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ABSTRACT 

 

Precision agriculture uses information technologies to improve the economic, environmental and 

social aspects of modern farming. Among other innovations, the ability to account for spatial 

variability in the crop growing environment has been the most challenging. The main limitation 

to the widespread adoption of these technologies has been the lack of economically feasible 

spatial data to reveal the heterogeneity of soil properties related to local fertilization needs. To 

increase the implementation of this technology, advanced equipment and methods to obtain high 

density measurements of the physical and chemical properties of soil at a relatively low cost are 

essential. The quality of data needed by decision-making algorithms must be improved; this 

needs the development of, an automated sensing platform for in situ soil measurements, similar 

to the rovers deployed on Mars. The project focuses on this challenge. The thesis addressed three 

key aspects of the development of the technology: 1) design of an automated on the-spot soil 

analyser, 2) evaluation of the potential for deploying different hyperspectral sensor systems, and 

3) development of an algorithm to cluster multilayer high density spatial data to maximize the 

value of prescribed point-based measurements.  

 

A new automated, on-the-spot soil analyser (OSA) was developed to perform subsurface 

measurements of soil chemical properties. It used an array of ion-selective electrodes and could 

simultaneously determine pH and nitrate, on-the-spot, in an automated manner. The system can 

be easily extended to use other sensors, such as active, hyperspectral sensors.  

 

A set of field deployment-ready instruments for active hyperspectral measurements of soil 

reflectance were tested in terms of both their reproducibility (precision) and predictability 

(accuracy) of the measurements and evaluated in terms of their ability to predict soil particle size 

distribution, soil carbon, soil organic matter, and total soil phosphorous content. This research 

focused on instruments operating in the visible, near-infrared and mid-infrared parts of the 

electromagnetic spectrum.  

 

Finally, a new algorithm was developed to process traditional high-density proximal soil sensing 

data, such as apparent soil electrical conductivity (ECa) and field elevation. Preliminary tests of 
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the algorithm using six production fields illustrated the algorithm’s robustness when delineating 

field areas with different field elevations and ECa measurements. This algorithm has the 

potential to optimize the number of point-based measurements with OSA, other in situ sensing 

systems, or conventional soil sampling.  

 

Six individual research activities resulted in six different manuscripts that constitute the main 

body of this thesis.  
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RÉSUMÉ 

 

L’agriculture de précision utilise les technologies de l’information pour améliorer les aspects 

économiques, environnementaux et sociaux de l’agriculture moderne. Parmi différentes 

innovations, la capacité de prendre en considération la variabilité spatiale des conditions de 

croissances des cultures a été particulièrement ambitieuse. La principale contrainte à l’adoption 

massive de ces technologies a été le manque de données économiquement viables révélant 

l’hétérogénéité des propriétés du sol et se rapportant aux besoins locaux de fertilisants. 

 

Des équipements et méthodes avancés servant à l’obtention de mesures de haute densité des 

propriétés physiques et chimiques du sol à des coûts relativement bas sont essentiels pour 

augmenter l’utilisation de la technologie. Pour améliorer la qualité des données requises par les 

algorithmes de prise de décision, une plateforme de détection automatisée, semblable aux robots 

déployés sur Mars, doit être développée pour mesurer le sol in situ. Le projet se concentre sur ce 

défi. La thèse a abordé trois aspects clés du développement de la technologie : 1) la conception 

d’un analyseur de sol sur place automatisé, 2) l’évaluation du potentiel de déploiement de 

différents systèmes de capteurs hyper-spectraux et 3) le développement d’un algorithme pour 

regrouper des données spatiales multicouches de haute densités pour maximiser la valeur des 

mesures par points recommandées. 

 

Un nouvel analyser sur place (OSA) a été développé pour effectuer des mesures souterraines des 

propriétés chimiques du sol en utilisant un ensemble d’électrodes sélectives. Ces électrodes 

peuvent simultanément déterminer de manière automatisée l’acidité et nitrate. Le système peut 

aisément être élargi à d’autres capteurs, comme des capteurs hyper-spectraux actifs.  

 

Un ensemble d’instruments de terrain prêts-à-déployer pour des mesures de réflectance du sol 

hyperspectrales a été testé en termes de répétabilité (précision) et de prévisibilité (exactitude) des 

mesures. Ces capteurs ont été évalués en termes de leur capacité à prédire la distribution de la 

taille des particules de sol, le carbone du sol, la matière organique et le contenu en phosphore 

extrait. Cette recherche était centrée sur des instruments fonctionnant dans le visible, l’infrarouge 

proche et l’infrarouge moyen du spectre électromagnétique.  
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Finalement, un nouvel algorithme a été développé pour utiliser des données traditionnelles de 

détection du sol à proximité, comme la conductivité électrique apparente du sol (ECa) et 

l’élévation des champs. Des tests préliminaires ont été effectué pour six terrains de production. 

Les résultats ont confirmé la robustesse de l’algorithme lors de la délimitation des zones de 

terrain avec différentes élévations et mesures ECa. Cet algorithme a le potentiel d’optimiser la 

valeur des mesures par points en utilisant l’OSA, d’autres systèmes de capteurs in situ, ou 

l’échantillonnage du sol. 

 

Six activités individuelles de recherche ont résulté en six différents manuscrits qui constituent le 

corps de cette thèse. 
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format has been approved by the Faculty of Graduate and Postdoctoral Studies, McGill 
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“As an alternative to the traditional thesis format, the dissertation can consist of a collection of 

papers of which the student is an author or co-author. These papers must have a cohesive, unitary 

character making them a report of a single program of research. The structure for the 

manuscript-based thesis must conform to the following: 

 

Candidates have the option of including, as part of the thesis, the text of one or more papers 

submitted, or to be submitted, for publication, or the clearly duplicated text (not the reprints) of 

one or more published papers. These texts must conform to the "Guidelines for Thesis 

Preparation" with respect to font size, line spacing and margin sizes and must be bound together 

as an integral part of the thesis. (Reprints of published papers can be included in the appendices 

at the end of the thesis). 

 

The thesis must be more than a collection of manuscripts. All components must be integrated 

into a cohesive unit with a logical progression from one chapter to the next. In order to ensure 

that the thesis has continuity, connecting texts that provide logical bridges between the different 

papers are mandatory. 

 

The thesis must conform to all other requirements of the "Guidelines for Thesis Preparation" in 

addition to the manuscripts. 

  

The thesis must include the following 

 

(a) A table of contents; 
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(b) An abstract in English and French; 

 

(c) An introduction which clearly states the rational and objectives of the research; 

 

(d) A comprehensive review of the literature (in addition to that covered in the introduction to 

each paper); 

 

(e) A final conclusion and summary; 

 

As manuscripts for publication are frequently very concise documents, where appropriate, 

additional material must be provided (e.g., in appendices) in sufficient detail to allow a clear and 

precise judgment to be made of the importance and originality of the research reported in the 

thesis. 

 

In general, when co-authored papers are included in a thesis the candidate must have made a 

substantial contribution to all papers included in the thesis. In addition, the candidate is required 

to make an explicit statement in the thesis as to who contributed to such work and to what extent. 

This statement should appear in a single section entitled "Contributions of Authors" as a preface 

to the thesis. The supervisor must attest to the accuracy of this statement at the doctoral oral 

defense. Since the task of the examiners is made more difficult in these cases, it is in the 

candidate's interest to clearly specify the responsibilities of all the authors of the co-authored 

papers”. 
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Chapter 1 

 

 

INTRODUCTION 

 

1.1 General Introduction 

 

Today’s food production demands, driven by a rapidly increasing population, costly agricultural 

inputs and environmental risks, result in major challenges for agricultural and biological 

engineers, who must devise enhanced agricultural practices to maximize yield and production 

efficiency (Gebbers and Adamchuk, 2010). 

 

Nitrogen (N), phosphorus (P), and potassium (K) are the three major crop nutrients essential to 

healthy crop growth. The predominant forms of N, P, and K in the soil are ammonium (NH4
+) 

and nitrate (NO3
-) ions, phosphate ions (H2PO4 and HPO4

2-) and K+ ions, respectively. Soil 

texture, soil organic matter (SOM) and soil pH are the three main soil properties controlling plant 

nutrient availability (Sparks, 2003). Both soil electrical conductivity (EC) and field topography 

correlate with soil properties that affect crop productivity. These properties include soil moisture, 

soil texture, cation exchange capacity (CEC), drainage conditions, SOM, salinity, and subsoil 

characteristics. 

 

Conventionally, agricultural production is increased by practicing intense mechanization and by 

augmenting the quantities of crop inputs. A number of studies have shown that one of the 

problems associated with conventional organic and/or inorganic fertilization schemes is the risk 

of excess nutrients (i.e. those not taken up by crops or other plants) reaching watercourses 

(Hooda et al., 2000). Excess N in the form of NO3
- is very mobile in agricultural soils and 

predominantly reaches watercourses by leaching through the soil and into subsurface drains. 

Phosphates are comparatively immobile and bind easily to soil particles. They tend to remain in 

the first few centimetres of topsoil, where they can pose a non-point source pollution risk when 

rain-driven soil erosion carries surface runoff to streams (Chambers et al., 1997; Carefoot and 

Whalen 2003). In some situations, N, particularly in the form of soil-bound NH4
+, but also 
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recently applied NO3
-, can also be lost in runoff (Canadian Council of Ministers for the 

Environment, 2007). K is not usually considered a nutrient of environmental (water quality) 

concern, although when present in excessive amounts, its uptake into forages can exceed 

acceptable concentrations and have a significant impact on cattle health (Schmidt and 

Hughes-Games, 2010). Reduced water quality, cost of applying extra inputs, and loss of land due 

to soil degradation can cause a negative socio-economic impact for the farming community.  

 

Site-specific management (SSM), also referred to as Precision Agriculture (PA), holds 

considerable potential for improving agricultural production and reducing the cost and risks 

posed by excess application of agriculture inputs. It accounts for spatial and temporal variability 

in a site specific manner and therefore, promotes the efficient use of fertilizers, pesticides, and 

other crop inputs (Pierce and Nowak, 1999). In simple terms, SSM is about applying soil or crop 

inputs in the Right Amount, at the Right Time, at the Right Place, from the Right Source and in 

the Right Manner (Robert et al., 1994; Khosla, 2008). 

 

Measuring soil properties and mapping their variability across landscapes is a powerful means to 

allow farmers to make intelligent management decisions that are valuable for their crop 

production (Pierce and Nowak, 1999). However, the most critical aspect of soil testing is actually 

obtaining representative soil samples (i.e. collected with adequate spatial density at the proper 

depth and at the appropriate time) and while conventional soil sampling techniques are laborious 

and time consuming, PSS allows for rapid and inexpensive collection of precise, quantitative, 

and fine-resolution data (Viscarra Rossel et al., 2011). 

 

The term PSS is used when field-based sensors are used to obtain signals from the soil when the 

sensor’s detector is in contact with, or close to (within 2 m) the soil (Viscarra Rossel and 

McBratney, 1998; Viscarra Rossel et al., 2010). The sensors provide soil information because 

the signals correspond to physical measures which can be related to soils and their properties. 

PSS data can be gathered by installing a single sensor or an array of soil sensors permanently in 

field locations or in an on-the-go manner by dragging them over field transects or in an 

on-the-spot or in a go-stop-measure-go manner. Each approach may have its own advantages and 

limitations and in many cases, an integrated approach is required. 
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According to a series of annual surveys (Holland et al., 2013; Croplife/Purdue, 2005-2013), SSM 

technologies have been growing slowly but steadily since they were introduced in the late 1980's. 

The biggest growth in SSM technologies has been in the adoption of GPS guidance and 

automation systems such as light bar control, auto steer; planter row unit controls and sprayer 

section controls. Field mapping services are the next most popular SSM technology and are 

mostly intended for legal, billing or insurance purposes. According to the surveys, barriers to the 

adoption of technology include: local topography (limits the use by farmers); farm income 

pressure (limits use of precision services); lack of confidence in site-specific recommendations; 

variable soil types (limits profitability of precision); cost of precision services greater than 

benefits; interpreting data to make logical decisions is too time consuming.  

 

At the same time, some of the major challenges encountered by the SSM equipment dealers 

were: seeking the right employees and cost of employees; demonstrating the value to growers; 

risk of the investment cost of equipment due to rapid technological changes; equipment 

complexity and incompatibility between equipment (Holland et al., 2013; Croplife/Purdue, 

2005-2013). 

 

Soil data gathered using PSS and soil sampling with conventional laboratory testing can be used 

together to produce soil maps with greater accuracies (Hoeft et al., 1996). PSS technologies can 

benefit the field mapping service providers by: 1) increasing the quality of maps, 2) overcoming 

the cost and time related challenges of conventional mapping and 3) maximising the mutual 

gains offered by service providers to producers. 

 

At present, SSM seeks to use information technologies to improve the economic, environmental 

and social aspects of modern farming operations. Among an array of technological 

breakthroughs, the ability to accurately account for spatial variability in crop growing 

environments has been one of the most challenging to implement in a robust manner (Viscarra 

Rossel et al., 2011). The uncertain nature of collecting economically feasible data which reveal 

the spatial distribution of key soil attributes has been the main concern of early adopters of new 

technologies (Dobermann et al., 2004; McBratney et al., 2005). This suggests the need for 

advanced equipment and methods to obtain high-density measurements of soil physical and 



 4 

chemical properties at a relatively low cost. For example, an intelligent autonomous mobile 

robot, similar to, but simpler and more affordable than the Mars Rover (Volpe et al., 1996), 

could serve to obtain high-density measurements of important soil attributes, including N, P, C 

and H levels. However, such a system would have to be affordable to a North American farmer 

and sufficiently robust to operate in uneven field surface conditions.  

 

The best instances of implementing such an approach are associated with a number of 

internationally-known agricultural robotics projects, including: the Autonomous Crop Treatment 

Vehicle, the Weedy Robot and the Weeding Robot, the Autonomous Tractor, the Autonomous 

Christmas Tree Weeder, the Supportive Autonomous Vehicle for AGriculturE, the Autonomous 

Platform and Information System, the Hortibot, and the SlugBot.1 However, to the best 

knowledge of the author of this thesis, no automated soil mapping or soil sensing systems for 

agriculture have been reported. Therefore, it would be very interesting and equally valuable to 

design and develop such a sytem.  

 

1.2 Statement of Rational Objectives of the Research 

 

1.2.1 Statement of Rationale 

 

It is clear from the above discussion, that SSM is an ongoing field of research. Advancements in 

SSM technologies and techniques are expected to optimize and improve the current benefits. PSS 

is a new and independently growing discipline. Current engineering research in PSS mainly 

focuses on the use of appropriate proximal soil sensors, their signal processing and data 

interpretation. Advancements in an automated mobile soil data acquisition platform seek to 

develop diverse sensor fusion and real-time control algorithms, where automation is expected to 

enhance the efficiency of the platforms used in collecting soil information. Unmanned mobile 

soil instrumentation is a potential solution where it is crucial to collect sensor measurements on 

time, where health of human labour is at risk and data misinterpretation and financial losses are 

undesirable. However, the challenge of choosing the most suitable soil data acquisition platform, 

                                                           

Available at http://www.unibots.com/Agricultural_Robotics_Portal.htm 
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soil sensor fusion algorithm and strategies for soil information collection continue to be “hot” 

topics in this discipline. 

 

1.2.2 Objectives of the Research 

 

The overall objective of this research is to develop an on-the-spot soil analyser to enhance and 

advance proximal soil sensing technologies. 

 

The specific objectives are as follows: 

 

1. To develop and evaluate an on-the-spot soil analysing platform for in situ measurements of 

NO3
- and H+ ion activity (Chapter 3); 

 

2. To analyse the capability of visible-near-infrared and mid-infrared spectral data to determine 

soil texture, soil C and soil total P (Chapters 4, 5, 6 and 7); and 

 

3. To develop a methodology for the clustering of high-density proximal-sensing soil data 

(Chapter 8). 
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Chapter 2 

 

 

GENERAL REVIEW OF LITERATURE 

 

2.1 Site Specific Management (SSM)  

 

At present SSM is practised using a group of technological tools viz: Global Navigation Satellite 

System (GNSS), Geographical Information System (GIS), Remote Sensing, Yield Monitoring 

and Mapping, Variable Rate Technology, Navigation, Auto-Guidance and Autonomous Systems, 

Soil Sampling and Mapping, and PSS (Blackmore, 2002; Viscarra Rossel and McBratney, 1998; 

Khosla, 2008; Viscarra Rossel et al., 2010). These will be discussed briefly here. 

 

2.1.1 Global Navigation Satellite System (GNSS)  

 

Global Navigation Satellite System is one of the key technologies used in SSM. United States 

NAVSTAR Global Positioning System (GPS) and the Russian GLONASS are global operational 

GNSS’s. GPS receivers with sufficient accuracy are available at moderate cost and are used for 

yield mapping, grid sampling, variable rate application, and other precision activities 

(Nemenyi et al., 2003). Position accuracies to within centimetres are achievable by choosing 

advanced systems specially equipped with error correction hardware, such as Real Time 

Kinematic (RTK) or Differential (D) GPS. 

 

2.1.2 Geographical Information System (GIS) 

 

Geographical Information System is the soft platform used to save and handle spatial 

information electronically. The GIS makes it possible to generate a complex view of agricultural 

fields and to make valid agro-technological decisions (Pecze, 2001). GIS application software 

enables the farmer to assemble and organize different sources of site-specific and geographical 

information in various layers.  
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2.1.3 Remote Sensing 

 

Remote sensing is a popular technology used for acquiring information about the earth’s surface 

from far away. This is done by recording the electromagnetic (EM) energy, which is either 

reflected or emitted from the earth's surface. The information is then processed, analyzed, and 

used to develop prescription maps for variable rate applications (Grisso et al., 2011). Satellite 

images have been beneficial for the acquisition of information on large areas; however, by 

placing optical sensors on agro-vehicles or beneath unmanned aerial vehicles (UAVs), it is 

possible to map relative crop reflectance’s at small scales (Adamchuk et al., 2003). 

 

2.1.4 Yield Monitoring and Mapping 

 

The crop itself is the best sensor of its environment (Khosla, 2008). Yield monitors are a logical 

first step for those who want to begin practicing SSM and yield maps form a very important 

element in PA technologies (Blackmore 2000 and 2003). A yield map in combination with other 

gathered soil and crop attributes is intended to give the user an accurate assessment of how yields 

vary within a field (Fridgen et al., 2004).  

 

2.1.5 Variable Rate Technology 

 

Variable Rate Technology (VRT) involves equipment with the ability to modify the application 

rate as it moves across the field (Adamchuk and Mulliken, 2005). VRT adjusts pesticide, 

herbicide and seeding application rates, as necessary. Gandonou (2005) showed that variable rate 

fertilizer application results in increased yields. On fields with high spatial variability, Variable 

Rate Application (VRA) resulted in significantly lower environmental N losses when compared 

to uniform rate applications (URA) (Roberts et al., 2001). 

 

The two basic technologies for VRA are map-based and sensor-based. Map-based VRA adjusts 

input application rates based on a prescription map. Sensor-based VRA requires neither a map 

nor positioning system. Sensors on the applicator measure soil properties or crop characteristics 

“on-the-go”. A feedback system calculates the input needs of the soil or crops and transfers the 
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information to a controller, which delivers the input to the location measured by the sensor 

(Grisso et al., 2011).  

 

2.1.6 Navigation, Auto-Guidance and Autonomous Systems 

 

Based on machine operator functionalities, guidance systems are classified as guidance aides or 

autonomous systems. Guidance aides refer to systems that provide guidance information to the 

operator without replacing the operator (Blackmore, 2003; Ima and Mann, 2004). One of the 

more recently developed and most broadly adopted methods to reduce guidance error is the 

light-bar technology, which assists the machine operator in driving while minimizing application 

errors of overlaps and skips and reducing operator fatigue. 

 

Another rapidly expanding technology is the auto-guidance (also called auto-steering) which is 

based on the use of GNSS receivers to perform field operations in a strict geometrical 

relationship with a previous travel path or other predefined geographical coordinates, without 

direct inputs from an operator (Easterly et al., 2010). Auto-guidance systems, when adopted by 

producers, can improve field operations and management practices. For example, the producers 

can reduce skips and overlaps, save on fuel and labor costs, better manage seed, fertilizer and 

chemical inputs, simplify operations, and even add hours to the day during critical operating 

windows (Abidine et al., 2004; Griffin, 2009; Winstead, 2010). However, the auto-guidance 

systems available to producers have different sets of interfaces and sensor configurations and 

their performance is frequently associated with an anticipated level of auto-guidance error, 

usually referred to as cross-track error (XTE).  

 

Human capacity is limited in its ability to handle multi-sourced, simultaneous information and 

the introduction of miniature robots to perform agricultural tasks autonomously may prove to be 

a realistic option for farmers of the future (Blackmore et al., 2002; Blackmore et al., 2005; 

Haapala et al., 2006). These robots may perform tasks such as scouting for weeds and diseases, 

yield and field mapping, or plant specific operations like sowing and fertilizing (Shockley, 

2010).  
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2.1.7 Soil Sampling and Mapping 

 

Different levels of nutrients and a variety of soil types are common features in agricultural soils 

(Sparks, 2003). Conventionally, soil sampling and laboratory testing is the best way to identify 

these differences. Both grid and directed sampling are used to evaluate soil properties for the 

management of variable rates of fertility.  

 

Gathering data from soil samples to create a soil map is a relatively expensive and time 

consuming task but provides valuable information for future fertilizer treatments and the design 

of decision support systems (Adamchuk et al., 1999; McBratney et al., 2003; Ping and 

Doberman, 2003; Dobermann et al., 2004).  

 

2.1.8 Proximal Soil Sensing 

 

Proximal soil sensing is a set of technologies developed to measure the physical, chemical and 

biological properties of soil using a sensor placed in contact with, or at a proximal distance (less 

than 2 m), to the soil being characterised (Viscarra Rossel et al., 2011). The technology uses 

sensors based on various working principles such as electrical, mechanical, optical, chemical, 

acoustic, etc. to detect or measure the target soil property. As illustrated in Fig. 2.1, PSS is 

classified into ten categories that are based on the mode of operation, (mobile/static), 

measurement type and environment (invasive/non-invasive/in situ/ex situ), use of external energy 

source (passive/active) and inference type (indirect/direct). 

 

Among the categories, mobile operation can be advantageous only if sensor response time is 

faster then the speed of data collection. Direct inference sensors have advantages over the 

indirect ones due to the need to develop calibration models using laboratory analysed data. 

However, conventional soil sampling and laboratory analysis is necessary for developing and 

calibrating the calibration models, and the number of representative soil samples used in this step 

is expected to decline over time (Viscarra Rossel et al., 2011).  
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Fig. 2.1 Classification of PSS Systems (modified from Viscarra Rossel et al., 2011) 

 

From the above discussion, it is clear that the development of sensors and sensing platforms are 

expected to increase the efficiency and effectiveness of precision agriculture. Sensors developed 

for on-the-go measurements of soil properties have the potential to provide benefits due to the 

increased density of measurements collected at a relatively low cost and in a very short time. 

 

2.2 PSS Sensors 

The three sensing principles most widely used for PSS (Adamchuk et al., 1999; Viscarra Rossel 

et al., 2011) are as follows: 

 

2.2.1 Potentiometry 

 

Fig. 2.2 illustrates an ion-selective electrode (ISE) system used in a wide variety of applications 

for determining the concentrations of various ions in aqueous solutions. ISE's have proven to be 

the most advantageous, convenient and rapid field type measuring systems available. A wide 

range of ISEs measuring levels of soil anions and cations such as NO3
-, K+, Na+ and pH are 

commercially available (Adamchuk et al., 1999; Viscarra Rossel, 2001; Sethuramasamyraja, 

2006). PSS using potentiometric sensors is currently an active area of research with particular 

focus on the development of mobile soil pH, lime requirements, and nutrient sensing (e.g. 

Viscarra Rossel and McBratney, 1997; Adamchuk et al., 1999; Viscarra Rossel et al., 2005). The 

development of phosphate ion selective electrodes still constitutes a part of many vigorous 

research projects being carried out around the world and the development of a phosphate 
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ion-selective probe using cobalt electrodes has shown promising results (Kim et al., 2007; Kim 

et al., 2009) and suggests the need for further research. 

 

 

Fig. 2.2 Ion-selective electrode setup used for measuring ion activities in soil solutions 

 

2.2.2 Soil Spectroscopy 

 

A common technique which uses optical reflectance for PSS, relates to the use of soil visible 

(vis), near-infrared (NIR) and mid-infrared (mid-IR) spectroscopy (Viscarra Rossel et al., 2011). 

Viscarra Rossel et al. (2006b) provide a summary of vis/NIR/Mid-IR spectroscopy 

measurements in soil as well as a discussion of the basic principles.  

 

Interest in using reflectance spectroscopy (Fig. 2.3) to measure soil properties is widespread 

because the techniques are rapid, relatively inexpensive, require minimal sample preparation. In 

addition, they are non-destructive, require no hazardous chemicals, and several soil properties 

can be measured from a single scan (Viscarra Rossel et al., 2006a). Vis/NIR/mid-IR 

spectroscopy has been used successfully to quantify soil texture, soil organic matter, moisture, 

total C, total N, available P and cation exchange capacity (Dalal and Henry 1986; Chang et al., 

2001; Viscarra Rossel et al., 2006b). 
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Fig. 2.3 A simple illustration of measuring of soil optical reflectance 

 

2.2.3 Electrical Conductivity 

 

Two popular methods for mapping soil electrical conductivity are based on the use of 

electromagnetic induction (EMI) (Fig. 2.4a) (Kitchen et al., 1996; Sudduth et al., 2001; 

Anderson-cook et al., 2002) or a contact electrode (Fig. 2.4b).  

 

  

Fig. 2.4 Apparent soil electrical conductivity measurement (ECa) setups: (a) non-contact type, 

(b) contact type 

* Image source: Davis et al. (1997) ; ** Image source: Grisso et al. (2009) 
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Both systems show similar results (Doerge et al., 2002). Corwin and Lesch (2005) provide a 

comprehensive review of the historical development of EC measurements in agriculture as well 

as a discussion of basic principles, different geophysical techniques for measuring EC, mobile 

EC measurement equipment and applications to SSM. 

 

2.3 PSS Platforms 

 

There are two mobile-operated PSS sensing platforms that directly relate to this study: 

’on-the-go’ and ‘on-the-spot’ sensing. 

 

2.3.1 On-the-Go Sensing 

 

A prototype automated soil pH mapping system (Adamchuk et al., 1999) was developed to 

obtain high resolution measurements of soil pH at a relatively low cost. While traveling across 

the field, a soil sampling mechanism located in a toolbar-mounted shank scooped a sample of 

soil from a depth of approximately 0.10 m and brought it into firm contact with the sensitive 

membranes of two flat-surface, ion-selective electrodes. After stabilization of the electrode 

output (typically 5 to 15 s), the electrode surfaces were rinsed while a new soil sample was being 

obtained. Christy et al. (2004), modified the soil sampling mechanism by using a horizontal 

coring tube, which allowed reliable sampling in diverse conditions. A commercial system 

utilizing this method has been available since 2003 (Veris Technologies, Inc., Salina, Kansas, 

USA).  

 

A prototype laboratory and field portable multi-ion measuring system (MIMS) for proximal 

sensing of soil NO3
-, K+ and Na+ using ISEs is reported by Lobsey et al. (2010). The technique 

involves the use of a universal extracting solution for rapid estimation of soil extractable nutrient 

concentrations and provides in-field soil nutrient analysis in less than 30 seconds. The 

measurement process performs ISE calibration, temperature compensation, and soil analysis with 

nutrient estimation in a fully automated manner. 
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A commercially available on-the-go, multi-soil property mapping platform (Veris® MSP32, Veris 

Technologies, Inc., Salina, Kansas, USA) uses a combination of soil electrical conductivity 

sensors and optical sensors operating underneath crop residue and the soil surface and pH 

electrodes. Variability in soil texture, soil organic matter and pH can be mapped using a sensor 

fusion approach.  

 

Equipment developers have used either, hydraulically-powered, or hybrid-powered systems and 

components that are both bulky and noisy and could limit the usage of smaller sized vehicles. 

The sensor detectors directly contact the soil surface and cause undesirable damage to the field 

across the travel path. The necessity for continuous engagement between soil and sensor can 

therefore be the limiting factor for its use especially in pasture. It would also be ideal if the 

operating mechanism could run using small, clean, electrically-powered systems and 

components. 

 

2.3.2. On-the-Spot Sensing 

 

Contrast to on-the-go, ruggedized mobile based platforms carrying vis-NIR spectroscopic 

instruments and integrated soil sensing probes for collecting point measurements in the field 

have been developed (Veris® P40003, Veris Technologies Inc., Salina, Kansas USA). The P4000 

(Fig. 2.5) consists of a dual type spectrometer instrument, operating in the visible and 

near-infrared regions of the spectrum. The advantage of the P4000 system is its ability to 

simultaneously collect multi-sensor measurements of soil including vis-NIR soil reflectance. Soil 

electrical conductivity (EC) and soil penetrating resistance (forces) are the two other types of 

measurements that can be performed using the Veris P4000 in soil profiles up to depths of 100 

cm. Numerous soil attributes can be predicted indirectly by using the sensor based measurements 

compared against conventional laboratory analysed data (Hodge and Sudduth, 2012; Dhawale et 

al., 2013b; Wetterlind et al., 2013; Piikki et al., 2014). 

                                                           

2 Mention of a trade name, proprietary product, or company name is for presentation clarity and does not imply 

endorsement by the authors or McGill University, nor does it imply exclusion of other products that may also be 

suitable. 
3 Mention of a trade name, proprietary product, or company name is for presentation clarity and does not imply 

endorsement by the authors or McGill University, nor does it imply exclusion of other products that may also be 

suitable. 
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The P4000 is only available for research purposes. In its current modification it uses an array of 

sensors that indirectly infer the soil properties being measured. The equipment is operated using 

a heavy pick up truck that can be difficult to manoeuvre between transects in rough terrains and 

can cause compaction across the travel path during wet seasons. The system requires at least two 

skilled personnel: a driver and an operator which may increase the cost of data collection. A 

multi-soil property mapping platform, manoeuvered using an all terrain vehicle and equipped 

with a fully automated data collection procedure will advance PSS technologies. 

 

 

 

Fig. 2.5 The Veris® P4000, and its key components 

 

2.4. Analysing PSS Data 

 

The post-collection challenge of high-density PSS data is to group the information and delineate  

a chosen agricultural field into various management groups related to the measured soil 

properties. To pursue various SSM practices, spatial data is frequently split into groups (clusters 
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or zones) to represent significantly different growing conditions (Fraisse et al., 2001; Ping and 

Dobermann, 2003). Geo-spatial data clustering is an important process (Li and Wang, 2010), 

which is widely used in remote sensing (Deng et al., 2003), neuroanatomy analysis 

(Prodanov et al., 2007), and other areas.  

 

Several different spatial clustering algorithms have been developed to group geospatially dense 

PSS-based measurements of soil attributes into management zones. For example, Management 

Zone Analyst (MZA) (Fridgen et al., 2004) represents a publicly available tool accepted by a 

number of practitioners. The algorithm is based on computing a distance matrix and performing 

clustering over this new distance matrix. It is closely related to the popular k-means clustering 

algorithm, where quality of the resulting clusters depends heavily on the selection of initial 

centroids and the results are not repeatable. However, this method requires cross-validation to 

select the best among several runs (Abdul-Nazeer and Sebastian, 2009). Although the method 

allows multidimensional data analysis, complexity and frequently occurring discontinuities of 

management zones make this technology non-robust for potential users (Shatar and McBratney, 

2001; Kerby et al., 2007).  

 

From the above discussion, it is evident that a new method for analysing high density PSS data is 

necessary. The new method should be capable of grouping contiguous and homogeneous 

geo-spatially dense measurements into managements groups; since the majority of reported 

methods require a human analyser, introducing automation into the analysis procedure is also 

important. 

 

2.5. Soil Sampling/Sensing Dilemma 

 

Where to measure soil properties using proximal soil sensors depends on the type of the sensor 

(Viscarra Rossel et al., 2011). If the sensor measures the soil property directly and on-the-spot, 

then sampling or sensing problems will be the same as conventional spatial soil sampling 

because it requires optimization of the geographical coverage of the measurements. In this case, 

the sampling problems might relate to the resolution of the measurements or to the response time 
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of the sensor in order to optimize the amount of information collected (Viscarra Rossel et al., 

2011). 

 

If the measurements are made indirectly, a calibration step will be required to predict the soil 

property from the sensor measurements. For such a case, a calibration sampling design to 

optimize coverage of the feature space will be required and ideally, the sampling should cover 

the same geographic space as the calibrations (Adamchuk et al. 2008; Adamchuk et al. 2011a; 

Viscarra Rossel et al., 2011).  

 

de Gruijter et al. (2010) described geographical and feature space sampling with PSS for 

fine-resolution soil mapping. Christy (2008) proposed a sampling design for the calibration of 

vis-NIR spectra collected on-the-go and Adamchuk et al. (2008) and Adamchuk et al. (2011b) 

compared designs that consider both geographic and feature space, field boundaries and other 

transition zones.  

 

In summary, if PSS is used to measure a soil property directly and using an on-the-spot 

technique then the sampling or sensing problems will be the same as with conventional soil 

sampling. If PSS is used to measure the soil property indirectly using an on-the-spot technique 

then further research is required to develop optimal calibration sampling designs. 
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Connecting Text for Chapter 3 

 

The role of proximal soil sensing techniques for in-field soil nutrient analysis and the literature 

relating to the existing research in this area were thoroughly described in the previous chapters. 

Chapter 3 is related to the first objective listed in Chapter 1. This chapter discusses the principle 

used, development and field testing of a portable and automated On-the-spot Soil Analyser 

(OSA). The OSA uses an array of potentiometric sensors and can simultaneously determine ions 

such as H+ and NO3
- on-the-spot. The technology is expected to provide an opportunity to extend 

the suite of deployable sensors and thus, allow for sensor fusion algorithms and integrated data 

acquisition practices. Different parts of this study were presented at the conferences listed below 

and a manuscript has been prepared for submission to the “Computers and Electronics in 

Agriculture Journal”. 

 

Dhawale, N.M., F. Rene-Laforest, V.I. Adamchuk, & S.O. Prasher. 2014. Development and 

evaluation of an automated on-the-spot soil analyser (OSA) for proximal soil sensing. 

Computers and Electronics in Agriculture Journal (to be submitted). 

Adamchuk, V. I, Dhawale, N.M., & F. Rene-Laforest. 2014. Development of on-the-spot soil 

analyser for measuring soil chemical properties. In: proceedings of 12th International 

Conference on Precision Agriculture, July 20-23, 2014, Sacramento, California, USA.  

Dhawale, N.M., V.I Adamchuk, S.O. Prasher, J.K. Whalen, L. Pan, & A.S. Mat Su. 2013. Rapid 

measurement of nitrate ion activity using a direct soil sensing approach. In: Poster of 

Scientific Program of CSSS/MSSS/CSAFM Joint Meeting, Winnipeg, Manitoba, 21-25 July 

2013, 99. Winnipeg, Winnipeg, MB, Canada.  

Dhawale, N.M., V.I Adamchuk, & S.O. Prasher. 2012. A review on electro-chemical sensors for 

real-time mapping of agriculture soil nutrients on-the-go. In: poster of Integrated Sensor 

Systems (ISS) Training program, Summer School Event. University of Montreal, Montreal, 

QC. Canada. 

Adamchuk, V.I., Dhawale, N.M., Rene-Laforest, F., Prasher S.O., & Pouliot, A. 2014. On the 

Spot Soil Analyser. US Patent Application No. 14/494,719. 
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Chapter 3 

 

 

DEVELOPMENT AND EVALUATION OF AN AUTOMATED ON-THE-SPOT SOIL 

ANALYSER FOR PROXIMAL SOIL SENSING 

 

Dhawale, N., V.I. Adamchuk, S.O. Prasher, F. Rene-Laforest 

 

 

Abstract  

 

The goal of this research is to develop an On-the-spot Soil Analyser (OSA) capable of 

simultaneously deploying several different sensors to measure soil properties at a predefined 

depth. The mechanism developed is able to rapidly remove topsoil, condition the soil surface and 

bring the designated sensors into direct contact with the soil. After the measurements are 

obtained and the geographical coordinates are recorded, the sensors are retrieved and the 

analyser is raised slightly above the ground surface. The distorted area is restored and the 

analyser is converted back to transportation mode making it ready for the next set of 

measurements. Unlike other systems, this mechanism allows for the deployment of multiple 

sensors at a given measurement depth and in a completely automated mode of operation. This 

technology should provide an opportunity to extend the suite of deployable sensors and to 

automate the process, thus, allowing for advanced sensor fusion algorithms and integrated data 

acquisition practices.  

 

Keywords: Proximal soil sensing, ion-selective electrodes, autonomous vehicles, soil pH, 

nitrate 
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3.1 Introduction 

 

Sensor systems have been widely used to obtain information on soil physical, chemical and 

biological attributes. Depending on the distance to the target, existing sensing platforms are 

remote (aerial and satellite-based systems) or proximal, (placed in contact with soil or at a 

distance of less than 2 m) (Viscarra Rossel et al., 2011). Unlike conventional soil sampling and 

laboratory analysis, many proximal soil sensing (PSS) systems have been developed to obtain 

data which reveals spatial (horizontal and vertical) as well as temporal changes in selected soil 

properties. Thus, PSS reduces the number of soil samples needed for follow-up measurements of 

soil attributes required by traditional techniques. 

 

PSS-based data have been used in agriculture, construction, ecology, archaeology, and other 

important activities. PSS measurements can be combined with geographic coordinates to create 

geographical maps. With different instruments that are based on electrical, electromagnetic, 

optical, radiometric, magnetic, seismic, mechanical, acoustic, electrochemical and other 

measurement techniques, it is possible to better understand spatial and temporal soil 

heterogeneity. Due to the complex nature of soil, sensors respond to a variety of soil properties 

and this leads to the need for sensor fusion (Adamchuk et al., 2011b). By combining different 

data sources (including remote sensing and destructive soil sample analysis), it is possible to 

increase the quality of the information obtained, while minimizing costs. 

 

One of the most attractive approaches is to create high-resolution thematic soil maps using 

sensor systems that are moved across landscapes (Hummel et al., 1996; Sudduth et al., 1997; 

Adamchuk et al., 2004; Shibusawa 2006). These on-the-go soil sensors make periodic 

measurements while traveling across the terrain and they associate each measurement with 

geographic coordinates. The main disadvantage of on-the-go sensing is the limited time allowed 

for each measurement and, when using contact techniques, soil distortion is created along the 

entire path. This is especially relevant to mapping soil chemical attributes using potentiometry, 

as shown in Fig. 3.1. According to Adamchuk et al. (1999), this method requires the collection 

of a small amount of soil from a predefined depth and bringing it into contact with a combination 

of ion-selective electrodes (ISEs). In a typical commercial operation, an average 12s per 
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measurement allows for more than 20 measurements per hectare while operating at 10 km h-1 in 

parallel passes 15 m apart. 

 

 

Fig. 3.1 The Veris® Mobile Sensor Platform (MSP) 

 

As an alternative to on-the-go mapping techniques, on-the-spot measurements can be made in 

situations where spatially sporadic test locations are needed or soil coverage does not allow for 

the continuous engagement of soil and parts of the sensor system (e.g., pasture). For example, the 

instrumented manual probe developed by Adamchuk (2011) shown in Fig. 3.2 can be used to 

make real-time measurements of soil pH, soluble K, or residual NO3
- (depending on the type of 

ISE) while walking the test area. An all-terrain vehicle (ATV) mounted with equipment (Fig. 

3.3) can be used to make similar measurements in a consistent and more ergonomic manner. In 

both cases, equipment has been limited to only one electrode and needs an operator to conduct 

the test. 

 

The aim of this paper is to report on the development of an on-the-spot soil analyser capable of 

simultaneously deploying several different sensors to measure soil properties at a predefined 

depth using preconditioned soil surface in contact with the sensors. This technology should 
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provide an opportunity to extend the suite of deployable sensors and to automate the process, 

thus, allowing for advanced sensor fusion algorithms and integrated data acquisition practices. 
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Fig. 3.2 Instrumented manual probe for on-the-spot soil ion measurements  

 

 

Fig. 3.3 The Veris® pH Detector (http://www.veristech.com) 
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3.2 Materials and Methods 

 

3.2.1 Electrode Selection 

 

Although the OSA should be suitable for different types of sensors, enhancing the 

electrochemical in situ measurement capabilities appears to be the most worthwhile. Compared 

to other PSS solutions, electrochemical sensors are direct when measuring the concentration of 

specific ions in a soil solution. The most common technique is to measure soil pH, although the 

use of ISE's for measuring other ions is also common in environmental monitoring applications. 

Various prototypes have been developed to use ISEs and ion-selective field effect transistors 

(ISFETs) to map soil pH, lime requirements and macro-nutrients (e.g. Adamchuk et al., 1999; 

Adsett and Zoerb 1991; Birrell and Hummel 2001; Sibley et al., 2009; Viscarra Rossel and 

McBratney 1997; Viscarra Rossel et al., 2005). Kim et al. (2009) provide a recent review of 

relevant innovations. ISEs are potentiometric sensors that use ion-selective membranes to 

determine the concentration of the target species in a solution surrounding the membrane. During 

measurements, an electromotive force is generated at the sensing surface proportional to the log 

of the ion activity. This electromotive force is measured using a reference electrode (liquid 

junction). Many ISEs (e.g., pH, NO3
-, Na+, K+ and Ca2+) are commercially available.  

 

Alternatively, ISFETs combine ISE technology with that of the field effect transistor. The key 

advantages of pH ISFETs over standard glass pH electrodes are their small size, increased 

durability, fast response, and the ability to be mass produced using microelectronic 

manufacturing techniques (Viscarra Rossel et al., 2011). ISFETs can be chemically modified to 

produce CHEMFETs, which are selective for different ionic species. CHEMFETs selective for 

NO3
-, K+ and Ca2+ have been developed and evaluated for use in soil nutrient sensing (Artigas et 

al., 2001; Adamchuk et al., 1999; Adsett and Zoerb 1991; Birrell and Hummel 2001; Kim et al., 

2009; Sibley et al., 2009; Viscarra Rossel and McBratney 1997; Viscarra Rossel et al., 2005). 

Finally, metal electrodes are also being explored for PSS applications to address a need for 

increased physical durability. Antimony electrodes are being researched as a durable alternative 

to glass when used in direct contact with soil pH measurements (Adamchuk and Lund 2008; 
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Viscarra Rossel and McBratney 1997). Cobalt rod-based ISEs for measuring soil phosphates 

have been explored by Kim et al. (2007).  

 

3.2.2 System Development 

 

To successfully deploy any electrochemical sensor, the OSA should: 1) remove cropping 

material and topsoil to expose soil at a given depth, 2) apply water or a salt solution when 

necessary, 3) bring all the electrodes into gentle, yet firm, contact with the wet soil surface, 4) 

analyze sensor response to predict a steady-state output, 5) record geographic coordinates along 

with the sensor output, 6) retrieve and wash the sensors, and 7) cover the exposed area. The 

entire process should be safe, automated and suitable for different vehicle platforms. This 

requires a compact design, light in weight and using 12V DC power supply.  

 

Based on these requirements, a conceptual design was formulated as shown in Fig. 3.4. Two 

virtual circles C1 (radius = 14 cm) and C2 (radius = 61 cm) together represent the geometry of 

the soil removal and preparation unit while interacting on a given soil layer S. The radius for C1 

and C2 were chosen based on the necessity of exposing soil depths of up to 12 cm and the 

potential constraints exhibited by the electro-mechanical components.  

 

Smaller circles C1 and C1' represent the soil cutter tool with two blades mounted opposite each 

other and denominate the start and end positions, respectively. The larger circle (C2) represents 

the feeder for the soil cutter tool. The center of C1 is fixed eccentrically away from C2 at a 

distance of 47 cm. This virtually allowed C1 to roll freely inside C2; however, the limits were set 

so it can roll only within angles < 90° (transportation mode and the sensor deployment mode). 

The angle between positions C1 and C1' varies between 0°-45° and depends on the soil depths to 

be exposed. For example, to remove soil material up to depths of 8 cm, C1 needs to be moved 

through an angle ~ 30°. The shaded portion shown inside the polygon ABcaA, represents the 

material removed from the soil layer S. Since the area of the circular segment is equal to the area 

of the circular sector minus the area of the triangular portions, for a given geometry the total area 

of the shaded portion can be estimated, and the volume can be estimated later depending on the 

width of the cutter tool. Provided the soil bulk density in g cm-3 is known (Saxton et al., 1986), 
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the total mass of the removed soil can be estimated, for a range of expected soil textures. A blade 

width of 9-cm was used in this case, and was based on the constraints exhibited by the size of 

present and future deployable sensors.  

 

 

Fig. 3.4 The conceptual design of OSA 

 

In concept C1 and C2 are the two virtual circles, but in practice some means of power is needed 

to drive those circles. To understand the power specifications of electrically driven geared 

motors, a small simulation was done to estimate the expected soil mass removed for the given 

geometry. As illustrated in Fig. 3.5, removal of dry soil mass was found to range between 

3000-5000 g. However, in field conditions under varying soil texture and moisture levels it was 

found that removal of naturally moist soil may reach up to 13000 g. Considering the design 

requirements: compact design, light in weight and the need for 12V electrically powered 

components, removal of such large qualities of soil material all at once may not be a feasible 

option and therefore, a soil removing strategy was desired.  

 

For example, if a 30 second time frame is allocated to expose soils up to 12 cm depths, then a 

minimum of 4 mm s-1 tool feed rate is required. Since only two cutting blades were used to allow 

space for sensor deployment, it was important to consider the cutting blade impact rate. On the 
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other hand soil is a complex material and based on its mineralogy, soil organic matter and 

moisture content, the physical properties may vary significantly in time and space.  

 

Theoretically, it was very unpredictable to know the exact number of blade impacts required to 

break and slice a soil thickness of 4 mm and therefore, a trial and error approach was used to 

estimate the maximum RPM requirements of the cutter. In the initial design, a 150 RPM geared 

motor (5 impacts per turn) was found insufficient to expose saturated sandy and clay soils within 

the allocated time frame. A better performance was observed when using a 300 rpm geared 

motor (10 impacts per turn) and was further improved by selecting the cutter rotation counter 

clockwise to that of the feeder. Therefore, a strategy of feeding the tool in steps of 4 mm s-1 and 

by operating the cutter at up to 300 rpm was used.  

 

Fig. 3.5 Simulated results illustrating the potential ranges for soil material to be removed 

 

This provided more time for the cutter to break, cut, and slice the soil before it could progress to 

the next depth. Finally, to provide optimum performance of the cutter in potentially varied soil 

moisture and textural environments, an additional torque was provided by adding another similar 

motor in series.  
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Using the conceptual design and trial and error experiments, the present prototype OSA system 

was developed as shown in Figures 3.6 and 3.7. It includes the following components: 1) soil 

preparation mechanism 2) sensor deployment mechanism, 3) electrode rinsing system, 4) 

sensors, 5) data acquisition and control system, 6) a guard and 7) supplementary and optional 

components. The system was designed for mounting on an ATV, SUV, or pickup truck using a 

standard hitch.  

 

Fig. 3.8 illustrates the complete set of electro-mechanical devices used to operate the OSA 

mechanisms. The soil preparation mechanism was constructed using two cutting blades attached 

to opposite sides of two parallel discs rotated using a gear box (ToughBox Mini, AndyMark, 

Inc., Kokomo, Indiana, USA) driven by two 12 VDC powered motors (2655 rpm, 337 W, 

AndyMark, Inc., Kokomo, Indiana, USA). A gear ratio of 8.45:1 was adopted to produce a 

maximum torque of 20 Nm at 314 rpm. These discs were mounted using a special pivoted 

bracket. A 12 VDC powered linear actuator (45-cm stroke, Robotzone, LLC, Winfield, Kansas, 

USA) was used to move the pivoted part of the bracket to displace the discs up and down along a 

less than quarter-circle arch.  

 

A hybrid control system consisting of relay drivers and relays, limit switches and servo-drivers, 

was used to match the speed of operation to different field conditions (Figures 3.9, 3.10 and 

3.11).Due to the fact that the two discs were mounted using two separate short shafts, the space 

between the discs (width 10 cm and radius 5 cm.) could be used to deploy the sensors without 

retrieving the soil preparation mechanism.  

 

To assure the blades were in their horizontal position when the rotation was stopped, an 

additional dedicated feedback control circuitry using two servo speed controllers (900 W, 

Talon-Cross the Road Electronics, AndyMark, Inc., Kokomo, Indiana, USA) and a continuous 

turn potentiometer (200 KΩ, Precision Sales and Equipment Inc., Newtown Square, 

Pennsylvania, USA) was implemented on a microcontroller platform (Arduino Uno, Interaction 

Design Institute, Ivrea, Turin, Italy). Figures 3.10 and 3.11 illustrate the schematics of the wiring 

diagrams used to control the two mechanisms. 
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Fig. 3.6 On-the-spot Soil Analyser (OSA) in 3D 

 

 

 

Fig. 3.7 Prototype On-the-spot Soil Analyser (OSA) 
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Fig. 3.8. The Key electronic components 

 H+, and NO3,  
Ion-selective electrodes  

NI USB 6216 

Custom LabView Interface 

Relay driver 

PWM speed controller 

Drill motor  

Limit switch 

12V DC car 
battery 

12V DC relay 

12V DC high 
speed linear 

motor 

12V DC heavy 
duty linear 

motor 

12V DC pump 

12V DC 
solenoid valve 

Magnetic reed switch 
digital input from drill 

motor 

Potentiometer analog 

input from linear motors 

5V 

cable 

5
V 

5
V 

GPS Receiver 

12V 

NI My DAQ 

GND 

GND 

Potentiometer 

USB 

Pre-Amplifier 

USB 

USB 



 30 

 

Fig. 3.9 DAQ card to relay-driver interfacing diagram 

 

 

 

Fig. 3.10 Control wiring diagram of the transportation mechanism 
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Fig. 3.11 Control wiring diagram of the soil preparation mechanism 

 

Fig. 3.12 shows the schematics of the wiring used to control a high speed 12 VDC powered 

linear actuator (45 cm stroke, Progressive Automations, Richmond, British Columbia, Canada) 

which was used to vertically insert the sensor deployment unit between the two discs and retrieve 

it after the measurements (Fig. 3.13).  

 

 

Fig. 3.12 Control wiring diagram of the sensor deployment mechanism 

Abbreviation Component 
AI1 Analog input 1 
D+/- Data 
GND Ground 
M1 Motor 1 
M2 Motor 2 

PWM 
Pulse width 
modulation 

 

Abbreviation Component 
LSx Limit Switch 
M Motor 

RLYx Relay 
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The sensor holding part of the mechanism matches the dimension of the sensor and in its current 

modification, it was designed to house three combination ion-selective electrodes with an outside 

diameter of 12 mm. The “gentle” action required to preserve the fragile sensor membranes was 

achieved using a spring mounting (< 30 g force). 

 

 

Fig. 3.13 Illustration of the deployed sensing array between the two discs 

 

A flat surface-single junction glass pH electrode (Cole-Parmer, Chicago, Illinois, USA) and a 

antimony pH electrode (Veris Technologies, Inc., Salina, KS, USA) were used to measure soil 

acidity, while a nitrate ISE (detectIONTM 3021BN, Nico Scientific, Inc., Huntingdon Valley, 

Pennsylvania, USA) was used to measure soil NO3
- activity. The sensor output signal 

impedances were matched to the input impedance specifications of the data acquisition hardware 

by connecting active unity gain pre-amplifier circuits (PHTX-22, OMEGA Engineering, Inc., 

Stamford, Connecticut, USA) in series.  

 

To avoid sensor-reference cross interference induced by "ghosting", individual sensor analog 

outputs were measured using independent data acquisition cards. To avoid vehicle system 

induced noises, the pre-amplifiers were powered independently using a set of AA 12V battery 

packs. The detailed wiring diagram is illustrated in Fig. 3.14. 

Deployed 

sensors between 

disc space 

Spring loaded 

sensors during 

measurement 

Prepared soil 

sample surface 

Horizontal stop 
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Fig. 3.14 Wiring diagram of the soil sensing array and the data acquisition unit 

 

Abbreviation Component 
AIx Analog Input 

BATx 12V Battery 
pH1 Antimony 
pH2 Glass 
pN PVC 

PHTX-22 Pre-Amplifier 
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To restore the exposed surface area, a special guard as shown in Fig. 3.15 was designed. It 

pivoted freely and partially surrounded the side portions of the discs creating adequate space to 

accumulate the soil material that is removed during the soil preparation portion of the 

measurement cycle. The accumulated soil is displaced back to the exposed area when the 

measurement cycle is completed. 

 

 

Fig. 3.15 Illustration of the guard mounted on the bracket 

 

Two jet water nozzles were mounted on both sides of the system for washing the electrodes. A 

50 L water tank was used to store the water and it was pumped using a 12 VDC power pump at 

designated times (to clean the electrodes and to moisten the soil when needed). The component 

wiring diagrams are shown in Figures 3.16 and 3.17.  

 

The OSA operation software (Fig. 3.18) was developed using LabVIEW 12.0 software (National 

Instruments, Austin, Texas, USA). All data acquisition and control functions were performed 

through USB-6216 and MyDAQ data acquisition cards (National Instruments, Austin, Texas, 

USA).  

Guard 

Bolt 

Mounting 

bracket 

Rotating 

discs 

Blade 
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Fig. 3.16 Control wiring diagram of the sensor rinsing mechanism 

 

 

Fig. 3.17 The schematic of the water supplying unit 

 

Abbreviation Component 
RLYx Relay 

 

Abbreviation Component 
pH1 H+ Antimony 
pH2 H+ Glass 
pN NO3

- PVC  
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Based on the control sequence, when the OSA is brought to a new location and the cycle begins, 

the soil preparation unit is displaced downward while removing soil and crop residue until the 

discs with two blades are directly under the set of sensors. After the rotation action is stopped, 

the rinsing nozzles, or additional supply systems, spray water or a specific salt solution onto the 

exposed soil surface to be analyzed according to the needs of the test. When the soil surface is 

ready, all of the sensors are placed in contact with the soil and their responses are recorded and 

analyzed. Once the data acquisition system finds a strong predictability of the steady-state sensor 

output (Adamchuk et al., 1999; Adamchuk et al., 2005; Adamchuk et al., 2006) the resultant 

measurement is estimated, high-frequency signal noise is filtered out and the required parameters 

are calculated. The data are paired with geographic coordinates and time information obtained 

through a global navigation satellite system (GNSS) receiver and saved to a delimited text file. 

When the measurement data are secured, the sensors are retrieved and the soil preparation 

mechanism is raised slightly above the ground surface. The vehicle is moved forward to allow 

the guard to drag the accumulated soil material and refill the exposed area (Fig. 3.19). The 

system is then raised back to transportation mode and the electrodes are rinsed. The system is 

ready for the next measurement location. 

 

 

Fig. 3.18 Illustration of the data acquisition and control interface developed using LabVIEW 
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Fig. 3.19 Illustration of (a) the exposed soil surface and (b) its restoration using the guard 

 

In its current modification, OSA can be adjusted for vehicles with hitches of varying heights and 

different measurement depths down to 12 cm (depending on the type of soil surface). Also, the 

space available for sensor deployment is not occupied completely, allowing for future expansion 

of the number and type of sensors, including optical soil reflectance, machine vision and 

capacitance sensors. We have recently tested a mid-infrared spectrometer and developed a digital 
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a) 

Restored soil 

surface 

Front end  of 

guard 

b) 



 38 

microscope-based sensor system and CO2 gas analyser that could also be deployed using the 

OSA. This would allow for the simultaneous measurement of particle size distribution, soil 

organic carbon content, and the level of biological activity.  

 

The sensor data flow structure is open to the capability to feed a future automatic navigation 

algorithm, which is the ultimate goal of this research. In the case of a completely automated 

vehicle (similar to the widely discussed Mars rover), the system would be able to use real-time 

estimates of soil attributes of interest to modify the travel path and optimize the number of 

measurements in order to better characterize the spatial distribution of these properties and to 

provide the best quality information in the shortest possible time. 

 

3.2.3 System Evaluation 

 

A preliminary system evaluation was conducted to assess the system’s control functionalities. It 

was impossible to make quality comparisons of the measurements obtained with the OSA and in 

the laboratory due to a relatively early start of the subfreezing season. While constructing the 

prototype, two quick tests: one for pH and another for nitrate were performed using the 

instrumented manual probe (Fig. 3.2) equipped with a FieldScout pH 100 meter (Spectrum 

Technologies Inc., Aurora, Illinois, USA) at various research plots of the Lods Research Centre 

(McGill University, Ste-Anne-de-Bellevue, QC, Canada).  

  

To assess performance of a nitrate detectIONTM 3021BN (Nico Scientific, Inc., Huntingdon 

Valley, Pennsylvania, USA) ISE, measurements were performed in an experimental canola field 

divided into sixteen plots, treated with different levels of urea (0, 50, 100 and 150 kg N ha-1). 

Two months after planting, random in situ measurements were taken 6-8 cm below the soil 

surface using the instrumented manual probe (Fig. 3.2). The electrode was calibrated using 

standard potassium nitrate (KNO3) solutions with known NO3
- concentrations. A simple linear 

regression method was applied to determine the relationship between the per plot averages of the 

electrode outputs and the NO3
- concentrations measured using corresponding composite (five 

cores) 15-cm deep soil samples. These samples were analyzed to quantify NO3
- concentrations in 

the laboratory, using a potassium chloride (KCl) extraction procedure (using a ratio, 1:10) and a 



 39 

cadmium reduction colorimetric technique. Estimates of soil water content, sampling depth and 

soil bulk density were used to bring all the measurement to mg kg-1 units.  

 

To asses the performance of an antimony pH electrode (Veris Technologies, Inc., Salina, KS, 

USA) measurements were performed on 10 random locations of seven different research plots 

with suspected variability in soil pH at the end of the crop harvesting season. The instrumented 

manual probe (Fig. 3.2) was used to make measurements 6-8 cm below the soil surface. After 

collecting the measurements, the electrode was calibrated using standard buffer solutions 

(pH 4 - SB101 and pH 7 - SB108) obtained from ThermoFisher Scientific (Waltham, 

Massachusetts, USA). In addition, physical soil samples were obtained as close to the manual 

probe measurements as possible. These physical soil samples were analyzed to quantify soil pH 

levels in the commercial laboratory using standard laboratory procedure (Watson and Brown, 

1998) (measurement of soil pH in 1:1 weight-to-weight soil-water solution). A simple linear 

regression was performed to compare results with those from a commercial soil laboratory. 

 

The system was designed in such a way that it can be operated from the standard hitch of a 

pickup, an all-terrain vehicle, or another platform. If such a platform is autonomous, 

measurements are conducted without an operator’s involvement. Measurement locations and 

density can be either predefined or adjusted in real time to respond to the quality and variability 

of the measurements already obtained at a given site. The system can be used by individuals and 

organizations involved in small-scale soil mapping. Relatively inexpensive and easy to use, the 

system will be attractive to agribusinesses involved in soil fertility management. The low 

destruction approach will make this method applicable to specialty and permanent crop 

environments. An option to conduct measurements automatically can assist in obtaining data in 

hazardous areas without the need for personnel.  

 

3.3 Results and Discussion 

 

The system was able to remove approximately 8 cm (3.1 in) of topsoil under various field 

conditions (Fig 3.20), which provided a suitable surface for electrode deployment. The 
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electrodes could be brought into contact with the soil and rinsed well afterwards. The entire cycle 

could be performed within a 60 s timeframe. According to Fig. 3.21 both NO3
- and pH electrodes 

revealed major differences in corresponding soil properties between different research plots and 

should be suitable for deployment using the developed OSA. Other sensors, including an array of 

portable optical and radiometric instruments, should also be appropriate to be used with this 

system. 

 

Fig. 3.20 Test of the soil preparation mechanism 
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Fig. 3.21 Field tests results: (a) 2011- nitrate ISE 
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Fig. 3.21 Field tests results: 2013 - pH ISE 

 

3. 4. Conclusions 

 

Measurement of soil spatial variability provides important information used for soil cultivation, 

reclamation, remediation and other practices. Soil sampling and ex situ analysis is the most 

popular approach currently in use. Proximal soil sensing is an emerging technology resulting in 

on-the-go mapping of soil characteristics. Lower costs have been one of the main advantages for 

on-the-go sensing methods when compared to on-the-spot solutions. The latter approach has a 

number of technical advantages and the use of robots can make on-the-spot measurements even 

more attractive. Technology for mapping soil pH on-the-go and manually activated on-the-spot 

measurements of soil pH are both commercially available. The on-the-spot soil analyser 

presented in this study illustrates a new mechanism that enables rapid and reliable soil 

manipulation to facilitate the necessary interface between sensors and soil in an automated mode. 

Furthermore, when compared to existing solutions, this method is applicable in difficult soil 

conditions and enables sufficient opening of a subsurface soil area to engage an array of 

proximal soil sensors. For example, this system can carry several ion-selective electrodes (pH, 

nitrate, potassium, phosphorus, etc.), along with a miniature camera for machine vision analysis 

and a spectroradiomer for colorimetric analysis. During each measurement, this mechanism 

b) 
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removes a predefined layer of soil and crop residue and gently brings the sensors into contact 

with the prepared soil surface. When all measurements are stabilized, they are stored along with 

geographic coordinates and time of each measurement. After retrieving and rinsing the sensor 

surfaces, the system can be moved to a different location for new measurements.  
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Connecting Text to Chapter 4 

 

Chapter 4 is related to the second objective of this study listed in Chapter 1. As shown in Chapter 

3, the OSA platform in its current modification makes use of potentiometric sensors to 

simultaneously determine soil pH and NO3
-. As discussed in Chapters 1 and 2, optical sensors 

based on the diffuse reflectance spectroscopy principle can be a complementary choice for 

extending the suite of deployable sensors on OSA. As an example, soil diffuse reflectance 

measurements collected in laboratory using two different field deployment ready vis/NIR/mid-IR 

hyperspectral instruments were evaluated for predicting percentages of sand, clay and soil 

organic carbon. The study was performed on a large archived data set consisting of 282 soils 

originating from agricultural sites in four Canadian provinces. Promising results for measuring 

soil texture in laboratory conditions indicated the potential usage of both systems. The results of 

this study were presented at conferences shown below and at the time this thesis was submitted, 

a manuscript has been submitted to the “Journal of Near Infrared Spectroscopy” as follows: 

 

 Dhawale, N.M., V.I. Adamchuk, S.O. Prasher, R.A. Viscarra Rossel, A.A. Ismail, J.K. Whalen, 

& M. Louargant. 2014. A comparative study between a field deployment ready vis/NIR and 

prototyped mid-IR hyperspectral instrument. Journal or Near Infrared Spectroscopy (under 

review). 

Dhawale, N.M., V.I. Adamchuk, S.O. Prasher, R.A. Viscarra Rossel, A. A. Ismail, J.K. Whalen, 

& M. Louargant. 2014. Comparing vis/NIR/mid-IR hyperspectrometry for measuring soil 

physical properties. Paper No. 141909453. St. Joseph, Michigan: ASABE. 

Herzellah, S., N. Dhawale, H. He, J. Whalen, V. Adamchuk, S. Prasher, S. Rintoul, D. Pinchuk, 

J. Sedman, & A. Ismail. 2013. Comparative assessment of Visible/Near-Infrared and 

Mid-Infrared reflectance techniques for the rapid analysis of soil texture. In: poster of Pittcon 

Conference and Expo. 2013. Philadelphia., PA, USA.  
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Chapter 4 

 

 

A COMPARATIVE STUDY BETWEEN A FIELD DEPLOYMENT READY  

VIS/NIR AND A PROTOTYPED MID-IR HYPERSPECTRAL INSTRUMENT 

 

 

Dhawale, N., V. I. Adamchuk, S.O. Prasher, R.A. Viscarra Rossel, A. A. Ismail,  

J. K. Whalen, M. Louargant 

 

 

Abstract 

 

Rapid developments in semiconductor technologies have improved the robustness and reduced 

the cost, size and complexity of hyper-spectral instruments; hence, they are now suitable for 

deployment in the field for the proximal sensing of various soil physical and chemical attributes. 

The goal of this research was to compare two field deployment-ready spectrometers. The first 

was a prototyped, mid-infrared (mid-IR) spectrometer operating between 5,520 and 11,126 nm. 

The second was a commercial, dual spectrometer system operating in both visible (vis) and 

near-infrared (NIR) regions between 342 and 2,220 nm. A large archived set of 282 soil samples 

(collected on contrasting fields from four Canadian provinces) was used to represent an 

extensive variety of soil textures, varying from sand to clay loam soils with a substantial range of 

soil organic carbon (SOC). Conventional soil analyses were performed on these samples prior to 

taking diffuse reflectance spectral measurements using both instruments. The spectral data were 

transformed into optical density measurements and then pre-treated by mean centering (MC). 

Both data sets were randomly partitioned into calibration (70%) and validation (30%) sets. 

Partial least squares regression (PLSR) was used to develop spectral calibrations for predicting 

the percentage of sand, clay and SOC. Both vis-NIR and mid-IR spectra revealed similar results. 

However, clay was better predicted using vis-NIR and sand using mid-IR spectra. The highest 

coefficients of determination (R2) were found for sand (0.82) and clay (0.82). The corresponding 

root mean squared error (RMSE) was 10% and 7%, respectively. The ability to accurately predict 
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SOC was not as well supported for the set of soils in this experiment with a root mean squared 

error of approximately 0.4%. Neither sensor demonstrated substantially better performance; 

nevertheless, the tested methods prove the usefulness of both portable vis-NIR and mid-IR 

spectrometers for predicting soil texture.  

 

Keywords: proximal soil sensing, on-the-spot soil analyser, visible and infrared soil 

spectroscopy 
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4.1 Introduction 

 

Soil reflectance spectroscopy (SRS) has been used for the rapid assessment of various physical 

and chemical soil properties, both in laboratory conditions and directly in the field. A 

spectrometric method employs the interactions of vis, NIR and mid-IR radiation with the sample 

under investigation. In general, any vis, NIR, and mid-IR system is based on the sample’s 

absorption of electromagnetic radiation at wavelengths in the range of 400-25,000 nm 

(25,000-400 cm-1), where intense fundamental molecular frequencies related to soil components 

occur between wavenumber 4,000 and 400 cm-1. Weak overtones and combinations of these 

fundamental vibrations due to the stretching and bending of NH, OH and CH groups dominate 

the NIR (700-2500 nm) and electronic transitions the vis (400-700 nm) portions of the 

electromagnetic (EM) spectrum (Viscarra Rossel et al., 2006b). 

 

A number of studies to determine soil attributes have resulted in the successful use of vis and 

NIR diffuse reflectance spectroscopy (DRS) to quantify particle size distribution, soil moisture, 

SOC, total carbon (TC) and total nitrogen (TN) simultaneously (Dalal and Henry, 1986; Chang 

et al., 2001; Christy, 2008). Among various soil physical and chemical properties; particle size 

distribution, soil water content (SWC), soil organic matter (SOM), soil organic carbon (SOC) 

and TN, are the primary properties for which vis-NIR predictions have a theoretical basis, and 

cation-exchange capacity (CEC), electrical conductivity (EC), pH, potentially mineralizable N, 

specific surface area, wet aggregate stability, enzyme activities, microbial respiration and 

microbial biomass, are the secondary properties that are NIR spectroscopic predictable because 

of their correlation with certain primary properties (Chang et al., 2001). 

 

Infrared (IR) spectroscopy is more advantageous than vis and NIR since it is more sensitive to 

both organic and inorganic phases of the soil, thus, making their use promising in the agricultural 

and environmental sciences (Haberhaue et al., 1999; Janik et al., 1995; Janik and Skjemstad, 

1995, McCarty et al., 2002; Masserschmidt et al., 1999; Nguyen et al., 1991). Soil analysis using 

mid-IR techniques was reviewed by Janik et al., (1998) and the published applications of vis, 

NIR and mid-IR spectroscopy in soil analysis for the determination of primary and secondary 

properties were summarized by Viscarra Rossel et al. (2006b). 
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Numerous studies support the use of either type of spectroscopy for the simultaneous assessment 

of primary and secondary soil properties on-the-go (Christy, 2008; Reeves III, 2010). As an 

alternative to on-the-go technologies, on-the-spot measurements can be made where the field 

surface coverage does not allow for continuous engagement between soil and the moving parts of 

the sensor system (e.g. pasture). To explore this approach, a ruggedized platform carrying 

vis-NIR spectroscopic instruments to the field has been developed (Veris®P4000, Veris 

Technologies Inc., Salina, Kansas, USA). The advantage of the P4000 system is its ability to 

measure vis-NIR spectra, soil electrical conductivity (EC) and cone index (CI) for soil profiles 

down to a 1 m depth.  

 

Four recent studies reported the successful use of the vis-NIR instrument of P4000 for predicting 

soil texture, SOM, SOC and plant available phosphorus (PMehlich-3), (Hodge and Sudduth, 2012; 

Dhawale, et al., 2013b; Wetterlind et al., 2013; Pikki et al., 2014). In the first study, comparable 

results for SOC predictions were found while using in situ vis-NIR obtained using P4000, versus 

ex situ spectra obtained using a laboratory-grade vis-NIR instrument. In the second study, 

PMehlich-3 was predicted using ex situ vis-NIR spectra obtained using P4000 against conventional 

laboratory measurements with an R2 of 0.85 and a standard error of prediction between 28 and 

31 mg kg-1. The third and fouth study reported of predictions with root mean squared errors of 

5.5% clay, 6.6% sand and 0.31% SOM.  

 

Recently, an all-terrain vehicle (ATV) mounted On-the-spot Soil Analyser (OSA) was developed 

to deploy a suite of sensors for subsurface measurements of chemical and physical soil 

characteristics in a consistent and ergonomic manner (Adamchuk et al., 2014). In the current 

system modification, an array of ion-selective electrodes to measure soil pH and NO3
- content is 

deployed. A prototype mid-IR spectrometer is a great addition to the electrodes that will allow 

integrating sensors based on different measurement principles (Dhawale et al., 2013a). However, 

applicability of this instrument to predict physical soil characteristics in comparison with the 

earlier mentioned P4000 unit needs to be assessed on a large number of diverse soil samples.  

 

The objective of this research was to compare the results of percent sand, clay, and SOC 

predictions using a mid-IR and a Vis-NIR spectrometer deployable for in situ operation by 
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testing 282 archived soil samples collected in contrasting agricultural fields across four Canadian 

provinces. 

 

4.2 Materials and Methods 

 

4.2.1 Data Collection 

 

A prototype portable mid-IR variable-filter-array (VFA) spectrometer manufactured by Wilks 

Enterprise Inc. (East Norwalk, Connecticut, USA) was used to obtain mid-IR diffuse reflectance 

spectra (Fig. 4.1). A linear variable filter (LVF) detector was mounted on a 128 pixel array above 

an optical window made of zinc selenide (ZnSe) and placed on the top centre inside the 

enclosure. The spectrometer consisted of eight pulsing sources and was capable of maintaining a 

constant distance between the measured soil surface and the detector. The average of eight 

pulsed reflectance measurements was recorded per scan.  

 

In addition, the LVF array was hardware configurable to provide for flexibility of operation in 

either NIR or mid-IR ranges of the electromagnetic spectrum. For this project, the VFA was 

configured to the short mid-IR range (1811-893 cm-1) (8 cm-1 resolution). The electronics, 

enclosed in the upper part of the spectrometer, was powered using a standard 12 VDC adapter 

and it was interfaced with a standard laptop computer through a USB 2.0 cable. The C1 data 

acquisition software (CogniSolve, Inc., Montreal, Québec, Canada) was used to record and store 

soil spectral reflectance measurements. The data collection process involved spreading soil 

samples in Petri-dishes and placing the mid-IR instrument over the sample with area ~707 mm2 

and for approximately 32 s. To minimize instrument noise, each spectrum was recorded as an 

average of 32 scans. The spectrometer was re-calibrated every 5 samples using a standard 

reference (a sheet of paper with a golden shade color) provided by the manufacturer. 

 

The second instrument (part of the P4000) was a dual type spectrometer system, operating in the 

visible and near-infrared regions of the electromagnetic spectrum (Fig. 4.2). The first 

spectrometer USB2000 (OceanOptics, Dunedin, Florida, USA) was used to collect soil 

reflectance data between 342 and 1023 nm (resolution 5 nm) and the other spectrometer 
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Mini-Spectrometer (Model No. C9914GB, Hammatsu Photonics. K.K., Tokyo, Japan) measured 

between 1070 and 2220 nm (resolution 7 nm). The instrument included its own light source and 

was capable of maintaining a constant distance between the measured soil and the fibre optic 

probes using a designated sapphire window. 

  

 

  

Fig. 4.1 Picture illustrating the portable mid-IR spectrometer in laboratory configuration 

 

The data collection process involved filling <1 g of soil into a customized sample holder (radius 

of 5 mm and thickness of 5 mm) and placing it in contact with an optical window of area ~78 

mm2. At the beginning of each spectral measurement, the instrument was optimized and 

calibrated by measuring dark current followed by white reference measurements using the 

specially provided reference blocks (Fig. 4.2b). The instrument was re-calibrated every 20 

samples. Soil spectra were interpolated to about 5 nm of spectral resolution, yielding a total of 

380 data points (wavelengths) per spectrum. To minimize the instrument noise, each spectrum 

was recorded as an average of 30-32 scans. 
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Fig. 4.2 Picture illustrating the portable vis-NIR spectrometer in laboratory configuration 

 

A total of 282 soil samples were archived during two studies conducted from 2000 to 2007 and 

these soil samples were taken from experimental plots in four Canadian provinces with humid 

soil moisture regimes (St.Luce et al., 2012). Sixty-nine percent (n = 195) of the samples were 

from a three year study (2007-2009) conducted on 43 sites located on research farms and in 

farmers’ fields in the major corn growing regions of Québec (Nyiraneza et al., 2010). Soil 

samples were collected from 23, 23, and 15 sites in 2007, 2008, and 2009, respectively. The 

other soil samples (n = 87) were collected from trials having four or five replicates with corn 

production in four Canadian provinces: five sites in Québec, two in New Brunswick, one in 

Ontario and one in British Columbia. All soil samples were aggregates of 15-cm long cores 

collected in the spring before the application of fertilizer. They were air-dried and ground to pass 

a 0.25-mm sieve for SOC analyses. SOC for all soils was determined by dry combustion using a 
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CNS-1000 (Leco Corp., St. Joseph, Michigan, USA). Soil texture was determined using the 

hydrometer method (Gee and Bauder, 1986).  

 

4.2.2 Data Processing 

 

From both instruments, the raw spectral data were imported in ParLeS software (Viscarra Rossel 

2008) (version 3.1, 2007, University of Sydney, Sydney, Australia) and pre-processed for further 

data analysis. The obtained mid-IR soil reflectance spectra had a short range with a coarse 

resolution of about 7 cm-1 (i.e. ~ 40 nm) between each wavenumber and consisted of a total of 

128 diffuse reflectance measurements per spectra (Fig. 4.3).  

 

The vis-NIR soil absorbance spectra (Fig. 4.4) exhibited a small step discontinuity between 1023 

and 1070 nm caused by the transition from one spectrometer to the other. Spectra noise was 

filtered out by removing the noisy “tails” of each spectrum (342-409, 1014-1075, and 2206-2220 

nm). This produced 363 original data points per spectrum. The resulting vis-NIR spectra were 

corrected for offset. Finally, when needed, the data pre-processing steps included transforming 

reflectance measurements into optical density measurements as well as applying a mean 

centering technique (MC) for scaling and centering. 

 

Both vis-NIR and mid-IR spectra were randomly partitioned into two sets: a calibration set 

(70%) and a validation set (30%). As a result, soils with different textures were split between 

calibration and validation samples as shown in Fig. 4.5. A decent variety was also observed for 

percentage sand, clay and SOC contents within the examples as shown by Figures 4.6-4.8. A 

partial least squared regression (PLSR) with leave-one-out cross validation was used for spectral 

calibration against laboratory measurements.  

 

The orthogonalised PLSR-1 algorithm (Martens and Naes, 1989) implemented in ParLeS was 

used. This is a bilinear regression technique that extracts a small number of latent factors, which 

are a combination of the independent variables of reflectance or absorbance (at spectral 

wavelengths or wavenumbers), and uses these factors to produce a regression for the dependent 

variables (de Jong and Kiers, 1992; Geladi and Kowalski, 1986).  
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Fig. 4.3 Sample data illustrating potable mid-IR soil absorbance measurements 
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Fig. 4.4 Sample data illustrating vis-NIR soil absorbance measurements 
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The number of factors to use in each model was selected using leave-one-out cross validation on 

the calibration data. Then the selected model was applied to the validation set of soils. The 

performance of each model was evaluated using the coefficient of determination (R2), root mean 

squared error (RMSE), the mean error (ME) and the standard deviation of the error distributions 

(SDE). The RMSE is a combination of both the SDE and the ME, where SDE represents a 

random error and ME indicates the bias, as follows: 
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where, SSE  is the deviation of observation from their predicted values, yySS  is the deviation of 

the observation from the mean, iy  is the laboratory unknown observed value of the interested 

soil property, iy


 is the predicted value of the interested soil property, y  is the mean of 

observation values and N is the sample size. 
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Fig. 4.5 Distribution of textural soil characteristics 
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Fig. 4.6 Distribution of % sand content 
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Fig. 4.7 Distribution of % clay content 
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Fig. 4.8 Distribution of % SOC content 
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4.3 Results and Discussion 

 

Percent sand and clay ranged from 0 to 86 % and from 4 to 76 %, respectively. A substantial 

range between 0.5 and 3.9 % was observed in SOC content (Table 4.1). As shown in Table 4.2, 

with mid-IR soil spectral calibration examples, three models using a relatively small number of 

latent factors (5, 4 and 5) were determined to be suitable, with an R2 between 0.61 and 0.64.  

 

For the validation sets of soil, RMSE was equal to 10.3% sand, 7.8% clay and 0.41% SOC. 

Small ME values indicate a fair split between calibration and validation sets of soil resulting in 

the absence of bias. The difference between the obtained results using calibration and validation 

datasets was also minor.  

 

As shown in Table 4.3, with the vis-NIR soil spectral calibration, relatively large numbers of 

latent factors (15, 7 and 12) were found suitable to predict % sand, % clay and % SOC with R2 

ranging between 0.62 and 0.79. The RMSE was 12.7% sand, 7.2% clay, and 0.45% SOC. The 

remaining observations were similar to the mid-IR spectra. Relationships between measured and 

predicted percentages of sand, clay and SOC, using both spectrometer techniques are illustrated 

in Figures 4.9-4.11. As expressed by the RMSE (Tables 4.2 and 4.3), there was no obvious 

difference in terms of the instrument performance and similarly to the results reported earlier 

(Viscarra Rossel et al., 2006b); % sand was slightly better predicted using mid-IR and % clay 

using vis-NIR. However, it should be noted that soil sample area brought in contact with the 

detectors of both systems was significantly different and therefore, the averaged absorbance 

values reported by the vis-NIR detector was collected from a sample area that was ~11 times 

smaller than the sample area used during mid-IR based data collection.  

 

Similar to the results reported in an earlier study (Viscarra Rossel et al., 2006b), % sand was 

slightly better predicted using mid-IR and % clay using vis-NIR. It was found that the 

hyperspectral analysis of dry, crushed, sieved and milled soil samples can reveal percent clay and 

sand with a standard error less than 12% and for SOC, less than 0.5%. Because % silt can be 

estimated using % clay and % sand predictions and its distribution in the dataset failed to 
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uniformly represent the entire range (required to find an optimal PLRS model), predicting this 

property was omitted from the current objectives.  

 

Table 4.1 Statistical data of soil properties observed in calibration and validation sets 

Data set Statistics % sand % clay % SOC 

Calibration 

Min 0 4 0.54 

Median 34 28 1.60 

Max 86 74 3.91 

Mean 38 29 1.71 

SD 20 14 0.60 

Validation 

Min 0 5 0.97 

Median 33 28 1.59 

Max 86 75 3.75 

Mean 37 30 1.76 

SD 24 16 0.61 

 

Table 4.2 Statistical results of PLSR model calibration and validation, developed and tested 

using the mid-IR soil spectral data 

Property Data Set No. of PLSR factors* R2 RMSE SDE ME 

% sand 
Calibration* 5 0.64 12.14 12.17 0.05 

Validation  0.82 10.33 10.32 1.20 

% clay 
Calibration 4 0.61 8.86 8.88 -0.03 

Validation  0.78 7.79 7.83 -0.25 

% SOC 
Calibration 6 0.63 0.37 0.37 0.00 

Validation  0.54 0.41 0.42 -0.02 
*The PLSR number of factors were chosen by using leave-one-out cross validation technique 

 

Table 4.3 Statistical results of PLSR model calibration and validation, developed and tested 

using the vis-NIR soil spectral data 

Property Data Set No. of PLSR factors* R2 RMSE SDE ME 

% sand 
Calibration 15 0.74 10.40 10.40 0.14 

Validation  0.72 12.73 12.48 -2.85 

% clay 
Calibration 7 0.79 6.57 6.58 -0.02 

Validation  0.82 7.17 7.19 -0.58 

% SOC 
Calibration 12 0.62 0.38 0.38 -0.01 

Validation  0.49 0.45 0.45 0.09 
*The PLSR number of factors were chosen by using leave-one-out cross validation technique 
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There was no obvious benefit of vis-NIR system over the mid-IR, or vice versa. The stated error 

estimates reported in this study and in earlier studies (Janik and Skjemstad, 1995; Janik et al., 

1998; Masserschmidt et al., 1999; Janik et al., 1998; Chang et al., 2001; Chang and Laird, 2002; 

Shepherd and Walsh. 2002; Cozzolino and Moron, 2003; Viscarra Rossel et al., 2006b; Reeves 

III, 2010; Viscarra Rossel et al., 2011) are higher than those corresponding to traditional 

analysis, where the laboratory method has a detection limit of 2% for sand and clay (dry basis), 

and generally, is reproducible to within ± 8% (Gee and Bauder, 2986).  

 

In terms of SOC, the standard error is 0.25-0.5% (Miller, 2006), which is compatible to the 

RMSE estimated in this study. However, these results do not necessarily represent the potential 

predictability of soil texture and SOC in situ under different levels of soil water content and bulk 

density. However, an increased number of less accurate yet unbiased measurements could 

significantly increase the overall accuracy of thematic soil maps (Adamchuk et al., 2004, 

Gebbers et al., 2009), such as SOM and particle size distribution. 
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Fig. 4.9 Relationships between the measured and predicted % sand, with dots representing 

validation examples in accordance with Tables 4.2 and 4.3 
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Fig. 4.10 Relationships between the measured and predicted % clay, with dots representing 

validation examples in accordance with Tables 4.2 and 4.3 
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Fig. 4.11 Relationships between the measured and predicted % SOC, with dots representing 

validation examples in accordance with Tables 4.2 and 4.3 
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4.4 Conclusions 

 

A prototype portable mid-IR spectrometer was compared to a vis-NIR system for predictions of 

percent sand, clay, and SOC in soil. PLSR models established on mid-IR calibration samples 

using leave-one-out cross validation needed fewer latent factors as compared to the vis-NIR 

spectra. Otherwise, there were no significant differences between the performance indicators for 

both systems. Relatively minor differences indicated that sand was better predicted using mid-IR 

and clay was better predicted using vis-NIR spectra. The highest coefficients of determination 

were found to be similar for both sand (0.82) and clay (0.82). The corresponding root mean 

squared errors were 10.3% and 7.2%, respectively. The ability to accurately predict SOC was not 

as well supported for the set of soils in this experiment with a root mean squared error of 

approximately 0.4%. The tested method proves the usefulness of both vis-NIR and a portable 

mid-IR for predicting soil physical properties. 
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Connecting Text to Chapter 5 

 

 
Chapter 5 is also related to the second objective of this study listed in Chapter 1. As shown in 

Chapter 4, spectral data obtained in nicely prepared and milled soil samples in laboratories using 

a portable prototyped mid-IR instrument showed promising results for predicting soil texture. In 

order to examine the advantages of mid-IR over vis-NIR and to re-evaluate the instrument 

capability for measuring soil texture and soil organic matter in naturally moist field conditions, 

soil spectra were collected in naturally moist soil environments. Promising results for measuring 

soil texture indicated its potential use for OSA. The main results of this study were submitted to 

the “European Journal of Soil Science” as follows: 

 

Dhawale, N.M., V.I Adamchuk, S.O. Prasher, R.A. Viscarra Rossel, A.A. Ismail, & K. Jasmeen. 

2014. Proximal soil sensing of soil texture and organic matter with a prototype portable 

mid-infrared spectrometer. European Journal of Soil Science (in press). 
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Chapter 5 
 

 

PROXIMAL SOIL SENSING OF SOIL TEXTURE AND ORGANIC MATTER WITH A 

PROTOTYPE PORTABLE MID-INFRARED SPECTROMETER 

 

Dhawale, N., V. I. Adamchuk, S. O. Prasher, R.A. Viscarra Rossel, A.A. Ismail, J. Kaur 

 

 

Abstract 

 

Recent advances in semiconductor technologies have given rise to the development of mid 

infrared (mid-IR) spectrometers that are compact, relatively inexpensive, robust and suitable for 

in situ proximal soil sensing. The objectives of this research were to evaluate a prototype 

portable mid-IR spectrometer for direct measurements of soil reflectance and to model the 

spectra to predict sand, clay and soil organic matter (SOM) contents under a range of field soil 

water conditions. Soil samples were collected from 23 locations at different depths in four 

agricultural fields to represent a range of soil textures, from sands to clay loams. The particle size 

distribution and SOM content of 48 soil samples were measured in the laboratory by 

conventional analytical methods. In addition to air-dry soil, each sample was wetted with two 

different amounts of water before the spectroscopic measurements were made. The prototype 

spectrometer was used to measure reflectance (R) in the range between 1811 and 898 cm-1 

(approximately 5522 to 11 136 nm). The spectroscopic measurements were recorded randomly 

and in triplicate, resulting in a total of 432 reflectance spectra (48 samples x three soil water 

contents x three replicates). The spectra were transformed to log10 (1/R) and mean centred for the 

multivariate statistical analyses. The 48 samples were split randomly into a calibration (70%) and 

a validation (30%) set. A partial least squares regression (PLSR) was used to develop 

spectroscopic calibrations to predict sand, clay and SOM contents. Results show that the portable 

spectrometer can be used with PLSR to predict clay and sand contents of either wet or dry soil 

samples with a root mean square error (RMSE) of around 10%. Predictions of SOM content 

resulted in RMSE values that ranged between 0.76 and 2.24%.  

 

Keywords: proximal soil sensing, diffuse reflectance spectroscopy, visible and 

near-infrared spectra, naturally moist soil 
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5.1 Introduction 

 

Soil texture and soil organic matter (SOM) affect plant nutrient availability; measuring them by 

conventional laboratory methods is laborious and time-consuming. Proximal soil sensing using 

diffuse reflectance spectroscopy (DRS) has been suggested as a possible alternative because 

measurements are rapid and inexpensive (Viscarra Rossel et al., 2011). Furthermore, the 

technique can produce simultaneous assessment of different soil properties, including soil texture 

and SOM. Diffuse reflectance spectroscopy uses the interactions of visible (vis: 400-700 nm), 

near infrared (NIR: 700-2500 nm) and or mid-infrared (mid-IR: 2500-5000 nm) radiation to 

investigate the characteristics of the soil sample. Intense fundamental molecular frequencies 

related to soil components occur in the mid-IR part of the electromagnetic spectrum. Weak 

overtones and combinations of these fundamental vibrations from the stretching and bending of 

NH-, OH- and CH-groups dominate the NIR, and electronic transitions affect the vis portions of 

the electromagnetic spectrum.  

 

There are many studies on the use of mid-IR spectroscopy in soil science (Nguyen et al., 1991; 

Janik et al., 1995; Viscarra Rossel et al., 2008). The mid-IR spectra measure the fundamental 

molecular vibrations of bonds in soil minerals and organic matter (Nguyen et al., 1991). Janik et 

al. (1998) wrote a review of soil analysis using mid-IR techniques and Viscarra Rossel et al. 

(2006b) reviewed the predictability of soil properties using vis, vis-NIR, NIR and mid-IR 

spectroscopy. 

 

The choice of spectral region depends on the accuracy of the predictions, the cost of the 

technology and the amount of sample preparation required (Viscarra Rossel et al., 2006b). For 

instance, the gain in prediction accuracy achieved with a mid-IR instead of a vis-NIR 

spectrometer might not outweigh the greater cost of the mid-IR technology. In addition, mid-IR 

instruments are relatively large and fragile, and sample preparation for mid-IR analysis is time 

consuming as it requires the milling of the samples to particle sizes of around 80-100 µm. Field 

operation with these instruments is also thought to be less useful because the spectra are affected 

by soil water. These issues prevent the use of mid-IR spectroscopy in the field (Janik et al., 

1998).  
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Reeves III (2010) and Reeves III et al. (2010) demonstrated the use of portable mid-IR 

spectrometers to measure soil carbon and nitrogen in naturally moist soil samples. They 

concluded that the mid-IR calibrations were not as robust as calibrations obtained with a NIR 

spectrometer. Linker (2008) demonstrated the use of an attenuated total reflectance (ATR) 

mid-IR spectrometer configured with a linearly variable filter (LVF) array (800-1550 cm-1) to 

classify 202 wet soil samples at field capacity. They suggested that depending on the amount of 

clay, calcium carbonate (CaCO3) and SOM, the samples were classified accurately into five soil 

types.  

 

There are few examples in the literature on the development and use of small, robust, 

inexpensive spectrometers that use new semiconductor technologies. Coates (2000) reported on a 

vis-NIR instrument that was constructed using semiconductor technology. The author discussed 

its working principles, applications, advantages and limitations compared to bench-top 

instruments constructed with conventional optics. The instrument described consisted of a multi 

pixel linear array detector coupled with a LVF and an electronically controlled vis-NIR source.  

 

The LVF is a continuous multi wavelength filter that is commonly used to modify the intensity 

distribution in a radiation beam. It is used in various optical sensors where wavelength separation 

is required and does not typically involve moving parts. Electronically controlled sources do not 

require any special mechanism for cooling and are thought to provide stable operation. The 

author also suggested that compactness, miniaturization and portability might provide logical 

extensions of spectroscopy to applications beyond the laboratory for on the spot use. Similar 

technologies can help potentially to transfer soil mid-IR spectroscopy to the field.  

 

The aim of this research was to evaluate the use of a prototype portable mid-IR spectrometer 

based on advanced semiconductor technology and with a spectral range of 1811-898 cm-1 to 

predict clay, sand and SOM contents of soil samples with different textures and wetted to 

different water contents.  
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5.2 Materials and Methods 

 

5.2.1 Instrumentation and Data Acquisition 

 

A prototype, portable mid-IR variable-filter-array (VFA) diffuse reflectance infrared Fourier 

transform (DRIFT) spectrometer from Wilks Enterprise, Inc. (East Norwalk, Connecticut, USA), 

was used to obtain the reflectance spectra of soil samples (Fig. 5.1). 

 

 

Fig. 5.1 Prototype mid-IR spectrometer (Wilks Enterprise, Inc., East Norwalk, Connecticut, 

USA) 
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This instrument is composed of five fundamental elements: (i) an integrated imaging sphere, (ii) 

eight electronically modulated sources of IR light, (iii) a LVF coupled with a 128 linear 

pyroelectric detector array, (iv) a USB port for serial communication and (v) signal conditioning 

and processing electronics. It can be operated under laboratory or field conditions in ambient 

temperatures between 15-60° C and up to 98% relative humidity.  

 

A LVF made of zinc selenide (ZnSe) was mounted on a 128-pixel array above the optical 

window. A distinct feature of the spectrometer’s design was to maintain a constant distance 

between the source of light, the object being measured and the detector. It is possible to mount 

one of several different LVF arrays to allow measurement in both the NIR and mid-IR ranges. In 

this study, a short mid-IR VFA (1811-898 cm-1) was used. The instrument can be powered by a 

standard 12 V DC adapter and data rea recorded to a standard laptop. The C1 spectral data 

analysis and management software (CogniSolve, Inc., Montreal, Québec Canada) was used to 

transform the measured digital numbers to percentage soil diffuse reflectance.  

 

About 10-g of soil were spread in Petri dishes and the mid-IR instrument was placed over the 

5 -mm deep sample with an area of about 707 mm2 (Fig. 5.2). As well as the air-dry soil samples,  

 

  

Fig. 5.2 Experimental setup: (a) sample preparation and (b) measurements 

*Over-sized particles appear due to the fact that water was applied and aggregates were formed 

after drying. 

 

a)* 
b) 

10 mm 
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wet samples were prepared by mixing soil with water (according to the experimental design 

described below) to represent natural soil moisture content during in situ measurements with the 

instrument. To minimize instrumental noise, each spectrum was the average of 32 consecutive 

measurements taken at a rate of approximately one measurement per second. The spectrometer 

was re-calibrated after every five samples using a gold-colour standard reference sheet provided 

by the manufacturer.  

 

5.2.2 Experimental Design 

 

Twenty three locations in four agricultural fields on the Macdonald campus research farm, 

Ste-Anne-de-Bellevue, QC, Canada (45°24' N, 73°56' W) (Fig. 5.3), were identified as  

 

Fig. 5.3 Soil sampling locations distributed over four experimental fields (Ste-Anne-de-Bellevue, 

QC, Canada) 

 

representing soil types with different textures, varying from sand to clay loam. At each location, 

soil cores were taken in plastic tubes to a depth of 100 cm with a mechanized soil sampler 

(Veris® P4000, Veris Technologies Inc., Salina, KS, USA). The depth of each sample was limited 
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by the depth to bedrock or by reaching an impenetrable soil layer. When possible, each core was 

partitioned according to depth (<15, 15-30 and >30 cm). This resulted in 21, 17 and 10 samples 

per depth layer, respectively (Table 5.1). In addition to the impenetrable depths, seven samples 

with a SOM greater than 10% were not included in this analysis in order to focus on mineral soil 

samples only. Therefore, a total of 48 soil samples were used in this experiment.  

 

After air-drying, each soil sample was split into two sub-samples. The first sub-sample was used 

for the conventional analysis of particle size and SOM. Particle size was determined by the 

hydrometer method (Gee & Bauder, 1986). Soil organic matter was measured by loss-on-ignition 

(350° C) (Schulte & Hopkins, 1996). The descriptive statistics of the soil analyses results are 

summarized in Table 5.2. The second set of sub-samples was transferred to Petri dishes and used 

for the spectroscopic measurements. Conventional mid-IR measurements are often made on soil 

milled to around 100-80 µm (Janik et al., 1998). However, for this study, spectral measurements 

were recorded on ≤ 2 mm sieved soil and without any additional sample preparation.  

To prepare soil samples that represented field conditions, 8-10 g of each air-dry soil sample were 

mixed with 0.5, 1.0, 1.5 and or 2.0 g of water. Table 5.3 summarizes the amounts of water as a 

percentage added to the air-dry samples according to the texture class to represent moist soil 

samples that were relatively dry (5-10% of soil gravimetric moisture) and relatively wet (15-20% 

of soil gravimetric moisture). Nine soil spectra were recorded from each of the 48 soil samples; 

that is three replicated spectra were recorded from the air-dried soil and three replicates from 

each of the wetted sample sets. This resulted in 144 air-dry and 288 moist soil spectra obtained 

randomly for each level of added soil water in three, non-consecutive replicates.  

 

5.2.3 Data Processing and Analysis 

 

The spectra were transformed from reflectance measurements into optical density values (log10 

1/reflectance) and were mean centered. The spectra were calibrated using a PLSR algorithm 

(Martens & Naes, 1989). Partial least squares regression is a well-known chemometric technique 

that is based on bilinear regression that extracts a smaller number of latent factors from large 

multi-dimensional data-sets. These factors represent linear combinations of the independent 

spectroscopic variables and the soil properties (Geladi & Kowalski, 1986).  
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Table 5.1 Laboratory measured soil properties of 48 soil samples collected from 23 locations 

and 3 depths (when available) used for mid-IR spectra calibration and validation 

Field 

# 

Sampling 

location 

Sampling depth 

< 15 cm 15 - 30 cm > 30 cm 

1 

1 56/34/10(SL) & %5.9* 32/40/28(CL) & %1.6 38/29/33(CL) & %3.2 ** 

2 53/38/9(SL) & %4.1 50/21/29(SCL) & %/1.4 N/A*** 

3 69/22/9(SL) & %2.5 56/21/23(SCL) & %0.5 N/A 

4 70/22/8(SL) & %1.0 74/16/10(SL) & %0.9 N/A 

5 65/31/4(SL) & %6.0 56/31/13(SL) & %7.5 11/39/50(C) & %4.5 

2 

6 34/21/45(C) & %1.0 N/A N/A 

7 75/17/8(SL) & %1.9 N/A N/A 

8 73/18/9(SL) & %1.2 62/30/8(SL) & %4.4 N/A 

9 53/31/16(SL) & %3.5 N/A N/A 

10 63/31/6(SL) & %4.0 56/36/8(SL) & %7.3 57/19/24(SCL) & %4.4 

11 55/35/10(SL) & %6.6 74/15/11(SL) & %0.9 36/46/18(L) & %1.1 

12 29/52/19(SiL) & %5.1 26/42/32(CL) & %5.2 N/A 

13 36/32/32(CL) & %2.1 46/35/29(L) & %1.2 N/A 

14 42/36/22(L) & %0.5 12/55/33(SiCL) & %1.0 14/47/39(SiCL) & %5.6 

15 69/26/5(SL) & %4.7 62/30/8(SL) & %3.2 N/A 

16 65/26/9(SL) & %4.6 55/37/8(SL) & %3.6 N/A 

17 N/A N/A 27/47/26(L) & %5.9 

18 N/A 70/13/17(SL) & %2.1 N/A 

3 

19 91/7/2 (S) & %3.8 36/28/36(C) & %2.1 N/A 

20 96/2/2(S) & %1.5 96/2/2(S) & %1.5 93/5/2(S) & %3.6 

21 60/30/10(SL) & %3.9 50/25/25(SCL) & %1.2 3/16/81(C) & %0.8 

22 38/29/33 (CL) & %3.2 N/A 18/22/60(C) & %1.0 

4 23 7/26/67 (C)& %1.0 N/A 2/26/72(C) & %0.8 
* % sand/% silt/% clay (texture class) & % SOM with texture classes: C = clay, CL = clay loam, 

L = loam, S = sand, SCL = sandy clay loam, SL = sandy loam, SiCL = silty clay loam, SiL = 

silty loam. 
**Bold italic font marks soil samples dedicated to test the prediction model developed. 
***N/A: data/sample not available. 
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To validate the model with a separate set of data not used for calibration, the 48 soil samples 

were split randomly into 34 (70%) calibration samples and 14 (30%) validation samples 

(Table 5.1). Fig. 5.4 illustrates the distribution of soil texture and SOM between the two sets of 

soil samples. To evaluate the performance of the air-dry and wet spectroscopic models 

(Table 5.4) (i) a leave-one-out cross-validation and (ii) the designated independent validation sets 

were used. These validations illustrate the expected performance of the modelling for different 

potential applications such as; using (i) air-dry calibration to predict soil properties for new 

air-dry samples, (ii) moist calibration to predict soil properties for new moist samples, (iii) moist 

calibration to predict soil properties for new air-dry samples and (iv) air-dry calibration to predict 

soil properties for new moist samples.  

 

Table 5.2 Descriptive statistics on soil properties of interest 

Soil property Minimum Median Maximum Mean Standard deviation 

% sand 2 55 96 51 24 

% silt 2 29 55 28 12 

% clay 2 17 81 22 19 

% SOM 0.5 2.9 7.5 3.0 2.0 

 

 

Table 5.3 The amount of water added in percentages added to 8-10 g of air-dried soil sample 

Soil texture 
Added water % 

Relatively dry soil Relatively wet soil 

Clay(C) 10 20 

Clay Loam(CL) 10 20 

Loam(L) 10 20 

Sand(S) 5 15 

Sandy Clay Loam(SCL) 10 15 

Sandy Loam(SL) 5 15 

Silty Clay Loam(SiCL) 10 20 

Silty Loam(SiL) 10 15 
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Table 5.4 Statistical results demonstrating performances of various calibration models using 

PLSR 

Soil sets used for Performance Indicators 

Model calibration* Model validation 
PLSR 

Factors 
R2 RMSE ME SDE 

% sand 

Air-dry calibration Cross validation 3 0.74 11.81 -0.03 11.87 

Moist calibration Cross validation 5 0.81 10.12 -0.04 10.15 

Air-dry calibration Air-dry test set validation 3 0.90 8.58 -2.10 8.41 

Moist calibration Moist test set validation 5 0.82 11.65 -4.30 10.89 

Moist calibration Air-dry test set validation 5 0.80 11.98 -3.70 11.53 

Air-dry calibration Moist test set validation 3 0.88 10.26 2.34 10.05 

% clay 

Air-dry calibration Cross validation 3 0.65 9.48 -0.93 9.52 

Moist calibration Cross validation 5 0.79 7.27 -0.03 7.29 

Air-dry calibration Air-dry test set validation 3 0.88 10.50 -5.35 9.14 

Moist calibration Moist test set validation 5 0.91 7.82 -2.57 7.43 

Moist calibration Air-dry test set validation 5 0.84 9.32 -2.63 9.05 

Air-dry calibration Moist test set validation 3 0.89 10.08 -3.37 9.56 

% SOM 

Air-dry calibration Cross validation 6 0.54 1.42 0.02 1.43 

Moist calibration Cross validation 6 0.49 1.48 0.01 1.49 

Air-dry calibration Air-dry test set validation 6 0.58 1.17 0.72 0.93 

Moist calibration Moist test set validation 6 0.62 1.21 0.84 0.87 

Moist calibration Air-dry test set validation 6 0.82 0.76 -0.46 0.61 

Air-dry calibration Moist test set validation 6 0.43 2.24 1.97 1.07 

*Model Calibration - data set used in model calibration, Model Validation - data set and method 

used for model validation, PLSR - Partial least squared regression factors, R2 - coefficient of 

determination, RMSE - root mean squared error, ME - mean error, SDE - standard deviation of 

error distribution. 

 

The performance indicators included (i) the coefficient of determination (R2) for the linear 

regression between the measured and predicted soil properties, (ii) the root mean squared error 

(RMSE), (iii) the mean error (ME) and (iv) the standard deviation of the error distributions 

(SDE). While R2 indicates the overall model performance for a given set of samples, RMSE 

estimates the measurement error in physical units. The ME and SDE split this error between bias 

and imprecision. The following equations were used:  
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               (5.4) 

where, yi is the measured soil property, ŷi is the predicted soil property, ȳ is the mean of 

measured soil properties and N is the number of soil samples used for validation. 

 

Further, the PLS regression coefficients (betas) and variable importance for projection (VIMP) 

(Wold, 2001) were used to identify the mid-IR frequencies (waveband numbers) used to predict 

sand, clay and SOM contents by both air-dry and wet soil calibrations. 

 

The spectroscopic and chemometric analyses were performed with the software ParLeS 

(Viscarra Rossel, 2008). 

 

5.3 Results and Discussion 

 

Fig. 5.5 shows six average spectra from two soil samples with different textures and three levels 

of soil water contents. Samples with sandy soil had more SOM than samples with more clay. The 

spectra of samples with more clay reflected less than samples with more sand. The spectra of 

sandy soil had distinct local minima near 1100 cm-1 whereas that of clayey soil had one near 

1300 cm-1. The reflectance spectra of these two types of soil, with three different water contents, 

were markedly different between 1000 and 1500 cm-1. In Nguyen et al. (1991), mid-IR 
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absorbance spectra measured using DRIFT showed similar characteristic near 1000 cm-1 and the 

authors named them ‘inversion bands’, which result from severe distortion of strongly absorbed 

bands at large sample concentrations of various soil minerals (Nguyen et al., 1991). They are 

prominent generally at frequencies below 1100 cm-1.  
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Fig. 5.5 Examples of the mid-IR spectra 

*An approximated range of soil moisture content in accordance to Table 5.3, and based on the 

assumption that readily available moisture contents in air-dried sandy soils should be much 

lesser than the same in air dried clay soils (Wäldchen et al. 2012). 

 

Leave-one-out cross validation showed that the best spectroscopic models to predict clay, sand 

and SOM had between three to six PLSR factors. When predicting soil texture, the RMSE for 

both sand and clay contents was around 10%. However, the samples had a wider range of sand 

content and so the R2 value was greater for sand than for clay. The RMSE was smaller by more 

than 1% for predictions of both sand and clay when using moist soil than with air-dry soil. 

Differences in soil water did not affect predictions of SOM. For both dry and wet samples, 

RMSE estimates were almost 1.5% SOM and R2 was around 0.5, indicating that the 

spectroscopic models for SOM were poor. As one might expect, there was no bias (ME) when 

evaluating the models by cross-validation. 
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When the spectroscopic models were validated with the independent set of samples models, bias 

in the predictions was more apparent. However, this did not affect the RMSE values markedly; 

they were within 1-2% of those obtained from cross-validation. The RMSE values were not 

always smaller when using the same soil water content during calibration and validation. In fact, 

the RMSE was 9.3% when wet soil was used to predict the clay content of the air-dry soil 

samples. Therefore, in these experiments soil water content did not affect greatly the 

performance of the spectroscopic models. Fig. 5.6 shows the relationship between the measured 

and the predicted sand and clay contents for the air-dry calibration data; in each case the RMSE 

values were around 10%. 

 

The quality of SOM predictions was poor. The smallest RMSE of 0.76% SOM was obtained 

when wet soil calibration was used to predict the validation set of air-dry soils. However, when 

the air-dry calibration was used to predict SOM in moist soil in the validation set the results were 

poor with an RMSE value of 2.24% SOM (Fig. 5.7). The reasons for this might be that 

absorptions for water masked absorptions related to SOM and that the soil samples were not 

finely ground, which is typically done for mid-IR spectroscopy. The addition of water to the 

air-dry sample would affect light scattering that might affect the spectral preservation favourably 

of SOM related information. 

 

Fig. 5.8 shows the regression coefficients and the VIMP. As assessed by the sizes of their 

negative or positive peaks in air-dry soil, waveband numbers near 1100 and 1300 cm-1 were 

important for predictions of sand; near 1600 cm-1 for predictions of clay and those near 900, 

1650, 1750 and 1800 cm-1 were most important for predictions of SOM. Similarly, in the wet soil 

samples waveband numbers near 900, 1100 and 1500 cm-1 were useful for predicting sand, those 

near 900, 1200 and 1400 cm-1 for predicting clay and near 900, 1000, 1400 and 1450 cm-1 for 

predicting SOM. 
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Fig. 5.6 Relationships between the measured and predicted (a) % sand, (b) % clay; where the 

open dots represent air-dry calibration with leave-one-out cross validation and closed dots 

represent air dry calibration on moist validation in accordance with Table 5.4 

 

(a) 

(b) 
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Fig. 5.7 Relationships between the measured and predicted % SOM, where the open dots 

represent air-dry calibration with leave-one-out cross validation & closed dots represents air dry 

calibration on moist validation, in accordance with table 5.4 

 

Diffuse reflectance spectroscopy with vis-NIR and mid-IR spectra coupled with multivariate 

statistics has been proposed as a means to complement conventional laboratory analysis because 

it can provide inexpensive and rapid measurements of soil properties, including texture and 

SOM. Portable vis-NIR spectrometers are commercially available, for example: USB2000 

(Ocean Optics, Inc., Dunedin, Florida, USA), FieldSpec 4 Standard-Res Spectroradiometer 

(Analytical Spectral Devices, Ltd., Boulder, Colorado, USA), Mini-Spectrometer C9914GB 

(Hammatsu Photonics, K.K., Tokyo, Japan). They have been used in different configurations to 

measure soil properties in situ (Christy, 2008; Viscarra Rossel et al., 2009; Hodge & Sudduth, 

2012).  
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Fig. 5.8 The PLS regression coefficients (betas) and variable importance of projections (VIMP) 

index related to the prediction of percentage sand, clay and SOM contents using portable mid-IR 

spectra for both air-dry and moist calibration sets of soil samples 

 

There are a few portable mid-IR spectrometers that are also commercially available, for example: 

Pyreos (Pvt. Ltd., Edinburgh, Scotland, U.K), Allied Scientific Pro (Pvt. Ltd., Gatineau, Québec, 

Canada), SOC 400 portable FTS (Surface Optics Inc., San Diego, California, USA), 4100 
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Exo-Scan FTIR Diffuse Reflectance (Agilent Technologies, Inc., Santa Clara, California, USA). 

With some exceptions, these ‘portable’ instruments are often large, fragile and expensive so that 

they cannot be used practically in the field. 

 

The advantage of mid-IR is that this range is more sensitive than the NIR to both the organic and 

inorganic composition of soil. Comparing the spectra from the prototype portable mid-IR 

instrument to spectra reported in other studies (Janik et al., 1998; Viscarra Rossel et al., 2008) 

absorptions near 1800-1500 cm−1 are generally caused by the overtones and combination bands 

of quartz and clay minerals, peaks near 1700 cm−1 and 1400 cm−1 might result from amides, 

aromatics, aliphatic acids and alkyl groups of organic materials in soil. Absorptions in the region 

of 1500-800 cm−1 occur mainly from the fundamental O-Si-O stretching and bending vibrations 

in soil materials. However, absorptions near 1100-1050 cm−1 might also be attributed to 

carbohydrates present in soil, whereas those near 1600 and 1800 cm-1 might result from bending 

of H-O-H and attributed to water (Etzion et al., 2004). The absorption near 1450 cm-1 might be 

associated with the presence of calcium carbonate (Linker, 2008). 

 

The main disadvantage of mid-IR analysis reported previously (Janik et al., 1998; Viscarra 

Rossel et al., 2006b; Linker, 2008; Reeves, 2010) is the need for more sample preparation than 

for vis-NIR, for example, as well as spectroscopic distortions caused by the presence of water in 

soil. The results presented in this study also show more overlaps and distortion in the spectra of 

the wet soil samples than those for air-dry samples (Fig. 5). The effects of soil moisture and 

other environmental factors that affect soil spectra recorded under field conditions could be 

accounted for in a similar way to Ji et al. (2015).  

 

The spectroscopic models could predict sand and clay contents reasonably accurately with 

RMSEs of 10%. Predictions of SOM were less reliable with RMSEs between 0.76 and 2.24%. 

These predictions did not differ greatly between spectroscopic models that used spectra from 

either air-dry or wet soil samples. In part, this might be due to random variation in the soil 

spectra (as assessed from the replicated measurements) that is similar in magnitude to the 

differences attributed to the water content. Thus, in situ measurements made with the prototype 

spectrometer can result in similar measurement errors to those estimated under laboratory 
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conditions. A comparison of the prediction errors against those from an earlier reported study 

(Reeves III et al., 2010) and several other published results summarized by Viscarra Rossel et al. 

(2006b) showed that the prediction errors of percent sand, clay and SOM content in this study 

were generally greater. The errors reported in these studies were typically below 10% for sand 

and clay and 0.5% for SOM. As well as the instrument itself, differences might result from the 

relatively small, yet diverse, set of samples that were not milled to 80-100 μm. The reason for 

not milling the samples in these experiments was to test the potential of the spectrometer for use 

in situ under field conditions. This was also the reason for wetting the samples to different water 

contents. 

 

Practically, the hydrometer method for measuring soil clay, sand and silt contents is reproducible 

to within 8% (Gee & Bauder, 1986) and for SOM by loss on ignition it is around 0.25-0.5% 

(Miller, 2006). Although in situ measurements with spectrometers tend to produce larger errors 

than those from conventional laboratory analyses, the quality of the overall analysis, especially if 

it is for soil mapping, could be improved by increasing the number of less accurate unbiased soil 

measurements (Adamchuk et al., 2004; Gebbers et al., 2009). Thus, the prototype mid-IR 

spectrometer described in this study might be used to enhance the overall quality of soil analysis 

for such purposes.  

 

5.4 Conclusions 

 

A prototype Mid-IR spectrometer was evaluated in terms of its ability to predict the contents of 

sand, clay and SOM. Based on 34 calibration and 14 validation soil samples analyzed in air-dry 

and moist conditions, it was found that clay and sand could be predicted with MSE values of 

around 10%. Wetting the soil did not significantly affect the results and similar measurement 

errors were obtained for both air-dried and wet soil. The predictability of SOM was not as 

encouraging. Further testing is needed to investigate potential optimizations of the soil/sensor 

interface needed to facilitate the deployment of Mid-IR spectroscopy for proximal soil sensing.  
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Connecting Text to Chapter 6 

 

 

Chapter 6 is also related to the second objective of this study listed in Chapter 1. As shown in 

Chapter 4, spectral data obtained in laboratories using commercially available portable vis-NIR 

equipment showed promising results for predicting soil texture. This chapter discusses a novel 

study performed on vis-NIR spectral measurements collected in both; ex situ and in situ 

environments, in terms of both reproducibility (precision) and predictability (accuracy) of the 

key physical soil properties, including percent sand, clay and soil organic matter. Based on the 

results of this study, it can be concluded that vis-NIR spectral measurements obtained using 

commercially available equipment are compatible in terms of precision and accuracy when using 

in laboratory conditions and in the field, when soil water content varies substantially. The results 

of this study were presented at conferences shown below and at the time this thesis was 

submitted, a manuscript has been submitted to “Computers and Electronics and Agriculture 

Journal” as follows: 

 

 

Dhawale, N.M., V.I. Adamchuk, S.O. Prasher, & R.A.Viscarra Rossel. 2014. Precision and 

accuracy of vis-NIR hyperspectral soil reflectance measurements. Computers and Electronics 

and Agriculture Journal (under review). 

Dhawale, N.M., V.I. Adamchuk, S.O. Prasher, R.A. Viscarra Rossel, & A.A. Ismail. 2013. 

Analysis of the repeatability of soil spectral data obtained using different measurement 

techniques. In: Proceedings of the 3rd Global Workshop on Proximal Soil Sensing, Potsdam, 

Germany, 26-29 May 2013, eds. R. Gebbers, E. Luck, and J. Ruhlmann, 161-165. Potsdam, 

Germany: ATB Leibniz-Institut fur Agratechnik Potsdam-Bornim.  

Dhawale, N.M., V.I. Adamchuk, S.O. Prasher, & A.A. Ismail. 2013. Analysis of repeatability of 

potentiometric and optical soil sensors used for measuring agricultural soil properties. In: 

poster of Integrated Sensor Systems (ISS) Training program, Summer School Event. 

University of Montreal. Montreal. QC. Canada. 
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Chapter 6 

 

 

PRECISION AND ACCURACY OF VIS-NIR HYPERSPECTRAL SOIL 

REFLECTANCE MEASURMENTS  

 

Dhawale, N., V.I. Adamchuk, S. O. Prasher, R. A. Viscarra Rossel 

 

 

Abstract 

 

Measuring soil texture and soil organic matter (SOM) is essential due to the way they affect the 

availability of crop nutrients and water during a growing season. Among different proximal soil 

sensing (PSS) technologies, diffuse reflectance spectroscopy (DRS) have been deployed to 

conduct rapid soil measurements in situ. This technique is indirect and, therefore, requires site 

specific calibration. The quality of soil spectra is affected by the level of soil preparation and can 

be assessed through repeatability (precision) and predictability (accuracy) of unbiased 

measurements and their combinations. The aim of this research was to assess both precision and 

accuracy of visible and near-infrared (vis-NIR) hyperspectral soil reflectance measurements 

obtained using a commercial soil profiling tool when predicting SOM, sand and clay. The 

vis-NIR measurements were conducted in both field and laboratory conditions. Nineteen 

locations in three agricultural fields were identified to represent an extensive range of soils, 

varying from sand to clay loam. All the measurements were repeated three times and a ratio 

spread over error (RSE) was used as the main indicator of the ability of each spectral parameter 

to distinguish among field location with different soil attributes. Both simple linear regression 

(SLR) and partial least squares regression (PLSR) models were used to define predictability of 

SOM, sand and clay. A relatively small number of test locations limited the ability to develop 

widely applicable calibration models. However, the methodology of evaluating both precision 

and accuracy of DRS measurements will help future developers evaluate both robustness and 

applicability of any PSS instrument. 

 

Keywords: proximal soil sensing, diffuse reflectance spectroscopy, visible and 

near-infrared spectra, measurement precision and accuracy 
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6.1. Introduction 

 

Soil texture and soil organic matter (SOM) affect plant nutrient availability. Measuring these 

properties using conventional laboratory methods is laborious and time consuming (Gee and 

Bauder, 1986; Schulte and Hopkins, 1996; Soil Survey Staff, 2004). Diffuse reflectance 

spectroscopy is an indirect analytical technique (Couteaux et al., 2003) that has been proposed as 

an alternative to laboratory tests that would allow for relatively inexpensive and rapid 

measurements of soil properties. Numerous studies support the use of diffuse reflectance 

spectroscopy to simultaneous assess various soil properties in laboratories as well as directly in 

the field (Krishnan et al., 1980; Dalal and Henry, 1986; Clark et al., 1990; Morra et al., 1991; 

Henderson et al., 1992; Sudduth and Hummel 1993a; Sudduth and Hummel 1993b; Ben-Dor and 

Banin, 1994; Bishop et. al., 1994; Ben-Dor and Banin, 1995; Clark, 1999; Chang et al., 2001; 

Chang and Laird, 2002; Martin et al., 2002; Shepherd and Walsh, 2002; Cozzolino and Moron, 

2003; McBratney et al., 2003; Malley et al., 2004; Viscarra Rossel et al., 2006b; Christy, 2008; 

Viscarra Rossel, 2009; Stenberg, 2010). Veris®P4000 (Veris Technologies, Inc., Salina, Kansas, 

USA)4 is an example or a ruggedized hyperspectral instrument developed to obtained vis-NIR 

spectra at multiple depths within soil profile. 

 

Since this technique is indirect, it is important to develop calibration models using data specific 

pedo-transformation models against measurements obtained according to standardized laboratory 

protocols (Viscarra Rossel et al., 2011). However the quality of soil spectra affected by the level 

of soil preparation and data acquisition process may influence the performance of these 

calibrations models (Chodak et al., 2002; Couteaux et al., 2003; Udelhoven et al., 2003; Madari 

et al., 2006; Nduwamungu et al., 2009).  

 

According to Holman (2001) "Accuracy and precision are considered the very important 

characteristics of a given measurement system". Accuracy and precision both can be described 

as; the difference of instrument reading and the primary standard and the degree of random 

variations in the instruments output while measuring a constant quantity respectively. Therefore, 

                                                           

4 Mention of a trade name, proprietary product, or company name is for presentation clarity and does not imply endorsement by 

the authors, McGill University and CSIRO, nor does it imply exclusion of other products that may also be suitable. 
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in precedence to a calibrating process, the performance of a soil optical reflectances measured by 

the DRS instrument can be assessed by means of evaluating both; accuracy and precision 

component of spectral measurement error.  

 

As it is illustrated in Fig. 6.1, repeated measurements of soil spectra for a given soil sample can 

significantly vary from one measurement to another. These differences can be associated with 1) 

random noise within the data acquisition process that includes inconsistencies of soil-detector 

interface and 2) soil micro-variability that can occur at very small separation distances.  

 

0.0

0.1

0.2

0.3

0.4

400 900 1400 1900 2400

R
e

fl
e

c
ta

n
c

e

Vis-NIR wavelengths, nm

Replicate 1

Replicate 2

Replicate 3

 

Fig. 6.1 Differences in ex situ soil spectra when measured on the same soil sample thrice 

 

In practice, multiple measurements and averaging of several consecutive soil spectra had been 

accomplished to diminish the effect of random noise. However, it can be noted that certain parts 

of soil spectra as well as particular parameters constructed using a combination of spectral data 

values can be relatively repeatable from spectrum to spectrum. Some of these soil spectra 

parameters that do not vary substantially when testing the same soil, but alter a lot when 

considering soil samples with different attributes, might be the best candidates to be used for the 

site-specific calibration process. The objective of this research was to analyze both precision and 
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accuracy of hyperspectral soil reflectance measurements obtained using a commercial soil 

profiling tool for predicting percentages of sand, clay and SOM content in situ as well as in 

laboratory conditions. 

 

6.2. Materials and Methods 

 

6.2.1 Data Collection 

 

Three fields at McGill University research farms (Ste-Anne-de-Bellevue, Quebec, Canada) were 

selected for this project. In total, nineteen locations were selected in these fields (Fig. 6.2) to 

represent diverse soil conditions ranging from sand to clay loam.  

  

Fig. 6.2 Google earth view of the Macdonald research farm site, illustrating-sampling points 

Field-66 

Field-22 

Field-16 
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The fields had 2.5, 4.5 and 12 ha areas and were used to grow crop according to a rotation 

involving soybean, corn (grain and silage) and alfalfa. All the data were collected in 2012 when 

alfalfa/grass mix was grown in each of the three fields. In each location, composite soil samples 

were obtained from the top (0-20 cm) layer of soil. A 4-cm diameter, stainless steel auger was 

used to take five samples from within a 0.5-m radius. These soil cores were mixed, air dried and 

sieved through a 2-mm mesh. Then, each sample was divided into two subsamples: one to be 

used for conventional laboratory analysis and the other for ex situ spectral measurements. 

 

In each location, composite soil samples were obtained from the top (0-20 cm) of soil. A 4-cm 

diameter, stainless steel auger was used to take five samples from within a 0.5-m radius Soil 

cores were mixed, air dried and sieved through a 2-mm mesh. Each sample was divided into two 

subsamples: one to be used for conventional laboratory analysis and the other for ex situ spectral 

measurements.  

 

Particle size analysis (fractions of sand, silt and clay) as well as SOM content were evaluated for 

each laboratory sample, as summarized in Table 6.1. The particle size analysis was conducted 

using hydrometers (Gee and Bauder, 1986; Soil Survey Staff, 2004) and SOM was determined 

using loss-on-ignition technique (Schulte and Hopkins, 1996). 

  

Table 6.1 Statistical results of percent sand and clay, and SOM content in 19 soils 

Statistics % sand % clay % SOM 

Minimum 26 2 3.9 

Median 56 9 5.8 

Maximum 93 33 25.6 

Mean 56 13 7.2 

Standard Deviation 18 9 4.8 

 

The core of Veris P4000 instrument is a combined dual type spectrometer operating in the visible 

and near-infrared parts of the electromagnetic spectra (Fig. 6.3). One of the two spectrometers 

was USB2000 (Ocean Optics, Dunedin, Florida, USA) operating between 342 and 1023 nm with 

a spectral resolution of 6 nm. The other spectrometer was C9914GB (Hammatsu Photonics. 

K.K., Tokyo, Japan) collecting data between 1070 and 2220 nm with a spectral resolution of 4 

nm. The instrument included its own light source and was capable of maintaining a constant 
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distance between measured soil surfaces and detectors by the means of a sapphire contact probe 

with fibre-optic cables.  

 

All ex situ measurements were conducted as triplicates in a different randomised order each 

replicate. A specially designed sample holder (Fig. 6.3 right) was filled with <1 g of soil sample 

and placed near the optical window of the soil profiling tool. At the beginning of each spectral 

measurement session, the instrument was optimised and calibrated by measuring dark current 

followed by white reference measurements using the specially provided reference blocks. The 

instrument was re-calibrated every 20 samples. Soil spectra were interpolated to about 5 nm of 

spectral resolution, yielding a total of 380 data points (wavelengths) per spectrum. To minimize 

the instrument noise, each spectrum was the average of 25-30 scans (~6 scans s-1). 

 

  

 

Fig. 6.3 Illustration of the vis-NIR soil profiling tool during laboratory measurements  

 

The in situ measurements were collected using recommended equipment setup (Fig. 6.4) for 

topsoil profiles down to 20 cm, while penetrating soil at a speed approximately 2 cm s-1. Three 

measurements were conducted consecutively along a straight line less than 0.5 m long. Soil 

spectra data collection procedure for in situ and ex situ measurements was the same. However, in 

this case the average of 50-60 scans represented soil spectra collected at different depths from 

0 to 20 cm.  
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Fig. 6.4 Illustration of the vis-NIR soil profiling tool during in situ mneasurements 

 

All raw spectral data was processed using MATLAB 2012a (The MathWorks, Inc. Natick, 

Massachusetts, USA) and ParLeS 3.1 software (University of Sydney, Sydney, Australia) 

described by Viscarra Rossel (2008). All spectra exhibited a step discontinuity from 1023 to 

1070 nm, caused by the transition from one detector to another. After removal relatively noise 

parts of the spectra at the edges of detection ranges for each spectrometer (342-409 nm, 

1014-1075 nm, and 2206-2220 nm) all resultant spectra consisted of the total 363 measurements 

at different wavelengths. The spectral data were then corrected for offset and processed using 

multiplicative scattering correction (MSC) algorithm (Geladi et al., 1985) and mean centering 

(MC). In addition to these “original” spectra, the following spectra treatments were pursued: 1) 

3-point Savitzky-Golay smoothing (Savitzky and Golay, 1964), 2) 11-point first derivative, and 

3) 11-point second derivative. 

 

Spectrometers 

probe 

Veris P4000 instrument 

mounted on a pickup truck 

Soil profiling tool 

Repeated measurement locations  

a) b) 

c) d) 
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6.2.2 Data Processing  

 

Among the different statistics considered for assessing precision of spectral data, the ratio of 

spread over error (RSE) was used:  

    
RMSE

SD
RSE SA        (6.1) 

where SDSA is the standard deviation of nineteen sample mean values; RMSE is the root mean 

squared error calculated based on three replicated measurements for each of the nineteen 

samples.  
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where n =19 is the number of soil samples; Xi is an average measured or calculated 

spectra-related value for the ith sample; X is the average of all Xi values. 
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where m=3 is the number of replicated measurements; xij is a jth replicate of the measured or 

calculated spectra-related value for the ith sample. 
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Similar to the frequently used ratio of prediction over deviation (RPD), high RSE means a 

relatively strong ability of a given measurement to distinguish different soil samples. Use of RSE 

has been reported earlier in Adamchuk et al. (2006) and is directly related to ANOVA F-

statistics used to compare the means of repeated measurements. Based on the degrees of freedom 

involved, the difference among the soil samples (means of three measurements) can be detected 
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at =0.05 when RSE is greater than 0.79 ( statm
F1 ).This analysis evaluates measurement 

precision with the underlying hypothesis that a particular parameter that does not change when 

measuring the same soil sample and the change is at its maximum when measuring different 

samples should be considered reliable.  

 

Percent sand, clay and SOM were predicted by fitting SLR models on each individual measured 

or treated spectral value versus these properties. A coefficient of determination (R2) was the 

main indicator of the ability of a single spectral value to explain the variability in a particular soil 

property. However, the standard error of prediction (SEP) was used as a measure of the accuracy 

of soil property estimates obtained using each SLR model: 

ijij xy 10
ˆ          (6.6) 

 

where y is the measured value of a given soil property for ith sample; y is the predicted value of a 

given soil property for ith sample and jth replicate; β0 (itercept) and β1 (slope) are coefficients of 

SLR. 
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where y is the measured value of a given soil property for ith sample. 

 

While SEP indicated the total error associated with each individual measurement and is primarily 

linked to the accuracy of prediction, RMSE is linked to the measurement precision. However, 

since RMSE is expressed in the units of spectra measurements and related calculated parameters, 

measurement precision (MP) can be expressed in physical units following:  

   RMSEMP  1         (6.8) 

 

When comparing different spectral wavelengths and transformation techniques, it is important to 

identify measurements that have maximum RSE and minimum RMSE, MP, and SEP. The 

RMSE is an indicator of measurement reproducibility. However, without considering the spread 

of values across different samples, it is impossible to conclude if given values is a strong value to 
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distinguish different soil samples from each other. Therefore, RSE is involved to elect candidates 

to differentiate between samples disregard of prediction property. Neither RMSE, nor RSE 

depend on the model used to predict a given soil property.  

 

Because of SLR approach used to test one-input soil property prediction functions, RMSE can be 

expressed in terms of percent sand, clay or SOM as MP. The MP estimate is then evaluated 

together with SEP, which is the ultimate indicator of soil properties predictability. Unlike RMSE, 

MP as well as SEP can be compared across different spectra transformation procedure as both of 

them are expressed in physical units. From sensor development point of view, small RMSE and 

MP indicates stable soil-detector interface. High RSE means that the sensor can be applied for a 

particular set of soils. Finally, small SEP (high R2 for a given set of samples) means sensor’s 

ability to predict soil property of interest. SEP is always greater than MP and the greater this 

difference, the less uncertain linear relationship between the measured value and the property. 

Small difference between SEP and MP indicates applicability of the prediction model when 

reliable measurement estimates are obtained. In other words, small difference between SEP and 

MP indicated the potential for improved predictability by averaging multiple unbiased 

measurements, but larger difference means the limitation of the model and alternative prediction 

methods, such as PLSR, should be involved  

 

In soil spectroscopy, PLSR is one of the most widely used techniques to aggregate measurements 

obtained at multiple wavelengths in a single prediction model. The PLSR is a bilinear regression 

technique that extracts a small number of latent factors, which are a combination of the 

independent variables, and uses these factors as a regression producer for the dependent variables 

(Geladi and Kowalski, 1986; de Jong and Kiers, 1992). The PLSR analysis is normally evaluated 

using the leave-one-out cross validation technique and RMSE, R2 and Akaike Information 

Criterion (AIC) (Akaike, 1974) are the most common model performance indicators.  

 

In this study, the orthogonalised PLSR-1 algorithm (Martens and Naes, 1989) was applied to 

1) original spectra, 2) smoothed spectra, 3) first order derivative spectra, 4) second order 

derivative spectra, and 5) all the values combined to develop calibration models using ParLeS 

software (Viscarra Rossel, 2008). The number of factors to use in each model was selected using 
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leave-one-out cross validation. However, due to the limited number of soil samples used (n = 

19), the selected models were not re-validated on a different set of soil samples, which is 

generally done in other reported studies. The developed models were used to estimate the 

performance indicators comparable to MP and SEP to define the superiority of PLSR over the 

SLR models. 

 

6.3 Results and Discussion 

 

Statistics on laboratory results for percentage sand, clay and SOM contents as listed in Table 6.1. 

These results point out the variability's observed over relatively small fields in terms of their 

texture and SOM content. It is interested to note that standard deviation of % sand in this dataset 

is two times higher than % clay and four times higher than % SOM.  

 

Average reflectance spectra of nineteen soil samples, collected both ex situ and in situ are 

illustrated in Fig. 6.5. In general, the laboratory spectra exhibited higher reflectance as those 

from the field, which might be explained by dry versus wet soil. All spectra showed water 

absorption inversions near 1400 and 1900 nm. Less noticeable inversions were also observed in 

many other parts of the spectra (1100, 1500, 1600, 1700 and 2100 nm) which could be associated 

with primary or secondary effects of various minerals, carbonates and SOM. Several noticeable 

peaks were also observed at certain parts of the spectra, especially in the visible region that could 

be associated with soil color. 

 

Fig. 6.6 illustrates the RSE values produced for original and all transformed spectra and 

Table 6.2, summarizes relevant statistical results. It is noticeable, that transforming the original 

soil spectra into 3-point Savitzky-Golay smooth and first and second derivative spectra, 

increased the reproducibility in many parts of the spectra. It is clear that the second derivatives 

had the highest relative reproducibility across the entire ex situ spectrum, while RSE for the first 

derivatives had the highest relative reproducibility across the entire in situ spectrum.  
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.  

Fig. 6.5 Examples of ex situ (left) and in situ (right) vis-NIR soil spectra 

 

   

Fig. 6.6 RSE estimates for ex situ (left) in situ (right) soil spectra and their derivatives 

 

One might expect that ex situ measurements were more reproducible than those conducted in 

natural soil conditions within a 0.5 m distance from each other. However, in both cases, first 

derivatives yielded data with comparable relative reproducibility in certain parts of the spectrum. 

In large, each transformed spectra had some portions with the ability to separate the means of the 

three replicated measurements between different soil samples (RSE > 0.79).  

 

Figures 6.7-6.9 illustrate the coefficients of determination versus the RSE's, while predicting 

percentage sand, clay and SOM contents using SLR. Table 6.3, summarizes wavelengths and 

transformation methods indicating the highest level of predictability for the soil properties of 
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interest. Selection of these wavelengths was predominantly guided by the coefficient of 

determination as the weighting between R2 and RSE is arbitrary. 

 

Table 6.2 Ratio of spread over error (RSE) comparison 

Test Transformed Factors Minimum Median Mean Maximum 

Ex situ 

Original spectra 1.69 1.76 1.81 2.18 

Smooth spectra 1.62 3.04 3.37 8.71 

First derivative 0.47 1.91 2.49 6.93 

Second derivative 0.32 0.86 1.32 10.56 

In situ 

Original spectra 1.24 1.53 1.51 1.67 

Smooth spectra 1.38 2.23 2.35 4.30 

First derivative 0.89 2.14 2.33 5.34 

Second derivative 0.52 1.59 1.70 3.88 

 

Alternatively, Figures 6.10-6.12 illustrate the SEP versus MP while predicting the soil properties. 

All values were calculated using both SLR and PLSR calibration models. To facilitate the 

comparison, the standard deviation of soil properties (laboratory measurements) was shown as a 

benchmark for SEP and the isolines represented positions in the chart with the constant sum of 

MP and SEP. To assure that both error terms are small, most promising wavelengths and spectra 

transformation methods were selected as those placed between two isolines indicating the lowest 

sum of MP and SEP.  

 

Table 6.4 summarized these wavelengths and spectra transformation methods. Tables 6.5 and 6.6 

lists key model performance indicators for each predicting variable listed in Table 6.4 along with 

all PLSR models. Fig. 6.13 points out selected wavelength using the average of all original 

spectra. It was observed that wavelengths near 1900 nm (short water absorbance band) 

transformed using either first or second derivative were found better correlated with percentage 

sand and clay contents as compared to the other parts of spectra. Smooth and first derivative 

spectra corresponding to different visible wavelengths indicated were superior when predicting 

SOM content.  

 

From Tables 6.5 and 6.6, it is obvious that PLSR results had the lowest combination of MP and 

SEP with no overwhelming difference among the types of spectra transformation involved. In 
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most cases, PLSR that is based on second-order derivative spectra indicated the best performance 

and soil properties prediction did not improve when using all four methods of spectra 

transformation. This was an expected observation as PLSR uses several spectral factors and SLR 

just one, which is not capable to relate the difference in sensor response with a given soil 

property. 

 

  

Fig. 6.7 % sand correlations verus the calculated RSEs for ex situ (left) and in situ (right) spectra 

and its derivatives 

 

In general, results indicate that when using a single predicting factor, SEP for sand was about 

10-12% with no significant difference between in situ and ex situ measurement. The MPs around 

3% indicate relatively strong spectra reproducibility, which indicates the need for a more 

expanded model. This is apparent since SEP of PLRS is twice smaller indicating the ability to 

predict sand to within 4%. Percent clay, on another hand had 3-4% SEP and 1-2% MP indicating 

both reproducibility of the spectra and the ability of a single spectra parameter predict clay fairly 

accurate. In this case PLRS also reduced the errors two times, but only using first or second 

derivative spectra.  
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Fig. 6.8 % clay correlations verus the calculated RSEs for ex situ (left) and in situ (right) spectra 

and its derivatives  

 

  

 

Fig. 6.9 % SOM content correlations verus the calculated RSEs for ex situ (left) and in situ 

(right) spectra and its derivatives 

 

Finally, SEP for SOM was found only a quarter lower than the standard deviation of laboratory 

measurements indicating that SLR is not an appropriate model for this soil property for the given 

set of soils. PLSR has reduced SEP to about 1% SOM, which is reasonable considering the 

extensive spread of soil texture in this soil set. Similarly to the sand and clay, minor increase of 

error estimates corresponding to in situ versus ex situ measurements was much small than it was 

expected considering that different physical locations within 0.5 m distance was used each time. 
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Fig. 6.10 Precision versus accurracy comparison for the vis-NIR soil spectra, their derivatives 

and PLSR when predicting % sand using ex situ (left) and in situ (right) measurements, (solid 

line - represents the standard deviation of sand content (laboratory measurements); 

isolines - represent the positions in the chart with the constant sum of MP and SEP; diamond 

symbol - represents PLSR results on all spectra combined) 

 

  

 

Fig. 6.11 Precision versus accurracy comparison for the vis-NIR soil spectral, their derivatives 

and PLSR when predicting % clay using ex situ (left) and in situ (right) measurements, (solid 

line - represents the standard deviation of clay content (laboratory measurements); 

isolines - represents the positions in the chart with the constant sum of MP and SEP; diamond 

symbol - represents PLSR results using all spectra combined) 

PLSR

* 

PLSR 

PLSR PLSR 
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Fig. 6.12 Precision versus accurracy comparison for the vis-NIR soil spectral, their derivatives 

and PLSR when predicting SOM content using ex situ (left) and in situ (right) measurements5. 

 

Table 6.3 Vis-NIR wavelengths (nm) indicating the highest correlation (R2) and ratio of spread 

over error (RSE) and with % sand, % clay and % SOM content 

Soil 

property 
Test 

Original 

spectra 

Smoothed 

spectra 
First derivative Second derivative  

% sand 

Ex situ - - 1932, 1936, 1940 1413 

In situ - - 
1447, 1452, 1940, 

1944 

1457, 1462, 1466, 

1923 

% clay 

Ex situ - - 
1936, 1940, 1944, 

1948 

1433,1915, 1919, 

1923 

In situ - - 
1931, 1936, 1940, 

1944 
1919, 1923 

% SOM 

Ex situ 733, 786 712, 744 
2114, 2117, 2121, 

2148 
- 

In situ - 749, 770 - 
602, 1738, 1742, 

2159, 2182 

                                                           

5 solid line - represents the standard deviation of % SOM content (laboratory measurements); isolines - represents 

the positions in the chart with the constant sum of MP and SEP; diamond symbol -  represents PLSR results using 

all spectra combined 

PLSR 
PLSR 
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Table 6.4 Vis-NIR wavelengths (nm) indicating the lowest critical error's when predicting % 

sand, % clay and % SOM content 

Soil property Test 
Smoothed 

spectra 
First derivative Second derivative 

% sand 

Ex situ - 1931*, 1936, 1940, 1944 1413 

In situ - 
1452, 1457, 1936,1940, 

1944 
1462, 1923 

% clay 
Ex situ - 1940, 1944, 1948 

1915,1919, 1923 

 

In situ - 1931, 1936, 1940, 1944 1923 

% SOM 
Ex situ 674, 679, 685 551, 556, 562, 568, 585 - 

In situ 421, 722, 728 421, 585, 590, 1747, 1751 1605, 543 

*- Bold italics represents the most optimal spectral wavelengths 

 

Table 6.5 The vis-NIR soil spectral bands found capable to exhibit the highest possible degree in 

terms of the precision and accuracy component, when predicting % sand, % clay and % SOM 

content during in situ measurement environments 

Soil property Spectra Model Wavelengths, nm R2 RSE MP SEP 

% sand 

 

Second derivative PLSR - - - 2.96 3.78 

First derivative SLR 1931 0.59 4.26 3.22 11.31 

First derivative SLR 1936 0.58 4.77 2.87 11.40 

Second derivative SLR 1413 0.56 3.58 3.70 11.74 

First derivative SLR 1940 0.56 5.06 2.65 11.75 

First derivative SLR 1944 0.5 5.57 2.29 12.46 

% clay 

 

First derivative PLSR - - - 0.63 0.73 

First derivative SLR 1944 0.87 5.57 1.59 3.33 

First derivative SLR 1940 0.87 5.06 1.74 3.35 

Second derivative SLR 1920 0.86 9.06 0.98 3.55 

Second derivative SLR 1924 0.85 10.38 0.85 3.61 

Second derivative SLR 1915 0.83 8.07 1.08 3.86 

% SOM 

 

Second derivative PLSR - - - 0.99 1.09 

First derivative SLR 557 0.36 4.24 0.67 3.78 

First derivative SLR 551 0.35 4.86 0.59 3.79 

First derivative SLR 585 0.34 4.26 0.65 3.84 

First derivative SLR 563 0.33 4.46 0.62 3.86 

Smooth SLR 685 0.31 6.70 0.40 3.92 

First derivative SLR 568 0.31 4.89 0.54 3.93 

Smooth SLR 680 0.3 7.35 0.36 3.95 

Smooth SLR 674 0.29 7.67 0.34 3.99 
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Table 6.6 Summary of vis-NIR factors demonstrating reproducibility, precision and accuracy 

during in situ measurements 

Soil Property Spectra Model Wavelengths, nm R2 RSE MP SEP 

 

% sand 

 

Original PLSR - - - 2.64 4.09 

Second derivative SLR 1462 0.49 1.90 4.25 10.86 

First derivative SLR 1452 0.40 3.75 3.93 11.67 

First derivative SLR 1944 0.50 2.34 3.96 11.83 

Second derivative SLR 1924 0.39 2.17 3.35 12.06 

First derivative SLR 1940 0.56 2.74 3.54 12.13 

First derivative SLR 1936 0.58 3.30 3.31 12.33 

First derivative SLR 1457 0.36 4.31 3.50 12.35 

 

% clay 

 

First derivative PLS - - - 1.28 1.73 

First derivative SLR 1940 0.87 2.74 2.41 3.17 

First derivative SLR 1936 0.85 3.30 2.28 3.38 

First derivative SLR 1944 0.87 2.34 2.58 3.75 

First derivative SLR 1932 0.78 3.64 2.32 4.28 

Second derivative SLR 1924 0.85 2.17 2.12 4.46 

 

% SOM 

 

First derivative PLSR - - - 1.31 2.05 

First derivative SLR 1747 0.00 3.07 0.86 3.46 

Second derivative SLR 1605 0.01 1.67 0.96 3.57 

First derivative SLR 1752 0.00 2.67 0.85 3.59 

Second derivative SLR 1544 0.00 1.39 0.96 3.59 

Smooth SLR 422 0.28 2.77 0.74 3.76 

Smooth SLR 728 0.33 3.87 0.72 3.78 

Smooth SLR 723 0.34 3.97 0.69 3.82 

First derivative SLR 591 0.00 4.60 0.48 3.98 

First derivative SLR 422 0.00 2.80 0.51 3.99 

First derivative SLR 585 0.00 5.07 0.52 3.99 
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Fig. 6.13 The identified regions from the vis-NIR soil spectra capable to exhibit the highest 

possible degree in terms of the precision and accuracy component, when predicting % sand, 

% clay, and % SOM in ex situ (left) and in situ (right) measurment environments 

 

6. 4. Conclusions 

 

Based on the results of this study, it can be concluded that vis/NIR spectral measurements 

obtained using the commercially available equipment are compatible in terms of precision and 

accuracy when used under laboratory conditions or in the field and when soil water content 

varied substantially. Smoothing, first and second derivative transformation of the spectra has 

increased measurement reproducibility, which enhanced the system’s ability to separate different 

soil samples. Naturally, this indicated the ability to predict soil properties that define the 

difference between soil samples. From tested soil attributes, clay content was shown to be 

predictable using spectral data derivatives around the short water absorption band. The 

prediction error was higher for sand and unacceptably high for SOM. Use of the popular PSLR 

technique reduced prediction errors, but a relatively small number of soil samples require caution 

when inferring these results in practice. The methodology of evaluating both the precision and 

accuracy components of spectral measurement errors was found to be useful when assessing 

performance of a given proximal soil sensing instrument. 
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Connecting Text to Chapter 7 

 

Chapter 7 is also related to the second objective of this study as listed in Chapter 1. As discussed 

in Chapter 1, phosphorus in the top few centimetres of the soil surface may cause non-point 

source pollution when rain-driven soil erosion carries surface runoff to streams. As shown in 

Chapters 4 and 6, spectral data obtained in ex situ and in situ environments using commercially 

available portable vis-NIR equipment, showed promising results while predicting soil texture. 

This chapter discusses a study performed to evaluate the capability of vis-NIR spectral 

measurements in terms of predicting plant available phosphorus quantities. The soil data set was 

86 archived soil samples. The results yielded a linear relationship between the predictions from 

the model and the reference measurements, with a coefficient of determination of 0.85 and a 

standard error of prediction of 28 mg kg-1. The results of this study were presented at 

conferences shown below and at the time this thesis was submitted, a manuscript had been 

submitted to the “Canadian Biosystems Engineering Journal” as follows: 

 

Dhawale, N.M., V.I. Adamchuk, R.A. Viscarra Rossel, S.O. Prasher, A.A. Ismail, & J.K. 

Whalen. 2013. Predicting plant available phosphorus using a vis-NIR spectral hyperspectral 

measurements obtained using a soil profiling tool. Canadian Biosystems Engineering Journal 

(under review). 

Dhawale, N.M., V.I. Adamchuk, R.A. Viscarra Rossel, S.O. Prasher, A.A. Ismail, & J.K. 

Whalen. 2013. Predicting extractable soil phosphorus using Visible/Near-infrared 

hyperspectral soil reflectance measurements. Paper No. 13-047. Orleans, Ontario: CSBE. 
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Chapter 7 

 

 

PREDICTNG PLANT AVAILABLE PHOSPHORUS USING 

VISIBLE/NEAR-INFRARED HYPERSPECTRAL MEASURMENTS 

OBTAINED USING A SOIL PROFILING TOOL 

 

Dhawale, N., V.I. Adamchuk, R.A. Viscarra Rossel, S.O. Prasher, J.K. Whalen, A.A. Ismail 

 

 

Abstract 

 

Mehlich-3 extracting solution is widely used to assess plant available phosphorus (PMehlich-3) in 

Québec through colorimetric or inductively coupled plasma spectroscopic methods. While 

conventional analyses of PMehlich-3 is laborious and time-consuming, hyperspectral soil reflectance 

measurements provide a portable and low-cost alternative that can be performed in situ. The 

objective of this study was to evaluate the capability of a commercial soil profiling tool, 

equipped with a combined visible/near-infrared (vis-NIR) spectrometry system covering two 

spectral ranges from 342-1023 nm and 1070-2220 nm to predict PMehlich-3 using samples obtained 

from an agricultural field undergoing phosphorus fertility trials. Three repeated measurements of 

soil reflectance were collected using 86 homogenized air-dried soil samples. Using a 

spectrometer calibration procedure, each 376-band spectrum was transformed into a digital array 

of soil absorbance measurements. A partial-least-squares regression (PLSR) method was used to 

relate the averages of the three repeated spectra of each of the 86 soil samples to PMehlich-3 

measurements. The results of the leave-one-out cross-validation of the spectral calibration model 

yielded a linear relationship between the predictions from the model and the reference 

measurements, with a coefficient of determination (R2) equal 0.85 and a root mean squared error 

of PMehlich-3 prediction equal 28 mg kg-1. The next step in this research will involve applying a 

similar data processing procedure to in situ measurements. 

 

Keywords: Soil reflectance spectroscopy, soil available phosphorus, proximal soil sensing 
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7.1 Introduction  

 

Agriculture-based non-point source pollution is an undesired effect of excessive fertilization 

traditionally practised to achieve higher yields. In result, it is of rising concern, due to the many 

cases of cyanobacteria and algal blooms affecting rivers, lakes and ponds across Canada 

(Canadian Council of Ministers for the Environment, 2007; Carpenter, 2008).  

 

Phosphorus (P) is one among the three most essential crop nutrients added to agricultural soils by 

applying mineral fertilizers and manure. When not consumed by crop, excessive P may 

propagate to ground and surface waters due to leaching and runoff (Chambers et al., 1997; 

Carefoot and Whalen 2003; Condron et al., 2005; Jiao et al., 2006; Enright et al., 2009). Besides, 

phosphorous is a finite resource on earth and is available primarily through mining (Jasinski, 

2011). According to Cordell et al. (2009), P fertilizer is going to reach peak production by 2030 

and reserves are expected to be completely depleted in 50-100 years.  

 

Conventionally, plant available P content is quantified through soil sampling and laboratory 

analysis. Mehlich-3 is a widely used extracting solution (Mehlich, 1984) for evaluating plant 

available phosphorus (PMehlich-3) in Québec soils. PMehlich-3 may be quantified using colorimetric 

or inductively coupled plasma (ICP) spectroscopic methods (Murphy and Riley 1962; Ziadi et 

al., 2009).  

 

Unfortunately, quantification of PMehlich-3 using conventional techniques is laborious and 

time-consuming, and, therefore, typical density of soil sampling is relatively low. Potentially, 

this limitation can be overcome using proximal soil sensing (PSS) (Viscarra Rossel, et al., 2011), 

when an instrumented system is used to obtain a large number of measurements in field 

conditions. To date, there is no commercial PSS technology used to routinely produce 

high-density maps of PMehlich-3 prior to site-specific P management. Thus, a spectrometric method 

can be used to employs the interactions of visible and near infrared radiation with the sample 

under investigation.  
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The vis-NIR system is based on the sample’s absorption of electromagnetic radiation at within a 

range from 400 to 2500 nm (Viscarra Rossel et al., 2006b). A number of studies determining soil 

attributes by this method have resulted in the successful use of NIR spectroscopy to quantify soil 

organic matter, moisture, total C, total N, and cation exchange capacity. For example, Dalal and 

Henry (1986) simultaneously determined soil organic C, moisture, and total N by NIR 

spectroscopy. Similarly, there have been a number of attempts to predict P in soils by ultra violet 

(UV), vis, and/or NIR spectroscopy.  

 

Krischenko et al. (1991) reported weak correlations between predicted and actual P (R2 = 0.42). 

Similarly, Williams (2003) reported poor prediction of P using NIR spectroscopy. Chang et al. 

(2001) found an R2 = 0.40. Thomsson et al. (2001), reported a similar value (R2 = 0.49), noting 

that there were several spectral overtones for P in the wavelength range from 400 to 2475 nm in 

sandy loam, clay and silt clay soils. He et al. (2005) reporting an R2 = 0.46, offered the 

explanation that this low correlation could be the result of a significant overlap in the signals for 

both P and C-H-O-N bonds.  

 

Further, Bogrekci and Lee (2005) investigated the effects of common soil P compounds on 

reflectance spectra of sandy soils using UV, vis, and NIR reflectance spectroscopy. They added 

P to the sandy soils in four different forms (FePO42H2O, Mg3(PO4)22H2O, CaPO4, and AlPO4) 

and in seven different proportions. The authors reported successful prediction of P in sandy soils 

for all four compounds (0.48 ≤ R2 ≤ 0.73) and found the strongest absorption peaks for 

FePO42H2O, Mg3(PO4)22H2O, CaPO4, and AlPO4 occurred at 286, 2548, 2516, and 228 nm, 

respectively. Maleki et al. (2006) reported soil P predictions for 2 different data sets with an 

R2 = 0.75 and 0.73, with soil texture classes ranging from silt loam, to sandy loam. 

Wetterlind et al. (2010) reported soil P predictions for 2 different set of soils with an R2 = 0.48 

and 0.78. Kodaira and Shibusawa (2013) reported soil P predictions with an R2 = 0.72. 

 

The objective of this study was to evaluate the capability of a commercial, soil profiling tool 

equipped with a combined visible/near-infrared spectrometry system covering a spectral range 

from 342 to 2220 nm to predict PMehlich-3 in the laboratory, using samples obtained from an 

agricultural field in Québec undergoing P fertility trials. 
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7.2 Materials and Methods  

 

7.2.1 Soil Samples  

 

Soil samples were selected from a set of 1440 soil samples originally collected for a different 

study that involved P fertility trials (Carefoot and Whalen, 2003). Soil samples were collected in 

the fall after harvest, but before fall tillage, from 0-15, 15-30, and 30-60 cm depth intervals using 

a tractor-mounted soil auger. The samples at each depth were composites of two cores (7.5-cm 

diameter) obtained from each split plot area (Carefoot et al., 2003). Soils were then dried in a 

forced-air oven (60 °C for 48 h), ground, and passed through a 2-mm mesh sieve.  

 

Soils nutrients were extracted using Mehlich-3 solution (1:10 soil: solution) after shaking for 5 

min at 130 rpm. Phosphate concentrations in Mehlich-3 extracts were evaluated by the 

molybdenum blue reaction (Holman, 1943). To cover a wide range of PMehlich-3 content (Fig. 7.1) 

a subset of 86 soils samples was selected. A summary of PMehlich-3 concentrations for the selected 

86 soil samples is provided in Table 7.1.  

 

7.2.2. Instrumentation  

 

A commercial soil profiling tool (Veris® P4000, Veris Technologies, Inc., Salina, Kansas, USA6) 

equipped with a combined, dual type spectrometer instrument (Fig. 7.2), operating in the visible 

and near-infrared regions of the electromagnetic spectrum, was used in this study. This 

instrument can be operated both in situ and ex situ. One of the two spectrometers was used to 

collect soil absorbance data between 342 and 1023 nm and 7 nm of spectral resolution, and the 

other spectrometer measured between 1070 and 2220 nm and 4 nm of spectral resolution. The 

instrument included its own halogen light source (2700°K) and was capable of maintaining a 

constant distance between the measured soil and the fibre optic probes using a designated 

sapphire window. 

                                                           

6 Mention of a trade name, proprietary product, or company name is for presentation clarity and does not imply 

endorsement by the authors or McGill University and CSIRO, nor does it imply exclusion of other products that may 

also be suitable. 
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Fig. 7.1. Distribution of soil samples according to their PMehlich-3 content 

 

Table 7.1 Statistical results of PMehlich-3 (mg kg-1) observed in the 86 soil samples used in the 

study 

Number of 

samples 

Texture Depth Minimum Mean Maximum Standard 

deviation 

(SD) 

31 silty- loam 0-15 cm 96 177 244 38 

31 sandy-silty- loam 15-30 cm 44 109 196 40 

21 sandy-clay 30-60 cm 4 32 154 32 

 

7.2.3. Methods  

 

Three sets of ex situ measurements of soil absorbance were collected from each of 86 soil 

samples in random order. The data collection process involved filling about ~1 g of soil into a 

customized sample holder (radius of 0.5 mm and thickness of 5 mm) and placing it in contact 

with an optical window of area ~707 mm2. To minimize the instrument noise, each spectrum was 

recorded as an average of 30-32 scans. At the beginning of each set of measurements and after 

every 20 samples, the instrument was recalibrated by measuring dark current followed by white 
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reference measurements using the specially provided reference blocks. This yielded a total of 

376 data points (wavelengths) with about 4-7 nm of spectral resolution. 

 

 

Fig. 7.2 Vis-NIR setup in bench top configuration 

 

7.2.4 Processing of the Spectra  

 

All raw absorbance soil spectral measurements were transformed into reflectance measurements 

(10-absorbance) and the quality of the vis-NIR soil reflectance spectra were improved by removing 

the noisy parts (tails) observed in the spectra corresponding to wavelengths 342-373, 1018-1023, 

1070-1075, 2216-2220 nm. Three replicated spectra were averaged for each soil sample to 

represent raw averaged (RA) soil spectra. A 3-point median filter was applied to the RA soil 

spectra to obtain average denoised spectra. Then the first (I) derivatives (DER) using 13 

consecutive wavelengths were taken according to Savitzky and Golay (1964). This has brought 

the total number of spectra-based quantise equal 722 (RA, FD spectra).  
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Table 7.2. Statistical results of PMehlich-3 (mg kg-1) observed in the calibration and validation 

examples 

Number of samples Set Minimum Mean Maximum Standard deviation (SD) 

70 Calibration 4 112 244 67 

16 Validation 4 127 228 71 

 

7.2.5 Modeling  

 

After a simple regression analysis relating each individual measure and PMehlich-3 was performed, 

a partial least squares regression (PLSR) method was used to determine their combination that 

could better predict PMehlich-3. The 86 soils samples were randomly divided into two data sets 

consisting of 70 calibration samples and 16 validation samples and the ParLeS software (version 

3.1, 2007, University of Sydney, Sydney, Australia) (Viscarra Rossel, 2008) was used for 

calibration model development. Table 7.2 shows the statistical results with fairly even 

distribution of PMehlich-3 in both sets of soil samples.  

 

PLSR is a bilinear regression technique that extracts a small number of latent factors, which are a 

combination of the independent variables i.e. reflectance/absorbance (at spectral 

wavelengths/wavenumbers), and uses these factors as dependent variables or chemical laboratory 

measured reference values in the regression. The PLSR analysis was tied to the leave-one-out 

cross-validation technique, which is essential to the method to construct a steadfast prediction 

model of PMehlich-3 in soils. 

 

During PMehlich-3 spectral model calibration, several data pre-treatment options (available in the 

ParLeS application) were applied to the calibration examples. The accepted selection of a 

pre-treatment was based on comparing the statistical results of the different models. This process 

resulted in two models. In the first few efforts to develop a PMehlich-3 model, no pre-treatment 

after denoising the RA spectra (Model-1) and the first derivative (FD) of denoised RA spectra 

using Savitzky and Golay (1964) followed by mean centering (MC) technique (Model-2) yielded 

into the best results. 
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7.2.6. Statistical Analysis  

 

Model performances were evaluated using root mean square error (RMSE), coefficient of 

determination (R2) and Akaike information criterion (AIC) (Akaike, 1974). An additional 

statistical quality parameter; the relative percent deviation (RPD) was used to evaluate the 

calibration models (Williams, 2001). The RPD is the ratio of standard deviation (SD) of the 

measured value of soil properties to the value for RMSE of prediction or the RMSE of validation 

(Stenberg et al., 2004). For samples of heterogeneous material such as soil, the following levels 

of performance are defined: calibrations with values of R2 > 0.95 and RPD > 4 are outstanding, 

values for R2 of 0.90-0.95 and RPD of 3.00-4.00 are high, values for R2 of 0.80-0.90 and RPD of 

2.25-3.00 are moderately high and values for R2 of 0.70-0.80 and RPD of 1.75-2.25 are moderate 

(Chang et al., 2001; Williams, 2001; Nduwamungu et al., 2009). 

 

7.3 Results and Discussion  

Fig. 7.3 illustrates the RA vis-NIR spectrum between 379-2212 nm collected on three air-dried 

laboratory soil samples containing three different PMehlich-3 concentrations.  
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Fig. 7.3 Vis-NIR spectra illustrating differences when collected from soil samples having three 

different PMehlich-3 concentrations 
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As illustrated in Fig. 7.3 significant differences were observed between the vis-NIR spectra and 

the three different PMehlich-3 concentrations. Fig. 7.4 illustrates the R2 values of RA and FD 

vis-NIR spectra. A value of R2 = 0.59 was found around 600 nm with the RA vis-NIR spectra. In 

addition, significantly stronger values of R2 > 0.75 were observed at several parts of the FD vis-

NIR spectra (827, 897, 2037-2044 nm). 

 

Fig. 7.5 shows the AIC values corresponding to the number of PLSR factors reported by ParLeS, 

for both the models. The PLSR factor numbers, corresponding to the lowest AIC values were 

chosen for the models. The statistical results illustrating the performances of both PMehlich-3 

prediction models are summarised in Table 7.3. The linear relationships between laboratory 

measurements and predicted PMehlich-3 by both vis-NIR models in the calibration stage are shown 

in figures 7.6a-b. The predictions of PMehlich-3 resulting into negative values are forced to zero. 
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 Fig. 7.4 Coefficient of determination (R2) between vis-NIR spectra and PMehlich-3 

 

The R2 and RPD were either 0.83 and 2.42 or 0.85 and 2.37, when no pre-treatment was applied 

(Model-1) or when the denoised RA spectral data was pre-treated by the first derivative followed 

by mean centering (Model-2). The later pre-treatment also resulted in the lowest 
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RMSE = 28 mg kg-1 PMehlich-3. Based on these results both of the vis-NIR spectral models can be 

categorised as being moderately useful for predicting PMehlich-3 (Chang et.al. 2001). It is also 

important to note that these models covered a greater range of soil types (silt loam, sandy silt 

loam and sandy clay) as compared to earlier relevant studies (Bogrekci and Lee, 2005; Maleki et 

al., 2006; Kodaira and Shibusawa, 2013; Wetterlind et al., 2010).  
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Fig. 7.5 Selection of the PLSR model factors, (Circles: averaged raw calibration data; Triangles: 

first derivatives and mean centered on averaged raw data). 

 

Table 7.3 Statistical results of PLSR model calibration and validation, developed and tested 

using vis-NIR soil spectral data 

Statistics*  Model-1  Model-2 

Data set Calibration Validation Calibration Validation 

SD, mg kg-1 67 71 67 71 

Number of PLSR factors 7 7 4 4 

RMSE, mg kg-1 30 29 30 28 

L CI RMSE, mg kg-1 - 22 - 22 

H CI RMSE, mg kg-1 - 45 - 46 

RPD 2.22 2.42 2.23 2.37 

R2 0.80 0.83 0.80 0.85 
*SD - standard deviation; RMSE - root mean square error; L CI - lower confidence interval; H CI 

- higher confidence interval; RPD - relative percentdeviation; R2 - coeefficient of determination. 
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Fig. 7.6 P Predicted versus laboratory chemical measured soil available phosphorus (PMehlich-3) 

for 86 samples showing, (a-b) PLSR Model 1 and Model-2 calibration with leave one out cross 

validation and (b-c) Model-1 and Model-2 validation, R2 - coefficient of determination, 

RMSE - root mean square error 

Model-1 
RMSE= 30 mg kg-1 
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R² = 0.83 
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R² = 0.85 
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The PLS regression coefficients (beta) for the best model (Model-2) are shown in Fig. 7.7. The 

size of the regression coefficients (negative or positive) represents the importance of the portable 

vis-NIR wavelengths being used for the prediction of PMehlich-3. In the vis range, the higher peaks 

for PMehlich-3 for soils used in the calibration set and in Model-2 were observed at wavelengths of 

439, 457, 463, 545, 596, 635 and 738 nm whereas, in the NIR range, most high peaks were 

observed at wavelengths of 806, 1000, 1009, 1374, 1418, 1873, 1911, 2032 and 2174 nm. The 

highest peak in the vis region was found at 635 nm and in the NIR region at 1418, 1911 and 

2174 nm. Among these wavelengths, 439-457 and 1418 could be compared with 421, 441, 448, 

454 and 1464 found by Maleki et al. (2006). Wavelength, like 806, 1418, 1911 and 2174 can be 

compared with 867, 1419-1464, 1938-1948 and 2211-2152 found by Bogrecki and Lee (2005). 

In general bands near 600 nm are associated with soil color and bands near 1400 and 1900 are 

associated with soil water, which can be supported for these results. 

 

Unfortunately, there is no proof available in the literature concerning direct absorption by P in 

the vis-NIR region (Maleki at al., 2006) as the absorption of NIR radiation by organic molecules 

is due to overtone and combination bands primarily of C-H, N-H and O-H groups whose 

fundamental band is related to molecular stretching occurring in the mid-infrared (mid-IR) 

spectral region (Viscarra Rossel et al., 2006b). However, many successful studies reported 

earlier and including this are perhaps due to the existing and hidden relations between soil P and 

other soil constituents, as discussed by Chang et al. (2001).  

 

According to Maleki et al. (2006), all the correlations for PMehlich-3 in the vis and NIR region are 

indirect correlations with soil components that bind with P and show spectral activity. P binds 

with oxides present in sandy soils, and in sandy loam soils, like calcium carbonate, will bind P as 

calcium phosphate. The presence of moisture could also darken the color of these complexes 

which in turn would be responsible for a better correlation between the P complex and the 

spectral signal in the vis and NIR ranges. On the other hand, since the soils were treated with 

inorganic fertilizers the presence of calcium phosphate might have been detected by the NIR 

spectrometer for its corresponding wavelength and since the soils were treated with manure the 

presence of organic complexes with P could also be responsible for a better correlation between 

organic P and the spectral signal in the vis range. Through future research, a detailed analysis of 
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each indicative wavelength and PMehlich-3 concentration along with the influence of other soil 

attributes needs to be carried out. 
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Fig. 7.7 Regression coefficients (betas) of the PLSR Model-2 

 

7.4 Conclusions 

In this study soil absorbance was measured by using a commercial soil profiling tool equipped 

with a combined dual spectrometer in the range of 342-2220 nm of the visible (vis) and near 

infrared (NIR) spectrum was combined with partial least squares regression (PLSR) 

leave-one-cross-validation techniques to correlate soil reflectance with plant available 

phosphorus (PMehlich-3) in a calibration data set of air-dried soil samples. Two methods of 

pre-processing the averaged spectral data resulted in two steadfast models using vis-NIR spectral 

data in the range 379-2220 nm. The results of the leave-one-out cross-validation of the spectral 

calibration model yielded a linear relationship between the predictions from the model and the 

reference measurements, with R2 = 0.85 and RMSE = 28 mg kg-1 for the best model. The next 

step in this research will involve applying a similar data processing procedure to in situ 

measurements on the same and different fields. 
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Connecting Text to Chapter 8 

 

The importance of site specific soil and crop management and the role of proximal soil sensing 

have been addressed in the first two chapters. As shown in Chapter 3, an on-the-spot soil 

analysing platform has been developed to make point-based measurements of multi-soil 

chemical properties in field. Two independent sets of active hyperspectral sensor systems were 

evaluated and compared in terms of their potential use for OSA. The results have been discussed 

in Chapters 4 through 6. Chapter 8 is related to the third objective listed in Chapter 1. In this 

chapter, a novel algorithm has been developed to combine multilayer high-density spatial data, 

obtained using proximal soil sensing systems. Apparent soil electrical conductivity and field 

topography obtained using on-the-go sensing platforms are used to illustrate the algorithm. As a 

result, the algorithm was found capable to partition several tested fields into spatially contiguous 

and relatively homogenous areas (groups), representing the measured variability between input 

data layers to be nearly constant within the formed groups. Due to this unique feature, the 

algorithm is anticipated to maximize the value of prescribed point-based measurements by OSA 

or other similar platforms, however it requires more research. Different parts of this study were 

presented at the conferences listed below and a manuscript has been prepared for the 

“Geoderma”. 

 

Dhawale, N.M., V.I. Adamchuk, S.O. Prasher, P.R.L. Dutilleul, & R.B. Ferguson. 2014. 

Spatially constrained data clustering for multilayer high-density proximal soil sensing data. 

Geoderma (to be submitted). 

Dhawale, N.M., V.I. Adamchuk, S.O. Prasher, P.R.L. Dutilleul, & R.B. Ferguson. 2014. 

Spatially constrained geospatial data clustering for multilayer sensor based measurements. 

Paper No. MTSTC2-127. ISPRS/IGU Joint International Conference on Geospatial Theory, 

Processing, Modelling and Applications, 6-8 October 2014, Toronto, Canada. 

Dhawale, N.M., V.I. Adamchuk, S.O. Prasher, & P.R.L. Dutilleul, 2012. Spatial data clustering 

using neighbourhood analysis. Paper No. 121337939. St. Joseph, Michigan: ASABE.  
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Chapter 8 

 

 

SPATIALLY CONSTRAINED DATA CLUSTERING OF MULTILAYER 

HIGH-DENSITY PROXIMAL SOIL SENSING DATA  

 

Dhawale, N., V. I. Adamchuk, S. O. Prasher, P. R. L. Dutilleul, R. B. Ferguson 

 

 

Abstract 

 

One of the most popular approaches to process high-density proximal soil sensing data is to 

aggregate similar measurements representing unique field conditions. An innovative, 

constraint-based spatial clustering algorithm has been developed. The algorithm seeks to 

minimize the mean squared error during the interactive grouping of spatially adjacent 

measurements similar to each other and different from other parts of the field. After successful 

implementation of a one soil property scenario, the goal of this research was to accommodate 

multiple layers of soil properties representing the same area under investigation. Six agricultural 

fields across Nebraska, USA, were chosen to illustrate the algorithm’s performance. Field 

elevation and apparent soil electrical conductivity at deep and shallow depths were investigated. 

The algorithm was implemented in MATLAB, R2013b. Prior to the process of interactive 

grouping, geographic coordinates were projected and erroneous data were filtered out. 

Additional data pre-processing included bringing each data layer to a 20 x 20 m raster to 

facilitate multilayer computations. An interactive grouping starts with a new “nest” search to 

initiate the first group of measurements which includes those that are most different from the rest 

of the field. This group is expanded using a neighbourhood search approach and once the group 

fails to reduce the overall mean squared error, the algorithm seeks to locate a new “nest”, which 

will grow into another group. This process continues until there is no benefit from separating out 

additional parts of the field. Results of the six-field trial showed that each case generated a 

reasonable number of groups which corresponded to agronomic knowledge of the fields. The 

unique feature of this approach is spatial continuity of each group and the capability to process 
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multiple data layers. Further development will involve comparison with a more traditional 

k-means clustering approach and agronomic model calibration using targeted soil sampling. 

 

Keywords: precision agriculture, proximal soil sensing, geospatial data clustering, 

management zones 
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8.1 Introduction 

 

While conventional soil sampling techniques are laborious and time consuming, proximal soil 

sensing (PSS) allows rapid and inexpensive collection of high-density data (Viscarra Rossel and 

McBratney, 1998; Viscarra Rossel et al., 2010). To pursue various site-specific management 

practices, spatial data is frequently split into groups (clusters or zones) to represent significantly 

different growing conditions (Fraisse et al., 2001; Ping and Dobermann, 2003). Geo-spatial data 

clustering is an important process (Li and Wang, 2010), which is widely used in remote sensing 

(Deng et. al. 2003), neuroanatomy analysis (Prodanov et. al, 2007), and other areas. Several 

different spatial clustering algorithms have been developed to group geospatially dense 

PSS-based measurements of soil attributes into management zones.  

 

For example, Management Zone Analyst (Fridgen et al., 2004) represents a publicly available 

tool accepted by a number of practitioners. The algorithm is based on computing a distance 

matrix and performing clustering over this new distance matrix. It is closely related to the 

popular k-means clustering algorithm, where quality of the resulting clusters heavily depends on 

the selection of initial centroids and the results are not repeatable. However, this method requires 

cross-validation to select the best, among several runs. (Abdul-Nazeer and Sebastian, 2009). 

Although the method provides multidimensional data analysis, complexity and frequently 

occurring discontinuities of management zones make this technology non-robust for potential 

users (Kerby et al., 2007; Shatar and McBratney, 2001).  

 

Spatial continuity of formed clusters can be achieved by restricting grouping measurements that 

are not adjacent to each other (Dhawale et al., 2012) through so called Neighbourhood Search 

Analysis (NSA). This is a form of clustering built on the principle of growing new groups of data 

points or grid cells with a fixed size through minimization of the mean squared error (MSE). 

Since previous trials with one measured soil attribute revealed positive outcomes, the objective 

of this study was to advance an algorithm to allow multiple data layers to be used for delineating 

spatially constrained groups of high-density soil sensor-based measurements. Field elevation and 

apparent soil electrical conductivity (ECa) at two depths obtained from six agricultural fields 

with different levels of spatial structure were used to illustrate the performance of this algorithm. 
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8.2 Materials and Methods 

 

8.2.1 Data Collection 

 

Six production fields in Nebraska were mapped using a Veris®31007 (Veris Technologies, 

Salina, Kansas, USA) galvanic contact soil ECa mapping unit equipped with an RTK-level, 

AgGPS 4428 (Trimble Navigation Ltd., Sunnyvale, California, USA) and a global navigation 

satellite system (GNSS) receiver. The three data layers were: 1) field elevation 2) deep soil ECa 

(~0-90 cm) obtained with a wide pair of Wenner array electrodes and 3) shallow soil ECa (~0-30 

cm) obtained using a narrow pair of electrodes. Table 8.1 summarises data from the six fields. It 

has been noted that the two layers of ECa represent similar but not identical spatial patterns, 

while field elevation does not always correspond to the overall pattern of changing ECa. 

Therefore, the ideal map of field partitioning would delineate areas with different combinations 

of the three values significantly different from the average field conditions. 

 

8.2.2 Data Pre-processing  

 

All data processing was accomplished using MATLAB R2013b (The MathWorks, Inc., Natick, 

Massachusetts, USA). To obtain three 2D matrices representing each field, sensor-based data 

pre-processing involved four steps: 1) removing erroneous data using predefined threshold 

values of physically feasible measurements, 2) 1D data smoothing using a 5-point moving 

average technique, 3) projection of local coordinates according to Adamchuk (2001), and 4) 

20 x 20 m averaging of all measurements inside each grid cell. Field elevation data were relative 

to the lowest grid cell found in every field. The resulting rectangular matrix representing each 

field covered the entire spatial domain. Grid cells outside field boundaries were assigned zero 

values. Therefore, no grid cells inside the fields were without corresponding sensor 

measurements. Smaller grid cell size would also be possible, but would require more 

                                                           

7 Mention of a trade name, proprietary product, or company name is for presentation clarity and does not imply 

endorsement by the authors or McGill University, nor does it imply exclusion of other products that may also be 

suitable. 
8 Mention of a trade name, proprietary product, or company name is for presentation clarity and does not imply 

endorsement by the authors or McGill University, nor does it imply exclusion of other products that may also be 

suitable. 
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computation power. The selected resolution using a total of 600-1500 grid cells per field was 

considered reasonable to reveal field macro-variability.  

 

Table 8.1. Statistical summary of the proximal soil sensing (PSS) data from agricultural fields 

Field ID Area, ha Mean Range SD 

Field elevation, m 

1 25 1.50 3.20 0.53 

2 46 4.95 17.82 3.99 

3 50 7.10 11.54 2.09 

4 55 8.07 27.44 5.68 

5 67 4.22 8.09 1.60 

6 44 6.15 10.59 2.15 

Shallow ECa, mSm-1 

1 25 0.73 1.58 0.28 

2 46 3.99 13.14 1.67 

3 50 6.21 11.64 1.84 

4 55 2.44 9.04 1.72 

5 67 7.25 9.32 1.88 

6 44 2.29 7.42 0.82 

Deep ECa, mSm-1 

1 25 7.62 27.66 3.76 

2 46 30.24 86.90 14.39 

3 50 4.10 8.68 1.71 

4 55 16.31 61.97 12.06 

5 67 51.01 80.77 14.07 

6 44 25.72 81.74 14.36 

 

8.2.3 Data Clustering Algorithm 

 

The data clustering algorithm was constructed using the assumption that treating a group of 

adjacent grid cells separately from the rest of the field would reduce the MSE between individual 

cell values and the average for corresponding groups:  
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                               (8.1) 

    

where Xij = sensor-value for ith grid cell within jth group 

 Ẋj = sensor-value average for jth group 
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 k = the number of grid cell groups 

 nj = the number of grid cells within jth group 

 N = the total number of non-zero grid cells 

 

The interactive process of grid cell grouping starts with the assumption that all grid cells belong 

to the group labelled “1” designated as “the rest of the field”. Grid cells can be grouped together 

only when they have at least one common side. This assumption is typically referred to as 

“rook’s rule”.  

 

Only nine neighbouring grid cells in a 3x3 configuration can form a new group. The beginning 

of a new group as well as a merger of a new grid cell to an existing group is accepted when the 

result produces the lowest MSE. Group enlargement as well as the search for a new group stops 

when neither action results in a further decrease in MSE. Fig. 8.1 illustrates the flowchart of the 

algorithm developed.  

 

One minus the ratio of the MSE calculated using equation (8.1) and the initial MSE (considering 

that k = 1) indicates the fraction of variability accounted for by the grouping and is equivalent to 

the coefficient of determination (R2) typically used to quantify the quality of a linear regression 

model: 

1

2 1



kMSE

MSE
R

                                      (8.2) 

  

As shown by Dhawale et al. (2012), this algorithm can be successfully used for a single data 

layer. To achieve multilayer analysis, MSE for each data layer should be minimized and R2 

maximized. This can be realized by multiplying R2 values. Thus, perfect recognition of spatial 

variability would mean R2 = 1 (measured values within each group are exactly the same), and 

R2 < 1 once a fraction of the variability is not accounted for. Therefore, the product of three R2 

(elevation and two depths of EC) will be small if at least one of the three multipliers is relatively 

low. Since MSEk=1 is a constant value, the same grid cell grouping result will occur when 

minimizing the product of three MSE estimates as when maximizing the product of three R2 

values. Quality partitioning of an agricultural field would occur when R2 for all data layers 
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would be relatively high with the smallest possible number of identified groups of relatively 

homogeneous grid cells different from their surroundings.  
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Find the neighbor cells of group k producing 

min(MSE'k) 

 (MSE'k) < MSEk 

Add the neighbors to group k 

Yes 

 

 

Fig. 8.1 Algorithm flow chart 

 

Since the two ECa measurements frequently correlate, the influence of field elevation in this 

study was made similar to the influence of ECa by raising the elevation R2 estimate to the second 

power: 

 22222

ElevationDeepECShallowECProduct RRRR
aa


                              (8.3) 
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Therefore, the algorithm shown in Fig. 1 was implemented to maximize product R2 instead of the 

MSE for a single data layer. No formal statistical analysis and comparison with more traditional 

spatial clustering techniques were performed at this preliminary stage. 

 

8.3 Results and Discussion 

 

Fig. 8.2 illustrates one of the six fields from the initial trial of the developed algorithm. Areas of 

the field representing low elevation in the east and high elevation in the west were delineated 

first with two additional groups emerging later. Fig. 8.3 illustrates that R2 values increased as 

new groups were formed. Apparently, delineation of groups 2 and 4 were primarily caused by 

the spatial variability of soil ECa, while groups 3 and 5 emerged predominantly due to 

differences in field elevation. The algorithm did not locate any new groups of 3 x 3 grid cells that 

could further increase the R2 product. 

 

Fig. 8.4 illustrates grid cell grouping for all the fields resulting in a total of 2-8 groups per field. 

Fig. 8.5 summarises the resulting R2 values. The products of these values are shown in Fig. 8.6. 

Fields 2 and 4 revealed only one group of grid cells that could be separated from the rest of the 

field while Fields 3 and 4 had 6 and 7 groups, respectively. At the same time, the algorithm 

produced groups with relatively strong three data layer partitioning for Fields 1, 3, 4, and 6. 

However, sub-division of Fields 2 and 5 were mainly dominated by field elevation, which 

resulted in relatively low R2 products. In both cases, soil ECa measurements differed 

significantly among neighbouring cells, indicating relatively poor spatial structure. 

 

Although the strength of this algorithm is spatial continuity of each group of grid cells, group 

edges may need smoothing for improved field manageability. Since grid cells poorly associated 

with their neighbours occur mostly due to field anomalies or erroneous measurements, edge 

smoothing will always reduce the R2 product objective function. This suggests that more 

research to include a comparison of resulting field partitioning with equivalent processing could 

be conducted using more traditional k-means-type clustering algorithms (Fraisse et al., 2001; 

Ping and Dobermann, 2003) with suitable pre- and post-processing techniques. 
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Fig. 8.2 Maps of field elevation (a), shallow ECa (b), deep ECa (c), and delineated groups of grid 

cells (d) for Field 1 
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Fig. 8.3 Change in R2 product with the number of delineated grid cell groupings 
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Fig. 8.4. Maps of the partitioned fields 

 

In comparison with previously reported algorithms (Fraisse et al., 2001; Ping and Dobermann, 

2003; Fridgen et al., 2004) where the quality of the resulting field partitioned areas heavily 

depends on the selection of initial centroids and the results are not repeatable, this algorithm 

produced repeatable field partition areas that were relatively homogenous and spatially 

contiguous. Spatial contiguity of formed partitioned areas were achieved by restricting the 

grouping measurements that are not adjacent to each other through Neighbourhood Search 

Analysis (NSA). In addition, one does not need to provide the number (k) of desired field 

partitioned areas in advance as the algorithm is capable of finding the optimal number of k on its 

own. In this way, the algorithm avoids the extra step needed to find the number of k’s as done in 

other algorithms by re-running the algorithms for several runs for several numbers of k’s.  

Field 4 

Field 1 Field 2 

Field 3 

Field 5 Field 6 
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In presented algorithm, the initialization of new groups of fixed size data points and the later of 

merging its neighbours is all achieved through minimization of the mean squared error (MSE). 

Therefore, the algorithm is capable of producing the same outcome for any number of repeated 

runs and does not require cross-validation to select the best among all runs, which is the 

conventional practice, using traditional clustering. 
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Fig 8.5 R2 values for the three data layers used to partition the six experimental fields 
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Fig. 8.6 R2 products for the six fields 

 

In general, the results from the new multi-dimensional spatial data clustering algorithm when 

evaluated on traditional high-density proximal soil sensing data was capable of delineating five 
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out of the six agricultural fields into relatively homogeneous areas. The successful outcome of 

the algorithm indicates its potential for use in optimizing the number of point based 

measurements within partitioned field areas with OSA, other in situ sensing systems, or 

conventional soil sampling.  

 

8.4 Conclusions 

 

The spatial clustering algorithm developed in this study is based on a neighbourhood search 

method and seeks to minimize variance inside each group of interpolated grid pixels 

corresponding to an unlimited number of sensor-based data layers. Preliminary tests of the 

algorithm using six production fields illustrated algorithm robustness (consistent outcomes) 

when delineating field areas with different field elevations and soil ECa measurements. Each 

spatially constrained group of grid cells emerged in response to each unique combination of data 

values which were relatively constant within each group. Concurrently, more sets of traditional 

high-density proximal soil sensing data composed of contrasting agricultural fields could be used 

to test the overall robustness of the algorithm in future. 
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Chapter 9 

 

 

SUMMARY AND GENERAL CONCLUSIONS 

 

9.1 Summary 

 

This research provided several groundbreaking advancements for making Proximal Soil Sensing 

(PSS) technologies more efficient and effective. Firstly, an advanced proximal soil sensing 

equipment was prototyped to make point based measurements of multi-soil chemical properties 

in a simultaneous and automated manner. Further, spectroscopic techniques were evaluated in 

laboratory and in field conditions by comparing the ability of two distinct and advanced 

hyperspectral instruments for indirect and simultaneous prediction of soil physical and chemical 

properties. Finally, a smart mutli-dimensional spatial data clustering algorithm was developed to 

process high-density proximal soil sensing data and then it was evaluated on classical, on-the-go 

proximal soil sensing data.  

 

A prototype “On-the-spot Soil Analyser" (OSA) was designed, fabricated and evaluated. In its 

current modification, it used an array of two potentiometer sensors and could simultaneously 

determine ions such as H+ and NO3
- on-the-spot. As OSA is relatively inexpensive and easy to 

use, it will be attractive to agribusinesses involved in soil fertility management. The technology 

is expected to provide an opportunity to extend the suite of deployable sensors and thus, allow 

for sensor fusion algorithms and integrated data acquisition practices. 

 

Four studies were performed to evaluate the usefulness of two distinct field deployment-ready 

spectrometers to make point based measurements. The first, was a prototype, operating in the 

mid-infrared (mid-IR) region and the second, was a dual commercial unit, operating in visible 

and near-infrared (vis-NIR) regions. Several soil properties were determined indirectly by 

applying, partial least squared regression (PLSR) models, on diffuse reflectance measurements 

obtained in in situ and ex situ environments. To assess the precision and accuracy component of 
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mutli-spectral measurement error, a new technique based on simple linear regression was 

developed and evaluated on vis-NIR spectral data. 

 

The ability of a commercial vis-NIR unit to accurately predict total soil phosphorus (P) was 

highly promising (coefficient of determination of 0.85) and both spectrometers resulted in no 

significantly different results in terms of soil textural predictions, though % sand tended to be 

better predicted with the prototyped mid-IR, while % clay was better determined using the 

vis-NIR unit; however, the ability to accurately predict soil organic carbon was relatively poor 

(prediction error < 0.4 %) for the soils used in the studies. In addition, % clay and % sand were 

predicted accurately (90% accuracy), using spectral data obtained by the mid-IR instrument in 

naturally moist soil environments. However, the predictability of soil organic matter was 

relatively poor and suggests the need for further research. The vis-NIR spectral measurements 

and model derived predictions of % sand and % clay were also found to be compatible in terms 

of precision and accuracy under laboratory or field conditions, when soil water content varies 

substantially.  

 

Finally, a new algorithm based on neighbourhood search analysis which seeks to minimize 

variance inside each group of interpolated grid pixels corresponding to an unlimited number of 

sensor-based data layers was developed. Tests of the algorithm using six production fields 

illustrated the algorithms robustness when delineating field areas with different field elevations 

and apparent soil electrical conductivity (ECa) measurements. Each spatially constrained group 

of grid cells, with the exception of the initial group designated as “the rest of the field”, emerged 

in response to every unique combination of data values as relatively constant within each group. 

 

9.2 General Conclusions 

 

Proximal soil sensing is an emerging technology resulting in on-the-go mapping of soil 

characteristics. It provides an alternative to on-the-go mapping techniques where on-the-spot 

measurements can be made in situations where spatially sporadic test locations are needed or soil 

coverage does not allow for the continuous engagement of the soil with parts of the sensor 

system.  
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The on-the-spot soil analyser presented in this thesis illustrates a new mechanism that enables 

rapid and reliable soil manipulation to facilitate the necessary interface between the sensors and 

soil in an automated mode. Furthermore, when compared to existing solutions, this method is 

applicable in difficult soil conditions and enables sufficient opening of a subsurface soil area to 

engage an array of proximal soil sensors. This technology was designed to extend the suite of 

other deployable sensors, and thus, allow for sensor fusion algorithms and integrated data 

acquisition practices.  

 

Promising results obtained from the mid-infrared spectrometer while predicting % sand and 

% clay indicates its potential use for the OSA platform; however, further testing is needed to 

investigate potential optimizations of the soil/sensor interface needed to facilitate the deployment 

of mid-IR spectroscopy for proximal soil sensing. 

 

The results from the new multi-dimensional spatial data clustering algorithm when evaluated on 

traditional high-density proximal soil sensing data was capable of delineating several agricultural 

fields into homogeneous and contiguous groups. The successful outcome suggests further 

research on its use in optimizing the number of point-based measurements with OSA, other in 

situ sensing systems, or conventional soil sampling.  

 

Overall, it can be concluded that, the six independent studies, showing three novel approaches, 

conveyed several promising results and together, they illustrate the desired advancements 

brought to PSS for improving the quality of data required by decision-making algorithms for the 

Precision Agriculture practitioners. Thus, they demonstrate the potential to improve the 

economic, environmental and social aspects of the modern farmer. 
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Chapter 10 

 

 

CONTRIBUTIONS TO KNOWLEDGE AND SUGGESSIONS FOR 

FUTURE RESEARCH 

 

10. 1 Contributions to Knowledge 

 

This research describes the following contributions to knowledge that will make Proximal Soil 

Sensing (PSS) more effective and efficient: 

 

1. An automated On-the-spot Soil Analyser (OSA) has been developed which has a 

distinct mechanism for the deployment of multiple sensors at a given measurement 

depth, and in a completely automated mode of operation. This OSA can be used in 

agricultural and natural resources management.  

 

2. For the first time, a portable, mid-infrared spectrometer has been used in naturally 

moist soil environments for on-the-spot determination of soil textural components 

(% sand and % clay). This instrument can be used for proximal soil sensing in both 

agricultural and industrial applications. Presently, no research was found that reported 

on similar developments elsewhere. 

 

3. This thesis presents three different studies for evaluating a field deployment-ready 

vis-NIR instrument (Veris® P4000) in terms of predicting on-the-spot key soil 

properties, including soil particle size distribution, organic carbon content, soil 

organic matter and total soil phosphorus content. 

 

4. Based on neighbourhood search analysis, a new algorithm to process traditional 

multi-dimensional, high density, proximal soil sensing data, has been developed for 

delineating agricultural fields into spatially homogenous and contiguous groups that 
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can be used for optimizing the number of point-based measurements, with OSA, other 

soil sensing systems or conventional soil sampling. 

 

10. 2 Suggestions for Further Research 

 

1. Further development of the OSA platform by adding more sensors in the form of 

either ion-selective electrodes and soil optical sensors will help in determining several 

other soil chemical properties, making it a very useful tool between farmers and 

environmental consultants.  

 

2. Further studies are required on investigating the potential optimizations of the 

soil/sensor interface needed to facilitate the deployment of portable mid-infrared 

spectroscopy for proximal soil sensing. 

 

3. More sets of traditional high-density proximal soil sensing data collected between 

several number of contrasting agricultural sites is required to explore the robustness 

of the newly developed spatial data clustering algorithm. 
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APPENDIX A 

 

OSA DRAWINGS  

 

 

 

Assembly drawings of On-the-spot Soil Analyser (OSA) illustrating: (a) tool cutter in ground 

position, (b) stopped horizontal postion of the cutting blades, (c) holes with fixed spacing to 

adjust hitch heights, and (d) deployment of sensing array through provided disc space 

 

 

(a) 

(b) 

(c) 

(d) 
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The OSA cutter tool assembly illustrating: (a) removable cutting blades, (b) removable guard, 

(c) pair of DC motors, and (d) gearbox 

 

 

The OSA sensor deployment and sensor cleansing assembly illustrating: (a) the end portion of 

the linear motor, (b) sensor mount and sensing array, and (c) pair of nozzle sprayers 

(a) 

(c) 

(d) 

(b) 

(b) 

(a) 

(c) 
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APPENDIX B 

 

LABVIEW ROUTINES  

 

 

 

 

Front panel of the OSA’s DAQ and Control Application illustrating task status and process 

variables (input and output) before (1) and after completion (2) of a typical data collection cycle 

(2) 

(1) 



 154 

 

LabVIEW code (block diagram) illustrating the OSA’s DAQ and Control Application. 
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APPENDIX C 

 

ARDUINO ROUTINE  

 

C-1. Arduino script to control speed and blade postion for the cutter on OSA (Chapter 3) 

 

/* This example code is in the public domain.Speed and postion control of OSA Cutter motor to   

forward, reverse and break OSA Cutter motor  

 

The circuit: 

 * CMD signal is attached on pin 3  

 * POS Signal is attached on A0 

 

 Created 2014, by Nandkishor Dhawale 

  */ 

String inputString = "";     // a string to hold incoming data 

//String stringOne, stringTwo, stringThree; 

boolean stringComplete = false;  // whether the string is complete 

 

// Constants won't change and used here to set pin numbers: 

const int motCmdPin =  3;      // the number of the Motor pin 

int motPosPin = A0;    // select the input pin for the potentiometer 

int motSloPin = 4; // to read in for slowing motor if 1 

int motSloPinEn = 8; // to enable the pin 4 high 

 

// Variables will change: 

int motSloPinVal =0;  //to store the value of motSloPin 

int CutBlStat =0; // to inform cutter blade postion 

int motCmdState = LOW;             // ledState used to set the LED 

unsigned long initial_time = millis();       //initial time 

unsigned long time =0 ;                     //  time 

int PulseCmd=1500;  // hh 

int FWDCmd = 1550; 

int REVCmd =1450; 

int STPCmd =1500; 

 

double SetPosValue = 490; 

double ErrPosValue = 0.00; 

int ChgSpd = 1; 

 

// Variables for filtering position data 

const int numReadings = 10; 
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double readings[numReadings]; // read analog 0 

double PosValue = 0.00;  // variable to store the value coming from the position sensor 

int index = 0; 

double total = 0.00; 

 

//Initialise 

void setup() { 

//Set the digital pin as output: 

  pinMode(motCmdPin, OUTPUT);  

  pinMode(motSloPinEn, OUTPUT); 

  pinMode(motSloPin, INPUT_PULLUP); 

  digitalWrite(motSloPinEn, LOW); 

  Serial.begin(9600);    

  // reserve 200 bytes for the inputString: 

 inputString.reserve(50); 

 for (int thisReading = 0; thisReading < numReadings; thisReading++) 

  readings[thisReading] = 0; 

} 

 

// The main program 

void loop() 

{ 

    motSloPinVal = digitalRead(motSloPin); //read cutter slow command from magnetic switch 

  if (stringComplete) { 

      

    ChgSpd=inputString.toInt(); 

    

 // Clear the string: 

    inputString = ""; 

    stringComplete = false; 

  } 

    if (motSloPinVal == 1 && ChgSpd == 1){ 

       

// Cutter motor stop 

      PulseCmd=1500; 

      motCmdState = HIGH; 

      digitalWrite(motCmdPin, motCmdState);    

      delayMicroseconds(PulseCmd); 

      motCmdState = LOW; 

      digitalWrite(motCmdPin, motCmdState); 

      delay(1); 

   } 

     if (motSloPinVal == 0 && ChgSpd == 0){ 

      

 // Cutter motor stop 

      PulseCmd=1500; 
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      motCmdState = HIGH; 

      digitalWrite(motCmdPin, motCmdState);    

      delayMicroseconds(PulseCmd); 

      motCmdState = LOW; 

      digitalWrite(motCmdPin, motCmdState); 

      delay(1); 

    } 

         if (motSloPinVal == 1 && ChgSpd == 0) { 

        

      // Motor fast forward command 

      PulseCmd=1950; 

      motCmdState = HIGH; 

      digitalWrite(motCmdPin, motCmdState);    

      delayMicroseconds(PulseCmd); 

      motCmdState = LOW; 

      digitalWrite(motCmdPin, motCmdState); 

      delay(1); 

  } 

    if (motSloPinVal == 0 && ChgSpd == 1)  {  

        STPCmd= 1500; 

        FWDCmd= 1535; 

        REVCmd= 1465; 

        ErrPosValue = PosValue-SetPosValue; 

      

    if (ErrPosValue >= -35 && ErrPosValue <= 35) {  

     PulseCmd= STPCmd; 

     delay(5); 

     if (ErrPosValue >= -45 && ErrPosValue <= 45) { 

     //delay(2); 

     PulseCmd= STPCmd; 

     CutBlStat =1;  

     //delay(2); 

     } 

     } //Stop 

      

     if (ErrPosValue > 46) {  

     PulseCmd= REVCmd; 

     CutBlStat =0;}  // Reverse Speed 

      

     if (ErrPosValue < -46) {  

     PulseCmd= FWDCmd; 

     CutBlStat =0; }  // Fowward Speed 

     

    // Motor slow forward command 

      motCmdState = HIGH; 

      digitalWrite(motCmdPin, motCmdState);    
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      delayMicroseconds(PulseCmd); 

      motCmdState = LOW; 

      digitalWrite(motCmdPin, motCmdState); 

      delay(1);   

    } 

  total= total - readings[index];    // read from position the sensor: 

  //Readings[index] = ((analogRead(motPosPin)/10)*0.3381)-1.0177; 

  readings[index] = analogRead(motPosPin);  // add the reading to the total: 

  total= total + readings[index];  // advance to the next position in the array:   

  index = index + 1;     

   if (index >= numReadings)    {           

   // ...Wrap around to the beginning:  

   index = 0;  

 

  // Calculate the average 

  //PosValue = (total / numReadings)/2.84; //Position in cm 

  PosValue = total / numReadings; //Position in cm 

  time = millis() - initial_time;  

  }    

  

// Send it to the computer as ASCII digits 

 Serial.print("$GPGGA"); Serial.print(','); 

 //Serial.print(time/1000);  Serial.print(',');   

 //Serial.print(PulseCmd); Serial.print(',');  

 Serial.print(motSloPinVal); Serial.print(',');  

 //Serial.print(SetPosValue); Serial.print(','); 

 Serial.print(PosValue); Serial.print(','); 

 //Serial.println(ErrPosValue); Serial.print(','); 

 Serial.println(CutBlStat); //Serial.print(','); 

 delay(1); // delay in between reads for stability   

  } 

     void serialEvent() { 

     while (Serial.available()) { 

    // Get the new byte: 

    char inChar = (char)Serial.read();  

    // Add it to the inputString: 

    inputString += inChar; 

    // If the incoming character is a newline, set a flag 

    // So the main loop can do something about it 

    if (inChar == '\n') { 

    stringComplete = true; 

    }  

  } 

} 
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APPENDIX D 

 

MATLAB ROUTINES 

 

D-1 Program to analyse in situ collected vis-NIR spectral data (Chapter 6) 

 

%% Import raw and processed in situ spectral data  

exsitu1 = xlsread('VIS_NIR_In_Situ.xlsx', 'ALL_RW');exsitu1 =exsitu1'; 

exsitu2 = xlsread('VIS_NIR_In_Situ.xlsx', 'ALL_F');exsitu2 =exsitu2'; 

exsitu3 = xlsread('VIS_NIR_In_Situ.xlsx', 'ALL_FD');exsitu3 =exsitu3'; 

exsitu4 = xlsread('VIS_NIR_In_Situ.xlsx', 'ALL_SD');exsitu4 =exsitu4'; 

  

%% Combine factors 

vis_nir_spectra=[exsitu1(6:end,2:end); exsitu2(6:end,2:end); exsitu3(6:end,2:end); ... 

exsitu4(6:end,2:end); exsitu1(2:5,2:end)]; 

vis_nir_factors=[exsitu1(6:end,1); exsitu2(6:end,1); ... 

exsitu3(6:end,1); exsitu4(6:end,1);]; 

wavelengths=vis_nir_factors(1:363,:); 

 

%% Calculate average spectrum 

j=1; 

for i=1:1:19, 

 avg1(:,j)=nanmean([vis_nir_spectra(:,i) vis_nir_spectra(:,i+19) vis_nir_spectra(:,i+38)],2); 

 var1(:,j)=nanvar([vis_nir_spectra(:,i) vis_nir_spectra(:,i+19) vis_nir_spectra(:,i+38)]')'; 

 j=j+1; 

end 

  

%% Calculate some statistics  

den= sqrt(mean(var1,2)); 

num=std(avg1')'; 

RSE=num./den; 

VAR_DATA2=var(vis_nir_spectra')'; 

MST=var(avg1')'*3; 

MSE=mean(var1,2); 

TOTAL=VAR_DATA2*56; 

SST=MST*19; 

SSE=MSE*38; 

F_MEAN=MST./MSE; 

F_IND=F_MEAN/3; 

RMSE=power(MSE, 1/2); 
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%% Plot soil spectral figure 

figure(1); 

plot(vis_nir_factors(1:363,:), RSE(1:363,:), 'or'); hold on 

plot(vis_nir_factors(364:726,:), RSE(364:726,:), 'xb'); hold on 

plot(vis_nir_factors(727:1089,:), RSE(727:1089,:), '*k'); hold on 

plot(vis_nir_factors(1090:1452,:), RSE(1090:1452,:), '+m'); grid on 

xlabel('Wavelengths, nm', 'FontSize',16) 

ylabel('RSE ', 'FontSize',16) 

set(gca,'XTick',400:200:2200); set(gca,'YTick',0.0:1:12); 

legend('Original', 'Smooth', 'First-derivative', 'Second-derivative', ... 

 'Location','NorthEast') 

xlim([400 2200]) 

ylim([0.0 12.0]) 

  

%% Calculate the correlations with raw spectrum 

ll=1; hl=363; 

Y=vis_nir_spectra(1453:1456,1:19)'; 

X=vis_nir_spectra(ll:hl,1:19)'; 

   

for i=1:1:363 

  RHOt11(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt12(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt13(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,20:38)'; 

  

for i=1:1:363 

  RHOt21(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt22(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt23(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,39:57)'; 

  

for i=1:1:363 

  RHOt31(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt32(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt33(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=avg1(ll:hl,:)'; 

for i=1:1:363 

  RHOM1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOM2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOM3(i,1) = corr(X(:,i),Y(:,3)); 
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end 

  

X=vis_nir_spectra(ll:hl,:)'; 

Y=vis_nir_spectra(1453:1456,:)'; 

  

for i=1:1:363 

  RHOall1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOall2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOall3(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

corr_raw= [RHOall1, RHOall2 RHOall3, RHOM1, RHOM2, RHOM3, RHOt11, RHOt12, 

RHOt13, RHOt21, RHOt22, RHOt23, RHOt31, RHOt32, RHOt33]; 

 

%% Calculate the correlations with filtered spectrum 

ll=364; hl=726; 

Y=vis_nir_spectra(1453:1456,1:19)'; 

X=vis_nir_spectra(ll:hl,1:19)'; 

  

for i=1:1:363 

  RHOt11(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt12(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt13(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,20:38)'; 

  

for i=1:1:363 

  RHOt21(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt22(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt23(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,39:57)'; 

  

for i=1:1:363 

  RHOt31(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt32(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt33(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=avg1(ll:hl,:)'; 

for i=1:1:363 

  RHOM1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOM2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOM3(i,1) = corr(X(:,i),Y(:,3)); 
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end 

  

X=vis_nir_spectra(ll:hl,:)'; 

Y=vis_nir_spectra(1453:1456,:)'; 

  

for i=1:1:363 

  RHOall1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOall2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOall3(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

corr_filt= [RHOall1, RHOall2 RHOall3, RHOM1, RHOM2, RHOM3, RHOt11, RHOt12, 

RHOt13, RHOt21, RHOt22, RHOt23, RHOt31, RHOt32, RHOt33]; 

  

%% Calculate correlations with first derivative of spectra 

ll=727; hl=1089; 

Y=vis_nir_spectra(1453:1456,1:19)'; 

X=vis_nir_spectra(ll:hl,1:19)'; 

  

for i=1:1:363 

  RHOt11(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt12(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt13(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,20:38)'; 

  

for i=1:1:363 

  RHOt21(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt22(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt23(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,39:57)'; 

  

for i=1:1:363 

  RHOt31(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt32(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt33(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=avg1(ll:hl,:)'; 

for i=1:1:363 

  RHOM1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOM2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOM3(i,1) = corr(X(:,i),Y(:,3)); 
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end 

  

X=vis_nir_spectra(ll:hl,:)'; 

Y=vis_nir_spectra(1453:1456,:)'; 

  

for i=1:1:363 

  RHOall1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOall2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOall3(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

corr_fd= [RHOall1, RHOall2 RHOall3, RHOM1, RHOM2, RHOM3, RHOt11, RHOt12, 

RHOt13, RHOt21, RHOt22, RHOt23, RHOt31, RHOt32, RHOt33]; 

  

%% Calculate correlations with second derivative spectra 

ll=1090; hl=1452; 

Y=vis_nir_spectra(1453:1456,1:19)'; 

X=vis_nir_spectra(ll:hl,1:19)'; 

   

for i=1:1:363 

  RHOt11(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt12(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt13(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,20:38)'; 

  

for i=1:1:363 

  RHOt21(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt22(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt23(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,39:57)'; 

  

for i=1:1:363 

  RHOt31(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt32(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt33(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=avg1(ll:hl,:)'; 

for i=1:1:363 

  RHOM1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOM2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOM3(i,1) = corr(X(:,i),Y(:,3)); 
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end 

  

X=vis_nir_spectra(ll:hl,:)'; 

Y=vis_nir_spectra(1453:1456,:)'; 

  

for i=1:1:363 

  RHOall1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOall2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOall3(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

corr_sd= [RHOall1, RHOall2 RHOall3, RHOM1, RHOM2, RHOM3, RHOt11, RHOt12, 

RHOt13, RHOt21, RHOt22, RHOt23, RHOt31, RHOt32, RHOt33]; 

  

figure(2) 

plot(RSE(1:363,:), corr_raw(:,1).^2, 'or'); hold on 

plot(RSE(364:726,:), corr_filt(:,1).^2, 'xb'); hold on 

plot(RSE(727:1089,:), corr_fd(:,1).^2, '*k'); hold on 

plot(RSE(1090:1452,:), corr_sd(:,1).^2, '+m'); grid on 

xlabel('RSE', 'FontSize',16) 

ylabel('R ^2, % sand', 'FontSize',16) 

set(gca,'XTick',0:1:20); set(gca,'YTick',0.0:0.10:1.0);  

legend('Original', 'Smooth', 'First-derivative', 'Second-derivative', ... 

 'Location','NorthEast') 

xlim([0 12]) 

ylim([0.0 0.7]) 

  

figure(3) 

plot(RSE(1:363,:), corr_raw(:,2).^2, 'or'); hold on 

plot(RSE(364:726,:), corr_filt(:,2).^2, 'xb'); hold on 

plot(RSE(727:1089,:), corr_fd(:,2).^2, '*k'); hold on 

plot(RSE(1090:1452,:), corr_sd(:,2).^2, '+m'); grid on 

xlabel('RSE', 'FontSize',16) 

ylabel('R ^2, % clay', 'FontSize',16) 

set(gca,'XTick',0:1:20); set(gca,'YTick',0.0:0.10:1.0);  

legend('Original', 'Smooth', 'First-derivative', 'Second-derivative', ... 

 'Location','NorthEast') 

xlim([0 12]) 

ylim([0.0 0.9]) 

  

figure(4) 

plot(RSE(1:363,:), corr_raw(:,3).^2, 'or'); hold on 

plot(RSE(364:726,:), corr_filt(:,3).^2, 'xb'); hold on 

plot(RSE(727:1089,:), corr_fd(:,3).^2, '*k'); hold on 

plot(RSE(1090:1452,:), corr_sd(:,3).^2, '+m'); grid on 

xlabel('RSE', 'FontSize',16) 
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ylabel('R ^2, %SOM', 'FontSize',16) 

set(gca,'XTick',0:1:20); set(gca,'YTick',0.0:0.10:1.0);  

legend('Original', 'Smooth', 'First-derivative', 'Second-derivative', ... 

 'Location','NorthEast') 

xlim([0 12]) 

ylim([0.0 0.7]) 

  

figure(5) 

plot(wavelengths, avg1(1:363,:), '.-.'); grid on 

xlabel('Wavelengths, nm', 'FontSize',16) 

ylabel('Reflectance ', 'FontSize',16) 

xlim([400 2200]) 

ylim([0.0 0.6]) 

  

%% Calculate precsison and accuracy parameters on raw spectra 

ll=1; hl=363; 

Y=vis_nir_spectra(1453:1456,:)'; 

X=vis_nir_spectra(ll:hl,:)'; 

c=length(Y); 

 

for i=1:1:363  

p = polyfit(X(:,i),Y(:,1),1); yhat=p(2)+p(1).*X(:,i); Pall1(i,1)=p(1); 

RMSEall1(i,1)=sqrt(mean((Y(:,1)-yhat).^2));P2all1(i,1)=p(2); 

SDEall1(i,1)=sqrt(sum((Y(:,1)-yhat).^2)/c);% SDE(i,1)=b=yhat-mean(yhat); a= X(:,i)-

mean(X(:,i)); sqrt((sum(b.^2) -((sum(a.*b)).^2/(sum(a.^2))))/c); 

p = polyfit(X(:,i),Y(:,2),1); yhat=p(2)+p(1).*X(:,i); Pall2(i,1)=p(1); 

RMSEall2(i,1)=sqrt(mean((Y(:,2)-yhat).^2));P2all2(i,1)=p(2); 

SDEall2(i,1)=sqrt(sum((Y(:,2)-yhat).^2)/c); 

p = polyfit(X(:,i),Y(:,3),1); yhat=p(2)+p(1).*X(:,i); Pall3(i,1)=p(1); 

RMSEall3(i,1)=sqrt(mean((Y(:,3)-yhat).^2));P2all3(i,1)=p(2); 

SDEall3(i,1)=sqrt(sum((Y(:,3)-yhat).^2)/c); 

 

end 

  

rmse_raw= [RMSEall1, RMSEall2 RMSEall3]; 

sde_raw=[SDEall1, SDEall2, SDEall3]; 

slope_raw=[Pall1, Pall2, Pall3]; 

intcpt_raw=[P2all1, P2all2, P2all3]; 

  

%% Calculate precsison and accuracy parameters on filtered spectra 

ll=364; hl=726; 

X=vis_nir_spectra(ll:hl,:)'; 

  

for i=1:1:363 

p = polyfit(X(:,i),Y(:,1),1); yhat=p(2)+p(1).*X(:,i); Pall1(i,1)=p(1); 

RMSEall1(i,1)=sqrt(mean((Y(:,1)-yhat).^2));P2all1(i,1)=p(2); 
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SDEall1(i,1)=sqrt(sum((Y(:,1)-yhat).^2)/c); 

p = polyfit(X(:,i),Y(:,2),1); yhat=p(2)+p(1).*X(:,i); Pall2(i,1)=p(1); 

RMSEall2(i,1)=sqrt(mean((Y(:,2)-yhat).^2));P2all2(i,1)=p(2); 

SDEall2(i,1)=sqrt(sum((Y(:,2)-yhat).^2)/c); 

p = polyfit(X(:,i), Y(:,3),1); yhat=p(2)+p(1).*X(:,i); Pall3(i,1)=p(1); 

RMSEall3(i,1)=sqrt(mean((Y(:,3)-yhat).^2));P2all3(i,1)=p(2); 

SDEall3(i,1)=sqrt(sum((Y(:,3)-yhat).^2)/c); 

 

end 

  

rmse_filt= [RMSEall1, RMSEall2 RMSEall3]; 

sde_filt=[SDEall1, SDEall2, SDEall3]; 

slope_filt=[Pall1, Pall2, Pall3]; 

intcpt_filt=[P2all1, P2all2, P2all3]; 

  

%% Calculate precsison and accuracy parameters on first derivative spectra 

ll=727; hl=1089; 

X=vis_nir_spectra(ll:hl,:)'; 

  

for i=1:1:363  

p = polyfit(X(:,i),Y(:,1),1); yhat=p(2)+p(1).*X(:,i); Pall1(i,1)=p(1); 

RMSEall1(i,1)=sqrt(mean((Y(:,1)-yhat).^2));P2all1(i,1)=p(2); 

SDEall1(i,1)=sqrt(sum((Y(:,1)-yhat).^2)/c); 

p = polyfit(X(:,i),Y(:,2),1); yhat=p(2)+p(1).*X(:,i); Pall2(i,1)=p(1); 

RMSEall2(i,1)=sqrt(mean((Y(:,2)-yhat).^2));P2all2(i,1)=p(2); 

SDEall2(i,1)=sqrt(sum((Y(:,2)-yhat).^2)/c); 

p = polyfit(X(:,i), Y(:,3),1); yhat=p(2)+p(1).*X(:,i); Pall3(i,1)=p(1); 

RMSEall3(i,1)=sqrt(mean((Y(:,3)-yhat).^2));P2all3(i,1)=p(2); 

SDEall3(i,1)=sqrt(sum((Y(:,3)-yhat).^2)/c); 

 

end 

 

rmse_fd= [RMSEall1, RMSEall2 RMSEall3]; 

sde_fd=[SDEall1, SDEall2, SDEall3]; 

slope_fd=[Pall1, Pall2, Pall3]; 

intcpt_fd=[P2all1, P2all2, P2all3]; 

  

%% Calculate precsison and accuracy parameters on second derivative spectra 

ll=1090; hl=1452; 

X=vis_nir_spectra(ll:hl,:)'; 

  

for i=1:1:363   

p = polyfit(X(:,i),Y(:,1),1); yhat=p(2)+p(1).*X(:,i); Pall1(i,1)=p(1); 

RMSEall1(i,1)=sqrt(mean((Y(:,1)-yhat).^2));P2all1(i,1)=p(2); 

SDEall1(i,1)=sqrt(sum((Y(:,1)-yhat).^2)/c); 
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p = polyfit(X(:,i),Y(:,2),1); yhat=p(2)+p(1).*X(:,i); Pall2(i,1)=p(1); 

RMSEall2(i,1)=sqrt(mean((Y(:,2)-yhat).^2));P2all2(i,1)=p(2); 

SDEall2(i,1)=sqrt(sum((Y(:,2)-yhat).^2)/c); 

p = polyfit(X(:,i), Y(:,3),1); yhat=p(2)+p(1).*X(:,i); Pall3(i,1)=p(1); 

RMSEall3(i,1)=sqrt(mean((Y(:,3)-yhat).^2));P2all3(i,1)=p(2); 

SDEall3(i,1)=sqrt(sum((Y(:,3)-yhat).^2)/c); 

end 

 

rmse_sd= [RMSEall1, RMSEall2 RMSEall3]; 

sde_sd=[SDEall1, SDEall2, SDEall3]; 

slope_sd=[Pall1, Pall2, Pall3]; 

intcpt_sd=[P2all1, P2all2, P2all3]; 

  

figure(6) 

plot(abs(slope_raw(:,1)).*RMSE(1:363,:),rmse_raw(:,1), 'or'); hold on 

plot(abs(slope_filt(:,1)).*RMSE(364:726,:),rmse_filt(:,1), 'xb'); hold on 

plot(abs(slope_fd(:,1)).*RMSE(727:1089,:),rmse_fd(:,1), '*k'); hold on 

plot(abs(slope_sd(:,1)).*RMSE(1090:1452,:),rmse_sd(:,1), '+m'); hold on 

zz=std(Y(:,1)); plot((0:2:10), [zz,zz,zz,zz,zz,zz], 'linewidth',3); grid on 

xlabel('Measurement Precision, % sand', 'FontSize',16) 

ylabel('Standard Error of Prediction, % sand', 'FontSize',16) 

set(gca,'XTick',0:1:20); set(gca,'YTick',0.0:2:20);  

plot([15,0], [0,15], '.-.'); plot([16,0], [0,16], '.-.') 

plot([17,0], [0,17], '.-.'); plot([18,0], [0,18], '.-.') 

plot([19,0], [0,19], '.-.'); plot([20,0], [0,20], '.-.') 

plot([21,0], [0,21], '.-.');plot([22,0], [0,22], '.-.') 

plot([23,0], [0,23], '.-.') 

plot(3.12, 4.82, 'dg', 'markersize',12) 

plot(2.64, 4.09, 'or', 'markersize',12) 

plot(3.43, 4.96, 'xb', 'markersize',12) 

plot(3.29, 4.46, '*k', 'markersize',12) 

plot(3.09, 5.85, '+m', 'markersize',12) 

xlim([0 10]); ylim([0 20]) 

legend('Original', 'Smooth', 'First-derivative', 'Second-derivative', ... 

 'Location','SouthEast') 

  

figure(7) 

plot(abs(slope_raw(:,2)).*RMSE(1:363,:),rmse_raw(:,2), 'or'); hold on 

plot(abs(slope_filt(:,2)).*RMSE(364:726,:),rmse_filt(:,2), 'xb'); hold on 

plot(abs(slope_fd(:,2)).*RMSE(727:1089,:),rmse_fd(:,2), '*k'); hold on 

plot(abs(slope_sd(:,2)).*RMSE(1090:1452,:),rmse_sd(:,2), '+m'); hold on 

zz=std(Y(:,2)); plot((0:5), [zz,zz,zz,zz,zz zz], 'linewidth',3); grid on 

xlabel('Measurement Precision, % clay', 'FontSize',16) 

ylabel('Standard Error of Prediction, % clay', 'FontSize',16) 

set(gca,'XTick',0:1:10); set(gca,'YTick',0:3:20);  

plot([6,0], [0,6], '.-.'); plot([7,0], [0,7], '.-.') 
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plot([8,0], [0,8], '.-.'); plot([9,0], [0,9], '.-.') 

plot([10,0], [0,10], '.-.'); plot([11,0], [0,11], '.-.') 

plot([12,0], [0,12], '.-.'); plot([5,0], [0,5], '.-.'); 

plot(1.81, 3.48, 'dg', 'markersize',12) 

plot(1.91, 4.59, 'or', 'markersize',12) 

plot(1.66, 2.89, 'xb', 'markersize',12) 

plot(1.28, 1.73, '*k', 'markersize',12) 

plot(1.23, 2.04, '+m', 'markersize',12) 

xlim([0 5]); ylim([0 12]) 

legend('Original', 'Smooth', 'First-derivative', 'Second-derivative', ... 

 'Location','SouthEast') 

  

figure(8) 

plot(abs(slope_raw(:,3)).*RMSE(1:363,:),rmse_raw(:,3), 'or'); hold on 

plot(abs(slope_filt(:,3)).*RMSE(364:726,:),rmse_filt(:,3), 'xb'); hold on 

plot(abs(slope_fd(:,3)).*RMSE(727:1089,:),rmse_fd(:,3), '*k'); hold on 

plot(abs(slope_sd(:,3)).*RMSE(1090:1452,:),rmse_sd(:,3), '+m'); hold on 

zz=std(Y(:,3)); plot((0:4), [zz,zz,zz,zz,zz], 'linewidth',3); grid on 

xlabel('Measurement Precision, % SOM', 'FontSize',16) 

ylabel('Standard Error of Prediction, % SOM', 'FontSize',16) 

set(gca,'XTick',0:1:10); set(gca,'YTick',0:3:20);  

plot([4,0], [0,4], '.-.');plot([4.5,0], [0,4.5], '.-.') 

plot([5,0], [0,5], '.-.') ;plot([5.5,0], [0,5.5], '.-.');  

plot([6,0], [0,6], '.-.') 

plot(1.38, 2.14, 'dg', 'markersize',12) 

plot(1.62, 4.18, 'or', 'markersize',12) 

plot(1.67, 2.44, 'xb', 'markersize',12) 

plot(1.31, 2.05, '*k', 'markersize',12) 

plot(1.39, 2.75, '+m', 'markersize',12) 

xlim([0 3]); ylim([0 7]) 

legend('Original', 'Smooth', 'First-Derivative', 'Second-Derivative', ... 

 'Location','SouthEast') 

 

figure(9) 

tt= mean(avg1(1:363,:),2); 

tt1=std(avg1(1:363,:)')'; 

plot(wavelengths, tt+tt1, '--g', 'markersize',5); hold on 

plot(wavelengths, tt, '-k', 'markersize',5); hold on 

plot(wavelengths, tt-tt1, '--g', 'markersize',5); hold on 

text(1462, tt(190),'\leftarrow sand (best)','HorizontalAlignment','left') 

text(1940,tt(296),' sand, clay (best) \rightarrow', 'HorizontalAlignment','right') 

text(421,tt(2),'\leftarrow SOM ', 'HorizontalAlignment','left') 

text(1747,tt(251),'\leftarrow SOM (best) ', 'HorizontalAlignment','left') 

text(1605,tt(220),'SOM \rightarrow ', 'HorizontalAlignment','right') 

text(590,tt(31),'\leftarrow SOM ', 'HorizontalAlignment','left') 

text(722,tt(55),'\leftarrow SOM ', 'HorizontalAlignment','left') 
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set(gca,'XTick',400:300:2200); set(gca,'YTick',0:0.1:0.6);  

xlabel('Wavelengths, nm', 'FontSize',16) 

ylabel('Reflectance ', 'FontSize',16) 

xlim([400 2200]) 

ylim([0.0 0.52]) 

grid on 
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D-2 Program to analyse ex situ collected vis-NIR spectral data (Chapter 6) 

%% Import ex situ soil spectral data 

exsitu1 = xlsread('VIS_NIR_Ex_Situ.xlsx', 'ALL_RW');exsitu1 =exsitu1'; 

exsitu2 = xlsread('VIS_NIR_Ex_Situ.xlsx', 'ALL_F');exsitu2 =exsitu2'; 

exsitu3 = xlsread('VIS_NIR_Ex_Situ.xlsx', 'ALL_FD');exsitu3 =exsitu3'; 

exsitu4 = xlsread('VIS_NIR_Ex_Situ.xlsx', 'ALL_SD');exsitu4 =exsitu4'; 

  

%% Combine factors 

vis_nir_spectra=[exsitu1(6:end,2:end); exsitu2(6:end,2:end); exsitu3(6:end,2:end); ... 

 exsitu4(6:end,2:end); exsitu1(2:5,2:end)]; 

vis_nir_spectra(:,6)=[]; vis_nir_spectra(:,25)=[]; vis_nir_spectra(:,44)=[]; 

vis_nir_factors=[exsitu1(6:end,1); exsitu2(6:end,1); ... 

 exsitu3(6:end,1); exsitu4(6:end,1);]; 

wavelengths=vis_nir_factors(1:363,:); 

  

%% Calculate average spectrum 

j=1; 

for i=1:1:19, 

 avg1(:,j)=nanmean([vis_nir_spectra(:,i) vis_nir_spectra(:,i+19) vis_nir_spectra(:,i+38)],2); 

 var1(:,j)=nanvar([vis_nir_spectra(:,i) vis_nir_spectra(:,i+19) vis_nir_spectra(:,i+38)]')'; 

 j=j+1; 

end 

  

%% Calculate some statistics 

den= sqrt(mean(var1,2)); 

num=std(avg1')'; 

RSE=num./den; 

VAR_DATA2=var(vis_nir_spectra')'; 

MST=var(avg1')'*3; 

MSE=mean(var1,2); 

TOTAL=VAR_DATA2*56; 

SST=MST*19; 

SSE=MSE*38; 

F_MEAN=MST./MSE; 

F_IND=F_MEAN/3; 

RMSE=power(MSE, 1/2); 

 

%% Plot the ex situ spectra 

figure(1); 

plot(vis_nir_factors(1:363,:), RSE(1:363,:), 'or'); hold on 

plot(vis_nir_factors(364:726,:), RSE(364:726,:), 'xb'); hold on 

plot(vis_nir_factors(727:1089,:), RSE(727:1089,:), '*k'); hold on 

plot(vis_nir_factors(1090:1452,:), RSE(1090:1452,:), '+m'); grid on 

xlabel('Wavelengths, nm', 'FontSize',12) 
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ylabel('RSE ', 'FontSize',12) 

set(gca,'XTick',400:200:2200); set(gca,'YTick',0.0:1:12); 

legend('Original', 'Smooth', 'First-Derivative', 'Second-Derivative 4', ... 

 'Location','NorthWest') 

xlim([400 2200]) 

ylim([0.0 12.0]) 

  

%% Calculate correlations with raw spectra 

ll=1; hl=363; 

Y=vis_nir_spectra(1453:1456,1:19)'; 

  

X=vis_nir_spectra(ll:hl,1:19)'; 

  

for i=1:1:363 

  RHOt11(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt12(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt13(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,20:38)'; 

  

for i=1:1:363 

  RHOt21(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt22(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt23(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,39:57)'; 

  

for i=1:1:363 

  RHOt31(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt32(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt33(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=avg1(ll:hl,:)'; 

for i=1:1:363 

  RHOM1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOM2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOM3(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,:)'; 

Y=vis_nir_spectra(1453:1456,:)'; 

  

for i=1:1:363 
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  RHOall1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOall2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOall3(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

corr_raw= [RHOall1, RHOall2 RHOall3, RHOM1, RHOM2, RHOM3, RHOt11, RHOt12, 

RHOt13, RHOt21, RHOt22, RHOt23, RHOt31, RHOt32, RHOt33]; 

  

%% Calculate correlations with filtered spectra 

ll=364; hl=726; 

Y=vis_nir_spectra(1453:1456,1:19)'; 

X=vis_nir_spectra(ll:hl,1:19)'; 

  

  

for i=1:1:363 

  RHOt11(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt12(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt13(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,20:38)'; 

  

for i=1:1:363 

  RHOt21(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt22(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt23(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,39:57)'; 

  

for i=1:1:363 

  RHOt31(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt32(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt33(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=avg1(ll:hl,:)'; 

for i=1:1:363 

  RHOM1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOM2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOM3(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,:)'; 

Y=vis_nir_spectra(1453:1456,:)'; 
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for i=1:1:363 

  RHOall1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOall2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOall3(i,1) = corr(X(:,i),Y(:,3)); 

end 

corr_filt= [RHOall1, RHOall2 RHOall3, RHOM1, RHOM2, RHOM3, RHOt11, RHOt12, 

RHOt13,  RHOt21, RHOt22, RHOt23, RHOt31, RHOt32, RHOt33]; 

  

%% Calculate correlations with first derivative of spectra 

ll=727; hl=1089; 

Y=vis_nir_spectra(1453:1456,1:19)'; 

X=vis_nir_spectra(ll:hl,1:19)'; 

  

  

for i=1:1:363 

  RHOt11(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt12(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt13(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,20:38)'; 

  

for i=1:1:363 

  RHOt21(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt22(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt23(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,39:57)'; 

  

for i=1:1:363 

  RHOt31(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt32(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt33(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=avg1(ll:hl,:)'; 

for i=1:1:363 

  RHOM1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOM2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOM3(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,:)'; 

Y=vis_nir_spectra(1453:1456,:)'; 
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for i=1:1:363 

  RHOall1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOall2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOall3(i,1) = corr(X(:,i),Y(:,3)); 

end 

corr_fd= [RHOall1, RHOall2 RHOall3, RHOM1, RHOM2, RHOM3, RHOt11, RHOt12, 

RHOt13,  RHOt21, RHOt22, RHOt23, RHOt31, RHOt32, RHOt33]; 

  

%% Calculate correlations with second derivative spectra 

ll=1090; hl=1452; 

Y=vis_nir_spectra(1453:1456,1:19)'; 

X=vis_nir_spectra(ll:hl,1:19)'; 

  

  

for i=1:1:363 

  RHOt11(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt12(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt13(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,20:38)'; 

  

for i=1:1:363 

  RHOt21(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt22(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt23(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,39:57)'; 

  

for i=1:1:363 

  RHOt31(i,1) = corr(X(:,i),Y(:,1)); 

  RHOt32(i,1) = corr(X(:,i),Y(:,2)); 

  RHOt33(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=avg1(ll:hl,:)'; 

for i=1:1:363 

  RHOM1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOM2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOM3(i,1) = corr(X(:,i),Y(:,3)); 

end 

  

X=vis_nir_spectra(ll:hl,:)'; 

Y=vis_nir_spectra(1453:1456,:)'; 
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for i=1:1:363 

  RHOall1(i,1) = corr(X(:,i),Y(:,1)); 

  RHOall2(i,1) = corr(X(:,i),Y(:,2)); 

  RHOall3(i,1) = corr(X(:,i),Y(:,3)); 

end 

corr_sd= [RHOall1, RHOall2 RHOall3, RHOM1, RHOM2, RHOM3, RHOt11, RHOt12, 

RHOt13,  RHOt21, RHOt22, RHOt23, RHOt31, RHOt32, RHOt33]; 

  

figure(2) 

plot(RSE(1:363,:), corr_raw(:,1).^2, 'or'); hold on 

plot(RSE(364:726,:), corr_filt(:,1).^2, 'xb'); hold on 

plot(RSE(727:1089,:), corr_fd(:,1).^2, '*k'); hold on 

plot(RSE(1090:1452,:), corr_sd(:,1).^2, '+m'); grid on 

xlabel('RSE', 'FontSize',12) 

ylabel('R ^2, %sand', 'FontSize',12) 

set(gca,'XTick',0:1:20); set(gca,'YTick',0.0:0.10:1.0);  

legend Original Smooth First-Derivative Second-Derivative 

  

figure(3) 

plot(RSE(1:363,:), corr_raw(:,2).^2, 'or'); hold on 

plot(RSE(364:726,:), corr_filt(:,2).^2, 'xb'); hold on 

plot(RSE(727:1089,:), corr_fd(:,2).^2, '*k'); hold on 

plot(RSE(1090:1452,:), corr_sd(:,2).^2, '+m'); grid on 

xlabel('RSE', 'FontSize',12) 

ylabel('R ^2, %clay', 'FontSize',12) 

set(gca,'XTick',0:1:20); set(gca,'YTick',0.0:0.10:1.0);  

legend('Original', 'Smooth', 'First-Derivative', 'Second-Derivative 4', ... 

 'Location','SouthEast') 

  

figure(4) 

plot(RSE(1:363,:), corr_raw(:,3).^2, 'or'); hold on 

plot(RSE(364:726,:), corr_filt(:,3).^2, 'xb'); hold on 

plot(RSE(727:1089,:), corr_fd(:,3).^2, '*k'); hold on 

plot(RSE(1090:1452,:), corr_sd(:,3).^2, '+m'); grid on 

xlabel('RSE', 'FontSize',12) 

ylabel('R ^2, %carbon', 'FontSize',12) 

set(gca,'XTick',0:1:20); set(gca,'YTick',0.0:0.10:1.0);  

legend Original Smooth First-Derivative Second-Derivative 

  

figure(5) 

plot(wavelengths, avg1(1:363,:), '.-.'); grid on 

xlabel('Wavelengths, nm', 'FontSize',12) 

ylabel('Reflectance ', 'FontSize',12) 

xlim([400 2200]) 

ylim([0.0 0.6]) 
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%% Calculate precisions and accuracy parameters on raw spectra 

ll=1; hl=363; 

Y=vis_nir_spectra(1453:1456,:)'; 

X=vis_nir_spectra(ll:hl,:)'; 

c=length(Y); 

 

for i=1:1:363    

p = polyfit(X(:,i),Y(:,1),1); yhat=p(2)+p(1).*X(:,i); Pall1(i,1)=p(1); 

RMSEall1(i,1)=sqrt(mean((Y(:,1)-yhat).^2));P2all1(i,1)=p(2); 

SDEall1(i,1)=sqrt(sum((Y(:,1)-yhat).^2)/c);% SDE(i,1)=b=yhat-mean(yhat); a= X(:,i)-

mean(X(:,i)); sqrt((sum(b.^2) -((sum(a.*b)).^2/(sum(a.^2))))/c); 

p = polyfit(X(:,i),Y(:,2),1); yhat=p(2)+p(1).*X(:,i); Pall2(i,1)=p(1); 

RMSEall2(i,1)=sqrt(mean((Y(:,2)-yhat).^2));P2all2(i,1)=p(2); 

SDEall2(i,1)=sqrt(sum((Y(:,2)-yhat).^2)/c); 

p = polyfit(X(:,i),Y(:,3),1); yhat=p(2)+p(1).*X(:,i); Pall3(i,1)=p(1); 

RMSEall3(i,1)=sqrt(mean((Y(:,3)-yhat).^2));P2all3(i,1)=p(2); 

SDEall3(i,1)=sqrt(sum((Y(:,3)-yhat).^2)/c); 

end 

  

rmse_raw= [RMSEall1, RMSEall2 RMSEall3]; 

sde_raw=[SDEall1, SDEall2, SDEall3]; 

slope_raw=[Pall1, Pall2, Pall3]; 

intcpt_raw=[P2all1, P2all2, P2all3]; 

  

%% Calculate precisions and accuracy parameters on filtered spectra 

ll=364; hl=726; 

X=vis_nir_spectra(ll:hl,:)'; 

  

for i=1:1:363   

p = polyfit(X(:,i),Y(:,1),1); yhat=p(2)+p(1).*X(:,i); Pall1(i,1)=p(1); 

RMSEall1(i,1)=sqrt(mean((Y(:,1)-yhat).^2));P2all1(i,1)=p(2); 

SDEall1(i,1)=sqrt(sum((Y(:,1)-yhat).^2)/c); 

p = polyfit(X(:,i),Y(:,2),1); yhat=p(2)+p(1).*X(:,i); Pall2(i,1)=p(1); 

RMSEall2(i,1)=sqrt(mean((Y(:,2)-yhat).^2));P2all2(i,1)=p(2); 

SDEall2(i,1)=sqrt(sum((Y(:,2)-yhat).^2)/c); 

p = polyfit(X(:,i), Y(:,3),1); yhat=p(2)+p(1).*X(:,i); Pall3(i,1)=p(1); 

RMSEall3(i,1)=sqrt(mean((Y(:,3)-yhat).^2));P2all3(i,1)=p(2); 

SDEall3(i,1)=sqrt(sum((Y(:,3)-yhat).^2)/c); 

end 

  

rmse_filt= [RMSEall1, RMSEall2 RMSEall3]; 

sde_filt=[SDEall1, SDEall2, SDEall3]; 

slope_filt=[Pall1, Pall2, Pall3]; 

intcpt_filt=[P2all1, P2all2, P2all3]; 

  

%% Calculate precisions and accuracy parameters on first derivative spectrum 
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ll=727; hl=1089; 

X=vis_nir_spectra(ll:hl,:)'; 

  

for i=1:1:363   

p = polyfit(X(:,i),Y(:,1),1); yhat=p(2)+p(1).*X(:,i); Pall1(i,1)=p(1); 

RMSEall1(i,1)=sqrt(mean((Y(:,1)-yhat).^2));P2all1(i,1)=p(2); 

SDEall1(i,1)=sqrt(sum((Y(:,1)-yhat).^2)/c); 

p = polyfit(X(:,i),Y(:,2),1); yhat=p(2)+p(1).*X(:,i); Pall2(i,1)=p(1); 

RMSEall2(i,1)=sqrt(mean((Y(:,2)-yhat).^2));P2all2(i,1)=p(2); 

SDEall2(i,1)=sqrt(sum((Y(:,2)-yhat).^2)/c); 

p = polyfit(X(:,i), Y(:,3),1); yhat=p(2)+p(1).*X(:,i); Pall3(i,1)=p(1); 

RMSEall3(i,1)=sqrt(mean((Y(:,3)-yhat).^2));P2all3(i,1)=p(2); 

SDEall3(i,1)=sqrt(sum((Y(:,3)-yhat).^2)/c); 

end 

  

rmse_fd= [RMSEall1, RMSEall2 RMSEall3]; 

sde_fd=[SDEall1, SDEall2, SDEall3]; 

slope_fd=[Pall1, Pall2, Pall3]; 

intcpt_fd=[P2all1, P2all2, P2all3]; 

  

%% Calculate precisions and accuracy parameters on second derivative spectra 

ll=1090; hl=1452; 

X=vis_nir_spectra(ll:hl,:)'; 

  

for i=1:1:363   

p = polyfit(X(:,i),Y(:,1),1); yhat=p(2)+p(1).*X(:,i); Pall1(i,1)=p(1); 

RMSEall1(i,1)=sqrt(mean((Y(:,1)-yhat).^2));P2all1(i,1)=p(2); 

SDEall1(i,1)=sqrt(sum((Y(:,1)-yhat).^2)/c); 

p = polyfit(X(:,i),Y(:,2),1); yhat=p(2)+p(1).*X(:,i); Pall2(i,1)=p(1); 

RMSEall2(i,1)=sqrt(mean((Y(:,2)-yhat).^2));P2all2(i,1)=p(2); 

SDEall2(i,1)=sqrt(sum((Y(:,2)-yhat).^2)/c); 

p = polyfit(X(:,i), Y(:,3),1); yhat=p(2)+p(1).*X(:,i); Pall3(i,1)=p(1); 

RMSEall3(i,1)=sqrt(mean((Y(:,3)-yhat).^2));P2all3(i,1)=p(2); 

SDEall3(i,1)=sqrt(sum((Y(:,3)-yhat).^2)/c); 

end 

  

rmse_sd= [RMSEall1, RMSEall2 RMSEall3]; 

sde_sd=[SDEall1, SDEall2, SDEall3]; 

slope_sd=[Pall1, Pall2, Pall3]; 

intcpt_sd=[P2all1, P2all2, P2all3]; 

  

 

figure(6) 

plot(abs(slope_raw(:,1)).*RMSE(1:363,:),rmse_raw(:,1), 'or'); hold on 

plot(abs(slope_filt(:,1)).*RMSE(364:726,:),rmse_filt(:,1), 'xb'); hold on 

plot(abs(slope_fd(:,1)).*RMSE(727:1089,:),rmse_fd(:,1), '*k'); hold on 
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plot(abs(slope_sd(:,1)).*RMSE(1090:1452,:),rmse_sd(:,1), '+m'); hold on 

zz=std(Y(:,1)); plot((0:2:10), [zz,zz,zz,zz,zz,zz], 'linewidth',3); grid on 

xlabel('Measurement error, %sand', 'FontSize',12) 

ylabel('Prediction error, %sand ', 'FontSize',12) 

set(gca,'XTick',0:1:20); set(gca,'YTick',0.0:2:20);  

plot([14,0], [0,14], '.-.'); 

plot([15,0], [0,15], '.-.'); plot([16,0], [0,16], '.-.') 

plot([17,0], [0,17], '.-.'); plot([18,0], [0,18], '.-.') 

plot([19,0], [0,19], '.-.'); plot([20,0], [0,20], '.-.') 

plot([21,0], [0,21], '.-.');plot([22,0], [0,22], '.-.') 

plot([23,0], [0,23], '.-.'); plot([24,0], [0,24], '.-.'); 

plot(3.28, 5.74, 'db', 'markersize',12) 

plot(3.68, 5.78, 'ob', 'markersize',12) 

plot(3.12, 6.85, 'xb', 'markersize',12) 

plot(3.74, 3.25, '*b', 'markersize',12) 

plot(2.96, 3.78, '+b', 'markersize',12) 

xlim([0 10]); ylim([0 20]) 

legend('Original', 'Smooth', 'First-Derivative', 'Second-Derivative', ... 

 'Location','SouthEast') 

  

figure(7) 

plot(abs(slope_raw(:,2)).*RMSE(1:363,:),rmse_raw(:,2), 'or'); hold on 

plot(abs(slope_filt(:,2)).*RMSE(364:726,:),rmse_filt(:,2), 'xb'); hold on 

plot(abs(slope_fd(:,2)).*RMSE(727:1089,:),rmse_fd(:,2), '*k'); hold on 

plot(abs(slope_sd(:,2)).*RMSE(1090:1452,:),rmse_sd(:,2), '+m'); hold on 

zz=std(Y(:,2)); plot((0:5), [zz,zz,zz,zz,zz,zz], 'linewidth',3); grid on 

xlabel('Measurement error, %clay', 'FontSize',12) 

ylabel('Prediction error, %clay ', 'FontSize',12) 

set(gca,'XTick',0:1:10); set(gca,'YTick',0:3:20);  

plot([6,0], [0,6], '.-.'); plot([7,0], [0,7], '.-.') 

plot([8,0], [0,8], '.-.'); plot([9,0], [0,9], '.-.') 

plot([10,0], [0,10], '.-.'); plot([11,0], [0,11], '.-.') 

plot([12,0], [0,12], '.-.'); plot([5,0], [0,5], '.-.'); 

plot([13,0], [0,13], '.-.'); plot([4,0], [0,4], '.-.'); 

plot(1.41, 3.25, 'db', 'markersize',12) 

plot(1.50, 2.51, 'ob', 'markersize',12) 

plot(1.23, 2.34, 'xb', 'markersize',12) 

plot(0.64, 0.73, '*b', 'markersize',12) 

plot(0.63, 0.84, '+b', 'markersize',12) 

xlim([0 5]); ylim([0 12]) 

legend('Original', 'Smooth', 'First-Derivative', 'Second-Derivative', ... 

 'Location','SouthEast') 

  

 

figure(8) 

plot(abs(slope_raw(:,3)).*RMSE(1:363,:),rmse_raw(:,3), 'or'); hold on 
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plot(abs(slope_filt(:,3)).*RMSE(364:726,:),rmse_filt(:,3), 'xb'); hold on 

plot(abs(slope_fd(:,3)).*RMSE(727:1089,:),rmse_fd(:,3), '*k'); hold on 

plot(abs(slope_sd(:,3)).*RMSE(1090:1452,:),rmse_sd(:,3), '+m'); hold on 

zz=std(Y(:,3)); plot((0:4), [zz,zz,zz,zz,zz], 'linewidth',3); grid on 

xlabel('Measurement error, %carbon', 'FontSize',12) 

ylabel('Prediction error, %carbon', 'FontSize',12) 

set(gca,'XTick',0:1:10); set(gca,'YTick',0:3:20);  

plot([4,0], [0,4], '.-.');plot([4.5,0], [0,4.5], '.-.') 

plot([5,0], [0,5], '.-.') ;plot([5.5,0], [0,5.5], '.-.');  

plot([6,0], [0,6], '.-.');plot([6.5,0], [0,6.5], '.-.');  

plot(1.20, 1.58, 'db', 'markersize',12) 

plot(1.29, 2.24, 'ob', 'markersize',12) 

plot(0.99, 1.46, 'xb', 'markersize',12) 

plot(1.06, 1.48, '*b', 'markersize',12) 

plot(0.99, 1.09, '+b', 'markersize',12) 

xlim([0 3]); ylim([0 7]) 

legend('Original', 'Smooth', 'First-Derivative', 'Second-Derivative', ... 

 'Location','SouthEast') 

  

figure(9) 

tt= mean(avg1(1:363,:),2); 

tt1=std(avg1(1:363,:)')'; 

plot(wavelengths, tt+tt1, '--g', 'markersize',5); hold on 

plot(wavelengths, tt, '-k', 'markersize',5); hold on 

plot(wavelengths, tt-tt1, '--g', 'markersize',5); hold on 

text(1413, tt(180),' Sand (best) \rightarrow','HorizontalAlignment','right') 

text(1940,tt(296),'Sand, Clay (best) \rightarrow', 'HorizontalAlignment','right') 

text(1919,tt(291),'\leftarrow Clay ', 'HorizontalAlignment','left') 

text(556,tt(25),'\leftarrow Carbon ', 'HorizontalAlignment','left') 

text(674,tt(46),'\leftarrow Carbon (best) ', 'HorizontalAlignment','left') 

text(585,tt(30),'Carbon \rightarrow', 'HorizontalAlignment','right') 

set(gca,'XTick',400:300:2200); set(gca,'YTick',0:0.1:0.6);  

xlabel('Wavelengths, nm', 'FontSize',12) 

ylabel('Reflectance ', 'FontSize',12) 

xlim([400 2200]) 

ylim([0.0 0.52]) 

grid on 
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D-3 Function to convert GPS co-ordinates into metric units (Chapter 8) 

 

function METRIC = GPS_TO_METER(DATA) 

 

[n,p] = size(DATA); t = 1:n; 

  

%% Assignment of variables 

X = DATA(:,1); % LON 

Y = DATA(:,2); % LAT 

EC_SH = DATA(:,3); % EC-Shallow 

EC_DP = DATA(:,4); % EC-Deep 

Z = DATA(:,5); % Elevation 

  

%% Paramters 

a=6378137; b=6356752.3142; 

f=0.003353; N=6388838; 

M=6367382; W=0.998325; 

phi=mean(Y); h=mean(Z); 

 

%% Equations 

F_long=(N+h)*cos(phi*pi/180)*pi/180; %,using stand alone 

F_lat=(M+h)*pi/180; %,using stand alone 

  

%% Distance formula 

%sqrt((F_long*(x(i)-x(i-1))^2+(F_lat*(y(i)-y(i-1)))^2)); 

 

MIN_X=min(X); 

MIN_Y=min(Y); 

MIN_Z=min(Z); 

 

for i=1:1:length(X) 

 X(i)=F_long*(X(i)-MIN_X); 

 Y(i)=F_lat*(Y(i)-MIN_Y); 

 Z(i)=Z(i)-MIN_Z; 

end 

  

%% Return coverted variables to workspace 

METRIC = [X Y EC_SH EC_DP Z]; 

 

%% Save workspace  

save Metric 
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D-4 Function to average spatial data on grid basis (Chapter 8) 

function NSA_DATA=GRID_AVG(); 

 

%% Load workspace variables returned by the previous funtion 

load METRIC; 

 

%% Specify the grid and offset parameters 

gdsz=20; 

hgd=gdsz/2; 

lon= METRIC(:,1); 

lat=METRIC(:,2); 

londx= 0:gdsz:round(max(METRIC(:,1))); 

latdx =0:gdsz:round(max(METRIC(:,2))); 

 

%% Assign new variables 

Y1= METRIC(:,1); 

Y2= METRIC(:,2); 

Y3= METRIC(:,3); 

Y4= METRIC(:,4); 

Y5= METRIC(:,5); 

  

%% Code using loop to average data points withing each grid 

for i=1:length(latdx) 

 for j=1:length(londx) 

  ind = find(lat<=latdx(i)+hgd & lat>latdx(i)-hgd & lon<=londx(j)+hgd & lon>londx(j)-hgd); 

  avg_data1(i,j) = londx(j)+hgd;  

  avg_data2(i,j) = latdx(i)+hgd;  

  avg_data3(i,j) = nanmean(Y3(ind)); 

  avg_data4(i,j) = nanmean(Y4(ind)); 

  avg_data5(i,j) = nanmean(Y5(ind)); 

 end 

end  

  

%% Return the grid averaged variables to workspace 

NSA_DATA= [avg_data1 avg_data2 avg_data3 avg_data4 avg_data5]; 

 

%% Save workspace  

save NSA_DATA 
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D-5 Function to calculate the mean squared error on input data layers (Chapter 8) 

function MSE = NSA_ERR(DATA,ZONE), 

  

%% Identify parameters and assign values according to Zones 

K=max(ZONE(:)); N=length(ZONE(:)) - length(ZONE(find(ZONE==0))); %N > K 

 

if N>K, 

 

WB=DATA; % Create a temporary matrice to perform rough work 

for i=1:K, 

  % Calculate and insert average of i zone values 

 WB(find(ZONE==i))= mean(DATA(find(ZONE==i)));  

end 

  

%% Calculate the Mean Squared Error term 

MSE=(sum(sum((DATA-WB).^2)))/(N-K); %return MSE value 

 

else  

  

“display error” 

 

end 
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D-6 Function to display the output figures (Chapter 8) 

function NSA_FIGURE() 

 

%% Get and set settings related to screen resolution 

set(0,'Units','normalized'); 

get(0,'ScreenSize'); 

set(0,'Units','pixels') ; 

scnsize = get(0,'ScreenSize'); 

 

%% Get the first figure 

fig1 = figure(1);  

 

%% Perform calculations to set initial reference positions 

position = get(fig1,'Position'); 

outerpos = get(fig1,'OuterPosition'); 

borders = outerpos - position; 

 

%% Get the remaining figures  

fig2 = figure(2);  

fig3 = figure(3);  

 

%% Assign thier position values with respect to screen size 

edge = borders(1)/2; 

pos1 = [edge,0,scnsize(3)/2 - edge,scnsize(4)]; 

pos2 = [scnsize(3)/2 + edge,pos1(4)/2,pos1(3),pos1(4)/2-edge]; 

pos3 = [scnsize(3)/2 + edge,0, pos1(3),pos1(4)/2-edge]; 

 

%% Apply settings to the presently displayed output 

set(fig1,'OuterPosition',pos1)  

set(fig2,'OuterPosition',pos2) 

set(fig3,'OuterPosition',pos3)  

%set(fig4,'OuterPosition',pos4) 
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D-7 Function to check if a chosen element has at least one immediate neighbour of present 

group (Chapter 8) 

  

function NBR_VALID = NSA_NBR_VALID(IND, ZONE) 

  

[rr cc]=size(ZONE);  

S=[rr,cc]; I=1; 

 

if (ZONE(IND-1)== max(ZONE(:))||ZONE(IND+1)== max(ZONE(:))|| ... 

 ZONE(IND-rr)== max(ZONE(:))||ZONE(IND+rr)== max(ZONE(:))) 

  

NBR_VALID=1; 

  

else 

 NBR_VALID=0; 

end 
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D-8 Function to check if a element has 4 valid but immediate neighbours  (Chapter 8) 

 

function NHOOD_VALID = NSA_NHOOD_VALID(ZWINDOW), 

  

NHOOD_VALID=prod(ZWINDOW(:)); 

  

end 
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D-9 Function to process multidimensional spatial data using NSA(Chapter 8) 

function [DATA FZONE NSA_MSE NSA_MSE_dEC1 NSA_MSE_sEC1 NSA_MSE_ELEV] 

= CLASSIFY() 

 

%% Load the previously processed and saved data in to workspace  

load NSA_DATA 

 

%% Define some variables 

a= 1; b=1; e=4; zzz=1; j=0; 

 

%% Assign weights to enable and disable the spatial variables 

Z1MSE = NSA_ERR(DATA,ZONE1)^a *NSA_ERR(DATA1,ZONE1)^b 

*(NSA_ERR(ELEV,ZONE1))^e; 

 

%% Some code to calculate the initial error and the performance indices  

NSA_MSE(1)=Z1MSE; zzz=zzz+1; 

NSA_MSE_dEC1(1)=NSA_ERR(DATA1,ZONE1); % Individual MSE 

NSA_MSE_sEC1(1)=NSA_ERR(DATA,ZONE1);% Individual MSE 

NSA_MSE_ELEV(1)=NSA_ERR(ELEV,ZONE1); % Individual MSE 

 

[rr cc]=size(DATA); S=[rr,cc]; I=1; ZONE=ZONE1; K=2; GG=0; 

FZMSE=Z1MSE; BB=0; ZGROWTH=0;GET_ZONE_VAL=0; 

  

PRODR2= (1- NSA_MSE_dEC1(end)/NSA_MSE_dEC1(1))^b * ... 

 (1- NSA_MSE_sEC1(end)/NSA_MSE_sEC1(1))^a * ... 

(1- NSA_MSE_ELEV(end)/NSA_MSE_ELEV(1))^e; 

  

%% Display histogram of the enabled input data layers 

figure(4) 

subplot(3,1,1);hist(ELEV(find(ELEV~=0))) 

subplot(3,1,2);hist(DATA1(find(DATA1~=0))) 

subplot(3,1,3);hist(DATA(find(DATA~=0))) 

waitforbuttonpress 

  

%% Display the input layers, error/performance and the output figures  

figure(1) 

view(2) 

subplot (5,1,1); surf(LON,LAT,ELEV) 

axis([min(LON(:)) max(LON(:)) min(LAT(:)) ... 

 max(LAT(:)) min(ELEV(:)) max(ELEV(:))]) 

colorbar 

view([0,90]) 

NSA_FIGURE() 
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figure(1) 

subplot (5,1,2); surf(LON,LAT,DATA) 

axis([min(LON(:)) max(LON(:)) min(LAT(:)) ... 

 max(LAT(:)) min(DATA(:)) max(DATA(:))]) 

view([0,90]) 

colorbar 

NSA_FIGURE() 

  

figure(1) 

subplot (5,1,3); surf(LON,LAT,DATA1) 

axis([min(LON(:)) max(LON(:)) min(LAT(:)) ... 

 max(LAT(:)) min(DATA1(:)) max(DATA1(:))]) 

view([0,90]) 

colorbar 

NSA_FIGURE() 

  

figure(3) 

plot(1,0,'--rs','LineWidth',2,... 

    'MarkerEdgeColor','b',... 

    'MarkerFaceColor','b',... 

    'MarkerSize',10); 

   axis([1 2 0 1]) 

grid on; hold on 

ylabel (' Product R^2' ) 

xlabel( 'Number of Dynamic Classes') 

  

 %% Start the big iteration loop 

 

while (GG~=1), 

 j=1;  

 ELMT=find(ZONE<=K & ZONE~=0); % Find all points in data that are not 0 

for i=1:1:length(ELMT) 

 IND=ELMT(i); [row,col]=ind2sub(S,IND); 

  

 ZWINDOW=ZONE(row-I:row+I,col-I:col+I); 

  NHOOD_VALID = NSA_NHOOD_VALID(ZWINDOW); % Check for valid elements,  

            % if valid element then 1 else 0 

  

 if NHOOD_VALID > 0, 

  ZONE(row-I:row+I,col-I:col+I)=K; 

  MSE = NSA_ERR(DATA,ZONE)^a *NSA_ERR(DATA1,ZONE)^b 

*(NSA_ERR(ELEV,ZONE))^e; 

  E(i,:)=[IND MSE]; 

  ZONE(row-I:row+I,col-I:col+I)= ZWINDOW; 

 end 

end %% Code to look for cluster centers. 
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CAND=sortrows(E,2);clear E % Sort in order 

CAND((find(CAND(:,1)==0)),:)=[]; 

IND=CAND(1); % Pick the smallest element 

[row,col]=ind2sub(S,IND); 

ZWINDOW1=ZONE(row-I:row+I,col-I:col+I); 

ZONE(row-I:row+I,col-I:col+I)=K; 

MSE= NSA_ERR(DATA,ZONE)^a *NSA_ERR(DATA1,ZONE)^b d 

*(NSA_ERR(ELEV,ZONE))^e; 

if MSE >= FZMSE, 

 disp([K MSE FZMSE]) 

 ZONE(row-I:row+I,col-I:col+I)= ZWINDOW1; 

 break; 

else 

 disp('Opened a new uniform zone consisting of at least 9 cells') 

 K 

disp('ZONE NEWMSE OLDMSE') 

disp([K MSE FZMSE]) 

end 

  

% The above part of this code is to search for a new uniform zone within 

%  The area of the present zone and to establish its conditional base  

  

%% The next part of the code is to find all the neighbourhood indices of the new uniform zone 

 

%% Start the smaller iteration loop  

ZGROW =1;  

while (ZGROW==1), 

ZGROWTH=0;  

TEMP_IND=find(ZONE~=K & ZONE~=0); 

STR_NBRS=0; 

for i=1:1:length(TEMP_IND) 

 IND=TEMP_IND(i);  

 NBR_VALID = NSA_NBR_VALID(IND, ZONE); 

 if NBR_VALID ==1, 

  STR_NBRS(i)=IND; 

 end 

  STR_NBRS(STR_NBRS==0)=[]; % store potential neighbors 

  

end 

  

% The next part of the code is to check the value of stored neighbor 

% Indices and to decide the strategy to grow the cluster 

  

%% Now its time to define what are the strategies 

for i=1:1:length(STR_NBRS) 
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 if ZONE(STR_NBRS(i))==1,  

 GS1MSE= NSA_ERR(DATA,ZONE)^a *NSA_ERR(DATA1,ZONE)^b 

*(NSA_ERR(ELEV,ZONE))^e; %Error before zone growth 

 ZONE(STR_NBRS(i))=K;  

 GS1E= NSA_ERR(DATA,ZONE)^a *NSA_ERR(DATA1,ZONE)^b 

NSA_ERR(ELEV,ZONE))^e; %Error after zone growth 

  

 if GS1E > GS1MSE 

 ZONE(STR_NBRS(i))=1; 

 FZMSE=GS1MSE; 

 else 

  FZMSE=GS1E; 

  ZGROWTH=ZGROWTH+1; 

 end 

  

 elseif ZONE(STR_NBRS(i))== K-1 & ZONE(STR_NBRS(i))~=1, 

  GS2MSE= NSA_ERR(DATA,ZONE)^a *NSA_ERR(DATA1,ZONE)^b 

*(NSA_ERR(ELEV,ZONE))^e; %Error before zone growth 

  TEMPKS2=find(ZONE==K); 

  ZONE(find(ZONE==K))=K-1; 

  GS2E= NSA_ERR(DATA,ZONE)^a *NSA_ERR(DATA1,ZONE)^b 

*(NSA_ERR(ELEV,ZONE))^e;  

 

%Error after zone growth 

  if GS2E > GS2MSE, 

   ZONE(TEMPKS2)= K; 

   FZMSE=GS2MSE; 

  else 

   FZMSE=GS2E; 

   ZGROWTH=ZGROWTH+1; 

   K=K-1; 

   break, 

  end 

   

 elseif ZONE(STR_NBRS(i))<K-1 & ZONE(STR_NBRS(i))~=1, 

  GS3MSE=NSA_ERR(DATA,ZONE)^a *NSA_ERR(DATA1,ZONE)^b 

*(NSA_ERR(ELEV,ZONE))^e; %Error before zone growth 

  TEMPK=ZONE(STR_NBRS(i)); 

  TEMPKS3= find (ZONE == K); 

  ZONE(find(ZONE==K))=TEMPK; 

  GS3E= NSA_ERR(DATA,ZONE)^a *NSA_ERR(DATA1,ZONE)^b 

*(NSA_ERR(ELEV,ZONE))^e; %Error after zone growth 

  if GS3E > GS3MSE, 

   ZONE(TEMPKS3)= K; 

   FZMSE=GS3MSE; 
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  else 

   FZMSE=GS3E; 

   ZGROWTH=ZGROWTH+1; 

   K=K-1; 

   break 

  end 

  end 

  

 if i==length(STR_NBRS), 

     if ZGROWTH ==0, 

    if length(ZONE(find(ZONE==K)))<10, 

    ZONE(find(ZONE==K))=max(ZWINDOW1(:));  

    BB=1; K=K-1; 

    end 

   ZGROW=0; 

   end 

 end 

  

 %% Revise the zone map 

figure(2) 

surf(LON,LAT,ZONE) 

axis([min(LON(:)) max(LON(:)) min(LAT(:)) ... 

 max(LAT(:)) min(ZONE(:)) max(ZONE(:))]) 

view([0,90]) 

NSA_FIGURE() 

end 

% End  

 

%% Calculate the error and the performance parameters 

NSA_MSE(zzz)=FZMSE; 

NSA_MSE_dEC1(zzz)=NSA_ERR(DATA1,ZONE); 

NSA_MSE_sEC1(zzz)=NSA_ERR(DATA,ZONE); 

NSA_MSE_ELEV(zzz)=NSA_ERR(ELEV,ZONE); 

  

PRODR2= (1- NSA_MSE_dEC1(end)/NSA_MSE_dEC1(1))^b * ... 

 (1- NSA_MSE_sEC1(end)/NSA_MSE_sEC1(1))^a * ... 

(1- NSA_MSE_ELEV(end)/NSA_MSE_ELEV(1))^e; 

 zzz=zzz+1; 

 end  

  

figure(3) 

  

if BB==1, 

 BB=0; 

 GG=1; 

else 
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%% Display error and performance parameters from the present time 

figure(3) 

plot(K,PRODR2,'--rs','LineWidth',2,... 

    'MarkerEdgeColor','k',... 

    'MarkerFaceColor','g',... 

    'MarkerSize',10); 

plot(K, (1- NSA_MSE_dEC1(end)/NSA_MSE_dEC1(1)), ... 

    '--rs','LineWidth',2,... 

    'MarkerEdgeColor','k',... 

    'MarkerFaceColor','r',... 

    'MarkerSize',10);  

plot(K, (1- NSA_MSE_sEC1(end)/NSA_MSE_sEC1(1)), ... 

    '--rs','LineWidth',2,... 

    'MarkerEdgeColor','k',... 

    'MarkerFaceColor','c',... 

    'MarkerSize',10); 

plot(K, (1- NSA_MSE_ELEV(end)/NSA_MSE_ELEV(1)), ... 

    '--rs','LineWidth',2,... 

    'MarkerEdgeColor','k',... 

    'MarkerFaceColor','b',... 

    'MarkerSize',10);    

axis([1 K 0 1]) 

grid on; hold on 

ylabel (' Product R^2' ) 

xlabel( 'Number of Dynamic Classes') 

 

K=K+1; 

  

end 

end 

 

%% Revise the display of error and the performance parameters 

figure(3) 

plot(K,PRODR2,'--rs','LineWidth',2,... 

    'MarkerEdgeColor','k',... 

    'MarkerFaceColor','g',... 

    'MarkerSize',10); 

plot(K, (1- NSA_MSE_dEC1(end)/NSA_MSE_dEC1(1)), ... 

    '--rs','LineWidth',2,... 

    'MarkerEdgeColor','k',... 

    'MarkerFaceColor','r',... 

    'MarkerSize',10);  

plot(K, (1- NSA_MSE_sEC1(end)/NSA_MSE_sEC1(1)), ... 

    '--rs','LineWidth',2,... 

    'MarkerEdgeColor','k',... 
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    'MarkerFaceColor','c',... 

    'MarkerSize',10); 

plot(K, (1- NSA_MSE_ELEV(end)/NSA_MSE_ELEV(1)), ... 

    '--rs','LineWidth',2,... 

    'MarkerEdgeColor','k',... 

    'MarkerFaceColor','b',... 

    'MarkerSize',10);    

axis([1 K 0 1]) 

grid on; hold on 

ylabel (' Product R^2' ) 

xlabel( 'Number of Dynamic Classes') 

legend('Elevation','Product','DeepECa1','ShallowECa1') 

 

%% Return the output variables to workspace 

FZONE=ZONE; % The groups matrix 

NSA_MSE; % The over all error vector 

NSA_MSE_dEC1 % The error vector for first input layer 

NSA_MSE_sEC1 % The error vector for second input layer 

NSA_MSE_ELEV % The error vector for fifth input layer 

 


