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Abstract 

In surgery, technical skills are of paramount importance. Since the subject is human life 

and well-being, poor surgical performance and techniques can result in high patient morbidity 

and mortality and costly clinical outcomes. Learning surgical skills is a lengthy and stressful 

endeavour where trainees need to engage in patient care as they are given increased 

responsibility under the supervision of expert surgical educators. This apprenticeship model 

faces challenges in outlining, assessing, and teaching the composites of surgical expertise in an 

objective and standardized way. To tackle this issue, new technologies and developments are 

being implemented in surgical education to establish a data-driven competency-based 

quantifiable framework. 

Virtual reality surgical simulators are developed to realistically replicate a variety of 

surgical tasks, from simple to complex, while collecting vast amounts of data from the 

performance of the trainees and surgeons. This data utilized by artificial intelligence systems 

allows for accurate assessment of surgical performance, tailored feedback, and error mitigation 

assistance. 

This thesis work encompasses the development, validation, and testing of a variety of 

feedback systems to demonstrate the utility of artificial intelligence-powered training systems for 

the assessment and teaching of bimanual surgical skills. Chapter 1 discusses the current needs in 

surgical education, existing teaching systems, and the increasing popularity of artificial 

intelligence applications in medical education. Chapter 2 outlines the development and predictive 

validation of the Intelligent Continuous Expertise Monitoring System (ICEMS), a multialgorithm 

artificial intelligence application with real-time surgical bimanual skill assessment, tailored 
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feedback, and risk detection ability. Chapter 3 provides a spatial analysis during a simulated 

tumor resection surgery to outline the importance of spatial awareness and feedback. Chapter 4 

involves a randomized controlled trial comparing four feedback protocols, including no-

feedback, to assess the efficacy of numeric, visual, and visuospatial feedback during simulation 

training. Finally, Chapter 5 outlines another randomized controlled trial to compare the efficacy 

of the real-time intelligence assistance provided by the ICEMS with in-person expert instruction 

in teaching simulated subpial tumor resection skills to demonstrate the future utility of artificial 

intelligence in real-time training. 

Simulations equipped with artificial intelligence allow for a high-fidelity application in 

surgical education, providing accurate assessment and quantification of skills, tailored real-time 

feedback, and error mitigation. This development may shape the future of surgical training across 

all procedural medicine. I hope that the objective, standardized, and efficient training provided 

with these systems may be widely implemented in the future to help trainees master their skills 

and become more competent before performing real-life procedures, leading to improved patient 

outcomes. 
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Résumé 

En chirurgie, les compétences techniques sont de la plus haute importance. Puisque le 

sujet est la vie et le bien-être humain, une mauvaise performance chirurgicale et des techniques 

inadéquates peuvent entraîner une morbidité et une mortalité élevées des patients ainsi que des 

résultats cliniques coûteux. L'apprentissage des compétences chirurgicales est un processus long 

et stressant où les stagiaires doivent s'engager dans les soins aux patients tout en se voyant 

confier des responsabilités accrues sous la supervision d'éducateurs chirurgicaux experts. Ce 

modèle d'apprentissage est confronté à des défis pour définir, évaluer et enseigner les 

composantes de l'expertise chirurgicale de manière objective et standardisée. Pour aborder cette 

question, de nouvelles technologies et développements sont mis en œuvre dans l'éducation 

chirurgicale pour établir un cadre quantifiable basé sur la compétence et piloté par les données. 

Les simulateurs chirurgicaux en réalité virtuelle sont développés pour reproduire de 

manière réaliste une variété de tâches chirurgicales, des plus simples aux plus complexes, tout en 

collectant de vastes quantités de données sur la performance des stagiaires et des chirurgiens. Ces 

données utilisées par des systèmes d'intelligence artificielle permettent une évaluation précise de 

la performance chirurgicale, des retours personnalisés et une assistance à la mitigation des 

erreurs. 

Ce travail de thèse englobe le développement, la validation et les tests d'une variété de 

systèmes de retour pour démontrer l'utilité des systèmes de formation alimentés par l'intelligence 

artificielle pour l'évaluation et l'enseignement des compétences chirurgicales bimanuelles. Le 

chapitre 1 examine les besoins actuels en éducation chirurgicale, des systèmes d'enseignement 

existants et de la popularité croissante des applications d'intelligence artificielle dans l'éducation 
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médicale. Le chapitre 2 décrit le développement et la validation prédictive du Système Intelligent 

de Surveillance Continue de l'Expertise (ICEMS), une application d'intelligence artificielle multi 

algorithme avec évaluation en temps réel des compétences chirurgicales bimanuelles, des retours 

personnalisés et une capacité de détection des risques. Le chapitre 3 fournit une analyse spatiale 

lors d'une chirurgie simulée de résection de tumeur pour souligner l'importance de la conscience 

spatiale et des retours. Le chapitre 4 implique un essai contrôlé randomisé comparant quatre 

protocoles de retour, y compris sans retour, pour évaluer l'efficacité des retours numériques, 

visuels et visuospatiaux lors de la formation en simulation. Enfin, le chapitre 5 décrit un autre 

essai contrôlé randomisé pour comparer l'efficacité de l'assistance en temps réel fournie par 

l'ICEMS avec l'instruction en personne par un expert dans l'enseignement des compétences de 

résection de tumeur sous-piale simulée pour démontrer l'utilité future de l'intelligence artificielle 

dans la formation en temps réel. 

Les simulations équipées d'intelligence artificielle permettent une application d’haute-

fidélité dans l'éducation chirurgicale, offrant une évaluation précise et une quantification des 

compétences, des retours personnalisés en temps réel et une mitigation des erreurs. Ce 

développement pourrait façonner l'avenir de la formation chirurgicale dans toute la médecine 

procédurale. J'espère que la formation objective, standardisée et efficace fournie par ces systèmes 

pourra être largement mise en œuvre à l'avenir pour aider les stagiaires à maîtriser leurs 

compétences et à devenir plus compétents avant de réaliser des procédures réelles, conduisant à 

de meilleurs résultats pour les patients. 
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Özet 

Cerrahide teknik beceri büyük bir öneme sahiptir. Konu insan hayatı olduğundan, kötü 

cerrahi performans ve teknikleri yüksek hasta morbidite ve mortalitesi ile sonuçlanabilir ve 

maliyetli klinik sonuçlara neden olabilir. Cerrahi becerilerin öğrenilmesi uzun ve stresli bir 

çabadır. Cerrahi asistanlar, uzman cerrahi eğitmenlerinin gözetiminde artan sorumluluk altında 

cerrahi eğitimlerini alırlar. Bu usta-çırak modeli, cerrahide teknik yeterliliği objektif ve standart 

bir şekilde tanımlama, değerlendirme ve öğretme konularında yetersiz kalır. Bu sorunu ele almak 

için cerrahi teknik eğitiminde veri odaklı ve yetkinlik tabanlı ölçülebilir bir çerçeve oluşturmak 

için yeni teknolojiler ve gelişmeler uygulanmaktadır. 

Sanal gerçeklik cerrahi simülatörleri çeşitli cerrahi operasyonları gerçekçi bir şekilde 

simüle ederken asistanların ve cerrahların performansından büyük miktarda veri toplamaktadır. 

Bu veriler yapay zeka sistemleri tarafından kullanıldığında cerrahi performansın 

değerlendirmesine, kişiye özel geri bildirimlere ve hata giderme yardımına olanak tanır. 

Bu tez çalışması, bimanuel cerrahi becerilerin değerlendirilmesi ve öğretimi için yapay 

zeka destekli eğitim sistemlerinin faydalılığını göstermek için çeşitli geri bildirim sistemlerinin 

geliştirilmesi, onayı ve test edilmesini kapsamaktadır. Bölüm 1 cerrahi eğitimdeki mevcut 

ihtiyaçları, mevcut öğretim sistemlerini ve tıp eğitiminde yapay zeka uygulamalarının artan 

popülerliğini tartışmaktadır. Bölüm 2, Intelligent Continuous Expertise Monitoring System 

(ICEMS) adlı çoklu algoritma yapay zeka uygulamasının geliştirilmesi ve bu sistemin 

asistanların performansını tahmin etme yeteneğinin test edilmesini içerir. Bu sistem gerçek 

zamanlı cerrahi bimanuel beceri değerlendirmesi, kişiye özel geri bildirim ve risk tespit 

yeteneğine sahiptir. Bölüm 3, simülasyon ameliyatı sırasında uzaysal farkındalığın ve geri 
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bildirimin önemini açıklamak için üç boyutlu analiz sunar. Bölüm 4, simülasyon eğitimi 

sırasında sayısal, görsel ve görsel-uzaysal geri bildirimlerin verimliliğini değerlendirmek için 

geribildirim protokollerini içeren bir randomize kontrollü deney içerir. Son olarak, Bölüm 5, 

yapay zekanın gerçek zamanlı eğitimdeki gelecekteki kullanımını göstermek üzere başka bir 

randomize kontrollü deney içerir. Bu deney yüzeyel subpial tümör rezeksiyon becerilerini 

öğretmede insan ile yapay zekanın eğitmenler olarak karşılastılmasını içerdi. ICEMS tarafından 

sağlanan gerçek zamanlı yardım bir uzman kişi tarafından öğretilme ile karşılaştırıldı. 

Yapay zeka ile donatılmış simülasyon sistemleri, cerrahi eğitimde kaliteli bir uygulama 

sunar ve becerilerin değerlendirmesi, kişiye özel geri bildirim ve hata engelleme gibi faydalar 

sağlayabilir. Bu gelişme, tıpta cerrahi eğitimin geleceğini şekillendirebilir ve asistanların gerçek 

hayatta cerrahide sorumluluk almadan çok daha önce becerilerini yeterli seviyeye 

ulaştırmalarına, ustalaşmalarına ve dolayısıyla ameliyat sırasında ve sonrasında daha iyi 

sonuçlara ulaşmalarına yardımcı olabilir.  
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Contribution to Knowledge 

In this work, Chapters 2, 3, and 4 outline original scholarships that have been published 

in peer-reviewed scientific journals. Chapter 5 outlines an original scholarship and is presently 

being peer-reviewed. These works have contributed to advancing methodologies and knowledge 

regarding surgical education as follows: 

Chapter 2 constitutes the development and the predictive validation of the Intelligent 

Continuous Expertise Monitoring System (ICEMS), which is a multialgorithm artificial 

intelligence system. This system is a first-of-its-kind application with real-time assessment, 

tailored feedback, and risk detection abilities during simulated brain tumor resection tasks. It can 

be used to inform the surgeon about risks during the operation or teach surgery to a trainee while 

assessing their skill levels. The work in this chapter involved two main objectives, 1- the 

development of the ICEMS’s three modules: performance assessment, feedback, and risk 

detection; and 2- the predictive validation of the first module on the performance of 26 

neurosurgery residents. The ICEMS made a performance assessment in 0.2-second intervals 

during two simulated subpial tumor resection tasks and was able to differentiate between 

expertise levels and detect the trainee year in their neurosurgical training program based on their 

bimanual surgical skills. The efficacy of the second and third modules was tested in Chapter 6. 

This development shaped the research at our lab, the Neurosurgical Simulation and Artificial 

Intelligence Learning Centre in the coming years. I hope that it will also inspire applications in 

all procedural medicine where performance data is available. 

Chapter 3 outlined a spatial analysis of non-dominant hand skills. Non-dominant hand 

skills are critical to increase efficiency in performance by assisting the dominant hand and 
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controlling bleeding. In a previous work published in 2019 in Jama Open Network by Winkler-

Schwartz et. al., we assessed 6600 performance metrics during a simulated brain tumor resection 

task. The majority of significant differences were observed with metrics related to non-dominant 

hand between skilled and less-skilled participants, highlighting the importance of non-dominant 

hand skills in expertise. The work in this chapter demonstrated the differences between skilled 

and novice level performance in a three-dimensional space. Neurosurgeons used their bipolar 

more precisely, in contact with pia matter around the tumoral region. Skilled participants have a 

better spatial awareness with their instrument utilization, a skillset that trainees need to master. 

Chapter 4 involved a four-parallel-arm randomized controlled trial to compare different 

post-hoc feedback methodologies: no-feedback, numerical, visual, and visuospatial feedback. 

Providing information with more engaging visual and visuospatial information resulted in higher 

performance scores while any type of feedback provided a better performance improvement in 

comparison to no feedback. This work demonstrated efficient methodologies in feedback 

delivery to maximize trainee skills acquisition in learning bimanual surgical skills during 

simulated tumor resections which will help shape the future paradigm in simulation training. 

Chapter 5 outlined a three-parallel-arm randomized controlled trial to compare the 

efficiency of real-time and post-hoc intelligent feedback to in-person human expert-mediated 

instruction in teaching simulated surgical skills. Real-time feedback provided by the ICEMS 

achieved significantly better learning outcomes in performance scores, no-significantly different 

scores when rated by blinded experts using Objective Structures Assessment of Technical Skills 

(OSATS) rating, and significantly higher cognitive extraneous load. Real-time intelligent tailored 

feedback may provide more efficient training than learning in-person with expert instructors with 
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actionable and tailored instructions in a patient risk-free environment, saving experts’ time and 

improving learning outcomes. This work demonstrated the testing of the remaining modules 

outlined in Chapter 2 related to ICEMS’s feedback delivery and risk detection. 
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Chapter 1 - Introduction 

Surgical Practice 

Surgery requires critical care of tissues by expert hands. In ancient times, surgical 

practice was rudimentary in the form of sorcery mixed with religious beliefs and traditions.1 

Hippocrates (460 - 375 BC) introduced the concept of detailed observation and documentation 

into practice and is traditionally called the ‘Father of Medicine’.2  Renaissance figures such as 

Andreas Vesalius (1524 - 1564) marked a shift towards a more scientific approach and a more 

detailed understanding of human anatomy.3 Up until 1754, barbers were involved in surgical 

procedures due to their skillset with sharp instruments.4 The evolution of surgical practice to 

today’s advanced training, techniques, and technology-assisted applications came with great 

improvements in patient care.5-7  

Despite ever-improving practice, avoidable surgical errors remain a significant factor 

contributing to patient morbidity and mortality as well as the burden of costs on healthcare 

systems.8,9 Among these, technical errors are the most common class of errors.8,10 Lack of 

technical competence in surgery correlates to poor patient outcomes with high rates of adverse 

events, reoperation, and readmission.11-13 Technical skills are especially important in disciplines 

that involve complex procedures, such as neurosurgery,10,14 where technical mastery needs to be 

obtained predominantly during neurosurgical training and maintained throughout practice to 

achieve optimal patient outcomes.  
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Surgical Education 

Apprenticeship has always been the mainstream teaching and learning methodology in 

surgical practice. This methodology has evolved from a simple ‘see one, do one, teach one’ 

approach to more structured institutionalized programs with advanced training protocols.7,15 

Besides high medical knowledge requirements, surgery is an application of technical and 

practical skills. Therefore, unlike non-procedural medicine, obtaining technical competency is an 

integral part of surgical apprenticeship.16  

The current surgical training paradigm is based on fixed-length training programs, 

referred to as residency. This paradigm involves the assumption that sufficient time spent in 

clinics and exposure to surgical procedures would ensure adequate technical capacity for trainees 

to perform patient cases on their own.17 However, this approach falls short in assessing and 

teaching composites of surgical mastery in an objective and standardized way. These limitations 

relate to the challenges in quantifying performance and defining surgical technical expertise, 

including what would be considered ‘excellent’. As a result, the technical competency of the 

graduate surgeons varies greatly and this variation influences patient outcomes.13 Additionally, 

learning in clinical contexts and the involvement of residents during surgery increase risks to 

patients.18 This learning is heavily dependent on the presence of expert surgeon educators and 

their skills not only in surgery but also in teaching. As such, lack of adequate supervision can be 

a contributing factor to resident mistakes, undermining patient safety.19  

To address the current challenges in surgical training and as a response to the growing 

public demand, a competency-based approach is being integrated into medical and surgical 

training.20,21 Implementation of developing technologies in surgical training helps to address the 

concerns and enhance competency-based curricula.  
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Surgical Simulation 

Surgical simulation has been provided as a means to replicate surgical tasks, allowing 

learners to practice and acquire technical skills in patient risk-free environments.22-24 

Historically, the concept of simulation in surgery was grounded in the use of physical models and 

anatomical cadaveric dissection.25 Today’s simulation platforms integrate a variety of techniques 

and tools and simulate diverse procedures ranging from simpler tasks, such as knot tying and 

suturing, to more complex ones.26-28  

Some simulation models are based on physical models such as box trainers29,30, 3D-

printed tissues31,32, or manikins.33 Box trainers used for laparoscopic surgery allow the 

manipulation of real objects often using real operative instruments 34 although, some of the 

elements of the real tissues, such as bleeding, may be missing. Some evidence was shown that 

learning with these simulation systems may be transferable to improved operative performance 

during laparoscopic cholecystectomy.35 Another commonly used simulation approach is by using 

biological tissues such as cadavers,36,37 placenta,38,39 or animals.40,41 The use of fresh tissues 

provides realism however these settings require preparation before each practice and access to 

tissues when they are fresh can be challenging.42,43  

A variety of simulation technologies exist. High-fidelity simulations separate themselves 

from lower-fidelity simulations by providing a more realistic, immersive environment 42 along 

with many advantages such as the capacity to collect data from users/trainees.27 Although high-

fidelity simulators may cost more44 and may not provide significant benefits over lower-fidelity 

simulators in some cases,45 the ability to collect data and quantify surgical performance may give 

higher-fidelity simulators unique advantages in the future. 
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Simulations based on digital settings, such as augmented reality,46 and virtual reality,47 

are gaining popularity. With the growing interest, advancing computational resources, and the 

increasing popularity and promises of artificial intelligence, access to data is becoming more 

critical.48,49 Virtual reality (VR) (Figure 1) simulation may differentiate itself from other 

simulation systems and play a crucial role in future surgical training, as they serve as high-

fidelity platforms with a vast amount of data recorded during surgical performance.50 The  

 

Figure 1. The NeuroVR virtual reality neurosurgery simulator, the prototype (left) and the 

commercial version (right). 
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integration of artificial intelligence with VR simulation allows for quantifying skills, risk 

detection, and tailored feedback during realistically simulated complex surgical procedures.51,52 

Simulation Realism & Validation 

Many simulation models have been developed. One critical challenge for these systems is 

to meet the expectations of their end users: medical professionals and trainees. Hence validity 

assessments including face, content, and construct validity are common important 

considerations. Face validity refers to the ability of the simulation model to visually replicate the 

real task. Components of face validity may include the visual realism of the tissues simulated, 

tissue texture and color, the realism of the instruments, and the surrounding operative 

environment which all may affect user engagement and the perceived realism of the task.42  

Content validity refers to the relevance of the simulation model for the intended use. If 

the purpose of the simulator is to teach a surgical procedure, or how to use certain instruments, 

the task being offered should sufficiently challenge the students and have them experience very 

closely what they would experience in a real-life setting. Haptic systems, as an example, allow 

the simulator to replicate the tactile feeling one would perceive while performing a real surgical 

procedure, while, in fact, they interact with simulated instruments and tissues. Although both 

face and content validities are essential, they alone do not necessarily indicate the effectiveness 

of the simulator. 

Construct validity is used to assess the extent to which a simulator meaningfully and 

accurately measures what it is supposed to measure. One way to assess construct validity is to 

evaluate whether the simulation exhibits predictive validity, meaning that it can differentiate 

between those who are experienced and those who are inexperienced in the given task. If the 



29 
 

construct validity can be established, this indirectly suggests that the simulation system may 

benefit inexperienced users by allowing them to practice on the simulator and improve their skill 

levels to the experienced level. In this thesis work, Chapter 3 involved the face, content, and 

construct validity of a simulated neurosurgical procedure involving the subpial resection of a 

brain tumor. 

Two additional terms may be important: predictive validity and concurrent validity. 

Predictive validity refers to the ability to ability to accurately assess and forecast future 

performance, therefore track progress. The work in Chapter 2, involved the demonstration of 

predictive validity of the Intelligent Continuous Expertise Monitoring System (ICEMS). This 

system was able to predict neurosurgical trainee skills acquisition throughout their residency. 

Concurrent validity can be provided when the outcomes and measurements obtained 

during the simulation task can be compared to a gold-standard assessment conducted 

simultaneously. The significant linear relation between the OSATS scores and the ICEMS scores 

outlined in Chapter 4 can be an example of concurrent validity. In this example, concurrent 

validity means that achieving higher scores in ICEMS system’s measurement reflects the 

improvement in the gold-standard OSATS rating. 
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Simulation and Neurosurgery 

Neurosurgery is among the most critical, technically challenging surgical disciplines. As 

a leading center, the goal at the Neurosurgical Simulation and Artificial Intelligence Learning 

Centre is to utilize simulation and artificial intelligence technologies to enhance trainee 

neurosurgical skills acquisition. For this purpose, several virtual reality simulators were 

developed.53,54 Most notably, the NeuroVR simulation (CAE Healthcare, Montreal, Canada) 

(Figure 1) was built in collaboration with a group of engineers and doctors to realistically 

simulate a variety of neurosurgical procedures, particularly cranial.27,55 This platform provides 

3D visualization of the simulated tissue via a binocular, resembling an intraoperative microscope 

commonly used during neurosurgical procedures. The two haptic handles provide force 

feedback, allowing for a realistic feeling of contact with the simulated environment while using 

simulated neurosurgical instruments.56 Another simulation system, the Sim-Ortho virtual reality  

 

Figure 2. Subpial resection of brain tumors; real operation (left, microneurosurgery.org) and 

simulation (right, the NeuroVR simulator-CAE Healthcare). 
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platform simulates very common spinal procedures such as anterior cervical discectomy and 

fusion.53 This simulation platform combines two robotic arms to create sufficient haptic force, 

simulating much stiffer structures like bone. 

One of the essential skills to acquire in neurosurgery is the subpial resection of brain 

tumors and tissues (Figure 2). The subpial resection technique was initially developed for 

epilepsy surgery to remove epileptogenic brain regions.57 It is also a common approach in 

removing brain tumors close to the pial surface.47 This technique requires preserving the pia 

mater, the delicate protective layer of the brain, while removing the underlying cortical areas. 

Expert execution of this technique is important in a variety of neurosurgical procedures58,59 to 

remove the abnormal areas completely while preserving the adjacent tissue critical for neurologic 

function. To enable practicing this skill in patient risk-free realistically simulated settings, the 

subpial tumor resection tasks were developed and integrated into the NeuroVR platform.47 The 

goal of these tasks involved subpial removal of the tumors completely while minimizing 

bleeding and injury to the surrounding healthy tissue, using a simulated ultrasonic aspirator in 

the dominant hand for tumor removal and a bipolar forceps in the non-dominant hand for 

supportive movements and coagulating bleeding tissues.60  

Objective Assessment of Technical Skills 

A data-driven approach is crucial to achieve an objective assessment of technical skills. 

Virtual reality simulation platforms collect large data from various aspects of surgery, such as 

instrument utilization, force applied, instrument activation, tissue location, and amount of 

bleeding, tumor removed, and damage to healthy tissues, making a data-driven objective 

assessment of technical skills possible. 
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Neurosurgery involves interaction with delicate tissues. As such gentle utilization of 

instruments indicates the expertise level of the surgeon while high force applied correlates to 

poor operative outcomes.61,62 Using instrument force data recorded during simulation 

performance, methodologies were developed to assess the expertise level of the trainee and 

provide feedback. Force pyramid and force heatmap models allowed 2D and 3D visualization of 

force applied by surgical instruments and the distribution on various critical tissues.63,64 These 

models differentiated between expertise levels while also providing insights on hand postures 

suitable for optimal surgical performance.65 The work in Chapter 3 involved a similar approach 

for spatial assessment of non-dominant hand skills and objective feedback. 

Performance metrics were developed as the standard means of measurement to quantify 

safety, quality, efficiency, bimanual dexterity, and instrument movement during simulated 

operative procedures.66-68 Using the raw data recorded by the NeuroVR platform, 50 recordings 

per second, 6600 performance metrics were assessed during a single tumor resection task.50 

However, traditional statistical methodologies fall short in making a comprehensive global 

assessment of expertise using such vast data. Therefore, more advanced approaches, such as AI, 

are required. 

The integration of AI enables the concept of ‘intelligent systems’, where large data 

processing and providing high-fidelity assessment and feedback are possible.69 Applications in 

surgical training introduce the ability of these systems to involve in teaching like a human 

instructor. They can engage in training like an independent intelligence and a decision maker 

aiming to enhance trainee learning outcomes. According to Merriam-Webster dictionary, the 

word ‘intelligence’ means ‘the ability to learn or understand or to deal with new or trying 

situations’. Although the use of the term ‘intelligence’ was subject to some premature claims 
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involving superficial or rule-based applications, the future of fully independent intelligence 

systems in surgical education and practice is undeniable. 

Artificial Intelligence from a Technical Perspective 

 The area of artificial intelligence (AI) covers a variety of methodologies and techniques 

to make machines (or computers) capable of decision-making.48 The detailed technical 

background of AI is out of the scope of this work; however, to understand how AI works, 

familiarity with several concepts is important. This section will outline a few concepts that may 

help the readers to better contextualize the AI methodology used in Chapter 2.  

First, AI is computation, specifically through correlation. All AI systems work with 

algorithms that process input data to predict certain features (outputs). When an algorithm 

identifies correlations and patterns that sufficiently reveal the output, accurate decisions are 

made. The process of learning these correlations is a repetitive process referred to as ‘algorithm 

training’. During the training process, algorithms adjust their internal parameters to minimize the 

difference between their predictions and the actual outputs. All algorithms undergo the process of 

training along with a validation process, where a smaller separate portion of the data is used to 

double-check whether during the training process, the algorithms’ accuracy, indeed, is 

improving. Ideally, this training/validation step is followed by a testing step, evaluating the 

algorithms’ performance on an independent dataset to estimate how well they generalize and 

perform in real-world situations.  
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AI can be applied in decision-making where a simple rule-based approach does not 

suffice for accurate results.70 AI systems have background algorithms based on certain 

mathematical structures that allow them to learn and perform complex tasks accurately. These 

background structures vary from simpler statistical or distance analyses 50 to more complex 

multilayered neural networks (also known as deep neural networks).51 As an example of simpler 

models, Naïve Bayes is a commonly used machine  learning classifier where the decision is 

based on a statistical distribution, and the decision is the statistically most likely answer. Another 

example is K-nearest neighbors, which provides decisions based on the closest neighbors with 

the most resemblance, with K representing the number of neighbors to take into account. For 

example, if K=5 in a dichotomous decision, a new prediction will be made by examining the five 

most resembling occasions, and the decision will be based on the representation that is supported 

by at least three out of the five instances. 

  

Figure 3. Some important concepts in artificial intelligence applications 
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On the contrary to simpler machine learning algorithms, complex multilayered AI 

structures necessitate high computational power. As computational resources develop and 

become widely available, the popularity of these designs increases, allowing for high-fidelity 

applications.48 One important algorithmic structure is artificial neural networks, which employ 

computational units called nodes (neurons) similar to how the biological brain works. Deep 

neural networks are formed by using multilayer artificial neural networks, allowing a higher 

capacity to learn and store more complex concepts for decision-making. The majority of today’s 

exciting AI applications are based on deep neural networks, whether for analyzing clinical data, 

image or video (computer vision), voice, or language (large language models, such as 

ChatGPT).48 

 Another concept to outline is the output of algorithms. Outputs can be designed to enable 

algorithms to predict/decide in various ways. The algorithms are referred to as ‘classifiers’ when 

their intended use is to predict specific classes. On the other hand, in cases where the intended 

output is not a class but rather a numerical value, these designs are known as ‘regression 

models’, allowing for more granular numerical decision-making.51 

The training of algorithms can follow three main learning methodologies: supervised 

learning, unsupervised learning, and reinforcement learning. A supervised learning approach is 

used when the data is labeled, meaning that the desired outputs are defined. This methodology 

often leads to more interpretable predictions, as the predictions of the algorithm will align with 

the definitions. Unsupervised learning methodology, on the other hand, is used without labeling 

or supervision to reveal the inherent structures and patterns within the data. This approach yields 

clusters of data points with common patterns and identifies the differences between these 
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clusters. However, human interpretation may be required to make meaningful definitions for 

each of these data clusters.  

A mixed approach called semi-supervised learning is used when only portions of the data 

is labeled. In this case, first, algorithms are pre-trained using the labeled portions of the data in a 

supervised fashion. The remaining unlabeled data is labeled by the pre-trained algorithm and 

then used for further training. Reinforcement learning is the training process achieved by 

introducing feedback in the form of either rewards or penalties. An algorithm makes decisions to 

maximize a cumulative reward. This approach is widely used in gaming, robotics, and 

autonomous systems.71 

To put into context, the AI application introduced in Chapter 2, the Intelligent Continuous 

Expertise Monitoring System (ICEMS), involved supervised learning. For performance 

assessment, the input values of the algorithm were 16 performance metrics representing safety, 

quality, efficiency and bimanual dexterity during the simulated performance. The output values 

were expertise level of the surgeon/trainees measured between a score of 1 (expert) vs -1 

(novice), representing a regression model. More detailed information can be found in the related 

sections. 

Artificial Intelligence to Assess Surgical Performance 

AI is reshaping medical applications. AI is widely implemented for assisting clinical 

diagnosis using imaging,72 arrhythmia detection using ECG data,73 colonic polyp and adenoma 

detection, 74 predicting patient outcomes in spine disorders 75 , and screening or early detection 

of diabetic retinopathy. 76 The common ground for all these applications is the availability of 

large datasets and patient parameters that have distinctive characteristics to be differentiated. 
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However, surgical expertise is a subjective and abstract notion. While an expert surgeon may 

perform at a less-skilled level at times, a less-skilled trainee may manage parts of the procedure 

expertly. Differently from other AI applications in medicine, the abstract notion of expertise and 

having no reliable example of 100% expert in technical skills makes quantifying competency in 

surgery challenging. This challenge led us to be creative to deal with this issue, as discussed 

below.  

AI offers a variety of algorithm structures and parameters, and development 

methodologies as discussed above.48 The choice with all available structures and functionalities 

determines the success of the algorithm in its desired usage. One may think that AI would never 

fail if it were not for the limited background AI engineering, misinterpretation, and the use of 

limited or biased data, all of which may involve human judgment, leading to deviations from the 

desired usage and causing unintended effects.77,78  

As a part of this PhD work, we have defined an AI methodology to quantify surgical 

expertise and made a related patent application for ‘Methods and systems for continuous 

monitoring of task performance’ 52 in collaboration with McGill University. We proposed using 

recurrent neural networks, an AI structure that is suitable for assessing data with time 

dependencies79, such as surgical performance80. Currently, measuring expertise is based on 

surgical experience: intraoperative exposure and years in practice. Our application is based on a 

safe assumption that a person who has long-time exposure to neurosurgical operations, such as a 

neurosurgeon, would have technical expertise greater than someone who has never been in a 

neurosurgical operating room, such as a medical student. Following this very logic, our system 

assigned a neurosurgeon’s performance with a score of ‘1’ and a medical student’s performance 

with a score of ‘-1’, indicating that all neurosurgeon performance data should be considered 
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better than medical students by our AI system. Using these two end-skill levels helped to 

minimize the aforementioned overlaps that exist between expert and less skilled performance. 

Additionally, similar to statistical sample size calculation, having the most distinctive groups 

possible granted success using a smaller sample size.81 Making predictions on a continuous 

expertise scale between expert (1) and novice (-1) levels in real-time allowed the applications 

described in Chapter 2 and Chapter 5.  

AI algorithms may have very complex structures, often referred to as the ‘black box’, that 

makes the interpretation difficult.82 However, in high-stakes environments such as surgery, it is 

important to avoid black box problem and use interpretable approaches.83,84 Therefore, our 

application involved making predictions on features that are relevant to surgical practice, and 

easy to understand and learn by trainees. 

Learners’ Cognitive Load 

Cognitive load is the mental effort of a trainee to process and retain information.85,86 It is 

an important consideration while designing a curriculum to maximize learning efficiency and 

ensure that the trainees remember the information long-term. Since its inception in the 1980s, 

cognitive load theory has become an instrumental framework that takes human cognitive 

architecture into account in educational psychology and instructional design.87 Key components 

of cognitive load theory include 1- intrinsic cognitive load, 2- extraneous cognitive load, and 3- 

germane cognitive load.88 

Intrinsic cognitive load refers to the inherent complexity of the task. For surgical trainees, 

depending on the surgical domain or the training stage, the task at hand may naturally be 

complex. Extraneous cognitive load refers to the unnecessary cognitive load caused by the way 
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the information is delivered to the trainees. More clear and concise manner with minimized 

redundancy and distractions may increase the efficiency in training.89,90 Finally, germane 

cognitive load is the effort required for learners to integrate new information into their existing 

knowledge. Germane load may indicate a deeper understanding of the subject matter and 

cognitive absorption.91 Cognitive overload occurs when these cognitive components combined 

exceed the learner’s capacity.  

Cognitive overload may limit the amount of information understood by the trainee, 

increase stress and anxiety, cause cognitive fatigue and a decline in motivation.92 Novice trainees 

are especially at higher risk of cognitive load.85 Hence, cognitive load is an essential element in 

designing guidelines in health professional education.90  

Randomized Controlled Trials for Designing an Effective Curricula 

 Designing effective curricula involves careful planning and a thorough consideration of 

various components, as discussed above, along with the integration of technology. Randomized 

controlled trials (RCTs) are considered the gold standard methodology in advancing medical 

science to establish evidence-based advancements.93 Several RCTs were conducted to assess the 

impact of surgical simulation training on global rating scores and operative time in a variety of 

procedures such as endoscopic, laparoscopic, endovascular, although a significant effect on 

patient outcome was limited.22 Larsen et al. reported that a virtual reality surgical training 

resulted in significantly lower operating time compared to the control group with no VR 

training.94 Zendejas at al. reported the only study with improved patient outcomes where training 

laparoscopic skills for total extraperitoneal inguinal hernia repair using a box trainer resulted in 
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fewer postoperative complications such as urinary retention, seroma, hematoma, or wound 

infection and it decreased hospital stay durations.95  

An AI-integrated curriculum for surgical technical skills training may help to address the 

needs of the competency-based approach in surgical training and provide objective assessment 

and efficient learning. A series of important considerations can be evaluated through RCTs to 

provide a generalizable evidence-based causality and inference which may inform the future 

surgical technical skills training curricula. The RCTs in this PhD work assessed, first, whether 

feedback is essential to improve skills as opposed to practice alone with no feedback. Second, 

they explored the impact of the manner in which feedback is conveyed, investigating if more 

engaging feedback information results in better learning outcomes. Lastly, the research assessed 

the utility of the integration of real-time AI which may have benefits over traditional expert-

mediated training. Another RCT was conducted concurrently with this PhD work, where the 

ICEMS was used to assess learning outcomes while the students received post-hoc AI-enhanced 

expert-benchmark feedback. This post-hoc feedback resulted in better learning outcomes when 

compared to remote-expert instruction.96 

Thesis Goal and Objectives 

The overall goal of this thesis work is to develop, validate, and test an objective and 

standardized assessment and teaching methodology for training surgical bimanual skills, using 

virtual reality simulation and AI. This work utilizes the resources available at the Neurosurgical 

Simulation and Artificial Intelligence Learning Centre, such as the NeuroVR platform and the 

subpial resection simulation tasks.  

The overall research hypothesis is: 
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- Advanced goal-oriented actionable AI feedback would significantly improve learning 

outcomes in simulated bimanual tumor resection skills training.   

The research objectives are: 

1- Development and predictive validation of the Intelligent Continuous Expertise 

Monitoring System, a real-time AI system for assessment of surgical skills, tailored 

feedback, and risk detection. 

2- Spatial analysis of expert-level non-dominant hand skills, and the development and 

construct validity of a spatial feedback methodology during a complex brain tumor 

resection task. 

3- Comparing computer-assisted numeric, visual, and visuospatial feedback to no-feedback 

to explore optimal feedback methodologies in teaching technical skills in a randomized 

controlled trial. 

4- Comparing the efficacy of real-time AI instruction to in-person expert instruction in 

teaching bimanual surgical skills in a randomized controlled trial. 
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Chapter 2 - Continuous Monitoring of 

Surgical Bimanual Expertise Using Deep 

Neural Networks in Virtual Reality 

Simulation 

Preface 

Chapter 1 discussed the need for AI in high-fidelity surgical performance assessment, 

feedback, and error mitigation. In this chapter, we outline the development of the Intelligent 

Continuous Expertise Monitoring System (ICEMS), a deep learning methodology using 

recurrent neural networks, for real-time assessment of surgical performance during two 

simulated subpial tumor resection tasks. This chapter involves two main goals, 1- the 

development of the ICEMS’s three modules: performance assessment, feedback, and risk 

detection; and 2- the predictive validation of the first module throughout a neurosurgical training 

program, on performance data of 26 neurosurgery residents. The work in this chapter lays the 

foundation of future works by quantifying surgical performance, allowing for tailored feedback, 

facilitating objective comparison of skills, and tracking trainee learning. The manuscript was 

published as: 

 

Yilmaz R, Winkler-Schwartz A, Mirchi N, Reich A, Christie S, Tran DH, Ledwos N, Fazlollahi 

AM, Santaguida C, Sabbagh AJ, Bajunaid K, Del Maestro R. Continuous monitoring of surgical 

bimanual expertise using deep neural networks in virtual reality simulation. NPJ Digital 

Medicine. 2022 Apr 26;5(1):54. https://doi.org/10.1038/s41746-022-00596-8     
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Abstract 

In procedural-based medicine, technical ability can be a critical determinant of patient 

outcomes. Psychomotor performance occurs in real-time, hence a continuous assessment is 

necessary to provide action-oriented feedback and error avoidance guidance. We outline a deep 

learning application, the Intelligent Continuous Expertise Monitoring System (ICEMS), to assess 

surgical bimanual performance at 0.2-second intervals. A long-short term memory network was 

built using neurosurgeon and student performance in 156 virtually simulated tumor resection 

tasks. Algorithm predictive ability was tested separately on 144 procedures by scoring the 

performance of neurosurgical trainees who are at different training stages. The ICEMS 

successfully differentiated between neurosurgeons, senior trainees, junior trainees, and students. 

Trainee average performance score correlated with the year of training in neurosurgery. 

Furthermore, coaching and risk assessment for critical metrics were demonstrated. This work 

presents a comprehensive technical skill monitoring system with predictive validation throughout 

surgical residency training, with the ability to detect errors.  
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Introduction 

The mastery of technical skills is of fundamental importance in medicine and surgery as 

technical errors can result in poor patient outcomes. 1-3 The learning of bimanual psychomotor 

skills still largely follows an apprenticeship model: one defined by a trainee completing a fixed-

length residency working closely with instructors. Technical skills education is transitioning 

from this time-focused approach to competency-based quantifiable frameworks. 4,5  

Surgical trainees are considered competent when they can perform specific surgical 

procedures safely and efficiently, encompassing knowledge, judgement, technical and social 

skills to solve familiar and novel situations to provide adequate patient care. 6 The focus on 

“adequate” rather than “excellent” or “expert” patient care relates to challenges in outlining, 

assessing, quantifying, and teaching the composites of surgical expertise. To provide 

competency-based frameworks for complex psychomotor technical skills, advanced platforms 

need to be created which provide objective feedback during training along with error mitigation 

systems. 7 These frameworks need to be transparent and based on quantifiable objective metrics. 

8,9  

A technically challenging operative procedure in surgery involves the subpial resection of 

brain tumors adjacent to critical cortical structures. 10 Neurosurgical graduates are expected to be 

proficient in this complex bimanual skill which includes minimizing injury to adjacent normal 

tissues and hemorrhage from subpial vessels. Technical errors in this procedure can result in 

significant patient morbidity. 10,11 Our group developed complex realistic virtual reality tumor 

resection tasks to aid learners in the mastery of this skill. 12,13 Exploiting these simulations on the 

NeuroVR platform with haptic feedback (CAE Healthcare, Montreal, Canada) we quantified 
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multiple components of the bimanual psychomotor skills used to expertly perform these tasks. 

Utilizing this data post-hoc, we developed expert performance benchmarks to which learner 

scores were compared and machine learning algorithms to classify participants into pre-defined 

expertise categories. 8,14,15 Limitations of these applications were the inability of ongoing 

assessment and error detection and improving performance during the task by providing 

continuous feedback. 

Most surgical skills learning occurs in the operating room, with the surgeon instructor 

continuously evaluating trainee performance and providing coaching to improve performance 

with a particular focus on preventing surgical errors which may cause patient injury. This 

assessment occurs in real-time and is relevant to the precise action being performed by the 

trainee and the risks associated with that action. To mimic the role of expert operative instructors, 

we developed an artificial intelligence (AI) deep learning application, the Intelligent Continuous 

Expertise Monitoring System (ICEMS). The ICEMS was developed with two objectives: 1)- to 

make a continuous assessment of psychomotor skills to detect less-skilled performance during 

surgery, 2)- to provide ongoing action-oriented feedback and risk notifications.  

This paper outlines the development of the ICEMS (Figure 1) and provides predictive 

validation evidence that enables future studies to explore its efficacy in simulation training. To 

our knowledge, this application is the first continuous bimanual technical skill assessment using 

deep learning with the predictive validation on surgical trainee performance throughout a 

residency program. 16 
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Results 

Participants and data 

Neurosurgeons, neurosurgical fellows, neurosurgical residents, and medical students from 

McGill University were invited to participate. Neurosurgeons and medical students were 

categorized as experts (n = 14) and novices (n = 12), respectively. Neurosurgical fellows and 

residents were allocated a priori into two groups based on their previous operative exposure: 

seniors (4 neurosurgical fellows and 10 neurosurgical residents in years 4-6,) and juniors (10 

neurosurgical residents in years 1-3) (Table). Each participant performed two different simulated 

subpial tumor resection tasks a total of six times, resulting the data from 300 attempts in total 

(Figure 2). The simulated scenarios and were described previously (Figure 3) 8,12. Data was 

recorded in a single time point. No data-exclusion was applied. Mean age [SD] was, for experts: 

45.9 [8], for seniors: 32.3 [2.1], for juniors: 29.8 [3.2] and for novices: 24 [1.3]. Trainee number 

of complete subpial tumor resections performed (mean [min-max]) was, seniors: 14.7 [0-45], 

juniors: 1 [0-7] (Supplementary Table 3).  

AI design and development 

The definition of expertise in surgical technical skills is challenging since surgical 

performance involves continuous interplay between multiple factors. 17 However, the composites 

of expertise are present in the performance of expert professionals. We developed the Intelligent 

Continuous Expertise Monitoring System in this context by training a Long-Short Term Memory 

(LSTM) network to learn operative surgical expertise from the difference between expert and 

novice surgical skills considering the continuous flow of the performance. The algorithm was 

trained with both end skill levels with more than 700 minutes of operative performance with a 

data entry at 0.2-second intervals (with over 200,000 data points of analysis). 
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A surgical performance is a combination of multiple intraoperative interactions. An 

appropriate assessment requires considering these tasks being carried out within the flow of the 

performance. LSTM networks, as a type of recurrent neural network, allowed for the evaluation 

of each time point in relation with the previous time points, giving the ability to consider 

sequences in movements. 18-20 

Sixteen performance metrics were extracted at 0.2-second increments from the simulation 

data (Figure 4). Metrics included features related to bimanual technical skills such as instruments 

tip separation distance, force applied by each instrument and velocity and acceleration of each 

instrument as well as operative factors such as tumor removed, control of bleeding and damage 

to healthy tissue. An LSTM algorithm was built by inputting these 16-performance metrics 

utilizing only expert/neurosurgeon (n=14) and novice/medical student (n=12) performance data 

on 84 and 72 tasks, respectively. The algorithm was structured as a regression model quantifying 

expertise level as a continuous variable from expert/skilled level (a score of 1.00) to novice/less-

skilled level (a score of -1.00). To avoid overfitting, root-mean-squared-error (RMSE) values on 

the three separate datasets were monitored (Supplementary Table 1). Detailed information about 

algorithm structure and development can be found in Online Methods and supplementary data. 

Quantifying skills 

The performance of 24 trainees (on 144 tasks) in different years of neurosurgery training 

(Table) was used to assess the algorithm’s predictive validation. All 300 participant trials were 

scored by the trained LSTM algorithm at 0.2 second intervals between ‘1.00’(skilled) and ‘-

1.00’(less-skilled). An average performance score was calculated for each task (Supplementary 

Figure 5). Participants’ mean scores were calculated across six trials for statistical comparisons. 
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Group average surgical performance scores were; experts, 0.509; 95% CI [0.424 0.593]; 

seniors, 0.258; 95% CI [0.114 0.402]; juniors, -0.11; 95% CI [-0.358 0.139]; and novices, -0.398; 

95% CI [-0.545 -0.251]. No outliers were found, as assessed by boxplot. Only a trial data that 

belongs to a fifth attempt of a neurosurgeon was missing, no imputation was made. Average 

performance score was normally distributed for each expertise group as determined by Shapiro-

Wilk test (p > .05). Levene’s test showed equality of variances, based on median (p =.083).  

The average performance score was significantly different between expertise groups, 

F(3,46) = 33.927, p < .001, as determined by a one-way ANOVA. Tukey-Kramer post-hoc test of 

between groups differences revealed that the expert group scored significantly higher than 

seniors (mean difference: .251 95%CI [.004-.497], p = .045) and juniors scored significantly 

higher than novices (mean difference: .289 95%CI [.009-.568], p = .04) in average performance 

score. The ICEMS also differentiated between surgical trainee groups with seniors scoring 

significantly higher than juniors (mean difference: .367 95%CI [.097-.638], p = .004) (Figure 5). 

In a linear regression analysis resident year of training in neurosurgery statistically predicted the 

average performance score, F(1, 22) = 9.81, p = .005 and accounted for 30.8% of the variation in 

the average score with adjusted R2 = 27.7%, a large size effect according to Cohen (1988). 21 

Average performance score increased by 0.092, 95% CI [.031-.153] per training-year (Figure 6). 

The ability of the ICEMS to continuously assess surgical performance during the surgical task is 

demonstrated in videos outlining a neurosurgeon [video-1] and a medical student performance 

[video-2] (video legend: Supplementary Figure 3). 

Coaching and risk detection 

A major application of the ICEMS is to provide continuous personalized action-oriented 

feedback helping trainees modify their bimanual psychomotor movements to expert level 

https://www.dropbox.com/s/rzvnjuke6zp6gn1/video%201.avi?dl=0
https://www.dropbox.com/s/9jdpgrd0nurpwyl/video%202.avi?dl=0
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performance and provide critical information to mitigate errors. Three algorithms provided 

continuous expert-level coaching for (1) aspirator utilization, (2) bipolar forceps utilization and 

(3) bimanual coordination. 8,15,22 These algorithms provided the ability to revise instrument 

utilization to expert level continuously. Two other algorithms demonstrated ongoing risk 

detection capacity for (4) bleeding and (5) healthy tissue injury. 8,23 RMSE values obtained for 

training, validation and testing of these algorithms are available in Supplementary Table 1.  

Although, the validation of these modules in practice for coaching and risk detection will 

be the object of future studies, we outline the video performance of these algorithms on a senior 

[video-3] and a junior resident operation [video-4] (video legend: Supplementary Figure 4). 

Learning from the difference between expert and novice performance, the ICEMS reproduces 

some components of intelligent assessment and coaching similarly provided by expert surgical 

instructors in the operating room. 

Discussion 

The transition towards competency-based quantifiable frameworks for evaluation and 

teaching of surgical technical skills is resulting in the development of high-fidelity virtual reality 

simulators to aid this learning transformation. These systems provide trainees with repetitive 

opportunities for experiential learning in patient risk-free environments without limitations 

imposed by the availability of expert surgical instructors or patient cases. 24-26 We demonstrate an 

artificial intelligence application to enable these platforms to function as objective autonomous 

intelligent training platforms with the ability to continuously track psychomotor learning as 

surgical trainees transition along the spectrum from novice to expert performance. 

https://www.dropbox.com/s/8uv68owr9b4wqhk/video%203.avi?dl=0
https://www.dropbox.com/s/2fzesxpf2vzpk9i/video%204.avi?dl=0
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The NeuroVR platform (previously NeuroTouch, CAE Healthcare, Montreal, Canada) 

used in this study is a high-fidelity virtual reality neurosurgical simulator that allows 3D visual 

and haptic interaction in a hyper-realistic simulated surgical environment. 13 This platform was 

developed by a team of engineers from the National Research Council of Canada with expert 

inputs from 23 international training hospitals. Extended realism was provided by the 3D 

microscopic visualization through a binocular, and two haptic handles to allow bimanual 

simultaneous movement. Tumor physical properties were adjusted using data from multiple 

primary human brain tumor specimens. 27 Haptic tuning was applied based on the feedback from 

neurosurgeons. 12 Human brain tissue and bleeding mechanics were implemented including 

pulsation of blood vessels. A brain tumor surgery intraoperative audio recording was added to 

increase background auditory realism. The vast dataset generated by this platform allowed for 

the development of comprehensive intelligent systems. 8,9 

Studies involving real-time surgical technical skills assessment demonstrated supportive 

results; however, these studies were restricted to one-handed virtual reality systems during a 

steerable needle task, epidural needle insertion or drilling a simulated femur. 28-30 Most operative 

procedures involve the coordinated interactions of both hands, each employing a different 

instrument to accomplish an operative goal. The major roles of expert operative room surgical 

instructors are to assess trainees’ bimanual skills and help them improve their skills to safely 

carry out procedures to decrease patient morbidity and mortality. 31 This is crucial especially for 

high-risk medical procedures. Our group has focused on developing an LSTM network to mirror 

the role of surgical instructors in assessing bimanual performance involving high-risk complex 

neurosurgical procedures like the subpial resection. Previous real-time assessment applications 

utilized small datasets, included engineering students or non-identified participants and have not 
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validated or tested their algorithms on appropriate learner performance. 16,28-30,32 In contrast, the 

ICEMS was developed utilizing neurosurgeon/expert and medical student/novice performance, 

and its was tested using the data from neurosurgical trainees who are at different stages of 

training. 

Our framework offers several advantages. First, the ICEMS was trained as a regression 

model with the two-end skill level performance, providing a continuous expertise scale from 

novice to expert level. This allowed a more granular performance assessment from the previous 

applications8 and tracking of learning throughout the years of residency training from medical 

school training to years of practice. Second, we developed our system utilizing two simulated 

tasks that require the same bimanual surgical technique. This approach offers a more 

generalizable assessment of this surgical technique across different tasks. 

One of the drawbacks of deep learning applications is the ‘black box’ problem where 

complexity of the analysis (1) limits the interpretability of the assessment and (2) makes 

providing relevant information for feedback difficult. To overcome these issues; (1) our 

assessment system was built on relevant features that are easy to understand and learn. Based on 

our previous studies, we implemented features representing dominant and non-dominant hand 

movement and force applied, bimanual cognitive, tissue and bleeding information, and safety 

metrics. (2) Separate algorithms were trained to work in reverse and provide ongoing feedback 

for the very features that the assessment was made on. We demonstrate a methodology to 

generate feedback for any essential performance metric and provide five example features for 

coaching and risk detection (Supplementary Figure 2). 

In previous self-tutoring frameworks, the proposed coaching was based on expert level 

classification or pre-recorded expert parameters such as videos, benchmarks, or milestones. 9,33-35 
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In contrast to determining feedback based on expertise group classification or static parameters, 

the ICEMS produces dynamic feedback for each performance metric by separate algorithms. 

This involves revising predictions to the highest expert performance level for specific metrics 

continuously throughout the task, and this revised information can be used as feedback for 

trainees or any level of performance including expert groups. An action-oriented personalized 

coaching is provided for specific metrics. 

The continuous evaluation done by the ICEMS can be utilized either in real-time to 

produce visual, auditory, and haptic clues to enhance performance during the task, or to make a 

summative assessment and provide feedback after task completion. Both learners and instructors 

can be provided with post-hoc performance videos flagged with the exact time frame(s) of less-

skilled performance (see the videos provided in Results). This AI-generated information 

outlining the reasons for less-skilled assessment may improve trainee self-directed performance 

and help educators improve learner skills. 

Experts may demonstrate performance features that are similar to that of less-skilled level 

performance. These common features may be due to the intrinsic characteristics of human 

bimanual performance, the simulated task, or the limits in recording data. For this reason, the 

ICEMS was built using expert level performance in comparison to novice performance to 

differentiate expert specific features. Our results have shown that these expert specific patterns 

were increasing throughout trainee-years in training. 

Expert surgeons develop and implement autonomous motor activity defined as ‘psycho-

motor skills script’ with increasing surgical knowledge. 15 Our system allows trainees to have 

constant awareness of their level of performance as visualized on a less-skilled to expert scale. 

By self- modifying their bimanual psychomotor movements with the capacity for unlimited 
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repetitions to achieve expert performance trainees may more quickly develop a “psychomotor 

skills script” associated with muscle memory that expert surgeons develop and maintain. This 

may allow trainees to be more prepared when faced with similar procedures in the operating 

room. 15,36,37 

Our system is developed in the context of surgical simulation using the extensive 

information recorded by a specific virtual reality simulator. However, this methodology can be 

useful beyond the scope of surgical simulation and applicable to any technical performance 

where the necessary data is available. Intraoperative surgical instrument tracking systems are 

being developed. 27 Future surgical operative rooms may benefit from this application by the 

integration of AI and intraoperative data recording systems/instruments. 38,39 Surgical operative 

rooms may evolve into intelligent operating rooms outfitted with a series of evaluating and 

intelligent tutoring platforms focused on enhancing safe operative performance and thus 

improving patient outcomes. 40 

Studies have demonstrated that technical skills may correlate with surgical outcomes. 2,41 

Improvement in technical skills may improve the outcome, hence, current attempts in simulation 

training are focused on enhancing trainee technical skills acquisition. However, it remains to be 

explored if training with intelligent simulation systems can improve patient outcomes. 

Deep learning applications require larger datasets. 19 Complex patient cases often require 

surgeons who have specific expertise in these operative procedures. Surgical trainees acquire 

these skills operating with limited number of experts, but in multiple repetition of patient cases. 

Intelligent systems can be developed in a similar way that the trainees learn, using information 

from limited number of experts but involving multiple occasions of a surgical procedure. This 

study involved data from 14 neurosurgeons (experts) each repeating the simulation tasks a total 
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of six times, allowing an assessment of 83 expert trial data. If the number of experts is limited, 

the number of task repetitions performed by each surgeon can be increased to develop accurate 

and generalizable intelligent systems. This approach may provide a feasible and reproducible 

method in the intelligent assessment of different surgical skills. Should the data size be limited, 

data augmentation methodologies can help to increase data size and achieve reliable predictions. 

42Intelligent systems can be continuously improved with more data available. Applications with 

real-time assessment, coaching and risk detection ability may promote the use of these systems, 

provide access to new data, and allow further improvement of these systems. 

This study has several limitations. Our simulation does not reproduce many of the 

complex and dynamic learning interactions occurring in modern operating rooms and variables 

such as the view angle, surgeon instrument choice and instrument intensities were controlled. As 

simulation platforms advance and incorporate more detailed real-life interactions, more 

comprehensive assessments can be generated by the ICEMS. For training this supervised deep 

learning application, each data point of the performance of expert and novices was given the 

same score (expert: 1.00, novice: -1.00) throughout the task, allowing the algorithms to learn 

both extremes of the skill spectrum. However, individuals may not always perform in line with 

their expertise levels. In other words, skilled individuals may perform closer to less-skilled level 

in certain parts of the procedure and vice versa. Nevertheless, the magnitude of the data allowed 

algorithms to learn from the two end-skill levels and our system provided a granular 

differentiation across expertise levels as well as between trainee levels. We defined trainee 

expertise level based on operative exposure or year in training. However, trainee skill levels may 

not be completely consistent with these parameters and many other factors may also affect 

trainee technical skill, including trainee inherent ability or the type of exposure to operative 
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skills23 (Supplementary Table 3). By quantifying skills, our application addresses an important 

limitation for future studies to track trainee learning and explore trainee learning patterns. 43 Our 

study involved a small number of participants from a single institution. With a broader cohort, 

the generalizability of our model can be increased. 

This work, being limited to a previously collected data, provided a validation for the 

assessment module. An ongoing randomized control trial (ClinicalTrials.gov Identifier: 

NCT05168150) is addressing the efficiency and validation of coaching and risk detection 

modules by providing feedback to trainees while tracking their improvement by the assessment 

module. 

As newer technologies44 and techniques such as reservoir computing45,46 become 

available, further progress can be made in the applications of continuous technical skill 

assessment, feedback and operative risk detection using newer and existing datasets. 

With the ongoing pandemic, limiting human contact became an essential practice and the 

present educational paradigms are being re-evaluated. 47 Virtual reality simulators provided with 

assessment and coaching modules are self-practicing intelligent tools which may aid trainees and 

educators navigate the ever-evolving landscape that learners will face. 

This work presents a technical skills continuous assessment application built using expert 

surgeon data, with predictive validity across a training program on surgical trainee performance. 

16,35 This deep learning application demonstrated a granular differentiation across expertise and 

between resident levels. The ICEMS offers a generalizable and objective continuous assessment 

of surgical bimanual skills which may have implications in the assessment and training of 

procedural interventions. 

https://clinicaltrials.gov/ct2/show/NCT05168150
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Methods 

Setting 

Data of this consecutive retrospective case series study was collected at a single time 

point between March 2015 to May 2016, with no follow-up. Neurosurgeons, neurosurgical 

fellows, and residents from one Canadian university were invited to participate in this study at 

the Neurosurgical Simulation and Artificial Intelligence (AI) Learning Centre, McGill 

University. Medical students who expressed interest in neurosurgery or were rotating on the 

neurosurgical service were also invited to take part. Participant data was anonymized. All 

procedures followed were in accordance with the ethical standards of the responsible committee 

on human experimentation (institutional and national) and with the Declaration of Helsinki. 48 

This study was approved by the McGill University Health Centre Research Ethics Board, 

Neurosciences-Psychiatry and all participants signed an approved consent form before trial 

participation. This report adheres to guidelines for best practices in reporting studies on machine 

learning to assess surgical expertise in virtual reality simulation, reporting observational studies 

and the reporting of studies developing and validating a prediction model, as applicable. 49-52 

Simulation 

Participants carried out a simulated subpial tumor resection 5 times followed by a 

simulated complex brain tumor resection (Figure 3), employing a simulated ultrasonic aspirator 

in the dominant hand and a simulated bipolar forceps in the non-dominant hand, using the 

NeuroVR high-fidelity simulation platform (CAE Healthcare, Montreal, Canada). These tasks 

were designed to replicate the high-risk complex subpial brain tumor resection task. 12 

Participants were given verbal and written instructions to remove the tumor completely while 
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minimizing bleeding and injury to surrounding tissue. Simulation data was recorded by the 

NeuroVR platform in 0.02-second increments (50-recording per second).  

Performance metrics 

Before any processing, the raw data underwent interpolation to regularize the timing of 

data points. Sixteen performance metrics were extracted from raw simulation data, at 0.2 second 

intervals, based on our previous studies, representing five essential aspects of the operative 

performance: safety, quality, efficiency, bimanual cognitive and movement. 14,23,31,53-59 Although 

deep learning does not require metric extraction, The ICEMS is developed as a training and 

feedback tool, therefore particular attention is given to develop the system on features which a 

trainee can understand and learn. The performance metrics are listed in Figure 4.  

Data preparation before AI application 

The data comprised a total of 156 tasks (neurosurgeons: 84 tasks, medical students: 72 

tasks) was randomly divided into three different subsets as training (70%, a total of 107 tasks), 

validation (15%, a total of 24 tasks) and testing (15%, a total of 24 tasks) dataset, to provide 

independent verification and validation (Figure 2). 60 Each individual’s performance data was 

always kept in the same subset. The performance metrics were normalized by z-score 

normalization, using the mean and standard deviation values based on the training set. Since the 

algorithm was designed as a ‘regression’ model where the output feature is predicted as a 

continuous variable, the categories of expertise levels were transformed into numbers where 

neurosurgeons (experts) and medical students (novices) were represented as ‘1’ and ‘-1’ 

respectively, at 0.2-second intervals. Assessment could be as frequent as 0.02 seconds (50 

decisions a second) however we limited the decisions to 0.2 seconds (5 decisions per second) as 

more frequent decisions may overwhelm human perception. Considering the z-score 
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normalization, ‘1’ and ‘-1’ represented one standard deviation above and below the mean 

performance, these values determined the two ends of performance (expert versus novice) of 

neurosurgical skill. This arrangement allowed not only detecting the two end levels of surgical 

performance but also the assessment of performance spectrum in between. 

Algorithm design and AI training 

Long-short term memory (LSTM) network is favorable for time-series performance 

analysis where long-term relations are important. 18-20 We utilized a supervised learning technique 

and designed our algorithm as a regression model. Our LSTM network was designed to 

minimize the computational burden (Supplementary Figure 1). The algorithm is composed of the 

first input sequence layer, two unidirectional LSTM layers, a fully connected layer, and a 

regression layer. Two dropout layers were used, after each LSTM layer, to help avoid overfitting. 

The number of nodes used for LSTM layers was calculated by adding one (1) to the number of 

input metrics (performance metrics). Sequence-to-sequence supervised learning was used. More 

complex designs can be developed, and the performance can be compared to our design. During 

the training, Adam (adaptive moment estimation) optimizer was utilized with a starting learning 

rate of 1e-3, decreased by x0.1 every 25 epochs. Minibatch size was 18, determined as the 

number of trials in the training set (108) divided by the number of repeats per person (6). 

Shuffling was used at every epoch. Training was performed with 1000 epochs monitoring root-

mean-squared-error values visually (Supplementary Table 1), using NVIDIA GeForce GTX 660 

(6.0Gbps). 

Assessing trainee performance 

The trained algorithm was used to make an assessment at 0.2-second intervals 

considering 16 performance metrics. Assessment was made as a continuous variable from ‘1’ 
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expert level to ‘-1’ novice level while any score above ‘1’ or below ‘-1’ was also allowed. The 

data from 24 neurosurgical trainee participants (six trials per participant) on 144 tasks was used 

to test the algorithm performance. An average score was calculated for each task and task scores 

were averaged across six trials for each participant. 

Statistics 

A one-way ANOVA and the post-hoc analysis were conducted to compare the average 

performance score of experts, senior trainees, junior trainees, and novices. A linear regression 

analysis was conducted to compare trainee average score to that trainee year of training. All data 

analysis, algorithm training and statistics were carried out using MATLAB (The MathWorks 

Inc.) release 2020a and IBM SPSS Statistics, Version 27 by codes written by the authors. 

Providing coaching and risk assessment 

Three algorithms were developed to provide expert level coaching related to (1) aspirator 

force utilization, (2) bipolar forceps force utilization, and (3) instrument tip separation distance, 

outputting these features. While making the predictions for expert level coaching, the expertise 

level was inputted as an expert ‘1’ throughout the task. Two other algorithms had output 

predictions for bleeding and non-tumor tissue injury risks. While making the predictions for risk 

assessment, the expertise level was inputted aligned with the expertise level of the user (expert: 

‘1’, seniors: ‘0.33’, juniors: ‘-0.33’, medical student: ‘-1’). More detailed information about input 

and output features can be found at the Supplementary Table 2. A future study may address the 

testing and validation of coaching and risk detection modules of the ICEMS. 

Data availability  

A sample raw simulation data file is available online. 61 

https://doi.org/10.6084/m9.figshare.15132507.v1
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Code availability 

The codes written by the authors can be found online. 

 

  

https://github.com/recaiyilmaz/icems.git


66 
 

References 

1. Anderson, O., Davis, R., Hanna, G.B. & Vincent, C.A. Surgical adverse events: a systematic 
review. The American Journal of Surgery 206, 253-262 (2013). 

2. Stulberg, J.J., et al. Association Between Surgeon Technical Skills and Patient Outcomes. JAMA 
Surgery (2020). 

3. Regenbogen, S.E., et al. Patterns of Technical Error Among Surgical Malpractice Claims: An 
Analysis of Strategies to Prevent Injury to Surgical Patients. Annals of Surgery 246, 705-711 
(2007). 

4. Gélinas-Phaneuf, N. & Del Maestro, R.F. Surgical Expertise in Neurosurgery: Integrating Theory 
Into Practice. Neurosurgery 73, S30-S38 (2013). 

5. Brightwell, A. & Grant, J. Competency-based training: who benefits? Postgraduate Medical 
Journal 89, 107 (2013). 

6. Ericsson, K.A. & Charness, N. Expert performance: Its structure and acquisition. American 
Psychologist 49, 725-747 (1994). 

7. Samuel, B.T., Benjamin, K.H. & Aaron, A.C.-G. Editorial. Innovations in neurosurgical education 
during the COVID-19 pandemic: is it time to reexamine our neurosurgical training models? 
Journal of Neurosurgery JNS 133, 14-15 (2020). 

8. Winkler-Schwartz, A., et al. Machine Learning Identification of Surgical and Operative Factors 
Associated With Surgical Expertise in Virtual Reality Simulation. JAMA Netw Open 2, e198363 
(2019). 

9. Mirchi, N., et al. The Virtual Operative Assistant: An explainable artificial intelligence tool for 
simulation-based training in surgery and medicine. PLOS ONE 15, e0229596 (2020). 

10. Hebb, A.O., Yang, T. & Silbergeld, D.L. The sub-pial resection technique for intrinsic tumor 
surgery. Surgical neurology international 2, 180-180 (2011). 

11. Santiago, G.-R. & Hugues, D. Surgical management of World Health Organization Grade II 
gliomas in eloquent areas: the necessity of preserving a margin around functional structures. 
Neurosurgical Focus FOC 28, E8 (2010). 

12. Sabbagh, A.J., et al. Roadmap for Developing Complex Virtual Reality Simulation Scenarios: 
Subpial Neurosurgical Tumor Resection Model. World Neurosurgery 139, e220-e229 (2020). 

13. Delorme, S., Laroche, D., DiRaddo, R. & Del Maestro, R.F. NeuroTouch: A Physics-Based Virtual 
Simulator for Cranial Microneurosurgery Training. Operative Neurosurgery 71, ons32-ons42 
(2012). 

14. AlZhrani, G., et al. Proficiency Performance Benchmarks for Removal of Simulated Brain Tumors 
Using a Virtual Reality Simulator NeuroTouch. Journal of Surgical Education 72, 685-696 (2015). 

15. Bugdadi, A., et al. Automaticity of force application during simulated brain tumor resection: 
testing the Fitts and Posner model. Journal of surgical education 75, 104-115 (2018). 

16. Chan, J., et al. A systematic review of virtual reality for the assessment of technical skills in 
neurosurgery. Neurosurgical Focus 51, E15 (2021). 

17. Norman, G.R., et al. Expertise in Medicine and Surgery. in The Cambridge Handbook of Expertise 
and Expert Performance (eds. Williams, A.M., Kozbelt, A., Ericsson, K.A. & Hoffman, R.R.) 331-
355 (Cambridge University Press, Cambridge, 2018). 

18. Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural Computation 9, 1735-1780 
(1997). 

19. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015). 



67 
 

20. Lipton, Z.C., Berkowitz, J. & Elkan, C. A critical review of recurrent neural networks for sequence 
learning. arXiv preprint arXiv:1506.00019 (2015). 

21. Cohen, J. Statistical power analysis for the behavioral sciences, (Academic press, 2013). 
22. Sawaya, R., et al. Virtual Reality Tumor Resection: The Force Pyramid Approach. Operative 

Neurosurgery 14, 686-696 (2017). 
23. Winkler-Schwartz, A., et al. Bimanual psychomotor performance in neurosurgical resident 

applicants assessed using NeuroTouch, a virtual reality simulator. Journal of surgical education 
73, 942-953 (2016). 

24. Lohre, R., et al. Effectiveness of Immersive Virtual Reality on Orthopedic Surgical Skills and 
Knowledge Acquisition Among Senior Surgical Residents: A Randomized Clinical Trial. JAMA 
Network Open 3, e2031217-e2031217 (2020). 

25. Seymour, N.E., et al. Virtual reality training improves operating room performance: results of a 
randomized, double-blinded study. Annals of surgery 236, 458-464 (2002). 

26. Grantcharov, T.P., et al. Randomized clinical trial of virtual reality simulation for laparoscopic 
skills training. British journal of surgery 91, 146-150 (2004). 

27. Winkler-Schwartz, A., et al. Creating a Comprehensive Research Platform for Surgical Technique 
and Operative Outcome in Primary Brain Tumor Neurosurgery. World Neurosurgery (2020). 

28. Ershad, M., Rege, R. & Fey, A.M. Adaptive Surgical Robotic Training Using Real-Time Stylistic 
Behavior Feedback Through Haptic Cues. arXiv preprint arXiv:2101.00097 (2020). 

29. Fekri, P., Dargahi, J. & Zadeh, M. Deep Learning-Based Haptic Guidance for Surgical Skills 
Transfer. Frontiers in Robotics and AI 7(2021). 

30. Vaughan, N. & Gabrys, B. Scoring and assessment in medical VR training simulators with 
dynamic time series classification. Engineering Applications of Artificial Intelligence 94, 103760 
(2020). 

31. Sawaya, R., et al. Development of a performance model for virtual reality tumor resections. 
Journal of Neurosurgery JNS 131, 192-200 (2018). 

32. Forestier, G., et al. Surgical motion analysis using discriminative interpretable patterns. Artificial 
Intelligence in Medicine 91, 3-11 (2018). 

33. Chartrand, G., et al. Self-directed learning by video as a means to improve technical skills in 
surgery residents: a randomized controlled trial. BMC Medical Education 21, 91 (2021). 

34. Sadeghi Esfahlani, S., et al. Development of an Interactive Virtual Reality for Medical Skills 
Training Supervised by Artificial Neural Network. in Intelligent Systems and Applications (eds. Bi, 
Y., Bhatia, R. & Kapoor, S.) 473-482 (Springer International Publishing, Cham, 2020). 

35. Castillo-Segura, P., Fernández-Panadero, C., Alario-Hoyos, C., Muñoz-Merino, P.J. & Delgado 
Kloos, C. Objective and automated assessment of surgical technical skills with IoT systems: A 
systematic literature review. Artificial Intelligence in Medicine 112, 102007 (2021). 

36. Charlin, B., Boshuizen, H.P.A., Custers, E.J. & Feltovich, P.J. Scripts and clinical reasoning. Medical 
Education 41, 1178-1184 (2007). 

37. Gioia, D.A. & Poole, P.P. Scripts in Organizational Behavior. Academy of Management Review 9, 
449-459 (1984). 

38. Zareinia, K., et al. A Force-Sensing Bipolar Forceps to Quantify Tool–Tissue Interaction Forces in 
Microsurgery. IEEE/ASME Transactions on Mechatronics 21, 2365-2377 (2016). 

39. Davids, J., et al. Automated Vision-Based Microsurgical Skill Analysis in Neurosurgery Using Deep 
Learning: Development and Preclinical Validation. World Neurosurgery 149, e669-e686 (2021). 

40. Levin, M., et al. Surgical data recording in the operating room: a systematic review of modalities 
and metrics. British Journal of Surgery (2021). 

41. Birkmeyer, J.D., et al. Surgical Skill and Complication Rates after Bariatric Surgery. New England 
Journal of Medicine 369, 1434-1442 (2013). 



68 
 

42. Wen, Q., et al. Time series data augmentation for deep learning: A survey. arXiv preprint 
arXiv:2002.12478 (2020). 

43. Fazlollahi, A.M., et al. Effect of Artificial Intelligence Tutoring vs Expert Instruction on Learning 
Simulated Surgical Skills Among Medical Students: A Randomized Clinical Trial. JAMA Network 
Open 5, e2149008-e2149008 (2022). 

44. Biamonte, J., et al. Quantum machine learning. Nature 549, 195-202 (2017). 
45. Fan, H., Jiang, J., Zhang, C., Wang, X. & Lai, Y.-C. Long-term prediction of chaotic systems with 

machine learning. Physical Review Research 2, 012080 (2020). 
46. Seoane, L.F. Evolutionary aspects of reservoir computing. Philosophical Transactions of the Royal 

Society B: Biological Sciences 374, 20180377 (2019). 
47. Mirchi, N., Ledwos, N. & Del Maestro, R.F. Intelligent Tutoring Systems: Re-Envisioning Surgical 

Education in Response to COVID-19. Canadian Journal of Neurological Sciences / Journal 
Canadien des Sciences Neurologiques, 1-3 (2020). 

48. World Medical, A. World Medical Association Declaration of Helsinki: Ethical Principles for 
Medical Research Involving Human Subjects. JAMA 310, 2191-2194 (2013). 

49. Winkler-Schwartz, A., et al. Artificial Intelligence in Medical Education: Best Practices Using 
Machine Learning to Assess Surgical Expertise in Virtual Reality Simulation. J Surg Educ 76, 1681-
1690 (2019). 

50. Cheng, A., et al. Reporting guidelines for health care simulation research: extensions to the 
CONSORT and STROBE statements. Advances in Simulation 1, 25 (2016). 

51. Moons, K.G., et al. Transparent Reporting of a multivariable prediction model for Individual 
Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 162, W1-73 
(2015). 

52. Vandenbroucke, J.P., et al. Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE): explanation and elaboration. PLoS Med 4, e297 (2007). 

53. Alotaibi, F.E., et al. Assessing Bimanual Performance in Brain Tumor Resection With 
NeuroTouch, a Virtual Reality Simulator. Operative Neurosurgery 11, 89-98 (2015). 

54. Alotaibi, F.E., et al. Neurosurgical Assessment of Metrics Including Judgment and Dexterity Using 
the Virtual Reality Simulator NeuroTouch (NAJD Metrics). Surgical Innovation 22, 636-642 
(2015). 

55. Azarnoush, H., et al. Neurosurgical virtual reality simulation metrics to assess psychomotor skills 
during brain tumor resection. International Journal of Computer Assisted Radiology and Surgery 
10, 603-618 (2015). 

56. Azarnoush, H., et al. The force pyramid: a spatial analysis of force application during virtual 
reality brain tumor resection. 127, 171 (2016). 

57. Khalid, B., et al. Impact of acute stress on psychomotor bimanual performance during a 
simulated tumor resection task. Journal of Neurosurgery JNS 126, 71-80 (2017). 

58. Bissonnette, V., et al. Artificial Intelligence Distinguishes Surgical Training Levels in a Virtual 
Reality Spinal Task. J Bone Joint Surg Am 101, e127 (2019). 

59. Mirchi, N., et al. Artificial Neural Networks to Assess Virtual Reality Anterior Cervical Discectomy 
Performance. Oper Neurosurg (Hagerstown) (2019). 

60. Brian, J.T., Marjorie, A.D. & Christina, D.M. Verification and validation of neural networks: a 
sampling of research in progress. in Proc.SPIE, Vol. 5103 (2003). 

61. Yilmaz, R. SubPialResection101-KFMC_scenario.xml_2015-Oct-22_14h06m26s_log.csv. 
https://doi.org/10.6084/m9.figshare.15132507.v1.  (2021). 

  



69 
 

Figures 

Figure 1: Outline of the application. Raw data acquired from the simulator is used to calculate 

relevant features, metrics of interest. Data obtained from participants who are at different stages 

of expertise is used to train a LSTM network. The trained algorithm provided continuous 

assessment, intelligent instructions, or risk warnings, depending on the output feature selected. 

Multiple algorithms are trained to demonstrate potential applications of the ICEMS.  
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Figure 2: Flow diagram. AI: artificial intelligence. One trial data belonging to a neurosurgeon 

was not available.  
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Figure 3: Simulated tumor resection tasks. Participants carried out two simulated tumor 

resection tasks, the simulated subpial tumor resection (a, b and c) 5 times and the simulated 

complex brain tumor operation (d, e and f) once, employing a simulated ultrasonic aspirator in 

the dominant hand and a simulated bipolar forceps in the non-dominant hand. Both instruments 

were activated by separate pedals. These tasks were designed with bleeding capacity to replicate 

the high-risk complex subpial brain tumor resection. (f) demonstrates cauterization using the 

bipolar forceps.  
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Figure 4: Performance metrics. Sixteen performance metrics from five categories: safety, 

quality, efficiency, bimanual cognitive and movement, were extracted from the raw data. An 

LSTM network was trained inputting the 16-performance metrics, predicting expertise. The 

LSTM network was structured as regression model to predict expertise as a continuous variable 

from 1 (expert) to -1 (novice).  Unit abbreviations: N: Newton, mm: millimeter, t: time (0.02 

seconds).  
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Figure 5: Average score of groups. When the performance of the participants was scored by the 

ICEMS, the average scores were: for experts (neurosurgeons, n=14) 0.509; 95% CI [0.424 

0.593], for seniors (n=14) 0.258; 95% CI [0.114 0.402], for juniors (n=10) -0.11; 95% CI [-0.358 

0.139], and for novices (medical students, n=12) -0.398; 95% CI [-0.545 -0.251]. Skilled and less 

skilled performance are represented in the y-axis by scores closer to ‘1’ and ‘-1’, respectively. 

Bars represent standard errors.  
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Figure 6: Average score versus year of training in neurosurgery. The average score yielded a 

significant correlation with the trainees’ year of training (p = 0.005), increased by 0.092 per 

training-year, with a linear regression analysis. Blue dots represent the average score of each 

trainee, x axis represents year of training in neurosurgery. Resident participants’ neurosurgery 

training program was six years. Neurosurgical fellows were considered in 7th year in training.  
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Table: Residents’ demographics. Twenty-four neurosurgical trainees participated in the study: 4 

neurosurgical fellows, 10 senior residents (post-graduate year 4-6), 10 junior residents (post 

graduate year 1-3). 
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Supplementary information  

Supplementary Figure 1: Algorithm structure.    
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Supplementary Figure 2: Applications of the ICEMS. Our system can be used for three 

applications. When the expertise level is defined as the output feature, a quality assessment of the 

performance can be made. When a feature relating instrument utilization or operative factor is 

output, coaching can be provided (*expertise is inputted as the expert level). When a safety 

metric is defined as the output, a risk detection algorithm can be developed. 
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Supplementary Figure 3: Legend of Supplementary Video-1 and Supplementary Video-2. 

This video represents the expertise assessment made by the ICEMS in relation to 4 of the 16 

critical performance metrics inputted to the algorithm. Middle screen (1) shows the user view 

during the virtual reality surgical task. The color bar (2) represents the assessment made from 

skilled -blue- to less skilled -red- levels of expertise, shown by the colored indicator (3) at 0.2-

second intervals. Four scatter plots, for each critical features including aspirator force (5), bipolar 

force (4), tip distance (7) and blood emitted (6), represent how the expertise assessment relates to 

these metrics. In these graphs, each dot represents an expertise assessment made by the ICEMS 

by its color (according to the color bar (2)), at each 0.2-second intervals. Colored dots are drawn 

according to the expertise level determined by the algorithm as the time progress, same color as 

(3) and the colored time indicator (8). x-axis show the number of decisions made. During this 

>10min task more 3000 assessments were made. y-axis show the z-score values for each 

performance metric. Higher values indicate higher force applied at (4) and (5) with bipolar and 
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aspirator, respectively. High values indicate high bleeding rate at (6) and instrument tip 

separation at (7). The colored time indicator (8) proceeds on the y-axis.  
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Supplementary Figure 4: Legend of Supplementary Video-3 and Supplementary Video-4. 

The ICEMS composed of three modules: assessment, coaching and risk detection. Middle screen 

(1) shows the user view during surgical performance. The color bar (2) represents the assessment 

module where the assessment is made at 0.2-second intervals between skilled -blue- and less 

skilled -red- levels and shown by the colored indicator (3). In this example coaching is provided 

for three critical metrics: aspirator force utilized, bipolar forceps force utilized and instrument tip 

separation distance. The bars (4) show the amount of force applied by bipolar (4-left) and 

aspirator (4-right). Two background algorithms calculate the expected force applied for expert 

level instrument utilization. If the expected value is one standard deviation below the actual 

value a warning (5) ‘too high force’ is given. If the expected value is one standard deviation 

above the actual value a warning ‘use bipolar/aspirator more efficiently’ is given. The top bar (6) 

shows the distance between the tip of the two instruments. A background algorithm calculates the 
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expected tip separation distance for expert level instrument utilization. If the expected level is 

one standard deviation below the actual value, a warning ‘use two instruments together’ is 

shown. The risks related to two critical features were detected: tissue (healthy brain) damage risk 

(7), and bleeding risk (8). The moderate risk level equals the average risk achieved by all 

individuals within our dataset, where z-score=0. Higher values indicated behaviour with high 

risk and lower values indicated safe behaviour.   
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Supplementary Figure 5: Participant Average Performance Score Across Trials. X-axis 

represents the trial numbers from first to sixth repeat for each expertise group. Trial number 1 to 

5 belongs to the practice trial while trial number 6 indicates the realistic scenario. Y-axis 

represents the average performance score. Participant scores at each task are indicated with a 

colored dot. The same color was utilized within the same expertise group for each participant. 

Data that belongs to a neurosurgeon for the fifth repeat was not available.  
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Supplementary Table 1: Root-mean-squared-error (RMSE) values obtained.  A total of six 

algorithms were trained for assessment, coaching and risk detection. The training accuracy was 

monitored by root-mean-squared error (RMSE) values. During algorithm training, overfitting 

happens when the model fits a dataset too closely preventing accurate prediction on a new 

dataset (low generalizability). To avoid this problem the separate validation dataset was used to 

monitor the training progress. Training was acceptable when the RMSEs for training and 

validation datasets decreased in tandem and stay aligned by the end of the training. After the 

training was complete, the separate testing dataset was used to check the final state of the 

training. Having no gold standard, close values for training, validation and testing were targeted 

to help reject overfitting.
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Supplementary Table 2: Input and output features (metric of interest) for each trained 

algorithm. Colors indicate the three categories of application: (1- green) expertise assessment, 

(2- blue) coaching, and (3- red) risk assessment. 
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Supplementary Table 3: Trainee self-reported subpial resection operative experience and 

trainee average ICEMS scores. Trainees reported the number of subpial procedures they had 

been involved in, including epilepsy cases, and frontal, temporal, and occipital brain tumor 

surgical procedures. Right-most column shows the trainee average expertise score rated across 

six simulation trials by the ICEMS. Neurosurgical fellows were considered in 7th year in 

training. 
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Chapter 3 - Nondominant Hand Skills Spatial 

and Psychomotor Analysis During a Complex 

Virtual Reality Neurosurgical Task-A Case 

Series Study 

Preface 

Bimanual dexterity is an important skillset for surgeons to complete operative procedures 

efficiently and achieve desired outcomes. Non-dominant hand plays a role in assisting the 

dominant hand to optimize task execution and achieving hemostasis. This work outlined the 

development and construct validity of a spatial assessment system concerning non-dominant 

hand skills. The goals were 1- to demonstrate the spatial awareness of experts in their control of 

bipolar forceps instrument during a complex subpial brain tumor resection task, 2- to provide 

learners an objective demonstration of this skill to guide them to achieve expert-level non-

dominant hand instrument utilization. The findings of this study helped the development of 

feedback systems in the randomized controlled trial in Chapter 4. The manuscript was published 

as: 

 

Yilmaz R, Ledwos N, Sawaya R, Winkler-Schwartz A, Mirchi N, Bissonnette V, Fazlollahi AM, 

Bakhaidar M, Alsayegh A, Sabbagh AJ, Bajunaid K, Del Maestro R. Nondominant Hand Skills 

Spatial and Psychomotor Analysis During a Complex Virtual Reality Neurosurgical Task—A 

Case Series Study. Operative Neurosurgery. 2022 Jul 1;23(1):22-30. DOI: 

10.1227/ons.0000000000000232 
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Abstract 

BACKGROUND: Virtual reality surgical simulators provide detailed psychomotor performance 

data, allowing qualitative and quantitative assessment of hand function. The non-dominant hand 

plays an essential role in neurosurgery in exposing the operative area, assisting the dominant 

hand to optimize task execution, and hemostasis. Outlining expert level non-dominant hand skills 

may be critical to understand surgical expertise and aid learner training.  

OBJECTIVES: (1) To provide validity for the simulated bimanual subpial tumor resection task, 

and (2) To utilize this simulation in qualitative and quantitative evaluation of non-dominant hand 

skills for bipolar forceps utilization.  

METHODS: In this case-series study, 45 right-handed participants performed a simulated 

subpial tumor resection utilizing simulated bipolar forceps in the non-dominant hand for 

assisting the surgery and hemostasis. A 10-item questionnaire was used to assess task validity. 

The non-dominant hand skills across four expertise levels (neurosurgeons, senior trainees, junior 

trainees, and medical students) were analyzed by two visual models and performance metrics. 

RESULTS: Neurosurgeon median (range) overall satisfaction with the simulated scenario was 

4.0/5.0 (2.0-5.0). The visual models demonstrated a decrease in high force application areas on 

pial surface with increased expertise level. Bipolar-pia mater interactions were more focused 

around the tumoral region for neurosurgeons and senior trainees. These groups spent more time 

using the bipolar while interacting with pia. All groups spent significantly higher time in the left-

upper pial quadrant than other quadrants.  

CONCLUSIONS: This work introduces new approaches for the evaluation of non-dominant 

hand skills which may help surgical trainees by providing both qualitative and quantitative 

feedback.  
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Introduction 

In surgery, the interaction of dominant and non-dominant hands is essential to accomplish 

operative goals. 1-3 This bimanual psychomotor performance can be constrained by the skill level 

of the non-dominant hand. 4-7 The mastery of non-dominant hand skills in assisting the dominant 

hand to optimize task execution, exposing operative regions and hemostasis is critical for 

learners to perform surgical tasks safely and efficiently. 8 In brain tumor surgery, understanding 

expert level non-dominant hand skills necessary to perform complex procedures such as the 

subpial resection is lacking. Outlining these skills is crucial in revealing the composites of 

surgical expertise to provide trainees with personalized feedback to help improve non-dominant 

hand skills. 

This study first focused on assessing face and content validity of a simulated complex 

virtual reality subpial tumor resection scenario. Then, utilizing data from this simulation 

platform, we investigated the non-dominant hand skills essential for successful completion of the 

task. Visual and quantitative models developed in this work were used to explore differences in 

non-dominant hand skills between skilled and less-skilled groups. Our research questions were: 

(1) Do visual models regarding force and time utilization indicate differences in non-dominant 

hand skills between expertise groups? (2) How efficiently and precisely do skilled groups use 

their non-dominant hand in comparison to less-skilled groups during tumor resection? (3) What 

are some common non-dominant hand skill features that exist across skilled and less-skilled 

groups, and those acquired with increasing training and expertise? 
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Methods 

Subjects 

A consecutive case series of 50 participants from a single Canadian university enrolled in 

this retrospective study between March 2015-May 2016 at a single time point, with no follow-up. 

Data was anonymized. Five left-handed were removed from the analysis due to differing 

instrument utilization between right- and left-handed participants3,9 (Figure-1). The remaining 45 

right-handed participants were classified a-priori as neurosurgeons (13), seniors (3 neurosurgical 

fellows and 9 senior residents (post graduate year 4-6)), juniors (9 junior residents (post graduate 

year 1-3)) and medical students (11) (Table-1). All participants signed a consent form approved 

by the university ethics board. 

Simulation Scenario 

The NeuroVR platform (CAE Healthcare, Canada) allowed users to interact with a 3D-

operative environment through a microscope while providing haptic feedback on contact with the 

simulated tissues (Figure-2, 2A). 10-13 The simulated scenario involved a previously described 

complex brain tumor subpial resection procedure (Figure-2, 2B). 14,15 The tumor was placed 

under pia mater, adjacent to critical brain areas such as a main blood vessel, and motor and 

sensory strips (Figure-2, 2F). The task was performed utilizing a simulated ultrasonic aspirator in 

the dominant hand to resect tumor, and a bipolar forceps in the non-dominant hand for 

supportive movements such as lifting or moving pia mater to assist the dominant hand, and 

cauterizing bleeding tissues (Figure-2, 2D and 2E, see video). Both instruments were activated 

by foot pedals. Background sounds of mechanical ventilation and heartbeats were included. 

Participants were instructed to remove the tumor completely within thirteen minutes15 while 
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minimizing bleeding and damage to adjacent structures. No feedback was provided during or 

after each task. 

Participant Rating of the Task 

After task completion, participants completed a 10-item questionnaire to assess the face 

and content validity of the subpial resection (Table-2). Participants were asked to rate their 

neurosurgical simulation experience and satisfaction on a 5-point Likert-scale. A median score of 

≥3.0 was deemed sufficient for the face and content validity and overall satisfaction. 16 

Performance Data 

The NeuroVR platform provides a csv (comma-separated-value) file containing the 

coordinates of instrument tip location, instrument activation, force application, tumor and tissue 

volumes, bleeding, and instrument-tissue contacts. Force application and distance were measured 

in Newtons (N) and millimeters (mm), respectively. Data was recorded at 20-millisecond 

increments (50 recordings/second). 

Force Heatmap and Time Scatter Models 

3D tumor and brain mesh models were extracted from the simulator software. Brain pia 

mater surface was divided into four quadrants, numbered counter-clockwise starting from the 

right upper quadrant (Q1, Q2, Q3, Q4) 17 with the center of the tumor, represented on the pial 

surface as the reference point (Figure-2, 2C). Visualization of bipolar force application on pia 

mater was provided by two models: (1) 3D Force heatmap was created to represent bipolar force 

application on pia mater, (2) Time scatter was generated to demonstrate spatial distribution of 

bipolar-pia mater interactions. For both models, mean values (force or time) were recorded at 

each grid point (pixel) on pia mater for each task. These values were averaged for each group to 



91 
 

generate heatmap and scatter models for four groups. Force and time quantities were represented 

with color scales. For the time scatter model, only grid points with bipolar contact were shown. 

Performance Metrics 

Bipolar non-dominant hand skills were assessed by two groups of metrics. The first group 

focused on performance while using the bipolar to assist the dominant hand while resecting 

tumor. Metrics in this category included total time spent interacting with pia mater, average force 

application on pial surface, total force application on pial surface, bipolar average tip distance 

from the center reference, and bipolar precision. The bipolar precision metric was based on the 

standard error values of bipolar tip distance from the center reference, assessing the distance 

variation of the bipolar-pia mater interactions.  

The second group metrics explored non-dominant hand utilization in the four pial 

quadrants during the entire task. At each quadrant, three performance metrics were calculated; 

percentage time spent while the bipolar was in contact with pial surface, average force 

application and total force application.  

 

Statistical Analyses 

The first group of metrics were compared between four expertise groups. The second 

group of metrics were compared between four quadrants within each expertise groups. Outliers 

were observed by boxplot. No data exclusion was made. Normality of data distribution was 

determined by Shapiro-Wilk test for each metric (p>.05). Statistical analysis was performed by 

one-way ANOVA for normally distributed metrics. Levene’s test was used to check equality of 

variances, based on median (p>.05). One-way ANOVA was followed by Tukey-Kramer or 

Games-Howell post-hoc tests in case of equal and unequal variances, respectively. For non-
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normally distributed metrics, Kruskal-Wallis test was followed by Dunn’s (1964) post-hoc 

procedure with Bonferroni correction for multiple tests. P<0.05 was considered statistically 

significant. MATLAB (MathWorks) r.2021a and IBM SPSS Statistics v.27 were used for the 

analyses. This study is reported in line with the PROCESS Guideline. 18 

Results 

The participant demographics and previous simulation experience are outlined in Table-1. 

Rating of the Task 

The simulated subpial tumor resection median scores and ranges for face and content 

validity on a 5-point Likert-scale as well as participants’ satisfaction with the simulated task are 

listed in Table-2. Neurosurgeons rated the overall visual realism of the simulated task a median 

[range] of 4.0 [1.0-5.0]. The sensory realism was rated 3.0 [2.0-5.0] with the feel of the simulated 

pia rated (4.0 [2.0-4.0]) higher than the simulated tumor (3.0 [2.0-4.0]). Neurosurgeons also 

agreed with using the simulator for technical skills training (4.0 [2.0-5.0]) with 85% 

recommending integrating simulation into training. These results were consistent with face and 

content validity. 16 

 

Force Heatmap and Time Scatter Models 

In the 3D force heatmap model, all groups had high bipolar pia force application in Q2, 

the left upper pial region (Figure-3). Higher force applied areas are shown in red. Neurosurgeons 

and seniors demonstrated smaller red areas when compared to junior and medical student groups. 

In the bipolar time scatter model, red areas represented grid points with average time spent 

greater than one-second. All groups had red areas mainly at the left upper quadrant. 
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Neurosurgeons and seniors demonstrated more focused bipolar-pia-mater-interactions around the 

tumoral region. Results from both models indicate that higher skilled groups were using their 

non-dominant hand gentler (lower force) and more centralized around the tumor. These 

parameters were statistically investigated with the performance metrics in the next sections. 

Psychomotor Analysis 

Quantitative analysis demonstrated that the neurosurgeons (p=.048) and seniors (p=.047) 

spent significantly more bipolar time interacting with pia than medical students, and these groups 

applied less average bipolar force to pial surface than the medical student group (p=.039 and 

p<.001, respectively) (Figure-4). Seniors’ average force application to pial surface was 

significantly lower than juniors’ (p=.015). Total bipolar force application on pial surface was not 

significantly different between groups (Figure-4). 

Subpial tumor resection necessitates using the bipolar in contact with the pia mater 

around the tumor operational field. Bipolar contacts on the pia were more centralized for 

neurosurgeons within 12 millimeters radius from the tumor center while in other groups, many 

bipolar contacts outside of this radius were identified (Figure-5, 5A). The average bipolar 

distance from the center reference increased from neurosurgeons to less-skilled groups and was 

significantly smaller in neurosurgeons than medical students (p=.020, Figure-5, 5B). In addition, 

neurosurgeons were more precise with their bipolar contacts on pia (lower distance variation 

from the center reference) during tumor resection compared to medical students (p=.017, Figure-

5, 5C).  
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Quadrant Metrics 

Non-dominant hand instrument utilization was evaluated for each quadrant by three 

different metrics. In terms of time spent, the most favorable quadrant was Q2 for all groups 

having a statistically higher time spent than other quadrants. Neurosurgeons were the only group 

who spent time in Q3 as much as Q2, with no statistical significance between these two 

quadrants (p=.107). Neurosurgeons spent significantly more time in Q3 than Q4 (p=.023) 

(Figure-6). 

All groups had the highest average force application in Q2 however, for juniors and 

medical students no significant differences between quadrants were found (Figure-6). Average 

force application was significantly higher in Q2 than Q4 for neurosurgeons, and it was 

significantly higher in Q2 than Q1 for seniors. A significantly higher total force application was 

observed in Q2 than in any other quadrant for all groups, except that for neurosurgeons there was 

no statistical difference between Q2 and Q3. Neurosurgeons applied significantly more total 

force at Q3 than Q4 (p=.027). 

Discussion 

Virtual reality neurosurgical simulation, with haptic feedback, provides large datasets 

allowing a quantitative assessment of simulated surgical performance. 12,14 These datasets have 

been utilized to evaluate surgical bimanual psychomotor performance metrics and differentiate 

skilled and less-skilled groups. 1,3,8,9,19,20 The goal of these applications was to determine the 

critical bimanual technical skills that underlie expert performance and to create personalized 

feedback systems that allow surgical instructors develop formative and summative educational 

platforms.   
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This study focused on non-dominant hand skills involved in bipolar forceps utilization 

during a complex simulated subpial tumor resection task and the validation of this virtual reality 

surgical procedure. Neurosurgeons’ rating of overall visual, sensory and color realism with the 

scenario was consistent with face and content validity and this simulation’s construct validity has 

previously been demonstrated. 21  

Our visual models and quantitative analysis have shown that skilled groups use the 

bipolar more focally around the tumoral region with lower force application. Average force 

application decreased from medical students to seniors where seniors had significantly less 

average bipolar force application than both juniors and medical students. Neurosurgeons applied 

slightly higher forces than seniors and significantly lower forces than medical students. This 

discontinuous technical skill pattern (increase in force after a decreasing trend) may be caused by 

overly cautious phases involve during training. Neurosurgeons may continue modulating their 

instrument utilization after training and slightly increase their forces with increasing competence. 

Total bipolar pial force application was not statistically different between groups. Less-skilled 

groups had higher average force application over less time resulting in similar total force 

application to skilled groups who used lower average forces over longer times. Similarly in 

previous studies, lower instrument force utilization reflected higher expertise level. 9,22,23 All 

groups contacted the bipolar at the left upper pial region the most, indicating that this quadrant 

may offer the most ergonomic hand position. 

Intraoperative surgery involves many components encompassing knowledge, judgement, 

and technical skills. Surgeons develop and maintain a muscle memory, defined as ‘psychomotor 

skills script’, which allows for being more prepared and efficient in the operating room. 24 Our 

results demonstrated this script exists with the non-dominant hand in the neurosurgeon group, 
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where they utilize bipolar more precisely and focused around the tumoral region. A previous 

study in laparoscopic radical prostatectomy outlined three deficiencies noted between trainees 

and experienced surgeons, one of which is the lack of synchronized non-dominant hand 

movements. 25 Virtual reality simulators allow for outlining less-skilled technical skills and 

provide trainees feedback to improve. The cognitive load during training can be decreased by 

mastering non-dominant hand skills separately. Trainees may more quickly obtain expert level 

psychomotor skills by spatial awareness and self-modifying their movements with unlimited 

repetitions in risk-free simulated environments. 26,27 By revealing expert level skills, this study 

enables providing trainees with both visual and quantitative feedback to master their non-

dominant hand skills. The efficacy of such automated feedback methods can be compared to 

traditional expert mediated instruction. 

Focused non-dominant hand skill training may provide significant advantages. A 

laparoscopic randomized controlled trial demonstrated that non-dominant hand training 

improved dominant hand function skills, a phenomenon known as intermanual transfer of skill 

learning. 7 Functional near-red spectroscopy investigations of non-dominant hand use resulted in 

bilateral sensory-motor cortex activation while dominant hand use only localized to the 

contralateral hemisphere, suggesting non-dominant hand training activates critical bilateral brain 

regions involved in motor control which may improve dominant hand motor system function. 28  

Other investigations demonstrate a greater competence of the non-dominant limb/hemisphere to 

rely on sensory input, thus improving motor function. 29 Further studies outlining the 

interdependence of dominant and non-dominant hand function in surgery seem warranted.  

Previously, a support vector machine algorithm was used to differentiate expertise in subpial 

resection procedures in which 3 of the 4 performance metrics selected by the algorithm were 
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related to bipolar utilization (mean acceleration, maximum force and instrument tip separation). 2 

In another study, 16 of the total of 31 performance metrics chosen by four machine learning 

algorithms to differentiate expertise into four groups were related to bipolar use, 1 consistent with 

the important role of the non-dominant hand in neurosurgical procedures.  

Virtual reality simulation is a cutting-edge technology; however, these systems fail to 

represent many elements of the dynamic operating room environment. In this study users were 

not able to change the view angle, or the instruments. These limitations may affect participants’ 

surgical performance and their conception of realism. A critical bipolar skill to be mastered is 

cauterization of bleeding vessels. Due to limits in data acquisition skills such as cauterization, 

and tissue related analyses such as pial retraction and deformation were not studied in this study. 

As simulation platforms advance and provide more detailed real-life interactions and data, more 

comprehensive assessments can be done. Our study included a post-hoc analysis with metrics 

representing an overall assessment of the performance. Ongoing works focus more action-

oriented assessments of non-dominant hand skills using advance methodologies, such as deep 

learning. 30 Instrument utilization differ between right- and left-handed individuals carrying out 

virtual reality procedures, where instrument utilization of left-handed participants is usually a 

mirrored version of those of right-handers. 3,9 Having small number left-handed participants 

excluded from the study prevented exploring their bipolar-pia interactions. The small cohort 

involved from one institution may have limited the detection of differences between groups 

involving some metrics. With a broader cohort the generalization of results can be increased.   
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Conclusion 

This work introduces novel qualitative and quantitative approaches for outlining the non-

dominant hand skills involved during a virtual reality tumor resection. These visual models and 

performance metrics provide objective assessment of technical skills. Such systems may aid in 

the future development of competency-based training curricula. 
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Tables and Figures 

Table-1. Demographics of Participants. Represented formula: Mean +/- Standard Deviation 

(Range), *PGY: Post graduate year.  
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Table-2. Participant Rating of the Simulated Subpial Resection Task (median (range)).  
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Figure-1. Study participants.   
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Figure-2. Scenario setting. A- The NeuroVR platform. B- User view of the scenario. Whitish 

color tumor is present in the simulated motor cortex with the simulated Rolandic Vein separating 

the motor and sensory cortex, major blood vessel lies very close to the tumor at the left side. C- 

3D model of the tumor, from the top view, with four quadrants in counter-clockwise order. The 

tumor (middle) and blood vessel (red) lie under pia mater. D- The instruments. Users interact 

with the virtual environment with the simulated ultrasonic aspirator held in the dominant hand to 

resect tumor, and the bipolar held in the non-dominant hand to assist in exposing the tumor and 

to cauterize possible bleeding points. Both instruments were activated by foot pedals. E- A 

demonstration of bipolar use. Participants are required the pull the pia mater off the tumor from 

the brain-tumor edge to allow access the tumor regions beneath. F- An illustration of use of a 

real ultrasonic aspirator and bipolar on the simulated tumor resection scenario- 3D side view. 

The tumor (grey) and blood vessel (red) are seen under the pia mater (blue).  
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Figure-3. Spatial distribution of bipolar-pia mater interactions. A- Force heatmap: blue surface 

represents the pia mater. Force application (Newtons) is averaged across participants within each 

group and shown in four quadrants according to the color scale. B- Time scatter: represents two-

dimensional (x-y) bipolar-pia matter interactions. Each grid point is colored according to the 

average time spent (second) when the instrument is in contact with the pia mater at that location. 

Only points in which time spent is greater than zero are shown.  
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Figure-4. Psychomotor evaluation. The performance metrics included: time spent on pia 

(seconds), average force application on pia (Newtons), and total force application on pia 

(Newtons) while resecting tumor. Groups were neurosurgeons (NS, n=13), senior trainees (ST, 

n=12), junior residents (JT, n=10), medical students (MS, n=11). Values represent mean. Bars 

represent standard errors. Horizontal lines represent statistically significant differences (p<0.05).  



107 
 

Figure-5. Bipolar precision analysis. A- Bipolar tip distance from the center for each group. X 

dimension represents mm distance from the center reference, Y dimension represents the 

percentage of being on a particular distance range (0.1mm). B- Average bipolar distance (mm) 

from the center of the tumor for each group. C- Precision of bipolar use: Standard error of 

bipolar distance from the center during the time while the tumor is being resected was calculated 

to find precision for each individuals’ bipolar function.  * p<0.05. NS: Neurosurgeons, ST: 

Senior trainees, JT: Junior trainees, MS: Medical students.  
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Figure-6. Quadrant metrics. Percentage time spent (%), average force application (Newtons), 

and total force application (percentagewise) were calculated per quadrant. Values represent 

mean. Bars represent standard errors. Horizontal lines indicate statistically significant differences 

(p<0.05).   
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Video legend. The simulated subpial tumor resection task. Users interact with the 3D 

environment. The whitish area at the center represents the tumor, which is adjacent to critical 

brain areas such as the main blood vessel at left hand side, and motor and sensory strips around. 

Tissues had bleeding capacity. Ultrasonic aspirator, at the dominant hand, was used to remove 

the tumor while bipolar, at the non-dominant hand, was used to assist the dominant hand and 

cauterize bleeding tissues. Sounds of mechanical ventilation and heart monitor were included.  
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Chapter 4 – Effect of Feedback Modality on 

Simulated Surgical Skills Learning using 

Automated Educational Systems– A Four-

Arm Randomized Control Trial 

Preface 

 Optimizing feedback information is essential to maximize efficacy in teaching surgical 

technical skills. This randomized controlled trial was the first feedback trial we have conducted 

at the Neurosurgical Simulation and Artificial Intelligence Learning Centre, integrated with the 

NeuroVR platform, to understand the benefits of providing feedback in comparison to no 

feedback and compare between different feedback modalities. This study integrated the spatial 

feedback information outlined in Chapter 3 in addition to the colored feedback. The results of 

this study would inform the future feedback applications in surgical simulation training that 

would come with the integration of artificial intelligence to increase training engagement of the 

trainees and improve their learning outcomes. The manuscript was published as: 

 

Yilmaz, R., Fazlollahi, A. M., Winkler-Schwartz, A., Wang, A., Hassan Makhani, H., Alsayegh, 

A., Bakhaidar, M., Huy Tran, D., Santaguida, C., Del Maestro, R. F. Effect of Feedback Modality 

on Simulated Surgical Skills Learning Using Automated Educational Systems– A Four-Arm 

Randomized Control Trial. Journal of Surgical Education (2023).  
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Abstract 

Objective: To explore optimal feedback methodologies to enhance trainee skill acquisition in 

simulated surgical bimanual skills learning during brain tumor resections. 

Hypotheses: 1- Providing feedback results in better learning outcomes in teaching surgical 

technical skill when compared to practice alone with no tailored performance feedback. 2- 

Providing more visual and visuospatial feedback results in better learning outcomes when 

compared to providing numerical feedback. 

Design: A prospective four-parallel-arm randomized controlled trial.  

Setting: Neurosurgical Simulation and Artificial Intelligence Learning Centre, McGill 

University, Canada. 

Participants: Medical students (n=120) from four Quebec medical schools. 

Results: Participants completed a virtually simulated tumor resection task five times while 

receiving one of four feedback based on their group allocation: (1) practice-alone without 

feedback, (2) numerical feedback, (3) visual feedback, and (4) visuospatial feedback. Outcome 

measures were participants’ scores on 14-performance metrics and the number of expert 

benchmarks achieved during each task. There were no significant differences in the first task 

which determined baseline performance. A statistically significant interaction between feedback 

allocation and task repetition was found on the number of benchmarks achieved, F (10.558, 

408.257) = 3.220, p<.001. Participants in all feedback groups significantly improved their 

performance compared to baseline. The visual feedback group achieved significantly higher 

number of benchmarks than the practice-alone group by the third repetition of the task, p=0.005, 
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95%CI [0.42 3.25]. Visual feedback and visuospatial feedback improved performance 

significantly by the second repetition of the task, p=0.016, 95%CI [0.19 2.71] and p=0.003, 

95%CI [0.4 2.57], respectively.  

Conclusion: Simulations with autonomous visual computer assistance may be effective 

pedagogical tools in teaching bimanual operative skills via visual and visuospatial feedback 

information delivery. 
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Introduction 

In medical education, advancing educational technologies promise to support trainee 

learning. 1 Among these, computer-assisted tools, such as artificial intelligent tutors, emerged as 

appropriate candidates to guide independent learning, and some offered advantages over 

traditional learning. 2 In surgical education, simulation platforms equipped with automated 

feedback systems allow learners to practice their bimanual surgical skills in a risk-free 

environment without the need for supervision. 3, 4 This liberates instructors’ time to be invested in 

other aspects of patient care or surgical education such as mentorship. A key technical advantage 

of these computer-assisted systems is their ability to differentiate the expertise level of surgeons 

with granularity and precision. 3, 5 This not only presents new perspectives to understand the 

composites of expertise, but increases efficiency in trainee learning by providing quantifiable 

learning objectives, for which specific feedback and actionable goals can be directed to improve 

performance. 2 In addition, these systems can provide trainees with detailed visuospatial 

information about their bimanual performance which may increase their three-dimensional 

appreciation of surgical performance on anatomical structures. 6  

In medical education, extensive research is conducted to design effective curricula. 7-9 

Teaching methodologies focus on increasing trainee engagement in learning while the students 

efficiently master their skills. Although quantifying surgical bimanual skills serves the purpose of 

providing objective feedback, this data can be presented to learners in a variety of formats such 

as numerical, visual, spatial, video, haptic and auditory. 3, 10, 11 However, because of the relative 

recency of these educational tools in surgical simulation training, more research is needed to 

evaluate the effectiveness of various feedback modalities to maximize efficiency in teaching 

technical skills. This randomized control trial investigated the effect of four feedback protocols 
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including numerical, visual, and visuospatial feedback along with practice alone with no tailored 

performance feedback, as a control, to evaluate the rate of acquisition of technical skills of 

medical students. The objectives were: 1- To explore the effect of feedback to the learning rate in 

surgical simulation training in comparison with practice without feedback. 2- To determine how 

more visual and spatial feedback modalities compare with numerical feedback.  

Methods 

Setting 

This four-parallel arm randomized controlled trial (trial registration: ISRCTN17590019) 

was conducted at the Neurosurgical Simulation and Artificial Intelligence Learning Centre, 

McGill University, Montreal, Canada. Medical students in first to fourth year from four 

universities in the Province of Quebec were invited to participate in the trial. Data was collected 

between July 2019 – October 2020, in 60-minute simulation sessions with no follow up. One 

hundred and twenty medical students participated in the trial, and no exclusion criteria were 

applied. No changes were made to the methods after trial commencement. An online random 

number generator was used to determine participant group allocation. Study procedures were in 

accordance with the ethical standards of the responsible committee on human experimentation 

(institutional and national) and with the Declaration of Helsinki. 12 COVID-19 public health 

measurements and the Montreal Neurological Institute and Hospital’s protocols were followed to 

ensure participants’ and researchers’ safety during the conduct of the study. The time frame of the 

trial was predetermined with no restrictions on the number of simulation sessions that could take 

place. The trial participation was terminated with the restrictions imposed by changes to public 

health protocols due to COVID-19 pandemic in October 2020 while the number of participants 
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sufficed a statistical power of .99 for between- within-group interaction. This study was 

approved by the McGill University Health Centre Research Ethics Board, Neurosciences-

Psychiatry. An approved consent form was signed by all study participants before trial 

participation. All participants filled a pre-questionnaire related to demographics and previous 

simulation experience and surgical exposure (Table-1). A post-questionnaire was completed after 

the trial for the rating of the simulation learning (Supplementary Table-2). This report adheres to 

guidelines for the reporting of multi-arm parallel group randomized trials, extension of the 

CONSORT 2010 Statement. 13 Study interventions involved no harm to participants. Participants 

were informed that their information will be anonymized, and despite the careful measures taken 

to avoid the chance that they may be identified, their trial performance would have no influence 

on their academic evaluation. 

Simulation setting 

The NeuroVR (previously NeuroTouch) neurosurgical simulation platform (CAE 

Healthcare, Montreal, Canada) with haptic feedback was utilized. 14 The haptic feedback 

integrated in the instrument handles was to provide a more realistic experience for all 

participants of the study regardless of the feedback interventions they receive for learning. This 

haptic technology allowed the integration of learning feedback on instrument force utilization for 

the study groups as trainees interact with delicate tissues during the simulated performance. The 

simulated task was previously developed to replicate the subpial resection of brain tumors. 15 

Participants performed this simulated subpial tumor resection task five times with five minutes 

given to complete each task. The simulated scenario included the subpial resection of a yellow 

rectangular tumor (Figure-2) using a simulated ultrasonic aspirator and bipolar forceps to 

completely remove the tumor within the time limit while minimizing damage to the surrounding 
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tissue which mimics the adjacent normal gyrus. 5, 16 Both instruments were activated using 

pedals. Part of the tumor was placed under healthy brain tissue where lifting this simulated pial 

layer using the bipolar was necessary to gain access and remove the remaining underlying tumor. 

A blood vessel was incorporated into the simulation adjacent to the distal tumor wall and 

bleeding resulted from injury to this vessel. Bleeding was controlled utilizing the cauterizing 

function of the bipolar forceps (Figure-2e). The NeuroVR platform recorded performance data in 

20-millisecond increments (50 recording per second) involving time, the information of force 

applied by the two instruments, instrument tip location, amount of tissue and tumor removed, 

amount of bleeding, and pedal activation.  

Expert level benchmarks 

Expert level benchmarks were developed using previously validated 14-performance 

metrics 3, 5, 17, described in the Results section. The data used to develop these benchmarks was 

previously available in our center and was recorded during 14 neurosurgeons’ performance on 

the same simulated tumor resection task. Using this dataset, expert mean, and standard deviation 

values were calculated for each performance metrics to define the limits of the expert level 

benchmark. A metric score between one standard deviation above and below the mean was 

considered within the benchmark for that task. 

Feedback setting 

Four feedback protocols included (1) practice alone with no tailored performance 

feedback, (2) numerical feedback, (3) visual feedback, and (4) visuospatial feedback. All 

participants received standard verbal and written instructions before the start of the trial 

including how to use the simulator handles to carry out the simulated procedure and the feedback 
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information they would be provided with. All participants were also informed concerning the 14-

performance metrics that would be used to assess their performance. The data recorded by the 

simulator was used to calculate participants’ metric scores and determine whether they are within 

the benchmarks. Participants were given five-minutes between the tasks either to rest or receive 

the feedback information corresponding their group allocation. After each task, participants in 

Group-1 (n=30) received no tailored performance feedback. In Group-2 (n=30), participants 

received a printed copy of their performance scores on the 14 metrics that was compared with 

expert level benchmarks (Supplementary Figure-1). Any performance score falling above or 

below the expert benchmark was indicated with a letter ‘H’ (higher) or ‘L’ (lower), respectively. 

In Group-3 (n=29), participants received a screen-based graphical representation of their 

performance scores on the 14 metrics. The graphics were green colored for each performance 

metrics if participant’s score was within the benchmark, yellow if their score was between one 

and two standard deviations of the benchmark, or red if their score was outside two standard 

deviations of the benchmark (Supplementary Figure-2). The graphics were also represented in 

purple for any performance score that was better than the benchmark. Participants in Group-4 

(n=31) received the same colored-graphical demonstration but additionally, they were shown two 

3D spatial models that showed the anatomical structures of the tumor and pial surface. The 

amount of force applied on these tissues by the ultrasonic aspirator and the bipolar were shown 

according to the color scale ranging from red to blue, where red indicated a higher force applied 

(Supplementary Figure-3). For all groups, the number of benchmarks achieved was calculated 

across five repetitions of the task. Automated feedback during the trial, data analysis and 

visualization were performed using MATLAB (The MathWorks Inc.) release 2021a. All codes 

were written by the authors. 
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Hypotheses 

(1) Participants in feedback groups will achieve significantly higher number of 

benchmarks than those who practice without feedback. (2) Participants who receive visual and 

visuospatial feedback will achieve significant improvement earlier across the five repetitions of 

the task than those who receive only numerical information.  

Statistical analysis 

A priori sample size calculation, with a statistical power of 0.9, an effect size of 0.3, a 

correlation of 0.5 among repeated measures, and an alpha error probability of 0.05 for between 

groups comparison yielded a requirement of 25 participants in each group, and 100 participants 

in total. The participation of 120 students provided an achieved statistical power of .95. Two-way 

mixed ANOVA explored the interaction of feedback group assignment (between-groups) and task 

repetition (within-groups) on participants number of benchmarks achieved. There were no 

outliers, as assessed by visual examination of studentized residuals for values greater than ±3. 

Data was normally distributed, as visually assessed by Normal Q-Q Plot. Levene’s test showed 

homogeneity of variances, based on median (p>.05), and Box’s test demonstrated homogeneity 

of covariances, p=.948. Mauchly's test of sphericity indicated that the assumption of sphericity 

was violated for the two-way interaction, χ2(9) = 34.92, p < .001. The results with Greenhouse-

Geisser correction are reported. Differences between-feedback groups were investigated using 

one-way ANOVA. Within-feedback group differences were analyzed using one-way repeated 

measures ANOVA. Between-feedback group posthoc analyses were done using Tukey HSD or 

Games Howell tests depending on the homogeneity or heterogeneity of variances, respectively. 

Within-group posthoc analyses were done using Bonferroni posthoc tests. Cohen’s d effect sizes 
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were reported for post hoc comparisons. 18 The variable ‘number of benchmarks achieved’ was 

assumed as a ratio variable, having the meaningful zero point (no success). As such, our analyses 

were done using parametric statistical tests described above. Non-parametric equivalent 

statistical analysis was also reported in the supplementary data (Supplementary Figure-4). 

Statistical analysis was done using IBM SPSS Statistics, Version 27.   

Results 

Participants 

Participants’ average age (mean [SD, min-max]) was 23.1 [3.6, 18-44] years and 

participant handedness was 108/10/2 (right-handed/left-handed/ambidextrous) (Table-1). Five 

participants previously used virtual reality simulation.  

Data and performance metrics 

Data from 120 participants, from a total of 600 trials, was available for analysis (Figure-

1, Flow diagram) and there was no missing data. Participants’ performance progress was tracked 

across five repetitions of the task on 14-performance metrics from four categories (1) safety, (2) 

quality, (3) efficiency, and (4) bimanual cognitive. Safety category included six metrics: (1) brain 

volume removed (cc), (2) amount of blood loss (cc), (3) maximum force applied with dominant 

hand (N), (4) maximum force applied with non-dominant hand (N), (5) sum of forces applied 

with dominant hand (N), (6) sum of forces applied with non-dominant hand (N). Quality 

category included only (7) tumor percentage removed. Efficiency category included 4 metrics: 

(8) total tip path length dominant hand (mm), (9) total tip path length non-dominant hand (mm), 

(10) path length index, and (11) efficiency index. Bimanual cognitive category included (12) 
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average instrument tips separation distance (mm), (13) coordination index, and (14) bimanual 

forces ratio. Descriptions of the performance metrics can be found on Supplementary Table-1. 

Learning curves 

No statistical difference was found between groups at baseline performance (p=0.121). 

There was a statistically significant interaction between the feedback group allocation and the 

number of repetitions of the task on the number of benchmarks achieved, F (10.558, 408.257) = 

3.220, p < .001, effect size (partial η2) = .077, ε = .88 (Figure-3). Group-3 made the quickest 

improvement where the number of benchmarks achieved was significantly higher than Group-1 

by the third repetition of the task (p=0.005, 95%CI [0.42 3.25], effect size (Cohen’s d)=0.878). 

Group-4 outperformed Group-1 by the fourth repetition of the task (p=0.002, 95%CI [0.54 3.00], 

effect size=1.035) while Group-2 did not outperform Group-1 within the five repetitions. In the 

final repetition of the task, Group-4 achieved 9.19 ± 1.66 (mean ± standard deviation) of the 14 

benchmarks, Group-3 achieved 9.10 ± 1.82, Group-2 achieved 8.40 ± 2.06 while Group-1 

achieved 7.30 ± 1.69 of the 14 benchmarks. Group-3 and Group-4 improved significantly from 

their baseline performance by the second repetition of the task (p=0.016, 95%CI [0.19 2.71], 

effect size=0.746; and p=0.003, 95%CI [0.4 2.57], effect size=0.885, respectively). Group-2 

improved significantly from their baseline performance by the third repetition of the task 

(p=0.004, 95%CI [0.42 3.04], effect size=0.886) while Group-1 had no statistically significant 

improvement during the five repetitions. 

Learning curves were also assessed for the 14-performance metrics. In the fifth repetition 

of the task, around 90% of participants in all groups, including no-tailored-feedback group, were 

within the tumor percentage removed benchmark (Figure-4). All groups removed significantly 
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more tumor in the fifth repetition of the task compared to baseline performance (p<0.05) (Figure-

5a). With only feedback groups, participants achieved the benchmarks >50% of the time with the 

metrics healthy tissue removed and instrument tip separation distance. Group-1 caused 

significantly more healthy tissue damage than Group-3 in the third to fifth repetitions of the task 

(p=0.002 95%CI [0.03 0.16], effect size=0.998) (Figure-5b). Participants in Group-4 had a 

statistically significant lower instrument tip separation distance (using the two instruments 

together) than Group-1 at the fourth and fifth repetitions of the task (p<0.001 95%CI [-4.97 -

1.21], effect size=1.133), and this was also observed in participants in Group-3 from the second 

to fifth repetitions of the task (p=0.029 95%CI [-5.81 -0.23], effect size=0.862) (Figure-5c). 

Group-3 and Group-4 improved significantly in efficiency index by the second repetition of the 

task ((p<0.001 95%CI [0.12 0.25], effect size=1.780) and (p<0.001 95%CI [0.08 0.21], effect 

size=1.432), respectively) while the remaining groups improved significantly by the third 

repetition (Figure-5d). The learning curves and statistical comparison of the metric scores of the 

remaining 10 performance metrics can be found in Supplementary Figure-5. 

In the post-questionnaire 5-point Likert scale, participants rated their simulation learning 

experience (Supplementary Table-2). Students’ rating in Group-3 and Group-4 for the question 

‘How beneficial do you think the simulator and training system is for learning about surgery?’ 

was 5.0 [3-5] (median [range]) while in Group-2 and Group-1, it was 4.0 [3-5]. Participants in 

feedback groups rated ‘How beneficial was it to your performance to know which metrics you 

were being assessed on?’ 5.0 [3-5] while no-tailored-feedback group rated 4.0 [2-5]. 
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Discussion 

In surgery, advanced computer technologies allow for the collection of vast amounts of 

data concerning technical skill, accurate skill assessment, and provide error detection and 

tailored feedback. 3-5, 19, 20 These systems used in virtual reality simulation training have been 

shown to enhance learner skills, and provide more efficient training than remote post-hoc human 

instruction. 2  

To put this work in context, providing trainees with efficient training feedback while challenging 

them in realistically replicated operative tasks required a series of components. First, virtual 

reality platforms with realistic surgical procedures and extensive data recording capacity were 

developed. 14, 21-24 Second, performance metrics encompassing critical features concerning the 

surgical procedure such as safety, efficiency, and performance quality along with bimanual 

dexterity and movement were developed to differentiate expertise groups and outline expert level 

performance benchmarks. 17, 25, 26 Spatial analysis of surgical performance using 3D tumor and 

tissue models has demonstrated differences between expert and novice level performances. 6, 27 

Third, artificial intelligence methodologies were employed to provide a comprehensive 

performance assessment and outline performance metrics critical to achieve expert level 

performance. 5, 28, 29 Fourth, feedback systems provided trainees with expert level performance 

benchmarks to improve bimanual skills, based on virtual reality artificial intelligence platforms. 

3, 4 After completing these steps, the current work explored the educational utility of these 

systems in improving trainee skills. We explored the efficacy of various instruction modalities by 

comparing numerical, visual, and visuospatial feedback.  
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In this study, the training sessions were organized based on time (number of repetitions) 

rather than defining a specific target proficiency level that trainees to achieve. This decision was 

influenced by the diverse training outcomes assessed and the time required for trainees to 

achieve proficiency in all 14-expert level benchmarks was unknown. Based on the results seen in 

Figure-4, achieving all 14 benchmarks would have been very challenging in a single training 

session, even for groups who received more efficient learning feedback. 

Although Group-3 and Group-2 received the same metric information except for the 

application of color, Group-3 performed significantly better than Group-2 during the third 

repetition of the task. Additionally, Group-3 outperformed baseline performance in the second 

repetition of the task while Group-2 did not achieve the same success. The link between human 

color perception and psychological functioning is well studied. 30 In achievement contexts, such 

as education or athletic contests, psychologists have suggested that different colors cue learners’ 

emotions and cognition which yields behavioral changes that can either optimize or impair 

performance. 31, 32 Our results indicated that the colored visualization of the feedback information 

is critical in achieving more efficient training. In the future, computer assisted teaching systems 

including artificial intelligence applications may benefit from incorporating visually enriched 

feedback methodologies, which provides a more engaging learning feedback to maximize trainee 

surgical skill acquisition. 2, 4, 33 Similar training applications can provide benefits across different 

procedural medical disciplines. 

In this study, 14-performance metric benchmarks were utilized to assess the simulated 

surgical performance and track improvement across the five repetitions of the tumor resection 

task. Some of the 14-performance metrics showed improvement for all groups regardless of 

feedback (Figure-5 and Supplementary Figure-5) because they may have epitomized some of the 
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obvious goals of this surgical task. As such, all participants removed significantly more tumor 

(tumor percentage removed), achieved greater efficiency (efficiency index) and used their non-

dominant hand more efficiently (coordination index, instrument tip separation distance) in the 

fifth repetition of the task (Figure-5). However, feedback provided faster learning for the 

intervention groups and better performance improvement.  

Although some of the performance metrics were expected to improve, the goal with some 

of the other metrics such as brain volume removed, was to stay within the benchmark (Figure-

5b) and to remove more tumor while not damaging the healthy tissue. Both Group-1 and Group-

3 removed the same amount of tumor, around 80%, while Group-3 harmed significantly less 

healthy tissue, used their dominant hand more precisely (lower total tip path length), and had 

significantly lower scores in instrument tip separation during the fifth repetition of the task. 

These results may indicate that feedback is necessary to achieve an appreciation of the complex 

interplay between multiple factors during tumor surgery to meet the goals of the task more safely 

and efficiently. 

Real-time intelligent systems are being developed and tested in surgical bimanual skills 

training using virtual reality simulation. 3, 34 Although this study has shown visual systems to be 

efficient for post-hoc feedback, in future directions of this work, auditory instructions may be an 

alternative for real-time feedback applications to prevent visual distractions. Systems with audio, 

visual, and video feedback are combined in our current trials (ClinicalTrials.gov, NCT05168150) 

to provide engaging feedback information to trainees which may improve the amount of 

information received by trainees and their skill acquisition. 35 
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The tailored information provided by the intelligent systems is important; however, the 

major advantage of computer systems in skills acquisition may be achieved by optimal 

combinations of visual and auditory feedback components (e.g., video). In a randomized 

controlled trial involving the resection of a simulated brain tumor resection task, participants 

were instructed by the Virtual Operative Assistance on four performance metrics selected by a 

support vector machine algorithm along with feedback demonstration videos. 2 Participants 

improved on a composite score based on 16 performance metrics, and on eight of these 16 

metrics changed significantly without receiving specific metric-based instructions. 36 Although 

the mechanism behind this extended effect is currently under investigation, a possible 

explanation is the breadth of extrinsic information contained in the feedback video 

demonstrations. 10 The ability to use both visual and auditory information may be the main 

advantage of these feedback systems in skills acquisition. To optimize the effectiveness in new 

feedback applications, it may be imperative to prioritize the pedagogical aspect of technical skill 

training and integrate informative, engaging, and easy to understand feedback information with 

the intelligent training systems.  

This study has several limitations. (1) The training outcome in our simulation setting was 

limited to bimanual skills improvement. However, surgical operative room involves many other 

factors which can affect surgeon’s performance and patient outcomes. Developing surgical 

simulation systems may provide a more immersive surgical training experience in the future. (2) 

Surgical trainees may be the most relevant trainee cohort for the testing of surgical training 

simulators. However, this study recruited medical students, a study cohort that may provide some 

advantages while also imposing limitations. Learning experience may differ as expertise 

develops. 37 Medical students’ different interest level and procedural knowledge compared to 
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surgical trainees may affect their surgical training interaction and skill acquisition, however, their 

limited experience provides a greater room for improvement in skill acquisition, a scenario closer 

to that of a fresh surgical trainee who has just started training. Additionally, a medical student 

cohort provides a large number of participants to obtain statistical power, which is difficult to 

obtain with the limited number of surgical trainees available. For these reasons, medical students 

may be a better cohort than surgical trainees especially for the development and testing phases of 

simulation and training systems. Once these systems are well established, their efficacy in 

teaching and assisting surgical trainee cohorts should be confirmed in multi-institution trials. (3) 

Cognitive overload may limit the amount of information understood by the trainee. Cognitive 

load theory in education suggests that an optimal learning environment finds a balance between 

learners’ intrinsic cognitive capacity, their motivation, and the extrinsic load of the instructional 

milieu. 38 Novice medical learners are also demonstrated to be at greater risk of overload in 

surgical simulation training. 39 In this application, training involved one session, in which 

learners sequentially removed five tumors, and were expected to improve on fourteen 

performance metrics. The amount of information needed to master these 14 performance features 

in one session may overwhelm trainee cognitive capacity and limit skill acquisition. Cognitive 

overload may have limited the amount of improvement especially with the participants in Group-

4 since providing extra visuospatial information to this group did not achieve better results. One 

can speculate that the ability of trainees in Group-4 to adequately review the complex additional 

visual and spatial information available to them in only the limited five-minute feedback session 

may have been difficult. This could have resulted in increased trainee stress, leaving less time for 

critical learning methods such as self-reflection and improvement planning. 40 Results of Group-3 

may support this conclusion as this group made a faster improvement without the 3D spatial 
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information, having a significantly greater number of benchmarks achieved than the baseline by 

the third repetition of the task. To prevent cognitive overload, longitudinal training settings with 

structured training goals in multiple sessions and/or different instruction methodologies may 

provide a better performance improvement. 41, 42 These longitudinal settings may integrate visual 

and visuospatial feedback to achieve efficient learning settings as outlined in this study and help 

to assess and compare retention of skills. (4) Our focus in this study was to maximize efficiency 

in learning with visual assistance. This study did not incorporate tailored auditory, video, tactile 

feedback, or other possible feedback modalities. Computer systems may incorporate different 

feedback mechanisms, not being limited to visual feedback, while the feedback can be adjusted 

to user preference. Future studies may compare different feedback modalities and explore 

multimodal learning. 43 Using the haptic technology of the simulator, tailored tactile feedback, 

such as vibration, can be implemented to inform the trainee when they apply too much force on 

delicate tissues. 

In conclusion, this randomized controlled trial allowed the comparison of different post-

hoc feedback modalities in surgical technical skills learning in the simulated environment. 

Simulations with autonomous visual and visuospatial feedback assistance provided trainees with 

a more effective way to master their bimanual operative skills.  
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Tables and Figures 

Table-1: Participant Characteristics. 

 

Group 1 
Practice alone 

with no 

feedback 

(n=30) 

Group 2 
No visual 

feedback 

(n=30) 

Group 3 
Visual 

feedback 

(n=29) 

Group 4 
Visuospatial 

feedback 

(n=31) 

All 

Participants 
(n=120) 

Mean age +/- SD (range) 
23.6 +/- 4.8 

(19-44) 
22.8 +/- 3.3 

(19-31) 
22.4 +/- 2.6 

(19-28) 
23.6 +/- 3.5 

(18-33) 
23.1 +/- 3.6 

(18-44) 

Male/Female 18/12 18/12 18/11 17/14 71/49 

Handedness (Right/Left/Ambidextrous) 27/3/0 28/2/0 24/4/1 29/1/1 108/10/2 

Medical School:      

McGill University 24 22 21 25 92 

University of Montreal 5 6 4 5 20 

University of Sherbrooke 1 2 3 1 7 

University of Laval 0 0 1 0 1 

Year in medical school:      

  1st 16 21 18 20 75 

  2nd 10 6 7 8 31 

  3rd 3 2 2 1 8 

  4th 1 1 2 2 6 

Level of interest in surgery, median 

(range) 
4 (2-5) 4 (1-5) 4 (1-5) 4 (1-5) 4 (1-5) 

Completed surgical rotation (Y/N) 2/28 1/29 2/27 2/29 7/113 

Playing video games:      

    Not at all 12 13 13 13 51 

    Occasionally (< 2 hours per week) 9 9 7 9 34 

    Often (2- 10 hours per week) 6 8 6 6 26 

    Very often (> 10 hours per week) 3 0 3 3 9 

Playing musical instruments:      

    I don't play any musical instrument 11 14 9 17 51 

    Yes, I am at beginner level 6 4 6 3 19 

    Yes, I am at intermediate level 6 7 8 6 27 

    Yes, I am at advanced level 6 4 4 5 19 

    Yes, I am at master level 1 0 2 0 3 

Previously used virtual reality 

simulation (Y/N) 
1/29 2/28 0/29 2/29 5/115 
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Table-2: Performance Metrics. 

Category Performance Metric (unit) Description 

Safety Brain volume removed (cc) 
Total amount of healthy tissue (white surrounding 

tissue) removed 

 Amount of blood loss (cc) Total amount of bleeding 

 Maximum force applied with 

dominant hand (N) 
Maximum force amount utilized by ultrasonic 

aspirator 

 Maximum force applied with non-

dominant hand (N) 
Maximum force amount utilized by bipolar 

 Sum of forces applied with 

dominant hand (N) 
Total force utilized by ultrasonic aspirator during 

the whole procedure 

 Sum of forces applied with non-

dominant hand (N) 
Total force utilized by bipolar during the whole 

procedure 

Quality Tumor percentage removed (%) Total volume of tumor removed 

Efficiency 
Total tip path length dominant 

hand (mm) 
Total trace length of the tip of ultrasonic aspirator 

 Total tip path length non-dominant 

hand (mm) 
Total trace length of the tip of bipolar 

 Path length index (ratio) 
Tip trace rate in which ultrasonic aspirator was 

active (in contact with tissues) 

 Efficiency index (ratio) Time rate in which ultrasonic aspirator was active 

Bimanual 

cognitive 
Average instrument tips separation 

distance (mm) 
Average distance between tips of the instruments 

during the whole procedure 

 Coordination index (ratio) 
Time rate while both instruments were used 

together vs bipolar used alone 

 Bimanual forces ratio (ratio) 
Ultrasonic aspirator force ratio while both 

instruments were used together compared to 

ultrasonic aspirator used alone 
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Figure-1: Flow diagram. One hundred and twenty students were randomly allocated into four 

different feedback groups including practice-alone with no-feedback group. No participant/data 

was excluded from the analysis.  
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Figure-2: Simulated Scenario. The virtually simulated task involved the subpial resection of a 

rectangular yellow tumor using an ultrasonic aspirator in the dominant hand and a bipolar 

forceps in the non-dominant hand (a). The goal of the task was to remove the tumor completely 

while minimizing injury to surrounding tissues (b). There was a blood vessel with ability to 

bleed, located posterior to the tumor (c). Any damage to this blood vessel resulted in bleeding 

(d). Ultrasonic aspirator was used to aspirate the blood (d) and bipolar was used to cauterize the 

bleeding vessel (e). The appearance of the tissue after successful cauterization (f).  
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Figure-3: Number of Benchmarks Achieved. X-axis represents the four feedback groups. Each 

feedback group is color-coded (see the legend). Y-axis represents the average number of 

benchmarks achieved by each feedback group. *Horizontal lines represent statistically 

significant difference (p<.05). For within group differences, horizontal lines are represented with 

the respected color of the group. Vertical lines represent standard error bars. Group 3 and Group 

4 improved significantly compared to the baseline performance by the second repetition. Group 2 

improved significantly compared to baseline performance by the third repetition. Group 3 

outperformed practice-alone Group 1 by the third repetition. Group 4 outperformed practice-

alone Group 1 by the fourth repetition. 
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Figure-4: Percentage of Trainees who Achieved Benchmarks. X-axis shows each of the 14-

performance metrics on which the trainees were assessed. Each feedback group is color-coded 

(see the legend). Y-axis represents the percentage of trainees who achieved the benchmarks. 

There are five percentages shown for each performance metric across five trials, from the first 

repetition of the task/baseline performance to the fifth repetition.
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Figure-5: Performance Metrics Learning Curves. The learning curves of four performance 

metrics. X-axes represent the task repetition from the 1st repetition/baseline performance to the 

5th repetition for the 4-feedback groups. The purple straight horizontal line indicates the mean 

expert value for each performance metric while the two dotted purple lines one standard 

deviation above and below the mean indicate the boundaries of the expert benchmark. *Asterisks 

indicate significantly different values from the 1st repetition/baseline performance of that group. 

Horizontal square brackets show significant differences between feedback groups at the same 

repetition of the task. Axis brakes were indicated along y-axis. The learning curves of the 

remaining 10 of the 14-performance metrics are shown in Supplementary Data. 
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Chapter 5 - Surgical Skills Training Using 

Real-Time Artificial Intelligence vs Human 

Instruction – A Randomized Controlled Trial 

Preface 

 The development and promising predictive performance of the Intelligent Continuous 

Expertise Monitoring System across a neurosurgical residency training program inspired this 

randomized controlled trial. The ICEMS was able to assess performance and predict risks as 

outlined in Chapter 2. The very next question was ‘Can the ICEMS teach?’. This study outlined 

the first time intelligent real-time feedback application in comparison to in-person human expert 

instruction in teaching surgical bimanual skills. Learning from the work in Chapter 4, feedback 

was crucial to achieve better learning outcomes. Hence this randomized controlled trial 

integrated an active controlled group where learning outcomes from the real-time intelligent 

system were compared to this active control group instead of a control group with no-feedback. 

The results of the study were to demonstrate the promising future of artificial intelligence in 

augmenting learning via real-time feedback and its comparable performance to traditional 

learning via in-person expert instruction. 

 

The manuscript is in under peer-review: 

Recai Yilmaz, Mohamad Bakhaidar, Ahmad Alsayegh, Nour Abou Hamdan, Ali M. Fazlollahi, 

Trisha Tee, Ian Langleben, Alexander Winkler-Schwartz, Denis Laroche, Carlo Santaguida, 

Rolando Del Maestro. Surgical Skills Training Using Real-Time AI vs Human Instruction – A 

Randomized Clinical Trial  
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Abstract 

Question: How does real-time artificial intelligence feedback compare to in-person human 

instruction in teaching surgical bimanual skills? 

Findings: In this randomized clinical trial involving 97 participants, students who are taught by 

a real-time artificial intelligence system achieved significantly better learning outcomes than 

those taught in-person by expert instructors. Learning from an artificial intelligence system 

caused a significantly higher cognitive load and it resulted in a similar transfer rate of skills to a 

more complex realistic surgical procedure. 

Meaning: Real-time artificial intelligence feedback may provide efficient simulated surgical 

bimanual skills training, comparable to person-to-person instruction. 
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Importance: Teaching operative bimanual skills via the apprenticeship model faces challenges 

in outlining, assessing, and teaching the composites of surgical expertise. Artificial intelligence 

(AI) provides a precise real-time assessment of the action being performed and tailored feedback 

which can transform the way operating skills are taught. 

Objective: To compare real-time AI feedback with in-person expert instruction in teaching 

simulated tumor resection skills. 

Design: A double-blinded randomized clinical trial conducted between January and May 2022. 

Setting: A multicenter study involving a single simulation training session. 

Participants: Ninety-nine students who were enrolled in four Canadian medical schools 

participated. Two participants were excluded from the analysis due to technical problems faced 

during the simulation sessions. 

Intervention: A 90-minute simulation training involving six tumor resections, a practice tumor 

resection five times followed by a realistic brain tumor resection with three feedback 

interventions: 1- AI auditory and audiovisual feedback, 2- in-person expert instruction, and 3- 

control group with no real-time feedback. 

Main Outcome(s) and Measure(s): Improvement in the composite performance score (range, 

−1.00 to 1.00) in practice sessions and learning transfer to a more realistic task were quantified 

by a validated AI system, the Intelligent Continuous Expertise Monitoring System (ICEMS). 

Secondary outcomes were Objective Structured Assessment of Technical Skills (OSATS; range 

1-7) rating on realistic tumor resection, rated by blinded experts, and self-reported cognitive 

load. 
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Results: Ninety-seven participants (mean [range] age: 21.3 [17-31], 60% women) completed the 

simulation training and were included in the analysis. Training with real-time AI feedback 

resulted in significantly better performance outcomes compared to both no real-time feedback 

and in-person instruction, .266, [95%CI .107 to .425], p<.001 and .332, [95%CI .173 to .491], 

p=.005, respectively. Learning from real-time AI caused a significantly higher cognitive-load 

χ2(2)=3.173, p=.005, and a similar transfer rate of skills F(2, 94)=1.241, p=.294 and OSATS 

ratings (4.30 vs 4.11) when compared to in-person training with expert instruction. 

Conclusions and Relevance: Real-time intelligent feedback provided superior learning 

outcomes, with similar learning transfer and OSATS ratings compared to person-to-person 

instruction. Intelligent systems provide critical tailored, quantifiable feedback and actionable 

instructions for the mastery of bimanual operative skills. 

Trial Registration: NCT05168150 

 

 

 

  

https://clinicaltrials.gov/study/NCT05168150?cond=NCT05168150&rank=1
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Introduction 

Surgery is a high-stakes intervention on delicate tissues that requires cautious care by expert 

hands. Intraoperative errors lead to high patient morbidity and mortality, which increase 

economic costs to society and contribute to physician burnout.1-4 Learning such skills is a 

difficult and stressful endeavor, as surgeons and trainees must balance teaching/learning and 

maintaining patient safety in a dynamic operating room environment.5,6 

Mastering surgical skills occurs during a comprehensive but often lengthy apprenticeship, known 

as residency. This apprenticeship involves intraoperative teachings, encompassing continuous 

interaction between the surgical educator and the learner, along with ongoing intraoperative 

assessment and feedback. However, the feedback provided is largely limited to instructional 

communication. This surgical teaching model lacks objectivity and standardization, has 

challenges in defining, evaluating, quantifying, and teaching the composites of surgical expertise, 

and may depend on the availability of patient cases.7-9 As a result, surgical education is 

implementing a competency-based quantifiable framework.10-12 

The Intelligent Continuous Expertise Monitoring System (ICEMS) augments instructional 

teachings during surgical technical skills training using artificial intelligence.13,14 This intelligent 

system mimics the role of expert surgical instructors in the context of surgical simulation 

training, integrated into the NeuroVR (CAE Healthcare) simulator, an immersive virtual reality 

platform for performing brain tumor resections.15,16 The ICEMS continuously assesses surgical 

performance in 0.2-second intervals and provides real-time instruction and risk detection. This 

system demonstrated a granular differentiation of skill levels between experts and residents, and 

between residents at different stages in their neurosurgery training program.13 Although the 
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predictive ability of this system’s continuous performance assessment is validated, its 

pedagogical utility and efficiency in teaching surgical bimanual skills via real-time instruction 

and risk detection remain unexplored. 

This double-blinded prospective randomized controlled trial compared the efficacy of tailored 

intelligent feedback provided by ICEMS to that of in-person expert instruction in simulated 

surgical skills training. We hypothesized that learners provided with ICEMS real-time feedback 

will (1) achieve a similar improvement compared to those learning in-person with expert 

instructors, (2) achieve a similar improvement in the Objective Structure Assessment of 

Technical Skills (OSATS)17 rating compared to those learning in-person with expert instructors, 

and (3) have a similar cognitive load compared to those learning in-person with expert 

instructors. 

Methods 

This study was approved by the McGill University Health Centre Research Ethics Board, 

Neurosciences-Psychiatry. This report followed the extensions of the CONSORT 2010 

Statement, guidelines for the reporting of multi-arm parallel group randomized trials and 

interventions involving artificial intelligence.18-20 

Participants 

(Figure-1) Participants were recruited between January 2022 – March 2022, for a single 90-

minute simulation session with no follow up. Inclusion criterion was enrollment in year one to 

four of a medical school program in Canada. Our exclusion criterion was previous experience in 

using our simulation platform, the NeuroVR (CAE Healthcare). Participants signed an approved 

consent form before the start of the trial. Public health measurements and the Montreal 
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Neurological Institute and Hospital’s regulations related to COVID-19 pandemic were followed 

to ensure health safety. Methods remained unchanged after trial commencement. The study 

protocol was in accordance with the ethical standards of the responsible committee on human 

experimentation (institutional and national) and with the Declaration of Helsinki.21 All 

participants completed two questionnaires; a pre-questionnaire related to demographics, previous 

simulation experience and surgical exposure and, a post-questionnaire to rate their cognitive load 

and simulation learning experience. Participants were informed that the study involved no harm 

to participants, that their information is anonymized. Participants were blinded to the study 

outcomes. 

Randomization  

Randomization was applied without stratification using an online random number generator.22 

Participants were allocated into three groups based on a random number generation between 

number one and three. 

Simulation 

All participants were given a standardized instruction sheet before the simulation session. The 

sessions were carried out in a controlled distraction-free environment. Two tumor resection tasks 

were performed; a practice subpial tumor resection task and a realistic brain tumor resection 

(Video).16 Expert execution of subpial technique is important in a variety of neurosurgical 

procedures to remove culprit tissues while preserving the neurologic function.23,24 The NeuroVR 

(CAE Healthcare, Canada) 3D neurosurgical simulation platform with two haptic handles was 

utilized to simulate the tasks.15 Both tasks required using two instruments, an ultrasonic aspirator 

and a bipolar forceps, to completely remove the simulated tumor while minimizing bleeding and 

damage to surrounding healthy tissue.25,26 Face and content validity of the simulation tasks were 
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previously demonstrated.16,27 The time limit was five minutes for the practice task, and 13 

minutes for the realistic tumor resection task.  

Feedback was incorporated in two stages: during the task (real-time), and after the task (post 

hoc). Participants were randomly allocated into three groups, (1) post hoc-only feedback (active 

control), (2) real-time and post hoc intelligent instruction (ICEMS group), and (3) real-time and 

post hoc expert instruction (expert instructor group). Participants completed the practice task five 

times. The first repetition was completed without feedback during the performance to determine 

baseline. After completion of the baseline performance, participants received post hoc feedback 

based on their group allocation, as described in detail below. Five minutes was given for post hoc 

feedback for all groups. Finally, all participants performed a realistic brain tumor resection task 

once without feedback to assess skill transfer to this more complex simulated procedure. 

Post hoc feedback group 

Participants in this group received no real-time feedback during the tasks. After the baseline and 

after each task, participants were provided with post hoc feedback on their performance scores in 

comparison to expert benchmarks on five performance metrics, which included the same metrics 

listed in the next section. The goal was to meet all five benchmarks by the last repetition of the 

task. 

Real-time artificial intelligence instruction 

(Figure-2) Participants in this group received real-time auditory instructions given by the 

ICEMS.13 The ICEMS assessed surgical performance at 0.2-second intervals on five 

performance metrics: (1) bleeding risk, (2) healthy tissue damage risk, (3) ultrasonic aspirator 

force utilization, (4) bipolar instrument force utilization and (5) using the two instruments 

together. Six auditory instructions (one instruction per performance metrics and two instructions 
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for bipolar high and low force utilization) were incorporated. ICEMS predicted expert level 

performance metrics in real-time based on the actions being performed by the learner. An error 

was identified when participant performance score differed more than one standard deviation 

from the expert level assessment of the ICEMS, for at least one second. Real-time auditory 

instructions were automatically delivered upon error identification during all practice tasks 

except the baseline performance.  

Post hoc artificial intelligence instruction 

(Figure-2) The participants’ performance was video recorded. After the completion of each 

practice task, including the baseline performance, the ICEMS located the timing of specific 

errors using the performance data. The ICEMS cut these error footages from the entire 

performance video clip and demonstrated them to the participants. An error video-clip relating to 

each performance metrics, to a maximum total of six error video-clips were shown to the 

participant in the form of 10-second video-clips (see Supplementary information). 

Real-time expert instruction 

Two neurosurgery residents (M.B. and A.A., post-graduate year six) had standardized teaching 

experience in a recent simulation trial28 and completed a training to achieve consultants’ 

benchmarks during the simulated tasks. They provided in-person real-time instructions using a 

modified OSATS rating scale (see Supplementary Information) and a modified PEARLS 

debriefing script.29 Instructors were blinded to the ICEMS assessment metrics. From the second 

repetition of the practice task to the fifth repetition, an expert instructor provided verbal 

instructions to the participant during the simulated tasks.  
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Post hoc expert instruction 

After the completion of each practice task, including the baseline performance, the expert 

instructor had five minutes with the participant to outline any pertinent information to enhance 

performance. The expert instructors also had the option to personally demonstrate strategies and 

surgical techniques on the NeuroVR simulation on how to expertly perform the simulated 

subpial resection. To facilitate standardization, instructors followed learning objectives based on 

the OSATS rubric (Supplementary Information). 

Outcome measures 

All performance data was recorded along with the video recordings of each task. The primary 

outcome measure was the composite performance score quantified by the ICEMS during practice 

and realistic tumor resections. The ICEMS scored participants’ performance between a score of -

1 (novice) and 1 (expert) at 0.2-second intervals. An average composite-score was calculated for 

each repetition of the task for statistical comparisons. The video recordings of the realistic brain 

tumor resection task were rated by two blinded expert raters using the OSATS scale as 

previously described.17,28 Cognitive load was assessed through a questionnaire before, during, 

and after the simulation exercises.28 

Statistical analysis 

Data was not normally distributed as assessed by Shapiro-Wilk's test (p<.05). Non-parametric 

statistical tests: Friedman’s test and Kruskal-Wallis H test, were utilized. See Supplementary data 

for more detailed information.  
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Results 

Participants and sample size 

Ninety-nine medical students who were presently enrolled in four medical schools across the 

province of Quebec participated in this three-parallel-arm randomized controlled trial (Figure-1). 

Participant simulation performance data was recorded in one session without a follow-up. Data 

from two participants was excluded from the analysis due to technical issues faced during the 

simulated tasks. Mean participant age +/- SD (Range) was 21.3 +/-2.7 (17-31) years, and 

participant handedness was 89/7/1 (right-handed/left-handed/ambidextrous). Participants’ level 

of interest in surgery was a median (range) of 4 (1-5) (Table). A sample size calculation for a 

power of .99 with an effect size of 0.25, 0.5 correlation among repeated measures, and with .85 

non-sphericity correction epsilon, yielded 32 participants in each group, and 96 participants in 

total, for assessment of within- and between-group interaction. Data analysis was conducted 

based on intention-to-treat. 

Between-feedback comparison 

(Figure-3) There were no significant differences in the composite-score in the baseline 

performance, p=.421 among the three groups. There was a statistically significant interaction 

between feedback allocation and task repetition in a two-way mixed model ANOVA on the 

ICEMS composite score, F(6.8, 319.5)=5.06, p<.001, partial η2=.097. In the third task, both the 

ICEMS and expert instruction groups outperformed post hoc feedback group, (.343, 95%CI [.182 

.504], p<.001), and (.190, 95%CI [.052 .330], p=.049), respectively. In the fourth task, the 

ICEMS group outperformed post hoc feedback group, (.265, 95%CI [.061 .468], p=.019), while 

expert instruction group was not significantly different than post hoc feedback group, (.079, 

95%CI [-.125 .284], p=.069). In the fifth task, the ICEMS group outperformed both post hoc and 
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expert instruction groups, .266, 95%CI [.107 .425], p<.001 and .332, 95%CI [.173 .491], p=.005, 

respectively. 

Within-group learning curves 

(Figure-3) The post hoc-only feedback group improved their performance in the fifth task 

compared to the baseline (.185, 95%CI [.039 .332], p=.009). The ICEMS group outperformed 

their baseline in the third, fourth, and fifth tasks; .295, 95%CI [.073 .516], p=.031, .350, 95%CI 

[.107 .593], p=.001, and .400, 95%CI [.180 .620], p<.001, respectively. The expert instruction 

group achieved a steep performance improvement in the composite-score where they 

outperformed their baseline performance in the second, third, and fourth tasks; .252, 95%CI 

[.070 .434], p=.001, .213, 95%CI [.054 .372], p=.027, .235, 95%CI [.051 .418], p=.016, after 

which they reached a plateau. There was a decrease in the composite-score and no significant 

difference was found between the fifth task and the baseline for this group, .138, 95%CI [.023 

.253], p=.269. 

Performance on the realistic task 

(Figure-4a) The composite score on the realistic task was compared by a one-way ANOVA 

between feedback groups. Mean [95%CI] scores were -0.343 [-0.450 -0.236] for post hoc 

feedback group, -0.233 [-0.330 -0.136] for real-time AI group, and -0.263 [-0.371 -0.156] for 

expert instruction group. No statistically significant between groups differences were observed, 

F(2, 94)=1.241, p=.294. 

Blinded expert OSATS rating 

(Figure-4c) The OSATS rating (median score on a 7-point scale) of the realistic task involved 

five items and an overall score given by two blinded experts. An average of the ratings by two 

experts were calculated for each item. Participants in the ICEMS group (4.30) achieved a 



150 
 

significantly higher overall score than those in post hoc feedback group (3.47), p=.017. The 

overall score achieved by the participants in the expert instruction group (4.11) was not 

significantly different than both post hoc and the ICEMS groups, p=.137, and p=1, respectively. 

The ICEMS group (4.9) outperformed both post hoc (4.15) and expert instruction groups (3.69) 

in hemostasis, p=.017, and p<.001, respectively. The ICEMS group outperformed the post hoc 

feedback group in instrument handling (4.49 vs 3.57, p=.006), respect for tissue (4.26 vs 3.73, 

p=.015), and flow (4.26 vs 3.18, p=.002) while the expert instruction group outperformed the 

post hoc feedback group only in instrument handling (4.45 vs 3.57, p=.014). Hence, the ICEMS 

group achieved the best learning outcomes concerning hemostasis, respect for tissue, flow, and 

overall OSATS score. There was a significant correlation between the ICEMS’s composite score 

and the average OSATS score given by two expert raters, Spearman’s correlation coefficient 

=.224, p=.028. The correlation coefficient between the two expert raters was also significant, 

Spearman’s correlation coefficient =.258, p=.011. 

Cognitive load assessment 

(Figure-4b) Intrinsic, extraneous, and germane load (median score o on a 5-point scale) were 

assessed through the Cognitive Load Index for cognitive demands on a 5-point Likert scale.30 No 

significant differences were observed between groups in intrinsic and germane load; 

χ2(2)=1.983, p=.371, and χ2(2)=3.732, p=.155, respectively. Participants in ICEMS group (1.19) 

reported significantly higher extraneous load than those in expert-instruction group (1.13), 

p=.005, indicating increased cognitive difficulty experienced by the trainees in understanding 

ICEMS’s instructions. 
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Discussion 

To the best of our knowledge, this is the first randomized controlled trial that compares real-time 

intelligent instruction with in-person human expert instruction in teaching bimanual surgical 

skills in simulation training.31,32 Our findings demonstrate superior learning outcomes using a 

real-time intelligent system compared to in-person expert instruction. These results are 

confirmed both when measured quantitively by the ICEMS and when assessed by blinded 

experts. 

Previous simulation training methodologies typically involve repetitive practice of basic to 

complex tasks, often without feedback or with post hoc performance feedback.28,33-37 In both 

intervention arms of this study, we aimed to replicate the real-time training engagement 

happening in the operating room where trainees receive ongoing assessment and instructions 

from expert surgeons. For the first time, an artificial intelligence-powered tutor provided trainees 

with real-time feedback and action-oriented instructions as they performed a simulated 

neurosurgical task. 

Feedback is critical for skill acquisition, and the most effective modalities may depend on the 

surgical procedure being taught.38-40 In training for complex procedures such as the subpial 

resection of brain tumors, practice without feedback has resulted in little to no improvement 

while post hoc feedback based on performance metrics benchmarks has resulted in significant 

improvement in learning.28 Hence, our study utilized an active control group that received post 

hoc feedback.  

Cognitive load is the mental exertion of a trainee to process and retain information.41,42 In this 

trial, learning from the real-time intelligent instructions resulted in significantly higher 
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extraneous load, suggesting increased cognitive demand experienced by the trainees to 

understand the real-time auditory instructions and the post hoc video demonstrations. In future 

applications, it is important to minimize extraneous cognitive load to maximize learning.43,44  

In this study, expert instructors had greater flexibility in their teaching engagement with students. 

Experts could provide learners with more surgical context concerning the procedure, share 

relevant strategies, and help students develop a plan to use the instruments and remove the tumor 

efficiently. The ICEMS provided direct instructions on five predetermined performance metrics 

with limited context about the surgery or the action being performed by the student. Despite the 

limitations of the intelligent system, the data-driven tailored approach provided more or similarly 

efficient training. With the advancing techniques in artificial intelligence and integration of large 

language models,45 user engagement of intelligence systems may improve substantially. 

The training in this study involved one session with no follow-up. Trainees instructed by the 

ICEMS system achieved a mean composite score of -0.2 in the fifth repetition of the task, 

indicating that there is still a big room for improvement. Perhaps, longitudinal training with 

multiple training sessions is needed to improve performance further.  

Although this study was conducted in a simulation training setting, the applications of intelligent 

instruction and assistance may not be limited to simulation settings. Methodologies are being 

developed to accurately identify surgical steps, potentially assess intraoperative performance 

during surgery, and provide feedback using artificial intelligence.46,47 Obtaining performance 

data during surgery in realistic operating settings using real surgical instruments may enable 

transitioning intelligent feedback systems to the real operating room to mitigate errors during 

surgery.48,49 
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A limitation of the ICEMS system is that continuous task assessment may not accurately reflect 

the procedural outcome.50 In some cases, trainees may demonstrate correct instrument utilization 

techniques without removing sufficient tumor. Both ICEMS and OSATS assessments are more 

focused on instrument technique than the operative outcomes. Future intelligent systems may 

need to determine the quality of the operative goals achieved to help trainees reach expert-level 

procedural outcomes while using correct instrument techniques. The ICEMS currently uses six 

algorithms to evaluate surgical performance and provide feedback in real-time13,14. Future 

versions of this system may incorporate additional modules to evaluate the procedural progress, 

outcome, and spatial information.27,51 

The trainees’ skillset may affect learning and capacity for performance improvement. Our study 

involved medical students with little to no surgical exposure. Their limited procedural knowledge 

may have provided a greater room for improvement in tumor resection skill acquisition, and this 

may resemble the scenario of a surgical trainee who just started their surgical training. Further 

studies may test intelligent systems in helping trainees with more procedural knowledge and a 

better skillset. Human expert instructors may adapt their instructions based on the trainees’ needs 

and skill level. To maximize efficiency in training, intelligent systems may assess the trainees’ 

skill level and adapt more advanced instructions as their skillset progresses from novice to expert 

level.42,52 

In summary, this randomized controlled trial demonstrated an effective use of a real-time 

intelligent system in teaching bimanual surgical tumor resection skills that is more efficient when 

compared to in-person instruction from human experts. Using data-driven performance 

monitoring and intelligent feedback may not only help to meet the needs of competency-based 

surgical training but also provide an effective tool to sustain technical mastery.  
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Figures 

Figure-1: Flow diagram. 
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Figure-2: Real-time and post hoc ICEMS Feedback 

  



158 
 

Figure-3: ICEMS’s composite-score across trials. Groups are color-coded (see the legend). X-

axis represents the task repetition while Y-axis represents the ICEMS’s composite score. The 

composite score is shown between -1 to 0; however, the maximum achievable score was +1. 

*Horizontal lines represent statistically significant differences (p<.05). For within-group 

differences, horizontal lines are represented with the respective color of the group. Vertical bars 

represent standard error. 
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Figure-4: (a) ICEMS’s composite-score in realistic task. The vertical bars represent standard 

errors. There was no significant difference between three feedback groups. (b) Cognitive load. 

Groups are color-coded (see the legend). The vertical bars represent standard errors. Participants 

who received real-time AI instruction reported significantly higher extraneous load than those 

received in-person expert instruction. There were no significant differences between groups 

concerning intrinsic load and germane load. (c) Blinded expert OSATS rating. Horizontal lines 

represent statistically significant differences (p<.05). Vertical bars represent standard error. 
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Table 

Table: Participant Characteristics. 
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Chapter 6 – Summary and Conclusions 

General Findings 

 The overarching goal of this thesis work is to develop, validate, and test objective and 

standardized assessment and teaching methodologies for virtual reality surgical skills training, 

integrating AI. 

 Chapter 2 demonstrated the development and predictive validation of a real-time 

intelligent system, the Intelligent Continuous Expertise Monitoring System (ICEMS). This 

system allowed for conducting several randomized controlled trials at the Neurosurgical 

Simulation and Artificial Intelligence Learning Centre to investigate the integration of real-time 

AI instructions in training. The most efficient training is to be explored by modifying the 

feedback delivery of this system while using the same background ICEMS algorithms. The 

ICEMS’s ability to differentiate between expertise levels and between trainees demonstrated the 

promising future of AI in designing surgical curricula while accurately tracking trainee progress 

as they master their technical skills. 

 The work in Chapter 3 provided spatial performance analysis during a simulated brain 

tumor resection. This work informed the randomized controlled trial (RCT) in Chapter 4 that the 

3D feedback may be necessary for trainees to appreciate the spatial surgical environment they 

are interacting with. The randomized controlled trial in Chapter 4 involved the testing of 

feedback delivery to maximize the efficiency in learning. In accordance with the previous 

literature, learners who receive performance feedback improved their performance quicker than 

those who practice without feedback. Additionally, more engaging colored and visuospatial 

feedback helped trainees learn even more efficiently. These findings expanded our knowledge on 
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methodologies to design effective training, limiting cognitive overload while keeping the trainees 

engaged and providing action-oriented quantitative information. 

 Finally, Chapter 5 involved the testing of the ICEMS, our first-ever real-time intelligent 

assessment, instruction, and risk detection system. The results of this RCT have demonstrated 

that, in fact, real-time AI assistance may be more efficient in teaching surgical technical skills 

than traditional learning via human expert instruction. Although this initial application is way 

away from being perfect and may be missing many important considerations in surgical 

education, the promising results will make a series of RCTs possible to improve the ICEMS’s 

ability to deliver feedback in the most informative, concise, clear, and engaging way. 

Important Considerations 

Virtual reality simulations offer many advantages, which made the applications and the 

AI integration in this PhD work possible. However, there are limitations worth noting. Virtual 

reality simulators may be missing many important factors present in a real operating room. This 

brings the question of whether the promising findings in our randomized controlled trials would 

be transferrable to the skillset in real operating rooms. 

Further studies are needed to assess whether learning in a simulated environment can 

improve intraoperative performance. Considering the current stage of our research, applications 

in real operating theatre might be too challenging due to costs, safety and privacy concerns, and 

regulations. However, at the Neurosurgical Simulation and Artificial Intelligence Learning 

Centre, intermediary platforms between virtual reality simulation and the real operating room are 

being developed.1 These platforms provide performing tasks on ex vivo animal models involving 

biologic tissues, with scenarios resembling real-life cases such as tumor resection or epilepsy 
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surgery. Optical cameras were used to monitor and collect data from instrument movements.2 

Additionally, the integration of pre-op and post-op MRI scans allowed for the measurement of 

the amount of tissue resected and remaining tumor.3 Performing in such a realistic simulation 

environment may be more reflective of performance in real operating theatre, hence the transfer 

of skills to this more realistic setting can be measured. A future study may explore if 

performance improvement in virtual reality simulation using the systems outlined in this PhD 

work may result in performance improvement on an ex vivo simulation task. However, before 

this step, the ICEMS needs to be fine-tuned, using transfer learning, to accurately assess the 

performance during ex vivo simulations to allow for objective comparisons. 

 Surgery involves many steps from planning, execution, and follow-up. Intraoperative 

process is also a combination of many steps from the preparation of the patient, opening skin and 

skull, access to the area of interest, tumor removal, and closure of structures such as dura mater, 

and skin. Additionally, neurosurgery involves many technically challenging procedures close to 

neural structures such as the cerebellum, midbrain, pons, and medulla, nearby cranial nerves, and 

vasculatures. The cerebral cortex, the largest area of our brain, controls voluntary muscle control, 

sensation, memory, emotions, and executive functions. Neurosurgical interventions on or close to 

any of these important structures may result in permanent loss of patient functionality. Therefore, 

skillset mastery in procedures such as neurovascular, brainstem, posterior fossa, and 

transsphenoidal surgeries is of utmost importance.  It is important to note the limitation that our 

work involved only one skill which was the subpial removal of the simulated tumors. This might 

be an important skill and trainees may not have other opportunities to practice tumor resection 

skills except in virtual reality simulation. Ideally, all skills that are part of neurosurgery should be 
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integrated into virtual reality simulation training in the future where a more comprehensive 

assessment and feedback can be provided. 

 AI is used to understand patterns in the data that can not be outlined using simple 

equations. This provides great advantages; however, AI may lack transparency and 

interpretability due to its complex structure, which relates to the ‘black box’ problem that is 

discussed in Chapter 1. To overcome this issue, human input may be necessary, which is often 

referred to as the ‘human-in-the-loop’ approach.4 This approach is especially important to handle 

complex and uncertain situations in which AI may not produce meaningful and reliable 

information. In teaching surgical mastery, the inclusion of surgeon experts in the loop may 

benefit the systems to correctly interpret AI decisions and align the information for the students 

to understandable and relevant forms. Finally, AI algorithms may get over-tuned to biases the 

datasets contain. Larger multi-institutional datasets help to address this problem, allowing for 

more generalizable applications. Similar to other healthcare areas, surgery is a high-stakes 

domain, therefore careful considerations in AI applications and expert revision of these systems 

are of utmost importance. 

 Our feedback and AI models were based on expert data from a single institution which 

may include biases towards how the procedures are done in this specific location. Using multi-

institutional datasets would help to overcome this issue. The expert dataset included only one 

female expert. This may cause a gender bias towards men in case there are inherent differences 

between men and women in the way the instruments are used. More balanced datasets help to 

develop more reliable models and would also inform about the effect of gender on surgical 

technical skills. 
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 In a learning environment, it is important to provide students with information in a 

language that they are comfortable with. The randomized controlled trials (RCT) in this thesis 

work were conducted at McGill University, located in Montreal, that has both English and 

French speaking student body. The participating students were competent in English. The 

informed consent form was provided in both languages. However, the feedback provided in the 

RCTs were optimized for English speaking students and the recruiting researchers as well as 

expert instructors were English speakers. This feedback setting may have caused extra stress for 

those who are not as competent in English, however due to randomization, we have not expected 

this issue to influence our results. In the future, feedback systems can be implemented with 

different languages where trainees can engage in learning in a language of their choice. 

The Promise of Artificial Intelligence in Surgery 

 ‘Artificial intelligence is the new electricity’ says Andrew Angy. Without so much 

hesitation, it is fair to say that developing AI systems will continue to amaze us and shape the 

future of our lives and medicine. Following the idea in the quote, all electronic devices we use 

may become integrated into the intelligent systems that provide assistance and make our lives 

easier. Considering a surgical theatre, having the operating environment optimized by intelligent 

systems using the data from surrounding devices could maximize safety and efficiency. Such a 

futuristic setting would be beneficial for care providers, hospitals, insurance companies, and 

most importantly, patients.  

Applications of AI in surgery may change the practice from preoperative planning to 

intraoperative guidance.5,6 The field of robotic surgery has been considered a good candidate for 

exciting AI applications with access to multichannel surgical data from robotic arms. However, 
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despite the significant potential, limited information is available on AI’s efficacy in improving 

patient safety in robot-assisted surgery.7 Computational resources are improving and becoming 

more widely available, allowing for the analysis of extensive healthcare data. This facilitates the 

discovery of hidden knowledge, risk identification, and enhanced communication within the 

clinical field.8 The integration of technology and AI into surgery may increase the autonomy of 

the systems to function with less input from the surgeon, towards fully automated diagnosis and 

care, similar to the development of self-driving cars, as outlined by Kitaguchi et al.9 Ethical and 

legal considerations may become increasingly a hot topic in the implementation of AI into 

surgery.10 The four medical ethics principles: autonomy, beneficence, nonmaleficence, and 

justice should be strongly considered before AI integration into the healthcare system.11 

Integration of AI tools into surgical education requires careful planning. One of the 

immediate goals for these tools is to demonstrate their effectiveness in comparison to the 

traditional educational models with improved outcomes. Their integration may yield reduced 

operational costs and increased safety and efficiency. In this process, feedback from faculties and 

trainees may be of utmost importance to tune these systems to meet the needs of educators and 

trainees most efficiently.  As these developments encounter ethical and regulatory considerations, 

topics such as the ownership of the data, the extent of commercial use of patient data, 

transparency, explainability, and potential biases these systems may have will become some key 

discussion points. Adaptation of these systems may benefit from building the technical 

infrastructure through pilot projects and testing. 
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High-Fidelity Simulation Data 

One of the big limits of today’s AI application is the limits with the data available. 

Simulation systems allow for the creation of realistic settings with minimal resources and costs 

with unlimited task repetitions. As such, simulation data can be used to train algorithms which 

may only need to be fine-tuned using small real-life samples before they are applied in real life. 

This may allow to overcome the limitations with access to data. 

Especially in high-risk situations simulation data can be important. Fortunately, real-life 

intraoperative cases don’t involve many accidents and errors. However, to train a system for an 

accident, related data needs to be shown to the algorithms to demonstrate ‘what is an 

accident/error’. In different industries such as the aircraft industry, simulation systems are used 

to create accidental scenarios, so the nature and the consequences of the accident can be 

examined. Simulations help decrease the costs by digitizing the real-world and they also enable 

obtaining a vast data, which may not be possible to record from the real-world. For example, 

crashing a test airplane in real-life to study potential accidents is very costly, and the data 

recorded during the crash can be very limited. However, majority of the time, these accidents can 

be virtually simulated with low costs. As a more medical example, in surgery, accidents increase 

patient morbidity and mortality, therefore simulation systems may offer ‘the only solution’ that 

would produce large datasets related to accidents/errors. One advantage in the development of 

the ICEMS system was that we were able to have medical students with little to no experience in 

surgery to operate brain tumor resections, which cannot be done in real life. Such a setting 

allowed us to produce a dataset with a variety of mistakes that a very novice person would make. 

This enabled our AI system to examine the patterns during the poor handling of the instruments 
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and the execution of brain tumor surgery. Learning from this and comparing it to an expert-level 

performance the ICEMS enabled continuous tracking of trainee progress as they learn. 

AI models can be used to develop simulations and vice versa, where simulation data can 

be used to train AI models. As an interesting futuristic thought, imagine a setting where AI 

produces the data it needs to learn from, similar to a person who is preparing him or herself for a 

task, imagining many possible scenarios that may happen, so that he/she is prepared. Being 

prepared would allow that person to handle these situations better and make meaningful 

interpretations, just like AI may become more and more accurate by simulating scenarios and 

subsequently learning from the simulated consequences. 

Popular AI Domains 

Some AI applications have increasing popularity. One noteworthy application is 

computer vision, which is a subtype of AI that mainly involves image and video analysis. 

Computer vision applications in medicine include the analysis of visual information such as X-

rays, MRI data, pathology and histology slides, and pictures of various skin conditions. Surgical 

video assessment is one of the use cases of computer vision where surgical performance is 

monitored by algorithms for purposes such as instrument detection,12 surgical procedure 

recognition, predicting hemorrhage,13 and phase detection.14,15 This application promises a future 

as intraoperative videos are rather easily collected through video cameras without interfering 

with the flow of surgery, and without compromising the sterile environment. Furthermore, 

cameras are already integrated into devices such as surgical microscopes. This convenient nature 

may allow the development of smart cameras in the future, integrated into real-surgical theatre, 

to monitor performance and provide safety assistance during surgery.16 
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Artificial general intelligence (AGI) refers to AI systems possessing broad intelligence 

across a variety of domains, similar to human cognitive skills. The majority of the time, these 

systems are trained using immense data available online. Specially trained AI models have 

specific capabilities in specific tasks; however, AGI models, such as large language models, 

provide flexible intelligence and diverse intellectual capabilities. Generative artificial 

intelligence (GAI) is AI that is capable of producing original work, including images, text, audio, 

or other media. These systems learn contexts and patterns from the existing content and generate 

resembling but authentic new instances. Generative AI is used commonly with large language 

models to create human-like interaction, as well as in generating art, images, and music.   

Large language models (LLMs) such as Chat GPT (Chat Generative Pre-Trained 

Transformer) are groundbreaking developments, widely appreciated and utilized. These systems 

are AGI and GAI, and they learn how to think like humans from all the resources available 

online, interact with a person, and provide accurate information, majority of the time, in different 

domains. For example, ChatGPT passed the United States Medical Licensing Examination 

(USMLE),17,18 and the bar exam,19 and it would rank in the top 1% of microeconomics and 

macroeconomic exam takers,20 although it has not been specifically trained in any of these areas. 

LLMs are being implemented in medicine in education, research and practice.21 The applications 

of ChatGPT in medicine include drug development, medical literature reviewing, improving data 

analysis and personalized medicine.22 Checco et al. demonstrated that AI was able to predict the 

outcome of peer-review and provide comments resembling the reviewer comments.23 GPT-4 

achieved a passing score in neurosurgical written board examination.24 

One limitation in our simulation training application was the high cognitive load due to 

difficulties in understanding the explanations and instructions provided by the real-time system. 
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This may have happened due to missing context in AI’s auditory instructions. Implementation of 

large language models may mitigate this problem by enabling human-like interaction. These 

systems may interact with the student verbally, communicate with them back and forth, like a 

surgeon supervisor talking with a resident when they operate, explaining how to skillfully 

perform the procedure and allowing the resident to ask questions when they need clarifications or 

have questions. Such interaction may reduce the cognitive load and increase trainee engagement. 

Augmenting Access to Data 

To enable a wider implementation of AI in surgery and medicine, one important 

consideration is to augment data collection. The transition of applications from analog to digital 

may allow for data collection. The majority of the time digital patient information is used 

momentarily to watch/monitor the situation (such as an intraoperative microscopic camera) and 

is lost afterward since hospitals do not have systems to store the data. A systematic approach to 

data collection and storage would increase the chance of possible AI implementations which 

would ultimately increase patient and clinicians’ safety and improve outcomes. This can be 

achieved by increasing the collaborative work between clinicians, health governors, AI 

engineers, and industry. 

As an example, intraoperative microscopes are routinely used in surgery, particularly in 

neurosurgery. Currently, these systems are used to allow neurosurgeons to visualize the operative 

area and enable bystanders to follow the procedure. The footage is rarely recorded, most of the 

time for training purposes. This footage may be used by an expert to rate the performance of the 

operator using a rating scale such as the OSATS to provide feedback. A more systematic 

approach with the recording of a high volume of cases would facilitate the training of AI models 
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to assess surgical performance and provide feedback. Further implementations, such as the 

prediction of patient outcomes based on surgical video recording would contribute to the clinical 

practice, providing deeper insights into what constitutes surgical technical expertise.  

Potential Pitfalls 

A multidisciplinary, both medical and engineering, expertise is necessary to utilize AI 

tools correctly to sufficiently meet the needs. Medical expertise is important to outline the needs 

correctly and guide engineers to develop and integrate tools in the most efficient ways for 

clinicians. AI applications involve tiny decisions that may influence the overall performance of 

the tools. It is possible that AI systems may be biased. These biases occur due to the biases in the 

data they are trained on as well as wrong interpretations or missing considerations. In an 

extended analysis of acquired skills in a simulation training, it was shown that trainees may not 

always progress towards optimal learning outcomes, or they may overrespond to some 

instructions.28 The gap in medical knowledge among engineers and the gap in engineering 

knowledge among clinicians may cause to less reliable systems when they work without input 

from one another. Not following a systematic approach in AI model training may result in false 

results. Reporting of AI applications without separate testing may hide important background 

problems. 

Ideally, all AI applications should follow a step where the models are separately tested on 

independent datasets to measure the generalizability of the system. Some applications miss this 

important step. Although these applications demonstrate high training and validation accuracies, 

these results can simply, and likely, be overfitting. Hence, their real-life applications might be 

limited, or contain biases. In certain disciplines, for example, due to limited data, proper 
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applications may not be possible. Nevertheless, being open about the limitations and potential 

biases of these systems may help the development of more reliable systems. 

High computational resources are increasingly available to a wider population. There is a 

growing population with AI expertise. This increases the rate of developments in AI as more 

people are involved in this area. In the scientific area, the peer review process has limitations as 

more complex AI applications are introduced, and they may appear as a ‘black box’. The review 

process may not provide the necessary expertise to outline shortcomings and biases that the AI 

application may involve. Quality check guidelines are being implemented for reporting AI 

applications.25 These checklists help to ensure the quality of the work such as reporting of the 

clinical trials that involve AI and outline AI best practices.26,27 

Conclusion 

 An all-in-one sophisticated AI integration was made into surgical simulation for technical 

skills training, with the ability to assess performance, provide feedback, and risk mitigation. This 

PhD work outlined important methodologies to improve learning by providing visuospatial 

information and increasing student engagement. This work may have paved the way for further 

research to explore the optimal real-time feedback assessment and feedback for surgical 

bimanual skills training. 
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