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ANALYSIS OF IMPULSE STRLSS PROPAGATION
IN A VISCO-ELASTIC MERIUM

INTRODUCT ION

in problems where specification of material properties under
conditions of dynamic loading is necessary, the question of material
sensitivity to stress and strain paths becomes a most important consider-
ation. in a scil material where immediate and subseguent performance
characteristics are intimately related to past histories of stress and
strain, an assessment of the pertinent material properties becomes
Jifficult unless a proper accounting of previous histories is made.
The problem 15 all the more complicated if dynamic and transient
loadings are introduced as external conditions, since time response
characteristics of 50ils now demand that the inelastic behaviour of
the material be studied in addition to the well established hysteretic

performance characteristics.

The problem under investigation relates directly to the
measurement and evaluation of dynamic properties of clays under
conditions of loading such as those provided by moving surface loads
{wheels, vehicles, tracks, ete.] or through penetrating devices inte
the soil [wedge and cone indentation into scil]. The behaviour of the
soil directly below the surface in the case of surficial leadings, or
directly adjacent to the penetrating wedge or cone, can be described in
terms of elther transient or dynamic load-response characteristics. As
an immediate requirement, various material parameters and moduli are

needed for appropriate analyses to be made,




This report presents a numeTical method which allows one to
compute the tyansfer function of a two dimensional system composed of
a frequency dependent material - soil. This arises from initial
considerations of the analytical study which examines a finite length of
the specimen resting on a fixed base - see Fig.l in Section A. A
simple model is assumed based upon available experimental experience, and
the fact that a pressure discontinuity cannot be properly transmitted
through a clay material [Yong, Krizek and Dutertre (1973}]. The
transfer function which relates the pressure at cne end of the specimen
due to an lnput pressure at the free top surfece ali¢ws one to compute
the response of the specimen subjected to sn impulse, a stepload or any
arbitrary transient load function. The speed of propagation of an
impulse is known to be closely related to the speed of propagation of
the maximum disturbance in materials possessing little internal damping.
llowever in a dispersive material, the properties measured in classical
transient wave tests are found to be related to the lawer resonant
frequency of the specimen tested., Thus it becomes important to
identify the proper characteristics of material performance, and
especially the actual speed of propagation in the dispersive material.
The measurement of time of arrival of a pulse and the associated calcul-
ations for the evaluation of the various moduli which constitute the
experimental and analytical phase of this kind of study have been
reported previocusly [Yong et al. (1973}}. In this report, we present
the numerical metheod which allews for the examination of the transfer
function in the selution of the problem of wave propagation in a
visco-elastic material which is assumed to model the performance

characteristics of clay.
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ANALYTICAL SOLUTION OF A FINITE LENGTH RO

RESTIRG ON A FIXED BASE

A1 Problem definition

|-4— —iy
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cl0,t) ———— o {1,t)
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ﬂ‘

Equation of state for the visco-elastic material is given as

c = Le+Te A-1
; — gu -
wvhare € % A-2
2
) a¢ a“u
d = = -
an £ T S tax A=}

The input g{r,t) is known and g(0,t) must be computed.

A.2 Transfer funcrion

The transfer functien relating 7(0,t) to 5(4,t) can firse
o obtained

The equaticn of motion is




do  _. 3 U

Using the equation of atate A-l1 ang aifferentiating with respect

to x yields
3 2
du 32 - p 2R - o A5
3x © axot at”
let o = %
and c2 = E
P
Then A-5 becoames
2 3 2
'a—.}-,,f"faauz 1—2ﬁ—}:=ﬂ A-b
3% axat at”
The Laplace transform of cquation A6 is
2= 2— 2
a;+upa—t21-~L2E=ﬁ A-7
ax ax ¢

where u is the transform of u ana p is the Laplace variable. Re-

arranging A-7 yields

5
g U P2 T

axz cz[l + GP]

= 0 A-H

Using x as a new variable the Laplace transform canagain be applied

to equation A-8.

(5 —L- —“@'—P-— + 5 a4, p) A9
c (1 + ap]

where the [ixed end boundaly conditiont has heen introduced
aua{0,p) 1

o
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c (1 + op)

A-10
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Lquation A-10 can be inverted yielding

Bx,p) = augg,[ﬂ] ¢l pF P imh— P A-11
+ op

Equation A-11 is the equation of metion tn the Laplace domain, It is
now possible to introduce the boupdary condition at the free end where

the stress is a(s,t}. Using equation A-1 yields :

2
_ o oduls,t) au(2,t)
ole,0) = B S/ v St A-12

In the Laplace domain A-12 hecomes
5':{,,]}} = I gl'.lé.izlﬂ.t. -|p _au_-_g';a‘.ﬂ A-13

which reduces to

up) - 3gap)
MR - PR A-14

T ES:) R computed from cquation A-11

ax
B_W:a%;ﬂ - iu(—ulﬂ}— cosh —E -0 x A-15
fib + ap
and aulz,p) = %l cosh —-B& A-16
o e/l + ap

Equation A-l6 can te used in conjunction with the boundary condition

A=14
olr,p)  _ 20,p) oo B A-17
or _ -
auld,p) . _gls,p) 1
= £ T ; A-14
cosh —Ee



which can be used in equation A-11 to obtain the transfomed dis-

placement as a function of the transformeda input

E_!’('{.-}P} Wi + ﬂ"F." 1 sinh P
E + np p

ulx,p) =

ulx,p) being known it is possible to compute g{0,p)

2
= F fu + Lau A
g ax T 1 3t 1

Taking the Laplace transform of cquation A-1 ana replacing ulx,p) by

its value given by equation A-19

alx,p) = g{t.p) cosh —EX% A-20
cosh —BL— it ap
+ ap

Letting x = O yielas the desired stress at the bottom

ale,p) A-21

H[ PJ = A=22

Letting p = iw yielas the transfer function in the frequency domain :

h{w) = 1 A-23
Wl

o/l + duy

cos




A.} Response to an impulse

If g{t,t) = s{t) where s(t) is Dirac's delta function,

then

alo,t) =~ = h(p) A-24

and the inverse of the transfer function gives the respohsc of the

sy stem,

h(t) = o(0,8) — <1 1l A-25

hit) can be obtained using

h{t) = ¢ Residues of {f(p}} A-26
Pt
where f(p) - 2 = P(p) A-27
cosh m—Bhe
¢/l + ap
ahd the residues of f{p) can be calculated from R = _Pp) for each
Qrip)
pole of f{p).
Ft
R = =
—{(—2 ) sinh ——EL A-28
8p o/l + ap e/l + op
Q- oo 214 p)3/2 pt + 29
4 2 + op A-2




The poles of f{p) are obtained for

cont 2L 0 Aw3d)
ol 4 op
i.e
— Bt . 3“2_—1. . A-31
ol + &P

which zllows one to simplify equation A-29, giving

_ n-14 1 pll+ap) pt :
Ro= - (Y7 = o= 5 © A-32
Solution of equation A-3IL yields the poles :
2 T 2In-1 _+3Z ¢ In-1 .2
Pt P {E 5 0"+ (- 5—=1u)" =0 A-33
2
= 5 Y(_ . i,
P ot (121 -—=) A-34
Y¥ow
here - ¢ fndl i
whe ¥ . 7 |

wot all roots of equation A-33 are valid Lecause of the sguare reoot
in equation A-31l. Solutions given by equation A-34 must e chechkea
against equation A-31 thus eliminating unwanted roots.

As n ovarics from —w to +, rgoty of equation A-34 can be

classified as follow:

twd real complex conjugate two real
negative rogts rootsy negative roats
= ny o ", $

constants my and n, can be eviluated from
o



4
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Yoo
i.e.
2
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o 2
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After elimination of the unwanted raots,the peles p

complex plane, look as follows:

4+
b3 =

+

S o

A-35

A-36

A-37

A-38

in the

complex
plane P

x pole p
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For n# all poles accuwmulate oun the real axis, one set at a point

- 1 and the other set tending to —— . DBecause the pales are negative,
o

equation A-32 shows that the residues will converge to zero with

increasing |n|.

This Jdoes not prove, though, that the series of the sum of
the residues converges. lor the latter to be so,it should ke shown
that (Doetsch 1961)

J e H(p) ap = O A-39

I
for rl - m ,

Bacpuse numerical resulrs acrually converge very fast with a amall

number of poles it was not found necessary to prove equation A-39.

Mumerical computations to solve eguation A-25 are carried
out in a FORTRAN subroutine REFIMP the text of which follows on the

nexy page.

A.4 lesponse to an arbitrary input function

Knowing the response to an impulse the response to amy

forcing function can be obtained
alo,p} = h(p) dls,p) A-30

whose inverse is readily obtained nsing Muhamel's integral
t
glo,e) = hlt—r) glz,-) a- A-31

[

0

Integral A-31 is evaluated in the FORTRAN subroutine BOWEL .,




SECTION 1

WO DIMENSIONAL FINITE ELREMENT PMROCGRAM

B.1 Introvuction

The dynamic analysis {medal amalysis and integration) is
done bty the program EL-2D,  This program was developed both with
static and dynamic capabilities. Tt is a fairly general two
dimensional finite-element program which can be used either for

production or teaching., Somc of its characteristics are :

- imput characteristics : input has been simplified to a

maximumn, Complete free format is used, text can fTigure on

the cards {(comments or title or option choices)., This eascs
the user's work. Options are selected at the user's discretion
and idefault options are always provided. All options,
conventions, data-deck structure, evrror messages..., are defined
in the user's manual which foellows as paragraph B-3 (special

aynamnic optiuns for this thesis are presented after the manual).

- computational charactaristics : The program was developpesd

on a computer with only approximately 12K words of 24 bits
available, (reat care had to be talken to save memory space.

An overlay structure had to be used anda is shown on figure D-1.
The assembled stiffness matrix is kept in memory as a whole
allowing an iterative methed to be employed for the eigenvalue
determination (see section B-2). The stiffness matrix is bandea

diagonally and iy first decomposed using a Cholewsky
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algorithm, The complete program text is not given,
only the eigen-value and eigen-vector determination overlay

is presented.

B.2 FEigen-valuc ahd cigen-vector detemination

¢,2.1 Introduction

The generalized characteristic-value problem of the form

M = ) Kx B-1

is encountered in dynamic analysis of structures where M and K are
respectively the mass and stiffness matrices. Mamy publications present
the problem and its solution. However only a2 few take advantage of the
particular forms of matrices M and K. [Bronlund 1969; Gupta 15703
Peters and Wilkinson 1969].

K is a symmetric positive aefinite banded matrix ana M is
& symmetric, often non-definite matrix. It is banded like K in the case
of a continuum and diagonal in mamy engineering applications. A procedure
wvhich preserves the bamd form of matrices M and K is based on the

iterative method as described by Frazer [1938] and Hurty [1964].

This procedure enables ¢ne to obtain the p + 18t eigenvecter and
eigenvalue providing the first p ones are available, Theoretically,
all eigeuvectors can be obtained, yet, because of numerical computations,
the processus becomes unstable unless great care is taken to avoid

nusericgl arrors propagating.

The purpese of this gection is to present an algorithm which
mimimizes numerical errors. After presenting the techmique, a hand
example will be carried out. HNumerical results will be presented and

compared to that of earlier worlers.
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D.2.2 NWumerical technique

B.2.2.1

mtep is

First mode

Fquation B-1 can be used as such and the r + 1 iteration

K (o Py (D) s

which invelves

~ premultiplication of guess vector EFr} by M

solution of the system of linear eguations leading to

(i x(r+1}l

. r . .
extraction of the value j from (i 5} 1}} vector by subjecting
. P r
it to the same normalizing process &5 gugss vector EF ] wWis

subjected to, This 1s usually dene by arbitrarily scetting

equal to one the largest compoment of x.

This sequence of operation énablea one to keep M and K in their

original forms., The time required for one iteration cycle is greatly

reduced if a decomposition technique, like that of Cholewsky (Meaver 1863),

ig used to solve the system of lipear equations.

Even when applied to large systems, this iteration converges

very fast on the first {largest) eigenvalus and ciganvector,

B.2.2.2

Following modes

Iiquation -2 must be modified to oblige the process to ¢onverge

on higher modes. The iterative process becomes :

k(™) Loy s () B3
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where sweeping matrix 8 contains the orthogonality equations existing

st . .
between the p + 17 vector desired and the p ones already obtaineq.

The iterative process as described by equation B~} converpes

providing matrix 5 is accurate enough.

B.2.2.3 Construction of sweeping matrix (standard form)

Let us suppoxe that p eigenvalues L9 and eigenvectors are
knowa (i = 1, 2 ...p) and that we are looking for the p + %% one.

We can write p orthogonality eguations of the form :

T .
_giﬂ_g_p_l_l‘:ﬁ {(i=1,...p) R4
let E}. = _q}ﬂ B-5
T _
am S [ G 4y ey,

where n ix the number of unknowns in the linear system.

A matrix l_ap can be formed
rqll tre le I Ql;?'l'l e an
=] %y e QZp ' %’yﬂ e 0211. B-5

Qp i'2'1:‘1} Qmﬁl ﬂ:m

-

_JE

or simply

L le ] -

Matrix 5 can then he constructed

lo
Ny

g -
R B-f

|=
|+



B,2.2.4 Construction of sweeping matrix (modified form)

Lguation T=-B shows the mathematical form of the process. If
some of the components of matrix i are small with respect to these
of sz,marrix §-p is bound to contain large numerical errers, In arder
to prevent the later, operation in equation B-5 can be replaced by a
two phase manipulation process enabling one:

- to gelect the largest pivetal element, associated with each

vegtor gj_,

~ to replace the matrix product

_J_t_c=§p§_ B-9

vhere x is the guess vector and E‘c the "constrained ghess vector,
by a backward climination type solution of the form

i

= -x_l E-]_ﬁ

<

5 %

% " -
Where x is a modified guess vegtor

bt

x = [0.....0, x B-11

T
ot .xn]

= .
and "S‘F is the wodified sweeping matrix.

Matrix & 1s directly obtzined from W matrix of cquations
-+ -+
B=6 ang B-7: Uvery time a new eigenvector is obtained, one row is
added to matrix 1—p Submatrix i is kept upper triangular using a
downward elimination process applied to a whole row, The p row is then
nomalized so that a value equal to oruty appears on the diagenal of

submatrix i . After these rransformations, ‘._fp matrix ig called Ep .
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or la simpler form

W* _ Qlﬁ I qg%
P

—-[!

where E;w is upper triangular.

B )
Matrix Ep 15 then obrainad @

14

%

- 18

[

LECRU

P |

-

&

8

b

I

|

3 %
q1p+l Tt an

q2p+l qén

*ran

v A

¢ e O

B-12

B-13

B-14

Iuring the downward elimination, the largest pivotal element

of a row can be used, thus minimizing numerical errors.

An index

vector is constructed to memerize pivotal pesitions selected allowing

to access them through indirect addressing.

It is important to nete

=
that very few manipulations are necessary to obtaln _Sp matrix,

: - i
It is of course unpecessary to construct matrix §p when 1_1.fp

matrix is available. Lquation B-10 can be solved with an algorithm

&;_
built directly on ‘.lp matrix.



p.r.2.5 Ilrcerarien control

Converpeance must be checked on eigenvectors as they
converge slower than therr associarted eigenvalues. Very procise
tolerance: must be given on the {first vectors to prevent the syutom

from becoming unstable on higher modes,

Lf matrix M is m times singular, (i.e. contains m zeros on
thic diagonal) iteration contrel need not be done on the m corresponding
components of the eigenvectors. m rows can therefore be eliminated

& )
from matrix Eb thus saving a little more computer spaca.

H.2,7 XNumerical examples

N.2.3.1 Hana calculatiens

A generalized characteristic-value problem of the form
-1
K"Mg =y g B-15

is solved by Hurty {1964) using a Standard fteration technique. The

same problem will be dealtwith, keoping equation O-15 in its initial

fomm,
K2 ga=Hg B-16
1 -1 0 % 1 Q 0 G
iy 1 -1 H qQ, } = 0 1 g 9, n-17
0 -1 2 | 9y 0 0 1 9

The first eigenvalue and cigenvector Jo not présent ary problem,

= 5,0458 EJIJ - %sglg

A
1 - 445
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Metrix W can be constructed :

TR [1.

. 8019

445 ]

and {teravion on the second mode Can procesed

with

1 -1 0
-1 2 -1
o -1 2
1 .8019348
0 1

Q 0

445042
0
1

A few steps will be ilMlustrated

~. 4566
""1- 4'35

1
-.554958
~1.246980

r

%

. 445
0
-1

1
-.3284
-1.&567

1.005
-. 4566
"'1- 435‘

1
-.554958
-1.24690

3 ﬂf‘+1

+335
-.110
-.555

6865
-.3135
-.5851

L6685
—-. 3382
-. 82866

. 643154
-. 356516
-. 801858

A%

1
3r+

1
-.3284
-1.6567

1
-.4566
~1.435

1
-.5072
-1.3296

1
-.554765
=1.246701L

-335

- 6865

. 6668

643184

3

5.043917
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Matrix 5. can be constructed i

=
1 .B01938 .445042

s = 0 .BOL956 1

: 0 1 0

where pivotal element number 3 has been selected for the second

eigenvector, For a 3 x 3 only one step of iteration is necessary

leading to :
r r r+l r+l
q q, Yy q )
o ~.445 c -.136956 - 44459%
1 1 .308044 1 .308044
0 -, 801956 , 24656 -, 801691

B.2.3.2 Electronig gomputations

The multiframe building descriled by Hurby and Rubinstein [1964 ]

and used by Gupta [1970 was chosen to test the algorithm.

It is a 19 storeys 4 bay frame which presents the interesting
particularity of having been computed with different assumptions

and the results published.

Even though symmetrical, it was entered as a whole to work on
a bigger numerical system, Three coordinates were used for each joint
allewing vertical accelerations and axial deformations, herizontal

beams included, to be taken care of.




Table B-1 shows values of the frequency obtained for the
first seven modesn, A relative precision of 107" waN LMpased on
each eigenvector, lesults agree well, slightly lower froquencies
must be attributed te the effect of axial deformation of the

horizontal heams.

Gupta (1970)

MODE sz fH1
I 293 .285
2 .BO9 .Bl6
3 1.401 1.413
4 1.94% 2.002
5 2.613 2.627
& 3.325 3,338
7 4,070 4.082

LOWER FRCEQUENCIES QOBTAINCD BY EL-20 PROGRAM
COMPARED TO TIAT OF GUPTa (1970)

TADLE B-1
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The complete text of the algorithm presented can be found in
Dutertrs (1972). When this program is called CCMMON, the following

varighles are contained:

M m  Number of unknowns [or coordinates)
KDYN = Number of modes requested
0{300) = Mass matrix in kip (force)

"

5(1) First address of decomposed stiffness matrix (diagonmally

banded) .

Each new eigenvector is output on disk and the corresponding
ehgenvalue 1s placed in VP(I). In order to save memory space the
stiffness matrix, the eigenvectors used during one iteration step and
the sweaping matrix are stored cone after the other in the same vector
with no gap in hetween. The same name is therefore used for these
variables in the mair program. Indirect addressing is ebtained when

using & CALL to a subroutine.
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PART II - SECTION ©

FROM NORMAL MODES TQ TRANSIFER FUNCTION

C.1 Introduction

The transfer function of 3 system can he computed if the

normal modes zre known using the equations

C.=¢ ¢.1
T Tse {z |
T
_ 22 .2 2 .
whers Izr] J{l - )% ap ol c.2
with o, ==t .3
Ly
and x=@r C.4
Lp can be computed from
st
R, d
° ‘ﬂr B X C.5
Bt r




0.2 Preblem detinition and selution

Consider o test sample with physical properties 1N - 6000 1hsfin21
g 1.0 10_4, L= 3 in, a section of unity and a viscesity T - 0.04.
For computation purposes the sample is divided inroe 20 discrete
elements as indicated on figure C.1. Modes are numbered from 1
to 21. Mode number 1 is fixed and all the others are free to move
horizontally., The modulus is assumed to be independent of frequency
and o(o,t), pressure at the bottom, is proportienal to the displacement

of npde 2.

glo, t) = b u, C.6

if %, is the complex representation of Uy according to cquation

I.2.060

r1 "ir °r

Computations are limited to the five first modes., The 21 x 21

-

3 ]

1
-

m = .15 2.0 10 1

niss ratrix is diagonal

=
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Narmal modes and perieds ag computed by EL-2D program

are presented in table C.1.

Dampin- on each mode is computed from eguation T1.2.41.
Table C.2 prescnts values ol the complex impedance of each mode

Tor different values of frequency w.

Load vector p depends on the assumed leading, To ohtain
the transfer function of the bottom pressure for a top input
pressure than p = 0 but {or coordinate mumber 21. Computations
implied by equations C.5 and ©.7 are presented on table C.3.

Last column of the table is |x21/|13t[the modulus of the actual

crangfer funccion where

o _ _ -5
x| = §%15=2.5107 ¢

Figure C.2 shows the amplitude of the transter function versus

frequency,
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Mode 2

Mode 3

1000

2000

3205

5000

FO00

8596

12000

14000

15929

Hode 1 Mopde 4 Mode 3 o 'x: "
g5 1 1 1 1 )
k, 2,403 10° | 2,154 107 5,935 10 1.140 10° | 1.886 107
v T%;T 360 100 —1o00 1073 e.4m 1070) —ass 1070 -3as 207° | 2,30 10“2 9521
.44
s.35 1000 | -1.13 107°1 656 107%| —a.ss 107 ~3.49 07| s06 2070 | 1.62
1.39°
153 1003 a.22 1067%| 6.73 107%] -4e4 207% ] 3 10700 153 1073 | 1.2
20,5 © ;
2.2 10751 —1.48 107°| 716 10781 478 107°] _3.58 107°] 38s 107% | 135
170.7 © '
g.66 1001 —2.3 107%| 7.0 107%] -s.04 107°) 3.7 107%| 324 1075 % 13
176.1°
412 1078} .68 1074 1.00 1075 -5.57 107°] -3.92 107% ) 1.6 107t | 67
91.2°
252 10781 .0 107%|  1.47 1075 -6.30 107°] —4.22 207|202 1078 €l
3.186°
1.80 107°] ~0.35 16%] 2,62 107°| -7.47 107°| 457 107° 2.4 2070 .56
20,51
1.37 10°°] —6.15 107! 6.03 1075 -2.17 107%] -s.03 107%! .79 207° | 2.32
39,09

COMPUTATION OF THE

TAELE C-3

TRANSFER FUKCTION
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