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iSommaireLe multiplexage par répartition en fréquen
es orthogonales (orthogonal frequen
y divisionmultiplexing, soit OFDM) à entrées et à sorties multiples (multiple-input multiple-output,soit MIMO) est maintenant généralement 
onsidéré 
omme une te
hnologie à pré
oniserpour les nouveaux systèmes sans �l et 
eux des générations ultérieures. Le MIMO-OFDMvise à augmenter la limite de 
apa
ité Shannon en 
ombinant l'utilisation d'antennes mul-tiples et la modulation orthogonale multiporteuse. Bien que la possibilité d'atteindre 
ettelimite soit possible grâ
e à l'invention de te
hniques d'en
odage et de dé
odage atteignantla 
apa
ité, en réalité, 
ette perspe
tive d'avenir se base en grande partie sur l'existen
eet l'utilisation de te
hniques d'estimation de voie avan
ées. Pour fa
iliter l'estimation devoie rapide et �able dans les systèmes MIMO-OFDM, on songe habituellement à l'insertionde symboles pilotes; 
ependant, la 
apa
ité de la voie est grandement réduite par leur in-sertion. L'utilisation d'estimation de voie aveugle �able et à 
onvergen
e rapide pour lesMIMO-OFDM semble don
 être une solution attrayante pour les futurs systèmes sans �l.À 
ette �n, l'estimation de voie aveugle basée sur des statistiques de deuxième ordre,au lieu des statistiques d'ordre supérieur, est généralement 
onsidérée 
omme une 
an-didate a

eptable. Parmi les appro
hes aveugles basées sur les statistiques de deuxièmeordre, l'estimation basée dans le sous-espa
e est attrayante, puisque des estimations �-ables peuvent souvent être obtenues de façon simple en optimisant une fon
tion de 
oûtquadratique. Néanmoins, la performan
e des estimateurs de voie aveugles basés dans lesous-espa
e peut être gravement dégradée dans des 
onditions instationnaires. Ce prob-lème peut habituellement rendre la performan
e globalement insatisfaisante, surtout dansles systèmes MIMO-OFDM ave
 un nombre de sous-porteuses élevé. A�n de 
ompenser
ette restri
tion et d'utiliser ave
 su

ès l'estimation de voie basée dans le sous-espa
e ave
les systèmes MIMO-OFDM, il est essentiel de minimiser la longueur de la période de 
al
uldes moyennes sous-ja
ente.Dans la présente thèse, nous proposons un nouvel estimateur de voie aveugle basédans le sous-espa
e qui ne né
essite qu'une période de 
al
ul des moyennes relativement
ourte. Nous envisageons la 
on
eption d'un tel estimateur dire
tement dans le domainedes fréquen
es, par opposition à la majorité des modèles existants où les estimateurs sont
onçus dans le domaine temporel. Notre première 
ontribution est de proposer et d'étudierun estimateur sous-espa
e innovateur ave
 un 
al
ul des moyennes réduit en exploitant la



ii
orrélation des fréquen
es au sein de sous-porteuses adja
entes résidant dans la largeur debande de 
ohéren
e des voies à large bande des s
énarios MIMO-OFDM typiques. A�n deréduire la grande 
omplexité informatique 
réée par la dé
omposition des valeurs propreset la matri
e d'ambigüité asso
iée, notre se
onde 
ontribution est de mettre au point uneversion adaptative améliorée de l'estimateur pour augmenter sa 
apa
ité dans des 
onditionsde variation temporelle MIMO. Nous réussissons 
ela en employant une forme modi�ée del'itération orthogonale permettant un repérage su�sant dans le sous-espa
e ainsi qu'unete
hnique de pré
odage permettant une rédu
tion de la taille de la matri
e d'ambigüité.Les expérien
es numériques démontrent que les te
hniques proposées peuvent en e�et avoirune meilleure performan
e que plusieurs des estimateurs de référen
e dans divers s
énariospratiques.



iiiAbstra
tMultiple-input multiple-output (MIMO) orthogonal frequen
y division multiplexing (OFDM)is now widely 
onsidered as a favored te
hnology for emerging and future generation wirelesssystems. MIMO-OFDM aims to a
hieve in
reased 
hannel 
apa
ity limit by exploiting theuse of multiple antennas in 
ombination with multi-
arrier orthogonal modulation. Whilethe possibility of a
hieving this limit is bestowed on the invention of 
apa
ity-a
hieving
oding and de
oding te
hniques, in reality, this prospe
t relies heavily on the existen
eand use of advan
ed 
hannel estimation te
hniques. To fa
ilitate fast and reliable 
hannelestimation in MIMO-OFDM systems, pilot symbol insertion is usually 
onsidered; how-ever, the 
hannel 
apa
ity is greatly redu
ed by inserting those pilot symbols. Therefore,employing fast-
onverging and reliable blind 
hannel estimation for MIMO-OFDM seemsto be an attra
tive solution for future wireless systems.To this end, blind 
hannel estimation based on se
ond order statisti
s (SOS), insteadof higher order statisti
s (HOS), has been widely 
onsidered as a suitable 
andidate. AmidSOS-based blind approa
hes, subspa
e-based estimation is attra
tive sin
e reliable esti-mates 
an often be obtained in a simple form by optimizing a quadrati
 
ost fun
tion.Nonetheless, the performan
e of the subspa
e-based blind 
hannel estimators may still beseriously degraded under time-varying 
onditions. This problem 
an generally make overallperforman
e unsatisfa
tory, espe
ially in MIMO-OFDM systems whose number of sub
ar-riers is large. In order to over
ome this limitation and su

essfully employ subspa
e-based
hannel estimation in MIMO-OFDM systems, it is essential to minimize the required lengthof the underlying time averaging period.In this thesis, we propose a new subspa
e-based blind 
hannel estimator that requiresonly a 
omparably short time averaging period. We 
onsider the design of su
h an esti-mator dire
tly in the frequen
y domain, as opposed to the majority of existing designs inwhi
h estimators are developed in the time domain. Our �rst 
ontribution is to proposeand investigate a novel subspa
e-based estimator with redu
ed time averaging, by exploit-ing the frequen
y 
orrelation among adja
ent sub
arriers, residing within the 
oheren
ebandwidth of the broadband 
hannels in typi
al MIMO-OFDM s
enarios. To redu
e thehigh 
omputational 
omplexity in
urred by the eigenvalue de
omposition and the asso
i-ated ambiguity matrix, our se
ond 
ontribution is to develop an improved, adaptive versionof the estimator for enhan
ing its 
apability under MIMO time-varying 
onditions. This



ivis a
hieved by employing a modi�ed form of the orthogonal iteration for e�
ient subspa
etra
king along with a pre
oding te
hnique that allows a redu
tion in the size of ambigu-ity matrix. Numeri
al experiments demonstrate that the proposed te
hniques 
an indeedoutperform several ben
hmark estimators in various pra
ti
al s
enarios.
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Chapter 1
Introdu
tion
Sin
e the �rst demonstration of radio signaling by Mar
oni in the late nineteenth 
entury,the ability to 
ommuni
ate with people on the move has 
hanged dramati
ally. Parti
ularlyduring the past de
ade, the mobile 
ommuni
ation te
hnologies, fueled by various te
hni
ala
hievements, in
luding digital and radio frequen
y (RF) 
ir
uit fabri
ation, very large-s
ale
ir
uit integration, and digital swit
hing te
hniques, have made the portable mobile devi
esmore a�ordable and reliable [1�3℄.The trend toward a more reliable and a�ordable portable devi
e not only stimulatedthe rapidly growing number of users but also brought about a fundamental 
hange on thedesign of wireless systems and networks [4℄. For example, the traditionally voi
e-
enteredservi
es has been gradually repla
ed by data-
entered ones [5℄. Besides, the data transmis-sion rate has also in
reased tremendously, from 9.6 kbps in 1995 on a GSM system [2℄ to2Mbps in 2005 on a WCDMA system [5, 6℄; this represents more than 200 times in
rease indata rate within this ten year period. To date, the so-
alled "Super-3G" or "Beyond-3G"wireless systems and networks with a peak data transmission rate that 
an rea
h as high as500Mbps have been demonstrated in the very re
ent �eld trials [7℄. Even more ambitious 4G
2010/07/30



1 Introdu
tion 2wireless systems and networks whi
h are targeting a peak data transmission rate of approx-imately 1Gbps, are also enthusiasti
ally investigated by various national and internationalorganizations [4, 8℄, su
h as the International Tele
ommuni
ation Union (ITU), EuropeanCommission Framework Program (FP), Wireless World Resear
h Forum (WWRF), Ko-rean Next-Generation Mobile Committee (NGMC), Japanese Mobile IT Forum (MITF),and China Communi
ation Standardization Asso
iation (CCSA). International standardsorganizations are 
urrently working on the standardization of the Enhan
ed 3G (E3G) andthe 4th Generation Mobile Communi
ation System (4G), in
luding the Long Term Evolu-tion (LTE) plan for the 3rd Generation Partnership Proje
t (3GPP) and the air interfa
eof evolution/ultramobile broadband (AIE/UMB) plan of 3GPP2 [9, 10℄.The radio spe
trum still being a s
ar
e and limited resour
e, high spe
tral e�
ien
y is
ru
ial to support the demand of high transmission rate from future mobile users. The LTEphysi
al layer is targeted to provide improved radio interfa
e 
apabilities between the basestation and user equipment (UE), as 
ompared to previous 
ellular te
hnologies like Univer-sal Mobile Tele
ommuni
ations System (UMTS) [5℄ or High-Speed Downlink Pa
ket A

ess(HSDPA) [11℄. A

ording to the initial requirements de�ned by the 3GPP (3GPP 25.913)[12℄, the LTE physi
al layer should support peak data rates of more than 100Mb/s overthe downlink and 50Mb/s over the uplink [13℄. A �exible transmission bandwidth rangingfrom 1.25 to 20MHz will provide support for users with di�erent 
apabilities [14℄. Theserequirements will be ful�lled by employing new te
hnologies for 
ellular environments, su
has orthogonal frequen
y division multiplexing (OFDM) and multiple-input multiple-output(MIMO) s
hemes (3GPP 36.201) [4, 15℄.



1 Introdu
tion 31.1 Channel estimation for wireless 
ommuni
ationsA MIMO system deploys multiple antennas at both ends of a wireless link to in
rease the
hannel 
apa
ity and to mitigate adverse e�e
ts of the wireless 
hannel [3, 16℄, while OFDMaims to provide high spe
tral e�
ien
y and to eliminate the need for high-
omplexity equal-ization algorithms by de
omposing the broadband radio 
hannel into a set of orthogonalparallel sub-
hannels [14℄. Therefore, MIMO-OFDM, whi
h 
ombines multiple transmitand re
eive antennas and the OFDM modulation, has be
ome a pra
ti
al alternative toeither the single-
arrier (SC) or the single-input single-output (SISO) transmission [17℄.Three main te
hniques 
an be applied to fully exploit the spe
ial stru
tures of theMIMO-OFDM systems, namely: diversity [18, 19℄, beamforming [5, 6, 16℄, and spatialmultiplexing [4, 20℄. Diversity te
hniques improve the average signal-to-noise ratio (SNR)on the re
eiver side by exploiting independent fading 
hannels, as seen from either spa
e,time, frequen
y, polarization, or a 
ombination of these domains. In beamforming, signalsare 
oherently 
ombined (either in the transmitter or re
eiver) so as to enhan
e the antennaarray response in a preferred dire
tion. Spatial multiplexing o�ers a linear in
rease in thesignaling rate by exploiting the parallel transmission of di�erent information stream fromdi�erent antennas. However, all these te
hniques 
an only a
hieve the desired improvementin performan
e when the 
hannel state information (CSI) is perfe
tly known [21℄.There are mainly two ways to obtain the required CSI, i.e., pilot-based versus blindestimation. In pilot-based 
hannel estimation, known symbols are transmitted to assist there
eiver in determining the CSI. Clearly this 
an only be done at the expense of a lowerbandwidth e�
ien
y. So far, pilot-based 
hannel estimation is still 
onsidered to supportmost 
ommuni
ation systems due to its reliability and low 
omplexity. Nevertheless, withthe ever in
reasing mobile speed requirement, pilot symbols have to be sent frequently
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tion 4to 
ope with the time-variations of the wireless 
hannels. Hen
e, if we insist in usingthe pilot-based 
hannel estimation, this will greatly redu
e the bandwidth e�
ien
y andinevitably lessen the advantages brought by these MIMO te
hnologies. In summary, thereis an urgent need for a new blind 
hannel estimation te
hnique in MIMO-OFDM systems,and the resear
h results on this topi
 will de�nitely in�uen
e the development of the futuremobile 
ommuni
ation te
hnologies.1.1.1 Subspa
e-based blind 
hannel estimationAmong re
ent studies of MIMO-OFDM, blind 
hannel estimation has re
eived great at-tention and has be
ome a vital area of resear
h. Existing blind methods 
an broadly be
ategorized as statisti
al or deterministi
: The former methods rely on assumptions on thestatisti
s of the input sequen
e [22�24℄ while the latter make no su
h assumptions [25, 26℄.In the �rst 
ategory, i.e., statisti
al approa
hes, blind 
hannel estimation using se
ond or-der statisti
s (SOS) 
an potentially a
hieve superior estimation performan
e for a giventime averaging interval than approa
hes using higher order statisti
s (HOS) [27�31℄. These
ond 
ategory, i.e., deterministi
 methods, is generally favored when the input statisti
sare unknown, or there may not be su�
ient time samples to obtain the 
hannel estimate.To date, several interesting deterministi
 methods have been developed by, e.g., employ-ing the maximum likelihood approa
h [32, 33℄, exploiting null guard intervals [34, 35℄,exploiting zeros of the 
hannel impulse response [36℄, or by using fra
tional sampling aswell as interpolation [37℄; however, most of them are ex
lusively for SISO or single-
arriertransmissions.Amid SOS-based blind approa
hes, subspa
e-based estimation is attra
tive sin
e esti-mates 
an often be obtained in a simple form by optimizing a quadrati
 
ost fun
tion [38℄.Without employing any pre
oding at the transmitter, a subspa
e-based method is proposed



1 Introdu
tion 5for OFDM systems by utilizing the redundan
y introdu
ed by the 
y
li
 pre�x (CP) [39, 40℄,and it is further extended for MIMO-OFDM systems in [41℄. Virtual 
arriers (VCs) aresub
arriers that are set to zero with no any information being transmitted. The presen
eof VCs provides another useful resour
e that 
an be used for 
hannel estimation. Su
h as
heme is proposed for OFDM systems [42℄, and it is further extended to MIMO-OFDMsystems in [43, 44℄.The aforementioned approa
hes primarily exploit the separability of the noise and sig-nal subspa
es by applying the eigenvalue de
omposition (EVD) to the 
orrelation matrixof the re
eived signals. In pra
ti
e, the 
orrelation matrix 
an only be estimated by aver-aging over multiple time samples, given the wireless 
hannel is time-invariant during thisaveraging period. Sin
e the quadrati
 
ost fun
tion is 
onstru
ted from the eigenve
tors ofthe noise subspa
e obtained from the EVD, the a

ura
y of the eigenve
tors obtained fromthe sampled 
orrelation matrix dominates the performan
e of the estimation. Hen
e, in atime-invariant environment, the more time samples are averaged, the better the estimationperforman
e is.Considering that radio propagation 
onditions 
an only be invariant over a limited timeinterval (related to fading 
onditions, user mobility, et
.), it is legitimate to wonder howmany samples are su�
ient to obtain a sampled 
orrelation matrix meeting a 
ertain levelof a

ura
y in the 
hannel estimate. A basi
 rule is to assure that the number of the timesamples must be no less than the dimension of the 
orrelation matrix to make it full rankor invertible. Thus, to a
hieve desired estimation a

ura
y in the presen
e of noise, therequired number of time samples for the CP and VC approa
hes may be
ome prohibitive.For example, simulation results have shown that at least 500 OFDM symbols are requiredin order to a
hieve a normalized root mean square error (NRMSE) of 10−2 on the 
hannelestimate, when we 
onsider the number of sub
arriers in OFDM is 16 and SNR = 20dB
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tion 6[43℄. If the number of sub
arriers in OFDM is in
reased to 64, the number of requiredOFDM symbols would in
rease up to thousands for time averaging [44℄, making thesesubspa
e-based blind approa
hes impra
ti
al.More re
ently, variants of the statisti
s-based methods have been proposed, e.g., by in-serting zero-padding instead of CP for ea
h OFDM blo
k [45℄ or by introdu
ing the so-
alledrepetition index [46℄ and re-modulation [47℄ on the re
eived signal. However, the numberof required time samples is still impli
itly proportional to the number of sub
arriers (or thesize of the IFFT) in the OFDM modulator. We also note that deterministi
 approa
hes stillneed to a

umulate data samples in order to algebrai
ally obtain 
hannel estimates, andtheir performan
e in noise improves as the number of samples in
reases. Therefore, as thedimension of the parameter spa
e is in
reased in the MIMO-OFDM 
ontext, the number ofsamples required for deterministi
 methods to a
hieve an a

eptable level of performan
ewill also inevitably be in
reased.1.1.2 Tra
king time-varying 
hannels by subspa
e updatingTra
king time-varying (TV) 
hannels with a large Doppler spread is a 
riti
al task, re-gardless of whether a non-blind or blind approa
h is used [48℄. A non-blind approa
h ingeneral requires to employ pilots more frequently sin
e the 
hannel estimate be
omes ob-solete shortly after the training period ends. On the 
ontrary, a blind approa
h eliminatesthe need of large amount of pilot symbols and therefore is favored if 
omplexity is not themain 
on
ern.There are mainly two 
ategories of blind approa
hes for tra
king rapidly time-varying
hannels: (1) using a blo
k pro
essing approa
h to estimate the unknown parameters ofan underlying time-varying 
hannel model, and (2) using an adaptive pro
essing algorithmthat is su�
iently fast to tra
k the 
hannel variations. Among various blind approa
hes



1 Introdu
tion 7in the �rst 
ategory, a basis expansion model has been proposed to 
onvert a TV-SISO
hannel into a time-invariant (TI) single input multiple output (SIMO) 
hannel, followedby a standard SOS-based subspa
e method for blind 
hannel estimation [49℄. The idea ofbasis expansion was further extended for a TV-SIMO 
hannel [50�52℄, and a generalizedOFDM system over a TV-SISO 
hannel [53℄. Similarly, an interpolation model was alsoproposed to 
onvert a TV-SISO 
hannel into �xed parameters in a long-
ode 
ode divisionmultiple a

ess system [54℄.Re
ently, there has been mu
h interest in the sear
h of new adaptive algorithms inthe se
ond 
ategory. A zero padding SISO-OFDM system asso
iated with either re
ursiveleast squares or least mean squares method for blind adaptive 
hannel estimation was
onsidered in [55℄. It was reported that for an IFFT size of 64 and padding length of 16,the relative 
hannel estimation error 
onverges to -27dB in 500 symbols when the maximumDoppler shift is limited to 100Hz and the SNR is 20dB. By properly 
hoosing the so-
alledrepetition index, a 
y
li
 pre�xing SISO-OFDM system was also proposed in [46℄, whereit was reported that for a 64-point IFFT with a 
y
li
 pre�x length of 16, the bit errorrate (BER) 
an rea
h a level of 10−2 within 12 re
eived blo
ks when the maximum Dopplershift is 50Hz and the SNR ≥ 25dB.While the above adaptive approa
hes o�er interesting 
apabilities in tra
king time-varying 
hannels with high spe
tral e�
ien
y, they may not be adequate for appli
ationsin future generation of broadband mobile wireless systems, in whi
h there is a need toprovide high-rate transmission, e.g., a real-time video stream, between a user terminal andan a

ess node whose relative position may vary rapidly over time [56℄. For example, the3GPP LTE spe
i�
ations 
all for high performan
e broadband transmission with mobilespeed up to 120km/h, 
orresponding to a maximum Doppler shift of 220Hz, and additionalprovision to support mu
h higher speeds up to e.g. 350km/h (high speed train) [12℄. In
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tion 8the 15 - 120km/h speed range, the targeted data rates are 50Mbps for the uplink, upto 100Mbps for the downlink, with in
reased spe
tral e�
ien
y of 2-3 times of Release 6enhan
ed uplink and 3-4 times of Release 6 HSDPA, respe
tively.Based on these 
onsiderations, there is a need to further push the 
apability of adap-tive 
hannel tra
king for even faster time-varying 
hannels. In addition, this goal shouldnot result in the loss of any bandwidth e�
ien
y, or pla
ing restri
tions on the numberof transmit or re
eive antennas. We noti
e that there also exist algorithms for 
hannelestimation in mobile MIMO-OFDM systems with large Doppler shifts [57�59℄; however,they all require proper preambles or training sequen
e to work.1.2 Resear
h obje
tives and methodologyThe appli
ability of traditional subspa
e-based blind estimators and tra
kers is severelylimited by the requirement of a large time averaging period. The main obje
tive of thisresear
h work is to develop new subspa
e-based blind estimators and tra
kers for MIMO-OFDM systems to relieve su
h a 
onstraint. This is mainly a
hieved by exploiting thefrequen
y 
orrelation among adja
ent sub
arriers in OFDM transmissions through sub-
arrier grouping [60℄, for whi
h some supportive �eld measurements 
an also be found in[61℄.In light of the dis
ussions given in Se
tion 1.1, it 
an be 
on
luded that a numberof elements in existing subspa
e-based algorithms for blind 
hannel estimation in MIMO-OFDM systems 
an be 
onsidered for possible improvements. In parti
ular, the followingtopi
s are studied in detail in this work:1. Time-invariant blo
k-based 
hannel estimation:Subspa
e-based blind 
hannel estimators are 
hara
terized by good performan
e and
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tion 9simple stru
tures; however, their requirement of a large time averaging period makesthem less appealing for pra
ti
al uses. In this thesis, we seek to develop a moree�
ient estimation algorithm in order to redu
e the time averaging period whilemaintaining the same performan
e. In addition, we will investigate the performan
e ofthe newly developed algorithms to demonstrate their usefulness in pra
ti
al s
enarios.2. Time-varying adaptive 
hannel tra
king:Orthogonal iteration and its variants have been 
onsidered for subspa
e tra
king to alarge extent. On the basis of the orthogonal iteration, we aim to extend the 
on
eptof the aforementioned blo
k-based MIMO-OFDM 
hannel estimator to an adaptive
hannel tra
ker in time-varying s
enarios. Although the 
onvergen
e properties oforthogonal iteration in stationary 
ases are well understood, the 
orresponding prop-erties in non-stationary ones are not. Hen
e, it requires a better study of di�erentaspe
t of the 
onvergen
e properties of orthogonal iteration in various non-stationarys
enarios. With a better understanding of those properties in non-stationary s
enar-ios, we 
an develop an orthogonal-iteration-based subspa
e tra
kers for MIMO-OFDMsystems over time-varying 
hannels with large Doppler spread.The proposed subspa
e-based blind estimator and tra
ker will be studied and 
omparedusing well-proven analyti
al and simulation approa
hes. The simulation experiments willfo
us on measuring the NMSE of the proposed estimators and the 
orresponding BERwhen the latter are embedded in a 
omplete MIMO-OFDM transmission 
hain.
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tion 101.3 Contributions and 
laim of originalityIn this work, new subspa
e-based blind 
hannel estimation and tra
king algorithms forMIMO-OFDM systems are proposed. Through analyti
al studies and numeri
al simula-tions, the proposed algorithms are shown to a
hieve superior performan
e 
ompared toexisting algorithms in the literature. The main original 
ontributions of this resear
h work
an be summarized as follows:
• Generalization of the subspa
e-based blind estimation for XIXO-OFDM systems overa quasi-stationary wireless 
hannel (where XIXO denotes the abbreviation of SIMO,MISO, and MIMO 
on�gurations).
• Development of a novel subspa
e-based blind estimator for MIMO-OFDM systems,redu
ing the number of required data samples for time averaging.
• Proof of identi�ability 
onditions of the proposed subspa
e-based blind estimator.
• Derivation of asymptoti
al performan
e bound and Cramer-Rao bound of the pro-posed subspa
e-based blind estimator.
• Development of a novel subspa
e tra
king algorithm for pre
oded MIMO-OFDMsystems over a rapidly time-varying wireless 
hannel.
• Extension of the 
onvergen
e analysis of the orthogonal iteration to in
lude the non-stationary 
ases.
• Derivation of a fundamental limitation on the use of orthogonal iteration when it isapplied to fast time-varying 
hannels.
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tion 11These 
ontributions have led to a number of publi
ations in peer-reviewed journals andrefereed 
onferen
es, as listed below:Journal papersJ-1) C. C. Tu and B. Champagne, "Performan
e analysis of blind subspa
e-based MIMO-OFDM 
hannel estimator exploiting frequen
y 
orrelation," (in preparation).J-2) C. C. Tu and B. Champagne, "Blind subspa
e tra
king of wideband time-varyingMIMO 
hannels with large Doppler spread," submitted to IEEE Trans. Wireless Com-mun., Feb. 2010.J-3) C. C. Tu and B. Champagne, "Subspa
e-based blind 
hannel estimation for MIMO-OFDM systems with redu
ed time averaging," IEEE Trans. on Veh. Te
hnol., vol. 59, No.3, pp. 1539-1544, Mar
h 2010.Conferen
e papersC-1) C.-C. Tu and B. Champagne, "On 
onvergen
e properties of subspa
e tra
kers basedon orthogonal iteration," in Pro
. IEEE Pa
i�
 Rim Conf. on Commun., Comput. and Sig-nal Pro
ess., Aug. 2009, pp. 65-70.C-2) C.-C. Tu and B. Champagne, "Subspa
e tra
king of fast time-varying 
hannels inpre
oded MIMO-OFDM systems," in Pro
. IEEE Int. Conf. on A
oust., Spee
h and Sig-nal Pro
ess., Apr. 2009, pp. 2565-2568.
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C-3) C.-C. Tu and B. Champagne, "Subspa
e blind MIMO-OFDM 
hannel estimation withshort averaging periods: performan
e analysis," in Pro
. IEEE Wireless Commun. Network-ing Conf., Mar. 2008, pp. 24-29.C-4) C.-C. Tu and B. Champagne, "Subspa
e-based blind 
hannel estimation for MIMO-OFDM systems: redu
ing the time averaging interval of the 
orrelationmatrix," in Pro
. IEEEInt. Symp. on Pers. Indoor Mobile Radio Commun., Sept. 2007, pp. 1-5.
1.4 Thesis organizationAn introdu
tion to MIMO-OFDM systems is given in Chapter 2, along with an overview ofvarious radio propagation e�e
ts in the mobile radio 
hannels. In order to 
hara
terize the
hannel parameters to be estimated, a brief review of 
hannel models that are largely usedto generate 
hannel parameters for numeri
al experiments is addressed in a later se
tion.In Chapter 3, the motivation for 
hannel estimation in a wireless system is re
apitulated.This is a

ompanied by a dis
ussion on its alternatives, namely the non-
oherent anddi�erential te
hniques, in whi
h the CSI is not required at the re
eiver side. Then various
hannel estimation methods, in
luding pilot- and blind-based approa
hes for MIMO-OFDMsystems are enumerated and dis
ussed in detail. This 
hapter is 
on
luded by addressingthe state of the art of blind 
hannel estimation in terms of its performan
e and asso
iatedlimitations.In Chapter 4, we propose a new subspa
e-based estimation s
heme to improve the afore-mentioned de�
ien
ies. This therefore leads to the �rst 
ontribution of the thesis, in whi
h
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tion 13a new subspa
e-based algorithm relieving the limitation of a subspa
e-based estimation isproposed. The identi�ability 
ondition, asymptoti
al performan
e bound and Cramer-Raobound of the proposed estimator are also presented.Due to the high 
omputational 
omplexity in
urred in the eigenvalue de
ompositionand the need to identify time-varying 
hannels, the proposed algorithm is further extendedto in
orporate the idea of subspa
e tra
king, in whi
h the subspa
e information is updatedrather than re
omputed for a new 
hannel estimate. In 
hapter 5, we fo
us on analyzing the
onvergen
e properties of the so-
alled orthogonal iteration method, whi
h will be employedfor tra
king the subspa
e of interest. Then we propose a new time-varying 
hannel tra
kingalgorithm in Chapter 6, leading to the se
ond 
ontribution of the thesis. Spe
i�
ally, theassumption of the wireless 
hannel 
onsidered is further relieved to be only quasi-stationarywithin one OFDM symbol. Numeri
al results of the proposed algorithms are then presentedin Chapter 7, and 
on
lusions are drawn in Chapter 8.
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Chapter 2
Ba
kground: MIMO-OFDM system and
hannel models
In this 
hapter, we �rst introdu
e the MIMO-OFDM system model under 
onsideration.Then, an overview of various radio propagation e�e
ts and their modeling is given. Thisin
ludes a dis
ussion on the 
on
epts of 
hannel delay pro�le and 
hannel 
oe�
ient 
har-a
terization, whi
h play a 
entral role in the 
hannel estimation problem. The 
hapterends with a brief review of some important wireless 
hannel models that are widely usednowadays for numeri
al experiments.2.1 Introdu
tion to MIMO-OFDM transmission systemsDemands for higher 
apa
ity in wireless 
ommuni
ations, driven by high data rate appli-
ations and multimedia servi
es, are never 
easing [56℄. However, the available frequen
yspe
trum is limited and the high 
apa
ity needs of these new appli
ations 
annot be ful�lledwithout a signi�
ant in
rease in the 
ommuni
ation spe
tral e�
ien
y [62℄.With the advan
es in 
hannel 
oding s
hemes su
h as turbo 
odes [63℄ or low density



2 Ba
kground: MIMO-OFDM system and 
hannel models 15parity 
he
k (LDPC) 
odes [64℄, Shannon 
apa
ity 
an be approa
hed with single antenna[18℄. However, the use of MIMO systems 
an further push the fundamental 
apa
ity limitswith the same SNR, 
ompared to the single antenna systems [62℄. MIMO systems are
reated by deploying multiple antennas at both ends of a wireless link, i.e. transmitterand re
eiver sides. Using multiple antennas in wireless 
ommuni
ations has been proposedto in
rease 
hannel 
apa
ity; resear
h results [65, 66℄ have shown that 
hannel 
apa
ityin
reases linearly with the number of antennas deployed at both the transmitter and re-
eiver sides under ideal propagation s
enarios, where 
hannel 
oe�
ients are modeled asindependent 
omplex Gaussian random variables. Hen
e, by suitable 
oding designs, largegains in 
apa
ity over wireless 
ommuni
ations are feasible in MIMO systems as 
omparedto traditional SISO systems; however, if we 
onsider a broadband 
ommuni
ation system,then 
onventional SC modulation will inevitably in
ur a high 
omplexity for the MIMOdete
tion.OFDM provides a good solution to this problem. Indeed, by 
ombining the advantageso�ered by MIMO and OFDM, the broadband frequen
y sele
tive fading MIMO 
hannel 
anbe treated as a 
olle
tion of multiple independent �at fading MIMO sub-
hannels, whi
hgreatly redu
es the 
omplexity of the MIMO dete
tion. To date, OFDM has been widelyadopted into various standards, in
luding the European digital audio broad
ast (DAB)[67℄ as well as the digital video broad
ast (DVB) s
heme [68℄. It was also sele
ted as thehigh performan
e lo
al area network Type 2 standard (HiperLAN/2) [69℄ as well as partof the IEEE 802.11a/b/g wireless lo
al area network (WLAN) standard [56℄. Furthermore,it has been in
luded in the Super-3G mobile radio standards, and has also being in thestandardization pro
ess of 3GPP LTE [15℄. In the following, we introdu
e the OFDMsystem model for a SISO 
hannel �rst, and then extend the 
on
ept to MIMO 
hannels.
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kground: MIMO-OFDM system and 
hannel models 162.1.1 SISO-OFDMOFDM belongs to a family of transmission s
hemes 
alled multi-
arrier modulation, andis very attra
tive for broadband wireless systems whi
h en
ounter large delay spread [4℄.Its main idea is to divide the serial input data stream into a number of parallel streamsand then modulate ea
h stream on separate 
arriers, and transmit these low-rate parallelstreams simultaneously. By doing so, the delay spread is only a small fra
tion of thesymbol duration, whi
h 
onsiderably simplify the task of 
hannel equalization. A 
y
li
pre�x (CP) 
an be applied to ea
h OFDM symbol to remove intersymbol interferen
e(ISI) with a small penalty in 
hannel 
apa
ity [70℄. In addition, these separate 
arriers,often 
alled sub
arriers, are allowed to overlap in the frequen
y domain by maintainingorthogonality of their 
orresponding time domain waveforms over the symbol duration. Asa result, the bandwidth e�
ien
y of OFDM is very high. Moreover, the CP enables theuse of fast Fourier transform (FFT) for OFDM implementation, and thus greatly redu
esthe hardware 
omplexity [7℄.In the following, we des
ribe more details regarding the operation of a OFDM transmis-sion 
hain. To this end, we assume that the 
hannel impulse response of the SISO 
hannelunder 
onsideration is represented as h(l), l = 0, 1, · · · , L−1, where L denotes the 
hannelorder. In addition, we assume x
def
= [ x[0] x[1] · · · x[NC − 1] ]T denotes a data ve
tor to betransmitted over the SISO 
hannel, with E[|x[k]|2] = 1. The OFDM modulation illustratedin Fig. 2.1 
an be des
ribed as follows:The transmitter �rst performs an inverse fast Fourier transform (IFFT) operation onthe data ve
tor x. Thus, the output of the IFFT operation 
an be denoted as x̃ = DHx,
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CP CPIFFT FFT

PSfrag repla
ements
x

x̃ x
′ y

′

ỹ
yFig. 2.1 A simple illustration of the OFDM modulation.where D is an NC ×NC matrix with the (m,n)th entry de�ned as

[D]m,n =
1√
NC

exp(−j2π(m− 1)(n− 1)/NC). (2.1)In this thesis, the entries of the matrix D are normalized su
h that the latter is unitary,i.e. DDH = I. Then a new data ve
tor x
′ is 
onstru
ted by appending the CP of length

Ncp ≥ L−1, whi
h 
onsists of the last Ncp symbols of x̃, to the data ve
tor x̃ itself. Hen
e,
x

′ 
an be written as x
′ def

= [ x̃[NC −Ncp] · · · x̃[NC − 1] x̃[0] · · · x̃[NC − 1] ]T ; this ve
tor isserially transmitted beginning with the symbol x̃[NC −Ncp].Assuming perfe
t symbol syn
hronization, the re
eived data ve
tor y
′, 
orrespondingto the transmitted sequen
e x

′ , is of length NC +Ncp +L−1, as a result of the 
onvolutionof the transmitted sequen
e 
onvolved with the 
hannel impulse sequen
e of length L. There
eiver's �rst task is to strip o� the CP from y
′ and then 
olle
ts NC samples of there
eived signal to 
onstru
t a new ve
tor ỹ. The latter satis�es

ỹ = G̃x
′

+ ñ, (2.2)where ñ is the zero mean 
ir
ularly symmetri
 
omplex Gaussian (ZMCSCG) noise ve
tor
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ovarian
e matrix σ2
nINC

, and G̃ is an NC × (NC +Ncp −1) Toeplitz matrix de�ned as
G̃ =















0 · · · 0 h(L− 1) · · · h(0) 0 0 · · · 0

0 0 · · · 0 h(L− 1) · · · h(0) 0 · · · 0... ... . . . ... . . . . . . . . . . . . . . . ...
0 · · · 0 0 · · · 0 h(L− 1) · · · h(0) 0

0 · · · 0 0 · · · 0 0 h(L− 1) · · · h(0)















,

(2.3)where the �rst Ncp − L+ 1 
olumns are zeros ve
tors, resulting from our 
hoi
e of the CPsu
h that Ncp ≥ L− 1. Sin
e the �rst Ncp samples of the data ve
tor x
′ are identi
al to itslast Ncp samples, (2.2) 
an be re-written as ỹ = G̃cx̃ + ñ, where

G̃c =

























h(0) 0 · · · 0 0 h(L− 1) · · · h(1)

h(1) h(0) 0 · · · 0 0
. . . ...... h(1) h(0) 0 0

. . . 0 h(L− 1)

h(L− 1)
... h(1)

. . . 0
. . . 0 0

0 h(L− 1)
... . . . h(0)

. . . . . . 0... 0 h(L− 1)
. . . h(1) h(0) 0 0... ... 0
. . . ... . . . . . . 0

0 0 · · · 0 h(L− 1) · · · h(1) h(0)

























,

where G̃c is now an NC × NC matrix whose 
ir
ular stru
ture plays an important role inthe study of OFDM system. Indeed, we �rst observe that G̃c being 
ir
ulant, its EVD maybe expressed as G̃c = DHΩD, where Ω
def
= diag ( h[0] h[1] · · · h[NC − 1] ) and

h[k] =

L−1∑

l=0

h(l) exp(−j2πlk/NC), k = 0, 1, 2, · · · , NC − 1, (2.4)
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y response of the kth sub-
hannel.In order to re
over the transmitted symbols, the re
eiver performs a fast Fourier trans-form (FFT) on the data ve
tor ỹ. Thus, the output of the FFT operation 
an be denotedas y = Dỹ, and re-written by
y = D(G̃cx̃ + ñ) = DDHΩD

︸ ︷︷ ︸

= G̃c

DHx
︸ ︷︷ ︸

= x̃

+Dñ = Ωx + n, (2.5)where we have used the fa
t that DDH = INC
, and n

def
= Dñ. Note that n is still aZMCSCG noise ve
tor with 
ovarian
e matrix σ2

nINC
.Sin
e Ω is a diagonal matrix, the kth entry of the ve
tor y in (2.5) 
an be expressed by

y[k] = h[k]x[k] + n[k], k = 0, 1, 2, · · · , NC − 1, (2.6)where n[k] denotes the kth entry of the ve
tor n. Therefore, we observe that the use of aCP in 
onjun
tion with the IFFT and FFT operations at the transmitter and the re
eiver,respe
tively, de
ouples the wireless 
hannel into NC parallel sub-
hannels.Having dis
ussed the basi
 prin
iple of OFDM modulation for SISO 
hannels, we nowexplain how this modulation s
hemes may be extended to MIMO 
hannels.2.1.2 MIMO-OFDMWe now extend the above dis
ussion to a MIMO 
hannel with NT transmit antennas,
NR re
eive antennas. The MIMO 
hannel is depi
ted in Fig. 2.2. Let the symbol to betransmitted at the qth transmit antenna over the kth sub
arrier be xq[k], q = 1, 2, · · · , NT .Similar to the 
ase of SISO-OFDM, the data blo
k to be transmitted over ea
h transmitantenna is �rst subje
t to an IFFT operation followed by the CP insertion. At ea
h of the
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MIMO

PSfrag repla
ements1
NT

1

NRFig. 2.2 A simple illustration of an NT ×NR multiple-input multiple-output
hannel.re
eive antenna, the CP is dis
arded and then followed by an FFT operation. Therefore,for the 
onsidered MIMO-OFDM system, the signal re
eived at the pth re
eive antennaover the kth sub
arrier is given by
yp [k] =

NT∑

q=1

hp,q[k]xq[k] + np[k], p = 1, 2, · · · , NR, (2.7)where hp,q[k] denotes the 
hannel gain between the qth transmit antenna and the pthre
eive antenna over the kth tone, and np[k] represents the ZMCSCG noise at the pthre
eive antenna over the kth sub
arrier.Let x[k]
def
= [ x1[k] x2[k] · · · xNT

[k] ]T , and x
def
=
[

x[0]T x[1]T · · · x[NC − 1]T
]T bea blo
k of data transmitted over this MIMO 
hannel at a given symbol epo
h. It fol-lows that the re
eived data blo
k y

def
=
[

y[0]T y[1]T · · · y[NC − 1]T
]T , with y[k]

def
=

[ y1[k] y2[k] · · · yNR
[k] ]T , 
an be related to x a

ording to

y = Hx + n, (2.8)where n
def
=
[

n[0]T n[1]T · · · n[NC − 1]T
]T with n[k]

def
= [n1[k] n2[k] · · · nNR

[k] ]T , and
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H

def
= diag (H[0] H[1] · · · H[NC − 1] ), with diagonal blo
ks de�ned as

H[k] =












h1,1[k] h1,2[k] · · · h1,NT
[k]

h2,1[k] h2,2[k] · · · h2,NT
[k]... ... . . . ...

hNR,1[k] hNR,2[k] · · · hNR,NT
[k]












∈ CNR×NT . (2.9)
If we 
hoose the sub
arrier spa
ing judi
iously, MIMO-OFDM de
omposes the frequen
ysele
tive 
hannel of bandwidth B into NC frequen
y �at fading MIMO sub-
hannels, ea
hwith bandwidth B/NC . However, due to the CP insertion, (MIMO-)OFDM transmissionin average in
urs a loss in spe
tral e�
ien
y of Ncp/(NC + Ncp); e.g., in IEEE 802.11astandard for WLAN, the e�
ien
y loss due to the CP insertion is no more than 20% [71℄.Nevertheless, this loss is negligible if NC ≫ Ncp.To des
ribe the input-output relationship for the SISO-OFDM system in (2.6) andMIMO-OFDM system in (2.8), we have assumed that the 
hannel impulse responses or their
orresponding 
hannel gains, i.e., h[k]'s and hp,q[k]'s, are readily available. Nevertheless, toformulate these quantitative terms from a pra
ti
al wireless 
hannel en
ompassing variouspropagation e�e
ts are never trivial. In the following, we give an overview of the mostprominent wireless propagation e�e
ts, and then present how suitable models of 
hannelimpulse responses or their 
orresponding 
hannel gains 
an be developed on this basis.2.2 The wireless propagation 
hannelIn wireless 
ommuni
ation systems, information is transmitted from the emitter to there
eiver in the form of radio waves propagating through the so-
alled wireless propagation
hannel. The 
hannel distorts the transmitted signal in an unpredi
table way, and thus
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es fundamental limitations on the performan
e of the wireless 
ommuni
ation systems.Hen
e, the re
eiver 
an only re
over the information by employing 
hannel estimation orequalization te
hniques.To 
hara
terize the distortion imposed on the transmitted signal, we need to under-stand the aforementioned propagation environment, whi
h 
an be suitably des
ribed as anidealized phenomenon in whi
h a signal propagating through the wireless 
hannel arrivesat the destination along a number of di�erent paths. Ex
ept for the simple line-of-sight,propagation along these paths is severely obstru
ted by buildings, mountains, and foliage,whi
h results into s
attering, re�e
tion and di�ra
tion of the radiated energy by obje
ts inthe environment or refra
tion in the medium, and hen
e 
an in�uen
e path loss and fadingmodels di�erently. In addition, as a mobile station moves in spa
e, the speed of the mobileimpa
ts signi�
antly on how rapidly the signal level fades, and therefore 
ontribute to anextremely random me
hanism that do not o�er easy analysis.2.2.1 Propagation me
hanismIn general, propagation models 
an be broadly 
ategorized as large s
ale or small s
ale.A large s
ale model mainly fo
uses on predi
ting the average re
eived signal strength at agiven distan
e from the transmitter, and thus is useful for estimating the radio 
overage areaof a transmitter. On the other hand, a small-s
ale model des
ribes the rapid �u
tuationsof the re
eived signal strength over very short travel distan
es or short time duration, andthus is useful for evaluating the performan
e of a trans
eiver 
hain. In the following, weintrodu
e the large s
ale and small s
ale models respe
tively.
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ale modelLarge s
ale model designates the average signal power attenuation over large areas. Thetotal signal attenuation 
aused by wave propagation along a transmission path is oftenreferred to as path loss. In a free-spa
e model, the power re
eived by a re
eive antenna thatis separated from a transmit antenna by a 
ertain distan
e d 
an be 
al
ulated by the Friisfree-spa
e equation [72℄, whi
h des
ribed as follows
Pr = Pt

(
λ

4πd

)2

GtGr, (2.10)where Pt, Pr denote the transmitted and the re
eived powers respe
tively, λ is the wave-length, Gt, Gr represents the antenna gains of the transmit and re
eive antennas respe
-tively. The Friis free-spa
e equation establishes that the re
eived power is redu
ed as afun
tion of the square of the distan
e between the transmitter and the re
eiver. However,in a typi
al 
ellular wireless 
hannel, free-spa
e propagation seldom happens. Besides free-spa
e propagation loss, re�e
tion, di�ra
tion, and s
attering also a�e
t propagation. Thesethree me
hanisms 
ontribute to the large s
ale signal attenuation in di�erent degrees.Re�e
tion, di�ra
tion, and s
attering are main propagation me
hanisms whi
h impa
tpropagation in a mobile 
ommuni
ation system. Re�e
tion o

urs when a propagatingele
tromagneti
 wave hits an obje
t whi
h has very large dimensions when 
ompared tothe wavelength of the propagating wave, as in the 
ase of a radio wave boun
ing from thesurfa
e of the earth, buildings, walls, and so on. Re�e
tion is the major 
ause of multipathe�e
t in wireless 
ommuni
ation 
hannels.Di�ra
tion o

urs when the ele
tromagneti
 wave propagation path is obstru
ted bya surfa
e that has of many sharp irregularities or edges. The se
ondary waves resultingfrom the obstru
ting surfa
e are present throughout the spa
e and sometimes behind the
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le, giving rise to a bending of waves around the obsta
le, even when a line-of-sightpath does not exist between transmitter and re
eiver. Di�ra
tion takes pla
e less oftenwhen 
arrier frequen
y is higher, as the ele
tromagneti
 waves behave more like parti
lesrather than waves.S
attering o

urs when the medium through whi
h the wave travels 
onsists of obje
tswith dimensions that are small when 
ompared to the wavelength of the propagating wave,and where the number of obsta
les per unit volume is relatively large. S
attered wavesare usually generated by rough surfa
es, small obje
ts, or other irregularities in the radio
hannel. In pra
ti
e, foliage, street sign poles and lamp posts indu
e s
attering in a radiopropagation 
hannel.Even if line-of-sight transmission does o

ur, the 
ombination of the signal 
omponentsfrom the propagation me
hanisms above, will prevent the re
eived signal from obeying thefree-spa
e propagation law and will eventually resulting in a larger attenuation than whatis predi
ted by the Friis free-spa
e equation alone. While di�
ult to 
al
ulate exa
tly, thea
tual path loss is often modeled as a fun
tion of the distan
e between the transmitterand the re
eiver raised to the path loss exponent. In this 
ase, the re
eived power is nowrepresented as
Pr = Pt

(
λ

4πd

)γ

GtGr, (2.11)with the path loss exponent γ > 2. It should also be pointed out that the aforementionedthree major propagation me
hanisms always 
ome together instead of individually. The
ombined e�e
t of the three propagation me
hanisms will make the signal re
eived behavelike a random pro
ess.In pra
ti
e, the obsta
les 
an be very di�erent from one lo
ation to the other. The a
-tual path loss measurements may thus vary greatly from the average. Experimental results
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ation is random and distributed log-normallyaround a mean path loss value with a given standard deviation. The random variation isoften referred to as log-normal shadowing [72℄. Typi
al values for the path loss exponentand the log-normal shadowing standard deviation have been tabulated for di�erent envi-ronments, based on experimental measurements; the path loss exponent typi
ally variesbetween 2 to 6 [1℄.Small s
ale modelThe small s
ale model, also referred to as small-s
ale fading, is used to des
ribe the rapid�u
tuations in re
eived signal strength over a short time interval or travel distan
e, so thatthe large s
ale e�e
ts may be ignored. This phenomenon is 
aused by two or more imagesof the transmitted signal whi
h arrive at the re
eiver through di�erent paths with slightlydi�erent time delays, amplitudes, and phases. These waves, 
alled multipath waves, givea resultant signal whi
h 
an vary signi�
antly in amplitude and phase, depending on thedistribution of the intensity and relative propagation time of the waves, as well as thebandwidth of the transmitted signal [3℄.In urban areas, giving the height of the mobile antennas is normally well below theheight of surrounding stru
tures, signi�
ant fading takes pla
e sin
e there is no line-of-sight propagation to the base station. Nevertheless, even when a line-of-sight exists su
has in rural areas, multipath still o

urs due to re�e
tions from the ground and surroundingstru
tures. The multipath stru
ture, 
ombined with the motion of the re
eiver, transmitteror surrounding obje
ts in the radio 
hannel, gives rise to variations in re
eived signalamplitude as a fun
tion of time. These variations are usually des
ribed using standardstatisti
al models, whose validity is proven through numeri
al experimental measurement
ampaigns over years. In the following, we introdu
e the most prominent properties indu
ed
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ale models.Delay spreadThe multipath e�e
t lengthens the time required for the signal to rea
h the re
eiver, andthus 
auses serious problems to the signal dete
tion pro
ess at the re
eiver side. To depi
tthe multipath e�e
t, an idealized and 
lassi
al model is the so-
alled double negative ex-ponential model, in whi
h the delay separation between paths in
reases exponentially withpath delay, and the path amplitudes also fall o� exponentially with delay [73℄.In pra
ti
e, the path delays as well as path amplitudes may show a 
onsiderable vari-ability from the 
lassi
al model. Nevertheless, we 
an examine the multipath e�e
t bymeasuring the quantitative properties of a given multipath intensity pro�le or spe
trum
ψDe(τ), i.e., the average power of the 
hannel output as a fun
tion of delay τ . Firstly, themaximum ex
ess delay is de�ned to be the time delay during whi
h multipath energy fallsfrom the maximum to a level xdB below. That is, the maximum ex
ess delay is de�ned as
τx − τ0, where τ0 is the propagation delay of the �rst arrived and τx is the maximum delayat whi
h a multipath 
omponent is within xdB of the strongest arriving multipath signal.The value of τx is sometimes 
alled the ex
ess delay spread, but in all 
ases it must bespe
i�ed with a threshold that relates the multipath noise �oor to the maximum re
eivedmultipath 
omponent. Se
ondly, the average delay spread τ̄ is given by

τ̄ =

∫ τmax

0
τψDe(τ)dτ

∫ τmax

0
ψDe(τ)dτ

, (2.12)where τmax is the maximum path delay, i.e. beyond whi
h it is reasonable to assume
ψDe = 0. Finally, the root mean square (RMS) delay spread of the 
hannel, τrms, is de�ned



2 Ba
kground: MIMO-OFDM system and 
hannel models 27as
τrms =

√∫ τmax

0
(τ − τ̄)2ψDe(τ)dτ
∫ τmax

0
ψDe(τ)dτ

. (2.13)Note that these delays are usually measured relative to the �rst dete
table signal arrivingat the re
eiver, i.e. assuming τ0 = 0. In addition, they are de�ned from a single multipathintensity pro�le, whi
h is the temporal or spatial average of impulse response measurements
olle
ted and averaged over a lo
al area. In pra
ti
e, to determine the statisti
al range ofmultipath 
hannel parameters for a mobile 
ommuni
ation system, many measurementsare 
ondu
ted in various lo
al areas over a large s
ale area, e.g., three multipath 
hannels,in terms of low, medium, and high delay spread 
ase, respe
tively, are de�ned by IMT-2000for ea
h environment [72℄.Coheren
e bandwidthThe 
oheren
e bandwidth is another important measure of the mobile wireless 
hannels,and is related to the multipath stru
ture of the 
hannel. It is a statisti
al measure of therange of frequen
ies over whi
h the 
hannel frequen
y response 
an be 
onsidered nearly
onstant (i.e. "�at") [2℄. It 
an be pra
ti
ally de�ned as the maximum frequen
y di�eren
efor whi
h two signals transmitted through the mobile wireless 
hannels remain strongly
orrelated.If the 
oheren
e bandwidth Bc is de�ned as the bandwidth over whi
h the frequen
y
orrelation fun
tion is above 0.9, then the 
oheren
e bandwidth is approximately Bc ≈

1/(50τrms). If the de�nition is relaxed so that the frequen
y 
orrelation fun
tion is above0.5, then the 
oheren
e bandwidth is approximately Bc ≈ 1/(5τrms) [1℄. It is important tonote that the relationship between 
oheren
e bandwidth and RMS delay spread remainsempiri
al in nature, as Bc 
an be de�ned in di�erent ways.
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al value of RMS delay spread is less than 0.05µs in �at rural environments,
0.2µs in urban areas, and 2 ∼ 3µs in hilly terrains, respe
tively, the 
oheren
e bandwidthvaries from several MHz to a few hundred kHz, depending on the terrain; nonetheless, fora parti
ular multipath 
hannel, its 
oheren
e bandwidth a

ording to a given de�nition isalways �xed.Frequen
y �at and sele
tive fadingA mobile wireless 
hannel is said to be frequen
y �at fading, if the signal bandwidth is
omparable to or smaller than the 
oheren
e bandwidth of the 
hannel. On the otherhand, if the signal bandwidth is larger than the 
oheren
e bandwidth, the 
hannel is saidto be frequen
y sele
tive fading.In frequen
y �at fading, the mobile wireless 
hannel has a 
onstant gain and linearphase response over a bandwidth whi
h is greater than the signal bandwidth. Therefore,the spe
tral 
hara
teristi
s of the transmitted signal are preserved at the re
eiver, and sothe �at fading 
hannels are sometimes referred to as narrowband 
hannels. However, thestrength of the re
eived signal may 
hange over time, due to the �u
tuation in the gainof the 
hannel 
aused by the multipath e�e
ts. Seen from the time domain, �at fadingo

urs when the symbol duration of the transmitted signal is mu
h longer than the delayspread of the �at fading 
hannel and the multipath signal repli
as are thus "unresolvable".Hen
e, the intersymbol interferen
e (ISI) will not happen sin
e the delayed repli
as of the
urrent symbol will not overlap with the next symbol. Nevertheless, it should be noted thata �at fading 
hannel 
an also experien
e deep fades from time to time due to destru
tivesuperpositions of multipaths, and thus it may require 20 to 30dB more transmitting powerto 
ompensate the losses due to the deep fades. Therefore, additional pro
essing te
hniquesare ne
essary to 
ountera
t su
h negative e�e
ts.
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y sele
tive fading will 
ause di�erent attenuations inthe re
eived signal at di�erent frequen
ies, and so the propagation 
hannels are sometimesreferred to as wideband 
hannels in this 
ase. In the time-domain, the 
hannel impulseresponse has a multipath delay spread whi
h is greater than the symbol duration of thetransmitted signal. Hen
e, the re
eived signal in
ludes multiple "resolvable" versions of thetransmitted symbol waveform that are attenuated and delayed in time whose net e�e
t isto indu
e ISI at the re
eiver side.Doppler spreadDoppler spread is a measure of the spe
tral broadening 
aused by the mobility in the
hannel, and is de�ned as the range of frequen
ies over whi
h the re
eived Doppler spe
trumis essentially nonzero [2℄. When only a pure sinusoidal tone of frequen
y fc is transmitted,the re
eived signal spe
trum will have 
omponents in the range fc−fd to fc+fd, where fd isthe Doppler shift, de�ned as fd = (v/λ) cos θ, with v, λ, and θ denoting the relative mobilespeed, the wavelength of the 
arrier, and the angle between the mobile moving dire
tionand the LOS from the transmitter to the re
eiver, respe
tively. In this simpli�ed s
enario,the Doppler spread 
an be simply expressed by 2fd. Hen
e, it is 
lear that the Dopplerspread depends on the relative speed of the mobile v and the angle θ.If the distribution of the Doppler spe
trum is available, then this knowledge 
an be takeninto 
onsideration when measuring the Doppler spread. Let the Doppler power spe
trumbe denoted as ψDo(ν), where ν represents the Doppler frequen
y shift. Thus, the Dopplerspread 
an be 
omputed by the RMS bandwidth of ψDo(ν), de�ned as
νrms =

√∫

F
(ν − ν̄)2ψDo(ν)dν
∫

F
ψDo(ν)dν

, (2.14)
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y given by
ν̄ =

∫

F
νψDo(ν)dν

∫

F
ψDo(ν)dν

, (2.15)and F represents the interval in whi
h the spe
trum is nonzero.Con
erning the distribution of the Doppler power spe
trum φDo(ν), if one assumes anidealized, uniformly distributed s
attering around a terminal with verti
al ele
tromagneti
�eld for the re
eive and the transmit antennas, then the Doppler spe
trum has the 
lassi
alU-shaped form and is approximated by the Clarke's model [18, 74℄. However, in reality,the Doppler spe
trum 
an show 
onsiderable variations from this idealized model.Coheren
e timeCoheren
e time is the time domain dual of the Doppler spread and is used to 
hara
terizethe time-varying nature of the mobile wireless 
hannel. It is a statisti
al measure of thetime duration over whi
h the 
hannel 
an be 
onsidered un
hanged. In other words, twosignal samples separated by an interval longer than the 
oheren
e time 
an be 
onsideredindependent to ea
h other. When this o

urs, the 
hannel is 
onsidered to 
hange signif-i
antly during the transmission of the signal, thus introdu
ing a form of distortion in there
eived signal.Similar to the relationship between the 
oheren
e bandwidth and the delay spread, aunique, standard relationship between the 
oheren
e time and Doppler spread does notappear to exist. Nevertheless, the 
oheren
e time Tc is typi
ally related to the dire
tinverse of the Doppler spread and 
an be approximated as Tc ≈ 1/(2fm), where fm is themaximum Doppler shift given by fm = v/λ. If the 
oheren
e time is de�ned as the time overwhi
h the time 
orrelation fun
tion is above 0.5, then the 
oheren
e time is approximately
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Tc ≈ 9/(16πfm) [75℄. A popular rule of thumb is to de�ne the 
oheren
e time as thegeometri
 mean of 1/(2fm) and 9/(16πfm), i.e. Tc ≈ 0.423/fm [1℄.Slow and fast fadingDepending on how rapidly the transmitted signal 
hanges as 
ompared to the rate of 
hangeof a mobile wireless 
hannel, a 
hannel may be 
ategorized as either slow or fast fading [18℄.Spe
i�
ally, the 
hannel is slow fading if the symbol duration is smaller than the 
oheren
etime; otherwise, the 
hannel is fast fading. It should be 
lear that the relative speed of themobile (or that of obje
ts in the 
hannel) and the symbol duration determine whether asignal undergoes slow or fast fading.In a slow fading situation, the 
hannel may be assumed to be stati
 over one or severalsymbol durations, whi
h is also 
alled the blo
k fading 
hannel. In the frequen
y domain,this implies that the Doppler spread of the 
hannel is less than the bandwidth of thebaseband signal. In this 
ase, a parti
ular deep fade will a�e
t 
onse
utive symbols, leadingto the so-
alled burst errors.In a fast fading 
hannel, on the other hand, the 
hannel impulse response 
hangesrapidly within the symbol duration. This 
auses frequen
y dispersion due to the Dopplerspread, whi
h may lead to severe signal distortion. Therefore, we 
an 
on
lude that thefading speed is of great importan
e to determine the suitable estimation and dete
tionstrategies in many 
ommuni
ation appli
ations.2.2.2 Delay pro�le and impulse responseThe small s
ale fading of a mobile wireless 
hannel 
an be fully 
hara
terized by the time-varying impulse response of the 
hannel, where the time variation is due to re
eiver ortransmitter motion in spa
e. On
e the impulse response of a parti
ular mobile wireless
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hannel is available, it 
an be used to simulate or analyze any type of radio transmissionsystems through this 
hannel.In the following, we show that a mobile wireless 
hannel 
an be modeled as a linear�lter with a time-varying impulse response; the spe
i�
 modeling of the impulse response isdis
ussed in the next se
tion for various 
hannel generation models of interest. Without lossof generality, we 
onsider that the time variation of the 
hannel is due stri
tly to re
eivermotion in spa
e. Therefore, at a 
ertain position d of the re
eiver, the 
hannel 
an bemodeled as a linear time invariant passband system, and is expressed by hpb(d, t); this isdue to the fa
t that the re
eived multipath waves are arrived at the re
eiver with di�erentpropagation delays, amplitudes, and phases as its spatial lo
ation is 
hanged. Hen
e, if
x(t) represents the transmitted signal, the re
eived signal y(d, t) at the position d 
an beexpressed by

y(d, t) = x(t) ∗ hpb(d, t) =

∫ ∞

−∞

x(λ)hpb(d, t− λ)dλ, (2.16)where ∗ denotes the 
onvolution operation. Sin
e the position of a moving re
eiver is alsofun
tion of time t, i.e. d ≡ d(t) and the re
eiver moves along at a 
onstant velo
ity over ashort time (or distan
e) interval, we 
an arrive at [1, p.144℄
y(d(t), t) ≡ y(t) =

∫ ∞

−∞

x(t− τ)hpb(τ, t)dτ = x(t) ∗ hpb(τ, t), (2.17)where hpb(τ, t) represents the impulse response of the passband time-varying multipath 
han-nel, with the variable t representing the time variation due to motion, and τ representingthe multipath delay for a �xed value of t.1For passband wireless transmission, it is 
onvenient to represent the signals of interest1The impulse response of a linear time-varying 
hannel hpb(τ, t) is the 
hannel output at t in responseto an impulse applied to the 
hannel at t − τ [76℄.
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omplexenvelope of x(t) and y(t), respe
tively, de�ned as
x(t) = ℜ{c(t) exp(j2πfct)}, (2.18)
y(t) = ℜ{r(t) exp(j2πfct)}, (2.19)where fc denotes the 
arrier frequen
y. Assuming the multipath 
hannel is bandlimited,we 
an then rewrite (2.17) into its 
omplex envelope representation [1, 3℄, i.e.,

r(t) =
1

2

∫ ∞

−∞

c(t− τ)h(τ, t)dτ =
1

2
c(t) ∗ h(τ, t), (2.20)in whi
h h(τ, t) represents the 
omplex baseband impulse response, 
orresponding to thepassband 
hannel impulse response hpb(τ, t). By doing so, we 
an remove the high frequen
yvariations 
aused by the 
arrier, thus fa
ilitating numeri
al experiments and signal analysis.For 
omputational and analyti
al purposes, we 
an dis
retize the multipath delay axis

τ of the impulse response into the so-
alled ex
ess delay bins, ea
h with equal time delaysegments of width ∆τ . In pra
ti
e, we usually set the time delay of the �rst arrivingmultipath 
omponent to zero, i.e. τ0 = 0 by negle
ting the propagation delay betweenthe transmitter and re
eiver. The time delay of the ith bin is then spe
i�ed as τi = i∆τ ,
i = 0, 1, · · · , L− 1, where L represents the total number of delay bins.Sin
e the re
eived signal in a multipath 
hannel 
onsists of a series of attenuated, timedelayed, phase shifted versions of the transmitted signal, the 
omplex baseband impulseresponse 
an be expressed as

h(τ, t) =

L−1∑

i=0

ai(τ, t) exp[j(2πfcτi + φi(τ, t))]δ(τ − τi), (2.21)
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tively,of the ith multipath 
omponent at time t. If we fo
us on a short time (or distan
e) interval,i.e., employing a pro
essing window that is smaller than the 
hannel 
oheren
e time, thenthe 
hannel impulse response 
an be assumed to be time-invariant, and thus it may befurther simpli�ed as
h(τ) =

L−1∑

i=0

ai exp(−jθi)δ(τ − τi). (2.22)In the following, we brie�y review some well-known 
hannel models whi
h are a
tuallydeveloped on the basis of (2.21) and (2.22) to generate 
hannel 
oe�
ients.2.3 Overview of re
ent wireless 
hannel simulation modelsModeling the radio 
hannels has been one of the most 
hallenging tasks of mobile radiosystem design. To exa
tly des
ribe a pra
ti
al 
hannel would be very di�
ult due to thelarge number of variables involved. Hen
e, it is typi
al to resort to a statisti
al approa
h,based on measurements made spe
i�
ally for an intended transmission s
enario or spe
trumallo
ation. In the following, we brie�y review several wireless 
hannel models that arelargely used in simulations and analyses.2.3.1 3GPP spatial 
hannel modelThe 3GPP spatial 
hannel model (SCM), assuming s
atterers are separated into N = 6
lusters, ea
h with M = 20 s
atterers, is illustrated in Fig. 2.3 [78, 79℄. In this model,we assume that there are NT transmit antennas at the base station (BS), and NR re
eiveantennas at the mobile station (MS). The line of sight (LOS) dire
tion is denoted by θBS ,referring to the bore-sight of the BS antenna array. The angle between the bore-sight of theMS antenna array and the LOS is represented by θMS . The velo
ity of the MS is assumed
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Fig. 2.3 3GPP multiple-input multiple-output spatial 
hannel model.to be ~v with dire
tion θv.In this model, every s
atterer 
orresponds to one path, and therefore paths asso
iatedwith the same 
luster are assumed to have the same average power and path delay. Con-sidering the downlink transmission s
enario, the mean angle of departure (AoD) and meanangle of arrival (AoA) of paths in 
luster n are denoted by δD

n and δA
n , respe
tively; thenthe AoD and AoA of the mth path in 
luster n are respe
tively de�ned by

θD
n,m

def
= θBS + δD

n + ∆D
n,m, (2.23)

θA
n,m

def
= θMS + δA

n + ∆A
n,m, (2.24)where ∆D

n,m and ∆A
n,m are the angle o�sets with respe
t to the mean AoD and mean AoA,respe
tively.Finally, we 
an express the 
hannel impulse response asso
iated with the qth transmit
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eive antenna as
hp,q(τ, t) =

N∑

n=1

hp,q,n(t)δ(τ − τn(t)), (2.25)where τn(t) denotes the delay spread asso
iated with the nth 
luster at some physi
al time
t, and hp,q,n(t) represents the 
omplex 
hannel gain at time t between the pth re
eive andthe qth transmit antenna, asso
iated with the nth multipath, and is de�ned as

hp,q,n(t) =

√

Pn

M

M∑

m=1

√

GBS(θD
n,m)

√

GMS(θA
n,m) exp(jkdq sin(θD

n,m))

exp(j[kdp sin(θA
n,m) + Φn,m]) exp(jk‖~v‖ cos(θA

n,m − θv)t), (2.26)and parameters of the 
omplex 
hannel gain are de�ned in Table 2.1.Table 2.1 Parameters of 3GPP-SCM 
omplex 
hannel gain.
Pn power of the nth path
j square root of -1
k wave number 2π/λ (λ is the 
arrier wavelength in meters)
dq distan
e in meters from BS antenna element q to thereferen
e (q = 1) antenna
dp distan
e in meters from MS antenna element p to thereferen
e (p = 1) antenna

Φn,m phase of the mth subpath of the nth path
‖~v‖ magnitude of the MS velo
ity ve
tor
θv angle of the MS velo
ity ve
tor

GBS(θD
n,m) BS e�e
tive antenna array gain

GMS(θA
n,m) MS e�e
tive antenna array gain
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hannel models were mainly developed for ma
ro
ellular appli
ations.Spe
i�
ally, COST-207 introdu
es tap delay line models to represent the propagation 
han-nel within the framework of GSM developments [80℄, i.e., for typi
al 
hannel 
hara
teristi
sof transmit bandwidths from 10 to 20 MHz, 
entered around 900MHz.Based on large amounts of measured data, the typi
al average power delay pro�les ofthese models were de�ned for ea
h kind of mobile environment. These 
an be generallyexpressed by
h(τ) =

N−1∑

i=0

ai δ(τ − τi), (2.27)where ai and τi represent the 
omplex gain and delay asso
iated with the ith dis
retemultipath 
omponent, respe
tively, and N denotes the number of multipath 
omponents.Some notable 6-ray multipath delay pro�les are shown in Table 2.2, in
luding the typi
alurban (TU), bad urban (BU), and hilly terrain (HT) s
enarios [80℄. Due to the simpli
itywith whi
h it des
ribes a wireless transmission environment, the 
on
ept of the COST-207models has been adopted as a basis for evaluating many other mobile wireless systems,in
luding the IMT2000, UMTS, and mobile DVB-T re
eption, et
.2.3.3 Simpli�ed tapped delay line modelsThe simpli�ed tapped delay line (TDL) models, or transversal �lters, are similar to theprevious COST-207 models, ex
ept that the taps are now symbol-spa
ed. The transferfun
tion of an mth order TDL model 
an be des
ribed as follows [81℄:
H(z) = b0 + b1z

−1 + · · · + bmz
−m. (2.28)
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al urban (TU), bad urban (BU), and hilly terrain(HT) 6-ray power delay pro�le.Typi
al Urban Bad Urban Hilly TerrainDelay (µs) Power pro�le Delay (µs) Power pro�le Delay (µs) Power pro�le0.0 0.189 0.0 0.164 0.0 0.4130.2 0.379 0.3 0.293 0.1 0.2930.5 0.239 1.0 0.147 0.3 0.1451.6 0.095 1.6 0.094 0.5 0.0742.3 0.061 5.0 0.185 15.0 0.0665.0 0.037 6.6 0.117 17.2 0.008A TDL model in
ludes many adjustable parameters, in
luding 
hoi
es of the numberof taps as well as tap 
oe�
ients. The tap 
oe�
ients of the TDL models 
an be either
orrelated or un
orrelated; e.g., it is possible to in
orporate spatial 
orrelation in the TDLmodels for multiple-antenna transmission systems [82℄. Sin
e the 
orrelated TDL modelsoften lead to 
omputational di�
ulties, the un
orrelated ones are more widely 
onsideredin numeri
al experiments.Generally speaking, in the TDL models, tap 
oe�
ients 
an be 
hara
terized as ZMC-SCG [62℄ random variables. This 
an be justi�ed by the 
entral limit theorem on the basisthat fading is 
aused by the superposition of a large number of independent s
attered 
om-ponents. In the 
ontext of blind 
hannel estimation, the TDL models are widely 
onsideredto generate 
hannel 
oe�
ients for estimation.
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Chapter 3
Survey of re
ent developments onMIMO-OFDM 
hannel estimation
As we stated earlier in Se
tion 1.1, modern te
hnologies su
h as diversity te
hniques, beam-forming, and spatial multiplexing 
an be applied to fully exploit the spe
ial stru
tures ofthe MIMO-OFDM systems when a

urate CSI is available. In this 
hapter, we providefurther motivation to devise suitable 
hannel estimation te
hniques to fully exploit theadvantages brought about by MIMO-OFDM. We then present an overview of existing ap-proa
hes for 
hannel estimation in wideband MIMO-OFDM systems with spe
ial emphasison subspa
e-based blind approa
hes. We 
on
lude with a dis
ussion of the limitation of
urrent subspa
e-based blind estimators.3.1 Motivating the need for 
hannel estimationBefore justifying the signi�
an
e of CSI in the above mentioned te
hniques for MIMO-OFDM, we digress slightly to overview several other dete
tion te
hniques that do notrequire CSI at the re
eiver.2010/07/30
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hannel estimation 403.1.1 Coherent, non
oherent, and di�erential dete
tionsIn 
onne
tion with the availability of CSI, there are mainly three types of 
ommuni
ationparadigms for the design of 
ommuni
ation signals and their dete
tion, namely: 
oherent,non
oherent, and di�erential.The �rst 
ategory, i.e. 
oherent signal dete
tion, relies on the assumption that an a
-
urate CSI is available at the re
eiver side. However, this assumption may not always besatis�ed, parti
ularly in mobile environments with relatively fast 
hanging 
hannel 
on-ditions [83�85℄. Hen
e, the remaining 
ategories, i.e., non
oherent and di�erential signaldesign and dete
tion, whi
h do not rely on this assumption, are suggested as alternativesin su
h s
enarios.The se
ond 
ategory, i.e., non
oherent signal dete
tion, has been su

essfully introdu
edfor several MIMO appli
ations. For example, an e�
ient and systemati
 
onstru
tionof full diversity non
oherent spa
e-frequen
y 
odes was presented in [83℄. However, itsperforman
e is sensitive to the delay spread and the power delay pro�le. Another exampleis provided by the design and use of the so-
alled training 
odes in MIMO systems [86℄.Although the CSI is not required for signal dete
tion, one may argue that the 
ode design"abuses" the terminology of non
oherent, by allowing part of its 
odeword to be knownto the re
eiver before transmission for the purpose of estimating the wireless 
hannels.Nonetheless, dete
tion performan
e based on training 
odes is generally inferior to that of
oherent dete
tion.The third 
ategory, i.e., di�erential signal dete
tion, has been widely used in pra
ti
al
ellular mobile 
ommuni
ation systems, su
h as IS-54, the 2nd generation standard digi-tal 
ellular systems in North Ameri
a. More re
ently, various di�erential te
hniques havebeen proposed for MIMO systems, in
luding a sub
arrier-re
onstru
tion-based approa
h
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hannel estimation 41[87℄, a di�erential spa
e-time-frequen
y modulation [84℄, and a multiple-symbol di�erentialdete
tion [85℄. But similar to the 
ase of non
oherent dete
tion, a generally worse perfor-man
e than that of 
oherent dete
tion is observed; moreover, a quasi-stati
 
hannel (i.e.slowly-varying) is also required for a su

essful dete
tion [84, 85, 87, 88℄.Thus, with penalty in a
hievable dete
tion performan
e, the non
oherent and di�erentialdete
tion te
hniques are spe
ialized designs suitable for 
ases in whi
h no a

urate CSI isavailable, a situation often justi�ed on the basis that a

urate CSI is di�
ult to obtainin a relatively fast time-varying 
hannel. However, this argument is questionable sin
eto a great extent, the availability of a

urate CSI is mostly a matter of su
h resour
es(e.g., 
omputation, bandwidth) the system designer is willing to allo
ate to the task of
hannel estimation. In addition, as we have seen above, the non
oherent and di�erentialte
hniques may be either too restri
tive for 
ertain power delay pro�les, or impra
ti
alin the requirement of quasi-stati
 fading 
hannels. It is therefore questionable whetheror not the non
oherent and di�erential te
hniques 
an repla
e the 
oherent ones in theaforementioned s
enarios.To summarize the above dis
ussion, we 
an 
on
lude that if an a

eptable estimationperforman
e 
an be a
hieved in the relatively fast time-varying 
hannel with a�ordable
ost in resour
e, then there is no reason to give up the 
oherent te
hniques. Besides,it is attra
tive to enjoy the various already well-designed and proven 
oherent dete
tions
hemes.3.1.2 The need for 
hannel estimation in 
oherent dete
tionThe prospe
t of operating MIMO-OFDM systems 
lose to the Shannon 
apa
ity, as enabledby the invention of various 
apa
ity-a
hieving te
hniques, relies heavily on the availabilityof advan
ed 
hannel estimation te
hnique [89℄.
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an be shown that when the CSI is known to both the transmitter and the re
eiver,the so-
alled waterpouring or water-�lling algorithm 
an be employed so that the resulting
apa
ity of the MIMO-OFDM 
hannel is greater than (or equal to) that available whenthe 
hannel is unknown to the transmitter [62℄. However, 
hannel knowledge at the trans-mitter is normally obtained through feedba
k from the re
eiver or based on the 
hannelre
ipro
ity prin
iple in a duplex system. Both approa
hes may be problemati
 from apra
ti
al perspe
tive. Feedba
k of 
hannel information may 
onsume ex
ess amount ofbandwidth, espe
ially for rapidly time-varying 
hannels. Furthermore, in this latter 
ase,the 
hannel information at the transmitter is likely to be outdated be
ause of transmis-sion and pro
essing delays. Channel re
ipro
ity has a very limited realm of appli
ations:Re
ipro
ity in time is only possible for quasi-stati
 
hannels, while re
ipro
ity in frequen
yis only appli
able to narrow sub-bands within the 
oheren
e bandwidth of the wireless
hannel.In this thesis, our interest is in pra
ti
al broadband MIMO-OFDM transmission overtime-varying 
hannels. Therefore, in the following, we mainly fo
us on the s
enarios inwhi
h the CSI is only available at the re
eiver and not at the transmitter.Some of the most prominent examples of dete
tion te
hnique that justify the need of
hannel estimation in MIMO systems, in
lude various re
ently proposed diversity and spa-tial multiplexing s
hemes, su
h as spa
e-time 
oding [90�92℄, spa
e-frequen
y (SF) 
oding[93�96℄, spa
e-time-frequen
y (STF) 
oding [97�100℄, and BLAST systems [101, 102℄. Gen-erally speaking, diversity te
hniques provide the re
eiver with multiple independent looksor observations at the same transmitted signal, either in the spa
e, time, frequen
y, polar-ization, or a 
ombination of the above domains. As ea
h observation represents a diversitybran
h, the probability that all bran
hes experien
e a deep fade 
on
urrently is redu
edsigni�
antly; thus, diversity te
hniques improve the link reliability and therefore redu
e the
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hannel estimation 43bit error rate. On the 
ontrary, spatial multiplexing te
hniques o�er a linear in
rease inthe signaling rate by exploiting the parallel transmission of di�erent information streamsfrom di�erent antennas, without 
onsidering the link reliability or bit error rate.To better explain the need for 
hannel estimation in these te
hniques, 
onsider the fol-lowing simpli�ed mathemati
al formulation. Let xm
q [k] denote a symbol transmitted at the

qth transmit antenna over the kth sub
arrier and the mth OFDM symbol time; this symbolmay represent part of the 
odeword that results from the appli
ation of a 
ertain diversityor spatial multiplexing te
hnique. Without loss of generality, the 
odeword is assumed tobe blo
k-based, i.e., it spans over multiple OFDM symbols from m = 1, 2, · · · , NF in thetime domain, multiple transmit antennas from q = 1, 2, · · · , NT in the spatial domain, andmultiple sub
arriers from k = 0, 1, · · · , NC − 1 in the frequen
y domain. Then on the basisof (2.7), we 
an represent the signal re
eived at the pth re
eive antenna over the kth toneand the mth OFDM symbol as
ym

p [k] =

NT∑

q=1

hm
p,q[k]x

m
q [k] + nm

p [k], p = 1, 2, · · · , NR. (3.1)Thus, the de
ision rule for maximum likelihood de
oding to re
over the transmitted 
ode-word is equivalent to minimizing the metri

NC−1∑

k=0

NF∑

m=1

NR∑

p=1

|ym
p [k] −

NT∑

q=1

hm
p,q[k]x

m
q [k]|2 (3.2)over all possible 
odewords and de
iding in favor of the 
odeword that minimizes the abovesum. To this end, we 
an see that the CSI, i.e. the knowledge of the 
hannel gains hm

p,q[k]'sfor all possible values of p, q, m, and k, is essential to implement the above de
ision rule.Another implement example that justi�es the requirement of 
hannel estimation is the
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hniques [6, 16℄. In re
eive beamforming, signals are 
o-herently 
ombined with appropriate steering ve
tors at the re
eiver so as to enhan
e theantenna array response in a preferred dire
tion. The 
omputation of the steering ve
tors isnormally performed by applying the singular value de
omposition on a matrix 
onstru
tedfrom the CSI, and hen
e the latter is 
ru
ial to a
hieve the 
omputation.Having justi�ed the importan
e of 
hannel estimation in MIMO-OFDM systems, in thefollowing, we review and survey re
ent advan
es on related 
hannel estimation te
hniques.Spe
i�
ally, we fo
us on the 
hannel estimation and tra
king of the MIMO wireless 
hannelsin a wideband OFDM 
ontext.3.2 Overview of 
hannel estimation for wideband MIMO-OFDMThe good performan
e of MIMO-OFDM depends on its ability to deal with the frequen
yand time sele
tive nature of the wideband propagation 
hannels [103℄, whi
h in turn heavilyrelies on the availability of the 
orresponding CSI, as obtained by means of a 
hannelestimation te
hnique.Generally speaking, 
hannel estimation 
an be performed in two di�erent ways, thatis: pilot-based and blind estimation [89℄. In pilot-based 
hannel estimation, known signalsor symbols are transmitted to assist the re
eiver in determining the required CSI. On theother hand, a blind 
hannel estimation method determines the CSI without the aid ofknown symbols, and thus 
an a
hieve a higher bandwidth e�
ien
y; however, it generally
omes with a penalty of slower 
onvergen
e speed, redu
ed estimation a

ura
y, and higherimplementation 
omplexity [104℄.For the reasons stated above, one might erroneously 
on
lude that there are limiteduses for a blind estimation te
hnique in pra
ti
e, sin
e the dynami
 requirement asso
iated
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ent developments on MIMO-OFDM 
hannel estimation 45to the estimation of time-varying mobile 
hannels further enhan
es the demands in termsof 
onvergen
e speed and implementation 
omplexity. However, in many emerging wirelessstandards, the transmission of overhead information su
h as these pilot symbols poses amajor burden to the data transmission. In fa
t, the merits of the high bandwidth e�
ien
yasso
iated with the MIMO-OFDM systems 
an be greatly o�set by overhead [105℄. Forexample, it has been shown that to maximize the overall transmission rate in a BLAST-MIMO system, half of the available interval is used for training [102℄.Hen
e, if a blind 
hannel estimation te
hnique 
an be devised to possess fast 
onvergen
espeed with a

eptable performan
e and a reasonable 
omplexity, then it 
an repla
e pilot-based 
hannel estimators, and be embra
ed by future wireless standards for the purposeof meeting the demand of high transmission rate. For 
ompleteness, both pilot-based andblind 
hannel estimation te
hniques are further reviewed below.3.2.1 Pilot-based 
hannel estimationPilot-based 
hannel estimation 
an be broadly 
ategorized as employing either 
ontinuous-time sounding signals, i.e. pilot tones [89, 106�110℄, or a sequen
e of known symbolsinserted among data symbols, i.e. pilot or training symbols [103, 105, 111�113℄.The �rst 
ategory of te
hnique, i.e. those based on pilot tones, employ a 
ontinuous-time waveform or tone to 
alibrate the multipath-indu
ed e�e
ts in the re
eiver side [109℄.For single-
arrier systems, one generally needs to suppress the data signal power aroundthe desired pilot frequen
ies [114℄. In one of the earlier pilot tone te
hniques, the so-
alledtone 
alibrated te
hnique (TCT), double sideband modulation is transmitted alongside thepilot [106℄. In addition, to make room for the pilot in the presen
e of Doppler shift, thesidebands of lower frequen
ies relative to tone frequen
y must be shaped so as to have zeroresponse in the neighborhood of the DC signal. Other te
hniques, su
h as transparent tone-
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h out a spe
tral gap in the 
enter of the data spe
trumfor the pla
ement of the pilot. An alternative possibility is the dual-pilot tone 
alibrationte
hnique (DPTCT), in whi
h a pair of pilots are symmetri
ally pla
ed near the edges of the
hannel and outside the data spe
trum [108℄. For multi-
arrier systems su
h as in OFDM,not only the pla
ement of the pilot tones but also the pilot sequen
es must be optimizedto obtain the minimal MSE of the least squares (LS) 
hannel estimate. It has been shownthat the optimal pilot tones should be equipowered, equispa
ed, and phase-shift orthogonal[89℄. Although pilot-tone te
hniques lead to robust and simple re
eiver stru
tures, a largefra
tion of the transmitted power is wasted in these tones, and thus there has been a trendaway from these te
hniques in re
ent wireless standards.In the se
ond 
ategory of pilot-based 
hannel estimation te
hnique, i.e. those based onpilot symbols, the re
eiver �rst extra
ts the 
hannel transfer fun
tion at those times andfrequen
ies at whi
h pilot symbols have been inserted. Then, the missing values of thetransfer fun
tion between the positions of pilot symbols 
an be interpolated by means of�ltering [89, 103, 115℄. Note that performan
e of 
hannel estimation is highly dependenton the distribution of the pilot symbols in relation to the 
oheren
e time and 
oheren
ebandwidth of the wireless 
hannel. Thus, one needs to judi
iously pla
e the pilot symbolsnot only to gain better estimation performan
e but also to redu
e the resour
es allo
atedto training. This is parti
ularly important in a fast fading 
hannel where pilots have to beinserted frequently in order to tra
k 
hannel variations [113℄.Generally, to obtain a

eptable 
hannel estimation for SISO-OFDM systems, the �rstand the last sub
arriers are modulated with pilot symbols. Then the other pilot symbolsare inserted at every nf sub
arriers in the frequen
y dire
tion and every nt OFDM symbolsin the time domain. The insertion periods nf and nt must satisfy the following 
onditions,
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h result from the sampling theorem [111, 116℄:
nf <

1

τmax∆f
, nt <

1

2fmT
, (3.3)where ∆f denotes the sub
arrier spa
ing, τmax is the maximum path delay, T is the OFDMsymbol duration, and fm is the maximum Doppler shift. The above 
onditions 
an be refor-mulated into a more intuitive way, in terms of the 
oheren
e bandwidth and the 
oheren
etime, respe
tively, as given by

nf < Bc/∆f, nt < Tc/T, (3.4)where Bc ≈ 1/τmax represents the 
oheren
e bandwidth and Tc ≈ 1/(2fm) represents the
oheren
e time. The bandwidth e�
ien
y is redu
ed by a fa
tor of approximately 1/(ntnf )due to the insertion of pilots as above. However, to a
hieve a reasonable noise redu
tionby �ltering in the interpolation step, the density of the pilot symbols along both the timeand frequen
y axes should be larger than twi
e the minimum density mentioned from (3.4),so that the 
hannel transfer fun
tion is over-sampled. If multiple antennas are employed,then the situation is getting worse sin
e additional pilot symbols are needed to estimatethe 
hannel transfer fun
tion between ea
h 
ombination of transmit and re
eive antenna.More re
ently, signi�
ant e�orts have been devoted to situations in whi
h not all sub-
arriers are a
tivated [117℄. In these 
ases, the lo
ations of the pilot symbols 
annot beequally spa
ed due to the so-
alled virtual 
arriers, i.e. sub
arriers that are set to zero withno any information being transmitted. Therefore, the optimal solution for the 
ase of allsub
arriers are a
tivated 
annot be applied dire
tly. One possible solution was obtained byan iterative method to a
hieve minimum mean square error of the least squares estimate
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hannel s
enario (i.e., within one OFDM symbol periodin this 
ase), the minimum number of pilots with this approa
h is still nearly twi
e as largeas the number of unknown 
hannel 
oe�
ients. A more bandwidth e�
ient method wasproposed in [113℄, su
h that the minimum number of pilots required is only half of theabove method. However, no less than NTL pilots are still required for a time-invariantbroadband wireless 
hannel with 
hannel order L.With respe
t to a re
eiver with ideal CSI, the BER 
urves typi
ally degrade by no morethan 1.5dB in SNR [111, 112℄, if a 
arefully designed pilot-based estimator is employed.In the following, we dis
uss the possibility of a
hieving similar or even better system per-forman
e by using a blind-based 
hannel estimator, i.e. without employing spe
i�
 pilotsymbols.3.2.2 Blind 
hannel estimationWithout the assistan
e and the expense of pilot symbols, blind-based 
hannel estimationpresents a bandwidth e�
ient way to a
quire the CSI needed for signal dete
tion. Existingblind estimation methods 
an be broadly 
ategorized as deterministi
 or statisti
al.Deterministi
 methods, the �rst 
ategory of blind approa
hes, are in general favoredwhen the input statisti
s are unknown, or there may not be su�
ient time samples toobtain suitable estimate of the required statisti
s. To date, several interesting deterministi
methods have been developed by, e.g., employing the maximum likelihood approa
h [32, 33℄,exploiting null guard intervals [34, 35℄, exploiting zeros of the 
hannel impulse response [36℄,or by using fra
tional sampling as well as interpolation [37℄. However, most of them are forSISO or single 
arrier ex
lusively, and hen
e are less appli
able in the 
ontext of MIMO-OFDM systems.In the se
ond 
ategory, blind approa
hes 
an be further sub-divided into two 
lasses
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s (HOS) of the re
eived signal, and al-gorithms using only se
ond order statisti
s (SOS). In general, HOS-based algorithms areusually not 
onsidered for moderate to rapidly time-varying wireless 
hannels, sin
e a largenumber of re
eived samples is needed before the HOS estimates are reliable. Instead, SOS-based algorithms 
an potentially a
hieve superior estimation performan
e for a given timeaveraging interval than approa
hes using higher order statisti
s (HOS) [27�31, 119℄.Amid SOS-based blind approa
hes, subspa
e-based estimation is attra
tive sin
e 
han-nel estimates 
an often be obtained in a simple form by optimizing a quadrati
 
ost fun
tion[38℄. Without employing any pre
oding at the transmitter, a noise subspa
e-based methodis proposed for OFDM systems by utilizing the redundan
y introdu
ed by the 
y
li
 pre�x(CP) [39, 40℄, and it is further extended for MIMO-OFDM systems in [41℄. Virtual 
arri-ers (VC) are sub
arriers that are set to zero without any information being transmitted.The presen
e of VC provides another useful resour
e that 
an be used for 
hannel estima-tion. Su
h a s
heme is proposed for OFDM systems [42℄, and it is further extended forMIMO-OFDM systems in [43, 44℄.On the basis of the above 
onsiderations, we 
on
lude that to meet the demands of futurewireless standards based on MIMO-OFDM, subspa
e-based blind 
hannel estimation o�ersan attra
tive solution in terms of both estimation performan
e and the required number oftime samples (i.e. OFDM symbols) to attain the performan
e.3.3 Generalized subspa
e-based blind estimationIn the following, we present the 
on
ept of subspa
e-based blind estimation in mathemat-i
al term, and explore the problem of interests in this thesis, whi
h results from 
urrentlimitations on the use of these estimators. Then, we overview some examples of subspa
e-



3 Survey of re
ent developments on MIMO-OFDM 
hannel estimation 50based blind 
hannel estimation methods that have been re
ently proposed in the signalpro
essing and 
ommuni
ations literature.3.3.1 The mathemati
al basis of subspa
e-based blind estimationBlind 
hannel estimation, whi
h is based on the exploitation of the stru
ture in the 
hanneland properties of the input, relies only on multiple observations of the 
hannel output yto identify the unknown 
hannel parameters [28℄. Spe
i�
ally, the subspa
e-based blindestimation problem, whi
h uses the se
ond order statisti
s of the observation, 
an be for-mulated as follows. Let x ∈ U ⊂ C ds×1 be the input ve
tor to a linear 
hannel as shown inFig. 3.1.1 The output of the 
hannel s ∈ C dc×1 
an then be represented by
x 7→ s = Hx, (3.5)where matrix H ∈ C dc×ds (dc > ds) represents a linear transformation [120℄. The image of

U , denoted by V, is the set {s = Hx for some x ∈ U}. Assuming that dim[U ] = ds andmatrix H is full rank, we have dim[V ] = ds. The observation y ∈ W ⊆ C dc×1, whi
h isthe sum of 
hannel output s and noise n, 
an be written as y = s + n.Subspa
e methods rely on the assumptions that the observation spa
e, i.e. W, has
dim[W ] = dc > dim[U ]. Only a se
ond order statisti
al 
hara
terization of the inputve
tor x and noise ve
tor n is generally involved. Without loss of generality, it is 
onvenientto assume that x and n have zero mean, i.e., E[x] = 0 and E[n] = 0, where E[·] denotesstatisti
al expe
tation. We denote by Rx = E[xxH ] and Rn = E[nnH ] the 
orrelationmatrix of x and n, respe
tively.From the stru
ture of the linear signal model in Fig. 3.1, it follows that Ry = E[yyH ],1In pra
ti
e, due to the �nite alphabet property, the set U that en
ompasses all the possible inputve
tors x is a proper subset of C ds×1.
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Fig. 3.1 A generi
 blind 
hannel estimation problem.the 
orrelation matrix of the observation, 
an be expressed as
Ry = HRxHH + Rn. (3.6)Thus, provided that the noise 
orrelation matrix is a su�
iently regular stru
ture (e.g.,

Rn = σ2
n I), it appears that relevant information regarding the 
hannel parameters 
an beobtained from the eigenve
tors of Ry.Consider a pra
ti
al situation in whi
h several observations (or realizations) of randomve
tor y are available, and let y(j) denote the jth observation at some physi
al time tj. We
an estimate Ry as

R̂y =
1

Tav

Tav∑

j=1

y(j)y
H
(j). (3.7)Under the stationary 
ondition, R̂y (and R̂n) 
onverges to Ry = E[yyH ] (and Rn) in themean square sense as the time averaging interval Tav → ∞ [40℄. Note that we 
an write

Ry = R̂y + ∆Ry, where ∆Ry denotes the di�eren
e between the true and the sampled
orrelation matrix.By applying an eigen-de
omposition to Ry, we 
an obtain the signal and noise subspa
esfrom the span of the eigenve
tors whi
h 
orrespond to its ds largest eigenvalues and dc −ds
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tively. Due to the inevitable noise perturbation and insu�
ienttime averaging, minimizing the 
ost fun
tion C(H) = tr [L(H)T Ψ̂L∗(H)] subje
t to aquadrati
 
onstraint, i.e., L(H)LH(H) = I, is usually employed to obtain the 
hannel
oe�
ients, where the matrix Ψ̂ is 
onstru
ted from the eigenve
tors of the perturbed noisesubspa
e and the matrix L(H) is obtained by re-arranging the non-redundant elements of
H, depending on the dimensionality as well as the formulation of the matrix Ψ̂. The detailsof this step are appli
ation spe
i�
, i.e. the 
onstru
tion of L(H) and Ψ̂.Let Ho be the optimal su
h that C(Ho) ≤ C(H) under the 
hosen 
onstraint. We have

C(Ho) = min
L(H)L(H)H= I

{

tr [L(H)T Ψ̂L∗(H)]
}

=
r∑

j=1

γj(Ψ̂), (3.8)where γj(Ψ̂) represents the jth smallest eigenvalue of Ψ̂ and r depends on spe
i�
 algo-rithms. To dis
uss the asymptoti
 behaviors of C(Ho) as ‖∆Ry‖ → 0 and ‖Rn‖ → 0,let γj(Ψ̂) and γj(Ψ) be the jth smallest eigenvalue of Ψ̂ = Ψ − ∆Ψ and Ψ, respe
tively,where Ψ is 
onstru
ted (in a similar way as Ψ̂) from the error free noise eigenve
tors of
Ry. In this 
ase, Ψ is perturbed by the amount ∆Ψ due to an insu�
ient time averaginginterval. Sin
e Ψ̂ and Ψ are Hermitian in the subspa
e-based problems, we have [121℄

|γj(Ψ̂) − γj(Ψ)| ≤ ‖∆Ψ‖2. (3.9)First 
onsider the 
ase ‖∆Ry‖ > 0 and ‖Rn‖ = 0, whi
h 
orresponds to a noise-freesituation with �nite time averaging; that is, Ψ is perturbed by the amount ∆Ψ due toan insu�
ient time averaging interval. Here, sin
e γj(Ψ) = 0, j = 1, 2, · · · , r, we have
C(Ho) =

∑r
j=1 γj(Ψ̂) =

∑r
j=1 |γj(Ψ̂) − γj(Ψ)| ≤ r‖∆Ψ‖2. While the exa
t relationshipbetween ∆Ψ and ∆Ry depends on the perturbation of the matrix Ψ̂ in a given problem,
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an generally show for many 
ases of interest that ‖∆Ψ‖2 ≤ α‖∆Ry‖2, where α > 0is a s
alar. Therefore, C(Ho) ≤ rα‖∆Ry‖2 and the estimation performan
e is determinedby the 
loseness of the estimated 
orrelation matrix to the true one.Alternatively, 
onsider the 
ase ‖∆Ry‖ = 0 and ‖Rn‖ > 0, 
orresponding to a noisysituation but with in�nite time averaging (Tav → ∞); that is, Ψ is perturbed by the amount
∆Ψ due to the noise. Hen
e, we 
an also arrive at C(Ho) ≤ α

′‖Rn‖2, where α′

> 0 isa s
alar. In the spe
i�
 
ase of Rn = σ2
n I, we 
an arrive at C(Ho) ≤ α

′‖R̂n‖2 = α
′

σ2
n.Therefore, in this 
ase, when there is su�
ient time averaging, the estimation performan
eis determined by the noise varian
e. In both 
ases above, we 
on
lude that C(Ho) → 0 as

‖∆Ry‖ → 0 and ‖Rn‖ → 0.In general, the performan
e of the 
hannel estimator obtained from (3.8) largely dependson our ability to dis
riminate between the ds largest eigenvalues of R̂y and its dc−ds smallest(noise) eigenvalues. Sin
e wireless 
hannels are in general non-stationary, we 
annot 
hoosean arbitrarily large Tav to estimate the 
orrelation matrix. Nonetheless, this 
an be ensuredby requiring that Tav ≥ dc in a pra
ti
al s
enario, i.e., ‖∆Ry‖ > 0 and ‖Rn‖ > 0.3.3.2 Overview of re
ent subspa
e-based blind approa
hesTo date, several interesting subspa
e-based blind 
hannel estimation methods have beenproposed. Con
erning the linear transformation H in (3.5), it not only 
hara
terizes theinput-output relationship of a subspa
e-based blind problem, but also plays an importantrole in the performan
e of the 
orresponding subspa
e-based blind 
hannel estimator. In-deed, the number of rows in H, i.e. dc, is equal to the dimension of the 
orrelation matrix
R̂y, whi
h is dire
tly related to the minimum required time samples to estimate the 
orre-lation matrix. The linear transformation matrix H of some notable subspa
e-based blind
hannel estimators are brie�y reviewed below.
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e-based blind estimation approa
h either by means ofoversampling the re
eived signal 
ompared to the information data rate, or by using severalsensors. Although several other approa
hes using SOS had been proposed beforehand, thisapproa
h is 
omputationally more e�
ient, and 
an a
hieve a 
omparably or even betterstatisti
al performan
e.In [38℄, two possible s
enarios are 
onsidered as explained below.(1) Oversampling a single sensor: This s
enario 
onsiders a SISO system, with anunderlying 
ontinuous-time 
hannel impulse response h(t) assumed to have �nite support.The 
hannel output ve
tor is obtained by oversampling the 
ontinuous-time output at therate M/T , where T is the symbol period and M is the oversampling fa
tor.Assuming a temporal observation window of length NFT , the sampled output of theSISO 
hannel 
an be arranged in a ve
tor s su
h that (3.5) is satis�ed with a suitablede�nition of H. Spe
i�
ally, de�ne the polyphase impulse response by
hi

l
def
= h(t0 − i (T/M) − lT ); 0 ≤ i ≤M − 1, 0 ≤ l ≤ L− 1, (3.10)where L denotes the 
hannel order and t0 is an appropriate referen
e time. The 
orre-sponding linear transformation of the blind estimation problem 
an thus be 
hara
terizedas
H =

[

H(0)TH(1)T · · ·H(M−1)T
]T

∈ CMNF×(NF +L−1), (3.11)where H(i) is de�ned as
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H(i) def

=















hi
L−1 · · · hi

0 0 · · · · · · 0

0 hi
L−1 · · · hi

0 0 · · · 0... . . . . . . . . . . . . . . . ...
0 · · · 0 hi

L−1 · · · hi
0 0

0 · · · · · · 0 hi
L−1 · · · hi

0















∈ CNF×(NF +L−1). (3.12)
(2) Multiple sensors: This s
enario 
onsiders a SIMO system where M now denotesthe number of sensors or re
eiving antennas and hi(t), i = 1, 2, · · · ,M are the 
ontinuous-time impulse responses of the propagation 
hannel between the input and the ith sensoroutput. Then the 
orresponding linear transformation also follows (3.11)-(3.12), ex
eptthat hi

l
def
= hi(t0 − lT ), 0 ≤ l ≤ L− 1, meaning that the ith sensor re
eives a signal that hastraveled through the ith propagation 
hannel.b) OFDM systems with 
y
li
 pre�x [39℄It 
an be shown that 
y
lostationarity in the re
eived signal allows the re
eiver to blindlyidentify the 
hannel impulse response using only se
ond order statisti
s [29℄. In parti
ular,by exploiting the 
y
lostationarity embedded at the transmitter due to the insertion of a
y
li
 pre�x in ea
h symbol, a subspa
e-based blind 
hannel identi�
ation was proposedfor SISO-OFDM systems in [39℄.In the notation of [39℄, the dis
rete-time impulse response of the SISO 
hannel is denotedas hl, 0 ≤ l ≤ L − 1. The output ve
tor s 
onsists of the sequen
e of time samples from

NF 
onse
utive OFDM symbols, with ea
h OFDM symbol of size NC +Ncp, where NC isthe IFFT size and Ncp is the length of 
y
li
 pre�x (See Se
tion 2.1 for details). Then the



3 Survey of re
ent developments on MIMO-OFDM 
hannel estimation 56
orresponding linear transformation of the blind estimation problem 
an be written as
H =















hL−1 · · · h0 0 · · · · · · 0

0 hL−1 · · · h0 0 · · · 0... . . . . . . . . . . . . . . . ...
0 · · · 0 hL−1 · · · h0 0

0 · · · · · · 0 hL−1 · · · h0















, (3.13)
whi
h is also a Toeplitz matrix of size (NF (NC +Ncp) − L+ 1) ×NF (NC +Ncp).
) OFDM systems without 
y
li
 pre�x [122℄Motivated by the multi
hannel signal model in single-
arrier systems [38℄, another notableblind approa
h for 
hannel estimation was proposed in the 
ontext of OFDM systems[122℄. The method distinguishes itself from [39℄ mainly by eliminating the use of the CPfor 
hannel estimation. Two possible s
enarios are 
onsidered as follows:(1) Oversampling a single sensor: In this 
ase, the 
ontinuous-time 
hannel h(t) isassumed to be of �nite support. If M and L denote the oversampling fa
tor in the OFDMsystem and the 
hannel order, respe
tively, then for some referen
e time t0, the dis
rete-time impulse response of interests are given as in [39℄ by

hi
l

def
= h(t0 − i (T/M) − lT ); 0 ≤ i ≤M − 1, 0 ≤ l ≤ L− 1, (3.14)where T represents the duration of the NC +Ncp individual time samples 
omprising ea
hOFDM symbol. The 
orresponding linear transformation of this blind estimation problem
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an thus be 
hara
terized as
H =

[

H(0)TH(1)T · · ·H(M−1)T
]T

∈ CM(NC−L+1)×NC , (3.15)where H(i) is de�ned in (3.12) but now has dimension (NC − L + 1) × NC . Note that inthis approa
h only the non-ISI 
orrupted time samples are used in the 
onstru
tion of s,whi
h explains the di�erent size of H(i).(2) Multiple sensors: If M now denotes the number of sensors in a SIMO-OFDM sys-tem, then by 
olle
ting only non-ISI 
orrupted OFDM time samples at ea
h sensor andsta
king them, we 
an 
onstru
t another multi
hannel signal model. The 
orrespondinglinear transformation also follows the above 
ase with hi
l

def
= hi(t0 − lT ), 0 ≤ l ≤ L− 1.d) MIMO-OFDM systems [44℄With the growing popularity of MIMO-OFDM systems, an eminent subspa
e-based ap-proa
h was proposed in [44℄. Two possible s
enarios are addressed as follows:(1) MIMO-OFDM systems with NR ≥ NT : In this 
ase, let the temporal windowof observations be NF and hp,q(t) denotes the 
ontinuous-time 
hannel impulse responsebetween the qth transmit antenna and the pth re
eive antenna. The 
orresponding lineartransformation of the blind estimation problem 
an be formulated as

H =















h(L− 1) · · · h(0) 0 · · · · · · 0

0 h(L− 1) · · · h(0) 0 · · · 0... . . . . . . . . . . . . . . . ...
0 · · · 0 h(L− 1) · · · h(0) 0

0 · · · · · · 0 h(L− 1) · · · h(0)















, (3.16)
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h is a blo
k-Toeplitz matrix of size (NFQ−L+1)NR ×NFQNT , with Q def
= NC +Ncp,

h(l)
def
=












h11(l) h12(l) · · · h1NT
(l)

h21(l) h22(l) · · · h2NT
(l)... ... . . . ...

hNR1(l) hNR2(l) · · · hNRNT
(l)












∈ CNR×NT , (3.17)
and hp,q(l)

def
= hp,q(t0 − lT ), 0 ≤ l ≤ L− 1, where T denotes the OFDM sampling period.(2) MIMO-OFDM systems with NT > NRIn this 
ase, an oversampling fa
tor M is applied at the re
eiver with M ≥ ⌈NT/NR⌉.With h(i)

p,q(l)
def
= hp,q(t0 − i (T/M) − lT ), 0 ≤ i ≤ M − 1, 0 ≤ l ≤ L − 1, the lth lag of theoversampled-MIMO 
hannel is represented as

h̃(l) =
































h
(0)
1,1(l) h

(0)
1,2(l) · · · h

(0)
1,NT

(l)... ... . . . ...
h

(M−1)
1,1 (l) h

(M−1)
1,2 (l) · · · h

(M−1)
1,NT

(l)

h
(0)
2,1(l) h

(0)
2,2(l) · · · h

(0)
2,NT

(l)... ... . . . ...
h

(M−1)
2,1 (l) h

(M−1)
2,2 (l) · · · h

(M−1)
2,NT

(l)... ... . . . ...
h

(0)
NR,1(l) h

(0)
NR,2(l) · · · h

(0)
NR,NT

(l)... ... . . . ...
h

(M−1)
NR,1 (l) h

(M−1)
NR,2 (l) · · · h

(M−1)
NR,NT

(l)
































. (3.18)
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orresponding linear transformation matrix is then 
hara
terized as
H =















h̃(L− 1) · · · h̃(0) 0 · · · · · · 0

0 h̃(L− 1) · · · h̃(0) 0 · · · 0... ...
0 · · · 0 h̃(L− 1) · · · h̃(0) 0

0 · · · · · · 0 h̃(L− 1) · · · h̃(0)















, (3.19)
whi
h is of size M(NFQ−L+1)NR ×NFQNT . Here, oversampling is introdu
ed to ensurethat H is a tall matrix (i.e. full 
olumn rank), a 
ondition needed in the appli
ation of asubspa
e approa
h.3.3.3 Summary of the notable subspa
e-based blind approa
hesFor future referen
e, we brie�y summarize the above representative subspa
e-based esti-mators [38, 39, 44, 122℄ in Table 3.1, in terms of the dimension of the signal subspa
e ds,the dimension of the noise subspa
e dc − ds, the size of the linear transformation matrix
H, and the dimension of the 
orresponding 
orrelation matrix R̂y, respe
tively.2Table 3.1 Summary of dimensionality for some notable subspa
e-based blind
hannel estimators.Estimator ds dc − ds size of H dimension of R̂ySISO (oversampling) [38℄ NF + L − 1 MNF − NF − L + 1 MNF × (NF + L − 1) MNFSIMO (multiple sensors) [38℄ NF + L − 1 MNF − NF − L + 1 MNF × (NF + L − 1) MNFSISO-OFDM (with CP) [39℄ NF NC NF Ncp − L + 1 (NF (NC + Ncp) − L + 1) × NF (NC + Ncp) NF (NC + Ncp) − L + 1SISO-OFDM (without CP) [122℄ NC M(NC − L + 1) − NC M(NC − L + 1) × NC M(NC − L + 1)SIMO-OFDM (without CP) [122℄ NC NR(NC − L + 1) − NC NR(NC − L + 1) × NC NR(NC − L + 1)MIMO-OFDM (NR ≥ NT ) [44℄ NF DNT (NF Q − L + 1)NR − NF DNT (NF Q − L + 1)NR × NF QNT (NF Q − L + 1)NRMIMO-OFDM (NR < NT ) [44℄ NF DNT M(NF Q − L + 1)NR − NF DNT M(NF Q − L + 1)NR × NF QNT M(NF Q − L + 1)NR2The parameter D in [44℄ denotes the number of useful sub
arriers in the OFDM systems.
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urrent subspa
e-based blind estimatorsIn pra
ti
e, to obtain the eigenve
tors 
orresponding to the noise subspa
e in a subspa
e-based problem, the 
orrelation matrix Ry must be estimated through time averaging overmultiple re
eived samples y(j), j = 1, 2, · · · , Tav. To this end, the unknown 
hannel mustremain time-invariant throughout the averaging pro
ess, whi
h may pose a serious problemin pra
ti
al appli
ations.Clearly, to obtain a sampled 
orrelation matrix with full rank, the number of timesamples required must be no less than the dimension of the 
orrelation matrix. Similar
onsiderations 
an be found in the literature, spe
i�
ally in the 
ontext of minimum vari-an
e beamformers [123℄, large dimensional random matri
es [124℄, and the persisten
e ofex
itation assumption [25, 40℄. Hen
e, when we 
onsider the time invarian
e requirement ofa pra
ti
al MIMO-OFDM system with a large number of OFDM sub
arriers, e.g., NC = 128or more, the traditional subspa
e-based methods require extremely large number of timesamples for obtaining a good time-averaged 
orrelation matrix, making them impra
ti
al.Indeed, as 
an simply observe from the last 
olumn of Table 3.1, the dimension of the
orrelation matrix in any one of the method in [39, 44, 122℄ is dire
tly proportional to NC ,i.e. the number of OFDM sub
arriers.More re
ently, variants of the statisti
s-based blind 
hannel estimation methods havebeen proposed, e.g., by inserting zero-padding instead of CP for ea
h OFDM blo
k [45℄, orby introdu
ing the so-
alled repetition index [46℄ and re-modulation [47℄ on the re
eivedsignal. However, the number of time samples required with these methods is still impli
itlyproportional to the size of the IFFT, i.e. NC . Regarding deterministi
 approa
hes, wenote that they still need to a

umulate time samples in order to obtain 
hannel estimatesalgebrai
ally, and their performan
e in noise improves as the number of time samples
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reases.Therefore, as the time averaging interval Tav is the major limitation on the quality ofthe sampled 
orrelation matrix, any subspa
e-based blind algorithm whi
h uses a smallerdimension of the 
orrelation matrix may a
hieve a better estimation performan
e for a given
Tav. Equivalently, aiming at any reasonable estimation performan
e, a subspa
e-basedalgorithm whi
h uses a 
orrelation matrix of smaller dimension generally requires a shortertime average interval. In Chapter 4, to meet the demands of future wireless standards, wepropose a novel subspa
e-based algorithm for blind 
hannel estimation in MIMO-OFDMsystems, in whi
h the required dimension of 
orrelation matrix 
an be signi�
antly lessthan those of the previously reported algorithms (that is, for the same system setup andparameter values). This will be a
hieved mainly by exploiting the frequen
y 
orrelationamong adja
ent sub
arriers in the MIMO-OFDM systems.
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Chapter 4
Subspa
e-based blind 
hannel estimation withredu
ed time averaging for MIMO-OFDM
In this 
hapter, to relax the time invarian
e requirement in pra
ti
al MIMO-OFDM sys-tems, we propose a novel subspa
e-based blind 
hannel estimation algorithm with redu
edtime averaging. This is a
hieved by exploiting the frequen
y 
orrelation among adja
entsub
arriers in OFDM transmissions through sub
arrier grouping [60℄, for whi
h some sup-portive �eld measurements 
an also be found in [61℄. The resulting gain in performan
e
omes at the 
ost of an ambiguity matrix with larger dimensions; however, this dimension
an be easily redu
ed to the normal one when pre
oding is applied [125℄ (see also Se
tion6.3) or when the ratio of 
oheren
e bandwidth to the 
hannel bandwidth is large.In Chapter 7, through simulations over 3GPP-SCM wireless 
hannels, the proposedapproa
h is shown to outperform the approa
h from [47℄. In parti
ular, it 
an a
hieve anormalized mean square error (NMSE) of 10−4 on the 
hannel estimates within only 50time samples (when the SNR=15dB), whi
h is also very 
ompetitive over the deterministi
approa
hes designed ex
lusively for SISO and single-
arrier transmissions.
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ed time averaging 63In a nutshell, the 
ontribution of this work is not only to show that the proposedblind approa
h 
an work with a small number of time samples but that it may 
ome withimproved performan
e and robustness over existing statisti
al and deterministi
 methods.The 
hapter is organized as follows. Se
tion 4.1 is devoted to the problem formula-tion, in
luding a des
ription of the system under 
onsideration. We introdu
e the proposedsubspa
e-based blind algorithm in Se
tion 4.2. Identi�ability 
onditions as well as perfor-man
e analysis of the proposed algorithm are given in Se
tion 4.3.4.1 Problem formulationWe 
onsider a MIMO-OFDM system with NT transmit and NR re
eive antennas, em-ploying NC sub
arriers, as depi
ted in Fig. 2.2. Let the mth OFDM symbol transmit-ted over the kth sub
arrier be denoted as xm[k]
def
=
[
xm

1 [k] xm
2 [k] · · · xm

NT
[k]
]T , where

xm
q [k] is the symbol transmitted at the qth transmit antenna. Then the mth OFDMsymbol transmitted over the NC sub
arriers 
an be written in a 
on
atenated form as

xm def
=
[

xm[0]T xm[1]T · · · xm[NC − 1]T
]T . The input ve
tor, whi
h represents an OFDMblo
k in our system setup, is assumed to 
onsist of NF OFDM symbols and thus 
an bewritten as x =

[

x1T
x2T · · · xNF

T
]T .At the re
eiver, let the mth re
eived OFDM symbol over the kth sub
arrier be denotedas ym[k]

def
=
[
ym

1 [k] ym
2 [k] · · · ym

NR
[k]
]T , where ym

p [k] is the symbol re
eived at the pth re-
eive antenna. Then themth OFDM symbol re
eived over NC sub
arriers 
an be written as
ym def

=
[

ym[0]T ym[1]T · · · ym[NC − 1]T
]T , and y =

[

y1T
y2T · · · yNF

T
]T representsthe observation. In addition, let n represent the additive noise stru
tured in a similar way.In the following, we assume that: (1) the length of the CP appended to ea
h OFDMsymbol is longer than the maximum ex
ess delay of the 
hannel; (2) the 
hannel is time-
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h OFDM blo
k; and (3) the average power of the transmit symbolalphabet is normalized: E [|xm
q [k]|2] = 1. Under these assumptions, the input-output rela-tion of the MIMO-OFDM system may be expressed 
ompa
tly by

y = Hx + n, (4.1)where the matrix H is de�ned as
H def

= INF
⊗ diag(H[0] · · ·H[NC − 1]) (4.2)with size (NRNCNF ) × (NTNCNF ) and the de�nition of diagonal blo
ks is given in (2.9).In this 
hapter, our interest lies in the blind, SOS-based estimation of the 
hannel
oe�
ients, i.e. {hp,q[k]}, dire
tly from multiple observations of random ve
tors y's.4.2 Subspa
e-based blind estimationIn the 
ase of SOS-based blind approa
hes, the main 
on
ern is to estimate the 
orrelationmatrix Ry = E[yyH ] while meeting a 
ertain level of 
on�den
e, and over a time averaginginterval as short as possible. We �rst brie�y 
omment on the time averaging requirement inthe traditional approa
hes: For subspa
e-based algorithms that apply 
hannel estimationin the time domain and assuming NR ≥ NT (see e.g., [41, 44℄), the 
hannel matrix is blo
kToeplitz and 
an be written as Htd =
∑L−1

l=0 Bl ⊗ H(l), where L represents the 
hannelorder, B is an [(NC +Ncp)NF −L+1]× (NC +Ncp)NF ba
kward shift matrix [121℄ with Ncpdenoting the length of the 
y
li
 pre�x, and H(l)
def
= (1/NC)

∑NC−1
k=0 H[k] exp(j2πkl/NC),i.e. the MIMO 
hannel impulse response of the lth tap.Then, the dimension of the 
orrelation matrix of the observations is [(NC +Ncp)NF −
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L+ 1]NR, whi
h 
an be approximated by NCNFNR if NC ≫ Ncp and NCNF ≫ L. On thebasis of these 
onsiderations, we 
an 
on
lude that in the 
ontext of MIMO-OFDM, we needto 
hoose the number of time samples Tav ≥ NCNFNR to a
hieve a

eptable performan
efor these time-domain approa
hes. As NC is normally 
hosen between 128 and 2048 soas to alleviate the adverse e�e
ts from the frequen
y-sele
tive 
hannels, we 
an see thatthese algorithms require an extremely large Tav for obtaining an a

eptable time-averaged
orrelation matrix. Below, we develop an improved pro
edure that exploits 
orrelation overthe frequen
y domain to relax su
h a requirement.4.2.1 Proposed approa
hIn the 
ontext of MIMO-OFDM, although a pilot-based subspa
e method in the frequen
ydomain was proposed in [126℄, a blind one 
onstru
ted dire
tly from (4.1) has seldom been
onsidered, mainly be
ause there are a large number NTNRNC ≥ NTNRL of unknownsto be estimated (re
all that L represents the 
hannel order). Nevertheless, the number ofunknowns 
an be redu
ed by exploiting the frequen
y 
orrelation among adja
ent OFDMsub
arriers with some loss in the estimation performan
e. In return, the dimension of the
orrelation matrix and hen
e the number of time samples required for time averaging 
anbe redu
ed signi�
antly. The details are given below for the 
ase NR > NT ; however, ifoversampling is used at the re
eiver, the 
ase NR ≤ NT is also possible.Let the frequen
y span of P adja
ent sub
arriers reside inside the 
oheren
e band-width of the wireless 
hannel, de�ned here as the range of frequen
ies over whi
h thefrequen
y response matrix of the MIMO 
hannel does not 
hange appre
iably [127℄. Let
Ω

def
= {0, 1, · · · , NC − 1}, i.e. the index set of the NC sub
arriers, be partitioned into

P disjoint subsets (assuming ζ
def
= NC/P ∈ Z+) with ea
h subset denoted as Ωp

def
=

{ωp,1, ωp,2, · · · , ωp,ζ}, where ωp,i
def
= p − 1 + (i − 1)P , i = 1, 2, · · · , ζ for p = 1, 2, · · · , P
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ed time averaging 66(see Fig 4.1 for details). Note that Ω1 ∪ Ω2 ∪ · · · ∪ ΩP = Ω, and Ωi ∩ Ωj = ∅, where ∅denotes the empty set.PSfrag repla
ements

0 1 P − 1 P P + 1 2P − 1 (ζ − 1)P NC − 1

ω1,1 ω2,1 ωP,1 ω1,2 ω2,2 ωP,2 ω1,ζ ωP,ζ

1st subset (p = 1) P th subset (p = P )

Fig. 4.1 A s
hemati
 of the partitioning of the sub
arrier index set Ω =
{0, 1, · · · , NC − 1} into P disjoint subsets, i.e. Ωp = {ωp,1, ωp,2, · · · , ωp,ζ},
p = 1, 2, · · · , P .De�ne xp = [x1

p
T
x2

p
T · · ·xNF

p
T
]T , yp = [y1

p
T
y2

p
T · · ·yNF

p
T
]T , np = [n1

p
T
n2

p
T · · ·nNF

p
T
]T ,where

xm
p

def
= {xm[k] | k ∈ Ωp } = [ xm[ωp,1]

T
xm[ωp,2]

T · · · xm[ωp,ζ]
T ]T (4.3)and ym

p and nm
p are de�ned in a similar way. These ve
tors are obtained from the 
ompleteinput ve
tor x, observation ve
tor y, and noise ve
tor n above by retaining only the fre-quen
y 
omponent of the pth subset Ωp. Then (4.1) 
an be re-written for the pth subset
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yp = Hp xp + np, p = 1, 2, · · · , P, (4.4)where

Hp
def
= INF

⊗ diag(H[ωp,1] · · ·H[ωp,ζ]) (4.5)is assumed to be of full rank with size (NRNF ζ) × (NTNF ζ). The identi�
ation of Hp 
anthen be a
hieved based on Ryp
= E [ypy

H
p ], whi
h 
an be re-written as

Ryp
= HpRxp

HH
p + Rnp

, (4.6)where Rxp

def
= E [xpx

H
p ] is assumed to be of full rank, and Rnp

def
= E [npn

H
p ] = σ2

n I. Sin
ethe P adja
ent sub
arriers are assumed to reside inside the 
oheren
e bandwidth, the sub-
hannel matri
es Hp, p = 1, 2, · · · , P 
an be approximated1 by denoting H̄ def
= H1 = H2 =

· · · = HP .An estimate of the 
orrelation matrix in (4.6) 
an be obtained as
R̂ȳ =

1

PTav

Tav∑

j=1

P∑

p=1

yp (j)y
H
p (j), (4.7)where yp (j) ∈ C(NRNF ζ)×1 denotes the jth observation of yp at some physi
al time tj .Therefore, the number of the time samples Tav required 
an be signi�
antly redu
ed sin
ethe dimension of the 
orrelation matrix is redu
ed by a fa
tor of P , and an averaging over

P subsets is applied at ea
h time epo
h, whi
h is equivalent to the frequen
y averaging.By applying the eigenvalue de
omposition (EVD) to Ryp
, we 
an express (4.6) as1In pra
ti
e, there are always small variations of the sub-
hannel matri
es over the assumed 
oheren
ebandwidth. The e�e
ts of su
h small variations on the estimation performan
e are 
onsidered and analyzedin Se
tion 4.3.
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Ryp

= UΛUH , where U is a matrix whose 
olumns are the orthonormal eigenve
tors ofRyp
,and whi
h 
an be partitioned as U = [Us |Un ] = [u1 · · ·uds

|uds+1 · · ·uds+dn
]. The signalsubspa
e 
an thus be denoted as R(Us), while its orthogonal 
omplement, the noise sub-spa
e, 
an be denoted as R(Un), with ds

def
= rank (H̄) = NTNF ζ and dn

def
= (NR −NT )NF ζ .

Λ is a diagonal matrix 
onsisting of the 
orresponding eigenvalues of Ryp
, and is denoted as

Λ = diag (λ1, λ2, · · · , λds+dn
) with λmax = λ1 ≥ λ2 ≥ · · · ≥ λds

> λds+1 = · · · = λds+dn

def
=

λmin ≥ 0. Under the assumption of white noise with non-zero varian
e, i.e., λmin = σ2
n > 0.Sin
e H̄ and Us share the same range spa
e and are orthogonal to the range spa
e of Un,we 
an arrive at the following orthogonality relationship

uH
j H̄ = 0, j = ds + 1, · · · , ds + dn. (4.8)Although H̄ 
an be solved from the set of homogeneous linear equations, due to the use ofa �nite time averaging interval, only an estimate of the noise subspa
e Un is available inpra
ti
e. In this 
ase, by denoting ûj as the perturbed version of uj, obtained by applyingthe EVD to the sample 
orrelation matrix R̂ȳ in (4.7), we may obtain the 
hannel estimateby minimizing a quadrati
 
ost fun
tion given by, e.g.,2

C(H̄) =

ds+dn∑

j=ds+1

‖ûH
j H̄‖2

2. (4.9)The trivial solution H̄ = 0 
an be avoided by introdu
ing a suitable 
onstraint as dis
ussedbelow.At this point, it is 
onvenient to reformulate the quadrati
 
ost fun
tion (4.9) in a formthat is more 
onvenient for its optimization over the un
onstrained parameters in matrix H̄.2Ideally, we should measure how 
lose is ûH
j H̄ to the all zero ve
tor 01×NT NF ζ . To this end, we are notrestri
ted to the 
ost fun
tion in (4.9).
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ed time averaging 69Let us �rst partition ûj into NF segments of equal dimension as ûj =
[
ûT

j,1û
T
j,2 · · · ûT

j,NF

]T ,and then de�ne matrix V̂j
def
= [ûj,1ûj,2 · · · ûj,NF

], where ûj,i ∈ CNRζ×1 for i = 1, 2, · · · , NF .For a �xed but arbitrarily sele
ted integer ρ ∈ [1, P ], let us de�ne
H̄′ def

= H̄′

ρ =









H[ωρ,1]...
H[ωρ,ζ]









= [hρ
1 h

ρ
2 · · · h

ρ
NT

], (4.10)
where ea
h 
olumn hρ

q is obtained by 
on
atenating the 
orresponding 
olumns of H[ωρ,k],
k = 1, · · · , ζ , that is,

hρ
q

def
= [h1,q[ωρ,1] · · · hNR,q[ωρ,1] · · · h1,q[ωρ,ζ] · · · hNR,q[ωρ,ζ]]

T (4.11)for q = 1, 2, · · · , NT . Then the 
ondition C(H̄) = 0 in (4.9) implies that C ′

(H̄′

) = 0, inwhi
h the latter is de�ned as (see Appendix A for details)
C

′

(H̄′

) = tr
(

H̄′T Ψ̂H̄′∗
)

, (4.12)and the matrix Ψ̂ is de�ned as
Ψ̂

def
=

ds+dn∑

j=ds+1

V̂∗
jV̂

T
j ∈ C(NRζ)×(NRζ). (4.13)We now pro
eed to obtain the 
hannel estimate by minimizing the quadrati
 
ost fun
tionin (4.12) as follows. Let the eigenvalues of Ψ̂ be ordered as γmin = γ1(Ψ̂) ≤ γ2(Ψ̂) ≤

· · · ≤ γ(NRζ)(Ψ̂) = γmax. Then from the Rayleigh-Ritz theorem [121℄, we know that for all
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Q ∈ C (NRζ)×r,

γ1(Ψ̂) + · · · + γr(Ψ̂) = min
QHQ=I

tr (QHΨ̂Q), (4.14)where r is a given integer with 1 ≤ r ≤ NRζ . The optimal solution Q̂o ∈ C (NRζ)×r is amatrix whose 
olumns are 
hosen to be orthonormal eigenve
tors 
orresponding to the rsmallest eigenvalues of Ψ̂. Therefore we 
an 
arry on the minimization on the RHS of (4.14)to �nd Q̂o and obtain the desired solution of (4.12) by
H̄′

o = Q̂∗
oA, (4.15)where A ∈ Cr×NT 
an be seen as an ambiguity matrix. To ensure that enough basisfun
tions are available for the adequate representation of the unknown 
hannel matrix, rshould be 
hosen so that r = dim [R(Q̂∗

o)] ≥ dim [R(H̄o)]/NF = NT ζ ; in our 
ase, wesimply 
hoose r = NT ζ .Table 4.1 Computational 
omplexity of the proposed algorithm.Main Step Complexity (�ops)1. Compute R̂ȳ. 3
2
(PTav)(NRNF ζ)

22. Given ds = NTNF ζ and dn = (NR −NT )NF ζ ,�nd eigenve
tors ûj , j = ds + 1, · · · , ds + dn, whi
h
orrespond to the dn smallest eigenvalues of R̂ȳ. O((NRNF ζ)
3)3. Partition ûj =

[
ûT

j,1û
T
j,2 · · · ûT

j,NF

]T and form the matri
es
V̂j=[ûj,1ûj,2 · · · ûj,NF

] from ûj , j = ds + 1, · · · , ds + dn. 04. Form the matrix Ψ̂ from the V̂j's. dn(NF + 1)(NRζ)
25. Find Q̂o, whose 
olumns are the eigenve
torswhi
h 
orrespond to the NT ζ smallest eigenvalues of Ψ̂. O((NRζ)

3)6. Obtain 
hannel estimate H̄′

o. 2(NT ζ)(NRζ)NT
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omments on the proposed approa
hThe main pro
essing steps for the proposed algorithm are summarized in Table 4.1, alongwith their 
omputational 
omplexities in terms of the number of required (
omplex) �ops.To meet the minimum requirement of time averaging in 
onne
tion with (4.7), i.e., to avoidrank de�
ien
y, we need PTav ≥ NRNF ζ , or equivalently, Tav ≥ NRNFNC/P
2. Therefore,the redu
tion in the averaging time Tav is proportional to the square of the number of sub-sets, P . Assuming PTav = NRNF ζ is 
hosen (i.e. the dimension of the 
orrelation matrix),the total 
omputational 
omplexity of the proposed algorithm is given as O((NRNF ζ)

3),in
luding the two EVD operations. Although the steps of matrix 
omputations are similarto those found in the traditional approa
hes, the 
omplexity of the �rst EVD operationis in general mu
h lower. A redu
tion by P 3 ≈ 104.5 �ops in the EVD operation 
an beexpe
ted for a typi
al value of P = 32.The ambiguity matrix A, inherent in all subspa
e-based blind 
hannel estimation meth-ods due to the se
ond-order problem formulation, is required in order to obtain a �nal 
han-nel estimate in Step 6 (see also (4.15) for details). While the estimation of the ambiguitymatrix for subspa
e methods is a general problem on its own that falls outside the s
opeof this thesis, several approa
hes are available in pra
ti
e to implement this step, in
ludingthe use of higher order statisti
s or the insertion of a limited number of pilot symbols (re-sulting in the so-
alled semi-blind approa
h). Con
erning the size of the ambiguity matrixin the 
urrent problem, a simple pre
oding te
hnique is presented in Chapter 6 to redu
e itto NT ×NT , whi
h is the size of the ambiguity in the 
orresponding time-domain subspa
eproblems.
2010/07/30



4 Subspa
e-based blind 
hannel estimation with redu
ed time averaging 724.3 Performan
e analysis on the proposed subspa
e-basedestimatorIn this se
tion, we analyze the performan
e of the newly proposed algorithm in Se
tion4.2. We �rst investigate its identi�ability 
onditions, and then derive expressions for itsasymptoti
 performan
e and asso
iated Cramer-Rao bound. In Chapter 7, these analysisresults will be used in 
onjun
tion with Monte Carlo numeri
al simulations to show that theproposed algorithm indeed a
hieves a better estimation a

ura
y than previous reportedalgorithms within a reasonable time averaging interval.4.3.1 Identi�ability 
onditionsIn subspa
e-based blind estimation problems, the study of identi�ability 
onditions aims toexplore the stru
ture of the 
hannel and properties of the input su
h that we 
an uniquelydetermine the 
hannel 
oe�
ients up to a 
ertain degree of ambiguity [128℄. The studyis normally 
ondu
ted expli
itly from the viewpoint of the signal-noise orthogonality rela-tionship, assuming that the time averaging interval is su�
ient long to negle
t estimationerror of the sample 
orrelation matrix; that is: assuming R̂ȳ = Ryp
. As a result, we 
andetermine not only the type of 
hannels that a spe
i�
 blind algorithm 
an identify, butalso the way that system parameters should be 
hosen.In the following, assuming the dimensions of the signal and noise subspa
es are known,we investigate to what extent the 
hannel is still identi�able, i.e. 
hannel 
oe�
ients 
anbe uniquely determined up to a 
ertain degree of ambiguity. First, let us express theorthogonality relationship in (4.8) in terms of the noise subspa
e eigenve
tor matrix Un by

UH
n H̄ = 0, (4.16)
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ed time averaging 73whi
h is a homogeneous linear system.Sin
e H̄ is assumed to be of full rank, i.e. rank(H̄) = NTNF ζ = ds, (4.16) also implies
R(H̄) = N(UH

n ).The general solution of the system (4.16) is given as
H̄ =

(

I−
(
UH

n

)†(
UH

n

))

Y

=
(
I −UnU

H
n

)
Y

= PR(Un)⊥Y (4.17)for some arbitrary matrix Y with PR(Un)⊥
def
= I − UnU

H
n [129, p.140℄, where the se
ondequality follows from the fa
t that Un is a full 
olumn rank matrix with orthonormal
olumns. Therefore, we 
an always avoid the trivial solution H̄ = 0 sin
e UnU

H
n 6= I. Let

H̄′

= Q∗
oA denote a solution to (4.14) 
onstru
ted from the exa
t Qo with 
orresponding

H̄.3 In addition, let H̄′

1 = H̄′

B = (Q∗
oA)B = Q∗

oA1 where B is a square matrix ofdimension NT . Then, it 
an be veri�ed that the 
orresponding H̄1 = H̄ (Iζ ⊗ B), whi
his also of the form PR(Un)⊥Y1, with Y1 = Y (Iζ ⊗ B). This shows that H̄′ is uniquelydetermined up to the ambiguity matrix A (
def
= A1B

−1).In the following, let us determine the su�
ient 
ondition for the 
hannel to be iden-ti�able. Re
all that the dimension of the solution spa
e of a homogeneous linear system
Am×nXn×p = 0m×p equals p dim[N(A)]; the dimension of the solution spa
e for H̄ in (4.16)is then given as ds dim[N(UH

n )]. Sin
e H̄ is a blo
k diagonal matrix with dsNR nonzerosentries, a su�
ient (but not ne
essary) 
ondition for the 
hannel to be identi�able 
an thusbe written as ds dim [N(UH
n )] ≥ dsNR, or simply ds ≥ NR. We 
an rearrange the aboveinequality and arrive at NF ζ ≥ (NR/NT ).3As per the formating transformation H̄ ↔ H̄′ de�ned in Se
tion 4.2.
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ed time averaging 74Therefore, NF = 1 is possible for the proposed algorithm as long as ζ ≥ (NR/NT ),meaning that the aforementioned algorithm and identi�ability 
onditions 
an be derivedfor the 
ase of single-symbol pro
essing, i.e., one OFDM input symbol at a time. However,our results 
an easily be extended to the general 
ases where the OFDM system operateson blo
ks of multiple OFDM symbols at a time, as is ne
essary with many traditionalapproa
hes [41, 44℄.4.3.2 Perturbation analysisBy denoting Hp = H̄ + ∆Hp, the 
orrelation matrix Ryp
in (4.6) 
an be re-written as

Ryp
= H̄Rxp

H̄H + R∆Hp
+ Rnp

, (4.18)where we de�ne
R∆Hp

= ∆Hp Rxp
H̄H + H̄Rxp

∆HH
p + ∆Hp Rxp

∆HH
p . (4.19)In Se
tion 4.2, an identi�
ation of H̄ was obtained by assuming ‖∆Hp‖ → 0, ∀p. In thefollowing, the asymptoti
 performan
e of the proposed algorithm under high SNR andsu�
iently large time averaging interval is studied.Under the 
ondition of stationarity and ergodi
ity, the estimate of the 
orrelation matrixin (4.7) 
onverges to:

Rȳ = H̄Rx̄H̄H

︸ ︷︷ ︸

def
= RH̄

+R∆H + Rn̄ as Tav → ∞, (4.20)where Rx̄
def
= (1/P )

∑P
p=1 Rxp

, R∆H
def
= (1/P )

∑P
p=1 R∆Hp

and Rn̄
def
= (1/P )

∑P
p=1 Rnp

.
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e Rȳ = RH̄ +R∆H +Rn̄ 
an be seen as a perturbed data matrix with R
′

n

def
= R∆H +Rn̄being the perturbation sour
e, we have the �rst order perturbation of the noise subspa
e[122, 130℄ denoted by

∆Un,H̄ = −Us,H̄Σ−1
s,H̄

UH
s,H̄(R

′

n)HUn,H̄, (4.21)assuming the EVD of RH̄ is written as
RH̄ = [ Us,H̄ | Un,H̄ ]






Σs,H̄

0











UH
s,H̄

UH
n,H̄




 . (4.22)Furthermore, by partitioning the jth 
olumn of Un,H̄ and ∆Un,H̄ into NF segments of equaldimension, we de�ne new matri
es Vj

def
= [U j,1

n,H̄
U

j,2

n,H̄
· · ·U j,NF

n,H̄
] and ∆Vj

def
= [∆U

j,1

n,H̄
∆U

j,2

n,H̄

· · ·∆U
j,NF

n,H̄
], where U

j,i
n,H̄

and ∆U
j,i
n,H̄

denote the ith segment of the jth 
olumn of Un,H̄and ∆Un,H̄, respe
tively. Similar to (4.13), Ψ
def
=
∑dn

j=1 V∗
jV

T
j is then 
onstru
ted for theHermitian matrix Qo (note that Qo is the un-perturbed version of Q̂o). The EVD of Ψ
an be written as

Ψ = [ Us,Ψ | Un,Ψ ]






Σs,Ψ

0











UH
s,Ψ

UH
n,Ψ




 , (4.23)where we identify Qo = Un,Ψ and hen
e Q̂o = Qo + ∆Qo with

∆Qo = −Us,ΨΣ−1
s,ΨUH

s,Ψ(∆Ψ)HQo, (4.24)where ∆Ψ
def
=
∑dn

j=1 V∗
j∆VT

j +∆V∗
jV

T
j +∆V∗

j∆VT
j . By assuming that H̄′ = [hρ

1 h
ρ
2 · · · h

ρ
NT

]for known, but arbitrary value of ρ ∈ [1, P ], we 
an obtain the ambiguity matrix from
A = (Q̂∗

o)
†H̄′ . Therefore, the asymptoti
 
hannel estimate and asymptoti
 estimation
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an be written as4
H̄′

o,a = (Q̂∗
o)(Q̂

∗
o)

†H̄′

, (4.25)
∆H̄′

o,a =
[

I − (Q̂∗
o)(Q̂

∗
o)

†
]

H̄′

. (4.26)Note that sin
e (Q̂∗
o)(Q̂

∗
o)

† = P
R(Q̂∗

o) and I−(Q̂∗
o)(Q̂

∗
o)

† = P
R(Q̂∗

o)⊥ [131, 132℄, ea
h 
olumn ofthe estimated 
hannel matrix H̄′

o,a 
an be seen as the proje
tion of the 
orresponding 
olumnof H̄′ on the range of Q̂∗
o. Hen
e, as long as R(H̄′

) * R(Q̂∗
o), we have H̄′

o,a = P
R(Q̂∗

o)H̄
′ 6= H̄′and ∆H̄′

o,a = P
R(Q̂∗

o)⊥H̄
′ 6= 0.To quantify the estimation performan
e, let us de�ne the ν-distan
e δν(Γ,Σ) betweentwo matri
es Γ and Σ of the same dimension in a linear spa
e by

δν(Γ,Σ) = ‖vec (Γ− Σ) ‖ν (4.27)for any real number ν ≥ 1. The normalized mean square error (NMSE) and 
hannel averagebias (CAB) of the 
hannel estimate 
an then be 
onveniently expressed by
NMSE = E

[
P∑

p=1

δ2
2(H̄

′

o, H̄
′

p)

]

/E

[
P∑

p=1

‖H̄′

p‖2
F

]

, (4.28)
CAB =

1

NTNRNC

E

[
P∑

p=1

δ1(H̄
′

o, H̄
′

p)

]

, (4.29)where H̄′

o is given either by (4.15) for evaluating the 
hannel estimate or by (4.25) for theasymptoti
 
hannel estimate, and H̄′

p is de�ned in Se
tion 4.2.1.4Here asymptoti
 error refers to a situation where SNR is large and time averaging interval is su�
ientlylong.
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ed time averaging 774.3.3 Cramer-Rao boundTo determine whether the proposed algorithm is e�
ient or not spe
i�
ally in the highSNR regime, we evaluate the unbiased Cramer-Rao bound (CRB) for the problem under
onsideration. Let θ = [σ2
n , vec(H̄′

)T ]T be the 
olumn ve
tor of nonrandom parameters tobe estimated from the observations. The Fisher information matrix (FIM) for the 
omplexvalued parameter ve
tor θ 
an be obtained by [133℄
Jθθ = Eyp| θ

(
∂ ln f(yp| θ)

∂θ

)(
∂ ln f(yp| θ)

∂θ

)H

, (4.30)where the observation 
an be 
hara
terized by the 
omplex probability density fun
tionof yp. On the basis of 
entral limit theorem, the latter is assumed to be of ZMCSCGdistribution , i.e.N (0,Ryp
), where the 
ovarian
e matrix is de�ned as Ryp

= σ2
sH̄H̄H +σ2

nI.We 
an estimate the real ve
tor given by θR = [ℜ(θT ),ℑ(θT )]T , where ℜ(·) and ℑ(·)denote the real and imaginary part of a 
omplex ve
tor, respe
tively. The real FIM JθRθR
an thus be determined from Jθθ by
JθRθR

= M






Jθθ Jθθ∗

J ∗
θθ∗ J ∗

θθ




MH , (4.31)where

M =
1

2






I I

−iI iI




 , θR =






ℜ(θ)

ℑ(θ)




 = M






θ

θ∗




 . (4.32)
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omplex Gaussian model, we have [134℄
[Jθθ]i,j = tr

{

R−1
yp

(
∂Ryp

∂θ∗i

)

R−1
yp

(
∂Ryp

∂θ∗j

)H
}

, (4.33)
[Jθθ∗]i,j = tr

{

R−1
yp

(
∂Ryp

∂θ∗i

)

R−1
yp

(
∂Ryp

∂θ∗j

)}

. (4.34)Note that we still use Ryp
instead of R̂ȳ in (4.33)-(4.34), be
ause perturbations amongadja
ent 
hannel 
oe�
ients inside the 
oheren
e bandwidth may exist. However, in ideal
ases when these perturbations 
an be negle
ted, we 
an repla
e Ryp

by R̂ȳ with su�
ienttime averaging and obtain the minimum 
onstrained CRB [134℄ from PTav independentand identi
ally distributed (i.i.d.) observations as
Var(θ̂Ri

) ≥ [(PTavJθRθR
)†]i,i, (4.35)where θ̂Ri

denotes the ith entry of θ̂R. Combining the CRB of the real and imaginary partsof the ith entry of the 
omplex parameter ve
tor θ, we 
an arrive at
Var(θ̂i) ≥

1

PTav

{
[JθRθR

)†]i,i + [JθRθR
)†]i+Nb,i+Nb

}
, (4.36)

i = 1, 2, · · · , Nb, where Nb = NTNRζ + 1 denotes the length of the nonrandom ve
tor θ.Re
all that θ1 = σ2
n and θi, i = 2, · · · , Nb represent the 
hannel 
oe�
ients of interests.Hen
e, for any 
hannel 
oe�
ient of interests, we 
an apply the following lower bound

Var(ĥp,q[k]) ≥ min
i

1

PTav

{
[JθRθR

)†]i,i + [JθRθR
)†]i+Nb,i+Nb

}
, (4.37)for i = 2, · · · , Nb.
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ed time averaging 79Sin
e above expression (4.37) gives a lower bound on the varian
e of deterministi
unknowns, it 
an be used to determine the lower bound on the varian
e of the 
hannel
oe�
ients if the 
hannel is �xed. However, in order to determine the lower bound onthe varian
e of the 
hannel 
oe�
ients when the latter as drawn from a given probabilitydistribution, we 
an run a series of experiments and determine the lower bound by
Var(ĥp,q[k]) = lim

j→∞
inf Var(ĥ(j)

p,q[k]), (4.38)where Var(ĥ
(j)
p,q[k]) represents the lower bound evaluated for (i.e. 
onditioned on) the jth
hannel realization. In Chapter 7, the above formulas for the CRB will be evaluated numer-i
ally and used as a ben
hmark in the performan
e evaluation of the proposed estimatorsvia Monte Carlo simulations.
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Chapter 5
Subspa
e tra
king based on orthogonaliteration: 
onvergen
e behavior
As a �rst step toward the development of adaptive subspa
e-based 
hannel estimator forMIMO-OFDM systems, this 
hapter studies 
onvergen
e properties of subspa
e tra
kersusing orthogonal iteration. In the 
ontext of blind estimation of a time-varying 
hannel,orthogonal iteration and its variants have been widely 
onsidered for tra
king the 
hannelparameters by updating the EVD of an exponentially weighted 
orrelation matrix. Itis well known that when orthogonal iteration is applied to a �xed matrix, it 
onvergesexponentially to the EVD (or dominant subspa
e) of the matrix with arbitrary non-zeroinitial 
onditions. However, orthogonal-iteration-based subspa
e tra
kers 
an only inheritthese merits when the 
hannels 
onsidered undergo extremely slow time-variations. Inthis 
hapter, we extend the traditional (i.e. �xed subspa
e) 
onvergen
e analysis of theorthogonal iteration to in
lude non-stationary situations as well. We use the results toinvestigate the 
onvergen
e behavior of subspa
e tra
kers based on orthogonal iterationunder slow, moderate and rapid time-variations of the underlying subspa
e. In the latter
2010/07/30
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ase, we expose a fundamental limitation of the orthogonal iteration, i.e. pra
ti
al limit onsubspa
e variations to ensure e�e
tive tra
king.15.1 Motivations of using subspa
e tra
kingSubspa
e de
omposition has proved to be an important tool in various signal pro
essingappli
ations. To this end, a straightforward approa
h is simply to employ either an eigen-value de
omposition (EVD) or singular value de
omposition (SVD). These approa
hes,whi
h belong to the family of dire
t or blo
k pro
essing te
hniques, are 
hara
terized as
omputationally demanding pro
edures and unsuitable for online pro
essing due to theirla
k of repetitive stru
ture [55℄. Furthermore, they are often implemented in a bat
h mode,using an estimated 
orrelation matrix obtained by 
olle
ting time samples over a su�
ientlylong observation interval. Therefore, these approa
hes, whi
h rely on the assumption ofstatisti
al stationarity of the data, 
annot be used in situations where the 
hara
teristi
s ofthe re
eived signals 
hange with time [135℄. Computationally e�
ient and sequential algo-rithms that produ
e an exa
t or approximate EVD or SVD at ea
h time step are generallyfavored in signal pro
essing appli
ations.Thus, a 
onsiderable e�ort has gone into the development of sequential adaptive algo-rithms, also known as subspa
e tra
kers. To date, several signal-subspa
e tra
kers havebeen proposed for non-stationary environments. Instead of re
omputing the EVD or SVDfrom s
rat
h with every update, these algorithms attempt to re
ursively update these de-
ompositions so as to minimize the amount of 
omputations involved (see e.g. [135�138℄and referen
es therein). While there are many more signal-subspa
e tra
kers than noise-1While most fast subspa
e tra
kers with low 
omplexity assume a rank one update, they are not ap-pli
able to the adaptive subspa
e-based 
hannel estimator that will be proposed in the next 
hapter. Wethus fo
us on the orthogonal iteration that is more general and suitable for our design.
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king based on orthogonal iteration: 
onvergen
e behavior 82subspa
e tra
kers in the literature [139℄, nonetheless, in the appli
ations of blind 
hannelestimation, we 
an transform the noise-subspa
e problems into signal-subspa
e ones with-out mu
h e�ort [38℄.Orthogonal iteration is a simple te
hnique that 
an be used to 
ompute higher-dimensionalinvariant subspa
es [140℄. It is shown to have a global and exponential 
onvergen
e prop-erty under a mild assumption on the distribution of eigenvalues, with arbitrary initial
onditions [141℄. In addition, it is suitable for real-time pro
essing be
ause it is well stru
-tured [136℄. Therefore, orthogonal iteration and its variants have been 
onsidered for blindadaptive 
hannel estimation to a great extent. Existing subspa
e tra
king algorithms 
anbe broadly 
ategorized as whether or not they are based on orthogonal iteration. Forthe orthogonal-iteration-based subspa
e tra
kers, their variants in
lude the low rank adap-tive �lter (LORAF) [136℄, the orthogonal proje
tion approximation and subspa
e tra
king(OPAST) [142℄, the Oja's method, and the novel information 
riterion (NIC) [143℄. Re-
ently, improvements on these existing approa
hes 
an also be found in [139, 144, 145℄.In this 
hapter, given that numerous subspa
e tra
kers in the literature are fundamen-tally derived from the 
on
ept of orthogonal iteration, we �rst investigate the 
onvergen
eproperties when orthogonal iteration is applied in non-stationary s
enarios. Spe
i�
ally,we are interested in the distan
e between the true and the orthogonal-iterated subspa
es.Then we study a fundamental limitation on the appli
ation of orthogonal-iterated subspa
etra
kers in time-varying s
enarios. Our results will be useful for better understanding thebehavior of subspa
e tra
kers based on orthogonal iteration when applied to estimate time-varying MIMO 
hannels in the next 
hapter.
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e behavior 835.2 Orthogonal iteration and its appli
ationsGiven a tall, 
olumn orthonormal matrix Q0 ∈ CN×r, the so-
alled method of orthogonal it-eration generates a sequen
e of matri
es Qm, whose 
olumn span is assumed to approximatethe span of the r− dimensional dominant subspa
e of the matrix W ∈ CN×N , a

ordingto the following re
urren
e:
Am = WQm−1, m = 1, 2, · · ·

QmRm = Am, (5.1)where Qm and Rm denote the QR de
omposition of the matrix Am at the mth iteration.If W does not 
hange over time, one 
an show that the subspa
e R(Qm) 
onverges to
Dr(W) at a rate proportional to |λr+1(W)/λr(W)|m [140℄. Therefore, the usefulness ofthe method depends on this ratio, sin
e it determines the rate of 
onvergen
e. Note thatwhen r = 1, (5.1) is just the well-known power method [146℄.In several appli
ations of interest in signal pro
essing and 
ommuni
ations, however, theassumption on the stationarity of W is usually not valid. Instead, a time-varying sequen
e
{Wm}∞m=1 is often used, whi
h is updated re
ursively as in e.g.:

Wm = αWm−1 + (1 − α)zmzH
m, (5.2)where m now represents the dis
rete-time index, α ∈ [0, 1] represents the forgetting fa
tor(typi
ally 
lose to 1), and zm ∈ CN×1 denotes an observation ve
tor at time m, oftenmodeled as an i.i.d. sequen
e of random ve
tors. In this 
ase, we may sequentially tra
kthe r− dimensional dominant subspa
e of the time-varying sequen
e {Wm}∞m=1 simply byrepla
ing the stationary matrix W in (5.1) with Wm [147℄.



5 Subspa
e tra
king based on orthogonal iteration: 
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e behavior 845.3 Convergen
e analysisIn order to motivate the method and to derive its 
onvergen
e properties in non-stationarys
enarios, we follow the analysis as well as the notation for the stationary 
ase given in[140℄, and generalize the orthogonal iteration as follows.To begin, let us 
onsider k iterations of the re
urren
e in (5.1) and use indu
tion toexpress it by
WkWk−1 · · ·W1
︸ ︷︷ ︸

def
= W̄k

Q0 = QkRkRk−1 · · ·R1, (5.3)where W1, · · · ,Wk represent matri
es of interest over the �rst k time iterations, respe
-tively. Assume that
ŪH

k W̄kŪk = Λ̄k = diag(λ̄i,k) (5.4)is an EVD of W̄k with λ̄1,k ≥ λ̄2,k ≥ · · · ≥ λ̄N,k ≥ 0 and ŪH
k Ūk = I. Partition Ūk and Λ̄kas follows:

Ūk =
[
Ū1,k Ū2,k

]
, Λ̄k =






Λ̄1,k 0

0 Λ̄2,k




 , (5.5)where Ū1,k ∈ CN×r, Ū2,k ∈ CN×(N−r), Λ̄1,k ∈ Cr×r, and Λ̄2,k ∈ C(N−r)×(N−r). Then we 
anarrive at






Λ̄1,k 0

0 Λ̄2,k











ŪH
1,kQ0

ŪH
2,kQ0




 =






ŪH
1,kQk

ŪH
2,kQk




 (RkRk−1 · · ·R1) . (5.6)
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e behavior 85If we let
ŪH

k Ql =






ŪH
1,kQl

ŪH
2,kQl






def
=






Vl

Yl




 , l = 0, 1, · · · , k, (5.7)then

Yk = Λ̄2,kY0V
−1
0 Λ̄−1

1,kVk (5.8)
an be obtained by using (5.6) and (5.7). We 
an de�ne the distan
e between the twosubspa
es Dr(W̄k) and R(Qk) a

ording to [140℄
dist (Dr(W̄k),R(Qk)) = ‖ŪH

2,kQk‖2 = ‖Yk‖2. (5.9)By invoking (5.8), we 
an obtain
‖Yk‖2 ≤ ‖Λ̄2,k‖2‖Y0‖2‖V−1

0 ‖2‖Λ̄−1
1,k‖2‖Vk‖2. (5.10)Let θ̄k ∈ [0, π/2] be de�ned to provide another measure of the 
loseness of the two subspa
es

Dr(W̄k) and R(Q0), a

ording to
cos (θ̄k) = min

u∈Dr(W̄k), v∈R(Q0)

|uHv|
‖u‖2‖v‖2

. (5.11)Then cos (θ̄k) = σr(Ū
H
1,kQ0) = σr(V0) and ‖Y0‖2 = sin(θ̄k), where σr(V0) denotes the rthlargest singular value of the matrix V0 [140℄. Combining with (5.9)-(5.11), we 
an �nallyarrive at

dist(Dr(W̄k),R(Qk)) ≤ tan(θ̄k)

(
λ̄r+1,k

λ̄r,k

)

. (5.12)In the following, we 
ategorize the non-stationary s
enarios into three main 
ases and showhow the result in (5.12) 
an be used to study the 
onvergen
e properties in ea
h 
ase.
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e behavior 86Case 1: Very small time variationsIn general, we 
an express Wk−i = Wk + ∆Wk,i for i = 1, 2, · · · , k − 1. Therefore, W̄kin (5.3) 
an be re-written as
W̄k = WkWk−1 · · ·W1

= Wk(Wk + ∆Wk,1) · · · (Wk + ∆Wk,k−1)

= (Wk)
k + ∆W̄k, (5.13)where ∆W̄k = W̄k − (Wk)

k 
omprises produ
ts of Wk and ∆Wk,i i = 1, 2, · · · , k− 1. Letus further assume that
UH

k WkUk = Λk = diag(λi,k) (5.14)with λ1,k ≥ λ2,k ≥ · · · ≥ λN,k ≥ 0. If ∆W̄k → 0, then W̄k 
an be approximated by (Wk)
kalone. Hen
e, we 
an rewrite (5.12) as

dist(Dr(Wk),R(Qk)) ≤ tan(θ̄k)

(
λr+1,k

λr,k

)k

. (5.15)We may interpret the above result as follows: Given very small variations of Wi for i =

1, 2, · · · , k, the distan
e between Dr(Wk) and R(Qk) 
onverges to zero with a rate equalto (
λr+1,k

λr,k
)k (assuming λr,k > λr+1,k), whi
h is the well-known property of the subspa
e-tra
king algorithms using orthogonal iteration.Case 2: Moderate time variationsFor moderate variations of Wi over i = 1, 2, · · · , k, however, the above property generallydoes not hold anymore. We �rst noti
e from (5.12) that the orthogonal iteration attempts
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onverge to Dr(W̄k), whi
h may be largely di�erent from Dr(Wk). Apart from this, wealso wonder how the 
onvergen
e rate is a�e
ted by the time variation in Wk. To answerthis question, it is of interest to view the e�e
t ∆W̄k in (5.13) as a perturbation to thematrix (Wk)
k. Therefore, the 
orresponding perturbation in the eigenvalues of (Wk)

k 
anbe des
ribed a

ording to
∣
∣λi(W̄k) − λi((Wk)

k)
∣
∣ ≤ ‖∆W̄k‖2, (5.16)assuming (Wk)

k is normal, whi
h is the 
ase in appli
ations of general interests. Fig. 5.1(a)illustrates the possible lo
ation of the perturbed eigenvalues λr+1(W̄k) and λr(W̄k), whi
hare bounded by a 
ir
le of radius ‖∆W̄k‖2, with 
enters lo
ated at λr+1((Wk)
k) and

λr((Wk)
k), respe
tively. Therefore, the ratio (

λ̄r+1,k

λ̄r,k
) in (5.12) governing the 
onvergen
erate is now bounded by

λr+1((Wk)
k) − δ

λr((Wk)k) + δ
≤
(
λ̄r+1,k

λ̄r,k

)

≤ λr+1((Wk)
k) + δ

λr((Wk)k) − δ
, (5.17)where δ def

= ‖∆W̄k‖2 ≥ 0. This implies that the 
onvergen
e rate may be slightly in
reasedor de
reased, depending on the spe
i�
 nature of the perturbation sour
e ∆W̄k.Case 3: Large time variationsFor large variations of Wi over i = 1, 2, · · · , k, we 
an generally assume that Dr(W̄k) 
an besigni�
antly di�erent from Dr(Wk), potentially making the subspa
e tra
king ine�e
tual.It is therefore natural to ask, to what extent 
an we still tra
k the subspa
e by orthogonaliteration, given the matri
es Wi are rapidly 
hanging. In other words, we seek to knowwhat is the maximum allowable time-variation of Wi.
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Fig. 5.1 (a)Perturbation of the eigenvalues λr+1((Wk)
k) and λr((Wk)k)due to ‖∆W̄k‖2. (b)Perturbation of the eigenvalues λr+1,k−1(Wk−1) and

λr,k−1(Wk) due to ‖∆Wk,1‖2.
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h is to restrain the variation from Wk−1 to Wk to at most halfthe distan
e between the rth and (r + 1)th eigenvalues of Wk−1, i.e.,
‖∆Wk,1‖2 <

1

2
|λr,k−1(Wk−1) − λr+1,k−1(Wk−1)|. (5.18)Fo
using on the kth iteration alone, i.e. WkQk−1 = QkRk, we 
an re-state the problemfrom the viewpoint of initial 
ondition Qk−1 with one-step iteration. On the basis of earlierdis
ussions, we know that

dist(Dr(Wk),R(Qk)) ≤ tan(θk−1)

(
λr+1,k(Wk)

λr,k(Wk)

)

,where θk−1 ∈ [0, π/2] is de�ned a

ording to
cos (θk−1) = min

u∈Dr(Wk), v∈R(Qk−1)

|uHv|
‖u‖2‖v‖2

. (5.19)We 
an then 
learly see that the distan
e between the (r + 1)th and the rth eigenvalue ofthe matrix Wk should be maximized in order to minimizing the ratio (
λr+1,k(Wk)

λr,k(Wk)
), implyingthat the boundaries of the perturbed eigenvalue as illustrated in Fig. 5.1(b) should not betou
hing ea
h other.SummaryOur main observations regarding the 
onvergen
e of the orthogonal iteration are summa-rized below:1. Very small time variations: The orthogonal iteration 
onverges toward to Dr(W̄k)at the rate given by (5.15).
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onvergen
e behavior 902. Moderate time variations: For moderate time variations, the 
onvergen
e rate maybe in
reased or de
reased a

ording to (5.17).3. Large time variations: To ensure e�e
tive tra
king, the rate of 
hange in the under-lying subspa
e should not ex
eed the fundamental limit provided by (5.18).5.4 Numeri
al experiments of orthogonal iterationIn order to support the above 
laims, we provide numeri
al results as follows. We startby 
onstru
ting a �xed Hermitian matrix W ∈ C16×16. We �rst show that when a noisysampleW
′ is used instead ofW in the orthogonal iteration, the algorithmmay 
onverge to asubspa
e that is very di�erent from Dr(W). In this experiment, W′ remains 
onstant but ismodeled as W+∆W where ea
h entry of ∆W is a realization of an i.i.d. Gaussian r.v. withzero mean and varian
e σ2. The experimental results for r = 2 and σ2 = 0, 10−3, 10−2, 10−1are shown in Fig. 5.2, where the distan
e between Dr(W) and R(Qk), i.e.,

d
def
= dist(Dr(W),R(Qk)), (5.20)is plotted versus the iteration index k (ea
h 
urve is averaged over 200 independent runs).As we 
an observe in the steady-state, the distan
e between Dr(W) and R(Qk) in
reasesas σ2 is in
reased, simply be
ause the orthogonal iteration 
onverges to Dr(W

′

) instead of
Dr(W). In the 
ontext of subspa
e tra
king a wireless 
hannel, this situation o

urs whenan estimated 
orrelation matrix is a
tually employed for the algorithm. The estimationerrors 
an be due mainly to: insu�
ient time samples for the 
orrelation matrix averaging,fast time-varying nature of the wireless 
hannel, improper 
hoi
es of parameters for theexponential or re
tangular windowing, or even a 
ombination of the above. In su
h 
ases,
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Fig. 5.2 dist(Dr(W),R(Qk)) versus the number of iterations for various
σ2's.we are inevitably falling into the above situation.Next, we want to show that the 
onvergen
e rate in Case 2 might be slightly in
reasedor de
reased in a

ordan
e with (5.17). To this end, we 
onsider a �xed W and severalrealizations of ∆W with σ2 = 10−6 for W

′

= W + ∆W. In ea
h 
ase, we 
ompare the
onvergen
e 
urves (whi
h are now 
ontrolled by the rate fa
tor λr+1(W
′

)/λr(W
′

) ) withthat of the unperturbed 
ase (i.e., σ2 = 0). With su
h a perturbation on the matrix W,we 
an observe the 
onvergen
e rates ranging from below to above that of the ideal 
ase,as 
learly shown in Fig. 5.3. Note that we also show the 
urve ρk along with the upper andlower bounds ρk
u and ρk

l , respe
tively, in the logarithmi
 s
ale for referen
e, where
ρ

def
=
λr+1(W)

λr(W)
. (5.21)
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Fig. 5.3 log(dist(Dr(W
′

k),R(Qk))) versus the number of iterations for σ2 =
0 (solid line) and 10−6 (dash-dot lines).and ρl, ρu are obtained as in (5.17), i.e.

ρl
def
=
λr+1(W) − δ

λr(W) + δ
, ρu

def
=
λr+1(W) + δ

λr(W) − δ
, (5.22)with δ being the maximal 2-norm of the realizations of ∆W.Finally, let us verify (5.18) by introdu
ing another �xed Hermitian matrix ∆W. In thisexperiment, W′

= W+β∆W, where β ∈ R+ and ‖∆W‖2 = ‖W‖2. Given λr(W) = 7.16,
λr+1(W) = 6.61 and ‖∆W‖2 = 9.67, we need to have

β ≤ |λr(W) − λr+1(W)|
2‖∆W‖2

≈ 0.028. (5.23)to restrain the variations. We 
onsider a sudden 
hange from W to W
′ at the 50th iteration
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Fig. 5.4 A sudden 
hange of W to W
′ at the 50th iteration.for various β's. As 
an be observed in Fig. 5.4, we 
an see that for 
ases with β > 0.028,this sudden 
hange substantially enlarges the distan
e between Dr(W

′

) and R(Qk).For pra
ti
al 
on
erns, we also 
onsider the popular time-varying model as mentionedin (5.2), with zm ∈ C16×1 given by
zm = Hxm + nm, (5.24)where H ∈ C16×16 is a �xed 
hannel matrix with rank(H) = 2, xm is an i.i.d. randomve
tor from a QAM 
onstellation, i.e., with entries randomly sele
ted from (1/

√
2)(±1± j)with equal probability, and nm is an i.i.d. Gaussian random ve
tor with zero mean andvarian
e σ2

n. We 
hoose W0 = (1/500)
∑500

j=1 zjz
H
j as our initial 
ondition. Fig. 5.5 shows theprobability p def

= prob (|λr,k−1(Wk−1)−λr+1,k−1(Wk−1)| ≤ 2‖∆Wk,1‖2) versus the forgetting
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Fig. 5.5 prob (|λr,k−1(Wk−1) − λr+1,k−1(Wk−1)| ≤ 2‖∆Wk‖2) versus theforgetting fa
tor α in the time-varying model.fa
tor α for di�erent SNR's, where SNR def
= 10 log10(1/2σ

2
n). For the 
ase SNR = 0dB, we
an observe that the probability p = 0.5, 0.15, and 0 when α = 0.93, 0.95, and 0.98,respe
tively. Indeed, when α is 
lose to one, the rate of 
hange in Wm in (5.2) is verysmall, and therefore the probability of ‖∆Wk,1‖2 ex
eeding the limit (5.18) is 
lose to 0.As we in
rease the SNR, smaller value of α 
an be used at a given p level, that is, thetra
king ability is improved.To see how the forgetting fa
tor α a�e
ts the tra
king pro
ess, Fig. 5.6 - 5.8 presentsome realizations of d versus the number of iterations, when the above mentioned values

α's are 
onsidered. From these �gures, we 
an 
on
lude that orthogonal iteration 
an onlya
hieve satisfa
tory performan
e when the probability p is small. Hen
e, (5.18) 
an serve asa fundamental limitation to determine whether or not orthogonal iteration 
an be applied
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e behavior 95in a rapidly time-varying s
enario.5.5 Summary of the 
onvergen
e analysisIn this 
hapter, we extended the 
onvergen
e analysis of orthogonal iteration from station-ary 
ases to non-stationary ones. In parti
ular, we investigated 
ertain properties of or-thogonal iteration when it is applied to subspa
e tra
king of pra
ti
al wireless time-varying
hannels. In the 
ontext of blind subspa
e tra
king problems, we 
an 
on
lude that theperforman
e of blind 
hannel estimation using orthogonal iteration is mainly determinedby whether we 
an obtain a good estimate of the time-varying 
orrelation matrix. In the
ase of moderate time variations, we showed that the rate of 
onvergen
e may be in
reasedor de
reased, depending on the nature of the perturbation sour
e. We also dis
ussed afundamental limitation on the use of orthogonal iteration over rapidly time-varying wire-less 
hannels. In the following, on the basis of the 
on
lusions arrived, we present a blindsubspa
e tra
king algorithm suitable for time-varying MIMO wireless 
hannels.
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Fig. 5.6 dist(Dr(Wk),R(Qk)) versus the number of iterations in the time-varying model with α = 0.98 when SNR = 0dB.
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Fig. 5.7 dist(Dr(Wk),R(Qk)) versus the number of iterations in the time-varying model with α = 0.95 when SNR = 0dB.
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Fig. 5.8 dist(Dr(Wk),R(Qk)) versus the number of iterations in the time-varying model with α = 0.93 when SNR = 0dB.
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Chapter 6
Blind re
ursive subspa
e-based identi�
ationof time-varying wideband MIMO 
hannels
In this 
hapter, we present a blind re
ursive algorithm for tra
king rapidly time-varyingwireless 
hannels in pre
oded MIMO-OFDM systems. Subspa
e-based tra
king is normally
onsidered for slowly time-varying 
hannels only. Thanks to the frequen
y 
orrelationof the wireless 
hannels, the proposed s
heme is able to 
olle
t data not only from thetime but also from the frequen
y domain to speed up the update of the required se
ondorder statisti
s. After ea
h su
h update, the subspa
e information is re
omputed using theorthogonal iteration, and then a new 
hannel estimate is obtained. We also investigatethe 
hoi
e of pre
oder, in terms of the trade-o� between the symbol re
overy 
apabilityand the 
hannel estimation performan
e, and demonstrate the 
onvergen
e properties ofour approa
h. In Chapter 7, the proposed algorithm will be evaluated in a 3GPP-SCMSuburban Ma
ro s
enario, in whi
h a mobile station is allowed to move at a speed up to100km/h. Then it will be shown that the NMSE of the 
hannel estimates 
an 
onverge toa very low level within less than 5 OFDM symbols.
2010/07/30
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ursive subspa
e-based identi�
ation of time-varying 
hannels 98To avoid the need of training sequen
e in the estimation of rapidly TV 
hannels, thesubspa
e-based blind estimation exploiting frequen
y 
orrelation in MIMO-OFDM systemover TI 
hannels, that we developed in Chapter 4 (see also [148, 149℄), is extended to the
ase of TV s
enarios. While this approa
h in the TI 
ase requires a larger dimension of theambiguity matrix and a high-
omplexity singular value de
omposition, these limitations areover
ome in the TV 
ase by using a pre
oder at the transmitter side, and a 
omputationallye�
ient orthogonal iteration for subspa
e tra
king at the re
eiver side, respe
tively. Theresulting approa
h 
an tra
k a fast time-varying MIMO 
hannel in whi
h the wireless
hannels may be 
hanging at ea
h OFDM symbol time. In addition, it o�ers the �exibilityin 
hoosing the number of transmit as well as re
eive antennas used (i.e. NT ≥ NR is alsopossible), with bandwidth e�
ien
y approximately given by NT log2 |A| bps/Hz, where NTdenotes the number of transmit antennas and |A| denotes the size of symbol alphabet used.For a 256-point IFFT, the proposed algorithm will be evaluated in Chapter 7. Oursimulation results will show that the NMSE 
an 
onverge to a very low level within 5OFDM symbols even when the maximum Doppler shift is about 230Hz, whi
h outperforms[46, 55℄ in terms of estimation performan
e.6.1 Problem formulationIn this se
tion, we introdu
e the pre
oded MIMO-OFDM system model under 
onsiderationand formulate the problem of interest, i.e., the blind subspa
e-based estimation and tra
kingof the TV-MIMO 
hannels.
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ursive subspa
e-based identi�
ation of time-varying 
hannels 996.1.1 Pre
oded MIMO-OFDM system with sub
arrier groupingConventional subspa
e-based blind estimators are in general not favored when a fast time-varying 
hannel is 
onsidered, sin
e there may not be su�
ient data samples to obtain therequired statisti
s. The situation be
omes even worse in the 
ontext of a MIMO-OFDMsystem, where a large dimension of the 
orrelation matrix (up to thousands) is normallyrequired. In Chapter 4, we have shown that the TI requirement in subspa
e-based blind
hannel estimation for MIMO-OFDM systems 
an be signi�
antly relaxed, by making useof the sub
arrier grouping to exploit the frequen
y 
orrelation among adja
ent sub
arriers.However, this redu
tion in time averaging period 
omes at the pri
e of a higher dimensionof the ambiguity matrix. In order to over
ome this problem, we 
onsider here a pre
odedMIMO-OFDM system as des
ribed below.The system under 
onsideration employs NC sub
arriers, NT transmit and NR re
eiveantennas, as per the blo
k diagram shown in Fig. 6.1. To exploit the frequen
y 
orrela-tion through the 
on
ept of sub
arrier grouping, we assume that the frequen
y span of Padja
ent sub
arriers reside inside the 
oheren
e bandwidth of the wireless 
hannel, de�nedhere as the range of frequen
ies over whi
h the frequen
y response matrix of the MIMO
hannel does not 
hange appre
iably [127℄. As in Chapter 4, let Ω
def
= {0, 1, · · · , NC − 1},i.e. the index set of the NC sub
arriers. We partition Ω into P disjoint subsets (assum-ing NC/P = ζ ∈ Z+) with the pth subset denoted as Ωp

def
= {ωp,1, ωp,2, · · · , ωp,ζ}, where

ωp,i
def
= p − 1 + (i − 1)P , i = 1, 2, · · · , ζ for p = 1, 2, · · · , P (see Fig. 4.1). Let xm

p
def
=

[xm
1,p

T xm
2,p

T · · ·xm
NT ,p

T ]T , where
xm

j,p
def
= [ xm

j [ωp,1] x
m
j [ωp,2] · · · xm

j [ωp,ζ] ]T , (6.1)with xm
j [k] denoting the signal transmitted at the kth sub
arrier, the jth transmit an-
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Fig. 6.1 The pre
oded MIMO-OFDM system model.tenna and the mth OFDM symbol. In addition, let ym
p

def
=
[
ym

1,p
T ym

2,p
T · · · ym

NR,p
T
]Tand nm

p
def
=
[
nm

1,p
T nm

2,p
T · · · nm

NR,p
T
]T , where ym

i,p
def
= [ym

i [ωp,1] ym
i [ωp,2] · · · ym

i [ωp,ζ]]
T ,

nm
i,p

def
= [nm

i [ωp,1] n
m
i [ωp,2] · · · nm

i [ωp,ζ]]
T , with ym

i [k] and nm
i [k] denoting the signal andnoise re
eived at the kth sub
arrier, ith re
eived antenna and the mth OFDM symbol,respe
tively. In the following, we assume that: (1) the length of the 
y
li
 pre�x (CP)appended to ea
h OFDM symbol is longer than the maximum ex
ess delay of the 
hannel;(2) the average power of the transmit symbol alphabet is normalized to unity: E [|xm

q [k]|2]= 1.Suppose that ea
h input ve
tor xm
j,p in (6.1) is pre
oded by the matrix Ψ ∈ Cζ×ζ (the
hoi
e of the non-redundant pre
oder matrix Ψ is 
onsidered in Se
tion 6.4). Then the
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hannels 101input-output relationship for the pth frequen
y subset 
an be written as
ym

p = Hm
p (INT

⊗ Ψ)xm
p + nm

p , (6.2)with the 
hannel matrix Hm
p de�ned as

Hm
p =












Hm
1,1,p Hm

1,2,p · · · Hm
1,NT ,p

Hm
2,1,p Hm

2,2,p · · · Hm
2,NT ,p... ... . . . ...

Hm
NR,1,p Hm

NR,2,p · · · Hm
NR,NT ,p












. (6.3)
Note thatHm

i,j,p = diag(hm
i,j,p), where hm

i,j,p
def
= [hm

i,j [ωp,1], h
m
i,j[ωp,2] , · · · , hm

i,j[ωp,ζ]]
T , with hm

i,j [k]representing the equivalent frequen
y response between the ith re
eive and the jth transmitantenna, over the kth sub
arrier and the mth OFDM symbol. In this 
hapter, sin
e the fre-quen
y span of the P adja
ent sub
arriers have been assumed to reside inside the 
oheren
ebandwidth, we shall assume that the variations in the 
hannel matri
es Hm
p a
ross these Psub
arriers are negligible. A

ordingly, we 
an de�ne a new representative 
hannel matrix

Hm def
= Hm

1
∼= Hm

2
∼= · · · ∼= Hm

P , and drop the index p for all 
hannel related quantities,in
luding Hm
i,j,p and hm

i,j,p.6.1.2 Problem statementAs the future generation of wireless systems aim at providing high-
apa
ity transmissionfor high-mobility users, there is a strong need to further push the 
apability of adaptive
hannel tra
king for wideband TV-MIMO 
hannels, without extensively using pilot signals.In this 
hapter, our �rst interest lies in the blind estimation/tra
king of rapidly TV-MIMO 
hannels with normalized Doppler frequen
ies that may rea
h signi�
ant values,
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h the 
hannel matrix Hm is allowed to 
hange atea
h OFDM symbol time. To this end, we seek to develop a subspa
e-based blind 
hannelestimator Ĥm, whi
h is a fun
tion of the observed data up to the 
urrent symbol time
m, i.e., {yl

p}, p = 1, 2, · · · , P ; l = 1, 2, · · · , m, and whi
h 
an be re
ursively updated in a
omputationally e�
ient manner. In other words, our obje
tive is to propose an e�
ientupdating algorithm φ(·) in whi
h the 
hannel estimate at the mth symbol time 
an berepresented as Ĥm = φ( Ĥm−1, {ym
p }P

p=1). In addition, as the pre
oder is pla
ed at thetransmitter side without having any feedba
k of the 
hannel knowledge from the re
eiverside, our se
ond interest lies in determining the optimal pre
oder 
oe�
ients to furtherenhan
e the estimation performan
e.6.2 Pre
oded subspa
e-based approa
hIn this se
tion, we �rst introdu
e a blo
k-based subspa
e 
hannel estimation approa
h thatexploits the frequen
y 
orrelation among the adja
ent sub
arriers in the pre
oded MIMO-OFDM system. This approa
h is then extended to re
ursive subspa
e-based identi�
ationfor TV 
hannels in Se
tion 6.3.6.2.1 Subspa
e-based identi�
ationFor simpli
ity in notation, let us temporarily drop the time-index m of all the 
hannelrelated 
oe�
ients. On the basis of (6.2) and under the assumption that 
hannel variationsover P adja
ent sub
arriers are negligible, the 
orrelation matrix Ry
def
= E[y1y

H
1 ] = · · · =

E[yPyH
P ] 
an be written as

Ry = H
(
INT

⊗ ΨΨH
)
HH + σ2

nIζNR
, (6.4)
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orrelated, E[npn
H
p ] = σ2

nIζNR
, and E[xpx

H
p ] =

IζNT
. Similar to [151℄, by partitioning Ry into sub-matri
es of size ζ × ζ , we may expressits (u, v)th sub-matrix as

Ry,uv =

NT∑

j=1

Hu,jΨΨHHH
v,j + δuvσ

2
nIζ (6.5)

=

(
NT∑

j=1

hu,jh
H
v,j

)

⊙
(
ΨΨH

)
+ δuvσ

2
nIζ, u, v ∈ {1, 2, · · · , NR} (6.6)where δuv = 1 if u = v and zero otherwise. Let

Wuv
def
=
[
Ry,uv − δuvσ

2
nIζ

]
⊘ ΨΨH (6.7)be the (u, v)th sub-matrix of a new matrix W. Then from (6.6) we 
an arrive at

W = HHH , (6.8)where
H

def
=












h1,1 h1,2 · · · h1,NT

h2,1 h2,2 · · · h2,NT... ... . . . ...
hNR,1 hNR,2 · · · hNR,NT












. (6.9)
Assuming H ∈ C(ζNR)×NT has full 
olumn rank, we 
an thus express the 
hannel 
oe�
ientsby means of

H = QA, (6.10)



6 Blind re
ursive subspa
e-based identi�
ation of time-varying 
hannels 104where the 
olumns of the matrix Q ∈ C(ζNR)×NT are obtained from the eigenve
tors of thematrix W 
orresponding to the NT largest eigenvalues, and A ∈ CNT×NT is an ambiguitymatrix.1 As it has been shown in [151℄ for a similarly stru
tured subspa
e problem, thematrix of interest H is identi�able as long as it is is a tall matrix, i.e. ζNR > NT . Therefore,this approa
h indeed o�ers the �exibility in 
hoosing the number of transmit and re
eiveantennas sin
e ζ > 1 is normally ful�lled, meaning that NT ≥ NR is also appli
able.6.2.2 Blind estimation algorithmIn pra
ti
e, the 
hannel estimate Ĥ 
an be obtained from Ĥ = Q̂A, where Q̂ denotes thematrix whose 
olumns are the eigenve
tors 
orresponding to the NT largest eigenvaluesof an estimated matrix Ŵ, with its (u, v)th sub-matrix denoted Ŵuv. The latter 
an beobtained as
Ŵuv =

[

R̂y,uv − δuvσ̂
2
nIζ

]

⊘ ΨΨH , (6.11)where R̂y,uv denotes the (u, v)th sub-matrix of the sampled 
orrelation matrix R̂y, and σ̂2
nis an estimate of the noise varian
e. Therefore, the a

ura
y of the 
hannel estimate largelydepends on the estimation performan
e of the 
orrelation matrix and the noise varian
e,i.e. R̂y and σ̂2

n, respe
tively.In general, to a
hieve satisfa
tory performan
e in the 
hannel estimation step, i.e.,
Ĥ = Q̂A, the time averaging period Tav for the above estimation of the 
orrelation matrix
R̂y must be larger than ζNR, i.e. Tav ≥ ζNR, sin
e R̂y is of size ζNR × ζNR [149, 152℄.However, by exploiting the 
on
ept of frequen
y averaging within the 
oheren
e bandwidth,the required Tav 
an be e�e
tively redu
ed by a fa
tor P 2, i.e. Tav ≥ ζNR/P

2. Spe
i�
ally,1While the estimation of the ambiguity matrix for subspa
e methods is a general problem on its ownthat goes beyond the s
ope of this thesis, several approa
hes are available in pra
ti
e to implement thisstep, in
luding the use of higher order statisti
s or the insertion of a limited number of pilot symbols(resulting in the so-
alled semi-blind approa
h).
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orrelation matrix Ry 
an be obtained by
R̂y =

1

PTav

Tav∑

n=1

P∑

p=1

yn
py

n
p

H . (6.12)The merits of this approa
h in pra
ti
al MIMO-OFDM systems are demonstrated in Chap-ter 7 (see also [149℄).In Algorithm 1, we brie�y summarize the above pre
oded subspa
e-based estimation,whi
h will serve a basis in the derivation of the proposed 
hannel tra
king algorithm. Notethat without employing the pre
oders Ψ's at the transmitter side, the dimension of theambiguity matrix in [148℄ is ζNT × NT with ζ > 1. While here, the use of the pre
odermatrix Ψ makes it possible to redu
e this dimension to NT × NT . The design of Ψ isaddressed in Chapter 6.4.Algorithm 1 Blind blo
k-based subspa
e estimation of TI-MIMO 
hannelsStep 1: Use the observed data to 
ompute the estimates of R̂y and σ̂2
n, and then
onstru
t Ŵ by using (6.11).Step 2: Form the matrix Q̂, whose 
olumns are the eigenve
tors whi
h 
orresponds tothe NT largest eigenvalues of Ŵ.Step 3: Obtain the 
hannel estimate Ĥ = Q̂A, where A is an ambiguity matrix.

6.3 Channel tra
kingWe now 
onsider a fast time-varying s
enario in whi
h the MIMO wireless 
hannel 
ould be
hanging at ea
h OFDM symbol time. A

ordingly, we shall reintrodu
e the time-index mfor all the 
hannel related quantities, in
luding those asso
iated to the above blo
k-basedsubspa
e estimation. Clearly, the matrix Qm, i.e., Q in (6.10) at the mth symbol time,
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ome available to properly re�e
t 
hanges inthe unknown 
hannel. Instead of applying an EVD on Wm at ea
h time step, we 
anre
ursively update the EVD via an e�
ient subspa
e tra
king algorithm so as to minimizethe amount of 
omputations involved. We noti
e that most fast subspa
e tra
kers with low
omplexity assume a rank one update [137, 138℄, and hen
e are not appli
able here. Onthe basis of (6.10), we propose a new algorithm that 
ombines the well-known orthogonaliteration with a joint time-frequen
y averaging to tra
k the above mentioned time-varying
hannel, without in
urring EVD operations repeatedly.6.3.1 Re
ursive approa
h based on orthogonal iterationOrthogonal iteration and its variants have been 
onsidered for blind adaptive estimation toa great extent (see [55, 145℄ and referen
es therein). To tra
k the fast time-varying 
hannel
Hm with low 
omplexity, we also 
onsider to re
ursively update Qm by employing orthog-onal iteration, whi
h is known to 
onverge exponentially with arbitrary initial 
onditions[140℄, and suitable for real-time pro
essing be
ause it is well stru
tured. However, the main
hallenge still lies in whether we 
an estimate the required se
ond order statisti
s within asu�
iently short pro
essing window.Sin
e the frequen
y response matri
es of the MIMO 
hannel 
an be related by Hm ∼=

Hm
p , an estimate of the time-varying 
orrelation matrix at the mth OFDM symbol time
an be obtained by 
ombining traditional window-based time averaging with frequen
yaveraging over the P frequen
y subsets Ωp, for p ∈ {1, · · · , P}. This results into

R̂m
y =

m∑

n=m−l+1

P∑

p=1

βm−nyn
py

n
p

H (6.13)
= βR̂m−1

y +
P∑

p=1

ym
p ym

p
H −

P∑

p=1

βlym−l
p ym−l

p

H
, (6.14)
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tor, re-spe
tively. Considering a s
enario in whi
h no windowing is applied, i.e. l = 1, we 
anstill 
olle
t {ym
p }, p = 1, 2, · · · , P at the mth OFDM symbol time, without referring tothe OFDM symbols of the previous time instan
es, i.e. yn

p for n < m. Hen
e, we 
an
on
lude that it is possible to tra
k the fast time-varying 
hannel provided P > ζNR. Inpra
ti
e, this 
ondition is not stringent, e.g. the 
hoi
es (P, ζNR) = (32, 24) and (64, 12),both ful�lling P > ζNR, were reported in [149℄, where both the WiMAX spe
i�
ation andthe 3GPP Spatial Channel Model (SCM) are 
onsidered. Of 
ourse, the window length l
an be in
reased if the 
ondition is not met or if it is desired to obtain better smoothing ofthe 
hannel estimate. The 
hoi
e of the parameter β and l is further dis
ussed along withthe presentation of our simulation results in Chapter 7.Let Ŵm be an estimate of the matrix Wm, with its (u, v)th sub-matrix given as
Ŵm

uv
def
=
[

R̂m
y,uv − δuvσ̂

2
nIζ

]

⊘ ΨΨH . (6.15)In this work, we propose to re
ursively update the prin
ipal eigenve
tors of Ŵm usingorthogonal iteration and use them to estimate the unknown 
hannel matrix Ĥm by
Ĥm = Q̂m

nd
Am. (6.16)In (6.16), the 
olumns of Q̂m

nd
are the approximate prin
ipal eigenve
tors of Ŵm resultingfrom the appli
ation of the ndth orthogonal iteration at the mth OFDM symbol time, and

Am represents the 
orresponding ambiguity matrix. The details of iteration pro
ess aresummarized as follows.Given a tall, 
olumn orthonormal matrix Q̂m
0 ∈ CζNR×NT at the mth OFDM symbol
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e of matri
es Q̂m
µ , whose 
olumnspan is assumed to approximate the span of the NT -dimensional dominant subspa
e of thematrix Ŵm ∈ CζNR×ζNR, a

ording to the following re
urren
e:

Ẑm
µ = ŴmQ̂m

µ−1, µ = 1, 2, · · · , nd, (6.17)
Q̂m

µ R̂m
µ = Ẑm

µ (QR decomposition). (6.18)Note that in pra
ti
e we 
hoose Q̂m
0 = Q̂m−1

nd
ex
ept when m = 0 (the initial 
ondition). Onthe basis of orthogonal iteration, we also noti
e that estimation of the dominant subspa
eof a slowly time-varying 
orrelation matrix was 
onsidered in [147℄; here we extend the useof orthogonal iteration by allowing nd ≥ 1 for tra
king a time-varying MIMO 
hannel.6.3.2 Convergen
e propertiesTo motivate the use of the proposed re
ursive method in a fast time-varying wireless 
han-nel, we investigate its 
onvergen
e properties as follows. Let us �rst assume that

UmHŴmUm = Λm = diag(λm
i ) (6.19)is an EVD of Ŵm with λm

1 ≥ λm
2 ≥ · · · ≥ λm

ζNR
≥ 0 and UmHUm = UmUmH = I. If Umis partitioned as Um = [Um

1 Um
2 ], where Um

1 ∈ CζNR×NT and Um
2 ∈ CζNR×(ζNR−NT ), we 
ande�ne the distan
e between the two subspa
es DNT

(Ŵm) and R(Q̂m
µ ) a

ording to [140℄ by

dist (DNT
(Ŵm),R(Q̂m

µ )) = ‖(Um
2 )HQ̂m

µ ‖2. (6.20)
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loseness of the twosubspa
es DNT
(Ŵm) and R(Q̂m

0 ) by means of (see also (5.11) for details)
cos (θm)

def
= min

u∈DNT
(Ŵm), v∈R(Q̂m

0 )

|uHv|
‖u‖2‖v‖2

, (6.21)where Q̂m
0 represents the initial 
ondition at the mth OFDM symbol time. Then frompre
eding as in Chapter 5, we 
an similarly arrive at

dist(DNT
(Ŵm),R(Q̂m

µ )) ≤ tan(θm)

(
λm

NT +1

λm
NT

)µ

, µ = 1, 2, · · · , nd. (6.22)A

ording to (6.22), as long as the ratio (λm
NT +1/λ

m
NT

) < 1, the iterated subspa
e R(Q̂m
µ )
onverges to DNT

(Ŵm) exponentially with an arbitrary initial 
ondition Q̂m
0 = Q̂m−1

nd
(ex-
ept when m = 0, i.e. the initial 
ondition); this 
ru
ial fa
tor indeed allows the tra
k-ing of a fast time-varying 
hannel. The 
onvergen
e behavior of the orthogonal iterations
heme (6.17)-(6.18) as a fun
tion of µ is well predi
ted by (6.22) in the 
urrent appli
ation.To illustrate this point, Fig. 6.2 shows a plot of the subspa
e distan
e (6.20) as a fun
tionof µ when the orthogonal iteration (6.17)-(6.18) is used to approximate the 2-dimensionaldominant subspa
e of a parti
ular matrix Ŵm ∈ C12×12, appearing at a given symbol time

m in one of our simulations; we also show a plot of (λ3(Ŵ
m)/λ2(Ŵ

m))µ for referen
e.Although the estimation performan
e 
an be improved by in
reasing nd in a generalsense, the iterated subspa
e a
tually 
onverges to DNT
(Ŵm) instead of DNT

(Wm). There-fore, the performan
e largely depends on whether or not we 
an obtain a good estimateof Wm at ea
h OFDM symbol time. Thanks to the use of additional frequen
y domainsamples as shown in (6.13)-(6.14), we 
an meet the requirement of the minimum numberof data samples (i.e., the dimension of the 
orrelation matrix) even in a fast time-varying
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hannel, as will be demonstrated in Chapter 7. Otherwise, the orthogonal iterationmay 
onverge exponentially to a wrong subspa
e.6.3.3 Proposed blind re
ursive estimation algorithmWe brie�y summarize the pre
oded subspa
e-based tra
king algorithm in Algorithm 2. Inpra
ti
e, to a
quire the ambiguity matrix Am needed at the mth OFDM symbol time, we
an employ another estimation pro
ess in
luding the use of higher order statisti
s or pilotsymbols (resulting in the so-
alled semi-blind approa
h). Note that for moderate 
hoi
esof the number of transmit and re
eive antennas, the 
omputational 
omplexity (�ops) ofthe proposed tra
king algorithm for ea
h iteration is O(ζ4). This �gure is generally smallerthan that of the blind adaptive 
hannel estimators using either the least mean squares orthe re
ursive least squares adaption, developed for SISO-OFDM [55℄.
6.4 Pre
oder designTo simplify the notation for the following dis
ussions, let us de�ne Γ

def
= ΨΨH and let ψi,jand γi,j denote the (i, j)th entry of matri
es Ψ and Γ, respe
tively. On the basis of (6.15),the 
hoi
e of Ψ does not appear to be restri
ted, ex
ept for the trivial 
onstraint that theentries of Γ 
annot be zeros, i.e., γi,j 6= 0, ∀i, j. However, we 
an 
hoose the pre
odermatrix judi
iously to simplify the 
hannel estimator and optimize its performan
e.First, we note that if the diagonal entries of Γ are identi
al, i.e., γi,i is a 
onstant for

i = 1, 2, · · · , ζ , then the additional estimation of the noise varian
e in (6.15) 
an be avoided.To be more spe
i�
, let us de�ne a new matrix T̂m with its (u, v)th sub-matrix given as
T̂m

uv
def
= R̂m

y,uv ⊘ Γ, u, v ∈ {1, 2, · · · , NR}. (6.23)
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ursive subspa
e-based identi�
ation of TV-MIMO 
hannelsInitialization: Q̂l−1
nd

= I(:, 1 : NT ), R̂0
y = 0, R̃0

y = 0for m = 1, 2, · · · doInput ve
tor: ym
1 , · · · ,ym

P

R̃m
y =

∑P
p=1 ym

p ym
p

Hif m < l then
R̂m

y = βR̂m−1
y + R̃m

yelsê
Rm

y = βR̂m−1
y + R̃m

y − βlR̃m−l
y

Ŵm
uv =

[

R̂m
y,uv − δuvσ̂

2
nI
]

⊘ ΨΨH

Q̂m
0 = Q̂m−1

ndfor µ = 1, 2, · · · , nd do
Ẑm

µ = ŴmQ̂m
µ−1

Q̂m
µ R̂m

µ = Ẑm
µ (QR fa
torization on Ẑm

µ )end for
Ĥm = Q̂m

nd
Amend ifend forThen we 
an arrive at T̂m = Ŵm + ρ I (for some ρ ∈ R). Sin
e T̂m has the same invariantsubspa
es as Ŵm, we 
an simply apply T̂m instead of Ŵm in the Algorithm 2 to eliminatethe noise varian
e estimation.Se
ond, letting ∆Rm

y denote the di�eren
e between the estimated and the true 
orrela-tion matrix, i.e. R̂m
y = Rm

y + ∆Rm
y , we may express T̂m

uv as follows
T̂m

uv = Rm
y,uv ⊘ Γ

︸ ︷︷ ︸

def
= Tm

uv

+ ∆Rm
y,uv ⊘ Γ

︸ ︷︷ ︸

def
= ∆Tm

uv

. (6.24)Then it be
omes 
lear that the 
hoi
e of the pre
oder should fo
us on eliminating the errorterm ∆Tm
uv in (6.24).The matrix ∆Rm

y,uv in (6.24) has a random nature resulting from the e�e
ts of the
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hannels, additive noise, and insu�
ient number of data samples. Let
J(Ψ)

def
=
∑

u,v

E‖∆Tm
uv‖2

F =
∑

u,v

E‖∆Rm
y,uv ⊘ ΨΨH‖2

F . (6.25)Given that ⊘ is an element-wise division, the minimization of J(Ψ) is equivalent to max-imizing (in a weighted sense) the entries of Γ = ΨΨH . Nevertheless, the 
hoi
e of apre
oder is subje
t to a �xed transmit power and thus 
annot be arbitrarily large; theentries of Γ should therefore be maximized based on the statisti
s of ∆Rm
y and subje
t toa normalization fa
tor.In summary, we suggest that the 
hoi
e of the pre
oder be optimized via the obje
tivefun
tion

min
Ψ

J(Ψ), (6.26)subje
t to the following 
onstraints:(C1) To guarantee that the element-wise division in (6.15) and (6.23) is feasible, the pre-
oder must ful�ll the trivial 
ondition: γi,j 6= 0, ∀i, j.(C2) To normalize the average transmit power, we require that ∑j |ψi,j|2 = 1, ∀ i. Notethat this 
onstraint also implies that γi,i = 1, ∀ i, meaning that the diagonal entriesof Γ are identi
al, and hen
e there is no need for noise varian
e estimation.In the absen
e of a more spe
i�
 model, we 
onsider a worst 
ase situation and assume thatthe entries of ∆Rm
y are i.i.d. random variables with zero mean and equal varian
e; this
hoi
e is further supported by our numeri
al observations. Based on this assumption, theobje
tive fun
tion in (6.26) be
omes a standard optimization problem and 
an be solvedby using Lagrange multiplier. A

ordingly, the optimal pre
oder assuming γi,j ∈ R+ isobtained as Ψ0 = (1/

√
ζ)1ζ×ζ, that is Γ = 1ζ×ζ, where 1ζ×ζ denotes a ζ × ζ matrix of all
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oin
ides with the optimal 
hoi
e of the pre
oder in terms ofestimation performan
e, obtained from numeri
al results in [125℄.Nevertheless, the above pre
oder Ψ0 has rank 1 (
ondition number = ∞), and thus isnot a good 
hoi
e from the perspe
tive of symbol re
overy. To make Ψ0 non-singular whilekeeping the estimation performan
e 
lose to the optimum, we 
an perturb the entries of
Ψ0 in the following manner: Ψ0 → Ψ, where the diagonal entries of Ψ now slightly ex
eedthe o�-diagonal ones. This approa
h is motivated by the following fa
t: a loose bound on
rank(Ψ) is provided by [153, Se
tion 4.10℄ as

rank(Ψ) ≥
ζ∑

i=1

|ψi,i|/bi, (6.27)where bi def
=
∑ζ

j=1 |ψi,j|. This implies that given the 
onstraint (C2), we 
an in
rease
rank(Ψ) from 1 by boosting the ratios |ψi,i|/bi. Here we propose to use a simple Toeplitzmatrix to a

omplish this goal. That is, we de�ne

Ψ = Ψ(ν)
def
=

1
√

1 + (ζ − 1)ν2












1 ν · · · ν

ν 1
. . . ...... . . . . . . ν

ν · · · ν 1












ζ×ζ

, (6.28)
where ν (0 < ν ≤ 1) 
an be seen as the 
ommon perturbed value of the o�-diagonal entriesof Ψ0. The 
ondition number of Ψ(ν) is given by κ = (1 + (ζ − 1)ν)/(1− ν) [154℄. We 
annow impose some 
onstraint on the 
ondition number, e.g., κ ≤ κ∗ for some pra
ti
al but�nite κ∗ and relate the 
hoi
e of ν to κ∗ as ν ≤ (κ∗ − 1)/(ζ − 1 + κ∗).Intuitively, there exists an optimal trade-o� in terms of ν between the symbol re
overy
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ursive subspa
e-based identi�
ation of time-varying 
hannels 115(ν < 1) and 
hannel estimation performan
e (ν = 1) for a given SNR. However, the analysisfor determining an optimal value of ν for this 
ombined obje
tive appears di�
ult. In thefollowing 
hapter, we shall approa
h this problem from an experimental perspe
tive usingsimulations. Note that a similar stru
ture was employed for a blo
k-based 
hannel estimations
enario in [151℄ (i.e. quasi-stationary over several OFDM symbols). Our analysis expli
itlyshows that the optimal estimation performan
e is a
hieved when ν = 1 and we provideinsight into the trade-o� among various 
hoi
es of ν's.
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Chapter 7
Numeri
al experiments and results
In this 
hapter, we present and dis
uss the results of numeri
al experiments aimed at eval-uating the performan
e of the proposed algorithms developed earlier. Both time-invariantand time-variant wireless 
hannels are 
onsidered in the evaluations.7.1 Time-invariant s
enarios7.1.1 MethodologyNumeri
al evaluations of the performan
e of the proposed algorithm over blo
k fading 
han-nels are presented in this se
tion. A 
omparison of the proposed and referen
ed algorithmsover a simpli�ed TDL model will be given in the �rst pla
e. Having demonstrated thatbetter performan
e 
an readily be a
hieved by the proposed s
heme under su
h a 
ondition,we will then explore the performan
e of the proposed algorithm over pra
ti
al s
enarioswhere both WiMAX spe
i�
ation [70℄ and 3GPP Spatial Channel Model (SCM) [79℄ are
onsidered. We refer the reader to Se
tion 2.3 for further details on these 
hannel models.For ea
h 3GPP-SCM s
enario, after identifying the best value of the parameter P (i.e. thenumber of frequen
y subsets for averaging) in the proposed algorithm presented in Ta-2010/07/30
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al experiments and results 117ble 4.1, we will 
ompare their NMSEs with the 
orresponding CRBs. In our experiments,the NMSE of the 
hannel estimate is de�ned by
NMSE =

1

NTNRNC

∑

i,j,k

E[|hi,j[k] − ĥi,j [k]|2]
E[|hi,j [k]|2]

, (7.1)where we 
onsider ĥi,j[ω1,i] = · · · = ĥi,j [ωP,i], i = 1, 2, · · · , ζ (see Fig. 4.1 for more details).Note that the asymptoti
 performan
e of one of the most re
ent algorithms [47℄ will alsobe given over these pra
ti
al s
enarios for 
omparisons.Throughout this se
tion, we 
onsider a MIMO-OFDM system with 2 transmit (NT = 2)and 3 re
eive antennas (NR = 3). The number of sub
arriers used in the OFDM systemis 256 (NC = 256). For ea
h time epo
h, the in
oming symbol streams are independentand identi
ally distributed (i.i.d.) QPSK symbols. The SNR is de�ned as the ratio of thesignal power to the noise power on a sub
arrier basis. By referring to (3.1), we 
an alsoexpress it by 10 log10[Es(σ
2
h/σ

2
n)], where σ2

h denotes the varian
e of the 
hannel 
oe�
ients.All simulation results are obtained by averaging over 200 independent Monte Carlo runsex
ept when evaluating the BER and CRBs, in whi
h the latter are obtained by averagingover 107 independent Monte Carlo runs instead. In addition, the wireless 
hannel is as-sumed to remain stationary over the time averaging intervals, and we employ A = (Q̂∗
o)

†H̄′from (4.15) to obtain the ambiguity matrix, assuming H̄′ is known.7.1.2 Comparison with referen
ed s
hemesNumeri
al results of the proposed as well as the referen
ed subspa
e-based methods from[44℄, in
luding the CP and VC approa
hes for MIMO-OFDM systems, are presented inthis part. For ea
h time epo
h, the in
oming QPSK symbols are 
hosen to span 2 OFDMsymbols (NF = 2) in order to ful�ll the identi�ability 
ondition of the referen
ed s
hemes.
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al experiments and results 118For the proposed method, we 
onsider P = 2, 8, 32, and 64.In order to save simulation time and over
ome the issue of an a

urate 
hannel-orderestimation [155℄ for the referen
ed s
hemes, we 
onsider a simpli�ed TDL model with 2taps. Therefore, the ex
ess delays are given as τn = (n− 1)T , where T denotes the OFDMsampling time interval. The tap 
oe�
ients are assumed to be i.i.d., ZMCSCG randomvariables with unit varian
e for both the real and imaginary parts. Under these 
onditions,there are 10 sub
arriers residing inside the 
oheren
e bandwidth (P=10) if the latter isde�ned as the bandwidth over whi
h the frequen
y 
orrelation fun
tion is above 0.9, whilethere are 100 sub
arriers residing inside the 
oheren
e bandwidth (P=100) if the de�nitionis relaxed so that the frequen
y 
orrelation fun
tion is above 0.5.1Fig. 7.1 shows the NMSEs of the proposed and referen
ed methods as a fun
tion of thenumbers of OFDM blo
ks, employed to obtain a sampled 
orrelation matrix (ea
h OFDMblo
k is 
onstituted of 2 OFDM symbols) when SNR = 20dB. As expe
ted, the estimationperforman
e generally improves when the number of the OFDM blo
ks is in
reased for timeaveraging. An ex
eption to this is when the proposed method is with P = 32 and 64 asshown in Fig. 7.2, in whi
h 
ases the frequen
y responses of the P sub-
hannels are not �atin any sense.For ea
h referen
ed method, we 
onsider a dimension of the noise subspa
e equals toeither 8 or 16.2 When 
omparing a spe
i�
 referen
ed method with di�erent dimensionof the noise subspa
e, either the CP or VC method with a larger dimension of the noisesubspa
e outperforms the same method with a smaller dimension of the noise subspa
e.1Under this s
enario, the RMS delay spread τrms 
an be 
al
ulated as T/2 from (2.13). Sin
e theOFDM sub
arrier spa
ing ∆f = 1/(NCT ) = 1/(256T ), we 
an arrive at Bc ≈ 1/(5τrms) = 0.4/T ≈ 100∆fwhen the frequen
y 
orrelation fun
tion is above 0.5, and Bc ≈ 1/(50τrms) = 0.04/T ≈ 10∆f when thefrequen
y 
orrelation fun
tion is above 0.9, respe
tively.2For the CP method, the dimension of the noise subspa
e is equal to the size of the 
y
li
 pre�x. Forthe VC method, the dimension of the noise subspa
e is equal to the sum of the size of the 
y
li
 pre�x andthe size of nulls.
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Fig. 7.1 NMSE versus number of OFDM blo
ks (SNR=20dB).When 
omparing two referen
ed methods with the same dimension of the noise subspa
e,the CP method outperforms the VC method sin
e the dimension of the CP's eigenve
torsis larger, imposing additional 
onstraints on the 
hannel estimate [42, 43℄.Within the given time averaging intervals, we note that the proposed method outper-forms the referen
ed ones with any given dimension of the noise subspa
e. We 
an alsoobserve from Fig. 7.1 and Fig. 7.2 that the number of the time samples required (i.e., thedimension of the 
orrelation matrix) is redu
ed when P is in
reased. However, the esti-mation results also deteriorate sin
e the proposed algorithm is based on the assumptionthat the 
hannel 
oe�
ients of the adja
ent P sub
arriers are similar. On the 
ontrary, thenumber of the time samples required is in
reased when P is de
reased. Nevertheless, theestimation results also improve. To a
hieve the best tradeo�, we 
on
lude that P should
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Fig. 7.2 NMSE versus number of OFDM blo
ks (SNR=20dB).be 
hosen to restri
t the frequen
y spans of the P adja
ent sub
arriers to reside inside the
oheren
e bandwidth, for whi
h the frequen
y 
orrelation fun
tion is above 0.9, i.e. P ≈ 10in this 
ase.Fig. 7.1 and 7.2 also in
lude asymptoti
 performan
e of the proposed s
heme, as de�nedin (4.28). We do not evaluate the CRB here sin
e the simpli�ed TDL model is a lesspra
ti
al s
enario. To evaluate the asymptoti
 bound for di�erent values of P , an estimateof Rȳ in (4.20), with a su�
ient time averaging and at a high SNR is employed to obtain asu�
iently good approximation to the true 
orrelation matrix. For P = 8, we 
an see thatthe asymptoti
 performan
e 
losely mat
hes the simulation result for Tav ≥ 50. In orderto rea
h the asymptoti
 performan
e for P = 2, the required number of OFDM blo
ksis in
reased to Tav > 210 OFDM blo
ks. Note that the a

ura
y of the bounds relies on
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Fig. 7.3 CAB versus number of OFDM blo
ks (SNR=20dB).the assumption that ‖∆Hp‖ is small. Otherwise, R∆H in (4.20) be
omes signi�
ant andis equivalent to a low SNR 
ondition. Therefore, asymptoti
 performan
e for P = 32 and64 
an only serve to indi
ate that whether or not the proposed s
heme has met a 
ertainlevel of 
on�den
e. A

ordingly, we 
an 
on
lude that the proposed algorithm rea
hes itsasymptoti
 performan
e for Tav ≥ 10 OFDM blo
ks when P = 32 and 64.Fig. 7.3 and 7.4, whi
h show the 
orresponding CABs as de�ned in (4.29), lead to thesame 
on
lusions as above. It should be noted that the error �oor of the performan
e ofthe proposed algorithm is due to the variations a
ross 
oheren
e bandwidth (see Se
tion4.3.2 for details). However, it 
an be eliminated by in
reasing the value of NC (i.e., the sizeof FFT/IFFT) when the 
hannel bandwidth is �xed.
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Fig. 7.4 CAB versus number of OFDM blo
ks (SNR=20dB).7.1.3 Pra
ti
al appli
ationsWe have shown that the proposed algorithm 
an a
hieve better performan
e than the ref-eren
ed approa
hes within reasonable time averaging intervals. The superior performan
erelies on 
hoosing the maximum allowable P for the purpose of minimizing the dimensionof the 
orrelation matrix without a�e
ting the estimation performan
e. While the abovesimpli�ed TDL model is useful for 
omparing various algorithms, it has limitations so thatit is di�
ult to infer what happens in pra
ti
al wideband situations. Therefore, in order todetermine the maximum a
hievable P in pra
ti
al s
enarios, we 
onsider to adapt part ofthe Mobile WiMAX OFDMA-PHY [70℄ for our OFDM system and to simulate it over the3GPP-SCM [79℄.In our OFDM system setup, the sub
arrier spa
ing is 
hosen as 10.94kHz, given the
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Fig. 7.5 NMSE versus number of OFDM blo
ks over 3GPP Urban Mi
ro(SNR=20dB).OFDM useful symbol duration is 91.4µs and the 
y
li
 pre�x length is 11.4µs [70℄. Sin
e we
onsider NC = 256, the 
hannel bandwidth is approximately 2.5MHz. For ea
h time epo
h,the in
oming QPSK symbols are 
hosen only to span over 1 OFDM symbol (NF = 1), andea
h Mobile WiMAX frame 
onsists of 48 OFDM symbols. In the 3GPP-SCM setup, the
arrier frequen
y is 2.5GHz. Base station antenna spa
ing is 10λ and MS antenna spa
ingis λ/2, where λ is the wavelength at the 
arrier frequen
y. The 
hannel 
oe�
ients of ea
h3GPP-SCM s
enario are generated a

ording to the implementation in [79℄. We also presentthe asymptoti
 performan
e of the approa
h given in [47℄ (as indi
ated by "F. Gao et al."in the legends of the simulation �gures), tailored into our system setup for 
omparisons.Note that a

urate 
hannel-order estimation is also assumed for this referen
ed algorithm.Fig. 7.5 - 7.7 show the NMSE versus number of OFDM blo
ks over the 3GPP UrbanMi
ro, Urban Ma
ro, and Suburban Ma
ro models [79℄, respe
tively. Note that SNR =
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Fig. 7.6 NMSE versus number of OFDM blo
ks over 3GPP Urban Ma
ro(SNR=20dB).20dB is 
onsidered for all the s
enarios. We observe that with a suitable 
hoi
e of P , theproposed algorithm 
an rea
h NMSE ≤ 3 × 10−5 in all the 
ases within 50 OFDM blo
ks(or approximately 1 Mobile WiMAX frame). We also present NMSE versus the 
hoi
e of Pof the proposed algorithm over the Urban Ma
ro and Suburban Ma
ro models in Fig. 7.8,and we 
an observe that the best 
hoi
e of P for these models should fall between 32 and
64. To determine the e�
ien
y of the proposed algorithm, we evaluate the asso
iated CRBover ea
h 3GPP-SCM s
enario. Spe
i�
ally, we evaluate the CRBs as given in (4.38) by
onsidering the adja
ent P 
hannel 
oe�
ients are the same (i.e., H̄′

1 = H̄′

2 = · · · = H̄′

P ),whi
h 
onstitutes the optimal 
ondition of the proposed algorithm. Fig. 7.9(a) - 7.9(
)show the NMSE and the 
orresponding CRB over 3GPP Urban Mi
ro, Urban Ma
ro, andSuburban Ma
ro models, respe
tively. From the results, we 
an observe that there is about
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Fig. 7.7 NMSE versus number of OFDM blo
ks over 3GPP Suburban Ma
ro(SNR=20dB).
3−6dB gap between the NMSE 
urve and the 
orresponding CRB bound over ea
h s
enariowhen SNR ≥ 20dB. We also observe in these experiments that the referen
ed algorithm[47℄ does not show advantages over our approa
h, sin
e the dimension of its 
orrelationmatrix is given as NR(NC + Ncp) > NRNC = 768, as 
ompared to NRNC/P ≤ 24 in ourapproa
h. We stress again that these referen
ed 
urves in Fig. 7.9(a) - 7.9(
) representthe ideal, asymptoti
 performan
e of the algorithm proposed in [47℄. In other words, thereferen
ed algorithm 
ould not rea
h the asymptoti
 performan
e at su
h a small numberof time samples and low SNRs.Finally, we present the BER 
urves of the proposed algorithm over Urban Ma
ro andSuburban Ma
ro s
enario in Fig. 7.10(a) and 7.10(b), respe
tively. For SNR ≥ 15dB, we
an 
on
lude that the proposed algorithm employing only 50 time samples 
an rea
h the
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Fig. 7.8 NMSE versus P (when the number of OFDM symbols Tav = 50).same performan
e as if perfe
t CSI is known at the re
eiver. However, more than 210 timesamples are required for 
hannel estimation if SNR ≤ 15dB.7.2 Dis
ussions of time-invariant s
enariosOur �rst 
ontribution is in developing and analyzing a new s
heme to over
ome somefundamental limitation of the subspa
e-based blind approa
h when applied to MIMO-OFDM transmission over time-varying 
hannels. Spe
i�
ally, when 
onsidering the timeinvarian
e requirement of a pra
ti
al MIMO-OFDM system with a large number of OFDMsub
arriers, e.g., 128 or more, the traditional subspa
e-based methods require extremelylarge number of time samples for obtaining a good time-averaged 
orrelation matrix, makingthem impra
ti
al. By exploiting the frequen
y 
orrelation among adja
ent sub
arriers (i.e.,
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(b) 3GPP Urban Ma
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(
) 3GPP Suburban Ma
ro.Fig. 7.9 Performan
e of the proposed s
heme over various 3GPP-SCM s
e-narios (Tav = 50) as a fun
tion of SNR.
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(b) 3GPP Suburban Ma
roFig. 7.10 BER of proposed s
heme over 3GPP-SCM s
enarios.within the 
oheren
e bandwidth) through the 
on
ept of sub
arrier grouping, we proposeda novel subspa
e-based estimation method whi
h requires a signi�
antly smaller number oftime samples. The above simulation results showed that the proposed method 
ould a
hievea better estimation a

ura
y than existing ben
hmark approa
hes within a reasonable timeaveraging interval.To explain why the proposed algorithm generally performs better in the SuburbanMa
ro s
enario than in the Urban Ma
ro one, the 
umulative distribution fun
tions (CDFs)of the RMS delay spread (DS), i.e., Pr{τRMS ≤ abs
issa}, of these s
enarios are shown inFig. 7.11. From this �gure, we 
an 
learly see that the 
orresponding RMS delay spread ofthe Suburban Ma
ro s
enario is mu
h smaller than that of the Urban Ma
ro one, meaningthat the 
oheren
e bandwidth of the Suburban Ma
ro s
enario is mu
h larger than thatof the Urban Ma
ro one. It thus implies that our approa
h is better suited for the 3GPPSuburban Ma
ro 
ase.It should be noted that unlike the traditional approa
hes whi
h require expli
it 
hannel-order information for estimating the 
hannel matrix, the proposed algorithm requires only
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Suburban MacroFig. 7.11 CDF of the RMS delay spread.an upper bound of the 
hannel order to determine the range of the parameter P . Therefore,the proposed algorithm is less sensitive to the 
hannel modeling errors.7.3 Time-variant s
enariosThe MIMO system under 
onsideration 
onsists of NT = 2 transmit and NR = 3 re
eiveantennas. The number of sub
arriers NC used in the OFDM modulation is set to 256. Forea
h time epo
h, the in
oming symbol streams are independent and identi
ally distributed(i.i.d.) QPSK symbols. The OFDM useful symbol duration is 91.4µs and the 
y
li
 pre�xlength is 11.4µs, resulting in a sub
arrier spa
ing of 10.94kHz. Sin
e we 
onsider NC =256, the 
hannel bandwidth is approximately 2.5MHz.Modeling of the time-varying MIMO 
hannel is also based on the 3GPP-SCM setup;
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Fig. 7.12 NMSE versus pre
oder 
oe�
ient ν when MS speed is 100km/h(Eb/N0 = 14dB).we refer the reader to [79℄ for additional details. To evaluate our algorithm, we 
onsidera Suburban Ma
ro s
enario with the 
arrier frequen
y fc = 2.5GHz, where the mobilestation (MS) is allowed to travel in a random dire
tion at a 
onstant speed of 100km/h.Hen
e, the maximum Doppler shift is 231.48Hz and the normalized Doppler frequen
y is0.02. Experimentally, we have found that a suitable value of P in this given s
enario is 64.To obtain the ambiguity matrix Am needed at the mth OFDM symbol time, we employ
Am = (Q̂m

nd
)
†
Hm

⌈P/2⌉ in the simulations. This type of approa
h is 
ommon in the literatureon subspa
e-based blind 
hannel identi�
ation.Considering a re
tangular window (i.e. β = 1) of length l = 1 and 5, we �rst inves-tigate the 
hoi
e of the pre
oder 
oe�
ient ν from the perspe
tive of 
hannel estimationperforman
e. In our experiments, the NMSE for the mth 
hannel estimate is de�ned here
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Fig. 7.13 NMSE versus forgetting fa
tor β when MS speed is 100km/h (ν =
1 and Eb/N0 = 14dB).as

NMSE =
∑

i,j,k

E[|ĥm
i,j [k] − hm

i,j[k]|2]/
∑

i,j,k

E[|hm
i,j[k]|2], (7.2)and the ensemble average is taken over 200 independent realizations of the random pro
ess.Fig. 7.12 shows the NMSE of the 
hannel estimates versus ν when a hundred OFDMsymbols are observed and the Eb/N0 (i.e. SNR per bit) is 14dB, where Eb and N0 denotethe energy per bit, and the one-sided noise power spe
tral density, respe
tively. We are notsurprised to see that 
hoosing the window length l = 1 gives the best performan
e sin
ethe wireless 
hannel is 
hanging so rapidly in this 
ase. In parti
ular, we observe that theNMSE rea
hes its minimum, i.e. 2.5× 10−4 when ν = 1, whi
h 
oin
ides with our analysisin Se
tion 6.5.
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Fig. 7.14 NMSE versus number of OFDM symbols when MS speed is100km/h (nd = 2).In Fig. 7.13, we investigate the 
hoi
e of the forgetting fa
tor β, when an exponentialwindow of in�nite length is 
onsidered under the same 
ondition as above. We 
an see thatthe NMSE rea
hes a minimum (a value 
omparable to that of the re
tangular window with
l = 1) around NMSE = 2×10−4 when β ∈ [0, 0.1], meaning that previous data samples areof little use for the estimation of the 
urrent 
hannel statisti
s for this rapidly TV 
hannel.Thus, employing an exponential window 
annot gain additional estimation performan
e inthis s
enario. We also noti
e that there is no signi�
ant improvement in the estimationperforman
e when nd is in
reased from 2 to 5 in both �gures. Hen
e, we simply assign
nd = 2 and employ a re
tangular window of length l = 1 in the following.Fig. 7.14 presents the NMSE of the 
hannel estimates versus the number of OFDMsymbols re
eived when ν = 1 and 0.7 at the Eb/N0 = 14, 34dB. We 
an see that the
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Fig. 7.15 BER versus pre
oder parameter ν when MS speed is 100km/h(nd = 2).proposed algorithm 
an tra
k the fast time-varying 
hannel in less than 5 OFDM symbolsin all the 
ases, and maintain its performan
e over time despite the rapid variations in the
hannel 
oe�
ients. These results show in parti
ular that adjusting the trade-o� betweenestimation performan
e and symbol re
overy in these 
ases (e.g., ν is de
reased from 1to a smaller value) will not a�e
t the 
onvergen
e rate. In addition, we observe that theestimation performan
e of the 
ase ν = 1.0 at Eb/N0 = 14dB outperforms that of the 
ase
ν = 0.7 at Eb/N0 = 34dB, implying that 
hoosing a proper pre
oder 
oe�
ient is ratherimportant.In Fig. 7.15, we show the BER versus the pre
oder 
oe�
ient ν for various Eb/N0's.We 
onsider both the least squares (LS) and the total least squares (TLS) [120℄ estimationfor symbol re
overy. We �rst noti
e that for a given ν, a higher Eb/N0 in general gives a
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Fig. 7.16 BER versus Eb/N0 when MS speed is 100km/h (nd = 2).better BER. We also observe that the higher the Eb/N0, the larger the optimal 
hoi
e of ν,and hen
e the lower the BER. This 
an be explained as follows: For a less noisy s
enario,a shorter distan
e between any pair of the pre
oder outputs is allowed, and thus we 
anin
rease the value of ν to gain better estimation performan
e and so a
hieving a lower BER.Furthermore, we observe that for a given Eb/N0, the TLS estimation (solid lines) generallyoutperforms the LS estimation (dash-dot lines) estimation, sin
e the TLS estimation takesthe 
hannel estimation errors into a

ount while performing the symbol re
overy.Fig. 7.16 demonstrates the BER versus the Eb/N0 for various ν's, 
onsidering both theLS estimation (dash-dot lines) and the TLS estimation (solid lines) estimation for symbolre
overy. We 
an see that when ν = 0.4, the proposed algorithm performs the best inthe low Eb/N0 region due to its largest distan
e between any pair of the pre
oder outputs;
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al experiments and results 135however, it performs the worst in the high Eb/N0 region be
ause the most ina

urate
hannel information is used. The 
ase ν = 0.9 yields the worst performan
e for almost all
Eb/N0 values due to its extremely short distan
e between any pair of the pre
oder outputs,even though the best estimation performan
e is a
hieved. A good 
hoi
e of ν should fallbetween 0.6 to 0.7 when the Eb/N0 is moderate to high, and a 1−2dB gain 
an be a
hievedby using the TLS instead of the LS estimation at the Eb/N0 = 19dB.7.4 Dis
ussions of time-variant s
enariosTo estimate wideband time-varying 
hannels with large Doppler shift, one typi
ally resortsto pilot pla
ements at 
onse
utive OFDM symbol times over spe
i�
 sub
arriers, followed bydi�erent interpolation s
hemes; this is be
ause blind 
hannel estimation normally requiresa long observation interval and tends to exhibit a slow 
onvergen
e rate, making it di�
ultto apply on these 
hannels. Our se
ond main 
ontribution is in developing a new s
hemeto blindly tra
k a wideband time-varying wireless 
hannel whi
h may be 
hanging at ea
hOFDM symbol time, without using any preambles or training sequen
e. In parti
ular, ourapproa
h o�ers the �exibility in 
hoosing the number of transmit as well as re
eive antennas,and o�ers high bandwidth e�
ien
y and low 
omplexity. In a realisti
 mobile wireless
hannel environment in whi
h the maximumDoppler shift is 231.48Hz, the numeri
al resultsshowed that our approa
h 
an a
hieve a BER at the level of 10−2 when the Eb/N0 ≥ 14dB.
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Chapter 8
Summary and 
on
lusion
In this thesis, we analyzed existing subspa
e-based blind 
hannel estimators and high-lighted some of their limitations. Subsequently, we proposed novel estimators of this typefor broadband MIMO-OFDM systems that exploit 
hannel 
orrelation over the 
oheren
ebandwidth, to improve the 
onvergen
e speed while maintaining satisfa
tory estimationperforman
e. In this 
hapter, we summarize the main results and ideas developed in thethesis, and then present some 
on
luding remarks that may lead to some possible avenuesfor future resear
h.8.1 Summary of the workOver many years, pilot-based 
hannel estimation has been widely employed in various 
om-muni
ation systems to a
quire the CSI, as needed in several 
apa
ity-a
hieving te
hniques,su
h as (frequen
y-)spa
e-time 
oding and spatial multiplexing. To take advantage of theblind 
hannel estimation, i.e., a
quiring the CSI without using pilots, it is essential tomitigate the slow 
onvergen
e rate asso
iated with blind 
hannel estimators. Fortunately,several blind approa
hes using se
ond order statisti
s have been proposed that 
an a
hieve
2010/07/30
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lusion 137a reasonable 
onvergen
e rate for a time-invariant 
hannel. This in
ludes the subspa
emethods, whi
h are parti
ularly attra
tive due to their good performan
e and moderate
omplexity.In the subspa
e-based estimation approa
h, 
hannel estimates 
an often be obtainedin a simple form by optimizing a quadrati
 
ost fun
tion. In Chapter 3, we explainedthat to guarantee an a

eptable estimation performan
e for a time-varying 
hannel, thedimension of the 
orrelation matrix of the re
eived signal 
annot be too large. Nevertheless,most existing subspa
e-based approa
hes were employed in the time domain, in
ludingappli
ations for OFDM-based systems. This design leads to the inherent property that thedimension of the 
orrelation matrix is a multiple of the number of OFDM sub
arriers. Thus,the aforementioned subspa
e-based approa
hes lead to extremely unfavorable 
onditions forthese systems, sin
e 256 to 2048 OFDM sub
arriers are normally 
onsidered.These observations motivated the development in Chapter 4, i.e., a new subspa
e-basedblind 
hannel estimator for MIMO-OFDM systems that 
an exploit the frequen
y 
orrela-tion among adja
ent 
hannel 
oe�
ients within the 
oheren
e bandwidth, for the purposeof dramati
ally redu
ing the dimension of the 
orrelation matrix. It was found that, givensome rough knowledge of the RMS delay spread of the wireless 
hannel, the proposed esti-mator also avoids the need of 
hannel order estimation, and thus yield an added �exibilityin terms of estimation performan
e and robustness. We further studied the identi�ability
ondition of this new estimator along with its performan
e measures, in
luding perturbationand Cramer-Rao bound analysis.In Chapter 5, to redu
e the 
omputational 
omplexity asso
iated with eigenvalue de-
omposition in the proposed method, we also investigated the 
onvergen
e properties (overnon-stationary s
enarios) of a simple yet powerful subspa
e tra
king approa
h, namely,orthogonal iteration. Then in Chapter 6, by in
orporating the subspa
e tra
king approa
h
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on
lusion 138in our estimator, we developed a fully re
ursive algorithm to update the signal subspa
eneeded in the estimate of time-varying 
hannels. This approa
h is 
omputationally e�
ientsin
e it avoids re-
omputing the subspa
e from s
rat
h at every time iteration. To furtherredu
e the 
omplexity asso
iated with the ambiguity matrix in our proposed estimator, apre
oder was also introdu
ed at the transmitter.To 
omplete the study, the 
hoi
e of the pre
oder was also derived and analyzed. We�rst showed that a pre
oder matrix whose entries are all 1's results in the best estimationperforman
e; however, its 
ondition number be
omes in�nity, and hen
e the transmittedsymbols 
annot be re
overed at the re
eiver. We then showed mathemati
ally that byproperly perturbing the o�-diagonal entries of the pre
oder matrix, we 
an de
rease its
ondition number to a reasonable value.Finally, in order to assess the performan
e of the proposed algorithms, we presentednumerous 
omputer simulations in Chapter 7. When we 
onsider a blo
k fading 
hannel, itwas shown that the proposed method requires a signi�
antly shorter time-averaging periodthan the ben
hmark methods, parti
ularly when the wireless 
hannels are 
hara
terized bysmaller RMS delay spread. We also 
on�rmed that the proposed tra
king algorithm indeedoutperforms the ben
hmark algorithm, and is 
apable of properly tra
king time-varying
hannels with the maximum Doppler shift up to 230Hz. Regarding the pre
oder design, weshow empiri
ally that the best trade-o� between 
hannel estimation and symbol dete
tionperforman
e is a
hieved when the ratio of its o�-diagonal to diagonal entries is on the orderof 0.6 − 0.7.



8 Summary and 
on
lusion 1398.2 Con
luding remarksThe IEEE 802.11n PHY layer standard, whi
h aims at providing an 11-fold in
rease intransmission speed over 802.11g, or a 55-fold in
rease in transmission speed over 802.11a,
an be regarded as one of the prominent examples of wireless 
ommuni
ation systems nowa-days: Combining the MIMO-OFDM te
hniques, it uses training or pilot signals embeddedin transmitted data streams to fa
ilitate 
hannel estimation and syn
hronization in thesystem. The presen
e of pilot signals implies that data throughput is de
reased, e.g. atleast 6% loss in 
apa
ity is expe
ted in the IEEE 802.11n systems. Spe
i�
ally, for a time-varying 
hannel where mobile is expe
ted to travel with a high speed, the throughput lossdue to the periodi
 insertion of training or pilot signals is huge. Therefore, employing afast-
onverging and reliable blind 
hannel estimation in the design of future wireless systemseems to be an attra
tive solution.Nevertheless, blind 
hannel estimation has not been employed or 
onsidered in any ofthese 
ommuni
ation systems yet, in
luding the latest proposals of wireless standards su
has IEEE 802.11n, WiMAX, and 3GPP LTE. We may wonder, given that numerous worksin blind 
hannel estimation have demonstrated superior performan
e of their methods, forwhat reasons do people still not embra
e these apparently 
apa
ity-saving te
hniques?Similar question was raised by Z. Ding and Y. Li in the prefa
e of [156℄ about a de
adeago, and the reasons, a

ording to the authors, may be attributed to: (1) the inadequateunderstanding about the problem itself and various proposed blind estimation s
hemes bymany pra
ti
ing engineers, (2) a reliable blind estimation algorithm is yet to be establishedthat 
an guarantee speedy 
onvergen
e, and with reasonable 
omplexity. Spe
i�
ally, thealgorithm should not be very sensitive to parameters su
h as the estimated 
hannel order.A de
ade later, many more pra
ti
ing engineers may have a
quainted the problem itself
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lusion 140and several new blind estimation s
hemes have been proposed; however, in the 
ontextof MIMO-OFDM systems, a large number of di�erent blind approa
hes that have beenproposed to date still su�er from various short
omings, in
luding the slow 
onvergen
e rateand sensitivity to the estimated 
hannel order.The work in this thesis led to many interesting developments in subspa
e-based blind
hannel estimation and tra
king algorithms. Spe
i�
ally, the proposed algorithms, whi
hexploit 
orrelation in the frequen
y 
hannel 
oe�
ients within the 
oheren
e bandwidth,have shown signi�
ant improvement in the 
onvergen
e speed, while maintaining satis-fa
tory estimation performan
e. In addition, they do not require exa
t knowledge of thewireless 
hannel order, and the requirement of their 
omputations is lower than that of theben
hmark approa
hes. We hope that the small step taken in the thesis toward a simple,reliable, and fast blind 
hannel estimation algorithm, may eventually lead to widespread ofblind 
hannel estimation approa
hes in future wireless standards.8.3 Future workSeveral promising avenues for future resear
h have emerged based on the work presentedin this thesis. They are summarized brie�y below:1. In Chapter 4 and 7, estimating the ambiguity matrix is treated as a separate problem.It would be interesting to investigate how the estimation of ambiguity matrix 
an bee�e
tively in
orporated into the proposed algorithms. This 
an possibly be a
hievedwith the help of an HOS approa
h, the use of a training sequen
e (resulting in theso-
alled semi-blind approa
h that 
ombines the blind and the non-blind approa
hes),or other new signal pro
essing approa
hes.2. As spa
e-time blo
k 
oding is 
onsidered in IEEE 802.11n wireless networking stan-
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on
lusion 141dard, it would thus be of interest to further investigate the s
enario in whi
h a 
orre-lated input sequen
e, e.g. Alamouti's spa
e-time blo
k 
ode, is applied at the trans-mitter side. We have assumed that the input sequen
e of the OFDM modulator isi.i.d. throughout this thesis. Therefore, a good starting point would be to 
onsideran interleaver, for the purpose of s
rambling the en
oder output.3. In Chapter 4, the asymptoti
 performan
e and the Cramer-Rao bound of the pro-posed algorithm are studied but the results remain in the form of somewhat general,whi
h 
an only be evaluated through numeri
al 
omputations. It would be relevantto generalize these bounds in terms of parameters su
h as noise varian
e, dimensionof the eigenve
tors, et
., in order to gain more insights on how the estimation per-forman
e is a�e
ted by these parameters. Su
h results would provide an even betterunderstanding of the proposed subspa
e-based estimators.4. It will be 
hallenging to 
onsider an even higher Doppler rate, in whi
h the wireless
hannel may be 
hanging within an OFDM symbol time. In this 
ase, a subspa
e-based blind 
hannel estimator will be in no doubt very attra
tive for future wirelessstandards if a

eptable performan
e 
an be a
hieved.5. It would be interesting to further extend the proposed blind 
hannel estimation/tra
kingalgorithms from single user s
enarios to multi-user ones. In the multi-user 
ase, itis expe
ted that the proposed approa
hes may be a�e
ted by the interferen
e fromother users, resulting in worse estimation/tra
king performan
e. Another interestingresear
h avenue would be to explore the e�e
ts on the performan
e of the proposedalgorithms when a degenerate 
hannel 
ondition is o

urred.
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Appendix A
Quadrati
 
ost fun
tion
From (4.8), we 
an arrive at

uH
j,i diag(H[ωρ,1] · · ·H[ωρ,ζ]) = 01×NT ζ , i = 1, · · · , NF . (A.1)By further partitioning uj,i into ζ segments of equal dimension, with the kth segmentdenoted as uj,i,k ∈ CNR×1, k = 1, 2, · · · , ζ , we 
an obtain from the above that

uH
j,i,kH[ωρ,k] = 01×NT

, k = 1, · · · , ζ. (A.2)Therefore, we 
an arrive at
uH

j,i









H[ωρ,1]...
H[ωρ,ζ]









= uH
j,iH̄

′

= 01×NT
. (A.3)

In pra
ti
e, only an estimate of the noise eigenve
tor uj is available, denoted here as ûj .Based on (A.3), we 
an de�ne a new 
ost fun
tion that is more 
onvenient to perform the
2010/07/30
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ost fun
tion 143optimization:
C

′

(H̄′

)
def
=
∑

j

NF∑

i=1

‖ûH
j,iH̄

′‖2
2. (A.4)Clearly, sin
e uH

j H̄ = 0 implies uH
j,iH̄

′

= 0 as shown above, it follows that the 
ondition
C(H̄) = 0 in (4.9) implies that C ′

(H̄′

) = 0. Finally,
C

′

(H̄′

) =
∑

j

NF∑

i=1

‖ûH
j,iH̄

′‖2
2 =

∑

j

NF∑

i=1

‖H̄′T û∗
j,i‖2

2

=
∑

j

‖H̄′T V̂∗
j‖2

F = tr
(

H̄′T Ψ̂H̄′∗
)

,whi
h gives exa
tly (4.12). Note that by employing the new 
ost fun
tion in (A.4), we nowmeasure how 
lose is ûH
j,iH̄

′ to 01×NT
.
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I want to dedi
ate this work to the Fren
h 
omposer and pianist Erik Satie (1866-1925)for his masterpie
e:

Gymnopédies"The melodies of the pie
es use deliberate, but mild, dissonan
es against the harmony,produ
ing a piquant, melan
holy e�e
t that mat
hes the performan
e instru
tions, whi
hare to play ea
h pie
e slowly, dolorously or gravely" - Wikipedia


