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Abstract-English

In this thesis equivalence of the concepts of ana-bicategory and 2D-multitopic category is proved. The
equivalence is FOLDS equivalence of the FOLDS-Specifications of the two concepts. Two constructions for
transforming one category to another are given and it is shown that we get a structure equivalent to the
original one when we compose two constructions.



Abstract-French

Dans cette thése, I'équivalence de la catégorie de 1'ana-bicategory et de la catégorie 2D-multitopic est
prouvée. L’équivalence est une équivalence FOLDS. Deux constructions pour transformer une catégorie en
l'autre est donnée. Il est montré qu'on obtient une structure équivalente a l'original loisqu’on compose les
deux constructions.
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Chapter 1
Introduction and Preliminaries

1.1 Introduction

In category theory there is an emergence of higher dimensional categories. There are two distinct flavors of
higher dimentional categories:

Pure algebraic: In these the composition of cells is defined by a composition function. Then there
are huge coherence conditions about the way composition works. Examples include bicategory, tricategory,
2-category etc.

Virtual: In these composition of cells is defined by universal property of certain special cell; called
“universals”. Examples are multitopic category, opetopic category etc.

Even for case n = 3 the pure algebraic version becomes intractable with lots of isomorphisms and
coherence diagrams. Virtual version does not have the same problem and in certain sense it is "scalable”.
Another point to be remembered is that virtual version defines the composition "up to isomorphism” in true
categorical spirit. In view of these advantages its tempting to propose virtual definitions of categories. To
take the step of proposing virtual definitions of categories, we first need to show that for the case of n = 1,2,
virtual definition reduces to the ordinary definitions of category and bicategory respectively. In this thesis
we consider multitopic category as the basic virtual definition for higher dimensional categories. We call
multitopic category for case n = 2, which is the case being dealt here, as 2D-multitopic category.

In parallel there is another point to be made about category theory. Though it is emphasized in category
theory that concepts should be defined "up to isomorphism”, this does not go beyond structures internal to
the category like limits, colimits etc. For example, in defining functor we do not say that it takes certain value
up to isomorphism. In [4], Makkai has proposed a version of category theory in which external concepts like
functors and natural transformations are also defined up to isomorphism. The functor there called anafunctor
is defined up to isomorphism. This was extended to define bicategory as ana-bicategory. Another concept
introduced in the same paper was saturation, which more or less means that functor can take any of the
isomorphic copy of object as its value.

In light of what has been said, I feel that correct concept of bicategory is ana-bicateogry, and it is actually
found to be the case that the 2D-multitopic category is equivalent to an ana-bicategory with saturation. This
should not be surprising because the horizontal composition internal to 2D-multitopic category is defined by
universal property hence up to isomorphism.

In next section we give the formal definitions that will be used. In chapter 2 we show how to get
ana-bicategory from 2D-multitopic category. In chapter 3 the way to get 2D-multitopic category from ana-
bicateogry is given. In chapter 4 the equivalence of these two definitions is shown.
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1.2 Preliminaries

In this section we give the mathematical definitions that are required for subsequent chapters.
I1.2.1 Ana-bicategory:
The concept of ana versions of categorical definitions was introduced in [4].

First the concept of AnaFunctor and Natural AnaTransformation are to be given. Let C and D be two
categories.

AnaFunctor: An AnaFunctor F between categories C and D is given by following data (1,2) and
conditions (3,4,5):

1) A class |F|, with two maps o : |F| — O(C) (source) and 7 : |F| — O(D) (target). We use the
following notation, for X € O(C) we denote |F|(X) = {s € |F|: o(s) = X}, and for s € |F|(X), we denote
7(s) by F4(X). |F| is called class of specifications.

2) For each X, Y € O(C), s € |F|(X), t € |F|(Y) and f: X — Y, an arrow F,+(f) : Fs(X) —
F(Y)in D.

3) For every X € O(C), |F|(X) is non-empty.
4) For all X € O(C) and s € |F|(X), Fs s(Idx) = Idg,(x)-

5) For all X,Y,Z € O(C), s € |F|(X), te|FIY),vel|FI(Z2), f: X —Yandg:Y — Z, we
have Fs‘u(f 'g) = Fs,t(f) 'Ft‘u(g)'

Saturated Anafunctor: Given an anafunctor F, F is said to be saturated, if Fs(X) = Aandi: A= B
in D then there is unique t € |F|(X) such that Fy;(X) = B and F,;(Idx) = i.

Saturation is something external on anafunctor but usually anafunctors that arise naturally have this
saturation property, for example product AnaFunctor.

Natural AnaTransformation: A Natural AnaTransformation ¢ between functors F and G is given
by following data (1) and condition (2):

1) A family < ¢x st : Fs(X) — G(X) >xeco(c),se|FI(X).te|GI(X)-

2) Forevery f : X — Y in C(X,Y), and for every s € |F|(X), t € |G|(X), v € |F|(Y), v € |G|(Y),
then following diagram commutes

Bavalr)

Fy(X) ——————= F,(Y)
¢x..-.rj Y. u,u
Gy(X) Gi,u(f) Gu(Y)
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Natural Anaisomorphism: Natural Anaisomorphism is a Natural AnaTransformation is which the
family < ¢x st : Fs(X) — G(X) >xco(c),s¢|F|(X).telc|(x) consists of isomorphisms.

Ana-bicategory: An ana-bicategory A consists of following data (1,2,3,4,5,6,7) and conditions (8,9):
1) Collection O(.A) of objects (0-cells).

2) For any pair of objects A, B € O(A), a category A(A, B) (1-cells as its objects and 2-cells as its
AITOWS).

3) For any object A € @(A), an identity anaobject in .A(A, A), determined by anatunctor

1 A

4) For any three objects A, B, C' € O(A), composition anafunctor

oh B - A(A, B) < A(B,C) — A4, C)

5) Associativity natural anaisomorphism

aap,ep: (=)o (=)o (=)==—=(=)o (=) o(-))
where ((—) o (=)) o (=) = (oa,B,c,Idac,p)) - °a,c,p and (=) o ((—) o (=)) = (Id a(a,B),°B,c,D) * ©A,B,D-

6) Left identity natural anaisomorphism

Aa,g:(—)o 1B:%>IdA(A,B)
where Id 4(4,p) is Identity Functor and (=) o1p = (Idg(a,B),!-1B) -0a,B,B : A(A, B) — A(A, B).

7) Right identity natural anaisomorphism

PAB - ]-A o] (—):a‘}IdA(A'B)
where Id 5(4,p) is Identity Functor and 14 o (=) = (!- 14,1d 4(4,B)) - 04,4,B : A(A, B) — A(A, B).
8) For any five objects A, B,C,D,E € O(A), and four 1-cells f € O(A(A, B)), g € O(A(B,C)),
h € O(A(C, D)), i € O(A(D, E)), the coherence pentagon:

a1,2,4,593,61d: 05,6,7,8

((fo19)02h)ozi=————=(f05(901h)) 0gi =————=—=> fosg((g04 h)or1)

“ﬂz,\s.lnu Id!°8.9047.]“.11ﬂ

(f o1 9) 012 (ho101%) ST > f o9 (g 011 (h 010 7))




| Chapter I: Introduction and Preliminaries |

9) For any two objects 4, B € O(A), and two 1-cells f € O(A(A,B)), g € O(A(B,C)), the
coherence triangle:

(f o5 1-B.p) ot g
T

foy (lB,p Oy 9)

Remark Saturation:. Ana-bicategory is said to be saturated if anafunctors 14 and o4 p ¢ are.

I.2.2 2D-Multitopic category:

The concept of multitopic category was introduced in [1,2,3]. Since here we are concerned with only 2
dimensional case we simplify the definition by removing all the amalgamation mechanism that was built into
its definition. First we define what a multicategory is. Then we go to definition of 2D-multitopic category.

Multicategory: Multicategory M consists of following data (1,2,3) and conditions (4,5,6):

1) A collection @(M) of objects. We denote by O(M)* to be collection of all tuples (strings) of
objects.

2) A collection A(M) of arrows with domain in O(M)* and codomain in O(M).
3) An natural number indexed partially defined composition -_ of arrows in A(M). Composition
of a, 8 € A(M) is defined if and only if the codomain of « fits into domain of 3. Formally, if the domain

and codomain of a are f, and g, and the domain and codomain of 3 are fs and gz such that fz(i) = ga
then composite a -; 3 is defined; it is an arrow in A(M) with domain fg[f, /(7,7 + 1)] and codomain g3.

Remark 3. In here and subsequent places s[t/(i,7)] is string formed by replacing i** to j — 1** substring
of s by t.

Remark 4. From here on for convenience the subscript for composition is removed. But it should be kept
in mind that composition is placed.

4) Composition is associative i.e. a- (3 -v) = (a- ) - v

5) Composition is commutative i.e. - (F-7v) =3 (a-7)
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6) For any f € O(M), there is an identity in A(M) with domain the string < f > and codomain
f denoted as I'ds such that, for any appropriate o, Idy - o = & = o - Idy.

2D-multitopic category: A 2D-Multitopic category consists of following data (1,2,3.4) and condition

(D))
1) A collection Cellg(M) of 0-cells.

2) A collection Cell;(M) of 1-cells with domain and codomain in Cellg(M). We denote by
Celly(M)* collection of all composable strings of 1-cells from Cell;(M). Cell;(M) is referred to as (1-
) pasting diagrams, also abbreviated as 1PD.

3) A collection Cells(M) of 2-cells with domain in Cell;(M)* and codomain in Cell;(M), such
that their initial and terminal 0-cells match.

4) The collections Cell; (M) and Celly(M) form a multicategory with composition -.

5) For every f € Celly(M)*, there exists a 2-cell say a € Cella(M), with domain f. such that

for every 3 € Cella(M) with domain containing the string f, there is a unique v € Cells(M), for which
« - = 3. Such an « is called universal arrow.

I.2.3 FOLDS Equivalence:

FOLDS stands for First Order Logic with Dependent Scrts. Here just a short overview will be given. Details
are in [5], [7].

A FOLDS theory (L,X) consists of a signature L and set of axioms ¥. The FOLDS signature L is a
one way category. The objects in this category are the sorts. Each sort is dependent on all the sorts that
are below it (an arrow to it). For an object A in L, let L | A be set of all arrows in L with domain A. The
axioms in ¥ are first order sentences with restriction. The restriction is that equality is disallowed and all
the statements are about existence of certain elements in sorts. For example instead of saying go f = h, we
would say 37 € T(X,Y, Z; f,g.h).T. The advantage is that all axioms turn out to be asserting existence of
certain element that represents the truth of axiom.

Now FOLDS structure S is a functor from L to any category, that satisfies the axioms in ¥. Given two
L structures S, T, a homomorphism p is a natural transformation from S to T.

Two FOLDS structures S, T with same signature are said to be equivalent if there is a span
gLt g
where p, ¢ are natural transformations and are fiberwise surjective. This is denoted as S ~; T.

p: S — T is fiberwise surjective if the following diagram is a weak pullback, for all objects K in L.
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Sy ALt Bl e )
S(K) = T(K)

K is the context of sort K. Intuitively context is the sorts on which the sort K depends. 7g 7 18
projection of context values from the sort K.

Up to this point we have seen the equivalence of two structures with same signatures. To compare two
structures with different signatures we need something more [6]. y

Suppose we have two theories 73 = (L;,3;). To say that T} and T are equivalent we need two
constructions, one taking any Tj-model S; to a Th-model ST and another taking any 7:-model Sz to Ti-

model SQ#. Now we say that T7 and 75 are equivalent whenever S; >~ S;# and S ~j, S_g#* for all S; and
Ss.

The constructions (—)* and (—)# are canonical; in particular, they do not use the axiom of choice.
More over, the data for the equivalences Sy ~p, S;7 and Sy ~;, S7* are also canonically constructed
from S; respectively S». In fact, the combined constructions add up to an equivalence of the two concepts:
ana-bicategory and 2D-multitopic category, in the sense of [6], Section 6.

In Chapter II, the construction of an ana-bicategory from a 2D-multitopic category is given. In Chapter
III, the construction of a 2D-multitopic category from the ana-bicategory is given. In Chapter IV, FOLDS
Equivalence of ana-bicategory and 2D-multitopic category is proved, using the constiuctions in Chapter IT
and Chapter I11.



Chapter 11
2D-Multitopic Category to Ana-BiCategory

In this chapter, the construction of an ana-bicategory from a 2D-multitopic category is given. This construc-

. : (= : : 51 L ; LR ;
tion will be dentoted as M———M?*, where M is the given 2D-multitopic category. For simplicity, in this
chapter M* will be denoted by .A. The construction first involves extraction of ana-bicategory data from a
2D-multitopic category and then proving the axioms of ana-bicategory.

II.1 Data Definitions
Given a multitopic category M, data of the associated ana-bicategory A is defined as follows:
Objects: O(A) = Cellp(M).

Category A(A, B): For A, B € O(A), category A(A, B)

Objects: O(A(A,B)) ={f: fis 1 cell of the form e Celly(M)}

f
Arrows: A(A,B)(f.g] = {B: B is 2 cell of the form A /E? B € Cella(M)}.
~—7
a
f
g =
Identity: Id; = A |Jd; B € Cello(M)
~—~77
f

Composition: Composition of arrows is defined as composition of 2-cells in M restricted to
A(A, B).

Identity: Identity AnaObject for A in A(A, A), AnaFunctor

1a:1— A(A,A)

0-Specifications: |14[(1) = {p: p € Cella(M) is universal from empty pd A}. These are of the
form shown in Figure 1.

Remark 1. In all the figures here on the universal cells will be denoted by @ in the center.
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A

©p

Figure 1.

AnaFunctor on Objects: 14 ,(1) = codom(p) where p € |14|(1). Since 1 is the only object in 1,
we denote 14 (1) by 14 ,.

AnaFunctor on Arrows: 14, ,(Id;) = 4§, where p,q € |14|(1), and 6 € A(A, A)[1ap, 14,4 such
that p-d = q. Since Id, is only arrow in 1, we denote 14 p 4(Id;) by 14 4. See Figure 2.

A s
Rer Gp
O | —

Figure 2.

Horizontal Composition: Composition AnaFunctor,
oa,B,c - A(4, B) x A(B,C) — A(A,C)
Since A, B,C will be clear from the context, o4 g c— and o4 g — — will be refered to as o_ and o_ _

respectively. Furthermore, o_(f, ¢) and o_ _(f,) will be denoted in the infir form as fo_ g and Bo_ _ v
respectively.

2-Specifications: o4 p.c|(f,g) = {s: s € Celly(M) is universal from .4—f>B—g>C}. These
are of the form shown in Figure 3.
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B
/OS

=l

Figure 3.

AnaFunctor on Objects: f o, g = codom(s) where s € |oa g |(f,9).

AnaFunctor on Arrows: [o,;v = 4, where s € |oagc |(f1,01), t € | caB.c |(f2,92),

(f1,91), (f2,92) € A(A,B) x A(B,C), (8,7) : (fi,1) = (f2,92), and § € A(A,C)[f1 o5 g1, f2 ot 2]
such that 5 - (y-t) = s- 4. See Figure 4.

R

£ L5 \i/_.c

Figure 4.

Associativity Isomorphisms: Natural Analsomorphism

aaB.o.p: (=)o (=)o (-)=—=—>(-) o ((-) o (-))

where ((—) o (=)) o (=) = (ca,B,c,Id4(c,p)) - °a,c,p and (=) o ((=) o (=)) =

(Id (a,B),°B,C,D) * ©A,B,D-
Since A, B, C, D will be clear from the context sy g ¢ p will be denoted by a.

os g,h), u € |og,c,p|(9,h), v € | 0a,B,D

Define o ¢y = 8, where s € |oa g |(f,9),t € |cacp|(f
t (s-1)-0 =uwu-v. See Figure 5.

|(f,9%u h) and 5 € A(A, D)[(f o5 g) ¢ h, f 0, (g o h)] such that
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Figure 5.
Left Identity Isomorphisms: Natural Analsomorphism

’\xl.B 3 (7) o] lBéfdA(_ﬂ“B)

where Id 44, p) is Identity Functor and (—) o 1p = (Ida(a,p),! - 1B) - °a,B,B : A(4, B) — A(A, B). Since
A, B will be clear from the context A4 g will be denoted by A.

Define A;, = 6, where s € |oa g g |(f,1Bp), P € |1B|(1), and & € A(A, B)[f os 1p,p, f] such that
(p-s)-6=1Ids. See Figure 6.

K B=A
S

S s

Figure 6.

Right Identity Isomorphisms: Natural Analsomorphism

pap: lao(—)===>Ida,B)

where Id 44, p) is Identity Functor and 14 0 (=) = (!-14,1d4(a,B)) - ©4,4,B : A(A, B) — A(A, B). Since
A, B will be clear from the context ps g will be denoted by p.

Define p,, = 6, where s € |04,4,8 [(14p,f), P € |14|(1), and § € A(A,B)[1la, o5 f, f] such that
(p-8)-0=1ds. See Figure 7.

10
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//_\ nr
N = 0o, 2>\ T

Figure 7.

I1.2 Ana-BiCategory Axioms
In this section the axioms of Ana-BiCategory are verified for the data defined the the previous section.
I1.2.1 Category Axioms
This is verification of A(A, B) being a Category.

Associativity: Follows from associativity in multicategory M.

Existence of Identity: Follows form existence of identity in M.

Left and Right Identity laws: Id;od = dold, = 4 (Identity law in multicategory), where 6 : f = g.
I1.2.2 Identity AnaObject Axioms
This is verification of 14 being AnaFunctor.

Well defined: 14,4 € A(A, A)[14,p,14,4], where p,q € |14|(1) is well defined since by universality of
p there is unique 14 ;4 such that p-14,, = q.

Inhabitedness: [14[(1) is nonempty from existence of universal from every PD, in particular from PD

A.
Identity: 14, ,(Id1) = Idy, ,, since p- Idy, , = p, where p € [14](1).
Composition: Need to show 14 54 -1a,9r = 14pr, Wwhere p,q,7 € |14[(1). We have p- 14,4 = ¢q and

q-lagr=7,p-1lap, =1 from definition. See Figure 8.

P-(lapg-lagr)=(P-lapq) lagr
= U 1.4.q‘r

—

=p-lapr

11
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Figure 8.

Since universals are left cancellable, we have 1454 14, =1apr.
I1.2.3 Composition AnaFunctor:

This is verification of o being an AnaFunctor.

Well defined: §o,; v € A(A,C)[f1 o5 g1, f2 0t g2], where s € |04 B.c [(f1,01), t € | 0a,B.c |(f2,92),
B € A(A, B)[f1, f2] and v € A(B,C)[g1, g2 is well defined since by universality of s, there is unique 3 o, ;
such that G- (y-t) =s-Fos.:7.

Inhabitedness: | o4 g ¢ |(f,g) is non empty from existence of universal from every PD, in particular

from PD A—fn—B—'q—>—C

Identity: Idy o, Idg = Idjo, 4, since Idg - (Idg -s) =Idg-s =s=s-1Ids,,e. See Figure 9.
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@s

M ¢ 2
L p//g . e85 \C.
A . LI R

Figure 9.

Composition: Need to show (3105 :791) - (B20tu72) = (81 B2) 0s.u (71 - 72), where s € |oa g |(f1,91),
t € |oasc |(fe JQ) u € |oap.c |(f3,93), Bi € A(A, B)[fi, fi+1] and e .A(B C)|gi, gi+1)- We have
Br-(r1-t)=5-Prosem, Ba-(v2-u)=t-Baoruy2, (Br-F2) ((v1-72) 1) =5-(B1-P2)0su (71-72). See
Figure 10.

s-((Bros,e71) (B2 otuye))=(s- (31 Ot 71)) (B2 o4 ¥2)
(B -

Br-((n-t): (i%or.u”f

|
=
e

M- (- (B2 )
=B (1n-(Bz-(y2-u)))
=B+ (B2- (11 (r2-u)))
=61+ (B2 ((71-72) - u))

Gh - B2 '((“u")‘z)'u)

13
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Figure 10.

Since universals are left cancellable, we have (5) o5 v1) - (82 9t ¥2) = (B1 - B2) 95,0 (71 - T2).

11.2.4 Associativity Isomorphims

Well defined: o ;. € A(A, D)[(fosg)oth, fo,(goyh)], where s € |oa g c|(f,9),t € |oa.c.p|(fosg, h),
u € |og.c.p|(g,h), v € |ea B p|(f, gouh) is well defined, since s-t is composite of universals hence a universal.
So, there is unique @ ¢4, such that (s -t) - as 40 =u-v.

Isomorphism: ;. is invertible. Its inverse ¢, . is such that s -t = (u-v) - ¢st0u)- Pstuv 18

well defined, since u - v is composite of universals, so there is unique ¢g ¢ ., such that (u-v) - ¢g .y = st
See Figure 11, 12.

14
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= < B -C.
A{/\J;‘ E A/\;_\,}"’

(0] 4
ey

Figure 11.

oL 5 = eu

Figure 12.

Need to show st up * Gs,t,uw = Id(fo,g)0.n (See Figure 13) and ¢stuw - Xs,tuw = Idso,(go.h) (See
Figure 14). We use universality of s -t and u - v and following calculations.

(S 3 t) g (Qs.t‘u‘v A avr )= ((GE) e Us.r‘u‘u) - Qs tu,v
U-V) * Pt uw
5:-2) - ddural gyoch

I

(
(
(

S

15
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=1 B
/@* ot \ / \L\
- g

(u-v)-(dspe Qs tuw) = (W V) s tuv) * Astue
— (5270 oars
= (u-v)
= (u-v) - Idfo, (gouh)

Figure 14.

16
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Naturality: Need to show that following diagram commutes.

Qsqy,ty,uy,v]

(f1 05, 01) 01, i ————> f1 0y, (91 Ou, h1)

(Bosy,507)0t, ,fi“{ ﬂﬁ'o.-l g (YOuy,uqp8)

(f2 055 92) 01, ho =5======> f2 0, (92 %u, h2)

From universality of s; - #;, it is sufficient to show (s7 - 1) - (@s;.t1.u1.01 * B Ov1,00 (Y Ouruz 8)) = (S1-%1) -
(B alor e~ - 50 ) See Bigurel 15,16,

(Sl X tl) 2 (Gsl.i;.ul‘yl -3 Ovy,vz \Y Cuq,uz 5)) = ((Sl 'tl) i Qsl.t1.u1.v;) -3 Oyy,va (’\F Ouq,ug f))
= (Ul 3 Ul) -0 Ov1,v2 (HI Ouy,uz 6)

=U1- (vl g 3 Opy,vs (hr Ouq,us O))
U1 - (B (7 %us,uz 0 - ¥2))

Figure 15.

17
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{31 Hlie) (3 Os,,82 ) Oty,ta (5) * Olgy to,ug,v2

81 (fl i (‘1‘ Osy,82 A) Oty ,ta rs)) * Qlgy to,uz,v2

(51 : tl) i ({'} Osy,82 ﬁ") Otq,ta 0- nS:J-?_Jf:-l‘z) =

(

(
= (51 (B 9s1,5, 7 (0 -12))) - Qg t0,00,v
= ((51- B 953,92 7) - (0 - 12)) - Qs; 2,u2,02
= ((B-(v-52)) (6-12)) - Osy,t5,u3,02
= (B-((7-52)-(0-12))) - sy t2,u20
= (B (6-((v-52) t2))) - Aoz 2,2z,
= (B (0-(7-(52-12)))) : Csyita,uant
=(B-(v-(0-(52:12)))) - Qs3,t3,u2,0
=0 ((y:(0-(s2-t2))) - Qsy,t2,uz2,02)
=6 (v-((0-(s2 - t2)) - Qs3,t2,u2,v2))
=0-(v-(0-((s2t2) - Usy,ta,u2,v2)))
=0B-(y:- (0 (u2-v2)))

Figure 16.

11.2.5 Left Identity Isomorphims

18
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Well defined: ), € A(A, B)[f os 1gp, f] where s € |04,5,8 |(f,1B,5), P € |15[(1) is well defined,
since s - p is composite of universals hence a universal. So, there is unique A, such that (p-s) - Asp = Idy.

Isomorphism: )\, is invertible. Its inverse is p-s. One side (p- s) - A;, = Id; was verified above.
Now (See Figure 17),

oA o = % OF T = \@4&

JAap 1
2

Figure 17.
Naturality: Need to show that following diagram commutes.
As,p
f Og ]-B,p — f

Bos,t1B,p.q B

f Or lﬂ‘q )\=}>~ g
t.q

From universality of p- s, it is sufficient to show (p-s)-(Asp-B) = (p-8) - (B0os,t 1B pg- Atg)- See Figure
18, 19.

(P-8)-(Asp-B)=((p-5)-Asp) - B

:Idf-ﬁ
=

19
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A@ =A 4 _Sp=r_38 }
8
N
[

Figure 18.

(p-s)-(Bos,t 1B.p.q- )\r.q) = ((p-8) - Bos,: 1B pag) At,q
=(p-(8-B0st1Bpq)) Mg
=(p - (B~ (1B pq ) ~Pig
=(B-(p- (1B,p,qt))) “Atq
=(B-((p:1Bp,q) - 1)) - Atq
=(B-(q-1)) - Ayq
= Beilllg-t)= e o)
=0 ldy
— ¢}

Figure 19.

11.2.6 Right Identity Isomorphims

Well defined: p;, € A(A, B)[1apos f, f] where s € |oa a.B8|(1ap, f), P € |14](1) is well defined, since
s - p is composite of universals hence a universal. So, there is unique p; , such that (p - s) - ps, = Idy.

20
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Isomorphism: p;, is invertible. Its inverse is p-s. One side (p - s) - psp = Idy was verified above.
Now (See Figure 20),

(p-8)-psp=Idyg
((p-8):-psp)-(p-s)=1Ids-(p-s)
(p-5) (psp-(p-3))=(p-s)
(p-8)-(psp-(p-3))=(p-s)-Ids
==>psp- (p-s) = ldy

/"‘\\ = /-—-——N.‘
oa B=A

Figure 20.
Naturality: Need to show that following diagram commutes.
Psp
]-A.p Og f — f

14,p,4%s,t8 J]

lagot f =

From universality of p- s, it is sufficient to show (p-s) - (psp-8) = (p-5) - (La,p,q©s,t 8- pt.q)- See Figure
2l P

(p ' S) . (ps.p 4 ‘3) = ((p ' S) X ps.p) i _‘3
= Id; - 3
==

21
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/"—‘\-

A o p=A I Sp=ATR

gé

Sk

Figure 21.

(P-8) - (Lapq©stB-prqg) =((p-38) LapqOst! B) - Prq
=(p-(s-1la,pq9s:tB))-Ptq
= (- (Lapq-(B-1))) - prq
=P (8-(Lapq-t)) - Praq
=(B-(p- (Lapq-t) - Prq
=(B-((P-Lapg) ‘1)) - Prag
=(B-(q-1)) - prq
=B-((q-%) - prq)
=p-Ids
=3

Figure 22.

I11.2.7 Coherence

22
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Pentagon Condition: Since there are too many specifications to be considered we use number to
represent them rather than letters.

((f o1 9) o2 h) 03 § —2242R I8 (£ o (goog h)) og i =——s2Zs, f og ((g 04 h) 07 1)

ﬂﬂz.a‘m‘m fd;°s.9¢4.7.10.11JJy

(fo19) 012 (hoigi) > f 09 (g 011 (h 010 17))

a1,12,11,9

Sufficient to show ((1-2)-3)-(a1.2,4,503.61d; (56,78 Idfosocari011)) = ((1-2)-3))-(@2,3,1012-®1,12,11,9)-
See Figure 23, 24. :

((1-2)-3) - (@1,2,45 03,6 Id; - (a5,6,7,8 - Idy 03,9 @4,7,10,11))
(s ) 3)- 1245036 Idi) - (as56,7,8  Idf 089 04,7,10,11)
(8- a1,2,45036 Id;)) - (as,6,7,8 [df 08,9 04,7,10,11)
) (1,245 (Id; - 6))) - (as,6,7,8 - Idf 08,9 €4,7,10,11)

(
L=
(15
(1-2): (c1,24,56)) - (a5,6,7,3 - {ds 089 @4,7,10,11)
(
(

Il

I

(1-2)-a1,245)-6)-(as6,7,8 Idf 089 a4,7,10,11)

(

(

(

(

(

((4-5)-6) - (as,6,7,8 - Idf 039 a47,10,11)
= (4-(5-6)) - (as,6,7,8 - Idf 08,0 @1,7,10,11)
(
=4
=(4
=(
(

(4-(5-6)) - ase.7.s)  Idsoso 71011
-((5-6) - as5,6,7,8)) - Ids 08,9 @4,7,10,11
“(7-8))- Idjog g aq.7,1011

(4-7)-8)-Ids 09 a7,10,11

4-7)-(8-Idfog9aa71011)

=(4-7)-(Idy - (4,700,121 9))

=(4-7)-(oa,7,1011-9)

=((4-7)-a471011)-9

— (10 11) -9

Il

23
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E/@uﬁ“\o\t
W\C&/
C\b

Figure 23.

((1-2)-3) - (a2.31012 - @1.12,11.9)

2-3)) - (2231012 - @1,12,11,9)
1-(2-3)) - a2310,12) - @1,12,11,9

(2-3) - a23,10,12)) - @1,12,11,9
-(10-12)) - 112,119
0-(1-12))-ay,12,11,9
0-((1-12)-a1.12.11.9)
0-(11-9)
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o
| 5,_,,\;1?
N NS

t <tyue o e

Figure 24.

Identity Triangle:

(f os 1B‘p) ot g
As,pOt,wldg

f Oy (lB.p Ou _fj)

Sufficient to show (p- (5-t)) - (@s v - Ldf Opw Pup) = (P (5-1)) - Asp 0r,w Idg. See Figure 25, 26.

(p (3 t)) - (ﬂs taw " Ldf Oy Pu-P)

((p-( ol ) Oy D
= (7 (( ) Qs tu,w)) - 1df v Pup
=(p-(u-v) Idf oMl Dk

((p- ol D

( ) ( IdIOLu pup)
=(p-u)- (Idf - (pup w))

=(p- ) (Pu,p - W)

(p-u)- pup) w

Id,
w

If
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Figure 25.

(p-(5-1)) - Asp otw Idy

= ((0+8) 1) Aarp Obg Iy
(p-38)-(t-Aeporwldy)
= (p-58): (Asp- (Idg - w))
(p-5) (Asp-w)
= ((p-8) - Asp) - w
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4

@t

{bhn-au?‘l
B

:@m ::A/E’M\‘C,

il g

Y

TED

Figure 26.

I11.2.8 Saturation:

The ana-bicategory A constructed is saturated.

~

Consider p € |14|(1), 1ap = f, and ¢ : f = g, then p- ¢ is an universal. Hence, there is a (unique)
q € [14](1), such that g =p- ¢.

Similarly, consider s € |o4.p.c |(f.9). fosg =h, and ¢ : h = ¢, then s - ¢ is an universal. Hence, there
is a (unique) t € |oa p.c |(f.g), such that t = s - &.

11.3 Conclusion:

Theorem 1. Construction (—)* transforms 2D-multitopic category to ana-bicategory.

2



Chapter 111
Ana-BiCategory to 2D-Multitopic Category

In this chapter, the construction of a 2D-multitopic category from the ana-bicategory is given. This con-

B

struction will be denoted as A;Q}A#_ where A is given ana-bicategory. For simplicity, in this chapter
A# will be denoted by M. This construction is more complicated than (—)*, the reason being while the
construction (—)* involved a process of truncation, (—)# involves building up 2-cells and showing global
condition of universality. The construction is similar to term-model construction in logic.

IT1.1 Data Construction:

I11.1.1 0 and 1 Cells:

0 Cells:
Cellp(M) = O(A)

1 Cells:
Cellh(M)= | ) O(A(A,B))
A,BEO(A)

I11.1.2 2 Cells:

2 cells are defined as equivalence classes of ordered labelled typed trees. The set of such trees is denoted as
T and the equivalence relation as ~C T x 7T.

The ordering means that children of any node has left to right ordering that can not be permuted. The
labels on the nodes are either 2-cells, 0-Specifications or 2-Specifications. Labels on the edges are the 1-Cells
or 0-Cells (if node below is 0-Specification). The labels on edges will not be shown except for the outermost
ones since the can be recovered from the node labels. The degree of each node is at most 2. We will think
of degree of the node with 0-Specification to be 0 even though it has an edge coming in.

Each tree has a type. The set of types is © C Celly(M)* x Cell; (M), where Cell,(M)* is the set of
composable strings of Cell; (M) (pasting diagrams). If 7 is the type of the tree T', then, define dom(T) = m(7)
and codom(T) = mo(7). - is the concatenation operation on the strings in Cell; (M)*.

T and the type of trees in T are recursively defined as follows:

(1) If f € A(A, B), then



Chapter I1I: Ana-BiCategory to 2D-Multitopic Category

is a tree of type (A A B, A L

B).
(2) If A € O(A), p € |14](1) and f =14, then

4]

(f)
is a tree of type (A— = -A, A—f>—A).

(3) If T} is a tree of type (A—2>B, A—L~B), Ty a tree of type (B—2>C, B—2>C) and s €

|oa.sc|(f.g), where f € A(A, B), g € A( B, C), A,B,C € O(A) and h = f o5 h, then

i

f

1satreeoftype (A b1k C,A A

C).

(4) If T is a tree of type (A
O(A), then

B), and 3 € A(A, B)[f,g], where f,g € A(A,B), A,B €

(9)

is a tree of type (A : B B).

Remark 1. These trees can be thought of 2 dimensional pasting diagrams in multitopic category in which
O-cells and 1-cells are as in .4 and 2-cells are 0-Specifications, 2-Specifications and 2-cells.

Now the equivalence relation ~C YT x T is defined. This is done in terms of elementary tree trans-
formations Ty — T5. We define ~ to be transitive closure of —, hence ~=—*. Each elementary tree
transformation step is invertible. Each step is labelled as XX and its inverse as X X. The elementary steps
are classified according to their origin in ana-bicategory.

In these elementary steps the position (pos € {u,l,7}*) indicates where the transformation is applied.
So pos is string from alphabet {u, [, r}, which gives the position relative to the root node. The logic is simple.

29
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Start from the root node of the tree. Read pos from left to right and on seeing u move up, on ! move left
and on 7 move right. If such a move is not possible for any part of the string pos then position is invalid. If
pos is a string and pos’ is a prefix for it, then pos — pos’ denotes string such that pos’ - (pos — pos’) = pos,
where - is string concatenation operation.

If T is a tree and pos a valid position in T, then T[pos] is subtree of T at position pos. Denote by

©(T) set of all valid positions in 7. The notation remind us the fact that pos is index for the trees, just like
numbers are index for the sequences.

Composition Law: This comes from composition in Category A(—, —).

(VC) This transformation is replacement of two nodes representing arrows in Category A(—,—),
with their composite. Let 3-~v =4 in A(—, —).

N

@ (pos.ﬁ‘..d«ﬁ“y)
pos

(pos,V.C,6,8,v)

Structural Laws: These are the laws that change the specifications used and the skeleton of the

tree. There are two laws for the 0-Specifications and 2-Specifications, and three laws for the three Natural
AnalsoMorphisms a, A and p.

0S8

A
G
N/

(S0) This transformation is for changing the 0-Specifications. Let p,q € [14[(1).

4]

&S

(pos,S0,p,q)

pos

Fo-

(pos,50,p,q) 08

<
<Hire

(S2) This transformation is for changing the 2-Specifications. Let s € |04 g c |(f1,91),t € |oa,B.C
|(f2,92), B € A(A, B)[f1. f2] and v € A(B, C)[g1, g2]-

30
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(pos,52,8,7,s,t)

(pos,52,8,7,s,t)

(ALP) This transformation changes the shape of tree. It changes it from right oriented one to left
oriented. Let s € |oa g c |(f,9), t € |cacp|(fosg,h), wu€|oscp|(g9,h), vE|oanp|(figouh)

v e (po:-.ALP.s.f.u.zl)

0 (pos,ALP,s,t,u,v)

(LMD) This transformation eliminates the 0-Specification on the right of a 2-Specification. Let
s€|oapr|(filep) pE|lB|(1).

(B]

v (pos, LM D,s,p) i
e (pos,LM D,s,p) @

pos

v

31
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(RHO) This transformation eliminates the 0-Specification on the left of a 2-Specification. Let
s € |oaaB|(lap f), p € [Lal(2).

(A

|
v (pos,RHO,s,p) i
a (pos,RHO,s,p) @

pos

Identity Law: This is the law is reflective of the fact that composition with identity does not affect
the two cell.

(ID) This transformation introduces Identity node into the tree. Let codom(T;) = f, then

v (pos,LD,f) i
2L @
POS
(pos,ID.f) v

Now we can define set of two cells to be

Celly(M) = T/ ~

I11.2 Composition:

Composition of trees is defined as typed concatenation of two trees. Let 77 be a tree such that codom(T1) = f,
T and pos be such that Tx[pos] = (f). Then T =T} ©pos T> is a tree such that at position pos in T, T is
attached.

Remark 2. The composition can be though of as composition of 2-PD’s mentioned in Remark 1.

Formally,

32
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/ Ts[pos’ if pos’ is not a prefix of pos
V 08 € T T ! = =
(¥ 0(T2)) [pos | {Tl Opos Ta[pos’]  otherwise, where pos” = pos — pos’

Lemma 1. Composition is well defined i.e. Ty ~ T} and T> ~ T3, then Ty ®, Tp ~ T] ©q T5.
Proof. Let < t1; > be transformations for Ty — 7T}, < t2; > be transformations for 7o — Ul

t2, > transforms position p to g, and px < t1; > be sequence of transformations with p prefixed to every
transformation in < t1; >. Now, px < t1; > - < t2; > is transformations for 71 ©p To — T O 154 =

Lemma 2. Composition is associative.

Proof. Let Ty, Tb, T3 be trees and, p € p(Tz) and ¢ € p(T3) such that codom(T1) = f, codom(Tz) = g
T»[p] = (f) and T3g] = (g9). Then (T} ©p T2) ®q T3 = T1 Og.p (T2 ©Oq T3). In pictures,

(f)

V (9)

v S v
i X/

Lemma 3. Composition is commutative.

Proof. Let Ty, T», T be trees and, p,q € p(T3) such that codom(Ty) = f, codom(T2) = g, T3[p] = (f) and
T3[q] = (g). Then Ty ©p (T2 @ T3) = T2 ©q (T1 @p T3). In pictures,

s G
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K7

q p

ThopTs Tz@ng— v Ty Op (T2 ©g T3) = T2 Og (T1 ©p T3) = v

Lemma 4. Composition respects identity laws.

Proof. Let T be a tree and p € p(T) such that codom(T) = f and T'[p] = (g). Also Ids and Id, be identity
trees for f and g respectively.

ST, T T,

(9) (9)
o @ - N

2: T®<u> Idf ZT

cit
(f) Idy = g )

(<u>,ID,f)
) Tows 1= ()

~
[l

I11.3 Complete set of specifications:

Definition Pasting diagrams:. Pasting diagram (PD) is a triple f = (n, fo, fa), where fo : n ap ll=
Cellp(M) and fa : n — Cell; (M) such that (VO < i < n)(fa(i) : fo(i) — fo(i +1)). Define |f| = n,
Ob(f) = Range(fo) and Ar(f) = Range(fa).
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Also, we say § <, f, for g is substring of f at position m, i.e.

19l <IF1A 0 <m < [F) A ((Y0 < i < |g| + 1)(go(i) = fo(i +m)) A (V0 < i < [g])(gal

and 3 g
G<fe—B0<m<|f|+1)(@F <m f)

i<m' —mand ga(i) = fa(m+1),0<i<m —m.

i) = fa(i+m))

This defines a partial order on PDs. Define § = f T(mmn= (m' —m, go,ga), as go(i) = fo(m + i),0 <

We now define complete set of specifications forgiven PD. Intuitively this is a collection of 0-Specifications
and 2-Specifications that fit together to define the composition of 1-cells such that between any pair of 0-
cells there is a unique 1-cell. So the basic idea in this definition is that all a, p, A’s associated with these

specifications are identities.

For I € N, define
Va1 = {(65))(4,5) € I x I Ai < 5}

and
Mar— Hh k)@ Lk el T xTAl=ji=k}

Definition I Indexed set of specifications:. Given a PD Flet e Ne Al =210
indexed set of specifications S = (0, F, S0, 52) for f as,

©:1 — 0Ob(f)

F : Va1 — Ar(f)
S0: 71— |1_|
SNt lo e

such that
1) © = fo,
2) F(i,5) : ©@r) — ©0),
3) Fi,i+1) = fa(i).
4) 50(i) € |lo@)|(1), F(i,i) = leg).s00)

5) 52(’1‘,,],;{:) & |09(i),9(j),9(k) |(f(’t,j),f(_},]€)), .F(Z.,k,) = ‘F(":’J) ©82(i,5,k) f(.]u k);

35
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Given I indexed set of specifications S, for any non empty .J C I, the subsystem S|; = (', F', S0', 52)
is
e’ : J — 0b(f)
F' Vg5 — Ar(f)
S0 J — |1_|
52’ H V'g,r = | O |
such that

1) ©'(i) = O(i), for all i € J,

2V E() — F(, ), forall 1, 7€ J;

4) S0'(i) = S0(3), for all ¢ € J,

B)NS21(e, 7,k) —92(1, 4, k), for-all 2,5,k € J,
Definition a-Coherent Systems:. I indexed set of specifications S is said to be a-Coherent system if
for all non-empty .J C I such that 0 < |J| < 4, the subsystem S|y = (&', F', S0, S2') satisfies

Q527 (i,,k),S2" (i,k,1),S2 (G.k,1),82' (i,3,0) = LdFr (i)

for 1,5,k,l € Jsuchthat i < j <k <L

Definition p-Coherent Systems:. [ indexed set of specifications S is said to be p-Coherent system if for
all non-empty J C I such that 0 < |J| < 2, the subsystem S|; = (©',F', S0', S2') satisfies
P52 (5,4,5),80' (i) = TdF1(s3,5)

for 7,5 € J such that i < j.

Definition \-Coherent Systems:. I indexed set of specifications S is said to be A-Coherent system if for
all non-empty J C I such that 0 < |J| < 2, the subsystem S|; = (6, F', S0', §2) satisfies

As2/(i,5,7),50' () = Td7 (i 5)

for 7,7 € J such that i < j.

Definition Complete set of Specification (CSS) for PD f:. GivenaPD f,let N = |f|,I ={0,...,N}.
Then we say I indexed set of specifications S = (©,F,850,52) is complete set of specification for PD f
whenever its a, p, A-Coherent System.

Examples of complete specifications

36
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1) For n = 0,

Figure 1.

2) For n =1,

Figure 2.

3) For n = 2,

Figure 3.

S
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Given I C N, m,m’ € I such that m < m/, then define [m,m'] = {i € Il'm < iAi < m'} and
Jm,m/[= {i € Ili <mVm' <i}. S T(nm) is upper half of CSS S from m to m’, i.e. S T(mm)= S| im.m-
S |(m,m) is lower half of CSS S from m to m’ i.e. S |(m,m)= S|jm,m:[- Note we might readjust the indexes
whenever necessary.

Lemma 5. Given an object A, we can choose specifications p € |14|(1) and s € | 04,44 |(14,p,14,p) sSuch
that 14505 1ap = lap and psp = Asp = Qs 555 = Id1, ,

Proof. Choose any p € |14](1). Then from saturation & € | 04,44 |[(1a,ps1ap) such that psp = Idi, .
Using coherence we have

Ps.p

—_—
]-A.p Cs IA,p —_— IA,p
e

So, As,p = Ps,p = Idy, ,. Using coherence again,

(1.4,13 Og 1A,p) Os 1A‘p

1A.‘p Og 1A.p

%_Icﬁ/{@

Lapos(laposlap)

S0, 0ty,5,5,s = Id1, ,- =
Lemma 6. Given f = (n, fo,fa), complete set of specifications S = (©,F,50,52) for f, and § =
(n+1,90,94) such that

1) go(i) = fo(i),0<i<n+1

2) ga(i) = fa(i),0<i<n

Then there exists complete set of specifications S' = (0', F', S0, 52") for g such that

LEER—ai) <t =n

2) Fl(i,4) =F(,5),05i<j<n

3) 50'(7) = 90(i),0<i<n

4) 52'(i, j, k) = S2(i,j,k),0 <i<j<k<n
Proof. Let

1) ©(i) = ©(i),0 < i <n, and ©'(n+ 1) = go(n +1)
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CWELE9) = F(2.9),0< 9< < nyand F(n,n+1) =ga(n)
3) S0'(i) = S0(2),0<i<n

4) S2(i,j, k) = 52(i,7,k),0<i<j<k <n

In this proof locally we use following abbreviations:

Fij = F'(i,5)
Ok =952/ 5 k)
Oij.k ‘= ©827(i,j,k),52 (i,5.k)
Pi,j = P82 (i,1,5),50(4)
Aig 1= As2(6,3,1),50'(5)
Okl 2= OS2 (i 5 k), 52" (i,k,1),S2' (j,k,1),S2 (3,4,0)
Lo = ler(i).s0 (i)
Id; ; := Idp; 5

Base Step: Using Lemma 5, we get S0'(n + 1) and S2'(n + 1,n+ 1,n + 1). From saturation we have
unique S2’(n,n,n + 1) such that p, n+1 = Idy nt1 and S2'(n,n + 1,n + 1) such that A, 41 = Idn a1

Induction Step: For any 0 < i < n, suppose we completed the following process for all i < j <n+1,
we choose S2'(i,n,n+1) € |og(i),07(n),0/(n+1) (F'(i,n), F'(n,n+1)), and let F'(i,n+1) = F'(i,n) %,nn+1
F'(n,n+1).

Now we need to define S2'(i,j,n+1)fori <j<n+1Aj#n.

(I1) For j = n + 1, from saturation we have unique 52'(i,n + 1,n + 1) such that

Ai.ﬂ-i-l = Idi.n+l

(I2) For j = i, from saturation we have unique §2'(7,4,n + 1) such that

Pint1 = Idini1

I3) For any i < j < n, from saturation we have unique S2'(i,j,n + 1) such that
J

Qi jnntl = Idini

The selection satisfies p and A coherence. We need to show the e coherence fori < j <k <[l =n+1.
This has 8 cases depending on where equalities and inequalities lay. All of the following diagrams commute
due to coherence.
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@asel:n <j<k<l—n-tl k#n
(A e on el k) Bkt En ) Cinmtl T nnt

Qi.j.k/o'.n.n-}-lldn.n-i—}

L I i ‘ T
(-7: i,j Ci,j,n (}_ j.k Cj,k,n 7 k,n)) Cin,n+1 -}-’n,n-l-l Qi K1
: (i !
i gt (Flii 0iik Fik) Oikmtr (Fem Ok nint1 Fnnt1)
i/ ! '
e T (E G P9 o F e O nindd Flnmtt) ik

\
Imn-ylﬁ%l

7 ! !
2 i,j 94,j,n+1 (-7: 4.k Cj,kn+1 (-7'_ kn %knntl -Fln.n+]))

Now,

i i kn Pinnt1 ddnnt1 = Idinga

because o j x.n = Id;  from specifications S.

2:
Qi jnnt+l = Idz,n+1

from choice in item (I3) above.

3:
Id; j % jn+1 Qjkmmil = Tdinya

because @ k. nn+1 = Idjnt1, by induction as j > 1.

4:
O knntl = Idi.n+l

from choice in item (I3) above.

5: Since the diagram above commutes, we have

Qi jkntl = Idinp1

40



Chapter III: Ana-BiCategory to 2D-Multitopic Category J

@asel 2 <k — ]

' ‘A
(F'ij % jn+1 Fjne1) Cint1n41 lormer)

Qi jn+

1,n41

/

f\i.u+1

\

/ 7
Sl O i i

Id;, Qi,j,n+1Aj,n+1

\

/ 7
F'i 5 %ijm+1 (Fjn+1 %int1,n+1 lor(nsn))

Now,

115

from choice in item (I1) above.

s

A1',ﬂ+1 — Idi‘n-{—l

Id;; o5 5nt1 Ajnt1 = Idi n

because Aj n+1 = Id; 41, by induction as j > 1.

3: Since the diagram above commutes, we have

@ase G <=k <= into 1

O jnt+intl = Idin

/i .
(F'ij ©ij.j LorG)) Cigm+1 Flin+1

i, j

yJyn+1

/

A"JOI‘J’"HI‘“H\\

! !
F'ii%ign+1 Fintl

Idi,joi._j,n+lpJ.n+1

\

F'i.j oijm+1 (Lorg) %dn+1 Fjn+1)

Now,

i

Aij %igin+1 1djnt1 = Idinpa

because \; ; = Id, ; from choice in item (I1) above.
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Id;j 0ijn+1 Pint1 = Tids mrd

because pjni1 = Idjnt1, by induction as j > i.

3: Since the diagram above commutes, we have

Q4.5,9.n+1 = lrdz.11+1

Case 4: i<j=k=l=n+1

r
(F'in+1 %n+1,n+1 lor(ns1)) %int1n+1 lov(nt1)

""H\

- !
Qi,n+1,n+1,n+1 -Fi.rH—l Ot ikl lel(n_H)

!
Flin+1 %n+1n+1 (lor(ns1) On+1,n+1,n+1 lor(nt1))

Now,

il
/\‘i‘n+l = Idi.n-}—]

from choice in item (I1) above.

e
Id; ; imt1nt1 Prtim+l = Idinta

because pn+1n+1 = Idjn41 from Lemma 5.

3: Since the diagram above commutes, we have

Aintl,nt+lntl = Idr,n+1

@ase 50— b<l—mnll

(le/(i) Oiik F'ik) Oikint1 Fknt1

/

Pi k% k n+1dde nya

At ! 7
S piaty Flik Oiknt1 Flrnt

\

! !
Llor(i) Oiin+1 (Flik Cikn+1 Fknt1)
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Now,

Pik %% kn+1 Tdgnt1 = Idinta

because p; 1. = Id; ;. from specifications S.

24
Pint+l — Idi.rl+l

from choice in item (I2) above.

3: Since the diagram above commutes, we have

igkntl = Idi‘n-ﬁ-l

Case 6: i=j<k=l=n+1

/
(lor(i) ©iin+1 F'in+1) ®int1,n+1 lor(nin)

/

pi.u«r]"n.r?«#l.n«‘r]Idlel{"+1)

it ntl F'in+1 %mn+1,n+1 lor(nt1)

2 s

i,n+1

\

V

lor(i) ©i,in+1 (Flin+1 %n+1,n+1 lor(n+1))
Now,

it
Pin+1 %ntin+1 Jdig, 0y = Tdinta

because p; n+1 = Id; nt+1 from choice in item (I2) above.

2:
Pin+l = Idz.n+1

from choice in item (I2) above.

3: Since the diagram above commutes, we have

O intintl = Idinia
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Case :i=j=k<l=n+1

(Ler(i) 04,5, lor()) %iim+1 Flin+1

/

Pi,i% i,n+11din+1

PR Z
O iint1 lorG) %iin+1 Flint1

L”+/

\

v

los(s) %in+1 (Lovg) iin+1 Flint)

Now,

Pii % in+1 Idi i1 = Idiny1

because p; ; = Id;; from Lemma 5 above.

2
Pingl =z nt1

from choice in item (I2) above.
3: Since the diagram above commutes, we have

QG 4in+l = Idi,n+l

(Crepie d=y =la=li=marl
Ont1nt+1n=1n+1 = Idni1,n41

from Lemma 5. .
Lemma 7. Given f = (n, fo,fa), complete set of specifications S = (8,F,S50,52) for f, and § =
(n+ 1,90,94) such that

1) go(i) = fo(i—1),0<i<n+1

2) ga(i) = fa(i—1),0<i<n

Then there exists complete set of specifications S’ = (©',F’, S0, §2") for g such that

INEi=081)50<i=n|1

2) Fli,5) = Fi—1,j—1),0<i<j<n+1
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3) S0/(i))=S0(t—1),0<i<n+1

4) 52(i,j,k) = S2(i—1,j—1,k—1),0<i<j<k<n+1
Proof. Symmetric to Lemma 6. -
Lemma 8. Given f = (n, fo,fa), complete set of specifications S = (©,F,50,52) for foand.g —
(no +n +n1,90,94) such that

1) go(no +1) = fo(i—1),0<i<n+1

2) ga(nop+1i)=fa(i—1),0<i<mn

Then there exists complete set of specifications S" = (©', F', S0, 52) for g such that

1) ©(ng+1i) =0(i),0<i<n+1

2) F'(no +i,no+j) =F(i,5),0<i<j<n

3) S0'(no +i) = S0(i),0< i <n

4) §2'(ng + t,no + j,no + k) = 52(4,5,k),0<i<j<k<n

Proof. Use Lemma 6 to extend to the right and Lemma 7 to extend to the left. o

Lemma 9. Given f = (n, fo, fa), there is complete set of specifications S = (©,F,50,52) for T
Proof. We use induction on length |f|.
1) If |f| = 0, use Lemma 5 to get CSS for f.

2) For |f| =n + 1, where n > 0, suppose we have CSS S for i T(0,n), we use Lemma 6 to extend it to
@SS fox f. .

I11.4 Universal Arrows:

111.4.1 Normal form for complete specification trees:

Given a PD f, and a CSS S for f, we have trees with only specification nodes that are constructed from
S: they use only specification appearing in S, placed in the same way as in S and contains no 2-Cell nodes.

Call such a tree a Specification Tree, and denote set of such trees as Tg (dom(T) = f whenever T € Tg).
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All such T € Y are equivalent to a unique tree in normal form in YTg as shown below. Denote normal
form tree for S by []s.

Definition Normal form:. A tree T' € Yg is said to be in normal form if and only if

(1) |f| =0, and
[A]
T = (h)
(2) or, \f| =1, and
(MT)
T = (g)
(3) or, |f| > 1, and
(9)
= (h)

and T} is in normal form.

Lemma 10. Given complete specification set S and T € Tg, then T ~ [[g, ie. T —* []5.

Proof. An algorithm for converting a specification tree into its normal form is given. It actually produces
a witness for converting T into its normal form. This is called Norm and has type

Norm : Tg — (—7)

where (—*) is set of sequences of elementary transformations.
Norm is defined recursively as:
1:

A

[
Norm((h)) =€
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(f 9)

Norm( (h) =c

) = (,ID, k) - (e, ALP, 5,t,u,v) - Norm(

4:
(B]
i 0
o
Norm( (h) )= (e,ID,h) - (¢, LMD, s,p) - Norm( (h;) )
5:
[4]
e i
)
Norm( (h) )= (e,ID,h) - (¢, RHO, s,p) - Norm( (h) )
6:
9)
Norm( (h) ) =< 1> xNorm( (f) )
Let < t; >= Norm(T). Then < t; > is transformation for T — [[g. Hence, T' ~[]5. "
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Corollary 10.1. Given complete specification set S and Ty, T» € Tg then T} ~ T5.

Rraok Shie T = 1.

I11.4.2 Residue modulo complete specifications of a tree:

Given a tree T, let number of O-specifications in T be #(7’) and number of 2-specifications in T" be #2(T).
Let #(T) = #2(T) + 1 — #o(T).

For any tree T such that dom(T) = f and S is complete specification set for f, we define [T']s the
residue of 7 modulo S recursively as below. We also produce a witness for the transformation that finds
[T]s, denoted as Vg(T'). Now, !

[l

T — (f) then [T]s = 14,s0(0),p and Vs(T') = (€,.50, 50(0), p).

(9)
) IIETE = (g) then [T)s = Id, and Vs(T) = (¢,ID, f).

T T

S

S)STENTE = (h) , then [T)s = [T1]stdom(T;) ©52(0,#(T1),#(T1)+#(T2)),s [T2]stdom(t») and
Vs(T) =<l > *Vstdom(ry)(T1): < T > *Vstdom(1s)(T2) (6, S2, [T1]51dom(Ty) s [T2] s1dom(T2), S2(0, #(Th), #(Th)+}

#(Tz)), s).
(®)

AHIUT= (9) then [T]s = [T1]s - B and Vg(T) =< u > * Vg (T1) - (6,VC,[T1]s - B, [Th]s, B).

Denote by < T >g, the tree obtained using transformations Vs(T') on T. Then note that < T >g [<
u >] € Ts. We denote < T >5 [< u >] as T/S. Thus we have an equation T ~< T >5= DSE zu~ s

Let —, be restriction of — (elementary transformations) to case where pos = € i.e. the transformation
is applied at the root only.

Lemma 11. T —, T’ and S is complete set of specifications for dom(T), then [T)|s = [T"]s.
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Proof. For simplicity in this proof subscript S is removed from [T7]s.
VC For (¢,VC,6,5,7), [T] = [T1] - 8- and [T"] = [T4] - 6 = [T1] - B+ . Hence, [T] = [T"].
VC For (¢,V.C,6,3,7), proof is same as above.
50 For (€, 50,p,9), [T] = log).s00),q 20d [T"] = log),s0()0 - 1oG)pe = lo@),so().q- Hence, [T] = [T'].
S0 For (¢, S0, ,p, q). proof is same as above.

S2 For (6,?2_,,8,"[.8‘ t), [T] = ([Tl] ﬁ) ©852(i,5,k).t ([TQ] -7) and [T’} = ([Tl] ©82(i,j,k),s [‘ng) (B o5t 7)-
Hence, [T] = [T"].

S2 For (€, 52, 3,7, s,t), proof is same as above.

ALP For (¢, ALP, s, t,u,v), [T
[T3]. From naturality we have, [T”
[l

| = [T1] os2(i..0).0 (¥ ©52(5,k,0),u 0) a0d [T7] = ([T1] 052, ; 4,5 [T2]) 052(3,k.0).¢
| = a; k- [T] and from o coherence, we have «; M = Id;;. Hence,
ALP For (¢, ALP.s,t,u,v), proof is same as above.

LMD For (e, LMD, s,p), [T] = [T1] - Idy = [T1] and [T] = ([T1] ©52(i,5.5).s 1&(),50(),p) = As,p- From
naturality we have, [T'] = A, ; - [T] and X coherence we have \; j = Id; ;. Hence, [T] = [T"].

LMD For (¢, LMD, s,p), proof is same as above.

RHO For (6 RHO S, p [T] = [T]] Idf = [Tl} and [T’] = (19(}'),30(35},;) 082(i,i,j),8 [T]]) * Ps,p- From
naturality we have, [T’] = p; ; - [I'] and p coherence we have p; ; = Id; ;. Hence, [T] = [T"].

RHO For (e, RHO, 5.p), proof is same as above.
1D For (¢, 7D, f), [T] = [T3], [T"] = T3] - Idy = [Ty].

ID For (e,ID, f), proof is same as above. .

Lemma 12. If [Th]s = [T}ls, then [Ty ©p Ta]s = [T} Op T2]s

Proof. Since T} is subtree of Ty ®, T> and T is a subtree of T] ®, T2, while evaluating [T1 ©;, T2]s and
[TY ®p T»]s. at certain point we need to evaluate [T1]s and [Tf]s But then [Th]s = [T}]s, and rest of the
evaluation is same for [T} ®, T»]s and [T] ©®p Ta]s. Hence, [T1 ©p To|s = [T] ©®p T2|s .

Corollary 12.1. T ~ T’ and S is complete set of specifications for dom(T), then (T|s = [T']s.

Proof. Using Lemma 11 and Lemma 12 we have T — T" = [T'|s = [T”]s. Using induction on number
of steps in ~=—*, we get the required result. -
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Lemma 13. Suppose Ty, T» € T such that 7(Ty) = 7(T2), and S is complete set of specifications for
dom(T1) = dom(Ty), then
Ty =T < [Ti]s = [Tols

Proofs (&)

Vs(Th) e‘m,codom(Tl ))
- >

(
Tl e e ST e € Tl >g= TI/S ®<u> [Tl]s (TI/S ®<u> [TI}S) ®<u> Idcodom{T;}

Associativity

-

TI/S O<uu> ([TI]S O<u> Idcodom(Tl))

(e,VC,[T2]s,[Th]s,ID, odoni(Tl))i
.TQ T : T2 0 Tz/S ®<u> [TQ]S Carollary:l().l TI/S l®<u> [TQ]S
(=) Corollary 12.1 =

I11.4.3 Universal arrows:

Definition Universal Arrow:. A tree T is defined to be universal if and only if [T]s is isomorphism,
where S is CSS for dom(T).

Existence of universal arrow follows from Lemma 9. We denote such tree by U. Now we prove the
universal property of such an arrow.

Lemma 14. Given any 2-Cell T such that dom(T) = f and a universal arrow U such that dom(U)
f T(m,m), then there is a 2-Cell T', such that U Opos' RA=T

g =

Proof. Let S be set of CSS for g = dom(U). Since, g = 7 Tigm,m?)s We extend S to S’ such that §” is CSS for
f. Now, let §” = S’ |(m,m), b = flcodom(U)/(m,m’)], pos =< JIhl=m=1 _ pif(m=0)(0)else(1) =, pog' = u - pos
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and, pos” = u - pos’. Then U/S Opos [ [ € Y5 with dom(U @pos [[gn) = f- Now we have,

Hi= T/S’ ®<u> [T]S’

~ (U/S @pos | [) @<u> [Tls:
o

= (((U/S O<u> [U}S) O<u> [UEI) ®;Dos H) O<u> {T]S’
g

=SS 2o {U}El) Opos H) Ocu> [T)s
SI’
=~ (U ®pos H) O<u> ) Ocu> [T]s
Sfl

= (U Opos’ (][ @<u>9)) ©<us [T]s
SH

= U Opos" ((H@<u>5) O<u> [T]s)
Sll‘

where 6 = (Idz(o,m) 052 (0.m,m+1),52(0,m.m+1) (U5 ") 052 (0.m+1.1A}) .52 (0.m+ 1,1l Td7 (mes1 |hpy- Thus T =
(Lls» ®<u>0) @<us [T)s: satisfies the lemma. =

Lemma 15. Given a universal arrow U, and two 2-cells Ty and T> such that, dom(U) = g, dom(Ty) =
dom(T») = f, codom(T1) = codom(T») and codom(U) = fa(m). Then U®p1 Ty =~ U ©p2 T2, implies Ty =~ T.

Proof. Let S be CSS for . Let h = f[g/(m,m + 1)]. Let S” be extension of S to fiand SC= ST =S
Let pl’ = Vg (T1)(pl), p2' = Vs (T2)(p2), and p =< Uf1=k=1 . pif (k=0)(0)else(1) > Then

UOpTh =2 U Op2 T
= U Oprr (T1/S" O<u> [Th]s7) = U Opar (T2/5” O<cus [T2)s”)
= U 0p ([] ©<ws[Tils+) = U 0p (] O<us [T2]s)
SII S.H
= (U @p H) O<cu> [T]_]SH (2l (U @p H) O<u> [T21S”
g/ St
= ((U/S O<u> [U]s) @p []) @<us [Tilsw = (U/S ©<us [Uls) @p [ ]) O<us [T2]s
gz s
= (U/S @p [ ]) @<u> 8) O<us [Tils» = (U/S @p [D) 0<us 8) Ocus [Tals~
G S
= 6 [Th]s» = 6 - [Tl
= [T]s = [T2]s~
= Tl e T2

where & = (Idzn(0.m) ©52¢ (0,m,m+1),52" (O;m.m+1) [U]5") 0520 (0,m+1,1A1). 52 (0.m+1, k1) TdF(m+1,1h))- Since [U]s
is isomorphism, so is 9. -

51



[ Chapter III: Ana-BiCategory to 2D-Multitopic Categor}j

I11.5 Conclusion:

Theorem 1. Construction (—)# transforms ana-bicategory to 2D-multitopic category.
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Chapter IV
Equivalence of 2D-Multitopic Category and Ana-BiCategory

In chapter 2 and chapter 3 two constructions (—)* and (—)# were described. In this chapter we
show that these constructions form adjoint pairs in the sense of FOLDS. First we take two composites

S _y# _\# o
J\/“(—)Z"'M*lihv-_/\/[*# and A&A*‘*#:—A#*. A ~ A#* is obvious because all the data is preserved.

In fact this is equality.

Non obvious equivalence is that of M ~ M*# on which we start to work now.
IV.1 FOLDS signature

The FOLDS signature for 2-D multitopic category (Lo pasit) is

Eqo]  U[O) 1d  Eqm]  Ulm] ofm, m, ]
L o A v = L e
[ ey [ poms i ¥ 1
C5[0) C: 1] 5 Cam] b /cz[n] i Calm+n—1=k
\Xgl dl”a--:: i i r//kd?,//
W=

Cy

Al

Co

The following equations hold for the arrows in the above one way category.
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(vne{1,2,.. DVl <i<n)(d}-d=d ;¢
Lfd=c"¢
(Mnie il g N ) (dy - d =cd)
(Wrie 1,25 PSSy e =c"-)
i-dg =i !
(Vn € {0,1,...})(Vp € Ca[n] | Lo_pnut)(eq -p = eqr -p)
(Vvm e {0,1,...}) (Vne {0,1,...H)(V0 < i <n)(er-df =cp-c™)
(Vm € {0,1,.. })(¥n € {0,1,...})(¥0 < i < n)(V0 < j < i)(c1 - d} = cp - ™" 71)
(Vm € {0,1,.. })(¥n € {0,1,...})(¥0 < i < n)(Vi < j < n)(c1 - d} = ca-dni?7])
(Vm e {0,1,...)(¥n € {0,1,.. (V0 < i < n)(VO < j < m)(co-dT* = c2- di%" )
)

(vm e {0,1,.. )(¥n € {0,1,.. N(¥0 < i < n)(c1 - €™ = cg - ™!

The 2-D Multitopic Category is Lo_ pan¢ structure that satisfies the following Axioms (Zo—pmit)-

- Equality:

(Vc € Cz[n])(3e(c, c) € Eq[n])

(Ver(c1, c2) € Eq[n])(3ea(c2, 1) € Eq[n])

(Vex (e, ¢2) € Eqln])(Ye2(cz, ¢s) € Eqln])(3ea(cr, cs) € Eqlnl)

(Va € C2[m])((3e(a,a’) € Eqim]) = ((Vb € Ca[n])(Vd € C2[m + n — 1])(3c(a, b,d) € o[m,n,i]) =
(e(a’, b, d) € o[m,n,i])))

(¥b € Ca[n])((3e(b, ') € Eg[n]) => ((Va € C2[m])(Vd € Ca[m +-n — 1])(3c(a, b, d) € o[m,n, i) =
(3c(a, b, d) € o[m,n,i])))

Composition:
(Va € Ca[m])(¥b € Ca[n])(c™(a) = d™(p]"(b)) = (3d € C2[m + n — 1])(3c(a, b, d) € o[m, n,1]))

(Va € Calm])(v € Caln])(c™(a) = d™ (5" (b)) —
(Vd € Ca[m + n — 1])(3e(a, b, d) € o[m,n,i])
(Vd' € Ca[m +n — 1])(3c(a,b,d’) € o[m,n,i])
(3e(d,d’) € Eqm +n — 1]))

Commutativity:

(Va € Ca[m])(Va' € Co[m'])(Vb € Ca[n])(c™(a) = d™(p]" (b)) Ac™(a’) = d™(p]'(B)) Ni < j =
(Vab € Ca[m +n — 1])(Va'b € Ca[m’ 4+ n — 1])(Va'ab € Ca[m’ + m 4+ n — 2])
(Vaa'b € Ca[m +m' +n — 2])(3c(a, b, ab) € o[m,n,i])(3c'(a’, b, a’b) € o[m’, n, 1)
(3c"(d’,ab,a’ab) € o[m’,m +n —1,j +m —1])(3¢"(a,a’b,aad’d) € o[m,m’' +n — 1,1i])
(3e(a’ab, aa’b) € Eqim +m’ +n — 2))
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Associativity:

(Ya € Ca[l])(¥b € Co[m])(Vd € Ca[n])(c'(a) = d™ (P} (b)) Ac™(b) = d"(p}(d)) =
(Vab € Cal + m — 1])(Vbd € Cy[m + n — 1])(V(ab)d € Ca[ll + m +n — 2])
(Va(bd) € Co[l + m +n — 1])(3c(a, b, ab) € o[l,m, j])(3c (b, d, bd) € o[m,n,i])
(3¢”(ab,d, (ab)d) € ofl + m — 1,n,l + m +n — 2))(3¢" (a, bd, a(bd)) € ofl,m +n —1,i+j])
(3e((ab)d,a(bd)) € Eq[l + m +n — 2]))

Identity:

(Vf € C1)(3Idy € T)(
(Va € Ca[m])(V0 < i < n)(d™(pl(a)) = f => (3e(i(Idy),a,a) € o[1,n,i]))
A (Ya € Ca[m])(c"(a) = f = (3c(a,i(Idy),a) € o[n, 1,0])))

Universality:
Univ(u € Uln])
iff
(Vm > n)(Va € C2[m])(V0 < i < m)(V0 < j < n)((d} (u"(u)) = di},(a)) =
(3b € Ca[m — n + 1])((3e(u™(u),b,a) € o[n,m —n +1,1])

A (WY € Calm — n + 1])(3' (u™(u), b, a) € o[n,m —n + 1,i]) =
(3e(b, &) € Eqfm — n + 1))

(VA € Cp)(3u € U[0])(c(d®(u®(w))) = A A Univ(u))

<n
(VnE{l,Q, Vfoecl H ((Vfi € C1)(d(f:) = c(fi- 1))

(3u € Un])((Y0 < i < n)(d"(u"(u)) = fi) A Univ(w))

IV.2 Structure

We define M and M*# as two Lo_ pae structures. The meaning of arrows will be common for both
and will be described after filling in the object descriptions.

Definition M:. Cy and C; are Cellg(M) and Celly(M). Csli] is 2-cells with length of domain i. Uf[i]
are universals of domain length i. I is identity 2-cells. Eq[i] = {(c,c)|c € Ca2li]}. o[m,n,i] = {(a,,7) €
Cs[m] x Cz2[n] x Ca[m +n —1]|a- =7}
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Definition M*#:. Cjy and C, are same as above. Cy[i] = {T € Y||dom(T)| = i}. Eq[i] = {(T1,T2)|Th, T2 €
Coli)| ATy = To}. I ={T|T € Ca[l] AT =~ Id; for some f € C1}. Uli] C Cs[i] are the universal arrows as
defined in last chapter. o[m,n,i] = {(T},Ts,T3) € Ca[m] x Ca[n] x Cao[m +n — 1]|Ty © Tp ~ T3}.

¢ and d map l-cells to their domain and codomain O-cells. d* and ¢™ maps 2-cell to its ith place in
domain and to its codomain 1-cell. ej* and el are left and right sides of equality on 2-cells. u™ is injection
of universals into 2-cells and 7 is injection of identities into Ca[1].

All the axioms in $a_pase are true for the structure M*# as has been verified in previous chapter. For
M they are automatic from the axioms of 2D-Multitopic Category.

IV.3 Equivalence:

IV.3.1 Evaluation:

0 and 1 cells of these two structures coincide as was give by the constructions in the previous chapters. For
2-cells, we define a map from M*# to M called ev, an abbreviation for evaluation, remembering the fact
that trees in T come from 2 cells in M which has composition defined in it.

ev: T — Cella(M)

This is defined inductively on structure of trees (in T) and we show it is invariant under the equivalence
relation =~ defined in previous chapter.

(f)
1L} T8 — |) then ev(T) = Idy.

(4]
2) T — (f),then ev(T) = p.
Ty T
)T = (h) ,ev(T)) = a and ev(T) = 3, thenev(T) =a-3-s
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AR — (9) and ev(Ty) = a, then ev(T) =« - 3.

To show that ev is invariant under ~, we show it is invariant under each elementary step.

Lemma 1.
T —, T = EU(Tl) = E’U(Tg)

Proof. To show that ev is invariant under ~, we show it is invariant under each elementary step. Let the
resulting tree after elementary transformation of T be T".

VC For (¢, VC. 5, 3,7), ev(T) = ev(T1)-B-y and ev(T") = ev(T1)-6 = ev(T})-B-y. Hence, ev(T) = ev(T").
VC For (e,V.C,6,3,7), proof is same as above.

S0 For (¢, 50, p, q), ev(T) = q and ev(T') = p- 14 pq = g. Hence, ev(T) = ev(T").

€

For (e, S0, p, q), proof is same as above.

S2 For (¢,52, 3,7, 5,t), ev(T) = (ev(T1) - B) - (ev(T2) - v) - t and ev(T’) = ev(T1) - ev(T2) - s - (B 0s ¢ ¥) =
ev(Ty) - ev(Ts) - 3 -y - t. Hence, ev(T) = ev(T").

S2 For (¢,52,03,7, s,t), proof is same as above.

ALP For (e, ALP, s,t,u,v), ev(T) = ev(T1) - (ev(T2) - ev(Ts) - u) - v, and ev(T") = (ev(T1) - ev(I3) - s) -
ev(T3) -t - s tu0- By using definition of ag ¢y v, we have ev(T) = ev(1").

ALP For (e, ALP, s,t,u,v), proof is same as above.

LMD For (e, LMD, s,p), ev(T) = ev(T;) and ev(T’) = (ev(Th) - p- 5 - As p- By using definition of A p,
we have ev(T) = ev(T").

LMD For (e, LM D, s, p), proof is same as above.

RHO For (¢, RHO, 5,p), ev(T) = ev(Ty) and ev(T’) = p-ev(T1)-s- psp = ev(T1)- (p-s)- ps,p. By using
definition of ps , we have ev(T) = ev(T").

RHO For (e, RHO, s, p), proof is same as above.
ID For (¢, ID, ), ev(T) = ev(Th), ev(T") = ev(T1) - Ids. Hence, ev(T) = ev(T").

ID For (¢, 1D, f), proof is same as above. -
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Lemma 2. If ev(T}) = ev(TY), then ev(Ty ©p Tz) = ev(T] ©p T2)

Proof. Since Ty is subtree of Th ®, T» and T} is a subtree of T] ©, T», while evaluating ev(Ty ®p T3) and
ev(T] ®, T»), at certain point we need to evaluate ev(T1) and ev(T}). But then ev(Ty) = ev(T7), and rest of
the evaluation is same for ev(T} ®, To) and ev(T] ®, T2). Hence, ev(T1 Op Tz) = ev(T] ©p 1) -

Corollary 2.1.
T~T = ev(T) = ev(T")

Proof. Using Lemma 1 and Lemma 2 we have T — T’ = ev(T) = ev(T”). Using induction on number
of steps in ~=—" we get the required result. . =

Lemma 3.
T = Ty <= ev(T)) = ev(T>)

Proof. (=) Corollary 2.1

(«=) Let S be complete set of specifications for dom(T1). Then we have T =~ T1/S © [T1]s and
Ty ~ T5/S ® [Ts]s. Since T1/S ~ T»/S, we have ev(T1/S) = ev(T»/S). Also since T1/S is composed of only
specifications(universals), ev(Ty/S) is universal, hence left cancellable. Thus,
eq(T1) = ev(Tz)
=ev(T1/5) - [Th]s = ev(T2/S) - [T2]s
=[T]s = [T2]s
— e 15

IV.3.2 The Span:

To show FOLDS equivalence for M and M*# we need to find tuple (S, p,q) as M~<2— 55— M*# such

that p,q are fiberwise surjective. We will show that actually S = M*# g = Id and p is constructed using
ev for 2-Cells. Since p, ¢ are natural transformations, we use pc, etc to denote its components.

Surjectivity of g is immediate. Now we list the components of p.

pc, = ldc,

pc, = ldc,
PCm] = €v|cafm)

pra = evlrd

PUim] = €V|U(m)
qu[m] == (BUICQIWII o, e?.f|02[m] fo} 71'2)

Polmni = (EULC&[m] S et"l(,-’g[m] O 2, €U|C2[m] o 73)
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p being natural transformation is obvious. pc, and pc, are obviously surjective as they are identities.

Lemma 4. pc,(m] = ev|c,(m) Is fiberwise surjective on M(Ca[m]).

Proof. Since p is identity on Cz.{m] and pe, m) preserves the frame for Ca[m], surjectivity will imply fiberwise
surjectivity.

m = 0: For any 8 € M(C5[0)), let p € M(U[0]) such that dom(p) = dom(f3), then there is unique
v € M(C5[1]) such that 8 = p- . Now, consider T = p @<y> p € M*#(C3(0]), then ev(T) =p-vy = 3.

m = 1: For any 3 € M(Cs[1]), consider T = 3 € M*#(C[1]), then ev(T) = 3.
m > 2: We use induction.

Base case n = 2: For any v € M(C2[2]), let s € M(U|2]) such that dom(s) = dom(7y). Then there
is B € M(C3[1]) such that v = s- 3. Now, tree T = s @<y> 3 € M*#(C5[2]), is such that ev(T) =s-8 =17.

Induction Step: Suppose for all a € M(C3[n]), there is T, such that ev(T,) = a. Now consider
v € M(Czln + 1)), and s € M(U[2]) such that dom(s) <o dom(y). Then there is 3 € M(Cz[n]) such
that 4+ = s - 3. By induction hypothesis, there is a tree T such that ev(T3) = 3. Let pos be such that
Tslpos| = codom(s). Then tree T = s @pos Tg € M*#(Ca[n + 1]) is such that ev(T) =s- 8 =1. =

Lemma 5. pjq = ev|iq is fiberwise surjective.

Proof. Let Id; € M(Id) and T € M*#(C,[1]) such that pc,(1)(T) = Ids. Since, M(i)(Idy) = Idy =
pe,)(T), we need to show that T' € M*#(Id), M*#(i)(T) = T, and pq(T) = Id;.

Since pe,)(T) = Idy, we have T ~ Idy, hence T € M*#(Id). Since M*#(i) is injection, we have
M*#(i)(T) = T. Now, pra(T) = ev|1a(T) = Idy. .
Lemma 6. A 2-cell a: f=>g is universal in M if and only if & is isomorphism in M*.

Proof. Isomorphisms are universals is obvious (for any 3, consider ae )

Suppose a is universal in M. Then let 3 be such that o - 3 = Idy. Now,

a-(B-a)=(a-f) a
= Idf i .

=«

= - Id,
Since, universals are left-cancellable, 3 - a = Id,. -
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Lemma 7. If s, u are two universals in a multitopic category M such that dom(s) < dom(u), then there
is a universal t such that u = s - t.

Proof. Existence of t satisfying u = s - ¢ follows since s is universal. Let a, be such that dom(t) < dom(cv).
we need to show existence and uniqueness of 3 such that o =t - 3.

Since dom(u) = dom(s - t) < dom(s - a), there exists unique 3 such that s-a = u - 3. Hence,
sra=u-f

— s.a=35-t-0

—a=t-0

Lemma 8. Given a T € M*#(Cz[m]),

T € M**(U[m)) <= ev(T) € M(U[m])
Proof. Let S be CSS for dom(T). Now T ~ T/S ®<u> [T)s, hence ev(T) = ev(T/S) - [T]s. As T/S is tree
made of only specifications (universals), ev(T'/S) is universal.

(=) Since T € M*#(U[m]), [T]s is an isomorphism. So, from Lemma 6, ev([T]s) is universal. Hence
the composite ev(T'/S) - ev([T]s) = ev(T) is universal.

(<=) Now since ev(T) and ev(T/S) are universals, from Lemma 7, ev([T]g) is universal. Now from
Lemma 6, [T)s is isomorphism. Hence, T € M*#(U[m]). =
Lemma 9. pym) = eviu[m] is fiberwise surjective.

Proof. Let u € M(U[m]) and T € M*#(C3[m]) such that pc,im)(T) = u. Since, M(u™)(u) = v =
pc(m)(T), we need to show that T' € M#(U[m]), M*#(u™)(T) =T, and py(m)(T) = u.

Since u is universal and ev(T) = u, T € M*#(U[m]) from Lemma 8. Since M*#(u™) is injection, we
have M*#(u™)(T) = T. Now, pym)(T) = ev|ym)(T) = u. -
Lemma 10. pggim) = (€V|cyfm) © 71, €v|c,[m) © 72) is fiberwise surjective.

Proof. Let (a,a) € M(Eq[m]) and T,T" € M*#(C[m]) such that po,m)(T) = Pcyim)(T') = a. Since,

M(e")((a, @) a = pcy(m)(T), and M(e™)((a,@)) = a = peyim)(T’), we need to show that (T,T) €
M*#(Eq[m]), M*#(e)(T,T")) =T, M#(e")(T,T")) = T’, and pgqm)((T,T")) = (o, ).
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Since ev(T) = ev(T’), T ~ T' (Lemma 3), hence (T,T’) € M*#(Eq[m]). Since M*#(el*) and
M*#(e™) are projections, we have M*#(e*)((T,T")) = T, M*#(em™)((T,T")) = T'. Now, ppg(m)((T’ =
(evlcym) © ™1, €Vl gy m) © T2) (T, T”) = (ev|cypm)(T), eV, (m) (1)) = (e, @). =
Lemma 11. IfT) and T» are two composable trees at position pos, then ev(Ty ®pos T2) = ev(Th) - ev(T).
Proof. We use induction on structure of T5.

1) T5 is empty tree. Then, ev(T} Opos T2) = ev(T1) = ev(T1) - Idcodom(ty) = €v(T1) - ev(Ts).

2) To =T O«> (T” ©@<r> 5). Here we have two cases.

a) pos begins with [. Then,

GU(TI ':27;)05 T?) = E’-'L‘(Tl Gpos <l> T’) B EU(T”) &5
=ev(Ty) - ev(T") - ev(T") - s
=ev(Ty) - ev(Ts)

In here, ev(Th @pos <1> T') = ev(T1) - ev(T") as tree T' is less complex than T.

b) pos begins with r. Then,

ev(T) Opos T2) = ev(T') - ev(T1 Opos <r> T} s
= ev(T") - ev(Ty) - ev(T") - s
= ev(Ty) - ev(T") - ev(T") - s
=ev(T7) - ev(T3)

In here, ev(T1 Opos <r> IT"') = ev(T1) - ev(T") as tree T" is less complex than T5.
3) To =T O<u> B. Then,

ev(T1 @pos T2) = ev(T1 Opos <u>T") - B
= ev(Ty) - ev(T')- B
= ev(Ty) - ev(Ts)

Lemma 12. poim,ni = (ev]cym) © 71, €V|Cym) © T2, €V|c,m] © T3) Is fiberwise surjective.

Proof. Let (a,3,7) € M(o[m,n,i]), Ty € M*#(Ca[m]), Tz € M*#(Ca[n]), and T3 € M*#(Ca[m +n — 1])
such that pc,im)(T1) = a, pey)(T2) = B, and peyjm+n—1)(T3) = 7. Since, M(eo)((,3,7)) = a =
Peam)(Th), M(er)((a,B,7)) = B = pcyjn)(T2), and M(co)((@,8,7)) = ¥ = Pcym+n—1)(T3), we need
to show that (TI,TQ,T;;) = M*#(O[m,n,i}), M*#(Cg)((Tl,Tg,Tg)) = Tl, M*#(Cl)((Tl,Tg‘Tg)) — Tg,
M*#(co)((Th, T2, T3)) = T3, and Pojm n i ((T1, T2, T3)) = (@, 8,7)-
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Since ev(Ts3) = v = a- B = ev(Th) - ev(Tz) = ev(Th © T2), we have T3 @ Tz ~ T3, hence (T1,T>,T3) €
M*#(o[m,n,i]). Since M*#(cg), M*#(c1), and M*¥ (c2) are projections, we have M*#(c) (T, T2, T3)) =
Ty, M*#(c)((T1, T2, T3)) = T and M*#(c3)((T1,T2,T3)) = Ta. Now, Pofm,n,ii((T1; T2, T3)) = (ev|c,[m] ©
1, €0 Gy m] © T2, €V|cy[my © 73) (T, T2, T3)) = (ev]cym)(T1); €Vl cam] (T2): €v|cafm) (T3)) = (@, B;7)- =

IV.4 Conclusion:

Theorem 1. 2D-multitopic category and ana-bicategory are equivalent.
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