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Abstract

A family of sets S = (S1,82,.--,8m) is a k-fold cover for set T if each element of T is
contained in at least k members of S. This thesis examines partitions of § such that each
part is a cover for T. It is mainly concerned with extremal problems of the type “find the
smallest k such that every k-fold cover can be partitioned into two 1-fold covers”.

In general, no such k& exists. If elements of T are points in1 the plane and sets of S are
straight lines then k is at least 4. If T is the interior of a simeple polygon and & a family
of convex or star-shaped sets then there does not always exist a “perfect” partition of the
cover. This shows that compuiing a minimum siz * k-fold cover for a polygon does not

reduce to combining minimum size thinner covers.
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Résumé

Une famille d’ensembles S = (51, S2,...,Sm) forme une k-couverture d’un ensemble T si
chaque élément de T est présent dans au moins k membres de S. Ce mémoire se penche sur
les partitions de S telles que chaque partie forme une couverture de 7'. Sa préoccupation
principale réside en des problémes du genre “trouvez le plus petit k tel que chaque k-
couverture peut étre divisée en deux 1-couvertures”.

En général, un tel ¥ n’existe pas. Si les éléments de T sont des points dans le plan et
les ensembles de S sont des droites alors k vaut au moins 4. Si T représente l’intérieur
d'un polygone simple et S une famille d’ensembles convexes ou “étoilés” alors il n’existe
pas toujours une partition “parfaite” de la couverture. Ceci démontre que trouver une k-
couverture minimale pour un polygone n’équivaut pas a combiner des couvertures minimales

d’ordre inférieur.
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Chapter 1

Introduction

Polly had a diet problern ([Chv83]). She wanted an economical way of getting the energy,
protein and calcium she needed and used linear programming to solve it. She then went
shopping and bought foods to meet her requirements for a week. Her shopping list is shown
in the table below along with the nutritional contents of each food. (To keep the example
simple, a serving either contains the daily requirement or a negligible quantity of each of
the three nutrients.) To her great surprise, she is not able to plan seven daily meals. Her

problem is known as a decomposition problem.

I

Food Nb of servings | Enerqy | Protein | Calcium
bought

chicken V4 v

whole milk 2 Vv V4

cherry pie 1 Vv

eggs 3 v v

pork with beans 2 4 Vv Vv

This thesis aims at the study of covering problems, which aside from being an interesting
source of mathematical queries ([T77,5t78,Pac80,Pac86,Rog64,CS88]) find themselves the
abstraction for diverse probiems of a more applied nature. They occur in the minimization
of switching functions for the logical design of digital machines or in the Dimer problem
of crystal physics ([D74]), for example. Computer science also provides a good number

of them in the field of robotics or in areas using polygon decomposition such as pattern
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Figure 1: A source of examples for covers.
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recogaition and computer graphics ([FP75,M72,082,Pav77,KS85]). The investigation will
emphasize certain geometric covering problems wbich arise in computational geometry, a
growing branch of computer science which involves designing algorithms to solve problems
of a geometric nature. Covering points with lines in the plane and covering the interior of
a simple polygon, known as the “Art Gallery” problem, will be considered.

A family of sets S = (51,52, ,5m) is a k-fold cover for set T if each element of T is
contained in at least k members of S. The sets 51, S2,...,5m are not necessarily distinct.
The size of a k-fold cover is the number of members of S, namely m. A 1-fold cover will
often be referred to as a simple cover, whereas the term cover used alone should be taken
to mean k-fold covers in general.

Consider the set T = {a,b,c,d} together with sets §; = {a,b,d}, S2 = {a,b,¢,d} and
S3 = {c,d} as represented in figure 1. The families (51, 53) and (52) form simple covers
of size 2 and 1, respectively, for set T. Family (§1,52,53) forms a 2-fold cover of size 3
for T; note that it is perfectly valid to say that (81, 852,53) forms a simple cover for T,
although the strongest statement is usually expected. In the text, it should be assumed
that statements made about covers are the strongest possible. A 4-fold cover of size 4 for
T can be realized by (52,52, 52,52).

Various questions can be asked about covers. For instance, quite obviously and as

illustrated in some of the previous examples, k-fold covers for a fixed set do not necessarily
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CHAPTER 1. INTRODUCTION 3

have the same size. Therefore, finding minimum size covers should deserve some attention.
Moreover, applications of covers are often optimization problems looking for such results.
That issue will he addressed in chapter 4 when taking up covers of polygoss.

Another kind of inquiry involves decompositions of covers. On top of being of high
combinatorial interest, as shall be seen from the past and ongoing efforts in this area, it
appears in several applied problems which will be discussed throughout. That second type
of question will be the main topic of the thesis.

The remainder of this chapter provides the notions and elementary results necsssary for
the rest. Chapter 2 presents a trausformation of the decomposition problem into coloring of
hypergraphs, which is used to achieve some of the results. It also presents results on covers
in general and gives an account of the related work. The last two chapters contain most
of the original material. Chapter 3 looks into decompositions of covers of points by lines.
It includes an interesting oper problem on the multiplicity needed for a cover to admit a
certain decomposition. Chapter 4 investigates prime covers for polygons. The difficulty
involved in computing minimum size k-fold covers is illustrated by exhibiting a family of
polygons having prime minimum size covers.

What is meant by decomposition will now be made more precise. Let families of sets S;
and S; be respectively k;- and kp-fold covers for set T. Sy is said to be thinner than S, if
ky is less than k;. This definition becomes rather intuitive if a k-fold cover is visualized as
k layers on T. Note that this relation between covers only makes sense if the covered set,
T, is the same.

Broadly speaking, a decomposition of a cover is simply a partition of the family of sets.
The type of decomposition which will be considered here produces thinner covers. This
means that instead of any partitioning into components with no connection to covers, the
decomposition will in a way preserve the covering property since each part will in turn form
a cover.

Let {S1,82,...,8,} be a partition of a k-fold cover S for set T'. Define k; as the largest
integer so that S, forms a k;-fold cover for T. If S, does not evep form a simple cover then
k; is set to zero. Partition {S1,S2,...,S,} is a perfect factorization of & if Y i, ki = k.
This summation cannot possibly be greater than k& but may be less than &k in which case
{81,83,...,S,} will simply be referred to as a factorization. Hence, every partition is
considered a factorization of some sort. Finally, S is said to be a prime cover if it does not

admit a perfect factorization, aside from the trivial {S}.

¢t
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Figure 2: A prime 2-fold cover.

A few examples will help to illustrate these new concepts. Coming back to the sets of
figure 1, consider again the 2-fold cover (.Sy, 52, S3). Partition {(Si,53),(S52)} is a perfect
factorization of it since each of the two parts forms a 1-fold cover, whereas {(51),(S52,53)}
is just a factorizatcn because (S2,53) forms a 1-fold cover and (§;) iz not a cover at
all. Furthermore, the =xistence of {(S1, S3),(52)} guarantees that (5}, 52,S53) is not prime.
Perfect factorizations do not have to be composed of simple covers: {(Sz2,S2,52),(52)} and
{(82, 52),(S2, 52)} both qualify as perfect factorizaticas of 4-fold cover (S2, §2, 52, 52).

Simple covers such as (S1,S53) are obviously prine but primality is not restricted to
1-fold covers. Consider sets S; = {a,b}, S2 = {a,c}, S3 = {b,¢} and T = {a,b,c} which
are depicted in figure 2. Family (51.S52,53) is a prime 2-fcld cover for 7. A non-trivial
factorization of this family will have at most une part containing more than one set but it
is easily seen that at least two sets arc needed for a cover and so the factorization at best
includes a single 1-fold cover.

This may be an indication that for a lot of covers it is impossible to find a perfect
factorization. Yet it would be nice to have a way of expressing how abundantly a cover
lends itself to decomposition. The existence of a perfect factorization for a cover says that
it decomposes efficiently into thinner covers, in the sense that the sum of the parts is as
powerful as the whole. If on the contrary only common factorizations are possible, nothing
is learned about efficiency because the term factorization is too general: as mentioned
previously, any partition meets the requirements.

An evaluation of the efficiency of a factorization based on the number of 1-fold covers,
2-fold covers, 3-fold covers and so forth is both very accurate and very messy, especially

when used to compar¢ covers. Imagine deciding between a pair of 9-fold covers, one whose
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“best” factorization includes a 6-fold cover and a 2-fold cover, the other, a 3-fold cover with
two 2-fold covers and a simple cover.

A more reasonable measure might be the number of thinner covers. This is certainly
easier to manipulate: a best factorization of a k-fold cover will be one with the largest number
of thinner covers and the k-fold cover whose best factorization has a larger number will be
considered more efficient in its decomposition. Note that under this measure, a k-fold cover
with a perfect factorization does not automatically have a more efficient decomposition than
a prime k-fold cove..

It may seem a bit arbitrary, even misleading, to ignore the “thickness” of the covers and
to consider three 1-fold covers better than twe 5-fold covers, but for the type of problem
motivating this investigation it is precisely what is desired.

All that is asked of the constituents of a decomposition is that they each form a cover,
be it 1-fold or 5-fold, caring only about the transfer of the covering property. For example,
in an art gallery you might have video cameras set up so that each painting is monitored
by at least four cameras (a 4-fold cover), in case of malfunctions. One day, due to budget
cuts, it is decided to reduce the use of these very unreliable cameras by grouping them
into shifts required to watch over all the paintings, thus distributing the wear evenly. The
problem consists of creating as many shifts (simple covers) as possible to keep the wear to
a minimum.

It is now time to formalize things a bit. Define F(T,S) as the largest integer r such
that family S forming a cover for set T can be factorized into r simple covers for T. Tied
with this issue are preoccupations of computavional efficiency such as designing algorithms
to compute F(T,S) and also output the simple covers. A first step in that direction usually
involves a study of the extremal properties of the mathematical object to be manipulated, so
as to give an idea of the potential difficulties connected with the elaboration of an algorithm
or what to expect in terms of worst-case results and time complexity.

The bulk of the thesis will be spent on that first step while looking into the following.
Call f(r) the smallest & such that F(T,S) is at least r for every set T' and every k-fold cover
S for T. In other words, a f(r)-fold cover is guaranteed to be factorizable into r simple
covers. Recall the sets associated with figure 2, where family (S, 52, S3) was a prime 2-fold
cover. Since F(T,(S51,52,53)) = 1it must be that f(2) exceeds 2.

To conclude this introductory chapter, investigations related to covers but which are

not in the main stream of this study will be mentioned. A good number of efforts have
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CHAPTER 1. INTRODUCTION 6

been put in along the lines of minimum size covers ([T77]). They deal with a set to be
covered which is infinite and so look for minimum density k-fold covers, typically covers of
the plane with equal circles. Alternatively, resembling decompositions of k-fold covers, the
reconstruction of a smaller (k — 1)-fold cover with sets obtained through set operations on

the original ones leads to a theorem with interesting corollaries by preserving an incidence
property ([St78]).
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Chapter 2

Covers

2.1 The Hypergraph Approach

This section offers a transformation of covering problems which will greatly facilitate the in-
vestigation of f(-). Let T be a finite set {t1,%5,...,%,} and S a finite family (51, Sz,...,S5m)
of non-empty subsets of T. An instance of a cover can then be viewed as a hypergraph
H = (T,S) where T is the set of vertices and S the family of edges. Now consider
its dual hypergraph H* = (§5,7) with § = {s1,82,...,3m} (respectively representing
51,52-.-,8m) and T = (T1,T3,..., Ts) (respectively representing ¢y,%s,...,%,) for which
we define T, = {s; : ¢, € §.}.

For instance, the dual of the hypergraph represented in figure 1 would have edges T, =
{s1,82}, Ty = {31,82}, T = {32,393} and Ty = {s1,82,33}, with each S, mapped to s; and
each j€T to T,.

What does a factorization look like in the dual hypergraph? Consider a factorization of

S into r covers 81,832, ...,S5;. Since each S; forms a cover for T, for every ¢, € T there is a

% Si(;4) € Si containing it. This means that in the dual, T, contains s;(j;) and so has (the dual
E of) a representative from each §;. Viewing the factorization as a coloring of the members
E of S (and their dual) in r colors, a factorization of S into r covers, in H, corresponds to a

coloring of the elements of S in r colors so that every color is present in each T}, in H™,
[ Figure 1 illustrates this parallel on the hypergraph of figure 1 and its dual described earlier.

This duality had already been pointed out in [Pac80] which introduced these decompo-
sition problems. Unfortunately. the condition for a coloring to be valid in the dual problem

7 does not agree with the usual notion of a valid coloring of a hypergraph. A hypergraph is

2
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Figure 1: The factorization of 2-fold cover (S, S2, S3) into two simple covers {(S7, S3), (S2)}
(left) and the dual coloring in two colors (right).

r-colorable if we can color its vertices in 7 colors so that none of its edges is monochromatic.
Therefore an edge only needs to include two different colors as opposed to all of them. Note

however that for 2-colorability the distinction vanishes. Hence, the following:

Fact 2.1.1 A cover § for set T' is factorizable into two covers iff the corresponding dual
kypergraph H* is 2-colorable.

What advantage is there in reformulating the problem as a hypergraph coloring and
why emphasize the case r = 2?7 Hypergraphs are more familiar than covers, having been
studied from various angles ([B73]), and the results that were gathered provide tools to
tackle the problem. For instance, extensive work has been done on 2-colorable hypergraphs
([B73,5e74,FL72,FL74]), which can certainly be used for factorizations into two covers since
in that case the notion of a valid coloring is the same. Findings will also have a tendency
to be more elegant in the dual.

Just as not every cover can be factorized into two covers (fig. 2, chapter 1), not all hyper-
graphs are 2-colorable. While the question of 2-colorable graphs has long been completely
solved by showing them equivalent to graphs without odd-length cycles ((K36]), results on
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2-colorable hypergraphs remain partial. They mainly consist of sufficiency conditions. A

restriction on H* can be derived from the nature of covers.

Fact 2.1.2 Set S forms a k-fold cover for T iff every edge of H*, the dual of H = (T,S),
has size at least k.

PROOF It will be directly shown that the two are equivalent, starting in the dual
H*=(5,7).

Vie{1,2,...,n} |T5| 2k, T;€T
& Vie{l,2,...,n} |{si €§: t, €8} > k,by definition of T;
& Vie{l,2,...,n} HSieS: t;eS}H >k, t; €T

& S forms a k-fold cover for T
(]
This means that to look at all k-fold covers, it is equivalent to consider all hypergraphs

satisfying the corresponding lower bound on the size of their edges. That will be useful in
the upcoming investigation of f().
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2.2 Unconstrained Covers

First considered are covers in general, i.e. on which no additional constraint is put. What
is understood by constraint consists of a restriction on the covering sets. The constraints
that will be introduced in the following chapters will have a geometric origin.

As a function of r, f(-) is quite obviously monotone increasing and non-trivial starting
at r = 2. It therefore makes sense to start with f(2) which will provide a lower bound for
the rest. Approaching the problem in the dual, both facts of the preceding section can be
combined to express f{2). It was a statement about all k-fold covers and their factorization,
which facts 2.1.2 and 2.1.1 respectively dualize. It is now the smallest integer k such that
every hypergraph H = (V,€) with | E |> k V E € £, is 2-colorable.

Theorem 2.2.1 f(r), r > 1, does not ezist for unconstrained covers.

PROOF 1t is sufficient to show that f(2) does not exist, using a construction stated in
[Pac80]. Consider hypergraph (V,£) with V = {1,2,...,2k -1} and £E={ECV : |E| =
k}. By definition it obeys the restriction on the size of the edges. Furthermore, regardless
of the value of &, it will be shown that no 2-coloring of it exists.

By the Pigeon-Hole principle, at least k elements of V' have the same color, say navy
blue. By the definition of £, we can find an edge whose elements are all navy blue. Hence
it is not 2-colorable and f(2) does not exist. m]

Notice that the hypergraph constructed for k = 2 in the proof of theorem 2.2.1 yields
precisely the 2-fold cover of figure 2 in chapter 1, which was already known not to factorize
into two simple covers. Already for £k = 3 the corresponding cover increases in complex-
ity. Hypergraph (S,7T), § = {1,82,83,84,85}, T = ( T1 = {31, 92,83}, T2 = {51,82,84},
Ts = {s1,92,95}, T4 = {81,83,54},---» T10 = {83,84,95}) dualizes to 3-fold cover § = (
{t1,t2,t3, L, ts, b6}, {t1, 82,13, 27,18, b0}, {t1,ta, Es, 7y ts, ti0}, {t2, tas tes i, 0, E10}, {3, 5, 26y t8y 9, L10})
for T = {t1,t2,...,t10}-

So there is no k large enough for all k-fold covers to be at least factorizable into two
simple covers. Nevertheless, a special case of unconstrained covers unveils a more positive

outcome, aided by a result on 2-colorability.

Theorem 2.2.2 If each pair of elements of T must be present in ezactly one set of an
unconstrained cover S then f(2) = 4.
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Figure 2: Hypergraphs of the form (EU {v}, {E} U {{v,w}: we€ E}), |E| > 2.

PROOF In the dual hypergraph, the expression of this special case becomes “each pair of
edges have exactly one point in common”. A result, apparently due to Lovész ([L79][problem
13.35]), describes all such hypergraphs which are not 2-colorable. They consist of hyper-
graphs of the form (E U {v}, {E}U {{v,w}: w € E}), |E| > 2 (figure 2) and the Fano
plane (figure 3). Since hypergraphs of the first type have edges of size 2 and every edge
of the Fano plane has size 3, a lower bound of 4 on the size of the edges will only leave

2-colorable hypergraphs. 0

Those hypergraphs of figures 2 and 3 happen to have a isomorphic dual and so represent
as well the covers which are not factorizable into two simple covers.

One might find the condition associated with theorem 2.2.2 very restrictive but in fact
the class of covers satisfying it seems quite rich. Theorems about the existence of Steiner
triple systems and projective planes serve as witnesses to that. These two notions can
be unified under balanced block designs. A (m,n,k,r, A)-design consists of a set T of n

elements and a family S of m subsets of T such thai:
e each subset consists of exactly r elements.
o each element appears in exactly k¥ subsets.
e each pair of elements appears in exactly A subsets.

It is easy to see that family S of a (m,n, k,r,A)-design forms a k-fold cover for set T.
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Figure 3: The Fano plane, with edges zuz, zvy, ywz, ztw, ytu, ztv and uvw.

Furthermore if A = 1 then it satisfies the condition of the theorem. Balanced block designs
do not exist for all combinations of the parameters but there are theorems proving the
existence of some of them. Two of these theorems, respectively about Steiner triple systems
and projective planes, are now stated in the language of balanced block designs. They can
both be found in their original form in [Rob84].

Theorem 2.2.3 There is a (m,n,k,3,1)-design if and only if n = 3 orn = 61+ 1 or
n=6i+3,:1>1.

(For Steiner triple systems, m = =2 Dand k= 2zl

Theorem 2.2.4 If i is a power of a prime then there is a (2 +i+ 1,2 +i+1,i+1,i+1,1)-
design.

Simply judging from these two theorems, theorem 2.2.2 involves an abundance of covers

for various values of k.
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2.3 Some Known Results on Geometric Covers

The results mentioned in this section appear in [Pac80,Pac86]. There has been some work
on constrained covers in which the set T to be covered is a Euclidean space and S a family
of convex sets.

In the one-dimensional case E!, the Euclidean straight line, is covered by intervals.
This constraint leads to f(r) = r, i.e. a k-fold cover can always be factorized into k simple
covers. It is not hard to see with a construction of the simple covers. Consider sweeping
E! from left to right with a line L, maintaining k intervals intersecting L and incrementally
building the k covers. Initially all the intervals are in S. The k intervals intersecting L are
kept in CURRENT and once they are removed from it they are put in OLD. CURRENT is
initialized with k intervals whose left endpoint is —0co. Whenever L meets the right endpoint
of one of the current intervals (if several of them have the same right endpoint, they are
handled one by one), that interval must be “followed” by one covering the immediate right
of L. Such an interval must exist in S or else that part of E! will only be (k — 1)-covered.
That new interval cannot already be committed to a simple cover since those either are in
CURRENT or have their right endpoint to the left of L and are in OLD. Hence k disjoint
covers are formed.

Factorization already becomes much more complicated in two dimensions. A result
identical to theorem 2.2.1. namely that f(r) (r > 1) does not exist, is obtained for covers
of the plane with convex sets. It essentially uses the same hypergraphs as in the proof of
that theorem and chooses a suitable planar embedding. The vertices are put on a circular
arc and the edges consist of the convex hull of their elements. Some more sets are added
to sufficiently cover the rest of the plane. Figure 4 exhibits a partial embedding of the
hypergraph for £ = 3.

Nevertheless, it has been proved that if the covering sets are translates of a centrally
symmetric convex polygonal domain, f(r) does exist. Whether it exists for translates of a

circle is still open.
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Figure 4: Sets S5y and Sy, part of a 3-fold cover of the plane by convex sets.
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Chapter 3

Covering Points with Lines

3.1 Introduction

In a warehouse, hoops are held in n huge heaps according to hue. A system of m straight
rails has been installed on the ceiling, each with a mobile hook to handle the hoops. So
that several manipulations c3uld be performed on a heap simultaneously, the system was
designed to insure k rails over each hue. Unfortunately, the fact that a hook operator can
only do one thing at a time was overlooked. It is decided to distribute the rails among
operators in such a way that each may reach all heaps. The foreman would like to know
how many workers she will need.

This is another geometrically constrained covering problem, taking place in the plane as

in the preceding chapter but where T is now a finite set of points and S a family of straight
lines, a special case of convex sets. As a set, a line will contain all the elements of T with
which it is incident. A cover obeying that geometric constraint will be called a point-line
% cover. Figure 1 gives an example of such a cover.
. As with unconstrained covers, some admit a perfect factorization while others don't.
i Partition {(Li,Ls,Ls),(L3,L4,Le,L7)} represents a perfect factorization for the 3-fold
cover of figure 1 while the prime 2-fold cover of figure 2 in chapter 1 can easily be drawn
; with its covering sets as straight lines.
The constraint might influence results en f(-), though. Since that prime cover can be
adapted, f(2) must be greater than 2, but the construction in the prcof of theorem 2.2.1 can
no longer be generalized to all k. For instance, the 3-fold cover exhibited contains distinct

I sets {t1,29,%3,%4,85,%6} and {t1,%2,13,t7,1s,t9} Which can only be represented as the same

15
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Figure 1: Lines (L,L3,...,L7) form a 3-fold cover for points {py,p2,...,Ps}.

line, being both incident with distinct points ¢,, ¢, and 3.

That brings to light a property of the sets of family S for this constrained covering
problem. Two sets contain either no common element, one common element or all the
same elements, since two points uniquely determine a line. In order to better express the
problem in terms of hypergraphs, & lemma about covers in general will be introduced. First,
to an instance of a k-fold cover S for a set T corresponds a reduced cover S’ for a set T,

obtained through the following procedure:
1. 8:=8;T:=T;

2. If a set appears more than once in S’ then remove every occurrence of it and remove

from 7' all the elements it covered.

3. Update the sets in S’ so that they do not contain elements which have been removed
from T".

4. Repeat from step 2 until S’ remains unchanged.

For example, 2-fold cover S = ({a,b,¢c}, {a,b,d},{c,d},{c,d},{a,e, f},{e,9},{f,g}) for set
b T = {a,b,c,d,e, f,g} successively becomes S’ = ({a,b}, {a,b},{a,¢, f},{e,9},{f,9}), T' =

G

.
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CHAPTER 3. COVERING POINTS WITH LINES 17

{a,b,e, f,g} and finally ' = ({e, f},{e,9},{f,9}), T' = {e, f,g}. Note that the reduced
cover remains k-fold. (It should be pointed out ihat the reduced cover may be empty, i.e.
S" =0, T = 0. Nevertheless, this does not pose a problem if it is agreed that such an

instance forms a k-fold cover fcr any k.)

Lemma 3.1.1 A cover is factorizable into two simple covers iff its corresponding reduced

cover is factorizable into two simple covers.

PROOF As was just introduced, let pairs 8§,T and &’,T" respectively represent the instance
of the cover and of its reduced cover.

=: Let {S1.S52} be a factorization of S into two simple covers for T'. Define S; def {5:nT':
S, €8} and S, {S,nT": S, €8} Notethat &' = {S,nT': S, € S}. It follows from
the definitions that {S],S3} is a factorization ~{ S’ into two simple covers for T".

«: Let {S},8}} be a factorization of S’ intc two simple cove.s for 7”. The idea is to
complete families S and S} into covers for T’ with sets from S \ §’ chosen to cover T\ T’
since every set in § \ S’ appears at least twice and so identical sets can be distributed to
S} and Sj3.

Because the sets are updated while computing the reduced cover, getting the two cov-
ers for T actually involves performing the reduced-cover procedure backwards in order to
recuperate the original sets from S: sets are gradually reaugmented to their initial form as
reintroduced cuplicate sets get distributed between the two covers and removed elements

reappear. o

According to lemma 3.1.1, if a k-fold cover containing duplicate sets is not factorizable
into two simple covers then there exists another k-fold cover (its reduced cover) which cannot
be factorized either. It is therefore sufficient when investigating f(2) to consider covers in
which the covering sets are distinct. Applying this to the point-line covering problem,
two sets now have at most one element in common. The corresponding hypergraph thus
becomes easier to formulate: H = (T,S), |S,NS,| £ 1 VS,,S, € S,i # j. This is not
a total characterization of the problem though, because some of these hypergraphs do not
represent covers of points by straight lines. The geometry inherent to the problem, namely
that there exists a placement of the vertices of the hypergraph on the plane in which vertices
belonging to the same edge ara collinear, does not find a translation in the combinatorial

language. A perfect example of this flaw within the hypergraph formulation is the Fano

.
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plane already encountered in chapter 2. Any representation of it includes at least one edge

which is not straight (see figure 3 in chapter 2) even though no pair of edges have more
than one common vertex.

3.2 Bounds on f(2)

The hypergraph approach nevertheless embodies necessary conditions for these constrained
covers and might thus provide an upper bound for f(2) or at least orient the search for
answers. Since the transposition of the problem involves the dual hypergraph, the constraint
must be dualized as well. From two sets have at most one element in common it becomes
two elements are contained in at most one common set which really means the samz thing.
The first version will be used because it is more convenient.

This yields a more restrictive version of what was introduced at the beginning of section
2.2: the smallest integer k such that every hypergraph H = (V,£) with |E| >k VE € £
and |[E,NE,| <1 VE,E, €&,i+# j,is 2-colorable.

It has been pointed out before that f(2) > 2. The Fano plane would be a good candidate
to show f(2) > 3 if its dual admitted a straight-line planar embedding but as mentioned
earlier it is its own dual. Fortunately, a minor modification of the Fano plane produces a

dual which is drawable in straight lines while preserving the relevant features.
Theorem 3.2.1 f(2) > 3 for point-line covers.

PROOF Consider the hypergraph with edges ({z,4,z}, {z,v,v}, {y,w, 2z}, {z,t,w},
{v,t,u}, {z,t,v}, {v',v,w}, {u.v',w}. {u,v,0'} {u',v,w'}) as represented in figure 2. It
can be obtained from the Fano plane by replacing edge {u, v, w} by {«’, v, w}, {u,v', w}, {u,v, v’}
and {u',v',v'}.

Each of its edges has size 3 and no two share more than one vertex. Furthermore it
is not 2-colorable, as will be argued now. Assigning colors to {t,u,v,w,z,y, 2} first, it is
not hard to see that u, v and w must have the same color for the assignment to be valid.
But then u/, v’ and w’ must share the other color because of edges {u’,v,w}, {u, v, w} and
{u,v,w'}, making {u’,v',w'} monochromatic and the coloring invalid.

Finally, its dual can be drawn with straight lines in the plane, as shown in figure 3. O

It was suggested before that results were more elegant in the dual and this last situation

serves to illustrate it. Obtaining the 3-fold cover directly seems to require a lot more insight.
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Figure 2: A modification of the Fano plane for theorem 5.2.
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Figure 3: A 3-fold cover of points by lines which is not factorizable into two simple covers.
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The next result requires knowledge of Ramsey theory. An r-subset is a subset of size 7.
A K is a hypergraph on n vertices whose edges are all the r-subsets of its vertex set. A
special case of Ramsey’s Theorem ([G80]) says thut given integers n/,r, there always exists
an integer n large enough that if to each edge of a K7, is assigned one of 2 colors, a n'-subset
of the vertices whose spanned edges are all of the same color can be found. That integer
n is called a Ramsey number and denoted R(n’,r). An elegant special case of the theorem
states that if a graph contains sufficiently many vertices (> R(n’,2)) then it must contain

either a complete set or an independent set of vertices of size n'.

Theorem 3.2.2 For any integerk > 1, there ezists a hypergraph (V,€) with |E| > k YE €
£ and|E,NE)| <1 VE,E; €€, i# j, which is not 2-colorable.

PROOF This is a direct consequence of a very nice application of Ramsey theory by
Lovész [L79, problem 14.24].

Starting from X = {1,2,...,R(k,k - 1)}, construct V = {v C X: |v|] =k — 1} and
E={ECV: |E| =k, |Uyer vl = k}, the vertices and edges of the hypergraph. In other
words, to each (kK — 1)-subset of X corresponds a vertex of ¥V and to each k-subset of X
corresponds an edge of E composed of the k vertices ((k — 1)-subsets) spanned by it.

a) |[E]l > k YE € &: every edge has size k by definition.

b) |[E, NE,|<1VE\E, €&, i# j: two distinct k-subsets have at most k-1 elements
in common and so two distinct edges have at most one vertex in common.

¢) (V, €) is not 2-colorable, because X was chosen to have size R(k,k — 1): according to
Ramsey theory, in any 2-coloring of the edges of a K f{(kl.k—l) (i.e. vertices of V'), there exists
a k-subset of the vertices of the K;'(':'k_l) (i.e. elements of X) all of whose (k — 1)-subsets
(i.e. spanned vertices of V') are of the same color. To this k-subset corresponds an edge of

E which is thus monochromatic. 0

Theorem 3.2.2 can hopefully be applied to factorizations of covers. The first two of these
Ramsey numbers are R(2,1) =3 and R(3,2) = 6. Use of the former produces the familiar
prime 2-fold cover of figure 2 from chapter 1. The case k = 3 will be looked at in more
detail.

From X = {1,2,...,6} are constructed V = {{1,2},{1,3},...,{5,6}} and & = {
{L2 {1342, ) {121 (L4} (2,0 - {45}, {4,6},{5,6}}}. Tn all, () = 15

vertices and (g) = 20 edges. The corresponding 3-fold cover thus involves 20 points and
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15 lines, which is considerably larger than the one constructed in theorem 3.2.1. Itis a
very regular cover in which every point is covered by exactly 3 lines and every line covers
exarctly 4 points. Nevertheless, to represent a point-line cover an embedding with straight
lines must be found.

There are in fact two major problems in wusing theorem 3.2.2 to improve the lower
bound on f(2). First of all, Ramsey nusnbers R(k,k — 1), k > 3 are not known. Existence
of these numbers would be enough if it weren’t for the second problem: showing a suitable
embedding. That alone seems to be a considerable task which is only complicated by the
lack of information on the size of the cover. The matter thus remains unsettled.

3.3 A Special Case

As in section 2.2, considering a special case of the covering problem proves fruitful.
Theorem 3.3.1 If each pair of points lies on at least one line then f(2) = 3.

PROOF Using lemma 3.1.1, it is sufficient to consider covers in which each pair of points
iies on exactly one line. Then, the situation is identical to that of theorem 2.2.2, except for
the added geometric constraint. The result used in the proof of that theorem still applies,
giving as before two types of forbidden hypergraphs. Recall they both have a isomorphic
dual, so that they can be directly examined for a proper embedding. The Fano plane must
be discarded, leaving the hypergraphs of figure 2 which have edges of size 2. Consequently
a lower bound of 3 on the size of the edges is sufficient. o

While the exact value of f(2)is known for this special case, the question for point-line
covers in general is still open. It has been shown that f(2) must be at least 4 and might not
even exist if the covers associated with theorem 3.2.2 can be embedded in the plane with
straight lines.




Chapter 4

Covering Simple Polygons

4.1 Introduction

In an art gallery, guards are hired to handle security. They are to be sitting down and watch
over everything they see around them. Because in this comfortable position they might fall
asleep, guards should be placed so that every part of the art gallery is under surveillance
by at least k£ of them. How many guards are needed?

A few definitions are needed to formalize this minimization problem. The sequence of
points zy,22,...,2, (n > 3) in E? defines a polygon P = [z4,23,...,2,] consisting of its n
vertices 1,22, ...,2, and n edges (line segments) [z,,z.11], 1 =1,2,...,n—1, and [z,, z1],
ie. a closed polygonal curve. If no two non-consecutive edges intersect, the polygon is
simple and has a well-defined interior and exterior. Henceforth, the term “polygon” will
designate a simple polygon and its interior.

The covered set T will be an infinite set of points in the plane described by a polygon
whose number of vertices n will serve as a measure of the size of 7. The constraint on
the family S covering T requires now that it must be composed of subsets of T sharing a
specific property. Two such properties will be considered for their relevance to applications
and link to other research — they will be described shortly.

The problem consists of finding a minimum size family S forming a cover for T defined
by a polygon — the smallest cover given a polygon, for short. The covering sets will either
be convex or star-shaped. Those properties make the problem become non-trivial.

A set of points is conver if for every two points z,y in the set, the line segment [z, ]

also lies completely in the set. Because convex sets are simple and in a way elegant, they

23
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Figure 1: Convex sets A, B and C form a smallest cover for the polygon.

are popular for polygon‘decomposition. The decomposition of potentially complex polygons
into simpler components has been proven very useful in developing efficient algorithms for
various problems ([KS85]). As an example, triangulation, the partition of a polygon into
triangles, can often be found as a preprocessing step. The smallest convex cover (cover
by convex sets) constitutes an ideal decomposition for such t.iugs as feature extraction in
pattern recognition. Figure 1 shows a smallest convex cover for a rendering of the letter
“F7.

A set of points is star-shaped if there exists a point £ such that for every point y in
the set, [z,y] lies completely in the set. Star-shaped covers find correspondence in “Art
Gallery” problems, which have a somewhat different formulation ({[Chv75,F78,087]). They
seek the smallest number of points from which the whole polygon is visible, where two points
are visible from each other if the line segment joining them does not intersect the exterior
of the polygon. It is said that the polygon is guarded by those points. The set of points
visible from a point z is star-shaped and said to be generated by z. Figure 2 illustrates the
equivalence.

As it was hinted in the example with the watchmen, smallest k-fold covers for polygons
offer an added security quantified by the choice of k. One way to look at it is that removing
any k — 1 of the covering sets still leaves the polygon fully covered, reminiscent of the
motivation behind k-connected graphs ([Har69]).

It will now be seen how factorization comes into play with minimization problems.

Computing minimum cardinality convex and star-shaped 1-fold covers for polygons have
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Figure 2: The polygon is guarded by the two points or alternatively covered by the two
corresponding star-shaped sets.

s
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both been proven NP-hard ({LL86,CR88,5h89]). Obviously by generalizing to k-fold covers
the problems remain at least as hard. Nevertheless if additional information is available,
such as thinner covers of minimum size for the same polygon, a solution may be easier to
obtain. Can a minimum size k-fold cover for a polygon always be achieved through some

combination of the thinner covers? In other words, do all smallest k-fold covers admit a

perfect factorization?

4.2 Preliminary Results

Before going on, a few things should be defined. Keeping with the tradition of the “art
gallery” approach and the notation appearing in [Pe88], G{(P) and G%(P) will respectively
represent the cardinality of the smallest convex and star-shaped k-fold covers for polygon
P. Naive covering, be it by convex or star-shaped sets, will refer to a covering strategy
consisting of building a k-fold cover from a 1-fold cover by making k copies of each set. It

is a trivial example of a combination of thinner covers.

Tight upper bounds exist for G§(-) and Gj(-) in the literature ({Chv75,F78,Cha80]).

Fact 4.2.1 n — 2 convezr sets are sometimes necessary and always sufficient to cover a

polygon with n vertices.

Fact 4.2.2 |%] star-shaped sets are sometimes necessary and always sufficient to cover a

polygon with n vertices.

The “necessary” part of the statements is easily shown by exhibiting polygons requiring
that many sets. The polygon of figure 3 needs a different set for each edge of its concave
part. In figure 4, each prong needs its set. It shouldn’t be surprising that the bound on
convex covers is considerably higher since convex sets are a subclass of star-shaped sets and
hence not as powerful.

These bounds can be generalized for G¢(-) and G}(-).

Fact 4.2.3 k(n — 2) conver sels are sometimes necessary and always sufficient to form a

k-fold cover for a polygon with n vertices.

Fact 4.2.4 k- |2] star-shaped sets are sometimes necessary and always sufficient to form

a k-fold cover for a polygon with n vertices.
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Figure 3: An extremal polygon for convex covers.

Lozl

Figure 4: An extremal polygon for star-shaped covers.
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Figure 5: A polygon with a prime star-shaped 2-fold cover.

The same two figures can be used for necessity — sufficiency fcllows from naive covering
using facts 4.2.1 and 4.2.2.

Those extremal cases should not be taken as an indication that finding minimum size k-
fold covers reduces to finding minimum size 1-fold covers, though. For example, the polygon
of figure 5 is not star-shaped and so requires at least two star-shaped sets to form a cover.
Nevertheless, the three star-shaped sets generated by vertices @, b and ¢ form a 2-fold cover
for the polygon, a minimum, whereas doubling a 1-fold cover yields a cover of size at least

four. This polygon simply embodies the familiar cover of figure 2 from chapter 1.

4.3 SHFUR;,, Polygons

Next is described a family of polygors which will be at the source of following results. They
resemble the “spur” polygons mentioned in [Sh89] in that they have spikes arranged in a
circular fashion, though they carry additional constraints reflected in the width of their
spikes.

The polygon SPUR; ., has | spikes and each sequence of m consecutive spikes is visible
from some point. The description of SPUR;,, will be much more precise and restrictive
than it needs to be — the essential characteristics sought are not exclusive to an exactly
determined polygon and many variations will still retain them, but it was chosen to fix a
representative which is of convenient manipulation to ease the proofs. A construction is

given next, performing correctly for [ > m; [ > 3, m > 2, the only meaningful range,
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Figure 6: Step 3 of the construction of SPUR; ;m, m > 2.

but proceeding in a slightly different way for m = 2. Indices on points and vertices of the
construction should be taken modulo l. A line going through points p and ¢ will be denoted
(»,q) and will have an orientation pg. A half-line starting at p and going through ¢ will be
denoted [p,q).

Construction:

m > 2:
1. Draw a cirzle of radius r centered at c.
2. Put [ points on it, equally spaced. From an arbitrary starting point, label them
Po,D1,- - -5 PI-1, in counterclockwise order.

Because pg,py,...,pi~1 areevenly distributed on the circle, SPUR; ,, Will be symmetrical
around ¢ and the construction of each spike will be identical.
3. If half-lines [pm-1,p0) and [p2,p1) intersect, call their point of intersection go and draw
the circle through it which is centered at ¢. Otherwise, draw a ciccle of radius 2r centered
at ¢ and call go the intersection of that circle with [pm—_1,po). (Figure 6 depicts the two
alternatives.)
4. For ¢ = 1,2,...,1 — 1, put point ¢; at the intersection of the newly drawn circle and
[P|+m—1 rpl)'
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Figure 7: A SPURg4 with its labelled vertices.

5. SPURm = [p0,90,11,q1,--.,Di-1,qt-1]). Figure 7 illustrates the case I = 6, m = 4.

m=2:

1. Draw a circle of radius r centered at ¢.

2. Put [ points on it, equally spaced. From an arbitrary starting point, label them
€0,C1y+++3Cl—1, i counterclockwise order.

3. Draw a circle of radius 2r centered at c.

4. For i = 0,1,...,l — 1, put point ¢; at the intersection of the newly drawn circle and
[c:+11c1)-

5. For ¢ =0,1,...,l -1, put point p; on [c,+1,¢,) just outside the inner circle (see figure 8).
Points p, are introduced to avoid having overlapping edges [c,, a.], [, Cs+1])-

6. SPUR; 3 = [p0,90,P1,q1,- -+ Pl-1,q1—1]. Figure 9 illustrates the case | = 4.

For the sake of uniformity, points p; in the construction for m > 2 will also he referred
to as ¢;. This way, p, will always refer to some vertex of SPUR;,, and ¢; to a powt on the
circle of radius r, regardless of the value of m.

It is now argued that the polygon resulting from the comstruction is simple. Define R,
to be the region delimited by [¢+1, qi41], [ciscivi], [e, @] and arce(q., gi+1), but excluding
the first segment (see figure 10) — Rg, Ry,..., Ri—1 are pairwise disjoint.
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Figure 8: Construction of SPUR; 2.
; 9%

a3
Figure 9: A SPUR,, with its labelled vertices.

m>2 m=2

Figure 10: Region R; for the proof of simplicity. (The light boundary edges are open.)
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Edges [pi, ¢;] and [g;, pi4+1] lie in R;. Hence none of the edges intersect (except at the
endpoints for consecutive edges) and SPUR,,, is simple.

4.4 Properties of SFUR;,

The next few results will serve to determine the size of smallest convex and star-shaped
covers for SPUR; ,,. Let W, be the wedge located in R,, i.e. the closed region bounded
by triangle [p,,pit+1,¢]. Call O the closed region bounded by polygon [po,p1,...,p1-1]-
Wo, Wi,..., Wi—1 and O represent a partition of SPUR;» (not in a strict sense since they
share boundaries, though). A region (i.e. set of points) will be considered visible from a

point p if every point of that region is visible from p. Hp(p,q) and Hg(p,q) will respectively
represent the left and right half-planes associated with line (p, q).

First, a simple geometric fact is stated without proof.

Fact 4.4.1 Consider a chord of a circle, splitting it into two arcs. If the arcs have equal

length then the center of the circle lies on the chord. Otherwise it lies on the side of the
chord corresponding to the longer arc.

Some properties of the family of polygons are given next.

Lemma 4.4.1 Let p€ O. Wedge W; is visible from p iff p lies in Hr(gi,p.) N HL(Gi, Pr41)-

PROOF

=: If W, is visible from p then in particular ¢, is. Since [g,,p] does not intersect the exterior
of SPUR|m, it must lie in between edges [g;,p;] and [, pi41]. Equivalently p must lie in
Hp(g:,p) N Hr(gi) Pis1)-

<: Consider a point ¢ € W,. Both p and ¢ are contaired in (O U W,) N (Hr(g:,p) N

Hr(gi,p+1)), 2 convex region included in the polygon and so [p,g] does not intersect the
exterior. Hence W, is visible from p. a

Lemma 4.4.2 Ifl < 2m — 2 then SPUR,, represents a star-shaped set.

PROOF Note that since I > 3, the case m = 2 may be discarded. SPUR;,, will be demon-

strated star-shaped by proving that it is visible from point ¢, the center of the construction.
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First, convex set O contains ¢ and so is visible from it. Remains to show that W
is visible from ¢, ¢ = 0,1,...,l — 1. Using lemma 4.4.1, it is equivalent to showing ¢ €
Hp(gi,p.)NHL(q:, Pry1)- Note that Hr(g,,p. )N HL(gs, Pi+1) 2 Hr(gi, 5:)NHL(gi, Pi+1)NO 2
Hp(eyy ei4m—-1) N Hr(cig1,642) N O, from the construction. Point ¢ is in O — it is sufficient
to show ¢ € Hp(ey, Citm=1) N HL(Cit1, Ci42)-

Consider directed chord [ci41,¢i+2]. Points ¢,43,...5¢-1,¢0,...,¢; are all on its left
and so, since points are equally spaced, the left arc is longer. Fact 4.4.1 says that ¢ €
Hr(Ciy1,C042)-

Consider next directed chord [¢;,€,4m—-1]. Points ¢,41,...,€i4m~2 are on its right and
Cipmye+e3Clo1,C0y - ++,C—1 ON its left. In all, m—2 points on the right arc and |- (m—2)-2 =
!l -m < m — 2 on the left arc. So either the arcs have equal length and c¢ lies on the chord
or the right arc is longer and c lies on that side, still using fact 4.4.1. In either case,
c € Hp(ey, Copm—1)-

Hence SPUR;x, is star-shaped. m]

Let @ = {go0,¢1,--.,q1-1}, the set of vertices of SPUR, ,,, which are at the apex of spikes.
Lemma 4.4.3 Ifl > 2m — 2 then none of the elements of Q are visible from c.

PROOF Consider directed chord [¢,, ¢,+m-1] as in lemma 4.4.2. This timel-m > m —2

and so the left arc is longer. Therefore ¢ € Hr(¢,,¢i+m—1) and [e, ¢;] intersects the exterior
of the polygon. ]

Lemma 4.4.4 Ifl > 2m —2 then a star-shaped set restricted to SPUR, ,, covers at most m
elements of Q.

PROOF By contradiction. Suppose there exists a point z such that the star-shaped set
X generated by z covers at least m + 1 elements from Q.

First will be established the existence, among those elements covered by X, of a distant
pair {q,, g, } such that g, appears between g; (;m_1) and ¢;_(m_1) in a counterclockwise traver-
sal of the boundary of the circle on which they lie, i.e. ¢, € {q4(m—1),Gi+m,.- oy Gim(m—1) }-

WJlo.g. say gm—2 € X. If one of {gam-3,q2m—25--.,41-1} is also contained in X then

a distant pair is present. Otherwise, X must contzin at least m of @; U Q2, where @, =

{90,901, .. y9m-3} » Q2 = {&m-1,9m, - . -, @2m—-1}, |Q1] = |@2| = m — 2. Certainly, {go, gm-1}
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j = i+(m-1) i+(m-1) < j < i~(m~1) j = i-(m-1)

Figure 11: How Hp(c, Ciym-1) and Hp(c), ¢;4m—1) can intersect.

form a distant pair and so do {g1,qm},.--s{gm-3,92m-4}. Now suppose s elements of Q,
are contained in X — at least m — s of @2 must then be part of X but no more than
m—2— s can be chosen without introducing a distant pair. Therefore X includes a distant

pair — call it {q,,q,}

Since ¢, and g, are both visible from z, it must liein Hr(g,,p, )NHr(q;,P;) = Hr(cisCiem-1)N

Hpg(c,,¢;4m—1), in particular. Because of the restrictions on j, those two half-planes do not
intersect inside the inner circle of the construction and can only intersect on the circle at
¢, or ¢, (see figure 11).

Point z cannot lie on ¢, or ¢, since each of them is included in exactly m of the right
half-planes associated with elements of ¢}, by construction. and so at most m would be
visible from it.

For z to lie outside the inner circle, it must be in W, or W, (for m = 2, a vertex p, is
very close to point ¢;) — w.l.0.g. say it is in W, (see figure 12). But because of edge [p,, q],

g, cannot possibly be visible from z. Hence such an z does not exist. o

Lemma 4.4.5 A convez set restricted to SPUR, ,, covers at most lT—nﬁT elements of Q.

PROOF 1t is sufficient to show that ¢,41,¢42,-..,84+i-m+1 are not visible from ¢,, i =
0,1,...,1 — 1, for then a convex set at best covers every (I - m + 2)** element of Q, i.e.

at most [-1—_-;';_—'_—2] Let [p, ¢)’ denote the half-line open at p and going away from g, so that
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Figure 12: A point z in the intersection of spike W; and the two half-planes cannot see g,
from behind [p;,q,].

[p,g9) U [p,q) = (p,q)- From the construction, vertex g, lies on [c,,¢;4m—1)" and is only
visible from points in Hp(c;,¢;4+m-1) . The strategy will be to argue that

[ciyce4m—1)’ does not lie in Hpr(€4j,Citj4m—-1) (*)

Vie{1,2,...,0—m+1}.

Three useful observations should be made:

(1) ¢i4+m-1 € HR(Cyt,, Cipy4m-1)s Vi€ {1,2,...,m —1}.

(2) ey & HR(Cotps Cs34m-1), V7 € {1,2....,0=m}.

(3) (*) does not need to be shown for 7 > [-;—_l {Once proven that g;+1,q+2,--- 1G] 3TE
not visible from g,, it is immediate that g; +ld1+1 isn’t either by applying the result with
substitution i — i+ |$] + 1, and so forth.)

m >[4 +1:

Sincel—m+1 <I=-([81+1)+1= 1% <[4 € m-1, (1) gives ciym-1 €
HRp(citjr &ty4m-1) Vi € {1,2,...,]—m +1}. Combination with (2) immediately gives (*)
Vi € {1,2,...,1 =m}. For j =1 —m+ 1, the corresponding Hr(¢i+i—m+1,¢:i) has ¢; on its
defining line and () holds.

m < [1]:

I-m+12>1-[f]+1=[4] + 150 using (8) only j € {1,2,...,| %]} will be considered.

Since [_%j <1~ m,from (2) ¢, ¢ Hp(Citj)Ctj+m-1), Vi € {1,2,..., L-.i;] }. To obtain (), it
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suffices to show that (¢4, ciyj4m—1) does not intersect [¢,,€iqm~1)’. Because j < [-;—J and
m < [%'] , lines (€i4j,Ci4y4m—1) and (¢i,Ciym—1) are found either parallel or intersecting on
[eiy Citm=1). Hence (¥). w

Lemma 4.4.8 Vi =0,1,...,1-1, the star-shaped set generated by p,ym—1 covers Wi, Wir1,...,Wipm 1
and O.

PROOF 1t will equivalently be shown that each of those regions is visible from p,4m—1.
Convex set O contains p;m—1 soit is visible from the latter. Observe next that p,, py41,..+,P;4m-1
lie in Hp(q;,p;) N Hi(q5,p;+1)- It follows that piyn_1 lies in Hp(q,,p,) 0 HL(g,,P541), for
j=1i,i+1,...,i+m~-1. According tolemma 4.4.1, W, , W 41, ..., W,y n1 are visible from
Pi+m—1- a

For convenience, let last = ([-‘-;;l'ﬁj - -m+2).

Define C, as [pi, ¢, Pit1s Prtl=m+2, Git-l-m+21 Pitl=m+3s Pit2(l-m+2)s G42(—m+2)» Prt2(l-m+2)+1»
cee ’p:+last’qz+1ast’Pi+1a.st+1]u[ps+last+1’ ¢, p,), the union of two sets described by polygons.
If point c lies in the first one then C, amounts to that set, otherwise it can be described
by the first polygon with vertex ¢ added between existing vertices p, 1,5;., and p,. The
essential feature of C, is that it includes every (I — m + 2)** wedge of the polygon, starting
with W,.

Lemma 4.4.7T C, is a convez set.

PROOF 1t will equivalently be shown that for every three consecutive (in counterclockwise
order) vertices p,p’,p" of C,, p" € Hr(p,p'). Because of the symmetry of the construction,
there are only a few cases to consider.

P15, D41t it follows from W, = [p,,p,+1,4,] being part of SPUR) .

g;»P;+1,Ppy: by construction, V5’ € {0,1,...,1 =1}, py € Hr(q;,Ps41)-

Pi+1s Prtl-m+2s Qytl-m2: JH1I = (F+l-m+2)+(m~1) 50 ¢;41-m+2 lies on [py41, Py41-m+2),
by construction.

If ¢ € first set:

Poilasts1oPu@: b construction, py, pis1, ... s Pitm—1 € HR(4:, 7). Sincelast+1 = (l75im) -

1)(1 -m+ 2) +1<m-1, P ilast+1 € HR(Q'npi), ie. g € HL(p.+last+1vpi)'
Otherwise:
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P; last41> & it follows from ¢ not being part of the first set.
9;tlasts Puslast+1 € @0d €, Py, @i as seen inlemma 4.4.2 SPUR m is star-shaped from c, which

implies that ¢ € Hz(q;, 1astr P, last+1) 20d ¢ € Hi(c,pi)-
Hence C, is convex. 0

With these lemmas in hand, it is possible to characterize smallest covers for SPUR; .

k ifl<2m-2

Th 4.4.8 GL(SPUR,;m) =
eorem k( Lm) { r%] otherwise

PROOF
| < 2m—2: From lemma 4.4.2, G{(SPUR,,,) = 1 so naive covering yields G},(SPUR|») < k,
which is obviously tight.
Il > 2m — 2: Recall @ = {q0,91,..-,%—1}- Each of the ! vertices in Q needs to be covered
at least k times to achieve a star-shaped k- fold cover of SPUR;,, but from lemma 4.4.4 no
more than m of Q can appear in a star-shaped set. Therefore G}(SPUR;,) > [£].

An upper bound of [¥] will be obtained for G{(SPUR; ) by exhibiting an algorithm
that produces a star-shaped k-fold cover of that size. Because of the previous lower bound,

it is in fact a smallest cover.

Algorithm:
ei:=m-1;
o S=10;
o for j =1 to [£] do begin

~— add the star-shaped set generated by p; to S;
- t:=(1+m) mod I;

e end

Family S obviously has size [£] so it remains to prove it forms a k-fold cover. The
result of lemma 4.4.6 will guarantee this.

Region O is covered by every set and sois | ";’] -guarded, which is more than sufficient
([ > & > k since { > m).
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The first set put in S covers Wy, W1,...,Wh-1. Each new set added covers the next m
wedges in counterclockwise order (“¢ := (¢ + m) mod I;”). Therefore, the number of times
each of Wy, W1,..., W, is covered corresponds to the number of cycles around SPUR;,,
the algorithm goes through. Each of the [X] sets covers m of a cycle of length I:

M
m
k

~—
.

R

m
]

Hence the algorithm achieves a k-fold cover. O

[—8—] ifil<2m -3
li=mssld

Theorem 4.4.9 G5(SPURm) = Kl ifom —3<1<2m-2
k(l1+1) otherwise

PROOF Lower bounds are first established. The argument about covering the vertices in

Q is the same as in theorem 4.4.8 and this time uses lemma 4.4.5. Hence G§{(SPUR|n) >
Kl
bz d

In particular, if { > 2m — 3 then 7—=— < 2 and so G§(SPUR, ) > kl. If in addition
{ > 2m — 2 then according to lemma 4.4.3 a convex set covering a vertex in @ cannot cover
point ¢ as well. Therefore separate sets are needed for ¢ and G{(SPUR;;m) > k(I + 1).

Upper bounds matching the lower bounds will again be obtained through covering al-
gorithms. For I > 2m — 2. naive covering on {Wp, Wi.... ., W;_;.0} will do nicely. For
2m -3 < I < 2m - 2, naive covering on {[¢,p:, ¢, p:4+1] ¢ & € {0,1,...,1 ~1}} forms a
convex k-fold cover: each [c,p:, g, p.+1] includes W, and {c, p,, pi41] of O and so the family

of sets covers the polygon — each set is the union of two triangles sharing edge [pi,pi41]
and line segment [c, ¢,] lies inside the set since for I < 2m — 2 SPUR, , is star-shaped from
c as seen in lemma 4.4.2, so each set is convex.

For I < 2m~3, the convex sets C, of lemma 4.4.7 will be used in an algorithm essentially

identical to the one appearing in the proof of theorem 4.4.8.

Algorithm:
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e S=0;

oforj-lto[ J] do begin

-m+2
- §:=8U{C:};
~ i:=(i+1) modl;

e end

Family S has size [ J] and is claimed to form a convex k-fold cover for SPUR; .

l—m+2
Note that for every vertex g, of C,, region [¢,p,,q,,p,+1] is covered by C, since the four

vertices lie in the convex set. Since C, covers |7 +2_| such regions, one cycle of ! iterations

for counter i in the algorithm will construct a family § covering each region [l—_m’—_ﬁ_l times.

To form a k-fold cover the algorithm must go through I'L J] iterations, as specified. O
{l=m+2

4.5 Prime Minimum Size Covers

With these two theorems in hand, it is now possible to determine the cardinality of minimum
size convex and star-shaped k-fold covers for SPUR, ,,, without having to look at its geometry.
It should be kept in mind though that there is a geometric construct obeying the formulas.
All this will now be used to show that some polygons do not have a smallest k-fold cover

which admits a perfect factorization.

Theorem 4.5.1 Yk > 2, there ezists a polygon for which no smallest star-shaped k-fold

cover admits a perfect factorization.

PROOF Consider SPURjk_1,x. A smallest star-shaped k-fold cover for it will have size
2k -1, from theorem 4.4.8:

rk-(2l}: - 1),

2k-1

Gi(SPURgk-1 k)

If a perfect factoriza.tion of such a cover exists, it can be expressed as a combination of

thinner covers satisfying ,_1 a, -t = k, where q, stands for the number of times a i-fold

et o L R e At S A
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Figure 13: SPUR; 3

cover appears in the combination. Still according to theorem 4.4.8, such a combination will
add up to a family of size at least 2k:

k-1 k-1
24 Gl(SPURy-14) = 3 an [———]

=1 1=

k-1 i
= > e f2i-3

=1

k-1
= Za,-?i

=1

k=1
= 2. Z a, -t
=1 \
= 2k
Hence every smallest star-shaped k-fold cover for SPURj,_y « is prime. C

For k = 2, SPUR3 > is the polygon of figure 5 whose smallest star-shaped 2-fold cover
was already known to be prime. Figure 13 shows SPURs 3, for k = 3.

Theorem 4.5.2 Yk > 2, there exists a polygon for which no smallest convez k-fold cover

admits a perfect factorization.

PROOF  Consider SPUR2s41,2k+1- A smallest convex k-fold cover for it will have size
2k + 1, from theorem 4.4.9:
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= 2k41

%(SPUR2k41,2k+1)

Again, if a perfect factorization of such a cover exists, it can be expressed as a com-
bination of thinner covers satisfying Zf‘__fll a, -1 = k, where @, stands for the number of
times a i-fold cover appears in the combination. Still according to theorem 4.4.9, such a

combination will add up to a family of size at least 2k + 2:

1 k-1 :
(2k+1
Y4 Gi(SPURs1,2641) = D ;- [ ( k+ )]
= 1=1
k-1 i
= Y a-[2i+ 7]
k-1
= Z a, - (20 +1)
i=1
k=1 k-1

= 2-Za,-i+2a;

1=1 =1

k-1
= 2k+ Z a,
=1

2 2k+2

e—x=-1

=i %2 2f{orotherwiseq, <1, a,=0iFj. forsome jandso Y (o) a, i <<k}

Hence every smailest convex k-fold cover for SPURak—1.2k+1 IS prime. C

Figure 14 shows SPL'Rs5 5, for k = 2.

The last two theorems provide an answer to the question asked at the beginning of the
chapter about achieving a minimum size k-fold cover by combining thinner covers. Even if
minimum size 1- through (k — 1)-fold covers are given, for some polygons a minimum size
k-fold cover cannot be obtained simply by looking at all combinations of those. Finding a
smallest convex or star-shaped 4-fold cover for a simple polygon thus is far from reducing
to finding smallest thinner covers, no matter how large k is.

Not only is it not always possible to form a smallest k-fold cover by combining thinner

ones, but sometimes it produces a lot more sets than needed. In fact for any constant A,
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Figure 14: SPURs 5
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Figure 15: The polygon built from 4 SPURs 3.

a polygon can be constructed for which such a strategy will use at least A more sets than
the optimal solution.

The idea behind the construction is to use SPURok—1.; and SFURjgr1ak.1 as building
blocks. Knowing -hat a smalilest k-foid cover for these polygons saves at least one ser over a
combination of thinner ones. they are hooked tozether in such a manrer that the best way
to cover the resuiting palygon is still to cover each componext locaily in the best way.

For convex covers the construction is simple. The A SPURo44+1,25+1 are hooked together
in a string, as if they were holding hands. Star-shaped covers require a bit more sophisti-
cation. The A SPURyj .1 4 are arranged in a circular fashion around a central hull to which
is added a strategically placed spike. Figure 15 gives an example. Because of the very
narrow connection between each SPURy;_; and the central hull. no star-shaped set can
significantly cover part of more than one SPUR2x—1 . The spike discourages attempts to
introduce sets covering the central hull (including the spike) as well as a significant part of
some SPURyk—1 k-
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Conclusion

This has been an investigation of the extreme cases of factorizations of covers. Through
the duality with hypergraph 2-colorability, it has been possible to determine f(2) — the
smailest k such that every instance of a k-fold cover can be factorized into two simple covers
— for unconstrained covers and some special cases. For point-line covers. a non-trivial lower
bound was obtained but even with a promising result using Ramsey theory the question
of determining f(2) exactly reumains open. The computation of mirimum size convex and
star-shaped covers for polygons has been shown not to reduce to combining m:nimum size
thinner covers by introducing the family of polygons SPUR; ,, which provides polvgons with
prime minimum size k-fold covers for every k.

There is still room for a fair amount of work to be done in the area. A few directions

for future research wiil be outlined. The first one is the open problem: mentioned above:

Open Problem 5.0.3 Find the smallest integer k such that every famaly of strawgnt lines
forming a k-foid cover for some set of points in the plane can be factorized intc two covers

for that set of points.

The problem can also be generalized to higher dimensions. where points in E¢ are
covered by hyperplanes. For d > 2, the condition |S; N S, < 1 no longer holds for reduced
covers though.

Most of the resuits are on f(r), r = 2 — considering » > 2 might not be so difficult,
particularly for special cases such as the ones that led to theorems 2.2.2 and 3.3.1. The

work on r-colorability of hypergraphs can no longer be used, though, since as it has been
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pointed out befcre the notion of a valid coloring in the dual problem does not correspond
to the usual one for hypergraphs except when r = 2.

It is still not clear that knowledge of minimum size thinner covers for a polygon cannot
help in devising a polynomial time algoiithm computing its minimum size k-fold cover.
Blindly combining thinner covers has been shown to get nowhere but the structure of those
covers might contain information easing the construction of a k-fold cover.

It would be interesting to know whether restricting the polygon to some subclass or
considering covering sets with some property other than convex or star-shaped can lead to
minimum size k-fold covers for which there always exists a perfect factorization.

At the end of chapter 4, two subfamilies of SPUR; m — SPUR2k—1 % and SPURgk41 2541
— were introduced because they had prime minimum size star-shaped and convex k-fold
covers, respectively. The first one contains polygons with 4% — 2 vertices — the other,
polygons with 4k + 2 vertices. They are believed to be the smallest polygons with prime

minimum size covers.

Conjecture 5.0.4 4k — 2 vertices are necessary and sufficient to construct a polygon for

which every minimum size star-shapec k-fold cover is prime.

Conjecture 5.0.5 4k + 2 vertices are necessary and sufficient to construct a polygon for

which every minimum size conver k-fold cover is prirne.

Finally. the algorithmic side of these probiems has beea barely touched. It is hoped that
this preliminary study of the extremal properties of covers will have shed some light on how
to design efficient aigorithms to factorize covers. though extremal problems by themselves

are fascinating.
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