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ABSTRACT

Over the last decade, there has been considerable interest and success in the
formulation of co-located equal-order Finite Volume Methods (FVMs) and Control-
Volume Finite Element Methods (CVFEMs) for the prediction of fluid flow and heat
transfer. This thesis is concerned with an evaluation and enhancement of some aspects
of recent co-located equal-order FVMs and CVFEMs. In particular, the goals of
this thesis are the following: (1) formulation and computer implementation of a co-
located equal-order FVM that facilitates the evaluation and enhancement tasks; (2)
evaluation and enhancement of iterative sequential and coupled-equation solvers; and
(3) comparative evaluation of a recently proposed mass-weighted skew upwind scheme
(MAW) against five well-established schemes.

The proposed equal-order co-located FVM is formulated for the prediction of
steady, two-dimensional, incompressible, viscous fluid flow in planar rectangular do-
mains. This FVM deals directly with the velocity components and pressure, or prim-
itive variables. The rectangular domains are discretized using structured line-by-line
rectilinear grids, and rectangular control volumes are constructed around each grid
point. All dependent variables are co-located or stored at the same grid points,
and interpolated on the same rectangular elements in an equal-order formulation. A
computer program incorporating the proposed FVM has been developed and tested
successfully.

On the basis of an evaluation of some available iterative solvers, two improved
algorithms are proposed in this work: (1) Enbanced Sequential Solution Algorithm
(ESSA); and (2) Sequential Variable Adjustment (SEVA) algorithm. Test results
obtained with these algorithms are very encouraging, particulary with ESSA. The
comparative evaluation of the MAW scheme shows that its performance is comparable

to the skew upwind difference scheme (SUDS) of Raithby [89).



iv
SOMMAIRE

Les Méthodes de Volumes Finis (MVFs) a collocation d’ordre égal et les Méthode aux
Eléments Finis/Volumes de Contréle (MEFVC) ont été appliquées avec succés aux
écoulements de fluide avec transfert de chaleur et ont présenté un intérét considérable
durant la derniere décade. Cette thése porte plus particulierement sur I'évaluation et
I'amélioration de certains récents aspects concernant les MVFs a collocation d’ordre
égal et les MEFCVs. Les objectits de cette thése se résument ainsi: (1) formulation et
implantation d’une MFV a collocation d’ordre égal facilitant les taches d'évalution et
d’amélioration; (2) évaluation et amélioration de la procédure de solution séquenttielle
des équations couplées; et (3) comparison entre un récent schéma amont orienté aux
flux massiques pondérés (SAOFMP) et d’autres schémas reconnus.

La MVF a collcation d’ordre égal proposée est formulée pour la prédiction d’écoule-
ments permanents, bi-dimensionels, incot::p;essibles et visqueux de fluid a V'intérieur
d’enceintes planes et rectangulaires cette MVF utilise les composantes de la vittesse
et la pression-les variable primitives- dans sa formulation. L’enceinte rectangulaire est
discrétisée en utilisant un seul maillage selon une structure rectiligne, et un volume
de controle rectangulaire est construit outour de chaque noeud du domaine. Toutes
les variables dépendantes sont évaluées aux noeuds du maillage et sont interpolées
sur les aux mémes éléments puisqu’il s’agit d’un schéma d’ordre égal. Un programme
informatique incorporant la MVF proposée a été développé et vérifié.

Suivant |'évaluation de différentes procédures de solution existantes, deux al-
gorithmes sont proposés dans ce travail: (1) Procédure de solution Séquentielle et
Améliorée (PSSA); et (2) Procédure de Solution Séquentielle 3 Ajustment Variable
(PSSAV). Les résultants obtenus avec ces procédures sont trés encourageants, tout
particulierement avec PSSA. La comparaison des différents schémas démontre que le

SAOFMD performe comparablement au schéma SUDS proposé par Raithby [89).
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Chapter 1

INTRODUCTION

1.1 AIMS OF THE THESIS

This thesis has two main goals. The first goal is to formulate and implement a
finite volume method (FVM) for the prediction of steady, two-dimensional, viscous,
incompressible fluid flow and heat transfer in planar rectangular domains. The pro-
posed method deals directly with the velocity components and pressure, or primitive
dependent variables. The rectangular domains are discretized using structured (line-
by-line) rectilinear grids. Each grid point, or node, is associated with non-overlapping
contiguous control volumes that collectively fill up the domain completely and exactly.
All dependent variables are co-located, or stored at the same grid points, and interpo-
lated on the same rectangular elements in an equal-order formulation. This co-located
equal-order FVM is based on concepts borrowed from control-volume-based finite ele-
ment methods (CVFEMs) proposed by Prakash and Patankar [86], Saabas [100], and
Schneider and Raw [103].

The second, and primary, goal of this thesis is to use the aforementioned FVM
to (i) evaluate and enhance an iterative sequential procedure for the solution of dis-

cretized momentum and continuity equations, proposed recently by Saabas [100};
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and (ii) undertake a comparative evaluation of six schemes for the interpolation of
scalar dependent variables in the convective transport terms in the governing equa-
tions. Specifically, a Mass-Weighted upwind scheme (MAW) adapted from the work
of Saabas [100], the Upwind and Central Difference Schemes (UDS and CDS) as dis-
cussed by Patankar [77], the Skew Upwind Difference Scheme (SUDS) of Raithby [89],
the Lincar-Skew Difference (LSD) of Huget [53], and the Quadratic Upwind Inter-

polation for Convective Kinematics (QUICK) of Leonard [63] are considered in the

comparative evaluation.

1.2 Background and Motivation

Computational Fluid Dynamics (CFD) is a subject that deals with the formula-
tion and application of mathematical models and numerical solution methods for the
computer simulation of natural and industrial fluid flow and heat transfer phenomena.
CFD uses and extends ideas and concepts borrowed from applied mathematics, com-
puter science, and several engineering science subjects such as thermodynamics, fluid
dynamics, and heat transfer. Research in this interdisciplinary subject can be both
challenging and satisfying, and it can result in economic, social, and health-related
benefits. This is the general inspiration for the work undertaken in this thesis. Spe-
cific technical issues that provided the motivation for this research are discussed in
the remainder of this section.

Since the mid-sixties, the FVMs of Harlow and Welch [44], Patankar and Spalding
[76), and Raithby [89] have been successfully applied to complex fluid flow and heat
transfer phenomena, but these methods are limited to regular-shaped domains. This
is because they are based on staggered orthogonal grids for the velocity components
and pressure, and they employ locally one-dimensional functions to interpolate the

nodal values of the dependent variables. These concepts are not directly applicable
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to irregular non-orthogonal grids.
The desire and the need to extend finite volume, or control volume-based, formu-

lations to irregular domains provided the motivation for the early Control-Volume-

based Finite Element Methods (CVFEMs) of Baliga [6], Baliga and Patankar [7, 8],
and Prakash and Patankar [86]. These CVFEMs were constructed by combining and
extending ideas contained in the aforementioned FVMs [76, 89}, the work of Winslow
[127], and the Finite Element Methods (FEMs) of Zienkiewicz [129], Oden et al. [75],
and Taylor and Hood [116]. Today, after over fifteen years of work by several research
groups around the world, CVFEMs are being applied successfully to complex two-
and three-dimensional fluid flow and heat transfer phenomena [92, 100). However,
some minor difficulties continue to afflict these methods.

Most of the CVFEMs proposed in the eighties suffer from intrinsic limitations
that severely restrict the scope of their applicability to practical problems [100, 10].
CVFEMs based on flow-oriented upwind schemes similar to those of Baliga and
Patankar [7], LeDain-Muir and Baliga [62], and Prakash [85] have been successful
in overcoming false diffusion difficulties that afflict upwind schemes that are not flow
oriented [77, 89). However, they can encounter difficulties caused by negative coef-
ficients in the discretization equations in problems that involve high element-based
Peclet numbers 100, 10).

The unequal-order two-dimensional CVFEM of Baliga and Patankar [8] avoids
checkerboard-type pressure distributions, but it suffers a loss of accuracy in problems
with high Reynolds number and steep pressure gradients. Furthermore, it is un-
wieldy to extend this method to three-dimensions [10}. In the co-located equal-order,
two-dimensional, CVFEMs of Prakash [87) and Hookey and Baliga [49] the velocity
components are interpolated over three-node triangular elements by functions that

explicitly account for the influence of the local pressure gradient. These CVFEMs
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successfully overcome the problem of spurious checkerboard-type pressure distribu-
tions that aflicted earlier co-located equal-order FEMs [116]. However, because of the
manner in which the pressure gradient is explicitly included in the velocity interpo-
lation functions, such formulations require overspecification of boundary conditions
and could encounter convergence difficulties in problems with inflow and outflow
boundaries (100, 10). Schneider and Raw [103] have proposed a co-located equal-
order CVFEM based on quadrilateral elements and a mass-weighted upwind scheme
that ensures positive coefficients in the discretization equations, and avoids spurious
spatial oscillations in the computed pressure field. However, in problems involving
inflow and outflow boundarics, it appears as if their method would encounter the
same difficulties as those encountered by the CVFEMs of Prakash (87 and Hookey
and Baliga [49).

The recent doctoral work of Saabas [100] was undertaken with the aim of over-
coming some of the difficulties discussed in the previous paragraph. The resulting
equal-order co-located CVFEM uses three-node triangular and four-node tetrahedral
elements to discretize calculation domains in two- and three-dimensional problems,
respectively. These elements are further discretized so as to create polygonal and
polyhedral control volumes around the nodes in triangular- and tetrahedral-element
meshes, respectively. The procedure for constructing polygonal control volumes in
two-dimensional problems is borrowed from the work of McCormick [70]), and an
extension of these ideas is used to construct the polyhedral control volumes in three-
dimensional problems (10, 100). The dependent variables are interpolated linearly in
each element in the approximation of diffusion terms. In the approximation of con-
vective terms, two flow-oriented and one mass-weighted upwind schemes were investi-
gated. The mass-weighted upwind scheme is formulated to ensure that the algebraic

approximations to the convection terms contribute positively to the coefficients in the



CHAPTER 1. INTRODUCTION 5

discretization equations. In each element, the velocity components in the mass flow
terms are interpolated by special functions that directly account for the influence of
the elemental pressure gradient and prevent the occurrence of spurious pressure oscil-
lations. The resulting discretization equations are solved using an iterative sequential
solution algorithm.

The CVFEM of Saabas {100] has been successfully implemented to steady, two-
and three-dimensional, laminar and turbulent, incompressible, viscous fluid flows in
irregular-shaped geometries, with and without inflow and outflow boundaries. How-
ever, this iterative sequential algorithm for the solution of the discretization equations
converges rather slowly, and it requires the simultaneous storage of the coefficients
in the discretized momentum and pressure equations. Furthermore, in problems with
inflow and outflow boundaries, the special functions that are used to interpolate ve-
locity components in the mass flux terms, in conjunction with the proposed outflow
treatment, can lead to minor inconsistencies in the overall mass balance and further
slow down the convergence of the solution procedure.

It should also be noted that the MAW scheme proposed by Saabas is useful in
avoiding negative coefficients in the discretization equations. However, in problems
where flow-oriented upwind functions (FLO) worked, the MAW scheme was found to
be less accurate than the FLO scheme [100]. A detailed comparative evaluation of
the MAW scheme against other well-known schemes such as UDS [77], SUDS (89],
and QUICK [63] was not done by Saabas [100].

The objectives of this thesis were finalized after the completion of the work of
Saabas [100]. There was an urgent need to improve the rate of convergence and to re-
duce the storage requirements of the iterative sequential solution algorithm proposed
by Saabas. It was also realized that the aforementioned difficulty experienced by

the outflow treatment would not occur in a co-located equal-order FVM formulation
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based on rectangular elements. Such an FVM would, therefore, allow the attention
to be focused on the improvement of the iterative sequential solution procedure. Fur-
thermore, this FVM would also allow a comparative evaluation of the MAW scheme
against other well-established schemes [33, 63, 77, 89] in the context of a co-located,
equal-order, primitive-variables formulation: there are no works of this nature in the
published literature. It is with these needs and research opportunities in mind that
the aims and scope of this thesis, as discussed in section 1.1, were determined.

1.3 Synopsis of Some Finite Methods for Fluid

Flow and Heat Transfer

As has been discussed by Baliga and Saabas [10], finite volume methods (FVMs),
finite element methods (FEMs), and control-volume based finite element methods
(CVFEMs) are all particular cases of the methods of weighted residuals (MWRs).
This unifying view was first proposed by Finlayson and Scriven [28]. The formulation
of FVMs and CVFEM:s for fluid flow typically involves five basic steps:

1. discretization of the calculation domain using elements (in CVFEMs) or struc-

tured orthogonal or non-orthogonal grids (in FVMs);

2. further discretization of the domain 50 as to associate each node (in CVFEMs)
or grid point (in FVMs) with control volumes;

3. prescription of element-based multidimensional functions (in CVFEMs) or lo-
cally one-dimensional piecewise functions (in FVMs) to interpolate dependent

variables and thermophysical properties of the fluid;

4. use of the subdomain, or control-volume-based, MWR to derive algebraic ap-

proximations to the governing equations; and
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S. prescription of a procedure to solve these algebraic (discretization) equations.

In FEMs for fluid flow, step (ii), discretization into control volumes, is not done,
and the Galerkin or Petrov-Galerkin MWR (18, 129] is used to derive the discretiza-
tion equations. Otherwise, the formulation of FEMs is similar to that of CVFEMs.
It should also be mentioned that in both CVFEMs and FEMs, the discretization
equations are assembled using an element-by-element procedure. As was mentioned
earlier in section 1.2, and as is perhaps clear from this discussion, CVFEMs are con-
structed by a combination of ideas native to FVMs and FEMs. Thus, CVFEMs could
be considered as subset of FVMs or FEMs. Indeed, the method put forward in this
thesis uses an element-by-element approach to the derivation and assembly of the dis-
cretization equations, but it is limited to rectangular elements, and it employs some
locally one-dimensional interpolation functions. It was thus decided to label it as a
FVM.

A brief review of CVFEMs for fluid flow was given in section 1.2. Detailed reviews
of CVFEMs are available in the works of Baliga and Patankar (9] and Baliga and
Saabas [10], so these methods will not be discussed further in this section. Review of
FEM s for fluid flow are available in books by Chung [21] and Baker [5]. Furthermore,
a detailed discussion of FEMs is not directly relevant either to the motivation or the
formulation of the FVM proposed in this thesis. For these reasons, FEMs are not
reviewed further in this section.

This review, therefore, deals primarily with FVMs for fluid flow and heat transfer.
It is divided into three soctions: in the first section, FVMs for convection-diffusion
problems are discussed; in the second section, methods for the storage and calculation
of pressure in incompressible fluid flows are reviewed; and in the last section, methods

for solution of the discretized momentum and continuity equations are discussed.
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In this thesis, following the accepted definition in the published literature [77], the
term convection-diffusion problems is used to denote situations in which transport of a
scalar dependent variable is to be calculated in the presence of a known, or prescribed,
fluid flow: transport due to the overall or gross fluid flow is termed convection; ! and
transport due to molecular interactions is termed diffusion. Solution procedures for
convection-diffusion problems are a prerequisite to the formulation of methods for the
numerical simulation of fluid flow [77). As the momentum of the fluid is transported
by convection and diffusion, the corresponding governing equations can be solved by
procedures designed for the solution of convection-diffusion problems. However, as
was mentioned earlier, special procedures are required for the calculation of pressure
in incompressible fluid flows. Furthermore, special methods are also needed to solve

the coupled, nonlinear, sets of discretized momentum and continuity equations [77].

1.3.1 FVMs for Convection-Diffusion Problems

The Central Difference Scheme (CDS) appears to be the first method that was
used for the algebraic approximation of convection and diffusion terms in the govern-
ing partial differential equations [77, 97]. It can be shown that the CDS is essentially
equivalent to the use of piecewise-linear interpolation of the dependent variable(s) be-
tween grid points. This scheme works well in the numerical simulation of conduction-
type problems, because the piecewise-linear interpolation function is appropriate for
the modelling of the elliptic nature of the diffusion proc: ss. However, the CDS is inap-
propriate for modelling of the parabolic or one-way character of convective transport
[77). Indeed, it can be shown that when the value of the local Peclet number, based
on the average velocity and the distance between adjacent grid points, exceeds two,

the CDS can gencrate negative coefficients in the algebraic discretization equations

"This phenomena is also referred to as advection in the literature [55).
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[77, 112]. Negative coefficients in the discretization equations can lead to unphysical
oscillations, or "wiggles”, in the solutions [77). They can also slow convergence or
cause divergence of iterative methods for the solution of the discretization equations
[77). One way to overcome this difficulty is to use grids that are fine enough to ensure
that the value of the local Peclet number does not exceed two. However, this approach
is computationally expensive and usually impractical in the solution of enginceri g
problems.

An early remedy for the above-mentioned difficulty with the CDS was the Upwind
Difference Scheme (UDS), developed by Courant et al. [23], Gentry et al. [38],
Barakat and Clark [11}, and Runchal and Wolfshtien [98]. In UDS, a piccewise-
linear function is used to approximate the diffusion terms. However, a locally one-
dimensional upwind treatment is used to approximate the convection terms: in an
orthogonal finite-volume grid, the value of the convected scalar dependent variable
at the intersection of a grid line and a control surface is assumed to be equal to its
value at the adjacent node on the upwind side of the grid line. The UDS ensures that
the coefficients in the discretized equations are all positive, over the whole range of
Peclet numbers. However, this scheme is not as accurate as the CDS at low Peclet
numbers, and it overestimates diffusion at high Peclet Numbers [77].

In an effort to improve the UDS, Spalding [112] derived the exact solution to the
equation that governs steady, one-dimensional convection-diffusion transport in the
absence of source terms, and with constant properties of the fluid. Using the analyti-
cal solution, he derived the Exponential Difference Scheme (EDS) [112]. This scheme
works well for the whole range of grid Peclet ( Pea) numbers, but it is computationally
more expensive than the CDS and UDS because of the use of exponential functions.
To overcome this objection, Spalding approximated the exponential scheme with a

three-part function that is equivalent to the CDS for |Pes| < 2, and purely upwind
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advection (with no diffusion contribution) for |Pes| > 2. Spalding called this ap-
proximation the Hybrid Difference Scheme (HDS) [112]. A better approximation to
the EDS than the HDS is the Power-law Difference Scheme (PDS) of Patankar [77).
The PDS produces more accurate solutions than HDS, but requires some what more
execution time.

The UDS, EDS, HDS, and PDS are all based on the approximation of convection
transport using interpolation functions that are locally one-dimensional along the grid
lines. Thus all these schemes suffer from numerical errors, or false diffusion, when
the flow is at an angle to the grid lines and there are significant gradients of the
dependent variables in the cross-flow direction [90]. Similar difficulties can also be
encountered by these schemes in unsteady problems and problems with large source
terms (32, 90, 121).

In a critical evaluation of the UDS, Raithby [90] showed the above-mentioned
errors clearly. He also mentioned that it is the size of the error which is important,
rather than the order of the truncation error in a Taylor series expansion of convective
flux. To overcome false or numerical diffusion, Raithby proposed the skew upwind
difference scheme (SUDS) (89)] in which he considered the skewness of flow to the grid
lines in addition to upwind nature of convection. This scheme, however, is prone to
the difficulty of negative coefficients {45, 52, 63, 80, 100, 103] in the discretization
equations. Such negative coefficients imply that an increase in the value of the scalar
dependent variable at a node outside a control volume could result in a net outflow of
that variable from the control volume: This is not physically correct, since the scalar
dependent variable has to first flow into the control volume before it leaves it. In this
paper (89], Raithby also introduced the skew upstream weighted difference scheme
(SUWDS), in which he considered the influence of diffusion in the mean and cross

flow directions in the interpolation of the convected scalar. This scheme decreases
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false diffusion significantly in comparison to UDS, but negative coefficients can still
occur in the discretization equations, and, as Raithby has mentioned, there is some
doubt about the practical advantages of this scheme over the SUDS scheme because of
the additional computational time for the evaluation of exponential terms in SUWDS.
It should also be noted that both SUDS and SUWDS could suffer a loss of accuracy
in unsteady problems and in problems with significant source terms. In an effort to
overcome this difficulty Lillington [67) in an enhanceme:s:: to SUDS proposed a vector
upstream difference scheme (VUDS). However, this enhancement appears to be some
what ad-hoc [36]. Other attempts have been made to improve SUDS [36), with limited
success. One of the results of such attempts is the Linear Skew Difference (LSD) of
Huget (36]. Details of LSD are present in chapter 2.

A Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme
has been introduced by Leonard (63]. This scheme is equivalent to a CDS scheme
that is corrected by a term proportional to an upstream-weighted term. In QUICK,
the overall truncation error is of third order in the spatial grid size. However, as
noted by Raithby [90], it is the size of the error which is important, and only using
higher-order interpolation functions does not guarantee better accuracy [2]. The
QUICK scheme gives very accurate results when the Peclet number is low [74, 52, 79,
80}, but when there is strong convective transport, negative coefficients can arise in
the discretization equations and lead to unphysical oscillations in the solutions and
instability in iterative solution methods 26, 43, 52, 74, 79, 80, 108, 109].

Pollard and Siu [83) have worked out extended versions of QUICK that have over-
come some, but not all, of the aforementioned difficulties [79). Wong and Raithby
(128] have proposed a locally analytic differencing scheme (LOA DS) based on a solu-
tion to an approximation of the convection-diffusion problem. It is an enhancement

to EDS, in that LOADS accounts for the influence of the volumetric source term and
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local deviations from one dimensionality. After evaluating the different approxima-
tions in the context of natural convection in a square cavity, they [128) improved the
poorest approximations step-by-step and come up with LOADS scheme. The main
drawbacks of this scheme are the existence of negative coefficients in the discretization
equations and exponential terms in the discretized-equation coeflicients. A flux-spline
method has been proposed by Varejao [80-6). This scheme uses a quadratic-spline
technique to accurately calculate convection-diffusion fluxes at control-volume faces
in the finite-volume technique, but it admits negative coefficients in the discretization
equations.

To find .. framework for studying numerical errors in discrete methods, Stubley
et al. (114, 115] examined the CDS and UDS with reference to a problem with
an exact solution. They stated that there are two types of errors in finite difference
schemes: (i) profile error, which is a measure of the degree to which the corresponding
interpolation function is fitted with the exact solution; and (ii) operator error, which
is the error associated in approximating the differential operators in the convection-
diffusion terms. Therefore, reducing the profile error would not necessarily ensure
smaller solution errors, since the approximated operator may distribute the profile
error in such a way that solution error becomes larger. Based on these studies,
Stubley et al. [114] proposed two new schemes, linear influence scheme (LIS) and
quadratic influence scheme (QIS). In these schemes, they used approximate analytical
solutions of two-dimensional flows to influence the coefficients in the discretization
equations. However, these schemes require repeated summations of infinite series,
thus the implementation of these schemes is tedious and uneconomical. Furthermore,
relatively crude interpolations of the dependent variables along the gridlines are used
as inputs to LIS and QIS. This raises further doubts about their viability.

Gresho and Lee [41] states that it perhaps best not to suppress the oscillations
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caused by negative coefficients, since they are an indicator of the accuracy of the
schemes. But Patanksr [78] states that distinguishing between the real and false
oscillations would be difficult, especially in turbulent flows. In an effort to improve
the SUDS scheme, Hassan et al. proposed a mass-flow-weighted two-dimensional
skew upwind scheme [45]. They studied the reason for negative coefficients in the
discretized equations associated with SUDS, and to prevent negative coeflicients,
proposed that the skewing be limited so as to ensure that the contribution of the
value of the dependent variable at a node external to a control volume to the outflow
of the variable is always less than its contribution to inflow into that control volume.
This suggestion has a strong physical basis: in steady convection-diffusion problems
without source terms, for a transported scalar to go out from a control volume, it first
has to come into that control volume. This concept has been later used by Schneider
and Raw [103] and Saabas [100] in the context of control-volume-based finite element
methods (CVFEMs). Huget [53] tested several difference schemes, and proposed three
new schemes: mass-weighted upstream scheme (MWUS), modified skew upstream
scheme (MSUS), and a source correction scheme (SCS). Detailed description of these
schemes are available in his doctoral thesis [53].

In a technical note, Galpin et al. [33] discuss the effect of grid curvature on
upstream-weighted-advection approximations in a simple uniform flow through a half-
cylindrical region. They showed that in the circumferential direction, approximation
of the convected variable at control-volume faces using upstream functions along the
grid lines can produce significantly different values than the true upstream values,
because of the curvature of the grid lines. To remedy this, they introduced a vector
upwind approximation (VUWS) which is an upstream-weighted approximation with
a correction term to include the effects of the grid curvature. Also, Galpin et al. [36]

have divided advection schemes into four general classes: (i) profile schemes, such
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as CDS or QUICK; (ii) operator schemes, such as flux-spline schemes and LOADS;
(iii) upstream schemes, such as UDS or EDS; and (iv) skew upstream schemes, such
as SUDS and VUWS. With respect to the physics of fluid flows, skew upstream
schemes are indicated as best choice by them. Based on a study of different errors
and previous experiences, they have proposed the basic full-influenced scheme [36)
and two variations of it, namely, linear profile skew (LPS) and mass-weighted skew
(MWS). They approximate the advection term by a upstream difference along the
local streamline, which results in a correction term to the upstream value: this takes
into consideration the effect of source and diffusion terms. The local upstream value
is then calculated either by LPS or MWS schemes. Since they have tried to address
most of the errors associate with discrete solutions, their schemes appear to be quite
promising [100).

The SHARP scheme is a result of attempts by Leonard [64, 65] to improve QUICK,
after earlier modifications to QUICK such as QUICKE and QUICKER (83]. In
SHARP he uses a piecewise model for interpolation of the convected scalar: this
includes UDS, QUICK, exponential upwind, and ad-hoc straight-line parts. In the re-
sults to a two-dimensional problem involving pure-convective transport of an oblique-
step distribution of the scalar, he showed that this scheme did not have the stability
problems of QUICK, but the implementation of this scheme is both tedious and ex-
pensive because of the many parts associated in the calculation of coefficients and
exponential terms.

Van Doormaal et al. (124] have proposed a scheme similar to that of Galpin et al.
[36] in an explicit two-dimensional form, and named it physical advection correction
(PAC) scheme. They used two subclasses of it, namely grid-upstream schemes and
SUDS [89] schemes, to derive corrections to the interface values of the transported

scalar. They recommend the use of either linear-profile or mass-weighted schemes
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{103] to complete the SUDS subclass of PAC, and state the drawbacks of each of
these methods.

Karki et al. [57) used the flux-spline method of Varejao [126] in a three-dimensional
lid-driven flow in a square cavity. This scheme is based on the assumption that within
a control volume, the total flux in a given direction varies linearly along the coordinate
direction. They found that it gives more accurate results than PDS.

By studying three-, four-, and five-point schemes Braga [16] investigated the
reasons for instabilities and convergence problems in several available methods for
convection- diffusion problems. He derived a new scheme which shows better perfor-
mance than the QUICK scheme, but still it has overshoot and undershoot problems
caused by negative coefficients in the discretization equations. In an enhancement of
the QUICK scheme: Tzanos [120) used a scheme like CDS, but with modifications
that ensure that cell-face values of the convected scalar are bounded by their adja-
cent cell-central values, and prevent wiggles in the solution at high Peclet numbers.
In test problems, this scheme showed better accuracy than UDS. Tzanos [120] also
recommends the use of adaptive grid methods to obtain higher accuracy with a fixed
number of grid points.

With the rapid growth of the number and sophistication of convection-diffusion
schemes, it is not surprising that there have been many attempts to evaluate their
capabilities. Runchal [99] did a comparative evaluation of the CDS, UDS and HDS
schemes. He reported that among these schemes, CDS has the best accuracy as long
as it converge |Pea| < 2. HDS on the other hand, shows better convergence and
accuracy properties than UDS. A comparison between the performance of HDS and
QUICK schemes in two-dimensional problems with elliptic flows at high Reynolds
numbers was done by Han et al. [43]. They used these schemes to simulate ax-

isymmetric stagnation flow , square-cavity lid-driven flow, and flow downstream of
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a sudden expansion in a pipe (in the latter two cases, both laminar and turbulent
cases were studied using a staggered-grid finite volume method [43]). They used the
SIMPLE procedure for solution of the discretization equations, and reported that in
both laminar and turbulent flows, QUICK showed remarkably more accuracy than
HDS, but unlike HD'S, it was not unconditionally stable. Smith and Hutton [111] have
reported the results of a comparison of thirty sets of solutions (using finite-difference,
finite-element, and characteristics methods) submitted by nineteen groups. All solu-
tions pertain to a standard problem, which involves flow in a duct with a 180 degree
turn. On coarse grids, all methods showed solution oscillations or false diffusion.
None of the methods emerged as the best, and based on their opinion, there was
no perfect scheme, and compromise between diffusive and oscillatory errors was an
"artistic necessity” [111).

Four different convection-diffusion schemes, PDS, SUDS, QUICK, and LOADS
were evaluated by Huanget al. [52]in six tests, including square-cavity lid-driven flow,
natural convection in a square cavity, irrotational flow in a corner, and impinging-jet
flows. They used staggered-grid arrangement in a finite volume model, and reported
that LOADS performed well for either linear or irrotational flows, but it failed to
converge for nonlinear viscous flows. PDS or any other locally one-dimensional scheme
is only appropriate if the flow direction is almost parallel to grid lines. SUDS produced
convergent solutions in all their test problems, but it was prone to overshoot and
undershoot problems, and its running time was about two-and-a-half times that of
PDS. The QUICK scheme was also prone to overshoot and undershoot problems, but
its accuracy was better and its running time was 1.65 times more than that of PDS.
The QUICK scheme was the best among the four schemes, as reported by Huang et
al. [52].

Shyy (108] reported a study of five schemes, namely, UDS, SUDS, QUICK, Second
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Order CDS (SOCDS), Second Order UDS (SOUDS) in two one-dimensional tests and
one two-dimensional convection-diffusion problem. He found that the higher-order
schemes would not always give better results, and in the first test, a boundary-layer
type problem, UDS and SOUDS were stable, but QUICK and SOCDS generated
spurious oscillations at high Peclet numbers. In the second test, a flow with a source
term, SOUDS and QUICK gave comparable results. In the last test, QUICK and
SOCDS again showed oscillatory solutions, and UDS and SOUDS had high numerical
diffusion. Overall, SOUDS was the most satisfactory scheme. The accuracy of SUDS
was better than UDS, but both of them displayed large errors in modelling of source
terms, and QUICK and SOCDS was prone to solution oscillations.

Three convection-diffusion schemes, namely, HDS, QUICK, and SOUDS, were
used by Shyy et al. [109] to simulate a recirculating flow in nonorthogonal curvilinear
coordinates. QUICK was found to be the most restrictive scheme with regard to
stability and convergence of iterative solution methods. HDS on the other hand,
was prone to excessive numerical diffusion. SOUDS was the best scheme in their
test. The investigation of Demuren [26] regarding false diffusion in three-dimensional
turbulent flows found that QUICK produced more accurate results than UDS, but it
is accompanied by overshoots and undershoots.

Patel et al. [79] compared eight discretization schemes in the simulation of two-
dimensional flows in a lid-driven square cavity flow, and sudden enlargement in a cir-
cular pipe. The eight schemes were: CDS, UDS, HDS, QUICK, QUICKE, QUICKER,
PDS, and EDS. They used the staggered arrangement for grids, and the SIMPLE
procedure for solving the sets of coupled discretization equations. They discuss the
convergence properties and boundness of each scheme, and based on the results of
their tests, report that CDS, QUICK and QUICKE were the most unstable schemes
at high Reynolds number; the others were always stable. On the other hand, QUICK,
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QUICKE and QUICKER were found to be more accurate than others when they pro-
duced converged solutions. In terms of computer time, they found QUICKER to be
the most expensive scheme, with largest necessary number of iterations for conver-
gence. Their opinion was that although QUICK and its variants might offer the best
choice in terms of accuracy, because of their other limitations, they could not be used
as a general scheme for a wide variety of practical problems.

In another study, Patel et al. [80] evaluated eleven discretization schemes in-
cluding CDS. UDS, HDS, PDS, QUICK, QUICKE, QUICKER, SUDS, RDS, and
UPSTREAM schemes. They used these schemes to predict elliptic flow and heat
transfer in supersonic jets mixing in supersonic or subsonic streams. In these .ests,
they used staggered grids and the SIMPLE procedure. They found that the false
diffusion, even with UDS, in turbulent flows was not significant with respect to the
uncertainties in the turbulence models, and, in most cases, with respect to the turbu-
lent eddy viscosity. Only five of the schemes, UDS, HDS, EDS, PDS and UPSTREAM
produced converged solutions for this problem, and these five schemes gave almost the
same results. Despite the best efforts of these authors, SUDS and QUICK schemes
did not converge, and in their opinion, UDS is probably the best choice for this kind
of problems.

In a review of recent developments in computational heat transfer, Patankar (78]
did a survey of different schemes and stated that lower-order schemes such as UDS
are stable and converge monotonically, but lead to false diffusion; and higher-order
schemes such as QUICK eliminate (or reduce) false diffusion, but produce solution
oscillations and often fail to converge. Mohamad et al. [74] compared CDS, HDS,
PDS, and the QUICK scheme in a numerical simulation of natural convection of
low-Prantdl-number fluids in a cavity. Their results showed rapid convergence of the

temperature field, due to high thermal diffusivity, but a large number of iterations



CHAPTER 1. INTRODUCTION 19

was required for the solution of the momentum equations. They suggest that for
such a problem, a careful choice of the discretization scheme and grids must be made
in order to have stable and accurate solutions at a reasonable cost. They studied
both steady and transient cases, and reported that QUICK produced better results
in terms of accuracy, but it was prone to solution wiggles.

A review of many comparisons of different schemes is tabulated and discussed
in a paper by Zurigat and Ghajar. {130). They have also compared Weighted Up-
wind Difference Scheme (WUDS) and SOUDS on four tests in a staggered-grid two-
dimensional framework. They report that SOUDS gives better results than WUDS,
but it creates some over and undershoots. WUDS was found to generate more false
diffusion than SOUDS.

Finally, Tsui [119] has tested eight discretization schemes, including CDS, UDS,
QUICK, and other higher-order schemes. He derived a general scheme from which
these schemes can be obtained as particular cases. His study included examination
of the coefficients of the difference equations, Taylor-series analysis, upwind connec-
tion to numerical diffusion, single-cell analysis, and one- and two-dimensional model
problems. His conclusions are similar to those of Stubley et al. [114]: increasing the
order of the scheme does not guarantee better accuracy.

This literature review showed that there have been numerous investigations of
many different schemes for convection-diffusion problems. However, most of the
studies have been conducted with staggered-grid finite-volume methods for fluid flow.
Thus there seems to be a need to examine these schemes in the context of co-located

equal-order FVMs. This thesis aims to fulfil a part of this need.
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1.3.2 Storage and Treatment of Pressure in the Computa-
tion of Incompressible Fluid Flows

In finite methods for fluid flow that deal directly with the velocity components
and pressure (primitive variables), if these dependent variables are stored at the same
nodes or grid points (co-located) and interpolated with similar interpolation functions
(equal order), then physically unrealistic checkerboard-type pressure distributions
could be admitted as solutions. This difficulty was first discussed by Harlow and
Welch [44). Additional discussions of this problem are available in the works of
Carreto, Curr and Spalding [20], Patankar and Spalding [76], and Roache [97).

One way to overcome the aforementioned difficulty with checkerboard pressure is
to eliminate it from the governing equations. In two-dimensional problems, pressure
can be eliminated by first cross differentiating the momentum equation, and then
subtracting one of these equations from the other, to obtain a vorticity-transport
equation. This equation, when combined with the definition of a stream function, is
the basis of the so-called vorticity-stream function methnds. Such methods have been
proposed and discussed by Fromm and Harlow [29], Barakat and Clark [11), Runchal
and Wolfshtien [98], Gosman et al. [40], and Roache [97)].

Vorticity-stream function methods have several attractive features [77]. The pres-
sure is eliminated from the governing equations; only two differential equations, one
for vorticity and one for stream function, have to be solved, as opposed to three (two
momentum and one continuity equations) in primitive-variable formulations; methods
for convection-diffusion problems can be used to solve the two governing equations,
so no additional developments are required for the solution of fluid flow problems;
and boundary conditions pertaining to irrotational fiow can be easily prescribed by
simply setting vorticity at that boundary to zero. There are, however, some major

disadvantages associated with vorticity-stream function methods: boundary condi-
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tions on vorticity at solid walls are difficult to specify, especially at corners; bound-
ary conditions on stream functions have to be specified iteratively in problems with
multiply-connected domains; given-pressure boundary conditions present other chal-
lenges and complexities; and the stream-function concept can not be extended to
three-dimensional problems.

Another approach that eliminates pressure from the governing equations is based
on the use of the vorticity vector and the velocity-potential vector as dependent vari-
ables. This approach was first proposed by Aziz and Hellums [4). It is not restricted
to two-dimensional problems, but it involves the solution of four differential equa-
tions is two-dimensional probleins and six differential equations in three-dimensional
problems. Thus this approach is computationally more complex and more expen-
sive than the primitive-variables approach. Furthermore, vorticity vector velocity-
potential vector formulations suffer from boundary-condition difficulties similar to
those experienced by stream function-vorticity formulations. In addition, it is gen-
erally accepted, at least among many engineers, that vorticity-based formulations
involve concepts that are harder to visualize and interpret than those in primitive
variables formulations [77). For these reasons, numerical methods that deal directly
with primitive-variables are generally preferred over methods that are based on vor-
ticity formulations in computer simulations of practical flow problems.

In numerical methods based on primitive-variables formulations, the difficulty
with checkerboard-type pressure distributions can be overcome by employing stag-
gered grids for the velocity components and pressure. Such an arrangement ensures
that each velocity component is driven by differences in pressures at adjacent, not
alternate, nodes; when these velocity components are required to satisfy continuity
constraints, unphysically checkerboard-type pressure distributions can not be admit-

ted as solutions [77). The staggered-grid approach for the velocity components and
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pressure was first introduced by Harlow and Welch [44] in the MAC method. It is
also used in the SIVA method of Carreto et al. [20], and it is the basis of the SIMPLE
method of Patankar and Spalding [76], as well as its many extensions [77, 122].

The staggered-grid approach has been used with considerable success over the
last twenty years for the solution of complex fluid flow problems in regular two-
and three-dimensional geometries, discretized by orthogonal grids. It has also been
used successfully with curvilinear orthogonal grids [42] and curvilincar non-orthogonal
grids [57, 110). However, the staggered-grid approach is not well-suited to implemen-
tation on non-orthogonal grids, and it can fail completely when such grids becomes
highly non-orthogonal or undergo bends that exceed 90° [110]. Furthermore, it can
not be extended to irregular finite element methods. It should also be noted that
even when numerical methods based on staggered grids work well, they require con-
siderably more complicated book-keeping and coding in computer programs than that
necessary with co-located formulations.

The aforementioned difficulties with the staggered-grid approach motivated re-
searchers to develop co-located primitive-variables methods with special procedures
to avoid checkerboard-type pressure distributions. Hsu [51], Demirdzic [25], and Peric
[81] were the first to introduce such ideas in FVMs, and similar ideas were presented
by Prakash [85] in the context of control-volume finite element methods (CVFEMs).
Hsu [51] developed special interpolation functions for the mass fluxes leaving the faces
of the control volume surrounding a grid point [1]. These expressions are obtained
using the discretized momentum equations, and they involve pseudo-velocities and
differences in pressure at adjacent nodes. These special mass-flux interpolation func-
tions are used in integral mass conservation equations to obtain the discretization
equations for pressure. Rhie and Chow [96] used co-located grids for the problem of

turbulent flow past an airfoil in general curvilinear coordinates. They used a correc-



CHAPTER 1. INTRODUCTION 2

tion term to the mass fluxes across the control-volume faces to remedy the problem of
checkerboard-type pressure distribution. Shih and Ren [107) have also derived similar
primitive-variables formulation on co-located grids.

Schneider [104] derived a quasi-one-dimensional solution to a convection-diffusion
problem to calculate the velociiies at interfaces of control volumes. Then the pres-
sure gradient term was extracted from the source term and approximated using the
difference in adjacent values of nodal pressures. These interfaces velocities were then
used in the integral continuity equation, and the set of equations for velocities and
pressure was solved iteratively. This co-located method gave poor results for high-
Reynolds-number flow in a square driven cavity.

Reggio and Camarero [93] have solved the time-dependent incompressible Navier-
Stokes equations in an arbitrary-shaped domain, using curvilinear co-located grids.
They used overlapping grids and an opposed difference scheme for pressure and mo-
mentum fluxes in the main-flow direction to avoid oscillatory results. Mass-flux gra-
dients were obtained by upwind differencing and pressure gradients were calculated
by downwind differencing. This idea has also been extended to turbulent flows by
Reggio et al. [94).

A comparison between staggered and collocated grids in the context of finite
volume methods has been done by Peric et al. [82]). They did this comparison with
a FVM based on orthogonal grids. The convergence properties of these two grid
arrangements were investigated for three test problems: driven-cavity flow, flow over
a backward-facing step, and flow in a sudden expansion in a pipe. They reported that
the collocated FVM had no disadvantage compared to the FVM based on staggered
grids, and in some cases, it provided faster convergence. The accuracy of results was
also of the same order for both these approaches.

The role and influence of under-relaxation in co-located finite volume methods
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has been investigated by Majumdar [71]. He pointed out that the results obtained
by several other researchers who used FVM co-located grids were not independent of
under-relaxation parameters, and he proposed an explicit under-relaxation of inter-
face velocities in momentum equations to overcome this difficulty. Thiart (117, 118]
integrated the momentum equations on staggered grids only for calculating the inter-
face velocities. He then substituted them in the continuity equation to derive pressure
and pressure-correction equations. All other derivation were done with the same grid
for pressure and velocity components.

Kobayashi and Pereira [59] used a non-staggered, nonorthogonal grid to investigate
the influence of under-relaxation factors and extended the ideas of Majumdar (71]
to the PWIM of Peric [81). Their method ensures that the values do not depend
on under-relaxation factors. Finally, Coelho and Pereira [22] used the co-located
method of Rhie and Chow [96] to solve the turbulent flow over a hill with two- and
three-dimensional non-orthogonal co-located grid systems.

An extensive review and discussions of co-located equal-order CVFEMs is available

in the works of Saabas [100] and Baliga and Saabas [10).

1.3.3 Solution of the Discretized Equations

In this section, methods for solution of the discretized momentum and continuity
equations are reviewed. In incompressible flow problems, there is no explicit equation
for pressure: When the correct pressure distribution is substituted into the momen-
tum equations, it produces a velocity field that satisfies the continuity equation [77).
This indirect specification of pressure presents a special challenge to numerical solu-
tion methods. One approach to this problem is to directly solve linearized, coupled,
sets of discretized momentum and continuity equations; the nonlinearity is handled

through iterations. Another approach is to devise an explicit equation for pressure
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by substituting discretized momentum equations into the discretized continuity equa-
tions; the linearized, coupled, discretized equations for the velocity components and
pressure can then be solved using direct methods or iterative methods; the overall
nonlinearity is again handled through iterations.

A vast number of methods are available for solving the nonlinear discretisation
equations. All these methods must perform two functions: linearization ; and solution
of sets of linearized, coupled, algebraic equations. The linearization is usually done
using successive-substitution methods or Newton-Raphson methods. Examples of
the successive-substitution approach can be found in the works of Patankar [77], and
Schneider et al. [101] among others. Successive-substitution methods are easy to
implement, but they are only linearly convergent, when they converge [68). The
Newton-Raphson technique has quadratic convergence: but it does not converge to a
solution from any arbitrary starting point, or guessed solution field [68, 34).

Hybrid methods have been developed in an effort to combine the desirable fea-
tures of successive-substitution and Newton-Raphson techniques. Examples of hybrid
methods include multiple linearization techniques of Levenberg (66) and Marquardt
[69], and partial-rank quasi-Newton techniques of Powell [84] and Blue [13]. A hybrid
steepest-descent algorithm has been proposed by Macarthur [68].

The methods that are used to solve the linearized, coupled, sets of discretized equa-
tions can be grouped into three categories: direct methods; semi-direct methods; and
iterative methods. Direct methods include such approaches as Gaussian elimination,
error vector propagation [97), fast Fourier transforms [61), and sparse matrix meth-
ods [95). Direct methods basically require very large amounts of computer storage,
specially in three-dimensional problems involving many dependent variables. Thus
they are rarely used in FVMs for fluid flow.

Iterative methods for the solution of discretized equations include sequential so-
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lution techniques such as SIMPLE [77], SIMPLER ([77], and SIMPLEC (122]. Detail
evaluation and review of such methods are available in the works of Schneider et al.
[101], and Van Doormaal and Raithby (122]. 1a the sequential solution algorithms,
the decoupled sets discretization equations can be solved by direct methods, such as
sparse matrix techniques, or iterative methods for linear algebraic equations, such
as Gauss-Seidel, Successive over-relaxation, and line-by-line methods [77). Another
iterative procedure that is gaining in popularity is the conjugate gradient method
[95]. In this approach, the Gram-Schmidt orthogonalization process is used to form
a sequence of vectors, where one of the vectors represents the unknowns to be solved
for, and full coupling between all equations is maintained during the iteration process.

The semi-direct methods encompass those methods that can not be classified as
either direct or fully iterative methods, and they represent a compromise between
direct and iterative methods. The basic idea in such methods is to divide the calcu-
lation domain into segments and to solve the fully-coupled equations in each segment
by a direct method. Examples of such methods include capacity matrix methods [46],
block implicit relaxations [27], the subdomain methods of Braaten {15], and Vanka
[125], and coupled-equation solvers of Galpin [34] and Hookey [50).

Other methods pertinent to this review include the method of false transients [72],
and explicit time-stepping schemes to solve transient formulations [44). The strongly
implicit procedures of Stone (113] and Schneider and Zedan [102], and the block
correction methods of Forsythe and Wasow [30] and Ames [3] provide interesting and
useful options for enhancing the rate of convergence of iterative methods. Another
approach to increase the rate of convergence of iterative methods is to work not with
a single grid, but with a sequence of grids of increasing fineness. This is the basic
ideas behind multigrid methods, such as those proposed by Brandt [17].

Comprehensive reviews of these solution methods are available in the doctoral
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dissertations of Braatan [15] and Maccrthur [68]. Details of iterative methods akin
to SIMPLE [77] and CELS of Galpin [34] and Hookey [50] are presented in chapter 4
of this thesis.

1.4 Outline of the Thesis

In this chapter, some of the numerical methods for fluid flow and heat transfer prob-
lems that have appeared in the published literature during the previous three decades
have been reviewed. The main goals of this thesis have also been presented.

Chapter 2 presents the a finite volume method formulated (FVM) for convection-
diffusion problems. First, a domain discretization scheme is described. Then, appro-
priate interpolation functions are prescribed for all of the dependent variables. Also,
in this part, a MAW and five other schemes are discussed. Algebraic approximations
to the governing equations are then derived using an element-by-element procedure.
Lastly, an iterative solution procedure for the resulting coupled, non-linear, algebraic
equations is discussed.

Chapter 3 is devoted to the formulation of a co-located equal-order FVM. Chap-
ter 4 presents discussions of the Saabas scheme [100], and some sequential solution
algorithms and coupled-equation line solvers. Based on these discussions, two new
algorithms, SEVA and ESSA, are proposed and discussed in the remaining part of
chapter 4.

Chapter 5 presents the results generated for three steady, two dimensional, fluid
flow problems. These results are used to compare the convergence behaviour of the
Saabas, SEVA, and ESSA schemes. Chapter 6 presents the results obtained in a com-
parative evaluation of the MAW scheme against five other well-established schemes.

The contributions of this thesis are discussed in chapter 7. ldeas for extensions

aud improvement of this work are also presented in this, the concluding chapter.



Chapter 2

CONVECTION-DIFFUSION
PROBLEMS

2.1 Governing Equations

In convection-diffusion problems, the velocity profile is known (specified), and
attention is focused on the distribution of scalar dependent variables of interest in the
presence of convection, diffusion, and volumetric source terms [77). Here, in keeping
with well established usage in the literature [77), transport due to overall or gross fluid
motion is denoted as convection' and transport Jue to molecular interactions, such
as conduction, viscous transport, and mass diffusion, is labelled as diffusion. Only
steady, two-dimensional, convection-diffusion problems are considered in this thesis.

The partial differential equations which govern steady, two-dimensional
convection-diffusion problems can be cast in the following general form in the Carte-

sian coordinate system [77):

Aok 0 (;0), 8(2) 5

"This phenomena is also referred to as advection in the literature [55).

28
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The fluid flow field in this equation is specified, and it is assumed that it satisfies the

steady continuity equation:
O pu)  Hpv) _

In these equations, @ is the scalar dependent variable of interest; u and v are the

known velocity components in z and y directions, respectively; p is the mass density
of the fluid; T' is the diffusion coefficient associated with ®; and S is the volumetric
source term. In problems wherc the diffusion of ® in not proportional to Ve, the
diffusion terms that do not fit within the gradient expression are included in the
source term, and equation (2.1) remains valid [77).

In the proposed finite volume method (FVM), the calculation domain is first di-
vided into suitable elements and control volumes. Equation (2.1) in then integrated
over each of the control volumes to obtain integral conservation equations. Appro-
priate functions are then prescribed to interpolate nodal values of the dependent
variables over each element in the calculation domain. These interpolation functions
are used to derive of algebraic approximations to the integral conservation equa-
tions. The algebraic approximations, or discretization equations, constitute a set of
simultaneous algebraic equations that could, in general, be nonlinear, and coupled to
other sets of discretization equations associated with other dependent variables. An
iterative algorithm is used to solve this set, or sets, of discretization equations.

In this chapter, the aforementioned steps and a method for the solution of the set,

or sets, of algebraic discretization equations are described.

2.2 Domain Discretization

As mentioned earlier in this thesis, only plane two-dimensional rectangular do-
mains are considered in this investigation. Such domains are first divided into rect-

angular elements, using grid lines which are parallel to the z- and y-coordinate axes,
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as shown in Fig. 2.1. It should be noted that the spacing between these grid lines
could be nonuniforin. Indeed, in problems with highly nonuniform distributions of
the dependent variables, a corresponding nonuniform grid is computationally more
efficient than a uniform grid {77). A nonuniform grid is shown in Fig. 2.2.

After the discretization of the domain into rectangular elements, each element is
subdivided into four equal rectangular regions, or sub-control volumes, by joining the
midpoints of opposite sides, as shown in Fig. 2.3. Collectively, these sub-control vol-
umes form rectangular control volumes around each node in the calculation domain,
as illustrated in Fig. 2.4. These control volumes have the following desirable features:
(i) they do not overlap; (ii) collectively, they fill the calculation domain completely
and exactly; and (iii) their faces lie midway between adjacent nodes along the grid
lines, and intersect the grid lines perpendicularly. The first two of these features
facilitate the formulation of a conservative numerical scheme (77, 97); and the third
feature enables second-order accurate algebraic approximations of the diffusive fluxes,

using linear interpolation of the dependent variables in each element.

2.3 Integral Conservation Equation for a Control

Volume

Consider a typical control volume as shown in Fig. 2.4. Upon integration of
equation (2.1) over this control volume, the integral conservation equation will be of

the general form:
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[0(4'“0) Aev®)] g =

[JIE02) 2 (2) v oo

With respect to the control volume surrounding node (i,j), also denoted as a par-
ticular node 'P’, in Fig.2.4, and noting that in this two-dimensional formulation the
calculation domains are assumed to be of unit dimension in the 2z direction, Eq. 2.3

can be rearranged as follows:

[/ pubdy + /:Pv’dw - (l‘%g) dy - / (rz—’) dz - /P L Sdzdy] (2.4)

+ [similar contributions from other elements associated with node (i,j))

+ [boundary contributions, if applicable] =

This form of the integral conservation equation emphasizes that it can be assembled
on an element-by-element basis. Eq. 2.4 is approximated in this work by the following

equation:

[+ - (1) - (r5), 5 -] o

+ [similar contributions from other elements associated with node (i,j))

+ [boundary contributions, if applicable] =
Where 6z, and 8y; are the lengths of the sides of each element (i,j) in the z and y
directions, respectively, as shown in the Fig. 2.3. These lengths are distances between
adjacent nodes in z and y directions.

The values of ¢ and Ve at points a, b, ¢, and d, that will be referred to as
integration points, will be obtained based on interpolation functions which will be

defined in the next section.
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2.4 Interpolation Functions

This section provides interpolation functions for the thermophysical properties of

the fluid, the volumetric source term, and the dependent variables @, u, and v.

2.4.1 Interpolation of p, ' and S

Values of p and T are supplied at the centroid of the rectangular elements and are
assumed to prevail over the corresponding element. The source term, S, is linearized
with respect to its dependence on ¢, if required, and expressed as follows [77):

S =Sc + Spd (2.6)

The values of Sc and Sp are calculated at the centroid of each element, and assumed
to prevail within the corresponding element. Hence, the contribution of element (ij),

shown in Fig. 2.3, to the integral source term in Eq. 2.4 can be written as:

62,6 bz,6y;
[ [ sdzdy = (5.,)=2 = (S, + Sn, )2 (27)

Paod

2.4.2 Interpolation of Velocities

In each rectangular element, the mid-side values of u and v are calculated using
functional distributions of the velocity components, if applicable. If only nodal values
of u and v are specified, linear interpolation is used to calculate the mid-side values®.

Thus, with reference to Fig. 2.3,

u = Uy, +zum.j u, = Uij+1 +2“i+lg'+l
Y s X] X]
v = ._t‘_d_"_'éﬂ_w'_‘ ve= ”J_t2_"4ﬂ 28)

In fluid flow problems, where the computation of u and v is required, special interpolation
functions are used to interpolate these variables in the mass flux terms. These functions will be

introduced in chapter 3.
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2.4.3 Interpolation of &

As was discussed in section 1.3.1, the proper approximation of the convection term,
with acceptable accuracy and without creation of unphysically numerical oscillations
in the solution, has been a challenging task in computational fluid dynamics over the
last 25 years. One of the goals of this thesis is to compare the accuracy of six schemes
for obtaining algebraic approximations of the convection and diffusion terms. These

schemes are:

1. Central Difference Scheme (CDS)

2. Upwind Difference Scheme (UDS)

3. Skew Upstream Difference Scheme (SUDS)

4. Linear Skew Diflerence scheme (LSD)

5. Quadratic Upstream Interpolation for Convective Kinematics (QUICK)

6. MAss Weighted difference scheme (MAW)

In the proposed method, each rectangular element contributes to the diffusive and
convective transport across the boundaries of four sub-control volumes. With refer-
ence to the typical element and the notation given in Fig. 2.3, these contributions to
the diffusive and convective transport terms in Eqs. 2.4 and 2.5 are approximated as
follows:

[ outdy = poucsebnif2 [ (r—)d o)t
[ oubdy = pusctbuif2 [y = .5
/.. " po@dz = povadabz;[2 L °(r 2 )iz = .(i’ ).,fﬂ
[ obdz = pintitzif2 [ '(r;,;)dz e ).‘—‘1 (29)
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In these equations, p, and I', are the values of density and diffusion coefficient,
respectively, appropriate for the element under consideration; and yu,, v, u., and vy
are values of the velocity components at integration points a, b, ¢, and d, and these
are obtained using the interpolation practices discussed eatlier in section 2.4.2. All of
the aforementioned six schemes use the same interpolation function to approximate
® in the diffusion terms at integration points. However, the interpolation functions
that are used to obtain the values of ¢ in the convection terms at integration points
are different in the six schemes of interest.

The approximation of ® in the diffusion terms will be discussed first. Then,

the treatment of the convection terms in eich of the six schemes will be discussed

separately.

Approximation of ® in the Diffusion Terms

In all of the above schemes, piecewise-linear interpolation of ® along grid lines is
used to approximate the diffusion terms at the integration points within each element,

which results in:

(W) _ b1y — by (Qg) _ $ivri = bijn

Oz T bz 0z). 8z;

ﬂ) _ $ivrgn = dinj (ﬂ‘_) _ Gige1 —dij

(83’ ’ by, 8y d 6!'1 (2.10)

for the gradient of ¢ in Eq. 2.9.

Approximation of ® in the Convection Ternms
Central Difference Scheme (CDS)

For the domain discretization used in the proposed method, this scheme is equiv-

alent to the use of linear interpolation for the approximation of the integration-point
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values of ¢. This treatment, with reference to Fig. 2.3, results in the following

expm’ion’ for ¢u ¢h ¢c’ and ¢dy

4 = $ij + div1 ¢ = bijt1 + bisr s
( 2 ¢ 2
&= $it14 +2¢i+1,¢‘+1 ¢ = 9_'1_"'_:'_*'4_*‘ (2.11)

Upwind Difference Scheme (UDS)

This scheme, which was proposed by Courant et al. (23], and by others [77),
assumes that the value of ® at an interface is equal to the value of ¢ at the grid
point on the upwind side of the face. Thus, this scheme takes into consideration the
direction of the fluid flow, at least to some extent, and, with reference to Fig. 2.3, it
leads to the following equations for the integration-point values of ¢:

Casel: u>0 andforallv
b = bi, éc = dijn (2.12)

Case2: u<0 andforallv
be = bit1,j @ = divr.jn1 (2.13)

Case3: v>0 andforallu
& = bigry éi = & (2.14)

Case4: v<0 andforallu

é = dirr41 $i¢ = dijn (2.15)

Skew Upstream Difference Scheme (SUDS)

This scheme, first proposed by Raithby [89], takes into consideration the skewness

of the flow to the grid lines, while accounting for the one-way or upwind behaviour of
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convective transport. In this scheme, the value of ¢ at the integration point of interest
is assumed to be equal to the value of ¢ at the intersection of an element side and the

upstream extension of the velocity vector passing through the integration point. The
value of ¢ at this intersection point is obtained by a linear interpolation of the value
of ¢ at the two adjacent nodes which lie on either sides of the intersection point on

the element side.

Thus with respect to Fig. 2.5 and for u >0 and v > 0, when the upstream extension
of the velocity vector passing through the integration point ’a’ intersects the grid line
between nodes "P” and "S”, the value of ¢, = ¢,, is obtained by a linear interpolation
of ¢p and ¢s: if, however, the upstream extension of the velocity vector through 'a’
intersects the grid line between nodes "S” and "SE”, as shown in Fig. 2.6, then it is
assumed that ¢, = ¢s [89). Therefore, with reference to Figs. 2.3, 2.5, and 2.6,

If u >0 and v, > 0, and E.’-l < ’—‘k.ﬂ-, then:

$e =(1-CK.)¢i; + CKadij (2.16)

with CK, = H * n‘.’,‘_—.

K u, >0 and v, > 0,and {3 > 2=, then:
ba = biy-1 (2.17)
Ifu, >0 and v, < 0,and 2} < Z, then:
¢ = (1= CKu)dij + CKodijn (2.18)

with CK, = H * g‘%

fu, >0andv, <0, and :: > 33‘;'.‘-, then:
ba = dii (2.19)
fu, <0andv, >0, and H < ’—‘I;.-'-'-, then:

$a = (1 = CK.u)dis1,i + CKadisr,j-1 (2.20)
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with CK.=H#—£¢!—

2y,

Hu, <0andv, > 0, and H > gg.-'-l, then:

b = disr,j-1 (2.21)

Hu, <0andy, <0, and H < “—;",., then:
¢ = (1 = CKJ)dis15 + CK odisrin (222)

with CK, = H * -,%-;

Hu, <0andy, <0, and Eﬂ > “—f:—.", then:

be = dit1.j41 (2.23)

SUDS approximations for ¢;, ¢., and ésare obtained analogously.

Linear Skew Difference scheme (LSD)

This scheme, proposed by Huget [53], is basically quite similar to the SUDS
scheme. In this scheme, as in the SUDS scheme, the value of ¢ at an integration
point is assumed to be equal to the value of ¢ at the intersection point of an element
side and the upstream extension of the velocity vector passing through the integration
point of interest. However, contrary to the SUDS scheme, regardless of which element
side intersects with the upstream extension of the velocity vector passing through the
integration point of interest, linear interpolation of the values of ¢ at two adjacent
nodes, which lie on either side of the intersection point, on the element side, is used
to obtain the approximation to ¢ at the integration point.

The implementation and the programming of this scheme is more involved than
the CDS, UDS, and even SUDS schemes. For positive velocity components, u > 0
and v > 0, the interpolation functions for the approximation of ¢ at the integration

points, see Figs. 2.3, 2.5 and Fig 2.6, are:
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Case 1: H <
b = (l - CKC)‘O’J + CK.#.;‘-I
¢ = (1-CK.)dijs1 +CK i (2.24)
Case 2: H > %‘-}
$ = (1 =CKP.)éis1,i-1 +CKPéij
‘c = (l - CKPc)‘c‘-H.i + CKPc‘iJ (2'25)
Case 3: Bl <#e
6 = (1-CKi)édisr; +CKidi;
¢ = (1=-CKyéi; +CKedi-y (2.26)
Case 4: H > %‘;’-
& = (1 -CKP)éijs1 + CKPyoi;

(1 = CKPy)éi-r,j41 + CK Pedi-1; (2.27)

by
"

The definitions of the CK and CKP terms can be obtained using procedures akin
to those used to obtain similar terms in SUDS. Details are obtained in the work of

Huget [53].

Quadratic Upstream Interpolation for Convective Kinematics (QUICK)

This scheme, proposed by Leonard [63], improves the CDS scheme by adding to
it a correction term which incorporate upstream influence in the interpolation for ¢.
This correction term takes into consideration the one-way behaviour of the convection
transport, and is added to the CDS scheme to remedy some of its drawbacks. From
the point of view of the mathematics, to derive an equation for calculation of ¢ at

the integration point on a grid line of interest, this scheme fits a quadratic curve to
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the two upstream and one downstream nodal values of ¢. Therefore, the equations

for obtaining the values of ¢ at the integration points shown in Fig. 2.3 are:

Case 1:  Uniform Mesh u>0 for all v
o = Buitbing diorgtding -2y
¢ 2 8
4 = $ijer + diriger _ Sicrjer + i1 = 26iin
. 2 8

Case 2:  Uniform Mesh u<0 for all v

$is + birri _ Sis + divay — 2ivry

¢ = 2 8

4 = Sijt1 + divrier _ dijer +divajer — 2di41y 1
¢ 2 8

Case3: Uniform Mesh v>0 for all u

4 = i1 + i1 ie1  isrj—1 + divr,i41 — 20i41

A } 8
_ it dijar  bij-1+ bije - 24
¢ = s - % =

Case 4. Uniform Mesh v<0 for all u

4 = $ir1j + Sivrjer _ Birrg + Girrjea — 20iv140

2 8
¢ = M{ia;ﬂ i+ ¢.-£,: ~%ijn1

(2.28)

(2.29)

The forms of these equations for non-uniform grids are some more involved than

those for uniform grids. Details are available in the paper by Leonard [63)].

MAss Weighted difference scheme (MAW)

This scheme is based on the works of Hassan et al. [45], in the context of finite

difference methods, and Schneider and Raw [103] and Saabas [100] in the context

of the control-volume finite element methods. The latter adaptation is used in this

work. This schume guarantees that the algebraic approximations to the convection

terms have a positive contribution to the coefficients in the discretization equations.
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This is done by ensuring, at ecach element level, that the value of ¢ at a node outside
a contro! volume contributes less to the outflow of ¢ from that control volume than
to the inflow into the control volume. Physically, tkis means that for a scalar to flow
out of a control volume, first, it has to come into the control volume.

Suppose that in the element shown in Fig. 2.7, there is an outflow of ¢ from
the control volume associated with node (i,j) into the control volume surrounding
node (i+1,j) across interface 1: this is equal to Zs4eft: In addition, let there be a
flow of ¢ from the control volume associated with node (i,j+1) to the control volume
surrcundiug node (i,j) across interface 4: this is given by —“‘%“—".

It is assumed that the value of ¢, transported across '1’ has contributions from

¢4 and ¢,,. Thus, @, can be expressed as:
b = fo4+ (1 - [)di; (2.30)

The factor f is chosen so as to ensure, at the element level, that the transport of ¢,
out of the control volume surrounding node (i,j) is less than or equal to its transport
into this control volume: in mathematical terms, the following condition must be

satisfied:

bz oby;
- ____P”; Tige > _P"z Vi fda (2.31)

The mass flow rates across interfaces 1 and 4 are:

. .6' . 61’
m,=ﬂ2i m,:"’;’
Therefore,
(0 if vy >0 and 322 <0
f=1 3 if m>0and 0< <1 (2.32)

1 if i >0 and 3 >)

.

The above equation for defining f can be compactly represented by:
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If m; > 0, then:
f= Min[Ma:c(—T:?,O), 1) (2.39)

In general, the equations for obtaining integration-point values of ¢ are the fol-

lowing:
Integration point a:
If 20 do=fat (=D £ =Min{Maz(S4,0),1]

If iSO b= fh+ (- Dhus S =MinlMas(32,0,1] @)
Integration point b:

If 20 f=fout(1=Nbuwrs = Min[Maz(32,0),1)

If 30 di=Jfod+(1-finngn [= Min[Maz(_ﬁ'a

my

0),1] (2.35)
Integration point c:
If 10520  ¢.= féat(1-Nbisnn  [= m»wmg-;,m.u

If #s<0  go= [+ (1= irgnr [ = Min[Maz(=

3

,0),1] (236)
Integration point d:

If 20 fe= o= S =Min[Maz(52,0) 1

If S0 g= o= Dbn = MinlMaz(32,0),1] (237

Hence, in the MAW scheme, the value of ¢ at an integration point is dependent
on its value at the other integration points, on the nodal values of ¢, and on the
direction and magnitude of the mass flow rate across the four interfaces within the
element. Eqs. (2.34) to (2.37) can be used to obtain the following equations that

relate integration-point values of ¢ to the nodal values of ¢:

Ands + Aty + Aradc + Ardd = Budij + Buabisry + Bradisi et + Brdijn
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Apde + Aty + Apyée + Apudy = Budij + Bndivrj + Biadivrj41 + Budijn
Asde + Ants + And. + Asds = Bydi; + Bubisrj + Buadisrjer + Baudijn
Ande + Aty + Apd. + Aydd = Badij + Babivrj + Besdisrj+r + Budiin

or, in a compact form:

[Aliés] = [Bll¢r.m] (2.38)

in which, [A] is a (4 x 4) coefficient matrix of the vector of the 4 integration-point
values [¢;], and [B] is a (4 x 4) coefficient matrix of the vector of the 4 nodal values
[#1.m). The above equations must be solved simultaneously in order to express each

of the integration-point values of ¢ in terms of the nodal values of ¢. Therefore:
(6] = [A7'][B){¢1.m] => [¢s] = [Dlld1m] where [D]=[A"")[B]  (2.39)

Thus, to obtain the integration point values, the matrix [A] must be inverted. Matrix
[A] has special characteristics: (i) all diagonal elements have the value of one (unity)
and are dominant in the matrix; (ii) in each row, at least one of the elements is
zero and the other non-diagonal elements are negative values (< —1). Recognizing
these special characteristics of this matrix, a very efficient matrix invertor can be
established. In this work, a special pivoting strategy is used to invert matrix [A],
which in comparison to the other available methods, is one of the fastest methods
and provides excellent accuracy. The elements of the matrices [A] and [B], and also

the inversion method for the matrix [A], are presented in Appendix A.

2.5 Derivation of the Discretized Equations

In order to obtain an algebraic approximation to the integral conservation equation

for a control volume (Eq. 2.4), Eq. 2.5 is used, along with the interpolation functions
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previously developed. The entire calculation domain is visited element-by-element. In
each element, algebraic approximations are derived for the contribution of the element
to the diffusion, convection, and source terms in the integral conservation equations
associated with the control volumes surrounding the four nodes. These contributions,
are then assembled in an appropriate manner. Boundary contributions are derived
and added to the element contributions, if they are applicable. This section describes

the derivation and assembly of these contributions in the proposed FVM.

2.5.1 Element Contribution to the Diffusion Terms

Consider the element (i,j) shown in Fig. 2.3. This element has four interfaces 1, 2,
3 and 4, with increasing numbers in the counter-clockwise direction. Two interfaces
are associated with each of the four sub-control volumes in this element. Using the
algebraic approximations to the integration-point values of the components of Ve, a8
given in Eq. 2.10, and noting that the value of T, = I'; ; prevails over the element,
the transport of ¢ by diffusion across the surfaces of the sub-control volume (i), ir

this element, can be approximated as follows:

6é 6& f_._ 63‘ —_T.. ¢'+‘J—¢w 6.’/) ¢o.;+l "¢i.) ff_l_
)l7 + Tl =Tl(Tg—)5 + &5, —)51 (240

The transport of ¢ by diffusion across the surfaces of the other three sub-control
volumes in this element, (i+1,j), (i+1,j+1), and (i,j+1), are approximated in a similar
manner. The contributions of the other elements are calculated by the same method,

and these element contributions to the diffusion terms are assembled appropriately.

2.5.2 Element Contribution to the Convection Terms

In general, the convection contributions of element (i,j), see Fig. 2.3, to the

integral conservation equations associated with nodes (i,j), (i+1,j), (i+1,j+1), and
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(i,j+1) can be expressed as follows. Let:

m,:f_"-z_"!:; : m,=”"‘:" : m,-_-ﬂ‘:;_”i : m.="’;“‘ (2.41)

Then the contribution of the element (i,j) to the outflow of ¢ by convection across
the surfaces of

(i) the control volume surrounding node (i,j) is:
0 d . .
[ muedy + [ podz] = vy, + ety (242)
(ii) the control volume surrounding node (i+1,)) is:
[ /., " pubdz — / " puddy) = riydy — 11 (2.43)
(iii) the control volume surrounding node (i+1,j+1) is:
0 )
- [ outdy - [ po@de] = —rnsg, — 1ty (2.44)
[ (]
(iv) the control volume surrounding node (i,j+1) is:
- [ pvtdz + [ putbdy] = —riegs + rnsd, (2.45)

The expressions that give the integration-point values, ¢,, ¢, ¢., and ¢4, in terms of
the nodal values of ¢ are different for the six schemes considered in this work. These
expressions were presented in section 2.4.3. When these expressions are substituted
into the above equations for the convective transport terms, algebraic approxima-
tions to the convection contributions of element (i,j) are obtained. These approxi-
mations are different for the six different schemes considered here. The convection
contributions of other elements are calculated in a similar manner, and these element

contributions are assembled appropriately.

2.5.3 Element Contribution to the Source Terms

Consider the element (i,j) shown in Fig. 2.3. Using approximations similar to those

used in deriving Eq. 2.7, the following expressions are obtained for the contributions
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of element (i,j) to the source terms in the integral conservation equations for the
control volumes surrounding its four nodes:

(i) the control volume surrounding node (i,j):

/ [ Sdzdy = (Sc,,, + Sr i) Y (246)
(ii) the control volume surrounding node (i+1,j):
[) .6
/ ] Sdzdy = (Sc,, + Sp,, bisr )= (2.47)
+1,5
(iii) the control volume surrounding node (i+1,j+1):
6 .6
Sdzdy %= (Sc,, + Sp,,Pi+1,j+1) 20, (248)
41,541
(iv) the control volume surrounding node (i,j+1):
[} .6
/ / Sdzdy & (Sc,, + Sp,, $ijn) e (2.49)

941

In these equations, Sc,, and Sp,, pertain to element (i,j): as stated earlier, they
are stored at the centroid and assumed to prevail over the element. The source-
term contributions of other elements are approximated similarly, and these element

contributions are assembled appropriately.

2.5.4 Discretizsed Equations for Internal Nodes

When algebraic approximations to the element contributions to diffusion, convec-
tion, and source terms, as derived in the previous section, are assembled appropriately
for all elements, the complete algebraic discretized equations are obtained for internal
nodes. These discretized equations can be cast in the following general forms:

CDS and UDS schemes:

ap,,biy, = 6g, Piv1,; +on,,bn

+ay, ,$i-1,; + as, ,¢i;-1 + b, (2.50)
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SUDS, LSD and MAW schemes:

ap,,bi; = OF,,$is1;+ 0N, bij41 + 0w, ,dio1,;
+ag,,6ii-1 + anNE,, is1i01 + GNW,, $i-1,in

+asg,,bis1,5-1 +8sw, , bi-1i-1 + b (2.51)
QUICK scheme:

ap, iy = 6g,,0ing + N, i1 +0w,, i1,
+as,,$iy-1 + 6gE, , bisaj + GNN, , Biis2

+aww,,¥i-2,; + ass, ,dij-2 + bi (2.52)

2.5.5 Implementation of the Boundary Conditions

After the assembly of element contributions to the diffusion, convection, and source
terms, the discretized equations for the control volumes associated with boundary
nodes are not complete. To complete these equations, the transport of ¢ across the
boundary must be properly included. Boundary conditions usually encountered in

convection-diffusion problems can be categorized as follows:

Dirichlet or Specified-Value Boundary Condition

In this case, the value of ¢ on the boundary is known, and the discretization

equation for the boundary node can be replaced by :
Mn‘cn = ‘meo']icd (2-53)

After calculation of all the unknown ¢ values, the flux of ¢ across the boundary control
surfaces can be calculated, using the overall balance on ¢ at the boundary control
volume of interest. It is to be noted that for nodes located at inflow boundaries,

or boundaries across which fluid flows into the calculation domain, the value of ¢ is

usually specified.
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Neumann or Specified-Flux Boundary Condition

In this case, the diffusion flux of ¢ normal to the boundary is specified, either as
a constant value at each boundary node, or as a known distribution of flux across the

boundary of interest. This boundary condition can take various forms:

Case 1: Given value : Gindoundary = Qopeci fied
Case 2: Given convection coefficient

and reference temperature: Ginsoundary = B(Too = Tioundery)
Case 3: Radiation condition: Ginsoundary = F(Thes — Tioundary)

Consider element (i,j) shown in Fig. 2.3, and suppose that the side joining nodes
(i,j) and (i+1,j) lies on the domain boundary. For this case, after assembling of all
element contributions, as discussed earlier, the discretized equation associated with
boundary node (i,j) is completed as follows:
Case 1:

bij = bij + Qapecisied(6%:)/2 (2.54)

Case 2:
bii = bij+hTx(62)/2

ap,, = ay,,, +h(éz;)/2 (2.55)

Case 3: In the case of radiation flux, it is first linearized about a guess or available

value of the boundary-node temperature T;';:
G; = FIT% + T Teey + T3 Toey — T3
= H[T,es - T-:,] (2.56)
The discretized equation is then completed by doing the following:

by, = by + MTyeq(62:)/2
ap, = ap, + H(6z;)/2 (2.57)
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Outflow Boundary condition

An outflow boundary is one across which fluid flows out of the calculation domain.
If the value of ¢ at the outflow boundary is specified, the implementation of this
boundary condition is the same as that discussed earlier. However, usually, neither
the value of ¢ nor its flux are known at the outflow boundary. The treatment of
outflow boundary conditions in this work is identical to its treatment in Ref. [77): it is
assumed that the diffusion flux across an outflow boundary is negligible in comparison
to the convection flux at this boundary. Furthermore, at an outflow boundary node,
it is assumed that the value of ¢ and the outward velocity component normal to the
boundary prevail over the boundary surface associated with this node.

Again, consider element (i,j) shown in Fig. 2.3, and now suppose that the side
joining nodes (i+1,j) and (i+1,j+1) lies on an outflow boundary. Then, for node
(i+1,), the convection transport out of its control volume across this side is given by
Pebis1,ii+1,5(0y;)/2. After assembly of all element contributions, the corresponding

discretization equation is completed as follows:
8P4y, =GPy, t Pl'-i“l'ﬂd'(‘w')/ 2 (2.58)

Similar treatment is accorded to other nodes that lie on outflow boundaries.

32.5.6 Final Form of the Discretised Equations
The completed discretized equations can be cast in the following general form:
ap,,di; = 3 ans, , bni,, + biy (2.59)
nb

where the summation is taken over the neighbouring nodes around node (i,j). Eqgs.
2.50 to 2.52 show the neighbour nodes which are involved in each scheme. The maxi-

mum number of neighbouring nodes for the CDS and UDS schemes are four; and for
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the SUDS, LSD, QUICK and MA’ . schemes, the maximur: number of neighbouring

nodes are eight.

2.6 Solution of the Discretized Equations

The set of algebraic discretization equations derived in previous sections have to
be solved simultaneously, since they are dependent on each other. If these equations
happen to be nonlinear, they have to be linearized and solved iteratively. One of
the methods to handle nonlinear system of equations is the successive substitution
method. In this method, which is the one used in this work, the coeflicients are
calculated using initial guess-values or the current values of the variables. Each set of
linearized algebraic equations is then solved sequentially to calculate new values for
the dependent variables, and this procedure is repeated until convergence achieved.

In this work, the grids have a line-by-line structure. For the solution of each set of
linear, or linearized, algebraic equations, a line-by-line tri-diagonal matrix algorithm
(TDMA) is used with the CDS, UDS, SUDS, LSD, and MAW schemes: with the
QUICK scheme, only, a line-by-line penta-diagonal matrix algorithm (PDMA) is used.
The line-by-line TDMA that is used for CDS and UDS schemes is the same as that
described in Ref. [77). For SUDS, LSD and MAW schemes, the only difference is
that extra coefficients, associated with 'NW’, 'NE’, 'SE’ and 'SW’ nodes shown in
Fig 2.5, have to be accounted for; otherwise, the line-by-line TDMA is the same as
that described in Ref. [77)].

With the QUICK scheme, each node can have up to 4 neighbours along a grid
line passing through the node: for grid lines in the z direction, an internal node
P could have non-zero discretization coefficients ap, aw, aww, ag and agg; and
for grid lines in the y direction, an internal node could have non-zero discretization

coeflicients ap, as, ass, an; and ayy. Thus a line-by-line PDMA is needed with the
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QUICK scheme. The line-by-line PDMA used in this work is taken from Ref. (31].

In both line-by-line TDMA and PDMA, four alternating-direction sweeps, in the
positive z direction, positive y direction, negative z direction, and negative y direc-
tion, are used. The advantage inherent in doing four alternating direction sweeps,
instead of one sweep in any one direction, is that, in general, it provides uniform and
faster transmission of the influence of boundary conditions into the interior [77].

In the case of highly nonlinear sets of discretization equations, under-relaxation of
the results in each iteration may be necessary to obtain a converged solution. This is
also described completely in Ref. [77), and exactly the same under-relaxation method

is used here for the convection-diffusion problems.
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Figure 2.2: Sample Non-Uniform Grid
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Chapter 3

CO-LOCATED FINITE
VOLUME METHOD

3.1 Introduction

A finite volume method for steady, two dimensional, incompressible, Newtonian
fluid flow in the rectangular geometries is presented in this chapter. The governing
equations for such flows can be cast in a form similar to that of Eq. (2.1), the
general convection-diffusion equation presented in the previous chapter. Nevertheless,
additional developments are required for the solution of fluid flow problems.

As was discussed before in Section 1.3.2, the pressure, which appears in the -vp
term in the momentum equations, is an unknown in fluid flow problems. In incom-
pressible fluid flows, there is no explicit equation that governs pressure. The pressure
distribution is implicitly governed by the momentum and continuity equations: a
correct pressure field when substituted in the momentum equations produces a flow
field which satisfies the continuity equation [77). This coupling between the velocity
and pressure fields has to be properly accounted for in the solution of the momentum

and continuity equations.

55
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Ancther difficulty encountered in the numerical solution of primitive-variables
formulations of incompressible fluid flow is the occurrence of checkerboard pressure
fields. A discussion of this problem has also been presented in Section 1.3.2. As was
stated there, one way to overcome this difficulty is to stagger the grids for «, v, and
P {44, 17). This approach is effective in formulations based on orthogonal grids, but
it involves some tedious book-keeping, and it can not be extended (strictly) to non-
orthogonal grids. Several co-located formulations, specially designed to overcome the
checkerboard pressure difficulty, have also been proposed. Examples may be found
in the works of Hsu [51], Rhie and Chow (96], Shih and Ren [107], Peric (81], and
Prakash [85).

In this chapter, a co-located finite-volume method (FVM) patterned after the
control-volume finite element method (CVFEM) of Prakash and Patankar [86] and
Saabas [100] will be applied to the momentum and continuity equations to derive
discretization equations for . he primitive dependent variables x, v, and P. At the
end of this chapter, an iterative algorithm, based on a sequential solution of u, v,
and P, similar to the solution procedure of Saabas [100], will be described. In the
next chapter, this algorithm will be investigated and optimized; and enhancements

of this solution algorithm, which were developed in this work, will be presented and
discussed.

3.2 Governing Equations

The governing equations for steady, laminar, flow of an incompressible Newtonian
fluid, in a two-dimensional Cartesian coordinate system, are:

rmomentum:

O(puu) d(pvu) 3p 8 ( Bu @ ( 6u
B2 + % --£+'5;(#5;)+?‘;(ﬂ'8—y)+3‘ (3.1)
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y-momentum:

Houv) | B(pwv) =_g§+§;( "") +':—,( @)+s~ (32)

oz oy Koz ”ay
continuity:
8(;:) + 0‘;:) =0 (33)

In these equations, u and v are velocity components in the z and y directions, respec-
tively; p is the pressure; u is the dynamic viscosity; p is the mass density; and S*
and S" are the rate of generation or volumetric source terms for z- and y-momentum
equations, respectively.

The values of u, p, S*, and S* may be functions of dependent variables such as
temperature. In such cases, additional governing equations, such as the energy equa-
tion, must also be solved simultaneously with momentum and continuity equations.
However, these additional governing equations are similar to the general convection-
diffusion equation described in the previous chapter, so they can be solved by the
methods described in that chapter.

In this chapter, the formulation of a co-located finite volume method (FVM) for

the solution of momentum and continuity equations (Eqs. 3.1-3.3) will be discussed.

3.3 Domain Discretization

In the proposed FVM, all dependent variables (velocity components, pressure, and
other dependent variables, ® are stored at the same nodal points. Therefore, only one
set of control volumes have to be specified. In contrast, in FVMs based on staggered
grids, velocity components are calculated at grid points which are displaced with re-
spect to the main-grid points [77); this necessitates the definition of additional sets of
control volumes for the velocity components. Hence, computer codes for FVMs hased

on staggered grids require considerably more book-keeping than computer codes for
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co-located FVMs, because the former have to carry all the indexing and geometric
information about the staggered locations and control volumes of the velocity com-
ponents. This excess book-keeping is especially large for three-dimensional problems.
In another words, computer programming is much easier for co-located grids than for
staggered grids.

It should also be noted that in FVMs based on co-located grids, the contribution
of convection terms to the coefficients in the discretized equations is the same for
the z, y, and z momentum equations. Therefore, once these contributions have
been calculated for one of these momentum equations, they can also be used for the
other momentum equations. However, in FVMs based on staggered grids, convection
contributions for each momentum equation have to be calculated separately. Another
advantage of a co-located FVM formulation based on orthogonal grids is that it offers
the possibility of relatively straightforward extension to non-orthogonal grids. This
is not the case with staggered-grid FVMs [110).

As was stated earlier, a co-located formulation is used in this work. Thus, the do-
main discretization is exactly the same as that used for convection-diffusion problems,

which was discussed in section 2.2 and illustrated in Figs. 2.1 and 2.2.

3.4 Integral Conservation Equation for a Control

Volume

Consider a typical control volume surrounding node (i,j), as shown in Fig. 2.4.

Upon integration of equations 3.1 to 3.3 over this control volume, the conservation
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equation can be written as follows:

X-momentum:

[8(’ uu) 4 a(’""’)] dzdydz =

// ozt 8:( )+%(I‘%)+S']dzdydz

y-momentum:

[a(mw) s ow)] dndyds =

1153 02)+565)+e]one

du Ov
/ [55+8_y] dzdydz =0

continuity:

59

(34)

(3.5)

(3.6)

Noting that in this two-dimensional formulation the calculation domains are as-

sumed to be of unit dimension in the z direction, Eqs. 3.4 - 3.6 can be rearranged as

follows:

xX-momentum:

[/ (puu)dy + / (pvu)dz + / / ( )dzdy—
[ (pg—:) dy ~ / (“5,,‘) &- [ [ .S"‘dzdy]

Paod

+ [similar contributions from other elements associated with node (i,j)]

+ [boundary contributions, if applicable] = 0

y-momentum:

[/ (puv)dy + / (pvo)dz + / / ( )dzdy-
[()a- 1 () -/ 54z

Paod

(3.7

(3.8)



CHAPTER 3. CO-LOCATED FINITE VOLUME METHOD 60

[similar contributions from other elements associated with node (i,j)]
[boundary contributions, if applicable] = 0
continuity:
d
[[tourir + [[1mrae] 39)
+ ([similar contributions from other elements associated with node (i,j))
+ [boundary contributions, if applicable] = 0

Eqs. 3.7 - 3.9 are approximated in this work by the following equations:

x-momentum:

[(pw). +(mm).:6—zl (%)‘ fz_;{q; - (ng"—;). fgi - (#g:)‘ bz (3')63'6" ]
(3.10)

+ [similar contributions from other elements associated with node (i,j)]

4+ [boundary contributions, if applicable] =

y-momentum:
(3.11)

+ [similar contributions from other elements associated with node (i,j))

+ [boundary contributions, if applicable] = 0

continuity:

[(/m). L+ (pv)asz' (3.12)

+ [similar contributions from other elements associated with node (i,j)]
+ [boundary contributions, if applicable] = 0

Where éz; and &y, are the lengths of the sides of element (i,j) in the z and y
directions, respectively, as shown in Fig. 2.3. There is an extra term in these equations
with respect to Eqs. 2.3 - 2.5 for convection-diffusion problems: this is the pressure

term.



CHAPTER 3. CO-LOCATED FINITE VOLUME METHOD 61

3.5 Interpolation Functions

This section provides interpolation functions for the thermophysical properties of
the fluid, u, v, p, S*, and S*.

3.5.1 Interpolation of p, 1 and S*, and S

The interpolation function for p, s, S, and SY are the same as those described in
subeection 2.4.1 for convection-diffusion problems.

3.5.2 Interpolation of Velocities for Momentum Equations

The interpolation functions discussed here are for the velocity components u and
v, when they are treated as transported scalars in the momentum equations. These
interpolation functions are the same as those that were defined for ® in the convection-
diffusion problems, in the previous chapter. It means that all the six schemes, CDS,
UDS, SUDS, LSD, QUICK, and MAW, with all their approximations, are completely
applicable here: either ¥ or v components of velocity are substituted for ®,and I' =

#, in the discretization of z- and y momentum equations, respectively.

3.5.3 Interpolation of Pressure

Piecewise-linear interpolation functions are used to interpolate the pressure along
the grid lines joining adjacent nodes. Therefore, the components of the pressure
gradient at integration points for the element shown in Fig. 2.3 are approximated by:

O\ _ Pinri iy
8z a 62.'

8}’) Pi41,j41 — Pi+1,j
ot 4 - _ 3.13
(Dy b 6”:' ( )

o) _ Pingn-Pign
8zc 63,‘
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Oy by,

These approximations are used to calculate the element contributions to pressure

(Qg) _ Pij —Pij
‘

gradient terms in the integral z- and y- momentum conservation equations (Eqs. 3.10
and 3.11).

3.5.4 Interpolation of Velocities in Mass Fluxes

The velocity components, ¥ and v, are interpolated by special functions in the dis-
cretization of mass-flux terms in the continuity, momentum and convection-diffusion
equations. This special treatment is borrowed from the CVFEMs of Prakash and
Patankar [86] and Saabas [100], and it is crucial to the success of this co-located
FVM. Without this special treatment, or some other special treatments, unphysical
checkerboard-type pressure distributions could contaminate the solution provided by
co-located FVMs (25, 77, 93).

The special functions employed in this work to interpolate u and v in the mass-
flux terms depend on the discretized momentum equations. Therefore, they will be

presented later in this chapter.

3.6 Derivation of the Discretized Momentum
Equations

The momentum equations are similar to the general convection-diffusion equation
discussed in last chapter, and the same control volumes are used for both equa-
tions. Therefore, the procedures that were used for discretization of the convection-
diffusion equation in section 2.5 , can also be used to discretize the z and y momen-

tum equations. The contributions of convection, diffusion, and source terms (other
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than pressure-gradient terms) to the coefficients and constants in the discretized mo-
mentum equations are calculated and assembled using the same element-by-element
procedure as that discussed in chapter 2. Then, the element contributions to the
pressure-gradient terms in the integral momentum-conservation equations are ap-
proximated algebraically and assembled to obtain the complete discretized equations.

At each interface of the element (i,j) in Fig. 2.3, the components of the pressure
gradient are approximated via Eq. 3.13. Consider integration point a in Fig. 2.3.

The pressure gradient at this integration point is approximated as:

(ﬂp) _ Pit1j — Pij (3.14)

5; e - 6.1:.'
Thus, the contribution of element (i,j) to the pressure-gradient terms in the integral

x-momentum equations applied to the control volume around nodes (i,j) and (i+1,j)

are approximated as follows:

/] (3—5) dedy = P=Pi(iziby, /1) (3.15)
Paod

/ / ((%))"‘”d” = p______.-n;z: Bii (62:6y;/4) (3.16)
Paob

In the same way, the contributions to the discretized momentum equations at
the other nodes can be calculated. This procedure is then used for all elements to
complete the assembly of discretized equations for u and v at internal nodes.

The final form of the resulting discretized equations can be written as:

a;."ui‘j = ;a:bu,,u“‘l,) + b:,, (3-17)
ap, Vi, = Zb:a'.(s.,,vna.,, + b, (3.18)
n

Again summation is taken over the neighbouring nodes around node (i,j).
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3.7 Derivation of the Discretised Pressure Equa-
tion

3.7.1 Special Interpolation Functions for u and v in Mass-

Flux Terms

This procedure is borrowed from the works of Prakash and Patankar [86] and
Saabas [100). The discretized momentum equations, with respect to the control vol-

ume (i,j) shown in Fig. 2.4, are rearranged as follows:

. bs.
iy = 2"‘“"‘?’:’"‘ T _ (TAV (3.19)
. Lok G, U+ 0 (3p/dy)AV (3.20)
W ap, ap,, .

In these expressions, Op/Oz and 8p/dy are the average of the pressure gradients in
the z and y directions, respectively, acting on the control volume (AV) surrounding

node (i,j). These equation can be rewritten in the following form:

) O
Uiy = Ui d:'.,a—: (3'21)
vij = 0 = ug (3.22)
where
L a by,
i = L ‘aﬁ:;""-: + 9
\ " b‘l
b = = “""::;"'"" + 2% (3.29)
(1Y)
are pseudo-velocities, and
AV
& = =
J ay,,
AV

(3.24)
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are pressure coefficients.

Consider integration point s in Fig. 2.3. The value of u, is obtained by a linear in-
terpolation of i and d* at the nodes (i,j) and (i+1,j), and with the linear interpolation
of pressure between these two nodes:

Y = [——M-" +2“"" 'I_ [ﬁz *;‘Gq Pm%‘; "‘i) (3.28)
or:
o = = 75 iy ~ Pig) (3.26)
where:

A [ ] & +4%,
u. - ‘l.l'.':otl.l d: - =‘+’6t!‘

With this assumption, the difference in pressure at adjacent nodes is responsible
for driving the mass flow through an interface: Since the interface mass flow rates
have to satisfy continuity requirements, checkerboard pressure fields are eliminated.
In other words, although the nodal velocities that appear in momentum equations
do not sense any difference between a uniform and a checkerboard pressure field, the
same is not true for velocities that appear in the interface mass fluxes. Therefore, the
overall system of equations, does not permit any spurious pressure oscillations in the
solution (86, 100].

In the same way, the integration-point velocities for other interfaces of the element

shown in Fig. 2.3, can be calculated as follows:

o — ';5‘;(?“-!.:'“ - Pis1)

Yy =
i i —pn)
U = U oz, Pit1,i41 — Pij+l
. dy
vg = W"T‘f(?ﬁ.j-ﬂ“?t.:) (3.27)
Vs
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3.7.2 Assembly of the Disc etised Pressure Equations

In order to assemble the discretised pressure equations, an element-by-element
procedure, similar to that used for assembling the discretised convection-diffusion
equation, is used. Conmsider the element shown in Fig. 2.3. In this element, the
values of i, ¥, d* and d" are first calculated for integration points ¢ to d, using
piecewise-linear interpolation of current nodal values of these quantities, as given by
Eqgs. 3.23-3.24. Then the contributions to the coefficients of the discretised pressure
equation, for each node in this element, can be obtained by using Eqs. 3.26 and 3.27
for calculation of the mass flow rate across each interface associated with this element.

To elaborate further, consider node (i,j) and its subcontrol-volume in Fig. 2.4,

which has two interfaces 1 and 4. The mass flow rates through these interfaces are:

vhy = ﬂ-‘;—‘& ", = ”le‘i’- (3.28)

The total mass flow rate out of this subcontrol volume across faces 1 and 4 is:

Pijueby; + pijvebzi
2 2

(rmy +my) =+

Substitute for u, and vg from Eqs. 3.26-27. Then :

. N .6 Y o d‘ g — Ps . .5 ira d” .....
(m| + "M) = -p',2—y"[u. + —&s—zﬂﬁin + [ 12630 [v‘ + ‘(p.-.’&y’ p!g"'l )] (3.29)

Therefore, the mass conservation equation for the CV. surrounding node (i,j) is:

e o Ga(Pii = Piari Oy, . dY(Pi = Pijery 0T
{pijlae + -—_53.' ) ) +pijlba + = ——6%_ )] 2 } (3.30)
+ [similar contributions from other elements associated with node (i,j)]
+ [boundary contributions, if applicable] = 0

The contributions of element (i,j) to the coefficients of the discretized pressure equa-
tion for node (i,j) are:

= Piglyidy
E., 263.'
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- A jdzidy
*"" 26’,'
ap , = 0'5.., "";'m

¥,

_ijby;ds ;‘ Pigbzide (3.31)

In the same way, the contributions of other elements to the coefficients of the dis-
cretised pressure equation for node (i,j) are calculated and assembled. The final form
of the discretised pressure equation for node (i,j) can be written as:

ap,,Piy = OF, Pit1;+aN, Pijn
+¢{V._,Po'-l.j + ag’.,,"'-i-l + bo?.j (3.32)
or
ahPii = by, pu, +H (3.33)

The discretized pressure equations for other nodes are assembled in a similar way.

3.8 Implementation of Boundary Conditions

In fluid flow problems, either the velocity or pressure are specified at boundary
nodes, or shear stresses are given at boundary surfaces. Also, at outflow boundary
surfaces, neither velocity, nor the shear stresses are specified. The implementation of
boundary conditions will be discussed separately for momentum and pressure equa-

tions.

3.8.1 Implementation of Boundary Conditions in Momen-

tum Equations

The procedures used to implement boundary conditions in the z- and y momentum

equations are the same, and they are similar to the implementation of boundary con-
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ditions for convection-diffusion problems as discussed in section 2.5.6. The only dif-
ference is in the additional treatment of the pseudo-velocities and pressure coefficients
at specified-velocity boundary nodes. At such nodes, the following treatment is used:

6 =ud=uvd =0andd = 0.

3.8.2 Implementation of Boundary Conditions in Pressure
Equations

The boundary conditions for pressure (continuity) equations are either specified-

pressure, specified-mass flow, or outflow boundary conditions. The treatment of each

of these cases is discussed next.

Specified-Pressure Boundary Condition

In the case of specified-pressure boundary condition, the discretized equations for

the boundary nodes are overwritien to:
Dioundary = Papecified (3‘34)

Hence, the coefficients in the discretized equations for these boundary nodes are:

ap =1
ap = 0
¥ = Ppopecified (3.35)

Specified-Mass Flux Boundary Condition

In this case, the mass flux at the boundary node is known. If the mass flux
(pVa) is specified at the nodes on the boundaries, the corresponding mass flow rate is
approximated as it = pV,A.,. Here, A., is the boundary surface area associated with

the boundary node under consideration, and V,, is the component of velocity normal
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to A.,. Otherwise, if the distribution of mass flow rate along the boundary is given,
it is first integrated over each of the relevant boundary surfaces, A.., to calculate the
boundary mass flow rate, ria, for the corresponding boundary node. This mass flow
rate is subtracted or added, as appropriate, to the term ¥, in the discretized pressure

equation.

Outflow Boundary Condition

In the outflow boundary condition, neither mass flux nor the velocities are specified.
In the case that pressure is also not specified, the discretized pressure equations for the
boundary nodes are completed by estimating the mass flux out of the domain, based
on the most current calculated velocities, at outflow boundaries. In every iteration,
these velocities are updated, and, therefore, the outflow boundary conditions are
updated, until the final converged solution is obtained.

An attractive feature of the proposed co-located FVM can be discussed at this
stage. In the derivation of the discretized pressure equations in the interior of the
domain, the mass flow rate across any particular control volume surface is based on
linear interpolation of the pseudo-velocities (i, o), pressure coefficients (d* or d”),
and pressure values at the two nodes on either side of the surface, as described pre-
viously. The values of d* or d’ are not set to zero at the outflow boundary nodes.
Consequently, in the calculation of mass flow rate across an outflow boundary node,
the value of velocity obtained using the special mass-flux interpolations, given by Eqs.
3.26 and 3.27, is the same as that given by the discretized momentum equations, Eqs.
3.19 and 3.20; the pressure gradient in both these sets of equations corresponds to the
average pressure gradient acting on the control volume associated with the boundary
node in question.

In the CVFEMs of Prakash and Patankar [86] and Saabas [100], the element

pressure gradient used in the calculation of velocity components in the mass flux
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terms is not necessarily the same as the control-volume-averaged pressure gradient
associated with the nodes, except in the limit of very fine grids, and this inconsistency
also applies at outflow boundary nodes. In this work, there is only one pressure
gradient which drives flow in the either z-direction outflow (z) or the y-direction
outflow ( z). The value of this pressure gradient is the same in both the boundary
control volume surrounding the node in question and the corresponding boundary
element. Therefore, there is no inconsistency in the treatment of pressure gradient at

the outflow boundary in this work.

3.9 Solution of the Discretized Equations

The discretized continuity and momentum equations form sets of coupled non-
linear algebraic equations. Various available methods for solution of these equations
have been discussed in section 1.3.2. In this work, the iterative, sequential solution
algorithm of Saabas (100] is used to solve these equations. Some enhancements to
this algorithm will be proposed in the next chapter.

The nonlinearities in the discretized equations are resolved by Picard iteration:
the coefficients in these equations are evaluated using the most recent field values. In
each iteration, the set of linearized discretization equations are not solved completely
to convergence. Rather, the coefficients are updated with the partially converged
values of the dependent variables, to start a new iteration. These overall iterations

are repeated until specified convergence criteria are met fully.

3.9.1 Summary of the Sequential Solution Algorithm

The solution algorithm proceeds in the following steps:
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1. Guess the nodal values of pressure, velocity components, and other dependent
variables which are coupled to the fluid flow. Set 4 = u; ® = v; d* = 0; and
d® = 0 at all nodes.

2. Calculate the coefficients of discretized 2-momentum equations (Eq. 3.17),
ezcluding any boundary conditions and the contributions of the pressure gradi-
ent terms. Incorporate only ihe given-flux and outflow boundary treatments, if

applicable.

3. Calculate the pseudo-velocity i and also d* for each discretized z-momentum
equation, using Eqs. 3.23 and 3.24. If the u velocities are given at the boundary

nodes, the & and d* for these nodes are overwritten to:

4. Repeat steps 2 to 3 for the discretized y momentum equations.

5. Calculate the coefficients in the discretized pressure equation (Eq. 3.33), apply
the appropriate boundary conditions, and solve the set of algebraic equations

using line-by-line TDMA method [77).

6. Add up the contributions of pressure-gradient terms to the constant terms in the

discretized z-momentum equation, and under-relax the equations if required.

7. Apply specified-velocity boundary conditions for z-momentum equations, if ap-
plicable, and solve these set of discretized equations, using line-by-line TDMA
(PDMA for QUICK scheme).

8. Repeat steps 6 and 7 for the discretized y momentum equations.

9. Calculate the coefficients in the discretized equations for other dependent vari-

ables that are coupled to the fluid flow. Apply the appropriate boundary con-



CHAPTER 3. CO-LOCATED FINITE VOLUME METHOD 72

ditions, under-relax, and solve them. This procedure is done sequentially for
each of such variables.

10. Return to step 2 if convergence is not reached yet, and repeat steps 2 to 9 until
overall convergence is achieved.

11. Solve for other dependent variables that do not affect the velocity field.

3.9.2 Under-relaxation of the Discretised Equations

Since the governing equations for fluid flow are nonlinear, the set of discretized
equations are solved iteratively. If during the iterations, the changes in one of the
variables becomes large, the solution may begin to oscillate, and there is a risk of
divergence of the whole procedure. Therefore, it is necessary to under-relax the
results in each iteration to ensure convergence of the solution procedure.

In this work, an implicit under-relaxation scheme [77] is used in the solution of
the discretized momentum equations. It should be noted, however, that to avoid the
dependency of the results on the under-relaxation factors, under-relaxation of these
equations is done only after the calculations of i, 9, d*, and d* [71] are completed.
The amount of the under-relaxation required is a problem dependent parameter [77).

Some recommendations will be made in chapters 5 and 6.

3.9.3 Solution of the Linear Discretized Equations

The same methods as those used for the solution of linearized discretization equa-
tions in convection-diffusion problems, as described in section 2-6, are also used here:
Line-by-line TDMA [77] (PDMA for QUICK scheme) is utilized for the sequential

solution of the set of linearized discretization equations for u, v, and P.




Chapter 4

SEVA AND ESSA SCHEMES

4.1 Introduction

As was stated in chapter 1, Saabas [100], in his doctoral dissertation, identified the
causes and proposed solutions to some serious difficulties which affected the earlier
CVFEMs of Baliga and Patankar [7, 8], Prakash and Patankar [86], Prakash [87),
Hookey and Baliga [49], and LeDain-Muir and Baliga [62]. In particular, 8 MAss-
Weighted skew upwind scheme for triangular and tetrahedral elements was proposed
and implemented: this ensured that algebraic approximations to convective transport
terms contributed positively to the coefficients in the discretized equations, without
incurring the excessive false diffusion inherent in the donor-cell upwind scheme of
Prakash [88]. Furthermore, Saabas [100] showed that the interpolation functions that
Prakash [87] and Hookey and Baliga [49] used to interpolate the velocity components
in the discretization of mass flux terms are unsuitable for problems with inflow and
outflow boundaries, and he advocated a return to an earlier proposal by Prakash and
Patankar [86]). The resulting nonlinear coupled sets of discretization equations for the
velocity components and pressure were solved using an iterative sequential solution

algorithm. However, Saabas did not optimize this solution algorithm, in terms of

73
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the number of iterations and the CPU time required to achieve converged solutions
Another drawback of the CVFEM of Saabas [100] is its relatively large computer-
storage requirements, compared to earlier CVFEMs (87]. One of the objectives of this
thesis is to enhance the iterative sequential solution algorithm proposed by Saabas
[100], in term of both the required computer time and storage.

The discretized momentum and continuity equations form coupled sets of nonlin-
ear algebraic equations. The solution to these nonlinear equations is obtained itera-
tively, by successively solving coupled sets of linearized equations. These linearized
equation sets are typically obtained using either a successive substitution (Picard)
method or the Newton-Raphson method. The Newton-Raphson method is charac-
terized by quadratic convergence, when the initial, or guess, values of the unknowns
lie within a certain radius of convergence (or not too far from the exact solution )
(68, 34]. The rate of convergence of the Picard method is only linear, but it is more
robust than the Newton-Raphson method [31]. A combination of the Picard method
(to start the solution) and the Newton-Raphson procedure (to finish the solution)
appears desirable (31, 69, 84], but it is outside the scope of this thesis. In this work,
attention is limited to iterative solutions based on the Picard method.

One approach to the solution of the linearized, but coupled, sets of discretized
momentum and continuity equations is to use the Numerical Direct Solvers (NDS)
[68). Such methods, however, require very large (perhaps excessively large) computer
storage for solution of fluid flow problems, as was discussed in 1.3.3. For this reason,
NDS are not used in this work.

Segregated solution algorithms solve the linearized, coupled, sets of equations
sequentially. Examples of such methods include the Semi-Implicit Method for Pres-
sure Linked Equations (SIMPLE) [77], SIMPLE-Revised (SIMPLER) [77], SIMPLE-
Consistent (SIMPLEC) [122], and related versions. These methods have been used
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successfully for over two decades in the solution of incompressible, laminar and tur-
bulent, fluid flow problems. However, there are some drawbacks to these methods,
especially their slow convergence rate and weak interconnection between dependent
variables during the solution procedure.

In Iterative Coupled Equations Solvers, the coupled sets of linearized discretization
equations are solved simultaneously, block-by-block, line-by-line, or node-by-node, in
each iteration. Examples include procedures in [12, 20, 32] . These methods enjoy
some of the advantages of NDS methods, namely strong interconnections between
variables and fast convergence, but they also suffer some of the disadvantages of NDS
methods, particulary the large storage requirements. Furthermore, implementations
of iterative coupled-equation solvers and generalization of these methods to handle
the wide range of practical incompressible fluid flows are not as simple as that of

segregated methods.

4.2 The Task

The set of algebraic discretization equations for steady, two-dimensional, incom-
pressible fluid flow were derived in chapter 3. The task here is to solve these sets of

discretization equations, which are repeated here for convenience,

ap, v, = Ea:..,u..;., +bY 3.17
a;,',vi.j = 26,.., .,v..u,.,-!-b,,, 3.18
ap Py = Ea,,.wp,..” 3.33

These equations are nonlinear and coupled. Therefore, their solution requires proper
treatment of the nonlinearity and interconnection between dependent variables. The

available methods for solution of these equations were discussed in sections 1.3.3 and

4.1.
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. In the next section of this chapter, some segregated and coupled equation solvers
will be discussed. Following that, the iterative sequential solution algorithm of Saabas
[100] will be discussed in terms of its computer memory and time requirements. Then,
an improved version of the Saabas scheme, namely, SEquential Variable Adjustment
(SEVA) scheme, will be proposed. Finally, a scheme labelled as Enhanced Sequential
Solution Algorithm (ESSA) will be put forward in the last section.

4.3 Discussion of Available Iterative Methods

In this section, two categories of iterative methods, namely, segregated methods
related to SIMPLE [77] and coupled-equation-line-solver methods (CELS) [32, 50}
will be discussed. As was discussed in section 1.3.3, the CELS could also be regarded
as semi-direct methods. The objective of this discussion is to identify the strong and

weak points of these methods.

4.3.1 Segregated Methods Related to SIMPLE

The SIMPLE algorithm and its variants solve the discretized momentum, con-
tinuity, and other governing equations sequentially, and repeat this procedure until

convergence is achieved. The SIMPLE algorithm consists of the following steps [77}:
1. Guess the pressure field.

2. Based on the guess pressure, solve the momentum equations to obtain velocity

components.
3. Solve a pressure-correction equation.

. 4. Calculate pressure p, by adding the pressure corrections to the guessed pressure.
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5. Obtain new values of u, v, and w from their values in step 2, using velocity-

correction equations.

6. Solve the discretization equations for other dependent variables, if they influence

the flow field.

7. Treat the corrected pressure p as a new guessed pressure, return to step 2, and

repeat the whole procedure until a converged situation is obtained.
This semi-implicit algorithm, has the following desirable features:

1. It is easy to implement.

2. It has been successfully applied to a wide range of fluid flow problems, including
turbulent flows, natural convection flows, and flow in porous media, and flows

with combustion.

3. Since the set of discretized equations are solved sequentially, in each step, only
the coefficients of the current set of discretized equation are required to be cal-
culated and stored. Therefore, the same variable names and computer memory
can be used to store the coefficients of each of the set of discretized equations,

anytime they are required.

4. Since in each step, only one linearized and decoupled set of discretized equations
is to be solved, efficient iterative solution methods, based on block-by-block,
line-by-line, or point-by-point Gauss-Seidel methods, with multigrid or block-
correction techniques to enhance convergence [106], can be used with relatively

low computer-storage requirements.

This algorithm also has important drawbacks, however, which makes its utilization

unfavourable in many cases. The main shortcomings of this algorithm are as follows:
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1. In the velocity-correction equations, the effect of neighbouring velocity correc-
tions are omitted. Hence, the pressure-correction terms in velocity-correction
equatins have to compensate for this omission. This leads to rather exagger-
ated pressure corrections and hence under-relaxation of the pressure correction
equations becomes essential [77]. This, in turn, causes the convergence of this

algorithm to be relatively slow.

2. Since successive substitution is used for treatment of the nonlinear terms in
the discretized equations of dependent variables, and these equations are solved
separately for each of the dependent variables, the interconnection between de-

pendent variables is weak in this sclution algorithm during the overall iterations.

3. At the start of chis algorithm, the coefficients of the discretized equations are
calculated based on the guessed values, and in each iteration, they are recalcu-
lated based on the most recent values of dependent variables. Recalculations of
these approximate coefficients in each step of this sequential iterative procedure
could be unnecessarily expensive in term of computer time, and it could even

slow down convergence.

In the SIMPLER algorithm [77], a separate equation is developed for the calcu-
lation of the pressure and there is no approximation in deriving this equation, so
no under-relaxation is necessary for the pressure equation [77). SIMPLEC [122] im-
proves the SIMPLE algorithm by a better approximation of the neighl-ouring velocity
corrections in the derivation of a simplified velocity-correction equation. In this al-
gorithm, in the velocity correction equations, it is assumed that the correction to the
neighbouring nodal velocities in the equation is equal to the correction to the nodal
velocity of interest. Both SIMPLER and SIMPLEC converge faster than SIMPLE

[77, 122], because of improvements in the calculation of the pressure field.
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The convergence of SIMPLER and SIMPLEC still remains slow, especially when
the solution is close to satisfying the convergence criteria. This is because even in
these algorithms, the sets of discretization equations are solved in a sequential manner,
decoupled from each other by successive substitutions of the dependent variables.

On the positive side, these algorithms cau handle almost all types of grids, such
as staggered grids or co-located grids in both rectilinear and curvilinear coordinate

systems. Examples may be found in Refs. [77, 81, 93, 1, 117, 22).

4.3.2 Coupled-Equation Line Solvers

Two coupled-equation line solvers (CELS), one proposed by Galpin [32] in the
context of a staggered-grid finite volume method, and the other proposed by Hookey
[50] in the context of an equal-order co-located CVFEM, will be discussed here. These
discussions are intended to facilitate the incorporation of some of the CELS concepts
into the iterative sequential solution method discussed in chapter 3.

The CELS method of Galpin, is applicable to a line-by-line structured-grid
FVM for a steady, two-dimensional, incompressible fluid flow. In this procedure, the
unknowns, u, v, and p, are coupled using an iterative line-by-line simultaneous solu-
tion of the discretized continuity, z-momentum, and y-momentum equations. When
attention is focused on the values of u, v, and p at the nodes along any particular
grid line, the most recent estimations of velocities and pressure at nodes off that
line are assumed to be specified (or “known™). The coupled discretized continuity,
z-momentum, and y-momentum equations associated with the nodes along the line
of interest are solved simultaneously as follows: the continuity equation is used to
eliminate the v-velocity terms from the y-momentum equation; the resulting equa-
tion is rearranged so as to express pressure in terms of u; and this equation is used

to eliminate the pressure terms from the z-moinentum equation. The final result is a
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linearized set of simultaneous equations that has a penta-diagonal coefiicient matrix
and only one unknown, u. This set of equations is solved, and then the v and p
fields are easily calculated by substituting the computed u values in the aforemen
tioned rearrangements of the y-momentum and continuity equations. This procedure
is repeated line-by-line until the entire calculation domain is swept. Typically, these
line-by-line sweeps are carried out in alternating directions: positive z, positive y,
negative z, and negative y; and these are then repeated. For each iteration, all co-
efficients in the discretized continuity, z-momentum, and y-momentum equatior:s are
calculated at first, and kept constant until one complete iteration is accomplished.
Then these coefficients are updated using the new calculated values of the dependent
variables.

The main features of the CELS of Galpin [32] are as follows:

1. During the iterations, the interconnection between dependent variables, u, v,
and p are fully respected in CELS, in contrast to rather weak coupling in the
earlier SIMPLE procedures [77).

2. During the iterations, along each grid line, discretized z- and y-momentum and
continuity equations are solved simultaneously and exactly. Thus at every stage

of the iterations, the u and v fields satisfy mass conservation exactly.

3. Since no additional approximations are made to the u, v, and p discretized
equations, the solution of these equations is less sensitive to the under-relaxation

parameters used than those in the segregated methods [32).
This procedure also has important drawbacks as follows:

1. Since in each iteration, all the coefficients in discretized equations must be cal-
culated and stored, it requires a considerable amount of computer storage. This

difficulty could get particularly unmanageable in three-dimensional problems.
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2. Another main shortcoming of this method [32] is that it has been derived in
the context of two-dimensional incompressible fluid flow problems, in which the
unknowns dependent variables are u, v, and p. The extension of this procedure
to three-dimensional problems gets quite tedious, and it can not be easily gener-
alized to solve fluid flow problems that involve additional dependent variables,
such as temperature, kinetic energy of turbulence, and concentration of chemi-
cal spices. For example, to apply CELS to two-dimensional natural convection
in a square enclosure, Galpin [31] had to device a special extension that allowed

a simultaneous solution of u, v, p, and T discretization equations.

CELS of Hookey: A coupled-equation line solver is also used in the equal-
order co-located CVFEM of Hookey [50] for the solution of two-dimensional, viscous,
compressible fluid flow problems. In this CELS, Hookey rearranged the discretized
equations in such a way that the value of any dependent variable at each node along
a line of interest is only dependent on the values of the dependent variables at the
nodes on one side of the node (denoted as "forward ” nodes, for convenience). The
coefficients of these rearranged equations are calculated based on the values of the
coefficients in the discretized equations. Since for the last node on a line, there is no
forward node, the values of dependent variables at the last node are obtained directly
from these rearranged equations. The values of the dependent variables at the nodes
behind the last node of that line are then computed by a simple back-substitution
procedure. Because of similarity between this method and the TDMA [77], Hookey
called his procedure as coupled-TDMA (CTDMA) [50].

To use this CELS, in each iteration, all coefficients in the discretized equations
must be calculated and stored, based on the guessed or current values of the de-
pendent variables. In the line-by-line application of this CELS, alternating-direction

sweeps, similar to those used in the CELS of Galpin [34] are used. A= the governing
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equations are nonlinear, after each iteration, the overall convergence is checked, and
if convergence has not been achieved, the procedure is repeated with newly calculated
coefficients based on the latest available values of the dependent variables.

The CELS of Hookey shares almost all the advantages and disadvantages of
Galpin’s CELS. It should also be noted at this stage that in the CVFEMs of Hookey
[47) and Hookey and Baliga [48], the velocity components in the momentum and con-
tinuity equations are interpolated using an element-based functions that explicitly
depend on the pressure gradient in the element. This approach for velocity interpo-
lation was investigated by Saabas [100] in the context of incompressible flow, and it

was abandoned because of its drawbacks in simulating outflow problems.

4.4 Sequential Solution Algorithm of Saabas

The various steps in this solution algorithm were presented in section 3.9.1. Much
of the discussion pertaining to segregated methods akin to SIMPLE (see section 4.3.1)
is also applicable to the solution algorithm of Saabas [100]. Nevertlieless, more dis-
cussion is required to elaborate the reasons for the large computer memory and time
requirements of thi: method. In each iteration of this method, the coefficients in
the discretized momentum equations are used in calculations of the pseudo-velocities
(&t,9) and pressure coefficients (d*,d"), which, in turn, are used in calculations of
the coeficients in the discretized pressure equation. After the solution of the dis-
cretized pressure equations, the coefficients in the discretized momentum equations
are required again for the solution of the velocity field. Hence, the coefficients in the
discretized momentum equations must be stored separately, and the coefficients in the
discretized pressure equations have also to be declared (stored) in separate arrays. In
other words, all coefficients have to be stored in the Saabas scheme. This leads to

a very large computer-storage demand, or time-consuming reading and writing of a
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huge amount of data to and from disks has to be done. This difficulty is particularly
serious in three-dimensional problems.

As was pointed out in section 3.9.1, in the Saabas scheme, for each dependent vari-
able, the iterative line-by-line TDMA solution of linearized discretization equations
is repeated only for a few sets of four alternating-directions sweeps in each overall
iteration: in other words, the line-by-line TDMA solution is not pushed to complete
convergence, because of the approximate nature of the coefficients in the linearized
discretization equations. Furthermore, based on available experience, the number of
these line-by-line TDM A sweeps was set to a fixed value for each dependent variable.

Thus, this method does not necessarily lead to an optimized solution of fluid flow
problems [122]. If the line-by-line TDM A sweeps for the discretized pressure equations
are terminated before sufficient convergence is achieved, the continuity constraint is
poorly satisfied by the pseudo-velocities and pressure coefficients. These values are
later used to calculate new coefficients in the momentum equations, so that the error
in the satisfaction of the continuity constraint is propagated, with the possible result
of divergence or slow convergence. On the other hand, it is uneconomical to drive
the solution of the discretized pressure equation to a tight convergence in each overall
iteration. The performance of the entire solution algorithm depends heavily on the
criterion used for terminating the line-by-line TDMA sweeps in the solution of the
dependent, linearized, discretization equations. In this work, efforts were made to
overcome these difficulties in the solution method of Saabas [100]. The resulting

improvements are discussed in the following sections.
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4.5 SEquential Variable Adjustment (SEVA) Al-
gorithm

Details of the SEVA algorithm, which is an enhancement of the Saabas scheme, will
be explained in this section. This enhancement concern two issues: (i) the computer
time; and (ii) the computer memory required.

To reduce the computer time requirement, two approaches were examined. In
the first approach, some of the proposals of Van Doormaal and Raithby [122], plus
additional modifications, are incorporated. This main idea in [122] proposal is to
quit from the line-by line TDMA sweeps ! in the solver for the set of discretized
pressure-correction equations whenever the sum of the absolute values of the residue
of all the equations in this set reaches one fifth of its initial value, at the beginning
of the solution of this set of equations in the current iteration. In this work, this idea
is extended to the solution of all variables. Also, as the solution nears convergence,
the initial residue has a small value, and many sweeps are required to achieve the
aforementioned condition on residue reduction in each iteration. It is suggested,
therefore, that if the sum of the absolute values of the residues becomes less than a
small value (107'?), the solution is converged, and it is not necessary to continue the
sweeps in the solver. Therefore, if either the first condition (overall residue reduction)
is satisfied, or if the sum of the absolute values of the residu. s becomes less than
10-12, the sweeps in the solver are stopped, and the next step is started. In the
second approach, for the set of discretized u, v, and p equations, only one sweep is
performed in the solver. These approaches were also examined in the ESSA scheme,
which will be explained in the next section.

To reduce the computer memory requirements in the Saabas scheme, it is necessary

The line-by-line TDMA sweeps in the solver for the discretized equations, will be referred to as

sweeps from now on, for simplicity.



CHAPTER 4. SEVA AND ESSA SCHEMES 85

to make some changes in the sequence of this solution algorithm. As was discussed
in chapter 3, in the Saabas scheme, the solution of the discretized velocity equations
is done after the solution of the discretized pressure equations. The coeflicients of
the discretized velocity equations are used in the calculations of i, ¥, d*, and d¥, and
the coefficients of the discretized pressure equations are calculated based on these
values. Therefore, all the coefficients in the discretized momentum equations have to

be stored in separate memories. The same memory can not be used repeatedly to

keep all the coefficients.
It is suggested here that the pressure equation should be solved after the solu-

tion of Jhe velocity equations, in order to reduce the memory requirements. Based
on the above suggestion and without making any other significant changes to the

Saabas scheme, the SEquential Variable Adjustment (SEVA) algorithm, proceeds in

the following steps.

1. Guess the pressure, velocity components, and other dependent variables which

are coupled to the fluid flow. Set &t = u; ' = v; d* = 0; and d¥ = 0.

2. Calculate coefficients in the discretized u-velocity equations (Eq. 3.17), exclud-
ing contributions of the pressur gradient terms. Dump the values of coefficients
of the discretized equations at boundary nodes, and also ap terms for all nodes,

in separate storage for later use in the calculation of coefficients in the discretized

v-velocity equations.

3. Apply any specified-flux boundary conditions, if necessary, dump the values of

ap and constant terms in separate storage, for later use in calculations of i and

d*.

4. Add up the contributions of pressure-gradient terms to the current values of

the constant terms in the discretized u-velocity equations, and under-relax the



CHAPTER 4. SEVA AND ESSA SCHEMES 86

10.

11.

equations, if required.

. Apply Dirichlet boundary conditions for u-velocity equations, if needed, and

solve the set of these equations, using the line-by-line TDMA method with

either of the two enhancements explained at the beginning of this section.

. Read in the values of ap and constant terms stored in step 3. Calculate the

pseudo-velocity & and also d“. If the u velocities are given at the boundary

nodes, the % and d* for boundary nodes are overwritten to:

i = Uppec =0

. Read in the value of ap, constant terms, and coefficients of the discretized

equations at boundary nodes fromstep 2, and repeat steps 3-6 for the discretized

v-velocity equations.

. Calculate the coefficients in the discretized pressure equation (Eq. 3.33), apply

appropriate boundary conditions, and solve this set of equations using line-hy-
line TDMA method, with the two enhancements explained at the bheginning of

this section.

. Calculate the coefficients in the discretized equations for other dependent vari-

ables that are coupled to the fluid flow. Apply appropriate boundary conditions,
under-relax, and solve these equations. This procedure is repeated sequentially

for such variables.

Return to step 2 if the convergence criteria is not satisfied yet, and repeat steps

2.9 until overall convergence is achieved.

Solve for the other dependent variables that do not affect the velocity field.
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In this method, some clever storage of the coefficients is needed toc minimize the
memory requirements, while keeping the running time of the algorithm essentially
unchanged. Only the ap and constant terms for each of discretized u- and v-velocity
equation are required to be stored, and the same memory is used by the coefficients
in the discretization equations for all the dependent variables at internal nodes. This
leads to a considerable reduction in the computer memory requirements compared to
the Saabas scheme [100).

It should also be noted that the solution of the pressure ;quations after the velocity
equations does not violate an important feature of the Saabas method: continuity
requirements are well satisfied at the start of each overall iteration. Only for the very

first iteration, with guessed u, v, and p fields, this condition may not be satisfied.

4.6 Enhanced Sequential Solution Algorithms
(ESSA)

4.6.1 Motivation

In section 4-3, two procedures for the solution of fluid flow problems were discussed.
The main difficulty with available segregated methods like SIMPLE [77] are their slow
convergence, especially in the latter steps of the iterative solution. On the other hand,
these methods have desirable features, such as relatively modest memory and storage
requirements, compared to coupled-equation solvers. Another important advantage
of algorithms akin to SIMPLE is their generality: they can be used without any
modifications to solve a wide range of complex fluid flow problems [77), such as
turbulent flows. This facilitates the development of general computer codes.

Coupled-equation solvers, on the other hand, have the advantage of faster con-

vergence (31, 68] , and this results in savings of computer time, but they require
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more computer memory than segregated solution algorithms. Also, coupled-equation
solvers can not be easily extended to solve fluid flow problems in which more de-
pendent variables than just velocity components and pressure are involved; and they
require special treatments (major modifications) for each additional dependent vari-
able. For example, in the problem of natural convection in a square enclosure, the
processed u-velocity discretized equations, which have a penta-diagonal band in the
coefficient matrix after substitutions to get rid of v and p values, and the coupled
discretized temperature equations,which have a tri-diagonal band in the coefficient
matriv, must be solved together [35]. If all coupled variables are to be included in the
coupled-equation solution algorithm, it would create a huge computational molecule,
since each coupled neighbour has to be kept explicitly in each discretized equation.
This could create storage requirements similar to those needed in numerical direct
solvers, which were abandoned in this work due to their excessive demands for com-
puter memory.

It is suggested in this work, that a combination of ideas borrowed from sequential
solution algorithms, akin to the SIMPLE, and coupled-equation solvers, akin to the
CELS, keeping their advantages and omitting, if possible, their drawbacks, can im-
prove the efficiency of the solution of the sets of discretization equations. Adoption
of the key ideas of the CELS method, similar to that of Galpin [32] or Hookey (50}, in
conjunction with a sequential algorithm, was the first approach that was examined.

The CELS of Galpin [32] is formulated in the context of staggered grids, and veloc-
ities at the interfaces of pressure control volumes, which are required for assembling
the discretized continuity equations, are the nodal velocities, therefore no interpo-
lation is required to find these velocities. Hence, in the discretized continuity and
momentum equations, which later on are manipulated to form a u-velocity equation,

the velocity at each node is connected only to its immediate neighbouring velocities.
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Thus, the coefficient matrix for each line of nodes in the final set of u-velocity equa-
tions is penta-diagonal, and a PDMA can be used to solve these equations efficiently.

In the work of Hookey [47], the same interpolation function, are used for veloc-
ity in the approximation of both the continuity and momentum equations, and the
discretized equations involve velocities only at immediate neighbours. Therefore, a
relatively small molecule for each node is created in the discretized u- and v-equations,
and this can be handled by methods like the CTDMA [47].

The Hookey approach for the interpolation of velocity was abandoned by Saabas
[100]) because of drawbacks that were discussed earlier in this thesis. In work of Saabas
[100], the velocity components in the mass {lux terms are expressed as in Egs. 3.21 -

3.24, which are repeated here for convenience:

Uiy = ﬁ.'.,' el d:,g 3.21
vij = ¥ij— d}',,--%; 3.22

where:

2-.5 a:b.., up + b::,

U g = ah',
v bY.

by = Db, tm B 3.23
ay.m

are pseudo-velocities and:

d; = A..V
GP."
AV
) = v 3.24
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are pressure coefficients.

The pseudo-velocity at a node is dependent on the neighbouring velocities; these
neighbour-velocities can also be expressed as a sum of a pseudo-velocity plus a pres-
sure gradien: term; but the pseudo-velocities at neighbouring nodes are also depen-
dent on their neighbouring velocities; and so0 on. Thus, with this interpolation for
velocities, it is impossible to use the CELS methods, in the form defined by either
Galpin or Hookey.

Therefore, direct adoption of the ideas from the CELS method and in-orporation
of these into the segregated solution algorithms, as discussed in chapter 3, is impos-
sible, or at best very complicated, and so it was abandoned. Instead, attention was
focused on the indirect use of the CELS idea in the sequential solution algorithms.

In the CELS method, all discretized equations coefficients must be calculated and
stored before each iteration. These values, which are kept constant in each iteration,
are used to calculate the rearranged equations coefficients in each iteration. This is in
contrast to the segregated methods in which, only an individual set of the discretized
equations coefficients for a particular dependent variable, is calculated and used,
immediately, for the solution of these equations, and this is repeated sequentially for
each dependent variable. The segregated approach has advantages and disadvantages:
its main advantage is that the same storage can be used for the coefficients in the
discretized equations for all dependent variables; its disadvantage is that these sets
of coefficients have to be calculated in each iteration, based on the latest calculated
values of the dependent variables, and this requires a considerable amount of computer
time. A better appro2ch appears to be to keep the calculated coefficients constant
for few iterations and then recalculate them.

Another point which must be taken into consideration in the solution procedures

for fluid flow problems is the relatively faster convergence of the velocity fields com-
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. pared to the pressure field. Solution of the discretized pressure equations can consume
up to 80 percentage of execution time for a fluid flow problem [122]. It would be use-
ful, therefore, if in the solution procedure, more effort is directed to improve the rate
of convergence of the pressure field, in such a way that solutions to both the velocity
and pressure equations converges at the same rate.

The above discussions are the basis for the Enhanced Sequential Solution Algo-
rithm (ESSA), which will be presented in the next subsection.

4.6.2 Enhanced Sequential Solution Algorithm (ESSA)

This new algorithm adds an inner loop to the segregated methods, such as SIMPLE:
the u, v, and p fields are updated sequentially in each cycle in the inner loop, while
the coefficients of their discretized equations are kept constant. In each cycle of the
inner loop, only the contributions of the pressure and other dependent variables which
affect the constant terms in u- and v-velocity discretized equations are updated. In
the discretized pressure equations, the only change is in the constant terms, which
require updating as the pseudo-velocities are recalculated with the newly estimated
values of velocities.

In this work, this enhancement is incorporated into the sequential solution algo-
rithm of Saabas [100). For convenience, the primary iterative procedure of Saabas
will be called the outer loop from now on.

The ESSA algorithm proceeds in the following steps:

1. Guess the pressure, velocity components, and other dependent variables (other
than u, v and p) which are coupled to the fluid flow. Set & = u; ¥ = v; d* = 0;
=0

‘ 2. Calculate the coefficients and constant terms in the discretized u-velocity equa-

tions (Eq. 3.17), excluding contributions of the pressure-gradient terms and
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source terms that involve dependent variables other than u, and apply appropri-
ate boundary conditions. Store these coefficients and constant terms in separate

arrays.

3. Add the contributions of source terms that depend on @ (other than u, v,
and p) to the constant terms calculated in step 2. Calculate @ and d* using the
latest available u velocities (Egs. 3.21 to 3.24), and apply appropriate boundary

conditions.

4. Conduct operations similar to steps 2 and 3 for the discretized v-velocity equa-
tions, 0, and d¥: The storage locations for the coefficients in discretized v equa-

tion are different to those for the discretized u equation.

5. Calculate coefficients in the discretized pressure equations (Eq. 3.33), again
storing these in locations that are different from those used for the u and v

discretized equations.

6. Apply appropriate boundary conditions to the discretized pressure equations,
and solve these equations. In the proposed FVM, a line-by-line TDMA was
used in this step.

7. Add contributions of pressure-gradient terms and source terms excluded in step
1 variables to the constant terms in the discretized u-velocity equations, under-
relax, apply appropriate boundary conditions, and solve this set of equations.

Again, in the proposed FVM, a line-by-line TDMA was used for this step.
8. Do operations similar to step 7 in the discretized v-velocity equations.

9. Calculate coefficients in the discretized equations for other dependent variables
that are coupled to the fluid flow. Apply appropriate boundary conditions,

under-relax, and solve them. This procedure is repeated sequentially for such
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variables, with the same storage locations for the coefficients in the discretized

equations.

10. Check to see if overall convergence criteria are satisfied: If yes, go to step 12; If

not, go to the next step.

11. Start the inner locp

(a) Repeat steps 7 and 8.

(b) Repeat step 3 for u, and do a similar step for v.

(c) Recalculate the constant terms in the discretized pressure equations, and

solve these equations to obtain an updated p field.

(d) Do tasks listed in step 9, above.

(e) Check to see if convergence criteria for the inner loop are satisfied: If yes,
go to step 2; If not, go to step (a) in the inner loop. Note that steps (a)
to (d) of the inner loop are repeated only until the prescribed maximum

number of inner-loop iterations or cycles (KNMAX) is reached.
12. Solve for the other dependent variables that do not affect the velocity field.

13. Call desired output routines, and then stop.

The best prescribed maximum number of iterations or cycles of the inner loop
(KNMAX) is problem dependent, and should be optimized for each problem. This
optimization can be performed on a coarse grid. It was found in this work that the
optimum values of KNMAX obtained for coarse grids are essentially optimal for fine
grids too, for the same problem. Numerous numerical tests were done with ESSA for
two-dimensional fluid flow problems. A review of these tests show that the optimal
value of KNMAX is usually between 3 and 5. A general recommendation is KNMAX
=4
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4.6.3 Discussion of ESSA

The proposed ESSA has the following desirable features:

1.

It is as simple as segregated methods, and does not need any extra manipulations
of coefficients as in the coupled-equations solvers. It can be used to enhance

any of the available SIMPLE-like segregated algorithms.

. Problems that involve dependent variables other than the velocity components

and pressure can be easily accommodated: This is in contrast to coupled-
equation solvers (CELS) which requires special manipulation of basic solution
routines to handle dependent variables other than velocity components and

pressure.

. It can be easily implemented on staggered and co-located, orthogonal or non-

orthogonal, grids in two- and three-dimensional problems. This is a very im-

portant advantage of ESSA over the available CELS.

The extra computer time required for recalculation of the constant terms of the
discretized equations in the cycles of the inner loop, is considerably less than

that required to recalculate all coefficients in the discretized equations.

. In this scheme, it is not necessary to keep all the coefficients of the discretized

equations in main memory (RAM), as is the case in coupled-equation solvers.
The coefficients for any dependent variable can be written on to an external
storage device, such as a hard disk, and they can be read back into RAM when
they are required. This feature could be especially important for solutions on
large domains with fine grids, or in three-dimensional problems, for which a
huge amount of storage would be needed to keep all the coefficients in main
memory (RAM)
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6. Simple tests on coarse grids can be used to optimize the maximum number
of cycles in the inner loop (KNMAX) for any problem. This is because as the
solution proceeds towards convergence, the number of inner-loop cycles required
for convergence becomes less than KNMAX. In this case, the cycles in the inner

loop are stopped, and the execution shifts to the outer loop.

Considerable savings in computer time were achieved using ESSA for the solution
of three bench-mark test problems. Details of these tests are presented in the next

chapter.



Chapter 5

EVALUATION OF THE SEVA
AND ESSA SCHEMES

5.1 Introduction

In this chapter, the proposed methods for the solution of the coupled, nonlinear,
sets of algebraic discretization equations, SEquential Variable Adjustments (SE'VA)
and Enhanced Sequential Solution Algorithm (ESSA), are evaluated. Quantitative
appraisal of the performance (or degradation) provided by these methods is done by
comparing the results against that of the Saabas scheme [100], which was discussed

in chapter 4.

Three standard, well-documented, laminar-flow test probleins were selected for

this evaluation:
1. Lid-driven flow in a square cavity
2. Natural convection in a square enclosure

3. Flow over a backward-facing step

96
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All tests were performed for the steady, two-dimensional, laminar flow of an incom-
pressible Newtonian fluid in a Cartesian coordinate system. The computer programs
used in these tests were in standard FORTRAN-77 and executed on a Logix personal
computer (Intel 80486 CPU, 50 MHz), using a LAHEY F77-EM/32 compiler. Other
computers, such as IBM ES-9000-M320 and Hewlett-Packard HP-APOLLO Series
700 Model 710, were also used in the development phase of this work, but not iu the
final tests of the proposed methods.

Appropriate convergence criteria were devised to ensure consistency and accuracy
in the results. The iterative solution was stopped, when this criteria were satisfied.
The execution time of each test was determined using the TIME subroutine available
in the LAHEY F77-EM/32 compiler. No input and output operations were conducted
in the section of the computer code that was used to determine the CPU time needed
to achieve convergence.

The lid-driven square-cavity flow at high Reynolds number (400 and 1000) is
a good test problem to evaluate the performance of the proposed method in the
solution of complex recirculating flows. Natural convection in a square enclosure
allows performance evaluation in the context of problems in which there is coupling
between the fluid flow and heat transfer. Finally, the problem of flow over a backward-

facing step is a good test of the me*’ ods with the proposed treatment of outflow

boundary conditions.

5.2 Preliminary Tests

In this section, the consistency and implementation (computer code) of the FVM
described in chapter 3 is investigated. Lid-driven flow in a square cavity is used as
the test problem, and the effect of grid refinement on the accuracy of the results is

studied. In all these tests, the Saabas scheme (see section 3.9) was used to solve the
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discretization equations.

5.2.1 Lid-driven flow in a square cavity
Problem Statement and Formulation

In this problem, steady, two-dimensional, laminar recirculation of an incompress-
ible Newtonian fluid contained in a square enclosure is considered. The motion of
the fluid is driven by a sliding lid. A schematic of this problem is given in Fig. 5.1.
The square enclosure of side L has its lower-left corner located at the origin of the
Cartesian coordinate system (z,y). All walls are fixed, except for the lid, which moves
in the positive z direction with a constant velocity u,,.

The equations which describe this problem are the z- and y-momentum, and continu-
ity equations, Egs. 3.1 to 3.3. The following nondimensional variables and parameters
are used:

*=z[L; ¥y =y/L; u® = ufu,; v* =vfu,

P* = (P= Pres)/pris; Re, = pu,L/p
The resulting non-dimensional momentum and continuity equations are of the form:

x-momentum:
ou*  ,0u* _ Op° 1 0% &
oz* 3y " 9z° + Re..,(az" + 6y")

(5.1)

y-momentum:

O Ovt ap° 1 8_’3' v
Y oz tv 3y~ oy + Re,,,(az" + ay") (5:2)
and continuity:
ou* o
. pr + a-y—_ =9 (5.3)

with the following boundary conditions:

v* 0 on all walls
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o = 1 at y*=1, 0 < 2z < 1 (5.4)
0 elsewhere

The singularities at the corners of the lid are handled by setting the velocity to zero
there. The only free parameter in this problem is the Reynolds number, Re,,, based
on the lid velocity. As was mentioned before, lid-driven flow in a square cavity is a
problem that is well-established and well-documented in the testing of computational
methods for recirculating flows. It is the subject of several papers, such as those by
Burggraf [19], Bozeman and Dalton [14], Ghia et al. [39) and Schreiber and Keller
[58]. Ghia et al. [39] used a stream function-vorticity finite-difference formulation
and a multigrid method with a 129 x 129 node grid to solve this problem. Their

results for the velocity profile along the vertical midplane of the enclosure are used

to evaluate the results obtained in this work.

Numerical Details

In their bench-mark solutions for this test problem , Ghia et al. [82-2] used a 129
x 129 node grid. In these preliminary tests, the accuracy of the proposed FVM was
investigated by obtaining solutions on uniform grids of 11 x 11, 21 x 21, 41 x 41, and
81 x 81 nodes. For all grids, the resulting profile of u* along the line z* = 0.5 was
plotted and compared with the results of the bench-mark solution. These tests were
performed using the SUDS and MAW schemes.

As was mentioned earlier, the only free parameter in this problem is the Reynolds
number. The results for Re = 1000 are presented for this preliminary test. The

under-relaxation parameters, that were used in this test are:
a, = a, = 0.6, a,=1.0

The overall iterations were terminated in these tests when the sums of the absolute

values of residues for the in each of u, v, and p sets of discretized equations were all
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less than 1078,

Results

The u-velocity profiles at z*= 0.5, obtained with four different uniform grids, and
the bench-mark solution of Ghia et al., are shown in the Fig. 5.2. As is seen in
these figure, with refinement of the grid results obtained with both the SUDS and
MAW schemes advance towards the bench-mark solution. In other words, with grid
refinement, the errors in the results in comparison with the bench-mark solution de-
crease. These preliminary tests ensure that the proposed FVM has been consistently

formulated and implemented.

5.3 Investigation of ESSA and SEVA

The three aforementioned test problems were nsed to investigate ESSA and SEVA

in comparison with the Saabas scheme to establish the following results:
1. the CPU time required to achieve converged solutions;
2. the number of iterations needed to obtain converged solutions;

3. the effect of inner- and outer-loop under-relaxation values on Items 1 and 2;

and

4. the effect of the specified maximum number of inner loop cycles (KNMAX) in
the ESSA scheme on Items 1 and 2. !

All the tests in this section were performed utilizing the MAW scheme.

lltems 1 and 2 will be called ’execution time’ and 'number of iterations’ from now on for simplicity.
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8.3.1 Lid-driven flow in a square cavity

The problem statement for this problem is the same as that described in the pre-
vious section. Numerous tests were performed with this problem for a comprehensive

study of the Saabas, SEVA and ESSA schemes.

Numerical Details

Nonuniform grids of 31 x 31 nodes, with a power-law type expansion of the grid
lines, with power of 1.4, away from the solid boundaries in both z- and y-directions
were used.

With the Saabas and the SEVA schemes, tests were done with under-relaxation
parameters for u- and v-velocity discretized equations from 0.5 to 0.8; this parameter
for the discretized pressure equations was set equal to 1 for all cases. With the ESSA

scheme, the tests were performed to evaluate:

1. influence of the value of the under-relaxation parameter in the discretized ve-

locity equations in the outer-loop, in the range 0.8 to 1.0.

2. influence of the value of the under-relaxation parameter in the discretized ve-

locity equations in the inner-loop, in the range 0.5 to 0.8; and
3. effect of KNMAX: values of 1 to §, 10, 15, and 20 were tried.

Also, to optimize the line-by-line TDMA solver ? for the decoupled and linearized
sets of discretized equations, the suggestion of Van Doormaal and Raithby [122] was
investigated, as described in chapter 4. To evaluate this approach, values of 0.1 to
0.9 were examined for the ratio of the sum of the absolute residues of the discretized

equations at the end of each sweep in the solver to its initial value at the start of the

2From now on instead of line-by-hne TDMA solver, for simplicity only solver will be used.
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solution of the discretized equations. Finally, a set of tests was performed with only
one sweep in the solver for the u, v, and p discretized equations.

The optimum values based on results obtained with the nonuniform grid of 31 x
31 nodes were then used in tests with nonuniform grids of 51 x 51 and 81 x 81 nodes,
with a power-law expansion of the grid lines, with power of 1.4, away from the solid
boundaries in both z- and y-directions.

All tests were performed at Re, = 1000. The convergence criteria for these tests

were to satisfy the following conditions:

1. therelative change in the value of the sum of the absolute values of the constant

term in the discretized pressure equation should be less than 10~¢; and

2. the relative change in the value of the u-velocity component at the geometric
centre of the cavity should be less than 10-%, or its absolute value should be

less than 10-13,

In inner loop, condition number 1 should be satisfied to stop the cycles.
In each test, the execution time and number of iterations required to achieve

solutions that satisfied these convergence criteria were recorded.

Results

The parameters which affect the convergence rate of the ESSA scheme are the
values of the under-relaxation parameters for u- and v-velocity discretized equations
in the inner and in the outer loops and the number of cycles in the inner loop.

In figures 5.3, 5.4 and 5.5, the execution time and number of iterations are plotted
versus the maximum number of cycles in the inner loop (KNMAX). These plots are
for under-relaxation values for the u- and v-velocity discretized equations from 0.5
to 0.7 in the inner loop [RELAX(V)]. The under-relaxation values for the outer loop
(ALPHAQ) are 0.8, 0.9, and 1.0, respectively, in figures 5.3, 5.4, and 5.5. As is seen in
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these figures, for all values of ALPHAOQ, the execution time and number of iterations
are decreased by increasing of the value of RELAX(V). The tests with RELAX(V) >

0.8 failed to converged solution.

In figure 5.6, the execution time and number of iterations are plotted versus KN-
MAX, at constant RELAX(V) = 0.7, for ALPHAO = 0.8, 0.9, and 1. As is seen
in this figure, the best results are achieved when no under-relaxation is done in the
outer loop (ALPHAO = 1),

Hence, the values of 0.7 for the inner-loop and 1 for the outer-loop were found to
be the optimum values of under-relaxation parameters for the solution of u- and v-
velocity discretized equations. As is seen in these figures, values of KNMAX between
3 to 5 give the best results in term of execution time. By increasing the value of
KNMAX from 1 to around 5, the number of iterations decreases sharply, but further
increase in KNMAX leads to only a gradual decrease in the number of iterations.
However, the execution time increases with increasing value of KNMAX beyond than
its optimum value (3 to 5). From these results, it can be concluded that for this test
problem, the optimum value for KNMAX lies between 3 to 5.

All of these tests were performed utilizing the recommendations in [122] for termi-
nating the sweeps in the solver for the decoupled linear sets of discretized equations.
The ratio of the normalized total absolute residue in each set of discretized equations
at the end of each sweep in the solver to its value at the start of the sweeps (RES)
was chosen to be 0.2 in all the aforementioned tests.

Efforts were also made to optimize the value of RES. In figure 5.7, the execution
time and number of iterations are shown for the solutions obtained with values of
RES ranging from 0.2 to 0.9, for two values of KNMAX = 3 and 5. As is seen, two
different values of RES perform the best: for KNMAX = 3, this value is RES = 0.5;
and for KNMAX = 5, this value is RES = 0.8. None of these values is even close
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to the recommended value of RES = 0.25 proposed by Van Doormaal and Raithby
(122).

On the basis of the research undertaken in this work, it is suggested that a fixed
value for this ratio (RES) would not produce the optimum condition for exiting from
the solver. In the early stages of the overall iterations, RES must be a small value:
since the values of the dependent variables (u, v, and p) are far from their values in
the final solution of the problem, more sweeps are required in the solver. However, as
the solution proceeds and the dependent variables progress towards their final values,
it is not necessary to keep this ratio fixed at the small value that is required in the
early stages of the iterative solution. In other words, the best treatment appears to
be one in which the value of RES is not fixed, but is allowed to change appropriately
as the solution progress.

In another try to optimize the overall solution process in ESSA, only one sweep
was performed in the solver of the linearized decoupled sets of discretized equations.
The results obtained for RELAX(V) = 0.5, 0.6, and 0.7 are plotted for KNMAX
values from 1 to 20 in figure 5.8. In table 5.1, ESSA execution times and number of
iterations obtained with the optimized RES values , and with only one sweep in the
line-by-line TDMA solver, are compared. The considerable superiority of the results
obtained with only one sweep in the TDMA solver are significant. It is clear that
with the 31 x 31 node nonuniform grid for this problem, performing one sweep in the
TDMA solver for all dependent variables lead to the optimum performance of ESSA.

In figure 5.9, the execution times and number of iterations are plotted for RE-
LAX(V) = 0.5, 0.6, and 0.7 for the Saabas, SEVA, and ESSA schemes. In the TDMA
solver, only one sweep was performed for the three schemes. As is seen in this figure,
the ESSA scheme produces convergence almost two times faster than the Saabas and

SEVA schemes, and the number of iterations for the ESSA scheme is almost one-third
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of the corresponding values for the other two schemes. This figure clearly shows the
significant influence of the ESSA scheme in decreasing both the execution time and
number of iterations in comparison to the Saabas scheme. The SEVA scheme signifi-
cantly decreases the storage requirements of the Saabas scheme, as was discussed in
chapter 4, and it is also lead to a slight improvement in the execution times in this
problem.

ESSA results obtained with the finer (51 x 51 and 81 x 81) grids are shown in
figures 5.10, 5.11 and 5.12. In figure 5.10, the execution time and number of iterations
for tests with a grid of 51 x 51 are plotted against RES for KNMAX = 3. The
minimum execution time is obtained with RES = 0.8. In figure 5.11, the execution
times and number of iterations are compared for solution on the 51 x 51 node grid,
utilizing the ESSA scheme with RES = 0.2, and with only one sweep in the TDMA
solver. As is seen in this figure, the execution times obtained with one sweep in the
TDMA solver are almost one-half of the execution times for KES = 0.2.

In figure 5.12, the execution time and number of iterations for the solution of this
problem for different grids (31 x 31, 51 x 51, and 81 x 81) are plotted for the Saabas,
SEVA, and ESSA schemes. The best results obtained with each of these schemes
are shown in table 5.2. The execution times for the ESSA scheme is much less than
corresponding execution times for the two other schemes, by a ratio of almost 1 to
2; the number of ESSA iterations are also less than the corresponding number of
iterations for the other two schemes, by a ratio of almost 1 to 4.

In summary, for the problem of lid-driven flow in a square cavity, the ESSA
scheme has a significant superiority to the Saabas and SEVA schemes in the rate of
convergence. The convergence behaviour of SEVA is almost similar to that of the

Saabas scheme, but SEVA is considerably more efficient than the Saabas scheme in

terms of computer-storage requirements.
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5.3.2 Flow Over a Backward-Facing Step
Problem Statement

This problem is usually used to test the treatment of the outflow boundary condi-
tion. The flow in this problem is assumed to be steady, two-dimensional and laminar.
The fluid is assumed to be Newtonian and incompressible. This problem is illustrated
schematically in Fig. 5.13. The fluid flow enters from the left through a parallel-plate
channel of depth 4, flows over a step of height &, and leaves from the right through
a channel of depth H. For non-creeping flows, the flow will detach at the upper corner
of the step and reattach on the lower wall at some distance z, downstream. The
origin of a Cartesian coordinate system (z,y) is located at the upper corner of the
step. The computational domain extends in the positive z direction up to a distance
30H, and from —l,l to +l} in the y direction.

The equations which describe this problem are the z- and y-momentum, and
continuity equations (Eqs. 3.1-3.3). The following non-dimensional variables and pa-
rameters are used:

z* = z/ H; y* =y/H; u* = ufugy; v = vfu,

= (P - p"l)/m‘:v; Re,, = P“w”/ﬂ

The resulting non-dimensional momentum and continuity equations are of the form:

x-momentum:
JOu Bu Oy 1 B | Pu
u 5; +v W - —a + Re.,‘az" + 0y.3) (5‘5)
y-momentum:
8v‘ 9 & SO Bp‘ 1 v P (5.6)

o = oy R o t o)
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and continuity:

o O
y o + o =0 (5.7)

with the following boundary conditions:

u'=v = 0 on horizontal walls
v = 0 at inflow boundary (5.8)
u,, = 1 at inflow boundary (0.0 <y <0.5; z* = 0)

At the inlet, a parabolic u-velocity profile is prescribed, and the cross-flow v-velocity
is set to zero. At the outflow boundary, it is ensured that the outgoing mass flow
rate is identical to the incoming mass flow rate, but none of the velocity components
or pressure are specified; they are calculated as part of the solution. The only free
parameter in this problem is the Reynolds number, Re,,, based on the average velocity
at the inlet and the height of the channel.

This problem has been investigated by Hackman, Raithby, and Strong [42] ,and by
Gartling [37). Gartling used a Galerkin-based finite element method with up to 32000
elements to obtain a bench-mark solution of this problem. He solved this problem
for a flow with Re,, = 800, which is a relatively high Reynolds number laminar flow.
Hackman et al. solved this problem with finite volume methods on Cartesian and
curvilinear orthogonal meshes at Re,, = 73 and Re,, = 229 3.

Recirculating flows are created in the vicinity of the step in the lower part of chan-
nel, and further in the upper part of channel. The detection of the upper recirculating
zone is a good test for the different models. In this work, the reattachment lengths
reported by Gartling [gart] and Hackman et al. [hack] were adequately predicted in

The definition of the Re,, is not the same in the work of Hackmaa et al. to the definition used

by Gartling. Gartling'’s definition is used in this work. Proper adjustment were done to compensate

for this difference of definitions.
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all tests. The focus in these tests, however, was on the performances of the ESSA

and Saabas schemes, not on the accuracy of the corresponding FVM solutions.

Numerical Details

Nonuniform grids of 31 x 31 nodes, with power-law expansion of the grid lines
(power = 1.4) away from the step in z-direction, and uniform spacing between grid
lines in y-direction were used in the tests. These tests were p+. 1ormed with the Saabas
and ESSA schemes. Since the convergence behaviour of the SEVA scheme was almost
similar to the Saabas scheme in tests with lid-driven flow in a square cavity, it was
decided to concentrate attention on the comparison of the convergence behaviour of
the Saabas and ESSA schemes, only.

The value of under-relaxation parameter for u- and v-velocity discretized equations
(RELAX(V)) in the inner loop of the ESSA scheme and also for the Saabas scheme
was varied between 0.5 to 0.7, and its value for the outer loop of the ESSA scheme
(ALPHAOQ) was varied betwzen 0.9 to 1. The maximum number of cycles in the inner
loop (KNMAX) was assigned values of 1 to 5, 10, and 15.

To optimize the TDMA solver for the discretized equations in the ESSA scheme,
tests similar to those explained in the problem of lid-driven flow in a square cavity
were performed. The convergence criteria for these tests were also similar to those
defined for the problem of lid-driven flow in a square cavity. Finally, some tests with
finer grids, of 51 x 51 and 81 x 81 nodes with the same grid distribution as the 31 x j!
node grid, were performed to study the effect of grid refinement on the convergence
rate of the Saabas and ESSA schemes.

The only free parameter in this problem is Re,,, and all tests were performed with

Re,, = 800. The execution times and number of iterations are reported.
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Results and Discussion

In figures 5.14 and 5.15, the results obtained with a grid of 31 x 31 nodes utiliging
the ESSA scheme are shown. The execution time and number of iterations required
are plotted versus KNMAX for ALPHAQ = 0.9 and 1, and RELAX(V) =0.6 in
figure 5.14. The results obtained with ALPHAO = 1 show much faster convergence
and smaller number of iterations. In figure 5.15, the execution time and number of
iterations are plotted versus KNMAX for RELAX(V) = 0.5 and 0.6, at ALPHAO =
1. The tests with RELAX(V) 2 0.7 failed to converge for both the ESSA and Saabas
schemes. The execution time and number of i<eration for RELAX(V) = 0.6 are less
than the corresp: iding results obtained with RELAX(V) = 0.5. Therefore, for this
problem, the optimum values for under-relaxation parameters are: RELAX(V) = 0.6
and ALPHAO = 1.

The results shown in figure 5.14 were obtained by utilizing the suggestion in [122]
for the optimization of the TDMA solver, with RES = 0.2. The corresponding results
in figure 5.15 were obtained by performing only one sweep in the TDMA solver. By
comparing the execution times in these two figures, the superiority of ESSA with one
sweep in the TDMA solver is evident. These results confirm the findings of the results
obtained in the problem of lid-driven flow in a square cavity.

In table 5.3, the execution times and number of iterations required by the ESSA
and Saabas schemes for different grids are shown. For both schemes, only one sweep
was performed in the TDMA solver. The execution times are almost halved and the
number of iterations are decreased by a factor of about 5 with the ESSA scheme, in

comparison to the Saabas scheme, in this problem for all grid sizes.
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5.3.3 Natural Convection in a Square Enclosure
Problem Statement

The numerical simulation of two-dimensional natural convection in a square enclo-
sure is a standard test problem that is used to evaluate the effectiveness of numerical
methods in the solution of coupled fluid flow and heat transfer. In this problem,
steady, two-dimensional, laminar natural convection of a Newtonian fluid contained
in a square enclosure is considered. This problem is illustrated schematically in Fig.
5.16. The origin of a Cartesian coordinate system (z,y) is located at the lower left
corner of the square enclosure of dimension L. The acceleration due to gravity, g, is
directed in the negative y direction. The vertical side walls at z = 0 and at z = L, are
maintained at hot and cold temperatures, T, and T, respectively. The two horizontal
walls are considered to be adiabatic. The standard Boussinesq approximation is used
in the analysis of this problem: the mass density is considered to be constant in all
terms except the buéyancy term, in which it is assumed to decrease linearly with

temperature:

p=pl - AT -T.) (59)

where § is the thermal volumetric expansion coeflicient, and p. is the density of the
fluid at the reference temperature, T.. All other thermophysical properties of the
fluid are considered to be constant.

The equations which govern this problem are the momentum, continuity and en-
ergy equations. The following non-dimensional variables and parameters are used:

z* =z/L; ¥y =yll; u* =ul/a; v'=vl/a
P* = (P = Preg)L*[pa®; ¢=(T-T)/(Th -T.) (5.10)

Pr=v/a; Ra = BgATL?fav
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where Ra is the Rayleigh number and Pr is the Prandtl number.

The non-dimensional forms of the governing equations are:

x-momentum:
Ou‘ Ou v By
- +v* OU‘ ~ B + Pr (—-.;+ -87;) (5.11)
y-momentum:
u-% + ,.% _ g: +Pr (—_, + %‘f,-) + RaPr¢ (5.12)
continuity:
u* O
—+ oy = 0 (5.13)
and energy equation:

u + 0”' 8 ] + 8”.3
with the following boundary conditions:

=0 = 0 on all walls
1 at z° =0, 0 < py* < 1
6 = y (5.15)
0 at z°=1, 0 < y <1
80-1% = 0 at y'= 0, 1

It should be noted that the y-momentum equation has a source term which involves
¢, and leads to a coupling of the fluid flow and heat transfer problems. The local

Nusselt number can be evaluated for the hot wall, once the solution is achieved for

the ¢ field, as:
) (), o

and the average Nusselt number on the hot wall can be evaluated as:

Nug, = / ( 8.1") Y (5.17)
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Since the total amount of heat transferred from the hot wall to the fluid is the same
as the amount absorbed by the cold wall from the fluid, and because the hot and cold
wall areas are equal, the average Nusselt number on both walls should be the same.

A benchmark solution of this problem is available in the work done by de Vahl
Davis [24]. He used a stream-function-vorticity based finite-difference method, with
successively finer grids and extrapolation procedures, to arrive at a ’best’ solution.
Tabular data for the values of Nu,,, and maximum u- and v-velocity components on

horizontal and vertical midplanes, respectively, are given in [24).

Numerical Details

As in the previous problems, non-uniform grids of 31 x 31 nodes, with a power-law
expansion of the grid lines (power = 1.4) away from the solid boundaries in both z-
and y-directions were used to perform tests on the Saabas and ESSA schemes. In
these tests, the values of the under-relaxation parameters in the discretized velocity
equations (RELAX(V)) in the inner loop of the ESSA scheme and for the Saabas
scheme were varied between 0.5 to 0.8. No under-relaxation was used for the solution
of the discretized velocity equations in the outer loop of the ESSA scheme (ALPHAO
=1).

The under-relaxation parameter for the solution of the discretized temperature
equations (RELAX(T))in both the Saabas and ESSA schemes was set equal to 0.9.
The maximum number of cycles in the inner loop of ESSA in these tests were :
KNMAX =1 to 5, 10, 15, and 20. To optimize the suggestions in {122] for the
TDMA solver, tests were performed with the values of RES in the range 0.1 to 0.9,
for values of KNMAX = 1 to 5. Tests with finer grids, of 51 x 51 and 81 x 81 nodes,
with the same power-law distribution as 31 x 31 node grids were performed to study
the effect of grid refinement on the convergence behaviour of the Saabas and ESSA

schemes for this problem. These tests were performed for RELAX(V) = 0.6 and 0.7,
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with ALPHAO = 1 and RELAX(T) = 0.9.

The convergence criteria for these tests required the satisfaction of the following
conditions:

1. the relative change in the value of average Nusselt number on the left wall

should be less than 10-3;

2. the summation of average Nusselt number on the left and right walls divided
by the its value on the left wall should be less than 10~%; and

3. the relative change in the value of the sum of the absolute values of the constant

terms in the discretized pressure equation should be less than 10-¢.

In inner loop, condition number 1 should be satisfied to stop the cycles.
These tests were performed with air as the fluid, for Ra = 108. The execution
times and number of iterations are reported for the tests in which converged solutions

were obtained.

Results and Discussion

The results obtained for the 31 x 31 node non-uniform grid utilizing the ESSA
scheme are shown in figure 5.17. The execution times and number of iterations for
converged solution are plotted versus KNMAX, for 3 different values of RELAX(V),
0.5, 0.6, and 0.7. The solutions with RELAX(V) > 0.8 failed to converge. As is seen
in this figure, the solutions obtained with RELAX(V) = 0.7 require more execution
time than the solutions obtained with RELAX(V) less than 0.7. This reflects the fact
that the iterative solution procedure did not converge smoothly and monotonically for
RELAX(V) = 0.7. Therefore, for this problem, the best convergence rate is obtained
with RELAX(V) = 0.6.

The tests with RELAX(T) = 1.0 failed to converge, but as is shown in this figure
5.17, RELAX(V) = 0.6 and RELAX(T) = 0.9 work well. In this problem, similar
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to the previous problems, no under-relaxation is required for the u- and v-velocity
discretized equations in the outer-loop with the ESSA scheme. Indeed, ALPAHO =
1 gives the best convergence behaviour.

In figure 5.18, the results obtained for optimization of Res values for terminating
iterations in the TDMA solver are shown. The execution times and number of iter-
ations are plotted versus KNMAX for three values of RES: 0.1, 0.2, and 0.3. Tests
with higher values for RES either failed to converge or diverged. Two cases converge
faster than the other cases, namely, KNMAX = 2 and RES = 0.3, and KNMAX =3
and RES = 0.1.

For this problem, in contrast with the experience in the previous problems, the use
of only one sweep in the TDMA solver was not very successful. It appear that with
such a high Rayleigh number, the larger buoyancy term in the v-velocity equation
requires more sweeps in the TDMA solver for a faster convergence of the overall
iterative procedure.

The results for tests with a finer grid of 51 x 51 nodes utilizing the ESSA scheme
are shown in figure 5.19 for two values of RELAX(V): 0.6, and 0.7. For tests with
RELAX(V) = 0.7, the fastest convergence is obtained with KNMAX = 20. For tests
with RELAX(V) = 0.6, the results obtained for KNMAX = 1 are much better than
the other results in term of the execution time.

In table 5.4, the results obtained with the Saabas and ESSA schemes are compared
for different number of nodes in the domain discretization ¢ . As is seen, the execution
times and number of iterations for tests with the ESSA scheme are much lower than
those for corresponding tests with the Saabas scheme.

These results confirm the conclusions drawn from studies of the previous problems:

the performance of the ESSA scheme is significantly better than that of the Saabas

“The results shown with the Saabas scheme for a grid with 31 x 31 nodes were obtained with
RELAX(V) = 0.6 and RELAX(T) = 0.8. The test with RELAX(T) = 0.9 for this case diverged.
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scheme in terms of both the execution time and number of iterations required to

achieve converged solution.

5.4 Summary

In this chapter, three schemes for solution of the discretised equations, namely, the
Saabas, SEVA, and ESSA schemes, were evaluated. These studies were performed
using three well-established test problems: lid-driven laminar flow in a square cavity;
laminar flow over a backward-facing step; and natural convection in a square enclo-
sure. The results show that the ESSA scheme requires significantly less execution
time and number of iterations to produce converged solutions in comparison tc the
Saabas and SEVA schemes. The reduction in the execution time was up to 65%, and
the reduction in number of iterations was up to 75%, in comparison to the Saabas
and SEVA schemes.

The SEVA scheme was tested in the problem of lid-driven flow in a square cavity,
and it shows almost the same convergence behaviour as the Saabas scheme, but it
provides a considerable reduction in the computer-storage requirements.

Also, the recommendations of Van Doormaal and Raithby [122] for optimisation of
the line-by-line TDMA solver for the linearized, decoupled sets of discretized equations
was examined. It was found that this idea improves the convergence rate of the
overall solution, but the optimum choice for the first two problems is to use only
one sweep of the line-by-line TDMA solver. The results with this optimization show
superior performance to the results obtained with the recommendations in [122], with
a fixed value of RES, in terms of overall execution times required to obtain converged

solutions.
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Optimization
Method

Execution
Time

Suggestion

in [122)

112.711

126.06

One sweep in the
TDMA solver

80.36

Table 5.1: Lid-Driven Flow in A Square Cavity: Performance of ESSA with

Optimised RES Values and with Only One Sweep in TDMA Solver

GRID SIZE

SEVA

ESSA

31 x 31

137.59

167.85

73.0%

51 x 51

761.87

724.52

401.96

81 x 81

(a)

4039.50

4483.23

3565.54

(b)

Table 5.2: Lid-Driven Flow in A Square Cavity: Convergence Behaviour of

Saabas, SEVA and ESSA Schemes: (a) Execution Times; (b): Number of

Iterations
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Figure 5.1: Schematic Representation of Lid-Driven Flow in A Square Cav-
ity: (a) Geometry; and (b) Flow Pattern
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Figure 5.2: Preliminary Tests to Establish Consistency of the Proposed
FVM: (a) the Results Obtained with the MAW Scheme; (b) Results Pro-
duced by the SUDS Scheme
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Figure 5.3: Lid-Driven Flow in A Square Cavity: Convergence Behaviour
of ESSA: ALPHAO = 0.8; RELAX(V) = 0.5, 0.6, and 0.7
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Figure 5.4: Lid-Driven Flow in A Square Cavity: Convergence Behaviour

of ESSA: ALPHAO = 0.9; RELAX(V) = 0.5, 0.8, and 0.7
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Figure 5.5: Lid-Driven Flow in A Square Cavity: Convergence Behaviour

of ESSA: ALPHAO = 1.0; RELAX(V) = 0.5, 0.6, and 0.7
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Figure 5.6: Lid-Driven Flow in A Square Cavity: Convergence Behaviour

of ESSA: RELAX(V) = 0.7; ALPHAO = 0.8, 0.9, and 1.0
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Figure 5.7: Lid-Driven Flow in A Square Cavity: Effect of RES on the
Convergence of ESSA: ALPHAO = 1.0; RELAX(V) = 0.7
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Figure 5.8: Lid-Driven Flow in A Square Cavity: Performance of ESSA
with One Sweep in Line-by-Line TDMA Solver: ALPHAO = 1.0



NO. OF ITER

CHAPTER 5.

EVALUATION OF THE SEVA AND ESSA SCHEMES

125

100 |
50,4 0.8
400
i SAABAS
300 | SEVA
200 - KNMAX = 4
B
1m [— ..
o 1 N 1
0.4 05 0.8 07 0.8

Figure 5.9: Lid-Driven Flow in A Square Cavity: Comparison of the Con-

vergence Behaviour of the Saabas, SEVA, and ESSA schemes on a 31 x 31

Node Grid



CHAPTER 5. EVALUATION OF THE SEVA AND ESSA SCHEMES 126

1,300

1,200 |-
1,100 |-

1

TIME (SEC)
g
r T

1

g

[l L i A

0 02 0.4 RES 0.6 0.8 1

Figure 5.10: Lid-Driven Flow in A Square Cavity: Effect of RES on the
Convergence Behaviour of ESSA on a 51 x 851 Node Grid: ALPHAO =
1.0; RELAX(V) = 0.7



CHAPTER 5. EVALUATION OF THE SEVA AND ESSA SCHEMES 127

1,600 -

150

100 -

NO. OF ITER

Figure 5.11: Lid-Driven Flow in A Square Cavity: Convergence Behaviour

of ESSA on a 51 x 51 Node Grid: ALPHAO = 1.0; RELAX(V) = 0.7
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Figure 5.12: Lid-Driven Flow in A Square Cavity: Convergence Behaviour

of Saabas, SEVA, and ESSA Schemes for Different Grid Sizes
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Figure 5.13: Schematic Representation of Flow Over a Backward-Facing
Step: (a) Geometry; and (b) Flow Pattern
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Figure 5.14: Flow Over a Backward-Facing Step: Convergence Behaviour of
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]

Figure 5.15: Flow Over a Backward-Facing Step: Convergence Behaviour of
ESSA with One Sweep in TDMA Solver: ALPHAO = 1.
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Saabas (tg) ESSA (tg)

274.90 139.62

1451.96 701.8

7737.55 3791.4

(a) EXECUTION TIMES

ESSA (Ng)

(b) NUMBER OF ITERATIONS

Table 5.3: Flow Over a Backward-Facing Step: Comparison of the Conver-
gence Behaviour of the Saabas and ESSA Schemes for 8 Different Grid
Sizes: RELAX(V) =0.6; ALPHAO =1
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Figure 5.16: Schematic Representation of Natural Convection in a Square
Enclosure: (a) Geometry; and (b) Flow Pattern
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Figure 5.17: Natural Convection in a Square Enclosure: Convergence Be-

haviour of ESSA: ALPHAO = 1.0; RELAX(T) = 0.9



CHAPTER 5. EVALUATION OF THE SEVA AND ESSA SCHEMES 135
300

2”

‘i

£on |

Figure 5.18: Natural Convection in a Square Enclosure: Effect of RES on

the Convergence Behaviour of ESSA
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Figure 5.19: Natural Convection in a Square Enclosure: Convergence Be-
haviour of ESSA on a 51 x 51 Node Grid: ALPHAO = 1.0; RELAX(T) =
0.9
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GRID SIZE

SAABAS (t,)

ESSA (t;)

31 x 31

616.92

214.14

51 x S1

3756.38

1341.44

81 x 81

GRID SIZE

6929.89

5008.87

(a) EXECUTION TIMES

ESSA (Np)

31 x 31

40

$1 x 51

81 x 81

70

(b) NUMBER OF ITERATIONS

Table 5.4: Natural Convection in a Square Enclosure: Comparison of the
Convergence Behaviour of the Saabas and ESSA Schemes for 8 Different
Grid Sises: RELAX(T) = 0.9; ALPHAO =1



Chapter 6

A COMPARATIVE
EVALUATION OF THE MAW

SCHEME

6.1 Introduction

As was discussed in chapter 2, the proper interpolation of the scalar dependent
variable, ¢, in the convection-diffusion terms is still a challenging task in computa-
tional fluid dynamics. A MAss Weighted difference scheme (MAW) was proposed by
Saabas [100] in the context of CVFEMs for fluid flow, and he showed that it produces
acceptable accuracy. But, this scheme has not been compared with other available
schemes for interpolation of the scalar dependent variable.

In this chapter, an evaluation of the MAW scheme is conducted by comparing its

results with those obtained using the following five schemes:
1. Central Difference Scheme (CDS)

2. Upwind Difference Scheme (UDS)

138
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3. Skew Upstream Difference Scheme (SUDS)
4. Linear Skew Difference scheme (LSD)

5. Quadratic Upstream Interpolation for Convective Kinematics (QUICK)

All of these schemes have already been introduced and discussed in chapter 2.

The well-established test problem of steady, two-dimensional, laminar, incom-
pressible lid-driven fluid flow in a square cavity was used to compare these schemes.
To keep the thesis from becoming too long, only the results for tests with uniform
grids of 21 x 21, 31 x 31, and 51 x 51 nodes are reported. Three important issues

were chosen to be studied in this comparison. These issues are:
1. the accuracy of the results;
2. the execution time required to achieve converged solutions; and
3. the number of iterations needed to obtain converged solutions.

These issues ! are affected in fluid flow problems by the solution algorithm, under-
relaxation parameters used in the solution of the discretized equations, discretization
of the domain, and other factors. To be consistent, in each test, for all schemes,
the same solution algorithm (ESSA), the same under-relaxation parameters, and the
same kind of domain discretization were used.

The problem statement and formulation of this test problem have already been
discussed in chapter 5. In this chapter, only the numerical details for this problem

and the corresponding results will be discussed.

'1tems 2 and 3 will be called execution time and number of iterations from now on for simplicity.
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6.2 Lid-Driven Flow in a Square Cavity

Numerical Details

Uniform grids of 21 x 21, 31 x 31, and 51 x 51 nodes were used to perform tests
with this problem. For each grid, tests were performed for the following values of
Reynolds number: Re = 100, 400, and 1000, with each of the six schemes. The
ESSA scheme was used as the solution algorithm with KNMAX = 3. No under-
relaxation was performed in the outer loop of the ESSA scheme (ALPHAO = 1), and
in the inner loop, the under-relaxation parameter in the discretized velocity equations
(RELAX(V)) was set equal to 0.7. The convergence criteria for these tests were the
same as the convergence criteria which were defined for this problem in chapter 5.

As initial conditions in each test, all dependent variables were set equal to zero at
all nodes in the domain, except values of the u-velocity component at the top nodes
of the domain (the sliding lid) which were made equal to 1. In some cases, these
initial guesses did not produce converged solutions: in such cases only, to check for
the accuracy of the results obtained with each scheme, another test was performed in

which a solution obtained with the MAW scheme was used as the initial guess.

Results

The u-velocity profiles along the vertical line located at z* = 0.5, obtained using
each of the six schemes, and the bench-mark solution of Ghia et al. [39] are plotted
for flows with Re = 100, 400, and 1000, and for uniform grids of 21 x 21, 31 x 31, and
51 x 51 nodes in Figs. 6.1 to 6.3, respectively. These plots are used to evaluate the
accuracy of these schemes for flows with low to high Reynrolds number, with coarse to
fine grids. Also, to study the effect of grid refinement on the accuracy of the results
obtained with these schemes, for each Reynolds number, the results obtained with

each scheme for grids of 21 x 21, 31 x 31, and 51 x 51 nodes are plotted along with
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the corresponding bench-mark solution in Figs 6.4 to 6.6. In Fig. 6.6, the results
obtained with only four schemes, QUICK, UDS, SUDS, and MAW are presented.
The CDS and LSD schemes did not produce a converged solution for Re = 1000.
Tables 6.1 to 6.3 show details of the computational effort for tests with each of
these schemes for the above cases. In each table, the computer time and number of
iterations (t and N) are reported for the tests done with each of these schemes. Also,
to perform a comparison with reference to the computational effort required with the
MAW scheme, the ratios of time and number of iterations for tests with these schemes
to the correspondin; values for the MAW scheme (t/tp, N/Npg) are also shown in

these tables.

Discussion

In almost all cases, the results obtained with the QUICK scheme are more accurate
than the results obtained with the other schemes. For Re = 1000, however, results
obtained with QUICK exhibit wiggles. as shown in Figs. 6.3 and 6.6. At lower
Reynolds number, Re = 100 and 400, the results obtained with the CDS scheme are
almost similar to the results provided by the QUICK scheme. These two schemes are
second-order accurate in terms of Taylor series expansions, and these results show
that they are superior in terms of accuracy when compared with the other schemes,
which are first order accurate in terms of Taylor series expansions. The CDS scheme,
as is well known [77), does not provide converged solution at high Reynolds number,
because it generates negative coefficients in the discretized equations. In all tests
with Re = 1000, solutions with the CDS scheme diverged. The QUICK scheme also
produces negative coefficients at Re = 1000. This causes wiggles in the solutions, but
the ESSA converged for this case.

The results of tests with the LSD scheme also show over-shooting and under-

shooting. Furthermore, even in tests witk low Reynolds number, the LSD solu-
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tions exhibit the lowest accuracy in comparison with the results obtained with other
schemes. At higher Reynolds number, this scheme leads to divergence in the solution
process. This is because of negative coefficients in the discretized equations.

The other three schemes, UDS, SUDS, and MAW, provide almost the same results.
The false diffusion inherent in the UDS scheme at high-Reynolds number leads to the
less accurate results in comparison with the other two schemes as shown in Fig. 6.3.
The MAW scheme is prone to less false diffusion than the UDS scheme, hence it gives
better accuracy for high Reynolds number recirculating flows, similar to that in this
problem. The results obtained with the SUDS scheme at Re = 1000 with a grid of 21
x 21 nodes are less accurate than the corresponding results obtained with the MAW
scheme, and they exhibit oscillations as shown in Figs. 6.3 and 6.6: This is because of
negative coefficients in the discretized equations with the SUDS scheme. The MAW
scheme provides better accuracy than the SUDS scheme with coarse grids for flows
at high Reynolds number, since there are no negative coefficients in the discretized
equations produced by the MAW scheme.

Regarding the computational effort for each scheme, the tests with the QUICK and
LSD schemes require excessive execution time in comparison to the other schemes.
With Re = 100 and 400, tests with the CDS scheme achieved converged solutions
faster than those with the MAW scheme for grids of 51 x 51 nodes, but both these
schemes require almost the same amount of time for grids of 31 x 31 and 21 x 21
nodes. The number of iterations at convergence for tests with the QUICK scheme
are again considerably more than those for the other schemes. The tests with the
LSD scheme also require more iterations to converge than the MAW scheme. Tests
with the SUDS and UDS schemes converge to the final solution in almost the same
number of iterations as the corresponding tests with the MAW scheme. The ratio

(N/Npyg) for tests with the UDS scheme are always more than 1 (up to 1.19), and this
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ratio for the tests with the SUDS scheme is between 0.91 and 1.09.

6.3 Summary

The MAW scheme of Saabas [100] was compared with five other schemes, CDS,
UDS, SUDS, LSD, and QUICK, in a simulation of steady, two-dimensional, incom-
pressible, lid-driven fluid flow in a square cavity.

In summary, the results of this test problem show the following:

1. In terms of accuracy and computational effort, the MAW scheme has almost

the same performance as UDS and SUDS.
2. The LSD scheme had the poorest performance among the six scheme tested.

3. The CDS and QUICK schemes, when they produce converged solutions, provide

the best accuracy.

4. At the highest Reynolds number, Re = 1000, the tests with the CDS diverged,
and tests with the QUICK scheme produced solutions with unphysically spatial

oscillations (wiggles).

5. Of the six schemes tested, the QUICK scheme was the most expensive in terms

of computer (CPU) time.

Thus the MAW scheme compares quite favourably with the i, ve other schemes. It
should also be noted that the MAW scheme was originally proposed in the context
of control-volume finite element methods (CVFEMs), in the works of Schneider and
Raw [103] and Saabas [100]. Thus it is very well suited for applications involving
complex irregular-shaped geometries. The other five schemes tested in this work

are all formulated in the context of FVMs based on rectilinear Cartesian grids (77,
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‘ 89, 63, 53]. Their extension to unstructured non-orthogonal grids is by no means a

straightforward task, if at all possible.



CHAPTER 6. A COMPARATIVE EVALUATION OF THE MAW SCHEME 145

1
08 [
06 [
> 0.4 —
02 2N x 2
0 35z 02,y 04 08 08
1
08 |-
- 0.6 _
> 0.4 |-
02
0 3z 02§y 04 08 08 1
1
08 |
_06 |
> 0.4 ;
02 Stx#1
¥ 02 y/u04 08 0.8 1

Ghiaeta. MAW (CDS UDS SUDS LSD QuUICK
——— H L —— @ e e

Figure 6.1: Lid-Driven Flow in A Square Cavity: u-Velocity Profiles at z*
= 0.5: Re =100
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Figure 6.2: Lid-Driven Flow in A Square Cavity: u-Velocity Profiles at z*
= 0.5: Re = 400
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TIME (SEC)
45.31
46.47
46.75
42.51

102.87
83.81

RE = 100 21 x 21 UNIFORM GRID

TIME (SEC)
44.82
43.61
47.79
41.86
96.73

DIVERGED

RE = 400 21 x 21 UNIFORM GRTD

TIME (SEC)
35.98
DIVERGED
40.70
48.51

283.86
DIVERGED

RE = 1000 21 x 21 UNIFORM GRID

Table 6.1: Lid-Driven Flow in A Square Cavity: Details of Computational
Effort for Tests with the Six Schemes: Uniform 21 x 21 Node Grid
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TIME (SEC)
215.33
282.59
241.67
217.45
535.45
592.04

RE = 100 31 x 31 UNIFORM GRID

TIME (SEC)
263.31
191.14
298.30
262.38
556.08

DIVERGED

RE = 400 31 x 31 UNIFORM GRID

TIME (SEC)
196.35
DIV
252.93
193.94
648.78

DIVERGED

RE = 1000 31 x 31 UNIFORM GRID

Table 6.2: Lid-Driven Flow in A Square Cavity: Details of Computational
Effort for Tests with the Six Schemes: Uniform 31 x 31 Node Grid
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TIME (SEC)
2654.33
2413.81
2816.75
2525.75
3844.57
3563.79

RE = 100 51 x 51 UNIFORM GRID

TIME (SEC)
2530.96
2035.76
2822.46
2497.35
3721.09
9520.34

RE = 400 51 x 51 UNIFORM GRID

TINE (SEC)
1559.39
DIVERGED
2083.55
1756.34
4963.62
DIVERGED

RE = 1000 51 x 51 UNIFORM GRID

Table 6.3: Lid-Driven Flow in A Square Cavity: Details of Computational
Effort for Tests with the Six Schemes: Uniform 51 x 51 Node Grid



Chapter 7

CONCLUSIONS AND
RECOMMENDATIONS

This chapter is divided into two main parts. In the first part, the thesis and its
contributions are reviewed. This part has two sections: in the first section, the ESSA
and SEVA schemes will be reviewed; then the performance of the MAW scheme will
be discussed. In the second part, some recommendations for extending the current

work will be presented.

7.1 Contributions of the Thesis

7.1.1 Review of the Enhancements to Sequential Solution

Algorithms

The main contribution of this work is the development of two new enhancements to
sequential solution algorithms for solution of the u, v, and p discretization equations.
These two new enhancements have been latelled as the Enhanced Sequential Solution
Algorithm (ESSA), and the SEquential Variable Adjustment (SEVA) algorithm. Both

154
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SEVA and ESSA were developed during efforts to enhance the performance of a
iterative sequential solution algorithmn proposed by Saabas [100).

In SEVA, in contrast to the Saabas scheme [100], the sets of u- and v-velocity
discretization equations are solved sequentially, before the set of discretized pressure
equations are solved. Hence, it is not necessary to store the coefficients of the u-
and v-velocity discretization equation: (except for the boundary nodes, and ap and
constant term for all nodes) as in the Saabas scheme [100]. This enhancement reduces
the computer storage requirements of the Saabas scheme considerably. The results
of tests with the SEVA scheme on the problem of lid-driven flow in a square cavity
, presented in chapter 5, showed that it produces converged solutions in computer
times not more than those needed in the corresponding tests with the Saabas scheme.

The ESSA scheme adds an inner loop to available sequential solution algorithms
akin to SIMPLE (77, 122, 100]. In this work, this enhancement was incorporated in
the Saabas scheme [100). The ESSA scheme takes advantage of ideas contained in the
direct and semi-direct solvers [32, 50, 68], to improve the rate of convergence of the
Saabas scheme. In ESSA, the coeflicients of the u, v, and p discretization equations
are calculated and stored. In the outer loop, these discretization equations are solved
as in the Saabas scheme. In the inner loop, repeated solutions of the u, v, and p
discretization equations are done sequentially, without changing the coefficients in
these equations. Once the inner loop iterations are completed, the coefficients are
recalculated, and the complete procedure are repeated until the convergence criteria
is satisfied.

The convergence behaviour of the Saabas, SEVA, and ESSA schemes were com-
pared for three test problems: lid-driven flow in a square cavity, flow over a backward-
facing step, and natural convection in a square enclosure. The results of these show

that ESSA produces converged solutions significantly faster than the Saabas and
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SEVA schemes. The computer times are decreased in the tests with the ESSA scheme
up to 50% in comparison to the corresponding tests with the Saabas scheme. Also,
the overall number of iterations exhibits a dramatic decrease: up to 710% reduction
in the required number of iterations was achieved in the tests with the ESSA scheme
in comparison to corresponding tests with the Saabas scheme.

It should also be noted that enhancements similar to ESSA can be easily added
to sequential solution algorithms akin to SIMPLE, SIMPLER, and SIMPLEC, to
improve the convergence rate of these algorithms. The ESSA scheme retains the ad-
vantages of SIMPLE-like algorithms, namely, simplicity, ease of implementation, gen-
erality, and robustness. Furthermore, in contrast to CELS [32, 50], the ESSA scheme
does not require complex manipulations of coefficients in the discretized equations,
and it can be easily extended to solve sets of discretization equations for additional
dependent variables that may be coupled to the velocity components and pressure.

The ESSA scheme is also quite robust, and it can be successfully applied to prob-

lems with outflow boundaries.

7.1.2 Review of the Performance of the MAW scheme

The MAss Weighted skew upwind scheme (MAW) studied in this work is similar
to that proposed by Saabas [100] in the context of CVFEM. The performance of this
scheme was evaluated by comparing its results with those obtained using five other
schemes: CDS, UDS, SUDS, QUICK, and LSD. All of these schemes were discussed
in chapter 2, and the results of this comparison were presented in chapter 6. Three
important issues were studied in this comparison: (i) accuracy of the results; (ii)
execution time required to achieve converged solutions; and (iii) number of iterations
to obtain converged solutions.

This comparative evaluation was done using the co-located FVM, described in
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chapters 2 and 3, and ESSA for the solution of the discretized equations. Similar
comparative evaluations in the literature, of CDS, UDS, SUDS, QUICK and LSD,
were done with FVMs based on staggered grids for u, v, and p [43, 111, 79, 74].
The MAW scheme displayed almost the same performance as UDS and SUDS in
terms of accuracy and computational effort. The CDS and QUICK schemes, when
they produce converged solutions, provide the best accuracy, and LSD displayed the
poorest performance among the six schemes tested. The QUICK scheme was the
most expensive in terms of computer time. These results for the five schemes other

than MAWs are similar to results obtained with FVMs based on staggered grids
[43, 111, 79, 74).

7.2 Recommendations

Although the results obtained with the ESSA scheme are very encouraging, there
are several areas that seems appropriate and interesting for future studies. In this
work, ESSA was used to enhance the Saabas scheme {100}, and it was utilized to
solve problems involving steady, two-dimensional, laminar flow and heat transfer.
These problems involved incompressible Newtonian fluids, and rectangular calculation
domains that were discretized using structured line-by-line grids. Structured line-by-
line co-located grids were used to solve these problems. It would be relatively easy
and useful to incorporate ESSA in FVMs based on staggered and non-staggered grids.
It can also be extended to co-located equal-order CVFEMs, such as the one proposed
by Saabas [100]). It would also be interesting to apply the ESSA to complex flow
problems similar those solved using staggered-grid FVMs over the last two decades.

The following specific extensions of the work in this thesis are recommended:

1. Incorporation of ESSA in iterative sequential solution algorithms akin to SIM-

PLE [77).
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2. Utilization of the proposed FVM and ESSA to solve three-dimensional problems
that involve turbulent flow and heat transfer, multiphase flows, or combustion.
Methods akin to SIMPLE converge rather slowly in such complex problems, so
it would be interesting to study and record potential benefits that ESSA could

provide.

3. Utilization of ESSA in FVMs based on: staggered-grid arrangements; curvilin-
ear orthogonal grids; and staggered and non-staggered curvilinear nonorthogo-

nal coordinate system:s.

4. Incorporation and evaluation of ESSA in co-located equal-order CYFEM:s for
fluid flow and heat transfer (10, 100].

The MAW scheme provides solutions with accuracy comparable to those of UDS
(77) and SUDS (89]. However, when higher-order schemes such as CDS and QUICK
provide converged solutions, their accuracy is superior to the results of the MAW
scheme. Furthermore, Saabas [100) found that the flow-oriented upwind scheme
(FLO) of Baliga and Patankar (7], when it gives converged solutions, is more accu-
rate than the MAW scheme. It appears, therefore, that a hybrid scheme that switches
smoothly from MAW to CDS in FVMs, and from MAW to FLO in CVFEMs, would

be very useful. The development of such a hybrid scheme would be worthwhile.
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Appendix A

IMPLEMENTATION DETAILS
OF THE MAW SCHEME

As was discussed in 2.4.3 for tne MAW scheme, the values of ¢ at the integration-

points are calculated via Eq. 2.39, which is repeated here for convenience:

[#4] = [A7")[Bl[¢1.m] = [6¢] = [D)[¢1m] where [D]=[A7"|[B] 2.39
(A1)

in which, [A] is the (4 x 4) coefficient matrix of the vector of the 4 integration-point

values (@], and [B] is the (4 x 4) coefficient matrix of the vector of the 4 nodal values

[¢l,m]-
In this appendix, the elements of the matrices {A] and [B] will be presented, and

then the methods used to invert for the matrix [A], as developed in this thesis, will

be given.

A.1 Elements of the Matrices [A] and [B]

The matrices [A], and [B] are of the following form:
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where:

L -f 0 —fi]
|- 1 - O
0 - 1 fs
- 0 —fi 1
1-f1 1=/ 0 0
0 1-f; 1-f; 0
0 0 1-f 1-f5
R 0 1-fi
= min .maz(—ﬂ,ﬂ) ,1]
m
= min maz(—m,(!) R l]
L m
X
= min {mat(—ﬂ,ﬂ) , 1]
m;
= min maz(—-'?g,O) R 11
m,y d
= min maz(—ﬂ,O) y 1
my
= min maz(—-'?-’-,O) R lW
ms J
= min [maz(—ﬂ,()) , 1
my
= min[maz(—ﬁ,ﬂ) , 1
my o

A.2 Inversion of the Matrix [A]
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(A2)

(A3)

(A4)
(A5)
(AS)
(A7)
(A8)
(A9)
(A.10)

(A.11)

As was mentioned in section 2.4.3, a special pivoting technique was developed for

inversion of the matrix [A] in this work. This pivoting technique, is incorporated in

the following FORTRAN77 code:
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* SUBROUTINE MINV

THE PURPOSE OF THIS SUBROUTINE IS TO INVERT THE COEFFICIENT
MATRIX [A], WHICH IS A 4 x 4 MATRIX (N = 4).
AN SPECIAL PIVOTING STRATEGY IS USED TO INVERT MATRIX [A]

SUBROUTINE MINV(A)N)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION A(4,4)

COLUMN 1, PIVOT ON ELEMENT 1,1

DO 10J = 2,4
DO 101 = 2,4

10 A(LJ) = A(LJ) - A(L1) * A(1,J)
DO 20J = 2,4

20 A(1J) = A(1,J)
DO 301 = 2,4

30 A(L1) = -A(L,))

COLUMN 2, PIVOT ON ELEMENT 2,2
DO 40J = 3, 4
DO 401= 3,4

40 A(LY) = A(LY) - A(12) * A(2J) / A(22)
A(L1) = A(1,1) - A(1,2) * A@21) / A(22)
DO 50J = 3,4
A(1J) = A(1,J) - A(1,2) * A(2J) / A(2.2)
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50

A(2,) = A(2J) | A(22)
DD 601=3,4
A(L1) = A(L1) - A(I,2) * A(2,1) / A(2:2)
A(L,2) =-A(12) / A(22)
A(1,2) =-A(1,2) / A(22)
A2,1) = A(2,1) / A(2,2)
A(2,2) = 1.0D+00 / A(22)

COLUMN 3, PIVOT ON ELEMENT 3,3

70

80

DO 70J)=1,2

DO 701=1, 2
A(LJ) = A(LJ) - A(1,3) * A(3.J) / A(39)

A(4,4) = A(4,4) - A(3,4) * A(4,3) / A(3,3)

DO8OJ=1,2

A(4,3) = A(4,3) - A(4,3) * A(3,0) / A(3,3)
A(3,J) = A(3J) / A(33)

DO90I=1,2

A(1,4) = A(I,4) - A(I,3) * A(3,4) / A(3,3)
A(L3) = -A(13) / A(33)

A(4,3) = -A(4,3) / A(3,3)

A(3,4) = A(3,4) / A(3,3)

A(3,3) = 1.0D+00 / A(33)

COLUMN 4, PIVOT ON ELEMENT 4,4

DO 1i0J=1,3
DO 1101=1,3

178
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110 A(LY) = A(L)) - A(L4) * A(4,) / A(44)
DO120J=1,3

120 A(4,)) = A(4,J) / A(44)
DO 1301=1,3

130 A(14) = -A(1,4) / A(44)

A(4,4) = 1.0D+00 / A(44)

RETURN
END



