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Abstract/Résumé 

Abstract 

In the past few years, genome-wide association studies (GWAS) allowed to identify a large 

number of common variants associated with multiple complex traits. These studies were a great 

tool that really helped understanding the genetic basis of a large number of diseases allowing to 

identify new pathways, better understand disease mechanisms and even pinpoint potential drug 

targets. However, most of the SNP identified were located in the non-coding region of the 

genome (~90%) and mainly had small effect size. Additionally, even the largest meta-analysis 

combining thousands of samples could not explain most of the diseases heritability. This forced 

the research community to develop new strategies and tools to complement GWAS findings. In 

this thesis, we explored some of these strategies to study asthma and allergy-related traits. These 

diseases are highly heterogeneous, having important genetic and environmental components. 

They affect millions of people around the world resulting in many deaths and consist an 

important economic burden. We used two strategies to understand the genetic basis of these 

diseases: 1) exploring the impact of rare and low-frequency variants and 2) using DNA 

methylation data to understand the functional impact of SNPs. We first developed a custom 

capture panel to assess both coding and non-coding rare and low-frequency regulatory variants to 

explore their impact on autoimmune and inflammatory complex traits. We applied it to a familial 

asthma cohort from a founder population and identified three novel genes associated with related 

traits (serum IgE levels and eosinophil percentage). We also used DNA methylation data to 

complement our findings as well as to identify new genes associated with allergic rhinitis. The 

results presented in this thesis represent a good example on how to learn from GWAS findings 

and go beyond them to understand the genetic basis of complex traits.  
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Résumé 

Au cours des dernières années, les études d'association pangénomique (GWAS) ont permis 

d'identifier un grand nombre de variants communs associés à de multiples traits complexes. Ces 

études ont été un excellent outil et ont largement contribué à comprendre la génétique d'un grand 

nombre de maladies permettant d'identifier de nouvelles voies biologiques, de mieux comprendre 

les mécanismes de la maladie et même de cerner de potentielles cibles de médicaments. 

Cependant, la plupart des SNP identifiés étaient situés dans la région non codante du génome (~ 

90%) et avaient surtout un effet limité. En outre, même la plus grande méta-analyse combinant 

des milliers d'échantillons n’a pas pu expliquer la plupart de l’héritabilité des maladies. Cela a 

obligé le milieu de la recherche à développer de nouvelles stratégies et outils pour complémenter 

les résultats des GWAS. Dans cette thèse, nous avons exploré certaines de ces stratégies pour 

étudier l'asthme et l'allergie. Ces maladies sont très hétérogènes, ayant des composantes 

génétiques et environnementales importantes. Elles affectent des millions de personnes dans le 

monde entraînant de nombreux décès et constituent un fardeau économique important. Dans 

cette thèse, nous avons utilisé deux stratégies pour comprendre la génétique de ces maladies : 1) 

l'exploration de l'impact des variants rares et de faible fréquence et 2) l'utilisation de la 

méthylation de l'ADN pour comprendre l'impact fonctionnel des variants. Nous avons d'abord 

développé une capture personnalisée pour évaluer à la fois les variants régulateurs codants et 

non-codants, rare et de faibles fréquences, pour explorer leur impact sur les traits complexes 

auto-immuns et inflammatoires. Nous l'avons appliquée à une cohorte d'asthme familial 

provenant d'une population fondatrice et avons identifié trois nouveaux gènes associés à des 

traits apparentés (niveau d’IgE et pourcentage d’éosinophiles). Nous avons également utilisé des 

données de méthylation de l'ADN pour complémenter nos résultats ainsi que pour identifier de 
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nouveaux gènes associés à la rhinite allergique. Les résultats présentés dans cette thèse 

représentent un bon exemple sur la façon d'apprendre des résultats des analyses GWAS et de les 

complémenter pour comprendre la génétique des traits complexes. 
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Original contribution to knowledge 

This thesis explores different strategies to better understand genetics underlying complex traits 

and more specifically asthma and allergy related traits. We used both rare and low-frequency 

variants exploration as well as understanding the impact of genetics on cellular traits (in this 

case, gene expression and DNA methylation). 

 

The first study described in Chapter 2 is entitled “Immune-genetics sequencing: the identification 

of functionally relevant variants through targeted capture and sequencing of active regulatory 

region in human immune cells”. It describes how we built a custom capture panel (Immune-

genetics sequencing) that targets regulatory regions of immune cells in order to study rare 

variants in autoimmune and inflammatory complex traits. We assessed the functional impact of 

variants identified using our custom capture panel in 30 healthy samples for which we also had 

gene expression data (RNA-sequencing) in T-cells. We took advantage of this data to evaluate 

the impact of rare and novel variants on gene expression. We showed that our Immune-genetics 

sequencing was properly designed and that it identified rare and novel variants that have a high 

potentially functional impact and that have an influence on gene expression in T-cells. We 

finally replicated our data in a sample set of 180 individuals. 

 

The second study described in Chapter 3 is entitled “Exploring rare and low-frequency variants 

in the Saguenay–Lac-Saint-Jean population identified genes associated with asthma and allergy 

related traits”. We used our Immune-genetics sequencing described in Chapter 2 on 149 trios 

from the SLSJ asthma familial cohort. We first assessed the characteristic of the rare and low-

frequency variants in this founder population compared to four other European population from 
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France, United Kingdom (UK), Sweden and Finland; the latter also being a founder population. 

We observe a small enrichment of deleterious variants in the low-frequency spectrum in the two 

founder populations. We were also able to observe a higher proportion of private variants that 

reached testable frequencies in the SLSJ and Finland populations. We next looked at the impact 

of rare variants on asthma and allergy related traits in the SLSJ asthma familial cohort testing for 

lung function, Immunoglobulin (Ig) E levels and eosinophil percentage. Using single variants 

association test, we identified a low-frequency variant located between CXCR6 and FYCO1 

genes significantly associated with eosinophil percentage. We also used gene-based test where 

we identified two genes significantly associated with eosinophil percentage (MRPL44) and 

serum IgE levels (NRP2). None of the genes we discovered were previously associated with the 

traits.  

 

Finally, the third study described in Chapter 4 is entitled “Combining omics data to identify 

genes associated with allergic rhinitis”. This paper on the SLSJ asthma familial cohort focused 

on allergic rhinitis trait, an asthma related phenotype. We combined Genome and Epigenome 

Wide Association studies (GWAS and EWAS) using methylation quantitative trait loci (mQTLs) 

to identify new genes associated with the trait. We were able to identify the CDX1 gene that was 

not associated with the trait in prior study.  
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Chapter 1: Introduction 

 

1.1 Complex traits: asthma and allergic diseases as an example 

Complex traits are common diseases that tend to cluster in families and have a large genetic 

component, thus being heritable. However, they are also greatly influenced by environmental 

factors, which make them highly heterogeneous. Asthma is an example of complex traits that 

affect millions of people worldwide. It comprises multiple subphenotypes including allergic 

asthma. The latter is part of a process called the “atopic march”, which is a process starting from 

early life allergic sensitization leading to the development of asthma, allergic rhinitis or both 

later in life. The genetic components of these traits have been highly studied allowing the 

discovery of hundreds of genes associated with them. In this thesis, I will first describe how the 

genetic background of complex traits has been studied, first by focusing mainly on genome-wide 

association studies (GWAS) that were broadly popular and utilized in the past. I will then focus 

on what was learned from them and new strategies to understand the genetic aspects that GWAS 

could not uncover. I will then finish by describing asthma and allergy-related traits and what is 

known so far about their genetic components.  

 

1.2 The Genome-Wide Association Study (GWAS) era 

GWAS became popular in the mid-2000s and were an important step forward in the study of 

complex traits. These traits were previously studied using either linkage analyses or candidate 

gene studies. The former was better suited to identify loci of Mendelian or monogenic diseases, 

and was not as successful in deciphering the genetic contribution to complex traits [1]. It relied 

on the inheritance pattern in families and the unclear pattern of Mendelian inheritance that 
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complex traits harbored made them difficult to study using this technique [1]. Other caveats such 

as the low power (for variants of small effect size) and low resolution pointing to large regions of 

the genome, made results hard to reproduce [1].  In the case of candidate gene studies, the main 

obstacle resided in the limited number of variants selected based on a priori knowledge of 

biological pathways linked to the pathophysiology [2, 3]. The findings were limited to what was 

previously known but were still hard to replicate [2, 3].  

The advent of lower-cost genotyping chips led to GWAS supplanting linkage and candidate gene 

studies, and allowing for cost-effective interrogation of hundreds of thousands of markers across 

the genome in larger cohorts. GWAS is a method to test the association of multiple single-

nucleotide polymorphisms (SNPs) with a trait simultaneously. It was the first way to explore the 

whole genome in a cost-effective manner. It started with the completion of the Human Genome 

Project (HGP) in 2000, which resulted in the first draft of the human genome [4, 5]. This map 

gave researchers a reference sequence and served as a great starting point for the discoveries that 

followed. One of the main uses of the HGP came during the GWAS era. Around that time, 

progress in microarray technology design came to a point where thousands of common variants 

could be assessed simultaneously in a large number of samples. The design of the genotyping 

chip was helped by the International HapMap project, which in 2003 identified the majority of 

common SNPs interrogated in GWAS [6]. Using these arrays in combination with imputation 

from a reference panel (either from HapMap or more recently from 1000 Genomes project) 

allowed identifying a large number of genetic loci predisposing for complex diseases. The first 

successful GWAS was published in 2005 on Age-related macular degeneration [7] and was 

followed by thousands of GWAS studies assessing mostly common complex traits [8]. These 

efforts identified hundreds of genetic variants associated with different traits and have been 
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reported in the GWAS catalog (NHGRI) [8]. Overall, GWAS provided good insight into the 

complex genetic architecture of these traits [9]. Some of them mainly differ on the number of 

causal variants as well as their frequency and effect size [9]. They also played an important role 

in the discovery of novel biological pathways leading to a better understanding of causal 

mechanisms of diseases [10]. They also identified key elements for disease prediction [11, 12] 

and helped uncover new potential drug targets for a plethora of diseases [13]. 

Even though GWAS represented a great step forward in understanding the genetic contribution 

to a large number of diseases, they did not lead to the identification of high effect size variants 

allowing for disease prediction. Association studies and subsequent meta-analysis studies 

reaching hundreds of thousands of subjects to increase the statistical power lead to the 

identification of a large number of variants, but most of them had small effect sizes and, even 

when combining them, did not explain a large part of the heritability [14]. Another downside is 

that the majority of the identified SNPs are located in the non-coding region of the genome, both 

intronic and intergenic regions (>90%), making it hard to pinpoint the relevant gene [15]. GWAS 

also mainly assess common SNPs, leaving variants with lower frequencies unexplored. In 

addition, GWAS SNPs lie in large haplotype blocks of multiple SNPs in linkage disequilibrium 

meaning that these variants are most often transmitted concomitantly and equally associated to 

the traits, making it hard to identify the causal variants and underlying biological mechanism. 

Finally, the stringent genome-wide significance threshold to limit false discovery due to the high 

number of tests performed could also lead to false negative findings where many true 

associations failed to reach the threshold and thus are never being considered for further 

investigation [16]. To complement GWAS caveats in an effort to explain part of the “missing 

heritability” and to get better insight into disease pathophysiology, studies have started using 
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different strategies: assessing 1) functional impact of variants [17, 18], 2) rare and low-frequency 

variations [9], 3) epistasis (gene-gene interaction, [19]) 4) gene-environment interactions [20] 

and 5) structural variations [21]. I focus on the first two strategies in the body of this thesis.  

 1.2.1 “Missing” or “hidden” heritability in complex traits 

Heritability is a concept that can be summarized as the estimation of the degree to which genetic 

factors explains a phenotype [22] and is usually determined through twin or family studies. 

Following the advent of GWAS came a large focus on the so-called “missing heritability” of 

diseases. All together, significant variants identified through GWAS only explain a small 

fraction of the genetic variance with the remaining unexplained heritability referred to in past 

years as the “missing heritability” [14]. Others also suggested that the so-called “missing 

heritability” was more of a “hidden heritability” because it was not detected due to the stringent 

multiple testing corrections used in GWAS [23]. Studies on height have shown that they could 

explain more of the trait heritability when taking all common SNPs into account instead of 

focusing on the significantly associated ones [24]. Common variants residing out of the reach of 

GWAS studies are also thought to contribute to this missing heritability along with rare and low-

frequency variants. Different combinations of their effects (including associated common 

variants) have been evaluated in simulation studies resulting in different possible scenarios [9]. 

Rare and low-frequency variants were also estimated to contribute to a substantial part of 

heritability [25]; however, this hypothesis has not yet been validated in actual studies because 

their contribution remains limited so far [26-29]. A recent study on height, one of the largest to-

date to explore the impact of rare and low-frequency variants on a complex trait, was able to 

identify rare variants with large effect sizes associated with the trait [30]. However, this study 

also revealed that they explained only a very small portion of heritability. They also observed a 
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positive association between minor allele frequency (MAF) and heritability meaning that 

common variants explain more of complex trait heritability than rare or low-frequency variants 

individually even if the latter harbor larger effect sizes [30]. Others have suggested that part of 

the missing heritability could also be explained by epistasis [19], parent of origin effect [31], 

epigenetics [32] or structural variants [21].  

 

1.3 Assessing functional impact of variants 

One way to better understand the genetic basis of complex traits is to link genetic variants to 

cellular traits (ex: gene expression, DNA methylation, histone modifications, etc.). In order to do 

that, lessons from past GWAS studies can help guide future genetic research: 1) over 90% of the 

GWAS hits reside in the noncoding part of the genome, 2) the associated loci highlight broad 

genomic regions as large as 100kb, 3) GWAS hits are mainly found in open and active chromatin 

identified by DNase I hypersensitive sites [17], and 4) a large portion of associated SNPs have an 

impact on gene expression levels [18]. Therefore, linking significantly or marginally associated 

SNPs to cellular and functional traits could help overcome the caveats of GWAS in three ways. 

First, these types of studies could help link non-coding variants to their gene of interest. Second, 

they could permit deciphering of their molecular effects. Finally, they could identify potentially 

interesting variants that do not reach genome-wide significance cut-offs. Another important 

aspect is that since these epigenetic features are cell type specific [17, 33, 34], they could help to 

better assess cell types that are implicated in the development of the diseases. Here I will present 

an overview on how cis-acting (i.e. acting locally) genetic/epigenetic interactions can be a useful 

tool to understand GWAS results and identify new genes and loci associated to complex traits 
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focusing on DNase I Hypersensitive sites (DHS), expression or methylation quantitative trait loci 

(eQTLs and mQTLs) and allele specific expression (ASE) or methylation (ASM). 

1.3.1 DNase I Hypersensitive sites (DHS) 

Regulatory regions of the genome can be identified through the use of the deoxyribonuclease I 

(DNase I) enzyme that preferentially targets open and active chromatin. DNase I hypersensitive 

sites (DHSs) have been used extensively to map regulatory DNA regions like enhancers, 

promoters, insulators, etc. [35]. DHSs were catalogued in a large number of cell types (around 

350 cell types and tissues) by the ENCODE Project and the Roadmap Epigenomic program [36]. 

These efforts showed that GWAS hits are enriched in DHS and that they fall into the DHS of cell 

types or tissues relevant to the disease being studied [17]. DHS data also helped pinpoint the 

importance of certain cell types in specific diseases without considering previous knowledge of 

the disease pathophysiology [17, 37, 38]. Those results highlighted the importance of assessing 

cis-regulatory mechanisms in a diseased-linked, cell-type specific manner to better understand 

the functional aspect of GWAS hits. 

1.3.2 Linking SNPs to gene expression: expression Quantitative Trait Loci (eQTL) and Allele-

Specific Expression (ASE) 

One way to identify cis-regulatory SNPs is to assess their impact on gene expression and help 

link them to the gene(s) of interest. It was previously used to understand the functional impact of 

GWAS hits in disease-relevant cell-types. The two general approaches that I am going to 

describe are quantitative trait loci (QTL) and allele-specific analyses (AS). The QTL approach 

measures the effect of a genetic variant on a functional aspect (like gene expression or DNA 

methylation) by correlating it to the different genotyping groups across individuals. The AS 
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approach measures the functional effect for each allele in a single individual at heterozygous 

sites. The great advantage of AS is that it requires smaller sample sizes than QTL. In fact, the 

trans-acting effect (distal effects) on cis-regulatory SNP can confound the results in QTL but not 

in AS studies since it is an intra-individual measure [39]. However, one drawback of AS is that it 

is usually based on next-generation sequencing data, which can result in greater costs compared 

with QTL studies that can be done using arrays.   

The association of an allele with greater expression compared to another has been highly 

explored through eQTLs. Using expression arrays or RNA-sequencing, it allows linking a SNP 

to one or more genes located nearby. This method relies on the transcript abundance across 

samples. In the case of allele specific expression, it is based on the allelic imbalance measured in 

individuals’ heterozygous sites lying within or close to transcripts and measures the relative 

expression between two allelic transcripts [40]. Since this is an intra-individual measure, bias 

coming from environmental factors and trans-genetic backgrounds are not confounding and the 

cis component can be directly measured. It was also previously shown that it is more sensitive 

compared to the QTL approach and that a 8-fold smaller sample size is needed to achieve similar 

power [41]. One drawback of ASE is that homozygous sites cannot be assessed but has 

interesting advantages like the control for trans effects. eQTLs and ASE mapping have been 

quite effective in retrieving functional and biological information from GWAS hits. First, GWAS 

hits are enriched for eQTLs [18]. They not only help pinpoint the gene of interest but they can 

also assess important cell types related to the disease development [42, 43]. 
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1.3.3 Linking SNPs to DNA methylation: methylation Quantitative Trait Loci (mQTL) and Allele-

Specific Methylation (ASM) 

DNA methylation is the addition of a methyl group at the C5 position of the cytosine by the 

DNA methyltransferase enzyme and mostly happens in a CpG context. It is a heritable genetic 

mark and when occurring in canonical regulatory regions like promoters and enhancers, it can 

lead to disruption of the transcription process. DNA methylation in the gene body plays a role in 

preventing spurious transcription of the gene. Assessing the differential DNA methylation levels 

between cases and controls can be done using epigenome wide association studies (EWAS). It 

can lead to the identification of biomarkers for the disease that can be linked to either genetic 

factors (in cis or trans), environmental factors or even the disease itself.  

The genetic influence on DNA methylation can be assessed using methylation QTLs (mQTLs) or 

allele-specific methylation (ASM). mQTL assesses the correlation between the methylation level 

at a CpG and genotype of a nearby SNP. ASM directly measures the methylation level of each 

allele in a heterozygous individual. Just like eQTLs and ASE, mQTLs and ASM harbor a large 

set of cell-type or tissue specific sites [34]. They can help better understand the functional impact 

of GWAS hits, but not necessarily link them to the gene of interest. In fact, a large number of 

mQTLs or ASM sites occurs in enhancer or insulator regions located distal to the gene. 

However, they can identify sequence elements important for the disease, which cannot be 

assessed by eQTLs or ASE. Also, only a small overlap was observed between mQTLs and 

eQTLs making them complementary rather than redundant [44]. Additionally, mQTLs and ASM 

can also help interpret EWAS data by aiding in differentiating the changes in DNA methylation 

attributed to genetic or environmental effects. Both ASM and mQTLs in specific cell-types were 

useful to identify new pathways and biological mechanisms linked to diseases [45-47].  
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1.3.4 Rare variants and cellular traits 

The link between genetics and cellular traits was mostly explored for common variants and only 

a few studies assessed the impact of rare variants. They showed evidence of their potential 

impact on gene expression where an enrichment of rare variants was observed in the vicinity of 

genes at the extremities of the expression spectrum [48-50] and where the effect was heritable 

[51]. Only one study looked at their impact on DNA methylation and showed that collapsing rare 

and low-frequency variants together identified CpG methylation associated with a group of 

variants [52]. Even though they appear to be important in the regulation of gene expression, a lot 

of work is still needed to better delineate the functional impact of rare and low-frequency 

variants. 

 

1.4 Exploring rare and low-frequency variants in complex traits 

Following the GWAS era, genetic variants located in the rare (MAF <1%) and low-frequency 

(MAF 1-5%) spectrum were thought to explain part of the missing heritability of different 

complex traits. Simulation studies explored different scenarios of their implication independently 

or in combination with common variants of small effect sizes [9]. More and more studies have 

started to explore the impact of rare and low-frequency variants on complex traits. Even though 

they tend to explain a smaller part of complex trait heritability than expected from simulation 

studies, they appear to contribute to the architectures of these diseases [30]. In order to predict 

disease risks, it is important to identify these variants in the context of personalized/precision 

medicine. The promise of rare variants in understanding complex traits resides in their 

potentially easier interpretation. A large fraction of variants affecting protein function are rare, 

therefore associated coding variants that are identified are more likely to directly point to the 
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gene of interest. The rare variants are also usually not in linkage disequilibrium (LD) with 

multiple SNPs meaning that they can point to the exact region of interest. The identification of 

rare and low-frequency variants in complex traits can also confirm previously known loci or 

identify new biological pathways or gene of interest [30]. However, just like common variant 

studies, rare variants will need to be explored using large samples sets [53]. 

In this section of the thesis, I will describe different strategies to explore rare variants as well as 

what is known so far regarding their distribution across populations. Different approaches are 

used to assess low-frequency and rare variants: 1) custom genotyping arrays, 2) whole-exome 

(WES) or whole-genome sequencing (WGS) and 3) genotyping imputation. 

1.4.1 Custom Genotyping arrays 

The design of custom genotyping arrays to study rare variants usually focuses on specific 

diseases and previously identified target regions of interest. They typically target variants 

contained in haplotypes of interest identified through sequencing. One example is the 

Immunochip array designed to replicate and fine map loci from 12 autoimmune and 

inflammatory diseases [54]. It includes the top 3000 loci that were previously associated with 

each disease as well as all the known SNPs in the regions identified in the first version of the 

1000 Genomes project (1KG) or resequencing initiatives. The purpose of the Immunochip was to 

identify true association and fine mapping of the loci for each disease as well as pleiotropic 

effects across the different diseases [54]. It is also more cost effective than traditional GWAS 

chip (around 80% less), allowing assessment of a larger number of samples to increase power 

[54]. However, it has a few limitations:  1) the Immunochip design was based on the first version 

of the 1KG pilot project, which has incomplete coverage [55], 2) is mainly restricted to European 

samples and 3) it relies on previous knowledge, thus newly identified loci are not as well covered 
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since it does not cover the whole genome [54]. Despite those limitations, the Immunochip 

allowed for the identification of new loci and helped better refine previously known ones 

associated with different autoimmune and inflammatory diseases like celiac disease [56], 

psoriasis [57], rheumatoid arthritis [58], multiple sclerosis [59] and inflammatory bowel disease 

(including crohn’s disease and ulcerative colitis) [60]. Other examples are the Metabochip 

designed to study metabolic disease [61] and the ExomeChip, which includes mostly variants in 

the protein-coding regions of the genome [62]. 

1.4.2 Whole-exome and whole-genome sequencing 

In the 2000s, the rapid development of new sequencing technologies led to decreased sequencing 

cost (https://www.genome.gov/sequencingcostsdata/), which in turn, resulted in the increasing 

use of WES and WGS to measure the association of rare and low-frequency variants. WES is a 

targeted approach that focuses on the coding region, which represents approximately 1.2% of the 

genome. It allowed getting higher coverage in a larger sample set at a cheaper cost than WGS. It 

also focused on a more easily interpretable part of the genome. Most of the WGS were 

performed at low depth impairing the accuracy of identified variants. However, the decreasing 

cost of sequencing will lead to WGS replacing WES, which will be a great asset based on what is 

known about the genetic architecture of complex traits. One of the first and most important 

works regarding this is the 1KG that began in 2008 and had the ambitious goal to sequence, 

using low-depth WGS and WES, over one thousand individuals from 14 diverse populations [55, 

63]. This helped to catalog most of the common genetic variations and identify new rare ones. A 

few important lessons on rare and low-frequency variants have come out of the 1KG and other 

studies. They observed that the majority of variants are rare and population specific [63, 64]. A 

larger portion of low-frequency and rare variants are found in the coding regions compared to 
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common variants reflecting potential purifying selection effect [64]. Rare and low-frequency 

variants are also more functional and deleterious for protein coding genes compared to common 

variants [64]. Even though there is a high potential for identifying interesting rare and low-

frequency coding variants in complex traits, non-coding alleles also appear to be interesting due 

to their enrichment in functional domains like transcription start sites (TSS) or DHS [65]. So far, 

the results obtained from WES and WGS reflected the population genetics model by observing 

an inverse relationship between the frequency of the allele and its effect size, echoing what was 

observed in Mendelian diseases residing at the very end of the spectrum [66] (see section 

“population genetic evidence” for more details).  

A growing number of large-scale sequencing projects have explored the impact of rare and low-

frequency variants on complex traits. Projects like UK10K [65], deCODE [67], SardiNIA [68] or 

GoNL [69] helped better understand variants implicated in both complex traits and population 

genetics. A more in-depth description of these studies on asthma and allergy related-traits is 

presented in the “Asthma and allergy related-traits” section. 

1.4.3 Imputation 

Imputation is a method used to statistically infer missing genotypes in a large population and is 

based on known genotypes from this population. Data obtained from WES and WGS can be used 

to impute the genotypes in a large sample set in order to increase power of the association test. 

This strategy is probably the most cost-effective of the three. It relies on available genome-wide 

genotyping data and reference panels that are available like the HapMap project [70, 71], which 

was the first available one. It was followed a few years later by the 1KG [63] and other efforts 

such as the UK10K Cohorts project and more recently the 100,000 Genome project in the UK, 

which assessed a large number of samples from British decent. Using the UK10K and 1KG panel 
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increased imputation accuracy at the low-frequency level (0.05%<MAF<5%) in the European 

populations [72]. However, they still remain limited regarding the imputation accuracy of rare 

variants (MAF<0.5%) [65, 73, 74]. Finally, the Haplotype Reference Consortium has put 

together all publicly available WGS data from 20 studies of European descent to create the 

largest reference panel [75]. Their goal was to create a large and diverse imputation panel that 

would allow for better results when imputing in samples with a genetically diverse background 

[75]. This panel should also allow for better imputation of low-frequency and rare variants in 

European samples. 

Since low-frequency and, more strikingly, rare variants have arisen more recently, they are often 

restricted to specific populations and thus cluster geographically. To obtain a better imputation 

accuracy as well as to assess population specific variants, it is important to include samples from 

the population of interest. The importance of utilizing population specific panels for assessing 

rare variants has been shown in different sequencing studies [68, 69, 76] and this yields better 

accuracy than increasing the size of the reference panel (i.e. the number of haplotypes) [76]. 

1.4.4 Population genetic evidence 

Human migration and rapid recent population growth have led to a large number of rare and low-

frequency variants that are either population or individual specific [64]. The advent of next-

generation sequencing revealed the excess of rare and low-frequency variants in the different 

human populations [64]. According to population genetic studies, rare coding variants are more 

deleterious and damaging compared to common variants due to purifying selection [29, 64]. In 

fact, most of the variants affecting protein-function identified to date are rare [64]. Since these 

variants have arisen more recently in the population, they had less time to be removed by the 
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evolutionary selection process. This may increase they probability to be related to disease 

development. 

Since only a small number of rare variants are shared across populations/continents, they were 

examined more closely on their pattern in different populations. Some study stated that 

populations that underwent bottlenecks should be enriched in deleterious variants because of a 

reduction of the selection efficacy [77]. This could be even more pronounced in founder 

populations, which are genetically homogeneous populations usually due to demographic 

circumstances [78, 79]. However, other studies stated the opposite, where no enrichment of 

deleterious variants was observed, probably due to the short timeline where no accumulation was 

possible [80-82]. The latter question is still being debated but one advantage of the founder 

population would reside in the genetic drift resulting in the higher frequency of some variants 

private to the population. 

 

1.5 Asthma and allergy related traits 

Allergic diseases that comprise asthma, allergic rhinitis, atopic dermatitis and food allergies are a 

collection of diseases that are characterized by an immune-mediated inflammatory response to 

allergenic substances that are normally harmless. They have wide incidence variations from 2-

4% in Asian countries and higher rates in developed countries, including Canada, with 

prevalence ranging from 15% to 20% for asthma [83-85], 10% to 40% for allergic rhinitis [83] 

and 1% to 20% for atopic dermatitis [86]. It is believed to affect from 300 to 500 million people 

around the world and could increase while more countries adopt a westernized lifestyle [83, 85]. 

Severe asthma has associated mortality: the number of deaths worldwide is estimated at around 

250,000, which represents about 1 in every 250 deaths [83, 85]. It is also linked to an important 
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socio-economic cost linked to absenteeism, loss of productivity and emergency visit. All these 

elements point towards a need to better characterize disease subtypes, develop better treatments 

and personalized medicine. 

1.5.1 Asthma and allergy pathophysiology 

Asthma and allergic diseases are common complex traits that are often co-occurring in the same 

individual or families. They have an important environmental and genetic component making 

them complex and heterogeneous diseases. The “atopic march” is a process comprising 

sequential progression of allergic conditions usually leading to the development of asthma, 

allergic rhinitis or both [87, 88]. The presence of atopic dermatitis (eczema) combined with IgE 

modulated response to food or aeroallergen at a young age is usually the first clinical 

manifestation. Around 30% of children with atopic dermatitis will go on to develop asthma and 

more than 60% of them will develop more severe allergic disease later in life such as allergic 

rhinitis [89-91]. Also, a large majority of asthmatic patients also present allergic rhinitis (>80%) 

and 20% to 40% patients exhibiting allergic rhinitis also have asthma [92]. This indicates 

potentially shared biological mechanisms and pathways between these different clinical 

manifestations. 

Asthma is a chronic inflammation of the airways characterized by airway obstruction, airway 

hyper responsiveness, lung remodeling, wheezing, and excessive mucus production. It is 

sometimes combined with allergic response in 80% of the affected children and 60% of the 

affected adults [93]. Monozygous twins show greater concordance than dizygotic twins. Its 

heritability, estimated from twin studies, ranges from 35 to 70% [94-96]. This can be explained 

by the fact that different exposures at different times during life can result in different risks of 

disease and age of onset. For example, exposures to bronchiolitis [97] or rhinovirus [98] in early 
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life, smoking or exposure to second-hand smoke [99] and occupational exposure (work 

environment [100]) can influence the development in the disease.  Heritability is inversely 

correlated with age of onset of the disease, thus genetics plays a greater role in childhood-onset 

asthma [101]. The other asthma and allergy related traits and intermediate phenotypes also show 

significant heritability: 30% to 90% for allergic rhinitis [94, 102, 103], 70% to 85% for atopic 

dermatitis [102], 35% to 85% for serum IgE levels [104, 105] and 25% to 40% for eosinophil 

(Eos) counts [104, 105]. 

1.5.2 Genetics of asthma, allergy and other related diseases 

As with any other complex trait, the approaches to study these diseases have evolved over time 

along with the arrival of new technologies. Starting from candidate gene and genome-wide 

linkage studies all the way to GWAS and sequencing studies, hundreds of genes have been 

associated with asthma, allergies, atopic dermatitis and allergic rhinitis. Despite the high clinical 

heterogeneity of the diseases and the importance of environmental exposure, GWAS identified 

many SNPs associated with the traits and were replicated across studies (summarized in Table 

1). They either reinforced the importance of some genes that were already linked to the trait (ex: 

IL33 in asthma or allergy, FLG in atopic dermatitis [106]) or identified new genes (the 17q12-21 

locus ORMDL3, GSDML and ZPBP2 in asthma). However, those variants explained very little of 

the heritability due to their small effect size.  

Asthma definition remains difficult because it is seen as a plethora of similar diseases, thus 

making genetics studies very difficult. One way to overcome this challenge is to focus on 

intermediate quantitative phenotypes that can be measured more precisely like lung function, 

serum IgE levels, and blood Eos counts. These are part of asthma and allergy endophenotypes, 

which are clinical and biological markers that help define disease subtypes. Focusing on such 
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endophenotypes can help identify loci associated with asthma and allergic diseases or only the 

trait itself. However, one drawback is that these traits might also be linked to other disease like 

lung function for chronic obstructive pulmonary diseases (COPD). 

To establish asthma diagnosis, the patient history is first assessed and usually confirmed by lung 

function test. The lung function is measured using spirometry which measures the forced vital 

capacity (FVC), defined as the amount of air that can be forcibly blown out of the lung when 

taking a deep breath, and the forced expiratory volume in one second (FEV1) that measures the 

same thing but in the span of one second. The Tiffeneault index (FEV1/FVC) is a common 

measure to assess the airway obstruction in lung disease such as asthma and COPD. So far, 

GWAS results of lung function poorly overlap with the asthma and allergy related traits and 

better results were obtained with COPD.  

To assess the allergic aspect of the disease, skin prick test and measurement of serum IgE levels 

are usually used. IgE is one of the five Igs and is known to be an anaphylactic or allergic 

antibody. Strong correlation between IgE presence and asthma and allergy diagnosis and severity 

was previously observed [107, 108]. More than half of the GWAS hits of serum levels overlap 

with asthma, allergy, allergic rhinitis or atopic dermatitis (Table 1).  

Eos are a cell type implicated in the initiation and propagation of inflammation and immune 

response in asthma, atopic dermatitis, allergic rhinitis and allergy [109]. Increased concentration 

in blood and tissues is a hallmark of certain forms of asthma (mostly allergic asthma and severe 

eosinophilic asthma) and is usually positively correlated with severity of the disease. They also 

potentially play a role in airway remodeling and are often the main inflammatory cell type 

present in the airways of asthmatic patients [110]. A few GWAS have assessed the impact of 
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genetics on Eos counts, but the results revealed a large overlap between the identified loci and 

previously identified asthma and allergy GWAS hits [111].  

Finally, a GWAS tried to identify genetic factors underlying the atopic march [112] focusing on 

individuals presenting early-onset atopic dermatitis and childhood asthma. They observed a 

stronger contribution of atopic dermatitis genes compared to asthma suggesting their importance 

in the process. 
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Table 1: Summary of GWAS discovery for asthma and allergy-related traits 

Trait Number of 
studies1 

Number of 
genes / loci 

Main replicated loci2 Reference 

Asthma 18 92 ORMDL3, GSDMB, 
GSDMA, IL33, IL18R1, 
IL1RL1, HLA-DQA1 

[113-130] 

Allergy 4 60 HLA-DQA1, HLA-DQB1, 
HLA-C, C11orf30, 
GSDMB, IL1RL1, IL33, 
LPP, LRRC32, TLR1, 
TLR6, WDR36 

[114, 125, 131, 
132] 

Allergic 
rhinitis 

3 19 C11orf30, LRRC32 [133-135] 

Atopic 
dermatitis 

9 106 FLG, IL13, 
IL18RAP/IL18R1, KIF3A, 
RAD50, TNFRSF6B, 
OVOL1, C11orf30, ACTL9 

[136-144] 

Intermediate 
phenotype 

Number of 
studies1 

Number of 
genes / loci 
(overlap 
with main 
trait) 

Main replicated loci2 Reference 

Serum IgE 
levels 

4 16 (10) FCER1A [135, 145-147] 

Eos 3 10 (3) GATA2 [111, 148, 149] 

Lung 
function3 

8 33 (1) AGER, CDC123, HHIP, 
HTR4, GSTCD, THSD4  

[150-157] 

Summary including only SNP p<5e-8. 1) studies have at least one SNP with p<5e-8. 2) Gene 
associated in at least two GWAS. 3) Lung function studies on COPD patients were removed. 

 

1.5.3 Rare variants in asthma and allergies. 

Torgerson et al. first explored the impact of rare variants in asthma where they performed a 

resequencing study of nine previously associated genes [158]. They observed an excess of rare 

variants in four genes contributing to the asthma phenotype, where the effect was predominantly 
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due to noncoding variants [158]. Another study used the ExomeChip to assess the impact of rare 

and low-frequency coding variants in three ethnic groups and identified one low-frequency 

variant associated with the trait in Latinos and three genes associated in gene-based tests [27]. 

Most of their findings were exclusive to a specific racial group, which was expected due to rare 

variations being private to certain ethnicities [27]. Other studies focusing on refined or 

intermediate phenotypes identified rare variants associated with the trait: bronchodilator response 

in asthmatics [159], asthma diagnosis following severe infection with respiratory syncytial virus 

[160], extreme lung function and airway obstruction [161].  

There were also studies exploring rare and low-frequency variants in asthma and allergy 

intermediate phenotypes. A rare variant disrupting a canonical splice site of the IL33 gene has 

been associated with reduced blood eosinophil counts and reduced risk of asthma in the Icelandic 

population and replicated in European populations [67]. Even though the Immunochip was used 

to identify SNPs associated with atopic dermatitis in multiple studies [137, 162], only one low-

frequency variant in PRR5L was associated with the trait [162]. Finally, a resequencing study of 

interferon pathway genes identified a rare functional variant in IFNGR1 gene associated with 

higher risk of eczema herpeticum in patients affected with atopic dermatitis [163]. 

So far, these studies showed the implication of rare and low-frequency variants in asthma and 

allergy related trait genetic architecture. Rare and low-frequency variants studies confirmed the 

importance of certain genes such as ADRB2 [160], MTHFR [27], GSDMB [27], ZPBP2 [27], 

FLG [160], NOS1 [160], IL33 [67] and identified new ones like GRASP [27] and PRRL5 [162], 

suggesting the importance of looking at the lower frequency spectrum of variants to better 

understand diseases. 
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1.5.4 Linking genetics to cellular trait to understand asthma and allergy related traits 

Most of the studies linking GWAS hits to cellular function to understand asthma and allergy 

related traits have explored asthma and lung function phenotypes. They also only explored so far, 

the link between the SNP and gene expression through eQTLs in different cell types like lung 

tissue [164], airway epithelial cells [165], CD4+ lymphocytes [166], lymphoblastoid cells (LCL) 

[122], bronchial epithelial biopsy and bronchial alveolar lavage [167]. To date, no studies have 

explored eQTLs specifically in allergic rhinitis, atopic dermatitis, Eos counts or serum IgE 

levels. 

Combining gene expression data to previously associated SNPs in asthma provided better 

elucidation of the biological function underlying these loci. When the well-known 17q21 locus 

was identified [122], the associated allele was first linked to ORDML3 expression in LCLs from 

the affected children [122]. This observation was also confirmed in CD4+ lymphocytes, white 

blood cells and lung tissues, where other SNPs regulating the expression of ORDML3 as well as 

CRKRS, GSDMB and GSDMA, were identified [164, 168-170]. However, the strongest eQTL of 

this region in lung tissues pointed to the GSDMA gene, which harbored an opposite effect 

compared to the other three genes [164]. Another example is the delineation of the known loci 

like IL1RL1/IL18R1 [171, 172] and helped identify not only the gene of interest but also the 

tissue. In fact, eQTLs for these genes are present in lung, airway epithelial cells and distal lung 

parenchyma but not whole-blood, pointing towards increase risk of inflammation in the lung. 

Other studies directly combined GWAS results with eQTL studies in different tissues and cell-

types to identify new genes of interest [173-176]. For example, a gene-based approach 

combining 16 eQTLs studies and two asthma/allergy GWAS confirmed a set of previously 
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known genes and identified four new ones [174]. Two of the novel genes were shown to induce 

IL-33 release followed by eosinophil airway infiltration in mice [174].  

 

1.6 Leveraging founder and isolated populations to study complex traits 

Studies require larger sample sizes to reach sufficient statistical power and thus focus on larger 

heterogeneous populations. By combining different studies to leverage greater power, it 

introduces heterogeneity at the genetic level (difference in allele frequencies between 

populations) but also in environmental exposures, cultural habits (ex: life style, diet) and in 

disease diagnostics/classification, which could lead to reduced power. Population stratification is 

also an important issue, especially when studying rare and low-frequency variants, since they are 

usually private to a population thus making the effect stronger compared to common variants 

[63, 177]. Methods known to correct for it (for example principal component analysis (PCA) 

[178]) do not seem to work as well in the case of rare variants testing [179]. One strategy to 

reduce heterogeneity is the use of founder and isolated populations. 

Founder and isolated population can provide a power boost to study rare and low-frequency 

variants [53]. They are usually derived from a subset of a population after a founding event: 

populating new territories, war, famine, environmental event, epidemic, etc. [180]. Usually after 

this founder event, a small number of individuals become isolated for a few generations due to 

geographic, cultural, religion, national identity or language reasons [181]. The founder 

populations arising from historic European migration show higher homogeneity and genetic drift 

comparatively to their population of origin. The nature and characteristic of the events also have 

an impact and may differentiate the level of homogeneity observed in a founder population: the 

number of founders and the number of bottleneck events, the duration of isolation, the population 
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growth (expansion) and the absence of immigration from neighboring populations (gene flow) 

[180]. 

The homogeneity of founder populations is a great advantage in the study of rare and low-

frequency variants in complex traits. Some variants implicated in the disease risk could reach 

higher frequencies compared to outbred populations due to bottlenecks, genetic drift, adaptation 

and selection [68], facilitating their identification. One example of this resides in the increased 

incidence of certain recessive and rare disorders in founder populations [182]. Other studies also 

identified private variants associated with complex traits like type 2 diabetes [183], height [184] 

or lipid traits [185]. These variants were identified because they reached higher frequencies in 

the founder populations and could be important for personalized medicine in these populations. 

In this thesis, we are using the Saguenay–Lac-Saint-Jean (SLSJ) asthma familial cohort [186]. 

This population is located in north-eastern Quebec and is known for its unique demographic 

history and founder effect, characterized by several population bottlenecks followed by rapid 

expansion. At the beginning of the 17th century, around 8,500 settlers came to the Vallée du St-

Laurent from France. These people represent a large part of the 6 million French Canadian 

ancestries that now live in the province of Quebec. A subset of them migrated to the Charlevoix 

region where there was a rapid expansion after their settlement due to high birth rate. Because of 

overpopulation, another subset migrated to the SLSJ in the mid 1800’s. The latter now represent 

75% of the SLSJ founders thus had a reduced contribution of new immigrant after the first 

settlers. They became genetically isolated from France and at a lesser extent from the other 

regions in the province. Regional clustering of multiple hereditary diseases was observed [182]. 

The SLSJ asthma familial cohort has contributed to the understanding of asthma and allergic 

diseases in many ways. Candidate genes studies performed on this population identified genes 
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associated with the traits in the IL1R2 gene pathway [187], the well-known 17q21 locus [187], 

the Vitamin D pathway [112, 188] and other genes like CX3CR1 [189], PLAU [190] and ATG5 

[191]. Subsequent studies focused on assessing the epigenetic mechanisms that could explain the 

link between previously associated genes to the diseases. Higher DNA methylation levels were 

observed in the IL1R2 promoter region in asthmatics and allergic individuals in whole blood 

[192]. Other studies helped decipher the 17q21 locus [193-196]. Two GWAS were published 

using this cohort, one exploring different traits in the cohort alone [186] and the other being part 

of the larger GABRIEL consortium for a meta-analysis [121]. The cohort is also included in the 

Translational Asthma Genetic Consortium (TAGC) consortium GWAS that will be released in 

2017. Finally, the SLSJ asthma familial cohort was also used in an EWAS to assess the link 

between methylation patterns and serum IgE levels in peripheral blood as well as Eos [197]. 
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Figure 1: Representation of pre and post-GWAS era genetic approaches to study complex 
traits. A) Candidate genes and linkage studies were one of the first ways to study the genetic 
aspect of complex traits. A few genes were identified in the SLSJ asthma cohort using one of the 
techniques and examples are listed in the red boxes. B) These studies were followed by the 
advent of Genome-wide association studies (GWAS). The SLSJ asthma familial collection took 
part of large consortium that identified loci that were highly replicated. Examples of these loci 
are listed in the red box. C) New strategies were developed to complement GWAS findings. Two 
of them (in bold) are explored in this thesis: assessment of rare and low-frequency variants and 
linking GWAS hits to cellular traits. Different ways to explore these two strategies are also listed 
as well as examples of genes that were identified in the SLSJ asthma familial cohort (red boxes). 
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1.7 Rationale, objectives and hypothesis 

The objective of my doctoral thesis was to use different strategies to understand the genetic basis 

of complex traits and more precisely, asthma and allergy related-traits. Lessons from GWAS 

guided the research community to develop new strategies to fill in the blanks left unanswered, 

now that we know their important caveats. 

We first designed a custom capture panel (Immune-genetics sequencing) that targets both coding 

and non-coding regulatory regions of immune cells. We wanted to develop a cost-effective way 

to study rare and low-frequency variants in autoimmune and inflammatory complex traits. The 

goals of this study were to 1) define interesting and functional regions to target that are properly 

suited to the diseases we would like to study, 2) assess the functional impact of the rare and 

novel variants identified using our custom capture panel followed by next-generation sequencing 

in healthy subjects, and 3) determine the impact of the newly identified variants on gene 

expression.  

We used our Immune-genetics sequencing in our second paper to explore the impact of rare and 

low-frequency variants on asthma and allergy related traits in a founder population. We 

sequenced 149 trios from the SLSJ asthma cohort using our custom capture panel. We first 

assessed the rare and low-frequency variants distribution in this founder population compared to 

four European populations, including Finland, which also has an important founder effect. We 

then assessed the impact of rare and low-frequency variants on lung function, serum IgE levels 

and eosinophil counts.  

Finally, the third paper aimed to identify new genes associated with allergic rhinitis with or 

without asthma in the SLSJ asthma familial cohort. We performed a GWAS and an EWAS and 
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combined marginally associated SNPs and CpGs using mQTLs to identify new genes associated 

with the trait. 
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Chapter 2 

Preface: Bridging Text between Chapters 1 and 2 

One of the strategies to better understand the genetic basis of complex traits that is becoming 

more and more popular over the years is the exploration rare and low-frequency variants. Whole-

exome sequencing (WES) has been the most popular due to its lower cost compared to whole-

genome sequencing (WGS). However, WES focuses only on the coding portion of the genome 

and does not explore any non-coding regions, where genome-wide association study identified 

the majority of the variants. We wanted to develop our own custom capture panel that targets 

both coding and non-coding region to assess the impact of rare and low-frequency variants in 

autoimmune and inflammatory diseases at lower cost compared to WGS. In this chapter, we 

described how we designed our capture panel and how the variants identified with it are 

potentially highly functional. 

 

The word “Immunoseq” was replaced by “Immune-genetics sequencing” in the following 

manuscript due to trademark concerns.  
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Chapter 2: Immune-genetics sequencing: the identification of functionally 
relevant variants through targeted capture and sequencing of active 

regulatory regions in human immune cells 
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2.1 Abstract 

Background: The observation that the genetic variants identified in genome-wide association 

studies (GWAS) frequently lie in non-coding regions of the genome that contain cis-regulatory 

elements suggests that altered gene expression underlies the development of many complex 

traits. In order to efficiently make a comprehensive assessment of the impact of non-coding 

genetic variation in immune related diseases we emulated the whole-exome sequencing 

paradigm and developed a custom capture panel for the known DNase I hypersensitive site 

(DHS) in immune cells – “Immune-genetics sequencing”.  

Results:  We performed Immune-genetics sequencing in 30 healthy individuals where we had 

existing transcriptome data from T cells. We identified a large number of novel non-coding 

variants in these samples. Relying on allele specific expression measurements, we also showed 

that our selected capture regions are enriched for functional variants that have an impact on 

differential allelic gene expression. The results from a replication set with 180 samples 

confirmed our observations. 

Conclusions: We show that Immune-genetics sequencing is a powerful approach to detect novel 

rare variants in regulatory regions. We also demonstrate that these novel variants have a potential 

functional role in immune cells. 

Keywords 

Rare variants, immune disease, gene expression, next-generation sequencing, capture 

  



	 51	

2.2 Background 

Genome-wide association studies (GWAS) have identified thousands of associated single 

nucleotide polymorphisms (SNPs) in hundreds of complex diseases [8]	and have thereby 

provided unprecedented insights into the genetic architecture underlying these conditions [198]. 

However, because GWAS are inherently dependent upon there being meaningful linkage 

disequilibrium (LD) between relevant variation and the few hundred thousand common variants 

that are actually genotyped this method has limited ability to accurately assess the role of rare 

variants[199] and effectively only screens common variation [200]. This limitation has been 

suggested to contribute to the notable gap between observed heritability and that explained by 

the currently identified common variants - the so-called missing heritability [14]. Direct 

assessment of all variation through the next-generation sequencing of the whole genome would 

provide a comprehensive assessment that would necessarily avoid any dependency on LD but 

unfortunately remains prohibitively expensive. On the other hand, the targeted capture of 

genomic regions with high prior probability of containing relevant variation allows next-

generation sequencing efforts to be focused and therefore substantially more affordable.  This 

logic underlies whole exome sequencing which allows comprehensive assessment of coding 

variation and has enabled the identification of rare coding variants exerting large effects in a 

number of complex diseases [201-203]. It is notable that the majority of the associated variants 

identified through immune disease GWAS are located in non-coding regions of the genome that 

are enriched for regulatory elements that are active in immune cell types [17, 204, 205], 

suggesting that a resequencing effort focused in these regulatory regions would provide a highly 

efficient means to identify both common and rare variation of relevance in such diseases. 
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Using deoxyribonuclease I (DNase I) based sequencing (DNase-seq) international collaborative 

efforts such as the ENCODE [206] and NIH Roadmap Epigenomics [207] projects have 

established comprehensive maps of DNase I hypersensitive sites (DHSs) in multiple cell types. 

Sites which are markedly enriched for cis-regulatory elements active in those cell types such as 

enhancers and promoters [35, 36], show very high concordance with chromatin 

immunoprecipitation sequencing of histone marks for active enhancers or promoters [208, 209] 

and are enriched for SNPs (eSNPs)  that influence the expression of local genes that show 

variable expression (expression quantitative trait loci, eQTLs) [208, 210, 211]. It has been noted 

that the enrichment of eSNPs is most pronounced in those functional elements that are located 

closest to their respective eQTL [209] and that there might be an inverse relationship between 

the effect size of cis-eQTLs and the minor allele frequency (MAF) of the relevant eSNP; 

suggesting that rare variants might have a higher impact on gene expression than common 

variants [48, 49, 212, 213].  

Based on the overwhelming evidence from GWAS that common variants associated with 

immune disease likely influence disease risk by perturbing the regulation of gene expression 

together with emerging evidence indicating the existence of rare “high-impact” non-coding 

variation, we designed a custom capture panel, relying on contemporary regulatory element 

maps, to enable the targeted re-sequencing of immune regulatory regions - “Immune-genetics 

sequencing”. Immune-genetics sequencing is designed to allow efficient re-sequencing of 

regulatory regions of relevance in immune cells (coding and non-coding) and thus enable a 

comprehensive assessment of all potentially relevant variation in these regions, both common 

and rare.  The panel includes SNPs previously associated with immune traits as well as 

established immune cell eSNPs. Using Immune-genetics sequencing in parallel with 
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transcriptome sequencing (RNA-seq), we show that, after accounting for effects attributable to 

associated common variants, there are significant effects attributable to rare variants, and that 

these explain up to 14% of residual variation. Our results confirm that targeted capture and re-

sequencing of regulatory regions active in relevant cell types provides an efficient means to 

identify rare variants of relevance in immune disease.  

 

2.3 Methods 

Design of the Immune-genetics sequencing custom capture panel: 

We selected regulatory regions of immune cells using genome-wide DHS data from the 

ENCODE [206] and NIH Roadmap Epigenomics [214] projects. Data from twelve different 

immune cell types were utilized: CD3+, CD3+ cord blood, CD4+, CD8+, CD14+, CD19+, 

CD20+, CD34+, CD56+, Th1, Th2, Th17 (S1 Table). The entire genome was divided in 100bp 

bins and the DHS signals were normalized by calculating the number of reads per bin divided by 

the total number of reads. In each sample, the signals were ranked and the top 300,000 bins 

(representing the top 1% of the genome) identified, within each cell type bins were retained if 

they were identified in at least 50% of the available samples. For those cell types where only two 

samples were available, the selected bins were required to be present in both samples; in those 

cell types where only one sample was available (Th2, Th17 and CD20) all 300,000 bins were 

retained. The 100bp bins were then grouped into blocks of 50,000 bins each (i.e. 0 to 50,000 top 

bins, 50,000 to 100,000 top bins etc.) and when the overlap between sample blocks (from the 

same cell type) dropped below 50%, the blocks were eliminated. S1 Table shows the number of 

bins used and the number of samples available for each cell type. All selected regions were 

combined and bins were removed when at least 50% of a bin overlapped with an exome capture 
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region (SeqCapEZ Exome V3 Capture, Roche, 64.1Mb). Non-coding regions targeted by our 

design cover a total of 67.3Mb. The Immune-genetics sequencing custom capture was 

complemented by exome (SeqCapEZ Exome V3 Capture, Roche, 64.1Mb) and Human 

Leukocyte Antigen (HLA) regions (SeqCap EZ design, Human MHC design from Roche, 

4.97Mb) totaling 138Mb for the panel.  

 

Enrichment of GWAS hits in DHSs selected for the Immune-genetics sequencing custom capture 

panel design 

GWAS hits were obtained from the National Human Genome Research Institute (NHGRI) 

(https://www.genome.gov/26525384, January 29th 2015). We selected SNPs from different 

disease categories: Immune and chronic inflammatory diseases (724 SNPs), associated to more 

than one immune or chronic inflammatory diseases (49 SNPs), Neuropsychiatric disease (65 

SNPs) and Cancer (393 SNPs), including SNPs in LD using HaploReg V2 (r2>0.9) [215]. 

Functional variants were selected from Monocyte and B-cell cis-eQTLs identified in the paper 

by Fairfax and colleagues [210]. Associated eQTLs with empirical p<0.001 after 1,000 

permutations, for each top hit per transcript were retained for each cell type. ImmunoChip hits 

(224 SNPs) from five immune and chronic inflammatory disease studies [56-59, 216] were used. 

The analysis of overlap between Immune-genetics sequencing regions and SNPs was determined 

using bedtools (v2.17.0). 

We compared the enrichment of GWAS or ImmunoChip hits and functional variants in DHS 

regions included in the Immune-genetics sequencing to other regions: 1) DHS from other cell 

types (S2 Table) selected in the same way as for the immune cells in the Immune-genetics 

sequencing design, 2) Same as in 1) but keeping only regions that do not overlap immune cell 
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DHS regions selected for Immune-genetics sequencing (compared to Immune-genetics 

sequencing DHS regions not overlapping with the other cell types’ DHS regions), 3) an equal 

number of bins as in the Immune-genetics sequencing DHSs selected randomly from the whole 

genome in 1,000 iterations and 4) an equal number of bins as in the Immune-genetics sequencing 

DHSs selected randomly from the non-coding genome in 1,000 iterations. For the randomly 

selected regions, the whole genome was split into 100bp bins and 67,300 of them were selected, 

1,000 times. Fisher’s exact test was performed to evaluate the significance of the enrichment. 

 

Design of the second version of Immune-genetics sequencing 

Using coverage statistics from the first version of the Immune-genetics sequencing panel, we 

flagged poorly covered regions (<0.1X across all samples) or unusually high coverage regions 

(>120x across all samples), as well as ENCODE Blacklist regions for removal, and used the 

remaining regions to begin designing a 2nd version of our Immune-genetics sequencing panel. 

Additional regions totalling 7.243 Mb based on Digital Genomic Footprinting (DGF) data from 

ENCODE for CD4+, CD8+, CD19+ and CD56+ were added for this new panel.  

 

Capture and sequencing  

Thirty samples from the Swedish Uppsala Bioresource cohort were used as the discovery sample 

set in this study. The regional ethical review board in Uppsala, Sweden approved the study and 

all participants gave their informed consent. The Cambridge Multiple Sclerosis (MS) sample set 

was used as a replication set in this study. Eighty-six affected and 94 healthy controls were 

included for a total of 180 samples. DNA was prepared from Peripheral Blood Mononuclear 

Cells using standard methods. DNA quantification was performed using PicoGreen. 
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Whole-genome library preparation was performed using 500-1000ng of genomic DNA. Covaris 

focused-ultrasonicator E210 was used for shearing DNA into 150-1500bp fragments. LabChip 

EZ reader was used for fragment size evaluation and size selection was performed when needed. 

Libraries were prepared using the KAPA High Throughput (HTP) Library Preparation Kit 

(KAPA Biosystems). The end repair to produce blunt-ended double stranded DNA, adenylation 

of the 3’-ends, adapter ligation and amplification were performed following the 

recommendations from the kit manufacturer and cleaned using AMPure XP beads. The libraries 

were analyzed on LabChip and quantified using PicoGreen. Samples were then pooled (2X, 5X 

or 6X) using a total of 1 µg of library, followed by Roche NimbleGen SeqCap EZ Library 

instructions for the hybridization of the baits and the capture steps. The final amplification was 

done using KAPA HTP. Concentration, size distribution, and quality of the amplified capture 

were assessed using LabChip. Captured products were sequenced on the Illumina HiSeq2500 or 

HiSeq2000 with 100bp paired-end reads. The discovery sample set was captured with the first 

version of the panel, and the replication set was captured with the second version of the panel. 

For the second panel, the library preparation and capture steps were automated and performed 

using the Biomek FX (Beckman Coulter). 

 

Read mapping and variant calling 

Reads were aligned to Genome Reference Consortium Human genome build 37 (GRCh37) using 

bwa 0.7.6a. and variants were called using HaplotypeCaller v3.2 (GATK). 
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Variants quality control/SNVs validation 

Quality cut-off was set at read depth ≥10, genotyping quality (gq) ≥70, and mapping quality 

(MQ) ≥50. These cut-offs were selected based on the comparison of the sequencing and 

genotyping data (Human Omni2.5 BeadChip in the 30-sample cohort or Human Omni5 

BeadChip in the 180-sample set), available for all samples, where both had concordance of over 

95% (S1 Fig). Indels were not included in our analysis. 

To test the variant capture efficiency of Immune-genetics sequencing, we applied our panel to a 

Yoruban sample (NA18502) that has been sequenced at high depth by Complete Genomics 

[217]. We compared the accuracy of the heterozygous variants identified by Complete Genomics 

that overlapped with the panel regions with the variants identified using our custom capture 

panel (S2 Fig). DNA sequencing data from the NA18502 sample was downloaded from the 

public genome data repository (ftp2.completegenomics.com, assembly software version 1.10). 

 

Annotation of variants  

The GERP++ score was used as a metric for conservation to identify selectively constrained 

variants (http://mendel.stanford.edu/SidowLab/downloads/gerp/) [218]. We also used the CADD 

tool to score the deleteriousness of the identified variants (http://cadd.gs.washington.edu/) [219]. 

Coding variants were annotated using snpEff [220]. Common variants are defined as having 

MAF>=1% and rare variants are defined as having MAF<1% based on the allele frequencies 

from the 1000 Genomes Project [63]. Novel variants were defined as variants not observed in the 

1000 Genomes Project or dbSNP141. 
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Shared vs cell-type specific DHSs 

The DHS sets selected for each cell type were intersected to determine which bins are observed 

in all selected cell types or in a subset of the cells. Enrichment was measured by comparing the 

number of rare and/or novel variants to the number of common variants falling in each category 

of DHSs and the total observed in DHSs. 

 

Identifications of variants that disrupt or create motifs 

Each identified variant was tested for the impact of the reference and the alternate allele on 

transcription factor motifs ± 15 nucleotides from the variant position. Matrices for TRANSFAC 

(version 2009.4) were used with the Finding Individual Motif Occurrence (FIMO) scanning 

software, version 4.10.1, using a p<1.42e-7 threshold (Bonferroni correction: 0.05 / 351,088 

SNPs =1.42e-7). Only motifs directly overlapping a variant were kept. A motif was considered 

as created if it had a significant matrix affinity score only with the alternate allele, whereas it was 

considered disrupted if it had a significant matrix affinity score only with the reference allele.  

 

RNA-sequencing and allele-specific expression mapping 

Purified T cells were isolated from the discovery set samples (eight CD3+ and 20 CD4+). RNA 

was isolated with miRNeasy Mini Kit (Qiagen) and 500ng of RNA was used to prepare libraries 

using Illumina TruSeq Stranded Total RNA Sample preparation kit following the manufacturer’s 

instructions. Quality control was performed using Agilent Bioanalyzer and samples were 

sequenced on Illumina HiSeq2000 with 100bp paired-end reads. Raw reads were trimmed 

(quality: phred33≥30 and length n≥32), adapters were removed (using Trimmomatic V.0.32 
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[221]) and reads were aligned to the hg19 human reference (Tophat v.2.0.10 [222] and bowtie 

v.2.1.0 [223]) for 81.9% of the reads aligned. For the replication set, purified T-cell (CD4+ and 

CD8+) subpopulations were isolated from 180 subjects (86 multiple sclerosis patients and 94 

healthy controls) for 73% of the reads aligned. For details see Lemire et al [224]. 

Allele counts were measured using the SNPs from Illumina Human Omni2.5 BeadChip (30 

samples cohort) or Human Omni5 BeadChip (180 samples cohort)	and imputation (1,000 

Genomes Project, using the IMPUTE2 software). Haplotype phasing was performed using the 

SHAPEIT V2 software and allele specific expression was calculated using reads from whole 

genes as previously described [211]. We used the Allele-specific expression (ASE) association 

data calculated with the replication cohort for the first cohort because of the lack of power due to 

the small samples number. Since CD3+ cells were not assessed in the replication cohort, we use 

the combination of CD4+ and CD8+ data to get association p-values for this cell type. 

Transcripts with association p-value <1e-5 were kept, and isoforms were removed based on 

normalized read counts for each gene (keeping the best covered isoform). A total of 3,859 

transcripts for CD3+ cells and 3,428 transcripts for CD4+ cells in the 30 samples discovery set, 

and 5,536 transcripts for CD4+ and 5,594 transcripts for CD8+ cells in the replication set were 

included in the analysis. 

 

Enrichment of rare variants in vicinity of allelically imbalanced (AI) genes 

The fold difference between the expressed alleles was calculated as counts for the most abundant 

allele divided by counts for the less abundant allele. Thus, a fold difference of one corresponds to 

alleles that are expressed equally. Genes with fold difference between 2 and 9 were considered as 
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having allelic imbalance (AI). Genes with > 9-fold were considered to be enriched for imprinted 

loci or artefacts and were thus removed from the analyses.  

We performed enrichment analysis for variants in DHS +/-20kb from each gene. We calculated 

the enrichment of rare variants in highly AI genes (ASE effect size between 2 and 9, 1 meaning 

both alleles are expressed equally) by dividing the proportion of AI genes with rare variants in 

correlated DHSs by the proportion of all tested genes with rare variants in correlated DHSs.  

 

DNase –sensitive regions correlated to transcript promoters 

NIH ENCODE Roadmap DHS datasets (n=317) were retrieved and binned into 100bp segments 

as described above. Using transcripts from GENCODE v15, we extracted all promoter regions 

(defined as transcription start site (TSS) +/-500bp). Across all of the DHS datasets, we correlated 

the normalized bin scores for these promoter region bins with all DHS bins +/- 1Mb. 

 

Hi-C region linked with promoter regions 

Hi-C data from GM12787 lymphoblastoid cell line were obtained from Rao et al. [225] (Gene 

Expression Omnibus accession number: GSE63525). We extracted all regions that overlapped 

promoter regions (1500bp from TSS) of gene where expression data was available, as well as the 

linked regions. 
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2.4 Results 

Design of the Immune-genetics sequencing custom capture panel 

In order to select the most relevant non-coding regions to target, we used DNase I mapping data 

available from the ENCODE and Roadmap epigenomics projects from 12 different cell types 

(CD3+, CD3+ cord blood, CD4+, CD8+, CD14+, CD19+, CD20+, CD34+, CD56+, Th1, Th2 

and Th17, S1 Table) [206, 207]. The whole genome was divided into 100 base pair bins, which 

were ranked according to the DHS signal for all samples available for every immune cell type 

(Methods). The top 300,000 signal intensity bins for every cell sample from the ENCODE and 

Roadmap epigenomics project were used for the design of the Immune-genetics sequencing 

capture panel. The bins that were kept were required to be consistent in most (>50%) biological 

replicates used for each cell type. S1 Table shows the number of DHS signal intensity bins used 

and the number of samples available for every cell type. We combined these putative regulatory 

regions (67.3Mb) with the coding regions from exome capture and the HLA region. However, 

given the unique and complex role of HLA in immune disease risk along with the extreme 

sequence diversity of human Major Histocompatibility Complex, we exclude its analysis in the 

following discussion. Altogether, Immune-genetics sequencing covers a total 138Mb of the 

genome. 

 

The Immune-genetics sequencing regions are enriched in pertinent GWAS hits and eQTLs 

We estimated the sensitivity of this panel by determining the extent to which it captured known 

autoimmune and chronic inflammatory diseases associated SNPs listed in the National Human 

Genome Research Institute (NHGRI) GWAS catalogue (p<5x10-8) [8]; or SNPs in high linkage 

disequilibrium (r2>0.9) with these [215] (S1-S2 Table). We repeated this process using cancer 
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and neuropsychiatric diseases associated SNPs listed in the GWAS catalogue (assuming that 

immune cells play a less significant role in these conditions, although it some case, it can play 

one) and using cis-eQTL data for monocytes (CD14+) and B-cells (CD19+) from Fairfax et al. 

[210]. 

This panel includes SNPs in high LD (r2>0.9) with 62% (448 SNPs) of the autoimmune disease 

associated variants listed in the GWAS catalogue (Fig 1A), 63% (140 SNPs) of the associated 

variants identified in key ImmunoChip studies [56-59, 216] (S3A Fig) and more than 68% (378 

SNPs) of the eSNPs identified by Fairfax et al (Fig 1B) [210]. These observations indicate the 

potential of our design to identify variants associated to autoimmune disease as well as other 

variants with potential functional impact on immune cell function. In contrast, alternate panels 

based on DHSs from randomly selected tissues, or random genomic regions show significantly 

poorer performance (Fig 1C-D, S3B Fig).  

 

Functional potential of rare and novel variants identified using Immune-genetics sequencing  

Performing Immune-genetics sequencing on DNA from 30 healthy blood donors (Table 1) at a 

mean sequencing coverage of 52x, we found that on average 88% of the reads were located on or 

near target, >98% of the target regions were covered (only 1.90% of the bases were missing) and 

95% of the target regions were covered by at least two reads. 

Taking advantage of the high sequencing depth, we were able to identify rare and novel variants 

at high confidence. We defined rare variants as those having a MAF <1% in 1000 Genomes 

Project data (Phase3) and novel variants that have not previously been identified by either 1000 

Genomes Project or dbSNP141. A total of 351,088 variants were identified, of which 275,042 

were common, 50,004 were rare and 26,042 were novel (Table 2, S3 and S4 Table). 
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Comparing non-coding with coding variants we found a significantly higher proportion were 

novel (p-value=2.87e-175) and selectively constrained variants based on Genomic Evolutionary 

Rate Profiling (GERP++ ≥1 p-value=3.57e-60 and GERP++≥2 p-value=3.06e-47) (Fig 2A). 

Using GERP++ [218] and Combined Annotation Dependant Depletion (CADD) scores [219], we 

also observed that the proportion of selectively constrained variants was greater amongst the 

novel and rare variants than amongst the common variants (Fig 2B). 

We next partitioned the variants called according to whether the DHS used in the design was 

shared among cell types or unique to one cell type. It has been previously shown that cell-type 

specific DHSs mostly overlap gene bodies and intergenic regions, whereas DHSs that are shared 

between cell types overlap with more active regions and promoters [226]. We observed a higher 

proportion of novel and rare variants compared to common variants in DHSs that are shared 

between cell types, compared to the ones that are unique for a single cell type (Fig 2C). A clear 

increase in enrichment is observed when variants present at cell type unique DHSs and variants 

that are in DHSs shared between two to twelve cell types are compared, with linear regression p-

values of 1.35e-05, 2.41e-06 and 5.81e-05 for rare, novel and combined rare and novel variants, 

respectively. These findings indicate that rare and novel variants are enriched in more active 

genomic regions compared to common variants.  

To further investigate the potential functional impact of the rare and novel variants in DHSs, we 

explored the proportion of variants that disrupt or create transcription-factor motifs, compared to 

common variants and GWAS hits (Methods). In comparison to common variants a significantly 

higher proportion of novel variants create (p-value=1.56e-38) or disrupt (p-value=2.43e-11) 

transcription factor motifs (Fig 2D). Rare variants show a slightly lower, but still significant 
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enrichment for created motifs than do common variants (Fig 2D, p-values for disrupted motifs =	

0.16 and created motifs =	2.77e-07). 

 

The functional impact on gene expression by variants identified using Immune-genetics 

sequencing 

Given that rare non-coding variants in regulatory genomic regions can exert large cis-eQTLs 

effects and demonstrate extreme allele specific expression (ASE) bias [48, 49] we assessed the 

extent to which the rare and novel variants identified using Immune-genetics sequencing 

influenced gene expression in a second independent set of samples; T cells (both CD4+ and 

CD8+) from 180 individuals used in a parallel effort to map common SNPs resulting in ASE 

(Ban, Ge et al. manuscript in preparation), almost 400 RNA-seq datasets in total.  

We also generated deep RNA-seq data from fractionated T cells (CD3+ or CD4+) obtained from 

the 30 individuals used initially. These data generated equivalent results, which are shown in the 

Supplementary materials (S4 to S10 Fig). 

For each gene we counted and characterised (coding/non-coding and novel/rare/common) the 

variants lying in the immediate vicinity (gene +/-20kb) and determined the allelic imbalance (AI) 

in expression observed in each transcript. After adjusting for the average number of SNPs used 

to calculate AI for each transcript, we observed a higher proportion of transcripts with non-

coding variants in their vicinity for transcripts where the higher AI level is independent of a 

common, rare or novel regulatory variant (S11-S12 Fig). A distinct increase in the proportion of 

variants was observed by comparing equally expressed transcripts with a <1.5-fold difference in 

their allelic expression with transcripts displaying AI with an ≥1.5, ≥2, ≥2.5, ≥3 and ≥3.5-fold 
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difference in allelic expression (Fig 3A). The increase in AI is more pronounced for transcripts 

flanked by rare or novel variants than by common variants. In order to control for the influence 

of common variants we repeated this analysis focusing on just those genes which are known to 

undergo ASE (Ban, Ge, et al. manuscript in preparation) and for which we had already mapped 

the common SNP contribution to cis-regulation by ASE-mapping [40]. This approach allowed us 

to include just those individuals that are homozygous for the relevant common eSNP and thereby 

exclude the influence of these common variants (S13 Fig). The same trend was observed for such 

transcripts when analysis was based exclusively on data from individuals homozygous for the 

local established common variant eSNP (S14 Fig).  

This observation was then confirmed when rare and novel variants are considered together and 

this situation is even more pronounced when focusing on individuals homozygous for the 

relevant eSNP (Fig 3B). Rare and novel variants located in DHSs that are correlated to the 

transcript promoters are highly enriched transcripts with substantial AI (>=2 fold) compared to 

common variants, especially in transcripts with homozygous common eSNP (Fig 3B). The 

stronger the correlation between a promoter and a DHS is, the more it is enriched in rare and 

novel variants (p-value=0.0196), and is even stronger when looking at transcripts with 

homozygous common eSNP (p-value= 0.0024, Fig 3B). We also observed that the transcripts 

displaying higher AI show more enrichment for rare and novel variants in its vicinity, compared 

to common variants (Fig 3C). This was also observed when looking at rare and novel variants 

located in regions linked to the gene promoter by Hi-C (S15 Fig). The same increasing trend for 

DHSs correlated with promoters is observed for transcripts with different levels of AI (Fig 3C). 

However, the observed trend is not as strong in all transcripts (S16 Fig). Coding rare and novel 

variants especially in transcripts with homozygous eSNP also appear to have an impact on gene 
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expression, as they are as enriched in coding regions compared to common variants (Fig 3B). 

The effect is almost as strong as the one observed for non-coding variants located at DHSs 

highly correlated with the promoter (Pearson’s r2>0.9) (Fig 3B). Also, a similar trend of 

significant increased AI is observed for coding variants in transcripts with homozygous eSNP 

(Fig 3C, linear regression slope=0.227, p-value=0.018).  

Having the advantage of higher power using this larger cohort, we observed that the more rare or 

novel variants there are within the vicinity of the transcribed region of a gene, the higher the 

likelihood is that the transcripts will display AI (Fig 4A), which is not observed for common 

variants. Finally, we looked at the enrichment of rare or common variants around the TSS of 

transcripts with homozygous eSNP and observed a higher enrichment at +/- 50kb from the TSS 

for rare variants compared to common variants (Fig 4B). 

Taken together we have shown that, rare and novel variants identified in human immune cells 

using the Immune-genetics sequencing capture panel are enriched in DHSs that are highly 

correlated to the promoters of transcripts and in the coding regions of highly differentially 

expressed transcripts, for which the top associated SNP is homozygous. We also observed 

enrichment of rare and novel variants in the vicinity of the TSS regions, and the more rare or 

novel variants there are, the stronger is the allelic imbalance of the gene expression.   
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2.5 Discussion 

In this study, we used existing DHS mapping data to build a custom capture panel designed to 

enable efficient re-sequencing of key immune cell regulatory regions. Our “Immune-genetics 

sequencing” panel provides the means to comprehensively assess both coding and non-coding 

variation that could be implicated in the development of immune and inflammatory diseases. 

Because the method is based on sequencing rather than genotyping it allows direct cost effective 

assessment of both rare and common variation without any reliance on LD or the need for 

imputation. We have shown that with high sequencing coverage we are able to study novel non-

coding variants in a confident way, which cannot be realized using whole exome sequencing, or 

would be prohibitively expensive using whole genome sequencing (WGS). The targeted regions 

included in the Immune-genetics sequencing panel overlap with GWAS hits in immune and 

inflammatory diseases and eQTLs of immune cells. 

An inevitable drawback of the Immune-genetics sequencing design is its inability to capture 

variants of relevance to the disease of interest that map outside the targeted regions. This 

limitation is illustrated by disease-associated SNPs that are not included in the panel. Since the 

Immune-genetics sequencing panel was based exclusively on DHSs seen in immune cells, these 

missing associated SNPs could reflect regulatory effects that are associated with non-immune 

cell based aspects of the disease [204], e.g. gastrointestinal tract DHSs in ulcerative colitis. The 

fact that our panel captures the majority of the known immune and chronic inflammatory disease 

associated SNPs indicates that it will have broad utility across multiple immune related diseases.  

Until now targeted capture methods have focused almost exclusively on the coding regions of the 

genome [227], which means that the effects of rare non-coding variants have largely been 

ignored in the analysis of complex traits. In our exploration of the approach we found that the 
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non-coding rare and novel variants identified by Immune-genetics sequencing frequently modify 

transcription factor binding motifs and show higher levels of selective constraint than are seen in 

included common sequence variants. This difference is expected based on evolutionary and 

population genetics principles, with common variants expected to be more neutral than rare ones 

[29].  

A further novel aspect of the Immune-genetics sequencing approach is its inherent ability to 

utilise ASE information to interrogate the functional impact of sequence variants on gene 

expression. The greater power of ASE allowed us to observe functional effects using a lower 

sample size of unrelated subjects than traditional eQTL analysis [41]. In total the rare and novel 

variants identified by Immune-genetics sequencing explained 14% of the residual allelic 

imbalance in expression observed amongst individuals homozygous for common variants know 

to influence ASE, indicating that rare and novel variants likely account for at least part of the AI 

observed in the transcripts from individuals heterozygous for common eSNPs. Comparing non-

coding variants in DHSs to variants in coding exons, the coding variants appeared to have a 

stronger effect on gene expression. However, the opposite situation was observed for variants 

located in DHSs that are correlated with gene promoters, where the effect of the non-coding 

variants was larger than those of coding ones. Rare and novel variants with substantial effects on 

AI in particular genes may contribute to certain disease phenotypes. In contrast to previous 

studies, we did not limit our exploration to extreme phenotypes, but instead we investigated the 

whole spectrum of AI. In doing so, we observed that the effect of rare and novel variants on gene 

expression does not appear to be limited to extreme differences in allelic expression, but may 

also affect genes with moderate AI. 
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One further limitation of the study may be that not all transcripts for which the allelic expression 

is skewed were accounted for by rare variants identified by Immune-genetics sequencing. Some 

variants exerting long range or trans effects will inevitably have been missed by not performing 

WGS. Nevertheless, as opposed to earlier studies [48, 49], we expand the exploration of rare 

variant effects to distal regulatory sites with correlated activity with gene promoter. While distal 

sites show enrichment, the strongest effect of rare and novel variants is found around the TSS of 

genes displaying AI. This observation indicates that variants can be clustered to perform 

collapsing association test for complex traits, which will permit the identification of rare and 

novel trait-associated variants and to easy linking of the variants to a specific gene.  

 

2.6 Conclusion 

In this study, we show that targeted re-sequencing of cell specific active regulatory regions can 

be an efficient means to identify functionally relevant variation that is considerably more cost 

effective than WGS. Immune-genetics sequencing provides an efficient means to identify rare 

and novel, coding and non-coding variation of relevance in complex traits involving the immune 

system and to study the impact of rare and novel non-coding regulatory variants on other 

epigenetic traits. 
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sequencing; SNP: Single nucleotide polymorphism; TSS: Transcription start site; WES: Whole-

exome sequencing; WGS: Whole-genome sequencing 

 

2.7 Acknowledgements 

This work was supported by grants from the Canadian Institute of Health Research (CIHR), the 

UK Medical Research Council (G1100125), the Swedish Research Council (DO283001) and 

Knut and Alice Wallenberg Foundation (KAW). We also acknowledge the use of subjects from 

the Cambridge BioResource and the support of the Cambridge NIHR Biomedical Research 

Centre. AM was supported by the Fond de Recherche Santé Québec Doctoral training award.	TP 

and CL hold a Canada Research Chair. 

 

Declarations 

Supporting information is available online 

 

 

 



	 71	

Availability of data and materials 

All data are available through EGA (https://www.ebi.ac.uk/ega/home) under the study “Immune-

genetics sequencing” (DAC: EGAC00001000409, Policy: EGAP00001000396, Study: 

EGAS00001001564). 

 

Authors’ contributions 

TP, GB and ML conceived and supervised the study. AM, TP and TK drafted the manuscript. 

AM, TK, BG, MC and LL analyzed the data. MB, KT, JS, JC, A-CS, LR, SJS provided samples 

and materials.	All authors reviewed and approved the final manuscript. 

 

Competing interest 

Authors declare no competing interests 

 

Consent for publication 

Not applicable 

 

Ethics approval and consent to participate 

Written and informed consent was obtained for each participant during enrollment and was 

approved by each participating sites’ regional ethical review board. 

	  



	 72	

2.8 Figures and Tables 

Table 1. Sequencing statistics of the samples sequenced with Immune-genetics sequencing 

 Mean 
target 
coverage 

Bases 
on 
target 
(%)1 

Target 
region 
without 
coverage 
(%)2 

Target bases 
with >=10x 
coverage 
(%)3 

Level of 
multiplexing 

Sequencing 
platform 

Sweden 
Uppsala 
Bioresource 
samples 
(n=30) 

52X 88 1.9 83 2X  
(3 samples) 
5X  
(27 
samples) 

HiSeq2500 
(2X samples) 
HiSeq2000 
(5X samples) 

Alignment to the human hg19 reference genome, and variant calling (HaplotypeCaller) to identify all SNPs were 
performed. Shows average values across samples. 1 On and near bait bases/good quality bases aligned (according to 
Picards metrics). 2The percentage of target region that did not reach 2x coverage over any base.3 The percentage of 
all target bases achieving 10X or higher coverage. We considered a variant to be true at >=10 depth. 
	

Table 2. General characteristics of the common, rare and novel single nucleotide variations 
(SNVs) 

Total number (average per sample) All Common Rare Novel1 

All (Immune-genetics sequencing) 351088 
(90594) 

275042 
(83839) 

50004 
(5318) 

26042  
(1437) 

Coding2 All 60946 
(15169) 

45545  
(1818) 

12,452 
(1166) 

2949  
(185) 

Non-synonymous3  30967 
(7174) 

21807  
(6403) 

7405  
(669) 

1755  
(102) 

Synonymous3 29214 
(7770) 

23434  
(7305) 

4785  
(395) 

995  
(71) 

Stop-gained3 395 (71) 202 (56) 135 (13) 58 (2) 
Exome4 120245 

(30682) 
91818 
(27916) 

21497 
(2280) 

6,930  
(486) 

Non-coding5 290142 
(75424) 

229497 
(70020) 

37552 
(4152) 

23093  
(1251) 

All DHS6 195182 
(51559) 

 154154 
(48056) 

24571 
(2677) 

16457 
(826) 

Total number of variants and the average number of variants per sample that were included in the Immune-genetics 
sequencing design. 1Novel variants are defined as not identified in the 1000 Genomes Project nor included in 
dbSNP141. 2Coding variants are those located in the exons of the RefSeq coding sequence. 3Synonymous, non-
synonymous and stop-gained variants were annotated using SNPeff and the hg19 version of the genome. 4The 
Exome is based on the Roche SeqCap EZ exome v3.0. 5 Non-coding variants are those not in the RefSeq coding 
sequence. 6The All DHSs category combines all DHSs from the selected 12 cell types and could partly overlap with 
the Exome. Cut-offs used for the quality control of the variants are read depth≥10, genotyping quality (gq)≥70, 
mapping quality (MQ) ≥50, and proportion of the reference allele between 10-90%.	
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Fig 1. Benchmarking the Immune-genetics sequencing capture panel by known disease 
associated sites and regulatory variants. (A) Autosomal GWAS hits associated to more than 
one autoimmune or chronic inflammatory disease, for neuropsychiatric diseases and for cancer 
included in the Immune-genetics sequencing custom capture panel. (Cut-off of 1x10-8 was used 
to select GWAS hits to analyze, SNPs in LD selected based on r2>0.9, HLA (human leucocyte 
antigen) hits and region as well as chromosome X SNPs were excluded from the analyses). SNP 
in LD = GWAS hits that have a SNP in LD in the Immune-genetics sequencing custom capture 
panel. (B) cis-eQTLs from monocytes (CD14+) and B Cells (CD19+) (considered has haplotype 
block, r2>0.9) included in the Immune-genetics sequencing panel. Cut-off of p<1e-3 or p<1e-5, 
and p<1e-12 after 1000 permutations (1000= number of SNPs tested per probe) and top 1 eQTLs 
per transcript were kept for analysis (HLA hits and region as well as chromosome X hits were 
excluded in the analyses). (C) Enrichment of GWAS hits (same as in A) and proximal SNPs (LD 
r2>0.9) that fall in DHSs selected for immune cell types compared to DHSs selected from other 
tissues (either all or non-overlapping ones) and regions randomly selected (1000 times) from the 
whole genome (either the full genome or only non-coding regions excluding HLA). Significance 
was calculated using Fisher´s exact test. Enrichment is significant (p<0.001) for all GWAS hits 
except for Neuropsychiatric hits. (D) Enrichment of eQTLs (same as in B) and proximal SNPs 
(LD r2>0.9) positioned at DHSs selected for immune cell types compared to DHSs selected from 
other tissues (either all or non-overlapping ones) and regions randomly selected (1000 times) 
from the whole genome (either entire genome or only the non-coding part excluding the HLA 
region). All enrichments shown are significant (p<0.001). All p-values were calculated using 
Fisher´s exact test. 
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Fig 2. Discovery and functional potential of rare and novel variants using Immune-genetics 
sequencing. (A) Proportion of novel variants (all, Genomic Evolutionary Rate Profiling 
(GERP++)>=1 and GERP++>=2) identified in DHS (red) compared to the exome (blue). (B) 
Distribution of proportion of common (red), rare (blue) and novel (green) variants according to 
GERP++ score and Combined annotation dependent depletion (CADD) score. (C) Fold 
enrichment of rare (blue), novel (green) or rare and novel combined (red) variants compared to 
common variants found at shared or cell-type specific DHSs. Linear regression slope: rare 
=0.119 p-value= 1.35e-05, novel= 0.093 p-value= 5.81e-05, rare and novel=0.113 p-
value=2.41e-06. (D) Proportion of common (red), rare (blue) and novel (green) variants localized 
at a DHS that either disrupt or create a transcription-factor binding motif. P-values are calculated 
using Fisher’s exact test (***p<0.001). 
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Fig 3. The impact of rare and novel noncoding variants on gene expression. (A) Using the 
replication set, we looked at the adjusted proportion of transcripts with common (red), rare (blue) 
or novel (green) noncoding variants in the vicinity (+/-20kb) of a gene based on different allelic 
imbalance: 1.5 to 9, 2 to 9, 2.5 to 9, 3 to 9 and 3.5 to 9-fold difference. Adjustment was based on 
average number of SNPs used to calculate ASE at each ASE levels. (B) Enrichment of 
proportion of transcripts showing allelic imbalance (AI) with rare or novel variants in the vicinity 
of the gene compared to AI transcripts with common variants in vicinity of a gene. We looked at 
coding (histogram) vs noncoding variants as well as noncoding variants in DHS regions 
correlated with the promoters (Pearson correlation r>0.5 to 0.9). In red are all transcripts where 
allelic imbalance was measured (allAI) and in blue are the transcripts for which the top 
associated SNP is homozygous in the sample (homAI). Linear regression slope for allAI= 0.015 
(p-value=0.0196) and homAI=0.063 (p-value= 0.0024). Allelic imbalance genes are considered 
as >=2 fold between the alleles and equally expressed genes are <=1.5 fold. (C) Fold difference 
between proportions of AI transcripts with rare or novel variants in the vicinity compared to AI 
transcripts with common variants in the vicinity. Only including transcripts for which the top 
associated SNP is homozygous (homAI). We looked at coding (histogram) vs noncoding variants 
around the genes (+/-20kb from gene) and in DHS regions correlated with the promoters 
(Pearson correlation r>0.5 to 0.9). We compare different levels of allelically imbalanced 
transcripts from 1.5-fold to 3.5. all AI: AI transcripts comparing all transcripts for which ASE 
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was measured and homAI: transcripts for which the top associated SNP that drives the 
association across samples is homozygous. 
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Fig 4. The number and location of rare and novel noncoding variants have an impact on 
gene. (A) Adjusted proportion of AI transcripts that contain 1 or more noncoding common (red) 
or rare and novel (blue) variants in transcripts vicinity (+/-20kb from gene). Adjustment was 
based on average number of SNPs used to calculate ASE at each ASE levels. (B) Fold 
enrichment of common (red) or rare and novel (blue) variants in AI vs all transcripts measuring 
their distance from transcription start sites (TSS). Transcripts with p<0.05 were used. Sliding 
window of 80kb every 10kb was used. 
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2.9 Supporting information 

Table S1. Cell type selected to target regulatory regions in immune cells. 

Cell types Number of bins Final number of bins Number of samples Accession number (GEO) 
CD3+ 250,000 259,321 4 GSM665837, GSM701488, GSM701516, 

GSM774201 
CD3+ cord blood 150,000 97,243 2 GSM701525, GSM701526 
CD4+ 200,000 196,585 8 GSM665812, GSM665839, GSM701489, 

GSM701491, GSM701539, GSM817166, 
wgEncodeUwDnaseCd4naivewb11970640AlnRep1, 
wgEncodeUwDnaseCd4naivewb78495824AlnRep1 

CD8+ 250,000 229,426 5 GSM665813, GSM665838, GSM701499, 
GSM701540, GSM817160 

CD14+ 250,000 271,497 4 GSM701503, GSM701541, 
wgEncodeUwDnaseMonocd14ro1746AlnRep1V2, 
wgEncodeUwDnaseMonocd14ro1746AlnRep2  

CD19+ 250,000 240,941 3 GSM701492, GSM701493, GSM701507 
CD20+ 225,000 200,000 1 GSM701500 
CD34+ 250,000 242,494 14 GSM493384, GSM493386, GSM493387, 

GSM530652, GSM530657, GSM530658, 
GSM530659, GSM530660, GSM530663, 
GSM530664, GSM595914, GSM595917, 
GSM595918, GSM595919 

CD56+ 200,000 183,311 3 GSM665820, GSM665836, GSM701508 
Th1 100,000 64,012 2 wgEncodeOpenChromDnaseAdultcd4th1AlnRep1, 

wgEncodeOpenChromDnaseAdultcd4th1AlnRep2 
Th2 300,000 291,859 1 GSM736502 
Th17 100,000 100,000 1 wgEncodeUwDnaseTh17AlnRep1 (to verify) 
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Table S2. Cell types selected to target regulatory regions in other cell types not related to immune function. 

Cell types/Tissue Number of bins Final number of bins Number of samples Accession number (GEO) 
Fetal Lung 250,000 231,527 11 GSM530662, GSM595915, GSM595916, 

GSM595921, GSM595924, GSM595925, GSM595927, 
GSM595929, GSM595930, GSM665805, GSM665806 

Fetal Kidney 200,000 193,630 6 GSM493385, GSM774221, GSM817159, GSM878666, 
GSM1024608, GSM1027329 

Fetal Brain  200,000 173,884 9 GSM530651, GSM595913, GSM595920, GSM595922, 
GSM595923, GSM595926, GSM595928, GSM665804, 
GSM1027328 

Fetal Small 
intestine 

250,000 225,102 11 GSM665825, GSM665835, GSM701487, GSM701496, 
GSM701504, GSM701530, GSM774205, GSM774210, 
GSM774216, GSM817161, GSM817187 

Fetal Large 
intestine 

250,000 233,707 9 GSM701490, GSM701495, GSM701531, GSM774213, 
GSM774214, GSM774217, GSM774220, GSM817162, 
GSM817188 

Fetal Renal cortex 250,000 245,861 10 GSM701494, GSM701502, GSM701529, GSM701532, 
GSM817176, GSM878629, GSM878667, GSM1027314, 
GSM1027316, GSM1027323 

Fetal Stomach 250,000 232,109 13 GSM701498, GSM701521, GSM701528, GSM701538, 
GSM774202, GSM774212, GSM817173, GSM817199, 
GSM878660, GSM878665, GSM1024606, GSM1027318, 
GSM1027331 

Fetal Arm muscle 250,000 241,617 15 GSM701506, GSM701535, GSM774223, GSM774239, 
GSM817178, GSM817184, GSM817214, GSM817216, 
GSM878610, GSM878618, GSM878619, GSM878620, 
GSM878625, GSM878638, GSM1024605 

Fetal Placenta 250,000 231,726 5 GSM774215, GSM774219, GSM817219, GSM878659, 
GSM1027343 

Fetal Adrenal gland 200,000 179,763 5 GSM817165, GSM817167, GSM878658, GSM1027310, 
GSM1027311 

Fetal Testis 250,000 198,545 2 GSM878617, GSM1027319 
Fetal Ovary 100,000 100,000 1 GSM1027306 
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Table S3. Summary of shared common, rare and novel variants in selected DHS regions of different immune cells 

Common/ 
Rare/ novel  

CD3+ CD3+ 
cord 
blood 

CD4+ CD8+ CD14+ CD19+ CD20+ CD34+ CD56+ Th1 Th2 Th17 

CD3+ 54,570/ 
9,834/ 
5,774 

           

CD3+ cord 
blood 

21,628/ 
3,880/ 
2,469 

21,730/ 
3,909/ 
2,481 

          

CD4+ 40,663/ 
7,288/ 
4,416 

21,421/ 
3,849/ 
2,436 

42,354/ 
7,520/ 
4,561 

         

CD8+ 45,291/ 
7,995/ 
4,885 

21,385/ 
3,827/ 
2,442 

38,704/ 
6,840/ 
4,193 

49,086/ 
8,602/ 
5,239 

        

CD14+ 26,697/ 
4,973/ 
3,062 

18,040/ 
3,328/ 
2,083 

25,084/ 
4,585/ 
2,819 

25,886/ 
4,746/ 
2,948 

59,581/ 
9,829/ 
5,819 

       

CD19+ 35,476/ 
6,364/ 
3,992 

21,245/ 
3,822/ 
2,428 

32,055/ 
5,731/ 
3,596 

34,235/ 
6,110/ 
3,862 

27,704/ 
5,087/ 
3,150 

50,942/ 
8,773/ 
5,407 

      

CD20+ 20,035/ 
3,654/ 
2,256 

14,707/ 
2,657/ 
1,677 

18,817/ 
3,448/ 
2,127 

19,488/ 
3,519/ 
2,172 

18,709/ 
3,385/ 
2,089 

19,000/ 
3,441/ 
2,143 

43,910/ 
7,047/ 
4,288 

     

CD34+ 31,128/ 
5,728/ 
3,548 

19,886/ 
3,586/ 
2,295 

28,223/ 
5,149/ 
3,138 

29,834/ 
5,437/ 
3,408 

31,088/ 
5,544/ 
3,461 

29,577/ 
5,366/ 
3,402 

20,419/ 
3,654/ 
2,276 

53,076/ 
9,165/ 
5,552 

    

CD56+ 35,904/ 
6,434/ 
3,980 

20,571/ 
3,684/ 
2,360 

32,535/ 
5,783/ 
3,633 

35,943/ 
6,387/ 
3,975 

24,905/ 
4,550/ 
2,787 

29,661/ 
5,290/ 
3,371 

18,076/ 
3,343/ 
2,064 

27,573/ 
5,033/ 
3,138 

40,046/ 
7,156/ 
4,359 

   

Th1 12,015/ 
2,171/ 
1,304 

9,770/ 
1,714/ 
1,082 

11,479/ 
2,062/ 
1,265 

11,846/ 
2,119/ 
1,280 

10,734/ 
1,930/ 
1,179 

11,060/ 
1,997/ 
1,224 

9,063/ 
1,638/ 
990 

11,365/ 
2,044/ 
1,252 

11,181/ 
2,001/ 
1,232 

13,025/ 
2,412/ 
1,414 

  

Th2 36,811/ 18,595/ 32,002/ 34,935/ 24,458/ 30,582/ 18,023/ 27,643/ 29,154/ 11,768/ 59,458/  
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6,280/ 
3,903  

3,285/ 
2,132 

5,456/ 
3,451 

5,876/ 
3,742 

4,337/ 
2,716 

5,220/ 
2,392 

3,166/ 
1,964 

4,895/ 
3,096 

5,018/ 
3,182 

2,043/ 
1,250 

9,775/ 
5,707 

Th17 31,088/ 
3,260/ 
1,979 

11,617/ 
2,254/ 
1,443 

15,581/ 
3,010/ 
1,847 

16,234/ 
3,076/ 
1,894 

13,322/ 
2,665/ 
1,589 

13,051/ 
2,581/ 
1,596 

9,967/ 
1,949/ 
1,207 

14,468/ 
2,808/ 
1,713 

15,758/ 
2,955/ 
1,867 

7,574/ 
1,417/ 
907 

17,141/ 
3,186/ 
1,922 

22,026/ 
4,146/ 
2,366 
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Table S4. Sequencing statistics of the Cambridge Multiple sclerosis samples with Immune-genetics sequencing. 

 Mean 
target 
coverage 

Bases on 
target 
(%)1 

Target 
region 
without 
coverag
e (%)2 

Target 
bases with 
>=10x 
coverage 
(%)3 

Sequencing 
platform 

Level of 
multiplexing 

Cambridge 
Multiple 
Sclerosis 
cohort and 
healthy 
controls 
(n=180) 

31X 68.76 1.9 73 HiSeq2000 6X 

Alignment to the human hg19 reference genome, and variant calling (HaplotypeCaller) to identify all SNPs were performed. Shows 
average values across samples. 1 On and near bait bases/good quality bases aligned (according to Picards metrics). 2The percentage of 
target region that did not reach 2x coverage over any base.3 The percentage of all target bases achieving 10X or higher coverage. We 
considered a variant to be true at >=10 depth. 
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A) B) C) 
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Figure S1. Variants Quality control 
Comparing sequencing data to genotyping data (Human Omni2.5 BeadChip) considering only heterozygous SNPs for the discovery 
set. In black is the average, samples are coloured according to mean coverage: blue=15-20, red=20-30, green=30-40, purple= 40-50, 
orange>=50. A) Sensitivity: how many of the genotyped SNPs are called in the Immune-genetics sequencing at increasing read 
depth/genotyping quality/mapping quality. B) Accuracy: Of the variant captured at each read depth/genotyping quality/mapping 
quality, how many of them are accurate. C) Cumulative accuracy: Of the variant captured at each read depth/genotyping quality and 
over, how many of them are accurate. 
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Figure S2. Comparing sequencing data for NA18502 sample (complete genomics data and Immune-genetics sequencing) 
considering only heterozygous SNVs identified by complete genomics that fall into Immune-genetics sequencing custom capture 
panel. Sensitivity: how many of the genotyped SNP are we seeing in the Immune-genetics sequencing at increasing read 
depth/genotype quality (ex: over 10 read depth we capture 95% of the heterozygous variants). Accuracy: Of the variant captured at 
each depth (and over), how many of them are accurate. A) Read depth. B) Genotyping quality.  
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Figure S3. ImmunoChip hits that falls into Immune-genetics sequencing custom capture panel. A) ImmunoChip hits that falls in 
the Immune-genetics sequencing. capture panel. (Cut-off of 1x10-8 was used to select hits to analyze, SNPs in LD selected based on 
r2>0.9, HLA hits and region as well as chromosome X SNPs were excluded from the analyses). SNP in LD = ImmunoChip hits that 
have a SNP in LD represented by Immune-genetics sequencing. B) Enrichment of hits (same as in A) and proximal SNPs (LD r2>0.9) 
that fall in DHSs selected for immune cell types compared to DHSs selected from other tissues (either all or non-overlapping ones) 
and regions randomly selected (1000 times) from the whole genome (either entire genome or only non-coding excluding the HLA 
region). Significance was calculated using Fisher exact test.  
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Figure S4. Discovery set distribution of allele specific expression (ASE). Distribution of proportion of ASE in transcripts with 
common (red), rare (blue) or novel (green) noncoding variants in vicinity (+/-20kb from gene) adjusted for average number of SNPs 
used to calculate ASE. 
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Figure S5. Average number of SNPs used to calculate allele specific expression (ASE) in discovery set samples. Comparing all 
transcripts for which ASE was measured (allAI) and transcripts for which the top associated SNP that drives the association across 
samples is homozygous (homAI). 
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Figure S6. Adjusted proportion of transcripts with common (red), rare (blue) or novel (green) noncoding variants in the vicinity 
(+/-20kb) of a gene based on different allelic imbalance: 1.5 to 9, 2 to 9, 2.5 to 9, 3 to 9 and 3.5 to 9-fold difference in the discovery 
set. Adjustment was based on average number of SNPs used to calculate ASE at each ASE levels.  



	 90	

 
Figure S7. Discovery set distribution of Allelic imbalance (AI). Adjusted proportion of transcripts with common (red), rare (blue) 
or novel (green) noncoding variants in vicinity (+/-20kb from gene) based on different AI: 1.5 to 9, 2 to 9, 2.5 to 9, 3 to 9 and 3.5 to 9-
fold difference. Including only transcripts for which the top associated SNP is homozygous in the sample (homAI). 
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Figure S8. Enrichment of proportion of AI transcripts with rare or novel variants in vicinity of a gene compared to AI 
transcripts with common variants in vicinity of a gene in the discovery set. We looked at coding (histogram) vs noncoding 
variants as well noncoding variants in DHS region correlated with the promoter (Pearson correlation r>0.5 to 0.9). In red are all 
transcripts where allelic imbalance was measured (allAI) and in blue are the transcripts for which the top associated SNP is 
homozygous in the sample (homAI). Linear regression slope for homAI=0.076 (p-value= 0.018) and allAI= -0.007 (p-value= 0.591). 
Allelic imbalance genes are considered as >=2 fold between the alleles and equally expressed genes are <=1.5 fold.  
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Figure S9. Fold difference between proportion of AI transcripts with rare or novel variants in vicinity compared to AI 
transcripts with common variants in vicinity in the discovery set. Only including transcripts for which the top associated SNP is 
homozygous (homAI). We looked at coding (histogram) vs noncoding variants around the genes (+/-20kb from gene) and in DHS 
regions correlated with the promoters (Pearson correlation r>0.5 to 0.9). We compare different level of allelically imbalanced 
transcripts from 1.5 fold to 3.5. 
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Figure S10. Enrichment between proportions of AI transcripts with rare or novel variants in vicinity compared to AI 
transcripts with common variants in vicinity in the discovery set. Including all transcripts (allAI). We looked at coding 
(histogram) vs noncoding variants around the genes (+/-20kb from gene) and in DHS regions correlated with the promoters (Pearson 
correlation r>0.5 to 0.9). We compare different levels of allelically imbalanced transcripts from 1.5 fold to 3.5. 
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Figure S11. Replication set distribution of allele specific expression (ASE). Distribution of proportion of ASE in transcripts with 
common (red), rare (blue) or novel (green) noncoding variants in vicinity (+/-20kb from gene) adjusted for average number of SNPs 
used to calculate ASE. 
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Figure S12. Average number of SNPs used to calculate allele specific expression (ASE) in the replication set. Comparing all 
transcripts for which ASE was measured (allAI) and transcripts for which the top associated SNP that drives the association across 
samples is homozygous (homAI). 
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Figure S13. Distribution of allele specific expression of all transcripts and transcripts that did not carry the common allele in a 
heterozygous state. Histogram of number of transcripts from each category (overlay of the two). Comparing all transcripts for which 
ASE was measured (allAI) and transcripts for which the top associated SNP that drives the association across samples is homozygous 
(homAI). 
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Figure S14. Replication set distribution of Allelic Imbalance (AI). Adjusted proportion of transcripts with common (red), rare 
(blue) or novel (green) noncoding variants in vicinity (+/-20kb from gene) based on different AI: 1.5 to 9, 2 to 9, 2.5 to 9, 3 to 9 and 
3.5 to 9-fold difference. Including only transcripts for which the top associated SNP is homozygous in the sample (homAI). 
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Figure S15. Enrichment between proportion of AI transcripts with rare or novel variants in vicinity compared to AI 
transcripts with common variants in vicinity in the discovery and replication set. Only including transcripts for which the top 
associated SNP is homozygous (homAI). We looked at promoter regions as well as regions linked to it by Hi-C. We compare different 
levels of allelically imbalanced transcripts from 1.5-fold to 3. Results from both the discovery set (left) and replication set (right) are 
shown. 
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Figure S16. Enrichment between proportion of AI transcripts with rare or novel variants in vicinity compared to AI 
transcripts with common variants in vicinity in the replication set. Including all transcripts (allAI). We looked at coding 
(histogram) vs noncoding variants around the genes (+/-20kb from gene) and in DHS regions correlated with the promoters (Pearson 
correlation r>0.5 to 0.9). We compare different levels of allelically imbalanced transcripts from 1.5-fold to 3.5. 
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Chapter 3 

Preface: Bridging Text between Chapters 2 and 3 

Chapter 2 described the design and potential efficiency of the Immune-genetics 

sequencing that we developed to study rare and low-frequency coding and non-coding 

regulatory variants in autoimmune and inflammatory complex traits. In this chapter, we 

used it on the Saguenay–Lac-Saint-Jean asthma familial cohort, which is a founder 

population. Using this population allowed us to explore two questions: 1) is the SLSJ 

population enriched in deleterious variants as seen in other founder populations and 2) 

what are the impact of rare and low-frequency variants on asthma and allergy-related 

traits and can we identify new genes associated to the traits.  
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3.1 Abstract 

The Saguenay–Lac-Saint-Jean (SLSJ) region is located in northeastern Quebec and is 

known for its unique demographic history and founder effect. Since founder populations 

are enriched in private variants, we first assessed differences in variant distribution and 

characteristics between this population and the Finnish founder population along with 

three other European populations (Sweden, United Kingdom and France). We then 

explored the advantages of using the SLSJ population in the study of rare coding and 

noncoding regulatory variants in complex traits such as asthma and allergies. We used 

targeted sequencing of coding and non-coding regulatory regions of immune cells on 149 

trios from the SLSJ asthma familial cohort and on samples from the four European 

populations. Although the founder populations do not appear to have more rare or 

deleterious variants, we observed that a larger proportion of private variants reached 

higher frequencies and that low-frequency variants appear to be more deleterious. Thus, a 

substantial number of variants private to these populations can be tested in the context of 

complex traits. Genotypes were then inferred and imputed for the rest of the SLSJ cohort 

(1 214 samples) and used in single variant association and gene-based tests on asthma 

and allergy related-traits: eosinophil percentage, immunoglobulin (Ig)E levels and lung 

function. Using a founder population like the SLSJ allowed us to identify four new genes 

associated with asthma and allergy-related traits. This may help better understand the 

genes and pathways implicated in the development of the pathophysiology.  

 

Keywords:  asthma, allergy, rare and low-frequency variants, founder population 
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3.2 Introduction 

The Saguenay–Lac-Saint-Jean (SLSJ) region is located in northeastern Quebec and is 

known for its unique demographic history and founder effect, characterized by several 

population bottlenecks followed by rapid expansion [186]. Founder populations have 

been useful to successfully identify rare variants associated with different complex traits 

[68, 183]. The advantage resides in their homogeneity and the genetic drift resulting in 

distinctive allele frequencies. In fact, deleterious alleles could overcome their selective 

disadvantage by reaching higher frequencies in the population. Other studies also 

suggested that an advantage of founder populations could be their enrichment in 

deleterious variants [68, 77, 228], which was shown in French Canadians [78] and 

Finnish populations [79]. However, several studies have challenged these observations 

[80-82]. 

Studying rare and low-frequency variants in complex traits is a step forward from the 

investigations of common genetic variants and provided additional information on the 

underlying biological mechanism. Despite the important contribution of common 

variants, we now know that they only explain part of the picture about the genetic basis 

of complex traits [14]. Additional genetic burden may exist in the low-frequency and rare 

spectrum of genetic variation that have been explored only more recently. 

The first goal of this paper is to assess differences in variant distribution and 

characteristics of the SLSJ founder population by comparing it to the Finnish founder 

population and three other European populations from Sweden, United Kingdom, France. 

Since SLSJ is part of the French-Canadian population, we wanted to follow up on 

previous results and see if we could observe the same enrichment of deleterious variants 
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in this population [78]. We will then explore the impact of rare and low frequency 

variants in asthma and allergy-related traits in the SLSJ asthma familial cohort [186]. 

Asthma and allergy related traits are common diseases with an important genetic 

component that remains unexplained [121]. Rare and low-frequency variants have been 

previously studied to better understand the genetic basis of asthma and allergy related 

traits [27, 67, 158]. Although they do not explain a large part of the missing heritability 

of the disease they do take part into its architecture [27]. Rare variants exploration 

identified previously associated genes (ex: GSDMB [27], IL33 [67]) and new ones (ex: 

GRASP [27]), highlighting the importance of studying their role in the context of 

complex traits.  

In this study, we take advantage of the well-described population and availabilities of 

multiple, related continuous phenotypes. Asthma includes multiple subphenotypes and 

endotypes, therefore we limited our asthma definition and focused on related continuous 

phenotypes could help us identify variants associated with the disease. We restricted to 

IgE levels, eosinophils (Eos) percentage and lung function. The aim was to identify new 

genes/variants associated with the traits to help further understand biological mechanisms 

and pathways related to asthma or allergic diseases. We were able to identify one low-

frequency variant and two genes associated with Eos percentage and serum IgE levels. 

These results provide rationale for sequence-based association studies in founder 

populations to identify variants that may be missed using genotyping chip and/or larger 

heterogeneous populations.  
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3.3 Material and Methods 

Samples 

We sequenced 149 trios (447 samples) from the SLSJ asthma familial cohort [186] using 

a custom targeted capture panel developed by our group [229] followed by next-

generation sequencing. This panel covers around 3% of the genome, including coding 

and non-coding immune regulatory regions [229]. For the first part of this study, we 

paired the non-related parents to samples from four other populations: Finland (FINN), 

France (FR), United Kingdom (UK) and Sweden (SWE). 93 samples from the five 

different populations were included and paired by mean coverage to avoid bias. All 

studies received ethic approbation from their respective ethic committees. To analyze the 

impact of rare variants on lung function (Forced vital capacity (FVC), Forced expiratory 

volume in one second (FEV1), and Tiffeneau-Pinelli index (FEV1/FVC)), serum IgE 

levels and Eos percentage we used well-described samples from the SLSJ asthma familial 

cohort (see Table 1 for Clinical description and1 for Recruitment details). This cohort 

includes 1 214 individuals from 271 families1. The 149 sequenced trios are part of larger 

families, of which 110 siblings had the sequenced inferred and imputation was performed 

in the rest of the cohort (see Inference and Imputation section). Lung function, serum IgE 

levels and differential white blood cell counts are all described in Laprise 2014.1 The 

study was approved by the Centre intégré universitaire de santé et de services sociaux de 

Saguenay ethics committee. All subjects gave informed consent. 
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Capture and Sequencing 

Samples from the 149 trios from the SLSJ asthma familial cohort as well as the 372 

samples from the four other European populations were all sequenced using our custom 

capture panel. See Morin et al.16 for details about panel description, capture and 

sequencing. To remove any potentially related individuals, we performed an identity-by-

descent estimation using the method of moments17 and a principal component analysis 

using the SNPRelate R package18 (Supplementary Figure S1a). We also used 

heterozygous/homozygous proportion to identify and remove outliers (Supplementary 

Figure 1b-d). We also removed paired samples and kept 76 samples per population for a 

total of 380 samples.  

Variant calling and filtering 

We aligned reads to the Genome Reference Consortium Human genome build 37 

(GRCh37) using bwa 0.7.6a. and we called variants using HaplotypeCaller v3.2 (GATK). 

We performed merge calling for all selected samples for part one together (465 samples) 

and the 149 trios independently. For the 149 trios, a mean coverage of 37.6x was 

obtained. We compared sequencing to genotyping data (see Genotyping section) as a 

quality control using heterozygous and biallelic variants that were both in capture region 

and on the genotyping chip. We remove seven samples that had a concordance of less 

than 95% (440 samples remained). We also used the comparison between sequencing and 

genotyping to set our “true variant cut-off”; at read depth (dp) >10x, genotyping quality 

(gq) >35, we observed and accuracy of >95% and a sensitivity of >95%. We assessed 

Mendelian errors using VCFtools [232] and a parent/proband pair was excluded due to 

high error rate. Mendelian errors were replaced by missing values. Variants included in 
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both sample sets met these criteria: 1) Fall within the targeted regions, 2) biallelic sites, 

3) dp >10x and gq >35 in at least 90% of the samples. We also remove the HLA region, 

as it will be analyzed independently. A total of 192,228 variants (178,613 SNVs and 

13,614 indels) were included in the first part of this study and summarized in Table 2. All 

five populations had a mean coverage of 28X (18-52X). For the trios, the sequenced was 

inferred and imputed in the rest of the cohort (see Inference and Imputation sections). 

Functional annotation was performed using SNPeff [220] and selectively constrained 

variants were identified with the Genomic Evolutionary Rate  Profiling (GERP++ 

score)[218].  

 

Genotyping 

Samples from the SLSJ asthma familial cohort genotyping details about chip, DNA 

extraction samples and variant filtering are described in Laprise 2014 [186] and Moffat et 

al. 2010 [121]. Genotyping data was used for quality cut-offs assessments, inference and 

imputation of the sequence in the whole cohort. 

 

Inference and Imputation  

Genotype phasing was performed using SHAPEIT v2 and duoHMM [233-235] to 

consider familial structures. Pre-phasing was done using the trios (440 samples) using 

merged sequencing and genotyping data as well as on the whole cohort using only 

genotyping data (1 214 samples). We inferred the sequence in the non-sequenced siblings 

that were part of the same families as the trios. Chromosomes were separated by 

breakpoints that were identified using duoHMM and NUCFAMTOOLS [236]. We were 



	 108	

able the reassemble the sequence in the siblings using informative markers (heterozygous 

in one parent and homozygous in the other) and we inferred on average 98.72% (96.89-

99.33%) of the sequence at an accuracy of 99.67% (99.39-99.86%). We used the parental 

haplotypes (294 samples) as the reference panel to reduce the number of duplicated 

haplotypes and we imputed the sequence using IMPUTE2 [237] in the whole cohort. 

Missing genotypes from the inference were added using the imputed data. A total of 112 

154 variants were imputed with a mean accuracy of 99.7% (98.55-99.98%). The 

imputation accuracy was measured by comparing imputed probands to their sequenced 

data. Missing genotypes from the inference were added using the imputed data. We then 

retained only variants that had an imputation quality of >0.8 for a total of 112 083. 

 

Association testing and gene-based burden analysis 

We explored variants associated with the five different phenotypes using EPACTS 

software (Efficient and Parallelizable Association Container Toolbox: 

http://genome.sph.umich.edu/wiki/EPACTS). We performed a mixed model association 

called EMMAX (Efficient Mixed Model Association eXpedited) that accounts for sample 

structure (population structure and relatedness (kinship coefficient)). EMMAX supports 

single variant association tests and different burden tests (Combined Multivariate and 

Collapsing (CMC) [238] and Sequence kernel association test (SKAT) [239] methods). 

Sex and age were used as covariates as well as height for lung function assessment. We 

performed single variant analyses on the low-frequency variants (MAF >=0.01 and 

<0.05) that were not common in UK10K [65] or 1000 genomes (1KG) [55]. For the gene-

based test, we collapsed rare and low-frequency variants per genes, including 20KB 
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around it and only included gene region that had at least two variants for a total of 14 646 

(p<3.4e-6 or a FDR 5%). 

 

DNA methylation 

We performed DNA methylation association study on a subset of individuals from the 

SLSJ asthma cohort in whole blood (167 samples) and isolated Eos from blood (24 

samples). Eos cell isolation was performed as described in Ferland et al. [240] and DNA 

extraction and sodium bisulfite conversion were described in Liang et al. [197]. 

Methylation levels were assessed using the Infinium HumanMethylation450 BeadChip 

array (Illumina, San Diego, CA, USA). Normalization steps were described in Morin et 

al.[241] and we applied a robust linear regression model including age and sex as 

covariates as well as cell type composition for whole blood. We performed association 

for serum levels, FEV1/FVC and asthma for the genes associated with Eos percentage. To 

assess if results were obtained by chance, we resample randomly 1000 times the same 

number of CpG as observed in the vicinity of each gene and observed if we get the same 

number of CpG that reached p<0.05. 
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3.4 Results 

Founder population are enriched with private low-frequency and common variants 

For the first goal, we compared SLSJ samples we paired to samples from the four other 

European populations (76 samples per population, 380 total). Given the small number of 

samples that were included in the study, we were only able to assess singletons (variants 

seen once) in the rare variant spectrum. We first observed a smaller number of variants in 

both founder populations (Table 1), which was reflected in the number of singleton 

variants (Supplementary Table 1 and Supplementary Figure 2). A smaller proportion was 

observed in the SLSJ (21.6%) and FINN (19.4%) populations compared to other 

populations (28%, 24% and 25% for FR, SWE and UK respectively, Figure 1a), which 

may reflect the bottleneck events that characterize these populations. Similar proportions 

of low-frequency variants were observed across populations. When looking at the number 

of variants per samples, we observed a higher number of low-frequency variants in the 

founder populations (ANOVA p<2e-16; Figure 1b). Another interesting aspect resides in 

the private variants (seen in one population) that reach higher frequency in the SLSJ and 

Finnish populations (Figure 1c-d). We then wanted to assess if we observed an 

enrichment of functional variants in the SLSJ and Finnish founder populations. We did 

not observe any larger proportion of functional (non-synonymous, loss of function (LoF) 

or GERP++>1) rare, low-frequency or common variants in the two founder populations 

(Supplementary Figure 3). However, we observed a tendency of higher non-

synonymous/synonymous ratio in the low-frequency (p<0.05) and singleton portion of 

the founder populations compared to the others (Supplementary Figure 4a). The tendency 

was also observed when looking at the per sample distribution (p<5e-10, Supplementary 

Figure 4c-d). We also looked at the enrichment of LoF, non-synonymous and 
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synonymous variants of the two founder populations compared to the population from 

FR, SWE and UK (Supplementary Figure 5). We observed an enrichment of non-

synonymous low-frequency variants when comparing the SLSJ to FR and UK and when 

comparing the FINN to FR. The largest enrichment was observed for LoF variants; 

however, this did not reach significance given limited sample size. Similar pattern was 

observed when looking only at private variants (Supplementary Figure 8). We also 

looked at the average GERP++ score per sample distribution and found no difference 

between the populations (Supplementary Figure 6). However, focusing on low-frequency 

variants we observed a higher GERP++ score in the founder population compared to the 

French and UK (Supplementary Figure 7 and 9). These results were also reflected in the 

non-synonymous variants but not the synonymous or the LoF ones. Overall, we observed 

a higher proportion of private variants reaching higher frequencies in the founder 

populations. We also observed a tendency of enrichment for more deleterious variants in 

the founder population, especially in the low-frequency spectrum. 

 

Assessing the impact of rare and low-frequency variants in asthma and allergy related-

traits: Single-variant association analyses 

We used the SLSJ asthma familial cohort that comprises 1 214 samples from extended 

families. We used data from the unrelated parent of the 149 sequenced trios to infer and 

impute the sequence in the rest of the cohort (see Methods section). We assessed the 

individual effect of the coding and non-coding low-frequency (MAF between 1% and 

5%) on five different asthma and allergy related traits (serum levels, FEV1, FVC, 

FEV1/FVC and Eos percentage). Both Manhattan and qqplot (lambda from 0.98 to 1.075) 
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can be found in Supplementary Figure 10. We observed a significant association 

(p<3.26e-6) with Eos percentage for a SNV (rs1386931) located in the 3’UTR of CXCR6 

and in the intron of the FYCO1 genes (Table 3). We also observed another SNV reaching 

suggestive significance (p<1e-5) with serum levels and located in the intron of the NRP2 

gene (Table 3). No variants were identified for lung function. We then tested if the two 

SNVs reaching P<1e-5 were also associated with other the other traits as well as asthma, 

atopy, allergic asthma, rhinitis and atopic dermatitis (Supplementary table 4). The SNV 

in the NRP2 intron associated with serum IgE levels was also marginally associated with 

atopy and allergic asthma. The significantly associated SNVs for Eos percentage had 

p<0.05 to serum IgE levels and atopic dermatitis. Both of the SNVs were also found in 

1KG and UK10K. The SNV associated with Eos percentage (rs1386931) has a higher 

minor allele frequency in SLSJ (0.043) compared to the one observed in 1KG (0.021) and 

UK10K (0.019). The other variant (rs849558) had slightly higher frequency in SLSJ 

(0.019) compared to UK10K (0.011). 

 

Gene-based analyses 

We then used gene-based test that combines variants with MAF<5% in a region to get 

more power to detect association. We used SKAT and CMC tests as implemented in 

EPACTS on serum IgE levels, FEV1, FVC, FEV1/FVC and Eos percentage. We 

combined rare and low-frequency variants together by gene including 20kb region around 

it. Manhattan and qqplots (lambda values range from 1 to 1.05 for CMC and 1.02 to 1.13 

for SKAT) for each phenotype and the two tests are presented in Supplementary Figures 

11 and 12. Genes with p<3.4e-6 for one of the two tests are listed in Table 4 and the ones 
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that reached P<1e-5 in Supplementary Table 5. We also reported the lead SNVs that were 

identified when running the tests again removing one variant at a time. Two genes were 

significantly associated with Eos percentage (MRPL44) and serum IgE levels (NRP2). 

One SNV lead each association: a rare one for MRPL44 (rs76568361) and a low-

frequency one for NRP2 (rs849558). The latter almost reached significance in the single 

variant association test (Table 3). The lead variant for MRPL44 is intergenic and is also 

located close to SERPINE2 (SKAT p= 1.47e-5) and has much smaller frequency in the 

1KG European populations and in UK10K (Supplementary Table 5). Moreover, we 

identified four marginally associated genes (p<1e-5, Supplementary Table 5): two with 

Eos percentage (SHMT1 and SMCR8) and two with FEV1/FVC (CCDC126 and CLK2P). 

The lead SNV was the same for SHMT1 and SMCR8, a rare missense variant 

(rs79875842) located in the latter gene. The same situation was observed for the 

FEV1/FVC genes where the two lead SNVs were missense variants (rs73077128 and 

rs146336907) for the pseudogene CLK2P. The variant rs146336907 was not observed in 

1KG or in UK10K (Supplementary Table S5). 

 

DNA methylation in associated genes 

To support our associations observed from single variants and gene-based association 

test, we performed DNA methylation analyses of CpG located +/- 20KB from the 

associated genes (n= 182, Supplementary Table 6) in whole-blood (167 samples) or 

isolated Eos (24 samples). We observed nine CpGs with p<0.05 for serum IgE levels in 

isolated Eos in the NRP2 gene, which is larger than expected (4.8), as well as a CpG 
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reaching significance located in the gene intron (p=3.7e-4, n=49). This result supports the 

importance of NRP2 gene association with serum IgE levels. 

 

3.5 Discussion 

In our study, we explored two aspects of rare and low-frequency variants in the SLSJ 

population: their distribution and the enrichment of deleterious variants as well as their 

impact on asthma and allergy related traits. For the first goal, we observed a smaller 

proportion of private variant found in the SLSJ and FINN founder population, which does 

not supports what was previously observed in the French Canadian population [78], but 

does for the FINN one [79]. However, our results reflect both studies as we observed a 

tendency for enrichment of deleterious variants in the two founder populations, especially 

in the low-frequency spectrum of variants. We did not reach significance in all functional 

variant categories probably due to limited sample size. Another interesting result was the 

larger proportion of private variants reaching higher frequencies in the founder 

populations, reflecting the genetic drift of the founder population. The strength of our 

assessment resides in comparing five populations, including two founder ones, all 

processed the same way and paired based on mean coverage. 

We were able to identify one significant low-frequency variants associated with Eos 

percentage and a suggestively significant one associated with serum IgE levels. They 

were both non-coding highlighting the importance of exploring these regions to 

understand complex traits. The first one is located in the intron region of the FYCO1 gene 

and in the 3’UTR of the CXCR6 gene. FYCO1 encodes for a protein that plays a role in 

the transport of autophagic vesicles [242]. It was never associated with eosinophil 
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percentage in the past or to any asthma or allergy relate trait. However, autophagy 

process has been previously linked to asthma [243, 244] and genes having an important 

role in it were associated with asthma before [191, 245, 246]. CXCR6 encodes for a 

chemokine receptor expressed at the surface of multiple immune cells and was previously 

linked to asthma and Th2 inflammation in the lung [247].  The second suggestively 

associated variant is located in the intron of the NRP2, which is a transmembrane 

receptor implicated in multiple processes, including in the immune system for antigen 

presentation, phagocytosis and cell-cell interaction41. This gene was also associated in the 

gene-based test; being led by the same associated SNV and was supported by DNA 

methylation association. We also identified MRPL44 gene associated with eosinophil 

percentage and known to be implicated in protein synthesis in mitochondria. The 

mitochondria play an important role in Eos apoptosis and survival 42. Moreover, the lead 

SNV for MRPL44 is located in the promoter region of the SERPINE2 gene, for which the 

association was suggestive (p=1.47e-5). SERPINE2 is a serine protease inhibitor and is a 

known susceptibility gene for chronic obstructive pulmonary disease (COPD) [248], 

emphysema [249] and asthma [250]. However, no link has been observed with Eos so far. 

The other four suggestively associated genes using gene-based test, actually pointed to 

two genes: SMCR8 associated with Eos percentage and the CLK2P pseudogene 

associated with FEV1/FVC. SMCR8, just like FYCO1, appears to potentially regulates the 

transcription of autophagy related genes [251].  
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3.6 Conclusion 

In this study, we first showed that founder populations appear to be enriched in 

deleterious low-frequency variants. We then pursued testing the impact of rare and low-

frequency variants in asthma and allergy related-traits. Using our custom capture panel 

on the SLSJ founder population we identified coding and non-coding rare and low-

frequency SNVs associated with Eos percentage, serum IgE levels and FEV1/FVC. One 

of the lead SNV in the gene-based test was private to the SLSJ population highlighting 

the importance of using sequencing data in founder population to identify new genes 

associated with complex traits. Other SNV also presented marginally higher frequency 

compared to the European population. We note that quantitative rather than discrete 

variation reached significance underscoring importance of intermediate phenotypes in 

complex traits. We also demonstrate the importance of addressing the non-coding regions 

of the genome by using sequencing studies, as three of the variants identified were non-

coding.  Overall, we showed the advantage of using a well-described founder population 

and the importance of assessing non-coding regions to better decipher the genetic basis of 

complex traits. 
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3.8 Figures and Tables 

Table 1. Clinical description of the SLSJ asthma familial cohort 

 All samples 
(n=1214) 

All trios 
(n=447) 

Probandsa 
(n=149) 

Parents 
(n=298) 

Siblings 
(n=110) 

General Characteristics 

M:F ratio 1 :1.17 1:1.1 1:1.3 1:1 1 :1.2 

Age, mean (range)b 38 (2-96) 36 (3-75) 18 (3-45) 45 (27-75) 14 (2-44) 

Age of onsetc 16 (0-75) 14 (0-64) 7 (0-37) 24 (0-64) 6 (0-44) 

Smoking status % (never 
smoker; former smoker; 
current smoker)d 

646;339;209 51;27;22 82;6;12 36;37;27 82;7;11 

Clinical descriptive data 

FEV1, L (SD)e  2.93 (0.82)  2.99 (0.76)  2.93 (0.80)  3.01(0.74)  2.93(0.88) 

FVC, L (SD)f  3.73 (1.02)  3.82 (0.94)  3.71 (1.04)  3.87(0.88)  3.52(1.10) 

FEV1/FVC, % (SD)g 94 (9) 72.5 (22.4) 70.8 (29.6) 72.6 (21.2) 77.7 (21.1) 

Serum IgE (SD)h 471 (1564) 432 (1406) 806 (2309) 251 (501) 276 (404) 

Asthma, n (%)i 592 (49) 264 (59) 149 (100) 116 (36) 52 (47) 

Allergy, n (%)j 677 (57) 287 (64) 121 (82) 170 (57) 73 (68) 

With asthma, n (%) 433 (36) 206 (46) 121 (82) 90 (30) 37 (35) 

Eosinophils k      

Count in 1e9/L (SD) 0.24 (0.22) 0.25 (0.23) 0.32 (0.34) 0.21 (0.15) 0.26 (0.26) 

Percentage (SD) 3.6 (2.8) 3.7 (2.8) 4.4 (3.3) 3.3 (2.4) 3.95 (3.4) 
a	Probands are the first family member recruited in the cohort. b Mean age calculated for 1 212 
subjects, 447 trios members, 149 probands, 298 parents and 110 siblings. c  Mean age of onset 
calculated for 567 subjects, 254 trios members, 142 probands, 112 parents and 48 siblings 

dSmoking status was available for 1 194 subjects, 444 trios members, 148 probands, 296 parents 
and 107 siblings. Ex-smokers are defined as subject who stopped smoking since over one year.  
eThe mean forced expiratory volume in 1 s (FEV1) is measured in L in 925 subjects, 429 trios 
members, 141 probands, 287 parents and 94 siblings.  f The mean forced vital capacity (FVC) is 
measured in L in 908 subjects, 414 trios members, 134 probands, 279 parents and 92 siblings. g 

The mean FEV1 (L)/ FVC (L) ratio is calculated in % for 907 subjects, 414 trios members, 134 
probands, 279 parents and 93 siblings. h The geometric mean of immunoglobulin (Ig) E serum 
concentration is calculated for 996 subjects, 408 trios members, 142 probands, 292 parents and 99 
siblings. i Present or past documented clinical history of asthma. Asthme phenotype is available 
for 1207 subjects, 447 trios members, 149 probands, 298 parents and 110 siblings.j  Allergy is 
defined as one positive skin prick testing (wheal diameter ≥3mm at 10 min). The allergy 
phenotype is available for 1193 subjects, 445 trios members, 147 probands, 296 parents and 106 
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siblings. k Cell type profiles are available for 967 subjects, 418 trios members, 137 probands, 283 
parents and 98 siblings. 
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Table 2. Overall description of variants included in the analyses 

 All SLSJ FINN FR SWE UK 
Mean 
coverage 

28.83 28.88 28.86 28.79 28.81 28.82 

Ts/Tv 2.24 2.25 2.25 2.24 2.24 2.25 
Total 
SNVs 

178 614 103 889 100 696 112 047 106 375 108 511 

Total 
Indels 

13 614 7 780 7 789 8 426 8 093 8 426 

SLSJ: Saguenay–Lac-Saint-Jean, FINN: Finland, FR: France, SWE: Sweden, UK: United 
Kingdom, Ts/Tv: transition to transversion ratio, Indels: insertions and deletions. 

 

Table 3. Results of single low-frequency SNV association study with asthma related trait 
(P<1e-5) 

Trait rsID Gene Alleles MAF P-value Effect (SE) 
Serum IgE 
levels 

2:206562250
; rs849558 

NRP2; intron T/C 0.019 4.79e-6 -1.243 
(0.270) 

Eosinophils 
percentage 

3:45989502; 
rs1386931 

CXCR6; 3’UTR and 
FYCO1; intron 

C/T 0.043 1.77e-6 1.534 
(0.319) 

CXCR6: C-X-C motif chemokine receptor 6, IgE: immunoglobulin E, MAF: minor allele 
frequency, NRP2: neuropilin 2, SE: standard error, UTR: untranslated region. 

 

 

Table 4. Genes significantly associated with asthma and allergy related traits 

Trait Gene n SNPs n 
passing1 

Fraction 
with 
rare 

P-value 
SKAT/CMC 

Lead SNVs2 

Eosinophils 
percentage 

MRPL44 8 4 0.026 2.97e-6/5.74e-5 2:224835223 
(rs76568361) 

Serum IgE 
Levels 

NRP2 4 2 0.001 3.16e-6/0.8237 2:206562250 
(rs849558) 

1 Number of variants passing threshold (MAF<0.05). 2Test were ran again removing one 
variant at a time, lead SNV correspond to the one for which the entire association rely on. 
CMC: combined multivariate and collapsing test, IgE: immunoglobulin E, MRPL44: 
mitochondrial ribosomal protein L44, NRP2: neuropilin 2, SKAT: sequence kernel 
association test, SNV: single nucleotide variations.  
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Figure 1. Distribution of variants across founder populations compared to three 
other European populations. A) Proportion of common (MAF>0.05, red), low-
frequency (0.05<MAF>0.01, blue) and rare (MAF<0.01, green) variants in each 
population. B) Low-frequency variants distribution per sample C) Proportion of private 
variants of each population, common (MAF>0.05, red), low-frequency (0.05<MAF>0.01, 
blue) and rare (MAF<0.01, green), D) Distribution of private variants in each population 
(not including singletons). SLSJ: Saguenay–Lac-Saint-Jean, FINN: Finland, FR: France, 
SWE: Sweden, UK: United Kingdom 
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3.9 Supplementary information 

Supplementary Table 1. Summary of variants in the five populations 

  All SLSJ FINN FR SWE UK 

Number 
of SNVs 

All 178 614 103 889 100 696 112 047 106 375 108 511 

 Common 58 568 58 223 58 421 58 404 58 285 58 413 

 Low-freq 21 949 23 362 22 899 22 362 22 527 22 229 

 Rare 98 096 NA NA NA NA NA 

 Singletons 64 834 22 304 19 376 31 281 25 563 27 869 

Number 
of indels 

All 13 614 7 780 7 789 8 426 8 093 8 259 

 Common 3 981 3 936 3 970 3 998 4 016 4 014 

 Low-freq 2 019 1 966 2 087 1 976 2 038 1 947 

 Rare 7 614 NA NA NA NA NA 

 Singletons 4 852 1 878 1 704 2 480 2 039 2 298 

FINN: Finland, FR: France, indels: insertions and deletions, SLSJ: Saguenay–Lac-Saint-Jean, 
SNVs: single nucleotide variations, SWE: Sweden, UK: United Kingdom.  
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Supplementary Table 2. Summary of functional variants in the five populations 

  SLSJ FINN FR SWE UK 

All Synonymous 9 323 9 088 10 197 9 538 9 750 

 Non-
Synonymous 

12 094 11 707 13 249 12 511 12 673 

 LoF 459 443 486 456 470 

Common Synonymous 5 217 5 275 5 242 5 211 5 238 

 Non-
Synonymous 

5 508 5 638 5 646 5 576 5 609 

 LoF 160 164 166 160 160 

Low-
frequency 

Synonymous 2 120 2 072 2 084 2 107 2 054 

 Non-
Synonymous 

3 089 2 993 2 758 2 904 2 762 

 LoF 129 119 95 116 105 

Singletons Synonymous 942 770 1 669 988 1 277 

 Non-
Synonymous 

1 937 1 578 2 990 2 083 2 374 

 LoF 110 100 148 104 136 

FINN: Finland, FR: France, LoF: Loss of function, SLSJ: Saguenay–Lac-Saint-Jean, SWE: 
Sweden, UK: United Kingdom.  
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Supplementary Table 3. Summary of private variants in the five populations 

  SLSJ FINN FR SWE UK 

 All 14 909 12 037 20 513 13 839 16 677 

 Common 25 51 0 0 0 

 Low-freq 3 052 2 493 960 931 779 

 Singletons 11 832 9 493 19 553 12 908 15 898 

All Synonymous 1 189 962 1 756 1 057 1 329 

 Non-
Synonymous 

2 409 1 996 3 101 2 223 2 488 

 LoF 135 122 152 111 140 

Common Synonymous 0 3 0 0 0 

 Non-
Synonymous 

2 8 0 0 0 

 LoF 0 1 0 0 0 

Low-
frequency 

Synonymous 247 189 87 69 52 

 Non-
Synonymous 

470 410 111 140 114 

 LoF 25 21 4 7 4 

Singletons Synonymous 942 770 1 669 988 1 277 

 Non-
Synonymous 

1 937 1 578 2 990 2 083 2 374 

 LoF 110 100 148 104 136 

FINN: Finland, FR: France, LoF: Loss of function, SLSJ: Saguenay–Lac-Saint-Jean, SWE: 
Sweden, UK: United Kingdom.  
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Supplementary Table 4. Low-frequency variants reaching p<1e-5 in single variant association and their significance level (p-value) 
in other traits. 
rsID Gene Asthma Atopy Allergic 

asthma 
Rhinitis Atopic 

dermatitis 
Serum IgE 
Levels 

Eosinophils 
percentage 

FEV1 FVC FEV1/ 
FVC 

2:206562250; 
rs849558 

NRP2; intron 0.7986 0.0040 0.0134 0.0946 0.0773 4.79e-6 0.093 0.1959 0.2538 0.1996 

3:45989502; 
rs1386931 

CXCR6; 3’UTR 
and FYCO1; 
intron 

0.1658 0.2422 0.7746 0.8691 0.0353 0.0052 1.77e-6 0.3213 0.5572 0.5001 

CXCR6: C-X-C motif chemokine receptor 6, FEV1: forced expiratory volume in one second, FVC: forced vital capacity, FYCO1: FYVE and 
coiled-coil domain 1, IgE: Immunoglobulin E, NRP2: neuropilin 2. 
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Supplementary Table 5. Genes reaching p<1e-5 using CMC or SKAT in one of the five asthma and allergy related phenotype. 
Trait Gene n SNPs n 

passing1 
Frac 
with 
rare 

P-value 
SKAT/CMC 

Lead SNVs2 P-value after 
removing 
lead SNV 

MAF lead 
SNV (1KG 
and UK10K) 

P-value 
single var 

Eosinophils 
percentage 

MRPL44 8 4 0.026 2.97e-6/5.74e-5 2:224835223 
rs76568361 

0.4425/0.4168 0.0067 (NA 
and 0.00026) 

NA 

 SHMT1 7 5 0.017 6.21e-6/3.13e-4 17:18220268 
rs79875842  

0.7761/ 
0.7371 

0.0046 
(0.0145 and 
0.0148)  

NA 

 SMCR8 8 6 0.018 6.85e-6/3.66e-4 17:18220268 
rs79875842 

0.8431/ 
0.6837 

0.0046 
(0.0145 and 
0.0148) 

NA 

FEV1/FVC CCDC126/ 
CLK2P 

3 3 0.022 3.19e-5/4.62e-6 Both SNV: 
7:23624887 
rs73077128, 
7:23625481 
rs146336907 

8.93e-4 and 
0.0018/ 8.65e-
4 and 0.0018 

0.0036 
(0.0106 and 
0.0082), 
0.0062 (NA) 

NA 

Serum IgE 
Levels 

NRP2 11 8 0.224 3.16e-6/0.8237 2:206562250 
rs849558 

0.0371 (0.021 
and 0.019) 

0.0191 4.80e-6 

1 Number of variants passing threshold (MAF<0.05). 2Test were ran again removing one variant at a time, lead SNV correspond to the 
one for which the entire association rely on. 1KG: 1000 genomes project, CCDC126: coiled-coil domain containing 126, CLK2P: 
CDC like kinase 2 pseudogene, CMC: combined multivariate and collapsing test, FEV1/FVC: Tiffeneau-Pinelli index, IgE: 
immunoglobulin E, MAF: minor allele frequency, MRPL44: mitochondrial ribosomal protein L44, NRP2: neuropilin 2, SHMT1: 
serine hydroxymethyltransferase 1, SKAT: sequence kernel association test, SMCR8: Smith-Magenis syndrome chromosome region 
candidate 8, SNV: single nucleotide variations. 
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Supplementary Figure S1. Samples selection from the five populations A) Identity-by-
descent estimation using method of moments including all 380 samples, B) Principal 
component analysis (PCA), C) Heterozygous to homozygous proportion compared to mean 
coverage, D) Total number of variants compared to mean coverage. FINN: Finland, FR: 
France, SLSJ: Saguenay–Lac-Saint-Jean, SWE: Sweden, UK: United Kingdom 
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Supplementary Figure S2. Per sample distribution of singletons. FINN: Finland, FR: 
France, SLSJ: Saguenay–Lac-Saint-Jean, SWE: Sweden, UK: United Kingdom 
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Supplementary Figure S3. Proportion of common (MAF>0.05, red), low-frequency 
(0.05<MAF>0.01, blue) and rare (MAF<0.01, green) variants in each population.  A) 
non-synonymous, B) synonymous, C) Loss of function and D) GERP++>1 variants from 
each population. FINN: Finland, FR: France, SLSJ: Saguenay–Lac-Saint-Jean, SWE: 
Sweden, UK: United Kingdom 
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Supplementary Figure S4. Non-synonymous to synonymous ratio A) Total number 
per population, B) Per sample distribution, C) Low-frequency per sample distribution and 
D) Singletons per sample distribution. FINN: Finland, FR: France, SLSJ: Saguenay–Lac-
Saint-Jean, SWE: Sweden, UK: United Kingdom. 
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Supplementary Figure S5. Common, low-frequency and singleton variants 
enrichment in A) Saguenay–Lac-Saint-Jean (SLSJ) and B) Finland (FINN) compared to 
France (FR), Sweden (SWE) and United Kingdom (UK). 
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Supplementary Figure S6. Average GERP++per sample distribution per population, 
A) All, B) non-synonymous, C) loss of Function (LoF) and D) Synonymous. FINN: 
Finland, FR: France, SLSJ: Saguenay–Lac-Saint-Jean, SWE: Sweden, UK: United 
Kingdom. 
 

	



	 133	

	
Supplementary Figure S7. Average GERP++per sample of low-frequency variants 
per population, A) All, B) non-synonymous, C) loss of Function and D) Synonymous. 
FINN: Finland, FR: France, SLSJ: Saguenay–Lac-Saint-Jean, SWE: Sweden, UK: United 
Kingdom. 
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Supplementary Figure S8. Private low-frequency and singleton variants enrichment 
in A) Saguenay–Lac-Saint-Jean (SLSJ) and B) Finland (FINN) compared to France (FR), 
Sweden (SWE) and United Kingdom (UK). 
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Supplementary Figure S9. GERP++ score distribution of private variants per 
population, A) All, B) non-synonymous, C) loss of Function, D) Synonymous. FINN: 
Finland, FR: France, SLSJ: Saguenay–Lac-Saint-Jean, SWE: Sweden, UK: United 
Kingdom. 
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Supplementary Figure S10. Manhattan and qqplot for single variants association 
test for A) serum IgE Levels (Lambda = 1.009408) and B) Eos Percentage (Lambda= 
1.075069). 
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Supplementary Figure S11. Manhattan and qqplot for CMC test with FEV1/FVC 
(Lambda= 1.04) 
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Supplementary Figure S12. Manhattan and qqplot for SKAT test with A) Serum IgE 
Levels (Lambda = 1.05) and B) Eos Percentage (Lambda= 1.13) 
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Chapter 4 

Preface: Bridging Text between Chapters 3 and 4 

Following on Chapter 3, we again used the SLSJ asthma familial cohort to explore the 

genetic basis of asthma and allergy-related traits. In this chapter, we used GWAS and 

DNA methylation data (EWAS) and linked them through mQTLs to identify new genes 

associated with allergic rhinitis with or without asthma.  
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4.1 Abstract 

Allergic rhinitis is a common chronic disorder characterized by immunoglobulin E-

mediated inflammation. To identify new genes associated with this trait, we performed 

genome- and epigenome-wide association studies and linked marginally significant CpGs 

located in genes or its promoter and SNPs located 1 Mb from the CpGs, by 

identifying cis methylation quantitative trait loci (mQTL). This approach relies on 

functional cellular aspects rather than stringent statistical correction. We were able to 

identify one gene with significant cis-mQTL for allergic rhinitis, caudal-type homeobox 1 

(CDX1). We also identified 11 genes with marginally significant cis-mQTLs (p < 0.05) 

including one with both allergic rhinitis with or without asthma (RNF39). Moreover, 

most SNPs identified were not located closest to the gene they were linked to through cis-

mQTLs counting the one linked to CDX1 located in a gene previously associated with 

asthma and atopic dermatitis. By combining omics data, we were able to identify new 

genes associated with allergic rhinitis and better assess the genes linked to associated 

SNPs. 
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4.2 Introduction 

Allergic rhinitis is one of the most common allergy worldwide and one of the most 

common chronic disorders among children and adults [252]. Early sensitization to 

aeroallergens and food combined with the presence of atopic dermatitis, characterized by 

an immunoglobulin E (IgE)-mediated inflammation, can result in the development of 

asthma and/or allergic rhinitis later in life in a process called “atopic march” [87]. 

Genetic studies identified hundreds of genes associated with allergic rhinitis and genome-

wide association studies (GWASs) pinpointed single nucleotide polymorphisms (SNPs) 

associated with its development [133, 135]. However, a majority of identified SNPs lie in 

the non-coding genomic region, making it difficult to identify the targeted genes. Given 

that DNA methylation may have an impact on gene regulation [253], the probability of 

detecting true positive associations should be improved by combining nominally 

significant data from genomics and epigenomics and linking them by quantitative trait 

loci (QTL) analysis. Methylation QTLs (mQTLs) allow assessing the impact of DNA 

sequenced variations (SNPs) on DNA methylation. They have been assessed in different 

tissues and cell types and were shown to overlap with GWAS hits [254-257]. We used 

this approach to identify allergic rhinitis genes and illustrate its usefulness in the context 

of a complex trait. 
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4.3 Materials and Methods 

Individual selection, characterization, and sample preparation 

We used data available from the Saguenay–Lac-Saint-Jean (SLSJ) asthma familial 

collection from Québec, Canada, that has data for rhinitis and allergies (Table 1). This 

population is know for its founder effect and is more homogeneous than a cosmopolitan 

population [258, 259]. Individuals affected with rhinitis and allergies, with or without 

asthma, were analyzed as cases. Individuals with no rhinitis, allergies and asthma were 

considered as controls. In this study, patients were defined as asthmatics based on if they 

either had a reported history of asthma (validated by a physician) or if at recruitment they 

manifested asthma-related symptoms and positive PC20 (<8 mg/ml) [186]. Rhinitis was 

self-reported and the subject had to answer “yes” to at least one of the following 

questions: Have you ever had rhinitis, Have you ever had hay fever, Have you ever had 

sneeze or rheum after a contact with: hay, flowers, animals, dust?  Allergy was defined 

by a skin prick test for 26 aeroallergens (>=3mm). All subjects were recruited and 

evaluated out of the pollen season [186]. Recruitment and clinical evaluation of 

individuals as well as phenotype description can be found in Laprise 2014 [186]. All 

subjects gave their informed consent and the project was approved by the research ethic 

committee of the Centre intégré universitaire de santé et de services sociaux du SLSJ. 

 

Genome-wide association study (GWAS) 

A total of 508 subjects (321 cases and 187 controls) and 312 subjects (125 cases and 187 

controls) were included in the analysis for allergic rhinitis with or without asthma 

respectively. The same group of control was used to compare to both phenotypes (i.e. 



	 144	

allergic rhinitis and allergic rhinitis with asthma). DNA extraction, genotyping methods 

and statistical analyses were described previously [186]. Genotyping was performed 

using the Illumina 610K Quad array (Illumina, San Diego, CA, USA). Association test 

was performed using a quasi-likelihood score test using the MQLS program (Release 1.5, 

http://www.stat.uchicago.edu/~mcpeek/software/MQLS/index.html), which allows 

performing case-control association analysis using related individuals [260]. The kinship 

coefficient was calculated using KinlnbCoef program (version 1.1, 

http://www.stat.uchicago.edu/~mcpeek/software/KinInbcoef/index.html). We included in 

the analysis SNPs with minor allele frequency (MAF) >0.05, p-value for Hardy 

Weinberg equilibrium >0.0001, and overall call rate >95%. Samples with genotyping rate 

<95% were excluded. A total of 633 samples (321 subjects with allergic rhinitis with 

asthma, 125 subject with allergic rhinitis only and 187 controls (used to compare to both 

phenotypes)) and 506,388 SNPs were included in the analysis.  

 

Epigenome-wide association study (EWAS) 

A total of 31 controls and 48 cases for allergic rhinitis with asthma or 30 cases for 

allergic rhinitis alone were included in the EWAS analysis. These samples are a subset of 

the ones used in the GWAS analysis. Unrelated subjects were included based on having 

allergic rhinitis with or without asthma, having no asthma, allergies or rhinitis, and based 

on having high or low levels of IgE. DNA extraction and sodium bisulfite conversion 

methods were described previously [197]. The assay was carried out on the Infinium 

HumanMethylation450 BeadChip array (Illumina, San Diego, CA, USA). The analysis 

was performed using the RnBeads Bioconductor R package [261]. We removed probes 
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with at least one of the following characteristics: (1) weak signal (p>0.01) (2,128 CpG 

sites), (2) SNP-enriched sites (4,100 sites), (3) out of a CpG context (not on a CG) (3,149 

sites) or (4) located on sex chromosomes (11,129 sites). A total of 465,071 CpG sites 

were analyzed initially. Signal was then normalized, first by scaling to the internal 

controls using the methylumi R package [262], then applying the method of subset-

quantile within array normalization (SWAN) implemented in the minfi R package [263, 

264]. A total of 2,203 sites were removed due to missing data. We removed probes that 

mapped multiple genomic regions (≥90 % sequence similarity), have a variant less than 

10bp from the CpG or that have ≥2 SNPs in it. A total of 374,498 CpG sites (80.5%) 

were analyzed for differential DNA methylation using limma package [265]. All samples 

had cell counts for eosinophils, basophils, monocytes, lymphocytes and neutrophils. The 

cell percentages were used as covariates as well as sex, age, smoking status, and batch 

effect. 

 

Methylation quantitative trait loci analysis (mQTLs) 

To perform the mQTL analyses, we used associated SNPs (p<0.05) and CpGs (p<0.05 

and Δβ>0.05) in the GWAS and EWAS for both traits. We kept associated CpGs that 

were located in either the gene body or 1.5kb upstream of the transcription start site, 

keeping 88 and 144 CpGs for allergic rhinitis with or without asthma respectively. SNPs 

were kept if present in all samples and if the three genotype groups (homozygous 

reference, heterozygous and homozygous alternative) were observed at least 5 times. A 

total of 529 and 625 SNPs were included in the analysis for allergic rhinitis with or 

without asthma respectively. We analyzed cis-mQTLs where the CpG-SNP combination 
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was less than 1Mb apart from each other based on the distance used by the GTEX 

consortia for their cis-eQTLs (http://www.gtexportal.org/home/documentationPage). We 

used a Bonferroni correction to evaluate significance thresholds. We computed mQTLs 

for these SNP-CpG pairs using an additive linear model using the R package 

MatrixEQTL [266]. Same covariates as in EWAS were included in this analysis. A total 

of 274 (Bonferroni p=0.05/274=1.8e-4) and 500 (Bonferroni p=0.05/500=1e-4) CpG-

SNP comparisons were performed for allergic rhinitis with or without asthma 

respectively. 
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4.4 Results and Discussion 

In this study, we used a novel approach that links genetics (SNPs) and functional (CpGs) 

data through the use of mQTLs identifying new genes associated to allergic rhinitis with 

or without asthma (Figure 1). It relies on functional cellular data and reduces the stringent 

cut-off normally used in GWAS. Even though this is a pilot experiment with small 

number of samples, we identified one significant cis-mQTL for allergic rhinitis located in 

CDX1 (p=6.41e-5) (Table 2). We also observed nine nominally associated cis-mQTLs 

located in five genes for allergic rhinitis and 16 located in nine genes for allergic rhinitis 

with asthma (Table 2). One gene was reported being associated in both traits: RNF39. It 

has the highest number of mQTLs identified in both allergic rhinitis with (four) or 

without asthma (five).  

The significantly or nominally associated genes were not associated to any related trait 

before. Interestingly, the majority of the genes linked to a SNP by the cis-mQTLs are not 

the closest ones, thus would not be the ones reported in a regular GWAS study. For 

example, all of the significant SNPs reported for the RNF39 cis-mQTLs are located 

300Kb to 1Mb away from the gene and are located closer to other genes, which were 

previously associated with pulmonary function (rs2844833-HLA-F [267], rs2523872-

MUC22 [267], rs2517504-HCG22 [154, 267], rs2535238-ZFP57 [267]). The best 

example remains the one for the significantly associated mQTL that links rs888989 to a 

CpG located in the promoter region of the CDX1 gene. The SNP is located in an intron of 

TNIP1 and 900kb from CDX1. The former was previously associated to atopic dermatitis 

[137] and asthma [268]. According to the GTEx portal (http://www.gtexportal.org/), 

rs888989 and CDX1 form an eQTL in the lungs (p=0.04), which is not the case for 
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TNIP1 (p=0.94). This reinforces the possible implication of this gene in allergic rhinitis 

and shows that our method may better assess the true genes of interest linked to the 

associated SNPs.   

The originality of our approach resides in combining GWAS and EWAS nominally 

associated SNPs and CpGs, using cis-mQTL data, to identify genes of interest in this 

disease. This method has the potential to reduce false negative findings by relying on the 

cellular mechanisms of gene regulation compared to the use of stringent statistical 

corrections. The use of a well-described collection coming from a founder population and 

including subjects selected based on the same precise criteria allowed a more unified 

genetic background and phenotype. However, since this is a pilot study, the limited 

number of samples included in the EWAS and the GWAS may constraint the power of 

the findings. We were not able to test SNPs previously associated to the trait in previous 

GWASs because they did not meet the criteria to be included in the mQTL analysis. We 

also analyzed SNPs and CpGs preselected in the arrays by the manufacturers, thus 

excluding potentially important SNPs or CpG sites, which are not in linkage 

disequilibrium. DNA methylation analysis using whole blood could have limited the 

findings, even if correction for cell counts was included in our model. Apart from the 

limitations, we showed that our approach is promising and acknowledging for the lack of 

power in future studies will permit to better pinpoint genes of interests for different traits. 

Studying other tissues implicated in allergic rhinitis trait, like nasal or lung cells, could 

also reveal other genes implicated in the physiopathology. Genes identified in this study, 

notably CDX1, are worthwhile to be further investigated to understand the allergic 

rhinitis pathogenesis and the atopic march.  
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4.6 Figure and Tables 

	

Figure 1. Flowchart presenting our approach combining genome-wide association 
study (GWAS) and epigenome-wide association study (EWAS) hits to identify cis 
methylation quantitative trait loci (mQTLs) that could be association to allergic 
rhinitis with (ARA) or without asthma (AR). We first performed GWAS and EWAS 
separately for AR and ARA. We then selected marginally associated SNPs (p<0.05) 
where the three genotyping groups were observed at least five times. We also selected 
marginally associated CpGs (p<0.05) that had a Δβ>0.05 and that were located in the 
gene body or 1.5Kb from the transcription start site (TSS). We then linked the SNPs and 
CpGs that were 1Mb apart by performing cis-mQTLs for both AR and ARA. We used 
Bonferonni p-value cut-offs to assess significance. 
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Table 1. General characterization of individuals analyzed in the study 

 GWAS samples EWAS samples 
 Controlsa Allergic 

rhinitisb  
Allergic 
rhinitis 
combined 
with 
asthmac 

Controlsa Allergic 
rhinitisb 

Allergic 
rhinitis 
combined 
with 
asthmac 

Number of 
samples 

187 125 321 31 30 48 

M:F ratio 1:1.13 1:0.87 1:0.87 1:1.60 1:0.88 1:0.78 
Age, mean 
(range)d 

43 (3-85) 37 (5-93) 28 (5-83) 29 (1-53) 28 (1-59) 28 (5-55) 

Age mediand 41 38 26 35 30 26 
Smoking status, n 
(%)e 

      

    Non smoker 82 (44) 64 (51) 219 (68) 14 (45) 18 (60) 36 (75) 
    Ex smoker 61 (33) 37 (30) 53 (17)  8 (26) 6 (20) 4 (8) 
    Smoker 43 (23) 21 (17) 44 (14) 9 (29) 5 (17) 7 (15) 
IgE, (SD)f 202.85 

(1373.66) 
411.27 
(852.17) 

856.45 
(2075.62) 

67.10 
(90.45) 

575.40 
(1380.45) 

597.73 
(242.50) 

a Defined as not affected by either asthma, allergies or rhinitis. b Defined as being affected with both allergy 

and rhinitis. Allergic rhinitis phenotype is available for all samples. Allergy is defined as at least one 

positive response on skin prick testing (wheal diameter ≥ 3 mm at 10 minutes). Rhinitis is self-reported and 

the subject had to answer “yes” to at least one of the following questions: Have you ever had rhinitis, Have 

you ever had hay fever, Have you ever had sneeze or rheum after a contact with: hay, flowers, animals, 

dust? Can be either c combined or b not with asthma. d  Age difference between groups were assess using an 

unpaired t-test. GWAS: controls vs allergic rhinitis p=0.078, control vs Allergic rhinitis combined with 

asthma p=1.2e-15. EWAS: controls vs allergic rhinitis p=0.078, control vs Allergic rhinitis combined with 

asthma p=0.43. e Smoking status available for 186 controls, 122 allergic rhinitis and 316 allergic rhinitis 

combined with asthma subjects for genome-wide association study (GWAS) samples, 31 controls, 29 

allergic rhinitis and 47 allergic rhinitis combined with asthma subjects for epigenome-wide association 

study (EWAS) samples. Differences between groups were assessed using a chi-square test. GWAS: 

controls vs allergic rhinitis p=0.0045, control vs Allergic rhinitis combined with asthma p=1.25e-19. 

EWAS: controls vs allergic rhinitis p=0.049, control vs Allergic rhinitis combined with asthma p=7.7e-3. f 

Geometric mean and standard deviation (SD) for the Immunoglobulin E (IgE) serum concentration 

calculated for 175 controls, 116 allergic rhinitis and 302 allergic rhinitis combined with asthma subjects for 

GWAS samples and all subjects for EWAS samples. IgE levels difference between groups were assess 

using an unpaired t-test. GWAS: controls vs allergic rhinitis p=0.145, control vs Allergic rhinitis combined 

with asthma p=2.2e-3. EWAS: controls vs allergic rhinitis p=0.003, control vs Allergic rhinitis combined 

with asthma p=0.90. Sex, age, cell count and smoking status were used as covariates in the analysis. 
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Table 2. Genes with cis-mQTL sites significantly associated with allergic rhinitis with or 
without asthma. 

   mQTLs GWAS analysis EWAS analysis 
Trait Gene Locus p-value SNP p-value CpGs Δβa p-value 

Allergic rhinitis CDX1 chr5q32 6.41e-5 rs888989 0.0038 cg18424208 -5.19 0.0002 
PPAN-P2RY11 chr19p13.2 0.0245 rs3752199 0.0346 cg24118856 7.51 4.39e-5 

RNF39* chr6p22.1 

0.0090 rs2844833 0.0270 cg05563515 10.11 0.0212 
0.0229 rs2844833 0.0270 cg24637044 5.85 0.0132 
0.0265 rs2844833 0.0270 cg01286685 7.78 0.0266 
0.0411 rs2523872 0.0123 cg10930308 9.50 0.0255 
0.0499 rs2523872 0.0123 cg01286685 7.78 0.0266 

SRRT chr7q22.1 0.0412 rs6942824 0.0224 cg10426581 5.26 0.0096 

Allergic rhinitis 
with asthma 

ADORA1 
ITGB2 

chr1q32.1 
chr21q22.3 

0.0337 rs6661284 0.0337 cg19315653 -6.26 0.0315 
0.0381 rs7275203 0.0381 cg18012089 6.10 0.0068 

LINC00336 chr6p21.31 0.0073 rs9461924 0.0073 cg04329454 -7.16 0.0015 
MFSD6L chr17p13.1 0.0120 rs9895992 0.0120 cg11685316 5.01 0.0072 

PCDH8 

chr13q14.3 0.0152 rs732774 0.0295 cg14950829 7.53 0.0097 
 0.0135 rs3742297 0.0480 cg14950829 7.53 0.0097 
 0.0259 rs1801249 0.0296 cg14950829 7.53 0.0097 
 0.0259 rs4943046 0.0298 cg14950829 7.53 0.0097 

PITX2 chr4q25 0.0257 rs2067004 0.0272 cg13385016 5.06 0.0240 
 0.0249 rs9992755 0.0289 cg13385016 5.06 0.0240 

RNF180 chr5q12.3 0.0130 rs7713289 0.0130 cg17370163 5.43 0.0021 

RNF39* 

chr6p22.1 0.0133 rs2517504 0.0047 cg03343571 9.19 0.0451 
 0.0171 rs2517504 0.0047 cg01286685 8.21 0.0478 
 0.0401 rs2535238 0.0248 cg01286685 8.21 0.0478 
 0.0499 rs2523872 0.0299 cg01286685 8.21 0.0478 

ZFPM1 chr16q24.2 0.0304 rs750740 0.0304 cg04983687 5.53 0.0056 
a Δβ and p-values for CpG sites and SNPs forming a cis-mQTL. A negative Δβ indicates a decrease in the 

percentage of methylation for cases compared to controls. All locus refer to the human hg19 reference 

genome. * RNF39  is the only gene marginally associated in both traits. 
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Chapter 5: Discussion and future directions 

The purpose of this work was to go beyond GWAS studies in order to better understand the 

genetic basis of complex traits, using asthma and allergic diseases as an example. GWAS 

were highly important in understanding the different genetic architecture of complex traits, 

confirming previously identified genes and uncover new ones. The high expectation of these 

studies led to their increasing popularity in the mid 2000s and brought a tremendous amount 

of knowledge that helped better understand complex traits.  However, one drawback is that 

even large-scale studies including thousands of individuals do not explain the whole picture 

[14]. This ascertainment led the research community to develop new strategies to 

complement GWAS limitations. The work presented in this thesis and as part of my PhD 

degree aims to explore different strategies to better understand the genetic and epigenetic 

bases of asthma and allergy related-traits. Specifically, we decided to explore two different 

strategies to study asthma and allergy related-traits: investigating rare and low-frequency 

variants and linking GWAS hits to cellular traits (DNA methylation and gene expression). As 

mentioned in Chapter 1, asthma and allergies affect a large number of individuals, especially 

in developed countries. It results in more than 250,000 deaths per year and represents an 

important economic burden [85]. A lot of effort has been invested in studying these diseases 

despite the fact that they are very difficult to investigate. They are highly heterogeneous, 

being clinically modulated by environmental and genetic determinants. They are also seen as 

a plethora of different diseases that are sometimes hard to differentiate from one another. One 

of the strengths of the studies presented herein is the use of the SLSJ cohort, a founder 

population for which very detailed phenotypic information is available. 
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Rare and low-frequency variants in complex traits 

The Chapter 2 of this thesis describes a custom capture panel designed to study rare and low-

frequency variants in autoimmune and inflammatory diseases in a cost-effective manner. 

Based on previous knowledge acquired from GWAS, we wanted to assess the contribution of 

coding and non-coding regions in such diseases. We selected interesting non-coding 

functional regions to study based on whole-genome DHS mapping from different immune 

cells, which have been shown to be enriched in GWAS hits [17]. We designed the panel to 

study relevant cell-types involved in multiple immune and inflammatory diseases with the 

objective of later applying it to explore their genetic basis. We showed that the variants 

captured were highly functional and had an impact on gene expression. Using high-

throughput next-generation sequencing allowed us to uncover new variants that could not 

have been identified using other technologies like classical genotyping chip or Immunochip. 

It also permits exploring non-coding regulatory regions as compared to whole-exome 

sequencing and is more cost effective than whole-genome sequencing, thus allowing us to 

sequence more individuals at a deeper coverage.  

In Chapter 3, we showed that our custom capture panel was successfully used in identifying 

new genes and variants associated with asthma and allergy related-traits. To this end, we used 

the SLSJ asthma familial cohort, which has three main advantages: 1) it is a founder 

population, 2) it includes large families and 3) samples have high quality phenotype 

characterization (testing was done for all participants and phenotypes were not self-reported). 

The two first characteristics were important to limit the amount of genetic heterogeneity, 

which is an important obstacle in rare and low-frequency variants studies [65]. The founder 
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population allowed to enrich for higher frequency deleterious and private variants that could 

not be tested using other populations as shown in Chapter 3. They have also been successful 

in identifying rare variants associated with complex traits in the past [68, 183-185]. Family 

studies can also be an asset in the study of rare and low-frequency variants in complex 

trait because predisposing variants can be observed at a much higher frequency in 

affected members of the family, since multiple affected members may carry the same 

variant. It can also help reducing population structure bias by decreasing heterogeneity 

and achieve discoveries with a smaller sample size [65]. Future studies using this data 

could also explore de novo mutations or parent-of-origin effect that could be implicated 

in the development of the disease.  

The third strength of this study was the fact that all samples were well characterized, 

having access quantitative disease-related traits like serum IgE levels, eosinophil counts 

and percentage as well as lung function measurements. These subphenotypes helped us to 

get enough power to observe association in a smaller sample set. We were able to identify 

significantly associated low-frequency variants with eosinophil percentage and located in two 

genes: CXCR6 and FYCO1. We also observed two significant genes in collapsing analyses: 

MRPL44 associated with eosinophil percentage and NRP2 associated with serum IgE levels. 

Some variants showed increased frequency compared to previously assessed European 

populations, which allowed us identifying some variants associated with the traits and 

located in or close to genes never identified before that could help better understand 

disease biology. In fact, variants taking part into the autophagy process or chemokine 

receptors were identified, supporting the importance of these pathways that were 

previously implicated in the pathophysiology of these diseases [244, 269], but more 
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interestingly in the SLSJ asthma familial cohort [189, 191, 270, 271].  However, the 

identification of these variants could result in difficulties of replication and highlights the 

importance of population specific studies. The two variants identified in this study using 

single variant association test were non-coding as well as two of the lead SNV identified 

in the gene-based test. These variants would not have been identified using whole-exome 

sequencing or genotyping chip as they were also rare or low-frequency. These results 

underline the interesting aspect of using our custom capture panel on the SLSJ asthma 

familial cohort. 

In addition to the results obtained on asthma and allergy-related traits, ongoing work uses 

our Immune-genetics sequencing to study other autoimmune and inflammatory diseases. 

The lower cost of our method allowed to sequence coding and regulatory non-coding 

regions of over 5000 samples from individuals affected with multiple diseases such as 

Multiple Sclerosis, Crohn’s disease, Systemic Lupus Erythematosus, etc. We will try to 

identify genes that are shared across diseases (pleiotropic effect) as well as the disease-

specific ones to better understand the genetic basis of these diseases. 

Linking cellular traits to GWAS hits 

So far, studies linking genetic variation to cellular traits use different strategies. Two of 

them are either to 1) link significant GWAS hits to functional traits like gene expression 

or DNA methylation or 2) combine directly the GWAS data to functional data focusing 

also on marginally associated sites. We used the latter one in our study, showing that we 

can achieve association with a smaller sample set using this strategy. We showed that the 

use of cellular and functional traits could help separating the true signals from the noise.   
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The Chapter 4 of this thesis describes a strategy to combine different omics data to identify 

new genes associated with allergic rhinitis with or without asthma. We took again advantage 

of the SLSJ asthma familial cohort. For this study, the population was a great advantage 

being more homogeneous than cosmopolitan populations, not only at the genetic level 

(families and founder effect) but also at the environmental one. Using families from a 

specific region allowed us to have samples sharing very similar environment, life habits, 

religion, diet, etc., thus reducing its potential effect on DNA methylation. Another strength 

from this study is the well-described samples. We used stringent phenotype inclusion 

criteria for allergic rhinitis with or without asthma. The samples were also evaluated 

clinically using a defined protocol by Dr. Laprise and the diagnoses confirmed by the 

same group of physicians (Dr. Bégin for adults and Dr. Morin for children). 

We combined marginally associated SNPs and CpGs from GWAS and EWAS studies for 

allergic rhinitis with or without asthma. This could help departing the SNPs that do not 

resist correction in GWAS from false negative sites, thus being still true associations. In 

this study, we were able to identify a statistically significant mQTL of a CpG located in 

the promoter region of the CDX1 gene linked to a SNP located in the intron region of a 

gene located 900KB from it. We not only identified a novel gene potentially associated 

with the trait, we also showed that the marginally associated SNP had an impact on a 

much further gene rather than the closest one. We showed here, like many others, which 

was done in many GWAS study, is not necessarily the proper way to do it. The SNP 

taking part in the significant mQTL is located in the intron of TNIP1 gene which was 

previously associated with asthma and atopic dermatitis [137, 268].  
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Chapter 2 of this thesis showed the potential impact of rare variants on gene expression in T 

cells. It was one of the first studies to look at the impact of rare variants on gene expression 

using ASE. Although all studies used different ways to assess the functional impact of rare 

variants showing the difficult aspect of it, they do appear to take part in regulating gene 

expression. Our study adds to the body of literature highlighting the difficulty to explore this 

question, but also the importance of considering their implication in the genetic architecture 

of gene expression [48-50]. They could help in the future to better understand the functional 

aspect of rare and low-frequency non-coding variants associated with complex traits. 

In Chapter 3, we used epigenetic data to support our finding of rare and low-frequency 

variants associated with asthma and allergy-related traits. We observed an enrichment of 

marginally significantly associated CpGs (p<0.05) located in the vicinity of the NRP2 genes. 

These results were obtained using DNA methylation data in isolated eosinophils, but were 

not observed in whole-blood. These results support the importance of using specific cell-type 

that plays an important role in the pathophysiology and their consideration in future studies.  

Linking SNPs and rare variants to gene expression and DNA methylation alone can help 

understand the functional aspect of genetic variants. However, using them individually 

only gives part of the explanation. Linking variants to gene expression can identify the 

target genes and if the allele reduces or increases the expression of the genes. This is 

actually very useful since a lot of the first GWAS studies assumed that the affected genes 

were the ones located closest to the SNPs. However, it does not give insight on how the 

expression is actually regulated. The latter can be explained by linking genetic variants to 

DNA methylation where the specific region or sequence elements can be pinpointed 
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(promoter, enhancer, gene body or insulator). But it does not always link the variants to 

the gene of interest when it is located away from it. Future studies exploring multiple 

epigenetics layers could help better understand genetic loci associated with diseases. 

As an example, in a study performed by two other postdoctoral fellows in the lab and 

myself [34] we assessed the genetic effect on DNA methylation, histone deposition and 

gene expression. We also observed their interrelation at a high resolution. We performed 

allelic and non-allelic correlation between gene expression and DNA methylation and 

observed a higher rate of strong correlation using allele specific assessments. When 

combining ASM, ASE and allele-specific histone deposition (ASH), we saw a high 

concordance between high gene expression and high chromatin modification rate with 

active enhancer marks (H3K27ac, H3K4me1 and H3K4me3) when the linked CpG 

harbored lower methylation. The opposite was observed for repressive marks 

(H3K27me3, H3K36me3, H3K9me3). The effect was stronger when focusing on 

significant sites (p<0.05). These results highlight the sensitive detection that allele-

specific analyses can bring to reveal links between multiple layers of functional features. 

These results also show the potential of using multiple layers to understand at a deeper 

level the functional impact of associated variants. In this study, we also observed that 

over 50% of mQTLs and over 25% of ASM identified were cell-type specific. We also 

observed an enrichment of autoimmune disease GWAS hits for ASM in naïve T cells and 

at a lower extent in ASM from whole-blood highlighting the importance of using isolated 

cells and tissues to gain more sensitivity to identify variants and understand their 

functional impact. Thus, combining tissue-specific DNA methylation and gene 
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expression data could provide a much deeper understanding of autoimmune diseases 

compared to genetic data alone. 

Using better phenotyping 

In the recent years, asthma has been increasingly seen as a combination of multiple 

phenotypes rather than a single disease. In fact, asthma is a combination of numerous 

clinical and physiological features that have been used to differentiate the diverse 

endotypes [272]. They will become more and more precise as the amount of data 

available increases, thus will probably take part into precision medicine where disease 

prevention, intervention and treatment will be fitted to each patient.   

The first way to differentiate different asthma endotypes was based on the presence or not 

of allergic features as well as age of onset [272].  Early-onset asthmatics had mainly 

atopic and allergic triggers in combination with other allergic disease like rhinitis or 

atopic dermatitis. Asthmatics individuals that developed the disease later in life did not 

have allergic sensitization linked to it. More recently biological and genomic features 

were included to better define them [272]. One of the mostly known is the TH2 process 

that is linked to allergy, atopy and eosinophilic inflammation. TH2 associated asthma is 

also known to be corticosteroid responsive. This feature is a characteristic of early-onset 

allergic, late-onset eosinophilic as well as exercise induced asthma. The well-known 

17q21 loci was also mainly associated with early-onset asthma but not to atopy or adult-

onset asthma [121, 273]. Other endotypes do not display TH2 characteristics like obesity-

related and neutrophilic asthma, which are poor corticosteroids responders. Following 

patients’ characterization using TH2 features, nature of inflammation (e.g. eosinophilic 

versus neutrophilic) and treatment response (e.g. steroid responsive versus steroid 
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resistant), the advent of “omics” data helped decipher underlying mechanisms leading to 

more specific characterization of the disease. An example of that are the severe asthma 

endotypes proposed by Poon et al. characterized by different cytokines pathways [274]. 

For example, the IL-4/IL-13 pathway was linked to severe asthmatics with high IgE 

levels, the IL-5/IL-33 was linked to inhaled corticosteroid poor responders and IL-17 

with neutrophilic asthma. The endotypes were also a great tool to identify new genes 

associated with the traits. For example, a study by Bønnelykke et al. performed a GWAS 

for early-onset asthma patients characterized by recurrent and severe exacerbations [275]. 

They identified previously known loci (GSDMB, IL33, RAD50 and IL1RL1) at an effect 

size much larger than other studies and a new susceptibility loci underlining the strength 

of using specific phenotypes in the search for genes associated with the trait. 

In this thesis, we tried to use better phenotyping data to decipher the genetics of asthma 

and allergic diseases. In fact, by its ascertainment, the SLSJ cohort is mainly composed 

of TH2 associated asthmatics individuals. In chapter 3, we used phenotypes that are 

specific to allergic asthma like serum IgE levels and eosinophil percentage, which were 

the two phenotypes where we could identify significant genes and variants. We also used 

lung function measures for which a reduction was previously more linked to severe 

asthmatics [276], which are less present in the SLSJ familial cohort. In chapter 4 we 

assessed the genetic background of individuals affected with allergic rhinitis with and 

without asthma, which is linked to TH2 response type. We can thus state that we took 

advantage of refined phenotyping data and encourage the use of endotypes to be able to 

identify new genes associated with asthma and allergy-related traits. 
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In the future, studies will not only have to include refined phenotyping data and 

endotypes to explore the genetic background of asthma and allergy-related traits, but also 

data about environmental exposure and known genotyping background. In fact, studies 

showed that some associations were only present in subjects exposed to certain 

environment. For example, an association with the 17q21 loci was only present in 

children who wheezed and were exposed to rhinovirus infection in the first three years of 

life [277, 278]. Taking into account environmental exposure allowed to observe a much 

higher odd ratio of 6.9 compared to 1.2 in other large consortia where they were not taken 

into consideration [121, 279]. Another example of the importance of including 

environmental exposures as well as genetic background was observed when looking at 

the effect of animal shed exposure on asthma development. Loss et al. observed that the 

protective effect of the exposure was genotype-dependent: one allele conferred protective 

effect for asthma and wheeze when exposed to animal shed, whereas the protective effect 

of the exposure was not observed in the presence of the other allele [278]. Another 

interesting finding was that the protective effect of the allele was only observed in the 

combination with the environmental exposure; no protective effect was observed when 

the children were not exposed to animal sheds [278]. These examples show the 

importance and the potential benefits of incorporating environmental and genetic 

background in future studies, in addition to multiple epigenetic layers and cellular traits 

as described in this thesis. 
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Conclusion 

The findings presented in this thesis represent contribution in understanding the genetic 

basis of complex traits in multiple ways. We first developed a custom capture panel that 

allowed us to explore both coding and non-coding regulatory rare variants in a cost-

effective manner. We showed the potential impact of rare variants on gene expression as 

well as we explored their effect along with low-frequency ones in asthma and allergy 

related traits. We uncovered three genes that were not identified before, but were part of 

processes like autophagy or chemokine receptors that have been implicated in the traits. 

We showed the potential of our target capture and how it can be used to explore the 

contribution of rare and low-frequency variants in other immune related diseases in the 

future. We used DNA methylation to confirm our findings in the rare variants analysis, 

but also to identify new genes associated with allergic rhinitis. In this thesis, we showed 

the potential of going beyond GWAS findings, learning lessons and complementing its 

limitations to better understand the genetic of complex trait such as asthma and allergy-

related traits. 
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Figure 1. Representation of pre and post-GWAS era genetic approaches to study 
complex traits. A) Candidate genes and linkage studies were one of the first ways to 
study the genetic aspect of complex traits. A few genes were identified in the SLSJ 
asthma cohort using one of the techniques and examples are listed in the red boxes. B) 
These studies were followed by the advent of Genome-wide association studies (GWAS). 
The SLSJ asthma familial collection took part of large consortium that identified loci the 
were highly replicated. Examples of these loci are listed in the red box. C) New strategies 
were developed to complement GWAs findings. Two of them (in bold) are explored in 
this thesis: assessment of rare and low-frequency variants and linking GWAs hits to 
cellular traits. Different ways to explore these two strategies are also listed as well as 
examples of genes that were identified in the SLSJ asthma familial cohort (red boxes). In 
the green boxes are listed the additional genes identified using these post-GWAS era 
strategies that were identified in this thesis. 
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