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Abstract

This thesis deals with dynamie control of multi class single server queues,
In a broad class of such systems, fixed-priority rules, although static, have been
shown to be optimal among dynamic schedules. This result however rests on the
independence hetween the order of service and the pattern of arrivals, an assump-
tion which is violated when flow control is evercised. We seck to characterize the
optimal scheduling in the presence of flow contiol, when both scheduling and How
coutrol are optimized jointly.

The problem is formulated in a Markovian environment. The cost/benefit
structure is such as to penalize delay and reward throughput. It is first shown
that the pervasive pe-rule is not optimal in general, even when flow contiol is
jointly optimal. Restricting the setup to class independent user fees and waiting
cost-rates, the problem amounts to characterizing the combination of preemptive
scheduling and flow control optimizing the tradeofl between delay and throughput
in multi-class single server queues. In the special case of two quenes, one being,
saturated, we establish the joint optimality of SEJE (Shottest Fxpected Job Fust)
scheduling and thieshold type flow control. We conjecture that SEJI° remains op-
timal in the presence of multiple independent Poisson arrival processes, provided
that the flow control is simultaneously optimal. The conjecture 1s supported by
an extensive computational investigation which reveals as well that the jointly
optimal monotonic flow control is characterized by switching curves that are very
nearly linear. IFrom this observation we derive an approximate performance anal-
ysis based on a steady-state assumption; the approximation is shown to be very
robust and capable of remarkable accuracy. The sensitivity of the petformance to
the scheduling rule is quantified. The class of window flow controls is observed to
be only slightly suboptimal.

The conjectured optimality of SEJF is not proved yet. We show that well
cstablished methods either fail completely in the present sctting or present un-
expected difficulties in their application. Experiments with more general models
suggest that the optimality of SEJF is insensitive to the exponential assumption
for arrival processes, provided that the flow control is jointly optimal. It is also
observed that the optimality of SEJF persists at the sink node of a tandem net-
work of two queues with scheduling and flow control at both nodes; again, this
optimality of SIZJF depends on simultaneously optimal monotonic flow contiol at
cach node.

-1 -




Sommaire

Cette these traite du controle dynamique dans les files d’attente a serveur
unique et a population hétérogene. L'ordonnancement des taches selon des prio-
rités fixes est optimal pour une classe générale de systemes de files d'attente.
Cependant la validité de ce résultat dépend de 'indépendance entre le processus
de service et le processus des arrivées; il est clair que cette condition n’est pas
satisfaite lorsque le processus des arrivées est soumis a un controle. Nous nous
proposons de déterminer la structure de 'ordonnancement optimal en présence
d’un cont1ole dynamique des admissions, lui-méme sujet a optimisation.

Le probleme est formulé dans un contexte markovien. Une structure économi-
que est itroduite pour traduire la pénalité attribuée a un long délai et le bénéfice
correspondant a un débit élevé, A l'aide d’exemples, nous montrons que la regle
gre n'est pas optimale de fagon générale, méme si le controle des admissions est
simultanément optimal. Dans le contexte restreint ou les frais d'admission et les
couts d’attente dans la file ne dépendent pas de la classe des taches, 'objectif est
de déterminer I'ordonnancement préemptif et le contréle des admissions dont la
combinaison produit le compromis optimal entre délai et débit.

Le cas spécial de deux files d’attente, 'une étant saturée, est considéré en
premier lieu. Il est établi que P'ordonnancement des taches dans Pordre des temps
moyens de service (SEJIY) est optimal lorsque jumelé a un controle des admissions
de type seuil conjointement optimeal. Une analyse numérique d’un large échantillon
de parametres supporte la conjecture que la regle SEJF demeure optimale dans
le cas de deux processus d’arrivées de type Poisson indépendants et controle des
admissions conjointement optimal. De plus, cette analyse 1évele que la fiontiere
entre le domaine optimal d’admission et le domaine optimal de rejet est presque
lindaire. C'es observations sont mises a profit dans la conception d’une procédure
approximative pour le calcul du compromis optimal entre délai et débit. Cette
approximation s’avere tres robuste et possede un erreur relative infime.

La preuve de Poptimalité de la regle SEJF, jumelée 4 un contréle des admis-
sions de type seuil, est jonchée de difficultés. On montre comment le probléne sort
du champ d'application de certaines méthodes; d’autres technignes, bien qu’appli-
cables en théorie, présentent des difficultés analytiques qui sont discutées. Enfin,
on considere quelques généralisations du modele qui indiquent que le contexte
dans lequel la regle SEJF est optimale peut étre considérablement élargi.
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Chapter 1 Introduction

New communication networks like ISDN, broadband ISDN, and high speed
Local Arca Networks are designed to provide a flexible environment for the in-
tegration of a multitude of services. While advances in fiber optics and VLSI
increase transmission and switching capabilities, efficient resource management. is
necessary to ensure that the multiple and heterogencous demands placed on these
networks are satisfied within their respective grades of service. T'o achieve this,
network activity must be controlled to avoid, or at least to diminish, congestion

that would result in reduced performance.

Congestion control has always heen an important part, of the design and anal-
ysis of teleccommunication networks in general, and of computer communication
networks in particular. The evolution towards packet speech and video ([78]) and
the promise of broadband ISDN based on the new ATM technique ([4], [5]) have
created new problems of traffic management and fueled rescarch in this arca. On

the other hand, congestion control has a role in the design and operation not,

-1-




o

only of telecommunication networks, but of many other systems as well, such as

industrial production lines.

Stochastic queucing models are widely used to study the performance of these
systems.  Variations of job interarrival and service times can create congestion,
manifested by long delays and reduced throughput, in an uncontrolled system.
Ways to temper congestion in networks include routing, which involves the selec-
tion of the hest paths for jobs already accepted into the network, flow control,
which determines the amount of traific accepted into the network, and scheduling,
which reallocates network delay among the job classes by specifying the order of

transmisston,

1.1 Scope and purpose

A particular control is said to be dynamic if it responds to actual network
operating conditions, and sfalic otherwise. The implementation of a dynamic
control requires some form of state feedback; the implementation of a static control
does not.  Dynamic controls are of interest partly because they repr:sent the
very best that can be done when information is abundant and free, and partly
because they ate occasionally relatively insensitive to lack of precision in the
prescription of network operating parameters. On the debit side, dynamic controls

are notoriously difficult to optimize and frequently costly to implement.

Irequently, however, it caa be shown a priori that the search for an optimal
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dynamic control can be restricted to the members of some parametric family,
The so-called “bang-bang” controls are one such family. So too are threshold
or switch-curve policies. In showing that the scarch can indeed be so restricted,
one is said to have “characterized” the optimal control. Su -h characterizations
are considered interesting first, because they tend to confirm that the optimal
control behaves qualitatively as one might have expected, and second, becanse of
the possibility that the particular form of the optimal control can be exploited to

reduce the computational complexity of the optimization.

The characterization of optimal policies for flow control, routing or scheduling
has generated a substantial recent literature; see [69] for a comprehensive survey
With few exceptions, the three problems are considered separately; the models
dealt with are typically simpler than Jackson networks, and feature only one of
the three types of control. The work reported here continues the focus on simple
models, but with the difference that flow control and scheduling ate optimized
together. Its goal is to characterize the jointly optimal policies and to suggest,
simple guidelines for designing near-optimal ones. 'The models consideced have
in common that there are rewards to the system for accepting new tasks, and
penalties proportional to response time for each task admitted. An optunal flow
control/schedule maximizes the system’s rate of return. The following summarizes

the results:

o The so-called pc-rule, by which a task is ranked for service according to

-9.



the product of its service- completion rate g and waiting cost rate ¢, is known to

he optimal in the class of dynamic and static schedules for a variety of lossless

single server queues ([1], [11], [51]). It is known to be (strictly) sub—optimal where
there are finite, separate buffers for cach job class ([75]). Such buffering itself is a
sih optimal form of flow control. We show by example that the gc-rule remains

sub optimal when flow control and schedule are optimized together.

o When rewards and waiting cost rates are independent of job class, the control
problem amounts to the optimization of the tradeoff between delay and through-
put in multi class, single-server queues. The pe-rule in this case specializes to
what we call the g rule, or SEJF (Shortest Expected Job First); priority goes to
the task in queue with the largest service—completion rate. We show by example
that the g vule is sub- optimal in this setting when flow control takes the form of
finitary bullering of the individual classes. This time, however, the p-rule seems
to recover its optimality when the flow control is optimized as well. We offer a
proof of this fact in the case that theie are twe job classes, one Poisson (mean-
ing that the corresponding arrival instants form a Poisson point process) and the
other saturated, in the sense that there are always tasks from that class available
for service. Extensive computational work suggests that the result is valid more
generally, when there are multiple Poisson flows, but we have not succeeded in
finding a proof; we describe some of the approaches tried, and where they seem

to fail.
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¢ The form of the optimizing flow control is investigated assuming multiple
independent Poisson flows. The numerical work suggests that the optimal policy
is characterized by a family of switch-curves, one for each job class. Morcover,
it reveals that the boundaries hetween the acceptance and rejection regions (for
each class of jobs) in the multi- dimensional state space are very nearly linear.
This suggests a steady-state approximation which greatly simplifies the compu-
tation of the optimal flow control and of the corresponding petformance. This

approximation is shown to be very robust and capable of remarkable accuracy.

e Windew flow controls are attractive because they are casy to apply. Assum-
ing SEJI service, the class of window flow controls is observed to be only slightly
suboptimal: any point on the overall optimal delay/throughput tradeoff curve ¢an
be achieved very closely by an appropriate window flow control. This observation

illuminates the relative value of state feedback in the control of quencing systems.

1.2 Background

We review here the main results concerning dynamic scheduling and dynamic
flow control, as well as the few recent contributions where both scheduling and

flow control are studied jointly.

1.2.1 Scheduiing

The pure scheduling problem in multi-class, single-server queues consists in
specifying the order of service so as to optimize some economic objective func-

-5-




tion. This function depends on class-dependent waiting cost-rates and service-

completion rewards; the goal is to minimize either long-run average costs or

infinite horizon expected discounted costs.

The static problem was solved in [17], where it was established that the priority
assignm *nt minimizing long-run average costs in M/G/1 queues is the so-called
jre-1ule. The pe-rule assigns priorities in decreasing order of the product of class
parameters p (inverse mean service time) and ¢ (per-second cost of delay). This
result was obtained in [17] by an interchange argument, a technique that has since

been applied in much more general settings [79).

The most general results for dynamic scheduling come from the theory of ban-
dit processes. The fundamental result establishes the optimality of Gittins indez
policies [21], [83], [81]. When the arrival process of each class is Poisson, the dy-
namic scheduling problem in multi-class, single-server queues, can be formulated
as an arm acquiring bandit. [25}, [79]. In the context of multi-class queues, an
index policy is characterized by an algorithm which assigns to each arrival a single
real index depending on its class and on the arrival, cost and service rates in the
system; priority goes to the task in queue whose index is largest. The key point is
that although index policies ave static, they are nonetheless optimal in the class
of dynamic schedules in a variety of important models ([10), [32], [33], [40], [74],
[79]). In some models, the optimal scheduling is more complex but heuristic index
rules are ounly slightly suboptimal [52] [60].

-6-
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The pre-rule is a particular instance of an index policy. The ge rule mininmzes
the expected discounted cost over an infinite horizon in M/G'/1 queues without
preemption ([51]). and in G/M/1 queunes with preemption ([1]. [11]), as well as
at. the second node of a tandem network of two multi-class (/M /1 queues with

preemptive serviee ([53)[51]).

The optimality of fixed-priority rules among dynamic schedules in muiti class
M/G]1 quenes had been established in [28], [39], and [76] by arguments from the

theory of semi-Markov Decision Processes.

The optimal dynamic scheduling problem with an average waiting time con-
straint for some classes of jobs is studied in [55], [62], [63]. The general result
in this context is the optimality of randomized fixed-priotity 1ules. See also [15],
[21], and [58]. When messages have individual constraints on their waiting time,
that is, in systems with impatient customers, the EDF -rule (Earliest Deadline

First) optiniizes a variety of objective functions [3], [13], and [57]. See also [86].

There is very little work on the scheduling problem in networks of queues.
Bounds were obtained in [60] for the minimum long-run average cost in a network
version of Klimov's model. A reformulation of the cost function was used to devise

a heuristic index rule whose performance is evaluated by the bounds.

The so- called Brownian nctwork ([29], [30], [31]) is a heavy traffic approxi-

-7-




mation to a multi class queueing network with dynamic scheduling. The model
was applied in [31] to a two station closed network in heavy traffic; the objective
is to schedule the two servers to maximize the long-run average throughput of
the network. ‘The heavy -traffic solution is used to devise a good sequencing under

less loaded conditions; this scheduling is a static priority rule at each node.

1.2.2 Flow control

The main theoretical results on dynamic flow control concern the optimality
of switch curve policies. A switch-curve policy is characterized by a surface in
state space; a new task is adinitted if and only if the state at the time of arrival
lies below the surface ({14]. [23]). Window policies, which are used in practice, are
the simplest examples ([12], [88]). These results establish the monotonicity of the
sutface defiming the boundary between the acceptance and rejection regions; this
confirms the intuition that, if it is optimal to accept an arriving task in a given
state, then it should be optimal also to accept this task if one (or more than one)

task is removed from the system.

In general, the cost/benefit structure involves waiting cost-rates for jobs al-
ready in the system and 1ewards for cach admitted task. This structure reflects
the fact that delay is bad and that throughput is good. The objective — to max-
imize either the expected discounted benefit over finite or infinite horizons, or the

long run average benefit - amounts to characterizing the tradeoff between delay

and throughput.
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For an M/AM/1 queue, the admission policy maximizing long- run average
benefits, within the class of threshold policies, was obtained in [56]. A threshold
type policy admits a job only if the number already in queue is smaller than
the threshold. Extensions to GI/M/1 and GI/M/c queues are found in [89] and
[90] where the restriction to threshold policies was shown to be without loss of

optimality.

The Inductive Approach has been applied to a variety of Semi Markov De-
cision Process formulations of the flow control problem, [23], [17], [18], and [71].
'The monotonicity property of finite-horizon optimal flow controls carries over to
infinite- horizon and long-run average problems by general results of the theory

of semi-Markov Decision Processes [15], [46].

There are cases where it is difficult to derive monotonicity from the dynamic
programming optimality equation and induction, [61]. The Lincar Programming
Approach introduced in [61], and later generalized in [80] is an alternative tech-
nique applicd with success to a wide variety of models in [80]. See also [14], [41],

and [19].

The dynamic flow control problem is formulated in [42] as a constrained op-
timization problem. The objective is to maximize the expected throughput of
an M/AM/1 queue in equilibrium, subject to a bound on the average delay and
a bound on the maximum admissible offered-load. This is closely related to the

- 9.




maximization of the long 1un average net benefit. The optimal delay/throughput
tradeoff is achieved by a tandomized window flow control; randomization is neces-
sary at the window houndary to achieve the delay constraint exactly. The analysis
generalizes to A/ M /n queues and to networks of queues ({43], [44], [59], [88]). Dy-

namic flow control for delay -constrained multipacket messages is also studied in

[37].

1.2.3 Scheduling and flow control

The joint optimization of scheduling and input /output rate control in a multi-
class. single server queue, with linear holding costs is considered in [12] and [87].
The pie rule is shown to minimize the expected discounted cost over an infinite
horizon when the input and output rates are bounded below (throughput require-
ment) and above (capacity requirement) respectively. Since there is no reward for
serving a task, it is not surprising that discounted costs are minimized by setting
the input rates equal to their lower bound. In our setting, the flow control must
decide whether to accept or 1eject jobs upon arrival; this decision is based on the
reward hrought te the system by the admission of the arriving job, compared to

the acerued waiting cost resulting from this admission.

We have seen above that the ge-rule is broadly optimal in multi-class single-
server queues, provided that the input process to the queue is unaffected by the
order of service. In the presence of flow control, the powerful results from the
theory of baudit processes are not directly applicable. It is shown in [75] that the

- 10 -




pie rule is not generally optimal in multi-class AI/A /1 queues with finite separate
buffers for cach class (a form of flow control). However, the flow control in [7H] is
not optimal. We show here that the ge-rule is not generally optimal even when

both scheduling and flow control are optimized together.

Scheduling and flow contiol are optimized together in [82], where the Brownian
network approximation is applied to the dynamic scheduling of a multi class two
station network with controllable inputs. ‘T'his model incorporates hoth inpat and
sequencing decisions. The sequencing decisions specify, at any time, which class
of jobs to process at each station of the network. There is an endless Tine of jobs
waiting to gain entiy into the network. The proportion of jobs of cach typein the
waiting line is pre-specified and determines the order in which jobs are admitted
into the network. The role of input control is to determine the timing of release
of the job at the head of the waiting line; the input control 1s not allowed to
select the class of customer to admit next. Thus the setup in [82] differs from the
classical dynamic flow control problem in network of queues, where the dedision
option is whether to accept or reject jobs at arrival epochs. Both types of flow

control are considered in this thesis.

1.3 Thesis overview

In Chapter 2, we propose a multi-class, single-server quene as a simple model
of a systemi with combined flow control and scheduling. The rationale for om
choice of model is discussed. A cost/benefit economic structure s defined to

-1 -



capture the tradeoff between delay and throughput. We derive the dynamic pro-
gramming optimality equation which characterizes the flow control and preemptive
service policy whiclhi together minimize the long -run average net cost. We show by
example that the ge rule is not generally optimal in the presence of flow control,
even if scheduling and flow control ate optimized together. We show further that
the yo rule (SEJF rule), to which the pe-rule reduces when the waiting—cost rate
¢ is independent of job class, is strictly suboptimal when flow control takes the

form of separate buffering for each class.

In Chapter 3, we consider the special case in which there are only two queues,
of which one is saturated. When waiting cost-ra.es and user fees are class-
independent, we show that the optimal policy combines SEJF scheduling with
a threshold type flow control; in particular, that the g-rule recovers its optimal-

ity provided that the flow control is simultaneously optimal.

The more general case of two independent Poisson arrival processes is consid-
ered in Chapter 1. An extensive computational investigation suggests that SEJF
remains optimal when coupled to simultaneously optimal monotonic flow controls.
It also reveals that the optimal admission policies have a simple form. Assuming
SEJI service, we show that restricting the optimization to the class of threshold-

type policies or to the class of window policies is only slightly suboptimal.

Fxploiting the simple form of the jointly optimal flow control, a steady—state

. 12.-
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approximation is derived in Chapter 5 for multi- class queues under SEJF schedul-
ing and monotonic flow control. The approximation greatly simplifies the com-
putation of the best threshold-type flow control. The robustness and accuracy of
this approximation are evaluated by comparing performance with truly optimal

flow controls.

lixtensions to more than two job classes are considered in Chapter 6. 'T'he
application of a variety of techniques to prove the optimality of SEJF when com-
bined with jointly optimal flow controls is investigated in Chapter 7. Some of these
techniques are shown to fail in our setting, the unexpected difficulties encountered

in the application of others methods are discussed.

Chapter 8 considers few generalizations of our basic model. SEJF appears
to remain optimal when the arrival processes are Markov-Modulated Poisson
Processes (MNPP), rather than simply Poisson. SEJI also seems to be optimal
at the sccond node of a network of two multi class M/M/1 queues in tandem,
In both cases, the corresponding optimal flow controls are monotonic, but with o

more complex form than in the case of a simple M/M/1 system,
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A multi—class

single—server queue
Chapter 2 with dynamic

flow control

and scheduling

‘The problem of simultaneously optimizing flow control and scheduling is for-
mulated for a single-server queue. The dynamic programming optimality equation
characterizing the optimal policy is obtained and used to establish that the pc-
rule is not optimal in general in the presence of flow control even if scheduling

and flow control are optimized together.

2.1 The model

Our study of the joint dynamic control of admissions and service order in
queucs is based on Dynamic Programming. We chose a simple Markovian setting
featuring a single server, m jol, classes, vhere m is an integer bigger than one, and
potentially unlimited buffering. The arrival processes (one for each job class) are
independent and Poisson; service times within each class are iid and exponentially

- 14 -
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distributed. Performance is measured by the volume of carried traflic in each class
and by the class-dependent mean delays. The goal of the system designer is to
achieve a favorable tradeoll among these variables by appropriately selecting the
admission controller, which discards jobs on the basis of class and of network
congestion, and the scheduler, which decides to which class the server should be
assigned. We assume that service is preemptible, so that the scheduler revises its
decisions continually, and that service of a preempted job resumes at the point of
interruption. We assume also that remaining service times are unknown to the
systenmi; the information available to the controllers is the record of arrivals and
departures (by class) to the present time, and thus, in particular, the number of

jobs of each class in the system.

The multi-dimensional performance measure is reduced to a single scalar index
in the usual way, by supposing that the system is rewarded for each job processed
and penalized for the delay incurred. The efficacy of a particular compromise
between throughputs and delays is measured by the corresponding net cost rate
(the negative of the net income rate) — the difference between the average rate
at which money leaves in the form of compensation to jobs which wait, and the
average rate at which rewards accrue due to the entry of new jobs. We are
interested exclusively in steady-state behaviour; the averages referred to are with
respect to the stationary probabilities induced by the choice of control. These

stationary probablities exist in all but degencrate instances of our problem.

-15 -




Fach job class is thus characterized by its mean arrival rate (prior to control),
its service completion rate (the inverse mean service time), the reward to the
system for cach job processed and the penalty for delay. We assume, regarding
the latter, that the penalty is linear in delay. The parameters for class 7 are A; (the
arrival rate), i (the service completion rate), r; (the reward per job processed)
and ¢, (the penalty per job per second of delay). The effect of the choice of a
pariicular control 7 (a combination of an admission controller and a scheduler) is
expressed through the mean throughputs %;(7), the mean occupancies T;(r) and
the mean delays D;(n) associated in steady state with the job classes indexed by
i. These are well-defined and finite whenever the ¢; are strictly positive, which is
the situation of interest. They are related by Little’s Theorem applied separately
to cach class:

zi(7) = 7i(x) Di(r); (2.1)
implicit in this is the convention, on which we comment below, that the delay
incurred by a job in its sojourn through the system includes service as well as
waiting time, and that the occupancy of class i includes the job (if any) in service

as well as the jobs in queue.

The performance of the control 7, relative to the reward/cost structure defined
by the rj, ¢, is given by

o(m) & Y eFi(x) - rivi(r) (2.20)

= in: i) (i Di(r) — 7). (2.2b)



It is this quantity which is to be minimized by optunization of . In view of
the preemptive-resume character of the service discipline and the menoryless
property of the inter-arrival and service time statistics, the optimal 7 is found
among those strategies whose action at time ¢ depends solely on the occupancies
X;(t) of the different classes (Section 2.2).  Such 7, said to be stationary and
Markov ([85]), give rise to occupancy processes X{(T) (1) = (.\'%N)(I), vey ’,(,f)(l))
which are Markov. This observation, and the fact that the cost rate v(r) for
stationary Markov 7 is just the steady state mean of some memoryless functional
f (7r, X(”)(t)) of the occupancy process, together place the problem of optimizing
7 within the purview of the theory of Markov Decision Processes and Dynamic

Programming.
Remarks

e The assumed preemptibility of service simplifies the state description. In models
with preemption, the occupancy vector X is Markov — in fact, an m - dimensional
Birth-Death process. In models without preemption, X is not Markov; it can
be made Markov by adding a coordinate to identify the class in service at the
present time, or by subsampling at departure instants, in which case the Birth

Death property is lost.

e The preempiible version of the problem is less constrained, and therefore a

more [avorable setting in which to evaluate the merit of dynamic control, than

- 17-
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the non preemptible one. The performance figures cited in later chapters are thus
optimistic. It will be seen that there are ranges of parameter values in which the

gains due to scheduling are marginal; this will be so a fortiori when the service is

non -preemptible.

o OQur primary practical interest is in packet-switching telecommunication net-
works, wheire the notion of “service” is identified with transmission on a physical
channel. Packet transmissions are usually (but not always) non-preemptible. But
the entities, or jobs, submitted to the network by its subscribers are not packets,
but message s, which typically are aggregates of packets. Viewed from the mes-
sage level, service in a packet network is indeed preemptible — with preemptions
restricted to packet boundaries. Our model can be thought of as an idealized
packet multiplexor in which packets are infinitessimally small, or at least very

much shorter than messeges.

o The reward/cost structure in the model assigns cost to deiay- (waiting time
plus service time) rather than to waiting time alone. The two options are not
equivalent. In either case there will be a bias (depending on the rewards and cost
rates) against admitting long jobs. Choosing delay, rather than waiting time, as
the measure of grade-of-service, reinforces that bias. There are no constraints in
the formulation of the optimization problem to ensure minimal levels of service
for individual users. The volume of traffic admitted into the system from each

class is whatever makes the operation of the system most profitable.
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¢ In the absence of flow control, delay D;() and backlog F,(r) are equivalent ob-
jective functions, differing only by a constant scale factor -~ the class -7 arrival rate,
In the present case, the scale factor itself is subject to optimization. Nonetheless,
the equivalence between delay and backlog persists, in the following sense. Say
that control 7 is eptimal for given r = (r,79,...,Tm), € = (¢}, 9, ..., ) if and
only if 7 minimizes the corresponding cost rate v(:). Say that 7 is admissible if

and only if there is no other control 7 satisfying
3i (x') 2 79i(x), Di(x') < Ditr) (23)

for all 7, with at least one of the inequalities strict, it being understood that
Di(r) = 0 whenever §;(r) = 0. The claim is that all optimal controls are admis-

sible.

The claim is proved by observing that each class—i job admitted to the system
brings a net reward equal to r; — ¢jd, where d is the corresponding delay, and that
strict positivity of r; — ¢;d is necessary (but not sufficient) for admission. So if 7 is
optimal, then for every i cither F;(x) = 0 or else 7, — ¢;Dy(7) > 0. It follows from
this, for 7' satistying the inequalities above, that v (7r') < v(7); strict inequality
in any of the above would imply v (7r') < v(x), violating the assumed optimality

of 7. So = is necessarily admissible.
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2.2 Formal description of the Markov decision problem

The population process X{t) defined in Section 2.1 evolves as follows. Po-
tential transitions in X(f) occur at arrival and departure epochs. Whenever the
population process enters state X an action a is chosen. The cost to the system
for selecting action a in state x is K(x,a). After an erponentially distributed
amount. of time, with parameter A(x,a), the population becomes y with proba-
hility p(x,a,y). Upon entering state y an action is taken, the corresponding cost

is incurred, and the process continues,

The action a is an (m + 1) tuplet
a=(a),ay,....a;my1) € {0,1}" x {1,2,...,m}.
The component «;, 1 < / < m indicates whether a type-: arrival should be
accepted (a; = 1) or rejected (a; = 0). The last component, a,,41, indicates what

type of customer is given priority for service — type i, if a4 = 1.

Transitions occur at rate

m
A(x,a) = Y_ ;)i + papy I[x # 0] (2.4)
i=1
where T[] is the indicator function. The transition probabilities are
AifAMx.a) i y=A;x, q=1,
p(x.ay) = 1<i<m, (25)
pil Mx.,a) il y=Dix, apq41 =4,

and the cost K(x,a) is the expected net cost until the next transition, that is

cx
A(x,a

KN(x.a)= . Y rip(x, a,Ajx), (2.6)
=1
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where

U
-1
S’

CX =y + car9 + ... + T m, (2.

and A;x, D;x, arc the population vectors obtained from x by adding or deleting

a type-i customer.

A policy 7 specifies the control applied at cach time instant (. Let A,(t) be
the number of arrivals in [0,¢] in a Poisson process with rate A;, 1 < < m,
and let X((1) = (.\'{ﬂ)(t),.\’.y)(t),...,,\',(,;r)(t)) denote the population process
under policy #; X{™)(-) is taken to be left-continuous. V,I("r)(x()) stands for the
net cost accumulated during the interval [0, 7] when the initial backlog is x) =

(1,0022,00 +-os & 0) and the policy is

m

T T

V,](w”)(xo) = I'x, Z{/O r,-.\',(")(t)dt —/0 r,-7r,-(x(”)(l))dA,-(l)}, (2.8)
i=1

where Ly, denotes expectation with starting backlog xg. The goal is to determine

the policy minimizing the asymptotic cost-rate

, 1 (m)
limsup = Vr"/(xp), (2.9)
T—oo 1 r )

where lim sup is used to ensure the existence of the limit.

In a series of papers ([6]-[9]), Borkar has studied the control of Markov chains
under long—run average cost criterion. The basic assumptions he introduced were
devised to cover average cost optimization in queucing networks. The key assump-
tion is that the cost—rate function is a non-negative, unbounded function of the

-9 -



4

state, a condition which usually prevails in queueing models. The assumptions in

[6] are trivially verified in the present context.

IFrom general results in [6], the optimal policy minimizing the asymptotic cost—
rate (2.9) is stationary, non -randomized, and Markov. Moreover, the optimal pol-

icy is specified by the average-cost optimality equation of dynamic programming.

For a stationary Markov policy f, the population process x(f )(t) is a Markov

process on state space
8§ = {x=(r1,79, ... xm)|r; > 0,1 <7 <m}. (2.10)

A non randomized stationary Markov policy f selects action f(x) whenever the
process is in state X. A stationary Markov policy induces a Markov process with

mean sojourn time 1/A(x, f(x)) in state x.

Uniformizauon is a devise which converts a continuous-time Markov decision
problem into one for which times between transitions are independent of the state
and of the action taken. This uniformized process is in turn easily shown to be
equivalent to a controlled Markov chain ([36], [67]). Uniformization of a controlled
Markov process amounts to observing the system at each tick of an exponential
clock which runs faster than the process itself. Therefore, between two successive
transition epochs of the original process there will be many clock ticks which do
not correspond to a transition epoch of the original process; these are referred to

as false or potential transitions, and have no effect on the evolution of the process.
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- For our problem, the uniformized clock rate (also called the total event rate)
s
can be taken to be
m
A=Y "(Ni+p) (2.11)
i=1

Let 74 denote the sequence of clock ticks. For a given stationary policy f. let
X)(t) be the uniformized Markov process. With initial state xg, the expected

net cost over the first I clock ticks (the horizon) is,

H m
Vil xo) = i, 3 z{('\(f) (Te— 17 — Tk—1)
k=11=1
(2.12)
-l []0) = ey =] |
Applying general results from [6], we have that
-~
- L L) L)
limsup — V7 (x0) = A limsup — V;i’(x¢) (2.13)
T—ox 1 ! =00 I H ,
and there is a unique solution g, v(x) to the average—cost optimality equation
X — moy.
0(x) = n Y~ =2 min {o(A,x) — ry,v(x)}
A i=1 A
(2.14)
—v(D,x
o0, { AP+ }
J#
The stationary policy determined by the optimality equation is optimal, and the
scalar g is the minimum average cost per unit of time (independent of the starting
state); that is,
- . . 1 (1r) 91z
5 g =inl limsup = (x0)- (2.15)
pre T Tewoo T
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The so called relative values v(x) can be interpreted as the expected first-
passage cost from state x to state 0, assuming that the optimal policy is applied

and that the holding cost rate in state x is ex — g.

2.3 Computation of the optimal policy

Policy iteration is an algorithm which uses the average cost optimality equa-
tion to produce a sequence of policies with decreasing average cost ([77]). At
cach step of the algorithm, policy-iteration improves the current policy, that is it
determines a policy with smaller average cost per unit time. The policy-iteration
algorithm converges after a finite number of iterations to the optimal policy min-
imizing the long-run average cost. The algorithm is found to be very robust and

to converge very fast in specific applications.

An application of policy-iteration to determine the jointly optimal flow control
and scheduling in our model requires that we truncate the countably infinite multi-
dimensional state space. We are guided by known results on the optimal flow
control of queucing systems with a cost/benefit structure similar to ours; these
results confirm the intuition that the number of jobs in the system should not
be allow to grow indefinitely. Thus we apply policy-iteration to the truncated
multi class single-server queue in which a finite buffer of length L is available to

the community of m job-classes. The state space for this truncated queue is

S'L = {(.l'l.-]'?. very .Tn)) € SI.TI + I9 + ...+ Im S L}

-9 -
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The boundary 3; of S is the subset of states (&, xo......rm) for which o) +
19 + ... + &y = L. that is for which the bufler is full. The optimal policy N'I{”'
minimizing the average cost for the truncated queue is the restriction to S of
the optimal policy 7rg£l for the infinite queue, provided that the admission 1egion
Al‘(wtl)‘pl) - the subset of states (xy,r9,...,2) € S in which ﬂi"' admits a
type-i customer for some ¢ = 1,2,...;,m — does not touch the boundary B, . This
follows from the observation that a solution g, v(x), to the truncated version of
the optimality equation (2.11), specifying a policy not touching the boundary,
can he extended to a solution of the original (not truncated) optimality equation;
indeed, values of v(x) for upper states outside the admission region depend only

on values ol v(x) at lower states, and can thus be defined recursively from the

dynamic programming optimality equation.

Each iteration of the policy improvement algorithm requires the solution of
a system of lincar equations. This system of equations is sparse by nature. The

SPARSPAK package [22] was used in our programs.

2.4 Is the yc—rule optimal?

As mentioned in Chapter 1, the pe-rule is optimal in a large class of models.
In the absence of flow control, the ge-rule is known to minimize the long run
average cosl in our mulli- class single server queue ([11]). The proof hinges on the

independence between service order and arrival process.
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‘That the pie rule is not generally optimal in the presence of input constraints
was fust observed in [75] where the pure scheduling problem when only finite
separate buffers are available is considered. Imposing a limit to the number of
type ¢ jobs in the system is a particular form of flow control. The question

remains about the optimality of the jic-rule when scheduling and flow control are

optimized together.

Application of policy iteration reveals that the gc—rule is not generally opti-
mal in the presence of flow control, even if the flow control is simultaneously opti-
mal. Figutes 2.1 to 2.3 show the optimal policy when flow control and scheduling

are optinmized together in a single-server queue with two job classes with param-

eters:

#1=5.0, po=2.5,

m=0.4, p2=0.4,

c; =100.0, c9 =195.0,

r; =800.0, r9 =800.0, (2.16)
where pj = Ay/pio o = 1,2, In Figures Z.1 and 2.2, e indicates states where

admission is the optimal action. In Figure 2.3, o indicates states where serving

type 2 is the optimal action.

Since yrycyp > pyey, the presence of states other than (0,z9) where providing

service to type-2 is the optimal action, shows that the pc-rule is not optimal.
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Fig. 2.1 Optimal flow control for class-1 jobs.
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Fig. 2.3 Optimal schedulirg.



The minimum cost for the selected set of parameters is —1984.5. It turns
out that the admission policy of Figures 2.1 and 2.2 also minimizes the long-run
average cost when service is provided according to the pc-rule; the corresponding

average cost is —1980.5

When holding cost rates are class-independent, the pc-rule becomes the
Shortest Expected -Job- First rule. The following example shows that SEJF is
not generally optimal when flow control is exercised by finite separate buffers.
The scheduling policy minimizing long—run average costs for buffers of length 5 is

shown in Figure 2.4 for parameters:

11=10, #2=0.3,
r1=0.8, p2=0.8,
c; =10, cg=1.0,
r; =1.5, rg=1.5. (2.17)

In Figure 2.1, o indicates states where serving type-1 jobs is the optimal action.
The corresponding average cost is 4.9. The optimal cost is —2/9, obtained by
never admitting any type- 2 job into the system and admitting a type-1 job only

in state (0,0).
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O 00000
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Fig. 2.4 Optimal scheduling for finite buffers.
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2.5 The thesis setting

In the following chapters we study a special case of the basic model described
abhove; namely, the case when holding cost-rates and admission rewards are class-
independent. Minimizing the long-run average net cost amounts then to optimiz-
ing the tradcofl between delay (averaged over jobs from all classes) and through-
put. We begin by investigating, in the next chapter, the case of only two queues,

of which one is saturated.

-929.



The saturated queue:

Chapter 3 a special case

We consider here a special case of the model described in Chapter 1; namely
two queues, one of which is saturated. The other is a Poisson queue with finite

arrival rate.

The setting is particular in that jobs from one class are always available for
admission into the system. One may think of this model as a limiting version of
the basic model, in which the arrival rate of jobs from one class greatly exceeds

both the arrival rate of jobs from the other class and the maximum service rate.

The saturated queue assumption amounts to controlling the timing of the
release of these tasks into the system, rather than controlling whether to accept or
reject new arrivals. Such an input control, combined with scheduling, was studied
by Wein [82] in his heavy traflic analysis of a two—station network. He showed

how controlling the timing of inputs is appropriate in certain specific applications

! “The analysis of this chapter has been published in [18]

- 90 -




o AR

L

Er

such as factory scheduling.

In this context, we show that the gc-rule is not optimal in general. On the
other hand, when cost—rates and rewards are independent of class, the combination
of scheduling and input control jointly minimizing the long-run average net cost
is fully characterized. The effect of the saturated queue assumption is to reduced
the general two—-dimensional controlled process to a one-dimensional process, thus
making possible the direct approach presented below. The analysis has some

similarity with Naor's study of an M/M/1 queuc in [56].

3.1 The model

Two streams of customers distinguished by their mean service times compete
for a single server. Service times are exponentially distributed with means 1/p)
and 1/py. Type-1 customers arrive according to a Poisson process at rate Aj.
We assumce an infinite pool of type-2 customers waiting outside the system and
immediately available for admission into the queue upon request from the flow
controller. Fach customer of type-i (i = 1,2) pays r; dollars upon entry into the
system, and collects ¢; dollars per unit of time until its departure. We stress that
cost and reward are associated only to jobs admitted into the queue; in particular,
type-2 jobs awaiting admission in the infinite pool do not contribute to system
costs. Similarly. no cost is incurred by rejecting a type-1 job upon its arrival to

the system.
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The objective is to determine the structure of the flow control and sched-

ule which jointly minimize the long—run average rate at which money leaves the

system.

Since a type-2 customer is always available for admission and since rewards are
collected upon entry, it cannot be optimal, for long-run average cost minimization,
to admitl a 2-customer unless to serve it immediately. Consequently, for the long-
run average cost criterion, there will never be more than one type-2 job in the
system, cither being served or waiting in queue because of preemption by type-1

jobs. The state space is thus

A policy specifies at any time what type of customers should be provided
service, and whether a type-1 arrival should be accepted or rejected. The control
is a pair (a),a9) € {0,1} x {0,1}. The first component, ay, indicates whether
a type-1 arrival should be accepted (a; = 1) or rejected (a; = 0). The second
component, ay, indicates what type of customers is given priority for service,
type-1ifay = 1, and type-2 if ag = 0. Note that action (ay,0) in state (¢, 0) calls
for the input of a type-2 job (from the infinite pool) directly into service, in front
of the i type-1 jobs already in the system. In view of the fact that there is never
more than one type-2 job in the system, the scheduler is seen to exercise control

on the timing of release of type-2 into the system.
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. A stationary policy 7 is a pair (71, 79) of binary-valued functions on the state

space {(7,7)]i 2 0,5 = 0,1}, each taking values in {0,1}. A stationary policy =

applies control (71(2, 7). (7, j)) in state (¢, ).

Let Ay(t) be the number of arrivals by time ¢ in a Poisson process with rate
Al. We denote X(M(1) = (.\'g")(t),.'%w)(t)) the state process under policy
X(m™)(.) is taken to be left- continuous. With starting state xg = (71,0, r20) the
expected costs \7(1 )(xo) accumulated during the interval [0, 7] when starting in

state xg and applying policy 7 is

T
Vi (xg) = Exo{ ) [(-..\'{"’(r) + c?xg”)(t)] dt

. —lQZ(l—rQ(z 0)) / [X(") t) =1, ’(”) _0](11}

A A q
—r [ (X0, x50 w) o), (3:2)
where Ex, denotes the expectation with starting state xg and /[-] is the indicator
function. The goal is to determine the policy minimizing
limsup = V(W)(X()). (3.3)
Tooo T T
We point out, before going on, that, by its very nature, our model lives in a
non-work-conserving environment. Indeed both the total unfinished work and the
total system population do depend upon the control policy applied, in particular,
upon the admission control exercised, and thus are not conserved. That a policy,
’w . . » 3
o upon full depletion of type-1 jobs, prefers to keep the server idle and vrait, for the
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next type | job rather than to admit and serve a readily available type-2 job,

is simply a characteristic of the class of policies considered, namely those jointly

managing admission and service.

3.2 The optimality equation

Uniformization ([36], [67]) reduces the above continuous-time problem to a
discrete time problem. Decision epochs occur at rate A = A\ + p1 + po. The

average cost optimality equations are

o fei—g | Aip,. n o, + ne .
0(¢,0) = mm{—-——-—— +—A—[v(z +1,0) ——rl] + -1—\—v((z -1)7,0)+ —A—v(z,O),

A
5t Av(z,0)+ A v((r-1)7,0) + A v(4,0),
clitcag—g AT K2
—-——A———-—r2+x[v(z+11 r1]+ v(, 1)+ == v(z 0),
cii+cog—yg : }
—x - v(z 1)+ A (e, l)+ v(z,0) (3.4a)
(i, 1) = min{c—“—+—;2-_—— M [v (1+1,1) - 7'1] + v((: -1),1) + £ v(z 1),

cpitea—g A . [T + b .
A + Av(z’l)+ Av((l 1) ?l)+ Av(l,l),

cptey—g  Apgr . B .
———+W[v(z+l 1) r1] + v(z 1)+ TU(Z’O)’

A
W9 MG+ B 1) + B2 }
A + Az(z,l)-+- Av(z,1)+ Av(z,O) (3.4b)
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The first two terms in the min correspond to providing service to class | while
the third and fourth terms correspond to serving class 2. These terms are further

distinguished by the admission option with respect to 1-customers.

From general results in [6], there is a unique solution g, v(/, j) to equations
(3.4). The stationary policy determined by the optimality equations is optimal,

and the scalar g is the minimum average cost (independent of the starting state).

3.3 Computation of the optimal policy

Policy iteration ([77]) can be applied to determine the optimal policy mini-
mizing the long-run average costs for the truncated queue model in which only a
finite buffer is available to type-1 customers. The state space for this truncated

queue is

Sp={(H,)0<i<L,j=0,1}. (3.5)

We refer to the boundary as the subset By = {(L,0),(L,1)}. The optimal policy
7,21" minimizing average costs for the truncated queue is the restriction to Sy, of
the optimal policy ngg' for the infinite queue, provided that the admission region
AL(ﬂZ"’) - the subset of states (7, ) € Sy, in which szt admits a 1 customer

does not touch the houndary 13;,.

Figure 3.1 shows the optimal policy minimizing average costs for parameters:
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L =30,

Ay =2.0,

i1 =2.0, pne =133,

c; =10, co =1.5,

r; =10.0, ro =2.0, (3.6)

in which case yjep = 2.0 > pg9eg = 1.995. In this figure, o identifies in the first
graph, states where adimission of type-1 customers is the optimal action, while in

the second graph it identifies states where serving type-2 is optimal.

opl opt
L1 L2
] oo 00 o0 000
0 e 0oee
| I]

Fig. 3.1 Optimal policy for parameters in (3.6).

It is observed that the gc-rule is not optimal since there are states (i,1) in

which it is optimal to provide service to type-2 customers.

A similar result holds even if the rewards are identical as seen in Figure 3.2

which corresponds to parameters:
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Fig. 3.2

=20, po =1.33,
cp =1.0, cg =1.5,
r; =10.0, r9 =10.0. (3.7)

op opt
L L2

(N W)
) °
1

[N
o0
[ N
» 0 ®

T

Optimal policy for parameters in (3.7).

e We show below that for class-independent holding cost-rates (¢ = ¢y) and

class-independent rewards (1) = rg) long-run average net cost is minimized by

the g-rule coupled to a control-limit admission policy for type -1 customers.

When ¢) = ¢y, r| = r9, and pg > py, the optimal policy consists in never

admitting any type-1 customer and continuously providing service to type 2 cus-

tomers in steady-state. Consequently, the only recurrent state is (0,1) and the

long-run average cost is ¢y — pgrg. As for the transient hehaviour, starting in

state (¢,1) with ¢ > 0 it is best to first serve the 2-customer, then to empty the

system of the 7 type-1 customers hefore devoting service only to 2 customers from

then on. The less trivial case 1) > pg is the subject of the following analysis.

¢ 9
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3.4 The case of class—independent cost-rate and
rewards

From now on, we assume that the holding cost-rates are identical for both
classes of customers: ¢) = ¢9 = ¢. We also assume that the rewards are identical:
ry = ry = r. While the assumption of class-independent cost-rates is essential
(in view of thie discussion about the non-optimality of the uc-rule in the previous
chapter), the assumption of class-independent rewards does not seem necessary
for the optimality of the ji-rule, but makes the presentation simpler. Finally, cus-

tomers from the Poisson strecam have shorter mean <ervice times than customers

from the infinite pool: py > po.

The claim is that the optimal policy minimizing the average cost combines
the si-rule with a control-limit admission policy for type-1 customers. It follows
(since grp > pp) that a type-2 customer is served only when the queue is depleted
of type | jobs. Two cases must be distinguished, according to the policy adopted

with respect Lo type-2 customers:

a) inone case, type-2 jobs are continuously served (one at a time)

until an interruption by a type-1 busy period;

b) while in the other case, no 2-customer is ever admitted into the

systen,

We define below two classes of policies corresponding to the two cases just
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mentioned. Within each class, the policy minimizing average costs is determined.
That one of these two policies is overall optimal is verified by substitution into

the dynamic programming optimality equation.

3.4.1 Two candidates for optimal policy

We denote by Wy the class of stationary policies which combines the g rule
with a threshold-type admission control for 1-customers, and which never admits
a 2-customer. For a policy in Wy, the scheduler which gives priority to type 1
jobs is active only until the type-2 job (if any) present at the beginning has left
the queue. I'rom then on, only type-1 jobs are admitted for service and contribute

to opcrating costs.

Similarly, W is the class of stationary policies which combines the g rule
with a threshold-type admission control for 1-customers, and which immediately
admits and serves a readily available type-2 job upon service completion of a 2
customer. Since type-1 jobs have preemptive priority, service of the type 2 job
might be interrupted by a (random) number of type-1 busy periods. It should
be obvious that under a policy in W there is always a type-2 job in the system,
cither being served or waiting in queue as a result of an interruption by a type |

busy period.

We point out that the classes ¥y and ¥q of admissible policies do not cover

the class of all admissible stationary policies. Their definition is only motivated
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by the expectation that the overall optimal policy is either in g or in ¥y, its
actual position depending on s, ..em parameters. Our contribution is to verify,

by substitution into the dynamic programming optimality equation, that this is

indeed the case.

We first determine the best rules within each class.

3.4.2 Optimal policy in ¥y

We denote by mp(n) the stationary policy in Wy which admits 1-customers
according to a control limit policy with threshold n. Under policy 7g(n) the set

of recurrent states is {(0.0),(1,0), ..., (n,0)} with steady-state probabilities

o=t
p(¢,0) = T= T (3.8)
where p = Ap/uy. The average cost ¢g(n) corresponding to mg(n) is
n
do(n) = c 3~ kp(k,0) = At[1 — p(n,0)|r (3.9)
k=0
which can be expressed as
_ p (n+ 1)p"+1 p— pn+1
do(n) = C{l i pupe s o B LS gy (3.10)

It can be shown that ¢g(n) has a unique minimum. The optimal threshold ng =

arg min ¢gy(n) satisfies
¢o(no) — do(ng — 1) <0,
(3.11)

do(ng + 1) — do(ng) > 0.
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These incqualities can be combined in

mo(1=p) = p(1=p™) _ pur _

ng + 1)(1 — p) — p(1 — pM+1) - ‘
(1-p)? e (1 - p)? '

(3.12)

We denote gg the minimum value ¢g(ng).

3.4.3 Optimal policy in ¥,

Similarly, we denote by mj(n) the stationary policy in ¥{ which admits |
customers according to a control-limit policy with threshold n. Under policy 7y ()
the sct of recurrent states is {(0,1),(1,1), ..., (n, 1)} with steady- state probabilitics

p'— pttl

T (3.13)

p(i, 1) =

The average cost ¢j(n) corresponding to my(n) is

d1(n) =c Y kp(k,1) = X [1 — p(n, 1)]1‘ + ¢ — parp(0,1), (3.14)
k=0

which can be expressed as

d1(n) = ¢o(n) + c— ugrrt—;n—ffﬂ. (3.15)

The optimal threshold n| = arg min ¢{(n) satisfies

¢1(ny) — ¢1(n1 — 1) <0,
(3.16)

¢1(ny +1) — d1(n1) >0,

which is equivalent to

ni(1=p)—p(l = p™) _ (uu—=pa)r (ny1+1)(1 —p)—p(1 —pmtl)
Ty A - (D
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We denote gy the minimum cost ¢1(ny).

Summarizing, mg(ng) is optimal among policies 7g(n) in ¥, while 7y(ny) is
optimal among policies 71 (n) in W;. The best policy is my(ng) or 71(n1) depending

on whether gg < g1 or g9 > ¢1. If g9 = g1, mo(ng) and 71(n) are equally good.

3.4.4 The relative values

To establish the overall optimality of gg and g; we intend to verify the average-
cost optimality equation. This requires the computation of the optimal relative
values ([77]) corresponding to mg(ng) and x1(n1) respectively. Thisin turn requires
that the policies mg(ng) and 71(n1) be defined on their respective set of transient
states. Since both policies provide service according to the p—rule, what needs to
be specified is the admission rule for 1-customers in transient states. Once mg(ng)
has been extended to all states, its relative values vg(2, j) can be computed as the
expected costs until a first. passage into a chosen reference state, (0,0), starting in
state (¢, j). with holding cost-rate ¢(i 4+ j) — gg in state (z,j) and reward r for each
admitted customer. Similarly, for m1(n;) the relative values v (3, 5) are computed

with respect to reference state (0,1) and holding cost-rate ¢(z + j) — g1 in state
3.4.4.1 First passage cost in a simple birth—death process
The candidate optimal policies are obtained by extending 7g(ng) and 71(nq) to

their transient states so that the relative values vg(¢, j) and v (7, ) be minimized.
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To that end, consider the birth-death process (Figure 3.3) defined on the integers

¢ > 0, with holding cost-rate ¢i — g in state ¢ and reward r for cach birth.

Fig. 3.3 A simple birth—death process on the integers.

"

The computation of the expected cost K(7,n,g) until a first passage to
state 0 when starting in state ¢ is a standard exercise in probability theory.

Case1l: 1 <i<n:

. c i 1 o1 +p) pnTitl _ pntl ( I )}
K{ii,n,g)=—< = i+ - - n +
(hmg) /t1{21—ﬂ< 1—-p (1-p)? I=p

n—i+l _ n+4l
_g (;_f’ p ) (3.18q)
l—p

Case 2: n < i
_‘9, rye C i-‘ . . y » N
K(iing)=—|—)(+n+1)-(i- n);‘—— + K(n,n,g). (3.18h)
1 1

n
). 2
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One casily obtains

( n—i n
pri—pt 1 :
—(nc—g—pmr) 1< n,
1—-p m( ’
KN(i,n,g) - K(i,n—1,9) = { (3.19)
p-r"
— —qg - >
SErY (nc—g - p1r), i2n

It follows that the optimal n minimizing (for all starting state ) first passage costs

to state 0 is determined by

ne—g<puyr <(n+1l)e-g. (3.20)

We point, out that if the cost rate in state 2 is ¢(i + 1) — g rather than ci — g,

the first passage cost from state 7 is simply K(z,n,g — ¢).
3.4.4.2 Relative values corresponding to =y(ng)

Returning to the computation of relative values let us consider first those
corresponding to my(ng). Iirst, it is obvious that vy(i,0) = K(¢,ng,g) and it is

casily verified that equation (3.12) is equivalent to

noc— go < v < (ng + 1)c — go. (3.21)

or the transient states (1, 1), ¢ > 0, the expected first passage cost to (0,0)

for a control-limit admission policy for 1-customers with threshold n is

' = .(:.ﬂ). ﬁ ¢ — —_
wyu(0,1) = o + p” {[\(l,n,go c) r}, (3.22a)
wy(i,1) = K(i,n.gg — ¢) + wn(0,1), 1> 0. (3.22b)
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It is casy to compute

Case 1: /i < n:

. pn—i -\ a1} 1 .
' o — —_ ,1 — e ————— -_— - - - s \¢ -24.'
wn(2,1) = wy_1 (i, 1) ( ) [(n+ 1)e = g0 — v (3.23a)
Case 2: n <1

' , —_ ) = /)__pn ./l!. n—1 L —_— —_— . q 9
w(t, 1) —wp—y (i, 1) = (] > +—ﬂ2ﬂ “l[(n-fl)c 9 /tH]- (3.23b)

It is then obvious that the threshold minimizing the expected cost until a first,

passage to (0,0) from (7, 1) is determined by
(n+De—go<pr <(n+ 2)c - g0, (3.21)

which, combined with (3.21), proves that this optimal threshold is ny — 1. Hence

we have

vo(7,0)= l\’(l',n(),_(]()), 1 >0, (3.25a)

(0, 1)= it} + i]—«{I\'(l,no — 1,90 —¢) — r}, (3.25b)
2 "2

vo(f. )= K(i.ng— 1,99 = c) + v(0,1), 1 >0, (3.20¢)

To suminarize, we have shown that the candidate optimal policy corresponding
to gg is fully characterized by ng, since the optimal admission thieshold in states

(7,0) is ng, while the optimal admission threshold in states (i,1) is ng— 1.

- 45 -



opt

We will denote g™ the policy defined by

(1,1), 0 <1< ny,
mgP(i,0) =

(0,1), ng <t,

(1,0), i=0 (3.26)
2P (i,1) = {(1,1), 0<i<my-1,

(0,1), ng < t.

ety opt R
Transitions under 7" are shown in Figure 3.4.

11 1 i1 11 H1

2

Fig. 3.4 State—transition—rate diagram corresponding

opl
to 7,
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3.4.4.3 Relative values corresponding to r;(n)

A similar derivation for wy(n}) with reference state (0, 1) establishes that the
optimal admission thresholds for gj are nj +1 in states (z,0) and ny in state (1, 1).

It is also obtained that n| is characterized by

(np+1Nec—gy L pr<(ny +2)c— g (3.27)

which is equivalent to (3.17). Finally the relative values vy (s, j) are

01(0,0)= —r, (3.284)
01(1,0)= —r + K(i,ny + 1,91), >0, (3.28D)
vi(e,1)= K(i,ny,91 — ), > 0. (3.28¢)

We will denote by ﬁ',”” the policy defined by

((1,0), 1 =0,

r(i,0) = 4 (1,1), 1 <i<n+1,
\(0,1), 77]+1 <t,
(33.29)
((1,0), i=0,
xf”'(i.]):J(l,l), 0<i<n,
L(0,1), n <.

e opt . .
Transitions under 7r|' are shown in Figure 3.5.
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Fig. 3.5 State-transition—rate diagram corresponding

to w‘l’"t.

3.4.5 Verification of optimality

The overall optimality of policies ngt and w‘l’pt is established by showing that
under gy < g1 the pair (gg,vg) satisfies the average-cost optimality equations

(3.1), while these equations are satisfied by the pair (gq,v1) under g; < gg.

The verification involves lengthy and cumbersome algebraic manipulations
that will not be presented here. The steps involved in this verification are sketched

in Appendix A,
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A numerical

investigation of a
Chapter 4 :

single-server queue

with two job classest

Using the dynamic programming approach described in section 2.2, we study
the case of only two independent Poisson arrival processes. An extensive nu-
merical investigation indicates that the optimality of SEJF persists in this case,
provided that the flow control is simultancously optimal. As expected, this jointly
optimal flow control is monotonic. These computations also reveal that the bound-
ary hetween acceptance and rejection regions are very nearly linear. It is shown
that, under SEJI' scheduling, restricting flow control optimization to these lincar
boundaries is only slightly suboptimal. It is also observed that the optimal de-
lay /throughput tradeofl is only slightly underestimated by a combination of SEJFF

scheduling and optimal window flow control.

! The analysis of this chapter has been published in [19)
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4.1 The model

Ay

In this chapter, we investigate a special case of the general model described in
section 2.1, namely the case of only two Poisson arrival streams with intensities
A1 and Ag. We recall from section 2.4 that holding cost-rates and admission
rewards are assumed independent of class; thus,¢; = cg =¢,and ry =rg = r.

Furthermore we assume here that g > pg, and define

B2 miug> 1. (4.1)

4.2 The optimal policy

“ Iixtensive computational experiments suggest that the jointly optimal schedul-
ing and flow control minimizing the long-run average net cost for operating the

system, combines SEJF preemptive scheduling with monotonic flow controllers.

Conjectured joint optimal flow control and scheduling

scheduling SEJF
flow control for type-1 jobs admit iff | < fi(z9) with

f1 monotonically decreasing
flow control for type-2 jobs admit iff 9 < fo(z)) with

f2 monotonically decreasing
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Morcover, the optimal flow control for type-1 jobs has the simple form of a

&
‘3‘ . . .
threshold on the total number of jobs in the system, that is:
admit a type—1 job in state (x|, r9) iff 7| + 19 < ).
Typical optimal admission policies for type-2 jobs are shown in Figures 4.1 to
4.4. In these figures, o indicates states where admission of type- 2 arrivals is the
optimal action. Also indicated in each figure is the joint optimal threshold, I'l’”',
for type-1 jobs, as well as queue parameters; in particular, p, = \jfp,, 0+ = 1,2.
Numbers on the right are values of b(xy) = x| + Bre (function of ry) on the
boundary of the admission region.
-9
opl _
L7 =133
=10
) 18 jty = 0.25
s00 0000 18 r =056
I'2700000000000 18 py =02
0000000000000 18 c=1.0
(AN N NNNNNENNENNENNNMNNN] 18 r = 90.0
0 ] 18
Fig. 4.1 Optimal flow control for type-2 jobs.
It is readily observed from these figures that the boundary between optimal
acceptance and rejection regions for type-2 jobs is very nearly of the form
-
- x4 (1 /mg)zg = by
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opl _

37

p =10
° 21 po = 0.2
eeo0o0 0 20 p1 = 0.6
ees0 000000 20 p2 =02
0o000 00000600 O0OCCS 19 c=1.0
o000 000600 0COCOCCGROONNNOTOTS 19 r = 100.0
xry 19
Fig. 4.2 Optimal flow control for type-2 jobs.
topt_36
=
#1 =10
XX 15.333 p2 =03
. eco0so e 15.000 p1 =108
( 'P0e000000000 15.667 pa =02
9000000000000 15.333 c=1.0
eecso0o0o0soeecceeoe 15000 r = 200.0
0 Ty 15
Fig. 4.3 Optimal flow control for type—2 jobs.
1
1 =44
soeoe 18.667 p1 =10
YRR 18.333 o =03
e00ce0o00 00 18.000 p1 =08
rNeeeeeeeceeo o 17.667 p2 =102
0000000000000 00 17.333 c=10
00000 00COOCOOOONOOONOOYOS 17.000 r = 250.0
0 Ty 17

Fig. 4.4 Optimal flow control for type—2 jobs.

iy

Should that boundary be exactly of this form, the optimal flow control would have
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the very appealing structure

ry+r

admit a type—1 job in state (ry,r9) iff 2 < wy,
1

admit a type-2 job in state (v1,r9) iff hd R < wy,
r M2

for thresholds w), wy. The appeal of such an admission policy comes from
the fact that, under SEJF scheduling, the expressions e(xy + 1 + r9)/p; and
(wxy /) + (clwg + 1)/ py) are easily interpreted as the accrued cost to the system
resulting from the admission of a type-1 job and a type-2 job in state (ry,xy)
respectively, in the abscnec of further arrivals. The sum (x1/p)) + (09 + 1)/ p2)
is also recognized as the expected work in the system. In the absence of arrivals,
these accrued costs are compared to the reward r to determine whether it is ben-

cficial for the system to start with one more job.

It is casy to determine if the optimal flow control for type-2 jobs is of the form
1+ fBag < tg. Il 3 is an integer, threshold t9 can be restricted to integer values.
If A is not an integer, let 3 = |3] + (mg/ng) where [B] denotes the integer part
of B, and my and ng are integers with 0 < mg < ng. In this case, {9 can be

restricted to multiples of 1/n.

To determine if the optimal type-2 flow controller is of threshold type, one

examines the values b(ry) = r| + Bxg on the boundary of the admission region.
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If /4is an integer, a threshold policy is obtained if all these values are equal, the
common value being the threshold. It follows that the flow control of Figure 4.2

is not. of threshold type while the one of Figure 4.1 is.

If /7 is not an integer, the sequence b(0), b(1), 5(2), ... must have bpax —byin < 1,

and must be a subsequence of the periodic sequence of period ng, with values

bunx = I"((ng — 1)mg/ng), ..., bmax — F(2mg/ng), bmax — F(mg/ng), bmax,

where F(m/n) denotes the fractional part of the rational number m/n. The
threshold is then bypax. It follows that the optimal flow control in Figure 4.3
(A= 33';) is of threshold type, with threshold equal to 15%, while the optimal flow

control in Figure 4.4 is not.

Under SEJF service, we expect that it cannot be optimal to admit a long job
in a given state if it is optimal to reject a short job in this state (holding cost
and reward being class-independent); this means that we expect the admission
region of type-2 jobs to be included in the admission region of type-1 jobs. This
was indeed verified throughout our computations and is obvious in the examples
considered here. When the optimal flow control for type-2 jobs is of the form

ry 4+ fAry < 13"’. this translates to I_Ifz)ptj < f‘l’pt.

These observations motivate us to study our two—class single-server queue
under SEJI' preemptive scheduling, to determine the flow control minimizing,

within the class of threshold policies, the long-run average cost.
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4.3 The optimal threshold-type flow control under
SEJF scheduling

We apply SEJF preemiptive scheduling to our single-server queue to determine
the flow control minimizing long-run average cost. The minimization is restricted
to the class of threshold-type flow controls, namely those specified by thresholds

ty, and ty:

Threshold-type flow control

admit a type-1 job in state (z,79) iff )+ 19 <1ty,

admit a type~2 job in state (z),x9) ff x|+ firg < o

Given a threshold-type flow control, the corresponding set of recurrent states
for the queue process under SEJI' scheduling is easily determined. The mean
number of jobs in queue F; and the mean throughput ; for type 7 jobs (1 = 1,2)
arc computed by solving the system of global-balance linear equations for the

steady—state probabilities.

The best thresholds are obtained by minimizing the expected net cost
Ty +Tg) — (1 +72)

as a function of the thresholds ¢y and tq.

This optimization assuines that the net cost has a dependence on 1) and 1y that
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is discretely unimodular, meaning that a local minimumis a global minimum. This
would obviously be the case if both 7 = T)+%F9 and § = F1+759 were monotonically
increasing functions of 1] and {g. 7 is indeed monotonically increasing in ¢ and 29;
on the other hand, while ¥ is also increasing in t1, it may be slightly decreasing
in fy over a certain range. These properties were observed numerically. The
behaviour versus ¢y, for £} fixed, can be explained by the fact that, in increasing
14 by a minimal amount 1/n, we increase the probability of trading a short job
for a long job. This trade maintains the number of customers. On the other hand,
the loss of throughput for short jobs may outweigh the gain of throughput for long

jobs, resulting in a net decrease of total throughput.

Figures L5 and 1.6 display the best threshold-type flow controls corresponding

to the non-threshold-type admission policies of Figures 4.2 and 4.4 respectively.

=37, dhr =200

p1= 1.0

o 20.0 po = 0.2

s 0000 20.0 p1 = 0.6

I'Jeeeeeeecsee 20.0 P =10.2

o0 00000000 OGOPOCONPODS 20.0 c=1.0

00 0 0600000000000 00O0O0 00 20.0 r=100.0
0 ol 20

Fig. 4.5 Best threshold-type flow control
corresponding to optimal control of Figure
4.2.
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4 =11, i = 18.667

te e 18.667 m=1.0
E N R NN 18.333 iy =03
AR EEEREX) 18.000 m = 0.8

'oe0 00000000000 18.667 m=0.2
00 0000 00OCOOGROENINOIOO 18.333 c=1.0
N NN NN NNENNNNNNNNN] 18.000 r = 250.0
0 2l | 18

Fig. 4.6 Best threshold-type flow control
corresponding to optimal control of Figure
4.4.

As a typical example, the performance of the queue with parameters

st = 1.0. r =095, c = 1.0,

Jip = 0.2, p =040, r = 300.0,

is presented in Figures 4.7 to 1.14. The best threshold-type flow control and its

performance are

= 27, 7 = 0.9436,
{!Z/II' = 0. _)- = T/:,' = 12098,

where superseript thr emphasizes the fact that the optimization was restiicted to

threshold—type admission policies.

Figures 1.7 and 1.8 show the variation T with t] and ty; Figures 4.9 and 4.10



are similar plots for 5. The striking feature of these plots is the non-smooth
variation of T and 5 versus ty. We also note the slight decrease of 5 for increasing
ty. The profit P =15 —¢7 is plotted in Figures 4.11 and 4.12 as a function of the
thresholds. These level curves were selected to include the maximum point. Figure
1.13 is a perspective plot of the profit versus t1 and t9 in the range 0 < t9 < 30,
Iy < 1y <ty +30. Of course 7, 5, and P all are discrete functions of ¢; and t9;

continuous plots are used for graphical clarity. We point out that level curves in

Figure 4.13 correspond to constant values of ) and 7 — z9.
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Fig. 4.7 Number of jobs as function of /.
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Fig. 4.9 Throughput as function of ¢;.
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Fig. 4.10 Throughput as function of 5.
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Fig. 4.12 Profit as function of {y.
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4.4 Comparison between optimal and threshold-type
flow control under SEJF scheduling

As mentioned in the introduction, in the particular case that costs and re-
wards are class-independent, the optimization problem amounts to determining
the delay/throughput characteristic of the queue. Figures 4.14 and 4.15 are plots
of the optimal delay/throughput tradeoff. These curves were obtained by varying
the reward r with all others parameters kept fixed, (in particular, ¢ = 1.0) and

computing for cach value of r the optimal joint controller and its performance.

If 1} = py, since holding cost-rates and rewards are class- independent, cus-
tonmers form a single class: the optimal server only has to be conservative while
the optimal flow controller admits according to a threshold on the total number
of customers in queue. Lazar [12] derived an expression for the delay /throughput,

curve for this queue. The effect of 4= gy /iy is shown in Figure 4.15.

Tables 1.1, 1.2, and 1.3 compare the delay/throughput performance for op-
timal and best threshold type flow controls. In these tables, D refers to delay
averaged over all customers. Superscript opl obviously refers to the truly opti-
mal values; supcrscript thr refers to the best threshold type flow control under
SEJI* scheduling.  All values were computed with parameters jp and ¢ set to
1.0. In these tables o indicates cases where the optimal tradeofl is achieved by
a threshold-type flow coutrol. Threshold ¢) can be restricted to integer values;

generally 11 > 0 unless it is optimal to close the system to type 1 customers, a
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possibility described by t) = —1. Shutting down the system cannot be optimal if
r > ¢fpy, a condition that we assume throughout. If 8 is an integer, threshold
19 can also be restricted to integer values; generally to > 0 unless it is optimal to
close the system to type 2 customers, a possibility described by t9 = —1. Data
is presented in the form of tables because corresponding delay /throughput curves

would be hardly distinguishable.

It is observed from this comparison that the class of threshold-type flow con-
trols is only slightly suboptimal. This fact will be exploited in Chapter 5 to ap-

proximate the coutrolled process; this approximate—process has easily computable

optimal thresholds.

We point out that occurances of equality between optimal and best-threshold
policies in terms of delay and throughput performance when the optimal policy is

not of threshold type are due to roundoff.
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Fig. 4.14 Delay/throughput tradeoff curves.
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40

95

" lfl)l" t’l hr 15 hr ,—yopt ﬁthr ﬁoﬂt
A0 10 3 3 311 6579 - 2.1859
20 6 6 5.55 7189 - 3.1352
50 14 14 12.22 7521 - 4.3630
80 22 22 18.33 7577 - 4.7947
100 26 26 22.33 7591 - 4.9468
200 5 50 42.33 7600 — 5.0841
95 10 2 2 211 7631 — 2.0614
20 4 4 3.33 8572 - 3.3438
50 ] S 5.22 8895 - 4.3703
30 11 11 6.44 9053 - 5.2668
100 13 13 7.00 9147 - 6.0620
200 20 20 9.00 9268 - 7.8785
400 30 031 11.22 9330 - 9.7951
600 IS 48 12.66 9349 - 10.7824
40 10 2 2 1.11 8160 — 2.1139
20 3 3 222 8720 - 2.7766
H0 6 6 4.11 9359 - 4.5283
80 b S 5.00 9552 - 5.7356
100 8 S 533 9570 — 5.8993
200 12 12 6.66 9749 - 8.3389
400 16 16 8.11 9824 - 10.5233
600 19 19  9.00 9859 - 12.2484
1000 20 24 1011 9890 - 14.6853
2000 33033 1177 9916 -— 18.3373
95 10 2 2 111 8729 -— 2.2368
20 3 3 200 9058 - 2.7443
50 H 5 222 9502 - 4.0175
S0 6 6 333 9640 - 4.9186
100 0 T 333 9693 - 5.3847
200 Y 9 422 9763 - 6.3625
400 13 13  1.44 9847 - 8.5087
600 16 16 533 9873 - 9.8049
1000 20 20 5.55 9900 - 11.7976
2000 29 29 6.66 9925 - 154178

Table 4.1 Optimal versus best—-threshold delay and
throughput for u9 = 0.9, that is § = 16
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39777
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13.5116
15.8896
17.5075

Table 4.2 Optimal versus best-threshold delay and
throughput for y9 = 0.2, that is g = 5.
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8343
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9107
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1790
8343
8514
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9314
9445
9487
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jjopt

1.6420
2.4512
2.5461
2.5520
3.3013
3.6902
3.9402

1.6420
2.8724
2.9534
2.9612
4.0221
4.3643
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2.4359
3.3506
3.7953
5.0787
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17.8649

Table 4.3 Optimal versus best—threshold delay and
throughput for ;9 = 0.1, that is 8 = 10.
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4.5 The optimal window flow control under SEJF
scheduling

Window flow control is widely used is practice and has been shown to be
optimal in a variety of context, ([34],[59]). A window flow control assigns finite

sceparate buffers to the arrival strcams; that is

Window flow control

admit a type—1 job in state (ry,ar9) iff x| <y,

admit a type—2 job in state (rj,x9) ff o < by

As for threshold-type flow control, the best windov. sizes by and by under SEJI°
scheduling arc obtained by minimizing the expected net cost ¢(F)+Fy) —r(F | +74)
as a function of b; and by. This computation assumes that this net cost has
a dependence on by and by that is discrelely unimodular, meaning that a local

minimum is a global minimum.

4.6 Comparison between optimal and window flow
control under SEJF scheduling

Tables 1.4, 1.5, and 1.6 compare the delay/throughput performance for opti-
mal and best window flow controls. In these tables, D refers to delay averaged
over all customers. Superseript opl obviously refers to the truly optimal values;

superscript win refers to the best window flow control under SEJI scheduling.
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Ig’”’ is the minimum value of £ such that the overall optimal admission region
for type 2 jobs is included in {(ay, x9)|z) + Axg < t2}. All values were computed

with patameters g and ¢ set to 1.0.

This comparison shows that t' ~ overall optimal delay/throughput tradeoff can
be achieved very closely by a combination of preemptive SEJF scheduling and a
window flow coutrol. This observation is an indication of the relative value of
detailed state feedback in the control of the system. In the present context for
example, the optimal scheduling is a static priority rule. Moreover, under this

optimal scheduling, the imaprovement obtained by the use of state feedback to

achieve an optimal tradeofl’ between delay and throughput is marginal.
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Table 4.4 Optimal versus best—window delay and
throughput for yy = 0.5, that is g =2
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popy l‘rl" by tg"‘l by  FoPL  Fwin oPL pwin
A0 40 10 54 0 O 4330 .4437 21633 24015
20 11 10 3 0 4456 4460 24333  2.4483
0 16 M 7 1 .4606 .4612 3.0863 3.1330
50 27 2 12 2 4682 .4686 3.6718 3.7142
100 53 39 25 4 4761 4752 4.7814 4.6028
4095 10 Hoo | 0 0 .4569 .4675 2.4847  2.7252
20 10 9 2 0 4690 .4696 2.7390 2.7673
0 16 11 5 1 4875 4929 3.6606 4.0180
N0 26 21 71 4925 4929 3.9775 4.0180
(TR 112 5032 .5039 5.2488 5.3836
100 51 5l 122 5037 .5039 5.3378  5.3836

A5 .40 10 3 3 790 7790 24359 24359
20 5 —1 .8343 .8343 3.3506  3.3506
50 9 9 0 -1 .8885 .8840 5.2333  5.0787

I
—_——

|
—

foie §

100 1t 13 2 0 9177 9180 7.3916  17.5300
200 21 20 5 0 9357 .9349 10.0950 10.0194
100 32 30 T 1 9477 9480 13.5369 13.8628
600 42 10 10 1 9528 .9526 16.0888 16.0979
800 5HE 19 11 19553 .9548 17.8289 17.6273
595 10 33 =1 =1 7790 .7790 2.4359  2.4359
50 Yy 9 0 -1 8917 .8840 5.3451  5.0787
100 13 12 I 0 9160 9164 7.0623 7.2015
200 21 20 3 0 .9367 .9367 10.0016 10.0587
400 32 31 5 0 9487 9475 13.5003 13.2039
800 5l 1Y T 1 9558 .9559 17.4987 17.6941

Table 4.5 Optimal versus best—-window delay and
throughput for gy = 0.2, that is 5 =5.




FLS

-l

0095 10

LM , [‘l’l" by [{Zm(l by 70’” Ftwm v prm
A0 -0 10 205 =1 =1 .3990 .3990 1.6120 1.6120
20 11 10 I 0 4214 4234 24512 2.5520

40 23 22 70 234 4234 25520 2.5521

60 31 32 14 14310 4311 3.3013  3.3388

100 57 10 25 2 4317 AT 3.9102 39429

I .3990  .3990  1.6420  1.6420
20 11 10 10 4339 4356  2.8721  2.9653
4022 2] 10 356 4356 2.9613 29657
3 l
l
I

ot

60 31 32 10 A T2 02210 44123
O 15 15 12 A469 472 13613 14123
100 56 506 11 T2 A4T2 1058 4123

95 .10 10 b3 =1 =1 7790 .TT90 0 204359 2.4359
10 8 8 -1 =1 8751 8751 16593  4.6593

1o 1 1t =1t =1 9107 9107  7.0519  7.0519

200 22 2| 20 9322 9326 10.1777  10.3739

100 31 33 S0 L9139 9140 13.5906 0 13.6973

GO0 15 I T 0 9181 9181 158554 159314

800 55 5l 120 9512 9505 17.8467 17.4171

95 .95 20 o h =1 =1 833 8313 33506 335006

oo 1t 1t =1 =1 9107 9107 7.0519  7.0519
200 21 21 o0 9314 9334 99285 10.4306

400 31 34 30 9445 9446 136174 137415
600 11 13 50 9IST 9487 157451 15.7958
S00 51 33 50 9509 9509  17.2697  17.3254

Table 4.6 Optimal versus best-window delay and
throughput for ;y = 0.1, that is /3 = 10.
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4.7 Sensitivity of performance to scheduling

hi the previous sections we have examined the sensitivity of performance to
flow contiol by comparing the performance under SEJF scheduling (the optimal
rule) coupled to: 1) the overall optimal joint flow control, 2) the best threshold-
type flow control, and 3) the best window-type flow control. Here we study the
sensitivity to scheduling by comparing the optimal performance to the perfor-
mance under a Random Order- of-Service scheduling rule (ROS) coupled to the

optimal flow coutrol for such a service policy.

In our model with two classes of jobs, ROS is specified by tle probability o
that the server, when it turns free at a service completion epoch, is assigned to a
type 1job. It is assumed that ROS is activated only when there are jobs of cach

type queaed. Otherwise, the server operates on a first—come—first-served basis.

Precmption is not allowed. In particular, ROS with a = 1 is not identical to
preemptive SEJE (assuming g > po as usual) because a type-1 job arriving to a
queue of type 2 jobs only. is not allowed to preempt the type-2 job in service, as

it is under preemptive SEJIY scheduling.

IFlow control under ROS is subject to optimization. The goal is to determine
the flow control minimizing long- run average cost under a cost/benefit structure
identical to the overall joint optimization problem of flow control and scheduling,

that is with holding cost rate ¢ and admission reward r both independent of class.

- -




Performing uniformization with total event rate A = A + Ao + iy + po. the

average cost dynamic progran.ming optimality equation is
clvy+ay)—g  pna
v(ag,rg) = = uv(ay,
(r1,02) 1 + vl re)
Al .
+ e min{o(ry +1,09) = r,v(ry, r9)}
Ay .
+ y min{o(ry,r9 + 1) = r,v(r, r9)}
1 X . i
+ —\{[(ll‘(.l 1= L)+ (1 —a)w(ry = 1ae)ll(xy > 1)
+ w(0,29) (= 1)}, (4.2a)
ey +a)—g 1
wliry,ry) = + —wlary, .2
( l 2) ‘\ /\ ( l’ 2)
- /\l .
> + Xy min{w(xy) + lorg) = ryw(ey, e9)}
Ay
+ —\’— min{w(ry, oy + 1) = ryw(ey,r9)}
12 . . .
+ —\—{[(Il‘(.l Lo = 1)+ (1 — @)w(xy,ry = )]y > 1)

+ (@ 0)(ary = 1)}, (1.2h)
whe e v(ey, a9) and w(ey.ry) are the relative values in state (g, o) when serviee
is devoted to type 1 and type 2 respectively, and g is the average cost independent,
of starting state. Once the optimal flow control under ROS has heen determined
by (1.2), the corresponding set of recurrent states, their steady-state probabilities,

R o
w the mean delay, and the average throughput are easily obtained.
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I he seleetion of 0.5 for the parameter a is motivated by the desire to have
an anbiased ROS controller, that is, one which is blind to the type of job to be
provided service next. This should accentuate the difference between the optimal
scheduling (SEJIY which is clearly biased towards type-1) and suboptimal ROS,

and provide a measure ol the value of feedback for scheduling.

The overall optimal delay/throughput tradeoff is compared to the optimal
tradeoll under ROS in Figure 1.16. The solid curve corresponds to the overall
optimal tradeoll while the dotted curve corresponds to the optimal tradeoff under
ROS. These curves were computed by varying the reward r with the holding

cost rate e set to 1.

Fig. 4.16 Delay/throughput tradeoff curves.
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Both curves coincide for values of 1 just slightly larger than ¢/p| = | because
then the optimal flow control under both SEJF and ROS scheduling rules never
admits any type 2 job and admits a type 1 job only when the queue is empty.
This explains why the curves converge to the same point (1, A\ /(1 4 py)) as r
is reduced to efpp = 1. Of course these curves could be extended to the point
(0,0) which corresponds to shutting down the system, the optimal policy when

0<r<e/u.

On the other hand, incieasing r means increasing the optimal admission re-
gtons for both types of jobs. Since for the selected parameters the puority quene
corresponding to SEJI schedualing and no flow control is stable, the optimal trade-

ofl curve converges to the point (Dx. 5o ) given by

T~ = AL+ A =012, (1.3)

_ ’\I_Dl + Az—l—)z _
c AL+ Ay a

16.5, (4.14)
where D and Dy refer to the average delay of type 1 and type 2 jobs respectively,
in a single server queue with preemptive priority to type 1 tasks. Expressions for

Dy and Dy can be found on page 125 of [38).

Figure 117 shows the gain achieved by exercizing flow control and schedul-
ing. The low~r curves are similar to the curves of Figure 4.16; they represent
the delay /throughput tradeofl for SEJF (solid curve) and ROS (dotted curve)
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scheduling with their tespective optimal flow control. The upper curves represent
the delay /thronghput tradeoff for SEJF and ROS scheduling in the abcense of flow
control. "Fhe mean delay for SEJF scheduling without flow control is calculated as
in (4.3) and (4.4) from known expressions about preemptive priority queues. The
mean delay for ROS scheduling of two job-classes differentiated by the mean rate
of their exponential service times is obtained from the M/G/1 Pollaczek-Khinchin
formula with an hyperexponential service distribution specified by the probability
a that the service is exponential with rate g, while the service is exponential with
rate yy with the complementary probability 1 — . The upper curves (no flow
control) were obtained by keeping pg fixed and varying py from 0 to the outset of

instability. The lower curves (with flow control) correspond to p; = 0.3.

S

10}

Fig. 4.17 The gain for exercizing control.
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Figure 4.18 shows the sensitivity of the tradeoff to scheduling. It is a plot of the
gain in decibels associated with the passage from ROS to optimal scheduling (wit h
flow control). Cypp and Croy refer to the minimum cost under SEJI° scheduling
(the optimal policy) and under ROS scheduling respectively. Consider the curve
corresponding to py = oc. For pp smaller than the value where the maximum
is achieved, there is a non-zero average throughput of type 2 tasks for both the
optimal flow control under SEJI and the optimal flow control under ROS. For
higher values of py, the optimal flow control under ROS closes the quene to the
type-2stream, while there is a noi-zero throughput of type 2 jobs for the optimal
flow contiol under SEJF. For even higher values of py, it becomes optimal to
close the queue to type 2 jobs under SEJF too; for such values of py there s
no scheduling exercized anymore and the gain is 0. These comments apply to
the carves corresponding to py < 0o, The value of p; where the optimal flow
control under ROS closes the queue to type -2 jobs is observed to be almost totally

insensitive to the value of py.

Itis apparent from these curves that the choice of scheduling can be of par-
ticular benefit to type 2, at least in terms of the valume of type | traffic that can
be accomodated hefore type 2 is shut out. In the example to which the curves
apply, the critical values of py are p) = 0.4 when scheduling is ROS, and p; = 0.8

when scheduling is optimal - a two fold improvement.

When py = co. we have the queue studied in Chapter 3. We recall that since
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10 log( Copt /Cros)

Fig. 4.18 The gain of SEJF over ROS.

type -2 tasks are always available on demand, a type-2 job is admitted only when
the system is ready to start serving it. Under beth SEJF and ROS, this occurs
when the quene is empty. In this case, the gain of SEJF over ROS is really the gain
ol preemptive scheduling over non-preemptive scheduling. This gain is plotted in
Figure 119, Note that as long as r > ¢/ug, there is p; small enough for which it

cannot be optimal to close the qucue to type-2 jobs under either SEJF or ROS.
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Fig. 4.19 The gain of SEJF over ROS.
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An approximation for
Chapter 5 the single-server queue
with two job classest

An approximation of the steady-state probabilities under SEJT scheduling
and threshold type flow control is derived here. This approximation is based on
the expectation that the queue process for high priority jobs (type-1) will reach
steady state hetween any transition of the queue process for low priority jobs

(type 2), especially when yrp >> po.

Under this stcady- stale assumption, the computation of the system perfor-
mance is a simple exercise, This procedure is used to determine the best threshold-

type flow control for which the (approximate) average net cost is minimum.

A comparison between truly optimal and approximate delay/throughput

tradeoffs reveals that the approximation is very robust and capable of remark-

able accuracy.

g ! I'he analysss of this chapter has been published in [19)
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5.1 The steady-state approximation

Figure 5.1 shows an optimal flow control. We recall that e indicates states
where admitting type- 2 jobs is the optimal action. The jointly optimal flow
control for type-1 jobs is specified by threshold ,(l)pl on the number of jobs in

queue, 71 + 9. Of course, SEIF scheduling is the optimal scheduling,.

The optimal type-2 flow control admits according to a monotonically decreas-
ing function f(ag): admit a type-2 job in (wy,a9) iff 2y < f(wy). The optimal
policy of Figure 5.1 is not of threshold -type, that is, the optimal admission region

for type 2 jobs is not of the form x + (yey/p )y < ty.

opt
=11
= 1.0
o o o ;/,;Ig:().‘.l.’)
m =07
e o ® o o @ py = 0.1
c=1.0
e & @ o e o o o o oo r =5H7.0

Fig. 5.1 An optimal policy.

The state-transition-rate diagram of the two-dimensional birth death process
X(t) =(X1(1), Xo(1)) corresponding to this optimal policy is shown in Fignre 5.2
In this figurce, unidirectional transitions, at rate Ay, have been indicated with an

arrow. Each horizontal segment hetween two states represents a pait of transitions,
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onc to the right at rate Aj and one to the left at rate . Similarly cach vertical
segment at the extreme left represents a pair of transitions, one up at rate Ay and

one down at rate 9.

O —— -

SEEEEEE RN

0 ] ¢ I8

Fig. 5.2 State-transition—rate diagram for X(/).

Let k9 denote the maximum value of 2o for states in the admission region of

type-2 jobs. For example, k9 =2 in Figure 5.1.

Let (X], X9) be random variables representing the joint steady state distribu-
tion of process X(/) under a given combination of preemptive SIEJIF scheduling and
monotonic flow control. Once the system of global balance equations has heen

solved for the steady-state probabilities P(X) = 1, X9 = 3), the performance
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measures are casily obtained. The mean number of jobs in queue is

ko1 !1+1—]

Tzz Z P(X1 =1,X9 =),

o+l L+1—
Te= Y Y. jP(X)=iX=j)
J=0 =0

The mean throughputs are

kat1
1 :/\l{l - Z P(X1=tl+1—jsx2=j)}’
7=0

ka S(J) . .
Fr= e 3 5 PUXG =i Xp = ).
J=017=0

The delay D, averaged over all customers, is given by Little’s theorem:

&j
&1

1+
1+

2
2

D=

~J
2

Finally, the expected cost corresponding to the (¢, f) admission policy is

(T +T2) — (71 +79).

(5.1)

(5.2)

(5.3)

(5.4)

To approximate the steady-state probabilities, we assume that the X process

reaches steady -state between transitions of the X9 process. This assumption is

justified by the fact that y; > g, and the fact that SEJF service is applied. The

distribution of the number of short jobs in queue, conditioned on the number of

long jobs, is then given by
. £ A

ti—j+1

1
PNy =ilXy = j)=p {2 p1} , 0SiSt—j+],

0< 7 <hky+1,
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which is the probability of state ¢ in an M/M/1/(t; — j + 1) queue.

Let p; denote the conditional probability, given Xo = j, of states where type 2

arrivals are admitted:
Py = EP N1 =(Xo=j), 0<j<h,. (5.6)

Similarly, let g denote the probability of the single state where a down transiion

of the type-2 process is possible:

4j=P(X1=0[X2=j), 0<j<ho+1, (5.7)

'To obtain the distribution of the number of long jobs in queue, we further
assume that the time between transitions of the type-2 process is exponential
The class-2 process is then approximated by the simple M/M/1/(ky + 1) quene

with parameters

’\(j):’\'ﬂ)' s .j=0al’27~'1k2 ’
#(J) = paq; J=1,2 kg +1. (5.8)
It follows that
= agp
P(Xy=j)= H L p(Xy=0), 1< <ky+1. (59)
=0 F290+1

and the normalizing condition yields

0 16+1

kbl g=l )7
P(Xy=0)= 1+Z 21’[ 4 . (5.10)
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Finally the approximate steady-state probabilities are

PXy =i, Xy =j) = P(X) =1]Xy=3)P(Xg = j). (5.11)

(1) (2) p(3) p(4) w(5) pu(6) p(7) w(8)  p(ky+1)

AN0) A A2) AM3) M4) AB) A6) MN7) A8)
ky ko+1

o
[
F=
(1]
(o>}
-

0 1

Fig. 5.3 The approximate type—2 process.

This computation is direct and avoids the solution of possibly large systems of
lincar equations necessary to obtain the exact performance. The function f(z9)
does not have to be of the form ay + (je1/pg)r9 = t9 for some t9. However,
restricting {low control 1o the class of threshold-type admission policics, the above

approximation is used to determine best thresholds minimizing the average net

cost.

Best values of £1 and t) can be computed under the assumption that the
approximate cost has a dependence on ) and 9 which is discretely unimodular.
These best values of £ and ¢y approximate the truly optimal low control obtained

by dynamic programming in Chapter 4.
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5.2 Comparison between approximate and
best-threshold performances

We examine below the accuracy of the above approximation when it is used
to evaluate the delay/throughput tradeoff. In view of the fact that the opti-
mal joint flow control is very nearly of threshold type, rather than comparing
best delay /throughput tradeofl under the s:cady state assumption to the overall
optimal petformance, we compare it to the optimal performance in the class of
threshold-type flow controls. This allows us to compare policies parameterized

by two numbers, (| and (4.

Intables 5.1, 5.2, and 5.3, superscript thr refers to the optimal threshold type
flow control coupled to SEJI scheduling; superscript app refers to the approximate

flow control coupled to SEJF scheduling.

As is observed in these tables, the steady-state approximation is very robust;
its accuracy is still verv high for small values of 3. We remark that in some cases,
there is a wide gap between corresponding thresholds which does not translate in
wide differences of delays and throughputs. This situation was observed to arise
when the system parameters are such that the expected cost has a flat optimum
as a function of the thresholds t) and tg. As for the comparison of truly optimal
and best threshold- type policies in Chapter 4, data is presented in the form of

tables because corresponding plots result in curves hardly distingunishable,
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plhr e gthr o g4pp - sthr <app Dihr DUy

r 12 r

A0 1010 1 1 2 3 5283 .5465 23495 2.3737
20 9 9 5 5 .5633 .5715 3.0574  2.8491
30 13 13 8 9 .5803 .5891  3.6992  3.4804

0 17 16 10 11 .5861 .5930 4.0228  3.7100
60 26 20 I 15 .5928 .5970 4.5310 4.0316
SO0 34 21 19 19 .5966 .5987 4.9103 4.2206
100 42 2} 23 21 .5982 .5991 5.1631  4.2814

A0.95 10 q 1 1 I 5605 .5680 2.1887  2.1056
20 3 8 3 3 .6224 6346 3.0975 2.9817
40 15 15 3 5 .6519 .6636 4.0561  3.9600
60 22 I7 7 7 .6686 .6786 5.0893 5.0316
S0 28 20 8 7 .6769 .6756 59128 5.0316
100 35 19 9 8 .6790 .6852 6.1904 5.9381
150 51 20 10 9 .6843 .6871 7.0586 6.1904
A5 10010 3 2 0 I .8003 .7658 2.5373  2.1345
20 3 4 1 2 .8385 .8520 3.0896 3.2091
10 7 7 2 3 .8940 .9048 4.5972 4.6635
G0 9 8 3 3 .9139 9134 5.6130 5.0929
80 10 10 3 4 .9201 .9294 6.0370  6.1652
100 12 It 4 5 .9320 9361 T7.0764 6.7678
200 18 U7 5 5 .9492 9524  9.5601 9.0674
400 27 25 7 6 .9613 .9628 13.0439 12.0464
600 31 32 8 7 .9658 9674 15.2924 14.2813
A5 .95 10 2 2 0 1 .7702 7858  2.1547 2.2234
20 4 1 1 1 .8530 .8592 3.1756  3.1259
40 0 6 1 2 .89C1 9008 4.5045 4.3274
GO 3 8 2 3 .9150 9228  5.2263 5.3337
0 10 10 2 3 9276 9345 6.0645 6.1698
100 11 12 3 3 .9340 9388 6.6518 6.5770
200 17 16 | 3 9525 9522 9.3224  §8.4981
400 25 2| 5 4 .9625 .9633 12.2179 11.6355
600 32 32 3 5 .966C .9665 14.1730 14.1760

Table 5.1 Best-threshold versus approximate delay
and throughput for y9 = 0.5, that is 3 = 2.
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P , [flhr ,(lll’l) ’!3’”'
A0 0100 10 ) b) 0
20 11 11 3

30 16 16 7

40 21 19 10

60 32 20 1h

0 43 20 20

100 52 20 25

0095 10 D b 0
20 10 10 2

10 21 19 6

60 31 19 8

S0 42 20 11

100 5l 20 12

495 0100 10 3 3 -1
20 D Hhoo—1

10 S 3 0

60 10 10 1

30 12 12 2

100 11 13 2

200 21 21 )

100 32 32 7

600 12 1y 9

95 .95 10 3 3~
20 ) 5 =1

40 3 3 0

60 10 10 |

30 12 11 |

100 13 13 |

200 2] 20 3

100 32 31 )

600 42 4] 6

app
ty

Y
14
19
19
20

9
9
1
I

-7!111'

4330
4156
1606
AGHT
A710
AT
AT61

A569
4690
A915
4928

5032

H037

790
8343
8798
8976
9095
O177
9358
OTT
9525

790
8343
8831
9007
I117
9160
9367
8T
9535

7(]])’)

4163
ATT
1630
A701
AT39
4739
A753

A716
A732
4963
4963
H06T

067

790
8313
8857
9013
9121
A164
9362
9495
9535

1790
8343
8885
49011
9099
9190
9368
9182
49512

Tj!hr

21633
2.1333
J.0868
3.1633
39870
11250
17853

24817
2.7390
3.9003
1.00 1
2.2497

0.3380)

6.6211
73916
10.1208
13.5191
15.9048

10.0016
13.5116
15.8596

Tj(l}’)’

2.665H 1
2.6979
39171
30171
53381
HIRB RS

- I

50150
n.8151
6.6451
70337
v 860
13.6021
15.6008

2.4359
3.3500
D112z

D.0112
6 3118
7.1295
9.6333
128331
15 8345

Table 5.2 Best-threshold versus approximate delay

and throughput for yy = 0.2, that is # =5
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thr app
o

b
11
18
18
19
1Y
19

11
16
17
19
19
19

11
21
33
44
A

app
ly

—1
9
9
9

19
19
19

-1
9
9
9

18
19
19

7!!1 r

3990
A214
4233
4234
4310
333
AT

3990
4339
4355
4356
4444
4469
A472

7790
8343
8514
8754
9024
9107
9322
9439
9484
9512

7790
8343
8514
8754
9024
9107
9314
9145
9487
9509

=arp

.3990
4240
.4240
4240
4316
4316
4316

.3990
.4368
1368
1368
4482
4482
4482

7790
8343
.8514
8754
9024
9107
9321
9442
9488
9509

7790
.8343
8514
8754
.9024
9107
9328
9448
9494
9516

75”"‘

1.6420
2.4512
2.5461
2.5520
3.3013
3.6904
3.9402

1.6420
2.87%
2.95.4
2.9613
1.0223
4.3643
1.4058

2.4359
3.3506
3.7953
4.6593
6.2872
7.0519
10.1777
13.5906
15.8554
17.8649

2.4359
3.3506
3.7953
4.6593
6.2872
7.0519
9.9285
13.6474
15.7451
17.2700

ﬁal’P

1.6420
2.5154
2.5157
2.5157
3.2520
3.2520
3.2520

1.6420
2.9292
2.9295
2.9295
4.3788
4.3789
4.3789

2.4359
3.3506
3.7953
4.6593
6.2872
7.0519
9.9910
13.3588
15.6339
17.1513

2.4359
3.3506
3.7953
4.6593
6.2872
7.0519
10.0740
13.4488
15.7300
17.2521

Table 5.3 Best—threshold versus approximate delay
and throughput for y9 = 0.1, that is 3= 10.

N Popzr
10 .10 10 5
20 1]
30 O I7
10 23
00 B
80 1H
100 57
0095 10 5
20 11
30 17
10 22
60 34
S0
100 56
095 100 10 3
20 b}
. 30 6
¥ 03
S0 12
100 N
200 22
100 31
600 15
S00 5
95495 10 3
20 b
30 6
10 3
80 12
100 I
200 21
100 3
600 i
300 5l

gﬂ(
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Extension to more

Chapter 6 than two job classes

Anapplication of the methods and approsimations described in the preceeding
chapters supports the conjecture that the tradeoff hbetween delay and thronghput
in single server gueues with multiple job classes is optimized by a combination of
preemptive SEJEF and monotonic flow control. The optimal flow control 15 very
nearly characterized by hyperplanes in the multi dimensional state space The
steady state approximation extends to more than two job classes; the general

formulation is sketched.

6.1 The optimal policy

Computation of the optimal combination of preemptive scheduling and flow
controi minimiziug long run average net cost when there are more than two job
classes suggests that SEJI remains optimal when coupled to simultanconsly op-
timal flow control. As expected, the optimal flow control is monotonic, that s,
described by surfaces Ci, 1 < ¢ <y inthe multi dimensional state space; a type
¢ job is admitted only if the state upon arrival lies below sutface ('), 1 <+ < m
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\Morteover these sutfaces are very nearly linear,

Let x = (wp ay.ogy) be the popnlation and assume pp > 9 > .0 > gy

The optimal flow control is alinost a control-limit admission policy of the following

tvpe

admit class—1 jobs iff
admit class-2 jobs iff

admit class—3 jobs iff

admit class—m jobs iff

Approximate threshold-type flow control

rp+ro4+..+arm

<t

H]
J£ N £ ees I
i + Y + J+ + rm S fQ
1] 12
T . T vee T
Dy Le Iy p a4t Fim gy
o ina
xr X I
L2y Xy,
12 SR L)} Hm

ot in compact form:

k—1 m
. < 1 e . T l
admit a class—k job in state x iff ) SLRRE > "7 <ty

i=1 i kg

(6.1)

In the abscnee of arrivals, the expression on the left hand side of (6.1) is casily

telated to the acerued cost to the system for having an extra type—k job. This

extra cost is composed of (('//1‘.)+('Z,‘~'=1(1',-//1, ), which is the cost for queueing the
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wire [ e se 1 o \ . ~m
extra type ke job while serv g higher o equal prionity jobs, and (/i) Somkit e

which is the cost for delaving lower priority jobs by (1/44) the mcan service time

ol the extra job.

When thete is no arrival this extra cost is compared to the reward i order
to determine il aving this eatra job is benefidal to the systemn In the case of
independent Poisson processes, the thiesholds 1, depend on the mtensities \,. the

higher the itensitv, the simaller is the threshold.

Since holding cost rates and admission rewards are dass independent, it s
expected that ifat s optimal to reject a elass 7 job in state x it nst be optinal
also to reject lower prority jobs, namely those from classes ¢ + L. 0o state x

It follows that we expeet the optimal thiesholds 1o satisfy

lp 212 .02 hy. (62)

In the next section, we sketeh how the steady state approximation of Chiapter

5 can be extended to more than two job classes,

- 94 -




6.2 Steady-state approximation

We wish to compute the performance of a single server queue with m job
classes SEJI preemptive service, and (4,19, ..., tn) threshola-type flow control
with 1y 21y 2 .. 2 by The computation of the joint steady-state probabilities
of the process

X(1) = (X1(8), Xo(l)..... Xn(1)), (6.3)
under such control, is not an easy task, and requires the solution of a possibly
large set of hmear equations. We introduce a steady-state assumption allowing
a simple reaursive computation of approximate steady-state probabilities. The
approximation can then bhe used to optimize the delay/throughput tradeoff within
the class o (fy foe.tyy,) adimission policies and to obtain the best values of
Iy oo ol Such an optimization was carried out in Chapter 5 for the special

case o= 2

Let us by the llow contiol thresholds ¢y 2 ¢y > ... > ;. The steady—state

assumption asserts that the process
XH() = (Xq(t), Xo(l), ... X,(1)) (6.4)
teaches steady state between transitions of the process
X7 = (N1 (), Xigat), e Xin(2)) (6.5)

for = 1.2....m ~ 1. Superseript — (+) refers to job classes with priority strictly
smaller (higher or equal) than class i This assumption is justified by the fact

that gty > g > 0> pyy. and the fact that SEJF service is applied.
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Define i, = [pti]. The set of recurrent states under our control lmit admis-

sion policy is then

m
Sp= {X Y g <mpl <k<m } . (6.6)
=k

Define for 1= 2.3, ...,

m
1, = {(.r,-..1',-+|,...,.r,,,) Z reS<npt < k< m} . (6.7)
{=k

1) is the projection of the set of recurient states onto
{(er, oo emley =g == 0 =0).

Also define lor ¢ = 2,3, ....m,

1—1 m
s .I'[r 1 Co
S e e ) = {(.1'1. Iy 1) Z — 4+ — E re <, } . (6.8)

e=1 1e H =

Sy eec ) can be viewed as the support of class-2 admission region above

(s eees ).

To obtain an approximation for the steady-state distribution (x) ol X,
the conditional distributions

POXNp = 2p gy eees ), O0<ap<np—app)—..— (6.9)

for (g4 1vev ) € Thy 1, are computed recursively for b = 1,2, ... —1. Finally,
the marginal distribution P(a,) of Xy, (1) is obtained.
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6.2.1 Conditional distributions of X

F

Under the current steady-stage assumption and the current admission pol-
icy, the distribution of the number of shortest jobs in queue, conditioned on the

nmunber of longer jobs, is given by

-1
n|1—ro—...—Tym,
PN =a| Xy =29, Xm=am) = P:]Bl{ Z Pf} s (6.10)
=0

for 0 <oy <y =2y — oo — a4, and (29,23, ..., tm) € To, where p; = A1 /p;.
This expression is recognized as the probability of state 1 in an M/M/1/(ny —

Iy — o= ) queue,

6.2.2 Conditional distributions of X, k= 2,...,m — 1

iy

Let us assume now that the conditional distributions P(z;|ziy1,...,2m), ¢ =
[,2,..., k=1, have been computed forsome k,2 < k < m—1. Forall (Zpt1seor Tm) €

Thyq. deline

:\‘.(.I'k'.r/\.+]....,.1'1”) = Z AkP(.'l'l,..., afk_ll.'l,'k,..-, .'L'm),
(-"lv---vrk—l)esk(-rka-'n-lf'm)
(6.11)
and
ﬁ‘.(‘l'[‘.'.l".+i ,.....l')n) = [IL.P(.\’I = 0, ceey 4\,‘7_1 = lek, ...,xm). (6.12)
Of course P(ay, ..., &p_1)Tps ey @n) in (6.11) and (6.12) are given by
k-1
g Py, dp_ gl ey tm) = ] P@elzest,-oes 2m)- (6.13)
& =1

. 97 -




The number of class & jobs in queue, conditioned on the number of lower pii-
ority jobs, is then approximated by the number of customers inan M/M/1/ (1}, —

Lpy] = oo = &) queune with parameters

:\k(-"kl'rk-H* e m),y O<y Smp~apgpy—o—arm—1,
(6.11)

ﬁk(-l'kl-"kﬁ-l»"-s-r”l)’ F<aep<np—pyy — o~

It {ollows that

zr—1

. Xk(lllxk | PR .T,n)
PN = wp|vpiy, entm) = — tho P(XE=0|arpyy, ),
(6.15)

and the normalizing condition yields

Ng—Tpgp1—.. =&y rp—l X ([l r r ) -
PNt = Olpn o) = 414 _ AN S R .
( k | bt 111) { Z =0 M,((’ + l|.r‘.+|,...,.rm)

rr=|

(6.16)

6.2.3 Marginal distribution of X,

Define
Xm(l'm) = Z APy, eyt lrm), (6.17)
(-"lw--v"m—l)esm(-rm)
and

/7")(.1'7”) = /’)n P(.\,l = 0, reey 4x,"l__1 - Ol.’l‘m). ((i.lﬁ)

The marginal distribution of the number of longest jobs is approximated by the

distribution of the number ol customers in an M/M/1/ny quene with parameters

Xm(«"m), 0<zm<nm—1,
((5.19)

/1717(-1'111), 1 <2m < nn.
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It Tollows that

zym—-1 T
m A e
P(Xy=am)= H m(?)

2mt) pox, =0), 6.20
=0 fim(€+1) (Xom ) ( )

and the normalizing condition yiclds

N, Tm—1 Xm(e) -1
P(X;=0)=/{1 -t . 6.21
( ) { +z§1 eI=IO = D) (6.21)

6.2.4 Approximate performance

The approximate performance under the given (i, t9,...,tm) flow control cou-
pled to SEJI scheduling is then obtained as follows. First the approximate steady—

state distribution of the queue length process is

P(x) = Play]ry, o, em) - Prgleg, yom) -+ - P(xm—1ltm) - P(zm).  (6.22)

The mean number of class 7 jobs in queue is

Ti= ), aiP(x), 1<i<m. (6.23)
XESk

The mean throughputs are

3= > > AiP(x). (6.24)

(rernin)ET, (23 ,.-.,3i_1)€S;($.,.--,xm)

The mean delay D, averaged over all customers, is given by Little’s theorem:

T1+To+ ... +Tm (6.25)

D=—= —=,
Y1+t +Tm
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Finally, the expected cost corresponding to the (¢1, 19,

coey Im) admission policy is

(T1+To+ o +Tm) = r(F + T2+ . +73)- (6.26)
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Chapter 7 Methods of proof

The proof that the tradeofl between delay and throughput in our multi—class
single server queue is optimized by a combination of preemptive SEJF scheduling
and monotonic flow control is plagued with analytical difficulties. We show here
how some techniques (in particular the Linear Programming Approach) fail in the
present setting, while others (like the Induction Approach) present unexpected
difficulties in their application. A proof of the above conjecture is still missing in
the general case; in Chapter 2, we presented a proof for the special case of only

two queues, one being saturated.

We consider here the model described in Chapter 2, but with only two job

classes. We assume throughout that g > pg.

7.1 The Induction Approach

The Induction Approach is a well established method in the context of control

of queues [72]. It has been widely used in a variety of situations to characterize
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optimal policics. Notable and relevant applications of the Inductive Approach
include: Johansen and Stidham [35] who applied it to the admission control for
a stochastic input-output system; Hajek [26] who controls routing and serviee
priority in a network of two queues with feedback; Ghoneim and Stidham [23]
who control admission at cach of two nodes in tandem; Weber and Stidham [81]
who control service rates in a tandem network. Sce also [16], [27], [47], [48], [63],

[70], [71], and [36].

In essence, the approach consists in studying finite-horizon a discounted costs
for the system under investigation. The precise ieaning of finite horizon will he
given shortly. The finite horizon dynamic programming equation is then nsed to
establish, by induction on the horizon, that f{inite- horizon optimal policies have
certain structural properties (like switch-curve). Under general conditions ([65]),
these properties extend to the infinite-horizon discounted--cost problem. 'T'he
long-run average cost problem is then treated cither as a limit of discounted
problems with discount factor approaching zcro as in [2], [45], [16], [64], or as the

limiting case of finite time-horizon problems as in [6]-[9] and [61].

A continuous-time Markov decision process formulation of the problem was

derived in Chapter 2. In the case of only two job-classes the state space is

S={x=(r),a9)|r1,29=0,1,2,...}. (7.1)

We recall that control a = (ay, a9, ag) specifies whether a type i arrival (1 = 1,2)
should be accepted (¢; = 1) or rejected (e¢; = 0), while ag specifies whether
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service is devoted to type | (ag = 1) or to type-2 (a3 = 0). The state transition

probability function is given by

px.a,y)A =Ajaplly = Ay(x)] + dgagly = Ag(x)]
(1.2)

+ pyaglly = Di(x)] + po(1 — ag)l[y = Do(x)]
where A = A 4+ Ay + ¢ + jig is the total event rate, I ] the indicator function,

(I“(I

Ap(x) = (x1 + 1,29),
Ay(x) = (‘1'1’1'2 + l)a

(7.3)
Dy(x) = ((x1 — 1)), 29),

Dy(x) = (a1, (zg - 1)),

and zt = max(z,0) for real 2. A control policy 7 is a sequence (ug,uy,...) of
functions

u.: S {0,1)8

kS )

Under a policy 7. the state process starting in initial state xg = (21,9, 2 g) evolves
as a uniformized Markov process

x(m ) = y{

Nty

where V(1) is a Poisson process with rate A, independent of the Markov chain Y},
on S.with P(Yy = xg) = 1, and transition probabilities

P(Yiq) =y Y =x) = p(x,u(x),y).

Y. is the state embedded at transition epochs.
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Let 0 < 1 <1 < ... < 1 <. denote the sequence of jump times for process
N(1). The expected a-discounted net cost for operating the system under a policy

7 over the random interval [0, 7] when starting in state xg is

' ‘ n oo
M (x0) = Ex, Z{«/ X ()|t
k=11 Tk-l
(7.1
—re "] [”X(”)(TL) X ()|l = l]}
where [|X(#)|] = X (1) + Xo(#). Evaluating we obtain
n
Vixg) = e, 3 4! {r(n +M)THX T )l
k=1
(7.5)

= Brl [IX™ () - X7yl = 1] }

where

This cost is casily interpreted as the cost over the first n steps of a disaete
time Markov decision process, with discount factor A (/3 was used in chapters 4
and 5 to denote a ratio of service rates; in this chapter, A denotes the discount,

factor).

For given initial state xg define

13 (xq) = min V,{™ (xq), (7.6)




PRt

the mimmmn 4 discounted cost over the first n transitions. By convention Voﬁ(xo)
s set to 0. Then V,;j is characterized by the dynamic programming optimality

equation

‘///f

Lol o) =e(x) +xg)(a+ A7

+ (A /A) min{Vnﬂ(xl +1,29) -, V,{j(a:l,:cg)}
+ 3(Ay/N) min{V,{j(.T],a'g + 1) —r,Vuf(r1,29)} (7.7)
+ win] (e /My = 1)F,20) + (iaf AV (21,72),

(i /A 1,02) + (i MV (o1, (22 = 1)},

which is equivalent, after simplification, to
Vi, =TVE, (7.8)

where 1" is the operator define on real-valued functions f on S by

T tererz) = A~ ety + 29)
+Apmin{f(z1 + 1,29) — 1, f(z1,79)}
+Aamin{f(r1,r2+ 1) =, f(z1,29)} (7.9)
+min{uif((x) = 1)¥, 29) + paf(z1,z9),

pf(xy,x2) + paf(xy, (29 — 1)+)}}-
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From (7.7) it follows that the optimal action a = (aj,a9.a3) in state x =

(r1.02) when there are n steps remaining is determined by

ay = 1= Ve + Lrg) = VB ) < r

ay =1 &= Ve g+ 1) = VI, o) < r (7.10)

ay = 1=y [VID1(x) = VI(x)] < ez [VE(Da(x) = v (x)]

In view of (7.10) the monotonicity of the optimal flow control will he ensured

il the optimal cost functions satisfy:
.3 .3 . . _

D) V(e + 1oag) =V (rpay) is non-decreasing in &y (convexity in ),

N1, . Sy reasing | ner .

20V (0 4 Loag) = Vi (o) is non -decreasing in .y (supermodularity),

. 3 -3 . . . .

3) V(oo 4+ 1) =V (@ y) is non-decreasing in g (convexity in ry),

43 73 . . . )

DV (epoey 4+ 1) =V (g ew) is non- decreasing in @y (supermodularity).
Indeed, these propertios imply that if admission of a type ¢ job is optimal in
state (rp.y). admission is also optimal in states (o) — 1,09) and (ry,ay — 1).
Thus the bonndary between admission and 1ejection regions is characterized by a

monotonic switching-curve. As for scheduling, optimality of SEJF requires that,

for vy 2 1 and @y > 1.

pValey = Toeg) = Vi ag)] S pg [Valasog = 1) = V(g rg)] . (7.11)
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The objective is to use the dynamic programming equation (7.8) to show, by
induction on the horizon n. that the minimum cost functions satisfy the required
properties, This amounts to showing that these properties carry over from f to
T'f. Usually, to show that T'f acquires a certain property from f, one obtains a

much stronger result; namely, that cach term of the summation defining 7' f has

itself the required property.

In some cases an even stronger vesult is obtained to establish the switch-
curve structure, namely that diagonal-monotonicity (also called subconvexity),
rather than convexity, carvies over from f to T'f. Diagonal-monotonicity was
used by Hajek in [26] for his inductive proof of switching—curve optimal policies
for a network of two queues with feedback; it was also used in [23] to derive the

monotonicity of optimal flow control at cach of two nodes in tandem. See also

[50).

For a real valued function f(xg,29) we define
Subconvexity of [ in a:
T+ Lee + 1) = fle, x4+ 1) < f(z1 + 2,29) — f(71 + 1, 29).
Subconvexity of [ in .y:

Ty + Ly +1) = flrp+ 1, 29) < flag,22 4 2) = f(a1.29 + 1).

A function [ is diagonally monotone if it is both subconvex in x| and sub-

comvex in ry. The appeal of diagonal-monotonicity comes from the following
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clementary results about the transformations

Ty f(epoarg) = min{f(a) + L,rg) —r, f(2),19))

Tyf(xyoeg) = min{f(ay, 29 4+ 1) — r, f(x},.r9)}.

where 1 is a real constant. The simple proofs are sketched in Appendix B,

Proposition 7.1

Il [ is nondecreasing in ap and in ay,

then 7'y f and T4/ are nondecreasing in 21 and in ay.
Proposition 7.2

Il f is supermodular, subconvex in @y, and subconvex in £y,

then f is convex in ry and in rq.
Proposition 7.3

If ['is supermodular, convex in .y and convex in ry,

then 7'y f and 1 [ are supermodular for all » > 0.
Proposition 7.4

If [ is convex in rp,

then 7' is convex in a1 for all » > 0.
Proposition 7.5

If [ is convex in .y,

then 75/ is convex in @y for all » > 0.
Proposition 7.6

For f nondecreasing and supermodular,

then Ty f is convex in g for all # > 0iff f is subconvex in .ry.
Proposition 7.7

For f nondecreasing and supermodular,

then T3y f is convex in wy for all » > 0 f is subconvex in ry.
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Combining these results we have

Proposition 7.8
It fis nondecreasing, supermodular, and diagonally monotone,
then T f and Ty [ are nondecreasing, supermodular,

and diagonally monotone for all r > 0.

Should supermodularity and diagonal -monotonicity carry over from f to T3 f

T3 f(ay,00) =min{p f((x) = 1)F,29) + pa f(21, 29),
(7.12)
S (1 ra) + oS (e, (23 = 1)}

then finite horizon minimun cost functions V3 would be supermodular and diag-
onally monotone, hence convex, implying switch-curve structure for finite-horizon

optimal Hlow controls.

B

However, a numerical evaluation of the minimum costs V;; reveals that they
are not necessarily diagonally monotone functions of the state (zq,z9). On the

other hand they appear to be convex.

Thus, diagonal monotonicity is too strong in the context of (7.7). To perform
the inductive step, one must then determine a set of weaker properties of the cost
functions \',,’ that imply switch-curve flow control and SEJF scheduling, and that
carry over cither directly from f to T'f or from f to each term of T'f and thus
to ' [ itsell. We were not able to carry out that progiam. Rosberg, Varaiya, and
Walrand [61] encountered similar difficulties in their analysis of the optimal control
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of service in tandem queues. Nevertheless, they prove that the optimal contiol
is switch-curve by constructing an equivalent linear programming problem and
using a duality argument to deduce convexity. The application of this approach

to our problem is studied in the next section.

7.2 The Linear Programming Approach

The Linear Programming Approach, introduced in [61] and subsequently gen-
cralized in [80], fails when applied to our problem. In short, this approach consists
in formulating the finite horizon optimization problem as an integer programming
problem on the finite horizon controls. One considers then the corresponding lin-
car progtamiming problem obtained by allowing the variables (controls) to take
values in {0, 1] rather than {0,1}. The success of the approach, hinges on the
possibility of showing that, for any starting state, the relaxed LP has an integer
solution, which must then be equal to the solution of the original integer program.
Viniotis [80] pointed out that a simple way of establishing this property is to check
that the matrix of constraints for LP is totally unimodular [66]. This is casily done
for many controlled queues [41], [19], [80]. However, as shown below, the matrix
of constraints corresponding to our problem is not totally nnimodular.

7.2.1 Formulation of the finite—horizon problem as a integer
program

As in section 7.1, we consider the special case of only two job classes. Once
uniformization has been applied to the original continuous-tine problem, the
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satmple space for the diserete-time Markov decision problem over n uniformized

time slots consists of all sequences
n _ n
W' = (wyy...,wy) € Q7

where w, € Q@ = {A[, Ay, D, Dy} are iid. random variables with Pr{w = A;} =
Ay, and Priw= D,} = p;. fori = 1,2, after the parameters have been normalized
so that A = A+ Ao+ + 9 = 1. Obviously, wy, = A; or D; according to whether

the transition at step k is a type-z arrival or a type—i departure (true or false).

Define
((1,0) ifw= Aj,

(0,1) if w= Ay,

£(w) =
(=1,0) ifw= Dy,

\(0,’—1) ifw= D?.

&(w) represents the change in state incurred by transition w.

A process [ is a sequence of random variables fy, fo,..., fu, where f; is a

function on Q. Let € = (£1,...&) be the process given by Ep (W) = E(wy).

A policy = is a process (2] ... zn) of functions z, on Q¥ with values in {0,1}

and such that
5N D) + Wb, Do) € {0,1),  wFleqb-l, (7.13)

The control variable z(w®) specifies the action to be taken at time k if the system
evolves as wF. The control variable zp(wF=1, 4;) is equal to 1 or 0 according to

- 11 -




whether a type-i arrival is accepted or rejected at time k. On the other hand,

:k(wk_l, D) = 1 indicates that service is devoted to a type-1 job over the & th
slot. The condition (7.13) ensures that a single customer is being served at any
given time.
The trajectory in state space S corresponding to policy = and initial state
Xp € 5, is the process (xq, ..., Xp) defined by
xp(wt) = xeo (W) + 5 @h)Ew®), 1<k < (7.14)
We assume further that a policy is conservative and maintains the correspond-
ing trajectory within the state space S, that is
L2
o
. ‘k v k k k - [d =
Tea(wt) 200w o(w®) 20, wre1<k<n. (7.15)
The expected costs incurred over n uniformized time slots when starting in
state xg and applying policy = is
n—| L )
Valzox0) =£ 3 #¥ela + 1) x|
k=0
n
. k— ;
+3 2 {1’(wk LAzt Ay (7.16)
k=1 ok=1gOh-1
+ P~ Ag)zp (1, AQ)}/fkv',
: where [|xg|| = ¥4 | + 14y is the total number of jobs at epoch k. Substitution for
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x;. yields after elementary manipulations

Vir(z,x0) =céylixpll = B"r(Ar + A2)
TS S S T (S PR

k:l wk ler 1

+ dgzg (k=1 Ag)(8pe — pkr)  (1.17)

- p1 25wk, Dy)ge

- pazp(wk 1, Dz)5k6},

where 6 = gk 4+ gf+1 4+ "=, Equation (7.17) can be expressed as

n
Val=oxg) = cfpllxoll + 3o 3 op(w®)zp(w”), (7.18)
k=1 wkeQk

where the process o is independent of the policy z and the starting state xg. Thus,

the cost is a linear function of control variables zk(wk).

‘The optimal policy over the first n transition epochs is then the solution of

the integer program in the finite set of variables {z;(wF)|wk € QF,1 <k < n},

(1r): 12 (Xg) = min i 3 ak(wk)zk(wk)

z
k=1 WwkeQk

subject to the constraints

o (w) e {01}, wk ek 1 <k<n, (7.19a)
o (Wl D) + 2wkl Dg) €{0,1), WwEleQF-11<k<n, (7.19b)
o xp+Xk_) 2 (w)E () € S, wFeqk1<k<n. (7.19¢)
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7.2.2 Relaxation and optimal policy

Our objective is to establish the convexity of finite-horizon cost V¥, (x¢); this
would imply switch-curve structure for the optimal finite-horizon flow controls.
The simultancous optimization of flow control and scheduling is embodicd in the
formulation; however, the structure of the jointly optimal scheduling is not. ad-

dressed here.

With that in mind, we relax the constraints (7.19) by allowing the control vari-
ables to take values in [0, 1] rather than in {0,1}. The trajectory (7.14) can then
be interpreted as the evolution of a queue with “fractional” jobs. The minimum
finite-horizon cost for such a queue is then the solution of the linear program

n
(LP): Walxg) =min 3 ¥ op(w¥)z(w¥)
T k=1 wkeQk

subject to the constraints
o 0 < z(wk) <, ek 1<k<n, (7.20a)
0 0 < (D) + 5 (Wb Dy) €1, Wk le@k=l 1 <k<n, (7.200)

o X+ 5= 2w )€ (@) 2 (0,0), wh ek 1 <k<n (7.20¢)

The following proposition is a standard result in the theory of lincar program-

ming (sce [61], [80])

Proposition 7.9
Wu(x) is a convex function of x.
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i general (LP) and (1) are quite different. However, if (LP) has an integer
solution, then W, (x) = V,(x) for integer x, and convexity of V;, follows from

Proposition 7.9.

Viniotis [80] exploited the following fundamental theorem (see Schrijver [66],

Chapter 19, Corollary 19.2a (lloffman and Kruskal’s theorem), page 268):

Proposition 7.10
Let A be an integral matrix. Then the vertices of the poly-
hedron {x|Ax < b,x > 0} all have integer components for any

integral vector b if and only if the matrix A is totally unimodular.

Thervefore, to determine whether (LP) has an integral solution, w~ need to
verify il the matrix of constraints corresponding to (7.20) is totally unimodular.
From (7.20) it is obvious that the matrix of constraints A for (LP) has entries in
{=1,0,1}, while the vector b, in Ax < b, has entries in {1,z9,1,202}. In fact A

and b are the same for both (LP) and (IP).

Definition 7.11
The matrix . is totally unimodular if each of its subde-
terminants is —1, 0, or +1. In particular, each entry of a totally

unimodular matrix is —1, 0, or +1.
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. 7.2.3 The matrix of constraints is not totally unimodular

There are many characterizations of totally unimodular matrices. Some of
them are collected in Theorem 19.3 of [66]. Among these, a useful one in the

present context is given by the next proposition.

Proposition 7.12
A matrix with entries 0, +1, —1 is totally unimodular if and
only if cach collection of columns can be split into two parts so
that the sum of the columns in one part minus the sum of the

colunms in the other part is a vector with entries only 0, 41, and

~1.
To sce that the matrix of constraints A defined by (7.20) is not totally uni-
modular in general. we set the horizon n = 3 and consider the collection of
columns corresponding to variables z(Dy), =(Dy, D), z(Dy, Dy), z(Dy, Dy, D)),
and z(Dj, Dy, Dy). Concentrating on the lines corresponding to constraints
a) wy,1(D1, Dy, Dy) 20,
b) wy (D, Dy, D1) >0,
) 32Dy, Dy, Dy) 20,
d) =(Dy,Dy)+ 2(Dy,Dy) < 1,
e) 2(Dy, Dy, Dy)+2(Dy, Dy, Do) <1,
-~
o we obtain the following tableau:
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Dy =(Dy D)) =(Dy,Da) z(Dy,Dg,Dy) z(Dy, Dy, Da)

1 l 0 0 0
l 0 0 1 0
0 0 1 0 1
0 I 1 0 0
0 0 0 1 1

It should be obvious that this set of columns cannot be split into two parts such
that the sum of the columns in one part minus the sum of the columns in the other
part is a vector with entries only 0, +1, and —1. By proposition 7.12 we must
conclude that the matrix ol constraints is not totally unimodular. That (LP) has

a non integer solution was also verified numerically.

Consequently, (1.P) does not necessarily have an integer solution, optimal and
relaxed cost-functions V), and Wy, do not coincide, and convexity of Wy cannot

be used to obtain convexity of V5. Thus, the method fails in this context.

7.3 The First Passage Cost Approach

As mentioned in Section 7.1, the optimality of a monotonic policy for mini-
mization of long-run average costs is usually inferred from a similar result for the
a discounted problem. Stidham and Weber 73] approached the problem from a
different angle. They consider minimizing the expected (undiscounted) net cost

until the system first returns to the empty state from each starting state. Their
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method relies on the left skip-free property of the state process on its way to the
empty state. The average cost problem is recovered from its equivalence to the
problem of minimizing expected net cost until a return to the emply state when

holding cost-rate in state i is ¢ — g, where ¢ is the minimum average net cost.,

Under SEJF scheduling (priority to class 1), the state process for our single
server queue must visit state (0,2x9) on its way to state (0,0) from state (aq,ry).
We investigate here whether this property can be exploited, as in (73], to establish

the monotonicity of the optimal flow control under SEJF scheduling.

SEJI scheduling is a static priority discipline, We are then considering the
optimal flow control problem in priority queues. That scheduling is not subject.
to optimization is a shift from our main theme. This shift is motivated by our

conjecture that SEJF is optimal.

We consider our single -server model with two job-classes.  We modify the
holding cost—-rate to (v + j) — h in state (4,7), where k is a real constant and, as
usual, first and second coordinates refer to the number of type 1 and type 2 jobs

respectively. We asseme h < 0.

Let v(i, j) denote the minimum expected first- passage cost from state (,7)

to state (0,0) assuming that class | is assigned preemptive priority over class 2.
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T hese costs satisfy the following optimality equation

0(0,0) =0.
(AL + Ay + ) e(0, ) =(cj = 1) + pv(0,5 — 1)

+ Apmin{o(1,5) - r,v(0,7)}

+ Aymin{v(0,5 + 1) - r,v(0,5)}, 7 >1, (7.21)
(A1 + Ao+ p)o(dyj) =c(i 4 j) = h+ pro(i = 1,7)

+ Ay min{v(i 4+ 1,5) — r,v(,5)}

+ Agmin{u(i,j + 1) = r,0(i,5)}, i21,7 20.

With wi(i,j) be the minimum expected first-passage cost from state (7, ) to
state (0,4) for j > k,

wii, j) = v(i,j) — v(0,k) (7.22)
and

wi(0,k) =0,

(A1 + A+ )i (0,y) =¢j — h

+ A min{wg(1,5) — r, wi(0,5)}

+ Ag min{w (0,5 + 1) — r,wi(0, §)}

+ nawi (0,5 — 1), J2k+1, (7.23)
(M + Mt wgicj) =cli 4 5) = h

+ Ay min{wg (2 4+ 1,7) — rywi(2, 5)}

+ Ay min{wy (i, 5 + 1) — rw(s, 5))

+upw(i = 1,5), 121,52k,
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Defining wp{e,7) = wile.y + k). for 1 >0, ) > 0, we obtain

up(0.0) =0,
(A1 + Ay + p2)up(0,)) =c(j + k) = h
+ Apmin{ug (1, j) = v, ug(0,5)}
+ Ao min{ug(0,) + 1) — r,ux(0,)}
+ p2up(0,) — 1), iz
(Ar+ A+ p)ule.y) =cli+ )+ k) —h
+ Ay minfug(i + 1,5) = ryug (e, )}

+ Ay minf{ug(i, g + 1) = ryup(e, )}

+ppu(i = 1, ), i 21,y 20,
so that the uyg satisfy the same equation but with holding cost rate increased in
proportion with A. Now
wp(0,0)= wp (0.1) +ug g (0,5 —-1), 21, (7.25a)
up(ieg)= gy, (1. 0) + 1 (0, ), 1 >1, 32 1. (7.250)
It follows that wy is completely determined by its value at (0, 1) and (7,0) and the
knowledge of ugy . Morcover, combining (7.24) and (7.25), we obtain
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paug(0, 1) =c(l + k)
+ Ay min{uy44(1,0) — 7,0}
+ Ay min{ugy1(0,1) - r,0},
(A1 + Ay + p)ug(e,0) =c(7 + k) (7.26)
+ Ay min{ug(i +1,0) — r,ug(:,0)}
+ Ag min{ug41(7,0) + ug(0,1) — r, u(:,0)}

+ pug(r —1,0), 12> 1.

The policy minimizing first passage cost to state (0,0) from starting state
(i k) must first minimize the cost to state (0, k). Let mf : S +— {0,1}2, denote
the optimal flow control minimizing first passage cost to state (0, k), where S =

{(,)e 20,5 2 k}. Then by (7.25), 7 = mpyq on Sgyq.

It can be argued that for & large enough, the first passage cost to state (0, k)
from all states (4,) + &) is minimized by closing the system to all arrivals until

state (0, k) is reached. The optimal flow control 7 is monotonic by default for

such A.

The objective is to show that monotonicity filters down through (7.26) from
Te41 10 7o and thus to =g, the optimal flow control for first passage cost to
state (0,0). We were not able to carry out this downward induction program.

The difliculties encountered are very similar to those related to the induction

- 121 -




ey

¢

approach of Section 7.1,

7.4 Interchange Arguments

In the preceeding three sections, the emphasis was on the optimality of mono-
tonic flow control; the jointly optimal scheduling was either left not identified, as
in the Linear Programming Approach, or assumed, as in the First Passage Cost
Approach. In this section we comment on the possibility of adapuing interchange
arguments used for pure scheduling problems to our scheduling and flow contiol

problem.

The use of interchange arguments in scheduling problems goes back to Cox and
Smith [17] who applied it to prove that the optimal priority assignment minimizing
long -run average costs in A/ /G /1 queues is the pe-rule. The power of interchange
arguments was revealed in the seminal contribution of Varaiya, Walrand, and
Buyukkok [79] on bandit processes. Basic ideas from [79] were applied to dynamic

scheduling of queues in [11], [33], [53], [54].

The basic procedure to establish the optimality of a policy = with a given
property p (like the pe-rule say) consists in considering another policy # which
does not have property p, and showing that = outperforms #. The comparison
between m and 7 usually involves a comparison of sample paths under both poli-
cies. This comparison hinges on the independence between arrival processes and
service processes in scheduling problem in queues. This assumption is obviously
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violated when flow control is exercised together with scheduling. We were not
able to circumvent the difficulties arising from the dependence between arrival
and service processes, to obtain the optimality of SEJF scheduling and monotonic

flow control by interchange arguments.

7.5 Optimal flow control in priority queues

The optimal flow control problem in priority queues has been alluded to in
Section 7.3 in aelation to the minimization of the expected undiscounted first
passage cost until a return to an empty queue operated under SEJF scheduling.
Another formulation is examined here, where the state evolution of a priority

queue with flow control is observed at decision epochs, namely at arrival epochs.

The model is as in Chapter 2, but with only two classes of jobs, and SEJF

scheduling applied: that is, priority is given to type-1 jobs over type-2 jobs.

The memoryless property of the exponential interarrival-time and service-
time distribution guarantees that the system has the Markov property at arrival
instants, that is, the future evolution of the system depends only on the current
state and on the selected control. The resulting decision process is a continuous—

time Markov decision process over S,

Ak .. .
Lt \,( )(I.J) denote the minimal expected a-discounted net cost, when a
class & job has just arrived to a queue in state (¢,5), and the horizon is n, that
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is. the system will operate until n additional jobs have arrived and then admit
no further jobs. A terminal cost Uy(i, j) is incurred if the state at termination is
(¢,J). For example, the server might continue to operate until all ¢ 4 j jobs have
been served, in which case Uy(4, j) is the expected a-discounted holding cost until

the gueue is depleted of the i + j jobs.

We denote by T' the interarrival time; T is exponentially distributed with
ratec A = A + Ay, Then, ",sk)(i,j) satisfly the following dynamic programming

optimalily cquation:

$D00g) = min{Un(e + 1,§) = 1,Un(s, j)},
(7.27)
Vi (e g) = min{Un(i,j + 1) = 1, Un(i, )},
for n 2 0, where
Un(iyj) =E/0 e~ || X(4,y, )] d
+ (/A Ee TV D (X, 5.1) (7.28)

+ (Ao/A) BTV (X(4, j, 7)),

n—

where X(1,.1) is the population vector-process between two successive arrivals,
with coordinates given by
‘\-l(ivj’l) = (Z - Nl(t))+a
(7.29)
Xalt, Jit) = (7 = No(t — i),
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where 77 is the random time required to served the ¢ type-1 jobs present imme-
diately after a dedision epoch, and Ny(t), Nqo(t) are Poisson processes with rate
1, iy respectively, |1 X(4, 4, 0Ol = Xi(z,3,1) + Xa(4,5,1) is the number of jobs in

quene [ units of time after the last arrival epoch. As usual, zt = max(0, 2).

The first term on the right-hand-side of the equation for Uy, is the expected a-
discounted cost incurred until the next arrival. The remaining sum is the expected
present value of the optimal net cost over the remaining n — 1 decisicn epochs. It
follows that the optimal flow control when n decision epochs remain is:

admit a type-1 job in state (i,7) if Up(¢4+1,5) — Un(é,5) <1y

admit a type-2 job in state (7,7) iff Un(7,5+ 1) = Un(2,5) <.

We expeet that the optimal admission policy is monotonic (switch-curve) for
static priority queues.  Monotonicity of the optimal flow control would follow
if functions Uy, are non--decreasing, supermodular, and convex. Our efforts to
establish these properties by an inductive argument based on (7.27) and (7.28)
remained unsuccessful. The difficulties encountered are similar to those discussed

in Section 7.1,

It should be emphasized in this context that although we anticipate the mono-
tonicity of the optimal flow control in static priority queues, the same is not true
for any dynamic scheduling policy. Here is an example of a scheduling policy for

which the corresponding optimal flow control is not monotonic; the parameters
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= 1.0 =09 c=1.0

ftg = 0.5 py = 0.1 r=75.0

In Figure 7.3, it should be understood that service is devoted to class 2 in all

states (0, j).

.
(X
oo e
seo 00
YR NRX]
ENNEK]
FENENN)
te0e 000000
P00 0000000
se00 0000000
e 000000000
o0 000000000
o000 000006000 OO
o006 00000000000
0 | 13

Fig. 7.1 Optimal flow control for type—1 jobs.
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Fig. 7.2 Optimal flow control for type—2 jobs.
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Chapter 8 Generalizations

Two generalizations of the basic model described in Chapter 2 are briefly
considered here. First, the Poisson arrival processes are replaced by independent
Markov-modulated Poisson arrival processes (MMPP). It appears that SEJI® re-
mains optimal, an indication that this optimality is insensitive to the exponential
assumption for interarrival times. Second, we consider a network of two multi
class single-server queues with feedback where jobs either leave the system or
join the other queue upon service completion. Exogencous traflic is subjected to
dynamic flow control and dynamic scheduling is exercised at cach node. For an
appropriate sclection of the routing probabilitics, a tandem network is obtained.
The optimality of SEJF persists at the sink node only. In hoth the MMPP model
and the network model, the jointly optimal flow control is switch curve, but the
boundary hetween acceptance and rejection regions is more complex than in the
basic model. Again in this chapter we restrict to two classes of jobs, assuming

throughout that yy > puy.
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8.1 MMPP arrivals

A Markov-modulated Poisson process (MMPP) is a doubly stochastic Poisson
process; that is, a Poisson process whose instantaneous rate is itself a stationary
random process which varies according to an irreducible Markov chain with m
states. An MMPP is characterized by the infinitesimal generator @ of the un-
derlying Markov process and by the vector of corresponding rates (Aq, Ag, ..., Am).
The MMPP is in phase ¢ when the underlying Markov process is in state i. When

the MMPP is in phase ¢, arrivals occur according to a Poisson process of rate A;.

We propose here to replace each Poisson arrival streams in the basic model
by a two-phase MMPP. Thus, for £ = 1,2, type-k jobs arrive according to an

MMPP with rates (,\(lk), ,\.(f)), and generator

_o{) o)
Q) = . (8.1)
OB

The state of the system is now characterized by the number of jobs of each

type in the system and the phase of each MMPP. Thus, the state space is

S={x=(r],r9.71,y)|ry 20,29 > 0,41 € {1,2},49 € {1,2}}. (8.2)

As in the case of Poisson arrivals, control a = (ay, a9, ag) specifies whether a
type kb arrival (A = 1,2) should be admitted (a; = 1) or rejected (a; = 0), while
ag specifies whether service is devoted to type-1 (ag = 1) or to type-2 (ag = 0).
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Performing uniformization, we obtain a continuous-time Markov decision
process on S with state transition probability from x = (&, 09.71,iy) to y =

(41,42, J1,J2) under action a = (ay,ay,ag) given by

p(x, a)y)A =‘\$ll)a] l[y = AIX] + /\522)(12][}’ = AQX]
+agzlly = D1x]+ po(1 — ag) Iy = Dyx] (8.3)
+at1ly = PCix) + e Pily = Peyx),

where

A= ’\(l]) + /\.(2]) + ,\(12) + /\.(22) + g+ g+ agl) + agl) + UE‘Z) + 02(22), (8.4)

is the total event rate, /] | the indicator function, and

Ax = (ry 4 1,29,1,19),

Agx = (ay, a9+ 1,41,1y),

Dix = ((x1 = 1), 29,11,79),

Dyx = (21, (z3 ~ 1)¥,i1,i9),
PCx = (a1,29, 1 + (iymod(2)),i9),

PCyx = (ry,x9,71, 1 + (iymnod(2))).

The transformation PC'y and PCy correspond to phase changes in the underlying

process for cach class ol jobs.
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The average cost optimality equation is
Av(x) + g =c|x]|
+ /\511) min {v(A1x) — 7, v(x)}
+ /\5-3) min {v(A9x) — r, v(x)} (8.5)
+aiVo(PCix) + 0o(PCyx)

+ min {/llv(Dlx) + v (x), prv(x) + /LQ’U(DQX)}.

Irom general results in [6], the optimality equation has a unique solution v,
g. The stationary policy determined by (8.5) is optimal, and the scalar ¢ is the

minimum average cost (independent of the starting state).

Policy iteration was applied to (8.5), as in section 2.2, to determine the optimal
combination of flow control and scheduling minimizing long-run average net costs.
The optimality of SEJF persists in the case of MMPP arrivals provided again that
th flow control is simultancously optimal. The boundary between acceptance
and rejection regions is phase-dependent for each class of jobs. Although some of
the lincarity exhibited in the case of Poisson arrivals is also observed for MMPP
arrivals, the admit /reject boundaries are usually slightly more complex as shown

by the following example with parameters:
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p1 =10 A =50 A =0
jtg = 0.5 A = 0.3 AP =0
A =0.1 o) = 0.02 c=1.0
% = 0.01 o = 0.01 r=30.0

For these parameters, the optimal flow control for type-1 jobs in phases (2, 1)
and (2,2) are both of threshold-type on the number of jobs in quene, with thresh-
olds 18 and 21 respectively. In phase (1,1) it is optimal not to admit any type 2
jobs, while in phase (1,2) it is optimal to admit type-2 jobs only in states (0, 0)
and (0, 1). The remaining optimal acceptance regions are shown in Figures 8.1 to

8.1 below.
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Fig. 8.1 Optimal flow control for type-1 jobs, in
phase (1,1).
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Fig. 8.2 Optimal flow control for type-1 jobs, in

phase (1,2).

10

I

Fig. 8.3 Optimal flow control for type—2 jobs, in

phase (2,1).
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Fig. 8.4 Optimal flow control for type-2 jobs, in
phase (2,2).

8.2 Tandem queues

We consider the network of Figure 8.5. Both stations are multi class single
server queues with dynamic scheduling and dynamic flow contiol on the exope-
neous traffic. Two classes of tasks use this network. Upon service completion, a
job cither leaves the network or joins the other queue. Interarrival and service
times are exponential and class—dependent. Arrival intensities may be station
dependent as well; however, the service rate for a given class of jobs is the same
at both nodes. We follow our convention that holding cost rates and admission

rewards are class—independent, denoted as usual by ¢ and » respectively.

The state of the system is characterized by the population of jobs of cach Lype

at cach station. Thus, the state space is

S = {x = (v11,791,719,299)| 7 > 0}. (8.6)
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Fig. 8.5 A simple feedback network.

The coordinate vy refers to the population of class—: tasks at node k.

The control a = (ay1, agy, a3y, a9, a9, age) specifies whether a type—i arrival
(+ = 1,2) should be admitted at node k, (a; = 1) for k = 1,2, or rejected
(ajr = 0), while agy specifies whether service is devoted to type-1 (agp = 1) or to

type 2 (ag = 0).

( Performing uniformization, we obtain a continuous-time Markov decision pro-
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cess on S with state transition probability from x to y under action a given by
2
px,a,y)A = Y Apeandfy = Apx] + Ageag Iy = Agix]
k=1

+ /twsk{(l —pe)lly = Dyex] + pi Iy = '/'u-X]}

(8.7)
+ (1 = ag){(1 = p)1ly = Doax] + il ly = T}
where
2
A=Y (Mg + Aok + gy + pa) (8.8)
k=1

is the total event rate, I] | the indicator function, py is the probability of a transfer
from node & to the other node (independent of class). The state transformations
A and Djy correspond as usual to arrivals and departures of type 7 jobs at node
k. The transformations 7T} correspond to the transfer of a type ¢ job from node
k to the other node; for example Ty9(X) is equal to (r1) + 1, w9y, 19 — 1,.ryy) if

19> 0, and to x if w9 = 0.

e

B s
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The average cost optimality equation is

2
Av(x)+g=c|x]| + ) {/\“. min {v(A;xx) — r,v(x)}
k=1

+ Agp min {v(Agex) — r,v(x)}
+ min{p1 [pro(Tux) + (1 = pe)o(Dyx)] + ppo(),

o) + [ peoTox) + (1 = po( D) .

(8.9)

From general results in [6], the optimality equation has a unique solution v,
g. The stationary policy determined by (8.9) is optimal, and the scalar ¢ is the

minimum average cost (independent of the starting state).

An application of policy iteration as in section 2.2 is possible only to a small
size network. The number of states grows very rapidly with the maximum number
ol tasks accepted into the system. For example there are 135751 states when the
network total population cannot exceed 40. Value iteration [77] was used to obtain

¢ optimal flow control and scheduling for this network.

Setting pp = 1 and py = 0, we obtain a multi-class tandem network with flow
control and scheduling at each node. This is a multi-class version of the model
studied in [23]. From an application of value iteration to (8.9) for numerous sets

of parameters, it was observed that SEJF remains optimal at the sink node only,
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provided that the flow control at cach node and scheduling at the souree node are
simultancously optimal. When flow control is not exercised (infinite queues), the
optimality of SEJI (of the pe-rule in fact) at the stk node was established in

[53] and [5].

The optimal acceptance regions are characterized by monotonic surface O in
the four-dimensional state-space, one such surface for each pair (job class 7, node
k). Some of the linearity found in the single-node model remains in the tandem
network; however the boundary between acceptance and rejection regions in the

tandem network is slightly more complex in general.

When feedback is allowed, p; > 0 and py > 0, the model is a multi Jass
version of the one considered in [14]. SEJF ceases to be optimal in general, but

optimal flow controls are monotonic.

i

A
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Chapter 9 Conclusion

Congestion control is an integral part of the design and analysis of telecom-
munication networks. The scarch for dynamic procedures optimizing some figure
of merit has produced a substantial literature on the dynamic control of queueing
systems. Flow control, scheduling, and routing are the main constituents of con-
gestion control. It is only very recently that the combined optimization of these

components has been undertaken ([41], [82], [87]).

9.1 This thesis

This thesis introduced the simultaneous optimization of scheduling and flow
confrol in multi-class single-server queues. It addressed in particular the opti-

mality of static priority rules in the presence of flow control.

A Markovian model was proposed, with a cost/benefit structure reflecting the
fact that delay is bad and throughput is good. General results from the theory

of Markov decision processes were invoked to characterize the jointly optimal
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schedule and flow control.

Examples were provided to show that the pervasive pie rule is not optimal in
general when flow control is exercised, even when flow control is Jointly optimal. It
was obscrved that for class-dependent waiting cost rates the optimal scheduling,

in the presence of flow control may be rather complex.

In the special case of class-independent user -fees and waiting cost rates, the
problem amounts to characterizing the combination of preemptive scheduling and
flow control optimizing the tradeofl between delay and throughput. In this con-
text, we considered first the special case of two queues, one of which is saturated.
In that setting, we provided a direct proof of the optimality of static priority rules
when combined to simultancously optimal flow control. The optimal scheduling
is the SEJF rule (Shortest Fxpected Job First) while the optumal flow contiol is

a control-limit admission rule.

Proving that a similar result persists in the general case of two independent,
Poisson arrival processes presented unexpected difficulties. The Linear Program-
ming Approach introduced in [61] and generalized in [80] fails in this context.
Several other techniques, among which the Inductive Approach, do not apply

casily; the nature of the difficulties are pointed out.

In view of these analytical difficulties, an extensive computational investiga-
b]
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tion was undertaken. It led to the conjecture that SEJI remains optimal for
independent Poisson arrival processes, when coupled to simultaneously optimal
flow control. This computation also revealed that the jointly optimal monotonic
flow control is characterized by switching curves that are very nearly linear. It was
also observed that the class of window flow controls is only slightly suboptimal, in
that the overall optimal tradeoll between delay and throughput can be achieved
very closely by window policies. This observation illuminates the relative value of

state feedback in the control of queueing systems, a topic that warrants further

rescarch.

An approximate performance analysis was derived. The aporoximation is
hased on the near- linearity of the optimal acceptance/rejection boundary and on

a steady state assumption. The approximation is shown to be very robust and

capable of remarkable accuracy.

Several extensions and generalizations were considered to examined the sen-

sitivity of the above conjecture to the underlying assumptions. The simultaneous
optimality of SEJI® and monotonic flow control persists when there are more than
two classes of tasks: morcover, the optimal acceptance/rejection boundaries are
very nearly linear.  The claim also scems to be insensitive to the exponential

} assumption about interarrival times, as its validity extends to MMPP arrivals.

>
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9.2 Future research

The difficulties related to the proof of the optimality of SEJI scheduling
coupled to monotonic flow control must be resolved. This requires cither that
the difficulties encountered in the application of well- established techniques be
circumvented or that a new approach be used to clarify the dependencies between

arrival and service processes.

We have studied preemptive scheduling to model the possibility of interweav-
ing multi-packet messages.  Preemption is not always possible or desitable in
certain context. The optimization of nonpreemptive scheduling in the presence of
dynamic flow control is an open research problem. Nonpreemiptive static prionty
rules are known to be optimal in a wide variety of models. As for preemptive
scheduling, this optimality rests on the independence between service and arrival
processes, a condition that is violated when flow contiol is exercised. As in this
thesis, the goal is to determine to what extent and in what context this condition

can be relaxed.

The subject of optimal flow control in priority queues is closely related to
our problem. In view of the importance of priority queues, and of the abundant
literature on optimal flow control, it is somewhat surprising that the problem of
dynamic flow control in priority queues has not been addressed yet. Much remains

to be done in this arca,
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Optimal schieduling and optimal flow control of messages with real-time con-
straints is a research topie of current interest. So far however, each control mecha-
nism has been studied in the absence of the other. A generalization to constrained

simultancous optimization of scheduling and flow control is an open problem.
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The saturated queue:
Appendix A verification of the
optimality of

This appendix supplements the analysis of Chapter 3. We sketeh the veri-
fication that policy 7:'8"’ is overall optimal when gy < gp; this requires that the
relative values vg(i, j) corresponding to 7r8’" be shown to satisly the optimality
equation (3.1). That n‘l)"' is overall optimal when g < g involves similar elemen-
tary manipulations that will not be presented here. For simplicity, we drop the

superscript opl of 7r81"‘ in the following.

We rewrite the dynamic programming optimality equation as
v(e g) = min Z(t, J,ay,a9), (A1)
(ay,a2)€{0,1}*
where Z(-,+,+,+) is defined by equation (3.4). By definition,
vg(dyg) = Z(2,§,mo(2, 7)) (A2)

To establish the optimality of mg, we need to verify that for all (+,) € S,

vgling) < Z(ij,ay,a9), (ar,ag) # mole,y). (A3)
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In view of the definition of 7, the verification can be divided into four cases, two

of which will be considered in greater details.

A.1 Optimality of r; in state (:,0), i > ny.

The action specified by g in states (7,0) for i > ny is 7g(Z,0) = (0,1), that

is (reject type-1 arrivals, serve type-1 jobs). To show that this is the best choice,

we compare to the alternatives,

A.1.1 Action (0,1) is better than action (1,1).

Action (0,1) is preferred to action (1,1) (accept type-1 arrivals, serve type-1)

. = go Al ) I .
0(i,0) < + 1,0) =]+ ————wvp(z - 1,0),
oy(i,0) Y v [vo(é 4+ 1,0) — 7] + /\lervo(z )

which is equivalent to

0 <ei = go—py [0p(i.0) — vg(i = 1,0)] + Aq [ug(é + 1,0) - vg(3,0) — 7].

But

vo(i.0) = vo(i — 1,0) = —c—’—l—‘-_lﬂ i > ng,

which combined with

: )  +1) — 1) —
i +1.0) = vgi.0) = & +M) 90 , elno +m) 0.,

b

proves (A.1); the last inequality in (A.T) comes from (3.71).
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A.1.2  Action (0.1) is better than action (0,0).

Action (0.1} is preferred to action (0,0) (reject type-1 artivals, introduce a

type-2 job in service) if

1) —
vp(¢.0) < M —r+4 vg(s,0). (-.8)
12
that is
por < c(t + 1) — gy, (1.9)
which follows [rom equation 3. and
par < jr <elng+ 1) —go < i + 1) — gp. (A.10)

A.1.3 Action (0.1) is better than action (1,0).

Action (0,1) is preferred to action (1,0) (accept type-1 arrivals, introduce a
type-2 job in service) if

ci+l) —go ot Al
A+ po AL+ pg

[o(i + 1,1) — 7] + 2 (1, 0), (A1)

rp(i,0) <
o{n0) = Ay + ey

which is equivalent to

0 < [cli+ 1) =go—por] + Ay [oli + 1, 1) = 02 4+ 1,0) = r]

(A.12)
+ A [v(@ + 1,0) = 0(7,0) - r].
Invoking (3.) again we have
i+ 1) =gy —ppr 2 c(ng + 1) = g9 — pgr > (gt — py)r > 0. (A.13)
After substitution and simplification we obtain, for ¢ > ng + 1,
. . 1 | (e 4+ 1) — ¢
vo(t, 1) — vg(i,0) = [ = go + do(ng — 1)] (*— - —) gt l=m (A.11)
#1211 "
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By definition of ng, ¢(ng —1) > ¢(ng) = gg; combined with (A.6), this yields that
second and third terins of the right-hand side of (A.12) are positive. Thus (A.12)

verifies.

A.2 Optimality of r; in state (i,0), 0 <i < ng.

The action specified by mg in states (7,0) for 0 < ¢ < ng is mp(,0) = (1,1),
that is (accept type-1 arrivals, serve type-1 jobs). To show that this is the best

choice, we compare to the alternatives.

A.2.1 Action (1,1) is better than action (0,1).

Action (1. 1) is preferred to action (0,1) (reject type-1 arrivals, serve type-1

jobs) if

¢t — go
11

v0(i,0) < +vg(i — 1,0) (A.15)

that is il

MMWWSa;%+MFJMJM (A.16)
1

Substituting for N(-,-,-) and using (3.) which states that

ng _ p—p"ot!
N > _— .
w2 e -5 (A1)

iequality (A.16) reduces after simplification to
0 < (ng—i)(l—p)-(1—p™7) (A.18)

which verifies,
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A.2.2 Action (l,1) is better than action (0,0)

Action (1,1) is preferred to action (0,0) (reject type-1 arrivals, introduce a

type-2 job in service) if

lro(i,O)SW—7'+lvo(z,0) (.1.19)
2
that is if
c(? + 1) — par 2 go, 0<i<ng—1 (1.20)
But,
c—pgr = ¢1(0) 2 ¢1(ny) = g1 > gp. (A.21)

Thus (A.18) verifies.

A.2.3 Action (l.1) is better than action (1,0)

Action (1, 1) is preferred to action (1,0) (accept type-1 arrivals, introduce a

type-2 job in service) if

. (i +1)—gp A
(i, 0) < &L 70
(1, 0) < AL+ ' AL+

. "2 .
volv + 1, 1) = r] + ———py(2,0) (A.22
[vo( ) =] Y 0(2,0) (A.22)

This case needs to be further subdivided according to whether 1 =0, or | <4 <

ng—2,0ri=ny—1. We will consider the case { =0 only.

Since vg(0,0) = 0, inequality (A.22) reduces to

0<c—gp— (A + pa)r+ Ap[eg(1,1) — 7] (A.23)
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After substitution and simplification, this becomes

0 < (1 ; *—?) ( ! "”"") [éa(m0 — 1) — do(no)] (A21)
12 l—p

which follows from
¢1(ng — 1) = é1(n1) = g1 > go = do(no) (A.25)
the fitst inequality resulting from the definition of ny (3.), the second inequality

heing the basie assumption.

The optimality of mg in state (¢,0), for 0 < 2 < ng, and in states (¢,1),

0 <1 < ny -1 is established similarly.
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Proofs of

Appendix B Propositions 7.1 to 7.7

In this appendix we sketch the elementary proofs of the propositions in section
7.1. We recall that for a real-valued function f and a real constant r > 0, the

transformations Ty f and T, f are defined by

Tif(eper2) = min{f(ry + Lay) = v, (a1, 02)},

Ty f(ry ) = min{f(xy, 09+ 1) = r, f(ry,ry)}).

Proposition 7.1
If [ is nondecreasing in ) and in x9,
then Ty f and Ty f are nondecreasing in v and in @y,

Proof: Obvious.
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Proposition 7.2

If [ is supermodular, subconvex in x|, and subconvex in z9,

then fis convex in @y and in 29.

Proof: The convexity of f in 1 follows from the sequence of inequalities
T+ 1,a9) = flx2p) < f(zi+ Lag+ 1) - flzr, 29+ 1), (B.1)

Sf(rl+2s$2)—f(wl+lax2)’ (Bz)

where (B.1) is due to supermodularity of f, and (B.2) to subconvexity of f in z;.

e * . 3 . .
Fhe proof that [ is convex in rg is symmetric.

O

Proposition 7.3
If [ is supermodular, convex in 21 and convex in z9,

then 77 f and Tyf are supermodular for all 7 > 0.

Proof: We want to show that
Ti(ey + Loag) = Ty(ey, x09) L Ty(xy + 1,29 4+ 1) — Ti(ey, v2 + 1). (B.3)

Label point (ry,ry) with A or R according to whether f(z1 + 1,z9) — f(z1,z9)

is <1 or > r, with the obvious interpretation of admission or rejection of type-1

jobs in the context of finite-horizon discounted costs. Since f is convex in z and

in .y, there are only six cases to consider in (B.3), namely

AA AR AR RR RR RR
AN, AA, AR, AA, AR, RR.
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Incquality (B.3) follows directly from the supermodularity of [ in the first and

sixth cases. In the sccond case, (B.3) becomes

flrr+229) = floep + Leg) <y (5.1)

which verifies because of the lower right A. In the third case, both terms of (B.3)

are equal to r. In the fourth case, (B.3) becomes

fler+2.09) = flap+ Lag) £ flep + Lawg+1) = fleg, 00+ 1), (B.1)

which verifies because lower right A and upper left R means

Sler+2,09) = fler+ L, a9) < v < flag + Lag+ 1) — [, 09+ 1), (13.5)

Finally, in the filth case, (B.3) becomes

r< @+ Lag +1) = f(ag,e + 1), (13.6)

which verifies hecause of upper left R. The proof that T4f is supermodular 1s
symmetric.
Proposition 7.4

If fis convexin g,

then T f is convex in ay for all r > 0.

Proof: We want to show that

Ti(ry +1,09) = Ti(xy,29) S Ti(2y + 2,29) = T (2] + 1, .89). (13.7)
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Using the labelling introduced above, the convexity of f reduces the number of
cases to four, namely AAA, AAR, ARR, RRR. In the first and last cases, (B.7)

follows directly from the convexity of f. In the second case, (B.7) becomes
flxr+2,29) = f(z1+ 1, 29) <, (B.8)

which verifies by middle A. Finally, in the third case, (B.7) becomes
r<f(x1+2,29) - [(z1 + 1,22), (B.9)

which verifies by middle R.

Proposition 7.5
If [ is convex in xy,

then T4 [ is convex in xq for all 7 > 0.

Proof: The proof is syimmmetric to the one for Proposition 7.4.

Proposition 7.6
For f nondecreasing and supermodular,

then 7'y fis convex in ag for all » > 0 iff f is subconvex in 9.

Proof: We first prove the “if” statement, that is we want to show that
Fi(epag + 1) =T (e, 09) S Ti(ay, 29+ 2) = Ti(xy, 29+ 1). (B.10)

Because [ is supermodular, only four cases need to be considered in (B.10),

namely
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A R R R
. A A R R
A, A, A, R.
In the first and last cases, (B.10) follows from the convexity of [ in wy which itself
results from the supermodularity and the subconvexity in av of f. In the second
case, (13.10) becomes
Ty Ly + 1) = flay+ 1ag) S flag, g+ 2) = [y + Loy + 1) e (B.11)
But
Jlep+ Loy + 1) = [y + Lag) Sf(eg, 00 +2) = [(ry, 004 1) (13.12)
[y, ea+2) = flop + Loy + 1)
" HI(r 4 Lag 1) = flrpoes + 1)) (813)
S ap+2) = flep + Loy + 1) e (B1)
where (B.12) 1s subconvexity in ay, (B.13) is (B.12) with a term added and sul)
stracted. and (B.11) comes from the middle A. In the third case. (B.10) becomes
S+ D)= flop+ o) +r < flaepoay +2)= f(r).ory + 1) (1315)
But
Frreag+1) = [+ Lag)+ 0 < [l o+ 1) = fle + 1))
Sy + Lag + 1) = Sy + 1)) (13.15)
<flep + Lay+ 1) = flrg +1ory) (13.16)
el
> <J,ae+2) = [l oy +1) (1317)
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where (B.19) comes from the middle R, (B.16) is just (B.15) after simplification,

and (B.17) is subconvexity in 9.

We now prove the “only if” part of the claim. We proceed by contradiction,
assume that [ is not subconvex in ry, and show that a value of r can be found

such that 7' f is not convex in xy. Suppose there is a point (rq,rg) such that

Mooy +2) = flag, o+ 1) < f(zp + Lag+ 1) = f(xyp + L,x2). (B.18)

By supermodularity, we have that

Jrp+ o) = flaprg) < flap+ L+ 1) = fleg.ag + 1)

(13.19)
< flar+ Lag +2) = flay, 29 +2)
Select v = floep+ Loy + 1) = f(xy,r9+ 1). Then
Ty f(ry,xe) =[xy + 1, x9) =,
Nf(rpag+1)=flop+ Lag+ 1) =7
(B.20)

=f(.’l‘1,.l"2+ ])a

I (eyees +2) = flag, g +2),

which tnmiplies that

Filrpag +2) =T (g + 1) = f(eypaa+ 2) = fry, 294+ 1) (3.21)

(|||(l

Filepoey+ 1) =Ti(epeg) = flap+ Lag+ 1) = flag +1,29). (B.22)

Combining (B.18). (B.21). and (3.22), we obtain that

Pi(rpoeg + 1) =Ty (g, 09) > T2, 29+ 2) — TY(x1. 79+ 1) (B.23)
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a contradiction to the convexity of [ in xy.

Proposition 7.7
For f nondecreasing and supermodular,

then Ty f is convex in ay for all » > 0ifF £ is subconvex in ry.

Proof: The proof is symmetric to the one for Proposition

7

N3
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