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Abstract

Sometimes misconstrued as simple frequency modulation, vibrato is actually a complex

combination of frequency, amplitude, and spectral-envelope modulation. It is indeed

possible to hear vibrato in the absence of any frequency modulation, a fact that has been

observed by many researchers, though this phenomenon has not yet been thoroughly

investigated. We conduct a listening experiment in which participants rate synthetic

vibrato notes for their perceived realism and perceptual fusion. Eleven stimulus conditions

are designed to remove possible necessary conditions for the perception of vibrato in the

absence of frequency modulation. Conditions that destroy plausible resonant structure

result in realism and fusion ratings that are not statistically different from unadulterated

vibrato signals, suggesting that a plausible resonant structure is not necessary for the

perception of amplitude modulation vibrato. Spectral flatness is shown to have strong

predictive power in fusion and realism ratings. Perceived realism and fusion ratings are

also shown to vary in opposite directions. These findings are discussed in terms of the

theory of resonant enhancement, as quantified by the spectral flatness metric.
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Abrégé

Parfois interprété à tort comme une simple modulation de fréquence, le vibrato est une

combinaison complexe de modulation de fréquence, d’amplitude et d’enveloppe spectrale.

Il est possible d’entendre le vibrato en l’absence de toute modulation de fréquence, bien

que ce phénomène n’ait pas encore été étudié en profondeur. Nous menons une expérience

d’écoute dans laquelle les participants évaluent le réalisme perçu et la fusion perceptive de

notes de vibrato synthétique. Onze conditions de stimulus sont conçues pour supprimer

d’éventuelles conditions nécessaires à la perception du vibrato en l’absence de modulation de

fréquence. Les conditions qui détruisent la structure résonante plausible produisent des notes

dont le réalisme et la fusion ne sont pas statistiquement différentes des signaux de vibrato

purs, suggérant qu’une structure résonante plausible n’est pas nécessaire pour la perception

du vibrato à modulation d’amplitude. Il est démontré que la planéité spectrale a un fort

pouvoir prédictif dans les évaluations de fusion et de réalisme. Le réalisme perçu et la fusion

des notes varient également dans des sens opposés. Ces résultats sont discutés en termes de

théorie de l’amélioration de la résonance.
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Chapter 1

Introduction

Occasionally misconstrued as simply frequency modulation (FM), vibrato is in fact a

complex combination of frequency, amplitude, and spectral-envelope modulation (Verfaille,

Guastavino, & Depalle, 2005). In many cases, vibrato results in a relatively complex

partial-specific amplitude modulation (AM) that is a direct consequence of simple FM

interacting with the resonant structure of an instrument (McAdams, 1989). The significant

contribution of this partial-specific amplitude modulation to the vibrato percept has been

observed by many researchers (Gough, 2005; Maher & Beauchamp, 1990; McAdams &

Rodet, 1988; Fletcher & Sanders, 1967).

Mellody and Wakefield (2000) find that synthetically “flattened” vibrato notes, i.e., those

processed to remove all FM, maintain a strong vibrato percept. Analysis of individual

partials reveals little coordination among partial amplitudes, save for the fact that their
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amplitude modulations share a common period at the fundamental frequency (the vibrato

rate). The observed phenomenon of AM-only vibrato (AMV) raises two key questions:

(1) what are the necessary conditions for the vibrato percept in the absence of any true

FM, and (2) what prevents the individual partials from being perceived as an uncoordinated

cloud of harmonically related sound, i.e., what are the conditions that fuse the partials into

the percept of a single vibrato note?

In this document, we motivate and conduct an experiment to explore the perception of

AMV. Specifically, we test the following assumptions: that AMV (1) requires a common

fundamental AM rate that is phase-agnostic; and (2) partial modulations do not need to

follow a plausible resonant structure. The first assumption is based on a large body of

evidence for internal, across-channel AM rate selectivity (Bregman, Levitan, & Liao, 1990;

Dau, Kollmeier, & Kohlrausch, 1997; Moore, Glasberg, Gaunt, & Child, 1991), and would

provide evidence for a kind of modulation-rate-based perceptual grouping process. The

second assumption aims to sharpen the first.

This thesis takes the following structure. First, we highlight relevant literature in music

psychology and acoustics focusing on vibrato, modulation and resonant structure. From this

review we suggest a number of possible necessary conditions for the perception of AMV.

Next, we consider a synthesis engine and eleven stimulus conditions designed to remove

possible necessary conditions for AMV. We then outline the design and results of a listening

experiment in which participants rate these synthetic stimuli for their perceived realism
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and fusion. The thesis includes two appendices: a signal processing appendix covering the

theoretical considerations for spectral envelopes and their practical extraction for analysis;

and an appendix with the synthesis engine code, written in Python.
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Chapter 2

Background

In this chapter, we summarize some of the key observations about frequency modulation and

amplitude modulation in musical vibrato, and their link through resonant structure.

2.1 Contribution of amplitude modulation to spectral

envelope identification

McAdams and Rodet (1988) sought to expand on prior research suggesting that the

auditory system extracts the spectral envelope as a cue for perceptual grouping. They

hypothesized that listener awareness of the spectral envelope would be stronger in

modulated, rather than static, signals. This reasoning may be illustrated with a simple

example. Consider a spectral envelope that attenuates frequencies at 1 kHz and boosts
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them at 1.1 kHz. Now consider a static harmonic excitation signal with a fundamental

frequency of 350 Hz, and a harmonic at 1050 Hz. Under this spectral envelope, the

harmonic would assume an intermediate gain between the valley at 1 kHz and the peak at

1.1 kHz. If, however, this excitation signal were modulated in frequency, its gain would

increase with increasing frequency (as the partial approached the peak at 1.1 kHz), and

decrease with decreasing frequency (as it approached the valley at 1 kHz), thereby tracing

out the spectral slope of the envelope, and betraying a good deal more information about

the underlying spectral structure. Subjects were presented with one-second stimuli in one

of two varieties: either as a complex harmonic tone, or a single sine tone corresponding to

the second harmonic of the complex signal. All signals were frequency modulated at depths

up to 10% of the fundamental frequency (675 Hz). As in the example above, their synthesis

engine was designed such that frequency modulation would impart a concurrent amplitude

modulation, here reading frequency-specific gains from one of two fixed spectral envelopes.

The envelopes were cleverly designed such that the second harmonic would have the same

time-varying amplitude in either condition; however, depending on the envelope, this

modulation would either be positively or negatively correlated with the fundamental

frequency modulation. All the other harmonics, however, were affected in the identical way

by both spectral envelopes. As a result, the behaviour of the second harmonic would

provide the only clue as to difference in spectral envelope from one condition to another.

The experimenters found a sensitivity for these minimally different envelopes from as little
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as 1.2% vibrato width. In a follow-up experiment, one subject was able to identify the

spectral envelopes with as little as 0.6% vibrato width. This finding, that just one partial

can have an impact on the perceived spectral envelope, is striking because of the spectral

fusion imparted by harmonicity (Bregman, 1990). It is exceedingly difficult to hear out the

amplitude trajectory of an individual partial in a complex harmonic tone, and so it is

rather unlikely that the participants were reasoning on the behaviour of one partial

explicitly. These results suggest an internal, more holistic mechanism for tracing a spectral

envelope, based on the collective behaviour of all partials.

In a later experiment (McAdams, 1989), McAdams demonstrated an effect of spectral

envelope on the perceived segregation of modulated vowel sounds. Notes were synthesized

at one of three pitches equally spaced in pitch by a perfect fourth, each having one of three

spectral envelopes corresponding to three vowels. The notes were played simultaneously

in one of four conditions: either none, the first, second or third pitch was independently

modulated with sinusoidal vibrato (the “target” signal). In each case, the other two “ground”

notes were either stationary, or modulated in unison, though with a different rate and depth

than the target signal. The experiment found vowels that were sinusoidally modulated

were judged to be more prominent than the others, and this prominence is unaffected by

concurrent modulation of the other two vowels. Importantly, the experiment also found that

for the two coherently modulated ground notes, modulation did not reduce their perceived

separation from one another, suggesting a strong role for their respective spectral envelopes
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in segregation.

A follow-up experiment (Marin & McAdams, 1991) was conducted in order to isolate

the effect of spectral-envelope tracing in the relative prominence of vowels in a mixture.

Frequency-modulated stimuli were synthesized either with or without a constant spectral

envelope. Spectral envelope tracing in this case was not found to have a significant effect on

the relative prominence of syllables. The authors attributed this negative result in part to

an insufficient AM depth imparted by the spectral envelopes used in their experiment.

2.2 Interactions of amplitude modulation with

resonant structure

Maher and Beauchamp (1990) set out to explicitly investigate the interconnected nature of

amplitude and frequency modulation of partials in natural vocal vibrato signals, a

phenomenon they referred to as “spectrum modulation.”

The experimenters recorded four singers (soprano, alto, tenor and bass) singing the

same vowel sound (/a/). The vibrato observed tended to be nearly sinusoidal in frequency

modulation, and consistent in rate among singers (between 5 and 5.7 Hz). Despite the

relatively wide partial-specific amplitude modulation depths (of up to 11 dB), the global

amplitude modulation depth was observed to be relatively shallow (between 0.5 – 3 dB of

RMS amplitude). This effect was attributed to the relative phase of the amplitude
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modulations: the observed amplitude maxima and minima of the various partials were

frequently out of phase with one another. We note that a similar effect has been observed

in violin vibrato by Curtin and Rossing (2010), what the authors refer to as “sizzle.”

Using a sinusoidal model (McAulay & Quatieri, 1986), the vibrato tones were

resynthesized in various simplified conditions. Among the simplifications, a condition was

constructed in which the partial-specific amplitudes were systematically averaged and

applied globally to the signal. In a similar fashion, a condition was constructed in which

the partial-specific frequency modulation was averaged and applied globally to the

harmonic signal. The averaging of partial-specific amplitude was found to degrade the

quality of the resynthesized signal “substantially,” much more so than simplifying the

frequency modulations across partials, an effect that has been observed in other

experiments (Mellody & Wakefield, 2000; McAdams, Beauchamp, & Meneguzzi, 1999).

Patterns of modulation. Describing the complex relationship between the time-varying

frequency and amplitude of the partials, Maher and Beauchamp suggest three patterns that

betray an underlying resonant structure: (1) a partial whose amplitude modulation is in

phase with its frequency modulation (i.e., while the partial increases in frequency, it also

increases in amplitude) suggests that its frequency sits on the low side of a resonant peak; (2)

a partial whose amplitude is in anti-phase with the frequency modulation suggests that it is

on the upper side of a resonant peak; and (3) a partial whose amplitude modulation contains

two peaks suggests that it is swept across a resonant peak, or trough between two adjacent
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peaks. Similar patterns have been observed in other investigations (Mathews & Kohut, 1973;

Gough, 2005). These patterns call to mind the finding by McAdams and Rodet (1988) that

even single partials may betray the spectral envelope of its signal.

Simplifications for a vibrato synthesis engine. With the aforementioned modulation

patterns in mind, the authors constructed a simple synthesis engine in which partial

amplitudes were read from a time-varying array of spectral envelopes; the envelopes were

linearly interpolated over time between two spectral frames, corresponding to the

maximum and minimum pitch of one cycle of observed vocal vibrato. While such an engine

only accounts for the first two observed patterns of partial modulation (i.e., it cannot

generate a partial that oscillates twice in one cycle of vibrato), the simplification seemed to

have little effect on the resulting quality of the synthesis, yielding reportedly

“good-quality” synthetic sung vowels.

The human voice, however, has relatively few resonances. If one were looking to

investigate the interactions of frequency modulation with resonant structure, string

instruments provide a more resonant-rich alternative.

2.3 Resonances in string instruments

In order to produce their own synthesis system for a bodiless violin, Mathews and Kohut

(1973) endeavoured to simulate the resonant structure of a violin from an electronic signal.
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They recorded a dry signal of a bodiless violin through a magnetic pickup applied to its

bridge. A taped performance was used to excite a bank of resonant circuits. This setup

permitted the authors to add or remove resonators, and to tune the filter frequencies and

bandwidths to different arrangements, while controlling for the violin performance. Informal

listening tests suggested that there is a “sweet spot” for the relative prominence of resonant

peaks, the ratio in gain from peaks to valleys: too little prominence produced a dead sound

that was unresponsive to vibrato; too much prominence produced a hollow sound that was

unevenly responsive to notes played across the instrument range.

Assuming that an ideal peak prominence was maintained, violin tone quality appeared

surprisingly robust to other changes in the filter-bank setup. Roughly doubling the density of

resonators, from 20 to 37, resulted in a slightly brighter tone, though the perceived difference

in sound quality was reportedly small. Tuning the resonant frequencies alternately to those

measured from a Stradivarius violin, or to entirely arbitrary values (adjusting so that the

overall resonance was sufficiently even) had little effect on sound quality.

From their observations, Mathews and Kohut suggested a theory of “resonant

enhancement of tone quality.” They propose the following rules for a satisfactorily resonant

timbre: (1) that resonance frequencies must be sufficiently narrow such that the spectral

envelope permits steep slopes for any conceivable partial—allowing for substantial

amplitude variation for any given partial given a slight frequency modulation (as in

vibrato); and (2) that the resonances must be sufficiently dense such that the valleys
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between spectral peaks do not drop below at most 15 dB—this rule is to avoid generating a

“hollow” sound.

2.4 Vibrato analysis by synthesis

Mellody and Wakefield (2000) conducted an analysis of violin vibrato using an expressly

designed time-frequency distribution they referred to as “the modal distribution,” to analyze

the frequency and amplitude modulations in violin vibrato.

Like the spectrogram, the modal distribution is a member of Cohen’s class of bilinear

time-frequency distributions and can therefore be expressed as a transformation of the

Wigner-Ville distribution (WVD) with a filtering kernel (for a theoretical discussion of the

WVD please see Section A.2.1). In the case of the modal distribution, the filter is

specifically tuned to the pitch of the signal under consideration. It is an ideal lowpass filter

operating on the time axis, set to a cutoff of half of the anticipated minimum frequency

difference between adjacent partials (for harmonic signals, this difference is the

fundamental frequency), therefore smoothing out between-partial cross-terms without

greatly affecting the relatively slow-varying amplitude of each partial. Using this

distribution, the instantaneous power can be extracted by integrating over the region of a

local maximum in time; likewise, the instantaneous frequency can be measured as the first

spectral moment (or spectral centroid), integrating over the region of a local maximum in

frequency.



2. Background 12

In their analysis using the modal distribution, Mellody and Wakefield observe a

maximum partial-specific fluctuation of 15 dB, which is consistent with the theory of

resonant enhancement proposed by Mathews and Kohut (1973).

They also make a striking observation about the pattern of amplitude modulation by

analyzing the spectrum of the amplitude modulation signal of each partial. Each partial-

specific spectrum had peaks at integer multiples of the vibrato modulation rate; in other

words, all amplitude modulations were “harmonic signals” of the vibrato rate. They also note

that there is close to zero correlation between the initial phase of the amplitude modulation

signals of the partials.

To demonstrate the usefulness of the modal distribution, a direct comparison between the

spectrogram and the modal distribution is reported. The spectrogram is shown to greatly

underestimate the partial-specific fluctuations in amplitude, deviating from the ground truth

by over 30% of linear amplitude depth.

2.4.1 Necessary conditions for amplitude modulation induced

vibrato

These observations taken together suggest that partial-specific AM has a rather important

role in vibrato perception—as suggested by the AM-only reconstruction condition in Maher

and Beauchamp (1990). Given the apparently random behaviour of the partial-specific

amplitudes as observed by Mellody and Wakefield (2000) and Mathews and Kohut (1973),
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the conditions leading to this percept are not yet completely determined. Therefore, we

seek in this study to determine the necessary conditions for the perception of amplitude-

modulation-induced vibrato (AMV). Specifically, we wish to know the following:

1. What is the role of amplitude-modulation phase in AMV? Can the relative phase be

randomly distributed between partials, or is a fixed phase relationship required?

2. Given the highly independent nature of the amplitude modulations, what binds them

together perceptually? Specifically, are they bound perceptually by a common

“fundamental” modulation rate?

3. What is the role of resonant structure and partial-specific amplitude depths in AMV?

Must the partials collectively trace a plausible resonant structure, such that a holistic

image of a spectral envelope emerges?

In order to answer these questions, we designed a listening experiment in which

participants rated synthetic stimuli, each having a targeted degradation of the spectral

envelope of a cello note with vibrato.
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Chapter 3

Experiment: Perceived fusion and

realism of degraded vibrato sounds

3.1 Selecting the model vibrato

The stimuli in this experiment are based on measurements of a sustained cello note from

the Vienna Symphonic Library sample collection, performed with medium vibrato at a forte

dynamic on a C3 (“VC mV sus f C3.wav”). This note was determined to carry a particularly

strong amplitude-modulation-only vibrato percept. The choice of this excerpt over other

candidate notes is result of a series of informal listening tests, described in this section.
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3.1.1 Pilot tests

We chose four candidate instruments for initial analysis, all traditionally capable of

performing vibrato and all playing in a comparable range: trombone, cello, tenor voice,

bassoon. The note C3 was determined as a common pitch, sitting in a comfortable

performing range for each instrument. The bassoon, cello and trombone samples were

taken from the Vienna Symphonic Library collection. The voice sample was excerpted from

the Vocalset dataset (Wilkins, Seetharaman, Wahl, & Pardo, 2018) from an extended

passage singing on the vowel /a/. This passage had a similar dynamic and pitch compared

to the other samples auditioned.

Excerpting steady vibrato. All files were summed to mono and normalized to their

largest absolute value in amplitude. To establish a common note onset time, the beginning of

each file was trimmed for initial silence or ambient noise. Ambient noise level was determined

to be anything below −5 dB of the peak level of the amplitude envelope of the sustained

note. This extremely conservative threshold was chosen to accommodate the high noise floor

in the Vocalset recordings. We take this new value to be the de facto note onset time, and

excerpt each signal starting after an additional delay of 750 ms, and ending at 2.5 seconds.

The delay at the start of the excerpt is meant to avoid capturing any potentially slower

warm-up vibrato (Maher & Beauchamp, 1990). The duration of 1.75 seconds accommodates

at least six full cycles of vibrato for analysis, allowing for a conservatively slow vibrato rate
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of 4 Hz, and 12.5-ms audio fades at the beginning and end of the excerpt. Each of the

resulting excerpts was observed to have a steady vibrato rate and pitch percept.

Analysis with the sinusoidal model. The excerpts were then analyzed and

resynthesized using SMT, a Matlab implementation of the sinusoidal model1 (McAulay &

Quatieri, 1986). This model considers a signal as a mixture of amplitude- and

frequency-varying sinusoids, tracking spectral peaks from frame to frame to trace plausible

sinusoidal components. Such a model can accommodate varying degrees of synthesis detail;

improvements of the basic model include cubic interpolation to retain original

partial-specific phase and modeling the transfer function of the residual noise (Serra, 1997).

In the case of these particular steady-state tones, reconstruction without phase

interpolation or residual noise yielded results that were indistinguishable from the original

excerpts and was therefore sufficient for our purposes.

SMT uses a pitch-synchronous analysis, which determines the frame size and effective

frame rate of the analysis. Each frame captures three full cycles of the signal. The analysis

algorithm hops by default at 50% of this frame size. Assuming a fundamental pitch of C3

= 130.81 Hz, we chose to use a window size of 22.9 ms (1012 samples at a 44100 Hz sample

rate) and a frame rate of 87.2 Hz. Such an analysis can safely capture modulations up to a

rate of 43.6 Hz, or roughly, the first seven harmonics of a vibrato at 6 Hz.
1https://github.com/marcelo-caetano/sinusoidal-model

https://github.com/marcelo-caetano/sinusoidal-model
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Removing frequency modulation. All excerpts were resynthesized in an amplitude-

modulation-only condition. To remove frequency modulation, the time-varying frequency

of each partial was replaced with a static geometric mean. We use the geometric mean

to accommodate the logarithmic scaling of pitch with frequency (Stevens, Volkmann, &

Newman, 1937). The resulting resyntheses were auditioned and assessed informally. Of the

four excerpts, the cello appeared to have the strongest vibrato percept without frequency

modulation, perhaps due to the rich resonant structure of string instruments (Curtin &

Rossing, 2010). The bassoon vibrato excerpt was largely unchanged by the FM flattening,

though its vibrato percept was more subtle than that of the cello. The flattened trombone

excerpt sounded natural, but completely lacking in vibrato. The voice excerpt appeared to

have lost all vibrato and also sounded decidedly unnatural.

Characterization of partial-specific amplitudes. Figure 3.1 shows the sinusoidal

analysis of the cello vibrato excerpt with its FM removed. The signal has a roughly

−10 dB/octave lowpass shape. The partials range in modulation depth from 4.89 dB to

27.18 dB from peak to trough; the mean partial-specific dynamic range is 13.73 dB. These

values are largely consistent with previous observations of string instrument vibrato

(Mathews & Kohut, 1973). We note the inclusion of two partials below the fundamental

frequency: a near-DC signal having relatively little energy (approximately -40 dB), and a

sub-harmonic having a modulation depth close to that of partial at the fundamental

frequency. Figure 3.2 shows the waveforms of selected partials. Gough (2005) observed
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Figure 3.1: Cello vibrato excerpt analysis by the sinusoidal model. Each vertical stripe
indicates the dynamic range and average frequency of one partial.

that violin partials can have an asymmetric amplitude envelope, i.e., an envelope whose

periodic rise is shorter than its periodic decay, due to the warmup and ringing

characteristics of the resonant modes in a violin body. However, in our excerpt the partials

appear to be relatively symmetric on a broad time scale.

From visual inspection alone, it is hard to determine a pattern that binds the partial

amplitudes together, leading to an emergent vibrato percept. While their modulation
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Figure 3.2: Extracted partials from a cello vibrato excerpt. Top left, fourth partial. Top
right, seventh partial. Bottom left, sixteenth partial. Bottom right, twentieth partial.

patterns can be rather complex, in isolation each partial sounds like a simple periodic

tremolo; that is to say, the detail of the amplitude modulation does not appear to translate

to the ear. Instead, these modulations may implicitly contribute a great deal to the

perceived spectral envelope of the instrument (McAdams & Rodet, 1988).
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3.1.2 Predictions

From these observations, we hypothesize that the AMV percept is predominantly a function

of a common partial-specific modulation rate, as observed by Mellody and Wakefield (2000).

Following Mathews and Kohut (1973), we further hypothesize that a plausible resonant

structure is not necessary to establish the percept. We propose an experiment in which

participants rate systematically degraded vibrato signals, in which each degradation is aimed

at a presumed necessary condition for AMV perception.

Degraded stimuli will be rated for their perceived realism. When considering the role of

the spectral envelope in perceptual grouping (McAdams & Rodet, 1988), it is also possible

that by decoupling amplitude and frequency modulations that agree on a resonant structure,

some distortions will result in a signal that is no longer perceived as coming from a single

source. McAdams (1984) found that the depth of frequency modulation, whether tracing a

plausible resonant structure or not, had a marked effect on perceived fusion. Consequently,

we conduct a parallel experiment in which stimuli are rated for their perceptual fusion.

3.2 Method

We design a listening experiment in which participants rate synthetic signals that are

based on cello vibrato. Each synthesis condition (described in Section 3.2.2) aims to

remove a possible necessary condition of the AMV percept. The experiment has two



3. Experiment: Perceived fusion and realism of degraded vibrato sounds 21

phases, drawing from two separate participant pools, each aimed at a different aspect of

the synthetic stimuli: phase one is concerned with the perceived fusion of vibrato partials,

and phase two is concerned with apparent vibrato realism.

3.2.1 Participants

Participants were gathered from the Prolific2 online participant pool (Palan & Schitter,

2018). Prolific is a popular crowdsourcing platform that collects and pays participants for

online studies. All participants were pre-screened to have self-reported normal hearing. To

ensure that they would understand the rating task, we also screened by language. In the

first phase, participants were asked to be fluent in English; in the second phase, we requested

participants who spoke English specifically as a first language. All participants agreed to

an informed consent form and were compensated for their participation. The study was

certified for ethical compliance by the McGill University Research Ethics Board II.

For the first phase of the study, concerned with perceived fusion, we ran 54 participants,

four of whom did not complete the experiment due to technical difficulties (see below),

leaving a total of N = 50 participants (19 female) having a median age of 23.5. Though we

screened for fluency in English, participants reported a variety of first languages, including

Polish, Portuguese, Catalan, Italian, Greek, Spanish and Turkish.

For the second phase of the experiment, concerned with perceived realism, we ran 50
2https://www.prolific.co/

https://www.prolific.co/
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participants, four of whom did not complete the experiment, again due to technical

difficulties, leaving a total of N = 46 participants (27 female) having a median age of 25.

All participants reported speaking English as a first language.

Technical issues. Participants reported having to wait for extended periods at a blank

screen in order to progress to the next trial, or to be returned to the Prolific platform after

the final trial. Prolific can direct a large volume of participants to a server at once, and

we suspect this slow behaviour was due to a sudden influx of traffic directed at an under-

powered academic server. In the first phase of the experiment, an additional 35 participants

left early and forfeited their results; they were not paid for their time, and their data were

not collected. No participants reported a delay between hearing and then being able to rate

a sound, nor did any participant report a distortion in the playback audio. Comparing our

trial time-stamps to the Prolific data, it appears that most participants accrued a significant

amount of extra time on the final screen after having completed the experiment, waiting

to be returned to Prolific to report their completion. Four participants completed the first

phase of experiment but were unable to submit their results due to significant delays; they

were paid for their time. For the second phase of the experiment, we limited server access

to ten participants at a time; this phase was run largely without incident. Four participants

were unable to submit their results after having completed the experiment. They were paid

for their time.
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Language. While technical difficulties necessitated the bulk of our private

correspondence with participants, some first-phase participants revealed themselves to be

less than fluent in English, casting doubt on the efficacy of the pre-screening procedure. A

poor command of English could lead to a misunderstanding of the experimental task. For

our second experiment, we pre-screened for participants speaking English exclusively as a

first language.

3.2.2 Stimuli

Spectral envelope extraction. Rather than attempt to reconstruct a prolonged vibrato

excerpt, which is subject to broader trends in pitch and amplitude (Maher & Beauchamp,

1990), we choose to build stimuli based on an isolated cycle of vibrato. While this decision

results in a slightly artificial sounding synthesis, it allows for greater control in the synthesis

process. Counterintuitively, choosing a stimulus that is at its base apparently artificial allows

for “apparent realism” to be removed as a possible confounding factor in the experiment.

In this way, all stimuli present with an equal fidelity handicap, and therefore the perceived

differences in each condition can be safely attributed to the specific manipulations of each

synthesis condition.

We use fundamental pitch to determine and extract one period of the cello vibrato. We

extract the pitch trajectory and time-varying spectral envelope from the cello recording at

a framerate of 200 Hz, using the WORLD suite of algorithms (Morise, Yokomori, & Ozawa,
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2016) as implemented in the Python library PyWorld3.

From the pitch trajectory, we extract the time indices of local maxima, each

demarcating the beginning and end of one cycle of vibrato modulation. It should be noted

that isolating frequency modulation cycles by local maxima is not a particularly robust

method, especially in the potential of more complex pitch trajectories. However, given the

largely sinusoidal character of vibrato pitch modulation (Mellody & Wakefield, 2000), we

determine this method to be sufficient for our purposes. From the six full vibrato cycles

present in the excerpt, we choose the fourth cycle because it begins and ends at a nearly

identical fundamental frequency, suggesting that it would make for the most successful

loop. We store the spectral envelope of the fourth full vibrato modulation cycle as the basis

of our stimuli.

Synthesis engine. The synthesis engine has two components: (1) a synthesis module that

reads partial amplitudes from an array of time-varying spectral envelopes, and (2) a module

for making specific modifications to a time-varying spectral envelope.

The synthesis engine assumes a simple additive model:

x(t) =
P∑
p=1

Ap(t) cos
(

2πp
∫ τ=t

τ=0
ν0(τ)dτ + ϕp

)
, (3.1)

where x(t) is a harmonic signal made of P partials, Ap(t) is the partial-specific time-varying

amplitude, ν0 is the instantaneous fundamental frequency trajectory, and ϕp is the partial-
3https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder

https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder
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specific initial phase.

In our stimuli, ϕp is randomly selected for every partial from a uniform distribution

between π and −π. The time-varying frequency ν0(t) takes on one of two conditions. For

stimuli with no pitch vibrato, it is an array of a constant value fixed at 130.81 Hz (C3). In

the conditions with pitch vibrato, it takes the following form:

ν0(t) = ν0
′ (1 + ∆ν cos(2πνmt)) , (3.2)

where ν0
′ is the central fundamental frequency (C3), νm is the vibrato rate, and ∆ν is the

pitch vibrato extent, determined by:

∆ν = 2s/12 − 1, (3.3)

where s is the pitch vibrato extent in semitones. In our experiment, we use the value

extracted from the cello excerpt: 0.1314 semitones measured from center to peak.

True vibrato signals contain transient inharmonicities due to frequency dependent

group delay in the partials (Maher & Beauchamp, 1990). In a study with

spectrotemporally simplified stimuli, McAdams et al. (1999) found that frequency

incoherence was discriminable from stimuli having artificially homogenized frequency

trajectories 70% of the time in violin sounds. In our study, all of the frequency-flattened

stimuli will be necessarily harmonic at all times. Therefore, as a control measure, we chose

to ignore the temporary inharmonicity in frequency-modulated vibrato signals to avoid
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introducing a potential confounding factor.

As the spectral envelopes are sampled at a rate of 200 Hz, the engine must interpolate

audio rate amplitude values between spectral frames. We use linear interpolation. Linear

interpolation yields some spectral imaging distortion; however we found that in this

application, more computationally expensive techniques like sinc interpolation yielded

qualitatively similar results. Given the large volume of stimuli needed for this experiment,

and the considerably longer computational time for little apparent gain imparted by sinc

interpolation, we opted to use linear interpolation.

The engine reads from spectral envelopes having 1025 non-negative frequency bins. Our

experiment is conducted at an audio rate of 44100 Hz, which means that each spectral

bin spans 21.53 Hz. For partials whose frequency corresponds to a fractional bin value,

its framewise amplitudes are linearly interpolated between adjacent spectral bins; these

spectrally interpolated values are then interpolated over time as above.

To generate audio, the synthesis engine loops over a single cycle of spectral envelopes. At

each loop point, the final frame values are linearly interpolated into the first frame values.

We note that while this approach can lead to aliasing in one or more partials, should a partial

have to modulate suddenly at a rate greater than 100 Hz, the time-varying spectral envelope

used in this experiment was sufficiently circular across all frequencies to ensure that each

partial made a perfect loop.



3. Experiment: Perceived fusion and realism of degraded vibrato sounds 27

Spectral envelope modification. In order to create the desired vibrato distortions, many

conditions require significant modifications to the spectral envelope. We developed a parallel

engine that, given a fundamental frequency and an array of time-varying spectral envelopes,

modifies the amplitudes of the harmonic partials. In the case where the engine modifies

partials whose frequencies correspond to fractional bin values, it modifies both adjacent bins

in parallel. For example, the fundamental frequency 130.81 Hz lies at the bin value 6.07; in

this case, the engine modifies both bin 6 and bin 7 in parallel. At this spectral resolution and

fundamental frequency, the partials are well enough separated that no two share a common

spectral bin.

Stimulus conditions

For each synthesis condition, the engine generates 70 partials spaced at integer multiples of

the fundamental frequency (130.81 Hz), whose amplitude trajectories are read from the time-

varying spectral envelopes of one cycle of cello vibrato. All sounds are equalized for duration

(2 s) and adjusted for loudness after synthesis. The signal is faded in and out with 200-ms

linear ramps. Stimuli can take on one of eleven conditions, modifying either the frequency

modulation (FM) characteristics, or the amplitude modulation (AM) characteristics of the

original cello excerpt. Each condition is designed to remove a possible necessary condition

for the perception of AMV. Parameters for all random stimuli are logged.
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Simplified reconstruction (BASIC). The BASIC stimulus has both FM and the

complex AM derived from scanning the resonant structure of the instrument, as described

by Mathews and others (Mathews & Kohut, 1973), and serves as a positive control. The

FM is implemented with Equation 3.2 using the measured pitch excursion of 0.1314

semitones. To the extent that this reconstruction is perceived as “fused,” or “realistic,” it is

purely a function of the synthesis engine.

Partial-specific amplitude modulation (FROZEN). The FROZEN condition keeps

the complex AM of a plausible resonant structure, but contains no FM. It is otherwise

identical to the BASIC condition. The FROZEN condition corresponds to the FM-flattened

signals in our listening experiments and represents the greatest unadulterated potential of

the cello signal to carry the AMV percept.

Frequency modulation only (FM-ONLY). The FM-ONLY condition applies FM to

a static spectral envelope. The engine determines the gain of each partial by averaging the

spectral envelopes over time. We note that this average does not necessarily correspond to

the spectral envelope of the instrument “at rest,” as partials are emphasized differentially

throughout the vibrato cycle (Maher & Beauchamp, 1990; Gough, 2005). We note here that

only the BASIC and FM-ONLY conditions have frequency modulation. All of the following

stimulus conditions are AM only.
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Average global amplitude modulation (PAM). The pure amplitude modulation

(PAM) condition takes the amplitude envelope of the FROZEN condition (i.e., the sum of

partial-specific amplitude trajectories) but applied globally to signal, rather than

differentially to each partial. This kind of modulation is sometimes called tremolo. To built

the amplitude envelope, the engine traces each partial trajectory from the spectral envelope

array, then sums and averages them into one global envelope. This envelope is then applied

to all partials. Each partial is given a relative gain based on the time-averaged spectral

envelope, as in the FM-ONLY condition. In practice, each PAM resynthesis is slightly

different due to randomization of the initial phase of the partial oscillators. As has been

previously observed in violin and vocal vibrato (Maher & Beauchamp, 1990; Curtin &

Rossing, 2010), the relative amplitude modulations of each partial tend to counterbalance

one another. As a result, PAM signals have only a very slight amplitude modulation that is

often imperceptible.

Amplitude modulation with shuffled phase (SHUFFLE). The SHUFFLE

condition reconstructs the AM trajectory of each partial, but shuffles the initial phase of

each modulation signal by a random quarter of the cycle: {0, π/2, π, 3π/2}. While the

synthesis engine can accommodate arbitrary divisions of the vibrato cycle, here we chose

four possible randomizations to reflect four possible idealized amplitude trajectories across

a resonant mode: ascending a resonant peak, descending a resonant peak, and two

intermediate modulations across a spectral peak or valley, respectively. This condition aims
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to scramble the plausible resonant structure of the instrument while maintaining the fine

structure of the individual amplitude modulations.

Simplified amplitude modulation (SIMPLE). The SIMPLE condition is built from

the partial-wise modulation depths of the original vibrato; however, the modulator signals

are replaced with simplified, one-cycle sinusoids. As in the FM-only and PAM conditions,

each partial takes the time-averaged spectral envelope as its center amplitude. Partials

are amplitude-modulated such that their peak and minimum gains match the cello vibrato

time-varying spectral envelope. We measure modulation depth as:

∆Gp = 20 log10

(
maxAp(t)
minAp(t)

)
(3.4)

This condition, when compared to the SHUFFLE condition, aims to determine the effect

of the fine structure of the modulation signals on the AMV percept. Like the SHUFFLE

condition, the initial phase of each modulator is randomized.

Randomized resonant structure (RAG). The random gain (RAG) condition assigns

a random modulation depth, within 0 – 10 dB, to each partial. It is otherwise constructed

like the SIMPLE condition. This dynamic range is a conservative compromise between the

observed mean modulation depth of the analyzed cello vibrato cycle (13.73 dB), and the

10-dB gain observed to be effective in arbitrarily distributed resonators for recreating violin

sounds (Mathews & Kohut, 1973). The lower limit of 0 dB accommodates the possibility
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that some partials do not modulate, or modulate only slightly.

Randomized amplitude modulation frequency (RAF). The SHUFFLE, SIMPLE,

and RAG conditions are also alternately synthesized in a random AM frequency (RAF)

condition. Here each modulation signal is randomly stretched or compressed in time, as

selected from a random exponential distribution between 4 Hz and 12 Hz. This range spans

the commonly performed vibrato rates (Verfaille et al., 2005). The RAF conditions aim to

determine the effect of a common amplitude-modulation rate, or “fundamental frequency,”

as observed in the analysis of vibrato excerpts in Section 3.1.1.

Non-modulating (CONTROL). We include a CONTROL stimulus that has no AM or

FM. In the two listening experiments, this stimulus is meant to anchor what is a maximally

fused and minimally realistic vibrato.

Effect of randomization on stimulus generation

In order to avoid any systematic effect of the randomization in the stimulus conditions, we

generate a new batch of stimuli for each participant. Each of the 96 participants is to rate

all stimuli eight times; we generate 8448 stimuli in total. It is reasonable to wonder to

what extent each variety of randomization produces a particular, consistent effect. Some

statistical analyses depend on averaging over condition-specific ratings; it is therefore worth

investigating the acoustical variety induced by randomization in each condition.
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We use the Timbre Toolbox software package for Matlab (Peeters, Giordano, Susini,

Misdariis, & McAdams, 2011) to extract a suite of acoustical descriptors from the stimuli.

The toolbox allows for the calculation of over 30 time-varying descriptors, each of which

can be summarized by its median or interquartile range (IQR) as measures of central

tendency and variability, respectively. Quantile-based metrics are used in lieu of average

and variance because they are robust to the noise imparted by acoustical analysis. Given

this abundance of values, the authors provide a correlation-based clustering analysis of the

summary descriptors, grouping them into ten principal clusters. For our analyses, we use

the median and interquartile range of five descriptors, chosen to maximize coverage of the

ten principal clusters while maintaining matched median and IQR figures. We cover 7 of

the 10 principal clusters identified by the authors. They are: spectral centroid, spectral

crest, harmonic odd-to-even ratio, harmonic energy, and spectral flatness. Possible

interpretations of these descriptors, in the context of these stimuli, are outlined in Section

3.3.1.

The toolbox calculates descriptors based on two signal representations: the power

spectrum and the harmonic model. Descriptors calculated on the power spectrum are

based on a STFT representation with 23.2-ms Hamming-windowed frames, hopping at

5.8 ms between frames. Features calculated on a harmonic model are extrapolated from a

sinusoidal-model decomposition, built on estimates from 100-ms Blackman-windowed

frames, hopping at 25 ms. The model assumes harmonicity, and tracks the amplitudes and
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Table 3.1: Means for spectral descriptors across all stimulus conditions. SC = spectral
centroid, SCr = spectral crest, OE = odd-to-even ratio, HE = harmonic energy, SF =
spectral flatness.

condition SC Med SC IQR SCr Med SCr IQR OE Med OE IQR HE Med HE IQR SF Med SF IQR

BASIC 464.713 40.833 0.230 0.012 0.826 0.390 0.054 0.006 0.022 0.039
CONTROL 438.997 0.003 0.228 0.000 0.736 0.000 0.066 0.000 0.406 0.000
FM ONLY 453.321 4.676 0.217 0.003 0.895 0.007 0.065 0.001 0.136 0.119
FROZEN 466.528 43.469 0.229 0.017 0.823 0.381 0.054 0.006 0.051 0.086
PAM 452.617 0.130 0.217 0.001 0.892 0.000 0.060 0.003 0.398 0.007
RAG 454.375 94.638 0.255 0.049 0.891 0.548 0.050 0.016 0.204 0.171
RAG RAF 453.826 78.631 0.252 0.050 0.892 0.428 0.044 0.012 0.222 0.140
SHUFFLE 456.397 32.152 0.227 0.017 0.889 0.180 0.054 0.007 0.157 0.176
SHUFFLE RAF 456.700 30.664 0.226 0.016 0.889 0.151 0.050 0.006 0.108 0.104
SIMPLE 460.135 49.372 0.230 0.022 0.891 0.252 0.054 0.008 0.145 0.168
SIMPLE RAF 460.287 39.057 0.228 0.022 0.891 0.186 0.049 0.007 0.179 0.154

frequencies of 20 harmonics. The harmonic assumption permits analyses unique to

harmonic signals, such as the odd-to-even harmonic ratio. The model correctly estimated

the fundamental pitch of each stimulus, suggesting that its results can be interpreted

reliably.

To assess the variety of stimuli generated within each stimulus condition, we calculate

the mean and standard deviation of each condition-specific median and IQR. These values

can be seen in Table 3.1 and Table 3.2. Note that the deterministic synthesis conditions

(CONTROL, FM ONLY, BASIC and FROZEN) have standard deviations that are

necessarily close to zero. To help understand the meaning of these values, we will focus on

the spectral centroid (SC), which correlates strongly to perceived brightness (Peeters et al.,

2011).

The SC median is relatively consistent across all conditions, having a range of

approximately 439 to 467 Hz (for the CONTROL and FROZEN conditions, respectively).

The SHUFFLE condition produces the greatest variety of SC medians, varying on average
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Table 3.2: Standard deviations for spectral descriptors.

condition SC Med SC IQR SCr Med SCr IQR OE Med OE IQR HE Med HE IQR SF Med SF IQR

BASIC 0.206 0.112 0.000 0.000 0.000 0.001 0.012 0.001 0.014 0.020
CONTROL 0.003 0.001 0.000 0.000 0.000 0.000 0.015 0.000 0.016 0.000
FM ONLY 0.006 0.005 0.000 0.000 0.000 0.000 0.016 0.000 0.067 0.091
FROZEN 0.195 0.184 0.000 0.000 0.000 0.000 0.012 0.001 0.030 0.051
PAM 0.005 0.040 0.000 0.000 0.000 0.000 0.015 0.001 0.037 0.039
RAG 4.417 48.707 0.027 0.019 0.024 0.297 0.012 0.008 0.104 0.098
RAG RAF 4.747 28.475 0.015 0.017 0.022 0.164 0.010 0.005 0.117 0.096
SHUFFLE 5.553 12.541 0.005 0.006 0.026 0.076 0.012 0.003 0.081 0.084
SHUFFLE RAF 1.765 5.106 0.002 0.002 0.010 0.034 0.011 0.002 0.081 0.072
SIMPLE 2.128 24.343 0.008 0.008 0.011 0.117 0.013 0.004 0.073 0.088
SIMPLE RAF 1.967 8.599 0.003 0.003 0.010 0.041 0.010 0.002 0.099 0.090

by 5.57 Hz from the mean. These figures suggest a randomization that is relatively

contained. However the IQR, which captures more of the temporal character of the

stimulus, tells a very different story.

The RAG condition has the widest standard deviation of SC IQR, at 48.72 Hz about a

mean IQR of 94.45 Hz. This statement requires some elaboration. Towards its narrow end,

a RAG stimulus can have an SC IQR of 94.45 − 48.72 = 45.73 Hz, which is close to the

mean SC IQR of the BASIC stimulus. Such a stimulus therefore resembles a plausible cello

vibrato by this measure. However on average, the RAG stimuli SCs vary almost twice as

broadly as this value and can have a within-stimulus IQR of up to 94.45+48.72 = 143.17 Hz

and beyond. This indicates that the RAG condition creates a signal whose brightness varies

greatly over time, and that there is a great deal of variability in the stimuli generated under

this condition.

Other highly variable conditions are SIMPLE, RAG RAF and SHUFFLE conditions,

having SC IQR standard deviations of 24.42, 12.60 and 28.39 Hz, respectively. This

variability is rather surprising in the SHUFFLE condition, which differs only from plausible
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vibrato by the relative phase of its amplitude modulations. It may be that in natural cello

vibrato, the distribution of instrument resonances allows for a more balanced time-varying

brightness.

Auditioning the stimuli at random confirms that some oscillate wildly in apparent

brightness, whereas others are relatively stationary. We suspect that the wild oscillations

are due to a chance aligning between shuffled partials. Should multiple partials having

large modulation gains be aligned by phase, that would certainly contribute to a broad

oscillation of the spectral centroid, though it is equally conceivable that a chance contrary

situation should flatten a spectral centroid trajectory.

We wish to reiterate that, because we are targeting the necessary conditions for AMV, we

are interested in the effect of type of randomization rather than the particular realizations

of individual randomized stimuli. However, the observed variability of stimuli within the

same synthesis condition suggests that one should proceed with caution when reasoning on

acoustical descriptors averaged within conditions.

3.2.3 Procedure

The two experiment phases follow an identical structure, differing only in their instructions,

rating prompt and scale labels. Participants are directed from the Prolific website to our

academic server.

The experiment begins with a standard text asking that participants be on a desktop
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computer, using headphones, and situated in a quiet environment. Participants are then

presented an informed consent form. Consenting participants proceed to a sound level check,

where they are played six representative stimuli selected by the experimenter. Participants

are asked to adjust their audio output to a comfortable listening level, and afterward to

leave the level unchanged for the rest of the experiment. They are then presented with

rating instructions and brought to a two-trial practice block.

In each trial, participants hear one stimulus, which is played automatically. They are

concurrently presented with a prompt and horizontal slider (see below for specific prompts

and slider labels). Participants indicate a response by clicking and dragging the slider. They

can then click a button marked “Continue,” bringing them to the next trial where the next

stimulus plays immediately.

The main experiment takes place over two blocks, allowing for an optional two-minute

break. Participants rate all eleven stimulus conditions four times in each block, making for a

total of 44 trials per block and 88 ratings total, with eight repetitions per stimulus condition.

Stimuli are presented in random order within each block. After the final trial, participants

are presented a debriefing message that describes the main goals of the experiment. They

are then redirected to the Prolific website. The experiment software collects data only from

participants who are successfully returned to Prolific. Participants are paid through the

Prolific platform.

In the first phase of the experiment, participants are asked to indicate the perceived fusion
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of the stimulus, using a slider labeled “greater multiplicity (more sources)” and “greater unity

(less sources)” on the left and right sides, respectively. The trial prompt reads “How fused

is this sound?”. Before the practice block, participants are shown the following instructions:

What does fused mean? All sound is made up of many simple components.

Oftentimes they seem to be ‘fused’ together. Components that are fused make

a sound that we hear as coming from one source or having a sense of unity.

For example, the sound of a violin is made up of many fused components, but

we hear it as one source. Components that are not fused make a sound that

seems cloudy or coming from multiple sources at once. Such sounds have a sense

of multiplicity. To help remind you of their meaning, the scale has additional

labels in brackets: greater multiplicity (more sources) and greater unity

(less sources).

In the second phase of the experiment, a new set of participants is asked to rate the

perceived realism of the stimulus using a slider labeled “not realistic at all” and “very

realisticm” on the left and right sides, respectively. The trial prompt reads “How realistic is

this vibrato?”. Before the practice block, participants are shown the following instructions:

What is vibrato? Vibrato is a smooth, cyclic variation of sound that performers

use to add expression to musical notes. Opera singers are well-known for their

wide pitch vibrato. However, vibrato does not have to be a variation of pitch.
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Some kinds of instrument vibrato have very little change in pitch at all. You

are about to hear sounds that have varying kinds of ‘cyclic change.’ We want to

know which kinds of change sound like vibrato to you. To help remind you of the

task, the scale has the following labels: not realistic at all to very realistic.

Participant ratings are coded on a scale from 0 to 1. In practice, the slider is set to range

from zero to the maximum allowable integer in JavaScript (253 − 1) and later normalized in

analysis.

We ran both phases over two days. Data collection for the first experiment took place

over one evening. The average participant run time, from the welcome screen until the rating

of the final stimulus, was about 11 minutes, with a median run of 9.5 minutes. The slowest

participant took 29.5 minutes. In the second phase of the experiment, the median elapsed

time per participant was about 9 minutes.

3.3 Results

All statistical analyses were run in Python using the Pingouin statistics library (Vallat,

2018). Interactive notebooks with data analysis and visualizations are available on the

project Github page4. All ratings were range-normalized within participant. Figure 3.3

shows box-whisker plots of the distributions of ratings for each condition, averaged within-

subject over eight repetitions, for the first and second experiment phases. The box edges
4https://github.com/maxsolomonhenry/amp mod

https://github.com/maxsolomonhenry/amp_mod
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Table 3.3: A short summary description of stimulus conditions.

Condition Description

BASIC Reconstruction of signal with simplified FM and original AM.
FROZEN Reconstruction of signal with no FM, but having original AM.
FM-ONLY Reconstruction based on average cello spectrum and no AM, but

having simplified FM.
PAM Amplitude modulation applied globally (similar to tremolo). No FM.
SHUFFLE Partial reconstruction of the original spectral envelope, where initial

phase of partial modulators are randomly shuffled. No FM.
SIMPLE Simplified AM. Partial modulation depths are matched, but replaced

with sinusoids. Initial phase of modulators are randomly shuffled. No
FM.

RAG Simplified AM where modulation depths are randomly sampled for
each partial. No FM.

RAF Additional randomization condition where partial-specific
modulations are randomly compressed or stretched in time.
Applied to SHUFFLE, SIMPLE and RAG conditions.

CONTROL Non-modulating control signal that has no FM or AM.

indicate the rating interquartile range, and the whiskers indicate the full range of the response

values up to 1.5 times the interquartile range. Dots indicate outliers, determined as those

data sitting outside of 1.5 times the interquartile range.

For convenience, we also include a brief summary of all the stimulus types in Table 3.3.

3.3.1 Part 1: Fusion

Table 3.4 shows the means and standard deviations of ratings for each stimulus condition.

The CONTROL condition has the highest mean fusion rating at 0.83, close to the PAM and

FM ONLY condition. The lowest mean rating is the BASIC condition, closely rated to the

FROZEN and SIMPLE conditions, having means of 0.28, 0.29, and 0.30, respectively. The
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Figure 3.3: Box whisker plots for fusion ratings, above, and realism ratings, below. Box
edges indicate interquartile range, and whiskers capture up to 1.5 interquartile range. Dots
indicate outliers.
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Table 3.4: Fusion rating means and standard deviations for each stimulus condition.

condition mean std

BASIC 0.284 0.229
CONTROL 0.827 0.210
FM ONLY 0.654 0.302
FROZEN 0.289 0.213
PAM 0.802 0.226
RAG 0.351 0.232
RAG RAF 0.339 0.239
SHUFFLE 0.376 0.236
SHUFFLE RAF 0.335 0.242
SIMPLE 0.300 0.215
SIMPLE RAF 0.302 0.226

other conditions (RAG, both SHUFFLE conditions, and SIMPLE RAF) have generally low

mean fusion ratings, all below 0.4. The standard deviations for all conditions are fairly wide,

ranging from 0.21 for the CONTROL condition to 0.30 for the FM ONLY condition.

Given the within-condition acoustical variability of the stimuli (see Table 3.2), and the

considerable variability of participant fusion ratings, we decided to investigate the rating

consistency of each participant individually: while the global picture of response ratings is

fairly diffuse, it might be that each participant had consistent, though idiosyncratic, rating

strategies.

For each participant, we calculated the standard deviation of the eight responses within

each synthesis condition, yielding eleven values that were then averaged across all

participants. These values are presented in Table 3.5. The values reveal that ratings were

fairly variable within-subject, though less so than across participants. The CONTROL
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Table 3.5: Standard deviations of fusion ratings within-subject, within-condition, averaged
across all participants.

condition response

CONTROL 0.147
BASIC 0.157
PAM 0.158
FROZEN 0.159
SIMPLE 0.179
SIMPLE RAF 0.180
FM ONLY 0.193
SHUFFLE RAF 0.195
SHUFFLE 0.198
RAG 0.199
RAG RAF 0.216

condition, which is the most deterministic of the synthesis conditions, has the most focused

within-subject response. In order of increasing standard deviation, CONTROL is followed

closely by the other deterministic conditions: BASIC, PAM, and FROZEN. More variable

ratings come from the randomized stimuli and their RAF counterparts, SIMPLE, SIMPLE

RAF, SHUFFLE RAF and SHUFFLE, RAG and RAG RAF. It stands to reason that the

most variable rating comes from the RAG RAF condition, which has both randomized

gains and partial-specific modulation frequencies. A notable exception to this order is the

deterministic FM ONLY condition, which is the fifth most variable stimulus family for

fusion ratings.

Analysis of variance. We performed a one-way repeated measures ANOVA on stimulus

condition with 11 levels and rating means as dependent variable. A Mauchly test indicates
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that the data violate sphericity (W = 0.002, p < 0.001), and so we include a Greenhouse-

Geisser correction factor (ε = 0.348). The corrected ANOVA indicates a strong statistical

difference between condition means (F (3.48, 170.47) = 133.09, p < 0.001).

We also conducted a Shapiro-Wilk test for normality on each of the condition’s ratings.

Of the eleven conditions, three were found to have non-normal ratings: CONTROL (W =

0.94, p < 0.01), FM ONLY (W = 0.94, p < 0.01) and PAM (W = 0.94, p < 0.05). Figure 3.4

shows quantile-quantile plots comparing the CONTROL, FM ONLY and PAM ratings to

exemplary normal distributions (data from a normal distribution would sit along the line

indicated in red). Broadly speaking, ANOVA assumes normally distributed data. However,

given the relative consistency of the variance between conditions and the large sample size,

the ANOVA is most likely to be valid (Howell, 2010).

We calculated
(

11
2

)
= 55 Wilcoxon signed-rank tests between group means, using

Bonferroni-Holm correction to compensate for familywise error rate. Given the relatively

large sample size with the violation of normality, we opted for the non-parametric

Wilcoxon tests across all pairs. In practice, this approach yields the same statistically

different pairs as two-sided t-tests. The results of the Wilcoxon tests can be seen Table 3.6.

The majority of pairs was found to be significantly different (34 out of 55). Among these

pairs are what one might expect a priori: for example, CONTROL and PAM, which are both

deterministic conditions having no spectral modulation, are significantly more fused than all

other conditions, and are not significantly different from one another (p = 1). The FM-
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Figure 3.4: Quantile-quantile plots for three non-normally distributed stimulus conditions.
From top to bottom: CONTROL, FM ONLY, and PAM.
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Table 3.6: Results of Wilcoxon tests for fusion ratings across all pairs of stimulus conditions.

A B W-val p-corr

BASIC CONTROL 5.0 <0.001
BASIC FM ONLY 13.0 <0.001
BASIC FROZEN 597.0 1.000
BASIC PAM 0.0 <0.001
BASIC RAG 272.0 0.010
BASIC RAG RAF 403.0 0.454
BASIC SHUFFLE 210.0 0.001
BASIC SHUFFLE RAF 405.0 0.454
BASIC SIMPLE 524.0 1.000
BASIC SIMPLE RAF 505.0 1.000
CONTROL FM ONLY 142.0 <0.001
CONTROL FROZEN 1.0 <0.001
CONTROL PAM 511.0 1.000
CONTROL RAG 6.0 <0.001
CONTROL RAG RAF 0.0 <0.001
CONTROL SHUFFLE 6.0 <0.001
CONTROL SHUFFLE RAF 4.0 <0.001
CONTROL SIMPLE 3.0 <0.001
CONTROL SIMPLE RAF 4.0 <0.001
FM ONLY FROZEN 45.0 <0.001
FM ONLY PAM 164.0 <0.001
FM ONLY RAG 77.0 <0.001
FM ONLY RAG RAF 90.0 <0.001
FM ONLY SHUFFLE 104.0 <0.001
FM ONLY SHUFFLE RAF 65.0 <0.001
FM ONLY SIMPLE 38.0 <0.001
FM ONLY SIMPLE RAF 55.0 <0.001
FROZEN PAM 1.0 <0.001
FROZEN RAG 184.0 <0.001
FROZEN RAG RAF 315.0 0.041
FROZEN SHUFFLE 136.0 <0.001
FROZEN SHUFFLE RAF 323.0 0.051
FROZEN SIMPLE 510.0 1.000
FROZEN SIMPLE RAF 541.0 1.000
PAM RAG 5.0 <0.001
PAM RAG RAF 1.0 <0.001
PAM SHUFFLE 4.0 <0.001
PAM SHUFFLE RAF 1.0 <0.001
PAM SIMPLE 0.0 <0.001
PAM SIMPLE RAF 1.0 <0.001
RAG RAG RAF 570.0 1.000
RAG SHUFFLE 421.0 0.593
RAG SHUFFLE RAF 552.0 1.000
RAG SIMPLE 272.0 0.010
RAG SIMPLE RAF 367.0 0.183
RAG RAF SHUFFLE 437.0 0.995
RAG RAF SHUFFLE RAF 597.0 1.000
RAG RAF SIMPLE 403.0 0.454
RAG RAF SIMPLE RAF 453.0 0.995
SHUFFLE SHUFFLE RAF 426.0 0.625
SHUFFLE SIMPLE 181.0 <0.001
SHUFFLE SIMPLE RAF 188.0 <0.001
SHUFFLE RAF SIMPLE 459.0 0.995
SHUFFLE RAF SIMPLE RAF 450.0 0.995
SIMPLE SIMPLE RAF 595.0 1.000
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ONLY condition occupies a middle ground; it is significantly less fused than the CONTROL

and PAM block, and significantly more fused than all of the random conditions and BASIC.

The SHUFFLE, RAG, RAG RAF and SHUFFLE RAF conditions form a moderate cluster

below FM-ONLY. A slightly lower, overlapping cluster contains all of the RAF conditions

plus RAG. The BASIC condition, representing the unadulterated vibrato as rendered by the

synthesis engine, forms a cluster with the FROZEN and SIMPLE conditions at the very

bottom of the fusion ratings, along with the three RAF conditions.

We note that the BASIC condition is not significantly less fused than two of the milder

distortions: FROZEN (p = 1), and SIMPLE (p = 1). The FROZEN and SIMPLE

conditions are also not statistically different (p = 1). However, the SHUFFLE condition,

which maintains the original modulation fine structure, and the RAG condition, which

takes on random modulation gains, were both found to be more fused than this lowest

cluster.

Correlation with acoustic descriptors

We sought to explore to what degree ratings of fusion could be explained by acoustic features.

We use the same ten features which, as outlined in Section 3.2.2, were determined to best

span the acoustic variability described by the set of common spectral and temporal features

available in the Timbre Toolbox.

The task of acoustic analysis is particularly challenging in this case, where all the stimuli
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Table 3.7: Mean, standard deviation, and coefficient of variation for acoustical descriptor
values of all stimulus conditions.

mean std CV

Spectral Centroid Med 456.173 7.520 0.016
Spectral Centroid IQR 37.602 34.551 0.919
Spectral Crest Med 0.231 0.015 0.066
Spectral Crest IQR 0.019 0.018 0.952
Odd to Even Ratio Med 0.865 0.050 0.058
Odd to Even Ratio IQR 0.229 0.212 0.922
Harmonic Energy Med 0.055 0.014 0.262
Harmonic Energy IQR 0.006 0.005 0.846
Spectral Flatness Med 0.184 0.139 0.751
Spectral Flatness IQR 0.106 0.096 0.910

abide by rules strongly promoting perceptual fusion: they are all harmonic signals, whose

partials share common frequency modulation and amplitude onset behaviour (Bregman,

1990). Nevertheless, we suspect that each acoustical descriptor may provide valuable insight.

As before, we include both medians and IQRs to contrast the explanatory power of general

trend (medians), and change in time (IQRs).

Table 3.7 shows the descriptor means, standard deviations, and coefficients of variation

(CV) across all generated stimuli used in the experiment. The CV is the ratio of standard

deviation to mean and provides a standardized measure of dispersion to compare variability

across the descriptors, which differ considerably in their relative magnitude.

Spectral centroid. The spectral centroid (SC) is best known as a strong correlate of

perceived brightness, and an often-used explanatory variable for timbre spaces (McAdams,

Caclin, & Smith, 2002). It is a measure of central tendency of the spectrum, and therefore
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captures the necessary context for the interpretation of other spectral descriptors; for

example, a particularly extreme SC value (e.g., 50 Hz, or 8000 Hz) would preclude any

relevant interpretation of descriptors assuming a harmonic signal (like odd-to-even ratio).

More importantly, the SC IQR provides a broad sense of the perceived change in timbral

character over time. McAdams (1984) found that the depth of frequency modulation,

whether tracing a plausible resonant structure or not, had a marked effect on perceived

fusion. Such a modulation would be captured by SC IQR. The SC is the least variable of

the time-varying medians in our stimulus pool, having a CV of 0.02 corresponding to a

standard deviation of 7.5 Hz. Given that the average stimulus SC IQR is 40.8 Hz, it is

doubtful that the relatively small shift in median SC would correlate to any meaningful

rating behaviour.

Spectral crest and spectral flatness. Spectral crest and spectral flatness are unitless

values that range from 0 to 1, both designed as measures of the likely noisiness of a signal.

Here they may be interpreted as (reciprocal) measures of spectral peak prominence. A

random harmonic stimulus may be modulated such that the relative contributions of its

spectral components are fairly even over time, as in the “sizzle” observed by Curtin and

Rossing (2010) in violin vibrato, leading to a high spectral flatness and low spectral crest. It

is also conceivable that randomization leads to a configuration in which some partials “peak”

out above the rest, potentially breaking the illusion of vibrato. It should be noted that while

both spectral crest and spectral flatness describe a similar trend in the signal, they are
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measured on two different underlying representations (power spectrum and harmonic model,

respectively), therefore we include both in our analyses as a measure of agreement between

representations. In our stimulus pool, spectral flatness median is the most variable median

descriptor, having a CV of 0.75 and a standard deviation of 0.14. Spectral flatness IQR is

highly disperse with a CV of 0.91; likewise spectral crest IQR has a CV of 0.95.

Odd-to-even harmonic ratio. Following a similar logic to spectral crest, it may be that

a randomly generated stimulus has an equal prominence of odd-to-even harmonics over time;

or it may be that the stimulus, by chance, “lilts” heavily between odd and even harmonics.

It is conceivable that such a sound would break the illusion of vibrato, and potentially

diminish the perceived fusion of the sound, much like the aforementioned effect of frequency

modulation. In our stimuli, odd-to-even ratio IQR is highly dispersed with a CV of 0.92.

Harmonic energy. Harmonic energy (here, the total energy as measure by the harmonic

model) captures the signal’s dynamic behaviour over time. The aforementioned “shimmer”

effect (Curtin & Rossing, 2010) is dependent on a fairly even influence of partials on the

global amplitude envelope; therefore, one would expect a signal having a low IQR of this

metric to be more likely perceived as a plausible vibrato sound. Among the generated stimuli,

harmonic energy IQR has a fairly high CV of 0.85.
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Table 3.8: Results of stepwise linear regression of acoustical descriptors on fusion ratings.
Estimate weights are standardized, and displayed with standard error and p-value.

estimate SE p

Intercept 0.000 0.081 0.999
Harmonic Energy Med 0.595 0.092 <0.001
Spectral Flatness Med 0.575 0.092 <0.001

Stepwise linear regression. To identify the possible acoustic characteristics associated

with fusion rating choices, we calculated a stepwise linear regression, taking the condition-

averaged acoustic descriptors as independent variables, and condition-averaged fusion rating

as the dependent variable. The model made an excellent fit to the data (adjusted r2 = 0.93),

and selected two descriptors: median harmonic energy (p < 0.001) and median spectral

flatness (p < 0.001). Both values are positively correlated with fusion ratings and make

roughly equal contributions (see Table 3.8).

3.3.2 Part 2: Vibrato Realism

Table 3.9 shows the means and standard deviations of realism ratings by stimulus condition.

The rating standard deviations are wide here, even wider than for the fusion ratings; however,

the rating means tell a logical story. The BASIC condition, which by design has the highest

fidelity to the original cello vibrato, has the highest mean realism rating (which is itself rather

moderate, at 0.636), followed by FROZEN and SIMPLE conditions. The lowest rating is

the PAM condition, followed closely by the CONTROL condition.
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Table 3.9: Realism rating means and standard deviations for each stimulus condition.

condition mean std

BASIC 0.636 0.281
CONTROL 0.383 0.320
FM ONLY 0.495 0.313
FROZEN 0.594 0.266
PAM 0.380 0.313
RAG 0.572 0.258
RAG RAF 0.514 0.274
SHUFFLE 0.555 0.264
SHUFFLE RAF 0.462 0.282
SIMPLE 0.594 0.274
SIMPLE RAF 0.560 0.263

The within-subject standard deviations of responses are presented in Table 3.10. While

the realism ratings vary greatly across conditions, the values stand to reason. The least

variable ratings come from the deterministic CONTROL condition. The most variable

ratings come from the RAG RAF condition, which is the most random stimulus condition.

We note that within-subject variation is more focused than the variation across

participants.

We computed a one-way repeated measures ANOVA on stimulus condition with 11 levels

and realism-rating means as a dependent variable. Once again, a Mauchly test reveals

that the data violate sphericity, and so we include a Greenhouse-Geisser correction factor

(ε = 0.221). The corrected ANOVA indicates a statistical difference between condition

means (F (2.21, 108.29) = 10.90, p < 0.001). Multiple Shapiro-Wilk tests determine that, in

this case, the ratings for each condition are normally distributed. The means are compared
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Table 3.10: Standard deviations of realism ratings within-subject, within-condition,
averaged across all participants.

condition response

CONTROL 0.185
FROZEN 0.192
PAM 0.202
BASIC 0.204
SIMPLE RAF 0.208
FM ONLY 0.208
SIMPLE 0.211
RAG 0.212
SHUFFLE 0.220
SHUFFLE RAF 0.224
RAG RAF 0.226

with 55 t-tests whose p-values are adjusted with Bonferroni-Holm correction. The results of

the t-tests can be found in Table 3.11.

In contrast to the fusion ratings, the minority of pairs was found to be statistically

different in ratings of vibrato realism (23 out of 55). Furthermore, the t-tests exhibit some

rather confounding irregularities, which are discussed below. As expected, the BASIC

condition was found to be more realistic than the CONTROL (p < 0.05) and PAM

(p < 0.05) conditions. CONTROL and PAM were themselves confused (p = 1), forming a

cluster at the bottom of the realism ratings. Encouragingly, CONTROL, which contains no

modulation and should therefore be rated low for realism, was not found to be statistically

different from the highly randomized RAG RAF (p = 0.26) and SHUFFLE RAF (p = 1)

conditions. Likewise PAM, which also contains no spectral modulation and should be rated

low, is not statistically different from the highly scrambled RAG RAF (p = 0.18) and
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Table 3.11: Results of t-tests for realism ratings across all pairs of stimulus conditions.

A B T p-corr

BASIC CONTROL 4.703 0.001
BASIC FM ONLY 3.119 0.095
BASIC FROZEN 2.197 0.714
BASIC PAM 4.728 0.001
BASIC RAG 2.921 0.158
BASIC RAG RAF 4.388 0.003
BASIC SHUFFLE 3.604 0.030
BASIC SHUFFLE RAF 5.366 <0.001
BASIC SIMPLE 1.802 1.000
BASIC SIMPLE RAF 3.262 0.068
CONTROL FM ONLY -3.679 0.025
CONTROL FROZEN -3.768 0.020
CONTROL PAM 0.194 1.000
CONTROL RAG -4.089 0.008
CONTROL RAG RAF -2.708 0.258
CONTROL SHUFFLE -3.514 0.037
CONTROL SHUFFLE RAF -1.555 1.000
CONTROL SIMPLE -4.238 0.005
CONTROL SIMPLE RAF -3.417 0.046
FM ONLY FROZEN -2.097 0.788
FM ONLY PAM 3.554 0.033
FM ONLY RAG -1.863 1.000
FM ONLY RAG RAF -0.436 1.000
FM ONLY SHUFFLE -1.315 1.000
FM ONLY SHUFFLE RAF 0.729 1.000
FM ONLY SIMPLE -2.207 0.714
FM ONLY SIMPLE RAF -1.347 1.000
FROZEN PAM 3.842 0.016
FROZEN RAG 1.166 1.000
FROZEN RAG RAF 3.404 0.046
FROZEN SHUFFLE 2.122 0.788
FROZEN SHUFFLE RAF 5.251 <0.001
FROZEN SIMPLE 0.007 1.000
FROZEN SIMPLE RAF 2.106 0.788
PAM RAG -4.181 0.006
PAM RAG RAF -2.860 0.179
PAM SHUFFLE -3.630 0.028
PAM SHUFFLE RAF -1.658 1.000
PAM SIMPLE -4.270 0.005
PAM SIMPLE RAF -3.501 0.037
RAG RAG RAF 2.326 0.590
RAG SHUFFLE 0.817 1.000
RAG SHUFFLE RAF 3.934 0.012
RAG SIMPLE -1.448 1.000
RAG SIMPLE RAF 0.573 1.000
RAG RAF SHUFFLE -2.298 0.604
RAG RAF SHUFFLE RAF 2.537 0.383
RAG RAF SIMPLE -3.244 0.069
RAG RAF SIMPLE RAF -2.451 0.455
SHUFFLE SHUFFLE RAF 4.641 0.002
SHUFFLE SIMPLE -1.834 1.000
SHUFFLE SIMPLE RAF -0.367 1.000
SHUFFLE RAF SIMPLE -4.606 0.002
SHUFFLE RAF SIMPLE RAF -5.350 <0.001
SIMPLE SIMPLE RAF 1.717 1.000
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Table 3.12: Results of stepwise linear regression of acoustical descriptors on realism ratings.

estimate SE p

Intercept 0.000 0.142 0.999
Odd to Even Ratio IQR 0.413 0.171 0.042
Spectral Flatness Med -0.628 0.171 0.006

SHUFFLE RAF(p = 1) conditions.

The BASIC condition was not considered more realistic than the FM-ONLY condition.

Tellingly, it was also not considered more realistic than three mild distortions, FROZEN,

SIMPLE, RAG, though it was considered more realistic than the SHUFFLE condition (p <

0.05). Rated below these, the randomized conditions (excluding SHUFFLE RAF) form an

intermediate cluster of realism ratings, this cluster sitting above the CONTROL/PAM block.

Irregularities. A number of confusing irregularities are present in the t-test pairs. PAM

is not different from SIMPLE RAF, but it is different from its immediate neighbours in

order of mean rating: SIMPLE RAF and RAG. Likewise, PAM is not different from RAG

RAF, but it is different from its surrounding conditions, SHUFFLE and FM-ONLY. The

BASIC condition is not significantly different from FM-ONLY, but it is different from its

own neighbours, RAG RAF and SHUFFLE RAF. CONTROL is also not rated differently

from RAG RAF, though it is different from the surrounding FM-ONLY and SHUFFLE

conditions. We note among these poorly behaved pairs the overwhelming presence of RAF

stimuli, which are highly acoustically variable.
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Correlation with acoustical descriptors

As with the fusion ratings, we performed a regression analysis using the ten selected acoustic

descriptors as potential explanatory variables.

Stepwise linear regression. Once more, we fit a stepwise linear regression to the

condition-averaged acoustic features and response data. The model has moderately less

explanatory power (adjusted r2 = 0.78). The algorithm selected two features: the median

spectral flatness (p < 0.001), which is negatively emphasized, and the novel odd-to-even

ratio IQR (p < 0.05), which is positively emphasized (see Table 3.12). The relative

contribution of median spectral flatness is about 50% greater than that of odd-to-even

ratio IQR.

3.4 Discussion

Over two separate listening experiments, participants rated the perceived fusion and

vibrato realism of 11 stimulus conditions. Each condition, through targeted distortions of

the time-varying spectral envelope of a true cello signal, is designed to remove a possible

necessary condition for hearing amplitude-modulation vibrato (AMV). Broadly speaking,

we challenged the role of a plausible resonant structure in the phenomenon, speculating

that a number of distortions (e.g., scrambling relative modulator phase, assigning arbitrary

modulation depths) would have little impact on the strength of percept. We also
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hypothesized that a common modulation rate, as observed by Mellody and Wakefield

(2000) in violin vibrato, would lead to a greater sense of perceived realism and fusion than

a randomized modulation rate.

In both the fusion and realism ratings, the BASIC stimulus, in essence a reconstruction

of the cello excerpt, was undifferentiated from many of the targeted distortions. By some

measure, this can be considered a confirmation of our first hypothesis. We first discuss this

result, and its implications for the role of resonant structure in AMV.

Next we discuss the fusion ratings, which paint a counterintuitive picture, as the

BASIC stimulus was rated as minimally fused. We consider this result in terms of the

polysemous nature of fusion as a terminology, pivoting on recent parallel work in musical

texture perception.

We next discuss the realism ratings which, taken as a whole, are almost entirely reciprocal

to the fusion ratings. We discuss this relationship in terms of median spectral flatness, which

was given considerable positive emphasis on the fusion ratings, and negative emphasis on

the realism ratings, by two linear regression models.

Finally, we turn our attention to the RAF stimuli, which exhibited anomalous, at times

paradoxical, statistical behaviour in our analyses. We discuss this result in terms of the

differential role of phase in modulation-rate-based masking and modulation-based grouping

principles.
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3.4.1 Assumptions about resonant structure

Both the fusion and realism ratings cast doubt on the role of plausible resonant structure

in the AMV percept. Each of the random stimulus conditions scrambles the spectral

envelope, and thereby the apparent resonant structure, of the vibrato signal in some way.

Each confusion of a randomized stimulus with a faithful one (i.e., the BASIC condition) is

telling.

BASIC and FROZEN stimuli were regularly confused with the phase-shuffled SIMPLE

condition. The SIMPLE stimulus scrambles the phase and removes all fine structure of

the original time-varying spectral envelope, casting into doubt the necessity of modulation

relative phase and fine structure in the AMV percept.

The RAG condition was also not significantly differentiated from the BASIC condition

in either fusion or realism ratings. The RAG condition was designed as an incremental

distortion of the SIMPLE condition, in which the partials modulate at a random depth

within 0 – 10 dBs, behaving according to the simple peak prominence rules implied by

Mathews and Kohut (1973). These criteria may be well captured by the spectral flatness

descriptor, a point we discuss below. This result provides further evidence that plausible

resonant structure is unnecessary for the AMV percept; however, the partials may have to

abide by a certain peak prominence.

The SHUFFLE condition, which maintains the fine modulation structure but shuffles

their relative initial phase, was rated as more fused than the SIMPLE condition. The



3. Experiment: Perceived fusion and realism of degraded vibrato sounds 58

mechanism for this finding is uncertain. If AMV is a function of a common modulation

rate, shuffling the relative phase of complex modulation signals may obscure this apparent

correlation between partials. In this sense, the SHUFFLE condition may be heard as closer

to the RAF conditions, whose effect is discussed below in terms of perceived homogeneity.

3.4.2 Polysemous nature of perceptual fusion

The fusion ratings present the rather unintuitive result that the BASIC condition, designed to

be the most similar to the original cello excerpt, is considered as the least fused of all stimulus

conditions. It may be, as McAdams (1984) found, that a modulated signal is perceived as

having greater “multiplicity,” despite abiding by the constellation of perceptual grouping

principles (e.g., harmonicity, common onset and offset) that would suggest otherwise. This

interpretation is slightly unsatisfying, however, considering the key role of spectral fusion in

forming an auditory image. A spectral component should logically either be ascribed to a

given source or not; this is the notion described by Bregman as belongingness (Bregman,

1990). Seen in this light, tasking a participant to rate a sound along a continuous (i.e., not

binary) scale of fusion may be somewhat ill-posed.

Let us consider the striking inverse relationship between fusion and vibrato realism ratings

(see Figure 3.3). At first glance, one would expect vibrato realism to be commensurate with

fused sounds; after all, realistic vibrato tends to issue from a singular, fused musical source.

It may be that participants, being unfamiliar with the synthetic nature of the stimuli, did
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not understand how to interpret the questions of fusion and realism, effectively scrambling

their results; however this explanation does not account for the inverse relationship between

ratings. We suggest that in the case of a rating task—wherein the participant indicates a

response on a continuous scale from 0 to 1—the notion of fusion takes on another, parallel

meaning.

Noble, Thoret, Henry, and McAdams (2020) conducted a listening experiment on music

textures, in which participants were asked to rate excerpts of sound mass music on scales

of perceived fusion, complexity and homogeneity. The authors found a strong negative

correlation between perceived fusion and complexity, as well as a strong positive correlation

between fusion and homogeneity. This experiment provides an interesting comparison to our

work. The pattern that emerged from these three, presumedly orthogonal, scales highlights

the polysemous nature of semantic descriptors. When presented with a word, a scale, and

a sound, a lay participant may first search the word for all of its possible meanings, and

rate according to the specific meaning that describes, to them, the greatest variation in the

corpus of sounds. A similar effect has been shown in timbre dissimilarity ratings, where

ratings are sensitive to the corpus of sounds being presented (Thoret, Caramiaux, Depalle,

& McAdams, 2021).

Auditory texture presents an interesting challenge to fusion ratings; the sound of rainfall,

for example, is made up of multiple independent acoustic events, individual rain drops, each

of which is “fused” within itself, though necessarily separate from other rain drops. Taken as
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a whole, such a texture could not be considered fused in the strict sense of the word; but it

could certainly be considered more coherent than a collection of arbitrary, disparate events.

Such textures may certainly be considered homogeneous, for example, a notion that correlates

demonstrably with fusion. One can even imagine more extreme cases: for example, a sparse

drizzle in which the raindrops are perceived collectively as a rhythmic pattern of sorts, or

a particularly strong rainfall that resembles white noise, which may indeed be fused in the

strictest sense. Regardless, auditory texture presents a continuity of scenarios in which sound

imparts a vague sense of cohesion. This effect of textural cohesion has been compellingly

argued as, at least in part, a function of amplitude modulation coherence (McDermott &

Simoncelli, 2011; McWalter & Dau, 2017).

We propose that our participants, not finding any substantial variation in the perceived

unity or multiplicity of sounds, rated them instead by perceived homogeneity. This line of

reasoning, while speculative, is supported by discussions with colleagues who had piloted

the experiment. Those colleagues expressed both identifying the BASIC condition as

coming from a single source (i.e., as fused), and at the same time wanting to indicate a

meaningful difference between the BASIC condition and the less-modulating, more

homogeneous CONTROL and PAM conditions. Seen in this light, the middling fusion

ratings of the RAF stimuli, which sound both uncoordinated—by their partial-specific

modulation rates—and yet coherent—by their harmonic structure and common onset and

offset—make perfect sense. Compared to the BASIC, FROZEN, and SIMPLE conditions
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they are much more homogeneous, making an inscrutable mass of sound. By the same

logic, they are less homogeneous than the PAM and CONTROL conditions, whose

unmodulating partials hold them strongly together.

3.4.3 Acoustical analysis

Perhaps the most striking feature in our acoustical analyses is the selection, by two respective

linear regression models, of median spectral flatness for both fusion and realism ratings.

More striking still is their reciprocal weighting. The fusion model positively weights spectral

flatness; the realism model negatively weights spectral flatness, and both in a fairly even

measure: their standardized beta values are 0.58 and −0.63, respectively. This pattern

echoes the curious reciprocal relation of mean fusion and realism ratings, which holds true

almost condition-for-condition (see Figure 3.3).

Multiple authors describe the globally steady amplitude envelope in vibrato, in spite of

the comparatively wild amplitude-behaviour of its partials (Curtin & Rossing, 2010; Gough,

2005; Maher & Beauchamp, 1990; Mathews & Kohut, 1973). Of particular note is the work

by Mathews and Kohut (1973), who endeavoured to construct a plausible violin resonance on

top of a dry bowed-excitation signal. The authors found that, within certain very permissive

limits, it was possible to create the illusion of a true violin body.

The authors suggest that even a random or exponential distribution would suffice for the

illusion, supposing the following conditions were met: (1) the resonances must be sufficiently
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steep almost everywhere across the spectrum, such that the magnitude of the derivative of

the response curve is generally large, and (2) that the spectral peaks must be close enough

together that the intervening valleys do not dip below about -15 dB from the maxima. These

conditions, when taken together, also forgo an envelope having any strong anti-resonances,

i.e., zeroes.

The former condition ensures the desired “liveliness” quality of a violin, which is otherwise

reported by players to be unresponsive. The second condition puts an effective upper limit

on the peakiness of the resonances. In their listening tests, the authors found that too much

of a resonant peak produces a hollow and uneven sound.

At its maximum value of 1, spectral flatness describes a perfectly flat spectrum, such as

in white noise. A value close to 0 is maximally peaky and correlates to a signal having very

strong resonances. This descriptor provides for a strikingly meaningful acoustical

interpretation of the experimental results. We will proceed by describing the stimulus

conditions at the extrema of both scales, and then move to the more nuanced cases in the

middle.

We refer the reader to the summary values in Table 3.1. On average, the median spectral

flatness is maximal for the CONTROL (0.41) and PAM (0.40) conditions, and minimal for

the BASIC (0.01) and FROZEN (0.03) conditions. These values can be interpreted in terms

of Mathews’ and Kohut’s criteria. A maximally flat spectrum violates the first condition

for realistic vibrato: it is not sufficiently peaky to be considered lively. Consequently, such
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sounds are rated as low for vibrato realism.

By the same token, a sound in which individual partials “stick out” over the others

may, however mildly, violate perceptual grouping cues that favour coherently modulated

spectral components. As a result, signals having a low spectral flatness may be considered

as less fused than other sounds. As in the aforementioned McAdams (1984) investigation

regarding the effect of frequency modulation on perceived fusion, such a modulation may,

however unexpectedly, imply a sense of multiplicity in a sound that would otherwise be

heard as coming from one source. Taken alongside the discussion of polysemy above, this

account makes for an alternative or complementary explanation of fusion ratings. The

latter argument being anchored in an acoustical correlation, rather than a speculative line

of reasoning, makes it relatively more appealing.

3.4.4 Effect of amplitude modulation rate

The RAF stimuli were designed to target the hypothesis that coherent amplitude

modulation rate binds the (otherwise disparate) partials together, contributing a sense of

fusion and realism to the AMV percept. Unfortunately, the results concerning these stimuli

are inconclusive. The RAF mean realism ratings are, in a number of cases, statistically

different from neighbouring conditions (i.e., conditions having a similar mean rating),

though not statistically different from conditions having a more distant mean rating. We

attribute this pattern to two underlying causes: one of experimental design and one more
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theoretical in nature.

In order to disrupt the effect of a common fundamental modulation rate, the RAF stimuli

scramble partial-specific rates by selecting from a random distribution of rate values (between

4 and 12 Hz). This process results in the most acoustically varied stimuli of all the synthesis

conditions (see Table 3.2 in Method).

Accidental harmonicity. In practice, the random selection of modulation rates may

result in many accidental harmonic relationships between modulators. For example, the

rates 6, 9 and 12 Hz are all harmonics of 3 Hz; the rates, 4, 6, 8, 10, 12, and 14 Hz are

harmonics of 2 Hz. In pitched harmonic sounds, the ear is fairly permissive to the

mistuning of individual partials (Darwin & Gardner, 1986). The frequency of an overtone

may deviate substantially from an integer multiple of a fundamental frequency, and still be

perceptually fused into the harmonic sound. If the same permissiveness holds true for

modulation rate sensitivity, e.g., if a 10.1-Hz modulation could be perceptually folded into a

5 Hz vibrato fundamental, then many of the chance combinations of the RAF modulation

rates would be perceived as having a common fundamental rate.

This scenario annuls the desired effect of the RAF condition. If the RAG RAF and

SIMPLE RAF stimuli were indeed heard as having a common fundamental rate, their

ratings would resemble those of the RAG and SIMPLE conditions; which is indeed the

case, statistically so, in both fusion and realism ratings. In future studies, care must be

taken to properly constrain this randomization, such that accidental modulation
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“harmonicity” is minimized.

Modulation rate sensitivity. Moore et al. (1991) describe an across-channel masking

effect of amplitude modulation frequency. The experiment found that when target and

distractor signals were amplitude-modulated at similar rates, it became comparatively

more difficult to detect small changes of modulation depth in the target signal. Adjusting

the modulation rate of the distractor signal, to either much slower or much faster than the

target modulation rate, attenuated this masking effect. The pattern of interference, drawn

as a function of difference in modulator rate, resembles a bandpass characteristic in a

presumed internal “modulation-rate filter.” Adjusting the relative phases of the modulators

had no impact on this effect. Moore et al. refer to this phenomenon as across-channel

masking. However, they make a point to differentiate this finding from the notion of

modulation-based fusion, which is undeniably phase-dependent. Indeed, the bandwidth of

phase-agnostic modulation sensitivity is far too wide to accommodate any meaningful

grouping: the 10 Hz modulated target signal was susceptible to interference by distractor

modulation rates ranging from 5 to 15 Hz (though the effect was maximal with a 10 Hz

distractor). This wide modulation rate tuning has been corroborated by other models (Dau

et al., 1997).
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Chapter 4

Conclusion

In the current study, we assessed the plausible necessary conditions for amplitude

modulation induced vibrato (AMV). These conditions were gleaned from a corpus of

literature dedicated to vibrato, the acoustical characterisation of resonant instruments, and

the perceptual influence of the spectral envelope. We fashioned a synthesis engine that

generates modulating signals read from an array of time-varying spectral envelopes, and a

parallel engine for applying targeted distortions to the spectral envelope. Based on an

exemplary cello vibrato signal having a strong AMV, eleven distortion conditions were

devised, each targeting a possible necessary condition for the perception of vibrato. Stimuli

generated in these conditions were rated in two online listening experiments for their

perceived fusion and realism.

Two of the distortion conditions, having randomized initial modulation phase and partial-
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specific modulation depths, were regularly confused with an unadulterated vibrato signal for

both fusion and realism ratings. This finding suggests that a plausible resonant structure is

not necessary to generate a sense of vibrato without frequency modulation. Stimuli having

individually randomized partial modulation rates were rated as intermediate for both fusion

and realism. We suggested that such stimuli are rated according to the limited context

of the experimental task, and considered in terms of auditory texture, evoking a parallel

interpretation of the term fusion.

Fusion and realism ratings were found to vary in opposite directions across nearly all

stimulus conditions. This phenomenon was well-captured by the spectral-flatness metric,

which correlates positively to perceived fusion, and negatively to vibrato realism. We suggest

that spectral flatness embodies the conditions outlined by Mathews and Kohut (1973) in the

theory of resonant enhancement of tone quality (for a rich timbral modulation, an instrument

must be sufficiently resonant, though without having severe spectral peaks).

From casual listening and discussion with other experimenters, it is clear that the AMV

percept can be easily mistaken for a mild frequency modulation. To this end, many questions

remain: to what extent do listeners hear a change in frequency when there is none; what is

the magnitude of the perceived change in frequency; and what are the perceptual mechanisms

that lead to it; to what extent is illusory pitch modulation limited to oscillatory modulation?

Broadly speaking, modulation-rate-based phenomena necessitate an across-channel

communication that hints at higher-order perceptual processes. It is known that
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modulation rates play a role in the perception of auditory texture (McDermott &

Simoncelli, 2011; McWalter & Dau, 2017). This line of investigation, however, has not seen

much attention in the musical domain. To what extent are musical sounds perceived as

textural, as mediated by amplitude modulation rate? For example, is a cello section

perceived as a texture; i.e., is it stored in the brain as statistical summary information,

including band-specific AM rates? At what point is a sound source considered to have

multiplicity, and how is this process mediated by amplitude modulation phase, as in the

“chorus effect” (Kahlin & Ternstrom, 1999)? Some listeners noted that the RAF stimuli

resemble string ensembles. To what extent are ensemble sounds characterized more broadly

by their modulation characteristics in the brain? And to what extent are such sounds

resilient to the distortions explored here?

One can certainly imagine reproducing the preceding experiment under more ideal

conditions. Slight adjustments may be made to the RAF synthesis to avoid accidental

harmonicity among modulators. Taking the experiment offline, having access to a common,

controlled listening environment, and being able to communicate in real-time with

participants, may well lead to qualitatively superior results; particularly in the realism

ratings, where the diffuse data suggest participants many have been unsure about the

directions. Would music psychology students rate fusion as perceived homogeneity, as our

pilot studies suggest? To prevent this polysemy, a more targeted experimental paradigm

may be used to collect fusion ratings; for example, a forced-choice experiment.
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Taken as a whole, our study sheds light on the complex inner workings of a musical note,

and the sensitivity of the ear to the complex independent behaviour of partials that conspire

to create the internal structure of a beautiful tone.



70

References

Bogert, B. P. (1963). The quefrency alanysis of time series for echoes: Cepstrum, pseudo-

autocovariance, cross-cepstrum and saphe cracking. Time Series Analysis, 209–243.

Bregman, A. S. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound.

Cambridge, Mass: MIT Press.

Bregman, A. S., Levitan, R., & Liao, C. (1990). Fusion of auditory components: Effects of

the frequency of amplitude modulation. Perception & Psychophysics, 47 (1), 68–73.

Cohen, L. (1966). Generalized phase-space distribution functions. Journal of Mathematical

Physics, 7 (5), 781–786. doi: 10.1063/1.1931206

Curtin, J., & Rossing, T. D. (2010). Violin. In T. D. Rossing (Ed.), The Science of String

Instruments (pp. 209–244). New York, NY: Springer New York. doi: 10.1007/978-1-

4419-7110-4 13

Darwin, C. J., & Gardner, R. B. (1986). Mistuning a harmonic of a vowel: Grouping and

phase effects on vowel quality. Journal of the Acoustical Society of America, 79 (3),

838–845. doi: 10.1121/1.393474

https://doi.org/10.1063/1.1931206
https://doi.org/10.1007/978-1-4419-7110-4_13
https://doi.org/10.1007/978-1-4419-7110-4_13
https://doi.org/10.1121/1.393474


References 71

Dau, T., Kollmeier, B., & Kohlrausch, A. (1997). Modeling auditory processing of amplitude

modulation. II. Spectral and temporal integration. Journal of the Acoustical Society

of America, 102 (5), 2906–2919. doi: 10.1121/1.420345

Flandrin, P. (1999). The time-frequency problem. In G. Longo & B. Picinbono (Eds.),

Time-Frequency/Time-Scale Analysis (p. 39). San Diego: Academic Press.

Fletcher, H., & Sanders, L. C. (1967). Quality of violin vibrato tones. Journal of the

Acoustical Society of America, 41 (6), 1534–1544. doi: 10.1121/1.1910516

Gabor, D. (1947). Theory of communication. Journal of the Institution of Electrical

Engineers - Part I: General, 94 (73), 429–457. doi: 10.1049/ji-1.1947.0015

Gough, C. E. (2005). Measurement, modelling and synthesis of violin vibrato sounds. Acta

Acustica United With Acustica, 91 , 229–240.

Griffin, D. W., & Lim, J. S. (1985). A new model-based speech analysis/synthesis system.

In ICASSP ’85. IEEE International Conference on Acoustics, Speech, and Signal

Processing (Vol. 10, pp. 513–516). Tampa, FL, USA: Institute of Electrical and

Electronics Engineers. doi: 10.1109/ICASSP.1985.1168385

Howell, D. C. (2010). Statistical methods for psychology (7th ed.). Belmont, CA: Thomson

Wadsworth.

Kahlin, D., & Ternstrom, S. (1999). The chorus effect revisited-experiments in frequency-

domain analysis and simulation of ensemble sounds. In Proceedings 25th EUROMICRO

Conference. Informatics: Theory and Practice for the New Millennium (Vol. 2, p. 75-

https://doi.org/10.1121/1.420345
https://doi.org/10.1121/1.1910516
https://doi.org/10.1049/ji-1.1947.0015
https://doi.org/10.1109/ICASSP.1985.1168385


References 72

80). doi: 10.1109/EURMIC.1999.794765

Kawahara, H., Morise, M., Takahashi, T., Nisimura, R., Irino, T., & Banno, H. (2008).

Tandem-STRAIGHT: A temporally stable power spectral representation for periodic

signals and applications to interference-free spectrum, F0, and aperiodicity estimation.

IEEE International Conference on Acoustics, Speech and Signal Processing, 3933–3936.

(ISSN: 1520-6149) doi: 10.1109/ICASSP.2008.4518514

Maher, R., & Beauchamp, J. (1990). An investigation of vocal vibrato for synthesis. Applied

Acoustics, 30 (2-3), 219–245.

Makhoul, J. (1975). Linear prediction: A tutorial review. Proceedings of the IEEE , 63 ,

561–580.

Marin, C. M. H., & McAdams, S. (1991). Segregation of concurrent sounds. II:

Effects of spectral envelope tracing, frequency modulation coherence, and frequency

modulation width. Journal of the Acoustical Society of America, 89 (1), 341–351. doi:

10.1121/1.400469

Mathews, M. V., & Kohut, J. (1973). Electronic simulation of violin resonances. Journal of

the Acoustical Society of America, 53 (6), 1620–1626. doi: 10.1121/1.1913511

McAdams, S. (1984). Spectral fusion, spectral parsing and the formation of auditory images

(Doctoral dissertation). Stanford University.

McAdams, S. (1989). Segregation of concurrent sounds. I: Effects of frequency modulation

coherence. Journal of the Acoustical Society of America, 86 (6), 2148–2159. doi:

https://doi.org/10.1109/EURMIC.1999.794765
https://doi.org/10.1109/ICASSP.2008.4518514
https://doi.org/10.1121/1.400469
https://doi.org/10.1121/1.1913511


References 73

10.1121/1.398475

McAdams, S., Beauchamp, J. W., & Meneguzzi, S. (1999). Discrimination of musical

instrument sounds resynthesized with simplified spectrotemporal parameters. Journal

of the Acoustical Society of America, 105 (2), 882-897.

McAdams, S., Caclin, A., & Smith, B. K. (2002). A confirmatory analysis of four acoustic

correlates of timbre space. Journal of the Acoustical Society of America, 112 (5), 2239.

(2239) doi: 10.1121/1.4778883

McAdams, S., & Rodet, X. (1988). The role of FM-induced AM in dynamic spectral profile

analysis. In H. Duifhuis, J. W. Horst, & H. Wit (Eds.), Basic Issues in Hearing (pp.

359–369). London: Academic Press.

McAulay, R., & Quatieri, T. (1986). Speech analysis/synthesis based on a sinusoidal

representation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34 (4),

744–754. doi: 10.1109/TASSP.1986.1164910

McDermott, J., & Simoncelli, E. (2011). Sound texture perception via statistics of the

auditory periphery: Evidence from sound synthesis. Neuron, 71 (5), 926–940. doi:

10.1016/j.neuron.2011.06.032

McWalter, R., & Dau, T. (2017). Cascaded amplitude modulations in sound texture

perception. Frontiers in Neuroscience, 11 , 12.

Mellody, M., & Wakefield, G. H. (2000). The time-frequency characteristics of violin vibrato:

Modal distribution analysis and synthesis. Journal of the Acoustical Society of America,

https://doi.org/10.1121/1.398475
https://doi.org/10.1121/1.4778883
https://doi.org/10.1109/TASSP.1986.1164910
https://doi.org/10.1016/j.neuron.2011.06.032


References 74

107 (1), 598–611.

Moore, B. C., Glasberg, B. R., Gaunt, T., & Child, T. (1991). Across-channel

masking of changes in modulation depth for amplitude- and frequency-modulated

signals. The Quarterly Journal of Experimental Psychology, 43 (3), 327–347. doi:

10.1080/14640749108400976

Morise, M. (2015). CheapTrick, a spectral envelope estimator for high-quality speech

synthesis. Speech Communication, 67 , 1–7. doi: 10.1016/j.specom.2014.09.003

Morise, M., Yokomori, F., & Ozawa, K. (2016). WORLD: A vocoder-based high-quality

speech synthesis system for real-time applications. IEICE Transactions on Information

and Systems, E99-D(7), 1877–1884. doi: 10.1587/transinf.2015EDP7457

Noble, J., Thoret, E., Henry, M., & McAdams, S. (2020). Semantic dimensions of sound

mass music: An exploration of mappings between perceptual and acoustic domains.

Music Perception, 38 (2), 211–238.

Palan, S., & Schitter, C. (2018). Prolific.ac—A subject pool for online experiments. Journal

of Behavioral and Experimental Finance, 17 , 22–27. doi: 10.1016/j.jbef.2017.12.004

Peeters, G., Giordano, B. L., Susini, P., Misdariis, N., & McAdams, S. (2011). The Timbre

Toolbox: Extracting audio descriptors from musical signals. Journal of the Acoustical

Society of America, 130 (5), 2902–2916. doi: 10.1121/1.3642604

Plazak, J., & McAdams, S. (2017). Perceiving changes of sound-source size within

musical tone pairs. Psychomusicology: Music, Mind, and Brain, 27 (1), 1–13. doi:

https://doi.org/10.1080/14640749108400976
https://doi.org/10.1016/j.specom.2014.09.003
https://doi.org/10.1587/transinf.2015EDP7457
https://doi.org/10.1016/j.jbef.2017.12.004
https://doi.org/10.1121/1.3642604


References 75

10.1037/pmu0000172

Serra, X. (1997). Musical sound modeling with sinusoids plus noise. In C. Roads, S. Pope,

A. Piccialli, & G. De Poli (Eds.), Musical Signal Processing (pp. 91–122). New York:

Routledge.

Stevens, S. S., Volkmann, J., & Newman, E. B. (1937). A scale for the measurement of

the psychological magnitude pitch. Journal of the Acoustical Society of America, 8 (3),

185–190.

Thoret, E., Caramiaux, B., Depalle, P., & McAdams, S. (2021). Learning metrics on

spectrotemporal modulations reveals the perception of musical instrument timbre.

Nature: Human Behaviour , 5 (3), 369–377. doi: 10.1038/s41562-020-00987-5

Unser, M. (2000). Sampling—50 years after Shannon. Proceedings of the IEEE , 88 (4),

569–587. doi: 10.1109/5.843002

Vallat, R. (2018). Pingouin: Statistics in Python. Journal of Open Source Software, 3 (31),

p. 1026. doi: 10.21105/joss.01026

Verfaille, V., Guastavino, C., & Depalle, P. (2005). Perceptual evaluation of vibrato models.

In Proceedings of the Conference on Interdisciplinary Musicology (pp. 1–19). Montreal,

Canada.

Wilkins, J., Seetharaman, P., Wahl, A., & Pardo, B. (2018). Vocalset: A singing voice

dataset. In International Society for Music Information Retrival Converence. Paris.

https://doi.org/10.1037/pmu0000172
https://doi.org/10.1038/s41562-020-00987-5
https://doi.org/10.1109/5.843002
https://doi.org/10.21105/joss.01026


76

Appendices



77

Appendix A

Time and frequency

In this experiment, we are concerned with the spectral envelope and its effect on the

perception of vibrato. This appendix considers some of the theoretical implications of

measuring time-varying spectral information, and briefly discusses CheapTrick (Morise,

2015), the algorithm used for extracting spectral envelopes in this experiment.

A.1 Time-frequency trade-off and uncertainty

A musical signal may be considered for its temporal or spectral information; both can provide

useful insights. For example, temporal information is vital for localizing note onset and offset

times, while spectral information is useful for determining note pitch and timbre. However,

there is a fundamental limit to the level of detail of spectral and temporal information

that can be accessed at once. This limitation, known as the time-frequency trade-off, is the
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principle challenge in extracting time-varying spectral information (such as in a time-varying

spectral envelope). This section establishes the theoretical foundation for the time-frequency

trade-off, beginning with the translation of a time-domain signal into the frequency domain,

as is typically accomplished with the Fourier transform. The Fourier transform is expressed:

X(ν) =
∫ ∞
−∞

x(t) exp(−j2πνt)dt, (A.1)

where x(t) is the time-domain signal under consideration, t is time and ν is frequency; X(ν)

is the spectrum, and j =
√
−1 is the imaginary number.

The spectrum is a complex-valued function, and is usually considered in its polar

form—magnitude and angle—rather than its real and imaginary components. Its

magnitude measures the amplitudes of the spectral components of the signal; its angle

indicates their frequency-specific phase.

The inverse-Fourier transform returns a spectrum to the time-domain:

x(t) =
∫ ∞
−∞

X(ν) exp(j2πνt)dν. (A.2)

There exists a curious, yet fundamental reciprocal relationship between time and frequency

information. Let us consider a simple signal having a limited bandwidth, i.e., a limited

amount of spectral content:

B(ν) =


1, |ν| < ν0

0, otherwise

(A.3)
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where ν0 is an arbitrary positive frequency. We can determine the time-domain equivalent

of this signal with the inverse-Fourier transform:

b(t) =
∫ ∞
−∞

B(ν) exp(j2πνt)dν (A.4)

=
∫ ν0

−ν0
exp(j2πνt)dν (A.5)

= 1
j2πt exp(j2πνt)

∣∣∣∣∣∣
ν0

−ν0

(A.6)

= 1
j2πt [exp(j2πν0t)− exp(−j2πν0t)] (A.7)

= ��j2
��j2πt

sin(2πν0t) (A.8)

= 2ν0 sinc(2πν0t). (A.9)

When ν0 is small, B(ν) has a narrow bandwidth and b(t) oscillates slowly. A narrow

bandwidth means that B(ν) takes up relatively little spectral extent, while a slower

oscillation means that b(t) requires proportionately more time to fully oscillate. A signal

that is sharply defined in the spectrum is relatively more ambiguously defined in time. The

same is also true in other direction: a signal that is sharply defined in time is relatively

more ambiguous in frequency.

We will now proceed to a more rigorous analysis of the problem. The time-frequency

trade-off was famously described by Gabor (1947) in his Theory of Communication, itself

a reformulation of the uncertainty principle originally stated by Heisenberg in 1927. The

following proof follows closely the logic of Flandrin (1999). We will mathematically define
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an extent in time, and an extent in frequency; then we will prove that the time-frequency

area defined by these extents cannot be arbitrarily small. Consider a signal x(t) having a

finite quantity of energy, i.e.,

Ex =
∫ ∞
−∞
|x(t)|2dt < +∞. (A.10)

For the sake of simplicity, we consider a signal with zero centroids in time and frequency,

which would otherwise have to be systematically subtracted to ensure generality:

∫ ∞
−∞

t|x(t)|2dt = 0, (A.11)

∫ ∞
−∞

ν|X(ν)|2dν = 0. (A.12)

To represent extent in time ∆t2 and frequency ∆ν2, we use the energy-normalized second

moments which are equivalent, in some sense, to variance in probability theory:

∆t2 = 1
Ex

∫ ∞
−∞

t2|x(t)|2dt, (A.13)

∆ν2 = 1
Ex

∫ ∞
−∞

ν2|X(ν)|2dν. (A.14)

We want to find the area described by ∆t∆ν. In order to do so, we define an interaction

term that captures something of the cross energy between a signal in time and in frequency,
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for reasons that will soon be clear:

I ≡
∫ ∞
−∞

tx∗(t)dx(t)
dt dt. (A.15)

Here, ∗ indicates the complex conjugate. Taking the squared magnitude of this term leads to

the following Cauchy-Schwartz inequality, which serves as the basis for our ultimate proof:

|I|2 =
∣∣∣∣∣
∫ ∞
−∞

tx∗(t)dx(t)
dt dt

∣∣∣∣∣
2

≤
∫ ∞
−∞

∣∣∣t2x∗(t)2
∣∣∣ dt ∫ ∞

−∞

∣∣∣∣∣∣
(

dx(t)
dt

)2
∣∣∣∣∣∣ dt (A.16)

Of the two integrals on the right-hand side of the inequality, the first can be seen as non-

normalized time extent as defined in Equation (A.13), Ex∆t2. The second integral can be

connected to the non-normalized frequency extent Ex∆ν2 as follows. Note that the time

derivative of x(t) may be expressed in terms of an inverse Fourier transform:

dx(t)
dt = d

dt

∫ ∞
−∞

X(ν) exp(j2πνt)dν =
∫ ∞
−∞

X(ν)(j2πν) exp(j2πνt)dν. (A.17)

Its squared magnitude is then,

∣∣∣∣∣
(

dx(t)
dt

)∣∣∣∣∣
2

≤
∫ ∞
−∞
|X(ν)|2|j2πν|2| exp(j2πνt)|2dν (A.18)

= 4π2
∫ ∞
−∞

ν2|X(ν)|2dν (A.19)

= 4π2Ex∆ν2, (A.20)

where we have substituted in Equation (A.14). Substituting Equation (A.20) into Equation
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(A.16) gives a first hint at the interaction between time and frequency:

|I|2 ≤ 4π2E2
x∆t2∆ν2. (A.21)

We will now manipulate |I|2 into a more comprehensive form. Integrating by parts, we get:

I =
∫ ∞
−∞

tx∗(t)dx(t)
dt dt (A.22)

= −
∫ ∞
−∞

x∗(t)x(t)dt−
∫ ∞
−∞

tx(t)dx∗(t)
dt dt (A.23)

= −Ex − I∗, (A.24)

and therefore, that:

I + I∗ = 2<{I} = −Ex (A.25)

<{I} = −Ex2 . (A.26)

We now return to Equation (A.21). Rather than |I|2, we may consider the square of its

real component, which is guaranteed to be less than or equal to its magnitude as a complex

number (i.e., |<{z}|2 ≤ |z|2, z ∈ C). Replacing this value on the left-hand of the inequality

gives:

Ex
2

4 ≤ 4π2Ex
2∆t2∆ν2, (A.27)

leading to the famous result:

∆t∆ν ≥ 1
4π . (A.28)
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Here we have the product of time and frequency. For our purposes, the value 1
4π is not

particularly meaningful in and of itself, except for the fact that it is greater than zero. This

result indicates that the “area,” defined by time and frequency cannot be arbitrarily small.

In other words, there is an effective maximum resolution to the joint decomposition in time

and frequency, due to the fact that the two are inextricably bound by definition.

A.2 Time-frequency representations

Despite this theoretical limitation, listeners tend to consider what they hear—certainly

music—in terms of both time and frequency simultaneously. Just like a musical score, it is

natural to seek out a mathematical representation of sound that offers a reliable

presentation of both time and frequency information. The most well known of these

representations is perhaps the spectrogram, which is the square of the magnitude of the

short time Fourier transform (STFT). However as demonstrated by Mellody and Wakefield

(2000), the spectrogram is not the most reliable representation for measuring precise

amplitude fluctuations in the spectrum over time.

We begin our discussion of time-frequency distributions with the Wigner-Ville

distribution, which despite being relatively less commonly used, has certain desirable

theoretical properties which demonstrate the potential for precision in time-frequency

distributions, and will hopefully shed light on why some distributions are better suited

than others for particular kinds of analysis.
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A.2.1 The Wigner-Ville distribution

The WVD is written as:

Wxx(t, ν) =
∫ ∞
−∞

x
(
t+ τ

2

)
x∗
(
t− τ

2

)
exp(−j2πντ)dτ, (A.29)

which may be seen as the Fourier transform of a local auto-covariance of x(t), centered at time

t. The WVD has a number of useful properties; for example, under certain circumstances,

it permits perfect localization in time and frequency. Let us now consider the example of

an analytic signal, which is a complex-valued signal having only non-negative frequencies.

A real-valued signal x(t), with a spectrum X(ν), has the following relation to its analytic

equivalent Z(ν):

Z(ν) = X(ν)(1 + sign(ν)). (A.30)

Using an analytic signal permits many conveniences; for example, one may calculate a

meaningful average frequency for an analytical signal, as any real signal, whose spectrum is

therefore hermitian symmetric, has an average frequency of zero.

The experiment in this thesis is largely concerned with partials having a fixed frequency

(i.e., no FM) but having an amplitude that varies in time (AM). Such a signal may be

expressed analytically as:

z(t) = A(t) exp(j2πν0t), (A.31)
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where ν0 is the signal frequency in Hz, and A(t) is its time-varying amplitude. Through the

WVD, this signal takes on a very clean form:

Wzz(t, ν) =
∫ ∞
−∞

z
(
t+ τ

2

)
z∗
(
t− τ

2

)
exp(−j2πντ)dτ (A.32)

=
∫ ∞
−∞

A
(
t+ τ

2

)
A∗
(
t− τ

2

)
exp

(
j2πν0

[(
t+ τ

2

)
−
(
t− τ

2

)])
exp(−j2πντ)dτ

(A.33)

=
∫ ∞
−∞

A
(
t+ τ

2

)
A∗
(
t− τ

2

)
exp (−j2πτ(ν − ν0)) dτ (A.34)

= WAA(t, ν − ν0). (A.35)

From Equation (A.35) it is clear that the WVD of a time-varying partial is simply the

frequency-shifted WVD of its amplitude modulation signal. From this result, we may say that

the WVD is translationally invariant in frequency, a desirable property of the distribution.

Indeed, the WVD is translationally invariant in time as well, which can be demonstrated by

following a similar line of reasoning.

Another useful property of the WVD is its ability to collapse meaningfully across the

time or frequency axes into valid a marginal distribution of either:

∫ ∞
−∞

Wxx(t, ν)dν = |x(t)|2, (A.36)
∫ ∞
−∞

Wxx(t, ν)dt = |X(ν)|2. (A.37)

In this way, through the WVD it is always possible to measure the time-varying energy of a

signal, by Equation (A.36); or its power spectral density at any given moment in time, by
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Equation (A.37). However, these convenient properties do not come without a price. The

principle drawback of the WVD is its introduction of cross-terms. Consider the combination

of two signals, x(t) and y(t). Its WVD would take the form:

Wx+y = Wxx +Wyy + 2<{Wxy}, (A.38)

where here the final term is the real component of the cross-WVD of x(t) and y(t).

By simply following Equation (A.29), the introduction of cross-terms is evident from the

outset:

Wx+y =
∫ ∞
−∞

[
x
(
t+ τ

2

)
+ y

(
t+ τ

2

)] [
x∗
(
t− τ

2

)
+ y∗

(
t− τ

2

)]
exp(−j2πντ)dτ (A.39)

= Wxx +Wyy +
∫ ∞
−∞

x
(
t+ τ

2

)
y∗
(
t− τ

2

)
︸ ︷︷ ︸

first term

+ y
(
t+ τ

2

)
x∗
(
t− τ

2

)
︸ ︷︷ ︸

second term

 exp(−j2πντ)dτ.

(A.40)

For the sake of illustration, let us consider the case of two stationary, analytical partials,

having distinct amplitudes and frequencies:

x(t) = Ax exp(j2πνxt), (A.41)

y(t) = Ay exp(j2πνyt). (A.42)

We will focus on the integrand of the final term of (A.40), substituting in (A.41) and (A.42).
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Its first term becomes:

x
(
t+ τ

2

)
y∗
(
t− τ

2

)
= Ax exp(j2πνxt) exp

(
j2πνx

τ

2

)
A∗y exp(−j2πνyt) exp

(
j2πνy

τ

2

)
.

(A.43)

Factoring the complex exponentials by τ and t gives:

exp
(
j2πτ2(νx + νy)

)
AxA

∗
y exp(j2πt(νx − νy)). (A.44)

We now combine this result with the second, similarly factored term in the integrand, to

yield:

exp
(
j2πτ2(νx + νy)

) [
AxA

∗
y exp(j2πt(νx − νy)) + A∗xAy exp(−j2πt(νx − νy))

]
︸ ︷︷ ︸

complex conjugates

. (A.45)

Note that the terms in square brackets are complex conjugates of one another. Once again,

we make use of the fact that z + z∗ = 2<{z}, z ∈ C. Therefore, the final term of (A.38)

becomes:

2<{Wxy} = 2<
{
AxA

∗
y exp(j2πt(νx − νy))

} ∫ ∞
−∞

exp
(
j2πτ2(νx + νy)

)
exp(−j2πτν)dτ

(A.46)

= AxAy cos(2πt(νx − νy)) δ
(
ν − 1

2(νx + νy)
)
. (A.47)

Equation (A.47) is a clean expression of the Wigner-Ville cross-term; it is an oscillating

signal in time (as indicated by the cosine term), and it is perfectly localized in frequency (as

indicated by the dirac delta term). It takes the average frequency of the two partials, and
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oscillates in time at their difference in frequency. Note that because the cross-term oscillates

as a cosine above and below zero, the WVD is not strictly non-negative. As a result, its

value cannot be read literally as a localized measure of time-frequency energy.

This oscillation, however, also points to a possible improvement to the WVD. Because

the interaction terms are oscillatory, they may be effectively eliminated with the appropriate

choice of averaging filter. Filtering removes cross-terms, thought at the expense of some

of the desirable precision of the WVD. As demonstrated by Cohen (1966), many time-

frequency representations can be commonly characterized by their relation to the WVD via

a distribution-specific compromise, represented by a smoothing kernel in time and frequency.

For example, convolving the WVD with a two-dimensional Gaussian kernel results in a

spectrogram (assuming its window is a Gaussian), whose value is always non-negative.

A.3 Methods to measure the spectral envelope

What we can learn from the preceding is that no time-frequency plane can purvey the

unadulterated truth of time or frequency. A more flexible concept is the spectral envelope,

which is discussed in this section.

A.3.1 Source-filter models

One approach to extracting spectral information is to consider the sound as an interaction of

two components: a spectrally rich generator or excitation signal, that is filtered by a system
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that carries the spectral envelope of the sound. For a stationary sound, the magnitude

frequency response of a filter to an excitation signal can be written as:

|S(ω)| = |H(ω)| · |E(ω)|, (A.48)

where S(ω), H(ω) and E(ω) are the frequency-domain representations of the filtered signal,

the filter itself and the excitation signal, respectively. This action can be expressed in the

time domain as a convolution:

s(t) = (h ∗ e)(t) =
∫ ∞
−∞

h(τ)e(t− τ)dτ, (A.49)

where s(t) is the filtered sound, h(t) is the impulse response of the filter and e(t) is the

excitation signal. As with many such models, it has its roots in speech analysis and synthesis,

and may be illustrated by an example in this domain.

The excitation signal in speech is a combination of a harmonically rich pitched sound

produced by the periodic opening and closing of the vocal-folds, and noise generated from

turbulent air. Classically, excitation signals are considered to be either “voiced” or

“unvoiced.” The former is periodic and carries pitch and prosody; the latter is necessary for

articulating stopped consonants and fricatives. Later models developed a more nuanced

notion of aperiodicity, wherein different parts of the excitation spectrum can be either

voiced or unvoiced simultaneously (Griffin & Lim, 1985).

In speech synthesis, the spectral envelope reflects the multi-resonant structure of the
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vocal tract, namely the pharynx and the oral cavity (Maher & Beauchamp, 1990), which is

responsible for shaping vowel sounds. Likewise, the spectral envelope of a string instrument

can be seen as tracing the contributions of many narrow bandwidth resonators (Mathews &

Kohut, 1973).

A fixed spectral envelope, when coupled with a time-varying excitation signal, provides

a strong cue for the resonant structure of the sound source. The spectral envelope has been

shown, for example, to provide clues about the source size (Plazak & McAdams, 2017) and

can be essential for sound segregation in a complex mixture when coupled with frequency

modulation (McAdams, 1989). In practice the spectral envelope of a sound is often time-

varying, as in speech that shifts from one vowel sound to another, or in the primarily spectral

vibrato of some brass and reed instruments (Verfaille et al., 2005).

Assuming that a sound is generated by an underlying source-filter structure, there are a

number of techniques available to decouple an excitation source from its spectral envelope.

For this experiment, we investigated two such techniques: linear predictive coding, and the

CheapTrick algorithm (Morise, 2015).

A.3.2 Linear predictive coding

Linear predictive coding (LPC) attempts to predict a signal as a linear combination of a fixed

number of its preceding samples (Makhoul, 1975). The premise of LPC can be articulated

mathematically as follows (note here that we switch from continuous to discrete time, as
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indicated by the use of square brackets):

s[n] = −
p∑

k=1
aks[n− k] +Ge[n]. (A.50)

Here s[n] is the output signal, e[n] is an excitation signal with a gain coefficient G, and the

coefficients ak represent weights on the past p samples of s[n]. The values ak can be seen as

the coefficients of an autoregressive filter. To make this comparison clear, we start by taking

the z-transform of (A.50), expanding and rearranging for clarity:

S(z) = GE(z)− a1S(z)z−1 − · · · − apS(z)z−p (A.51)

GE(z) = S(z)[1 + a1S(z)z−1 + · · ·+ apS(z)z−p] (A.52)

H(z) = S(z)
E(z) = G · 1

1 + a1z−1 + · · ·+ apz−p
. (A.53)

From Equation (A.53) we can see the all-pole structure of H(z) (which is a direct consequence

of the assumptions of the LPC solution). The frequency response of this transfer function

can provide an informative approximation of a spectral envelope of s[n].

One may equivalently see the problem in a statistical signal processing context. Consider

a prediction ŝ[n] that is built as a linear combination of its past p values. We redefine e[n]

in this context to be the prediction error, specifically the difference from the true signal s[n]



A. Time and frequency 92

and this prediction:

e[n] = s[n]− ŝ[n] = s[n]−
p∑

k=1
aks[n− k]. (A.54)

The ideal prediction signal minimizes the energy of e[n]. Articulating the problem in terms

of error signal energy E, where

E =
∞∑

n=−∞
e2[n] =

∞∑
n=−∞

(
s[n]−

p∑
k=1

aks[n− k]
)2

. (A.55)

We can find the ideal coefficients ak by reconfiguring as a minimization problem. In such a

setting, we find the minimum of a convex function, here, E, by setting its partial derivatives

to 0 with respect to the variables in question, here, ak. Setting the partial derivatives with

respect to ak to 0 results in a system of linear equations:

p∑
k=1

ak
∞∑

n=−∞
s[n− k]s[n− i] = −

∞∑
n=−∞

s[n]s[n− i] 1 ≤ i ≤ p. (A.56)

Surprisingly, these equations can be expressed in terms of the autocorrelation function,

assuming that the signal is stationary:

R[i] =
∞∑

n=−∞
s[n]s[n− i]. (A.57)

Noting that the autocorrelation function is an even function, we may re-articulate (A.56) as:

p∑
k=1

R[|i− k|]ak = −R[i], (A.58)
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which can, in turn, be expressed succinctly in matrix form:

Ra = −r, (A.59)

or explicitly: 

R[0] R[1] . . . R[p− 1]

R[1] R[0] . . . R[p− 2]

R[2] R[1] . . . R[p− 3]

... ... . . . ...

R[p− 1] R[p− 2] . . . R[0]





a1

a2

a3

...

ap



= −



R[1]

R[2]

R[3]

...

R[p]



(A.60)

Here R is a symmetrical Toeplitz matrix built from R[i], that is, a matrix having the

autocorrelation function across the top row and which is symmetrical across its diagonals.

The vector a is the vector of linear coefficients to be found, and r is the autocorrelation

function itself, starting at index 1 and going to p.

In practice, R, a and r are all estimates, thus a perfect solution is never possible. The

best-fitting a can be solved by using any least-squares algorithm. In the application space

of LPC, the Levinson-Durbin algorithm is a common choice (Makhoul, 1975).

Because it models an all-pole filter, LPC does not efficiently capture the spectral dips

that are well-characterized by zeroes. In practice, such a filter can emphasize spectral regions

of an underlying harmonic excitation signal, but it does not attenuate well. The effect of

AMV, however, appears to rely on the relatively wide partial-specific modulation gain; this
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effect therefore requires not only spectral accentuation, but sharp attenuation as well. Our

early explorations using time-varying spectral envelopes captured with LPC resulted in an

overly mild timbral modulation that did not have any of the pitch-like characteristics of the

AMV heard in the synthetically flattened signals. We turned instead to the CheapTrick

algorithm, which will be described briefly in the next section.

A.3.3 The CheapTrick algorithm

The CheapTrick algorithm (Morise, 2015) is part of the WORLD vocoder (Morise et al.,

2016), a research tool designed for analysis and manipulation of speech signals. WORLD is

itself an outgrowth of the TANDEM-STRAIGHT vocoder (Kawahara et al., 2008). Assuming

an underlying source-filter structure, the algorithm attempts to smooth out regularities that

are present in both the temporal and spectral axes of time-varying power spectra.

Removing temporal influence using pitch-synchronous windowing. The algorithm

depends on a pre-calculated pitch trajectory, using pitch-synchronized analysis windows to

extract spectral information. Such windows exert a minimal influence on the time-varying

power of the underlying signal.

Consider a harmonic signal y(t) with a period of T0, multiplied by a Hann window w(t)

having a length of three times this period (noting that here we consider an ideal case in

continuous time; in practice, the window length is rounded to the nearest sample value).
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Such a window has the expression:

w(t) = 1
2

[
1− cos

(2πt
3T0

)]
, 0 ≤ t ≤ 3T0. (A.61)

Because the underlying signal is perfectly periodic, we can consider its power by integrating

over three temporal subdivisions, each the length of one period:

∫ 3T0

0
(y(t)w(t))2dt =

∫ T0

0
y2(t)w2(t)dt+

∫ T0

0
y2(t)w2(t+ T0)dt+

∫ T0

0
y2(t)w2(t+ 2T0)dt

(A.62)

=
∫ T0

0
y2(t)(w2(t) + w2(t+ T0) + w2(t+ 2T0))dt (A.63)

= 1.125
∫ T0

0
y2(t)dt. (A.64)

As y(t) is periodic and w(t) is tailored to its period, this process becomes a kind of built-in

overlap-add, where the contributed power of w(t) adds up to a constant.

Smoothing the spectrum of a periodic signal. Returning to the source-filter model,

let us consider an excitation signal made of periodic impulses, passing through a filter with

an impulse response h(t):

y(t) = h(t) ∗
∞∑

n=−∞
δ(t− nT0), (A.65)

Y (ν) = 1
T0
H(ν)

∞∑
n=−∞

δ(ν − nν0). (A.66)
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Here y(t) is the observed signal, having a period of T0, and a fundamental frequency of

ν0 = 1
T0

. Given an observed instrument sound, we wish to model its spectral envelope as

H(ν); however we do not have direct access to it.

A periodic excitation signal samples its spectral filter at multiples of the fundamental

frequency ν0. Based on this idea, the CheapTrick algorithm reconsiders the source-filter

model as a sampling system, and uses the theory of consistent sampling (Unser, 2000) to

recover an “unsampled” spectral envelope.

In the consistent sampling approach, a continuous signal f(t) and an approximation signal

f̂(t) may be considered equivalent if they both appear the same after being sampled. In the

analogy of the source-filter model, the observed sound power spectrum |Y (ν)|2 is the sampled

filter spectrum. We may not be able to recover the true filter spectrum directly, but we may

recover an approximation spectrum that, when it is itself sampled (by periodic excitation

in the time domain), will re-generate the observed spectrum |Y (ν)|2. This approximation

spectrum is the spectral envelope extracted by CheapTrick. The CheapTrick algorithm has

a pre-processing and spectral smoothing step, followed by a “digital correction” filter.

To avoid potentially negative values produced by the spectral recovery process,

CheapTrick applies all processing in the log power spectrum. The processed log-spectrum

is then exponentiated back to a power spectrum, guaranteeing that it has only positive

values. Before taking its logarithm, the observed spectrum must first be smoothed in order

to remove any zeroes. Let P (ν) represent the power spectrum of the observed signal y(t).
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The pre-processing step widens the observed spectral peaks by averaging along a moving

rectangular window:

Ppre(ν) = 3
2ν0

∫ ν0
3

− ν0
3

P (ν + λ)dλ. (A.67)

In the smoothing step, CheapTrick performs liftering (Bogert, 1963) to remove oscillating

components in the power spectrum due to the signal’s periodic nature. Liftering is a filtering-

like process performed on the cepstrum; the cepstrum is the inverse Fourier transform of the

log-magnitude of the spectrum, a representation that is well-suited to spectral recovery. The

cepstrum is expressed as:

Cy = F−1{log(|F{y(t)}|2)}. (A.68)

Let us consider two cycles of the periodic signal y(t):

y(t) = b(t) + b(t− T0), (A.69)

where b(t) represents one cycle. The Fourier transform of such a signal is:

X(ν) = B(ν) + exp(−j2πνT0)B(ν). (A.70)

Taking its power spectrum, we have the following expression:

|X(ν)|2 = |B(ν)|2(2 + 2 cos(2πνT0)). (A.71)

Equation (A.71) contains a clearly oscillating component of the power spectrum, having a
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“frequency” of the signal period T0. Taking the logarithm of this expression allows for linear

separability of this component:

log(|X(ν)|2) = log(|B(ν)|2) + log(2 + 2 cos(2πνT0)). (A.72)

Taking the inverse Fourier transform of this function brings the periodic signal into the

cepstral domain, where the oscillation at cos(2πνT0) is readily isolated as a single cepstral

peak; this peak may be removed with liftering. CheapTrick lifters by multiplying the

cepstrum with a sinc function having zeros at multiples of ν0:

ls(τ) = sin(πν0τ)
πν0τ

, (A.73)

where τ is the time index (or “mite” index) in the cepstral domain. This action corresponds

to a convolution in the frequency domain with a rectangular window of length ν0.

Liftering results in a slightly smeared spectrum, which no longer adheres to the rules of

consistent sampling: this smeared spectrum, if “resampled” with a harmonic excitation

signal, would not re-generate the original observed signal, due to errors introduced at

multiples of ν0 Hz. This effect can be undone with a digital correcting filter.

Consistent sampling models a discrete signal that has passed through a pre- and post-

sampling filter, with an optional digital correcting filter. In the CheapTrick paradigm, the

post-filter is the smoothed power spectrum of the analysis window, |H(ν)|2 ∗ rν0(ν), where

|H(ν)|2 is the power spectrum of the analysis window (in time), and rν0(ν) is the
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rectangular window (in frequency) used for spectral smoothing in the previous step. The

pre-filter is modeled as a delta function. The digital correction filter is modeled as the

inverse filter corresponding to this pre- and post- sampling. Following Kawahara et al.

(2008), this operation is performed on the log spectrum as:

PR(ν) = exp (q0 log(Psmoothed(ν)) + q1 log(Psmoothed(ν + ν0)Psmoothed(ν − ν0))) , (A.74)

where PR(ν) is the “recovered” version of the smoothed power spectrum P (ν)smoothed. Morise

empirically tuned the coefficient values to be q0 = 1.18 and q1 = −0.09. Because of the

introduction of negative values, this step is calculated in the cepstral domain as a simple

multiply, using the cepstral equivalent:

lr(τ) = q0 + 2q1 cos(2πτν0)←→ q0 δ(ν) + q1(δ(ν + ν0) + δ(ν − ν0)), (A.75)

where τ is the time index in the cepstral domain. The final cepstral processing, including

the pre-processing, smoothing, and spectral recovery takes the form:

PCheapTrick(ν) = exp(F{ls(τ)lr(τ)Cx(τ)}), (A.76)

where Cx(τ) is the cepstrum of the underlying signal:

Cx = F−1{log(P (ν))}. (A.77)

The name CheapTrick comes from the notion that the algorithm is no more than a few simple

“tricks” performed on the cepstrum, each practically tuned, though grounded theoretically
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in consistent sampling theory. Regardless, we found that the spectral envelopes produced by

CheapTrick were much more effective in conveying the AMV percept than those extracted

with LPC, when used with our synthesis engine.

We suspect that this result is a function of CheapTrick’s ability to capture envelope

values close to zero; this property is itself indebted to its processing on the cepstrum. The

AMV illusion seems to depend upon large amplitude fluctuations, modulations that can

approach near-zero values. As Mellody and Wakefield (2000) discovered, the spectrogram

underestimates amplitude fluctuations and can’t capture these trajectories; likewise, the LPC

algorithm does not model zeros.
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Appendix B

Python code

B.1 build stimuli.py
import numpy as np
import os
from scipy.io import wavfile
from tqdm import tqdm

from src import macro
from src.analysis import single_cycles
from src.defaults import SAMPLE_RATE, SYN_PATH
from src.util import midi_to_hz, safe_mkdir

# Helper.
def quick_write(_file_path, _filename, _data):

"""Write file as 16bit mono PCM."""

write_path = os.path.join(_file_path, _filename)

amplitude = np.iinfo(np.int16).max
_data *= amplitude

wavfile.write(write_path, SAMPLE_RATE, _data.astype(np.int16))
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# Experiment parameters.
num_subjects = 200
num_blocks = 2
repeats_per_block = 4

# Use this to start counting from a subject number greater than 0.
starting_subject = 200

# Load env as linear amplitude. (CheapTrick calculates the power spectrum.)
env = single_cycles[0][’env’]
env = np.sqrt(env)

# Synthesis parameters.
synthesis_params = {

’num_partials’: 70,
’f0’: midi_to_hz(48),
’fm_depth’: 0.1314,
’length’: 2.5,
’mod_rate’: 5.,
’mod_hold’: 0.,
’mod_fade’: 0.,
’audio_fade’: 0.25,
’env’: env,

}

for s in range(num_subjects):
s += starting_subject
print(f"\nGenerating stimuli for subject {s}...")

# Make subject directory.
subject_path = os.path.join(SYN_PATH, f"subject_{s}/")
safe_mkdir(subject_path)

# Open log.
log_path = os.path.join(subject_path, f"stimlog_subject_{s}.txt")
log = open(log_path, "w")

log.write(f"Subject: {s}\n" + "-" * 10 + "\n")

for b in tqdm(range(num_blocks)):
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# Make block directory.
block_path = os.path.join(subject_path, f"block_{b}/")
safe_mkdir(block_path)

log.write("\n" + "="*7 + f"\nBlock {b}\n" + "="*7 + "\n")

for r in range(repeats_per_block):
# Generate one of each kind of stimulus.

# BASIC.
tmp_x = macro.make_basic(synthesis_params)
quick_write(block_path, f"BASIC_{r}.wav", tmp_x)

# FROZEN.
tmp_x = macro.make_frozen(synthesis_params)
quick_write(block_path, f"FROZEN_{r}.wav", tmp_x)

# FM-ONLY.
tmp_x = macro.make_fm_only(synthesis_params)
quick_write(block_path, f"FM_ONLY_{r}.wav", tmp_x)

# SHUFFLE and SHUFFLE RAF.
tmp_x, tmp_x_raf = macro.make_shuffle(synthesis_params, log)
quick_write(block_path, f"SHUFFLE_{r}.wav", tmp_x)
quick_write(block_path, f"SHUFFLE_RAF_{r}.wav", tmp_x_raf)

# SIMPLE and SIMPLE RAF.
tmp_x, tmp_x_raf = macro.make_simple(synthesis_params, log)
quick_write(block_path, f"SIMPLE_{r}.wav", tmp_x)
quick_write(block_path, f"SIMPLE_RAF_{r}.wav", tmp_x_raf)

# RAG and RAG RAF.
tmp_x, tmp_x_raf = macro.make_rag(synthesis_params, log)
quick_write(block_path, f"RAG_{r}.wav", tmp_x)
quick_write(block_path, f"RAG_RAF_{r}.wav", tmp_x_raf)

# PAM.
tmp_x = macro.make_pam(synthesis_params)
quick_write(block_path, f"PAM_{r}.wav", tmp_x)

# Control.
tmp_x = macro.make_control(synthesis_params)
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quick_write(block_path, f"CONTROL_{r}.wav", tmp_x)

log.close()

B.2 macro.py
"""
Convenience macros for generating stimuli as per thesis.

See ‘synthesis.py‘ for condition descriptions.
"""

from src.defaults import SAMPLE_RATE, PITCH_RATE
from src.synthesis import EnvelopeMorpher, StimulusGenerator

# Instantiate one generator for all stimuli.
generator = StimulusGenerator(

sr=SAMPLE_RATE,
pr=PITCH_RATE,
random_rate_lower_limit=4.,
random_rate_upper_limit=12.,

)

def make_basic(args):
return generator(

f0=args[’f0’],
fm_depth=args[’fm_depth’],
env=args[’env’],
num_partials=args[’num_partials’],
length=args[’length’],
mod_rate=args[’mod_rate’],
mod_hold=args[’mod_hold’],
mod_fade=args[’mod_fade’],
audio_fade=args[’audio_fade’],

)

def make_frozen(args):
return generator(

f0=args[’f0’],
fm_depth=0.,
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env=args[’env’],
num_partials=args[’num_partials’],
length=args[’length’],
mod_rate=args[’mod_rate’],
mod_hold=args[’mod_hold’],
mod_fade=args[’mod_fade’],
audio_fade=args[’audio_fade’],

)

def make_shuffle(args, log):
morpher = EnvelopeMorpher(args[’env’], args[’f0’])
morpher.shuffle_phase(num_shifts=4)

x = generator(
f0=args[’f0’],
fm_depth=0.,
env=morpher(),
num_partials=args[’num_partials’],
length=args[’length’],
mod_rate=args[’mod_rate’],
mod_hold=args[’mod_hold’],
mod_fade=args[’mod_fade’],
audio_fade=args[’audio_fade’],

)

x_raf = generator(
f0=args[’f0’],
fm_depth=0.,
env=morpher(),
num_partials=args[’num_partials’],
length=args[’length’],
mod_rate=args[’mod_rate’],
mod_hold=args[’mod_hold’],
mod_fade=args[’mod_fade’],
audio_fade=args[’audio_fade’],
synth_mode=’raf’,

)

log.write("\nSHUFFLE\n" + "_"*7 + "\n")
log.write(f"\n{morpher._log}\n")
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return x, x_raf

def make_simple(args, log):
morpher = EnvelopeMorpher(args[’env’], args[’f0’])
morpher.rap()
morpher.shuffle_phase(num_shifts=4)

x = generator(
f0=args[’f0’],
fm_depth=0.,
env=morpher(),
num_partials=args[’num_partials’],
length=args[’length’],
mod_rate=args[’mod_rate’],
mod_hold=args[’mod_hold’],
mod_fade=args[’mod_fade’],
audio_fade=args[’audio_fade’],

)

x_raf = generator(
f0=args[’f0’],
fm_depth=0.,
env=morpher(),
num_partials=args[’num_partials’],
length=args[’length’],
mod_rate=args[’mod_rate’],
mod_hold=args[’mod_hold’],
mod_fade=args[’mod_fade’],
audio_fade=args[’audio_fade’],
synth_mode=’raf’,

)

log.write("\nSIMPLE\n" + "_" * 7 + "\n")
log.write(f"\n{morpher._log}\n")

return x, x_raf

def make_rag(args, log):
morpher = EnvelopeMorpher(args[’env’], args[’f0’])
morpher.rap(max_random_gain=10)
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morpher.shuffle_phase(num_shifts=4)

x = generator(
f0=args[’f0’],
fm_depth=0.,
env=morpher(),
num_partials=args[’num_partials’],
length=args[’length’],
mod_rate=args[’mod_rate’],
mod_hold=args[’mod_hold’],
mod_fade=args[’mod_fade’],
audio_fade=args[’audio_fade’],

)

x_raf = generator(
f0=args[’f0’],
fm_depth=0.,
env=morpher(),
num_partials=args[’num_partials’],
length=args[’length’],
mod_rate=args[’mod_rate’],
mod_hold=args[’mod_hold’],
mod_fade=args[’mod_fade’],
audio_fade=args[’audio_fade’],
synth_mode=’raf’

)

log.write("\nRAG\n" + "_" * 7 + "\n")
log.write(f"\n{morpher._log}\n")

return x, x_raf

def make_fm_only(args):
morpher = EnvelopeMorpher(args[’env’], args[’f0’])
morpher.time_average()

return generator(
f0=args[’f0’],
fm_depth=args[’fm_depth’],
env=morpher(),
num_partials=args[’num_partials’],
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length=args[’length’],
mod_rate=args[’mod_rate’],
mod_hold=args[’mod_hold’],
mod_fade=args[’mod_fade’],
audio_fade=args[’audio_fade’],
synth_mode=’default’,

)

def make_control(args):
return generator(

f0=args[’f0’],
fm_depth=0.,
env=args[’env’],
num_partials=args[’num_partials’],
length=args[’length’],
mod_rate=args[’mod_rate’],
mod_hold=args[’length’],
mod_fade=0.,
audio_fade=args[’audio_fade’],
synth_mode=’pam’,

)

def make_pam(args):
return generator(

f0=args[’f0’],
fm_depth=0.,
env=args[’env’],
num_partials=args[’num_partials’],
length=args[’length’],
mod_rate=args[’mod_rate’],
mod_hold=args[’mod_hold’],
mod_fade=args[’mod_fade’],
audio_fade=args[’audio_fade’],
synth_mode=’pam’,

)

B.3 synthesis.py
"""
StimulusGenerator reads from an array of spectral envelopes.
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EnvelopeMorpher allows for distortions ot the envelope before synthesis.
"""

from copy import copy
import math
import numpy as np

from defaults import EPS, SAMPLE_RATE, PITCH_RATE
from util import (

add_fade, midi_to_hz, normalize, plot_envelope, stft_plot, remove_dc,
resample

)

class StimulusGenerator:
"""
Generate modulating tones from a cycle of spectral envelopes.
"""
def __init__(

self,
sr: int = SAMPLE_RATE,
pr: int = PITCH_RATE,
random_rate_upper_limit: float = 12.,
random_rate_lower_limit: float = 4.,

):
assert sr > 0
self.sr = sr

assert pr > 0
self.pr = pr

assert random_rate_upper_limit >= 0
self.random_rate_upper_limit = random_rate_upper_limit

assert random_rate_lower_limit <= random_rate_upper_limit
self.random_rate_lower_limit = random_rate_lower_limit

self.f0 = None
self.fm_depth = None

self.env = None
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self.num_partials = None

self.length = None
self.mod_rate = None
self.mod_hold = None
self.mod_fade = None

self.synth_mode = None
self.audio_fade = None

self.processed_env = None

def __call__(
self,
f0: float,
fm_depth: float,
env: np.ndarray,
num_partials: int,
length: float,
mod_rate: float,
mod_hold: float,
mod_fade: float,
synth_mode: str = ’default’,
audio_fade: float = 0.,

) -> np.ndarray:
"""Generate a spectral- and frequency- modulated tone.

Args:
f0: Fundamental pitch of the output, in Hz.
fm_depth: Depth of pitch modulation, in semitones.
env: Array of spectral envelopes (time x real frequency).
num_partials: Number of partials for resynthesis.
length: Synthesis length in seconds.
mod_rate: Rate of spectral- and frequency- modulation, in Hz.
mod_hold: Time before applying modulation, in seconds.
mod_fade: Time to ramp modulation (from 0 to 1), in seconds.
synth_mode: Synthesis type ->

’default’ is normal behaviour.
’pam’ is the Pure Amplitude Modulation condition (tremolo).
’raf’ is the Random Amplitude modulation Frequency condition.

Returns:
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Numpy array. A normalized, one-dimensional, audio rate stimulus.
"""

# Argument checking.
assert f0 > 0
self.f0 = f0

assert fm_depth >= 0
self.fm_depth = fm_depth

assert env.ndim == 2
self.env = env

assert num_partials > 0
assert (num_partials * f0) <= (self.sr // 2)
self.num_partials = num_partials

assert length > 0
self.length = length

assert 0 < mod_rate <= (self.pr // 2)
self.mod_rate = mod_rate

assert mod_hold >= 0
assert mod_fade >= 0
assert (mod_hold + mod_fade) <= length
self.mod_hold = mod_hold
self.mod_fade = mod_fade

assert synth_mode in [’default’, ’pam’, ’raf’]
self.synth_mode = synth_mode

assert 0 <= audio_fade <= length

# Resample, loop and extend spectral envelope.
self.process_env()

# Output.
x = self.synthesize()
x = remove_dc(x)
x = normalize(x)
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# Fade in/out.
x = add_fade(x, audio_fade, self.sr)
x = add_fade(x, audio_fade, self.sr, fade_out=True)
return x

def process_env(self):

if self.synth_mode == ’raf’:
tmp_env = self.get_raf_env()

else:
tmp_env = self.cycle_and_resample_env()

tmp_env = self.apply_spectral_fade(tmp_env)

self.processed_env = tmp_env

def get_raf_env(self):
"""
Generate envelope with each partial amp-modulated at a different rate.
"""
num_frames = self.env.shape[0]
num_partials = self.num_partials

num_samples = self.get_num_samples()
out_ = np.zeros([num_samples, num_partials])

tmp_env = copy(self.env)

for k in range(num_partials):
frequency = (k + 1) * self.f0

random_rate = self.get_random_rate()
num_cycles = math.ceil(self.length * random_rate)
frame_rate = num_frames * random_rate

# Calculate partial trajectory.
tmp = self.get_amp_from_frequency(frequency, tmp_env)

# Cycle to desired synthesis length and resample.
tmp = np.tile(tmp, num_cycles)
tmp = self.loop(tmp)
tmp = self._resample(tmp, frame_rate)
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# Truncate and place in output.
out_[:, k] = tmp[:num_samples]

return out_

def get_random_rate(self):
upper = self.random_rate_upper_limit
lower = self.random_rate_lower_limit
x = np.random.rand()
return (upper - lower + 1.)**x + lower - 1.

def cycle_and_resample_env(self):

# Preliminaries.
num_frames = self.env.shape[0]
num_cycles = math.ceil(self.length * self.mod_rate)
num_samples = self.get_num_samples()

# Calculate only required harmonic partials.
tmp_env = copy(self.env)
tmp_env = self.reduce_to_relevant_partials(tmp_env)

# Extend in time to desired output length.
tmp_env = np.tile(tmp_env, [num_cycles, 1])

# Wrap-around first value to extend interpolation.
tmp_env = self.loop(tmp_env)

# Resample.
frame_rate = num_frames * self.mod_rate
tmp_env = self._resample(tmp_env, frame_rate)

# Truncate.
tmp_env = tmp_env[:num_samples, :]

return tmp_env

def reduce_to_relevant_partials(self, tmp_env):
"""
Extract only spectral information relevant to synthesis.
"""
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num_frames = tmp_env.shape[0]
num_partials = self.num_partials

out_ = np.zeros([num_frames, num_partials])

for k in range(self.num_partials):
frequency = (k + 1) * self.f0
out_[:, k] += self.get_amp_from_frequency(frequency, tmp_env)

return out_

def get_amp_from_frequency(self, frequency, tmp_env):
"""
Linear interpolate to extract frequency-wise amplitude envelope.
"""

# Expand to facilitate broadcasting if necessary (code for 1- or 2-d).
if tmp_env.ndim == 1:

tmp_env = tmp_env[None, :]

num_frames = tmp_env.shape[0]
amp_envelope = np.zeros(num_frames)

# Find the (possibly fractional) bin corresponding to ‘frequency‘.
bin_num = self.get_bin_num(frequency)
bin_fraction = bin_num % 1

bin_floor = math.floor(bin_num)
bin_ceil = math.ceil(bin_num)

# Read amplitude envelope based on the desired frequency.
if bin_fraction == 0:

amp_envelope += tmp_env[:, bin_num]
else:

# Linear interpolation between adjacent bins.
amp_envelope += (1 - bin_fraction) * tmp_env[:, bin_floor]
amp_envelope += bin_fraction * tmp_env[:, bin_ceil]

return amp_envelope

def apply_spectral_fade(self, tmp_env):
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"""
Fade in spectral modulation, taking approx pi/2 of the cycle as neutral.
"""

fade = self.get_depth_trajectory()

mid_env = self.get_mid_env()

# Fade out middle spectrum.
mid_env = np.outer((1 - fade), mid_env)

# Fade in spectral modulation.
tmp_env = tmp_env * fade[:, None]

# Cross-fade.
tmp_env += mid_env

return tmp_env

def get_mid_env(self):
"""Retrieve spectrum from 1/4 of cycle.

This is approximately pi/2 or 3pi/2, i.e. where the vibrato trajectory
is in the middle of its throw (not max nor min).
"""

mid_cycle_index = round(self.env.shape[0] // 4)
tmp = self.env[mid_cycle_index, :]

out_ = np.zeros(self.num_partials)

# Interpolate for fractional bin values.
for k in range(self.num_partials):

frequency = (k + 1) * self.f0

out_[k] = self.get_amp_from_frequency(frequency, tmp)

return out_

def _resample(self, tmp_env, frame_rate):
return resample(tmp_env, frame_rate, self.sr)
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def synthesize(self):
num_samples = self.get_num_samples()
x = np.zeros(num_samples)

if self.synth_mode == ’default’ or self.synth_mode == ’raf’:
x = self.standard_synthesis(x)

elif self.synth_mode == ’pam’:
x = self.pam_synthesis(x)

else:
raise ValueError("Unknown mode: {}.".format(self.synth_mode))

return x

def standard_synthesis(self, x):
for k in np.arange(self.num_partials):

x += self.make_partial(k)
return x

def pam_synthesis(self, x):
"""
Returns a stimulus with a static spectral envelope, but having a global
amplitude envelope of an equivalent spectrum-modulated signal.
"""

average_gains = np.mean(self.processed_env, axis=0)

# Sum all partial amplitudes into one master envelope.
amp_envelope = np.sum(self.processed_env, axis=1)

# Apply master envelope to each partial, scaling partials to average.
for k in np.arange(self.num_partials):

frequency = (k + 1) * self.f0
gain = average_gains[k]

x += gain * amp_envelope * self.make_carrier(frequency)
return x

def make_partial(self, k):
frequency = (k + 1) * self.f0

amp_envelope = self.processed_env[:, k]
carrier = self.make_carrier(frequency)
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return amp_envelope * carrier

def get_bin_num(self, frequency):
return frequency / (self.sr // 2) * self.env.shape[1]

def make_carrier(self, frequency):
t = np.arange(int(self.length * self.sr))/self.sr

# Always begins at top of cycle (i.e. cos(0)), as per analysis.py.
trajectory = np.cos(2. * np.pi * self.mod_rate * t)

# Shape modulation.
trajectory *= self.get_fm_coefficient()
trajectory *= self.get_depth_trajectory()
trajectory += 1.

# Apply modulation.
trajectory *= frequency

# Randomize initial phase.
phi = 2 * np.pi * np.random.rand()

phase = np.cumsum(2 * np.pi * trajectory / self.sr) + phi
return np.cos(phase)

def get_fm_coefficient(self):
"""
Converts ‘fm_depth‘ from semitones into coefficient for frequency.

Note: strictly speaking, pitch modulation should be applied in
log-space, because pitch scales logarithmically with frequency. Here, we
apply modulation on a linear scale. For the small modulation excursions
associated with typical vibrato, the difference is quite minimal
and arguably imperceptible.
"""
return 2 ** (self.fm_depth / 12) - 1

def get_depth_trajectory(self):
"""
Modulation depth from 0 to 1 based on ‘mod_hold‘ and ‘mod_fade‘ times.
"""
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hold_samples = int(self.mod_hold * self.sr)
fade_samples = int(self.mod_fade * self.sr)
end_samples = int(self.length * self.sr - (hold_samples + fade_samples))

hold = np.zeros(hold_samples)
fade = np.linspace(0, 1, fade_samples, endpoint=False)
end = np.ones(end_samples)

return np.concatenate((hold, fade, end))

def get_num_samples(self):
return int(self.length * self.sr)

@staticmethod
def loop(in_: np.ndarray) -> np.ndarray:

return np.concatenate([in_, [in_[0]]])

class EnvelopeMorpher:
"""
Generate variations of spectral modulation based on a prototype cycle.
"""
def __init__(

self,
env: np.ndarray,
pr: int = PITCH_RATE,
sr: int = SAMPLE_RATE,
f0: float = None

):
assert env.ndim == 2
self.env = copy(env)

assert pr > 0
self.pr = pr

assert sr > 0
self.sr = sr

if f0 is not None:
assert 0 < f0 <= (sr // 2)
self.f0 = f0

else:
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self.f0 = None

# Log tracks randomization settings, and order of morphing.
self._log = []

def time_average(self):
num_frames, num_bins = self.env.shape

tmp = np.mean(self.env, axis=0)
tmp = np.tile(tmp, [num_frames, 1])

self.env = copy(tmp)

def shuffle_phase(self, num_shifts: int = 4):
"""
Randomly shuffle each column.
"""

assert num_shifts > 0

all_shifts = np.linspace(0, 1, num_shifts, endpoint=False)
num_frames, num_bins = self.env.shape

# Used for pairing bins that surround a partial of interest.
bins_above_partials = None
if self.f0 is not None:

bins_above_partials = self.get_bins_above_partials()

tmp_log = []
last_shift = None

for k in np.arange(num_bins):

# If necessary, match this shift to the previous bin.
if self.f0 and (k in bins_above_partials):

shift = last_shift
else:

shift = np.random.choice(all_shifts)

tmp_log.append(
{

’bin’: k,
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’shift’: shift
}

)

tmp = self.env[:, k]
tmp = self.roll(tmp, shift)

self.env[:, k] = tmp

last_shift = copy(shift)

self._log.append(tmp_log)

def get_bin_num(self, frequency):
return frequency / (self.sr // 2) * self.env.shape[1]

def get_bins_above_partials(self):
"""Collect bins around overtone partials (higher in frequency only).

In shuffling conditions, this allows for some bins to be shuffled in
sync with one another, to avoid artifacts in synthesis later on.
"""

out_ = []

max_partial = int(
(self.sr // 2) // self.f0

)

for p in range(1, max_partial + 1):
frequency = self.f0 * p
bin_number = self.get_bin_num(frequency)

if bin_number % 1 != 0:
out_.append(math.ceil(bin_number))

return out_

def get_bin_frequency(self, k):
num_bins = self.env.shape[1]
return k / num_bins * (self.sr / 2)
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def rap(self, max_random_gain: float = None):
"""Single cycle at base-rate with (possibly) randomized gains."""

num_frames, num_bins = self.env.shape

# Find average gain values in the cycle for each bin.
ave_envelope = np.mean(self.env, axis=0)

tmp_log = []

for bin_ in range(num_bins):

if max_random_gain:
# Pick random gain (in dB) between 0 and ‘max_gain‘.
mod_gain = np.random.rand() * max_random_gain

else:
# Approximate partial-wise gains from envelope.
mod_gain = self.get_partial_gain(bin_)

# Build modulator.
modulator = np.cos(

2 * np.pi * np.linspace(0, 1, num_frames, endpoint=False)
)

modulator *= self.db_to_linear_coefficient(mod_gain)
modulator += 1.

# Multiply by base envelope gain.
modulator *= ave_envelope[bin_]

tmp_log.append(
{

’bin’: bin_,
’mod_gain’: mod_gain

}
)

# Place in array.
self.env[:, bin_] = modulator

self._log.append(tmp_log)



B. Python code 122

def show(self, zoom=None):
tmp = self.env

if zoom:
num_bins = tmp.shape[1]
tmp = tmp[:, :(num_bins // zoom)]

plot_envelope(tmp, show=True)

def get_partial_gain(self, bin_):
"""Calculate the modulation gain depth, by partial, in decibels."""
max_ = np.max(self.env[:, bin_], axis=0)
min_ = np.min(self.env[:, bin_], axis=0)
return 20 * np.log10(max_/min_ + EPS)

def __str__(self):
"""Print the morph log."""
s = f"""Summary\n-------\n\nTotal morphs:\t{len(self._log)}\n"""
for morph in self._log:

for bin_ in morph:
s += f"\n{bin_}"

return s

def __call__(self):
return self.env

@staticmethod
def db_to_linear_coefficient(decibels):

a = 10. ** (decibels / 20) - 1
b = 10. ** (decibels / 20) + 1
return a / b

@staticmethod
def roll(in_, shift):

"""
Circular shift array using linear interpolation, where 0 <= ‘shift‘ < 1
"""
num_samples = in_.size
shift_samples = num_samples * shift
shift_fraction = shift_samples % 1

out_ = np.zeros(num_samples)
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if shift_samples == 0:
out_ += in_

elif shift_fraction == 0:
out_ += np.roll(in_, shift_samples)

else:
out_ += (1 - shift_fraction) * np.roll(in_, math.floor(shift_samples))
out_ += shift_fraction * np.roll(in_, math.ceil(shift_samples))

return out_

if __name__ == ’__main__’:
import matplotlib.pyplot as plt
from analysis import single_cycles

# Helper.
def get_fm_depth(_datum):

"""
FM depth in semitones, calculated as half the difference of pitch.
"""
max_ = np.max(_datum[’f0’])
min_ = np.min(_datum[’f0’])
return 12 * np.log2(max_/min_) / 2

# Synthesis parameters.
partials = 70

# Midi 48 -> C3.
midi_pitch = 48

# Debugging.
plots = False

synth_out = []

for datum in single_cycles:
fm_depth = get_fm_depth(datum)
f0_ = midi_to_hz(midi_pitch)

if plots:
t = np.arange(len(datum[’f0’]))/PITCH_RATE
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plt.plot(t, datum[’f0’])
plt.ylabel(’Pitch (hz)’)
plt.xlabel(’Time (sec)’)
plt.show()

# Bring to linear amplitude. Env is calculated as the power spectrum.
env_ = np.sqrt(datum[’env’])

morpher = EnvelopeMorpher(env_, f0=f0_)
morpher.rap(max_random_gain=10)
morpher.shuffle_phase(num_shifts=4)

generator = StimulusGenerator(sr=SAMPLE_RATE, pr=PITCH_RATE)
x = generator(

f0=f0_,
fm_depth=0.0,
env=morpher(),
num_partials=partials,
length=2.1,
mod_rate=5.,
mod_hold=0.3,
mod_fade=0.7,
synth_mode=’default’,
audio_fade=0.25,

)

stft_plot(x)

synth_out.append(
{

’filename’: datum[’filename’],
’f0’: f0_,
’wav’: x,

}
)

B.4 util.py
"""
General utilities.
"""
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import librosa
import librosa.display
import matlab
import matplotlib.pyplot as plt
import numpy as np
import os
import pickle
import warnings

from librosa import load
from scipy.interpolate import interp1d
from scipy.signal import butter, filtfilt, hilbert
from typing import Union

from defaults import EPS, PITCH_RATE, SAMPLE_RATE

def add_fade(
signal: np.ndarray,
fade_length: float,
rate: int,
fade_out: bool = False,

):
"""
Adds linear fade in/out to signal.
"""

if fade_length > 0.:
num_samples = int(fade_length * rate)

# Build ramp.
ramp = np.linspace(0, 1, num_samples, endpoint=False)

mean = np.mean(signal)
signal -= mean

# Fade in/out.
if fade_out:

signal[-num_samples:] *= ramp[::-1]
else:

signal[:num_samples] *= ramp
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signal += mean

return signal

def contains_nan(in_: np.ndarray) -> bool:
return np.isnan(np.sum(in_))

def flatten(signal: np.ndarray) -> np.ndarray:
"""
Replace an array values with its mean.
"""
mean_ = np.mean(signal)
return np.tile(mean_, len(signal))

def force_mono(signal: np.ndarray) -> np.ndarray:
"""
Forces stereo signal to mono by averaging channels.
"""
assert len(signal.shape) <= 2, "Mono or stereo arrays only, please."
if len(signal.shape) == 2:

if signal.shape[0] > signal.shape[1]:
signal = signal.T

signal = np.mean(signal, axis=0)
return signal

def get_amp_envelope(signal: np.ndarray, cutoff: float = 25., sr: int = 44100):
amplitude_envelope = np.abs(hilbert(signal))
smoothed = low_pass(amplitude_envelope, cutoff, sample_rate=sr, order=4)
return smoothed

def hz_to_midi(hz: np.ndarray) -> np.ndarray:
"""
Converts from Hz to linear pitch space, where midi:69 = A440.
"""
return np.maximum(0, 12 * np.log2((hz + EPS)/440) + 69)
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def load_pickle(path: str):
assert os.path.isfile(path), f"Missing file:\t{path}..."

with open(path, ’rb’) as handle:
return pickle.load(handle)

def low_pass(
signal: np.ndarray,
frequency: float,
sample_rate: int,
order: int = 16

):
"""
Convenience function for butterworth lowpass filter.
"""
Wn = frequency/(sample_rate / 2)
[b, a] = butter(order, Wn, btype=’lowpass’)

out_ = filtfilt(b, a, signal)
assert not contains_nan(out_), "Filtering generated NaNs."

return out_

def matlab2np(input_: matlab.double):
"""
Convert Matlab double to numpy array.
"""
return np.array(input_._data)

def midi_to_hz(midi: Union[float, int, np.ndarray]) -> Union[float, np.ndarray]:
"""
Converts from linear pitch space to Hz, where A440 = midi:69.
"""
return 440.0 * (2.0**((midi - 69.0) / 12.0))

def normalize(x: np.ndarray) -> np.ndarray:
"""
Normalize array by max value.
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"""
return x / np.max(np.abs(x))

def np2matlab(input_: np.ndarray):
"""
Convert numpy array to Matlab double.
"""
return matlab.double(input_.tolist())[0]

def num2matlab(input_: Union[float, int]):
"""
Convert single value to Matlab double.
"""
return matlab.double([input_])

def plot_envelope(env, show=True):
plt.imshow(env.T, aspect=’auto’, origin=’lower’)
if show:

plt.show()

def read_wav(path: str):
x, sample_rate = load(path, sr=SAMPLE_RATE, dtype=np.float64)
return sample_rate, x

def remove_dc(signal: np.ndarray) -> np.ndarray:
return signal - np.mean(signal)

def resample(
env: np.ndarray,
frame_rate: float,
sr: int,

) -> np.ndarray:
"""
Resample spectral envelope array in time.
"""
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axis = -1
if env.ndim == 2:

axis = 0

_indices = np.arange(env.shape[0]) * sr / frame_rate
f = interp1d(_indices, env, kind=’linear’, axis=axis)

num_samples = int(
round((env.shape[0] - 1) * sr / frame_rate)

)

return f(np.arange(num_samples))

def safe_mkdir(path):
if not os.path.exists(path):

Warning(f"Creating directory {path}...")
os.mkdir(path)

def save_pickle(path: str, data, force: bool = False):
if force is False:

assert not os.path.isfile(path), ’File {} already exists.’.format(
os.path.basename(path)

)

print(’Saving file {}...’.format(os.path.basename(path)))
with open(path, ’wb’) as handle:

pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL)

def stft_plot(
signal: np.ndarray,
sample_rate: int = SAMPLE_RATE,
title: str = "",
show: bool = True

):
X = librosa.stft(signal)
Xdb = librosa.amplitude_to_db(abs(X))
plt.figure(figsize=(5, 5))
plt.title(title)
librosa.display.specshow(Xdb, sr=sample_rate, x_axis="time", y_axis="linear")
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if show:
plt.show()

def time_plot(
signal: np.ndarray,
rate: int = 44100,
show: bool = True,
title: str = None

):
t = np.linspace(0, len(signal)/rate, len(signal), endpoint=False)
plt.plot(t, signal)
plt.xlabel(’time (s)’)
plt.ylabel(’amplitude’)
if title:

plt.title(title)
if show:

plt.show()

def trim_to_duration(
signal: np.ndarray,
time_in: float = 1.,
duration: float = 1.,
rate: int = 44100

) -> np.ndarray:
"""
Trim audio signal given start time and desired duration.
"""
in_ = int(time_in * rate)
out_ = in_ + int(duration * rate)
return signal[in_:out_]

def trim_silence(
signal: np.ndarray,
threshold: float = -35,
cutoff: float = 25.,
sr: int = 44100,

) -> np.ndarray:
"""
Trims beginning of audio signal until it passes a given threshold in dB.
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"""
amp_envelope = get_amp_envelope(signal, cutoff, sr)
log_envelope = np.log(amp_envelope + EPS)
start_index = np.maximum(

np.where(log_envelope >= threshold)[0][0],
0

)
return signal[start_index:]

def upsample(
hz: np.ndarray,
sr: int = SAMPLE_RATE,
pr: int = PITCH_RATE

) -> np.ndarray:
_indices = np.arange(len(hz)) * sr / pr
f = interp1d(_indices, hz, kind=’cubic’)

num_samples = int(
round((len(hz) - 1) * SAMPLE_RATE / PITCH_RATE)

)

return f(np.arange(num_samples))

B.5 feature extraction.py
"""
Tools for extracting timbral features from the stimuli.
"""

from glob import glob
import numpy as np
import matplotlib.pyplot as plt
import matlab.engine
import os
import pandas as pd
from tqdm import tqdm

from ext.auditory import strf
from src.defaults import DATA_PATH, TIMBRE_TOOLBOX_PATH, SYN_PATH
from src.util import matlab2np, np2matlab, read_wav, save_pickle
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def extract_trials(df):
df = df[df[’trial_type’] == ’audio-slider-response’]
df = df[˜df[’stimulus’].str.contains("train")]
return df

def init_matlab():
print(’Starting Matlab engine...’)
eng = matlab.engine.start_matlab()
eng.addpath(eng.genpath(TIMBRE_TOOLBOX_PATH))
return eng

def load(datapath=DATA_PATH):
pattern = os.path.join(datapath, ’prolific/*.csv’)
files = glob(pattern)
assert files, ’No csv data found.’

df = pd.DataFrame()

for file in files:
df = df.append(pd.read_csv(file))

return df

def make_modulation_representation(_path):
"""
Return time-averaged, complex valued STRF. (freq x scale x rate)
"""
sr, x = read_wav(_path)
tmp = strf(x, sr, duration=-1)
tmp = np.abs(tmp)
return np.mean(tmp, axis=0)

def replace_path_to_local(_path):
"""
Replace path with path to local file.
"""
dir_, file_ = os.path.split(_path)
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tmp = dir_.split("/")
tmp[0] = SYN_PATH
tmp = ’/’.join(tmp)

return os.path.join(tmp, file_)

def timbre_toolbox(filepath, _eng):
"""
Coupled to script ‘pyTimbre.m‘
"""

_data = _eng.pyTimbre(filepath, nargout=5)

descriptor_names = [
’energy’,
’spectral_centroid’,
’spectral_crest’,
’spectral_flatness’,
’odd_even_ratio’,

]

out_ = {}

for i, _datum in enumerate(_data):
out_[descriptor_names[i]] = matlab2np(_datum)

return out_

if __name__ == ’__main__’:

# Flags.
use_timbre_toolbox = False
use_auditory_model = True

# Pickle file paths.
timbretoolbox_name = ’TT_features.pickle’
timbretoolbox_pickle_path = os.path.join(DATA_PATH, timbretoolbox_name)

auditory_name = ’modulation_features.pickle’
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auditory_pickle_path = os.path.join(DATA_PATH, auditory_name)

# Generate data.
eng = init_matlab()

df = load()
df = extract_trials(df)

paths = df[’stimulus’].tolist()

all_tt_data = []
all_aud_data = []

for path in tqdm(paths):
localpath = replace_path_to_local(path)

if use_timbre_toolbox:
tt_data = timbre_toolbox(localpath, eng)
tt_data[’stimulus’] = path

all_tt_data.append(tt_data)

if use_auditory_model:
aud_data = dict()
aud_data[’strf’] = make_modulation_representation(localpath)
aud_data[’stimulus’] = path

all_aud_data.append(aud_data)

if use_timbre_toolbox:
save_pickle(timbretoolbox_pickle_path, all_tt_data, force=False)

if use_auditory_model:
save_pickle(auditory_pickle_path, all_aud_data, force=False)

# if debug:
# from src.util import load_pickle
# import pandas as pd
#
# tmp = load_pickle(pickle_path)
# tmp = pd.DataFrame(tmp)
#
# test = pd.merge(tmp, df, on=’stimulus’)
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# print(test)

B.6 data util.py
from glob import glob
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
from sklearn.preprocessing import QuantileTransformer

from defaults import DATA_PATH, MAX_INTEGER

def anova_prep(df):
df = df.groupby([’subjectNo’, ’condition’])[’response’].mean()
df = df.unstack()
tmp = []
for subject in df.index:

for condition in df.loc[subject].keys():
tmp.append(

{
’subjectNo’: subject,
’condition’: condition,
’rating’: df.loc[subject, condition],

}
)

return pd.DataFrame(tmp)

def average_condition_rating_within_subject(df):
tmp = df.groupby([’subjectNo’, ’condition’])[’response’].mean()
return tmp.unstack()

def average_std_of_ratings(df):
return df.groupby([’subjectNo’, ’condition’])[’response’].std().\

groupby(’condition’).mean()

def box_plot(df, study_type, savefig=False, dpi=300):
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tmp = df.groupby([’subjectNo’, ’condition’])[’response’].mean()
tmp = tmp.unstack()
tmp.columns = [s.replace(’_’, ’ ’) for s in tmp.columns]
plt.figure(figsize=(16, 6))
sns.boxplot(data=tmp)
plt.ylabel(’rating’)
plt.xlabel(’condition’)
if savefig:

plt.savefig(f"figs/study_type_{study_type}_boxplot.png", dpi=dpi)
else:

plt.show()

def extract_condition(df):
if ’condition’ not in df:

def process(x):
return "_".join(x[-1].split(’_’)[:-1])

df[’condition’] = df[’stimulus’].str.split(’/’).apply(process)
return df

def extract_subject(df):
if ’subjectNo’ not in df:

df[’subjectNo’] = df[’stimulus’].str.split("/").apply(
lambda x: x[1].split("_")[1])

return df

def extract_trials(df):
df = df[df[’trial_type’] == ’audio-slider-response’]
df = df[˜df[’stimulus’].str.contains("train")]
return df

def filter_by_basic(df, threshold=0.6):
"""Find subjectNo where the BASIC condition was rated below threshold."""
tmp1 = df[df[’condition’] == ’BASIC’].groupby([’subjectNo’])[

’response’].min() > threshold
tmp2 = tmp1[tmp1]
print(f"N = {len(tmp2)}")
return df[df[’subjectNo’].isin(tmp2.keys())]
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def filter_by_control(df, threshold=0.6):
"""Find subjectNo where the CONTROL was rated greater than threshold."""
tmp1 = df[df[’condition’] == ’CONTROL’].groupby([’subjectNo’])[

’response’].min() > threshold
tmp2 = tmp1[tmp1]
print(f"N = {len(tmp2)}")
return df[df[’subjectNo’].isin(tmp2.keys())]

def get_good_participants(num_reject=2):
"""Filter participants by number of rejections"""

pattern = os.path.join(DATA_PATH, ’participant_demographic_data/*.csv’)
files = glob(pattern)

df = pd.DataFrame()

for i, file in enumerate(files):
tmp = pd.read_csv(file)
tmp[’phase’] = i
df = df.append(tmp)

return df.query(f’status == "APPROVED" and num_rejections <= {num_reject}’)[
’participant_id’]

def get_num_subjects(df):
return len(df[’subjectNo’].unique())

def get_summary(df):
tmp1 = df[[’condition’, ’response’]].groupby(’condition’).mean()
tmp2 = df[[’condition’, ’response’]].groupby(’condition’).std()

tmp3 = pd.DataFrame()
tmp3[’mean’] = tmp1[’response’]
tmp3[’std’] = tmp2[’response’]
return tmp3
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def group_quantile_transform(series):
quantiler = QuantileTransformer()
return np.squeeze(quantiler.fit_transform(series.values.reshape(-1, 1)))

def isolate_study(df, study_type):
assert not df[df[’studyType’] == study_type].empty, ’Returns no trials.’
return df[df[’studyType’] == study_type]

def load(pattern=’prolific/*.csv’):
pattern = os.path.join(DATA_PATH, pattern)

files = glob(pattern)
assert files, ’No csv data found.’

df = pd.DataFrame()

for file in files:
df = df.append(pd.read_csv(file))

return df

def load_and_clean_data(num_reject=10000):
df = load()
df = extract_trials(df)
df = normalize_slider(df)
df = extract_subject(df)
df = extract_condition(df)
df = min_max_norm(df)

# Filter by participants having few rejections.
gp = get_good_participants(num_reject=num_reject)
df = df[df[’prolificID’].isin(gp)]

df = df.reset_index(drop=True)
return df.drop(

[’view_history’, ’trial_type’, ’internal_node_id’, ’studyID’,
’sessionID’, ’url’, ’slider_start’],

1
)
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def load_tt_descriptors():
tmp = pd.read_csv(’./timbre_toolbox_features/Median_PowSTFTrep.csv’)
tmp.columns = ["STFT__" + col + "Med" for col in tmp.columns]
stft_median_df = tmp.rename(columns={’STFT__SoundFileMed’: ’stimulus’})

tmp = pd.read_csv(’./timbre_toolbox_features/IQR_HARMrep.csv’)
tmp.columns = ["HARMONIC__" + col + "IQR" for col in tmp.columns]
harmonic_iqr_df = tmp.rename(columns={’HARMONIC__SoundFileIQR’: ’stimulus’})

tmp = pd.read_csv(’./timbre_toolbox_features/IQR_PowSTFTrep.csv’)
tmp.columns = ["STFT__" + col + "IQR" for col in tmp.columns]
stft_iqr_df = tmp.rename(columns={’STFT__SoundFileIQR’: ’stimulus’})

tmp = pd.read_csv(’./timbre_toolbox_features/Median_HARMrep.csv’)
tmp.columns = ["HARMONIC__" + col + "Med" for col in tmp.columns]
harmonic_med_df = tmp.rename(columns={’HARMONIC__SoundFileMed’: ’stimulus’})

tmp = pd.merge(stft_median_df, harmonic_iqr_df, on=’stimulus’)
tmp = pd.merge(tmp, stft_iqr_df, on=’stimulus’)
tmp = pd.merge(tmp, harmonic_med_df, on=’stimulus’)

def reformat_stimulus(x):
_tmp = x.replace(’__’, ’/’)
return ’audio/’ + _tmp + ’.wav’

tmp[’stimulus’] = tmp[’stimulus’].transform(reformat_stimulus)
return tmp

def max_time_elapsed(df):
"""Returns the max time elapsed in minutes."""
return df.groupby(’subjectNo’)[’time_elapsed’].max() / 1000 / 60

def min_max_norm(df):
min_ = df.groupby(’subjectNo’)[’response’].transform(’min’)
max_ = df.groupby(’subjectNo’)[’response’].transform(’max’)
df[’response’] = (df[’response’] - min_) / (max_ - min_)
return df
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def normalize_slider(df):
already_normalized = (df[[’response’, ’slider_start’]] <= 1).all().all()
if not already_normalized:

df[[’response’, ’slider_start’]] = df[[’response’,
’slider_start’]] / MAX_INTEGER

return df

def response_histograms(df, bins=20):
# Get subject’s average rating per condition.
tmp = average_condition_rating_within_subject(df)
for i, col in enumerate(tmp):

plt.subplot(1, 2, (i % 2) + 1)
plt.title(col)
plt.hist(tmp[col], bins=bins)
if i % 2 == 1:

plt.show()

def within_subject_correlation(_df, _feature, _method):
"""Group by subject, get correlation with response, mean over subjects."""
return _df.groupby(’subjectNo’)[_feature].corr(

_df[’response’], method=_method
).mean()

B.7 analysis.py
"""
Trim, condition, extract pitch and spectral envelope from signals.
"""

import os
import pyworld as pw

from glob import glob
from scipy.signal import find_peaks, decimate

from defaults import ANA_PATH, PITCH_RATE
from util import (

force_mono,
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get_amp_envelope,
low_pass,
normalize,
read_wav,
trim_to_duration,
trim_silence

)

# Flags.
VERBOSE = False

# Analysis parameters.
excerpt_in = 0.75
excerpt_dur = 1.75
silence_db = -5
pitch_lp = 10
which_peak = 4
amp_env_cutoff = 25.

pattern = os.path.join(ANA_PATH, ’*.wav’)
audio_files = glob(pattern)
assert audio_files, "Pattern {} yields no results.".format(pattern)

# Calculations.
pitch_period_ms = 1/PITCH_RATE * 1000

single_cycles = []

for path in audio_files:
basename = os.path.basename(path)

if VERBOSE:
print(’Reading {}...’.format(basename))

sr, x = read_wav(path)

x = force_mono(x)
x = normalize(x)
x = trim_silence(x, threshold=silence_db, sr=sr)
x = trim_to_duration(x, excerpt_in, excerpt_dur)

if VERBOSE:
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print(’WORLD analysis...’)

_f0, t = pw.dio(x, sr, frame_period=pitch_period_ms)
f0 = pw.stonemask(x, _f0, t, sr)
sp = pw.cheaptrick(x, f0, t, sr)
ap = pw.d4c(x, f0, t, sr)

# Remove the first sample, which is always 0 Hz.
tmp_f0 = f0[1:]
tmp_f0 = low_pass(tmp_f0, pitch_lp, PITCH_RATE)

# Add ‘1‘ to compensate for the subtracted index above.
peaks = find_peaks(tmp_f0)[0]
peaks += 1

# Extract one vibrato period.
assert which_peak < len(peaks)
if VERBOSE:

print(’Detected {} peaks. Choosing peak {}.’.format(
len(peaks), which_peak

))

start = peaks[which_peak]
end = peaks[which_peak + 1]

start_sr = int(round(start / PITCH_RATE * sr))
end_sr = int(round(end / PITCH_RATE * sr))

# TODO
# amp_env = get_amp_envelope(x, cutoff=amp_env_cutoff, sr=sr)
# amp_env = amp_env[start_sr:end_sr]

single_cycles.append(
{

’filename’: basename,
’env’: sp[start:end, :],
’f0’: f0[start:end],
’sr’: sr,

}
)
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B.8 defaults.py
"""
Defaults and globals.

Note, users will have to specify their own path to the Timbre Toolbox.
"""

import os

class RealPath:
"""
Convenient way to generate absolute file-paths.
"""
def __init__(self):

self.here = os.path.dirname(__file__)

def __call__(self, relative_path):
return os.path.realpath(

os.path.join(self.here, relative_path)
)

# Small value.
EPS = 1e-8

# Large value for data analysis.
MAX_INTEGER = 2**53 - 1

# Sample rates.
SAMPLE_RATE = 44100
PITCH_RATE = 200

# Relevant file paths.
real_path = RealPath()

ANA_PATH = real_path(’../audio/ana’)
SYN_PATH = real_path(’../audio/syn’)
DATA_PATH = real_path(’../data’)
TIMBRE_TOOLBOX_PATH = real_path(’../matlab/timbretoolbox’)
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