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Abstract/Résumé

Abstract

In the past few years, genome-wide association studies (GWAS) allowed to identify a large
number of common variants associated with multiple complex traits. These studies were a great
tool that really helped understanding the genetic basis of a large number of diseases allowing to
identify new pathways, better understand disease mechanisms and even pinpoint potential drug
targets. However, most of the SNP identified were located in the non-coding region of the
genome (~90%) and mainly had small effect size. Additionally, even the largest meta-analysis
combining thousands of samples could not explain most of the diseases heritability. This forced
the research community to develop new strategies and tools to complement GWAS findings. In
this thesis, we explored some of these strategies to study asthma and allergy-related traits. These
diseases are highly heterogeneous, having important genetic and environmental components.
They affect millions of people around the world resulting in many deaths and consist an
important economic burden. We used two strategies to understand the genetic basis of these
diseases: 1) exploring the impact of rare and low-frequency variants and 2) using DNA
methylation data to understand the functional impact of SNPs. We first developed a custom
capture panel to assess both coding and non-coding rare and low-frequency regulatory variants to
explore their impact on autoimmune and inflammatory complex traits. We applied it to a familial
asthma cohort from a founder population and identified three novel genes associated with related
traits (serum IgE levels and eosinophil percentage). We also used DNA methylation data to
complement our findings as well as to identify new genes associated with allergic rhinitis. The
results presented in this thesis represent a good example on how to learn from GWAS findings

and go beyond them to understand the genetic basis of complex traits.



Résumé

Au cours des dernieres années, les études d'association pangénomique (GWAS) ont permis
d'identifier un grand nombre de variants communs associé¢s a de multiples traits complexes. Ces
¢tudes ont été un excellent outil et ont largement contribu¢ a comprendre la génétique d'un grand
nombre de maladies permettant d'identifier de nouvelles voies biologiques, de mieux comprendre
les mécanismes de la maladie et méme de cerner de potentielles cibles de médicaments.
Cependant, la plupart des SNP identifiés étaient situés dans la région non codante du génome (~
90%) et avaient surtout un effet limité. En outre, méme la plus grande méta-analyse combinant
des milliers d'échantillons n’a pas pu expliquer la plupart de I’héritabilité¢ des maladies. Cela a
obligé le milieu de la recherche a développer de nouvelles stratégies et outils pour complémenter
les résultats des GWAS. Dans cette these, nous avons exploré certaines de ces stratégies pour
¢étudier l'asthme et l'allergie. Ces maladies sont trés hétérogenes, ayant des composantes
génétiques et environnementales importantes. Elles affectent des millions de personnes dans le
monde entrainant de nombreux déces et constituent un fardeau économique important. Dans
cette thése, nous avons utilisé deux stratégies pour comprendre la génétique de ces maladies : 1)
l'exploration de 1'impact des variants rares et de faible fréquence et 2) I'utilisation de la
méthylation de I'ADN pour comprendre 1'impact fonctionnel des variants. Nous avons d'abord
développé une capture personnalisée pour évaluer a la fois les variants régulateurs codants et
non-codants, rare et de faibles fréquences, pour explorer leur impact sur les traits complexes
auto-immuns et inflammatoires. Nous l'avons appliquée a une cohorte d'asthme familial
provenant d'une population fondatrice et avons identifié trois nouveaux genes associés a des
traits apparentés (niveau d’IgE et pourcentage d’éosinophiles). Nous avons également utilisé des

données de méthylation de I'ADN pour complémenter nos résultats ainsi que pour identifier de



nouveaux genes associés a la rhinite allergique. Les résultats présentés dans cette theése
représentent un bon exemple sur la facon d'apprendre des résultats des analyses GWAS et de les

complémenter pour comprendre la génétique des traits complexes.
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Original contribution to knowledge

This thesis explores different strategies to better understand genetics underlying complex traits
and more specifically asthma and allergy related traits. We used both rare and low-frequency
variants exploration as well as understanding the impact of genetics on cellular traits (in this

case, gene expression and DNA methylation).

The first study described in Chapter 2 is entitled “Immune-genetics sequencing: the identification
of functionally relevant variants through targeted capture and sequencing of active regulatory
region in human immune cells”. It describes how we built a custom capture panel (Immune-
genetics sequencing) that targets regulatory regions of immune cells in order to study rare
variants in autoimmune and inflammatory complex traits. We assessed the functional impact of
variants identified using our custom capture panel in 30 healthy samples for which we also had
gene expression data (RNA-sequencing) in T-cells. We took advantage of this data to evaluate
the impact of rare and novel variants on gene expression. We showed that our Immune-genetics
sequencing was properly designed and that it identified rare and novel variants that have a high
potentially functional impact and that have an influence on gene expression in T-cells. We

finally replicated our data in a sample set of 180 individuals.

The second study described in Chapter 3 is entitled “Exploring rare and low-frequency variants
in the Saguenay—Lac-Saint-Jean population identified genes associated with asthma and allergy
related traits”. We used our Immune-genetics sequencing described in Chapter 2 on 149 trios
from the SLSJ asthma familial cohort. We first assessed the characteristic of the rare and low-

frequency variants in this founder population compared to four other European population from
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France, United Kingdom (UK), Sweden and Finland; the latter also being a founder population.
We observe a small enrichment of deleterious variants in the low-frequency spectrum in the two
founder populations. We were also able to observe a higher proportion of private variants that
reached testable frequencies in the SLSJ and Finland populations. We next looked at the impact
of rare variants on asthma and allergy related traits in the SLSJ asthma familial cohort testing for
lung function, Immunoglobulin (Ig) E levels and eosinophil percentage. Using single variants
association test, we identified a low-frequency variant located between CXCR6 and FYCOI
genes significantly associated with eosinophil percentage. We also used gene-based test where
we identified two genes significantly associated with eosinophil percentage (MRPL44) and
serum IgE levels (NRP2). None of the genes we discovered were previously associated with the

traits.

Finally, the third study described in Chapter 4 is entitled “Combining omics data to identify
genes associated with allergic rhinitis”. This paper on the SLSJ asthma familial cohort focused
on allergic rhinitis trait, an asthma related phenotype. We combined Genome and Epigenome
Wide Association studies (GWAS and EWAS) using methylation quantitative trait loci (mQTLs)
to identify new genes associated with the trait. We were able to identify the CDXI gene that was

not associated with the trait in prior study.
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Chapter 1: Introduction

1.1 Complex traits: asthma and allergic diseases as an example

Complex traits are common diseases that tend to cluster in families and have a large genetic
component, thus being heritable. However, they are also greatly influenced by environmental
factors, which make them highly heterogeneous. Asthma is an example of complex traits that
affect millions of people worldwide. It comprises multiple subphenotypes including allergic
asthma. The latter is part of a process called the “atopic march”, which is a process starting from
early life allergic sensitization leading to the development of asthma, allergic rhinitis or both
later in life. The genetic components of these traits have been highly studied allowing the
discovery of hundreds of genes associated with them. In this thesis, I will first describe how the
genetic background of complex traits has been studied, first by focusing mainly on genome-wide
association studies (GWAS) that were broadly popular and utilized in the past. I will then focus
on what was learned from them and new strategies to understand the genetic aspects that GWAS
could not uncover. I will then finish by describing asthma and allergy-related traits and what is

known so far about their genetic components.

1.2 The Genome-Wide Association Study (GWAS) era

GWAS became popular in the mid-2000s and were an important step forward in the study of
complex traits. These traits were previously studied using either linkage analyses or candidate
gene studies. The former was better suited to identify loci of Mendelian or monogenic diseases,
and was not as successful in deciphering the genetic contribution to complex traits [1]. It relied

on the inheritance pattern in families and the unclear pattern of Mendelian inheritance that
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complex traits harbored made them difficult to study using this technique [1]. Other caveats such
as the low power (for variants of small effect size) and low resolution pointing to large regions of
the genome, made results hard to reproduce [1]. In the case of candidate gene studies, the main
obstacle resided in the limited number of variants selected based on a priori knowledge of
biological pathways linked to the pathophysiology [2, 3]. The findings were limited to what was

previously known but were still hard to replicate [2, 3].

The advent of lower-cost genotyping chips led to GWAS supplanting linkage and candidate gene
studies, and allowing for cost-effective interrogation of hundreds of thousands of markers across
the genome in larger cohorts. GWAS is a method to test the association of multiple single-
nucleotide polymorphisms (SNPs) with a trait simultaneously. It was the first way to explore the
whole genome in a cost-effective manner. It started with the completion of the Human Genome
Project (HGP) in 2000, which resulted in the first draft of the human genome [4, 5]. This map
gave researchers a reference sequence and served as a great starting point for the discoveries that
followed. One of the main uses of the HGP came during the GWAS era. Around that time,
progress in microarray technology design came to a point where thousands of common variants
could be assessed simultaneously in a large number of samples. The design of the genotyping
chip was helped by the International HapMap project, which in 2003 identified the majority of
common SNPs interrogated in GWAS [6]. Using these arrays in combination with imputation
from a reference panel (either from HapMap or more recently from 1000 Genomes project)
allowed identifying a large number of genetic loci predisposing for complex diseases. The first
successful GWAS was published in 2005 on Age-related macular degeneration [7] and was
followed by thousands of GWAS studies assessing mostly common complex traits [8]. These

efforts identified hundreds of genetic variants associated with different traits and have been
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reported in the GWAS catalog (NHGRI) [8]. Overall, GWAS provided good insight into the
complex genetic architecture of these traits [9]. Some of them mainly differ on the number of
causal variants as well as their frequency and effect size [9]. They also played an important role
in the discovery of novel biological pathways leading to a better understanding of causal
mechanisms of diseases [10]. They also identified key elements for disease prediction [11, 12]

and helped uncover new potential drug targets for a plethora of diseases [13].

Even though GWAS represented a great step forward in understanding the genetic contribution
to a large number of diseases, they did not lead to the identification of high effect size variants
allowing for disease prediction. Association studies and subsequent meta-analysis studies
reaching hundreds of thousands of subjects to increase the statistical power lead to the
identification of a large number of variants, but most of them had small effect sizes and, even
when combining them, did not explain a large part of the heritability [14]. Another downside is
that the majority of the identified SNPs are located in the non-coding region of the genome, both
intronic and intergenic regions (>90%), making it hard to pinpoint the relevant gene [15]. GWAS
also mainly assess common SNPs, leaving variants with lower frequencies unexplored. In
addition, GWAS SNPs lie in large haplotype blocks of multiple SNPs in linkage disequilibrium
meaning that these variants are most often transmitted concomitantly and equally associated to
the traits, making it hard to identify the causal variants and underlying biological mechanism.
Finally, the stringent genome-wide significance threshold to limit false discovery due to the high
number of tests performed could also lead to false negative findings where many true
associations failed to reach the threshold and thus are never being considered for further
investigation [16]. To complement GWAS caveats in an effort to explain part of the “missing

heritability” and to get better insight into disease pathophysiology, studies have started using
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different strategies: assessing 1) functional impact of variants [17, 18], 2) rare and low-frequency
variations [9], 3) epistasis (gene-gene interaction, [19]) 4) gene-environment interactions [20]

and 5) structural variations [21]. I focus on the first two strategies in the body of this thesis.

1.2.1 “Missing” or “hidden” heritability in complex traits

Heritability is a concept that can be summarized as the estimation of the degree to which genetic
factors explains a phenotype [22] and is usually determined through twin or family studies.
Following the advent of GWAS came a large focus on the so-called “missing heritability” of
diseases. All together, significant variants identified through GWAS only explain a small
fraction of the genetic variance with the remaining unexplained heritability referred to in past
years as the “missing heritability” [14]. Others also suggested that the so-called “missing
heritability” was more of a “hidden heritability” because it was not detected due to the stringent
multiple testing corrections used in GWAS [23]. Studies on height have shown that they could
explain more of the trait heritability when taking all common SNPs into account instead of
focusing on the significantly associated ones [24]. Common variants residing out of the reach of
GWAS studies are also thought to contribute to this missing heritability along with rare and low-
frequency variants. Different combinations of their effects (including associated common
variants) have been evaluated in simulation studies resulting in different possible scenarios [9].
Rare and low-frequency variants were also estimated to contribute to a substantial part of
heritability [25]; however, this hypothesis has not yet been validated in actual studies because
their contribution remains limited so far [26-29]. A recent study on height, one of the largest to-
date to explore the impact of rare and low-frequency variants on a complex trait, was able to
identify rare variants with large effect sizes associated with the trait [30]. However, this study

also revealed that they explained only a very small portion of heritability. They also observed a
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positive association between minor allele frequency (MAF) and heritability meaning that
common variants explain more of complex trait heritability than rare or low-frequency variants
individually even if the latter harbor larger effect sizes [30]. Others have suggested that part of
the missing heritability could also be explained by epistasis [19], parent of origin effect [31],

epigenetics [32] or structural variants [21].

1.3 Assessing functional impact of variants

One way to better understand the genetic basis of complex traits is to link genetic variants to
cellular traits (ex: gene expression, DNA methylation, histone modifications, etc.). In order to do
that, lessons from past GWAS studies can help guide future genetic research: 1) over 90% of the
GWAS hits reside in the noncoding part of the genome, 2) the associated loci highlight broad
genomic regions as large as 100kb, 3) GWAS hits are mainly found in open and active chromatin
identified by DNase I hypersensitive sites [17], and 4) a large portion of associated SNPs have an
impact on gene expression levels [18]. Therefore, linking significantly or marginally associated
SNPs to cellular and functional traits could help overcome the caveats of GWAS in three ways.
First, these types of studies could help link non-coding variants to their gene of interest. Second,
they could permit deciphering of their molecular effects. Finally, they could identify potentially
interesting variants that do not reach genome-wide significance cut-offs. Another important
aspect is that since these epigenetic features are cell type specific [17, 33, 34], they could help to
better assess cell types that are implicated in the development of the diseases. Here I will present
an overview on how cis-acting (i.e. acting locally) genetic/epigenetic interactions can be a useful

tool to understand GWAS results and identify new genes and loci associated to complex traits
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focusing on DNase I Hypersensitive sites (DHS), expression or methylation quantitative trait loci

(eQTLs and mQTLs) and allele specific expression (ASE) or methylation (ASM).

1.3.1 DNase I Hypersensitive sites (DHS)

Regulatory regions of the genome can be identified through the use of the deoxyribonuclease I
(DNase I) enzyme that preferentially targets open and active chromatin. DNase I hypersensitive
sites (DHSs) have been used extensively to map regulatory DNA regions like enhancers,
promoters, insulators, etc. [35]. DHSs were catalogued in a large number of cell types (around
350 cell types and tissues) by the ENCODE Project and the Roadmap Epigenomic program [36].
These efforts showed that GWAS hits are enriched in DHS and that they fall into the DHS of cell
types or tissues relevant to the disease being studied [17]. DHS data also helped pinpoint the
importance of certain cell types in specific diseases without considering previous knowledge of
the disease pathophysiology [17, 37, 38]. Those results highlighted the importance of assessing
cis-regulatory mechanisms in a diseased-linked, cell-type specific manner to better understand

the functional aspect of GWAS hits.

1.3.2 Linking SNPs to gene expression. expression Quantitative Trait Loci (eQTL) and Allele-
Specific Expression (ASE)

One way to identify cis-regulatory SNPs is to assess their impact on gene expression and help
link them to the gene(s) of interest. It was previously used to understand the functional impact of
GWAS hits in disease-relevant cell-types. The two general approaches that I am going to
describe are quantitative trait loci (QTL) and allele-specific analyses (AS). The QTL approach
measures the effect of a genetic variant on a functional aspect (like gene expression or DNA

methylation) by correlating it to the different genotyping groups across individuals. The AS
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approach measures the functional effect for each allele in a single individual at heterozygous
sites. The great advantage of AS is that it requires smaller sample sizes than QTL. In fact, the
trans-acting effect (distal effects) on cis-regulatory SNP can confound the results in QTL but not
in AS studies since it is an intra-individual measure [39]. However, one drawback of AS is that it
is usually based on next-generation sequencing data, which can result in greater costs compared

with QTL studies that can be done using arrays.

The association of an allele with greater expression compared to another has been highly
explored through eQTLs. Using expression arrays or RNA-sequencing, it allows linking a SNP
to one or more genes located nearby. This method relies on the transcript abundance across
samples. In the case of allele specific expression, it is based on the allelic imbalance measured in
individuals’ heterozygous sites lying within or close to transcripts and measures the relative
expression between two allelic transcripts [40]. Since this is an intra-individual measure, bias
coming from environmental factors and trans-genetic backgrounds are not confounding and the
cis component can be directly measured. It was also previously shown that it is more sensitive
compared to the QTL approach and that a 8-fold smaller sample size is needed to achieve similar
power [41]. One drawback of ASE is that homozygous sites cannot be assessed but has
interesting advantages like the control for trans effects. eQTLs and ASE mapping have been
quite effective in retrieving functional and biological information from GWAS hits. First, GWAS
hits are enriched for eQTLs [18]. They not only help pinpoint the gene of interest but they can

also assess important cell types related to the disease development [42, 43].
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1.3.3 Linking SNPs to DNA methylation: methylation Quantitative Trait Loci (mQTL) and Allele-
Specific Methylation (ASM)

DNA methylation is the addition of a methyl group at the C5 position of the cytosine by the
DNA methyltransferase enzyme and mostly happens in a CpG context. It is a heritable genetic
mark and when occurring in canonical regulatory regions like promoters and enhancers, it can
lead to disruption of the transcription process. DNA methylation in the gene body plays a role in
preventing spurious transcription of the gene. Assessing the differential DNA methylation levels
between cases and controls can be done using epigenome wide association studies (EWAS). It
can lead to the identification of biomarkers for the disease that can be linked to either genetic

factors (in cis or trans), environmental factors or even the disease itself.

The genetic influence on DNA methylation can be assessed using methylation QTLs (mQTLs) or
allele-specific methylation (ASM). mQTL assesses the correlation between the methylation level
at a CpG and genotype of a nearby SNP. ASM directly measures the methylation level of each
allele in a heterozygous individual. Just like eQTLs and ASE, mQTLs and ASM harbor a large
set of cell-type or tissue specific sites [34]. They can help better understand the functional impact
of GWAS hits, but not necessarily link them to the gene of interest. In fact, a large number of
mQTLs or ASM sites occurs in enhancer or insulator regions located distal to the gene.
However, they can identify sequence elements important for the disease, which cannot be
assessed by eQTLs or ASE. Also, only a small overlap was observed between mQTLs and
eQTLs making them complementary rather than redundant [44]. Additionally, mQTLs and ASM
can also help interpret EWAS data by aiding in differentiating the changes in DNA methylation
attributed to genetic or environmental effects. Both ASM and mQTLs in specific cell-types were

useful to identify new pathways and biological mechanisms linked to diseases [45-47].

28



1.3.4 Rare variants and cellular traits

The link between genetics and cellular traits was mostly explored for common variants and only
a few studies assessed the impact of rare variants. They showed evidence of their potential
impact on gene expression where an enrichment of rare variants was observed in the vicinity of
genes at the extremities of the expression spectrum [48-50] and where the effect was heritable
[51]. Only one study looked at their impact on DNA methylation and showed that collapsing rare
and low-frequency variants together identified CpG methylation associated with a group of
variants [52]. Even though they appear to be important in the regulation of gene expression, a lot
of work 1is still needed to better delineate the functional impact of rare and low-frequency

variants.

1.4 Exploring rare and low-frequency variants in complex traits

Following the GWAS era, genetic variants located in the rare (MAF <1%) and low-frequency
(MAF 1-5%) spectrum were thought to explain part of the missing heritability of different
complex traits. Simulation studies explored different scenarios of their implication independently
or in combination with common variants of small effect sizes [9]. More and more studies have
started to explore the impact of rare and low-frequency variants on complex traits. Even though
they tend to explain a smaller part of complex trait heritability than expected from simulation
studies, they appear to contribute to the architectures of these diseases [30]. In order to predict
disease risks, it is important to identify these variants in the context of personalized/precision
medicine. The promise of rare variants in understanding complex traits resides in their
potentially easier interpretation. A large fraction of variants affecting protein function are rare,

therefore associated coding variants that are identified are more likely to directly point to the
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gene of interest. The rare variants are also usually not in linkage disequilibrium (LD) with
multiple SNPs meaning that they can point to the exact region of interest. The identification of
rare and low-frequency variants in complex traits can also confirm previously known loci or
identify new biological pathways or gene of interest [30]. However, just like common variant

studies, rare variants will need to be explored using large samples sets [53].

In this section of the thesis, I will describe different strategies to explore rare variants as well as
what is known so far regarding their distribution across populations. Different approaches are
used to assess low-frequency and rare variants: 1) custom genotyping arrays, 2) whole-exome

(WES) or whole-genome sequencing (WGS) and 3) genotyping imputation.

1.4.1 Custom Genotyping arrays

The design of custom genotyping arrays to study rare variants usually focuses on specific
diseases and previously identified target regions of interest. They typically target variants
contained in haplotypes of interest identified through sequencing. One example is the
Immunochip array designed to replicate and fine map loci from 12 autoimmune and
inflammatory diseases [54]. It includes the top 3000 loci that were previously associated with
each disease as well as all the known SNPs in the regions identified in the first version of the
1000 Genomes project (1KG) or resequencing initiatives. The purpose of the Immunochip was to
identify true association and fine mapping of the loci for each disease as well as pleiotropic
effects across the different diseases [54]. It is also more cost effective than traditional GWAS
chip (around 80% less), allowing assessment of a larger number of samples to increase power
[54]. However, it has a few limitations: 1) the Immunochip design was based on the first version
of the 1K G pilot project, which has incomplete coverage [55], 2) is mainly restricted to European

samples and 3) it relies on previous knowledge, thus newly identified loci are not as well covered
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since it does not cover the whole genome [54]. Despite those limitations, the Immunochip
allowed for the identification of new loci and helped better refine previously known ones
associated with different autoimmune and inflammatory diseases like celiac disease [56],
psoriasis [57], rheumatoid arthritis [58], multiple sclerosis [59] and inflammatory bowel disease
(including crohn’s disease and ulcerative colitis) [60]. Other examples are the Metabochip
designed to study metabolic disease [61] and the ExomeChip, which includes mostly variants in

the protein-coding regions of the genome [62].

1.4.2 Whole-exome and whole-genome sequencing
In the 2000s, the rapid development of new sequencing technologies led to decreased sequencing

cost (https://www.genome.gov/sequencingcostsdata/), which in turn, resulted in the increasing

use of WES and WGS to measure the association of rare and low-frequency variants. WES is a
targeted approach that focuses on the coding region, which represents approximately 1.2% of the
genome. It allowed getting higher coverage in a larger sample set at a cheaper cost than WGS. It
also focused on a more easily interpretable part of the genome. Most of the WGS were
performed at low depth impairing the accuracy of identified variants. However, the decreasing
cost of sequencing will lead to WGS replacing WES, which will be a great asset based on what is
known about the genetic architecture of complex traits. One of the first and most important
works regarding this is the 1KG that began in 2008 and had the ambitious goal to sequence,
using low-depth WGS and WES, over one thousand individuals from 14 diverse populations [55,
63]. This helped to catalog most of the common genetic variations and identify new rare ones. A
few important lessons on rare and low-frequency variants have come out of the 1KG and other
studies. They observed that the majority of variants are rare and population specific [63, 64]. A

larger portion of low-frequency and rare variants are found in the coding regions compared to
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common variants reflecting potential purifying selection effect [64]. Rare and low-frequency
variants are also more functional and deleterious for protein coding genes compared to common
variants [64]. Even though there is a high potential for identifying interesting rare and low-
frequency coding variants in complex traits, non-coding alleles also appear to be interesting due
to their enrichment in functional domains like transcription start sites (TSS) or DHS [65]. So far,
the results obtained from WES and WGS reflected the population genetics model by observing
an inverse relationship between the frequency of the allele and its effect size, echoing what was
observed in Mendelian diseases residing at the very end of the spectrum [66] (see section

“population genetic evidence” for more details).

A growing number of large-scale sequencing projects have explored the impact of rare and low-
frequency variants on complex traits. Projects like UK10K [65], deCODE [67], SardiNIA [68] or
GoNL [69] helped better understand variants implicated in both complex traits and population
genetics. A more in-depth description of these studies on asthma and allergy related-traits is

presented in the “Asthma and allergy related-traits” section.

1.4.3 Imputation

Imputation is a method used to statistically infer missing genotypes in a large population and is
based on known genotypes from this population. Data obtained from WES and WGS can be used
to impute the genotypes in a large sample set in order to increase power of the association test.
This strategy is probably the most cost-effective of the three. It relies on available genome-wide
genotyping data and reference panels that are available like the HapMap project [70, 71], which
was the first available one. It was followed a few years later by the 1KG [63] and other efforts
such as the UK10K Cohorts project and more recently the 100,000 Genome project in the UK,

which assessed a large number of samples from British decent. Using the UK10K and 1KG panel

32



increased imputation accuracy at the low-frequency level (0.05%<MAF<5%) in the European
populations [72]. However, they still remain limited regarding the imputation accuracy of rare
variants (MAF<0.5%) [65, 73, 74]. Finally, the Haplotype Reference Consortium has put
together all publicly available WGS data from 20 studies of European descent to create the
largest reference panel [75]. Their goal was to create a large and diverse imputation panel that
would allow for better results when imputing in samples with a genetically diverse background
[75]. This panel should also allow for better imputation of low-frequency and rare variants in

European samples.

Since low-frequency and, more strikingly, rare variants have arisen more recently, they are often
restricted to specific populations and thus cluster geographically. To obtain a better imputation
accuracy as well as to assess population specific variants, it is important to include samples from
the population of interest. The importance of utilizing population specific panels for assessing
rare variants has been shown in different sequencing studies [68, 69, 76] and this yields better

accuracy than increasing the size of the reference panel (i.e. the number of haplotypes) [76].

1.4.4 Population genetic evidence

Human migration and rapid recent population growth have led to a large number of rare and low-
frequency variants that are either population or individual specific [64]. The advent of next-
generation sequencing revealed the excess of rare and low-frequency variants in the different
human populations [64]. According to population genetic studies, rare coding variants are more
deleterious and damaging compared to common variants due to purifying selection [29, 64]. In
fact, most of the variants affecting protein-function identified to date are rare [64]. Since these

variants have arisen more recently in the population, they had less time to be removed by the
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evolutionary selection process. This may increase they probability to be related to disease

development.

Since only a small number of rare variants are shared across populations/continents, they were
examined more closely on their pattern in different populations. Some study stated that
populations that underwent bottlenecks should be enriched in deleterious variants because of a
reduction of the selection efficacy [77]. This could be even more pronounced in founder
populations, which are genetically homogeneous populations usually due to demographic
circumstances [78, 79]. However, other studies stated the opposite, where no enrichment of
deleterious variants was observed, probably due to the short timeline where no accumulation was
possible [80-82]. The latter question is still being debated but one advantage of the founder
population would reside in the genetic drift resulting in the higher frequency of some variants

private to the population.

1.5 Asthma and allergy related traits

Allergic diseases that comprise asthma, allergic rhinitis, atopic dermatitis and food allergies are a
collection of diseases that are characterized by an immune-mediated inflammatory response to
allergenic substances that are normally harmless. They have wide incidence variations from 2-
4% in Asian countries and higher rates in developed countries, including Canada, with
prevalence ranging from 15% to 20% for asthma [83-85], 10% to 40% for allergic rhinitis [83]
and 1% to 20% for atopic dermatitis [86]. It is believed to affect from 300 to 500 million people
around the world and could increase while more countries adopt a westernized lifestyle [83, 85].
Severe asthma has associated mortality: the number of deaths worldwide is estimated at around

250,000, which represents about 1 in every 250 deaths [83, 85]. It is also linked to an important
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socio-economic cost linked to absenteeism, loss of productivity and emergency visit. All these
elements point towards a need to better characterize disease subtypes, develop better treatments

and personalized medicine.

1.5.1 Asthma and allergy pathophysiology

Asthma and allergic diseases are common complex traits that are often co-occurring in the same
individual or families. They have an important environmental and genetic component making
them complex and heterogeneous diseases. The “atopic march” is a process comprising
sequential progression of allergic conditions usually leading to the development of asthma,
allergic rhinitis or both [87, 88]. The presence of atopic dermatitis (eczema) combined with IgE
modulated response to food or aeroallergen at a young age is usually the first clinical
manifestation. Around 30% of children with atopic dermatitis will go on to develop asthma and
more than 60% of them will develop more severe allergic disease later in life such as allergic
rhinitis [89-91]. Also, a large majority of asthmatic patients also present allergic rhinitis (>80%)
and 20% to 40% patients exhibiting allergic rhinitis also have asthma [92]. This indicates
potentially shared biological mechanisms and pathways between these different clinical

manifestations.

Asthma is a chronic inflammation of the airways characterized by airway obstruction, airway
hyper responsiveness, lung remodeling, wheezing, and excessive mucus production. It is
sometimes combined with allergic response in 80% of the affected children and 60% of the
affected adults [93]. Monozygous twins show greater concordance than dizygotic twins. Its
heritability, estimated from twin studies, ranges from 35 to 70% [94-96]. This can be explained
by the fact that different exposures at different times during life can result in different risks of

disease and age of onset. For example, exposures to bronchiolitis [97] or rhinovirus [98] in early
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life, smoking or exposure to second-hand smoke [99] and occupational exposure (work
environment [100]) can influence the development in the disease. Heritability is inversely
correlated with age of onset of the disease, thus genetics plays a greater role in childhood-onset
asthma [101]. The other asthma and allergy related traits and intermediate phenotypes also show
significant heritability: 30% to 90% for allergic rhinitis [94, 102, 103], 70% to 85% for atopic
dermatitis [102], 35% to 85% for serum IgE levels [104, 105] and 25% to 40% for eosinophil

(Eos) counts [104, 105].

1.5.2 Genetics of asthma, allergy and other related diseases

As with any other complex trait, the approaches to study these diseases have evolved over time
along with the arrival of new technologies. Starting from candidate gene and genome-wide
linkage studies all the way to GWAS and sequencing studies, hundreds of genes have been
associated with asthma, allergies, atopic dermatitis and allergic rhinitis. Despite the high clinical
heterogeneity of the diseases and the importance of environmental exposure, GWAS identified
many SNPs associated with the traits and were replicated across studies (summarized in Table

1). They either reinforced the importance of some genes that were already linked to the trait (ex:
IL33 in asthma or allergy, FLG in atopic dermatitis [106]) or identified new genes (the 17q12-21
locus ORMDL3, GSDML and ZPBP? in asthma). However, those variants explained very little of

the heritability due to their small effect size.

Asthma definition remains difficult because it is seen as a plethora of similar diseases, thus
making genetics studies very difficult. One way to overcome this challenge is to focus on
intermediate quantitative phenotypes that can be measured more precisely like lung function,
serum IgE levels, and blood Eos counts. These are part of asthma and allergy endophenotypes,

which are clinical and biological markers that help define disease subtypes. Focusing on such
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endophenotypes can help identify loci associated with asthma and allergic diseases or only the
trait itself. However, one drawback is that these traits might also be linked to other disease like

lung function for chronic obstructive pulmonary diseases (COPD).

To establish asthma diagnosis, the patient history is first assessed and usually confirmed by lung
function test. The lung function is measured using spirometry which measures the forced vital
capacity (FVC), defined as the amount of air that can be forcibly blown out of the lung when
taking a deep breath, and the forced expiratory volume in one second (FEV) that measures the
same thing but in the span of one second. The Tiffeneault index (FEV,/FVC) is a common
measure to assess the airway obstruction in lung disease such as asthma and COPD. So far,
GWAS results of lung function poorly overlap with the asthma and allergy related traits and

better results were obtained with COPD.

To assess the allergic aspect of the disease, skin prick test and measurement of serum IgE levels
are usually used. IgE is one of the five Igs and is known to be an anaphylactic or allergic
antibody. Strong correlation between IgE presence and asthma and allergy diagnosis and severity
was previously observed [107, 108]. More than half of the GWAS hits of serum levels overlap

with asthma, allergy, allergic rhinitis or atopic dermatitis (Table 1).

Eos are a cell type implicated in the initiation and propagation of inflammation and immune
response in asthma, atopic dermatitis, allergic rhinitis and allergy [109]. Increased concentration
in blood and tissues is a hallmark of certain forms of asthma (mostly allergic asthma and severe
eosinophilic asthma) and is usually positively correlated with severity of the disease. They also
potentially play a role in airway remodeling and are often the main inflammatory cell type

present in the airways of asthmatic patients [110]. A few GWAS have assessed the impact of
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genetics on Eos counts, but the results revealed a large overlap between the identified loci and

previously identified asthma and allergy GWAS hits [111].

Finally, a GWAS tried to identify genetic factors underlying the atopic march [112] focusing on
individuals presenting early-onset atopic dermatitis and childhood asthma. They observed a
stronger contribution of atopic dermatitis genes compared to asthma suggesting their importance

in the process.
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Table 1: Summary of GWAS discovery for asthma and allergy-related traits

Trait Number of | Number of | Main replicated loci’ Reference
studies' genes / loci
Asthma 18 92 ORMDL3, GSDMB, [113-130]
GSDMA, 1L33, IL18RI,
ILIRLI, HLA-DQAl
Allergy 4 60 HLA-DQAI, HLA-DQBI, [114, 125, 131,
HLA-C, Cllorf30, 132]
GSDMB, ILIRLI, IL33,
LPP, LRRC32, TLRI,
TLR6, WDR36
Allergic 3 19 Cllorf30, LRRC32 [133-135]
rhinitis
Atopic 9 106 FLG, IL13, [136-144]
dermatitis ILIS8RAP/ILISRI, KIF34,
RAD50, TNFRSF6B,
OVOLI, Cllorf30, ACTL9
Intermediate | Number of | Number of | Main replicated loci’ Reference
phenotype studies' genes / loci
(overlap
with main
trait)
Serum IgE 4 16 (10) FCERIA [135, 145-147]
levels
Eos 3 10 (3) GATA2 [111, 148, 149]
Lung 8 33 (1) AGER, CDC123, HHIP, [150-157]
function’ HTR4, GSTCD, THSD4

Summary including only SNP p<S5e-8. 1) studies have at least one SNP with p<Se-8. 2) Gene
associated in at least two GWAS. 3) Lung function studies on COPD patients were removed.

1.5.3 Rare variants in asthma and allergies.
Torgerson et al. first explored the impact of rare variants in asthma where they performed a
resequencing study of nine previously associated genes [158]. They observed an excess of rare

variants in four genes contributing to the asthma phenotype, where the effect was predominantly
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due to noncoding variants [158]. Another study used the ExomeChip to assess the impact of rare
and low-frequency coding variants in three ethnic groups and identified one low-frequency
variant associated with the trait in Latinos and three genes associated in gene-based tests [27].
Most of their findings were exclusive to a specific racial group, which was expected due to rare
variations being private to certain ethnicities [27]. Other studies focusing on refined or
intermediate phenotypes identified rare variants associated with the trait: bronchodilator response
in asthmatics [159], asthma diagnosis following severe infection with respiratory syncytial virus

[160], extreme lung function and airway obstruction [161].

There were also studies exploring rare and low-frequency variants in asthma and allergy
intermediate phenotypes. A rare variant disrupting a canonical splice site of the /L33 gene has
been associated with reduced blood eosinophil counts and reduced risk of asthma in the Icelandic
population and replicated in European populations [67]. Even though the Immunochip was used
to identify SNPs associated with atopic dermatitis in multiple studies [137, 162], only one low-
frequency variant in PRR5L was associated with the trait [162]. Finally, a resequencing study of
interferon pathway genes identified a rare functional variant in /FNGR1 gene associated with

higher risk of eczema herpeticum in patients affected with atopic dermatitis [163].

So far, these studies showed the implication of rare and low-frequency variants in asthma and
allergy related trait genetic architecture. Rare and low-frequency variants studies confirmed the
importance of certain genes such as ADRB2 [160], MTHFR [27], GSDMB [27], ZPBP2 [27],
FLG [160], NOSI [160], IL33 [67] and identified new ones like GRASP [27] and PRRLS [162],
suggesting the importance of looking at the lower frequency spectrum of variants to better

understand diseases.
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1.5.4 Linking genetics to cellular trait to understand asthma and allergy related traits

Most of the studies linking GWAS hits to cellular function to understand asthma and allergy
related traits have explored asthma and lung function phenotypes. They also only explored so far,
the link between the SNP and gene expression through eQTLs in different cell types like lung
tissue [164], airway epithelial cells [165], CD4+ lymphocytes [166], lymphoblastoid cells (LCL)
[122], bronchial epithelial biopsy and bronchial alveolar lavage [167]. To date, no studies have
explored eQTLs specifically in allergic rhinitis, atopic dermatitis, Eos counts or serum IgE
levels.

Combining gene expression data to previously associated SNPs in asthma provided better
elucidation of the biological function underlying these loci. When the well-known 17g21 locus
was identified [122], the associated allele was first linked to ORDML3 expression in LCLs from
the affected children [122]. This observation was also confirmed in CD4+ lymphocytes, white
blood cells and lung tissues, where other SNPs regulating the expression of ORDML3 as well as
CRKRS, GSDMB and GSDMA, were identified [164, 168-170]. However, the strongest eQTL of
this region in lung tissues pointed to the GSDMA gene, which harbored an opposite effect
compared to the other three genes [164]. Another example is the delineation of the known loci
like ILIRLI/ILISRI [171, 172] and helped identify not only the gene of interest but also the
tissue. In fact, eQTLs for these genes are present in lung, airway epithelial cells and distal lung

parenchyma but not whole-blood, pointing towards increase risk of inflammation in the lung.

Other studies directly combined GWAS results with eQTL studies in different tissues and cell-
types to identify new genes of interest [173-176]. For example, a gene-based approach

combining 16 eQTLs studies and two asthma/allergy GWAS confirmed a set of previously
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known genes and identified four new ones [174]. Two of the novel genes were shown to induce

IL-33 release followed by eosinophil airway infiltration in mice [174].

1.6 Leveraging founder and isolated populations to study complex traits

Studies require larger sample sizes to reach sufficient statistical power and thus focus on larger
heterogeneous populations. By combining different studies to leverage greater power, it
introduces heterogeneity at the genetic level (difference in allele frequencies between
populations) but also in environmental exposures, cultural habits (ex: life style, diet) and in
disease diagnostics/classification, which could lead to reduced power. Population stratification is
also an important issue, especially when studying rare and low-frequency variants, since they are
usually private to a population thus making the effect stronger compared to common variants
[63, 177]. Methods known to correct for it (for example principal component analysis (PCA)
[178]) do not seem to work as well in the case of rare variants testing [179]. One strategy to

reduce heterogeneity is the use of founder and isolated populations.

Founder and isolated population can provide a power boost to study rare and low-frequency
variants [53]. They are usually derived from a subset of a population after a founding event:
populating new territories, war, famine, environmental event, epidemic, etc. [180]. Usually after
this founder event, a small number of individuals become isolated for a few generations due to
geographic, cultural, religion, national identity or language reasons [181]. The founder
populations arising from historic European migration show higher homogeneity and genetic drift
comparatively to their population of origin. The nature and characteristic of the events also have
an impact and may differentiate the level of homogeneity observed in a founder population: the

number of founders and the number of bottleneck events, the duration of isolation, the population
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growth (expansion) and the absence of immigration from neighboring populations (gene flow)
[180].

The homogeneity of founder populations is a great advantage in the study of rare and low-
frequency variants in complex traits. Some variants implicated in the disease risk could reach
higher frequencies compared to outbred populations due to bottlenecks, genetic drift, adaptation
and selection [68], facilitating their identification. One example of this resides in the increased
incidence of certain recessive and rare disorders in founder populations [182]. Other studies also
identified private variants associated with complex traits like type 2 diabetes [183], height [184]
or lipid traits [185]. These variants were identified because they reached higher frequencies in

the founder populations and could be important for personalized medicine in these populations.

In this thesis, we are using the Saguenay—Lac-Saint-Jean (SLSJ) asthma familial cohort [186].
This population is located in north-eastern Quebec and is known for its unique demographic
history and founder effect, characterized by several population bottlenecks followed by rapid
expansion. At the beginning of the 17" century, around 8,500 settlers came to the Vallée du St-
Laurent from France. These people represent a large part of the 6 million French Canadian
ancestries that now live in the province of Quebec. A subset of them migrated to the Charlevoix
region where there was a rapid expansion after their settlement due to high birth rate. Because of
overpopulation, another subset migrated to the SLSJ in the mid 1800’s. The latter now represent
75% of the SLSJ founders thus had a reduced contribution of new immigrant after the first
settlers. They became genetically isolated from France and at a lesser extent from the other

regions in the province. Regional clustering of multiple hereditary diseases was observed [182].

The SLSJ asthma familial cohort has contributed to the understanding of asthma and allergic

diseases in many ways. Candidate genes studies performed on this population identified genes
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associated with the traits in the IL/R2 gene pathway [187], the well-known 1721 locus [187],
the Vitamin D pathway [112, 188] and other genes like CX3CR1 [189], PLAU [190] and ATGS
[191]. Subsequent studies focused on assessing the epigenetic mechanisms that could explain the
link between previously associated genes to the diseases. Higher DNA methylation levels were
observed in the /L/R2 promoter region in asthmatics and allergic individuals in whole blood
[192]. Other studies helped decipher the 17g21 locus [193-196]. Two GWAS were published
using this cohort, one exploring different traits in the cohort alone [186] and the other being part
of the larger GABRIEL consortium for a meta-analysis [121]. The cohort is also included in the
Translational Asthma Genetic Consortium (TAGC) consortium GWAS that will be released in
2017. Finally, the SLSJ asthma familial cohort was also used in an EWAS to assess the link

between methylation patterns and serum IgE levels in peripheral blood as well as Eos [197].
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Figure 1: Representation of pre and post-GWAS era genetic approaches to study complex

traits. A) Candidate genes and linkage studies were one of the first ways to study the genetic

aspect of complex traits. A few genes were identified in the SLSJ asthma cohort using one of the
techniques and examples are listed in the red boxes. B) These studies were followed by the
advent of Genome-wide association studies (GWAS). The SLSJ asthma familial collection took

part of large consortium that identified loci that were highly replicated. Examples of these loci

are listed in the red box. C) New strategies were developed to complement GWAS findings. Two
of them (in bold) are explored in this thesis: assessment of rare and low-frequency variants and

linking GWAS hits to cellular traits. Different ways to explore these two strategies are also listed
as well as examples of genes that were identified in the SLSJ asthma familial cohort (red boxes).
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1.7 Rationale, objectives and hypothesis

The objective of my doctoral thesis was to use different strategies to understand the genetic basis
of complex traits and more precisely, asthma and allergy related-traits. Lessons from GWAS
guided the research community to develop new strategies to fill in the blanks left unanswered,
now that we know their important caveats.

We first designed a custom capture panel (Immune-genetics sequencing) that targets both coding
and non-coding regulatory regions of immune cells. We wanted to develop a cost-effective way
to study rare and low-frequency variants in autoimmune and inflammatory complex traits. The
goals of this study were to 1) define interesting and functional regions to target that are properly
suited to the diseases we would like to study, 2) assess the functional impact of the rare and
novel variants identified using our custom capture panel followed by next-generation sequencing
in healthy subjects, and 3) determine the impact of the newly identified variants on gene
expression.

We used our Immune-genetics sequencing in our second paper to explore the impact of rare and
low-frequency variants on asthma and allergy related traits in a founder population. We
sequenced 149 trios from the SLSJ asthma cohort using our custom capture panel. We first
assessed the rare and low-frequency variants distribution in this founder population compared to
four European populations, including Finland, which also has an important founder effect. We
then assessed the impact of rare and low-frequency variants on lung function, serum IgE levels
and eosinophil counts.

Finally, the third paper aimed to identify new genes associated with allergic rhinitis with or

without asthma in the SLSJ asthma familial cohort. We performed a GWAS and an EWAS and
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combined marginally associated SNPs and CpGs using mQTLs to identify new genes associated

with the trait.
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Chapter 2

Preface: Bridging Text between Chapters 1 and 2

One of the strategies to better understand the genetic basis of complex traits that is becoming
more and more popular over the years is the exploration rare and low-frequency variants. Whole-
exome sequencing (WES) has been the most popular due to its lower cost compared to whole-
genome sequencing (WGS). However, WES focuses only on the coding portion of the genome
and does not explore any non-coding regions, where genome-wide association study identified
the majority of the variants. We wanted to develop our own custom capture panel that targets
both coding and non-coding region to assess the impact of rare and low-frequency variants in
autoimmune and inflammatory diseases at lower cost compared to WGS. In this chapter, we
described how we designed our capture panel and how the variants identified with it are

potentially highly functional.

The word “Immunoseq” was replaced by “Immune-genetics sequencing” in the following

manuscript due to trademark concerns.
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2.1 Abstract

Background: The observation that the genetic variants identified in genome-wide association
studies (GWAS) frequently lie in non-coding regions of the genome that contain cis-regulatory
elements suggests that altered gene expression underlies the development of many complex
traits. In order to efficiently make a comprehensive assessment of the impact of non-coding
genetic variation in immune related diseases we emulated the whole-exome sequencing
paradigm and developed a custom capture panel for the known DNase I hypersensitive site
(DHS) in immune cells — “Immune-genetics sequencing”.

Results: We performed Immune-genetics sequencing in 30 healthy individuals where we had
existing transcriptome data from T cells. We identified a large number of novel non-coding
variants in these samples. Relying on allele specific expression measurements, we also showed
that our selected capture regions are enriched for functional variants that have an impact on
differential allelic gene expression. The results from a replication set with 180 samples
confirmed our observations.

Conclusions: We show that Immune-genetics sequencing is a powerful approach to detect novel
rare variants in regulatory regions. We also demonstrate that these novel variants have a potential
functional role in immune cells.

Keywords

Rare variants, immune disease, gene expression, next-generation sequencing, capture
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2.2 Background

Genome-wide association studies (GWAS) have identified thousands of associated single
nucleotide polymorphisms (SNPs) in hundreds of complex diseases [8] and have thereby
provided unprecedented insights into the genetic architecture underlying these conditions [198].
However, because GWAS are inherently dependent upon there being meaningful linkage
disequilibrium (LD) between relevant variation and the few hundred thousand common variants
that are actually genotyped this method has limited ability to accurately assess the role of rare
variants[ 199] and effectively only screens common variation [200]. This limitation has been
suggested to contribute to the notable gap between observed heritability and that explained by
the currently identified common variants - the so-called missing heritability [14]. Direct
assessment of all variation through the next-generation sequencing of the whole genome would
provide a comprehensive assessment that would necessarily avoid any dependency on LD but
unfortunately remains prohibitively expensive. On the other hand, the targeted capture of
genomic regions with high prior probability of containing relevant variation allows next-
generation sequencing efforts to be focused and therefore substantially more affordable. This
logic underlies whole exome sequencing which allows comprehensive assessment of coding
variation and has enabled the identification of rare coding variants exerting large effects in a
number of complex diseases [201-203]. It is notable that the majority of the associated variants
identified through immune disease GWAS are located in non-coding regions of the genome that
are enriched for regulatory elements that are active in immune cell types [17, 204, 205],
suggesting that a resequencing effort focused in these regulatory regions would provide a highly

efficient means to identify both common and rare variation of relevance in such diseases.
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Using deoxyribonuclease I (DNase I) based sequencing (DNase-seq) international collaborative
efforts such as the ENCODE [206] and NIH Roadmap Epigenomics [207] projects have
established comprehensive maps of DNase I hypersensitive sites (DHSs) in multiple cell types.
Sites which are markedly enriched for cis-regulatory elements active in those cell types such as
enhancers and promoters [35, 36], show very high concordance with chromatin
immunoprecipitation sequencing of histone marks for active enhancers or promoters [208, 209]
and are enriched for SNPs (eSNPs) that influence the expression of local genes that show
variable expression (expression quantitative trait loci, eQTLs) [208, 210, 211]. It has been noted
that the enrichment of eSNPs is most pronounced in those functional elements that are located
closest to their respective eQTL [209] and that there might be an inverse relationship between
the effect size of cis-eQTLs and the minor allele frequency (MAF) of the relevant eSNP;
suggesting that rare variants might have a higher impact on gene expression than common
variants [48, 49, 212, 213].

Based on the overwhelming evidence from GWAS that common variants associated with
immune disease likely influence disease risk by perturbing the regulation of gene expression
together with emerging evidence indicating the existence of rare “high-impact” non-coding
variation, we designed a custom capture panel, relying on contemporary regulatory element
maps, to enable the targeted re-sequencing of immune regulatory regions - “Immune-genetics
sequencing”. Immune-genetics sequencing is designed to allow efficient re-sequencing of
regulatory regions of relevance in immune cells (coding and non-coding) and thus enable a
comprehensive assessment of all potentially relevant variation in these regions, both common
and rare. The panel includes SNPs previously associated with immune traits as well as

established immune cell eSNPs. Using Immune-genetics sequencing in parallel with
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transcriptome sequencing (RNA-seq), we show that, after accounting for effects attributable to
associated common variants, there are significant effects attributable to rare variants, and that
these explain up to 14% of residual variation. Our results confirm that targeted capture and re-
sequencing of regulatory regions active in relevant cell types provides an efficient means to

identify rare variants of relevance in immune disease.

2.3 Methods

Design of the Immune-genetics sequencing custom capture panel:

We selected regulatory regions of immune cells using genome-wide DHS data from the
ENCODE [206] and NIH Roadmap Epigenomics [214] projects. Data from twelve different
immune cell types were utilized: CD3+, CD3+ cord blood, CD4+, CD8+, CD14+, CD19+,
CD20+, CD34+, CD56+, Thl, Th2, Th17 (S1 Table). The entire genome was divided in 100bp
bins and the DHS signals were normalized by calculating the number of reads per bin divided by
the total number of reads. In each sample, the signals were ranked and the top 300,000 bins
(representing the top 1% of the genome) identified, within each cell type bins were retained if
they were identified in at least 50% of the available samples. For those cell types where only two
samples were available, the selected bins were required to be present in both samples; in those
cell types where only one sample was available (Th2, Th17 and CD20) all 300,000 bins were
retained. The 100bp bins were then grouped into blocks of 50,000 bins each (i.e. 0 to 50,000 top
bins, 50,000 to 100,000 top bins etc.) and when the overlap between sample blocks (from the
same cell type) dropped below 50%, the blocks were eliminated. S1 Table shows the number of
bins used and the number of samples available for each cell type. All selected regions were

combined and bins were removed when at least 50% of a bin overlapped with an exome capture

53



region (SeqCapEZ Exome V3 Capture, Roche, 64.1Mb). Non-coding regions targeted by our
design cover a total of 67.3Mb. The Immune-genetics sequencing custom capture was
complemented by exome (SeqCapEZ Exome V3 Capture, Roche, 64.1Mb) and Human
Leukocyte Antigen (HLA) regions (SeqCap EZ design, Human MHC design from Roche,

4.97Mb) totaling 138Mb for the panel.

Enrichment of GWAS hits in DHSs selected for the Immune-genetics sequencing custom capture
panel design
GWAS hits were obtained from the National Human Genome Research Institute (NHGRI)

(https://www.genome.gov/26525384, January 29t 2015). We selected SNPs from different

disease categories: Immune and chronic inflammatory diseases (724 SNPs), associated to more
than one immune or chronic inflammatory diseases (49 SNPs), Neuropsychiatric disease (65
SNPs) and Cancer (393 SNPs), including SNPs in LD using HaploReg V2 (r*>0.9) [215].
Functional variants were selected from Monocyte and B-cell cis-eQTLs identified in the paper
by Fairfax and colleagues [210]. Associated eQTLs with empirical p<0.001 after 1,000
permutations, for each top hit per transcript were retained for each cell type. ImmunoChip hits
(224 SNPs) from five immune and chronic inflammatory disease studies [56-59, 216] were used.
The analysis of overlap between Immune-genetics sequencing regions and SNPs was determined
using bedtools (v2.17.0).

We compared the enrichment of GWAS or ImmunoChip hits and functional variants in DHS
regions included in the Immune-genetics sequencing to other regions: 1) DHS from other cell
types (S2 Table) selected in the same way as for the immune cells in the Immune-genetics

sequencing design, 2) Same as in 1) but keeping only regions that do not overlap immune cell
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DHS regions selected for Immune-genetics sequencing (compared to Immune-genetics
sequencing DHS regions not overlapping with the other cell types’ DHS regions), 3) an equal
number of bins as in the Immune-genetics sequencing DHSs selected randomly from the whole
genome in 1,000 iterations and 4) an equal number of bins as in the Immune-genetics sequencing
DHSs selected randomly from the non-coding genome in 1,000 iterations. For the randomly
selected regions, the whole genome was split into 100bp bins and 67,300 of them were selected,

1,000 times. Fisher’s exact test was performed to evaluate the significance of the enrichment.

Design of the second version of Immune-genetics sequencing

Using coverage statistics from the first version of the Immune-genetics sequencing panel, we
flagged poorly covered regions (<0.1X across all samples) or unusually high coverage regions
(>120x across all samples), as well as ENCODE Blacklist regions for removal, and used the
remaining regions to begin designing a 2™ version of our Immune-genetics sequencing panel.
Additional regions totalling 7.243 Mb based on Digital Genomic Footprinting (DGF) data from

ENCODE for CD4+, CD8+, CD19+ and CD56+ were added for this new panel.

Capture and sequencing

Thirty samples from the Swedish Uppsala Bioresource cohort were used as the discovery sample
set in this study. The regional ethical review board in Uppsala, Sweden approved the study and
all participants gave their informed consent. The Cambridge Multiple Sclerosis (MS) sample set
was used as a replication set in this study. Eighty-six affected and 94 healthy controls were
included for a total of 180 samples. DNA was prepared from Peripheral Blood Mononuclear

Cells using standard methods. DNA quantification was performed using PicoGreen.
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Whole-genome library preparation was performed using 500-1000ng of genomic DNA. Covaris
focused-ultrasonicator E210 was used for shearing DNA into 150-1500bp fragments. LabChip
EZ reader was used for fragment size evaluation and size selection was performed when needed.
Libraries were prepared using the KAPA High Throughput (HTP) Library Preparation Kit
(KAPA Biosystems). The end repair to produce blunt-ended double stranded DNA, adenylation
of the 3’-ends, adapter ligation and amplification were performed following the
recommendations from the kit manufacturer and cleaned using AMPure XP beads. The libraries
were analyzed on LabChip and quantified using PicoGreen. Samples were then pooled (2X, 5X
or 6X) using a total of 1 ug of library, followed by Roche NimbleGen SeqCap EZ Library
instructions for the hybridization of the baits and the capture steps. The final amplification was
done using KAPA HTP. Concentration, size distribution, and quality of the amplified capture
were assessed using LabChip. Captured products were sequenced on the Illumina HiSeq2500 or
HiSeq2000 with 100bp paired-end reads. The discovery sample set was captured with the first
version of the panel, and the replication set was captured with the second version of the panel.
For the second panel, the library preparation and capture steps were automated and performed

using the Biomek FX (Beckman Coulter).

Read mapping and variant calling
Reads were aligned to Genome Reference Consortium Human genome build 37 (GRCh37) using

bwa 0.7.6a. and variants were called using HaplotypeCaller v3.2 (GATK).
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Variants quality control/SNVs validation

Quality cut-off was set at read depth >10, genotyping quality (gq) >70, and mapping quality
(MQ) >50. These cut-offs were selected based on the comparison of the sequencing and
genotyping data (Human Omni2.5 BeadChip in the 30-sample cohort or Human Omni5
BeadChip in the 180-sample set), available for all samples, where both had concordance of over

95% (S1 Fig). Indels were not included in our analysis.

To test the variant capture efficiency of Immune-genetics sequencing, we applied our panel to a
Yoruban sample (NA18502) that has been sequenced at high depth by Complete Genomics
[217]. We compared the accuracy of the heterozygous variants identified by Complete Genomics
that overlapped with the panel regions with the variants identified using our custom capture
panel (S2 Fig). DNA sequencing data from the NA18502 sample was downloaded from the

public genome data repository (ftp2.completegenomics.com, assembly software version 1.10).

Annotation of variants
The GERP++ score was used as a metric for conservation to identify selectively constrained

variants (http://mendel.stanford.edu/SidowLab/downloads/gerp/) [218]. We also used the CADD

tool to score the deleteriousness of the identified variants (http://cadd.gs.washington.edu/) [219].

Coding variants were annotated using snpEff [220]. Common variants are defined as having
MAF>=1% and rare variants are defined as having MAF<1% based on the allele frequencies
from the 1000 Genomes Project [63]. Novel variants were defined as variants not observed in the

1000 Genomes Project or dbSNP141.
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Shared vs cell-type specific DHSs
The DHS sets selected for each cell type were intersected to determine which bins are observed
in all selected cell types or in a subset of the cells. Enrichment was measured by comparing the

number of rare and/or novel variants to the number of common variants falling in each category

of DHSs and the total observed in DHSs.

Identifications of variants that disrupt or create motifs

Each identified variant was tested for the impact of the reference and the alternate allele on
transcription factor motifs + 15 nucleotides from the variant position. Matrices for TRANSFAC
(version 2009.4) were used with the Finding Individual Motif Occurrence (FIMO) scanning
software, version 4.10.1, using a p<l1.42e-7 threshold (Bonferroni correction: 0.05 / 351,088
SNPs =1.42¢-7). Only motifs directly overlapping a variant were kept. A motif was considered
as created if it had a significant matrix affinity score only with the alternate allele, whereas it was

considered disrupted if it had a significant matrix affinity score only with the reference allele.

RNA-sequencing and allele-specific expression mapping

Purified T cells were isolated from the discovery set samples (eight CD3+ and 20 CD4+). RNA
was isolated with miRNeasy Mini Kit (Qiagen) and 500ng of RNA was used to prepare libraries
using [llumina TruSeq Stranded Total RNA Sample preparation kit following the manufacturer’s
instructions. Quality control was performed using Agilent Bioanalyzer and samples were
sequenced on Illumina HiSeq2000 with 100bp paired-end reads. Raw reads were trimmed

(quality: phred33>30 and length n>32), adapters were removed (using Trimmomatic V.0.32
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[221]) and reads were aligned to the hg19 human reference (Tophat v.2.0.10 [222] and bowtie
v.2.1.0 [223]) for 81.9% of the reads aligned. For the replication set, purified T-cell (CD4+ and
CD8+) subpopulations were isolated from 180 subjects (86 multiple sclerosis patients and 94
healthy controls) for 73% of the reads aligned. For details see Lemire et al [224].

Allele counts were measured using the SNPs from Illumina Human Omni2.5 BeadChip (30
samples cohort) or Human Omni5 BeadChip (180 samples cohort) and imputation (1,000
Genomes Project, using the IMPUTE2 software). Haplotype phasing was performed using the
SHAPEIT V2 software and allele specific expression was calculated using reads from whole
genes as previously described [211]. We used the Allele-specific expression (ASE) association
data calculated with the replication cohort for the first cohort because of the lack of power due to
the small samples number. Since CD3+ cells were not assessed in the replication cohort, we use
the combination of CD4+ and CD8+ data to get association p-values for this cell type.
Transcripts with association p-value <le-5 were kept, and isoforms were removed based on
normalized read counts for each gene (keeping the best covered isoform). A total of 3,859
transcripts for CD3+ cells and 3,428 transcripts for CD4+ cells in the 30 samples discovery set,
and 5,536 transcripts for CD4+ and 5,594 transcripts for CD8+ cells in the replication set were

included in the analysis.

Enrichment of rare variants in vicinity of allelically imbalanced (Al) genes
The fold difference between the expressed alleles was calculated as counts for the most abundant
allele divided by counts for the less abundant allele. Thus, a fold difference of one corresponds to

alleles that are expressed equally. Genes with fold difference between 2 and 9 were considered as
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having allelic imbalance (Al). Genes with > 9-fold were considered to be enriched for imprinted

loci or artefacts and were thus removed from the analyses.

We performed enrichment analysis for variants in DHS +/-20kb from each gene. We calculated
the enrichment of rare variants in highly Al genes (ASE effect size between 2 and 9, 1 meaning
both alleles are expressed equally) by dividing the proportion of Al genes with rare variants in

correlated DHSs by the proportion of all tested genes with rare variants in correlated DHSs.

DNase —sensitive regions correlated to transcript promoters

NIH ENCODE Roadmap DHS datasets (n=317) were retrieved and binned into 100bp segments
as described above. Using transcripts from GENCODE v15, we extracted all promoter regions
(defined as transcription start site (TSS) +/-500bp). Across all of the DHS datasets, we correlated

the normalized bin scores for these promoter region bins with all DHS bins +/- 1Mb.

Hi-C region linked with promoter regions

Hi-C data from GM12787 lymphoblastoid cell line were obtained from Rao et al. [225] (Gene
Expression Omnibus accession number: GSE63525). We extracted all regions that overlapped
promoter regions (1500bp from TSS) of gene where expression data was available, as well as the

linked regions.
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2.4 Results

Design of the Immune-genetics sequencing custom capture panel

In order to select the most relevant non-coding regions to target, we used DNase I mapping data
available from the ENCODE and Roadmap epigenomics projects from 12 different cell types
(CD3+, CD3+ cord blood, CD4+, CD8+, CD14+, CD19+, CD20+, CD34+, CD56+, Th1, Th2
and Th17, S1 Table) [206, 207]. The whole genome was divided into 100 base pair bins, which
were ranked according to the DHS signal for all samples available for every immune cell type
(Methods). The top 300,000 signal intensity bins for every cell sample from the ENCODE and
Roadmap epigenomics project were used for the design of the Immune-genetics sequencing
capture panel. The bins that were kept were required to be consistent in most (>50%) biological
replicates used for each cell type. S1 Table shows the number of DHS signal intensity bins used
and the number of samples available for every cell type. We combined these putative regulatory
regions (67.3Mb) with the coding regions from exome capture and the HLA region. However,
given the unique and complex role of HLA in immune disease risk along with the extreme
sequence diversity of human Major Histocompatibility Complex, we exclude its analysis in the
following discussion. Altogether, Immune-genetics sequencing covers a total 138Mb of the

genome.

The Immune-genetics sequencing regions are enrviched in pertinent GWAS hits and eQTLs

We estimated the sensitivity of this panel by determining the extent to which it captured known
autoimmune and chronic inflammatory diseases associated SNPs listed in the National Human
Genome Research Institute (NHGRI) GWAS catalogue (p<5x10™) [8]; or SNPs in high linkage

disequilibrium (1*>0.9) with these [215] (S1-S2 Table). We repeated this process using cancer
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and neuropsychiatric diseases associated SNPs listed in the GWAS catalogue (assuming that
immune cells play a less significant role in these conditions, although it some case, it can play
one) and using cis-eQTL data for monocytes (CD14+) and B-cells (CD19+) from Fairfax et al.
[210].

This panel includes SNPs in high LD (r*>>0.9) with 62% (448 SNPs) of the autoimmune disease
associated variants listed in the GWAS catalogue (Fig 1A), 63% (140 SNPs) of the associated
variants identified in key ImmunoChip studies [56-59, 216] (S3A Fig) and more than 68% (378
SNPs) of the eSNPs identified by Fairfax et al (Fig 1B) [210]. These observations indicate the
potential of our design to identify variants associated to autoimmune disease as well as other
variants with potential functional impact on immune cell function. In contrast, alternate panels
based on DHSs from randomly selected tissues, or random genomic regions show significantly

poorer performance (Fig 1C-D, S3B Fig).

Functional potential of rare and novel variants identified using Immune-genetics sequencing
Performing Immune-genetics sequencing on DNA from 30 healthy blood donors (Table 1) at a
mean sequencing coverage of 52x, we found that on average 88% of the reads were located on or
near target, >98% of the target regions were covered (only 1.90% of the bases were missing) and

95% of the target regions were covered by at least two reads.

Taking advantage of the high sequencing depth, we were able to identify rare and novel variants
at high confidence. We defined rare variants as those having a MAF <1% in 1000 Genomes
Project data (Phase3) and novel variants that have not previously been identified by either 1000
Genomes Project or dbSNP141. A total of 351,088 variants were identified, of which 275,042

were common, 50,004 were rare and 26,042 were novel (Table 2, S3 and S4 Table).
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Comparing non-coding with coding variants we found a significantly higher proportion were
novel (p-value=2.87e-175) and selectively constrained variants based on Genomic Evolutionary
Rate Profiling (GERP++ >1 p-value=3.57e-60 and GERP++>2 p-value=3.06e-47) (Fig 2A).
Using GERP++ [218] and Combined Annotation Dependant Depletion (CADD) scores [219], we
also observed that the proportion of selectively constrained variants was greater amongst the

novel and rare variants than amongst the common variants (Fig 2B).

We next partitioned the variants called according to whether the DHS used in the design was
shared among cell types or unique to one cell type. It has been previously shown that cell-type
specific DHSs mostly overlap gene bodies and intergenic regions, whereas DHSs that are shared
between cell types overlap with more active regions and promoters [226]. We observed a higher
proportion of novel and rare variants compared to common variants in DHSs that are shared
between cell types, compared to the ones that are unique for a single cell type (Fig 2C). A clear
increase in enrichment is observed when variants present at cell type unique DHSs and variants
that are in DHSs shared between two to twelve cell types are compared, with linear regression p-
values of 1.35e-05, 2.41e-06 and 5.81e-05 for rare, novel and combined rare and novel variants,
respectively. These findings indicate that rare and novel variants are enriched in more active

genomic regions compared to common variants.

To further investigate the potential functional impact of the rare and novel variants in DHSs, we
explored the proportion of variants that disrupt or create transcription-factor motifs, compared to
common variants and GWAS hits (Methods). In comparison to common variants a significantly

higher proportion of novel variants create (p-value=1.56e-38) or disrupt (p-value=2.43e-11)

transcription factor motifs (Fig 2D). Rare variants show a slightly lower, but still significant
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enrichment for created motifs than do common variants (Fig 2D, p-values for disrupted motifs =

0.16 and created motifs =2.77¢-07).

The functional impact on gene expression by variants identified using Immune-genetics
sequencing

Given that rare non-coding variants in regulatory genomic regions can exert large cis-eQTLs
effects and demonstrate extreme allele specific expression (ASE) bias [48, 49] we assessed the
extent to which the rare and novel variants identified using Immune-genetics sequencing
influenced gene expression in a second independent set of samples; T cells (both CD4+ and
CD8+) from 180 individuals used in a parallel effort to map common SNPs resulting in ASE

(Ban, Ge et al. manuscript in preparation), almost 400 RN A-seq datasets in total.

We also generated deep RNA-seq data from fractionated T cells (CD3+ or CD4+) obtained from
the 30 individuals used initially. These data generated equivalent results, which are shown in the

Supplementary materials (S4 to S10 Fig).

For each gene we counted and characterised (coding/non-coding and novel/rare/common) the
variants lying in the immediate vicinity (gene +/-20kb) and determined the allelic imbalance (Al)
in expression observed in each transcript. After adjusting for the average number of SNPs used
to calculate Al for each transcript, we observed a higher proportion of transcripts with non-
coding variants in their vicinity for transcripts where the higher Al level is independent of a
common, rare or novel regulatory variant (S11-S12 Fig). A distinct increase in the proportion of
variants was observed by comparing equally expressed transcripts with a <1.5-fold difference in

their allelic expression with transcripts displaying Al with an >1.5, >2,>2.5, >3 and >3.5-fold
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difference in allelic expression (Fig 3A). The increase in Al is more pronounced for transcripts
flanked by rare or novel variants than by common variants. In order to control for the influence
of common variants we repeated this analysis focusing on just those genes which are known to
undergo ASE (Ban, Ge, et al. manuscript in preparation) and for which we had already mapped
the common SNP contribution to cis-regulation by ASE-mapping [40]. This approach allowed us
to include just those individuals that are homozygous for the relevant common eSNP and thereby
exclude the influence of these common variants (S13 Fig). The same trend was observed for such
transcripts when analysis was based exclusively on data from individuals homozygous for the

local established common variant eSNP (S14 Fig).

This observation was then confirmed when rare and novel variants are considered together and
this situation is even more pronounced when focusing on individuals homozygous for the
relevant eSNP (Fig 3B). Rare and novel variants located in DHSs that are correlated to the
transcript promoters are highly enriched transcripts with substantial Al (>=2 fold) compared to
common variants, especially in transcripts with homozygous common eSNP (Fig 3B). The
stronger the correlation between a promoter and a DHS is, the more it is enriched in rare and
novel variants (p-value=0.0196), and is even stronger when looking at transcripts with
homozygous common eSNP (p-value= 0.0024, Fig 3B). We also observed that the transcripts
displaying higher Al show more enrichment for rare and novel variants in its vicinity, compared
to common variants (Fig 3C). This was also observed when looking at rare and novel variants
located in regions linked to the gene promoter by Hi-C (S15 Fig). The same increasing trend for
DHSs correlated with promoters is observed for transcripts with different levels of Al (Fig 3C).
However, the observed trend is not as strong in all transcripts (S16 Fig). Coding rare and novel

variants especially in transcripts with homozygous eSNP also appear to have an impact on gene
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expression, as they are as enriched in coding regions compared to common variants (Fig 3B).
The effect is almost as strong as the one observed for non-coding variants located at DHSs
highly correlated with the promoter (Pearson’s r*>0.9) (Fig 3B). Also, a similar trend of
significant increased Al is observed for coding variants in transcripts with homozygous eSNP

(Fig 3C, linear regression slope=0.227, p-value=0.018).

Having the advantage of higher power using this larger cohort, we observed that the more rare or
novel variants there are within the vicinity of the transcribed region of a gene, the higher the
likelihood is that the transcripts will display Al (Fig 4A), which is not observed for common
variants. Finally, we looked at the enrichment of rare or common variants around the TSS of
transcripts with homozygous eSNP and observed a higher enrichment at +/- 50kb from the TSS

for rare variants compared to common variants (Fig 4B).

Taken together we have shown that, rare and novel variants identified in human immune cells
using the Immune-genetics sequencing capture panel are enriched in DHSs that are highly
correlated to the promoters of transcripts and in the coding regions of highly differentially
expressed transcripts, for which the top associated SNP is homozygous. We also observed
enrichment of rare and novel variants in the vicinity of the TSS regions, and the more rare or

novel variants there are, the stronger is the allelic imbalance of the gene expression.
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2.5 Discussion

In this study, we used existing DHS mapping data to build a custom capture panel designed to
enable efficient re-sequencing of key immune cell regulatory regions. Our “Immune-genetics
sequencing” panel provides the means to comprehensively assess both coding and non-coding
variation that could be implicated in the development of immune and inflammatory diseases.
Because the method is based on sequencing rather than genotyping it allows direct cost effective
assessment of both rare and common variation without any reliance on LD or the need for
imputation. We have shown that with high sequencing coverage we are able to study novel non-
coding variants in a confident way, which cannot be realized using whole exome sequencing, or
would be prohibitively expensive using whole genome sequencing (WGS). The targeted regions
included in the Immune-genetics sequencing panel overlap with GWAS hits in immune and

inflammatory diseases and eQTLs of immune cells.

An inevitable drawback of the Immune-genetics sequencing design is its inability to capture
variants of relevance to the disease of interest that map outside the targeted regions. This
limitation is illustrated by disease-associated SNPs that are not included in the panel. Since the
Immune-genetics sequencing panel was based exclusively on DHSs seen in immune cells, these
missing associated SNPs could reflect regulatory effects that are associated with non-immune
cell based aspects of the disease [204], e.g. gastrointestinal tract DHSs in ulcerative colitis. The
fact that our panel captures the majority of the known immune and chronic inflammatory disease

associated SNPs indicates that it will have broad utility across multiple immune related diseases.

Until now targeted capture methods have focused almost exclusively on the coding regions of the
genome [227], which means that the effects of rare non-coding variants have largely been

ignored in the analysis of complex traits. In our exploration of the approach we found that the
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non-coding rare and novel variants identified by Immune-genetics sequencing frequently modify
transcription factor binding motifs and show higher levels of selective constraint than are seen in
included common sequence variants. This difference is expected based on evolutionary and

population genetics principles, with common variants expected to be more neutral than rare ones

[29].

A further novel aspect of the Immune-genetics sequencing approach is its inherent ability to
utilise ASE information to interrogate the functional impact of sequence variants on gene
expression. The greater power of ASE allowed us to observe functional effects using a lower
sample size of unrelated subjects than traditional eQTL analysis [41]. In total the rare and novel
variants identified by Immune-genetics sequencing explained 14% of the residual allelic
imbalance in expression observed amongst individuals homozygous for common variants know
to influence ASE, indicating that rare and novel variants likely account for at least part of the Al
observed in the transcripts from individuals heterozygous for common eSNPs. Comparing non-
coding variants in DHSs to variants in coding exons, the coding variants appeared to have a
stronger effect on gene expression. However, the opposite situation was observed for variants
located in DHSs that are correlated with gene promoters, where the effect of the non-coding
variants was larger than those of coding ones. Rare and novel variants with substantial effects on
Al in particular genes may contribute to certain disease phenotypes. In contrast to previous
studies, we did not limit our exploration to extreme phenotypes, but instead we investigated the
whole spectrum of Al In doing so, we observed that the effect of rare and novel variants on gene
expression does not appear to be limited to extreme differences in allelic expression, but may

also affect genes with moderate Al
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One further limitation of the study may be that not all transcripts for which the allelic expression
is skewed were accounted for by rare variants identified by Immune-genetics sequencing. Some
variants exerting long range or trans effects will inevitably have been missed by not performing
WGS. Nevertheless, as opposed to earlier studies [48, 49], we expand the exploration of rare
variant effects to distal regulatory sites with correlated activity with gene promoter. While distal
sites show enrichment, the strongest effect of rare and novel variants is found around the TSS of
genes displaying Al. This observation indicates that variants can be clustered to perform
collapsing association test for complex traits, which will permit the identification of rare and

novel trait-associated variants and to easy linking of the variants to a specific gene.

2.6 Conclusion

In this study, we show that targeted re-sequencing of cell specific active regulatory regions can
be an efficient means to identify functionally relevant variation that is considerably more cost
effective than WGS. Immune-genetics sequencing provides an efficient means to identify rare
and novel, coding and non-coding variation of relevance in complex traits involving the immune
system and to study the impact of rare and novel non-coding regulatory variants on other

epigenetic traits.
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Al Allelic imbalance; ASE: Allele-specific expression; CADD: Combined annotation dependent
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I sequencing; eQTL: Expression quantitative trait loci; eSNP: SNPs altering expression; FIMO:
Finding Individual Motif Occurrence; GERP: Genomic Evolutionary Rate Profiling; GWAS:
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2.8 Figures and Tables

Table 1. Sequencing statistics of the samples sequenced with Immune-genetics sequencing

Mean Bases Target Target bases Level of Sequencing

target on region with >=10x  multiplexing platform

coverage target without  coverage

(%)’ coverage (%)’
(%)’

Sweden 52X 88 1.9 83 2X HiSeq2500
Uppsala (3 samples)  (2X samples)
Bioresource 5X HiSeq2000
samples (27 (5X samples)
(n=30) samples)

Alignment to the human hgl19 reference genome, and variant calling (HaplotypeCaller) to identify all SNPs were
performed. Shows average values across samples. ' On and near bait bases/good quality bases aligned (according to
Picards metrics). “The percentage of target region that did not reach 2x coverage over any base.’ The percentage of
all target bases achieving 10X or higher coverage. We considered a variant to be true at >=10 depth.

Table 2. General characteristics of the common, rare and novel single nucleotide variations

(SNVs)
Total number (average per sample) All Common Rare Novel'
All (Immune-genetics sequencing) 351088 275042 50004 26042
(90594) (83839) (5318) (1437)
Coding”  All 60946 45545 12,452 2949
(15169) (1818) (1166) (185)
Non-synonymous’ 30967 21807 7405 1755
(7174) (6403) (669) (102)
Synonymous’ 29214 23434 4785 995
(7770) (7305) (395) (71)
Stop-gained’ 395 (71) 202 (56) 135 (13) 58(2)
Exome’ 120245 91818 21497 6,930
(30682) (27916) (2280) (486)
Non-coding’ 290142 229497 37552 23093
(75424) (70020) (4152) (1251)
All DHS® 195182 154154 24571 16457
(51559) (48056) (2677) (826)

Total number of variants and the average number of variants per sample that were included in the Immune-genetics
sequencing design. 'Novel variants are defined as not identified in the 1000 Genomes Project nor included in
dbSNP141.’Coding variants are those located in the exons of the RefSeq coding sequence. *Synonymous, non-
synonymous and stop-gained variants were annotated using SNPeff and the hgl9 version of the genome. *The
Exome is based on the Roche SeqCap EZ exome v3.0. * Non-coding variants are those not in the RefSeq coding
sequence. “The All DHSs category combines all DHSs from the selected 12 cell types and could partly overlap with
the Exome. Cut-offs used for the quality control of the variants are read depth>10, genotyping quality (gq)>70,
mapping quality (MQ) =50, and proportion of the reference allele between 10-90%.
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Fig 1. Benchmarking the Immune-genetics sequencing capture panel by known disease
associated sites and regulatory variants. (A) Autosomal GWAS hits associated to more than
one autoimmune or chronic inflammatory disease, for neuropsychiatric diseases and for cancer
included in the Immune-genetics sequencing custom capture panel. (Cut-off of 1x10™ was used
to select GWAS hits to analyze, SNPs in LD selected based on r*>0.9, HLA (human leucocyte
antigen) hits and region as well as chromosome X SNPs were excluded from the analyses). SNP
in LD = GWAS hits that have a SNP in LD in the Immune-genetics sequencing custom capture
panel. (B) cis-eQTLs from monocytes (CD14+) and B Cells (CD19+) (considered has haplotype
block, r*>0.9) included in the Immune-genetics sequencing panel. Cut-off of p<le-3 or p<le-5,
and p<le-12 after 1000 permutations (1000= number of SNPs tested per probe) and top 1 eQTLs
per transcript were kept for analysis (HLA hits and region as well as chromosome X hits were
excluded in the analyses). (C) Enrichment of GWAS hits (same as in A) and proximal SNPs (LD
1*>0.9) that fall in DHSs selected for immune cell types compared to DHSs selected from other
tissues (either all or non-overlapping ones) and regions randomly selected (1000 times) from the
whole genome (either the full genome or only non-coding regions excluding HLA). Significance
was calculated using Fisher’s exact test. Enrichment is significant (p<0.001) for all GWAS hits
except for Neuropsychiatric hits. (D) Enrichment of eQTLs (same as in B) and proximal SNPs
(LD r*>0.9) positioned at DHSs selected for immune cell types compared to DHSs selected from
other tissues (either all or non-overlapping ones) and regions randomly selected (1000 times)
from the whole genome (either entire genome or only the non-coding part excluding the HLA
region). All enrichments shown are significant (p<0.001). All p-values were calculated using
Fisher’s exact test.
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Fig 2. Discovery and functional potential of rare and novel variants using Immune-genetics
sequencing. (A) Proportion of novel variants (all, Genomic Evolutionary Rate Profiling
(GERP++)>=1 and GERP++>=2) identified in DHS (red) compared to the exome (blue). (B)
Distribution of proportion of common (red), rare (blue) and novel (green) variants according to
GERP++ score and Combined annotation dependent depletion (CADD) score. (C) Fold
enrichment of rare (blue), novel (green) or rare and novel combined (red) variants compared to
common variants found at shared or cell-type specific DHSs. Linear regression slope: rare
=0.119 p-value= 1.35e-05, novel= 0.093 p-value= 5.81e-05, rare and novel=0.113 p-
value=2.41e-06. (D) Proportion of common (red), rare (blue) and novel (green) variants localized
at a DHS that either disrupt or create a transcription-factor binding motif. P-values are calculated
using Fisher’s exact test (***p<0.001).
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Figure 3
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Fig 3. The impact of rare and novel noncoding variants on gene expression. (A) Using the
replication set, we looked at the adjusted proportion of transcripts with common (red), rare (blue)
or novel (green) noncoding variants in the vicinity (+/-20kb) of a gene based on different allelic
imbalance: 1.5t09,21t09,2.5t09, 3 to 9 and 3.5 to 9-fold difference. Adjustment was based on
average number of SNPs used to calculate ASE at each ASE levels. (B) Enrichment of
proportion of transcripts showing allelic imbalance (Al) with rare or novel variants in the vicinity
of the gene compared to Al transcripts with common variants in vicinity of a gene. We looked at
coding (histogram) vs noncoding variants as well as noncoding variants in DHS regions
correlated with the promoters (Pearson correlation r>0.5 to 0.9). In red are all transcripts where
allelic imbalance was measured (allAI) and in blue are the transcripts for which the top
associated SNP is homozygous in the sample (homAlI). Linear regression slope for allAI=0.015
(p-value=0.0196) and homAI=0.063 (p-value= 0.0024). Allelic imbalance genes are considered
as >=2 fold between the alleles and equally expressed genes are <=1.5 fold. (C) Fold difference
between proportions of Al transcripts with rare or novel variants in the vicinity compared to Al
transcripts with common variants in the vicinity. Only including transcripts for which the top
associated SNP is homozygous (homAI). We looked at coding (histogram) vs noncoding variants
around the genes (+/-20kb from gene) and in DHS regions correlated with the promoters
(Pearson correlation r>0.5 to 0.9). We compare different levels of allelically imbalanced
transcripts from 1.5-fold to 3.5. all Al: Al transcripts comparing all transcripts for which ASE
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was measured and homAlI: transcripts for which the top associated SNP that drives the
association across samples is homozygous.
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Fig 4. The number and location of rare and novel noncoding variants have an impact on
gene. (A) Adjusted proportion of Al transcripts that contain 1 or more noncoding common (red)
or rare and novel (blue) variants in transcripts vicinity (+/-20kb from gene). Adjustment was
based on average number of SNPs used to calculate ASE at each ASE levels. (B) Fold
enrichment of common (red) or rare and novel (blue) variants in Al vs all transcripts measuring
their distance from transcription start sites (TSS). Transcripts with p<0.05 were used. Sliding
window of 80kb every 10kb was used.
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2.9 Supporting information

Table S1. Cell type selected to target regulatory regions in immune cells.

Cell types Number of bins Final number of bins Number of samples Accession number (GEO)

CD3+ 250,000 259,321 4 GSM665837, GSM701488, GSM701516,
GSM774201

CD3+ cord blood | 150,000 97,243 2 GSM701525, GSM701526

CD4+ 200,000 196,585 8 GSM665812, GSM665839, GSM701489,
GSM701491, GSM701539, GSM817166,
wgEncodeUwDnaseCd4naivewb11970640AlnRepl,
wgEncodeUwDnaseCd4naivewb78495824AlnRepl

CD8+ 250,000 229,426 5 GSM665813, GSM665838, GSM701499,
GSM701540, GSM817160

CD14+ 250,000 271,497 4 GSM701503, GSM701541,
wgEncodeUwDnaseMonocd14rol1746AlnRepl V2,
wgEncodeUwDnaseMonocd14rol1746AlnRep?2

CD19+ 250,000 240,941 3 GSM701492, GSM701493, GSM701507

CD20+ 225,000 200,000 1 GSM701500

CD34+ 250,000 242,494 14 GSM493384, GSM493386, GSM493387,
GSM530652, GSM530657, GSM530658,
GSM530659, GSM530660, GSM530663,
GSM530664, GSM595914, GSM595917,
GSM595918, GSM595919

CD56+ 200,000 183,311 3 GSM665820, GSM665836, GSM701508

Thl 100,000 64,012 2 wgEncodeOpenChromDnaseAdultcd4th1 AlnRepl,
wgEncodeOpenChromDnaseAdultcd4th1 AlnRep?2

Th2 300,000 291,859 1 GSM736502

Th17 100,000 100,000 1 wgEncodeUwDnaseTh17AlInRepl (to verify)




Table S2. Cell types selected to target regulatory regions in other cell types not related to immune function.

Cell types/Tissue

Number of bins

Final number of bins

Number of samples

Accession number (GEO)

Fetal Lung

250,000

231,527

11

GSM530662, GSM595915, GSM595916,
GSM595921, GSM595924, GSM595925, GSM595927,
GSM595929, GSM595930, GSM665805, GSM665806

Fetal Kidney

200,000

193,630

GSM493385, GSM774221, GSM817159, GSM878666,
GSM1024608, GSM1027329

Fetal Brain

200,000

173,884

GSM530651, GSM595913, GSM595920, GSM595922,
GSM595923, GSM595926, GSM595928, GSM665804,
GSM1027328

Fetal Small
intestine

250,000

225,102

11

GSM665825, GSM665835, GSM701487, GSM701496,
GSM701504, GSM701530, GSM774205, GSM774210,
GSM774216, GSM817161, GSM817187

Fetal Large
intestine

250,000

233,707

GSM701490, GSM701495, GSM701531, GSM774213,
GSM774214, GSM774217, GSM774220, GSM817162,
GSM817188

Fetal Renal cortex

250,000

245,861

10

GSM701494, GSM701502, GSM701529, GSM701532,
GSMS817176, GSM878629, GSM878667, GSM 1027314,
GSM1027316, GSM1027323

Fetal Stomach

250,000

232,109

13

GSM701498, GSM701521, GSM701528, GSM701538,
GSM774202, GSM774212, GSM817173, GSM817199,
GSM878660, GSM878665, GSM1024606, GSM 1027318,
GSM1027331

Fetal Arm muscle

250,000

241,617

15

GSM701506, GSM701535, GSM774223, GSM774239,
GSM817178, GSM817184, GSM8&17214, GSM&17216,
GSM878610, GSM878618, GSM8&78619, GSM878620,
GSM878625, GSM878638, GSM 1024605

Fetal Placenta

250,000

231,726

GSM774215, GSM774219, GSM817219, GSM878659,
GSM1027343

Fetal Adrenal gland

200,000

179,763

GSMS817165, GSM817167, GSM878658, GSM 1027310,
GSM1027311

Fetal Testis

250,000

198,545

GSM878617, GSM 1027319

Fetal Ovary

100,000

100,000

GSM1027306
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Table S3. Summary of shared common, rare and novel variants in selected DHS regions of different immune cells

Common/ CD3+ CD3+ CD4+ CD8+ CD14+ CD19+ CD20+ CD34+ CD56+ Thil Th2 Th17
Rare/ novel cord
blood
CD3+ 54,570/
9,834/
5,774
CD3+ cord | 21,628/ 21,730/
blood 3,880/ 3,909/
2,469 2,481
CD4+ 40,663/ 21,421/ 42,354/
7,288/ 3,849/ 7,520/
4416 2,436 4,561
CD8+ 45,291/ 21,385/ 38,704/ 49,086/
7,995/ 3,827/ 6,840/ 8,602/
4,885 2,442 4,193 5,239
CD14+ 26,697/ 18,040/ 25,084/ 25,886/ 59,581/
4,973/ 3,328/ 4,585/ 4,746/ 9,829/
3,062 2,083 2,819 2,948 5,819
CD19+ 35,476/ 21,245/ 32,055/ 34,235/ 27,704/ 50,942/
6,364/ 3,822/ 5,731/ 6,110/ 5,087/ 8,773/
3,992 2,428 3,596 3,862 3,150 5,407
CD20+ 20,035/ 14,707/ 18,817/ 19,488/ 18,709/ 19,000/ 43,910/
3,654/ 2,657/ 3,448/ 3,519/ 3,385/ 3,441/ 7,047/
2,256 1,677 2,127 2,172 2,089 2,143 4,288
CD34+ 31,128/ 19,886/ 28,223/ 29,834/ 31,088/ 29,577/ 20,419/ 53,076/
5,728/ 3,586/ 5,149/ 5,437/ 5,544/ 5,366/ 3,654/ 9,165/
3,548 2,295 3,138 3,408 3,461 3,402 2,276 5,552
CD56+ 35,904/ 20,571/ 32,535/ 35,943/ 24,905/ 29,661/ 18,076/ 27,573/ 40,046/
6,434/ 3,684/ 5,783/ 6,387/ 4,550/ 5,290/ 3,343/ 5,033/ 7,156/
3,980 2,360 3,633 3,975 2,787 3,371 2,064 3,138 4,359
Thl 12,015/ 9,770/ 11,479/ 11,846/ 10,734/ 11,060/ 9,063/ 11,365/ 11,181/ 13,025/
2,171/ 1,714/ 2,062/ 2,119/ 1,930/ 1,997/ 1,638/ 2,044/ 2,001/ 2,412/
1,304 1,082 1,265 1,280 1,179 1,224 990 1,252 1,232 1,414
Th2 36,811/ 18,595/ 32,002/ 34,935/ 24,458/ 30,582/ 18,023/ 27,643/ 29,154/ 11,768/ | 59,458/
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6,280/

3,285/ 5,456/ 5,876/ 4,337/ 5,220/ 3,166/ 4,895/ 5,018/ 2,043/ 9,775/
3,903 2,132 3,451 3,742 2,716 2,392 1,964 3,096 3,182 1,250 5,707
Th17 31,088/ 11,617/ 15,581/ 16,234/ 13,322/ 13,051/ 9,967/ 14,468/ 15,758/ 7,574/ 17,141/ | 22,026/
3,260/ 2,254/ 3,010/ 3,076/ 2,665/ 2,581/ 1,949/ 2,808/ 2,955/ 1,417/ 3,186/ | 4,146/
1,979 1,443 1,847 1,894 1,589 1,596 1,207 1,713 1,867 907 1,922 2,366
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Table S4. Sequencing statistics of the Cambridge Multiple sclerosis samples with Immune-genetics sequencing.

Mean Bases on | Target | Target Sequencing | Level of
target target region | bases with | platform multiplexing
coverage | (%)’ without | >=10x

coverag | coverage
e (%)’ | (%)

Cambridge | 31X 68.76 1.9 73 HiSeq2000 | 6X
Multiple
Sclerosis
cohort and
healthy
controls
(n=180)

Alignment to the human hg19 reference genome, and variant calling (HaplotypeCaller) to identify all SNPs were performed. Shows
average values across samples. ' On and near bait bases/good quality bases aligned (according to Picards metrics). “The percentage of
target region that did not reach 2x coverage over any base.’ The percentage of all target bases achieving 10X or higher coverage. We
considered a variant to be true at >=10 depth.
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Figure S1. Variants Quality control

Comparing sequencing data to genotyping data (Human Omni2.5 BeadChip) considering only heterozygous SNPs for the discovery
set. In black is the average, samples are coloured according to mean coverage: blue=15-20, red=20-30, green=30-40, purple= 40-50,
orange>=50. A) Sensitivity: how many of the genotyped SNPs are called in the Immune-genetics sequencing at increasing read
depth/genotyping quality/mapping quality. B) Accuracy: Of the variant captured at each read depth/genotyping quality/mapping
quality, how many of them are accurate. C) Cumulative accuracy: Of the variant captured at each read depth/genotyping quality and
over, how many of them are accurate.
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Figure S2. Comparing sequencing data for NA18502 sample (complete genomics data and Immune-genetics sequencing)
considering only heterozygous SNVs identified by complete genomics that fall into Immune-genetics sequencing custom capture
panel. Sensitivity: how many of the genotyped SNP are we seeing in the Immune-genetics sequencing at increasing read
depth/genotype quality (ex: over 10 read depth we capture 95% of the heterozygous variants). Accuracy: Of the variant captured at
each depth (and over), how many of them are accurate. A) Read depth. B) Genotyping quality.
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Figure S3. ImmunoChip hits that falls into Immune-genetics sequencing custom capture panel. A) ImmunoChip hits that falls in

the Immune-genetics sequencing. capture panel. (Cut-off of 1x10™ was used to select hits to analyze, SNPs in LD selected based on
*>0.9, HLA hits and region as well as chromosome X SNPs were excluded from the analyses). SNP in LD = ImmunoChip hits that

have a SNP in LD represented by Immune-genetics sequencing. B) Enrichment of hits (same as in A) and proximal SNPs (LD r*>0.9)

that fall in DHSs selected for immune cell types compared to DHSs selected from other tissues (either all or non-overlapping ones)
and regions randomly selected (1000 times) from the whole genome (either entire genome or only non-coding excluding the HLA
region). Significance was calculated using Fisher exact test.
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Figure S4. Discovery set distribution of allele specific expression (ASE). Distribution of proportion of ASE in transcripts with
common (red), rare (blue) or novel (green) noncoding variants in vicinity (+/-20kb from gene) adjusted for average number of SNPs
used to calculate ASE.
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Figure S5. Average number of SNPs used to calculate allele speéiﬁc expression (ASE) in discovery set samples. Comparing all
transcripts for which ASE was measured (allAl) and transcripts for which the top associated SNP that drives the association across
samples is homozygous (homAlI).
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Figure S6. Adjusted proportion of transcripts with common (red), rare (blue) or novel (green) noncoding variants in the vicinity
(+/-20kb) of a gene based on different allelic imbalance: 1.5t09,2t09,2.5t0 9, 3 to 9 and 3.5 to 9-fold difference in the discovery
set. Adjustment was based on average number of SNPs used to calculate ASE at each ASE levels.
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Figure S7. Discovery set distribution of Allelic imbalance (AI). Adjusted proportion of transcripts with common (red), rare (blue)
or novel (green) noncoding variants in vicinity (+/-20kb from gene) based on different Al: 1.5t09,21t09,2.5t09, 3 to 9 and 3.5 to 9-
fold difference. Including only transcripts for which the top associated SNP is homozygous in the sample (homAI).
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Figure S8. Enrichment of proportion of Al transcripts with rare or novel variants in vicinity of a gene compared to Al

transcripts with common variants in vicinity of a gene in the discovery set. We looked at coding (histogram) vs noncoding

variants as well noncoding variants in DHS region correlated with the promoter (Pearson correlation r>0.5 to 0.9). In red are all

transcripts where allelic imbalance was measured (allAI) and in blue are the transcripts for which the top associated SNP is

homozygous in the sample (homAl). Linear regression slope for homAI=0.076 (p-value= 0.018) and allAI=-0.007 (p-value= 0.591).

Allelic imbalance genes are considered as >=2 fold between the alleles and equally expressed genes are <=1.5 fold.
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Figure S9. Fold difference between proportion of Al transcripts with rare or novel variants in vicinity compared to Al
transcripts with common variants in vicinity in the discovery set. Only including transcripts for which the top associated SNP is
homozygous (homAI). We looked at coding (histogram) vs noncoding variants around the genes (+/-20kb from gene) and in DHS

regions correlated with the promoters (Pearson correlation r>0.5 to 0.9). We compare different level of allelically imbalanced
transcripts from 1.5 fold to 3.5.
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Figure S10. Enrichment between proportions of Al transcripts with rare or novel variants in vicinity compared to AI
transcripts with common variants in vicinity in the discovery set. Including all transcripts (allAI). We looked at coding
(histogram) vs noncoding variants around the genes (+/-20kb from gene) and in DHS regions correlated with the promoters (Pearson
correlation r>0.5 to 0.9). We compare different levels of allelically imbalanced transcripts from 1.5 fold to 3.5.
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Figure S11. Replication set distribution of allele specific expression (ASE). Distribution of proportion of ASE in transcripts with
common (red), rare (blue) or novel (green) noncoding variants in vicinity (+/-20kb from gene) adjusted for average number of SNPs
used to calculate ASE.
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Figure S12. Average number of SNPs used to calculate allele specific expression (ASE) in the replication set. Comparing all
transcripts for which ASE was measured (allAl) and transcripts for which the top associated SNP that drives the association across
samples is homozygous (homAlI).
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Figure S13. Distribution of allele specific expression of all transcripts and transcripts that did not carry the common allele in a
heterozygous state. Histogram of number of transcripts from each category (overlay of the two). Comparing all transcripts for which
ASE was measured (allAl) and transcripts for which the top associated SNP that drives the association across samples is homozygous

(homAl).
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Figure S14. Replication set distribution of Allelic Imbalance (AI). Adjusted proportion of transcripts with common (red), rare
(blue) or novel (green) noncoding variants in vicinity (+/-20kb from gene) based on different Al: 1.5t09,2t09,2.5t0 9, 3 to 9 and
3.5 to 9-fold difference. Including only transcripts for which the top associated SNP is homozygous in the sample (homAI).
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Figure S16. Enrichment between proportion of Al transcripts with rare or novel variants in vicinity compared to AI
transcripts with common variants in vicinity in the replication set. Including all transcripts (allAI). We looked at coding
(histogram) vs noncoding variants around the genes (+/-20kb from gene) and in DHS regions correlated with the promoters (Pearson
correlation r>0.5 to 0.9). We compare different levels of allelically imbalanced transcripts from 1.5-fold to 3.5.
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Chapter 3

Preface: Bridging Text between Chapters 2 and 3

Chapter 2 described the design and potential efficiency of the Immune-genetics
sequencing that we developed to study rare and low-frequency coding and non-coding
regulatory variants in autoimmune and inflammatory complex traits. In this chapter, we
used it on the Saguenay—Lac-Saint-Jean asthma familial cohort, which is a founder
population. Using this population allowed us to explore two questions: 1) is the SLSJ
population enriched in deleterious variants as seen in other founder populations and 2)
what are the impact of rare and low-frequency variants on asthma and allergy-related

traits and can we identify new genes associated to the traits.
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3.1 Abstract

The Saguenay—Lac-Saint-Jean (SLSJ) region is located in northeastern Quebec and is
known for its unique demographic history and founder effect. Since founder populations
are enriched in private variants, we first assessed differences in variant distribution and
characteristics between this population and the Finnish founder population along with
three other European populations (Sweden, United Kingdom and France). We then
explored the advantages of using the SLSJ population in the study of rare coding and
noncoding regulatory variants in complex traits such as asthma and allergies. We used
targeted sequencing of coding and non-coding regulatory regions of immune cells on 149
trios from the SLSJ asthma familial cohort and on samples from the four European
populations. Although the founder populations do not appear to have more rare or
deleterious variants, we observed that a larger proportion of private variants reached
higher frequencies and that low-frequency variants appear to be more deleterious. Thus, a
substantial number of variants private to these populations can be tested in the context of
complex traits. Genotypes were then inferred and imputed for the rest of the SLSJ cohort
(1 214 samples) and used in single variant association and gene-based tests on asthma
and allergy related-traits: eosinophil percentage, immunoglobulin (Ig)E levels and lung
function. Using a founder population like the SLSJ allowed us to identify four new genes
associated with asthma and allergy-related traits. This may help better understand the

genes and pathways implicated in the development of the pathophysiology.

Keywords: asthma, allergy, rare and low-frequency variants, founder population

102



3.2 Introduction

The Saguenay—Lac-Saint-Jean (SLSJ) region is located in northeastern Quebec and is
known for its unique demographic history and founder effect, characterized by several
population bottlenecks followed by rapid expansion [186]. Founder populations have
been useful to successfully identify rare variants associated with different complex traits
[68, 183]. The advantage resides in their homogeneity and the genetic drift resulting in
distinctive allele frequencies. In fact, deleterious alleles could overcome their selective
disadvantage by reaching higher frequencies in the population. Other studies also
suggested that an advantage of founder populations could be their enrichment in
deleterious variants [68, 77, 228], which was shown in French Canadians [78] and

Finnish populations [79]. However, several studies have challenged these observations

[80-82].

Studying rare and low-frequency variants in complex traits is a step forward from the
investigations of common genetic variants and provided additional information on the
underlying biological mechanism. Despite the important contribution of common
variants, we now know that they only explain part of the picture about the genetic basis
of complex traits [14]. Additional genetic burden may exist in the low-frequency and rare

spectrum of genetic variation that have been explored only more recently.

The first goal of this paper is to assess differences in variant distribution and
characteristics of the SLSJ founder population by comparing it to the Finnish founder
population and three other European populations from Sweden, United Kingdom, France.
Since SLSJ is part of the French-Canadian population, we wanted to follow up on

previous results and see if we could observe the same enrichment of deleterious variants
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in this population [78]. We will then explore the impact of rare and low frequency
variants in asthma and allergy-related traits in the SLSJ asthma familial cohort [186].
Asthma and allergy related traits are common diseases with an important genetic
component that remains unexplained [121]. Rare and low-frequency variants have been
previously studied to better understand the genetic basis of asthma and allergy related
traits [27, 67, 158]. Although they do not explain a large part of the missing heritability
of the disease they do take part into its architecture [27]. Rare variants exploration
identified previously associated genes (ex: GSDMB [27], IL33 [67]) and new ones (ex:
GRASP [27]), highlighting the importance of studying their role in the context of

complex traits.

In this study, we take advantage of the well-described population and availabilities of
multiple, related continuous phenotypes. Asthma includes multiple subphenotypes and
endotypes, therefore we limited our asthma definition and focused on related continuous
phenotypes could help us identify variants associated with the disease. We restricted to
IgE levels, eosinophils (Eos) percentage and lung function. The aim was to identify new
genes/variants associated with the traits to help further understand biological mechanisms
and pathways related to asthma or allergic diseases. We were able to identify one low-
frequency variant and two genes associated with Eos percentage and serum IgE levels.
These results provide rationale for sequence-based association studies in founder
populations to identify variants that may be missed using genotyping chip and/or larger

heterogeneous populations.
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3.3 Material and Methods

Samples

We sequenced 149 trios (447 samples) from the SLSJ asthma familial cohort [186] using
a custom targeted capture panel developed by our group [229] followed by next-
generation sequencing. This panel covers around 3% of the genome, including coding
and non-coding immune regulatory regions [229]. For the first part of this study, we
paired the non-related parents to samples from four other populations: Finland (FINN),
France (FR), United Kingdom (UK) and Sweden (SWE). 93 samples from the five
different populations were included and paired by mean coverage to avoid bias. All
studies received ethic approbation from their respective ethic committees. To analyze the
impact of rare variants on lung function (Forced vital capacity (FVC), Forced expiratory
volume in one second (FEV)), and Tiffeneau-Pinelli index (FEV/FVC)), serum IgE
levels and Eos percentage we used well-described samples from the SLSJ asthma familial
cohort (see Table 1 for Clinical description and' for Recruitment details). This cohort
includes 1 214 individuals from 271 families'. The 149 sequenced trios are part of larger
families, of which 110 siblings had the sequenced inferred and imputation was performed
in the rest of the cohort (see Inference and Imputation section). Lung function, serum IgE
levels and differential white blood cell counts are all described in Laprise 2014." The
study was approved by the Centre intégré universitaire de santé et de services sociaux de

Saguenay ethics committee. All subjects gave informed consent.
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Capture and Sequencing

Samples from the 149 trios from the SLSJ asthma familial cohort as well as the 372
samples from the four other European populations were all sequenced using our custom
capture panel. See Morin ez al.'® for details about panel description, capture and
sequencing. To remove any potentially related individuals, we performed an identity-by-
descent estimation using the method of moments'’ and a principal component analysis
using the SNPRelate R package'® (Supplementary Figure Sla). We also used
heterozygous/homozygous proportion to identify and remove outliers (Supplementary
Figure 1b-d). We also removed paired samples and kept 76 samples per population for a

total of 380 samples.
Variant calling and filtering

We aligned reads to the Genome Reference Consortium Human genome build 37
(GRCh37) using bwa 0.7.6a. and we called variants using HaplotypeCaller v3.2 (GATK).
We performed merge calling for all selected samples for part one together (465 samples)
and the 149 trios independently. For the 149 trios, a mean coverage of 37.6x was
obtained. We compared sequencing to genotyping data (see Genotyping section) as a
quality control using heterozygous and biallelic variants that were both in capture region
and on the genotyping chip. We remove seven samples that had a concordance of less
than 95% (440 samples remained). We also used the comparison between sequencing and
genotyping to set our “true variant cut-oft”; at read depth (dp) >10x, genotyping quality
(gq) >35, we observed and accuracy of >95% and a sensitivity of >95%. We assessed
Mendelian errors using VCFtools [232] and a parent/proband pair was excluded due to

high error rate. Mendelian errors were replaced by missing values. Variants included in
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both sample sets met these criteria: 1) Fall within the targeted regions, 2) biallelic sites,
3) dp >10x and gq >35 in at least 90% of the samples. We also remove the HLA region,
as it will be analyzed independently. A total of 192,228 variants (178,613 SNVs and
13,614 indels) were included in the first part of this study and summarized in Table 2. All
five populations had a mean coverage of 28X (18-52X). For the trios, the sequenced was
inferred and imputed in the rest of the cohort (see Inference and Imputation sections).
Functional annotation was performed using SNPeff [220] and selectively constrained
variants were identified with the Genomic Evolutionary Rate Profiling (GERP++

score)[218].

Genotyping

Samples from the SLSJ asthma familial cohort genotyping details about chip, DNA
extraction samples and variant filtering are described in Laprise 2014 [186] and Moffat et
al. 2010 [121]. Genotyping data was used for quality cut-offs assessments, inference and

imputation of the sequence in the whole cohort.

Inference and Imputation

Genotype phasing was performed using SHAPEIT v2 and duoHMM [233-235] to
consider familial structures. Pre-phasing was done using the trios (440 samples) using
merged sequencing and genotyping data as well as on the whole cohort using only
genotyping data (1 214 samples). We inferred the sequence in the non-sequenced siblings
that were part of the same families as the trios. Chromosomes were separated by

breakpoints that were identified using duoHMM and NUCFAMTOOLS [236]. We were
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able the reassemble the sequence in the siblings using informative markers (heterozygous
in one parent and homozygous in the other) and we inferred on average 98.72% (96.89-
99.33%) of the sequence at an accuracy of 99.67% (99.39-99.86%). We used the parental
haplotypes (294 samples) as the reference panel to reduce the number of duplicated
haplotypes and we imputed the sequence using IMPUTE2 [237] in the whole cohort.
Missing genotypes from the inference were added using the imputed data. A total of 112
154 variants were imputed with a mean accuracy of 99.7% (98.55-99.98%). The
imputation accuracy was measured by comparing imputed probands to their sequenced
data. Missing genotypes from the inference were added using the imputed data. We then

retained only variants that had an imputation quality of >0.8 for a total of 112 083.

Association testing and gene-based burden analysis

We explored variants associated with the five different phenotypes using EPACTS
software (Efficient and Parallelizable Association Container Toolbox:
http://genome.sph.umich.edu/wiki/EPACTS). We performed a mixed model association
called EMMAX (Efficient Mixed Model Association eXpedited) that accounts for sample
structure (population structure and relatedness (kinship coefficient)). EMMAX supports
single variant association tests and different burden tests (Combined Multivariate and
Collapsing (CMC) [238] and Sequence kernel association test (SKAT) [239] methods).
Sex and age were used as covariates as well as height for lung function assessment. We
performed single variant analyses on the low-frequency variants (MAF >=0.01 and
<0.05) that were not common in UK10K [65] or 1000 genomes (1KG) [55]. For the gene-

based test, we collapsed rare and low-frequency variants per genes, including 20KB
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around it and only included gene region that had at least two variants for a total of 14 646

<3.4e-6 or a FDR 5%).
(p )

DNA methylation

We performed DNA methylation association study on a subset of individuals from the
SLSJ asthma cohort in whole blood (167 samples) and isolated Eos from blood (24
samples). Eos cell isolation was performed as described in Ferland ef al. [240] and DNA
extraction and sodium bisulfite conversion were described in Liang et al. [197].
Methylation levels were assessed using the Infinium HumanMethylation450 BeadChip
array (Illumina, San Diego, CA, USA). Normalization steps were described in Morin et
al.[241] and we applied a robust linear regression model including age and sex as
covariates as well as cell type composition for whole blood. We performed association
for serum levels, FEV/FVC and asthma for the genes associated with Eos percentage. To
assess if results were obtained by chance, we resample randomly 1000 times the same
number of CpG as observed in the vicinity of each gene and observed if we get the same

number of CpG that reached p<0.05.
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3.4 Results

Founder population are enriched with private low-frequency and common variants

For the first goal, we compared SLSJ samples we paired to samples from the four other
European populations (76 samples per population, 380 total). Given the small number of
samples that were included in the study, we were only able to assess singletons (variants
seen once) in the rare variant spectrum. We first observed a smaller number of variants in
both founder populations (Table 1), which was reflected in the number of singleton
variants (Supplementary Table 1 and Supplementary Figure 2). A smaller proportion was
observed in the SLSJ (21.6%) and FINN (19.4%) populations compared to other
populations (28%, 24% and 25% for FR, SWE and UK respectively, Figure 1a), which
may reflect the bottleneck events that characterize these populations. Similar proportions
of low-frequency variants were observed across populations. When looking at the number
of variants per samples, we observed a higher number of low-frequency variants in the
founder populations (ANOVA p<2e-16; Figure 1b). Another interesting aspect resides in
the private variants (seen in one population) that reach higher frequency in the SLSJ and
Finnish populations (Figure 1c-d). We then wanted to assess if we observed an
enrichment of functional variants in the SLSJ and Finnish founder populations. We did
not observe any larger proportion of functional (non-synonymous, loss of function (LoF)
or GERP++>1) rare, low-frequency or common variants in the two founder populations
(Supplementary Figure 3). However, we observed a tendency of higher non-
synonymous/synonymous ratio in the low-frequency (p<0.05) and singleton portion of
the founder populations compared to the others (Supplementary Figure 4a). The tendency
was also observed when looking at the per sample distribution (p<5e-10, Supplementary

Figure 4c-d). We also looked at the enrichment of LoF, non-synonymous and
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synonymous variants of the two founder populations compared to the population from
FR, SWE and UK (Supplementary Figure 5). We observed an enrichment of non-
synonymous low-frequency variants when comparing the SLSJ to FR and UK and when
comparing the FINN to FR. The largest enrichment was observed for LoF variants;
however, this did not reach significance given limited sample size. Similar pattern was
observed when looking only at private variants (Supplementary Figure 8). We also
looked at the average GERP++ score per sample distribution and found no difference
between the populations (Supplementary Figure 6). However, focusing on low-frequency
variants we observed a higher GERP++ score in the founder population compared to the
French and UK (Supplementary Figure 7 and 9). These results were also reflected in the
non-synonymous variants but not the synonymous or the LoF ones. Overall, we observed
a higher proportion of private variants reaching higher frequencies in the founder
populations. We also observed a tendency of enrichment for more deleterious variants in

the founder population, especially in the low-frequency spectrum.

Assessing the impact of rare and low-frequency variants in asthma and allergy related-

traits: Single-variant association analyses

We used the SLSJ asthma familial cohort that comprises 1 214 samples from extended
families. We used data from the unrelated parent of the 149 sequenced trios to infer and
impute the sequence in the rest of the cohort (see Methods section). We assessed the
individual effect of the coding and non-coding low-frequency (MAF between 1% and
5%) on five different asthma and allergy related traits (serum levels, FEV;, FVC,

FEV/FVC and Eos percentage). Both Manhattan and qqplot (lambda from 0.98 to 1.075)
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can be found in Supplementary Figure 10. We observed a significant association
(p<3.26e-6) with Eos percentage for a SNV (rs1386931) located in the 3°’UTR of CXCR6
and in the intron of the FYCO1 genes (Table 3). We also observed another SNV reaching
suggestive significance (p<le-5) with serum levels and located in the intron of the NRP2
gene (Table 3). No variants were identified for lung function. We then tested if the two
SNVs reaching P<le-5 were also associated with other the other traits as well as asthma,
atopy, allergic asthma, rhinitis and atopic dermatitis (Supplementary table 4). The SNV
in the NRP2 intron associated with serum IgE levels was also marginally associated with
atopy and allergic asthma. The significantly associated SNVs for Eos percentage had
p<0.05 to serum IgE levels and atopic dermatitis. Both of the SNVs were also found in
1KG and UK10K. The SNV associated with Eos percentage (rs1386931) has a higher
minor allele frequency in SLSJ (0.043) compared to the one observed in 1KG (0.021) and
UKI10K (0.019). The other variant (rs849558) had slightly higher frequency in SLSJ

(0.019) compared to UK10K (0.011).

Gene-based analyses

We then used gene-based test that combines variants with MAF<5% in a region to get
more power to detect association. We used SKAT and CMC tests as implemented in
EPACTS on serum IgE levels, FEV,, FVC, FEV|/FVC and Eos percentage. We
combined rare and low-frequency variants together by gene including 20kb region around
it. Manhattan and qqplots (lambda values range from 1 to 1.05 for CMC and 1.02 to 1.13
for SKAT) for each phenotype and the two tests are presented in Supplementary Figures

11 and 12. Genes with p<3.4e-6 for one of the two tests are listed in Table 4 and the ones
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that reached P<le-5 in Supplementary Table 5. We also reported the lead SNVs that were
identified when running the tests again removing one variant at a time. Two genes were
significantly associated with Eos percentage (MRPL44) and serum IgE levels (NRP2).
One SNV lead each association: a rare one for MRPL44 (rs76568361) and a low-
frequency one for NRP2 (rs849558). The latter almost reached significance in the single
variant association test (Table 3). The lead variant for MRPL44 is intergenic and is also
located close to SERPINE2 (SKAT p= 1.47¢-5) and has much smaller frequency in the
1KG European populations and in UK10K (Supplementary Table 5). Moreover, we
identified four marginally associated genes (p<le-5, Supplementary Table 5): two with
Eos percentage (SHMTI and SMCRS) and two with FEV/FVC (CCDC126 and CLK2P).
The lead SNV was the same for SHMT1 and SMCRS, a rare missense variant
(rs79875842) located in the latter gene. The same situation was observed for the
FEV/FVC genes where the two lead SNVs were missense variants (rs73077128 and
rs146336907) for the pseudogene CLK2P. The variant rs146336907 was not observed in

1KG or in UK10K (Supplementary Table S5).

DNA methylation in associated genes

To support our associations observed from single variants and gene-based association
test, we performed DNA methylation analyses of CpG located +/- 20KB from the
associated genes (n= 182, Supplementary Table 6) in whole-blood (167 samples) or
isolated Eos (24 samples). We observed nine CpGs with p<0.05 for serum IgE levels in

isolated Eos in the NRP2 gene, which is larger than expected (4.8), as well as a CpG
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reaching significance located in the gene intron (p=3.7e-4, n=49). This result supports the

importance of NRP2 gene association with serum IgE levels.

3.5 Discussion

In our study, we explored two aspects of rare and low-frequency variants in the SLSJ
population: their distribution and the enrichment of deleterious variants as well as their
impact on asthma and allergy related traits. For the first goal, we observed a smaller
proportion of private variant found in the SLSJ and FINN founder population, which does
not supports what was previously observed in the French Canadian population [78], but
does for the FINN one [79]. However, our results reflect both studies as we observed a
tendency for enrichment of deleterious variants in the two founder populations, especially
in the low-frequency spectrum of variants. We did not reach significance in all functional
variant categories probably due to limited sample size. Another interesting result was the
larger proportion of private variants reaching higher frequencies in the founder
populations, reflecting the genetic drift of the founder population. The strength of our
assessment resides in comparing five populations, including two founder ones, all

processed the same way and paired based on mean coverage.

We were able to identify one significant low-frequency variants associated with Eos
percentage and a suggestively significant one associated with serum IgE levels. They
were both non-coding highlighting the importance of exploring these regions to
understand complex traits. The first one is located in the intron region of the FYCOI gene
and in the 3’UTR of the CXCR6 gene. FYCOI encodes for a protein that plays a role in

the transport of autophagic vesicles [242]. It was never associated with eosinophil
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percentage in the past or to any asthma or allergy relate trait. However, autophagy
process has been previously linked to asthma [243, 244] and genes having an important
role in it were associated with asthma before [191, 245, 246]. CXCR6 encodes for a
chemokine receptor expressed at the surface of multiple immune cells and was previously
linked to asthma and Th2 inflammation in the lung [247]. The second suggestively
associated variant is located in the intron of the NRP2, which is a transmembrane
receptor implicated in multiple processes, including in the immune system for antigen
presentation, phagocytosis and cell-cell interaction®'. This gene was also associated in the
gene-based test; being led by the same associated SNV and was supported by DNA
methylation association. We also identified MRPL44 gene associated with eosinophil
percentage and known to be implicated in protein synthesis in mitochondria. The
mitochondria play an important role in Eos apoptosis and survival **. Moreover, the lead
SNV for MRPL44 is located in the promoter region of the SERPINE?2 gene, for which the
association was suggestive (p=1.47e-5). SERPINE? is a serine protease inhibitor and is a
known susceptibility gene for chronic obstructive pulmonary disease (COPD) [248],
emphysema [249] and asthma [250]. However, no link has been observed with Eos so far.
The other four suggestively associated genes using gene-based test, actually pointed to
two genes: SMCRS associated with Eos percentage and the CLK2P pseudogene
associated with FEV/FVC. SMCRS, just like FYCOI, appears to potentially regulates the

transcription of autophagy related genes [251].
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3.6 Conclusion

In this study, we first showed that founder populations appear to be enriched in
deleterious low-frequency variants. We then pursued testing the impact of rare and low-
frequency variants in asthma and allergy related-traits. Using our custom capture panel
on the SLSJ founder population we identified coding and non-coding rare and low-
frequency SN'Vs associated with Eos percentage, serum IgE levels and FEV/FVC. One
of the lead SNV in the gene-based test was private to the SLSJ population highlighting
the importance of using sequencing data in founder population to identify new genes
associated with complex traits. Other SNV also presented marginally higher frequency
compared to the European population. We note that quantitative rather than discrete
variation reached significance underscoring importance of intermediate phenotypes in
complex traits. We also demonstrate the importance of addressing the non-coding regions
of the genome by using sequencing studies, as three of the variants identified were non-
coding. Overall, we showed the advantage of using a well-described founder population
and the importance of assessing non-coding regions to better decipher the genetic basis of

complex traits.
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3.8 Figures and Tables

Table 1. Clinical description of the SLSJ asthma familial cohort

All samples | All trios Probands® | Parents Siblings
(n=1214) (n=447) (n=149) (n=298) (n=110)

General Characteristics
M:F ratio 1:1.17 1:1.1 1:1.3 1:1 1:1.2
Age, mean (range)” 38 (2-96) 36 (3-75) 18 (3-45) 45 (27-75) | 14 (2-44)
Age of onset" 16 (0-75) 14 (0-64) 7 (0-37) 24 (0-64) | 6(0-44)
Smoking status % (never 646;339;209 | 51;27;22 82:6;12 36;37;27 82:7;11
smoker; former smoker;
current smoker)"
Clinical descriptive data
FEV,, L (SD)* 2.93 (0.82) 2.99 (0.76) | 2.93(0.80) | 3.01(0.74) | 2.93(0.88)
FVC, L (SD)' 3.73 (1.02) 3.82(0.94) | 3.71(1.04) | 3.87(0.88) | 3.52(1.10)
FEV/FVC, % (SD)® 94 (9) 72.5(22.4) | 70.8(29.6) |72.6(21.2)|77.7(21.1)
Serum IgE (SD)" 471 (1564) 432 (1406) | 806 (2309) | 251(501) | 276 (404)
Asthma, n (%)’ 592 (49) 264 (59) 149 (100) 116 (36) 52 (47)
Allergy, n (%)’ 677 (57) 287 (64) 121 (82) 170 (57) 73 (68)

With asthma, n (%) | 433 (36) 206 (46) 121 (82) 90 (30) 37 (35)
Eosinophils ©

Count in 1°9/L (SD) | 0.24 (0.22) 0.25(0.23) |0.32(0.34) |0.21(0.15) | 0.26 (0.26)

Percentage (SD) 3.6 (2.8) 3.7(2.8) 4.4 (3.3) 3.3(2.4) 3.953.4)

aProbands are the first family member recruited in the cohort. " Mean age calculated for 1 212
subjects, 447 trios members, 149 probands, 298 parents and 110 siblings. © Mean age of onset
calculated for 567 subjects, 254 trios members, 142 probands, 112 parents and 48 siblings
ISmoking status was available for 1 194 subjects, 444 trios members, 148 probands, 296 parents
and 107 siblings. Ex-smokers are defined as subject who stopped smoking since over one year.
“The mean forced expiratory volume in 1 s (FEV) is measured in L in 925 subjects, 429 trios
members, 141 probands, 287 parents and 94 siblings. "The mean forced vital capacity (FVC) is
measured in L in 908 subjects, 414 trios members, 134 probands, 279 parents and 92 siblings. &
The mean FEV, (L)/ FVC (L) ratio is calculated in % for 907 subjects, 414 trios members, 134
probands, 279 parents and 93 siblings. " The geometric mean of immunoglobulin (Ig) E serum

concentration is calculated for 996 subjects, 408 trios members, 142 probands, 292 parents and 99

siblings. ' Present or past documented clinical history of asthma. Asthme phenotype is available
for 1207 subjects, 447 trios members, 149 probands, 298 parents and 110 siblings.’ Allergy is
defined as one positive skin prick testing (wheal diameter >3mm at 10 min). The allergy
phenotype is available for 1193 subjects, 445 trios members, 147 probands, 296 parents and 106
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siblings. * Cell type profiles are available for 967 subjects, 418 trios members, 137 probands, 283
parents and 98 siblings.
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Table 2. Overall description of variants included in the analyses

All SLSJ FINN FR SWE UK
Mean 28.83 28.88 28.86 28.79 28.81 28.82
coverage
Ts/Tv 2.24 2.25 2.25 2.24 2.24 2.25
Total 178 614 103 889 100 696 112 047 106 375 108 511
SNVs
Total 13 614 7 780 7 789 8426 8093 8426
Indels

SLSJ: Saguenay—Lac-Saint-Jean, FINN: Finland, FR: France, SWE: Sweden, UK: United
Kingdom, Ts/Tv: transition to transversion ratio, Indels: insertions and deletions.

Table 3. Results of single low-frequency SNV association study with asthma related trait
(P<le-5)

Trait rsID Gene Alleles | MAF | P-value | Effect (SE)
Serum IgE | 2:206562250 | NRP2; intron T/C 0.019 | 4.79¢-6 | -1.243
levels ; 18849558 (0.270)
Eosinophils | 3:45989502; | CXCR6; 3’UTR and | C/T 0.043 | 1.77e-6 | 1.534
percentage | rs1386931 FYCOI; intron (0.319)

CXCR6: C-X-C motif chemokine receptor 6, IgE: immunoglobulin E, MAF: minor allele
frequency, NRP2: neuropilin 2, SE: standard error, UTR: untranslated region.

Table 4. Genes significantly associated with asthma and allergy related traits

Trait Gene n SNPs | n Fraction | P-value Lead SNVs?
passing' | with SKAT/CMC
rare
Eosinophils | MRPL44 | 8 4 0.026 2.97e-6/5.74¢-5 2:224835223
percentage (rs76568361)
Serum IgE | NRP2 4 2 0.001 3.16e-6/0.8237 2:206562250
Levels (rs849558)

"Number of variants passing threshold (MAF<0.05). “Test were ran again removing one
variant at a time, lead SNV correspond to the one for which the entire association rely on.
CMC: combined multivariate and collapsing test, IgE: immunoglobulin E, MRPL44:
mitochondrial ribosomal protein L44, NRP2: neuropilin 2, SKAT: sequence kernel
association test, SNV: single nucleotide variations.
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Figure 1

A) 1.00 B) i
1400 -
0754
o
E s = factor(pop)
£ var E] 300 u Edsts
= s
commen FINN
S 0504 u g W
S .Iow_freq . FR
'g B =r< Gingiotons) § 12004 BE swe
g 3 B ux
a
0.254
1100
0.004 1
sLsy FINN FR SWE UK -8 i Po ur':"ons Sne ue
Population P
C) 1.004 D)
| 150~
» 0759 c
£ 2
£ 3 factor(pop)
=
> = sLs)
@ var 2 400- W
INI
5 [ [ B e
& 0504 s B R
s Wov s £
s SWE
£ [ - W
S | e UK
g : B
3 L
o 254 : . .
0.004 ) ) . .
sLsJ FINN R SWE UK
sLsy FINN FR SWE UK Populations
Population

Figure 1. Distribution of variants across founder populations compared to three
other European populations. A) Proportion of common (MAF>0.05, red), low-
frequency (0.05<MAF>0.01, blue) and rare (MAF<0.01, green) variants in each
population. B) Low-frequency variants distribution per sample C) Proportion of private
variants of each population, common (MAF>0.05, red), low-frequency (0.05<MAF>0.01,
blue) and rare (MAF<0.01, green), D) Distribution of private variants in each population
(not including singletons). SLSJ: Saguenay—Lac-Saint-Jean, FINN: Finland, FR: France,
SWE: Sweden, UK: United Kingdom
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3.9 Supplementary information

Supplementary Table 1. Summary of variants in the five populations

All SLSJ FINN FR SWE UK

Number | All 178 614 103 889 100 696 112 047 106 375 108 511
of SNVs

Common | 58 568 58223 58421 58 404 58 285 58413

Low-freq | 21949 23 362 22 899 22 362 22 527 22229

Rare 98 096 NA NA NA NA NA

Singletons | 64 834 22304 19376 31281 25563 27 869
Number | All 13614 7780 7789 8426 8093 8259
of indels

Common | 3 981 3936 3970 3998 4016 4014

Low-freq | 2019 1 966 2 087 1976 2038 1 947

Rare 7614 NA NA NA NA NA

Singletons | 4 852 1 878 1 704 2 480 2039 2 298

FINN: Finland, FR: France, indels: insertions and deletions, SLSJ: Saguenay—Lac-Saint-Jean,

SNVs: single nucleotide variations, SWE: Sweden, UK: United Kingdom.
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Supplementary Table 2. Summary of functional variants in the five populations

SLSJ FINN FR SWE UK

All Synonymous 9323 9088 10 197 9538 9750

Non- 12 094 11707 13 249 12 511 12 673

Synonymous

LoF 459 443 486 456 470
Common Synonymous 5217 5275 5242 5211 5238

Non- 5508 5638 5 646 5576 5609

Synonymous

LoF 160 164 166 160 160
Low- Synonymous | 2 120 2072 2 084 2107 2 054
frequency

Non- 3089 2993 2758 2 904 2762

Synonymous

LoF 129 119 95 116 105
Singletons Synonymous 942 770 1 669 988 1277

Non- 1937 1578 2 990 2 083 2374

Synonymous

LoF 110 100 148 104 136

FINN: Finland, FR: France, LoF: Loss of function, SLSJ: Saguenay—Lac-Saint-Jean, SWE:
Sweden, UK: United Kingdom.
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Supplementary Table 3. Summary of private variants in the five populations

SLSJ FINN FR SWE UK

All 14 909 12 037 20 513 13 839 16 677

Common 25 51 0 0 0

Low-freq 3052 2493 960 931 779

Singletons 11832 9493 19 553 12 908 15 898
All Synonymous 1189 962 1756 1 057 1329

Non- 2 409 1 996 3101 2223 2 488

Synonymous

LoF 135 122 152 111 140
Common Synonymous 0 3 0 0 0

Non- 2 8 0 0 0

Synonymous

LoF 0 1 0 0 0
Low- Synonymous 247 189 87 69 52
frequency

Non- 470 410 111 140 114

Synonymous

LoF 25 21 4 7 4
Singletons Synonymous 942 770 1 669 988 1277

Non- 1937 1578 2 990 2 083 2374

Synonymous

LoF 110 100 148 104 136

FINN: Finland, FR: France, LoF: Loss of function, SLSJ: Saguenay—Lac-Saint-Jean, SWE:
Sweden, UK: United Kingdom.
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Supplementary Table 4. Low-frequency variants reaching p<le-5 in single variant association and their significance level (p-value)

in other traits.

rsID Gene Asthma | Atopy | Allergic | Rhinitis | Atopic Serum IgE | Eosinophils | FEV; | FVC FEV,/
asthma dermatitis | Levels percentage FVC
2:206562250; | NRP2; intron 0.7986 0.0040 | 0.0134 0.0946 0.0773 4.79¢-6 0.093 0.1959 | 0.2538 | 0.1996
rs849558
3:45989502; CXCR6; 3°’UTR | 0.1658 0.2422 | 0.7746 0.8691 0.0353 0.0052 1.77e-6 0.3213 | 0.5572 | 0.5001
rs1386931 and FYCOI;
intron

CXCR6: C-X-C motif chemokine receptor 6, FEV,: forced expiratory volume in one second, FVC: forced vital capacity, FYCO1: FYVE and

coiled-coil domain 1, IgE: Immunoglobulin E, NRP2: neuropilin 2.




Supplementary Table 5.

Genes reaching p<le-5 using CMC or SKAT in one of the five asthma and allergy related phenotype.

Trait Gene n SNPs | n Frac P-value Lead SNVs® P-value after | MAF lead P-value
passing' | with SKAT/CMC removing SNV (1IKG single var
rare lead SNV and UK10K)
Eosinophils | MRPL44 8 4 0.026 2.97e-6/5.74¢-5 2:224835223 0.4425/0.4168 | 0.0067 (NA NA
percentage rs76568361 and 0.00026)
SHMTI 7 5 0.017 6.21e-6/3.13¢-4 17:18220268 0.7761/ 0.0046 NA
rs79875842 0.7371 (0.0145 and
0.0148)
SMCRS 8 6 0.018 6.85e-6/3.66¢-4 17:18220268 0.8431/ 0.0046 NA
rs79875842 0.6837 (0.0145 and
0.0148)
FEV,/FVC | CCDCIi26/ | 3 3 0.022 3.19e-5/4.62¢-6 Both SNV: 8.93e-4 and 0.0036 NA
CLK2P 7:23624887 0.0018/ 8.65e- | (0.0106 and
rs73077128, 4 and 0.0018 0.0082),
7:23625481 0.0062 (NA)
rs146336907
Serum IgE | NRP?2 11 8 0.224 3.16e-6/0.8237 2:206562250 0.0371 (0.021 | 0.0191 4.80e-6
Levels rs849558 and 0.019)

"Number of variants passing threshold (MAF<0.05). “Test were ran again removing one variant at a time, lead SNV correspond to the
one for which the entire association rely on. IKG: 1000 genomes project, CCDC126: coiled-coil domain containing 126, CLK2P:
CDC like kinase 2 pseudogene, CMC: combined multivariate and collapsing test, FEV/FVC: Tiffeneau-Pinelli index, IgE:
immunoglobulin E, MAF: minor allele frequency, MRPL44: mitochondrial ribosomal protein L44, NRP2: neuropilin 2, SHMT1:
serine hydroxymethyltransferase 1, SKAT: sequence kernel association test, SMCRS: Smith-Magenis syndrome chromosome region
candidate 8, SNV: single nucleotide variations.
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Supplementary Figure S1
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Supplementary Figure S1. Samples selection from the five populations A) Identity-by-
descent estimation using method of moments including all 380 samples, B) Principal
component analysis (PCA), C) Heterozygous to homozygous proportion compared to mean
coverage, D) Total number of variants compared to mean coverage. FINN: Finland, FR:
France, SLSJ: Saguenay—Lac-Saint-Jean, SWE: Sweden, UK: United Kingdom
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Supplementary Figure S2
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Supplementary Figure S2. Per sample distribution of singletons. FINN: Finland, FR:
France, SLSJ: Saguenay—Lac-Saint-Jean, SWE: Sweden, UK: United Kingdom
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Supplementary Figure S3
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Supplementary Figure S3. Proportion of common (MAF>0.05, red), low-frequency
(0.05<MAF>0.01, blue) and rare (MAF<0.01, green) variants in each population. A)
non-synonymous, B) synonymous, C) Loss of function and D) GERP++>1 variants from
each population. FINN: Finland, FR: France, SLSJ: Saguenay—Lac-Saint-Jean, SWE:

Sweden, UK: United Kingdom
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Supplementary Figure S4
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Supplementary Figure S4. Non-synonymous to synonymous ratio A) Total number
per population, B) Per sample distribution, C) Low-frequency per sample distribution and
D) Singletons per sample distribution. FINN: Finland, FR: France, SLSJ: Saguenay—Lac-
Saint-Jean, SWE: Sweden, UK: United Kingdom.
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Supplementary Figure S5
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Supplementary Figure S5. Common, low-frequency and singleton variants
enrichment in A) Saguenay—Lac-Saint-Jean (SLSJ) and B) Finland (FINN) compared to

France (FR), Sweden (SWE) and United Kingdom (UK).

131



Supplementary Figure S6
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Supplementary Figure S6. Average GERP++per sample distribution per population,
A) All, B) non-synonymous, C) loss of Function (LoF) and D) Synonymous. FINN:
Finland, FR: France, SLSJ: Saguenay—Lac-Saint-Jean, SWE: Sweden, UK: United

Kingdom.
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Supplementary Figure S7
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Supplementary Figure S7. Average GERP++per sample of low-frequency variants
per population, A) All, B) non-synonymous, C) loss of Function and D) Synonymous.
FINN: Finland, FR: France, SLSJ: Saguenay—Lac-Saint-Jean, SWE: Sweden, UK: United

Kingdom.
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Supplementary Figure S8
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Supplementary Figure S8. Private low-frequency and singleton variants enrichment
in A) Saguenay—Lac-Saint-Jean (SLSJ) and B) Finland (FINN) compared to France (FR),
Sweden (SWE) and United Kingdom (UK).
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Supplementary Figure S9
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Supplementary Figure S9. GERP++ score distribution of private variants per
population, A) All, B) non-synonymous, C) loss of Function, D) Synonymous. FINN:
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Supplementary Figure S10
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Supplementary Figure S10. Manhattan and qqplot for single variants association
test for A) serum IgE Levels (Lambda = 1.009408) and B) Eos Percentage (Lambda=
1.075069).

136



Supplementary Figure S11
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Supplementary Figure S11. Manhattan and qqplot for CMC test with FEV1/FVC
(Lambda= 1.04)
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Supplementary Figure S12
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Supplementary Figure S12. Manhattan and qqplot for SKAT test with A) Serum IgE
Levels (Lambda = 1.05) and B) Eos Percentage (Lambda= 1.13)
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Chapter 4

Preface: Bridging Text between Chapters 3 and 4

Following on Chapter 3, we again used the SLSJ asthma familial cohort to explore the
genetic basis of asthma and allergy-related traits. In this chapter, we used GWAS and
DNA methylation data (EWAS) and linked them through mQTLs to identify new genes

associated with allergic rhinitis with or without asthma.
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4.1 Abstract

Allergic rhinitis is a common chronic disorder characterized by immunoglobulin E-
mediated inflammation. To identify new genes associated with this trait, we performed
genome- and epigenome-wide association studies and linked marginally significant CpGs
located in genes or its promoter and SNPs located 1 Mb from the CpGs, by

identifying cis methylation quantitative trait loci (mQTL). This approach relies on
functional cellular aspects rather than stringent statistical correction. We were able to
identify one gene with significant cis-mQTL for allergic rhinitis, caudal-type homeobox 1
(CDX1). We also identified 11 genes with marginally significant cis-mQTLs (p < 0.05)
including one with both allergic rhinitis with or without asthma (RNF39). Moreover,
most SNPs identified were not located closest to the gene they were linked to through cis-
mQTLs counting the one linked to CDXI located in a gene previously associated with
asthma and atopic dermatitis. By combining omics data, we were able to identify new
genes associated with allergic rhinitis and better assess the genes linked to associated

SNPs.

Key words: Allergic rhinitis, asthma, GWAS, EWAS, mQTLs, omics
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4.2 Introduction

Allergic rhinitis is one of the most common allergy worldwide and one of the most
common chronic disorders among children and adults [252]. Early sensitization to
aeroallergens and food combined with the presence of atopic dermatitis, characterized by
an immunoglobulin E (IgE)-mediated inflammation, can result in the development of
asthma and/or allergic rhinitis later in life in a process called “atopic march” [87].
Genetic studies identified hundreds of genes associated with allergic rhinitis and genome-
wide association studies (GWASs) pinpointed single nucleotide polymorphisms (SNPs)
associated with its development [133, 135]. However, a majority of identified SNPs lie in
the non-coding genomic region, making it difficult to identify the targeted genes. Given
that DNA methylation may have an impact on gene regulation [253], the probability of
detecting true positive associations should be improved by combining nominally
significant data from genomics and epigenomics and linking them by quantitative trait
loci (QTL) analysis. Methylation QTLs (mQTLs) allow assessing the impact of DNA
sequenced variations (SNPs) on DNA methylation. They have been assessed in different
tissues and cell types and were shown to overlap with GWAS hits [254-257]. We used
this approach to identify allergic rhinitis genes and illustrate its usefulness in the context

of a complex trait.
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4.3 Materials and Methods

Individual selection, characterization, and sample preparation

We used data available from the Saguenay—Lac-Saint-Jean (SLSJ) asthma familial
collection from Québec, Canada, that has data for rhinitis and allergies (Table 1). This
population is know for its founder effect and is more homogeneous than a cosmopolitan
population [258, 259]. Individuals affected with rhinitis and allergies, with or without
asthma, were analyzed as cases. Individuals with no rhinitis, allergies and asthma were
considered as controls. In this study, patients were defined as asthmatics based on if they
either had a reported history of asthma (validated by a physician) or if at recruitment they
manifested asthma-related symptoms and positive PCyy (<8 mg/ml) [186]. Rhinitis was
self-reported and the subject had to answer “yes” to at least one of the following
questions: Have you ever had rhinitis, Have you ever had hay fever, Have you ever had
sneeze or rheum after a contact with: hay, flowers, animals, dust? Allergy was defined
by a skin prick test for 26 aeroallergens (>=3mm). All subjects were recruited and
evaluated out of the pollen season [186]. Recruitment and clinical evaluation of
individuals as well as phenotype description can be found in Laprise 2014 [186]. All
subjects gave their informed consent and the project was approved by the research ethic

committee of the Centre intégré universitaire de santé et de services sociaux du SLSJ.

Genome-wide association study (GWAS)
A total of 508 subjects (321 cases and 187 controls) and 312 subjects (125 cases and 187
controls) were included in the analysis for allergic rhinitis with or without asthma

respectively. The same group of control was used to compare to both phenotypes (i.e.
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allergic rhinitis and allergic rhinitis with asthma). DNA extraction, genotyping methods
and statistical analyses were described previously [186]. Genotyping was performed
using the Illumina 610K Quad array (Illumina, San Diego, CA, USA). Association test
was performed using a quasi-likelihood score test using the MQLS program (Release 1.5,

http://www.stat.uchicago.edu/~mcpeek/software/MQLS/index.html), which allows

performing case-control association analysis using related individuals [260]. The kinship
coefficient was calculated using KinlnbCoef program (version 1.1,

http://www.stat.uchicago.edu/~mcpeek/software/KinInbcoef/index.html). We included in

the analysis SNPs with minor allele frequency (MAF) >0.05, p-value for Hardy
Weinberg equilibrium >0.0001, and overall call rate >95%. Samples with genotyping rate
<95% were excluded. A total of 633 samples (321 subjects with allergic rhinitis with
asthma, 125 subject with allergic rhinitis only and 187 controls (used to compare to both

phenotypes)) and 506,388 SNPs were included in the analysis.

Epigenome-wide association study (EWAS)

A total of 31 controls and 48 cases for allergic rhinitis with asthma or 30 cases for
allergic rhinitis alone were included in the EWAS analysis. These samples are a subset of
the ones used in the GWAS analysis. Unrelated subjects were included based on having
allergic rhinitis with or without asthma, having no asthma, allergies or rhinitis, and based
on having high or low levels of IgE. DNA extraction and sodium bisulfite conversion
methods were described previously [197]. The assay was carried out on the Infinium
HumanMethylation450 BeadChip array (Illumina, San Diego, CA, USA). The analysis

was performed using the RnBeads Bioconductor R package [261]. We removed probes
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with at least one of the following characteristics: (1) weak signal (p>0.01) (2,128 CpG
sites), (2) SNP-enriched sites (4,100 sites), (3) out of a CpG context (not on a CG) (3,149
sites) or (4) located on sex chromosomes (11,129 sites). A total of 465,071 CpG sites
were analyzed initially. Signal was then normalized, first by scaling to the internal
controls using the methylumi R package [262], then applying the method of subset-
quantile within array normalization (SWAN) implemented in the minfi R package [263,
264]. A total of 2,203 sites were removed due to missing data. We removed probes that
mapped multiple genomic regions (=90 % sequence similarity), have a variant less than
10bp from the CpG or that have >2 SNPs in it. A total of 374,498 CpG sites (80.5%)
were analyzed for differential DNA methylation using limma package [265]. All samples
had cell counts for eosinophils, basophils, monocytes, lymphocytes and neutrophils. The
cell percentages were used as covariates as well as sex, age, smoking status, and batch

effect.

Methylation quantitative trait loci analysis (mQTLs)

To perform the mQTL analyses, we used associated SNPs (p<0.05) and CpGs (p<0.05
and AP>0.05) in the GWAS and EWAS for both traits. We kept associated CpGs that
were located in either the gene body or 1.5kb upstream of the transcription start site,
keeping 88 and 144 CpGs for allergic rhinitis with or without asthma respectively. SNPs
were kept if present in all samples and if the three genotype groups (homozygous
reference, heterozygous and homozygous alternative) were observed at least 5 times. A
total of 529 and 625 SNPs were included in the analysis for allergic rhinitis with or

without asthma respectively. We analyzed cis-mQTLs where the CpG-SNP combination
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was less than 1Mb apart from each other based on the distance used by the GTEX

consortia for their cis-eQTLs (http://www.gtexportal.org/home/documentationPage). We

used a Bonferroni correction to evaluate significance thresholds. We computed mQTLs
for these SNP-CpG pairs using an additive linear model using the R package
MatrixEQTL [266]. Same covariates as in EWAS were included in this analysis. A total
of 274 (Bonferroni p=0.05/274=1.8e-4) and 500 (Bonferroni p=0.05/500=1e-4) CpG-
SNP comparisons were performed for allergic rhinitis with or without asthma

respectively.
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4.4 Results and Discussion

In this study, we used a novel approach that links genetics (SNPs) and functional (CpGs)
data through the use of mQTLs identifying new genes associated to allergic rhinitis with
or without asthma (Figure 1). It relies on functional cellular data and reduces the stringent
cut-off normally used in GWAS. Even though this is a pilot experiment with small
number of samples, we identified one significant cis-mQTL for allergic rhinitis located in
CDXI (p=6.41e-5) (Table 2). We also observed nine nominally associated cis-mQTLs
located in five genes for allergic rhinitis and 16 located in nine genes for allergic rhinitis
with asthma (Table 2). One gene was reported being associated in both traits: RNF39. It
has the highest number of mQTLs identified in both allergic rhinitis with (four) or
without asthma (five).

The significantly or nominally associated genes were not associated to any related trait
before. Interestingly, the majority of the genes linked to a SNP by the cis-mQTLs are not
the closest ones, thus would not be the ones reported in a regular GWAS study. For
example, all of the significant SNPs reported for the RNF39 cis-mQTLs are located
300Kb to 1Mb away from the gene and are located closer to other genes, which were
previously associated with pulmonary function (rs2844833-HLA-F [267], 1s2523872-
MUC22 [267], 1s2517504-HCG22 [154, 267], 1s2535238-ZFP57 [267]). The best
example remains the one for the significantly associated mQTL that links rs888989 to a
CpG located in the promoter region of the CDX/ gene. The SNP is located in an intron of
TNIPI and 900kb from CDX]I. The former was previously associated to atopic dermatitis
[137] and asthma [268]. According to the GTEx portal (http://www.gtexportal.org/),

rs888989 and CDX! form an eQTL in the lungs (p=0.04), which is not the case for
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TNIPI (p=0.94). This reinforces the possible implication of this gene in allergic rhinitis
and shows that our method may better assess the true genes of interest linked to the
associated SNPs.

The originality of our approach resides in combining GWAS and EWAS nominally
associated SNPs and CpGs, using cis-mQTL data, to identify genes of interest in this
disease. This method has the potential to reduce false negative findings by relying on the
cellular mechanisms of gene regulation compared to the use of stringent statistical
corrections. The use of a well-described collection coming from a founder population and
including subjects selected based on the same precise criteria allowed a more unified
genetic background and phenotype. However, since this is a pilot study, the limited
number of samples included in the EWAS and the GWAS may constraint the power of
the findings. We were not able to test SNPs previously associated to the trait in previous
GWAS:Ss because they did not meet the criteria to be included in the mQTL analysis. We
also analyzed SNPs and CpGs preselected in the arrays by the manufacturers, thus
excluding potentially important SNPs or CpG sites, which are not in linkage
disequilibrium. DNA methylation analysis using whole blood could have limited the
findings, even if correction for cell counts was included in our model. Apart from the
limitations, we showed that our approach is promising and acknowledging for the lack of
power in future studies will permit to better pinpoint genes of interests for different traits.
Studying other tissues implicated in allergic rhinitis trait, like nasal or lung cells, could
also reveal other genes implicated in the physiopathology. Genes identified in this study,
notably CDX1, are worthwhile to be further investigated to understand the allergic

rhinitis pathogenesis and the atopic march.
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4.6 Figure and Tables

GWAS, 506,388 SNPs EWAS, 374,498 CpGs
187 controls, 125 AR cases and 321 31 controls, 30 AR cases and 48
ARA cases ARA cases
SNPs p<0.05 CpGs p<0.05 and AB>0.05
Three genotype groups observed Gene body or 1.5Kb from TSS
at least 5 times AR: 144 CpGs, ARA: 88 CpGs

AR: 625 SNPs, ARA: 529 SNPs

cis-mQTLs

SNP-CPG 1Mb appart
AR: 500 CpG-SNPs (p<le-4)
ARA: 274 CpG-SNPs (p<1.8e-4)

Figure 1. Flowchart presenting our approach combining genome-wide association
study (GWAS) and epigenome-wide association study (EWANS) hits to identify cis
methylation quantitative trait loci (mQTLs) that could be association to allergic
rhinitis with (ARA) or without asthma (AR). We first performed GWAS and EWAS
separately for AR and ARA. We then selected marginally associated SNPs (p<0.05)
where the three genotyping groups were observed at least five times. We also selected
marginally associated CpGs (p<0.05) that had a AB>0.05 and that were located in the
gene body or 1.5Kb from the transcription start site (TSS). We then linked the SNPs and
CpGs that were 1Mb apart by performing cis-mQTLs for both AR and ARA. We used
Bonferonni p-value cut-offs to assess significance.
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Table 1. General characterization of individuals analyzed in the study

GWAS samples EWAS samples
Controls®  Allergic Allergic Controls® Allergic  Allergic
rhinitis”  rhinitis rhinitis”  rhinitis
combined combined
with with
asthma® asthma®
Number of 187 125 321 31 30 48
samples
M:F ratio 1:1.13 1:0.87 1:0.87 1:1.60 1:0.88 1:0.78
Age, mean 43 (3-85) 37(5-93) 28(5-83) 29 (1-53) 28 (1-59) 28(5-55)
(range)®
Age median’ 41 38 26 35 30 26
Smoking status, n
(%)°
Non smoker 82 (44) 64 (51) 219 (68) 14 (45) 18 (60) 36 (75)
Ex smoker 61 (33) 37 (30) 53 (17) 8 (26) 6 (20) 4(8)
Smoker 43 (23) 21 (17) 44 (14) 9(29) 5(17) 7 (15)
IgE, (SD)' 202.85 411.27 856.45 67.10 575.40 597.73

(1373.66) (852.17) (2075.62) (90.45) (1380.45) (242.50)

“Defined as not affected by either asthma, allergies or rhinitis. ® Defined as being affected with both allergy
and rhinitis. Allergic rhinitis phenotype is available for all samples. Allergy is defined as at least one
positive response on skin prick testing (wheal diameter > 3 mm at 10 minutes). Rhinitis is self-reported and
the subject had to answer “yes” to at least one of the following questions: Have you ever had rhinitis, Have
you ever had hay fever, Have you ever had sneeze or rheum after a contact with: hay, flowers, animals,
dust? Can be either ° combined or ® not with asthma. ¢ Age difference between groups were assess using an
unpaired t-test. GWAS: controls vs allergic rhinitis p=0.078, control vs Allergic rhinitis combined with
asthma p=1.2e-15. EWAS: controls vs allergic rhinitis p=0.078, control vs Allergic rhinitis combined with
asthma p=0.43. © Smoking status available for 186 controls, 122 allergic rhinitis and 316 allergic rhinitis
combined with asthma subjects for genome-wide association study (GWAS) samples, 31 controls, 29
allergic rhinitis and 47 allergic rhinitis combined with asthma subjects for epigenome-wide association
study (EWAS) samples. Differences between groups were assessed using a chi-square test. GWAS:
controls vs allergic rhinitis p=0.0045, control vs Allergic rhinitis combined with asthma p=1.25e-19.
EWAS: controls vs allergic rhinitis p=0.049, control vs Allergic rhinitis combined with asthma p=7.7¢-3. ©
Geometric mean and standard deviation (SD) for the Immunoglobulin E (IgE) serum concentration
calculated for 175 controls, 116 allergic rhinitis and 302 allergic rhinitis combined with asthma subjects for
GWAS samples and all subjects for EWAS samples. IgE levels difference between groups were assess
using an unpaired t-test. GWAS: controls vs allergic rhinitis p=0.145, control vs Allergic rhinitis combined
with asthma p=2.2e-3. EWAS: controls vs allergic rhinitis p=0.003, control vs Allergic rhinitis combined

with asthma p=0.90. Sex, age, cell count and smoking status were used as covariates in the analysis.
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Table 2. Genes with cis-mQTL sites significantly associated with allergic rhinitis with or

without asthma.

mQTLs GWAS analysis EWAS analysis
Trait Gene Locus p-value SNP p-value CpGs AB*  p-value
Allergic rhinitis CDX1 chr5q32 6.41e-5 rs888989 0.0038 cgl18424208 -5.19  0.0002
PPAN-P2RY11  chrl9pl13.2  0.0245 rs3752199  0.0346  cg24118856  7.51  4.39e-5
0.0090 rs2844833  0.0270  cg05563515 10.11  0.0212
0.0229 rs2844833  0.0270  cg24637044  5.85 0.0132
RNF39* chr6p22.1 0.0265 rs2844833  0.0270  cg01286685  7.78 0.0266
0.0411 rs2523872  0.0123  cgl0930308  9.50  0.0255
0.0499 rs2523872  0.0123  cg01286685  7.78 0.0266
SRRT chr7q22.1 0.0412 16942824  0.0224  cgl0426581 526 0.0096
ADORAI chriq32.1 0.0337 1s6661284  0.0337  cgl9315653  -6.26  0.0315
ITGB?2 chr21g22.3  0.0381 rs7275203  0.0381 cgl8012089  6.10  0.0068
LINC00336 chr6p21.31 0.0073 rs9461924  0.0073  cg04329454 -7.16  0.0015
MFSD6L chr17p13.1 0.0120 rs9895992  0.0120 cgl1685316  5.01 0.0072
chr13q14.3  0.0152 1s732774 0.0295  cgl4950829  7.53 0.0097
PCDHS 0.0135 rs3742297  0.0480  cgl4950829  7.53 0.0097
0.0259 rs1801249  0.0296  cgl4950829  7.53 0.0097
Allergic rhinitis 0.0259 rs4943046  0.0298  cgl4950829  7.53 0.0097
with asthma PITX? chrdq25 0.0257 rs2067004  0.0272  cgl3385016  5.06  0.0240
0.0249 rs9992755  0.0289  cgl3385016  5.06  0.0240
RNF180 chr5q12.3 0.0130 rs7713289  0.0130  cgl7370163  5.43 0.0021
chr6p22.1 0.0133 rs2517504  0.0047  cg03343571 9.19  0.0451
RNEF39% 0.0171 rs2517504  0.0047 cg01286685  8.21 0.0478
0.0401 rs2535238  0.0248  cg01286685  8.21 0.0478
0.0499 rs2523872  0.0299  cg01286685  8.21 0.0478
ZFPM1 chr16q24.2  0.0304 rs750740 0.0304  cg04983687  5.53 0.0056

* AB and p-values for CpG sites and SNPs forming a cis-mQTL. A negative AB indicates a decrease in the

percentage of methylation for cases compared to controls. All locus refer to the human hgl19 reference

genome. * RNF39 is the only gene marginally associated in both traits.

153



Chapter 5: Discussion and future directions

The purpose of this work was to go beyond GWAS studies in order to better understand the
genetic basis of complex traits, using asthma and allergic diseases as an example. GWAS
were highly important in understanding the different genetic architecture of complex traits,
confirming previously identified genes and uncover new ones. The high expectation of these
studies led to their increasing popularity in the mid 2000s and brought a tremendous amount
of knowledge that helped better understand complex traits. However, one drawback is that
even large-scale studies including thousands of individuals do not explain the whole picture
[14]. This ascertainment led the research community to develop new strategies to
complement GWAS limitations. The work presented in this thesis and as part of my PhD
degree aims to explore different strategies to better understand the genetic and epigenetic
bases of asthma and allergy related-traits. Specifically, we decided to explore two different
strategies to study asthma and allergy related-traits: investigating rare and low-frequency
variants and linking GWAS hits to cellular traits (DNA methylation and gene expression). As
mentioned in Chapter 1, asthma and allergies affect a large number of individuals, especially
in developed countries. It results in more than 250,000 deaths per year and represents an
important economic burden [85]. A lot of effort has been invested in studying these diseases
despite the fact that they are very difficult to investigate. They are highly heterogeneous,
being clinically modulated by environmental and genetic determinants. They are also seen as
a plethora of different diseases that are sometimes hard to differentiate from one another. One
of the strengths of the studies presented herein is the use of the SLSJ cohort, a founder

population for which very detailed phenotypic information is available.
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Rare and low-frequency variants in complex traits

The Chapter 2 of this thesis describes a custom capture panel designed to study rare and low-
frequency variants in autoimmune and inflammatory diseases in a cost-effective manner.
Based on previous knowledge acquired from GWAS, we wanted to assess the contribution of
coding and non-coding regions in such diseases. We selected interesting non-coding
functional regions to study based on whole-genome DHS mapping from different immune
cells, which have been shown to be enriched in GWAS hits [17]. We designed the panel to
study relevant cell-types involved in multiple immune and inflammatory diseases with the
objective of later applying it to explore their genetic basis. We showed that the variants
captured were highly functional and had an impact on gene expression. Using high-
throughput next-generation sequencing allowed us to uncover new variants that could not
have been identified using other technologies like classical genotyping chip or Immunochip.
It also permits exploring non-coding regulatory regions as compared to whole-exome
sequencing and is more cost effective than whole-genome sequencing, thus allowing us to

sequence more individuals at a deeper coverage.

In Chapter 3, we showed that our custom capture panel was successfully used in identifying
new genes and variants associated with asthma and allergy related-traits. To this end, we used
the SLSJ asthma familial cohort, which has three main advantages: 1) it is a founder
population, 2) it includes large families and 3) samples have high quality phenotype
characterization (testing was done for all participants and phenotypes were not self-reported).
The two first characteristics were important to limit the amount of genetic heterogeneity,

which is an important obstacle in rare and low-frequency variants studies [65]. The founder
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population allowed to enrich for higher frequency deleterious and private variants that could
not be tested using other populations as shown in Chapter 3. They have also been successful
in identifying rare variants associated with complex traits in the past [68, 183-185]. Family
studies can also be an asset in the study of rare and low-frequency variants in complex
trait because predisposing variants can be observed at a much higher frequency in
affected members of the family, since multiple affected members may carry the same
variant. It can also help reducing population structure bias by decreasing heterogeneity
and achieve discoveries with a smaller sample size [65]. Future studies using this data
could also explore de novo mutations or parent-of-origin effect that could be implicated

in the development of the disease.

The third strength of this study was the fact that all samples were well characterized,
having access quantitative disease-related traits like serum IgE levels, eosinophil counts
and percentage as well as lung function measurements. These subphenotypes helped us to
get enough power to observe association in a smaller sample set. We were able to identify
significantly associated low-frequency variants with eosinophil percentage and located in two
genes: CXCR6 and FYCOI. We also observed two significant genes in collapsing analyses:
MRPL44 associated with eosinophil percentage and NRP2 associated with serum IgE levels.
Some variants showed increased frequency compared to previously assessed European
populations, which allowed us identifying some variants associated with the traits and
located in or close to genes never identified before that could help better understand
disease biology. In fact, variants taking part into the autophagy process or chemokine
receptors were identified, supporting the importance of these pathways that were

previously implicated in the pathophysiology of these diseases [244, 269], but more
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interestingly in the SLSJ asthma familial cohort [189, 191, 270, 271]. However, the
identification of these variants could result in difficulties of replication and highlights the
importance of population specific studies. The two variants identified in this study using
single variant association test were non-coding as well as two of the lead SNV identified
in the gene-based test. These variants would not have been identified using whole-exome
sequencing or genotyping chip as they were also rare or low-frequency. These results
underline the interesting aspect of using our custom capture panel on the SLSJ asthma

familial cohort.

In addition to the results obtained on asthma and allergy-related traits, ongoing work uses
our Immune-genetics sequencing to study other autoimmune and inflammatory diseases.
The lower cost of our method allowed to sequence coding and regulatory non-coding
regions of over 5000 samples from individuals affected with multiple diseases such as
Multiple Sclerosis, Crohn’s disease, Systemic Lupus Erythematosus, etc. We will try to
identify genes that are shared across diseases (pleiotropic effect) as well as the disease-

specific ones to better understand the genetic basis of these diseases.

Linking cellular traits to GWAS hits

So far, studies linking genetic variation to cellular traits use different strategies. Two of
them are either to 1) link significant GWAS hits to functional traits like gene expression
or DNA methylation or 2) combine directly the GWAS data to functional data focusing
also on marginally associated sites. We used the latter one in our study, showing that we
can achieve association with a smaller sample set using this strategy. We showed that the

use of cellular and functional traits could help separating the true signals from the noise.
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The Chapter 4 of this thesis describes a strategy to combine different omics data to identify
new genes associated with allergic rhinitis with or without asthma. We took again advantage
of the SLSJ asthma familial cohort. For this study, the population was a great advantage
being more homogeneous than cosmopolitan populations, not only at the genetic level
(families and founder effect) but also at the environmental one. Using families from a
specific region allowed us to have samples sharing very similar environment, life habits,
religion, diet, etc., thus reducing its potential effect on DNA methylation. Another strength
from this study is the well-described samples. We used stringent phenotype inclusion
criteria for allergic rhinitis with or without asthma. The samples were also evaluated
clinically using a defined protocol by Dr. Laprise and the diagnoses confirmed by the
same group of physicians (Dr. Bégin for adults and Dr. Morin for children).

We combined marginally associated SNPs and CpGs from GWAS and EWAS studies for
allergic rhinitis with or without asthma. This could help departing the SNPs that do not
resist correction in GWAS from false negative sites, thus being still true associations. In
this study, we were able to identify a statistically significant mQTL of a CpG located in
the promoter region of the CDXI/ gene linked to a SNP located in the intron region of a
gene located 900KB from it. We not only identified a novel gene potentially associated
with the trait, we also showed that the marginally associated SNP had an impact on a
much further gene rather than the closest one. We showed here, like many others, which
was done in many GWAS study, is not necessarily the proper way to do it. The SNP
taking part in the significant mQTL is located in the intron of 7NIPI gene which was

previously associated with asthma and atopic dermatitis [137, 268].
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Chapter 2 of this thesis showed the potential impact of rare variants on gene expression in T
cells. It was one of the first studies to look at the impact of rare variants on gene expression
using ASE. Although all studies used different ways to assess the functional impact of rare
variants showing the difficult aspect of it, they do appear to take part in regulating gene
expression. Our study adds to the body of literature highlighting the difficulty to explore this
question, but also the importance of considering their implication in the genetic architecture
of gene expression [48-50]. They could help in the future to better understand the functional

aspect of rare and low-frequency non-coding variants associated with complex traits.

In Chapter 3, we used epigenetic data to support our finding of rare and low-frequency
variants associated with asthma and allergy-related traits. We observed an enrichment of
marginally significantly associated CpGs (p<0.05) located in the vicinity of the NRP2 genes.
These results were obtained using DNA methylation data in isolated eosinophils, but were
not observed in whole-blood. These results support the importance of using specific cell-type

that plays an important role in the pathophysiology and their consideration in future studies.

Linking SNPs and rare variants to gene expression and DNA methylation alone can help
understand the functional aspect of genetic variants. However, using them individually
only gives part of the explanation. Linking variants to gene expression can identify the
target genes and if the allele reduces or increases the expression of the genes. This is
actually very useful since a lot of the first GWAS studies assumed that the affected genes
were the ones located closest to the SNPs. However, it does not give insight on how the
expression is actually regulated. The latter can be explained by linking genetic variants to

DNA methylation where the specific region or sequence elements can be pinpointed
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(promoter, enhancer, gene body or insulator). But it does not always link the variants to
the gene of interest when it is located away from it. Future studies exploring multiple

epigenetics layers could help better understand genetic loci associated with diseases.

As an example, in a study performed by two other postdoctoral fellows in the lab and
myself [34] we assessed the genetic effect on DNA methylation, histone deposition and
gene expression. We also observed their interrelation at a high resolution. We performed
allelic and non-allelic correlation between gene expression and DNA methylation and
observed a higher rate of strong correlation using allele specific assessments. When
combining ASM, ASE and allele-specific histone deposition (ASH), we saw a high
concordance between high gene expression and high chromatin modification rate with
active enhancer marks (H3K27ac, H3K4mel and H3K4me3) when the linked CpG
harbored lower methylation. The opposite was observed for repressive marks
(H3K27me3, H3K36me3, H3K9me3). The effect was stronger when focusing on
significant sites (p<<0.05). These results highlight the sensitive detection that allele-
specific analyses can bring to reveal links between multiple layers of functional features.
These results also show the potential of using multiple layers to understand at a deeper
level the functional impact of associated variants. In this study, we also observed that
over 50% of mQTLs and over 25% of ASM identified were cell-type specific. We also
observed an enrichment of autoimmune disease GWAS hits for ASM in naive T cells and
at a lower extent in ASM from whole-blood highlighting the importance of using isolated
cells and tissues to gain more sensitivity to identify variants and understand their

functional impact. Thus, combining tissue-specific DNA methylation and gene
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expression data could provide a much deeper understanding of autoimmune diseases

compared to genetic data alone.

Using better phenotyping

In the recent years, asthma has been increasingly seen as a combination of multiple
phenotypes rather than a single disease. In fact, asthma is a combination of numerous
clinical and physiological features that have been used to differentiate the diverse
endotypes [272]. They will become more and more precise as the amount of data
available increases, thus will probably take part into precision medicine where disease

prevention, intervention and treatment will be fitted to each patient.

The first way to differentiate different asthma endotypes was based on the presence or not
of allergic features as well as age of onset [272]. Early-onset asthmatics had mainly
atopic and allergic triggers in combination with other allergic disease like rhinitis or
atopic dermatitis. Asthmatics individuals that developed the disease later in life did not
have allergic sensitization linked to it. More recently biological and genomic features
were included to better define them [272]. One of the mostly known is the T2 process
that is linked to allergy, atopy and eosinophilic inflammation. Ty2 associated asthma is
also known to be corticosteroid responsive. This feature is a characteristic of early-onset
allergic, late-onset eosinophilic as well as exercise induced asthma. The well-known
17921 loci was also mainly associated with early-onset asthma but not to atopy or adult-
onset asthma [121, 273]. Other endotypes do not display Ty2 characteristics like obesity-
related and neutrophilic asthma, which are poor corticosteroids responders. Following
patients’ characterization using Ty2 features, nature of inflammation (e.g. eosinophilic

versus neutrophilic) and treatment response (e.g. steroid responsive versus steroid
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resistant), the advent of “omics” data helped decipher underlying mechanisms leading to
more specific characterization of the disease. An example of that are the severe asthma
endotypes proposed by Poon et al. characterized by different cytokines pathways [274].
For example, the IL-4/IL-13 pathway was linked to severe asthmatics with high IgE
levels, the IL-5/IL-33 was linked to inhaled corticosteroid poor responders and IL-17
with neutrophilic asthma. The endotypes were also a great tool to identify new genes
associated with the traits. For example, a study by Bennelykke et al. performed a GWAS
for early-onset asthma patients characterized by recurrent and severe exacerbations [275].
They identified previously known loci (GSDMB, IL33, RAD50 and ILIRL]I) at an effect
size much larger than other studies and a new susceptibility loci underlining the strength

of using specific phenotypes in the search for genes associated with the trait.

In this thesis, we tried to use better phenotyping data to decipher the genetics of asthma
and allergic diseases. In fact, by its ascertainment, the SLSJ cohort is mainly composed
of Tu2 associated asthmatics individuals. In chapter 3, we used phenotypes that are
specific to allergic asthma like serum IgE levels and eosinophil percentage, which were
the two phenotypes where we could identify significant genes and variants. We also used
lung function measures for which a reduction was previously more linked to severe
asthmatics [276], which are less present in the SLSJ familial cohort. In chapter 4 we
assessed the genetic background of individuals affected with allergic rhinitis with and
without asthma, which is linked to Ty2 response type. We can thus state that we took
advantage of refined phenotyping data and encourage the use of endotypes to be able to

identify new genes associated with asthma and allergy-related traits.
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In the future, studies will not only have to include refined phenotyping data and
endotypes to explore the genetic background of asthma and allergy-related traits, but also
data about environmental exposure and known genotyping background. In fact, studies
showed that some associations were only present in subjects exposed to certain
environment. For example, an association with the 17q21 loci was only present in
children who wheezed and were exposed to rhinovirus infection in the first three years of
life [277, 278]. Taking into account environmental exposure allowed to observe a much
higher odd ratio of 6.9 compared to 1.2 in other large consortia where they were not taken
into consideration [121, 279]. Another example of the importance of including
environmental exposures as well as genetic background was observed when looking at
the effect of animal shed exposure on asthma development. Loss ef al. observed that the
protective effect of the exposure was genotype-dependent: one allele conferred protective
effect for asthma and wheeze when exposed to animal shed, whereas the protective effect
of the exposure was not observed in the presence of the other allele [278]. Another
interesting finding was that the protective effect of the allele was only observed in the
combination with the environmental exposure; no protective effect was observed when
the children were not exposed to animal sheds [278]. These examples show the
importance and the potential benefits of incorporating environmental and genetic
background in future studies, in addition to multiple epigenetic layers and cellular traits

as described in this thesis.
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Conclusion

The findings presented in this thesis represent contribution in understanding the genetic
basis of complex traits in multiple ways. We first developed a custom capture panel that
allowed us to explore both coding and non-coding regulatory rare variants in a cost-
effective manner. We showed the potential impact of rare variants on gene expression as
well as we explored their effect along with low-frequency ones in asthma and allergy
related traits. We uncovered three genes that were not identified before, but were part of
processes like autophagy or chemokine receptors that have been implicated in the traits.
We showed the potential of our target capture and how it can be used to explore the
contribution of rare and low-frequency variants in other immune related diseases in the
future. We used DNA methylation to confirm our findings in the rare variants analysis,
but also to identify new genes associated with allergic rhinitis. In this thesis, we showed
the potential of going beyond GWAS findings, learning lessons and complementing its
limitations to better understand the genetic of complex trait such as asthma and allergy-

related traits.
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Figure 1. Representation of pre and post-GWAS era genetic approaches to study
complex traits. A) Candidate genes and linkage studies were one of the first ways to
study the genetic aspect of complex traits. A few genes were identified in the SLSJ
asthma cohort using one of the techniques and examples are listed in the red boxes. B)
These studies were followed by the advent of Genome-wide association studies (GWAS).
The SLSJ asthma familial collection took part of large consortium that identified loci the
were highly replicated. Examples of these loci are listed in the red box. C) New strategies
were developed to complement GWAs findings. Two of them (in bold) are explored in
this thesis: assessment of rare and low-frequency variants and linking GWAs hits to
cellular traits. Different ways to explore these two strategies are also listed as well as
examples of genes that were identified in the SLSJ asthma familial cohort (red boxes). In
the green boxes are listed the additional genes identified using these post-GWAS era
strategies that were identified in this thesis.
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