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Abstract 

Type 1 diabetes is a chronic condition resulting from the immune-mediated destruction of insulin-

producing pancreatic beta cells. Consequently, lifelong insulin replacement therapy is required to 

manage the disease via multiple daily injections, most commonly using insulin pens, or continuous 

subcutaneous insulin infusion with an insulin pump.  

The recent advent of continuous glucose monitoring with glucose sensors has augmented 

both insulin delivery methods, transforming the standard of care for type 1 diabetes. Despite this, 

attaining optimal glycemic targets is still challenging for most people and carries the risk of long-

term complications. 

In 2024, we have a variety of technological innovations that are commercially available, 

ranging from advanced glucose sensors to hybrid closed-loop systems to connected insulin pens. 

Since their introduction, insulin pens have dominated the global market and have gradually 

evolved over time. However, it was not until recently that smart pens and attachments began 

integrating continuous glucose monitoring coupled to digital platforms for combined real-time 

tracking. Yet, these devices still lack an adaptive decision component for unsupervised use.   

The concept of personalized decision support systems is an emerging avenue marked by a 

growing interest in addressing this unmet need for individuals with type 1 diabetes using multiple 

daily injections. While a limited number of systems were investigated in large clinical trials, none 

have demonstrated glycemic improvement to date. Nevertheless, an effective automated approach 

could offer value to this underserved population, given the infrequent clinical monitoring in 

practice despite evolving insulin needs, partly due to restricted resources. 

The core objectives of my thesis were to investigate the clinical outcomes and practical use 

of the McGill decision support system, integrating a novel optimization algorithm designed to 
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titrate insulin injection parameters, in hopes to bridge the gap. My primary work involved 

conducting a 12-week randomized controlled trial in 84 adults using multiple daily injections with 

type 1 diabetes and suboptimal glycemic control. This trial aimed to assess the effectiveness of the 

McGill decision support system in improving glycemia compared to a smartphone application with 

a non-adaptive insulin dose calculator. The primary outcome demonstrated a statistically 

significant and clinically meaningful improvement in glycated hemoglobin levels (gold standard 

assessment of glycemic control) with the system compared to the standalone application. 

Notably, this trial is the first to demonstrate glycemic improvement with algorithm-guided 

insulin adjustments in adults on multiple daily injections. It is also the first to include a mixed 

methods approach, encompassing qualitative outcomes that shed light on unique patient 

perspectives regarding the use of this system. 

The second part of my thesis entailed a three-part sub-study to evaluate the practical utility 

of this algorithm. This was accomplished through non-inferiority comparisons of weekly (Part A) 

and biweekly (Part C) adjustments made by the algorithm, benchmarked against those made by 

various endocrinologists. A novel assessment of intra-physician variability compared each 

endocrinologist’s adjustments made in Part A to those made 12 weeks later (Part B), using the same 

dataset.  

The main findings revealed comparable proportions of full agreement and full 

disagreement in the direction of insulin dose adjustments made by the algorithm to those made by 

endocrinologists. Interestingly, on average, physicians only fully agreed with themselves on the 

direction of insulin change about two-thirds of the time. Furthermore, the same physician even 

occasionally disagreed with themselves, reinforcing the subjective and complex nature of human 

decision making. Moreover, the average absolute percentage of change made by physicians was 
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higher than that of the algorithm, underscoring the algorithm’s conservative approach. Overall, 

this study highlights the algorithm’s potential utility in practice while also conceivably alleviating 

concerns about inadequate medical oversight.  

Collectively, my thesis work demonstrated the clinical effectiveness and practical utility of 

the McGill decision support system, paving the way for clinical translation.   
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Résumé 

Le diabète de type 1 est une condition chronique résultant de la destruction par médiation 

immunitaire des cellules bêta du pancréas qui produisent de l’insuline. Par conséquent, 

l’insulinothérapie est nécessaire pour toute la vie afin de gérer la condition par des injections 

quotidiennes, à l’aide de stylos à insuline, ou par l’infusion sous-cutanée continue d’insuline avec 

une pompe à insuline.  

Le développement récent de la surveillance continue du glucose à l’aide de capteurs a 

amélioré les deux méthodes d’administration de l’insuline, ce qui a transformé la norme de soins 

pour le diabète de type 1. Malgré cela, l’atteinte des cibles glycémiques recommandées demeure 

un défi pour la plupart des personnes, avec le risque de complications à long terme. 

En 2024, il y a plusieurs innovations technologiques disponibles sur le marché, comprenant 

des capteurs de glucose avancés, des systèmes semi-automatisés en boucle fermée, et des stylos à 

insuline connectés. Depuis leur introduction, les stylos à insuline ont dominé le marché global et 

ont progressivement évolué. Toutefois, ce n’est que récemment que les stylos et les accessoires 

intelligents ont commencé à intégrer la surveillance continue du glucose couplée à des plateformes 

électroniques, pour permettre un suivi en temps réel. Cependant, ces appareils ne sont toujours pas 

accompagnés d’un élément adaptatif pour une utilisation non supervisée.   

Le concept de systèmes d’aide à la décision pour les injections d’insuline personnalisées 

est une voie émergente intéressante pour répondre à ce besoin méconnu des personnes atteintes de 

diabète de type 1 qui utilisent des injections quotidiennes. Bien que plusieurs systèmes aient été 

évalués dans le cadre d’essais cliniques, aucun d’entre eux n’a montré d’amélioration de la 

glycémie à ce jour. Néanmoins, une approche automatisée efficace pourrait être avantageuse pour 



 

 xviii 

cette population mal desservie, compte tenu du suivi clinique peu fréquent dans la pratique malgré 

l’évolution des besoins d’insuline qui sont dus en partie aux ressources limitées. 

Les principaux objectifs de ma thèse étaient d’évaluer les effets cliniques et l’utilisation 

pratique du système d’aide à la décision de McGill, incorporant un nouvel algorithme 

d’optimisation conçu pour ajuster les paramètres d’injection d’insuline. Mon travail principal a 

consisté à mener un essai contrôlé randomisé de 12 semaines chez 84 adultes atteints de diabète 

de type 1 utilisant des injections quotidiennes et ayant un contrôle glycémique sous-optimal. Cet 

essai visait à évaluer l’efficacité du système d’aide à la décision de McGill dans l’amélioration de 

la glycémie par rapport à une application mobile avec un calculateur de dose d’insuline non 

adaptatif. Le résultat principal a démontré une amélioration statistiquement significative et 

cliniquement importante des niveaux d’hémoglobine glyquée (évaluation de référence du contrôle 

de la glycémie) avec le système par rapport à l’application. 

Cette étude est notamment la première à démontrer une amélioration de la glycémie grâce 

à des ajustements d’insuline guidés par l’algorithme chez les adultes utilisant des injections 

d’insuline. C’est également la première à inclure une approche de méthodes mixtes, comprenant 

des données qualitatives qui mettent en lumière les perspectives uniques des patients concernant 

l’utilisation de ce système. 

La deuxième partie de ma thèse comprenait une sous-étude en trois parties pour évaluer 

l’utilité pratique de cet algorithme. Ceci a été réalisé par des comparaisons de non-infériorité des 

ajustements hebdomadaires (partie A) et bihebdomadaires (partie C) effectués par l’algorithme par 

rapport à ceux effectués par différents endocrinologues. Une nouvelle évaluation de la variabilité 

intra médecin a comparé les ajustements effectués par chaque endocrinologue dans la partie A à 

ceux effectués 12 semaines plus tard (partie B), en utilisant la même base de données.  
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Les principaux résultats ont indiqué des proportions comparables entre les endocrinologues 

et l’algorithme quant aux décisions en parfaite concordance ou discordance concernant la direction 

des ajustements d’insuline. Notamment, les médecins n’étaient en concordance avec eux-mêmes 

sur la direction du changement d’insuline que dans environ deux tiers des cas. Du plus, ils étaient 

même parfois en parfaite discordance avec eux-mêmes, ce qui renforce la nature subjective et 

complexe de la gestion de l’insuline. En outre, le pourcentage moyen de changement effectué par 

les médecins était plus élevé que celui de l’algorithme, ce qui souligne l’approche conservatrice 

de l’algorithme. Dans l’ensemble, cette étude démontre l’utilité pratique de cet algorithme, tout en 

atténuant potentiellement les inquiétudes liées à une surveillance médicale inadéquate. 

Collectivement, mon travail de thèse a démontré l’efficacité clinique et l’utilité pratique du 

système d’aide à la décision de McGill, ouvrant la voie à une future intégration en clinique.   
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Contribution to Original Knowledge 

Here, I outline my thesis contributions to original knowledge. A key point to note is that the 

engineering development of the algorithm (which was used in my clinical thesis work) formed the 

basis of Dr. Anas El Fathi’s former PhD work under the supervision of Professor Ahmad Haidar. 

Building on that, my original contributions presented in this thesis pertain to the clinical conduct 

and evaluation of the algorithm, which we integrated with our novel smartphone application to 

form the McGill decision support system (DSS). 

In Chapter 3, I present a manuscript that was recently submitted to a journal for peer review. 

This manuscript uncovers robust outcomes from a large clinical trial that investigated the 

effectiveness of the McGill DSS, which optimizes weekly insulin injection parameters. This study 

was the first non-pilot clinical work to demonstrate superior glycemic benefit in adults with type 

1 diabetes (T1D) using multiple daily injections (MDI) with suboptimal baseline glycemic control, 

making a positive impact on the field with important future clinical implications.  

Before this work, there was a gap to address the unmet need of adaptive MDI therapy for 

T1D. The interventional evidence is limited to only a few DSSs, all of which were ineffective at 

improving glycemic control. In addition, none of the prior work included qualitative assessments 

to provide insights on patient experiences and viewpoints, which is an increasingly valuable 

measure in clinical trials. For this reason, I added a qualitative sub-study to incorporate a mixed 

methods approach, strengthening the quality of the overall outcomes.  

Furthermore, in light of recent research revealing variability in glucose values between 

different sensor types, I conducted a sub-analysis in a subset of re-consented participants who 

simultaneously wore their personal sensor alongside the study sensor during their participation. 
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The purpose was to explore any meaningful differences in sensor glucose metrics, in attempt to 

better understand some of the secondary glucose outcomes in the study.  

 In Chapter 4, I present another manuscript that was recently submitted to a journal for peer 

review. The manuscript describes a sub-study in which I compared the insulin dose adjustments 

made by the algorithm in the parent trial to mock adjustments made prospectively by a group of 

physician collaborators on identical retrospective datasets. Inspired by another group who 

conducted a survey study comparing their DSS to physicians, I designed this sub-study with a 

similar purpose and methodology to assess the practical use of the McGill DSS while introducing 

a unique study design with additional, novel objectives. In a structured three-part design, facilitated 

by our new physician platform, I captured inter-physician variability for both weekly and biweekly 

insulin adjustments. I also captured intra-physician variability by strategically designing the 

platform for repeated physician assessments on identical datasets in the second part without prior 

access to former assessments collected in the first part.  

The findings indicated comparable recommendations made by the algorithm to those made 

by physicians, highlighting the potential of utilizing the McGill DSS in practice. Moreover, the 

intra-physician variability observed in this study further reinforces the inherent subjectivity 

involved in expert decision making surrounding insulin adjustments.  

Finally, considering that our new physician platform enabled the successful execution of 

this sub-study, it could have broader applications. In the future, this platform could potentially be 

utilized by other researchers to test their algorithms in simulation studies. 
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Chapter 1. Introduction 

1.1 Rationale  

T1D is a chronic condition wherein little to no physiological insulin is produced as a result of 

immune-mediated destruction of pancreatic 𝛽-cells. Consequently, standard management of T1D 

involves exogenous intensive insulin therapy on a daily basis for survival. There are two main 

insulin delivery methods: MDI via insulin syringes or pens and continuous subcutaneous insulin 

infusion via a portable insulin pump. Both regimens have been enhanced with the adjunctive use 

of continuous glucose monitoring (CGM) using glucose sensors, providing similar improvements 

in glycemic control, irrespective of the delivery method. However, most adults with T1D still 

struggle to achieve recommended glycemic targets despite this groundbreaking advancement.  

Nevertheless, over the past decade, we have seen an array of innovative diabetes 

technologies enter the market, chiefly toward the development of an artificial pancreas. More 

specifically, the advent of CGM set the stage for the era of hybrid closed-loop systems for semi-

automated insulin delivery, which has proven to be superior to both sensor-augmented pump and 

MDI.  

Recently, the field of DSSs has gained momentum with increasing interest to fulfill the 

leading yet underserved global market of MDI users. However, there is limited robust evidence in 

the literature to date.  

1.2 Objectives 

The McGill Diabetes Technology Lab has previously developed an optimization algorithm and 

tested its safety and feasibility against physician adjustments in a pilot study. Therefore, the unmet 
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need for adaptive MDI therapy, together with these preliminary findings, prompted further 

investigation of this technology in a larger and longer, properly-powered trial.  

The primary objective of my thesis was to investigate the effectiveness of this algorithm, 

integrated with our novel smartphone application, forming the McGill DSS, in an outpatient 

clinical trial. I led a 12-week randomized controlled parallel trial comparing the McGill DSS to 

the standalone application in 84 MDI-treated adults with T1D and suboptimal glycemic control 

under free-living settings. This study primarily assessed glycemic measures while also assessing 

qualitative outcomes through semi-structured interviews to gain insights into patient perspectives 

concerning their experience using the study software. 

The second objective of my thesis was to evaluate the practical utility of the algorithm by 

comparing its insulin adjustments to those made by a group of endocrinologists. Accordingly, I 

conducted a sub-study surveying 13 physician collaborators in three separate parts. Part A captured 

inter-physician variability, Part B captured intra-physician variability, both for weekly mock 

adjustments, and Part C captured inter-physician variability for biweekly mock adjustments. This 

study compared the direction of insulin dosing and the magnitude of change between the algorithm 

and physicians compared to those among physicians. 

1.3 Outline  

This is a manuscript-based thesis that consists of an introduction with an extensive background 

(Chapter 1), a detailed literature review on the specific area of research related to my core thesis 

work (Chapter 2), the body of the thesis including two manuscripts (Chapter 3 and Chapter 4), a 

comprehensive discussion (Chapter 5), and a conclusion (Chapter 6). Each manuscript-based 

chapter includes a brief preface followed by a dedicated section detailing the corresponding 

contributions of authors. 
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 In Chapter 1, the rationale and objectives were discussed, followed by the outline of this 

thesis. This chapter continues on to provide a summary of the normal physiology of glucose 

homeostasis, followed by the pathophysiology, epidemiology, and short- and long-term 

complications of T1D. Subsequently, a general overview of the history and evolution of insulin is 

provided, in terms of formulations and delivery modes that led to the current standard of care, with 

a focus on commercial insulin delivery systems in their basic, advanced, and future forms.  

 Chapter 2 presents a literature review on bolus calculators and DSSs designed for MDI 

users with T1D. I discuss the current evidence while offering a critical appraisal that might explain 

some of the shortcomings. Finally, I touch on the unmet need for adaptive MDI support tools to 

transition to my first manuscript. 

 Chapter 3 integrates my manuscript describing the randomized controlled trial, which was 

submitted to a peer-reviewed journal. The manuscript presents the study design and methodology, 

an overview of the McGill DSS, the results and discussion, the strengths and limitations, as well 

as the complete list of figures, tables, and references. 

 Chapter 4 incorporates my manuscript describing the physician comparative sub-study. It 

includes the methodology employed, an overview of our newly developed physician platform, the 

study results and discussion, the strengths and limitations, as well as all tables, graphs, and 

references. This manuscript was also submitted to a peer-reviewed journal. 

 Chapter 5 presents a discussion encompassing all chapters while elaborating on certain 

aspects of the studies, including exploratory data. Moreover, this chapter addresses anticipated 

future directions for advanced MDI therapy. To end, a brief conclusion (Chapter 6) summarizes 

how the objectives were met as well as the practical implications of the research for potential 

clinical translation. 
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1.4 Background  

1.4.1 Normal Physiology: Glucose Homeostasis 

Under physiological conditions, glucose homeostasis is tightly controlled by counter-regulatory 

hormones, primarily insulin and glucagon from the endocrine pancreatic Islets of Langerhans. 

These hormones behave in a reciprocal manner in response to changes in plasma glucose levels to 

maintain normal glycemia (Figure 1.1).  

In the absorptive state, the rise in plasma glucose concentration triggers the secretion of 

insulin from pancreatic 𝛽-cells, which enters the circulation to then act on several target organs to 

decrease glycemia while concurrently suppressing glucagon secretion. Insulin stimulates the 

hepatic storage of glucose into glycogen via glycogenesis (1). Furthermore, muscle and adipose 

tissue undergo glucose uptake in an insulin-dependent manner, with the latter promoting the 

production of triglycerides via lipogenesis. In addition, insulin stimulates amino acid uptake for 

protein synthesis in the muscle.  

In contrast, during the fasting state, glucagon is secreted from pancreatic 𝛼-cells into 

circulation to ultimately increase blood glucose levels, predominantly by hepatic glucose 

production. The processes involved entail the breakdown of glycogen into glucose via 

glycogenolysis and the synthesis of new glucose via gluconeogenesis (2).  
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Figure 1.1 Glucose regulation with insulin and glucagon under physiological conditions. 

Permission for content use granted from (3). 
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1.4.2 Type 1 Diabetes  

1.4.2.1 Pathophysiology 

T1D is a chronic life-altering condition marked by the autoimmune destruction of pancreatic 𝛽-

cells, causing dysregulation in glucose homeostasis resulting from the scarcity in insulin 

production. Consequently, exogenous insulin replacement therapy is essential for life, and this was 

made possible following the discovery of insulin in 1921, which transformed T1D from a fatal 

disease to a manageable condition (4).  

In 1975, Unger and Orci coined T1D as a “bi-hormonal” disease with both insulin 

deficiency and glucagon dysregulation (5), altering the paracrine cross-talk leading to glucagon 

hypersecretion postprandially and a defective counterregulatory response to low blood glucose 

(6,7). The latter includes exercise-induced reductions in plasma glucose concentration (8).  

The exact underpinnings of the faulty compensatory mechanisms are still not fully 

understood. Moreover, although the direct cause of T1D also remains to be elucidated, it is believed 

to be influenced by family history through genetic predisposition and an evolving landscape of 

environmental triggers that can induce autoimmunity (4,9). In fact, recent literature has 

underscored unhealthy eating and obesity (traditionally linked to type 2 diabetes (T2D)), pollutant 

exposure, insufficient infant microbial exposure, excessive antibiotic use, and dysregulated 

microbiota as lifestyle and environmental risk factors associated with the initiation of immune-

mediated 𝛽-cell apoptosis. Nevertheless, the underlying pathophysiology of the disease remains 

obscure (9). 

1.4.2.2 Prevalence 

According to the 2022 International Diabetes Federation Atlas report, nearly 9 million people 

around the world are living with T1D, with an estimated 17% of that accounting for people younger 
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than 20 years of age. Although formerly regarded as juvenile diabetes, the onset of T1D can affect 

all ages. In fact, more than 60% of new global cases of T1D reported in 2022 were in adults (10). 

However, the 10th Edition Diabetes Atlas reported epidemiological gaps in incidence rate data on 

adult-onset T1D. 

This Diabetes Atlas revealed that the African country, Eritrea, had the highest incidence 

rate of adult-onset T1D, with 46.2 per 100,000 population, followed by Sweden and Ireland. 

Moreover, the United States nearly tied with Australia in seventh and eighth place at roughly 16.5 

per 100,000 (Figure 1.2). There is a similar trend in the T1D incidence rate in children under 15 

years of age as that in adults, with Finland and Sweden being the highest at 52.2 and 44.1 per 

100,000 population, respectively, and Canada ranking fifth at 37.9 per100,000 (Figure 1.3) (11).  

The country with the highest prevalent case numbers across all ages is the United States.  

Canada is also among the top ten countries with the highest prevalent cases, with roughly 285,000 

Canadians diagnosed with T1D (10). Collectively, Northern Europe and North America are among 

the leading regions with growing T1D incidence rates and prevalence cases (11). Nevertheless, the 

projected number of worldwide cases of T1D is expected to nearly double by 2040 (12). 
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Figure 1.2 Estimated incidence rates per 100,000 population per year of T1D in adults 

aged 20-40 years. Copyright permission granted from (11) 

 
Figure 1.3 Estimated incidence rates per 100,000 population per year of T1D in youth 

under 15 years of age. Copyright permission granted from (11) 
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1.4.3 Complications of Type 1 Diabetes 

1.4.3.1 Acute Complications 

Hypoglycemia, defined as blood glucose levels less than 3.9 mmol/L, is a prevailing acute 

complication of T1D. Hypoglycemia involves acute symptoms that commonly include tremors, 

cardiac palpitations, sweating, hunger, irritability, confusion, blurred vision, and temporary 

cognitive impairment. People with T1D receive instructions from their healthcare team on how to 

manage hypoglycemia with rescue treatment.  

Recurring hypoglycemia can eventually blunt the sympathetic response, causing impaired 

awareness of hypoglycemia from the hampered ability to self-recognize symptoms. Hypoglycemia 

that is left untreated can lead to severe hypoglycemia, defined as the need for third party assistance 

to receive treatment, which can result in serious short-term consequences, including seizures, 

coma, and even death (7,13,14). In fact, people with impaired awareness of hypoglycemia have a 

higher incidence of severe hypoglycemia (15). 

Diabetic ketoacidosis is the other major acute complication that is potentially life-

threatening if untreated in time. Diabetic ketoacidosis most commonly occurs when there is 

hyperglycemia from insufficient insulin, preventing glucose uptake. This state causes the body to 

undergo the ketogenic pathway, notably breaking down adipose tissue to generate ketone bodies 

as an alternative energy source. Elevated levels of plasma ketones cause the blood to become 

acidic, disrupting the pH and electrolyte balance, which can potentially lead to death (16,17). 

1.4.3.2 Long-term Complications 

Long-term complications, typically caused by persistent hyperglycemia, include the slow 

progression of microvascular and macrovascular comorbidities. Microvascular complications 

involve consequences affecting the eyes (retinopathy), kidneys (nephropathy), and nerves 
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(neuropathy). Macrovascular complications involve damage caused to large blood vessels that 

affect the heart (coronary artery disease), arteries (peripheral artery disease), and brain blood 

supply (cerebrovascular disease) (14).  

1.4.4 Standard Treatments for Type 1 Diabetes 

1.4.4.1 Evolution of Insulin  

Insulin was discovered by Frederick Banting and Charles Best at the University of Toronto in 1921, 

which led to a Nobel Prize and eventually became recognized as one of the greatest breakthroughs 

in medicine of the 20th century. First-generation insulins were derived from the pancreas of pigs 

and cows; however, animal insulin was difficult to produce, lacked consistency between batches, 

and was linked to immunogenicity concerns.  

In the early 1980s, animal insulin was replaced with synthetic human insulin made by 

recombinant DNA technology, which solved the shortcomings of insulin manufacturing while 

improving the safety profile. Human insulins include short-acting regular insulin, such as 

Humulin R, which start working in 30 minutes, peak around two-three hours, and last between 

six-ten hours. Another type is intermediate-acting insulin, like Humulin N also known as neutral 

protamine Hagedorn (NPH), with delayed onset of action (~two hours) and peak (~six hours), as 

well as variable duration of action (12-20 hours). Human insulins, however, still lacked sufficient 

resemblance to the endogenous profile of insulin secretion, causing hypoglycemia concerns.  

Roughly a decade later, genetically modified insulin analogs leaped in development with 

altered pharmacological action for improved absorption, quicker onset, and more predictable 

duration of action. Insulin analogs mimic the profile of physiological basal and bolus (prandial) 

insulin release more closely, diminishing the major hypoglycemia concerns from previous forms 

of insulin (Figure 1.4) (18–20).  
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Figure 1.4 Pharmacokinetic profiles of human insulin and first-generation insulin analogs. 

Adapted version from (21), based on the original figure which was reproduced with permission 

from (18). Copyright Massachusetts Medical Society. 

1.4.4.2 Insulin Analogs 

First-generation long-acting insulin analogs, glargine and detemir U-100 (100 units in one 

millilitre of fluid) became commercially available in the early 2000s. Long-acting analogs 

overcame the peak effect of intermediate-acting NPH, courtesy of a low peak:trough ratio, 

allowing for a flatter profile with a longer duration of action lasting up to 24 hours. Consequently, 

long-acting analogs more closely simulate the background secretion of physiological insulin.  

Second-generation basal analogs, known as ultra long-acting insulins, were subsequently 

developed with a much longer duration of action, such as degludec U-100 (up to 42 hours) and 

stronger concentration, such as glargine U-300 (three-fold stronger concentration than the U-100 

formulation). Compared to intermediate-acting NPH requiring twice-daily dosing, long-acting and 

ultra long-acting analogs allow for once-daily dosing, with the latter enabling greater flexibility in 

between doses. 
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Similarly, first-generation rapid-acting insulin analogs overcame the pharmacokinetic 

challenges and atypical profile of short-acting human insulin, namely, the slow onset, delayed 

peak, and prolonged duration of action. Conversely, lispro and aspart insulin analogs begin 

working in just 10-15 minutes, have a peak effect within two hours, and last up to five hours. 

Therefore, insulin analogs offer a more accurate representation of physiological prandial insulin 

secretion while improving patient adherence and hypoglycemia risk.  

Second-generation rapid-acting analogs include faster-acting aspart and ultra-rapid lispro, 

which offer an even quicker onset of action, permitting bolus injections to be given at meal time 

up to 20 minutes post-initiation. These analogs also have a slightly faster peak and duration of 

action (Table 1.1) (20,22,23). 

Table 1.1 Pharmacokinetic properties of human insulin and insulin analogs. Open access 

permission from (23). 
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1.4.4.3 Intensive Insulin Therapy 

Conventional insulin therapy is the traditional delivery method involving the administration of one 

or two daily injections of intermediate-acting insulin with or without short-acting insulin. This 

regimen, however, is limiting as it requires rigid lifestyle planning around the atypical time-action 

insulin profile. In contrast, intensive insulin therapy refers to the basal-bolus regimen. For MDI 

users, this typically consists of three or more rapid-acting bolus insulin injections and one or two 

long-acting basal insulin injections per day, providing greater lifestyle flexibility. For pump users, 

this involves the continuous infusion (basal) with additional boosts of infusion (bolus) of rapid-

acting insulin. This regimen aims to mimic the physiological patterns of insulin secretion (24). 

The Diabetes Control and Complications Trial (DCCT) was a landmark study that 

demonstrated the long-term benefits of intensive insulin therapy over conventional therapy. The 

findings revealed that a mean reduction in hemoglobin A1c (HbA1c) below 7.0% in the intensive 

insulin group was associated with delayed and attenuated progression of retinopathy, neuropathy, 

and nephropathy (25). Accordingly, tight glycemic control is linked with reduced risk of long-term 

complications. Furthermore, the observational Epidemiology of Diabetes Interventions and 

Complications follow-up study demonstrated sustained benefits in microvascular protection. This 

study also reported reductions in macrovascular complications from the group that had early 

implementation of intensive insulin therapy in the initial DCCT (26). Accordingly, intensive 

insulin therapy is the mainstay treatment for T1D (27). 

1.4.4.4 Target Recommended Guidelines 

Following the DCCT outcomes, an HbA1c target below 7.0% became the gold-standard glycemic 

target in attenuating long-term diabetes complications for adults with T1D. HbA1c is a blood 

marker that represents an individual’s average glucose control over the past 90-120 days, in 
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accordance with the average lifespan of erythrocytes (red blood cells). However, there is wide 

variability in the lifespan duration of erythrocytes among individuals. Furthermore, HbA1c 

measurements tend to be more influenced by the glycosylation of younger red blood cells in the 

last 30 days over older ones.  

In addition, there are numerous conditions that alter the turnover rate of erythrocytes, 

rendering HbA1c measurements less accurate. For example, iron deficiency and vitamin B12 

deficiency result in reduced erythrocyte destruction, thus prolonging their lifespan, which can 

falsely increase an HbA1c value. Conversely, anemias caused by blood loss result in the 

destruction of younger red blood cells, increasing their turnover rate, and in turn, falsely lowering 

HbA1c. Nevertheless, HbA1c remains the primary biomarker used in clinical practice (28).  

Of note, the HbA1c metric falls short in providing information about daily glycemic 

excursions. Alternatively, the increasing adoption and reliance on CGM reports has permitted a 

more comprehensive understanding of day-to-day glucose profiles, including visual patterns of 

daily and weekly trends for more precise management. In fact, according to an international 

consensus report, 14 days of CGM data for mean glucose and time in and above range, and at least 

30 days of time below range and glycemic variability are correlated with 90 days of data. CGM 

metrics are now complementing HbA1c in the overall assessment of glycemic control, both in 

clinical practice and in trials. 

The consensus statement put forward recommended targets for the following CGM metrics 

in adults with T1D: more than 70% time between 3.9-10 mmol/L, less than 4% time below 3.9 

mmol/L, less than 1% time below 3.0 mmol/L, less than 25% time above 10 mmol/L, and less than 

5% time above 13.9 mmol/L. Importantly, every 5% increase in time in range is linked with 

clinically meaningful benefits. Table 1.2 displays the recommended daily target thresholds for 
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most adults with T1D. Notably, higher-risk, elders, and youth under 25 years of age have less 

stringent CGM targets (29,30). 

Table 1.2 International consensus for CGM targets for T1D. Adapted and reproduced with 

permission from (29) 

 

 There are varying relationships between CGM metrics and HbA1c outcomes. A 

comparison across large CGM trials revealed that a 10% improvement in time in range in 

individuals with baseline HbA1c of 8.0% or higher is correlated with an HbA1c reduction of about 

-1.0%. On the other hand, the same 10% improvement in time in range in those with baseline 

HbA1c between 7-7.9% is correlated with a much lower HbA1c improvement of about -0.4%. 

Furthermore, time in range and mean glucose have both been found to be moderately correlated 

with HbA1c (31). 

1.4.4.5 Multiple Daily Injections 

MDI typically involves one or two long-acting insulin injections intended to mimic the slow 

secretion of endogenous basal insulin to cover background needs. This regimen also requires 

multiple rapid-acting insulin (bolus) injections to control postprandial glucose excursions.  

Prandial bolus delivery is characterized by two main dosing strategies: fixed-dose and 

carbohydrate counting. The original fixed-dose method continues to be used by some individuals 

with T1D, involving a set amount of bolus insulin for each meal type based on the assumption that 

the pre-calculated portion of carbohydrates remains constant. This approach offers less flexibility 
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for dietary and lifestyle changes. Alternatively, carbohydrate counting is the more advanced and 

precise method involving the use of insulin-to-carbohydrate ratios (ICRs). ICRs are used to

determine how many carbohydrates are covered by one unit of insulin for a given meal and time 

of day. Carbohydrate counting offers dietary freedom with unrestricted carbohydrate intake. 

Typically, people with T1D have three or four mealtime ICRs according to varying sensitivity 

patterns throughout the day that require stronger or weaker ratios at different timepoints (32,33).

Traditionally, MDI involved the use of a vial and syringe. Today, disposable and refillable 

basal and bolus insulin pens are now the leading devices used for this regimen (Figure 1.5) (34). 

Furthermore, MDI remains the predominant insulin delivery method used by people with T1D 

worldwide (35).

Figure 1.5 Insulin delivery via MDI. Adapted and reproduced with permission from (36), 

Copyright Massachusetts Medical Society.

1.4.4.6 Continuous Subcutaneous Insulin Infusion

The alternative insulin delivery technique involves a portable insulin pump. This method has the 

advantage of mimicking physiological insulin secretion more closely due to the continuous nature 
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of insulin delivery throughout the day at adjustable programmed basal infusion rates, along with 

manual bolus input at meal times. 

A traditional insulin pump is a battery-operated device that comprises an insulin reservoir 

(cartridge of rapid-acting insulin) that is connected to an infusion set comprising tubing and a 

cannula that is inserted under the skin (Figure 1.6). A patch pump differs by eliminating the need 

for tubing, connecting the pump directly on the skin via an integrated cannula. Infusion sites 

include the abdomen, thighs, arms, and buttocks (27,36).

Figure 1.6 Continuous insulin infusion via insulin pump. Adapted and reproduced with 

permission from (36), Copyright Massachusetts Medical Society.

1.4.4.7 Glucose Monitoring

In earlier times, individuals with T1D had to rely on urine sticks to get an indirect measurement of 

their blood glucose level. Urine glucose testing was used for over 50 years, albeit limited by the 

hours of wait time before high glucose levels were approximately detected in urine, resulting in 

delayed and inaccurate measurements via a color-based dipstick system. 
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In the early 1970s, urine glucose testing was replaced by self-monitoring of blood glucose 

(SMBG) with capillary blood measurements using a lancet to prick the finger and a glucometer 

device to obtain a direct blood glucose reading. SMBG is a direct method to obtain accurate and 

real-time readings of one’s blood glucose levels. In fact, this approach paved the way for intensive 

insulin therapy by virtue of implementing timely hyperglycemia and hypoglycemia corrections, 

enabling the conduct of the landmark DCCT, which in turn, transformed the standard of care for 

T1D (37). However, despite the inverse relationship between the frequency of SMBG 

measurements and HbA1c (38), this method has several drawbacks. These limitations include 

multiple daily finger-pricks, adherence problems, and the absence of feedback regarding glucose 

excursions between measurements (39).  

Fortunately, the adoption of CGM in the early 2000s overcame these issues, simplifying 

glucose monitoring. CGM comprises a sensor containing an electrode that is inserted under the 

skin and continuously measures the interstitial fluid to wirelessly relay estimated glucose readings 

to a receiver or application over 5-15-minute intervals. There are two main types of personal CGM 

systems used in unsupervised settings, namely, real-time CGM (rtCGM) and intermittently 

scanned CGM (isCGM).  

The first commercially available personal rtCGM was the Guardian system (Medtronic, 

United States) developed in 2004. This system integrated alarms and had a lifespan of three days, 

but it required daily calibrations and the margin of error was high. However, the Guardian system 

evolved over time, doubling in sensor wear duration and nearly cutting the margin of error in half.  

The personal Dexcom rtCGM (Dexcom Inc., United States) evolved within the G-series 

generations every few years with lower error and increased lifespan, starting with the Dexcom 

G4 Platinum to G5, both having a sensor wear up to seven days with optional alarms. The 
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Dexcom G6 was subsequently developed with extended sensor wear up to 10 days while being 

the first rtCGM to spare calibrations. The G7 is currently the latest version that was approved for 

commercial use, with the same lifespan but is over 50% smaller in size. It also combines the 

transmitter and sensor into one device and requires a warm-up period of under 30 minutes (40).  

Several landmark trials have confirmed the benefit of rtCGM over SMBG in adults. The 

JDRF study reported a significant HbA1c reduction of -0.5% in adults aged 25 years and older 

with T1D on MDI and pump after six months of using rtCGM compared to SMBG (41). Similarly, 

two other 6-month trials (GOLD and DIAMOND) demonstrated a significant HbA1c reduction of 

-0.4% and -0.6%, respectively, with rtCGM compared to SMBG in MDI-treated adults with T1D 

and suboptimal glycemic control (42,43). Another 6-month trial (HypoDe) reported improvements 

in hypoglycemic events with rtCGM in near-optimally controlled MDI-treated adults with T1D 

and impaired awareness of hypoglycemia or history of severe hypoglycemia (44).  

In 2018, the first-generation Freestyle Libre system (Abbott Diabetes Care, United States) 

became commercially available as the first isCGM requiring users to scan the sensor to obtain 

readings, with at least one scan every eight hours to capture continuous data. It was also the first 

factory-calibrated sensor with the longest lifespan (14 days) to reach the market. The 

commercialization of the Freestyle Libre system was supported by the 6-month IMPACT safety 

trial, which demonstrated a significant reduction in hypoglycemia without degradation of HbA1c 

compared to SMBG in a large cohort of well-controlled adults with T1D on MDI and pump (45). 

Of note, another 6-month trial conducted in youth with T1D and suboptimal glycemic control 

reported no HbA1c improvement with isCGM compared to SMBG (46). Conversely, the 6-month 

FLASH-UK trial, conducted in an adult population, demonstrated a significant HbA1c reduction 

of -0.5% with isCGM compared to SMBG (47). 
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The original Freestyle Libre system evolved into the second-generation Freestyle Libre 2, 

equipped with optional alarms. Recently, this system was converted into an rtCGM, eliminating 

the need for scanning. Currently, the third-generation Freestyle Libre 3 is the latest rtCGM that 

is smallest in size and will soon become commercially available (48).  

All CGM systems have an inherent lag of roughly 15 minutes between the interstitial fluid 

and plasma glucose, which is exacerbated during rapid changes in glycemia. Nevertheless, they 

provide a reliable approximation of one’s current glucose levels in a less invasive and more 

convenient way than finger-pricking with SMBG. Furthermore, all forms of CGM technology 

continue to evolve toward smaller sensor size, longer duration, and reduced margin of error 

(49,50). CGM technology has revolutionized diabetes care, improving glycemic control similarly 

in both MDI and pump users (51). CGM is now considered part of the standard of care and is 

recommended at the outset of diagnosis (35).  

1.4.5 Advanced and Emerging Insulin Delivery Technologies for Type 1 Diabetes  

1.4.5.1 Hybrid Closed-Loop Systems 

Over the past two decades, research on advanced insulin pump technology has progressed 

significantly from sensor-augmented pump therapy to the world’s first commercially available 

hybrid closed-loop system (MiniMed 670G (Medtronic, United States)), with continually 

evolving technology. Hybrid closed-loop is now commonly referred to as automated insulin 

delivery (AID). AID technology involves the integration of a control algorithm in a pump or hosted 

on a portable device that wirelessly receives CGM input for continuous feedback to automatically 

adjust basal insulin delivery rates every 5-10 minutes in response to changing needs (Figure 1.7). 

Currently, there are several commercially available AID systems, namely, MiniMed 780G 

(Medtronic, United States), CamAPS FX (CamDiab, United Kingdom), Control-IQ (Tandem 
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Diabetes Care, United States), Omnipod 5 (Insulet, United States), DBLG1 (Diabeloop, France), 

and iLet Bionic Pancreas (Beta Bionics, United States) (52,53).  

AID has proven to improve both glycemic control and quality of life in youth (54) and 

adults (55). Nevertheless, all systems still require manual user announcement of prandial boluses, 

hence “hybrid” closed-loop. While AID can more closely imitate endogenous insulin secretion 

than MDI, it is associated with known issues surrounding cost, visibility, discomfort, and device 

failures, making it undesirable for some to adopt (52,53). 

 
Figure 1.7 Overview of a hybrid closed-loop system. Open access permission from (53) 

1.4.5.2 Decision Support Systems for Multiple Daily Injections  

Since their introduction, insulin pens have gradually evolved over time, albeit with minimal 

enhancements, including built-in or add-on memory features. However, there has been a shift in 

focus toward advancing MDI therapy in recent years, given the underserved yet dominating 

market.  

In 2017, the InPen (Companion Medical Inc., United States) entered the American market 

as the first FDA-cleared reusable smart pen. It incorporates wireless Bluetooth technology that 

communicates with a smartphone application equipped with a bolus calculator and active insulin 

tracking, offering a new approach to MDI therapy. Subsequently, Bigfoot Unity (Bigfoot 
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Biomedical Inc., United States) was launched as the first FDA-cleared smart pen cap system in 

2021. This system is compatible with most basal and bolus disposable pens and wirelessly 

transmits data to a smartphone application (56). However, both commercial systems lack an 

adaptive decision support tool guided by an algorithm.  

 The principal concept behind a DSS entails the same core idea of AID for insulin pumps, 

which is to utilize digital platforms and algorithms to optimize insulin injections. A DSS would  

integrate CGM with smart pen devices and an algorithm that recommends tailored insulin 

adjustments on a regular basis (Figure 1.8). Although research on DSSs has increasingly gained 

popularity in recent years, there is limited robust evidence (57). To this end, my thesis is focused 

on the clinical impact of a novel DSS.  

 

Figure 1.8 Concept overview of a DSS for MDI therapy. Open access permission from (57) 

In the next chapter, I present an appraisal of the clinical evidence of relevant research. I 

begin with a literature review on standalone automated bolus calculators and then on adaptive 

DSSs, providing a comprehensive background to orient my core thesis work in the field.     
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Chapter 2. Literature Review 

The literature review below summarizes and critically appraises the current interventional 

evidence, starting with non-adaptive bolus calculators and then adaptive DSSs. The appraisal 

focuses on studies involving populations that consisted either partially or entirely of MDI-treated 

individuals with T1D, in keeping with the relevance of this thesis. The ensuing bolus calculator 

section is organized by hardware and software sub-sections, which are each further sub-

categorized by trial.  

2.1 Bolus Calculators 

An automated bolus calculator was initially introduced as an insulin pump feature. Bolus 

calculators are designed to facilitate mealtime and correction bolus calculations using one’s 

programmed parameters and current glucose level while accounting for real-time residual active 

insulin, abating the risk of insulin stacking (58).  

The use of automated bolus calculators was later extended to MDI users as an embedded 

feature in glucose meters and subsequently incorporated in smartphone applications. The intended 

purpose is to simplify MDI therapy, alleviating the need for numeracy skills that are otherwise 

required for manual dose calculations, which are currently associated with poorer glycemic 

outcomes (59,60).  

2.1.1 Handheld Bolus Calculator for Multiple Daily Injections 

Maurizi et al. (2011) ran a 6-month, pilot, randomized, controlled, parallel trial with Calsulin 

(Thorpe Products Ltd., United Kingdom), a pocket-size bolus calculator device. A total of 40 adults 

on MDI therapy with T1D (mean baseline HbA1c: 7.9%) were randomized to either continue with 

manual bolus estimations (control) or receive automated bolus calculations from Calsulin 
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(experimental). After 6 months, there was a substantial between-group reduction in HbA1c of -

0.78% (p<0.05) (61).  

2.1.2 Glucose Meter with a Built-In Bolus Calculator  

Several randomized controlled studies have investigated the Accu-Check Aviva Expert (Roche 

Diagnostics, Germany) combined with carbohydrate counting in MDI-treated adults with and 

without previous carbohydrate counting practice. The Aviva Expert is a glucose meter equipped 

with an integrated bolus calculator that computes prandial and correction bolus doses. The 

calculations are based on one’s capillary blood glucose reading, remaining active insulin from the 

previous dose, target glucose level, anticipated carbohydrate intake, meal-specific ICR, insulin 

sensitivity factor (ISF), and exercise (62). 

2.1.2.1 Schmidt et al. (2012) 

The BolusCal trial employed a 16-week, open-label, randomized, controlled, three-arm parallel 

design, conducted in 51 MDI-treated adults with T1D (mean baseline HbA1c: 9.0%) on fixed-dose 

basal-bolus regimen. This pilot study assessed the feasibility of an intensive three-hour structured 

diabetes management course with and without the added use of the Aviva Expert. Participants were 

randomized in a 1:3:3 ratio to either: control (fixed-dose per usual care), carbohydrate counting, 

or carbohydrate counting plus the Aviva Expert. Only the latter two groups received additional 

baseline training on carbohydrate counting.  

After 16 weeks, there was a large between-group improvement in HbA1c of -0.8% 

(p=0.017) with the combined use of carbohydrate counting with the automated bolus calculator 

compared to control. However, no difference was found between the two carbohydrate counting 

groups, suggesting no added glycemic benefit from the bolus calculator. Nevertheless, the group 
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with the Aviva Expert reported significantly higher treatment satisfaction scores from baseline 

compared to the carbohydrate counting-only group (62).  

2.1.2.2 Hommel et al. (2017) 

The same group as (62) subsequently conducted the StenoABC study. This was a 12-month, open-

label, randomized, controlled, two-way parallel trial. It was designed to assess the long-term 

impact of their combined intensive structured diabetes and carbohydrate counting training course 

(provided to both groups) with and without the Aviva Expert bolus calculator in 168 carbohydrate 

counting-naïve adults with T1D on MDI (mean baseline HbA1c: 9.0%) (59). In contrast to their 

pilot findings (62), this study demonstrated a small but significant difference between both 

carbohydrate counting groups of -0.2% (p=0.033) in favor of the intensive training combined with 

long-term automated bolus calculations (-0.5%) over manual bolus calculations (-0.3%) (59).  

2.1.2.3 Ziegler et al. (2013) 

The ABACUS study entailed a 6-month, open-label, randomized, controlled trial in 218 MDI-

treated adults already practicing carbohydrate counting with inadequate glycemic control (mean 

baseline HbA1c: 8.8%). Participants were randomized 1:1 to receive the Aviva Expert or to 

continue with their usual care involving a standard glucose meter. Both groups received baseline 

carbohydrate counting refresher training.  

Despite a small mean reduction in the average daily bolus calculator use from start to end 

(2.9/day to 2.7/day; p<0.01), the experimental group still achieved a robust improvement in HbA1c 

from baseline (-0.7%). The control group also achieved a meaningful improvement (-0.5%), 

resulting in a modest but significant between-group difference of -0.2% (p<0.05) (63), which is 

consistent with the findings from the StenoABC trial (59). The large improvements found in both 

groups may have been attributed to frequent insulin adjustments made throughout the study. 
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Importantly, however, significantly more participants in the bolus calculator group achieved an 

HbA1c improvement greater than 0.5% compared to the control group (56% versus 34%, 

respectively; p<0.01) (63). 

2.1.2.4 Gonzalez et al. (2016) 

The Expert study was the first randomized controlled trial using a crossover design to compare 

automated bolus calculations with the Aviva Expert versus manual calculations with a standard 

glucose meter. Overall, 51 MDI-treated adults with T1D and suboptimal glycemic control (mean 

baseline HbA1c: 8.1%) completed the study. All participants were acquainted with carbohydrate 

counting but still received a two-hour diabetes management refresher training at baseline.  

Both the traditional and Aviva Expert meters were used for 12 weeks by all participants in 

random sequence order with a 12-week washout period in between (64). Contrary to the 

aforementioned findings from the StenoABC (59) and ABACUS (63) trials, this study found no 

difference in HbA1c between the meters when participants served as their own control (64).   

2.1.2.5 Vallejo Mora et al. (2017) 

The CBMDI study was a 16-week, open-label, randomized, controlled, parallel trial, conducted in 

70 adults with T1D on MDI therapy with suboptimal glycemic control (mean baseline HbA1c: 

8.4%). All participants were required to perform carbohydrate counting for the study. The 

participants were randomly assigned to either the Aviva Expert for automated calculations or a 

traditional meter for manual estimations, both in addition to intensive baseline training (65). 

Similarly to the ABACUS trial (63), this study involved intensified insulin adjustments during the 

intervention period for both groups.  

However, the authors reported a between-group difference in HbA1c of -0.3% that was not 

statistically significant (65). Furthermore, in their 4-month extension study, both groups used the 
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automated bolus calculator, but there were no between- or within-group changes from baseline, 

suggesting no additional glycemic benefit with prolonged use of automated bolus calculations. 

Nevertheless, significantly greater treatment satisfaction and reduced fear of hypoglycemia were 

reported after eight months of using the bolus calculator (66).    

Collectively, these studies revealed conflicting findings regarding the Aviva Expert’s 

impact on glycemia. Some studies that did not reach statistical significance may have been 

underpowered or affected by design flaws. Nevertheless, overall positive findings tend to suggest 

only modest improvements in HbA1c when carbohydrate counting was augmented with automated 

bolus calculations guided by the Aviva Expert glucose meter. 

2.1.3 Smartphone Application-based Bolus Calculators 

2.1.3.1 Charpentier et al. (2011) 

The TeleDiab 1 study was a 6-month, open-label, multicenter, randomized, controlled, parallel trial 

that investigated the efficacy and safety of DIABEO, a smartphone application integrating a 

formula-based, non-adaptive bolus calculator, with and without telemedicine. This study included 

180 adults on MDI (63%) and pump (37%) with T1D and a mean baseline HbA1c of 9%.  

Participants were randomized 1:1:1 into three groups: paper logbooks on top of quarterly 

in-person follow-ups (group 1), DIABEO in addition to quarterly in-person follow-ups (group 2), 

and DIABEO combined with biweekly teleconsultations with physicians. After six months, the 

DIABEO application coupled with either in-person visits (per standard of care) or frequent 

teleconsultations both resulted in a statistically significant and substantial HbA1c reduction of -

0.7% and -0.9% compared to usual care, respectively (both p<0.001) (67).  
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2.1.3.2 Franc et al. (2020) 

Almost a decade later, the same group as (67) conducted the TELESAGE trial to assess the 

DIABEO system with a similar three-arm design but over a 12-month duration. Moreover, this 

study involved biweekly teleconsultations provided by trained delegated nurses instead of 

physicians. In addition, the sample size was over 3.5-fold larger (665 adults) with a similar mean 

baseline HbA1c (9.1%). This cohort also consisted of MDI (47%) and pump (53%) users, albeit 

more balanced, but additionally included a small proportion of individuals with T2D (8%) (68). 

Although less profound than their previous findings (67), these results consistently demonstrated 

a meaningful HbA1c improvement with the DIABEO software plus quarterly monitoring (-

0.41%), with further benefit obtained when combining the system with biweekly nurse-led 

teleconsultations (-0.51%), both compared to control (p<0.001) (68).  

2.1.3.3 Secher et al. (2021) 

A 26-week, open-label, multicenter, randomized, controlled, parallel trial investigated isCGM with 

and without the mySugr smartphone application (mySugr, Austria) equipped with a built-in bolus 

calculator. A total of 170 adults with T1D using fixed-dose MDI therapy who were naïve to both 

CGM and carbohydrate counting (mean baseline HbA1c: 8.1%) were randomized in a 1:1:1:1 ratio 

to either: usual care (fixed-dose), isCGM alone, isCGM plus mySugr, or mySugr alone. All 

participants received basic diabetes education at baseline, but training on carbohydrate counting 

was restricted to the groups involving the bolus calculator application.  

In this study, the primary endpoint was the change from baseline in the percentage of CGM 

time in range between carbohydrate counting plus isCGM versus usual care. However, there was 

no statistically significant difference between those groups. Moreover, no difference was found 

between the groups that used the application alone or in conjunction with isCGM compared to 
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usual care. Interestingly, while neither the standalone application or isCGM groups had 

improvements in HbA1c, there was a trending improvement observed in the combined group 

(isCGM plus mySugr). Furthermore, the authors observed significantly improved patient-reported 

diabetes treatment satisfaction scores in both isCGM groups (with and without mySugr) compared 

to control (69).  

Taken together, the large-scale evidence involving application-based bolus calculators is 

mixed. The DIABEO system resulted in robust glycemic improvements compared to usual care, 

although the software notably consisted of a more advanced bolus calculator based on non-learning 

algorithms. In contrast, the study involving the mySugr application reported no difference in the 

main CGM outcome but found a trending reduction in the HbA1c outcome, which might point to 

a study design flaw.  

In all, while some studies suggest mild glycemic improvement with an automated bolus 

calculator among MDI users, the collective interventional evidence is ambivalent. Regardless, 

standard bolus calculators do not optimize insulin parameters over time, precluding them from 

adapting to changes in insulin requirements, hence limiting their clinical utility and benefit (70). 

Furthermore, it is important that the insulin parameters used by bolus calculators represent an 

individual’s actual needs to ensure accurate calculations (58). Yet, a common challenge in clinical 

practice is the limited follow-up frequency with healthcare professionals. People with T1D can be 

monitored quarterly if glycemic targets are not met or have comorbidities but are otherwise 

typically monitored on an annual basis (71), in part due to restricted resources and access (72).  

Additionally, qualitative evidence has revealed that some individuals avoid making self-

initiated adjustments and continue with their prescribed regimen until the next follow-up 

appointment due to a lack of confidence or competency (73), resulting in long periods of using 
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potentially insufficient parameters. Consequently, a DSS encompassing an adaptive bolus 

calculator that regularly adjusts insulin parameters could alleviate some of these constraints in 

between medical appointments. 

2.2 Decision Support Systems for Multiple Daily Injections  

To date, there are few large-scale randomized controlled trials that have investigated the efficacy 

of DSSs to optimize insulin injection parameters. Below is a detailed appraisal of the clinical 

evidence on feasibility, safety, and efficacy of DSSs that were designed either partially or 

exclusively for MDI adjustments and T1D. The following sub-sections are organized by DSS, each 

beginning with a brief overview of the system, followed by the corresponding preliminary and 

advanced (if applicable) clinical work, leading up to the manuscripts (Chapters 3 and 4) from my 

core thesis work.  

2.2.1 The Diabetes Insulin Guidance System   

The Diabetes Insulin Guidance System (DIGS) (Hygieia, Inc., United States) consists of adaptive 

algorithms that use glucose readings to adjust meal-specific insulin doses, with varying 

aggressiveness in recommendations depending on how close one’s glucose levels are to optimal 

targets (74). 

2.2.1.1 Bergenstal et al. (2012) 

A 12-week, feasibility, uncontrolled study assessed the safety of the DIGS in refining insulin doses. 

There were three unrelated groups that were independently analyzed: 20 MDI-treated adults using 

carbohydrate counting with T1D and suboptimal glycemic control (group 1), and MDI-treated 

adults with T2D and suboptimal glycemic control while on fixed-dose basal-bolus regimen (group 

2, n=20) or twice-daily intermediate-acting insulin (group 3, n=6). Each group of participants were 
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asked to record time-stamped SMBG readings and meal-specific insulin information in paper 

diaries, which were used by the DIGS to generate weekly insulin adjustments. The 

recommendations were reviewed and approved by the medical team, who then conveyed the 

changes to participants.  

Overall, 99.8% of all DIGS-made recommendations received physician approval without 

being overridden. Although a trend was observed in mean glucose and HbA1c, this was only 

applicable to the groups including individuals with T2D. The group that consisted of people with 

T1D had no change in glycemic outcomes (74).  

2.2.2 The Adaptive Bolus Calculator for Type 1 Diabetes System 

The Adaptive Bolus Calculator for Type 1 Diabetes (ABC4D) DSS was developed at Imperial 

College London. The ABC4D system consists of a smartphone application that features an 

adaptive bolus calculator mode comprising an algorithm that combines a run-2-run (R2R) 

framework with case-based reasoning (CBR), and an online clinical portal. R2R is a model-based 

approach that uses CGM data and postprandial glycemic outcomes from the previous run to modify 

meal bolus parameters toward optimal glycemic targets. CBR is an artificial intelligence tool that 

involves a problem-solving approach that adapts meal bolus parameters by retrieving a similar 

case from the previously solved case database and re-using that solution or creating a new solution. 

Cases are revised with the R2R control if the selected solution led to an off-target postprandial 

glycemic outcome (75,76).  

2.2.2.1 Reddy et al. (2016) 

The ABC4D DSS was initially clinically tested in a 6-week, single-arm, feasibility study in 10 

MDI-treated adults with T1D and suboptimal baseline control (mean HbA1c: 8.4%). At the end of 

each week, participants visited the research facility to download their CGM data and ABC4D 
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application data required to run the algorithm in the clinical platform and generate meal bolus 

parameter adjustments. All recommendations were reviewed and approved by the medical team 

prior to updating each participant’s application.  

The authors observed a downward trend in the number of postprandial hypoglycemic 

events in the last week (1 event) compared to the first week (3.5 events). Although this study was 

not powered, had a small sample size, and lacked a control group, it was considered feasible and 

safe to investigate further in a controlled trial (76).  

2.2.2.2 Unsworth et al. (2023) 

The refined ABC4D DSS was investigated in a 12-week, blinded, randomized, controlled, 

crossover trial in 37 MDI-treated adults with T1D (mean baseline HbA1c: 7.7%). In this version, 

the meal bolus parameter adaptations were performed locally in the participants’ application when 

the adaptive mode was enabled. All participants received structured refresher training on diabetes 

management prior to the 2-week run-in period. Thereafter, participants were stratified by HbA1c 

and randomized 1:1 to receive the adaptive application or the non-adaptive version (comprising 

only the standard bolus calculator) for 12 weeks, followed by a 6-week washout period before 

switching over to the alternate group.  

During the adaptive intervention, the case database was updated every day, influencing 

each participant’s daily bolus calculations in the application without their awareness, which 

allowed for a blinded design. The application data was automatically transferred to the clinical 

platform and reviewed for safety by the research team every two weeks, although no interfering 

changes were made. The primary endpoint was the change in daytime percent time in range with 

the Dexcom G6 rtCGM.  



 

 33 

There were marginal changes in time in range for both the ABC4D DSS (0.1%) and the 

non-adaptive application (1.9%), both of which are not clinically meaningful. There was also no 

significant difference in HbA1c between the periods. Furthermore, post-hoc analyses revealed a 

significantly higher proportion of accepted meal bolus calculations in the last two weeks when 

using the non-adaptive application compared to the adaptive version (94% versus 79%, 

respectively; p=0.009). The diminished acceptance rate observed in the DSS group may suggest 

suboptimal performance of the adaptive component (77).  

2.2.3 The Patient Empowerment through Predictive Personalized System 

The Patient Empowerment through Predictive Personalized (PEPPER) DSS was developed by the 

same group that created the ABC4D system but designed this one for both pump and MDI users. 

PEPPER utilizes CBR technology as the basis of their adaptive bolus calculator to adjust ICR and 

ISF parameters. However, it also couples a safety system comprising 1) predictive glucose 

threshold alerts, 2) a rescue carbohydrate recommender for hypoglycemia treatment, 3) a dynamic 

bolus insulin constraint to avoid insulin stacking, and 4) a 30-minute glucose forecasting algorithm 

(exclusively for pump users).  

PEPPER is hosted on a smartphone application that features the standard bolus calculator 

with real-time graphics in the non-adaptive mode and the CBR-based insulin recommender and 

safety system in the adaptive mode. The application data is automatically transferred to a clinical 

platform for remote clinical monitoring and review of CBR-made revisions to manually reject the 

ones excluded from the adjustment criteria (78,79). 

2.2.3.1 Liu et al. (2020) 

An 8-week, single-arm, feasibility study was conducted to initially assess the PEPPER safety 

system (excluding the pump-specific module) without the CBR component in six MDI-treated 
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adults with T1D and suboptimal baseline glycemic control (mean HbA1c: 7.9%). The primary 

endpoint assessed the percentage of time below 3.9 mmol/L from the standard bolus calculator 

(safety system disabled) during a 2-week run-in period compared to the last two weeks of the 

intervention with the safety system enabled. The authors observed a downward trend in the time 

below 3.9 mmol/L and an upward trend in time in range in favor of the safety system (78).  

2.2.3.2 Avari et al. (2021) 

A 12-week, open-label, randomized, controlled, crossover trial investigated the complete PEPPER 

DSS (CBR-based insulin recommender and safety system enabled). Overall, 54 adults with T1D 

(mean baseline HbA1c: 7.7%) on pump (52%) and MDI (48%) who were already practicing 

carbohydrate counting completed a 4-week run-in period with the non-adaptive bolus calculator. 

All participants were provided with Dexcom G5 sensors, and the pump users received the 

Cellnovo pump (Cellnovo Ltd., United Kingdom). They all received refresher training and 

applicable device training. Thereafter, participants were randomized to receive the PEPPER DSS 

or the standard application (CBR-algorithm and safety system disabled) in the first period.  

In the PEPPER intervention, each participant’s case-base was reviewed in the clinical 

platform twice per week by the medical team to reject revised case solutions according to exclusion 

criteria prior to releasing the updates. After a 3-4-week washout period, pump users were 

withdrawn following the Cellnovo manufacturer-initiated market withdrawal, precluding their 

participation in the second period.  

Overall, the percentage of CGM time in range between the use of the adaptive system and 

non-adaptive calculator was not significantly different (63% versus 58%, respectively; p=0.27). It 

is noteworthy that this study may have been underpowered. Nevertheless, there were also no 

between-group differences in postprandial glucose, HbA1c, and insulin outcomes. Patient-reported 
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outcomes similarly revealed no differences, except for a significantly higher perceived frequency 

of hypoglycemia while using the PEPPER DSS, albeit likely caused from the hypoglycemic alerts 

as part of the safety system (80).  

2.2.4 The InControl Advice System 

The InControl Advice DSS, developed at the University of Virginia, involves model-based insulin 

optimization for both basal and bolus parameters. The adaptive application also integrates an 

rtCGM-guided bolus calculator and incorporates predictive modeling of early hypoglycemia with 

rescue carbohydrate advise upon exercise announcement (81,82).  

2.2.4.1 Breton et al. (2018) 

An early iteration of this system was assessed in a pilot, randomized, controlled, crossover trial in 

24 adults with T1D on a carbohydrate counting regimen using either MDI (n=8) or pump (n=16) 

with near-optimal glycemic control (mean baseline HbA1c: 7.2%). This study involved two 

standardized interventions with identical schedules of meal contents and exercise while following 

standard therapy (control) or DSS advice (experimental) over 48 hours with remote monitoring.  

This was preceded by a 4-week data collection period to obtain optimized baseline 

treatment parameters from the DSS to be used in the intervention period. The input data was based 

on Dexcom G4 rtCGM and personal pump downloads (for pump users) or data from the mySugr 

application (for MDI users).  

Preliminary findings of this acute study under controlled settings revealed trends in favor 

of the DSS in reducing both glycemic variability and percentage of CGM time in hypoglycemia. 

Consequently, this suggested that the system was safe and feasible (81).  
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2.2.4.2 Bisio et al. (2022) 

This DSS subsequently developed into the InControl Advice system (TypeZero Technologies, 

United States). This refined version was investigated in a 12-week, open-label, randomized, 

controlled, parallel trial in MDI-treated adolescents and adults with a mean baseline HbA1c of 

7.5%. Following a 2-week run-in period with blinded rtCGM, 80 participants were randomized in 

a 2:1 ratio to either receive the InControl Advice DSS plus Dexcom G5 (experimental, n=57) or 

the Dexcom G5 alone (control, n=23). All participants were provided with the NovoPen 6 and 

NovoPen Echo Plus connected insulin pens for automatic dose and time recording. Additionally, 

those who were not already using degludec and aspart switched to these formulations for the study.  

During the intervention, there were biweekly remote visits for CGM downloads to generate 

optimized parameters by the DSS (experimental) or manual adjustments by the research team in 

cases of alarming hypoglycemia and hyperglycemia or upon request (control). The primary 

outcome, which was based on the percentage of CGM time in range, did not differ significantly 

after 12 weeks compared to baseline between the groups (3.3% for control versus 4.4% for 

experimental; p=0.86). There were also no between-group differences for other glycemic metrics, 

including HbA1c, nor for patient-reported outcomes (82). Overall, the InControl Advice DSS 

seemed feasible and safe but did not demonstrate efficacy in glycemic outcomes, which is 

consistent with the results reported from the ABC4D and PEPPER DSSs.  

2.2.5 The DailyDose System 

The DailyDose DSS, developed at the Oregon Health & Science University, comprises a 

smartphone application integrated with a bolus calculator and real-time insulin tracking while 

providing carbohydrate advice for announced exercises. The adaptive application also integrates 

simple machine learning tools to predict hypoglycemia (via forecasting algorithms) and to match 



 

 37 

specific glycemic outcomes with desirable outcome variables (via case-based reasoning 

algorithms). The latter is carried out in the form of recommended adjustments for basal doses, 

ICRs or fixed-doses, ISFs, and adherence dosing behavior (83,84). 

2.2.5.1 Tyler et al. (2020) 

The preliminary system was tested in a small, 4-week, single-arm, feasibility study to assess the 

safety of weekly adjustments made by this DSS, which were pre-reviewed and approved by the 

medical team. Overall, 15 adults with T1D on MDI therapy completed the study and were provided 

with Dexcom G6 rtCGM. The participants also received a food and exercise tracking application, 

as well as data capturing pen devices for automatic insulin dose collection.  

This pilot study found trending reductions in both overnight time in range and 

hypoglycemia in the last week compared to the first week. When they compared the weekly 

recommendations made by the DSS to those made by three endocrinologists, there was a 68% 

overall agreement rate between them (83). 

2.2.5.2 Castle et al. (2022) 

The refined version of this DSS, known as DailyDose, was assessed in a proof-of-concept, single-

arm study in 24 MDI-treated adults with T1D and suboptimal glycemic control (mean baseline 

HbA1c: 8.2%). This study entailed a 2-week baseline period with unblinded Dexcom G6 rtCGM 

use as an informal comparator. This period was followed by an 8-week intervention period 

whereby all participants received devices to capture insulin doses and an iPhone running the 

DailyDose application for weekly insulin and behavioral adjustment recommendations. 

The pre-defined primary endpoint was the percentage of CGM time in range. This outcome 

was found to be no different in the last two weeks with DailyDose compared to the 2-week baseline 

period with CGM alone (51% versus 50%, respectively; p=0.25). Furthermore, the other secondary 
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CGM outcomes were also not different compared to the baseline period, except for time above 

13.9 mmol/L, which increased by 5.4% (p=0.025) in the final two weeks (84). Although this study 

lacked a dedicated control group, it was powered a priori, and the authors surpassed their target 

recruitment goal, which may suggest suboptimal algorithm performance. Nevertheless, a 

randomized controlled trial would be required to provide definitive conclusions. 

 Collectively, the ABC4D, PEPPER, and DailyDose DSSs, based on machine learning 

algorithms, have all demonstrated no glycemic improvement in large-scale trials. Moreover, the 

InControl Advice DSS, which is based on model algorithms, also did not improve glycemia. The 

main commonality across all studies was the selection of CGM time in range as the primary 

endpoint, which was consistently found to have no statistically significant difference between the 

respective DSS and control. Furthermore, none of the DSSs led to an improvement in HbA1c in 

the studies that were long enough to report it. 

One plausible elucidation, particularly for the InControl Advice and DailyDose DSSs that 

included basal adaptation, is that MDI users typically have more glycemic variability from once-

daily basal dosing. This infrequent dosing results in less retrospective data for an algorithm to 

analyze and optimize compared to a closed-loop algorithm in an AID system that receives 

continuous feedback. Consequently, the CGM glycemic metric might require bigger sample sizes 

or longer durations to detect meaningful differences. Alternatively, it is possible that the types of 

algorithms used in these DSSs, although designed for MDI users, may have not been optimal in 

their current version, requiring further work. 

2.2.6 The Endo.Digital System 

The Endo.Digital DSS (ED-DSS) (version 2, DreaMed Diabetes Ltd., Israel) recently obtained 

FDA clearance to assist healthcare providers with insulin management for individuals over the age 
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of 6 years with T1D and T2D on MDI or pump. The DSS comprises a physician platform hosting 

an algorithm that analyzes and recommends insulin dosing and behavioural adjustments. The 

recommendations are based on CGM or SMBG data and information from the affiliated 

smartphone application equipped with a bolus calculator (85).  

2.2.6.1 Nimri et al. (2022) 

Nimri and colleagues conducted a survey study to compare MDI adjustment decisions made by 

the ED-DSS to those made by 20 experienced secondary care physicians across multinational 

centers. The outcomes were based on 3-week retrospective real-world data from 17 anonymized 

adults with T1D on MDI either on CGM or SMBG (mean HbA1c: 7.4%). The ED-DSS and all 

physicians independently analyzed each case in the dataset and proposed hypothetical 

recommendations of modified dosing parameters (for once-daily basal dose, ICRs, and ISFs), as 

well as behavioral suggestions associated with insulin administration.  

The primary endpoint was the proportion of overall agreement and disagreement rates 

(each combining full and partial) between the physicians compared to physicians and the ED-DSS. 

Full agreement was defined as a suggested change of the same parameter in the same direction by 

both parties. Partial agreement was defined as a change in one parameter by one party and a change 

to a different parameter or time period but in the same direction by the other party. Full 

disagreement was recorded when both parties recommended a change in the opposite direction for 

the same parameter. Partial disagreement was described as a change to a parameter in a specific 

direction by one and a change to a different parameter or time period in the opposite direction by 

the other.  

The overall average proportion of directional agreement was 68% for basal, 55% for ICRs, 

and 58% for ISFs between physicians and the ED-DSS. These proportion outcomes were 
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statistically non-inferior to the average thresholds between the physicians (62% for basal, 49% for 

ICRs, and 50% for ISFs). Non-inferior proportions were similarly found for the disagreement rates 

between the pairs. Furthermore, the mean absolute percentage of change from the average 

physician (13%, 33%, and 54%) was higher than that recommended by the ED-DSS (8%, 14%, 

12%) for basal, ICRs, and ISFs, respectively (85). 

2.2.7 The McGill System  

The McGill Diabetes Technology Lab previously developed a model-based optimization algorithm 

specifically for MDI therapy. This system employs a Bayesian approach that estimates optimized 

basal and meal bolus parameters based on retrospective meal, insulin, and sensor glucose data. The 

algorithm was initially designed for daily adjustments, using the past 24-hour data while indirectly 

accounting for previously learned adjustments from preceding days, combined with optimal target 

values to estimate new parameter recommendations for the subsequent day (86). 

2.2.7.1 Fathi et al. (2020) 

The earlier iteration of this algorithm was tested for safety and feasibility in a pilot, non-inferiority, 

randomized, controlled, parallel trial involving 21 adolescents (mean baseline HbA1c: 8.6%) at a 

diabetes camp over 11 days. The participants were randomized to receive daily parameter 

adjustments either from one of six camp physicians or by the algorithm (pre-approved by a 

physician). All participants wore the first-generation Freestyle Libre isCGM for the entire study 

and followed standardized meals during the intervention. The primary endpoint was the percentage 

of CGM time in range in the last seven days of the intervention.  

Although the average percent time in range for participants in the algorithm group was 

similar to that in the physician group, it was not statistically significant (40% versus 38%, 

respectively; p=0.89). Due to recruitment challenges, the sample size was nearly 60% under the 
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powered target, rendering the findings exploratory. Nevertheless, when comparing the first few 

days to the last few days of the intervention, both had significantly less within-group daily 

hypoglycemic events. 

Safety was established on the basis that 92% of algorithm-made recommendations were 

approved by physicians, and only 8% were modified prior to implementation. Furthermore, a 

retrospective execution of the algorithm was conducted on the physicians’ dataset to compare 

directional insulin adjustments, which revealed 54% concordance with the physicians’ 

recommendations. Overall, this study demonstrated acute safety and feasibility, albeit under 

supervised and controlled settings over a short duration (86).  

This pilot study was the stepping stone toward a larger and longer randomized controlled 

trial under free-living settings, which forms the basis of my core clinical thesis work. I investigated 

the effectiveness of the McGill DSS comprising a refined version of this algorithm that generated 

weekly adjustments, incorporated with our novel smartphone application equipped with a bolus 

calculator. The second part of my thesis work evaluated the directional and magnitude of change 

of insulin adjustments made from the McGill DSS algorithm in the parent trial compared to mock 

adjustments made by a group of endocrinologists based on identical datasets.  
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Chapter 3. A Novel Bayesian Decision Support System for 

Automated Insulin Doses in Adults with Type 1 Diabetes on 

Multiple Daily Injections: A Randomized Controlled Trial 

3.1 Preface 

The manuscript presented in this chapter describes the clinical trial that investigated the McGill 

DSS. This outpatient study consisted of a two-arm design with a 1:1 randomization ratio. This 

chapter reveals the clinical outcomes from the use of the McGill DSS compared to the standalone 

iBolus application among 84 MDI-treated adults with T1D and suboptimal glycemic control. 

Additionally, a qualitative thematic analysis from 24 semi-structured interviews is included, 

shedding light on the commonly shared views and perspectives from a sub-group of participants 

who used the study software for 12 weeks. The importance of incorporating a qualitative 

component in a clinical trial, as well as the rationale behind the selected methodology are explained 

in more detail in Chapter 5 (Discussion).  

3.2 Contribution of Authors  

Alessandra Kobayati, Ahmad Haidar, and Anas El Fathi conceptualized the design of the trial. Dr. 

Michael A. Tsoukas, Dr. Jean-François Yale, and Dr. Laurent Legault contributed feedback in the 

early planning stages. Alessandra Kobayati contributed to the conceptual design of the iBolus 

application and performed quarterly software testing throughout the trial.  

Alessandra Kobayati led the conduct of the trial, which entailed the development of 

essential documents and participant-facing tools, the recruitment of participants, the handling of 

regulatory and ethics submissions and correspondence, the coordination of study procedures, and 
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the management of data and study documentation. Anas El Fathi provided technical support in the 

early stages of the trial. Adnan Jafar processed the raw data needed for the analyses and created 

three supplementary graphs included in the appendix. Alessandra Kobayati and Ahmad Haidar 

carried out the statistical analyses and interpreted the results.  

Alessandra Kobayati designed the qualitative sub-study, developed the interview guide, 

conducted the semi-structured interviews, and served as the primary coder responsible for the 

thematic analysis. Alessandra Kobayati developed the sensor comparison sub-study, developed the 

optional consent form, re-consented a subset of participants, and performed the analysis. 

Ahmad Haidar was responsible for the general oversight of the trial conduct as the sponsor. 

Dr. Michael Tsoukas was responsible for the medical oversight of the trial as the principal 

investigator. Dr. Natasha Garfield (co-investigator) and Dr. Tsoukas conducted the majority of 

clinical assessments to confirm eligibility during admission visits. Dr. Laurent Legault (co-

investigator) carried out the remaining clinical assessments. Dr. Garfield and Dr. Jean-François 

Yale (co-investigator) helped with the recruitment process.  

Alessandra Kobayati drafted the original manuscript and appendix, generated all tables and 

figures (except for Supplementary Figures 3.5-3.7), and revised the manuscript in accordance with 

Ahmad Haidar’s editorial input. The other co-authors reviewed and approved the final manuscript 

prior to journal submission. 
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3.3 Abstract 

We developed a decision support system (DSS), composed of a mobile app and a dose titration 

algorithm, to provide weekly basal and bolus recommendations for people with type 1 diabetes on 

multiple daily injections. We assessed our system in a 12-week randomized trial in 84 adults with 

suboptimal glucose control. Participants were randomized to either use the DSS or a non-adaptive 

bolus calculator app (control) for 12 weeks. Participants used the Freestyle Libre sensor. The DSS 

reduced mean HbA1c from 8.6% to 8.1% while the control reduced HbA1c from 8.6% to 8.5%; a 

treatment effect of -0.40% (95% CI: -0.75 to -0.051; p=0.025). The proportion of participants with 

improvements in HbA1c of 0.5%, 1.0%, and 1.5% were almost doubled in the DSS arm 

compared to control. There were no severe hypoglycemia or diabetic ketoacidosis. We conclude 

that our DSS improves HbA1c in adults with suboptimal control. 

Clinical trial registration number: NCT04123054 

3.4 Introduction 

Type 1 diabetes is characterized by the destruction of pancreatic β cells, requiring lifelong insulin 

replacement therapy (1). Intensive insulin therapy, through multiple daily injections (MDI) or an 

insulin pump, with a target glycated hemoglobin (HbA1c) <7%, reduces microvascular and 

macrovascular complications (2,3). MDI therapy is used by the majority of individuals with type 

1 diabetes worldwide, but it is associated with frequent glycemic fluctuations, primarily due to 

variability in subcutaneous insulin absorption (4), insulin sensitivity, physical activities (5), 

different food composition (6), and stress, among other factors. Furthermore, infrequent clinical 

follow-ups impede timely adjustments of insulin doses, further exacerbating the challenges with 
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MDI therapy (7). Most people with type 1 diabetes on MDI therapy do not achieve glycemic targets 

(8). 

 The introduction of continuous glucose monitoring (CGM) systems has revolutionized type 

1 diabetes care. In the case of insulin pumps, algorithm-guided titrations of insulin doses based on 

real-time CGM readings are now commercially available and improve glycemic outcomes and 

quality of life compared to conventional pump therapy (9). For MDI therapy, the recent availability 

of smart insulin pens and caps (10), which track insulin doses and communicate wirelessly with 

smartphones, have paved the way for the development of decision support systems (DSSs) that 

enable algorithm-guided automatic titrations of insulin doses based on retrospective analysis of 

CGM readings (11). No such DSS is commercially available. 

Several feasibility studies have assessed DSSs for MDI therapy (12–16), but only three 

randomized controlled trials have been reported so far. The InControl Advice system was tested in 

a 12-week parallel trial in 80 adolescents and adults (17), the ABC4D system was tested in a 12-

week crossover trial in 37 adults (18), and the PEPPER system was tested in a 12-week crossover 

trial in 54 adults (19). None of the studies demonstrated improvements in glycemic outcomes with 

their DSS. 

Here, we present the results of a 12-week randomized parallel controlled study that 

assessed the effectiveness of our McGill DSS based on a novel Bayesian optimization algorithm 

in 84 adults on MDI therapy with suboptimal baseline glycemic control.  

3.5 Results  

Between March 05, 2020, and September 27, 2023, 179 individuals were pre-screened for interest 

and basic eligibility. A total of 94 adults on MDI therapy were officially screened; 9 were ineligible 

and one withdrew prior to randomization due to commitment concerns. Consequently, 84 
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participants with a suboptimal baseline HbA1c of 7.5% or higher were enrolled in the study. 

Participants were randomized in a 1:1 ratio and stratified according to previous sensor use to either 

the McGill DSS (iBolus app with the optimization algorithm; experimental arm) or the non-

adaptive iBolus app (control arm). The recruitment flow of participants is presented in Figure 3.1. 

Baseline characteristics were comparable across both groups (Table 3.1). The overall mean age 

was 38 (12) years, diabetes duration was 22 (12) years, HbA1c was 8.6% (1.1), 44% were female, 

and 76% were regular sensor users (defined as at least three consecutive months of sensor wear 

prior to enrolment). 
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Figure 3.1 Participants flowchart diagram. 
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Table 3.1 Baseline characteristics of participants (n=84). 

 Overall 
(N=84) 

Experimental arm 
(n=42) 

Control arm 
(n=42) 

Age (years) 38 (12) 39 (12) 38 (12) 
Female sex, n (%) 37 (44) 20 (48) 17 (40) 
Weight (kg) 78 (14) 77 (13) 79 (14) 
BMI (kg/m2) 26 [23–29] 26 [23–29] 26 [24–29] 
Duration of diabetes (years) 22 (12) 21 (11) 23 (13) 
HbA1c (%) 8.6 (1.1) 8.6 (1.1) 8.6 (1.0) 
Prior rt/isCGM use*, n (%) 64 (76) 32 (76) 32 (76) 
Ethnic origin, n (%) 
    Caucasian 60 (71) 29 (69) 31 (74) 
    Black 7 (8.3) 3 (7.1) 4 (10) 
    Asian 5 (6.0) 3 (7.1) 2 (4.8) 
    Hispanic 5 (6.0) 4 (10) 1 (2.4) 
    Arab 4 (4.8) 2 (4.8) 2 (4.8) 
    Other 3 (3.6) 1 (2.4) 2 (4.8) 
Geography, n (%) 
    Urban 73 (87) 38(90) 35(83) 
    Rural 11 (13) 4 (10) 7 (17) 
Meal strategy regimen, n (%) 
    Carb-counting 51 (61) 27 (64) 24 (57) 
    Fixed-dose 33 (39) 15 (36) 18 (43) 
Basal pen increment, n (%)    
    2.0U 4 (4.8) 2 (4.8) 2 (4.8) 
    1.0U 75 (89) 38 (90) 37 (88) 
    0.5U 5 (6.0) 2 (4.8) 3 (7.1) 
Bolus pen increment, n (%)    
    1.0U 66 (79) 32 (76) 34 (81) 
    0.5U 18 (21) 10 (24) 8 (19) 
Basal insulin types, n (%)    
    Degludec 47 (56) 22 (52) 25 (60) 
    Glargine U-300 8 (9.5) 3 (7.1) 5 (11) 
    Glargine U-100 18 (21) 12 (29) 6 (14) 
    Basaglar 6 (7.1) 2 (4.8) 4 (9.5) 
    Determir 5 (6.0) 3 (7.1) 2 (4.8) 
Bolus insulin types, n (%)    
    Aspart 34 (40) 16 (38) 18 (43) 
    Trurapi 4 (4.8) 1 (2.4) 3 (7.1) 
    Lispro 26 (31) 14 (33) 12 (29) 
    Admelog 3 (3.6) 3 (7.1) 0 (0.0) 
    Fast-acting aspart 14 (17) 7 (17) 7 (17) 
    Glulisine 3 (3.6) 1 (2.4) 2 (4.8) 

Data are presented as mean (SD) or median [IQR] unless stated otherwise.  
*Legend: rt: real-time, is: intermittently scanned; new user was defined as <3months of uninterrupted use 
prior to study enrolment, and regular user was defined as ≥3months. 
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3.5.1 User-App Interactions  

Participants in the experimental and control groups used the app to determine meal boluses 2.7 

[2.4–3.1] and 2.5 [1.9–3.0] times per day (p=0.11), respectively, and to determine correction 

boluses 0.56 [0.17–1.3] and 0.46 [0.21–1.2] times per day (p=0.93), respectively (Supplementary 

Table 3.4). Participants also used the app to log basal insulin dose 0.92 [0.82–0.98] and 0.86 [0.67–

0.94] times per day (p=0.0078), respectively. App usage to determine boluses as well as log basal 

doses were stable throughout the study (Supplementary Figure 3.5).  

In the experimental group, there were 50 instances of large accumulative changes (more 

than 30% from baseline or a previously approved parameter) in therapy parameters that required 

approval from a member of the study’s clinical team before the new parameters were transmitted 

to participants. All reviewed parameters were approved without any modification to the algorithm 

recommendations. 

3.5.2 HbA1c Outcomes 

The McGill DSS reduced mean HbA1c from 8.6% at baseline to 8.1% at end-of-study, while the 

standalone app reduced mean HbA1c from 8.6% to 8.5% (Figure 3.2; Supplementary Figure 3.4). 

The within-group change in HbA1c from baseline at end-of-study was greater for the experimental 

group (-0.55% (0.87%)) compared to the control group (-0.14% (0.74%); Table 3.2) with a 

between-group difference of -0.40% (95% CI -0.75 to -0.051; p=0.025; Figure 3.2).  

Table 3.2 Primary Outcome. 

 Experimental 
(n=42) 

Control  
(n=42) 

Difference  
[95% CI] 

p 
value 

HbA1c, change from baseline (%) 

 

-0.55 (0.87) 

 

-0.14 (0.74) 

 

-0.40  

[-0.75 to  -0.051] 

0.025 

 

Data presented as mean (SD) unless otherwise indicated. 
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Figure 3.2 Change in HbA1c from baseline to Week 12 from 42 experimental and 42 control 

participants. Values are mean (standard error). 

The proportion of participants who achieved an end-of-study HbA1c of 7.5% and  7.0% 

was 19% (experimental group) compared to 17% (control group) (p=1.0) and 12% (experimental 

group) compared to 0% (control group) (p=0.055), respectively. The proportions of participants 

with improvements in HbA1c from baseline of 0.5%, 1.0%, and 1.5% were almost doubled in 

the experimental group compared to control (52%, 19%, and 12% vs. 31%, 9.5%, and 4.8%, 

respectively; Figure 3.3). The proportions of participants with worsening in HbA1c of 0.5%, 

1.0%, and 1.5% were substantially reduced in the experimental group compared to the control 

group (2.4%, 2.4%, and 0.0% vs. 21%, 7.1%, and 2.4%, respectively; Figure 3.3) 
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Figure 3.3 Proportion of participants with improvements and degradations in HbA1c by 0.5%, 

1.0%, 1.5% compared to baseline. 

3.5.3 CGM Outcomes 

There were no differences between the groups in any of the percentages of time spent in, below, 

and above target ranges, as well as glycemic variability (Supplementary Table 3.5). CGM 

outcomes were not different between groups whether the comparison was carried out for the entire 

12-week period or only the last 4-week period.   

During the study, eight participants (three experimental and five control) who wore their 

personal real-time CGM (Dexcom G6) simultaneously with the study intermittently-scanned CGM 

consented and granted sharing access to their personal sensor data. We obtained 47±29 days of 

overlapping sensor data. We observed discrepancies between the sensor types. The intermittently-
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scanned study sensor had more readings in the hypoglycemic ranges and less readings in the 

hyperglycemic ranges compared to real-time CGM, all p<0.05 (Supplementary Table 3.6).  

3.5.4 Insulin Dosing Parameters and Algorithm Recommendations 

There were no differences in the mean changes (from baseline to end-of-study) in insulin dose 

parameters (basal and bolus) between the two groups (Supplementary Table 3.7). However, the 

algorithm made substantially larger individual changes (increasing and decreasing) in the insulin 

dose parameters in the experimental group compared to the changes observed, as per standard of 

care, in the control group (Supplementary Figure 3.6; Supplementary Figure 3.7). 15 (36%) and 9 

(21%) participants underwent >20% and >30% changes in basal insulin doses in the experimental 

group compared to only 2 (4.8%) and 2 (4.8%) in the control group, respectively. Similarly, 19 

(45%) and 13 (31%) participants in the experimental group underwent >20% and >30% changes 

in prandial insulin doses, compared to only 3 (7.1%) and 1 (2.4%) in the control group, respectively 

(Supplementary Table 3.8). 

Even though the algorithm made large individual changes to insulin dose parameters, the 

directional changes (increasing vs decreasing) were comparable, underscoring the importance of 

personalized changes. 12 (29%) participants had both their basal and bolus insulin parameters 

increased, 11 (26%) participants had both parameters decreased, 9 (21%) participants had their 

basal parameter increased and bolus parameter decreased, and 10 (24%) participants had their 

basal parameter decreased and bolus parameter increased (Supplementary Table 3.9).  

3.5.5 Safety 

There were no episodes of severe hypoglycemia or diabetes ketoacidosis throughout the study 

(Table 3.3). There were three serious adverse events in the experimental group, none of which 

were deemed related to the study. One involved hip surgery following a ski accident, another 
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involved overnight hospital admission due to gastrointestinal issues, and the other was a bone 

fracture caused by an accidental misstep at home that required a medical intervention and 

evaluation for surgery. There was also one serious adverse event in the control group, comprising 

a bone fracture caused by an accidental stumble at home that required a medical intervention and 

evaluation for surgery. Overall, there were more adverse events in the experimental group (n=22) 

compared to control (n=4), with upper respiratory illness covering the majority of events (n=12; 

Table 3.3). 

Table 3.3 Adverse events. 

Outcome Experimental 
arm (n=42) 

Control arm 
(n=42) 

No. of severe hypoglycemia events 0 0 
No. of diabetic ketoacidosis events 0 0 
Total no. (%) of adverse events 22 4 
Acute relapse of neuropathic pain 1 0 
Prolonged hyperglycemia (due to spoiled insulin) 1 0 
Positive COVID-19 infection 3 1 
Other upper respiratory infection  9 2 
Bacterial throat infection 1 0 
Allergic reaction to insect bite 1 0 
Bone fracture 3 1 
Diarrhea (led to hospitalization)   1 0 
Acute relapse of vertigo 1 0 
Vomiting  1 0 

Participant did not test for ketones and only notified the research team of the hyperglycemia upon 
resolution with insulin replacement. 

3.5.6 Exploratory Patient-Reported Outcomes 

As part of an exploratory sub-study, 11 participants in each group completed the modified Diabetes 

Treatment Satisfaction Questionnaire (DTSQ) and the modified mHealth App Usability 

Questionnaire (MAUQ). 
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There were no between-group differences for any of the questionnaire items of either 

instrument. For the DTSQ, both groups consistently scored high and had higher monthly scores 

compared to baseline for: convenience, understanding of diabetes, willingness to continue current 

treatment, and overall treatment satisfaction (Supplementary Figure 3.8). For the MAUQ, both 

groups also scored very high in all items, suggesting a favourable experience with the standalone 

iBolus app (Supplementary Figure 3.9). 

3.5.7 Qualitative Outcomes 

24 one-on-one semi-structured interviews were conducted in a sub-sample of participants (12 

experimental and 12 control). Three broad themes emerged from the analysis: 1) enhanced 

glycemia due to personalized dose recommendations (algorithm), 2) advantage of digital solutions 

over traditional standard of care (standalone iBolus app), and 3) desire for advanced MDI 

technologies in practice (future directions). 8 sub-themes were further identified, with selected 

ones reported below. The complete list of themes and sub-themes are listed in Supplementary Table 

3.10. The interview topic guide is provided in Supplementary Table 3.11. Quotations from 

participants were included to illustrate lived experiences in their own voice (20). 

One major sub-theme related to the algorithm was streamlined access to timely decision 

support. All 12 (100%) participants in the experimental sub-sample expressed a sense of gratitude 

for receiving frequent insulin adjustments compared to long wait times in traditional settings.  

“The 6-month patient visit in the hospital, um, to let that go for such a long period of time 

could have negative consequences to one’s health. This [algorithm], at least gives, you 

know, a guidance immediately in real-time, and again, it does give the patient the option 

to override.” (P116, experimental)  
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Another recurring algorithm-related sub-theme was an appreciation for the conservative 

(gradual and incremental) nature of dose adjustments, expressed by half (50%) of the experimental 

sub-sample.  

“It's not a crazy jump week over week when there are changes…I was happy to see 

that…sometimes there's only one adjustment… it's gradual, it slowly adjusts to the required 

dosage” (P126, experimental) 

Another sub-theme that was identified was trust in technology, whereby ten (83%) 

experimental participants expressed a strong feeling of trust with the algorithm. 

“I had complete confidence in the recommendations, it was going really well, you could 

really see that there was a good change.” (P115, experimental) 

Several sub-themes also emerged from the standalone bolus calculator. A noted one was 

enhanced dosing regimen from real-time insulin-on-board tracking and insulin delivery history. 

Nine (75%) and six (50%) of the control and experimental sub-samples, respectively, stated that 

the real-time tracking of active insulin was a critical feature in facilitating their daily insulin 

management. 

“What I liked the most was being able to know how many units of insulin were onboarding, 

so you know, not to like stack my insulin doses, that, by far was my favorite thing of the 

entire app.” (P025, control) 

Seven (29%) of the interviewed participants stated that they used the app experientially to 

enhance their diabetes management.  

“I was using the app in ways where if I had a low blood sugar, I would kind of see where I 

can get some free carbs…putting in 15 or putting in 20 grams and seeing how high [in carbs] 

I can go before it tells me I need one unit [of insulin].” (P124, experimental) 
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3.6 Discussion 

We conducted a randomized controlled trial comparing a novel DSS for weekly insulin 

adjustments compared to a standalone app with a bolus calculator in adults with type 1 diabetes 

and suboptimal control. The DSS reduced mean HbA1c significantly compared to the standalone 

bolus calculator. Moreover, it doubled the proportion of participants with improvements of HbA1c 

and substantially decreased the proportion of participants with worsening of HbA1c at different 

thresholds. These improvements in glycemic outcomes were preceded by large and individualized 

changes to the insulin parameters by the DSS. Other randomized trials have assessed DSSs in 

adults with type 1 diabetes on MDI therapy (17–19), but this is the first trial to demonstrate a 

meaningful improvement in glycemia, in the form of -0.4% control-adjusted HbA1c reduction. 

In our study, HbA1c reductions were not accompanied by improved CGM outcomes, which 

contradicts studies of closed-loop insulin pumps (21,22). This might be due to the inherent 

glycemic variability in MDI users caused by the low frequency in which they dose basal insulin 

(once per day). Our algorithm analyzes glucose data from the past seven days before 

recommending insulin changes, which subsequently leads to fluctuations between weekly 

adjustments as a result of less control. In contrast, closed-loop insulin pumps adjust insulin every 

5–10 minutes based on real-time CGM readings, resulting in more control and thus less daily 

glycemic variability. It is, therefore, possible that our sample size was not large enough to detect 

statistical differences in CGM outcomes for an MDI population. Moreover, we used first-

generation intermittently scanned sensors, which has been reported to be less accurate than real-

time sensors (23), and that may have further increased glycemic variability as measured by the 

sensor.  
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The percentage of time below 3.9 mmol/L observed in our entire study cohort was higher 

than the recommended target of <4% (24). However, these higher values were observed in both 

groups, and thus does not indicate a safety signal with our DSS. This is further supported by the 

lack of increased perceived hypoglycemia collected from our PRO data. Moreover, the first-

generation intermittently scanned sensor has been reported to be less accurate in the hypoglycemic 

range (23). Our exploratory sensor comparison with real-time CGM showed that the intermittently-

scanned CGM had more readings in the hypoglycemic range, thus suggesting that they may have 

overestimated hypoglycemia in our study. Others have confirmed large differences between sensor 

types too (25). 

Strengths of our study include the use of a randomized controlled design and the inclusion 

of participants with high baseline HbA1c, which is representative of the general MDI population. 

Furthermore, participants entered the study with their personal long-acting and rapid-acting 

insulins and insulin pens (with various increments) without changing to any uniform insulin type 

or pen, further increasing the generalizability of our findings. Another strength is the diversity of 

our study cohort, with one third being non-Caucasian and a little over one third used fixed prandial 

boluses. Finally, we stratified participants according to previous sensor use to ensure balance 

between groups, given that glycemic improvements can be obtained from initiating CGM (26–28). 

Our study has several limitations. One limitation was the lack of a pre-randomization run-

in period to assess and compare baseline CGM metrics with the last few weeks of the study. The 

control group also lacked baseline optimization; although, neither group received insulin titrations 

at baseline. Additionally, control participants were permitted to have their parameters modified by 

their health care providers without restrictions per their usual standard of care. Another limitation 

was the lack of insulin correction factor optimization by the DSS, but participants were free to 
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manually adjust this parameter during the intervention as needed (carried out by seven 

participants). Finally, insulin dosing details were recorded by users through the app rather than 

being automatically captured by a smart pen or cap device. However, all participants received 

baseline training and understood the importance of accurate and timely reporting, with additional 

support by automated compliance reminders in the app. 

In conclusion, our DSS significantly improved HbA1c in adults with suboptimal glucose 

control on MDI therapy. Randomized controlled trials in pediatrics are warranted.  

3.7 Methods 

3.7.1 Trial Design  

This was an open-label, randomized, controlled, parallel trial over 12 weeks. The objective was to 

compare the McGill DSS that provides weekly adaptations to basal and prandial doses with a non-

adaptive bolus calculator. All participants were supplied with first-generation Abbott’s Freestyle 

Libre sensors. Participants were allowed to simultaneously wear their personal real-time CGM, if 

applicable. 

The trial protocol was approved by the Research Ethics Board of the McGill University 

Health Center. Health Canada granted Investigational Testing Authorization to conduct the trial 

with the McGill DSS and iBolus app (entire system regulated as a class II investigational medical 

device). Written informed consent was obtained from all participants prior to commencement.  

3.7.2 Participants 

Inclusion criteria included adults (≥18 years old) with a diagnosis of type 1 diabetes for at least 

one year, using multiple daily injections, and with a baseline HbA1c of ≥7.5%. Exclusion criteria 

comprised the use of intermediate-acting insulin, pregnancy or breastfeeding, use of non-insulin 
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antihyperglycemic agents within one month, severe hypoglycemia or diabetic ketoacidosis within 

one month, significant nephropathy, neuropathy, or retinopathy (per the investigator’s judgement), 

recent blood transfusion, hemoglobinopathy, anemia, or other conditions likely to interfere with 

the study procedures per the investigator’s judgment. 

Most participants were recruited at the endocrinology clinic of the McGill University 

Health Center. If the participant had an eligible HbA1c level collected within one week of the 

screening visit, it was used as the baseline measurement; otherwise, a new baseline HbA1c 

measurement was taken.  

3.7.3 Randomization 

We utilized a computer-generated permuted-block 1:1 randomization, stratified according to 

regular sensor use (≥3 months) or new sensor use by using different blocks (sizes 10 and 4, 

respectively) for each strata. A member of the research team who was not involved in the study 

prepared digitally sealed envelopes with the randomization sequence, which were revealed after 

enrolment was confirmed.  

3.7.4 Procedures and Interventions 

Following randomization, participants received refresher training on diabetes management that 

included a review on pharmacokinetic action of insulin analogs, insulin storage and care, injection 

techniques, carbohydrate counting (if applicable), and hypoglycemia and hyperglycemia 

management.  

Study LibreLink app accounts were created for each participant using coded credentials, 

followed by training on the insertion, use, and disposal of the freestyle libre system. Participants 

were asked to scan their Freestyle libre sensor at least five times per day (upon waking, prior to 
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meals, and before bedtime). Sensor readings were automatically transferred to our LibreView 

Professional account and downloaded weekly into a secure drive and database.  

Initial iBolus app programming involved either enabling the carbohydrate counting setting 

or keeping it disabled for fixed-dose users, along with their personal dosing parameters (basal 

dose, target glucose level, insulin sensitivity factor, active insulin time, basal and bolus pen 

increments, and carbohydrate ratios or fixed doses for each meal type). The app was designed to 

lock the meal strategy (carbohydrate counting or fixed-dose) selection upon initiation so 

participants were not able to switch to the opposite strategy after starting the study. Participants in 

both groups received training on the iBolus app and were instructed to use it daily and accurately 

for timely basal logging and real-time meal and correction bolus calculations. The control group 

used the non-adaptive iBolus app, which relied on their personal programmed parameters, and the 

experimental group used the adaptive version of the app.  

3.7.5 iBolus app 

The iBolus app was developed with the aim of facilitating bolus calculations for MDI therapy 

while simplifying remote data collection in the study. The app was designed with a focus on 

making the graphical user interface with simple icon-based features while limiting text 

(Supplementary Figure 3.10).  

iBolus is equipped with a built-in bolus calculator that computes doses for meal and 

correction boluses in real-time based on programmed parameters (meal-specific carbohydrate 

ratio, glucose target, and insulin sensitivity factor) and current glucose level and its trend, while 

accounting for active insulin-on-board from previous rapid-acting insulin doses. The app also has 

a function to log basal doses, with an optional notification that could be enabled as a daily reminder 

at the regular time of administration. In the event of a mistake, there was a 30-minute window to 
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delete any log. Furthermore, automatic alert notifications were sent to participants in the event of 

three missing consecutive basal logs or insufficient use defined as three or less entries (e.g. meal 

bolus) within 36 hours. This served to increase adherence by reminding participants about app 

usage.  

Upon requesting a meal bolus, the meal type (breakfast, lunch, dinner, or bedtime) was set 

by default depending on the time of day. Then, participants were prompted to enter their sensor 

glucose level and select its trend arrow and enter the amount of carbohydrates, if applicable. The 

calculated bolus was subsequently displayed along with its calculation details. Upon confirming a 

dose, the app automatically updated the real-time insulin-on-board on the home screen as well as 

the log history. Participants were permitted to override a calculated dose with the option to select 

one of the following reasons: dose is higher than usual, exercise, sick, stress, menstrual cycle, 

alcohol. However, the optional reason selection merely served as a note and did not change the 

bolus calculation. Upon requesting a correction bolus, participants were prompted to enter their 

sensor glucose level and its trend arrow to calculate the dose, which they could accept or override.  

The non-adaptive iBolus app comprised all aforementioned features, which relied on the 

programmed personal parameters, which can be changed manually by the participants at any time. 

In contrast, the adaptive iBolus app entailed weekly notifications that displayed the previous 

week’s basal and meal bolus parameters along with the new optimized parameters determined by 

the algorithm. Upon acknowledgement, the new parameters automatically updated the app settings 

to be used in the following week. 

Logged data were automatically transferred to our secure cloud server upon internet 

connection. Missing data notifications and the weekly parameter notifications required internet 
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connection. Participants had the iBolus app installed on their personal phone, if compatible, or 

received a study phone with the app. 

3.7.6 The McGill Decision Support System 

Our algorithm employed a model-based Bayesian approach to estimate insulin dosing parameters 

(once-daily basal dose and fixed bolus doses or carbohydrate ratios) (29). Once a week, the 

algorithm was executed on the cloud (MATLAB R2018b running on a Google Cloud Virtual 

Machine) for all active experimental participants. The algorithm utilized the previous week’s 

sensor data obtained by the Freestyle software and insulin and meal data obtained by the iBolus 

app as input to fit a glucoregulatory model using a Bayesian approach to estimate the therapy 

parameters that would have resulted in optimal control in the previous week. The recommendations 

for the following week were a mixture of these optimal parameters and the parameters used in the 

previous week depending on the ability of the model to explain the data and the statistical 

confidence in the optimal parameters’ estimates. The algorithm recommendations were 

subsequently pushed to the participants in the form of an app notification, requiring 

acknowledgement to automatically populate their app settings. 

The algorithm was executed weekly; however, all previous weeks were implicitly included 

in the algorithm recommendations. Each week, the algorithm used the Bayesian’s prior 

probabilistic distributions to combine last week’s data with the most recent therapy parameters 

(which were learned from previous weeks) to generate recommendations for the following week. 

This iterative process ensures that lessons from previous weeks are carried to future 

recommendations.  

The app and the algorithm were accompanied by an online platform that was accessed by 

the research team only for data visualization. If there was more than a 30% cumulative change in 
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any therapy parameter from baseline or a previously approved parameter, then approval from a 

member of the study’s clinical team was required in the platform before the new parameters were 

pushed to participants.  

3.7.7 Patient-Reported Outcomes 

As part of an exploratory psychosocial sub-study, participants were enrolled on the basis of 

convenience sampling, wherein any new participant who was enrolled in the main study was given 

the opportunity to participate in this sub-study with a target range of 20-25 individuals. Exploratory 

patient-reported outcomes entailed serial administration of a modified version of the Diabetes 

Treatment Satisfaction Questionnaire at baseline and every four weeks of the intervention. At the 

end of the 12-week intervention, these participants completed a modified version of the mHealth 

App Usability Questionnaire to gauge the usability of the standalone iBolus app.  

The Diabetes Treatment Satisfaction Questionnaire is a validated instrument composed of 

eight questions, broken down into two measures, both scored on a 7-point Likert scale: 1) treatment 

satisfaction (questions 1, 4, 5, 6, 7, 8), with higher scores indicating greater satisfaction, and 2) 

perceived frequency of hyperglycemia and hypoglycemia (questions 2, 3), with lower scores 

representing better perceived glycemia (30). One of the questions was only asked to the 

experimental group as it pertained to the algorithm adjustments of their insulin doses. The latter 

question and the one about recommending the iBolus app to others were not asked at baseline.  

The mHealth App Usability Questionnaire is a validated survey for a standalone mobile 

health application. This instrument is composed of 18 items, broken down into three factors: 1) 

ease of use, 2) interface and satisfaction, and 3) usefulness (31). All items are scored on a 7-point 

Likert scale ranging from 1 (disagree) to 7 (agree). One question from the ease of use factor and 

one from the usefulness factor were removed due to their irrelevance to the iBolus app. 
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3.7.8 Semi-structured Interviews 

The sub-cohort of participants who completed questionnaires also took part in semi-structured one-

on-one exit interviews led by a topic guide (Supplementary Table 3.11). The interviews were audio 

recorded, transcribed verbatim, and then underwent a thematic analysis by two coders via an 

inductive approach without predefined codes to better understand participants’ experience and 

gauge usability of the study software.  

3.7.9 Outcomes 

The primary endpoint was the change from baseline in HbA1c at end-of-study. Secondary 

endpoints included the percentage of time for which sensor glucose levels were in the following 

ranges: between 3.9-10mmol/L, between 3.9-7.8mmol/L, <3.9mmol/L, <3mmol/L, >7.8mmol/L, 

>10mmol/L, >13.9mmol/L, and >16.7mmol/L, as well as standard deviation, mean sensor glucose, 

and insulin delivery. Data from CGM metrics were calculated for three periods: 1) overnight 

(23:00-7:00), daytime (7:00-23:00), and overall (24-hour). 

3.7.10 Statistical Analysis 

We assumed a 0.8% standard deviation of HbA1c, as previously reported in the literature (27), and 

we predicted an estimated difference of 0.5% between the two arms. We consequently calculated 

that 84 participants would provide 80% power at the 5% significance level.  

The comparison of the primary endpoint was made using a linear mixed model accounting 

for baseline HbA1c. Hypothesis testing of between-group differences in other continuous 

outcomes were performed using the two-sample t-test or the non-parametric Wilcoxon rank sum 

(Mann-Whitney) test. The Shapiro-Wilk test was used to assess normality. Data were reported as 

mean (standard deviation) for normally distributed variables and median [interquartile range] for 
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non-normally distributed variables. The analysis was based on a modified intention-to-treat 

approach, which included data from all randomized participants for whom a final HbA1c 

measurement was collected after at least ten completed weeks of intervention. 

 Statistical analyses were performed using R v12.1 and MATLAB 2020. All p-values for 

the between-group comparisons were two-tailed. P-values <0.05 were considered as significant. 

No corrections for multiplicity were made for the secondary outcomes. 

For the interview data, we adopted a qualitative descriptive methodology to explore and 

provide descriptions of participants’ experiences and views with low inference from the data (32). 

We employed a thematic analysis to identify recurring patterns in thoughts and experiences shared 

by participants that can be grouped together into themes to more accurately summarize the data. 

Codes were developed inductively, not predefined, albeit through a deductive lens due to prior 

experience, knowledge, and preconceived notions. The NVivo 12 software was used to manage, 

store, and analyse the data.   
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3.10 Appendix 

Supplementary Table 3.4 Daily user interaction with the main app features throughout the study. 

 Experimental arm 
(n=42) 

Control arm 
(n=42) 

p value 

Meal bolus (/day) 2.7 [2.4–3.1] 2.5 [1.9–3.0] 0.11 
Correction bolus (/day) 0.56 [0.17–1.3] 0.46 [0.21–1.2] 0.93 
Basal log (/day) 0.92 [0.82–0.98] 0.86 [0.67–0.94] 0.0078 

Data are presented as median [IQR]. 

 
 
  



 

 73 

Supplementary Table 3.5 Overall (24-hour), daytime (07:00-23:00), and nighttime (23:00-07:00) 

profiles for CGM outcomes. 

 Experimental arm 
(n=42) 

Control arm 
(n=42) 

p value 
 

Overall (24-hour) 
   Percent time 3.9–10.0 mmol/L  48 (12) 45 (14) 0.47 
   Percent time 3.9–7.8 mmol/L 29 (9.4) 27 (11) 0.27 
   Percent time <3.9 mmol/L 5.9 [3.2–9.2] 4.3 [2.2–7.7] 0.16 
   Percent time <3.0 mmol/L 1.7 [0.67–3.4] 1.2 [0.57–2.8] 0.33 
   Percent time >7.8 mmol/L 65 (12) 69 (13) 0.22 
   Percent time >10.0 mmol/L 46 (14) 50 (16) 0.36 
   Percent time >13.9 mmol/L 18 [11–26] 20 [12–29] 0.57 
   Mean glucose (mmol/L) 10.0 [8.8–11] 10.5 [9.1–11] 0.33 
   SD glucose (mmol/L) 4.2 (0.78) 4.1 (0.80) 0.72 
Daytime (07:00-23:00) 
   Percent time 3.9–10.0 mmol/L  48 (13) 46 (15) 0.68 
   Percent time 3.9–7.8 mmol/L 29 (9.6) 28 (11) 10.48 
   Percent time <3.9 mmol/L 4.5 [1.8–7.0] 3.1 [1.6–7.2] 0.50 
   Percent time <3.0 mmol/L 1.1 [0.25–2.5] 0.68 [0.22–2.4] 0.55 
   Percent time >7.8 mmol/L 67 (12) 69 (14) 0.46 
   Percent time >10.0 mmol/L 48 (15) 49 (17) 0.63 
   Percent time >13.9 mmol/L 21 [12–27] 21 [11–30] 0.82 
   Mean glucose (mmol/L) 10.1 [9.1–11] 10.5 [8.9–12] 0.67 
   SD glucose (mmol/L) 4.2 (0.77) 4.1 (0.85) 0.67 
Nighttime (23:00-07:00) 
   Percent time 3.9–10.0 mmol/L  47 (14) 44 (14) 0.25 
   Percent time 3.9–7.8 mmol/L 30 [24–37] 25 [19–30] 0.067 
   Percent time <3.9 mmol/L 6.9 [4.2–11] 5.1 [2.1–8.9] 0.13 
   Percent time <3.0 mmol/L 2.2 [1.4–5.0] 1.8 [0.47–4.1] 0.31 
   Percent time >7.8 mmol/L 63 (15) 69 (15) 0.089 
   Percent time >10.0 mmol/L 45 (17) 50 (17) 0.15 
   Percent time >13.9 mmol/L 18 [9.4–24] 19 [12–25] 0.38 
   Mean glucose (mmol/L) 9.8 [8.4–11] 10.2 [9.3–11] 0.13 
   SD glucose (mmol/L) 4.0 [3.7–4.5] 4.0 [3.7–4.4] 0.90 

Data are presented as mean (SD) or median [IQR]. 
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Supplementary Table 3.6 Comparison of outcomes between real-time and intermittently scanned 

CGMs (n=8). 

 Intermittently scanned 
CGM  

Real-time  
CGM  

p value 

Hypoglycemic events, n  10 (9.8) 3.0 (2.6)  0.044 
Percent time 3.9–10 mmol/L 47 (12)  41 (18) 0.083 
Percent time <3.9 mmol/L  4.7 [1.4–7.7] 1.1 [0.40–2.6] 0.016 
Percent time <3.0 mmol/L  1.5 [0.17–2.1] 0.10 [0.050–0.28] 0.016 
Percent time >10 mmol/L 47 (16)  57 (20) 0.010 
Percent time >13.9 mmol/L 18 (10)  26 (15) 0.053 
Percent time >16.7 mmol/L 6.3 (6.6) 8.4 (9.4) 0.15 
Mean glucose (mmol/L) 10.0 (1.6) 11.0 (1.9) 0.041 

Data are presented as mean (SD) or median [IQR]. 
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Supplementary Table 3.7 Changes from baseline to the last week in insulin dosing parameters. 

 Experimental arm 
(n=42) 

Control arm 
(n=42) 

p value 

Basal insulin (U/day) 0.5 (7.0) 0.2 (1.2) 0.80 
Prandial insulin (%) 0.8 [-14.4–38.8] 0.0 [0.0–0.0] 0.27 

Data are presented as mean (SD) or median [IQR].  
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Supplementary Table 3.8 Absolute relative change (%) in prandial and basal dose parameters 

from baseline to the last week. 

 Experimental, n (%) Control, n (%) 
Proportion of participants 
with changes: 

Basal dose Bolus dose* Basal dose Bolus dose* 

   >|10%| 25 (60) 29 (69) 4 (9.5) 7 (17) 
   >|20%| 15 (36) 19 (45) 2 (4.8) 3 (7.1) 
   >|30%| 9 (21) 13 (31) 2 (4.8) 1 (2.4) 
   >|40%| 1 (2.4) 10 (24) 1 (2.4) 0 (0) 
   >|50%| 0 (0) 5 (12) 0 (0) 0 (0) 
   >|60%| 0 (0) 4 (9.5) 0 (0) 0 (0) 
   >|70%| 0 (0) 3 (7.1) 0 (0) 0 (0) 
   >|80%| 0 (0) 1 (2.4) 0 (0) 0 (0) 
   >|90%| 0 (0) 1 (2.4) 0 (0) 0 (0) 
   >|100%| 0 (0) 1 (2.4) 0 (0) 0 (0) 

*Bolus dose includes combined mean relative changes for breakfast, lunch, and dinner.  
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Supplementary Table 3.9 Proportions of experimental participants with changed basal and bolus 

insulin combinations from last week compared to baseline. 

 Overall proportion of participants, n (%)  
Basal and bolus insulin increased 12 (29)  
Basal and bolus insulin decreased 11 (26) 
Basal increased and bolus decreased 9 (21) 
Basal decreased and bolus increased 10 (24) 
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Supplementary Table 3.10 Thematic analysis of exit interviews in 24 participants. 

Themes Sub-themes Selected quotes  

1) Enhanced 

glycemia 

due to 

personalized 

dose 

recommend-

ations 

1.1) 

Streamlined 

access to 

timely 

decision 

support 

“The 6-month patient visit in the hospital, um, to let that go for such 

a long period of time could have negative consequences to one’s 

health. This [algorithm], at least gives, you know, a guidance 

immediately in real-time, and again, it does give the patient the 

option to override.” (P116, experimental) 

 

“The adjustments made weekly was extremely helpful versus having 

to wait for your 4-month or 6-month meeting with a professional… 

changing the doses is something we rely on medical professionals to 

do, um, I've worked on changing them by myself at times, and there's 

always that fear, “have I gone too far”…if the application is as safe 

as professionals, then it's like having that contact but on a regular 

basis.” (P119, experimental) 

 

“My ratios have changed in the past few months, and they haven't 

changed in 10 plus years. So I'm basing that off of there's been more 

data, more information given, so I think it's definitely beneficial…For 

the first time in years, I feel like [pause] I don't know how to explain 

it, but that I have direct feedback… It's a no brainer.” (P124, 

experimental) 

 

“It's like having a real doctor with you 100% making adjustments 

every week...now in 2020, you need to have this in your phone, that 

makes it a lot better.” (P122, experimental). 

1.2) 

Appreciation 

for 

conservative 

(gradual and 

incremental) 

“The little changes made a difference in the long run, so for the week 

that a dose would increase by one unit…you do see that even if 

changes that were made seem insignificant, they were significant 

enough to make a difference.” (P119, experimental) 

 

“When I see the numbers come in, they're very minimal in terms of 

change…but it ended up working out” (P124, experimental) 
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algorithm 

adjustments 

 

 

“It's not a crazy jump week over week when there are changes…I was 

happy to see that…sometimes there's only one adjustment… it's 

gradual, it slowly adjusts to the required dosage” (P126, 

experimental) 

1.3) Trust in 

technology  

“I had complete confidence in the recommendations, it was going 

really well, you could really see that there was a good change.” 

(P115, experimental) 

 

“I didn't pay attention to the recommendations, I trusted it 100%, I 

was very satisfied, and I'm sure that if I had paid attention, they 

would have been really good recommendations, but I had 100% 

confidence.” (P122, experimental) 

 

“The fast acting insulin changes, I 100% trust those…I would say, 

overall, very trustworthy” (P124, experimental) 

 

“After a week I was pretty comfortable with it…I was giving [insulin] 

and I wasn't going low or anything…until basically you understand 

what the app is trying to do, and, uh basically, seeing that your sugar 

is in a normal range, you do get a trust…I would say it's easier as 

time progresses.” (P126, experimental) 

2) 

Advantage 

of digital 

solutions 

over 

traditional 

standard of 

care 

2.1) 

Enhanced 

dosing 

regimen from 

real-time 

insulin-on-

board 

tracking and 

insulin 

delivery 

history   

“I like the fact that it [the app] kept track of how much insulin I had 

in my body at the time, so it won't overdose me, which I can't do on 

my own” (P017, control) 

 

“I could check for example the number of units that I had given 

myself the previous meal, which normally, I can’t do…I can’t 

remember what I gave myself, whereas here, I could check it if I 

wanted to. That’s perhaps the most striking difference.” (P018, 

control) 

 

“What I liked the most was being able to know how many units of 

insulin were onboarding, so you know, not to like stack my insulin 
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doses, that, by far was my favorite thing of the entire app.” (P025, 

control) 

 

“In the past, if I was high, I would take insulin over and over again, 

you know, over the period of half an hour realizing it's not changing, 

whereas now I just let it wait and it does come back down 

eventually…it tells me not to and basically just to be patient” (P124, 

experimental) 

2.2) 

Experiential 

learning 

“There were a few times where I would think, “do I need to correct 

[with insulin for carb intake] or not”, and if the calculated [insulin] 

dose [by the app] was zero, I wouldn't log it [the carbs]…I think for 

me, it was more of–or for anybody who's just checking on the basis 

of, “can I eat right now?” could be used in that sense” (P119, 

experimental) 

 

“I could learn to play the doctor, I could see what's going on at the 

back. Like I could see that because I did this, because I got that…I 

can see how effective it is…so it was great to see that at the same 

time” (P120, experimental) 

 

“I was using the app in ways where if I had a low blood sugar, I 

would kind of see where I can get some free carbs…putting in 15 or 

putting in 20 grams and seeing how high [in carbs] I can go before it 

tells me I need one unit [of insulin].” (P124, experimental) 

2.3) 

Alleviation of 

mental 

burden 

associated 

with dose 

calculations 

 

“I don't even have to think about it, I just have to enter, I don't have 

to do any mental math…it takes most of the guesswork out of taking 

insulin…the iBolus app did the rest of the work for me, so it was very 

convenient.” (P026, control) 

 

“…it calculated my insulin for me…I've been diabetic since I was 13 

and I still can't stand doing the mental math 'cause it's just like–I just 

prefer that it does it for me.” (P117, experimental) 
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2.4) User-

friendliness  

“Easy to use, very visual. There were really only three dropdown 

menus, so very easy to follow...everything was necessary and easy to 

find” (P014, control) 

 

“I liked how easy it [iBolus app] is…what I need was there and easy 

to find, um, the interface itself was, like, perfect…there's no extra 

gibberish in it, you know, so I think that for any age group it's very 

straightforward and easy to use.” (P025, control) 

 

“Very easy to use, simple, very concise, um, the information required 

is very clear. In terms of entering the data, notes, that was all–it was 

an easy interface, so user friendly and easy to understand as well.” 

(P119, experimental) 

3) Desire for 

advanced 

MDI 

technologies 

in practice 

3.1) 

Anticipated 

future 

adoption 

“I'd opt for it again… it helps you to have a better, uh, better follow-

up of your diabetes, it helps you to improve…To have it directly in the 

phone, it's wonderful, you know every week, it's really better than 

waiting 3 to 6 months.” (P115, experimental)  

 

“Sign me up for a rerun [laughing], I’m kind of sad of having to stop 

the treatment simply because it has been working well, so, um, I–I do 

see where potentially this could be life-changing for people, and I 

would like to see it continue forward…I absolutely think I would be 

gung ho for it.” (P119, experimental) 

 

“It's way, way, much better just receiving the adjustment on the 

phone, uh, on the app. Oh yeah, it's very convenient…And if we could 

have the doctor also get involved and see the results, that would be a 

great advantage” (P120, experimental) 

 

“it's the new generation of diabetes apps. I think it would be a plus 

for everyone to have it because it definitely, uh, adjusts in real 

time…I'd definitely use it, that’s for sure because I find–in fact, it 

makes my life a lot easier. It was more efficient” (P122, 

experimental) 
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Supplementary Table 3.11 interview topic guide. 

Initial 
questions 

• Can you describe what your overall experience using multiple daily 
injections has been like throughout your participation in the study, in 
comparison to your usual management before you participated?  

More 
specific 
questions 

• Can you tell me about your experience using Freestyle Libre sensors 
throughout the study, in terms of convenience? 

• Can you describe your overall experience using the iBolus app? 
o What specific features did you like the most from the iBolus app? 
o What specific features did you like the least from the iBolus app?  
o What features, if any, would you have liked to see?  

• If you could, would you incorporate the iBolus app into your daily insulin 
management? 

• How have your hypoglycemia concerns or fears changed since before the 
intervention began?  

• How have your hyperglycemia concerns or fears changed since before the 
intervention began?  

• Can you tell me about the personalized recommendations that you 
received, in terms of your overall treatment satisfaction? 

o What about in terms of your overall glucose control? 
o Can you describe your overall level of trust with the 

recommendations that you received?  
o What did you think about the weekly frequency in which you 

received the recommendations?  
o What are your thoughts on receiving insulin dose adjustments 

directly from the iBolus app, compared to traditional in-hospital 
follow-up visits?  

o What were the advantages of receiving personalized 
recommendations?  

o What were the disadvantages?  
Final 
questions 

• If the learning algorithm was integrated into the iBolus app, which would 
allow for regular dose adjustments, would you switch to this advanced 
form of therapy, and why? 

• Is there anything else that you would like to tell us about your experience 
with the software used in the study? 

The topic guide represents the general flow of the interview (questions in red were only asked to 
participants in the experimental group). 
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Supplementary Figure 3.4 Individual change in HbA1c (%) from baseline to 12 weeks. 
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Supplementary Figure 3.5 Week-by-week average app usage per day in experimental (n=42) and 

control (n=42) participants. 
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Supplementary Figure 3.6 Individual relative changes from baseline in basal doses throughout 

the 12-week intervention in the experimental arm (n=42). 
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Supplementary Figure 3.7 Individual relative changes from baseline in prandial doses throughout 

the 12-week intervention in the experimental arm (n=42).  
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Supplementary Figure 3.8 Diabetes Treatment Satisfaction Questionnaire monthly scores in 

control (n=11; top bars) and experimental (n=11; bottom bars) sub-study participants.
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Supplementary Figure 3.9 End-of-study mHealth app usability questionnaire responses from 

control (n=11; top bars) and experimental (n=11; bottom bars) sub-study participants.
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Supplementary Figure 3.10 Overview of the iBolus app’s graphical user interface, showing the 

parameters screen, the main home screen with active insulin-on-board, and the meal bolus 

function. 
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Chapter 4. Inter- and Intra-Physician Variability in Insulin 

Injection Adjustments Compared to Bayesian Algorithm 

Recommendations in Type 1 Diabetes 

4.1 Preface 

In the previous chapter, the clinical effectiveness of the McGill DSS was demonstrated. This trial 

is the first to show glycemic improvement with a DSS for MDI therapy, all while being the first to 

include qualitative outcomes on MDI user experiences.  

In this chapter, the integrated manuscript presents a survey sub-study that assessed the 

practical utility of the McGill DSS algorithm by comparing the insulin adjustments made by this 

system to mock adjustments made by group of endocrinologists. This study involved a structured 

automated process to obtain physician assessments in three different parts.  

Parts A and B, completed 8-12 weeks apart, involved an identical 4-week dataset of weekly 

meal, insulin, and sensor glucose graphical summaries from 15 experimental participants who 

received algorithm-made adjustments in the parent trial. Part A captured inter-physician variability 

between 13 physicians and Part B captured intra-physician variability within 12 physicians (i.e., 

adjustments made in Part B were compared to those made in Part A). Part C involved optional 

biweekly assessments, comparing newly generated mock recommendations made by the algorithm 

to those made by physicians based on two 14-day datasets from 13 control participants whose 

baseline parameters remained unchanged in each evaluation period. We chiefly evaluated whether 

the proportions of agreement and disagreement in directional insulin dosing for prandial bolus and 

basal parameters between the algorithm and physicians were statistically non-inferior to the 

proportions between the physicians.  
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4.2 Contribution of Authors 

Alessandra Kobayati designed and developed this sub-study under Ahmad Haidar’s supervision. 

Alessandra Kobayati conceptually designed the physician online portal and platform specification 

requirements to support the study purpose, collaborating with Prolucid Technologies Inc. for 

platform development and deployment. Alessandra Kobayati recruited physician collaborators to 

participate in this study. Anas El Fathi drafted the initial platform graphs, and Joanna Rutkowski 

updated and generated all final graphs, which were verified for quality control by Alessandra 

Kobayati. Alessandra Kobayati and Joanna Rutkowski performed platform testing with simulated 

pilot runs. Alessandra Kobayati developed the physician training materials, consisting of user 

guides and YouTube videos.   

Dr. Jean-François Yale and Dr. Sara Meltzer provided clinical feedback on mock platform 

graphs and performed pilot runs to gauge the estimated weekly time requirements to complete 

online assessments.  

Dr. Michael Tsoukas, Dr. Natasha Garfield, Dr. Laurent Legault, Dr. Melissa-Rosina 

Pasqua, Dr. Jean-François Yale, Dr. Sara Meltzer, Dr. Simon Wing, Dr. Stéphanie Michaud, Dr. 

Vanessa Tardio, Dr. Tricia Peters, Dr. Rachel Bond, Dr. Preetha Krishnamoorthy, and Dr. Ivan 

George Fantus all completed Part A. The first 12 physicians listed also completed Part B. 

Furthermore, Dr. Tsoukas, Dr. Garfield, Dr. Legault, Dr. Pasqua, Dr. Wing, Dr. Michaud, Dr. 

Tardio, Dr. Peters, and Dr. Bond all completed Part C. 

Anh Ngo processed the raw data and generated the box plots included in the manuscript 

and appendix. Leif Erik Lovblom conducted the non-inferiority statistical analysis. Alessandra 

Kobayati and Ahmad Haidar interpreted the results.   
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Alessandra Kobayati wrote the original manuscript and appendix and made revisions in 

accordance with Ahmad Haidar’s feedback. The other co-authors reviewed and approved the final 

manuscript prior to journal submission. 
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4.3 Abstract 

Objective: There is an unmet need for automated insulin adjustments for multiple daily injections 

in type 1 diabetes under unsupervised use. The McGill decision support system (DSS), comprising 

a Bayesian algorithm, previously demonstrated glycemic benefit among injection-treated adults in 

a randomized controlled trial. The primary objective of this sub-study is to assess the algorithm’s 

utility by comparing its insulin dose adjustments to those made by endocrinologists. 

Methods: We surveyed 13 Canadian endocrinologists who made mock insulin adjustments in three 

separate parts on retrospective participants’ data from the parent trial. Part A (weekly) and Part C 

(biweekly) compared recommendations from physicians (inter-physician variability) with those of 

the algorithm. Part B evaluated intra-physician variability by comparing recommendations made 

within the same physician over time based on identical datasets. The primary endpoint was the 

proportion of full agreement (increase, decrease, or no change) and full disagreement (increase 

versus decrease) on the direction of prandial bolus and basal adjustments between the algorithm 

and physicians compared to those among physicians.  

Results: In Part A, the proportion (mean (SD)) of full agreement on weekly insulin adjustments 

between the algorithm and physicians was statistically non-inferior to the proportion between 

physicians for prandial boluses (55% (5) vs. 56% (7); p=0.014) and basal (48% (6) vs. 51% (11), 

respectively; p=0.019). Much lower full disagreements were also comparable between the pairs. 

Similar proportions were observed for biweekly adjustments in Part C. When comparing intra-

physician decisions in Part A to Part B, the average physician fully agreed with themselves 66% 

(7) and 67% (7) of the time for prandial and basal adjustments, respectively.  
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Conclusions: The direction of insulin adjustments was comparable between physicians and the 

McGill DSS algorithm. The intra-physician variability emphasizes the subjective nature of insulin 

management. Overall, these findings highlight the practical utility of this algorithm. 

4.4 Introduction 

Type 1 diabetes is a chronic condition that requires intensive insulin therapy in the form of multiple 

daily injections (MDI) or continuous subcutaneous insulin infusion via a pump to mitigate the risk 

of long-term complications (1). MDI remains the predominant insulin delivery method used 

worldwide (2). Continuous glucose monitoring (CGM) via glucose sensors has revolutionized 

insulin therapy, yet most adults with type 1 diabetes still struggle to achieve optimal glycemic 

targets (3).  

People with type 1 diabetes are typically limited to quarterly follow-ups in clinical practice 

(4), in part due to shortages in health care professionals (5). This poses an impediment to optimal 

insulin management due to continuous changes in insulin needs. Moreover, this problem is 

amplified by having to identify optimal insulin dose parameters from a conglomerate of data over 

the span of many months all in a short visit. A decision support system (DSS) that is deemed 

comparable to expert physicians may improve standard of care by offering insulin dose 

adjustments in between follow-up appointments, which in turn, may also help with in-clinic review 

of insulin management.  

Several studies have compared recommendations of DSSs to physicians’ recommendations 

for insulin dose adjustments in type 1 diabetes. Nimri et al. conducted survey studies to compare 

recommendations for insulin parameters made by a group of physicians to their DreamMed 

Advisor Pro in youth using insulin pump therapy with CGM (6) and with capillary glucose meters 

(7). Irrespective of the glucose monitoring method, the adjustments made by their DSS was found 
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to be not inferior to physician-made adjustments (6,7). More recently, the same group conducted 

a similar study with their refined DSS for MDI users, which was also found to be not inferior to 

recommendations made by 20 expert physicians (8). Similarly, Tyler et al. (9) assessed a different 

DSS for MDI by comparing each recommendation to one of three physicians and reported similar 

directional agreement rates as those found by Nimri et al. (8).   

Recently, a 12-week randomized controlled trial was completed in 84 MDI-treated adults 

with type 1 diabetes and suboptimal baseline glycemic control to assess the effectiveness of the 

McGill DSS (NCT04123054). Half of the study participants received the McGill DSS 

encompassing the iBolus smartphone application that integrates a bolus calculator with weekly 

parameter adjustments made by the algorithm. The system utilizes individual meal, insulin, and 

sensor glucose data from the previous week to make recommendations for the following week. 

The other 42 control participants received the non-adaptive iBolus application (i.e., bolus 

calculator using their programmed parameters without weekly automated adjustments). This trial 

reported a clinically meaningful and statistically significant improvement in glycemic control with 

a between-group reduction in HbA1c of -0.4% (p=0.025) in favor of the McGill DSS. To further 

assess the practical utility of the McGill DSS algorithm, we conducted a sub-study in which we 

compared the insulin dose recommendations of the algorithm to those made by a group of 

practicing endocrinologists.  

4.5 Materials and Methods 

This study had three parts and involved the secondary use of de-identified data from participants 

in the parent trial. In Part A, physicians retrospectively reviewed data from participants in the 

experimental group of the parent trial, who had received weekly insulin adjustment 

recommendations from the DSS. The physicians were given the same information used by the DSS 
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algorithm – one week of data on participants’ announced meals (including carbohydrates if 

applicable), insulin usage, and continuous glucose monitoring – but were blinded to the algorithm’s 

recommendations. Physicians made insulin parameter adjustments weekly for four weeks. This 

phase aimed to compare the algorithm’s recommendations with those of different physicians. After 

an 8-12 week washout period, Part B began, where the same dataset was reviewed by the same 

physicians, allowing for the assessment of intra-physician variability. In Part C (an optional phase), 

physicians reviewed 14-day retrospective data from participants in the control group, who had not 

received algorithm-driven adjustments. The DSS algorithm also retrospectively analyzed the same 

14-day dataset and made mock recommendations. Similarly to Part A, this phase compared the 

algorithm’s recommendations with those of the physicians, with the key difference of using 

biweekly data to reflect clinical practice decisions typically based on 14-day CGM reports. The 

protocol addendum for this sub-study was approved by the McGill University Health Center 

Research Ethics Board. 

4.5.1 Physician Selection 

Through convenience sampling, we invited endocrinologists from multiple academic centers in 

Quebec, Canada, who had at least one year of experience in managing MDI therapy for type 1 

diabetes to be surveyed and participate as collaborators. Those who agreed completed a baseline 

questionnaire on their affiliations and information about their practice. Physician collaborators 

were also asked to complete mandatory training materials, which entailed training videos and user 

guides, to get accustomed with the study design, objectives, and procedures.  

4.5.2 Participant Selection 

To fit the design and purpose of this sub-study, specific criteria were applied when selecting data 

from the parent trial for retrospective analysis. This ensured sufficient data to compare adjustments 
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made by the algorithm to those made by physicians. Parts A and B used the same dataset, selected 

from participants in the experimental group who received weekly insulin adjustments from the 

McGill DSS. To qualify, participants had to have four consecutive weeks of data that met the 

following criteria: 1) ≥70% of CGM use per week, 2) ≥70% of iBolus application usage per week 

(assuming three meals per day), 3) no manual participant-initiated insulin parameter changes 

within the analysis period, 4) <30% of participant-initiated overrides of calculated insulin doses 

per week, and 5) at least one algorithm-made parameter change per week.  

The dataset for Part C consisted of a sub-group of control participants, selected based on 

having four consecutive weeks of data that met the following criteria: 1) at least 70% CGM usage 

per week, 2) at least 70% usage of the iBolus application per week, and 3) no insulin parameter 

changes within the analysis period.  

4.5.3 McGill Decision Support System and Online Physician Platform 

The McGill DSS, containing an optimization algorithm employing a Bayesian model-based 

approach (10), estimates weekly insulin parameter recommendations for MDI users. In the parent 

trial (NCT04123054), the algorithm was executed weekly on a software (MATLAB R2018b) to 

compute new adjustments to the insulin parameters based on the previous week’s data. The system 

analyzed individual meal and insulin data that recorded in the iBolus application by participants, 

along with intermittently scanned CGM data. This analysis generated adjustments in basal insulin 

doses and in prandial parameters, either as fixed insulin doses or as insulin-to-carbohydrate ratios, 

depending on the participant’s meal strategy. The prandial parameters were calculated for 

breakfast, lunch, dinner, and bedtime. The new adjustments were automatically pushed to the 

participant’s iBolus application and applied in the following week. Participants had the option to 
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override the algorithm adjustments as needed. The clinical effectiveness results of the McGill DSS 

on glycemic management were described elsewhere (11). 

For this current sub-study, we created an online physician platform to simulate the weekly 

assessments in the parent trial. Physician collaborators were asked to provide mock adjustments 

in the platform for once-daily long-acting basal dose and rapid-acting prandial bolus parameters 

(breakfast, lunch, dinner, and bedtime) for the subsequent week based on isolated weekly de-

identified participant data cases (for Parts A and B). They were also asked to optionally participate 

in Part C to provide mock adjustments for the following two weeks based on different datasets 

containing 14 days of de-identified participant data (Supplementary Figure 4.4).  

The weekly (Part  A and B) or biweekly (Part C) retrospective data was presented in the 

platform as (i) summaries of insulin and glucose metrics, (ii) a detailed graph displaying 

intermittently scanned CGM data and logged meal and insulin data, and (iii) an ambulatory glucose 

profile graph displaying trends across a 24-hour period (12) (Supplementary Figure 4.5, 

Supplementary Figure 4.6). For additional context, the platform also displayed participant’s meal 

strategy (carbohydrate counting or fixed-dose), brand name of the long-acting and rapid-acting 

insulins with the corresponding insulin pen unit increments, and participant’s correction factor and 

blood glucose target. 

The blinded participant data cases were presented in the platform at set intervals (weekly 

for Parts A and B and biweekly for Part C) in random order to minimize confirmation bias. This 

approach aimed to prevent dosing trends based off memory of entries from the previous batch of 

submissions, in attempt to capture decision-making without preconceptions. By default, the current 

therapy parameters were pre-populated in editable boxes. Physicians were asked to increase or 

decrease basal doses and prandial parameters, according to the corresponding pen unit increments 
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(when applicable), or to leave a parameter unchanged, based on their assessment of the data. 

Physicians were allowed to contribute ad hoc comments for supplemental observations or feedback 

to complement their review of each parameter. The DSS algorithm outputs were not displayed to 

maintain blinding. 

4.5.4 Study Design 

This study involved three parts, capturing inter-physician variability (Part A) and intra-physician 

variability over time (Part B) for weekly datasets, as well as inter-physician variability for 

biweekly datasets (Part C) to simulate 14-day CGM reports used in practice. Each physician 

collaborator selected their own start dates for Part A and Part B, separated by an 8-12-week 

washout period, mimicking quarterly follow-ups in clinical practice. For practicability, only four 

weeks of data from the main trial (instead of all 12 weeks) were used in each part of the study 

(Supplementary Figure 4.4). Physicians were asked to select dates that would allow them to meet 

their weekly commitments; however, missed assessments were permitted to be completed in the 

subsequent week prior to initiating the new batch of assessments.  

For Part A, each physician received weekly access in the platform to 15 retrospective 

participant data cases. When a physician submitted an assessment of mock adjustments, the data 

was immediately captured by our secure server, and they were prompted to review the next 

assessment. Adjustments were not allowed after submission. After submitting their final 

assessment in a given week, their access was disabled until the following week. Physicians then 

regained access to a new set of randomly assorted data cases. This process was repeated for four 

consecutive weeks. Following the completion of Part A, physicians waited at least eight but no 

more than 12 weeks before starting Part B where they received the same 4-week dataset and 

repeated the procedures from Part A without access to their former submissions.  
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Upon completion of Part B, physicians had the option to participate in Part C at any start 

date of their choice. Part C involved a review of two datasets of 14 consecutive days of 13 

participants in the control group, whose insulin therapy parameters remained unchanged during 

each 14-day evaluation period (Supplementary Figure 4.4). Similar to Parts A and B, the data cases 

were presented within the physician platform in random order. Examples of the physician platform 

interface are provided in Supplementary Figure 4.5 and Supplementary Figure 4.6. In parallel, we 

retrospectively generated algorithm recommendations based on the 14-day data for comparison 

with the physicians by executing the algorithm on the Part C datasets. The core logic of the 

algorithm remained unchanged from the version used in the parent trial. 

4.5.5 Study Endpoints 

The primary endpoint was the mean proportion of full agreement (increase, decrease, or no change) 

and full disagreement (increase vs. decrease) on the direction of prandial bolus and basal parameter 

adjustments between the algorithm and physicians compared to those made among the physicians 

in Part A.  

The secondary endpoints included the mean proportion of partial disagreement (increase 

vs. no change or decrease vs. no change) on the direction of insulin dosing, as well as the mean 

absolute difference in relative magnitude of change for cases of full agreement and full agreement 

with active change (defined as a non-zero numerical change in the same direction) between the 

algorithm and physicians compared to those made among physicians in Part A. The analysis for 

magnitude of change was separated according to fixed-dose and carbohydrate counting users to 

account for the differences in implications (e.g. a decrease in carbohydrate ratio is intended to 

increase the amount of insulin administered while a decrease in a fixed-dose reduces the amount 

of insulin). The comparative analyses were carried out individually for each parameter (basal and 
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breakfast, lunch, dinner, and bedtime boluses). For prandial boluses, the average of all meal 

outcomes (breakfast, lunch, dinner, and bedtime) were reported. 

Exploratory comparisons included directional change and magnitude of change for mock 

biweekly adjustments of prandial bolus and basal parameters between the algorithm and physicians 

to those between physicians in Part C. Additional comparisons included the mean proportion of 

full agreement, full disagreement, and partial disagreement on the dosing direction of adjustments 

made by each physician in Part A to those made on the identical dataset by the same physician in 

Part B. 

4.5.6 Statistical Analysis 

Summary statistics are presented as mean (SD), median [Q1–Q3], or as n(%). A one-tailed, one-

sample, non-inferiority t test was used to assess whether the proportion of agreement and 

disagreement in the directional changes between the algorithm and physicians was non-inferior to 

the proportion between pairs of physicians. The non-inferiority margin for the agreement and 

disagreement tests were set as the 25th and 75th percentile of the distribution of the level of 

agreement and disagreement among the physicians, respectively; an upper-tailed test was used for 

agreement, and a lower-tailed test was used for disagreement. The same approach was employed 

for the mean absolute difference in relative change outcomes for cases of full agreement. P-values 

less than 0.05 indicated non-inferiority. The analyses were performed using MATLAB R2024a and 

SAS version 9.4.  
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4.6 Results 

4.6.1 Participant Cohort  

For Parts A and B, the same de-identified data from 15 experimental participants were used. The 

mean age was 42 (SD 12) years, with a mean diabetes duration of 23 (13) years and a median 

baseline HbA1c of 8.2% [Q1–Q3 7.9–8.7]. Of these, 10 (67%) participants were female, and 8 

(53%) were practicing carbohydrate counting while 7 (47%) were on a fixed-dose regimen. 

Furthermore, 40% of participants used Degludec and one-third used Glargine U-100 as the long-

acting basal. One-third used Lispro, and over half of the sample used either Aspart or fast-acting 

Aspart (Supplementary Table 4.5).  

For Part C, de-identified data from 13 control participants were used. For this sample, the 

mean age was 41 (12) years, mean diabetes duration was 28 (13) years, and the median baseline 

HbA1c was 8.4% [8.0-8.9]. Of these, 8 (62%) were carbohydrate counting and 5 (38%) used fixed-

doses. The most commonly used basal insulin was Degludec (54%), followed by Glargine U-100 

(23%). The most commonly used bolus insulin was Aspart (62%), followed by Lispro (31%) 

(Supplementary Table 4.5). 

4.6.2 Physician Collaborators 

A total of 13 practicing endocrinologists across the province of Quebec (Royal Victoria Hospital 

(n=9), Montreal Children’s Hospital (n=2), Jewish General Hospital (n=1), Charles-Le Moyne 

Hospital (n=1)) agreed to participate as physician collaborators in this sub-study. Most physicians 

specialized in adult endocrinology, with two specializing in pediatric endocrinology. All 

participating physicians were experienced in monitoring individuals with type 1 diabetes, with the 

majority of them dedicating more than half of their practice treating MDI as declared in their self-
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reported baseline questionnaire. In addition, 54% of them had over 15 years of experience in 

practice. More details about their experience are indicated in Table 4.1.  

 For Part A, the number of insulin therapy recommendations (combined prandial boluses 

and basals) made by the algorithm was 300 and made by 13 physicians was 3900. For Part B, 3600 

additional recommendations from 12 physicians were used for the intra-physician variability 

evaluation. For Part C, the number of biweekly insulin recommendations was 130 by the algorithm 

and 1170 by nine physicians.  
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Table 4.1 Characteristics of the physician collaborators. 

 Physicians (N=13) 
n (%) 

Sex (female/male) 8 (62) /5 (38) 
Primary specialty 
Adult endocrinology 11 (85) 
Pediatric endocrinology 2 (15) 
Experience in clinical practice 
>15 years 7 (54) 
6-10 years 2 (15) 
2-5 years 3 (23) 
1-2 years 1 (8) 
Current institutional position 
Professor 4 (31) 
Associate Professor 4 (31) 
Assistant Professor 4 (31) 
Independent endocrinologist 1 (8) 
Estimated number of type 1 diabetes patients seen annually 
>100 6 (46) 
76-100 1 (8) 
51-75 2 (15) 
26-50 2 (15) 
0-25 2 (15) 
Estimated % of patients with type 1 diabetes on MDI in their practice 
76-100 1 (8) 
50-75 10 (77) 
25-49 2 (15) 

MDI: multiple daily injections. 
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4.6.3 Algorithm versus Inter-Physician Weekly Insulin Adjustments (Part A) 

To evaluate how weekly insulin dose recommendations among different physicians compared to 

those of the algorithm, each of the 13 physicians completed 60 weekly assessments in Part A. 

There were 78 between-physician pairs with 9360 comparison points from the adjustments in basal 

and prandial doses. There were 13 algorithm-physician pairs with 1560 comparison points.  

The mean (SD) proportion of full agreement on the directional dosing (increase, decrease, 

or no change) for prandial boluses was 56% (7%) among physicians compared to 55% (5%) 

between the algorithm and physicians (p-value for non-inferiority=0.014). For basal, the 

proportion of full agreement was 51% (11%) between physicians compared to 48% (6%) between 

the algorithm and physicians (p=0.019) (Table 4.2; Figure 4.1).  

The proportion of full disagreement on the direction of insulin dosing (increase versus 

decrease) for prandial boluses was 4.1% (2.3%) among physicians compared to 3.9% (2.3%) 

between the algorithm and physicians (p=0.014). For basal, the proportion of full disagreement 

was 9.2% (7.1%) among physicians compared to 10.6% (4.6%) between the algorithm and 

physicians (p=0.22). The proportion of partial disagreement (increase versus no change or decrease 

versus no change) for prandial boluses was 39% (5%) among physicians and 42% (4%) between 

the algorithm and physicians. For basal, the partial disagreement was 39% (7%) among physicians 

and 41% (6%) between the algorithm and physicians (Table 4.2; Figure 4.1). 
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Table 4.2 Proportion of full agreement, full disagreement, and partial disagreement in the 

direction of weekly insulin adjustments (Part A) among 13 physicians vs. the algorithm and 

physicians (top panel) and biweekly insulin adjustments (Part C) among 9 physicians vs. the 

algorithm and physicians (bottom panel). 

Parameter 
Inter-

physicians 
Between algorithm 

and physicians 
Non-inferiority 

P value 
Directional change proportions (%) in Part A  
(n=15 experimental participants*) 

   

Full agreement on basal change  51 (11) 48 (6) 0.019 
Full agreement on bolus change 56 (7) 55 (5) 0.014 
Full disagreement on basal change 9.2 (7.1) 10.6 (4.6) 0.22 
Full disagreement on bolus change  4.1 (2.3) 3.9 (2.3) 0.014 
Partial disagreement on basal change 39 (7) 41 (6) - 
Partial disagreement on bolus change 39 (5) 42 (4) - 
Directional change proportions (%) in Part C  
(n=13 control participants†) 

   

Full agreement on basal change  43 (15) 49 (9) 0.0005 
Full agreement on bolus change 54 (9) 51 (6) 0.14 
Full disagreement on basal change 8.1 (8.0) 8.1 (5.9) 0.061 
Full disagreement on bolus change  5.5 (3.5) 5.1 (4.0) 0.044 
Partial disagreement on basal change 49 (13) 43 (8) - 
Partial disagreement on bolus change 41 (6) 43 (5) - 

Data are presented as mean (SD). 
Full agreement applied when both pairs agreed on the same dosing direction.  
Full disagreement applied when one pair indicated one dosing direction and the other indicated the opposite 
direction.  
Partial disagreement applied when one pair indicated one dosing direction and the other indicated no 
change.  
*Retrospective data was based on a 4-week dataset from experimental participants who received weekly 
algorithm-made adjustments in the parent trial. 
†Retrospective data was based on two 14-day datasets from control participants from the parent trial 
whose baseline parameters remained unchanged during each biweekly evaluation period. 
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Figure 4.1 Box plots for the level of directional full agreement, partial disagreement, and full 

disagreement for weekly insulin adjustments in Part A between the algorithm and physicians (left 

column) and between physicians (right column). 

The mean absolute difference in relative magnitude of change in cases of full agreement 

for prandial boluses from the carbohydrate counters’ data (n=8) was 1.8% (2.5%) between 

physicians compared to 1.7% (0.8%) between the algorithm and physicians (p=0.20). For basal, 

the difference was 3.4% (2.0%) between physicians compared to 2.8% (2.1%) between the 

algorithm and physicians (p=0.035). For the fixed-dose cases (n=7), the difference was 1.5% 

(1.1%) between physicians compared to 1.0% (0.8%) between the algorithm and physicians 

(p<0.0001) for prandial boluses, and 2.7% (1.2%) versus 3.7% (1.0%) for basal (p=0.90) (Table 

4.3; Supplementary Figure 4.7). 
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Table 4.3 The mean absolute difference in the relative magnitude of change for cases of full 

agreement in weekly insulin adjustments (Part A) among 13 physicians vs. the algorithm and 

physicians (top panel) and biweekly insulin adjustments (Part C) among 9 physicians vs. the 

algorithm and physicians (bottom panel). 

Parameter 
Inter-

physicians 
Between algorithm 

and physicians 
Non-inferiority 

P value 
Difference in magnitude of change (%) in Part A 
(n=15 experimental participants*) 
Carbohydrate counters (n=8) 
   Basal 3.4 (2.0) 2.8 (2.1) 0.035 
   Carbohydrate ratio**  1.8 (2.5) 1.7 (0.8) 0.20 
Fixed-dose users (n=7) 
   Basal 2.7 (1.2) 3.7 (1.0) 0.90 
   Prandial bolus dose** 1.5 (1.1) 1.0 (0.8) <0.0001 
Difference in magnitude of change (%) in Part C 
(n=13 control participants†) 
Carbohydrate counters (n=8)    
   Basal 2.5 (2.4) 1.3 (1.9) 0.0029 
   Carbohydrate ratio**  5.0 (12.0) 2.6 (1.5) 0.0066 
Fixed-dose users (n=5)    
   Basal 3.3 (4.7) 3.4 (3.7) 0.38 
   Prandial bolus dose** 3.6 (3.8) 0.7 (1.0) <0.0001 

Data are presented as mean (SD). 
*Retrospective data was based on a 4-week dataset from experimental participants who received weekly 
algorithm-made adjustments in the parent trial. 
†Retrospective data was based on two 14-day datasets from control participants from the parent trial whose 
baseline parameters remained unchanged during each biweekly evaluation period. 
**Average for breakfast, lunch, dinner, and bedtime snack. 

When comparing the mean absolute percentage of weekly change in cases of active full 

agreement for the carbohydrate counters’ data, the physicians averaged a change of about 12% for 

prandial boluses and 10% for basal adjustments while the algorithm averaged a change of about 

9% and 7% for bolus and basal, respectively. For fixed-dose cases, on average, physicians made a 

change of about 15% for prandial boluses and 9% for basal while the algorithm made an average 

change of 11% for boluses and 5% for basal adjustments (Supplementary Table 4.6). 



 

 110 

4.6.4 Intra-Physician Variability in Weekly Insulin Adjustments (Part B) 

To evaluate intra-physician variability in their recommendations on identical datasets over time, 

12 physicians completed Part B, repeating the same assessments as Part A, after the washout 

period. The mean proportion of full agreement on the direction of insulin adjustments within the 

same physician over time based on identical datasets was 66% (7%) for prandial boluses and 67% 

(7%) for basal adjustments (Table 4.4; Figure 4.2).  

The proportion of full disagreement on the direction of insulin adjustments within the same 

physician over time was 2.7% (2.5%) for prandial boluses and 2.1% (3.3%) for basal. The 

proportion of directional partial disagreement within each physician and themselves was 31% (5%) 

for prandial boluses and 31% (6%) for basal adjustments (Table 4.4; Figure 4.2). 

Table 4.4 Proportion of full agreement, full disagreement, and partial disagreement on the 

direction of insulin adjustments within the same physician over time on identical datasets 

presented in Part A and Part B. 

Directional change proportions [%] (Part A vs Part B) Intra-physician 
Full agreement on basal change  67 (7) 
Full agreement on bolus change 66 (7) 
Full disagreement on basal change 2.1 (3.3) 
Full disagreement on bolus change  2.7 (2.5) 
Partial disagreement on basal change 31 (6) 
Partial disagreement on bolus change 31 (5) 

Data are presented as mean (SD). 
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Figure 4.2 Box plots for the level of directional full agreement, partial disagreement, and full 

disagreement for weekly insulin adjustments between the same physician and themselves from 

Part A to Part B. 

The mean absolute difference in the relative magnitude of change within the same 

physician over time for cases of full agreement in the carbohydrate counters’ data (n=8) was 1.7% 

(1.6%) for prandial boluses and 2.2% (1.2%) for basal. For the fixed-dose data (n=7), the difference 

was 1.2 % (1.3%) for prandial boluses and 2.2% (1.4%) for basal (Supplementary Figure 4.8).  

4.6.5 Algorithm versus Inter-physician Biweekly Insulin Adjustments (Part C) 

To evaluate how biweekly insulin dose recommendations among different physicians compared to 

those of the algorithm, each of the nine participating physicians completed 26 biweekly 

assessments in Part C. There were 36 between-physician pairs with 1872 comparison points from 

the changes in basal and prandial parameters. There were nine algorithm-physician pairs with 468 

comparison points.  

The proportion of full agreement on the direction of biweekly adjustments for prandial 

boluses was 54% (9%) between physicians compared to 51% (6%) between the algorithm and 

physicians (p=0.14). For the basal parameter, the full agreement was 43% (15%) among physicians 

compared to 49% (9%) between the algorithm and physicians (p=0.0005) (Table 4.2; Figure 4.3).  
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The proportion of full disagreement on the direction of biweekly prandial bolus 

adjustments was 5.5% (3.5%) among physicians compared to 5.1% (4.0%) between the algorithm 

and physicians (p=0.044). The full disagreement for basal adjustments was 8.1% (8.0%) between 

physicians compared to 8.1% (5.9%) between the algorithm and physicians (p=0.061). The 

proportion of partial disagreement for biweekly prandial adjustments among physicians was 41% 

(6%) between physicians and 43% (5%) between the algorithm and physicians, and 49% (13%) 

versus 43% (8%) for basal (Table 4.2; Figure 4.3). 

 

Figure 4.3 Box plots for the level of directional full agreement, partial disagreement, and full 

disagreement for biweekly insulin adjustments in Part C between the algorithm and physicians 

(left column) and between physicians (right column).  
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The mean absolute difference in the relative magnitude of change in cases of full agreement 

among the carbohydrate counters’ data (n=8) was 5.0% (12.0%) between physicians compared to 

2.6% (1.5%) between the algorithm and physicians (p=0.0066) for prandial boluses. The difference 

for basal was 2.5% (2.4%) between physicians compared to 1.3% (1.9%) between the algorithm 

and physicians (p=0.0029). Among the fixed-dose users’ data (n=5), the difference in prandial 

boluses was 3.6% (3.8%) between physicians compared to 0.7% (1.0%) between the algorithm 

and physicians (p<0.0001). For basal, the difference was 3.3% (4.7%) between physicians 

compared to 3.4% (3.7%) between the algorithm and physicians (p=0.38) (Table 4.3; 

Supplementary Figure 4.9).  

When comparing the mean absolute percentage of biweekly changes in cases of active full 

agreement for carbohydrate counters’ data, the physicians averaged a change of about 14% for 

prandial boluses and 10% for basal adjustments while the algorithm averaged a change of about 

9% and 6% for bolus and basal, respectively. Similar averages were found for the fixed-dose cases 

with an average physician change of 11% for both bolus and basal parameters compared to the 

algorithm’s average change of about 8% (bolus) and 6% (basal) (Supplementary Table 4.6). 

4.7 Discussion  

Overall, the direction and magnitude of change of insulin adjustments for adults on MDI therapy 

made by the McGill DSS algorithm were similar to the adjustments recommended by a group of 

expert physicians. This was the case for weekly and biweekly basal and prandial parameter 

adjustments, and most non-inferiority comparisons reached statistical significance. These results 

illustrate the practical utility of the algorithm.  

This is the first study to report intra-physician variability in the insulin decision-making 

process in standardized blinded settings. Interestingly, on average, the same physician only fully 
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agreed with themselves roughly two-thirds of the time, despite their level of expertise. 

Furthermore, about one-third of the time, a physician partially disagreed with themselves, where 

they either made a change in Part A and no change on the same data in Part B, or vice versa. They 

were found to even fully disagree with themselves, opposing the direction of insulin dosing for 

identical data cases at different timepoints, albeit seldom. Nevertheless, these findings illustrate 

the complexities involved with insulin dose optimization, including personal factors that may 

impact expert decision making, such as stress, fatigue, motivation, environment, mood, and 

experience (13). 

Our results had several similarities to the findings of Nimri et al. (8) and Tyler et al. (9). 

First, we also found lower than expected agreement rates between different physicians, reinforcing 

the subjective nature of insulin management and the inherent variability among expert decision 

making. Second, we found comparable agreement rates for both prandial bolus and basal 

parameters among physicians to those between the algorithm and physicians, rendering the McGill 

DSS algorithm also not inferior to physicians. However, a notable difference to the studies of Nimri 

et al. (8) and Tyler et al. (9) is that we classified full agreement, full disagreement, and partial 

disagreement separately while they defined agreement rates as the combined full and partial 

agreement and their disagreement rates as the combined full and partial disagreement. 

Accordingly, by definition, this led to lower numerical agreement and disagreement rates in our 

study than their studies, preventing any direct numeral comparison. Nevertheless, similar to Nimri 

et al. (8), we also noted overall greater absolute percentage of changes made by physicians, with 

more conservative algorithm changes explained by its safety limits. Another consistent observation 

was the recommendation of more intensive changes to prandial insulin than basal by physicians 

and the algorithm. 
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A major strength of this study is the unique comparison of both weekly and biweekly 

recommendations. Additionally, the novel assessment of intra-physician variability provided 

interesting insights that have not been previously explored. Another strength is that all participating 

physicians were specialized endocrinologists of varying levels of expertise, ranging from junior to 

senior, albeit all adequately experienced in managing MDI therapy for type 1 diabetes. This is 

representative of the heterogeneous level of expertise found in clinical practice. Furthermore, the 

physicians came from multiple centers, further increasing diversity. Another asset is the use of a 

tailored platform created specifically for remote data collection in accordance with the design and 

purpose of the study. Finally, all participant data from the parent trial involved CGM. 

There are a number of limitations in our study. First, the outcomes reflect the decision 

making from expert physicians in four centers in a single province of Canada, limiting the 

generalizability of decision making done in other parts of the world. Additionally, the subgroup of 

trial participant data used in this study may further limit generalizability; although, the selection 

process was intended to ensure sufficient data for the purpose of comparing the adjustment 

decisions. Moreover, while the restricted demographics presented per data case were intended to 

limit bias, routine clinical decisions are typically based on a more complete understanding of a 

patient’s background history, lifestyle, and dietary patterns. Similarly, the lack of real patient 

interaction further precluded a comprehensive overview that usually influences decisions. Another 

limitation was the absence of comparisons for both the correction factor and behavioral 

recommendations (e.g., diet, exercise) because the algorithm did not optimize the correction factor, 

nor did it recommend behavioral changes in the parent trial.  

 In conclusion, in this survey sub-study, we found comparable recommendations in the 

direction and magnitude of change of insulin dosing made by the McGill optimization algorithm 
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to those made by a group of treating endocrinologists. Furthermore, the variability found among 

and within physicians confirms the subjective nature of human decision making around insulin 

management. Therefore, this algorithm could be useful for MDI users to utilize in between clinical 

visits.  
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4.9 Appendix 

Supplementary Table 4.5 Baseline demographics of the participant cohort. 

 
Parts A & B  
(n=15) 

Part C 
(n=13) 

Age (years) 42 (12) 41 (12) 
Female sex, n (%) 10 (67) 5 (38) 
Weight (kg) 75 (14) 75 (16) 
BMI (kg/m2) 27 (3.9) 25 (3.8) 
Duration of diabetes (years) 23 (13) 28 (13) 
HbA1c (%) 8.2 [7.9–8.7] 8.4 [8.0–8.9] 
Prior rt/isCGM use*, n (%) 12 (80) 10 (77) 
Total daily insulin (U/kg) 47 [31–66] 35 [30–50] 
Meal strategy regimen, n (%) 3 (7.1) 4 (10) 
    Carb-counting 8 (53) 8 (62) 
    Fixed-dose 7 (47) 5 (38) 
Basal pen increment, n (%)   
    1.0U 15 (100) 11 (85) 
    0.5U 0 (0.0) 2 (15) 
Bolus pen increment, n (%)   
    1.0U 13 (87) 10 (77) 
    0.5U 2 (13) 3 (23) 
Basal insulin types, n (%)   
    Degludec 6 (40) 7 (54) 
    Glargine U-300 2 (13) 0 (0.0) 
    Glargine U-100 5 (33) 3 (23) 
    Biosimilar glargine U-100 0 (0.0) 1 (7.7) 
    Determir 2 (13) 2 (15) 
Bolus insulin types, n (%)   
    Aspart 4 (27) 8 (62) 
    Lispro 5 (33) 4 (31) 
    Biosimilar lispro  2 (13) 0 (0.0) 
    Fast-acting Aspart 4 (27) 1 (7.7) 

Data presented as mean (SD) or median [Q1-Q3], unless stated otherwise. 
*rtCGM: real-time continuous glucose monitoring; isCGM: intermittently scanned continuous glucose 
monitoring; new user was defined as <3 months of uninterrupted use prior to study enrolment, and regular 
user was defined as 3months. 
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Supplementary Table 4.6 The mean absolute percentage of change recommended by physicians 

and the algorithm for cases of active full agreement in Part A and Part C. 

Parameter     Algorithm    Physicians Difference 
Absolute percentage of change (%) in Part A 
(n=15 experimental participants*) 
Carbohydrate counters (n=8) 
   Basal 6.8 (0.8) 10.2 (2.7) 3.4 (3.1) 
   Carbohydrate ratio**  8.9 (0.5) 12.4 (2.2) 3.5 (2.1) 
Fixed-dose users (n=7) 
   Basal 5.1 (0.5) 9.3 (1.7) 4.2 (1.8) 
   Prandial bolus dose** 10.7 (0.8) 15.4 (6.4) 4.7 (6.6) 
Absolute percentage of change (%) in Part C 
(n=13 control participants†) 
Carbohydrate counters (n=8)    
   Basal 5.5 (1.3) 10.3 (4.0) 4.8 (3.6) 
   Carbohydrate ratio**  9.4 (1.0) 14.1 (2.1) 4.8 (2.2) 
Fixed-dose users (n=5)    
   Basal 6.2 (1.8) 11.2 (6.5) 5.0 (5.1) 
   Prandial bolus dose** 8.1 (1.5) 11.1 (2.6) 3.0 (2.6) 

Data are presented as mean (SD). 
Active full agreement is defined as a non-zero numerical change in the same direction by the pairs.  
*Retrospective data was based on a 4-week dataset from experimental participants who received weekly 
algorithm-made adjustments in the parent trial. 
†Retrospective data was based on two 14-day datasets from control participants from the parent trial whose 
baseline parameters remained unchanged during each biweekly evaluation period. 
**Average for breakfast, lunch, dinner, and bedtime snack. 
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Supplementary Figure 4.4 Overview of the study design. 
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Supplementary Figure 4.5 Physician platform user interface for blinded weekly data cases in Part 

A and Part B. 
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Supplementary Figure 4.6 Physician platform user interface for blinded biweekly data cases in 

Part C.  
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Supplementary Figure 4.7 Mean absolute difference in relative magnitude of change (%) for 

cases of full agreement among carbohydrate counting (CC) users (top panel) and fixed-dose (FD) 

users (bottom panel) between physicians compared to the algorithm and physicians in Part A 

(weekly assessments). 
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Supplementary Figure 4.8 Mean absolute difference in relative magnitude of change (%) for 

cases of full agreement among carbohydrate counting (CC) users (top panel) and fixed-dose (FD) 

users (bottom panel) within the same physician between Part A and Part B (identical weekly 

assessments). 
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Supplementary Figure 4.9 Mean absolute difference in relative magnitude of change (%) for 

cases of full agreement among carbohydrate counting (CC) users (top panel) and fixed-dose (FD) 

users (bottom panel) between physicians compared to the algorithm and physicians in Part C 

(biweekly assessments). 
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Chapter 5. Discussion  

In this discussion chapter, I begin by succinctly situating the research within the context of the 

field. Next, I provide a brief summary of my core thesis work, restating the clinical evaluations 

sought and the high-level findings, to orient its place in the literature. Subsequently, I present an 

overview of the evolving connected device landscape for MDI users. Finally, this chapter 

concludes with foreseeable next steps for MDI treatment innovations related to this area of 

research. 

5.1 Research in Context 

MDI therapy remains the most commonly used insulin delivery method by people with T1D 

around the world, yet it has long trailed behind in technological advancement compared to the 

progress made with closed-loop technology for people using insulin pumps (57).  

Prior to this thesis work, research development for advanced MDI therapy was limited to 

only a few DSSs that underwent investigation in large-scale randomized controlled trials, all of 

which were found to be safe but ineffective at improving glycemia. This highlighted the unfulfilled 

gaps and the ongoing unmet need for an adaptive DSS to provide optimized MDI advice for 

individuals with T1D that is safe, effective, and on par with typical recommendations made by 

expert physicians. 

5.1.1 Optimization Algorithm 

The McGill DSS, which was regulated as a class II investigational medical device by Health 

Canada, was assessed in a clinical trial, as presented in Chapter 3. Not only was this the first trial 

to establish glycemic benefit with an adaptive algorithm-based DSS for MDI therapy, it was also 

the first to incorporate exit interviews in a subset of trial participants. The qualitative outcomes 
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revealed insights into MDI user perspectives on the use of the study software, enriching the value 

of the quantitative outcomes. 

In Chapter 4, the algorithm was assessed for practical use in a sub-study to evaluate how 

automated decision making compared to human decision making. In all, we observed comparable 

proportions in the mean direction of change and absolute difference in relative change between the 

algorithm and physicians for weekly and biweekly assessments. Furthermore, the algorithm and 

physicians tended to make more intensive changes to prandial insulin compared to basal, with 

physicians recommending overall greater absolute changes on average. Collectively, these findings 

propose that the advice provided by the McGill DSS algorithm may be viewed akin to that of 

another expert in the field. 

5.1.1.1 System Limitations  

One of the algorithm’s shortcomings that was not addressed in Chapter 3 is the lack of behavioural 

advice. Consequently, the sub-study described in Chapter 4 was designed to capture ad hoc 

behavioural comments from physicians in addition to their mock insulin adjustments. An informal 

assessment of the mock behavioural suggestions revealed some recurring patterns. These include 

comments surrounding delayed boluses, unannounced meals, late basal logging, insulin stacking, 

over-corrections of hyperglycemia and hypoglycemia, and split basal dosing.  

These findings, although interesting, are exploratory and did not undergo formal analysis 

due to the voluntary aspect of this platform feature and thus was not included in the manuscript. 

Instead, they serve to provide a signal to potentially gauge future development of behavioural 

recommendations as a means to theoretically enhance user engagement and reinforce treatment 

adherence of proper dose injection behavior.  



 

 128 

5.1.1.2 Considerations for the Automated Titration Frequency  

The McGill DSS demonstrated glycemic improvement without any system-related safety concerns 

following 12 weeks of weekly automated adjustments. A follow-up study with a longer duration 

and a bigger sample size is warranted to confirm long-term benefit and safety. 

A more frequent optimization schedule (e.g., semi-weekly) would conceivably be less 

effective due to the inherent daily variability in glycemic fluctuations from MDI therapy. This 

challenge is further complicated by infrequent injections, particularly once-daily basal dosing. 

Consequently, the limited data over a shorter period could hinder the algorithm’s ability to generate 

accurate and safe recommendations. Conversely, a less frequent optimization schedule (e.g., 

biweekly) may introduce other challenges, including missed opportunities for timely correction of 

inadequate parameters and greater variability. Accordingly, weekly algorithm-guided adjustments 

are likely the optimal frequency for delivering timely and effective decision support.  

5.1.2 Qualitative Analysis 

There has been increasing interest in incorporating qualitative aspects in clinical trials to enrich 

the relevance of treatment outcomes, capturing the voices and detailed patient insights to 

complement quantitative findings (87). Recent clinical practice guidelines further support the need 

for qualitative assessments in trials to ensure that any observed quantitative benefits are 

meaningful to individuals (88).  

I conducted one-on-one semi-structured exit interviews in a subgroup of participants in the 

parent trial. A qualitative description methodology was selected with the aim of describing the 

participants’ experiences and views on the current and future adoption of advanced MDI therapy. 

This approach was chosen because it was appropriately suited to gain insight on patient 

perspectives for a specific topic, generating low-inference data. Qualitative description is also well 
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suited in mixed methods research, offering rich qualitative data that remains close to participant 

narratives (89).  

Several strategies were employed to increase the scientific rigor of the qualitative 

description design. To increase authenticity, a topic guide was selected as the instrument of choice 

to allow for flexibility during the interviews, letting participants freely express themselves without 

restriction. Another strategy involved safeguarding the credibility of the data by carefully 

practicing reflexivity as well as member checking (respondent validation) periodically to ensure 

accurate interpretations. Some member checking techniques that were used include probing for 

clarification, prompting elaborated responses for deeper understanding, and brief summaries 

recounting their experiences for verification (90). 

5.1.3 Advanced Insulin Injection Technology 

5.1.3.1 Connected and Smart Injection Devices 

Recent focus has shifted toward precision dosing of rapid-acting insulin, involving the correct 

delivery of the intended dose at the right time, which has set the stage for connected devices. These 

devices can shed light on dosing behaviour, glucose levels, and insulin therapy holistically, which 

in turn, can allow healthcare providers to better identify areas of concern and more appropriately 

cater to one’s needs (91,92). 

Connected pens are refillable insulin pens that automatically record injection dose data that 

can be paired to a supporting diabetes management application, providing a comprehensive picture 

of an individual’s dosing practice. Connected pens have progressed over time, initially overcoming 

the static nature of traditional pens by providing retrospective dose tracking, which then advanced 

to real-time dose tracking and subsequently to wireless communication with smartphone 
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applications, integrating data from multiple sources. In all, connected devices have enabled MDI 

therapy to enter the digital age (92,93).  

Examples of connected pens include the NovoPen 6 and NovoPen Echo Plus (Novo 

Nordisk, Denmark), which come in 1-unit and 0.5-unit increments, respectively. Both pens display 

the last injected dose and time at the end of the cap and contain memory storage of the last 800 

doses. They are also capable of integrating CGM and real-time dose tracking when paired to 

compatible diabetes management applications (93). 

A recent real-world observational study involving nearly 4000 MDI-treated adults using 

the NovoPen 6 and Echo Plus connected pens reported important glycemic impacts of missed and 

mistimed dosing. Interestingly, omitting just two basal doses or four bolus doses within a 14-day 

period was linked with a meaningful 5% decline in the percentage of time in range, highlighting 

the importance of proper treatment adherence. These findings suggest that connected devices have 

the potential to reveal important implications of behavioural management on glycemia (94). 

Connected devices have recently been transformed into smart devices by integrating a 

bolus calculator that accounts for active insulin-on-board for real-time meal and correction dose 

calculations. They also distinguish between priming and therapeutic doses and integrate insulin 

temperature and age-sensing features (92).  

The InPen (Companion Medical Inc., United States) was the first FDA-cleared smart 

insulin pen equipped with Bluetooth technology to wirelessly pair with their supporting application 

for automatic display of injection data, real-time dose calculations, and various tracking and alert 

features (95). The InPen was subsequently acquired by Medtronic in 2020, who later launched the 

InPen system integrating rtCGM (96). A drawback of the InPen is the restricted compatibility to 
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aspart and lispro rapid-acting insulins, along with no accompanying basal pen, limiting widespread 

utility. 

More recently, Bigfoot Unity (Bigfoot Biomedical, United States) received FDA 

clearance for the first basal and bolus smart pen cap system. Both caps are compatible with major 

disposable insulin pens and integrate second generation Freestyle Libre CGM, expanding the reach 

to most existing pen users. Uniquely, the cap screens display the recommended insulin doses, 

which are based on prescribed parameters, along with the time since the last dose, albeit without 

displaying the remaining number of active insulin units. Injected doses are automatically captured 

and relayed to the corresponding application (96). This system was recently acquired by Abbott 

Diabetes Care (93). 

A retrospective analysis assessed real-world data from more than 5000 individuals (nearly 

75% had T1D) using the smart InPen for one year. The findings revealed that nearly two-thirds of 

the cohort dosed at least three times daily. From that sub-cohort, those with a missed dosing rate 

under 20% tended to have better percentages in CGM time in and above range than those with a 

higher missed dosing rate. These findings also shed light on the potential to leverage data from 

smart devices to address barriers and target behavior modifications (97).  

Smart devices are part of a developing landscape of connected pens and caps that are 

enabling a paradigm shift and disrupting therapeutic inertia for the MDI population. Collaborative 

data-driven management is now considered the future of MDI therapy to best understand and 

improve care (92). The next stage of smart devices would integrate DSSs based on amalgamated 

CGM and insulin data from smartphone and wearable devices, enabling advanced digital solutions 

with frequent automated dose titrations for direct patient use (92,93,97). This concept is the 

ultimate end goal for MDI users (98). 
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Currently, the ED-DSS is the only commercially available algorithm-guided system for 

personalized MDI adjustment advice to support youth and adults with T1D (and T2D). However, 

it has a restricted indication for use by healthcare providers to guide their patients’ insulin 

management, precluding direct outpatient use (85).  

5.2 Future Directions 

5.2.1 Physical Activity 

Based on a recent consensus statement, a total of 150 minutes of weekly physical activity is 

recommended for adults with T1D. Regular exercise has been shown to attenuate the risk of 

cardiovascular disease and mortality. However, there are various challenges associated with the 

type, intensity, and duration of exercise in T1D, namely the risk of exercise-induced hypoglycemia 

or hyperglycemia. This consensus statement published numerous strategies to mitigate these risks, 

which revolve around the consumption of carbohydrates or reduced insulin bolus doses at 

mealtimes prior to exercise (99). Despite this, many people with T1D do not exercise frequently, 

largely due to fear of hypoglycemia and loss of glycemic control, among others (100,101).  

Exercise is particularly important amid a growing obesity epidemic, with recently similar 

prevalence rates found among individuals with T1D as those observed in the general population 

(102,103). Furthermore, obesity is a risk factor for cardiovascular disease (104), which is a leading 

cause of death among people with T1D, irrespective of optimal glycemic management (105).   

The McGill Diabetes Technology Lab recently conducted a 16-week, single arm, feasibility 

study in 14 MDI-treated adults with T1D to assess the safety and performance of a machine-

learning-based DSS that recommends personalized bolus adjustments for both high fat meals and 

postprandial sport-specific aerobic exercise based on data from the previous week. Overall, this 

study revealed large and variable reductions in boluses (up to 53%) when postprandial exercise 
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was announced at mealtimes, which was associated with trending improvements in postprandial 

outcomes at the end. Nevertheless, these findings are exploratory and warrant a larger and 

randomized trial (106).  

Given the complexities around exercise and the intra-individual variability among people 

with T1D, along with the importance of regular exercise for health and longevity (99), there are 

various avenues in which the field can take. One important feature to focus on is the 

interoperability between various diabetes management devices, such as CGM and fitness and 

nutrition tracking applications or wearables (99,107). A simplified solution for exercise support 

might involve digitizing guideline recommendations into new or existing applications. 

Alternatively, a DSS can be utilized to tailor carbohydrate consumption and insulin adjustments to 

target anaerobic exercise for example.  

5.2.2 Dietary Fat and Protein  

Carbohydrates are known for having the biggest impact on the early postprandial glycemic 

response. However, dietary fat and protein macronutrients are also known to have influential 

effects on postprandial glycemia (108).  

Studies conducted in individuals with T1D have demonstrated that meals containing high 

fat blunt the immediate postprandial glycemic rise, delaying the peak until two or three hours post-

ingestion, likely caused by gastric emptying (109). While this phenomenon is true in individuals 

with and without T1D, the implications for people with T1D involve early hypoglycemia and late 

and extended hyperglycemia (108). A recent study conducted in adults with T1D using insulin 

pump further elucidated that meals containing varying amounts of fat (20-60 grams), when added 

to fixed carbohydrate-containing meals, all resulted in late glycemic responses in a dose-dependent 

manner, with different insulin requirements, irrespective of the type of fat (110).  



 

 134 

 The impact of protein has also been studied in adults and youth with T1D. Similar to fat, 

protein has a late impact on postprandial glycemia (109). When roughly equal amounts of protein 

and carbohydrates are consumed together (111), or when high protein (75 grams) is consumed in 

isolation (112), both cases result in delayed glucose excursions in the late postprandial period (3-

5 hours), requiring more insulin at a later time (109). Furthermore, research has demonstrated that 

the combined inclusion of fat and protein to a meal have additive effects (111).  

International consensus guidelines have recently recommended additional considerations 

of fat and protein rather than the sole dependence on carbohydrates for determining mealtime 

insulin. However, there is currently no guidance tailored to optimizing insulin for fat and protein, 

which is further complicated by intra-individual variability (113). Furthermore, it is estimated that 

more than half of the adult population in America struggle with numeracy skills (60), posing 

additional barriers for implementation and adherence with other macronutrient counting.  

Klue (Klue Inc., Canada) is an emerging wearable solution comprising hand motion gesture 

sensing technology to detect eating behaviors and estimate the carbohydrate content, relaying it to 

the associated application (92). In future iterations, this could be further enhanced to estimate fat 

and protein too. Other macronutrient counting aids in the form of artificial intelligent-based food 

recognition algorithms embedded in applications have been studied and revealed some glycemic 

benefit in youth on MDI (114–116). Collectively, as technology evolves, the burden of 

macronutrient counting may be diminished. Although the evidence for split bolus dosing is less 

clear among MDI users, the literature has proposed a split dosing strategy ranging from 25-75% 

of insulin dosed upfront for meals containing roughly 20 or more grams of carbohydrates 

combined with fat with or without protein (117).  
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In the McGill Diabetes Technology Lab’s feasibility study mentioned above, the algorithm 

recommended a split bolus regimen, with less insulin upfront and more insulin two hours 

postprandially, in 53% of cases during the last four weeks when high fat meals (20 grams) were 

announced. This was associated with a trend toward lower glycemic excursions five hours 

postprandially. Nevertheless, a randomized controlled trial is necessary to elucidate the benefit of 

split dosing for high fat intake among MDI users (106).  

5.2.3 Youth with Type 1 Diabetes  

The pediatric T1D population is notoriously more difficult to manage, owing to the fluctuating 

insulin needs throughout childhood and adolescence. A major challenge involves different stages 

of parental dependency, often leading to added burden on both the caregivers and the child. 

Furthermore, each age group presents additional unique complexities to T1D management (118).  

Younger children require round-the-clock care with precision dosing due to lower insulin 

requirements and greater insulin sensitivity while lacking the ability to properly articulate their 

symptoms, posing an added challenge on the parents (91). School-aged children have greater 

unpredictability between irregular eating and activity schedules, often involving various caretakers 

while away from home. Adolescents face pubertal changes with fluctuating hormones that impact 

insulin sensitivity, alongside self-identify and autonomy development, which add behavioural 

challenges with timely insulin delivery and adherence, making it more difficult to control or 

prioritize their diabetes (118,119).  

Various AID systems have proven to be safe and effective in young children aged 2-6 years 

(120–123), and older children and adolescents (124–129). However, while AID remains a superior 

approach due to its ability to closely mimic physiological insulin secretion, there are well known 

barriers to adopting this technology in both children and adults. While cost is an important factor, 
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it has been reported that physical barriers are among the top reasons for discontinuing or refusing 

the uptake of a pump, including aesthetic and diabetes-related visibility concerns and social stigma, 

especially among adolescents, as well as discomfort and interference with activities, among others 

(130).  

Future directions should focus on bringing equivalently advanced options to market for 

sensor-augmented MDI users who decline or discontinue pump therapy (57). Given the greater 

glycemic variability observed in youth, evolving parent-child relationships, and psychosocial 

development, a personalized digital approach to MDI therapy could facilitate daily insulin 

injections, improve glycemic control, and potentially lower management burden for everyone 

involved (92,131). The pediatric population is a particularly important avenue to address, as a 

single diabetic ketoacidosis event has been linked to cognitive decline (132). Special attention 

should also be placed on the vulnerable population of younger children (2-6 years old) using MDI, 

given their increased variability in insulin requirements (133).   

Effective MDI-specific DSSs could also offer value in the transition period from pediatric 

to adult care, targeting behavioral change in addition to algorithm-guided insulin titrations (131). 

This may be useful since the omission of prandial bolus doses is a major contributor to inadequate 

glycemic control among adolescents (134). This could be accomplished by incorporating 

behavioural intervention models to drive motivation using goal-driven and reward-based elements 

with progress feedback to positively reinforce or correct dosing behaviour and increase user 

engagement (135,136).  

A behavioural approach was recently explored in a randomized controlled trial that 

assessed the CloudConnect DSS, developed at the University of Virginia, in 13 MDI- and 30 non-

AID pump-treated adolescents. Participants either received advice from the CloudConnect DSS or 



 

 137 

continued with sensor-augmented usual care for 12 weeks. Based on rtCGM, activity tracking, and 

insulin data, the DSS generated weekly reports with positive feedback to reinforce achievements. 

The reports also included advice suggesting changes in insulin or carbohydrate consumption, albeit 

without specific changes to the amount. In this study, the general advice provided by the 

CloudConnect DSS did not improve communication between adolescents and their parents, nor 

did it improve glycemic outcomes. Nevertheless, there continues to be an unmet need to explore 

DSS-led insulin dose adjustments among pediatric MDI users (131). 

5.2.4 Pregnant Women with Type 1 Diabetes  

During pregnancy, women with T1D are faced with more challenges than usual. They are 

recommended to attain more stringent glycemic targets to avoid maternal and neonatal 

complications. Their pregnancy is further complicated by large fluctuating changes in insulin 

requirements between trimesters. Consequently, pregnant women with T1D are monitored closely 

with more frequent follow-ups with diabetes specialists (137). Although critical, regular 

monitoring adds further burden on the healthcare system, which may not even be possible in lower 

resource settings. 

 Future research could involve testing a DSS that optimizes basal and bolus injection 

parameters in pregnant women with T1D on MDI. A potential implication of this could enhance 

standard of care by utilizing automated advice in between clinic appointments, catering to evolving 

needs while alleviating the load on the healthcare system. Another option could entail the use of a 

DSS during follow-up visits to assist healthcare providers in recommending more appropriate dose 

adjustments, all while liberating time to address other important aspects of care. 
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5.2.5 Automated Decision Support with Adjunctive Pharmacotherapy for Type 1 Diabetes  

The prevalence of metabolic syndrome is rising among individuals with T1D, driven in part by the 

obesity epidemic, which increases the risk of cardiovascular disease (103,104,138). This 

population may need additional support beyond insulin monotherapy, especially given its added 

risk of weight gain (139).  

Although a DSS can address evolving insulin needs by continually optimizing injection 

parameters, this emerging sub-cohort may benefit from adjunctive pharmacotherapy, particularly 

glucagon-like peptide-1 receptor agonists (GLP-1RAs). Although GLP-1RAs are currently 

approved for T2D, there is growing interest in repurposing them for T1D, particularly in those 

exhibiting features common to T2D. While their use in T1D remains off-label, GLP-1RAs have 

shown modest glycemic improvements alongside significant weight loss, all while offering 

cardiovascular and renal protection and other emerging multi-organ benefits (140). 

Theoretically, the McGill DSS could be particularly useful in facilitating insulin titrations 

during GLP-1RA dose escalation periods. By streamlining insulin adjustments with this approach, 

it may alleviate burden on patients by minimizing the need for frequent follow-up visits during 

this time, while also liberating healthcare resources.  

5.2.6 Type 2 Diabetes  

Previous studies involving DSSs in individuals with T2D have demonstrated improvements in 

glycemic control (74,141). Notably, the d-Nav DSS and DreamMed Endo.Digital DSS have both 

received regulatory market approval for automated insulin adjustments in T2D (85,141). This 

underscores simpler glycemic management in T2D compared to T1D, suggesting that the McGill 

DSS could conceivably be adapted for use in individuals with T2D on basal-bolus MDI therapy.  
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Chapter 6. Conclusion 

The primary objective of my thesis was to investigate the clinical effectiveness of the McGill DSS, 

comprising an optimization algorithm integrated with a smartphone application housing a bolus 

calculator with real-time active insulin tracking. This was achieved by conducting an outpatient, 

randomized, controlled, parallel trial in 84 adults with T1D and suboptimal baseline glycemic 

control. Participants either received the McGill DSS (adaptive application augmented by weekly 

algorithm-made adjustments) or the standalone non-adaptive iBolus application for 12 weeks, as 

described in Chapter 3.  

This large clinical trial is the first to demonstrate a clinically meaningful glycemic 

improvement in the form of HbA1c with an MDI-specific DSS (8.6% to 8.1%) compared to control 

(8.6% to 8.5%), with a statistically significant between-group reduction of -0.4% in favor of the 

McGill DSS (p=0.025). Moreover, the proportion of participants who achieved an HbA1c 

improvement from baseline of 0.5%, 1.0%, and 1.5% was almost double in the experimental 

group (52%, 19%, and 12%) compared to control (31%, 10%, and 5%, respectively). Also, the 

degradations in HbA1c were substantially lower in the DSS group by approximately 2- to 9-fold. 

This further suggests that the algorithm provides additional benefit given that both groups had the 

iBolus application. 

This DSS trial is also the first to report qualitative outcomes from exit interviews conducted 

with MDI-treated adults, shedding light into the lived experiences and perspectives of participants 

using the application with and without the adaptive component. Overall, three main themes were 

identified, along with eight sub-themes that represent the participants’ voices. The overarching 

algorithm-related theme identified was enhanced glycemia due to personalized dose 

recommendations (sub-theme example: streamlined access to timely decision support). The other 
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algorithm-related theme was the desire for advanced MDI technologies in practice (sub-theme: 

anticipated future adoption). Regarding the standalone application, the main theme identified was 

the advantage of digital solutions over traditional standard of care (sub-theme example: alleviation 

of mental burden associated with dose calculations). Taken together, the implications of these 

innovative mixed methods findings, combining the glycemic improvement with favourable patient 

perspectives, highlight the potential to transform MDI with adaptive technology using the McGill 

DSS, paving the way toward clinical translation. 

The second core objective of my thesis was to evaluate the practical utility of this 

algorithm. This was done by primarily comparing the directional agreement and disagreement rates 

of insulin recommendations made by the McGill DSS algorithm in the parent trial to 

recommendations made by a group of endocrinologists based on identical datasets. As explained 

in Chapter 4, this study found comparable proportions in the directional decisions for weekly (and 

biweekly) basal and bolus insulin adjustments between the algorithm and physicians to those 

among physicians. Importantly, most non-inferiority comparisons reached statistical significance, 

rendering the algorithm’s general decision-making process aligned with that of expert physicians. 

For the first time, we report interesting findings that reveal lower yet similar variability 

within the same physician over time as compared to inter-physician variability, reinforcing the 

subjective and complex nature involved with human decision making. Furthermore, on average, 

physicians recommended 3-5% greater absolute changes in insulin compared to those made by the 

algorithm. These findings highlight the practical potential to utilize the McGill DSS for regular 

insulin dose titrations in between clinic visits. Moreover, the inter- and intra-physician variability, 

together with the algorithm’s more conservative approach may potentially alleviate concerns 



 

 141 

around inadequate medical oversight, further supporting its future adoption. This could be 

particularly useful in settings of lower resources or restricted access.  

To this end, I established the clinical effectiveness of a novel DSS in MDI-treated adults 

with T1D and suboptimal glycemic control. I also demonstrated that the algorithm’s performance 

was generally not inferior to that of different practicing endocrinologists, underscoring its potential 

in clinical practice. Collectively, the findings presented in this thesis are clinically relevant and 

hold promise in addressing the unfulfilled need of adaptive MDI therapy. This is now conceivable 

in light of the recent introduction of connected MDI devices enabling digital platforms for 

automated personalized therapeutic solutions. 
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