i t. 

a) lEI ~ k "'lE E E: every edge has size k by definition. 

b) lE, n E)I :S 1 VEt,EJ El', i t= j: two distinct k-subsets have at most k -1 elements 

in common and so two distinct edges have at most one vertex in common. 

c) (V, &) is not 2-colorable, because X was chosen to have size R(k,k -1): accorc:ling to 

Ramsey theory, in any 2-coloring of the edges of a K~(k\_l) (Le. vertices of V), there exists 

a. k-subset of the vertices of the K~(t.k_l) (i.e. clements of X) al! of whose (k -1)-subsets 

(i.e. spanned vertices of V) are of the same color. To this k-subset corresponds an edge of 

E which is thus monochromatic. 0 

Theorem 3.2.2 can hopefully be applied ta factorizations of covers. The first two of these 

Ramsey numbers are R(2,1) = 3 and R(3,2) = 6. Use of the former produces the famillar 

prime 2-fold cover of figure 2 from chapter 1. The case k = 3 will be looked at in more 

detail. 

From X = {1,2, ... ,6} are constructed V = {{1,2},{1,3}, ... ,{5,6}} and E = { 
{{1,2},{1,3},{2,3}}, {{1,2},{1,4},{2,4}}, ... , {{4,5},{4,6},{5,6}}}. In all, (~ = 15 

vertices and (~ = 20 edges. The corresponding 3-fold cover thus involves 20 points and 
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15 Unes, which is considerably larger than the one constructed in theorem 3.2.1. It is a 

very regular cover in whlch every point is covered by exactly 3 lines and every Une covers 

exactly 4 points. Nevertheless, to represent a point-line cover an embedding with straight 

tin es must be found. 

There are in fact two major problems in using theorem 3.2.2 to improve the lower 

bound on 1(2). First of all, Ramsey numbers R( k, k - 1), k > 3 are not known. Existence 

of these numbers would be enough if it weren 't for the second problem: shawing a suit able 

embedding. That alane seems to be a considerable task whlch is only camplicated by the 

lack of information on the size of the cover. The matter thus remains unsettled. 

3.3 A Special Case 

As in section 2.2, considering a special case of the covering problem proves fruitful. 

Theorem 3.3.1 If each pair of points lies on at least one line then 1(2) = 3. 

PROOF Using lernma 3.1.1, it is sufficient to consider covers in which each pair of points 

lies on exactly one line. Then, the situation is identical ta that af theorem 2.2.2, except for 

the added geometric constraint. The result used in the proof of that theorem stiU applies, 

giving as before two types af forbidden hypergraphs. Recall they both have a isamorphlc 

dual, so that they cau be directly examined far a proper embedding. The Fano p1ane must 

be discarded, leaving the hypergraphs of figure 2 whlch have edges of size 2. Consequently 

a lower bound of 3 on the size of the edges is sufficient_ 0 

While the exact value of f(2) is known for thls special case, the question for paint-line 

cavers in general is still open. It has been shown that f(2) must be at least 4 and might not 

even exist if the cavers assaciated with theorem 3.2.2 can be embedded in the plane with 

straight tines. 



Chapter 4 

Covering Simple Polygons 

4.1 Introduction 

In an art gallery, guards are hired to handle security. They are to he sitting down and watch 

over everything they see around them. Because in this comfortahle position they might fail 

asleep, guards should be placed so that every part of the art gallery is under surveillance 

by at least k of them. How many guards are needed? 

A few definitions are needed to formalize this minimization problem. The sequence of 

points XbX2, ••• ,Xn (n ;::: 3) in E 2 defines a polygon P = [Xt,X2,'" ,xn ] consisting of its n 

vertices Xl, X2, ••• , Xn and n edges (li ne segments) [x" Xt+l], i = 1,2, .. " n - 1, and [xn , Xl], 
Le. a closed polygonal curve. li no two non-consecutive edges intersect, the polygon is 

simple and has a well-defined interior and exterior. Henceforth, the term "polygon" will 

designate a simple polygon and its interior. 

The covered set T will be an infinite set of points in the plane described by a polygon 

whose numher of vertices n will serve as a rneasure of the size of T. The constraint on 

the family S covering T requires now that it must he composed of subsets of T sharing a 

specifie property. Two such properties will be considered for their relevance to applications 

and link to other research - they will be described shortly. 

The problem consists of fin ding a minimum size family S forming a caver for T defined 

by a polygon - the smallest cover given a polygon, for short. The covering sets will either 

be convex or star-shaped. Those properties make the problem become non-trivial. 

A set of points is convex if for every two points X, y in the set, the line segment [x, y] 

ruso lies completely in the set. Because convex sets are simple and in a way elegant, they 

23 
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B 

A 

Figure 1: Convex sets A, B and C fonn a smallest cover for the polygon. 

are popular for polygon'decomposition. The decomposition of potentially complex polygons 

into simpler components has been proven very useful in developing efficient algorithms for 

varions problems ([KS85]). As an example, triangulation, the partition of a polyg,on into 

triangles, can often be found as a prept'Ocessing step. The smallest convex cover (cover 

by convex sets) constitutes an ideal decomposition for such t"ll1gS a.~ feature extraction in 

pattern recognition. Figure 1 shows a smallest convex coyer for a rendering of the letter 

"F" . 

A set of points is star-shaped if there exists a point x such that for every point y in 

the set, [x,y] lies completely in the set. Star-shaped covers find correspondence in "Art 

Gallery" problems, which have a somewhat different formulation ([Chvï5,Fï8,087]). They 

seek the smallest number of points from which the whole polygon is visible, where two points 

are visiblp. from each other if the line segment joining them does not intersect the exterior 

of the polygon. It is said that the polygon is guarded by those points. The set of points 

visible from a point x is star-shaped and said to be generated by x. Figure 2 illustrates the 

equivalence. 

As it was hinted in the example with the watchmen, smallest k-fold covers for polygons 

offer an added security quantified by the choice of k. One way to look at it is that removing 

any k - 1 of the covering sets still leaves the polygon fully covered, reminiscent of the 

motivation behind k-connected graphs ([Har69]). 

It will now be seen how factorization cornes into play with minimization problems. 

Computing minimum cardinality convex and star-shaped l-fold covers for polygons have 
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Figure 2: The polygon is guarded by the two points or alternatively covered by the two 
corresponding star-shaped sets. 
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bath been proven NP-hard ([LL86,CR88.Sh89]). Obviously by generalizing ta k-fold covers 

the prablems remain at least as hard. Nevertheless if additional information is available, 

such as thinner covers of minimum size for the same polygon, a solution may be easier to 

obtain. Can a minimum size k-fold caver for a polygon always be achieved through sorne 

combination of the thinner covers? In other words, do all smallest k-fold covers admit a 

perfect factorization? 

4.2 Preliminary Results 

Befare gaing on, a f~w things should be defined. Keeping with the tradition of the "art 

gallery" appraach and the nota.tion appearing in [Pe8S], Gî(P) and Gk(P) will respectively 

represent the cardinality of the smallest conve..x and star-shaped k-fald covers for polygon 

P. Naive covering, be it by convex or star-shaped sets, will refer to a covering strategy 

cansisting of building a k-fold cover fram a I-fold cover by making k copies of each set. It 

is a trivial example of a combination of thinner covers. 

Tight upper bounds exist for CH·) and G~(-) in the literature ([Chvï5,F78,Cha80]). 

Fact 4.2.1 n - 2 convex sets are sometlmes necessary and always sufficient to cover a 

polygon with n vertices. 

Fact 4.2.2 l~J star-shaped sets are sometimes necessary and always sufficient to cover a 

polygon with n vertices. 

The "necessary" part of the statements is easily shown by e..x.hibiting polygons requiring 

that many sets. The polygon of figure 3 needs a different set for each edge of its concave 

part. In figure 4, each prong needs its set. It shouldn't be surprising that the bound on 

convex cavers is considerably higher since convex sets are a subclass of star-shaped sets and 

hence nat as powerful. 

These bounds can be generalized for GkO and Gk(·). 

Fact 4.2.3 k( n - 2) convex sets are sometimes necessary and always sufficient to form a 

k-fold cover for a polygon with n vertices. 

Fact 4.2.4 k· l~J star-shaped sets are sometimes necessary and always sufficient to form 

a k-fold cover for a polygon with n vertzces. 
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Figure 3: An extrema! po1ygon for convex covers. 

Ln!3J 

--------~~--------

Figure 4: An extrema! polygon for star-shaped covers. 

( 
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Figure 5: A polygon with a prime star-shaped 2-foId cover. 

The s~e two figures can be used for necessity - sufficiency fcllows from naive covering 

using facts 4.2.1 and 4.2.2. 

Those extremal cases should not be taken as an indication that finding minimum size k

foId covers reduces to finding minimum size 1-fold covers, though. For example, the polygon 

of figure 5 is not star-shaped and 50 requires at least two star-shaped sets to form a cover. 

Nevertheless, the three star-shaped sets generated by vertices a, band c form a 2-fold cover 

for the polygon, a minimum, whereas doubling a 1-fold cover yields a caver of size at least 

four. This polygon simply embodies the familiar cover of figure 2 from chapter 1. 

4.3 SR·RI,m Polygons 

Next is described a family of polygons which will be at the source of following results. They 

resemble the "spur" polygons mentioned in [Sh89] in that they have spikes arranged in a 

circular fashion, though they carry additional constraints reflected in the wid th of their 

spikes. 

The polygon SPURl,m has 1 spikes and each sequence of m consecutive spikes is visible 

from sorne point. The description of SPURl,m will be much more precise and restrictive 

than it needs to be - the essential characteristics sought are not exclusive to an exactly 

determined polygon and many variations will still retain them, but it was chosen to fix a 

representative which is of convenient manipulation to ease the proofs. A construction is 

given next, performing correctly for 1 2: mj 1 2: 3, m ~ 2, the only meaningful range, 
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Figure 6: Step 3 of the construction of SPUR1,m, m> 2. 

but proceewng in a slightIy different way for m = 2. Indices on points and vertices of the 

construction shouid be take.n modulo 1. Aline going through points p and q will be denoted 

(p, q) and will have an orientation pq. A half-line starting at p and going through q will be 

denoted [p, q). 

Construction: 

m > 2: 

1. Draw a cir,:le of radius r centered at c. 

2. Put 1 points on it~ equally spaced. From an arbitrary starting point, label them 

Po,PJ., • • ·,PI-ll in counterclockwise arder. 

Decause Po,Pl,'" ,PI-l are evenly distributed on the cirde, SPUR',m will be symmetrical 

around c and the construction of each spike will be identical. 

3. Ifhalf-lines [Pm-l,Po) and [P2,Pl) intersect, calI their point of intersection qo and draw 

the cirele through it which is centered at c. Otherwise, draw a ci,cle of radius 2r centered 

at c and calI qo the intersection of that circle with [Pm-t,pO)' (Figure 6 depicts the two 

alterna.tives. ) 

4. For i = 1,2, ... ,1 - 1, put point qi at the intersection of the newIy drawn circle and 

(P.+m-l,P.)· 
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Figure 7: A SPU~,4 with its labelled vertices. 

5. SRJR"m = (po,QO,Pt,Ql, .•. ,P,-l,q,-l]. Figure 7 illustrates the case 1 = 6, m = 4. 

m= 2: 

1. uraw a circle of radius r centered at c. 

2. Put 1 points on it, equally spaced. From an arbitrary starting point, label them 

Co, Cl, ••• , Cl-l, in counterclockwise order. 

3. Draw a circle of radius 2r centered at e. 

4. For i = 0,1, ... , 1 - 1, put point Qi at the intersection of the newly drawn circle and 

[Ct+lI Ct). 

5. For i = 0,1, ... ,l-1, put point Pi on [e'H,e,) just outside the inner circle (see figure 8). 

Points PI are introduced to avoid having overlapping edges [c" qlJ, [q" e,H]. 

6. SRJR',2 = [po,qO,PI,ql, ••• ,PI-bql-l]. Figure 9 illustrates the case 1 = 4. 

For tlle sake of uniformity, points Pi in the construction for m > 2 will aIso he referred 

to as Ci. This way, PI will aIways refer to sorne vertex of SPUR"T'1. and Ci to a pOlllt on the 

circle of radius r, regardless of the value of m. 

It is now argued that the polygon resulting from the construction is simple. Define RI 

to be the region delimited by [Cs+1,ql+l], [ci,CiH], [e"ql] and arc(ql,qi+d, but exclu ding 

the first segment (see figure 10) - Ra, RI, ... , R'-I are pairwise disjoint. 

1 
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Figure 8: Construction of SPUR,,2' 

, 

Figure 9: A SPUR4,2 with its la.belled vertices. 

m>2 m=2 

( 
" 

Figure 10: Region R; for the proof of simplicity. (The light boundary edges a.re open.) 

-----,--~-----------------------------
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Edges [Pi,qd and [%Pi+!] lie in Rï. Hence none of the edges intersect (except at the 

endpoints for consecutive edges) and SPUR1,m is simple. 

4.4 Properties of BroR/,m 

The next few results will serve to determine the size of smallest convex and star-shaped 

covers for SPUR1,m.. Let W, be the wedge located in R" Le. the closed region bounded 

by triangle [p" Pi+! , qi]. Call 0 the closed region bounded by polygon [po, Pl , ... , Pl-l]. 

Wc, Wb ... , Wl-1 and 0 represent a partition of SPUR1,m (not in a strict sense sinee they 

share boundaries, though). A region (Le. set of points) will be eonsidered visible from a 

point pif every point of that region is visible from p. HL(P, q) and HR(P, a) will respcctively 

represent the left and right half-planes associated with line (p, q). 

First, a simple geometric fact is stated without proof. 

Fact 4.4.1 Consider a chord of a circ le, splitting it into two arcs. If the arcs have equal 

length then the center of the circle lies on the chord. Otherwise it lies on the side of the 

chord corresponding to the longer arc. 

Sorne properties of the family of polygons are given next. 

PROOF 

:::}: If W, is visible from P then in particular q, is. Since [q"p] do es not intersect the exterÎor 

of SPUR1,m., it must lie in between edges [%pd and [q"piH]. Equivalently P must lie in 

HR(q"p,) n HL(qi,Pi+1). 
<=: Consider a point q E W~. Both P and q are contail'.ed in (0 U W,) n (HR(q"p,) n 
HL(qi,p'H), a convex region included in the polygon and so [p, q] does not intersect the 

exterior. He~ce W, is visible from p. 0 

Lemma 4.4.2 If 1 ~ 2m - 2 then SPUR1,m. represents a star-shaped set. 

PROOF Note that since 1 ~ 3, the case m = 2 may be discarded. SPUR1,m. will be demon

strated star-shaped by proving that it is visible from point c, the center of the construction. 

---------~ .-~- -
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First, convex set 0 contains c and 50 is visible from it. Remains ta show that Wi 

is visible from c, i = 0,1, ... ,1 - 1. Using lemma 4.4.1, it is equivalent ta showing C E 

HR(%p,)nHL(q"p'+l)' Note that HR(q"p.)nHL(q"pi+t) ~ HR(qi,pi)nHL(q"p'+l)nO ~ 

HR(C" C,+m-t} n H L(Ci+1, C,+2) n 0, from tbe construction. Point C is in 0 - it is sufficient 

ta show cE HR(C" cHm-d n HL(Ci+h Ct+2)' 

Con si der directed chard [Ci+b Ci+2)' Points C,+3, .•. , C/-b Co, ... , Ci are all on its left 

and 50, since points a.re equally spaced, the left arr. is longer. Fact 4.4.1 says that c E 

HL( cHI, C.+2). 

Consider next directed chard [Ci, C,+m-I). Points c.H,"" Ci+m-2 are on its right and 

C.+m , ... , C/-b Co, ... , C,-l on its left. In all, m-2 points on the right arc and 1-(m-2)-2 = 

1 - m :$ m - 2 on the left arc. Sa either the arcs have equallength and C lies on the chard 

or the right arc is longer and C lies on that side, still using fact 4.4.1. In either case, 

cE HR(C" c,+m-d. 

Hence SroR/ ,m is star-shaped. o 

Let Q = {qo, il!',,,, QI-d, the set of vertices of SPUR/,m which are at the apex: of spikes. 

Lemma 4.4.3 If 1 > 2m - 2 then none of the elements of Q are visible from c. 

PROOF Consider directed chard [c" C,+m-l] as in lemma 4.4.2. This time 1- m > m - 2 

and sa the left arc is longer. Therefore C '/. HR(C"Ci+m-l) and [C,qi] intersects the exterior 

of the polygon. 0 

Lemma 4.4.4 If 1 > 2m - 2 then a star-shaped set restricted to SPUR/,m covers at most m 

elements of Q. 

PROOF By contradiction. Suppose there exists a point x such that the star-shaped set 

X generated by x covers at least m + 1 elements from Q. 

First will be established the existence, among those elements covered by X, of a distant 

pair {ql! qJ} sueh that qJ appears between qi+(m-l) and qi-(m-l) in a counterclockwise traver

saI of the boundary of the circle on which they lie, Le. qJ E {q,+(m-I), qi+m, ... , q,-(m-I)}' 

W.1.o.g. say qm-2 E X. If one of {q2m-3,q2m-2, ... ,q/-I} is also contained in X then 

a distant pair is present. Otherwise, X must contz,.in at least m of QI U Q2, where QI = 
{qO,ql, ... ,qm-3}, Q2 = {qm-t,qm, ... ,q2m-4}, IQI! = IQ21 = m-2. Certainly, {qO,qm-l} 

.. ------------------------------------------------------
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j = i+(m-l) i+(m-l) < j < i-(m-l) j = i-(m-l) 

form a distant pair and ,sa do {Ql,qm}, ... ,{qm-3,q2m-4}. Now suppose s elements of QI 
are contained in X - at least m - s of Q2 must then he part of X but no more than 

m - 2 - s can be chosen without introducing a. distant pair. Therefore X includes a distant 

pair - call it {ql, Q]}. 

Since q, and q] are bath visible from x, it must lie in HR(q" PI )nHR(q;,P;) == HR(Co C,+m-l)n 

HR( Cl' CJ+m-l), in particular. Because of the restrictions on j, those two half-planes do not 

Întersect inside the inner circle of the construction and can only intersect on the circle at 

c, or c] (see figure 11). 

Point x cannat lie on Cs or c, since each of them is included in exactly m of the right 

half-planes associated with elements of Q, by construction. and 50 at most m would be 

visible from it. 

For x ta lie outside the inner circle, it must be in W, or W, (for m = 2, a vertex PI is 

very close ta point Ci) - wJ.o.g. say it is in W, (see figure 12). But hecause of edge [p"ql]' 

q] eannot possihly be visible from x. Renee such an x does not exist. 0 

Lemma 4.4.5 A convex set restricted to SPUR1,m covers at most L-~+2J elements o/Q. 

PROOF 1t is suflicient to show that ql+b QI+2,'" , ql+l-m+1 are not visible from q" i = 

0, l, ... , 1 - 1, for then a eonvex set at best covers every (1 - m + 2)th element of Q, i.e. 

at most L-~+2J. Let [p, q)' denote the half-line open at P and going away from q, 50 that 
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q. 
J 

Figure 12: A point x in the intersection of spike Wi and the two half-planes cannot see q, 
from behlnd [Pi, ql)' 

" 
[p, q) U [P, q)' = (p, q). From the construction, verte.'\{ qJ lies on [c" C,+m-l)' and is only 

visible from points in HR(CJ , C,+m-l) . The strategy will be to argue that 

[Cj,c,+m-d' do es not lie in HR(C1+j,Ci+J+m-l) (*) 

Vi E {l, 2, ... ,1- m + 1}. 

Three useful observations should be made: 

(1) C1+m-l E HR(CI+"c1+J+m-l), Vj E {1,2, ... ,m -Il. 
(2) c, rt HR(C,+;,C'+J+m-l), 'Vi E {1,2 .... ,I-m}. 

(3) (*) does not need to be shown for j > l~J. (Once proven that Qi+l,Q,+2, ... ,qi+lfJ are 

not visible from q" it is immediate that Qj+l~J+1 isn't either by applying the result with 

substitution i -+- i + l~J + 1, and so forth.) 

m~r~l+l: 
Since 1 - m + 1 :5 1 - <r41 + 1) + 1 = L4J :5 r41 :5 m - 1, (1) gives Ci+m-l E 

HR(Ci+j,C,+J+m-l), 'Ii E {1,2, . .. ,I-m+1}. Combination with (2) immediately gives (*) 

'Ij E {l, 2, ... ,1- ml. For i = 1 - m + 1, the corresponding HR(Ci+l-m+h Ci) has Cj on its 

defining line and (*) holds. 

m:S r~l: 
1- m+ 1 ~ 1- r41 +1 = l4J + 150 using (3) only jE {1,2, ... , L4J} will be considered. 

Since l~J :s 1- m, from (2) CI ~ HR(Cj+j,c,+i+m-t), 'Vj E {1,2, ... , L~J}. To obtain (*), it 
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suffices ta show that (Ci+"Ci+i+m-l) does not intersect [c"ci+m-d/• Because i ~ l4J and 

m ~ r41, lines (Ci+j,C,+,+m-l) and (Ci,Ci+m-l) are found either parallel or intersecting on 

[CitCi+m-l)' Hence (*). 0 

Lemma 4.4.6 'Vi = 0,1, ... ,1-1, the star-shaped set generated by p,+m-l couers Wi, Wi+1,"" WI+m 1 

andO. 

PROOF It will equivalently be shawn that each of those regions is visible from PI+m-l. 

Convex set 0 contains Pi+m-l sa it is visible from the latter. Observe next that P" Pj+1!" . 'PJ+m-l 

lie in HR(qJ,pj) n HL(q"Pj+1)' It follows that Pi+m-l lies in HR(qj,Pj) ri HL(Q"Pj+l), for 

i = i, i + 1, ... , i + m-l, According ta lemma 4.4.1, W" W I+1,"" ltVI+m - 1 are visible from 

Pi+m-l' o 

For convenlE'nce, let last = (ll-~+2 J - 1)(1 - m + 2). 

Define C, as (Pi, q" PI+l, P'+I-m+2, qi+l-m+2' Pi+I-m+3, Pi+2(I-m+2) , ql+2(I-m+2), P'+2(I-m+2)+1' 

... 'P,+last' q,+last' Pi+last+1] U (P,+lasttt' c, p,], the union of two sets described by polygons o 

If point c lies in the fust one then CI amounts to that set, otherwise 'tt can be described 

by the fust polygon with vertex c added between e..x.isting vertices P,+lasttt and P,o The 

essential feature of CI is that it includes every (1- m + 2)th wedge of the polygon, starting 

with WI' 

Lemma 4.4.7 C, is a convex set. 

PROOF It will equivalently be shawn that for every three consecutive (in counterclockwise 

order) vertices P, ri, p" of Cil ri' E H L(P, p'). Because of the symmetry of the construction, 

there are only a few cases ta consider. 

Pj,qj'Pj+l: it follows from WJ = [P"P;+l,qj] being part of SPUR1,m' 

qj,Pj+l,PJ': by construction, Vi' E {a, 1, .•. ,1-1}, p,' E HL(%,Pj+l)' 

Pj+bP,+I-m+2, q,+I-m+2: i+l == U+l-m+2)+(m-1) sa qj+l-m+2lies on (pj+llPJ+l-m+2), 

by construction. 

If C E first set: 

P,+last+1,Pllq,: byconstruction,p"Pi+l, ... ,Pi+m-l E HR(q"P,). SincelasHl = (L,-~+2J-
1)(1 - m + 2) + 1 ~ m - 1, P,+last+l E HR(qllpï), Le. q, E HL(p,+last+1 ,PI)' 

Otherwise: 
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Pi+last+I' C,p,: follows from c not heing part of the first set. 

qi+last'P,+last+1 ,C and C,p" q,: as se en in lemma 4.4.2 SPUR"m is star-shaped from c, which 

implies that c E HLCqi+last,P,+last+l) and q, E HL(C,p,). 

Renee C, is convex. 

With these lemmas in hand, it is possible to characterize smallest covers for SPUR"m' 

Theorem 4.4.8 G~(SPIJRI.m) = { 

PROOF 

k if 1 ~ 2m - 2 

r !:l otherwise 

o 

1 ~ 2m- 2: From lemma 4.4.2, Gi(SPUR"m) = 1 50 naive covering yields GkCSPUR"m) :5 k, 

which is obviously tight. 

1 > 2m - 2: Recall Q = {qQ, ql, .. " ql-d. Each of the 1 vertices in Q needs to he covered 

at least k times ta achieve a star-shaped k- foid cover of SroRl,m but from lemma 4.4.4 no 

more than m of Q can appear in a star-shaped set. Therefore GkCSPURl,m) ~ r~l. 

An upper bound of r~l will he obtained for GZ(SPUR1,m) by exhibiting an algorithm 

that produces a star-5L.aped k-fold caver of that size. Because of the previous Iower bound, 

it is in fact a smallest cover. 

Aigorithm: 

• i:= m -li 

• s= 0; 

• for j = 1 to r~l do begin 

• end 

add the star-shaped set generated by Pi to S; 

i := (i + m) mod 1; 

Family S obviously has size r~l sa it remains ta prove it forms a k-fold caver. The 

result of lemma 4.4.6 will guarantee this. 

Region 0 is covered by every set and so is r ~l-guarded, which is more than sufficient 

U!:l ~ ~ ;:: k sinee 1 ~ m). 
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The first set put in S covers Wo, Wb"" W m - 1 • Each new set added covers the next m 

wedges in counterclockwise order ("i := (i + m) mod 1;"). Therefore, the number of times 

each of Wo, W1 , • •• , W/_1 is covered corresponds to the number of cycles around SPUR/,m 

the algorithm goes through. Each of the r~fl sets covers m of a cycle of length 1: 

kl m 

m 1 
= k 

Hence the algorithm achieves a k-fold cover. 0 

l.-m+2J 

{ 
r 1/ l if 1 < 2m - 3 

Theorem 4.4.9 G%(SPURI,m) = kl if 2m - 3 ::; 1 ::; 2m - 2 

k( 1 + 1) otherwise 

PROOF Lower bounds are first established. The argument about covering the vertices in 

Q is the same as in theorem 4.4.8 and this time uses lemma 4.4.5. Hence Gk(SPUR/,m) ~ 

r Id 1 
l~J . 

In particular, if 1 ~ 2m - 3 then 1-~+2 < 2 and so Gk(SPURI,m) ~ kl. If in addition 

1 > 2m - 2 then according to lemma 4.4.3 a convex set covering a vertex in Q cannot caver 

point c as weil. Therefore separate sets are needed for c and G%( SPURl,m) ~ k(l + 1). 

Upper bounds matching the lower bounds will again be obtained through covering al

gorithms. For 1 > 2m - 2. naïve covering on {Wo, W1 •••• , l-VI_l'O} will do nicely. For 

2m - 3 ::; 1 ::; 2m - 2, naïve covering on {[c,p" q"p'+ll: i E {a, 1, ... ,1 - 1}} forms a 

convex k-fold cover: each [c,p" q"P,+l] includes W, and [c,p"p'+11 of 0 and 50 the family 

of sets covers the polygon - each set is the union of two triangles sharing edge [p"p'+11 

and line segment [c, q,]lies inside the set since for 1 ::; 2m - 2 SPUR/,m is star-shaped from 

c as seen in lemma 4.4.2, so each set is convex. 

For 1 < 2m - 3, the convex sets CI of lemma 4.4.7 will be used in an algorithm essentially 

identical to the one appearing in the proof of theorem 4.4.8. 

Algorithm: 

• i := Oi 
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• S = 0; 

• for j = 1 to r L il J l do begin 
l-m+2 

- S:= SU {Ci}; 

- i:= (i + 1) mod 1; 

• end 

Family S has size r L ~ J l and is claimed to form a convex k-fold cover for SPURl,m. 
l-m+2 

Note that for every vertex q] of CI! region [c'Pnq]'P]+1J is covered by CI sinee the four 

vertices lie in the convex set. Since CI covers ll-~+2J such regions, one cycle of 1 iterations 

for counter i in the algorithm will construct a family S covering each region ll-~+2J times. 

To form a k-fold cover the algorithm must go through r l ~ J 1 iterations, as specified. 0 
l-m+2 

4.5 Prime Minimum Size Covers 

With these two theorerns in hand, it is now possible to determine the cardinality of minimum 

size convex and star-shaped k-fold covers for SPURI,m without having to look at its geometry. 

It should be kept in mind though that there is a geornetric construct obeying the formulas. 

Ali this will now be used ta show that sorne polygons do not have a slliallest k-foid caver 

whlch admits a perfect factorization. 

Theorem 4.5.1 Vk 2: 2, there exists a polygon for WhlCh no smallest star-shaped k-fold 

cover admits a perfect factori::ation. 

PROOF Consider SPUR2k-l,k. A smallest star-shaped k-foid caver for it will have size 

2k - 1, from theorem 4.4.8: 

k· (2k - 1) 
= r k l 
= 2k-1 

If a perfect factorization of such a cover exists, it can be expressed as a combination of 

thinner covers satisfying L~l a, . i = k, where al stands for the number of times a i-foid 
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Figure 13: SPURS,3 

cover appears in the combination. Still according to theorem 4.4.8, such a combination will 

add up to a family of size at least 2k: 

k-1 

La, . G:(SPUR2k-l.k) = 
k-1 i.(2k-l), ?= a, . r k i 

i=l 1=1 

k-1 . 

= 2:: a t • r2i - i i 
t=l 

k-1 

= L Clt· 2i 

k-1 

= 2· L a,' i 
,=1 

= 2k 

Renee every smallest star-shaped k-fold cover for SPUR2k-1,k is prime. 

\ 

c 

For k = 2, SPUR3.2 is the polygon of figure 5 whoSE: smallest star-shaped 2-fold cover 

was already known to !Je prime. Figure 13 shows SPURS.3, for k = 3. 

Theorem 4.5.2 Vk 2: 2. there exists a po[ygon for which no smallest convex k-fold cover 

admits a perfeet factonzation. 

PROOF Consider SPUR2k+1,2k+l' A smallest convex k-fold cover for it will ha.ve size 

2k + l, from theorem 4.4.9: 
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= rk ·(2k+ 1)1 
k 

= 2k+ 1 

41 

Again, if a perfect factorization of such a cover exists, it can be expressed as a com

bination of thinner covers satisfying L~11 a, . i = k, where a, stands for the number of 

times a i-fold coyer appears in the combination. Still according to theorem 4.4.9, su ch a. 

combination will add up to a family of size at least 2k + 2: 

k-1 

La, . G~(SPUR2k+1.2k+1) 
i=1 

= I:a;·ri.(2~+1)1 
1=1 
k-l . 

= L al . r2i + il 
i=1 
k-l 

= L a, . (2i + 1) 
;=1 

k-l k-1 

= 2· L a, . i + I: ai 
,=1 1=1 

k-1 

= 2k+ La, 
,=1 

~ 2k+2 

C:~;}.l, ~ 2 for othe:wise a] :s 1. CI, = 0 i :p j. for 50me j and 50 L~l a 1 • i :s j < k). 

Ht!!lce every smallest conve.'C k-Ïolà coyer for S?r:R2k_l:~k+1 is prime. 

Figure 14 shows SPCR5.5, for k = 2. 

c 

The last two thearems provide an answer ta the question asked at the beginning of the 

chapter about achieving a minimum size k-fald cover by combining thinner covers. Even if 

minimum size 1- through (k - 1)-fold covers are given, for sorne polygons a minimum size 

k-fold caver cannot be obtalned sim ply by laoking at ail combinations of those. Finding a 

smallest conve.'C or star-shaped k-fold cover for a simple polygon thus is far from reducing 

to finding smallest thinner covers, no matter how large k is. 

Not only is it not always possible ta form a smailest k-fold cover by cambining thinner 

ones, but sometimes it produces a lot more sets than needed. In fact far any constant A, 
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Figure 14: SPUR5,5 
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Figure 15: The polygon built from 4 SRJ·RS,3' 

a polygon can be constructeà. for which such a strategy will use at least .4. more sets than 

the optimal solution. 

The ide a ben.ill.à the construdon is to use SP[~R2k-l.k a.:J.d SFCR2;'~1.:k+l as buiiàing 

blocks. Knowing :hat a sr::ailest k-fold caver for these poiygons saves at least one se! over a 

combination aï th.i:::l1ler ones. they are hooked tugether in sucb. a maru:er :hat the best way 

to caver the resulting pJlygon is still ta cover ea6 compone:lt locaily in the best viay. 

For conve.....: covers the construction is simple. The A SPUR2k+1;:'k+l are hooked together 

in a string, as if they were holding hands. Star·shaped covers require a bit more sophisti· 

cation. The A. SPUR2k-l,k are arranged in a circular fashion around a central hull ta which 

is added a strategically placed spike. Figure 15 gives an exarnple. Because of the very 

narrow connection between each SPUR2/ •• - 1,k and the central hull. no star-shaped set can 

signjficantly cover part of more than one SPUR2k- 1,k. The spike discourages attempts ta 

introduce sets covering the central hull (induding the spike) as well as a significant part of 

sorne SPUR2k-l,k. 
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Conclusion 

This has been an investigation of the extreme cases of factorizations of covers. Through 

the duality with hypergraph 2-colorability, it has been possible ta determine f(2) - the 

smaJlest k such that every instance of a k-fold cover can be factorized into two simple covers 

- for unconstrained covers and sorne special cases. For point-li ne cm'ers. a non-triviallower 

bound was obtaineà but even with a prornising result using Ramsf'y theory the question 

of derermining f(21 exactly rellld.iu!> open. The computation of mirumum size com'ex and 

star-shaped cavers for polygans ha.s been shawn not ta reàuce ta combirung mmimum size 

thinner covers hy introducing the family of polygons SPURl,m which provides polygons with 

prime minimum size k-fald covers for every k. 

There is still room for a fair amount of work ta be done in tLe area.. A few dlrections 

for future researcn i\iil be autlined. The first one is the open ?roble~ :r.en,ioneà abO\'e: 

Open Problem 5.0.3 Find the srnallest integer k such that e".:ery famlly of strmght fines 

forming a k-fold corer for sorne set of points in the plane can be factort=ed into tu:o COL'ers 

for that set of points. 

The prohlem can also he generalized ta higher dimensions. where points ln Ed are 

covered by hyperplanes. For d> 2, the condition ISi n SJI $ 1 no longer holds for reduced 

covers though. 

Most of the results are on f( r), r ::: 2 - considering r > 2 might not be 50 difficul t, 

particularly for special cases such a;) the ones that led ta theorems 2.2.2 and 3.3.1. The 

work on r-colorability of hypergraphs can no longer be used, though, since as it has been 

44 
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pointed out befcre the notion of a valid coloring in the dual problem does not correspond 

to the usual one for hypergraphs except when r = 2. 

It is still not clear that knowledge of minimum size thinner covers for a polygon cannat 

help in devising a polynomial time algOlithm computing its minimum size k-fold caver. 

BUndly combining thinner covers has been shown to get nowhere but the structure of those 

covers might contain information easing the construction of a k-fold coyer. 

It would be interesting to know whether restricting the polygon to sorne subclass or 

considering covering sets with sorne property other than conve.'C or star-shaped can le ad to 

minimum size k-fold covers for which there always e.\:Ïsts li. perÏect factorization. 

At the end of chapter 4, two subfamilies of SPURI,m. - SPUR2k-l,k and SPUR2k+1.2k+l 

- were introduced because they had prime minimum size star-shaped and convex k-fold 

covers. respectively. The first one contains polygons with 4.~ - 2 vertices - the other, 

polygons with 41.: + 2 vertices. They are believed ta be the smallest polygons with prime 

minimum size covers. 

Conjecture 5.0.4 4k - 2 l:er1:ces are necessary and sufficlent to canstruct a polygon for 

which e::ery minimum size star-shapea k-foid caver is prime. 

Conjecture 5.0.5 41.: + 2 verrices are necessary and sufficient to construct a polygon for 

which et'e-:-y minimum size cam'ex k-fold cover is prime. 

Finally. th~ algorithmic side of these problems has bee:::J. barely touched. Tt is hoped that 

thls prelir::linary study of the extrema! proper<;ies oÏ cm'ers will have shed some light on how 

to desiç efficient algorithms to factor..ze covers. though extremal problems by themsel .... es 

are fascinating. 
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