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This thesis deals with the hydrodynamic, or ";dded"
masses of a ‘cluster of cylinders vibrating in fluid (liquid)
contained by a rectangylar tank. The terms in the added mass
coefficient matrix deriv?é égéiytically by S. Suss, M.A.
Pusféjovsky and M.P. Paidoﬁégis in 1976 were studied
experimentally for a system of one, two and three cylinders.

The tests were conducted by o%cillating one of the
cylinders and measuring the fluctuating pressufe field on the
surface of the same or another cylinder, induced by the
surrounding fluid. From the measurpd surface pressure
distributions and the acceleration of the vibrating cyligder,
the added mass coefficients can theﬂ be detefmined. Measure-
ments wére made for fifteen distinct configurations, with
oscillating frequéncies varying from 50 to 250 Hz, while the
gcceleration of the oscillating cylinder was Kept constant,

usually at 2 g. Results are discussed and compared with those

obtained ffom a computer program based on the theoretical

'work referred to above.
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des cylindres et en mesurant le champ fluctuant de pression,

SOMMAIRE .

- Cette thdse traite de la masse hydrodynamigue ou

"ajout&e" d'un féggésau de cylindres, oscillgnt\dans un fluide
(liquide) S”ntéﬁ; déﬁs un reserv01r rectangulalre: Leés termes
de 1la g;trlce des coeff1c1ent§ de masse ajoutée, dérlvés
analythuement par S. Suss, M.A. Pustejovsky et M.P., Paidoussis
.en 1976, ont été étudiés experimentalement pourjdes systémes !
d'un, de deux et de trois cylindres. -

Les essais furent effectués en faisant osciller uh

en surface du méme ou d'un autre cylindre, induit par'le fluide
environnant. A partir des distributions de pression en surface
et de‘l'acéélération du cylindre oscillant, on peut déterminer
les coefficients de masse ajoutée. Des mesures ont é&té& prises
pour quinze configurations distinctes, les fréquences
d'oscillation variantlde 50 a 258 Hz et l'accé&lération du
cyiindre en oscillation étant maintenué constante, normalement
d 2 g. Les résultats sont diséutés et comparés 3 ceux obtenus

d l'aide d'un programme d'ordinateur’basé sur les travaux :

¢

théoriques mentionnés ci-haut.
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NOMENCLATURE

Added mass coefficients.

u
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vii

Acceleration of the oscillating cyliﬁdé}.

@

Acceleration of the shaker.

The Hydrodynamic Force of cylinder i in the
Z-direction.

The Hydrodynamic Force of cylinder i in the
Y-direction.

(Smallest inter—-cylinder gap)/(cylinder radius).

Gravitational acceleration.

,The radius of cylinder 1i.

The radius of the enclosing channel.

Acceleration of cylinder g in the Z-direction.

Acceleration of cylinder ¢ in the Y-direction.

]

Added mass
dqe to the

'Added.mass
due to the

Added mass
due to the

Added mass-

dve to the

coefficient of cylinder
motion of cylinder % in

coefficient of cylinaer
motion of cylinder & in

coefficient of cylinder

motion of cylindexr & in.

.
coefficient of cylnder
metion of cylinder & in

-

i in Z-direction
Z-direction.

i in ¥-direction._
Z~-direction.

i in Z-direction
Y-direction.

i in Y-direction
Y~-direction.

The orientation of the pinhole on the pressure
transducer bearing cylinder, where pressures were

sensed.

= 3,141592....°%
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INTRODUCT ION )

.

Fér a rigid body immersed in an incompressible
fluid, the effects of inviscid fluid forces acting on the
body, arisiﬁg from the instantaneous fluid motion which results
frcm.an acceleration of the bedy, may be interpr ed as an
"Added Mass".' A more rigorous explanation of this phenomenon
can be foundl%n the textbook on hydrodynamics by H. Lamb (1932)
and L.M. Milne}Thompson (1938) . The concept of "Added Mass"
was introduced by Pierre Louis Gabriel Dubuat (1779) from an
observation on spherical pendulum bobs of lead, glass and
wood oscillating in water. He noticed. that a simple buoyancy
correction for the submerged sphere was poé sufficient; in
addition, the fluid increased the effectiv? mass of the sphere
by approximately one-half the mass of theifluid that was
displace&. Sinceé then, the added mass due to motion of a body
in a fluid has been the subject of many anaiytical and
experimental investigations. ) |

The natgre“of added mass is of particular interest
in d_iverse' problems, e.g. roll, pitch and vibratiomy of ships;
acceleration of submarines, ships and dirigibles; entrance
of projectiles and seaplane floats into water; sédiment‘

M

LT y
movement and wave action; the vibration of plates and structures
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in fluids of non-negligible.relative density, ete. Whenever
a solid in contact with a heavy fluid accelerates, the added
mass is a factor that should not be overlooked.

The major impetus of the present investigation is
to provide information which would be useful in the design of
heat exchanger tubing or® nuclear reactor fuel elements, where
the tube banks and fuel-element bundles are susceptible to
excitation by the cooclant flow. In analyzing the vibration

response to these excitations, proper accounting of the added.

mass i1s an important consideratibn.l ‘
Generally, the added mass of a cylindrical rod is

-assumed to be equal to the mass of fluid displaced by the rod. .

This is true for a long rod submerged in an infinite fluid.

Several experimental studies have been coﬂducted to evaluate

the added mass of a solitary cylinder Bscillating in f£luid

contained within finite, as well as infinite, boundaries.

The methcds:used in most of these studies were based either

on the measurement of\Ehe natural frequencies of the

,oscillating objects in the fluid or on the inertia forces

éxer£ed on the moving body due to its own mofion. Stelson

and Mavis (1957) obtained the added mass for a sphere, cube

and long circular cylinder through the mass-frequency

relationship. Experimental results agreed with the analytical

potential flow studies.

More recently, work has concentratedfon underwater

Cx
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applications where the effect of oscillating flow is of
importance. Hamann and Dalton (1971) measured the dynamic
forces generated by the cylinder while oscillating sinusoidally
in still water, wherein the added mass coefficients as well as
‘the drag coefficients were calculated. Later, Sarpkaya (1975)
determined expe?imentallj‘the drag, added mass and lift
coefficients based on the so-called Morison's Equations
(Mofison et al., 1950), using the hydrodynamic forces measured
on a fixed cylinder in a sinusoidally oscillating fluid. Both
of Hamann and Dalton's and Sagpkaya's technigues involved
displacément and velpcity of tﬂe cylinder relative to the fluid
of magnitudes large enough to allow separation and vortex
formation. These effects are of interest in the vibration of
cylindrical structures subjected to cross flow.

Recently, Chen, Wambsganss and Jendrzejczyk (1976)

“eveloped a "viscous" mathematical model for a vibrating rod

surrounded by a fluid annulus. In this model, the resultant
force per unit length of cylinder is decomposed into two
components, the inertia componernt in phase with acceleration,
and the damping compon;nt opposing the movement of the cylinder,
90° out of phase. The coeffiéients of these two components,
namely' the added mass and damping coefficients, are expressed
in terms of constants obtained from.the solution of the

equation of motion for the fluid (Schlichting, 1960). Although

both the coefficients are frequency-dependent, results

R R L
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indicate that the added mass coefficients are ﬁbt so sensitive
to freqﬁency\change, while the damping ones of“course are.
Tests were done by forcing a cantilever beam vibrating in
viscous fluid, such as water, mineral oil and silicone o0il,
contained by a rigid cylindrical shell. Bg measurihg the
natural frequencies of the rod in éir and in the fluid, the

added mass and damping coefficients were then calculated using

- the equation for determining the natural frequency of a canti-

lever beam and bandwidth method, respectively. In this study,
results for water were found to be in better agreement with
analytical solutions than for miperal oil and silicone oil.
The foregoing gives a cross-section of the
literature on the added mass of a single cylinder. For a
cluster of cylinders, the added mass is affected by adjacent
rods and the cornfining boundary. The composite effect of
this fluid coupling may be expressed in terms of a mgtrix’of
added masé coefficients associated with the cylinders in the
system. Nu&erical techniques for the calculation of the added
mass mdtrix were first developed by S.S. Chen and, Levy and
Wilkinson. S.S. Chen (1975b) calculated the added mass matrix
of arrays of cylinders in unbounded fluid by means of
cl;ssical ideal fléw theory and studied theirofree vibration-

characteristics. Levy and Wilkinson (1975) evaluated the

added masses of axisymmetric bodies in a containing vessel by

Y

\*¥means of fluid finite elements. Later, Chung and Chen (1976)

>
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extended Chen's theory to deal with clusters of cylinders,
in fluid confined by a circular conta;ner. At the same tiﬁe}
Suss, Pustejovsky and Paidoussis (1976) presented both a
. classical method and finite element techniques for determing
the added mass matrix from a point of v;ew distinctly
'ﬁifferent from that of Chung and Chen's (19764 theory. It is
noted thét the applicability of the classical method extends
only to cases where the cylinders and container are c&lindrical,
, whereas the finite element method can deal, in principle, with
any geometry. (The classical method dérived by Suss,
Pustejovsky and Paidoussis (1976) is described in detail in
Chapter 2). Recently, Yang and Moran (1979) developed a finite %
element technique to compute the added mass coefficient matrix
as well as the damping coefficient matrix by solving the
linearized Navier-Stokes and continuity equations, instead of
using ideal potential flow theory. The coefficients obtained
from this theory turn out to bé functions of frequency.
Comparison between the experimental data measured by Chen (1976)
for one single cylinder vibrating in a viscous fluid enclosed
by a rigid conéentric cylindrical shell and the numerical
results of this method shows good agreement. Neverthelessi in
the case of two cylinders, the addéa mass caéfficients were
shown as a function of Re @wdz/V). Since none of the added

mass coefficients derived from the other theories mentioned

(k above are frequency-dependent, it is nog .possible to compare
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this theor& with the other ones.

‘ As to experimental studies, a series of tests have
been done at the Department of Mechanical Engineering of
Mcgill‘University under the supervision of Professor M.P.
Paidoussis. In the first test conducted bi‘Issid (1977),
lihree cylinders in equilateral form were immersed vertically
in a water tank enclésed by a cylindrical Plexiglas shell.
With one of the cylinders vibrating laterally, the inviscid
hydrodynamic forces on the other cylinders induced by the
displaced fluid, were measured by means of a force transducer.
The added{mass coefficients were then determined from the
measured forces. Results of this test are far away from the

+« theoretical values due to the fact that the force transducer
was not properly positioned; also the method of attachment of
the vibrating cylinder to the shaker was such that the
assumbtion that the cylinder is moviné as a Eigid body was
uncertain. In a second set”of experiments, the vertical
arrangément of the cylinders aqd cylindrical Plexiglas shell
was changed to aﬂhorizontal configuration. One of the fixed
cylinders was provided with a plastic cpllar with a 0.0794 cm
(1/32 in.) diameter hole in it. An axial hole in the cylinder
connects the pinhole in the collar to tubing, leading to a

pressure transducer at oné end of the cylinder. The collar

was built in such a way that the pinhole may be rotated

wre
~
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through 369 degrees with a stop éi each lb—degree interval,
which e;ibles é measurement of the pressure distributiqp on
this particular fixed cylinder. Integration of the pressure
distribution gives the hydrodynamic forces, hence the added
mass c;efficients. Several unwanted effects were fo%Fd during
the test,‘such as significant extraneous pressure components
induced by the vibration of the wall of cylindrical shell,
air‘bubbles trapped in the axial pressure=sensing chamber,

the oscillation of the fluid in the chamber, large components
of noise and lack of repeatability in the pressure signals.
Thus, the results obtained were inconclusive. Later, Pustejovsky
(1978) presented a brief report of his[study using the same
experimental set up designed by Issid (1577) for his second

set of tests, with a modification of the measuring system.

The pressure transducer was placed inside the fixed cylinder

near the pinhole of the collar. Consequently, the length of

éhe axial hole (Z.e., the pressure-sensing chamber) was shorter;
this reduced the amount of oscillating fluid in the chamber. “
His results showed tha£ the dynamic pressure responded in a

rather haphazard way and the méasured pressure profiles

exhibited irregular shapes.

During the same period, éxperiments on fluidelastic

b3

vibration of cantilevered tube bundles by Chen and Jendrzejczyk

(1978) were reported. Studies include natural fregquencies,

-

mode shapes of coupled modes as well as  tube responfés of ,

v v,
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three different tube bundle geometries. Among the ) *
expergmental resuit§ obtained, the measured natural frequencies
yvere found t9. be in good agreement with the theoretical

values, where the theoretical values are evaluated from the

‘equation of motion using the theoretical added mass matrix

(Chen, 1975b). This agreement implies that the added mass
matrix obtained from Chen's analytical method is also reliable.
However, the validation of the added mass matrix itself is
not well proved, hs::mce the verification is done indirectly
through the comparison of the’ natural freque;lcies of the /system.
Hence, é@more fundamental measurement of the added mass matrix
is still necessary to test the theoretical one more adequately..
Recently, Barbir and ;ham (1979) used the same
approach and the same experimental set up emploired by
Pustejovsky (1978) with the Plexiglas shell elimir;ated.
Similar pressure response to frequency change was observed in

their tests. Another intereéting feature of their results was

the presence of a phase lag between the pressure and acceleration

. of )the oscillating signals, which is believed to be attributed

tg the.effects of viscosit':y. However, tl';ese tests also were
unfortunately inconclusive.
In the present work, the cylinders were immersed in
fluid contained by a rectangular tank. Tests were carried out
' 4

by oscillating one of the cylinders, with freguency ranging

from 50 to 250 Hz, and measuring the dynanic pressure at points

[¢]
¥



around thg.sﬁrface of, generally, anotper cylinder. ,
Investigation was not restricted Eo three-cylinder systéms;
caséé of a single cylinder and two—cyliqder systems were also
studied. Calculation of the terms of the added mass matrix

is made by integrating the pressure distribution on the
surface of the cylinder to obtain the inviscid hydrodynamic
forces; the added mass coefficients are then related to tﬁe‘
force components by the.associated acceleration. The
experimental set up used in this study was essentially a

modified form of the one built by Barbir and Pham (1979}.

Several components of the set up were stiffened to improve the

rigidity of the system. To measure the pressure, a more

senfitive guartz pressure transducer was selected, with ‘a
sensitivity of 257.7 mv/psi, which p;oduce% clear signals even
witﬁout the uée oé an amplifier. The arrangement of the
pressure transducer in thewfixed cylinder was modified by
placing it normal to the axis of‘the cylinder. Such design
reduces the space of the pféssure—sensing chamber, thus the
fluid oscillation and air bubble problems can be avoided.
With the sensing-surface (diaphragm) of the'pressure transducei
normal to the surface of the cylinder, the transducer detects
the presshre signals more directly.

| In the tests, four distinct aspects of inter-cylinder
coupling were studied. These are (i) pressure response at a '

specific angle on a Eylindgr as a function of frequency of the

&
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oscillating .one, (ii) phase angles between pressure and

" acceleration signals, (iii) pressure distribution on either
0

the oscillating cylinder or the fixed cylinders, (iv) the

added mass coefficients for the system. Attentien has been
‘ €

directed to measurement in the presence of small amplitude,

(2 g) transverse motion of the oscillating cylinder in nominally

still fluid, so that perturbed fluid motion may ‘be considered

to be laminar and irrotational. Some tests were also

conducted with three cylinders enclosed by an 11.43 cm (4.5 in.)
radius shell; these tests were conducted in water, lubricating
oil, as well as_ethylene glycol. These provide valuable
;pformétion concerning the effects of both dgnsity and viscosity
of the fluids on ﬁhe added mass coefficients. Finally, the
pressure profiles and added mass coefficients are plotted and
compared with theoretical values obtained from the analytical

solut@én derived by Suss, Pustejovsky and Paidoussis (1976).



CHAPTER 2

.THEORETICAL MODEL FOR THE ADDED MASS OF A CLUSTER OF

VIBRATING CYLINDERS

2.1 DESCRIPTION OF THE SYSTEM ‘e

-—

The system under consideration consists of a cluster
of k uniform flexible vibrating cylinders contained in a rigid
cylindrical'cﬁannel. The éylinders are slender and are
supported at.both of their extremities. The axes of the
cylinders at rest are all parallei to the axis of the channel,
here referred to as the X-axis in Fig. 2.1. An incompressible
fluid of zero nominal velocity is contained within the
surrounding channel. The hydrodypamic field of such a system
is three-dimensional, due to the fact that the hydrodynamic
forces ;t gach c;qss-segtion of the bundle will dépend on both
the local displace;ents and siopés (mode of deformation) of
the individual elements. However, several simplifying
assumptions are made to facilitate this mathematical modelling,
i.e.,

(a) the fluid is irrotational,

(b) viscous effects can be neglected,

(c) local velocities of the ¢ylinders are such that

>

N o

separation never occurs,

(d) the cylinder is sufficiently slender so that the

. - \
13
~ .
)
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potential flow field dI;e to its motion could be considered
to be identical fo the tWo—dimeﬁsiqnal field in each cross
sectional piane thant would 'Eesult from the motion of an
infinitely long cylinder of the sa)me inclinz;tiOn and cross-
sectional area, a;s shown by Lighthill (1960). ‘

The method described here uses pgtential flow theory
to determine €i) the velocity potential in the fluid due to
arbitrary small motions of the cylinders, and (ii) the forces
acting on each cylinder as ‘a result of ‘the motion of other
cylinders :Ln the system or the cyginder itself. Based on that,

the so-called added mass matrix of an array of paxallel,

infinitely long rigid cylinders is then determined.

v

2.2 THE FLUID VELOCITY POTENTIAL )

0

o For an inviscid, incompressible and irrotational
. .

fluid, the velocity potential must 'satisfy Laplace's equation,

-

¢‘='0'. . (2.15

In accordance with the slender-body approximation

t

{assumption (d) of séction 2:1), the problem is assumed to be

effectively two-dimensional and the velocity potential analysis
may be confined 1:_0 a c¢ross-sectional slice of the cylinder-
fluid system as if the cylinders were infinitely long and

vibrating as rigid bodies. - ¢

h)
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Referring to Fig. 2.2, a system of polar coordinates
centered on the axis of each of the cylinders is defined such
that -(rj,ej) is the position of any point in the plane as '

\‘\{neasured 'from the moving center of cylinder j. For the case
of a cylinder with origin at the center of the boundary channel,
the position of any point in the plane, as measureci from this -
frame, is denoted by (ro,eo) .

In what follows we shall® adopt the following
notation:

(i) ¢j is the velocity potential due to the presence
of cylinder .j, expressed in terms of the coordinate system
centered on cylinder j;

(ii) cp;.L is thé velocity potential due to the presence
of cylinder j, expressed in tez.:ms of the coordinate system
centered on cylinder i;

(iii) cbl is the total velocity potential in terms of
coordinates centered on cylinder ij; - q
(iv) the subscript or superscript "o" refers to

the outer channel and to coordinates at the ceptré of this

channel. .
A The fluid velocity potential due to the presence of

cylinder j’ in the system, denoted by ¢j(rj,ej) , satisfies .

V2. =0 ., (2.2)
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By separation of vari'ables, the solution of this equation gives:

’
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‘ ¢j (rjrej) = El {Anjrjcosnej + anrjsznnej
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where Anj' an, an and bnj are variable constants to be
" determined using the boundary conditions, as follows:
(i) the £1luid wvelocity normal to thg inner surface
of the enclosing channel is zero;
- (ii) the £fluid velocity normal to the surface of each
of the k cylinders is equai to the vélocity of the cylinder in
that directién. |

These boundary conditions can be expressed mathemat-

ically as: .
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(i) 351 = 0, jo=1,2,3....k , (2.5
, ] ro=R° .
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for i = 1,2,3.....,k

[

where u, and v, are the displacements of the.ith

i ¢ylinder in

the Z . and Y directions, respectively.
Because of the linearity of equation (2.1), the total
potential ‘at any point in the plane can be written as the
/

sum of the individual velocity potentials due to the presence

of each cylinder within the channel,

\

k
¢ = Zl¢j (rs,8,) . (2.7
J=

'In order to apply the boundary condition (i) and (ii),
it is necessaty to express each ¢j in terms of coordinates
centered on each of the other cylinders, that is, to be able
to write ¢5(rj}6j) into ¢j(ri,6i), where i,j = 0,1,2,...,?.

This can be done by the use of the coordinate

transformation

r.e - = rie - R, .e ij {2.8)

S . .
“and ‘using Taylor series expansions for
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S r.e = rl‘e - Rij '
with Rij being the 1en§th of .the line joining the center of
cylinders i and j, and wiﬁ being the angle formed by line Rij

: . A »
and positive Z-axis. ’

From these manipulations, the real and imaginary parts
will yield expressions for r?cosnej and r?sinnﬁj; and
similarly for r;ncosnej and r;nsinnej.
By using the coordinate transformation, the potential
due to the motion of cylinder j, with all other cylinders
stationary, expressed‘in terms of the coordinate ;ystem centered
on cylinder i, may then be written as:

n m n m m
r.n!

i i ~i’
¢j Z Z e gAnjcos[n6i+(n-m)wij] i

n=1 m=0 ;

) )n(n+nhl)!r@
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n=1 m=0 ij

ancos[mei~(n+m)ng] + Dnjsin[mei—(n+m)wij]

-
o

(2.9)
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which converges for r; < Rij' and
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‘ > (m-1) {RTCD
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nJ . 1] (n-1) t (m-n) ! "
n=1 m=n * i
ancos[mei—(m-n)wij] + Dnjsin[mei-(m-n)wij] .
e (2.10) "

converging for R J <r.

With ¢ denoted as the total velocity potential

written in terms of coordinates centered on cylinder i, and ¢i

/

being the potential due to the piesencgiof cylinder i alone,

4 *
we arrive at: ) .

Z¢§ + 0. (2.11)

Applying boundary conditions (i) and (ii) to

. /
equation (2.11), the constants Anj’ an, an and Dnj can be
determined and turn out to be of the following forms:
N i
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2=1
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where the unknowns an 34 to dnj g are determined by the following

twelve equations: i
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j=1 n=1 ij «

. R4
tmOnie T ™nip T Sim Sip (2.16)
b -

e AR




—

[

A e P A o Tyt a

% 19
N ) K,
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R i mfRI.g;nR?+l .
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For equations (2.16) to (2.19), the starred summation

excludes j = i. Also, it is noéted that the §'s with two

1 ;ﬁbscripts are Kronecker deltas.
The sé&t of infinite equations (2.16) to (2.27) can
be truncated to sclve for a finite numbe; of constants to give
a desired ;ccuracy. A computer srogram known as "COUPLING"
- has‘been developed by Suss (1977a) to handle these calcuiations.

The manual for this piogfam (Suss, 1977b) is available. A

modified version of this computer program called "OOUPRESS", which

“ also gives the pressure distribution of each cylindér in the

system has been developed and is listed in Appendix A.l. [

‘2.3 THE INVISCID HYDRODYNAMIC FORCES

¢ g

The resulting force due to the inviscid flow around

the‘tith cylinder can be decomposed into Z- and Y-components as
w ¥ 27 i
_ i
FAZi = / ol Ricoseiflﬂi ’ (2.28)
r.=R, N
o) il
'}%} ) &
ER 4
. 4
27
&~ - _ i . - , >
FAzi = J{ . P e Rismﬁeidei ’ (2.29)
o) ?i i

. '
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where pl is the fluid pressure expressed in termms of coordinate
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(“} system centeredlqn cylinder i.
From éernoulli's equation, we c#n write that
, E .
pil = —D-ézi— . (2.30)
;=R ot ri=Ri

1
N -
1]

Makiﬁg use' of equation (2.11), -and taking the féquired

o

‘ . s
derivative to obtain pl, then substituting into equation (2.28)

v ‘ and equation (2.29), the hydrodynamic forces become:
2 X 32u£ 82v2 B
Fazgi T P TRy z :% i 52 "% 2 i o 23D
- ot ot
=1
- 2 k 32u Bzvz . ,

\ FAZJ. = 0T Rl E 355_2' TT + fil!a "5:5" ] (2-32)

e=1 ', t

for i =1,2,3,...., k, where

\

k co
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/ DD %‘ DY (D) (ggpeen(mobivgy + 85 0innmlvy )
-3=1 n=1 J
' R, n+l
n .

- + (=1)™n (§i§> [Ypyqe08 (n+l)¥yy + 8 ein(n+l)y, ]
() +a " (2.33)
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Rl n-1 )
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2.4 THE ADDED MASS COEFFICIENTS
Comparing equa_tion (2.16) with (2.33) when m = 1 and
(zYl.iﬂ. has been added to both sides, it can be seen that
‘ €40 = 6i2 + 2*112 . (2.37)
o s
similarly, from eguation (2.17) with (2.34) when
m = 1, we have \ 1 )
. e, = chm . (2.38)
Also, from equation (2.18) and (2.19) withm =1,
we obtain ' ‘
1 ’\vav-/ 'N ™ ’
§ip = 2614, ! (2.39)
\ /
where Giﬂ. is the Kronecker delta.
We may now re-write equations (2.31) and (2.32) in
the final simple forms: ' -
\
- N R
. 2 k azul BZVQ'
Fagi =P.™ Ry 2 : Cip * M)zt Cory) 7
= t ot
4=l
i (2.41)
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2 k _ézuz Bzvz N
Fagy =% T Ry 2 :g(z‘slu"g‘i'*' (63 % 2dy59)—7
t ot
=1 9
(2.42)
The quantities (Giz + zYliz) and 2cli2,or €ig and e,y

are the non-dimensional added mass coefficients for cylinder
i corresponding to the ‘2 component of the force associated

with the agceleration (aipﬂégtz) and (azvl/atz) in the Z- and

Y—dirgctions of the lth cylindef, respectively. -
Similarly, 268,,, and (6, + 2d, 4,001 Siz.and fi&’
are the non-dimensional added mass coefficients for cylinder-i

s

corresponding to the Y component of the force associated with
the accelerations of the lth cylinder in Z- and Y-directions,
respectively - to be found on p. 27.°

Thése non-dimensional added mass coefficients,
for convenience, can be expressed in matrix form as in
equation (2143): “

An alternative algarithm for obtaining the édded
mass coefficient matrix of the same system has also been
deyeléped using the Finite Element Method.  Details of this

work can be found in a report by Suss, Pustejovsky* and

Paidoussis (19786). ‘ .

o L e R

*A report concerning the generation of the mesh for the
F.E. Method computer program written by M. Pustejovsky (1977)
has also been listed as a reference.
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CHAPTER 3 i 1

EXPERIMENTAL EQUIPMENT

¢

i i "

The e;cpez.;imeni:al equipment used in this Qstﬁdy was

designed to have a cluster og up to three cylinders, immersed
. horizontally in a rectangular water tank, with one of the

cyiinders forced to oscillate verticdlly in harmonic motion.

Part of the experimental system is instrumentation for ;
measuring the pressure around the surface of any cylinder,
acceleration of the oscillating cylinder, as well as the phase
angle between the two signals. Such an experimental set up
shown in picture 1 is composed mainly of the following five
sub-units: (i) water tank, (ii) shaker with control system,
(iii) three hollow cylinders, (iv) structural components for
holding the cylinders, and (v) the associated instrumentation

for measurements. These will be described in some detail

below. N

3.1 THE WATER TANK

Thg_rectangular wate; tank (picture(Z), made ‘of -
J 0.95 cm (3/8 in.) thick Plexiglas, hag internal dimensions of
38.10 cﬁ x 85.09 cm x 39.37 em (15 in. x 33 1/2 in. x 15 1/2 in.)
with two sheets of 1.26 com (1/2 in.) thick Plexiglas as a

removable cover. In order to stiffen the tank, three lines

'
hek o

SO VR
B
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of aluminum belts and strips of Plexigl;s have been added to
the walls. The tank. sits on a steel frame, with leveling
screws at the four corners, giving it certain mobility in its
positioning under the shaker. A valve is provided near the.

bottom of the tank for draining the liguid after a test.

3.2 SHAKER WITH CONTROL SYSTEM

The shaking system (picture 3) includes a shaker,
an exciter control unit and a power amplifier. The shaker is

’

a Bruel and Kjaer type 4801 electrodynamic vibration exciter. ,
On it, a type 4812 exciter head is mounted. This head has

a force rating of '444.82 N (100 1bf), a displacement limit of
12.7 em (5 in.) and a rescnance frequency at 7200 Hz. Using
this head, the shaker is capable of performing simple harmonic
oscillations at different amplitudes and frequencies up to

10 KHz with low cross distortion and low cross motion. The

-

shaker, with its own support, rests on a four-legged inverted
U~-shaped steel fr;;e with features leveling support screws
and four wheels at the bottom allowing the shaker to move
easily. I

Equipment for controlling the shaker includes a
B.&K. type 2707 power amplifier and a B.&K. type 1047 exciter

controller. The exciter cqntroller'gene:ates variable

sinusoidal .voltage signals to drive the vibration exciter

N
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through the power amplifier in the frequency range of 5 Hz to

10 KHz. “

3.3 9 THE HOLLOW CYLINDERS

There is a maximum of three cylinders involved in
the;eugxperiments. Each cylinder is made o% aluminum with
outside and inside diameters of 6.35 cm (2 1/2 in.) and 4.45 cm
(1 3/4 in.), respectively{ The two sfationary cylinders are
5.1 em (20 1/2 in.) in length, while the oscillating one is
6.35 cm (2 1/2 in.) shorter. To prevent water from going into
these hollow cylinders, plugs made of either aluminum or
tefion are provided for both ends. .

A high sensitivity pressure transducer (described
in 3.5 of this chapter) is placed inside the pressure measuring
cylinder (picture 4) at a hole 8.89 cm (3 1/2 in.) from one
of igs ends. A cross~sectional view o?/;hgvcylinders, at the

position where the pressure transduce?(is set, and the lock

\

nut used &o keep the transducer stayed properly in the cylinder
\

are shown in Fig. 4.l. Pressure is sensed through a 0.0635 cm
) ‘

b4
P

(0.025 in.)\:iameter pinhole on the top surface of the lock nut

to the chamber where the diaphragm of the pressure transducer

received the signals. The pinhole has a depth of 0.254 cm
(0.1 in.) to prevent the transducer from sensing those

fluctuating velocity components not normal to the surface of

9



the cylinder.
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3.4 - STRUCTURAL COMPONENTS FOR ﬁOLDING‘THE CYLINDERS

”

For the system consisting of two or three cylinders,

the stationary cylinders are supported &t both ends. Each

-
support has two pieces (pictures 5 and 6). The top one is a
rectangular piece with two holes having a dimension good
enough to provideé a clearance of 1.27 x Ib-z cm (5 x 10'-3 in.)

for the cylinders to rotate. A steel béll—and—spring index
méﬁhanism built inside the ing?r surface of the hole, along
with 40 index holes around the circular surface of the cylinder
end~plug (picture:4), enable the cylinder to rotate through
360 degrees with a stop at every 9 §egree§. The bottom pieces

and the bottom aluminum plate have been designed in such a way

. | »
that they allow the ¢ylinders to have four different geometric

arrangements (Fig. 4.5 and Fig. 4.6), as well as'variatiéns
in cylinder gap. These supports are joined together and

attached‘to the aluminum plate at the bottom of the water tank

!

using socket head screws:
. As to the oscilla%ing cylinder, it ig held horizontally

by an aluminum tube of 3.81‘cm (1 1/2 in.) outside diameter,

2.54 cﬁ (1 in.) insideKAiameter and 25.4 cm (10 in.) long,

mounted to the shaking table of the shaker by means of a squafe

piece with four screws at the corners (picture 7). Two -
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triangular aluminmum fins have been added to increase the .
stiffness of this tube. The motion of the shaker is then
transmitted fhrough the tube to the cylinder attached to it, -«

thereby creating a pressure field in the liquid medium in which

-

this and the other cylinders are immersed.
/
In one single-cylinder test, the pressure measurements

’

were taken éround the surface Sf the oscillating cyl}nder
itself. Hence, the rectangular piece (picture 8) which joins
the tube and the oscillating cylinder was in this case
especially made of twowpieces held together by four 0.635 cm
(1/4 in.) diameter socket head screws at the four cérners.

- For rotating the cylinder, the holding piece has to be loosened

by unscrewing the screws and felocked after thé‘cylinder has
been rotated through the desired angle. The bottom part of

this holding g%ece also bears an index mechanism, same as, the

*
I

one in the supports for the statdionary cylinders. waevgr,
there are only 36 index holes and are located on the circular

o surface of the cylinder (picture 4) instead of on the cylianf

plug. . ) -
w INSTRUMENTATION FOR MEASUREMENTS

L
The instruments used in the experiments and a circuit

. diagrag of\the measuring system are shown ip picture 9 and
Fig. 4.3, respectively.

The pressure field was measured by using a high

a

N
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¢
sensitivity PCB quartz pressure transducer, godel 106B. This
high—level*gutput transducer is designed g; measure pressure
pgrturbations in air or in liquid in severe-environments, e.g.
in a high vibration envirpnmént. A built-in seismic mass

%

acting on another quartz crystal effectively cancels }he'

¢
spurious signal produced by the acceleration of the mass of
the diaphragm and end piece acting upon the very sensitive
crystals in the presence of axial vibration inputs. This

.design produces an extremely high level output signal with

good resolution, relatively free from unwanted vibration effects.

The main specifications of this transducer are as follows:

-Sensitivity 257.7 mV/psi
‘ Resolution 0.0001 psi (rms) !
Rgsonanée frgquency _ 66 " KHz .
. Maximum pressure 300 psi .,

Acceleration semsitivity 0.0012 psi/q.
-4

+

Along with this transducer is a PCB 482A Power -

S

Supply, which provides a 22 Volt D.C. power source.

v

Two piezoelectric accelerometers are used in these

%
~ »

. }
experiments. One, with.acceleration sSensitivity equal to
74.8 mV/g, is mounted at the shaking table of the shaker and

g /
.gives a signal to control the shaker through the control,

system. The other, having an acceleration sensitivity of

53.3 mV/g, is mounted inside the oscillating cylindenr (with

¥
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its\pountfng su&fac% face down] to measure the acceleration
of this cylinder in’the‘vertical direction. A Briel and Kjaer
(B&K) Type 5865 Power Sﬁﬁpyy is utiliged to provide a éb Volt
D.C. power source for the accélerometers: Siénals coming out
from the accelerometers are fed into a B&K Type 2625 vibration
pick.up preamplifibr, which works as an impedahce transformer.
. In order to see the effect of the boundary on the
measured presshre,distnibutions, test; were also dgne wiéh a
circular outer channel. This was accompfishedwby inserting‘
a cylindrical bérrel (picgufe 10) into the central‘portion of
the tank. This barrelr was made of 22.86 cm (9hin.) d%ameter,
0.9525 cm (3/8 in.) thick alumiﬂum cut into two gieces to
make things eaé} for assembly: A holé'on its top provides

clearance for the tube carrying the oscillating cylinder to
¢ 1

pass through. Four pieces of 1 in. thick Plexiglaé were built

-~ \

to support the barfef, and also to keep it'sifting securely
. ~

in the tank, at the correct position. Two photographs exhibit

the arrangement of this boundary channel in the water tank
o <

(pictures 11 and* 12). During the experiments, the top cylinder

A ! «
is vibrating, while pressure readings are taken on the blue

cyliﬂder below.

I
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; ' ¥ EXPERIMENTAL PROCEDURE AND DATA ANALYSIS .  +
i \ ‘ This chapter consists of two sections. The  first

one outlines the steps undertaken to complete an experiment,
\ ’ : U :
wherein the pressure distribution on cylinders in the system,
B - 3

[T SRS
4

the acceleration of the osc\illating cylinder and thé phase -
DI * angles- between pressure and acceleration signals were measured.

The second describes the method used in this study for

~

deriving the added mass coefficients from the measured data.

b4 1y
A . v

‘
! * ¢

: 4.1 EXPERIMENTAL PROCEDURE

- , ‘The procedure outlined here.is the typiéal procedure
£

- for measuring the pressure profile on one of the stationary”
1 )

cylinders in a cluster of thr{ee cylihders; it proceeds as

k]

T + follows:

<

1. An accelerometer is placed. inside the oscillating

2

t:ylinder.‘ This\_cylin‘der is then mounted ‘to the shaker tl;ro'ugh

the tube structure (sec; picture 7). o

¢ . ( 2. The stationary cyliﬁder without pressure

’ *»transducer is mounted to the cylinder support components which

stand on the bc;ttém aluminum plate of the ‘A;ater tank. .
3

. g 3. The tank is now filled with water.

4, The sensitive preSsure transducer is placed into

51 ! \ .‘



-7

-~ L

-

Ve

- the pressure-measuring cylinder before this cylinder is put

into the tank.

. 5. The iock nut. (Fig. 4.1) is then screwed to the

top of the pressure-measuring chamber to keep the pressure

transducer in position.
! cylinder is in water, to avoid air bubbles being trapped in

the pressure~measuring chamber,

This procedure is done while the

sl

6. The cylinders are aligned in proper position

by adjusting the leveling screws either on the support of

the shaker or on the steel frame of the water tank and alsc

by sliding the cylinder support components. Two level gages

dnd two sets of aluminum pieces with three holes drilled

out in the prescribed geometrical configuration (picture 8)

rare used to facilitate this job.

The cylinder support

components are then attached to the aluminum plate at the

bottom of the water tank with socket head screws.

7. The top of the water tank is covered with two

pieces of Plexiglas using five screws. Care is taken to

ensure that no air bubbles are trapped.

Signal Analyzer are set as follows:

.o

8. The shaker control system and the HP Digital

(i) Exciter Control Type 1047

Comp‘ressor rate:
Max. compressor speed: 30 db/s.

Sweep control:

‘Output voltage:

Mode switch:

wy

1 db/s '‘per Hz

manual.
maximum.
acceleration.

e ek ae e b
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Mode level:
Cross over switch:
Input:

Output: /
(ii) Power Amplifier Type 2707

Current range:
Head constant:

Displacement limit:
Current limit:

Output impedance:
Direct current output:
Amplifier gain:
Voltage range:

Phase:

Exciter interlock:
Signal reference:
Input:

Output:

37

100 g (max.)

"A" position.

Signal from
accelerometer attached
on the shaker through
the Vibration Pick-up
Preamplifier Type 2625.
to Power Amplifier
Type 2707.

" 30 A (rms).

2 in./v.s. (v.s8. =
volt sec).
0.5 in.

18 A (rms).
low.

5.

7.
30 V (rms).

0°.

in.

chassis.

signal from Exciter
Control 1047

to the shaker.

(iii) vibration Pick-Up Preamplifier Type 2625

Mode knob:
Gain & channel selector:
Input:

(iv) HP Digital Signal Analyzer

Mode:
Channel no. 1:

Channel no. 2:

e A et AN AR ek e S RY gt o Ao 1

acceleration - lOm/secz.

0 to 20 db, x-channel.
x-channel.

Type 5420A

Transfer . function.
signal from the
accelerometer inside
the moving cylinder,
through Vibration
Pick~Up Preamplifier
2625,

signal from the
pressure transducer
through Power Supply
PCB 482A. .

-y

e ] AP’ 4 g -
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Coordinate board: . phase.
Set up status: see Fig. 4.2.

9. An accelerometer is attached to the flat surface
on the shaker head, which will provide a signal forciﬁg the
shaker to operate-at the chosen constant magnitude of
acceleration, even though the frequency is varied.

10. The wiriﬂ% for the shaker control system, as
well as the measuring system is connected as in Fig. 4.3.

11. The pressure readings and the acceleration
amplitude of the oscillating cylinder are taken down, while
the cylinder is oscillating. These readings are read -eff two
high—res;lution digital voltmeters. Also taken down are
the phase angle, between pressure and acceleration signals,
read off the Digital Signal Analyzer, by placing the cursor
at the operating\frequency.

12. By rotating the pressure measuring cylinder,

thus changing the azimuthal orientation of the pinhole on the

. top of the lock-nut, the pressure and the rest of the readings

_described in step 11 above are taken at a location 9° away.
The procedure is repeated until all the above readings are
taken around the surface of the cylinder at 9° intervals.

13. Thé tesgt is xepeated for different frequencies
while the amplitude of’accekeration of the shaker is kept
constant at 2 g. '

‘Hence, for each configuration, if eight frequencies

9]
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are chosen, a total number of 648 readings (pressure (320),

phase angle (320), accelé@ation (8)) have- to be taken down

before the added mass céefficients can bé calculated.
In addition, a study of the variation with

f —frequency of the phase angle, between pre;sure and acceleration,

| was also done. The procedure is similar except that the
"Repeat" button on the sweep control panel of the Exciter
Control 1047 has to be at the "in" position; with sweep rate
range at 1-10 Hz/sec and sweep rate at l'Hz/sec. Also, the
upper limit and lower limit knobs are set at the desired
fréquencies. When the shaker is in operation,bthe "Up" button
is then pressed, and the oscillaging frequency will sweep up;
it will then sweep down when the frequency hiFs its upper
limit value. This frequency sweep will keep going unless the,
"stop" button is pressed. For the phase response invést;
igation,, tests Qith different angles as well as acceleration
amplitudgs of 1.5, 2, 4.5 g have been carried out.

For the case of measuring the pressure profile on
’ the oscillating cylinder itself, this cylinder is.repfaced ‘

by the pressure-transducer-bearing cylinder, and a similar

procedure was then followed.

4,2 ANALYSIS OF THE EXPERIMENTAL DATA

This section describes the method for deriving the

l ) )
e e e st i, Aot A e P - — e e
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added mass coefficients from the experimental aata. In each
experiment, a pressure field about the measuring cylinder is
.measured. This pressure field, induced either by thé I
oscillation of the measuring cylinder itself or by other
cylinders in the system, together with the acceleration of
the oscillating cylinder are then used to determine the added

@

mass coefficients.

4.2.1 CalcuPtion of the Acceleration .

As previously discussed, the output of the
accelerometer located in the oscillating cylinder is connected
to a voltmeter. The peak magnitude of the acceleration of

this cylinder can easily be calculated as follows:

_ Accel. readings (mV) x v2
Accel. (g) Accel. sensitivity (mv/qg)

Here it should be noted that the digital voltmeter

gives a.root-mean-square value; this is why all the readings

are multiplied by Y2, as shown above, to get the peak values.

4.2.2 Calculation of the Pressure

As previously stated, the instrument used for

measuring the pressure is a high sensitivity quartz pressure

LRI Y

e St s st i)
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transducer, with a sensitivity of 257.7 (mV/psi). Although

the pressure is small in magnitude (0.1 ~ 30.0 mV), the signals
-
> é%h be picked up clearly without using ap.emplifier. There is

o T * YL

e

a phase difference between the presgufe and acceleration

signals. As a matter of convenience, we chose the pressure

" corresponding to peak acceleration to calculate the added mass
! ' coefficients. Thus, the true values of these pressure_readings
; are asseciéted with the component which is in phase with this
peak acceleration, and are given by:

-
¥

* . oy Press. readings (mV) x V2 X cos¢
Press. (psi) = Sensitivity of Press. Transducer {(mV/psi)

4
. v
>

( .

where ¢ is defined as the phase angle between the acceleration

and pressure signals. .

i

4.2.3 Calculation of the.Hydrodynémic Forces

In each teét,.the pressures around the éprface of
the cylinderxr were taken at each interval of -9°. Thus, each
experimeﬁtal set provides 40 pressure readings. With these
‘readings one can obtain the hydrodynamic forces from“@he

! following equatioﬁs:

y ' iLThe pressure transducer was not calibrated by the author;
the manufacturer's calibration was accepted.

.
N
L— :
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'FAYi = = Ri f P(8) aZnd 46 (4,2)
o .

«

where P(8) is the pressure reading taken on cylinder i at thei

\

angle 6; Ri is the radius of cylinéer i~*and d® is the measure-
ment interval (9°). (It is noted that in the case of a
single cylinder, pre;sure readings were taken at o10° ini:ervals,
. instead of 9°). . ¢ |

The integration of the above equations was done by

_using Simpson's Rule.

—

4.2.4 Calculation of the Added Mass Coefficients

Referring to Chapter 2, the force per unit length
® due to the inviscid flow field acting on cylinder i in Z and

Y directions are:

k azuz . Bzvz
FAZi = p TR E 3519' 3 + e:.l 3 ; ’ ;(4.3)
at 3t
=1
2 k azuz Bzvz T
- F.y: = p T R, 35. —t - ‘ ’ (4.4)
AYi i z : if atz 1% 'ny2 )

!

\

and f;, are the non-
2

ig
dimensiofihal added mass coeffieients and 3

-~

for i = 1,2,3....k: where e,,, e;,, &

uz/atz, azvz/atzv are’

4

L4 - ) (/‘\

\l

N

|
|
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the accelerations of ;Lth cylinder in Zz apd Y directions,

respectively. . .

v /7
43

Considering a system of two cylinders (Fig. 4.2a)

as an example, if the oscillating cylinder is accelerated

harmonically in the Z-direction, the acceleration in the

Y-direction is zero. Equations (4.3) and (4.4) then become:

. |

\ 5 3%/ >
F = N TR € [
AZi i < i atz
2 ( 32“2)
- F = p T R, £
AYi i ig atz

4

| N
Thus, the added mass coefficients in the Z-direction are:

Fazi

€ =
1 2 2 2
\ p T Ri (3 uz/at )

: - Favi :
: 2 2° 2
p T Ri (9 ul/at )

3]
'-J.
x

i

’

(4.5)

(4.6)

(4.7)

(4.8)

Similarly, the added mass coefficients in the Y-direction are

given by:

b o, = Fazi ,
. i TrR?_ (azvl/atf)

(4.9)
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£y, = AX: — - (4.10)
p ™R, (3 vz/at )
A computer program called "EXPAMC" was.written to
handle the calculation for the added mass coefficients from
the experimental data as described above. A listing of this
program and output can be found in Appendices A.4 and C.4, respectively.
i
4.,2.5 Calculation of the Effective Radius of the Boundary
Channel

o

In Suss' analytical solution (and in the "COUPRESS"
program also), the added mass coefficlents are calculaped for
a group of cylinders oséillating in a circular boundary
channel. Since most of the experiments were conducted in a
rectangular water tank, an approximation for the effgctive
radius of thé outer channel is necessary. This is done by
setting the lengths of solid walls of the cross section of
the water tank equal to th§°circumferénce of the circular
channel. Such an approximation is illustrateé for the

configuration shown below as an example. '

2

a (b c a+b+c=2ﬂR° R (4.11)
41_ ! where Ro is the effective radius of
[ b___q4 L.
the outer channel; ‘
Sketch 4.2.1.
‘Cross—-sectional view . . -

of the tank.

o N P TR et R haeott A Je s e iR A S . b et = e R
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hence,
a+b+c '
Ro — - (4.12)

This is, of course, approximate. ﬁowgver, as will be.- shown

later the value of Ro (because Ro >> Ri) has littlg influence

[
o

on the calculated added mass coefficients. ' /

-~3

©
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CHAPTER 5

- * THEORETICAL RESULTS

’

\
\

‘Iﬁ this egperimental investigation, two major “sets

f the experimental data are employed to compare with theory.
These are the pressure distribution on the surface of c¢ylinders
k}n tﬁe system and the added mass coefficients. Theoretical
results used for comparison are obtained from Suss' (1976)
analytical solution. These are presented and discussed ln

this chépter.

~ -

5.1 THEORETICAL PRESSURE PROFILES

5

Theoretical pressure profiles are caldulated using'

the computer program "COUPRESS", which is a modified versipn
of the program "COUPLING" (Suss, 1977a). "COUPRESS" gives us
the pressure distribution on any cylinder in th& system, in
q@dition to the added mass coefficients. The algorithm used
in the program is described in Appendix B. It should-be noted
that the pressure values, obtaingq\from the program output

(an example is shown in Appendix C.l) are normalized by the

product of the acceleraticn of the oscillating cylinder and
\n

the density of fluid.

A typical set of pressure profiles for the case of

three’c§1inders is shown in Figs. 5.1 to 5.5. 1In order to make

¥

I4

-
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it ga;y to understand, these profiles are plotted 180° out

of phase (Ey changing the signs of the pressure values) with

b
respect to the outputs obtained from "COUPRESS". That means

these profiles correspond to the peak accgleration'of tﬂe ¢
movin; cylinder, which ;s in the direction shown with a long
arro&; (this, it should be noted, is opposite éb the éutput,
as given by "COUPRESS"). The inner (small) arrow indicates
the cylinder gn which the pressure profile Wés take;. Also;
for ?ertain'profiles, such as the two in Fig. 58 plotted in
red, it is difficult to beqable'to perceive when they aré
Qlotted with exact va}ues from the program output usiﬁg
conventional $olar—coordinates. Therefore, a dummy value was
agded to make the suction part sHbw explicitly in a speéial /
polgr-coo?dinate with a negative value portion in the origin.
These are noWw plotted in greeﬁ. ' . ’ ‘]
Exarining these pressure profiles, one will notice
that there alﬁays is a suction zone at the back of the moving
cyiinder when it moves forward, as shown in Figs. 5.1a,,;.2b°
and 5.5a. ° These figurés also exhibit a "st;onéer coupling"
towards the’inner region of the cylinder system,»manifested
by a somewhat larger pressure.at the inner region. As t?
the coupled pressure profiles on the stationary cylinders, .
different profile; are obtained for different locations. For
the stationar& cylinaei which stood in‘ the front of the moving

cylinder. ‘The pressure distribution yields a positive reading

. 4

b

LT
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. at any oriéﬂtation. However, negative pressure gor suction) .

- ~appears on the back 'surface of the pressure measuring cylipder

when it's not located directly‘in front (with_respect to the
dirgction of the oscillation) oftthe shaking cyliﬁaer. These
1 v . effects can be seen in Figs. 5.3a, 5.2a and 5.5b. o
In order to study the effect of the outer boundéry,
" four di§tinct pressure profiles with the radius of the enclosing
channel (Ré) equal to 11.43 cm (4.5 in.), 23.368 cm (9.2 in.),

4 4

and 2:54 x 10° cm (1 x 10° in.) are plotted in black, red and

blue, respectively, és shown in Figs, 5.6 and 5.7. Evidently,
the pressure profiies for RO equal to 23.368 cm (9.2 in.) and
2.54 X“lo4 cm (1 x 104 in.) are similar. This implies that the ’

boundary effect of an enclosing channel with the former radius

« for such a system, essentially apiroximates a channel infinitely

e

/
far away, <.e., the case of unconfined fluid. Moreover, it

N seems that the existence of the enclosing channel wit@ a smaller
radius enlarges the pressure profiles; this effect is more
proncunced on the stationary cylinders than on the "self-coupled"

profiles relating to the moving cylinder - c¢f. Figs. 5.6b to 5.6a.

u K
A

Ty 5.2 THE ADDED MASS COEFFICIENTS

I3

For the purpose of comparison to experiments, the

. \ , .
/ theoretical added mass toefficient ‘matrix is calculated making
A . ’

/ . ‘ use of the computer program "COUPRESS". A listing of the

' )
()
B Y
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program as-well as output samples can be' found in Appendices

A and C, respectively. The results are shown in Tables 5.1-

5.3, for one, two and three cylinders, respectively. For

)

simplicity, only the terms used to compare with experimental data

%

in the added mass coefficient' matrix are shown in the tables.

s

Table 5.1: Added mass coefficients (A.M.C.)-for one vibrating
cylinder system. R = radius of the vibrating cylinder;

Ro = radius of enclosing channel.

.

"R_/R A.M.C. Configuration

@]
’ : - Y
2 6.2 4.96 | £, = -1.0847
6.8 (5044 | £, = -1.0700 ] —

in these tables may have a

RO (in.)

Some of the added mass coefficients

different sign when compared
with the experimental results.
The reason is that the
orientation of the ébnfiguration
is different for the experiment; Sketch 5.2.1. Cylinder 1
vibrates in the direction
shown by the solid arrows,
whereas the direction of

coupling is shown by the
dashed arrows.

as compared with the one in
theory (e.g. the cylinder numbers

change and the orientation of the

h
i
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Table 5.2: Added mass coefficients (A.M.C.) for the two-

cylinder system. <+-+: Vibrating cylinder; N\ : Fixed
cylinder on which pressure measurements were made; R = radius

of tHe cylinders; R, = radius of the enclosing channel; G, =

cylinder minimum gap/R. '

G,  G./R A.M.C. ¢ Configuration
0.375 0.3 €., = 0.39211 )

[ ] » 21 L] o
1.0 0.8 e, = 0.23573
2.0 ° 1.6 €5, = 0.12735
2.5 2.0 €.. = 0.09735 R = 9,2" ¥

- .! , 21 - J o L]

<
0.375 0.3 £,) = =0.47847 R/R = 7.3 2
1.0 0.8 £, ="-0.31205 >
2.0 - 1.6 £, = -0.19742 ‘ ‘
2.5 2.0 £,, = -0.16516
A
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Table 5.3: Added mass coefficients (A.M/C.) for the three-
cylinder system. <-: Vibrating cylinder; %\ : Fixed cylinder
on which pressure measurements were made: R = radius of the
‘cyl_inders; RO = radius of enclosing channel; Gc = cylinder

minimum gap/radius.

¥

R, (in.) R /R A.M.C. confifhiration
4.5 3.60 ='0.37567) ’
. . . 831 = -0, 67
~ ’
531 = —0.43313
” €47 -= -0.35902
9.2 - '7'36r" €5, = -0.20011 ‘e
» '“ Y
= -0.33887 , G_ = 0.375
E31 4 c 155
A \
405 3.60 e3‘l = -0.52507 = 003
. V£, = 0.17755
6.8 ;.44 ey; = -0.52235 1
2 3
£,; = 0.27101
( b4
9.2 7.;6 ey = -0.52429
fai = 0.2986§j
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axes may‘be different for experimental convenience) , Taking

the figures shown as an example, € of the left conf;guratiée//\

21

and f,, of the right configuration are identical, but they are.

21
of opposite sign. It should also be mehtioned that the added
mass coefficients in the printouts of the "COUPRESS" program

" are %5ranged in matrix.form as:

. €00 * * * Eox 200+ * ¢ ok
L El-l L4 . " . L] ell L) L] 1 ] -
* . é22 L] L] . . . el‘22 L] . -
eko L] - b.. . lekk eko - L] »® L4 ekk i
S L IR fo0 - o - Egx
x -
- Ell_‘ . . - . fll~ . . . .
. . 522 . - . . . f22 - . . )
- . - L ] . . L ] . . L] L] - ’
Eko L ] : L] - ‘gkk LA' fko - . [ ] L] fkk)
N -

where the elements subscripted with 0 are the added mass
coefficients f%r the enclosing channel, which are of no interest
to us in this thesis.

- By making use of the "COUPRESS", it was found that

A3 YL

4
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the existence of the enclosing chanmel, reasonably close to

the cylinders, increases the coupling effect ih one direction

- » =

an? decreases it in the other direction.” Considering the
two-cylindex cases as an example, the "COUPRESS" output,
shown in Appendix C.2 indicates that closeness of the enclosing
channel causes coupling in the % direction to increase while
coupling in the Z direction to decrease, as compared to the
output in Appendix C.3. - .

Since the theoretical added mass coefficients used
for comparison are obtained from Suss' analytiqél so;ution,
it is of particular importance tha Qne should check the
reliability of this theory - furfhzzﬁi%‘the checks already

undertaken by Paidoussis et al. -(1977), who compared this

. theory to that of Chung and CHen (1977) . There are two

theoretical models available for d01ng thlS job, a new "viscous"

model by Chen (1976) for the .case of one 51ngle cylinder,

\

and another by Mazur (1970) for the two-cyllnder case. A

brief description of the final results of these theories are

outlinéd in what follows. . Q~f . o

t -

S.S. Chen's Theory

¥

/In this theory, Chen defines the added maés

coefficient for an 1nf1n1te1y long cyllnder oscmllatlng in

viscous fluld confined by a cyllndrlcal annulus as:

ot e e ———— ) B ) . - - - 1 A et Lok AT e e 1n g L &P = St o r o e vt m e e
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C. = Re (H); X (5.1)

H is given by: ..

.t
[az(1+y2)-8y]sinh(B-Y)+2a(2-y+y2)cosh(B-a)-zyz/EE - 2av/o/B

H :
0% (1-02) sinh (B~0) =20y (1+Y) cosh (B-a) +2Y2/GE + 2a/3/B
(5.2)
provided o and B are large, where
v a = kr , (5.3)
B = kRO ’ (5.4)
k = Yiw/v ; (5.5)

in the above, Re(H) represents the real part of H, w is the
frequency of oscillation, v is the kinematic viscosity of

the fluid, r and R, are the radii of the oscillating cylinder

and the confining outer cylinder. A computer program written

#

to handle these calculations is listed in Appendix A.2. It

is noted that tHe ‘added mass coefficient,'obtained from Chen's

N ®
viscous theory, is a function of frequency, while the one

ffom%Suss' is frequency independent. However, the effect of

frequency is not significant, as can be seen in the following

table. -
Tas pointed out by one of the Examiners, the last terms on both
]

humerator and denominator should be 2ayv/y [Errata, J. 1
1976' °’9—8’ p’7oo]- ' . [ ’ App -Mecho,

\
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( ) Table 5.2.1: Comparison of the Added Mass Coefficients -
obtained from Chen's theory to the ones from Suss' theory.
\
4 Frequency ® = 6.2in. R/R=4.96) | R, =9.2 in. (R/R=7.36)
(Hz)
fll (Chen's) | discrepancy fll (Chen's) | discrepancy

50 =1.090200 0.50% -1)42802 0.50%

70 | -1.089355 0.43% -1.041999 0.42%

80 ~1.089057 0.408 | -1.041716 0.39%

90 - | -1.088810 0.38% -1.041480 0.37%

" 100 -1.088601 0.36% -1.041282 0.35%

110 -1.088420 +0.34% -1.041112 0.34%

130 -1.088126 0.31% ~1.040832 0.31%

140 ~1.088003 0.30% ~1.040714 0.308

150 ~1.087893 0.29% -1.040610 0.29%

160 -1.087791 0.28% -1.040514 0.28%

i7o -1.087702 0.27% -1.000427 | 0.27%

180 -1.087618 , 0.27% -1.040349 0.26%

1 ~1.087540 0.26% -1.040276 |  0.268

200 -1.087469 0.258  -| =1.040209 0.25%

The percentage discreparncy in the above table is defined as,

_ Chen's A.M.C. - Suss' A.M.C.

Discrepancy (%) = SussT A M.C x 100,

4
N (5.6)
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with the Added Mass Coefficients from-Suss' theory a follows:

' . Fid

-1.08474 ..

[
it
i,

for Ro 6.2 in. (Ro/R ‘4.96),'fll

i
it
0

.~ for R, = 9.2 in. (R /R = 7.36), f -1.03762

11
Agreement for the coefficients between the two
theories is excellent (less than 1%). The discrepancy becomes’
smaller as frequency increases. In other words, Varidtioﬁ of‘
the coefficients can be neglected when the oscillating
frequency is high. :This is consistent with the fact tﬁat-
v}scous effects can be expected to be most important at low
Reynolds numbers - 7.¢. for a given amplitutde, the rms ‘
velocity of the cylinder is lower, when the frequency is lower.
Comparisons between Chen's theory and the experimental results

\
have also been made and shown in Tables 1 to 3 (pp. 108—510).

Mazur's Theory

Th;s theory is easily found by referring to Chen's
paper (1975a), in which Mazur's theory is applied to the study
of the dynamic response of two parallel circular cylinders
in an unconfined fluid. Mazur obtained the hydrodynamic
forces based on a two-dimensional theory - assuming that the
three-dimensional effects are vefy small for large wave-length
motions, as discussed by Chen (1974). Thus, the theory is

e same assumptions as Suss' or,Chen's, but the result

-4
. ]

) \ f
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4

Oobtained is'in a neat closed form - at least only for this

case of two cylinders. The hydrodynamic forces are expressed
q

as follows:

§

(a) for in~-plane motion (Z.e., in the plane of the cylinder

T

long axes),

azul 2)2982
1 1M1 3;2 1"3 \R ")
2 ’ 2
3%u R..2 5“u )
- - 2 1 1
F, = -Mu, —= + MU (—-R) — - (5. 8)

3%, R,\2 3%, .
Fl = -Mllll ——T - Mlu3 (-ﬁ_) —3 (5.9)
ot ot
: 3%u, R;\2 9%u, \
F, = -M,u ~ M,u (-——) — (5.10)
2 2¥2 72 #3\®) 2

where ?l and Fz are the hydrodyndmic forces on'cylinder i and
2, respectively. R here is the center-to-center distance

Between the two cylinders, Misis the displaced mass of fluid
by cyllnder 1 w1tK)rad1us Rg? while M, is the displaced mass

c, '
of fluld by cyllnder 2 with radlus R,. The U's in eguatlons

¥
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(5.7)~(5.9) are given by:
RA2R2(R. 2R D)+ (RL2-R. 22 (<X
= 172, 2 71 E
M, = 1 + k
1 - R2g 2 ,
R k=1
rRI-2r%(R_%4+R, %) +(R, %R, D) 2 ( —
_ 1 "R 2 )
U, = 1 + k
2 R%R. % 4.
y 2 k=1
) ?
‘\ LY
r4-28% (R, %+r,2) + (R, 2-R, %)
1 TRo 22 ™1
Wy =1+ 5 :
R, “R
1 ®2 k=1
- 4
with, ’
R2-g_ 2.p 2 R2-. 2. 2\ 2
ho= 20 —pgt ) -1
1%2 172
2.2 2 [ ,2. .2 _ 22
R°+R. °-R R®+R, “-R
h, = 2&n 1 2 + 1.2 {- 1
1 3ER N ' “2RR;
2 -
R%_g 2_g. 2 R?-R, 2+R.2\?
h, = 24n 1 2 ___il___ék -1
2 2 2RR, RR, -

exp[—k(h+h1)]

sinh (kh)

@

exp [~k (h+h,) ]

!

. (5.11)

I

stnh (kh)

1/2

1/2

r

(5.12)

"Zk* exp (~2kh) coth (kh) }

(5.13)

»
(5.14)

P (5.15)

(5.16)

1

Now, recalling equg%ions (2.31) and (2.32) of Chapter 2, we

have:

o

-~

<

LY

Ay

")

1.A printing error was found in S.S. Chen's paper, it should be k

instead of h.

v ot

-
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2 82V -
Fazi =¥ Z 19,‘_2"+e “'2_ ' (5.17)
k azu azvz
i TH g T e T -, (5410)
" L=1 te t *

“

For so~called "in-plane" motion, with coordinates shown in

, the figure on the R.H.S., the acceleration in

[ —— .- T T AR i R e S b e s

the Z~direction is zero, Z.e., azuz/at? =
and equatlon (5.17) becomes:

4

F.u: M. £ — ]+ M, , © (5.19) -
AYi 1 11 8t2 2712 atz
S
Similarly, for out-of-plane motion, Bzvz/at2 = 0, and equation
(5.17) becomes:
a.zul - » 32112 ® .

Now, comparing equation (5.7) to (5.19) and equation

(5.9) to (5.20), one may find that the non-dimensional added

mass coefficients between the two theories can be correlated as:

J

€ (5.21)

‘11 T "¢y

L
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d M, . 7R,\2
I 2
12 T TH, M3 ( R ) ' (5.22)
"l-:
fll = -ul ’ 3 (5-23)
; M R.\2
1 2

where once again, it is noted that Mazur's notation is\used
on the R.H.S. of the equatrions (in our case, R'is defined as
12 and so on). |

If the acceleration as well as the radius of the two
cylinders aré tﬁe same, there will be no difficulty to prove

that Fl = F27 also Hy and u, are then identical. Calculatio9s

of ¢ and 612 are handled by using a Hewlett-Packard digital

11
computer program. A listing of this program is given in
Appendix A.3. One should be reminded here phat‘theﬂgystem
which Suss considered is a cluster of cylinders oscillating

in fluid w}th a confined bounéary, In order' to be able to
compare with Mazur's results, the coefficients are calculated
using "COUPRESS" with the assumptién that the radius of the
enclosing channel is essentially infinite{'accomplished by
employing a value‘B,OOO times the radius of the cylinders
(10,000 in. to 1.25 in.). Results obtained from Mazur's theory,

for different cylinder center-to-center distances are tabulated

in Table 5.2.2 below.
\ - .



P
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, Table 5.2.2: Added Mass Coefficients for the two-cylinder

system obtained using Mazur's theory.

P b

Cylinder center-to No. of terms for AM.C.
center distance (in.) solving the equation
!
&
2.875 K =8 €11 = -1.1218
€19 = -0.4174
I
| - 1 -
, - ) = 2 -
| « 3.5 K=25 €41 = 1.0441
! €12 = -0.2628
. ‘ 4.5 . K =4 €41 = -1.0141
€19 = -0.1556
5.0 " K=4 ?ll = -1.0089
Q €19 -0.1256

The added ﬁass coefficients calculated b& "COUPRESS"
turn out to be exactly the values obtained from Mazur's
solution (to four significant digits): According to this, it
is reasonable to say that Suss' theoretical mode% is reliable

for- the two-cylinder cases, at least in the case of unconfined

fluid. As there is nothing special between the two, three or k
cylinders, it can be said that Suss' theory stands up well,

when compared to the others.

T SS3 A Tapberre $44 Sda s
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CHAPTER 6 -

EXPERIMENTAL RESULTS

- 1§kn this chapter, three sets of experimental results,

classified according to the number of the cylinders with
conﬁ%gurations shown in Figs. 4.4 to‘4.6, aée presented.
Through all the cases, the moving cylinder was oscillating
vertically at a frequency ranging f;om 70 to 250 Hz (displace-~

3

ment ranging from 2.96 x 10 - R to 2.08 x 19"4 R; the radius

of the cylinders (R) is 3.175 cm (L1.25 ‘in.)), with the
hagnitude of acceleration of the shaker (defined as As) kept
constant at 2 g. Perfect sinusoidal signals were obtained

for both the pressure signals measured on the stationary
cylinder and the acceleration of the moving cylinder (defined
as Ac). Iﬂ.addition to the added mass coefficients, several
other aspects are explored, such as the pressure distribution
around the surface of the stationary cylinder, the phase angle
(defined as ¢) between the pressure and acceleration (Ac)
signals, and the pressure and phase angle response to freguency
3 .

=

change.

\

6.1 ONE CYLINDER . . ey

For this test, besides thq accelerometer, a pressure

transducer was also placed inside the oscillating cylinder to

vt W e
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meaqure;the pressure field induced by its own motion. The

experiments have been performed with three different
configurations (Figs. 4.4a to 4.4c). The moving cylinder was
oscillated at a frequency varied from 50 to 200 Hz, where in
the readings of pressure, acceleration, as weil as the phase
angle between them, were taken down at each 10 Hz interval -
except at 60 and i20 Hz at which resonances existed (the
former mechanical and the latter probably electrical). The
pressure transducer used in this experiment is a highly
sensitive quartz pressure transducer having a sensitivity of
257.7 mv/psi and acceleration sensitivity of 0.00121 psi/g,

y
as stated previously. Since the transducer was m?unted on
the moving éYlinder, the pressure compongnt dﬁe to the
acceleration of the transducer itself must be subtracted when
we calculate the pressure values. These small acceleration-
induced pressure components were obtained by oscillating the
cylinder in water with the pinhole on the top surface of the
1$ck-nut sealed, wpen no water was in the pressure-sensing
chamber (see Fig. 4.1). With the cylinder oicillating with an
acceleration magnitude of 2 g, the magnitude of these small
components was found to vary from 0.0 up to 0.005 psi,
depending on the orientation (0) of the pinhole (where pressure
éignals were sensed) while the "true" pressure readings - with
the éinhole uncovered - vary from 0.0 to 0.15 psi. Here it

is noted that the acceleration compensating feature of this
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transducer is adequate, only as long as the pressure measured
is relatively high. For our case, where very small pressure
signals are involved, the added correction described above
(for each 9) is necessary.

As it can be seen from Suss' theory, the added mass
coefficients should only be geometry-dependent. In other
words, the pressure should not be affected.by a change of the
oscillatihg frequency. However, the pressure curves plotted :
against frequency (Figs. 6.1 to 6.3), show a high and low peak
appearing at 110 and 130 Hz, respectively. The curves are not
straight as expected, but go up and down as frequency changes.

Another, initially unexpected observation, is that
a phase angle (¢) exists between the pressure and acceleration
gsignals. The variation of this phase angle with frequency is
small (within 30°). On the top half sufface of the moving *
cylinder, 4% Qaries between 3° and 10°, whereas the bottom half
has a variation of 170° to 180°. However, for the region near

8 = 90° and 6 = 270°, the variations of ¢ are twice as large.

*Such typical distribution of the phase angles around the

cylinder is shown in Fig. 6.4. These phase variations are
thought to be related to viscous effects; theoretically,
according to inviscid theory, the upper surface of the cylinderx
pressures should be in-phase and the lower surface ones 180°
out-of-phase with acceleration.

Al
The pressure distributions around the surface of

C e N LT SO kK miaras
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the moving cylindef for ;he arrangements of Figs. 4.4a to 4.4c,
étcdifferent frequencies, have been plotted in Figs. 6.5 to
6.7. These pressure profiles were taken at the moment that
the moving cylinder reached its peak acceleration. As was
mentioned earlier, the phase angles, ¢, at the bottom half
surface have a value about 180°, which give the pressure
readings at this half portion of the profile négative values
when they are multiplied by cos ¢ (see the calculation of
pressure in Section 4.2.2). This implies a suction occurs a?
the bottom of the cylinder when it moves up, which is physically
reasonable. At the position where the cylinder reaches its
beak acceleration, the negative part (suction) of the pressure
profile is almost equal to the positive one.

For 30 and 40 Hz oscillation, the profiles are not
Symmétric as shown in Fig. 6.5, both in size and in direction.
The situation improves as frequency goes above the resonance
frequency zone (about 60 Hz). Theoretical prediction of
| ' the pressure profiles is in good agreement with experimental
| results for all the three cases (Figs. 4.4a to'4.4c).

A comparison of the experimental added mass
coefficients fll for the configurations in Fig. 4.4 to the
theoretical results obtained from the computer program
"COUPRESS" are shown in Fig. 6.8. Agreement for all tHe cases
is excellent, with an average diécrepancy*within 5%. These

) results indicate that the water tank is large enough to avoid

*

Suss' A.M.C., - (Exp. A.M.C.) ave.-
Suss' A.M.C. ’

x 100%.,

Ave. discrepancy =
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any slgnificant side effect to the measurements due to the
existence of a free surface; (as shown in Figs. 4.4a to 4.4c
one-cylinder tests were conducted with the tank not covered).
Also, the approximation of a rectangular tank by an equivalent
circular channel is evidently acceptable.

It should be noted that the signs for the added
mass coefficients used in all the coefficient plots in this
thesis correspond to theoretical values obtained from
"COUPRESS", and are not necessarily those obtained from the

experiments ("raw" values) as already explained in Section 5.2.

6.2 . TWO CYLINDERS

To study the coupling effect induced by €he moving \\\’
cylinder, we start with a simple system of two cylinders. The
experiments were carried out with the six distinct configurations
shown in Fig. 4.5. For each configuration, six to eight
different oscillating frequencies were chosen. The moving
cylinder oscillated vertically while the pressure measurements
were taken on the stationary cylinder. . .

= The tests were first conducted for the geometries
of Figs. 4.5a, 4.5d, 4.5e and 4.5f. The variation of pressure
with frequency behaves somewhat similariy to the case of l

. one cylinder, i.e. the curves arg not straight as expected,

as shown in Fig. 6.9. _Mbreover, the acceleration of the moving

b mrtmm ot S
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cyllnder (Ac) does not remain constant with frequency, but we

obtain a zig—~zag curve instead. This unusual phengmenon urges °*

‘one to question the stiffness of the expefimental setup, in

particular the tube which carries the oscillating cylinder. As
described in Chapter 3, this aluminum tube has a length of

25.4 cm (10 in.) with outside and inside diameters of 3.81 cm
(1.5 in.) and 2.54 cm (1 in.), respectively. It seems too

heavy for such a small tube to carry a 4.55 kg (10.0 1bs) load

‘(the oscillating cylinder) and to oscillate it at an

acceleration of 2 g with frequency up to 200 Hz.

To eliminate this weakness, two aluminum fins were
added to stiffen the tube. Also, a certain amount of material
was removed from thg inner surface of the oscillating cylindef.
As a result, its thickness is now reduced éo 0.635 cm (0.25 in.)

s

and its weight reduced proportionally. Moreover, to ensure

that the pressure transducer mounted in the moving cylinder

. does not sense fluctuating velocity components tangential to

the cylinder, <.e. anything other than the pressure normal to
the surface of the c¢ylinder, the depth of Efe pinhole in the -
lock nut (see Fig. 4.l1) was increased to 0.38 cm (0.15 in.)
for the original 0.254 cm (0.1 in.), which is six times the
diametér of the hole. At the same time, some additional steel
paré were welded to the supporting structure of the shaker.
Rema;kable improvements were seen in Figs. 6.10 and 6.11, as-

compared with Fig. 6.9. On the other hand, a significant

,
e g
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» !
.resonance occurs to the shaking system at a fregquency near 3

85 Hz, Hence,,tﬁe f;equency range chosen for measuring tbe. E
pressure was now changed to cover 100. to 250 Hz.

An investigation foc@sed on the behavior of the
phase angle kdenoted by ¢) versus freguency with 8 as parameter;
it is recalled that ¢ is the pﬁ%ée lag between pressure and
acceleration (Ac) signals. During the tegt, the shaking control

was set in the "auto frequency. sweep mode", with a frequency

cylinder is oscillated with a change of 1 Hz/sec in frequency.
The response of ¢ was taken down from the transfer function
using a HP 4520A Digital Signal Analyzer. Two qonfigurat%ons .
;;re studied. For the arrangement of Fig. 4.5a, values of ¢
plotted against frequency’at differeht % are shown in Figs. 6.12
to 6.15. It was founé that at the measuring point where the
pressure signal is strong (e.g. © = 0°), the phase angle
between pressure and Ac is small and sen;iﬁly constant with
frequency (within 5°), while at the less sensitive region such
as 8 = 45° and 315°, ¢ varies between £° and -20°; it then
increases to between 90° and -20° at 8, = 135° and 225°, and
reaches its maximum at & = 180°, where the wvariation of ¢
versus frequency (A¢) is between 165° and -10° for frequency
changes from 100 to 300 Hz (Fig. 6.15a). It should be noted
thét for all the cases, ¢ curves are stable and repeatable.

Y
Also examined was the response of ¢ to changes in Ac. Large

]

[y
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~

changes in the ¢-versus-frequency curves with varying Ac were
obtained only at the bottom half su;:facg of the stationary
cylinder, as is illustrated by two typical plots shown 1n
Figs. 6.16 and 6.17. .

For the configuration of Fig. 4.5b, the strong
coupling region (Z.e., the region of strong pressure readings)
was found for 6 between 0° and 180°; at this sensitive region,

the ¢ curves shown in Figs. 6.18 to 6.21 have smaller

fluctuations with frequency than those at the rest of the

.circumference. However, there is an exception at 8 = 90°

(Pig. 19a), where the pressure sensed by the pressure transducer
is the one normal to the direction of the acceleration of the
oscillating cylinder. At this particular measuring point, A¢
seems to violate the previously mentioned variationjtrend, i.e.
the weak signal region always yieldsl iarger A¢. The influence
of Ac on the ¢~-versus-frequency, shown in Figs. 6.22 and 6.23
is similar but smaller than that of Figs. 6.16 and 6.17 due
to the fact that coupling effect is weaker for this configuratidn.
Consistent results were obtained for the same configuration
with cylinder gap increased.

Pressure profiles for the various two-cylinder
configurations are displayed in Figs. 6.24 to 6.28. The
black curves represent the theoretical pressure profiles
obtained from the computer program "COUPRESS" '"after multiplying

by the values of the density of fluid and the acceleration of
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the movin;; cylinder at the corresponding frequency, whereas
the red ones are the experifnental results. Of all the f_éur
pro®les in Figs. 6.24 and 6.25, two are not symmetric; they
also exhibit a small concavity at the bottom left. The other
two profiles are in agreement, in terms of shape, with the
theoretical data. In certain frequencies, the econcavity of
the pressure profile becomes larger. A possible explanation
for the asymmetric profiles is that when the moving cylinder
is oscillating at a frequency which happens to be one of the
resonance frequencies of any part of the system, the neglected
side (horizontal) motion of the moving cylinder becomes |
eﬂl;rged; hence, an asymmetric pressure distribution was
obtained. It is very encouraging to see a consistency in
pattern between the experimental and theoretical pressure
profiles for all the two-cylinder cases. The change in shape
predicted by theory when the cylinder gap increases, as well
as the concavity (which exists only for smal\l cylinder gaps)
at 8 = 459, af:\f well reproduced by the experimental pressure
érofiles. No improvement was found after the experiéfgntal setup
was modified, as can be seen in Figs 6.25a and 6.25b and also
Figs. 6.27a and 6.27b. In general, betEer agreement between
theoretical and éxperimental profiles is obtained for
confi’g{urations with larger inter-cyiinder gaps. ;

The graphs in Figs. 6.29 to 6.32 are the added mass

coefficients plotted against frequency for all two-cylinder

- ~
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cases. In these fiéures, the moviﬁqacylinder oscillated in
the-direction’ shown by the solid arrow, while the dashed-line
‘Arrow iﬁﬁicates the direction of the calculated force on the
stationary cylinder and hence of the added mass coefficient.
[This also applies to the three-cylinder cases to be discussed

later]. 1In examining these résults, it should be pointed out
that the experimental added mass coefficients are always
larger than the theoretical ones for the in-line configurations
(e.gZ‘Figs. 4.5a and 4.5c) and smaller for the side-by-side
configurations (e.g. Figs. 4.5b and 4.5d). Moreover, coupling
as "measured" by the experimental coéfficieﬁts for the in-line
configurations ‘is larger than coupling for the side-by-side
configurations, while the theoretical values expibit the
feverse tehdency. Also, coﬂﬁiguiations of larger inter-
cylinder gaps seem to be in better agreement with theory than
smaller ones. The modifi&ation of the experimental setup
discussed earlier in this section does show an improvement of
o
agreement between theory aﬁd experiment for the configuration
of Fig. 4.5a, as shown in Fig. 6.29; however, it turns out to
make agreement worse for the configuration of Fig. 4.5c, as
shown in- Fig. 6.31. Thud‘:hespite the fact that the ppeséure-
yersgs—frequency curves were improved by thé modification,
'the added mass coefficients de;ived from the pressure
distributions *are not’ necessarily closer to the theoretical

results; in any case, the gsame added mass coefficient can be

!
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obtained’ from many possible pressure distributions.

6.3 THREE CYLINDERS

In order to proceed further in this study of hydro-
dynamic coupling forces, a system of three cylinders was
considered next. Tests were first conducted with two ?ifferent
cylinder arrangements and a free surface on the top, éé shown
in Figs. 4.6a and 4.6b. The shaking system was arranged in '
sﬁch a way that it gives the moving cylinder a vertical motion
(shown in the figure by the long arrow) with a constant
acceleration of 2 g magnitude. The inner arrow indicates the
cylinder where pressure measurements were taken. It is
recélled that the cylinders used in all theﬂgxperiments
discussed in-this thesis have the same radius of 3.175 cm (1.25
in.). Since the cylinder system is symmetrical (in the sense
that the geometry is that of an eguilateral triangle), the
coupliﬁg effect on either of the stationary cylinders due to
Lhe oscillation of the moving cylinder should be the same.
Therefore, only one of the stationary cylinders was choseh
on whiéh to take the pressure measurements. .

- Later, tests were done with the same cylinder

geometries as above, except that a Plexiglas cover was put on

‘the water surface. In addition to these, cases of three

cyiinders enclosed by a circular channel were also investigated.

The geometrical configurations for these latter cases .are
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illustrated in Figs. 4.6c to 4.6f.

Figures 6.33 to 6.42 show the pressure at different

8 plotted against frequency for different configurations.

Those shown in Figs. 6.33 and 6.34 were taken from the tests

before the modification of the experimental setup. A

resonance frequency z&ne occurs at 100 to 150 Hz, where the

acceleration of the moving cylinder does not correspond to
that of the shaker. Hence, the pressure behaves in a peculiar
way. Pressure taken at positions where the signal is strong

(e.g. € = 0° to 108°), increases gradually with frequency,

while at weak signal regions (e.g. 6 = 243° to 270°), the

pressure tends to decrease with increasing frequency. The
situation improved after the modificat%on of the experimental

‘ setup, especially, for Ac as plotted in Figs. 6.35 and 6,36.

‘\\ Unfortunately, no similar improvement in the pressure curves
\could be observed, contrary to expectation. For the dase of the
cylinder geometry of Fig. 4.6d4, a fairly straight line for .

., the variation of pressure with respect to frequency change is
obtained, as shown in Fig. 6.36; on the other hand, the
corresponding curves (Fig. 6.35) for the arrangement of’

Fig. 4.6c¢c do not . This implies the aforementioned resonance
in ‘the éystemuis not the only cause that gives rise to the
strange behavior of pressure as a function of frequéncy, but
that cylinder geometry is also an important factor.

For the cases of three cylinders arranged in the

ol
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center of an 11.43 ¢cm £3;§ in.) radius circular channel, two
additional fluids other than water were used to extracE more
information concerning the effects of density and viscosity
on the added mass coefficients. The properties of these

fluids, as.well as of water for compqrison, are given in the

following table. The viscosity units of C.S. stand for

centistokes.
N Specific Gravity Viscosity
Liquid at 15.6°C (60°F) | at 40°C (104°F)
"Ethylene glycol 1.115 : 20 C.S.
Water ) 1.0 1.0 C.S.
Lubricating oil
(ESSO (NUTO ,A-10) ) 0.860 10 C.s.

In Figs. 6.37 to 6.39, we can see a sharp drop of
the acceleration of the moving cylinder (Ac) at 270 Hz for the
tests with water and ethylene glycol, but for oil, it shifts
10 Hz higher. The drop in acceleration is assumed to be the
result of antiresonance, and the shift in frequency to be a
combined effect of the density and viscosity of the fluids,
where viscosity limits th}s sharp drop while density exaggerates
it. Moreover, it shows that fluid with lighter viscosity

gives the Ac curve a steeper slope. “

et bt e .
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i; Another interesting feature to point out is that,

’ afte; a sharp drop, Ac goes up again as frequehcy increases.
However, the three different fluids give three different kinds
of resbonse.

’ As to pressure measurements, the biggest signals
are obtained at 6 = 54;, while at 6 = 243°, the readings are
the smallest. The effect on pressure of density changes is as
expected: the higher the density is, the larger are the
signals. Also the variation of pressure versus frequency is
smoother+for oil than for water or glycol.

For Figs. 6.40 to 6.42, which are for a different
arrangement of mowving andimeasuring cylinders, we notice that |
both pressure and Ac curves are no£ as smooth as those in
Figs. 6.37 to 6.39. Several peaks appear between 100 and‘200
Hz; a similar drop in Ac (antiresonance trough) occurs at
270 and 280 Hz. Nevertheless, o0il exhibits "better", z.e.
smoother behayior. With this configuration, the maximum
pressure readings were found at 6 = 108° and the minimum at
® = 270°. No remarkable distincfioné of the pressure curves
can be seen that could be attribhted to the effect of density
or viscosity of the fluids. According to these results, one
may say that fluids with lighter density and higher viscosity
give better performance, eventually leading to a closer
agreement with theoryﬁ'as will be shown later in this section.

¢ A significant difference in performance of both the

C T \
, These results are contrary to expectation and cannot be
explained. ‘ : .
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pressureaahd Ac versus fréquency‘was observed when comparing
Figs. 6.35 and 6.36 to Figs. 6.37 and 6.40, respectively.
Pressure and Ac curves have higher slopes with frequency for
clusters in a circular channel than in a rectaggulaf boundary,
and are also smoother especially for the latter case. Ag’ﬁgg
a big jump after a minor drop at about 270 Hz for the x
rectangular boundary syste& rather than a tremendous drop
_observed only for the ‘circular channel system.

It is difficult to suggest the true reasons fo; the
unexpected behavior of the pressure, as well as Ac, with
respect to frequency change. However, results reveal that
cylinder geometry and the boundary effect play important roles
in this strange performance.

The cases of three cylinders in the rectangular tank
with a cover on the top and in a circular channel were chosen
to study the variation of phase angle (defined as A¢) versus
frequency. Results in Figs. 6.43 and 6.44 show that large A¢
only existed at the region of the cylinders where the pressure
signals are weak. With a circular boundary channel, the
behavior of ¢ remains more or less the same as for the
rectangular channel. The increase of viscosity of fluid seems
to have a damping effect on the fluctuation of ¢ versus
frequency, which seems reasonable, as may be seen from Figs.
6.45 to 6.50. Althougﬁ no significant effect is found due to

the difference in boundary, the pattérn of ¢ curves in Fig. 6.48
. : : / |

-
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is rather different when compared with Fig. 6.44. Also A9
seems larger for the arrangements enclosed by the circular .
channel.

A few additional tests were made to observe the effect
of changes in acceleration on the phase angle between pressure
and acceleration. Three plots shown in Fig. 6.51 illustrate
that the diffgrence in acceleration has no effect on ¢ for
the arrangement of Fig. 4.6e, at the azimuthal region where
coupling (7.e. the pressure signal) is strong. Outside this
region, there is a small effect on ¢ as Ac is changed. As
for the arrangement of Fig. 4.6f, even at the pressure sensitive
region, two distinct but similar ¢ curves are obtained - shown
at the bottom graph of Fig. 6.51.

The pressure distributions, on the surface.of the
stationary cylinders are considgréd next. Some typical
examples taken at chosen frequencies were plotted. From
Figs. 6.52 to 6.55 it is clear that, as long as the cylinder
geometry remains the same, pressure profiles of similar pattern
are obtained despite the difference in channel boundary, as
well as with smaller acceleration levels (e.g. 1.5 g). At
high frequency, there always is a small concavity at 8 = 270°.
.Theory (plotted in black) gives the same shape; however, the
Econcavity is faint and occurs about 30° higher (6 = 300°), as
compared with experimental resuifs. Furthermore, the theoretical

ma%imum;values of pressure were predicted to occur at 0 = 459,
Ty “ , i

t

.
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rather than 54° as observed in the experiments.‘ No improvement
can be seen from the tests done after the experimental setup
was modified. (It is recalled that in this modification, the
tube was stiffened, the lock nut was modified, the weight of
the moving cylinder was reduced and the shaker supporting
structure was welded with additional steel bars to increase its
stiffness). |

Also of interest are the pressure profiles of
Figs. 6.56 to 6.58. A suction takes place between 6 = 135° to
270°, except in the case with free surfaces on the top; this
is believed to be the effect of the free surface. Another
important fact to be notea is that the experimental pressure
profiles are always smaller than those predicted by theory.

No extraordinary difference can be found between
pressure profiles obtained from a cluster in a circular channel
or a rectangular boundary. Notwithstanding, a smaller boundary
does give a little influence on the shape of the profiles.
By examining Figs. 6.59 to 6.61, one may see that the part
of profile at 0 about 180° to 270° is flatter than it is in \
Figs. 6.52 to 6.55. Also, the profiles in Figs. 6.62 to 6.64
are more “slendeEf than those in Figs. 6.56 to 6.58 in 2Z2-
direction. Furéhermore, pressure readings do increase as a
result of a smaller boundary, which agrees with theory.

The added mass cocefficients derived from pressure

profiles for all three-cylinder cases are plotted and shown



in Figs. 6.65 to 6.78, where the values of the theoretical
added mass coe%ficients is represented by a dashed straigﬁt
line since it is frequency independent. Results in Figs. 6.65
to 6.67 show that, at high frequency (above 150 Hz), the
coefficient e37 is always greater than the theoretical value,
while f31 is less than the theoretical one. This is also true
for test results obtained after the experimental setup was
modified. Nevertheless, the modification does give better
agreement with theory, as may be seen by comparing Figs. 6.68
to '6.67. Tests using two different levels of acceleration |
(f.e. Ac = 1.5 and 2.0 g) vyielded similar results, as shown
in Figs. 6.65 and 6.66; that means the added mass coefficients
varied in a similar way as frequenéy changed. No significant
difference can be seen from results in Figs. 6.66 and 6.67
(showing the effect of having the tank covered or uncovered) ;
in fact, the existence of a free surface does not create any
unwanted side effects, but paradoxically gives results in
slightly better agreement with theory, as compared to those
with a cover on top, especially at high frequéncies. The
added mass coefficients €3y and f31 for these two confi&%rations
(2.e. Figs. 4.6a and 4.6c) yield an average discrepanéy of 15%.
Another study of the effect of free surface for
three cylinder cases was done by measuring the pressure
distribution on both the stationary cylinders for the

configuration shown, along with results, in Figs. 6.69 and 6.70.

¢
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Similar variations of the added masslcoefficients with
frequency change were obtained; 531 is in better agreement with
theoretical values than €317 with an average discrepancy of
20% for the first ;nd 50% for the latter. Keeping the same
cylinder geometry, but putting a cover on top of the water
surface, €3l improves to an average discrepancy of 14%, and
€4, to 15%, as shown in Figs. 6.71 and 6.72. It is finally
noticed that tests done after the modification of the
experimental setup produce a notable agreement with the
theoretical values for 531 at frequencies above 150 Hz..
Results in Figs. 6.73 ﬁo 6.78 reveal that the added
mass ccefficient €31 decreases as frequency increases and f31
is always greater than the theoretical value, but both €31 and
531 are smaller than the theoretical values at all frequencies.
As far as the effects of density and viscosity on the added

mass coefficients are concerned, no particular remarks can be

made; however, results obtained from mineral oil agree better

with theoretical predictions than those in water and ethylene

glycol.

o e e e e+ =



. ’ CHAPTER 7

DISCUSSION

The test results presented in the previous chapters
will be:discussed under the following four headings: . (i) .
Measurements of the pressure versus frequency; (ii) Phase angle
between pressure and dcceleration; (iii) Pressure distributions;

and (iv) The added mass coefficients. \ o

7.1 MEASUREMENTS OF THE PRESSURE versus FREQUENCY *

[

@

Measurement of the structural naéural frequencies
was made in order to study the response of the“eﬁperlmental
setup and its likely effect on' the pressure measurements. An
acceleromeger was attached to each component of ‘interest of

the experimental setup. When the shaker was shaking, a signal

was picked up and fed to the Hewlett Packard 5420A Digital

Signal Analyzer, where the power- spectral density of the
vibration was obtained. The ouﬁput was displayed in the form
of a spectral plot of magnitude vqréus f;equency on the screen.
A hard copy could be obtained by~using the HP plotter interfaced
to the system.' As sho&n in Figs.l7.l to 7.6, several peaks
appear in the frequency zanf of 0 to 400 Hz for each component,

which happened to be the working frequency zone of the

experimental study of the added mass coefficients. Further,

~ 1N
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different natural frequencies were obtained for the same

comgonent in different -directions as illustrated in Figs. 7.1

‘and 7.2. Due to the many natural frequencies which occurred

inkphe testing frequency range and the complexity of the
experimentalssetup, a, small exé&tatién will induce a significant
resonance to the system, exhibited for example in Figs. 7.2

to 7.6. It'is difficult to claim that tHe resonances and the
complexity of the system are the major causes for the haphazard
observed variations of pressure yersds frequency. However,

it cannot be denied that they will have some effect on the
pressure readings. )

It should“be noted that the measurement of natural
frequency of the experimental setup descriﬁedlabobe was done
before the modification. As the tube‘was stiffened, the
thickness of the hollow oscillating cyliﬁdg; was reduced, and
the support of the:shaker was stiffened, certain improvements
on"tﬁe response of pressure to frequency were obtained as
shown in Figs. 6.10 and §.11 for two-chindervcases and Fig.
6.36 for three-cylinder cases, except for Fig. 6.35.

On the other hand, comparing Fig. 6.35 to 6.36,
obtained with the same rectangular boundary but with different
cylinder geometry, the pressure curves of;the latter\éhow better
behaviour with respect to frequengy changes than the first.‘
Also, comparing F%g. 6.36 to 6.40 with the same cyllnder goemetry

but different boundary, the pressuréyzﬁrves are dlfferent

i
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These observations imply that it is not only the cylinder
geometry, but also the boundary proximity and shape that affect
the pressure response to frequency change. In addition, the
density of the fluid seems to play a role in this peculiar
performance. Oil with lighter density yields better results
than water and ethylene glycol as can be seen in Figs. 6.37 to
6.42.

-In the tests, pressure réadings were taken around
the surface of the pressure-measuring cylinder; hence, 'the pressure-
transducer bearing cylinder has to be rotated through 360° :with
a stop at each 9° interval. Such rotation was done by

*

reaching the cylinder at the opposite end from where pressure

was measured, and rotating it manually. It is interesting to /

‘find that no change in the fluctuating pressure can)be sensed

while the cylinder is being rotated and the hand is immersed
in the tank, except at low frequency (below 70 Hz for example).
Even then, only a maximum variation of 5% was found.

o

7.2 PHASE ANGLE (¢) BETWEEN PRESSURE AND ACCELERATION

In the experiments, there was a phase difference

N\
\

between the pressure signal and t@e acceleration signal éf
the moving cylinder. The Vaiue of ¢ varies with the change
of the orientation of the measuring point as well as fréquency.
Results of the phase angle versus frequency study suggest

B3
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the possibility .of wake formation on the surface of the

statioﬁary cylinders in the area. facing the enclosing channel,

.rather than the moving cylinder (e.g. the area at & = 135°-225°

|

for the cylinder geometry shown in Fig. 4.5a). In this region
the fluctuation of ¢ with frequency is significant. To test

4
phis possibility, an experiment was conducted with liquid dye s

3

to monitor the motion of fluié on the stationary cylinder. 1In
order to simplify the test, we considered the case of two-
cylinders in the configuration of Fig. 4.5a. The instrument
arrangement is shown on the right-

hand side. The pressure transducer n
lbushing shown in Fig. 4.1 was

)
replaced by a bushing with a tube

through with the dye was injected.

The pressure of the injection was

adjusted by l@beling the bottle.

During the test, the dye came out

of the pressure sensing hole with Cross-section view of
‘a 1 to th the stationary cylinder
pressure as close to the pressure with dye injection
instrumentaticn.

on the surface of the cylinder as

possible.
The figure on the left-hand side of the followingi

page shows the trace of the dye injected through the pressure

sensing hole on the stationary eylinder .while the top cylinder

¢

is not shaking. As the top cylinder starts oscillating up

and down, the dye tends to flow up a little, while previously

!
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v into a solution with a
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if. fell down by gravity. ‘ - o A

@ (
Since the dye was dissolved .~

!

density almost eguivalent x A3,

* v A a
to water at the same : I"

temperature, the plunging Coret)

of the dye under gravity . K
—_— g Both cylinders Top cylinder
was very ‘slow. L - . are stationary is oscillating

For a dye injected at the bottom posi:tion, or the

so-desc\ribed as pressure—ingensitive region, éhe trace of the
dye did gd up, and then sank down as it moqu away from/the
motion affected region. The results indicate a suction gxists,
which tends to draw the fluid particles upward..‘ However,
such‘a force is weak ax_ad the affected region is small. Thus,
as soon as the fluid particles move away from that regi;:n, the
dye sinks again as a result of gravity. A possiblé explanation
of this upward suction is that, because of the reéistahcé of

L] T -

the stationary cylinder below and the absence of a similar

1
L)

cylinder aboive,‘tl}e net
forée on the flt;id in the
downwaf:d direction (when
th; top cylinder goes
dém;n) is less than that in
, Both cylinders Top cy¥inder
the top cylinder goes up)'. are stat;ior;a;y is ‘'dscillating

. -
1 k)
;

] N
O @
. - l ‘ ' ¢
the wpward direction .(when ¢ - \
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Hence, for each cycle, a net force upward is perXQed

-

Another interesting pgrt of the test was to rdtate .

the stationary cyllnder slowiy while the dye was ccm1ng out

"of’ the pinhole and the top

cylinder was oscillating.

The trace remained at the
samefplacé about one éo two
minutes before it disapﬁeared.
No remarkable difference

can be seen for this test as
the oscillating frequency &
chanes from 100 to 250 Hz,

and also, as the amplitude of the
varies from 1.5 g to 4.5 g.

' For the ﬁest of ¢
the side—bf—side configuration

of Fig. A.Sb, since the «
“ ’

e uéling is weak for this

.configuration, no obvious

[ ' 8

pattern‘can be ‘seen. Never-
2 .

4the less, as the amplitpde of

) )

acceleration of the shaker ¥

increases to 4.5 g, a wake-
form of fluid pattern occurred.

1 L’f’

It is noted that in all the

4
w v

L

{

The dye kept coming out’

- while the cylinder was
rotating.

acceleration of shaker (As)

-

Both cylinders are
statlonary h

‘ " )
"~ .
“ 1‘
L] ' c
: ’ :,n
L}

The left side cylinder is

oscillating, while the dye
comes out from the; pinhole
of thé right side cylinder.
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pressure measuring experiments, the maximum amplitudeiof

accelerition is no more than 3 g (displacement of the
4

4

3

oscillating cylinder ranging from 2.6 x 10 ~ to 3.7 x 10~

iﬁ.), hence no true wake formation is likely 'to have happened.
Results of these flow—paté%rn tests fﬁow that the

theoregtical assumption of\no separation is upheld, at least

for the stationary cylinder when the acceleration of the

vibrating one is ‘small; evidently, the hyPothésis of wake.
forﬁation atlthe so-callea pressure-insensitive region (the
area facing the enclosing channel) of the stationary cylinder
is not true, ’
In principle, the phase angle, (¢) is considered as
the time lag between two signals (in our. case, p;eésure ana
However, the cylinder distance in our, tests

X -
is too small, compared to the speed of sound in water (= 1500

adceleration).

m/sec), to .be able to provide ‘a significant value of ¢.

Besides, it was found that ¢ is sensitive to frequency changes.

Therefore, instead of claiming that time lag is the causé of

the occurrence of ¢, one would rather suspect that it is mainly

‘due to the viscous effects. épart from these comments, it

appears that the values of ¢ also depend on boundary condition

and cylinder geometry. This may be seen by comparing Fig. 6.48.

to 6.44:

[ B
'at & = 270° apd 315°; in Fig. 6.44, on the other hand, .

variations in ¢;of-over\360°.occuqrep at 8 225° and 270°.

' ¢
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in Fig. 6.48, variations in ¢ of over 360° appeafea
O~
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-8imilar effect of the cylinder geometry can;beaseeﬁ by comparing

Fig; 6.48 to Fig. 6.45, i which the variation of ¢ is much /.
1e£§ for the' latter at any 6. - ’ S
| As to the dfstributions of ¢ around the surface of
the cylinders measurements on the osc1llat1ng cyllnder (e.g.

FPig. 6.4) agree well with the ones predicted by the inviscid

theory: t.e., the upper surface of the cylinder pressures

are ln—gyase and lower surface ones 180° out- of—phase with

N,
eration (see Fi 6;4) However, the distribution measured

on the stationary cylinder, shown in Fig. zi7 as an example,
does not give &the pattern expected, but an attenuated form.

3

7.3 PRESSURE DISTRIBUTIONS . *

.o It should be recalled here that the pressure profil{i
shown in the last chapter correspond to peak acceleration of
the moving cylinder at certain frequenéies. -During the tests,

both the pressure and acceleraﬁion readings were taken at -

“
-~

their peak values. In order to oE:jizszig/pressure correspond-
ing to peak acceleration, thesespressure readings were then
multip;ied by the cosine of the phase angle (¢) betweejp the
two signals. Since the values of ¢ vary tremendously around

the circumference, the values of pressure will be affected.

'y

Fortunately, it is noted that in the region where the variations

~of ¢ with‘fre?ﬁgzg; are large occur where the pressure signals

15‘12“

N
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are gfak.ﬂ Hence, on the'Whole, the effect of ¢ on the overall

pressure proflle is not that serious a matter as was 1n1t1ally

. thought; this may be considered to be supported by the fact

thatfthe'pressure profiles obtained from all the experiments

e

agree well with theoretical predictions. Also, it should b

-mentioned that the consistency in shape of the profiles

1

betwe theory and experiment, indicates that Suss' theory

woﬁQ;'even for a cluster with such small intercylinder gaps 'as

0.95 ecm (0.375 in.), which is about one-seventh of the‘di;mgtqk*

A8 g
X
.

of the cylinders that were used in 511 the éxperiments.

¥

As to the response of pressure profile to the
acceleration of the moving cylinder (Ac), results show'that a
large Ac produces a bigger pressure p?ofile as expected; this
can be seen through all the configurations, especially for

two and three-cylindér cases. 'In other words, the pressure

increasgs as Ac increasesd. Such a response of the pressure to

i

Ac change is shown in Fig. 7:8.

’ ' . )
Q Lk ¢

. . ,
7.4 THE ADDED MASS COEFFICIENTS . o

Experimental added mass coefficients derived from

pressure profiles for différent configurations were plotted- ~

»

against frequency and compared with theoretical values.  'In -

-

Suss' theory, the added mass coefficients should only be. -

[y ’ . w

geometry-dependent, and*§hou;d~got be affected by the. change -

4
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in the frequency of osalllatlon. However, experimental;r sults

q&ow that these coefficients are highly sensitive to freq ency
. and that they change in a haphazard way, in partlcular fo

clusters of two-cyllnders and three-cyllnders.

o

’ A "viscous" theoretical mode]l for one oscillating
cylinder in a confined fluid by Chen (1976) shows that th L
: added mass coefficientsrare aimost‘frequency—indep ndent;7they
decrease smoothly and very élightly as frequency iecreases.

Results obtained from this theory for one cylinder yield ' §

-

differences within\l% for the added mass coefficients at SOAHz

and 200 Hz with R,/R = 4.96 and much less than 1% for R /R =

and R are defined as the radii of the enclosing .

”

7.36, where R,

bl

channel, and.of the cylinder, respectively.

) E Inspite of the frequency effects. shown in the
! :

éxpe%imepts, results'for one oscillating cylinder are in dood

1

&
agreement (with 5% off) with theoretica; prediction. Hence,

discussion will be focused on the cases'of two- and three-

1

cylinaer systems. o * .
- . * With tHe ln-llne two-cylxnder conflgu%atlon shéwn
in Fig. 4.5a, one should expect a symmetrlp pressure profile
* (with respect to Y axis); yet; expe;imentél datagshow ﬁOn-
symmetric profiles et spﬁe frequencies.f As a result, g coupling
component in the Z-direction was found which does nof exist

in tfieory. The cause or causes of this fact are unknown;

-

however,ftﬁey may be attributed to side motion of the oscillating

-
‘
a 3
’ 4

-
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cylinder created by thHe dynamic unbalance of the cylinder [if

any, since this cylinder with tube structure (see picture 7)

a was balanced statigally) ’ as well as to small—‘ainplitud’e

'»“‘ PRGN -

orq‘ponent* of the vibrating system or the

a

_resonance of som

water tank
o o - -
mathemag‘fcally the existence of such an effect was \conduct.ed

[ "l

by making use of equations (2.31) and (2.32). Considering .-
th:.fgree—cylinder case of Fig. 4.5d..as_an example with the¥® sd” "

the shaker support system. An attempt to prove

prelssure profiles taken on the étation&éy cylinder (in our
case, it is cylinder 3), the two eqﬁatiens for the forces on

i * .. this cylindeér are: . -
S | . =1 RS 3831321 * ©318v1) -

g ¢
= 2 :
Fayz = P T R3lé535) * £3135] - (7.2)

”

where FAZ 3 and F ‘Y3 are the hydrodynam:.c forces exerted on

cylinder 3 in 2- and Y—d:.rectlons, respectlvely. \

The method uged in this simulation assum'és a smal{

v side-ways, acceleration (etZ = 0,05 éYi occurred while cylinder
. R P . . ! - ¢ ) \ *

1 oscillated in Y-direction; then with the experimental .

hydrodynamic forces FI;.Z and ?AY (computed from the measured

‘ . pressure profile) and the theoretical €31 énd 531, the .

VA U
B
i

coefficients e,; and f3, can be obtained by equatlon (6 _j.) andv,.m%

(“) equation (6.2). These are stated mathematically as folloms- {[;'

. R .. -
\ - - '
4 + - * ! .
, .
a




Equations (7:1)

Y

(FAZ3) exp.

(FAYB) exp.

VA

=Q’TTR

Ry
.
5
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T

j -

] ~

!
;
i
b

2
3l

and (7.2) are written as:

ﬁ.OS zYl(e

\"&

1

}

3 l) theor

2 v o : @ .
. P T R3[0.05 ay1(£_3l)the<_:r. tapfal

or Coe ‘f .
*\ N ' -

. (F )
. &3 = _:z.l}_z.:’_i_e_’EP_'. - 0.05 (€

) L I
317 theor.
‘,) T R3 ayq

r f\ -Eﬁ&%%ﬂ‘&-gosi(g ) : \ (7.6)
‘31—"‘)TTR a ) 31" theor. - N ’

s

The main point of this method is assuming the

" experimental .F and F are the hydrodynamic forces as a
v/ AY yn '

result of both the acceleration ai’p and ay of the moving

cylinder 1 instead of ay alonemIf ‘e,;; and f,; obtained from

this calculation agree better with oretical values than

the 'purelfr expgfime;tal ej; and f,, arethwith the

theoretical ones, the existence of the side motion effect of

the moving cylinder is then proved. Unfortunately, no constant

relation between these modified experimental added mass

>

cgefficients and the theoretical data can be seen from the

—
'

results of this calculation. At some frequencies, these
. Y ) .

modified e='3,l

»

(The resultant changés are-of the oi:de}: of 10%).

: ' A

e s b s &

and £ 31 improved, but become worse at others.
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%?us, it is difficult to claim validation of this effect.

‘ Althoﬁéh the experimental added mass coefficients

with theoretical values, it is interesting to observe the
- v

* dynamic response of the system for  such experimental results
- ®- *

for the two- and three-cylinder cases are not in good agreement ////

and compare it to the theoretical one. A study was carried
) ’

out’by using results obtained from the :cases of three-cylinders.

The frequencies of the system were compgped based on solving

the equation of motion of the éylindgr system considered. A ’
combuter program called "Seolution" ?rittendb§15u;; (1977a)

was employed for these computations. In this program, the.

added mass coefficient matrix (as mentioned in Chapter 2) is

one of the required inputs to calculate the eigenvalues (A

user's guide for this program hagfbeen presented by Suss (1877b)).
For a°threé-cylinderg§ystem, the addéa‘hass coefficient matrix

consists of 36 elements. Because of the symmetric nature of

, some of the elements in the matrix are identical.

Making ise of this, sixteen elements in this theoretical added

\ .
P

mass co@fficient matrix obtained from "COUPRESS" were replaced

° .by experimerital values inspite of the fact that only four

—~—

experimental coefficients, namely 631, §3¥, e, and f3l are ,

available for each system. With this so-called semi-experimental

added mass coefficienE’magrix as input and using three comparison
/

functions, the eigenvalues (which are the frequency w,multiplied

by -i (i = v=I) of the system were calculated. A comparison

°

\
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of these results for the" circular enclésing channel case, with

" the theoretical eigenvalues obtained by using the theoretical

added mass coefficjent matrix as iloiution“'s,input, is shown

» ‘ N N -
in ‘Table 7.1, (p. 95). > N

Remarkable agreement was found regardless of the

discrepancy between the tyeoretical and ekperimenéal added

mass coefficients. Another set of frequencies obtained b

a

using the maximum values of the experimental “added mass

L

coefficients (among those obtained at different oscilléting

frequencies) for the so-called semi-experimental added mass

coefficient matrix was compared with theoretical data.

o . ,
Agreement is also quite reasonable (f 6.5%) as shown in

Table 4 (p. 111). For the same- system but different boun@ari
radii (e.g. R, = 17.27 om (6.8 in.) and R_ = 23.37 cm (9.2 in.)),
results are also tabulated in ?ébles 5 to 7 (pp. 112-114). An
important fact revealed by this analysis is that, even if

h%;f of the off-diagonal elements in the theoretical added

mass coefficient matrix were replaced by the experimental

. values, of which several have a discrepancy as large as 67%,

the frequencies obtained from such a system are still within

reasonabie fange. » . 4
.Here let us recall the work by Jendrzejczyk and

Chen (1978) in an exper;ﬁéntal study on fluide%astic vibration -

oF\ cantilevered tube bundles. However, the method in that case

El

is /reversed. Theoretical added mass coefficient matrix

.
\
.
— \ I WU ~K£ S
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A Table 7.1: The natural frequencies of three-cylinder cases with
) ' .-circuldr enclosing channel (Ro = 11.43 cm (4.5 in.)).
T K ' - Theor{tFreq. ~ Semi-exp. Freq. _ -
i Discrepancy (%) Theor . Freq. x 100 [
< - - i
; Theoretical Semi-exp. frequencies Qisﬁiepancy 5
" Frequencies . (using ave. A.M.C.)* (8)
- lst mode  18.335601 . 13857170 A 2\61 -
group ' © )
| .. 19.128095 19.149628 -0.11
| © 19.128104 19.676233 -2.87
| , - 22.473622 22.418528 0.25
\) . - . é
: - - 22.473626 23.287012 -3.62
i Vs .
| 24.227658 . 23.41:0995 3.37
i '
c - : N
; 2nd mode  50.542748 . 49.223936 2.61 .
i group :
l . 52.727286 52.786638 =0.11.,
| 52.727309 54.238247 -2.87 y
' / .
? * 6I.949351 61.797483 0.25
‘ ,61.949333 64.191490 -~ -3.62 -
. 4 *
‘ 66.784415 64.533254 3.37
3rd mode 99.083970 96.498572 2.61
group v ’ !
103.366536 ©103.482891 -0.11 .
103.366584 106.328625 -2.87
121.445468 121.147745 ) * 0.25 :
4 . | ‘ :
| |, 121.445491 125.840957 -/ . =3.62 |
) 130.924123 126.510949 | 3.37 §
9 ) J \\ 5 |
- ) - 1 - - - - , —
The average values of the added mass coefficients obtained
from different frequencies. ' .
‘ | _
L
L s

bt e -



(Chung and Chen, 1977*) was used to calculate the theoretical
values of the natural frequencies of the tube bundles through
the equatfbn of moélon, éndvthese natural frequencies are

then compared w1th the me&sured natural frequenc1es from the
tests. Excellent agreement was obtained. Thus the comparlson
of theoretical and e#ﬁerimental added mass cbefficients - and
concluding that they arg in good agreement - through comparison
of the cd;responding natural frequencies, is seen to be weak,.
in the ;ensé ghat very large discrepéﬁcies“in the édded Mass‘
coefficients can be -masked by agreement of frequencies. With
réspect to our own foregoing analysis, it ﬁay’also be said
that the diagonal elements, which were taken from theory in

b

’
all cases, are dominant in determining the natural frequencies

correctly: . '

° ) )

.

L sere

* N o -
Chung and Chen (1977) 's theory is equivalent to the .one
derived by S. Suss (1977a). . :

-
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e CONCLUSION
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Thi's— thesis describes an experimental derivation of

.7 some of the added mass coefficients for a. cluster of cylinders

vibrating in still' fluid contained by a rigid rectangular
tank. The added mass coefficients Were_eqéluﬁted through
measgrementsh of the pressure distributions on the circular
slurfaces of the cylinders in the system. Studies also.include
tﬂ/ze cases of three cylinfiers immersed in fluid enclosed by an
‘1.43 cm (4.5 in.) radiu“s' shgll. In order to obtain extra
.information concerning the effect Eof viscosity and density of
£fluid to the values of added mass c'cc;efficienta, the tests were o

.

conducted in three different fluids, t.e., water, lulyricating

oil -and ethylene glycol.
+
Unlike previous.work by Pustejovsky (1978) and_Barbir *
and Pham (1979), the pressure measuring system was designed

N

to detect the pressure signals more directly and it was

possible to eliminate the difficulties associated with flow .,
oscillation and air bubbles trapped in the pressure se&g

chamber. Also, by employing a highly sensitive pressure C e
transducer and cylinders with larger radius, clear and perfect ‘
sinusoidal pressurd and acceleration signals were gbfgained. ' .

Furthermore, a better understanding of the behaviour of the ,

- N ]
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S DY I

.



S

“©
B P Z"—""m““,.—. B i e 24 GlL Ll 1t 5 it 1

(s

) phase lag between pressure and\aqceler‘ation sighals.'éva-s"ét'taoined

with the help of a Hewlett-Packard 5420A Digital Signal

Analyzer. ’ . 1 L '
".Among three sets of experimental results éistir}guished .

py the nomber olf cylinders, rem;rkably good agreement between '

experimeht and theory was attained only for the cases of one.

si'ngle cylinder. Despite }:l:le fact that results for tﬂe‘ studies

of two - and three-cylinder systems are .some‘(rlhat incon.clusive',

certain valuable information related to the characteristics

of the cylinders vibrating in liquid were obtained.

As shown in“the.experiments, pressure signals are

very sensitive to frequency change and response in a haphazard

- ' N

manner, which is believed to be attributed to the flexibility

of the’ system. Hence an attempt to s:ti:ffen several compon-e%‘-
of the experimental setup has been done. Reasonable improve-
ments were .observed, the 'valties of presqsure iﬁcreése"lineafly

with respect to frequency, ar;d'ée:ith the magnitude of acceleration
of the oscillating cylinder. However, tl;ere are a few

exceptions, especially in the cas‘e of three cylinders enclosed

by a circular shell. Fofl'the tests with different fluids, -
1ubric;ati_ng oii exhibits better pre ssure ;.espon%e to Pfrequency

as compared with water and ethylene glycol, suggesting viscosity#
and density of fluid are impoﬁ:ﬁnt
cylinder gedmietry. / ’
The phase angle (¢) distributiohs on the circular

‘ /

.

13

Tactors, in addition to
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surface of the pressure measuring cylinder, are quite reasonable
.-for one ;ingle éiliﬁder at three distinct configurations;
. The top half surface has a value ¢ = 0°, while the bottom half
) =i180°. In the cases of two and three cylinders, the values
of ¢ at points on the pressure measuring cylinder depend on

the cylinder geometry as well as on the boundary (i.e., either
rectangular  or circular /boundary). Studies of the response
of phase angle to frequency show that large variations with

freqﬁency of the value of ¢ occur at the surface region where

‘the presghre signals are weak and are smaller at the points

o

S

whefe the pressure'si?nals are\strong. This would imply a
wake formation at'the so-called pressure-1nsensitive region. «
However, a flow visuglization study for the vibration:induced
flow for the cases]bﬁ two cylinders has been done. No"wakes
,can be sé:n un@i%/;helmagniéude of acceleration of the
oscillating cyl%ﬂder 1ncrgases to 4.5 g. H@hcé, evidently,
the assumptlon/6f wake formation at the pressure-insensitive *
region is unli%ely\for the present studies, where the
acceleratio for all the tests is no greater than 3 g. 1In
general, gﬁe phase angle is the time lag between two signals

(in our gase, the time lag bepween pressure and‘acceleration
signals). Nevertheless, it is noted that (i) the distributions
of phdase angie are different for different cyllnder geometries,

(ii)/ variations of ¢ with frequency of over 360° occurred only

in/the three-cylinder cases with cylinder §grangements such as
- - V .
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those shown in Figs. 4.6d and 4.6f (for frequency changes from
100 to 250 Hz), and (iii) the damping effect of
lubricating oil on ¢ is considerable. All these indicate that
phase angle is not a matter of time lag only, but that it is
also affected by the arrangement of the cylinders in the
system, the boundary conditions, the viscosity of the fluid
gnd perhaps by the structural response of the remainder of thé
system, through resonances within the frequenc'y range tested.
The mést successful part of the experimental study
is the measurement of t pressure distributiox{s on the
surface of the cylinders and in particular for the single-
cylinder case where extellent :agreement between experimen‘tal
and theoretical prediction was: attai"ned. The presence of a
free surface for some cases does not produce any significant
- effect to the‘ préssure profijles (as seen in the pressure
cﬁ.stribution plots). Moreover,‘the pressure field patterns
follow the predictions of -Suss' theory as cylinde:;: geometry
changes, and'the magnitude of tl;e pressure signals measured
do increase as containment becomes tighter. H
As far as the added mass coefficients are concerned,
.exéerimentall‘ results obtained from all the single cylindef
cases agree well with theoretical values computed by using

-

Suss' classical method. Thisjis as expected, since measured

pressure profiles demonstrate both qualitative and quantitative

similarities to &The theoretical ones. For the system

- - - - [EU -
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consisting.of two or three cylinders, agreement with

theoretical results is somewhat inadequate. The average

'/fdiscrepancy ranges from 6% to t67%. Notwithétanding this,

some positive conclusions can be drawn. Results faor
configurations éhswn‘in Figs. 4.5a, 4.6a and 4.6c are always
* greater than theoretical vaiues.and smaller for configurgtioné
such as those of Figs. 4.5b, 4.6b and 4.6f. Ii:xcreasing the
stiffness of ;;berimehtal setup did exhibit certain positive
improvement in the agreement between theory‘and experiﬁent.
" Neverthelesg, results become worse as the enclosed boundary of
x\ the cylinders decréases, although this may be due to having \
additional structural elements which could respond to the
fluid excitation. On the other hand, tests conducted in
lubricating oil gave better performance insofar as pressuré
and phase angle are concerned and, consequently, yield ﬁetter
agreement with theory as compared with those of water and
) etﬂyleﬁe glycol. ‘ .
‘ ~ By reviewing all the’experiméntal results pfeéented
E in Chapter 6, several general remarks can be made, as follows.
’
1. in the analysis, the fluid field is considered
to be two-dimensional; that is, the axial motion of the fluid
;s neg}ected. This is justified in our case, since only the
length and the diameter are of the same order of magnitude
that three~dimensional effects of the flow should be considere

»

as showniﬁ§ S.S. Chen (1974).

’
3
i
H
i
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2. It is found that the pressure distribution and,
acceleration /gf the moving cylinder, phase angles as weil as
pressure distributions on the pressure-measuring cylinders,
are sensitive to frequency changes, and consequently, so are
the values of the added mass coefficients. 1In this respect,
cylinder geometry, enclosing boundaiy of the cylinders,
properties (Z.e. viscosity and density) of the fluids and the
structural response of the experimental setup are the likely
factors giving rise to these vaLiations with frequency.

3. Although no positive conclusiéns can be drawn from
the flow gi:ji}iZation tests, the results indicate that
separation is unlikely to have occurred in these tests, where
the magnitude of acceleration of the oscillating cylin&er was
always less than 4.5 g.

4. The method used in this study to derive the added
mass coefficients from the experimental data is not straight-
forward. The measured pressure‘profile, a result of the pressyre

readings takeh at points around the surface of the considered

cylinder and the corresponding phase angles, are integrated

to obtain the inviscid hydrodynamic forces. The added mass

?oefficients are then calculated from these force components

with the associated acceleration of the ébcillating cylinders

By this method, 40 pressure readings and 40 phase angle‘

readings are required to derive one single added mass coefficient.

If the instrument error of each read%ng is l%,‘it would not be
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surprising to obtain the added mass coefficients far away from
the theoretical values due to the accumulation of inétrumené-
ation e;rorsi i -
5. Since thé preésure, acceleration, ‘phase angles and
pressure distributions are sengitive to“frequency changes, one
would expect that the added mass coefficients should also be

frequency dependent. However, at least %qr one cylinder, the

theoretically predicted change in our experimental range of

frequencies is small. This implies that the mathematical models ¢

developed by Chen (1976) and Yang and Moran (1979) should

yield, only slightly more reliable results than those derived from

pofential flow theory.
© Apart fram the results discuséed in the last two chapters, an
additional experiment was done while this thesis was being written for the
cylinder sy;tsn with the configuration of Fig. 4.5c. The pressures

two- .
were taken QD the oscillating cyllnder instead of the statlonaf)p<ﬁaZ;;;;“\\\\
\

as dmuapmevumnﬂy Gouiagnaamxﬁ:“uthiﬂxxmy is cbtained in both the

-

distributiorf of phase angles and the pressure profiles; the experimental

“added mass coefficients show an average discrepancy of 5% as compared with

theory. This suggests that Suss' theory is able to predict the diagonal

tems in the added mass coefficient matrix better than the off-diagonal ones.

In general, results exhibit consistency, and relative

success in correlation between the experimental and theoretical

8

derivation of the added mass coefficients. However, betéer

performance can be expected if certain components of the

-7
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) presént‘ex§g;;;;nta1 setup were replacéé. These include a
stro'rggly buiit stainless steel water tan‘k, a permanéntly
ground-mounted support for the shaker, a light but rigid
oscillating cylinder, and an improved supporting tube and
components for the oscillating cylinder wh~ich could hold it
tightly without giving a‘ny disturbance to the pressure @ield
exerted on the fixed cylinders; yet allow the oscillating
cylinder to be rotated for measurix?g the self-:ccgupléd pressure
field in the cafses of cylinder ciuéters with small cylinder
center-td-center distances. ’

In a future study, a new technigque should be developed
to evaluate the added mass coéfficiqnts more directly, by
measuring the hydrodynamic forces instead of the pressure
distributions on the cylinders. This could eliminate problems

W such as discrepancies due to integration errors, accumulation

of the instrumeptation errors, ete..'
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cylinder configuration shown in Fig. 4.4a.

Expo AcM-Co - SnSo Chen'S'A-MGC.
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Table 1: Compariéon of S§.S. Chen's results with R, = 15.75 cm
(6.2 in.) and experimental results with single- .

Discrepancy (%) = S8 Chen's A.M.C. x 100
, ‘ ;
 Frequency Added Mass Coefficient (f,,) Discrepalncy,
(H?) Experimental S.S. Chen's (%)

50 - -1.024762 -1.090200° -6.00
70 -1.107135 -1.089355 1.63
\\;3\\ -1.013844 T -1.08%057 ~5.§1 ‘

50 -1.107848 -1.088810 1.75
100 '-1.079440 -1.088601 -0.84
11,0 -1.046105 - -1.088420 .} - -3.89
LQO -1.107206 ~1.088003 1.76
150 -1. 071773 -1.087893 1.48
160 -1.089622 ~1.087791 .\%,17
170 -1.098203 -1.087702 .97
180 ~1.110977 ~1.087618 2.15
190 ~1.107218. - -1.087540 1.8
200 1.113121 -1.087469 . 2.36
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cylinder configuration shown in Fig. 4.4b.

- s.s. Chen'S AuMcCo
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Comparison of S.S. Chen's results with Ro = 17.27 cm
(6.8 in.) and experimental results with single-

Discrepancy (%) = E-:—)&-I}T.%_:-(l";-;__'al'xen's AM.C. x 100
Frequency Added Mass Coefficient (fll) Discrepancy
.A(Hz) Experimental S.S. Chen's ' (%),
50 -1.072021 '-1.075317 -0.31.
70 -1.090671. ~1.074486 1.51
80 ~1.141970 -1.074192 6.31
90 ~1.095527 -1.073950 2.01
100 ~1.090163 -1.073744 1.53
110 ~1,081437 +1.073567 0.73
140 -1.135948 -1,073155 5.85
150 -1.117563 -1.073048 4,15
160 -1,105882 ~1.072948 3.06
170 -1.106183 ~1.072859 3.11
- 180 ~1.104795 -1.072776 2.98
190 -1,101491 ~1.072701 z.ﬁa( :
200 ~1.096601 ~1.072630 2.23
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. Exp. A.M.C.
g-Piscrepancy (%) = Xp- =5

RN

(&)

( + (6.8 in.) and experimental results with single-
cylinder configuration shown in Fig. 4.4c.

v

.85.5. Chen

ls_ A.M. c. x 100

Ehen'.s A.M.C.

-
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Table 3: Compa&iéon of S§.8. Chen's results with Ro = 17.27 cm

Frequency AdJed Ma?sf:oefficient (£1;) ﬁiscrepancy
(Hzi Pixperix_nent'al §.S. Chen's (2)
50 -1.158337 -1.075317 7.72
’ 70 -1.146795 ~1.074486 6.73
80 -1.137051 ~-1.074192 5.85
90 -1.135966 -1.073952 5.77
100 ' =1.140692 -1.073744 . 6.24
T o110 -1.110469 -1.073567 3.4%
140 -1.101587 -1.073155 2.65 -
150 -1.105204 -1.073048 3.00
160 . =1.091693 -1.072948 1.75
“ 170 -1.103530 ~1.072859 - 2.86
180 ~1.108376 -1.072776 3.3
190 ' -1.112181 -1.072701 3.68
200 —11114672 -1.072630 33.92
‘ N
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Table 4:  Natural frequencies of the three-cylinder system.

1@? with Ro = 11.43 em (4.5 in.).

Theor. Freq. - Semi-exp. Freq. x 100

. Discrepapcy (%) = Sor—Freg

\
\

Theoretical

Semi-exp. frequencies Discrepancy
Frequencies (using max. A.M.C,) (%)
l1st mode L¥.335601 17.163750 6.39
group ‘
19.128095 19.152209 -0.13
\ 19.,128104 19.313515 -0.97
22.473622 22.435269 0.17
22.473626 23.910804 -6.39
24.227688 25.263518 -4.28
+ 2nd mode 50.542748 47.312496 6.39
group .
52.727286 52.793757 -0.13
< 52.727310 53.238402 -0.97
61.949351 61.843631 0.17
61.949363 65.910996 -6.39
.66.784415 69.539801 -4.28
3rd mode 99, 083970 92.751386 - 6.39
group )
103.36653 102.496846 -0.13
103,36658 "104.368528 -0.97
121.445468 © 121.238213 0.17
121.445491 129.211873 -6.39
130.924123 136.521820 -4.28
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() '
Tagle ; Natural freguencjes of the three-cylinder system
with R, = 7.27 cm (6.8 ln ).
\
% Discrepancy (%) = Fr;qéo; s;:;;;exp. Fred- x 100
Theoretical Semi~exp. frequencies Discrepancy
’ Frequencies (using ave. A.M.C.) (%)
L T -
(" Tist mode  18.416629 18.795823 -2.06
group .
20.151764 Y9.495744 3.26
. 20.151786 20.120321 0.16
23.010816 22.368302 2.79
©23.010854 22.996501 0.06
N 24.306414 25.634739 -5.46
| 2nd mode  50.766102 © 51.811367 -2.06
group
55.549066 53.740722 3.26
55.549127 55.462391 0.16
" 63.430146 61.659032 2.79
| 63.430251 63.390687 0.06
| 67.001509 70.663083 -5.47 *
g .
i 3rd mode  99.521834 101.570970 -2.06
f group ~ '
g o 108.898353 105.353277 3.26
i 108.898472 108.728435 0.16 -
| 124.348A17 120.876327 2,79
| 124.348624 124.271061 0.06
: ! .
N 131.349715 -5.47

138.527861 ~
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Table 6:

Discrepancy (%)
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Natural frequencies of the three-cylinder system
‘with Ro = 23.37 cm (9.2 in.)

= Theor. Freq. - Semi-exp. Freq. x 100

Theor.

“Freq.

131.37760

Theoretical Semi—-exp. frequencies Discrepancy
Frequencies (using ave. A.M.C.) (%)
1st mode 18.42195 18.32526 0.53
group
20.38719 20.38066 0.03
20.38720 20.63316 -1.21
23.15300 23.14015 0.06
23.15305 23.35880 -0.89
24.31157 "23,92620 1.59
2nd mode 50.78077 50.51423 0.53
group .
56.19802 56.18002 0.03
-f
56.19807 56.87604 -1.21
63.82210 63.78665 0.06
63.82221 64.38934 -0.89
67.01573 65.95344 1.59
" 3rd mode 99.55059 " 99.02807 0.53
group i
110.17056 110.13528 _0.03
110.17065 111.49976 -1.21
: 125.11679 125.04730 0.06
125.}1702 126.22883 -0.89
129.29509 1.59

-~
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with Ro = 23,37 cm (9.2 in.).

Discrepancy (%) Theor. Freq \
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Table 7: Nﬁéural frequencies of the three;cylinder system

- Theor. Freq. - Semi-exp. ,[:eq. x 100

T T e . L

o
Theoretical Semi-exp. frequencies Discrepancy
Frequencies (using max. A.M.C.) (%)
t
Y3
1lst mode 18.42195 18.99535 -3.F1
group
20.38719 19.05209 6.55
20.38720 20.37953 0.04
23.15300 22.05758 4.73
23.15305 23.14781 0.02
A h
24.31157 23.92620 ° -12.98
Z
2nd mode 50.78077 52.36137 . -3.11
group , )
56.19802 52.51779 _ 6.55
56.19807 56.17692 0.04
63.82210 60.80252 - 4.73
3 63.82221 63.80776 0.02
67.01573 75.71199 -12.98
3rd mode 99.55059 102.64920 -3.11
group b .
110.17056 102.95584 o 6.55
’ 110.17065 110.12921 0.04
125.11679 119.19722 4.73
125.11702 125.08870 0.02
}
131.37760 148.42573 -12.98
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2.1:

Fi

Schematic diagram of the system under

consideration.
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Dgfinition'bf the coordinate systems and

symbols used for determination of the flqid ;

N & N 5
velocity potential.
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Cross~sectional view 6f the_cylinder with pressure

-,

*

Fig. 4.1:
N transducer.
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%
i
‘Lock nut detail ;
(:) Lock nut,
(:) Bushing for the pressure
transducer.
(:} Pressure transducer.
[
Depth of the hole _ 0.15"
Diameter of the hole 0.025"
= 6 ,(‘
[ , 5‘
.‘.
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SETUP STATE
MEASUREMENT & = TRANSFER FUNCTION
AVERAGE 4 " 1008 - » STABLE
_ SIGNAL & . STNUSOIDAL
TRIGGER FREE RUN  , CHNL 1
CENT FREQ & 6.8 Hz C ' .
BANDWIDTH , 480. 908 HZ - S
TINE LENGTH 4 648, 828 =S
AF 3 1,56250 HZ AT 625.888 pS
ADC CHNL *RANGE  AC/DC DELAY CAL (C1/CD
x 1 18V . AC 8.6S . 1.00008
| .2 1BV AC 8.8 S 1. 82000

Fig. 4.2: Setup stazefof the Digital Signal A}nalyzer for thenphase angle
measurements.
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Power Amplifier

A

Exciter Control

(:) Accelerometer B&K #4338
(:) Accelerometer B&K #4332

(:) Press. Transducer PCB #106B

-

Voltmeter

> HP3476B

— Digi tal

#2707 #1047
! \
Preamplifier
#2625
* Shaker ]
A
Power Supply
' #2805 .,
I — 1
> \
Preamplifier
" —-Le $2625
Oscil. cylindexj——'“r 5
2

L

Press. measured cylinder ‘Y

Power Supply

e | pcB 4822

Signal AnalyZer
HP5420A

Voltmeter

g

HP3438%

Fig. 4.3: Flow diagram‘of the experiment setup.
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& ‘ , . 12" ¢ (a) éoo 2700 :
1 , ' 180° ?

15" ——f -

147 | - Cb (b)
Y

15" - . Z
-~
; &
L4m (c) N i
= ] '
, i
» o 15" ———] !

Fig. 4.4: Configurations of a single cylinder in the
rectangular tank. The cylinder is centrally
* located:'in the Z-direction and is 15.24 cm (6 in.)
17.78 em. (7 in.) and 22.86 cm (9 in.) above the °
() bottom of the tank for (a), (b) and (c),
- o respectively. ' (Scale 1:10).
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o/ %\ sono
, T
{ 14" - ¢® 1°

-

15"
(a) cylinder '‘gap = 0.95 cm (b) Cylinder gap = 0.95 cm
(0.375 in.) (0.375 in.)
; e
; 4
f
’ ¢ @ | Y
/ . ’ %
1 : z
- (c) Cylinder gap = 2.54 cm (d) Cylinder gap = 2.54 cm
. (1 in.) (1 in.)

Rl T

Finlagn

d® | $ ©

- ) ,-
(e} Cylinder gap = 5.08 cm (£) Cylinder gap = 6.35 cm
(2 in.) L ;‘ (2.5 in.)

®

Fig. 4.5: Configurations for the two-cylinder clusters
) ‘ considered. The moving.cylinder is oscillating in
L) the direction shown by the long arrow, while the
cylinder with ‘the inner arrow is tlie stationary one
on which pressure readings were taken. (Scale 1:10).
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Fig. 4.6: The warious, configurations for the three-cylinder
T clusters tested. The cylinders.are arranged in .
.equilateral form with a constant inter-cylinder
. gap of 0.95 cm (0.375 in.). For (e) and (£f), the
N radius of the outer channel is 11.43 cm (4.5 in.).
(Scale TiI0).- | : -
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\
Théoretical pressure profiles of the cylinder (with
inner .arrow) taken at peak acceleration of the

oscillating ‘cylinder (with longer arrow).
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| - Fig. 5.2: Theoretical pressure profiles of the cylinder (with
inner arrow) taken at peak’acceleration of the
osgﬁating cylinder (with longer arrow).
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Fig. 5.3:

Theoretical pressure profiles of the cylinder (with
inner arrow) taken at peak acceleration of the
oscillating cylinder® (with longer arrow)-
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PRESS. Guot)_ _ 257 ~ =
//
Yoo 7

’/2'0‘—~\

Fig. 5.4: Theoretical pressure profiles of the cylinder (with
inner arrow) taken at peak acceleration of the

oscillating cylinder (with longer arrow).
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Theoretical pressure profiles of the cylinder (with
inner arrow) taken at peak acceleration of the
oscillating cylinder (with longer arrow).




B e

Theoretical pressure profiles of the cyllnder (with
inner arrow) for Ro(radlus of the outer shell) = 11.43 cm
(4.5 in.), 23.37 cm (9.2 in.) and 25,400 cm (10,000 in.) .

L4

using black, red and blue colours, respectively.
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PRESS. (o) _ 2.57=
.7 ~
’3\0 // "‘2-0 -‘\\ \\(b\'ﬁ

Theoretical pressure profiles of the cylinder with

inner arrow) for R,(radius of the outer shell) = 11.43 cm.
(4.5 in.), 23.37 cm (9.2 in.) and 25,400 cm (10,000 "in.)
nusing black, red and blue colours, respectively. .
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Exa.mpleé of pressure profiles plotted in two
different polar coordinates.
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0.4 = \l
3 0° v*ﬂuhrw:
i +=—Theta=50
3 wo mo‘ *—Thk-woo -
0-3: #——Theta=140
P .
. o . ‘
02F .
- ' : (Configuration of
= P . - ! . t
0.0: % ) 8
a1}
.
-0'20 S0 100 150 200 250 300
. FREQ. ( HZ ) .

Fig.°6.1: Pressure versus frequency curves measured at 6 = 0°, 50°, 90° and 140°
P for the configuration shown.
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Fig. 6.2: Pressure versus frequency curves measured at 6 = 180°, 230°, 270° and_'“

320° for the configuration shown.
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(Configuration of
Fig. 4.4c)

Pressure versus frequency curves measured at various 9 for the
configuration shown.
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- 180y e Cb
I (Configuration of
oot Fig. 4.4b)
8
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- 902 270°
04 ’
: # l o
i ;
I 1
_mr A L i A ¢ 4 i L ] A i Il ' 8 4 L 'l 3 A L Lnd r's 'y i A A ' A L 1 i A
0 80 100 270 360
THETA ( Degrees )
- - . L] 3 ) #
Fig. 6.4: The experimental distribution of phase angles around the surface of the

oscillating cylinder (oscillating frequency = 18Q Hz) is shown by a solid line,
whereas the dashed line represents the distribution predicted by the Inviscigd
Theory.
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(a)

o

x,

(Configuration of
Fig. 4.4a)

(b)

Experimental pressure profiles (red) of a single
cylinder oscillated at different frequencies and
accelerations.’' (a) Freq. = 30 Hz, Ac = 1.96 g;
(b) Freq. = 40 Hz, Ac = 1.94 g. Theoretical
brofiles (black) were added for comparison.
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(a)

o

(Configuration of
Fig. 4.4a)

Fig. 6.6: Experimehtal pressure profiles (red) of -a single
. cylinder oscillated.at different frequencies and
accelerations. (a) Freq. = 200 Hz, Ac = 2.22 g;
(\ ’ (b) Pregq. = 70 Hz, Ac = 2.02 g.. Theoretical
N profiles (black): B were added for comparison.
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Fig. 4.4c)

(b)

— ‘

Experimental pressure profiles (red) of a single
cylinder oscillated at different frequencies and
accelerations. '(a) Freq. = 70 Hz, Ac = 1.80 g;
(b) Freq. = 200 Hz, Ac = 2.22 g. Theoretical
profiles (black) were added for comparison. »
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(c)

Fig. 6.8:
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! Ave. exp. fll = -1.09
-2t x=-=-Theor. value = -1.0847 CP .
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0
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[ . Ave“ exp. fll = -1.1T
‘2: x~-Theor. value = -1.0699 ¢
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Experimental added mass coefficients, f131, versus
frequency’ diagrams. - (a) Average discrepancy = 0.8%,

(b) Average discrepancy = 3.3%, (c) Average discrepancy
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. Pig. 6.10:

X

Pressure versus frequency curves measured on the stationary cylinder
(with small inner  "arrow) for various 9. - The test was done after the

experimental ‘setup was modified, as described in Section 6.2.
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1 25

41 1.5

10535

’Fig. 6.11: Pressure versus frequency curves measured on the stationary cylinder
(with small inner arrow) for various 6.
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The test was done after the

(Configuration of
Fig. 4.5b)

experimental - setup was modified,-as described in Section 6.2.
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Fig. 6.12: Phase angle versus frequency diagrams measured at
8 = 90° and 270° for the top and bottom figures,
respectively. (Note that the curves are only:
valid from 100 to 300 Hz).
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Fig. 6.13: Phase angle versus frequency diagrams measured at .

= 315° and 45° for the top and bottom figures, i
() respectively. (Note that the curves are only '
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. 6 = 180° and 0° for the top and bottom figures,
respectively. (Note that the curves are only" ‘
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Fig. 6.16: Phase angle versus frequency diagram, with b ﬂe’;' green and red curves.
measured at 6 = 0° for Ac = 1.5, 2.0 and 4.5 g, respectively. (Note
that the curves are only valid from 100 to 300 Hz).
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the experimental setup was modified, as described
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Tests were done after the experimental setup was
modified, as described in Section 6.2. (a) Freq. =
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after the experu;tental setup was modified, as

described in Section 6.2.
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(a) Freq. = 100 Hz,
(b) Freg. = 230 Hz, Ac = 2.38 q.
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Theoretical (black) and measured pressure profiles
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The tests were done after the experimental setup was
modified.
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Experimental added mass coefficients versus
frequency, compared with #heoretical values.

for (a) 31.02%; for (b) 65.28%.

The tests were done with water after the modification.
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. Picture 1: Overall view

. of the experimental setup.

The water tank sits on the wooden base of the

steel frame with leveling screws at the four corners.
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: Picture 3: The shaker

i

g with support (left), the

, v .

E‘ exciter control (top right),
';5 and the power amplifier

e

(bottom right).
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( ) Picture 4: The pressure transducer beaxjing cylinder. \
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Picture 5: Supports for
the stataiocnary cylinders
where the rectangular
pieces stand vertically
on the I-shaped supports.
(on the left-hand saide
shown was the oscillating

cylinder).

Supports for the stationary cylinders where the

rectangular pieces lie horizontally on the I-shaped

supports.
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Picture 7: Oscillating cylinder wit

(Note that the fins on two sides of the blue tube
were added to increase the stiffness of the tube.
This was done in the later experiment).
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h the tube components.

Picture 8:

The components joining the oscillating cylinder and

220

the tube (left) used for experiments with a single
’

cylinder.
purposes (right).

The triangular pieces for alignment

R

IS



[P

e e a v S mma b orew s e, T

! COLOURED PICTURES
¢ Images en couleur
11

221

RS
s

LvnDONVNAMIC COUPLING

Picture 9: Measurement egquipment.

Picture 10: The boundary
channel with Plexiglas

supports.
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Picture 1ll: A view of

the cluster of cylinders,
arranged in the center of
the boundary channel, at

the pressure measuring

side.

Picture 12: A view of
the cluster of cylinders

considered from the

. other side of the tank.
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APPENDICES &
A

The appendices in éhis_thesis include three parts:
(A) Listings of the computer programs:
A.1 P"COUPRESS"
A;Z "SSCHEN"
A.3 -"MAZUR" , _ G,
A.4 "EXPAMC" |

(B) Algorithm for the computer program "COUPRESS".

® f
2 .

() Typical outputs of the compuéér\programs:
by

C.1 "COUPRESS" with pressure distribution ‘

\ -
C.2 "COUPRESS" using R, = 9.2 in.
C.3 "COUPRESS" using R = 10,000 in.

C.4 "EXPAMC for the case of three cylinders with .,
configuration of Fig. 4.6c using water. s

- A

“COUPRESS“: A computer program for calculating_.the

added mass coefficient matrix for-a cluster of cylinders

vibrating in £luid based on S. Suss' theory. This program
also gives us the pressure distribution on thé& surfade of

any cylinder in the system. A listing of the subroutines used

-

-in this program, except Subroutine Press, carn be found in

S. Suss (1977a). - |
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"SSCHEN": A computer program for calculating the

unknown H in S.S. Chen's "viécous" mathematlcal model for an

inflnltely long cyllnder oggillatlng in viscious fluid confined

by a cylindrical annulus, of whlfi/ﬁbe real part (Re(H)) is

the added mass coeff1c1ent. \ . ¢
"MAZUR": A computer program for calculatlng the added -

"mass coefficients according to Mazur's theory, espec1ally

writ?en for the case of the cylinders having the same radius

'l

as well as the same magnitude of acceleration.

"EXPAMC": A computer program for obtaining the added
mass coefficients from the experimental data, also based on
4

by

8. Suss' theory. . . -

g
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} . ) APPENDIX A.1l .
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- . 1
@ o PROGRAM "COUPRESS"
9 ) ,
* O
0004 IMPLICIT REAL#B(A—HrD 2)
0005 C e b P e T e e e bt e e e ST ET L SRV LR IR e e Sttt el SRt e
0004 C * K IS THE NUMBER OF CYLINDERS . :
0007 ¢ * MN=NUMBER OF CYLINDER AT CENTER OF ARRAY
0008 C * RO=RADIUS OF ENCLOSING CYLINDER
0009 C * CLCII=CH(O»I) + RACI)=R(0,I), RI(I)=RADIUS OF CYLINDER I :
0010 C * DIMENSION ACHMr MoK o BOMHy MM KD o WL (M M) » W2 (MM MMD s WS CHM S M) 1WA (N M
0011 C * DIMENSION S(2MM+1),CO(2MM+1) »F(2MM) rR1(2MM+2) rR2(2MM+2) rRIC2MH+1)
0012 ¢ % DIHENSION G(2MPKs2MPK) rWS(2MPK2K) » WS (2MPK) »VC (2K 2K)
0013 C % DIMENSION CH(KsK)sR(KsK)»RICK)yRA(K) »C1(K)
0014 C % DIMENSION AL(MM)sAZ(MH) 1A3(2y2HP(K=1))rA4(2,2(K=1))
o015 C ® DIMENSION UC(2K»25) s AMC2K(K+1) y 2K (K+1))
0016 C - XERKKKKDONK ORI R KK KRR KERRRRRRK KR TRIERKRRR R KR KK
0017 DIMENSION A(15,15,3),B(15,15,3)
0018 DIMENSION W1(15,15) W2(15s15),W3(15,15),W4(15%15) )
0019 DIMENSION G(846+66) WS (461627UW6(86) :
0020 DIMENSION VC(476) s ,
0021 DIMENSION AM(8+8) =
0022 DIMENSION CH(3,3)»R(3,3)sRI(3)7RA(3),C1(3)
0023 DIMENSION A1(25)sA2(25)sA3(2,44)vA4(2,4)
0024 DIMENSION S(50),C0(50)sF(50)»R1(50)yR2(50)»RI(50) -
0025 DIMENSION AA(3+3)/BB(3»3)
0026 READ 99:KsHN
0027 READ 99sMMsMP
0028 PRINT 109 sKrHMyHNe NP
0029 READ 99, IDEA» IPUNCH
0030 C READ CH(IrJ) AND C1(I) IN DEGREES
0031 READ200s ((CH(IsJ) rR(IrJ)rJm1yK) 9 In1eK) .
0032 PRINT 110
0033 PRINT 102, ((CH(IrJ)rJa1sK)rIn1sK)
0034 PRINT 111 :
0033 PRINT 1025 ((R(Ird)rd=1sK)rIngsK)
0036 C READ R(I»J)yRICI)yRACI)sRO IN THE SAME unxrs OF LENGTH
0037 READ 2015 (RI(I)»C1(I)sRA(I)sI=1,K) ,
0038 PRINT 107
0039 PRINT 108¢ (IsRICI)rRALI)CI(I)rIn1rK)
0040  * READ 202:RO

» . ’

*****v-?i*
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301

477

?0

» IS

emmmmmm——ee IF PRESSURE PROFILE IS PRINTE

READ (S¢x) IPRESS & ’

FF=3.141592653589800/180 . DO VY a
LEGREES TO RADIANS

DO 301 I=1,K

£1(I)=aC1(I)&kFF . .

DO 101 J=1,K .

CH(I+J)=CH(I,J)XFF ,

CALL FACT(MM:MPsF) .
M1=2tMPXR

(

L
IFRESSs

CALL FIXUP(HHvKrRerNI7U2!N3.U4’R0'HNvR1rR 7R3PRIORA'CIPé'C07F)

IF(IDEA.EQ.0)GOTO 477 .
DO 1 IDEA=1,K .
KK=2%({K-1)

CALL FIXUP2(MMsyMPrKsKKyMLrArRyW1 s W2 W3 WArCHyRPRIPRI/RIeR3I¥S/CO¢F»

XGr WS, Wo ¢ IDEA)

7

¢

CALL UISCOU(HP:HHvK:IDEA'HI!S’COvRvCHrRIrRIrﬁl-AZrASvA4rU5vArR)

IX=IDEA+K

JX=0

RK=2%K

0o 2 J=1,KK
IF(J.EQ.IDEA.OR,J.EQ.IX)GATO 2 '
JX=IX+1 '
VC(IDEA!J)"A4(1’JX)
VC(IXFJ)=-A4(2»IX) ke
CONTINUE . -
VC{IDEA,IDEA)=1,D0

VC(IXrIX)=1,D0

YC(IDEAY IX)=0.00

VC(IX»IDEA)=0.D0

CONTINUE

PRINT 105,RO

PRINT 102, ((VC(IrJ)rdulsK)sIni,KK)
Kl=K41

PRINT 105sRO

PRINT 102y ((VC(IrJ)rJInK1sKK)rInlyKK)
IDEA=Q

KK=2%K

CALL FIXUP2(MMyMP K>KKoMLrArBrWl W2, W3,WArCHIR/RIPRI/R2/R3+5sCOsF»

¥Gr W3S, W6 IDEA)
IF(IPRESS.GT.1) GOTO 222
DO 90 II=1,40
THETA=(II-1)%9,0D0
PRINT 114,THETA
THETA=THETAXFF

CALL PRESS(MPsMMsM1rK» SvCOvRvCHvRIi“quvBrRI*AﬁrBBrﬁl»AﬁyTHETA)

PRINT 115
PRINT 11469 {(AA I rJ)sdmlsK) s I=1,K)
PRINT 117
PRINT 114+ ((BB{IsJ)rJsl,K)sIn1,K)
CONTINUE



s

9

0094
Q095
0096
0097

0098 -

0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133

0134

0135
0134
0137

222 IxX=1
. K2ak+2
IX=IX+1
Do 82 J=1sKK
JA=Jd+1

DO 81 I=1,Mir4P

IF(JS.6T.K)JIX=J$2
IF(IX . EQ.K2)IX=IX+1

J=(I~1+HP)/HP

o AMCIXeJUX)=2.D0KWS(Ird)
82 WS(IrJ)w2,0D0XNS(IrJ)

AMCIX»IX)=1,0DO+AM(IXy IX)

WS(Tr )=l . 0DO+WS( Iy J)

81 CONTINUE
Ki=h+2
AM(151)==1,0D0
AH(1,K1)=0,0D0
AM(N1s1)=0,0D0

AM(K1yK1)==1,0D0

D0 83 J=misK
JX=J+1
JP=JX+K+1

FF=(RI(J)/RO)X%2

AM{ L s IX) =FF
AM(1,JP)=0,0R0

AM(K1rJX)=0,000

AM(K1 s JP ) =FF
AM(JXr1)=1,000
AMCJP>1)=0.0D0

AM(JXK1)=0,0D0
AM(JP-K1)=1,0D0

Do 84 I=1+K
IX=I+1
IP=IX+K+1

FG=(RI(I)/RD)IX%K2

AMCL» JX) =AMLy IX) ~FGRAM(IX » JX)
AMCL s JP) =AMLy JP) —FGXAMCIX » JP)
AM(KL s JX ) =ANCK1» JX) ~FGXAMC TP » JX)
AM(KL » JP) =AH(KL » JP)~FGRAMC IP s JP)
AM(IXy 1) =ANCIX 1) ~AMIX, IX)
AM(IPr 1) =AN(IP» 1) ~AM(IP Y IX)
AMCIX K1) =AMCUX P K1) =AM Xy IP)
AM(JP sK1 ) =AMC(UP /K1) ~AH(JP» IP)

84 CONTINUE

A5
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0138
0139
0140
0141
0142
0143
0144
0145
0144
0147
0148
D149
0150
0151
0152
0153
0134
0155
0156
0157
o138
0159
0160
0141
0162
0163
0164
01635
0166
0147
0148
01489
0170
0171
0172
0173
0174
0173
0176
01727
0178
0179

AMC1:1) =AML, 1)-AM(1, JX) . -
AH(I!NI)'ﬁﬂ(1!K1)°ﬁﬂ(lrJg) i . o
AM(KL 1) =AM(KL1,1)-AM(K1»IX)
AM(K1sK1)2AM(K1 K1) ~AMKL»JP) L
83 CONTINUE o LI
Ki=KK+2 - ’ * .
PRINT 103,R0O -
PRINT 106s((AM(EsJ)r»Im1sK1)yIm1sK1)
PRINT 98, AM(4:2),AM(B»2)1AH(4r6) AM(B»S) , \
IX=0 * &
IF(IPUNCH.EQ.0) GOTO 4629
D0 529 I=1,M1,HP
IXaIX+1
529 PUNCH 200r (WS5(I2d)»VC(IXrJ)sJumlsKK)
429 STOP . .
98 FORMAT(//70’ y2X»'EFSILONCIs1) = ’,F12,52/93Xs ‘XSI(3s1) = ‘yF12,54/
A3IXr’EC(3p1) = ?SF12.59/3Xs’F(3s1) = /»F12.3)
99 FORMAT(2ID) .
102 FORMAT( 0’s3F12.5)
106 FORMAT(’0’,8D12.5) -
103 FORMAT(///»10Xy'THE MATRIX OF ADDED MASS COEFFICIENTS WITH THE ENC
XLOSING CYLINDER AT RO=’,F10.1+//)
104 FORMAT(’17) -

105 FORMAT(///s10X,’THE VISCOUS COUPLING MATRIX WITH ENCLOSING CYLINDE
¥R AT RO=’+F10.1¢//) .
107 FORMAT(//7/79 07 912%X9 T/ 97Xy 'RCID 7 210Xy *RCO2 L)’ s9X»“CH(O2I) IN DEG’)
108 FORMAT(‘0‘»10X,13,3F14,7)

109 FORMAT(’1/95Xy 'K=’»12,"
X297 MP=’y125//) .
110 FORMAT(’0 THE MATRIX DEFINING CH(I»J) IN DEGREES’)
111 FORMAT(///»'0 THE MATRIX DEFINING R(I.J)>’)
114 FORMAT(///128Xs* %X THETA=’;F5.15’ X%’
11% FORMAT(/»1X,»’MOTION IN Z DIRECTION OF CYLINDER . A
x (2> (3)7) P
116 FORMAT(/1Xe’PRESSURE ON CYLINDER (1)‘r14Xs3F12.5,/1Xs’PRESSURE ON
XCYLINDER (2)’s14Xs3F12.5/1X»PRESSURE ON CYLINDER (3)’»14X+3F12.3)
117 FORMAT(/»1X» MOTION IN Y DIRECTION OF CYLINDER (1)
X (2) (3)%) R
200 FORMAT(2F10.5)
201 FORMAT(3F10.5)
202 FORMAT(F10.3)
END " .

MM=’,12y’ CYLINDER AT CENTRE OF ARRAY ‘1

-
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0180 SUBROUTINE PRESS(MP»HMsMlrKsSsCrRrCHIRI/NSrArBsRI/AA»BEALAZ» TH)
0181 IMPLICIT REALX8(A~H»0-2) 5
\ ) 0182 - DIMENSION RCKr1) sCHCK» 1) sNS(MLr1) s ACHMy MoK Do B (MM MM 2 K) R
' 0183 DIMENSION RI(i)vRI(l)rS(I)rC(i)yhA(Kri)rﬂf‘ P21 rAL(1),A2(1)
0184 M2=MM+1 ' . :
) -« 0188 D0 20 I=1,K s a : o
i 0186 D0 15 L=1,K ‘
¢ - 0187 AACTIYL)=0,000 .k
0188 18 DB(I,L)=0.0D0 : ; T
0189 AACT» 1) =DCOS(TH) " - ’
‘ 01%0 BBC(I¢I)=DSIN(TH)
0191 DO 30 J=1»K . ' |
0192 IF(J.EQ.I) GOTO 30 , , .
i . - 0193 RA=R(I,J)/RI(J) -
0194 CALL CONT(R4sM2+R1) . .
0195 “CALL GEN(CH(I»J)sM2sS+C) . . . S
. 0194 [0 40 M=1rMM !
., o197 MG+ 1 .
¢ 0198 AL(M)=(~1,0D0)XxXMXC (MG )XR1{(MB) .
0199 40 AZ(M)=(-1.,000)KXMXS{MG)XR1(MG)
0200 DO S0 M=1,MP .
0201 RA=0,0D0
0202 RS5=0.0D0
0203 DO 40 MH=1,HM
; ] . 0204 R4-R4+Al(HH)*Q(MHrH:J)-A2(HH)!8SHH7H:J)
0205 60 RS=RS+A1 (MH)XBCHHs My J) +FA2(HH) KA (MH M2 J)
i® 0204 HB=M+1 .
- 0207 © R4=R4+(~1,0D0) $kMEC (MG)/R1(MB)
0208 RS=RS+(~1,0D0)¥xXMkS (MG) /R1(HG) ,
0209 IP=(J~1 Y KMP+H ,
! 0210 IPP=MPXK+IP .
0211 0O 70 L=1:K
* 0212 LL=L+K
0213 AA(I,L>=AA<1,L)+<R4:u5<1P,L)+Rszus<xPP,L))*R:(J)/RI(:)
> 0214 70 BB(I;L)-BB(IyL)+(R4tU5(IPnLL)+R5!HS(IPP:LLJ)*RI(J)/RI(I)
0215 50 CONTINUE
02146 30 CONTINUE
0217 D0 90 L=1,K
, 0218 LL=L4K ,
. 0219 DO 80 M=isMP .
©220 IP=(I~1)XMP+HY
. e 0222 § GM=MXTH -
0223 AACT L) =AACT L) 42, 0DOXDCOS(GMIRUWS (IP L) +2,0DOXDSIN(GM) XUSCIPP L)
- . 0224 80 BB(I,L)=BB(I,L)+42 ODO*DCDB(GH)XUS(IP’LL)+ +ODOXDSIN(GH)AWS(IPPsLL) |
0223 AACTL)=AALT I LIXRI(T) .
. 0224 90 BBE(IsL)®BB(I,L)XRI(I) - -
& 0227 20 CONTINUE ‘ )
S 0228 RETURN .

0 - 0229 END . - .
. [a] -
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APPENDIX A.2

' X , 230

PROGRAM "SSCHEN" : ~

CONST=CMFLX(1,0»1,0)
READ (5r10)FREQ

10 FORMAT(6F10.4)
GAMA=R/RO
DO 20 I=1,16 ' -
WRITE(46»1S)FRER(I)

15 FORMAT(//3X»FREQ= “»F10.2)
OMEGA=2.0%3.1415927%FRER(I)
TR=(RO-R)XSART(OMEGA/ (2,0%XMU%X144.0))%3,1415927/180. O
ALFA=CONSTXSQRT (OMEGA/ (XMU%144,0%2.0) %R
BETA=CONST*SART (OMEGA/ (XMU%X144,0%2,0) ) XR0O

- E=SINH(TR)%COS(TR)

' F=COSH(TR)%SIN(TR)
T=COSH(TR)>XCAS(TR)
U=SINH(TR)IXSINCTR)
CONST1=CMFLX(EsF)
CONST2=CMFPLX(T»U)
ACALFAXXR2X (1., 0+GAMAKXXD) -8%XGAMA ) XCONST 1 ' , <
B=2,0XALFAX (2, 0~GAMA+GAMAXX2) XCONST2. :
C=2) OXGAMAXXIKCSART (ALFAXEBETA)
D=2 0XCSART(ALFA/BETA) XALFA
W=ALEFAXX2X (1,0-GAMAX%2)XCONST1
X=2,0kALFAXGAMAX (1.0+GAMA ) XCONST2
Y=2,0XGAMAXXZKCSQRT (ALFAXEETA)
Z=2.,0%ALFAXCSORT (ALFA/BETA)
He=(A+B=C-D)/(W-X+Y+Z)
WRITE(6¥14)H

14 FORMAT(/3Xs'RE(H)= /sF12.6/3Xs/IM(H)= *,F12,6) .

20 CONTINUE \ “\\\\\\ .
STOP = “
END * 1 -

100.,0 110,0 130.0 140.0 " 150.0 160.0
170,0 180,0 : 190.0 ° 200,0 - .

$DATA . ' k
30.0 40,0 50.0 70,0 80,0 90,0 - \\\\\\\\\\\ |

/7 ~ L : : .
W - . -
. ) : .

c
C °**********************X#X**********************************#******
c * *
G X PROGRQN FOR%;;LUINB THE CQEFFICIENT ‘H’ FROM a.SoCHEN S THEORY X
C x ' ' . X
C . RERRACR KK AR RN BRI K 2K K K K K 00K K K A KKK TR IR K KK R OK K AR ORI KORK KRk K
e
COMFLEX ArBrC-DrWsXrYsZrHsALFA»BETAY CDNST!ARG
COMPLEX CONST1,CONST2
) DIMENSION FREQ(1é4) \
ST . DATA XMU/1.0S9E-5/yR/1.25/:R0/9.2/ )

i

.

SR

ol .
R
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, _ PREG=
‘ REC(H) =

Y

s _ RE(H)=

, . - " FREQ=
RE(H)=

FREQw=
RE(H)=

FREQ=
RECH)=

FREQ=
RECH)=

FREQs
RE(H)=

S

FREGw
. RECH)=

FREQe=
RE(H)=

FREQ=

FREQ=

4

A.2.2

30.00
-1.044312

40,00
-1,043414

50,00
-1,042802

Y

70.00
~1.041999

80.00
~1.041716

?0.00

100.00
-1.041282

110.00
-1.041412

130.00
-1,040832

140.00

RECH)=  / =1.040714

, FREQ=
- RE(H)=

FREG=
- : RE{(H)~

-,

FREQ=
RE(H)=

.

FREQ=

RE(ﬂ)"

" S FREG
i RE(H)=

4

150.00
-1.040610

160.00

~1.040514

170,00
~1.040427

180.00
-1.040349

190.00
-1.040274

200.00
~-1.,040209

-

IM(H) =

IM(HY =

IM(H)=

IM(H)=

IN{H)=

IMN(H)=
IM(H)=
IM(H)=
I”(H)-

IM(H)=

P

IN(H)= -

IA(H)-
;H(H)-
IM(H)=
IM(H)=

IH(H)=

\

.

0.008498

0.,005800

0.005188

0.00438%

~

0.004102

0.,003847

. 0,003468

0.003498
0.003217
0.003100
0.002993
0.002900
0.002814
0,002734

0.002641

0.002394 '

O

= o
gty

7
.
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e
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0! dse " Program
for soluing
Mazur's A.M.C.°
{+ fmt {y“Cylind
SEr centers” /s
'distqnee ="
f6.3!/-"K="q
f2.0
Fmt 2+ "Epsinl
="' -FB S+/+"Eps
ni2="yf8.5:7:7
1.25>r1
ent r@
(r@t2-2%rit2)

2

2*In(rS+r(rS?
1)) 2r4
8»>C»0
T K+19K
! (exp (K#r3)-
exp (-K¥r3J))/
2*ré
12t (exp(K*r3)+
exp(-K*#r31))/
(exp (K*¥r3)-exe(
~K*r3l)sr?
137 K#Egwp (-K#
(r3+rd41)  ra+i=sC
14! K#pPHeupl(-2%
Ker31+0=0
180 1+ (rotd4-4+

3
4
3
6
7
8
9

i
|
y
{))+r3
2-

ht?

|

1
)

rat2esrit21.(rat

2¥r1t31#C A

16 (i+{rdtd-4=«
ratzeritaiority
#Dixrit2-rgt2+E
TUOif K=lifsns
B+viato 14 .
1a2¢ if A= 18t (-
By A+¥iatg 1D

19 if B=-v>10t(=-
aliB+Ytata 19
29 wrt 158.,1sr@s

K =
218 RE=laAi e~
, 1%
22 wrt 16,2y Y
23 end

[2¥N1t2)+r2 .
rarkgjié)*rs
In(r+LAtr2t2-

APPENDIX A.3
PROGRAM "MAZUR"

r_ : Cylinder centers distance..

r
cylinder.
ry: h

;inh (kh3
rq: coth (kh)

?

X: eIl

kRS ¥

1 Radius of the oscmllatlng "

]

K: No. of terms taken for solving

the equation.

Note: This program:is only good for

the case where the cylinders
have same radius and same

acceleration

Results:

Cylindsr cent
distmnce = 4,

Llendrr Cent s
distancs = :ué
h - |'|

Erzlnlt=
Erszlnil=

1

Erzlnil=-1,83411
Epzlni2=-0,25232

B
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0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
*0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0033
0036
0037

2R Yy Nely NolyRy)

0038

S50

22

12

13

15

17
146

*0M EXFERIMENTAL DATA

AN) = ‘3F10.4+1Xs’G’)

APPENDIX A.4 C ,

PROGRAM "EXPAMC"

»

o
XKEDERRERKKRLK KKK KLKIEAOK KKK K KX HORE KR HK KRN K KKK RKAK KA KRR KK X KX

x X
x FROGRAM FOR CALCULATING THE ADDED MASS COEFFICIENTS FROM E
X THE EXPERIMENTAL DATA _ *
* x

AXEXEXXEEEEXREX KRR EERETEEEXKKAREEE XL LA EERREEE R KRR ERRKAK
DIMENSION PRESS(40) \

DIMENSION XPRESS(40)PHASE(40)

DATA PI/3.1415927/:R/1.25/

CONST=PI%10.0/180.0

RHO®62, 37/ (12%%3)

DO 99 MN=1,8

READ(5,50)ACCEL ,FREQ .

FORNAT(2F10,4) .

READ(S, %) (XPRESS (1) yPHASE (1) s I=1y40)

DO 22 I=1,40 ) |
PHI=sPIXPHASE(I)/180.0 '
PRESS(I)=XPRESS(I)%1,414213562%C0S (PH1)/257,7

CONTINUE

WRITE(6s12)

FORMAT(//////8X,*@ DERIVATION OF THE VIRTUAL MASS COEFFICIENTS FR
@777) ;
WRITE(4s13)FREQsACCEL ’

FORMAT(//5Xs '"FREQUENCY = ‘»9X,F10.2/1X¢"HZ’ /5% ¢ ’ACLEL. (Z DIRECTIO

WRITE(S,15)
FORHAT(/SX;'PRESSURES MEASURED AT PEAK ACCELER&TION’v//35Xr’ANGLE‘

X¢5Xr 'PRESSURE’ » 15X s ‘PHASE DIFFERENCE’/) 8

DO 14 Im=1,40

ITANG=9%(I~1) ! . P
WRITE(6717) IANG» PRESS(I) »PHASE(I) -
FORHﬁT(}bX:1316XrF1004v1Xl'PSI'113X1Fé21)

CONTINUVE . . . ‘

KR}
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!
0039 C
. 0040 C AXKXKRRKIAKEEKREEREKEERERRRRRKIKERRRAK KK EXKK LXK KAREK K
T . 0041 C INTEGRATION USING ‘* SIMPSON’S 'RULE
-0042 € FRXRRXRERARKER KKERAEKRHEIRREXAKEEEEKENEKREKTRAKRKKKKRNE
0043 € |
0044 - FZwu2,0%PRESS(1)%1,0
0045 FY=2, 0XPRESS(1)%0,0
. . 0046 00 51 N=2,40 ’
I o047 THETA=CONST®(N~1)
0048 IF(N/2%2,EQ.N) 60 TO 23
0049 COSINE=2,0%COS(THETA) . . -
: 0050 ¢ SINE=2,0XSIN(THETA) “ %
; 0081 ¢ GO TD 24 .
0 0052 23 COSINE=4.03COS(THETA)
0053 SINE=4,0¥SIN(THETA)
" 00%4 24 FZ=FZ3PRESS(N)XCOSINE
00%S FY=FY+PRESS (N) XSINE s ]
. 0056 -S1 CONTINUE , ’ x o
l 0057" FZ=CONST/3%RAFZ
0058 FY=CONST/IKRXFY
0059 - - WRITE(6+18)FZsFY
0040 : 18 FORMAT(//5X»/FORCE IN Z DIRECTION = ’#F10.4r1Xr P8I’ +/5Xy/FORCE IN
0061 - X Y.DIRECTION = /»F10.451Xs’PS1’/)
0062 EXPTCZ=F Z/ (RHOKP I XRXX2RACCEL)
' 0063 1 EXPTCY=FY/(RHOXP IXR¥A2RACCEL) C
0064 WRITE(6s L9)EXPTCZPEXPTLY
00485 19 FORMAT(/5Xy‘COEFFICIENT IN Z DIRECTION = ',Flo.a.7x'/sx.'cosrsxcxs
0046 INT <IN Y DIRECTION = /+F10.6//77) °
0067 99 CONTINUE i
. 0048 STOP N
. 0069 °  END / . .
R ! | , -
," .{), -
[ .
L ) b
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APPENDIX B

..
-

ALGORITHM USED IN THE "COUPRESS" PROGRAM
NN

-B.1 THE ADDED MASS COEFFICIENTS

This program is a modified version of Suss' "COUPLING"

compﬁtér program (S. Suss' Master Thesis 1977a), where an
R

extra part was added to predict the pressure distribution
. A
4 caround the surface of a particular cylinder in the system.
The main job of this prograﬁ is to sdlve equations (2.16)

dnjﬁ'

to (2.27) for @ 40/ Brjer Yaier Snjn’ 2nje’ Pnja’ Cnjse’
The entire system of these equations may be written as the
single matrix equation ) '

]
(el (W = (7], (B.1) "

with 1 ' : - -
el utl, Wi | .
~natdy, ridy, e, - 4
ady , 1831, e, ] \ ”

31 -ady, 0y, -ted

N A

-~

~ .
{u}l{a}z....{a}k{a}l{a}z....{a}k
fB}l{B}zctn-{B}k{b}l{b}z"'m{b}k
0 . ‘ vl (rlye.c vk ledy {el, o {eby

'. {611{6}2..:.{G}k{qu{d}z....{d}k
\ ~ , /

9

oy

T e o
Y -

A [

TR TR T

HEERE Y

Faa

(o 7
P

42
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B.2 . ‘236

T r’/{slma}l{am}z....{slm’}k{‘a BL 0 by i{ 0},
e |10 0 b 0 BT Gy ey

00 {0 byt L0 B0} L0 houl0
€0 100 el 0 1L O 3L 0} 00}
~ T ‘ s

where [W] is a (4*MM*k) x (2*k) matrix of all thé unknowns,
[T] is a (4*MM*k) x (2*k) matrix of the right-hand side of
equations {(2.16) to (2.27), and [C] is a (4*Mﬂ*k) x (4*MM*k)
matrix of the coeffigients common to each column of [W]; |
Glm is Kronecker's delta; the sub-matrices’in [C] will be
def;ned later in this appendix.

The solution of this matrix equation is straightforward.

However, it is found that for obtaining an accuracy up to

' three digits, the values (MM) of the indices, m,n in equations

(2.16) to (2.27) may have to be as great as ten. For a

modest system of three cylinders, with the unknowns being
\?*MM*k, seven hundred and twenty unknowﬁs have to be determined.
Hénca, a saving in éomputation to solve this froblem is
particularly desirable. Fo#tunately, the equations for the
unknowns anjz to anjz and anj2 to dnjz
we can solvéd them separately. Also, the coefficients of the

are not coupled. Thus,

%3 y5, are independent of 2 and are identical in ,

corresponding equations to those of the a s, tod . . These

to dn
3% e
will be proved later in the appendix.

-
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An attempt to simplify the solution of equation (B.1l) i
was made by utilizing some of the properties of matrix [C], g
Let us consider the relation (A.l) for just one column of
[w]. b A
(0 R
’ {“}z {slm} SCUE
o, [c] <{3}z> = <{ 0 }?. L (B.2)
{v}, {o} . ;
. {5}2 {0} . - ?7
) . J i
The elements of the lower 2*MM*k rows of [C] are the [
. ot
coefficients of the a's, B's, v's and'§'s in equation (2.20) o
and equation (2.22). Coefficients inlequations (2.24) and S
(2.26) must also be included if there is a cylinde£ in the
center of the array. ‘
e -
. In terms of sub-matrices, equation (B.2) can Be expressed
B
as: e .
. o
3 Jyra '3 S "
A’]l{a + [B . C + [D7){$ = {0 B.3
N 3 - ad 3y - tcd :
[8°1{a};, - [A“1{B}y, + [D-1{¥}y, - [C '1{6}“ = {0} ~ (B.4)
where, . , ) ‘ - ;
¥ - m"’ )“:
Al = 1) nl jom To } cog (n~m) ¥ .fo: n2m o
An {m=1) { (n-m) { rP-1 o3 - :
X 3 : L
= 0 K o forn <m (B,5)




PRI 7. Y A D A S 2 R N e

u~~f’; -
‘ n-in -1 ‘
~ -, R > ,o—Rm - ’ .
_ j PPy oy Mo o L >
g Bin = Ty Ty T 8in(n-m) woj for n Z m |
W 3 .. .
. \
= 0, ’ ~forn <m - (B.6) ’
. ' j t ‘ -mlR!;;n ijl"'l ( )w . f . ) .
Co. = cog (m=n ocrnim
o (q-l) ! (m=n)-R§+]" o] ‘ N
' ty ! ! ) . e
' = Q ‘ .7 for n > m (B.7) ‘ ,‘,‘
m-n . n+l .
miR R, ) : 3
pl m ol ] sinth-n)¥,, for n <m |
ST (n=1) ! (m=n) IR] ] . 9
) ‘ 3
. ' b
.= 0 forn>m (B.8)
o N ) j = ]:,2,3-0.]‘; j'# qo
If § = q, we have from equations (2.24) and (2.26) that,
| ' ‘n=-1 ' o . i
: 1 q ‘(‘E_O_) for n = m . ,
Aon ™ Ry ) . a
T~ . ‘ v
- =0 ' ‘ (B.9) ’
otherwise, N ,
R Bl =0 for all m, n, ) . (B.10)
\ S | ,_
‘ cd .s-(f_‘l)nﬂ forn=m s
mn N | -
. o - , *i‘;:
- =0 . (B.11) '
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otherwise, : Ny T y‘ ': TR

kngn = 0, for all m,-n,;

s . ) * f&_
It can be seen from equations (A.3) and (A.4) that

- ﬁ ! : »
(a}j2 and {B}jz may be expressed in terms of the correésponding

{y}jz and {6'}j2 as,

e

i 3
{“}jz = [X ]W}sz.+ (Y ]fs}jz. _ . (B.13)

.

(81, =-t310r}y, + [x{’]{a}jz, (B.14)

where, ' D

nl

x3] = -(1831 ady 183, J aIn~tedadi ol + el s.1s)

td] = (112317 ed) ¢ I Y (eI idtied - i (ma16)

Now attention is centered on the upper part of matrix
‘ T

. [C]l. The elements of the upper Z*MM*E rows °f5£§] are the

. coefficients of t%e anjz'to anz in equations (2.16)'anﬁ §2.18).

Similarly, these matrix equations may be written,

n

k

ko k
T ey, + Toutiey, + Toethony,
Jm] . j-]_ : j-l )
k | . - K B .
+ T etitedy, = s (BLY)

3=1




. , ' ‘ "
' B.6 : 240
9 k ' k k ;
L5 pdd ij iy &
Co- =k Wady, ¢ 30 IRl 4 3 T, -
3=l j=1 j=1 : ' i
: R " k
Lt LRy - ‘ ‘
.; y - ¥ ity = (o, (.
S ) jal ’ ‘
g : i=1,2,3...k,
" ‘ :
where k is the number of cylinders im the, system, and
. i
- /s - _l :}\
(=1) " P R RY o :
rid . 4 2 costn-m¥;, for ifj, n2m |
‘ (m=1) ! (n-m) Rj
’ 3
! - . . B
= ( forn <m, i ¥ 3 8
am . forn=m i=]j -
=0 forn #m, i =13, - (B.19)
- -m _m=1
(=1) * Py rIRT
33 . 13 in-l sin (n-m) ‘pij for i#¥3j, n2Zm
mn (m-1) ! (n-m)! R, ‘ '
o5 3
¢ ' . '
= () forn <mor i=j, i (B. 20)
4y =D -1 R R ) g
Qo = ‘ cos (n+m) Y " for i # j
., m (m=1) ! (n-1) m’i‘;‘“ i3 . o ,




,}ﬁ - , et e 3‘7 ‘ T M,' ’ .
S Co - 24
fx | - Q;g";m_ for i = 4, A =m . . |
: ’ - . ‘ ' I g}
. . =0 "for i = 3§, 0 #m, 21
é ) ) ’ : -
. , *iy _ ij . . N
nmn ) nmn for i # j,
v ! g
ij “ . :‘ . . L
= -:an h ) ‘for i = §,, - ’ (B.22)
J 1 (-l)n(n+m-1”)~mn£"l R‘j‘”‘ rmyy. . g 1:7‘ j : 3
K = sin (n+m or 1 ’ e
| W (mel)t (n=1) IRG 4 ‘
s ‘. = 0 for i = j. - & (B.23) A
Replacing {a}jz and,{ﬁ}jl in equations (B.l'i) and (B.18)
| by {Y}jz and {G}jz,‘we obtain,
1. ’ - R
[21{v}y, + IQ1{8}y, = (0} ' (B.25)
! .
] : ‘
| where,
i
3: k s i o “'-‘
- ,, 61 = ¥ «rididy - otiedy + wlln ea2e)
i . R . jnl ' 5
v
' . l’ .
S S-S PRN 44,090 4
0 o w o= L el « athed s My @an
, . j.l ., s .
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»
2] = T -rrtydy - adIrpdy + ey,

k .
e = Zoripdy - odied - '), 29y
j=1 ’ '

Similarly, the relatibn between {C}jz and {d}jz to
equations (B. 26) to (B. 30) may be written as:

[G]{c}j2_§+ (E1{a}y, = {0}, (B.30)
[Pi{c)y, + lQi{aly, = L&y },,. (B.31)

Combining equations (B.24), (B.25), (B.30) and (B.31),

we arrive at:

[6] [H] [¥1 fc] 63,10 0]

- (8.32)
2] LQ) [61 fal [ 0108, - |
\ e N7 ~ -

With Y11 Gli.?.’ S0 énd, d‘uz km':wn frqm the above
equation, the added mass coefficients can now be calculated,

since:

TSR
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Comparing (B.32) with (ﬁ;l), it can eqsily be

:ﬂ'
§

26

8

-

\

2c

is

Lig

1lig
+ 2d

B

10 ¥ 274,

1i8

.9

T

J

where 612 is the Kronecker's delta.

(B.33)

‘ ) 3
' 4,2 =1,2,3.. .k

Q -
g;z; that

~

we now only havé to solQe the upper half of (B;;y’instead of

solving the whole matrix equation in order to obtain the

-added masshcoeffiaients.

.

’

For the case of the boundary channel free to move, the

added mass coefficients for this channél are calculated by

<o

using the following gquations.”.

r; 3\ (;
ok ’ je
£ k -y
L 7ol (EL')Z
= :E: ik | ﬁ
R
{ €ot > j=1 ' ©
£51 : 845,
N .
() g
eoo Eoz
k Eoo - X Eoz
= :E: .< +
K < eoo”?’ f=] ot
. foon )
.. .

(B.34)

(B.35)
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r-“- \ . r‘ ‘» ' &

€10 €50 = iy
/' k- :

€, ~ g

4 io & -3 { TiL } (B.36)
eio ’ ‘2’1 eiz e
A £io £10 %1y
, . \

Details of the derivation-0f these equations cah be

found in Appendix A of Suss{‘(1977a).

. —_ - — e - =

B.2 THE VISCOUS COUPLING COEFFICIENTS -

To calculate the viscous coupling coefficients, we also

have to determine v's, 6's, ¢'s, d's. The procedure is similar .,

*

except that the system has only (K-1) cylinders, that means

th

the system is considered as if the particular P cylinder

were missing. In order to express this fact, these unknowns

"are superscripted with P as YP, GP, cP and dP } ' )

Referring to Suss' (1§77a), the viscouﬁ coupling

coefficients may be writtén as follows:

~ -
~
‘\\

4 rs

n

P k ® n-l{ R 2 ml P - ; $\ P N *
C, = :1 Eli (=1) n (—Ele ) (anjzcoa(nl;»l)ij& B jzsﬁz(n:-l)’#pj)
j=1 n= v

Ey
- , ~
gyijzcos(n+l)ij + 6§jz8i"(n+l)ij) f{

™

N

: R, \n+l
+ (-1)n (ﬁj—)
“p3

(B.37)

T
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YT
»

e

T
]
R

-5

g

.
zcos(n l”’pj +bnj2,37‘"(n 1)ij)

’ ' n+l
~1\n ' P P .
+ (-1)"n (—-1-) (’c:n:maos(n+1)\ppj + dnjxstn(n+l}ij) ’

i | . : (B.38)
f | { - + n ‘%éﬁ_n"l P
Q‘ﬂ = Zl Zl (<1)"n (Rj ) (-anj.%“n (n-—l)wpj + B j gco8 (n-l)w
a]' n= -

. P
f + (—l)nn (_,_,i_) - (Ynjz“"(n*l"ppj - 6hjz°°3(n+l)'ppj) ’

(B.39)

! . . ) ‘ ‘;—ti‘ X

& EI PRACI P (fﬂi n-1(-1° vin(n=110. . +b%. oos(n=1)y_.)

.= j n_ Rj anjﬂ,“" n o3 Pnje 08 b3
=] n=} .

ot gk

et Tt &

R
R jg

n+l . . .
+ (-1) n (~—j-) (c jlstn(n-l-l)w i cog (n+l)y j) R
p3 P

"

B

(B.40)

2,P = 1,2,3...k; & #P.
r @

) As in matrix form, these equations become: L

ZI{AP}T{Q}Jz ¥ T

Y, + WY, + 0T,
j=1 | "

3 73 3

(B.41)
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, X ' , \
P P,T, ,P PyP, P .-, PyT, P _ BT P .
o = 2 105, + 0w, + i fier, + 0F @y,

]
2 7
=1 3 3T ¢
‘ (B.42)
A K : :
P _ _(nPyTr P PyP a1 P P\T, P PyT,x1P
3 ;{;[ oh1jter], + 0wl + oN]m], + oo,
] E .
} | ’ (B.43)
Pk , '
P _ NV rirnP3TratP PyT, (P P\T, \P _ ( PyT o P 7
g = 2 =0fjar, + 0f1fwy, + 0N, - 0Fia,
=1 . ' o .
,C P
: (B.44)
With,
R_.\w-1 - .
P,T n-1 .
A o= (= Bl - ., .
({ }3)n (-1) nA(Rj ) cos(n l)lflp:l ) (B 4?)
R _.\n-1 \
P.T, _ .y -1 (_pj .
({n }j)n (-1)" "n ( Rj ) sin(n l)ij' ’ (B.46)
o R, \n+l oo :
({HP}?) = (=1)™n (—J-) cos(mw+lly . , + (B.47)
st I Roj - 3’ , :
‘. © 4 Ry \n+l T
({VP}T) = (=1)"n (—i-) "ein(n+l) Y., (B.48)
j‘n Rpj PJ ‘
n=1,2,3....MM. ’
¢

e e
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(B.41) .to (B.44) may
N

Replacing {a}

and‘{B.}”gz"by {Y'}§’2; and {6‘}§£.'equat”ian§ ,

be written as:.

i

|

1
1

P, T._.P PLT; . P
{"} fY}l + {r} {5}2

/ -
S

{EP}T{c}gL #*1a);
@i+ )76

(*1%e}} + (FiTia)

' : P.T P,T P.T P.T
where:  (2%37 = {11, )] ... im }’F}'

E)T =
o

T -

3

[N

{0P}T = ~(nf 3T 1xd)

3
T E-
{v"}j

Expressing equations

at:

{8.49) to

(P1Txdy
J
{Ap}gtyjl

3

+ {n

- AP el

)
N

- nF¥iredy +

3

PRyl +

+

3

oFredr - ) -

3

A,

such that

P,T
{1-\> }j'

(B.52) in matrix form, we arrive //(

‘(8050)
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(8.49)

(B.51)

(B.52)

(B.56)




AL

B SRR S . e 28

i o s £ ST

. - - ! N
s ’ ' "
* * b i .
° ‘ . : 8
i, . - 1 -
et v
. .
1

122 (o®)T ERITENT | iy el

(1 s®)T WEAT | (6P

3

wieh (3T = (22, 8, ... ¢f}, and similarly for {o¥17, (&F)T

a {s*17. g
and (s N

Hence, the viscous.coupling coefficients §{, 0, g and s

P

can be determined as soon as YP,_6P, ¢t ana & are known .

[4
I

B.3 CALCULATION OF THE PRESSURE

.+ The pressure distribution around the surface of any.

r

cylinder in - the system .is calcilated by makingﬂuse of the values
of anjl to dnjz Qb?alned from the solution of,equatioqs (2.16)
to (2.27) to determine the velocity potential of that particular

”Eylindef. The pressure may then be evaluated from the relation:

{

, . ' o i - - a¢i , . .
- Ay I R (B.58)
’ \

-
&

L

Referring-to Chaptér 2, the total potential written in

terms of coordinates centered on ¢ylinder i can be expressed as:

s
\

— o+ PR (B.59)
SR e

o

(B.57) °
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“r
n-m n-m .

(=~1) nr:ii:|
¢j (ri' i) - Z Z ] (m-l}!(n-m) T 3‘Anj008[mej:(n“M)wijJ
nEl m=Q .

(-1) n (n+m~l)‘ 1

249

A . . . i
~ + B _gin[md,+ (n-m)y. ]z Z Z =
n : . . B, n=l m=o (A-1)! (=-1) 1mRij

[
@

}-Cnicos[mej;-(n-t:m)wij] - Dnjsin[mei}(n‘m}wij]_ p

¢ .

%

ni .

¢i(ri' i.B = Zi j_r aoanei + B irismne b —— rn'

n=1 i

C
aasf ei

. D,
+--133'-sinn6 %,
n i

. ri-

.

and where the summation with the asterisk indicaéesothat it

v

excludes i = j. -

v AInJ the above, Anj' an, cnj and Dnj are defined as:

Apy = jzl _!_jié;\(%_i[ —5—&

-
4

- Byy = Z “EE‘I(%)* g (‘5“&“)
R |

t

'(B.60)

(B.61)

i

.
o
L
%
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E‘,-u
Z
3
%
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kK ‘ '
. u “fav
n+l g.) E n-!-l( )
e = T () 5 et () e
) .3=1 s
i ’ .
k
’ - du v, \’
: n+1( g,) o SN+l ( )
v - oPpy = z ansz 55/t %Ry A5t ) (B.65)
" j=1 , .
- auz Y :
‘ where: = = acceleration of cylinder £ in z direction,
t . avz ., . ‘ . .
- - = acceleration of cylinder £ in y direction.
Since we consider the pressure profile of the particular
L) \ .
-cylinder due to the oscillation of cylinder & in one direction
at etu.'*:h~ time, aa;r the 2z difef:tj:on, then the Anj' Bn 3 Cx;j and
. ;
& D nj become: ‘
k o ( Buz ) -
Anj = z n"'l T'E- ? . (B-GG)
; =1 7 “
k
B . du
2 (52)
i=l 7]
k ¢
ou
+1 2
i C Z Y 2 Rn ( ) [ 4 (3.68)
nj njt g ot ) N
g
k L dadd . s
. Ju .
: n+1 ( g ) ] o
@. : - Dpy = z énjsz N\ (30.69)
- j=1

3
;
el

. _-
q:w}:i:"g’ikkf&x"g ;2*!‘}:;;“?. peEiors
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I
%i In the program, subroutine FIXUP2 only gives us v, §, ¢ ’
' o : ; - P ;
j}‘ and d; however, & and B can be replaced by Y and § through the )
P felation (B.13) and (B.14)
[% Substituting equatioﬁs {B.66~69) into (B.60) and (B.6l1),
£ ¢l is determined. Then,-by taking the required derivative of
| - |
4 ot, R} can be calculated.
;n o subroutine PRESS in this "COUPRESS" program carries out
5? " all the above calculation. It should be noted that the
5 . pressure distribution obtained from this subroutine is :
' normalized by the product of the acceleration of moving
, cylinder ¢ and the density of fluid.
ﬁ
o
s
o ] ;
® !
! J
: ) /
\; 1
4 | »
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X
‘ . FLOWCHART OF THE ALGORITHM USED IN "COUPRESS"
T ' START
‘r
]
/ READ DATA / -\
i
) c
CALL FACT. & CALL FIXUP
‘Generage [Aj}, [Aj]'l, [Bj], then obtain
[xj], [Yj] and store into A, B respectively
o r 1 ' i
IDEA = (
- /IF
\\ I
IDEA = 1
D$ 1 IDEA = 1, k
Y. ’ (
Y
CALL PIXUP2
YP, SP, cp, af are solved using the same

procedure for v, §, ¢, d (see following page)
but compute ¢+ with cylinder P excluded -

! |

S
R LA
-

.y
e



B.1l9

CALL VISCOU

Generate [EP}T, [FP]T, [UP]T, [VP]T
;!kh YP, GP, cP, dP, find the viscous
coupling coefficients ¢, 0, g, S ﬁsing
equation (B.57)

253

C?NTINUE

PRINT

The viscous coupling
coefficient matrix (VC)

Y

Y

CALL FIXUP2

Form (7131, 1dy, ey, 0ty
With-the upper part of [T]
Y, §, c,.d can be solved from equation
. (B.32) and store in WS

I

-
%4

PRI A G N
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3

CALL PRESS

Use Y, 8§, ¢, d to obtain ¢i,
then evaluate the pressure from

. i
i_ _,99
P™ = -p 5% .

PRINT

. The pressure distribution
around the surface of the cylinde;

D¢ 81

.Calculate the added mass coefficients
" from the following equations
€30 = Sip * Mysg
510 = 2834,
®ig = 2%4¢

il
£, =4 + Zdliz

1

ig ig
Then store in W5

DA
D¢ 83 -
Using equation (B.34-36) to calculate
the added mass coefficients for the case of the
boundary channel is free to move, then storp)

in AM (includes WS) -
, . (/" 4
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. APPENDIX C.1

TYPICAL QUTPUT OF PROGRAM "COUPRESS"

o

K= 3 HH=1S CYLINDER AT CENTRE OF ARRAY O HP=11

THE MATRIX DEFINING CH(I»J) IN DEGREES

« =0.04100

‘

0.24048

- R ANPR 4ee w Ll AR Lo DM

256

0.0 240.00000  200.00000
, 60.00000 0.0 350.00000 .
120,00000  180.00000 0.0 L
T "
’ , H
THE MATRIX DEFINING R(I»Jd) . ,
0.0 . 2.87%00 2.87300 i
2.87%00 0,0 . 2,87%00
2.87%00 2.87500 , 0.0
1 RCIY RCO» 1) CH(O»I) IN DEG
1 1.,2500000 1.4598820 90,0000000
2 1.2500000 126598820  210,00Q0000
. 3 1.2500000 - 1.46598820 330.0000000
THE VISCOUS COUFPLING MATRIX WITH ENCLOSING CYLINDER AT RQ=
' 1.,00000 0.14322 0.14322 . -
0.13394 1.,00000 -~0.14774 .
0,13394 -0,16774 1.00000 . .
0.0 -0, 18942 0,18942
-0.16428 0.0 -0,02060 ‘
0.14428 0.02060 0.0 , .
THE VISCOUS COUPLING MATRIX WITH ENCLOSING CYLINDER AT RO=
0,0 -0,15893 .0,15893
-0,19478 0.0 0.00989
o [ 19479 -0 . 00989 0 00
1.00000 ~0.07027 «0.,07027
~0.06100 1. 00000 - 0+24068
1.00000

4.9

4.8,
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L
e A e

¢
1
y
4
'

&4
HOTION IN 2

PRESSURE ON
PRESSURE ON

_ PRESSURE ON

HOTION IN Y

PRESSURE ON
PRESSURE DN
PRESBURE ON

.
-
L]

.

%
HOTION IN Z
PRESBURE , ON
PRESSURE ON
PRESSURE ON
MOTION-IN Y
PRESSURE ON

PRESSURE ON
PRESSURE ON

THETA= 0.0 xx

DIRECTION OF CYLINDER

CYLI&DER (1
CYLINDER (2)
CYLINDER (3J)

DIRECTION OF CYLINDER

CYLINDER (1)
CYLINDER (2)
CYLINDER (3)

-
.
M L]

THETA=331.0 xx

DIRECTION OF CYLINDER

CYLINDER (1)
CYLINDER (2)
CYLINDER (3)

DIRECTION OF CYLINDER

CYLINDER (1)
CYLINDER (2)
CYLINDER (3)

T

1

-1.,99188 -
0.00184
~0.953469

(S9]

0,22883
1.71274
0.,55973

1

-2.00549
0.,00116
-0.58422

1)
0. 49432

1.52966
0.58687

(2

-0.80981
":0‘5283

~0.89427
2)
-0.57874

-3.09013
,0.03226

Z

(3

-0¢.,20377
2.28799
~1.,52397

(3)
-1.533106

~0,08924
~0.23545

[Intermediate results for other vardes of THETA (increments
of 9°) are not shown.]

3 (3
~0.84692  ~0,16477
-2,35534 | 2.15852
~0.70445 .- '~1,48707
]
(2 (3

~0.57311  ~-1.4083%
0.32329 +28398
0,10844

Q,05845
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THE HATRIX OF ADDED MASS COEFFIGCIENTS WITH THE ENCLOSING CYLINDER AT RO= 4,5

~0,16451D+01 0.261300400 0.191920400 0.19192D+00~0,16046D~14-0,29317D-15~0.,40055D=01 ¢.40035L-Q
0,338650401-0, 16351D401~0,375670400-0.3756704+00 0.13142D~=13 0,49106D~14 0.4331304+00-0,433130+0
0.24873D401-0,375470+00~0, 156580401 0.454160+00-0.519120400 0.52507D+Q0 0.40020D-01~0.459720-Q
04248730401~0,3734704+00 0.454160400-0,154560+01 0,519120+00-0.525070+00 0.459720-01~C.400200-0
' ~0.137740-14 0.72511D~15+~0.400550~01 0.40055D~01~0,14451+01 0,16880L+00 ©.238180+00 0.238180+0
; 0.147B0D-13-0,449620-14 0.52507D400-0,52507D+00 0.218760+01-0,154270401 0.17795D+00 0.1775%L+0
i ~0,519120400 0.4331304+00 0.400200-01 0.45972D-01 0.308470+01 0.177550400=0.1461200+01-0.635227D+0

0,519120400=0, 433130400~0,45972D~01-0,400200~01 0.308470+01 0.177550+00~0.4522704+00-0,16120040

EPSILON(3s1) = -0.37567 ' : .

X8I(3s1) = ~0,43313 . ‘“j;
. E(3s1) = ~0,52507 {/
F(3r1) = 0,17755

¥
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g _ APPENDIX C.2

5
¢ . -

‘TYPICAL OUTPUT OF RROGRAM "COUPRESS" .

¢ .

K= 2 MM=15 CYLINDER AT CENTRE OF ARRAY 0 MP=i1

THE MATRIX DEFINING CH(I»J) IN DEGREES
. © 0,0 0.0 ; A
& 180,00000 0.0
THE HMATRIX DEFINING R(I:J)
000 3050000 - N
. 3.50000 0.0
I RCTY R(O»I) CH(O»I) IN NEG
1 1.2500000 1.7500000  180.0000000
2 1.2500000 1.,7500000 0.0 .,

' ~ THE

1.,00000
-0.1125%

0.0

0.0

THE

0.0
0.0

1.00000
0.14743

VISCOUS COUPLING MATRIX WITH ENCLOSTNG CYLINDER AT RO=

~0,1125%
1,00000
0%0
0.0

.
VISCOUS COUPLING MATRIX WITH ENCLOSING CYLINDER AT RO=

0.0

0.0

0:.14763
¢ 1.00000

—

g \

259

g.2

?.2

THE MATRIX OF ADDED MASS COEFFICIENTS WITH THE ENCLOSING CYLINDER AT RO=

~0,10680D+01 0.34007D-01 0,34007D-01 0.0 0.0 . 0.0
0,18421D0401~0,10779D401 0.23573D+00 0.0 0.0 0.0
0,18421D+401 0,235730+400~0,10779D+01 0.0 0.0 0.0
0.0 0.0 0.0 . =0410870D+01 0.444880~01 0,444880-01
0.0 ° 0.0 0,0 ° 0.24099D+01~0,10979D0401~0. 312050400
0.0 0.0 0,0 0,240920401-0,312050+00~0, 109790401

EPSILON(2,1) = 0.23573

L X8IC(2s1) =
E(2s1) =
F(2e1) =

0.0

0.0 . '

-0,31205%"

9.2
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. : APPENDIX C:.3
- . .. -‘ - - °
. . TYPICAL- OUTPUT OF PROGRAM' "COUPRESS" : “
K= ® MMe1S CYLINDER AT CENTRE OF ARRAY O HPwil : "
THE MATRIX DEFININ /c (I+J) IN DEGREES .
0.0 \ 0a03
180,00000 -~____ 0,0
THE MATRIX DEFINING R(I\r\JT\ . . .
0,0 - 3,30000 g *
3.50000 0.0 }
\]

THE VISCOUS COUPLING MATRIX WITH ENCLOSING CYLINDER AT RO=

R(I) 5 R(OY D)
71.,2500000 <\« 1:7500000  180.:0009000
2 1.2500000 %+ 7500000

5

10000.0
1 . 00000 -0 » 12755 -
0.0 0.0
. 0.0 0.0
., THE VISCOUS COUPLING MATRIX WITH ENCLOSING CYLINDER AT RO=  10000.0
000 000 ', ' !
0.0 0.0
1.00000 0.12755 i
0.127%5% 1.00000 . ’ .
n . ] .
THE MATRIX OF ADDED HASS COEFFICIENTS WITH THE ENCLOSING CYLINDER AT RO=
100000401 0.278330-07 0.27833D-07 0.0 0.0 0.0
' 17813D+01~0, 104410401 0.26282D400 0,0 0.0 0.0 .
+17B13D401 0.26282D400~0.10441D+01 0.0 0.0 0.0
. 0.0, , 0.0 0.0 -0,1000004+01 0,36044D-07 0,3604460-07
0.0 - 0.0 0.0 0.230690401~0,104410+01-0,262820+00
0.0 0.0 0.0 0.23069D401-0, 262682D+00~0,10441 D401
" EPSILON(2,1) = 0.24202 K
XS1{2s1) = 0.0 . .
N {1128 0,0
Fl2y -

-0, 26282 ?

10000.0

s
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" APPENDIX C.4 '

"

. TYPICAL OUTPUT OF PROGRAM "EXPAMC"

Fal

+

S

_@ DERIVATIOM OF THE VIRTUAL MaASS COEFFICIENTS FROM EXPERIMENTAL DATA o ..

B
-

100.00 HZ
250858 G

FREQUENCY =
ACCEL.(Z DIRECTION) =

FRESSURES MEABURED AT PEA%.QCCELER&TION

ANGLE

o
9
18
, 27
34
45
54
63
72
! 81
90
99
108
1z
124
135
144
153 N
‘ 142 :
. 171
180
189
.. 198
207 -
214
22%
234
243
' 252
261
° 270
- 279
g 2688
' 297
304
~ s
324
333
. ) 342
51

. ‘ e~ N

FORCE IN 2 DIRECTION = -0.217996
. FORCE IN Y DIRECTION =  0,101399

COEFFICIENT IN Z DIRECTION = -0.58%895
© COEFFICIENT IN Y DIRECTION =  0.274385

w 4

4

FRESSURE

90,0763
0.0933
Q.1146
00,1371
0.,1524
0.1612
0.1601
0.1%524
0.,1425

- 0.1311

0.1132
0.,0971
00,0834

-0.,0752

0.066%
00,0592
0.0532
0.0479
0,045%5
0.0422
0,039
0.,0367
00351
0.0334
0.0317
0.0306
00,0298
0.0278
00248
0.0274
0.0262
0,0280
0.9274
0.028%
0.0307
0.,0329
0,0368
0.0417
010494
0.05%2

Pel
PSI
PS1
FSI

‘PSY

PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
P8I
PSI
PSI
PSI
PSI
PSI
Sl
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PS1
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI -

Iz

PHASE DIFFERENCE

-

-1.0
~1,6
«2.3
2.3
‘104
-2 3
-2.4
"202
-2.7
-2.2
-1.9
-1.7
1.7
~1.5
=-1.8
-1,8
'200
-2.1
-

~248
-3:7
-3.0
=34
T4,
C=%,0
=5.0
vé
=5.9
~5.6
TZ.S
~&.0
-2:1
~4,2
-39
.“100
‘202
-1.0
~1.0
-1,0
-t.8

- ——
W wegop il T TR e



