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Sommaire

Le multiplexage par répartition en fréquences orthogonales (orthogonal frequency division
multiplexing, soit OFDM) a entrées et a sorties multiples (multiple-input multiple-output,
soit MIMO) est maintenant généralement considéré comme une technologie & préconiser
pour les nouveaux systémes sans fil et ceux des générations ultérieures. Le MIMO-OFDM
vise & augmenter la limite de capacité Shannon en combinant 'utilisation d’antennes mul-
tiples et la modulation orthogonale multiporteuse. Bien que la possibilité d’atteindre cette
limite soit possible grace a I'invention de techniques d’encodage et de décodage atteignant
la capacité, en réalité, cette perspective d’avenir se base en grande partie sur 'existence
et 'utilisation de techniques d’estimation de voie avancées. Pour faciliter ’estimation de
voie rapide et fiable dans les systémes MIMO-OFDM, on songe habituellement & I’insertion
de symboles pilotes; cependant, la capacité de la voie est grandement réduite par leur in-
sertion. L’utilisation d’estimation de voie aveugle fiable et & convergence rapide pour les
MIMO-OFDM semble donc étre une solution attrayante pour les futurs systémes sans fil.

A cette fin, I'estimation de voie aveugle basée sur des statistiques de deuxiéme ordre,
au lieu des statistiques d’ordre supérieur, est généralement considérée comme une can-
didate acceptable. Parmi les approches aveugles basées sur les statistiques de deuxiéme
ordre, l'estimation basée dans le sous-espace est attrayante, puisque des estimations fi-
ables peuvent souvent étre obtenues de facon simple en optimisant une fonction de coit
quadratique. Néanmoins, la performance des estimateurs de voie aveugles basés dans le
sous-espace peut étre gravement dégradée dans des conditions instationnaires. Ce prob-
léme peut habituellement rendre la performance globalement insatisfaisante, surtout dans
les systémes MIMO-OFDM avec un nombre de sous-porteuses élevé. Afin de compenser
cette restriction et d’utiliser avec succes I’estimation de voie basée dans le sous-espace avec
les systemes MIMO-OFDM, il est essentiel de minimiser la longueur de la période de calcul
des moyennes sous-jacente.

Dans la présente thése, nous proposons un nouvel estimateur de voie aveugle basé
dans le sous-espace qui ne nécessite qu’'une période de calcul des moyennes relativement
courte. Nous envisageons la conception d’un tel estimateur directement dans le domaine
des fréquences, par opposition a la majorité des modéles existants ot les estimateurs sont
concus dans le domaine temporel. Notre premiére contribution est de proposer et d’étudier

un estimateur sous-espace innovateur avec un calcul des moyennes réduit en exploitant la
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corrélation des fréquences au sein de sous-porteuses adjacentes résidant dans la largeur de
bande de cohérence des voies a large bande des scénarios MIMO-OFDM typiques. Afin de
réduire la grande complexité informatique créée par la décomposition des valeurs propres
et la matrice d’ambigiiité associée, notre seconde contribution est de mettre au point une
version adaptative améliorée de I’estimateur pour augmenter sa capacité dans des conditions
de variation temporelle MIMO. Nous réussissons cela en employant une forme modifiée de
I'itération orthogonale permettant un repérage suffisant dans le sous-espace ainsi qu'une
technique de précodage permettant une réduction de la taille de la matrice d’ambigiiité.
Les expériences numériques démontrent que les techniques proposées peuvent en effet avoir
une meilleure performance que plusieurs des estimateurs de référence dans divers scénarios

pratiques.
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Abstract

Multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM)
is now widely considered as a favored technology for emerging and future generation wireless
systems. MIMO-OFDM aims to achieve increased channel capacity limit by exploiting the
use of multiple antennas in combination with multi-carrier orthogonal modulation. While
the possibility of achieving this limit is bestowed on the invention of capacity-achieving
coding and decoding techniques, in reality, this prospect relies heavily on the existence
and use of advanced channel estimation techniques. To facilitate fast and reliable channel
estimation in MIMO-OFDM systems, pilot symbol insertion is usually considered; how-
ever, the channel capacity is greatly reduced by inserting those pilot symbols. Therefore,
employing fast-converging and reliable blind channel estimation for MIMO-OFDM seems
to be an attractive solution for future wireless systems.

To this end, blind channel estimation based on second order statistics (SOS), instead
of higher order statistics (HOS), has been widely considered as a suitable candidate. Amid
SOS-based blind approaches, subspace-based estimation is attractive since reliable esti-
mates can often be obtained in a simple form by optimizing a quadratic cost function.
Nonetheless, the performance of the subspace-based blind channel estimators may still be
seriously degraded under time-varying conditions. This problem can generally make overall
performance unsatisfactory, especially in MIMO-OFDM systems whose number of subcar-
riers is large. In order to overcome this limitation and successfully employ subspace-based
channel estimation in MIMO-OFDM systems, it is essential to minimize the required length
of the underlying time averaging period.

In this thesis, we propose a new subspace-based blind channel estimator that requires
only a comparably short time averaging period. We consider the design of such an esti-
mator directly in the frequency domain, as opposed to the majority of existing designs in
which estimators are developed in the time domain. Our first contribution is to propose
and investigate a novel subspace-based estimator with reduced time averaging, by exploit-
ing the frequency correlation among adjacent subcarriers, residing within the coherence
bandwidth of the broadband channels in typical MIMO-OFDM scenarios. To reduce the
high computational complexity incurred by the eigenvalue decomposition and the associ-
ated ambiguity matrix, our second contribution is to develop an improved, adaptive version

of the estimator for enhancing its capability under MIMO time-varying conditions. This
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is achieved by employing a modified form of the orthogonal iteration for efficient subspace
tracking along with a precoding technique that allows a reduction in the size of ambigu-
ity matrix. Numerical experiments demonstrate that the proposed techniques can indeed

outperform several benchmark estimators in various practical scenarios.
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Chapter

Introduction

Since the first demonstration of radio signaling by Marconi in the late nineteenth century,
the ability to communicate with people on the move has changed dramatically. Particularly
during the past decade, the mobile communication technologies, fueled by various technical
achievements, including digital and radio frequency (RF) circuit fabrication, very large-scale
circuit integration, and digital switching techniques, have made the portable mobile devices
more affordable and reliable [1-3].

The trend toward a more reliable and affordable portable device not only stimulated
the rapidly growing number of users but also brought about a fundamental change on the
design of wireless systems and networks |4]. For example, the traditionally voice-centered
services has been gradually replaced by data-centered ones |5|. Besides, the data transmis-
sion rate has also increased tremendously, from 9.6 kbps in 1995 on a GSM system [2] to
2Mbps in 2005 on a WCDMA system |5, 6]; this represents more than 200 times increase in
data rate within this ten year period. To date, the so-called "Super-3G" or "Beyond-3G"
wireless systems and networks with a peak data transmission rate that can reach as high as

500Mbps have been demonstrated in the very recent field trials [7]. Even more ambitious 4G
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wireless systems and networks which are targeting a peak data transmission rate of approx-
imately 1Gbps, are also enthusiastically investigated by various national and international
organizations |4, 8|, such as the International Telecommunication Union (ITU), European
Commission Framework Program (FP), Wireless World Research Forum (WWRF), Ko-
rean Next-Generation Mobile Committee (NGMC), Japanese Mobile IT Forum (MITF),
and China Communication Standardization Association (CCSA). International standards
organizations are currently working on the standardization of the Enhanced 3G (E3G) and
the 4th Generation Mobile Communication System (4G), including the Long Term Evolu-
tion (LTE) plan for the 3rd Generation Partnership Project (3GPP) and the air interface
of evolution /ultramobile broadband (AIE/UMB) plan of 3GPP2 [9, 10].

The radio spectrum still being a scarce and limited resource, high spectral efficiency is
crucial to support the demand of high transmission rate from future mobile users. The LTE
physical layer is targeted to provide improved radio interface capabilities between the base
station and user equipment (UE), as compared to previous cellular technologies like Univer-
sal Mobile Telecommunications System (UMTS) [5] or High-Speed Downlink Packet Access
(HSDPA) |11]. According to the initial requirements defined by the 3GPP (3GPP 25.913)
[12], the LTE physical layer should support peak data rates of more than 100Mb/s over
the downlink and 50Mb/s over the uplink [13]. A flexible transmission bandwidth ranging
from 1.25 to 20MHz will provide support for users with different capabilities [14]. These
requirements will be fulfilled by employing new technologies for cellular environments, such
as orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-output
(MIMO) schemes (3GPP 36.201) [4, 15].
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1.1 Channel estimation for wireless communications

A MIMO system deploys multiple antennas at both ends of a wireless link to increase the
channel capacity and to mitigate adverse effects of the wireless channel [3, 16], while OFDM
aims to provide high spectral efficiency and to eliminate the need for high-complexity equal-
ization algorithms by decomposing the broadband radio channel into a set of orthogonal
parallel sub-channels [14]. Therefore, MIMO-OFDM, which combines multiple transmit
and receive antennas and the OFDM modulation, has become a practical alternative to
either the single-carrier (SC) or the single-input single-output (SISO) transmission [17].

Three main techniques can be applied to fully exploit the special structures of the
MIMO-OFDM systems, namely: diversity [18, 19|, beamforming [5, 6, 16|, and spatial
multiplexing [4, 20]. Diversity techniques improve the average signal-to-noise ratio (SNR)
on the receiver side by exploiting independent fading channels, as seen from either space,
time, frequency, polarization, or a combination of these domains. In beamforming, signals
are coherently combined (either in the transmitter or receiver) so as to enhance the antenna
array response in a preferred direction. Spatial multiplexing offers a linear increase in the
signaling rate by exploiting the parallel transmission of different information stream from
different antennas. However, all these techniques can only achieve the desired improvement
in performance when the channel state information (CSI) is perfectly known [21].

There are mainly two ways to obtain the required CSI, i.e., pilot-based versus blind
estimation. In pilot-based channel estimation, known symbols are transmitted to assist the
receiver in determining the CSI. Clearly this can only be done at the expense of a lower
bandwidth efficiency. So far, pilot-based channel estimation is still considered to support
most communication systems due to its reliability and low complexity. Nevertheless, with

the ever increasing mobile speed requirement, pilot symbols have to be sent frequently
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to cope with the time-variations of the wireless channels. Hence, if we insist in using
the pilot-based channel estimation, this will greatly reduce the bandwidth efficiency and
inevitably lessen the advantages brought by these MIMO technologies. In summary, there
is an urgent need for a new blind channel estimation technique in MIMO-OFDM systems,
and the research results on this topic will definitely influence the development of the future

mobile communication technologies.

1.1.1 Subspace-based blind channel estimation

Among recent studies of MIMO-OFDM, blind channel estimation has received great at-
tention and has become a vital area of research. Existing blind methods can broadly be
categorized as statistical or deterministic: The former methods rely on assumptions on the
statistics of the input sequence |22-24] while the latter make no such assumptions |25, 26].
In the first category, i.e., statistical approaches, blind channel estimation using second or-
der statistics (SOS) can potentially achieve superior estimation performance for a given
time averaging interval than approaches using higher order statistics (HOS) [27-31]. The
second category, i.e., deterministic methods, is generally favored when the input statistics
are unknown, or there may not be sufficient time samples to obtain the channel estimate.
To date, several interesting deterministic methods have been developed by, e.g., employ-
ing the maximum likelihood approach [32, 33|, exploiting null guard intervals [34, 35,
exploiting zeros of the channel impulse response [36], or by using fractional sampling as
well as interpolation [37]; however, most of them are exclusively for SISO or single-carrier
transmissions.

Amid SOS-based blind approaches, subspace-based estimation is attractive since esti-
mates can often be obtained in a simple form by optimizing a quadratic cost function [38].

Without employing any precoding at the transmitter, a subspace-based method is proposed
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for OFDM systems by utilizing the redundancy introduced by the cyclic prefix (CP) |39, 40|,
and it is further extended for MIMO-OFDM systems in [41]. Virtual carriers (VCs) are
subcarriers that are set to zero with no any information being transmitted. The presence
of VCs provides another useful resource that can be used for channel estimation. Such a
scheme is proposed for OFDM systems [42], and it is further extended to MIMO-OFDM
systems in |43, 44].

The aforementioned approaches primarily exploit the separability of the noise and sig-
nal subspaces by applying the eigenvalue decomposition (EVD) to the correlation matrix
of the received signals. In practice, the correlation matrix can only be estimated by aver-
aging over multiple time samples, given the wireless channel is time-invariant during this
averaging period. Since the quadratic cost function is constructed from the eigenvectors of
the noise subspace obtained from the EVD, the accuracy of the eigenvectors obtained from
the sampled correlation matrix dominates the performance of the estimation. Hence, in a
time-invariant environment, the more time samples are averaged, the better the estimation
performance is.

Considering that radio propagation conditions can only be invariant over a limited time
interval (related to fading conditions, user mobility, etc.), it is legitimate to wonder how
many samples are sufficient to obtain a sampled correlation matrix meeting a certain level
of accuracy in the channel estimate. A basic rule is to assure that the number of the time
samples must be no less than the dimension of the correlation matrix to make it full rank
or invertible. Thus, to achieve desired estimation accuracy in the presence of noise, the
required number of time samples for the CP and VC approaches may become prohibitive.
For example, simulation results have shown that at least 500 OFDM symbols are required
in order to achieve a normalized root mean square error (NRMSE) of 1072 on the channel

estimate, when we consider the number of subcarriers in OFDM is 16 and SNR = 20dB
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[43]. If the number of subcarriers in OFDM is increased to 64, the number of required
OFDM symbols would increase up to thousands for time averaging [44], making these
subspace-based blind approaches impractical.

More recently, variants of the statistics-based methods have been proposed, e.g., by in-
serting zero-padding instead of CP for each OFDM block [45] or by introducing the so-called
repetition index [46| and re-modulation [47| on the received signal. However, the number
of required time samples is still implicitly proportional to the number of subcarriers (or the
size of the IFFT) in the OFDM modulator. We also note that deterministic approaches still
need to accumulate data samples in order to algebraically obtain channel estimates, and
their performance in noise improves as the number of samples increases. Therefore, as the
dimension of the parameter space is increased in the MIMO-OFDM context, the number of
samples required for deterministic methods to achieve an acceptable level of performance

will also inevitably be increased.

1.1.2 Tracking time-varying channels by subspace updating

Tracking time-varying (TV) channels with a large Doppler spread is a critical task, re-
gardless of whether a non-blind or blind approach is used [48]. A non-blind approach in
general requires to employ pilots more frequently since the channel estimate becomes ob-
solete shortly after the training period ends. On the contrary, a blind approach eliminates
the need of large amount of pilot symbols and therefore is favored if complexity is not the
main concern.

There are mainly two categories of blind approaches for tracking rapidly time-varying
channels: (1) using a block processing approach to estimate the unknown parameters of
an underlying time-varying channel model, and (2) using an adaptive processing algorithm

that is sufficiently fast to track the channel variations. Among various blind approaches
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in the first category, a basis expansion model has been proposed to convert a TV-SISO
channel into a time-invariant (TI) single input multiple output (SIMO) channel, followed
by a standard SOS-based subspace method for blind channel estimation [49]. The idea of
basis expansion was further extended for a TV-SIMO channel [50-52|, and a generalized
OFDM system over a TV-SISO channel [53]. Similarly, an interpolation model was also
proposed to convert a TV-SISO channel into fixed parameters in a long-code code division
multiple access system [54].

Recently, there has been much interest in the search of new adaptive algorithms in
the second category. A zero padding SISO-OFDM system associated with either recursive
least squares or least mean squares method for blind adaptive channel estimation was
considered in [55]. It was reported that for an IFFT size of 64 and padding length of 16,
the relative channel estimation error converges to -27dB in 500 symbols when the maximum
Doppler shift is limited to 100Hz and the SNR is 20dB. By properly choosing the so-called
repetition index, a cyclic prefixing SISO-OFDM system was also proposed in [46], where
it was reported that for a 64-point IFF'T with a cyclic prefix length of 16, the bit error
rate (BER) can reach a level of 1072 within 12 received blocks when the maximum Doppler
shift is 50Hz and the SNR > 25dB.

While the above adaptive approaches offer interesting capabilities in tracking time-
varying channels with high spectral efficiency, they may not be adequate for applications
in future generation of broadband mobile wireless systems, in which there is a need to
provide high-rate transmission, e.g., a real-time video stream, between a user terminal and
an access node whose relative position may vary rapidly over time [56|. For example, the
3GPP LTE specifications call for high performance broadband transmission with mobile
speed up to 120km/h, corresponding to a maximum Doppler shift of 220Hz, and additional

provision to support much higher speeds up to e.g. 350km/h (high speed train) [12]. In
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the 15 - 120km/h speed range, the targeted data rates are 50Mbps for the uplink, up
to 100Mbps for the downlink, with increased spectral efficiency of 2-3 times of Release 6
enhanced uplink and 3-4 times of Release 6 HSDPA, respectively.

Based on these considerations, there is a need to further push the capability of adap-
tive channel tracking for even faster time-varying channels. In addition, this goal should
not result in the loss of any bandwidth efficiency, or placing restrictions on the number
of transmit or receive antennas. We notice that there also exist algorithms for channel
estimation in mobile MIMO-OFDM systems with large Doppler shifts [57-59]; however,

they all require proper preambles or training sequence to work.

1.2 Research objectives and methodology

The applicability of traditional subspace-based blind estimators and trackers is severely
limited by the requirement of a large time averaging period. The main objective of this
research work is to develop new subspace-based blind estimators and trackers for MIMO-
OFDM systems to relieve such a constraint. This is mainly achieved by exploiting the
frequency correlation among adjacent subcarriers in OFDM transmissions through sub-
carrier grouping [60], for which some supportive field measurements can also be found in
[61].

In light of the discussions given in Section 1.1, it can be concluded that a number
of elements in existing subspace-based algorithms for blind channel estimation in MIMO-
OFDM systems can be considered for possible improvements. In particular, the following

topics are studied in detail in this work:

1. Time-invariant block-based channel estimation:

Subspace-based blind channel estimators are characterized by good performance and



1 Introduction 9

simple structures; however, their requirement of a large time averaging period makes
them less appealing for practical uses. In this thesis, we seek to develop a more
efficient estimation algorithm in order to reduce the time averaging period while
maintaining the same performance. In addition, we will investigate the performance of

the newly developed algorithms to demonstrate their usefulness in practical scenarios.

2. Time-varying adaptive channel tracking:

Orthogonal iteration and its variants have been considered for subspace tracking to a
large extent. On the basis of the orthogonal iteration, we aim to extend the concept
of the aforementioned block-based MIMO-OFDM channel estimator to an adaptive
channel tracker in time-varying scenarios. Although the convergence properties of
orthogonal iteration in stationary cases are well understood, the corresponding prop-
erties in non-stationary ones are not. Hence, it requires a better study of different
aspect of the convergence properties of orthogonal iteration in various non-stationary
scenarios. With a better understanding of those properties in non-stationary scenar-
ios, we can develop an orthogonal-iteration-based subspace trackers for MIMO-OFDM

systems over time-varying channels with large Doppler spread.

The proposed subspace-based blind estimator and tracker will be studied and compared
using well-proven analytical and simulation approaches. The simulation experiments will
focus on measuring the NMSE of the proposed estimators and the corresponding BER

when the latter are embedded in a complete MIMO-OFDM transmission chain.
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1.3 Contributions and claim of originality

In this work, new subspace-based blind channel estimation and tracking algorithms for
MIMO-OFDM systems are proposed. Through analytical studies and numerical simula-
tions, the proposed algorithms are shown to achieve superior performance compared to
existing algorithms in the literature. The main original contributions of this research work

can be summarized as follows:

e Generalization of the subspace-based blind estimation for XIXO-OFDM systems over
a quasi-stationary wireless channel (where XIXO denotes the abbreviation of SIMO,

MISO, and MIMO configurations).

e Development of a novel subspace-based blind estimator for MIMO-OFDM systems,

reducing the number of required data samples for time averaging.
e Proof of identifiability conditions of the proposed subspace-based blind estimator.

e Derivation of asymptotical performance bound and Cramer-Rao bound of the pro-

posed subspace-based blind estimator.

e Development of a novel subspace tracking algorithm for precoded MIMO-OFDM

systems over a rapidly time-varying wireless channel.

e Extension of the convergence analysis of the orthogonal iteration to include the non-

stationary cases.

e Derivation of a fundamental limitation on the use of orthogonal iteration when it is

applied to fast time-varying channels.
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These contributions have led to a number of publications in peer-reviewed journals and

refereed conferences, as listed below:

Journal papers

J-1) C. C. Tu and B. Champagne, "Performance analysis of blind subspace-based MIMO-

OFDM channel estimator exploiting frequency correlation," (in preparation).

J-2) C. C. Tu and B. Champagne, "Blind subspace tracking of wideband time-varying

MIMO channels with large Doppler spread," submitted to IEEE Trans. Wireless Com-
mun., Feb. 2010.

J-3) C. C. Tu and B. Champagne, "Subspace-based blind channel estimation for MIMO-
OFDM systems with reduced time averaging," IEEE Trans. on Veh. Technol., vol. 59, No.
3, pp. 1539-1544, March 2010.

Conference papers

C-1) C.-C. Tu and B. Champagne, "On convergence properties of subspace trackers based
on orthogonal iteration," in Proc. IEEE Pacific Rim Conf. on Commun., Comput. and Sig-

nal Process., Aug. 2009, pp. 65-70.

C-2) C.-C. Tu and B. Champagne, "Subspace tracking of fast time-varying channels in
precoded MIMO-OFDM systems," in Proc. IEEE Int. Conf. on Acoust., Speech and Sig-
nal Process., Apr. 2009, pp. 2565-2568.
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C-3) C.-C. Tu and B. Champagne, "Subspace blind MIMO-OFDM channel estimation with
short averaging periods: performance analysis," in Proc. IEEE Wireless Commun. Network-

ing Conf., Mar. 2008, pp. 24-29.

C-4) C.-C. Tu and B. Champagne, "Subspace-based blind channel estimation for MIMO-
OFDM systems: reducing the time averaging interval of the correlation matrix," in Proc. IEEE

Int. Symp. on Pers. Indoor Mobile Radio Commun., Sept. 2007, pp. 1-5.

1.4 Thesis organization

An introduction to MIMO-OFDM systems is given in Chapter 2, along with an overview of
various radio propagation effects in the mobile radio channels. In order to characterize the
channel parameters to be estimated, a brief review of channel models that are largely used
to generate channel parameters for numerical experiments is addressed in a later section.

In Chapter 3, the motivation for channel estimation in a wireless system is recapitulated.
This is accompanied by a discussion on its alternatives, namely the non-coherent and
differential techniques, in which the CSI is not required at the receiver side. Then various
channel estimation methods, including pilot- and blind-based approaches for MIMO-OFDM
systems are enumerated and discussed in detail. This chapter is concluded by addressing
the state of the art of blind channel estimation in terms of its performance and associated
limitations.

In Chapter 4, we propose a new subspace-based estimation scheme to improve the afore-

mentioned deficiencies. This therefore leads to the first contribution of the thesis, in which
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a new subspace-based algorithm relieving the limitation of a subspace-based estimation is
proposed. The identifiability condition, asymptotical performance bound and Cramer-Rao
bound of the proposed estimator are also presented.

Due to the high computational complexity incurred in the eigenvalue decomposition
and the need to identify time-varying channels, the proposed algorithm is further extended
to incorporate the idea of subspace tracking, in which the subspace information is updated
rather than recomputed for a new channel estimate. In chapter 5, we focus on analyzing the
convergence properties of the so-called orthogonal iteration method, which will be employed
for tracking the subspace of interest. Then we propose a new time-varying channel tracking
algorithm in Chapter 6, leading to the second contribution of the thesis. Specifically, the
assumption of the wireless channel considered is further relieved to be only quasi-stationary
within one OFDM symbol. Numerical results of the proposed algorithms are then presented

in Chapter 7, and conclusions are drawn in Chapter 8.
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Chapter

Background: MIMO-OFDM system and

channel models

In this chapter, we first introduce the MIMO-OFDM system model under consideration.
Then, an overview of various radio propagation effects and their modeling is given. This
includes a discussion on the concepts of channel delay profile and channel coefficient char-
acterization, which play a central role in the channel estimation problem. The chapter
ends with a brief review of some important wireless channel models that are widely used

nowadays for numerical experiments.

2.1 Introduction to MIMO-OFDM transmission systems

Demands for higher capacity in wireless communications, driven by high data rate appli-
cations and multimedia services, are never ceasing [56]. However, the available frequency
spectrum is limited and the high capacity needs of these new applications cannot be fulfilled
without a significant increase in the communication spectral efficiency [62].

With the advances in channel coding schemes such as turbo codes [63] or low density
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parity check (LDPC) codes |64], Shannon capacity can be approached with single antenna
[18]. However, the use of MIMO systems can further push the fundamental capacity limits
with the same SNR, compared to the single antenna systems |62]. MIMO systems are
created by deploying multiple antennas at both ends of a wireless link, i.e. transmitter
and receiver sides. Using multiple antennas in wireless communications has been proposed
to increase channel capacity; research results |65, 66| have shown that channel capacity
increases linearly with the number of antennas deployed at both the transmitter and re-
ceiver sides under ideal propagation scenarios, where channel coefficients are modeled as
independent complex Gaussian random variables. Hence, by suitable coding designs, large
gains in capacity over wireless communications are feasible in MIMO systems as compared
to traditional SISO systems; however, if we consider a broadband communication system,
then conventional SC modulation will inevitably incur a high complexity for the MIMO
detection.

OFDM provides a good solution to this problem. Indeed, by combining the advantages
offered by MIMO and OFDM, the broadband frequency selective fading MIMO channel can
be treated as a collection of multiple independent flat fading MIMO sub-channels, which
greatly reduces the complexity of the MIMO detection. To date, OFDM has been widely
adopted into various standards, including the European digital audio broadcast (DAB)
|67 as well as the digital video broadcast (DVB) scheme [68]. It was also selected as the
high performance local area network Type 2 standard (HiperLAN/2) [69] as well as part
of the IEEE 802.11a/b/g wireless local area network (WLAN) standard [56|. Furthermore,
it has been included in the Super-3G mobile radio standards, and has also being in the
standardization process of 3GPP LTE [15]. In the following, we introduce the OFDM

system model for a SISO channel first, and then extend the concept to MIMO channels.
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2.1.1 SISO-OFDM

OFDM belongs to a family of transmission schemes called multi-carrier modulation, and
is very attractive for broadband wireless systems which encounter large delay spread [4].
Its main idea is to divide the serial input data stream into a number of parallel streams
and then modulate each stream on separate carriers, and transmit these low-rate parallel
streams simultaneously. By doing so, the delay spread is only a small fraction of the
symbol duration, which considerably simplify the task of channel equalization. A cyclic
prefix (CP) can be applied to each OFDM symbol to remove intersymbol interference
(ISI) with a small penalty in channel capacity [70]. In addition, these separate carriers,
often called subcarriers, are allowed to overlap in the frequency domain by maintaining
orthogonality of their corresponding time domain waveforms over the symbol duration. As
a result, the bandwidth efficiency of OFDM is very high. Moreover, the CP enables the
use of fast Fourier transform (FFT) for OFDM implementation, and thus greatly reduces
the hardware complexity [7].

In the following, we describe more details regarding the operation of a OFDM transmis-
sion chain. To this end, we assume that the channel impulse response of the SISO channel
under consideration is represented as h(l), L =0,1,--- , L —1, where L denotes the channel
order. In addition, we assume x [2]0] z[1] -+ z[Ne — 1]]* denotes a data vector to be
transmitted over the SISO channel, with E[|z[k]|?] = 1. The OFDM modulation illustrated
in Fig. 2.1 can be described as follows:

The transmitter first performs an inverse fast Fourier transform (IFFT) operation on

the data vector x. Thus, the output of the IFFT operation can be denoted as x = Dx,
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X X y y
X IFFT CP )x{ FFT y
Fig. 2.1 A simple illustration of the OFDM modulation.
where D is an Ng X N¢ matrix with the (m,n)th entry defined as
Dl = = exp(—52n(m — 1)(n — 1)/Ne) (2.)
mn = ——exp(—j2m(m — 1)(n — c). :
v Ne

In this thesis, the entries of the matrix D are normalized such that the latter is unitary,
i.e. DD¥ = 1. Then a new data vector X is constructed by appending the CP of length
N, > L —1, which consists of the last N, symbols of x, to the data vector x itself. Hence,

/ def [Z[Ne — Ny -+ Z[Ne —1] Z[0] - -+ Z[Ne — 1] ]7; this vector is

x can be written as x
serially transmitted beginning with the symbol Z[N¢ — No,).

Assuming perfect symbol synchronization, the received data vector y', corresponding
to the transmitted sequence x , is of length N¢ + Nep+ L —1, as a result of the convolution
of the transmitted sequence convolved with the channel impulse sequence of length L. The

receiver’s first task is to strip off the CP from y and then collects No samples of the

received signal to construct a new vector y. The latter satisfies

y = Gx +n, (2.2)

where 1 is the zero mean circularly symmetric complex Gaussian (ZMCSCG) noise vector



2 Background: MIMO-OFDM system and channel models

18

with covariance matrix 02Iy,,, and G is an N x (Ng + N, — 1) Toeplitz matrix defined as

(0 . 0 RI-1) hO) 0 0 0
0 0 0 h(IL-1) h(0) 0 0
G = :
0 0o 0 0 A(L-1) ho) 0
K 0 0 0 0 A(L-1) h0) |

(2.3)
where the first V., — L + 1 columns are zeros vectors, resulting from our choice of the CP
such that N,, > L — 1. Since the first N,, samples of the data vector x are identical to its

last N, samples, (2.2) can be re-written as y = G.X + @1, where

h(0) 0 0 0 h(L-1) h(1)
h(1) h(0) 0 .- 0 0
h(1) h0) 0 0 0 h(L—1)
& WL —1) h(1) 0 0 0 |
0  h(L-1) h(0) 0
0  A(L-1) h(1) h0) 0 0
0 0
0 0 0 h(L—1) h(1)  h(0) |

where G, is now an No x Ne matrix whose circular structure plays an important role in
the study of OFDM system. Indeed, we first observe that G. being circulant, its EVD may
be expressed as G, = DHQD, where Q@ % diag (h[0] A[1] -+ R[N¢ —1]) and

L—

hlk] = Zh(l) exp(—j2nlk/Ne), k=0,1,2,--- No — 1,
=

—_

(2.4)
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with h[k] being the sampled frequency response of the kth sub-channel.
In order to recover the transmitted symbols, the receiver performs a fast Fourier trans-
form (FFT) on the data vector y. Thus, the output of the FF'T operation can be denoted

as y = Dy, and re-written by

—CDE 1R —DDH H -
y=D(Gx+n)=DD QDD ~X—I—Dn—QX—I—n, (2.5)
-G, =X

where we have used the fact that DD¥ = Iy, and n ' Dfi. Note that n is still a
ZMCSCG noise vector with covariance matrix o2Iy,..

Since  is a diagonal matrix, the kth entry of the vector y in (2.5) can be expressed by
y[k] = h[k]z[k] + n[k], k=0,1,2,--- ,Nc—1, (2.6)

where n[k] denotes the kth entry of the vector n. Therefore, we observe that the use of a
CP in conjunction with the IFFT and FF'T operations at the transmitter and the receiver,
respectively, decouples the wireless channel into N parallel sub-channels.

Having discussed the basic principle of OFDM modulation for SISO channels, we now

explain how this modulation schemes may be extended to MIMO channels.

2.1.2 MIMO-OFDM

We now extend the above discussion to a MIMO channel with Ny transmit antennas,
Npg receive antennas. The MIMO channel is depicted in Fig. 2.2. Let the symbol to be
transmitted at the gth transmit antenna over the kth subcarrier be z,[k|, ¢ = 1,2, , Np.
Similar to the case of SISO-OFDM, the data block to be transmitted over each transmit

antenna is first subject to an IFFT operation followed by the CP insertion. At each of the
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T = =7

Ny 77 ;ég ‘231 Tﬂ%

Fig. 2.2 A simple illustration of an Ny x N multiple-input multiple-output
channel.

receive antenna, the CP is discarded and then followed by an FFT operation. Therefore,
for the considered MIMO-OFDM system, the signal received at the pth receive antenna

over the kth subcarrier is given by

B[k = 3 ke [K] + mylK], p=1.2,- Ng. (27)

g=1

where hy, k] denotes the channel gain between the gth transmit antenna and the pth
receive antenna over the kth tone, and n,[k] represents the ZMCSCG noise at the pth
receive antenna over the kth subcarrier.

Let x[] & [a1[k] aafk] -~ an, [K1]7, and x < [x[0) <1 - xNe — 17 be

a block of data transmitted over this MIMO channel at a given symbol epoch. It fol-

T
lows that the received data block y % [y[O]T y[1]" - y[Ne - l]T} , with y[k] o
yilk|l yolk] -+ yn,|k T, can be related to x according to
[ n g
y = Hx +n, (2.8)
T

wheren © | n[0]” n[1]7 -+ n[Ne — 1) | with n[k] € [ny[k] nolk] -+ nw,[k]]", and
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H Y diag (H[0] H[1] --- H[N¢ — 1] ), with diagonal blocks defined as

haalk]  hiplk] <o hing K]
H[k] = h%[k] hz’%[k] h2’N_T[k] € CNwxN, (2.9)
| hwgalk]l hgolk]l - B[R]

If we choose the subcarrier spacing judiciously, MIMO-OFDM decomposes the frequency
selective channel of bandwidth B into N¢ frequency flat fading MIMO sub-channels, each
with bandwidth B/N¢. However, due to the CP insertion, (MIMO-)OFDM transmission
in average incurs a loss in spectral efficiency of N.,/(Nec + Ng,); e.g., in IEEE 802.11a
standard for WLAN, the efficiency loss due to the CP insertion is no more than 20% |71].
Nevertheless, this loss is negligible if No > N,,.

To describe the input-output relationship for the SISO-OFDM system in (2.6) and
MIMO-OFDM system in (2.8), we have assumed that the channel impulse responses or their
corresponding channel gains, i.e., h[k]’s and h,, ,[k]’s, are readily available. Nevertheless, to
formulate these quantitative terms from a practical wireless channel encompassing various
propagation effects are never trivial. In the following, we give an overview of the most
prominent wireless propagation effects, and then present how suitable models of channel

impulse responses or their corresponding channel gains can be developed on this basis.

2.2 The wireless propagation channel

In wireless communication systems, information is transmitted from the emitter to the
receiver in the form of radio waves propagating through the so-called wireless propagation

channel. The channel distorts the transmitted signal in an unpredictable way, and thus
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places fundamental limitations on the performance of the wireless communication systems.
Hence, the receiver can only recover the information by employing channel estimation or
equalization techniques.

To characterize the distortion imposed on the transmitted signal, we need to under-
stand the aforementioned propagation environment, which can be suitably described as an
idealized phenomenon in which a signal propagating through the wireless channel arrives
at the destination along a number of different paths. Except for the simple line-of-sight,
propagation along these paths is severely obstructed by buildings, mountains, and foliage,
which results into scattering, reflection and diffraction of the radiated energy by objects in
the environment or refraction in the medium, and hence can influence path loss and fading
models differently. In addition, as a mobile station moves in space, the speed of the mobile
impacts significantly on how rapidly the signal level fades, and therefore contribute to an

extremely random mechanism that do not offer easy analysis.

2.2.1 Propagation mechanism

In general, propagation models can be broadly categorized as large scale or small scale.
A large scale model mainly focuses on predicting the average received signal strength at a
given distance from the transmitter, and thus is useful for estimating the radio coverage area
of a transmitter. On the other hand, a small-scale model describes the rapid fluctuations
of the received signal strength over very short travel distances or short time duration, and
thus is useful for evaluating the performance of a transceiver chain. In the following, we

introduce the large scale and small scale models respectively.
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Large scale model

Large scale model designates the average signal power attenuation over large areas. The
total signal attenuation caused by wave propagation along a transmission path is often
referred to as path loss. In a free-space model, the power received by a receive antenna that
is separated from a transmit antenna by a certain distance d can be calculated by the Friis

free-space equation |72, which described as follows

>\ 2
oy (m) G/G,. (2.10)

where P;, P, denote the transmitted and the received powers respectively, A is the wave-
length, Gy, G, represents the antenna gains of the transmit and receive antennas respec-
tively. The Friis free-space equation establishes that the received power is reduced as a
function of the square of the distance between the transmitter and the receiver. However,
in a typical cellular wireless channel, free-space propagation seldom happens. Besides free-
space propagation loss, reflection, diffraction, and scattering also affect propagation. These
three mechanisms contribute to the large scale signal attenuation in different degrees.

Reflection, diffraction, and scattering are main propagation mechanisms which impact
propagation in a mobile communication system. Reflection occurs when a propagating
electromagnetic wave hits an object which has very large dimensions when compared to
the wavelength of the propagating wave, as in the case of a radio wave bouncing from the
surface of the earth, buildings, walls, and so on. Reflection is the major cause of multipath
effect in wireless communication channels.

Diffraction occurs when the electromagnetic wave propagation path is obstructed by
a surface that has of many sharp irregularities or edges. The secondary waves resulting

from the obstructing surface are present throughout the space and sometimes behind the
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obstacle, giving rise to a bending of waves around the obstacle, even when a line-of-sight
path does not exist between transmitter and receiver. Diffraction takes place less often
when carrier frequency is higher, as the electromagnetic waves behave more like particles
rather than waves.

Scattering occurs when the medium through which the wave travels consists of objects
with dimensions that are small when compared to the wavelength of the propagating wave,
and where the number of obstacles per unit volume is relatively large. Scattered waves
are usually generated by rough surfaces, small objects, or other irregularities in the radio
channel. In practice, foliage, street sign poles and lamp posts induce scattering in a radio
propagation channel.

Even if line-of-sight transmission does occur, the combination of the signal components
from the propagation mechanisms above, will prevent the received signal from obeying the
free-space propagation law and will eventually resulting in a larger attenuation than what
is predicted by the Friis free-space equation alone. While difficult to calculate exactly, the
actual path loss is often modeled as a function of the distance between the transmitter
and the receiver raised to the path loss erxponent. In this case, the received power is now

represented as

A Y
P.=P (m) GG, (2.11)
with the path loss exponent v > 2. It should also be pointed out that the aforementioned
three major propagation mechanisms always come together instead of individually. The
combined effect of the three propagation mechanisms will make the signal received behave
like a random process.

In practice, the obstacles can be very different from one location to the other. The ac-

tual path loss measurements may thus vary greatly from the average. Experimental results
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suggest that the path loss measured at any location is random and distributed log-normally
around a mean path loss value with a given standard deviation. The random variation is
often referred to as log-normal shadowing |72]. Typical values for the path loss exponent
and the log-normal shadowing standard deviation have been tabulated for different envi-
ronments, based on experimental measurements; the path loss exponent typically varies

between 2 to 6 [1].

Small scale model

The small scale model, also referred to as small-scale fading, is used to describe the rapid
fluctuations in received signal strength over a short time interval or travel distance, so that
the large scale effects may be ignored. This phenomenon is caused by two or more images
of the transmitted signal which arrive at the receiver through different paths with slightly
different time delays, amplitudes, and phases. These waves, called multipath waves, give
a resultant signal which can vary significantly in amplitude and phase, depending on the
distribution of the intensity and relative propagation time of the waves, as well as the
bandwidth of the transmitted signal [3].

In urban areas, giving the height of the mobile antennas is normally well below the
height of surrounding structures, significant fading takes place since there is no line-of-
sight propagation to the base station. Nevertheless, even when a line-of-sight exists such
as in rural areas, multipath still occurs due to reflections from the ground and surrounding
structures. The multipath structure, combined with the motion of the receiver, transmitter
or surrounding objects in the radio channel, gives rise to variations in received signal
amplitude as a function of time. These variations are usually described using standard
statistical models, whose validity is proven through numerical experimental measurement

campaigns over years. In the following, we introduce the most prominent properties induced
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by the small scale models.

Delay spread

The multipath effect lengthens the time required for the signal to reach the receiver, and
thus causes serious problems to the signal detection process at the receiver side. To depict
the multipath effect, an idealized and classical model is the so-called double negative ex-
ponential model, in which the delay separation between paths increases exponentially with
path delay, and the path amplitudes also fall off exponentially with delay [73].

In practice, the path delays as well as path amplitudes may show a considerable vari-
ability from the classical model. Nevertheless, we can examine the multipath effect by
measuring the quantitative properties of a given multipath intensity profile or spectrum
Upe(T), i.e., the average power of the channel output as a function of delay 7. Firstly, the
mazximum excess delay is defined to be the time delay during which multipath energy falls
from the maximum to a level xdB below. That is, the maximum excess delay is defined as
T. — To, Where 7y is the propagation delay of the first arrived and 7, is the maximum delay
at which a multipath component is within xdB of the strongest arriving multipath signal.
The value of 7, is sometimes called the excess delay spread, but in all cases it must be
specified with a threshold that relates the multipath noise floor to the maximum received

multipath component. Secondly, the average delay spread T is given by

o Tpe(T)dT
o Ppe(T)dr

7= (2.12)

where 7,,,, is the maximum path delay, i.e. beyond which it is reasonable to assume

tpe = 0. Finally, the root mean square (RMS) delay spread of the channel, 7., is defined
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as

Toms = \/ Jo™ (r = 7)*oe(r)dr. (2.13)

OTmaac wDC(T)dT

Note that these delays are usually measured relative to the first detectable signal arriving
at the receiver, i.e. assuming 79 = 0. In addition, they are defined from a single multipath
intensity profile, which is the temporal or spatial average of impulse response measurements
collected and averaged over a local area. In practice, to determine the statistical range of
multipath channel parameters for a mobile communication system, many measurements
are conducted in various local areas over a large scale area, e.g., three multipath channels,
in terms of low, medium, and high delay spread case, respectively, are defined by IM'T-2000

for each environment |72|.

Coherence bandwidth

The coherence bandwidth is another important measure of the mobile wireless channels,
and is related to the multipath structure of the channel. It is a statistical measure of the
range of frequencies over which the channel frequency response can be considered nearly
constant (i.e. "flat") [2]. It can be practically defined as the maximum frequency difference
for which two signals transmitted through the mobile wireless channels remain strongly
correlated.

If the coherence bandwidth B. is defined as the bandwidth over which the frequency
correlation function is above 0.9, then the coherence bandwidth is approximately B, ~
1/(507,ms). If the definition is relaxed so that the frequency correlation function is above
0.5, then the coherence bandwidth is approximately B, ~ 1/(57.,s) [1]. It is important to
note that the relationship between coherence bandwidth and RMS delay spread remains

empirical in nature, as B, can be defined in different ways.
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As the typical value of RMS delay spread is less than 0.05us in flat rural environments,
0.2us in urban areas, and 2 ~ 3us in hilly terrains, respectively, the coherence bandwidth
varies from several MHz to a few hundred kHz, depending on the terrain; nonetheless, for
a particular multipath channel, its coherence bandwidth according to a given definition is

always fixed.

Frequency flat and selective fading

A mobile wireless channel is said to be frequency flat fading, if the signal bandwidth is
comparable to or smaller than the coherence bandwidth of the channel. On the other
hand, if the signal bandwidth is larger than the coherence bandwidth, the channel is said
to be frequency selective fading.

In frequency flat fading, the mobile wireless channel has a constant gain and linear
phase response over a bandwidth which is greater than the signal bandwidth. Therefore,
the spectral characteristics of the transmitted signal are preserved at the receiver, and so
the flat fading channels are sometimes referred to as narrowband channels. However, the
strength of the received signal may change over time, due to the fluctuation in the gain
of the channel caused by the multipath effects. Seen from the time domain, flat fading
occurs when the symbol duration of the transmitted signal is much longer than the delay
spread of the flat fading channel and the multipath signal replicas are thus "unresolvable".
Hence, the intersymbol interference (ISI) will not happen since the delayed replicas of the
current symbol will not overlap with the next symbol. Nevertheless, it should be noted that
a flat fading channel can also experience deep fades from time to time due to destructive
superpositions of multipaths, and thus it may require 20 to 30dB more transmitting power
to compensate the losses due to the deep fades. Therefore, additional processing techniques

are necessary to counteract such negative effects.
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Different from flat fading, frequency selective fading will cause different attenuations in
the received signal at different frequencies, and so the propagation channels are sometimes
referred to as wideband channels in this case. In the time-domain, the channel impulse
response has a multipath delay spread which is greater than the symbol duration of the
transmitted signal. Hence, the received signal includes multiple "resolvable" versions of the
transmitted symbol waveform that are attenuated and delayed in time whose net effect is

to induce ISI at the receiver side.

Doppler spread

Doppler spread is a measure of the spectral broadening caused by the mobility in the
channel, and is defined as the range of frequencies over which the received Doppler spectrum
is essentially nonzero |2|. When only a pure sinusoidal tone of frequency f. is transmitted,
the received signal spectrum will have components in the range f.— f; to f.+ f4, where f; is
the Doppler shift, defined as f; = (v/\) cosd, with v, A, and 0 denoting the relative mobile
speed, the wavelength of the carrier, and the angle between the mobile moving direction
and the LOS from the transmitter to the receiver, respectively. In this simplified scenario,
the Doppler spread can be simply expressed by 2f;. Hence, it is clear that the Doppler
spread depends on the relative speed of the mobile v and the angle 6.

If the distribution of the Doppler spectrum is available, then this knowledge can be taken
into consideration when measuring the Doppler spread. Let the Doppler power spectrum
be denoted as 1p,(r), where v represents the Doppler frequency shift. Thus, the Doppler
spread can be computed by the RMS bandwidth of ¢p,(v), defined as

Vrms = \/ Ji Vf_wVD ol )dy, (2.14)
f O
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where v is the average of the Doppler frequency given by

[ vibpo(v)dy

NRTSr (2.15)

U=
and F represents the interval in which the spectrum is nonzero.

Concerning the distribution of the Doppler power spectrum ¢p,(v), if one assumes an
idealized, uniformly distributed scattering around a terminal with vertical electromagnetic
field for the receive and the transmit antennas, then the Doppler spectrum has the classical
U-shaped form and is approximated by the Clarke’s model [18, 74]. However, in reality,

the Doppler spectrum can show considerable variations from this idealized model.

Coherence time

Coherence time is the time domain dual of the Doppler spread and is used to characterize
the time-varying nature of the mobile wireless channel. It is a statistical measure of the
time duration over which the channel can be considered unchanged. In other words, two
signal samples separated by an interval longer than the coherence time can be considered
independent to each other. When this occurs, the channel is considered to change signif-
icantly during the transmission of the signal, thus introducing a form of distortion in the
received signal.

Similar to the relationship between the coherence bandwidth and the delay spread, a
unique, standard relationship between the coherence time and Doppler spread does not
appear to exist. Nevertheless, the coherence time 7. is typically related to the direct
inverse of the Doppler spread and can be approximated as T, ~ 1/(2f,,), where f,, is the
mazximum Doppler shift given by f,, = v/A. If the coherence time is defined as the time over

which the time correlation function is above 0.5, then the coherence time is approximately
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T. =~ 9/(167f,) |75]. A popular rule of thumb is to define the coherence time as the

geometric mean of 1/(2f,,) and 9/(167f,,), i.e. T. = 0.423/ f,,, [1].

Slow and fast fading

Depending on how rapidly the transmitted signal changes as compared to the rate of change
of a mobile wireless channel, a channel may be categorized as either slow or fast fading [18].
Specifically, the channel is slow fading if the symbol duration is smaller than the coherence
time; otherwise, the channel is fast fading. It should be clear that the relative speed of the
mobile (or that of objects in the channel) and the symbol duration determine whether a
signal undergoes slow or fast fading.

In a slow fading situation, the channel may be assumed to be static over one or several
symbol durations, which is also called the block fading channel. In the frequency domain,
this implies that the Doppler spread of the channel is less than the bandwidth of the
baseband signal. In this case, a particular deep fade will affect consecutive symbols, leading
to the so-called burst errors.

In a fast fading channel, on the other hand, the channel impulse response changes
rapidly within the symbol duration. This causes frequency dispersion due to the Doppler
spread, which may lead to severe signal distortion. Therefore, we can conclude that the
fading speed is of great importance to determine the suitable estimation and detection

strategies in many communication applications.

2.2.2 Delay profile and impulse response

The small scale fading of a mobile wireless channel can be fully characterized by the time-
varying impulse response of the channel, where the time variation is due to receiver or

transmitter motion in space. Once the impulse response of a particular mobile wireless
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channel is available, it can be used to simulate or analyze any type of radio transmission
systems through this channel.

In the following, we show that a mobile wireless channel can be modeled as a linear
filter with a time-varying impulse response; the specific modeling of the impulse response is
discussed in the next section for various channel generation models of interest. Without loss
of generality, we consider that the time variation of the channel is due strictly to receiver
motion in space. Therefore, at a certain position d of the receiver, the channel can be
modeled as a linear time invariant passband system, and is expressed by hy,(d,t); this is
due to the fact that the received multipath waves are arrived at the receiver with different
propagation delays, amplitudes, and phases as its spatial location is changed. Hence, if
x(t) represents the transmitted signal, the received signal y(d,t) at the position d can be

expressed by

y(d,t) = x(t) * hpp(d, t) = / (AN hpp(d, t — N)dA, (2.16)
where * denotes the convolution operation. Since the position of a moving receiver is also

function of time ¢, i.e. d = d(t) and the receiver moves along at a constant velocity over a

short time (or distance) interval, we can arrive at [1, p.144|

y(d(t),t) = y(t) = /_OO x(t — 7)hpy(7,t)dT = 2(t) * hp(7, 1), (2.17)

[e.e]

where h,, (7, t) represents the impulse response of the passband time-varying multipath chan-
nel, with the variable ¢ representing the time variation due to motion, and 7 representing
the multipath delay for a fixed value of ¢.!

For passband wireless transmission, it is convenient to represent the signals of interest

'The impulse response of a linear time-varying channel hy(7,t) is the channel output at ¢ in response
to an impulse applied to the channel at ¢t — 7 [76].
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in terms of a low-pass equivalent representation |77|. Let ¢(t) and r(t) denote the complex

envelope of z(t) and y(t), respectively, defined as

w(t) = R{c(t) exp(j2nfet)}, (2.18)

y(t) = R{r(t)exp(j2nfet)}, (2.19)

where f,. denotes the carrier frequency. Assuming the multipath channel is bandlimited,

we can then rewrite (2.17) into its complex envelope representation [1, 3|, i.e.,

r(t) = & / Tt = P D = %c(t) - (2.20)

—00

in which h(7,t) represents the complex baseband impulse response, corresponding to the
passband channel impulse response hy,(7,t). By doing so, we can remove the high frequency
variations caused by the carrier, thus facilitating numerical experiments and signal analysis.

For computational and analytical purposes, we can discretize the multipath delay axis
7 of the impulse response into the so-called excess delay bins, each with equal time delay
segments of width A7. In practice, we usually set the time delay of the first arriving
multipath component to zero, i.e. 75 = 0 by neglecting the propagation delay between
the transmitter and receiver. The time delay of the ith bin is then specified as 7, = AT,
1=20,1,--- L —1, where L represents the total number of delay bins.

Since the received signal in a multipath channel consists of a series of attenuated, time
delayed, phase shifted versions of the transmitted signal, the complex baseband impulse

response can be expressed as

T
)

h(r,t) = a;(1,t) explj (2 feori + ¢i(T, )]0 (T — T3), (2.21)

i

i
=)
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where a;(7,t) and (27 f.7; + ¢;(7,t)) are the real amplitudes and phase shifts, respectively,
of the ith multipath component at time ¢. If we focus on a short time (or distance) interval,
i.e., employing a processing window that is smaller than the channel coherence time, then
the channel impulse response can be assumed to be time-invariant, and thus it may be

further simplified as

h(T) = i a; exp(—j6;)0(t — ;). (2.22)

In the following, we briefly review some well-known channel models which are actually

developed on the basis of (2.21) and (2.22) to generate channel coefficients.

2.3 Overview of recent wireless channel simulation models

Modeling the radio channels has been one of the most challenging tasks of mobile radio
system design. To exactly describe a practical channel would be very difficult due to the
large number of variables involved. Hence, it is typical to resort to a statistical approach,
based on measurements made specifically for an intended transmission scenario or spectrum
allocation. In the following, we briefly review several wireless channel models that are

largely used in simulations and analyses.

2.3.1 3GPP spatial channel model

The 3GPP spatial channel model (SCM), assuming scatterers are separated into N = 6
clusters, each with M = 20 scatterers, is illustrated in Fig. 2.3 [78, 79]. In this model,
we assume that there are Ny transmit antennas at the base station (BS), and Ng receive
antennas at the mobile station (MS). The line of sight (LOS) direction is denoted by g,
referring to the bore-sight of the BS antenna array. The angle between the bore-sight of the

MS antenna array and the LOS is represented by 6,,5. The velocity of the MS is assumed
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cluster n

path m
\

AA MS array bore-sight

BS array bore-sight

Fig. 2.3 3GPP multiple-input multiple-output spatial channel model.

to be ¥ with direction 6,,.

In this model, every scatterer corresponds to one path, and therefore paths associated
with the same cluster are assumed to have the same average power and path delay. Con-
sidering the downlink transmission scenario, the mean angle of departure (AoD) and mean

angle of arrival (AoA) of paths in cluster n are denoted by ¢2 and §4

n?o

respectively; then

the AoD and AoA of the mth path in cluster n are respectively defined by

00, = Ops+dY +AD (2.23)

0 = Ous+0)+ AL, (2.24)

where ADand Al are the angle offsets with respect to the mean AoD and mean AoA,
respectively.

Finally, we can express the channel impulse response associated with the ¢th transmit
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antenna and the pth receive antenna as

hpq(T, ) = Z P (E)O(T — Ta(1)), (2.25)

where 7,,(t) denotes the delay spread associated with the nth cluster at some physical time
t, and hy 4, (t) represents the complex channel gain at time ¢ between the pth receive and

the gth transmit antenna, associated with the nth multipath, and is defined as

117 q,n \/7 Z \/GBS n,m \/GMS eXp(.jkdq Sln(eflz),m))

exp(j kd sin(92 ) T Pum]) exp(jK|| V]| cos(0 —0,)1), (2.26)

and parameters of the complex channel gain are defined in Table 2.1.

Table 2.1 Parameters of 3GPP-SCM complex channel gain.

P, power of the nth path

Ji square root of -1

k wave number 27 /X (A is the carrier wavelength in meters)
d, distance in meters from BS antenna element ¢ to the

reference (¢ = 1) antenna

d, distance in meters from MS antenna element p to the
reference (p = 1) antenna

D, phase of the mth subpath of the nth path

|| 7| magnitude of the MS velocity vector

0, angle of the MS velocity vector
Gps(0)),,) | BS effective antenna array gain
Gus(02,,) | MS effective antenna array gain
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2.3.2 COST-207 models

The COST-207 channel models were mainly developed for macrocellular applications.
Specifically, COST-207 introduces tap delay line models to represent the propagation chan-
nel within the framework of GSM developments (80|, i.e., for typical channel characteristics
of transmit bandwidths from 10 to 20 MHz, centered around 900MHz.

Based on large amounts of measured data, the typical average power delay profiles of
these models were defined for each kind of mobile environment. These can be generally

expressed by
N—-1

h(T) = Z a; 0(T — 7)), (2.27)

=0
where a; and 7; represent the complex gain and delay associated with the ith discrete
multipath component, respectively, and N denotes the number of multipath components.

Some notable 6-ray multipath delay profiles are shown in Table 2.2, including the typical
urban (TU), bad urban (BU), and hilly terrain (HT) scenarios |80]. Due to the simplicity
with which it describes a wireless transmission environment, the concept of the COST-207
models has been adopted as a basis for evaluating many other mobile wireless systems,

including the IMT2000, UMTS, and mobile DVB-T reception, etc.

2.3.3 Simplified tapped delay line models

The simplified tapped delay line (TDL) models, or transversal filters, are similar to the
previous COST-207 models, except that the taps are now symbol-spaced. The transfer

function of an mth order TDL model can be described as follows [81]:

H(z) =by+biz 7+ + bz ™ (2.28)
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Table 2.2 COST-207 typical urban (TU), bad urban (BU), and hilly terrain
(HT) 6-ray power delay profile.

Typical Urban Bad Urban Hilly Terrain
Delay (us) | Power profile | Delay (us) | Power profile | Delay (us) | Power profile
0.0 0.189 0.0 0.164 0.0 0.413
0.2 0.379 0.3 0.293 0.1 0.293
0.5 0.239 1.0 0.147 0.3 0.145
1.6 0.095 1.6 0.094 0.5 0.074
2.3 0.061 5.0 0.185 15.0 0.066
5.0 0.037 6.6 0.117 17.2 0.008

A TDL model includes many adjustable parameters, including choices of the number
of taps as well as tap coefficients. The tap coefficients of the TDL models can be either
correlated or uncorrelated; e.g., it is possible to incorporate spatial correlation in the TDL
models for multiple-antenna transmission systems [82]. Since the correlated TDL models
often lead to computational difficulties, the uncorrelated ones are more widely considered
in numerical experiments.

Generally speaking, in the TDL models, tap coefficients can be characterized as ZMC-
SCG [62] random variables. This can be justified by the central limit theorem on the basis
that fading is caused by the superposition of a large number of independent scattered com-
ponents. In the context of blind channel estimation, the TDL models are widely considered

to generate channel coefficients for estimation.
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Chapter

survey of recent developments on

MIMO-OFDM channel estimation

As we stated earlier in Section 1.1, modern technologies such as diversity techniques, beam-
forming, and spatial multiplexing can be applied to fully exploit the special structures of
the MIMO-OFDM systems when accurate CSI is available. In this chapter, we provide
further motivation to devise suitable channel estimation techniques to fully exploit the
advantages brought about by MIMO-OFDM. We then present an overview of existing ap-
proaches for channel estimation in wideband MIMO-OFDM systems with special emphasis
on subspace-based blind approaches. We conclude with a discussion of the limitation of

current subspace-based blind estimators.

3.1 Motivating the need for channel estimation

Before justifying the significance of CSI in the above mentioned techniques for MIMO-
OFDM, we digress slightly to overview several other detection techniques that do not

require CSI at the receiver.

2010,/07/30
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3.1.1 Coherent, noncoherent, and differential detections

In connection with the availability of CSI, there are mainly three types of communication
paradigms for the design of communication signals and their detection, namely: coherent,
noncoherent, and differential.

The first category, i.e. coherent signal detection, relies on the assumption that an ac-
curate CSI is available at the receiver side. However, this assumption may not always be
satisfied, particularly in mobile environments with relatively fast changing channel con-
ditions [83-85]. Hence, the remaining categories, i.e., noncoherent and differential signal
design and detection, which do not rely on this assumption, are suggested as alternatives
in such scenarios.

The second category, i.e., noncoherent signal detection, has been successfully introduced
for several MIMO applications. For example, an efficient and systematic construction
of full diversity noncoherent space-frequency codes was presented in [83]. However, its
performance is sensitive to the delay spread and the power delay profile. Another example
is provided by the design and use of the so-called training codes in MIMO systems [86].
Although the CSI is not required for signal detection, one may argue that the code design
"abuses" the terminology of noncoherent, by allowing part of its codeword to be known
to the receiver before transmission for the purpose of estimating the wireless channels.
Nonetheless, detection performance based on training codes is generally inferior to that of
coherent detection.

The third category, i.e., differential signal detection, has been widely used in practical
cellular mobile communication systems, such as IS-54, the 2nd generation standard digi-
tal cellular systems in North America. More recently, various differential techniques have

been proposed for MIMO systems, including a subcarrier-reconstruction-based approach
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[87], a differential space-time-frequency modulation |84], and a multiple-symbol differential
detection [85]. But similar to the case of noncoherent detection, a generally worse perfor-
mance than that of coherent detection is observed; moreover, a quasi-static channel (i.e.
slowly-varying) is also required for a successful detection [84, 85, 87, 88].

Thus, with penalty in achievable detection performance, the noncoherent and differential
detection techniques are specialized designs suitable for cases in which no accurate CSI is
available, a situation often justified on the basis that accurate CSI is difficult to obtain
in a relatively fast time-varying channel. However, this argument is questionable since
to a great extent, the availability of accurate CSI is mostly a matter of such resources
(e.g., computation, bandwidth) the system designer is willing to allocate to the task of
channel estimation. In addition, as we have seen above, the noncoherent and differential
techniques may be either too restrictive for certain power delay profiles, or impractical
in the requirement of quasi-static fading channels. It is therefore questionable whether
or not the noncoherent and differential techniques can replace the coherent ones in the
aforementioned scenarios.

To summarize the above discussion, we can conclude that if an acceptable estimation
performance can be achieved in the relatively fast time-varying channel with affordable
cost in resource, then there is no reason to give up the coherent techniques. Besides,
it is attractive to enjoy the various already well-designed and proven coherent detection

schemes.

3.1.2 The need for channel estimation in coherent detection

The prospect of operating MIMO-OFDM systems close to the Shannon capacity, as enabled
by the invention of various capacity-achieving techniques, relies heavily on the availability

of advanced channel estimation technique [89].
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It can be shown that when the CSI is known to both the transmitter and the receiver,
the so-called waterpouring or water-filling algorithm can be employed so that the resulting
capacity of the MIMO-OFDM channel is greater than (or equal to) that available when
the channel is unknown to the transmitter [62]. However, channel knowledge at the trans-
mitter is normally obtained through feedback from the receiver or based on the channel
reciprocity principle in a duplex system. Both approaches may be problematic from a
practical perspective. Feedback of channel information may consume excess amount of
bandwidth, especially for rapidly time-varying channels. Furthermore, in this latter case,
the channel information at the transmitter is likely to be outdated because of transmis-
sion and processing delays. Channel reciprocity has a very limited realm of applications:
Reciprocity in time is only possible for quasi-static channels, while reciprocity in frequency
is only applicable to narrow sub-bands within the coherence bandwidth of the wireless
channel.

In this thesis, our interest is in practical broadband MIMO-OFDM transmission over
time-varying channels. Therefore, in the following, we mainly focus on the scenarios in
which the CSI is only available at the receiver and not at the transmitter.

Some of the most prominent examples of detection technique that justify the need of
channel estimation in MIMO systems, include various recently proposed diversity and spa-
tial multiplexing schemes, such as space-time coding [90-92|, space-frequency (SF) coding
[93-96], space-time-frequency (STF) coding [97-100], and BLAST systems [101, 102|. Gen-
erally speaking, diversity techniques provide the receiver with multiple independent [ooks
or observations at the same transmitted signal, either in the space, time, frequency, polar-
ization, or a combination of the above domains. As each observation represents a diversity
branch, the probability that all branches experience a deep fade concurrently is reduced

significantly; thus, diversity techniques improve the link reliability and therefore reduce the
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bit error rate. On the contrary, spatial multiplexing techniques offer a linear increase in
the signaling rate by exploiting the parallel transmission of different information streams
from different antennas, without considering the link reliability or bit error rate.

To better explain the need for channel estimation in these techniques, consider the fol-
lowing simplified mathematical formulation. Let ;" [k] denote a symbol transmitted at the
gth transmit antenna over the kth subcarrier and the mth OFDM symbol time; this symbol
may represent part of the codeword that results from the application of a certain diversity
or spatial multiplexing technique. Without loss of generality, the codeword is assumed to
be block-based, i.e., it spans over multiple OFDM symbols from m = 1,2,---, Ng in the
time domain, multiple transmit antennas from ¢ = 1,2, --- , Ny in the spatial domain, and
multiple subcarriers from £ = 0,1,---, No — 1 in the frequency domain. Then on the basis
of (2.7), we can represent the signal received at the pth receive antenna over the kth tone

and the mth OFDM symbol as
Z kK +n7[k], p=1,2,---,Ng. (3.1)

Thus, the decision rule for maximum likelihood decoding to recover the transmitted code-

word is equivalent to minimizing the metric

Ne—1 Np Ng

DDA LED AT (3.2)

k=0 m=1 p=1

over all possible codewords and deciding in favor of the codeword that minimizes the above
sum. To this end, we can see that the CSI, i.e. the knowledge of the channel gains A}’ [k]’s
for all possible values of p, ¢, m, and k, is essential to implement the above decision rule.

Another implement example that justifies the requirement of channel estimation is the
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use of various beamforming techniques [6, 16]. In receive beamforming, signals are co-
herently combined with appropriate steering vectors at the receiver so as to enhance the
antenna array response in a preferred direction. The computation of the steering vectors is
normally performed by applying the singular value decomposition on a matrix constructed
from the CSI, and hence the latter is crucial to achieve the computation.

Having justified the importance of channel estimation in MIMO-OFDM systems, in the
following, we review and survey recent advances on related channel estimation techniques.
Specifically, we focus on the channel estimation and tracking of the MIMO wireless channels

in a wideband OFDM context.

3.2 Overview of channel estimation for wideband MIMO-OFDM

The good performance of MIMO-OFDM depends on its ability to deal with the frequency
and time selective nature of the wideband propagation channels [103], which in turn heavily
relies on the availability of the corresponding CSI, as obtained by means of a channel
estimation technique.

Generally speaking, channel estimation can be performed in two different ways, that
is: pilot-based and blind estimation [89]. In pilot-based channel estimation, known signals
or symbols are transmitted to assist the receiver in determining the required CSI. On the
other hand, a blind channel estimation method determines the CSI without the aid of
known symbols, and thus can achieve a higher bandwidth efficiency; however, it generally
comes with a penalty of slower convergence speed, reduced estimation accuracy, and higher
implementation complexity [104].

For the reasons stated above, one might erroneously conclude that there are limited

uses for a blind estimation technique in practice, since the dynamic requirement associated
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to the estimation of time-varying mobile channels further enhances the demands in terms
of convergence speed and implementation complexity. However, in many emerging wireless
standards, the transmission of overhead information such as these pilot symbols poses a
major burden to the data transmission. In fact, the merits of the high bandwidth efficiency
associated with the MIMO-OFDM systems can be greatly offset by overhead [105]. For
example, it has been shown that to maximize the overall transmission rate in a BLAST-
MIMO system, half of the available interval is used for training [102].

Hence, if a blind channel estimation technique can be devised to possess fast convergence
speed with acceptable performance and a reasonable complexity, then it can replace pilot-
based channel estimators, and be embraced by future wireless standards for the purpose
of meeting the demand of high transmission rate. For completeness, both pilot-based and

blind channel estimation techniques are further reviewed below.

3.2.1 Pilot-based channel estimation

Pilot-based channel estimation can be broadly categorized as employing either continuous-
time sounding signals, i.e. pilot tones [89, 106-110], or a sequence of known symbols
inserted among data symbols, i.e. pilot or training symbols [103, 105, 111-113].

The first category of technique, i.e. those based on pilot tones, employ a continuous-
time waveform or tone to calibrate the multipath-induced effects in the receiver side [109].
For single-carrier systems, one generally needs to suppress the data signal power around
the desired pilot frequencies [114]. In one of the earlier pilot tone techniques, the so-called
tone calibrated technique (TCT), double sideband modulation is transmitted alongside the
pilot [106]. In addition, to make room for the pilot in the presence of Doppler shift, the
sidebands of lower frequencies relative to tone frequency must be shaped so as to have zero

response in the neighborhood of the DC signal. Other techniques, such as transparent tone-
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in-band (TTIB) [107], similarly notch out a spectral gap in the center of the data spectrum
for the placement of the pilot. An alternative possibility is the dual-pilot tone calibration
technique (DPTCT), in which a pair of pilots are symmetrically placed near the edges of the
channel and outside the data spectrum [108]|. For multi-carrier systems such as in OFDM,
not only the placement of the pilot tones but also the pilot sequences must be optimized
to obtain the minimal MSE of the least squares (LS) channel estimate. It has been shown
that the optimal pilot tones should be equipowered, equispaced, and phase-shift orthogonal
[89]. Although pilot-tone techniques lead to robust and simple receiver structures, a large
fraction of the transmitted power is wasted in these tones, and thus there has been a trend
away from these techniques in recent wireless standards.

In the second category of pilot-based channel estimation technique, i.e. those based on
pilot symbols, the receiver first extracts the channel transfer function at those times and
frequencies at which pilot symbols have been inserted. Then, the missing values of the
transfer function between the positions of pilot symbols can be interpolated by means of
filtering [89, 103, 115]. Note that performance of channel estimation is highly dependent
on the distribution of the pilot symbols in relation to the coherence time and coherence
bandwidth of the wireless channel. Thus, one needs to judiciously place the pilot symbols
not only to gain better estimation performance but also to reduce the resources allocated
to training. This is particularly important in a fast fading channel where pilots have to be
inserted frequently in order to track channel variations [113].

Generally, to obtain acceptable channel estimation for SISO-OFDM systems, the first
and the last subcarriers are modulated with pilot symbols. Then the other pilot symbols
are inserted at every n; subcarriers in the frequency direction and every n, OFDM symbols

in the time domain. The insertion periods n; and n, must satisfy the following conditions,
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which result from the sampling theorem [111, 116]:

1

1
< — < —
LY Ay A ok

(3.3)
where A f denotes the subcarrier spacing, 7,4, is the maximum path delay, 7" is the OFDM
symbol duration, and f,, is the maximum Doppler shift. The above conditions can be refor-
mulated into a more intuitive way, in terms of the coherence bandwidth and the coherence

time, respectively, as given by
ng < B./Af, ny <T,./T, (3.4)

where B. &~ 1/7,,4, represents the coherence bandwidth and 7. ~ 1/(2f,,) represents the
coherence time. The bandwidth efficiency is reduced by a factor of approximately 1/(nmny)
due to the insertion of pilots as above. However, to achieve a reasonable noise reduction
by filtering in the interpolation step, the density of the pilot symbols along both the time
and frequency axes should be larger than twice the minimum density mentioned from (3.4),
so that the channel transfer function is over-sampled. If multiple antennas are employed,
then the situation is getting worse since additional pilot symbols are needed to estimate
the channel transfer function between each combination of transmit and receive antenna.
More recently, significant efforts have been devoted to situations in which not all sub-
carriers are activated [117]. In these cases, the locations of the pilot symbols cannot be
equally spaced due to the so-called virtual carriers, i.e. subcarriers that are set to zero with
no any information being transmitted. Therefore, the optimal solution for the case of all
subcarriers are activated cannot be applied directly. One possible solution was obtained by

an iterative method to achieve minimum mean square error of the least squares estimate
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[118]|. However, in a time-invariant channel scenario (i.e., within one OFDM symbol period
in this case), the minimum number of pilots with this approach is still nearly twice as large
as the number of unknown channel coefficients. A more bandwidth efficient method was
proposed in [113], such that the minimum number of pilots required is only half of the
above method. However, no less than N7 L pilots are still required for a time-invariant
broadband wireless channel with channel order L.

With respect to a receiver with ideal CSI, the BER curves typically degrade by no more
than 1.5dB in SNR [111, 112], if a carefully designed pilot-based estimator is employed.
In the following, we discuss the possibility of achieving similar or even better system per-
formance by using a blind-based channel estimator, i.e. without employing specific pilot

symbols.

3.2.2 Blind channel estimation

Without the assistance and the expense of pilot symbols, blind-based channel estimation
presents a bandwidth efficient way to acquire the CSI needed for signal detection. Existing
blind estimation methods can be broadly categorized as deterministic or statistical.

Deterministic methods, the first category of blind approaches, are in general favored
when the input statistics are unknown, or there may not be sufficient time samples to
obtain suitable estimate of the required statistics. To date, several interesting deterministic
methods have been developed by, e.g., employing the maximum likelihood approach |32, 33],
exploiting null guard intervals [34, 35|, exploiting zeros of the channel impulse response [36],
or by using fractional sampling as well as interpolation |37|. However, most of them are for
SISO or single carrier exclusively, and hence are less applicable in the context of MIMO-
OFDM systems.

In the second category, blind approaches can be further sub-divided into two classes
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as follows: algorithms using higher order statistics (HOS) of the received signal, and al-
gorithms using only second order statistics (SOS). In general, HOS-based algorithms are
usually not considered for moderate to rapidly time-varying wireless channels, since a large
number of received samples is needed before the HOS estimates are reliable. Instead, SOS-
based algorithms can potentially achieve superior estimation performance for a given time
averaging interval than approaches using higher order statistics (HOS) [27-31, 119|.

Amid SOS-based blind approaches, subspace-based estimation is attractive since chan-
nel estimates can often be obtained in a simple form by optimizing a quadratic cost function
[38]. Without employing any precoding at the transmitter, a noise subspace-based method
is proposed for OFDM systems by utilizing the redundancy introduced by the cyclic prefix
(CP) [39, 40|, and it is further extended for MIMO-OFDM systems in |41]|. Virtual carri-
ers (VC) are subcarriers that are set to zero without any information being transmitted.
The presence of VC provides another useful resource that can be used for channel estima-
tion. Such a scheme is proposed for OFDM systems [42], and it is further extended for
MIMO-OFDM systems in [43, 44].

On the basis of the above considerations, we conclude that to meet the demands of future
wireless standards based on MIMO-OFDM, subspace-based blind channel estimation offers
an attractive solution in terms of both estimation performance and the required number of

time samples (i.e. OFDM symbols) to attain the performance.

3.3 Generalized subspace-based blind estimation

In the following, we present the concept of subspace-based blind estimation in mathemat-
ical term, and explore the problem of interests in this thesis, which results from current

limitations on the use of these estimators. Then, we overview some examples of subspace-
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based blind channel estimation methods that have been recently proposed in the signal

processing and communications literature.

3.3.1 The mathematical basis of subspace-based blind estimation

Blind channel estimation, which is based on the exploitation of the structure in the channel
and properties of the input, relies only on multiple observations of the channel output y
to identify the unknown channel parameters |28]. Specifically, the subspace-based blind
estimation problem, which uses the second order statistics of the observation, can be for-
mulated as follows. Let x € Y/ C C%*! be the input vector to a linear channel as shown in

Fig. 3.1.! The output of the channel s € C%*! can then be represented by

X — s = HX, (3.5)

where matrix H € C%*% (d. > d,) represents a linear transformation [120]. The image of
U, denoted by V, is the set {s = Hx for some x € U}. Assuming that dim[U | = ds and
matrix H is full rank, we have dim[V] = d,. The observation y € W C C9%*1 which is
the sum of channel output s and noise n, can be written as y = s + n.

Subspace methods rely on the assumptions that the observation space, i.e. VW, has
dim[ W] = d. > dim[U]. Only a second order statistical characterization of the input
vector x and noise vector n is generally involved. Without loss of generality, it is convenient
to assume that x and n have zero mean, i.e., E[x| = 0 and F[n] = 0, where E[-] denotes
statistical expectation. We denote by Ry = FE[xxf] and R,, = F[nn”] the correlation

matrix of x and n, respectively.

From the structure of the linear signal model in Fig. 3.1, it follows that R, = F[yy’],

'In practice, due to the finite alphabet property, the set & that encompasses all the possible input
vectors x is a proper subset of C%*1,
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Fig. 3.1 A generic blind channel estimation problem.

the correlation matrix of the observation, can be expressed as

R, = HR,H" + R,. (3.6)

Thus, provided that the noise correlation matrix is a sufficiently regular structure (e.g.,
R, = 021), it appears that relevant information regarding the channel parameters can be
obtained from the eigenvectors of R, .

Consider a practical situation in which several observations (or realizations) of random
vector y are available, and let y(;) denote the jth observation at some physical time ¢;. We

can estimate R, as

= Z MOMOE (3.7)

Under the stationary condition, Ry (and R,,) converges to Ry = E[yy”] (and R,) in the
mean square sense as the time averaging interval 7,, — oo [40]. Note that we can write
R, = f{y + ARy, where ARy denotes the difference between the {rue and the sampled
correlation matrix.

By applying an eigen-decomposition to Ry, we can obtain the signal and noise subspaces

from the span of the eigenvectors which correspond to its d, largest eigenvalues and d. — d
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smallest eigenvalues, respectively. Due to the inevitable noise perturbation and insufficient
time averaging, minimizing the cost function C(H) = tr[L(H)TWL*(H)] subject to a
quadratic constraint, i.e., L(H)LY(H) = 1, is usually employed to obtain the channel
coefficients, where the matrix W is constructed from the eigenvectors of the perturbed noise
subspace and the matrix £(H) is obtained by re-arranging the non-redundant elements of
‘H, depending on the dimensionality as well as the formulation of the matrix U. The details
of this step are application specific, i.e. the construction of £(H) and ®.

Let H, be the optimal such that C(H,) < C(H) under the chosen constraint. We have

C(M,)= min {tr [E(H)T\ilﬁ*(H)]} — i%(\i:), (3.8)
LH)L(H)T =T =

where vj(\i’) represents the jth smallest eigenvalue of U and r depends on specific algo-

rithms. To discuss the asymptotic behaviors of C(H,) as ||[ARy|| — 0 and ||[Ry| — 0,

let yj(\il) and 7v;(¥) be the jth smallest eigenvalue of U = ¥ — AW and W, respectively,

where W is constructed (in a similar way as W) from the error free noise eigenvectors of

R,. In this case, ¥ is perturbed by the amount AW due to an insufficient time averaging

interval. Since W and ¥ are Hermitian in the subspace-based problems, we have [121]
[75(¥) = 7 (®)] < [|AP]|5. (3.9)

First consider the case ||[ARy| > 0 and ||Ry| = 0, which corresponds to a noise-free
situation with finite time averaging; that is, W is perturbed by the amount AW due to
an insufficient time averaging interval. Here, since v;(¥) = 0, j = 1,2,---,r, we have

C(Ho) = 325 v(®) =370, 17, (®) — v;(®)| < 7||A®|,. While the exact relationship

between AW and AR, depends on the perturbation of the matrix U in a given problem,
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we can generally show for many cases of interest that ||A¥|y < afARy||2, where o« > 0
is a scalar. Therefore, C(H,) < ra||ARy||2 and the estimation performance is determined
by the closeness of the estimated correlation matrix to the true one.

Alternatively, consider the case ||[ARy| = 0 and ||R,|| > 0, corresponding to a noisy
situation but with infinite time averaging (7T, — 00); that is, ¥ is perturbed by the amount

AW due to the noise. Hence, we can also arrive at C(H,) < o |Ruy|l2, where a' > 0 is

2

a scalar. In the specific case of Ry = 021, we can arrive at C'(H,) < o|[Rul2 = o/02.
Therefore, in this case, when there is sufficient time averaging, the estimation performance
is determined by the noise variance. In both cases above, we conclude that C'(H,) — 0 as
ARy [ — 0 and [|Ru[| — 0.

In general, the performance of the channel estimator obtained from (3.8) largely depends
on our ability to discriminate between the d, largest eigenvalues of f{y and its d.—d smallest
(noise) eigenvalues. Since wireless channels are in general non-stationary, we cannot choose

an arbitrarily large T}, to estimate the correlation matrix. Nonetheless, this can be ensured

by requiring that 7,, > d. in a practical scenario, i.e., ||ARy| > 0 and ||R,]|| > 0.

3.3.2 Overview of recent subspace-based blind approaches

To date, several interesting subspace-based blind channel estimation methods have been
proposed. Concerning the linear transformation H in (3.5), it not only characterizes the
input-output relationship of a subspace-based blind problem, but also plays an important
role in the performance of the corresponding subspace-based blind channel estimator. In-
deed, the number of rows in H, i.e. d., is equal to the dimension of the correlation matrix
ﬂy, which is directly related to the minimum required time samples to estimate the corre-
lation matrix. The linear transformation matrix H of some notable subspace-based blind

channel estimators are briefly reviewed below.
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a) SISO/SIMO systems [38]

This seminal work proposed a subspace-based blind estimation approach either by means of
oversampling the received signal compared to the information data rate, or by using several
sensors. Although several other approaches using SOS had been proposed beforehand, this
approach is computationally more efficient, and can achieve a comparably or even better
statistical performance.

In [38], two possible scenarios are considered as explained below.

(1) Oversampling a single sensor: This scenario considers a SISO system, with an
underlying continuous-time channel impulse response h(t) assumed to have finite support.
The channel output vector is obtained by oversampling the continuous-time output at the
rate M /T, where T is the symbol period and M is the oversampling factor.

Assuming a temporal observation window of length NzT', the sampled output of the
SISO channel can be arranged in a vector s such that (3.5) is satisfied with a suitable

definition of H. Specifically, define the polyphase impulse response by
Wi Bty —i (T/M)—1T); 0<i<M—1, 0<I<L—1, (3.10)

where L denotes the channel order and %y is an appropriate reference time. The corre-
sponding linear transformation of the blind estimation problem can thus be characterized

as

H = [Hm)TH(l)T 0T ¢ MV x(Ne+L-1), (3.11)

where H® is defined as
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L1 hog 0 0
0 AL, Ry 0 0
3 (0) def : oo | e CNex(WptL-D), (3.12)
0 0 hi_, hi 0
0 0 [ hg_

(2) Multiple sensors: This scenario considers a SIMO system where M now denotes
the number of sensors or receiving antennas and h'(t), : = 1,2,---, M are the continuous-
time impulse responses of the propagation channel between the input and the ¢th sensor
output. Then the corresponding linear transformation also follows (3.11)-(3.12), except

def

that hi = h'(to —IT), 0 <1 < L—1, meaning that the ith sensor receives a signal that has

traveled through the ¢th propagation channel.

b) OFDM systems with cyclic prefix [39]

It can be shown that cyclostationarity in the received signal allows the receiver to blindly
identify the channel impulse response using only second order statistics [29]. In particular,
by exploiting the cyclostationarity embedded at the transmitter due to the insertion of a
cyclic prefix in each symbol, a subspace-based blind channel identification was proposed
for SISO-OFDM systems in [39].

In the notation of [39], the discrete-time impulse response of the SISO channel is denoted
as h;, 0 <[ < L —1. The output vector s consists of the sequence of time samples from
Np consecutive OFDM symbols, with each OFDM symbol of size N¢o + N,,, where N¢ is

the IFFT size and N, is the length of cyclic prefix (See Section 2.1 for details). Then the
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corresponding linear transformation of the blind estimation problem can be written as

[ b he 0 0|
0 hi, hoe 0 0
H=| | (3.13)
0 0 hiy ho 0
0 0 hi, ho

which is also a Toeplitz matrix of size (Ngp(N¢ + Nop) — L+ 1) X Np(Ne + Ngp).

c) OFDM systems without cyclic prefix [122]

Motivated by the multichannel signal model in single-carrier systems [38], another notable
blind approach for channel estimation was proposed in the context of OFDM systems
[122]. The method distinguishes itself from [39] mainly by eliminating the use of the CP
for channel estimation. Two possible scenarios are considered as follows:

(1) Oversampling a single sensor: In this case, the continuous-time channel A(t) is
assumed to be of finite support. If M and L denote the oversampling factor in the OFDM
system and the channel order, respectively, then for some reference time tg, the discrete-

time impulse response of interests are given as in [39] by

hi < h(ty — i (T/M) —1T); 0<i<M—1, 0<I<L-1, (3.14)

where 7' represents the duration of the No + N, individual time samples comprising each

OFDM symbol. The corresponding linear transformation of this blind estimation problem
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can thus be characterized as
H = |[HOTHOT .. .H(M—l)T]T € CMNe—L+DxNe. (3.15)

where H is defined in (3.12) but now has dimension (No — L + 1) x N¢. Note that in
this approach only the non-ISI corrupted time samples are used in the construction of s,
which explains the different size of H®.

(2) Multiple sensors: If M now denotes the number of sensors in a SIMO-OFDM sys-
tem, then by collecting only non-ISI corrupted OFDM time samples at each sensor and
stacking them, we can construct another multichannel signal model. The corresponding

linear transformation also follows the above case with A} def hi(to —1T),0<1<L-—1.

d) MIMO-OFDM systems [44]

With the growing popularity of MIMO-OFDM systems, an eminent subspace-based ap-
proach was proposed in [44]. Two possible scenarios are addressed as follows:

(1) MIMO-OFDM systems with Ng > Np: In this case, let the temporal window
of observations be N and h,,(t) denotes the continuous-time channel impulse response
between the gth transmit antenna and the pth receive antenna. The corresponding linear

transformation of the blind estimation problem can be formulated as

(W(L—1) -~  hO) o0 e 0]
0 h(L-1 ---  h(0) 0 - 0
H = : L Bas)
0 0 h(L-1) -  h0) 0
] 0 0 h(L—1) .- h(0)
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which is a block-Toeplitz matrix of size (NpQ — L+ 1)Ng x NpQNr, with Q = Ne + N,

) b))
R B A P~ (3.17)
_hNRl(l) hnga(l) -+ h'NRNT(l)_

and hy, 4(1) o hyo(to —1T), 0 <1 < L—1, where T" denotes the OFDM sampling period.
(2) MIMO-OFDM systems with Ny > Ny
In this case, an oversampling factor M is applied at the receiver with M > [Ny /Ng].

def

With 250 (1) < hyo(to — i (T/M) —IT), 0 < i< M —1,0 <1< L— 1, the Ith lag of the

oversampled-MIMO channel is represented as

RO h0) RO, (D)
RV RSV ()
O N1 () T ' W ()
h(l) = (M'l) (M'l) ' (M'l) . (3.18)
h271 (l) h2,2 (l) h2,NT (l)
hg\%,l(l) hg\%g(l) e h’g\(;I)g,NT (l)
) BN B (D)
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The corresponding linear transformation matrix is then characterized as
h(L —1) h(0) 0 0
0 h(L —1) h(0) 0 0
H= : (3.19)
0 0 h(L-1) h(0) 0
0 0 h(L—1) h(0)

which is of size M(NpQ — L+ 1)Ngr x NpQNr. Here, oversampling is introduced to ensure

that H is a tall matrix (i.e. full column rank), a condition needed in the application of a

subspace approach.

3.3.3 Summary of the notable subspace-based blind approaches

For future reference, we briefly summarize the above representative subspace-based esti-

mators |38, 39, 44, 122| in Table 3.1, in terms of the dimension of the signal subspace d,

the dimension of the noise subspace d. — d,, the size of the linear transformation matrix

‘H, and the dimension of the corresponding correlation matrix f{y, respectively.?

Table 3.1 Summary of dimensionality for some notable subspace-based blind
channel estimators.

Estimator dg d. — dg size of H dimension of R,
SISO (oversampling) [38] Np+L—1 MNp — Np — L +1 MNp x (Np + L — 1) MNp
SIMO (multiple sensors) [38] Np+L—1 MNp — Np — L +1 MNp x (Np + L — 1) MNg
SISO-OFDM (with CP) [39] NpNe NpNep — L+ 1 (Np(Ng + Nep) = L+1) X Ne(Ng + Nep) Np(Ng + Nep) — L+ 1
SISO-OFDM (without CP) [122] Neo M(N¢ — L+1) — No M(N¢ — L+1) x No M(No — L +1)
SIMO-OFDM (without CP) [122] No Nr(Ne — L+1) — Ne Nr(Ne — L+1) x No Np(Ne — L +1)
MIMO-OFDM (N > Np) [44] NpDN7p (NpQ — L +1)Ng — Np DNy (NgQ — L +1)Ng x NpQNp (NpQ — L +1)Ng
MIMO-OFDM (Np < Nr) [44] NpDNp M(NpQ — L +1)N — Np DNy M(NpQ — L +1)Ng x NpQNp M(NpQ — L +1)Ng

>The parameter D in [44] denotes the number of useful subcarriers in the OFDM systems.
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3.4 Limitations of current subspace-based blind estimators

In practice, to obtain the eigenvectors corresponding to the noise subspace in a subspace-
based problem, the correlation matrix R, must be estimated through time averaging over
multiple received samples y(;, 7 = 1,2,---,T,,. To this end, the unknown channel must
remain time-invariant throughout the averaging process, which may pose a serious problem
in practical applications.

Clearly, to obtain a sampled correlation matrix with full rank, the number of time
samples required must be no less than the dimension of the correlation matrix. Similar
considerations can be found in the literature, specifically in the context of minimum vari-
ance beamformers [123], large dimensional random matrices [124], and the persistence of
excitation assumption [25, 40]. Hence, when we consider the time invariance requirement of
a practical MIMO-OFDM system with a large number of OFDM subcarriers, e.g., No = 128
or more, the traditional subspace-based methods require extremely large number of time
samples for obtaining a good time-averaged correlation matrix, making them impractical.
Indeed, as can simply observe from the last column of Table 3.1, the dimension of the
correlation matrix in any one of the method in [39, 44, 122] is directly proportional to N¢,
i.e. the number of OFDM subcarriers.

More recently, variants of the statistics-based blind channel estimation methods have
been proposed, e.g., by inserting zero-padding instead of CP for each OFDM block [45], or
by introducing the so-called repetition index [46| and re-modulation [47| on the received
signal. However, the number of time samples required with these methods is still implicitly
proportional to the size of the IFFT, i.e. No. Regarding deterministic approaches, we
note that they still need to accumulate time samples in order to obtain channel estimates

algebraically, and their performance in noise improves as the number of time samples
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increases.

Therefore, as the time averaging interval T, is the major limitation on the quality of
the sampled correlation matrix, any subspace-based blind algorithm which uses a smaller
dimension of the correlation matrix may achieve a better estimation performance for a given
T,,. Equivalently, aiming at any reasonable estimation performance, a subspace-based
algorithm which uses a correlation matrix of smaller dimension generally requires a shorter
time average interval. In Chapter 4, to meet the demands of future wireless standards, we
propose a novel subspace-based algorithm for blind channel estimation in MIMO-OFDM
systems, in which the required dimension of correlation matrix can be significantly less
than those of the previously reported algorithms (that is, for the same system setup and
parameter values). This will be achieved mainly by exploiting the frequency correlation

among adjacent subcarriers in the MIMO-OFDM systems.
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Chapter

Subspace-based blind channel estimation with

reduced time averaging for MIMO-OFDM

In this chapter, to relax the time invariance requirement in practical MIMO-OFDM sys-
tems, we propose a novel subspace-based blind channel estimation algorithm with reduced
time averaging. This is achieved by exploiting the frequency correlation among adjacent
subcarriers in OFDM transmissions through subcarrier grouping [60], for which some sup-
portive field measurements can also be found in [61|. The resulting gain in performance
comes at the cost of an ambiguity matrix with larger dimensions; however, this dimension
can be easily reduced to the normal one when precoding is applied [125] (see also Section
6.3) or when the ratio of coherence bandwidth to the channel bandwidth is large.

In Chapter 7, through simulations over 3GPP-SCM wireless channels, the proposed
approach is shown to outperform the approach from [47]. In particular, it can achieve a
normalized mean square error (NMSE) of 107* on the channel estimates within only 50
time samples (when the SNR=15dB), which is also very competitive over the deterministic

approaches designed exclusively for SISO and single-carrier transmissions.
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In a nutshell, the contribution of this work is not only to show that the proposed
blind approach can work with a small number of time samples but that it may come with
improved performance and robustness over existing statistical and deterministic methods.

The chapter is organized as follows. Section 4.1 is devoted to the problem formula-
tion, including a description of the system under consideration. We introduce the proposed
subspace-based blind algorithm in Section 4.2. Identifiability conditions as well as perfor-

mance analysis of the proposed algorithm are given in Section 4.3.

4.1 Problem formulation

We consider a MIMO-OFDM system with Np transmit and Ng receive antennas, em-
ploying N¢ subcarriers, as depicted in Fig. 2.2. Let the mth OFDM symbol transmit-
ted over the kth subcarrier be denoted as x™[k] o [ [k] a[k] - 2, [K] ]T, where
xp'[k] is the symbol transmitted at the gth transmit antenna. Then the mth OFDM
symbol transmitted over the Ny subcarriers can be written in a concatenated form as
xm [Xm 0" xm[1]" - x™[Ng —1]" } T. The input vector, which represents an OFDM
block in our system setup, is assumed to consist of Ny OFDM symbols and thus can be
1T 2T XNFT}T

written as X = [x X

At the receiver, let the mth received OFDM symbol over the kth subcarrier be denoted

as y"[k] o [y (k] yelk] -y (K] }T, where y'[k] is the symbol received at the pth re-

ceive antenna. Then the mth OFDM symbol received over N subcarriers can be written as
T T

ym & [ym[O]T y™[1" - y™[Ng — 1]T} cand y = |yt y2" oo yNeTT represents

the observation. In addition, let n represent the additive noise structured in a similar way.
In the following, we assume that: (1) the length of the CP appended to each OFDM

symbol is longer than the maximum excess delay of the channel; (2) the channel is time-
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invariant at least over each OFDM block; and (3) the average power of the transmit symbol
alphabet is normalized: E [|z*[k]|?] = 1. Under these assumptions, the input-output rela-

tion of the MIMO-OFDM system may be expressed compactly by
y=HX+n, (4.1)

where the matrix H is defined as

H Y 1y, ® diag(H[0] - - - H[N¢ — 1)) (4.2)
with size (NgNcNp) X (NrNoNp) and the definition of diagonal blocks is given in (2.9).
In this chapter, our interest lies in the blind, SOS-based estimation of the channel

coefficients, i.e. {h,,[k]}, directly from multiple observations of random vectors y’s.

4.2 Subspace-based blind estimation

In the case of SOS-based blind approaches, the main concern is to estimate the correlation
matrix Ry = E[yy”| while meeting a certain level of confidence, and over a time averaging
interval as short as possible. We first briefly comment on the time averaging requirement in
the traditional approaches: For subspace-based algorithms that apply channel estimation
in the time domain and assuming N > Np (see e.g., |41, 44]), the channel matrix is block
Toeplitz and can be written as Hy;y = lL:_Ol B! @ H(l), where L represents the channel
order, B is an [(N¢+ Ngp,) Np — L+ 1] x (N¢ + N¢p) Np backward shift matrix [121] with N,
denoting the length of the cyclic prefix, and H(l) & (1/N¢) SNV Hk] exp(j2mkl /Ne),
i.e. the MIMO channel impulse response of the [th tap.

Then, the dimension of the correlation matrix of the observations is [(Ng + Ngp) Np —
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L + 1] Ng, which can be approximated by No NpNp if No > N, and NoNp > L. On the
basis of these considerations, we can conclude that in the context of MIMO-OFDM, we need
to choose the number of time samples T,, > NoNpNg to achieve acceptable performance
for these time-domain approaches. As Ng is normally chosen between 128 and 2048 so
as to alleviate the adverse effects from the frequency-selective channels, we can see that
these algorithms require an extremely large T, for obtaining an acceptable time-averaged
correlation matrix. Below, we develop an improved procedure that exploits correlation over

the frequency domain to relax such a requirement.

4.2.1 Proposed approach

In the context of MIMO-OFDM, although a pilot-based subspace method in the frequency
domain was proposed in [126], a blind one constructed directly from (4.1) has seldom been
considered, mainly because there are a large number Ny NrNe > NpNgL of unknowns
to be estimated (recall that L represents the channel order). Nevertheless, the number of
unknowns can be reduced by exploiting the frequency correlation among adjacent OFDM
subcarriers with some loss in the estimation performance. In return, the dimension of the
correlation matrix and hence the number of time samples required for time averaging can
be reduced significantly. The details are given below for the case Nz > Np; however, if
oversampling is used at the receiver, the case Nr < Ny is also possible.

Let the frequency span of P adjacent subcarriers reside inside the coherence band-
width of the wireless channel, defined here as the range of frequencies over which the
frequency response matrix of the MIMO channel does not change appreciably [127]. Let

o« {0,1,--+-,No — 1}, i.e. the index set of the N¢ subcarriers, be partitioned into

P disjoint subsets (assuming ¢ o N¢/P € Z7) with each subset denoted as (2, o

{wp1,wpa, -+, wpc}, where wy; et p—1+@G—-1)P,i=1,2---,Cforp=12---,P
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(see Fig 4.1 for details). Note that Q; UQ U---UQp = Q, and Q; N Q; = 0, where ()
denotes the empty set.

TR NL]
1st subset (p =1) Pth subset (p = P)
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Fig. 4.1 A schematic of the partitioning of the subcarrier index set ) =
{0,1,--- ,N¢ — 1} into P disjoint subsets, i.e. Qp, = {wp1,wp2, - ,wpc},
p=1,2---,P.

T oT T T oT T T oT T
Define xp:[xlly Xf, -~-X§,VF 7, Yp:[ygl; Yf, "'yngVF )7, np:[n}, nf, "'n;szF 1"
where
xS A{XTR] | ke Qp} =[x wpa] X" wpa] o X wpe] ]T (4.3)

and y," and n;" are defined in a similar way. These vectors are obtained from the complete
input vector x, observation vector y, and noise vector n above by retaining only the fre-

quency component of the pth subset €2,. Then (4.1) can be re-written for the pth subset
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as

yP:Hpo_'_np? p:1727"'7P7 (44)

where

H, def Iy, ® diag(H[wy1] - - - Hlw, ¢]) (4.5)

is assumed to be of full rank with size (NgNp() X (N7 Np(). The identification of H, can

then be achieved based on Ry = F [ypyf], which can be re-written as

Ry, = MRy, H) + Ra,, (4.6)

d def

where Ry, E [x,x/'] is assumed to be of full rank, and Ry, =

Emnyn/’] = 2 1. Since
the P adjacent subcarriers are assumed to reside inside the coherence bandwidth, the sub-
channel matrices H,, p = 1,2,---, P can be approzimated* by denoting H o Hy =Hse =
oo =Hp.

An estimate of the correlation matrix in (4.6) can be obtained as

T P
. 1 av H
av j=1 p=1

where y,j) € CWrRNrOX1 denotes the jth observation of y, at some physical time ¢;.
Therefore, the number of the time samples T,, required can be significantly reduced since
the dimension of the correlation matrix is reduced by a factor of P, and an averaging over
P subsets is applied at each time epoch, which is equivalent to the frequency averaging.

By applying the eigenvalue decomposition (EVD) to Ry, , we can express (4.6) as

'In practice, there are always small variations of the sub-channel matrices over the assumed coherence
bandwidth. The effects of such small variations on the estimation performance are considered and analyzed
in Section 4.3.
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R, = UAU¥ where U is a matrix whose columns are the orthonormal eigenvectors of Ry,

Yp

and which can be partitioned as U = [Ug | U, | = [u; - ug, |ug, 414,14, |- The signal

subspace can thus be denoted as R(Uy), while its orthogonal complement, the noise sub-

def

space, can be denoted as R(U,,), with d, & rank (H) = Ny NpC and d, & (Ng — Np)NpC.
A is a diagonal matrix consisting of the corresponding eigenvalues of Ry , and is denoted as
A = diag (M, Aoy Adprd,) With Ao = A 2> Ao > -0 > Mgy > Aapr = - = Mg, &
Amin = 0. Under the assumption of white noise with non-zero variance, i.e., Ay, = a,z1 > 0.

Since H and U, share the same range space and are orthogonal to the range space of U,

we can arrive at the following orthogonality relationship
wWH=0, j=d,+ 1, ,d+d,. (4.8)

Although H can be solved from the set of homogeneous linear equations, due to the use of
a finite time averaging interval, only an estimate of the noise subspace U, is available in
practice. In this case, by denoting 0; as the perturbed version of u;, obtained by applying
the EVD to the sample correlation matrix Ry in (4.7), we may obtain the channel estimate

by minimizing a quadratic cost function given by, e.g.,?

ds+dn

¥ ~ H 7112
C(H)= Y [lafH|s. (4.9)
j:ds+1
The trivial solution H = 0 can be avoided by introducing a suitable constraint as discussed
below.
At this point, it is convenient to reformulate the quadratic cost function (4.9) in a form

that is more convenient for its optimization over the unconstrained parameters in matrix H.

H

j H to the all zero vector 01x Ny Npc¢- To this end, we are not

2Ideally, we should measure how close is 1
restricted to the cost function in (4.9).
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.. A . . . A o /\T /\T /\T T
Let us first partition 0; into Ny segments of equal dimension as u; = [uj’luj,2 - -uijF} ,

A

. ¥y def N N N .
and then define matrix V; = [Q; 10,2 - 4 n,], where 0;; € C¥r¢*! for 4 = 1,2, Np.

For a fixed but arbitrarily selected integer p € [1, P], let us define

Hlw, 1]
H =H, = : = [hf h§ --- h]pVT], (4.10)

Hlw, ]

where each column hf is obtained by concatenating the corresponding columns of Hw, ],

k=1,---,(, that is,

def
hZ = [hl,q[wp,l] T hNR,q[Wp,l] T hl,q[u)p,c] T hNR,q[WmCHT (4.11)

for ¢ = 1,2,---, Np. Then the condition C(H) = 0 in (4.9) implies that C'(H') = 0, in

which the latter is defined as (see Appendix A for details)

C'(H) = tr (H’T\ifﬂ’*) , (4.12)
and the matrix ¥ is defined as
ds+dn
TE N ViV e crOx (a0, (4.13)
j:ds+1

We now proceed to obtain the channel estimate by minimizing the quadratic cost function
in (4.12) as follows. Let the eigenvalues of W be ordered as ymm = 1 (¥) < 7(¥) <

o < V(NRC)(\ZA[I) = Ymax- Lhen from the Rayleigh-Ritz theorem [121], we know that for all
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Q € CWrOxr,

) S e
N(W)+ (W) = min tr (QTEQ), (4.14)

where r is a given integer with 1 < r < Ng(. The optimal solution Q, € C@Mr)*" ig 4
matrix whose columns are chosen to be orthonormal eigenvectors corresponding to the r

smallest eigenvalues of W. Therefore we can carry on the minimization on the RHS of (4.14)

to find Q, and obtain the desired solution of (4.12) by

H = Q:A, (4.15)

where A € C™N7 can be seen as an ambiguity matriz. To ensure that enough basis

functions are available for the adequate representation of the unknown channel matrix, »
should be chosen so that r = dim [R(Q?)] > dim [R(H,)]/Nr = Nr(; in our case, we

simply choose r = NpC.

Table 4.1 Computational complexity of the proposed algorithm.

Main Step Complexity (flops)
1. Compute Ry. 3(PT.)(NrNp()?
2. Given ds = NTNFC and dn = (NR - NT)NFC7

find eigenvectors u;, j =ds +1,--- ,ds + d,, which

correspond to the d, smallest eigenvalues of Ry. O((NgNp¢)?)

3. Partition 1; = [afaf, - ~ﬁfNF}T and form the matrices
V,=[0;10;2---Qn,] froma;, j=ds+1,--- ,ds + d,,. 0

4. Form the matrix ¥ from the V,’s. dn(Np + 1)(NgC)?
5. Find Q,, whose columns are the eigenvectors

which correspond to the Ny¢ smallest eigenvalues of W. O((NgrC)?)

6. Obtain channel estimate 7. 2(N7C)(NgC) Ny
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4.2.2 Further comments on the proposed approach

The main processing steps for the proposed algorithm are summarized in Table 4.1, along
with their computational complexities in terms of the number of required (complex) flops.
To meet the minimum requirement of time averaging in connection with (4.7), i.e., to avoid
rank deficiency, we need PT,, > NrNg(, or equivalently, T,, > NgNpN¢c/ P2, Therefore,
the reduction in the averaging time 7,, is proportional to the square of the number of sub-
sets, P. Assuming PT,, = NgpNg( is chosen (i.e. the dimension of the correlation matrix),
the total computational complexity of the proposed algorithm is given as O((NgNp()?),
including the two EVD operations. Although the steps of matrix computations are similar
to those found in the traditional approaches, the complexity of the first EVD operation
is in general much lower. A reduction by P3 a~ 10%5 flops in the EVD operation can be
expected for a typical value of P = 32.

The ambiguity matrix A, inherent in all subspace-based blind channel estimation meth-
ods due to the second-order problem formulation, is required in order to obtain a final chan-
nel estimate in Step 6 (see also (4.15) for details). While the estimation of the ambiguity
matrix for subspace methods is a general problem on its own that falls outside the scope
of this thesis, several approaches are available in practice to implement this step, including
the use of higher order statistics or the insertion of a limited number of pilot symbols (re-
sulting in the so-called semi-blind approach). Concerning the size of the ambiguity matrix
in the current problem, a simple precoding technique is presented in Chapter 6 to reduce it
to Np x Np, which is the size of the ambiguity in the corresponding time-domain subspace

problems.

2010,/07/30
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4.3 Performance analysis on the proposed subspace-based

estimator

In this section, we analyze the performance of the newly proposed algorithm in Section
4.2. We first investigate its identifiability conditions, and then derive expressions for its
asymptotic performance and associated Cramer-Rao bound. In Chapter 7, these analysis
results will be used in conjunction with Monte Carlo numerical simulations to show that the
proposed algorithm indeed achieves a better estimation accuracy than previous reported

algorithms within a reasonable time averaging interval.

4.3.1 Identifiability conditions

In subspace-based blind estimation problems, the study of identifiability conditions aims to
explore the structure of the channel and properties of the input such that we can uniquely
determine the channel coefficients up to a certain degree of ambiguity [128|. The study
is normally conducted explicitly from the viewpoint of the signal-noise orthogonality rela-
tionship, assuming that the time averaging interval is sufficient long to neglect estimation
error of the sample correlation matrix; that is: assuming ﬁy = Ry,. As a result, we can
determine not only the type of channels that a specific blind algorithm can identify, but
also the way that system parameters should be chosen.

In the following, assuming the dimensions of the signal and noise subspaces are known,
we investigate to what extent the channel is still identifiable, i.e. channel coefficients can
be uniquely determined up to a certain degree of ambiguity. First, let us express the

orthogonality relationship in (4.8) in terms of the noise subspace eigenvector matrix U,, by

UMH =0, (4.16)
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which is a homogeneous linear system.
Since H is assumed to be of full rank, i.e. rank(H) = NpNp( = d, (4.16) also implies
R(H) = N(U).

The general solution of the system (4.16) is given as

Ho= (1-(U)(Uh)Y
= I-U,U))Y

for some arbitrary matrix Y with Py, )t L U, UZ (129, p.140|, where the second

equality follows from the fact that U, is a full column rank matrix with orthonormal
columns. Therefore, we can always avoid the trivial solution H = 0 since U, U# # 1. Let
H = QA denote a solution to (4.14) constructed from the exact Q, with corresponding
H.* In addition, let H; = HB = (Q:A)B = Q}A,; where B is a square matrix of
dimension Np. Then, it can be verified that the corresponding H; = H (I; ® B), which
is also of the form Py, ). Yy, with Y; = Y (It ® B). This shows that H’ is uniquely
determined up to the ambiguity matrix A (%< A;B1).

In the following, let us determine the sufficient condition for the channel to be iden-
tifiable. Recall that the dimension of the solution space of a homogeneous linear system
A i Xoxp = Oy equals pdim[DN(A)]; the dimension of the solution space for H in (4.16)
is then given as d, dim[91(U)]. Since H is a block diagonal matrix with d,Ng nonzeros
entries, a sufficient (but not necessary) condition for the channel to be identifiable can thus
be written as dydim [M(UX)] > d,Ng, or simply d; > Ng. We can rearrange the above

inequality and arrive at Ng( > (Ng/Nr).

3As per the formating transformation H < H defined in Section 4.2.
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Therefore, Np = 1 is possible for the proposed algorithm as long as ( > (Ngr/Nr),
meaning that the aforementioned algorithm and identifiability conditions can be derived
for the case of single-symbol processing, i.e., one OFDM input symbol at a time. However,
our results can easily be extended to the general cases where the OFDM system operates
on blocks of multiple OFDM symbols at a time, as is necessary with many traditional

approaches |41, 44].

4.3.2 Perturbation analysis

By denoting H, = H + AH,, the correlation matrix R, in (4.6) can be re-written as
Ry, — H Ry 7 + Rag, + Ry (1.18)
where we define
Ran, = AH, Ry, H + HRy, AR + AH, Ry, AH. (4.19)

In Section 4.2, an identification of H was obtained by assuming ||AH,| — 0, Vp. In the
following, the asymptotic performance of the proposed algorithm under high SNR and
sufficiently large time averaging interval is studied.

Under the condition of stationarity and ergodicity, the estimate of the correlation matrix

in (4.7) converges to:

R’}_’ = HR,—(HH +RA’H + Rﬁ as Tav — OQ, (420)
def
“Ry

def

where Rx € (1/P) 3" Ry, Ry € (1/P)3" Ruy, and Ra € (1/P) Y1 R,
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Since Ry = Ry +Ray + Ra can be seen as a perturbed data matrix with R;l o R+ Ra

being the perturbation source, we have the first order perturbation of the noise subspace
[122, 130] denoted by

!

AUn,?'_{ = _Us,ﬁg;;—]Ufﬂ(Rn)HUn,ﬂ> (421)

assuming the EVD of Ry is written as

S5 Us_
i s,H (4.22)
0 ]| Ulx

Furthermore, by partitioning the jth column of U,, 5 and AU, 5 into Ny segments of equal

. . . def i1 2 i, N def Al j,2
dimension, we define new matrices V; = [U; U275 - Ur i and AV; = [AU AU
~-~AUZ’%F], where UZ% and AUi’% denote the ith segment of the jth column of U, x
and AU, 5, respectively. Similar to (4.13), ¥ o Z?il V;V]-T is then constructed for the
Hermitian matrix Q, (note that Q, is the un-perturbed version of Qo) The EVD of ¥

can be written as

s, U
U=[U,y | U] | = oy (4.23)

where we identify Q, = U,, y and hence Qo =Q, + AQ, with

AQ, = —US7\I,Z;}I,U§{Q(A\II)HQO, (4.24)

def

where AW = Z;.lil VIAVILAVIVILAVIAVT. By assuming that H = [h{ hf --- h}, ]
for known, but arbitrary value of p € [1, P], we can obtain the ambiguity matrix from

A = (Q:’;)TH’. Therefore, the asymptotic channel estimate and asymptotic estimation
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error can be written as?

How = (Q0)(Q))H, (4.25)

AR, = 1= (@)@ H. (4.26)

Note that since (Q*)(Q?)T = =Py q:) and I- (Q)(Q) = Py qse [131, 132], each column of
the estimated channel matrix H ., can be seen as the projection of the corresponding column
of H' on the range of Q* Hence, as long as R(H Q R( Q* we have HO « = Pxay) H #H
and A?rl;’a = P%(Q;)LHI # 0.

To quantify the estimation performance, let us define the v-distance 0, (I", 3) between

two matrices I' and X of the same dimension in a linear space by
0,(I, X)) = ||vec (' = X) ||, (4.27)

for any real number v > 1. The normalized mean square error (NMSE) and channel average

bias (CAB) of the channel estimate can then be conveniently expressed by

NMSE = /E

P P
> i an;n%] 123)

Z 5 (H ] : (4.29)

p=1

CAB =

NTNRNC

where H, is given either by (4.15) for evaluating the channel estimate or by (4.25) for the

asymptotic channel estimate, and 7:{;, is defined in Section 4.2.1.

“Here asymptotic error refers to a situation where SNR is large and time averaging interval is sufficiently
long.
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4.3.3 Cramer-Rao bound

To determine whether the proposed algorithm is efficient or not specifically in the high
SNR regime, we evaluate the unbiased Cramer-Rao bound (CRB) for the problem under
consideration. Let 6 = [02, vec(H )T]” be the column vector of nonrandom parameters to
be estimated from the observations. The Fisher information matrix (FIM) for the complex

valued parameter vector 6 can be obtained by [133|

Oln f(y,|0)\ (0Inf(ysl )\ 4.30
)( ) (4.30)

%GZEW’( 90 90

where the observation can be characterized by the complex probability density function
of y,. On the basis of central limit theorem, the latter is assumed to be of ZMCSCG
distribution , i.e. N'(0, Ry, ), where the covariance matrix is defined as Ry, = o?HH" + 021

We can estimate the real vector given by g = [R(67), 3(07)]T, where R(-) and (-)
denote the real and imaginary part of a complex vector, respectively. The real FIM Jy,.¢,

can thus be determined from Jps by

Too  Too
‘791?912 - M MH7 (431)
Too Toy
where
LT R(0) 0
M = , Op = - M . (4.32)
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For the above complex Gaussian model, we have [134]

oR Ry, \ "
(Tool;; = tr{R;: (87) Ry, (W) } (4.33)
i J
R R
o, = tr{R;; (a—ey) R, (a—ey)} (434)
i J

Note that we still use R, instead of Ry in (4.33)-(4.34), because perturbations among
adjacent channel coefficients inside the coherence bandwidth may exist. However, in ideal
cases when these perturbations can be neglected, we can replace Ry, by ﬁy with sufficient
time averaging and obtain the minimum constrained CRB [134] from P7T,, independent

and identically distributed (i.i.d.) observations as
Var(fr,) > [(PTawTonon) Ji: (4.35)

where éRi denotes the ith entry of fp. Combining the CRB of the real and imaginary parts

of the ith entry of the complex parameter vector €, we can arrive at

1
PT,,

A%

Var(6;) {[Tonon) Nisi + [Tonon) it nyien, } » (4.36)

1 =1,2,---, Ny, where N, = NrNg( + 1 denotes the length of the nonrandom vector 6.

Recall that 6, = o2 and 6;, i = 2,---, N, represent the channel coefficients of interests.

Hence, for any channel coefficient of interests, we can apply the following lower bound

A . 1
Var(h, 4k]) > min -

av

{[%ReR)T]i,i + [‘%RQR)T]i+Nb7i+Nb} ) (4'37)

fori=2,--- N,.
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Since above expression (4.37) gives a lower bound on the variance of deterministic
unknowns, it can be used to determine the lower bound on the variance of the channel
coefficients if the channel is fixed. However, in order to determine the lower bound on
the variance of the channel coefficients when the latter as drawn from a given probability

distribution, we can run a series of experiments and determine the lower bound by

~

Var(hy,q[k]) = lim inf Var(A$)[K]), (4.38)

j—00 ’
where Var(ﬁg()l[k]) represents the lower bound evaluated for (i.e. conditioned on) the jth
channel realization. In Chapter 7, the above formulas for the CRB will be evaluated numer-
ically and used as a benchmark in the performance evaluation of the proposed estimators

via Monte Carlo simulations.
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Chapter

Subspace tracking based on orthogonal

iteration: convergence behavior

As a first step toward the development of adaptive subspace-based channel estimator for
MIMO-OFDM systems, this chapter studies convergence properties of subspace trackers
using orthogonal iteration. In the context of blind estimation of a time-varying channel,
orthogonal iteration and its variants have been widely considered for tracking the channel
parameters by updating the EVD of an exponentially weighted correlation matrix. It
is well known that when orthogonal iteration is applied to a fixed matrix, it converges
exponentially to the EVD (or dominant subspace) of the matrix with arbitrary non-zero
initial conditions. However, orthogonal-iteration-based subspace trackers can only inherit
these merits when the channels considered undergo extremely slow time-variations. In
this chapter, we extend the traditional (i.e. fixed subspace) convergence analysis of the
orthogonal iteration to include non-stationary situations as well. We use the results to
investigate the convergence behavior of subspace trackers based on orthogonal iteration

under slow, moderate and rapid time-variations of the underlying subspace. In the latter

2010,/07/30
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case, we expose a fundamental limitation of the orthogonal iteration, i.e. practical limit on

subspace variations to ensure effective tracking.!

5.1 Motivations of using subspace tracking

Subspace decomposition has proved to be an important tool in various signal processing
applications. To this end, a straightforward approach is simply to employ either an eigen-
value decomposition (EVD) or singular value decomposition (SVD). These approaches,
which belong to the family of direct or block processing techniques, are characterized as
computationally demanding procedures and unsuitable for online processing due to their
lack of repetitive structure [55]. Furthermore, they are often implemented in a batch mode,
using an estimated correlation matrix obtained by collecting time samples over a sufficiently
long observation interval. Therefore, these approaches, which rely on the assumption of
statistical stationarity of the data, cannot be used in situations where the characteristics of
the received signals change with time [135]. Computationally efficient and sequential algo-
rithms that produce an exact or approximate EVD or SVD at each time step are generally
favored in signal processing applications.

Thus, a considerable effort has gone into the development of sequential adaptive algo-
rithms, also known as subspace trackers. To date, several signal-subspace trackers have
been proposed for non-stationary environments. Instead of recomputing the EVD or SVD
from scratch with every update, these algorithms attempt to recursively update these de-
compositions so as to minimize the amount of computations involved (see e.g. |135-138|

and references therein). While there are many more signal-subspace trackers than noise-

'While most fast subspace trackers with low complexity assume a rank one update, they are not ap-
plicable to the adaptive subspace-based channel estimator that will be proposed in the next chapter. We
thus focus on the orthogonal iteration that is more general and suitable for our design.
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subspace trackers in the literature [139], nonetheless, in the applications of blind channel
estimation, we can transform the noise-subspace problems into signal-subspace ones with-
out much effort |38].

Orthogonal iteration is a simple technique that can be used to compute higher-dimensional
invariant subspaces [140]. It is shown to have a global and exponential convergence prop-
erty under a mild assumption on the distribution of eigenvalues, with arbitrary initial
conditions [141]. In addition, it is suitable for real-time processing because it is well struc-
tured [136]. Therefore, orthogonal iteration and its variants have been considered for blind
adaptive channel estimation to a great extent. Existing subspace tracking algorithms can
be broadly categorized as whether or not they are based on orthogonal iteration. For
the orthogonal-iteration-based subspace trackers, their variants include the low rank adap-
tive filter (LORAF) [136], the orthogonal projection approximation and subspace tracking
(OPAST) [142], the Oja’s method, and the novel information criterion (NIC) [143]. Re-
cently, improvements on these existing approaches can also be found in [139, 144, 145|.

In this chapter, given that numerous subspace trackers in the literature are fundamen-
tally derived from the concept of orthogonal iteration, we first investigate the convergence
properties when orthogonal iteration is applied in non-stationary scenarios. Specifically,
we are interested in the distance between the true and the orthogonal-iterated subspaces.
Then we study a fundamental limitation on the application of orthogonal-iterated subspace
trackers in time-varying scenarios. Our results will be useful for better understanding the
behavior of subspace trackers based on orthogonal iteration when applied to estimate time-

varying MIMO channels in the next chapter.
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5.2 Orthogonal iteration and its applications

Given a tall, column orthonormal matrix Q, € CV*", the so-called method of orthogonal it-

eration generates a sequence of matrices Q,,,, whose column span is assumed to approximate

the span of the r— dimensional dominant subspace of the matrix W € CN*¥ according
to the following recurrence:
Am:WQm—h m = 1727"'

where Q,,, and R, denote the QR decomposition of the matrix A,, at the mth iteration.
If W does not change over time, one can show that the subspace R(Q,,) converges to
D,.(W) at a rate proportional to |\, 11(W)/A.(W)|™ [140|. Therefore, the usefulness of
the method depends on this ratio, since it determines the rate of convergence. Note that
when 7 =1, (5.1) is just the well-known power method [146].

In several applications of interest in signal processing and communications, however, the
assumption on the stationarity of W is usually not valid. Instead, a time-varying sequence

{W,,}>°_, is often used, which is updated recursively as in e.g.:

W, =aW,, 1 + (1 — a)z,z7, (5.2)

where m now represents the discrete-time index, « € [0, 1] represents the forgetting factor
(typically close to 1), and z,, € C¥*! denotes an observation vector at time m, often
modeled as an i.i.d. sequence of random vectors. In this case, we may sequentially track
the r— dimensional dominant subspace of the time-varying sequence {W,,}2°_, simply by

replacing the stationary matrix W in (5.1) with W, [147].
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5.3 Convergence analysis

In order to motivate the method and to derive its convergence properties in non-stationary
scenarios, we follow the analysis as well as the notation for the stationary case given in
[140], and generalize the orthogonal iteration as follows.

To begin, let us consider k iterations of the recurrence in (5.1) and use induction to

express it by

WiWi1--- W, Qo = QuRyRi—1--- Ry, (5.3)
LW,
where Wy, .-+, W, represent matrices of interest over the first k£ time iterations, respec-
tively. Assume that
U7W, U, = A, = diag(\i1) (5.4)

is an EVD of Wy with A\ > Aoy > -+ > Ayy > 0 and UZ U, = L. Partition Uy, and Ay
as follows:
_ _ - Ay 0
Ui = [Uiy Usy], Ay = B ; (5.5)
0 Ay

where I_JLk c CNxr, 627]@ e CNxWN=r) j_XLk e C™", and AZ]@ e CW=")x(N=7)  Then we can
arrive at
A O U Qo

0 A2 k IjngO

UL Qx
U3 Qu

(RyRy_1 - Ry). (5.6)
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If we let
Ur'Q = I_Jka’ L I (5.7)
UQ Y,
then
Y = A2k YoV ALV (5.8)

can be obtained by using (5.6) and (5.7). We can define the distance between the two

subspaces D,.(W},) and R(Qy,) according to [140]
dist (D, (W), R(Qk)) = |05 Qrllz = [ Yill2. (5.9)

By invoking (5.8), we can obtain
1Y kll2 < [[A2kll2Yoll2 VG 2 IAL L2 Vil (5.10)

Let 0, € [0, 7/2] be defined to provide another measure of the closeness of the two subspaces

D,.(W},) and R(Qy), according to

cos (6y,) = [u”v] (5.11)

ue®D, (Wy), veR(Qo) ||u||2||v||2

Then cos (6;) = 0, (U1,Qo) = 0,(Vo) and [[ Yol = sin(fy), where ¢,(Vy) denotes the rth
largest singular value of the matrix V [140]. Combining with (5.9)-(5.11), we can finally

arrive at

dist (D, (W), R(Qy)) < tan(dy) (A;L’f) . (5.12)

In the following, we categorize the non-stationary scenarios into three main cases and show

how the result in (5.12) can be used to study the convergence properties in each case.



5 Subspace tracking based on orthogonal iteration: convergence behavior 86

Case 1: Very small time variations

In general, we can express Wy_; = Wy + AW, for i = 1,2,--- ,k — 1. Therefore, Wy,

in (5.3) can be re-written as

Wi = WWi_y--- W,
= W,(Wi+AWp ) (W + AW )

= (Wp)f + AW, (5.13)

where AW}, = W, — (W})* comprises products of Wy, and AW ;i =1,2,---  k—1. Let
us further assume that

U{W, U, = Ay, = diag(\iz) (5.14)

with Ay x > Aog > -+ > Ayy > 0. If AW, — 0, then Wy, can be approximated by (W)

alone. Hence, we can rewrite (5.12) as

dist (D,.(W4), R(Qx)) < tan(fy) (A;;’“) : (5.15)

We may interpret the above result as follows: Given very small variations of W, for i =
1,2, k, the distance between ®,.(Wy) and R(Qy) converges to zero with a rate equal
to (’\T*—lk)k (assuming A, > A1), which is the well-known property of the subspace-

A'r,k

tracking algorithms using orthogonal iteration.

Case 2: Moderate time variations

For moderate variations of W, over ¢« = 1,2,--- |k, however, the above property generally

does not hold anymore. We first notice from (5.12) that the orthogonal iteration attempts
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to converge to ©, (W), which may be largely different from ©,(W ). Apart from this, we
also wonder how the convergence rate is affected by the time variation in Wy. To answer
this question, it is of interest to view the effect AW, in (5.13) as a perturbation to the
matrix (Wy)*. Therefore, the corresponding perturbation in the eigenvalues of (Wj)* can

be described according to
Ai(Wi) = Xi(Wi)")| < AWz, (5.16)

assuming (W) is normal, which is the case in applications of general interests. Fig. 5.1(a)
illustrates the possible location of the perturbed eigenvalues \,,1(W}) and \.(W}), which
are bounded by a circle of radius ||[AWy]||2, with centers located at A,.1((Wy)*) and

A-((Wp)F), respectively. Therefore, the ratio (;\T/—\*—lkk) in (5.12) governing the convergence

rate is now bounded by

A1 (Wi)F) =6 < (Ar+1,k) < A1 (Wi)F) +6

MW 5 =\ s ) S (Wb =5 (5:17)

where § & AW, |2 > 0. This implies that the convergence rate may be slightly increased

or decreased, depending on the specific nature of the perturbation source AWj,.

Case 3: Large time variations

For large variations of W; overi = 1,2, - - - , k, we can generally assume that ©,(W}) can be
significantly different from ©,(Wy,), potentially making the subspace tracking ineffectual.
It is therefore natural to ask, to what extent can we still track the subspace by orthogonal
iteration, given the matrices W, are rapidly changing. In other words, we seek to know

what is the maximum allowable time-variation of W,.
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o
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(b)

Fig. 5.1 (a)Perturbation of the eigenvalues Ara1(WR)F) and A.((W3)F)
due to [[AWy]|2. (b)Perturbation of the eigenvalues A\qij,—1(Wjg_1) and
Ark—1(Wg) due to [[AWyg 1]lo.
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One possible approach is to restrain the variation from Wy_; to W, to at most half

the distance between the rth and (r + 1)th eigenvalues of Wy_4, i.e.,
1
AW 1]|2 < 3 Ark—1(Wi—1) = A1 e—1(Wi—1) . (5.18)

Focusing on the kth iteration alone, i.e. W;Qir_1 = QrRj, we can re-state the problem
from the viewpoint of initial condition Q_; with one-step iteration. On the basis of earlier

discussions, we know that

: Ar1, (W)
< It e
dist(D,.(Wy), R(Qx)) < tan(fy_1) ( NANA
where 0, € [0,7/2] is defined according to
[u'v]

cos (O—1) = (5.19)

m - .
ueD: (W), ver(Q-1) [[ulf2[[ vl

We can then clearly see that the distance between the (r + 1)th and the rth eigenvalue of
the matrix W, should be maximized in order to minimizing the ratio (%), implying
that the boundaries of the perturbed eigenvalue as illustrated in Fig. 5.1(b) should not be

touching each other.

Summary

Our main observations regarding the convergence of the orthogonal iteration are summa-

rized below:

1. Very small time variations: The orthogonal iteration converges toward to ©,(W},)

at the rate given by (5.15).
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2. Moderate time variations: For moderate time variations, the convergence rate may

be increased or decreased according to (5.17).

3. Large time variations: To ensure effective tracking, the rate of change in the under-

lying subspace should not exceed the fundamental limit provided by (5.18).

5.4 Numerical experiments of orthogonal iteration

In order to support the above claims, we provide numerical results as follows. We start
by constructing a fixed Hermitian matrix W € C!%*16. We first show that when a noisy
sample W' is used instead of W in the orthogonal iteration, the algorithm may converge to a
subspace that is very different from ©,.(W). In this experiment, W' remains constant but is
modeled as W+ AW where each entry of AW is a realization of an i.i.d. Gaussian r.v. with
zero mean and variance o2. The experimental results for r = 2 and 02 = 0,1073,1072,107}

are shown in Fig. 5.2, where the distance between ©,(W) and R(Qy), i.e.,

d Y dist(D,(W), R(Qy)), (5.20)
is plotted versus the iteration index k (each curve is averaged over 200 independent runs).
As we can observe in the steady-state, the distance between ©,(W) and JR(Qy) increases
as 02 is increased, simply because the orthogonal iteration converges to ’DT(W') instead of
D,(W). In the context of subspace tracking a wireless channel, this situation occurs when
an estimated correlation matrix is actually employed for the algorithm. The estimation
errors can be due mainly to: insufficient time samples for the correlation matrix averaging,
fast time-varying nature of the wireless channel, improper choices of parameters for the

exponential or rectangular windowing, or even a combination of the above. In such cases,
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Fig. 5.2 dist(D,(W),%(Qy)) versus the number of iterations for various
25
o%’s.

we are inevitably falling into the above situation.

Next, we want to show that the convergence rate in Case 2 might be slightly increased
or decreased in accordance with (5.17). To this end, we consider a fixed W and several
realizations of AW with 02 = 1079 for W' = W + AW. In each case, we compare the
convergence curves (which are now controlled by the rate factor A, 1 (W')/A\.(W')) with
that of the unperturbed case (i.e., 0 = 0). With such a perturbation on the matrix W,
we can observe the convergence rates ranging from below to above that of the ideal case,
as clearly shown in Fig. 5.3. Note that we also show the curve p* along with the upper and

lower bounds p* and pf, respectively, in the logarithmic scale for reference, where

d:Cf )\r-i-l (W)

W) (5.21)
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Fig. 5.3 log(dist(D,(W}), R(Qx))) versus the number of iterations for o2 —
0 (solid line) and 1076 (dash-dot lines).

and p;, p, are obtained as in (5.17), i.e.

def A1 (W) — 6 def Ary1 (W) +6

MW s T AW o2

with 0 being the maximal 2-norm of the realizations of AW.

Finally, let us verify (5.18) by introducing another fixed Hermitian matrix AW. In this
experiment, W = W 4+ 3 AW, where 3 € RT and |[AW ||, = [W]|,. Given \.(W) = 7.16,
Ar41(W) = 6.61 and ||[AW ||z = 9.67, we need to have

A (W) = Ara (W)
2| AW |2

3 < ~ 0.028. (5.23)

to restrain the variations. We consider a sudden change from W to W' at the 50th iteration



5 Subspace tracking based on orthogonal iteration: convergence behavior 93

1 T
— B=0
ol - - B=0028 ||
----- B=0.28
= B=056
0.8 B
0.7 B
0.6 B
© 05F i
04r B
A
0.3 !‘ B
M
02} ! 4
1 '~
! <,
! Sisio
01t L T ]
= -
Ee T -
0 1 1 1 1 1 ’A """"""" L e
0 10 20 30 40 50 60 70 80 90 100

iterations

Fig. 5.4 A sudden change of W to W' at the 50th iteration.

for various (3’s. As can be observed in Fig. 5.4, we can see that for cases with § > 0.028,
this sudden change substantially enlarges the distance between ©,(W') and R(Qy,).
For practical concerns, we also consider the popular time-varying model as mentioned

in (5.2), with z,, € C'*! given by
Z,, = HX,, + 1n,,, (5.24)

where H € C!%%16 jg a fixed channel matrix with rank(H) = 2, x,,, is an i.i.d. random
vector from a QAM constellation, i.e., with entries randomly selected from (1/v/2)(£1 = 7)
with equal probability, and n,, is an i.i.d. Gaussian random vector with zero mean and
variance o2. We choose Wy = (1/500) 250:01 z;z! as our initial condition. Fig. 5.5 shows the

probability p o prob (| A k-1 (Wi—1) —=Ag1k—1(Wi—1)| < 2[|[AWy 1]2) versus the forgetting
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Fig. 5.5 pl”Ob (Mr,k—l(wk—l) - )\r+1,k—1(Wk—l)| < QHAWkHQ) versus the
forgetting factor « in the time-varying model.

factor o for different SNR’s, where SNR & 101og,(1/202). For the case SNR = 0dB, we
can observe that the probability p = 0.5, 0.15, and 0 when o = 0.93, 0.95, and 0.98,
respectively. Indeed, when « is close to one, the rate of change in W,, in (5.2) is very
small, and therefore the probability of ||[AW} 1]|s exceeding the limit (5.18) is close to 0.
As we increase the SNR, smaller value of o can be used at a given p level, that is, the
tracking ability is improved.

To see how the forgetting factor a affects the tracking process, Fig. 5.6 - 5.8 present
some realizations of d versus the number of iterations, when the above mentioned values
a’s are considered. From these figures, we can conclude that orthogonal iteration can only
achieve satisfactory performance when the probability p is small. Hence, (5.18) can serve as

a fundamental limitation to determine whether or not orthogonal iteration can be applied
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in a rapidly time-varying scenario.

5.5 Summary of the convergence analysis

In this chapter, we extended the convergence analysis of orthogonal iteration from station-
ary cases to non-stationary ones. In particular, we investigated certain properties of or-
thogonal iteration when it is applied to subspace tracking of practical wireless time-varying
channels. In the context of blind subspace tracking problems, we can conclude that the
performance of blind channel estimation using orthogonal iteration is mainly determined
by whether we can obtain a good estimate of the time-varying correlation matrix. In the
case of moderate time variations, we showed that the rate of convergence may be increased
or decreased, depending on the nature of the perturbation source. We also discussed a
fundamental limitation on the use of orthogonal iteration over rapidly time-varying wire-
less channels. In the following, on the basis of the conclusions arrived, we present a blind

subspace tracking algorithm suitable for time-varying MIMO wireless channels.
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Fig. 5.6 dist(D,(Wy),R(Qg)) versus the number of iterations in the time-
varying model with o = 0.98 when SNR = 0dB.
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Fig. 5.7 dist(D,(Wy),R(Qg)) versus the number of iterations in the time-
varying model with o = 0.95 when SNR = 0dB.
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Chapter

Blind recursive subspace-based identification

of time-varying wideband MIMO channels

In this chapter, we present a blind recursive algorithm for tracking rapidly time-varying
wireless channels in precoded MIMO-OFDM systems. Subspace-based tracking is normally
considered for slowly time-varying channels only. Thanks to the frequency correlation
of the wireless channels, the proposed scheme is able to collect data not only from the
time but also from the frequency domain to speed up the update of the required second
order statistics. After each such update, the subspace information is recomputed using the
orthogonal iteration, and then a new channel estimate is obtained. We also investigate
the choice of precoder, in terms of the trade-off between the symbol recovery capability
and the channel estimation performance, and demonstrate the convergence properties of
our approach. In Chapter 7, the proposed algorithm will be evaluated in a 3GPP-SCM
Suburban Macro scenario, in which a mobile station is allowed to move at a speed up to
100km /h. Then it will be shown that the NMSE of the channel estimates can converge to

a very low level within less than 5 OFDM symbols.

2010,/07/30
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To avoid the need of training sequence in the estimation of rapidly TV channels, the
subspace-based blind estimation exploiting frequency correlation in MIMO-OFDM system
over TI channels, that we developed in Chapter 4 (see also [148, 149]), is extended to the
case of TV scenarios. While this approach in the TI case requires a larger dimension of the
ambiguity matrix and a high-complexity singular value decomposition, these limitations are
overcome in the TV case by using a precoder at the transmitter side, and a computationally
efficient orthogonal iteration for subspace tracking at the receiver side, respectively. The
resulting approach can track a fast time-varying MIMO channel in which the wireless
channels may be changing at each OFDM symbol time. In addition, it offers the flexibility
in choosing the number of transmit as well as receive antennas used (i.e. Ny > Np is also
possible), with bandwidth efficiency approximately given by Nrlog, |.A| bps/Hz, where Np
denotes the number of transmit antennas and |.A| denotes the size of symbol alphabet used.

For a 256-point IFF'T, the proposed algorithm will be evaluated in Chapter 7. Our
simulation results will show that the NMSE can converge to a very low level within 5
OFDM symbols even when the maximum Doppler shift is about 230Hz, which outperforms

[46, 55| in terms of estimation performance.

6.1 Problem formulation

In this section, we introduce the precoded MIMO-OFDM system model under consideration
and formulate the problem of interest, i.e., the blind subspace-based estimation and tracking

of the TV-MIMO channels.
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6.1.1 Precoded MIMO-OFDM system with subcarrier grouping

Conventional subspace-based blind estimators are in general not favored when a fast time-
varying channel is considered, since there may not be sufficient data samples to obtain the
required statistics. The situation becomes even worse in the context of a MIMO-OFDM
system, where a large dimension of the correlation matrix (up to thousands) is normally
required. In Chapter 4, we have shown that the TI requirement in subspace-based blind
channel estimation for MIMO-OFDM systems can be significantly relaxed, by making use
of the subcarrier grouping to exploit the frequency correlation among adjacent subcarriers.
However, this reduction in time averaging period comes at the price of a higher dimension
of the ambiguity matrix. In order to overcome this problem, we consider here a precoded
MIMO-OFDM system as described below.

The system under consideration employs N¢ subcarriers, Ny transmit and Ny receive
antennas, as per the block diagram shown in Fig. 6.1. To exploit the frequency correla-
tion through the concept of subcarrier grouping, we assume that the frequency span of P
adjacent subcarriers reside inside the coherence bandwidth of the wireless channel, defined
here as the range of frequencies over which the frequency response matrix of the MIMO
channel does not change appreciably [127]. As in Chapter 4, let Q o {0,1,--+,No — 1},
i.e. the index set of the No subcarriers. We partition € into P disjoint subsets (assum-
ing No/P = ¢ € Z*) with the pth subset denoted as Q, = {wy1,wWpa, -+ ,Wpc}, Where

wpi Ep—1+(i—1)P,i=12-,(forp=12--,P (see Fig. 4.1). Let x' =

P

[mT m T

m T
lep X27p o XNT7p ]

T where

X7 [ 2l wp] 7wy < 2 wpe] 1T, (6.1)

with 27'[k] denoting the signal transmitted at the kth subcarrier, the jth transmit an-
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Fig. 6.1 The precoded MIMO-OFDM system model.

. def T
tenna and the mth OFDM symbol. In addition, let y;* = [y’prT yzmpT YN, pT}
and nm [anan - T}T here v % W wpa] Y wpe] e Y wpc]]T

p 1,p 2,p Ng,p ;o where y;,, = (Y [Wpal Y; [Wp2 Yi |Wpll s
def T . . .
7 = [t wpa] ntwpe] o ntwpl]t, with yt[k] and n*[k] denoting the signal and

noise received at the kth subcarrier, ith received antenna and the mth OFDM symbol,
respectively. In the following, we assume that: (1) the length of the cyclic prefix (CP)
appended to each OFDM symbol is longer than the maximum excess delay of the channel;
(2) the average power of the transmit symbol alphabet is normalized to unity: E [|z}"[k]|?]
= 1.

Suppose that each input vector xJ, in (6.1) is precoded by the matrix ¥ € CS*¢ (the

choice of the non-redundant precoder matrix ¥ is considered in Section 6.4). Then the
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input-output relationship for the pth frequency subset can be written as

Yy =My (In, @ U)X + ), (6.2)

with the channel matrix Hg’ defined as

i m m m i
1,1,p 12p 77 1,Np,p
m Hm . m
2,1,p 2,2,p 2,Nt,p
H, = _ (6.3)
m m m
L "“Nr,lp Ngr2,p = Ngr,Nr,p |
Note that H!", , = diag(h}. ), where h7" < [A [w,.1], b [wpa] o+« By [wyc]]T, with A [K]

representing the equivalent frequency response between the ith receive and the jth transmit

antenna, over the kth subcarrier and the mth OFDM symbol. In this chapter, since the fre-

quency span of the P adjacent subcarriers have been assumed to reside inside the coherence

bandwidth, we shall assume that the variations in the channel matrices H" across these P

subcarriers are negligible. Accordingly, we can define a new representative channel matrix
def

H™ = H" = HY = --- =2 'HP, and drop the index p for all channel related quantities,

including ‘H"  and h!"

4,J,p 4,J,p"

6.1.2 Problem statement

As the future generation of wireless systems aim at providing high-capacity transmission
for high-mobility users, there is a strong need to further push the capability of adaptive
channel tracking for wideband TV-MIMO channels, without extensively using pilot signals.

In this chapter, our first interest lies in the blind estimation/tracking of rapidly TV-

MIMO channels with normalized Doppler frequencies that may reach significant values,
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e.g. up to 2% or more [150|, and for which the channel matrix H™ is allowed to change at
each OFDM symbol time. To this end, we seek to develop a subspace-based blind channel
estimator ﬂm, which is a function of the observed data up to the current symbol time
m, i.e., {yﬁ,}, p=1,2,---,P;1=1,2,---,m, and which can be recursively updated in a
computationally efficient manner. In other words, our objective is to propose an efficient
updating algorithm ¢(-) in which the channel estimate at the mth symbol time can be
represented as H™ = o( 7:{’”_1, {y}T 5:1)- In addition, as the precoder is placed at the
transmitter side without having any feedback of the channel knowledge from the receiver

side, our second interest lies in determining the optimal precoder coefficients to further

enhance the estimation performance.

6.2 Precoded subspace-based approach

In this section, we first introduce a block-based subspace channel estimation approach that
exploits the frequency correlation among the adjacent subcarriers in the precoded MIMO-
OFDM system. This approach is then extended to recursive subspace-based identification

for TV channels in Section 6.3.

6.2.1 Subspace-based identification

For simplicity in notation, let us temporarily drop the time-index m of all the channel
related coefficients. On the basis of (6.2) and under the assumption that channel variations
over P adjacent subcarriers are negligible, the correlation matrix Ry “F yiyi] = =

Elypy#£] can be written as

Ry, = H (Iy, @ U7 H" + 021, (6.4)
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where we have assumed that n,, and x,, are uncorrelated, E[n,n’] = 021y, and E[x,x//] =

Icn,. Similar to [151], by partitioning R, into sub-matrices of size ( x (, we may express

its (u,v)th sub-matrix as
Nr
Ryuw = > Hu,WO'H 406,000 (6.5)
j=1
Nt
- (Z huvjh{jj) © (T + 6,021, u,v€{1,2,---,Ng} (6.6)
j=1
where 0, = 1 if v = v and zero otherwise. Let
W £ [Ry . — 6402l ] © O (6.7)

be the (u,v)th sub-matrix of a new matrix W. Then from (6.6) we can arrive at

W = HH”, (6.8)
where ) )
hip  hip - hyng
B hyy  hys -+ hoy, (6.9)
L hNR,l hNR,Q e hNRvNT i

Assuming H € CENrXNT hag full column rank, we can thus express the channel coefficients

by means of

H = QA, (6.10)
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where the columns of the matrix Q € CEN®*XNT are obtained from the eigenvectors of the
matrix W corresponding to the Ny largest eigenvalues, and A € CN7*N7 s an ambiguity
matrix.! As it has been shown in [151] for a similarly structured subspace problem, the
matrix of interest H is identifiable as long as it is is a tall matrix, i.e. (N > Np. Therefore,
this approach indeed offers the flexibility in choosing the number of transmit and receive

antennas since ¢ > 1 is normally fulfilled, meaning that Ny > Ng is also applicable.

6.2.2 Blind estimation algorithm

In practice, the channel estimate H can be obtained from H = QA, where Q denotes the
matrix whose columns are the eigenvectors corresponding to the Np largest eigenvalues
of an estimated matrix W, with its (u,v)th sub-matrix denoted W,,,. The latter can be

obtained as

A

W,, — [Ry,m - 5m&51<] 2 2 %8 (6.11)

where f{yM denotes the (u,v)th sub-matrix of the sampled correlation matrix f{y, and 62
is an estimate of the noise variance. Therefore, the accuracy of the channel estimate largely
depends on the estimation performance of the correlation matrix and the noise variance,
i.e. Ry and 62, respectively.

In general, to achieve satisfactory performance in the channel estimation step, i.e.,
H= QA, the time averaging period T, for the above estimation of the correlation matrix
ﬂy must be larger than (Ng, i.e. T,, > (Ng, since f{y is of size (Nr x (Ng [149, 152]|.
However, by exploiting the concept of frequency averaging within the coherence bandwidth,

the required T, can be effectively reduced by a factor P?, i.e. T,, > (Ng/P?. Specifically,

!'While the estimation of the ambiguity matrix for subspace methods is a general problem on its own
that goes beyond the scope of this thesis, several approaches are available in practice to implement this
step, including the use of higher order statistics or the insertion of a limited number of pilot symbols
(resulting in the so-called semi-blind approach).
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the estimate of the correlation matrix R, can be obtained by

T P
» 1 — nonH
Ry:PT E E YpYy (6.12)
av =1 p=1

The merits of this approach in practical MIMO-OFDM systems are demonstrated in Chap-
ter 7 (see also [149]).

In Algorithm 1, we briefly summarize the above precoded subspace-based estimation,
which will serve a basis in the derivation of the proposed channel tracking algorithm. Note
that without employing the precoders W’s at the transmitter side, the dimension of the
ambiguity matrix in [148] is (Nr x N with ¢ > 1. While here, the use of the precoder
matrix W makes it possible to reduce this dimension to Ny x Np. The design of W is

addressed in Chapter 6.4.

Algorithm 1 Blind block-based subspace estimation of TI-MIMO channels

Step 1: Use the observed data to compute the estimates of ﬂy and 62, and then
construct W by using (6.11).

Step 2: Form the matrix Q, whose columns are the eigenvectors which corresponds to
the Np largest eigenvalues of W.

Step 3: Obtain the channel estimate H= QA, where A is an ambiguity matrix.

6.3 Channel tracking

We now consider a fast time-varying scenario in which the MIMO wireless channel could be
changing at each OFDM symbol time. Accordingly, we shall reintroduce the time-index m
for all the channel related quantities, including those associated to the above block-based

subspace estimation. Clearly, the matrix Q™, i.e., Q in (6.10) at the mth symbol time,
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needs to be updated as new data samples become available to properly reflect changes in
the unknown channel. Instead of applying an EVD on W™ at each time step, we can
recursively update the EVD via an efficient subspace tracking algorithm so as to minimize
the amount of computations involved. We notice that most fast subspace trackers with low
complexity assume a rank one update [137, 138|, and hence are not applicable here. On
the basis of (6.10), we propose a new algorithm that combines the well-known orthogonal
iteration with a joint time-frequency averaging to track the above mentioned time-varying

channel, without incurring EVD operations repeatedly.

6.3.1 Recursive approach based on orthogonal iteration

Orthogonal iteration and its variants have been considered for blind adaptive estimation to
a great extent (see |55, 145] and references therein). To track the fast time-varying channel
‘H™ with low complexity, we also consider to recursively update Q™ by employing orthog-
onal iteration, which is known to converge exponentially with arbitrary initial conditions
[140], and suitable for real-time processing because it is well structured. However, the main
challenge still lies in whether we can estimate the required second order statistics within a
sufficiently short processing window.

Since the frequency response matrices of the MIMO channel can be related by H™ =
Hm

o', an estimate of the time-varying correlation matrix at the mth OFDM symbol time

can be obtained by combining traditional window-based time averaging with frequency

averaging over the P frequency subsets €2, for p € {1,---, P}. This results into

m P
Ry = >, 2.8y (6.13)
n=m—I+1 p=1
P P "
= FRYT Dy =D By (614

p=1 p=1
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where [ € N and 0 < g < 1 denotes the window length and the forgetting factor, re-
spectively. Considering a scenario in which no windowing is applied, i.e. | = 1, we can
still collect {y'}, p = 1,2,---, P at the mth OFDM symbol time, without referring to
the OFDM symbols of the previous time instances, i.e. y; for n < m. Hence, we can
conclude that it is possible to track the fast time-varying channel provided P > (Ng. In
practice, this condition is not stringent, e.g. the choices (P,(Ng) = (32,24) and (64, 12),
both fulfilling P > ( Ng, were reported in [149], where both the WiMAX specification and
the 3GPP Spatial Channel Model (SCM) are considered. Of course, the window length [
can be increased if the condition is not met or if it is desired to obtain better smoothing of
the channel estimate. The choice of the parameter § and [ is further discussed along with
the presentation of our simulation results in Chapter 7.
Let W™ be an estimate of the matrix W™ with its (u, v)th sub-matrix given as

Wi Ry, - 0021 | 0w, (6.15)

In this work, we propose to recursively update the principal eigenvectors of wm using

orthogonal iteration and use them to estimate the unknown channel matrix H™ by
H™ = QI A™. (6.16)

In (6.16), the columns of QZZ are the approzimate principal eigenvectors of W™ resulting
from the application of the ngth orthogonal iteration at the mth OFDM symbol time, and
A™ represents the corresponding ambiguity matrix. The details of iteration process are
summarized as follows.

Given a tall, column orthonormal matrix an € CNexXN1 gt the mth OFDM symbol
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time, the method of orthogonal iteration generates a sequence of matrices QZ”, whose column
span is assumed to approximate the span of the Np-dimensional dominant subspace of the

matrix W™ € CSVNrxNr, according to the following recurrence:

Zr =W"Qr,, p=12- ng (6.17)
QZIR/T = Z,T (QR decomposition). (6.18)
Note that in practice we choose Q)" = G mt except when m = 0 (the initial condition). On

the basis of orthogonal iteration, we also notice that estimation of the dominant subspace
of a slowly time-varying correlation matrix was considered in [147|; here we extend the use
of orthogonal iteration by allowing ngy > 1 for tracking a time-varying MIMO channel.

6.3.2 Convergence properties

To motivate the use of the proposed recursive method in a fast time-varying wireless chan-

nel, we investigate its convergence properties as follows. Let us first assume that
UMW U™ = A™ = diag(\") (6.19)

is an EVD of W™ with A" > A" > -+ > A% > 0 and U™HU™ = UmU™H = 1. If U™
is partitioned as U™ = [UT U], where U7 € CSVeXNt and Uy € CNr*CNr=N1) e can

define the distance between the two subspaces Dy, (W™) and %(Q;T) according to [140]| by

dist (D, (W), R(Q))) = [(U5)" Q) o (6.20)
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Let the angle ™ € [0,7/2] be defined to provide a measure of the closeness of the two

subspaces Dy, (W™) and R(QE") by means of (see also (5.11) for details)

def |UHV|

cos (0™) = min

. R TENTETERTRE (6.21)
ueDy, (Wm), veR(QF") [ull2][v]l2

where Qg‘ represents the initial condition at the mth OFDM symbol time. Then from

preceding as in Chapter 5, we can similarly arrive at

N A AT r
dist(D , (W), R(Q™)) < tan(6™) (%) Ca=1,2 g (6.22)
Nt

According to (6.22), as long as the ratio (A%}, ;/A%.) < 1, the iterated subspace %(Q}T’)

AAm—1
nd

converges to Dy, (W) exponentially with an arbitrary initial condition QI = (ex-
cept when m = 0, i.e. the initial condition); this crucial factor indeed allows the track-
ing of a fast time-varying channel. The convergence behavior of the orthogonal iteration
scheme (6.17)-(6.18) as a function of 4 is well predicted by (6.22) in the current application.
To illustrate this point, Fig. 6.2 shows a plot of the subspace distance (6.20) as a function
of 1 when the orthogonal iteration (6.17)-(6.18) is used to approximate the 2-dimensional
dominant subspace of a particular matrix W,, € C12¥12_ appearing at a given symbol time
m in one of our simulations; we also show a plot of (A3(W™)/Ao(W™))# for reference.
Although the estimation performance can be improved by increasing ny in a general
sense, the iterated subspace actually converges to Dy, (W™) instead of Dy, (W™). There-
fore, the performance largely depends on whether or not we can obtain a good estimate
of W™ at each OFDM symbol time. Thanks to the use of additional frequency domain

samples as shown in (6.13)-(6.14), we can meet the requirement of the minimum number

of data samples (i.e., the dimension of the correlation matrix) even in a fast time-varying
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iteration number, p

Fig. 6.2 A demonstration on the rate of convergence in subspace estimation
by using orthogonal iteration.
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wireless channel, as will be demonstrated in Chapter 7. Otherwise, the orthogonal iteration

may converge exponentially to a wrong subspace.

6.3.3 Proposed blind recursive estimation algorithm

We briefly summarize the precoded subspace-based tracking algorithm in Algorithm 2. In
practice, to acquire the ambiguity matrix A™ needed at the mth OFDM symbol time, we
can employ another estimation process including the use of higher order statistics or pilot
symbols (resulting in the so-called semi-blind approach). Note that for moderate choices
of the number of transmit and receive antennas, the computational complexity (flops) of
the proposed tracking algorithm for each iteration is O(¢*). This figure is generally smaller
than that of the blind adaptive channel estimators using either the least mean squares or

the recursive least squares adaption, developed for SISO-OFDM |[55].

6.4 Precoder design

To simplify the notation for the following discussions, let us define T’ o

OO and let ¢ ;
and ~; ; denote the (4, j)th entry of matrices ¥ and I', respectively. On the basis of (6.15),
the choice of ¥ does not appear to be restricted, except for the trivial constraint that the
entries of I' cannot be zeros, i.e., v;; # 0, Vi,j. However, we can choose the precoder
matrix judiciously to simplify the channel estimator and optimize its performance.

First, we note that if the diagonal entries of I' are identical, i.e., v;; is a constant for
i=1,2,---,(, then the additional estimation of the noise variance in (6.15) can be avoided.
To be more specific, let us define a new matrix T with its (u,v)th sub-matrix given as

™ “R™ oT, uve{l,2,---,Ng}. (6.23)

Y., uv
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Algorithm 2 Blind recursive subspace-based identification of TV-MIMO channels
Initialization: Q! =I(:,1: Ny), R) =0, R) =0

form=1,2,--- do

Input vector: y7",--- ,yp

DM P my,m

Ry =2 0155 Yp "

if m <[ then
R} = BRy! + Ry

else
Dm _ gpm—1 Dm Ipm—I
P}y _5RAy +Ry _5Ry
Wi = [Ry,, — 6,,630] 0 Wt

Qr =Qu !
for py=1,2,--- ;ngdo
7 =W A
Q'R = Z]} (QR factorization on Z}')
end for
H™ = Q7 A™
end if
end for

Then we can arrive at T™ = W™ + p1 (for some p € R). Since T™ has the same invariant
subspaces as Wm, we can simply apply T™ instead of W™ in the Algorithm 2 to eliminate
the noise variance estimation.

Second, letting ARJ" denote the difference between the estimated and the {rue correla-

3 1 1 A m __ m m T m
tion matrix, i.e. Ry’ = Ry’ + ARJ, we may express T}, as follows

Ty =Ry, 0T+ AR, OT. (6.24)
déf";m d:ef;:[‘m

Then it becomes clear that the choice of the precoder should focus on eliminating the error
term AT! in (6.24).

The matrix ARJ",, in (6.24) has a random nature resulting from the effects of the
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time-varying channels, additive noise, and insufficient number of data samples. Let

y,uv

def m m
J() =Y EATL | = E|ARY,, © U7 (6.25)

Given that @ is an element-wise division, the minimization of J(¥) is equivalent to max-
imizing (in a weighted sense) the entries of I' = WWH . Nevertheless, the choice of a
precoder is subject to a fixed transmit power and thus cannot be arbitrarily large; the
entries of I' should therefore be maximized based on the statistics of ARJ' and subject to
a normalization factor.

In summary, we suggest that the choice of the precoder be optimized via the objective

function

min J(¥), (6.26)

subject to the following constraints:

(C1) To guarantee that the element-wise division in (6.15) and (6.23) is feasible, the pre-

coder must fulfill the trivial condition: v; ; # 0, Vi, j.

(C2) To normalize the average transmit power, we require that Y. [t ;> = 1, Vi. Note
that this constraint also implies that v;; = 1, V¢, meaning that the diagonal entries

of T" are identical, and hence there is no need for noise variance estimation.

In the absence of a more specific model, we consider a worst case situation and assume that
the entries of ARJ" are i.i.d. random variables with zero mean and equal variance; this
choice is further supported by our numerical observations. Based on this assumption, the
objective function in (6.26) becomes a standard optimization problem and can be solved
by using Lagrange multiplier. Accordingly, the optimal precoder assuming 7, ; € R is

obtained as ¥y = (1/4/{)1cxc, that is T' = 1¢y, where 1y, denotes a ¢ x ¢ matrix of all
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ones. Note that this result coincides with the optimal choice of the precoder in terms of
estimation performance, obtained from numerical results in [125].

Nevertheless, the above precoder Wy has rank 1 (condition number = o), and thus is
not a good choice from the perspective of symbol recovery. To make ¥y non-singular while
keeping the estimation performance close to the optimum, we can perturb the entries of
U, in the following manner: ¥y — W, where the diagonal entries of ¥ now slightly exceed
the off-diagonal ones. This approach is motivated by the following fact: a loose bound on

rank(W) is provided by [153, Section 4.10| as
¢
rank(®) > > |1l /i, (6.27)
i=1
where b, & Zgzl |t; j]. This implies that given the constraint (C2), we can increase

rank(W¥) from 1 by boosting the ratios |¢;;|/b;. Here we propose to use a simple Toeplitz

matrix to accomplish this goal. That is, we define

1 v v
. 1 v 1 T
=0 Y , (6.28)
T+(C—=1p2 | = .. ..
V . e I/ 1
- dexe

where v (0 < v < 1) can be seen as the common perturbed value of the off-diagonal entries
of ¥y. The condition number of W(v) is given by x = (14 (( —1)v)/(1 —v) [154]. We can
now impose some constraint on the condition number, e.g., k < k* for some practical but
finite x* and relate the choice of v to k* as v < (k* —1)/(¢ — 1+ k*).

Intuitively, there exists an optimal trade-off in terms of v between the symbol recovery
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(v < 1) and channel estimation performance (v = 1) for a given SNR. However, the analysis
for determining an optimal value of v for this combined objective appears difficult. In the
following chapter, we shall approach this problem from an experimental perspective using
simulations. Note that a similar structure was employed for a block-based channel estimation
scenario in [151] (i.e. quasi-stationary over several OFDM symbols). Our analysis explicitly
shows that the optimal estimation performance is achieved when v = 1 and we provide

insight into the trade-off among various choices of v’s.
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Chapter

Numerical experiments and results

In this chapter, we present and discuss the results of numerical experiments aimed at eval-
uating the performance of the proposed algorithms developed earlier. Both time-invariant

and time-variant wireless channels are considered in the evaluations.

7.1 Time-invariant scenarios

7.1.1 Methodology

Numerical evaluations of the performance of the proposed algorithm over block fading chan-
nels are presented in this section. A comparison of the proposed and referenced algorithms
over a simplified TDL model will be given in the first place. Having demonstrated that
better performance can readily be achieved by the proposed scheme under such a condition,
we will then explore the performance of the proposed algorithm over practical scenarios
where both WiMAX specification [70] and 3GPP Spatial Channel Model (SCM) [79] are
considered. We refer the reader to Section 2.3 for further details on these channel models.
For each 3GPP-SCM scenario, after identifying the best value of the parameter P (i.e. the

number of frequency subsets for averaging) in the proposed algorithm presented in Ta-

2010,/07/30
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ble 4.1, we will compare their NMSEs with the corresponding CRBs. In our experiments,

the NMSE of the channel estimate is defined by

! Ef|hi[k] = iy [k’
NMSE = J JT 7.1
NP 2 Bl 1] oy
where we consider R j[wy ;] = - -+ = hij[wpy], i = 1,2, , ¢ (see Fig. 4.1 for more details).

Note that the asymptotic performance of one of the most recent algorithms [47] will also
be given over these practical scenarios for comparisons.

Throughout this section, we consider a MIMO-OFDM system with 2 transmit (Np = 2)
and 3 receive antennas (N — 3). The number of subcarriers used in the OFDM system
is 256 (N = 256). For each time epoch, the incoming symbol streams are independent
and identically distributed (i.i.d.) QPSK symbols. The SNR is defined as the ratio of the
signal power to the noise power on a subcarrier basis. By referring to (3.1), we can also
express it by 10log,,[Fs(c?/0?)], where o7 denotes the variance of the channel coefficients.
All simulation results are obtained by averaging over 200 independent Monte Carlo runs
except when evaluating the BER and CRBs, in which the latter are obtained by averaging
over 107 independent Monte Carlo runs instead. In addition, the wireless channel is as-
sumed to remain stationary over the time averaging intervals, and we employ A = (Q*)'H’

from (4.15) to obtain the ambiguity matrix, assuming H is known.

7.1.2 Comparison with referenced schemes

Numerical results of the proposed as well as the referenced subspace-based methods from
[44], including the CP and VC approaches for MIMO-OFDM systems, are presented in
this part. For each time epoch, the incoming QPSK symbols are chosen to span 2 OFDM

symbols (Nr = 2) in order to fulfill the identifiability condition of the referenced schemes.
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For the proposed method, we consider P = 2, 8, 32, and 64.

In order to save simulation time and overcome the issue of an accurate channel-order
estimation |155] for the referenced schemes, we consider a simplified TDL model with 2
taps. Therefore, the excess delays are given as 7, = (n — 1)7T, where T" denotes the OFDM
sampling time interval. The tap coefficients are assumed to be i.i.d., ZMCSCG random
variables with unit variance for both the real and imaginary parts. Under these conditions,
there are 10 subcarriers residing inside the coherence bandwidth (P—10) if the latter is
defined as the bandwidth over which the frequency correlation function is above 0.9, while
there are 100 subcarriers residing inside the coherence bandwidth (P=100) if the definition
is relaxed so that the frequency correlation function is above 0.5.1

Fig. 7.1 shows the NMSEs of the proposed and referenced methods as a function of the
numbers of OFDM blocks, employed to obtain a sampled correlation matrix (each OFDM
block is constituted of 2 OFDM symbols) when SNR = 20dB. As expected, the estimation
performance generally improves when the number of the OFDM blocks is increased for time
averaging. An exception to this is when the proposed method is with P = 32 and 64 as
shown in Fig. 7.2, in which cases the frequency responses of the P sub-channels are not flat
in any sense.

For each referenced method, we consider a dimension of the noise subspace equals to
either 8 or 16.2 When comparing a specific referenced method with different dimension
of the noise subspace, either the CP or VC method with a larger dimension of the noise

subspace outperforms the same method with a smaller dimension of the noise subspace.

!Under this scenario, the RMS delay spread 7,.,s can be calculated as 7/2 from (2.13). Since the
OFDM subcarrier spacing Af = 1/(NcT') = 1/(256T), we can arrive at Be &~ 1/(57pms) = 0.4/T =~ 100A f
when the frequency correlation function is above 0.5, and B. = 1/(507ys) = 0.04/T ~ 10Af when the
frequency correlation function is above 0.9, respectively.

2For the CP method, the dimension of the noise subspace is equal to the size of the cyclic prefix. For
the VC method, the dimension of the noise subspace is equal to the sum of the size of the cyclic prefix and
the size of nulls.
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Fig. 7.1 NMSE versus number of OFDM blocks (SNR=20dB).

When comparing two referenced methods with the same dimension of the noise subspace,
the CP method outperforms the VC method since the dimension of the CP’s eigenvectors
is larger, imposing additional constraints on the channel estimate [42, 43|.

Within the given time averaging intervals, we note that the proposed method outper-
forms the referenced ones with any given dimension of the noise subspace. We can also
observe from Fig. 7.1 and Fig. 7.2 that the number of the time samples required (i.e., the
dimension of the correlation matrix) is reduced when P is increased. However, the esti-
mation results also deteriorate since the proposed algorithm is based on the assumption
that the channel coefficients of the adjacent P subcarriers are similar. On the contrary, the
number of the time samples required is increased when P is decreased. Nevertheless, the

estimation results also improve. To achieve the best tradeoff, we conclude that P should
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Fig. 7.2 NMSE versus number of OFDM blocks (SNR—20dB).

be chosen to restrict the frequency spans of the P adjacent subcarriers to reside inside the
coherence bandwidth, for which the frequency correlation function is above 0.9, i.e. P ~ 10
in this case.

Fig. 7.1 and 7.2 also include asymptotic performance of the proposed scheme, as defined
in (4.28). We do not evaluate the CRB here since the simplified TDL model is a less
practical scenario. To evaluate the asymptotic bound for different values of P, an estimate
of Ry in (4.20), with a sufficient time averaging and at a high SNR is employed to obtain a
sufficiently good approximation to the true correlation matrix. For P = 8, we can see that
the asymptotic performance closely matches the simulation result for 7, > 50. In order
to reach the asymptotic performance for P = 2, the required number of OFDM blocks

is increased to T,, > 210 OFDM blocks. Note that the accuracy of the bounds relies on
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Fig. 7.3 CAB versus number of OFDM blocks (SNR=20dB).

the assumption that ||AH,| is small. Otherwise, Ray in (4.20) becomes significant and
is equivalent to a low SNR condition. Therefore, asymptotic performance for P = 32 and
64 can only serve to indicate that whether or not the proposed scheme has met a certain
level of confidence. Accordingly, we can conclude that the proposed algorithm reaches its
asymptotic performance for 7T,, > 10 OFDM blocks when P = 32 and 64.

Fig. 7.3 and 7.4, which show the corresponding CABs as defined in (4.29), lead to the
same conclusions as above. It should be noted that the error floor of the performance of
the proposed algorithm is due to the variations across coherence bandwidth (see Section
4.3.2 for details). However, it can be eliminated by increasing the value of N¢ (i.e., the size

of FET/IFFT) when the channel bandwidth is fixed.
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Fig. 7.4 CAB versus number of OFDM blocks (SNR—20dB).

7.1.3 Practical applications

We have shown that the proposed algorithm can achieve better performance than the ref-

erenced approaches within reasonable time averaging intervals. The superior performance

relies on choosing the maximum allowable P for the purpose of minimizing the dimension

of the correlation matrix without affecting the estimation performance. While the above

simplified TDL model is useful for comparing various algorithms, it has limitations so that

it is difficult to infer what happens in practical wideband situations. Therefore, in order to

determine the maximum achievable P in practical scenarios, we consider to adapt part of

the Mobile WiIMAX OFDMA-PHY [70| for our OFDM system and to simulate it over the

3GPP-SCM [79).

In our OFDM system setup, the subcarrier spacing is chosen as 10.94kHz, given the
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Fig. 7.5 NMSE versus number of OFDM blocks over 3GPP Urban Micro
(SNR=20dB).

OFDM useful symbol duration is 91.4us and the cyclic prefix length is 11.4us [70]. Since we
consider N¢o = 256, the channel bandwidth is approximately 2.5MHz. For each time epoch,
the incoming QPSK symbols are chosen only to span over 1 OFDM symbol (Ng = 1), and
each Mobile WiMAX frame consists of 48 OFDM symbols. In the 3GPP-SCM setup, the
carrier frequency is 2.5GHz. Base station antenna spacing is 10\ and MS antenna spacing
is A/2, where A is the wavelength at the carrier frequency. The channel coefficients of each
3GPP-SCM scenario are generated according to the implementation in |[79]. We also present
the asymptotic performance of the approach given in [47| (as indicated by "F. Gao et al."
in the legends of the simulation figures), tailored into our system setup for comparisons.
Note that accurate channel-order estimation is also assumed for this referenced algorithm.

Fig. 7.5 - 7.7 show the NMSE versus number of OFDM blocks over the 3GPP Urban

Micro, Urban Macro, and Suburban Macro models [79], respectively. Note that SNR =
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Fig. 7.6 NMSE versus number of OFDM blocks over 3GPP Urban Macro
(SNR=20dB).

20dB is considered for all the scenarios. We observe that with a suitable choice of P, the
proposed algorithm can reach NMSE < 3 x 107° in all the cases within 50 OFDM blocks
(or approximately 1 Mobile WIMAX frame). We also present NMSE versus the choice of P
of the proposed algorithm over the Urban Macro and Suburban Macro models in Fig. 7.8,
and we can observe that the best choice of P for these models should fall between 32 and
64.

To determine the efficiency of the proposed algorithm, we evaluate the associated CRB
over each 3GPP-SCM scenario. Specifically, we evaluate the CRBs as given in (4.38) by
considering the adjacent P channel coefficients are the same (i.e., H; = Hy = -~ = Hp),
which constitutes the optimal condition of the proposed algorithm. Fig. 7.9(a) - 7.9(c)
show the NMSE and the corresponding CRB over 3GPP Urban Micro, Urban Macro, and

Suburban Macro models, respectively. From the results, we can observe that there is about
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Fig. 7.7 NMSE versus number of OFDM blocks over 3GPP Suburban Macro
(SNR-20dB).

3—6dB gap between the NMSE curve and the corresponding CRB bound over each scenario
when SNR > 20dB. We also observe in these experiments that the referenced algorithm
[47] does not show advantages over our approach, since the dimension of its correlation
matrix is given as Ng(N¢ + Nop) > NpNe = 768, as compared to NpNe/P < 24 in our
approach. We stress again that these referenced curves in Fig. 7.9(a) - 7.9(c) represent
the ideal, asymptotic performance of the algorithm proposed in [47]. In other words, the
referenced algorithm could not reach the asymptotic performance at such a small number
of time samples and low SNRs.

Finally, we present the BER curves of the proposed algorithm over Urban Macro and
Suburban Macro scenario in Fig. 7.10(a) and 7.10(b), respectively. For SNR > 15dB, we

can conclude that the proposed algorithm employing only 50 time samples can reach the
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Fig. 7.8 NMSE versus P (when the number of OFDM symbols Ty, = 50).

same performance as if perfect CSI is known at the receiver. However, more than 210 time

samples are required for channel estimation if SNR < 15dB.

7.2 Discussions of time-invariant scenarios

Our first contribution is in developing and analyzing a new scheme to overcome some
fundamental limitation of the subspace-based blind approach when applied to MIMO-
OFDM transmission over time-varying channels. Specifically, when considering the time
invariance requirement of a practical MIMO-OFDM system with a large number of OFDM
subcarriers, e.g., 128 or more, the traditional subspace-based methods require extremely
large number of time samples for obtaining a good time-averaged correlation matrix, making

them impractical. By exploiting the frequency correlation among adjacent subcarriers (i.e.,
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Fig. 7.9 Performance of the proposed scheme over various 3GPP-SCM sce-

narios (1, = 50) as a function of SNR.
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Fig. 7.10 BER of proposed scheme over 3GPP-SCM scenarios.

within the coherence bandwidth) through the concept of subcarrier grouping, we proposed
a novel subspace-based estimation method which requires a significantly smaller number of
time samples. The above simulation results showed that the proposed method could achieve
a better estimation accuracy than existing benchmark approaches within a reasonable time
averaging interval.

To explain why the proposed algorithm generally performs better in the Suburban
Macro scenario than in the Urban Macro one, the cumulative distribution functions (CDFs)
of the RMS delay spread (DS), i.e., Pr{Trims < abscissa}, of these scenarios are shown in
Fig. 7.11. From this figure, we can clearly see that the corresponding RMS delay spread of
the Suburban Macro scenario is much smaller than that of the Urban Macro one, meaning
that the coherence bandwidth of the Suburban Macro scenario is much larger than that
of the Urban Macro one. It thus implies that our approach is better suited for the 3GPP
Suburban Macro case.

It should be noted that unlike the traditional approaches which require explicit channel-

order information for estimating the channel matrix, the proposed algorithm requires only
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Fig. 7.11 CDF of the RMS delay spread.

an upper bound of the channel order to determine the range of the parameter P. Therefore,

the proposed algorithm is less sensitive to the channel modeling errors.

7.3 Time-variant scenarios

The MIMO system under consideration consists of Ny = 2 transmit and Ny = 3 receive
antennas. The number of subcarriers No used in the OFDM modulation is set to 256. For
each time epoch, the incoming symbol streams are independent and identically distributed
(i.i.d.) QPSK symbols. The OFDM useful symbol duration is 91.4us and the cyclic prefix
length is 11.4us, resulting in a subcarrier spacing of 10.94kHz. Since we consider No =
256, the channel bandwidth is approximately 2.5MHz.

Modeling of the time-varying MIMO channel is also based on the 3GPP-SCM setup;
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Fig. 7.12 NMSE versus precoder coefficient ¥ when MS speed is 100km/h
(Ep/Ny = 14dB).

we refer the reader to [79] for additional details. To evaluate our algorithm, we consider
a Suburban Macro scenario with the carrier frequency f. = 2.5GHz, where the mobile
station (MS) is allowed to travel in a random direction at a constant speed of 100km/h.
Hence, the maximum Doppler shift is 231.48Hz and the normalized Doppler frequency is
0.02. Experimentally, we have found that a suitable value of P in this given scenario is 64.
To obtain the ambiguity matrix A™ needed at the mth OFDM symbol time, we employ

A™ = ( Q" )THT{ILD/Q] in the simulations. This type of approach is common in the literature

ng
on subspace-based blind channel identification.
Considering a rectangular window (i.e. = 1) of length [ = 1 and 5, we first inves-

tigate the choice of the precoder coefficient v from the perspective of channel estimation

performance. In our experiments, the NMSE for the mth channel estimate is defined here
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Fig. 7.13 NMSE versus forgetting factor 8 when MS speed is 100km/h (v =
1 and Eb/NO == 14dB).

as

NMSE = » | Bllhii[k] — Ri5[K]%)/ Y BllR K], (7.2)

i,k .5,k

and the ensemble average is taken over 200 independent realizations of the random process.
Fig. 7.12 shows the NMSE of the channel estimates versus v when a hundred OFDM
symbols are observed and the Ej,/N, (i.e. SNR per bit) is 14dB, where E}, and N, denote
the energy per bit, and the one-sided noise power spectral density, respectively. We are not
surprised to see that choosing the window length [ = 1 gives the best performance since
the wireless channel is changing so rapidly in this case. In particular, we observe that the
NMSE reaches its minimum, i.e. 2.5 x 10~* when v = 1, which coincides with our analysis

in Section 6.5.
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Fig. 7.14 NMSE versus number of OFDM symbols when MS speed is
100km/h (ng = 2).

In Fig. 7.13, we investigate the choice of the forgetting factor 3, when an exponential
window of infinite length is considered under the same condition as above. We can see that
the NMSE reaches a minimum (a value comparable to that of the rectangular window with
[ = 1) around NMSE = 2 x 10~* when 3 € [0,0.1], meaning that previous data samples are
of little use for the estimation of the current channel statistics for this rapidly TV channel.
Thus, employing an exponential window cannot gain additional estimation performance in
this scenario. We also notice that there is no significant improvement in the estimation
performance when n, is increased from 2 to 5 in both figures. Hence, we simply assign
ng = 2 and employ a rectangular window of length [ = 1 in the following.

Fig. 7.14 presents the NMSE of the channel estimates versus the number of OFDM

symbols received when v = 1 and 0.7 at the E,/Ny — 14, 34dB. We can see that the
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Fig. 7.15 BER versus precoder parameter v when MS speed is 100km/h
(ng =2).

proposed algorithm can track the fast time-varying channel in less than 5 OFDM symbols
in all the cases, and maintain its performance over time despite the rapid variations in the
channel coefficients. These results show in particular that adjusting the trade-off between
estimation performance and symbol recovery in these cases (e.g., v is decreased from 1
to a smaller value) will not affect the convergence rate. In addition, we observe that the
estimation performance of the case v = 1.0 at E, /Ny = 14dB outperforms that of the case
v = 0.7 at E,/Ny = 34dB, implying that choosing a proper precoder coefficient is rather
important.

In Fig. 7.15, we show the BER versus the precoder coefficient v for various Ej,/Ny’s.
We consider both the least squares (LS) and the total least squares (TLS) [120] estimation

for symbol recovery. We first notice that for a given v, a higher Fj /Ny in general gives a



7 Numerical experiments and results 134

10” I I I I I I I
-6 -1 4 9 14 19 24 29 34

E,/N, (dB)

Fig. 7.16 BER versus E;/Ny when MS speed is 100km/h (ng = 2).

better BER. We also observe that the higher the Ej, /Ny, the larger the optimal choice of v,
and hence the lower the BER. This can be explained as follows: For a less noisy scenario,
a shorter distance between any pair of the precoder outputs is allowed, and thus we can
increase the value of v to gain better estimation performance and so achieving a lower BER.
Furthermore, we observe that for a given Ej, /Ny, the TLS estimation (solid lines) generally
outperforms the LS estimation (dash-dot lines) estimation, since the TLS estimation takes
the channel estimation errors into account while performing the symbol recovery.

Fig. 7.16 demonstrates the BER versus the FEj /N, for various v’s, considering both the
LS estimation (dash-dot lines) and the TLS estimation (solid lines) estimation for symbol
recovery. We can see that when v = 0.4, the proposed algorithm performs the best in

the low Ej, /Ny region due to its largest distance between any pair of the precoder outputs;
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however, it performs the worst in the high FEj,/Ny region because the most inaccurate
channel information is used. The case v = 0.9 yields the worst performance for almost all
Ey /Ny values due to its extremely short distance between any pair of the precoder outputs,
even though the best estimation performance is achieved. A good choice of v should fall
between 0.6 to 0.7 when the Ej, /Ny is moderate to high, and a 1 —2dB gain can be achieved

by using the TLS instead of the LS estimation at the Ej,/Ny, = 19dB.

7.4 Discussions of time-variant scenarios

To estimate wideband time-varying channels with large Doppler shift, one typically resorts
to pilot placements at consecutive OFDM symbol times over specific subcarriers, followed by
different interpolation schemes; this is because blind channel estimation normally requires
a long observation interval and tends to exhibit a slow convergence rate, making it difficult
to apply on these channels. Our second main contribution is in developing a new scheme
to blindly track a wideband time-varying wireless channel which may be changing at each
OFDM symbol time, without using any preambles or training sequence. In particular, our
approach offers the flexibility in choosing the number of transmit as well as receive antennas,
and offers high bandwidth efficiency and low complexity. In a realistic mobile wireless
channel environment in which the maximum Doppler shift is 231.48Hz, the numerical results

showed that our approach can achieve a BER at the level of 1072 when the Ey, /Ny > 14dB.
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Chapter

Summary and conclusion

In this thesis, we analyzed existing subspace-based blind channel estimators and high-
lighted some of their limitations. Subsequently, we proposed novel estimators of this type
for broadband MIMO-OFDM systems that exploit channel correlation over the coherence
bandwidth, to improve the convergence speed while maintaining satisfactory estimation
performance. In this chapter, we summarize the main results and ideas developed in the
thesis, and then present some concluding remarks that may lead to some possible avenues

for future research.

8.1 Summary of the work

Over many years, pilot-based channel estimation has been widely employed in various com-
munication systems to acquire the CSI, as needed in several capacity-achieving techniques,
such as (frequency-)space-time coding and spatial multiplexing. To take advantage of the
blind channel estimation, i.e., acquiring the CSI without using pilots, it is essential to
mitigate the slow convergence rate associated with blind channel estimators. Fortunately,

several blind approaches using second order statistics have been proposed that can achieve

2010,/07/30
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a reasonable convergence rate for a time-invariant channel. This includes the subspace
methods, which are particularly attractive due to their good performance and moderate
complexity.

In the subspace-based estimation approach, channel estimates can often be obtained
in a simple form by optimizing a quadratic cost function. In Chapter 3, we explained
that to guarantee an acceptable estimation performance for a time-varying channel, the
dimension of the correlation matrix of the received signal cannot be too large. Nevertheless,
most existing subspace-based approaches were employed in the time domain, including
applications for OFDM-based systems. This design leads to the inherent property that the
dimension of the correlation matrix is a multiple of the number of OFDM subcarriers. Thus,
the aforementioned subspace-based approaches lead to extremely unfavorable conditions for
these systems, since 256 to 2048 OFDM subcarriers are normally considered.

These observations motivated the development in Chapter 4, i.e., a new subspace-based
blind channel estimator for MIMO-OFDM systems that can exploit the frequency correla-
tion among adjacent channel coefficients within the coherence bandwidth, for the purpose
of dramatically reducing the dimension of the correlation matrix. It was found that, given
some rough knowledge of the RMS delay spread of the wireless channel, the proposed esti-
mator also avoids the need of channel order estimation, and thus yield an added flexibility
in terms of estimation performance and robustness. We further studied the identifiability
condition of this new estimator along with its performance measures, including perturbation
and Cramer-Rao bound analysis.

In Chapter 5, to reduce the computational complexity associated with eigenvalue de-
composition in the proposed method, we also investigated the convergence properties (over
non-stationary scenarios) of a simple yet powerful subspace tracking approach, namely,

orthogonal iteration. Then in Chapter 6, by incorporating the subspace tracking approach
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in our estimator, we developed a fully recursive algorithm to update the signal subspace
needed in the estimate of time-varying channels. This approach is computationally efficient
since it avoids re-computing the subspace from scratch at every time iteration. To further
reduce the complexity associated with the ambiguity matrix in our proposed estimator, a
precoder was also introduced at the transmitter.

To complete the study, the choice of the precoder was also derived and analyzed. We
first showed that a precoder matrix whose entries are all 1’s results in the best estimation
performance; however, its condition number becomes infinity, and hence the transmitted
symbols cannot be recovered at the receiver. We then showed mathematically that by
properly perturbing the off-diagonal entries of the precoder matrix, we can decrease its
condition number to a reasonable value.

Finally, in order to assess the performance of the proposed algorithms, we presented
numerous computer simulations in Chapter 7. When we consider a block fading channel, it
was shown that the proposed method requires a significantly shorter time-averaging period
than the benchmark methods, particularly when the wireless channels are characterized by
smaller RMS delay spread. We also confirmed that the proposed tracking algorithm indeed
outperforms the benchmark algorithm, and is capable of properly tracking time-varying
channels with the maximum Doppler shift up to 230Hz. Regarding the precoder design, we
show empirically that the best trade-off between channel estimation and symbol detection

performance is achieved when the ratio of its off-diagonal to diagonal entries is on the order

of 0.6 —0.7.
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8.2 Concluding remarks

The IEEE 802.11n PHY layer standard, which aims at providing an 11-fold increase in
transmission speed over 802.11g, or a 55-fold increase in transmission speed over 802.11a,
can be regarded as one of the prominent examples of wireless communication systems nowa-
days: Combining the MIMO-OFDM techniques, it uses training or pilot signals embedded
in transmitted data streams to facilitate channel estimation and synchronization in the
system. The presence of pilot signals implies that data throughput is decreased, e.g. at
least 6% loss in capacity is expected in the IEEE 802.11n systems. Specifically, for a time-
varying channel where mobile is expected to travel with a high speed, the throughput loss
due to the periodic insertion of training or pilot signals is huge. Therefore, employing a
fast-converging and reliable blind channel estimation in the design of future wireless system
seems to be an attractive solution.

Nevertheless, blind channel estimation has not been employed or considered in any of
these communication systems yet, including the latest proposals of wireless standards such
as IEEE 802.11n, WiMAX, and 3GPP LTE. We may wonder, given that numerous works
in blind channel estimation have demonstrated superior performance of their methods, for
what reasons do people still not embrace these apparently capacity-saving techniques?

Similar question was raised by Z. Ding and Y. Li in the preface of [156] about a decade
ago, and the reasons, according to the authors, may be attributed to: (1) the inadequate
understanding about the problem itself and various proposed blind estimation schemes by
many practicing engineers, (2) a reliable blind estimation algorithm is yet to be established
that can guarantee speedy convergence, and with reasonable complexity. Specifically, the
algorithm should not be very sensitive to parameters such as the estimated channel order.

A decade later, many more practicing engineers may have acquainted the problem itself
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and several new blind estimation schemes have been proposed; however, in the context
of MIMO-OFDM systems, a large number of different blind approaches that have been
proposed to date still suffer from various shortcomings, including the slow convergence rate
and sensitivity to the estimated channel order.

The work in this thesis led to many interesting developments in subspace-based blind
channel estimation and tracking algorithms. Specifically, the proposed algorithms, which
exploit correlation in the frequency channel coefficients within the coherence bandwidth,
have shown significant improvement in the convergence speed, while maintaining satis-
factory estimation performance. In addition, they do not require exact knowledge of the
wireless channel order, and the requirement of their computations is lower than that of the
benchmark approaches. We hope that the small step taken in the thesis toward a simple,
reliable, and fast blind channel estimation algorithm, may eventually lead to widespread of

blind channel estimation approaches in future wireless standards.

8.3 Future work

Several promising avenues for future research have emerged based on the work presented

in this thesis. They are summarized briefly below:

1. In Chapter 4 and 7, estimating the ambiguity matrix is treated as a separate problem.
It would be interesting to investigate how the estimation of ambiguity matrix can be
effectively incorporated into the proposed algorithms. This can possibly be achieved
with the help of an HOS approach, the use of a training sequence (resulting in the
so-called semi-blind approach that combines the blind and the non-blind approaches),

or other new signal processing approaches.

2. As space-time block coding is considered in IEEE 802.11n wireless networking stan-
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dard, it would thus be of interest to further investigate the scenario in which a corre-
lated input sequence, e.g. Alamouti’s space-time block code, is applied at the trans-
mitter side. We have assumed that the input sequence of the OFDM modulator is
i.i.d. throughout this thesis. Therefore, a good starting point would be to consider

an interleaver, for the purpose of scrambling the encoder output.

3. In Chapter 4, the asymptotic performance and the Cramer-Rao bound of the pro-
posed algorithm are studied but the results remain in the form of somewhat general,
which can only be evaluated through numerical computations. It would be relevant
to generalize these bounds in terms of parameters such as noise variance, dimension
of the eigenvectors, etc., in order to gain more insights on how the estimation per-
formance is affected by these parameters. Such results would provide an even better

understanding of the proposed subspace-based estimators.

4. It will be challenging to consider an even higher Doppler rate, in which the wireless
channel may be changing within an OFDM symbol time. In this case, a subspace-
based blind channel estimator will be in no doubt very attractive for future wireless

standards if acceptable performance can be achieved.

5. It would be interesting to further extend the proposed blind channel estimation /tracking
algorithms from single user scenarios to multi-user ones. In the multi-user case, it
is expected that the proposed approaches may be affected by the interference from
other users, resulting in worse estimation /tracking performance. Another interesting
research avenue would be to explore the effects on the performance of the proposed

algorithms when a degenerate channel condition is occurred.
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Appendix

Quadratic cost function

From (4.8), we can arrive at
llfi diag(H[wP,l] s -H[wpd) = 01><NTC7 1= 1, cee ,NF. (A].)

By further partitioning u;; into ¢ segments of equal dimension, with the kth segment

denoted as u;;, € CNr*! k=12, -+ (, we can obtain from the above that
ufz,kH[wp,k] = 01><N’1“7 k - 17 e 7<-’ (A2>

Therefore, we can arrive at

Hlw, ]

In practice, only an estimate of the noise eigenvector u; is available, denoted here as 1.

Based on (A.3), we can define a new cost function that is more convenient to perform the

2010,/07/30
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optimization:

Np
1, —1 def ~ —/
C'(H)= Y llafiH |5 (A.4)
j =1

Clearly, since uf?rl = 0 implies ufﬂ:[ = 0 as shown above, it follows that the condition

C(H) =0 in (4.9) implies that C'(H') = 0. Finally,

’, = r ~H A7 112 ol T A% (|12
C(H) = ZZHUJZH ||2:ZZ||H a3
i=1 joi=1

J

= Y IHTVIE = (RTOH")
J

which gives exactly (4.12). Note that by employing the new cost function in (A.4), we now

. A H ",/
measure how close is uMH to O1x Ny
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I want to dedicate this work to the French composer and pianist Erik Satie (1866-1925)

for his masterpiece:

W

"The melodies of the pieces use deliberate, but mild, dissonances against the harmony,
producing a piquant, melancholy effect that matches the performance instructions, which

are to play each piece slowly, dolorously or gravely" - Wikipedia



