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Abstract 

The field of computational chemistry has grown rapidly and is becoming increasingly more 

sophisticated and accurate over the past few years and decades. Owing to its multidisciplinary 

nature, it has been applied to a variety of different fields, including drug discovery and medicinal 

chemistry. Traditionally, drug discovery has been a costly and laborious task, requiring upwards 

of billions of dollars and decades for each approved pharmaceutical. As a result, increases in 

efficiency would greatly benefit humanity and the pharmaceutical industry for treating various 

diseases. To this end, molecular docking methods attempt to reduce the time and labour costs by 

evaluating the binding of small molecules to proteins or nucleic acid receptors in silico. This is 

done during the initial drug discovery stages, where billions of pharmaceuticals in a ligand library 

could be screened virtually, quickly, and inexpensively. Despite the imperfect accuracy of in silico 

docking, its usefulness arises from its ability to enrich compound libraries, allowing medicinal 

chemists to select drug candidates, which are most promising for synthesis and testing. This has 

been applied to a variety of medicinal chemistry projects involving protein targets. 

Recently, it has been realized that DNAs and RNAs are excellent targets of 

pharmaceuticals, as evidenced by the discovery of two molecules, branaplam and ribocil. This has 

ushered in a new era for pharmaceutical companies, known as the “RNA gold rush”. Unfortunately, 

biochemical differences between nucleic acids and proteins have made it challenging to accurately 

dock molecules to the former. One of these biochemical differences is attributed to the role of 

water molecules found and involved in the binding of ligand molecules to nucleic acids, which are 

rarely found in protein binding sites. Consequently, to improve the accuracy of nucleic acid 

docking, a method to predict the positions of these water molecules was developed. This method, 

SPLASH’EM, places water molecules based on a previous statistical survey of water hotspots in 

existing nucleic acid structures from the Protein Data Bank and also uses a specialized force field. 

To our knowledge, this method is the first fully automated procedure for water placement and is 

the only well-validated method to-date, for water placement for nucleic acids. SPLASH’EM was 

found to have achieved the highest accuracy to-date for predicting tightly-bound water molecules 

in nucleic acid-ligand complexes. 
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In a parallel effort, further efforts to improve the enrichment capabilities of docking 

programs was undertaken. This was done by improving the description of the conformational 

energy landscapes of ligands binding to proteins and nucleic acids. Traditionally, molecular 

mechanics force fields have been used in place of quantum mechanics during docking, due to their 

low computational costs, despite losses in accuracy. In particular, the torsional parameters in these 

molecular mechanics force fields were identified as being poor, as they relied upon a limited 

number of parameters, called atom-types, which were found to poorly transfer between different 

molecules. Consequently, a conceptually novel approach was taken to predict torsional parameters, 

based on chemical principles, without reliance on atom-types. This method, called H-TEQ, was 

found to significantly outperform the accuracy of existing methods, including GAFF2, MMFF94, 

and MAB on small druglike molecules. The adoption of H-TEQ to enhance the description of 

torsional parameters, along with better descriptions of van der Waals and electrostatic interactions, 

would allow enhancements to the ability of docking programs to correctly identify active 

compounds, during drug discovery projects. 
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Résumé 

Le domaine de la chimie computationnelle s’est rapidement développé et est devenu de plus en 

plus sophistiqué et précis au fil des dernières années et décennies. Grâce à sa nature 

pluridisciplinaire, elle a été utilisée dans des domaines variés, tels que la découverte de 

médicaments et la chimie médicinale.  Traditionnellement, la découverte de médicaments est une 

tache coûteuse et laborieuse, nécessitant des milliards de dollars et des décennies pour chaque 

médicament approuvé. En conséquence, une amélioration de l’efficacité bénéficierait à l’humanité 

et à l’industrie pharmaceutique dans le traitement de diverses maladies. Dans cette optique, les 

méthodes d’amarrage moléculaire tentent de réduire le temps et le travail nécessaires en évaluant 

la liaison de petites molécules à des protéines ou des acides nucléiques in silico. Ceci est réalisé 

lors des étapes initiales de découverte de médicaments, où des milliards de produits 

pharmaceutiques, dans une bibliothèque de ligands, sont passés au crible virtuellement, rapidement 

et de façon peu coûteuse. Malgré la précision imparfaite de l’amarrage in silico, son utilité vient 

de sa capacité à enrichir les bibliothèques de molécules, permettant aux chimistes médicinaux de 

choisir des molécules candidates plus prometteuses en termes de synthèse et de d’essai. 

Il a récemment été découvert que l’ADN et l’ARN sont d’excellentes cibles pour les 

médicaments, comme le prouve la découverte de deux molécules : le branaplam et le ribocil. Ceci 

a marqué l’entrée des compagnies pharmaceutiques dans une nouvelle ère appelée la ‘ ruée vers 

l’or ARN’. Malheureusement, les différences biochimiques entre acides nucléiques et protéines 

ont rendu l’amarrage de molécules à ces dernières peu précis. Une des différences biochimiques a 

été attribuée au rôle des molécules d’eau impliquées dans la liaison de ligands aux acides 

nucléiques, qui sont rarement présentes aux sites de liaison des protéines. Par conséquent, afin 

d’améliorer la précision de l’amarrage aux acides nucléiques, une méthode a été développée afin 

de prédire la position de ces molécules d’eau. Cette méthode, SPLASH’EM, est une méthode basée 

sur un champ de force, et possède jusqu’à présent la meilleure précision.  

Dans un effort parallèle, des efforts supplémentaires ont été réalisés afin d’améliorer 

l’enrichissement des capacités de programmes d’amarrage. Ceci a été réalisé en améliorant la 

description du paysage énergétique conformationnel des ligands liés aux protéines et aux acides 

nucléiques. Traditionnellement, les champs de force de mécanique moléculaire ont été utilisés à la 
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place de la mécanique quantique lors de l’amarrage, grâce à leur faible coût computationnel, 

malgré des pertes de précision. En particulier, les paramètres de torsion dans ces champs de force 

de mécanique moléculaire ont été identifiés comme étant médiocres, étant donné qu’ils s’appuient 

sur un nombre limité de paramètres, appelés type d’atomes, qui sont mal transférés d’une molécule 

à l’autre. Par conséquent, une nouvelle approche conceptuelle a été utilisée afin de prédire les 

paramètres de torsion, basé sur des principes chimiques, sans s’appuyer sur les types d’atomes. 

Cette méthode, appelée H-TEQ, a permis de surclasser la précision de méthodes existantes, telles 

que GAFF2, MMFF94 et MAB sur des petites molécules semblables à des médicaments. 

L’utilisation d’H-TEQ afin d’améliorer la description des paramètres de torsion, ainsi que des 

meilleures descriptions des interactions de Vander Waals et électrostatiques, permettrait 

d’améliorer l’enrichissement des capacités des programmes d’amarrage, lors de projets de 

découverte de médicaments.  
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1   Introduction to Molecular Mechanics Force Fields for Simulating Nucleic 

Acids and Applications to Drug Discovery and Dynamics 

 

 

 

1.1   Preface 

This chapter introduces the discipline of molecular mechanics force fields as pertinent to the 

simulation of nucleic acids and its applications to the field of drug discovery. Despite the 

usefulness of innovations in computational chemistry over the years, there are still many 

challenges in the field. Some of these challenges are presented in this chapter, with subsequent 

Chapters 2-5, proposing solutions to these problems and addressing these key issues. The 

advancements made in these subsequent chapters should be useful for future drug discovery 

projects.  

 

This chapter is based on work from: Wei, W.; Moitessier, N., Status of Molecular Mechanics Force 

Fields for Nucleic Acid Modelling and Simulations. Manuscript in Preparation. 

Author contributions: I performed the literature review, analysis, and write-up of the manuscript. 

Prof. Nicolas Moitessier and I designed the layout of this review article.  
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1.2   Introduction 

Nucleic acids are biomolecules that are found across all domains of life and viruses, which play 

crucial roles in storing genetic information, signaling, and catalyzing essential, life-sustaining 

reactions.1 The importance of nucleic acids in living organisms has inspired the development of 

many in silico methods in computational chemistry to better predict various biochemical and 

physiological properties. In recent years, scientific endeavors in nucleic acid research has 

dramatically improved our understanding, and given rise to new potential therapies to combat 

diseases.2, 3  

The aim of this review is to introduce and discuss the utility, historic developments, and 

the status of molecular mechanics (MM) force fields (FFs) for modelling and simulating nucleic 

acids. These topics are introduced in several stages. Firstly, the basic structures and functions of 

nucleic acids will be discussed. This would be helpful for familiarizing the reader to subsequent 

parts of this review. Secondly, promising nucleic acid therapies and pharmaceuticals are examined. 

Thirdly, a wide range of computational chemistry methods for studying nucleic acids are 

summarized. These in silico methods would be focused on those which make use of MM FFs. 

Fourthly, a more in-depth inspection of MM FFs, including historical developments and the state-

of-the-art, is performed. Lastly, this review points at shortcomings in current nucleic acid FFs and 

possible future directions and developments. 

1.3   Nucleic Acids Functions 

Nucleic acids are found across all domains of life and viruses. All living organisms store their 

genetic information in the form of deoxyribonucleic acids (DNAs), wrapped into folded 

chromosomes, which act as the blueprint to direct cellular activities and functions. In contrast, 

ribonucleic acids (RNAs) are used to store genetic information for a few RNA viruses including 

influenza,4 SARS-CoV-2,5 and HIV.6 In living organisms, RNAs are primarily involved in the 

protein synthesis processes.7 For a protein molecule to be synthesized, the genetic information 

found in DNA must first be read and transcribed into an messenger RNA (mRNA) molecule by 

various transcription proteins.8 Subsequently, the mRNA is sent to and interpreted by the 

ribosomal RNA (rRNA), which is a major component of the protein translation process.9 
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Aminoacyl-transfer RNAs (aa-tRNAs) are couriers which deliver the correct amino acids to the 

rRNA during protein translation.10 

Besides their involvement in protein synthesis, RNAs also regulate gene expression using 

various mechanisms. MicroRNAs (miRNA)11 and X-inactive specific transcript (Xist)12 are 

naturally occurring nucleic acid molecules involved in the gene silencing pathways for specific 

chromosomal elements. Following their discoveries, RNA interference (RNAi) has been an active 

area of therapeutic research aimed at employing artificially introduced small interfering RNAs 

(siRNAs) for highly specific and targeted gene-silencing.13 The involvement of RNAs in many 

key areas of biology has led various researchers to propose the “RNA world” hypothesis. It 

postulated that in the past, all cellular activities were performed by RNAs prior to the emergence 

of proteins.14 In fact, the discovery of ribozymes,15 RNAs capable of catalyzing biochemical 

reactions in 1982, and that of riboswitches,16-18 cis-regulatory elements found on the mRNA of 

certain species in 2002, further reinforced the idea that life may have been possible prior to the 

evolution of proteins. 

1.4   Nucleic Acid Structure 

Structurally, DNAs and RNAs are made up of repeating nucleotide subunits with three distinct 

components: a nitrogenous base, an aldopentose sugar, and a phosphate group.19  Five common 

nitrogenous bases exist. While adenine (A), guanine (G), and cytosine (C) are found in both DNA 

and RNA, thymine (T) is exclusively found in DNA while uracil (U) is found in RNA. A sixth 

nucleobase, hypoxanthine (I) is also frequently found in tRNAs.20 Nucleobase modifications, such 

as methylation, are also found in both DNA and RNA; these fields of study are termed epigenetics 

and epitranscriptomics, respectively.21, 22 Nitrogenous bases could be classified into two groups, 

purines (eg. A, G, and I) and pyrimidines (C, T, and U), based on their chemical structures. While 

the former is bicyclic and aromatic, the latter possesses only a single aromatic ring.  

In most structures of DNA and RNA, Watson-Crick base pairing occurs.23 Complementary 

nitrogenous bases hydrogen bond with each other to create a double helix of a consistent width. 

While C pairs with G via three hydrogen bonds, A pairs with T (in DNA) and U (in RNA) via two 

hydrogen bonds (Figure 1.1). Besides Watson-Crick base pairing, other non-canonical base 

pairing could also be found, including Hoogstein base pairing often found in DNA and RNA G-

quadruplexes (DNA-G4s and RNA-G4s). In these structures, the glycosidic bond connecting the 
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nitrogenous base to the aldopentose sugar is rotated 180° from its normal anti geometry, leading 

to the cis conformation. Unlike Watson-Crick base pairing, Hoogstein base pairing always has two 

hydrogen bonding interactions. Wobble base pairing, which are base pairing not fulfilling Watson-

Crick rules, is frequently found in tRNA molecules for codon-anticodon recognition during protein 

translation.20, 24, 25 In fact, the third base pair during codon recognition is able to bind via Wobble 

base pairing. The recognition of these pairs, in addition to Watson-Crick, allows each codon to 

bind to and recruit more than one tRNA. Wobble base pairing occurs most frequently between G 

and U; I and U; I and A; A and C; and I and C. In addition to these, other base pairing modes also 

exists, including reverse-Watson-Crick base pairing, in which the UO4 rather than UO2 hydrogen 

bonds with AN6.25  

Base stacking interactions between adjacent nucleobases also confers additional stability 

upon the overall nucleic acid structure. This π-π stacking interaction could be caused by the unique 

π-cloud surrounding an aromatic system and plays an important role during intercalator binding 

between DNA or RNA bases. 
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Figure 1.1. Canonical Watson-Crick (left) compared to Hoogsteen (right) base pairing. The 

guanine nucleotide is in the anti- and syn-conformation in the Watson-Crick and Hoogsteen base 

pairing, respectively. 

Aldopentose sugars of nucleotides are connected to the nucleobases via the β-glycosidic 

bond, called the χ torsion angle (Figure 1.2). While D-2-deoxyribose sugars are present in DNAs, 

RNA nucleotides possess D-ribose sugars. Despite differing by just a 2’-OH group, it has major 

implications in stability and function. Structurally, the sugars of nucleic acids adopt distinct 

conformations, described using the pseudorotation phase angle (P), based on the torsion angles of 

the furanose ring, which are labelled δ0-4.
26, 27 Ѱ could be calculated according to equation 1.1 and 

could range between 0° and 360°. Although all values of Ѱ are possible, only two regions are 

heavily populated in naturally occurring nucleic acids (Figure 1.3). Ѱ values between 0° and 36° 

correspond to C3’-endo conformation, which almost all nucleotides of A-form DNA and RNA 

adopt. This is also called the Northern sugar pucker conformation due to its position on the 

pseudorotational compass. In contrast, the commonly occurring B-forms of DNA and of the rarer 

RNA is called the Southern sugar pucker or C2’-endo conformation and possesses Ѱ values 

between 144° and 180°. The nucleotides of Z-form DNA and RNA could adopt both the Northern 

and Southern sugar pucker conformations.  It should be noted that while both A- and B-forms of 
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nucleic acids are right-handed helices, Z-forms are left-handed. Chemically, it is known that Ѱ is 

determined by a combination of steric, electrostatic, hydrogen bonding, hyperconjugation, and 

solvation effects.28-30 Synthetically modified nucleic acids, called xeno nucleic acids (XNA), could 

modulate the conformational preferences of sugar puckering.31, 32 Consequently, this approach is 

currently being pursued by research groups around the world in order to obtain the desired 

conformations and functions in various therapeutic areas (e.g. RNAi).33 In nature, sugar puckering 

has important implications for recognition by various protein machinery, including those involved 

in replication, transcription, and translation.34, 35 

 

 

Figure 1.2. Definition of various torsional angles found in nucleic acids.  

 

Equation 1.1. Equation for calculating the pseudorotational angle of sugars.  

Ѱ = tan−1
−𝛿0+𝛿1−𝛿3+𝛿4

2𝛿2 (sin 36°+sin72°)
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Figure 1.3. All possible pseudorotational angles and selected conformations of the nucleic acid 

aldopentose sugar are shown. Red labels indicate conformations frequently found in naturally 

occurring nucleic acids. Superscripted and subscripted numbers preceding E or T indicate endo- 

and exo-positions, respectively. 

The sugar subunits in nucleic acids are attached via their 5’- and 3’-carbon of the sugar 

atoms by phosphodiester bonds of phosphate groups. Torsional bond of O3’-P-O5’-C5’ is known 

as the α torsion angle, while the P-O5’-C5’-C4’ is known as the β torsion angle (Figure 1.2). 

Similarly, the torsional bond of O5’-P-O3’-C3’ is known as ζ torsion angle while the P-O3’-C3’-

C4’ is known as the ε torsion angle. In nucleic acids, phosphate groups are important for ligand 

recognition and binding. Like aldopentose sugars, phosphate dihedral angles could vary depending 

on the nucleic acid state (i.e. type-A, type-B, or type-Z conformations, Figure 1.4). In type-A 

nucleic acids, the distance between the 5’- and 3’-O are smaller than in that of the B-form, reducing 

the distance between adjacent nucleotides. Even within the same states, variations in phosphate 

dihedral angles could occur, known as AI, AII, BI, BII, ZI, and ZII substates of DNA and RNA.36-38 

Although AI and AII have similar Ѱ and sugar puckering, they differ in their α, β, and γ torsional 

angles.38 In the AI substate, average torsional angles of 201°, 294°, and 172° were previously 

observed for α, β, and γ, respectively by Sims et al (2003) based on a statistical survey of the 

nucleic acid database (NDB).38, 39  In contrast, AII substate had torsional values of 188°, 145°, and 

190° for α, β, and γ, respectively. Of these conformations, the AI substate is the canonical and more 
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energetically favorable. The differences between BI and BII substates correspond to ε and ζ 

torsional angles, which are coupled. While BI takes on ε and ζ values between 120°-210° and 235°-

295°, respectively; the less energetically stable BII has values between ε = 210°-300° and ζ = 150°-

210°, respectively.37, 38, 40 Often, a single combined metric is used: ε-ζ, which is approximately -

90° for BI and +90° for BII substates. ZI and ZII populations also differ in the ζ and β of the 

subsequent nucleotide torsional angles.41 In nature, frequent transitions between various states and 

substates have been observed. In fact, the relative populations of these nucleic acid states in 

simulations have been used to verify their accuracies.  

 

Figure 1.4. A-, B-, and Z-forms of DNA are shown. Each type of helix has different geometrical 

properties, such as width, rise per base, and directionality of turn. RNA could also adopt these 

geometries.  

1.5   Nucleic Acids as Pharmaceutical Targets 

Nucleic acids have been of therapeutic interest for several decades. Recently, computational 

chemistry methods have been applied to many different areas of therapeutic research to yield useful, 

insightful, and efficient predictions. Although not exhaustive, this section lists some areas of 

research that are of high relevance and importance for future pharmaceutical developments against 

nucleic acid targets. The promise of these therapeutic areas of research have inspired and would 

continue to inspire future developments in computational chemistry.   

RNA riboswitches are promising therapeutic targets for antibiotics due to their high 

prevalence across members of different bacterial species and their absence in mammalian mRNAs. 

The binding to these aptamer regions of metabolites16-18 and druglike2 molecules was shown to 
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inhibit either mRNA transcription or protein translation (upregulation upon riboswitch binding is 

rare). In fact, ribocil was found to be an active inhibitor of the bacterial FMN riboswitch, involved 

in the riboflavin homeostasis pathway (Figure 1.5 and Figure 1.6A). Another RNA class which 

show promise as pharmaceutical targets include expanded repeats.42 In humans, repetitive codons 

of 20~30 are indicative of normal mRNAs. Unfortunately, however, repetitive trinucleotide 

segments of several hundreds to thousands indicate neuronal diseases. The former causes the 

recruitment of excess amount of the cell’s splicing machinery, leading to many misspliced protein 

isoforms. Although a permanent cure is difficult to attain, small molecules were found to bind and 

lead to the synthesis of correctly spliced proteins.3, 42 Of notable progress in this area has been the 

pharmaceutical, branaplam, which was shown to be effective against spinal muscular atrophy, 

which entered phase-II clinical trials in 2017 (Figure 1.6B). 3, 43 Over the past few decades, 

antibiotics were shown to inhibit rRNA of bacteria and viruses, thereby interfering with the protein 

translation machinery.44 These include tetracyclines and other molecules (Figure 1.6C). 

Collectively, these promising results have piqued the interest of the scientific community in 

attempting to target RNAs with pharmaceuticals. Colloquially, this new focus is known as the 

“RNA gold rush”.45, 46  

 

Figure 1.5. Crystal structure of ribocil (ball and stick model) bound to the aptamer domain of 

FMN riboswitch (cartoon and wireframe model, PDB ID: 5C45).  
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Figure 1.6. Small molecular RNA inhibitors and pharmaceuticals are shown. A) Ribocil is an 

inhibitor of FMN riboswitch, which was found to disrupt bacterial riboflavin homeostasis. B) 

Branaplam is a promising drug candidate for spinal muscular atrophy. C) Tetracycline is an 

antibiotic known to bind bacterial rRNA. 

 DNAs have also been the subject of interest as pharmaceutical targets for a variety of 

different diseases, including viral, bacterial, and oncogenic illnesses. During viral infections, the 

DNA of these pathogens becomes incorporated into that of the host genome. Subsequently, viral 

DNA polymerase rapidly catalyzes DNA replication to further infect more host cells. Antivirals, 

such as acyclovir, were found to be effective in blocking DNA polymerases of diseases such as 

herpes viruses by imitating the structure of nucleosides (Figure 1.7A).47 These antivirals lack a 3’-

OH group, which makes subsequent nucleoside incorporation impossible, terminating DNA 

replication. In the past, DNA-intercalating bacteriostatic, such as proflavine, were used for wounds 

sterilization (Figure 1.7C).43 However, its mutagenic and harmful effects on human epithelial cells 

discontinued its use.48 Proflavine disrupts the Watson-Crick base pairing of DNA through 

intercalation, leading to frameshift mutation or base deletion.49 Lead optimization is currently 

being performed to identify compounds with similar properties but greater specificity against 

bacterial DNAs.48  

In targeting oncogenes in the human body, several DNA targets are available. One of these are 

DNA-G4s, found on the ends of chromosomes.50 As suggested by their names, they are four-

stranded helices composed of guanines which are stabilized by Hoogstein base pairing. In normal 

cells, telomeric regions of chromosomes, where DNA-G4s are found, shorten with each cycle of 

DNA replication through the natural progression of aging.51 Unfortunately, hyperactive 
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telomerases repair and elongate the telomere region in cancer cells, allowing them to achieve 

immortality.52 Human therapeutic research efforts are currently underway to prevent telomerase 

activity by attempting to stabilize DNA-G4 structures. 53-55 This is done by identifying small 

molecules known to prevent telomerase binding in cancer cells. Potential pharmaceuticals include 

[16]phenN4, which is a phenanthroline polyazamacrocycle (Figure 1.7B).56 Other DNA elements 

could also be targeted using small molecules, including alkylating agents, which induce chemical 

modifications to DNAs to kill cancer cells during chemotherapy.57 These include chemotherapy 

drug such as 1,4-butanediol dimethanesulfonate (Figure 1.7D). However, this process could have 

severe side-effects due to the relatively nonspecific localization of these alkylating agents in the 

human body. 

In recent years, DNA gene-editing methods using CRISPR-Cas 9 pathways have gained 

widespread excitement and attention for their potential to cure genetic diseases.58-60 However, this 

technology is still relatively young, and would require many more years of safety testing prior to 

being widely adopted for use as therapeutics. 

 

Figure 1.7. Small molecule DNA inhibitors and pharmaceuticals are shown. A) Acyclovir is an 

essential drug, which causes early termination during viral replication in many diseases. B) 

[16]phenN4 are promising G4-binders which could have antitumor abilities. C) Proflavine is a 

bacteriostatic compound, which was used for sterilization. D) 1,4-butanediol dimethanesulfonate 

is an akylating agent used during chemotherapy. 

1.6   Use of Molecular Mechanics Force Fields in Computational Chemistry 

Over the past few decades, the ability to simulate nucleic acids at the atomic resolution has been 

useful for understanding a variety of different biochemical phenomena. In tandem with 
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experiments, investigations into nucleic acid dynamics and stabilities using MD simulations have 

been fruitful and produced many insightful predictions. In addition, the use of computational 

chemistry methods, employing MM, are rapid and affordable compared to many traditional 

experimental techniques. With the advent of increasingly more powerful computers, their use and 

importance are growing. Some historic and hallmark computational studies of nucleic acids 

employing MM FFs are subsequently described. 

Prior to the turn of the century, hydration patterns surrounding DNA and RNA were studied 

by collecting static X-ray diffraction data.61 Although useful, this method depended on the 

resolution of the obtained crystal structures and the residence time of these water molecules (B-

factor). Although solution-based NMR structures could provide a native and dynamic depiction of 

nucleic acids, they do not contain water molecules. To understand the hydration environment of 

nucleic acids, Auffinger et al (1998) employed molecular dynamics (MD) to simulate the 

movement of water molecules around RNA nucleotides. From this study, it was discovered that 

RNA nucleotides were mostly solvated in the plane of the nucleotide (Figure 1.8A),62 which had 

important implications for structure-based drug design (SBDD) of novel pharmaceuticals. It is 

known that desolvation and bridging water molecules are crucial for binding of nucleic acids to 

proteins and ligands.46, 63 

In other studies, various groups have used MD simulations to study substate transitions of 

nucleic acids to better understand the mechanisms affecting their stability.30, 40, 64, 65 In fact, guided 

by experimental evidences, Jayaram et al (1998) observed in silico that solvation, organization of 

counterions, and interphosphate repulsion were key factors which facilitated the transition between 

A- and B-DNA (Figure 1.8B).66 An understanding of the mechanisms affecting substates of nucleic 

acids is especially important because of its implications in protein and ligand recognition and 

binding.67, 68  

In order to calculate the relative free energies of binding between different ligands, MD 

simulations could be employed using a technique known as free energy perturbation (FEP) 

calculations.69 In this technique, the user defines both the initial and target ligands of interest. At 

the start of the MD simulation, the initial ligand is incrementally mutated, stepwise, through 

alchemical transformations into the target ligand by adjusting its associated MM parameters by a 

coupling parameter, λ. The free energy difference at each step is calculated by the Zwanzig 
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equation.69 At the conclusion of the transformation, the free energy difference between the initial 

and target ligand could be obtained. For a more complete review of FEP, readers are to referred to 

these other excellent articles.69-71 Since the landmark use of FEP by Jorgenson and coworkers,72 it 

has been applied to investigate a variety of different nucleic acid systems,73-76 including the binding 

of different ligands to RNA purine riboswitches (Figure 1.8C).77 Besides having good correlations 

with experimentally-obtained results, FEP could give insights into the detailed molecular and 

energetic mechanisms for ligand binding and discrimination.77  

 Molecular docking is another method, often used in computational chemistry, which could 

predict the free energy of binding of ligands or proteins to nucleic acids.46, 54, 78-81 Its main 

advantage over FEP is the ability to more thoroughly search the conformational space, allowing 

high energy barriers to be overcome using various docking algorithms. This has the added benefit 

of being less computationally expensive since docking is not dependent on previous timesteps and 

quickly achieves convergence. One disadvantage is that the obtained binding free energy may be 

significantly less accurate than those obtained by FEP since it relies on empirical corrections to 

conformational entropy. Both docking and FEP suffer in accuracy when receptor flexibility is 

important which is often the case for highly dynamic RNA molecules. Nevertheless, virtual high-

throughput screening (HTS) methods, using molecular docking, has been very useful in the past 

for their abilities to greatly enrich compound libraries for potential actives (Figure 1.8D).82, 83 

Virtual HTS against RNA riboswitches, to identify promising antibiotics, is currently ongoing in 

our laboratory. 

Hybrid QM/MM calculations, using both quantum mechanics (QM) and MM methods, 

have been widely used to elucidate chemical reactivities, mechanisms, and dynamics involving 

nucleic acids (Figure 1.8E).84, 85 In these multi-scale computations, molecules are usually separated 

into two or more distinct layers. While the region of greater interest (high layer) is treated using 

the computationally more expensive QM method, surrounding regions are treated using MM (low 

layer). The latter confers mechanical and electrostatic effects, which perturbs and is considered by 

the QM-region. This approach has been used successfully to study the chemical mechanisms of 

human DNA repair enzymes,84 peptide bond formation in rRNA,85 editing process in various 

aminoacyl-tRNAs,10, 86-89 and nucleotide demethylation during epigenetic modifications.90 In the 

future, with the advent of more computational power, QM/MM-MD simulations would become 
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more tractable for investigating chemical phenomena, dynamically. Currently, these simulations 

are still mostly restricted to using semiempirical methods in the high layer due to their high 

computational cost.10, 28 In addition, hybrid MM/CG (Molecular Mechanics/Coarse Grain) 

simulations have also been used to study systems of larger size. In the same manner as QM/MM 

simulations, the region of interest could be modelled using MM, while the surrounding regions are 

modelled using a CG model. Although CG models for nucleic acids exist,91 MM/CG simulations 

have mainly been applied to membrane proteins, in the context of lipid membranes.92 However, 

the option to model nucleic acids using MM/CG simulations remains open in the future. For 

example, simulations depicting viral nucleic acid release in the context of viral phospholipid 

bilayer could be performed through MM/CG calculations. 
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Figure 1.8. Various uses of MM in computational chemistry are shown. A) A hallmark 

investigation by Auffinger et al into RNA dynamics and solvation by classical MD simulations 

found that water molecules localized with high frequency in certain spatial regions (light blue).93 

B) An MD study into the equilibrium of A- and B-DNA in different solvation environments hinted 

at the possible role of cations and phosphates as the key driving force behind these transitions.66 

Higher concentration of water and ethanol induces A- and B-DNA, respectively. C) FEP study of 

purine riboswitches reproduced experimental binding free energy differences between a variety of 

ligands.77 D) Molecular docking methods could be used to quickly and inexpensively screen for 

pharmaceutically promising drug candidates (right) against a receptor of interest (left) during the 

initial drug discovery process.82 E) QM/MM simulations have been applied to investigate chemical 
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reactions and/or dynamics. For example, the conformational dynamics of nucleosides could be 

investigated. The molecular region of interest (QM) and surrounding solvents (MM) are shown in 

ball-and-stick and wire representations, respectively. 

1.7   Molecular Mechanics Force Fields for Modelling Nucleic Acids 

Although QM calculations are grounded in first principles and have theoretical basis, they are 

computationally intractable for many purposes. For example, QM optimization, QM-MD, and 

QM-based scoring functions (during in silico molecular docking) are computationally too 

demanding at the present time for large macromolecules such as DNA double helices and RNA 

riboswitches. In order to study these larger biological systems, MM FFs were conceptualized and 

employed. In contrast to QM, MM FFs are a series of empirical, potential energy functions used 

to reproduce the total energy of a molecular system.94-98 While many nucleic acid FFs exist, they 

differ in their complexity and functional forms. They could be categorized as belonging to one of 

two groups: classical or polarizable FFs.  

Classical FFs maintain simpler functional forms, which result in lower computational costs 

for simulations. For this reason, they have been widely adopted as the method of choice for 

investigating various biomolecules, including DNA and RNA. Current state-of-the-art classical 

FFs for modelling nucleic acids are the various updated parametrizations of the original Amber 

ff94 and ff99.99 Although CHARMM34 and OPLS-AA100, 101 have also been parametrized for 

nucleic acids, ff99-derived FFs have been more rigorously tested and were found to be more 

accurate, overall.102 Although not perfect, various research groups around the world have observed 

that current implementations of Amber ff99 and CHARMM produced features consistent with 

experiments (despite more testing being required).103 Amber, CHARMM, and OPLSS-AA have 

very similar functional forms. The functional form for Amber FF is shown in Equation 1.1 and 

illustrated in Figure 1.9. 

 

Equation 1.2. Potential energy functions of standard MM FFs. 
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As could be seen, the first three terms make up the bonded terms, composed of bond stretching, 

angle bending, and torsional rotation. The latter two potentials are the nonbonded terms, containing 

van der Waals and electrostatic interactions. In particular, the electrostatic term in classical FFs 

only considers fixed charges, neglecting the polarizability of molecules, which could vary 

depending on its chemical environment. For this reason, it is inherently approximate in nature. 

Central to FFs, is the concept of atom types, which are sets of parameters associated with each 

atom in the context of its chemical environment and hybridization. For example, these parameters 

include the strengths and equilibrium distances of the harmonic spring between two directly 

bonded atoms (i.e. kr and req). It also defines the torsional barrier height and the location of the 

minimum during a dihedral rotation (ie. vn and γ). Since DNA and RNA are composed of a limited 

diversity of monomers (i.e. A, C, T, G, and U), a thorough parametrization of all potentials is 

possible. The functional form of CHARMM is similar to that of Amber except it has three 

additional potentials, different sets of parameters, and the decoupling of 1-4 van der Waals 

parameters from those of other parameters.99 More specifically, this means that the van der Waals 

parameters used for 1-4 differ from those of 1-5, 1-6, and others. This is a different approach to 

that of Amber, which merely applies, by default, a scaling (down) factor of 2.0 and 1.2 for 1-4 van 

der Waals and electrostatic interactions, respectively. CHARMM uses no scaling factor for the 

electrostatic interactions. The OPLS-AA FF functional form is nearly identical to that of Amber. 
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Figure 1.9. Potential energy functions found in classical MM FFs. More advanced FFs also use 

these terms, in addition to more complex terms. 

Polarizable FFs, as their names suggest, are FFs which considers the non-static nature of 

charge-distribution of atoms in a molecule, by considering their local chemical environment.104 

Polarization have been taken into consideration in various ways, including polarizable point 

dipoles, fluctuation charge, and Drude oscillator.105 For example, AMOEBA FF employs the 

polarizable point dipoles approach, which is able to move in response to external electrostatic 
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fields, and has been parametrized for nucleic acids.106 In addition to partial charges, it also places 

fixed dipole and quadrupole charges on each atom, allowing a more accurate representation of the 

electrostatic potential of the molecule. In contrast, the Drude-2017 Nucleic Acid FF, originally 

based on CHARMM, uses two partial charges on each atom.107, 108 While the first partial charge is 

stationary and static, the second is dynamic in position and tethered to the center of the atom by a 

harmonic spring (i.e. charge-on-spring).109 In both FFs, the total electrostatic energy is calculated 

by Coulomb’s Law, taking into consideration all pairs of partial charges. Besides electrostatics, 

polarizable FFs also assume that certain motions are correlated and non-additive, leading to the 

use of cross-terms. For example, AMOEBA employs cross-terms for bond-angle, angle-torsion, 

and bond-torsion motions. Due to these more complex functional forms, it approximately doubles 

the computational cost for performing MD simulations. Although in theory, polarizable FFs have 

a higher ceiling for more accurate simulations due to the ability to have greater control of an 

extended list of parameters and the ability to tweak them for reproducing chemical phenomena, 

their accuracies have not yet been proven. In fact, it not clear if current polarizable FFs outperforms 

classical FFs in terms of the accuracy of nucleic acid simulations.110 A systematic validation of 

different FFs amongst a wide variety of different DNA and RNA structures is desperately needed 

to identify their advantages and deficiencies. Subsequently, future directions in nucleic acid FF 

development could be determined. 

It is also important to describe the conformational energy of small molecules binding to 

nucleic acids. To this end, many FFs for describing small molecules have also been devised, 

including the general Amber FF (GAFF),97 Merck Molecular Force Field (MMFF94),111 and 

OPLS,112. They are compatible with previously mentioned FFs and have similar functional forms. 

One problem facing FFs for small molecules is the size of the chemical space, which has been 

estimated to be on the order of 1060. Consequently, devising individual parameters for each 

molecule in the chemical space was not a viable option. As a result, well-known general FFs in 

the past have parametrized only a select few, representative molecules, and subsequently assumed 

transferability of these parameters for other molecules. However, this led to less accurate 

parameters since values could vary greatly even for very “similar” molecules. In the recent past, 

this has led research teams, including ours, to develop atom type free approaches, based on 

chemical principles and chemical perception.113, 114 These approaches would helpful for docking 

and MD simulations. 
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1.8   Evolution of Modern Nucleic Acid Force Fields 

The most widely used and validated FF for simulating nucleic acids are the various re-

parameterizations of Amber ff94, which was derived using available experimental and QM 

calculations.97 In this original version, torsional parameters of truncated nucleotides (see Figure 

1.2) were parametrized against gas-phase computations at the MP2/6-31G* level of theory. 

Restrained electrostatic potential (RESP), calculated at HF/6-31G*, was used due to its ability to 

reproduce the electrostatic distribution in solution. 

Since its publication, it had been used for the simulations of many nucleic acid structures, 

but soon revealed several artefacts associated with sugar puckering. The simulation of the DNA 

dodecamer d(C5T5) d(A5G5) under physiological conditions resulted in its fluctuation between A- 

and B-forms of DNA, despite the fact that B-DNA is known to be favored in nature.115, 116 (For 

geometric differences between A- and B-DNA, Figure 1.3 and Figure 1.8B could be referenced.) 

In addition, it was found that ff94 had a tendency for C2’-endo sugar puckering to be 

underestimated in B-DNA.117 Conformationally, this meant that during the simulation of DNAs, 

pseudorotational values (δ1-5) outside the experimentally observed range of 144° to 180° were 

found (Figure 1.3). Inaccuracies in the sampled populations of χ torsion angle were also found 

(Figure 1.2). These artefacts demanded a more thorough parametrization of torsional energy 

barriers. Consequently, MP2/6-31G* calculations were performed on larger, untruncated 

nucleotide models, which included the nitrogenous bases. However, DNA and RNA torsional 

parameters were not separated. This reparameterization became ff99, which became the basis for 

all present-day Amber nucleic acid FFs (Figure 1.11). It was satisfactorily able to describe the A 

→ B subtype transition in DNA duplexes and triplexes under various conditions.118  

At the turn of the century, state-of-the-art simulations were on the order of 1-10 ns. As 

computational power became more widely available, longer simulations revealed additional 

artefacts. In 2004, Várnai et al performed 50 ns of simulation of a B-DNA double helix and 

discovered α/γ torsions in the gauche+/trans instead of the experimentally observed g-/g+ geometry 

(Figure 1.10).119 This prompted Orozco and coworkers (2007) to perform extensive 

reparameterization of the α and γ torsions by performing a 2D QM surface scan at higher levels of 

theory, leading to the parmbsc0 FF (named after the Barcelona Supercomputing Centre).118 
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Figure 1.10. Newman projection of the torsional angles, α (left) and γ (right): A) as sampled by 

parm99 and B) found in nature and sampled by parmbsc0. 

The parmbsc0 FF has been used extensively for simulation of both DNA and RNA and 

was generally robust for low nanosecond simulations. However, advances in computer hardware 

allowed MD simulations on the order of microseconds, which revealed further deficiencies in the 

FF.40, 41, 65, 120, 121 Since its release, research groups around the world have proposed additional 

modifications. These changes were mostly in the forms of more accurate torsion parameters,40, 41, 

65, 120 although others have also proposed changes to the nonbonded interactions.121 During this 

time, FF torsion parameters for DNA and RNA have diverged, due to the biochemical differences 

between the two. In fact, it was found that further updates to the parameter favorable for RNA 

simulations lead to issues with DNA.41, 99, 122 

CHARMM FFs for nucleic acids, on the other hand, have also evolved over the years since 

the initial release of CHARMM22. As computational power increased over the years, it was 

realized that CHARMM22 did not reproduce a good balance between A- and B-forms of DNA 

and RNA.123 This prompted the optimization and reparameterization of various terms and 

parameters, which resulted in the newer CHARMM27. This became the basis for all current 

CHARMM nucleic acid FFs. Like the Amber class of FFs, parameters for DNA and RNA have 

since diverged due to differences in sugar puckering and solvation due to the 2’-hydroxyl. 

OPLS-AA was parametrized for nucleic acid back in the 1990s.101 While the original 

functional form was kept, it was also extensively updated recently in a similar manner to both 

Amber and CHARMM. 
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Figure 1.11. Timeline and evolution of modern type I nucleic acid FFs. Selected references are 

shown in yellow outlines.  

1.9   State-of-the-Art DNA Force Fields 

Two research groups independently improved the Amber parmbsc0 FF for simulating DNA. Both 

teams opted to keep the nonbonded interactions of the original ff99. The team led by Jurečka 

observed that certain noncanonical DNA structures were being modelled poorly using parmbsc0, 

including DNA G4s and Z-DNAs.122 To rectify these shortcomings, they performed a 

reparameterization of the χ torsion. To carry out this task, a higher level of theory was used than 

previously possible, with the inclusion of implicit solvation. This iteration was named the χOL4 

parametrization, which when used together with parmbsc0, improved the description of syn 

residues, such as parallel and antiparallel DNA G4s. Description of B-DNAs also improved 

slightly. Although, parmbsc0 with χOL4 correction did not improve Z-DNA description, a follow-

up effort in parametrizing the β torsion of DNA addressed this issue.65 In fact, this 
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reparameterization, called parmbsc0 βOL1, also bettered the conformational equilibrium of BI/BII 

and ZI/ZII DNA. In a parallel effort, the ε and ζ torsion parameters were improved by using the 

same prior approach, which further ameliorated the relative populations of B-I/B-II DNA, through 

stabilizing the ε/ζ = gauche-/trans geometry.40 (In fact, this latter strategy was also used for the 

parametrizing the CHARMM36 parameters for DNA.34) A comparison of parmbsc0 with and 

without εζOL1 corrections during simulations showed that the use of the latter improved the root-

mean-square deviation (RMSD) with respect to the original crystal structure. Taken together, these 

updated parameters are known as parmbsc0 OL15, and is one of the two FFs currently 

recommended by the Amber community for simulating DNA. 

Concurrently, a team lead by Orozco, also used implicit solvation methods to parametrize 

various torsional parameters.120 In particular, new δ0-4, ɛ, ζ, and χ torsional parameters were devised, 

and validated on nearly a hundred distinct DNA molecules, with minimal fraying at the terminal 

ends, a usual phenomenon in nucleic acid simulations. It also had improved descriptions of 

noncanonical DNAs, including DNA G4s and hairpin structures. These parameters were combined 

into parmbsc1, which is the other recommended FF for DNA simulations.  

1.10   State-of-the-Art RNA Force Fields 

Modelling RNA dynamics is especially challenging, due to its flexible nature. It has been reported 

that the Amber FFs, ff94, ff99, and parmbsc0, have similar accuracies when employed on RNAs.41 

The application of the latter FF to ribozyme on the order of 50~150 ns was found to unwind the 

double helix structure into a sense-less ladder structure.124 This was found to occur mainly due to 

RNA nucleotides sampling the high-anti region, which was not seen experimentally.122 Jurečka 

and coworkers used high-level QM calculations with implicit solvation to reparametrize the χ 

torsional angle, which was named χOL3. This modification was found to improve the description 

of RNA and prevented the ladder-like artifact from occurring. χOL3 was included in Amber ff10. 

However, its use during DNA simulations had negligible effects. 

 Using a similar approach, Mathews and coworkers revisited α, β, γ, ε, ζ, and χ torsions of 

parmbsc0 by simultaneously fitting them using high-level QM calculations with implicit 

solvation.125 Umbrella sampling and other methods showed that there was a slight improvement 

in the population of torsion angles when compared to a set of reference structures from the Protein 
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Data Bank (PDB).126 Nevertheless, the simulation of RNA tetramers was found to be improved, 

whereas previous simulations using FF10 had intercalation artifacts.  

Besides the modifications of torsional parameters, a more comprehensive refitting of 

electrostatic charges and van der Waals interactions in parmbsc0 was also performed by D.E. Shaw 

and coworkers.121 This might have been necessary due to the charged nature of nucleic acids, its 

shielding and polarization effects, which render previous charging schemes less suitable. In fact, 

these modifications improved the simulation ssRNA, folding and unfolding of RNA duplexes and 

tetraloops, reversible ligand binding to Guanine Riboswitch, and magnesium-dependent dynamics 

of SAM-I riboswitches. These FF parameters are available within the standard Amber package.99 

OPLS-AA was also separately updated for RNA using high-level QM calculations, 

yielding the specific parameters within the OPLS-AA/M FF. This was a similar strategy to that of 

Jurečka and coworkers. However, there are minor differences, such as the choice of the reference 

QM calculations.101  

Torsional parameters of the 2’-hydroxyl group was also updated in the CHARMM36 FF 

by Mackerell and coworkers, due to the realization that there was an overemphasis of Watson-

Crick base pair opening.127 QM calculations and subsequent parameter fitting was performed in 

order to reproduce RNA structural details, including J-couplings, thermodynamic stability, and 

hydration. However, in general, the smaller scale of validation of RNA FFs compared to DNA, 

necessitates a more comprehensive testing. 

1.11   Treatment of Hydrogen Bonding 

In the original implementation of the Amber128 and CHARMM,129 hydrogen bonding was a distinct 

potential energy term, consisting of a Lennard-Jones 12-10 term. However, in later releases, the 

hydrogen bonding potential energy functions of both FFs were abandoned. Besides reducing the 

computational costs associated with the extra energy function, Cornell et al. claimed that medium 

strength hydrogen bonds could be adequately taken into consideration by rolling it into the 

electrostatics and van der Waals terms.97 However, these conclusions were based on short, 

nanoseconds simulations available at the time.  

The correct treatment of hydrogen bonding has large structural, dynamic, and ligand-

binding implications in nucleic acids. This is not surprising due to the high number of potential 
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hydrogen bonding sites on nucleotides. Recently, Kührová et al. found that overexaggerated base-

phosphate hydrogen bonding interactions resulted in overly stabilized unfolded RNAs, which was 

an artefact.130 It also found that ff99bsc0 χOL3 underestimated the base-pairing hydrogen binding 

potential, which had a propensity for unwinding the RNA, amongst other deficiencies.110 These 

findings prompted them to develop a novel hydrogen bonding potential, known as gHBfix.  

Evidences also suggest that the treatment of hydrogen bonding in classical FFs, using point 

charges and Lennard-Jones potential, have reached its limits with regards to their accuracy.110 In 

particular, directionality of hydrogen bonding is still lacking in current nucleic acid FFs (Figure 

1.12), which was found to be important for other cases, such as scoring the stability of water 

molecules during DNA/RNA solvation.46 The fitting procedure during the development of this 

new FF would be challenging due to our empirical understanding of hydrogen bonding behavior.131 

Nevertheless, improvements in hydrogen bonding in nucleic acid FFs shows promise in improving 

the accuracy of simulations. 

 

Figure 1.12. Directionality of hydrogen bonding with respect to two water molecules are shown. 

Although water molecule at position B is expected to be more stable than A, most classical FFs 

assume same strengths of interaction due to neglect of directionality. 

1.12   Treatment of π-π Stacking 

Despite the high prevalence of nucleobases capable of π-π stacking, these interactions are not a 

distinct energy term in current classical FFs (Figure 1.13). Most current FFs treat π-π stacking by 

using a combination of electrostatics and van der Waals, which approximates this energetic 

stabilization. However, it is known that significant orbital-orbital interactions are present when 
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two aromatic rings interact via face-to-face or T-shaped π-π stacking interactions.132 Due to the 

nuance interactions of orbitals, current MM methods struggle to accurately predict the preferred 

orientations or evaluate the energetic stabilization due to base stacking or ligand intercalation. 

 Attempts at using polarizable FFs, such as AMOEBA, to reproduce the energies of 

nucleobase stacking at certain geometrical orientations have been investigated.133 While using 

multipole expansion and dynamic charge components would be helpful, its accuracy has not been 

widely validated, either through single point energy calculations or dynamic calculations. Both 

classical and polarizable FFs neglect to include the charge transfer component, or 

hyperconjugation effects of π-π stacking interactions, which have previously been found to be 

significant.134
 

 In the future, a more vigorous testing of the ability of FFs to reproduce π-π stacking 

geometries and energies is required. A careful balance between electrostatic, van der Waals and 

charge transfer interactions would be desired. Consequently, the addition of a new potential to deal 

with this charge transfer may be required and improve the overall description of nucleic acids. 

 

Figure 1.13. π–π stacking interaction present in nucleic acids, which important for base stacking 

and ligand binding. Offset, rather than T- or Y-shaped π–π stacking, are most abundant in nucleic 

acids. In FFs, π–π stacking is not explicitly treated, but treated by a combination of electrostatic 

and van der Waals interactions.  
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1.13   Treatment of Noncanonical Nucleic Acids and Ligands 

Nucleic acid FFs have traditionally focused on the simulation of canonical nucleotides, which are 

frequently found in nature. However, there exists naturally modified nucleotides and, more 

recently, artificial nucleotides.135 In addition, in order to model the dynamics and interaction of 

these unparametrized nucleotides or the interaction of nucleotides with ligands, FF parameters 

need to exist for these molecules. Torsions of these nucleotides are expected to differ from those 

of DNA and RNA, due to biochemical differences, especially hydrogen bonding, electrostatic, 

steric, and hyperconjugation effects. 

From previous sections, it is evident that torsional parameters play a crucial role in DNA 

and RNA dynamics. Consequently, efforts should also focus on the derivation of specific torsion 

parameters for modified nucleic acids, as they become increasingly important for treatments and 

therapeutics. Due to the size of the chemical space, an atom type independent approach for 

parametrizing glyosidic, sugar, and phosphate torsions should be considered.82, 113, 136-138 This 

would be equally applicable to small molecules, which is currently being developed in our 

laboratory. Previous works on the development of FFs for modified nucleic acids do exist.139 

However, to our knowledge, this effort only focused on the derivation of electrostatic charges, and 

not torsions. In the future, the ability to simulate all types of nucleic acids would pave the way for 

designing and making in silico predictions of interactions pertinent to various therapies (e.g. 

interaction of miRNA with its target). 

1.14   Future Directions in FF Development and Need for Comprehensive Testing  

Due to the empirical nature and simple functional form of classical MM FFs, they are inherently 

approximate. With increasing computational power and the advent of faster CPUs and GPUs, 

longer simulations are continuously revealing additional artifacts. Recently, it has been 

hypothesized that the accuracy limit of classical FFs for simulating nucleic acids is close to being 

reached, and additional improvements may need to come in the form of more advanced FFs (e.g. 

polarizable FFs or semiempirical QM methods). 

Prior to further development and modification of nucleic acid FFs, an independent and 

more rigorous test set of nucleic acid structures would be needed. This validation set should be 

composed of a wide variety of experimental structures (i.e. DNA G4s, RNA Riboswitches, Z-DNA, 
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and others) under various environmental conditions. This would be especially helpful for 

validating RNA FFs, since these have not been tested as extensively. Modified amino acids, 

nucleic acid-ligand, and nucleic acid-protein complexes should also be included. Newer 

developments in FFs should be tested on this validation set as an objective measure of accuracy. 

1.15   Conclusion 

Over the past decades, significant progress in the simulation of nucleic acid structures has been 

made. MM FFs of nucleic acids have come a long way since the 1980s, when only restrained MD 

simulations were possible. Indeed, the simulation of nucleic acids have been more challenging 

than proteins, due to the highly charged nature of the former and greater traditional emphasis on 

the latter. Today, improvements in FFs and in computational power have allowed unrestrained and 

more accurate simulations of nucleic acids on a timescale of microseconds. Accurate simulations 

of nucleic acids are important to understand their dynamics, involvement in binding, and 

interactions. This would be useful for gaining an insight into the atomistic details of nucleic acid-

drug interactions, RNA oligonucleotide therapies, and others. The ability for simulated nucleic 

acids to correctly match known experimental conformations would raise our confidence in them. 

In the future, this would allow rapid in silico predictions toward these previously mentioned 

applications. 

The Amber class of FFs have been the most validated and accurate, to date, for simulating 

nucleic acids. After decades of development, the FF has now diverged for DNA and RNA as a 

result of their biochemical differences.41, 99, 122 These developments were mostly in the form of 

new torsion parameters, although several groups also tested various nonbonded parameters. For 

simulations of DNA, two varieties of the Amber FF are recommended: parmbsc1 and parmbsc0 + 

OL15. For simulations of RNA, validation has not been as thoroughly conducted. However, the 

FFs from Mathews and coworkers and D.E. Shaw and coworkers have been (self-)reported to 

accurately reproduce many experimental features. For modelling modified nucleotides, 

electrostatic parameters do exist for over 100 molecules that are found in nature.139 However, 

accurate torsion parameters of these molecules may be lacking due to their nuance chemical 

differences. Consequently, the use of native torsional parameters, designed for DNA or RNA, 

would limit the accuracy of MD simulations. 
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One of the main problems of the field arises from the fact that different research groups 

use different criteria for judging the accuracy of a FF. A systematic and more objective method 

should be developed with a range of standard tests for each FF. Future efforts to develop more 

accurate FFs should first focus on developing a validation set of various DNA and RNA structures 

for which a wide array of experimental structures exists (e.g. solution-based NMR), similar to the 

sets used in SAMPL challenges for small molecules. Subsequent FFs could easily test against this 

validation set to quickly understand their strengths and weaknesses. 
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2   Predicting Positions of Bridging Water Molecules in Nucleic Acid–Ligand 

Complexes 

 

 

 

2.1   Preface 

As briefly touched upon in Chapter 1, pharmaceuticals targeting nucleic acids are promising for 

treating a variety of different diseases. Accurate predictions of nucleic acid binding through in 

silico docking would be useful during the initial drug discovery phase to enrich compound libraries, 

quickly and inexpensively. Unfortunately, due to the biochemical differences between nucleic 

acids and proteins, existing docking methods, often designed for the latter, are often inaccurate 

when applied to the former. This chapter addresses a key shortcoming in contemporary docking 

programs in modelling ligands binding to nucleic acids: the presence and variability of bridging 

water molecules and water networks surrounding the ligand. To this end, a new method, for the 

placement of water molecules in the ligand binding site of nucleic acids was developed. This 

method places water molecules, based on collected statistics and a newly developed and 

specialized force field. In the future, this water placement method could be incorporated into a 

docking program, along with a specialized scoring function capable of considering these placed 

water molecules. This could potentially improve the enrichment capabilities of docking programs 

for identifying potential drug candidates. 

 

This chapter is based on work from: Wei, W.; Luo, J.; Waldispühl, J.; Moitessier, N., Predicting 

Positions of Bridging Water Molecules in Nucleic Acid–Ligand Complexes. J. Chem. Inf. Model 

2019, 59, 2941-2951. 

Author contributions: I performed the calculations, analysis, and write-up of the manuscript. Prof. 

Nicolas Moitessier and I were involved in the design of the methods described. Jiaying Luo and 

Prof. Jérôme Waldispühl gave helpful suggestions, which were incorporated in the experiment. 



46 
 

2.2   Introduction 

While proteins have traditionally been the primary target for drug development, interests in nucleic 

acids as promising targets for drugs and molecular probes has been more recent.1 The realization 

that targeting nucleic acids would allow the treatment of previously untreatable diseases has led 

pharmaceutical companies and academic groups to invest heavily in this area of research, 

colloquially known as the “RNA gold rush.”2 Two landmark discoveries – Ribocil, an antibiotic 

agent recently discovered by Merck,3 and Branaplam, a drug currently undergoing phase II clinical 

trials by Novartis for spinal muscular atrophy2, 4 – have shown that drugs targeting nucleic acids 

could be both effective and selective to their targets.2  

Ribocil, in particular, was shown to inhibit bacterial cell growth and bind to a regulatory 

region of a metabolically essential mRNA transcript.3 These non-coding regions, located in the 

upstream 5′-untranslated regions (UTRs), called RNA riboswitches, are often involved in the 

negative feedback loop of bacterial biosynthesis pathways of life-sustaining endogenous 

metabolites.5 Riboswitches are attractive targets for antibacterial agents as they are not present in 

mammalian cells. Consequently, small molecules targeting riboswitches, are a desperately needed 

repertoire of antibiotics, especially in the current era of increasing antibiotic resistance around the 

world. Aminoglycosides exhibit favorable nucleic acid binding properties (eg. positively charged 

ammonium groups), which make them potent antibiotics against bacterial nucleic acids, along with 

other promising methods such as siRNA and antisense therapy.5 In general, a lower dosage of drugs 

is sufficient when targeting mRNA over proteins, mitigating the effects of drug toxicity (one 

mRNA gives rise to many copies of the protein). Recently, viral RNA has also been targeted, as 

reported by scientists from the Scripps Research Institute.6  

DNA structural elements have also gained attention as attractive targets for drugs, such as 

Cisplatin, which crosslinks with DNA bases and induces cell death in various types of cancers,7 

intercalating agents (e.g., Doxorubicin), alkylating agents (e.g., Mechlorethamine), and more 

recently G-quadruplex binders. The binding and stabilization of the latter by small molecules have 

been shown to prevent hyperactive telomerases from repairing the ends of chromosomes in cancer 

cells.8 This inhibition prevents cancer cells from being immortal, and is a promising area of drug 

discovery. 

Nucleic acids, in contrast to proteins, possess shallow, water-permeable binding pockets. 

In addition, phosphate groups of nucleic acids and their corresponding countercations (e.g., Mg2+, 
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K+) are highly charged and induce polarization upon both nearby water molecules and functional 

groups of drugs, significantly affecting the nucleic acid-drug complex stability. Modeling of these 

highly polarized molecules has been identified as a source of error during the simulation of 

biomacromolecules.9, 10 Past molecular dynamics (MD) simulations of RNA have suggested that 

some positions near the nucleic acid have long retention times for water molecules.11 Thus, water 

molecules are expected to play a critical role in nucleic acid-drug complex formation as illustrated 

in Figure 2.1.  

Several medicinal chemistry approaches have been envisioned to develop protein binding 

drugs. Amongst these, structure-based drug design has become an indispensable strategy for 

medicinal chemists. In fact, docking libraries of small molecules to proteins was instrumental in 

discovering potential drugs and several docking programs have been reported since DOCK was 

first reported and released.  

While docking methods for proteins have made significant advances, the current 

computational drug discovery methodologies targeting nucleic acid are inadequate. While docking 

libraries of small molecules to protein crystal structures has been instrumental in the discovery of 

potential drugs, nucleic acids have been largely overlooked by developers of docking programs 

with a few exceptions (e.g., RiboDock,12 Mordor13 and rDOCK14). In other situations, programs, 

initially developed for proteins, were retrained to work with RNA (ICM,15 DOCK6 16, 17).18 Due to 

the previously stated biochemical differences between nucleic acids and proteins, accurate 

placement of water molecules in the binding site is often crucial for successful in silico docking 

of ligands to nucleic acids. For a recent review on the field of docking to nucleic acids and the 

associated challenges, readers are referred to our recent review.18  
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Figure 2.1. Water molecule (red) interacting with U19, G27, U28 and Lividomycin, in the binding 

site of 16S-rRNA (PDB: 2ESJ19). 

Throughout the development of our docking program, FITTED,20-23 conserved water 

molecules were found to be critical for optimal docking accuracy,24 which was corroborated by 

other groups.25 When we became interested in the docking of small molecules to nucleic acids,26 

proper treatment of water molecules was also found to significantly improve docking 

performances.27 In the past, the critical role of water molecules and the prevalence of proteins as 

drug targets prompted the development of several methods to predict the position and orientations 

of water molecules at the interface of protein-ligand complexes and/or to evaluate their free energy 

of binding. Examples include WaterMap, which relies on MD simulations of solvated proteins;28, 

29 JAWS, which estimates the free energy for each water molecule from Monte Carlo simulations;30 

statistical methods such as Szmap31 and 3D-RISM;32, 33, docking water molecules to binding sites 

(e.g., WaterDock relying on AutoDock Vina34) and empirical methods such as AQUARIUS which 

predicts solvent sites within a protein by mapping each amino acid to a data set of crystal structures, 

and others as was recently reviewed.35 In addition, methods and case studies for distinguishing 

between bound and displaced waters in the context of different ligands have also been reported.36 

However, to the best of our knowledge, these methods were developed primarily for proteins and 

never applied to nucleic acids.  

Recently, a report on the use of a 3D-RISM-derived method illustrated the challenges of 

placing water molecules in nucleic acids;37 it had an accuracy (of water placement within 1 Å of 
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crystallographic water molecules) below 40%, although testing was carried out on only a handful 

of structures. Herein, we present a methodology and available software for placing water 

molecules in the binding site of nucleic acid-ligand complexes, using a hybrid scoring function 

composed of statistical survey of water molecules in existing PDBs and a dedicated force field, 

developed specifically for water placement in nucleic acids. 

 

2.3   Theory and Implementations 

Challenges. At the outset of this project, we identified key challenges to address: (1) placing an 

explicit (3-atom) water molecule would require not only identification of its location but also 

description of its orientation; (2) the binding free energy of water molecules is a complex 

combination of entropy and enthalpy; (3) hydrogen bonds (H-bonds) are directional and sensitive 

to polarization; (4) water molecules could become highly polarized in such polar media, and 

electrostatic interactions would therefore be inaccurately computed using static point-charges; (5) 

the developed method should be available to medicinal chemists, fully automated, and user-

friendly. In order to solve these challenges, a new strategy for water placement (Figure 2.2) in 

nucleic acids was developed, which will be addressed sequentially in the following sections. 

Selection of a Suitable Water Model: United Field Water Molecules – Challenge #1. 

To address the first challenge, we have previously developed particle waters (PWs) which model 

the hydrogen bond donor (HBD) and acceptor (HBA) properties of water molecules in a single 

bead hence reducing the problem to only bead placement. The placement of PWs was originally 

implemented into PREPARE, a program previously developed to convert PDB files into useable 

structures (adding and optimizing hydrogen positions and water orientation).24, 38 In this early 

version, interactions between proteins and PWs were modeled using a Lennard-Jones potential 

which was trained to account for all the interactions (ie. electrostatics, van der Waals, and hydrogen 

bonds). However, this implementation was poor in accuracy (see results and discussion) and we 

have fully redesigned these particles to take into account additional physical phenomena, such as 

directionality of hydrogen bonding and polarization of water molecules. Additionally, these PWs 

were completely redesigned for nucleic acids.  
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Figure 2. 2. Method flowchart designed for SPLASH’EM. 

Statistics as a Scoring Method for Water Placement – Challenge #2. To address the 

difficult task of water placement in nucleic acids, statistics and molecular mechanics (MM) 

methods were used in combination. Statistics information could not only be used to place water 

molecules, but also to assign a probability to each position in space, which could be converted into 

a free energy of binding. As shown in Figure 2.2, statistics could provide key information on the 

likely positions of water molecules near bases, phosphates, sugars, and ligands. These locations of 

high occurrences would then be targeted to position water molecules.  

Thus, our first task was to collect structural information on preferred water molecule 

positions. Statistical analysis around each of the nucleotides was carried out in over 4,100 crystal 

structures obtained from the Protein Data Bank (PDB), for a total of ca. 5.8M water molecules. 
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Water distribution around each H-bond acceptor/donor was plotted and summarized into a series 

of graphs (Figure 2.3). These results agreed well with a past computational study of the solvation 

of RNA using MD simulations.39 This water distribution data was used as a starting point for our 

new program SPLASH’EM (Solvation Potential Laid around Statistical Hydration on Entire 

Macromolecules). 

 

Figure 2.3. Statistics information collected on the occurrences of water molecules near: Adenine 

N1 (A), N3 (B), N6 (C), and N7 (D) at various angles (-90° to 90°) and distances (0 to 10 Å along 

the x-axis) within the plane of the base. Statistics were similarly collected outside the plane at 

different “pitch” angles. In each voxel, frequencies are indicated as a total percentage of waters 

collected. Statistics for other hydrogen bond acceptors/ donors at various pitch angles could be 

found in the supplementary information 

As water molecules are often H-bonded to more than one residue (Figure 2.1), estimating 

the free energy of water molecules was achieved through the combination of the free energy 

distributions from each nearby polar atom (although we are aware that entropy is not additive).  
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Particle Water Force Field as a Scoring Method for Water Placement – Challenges #3 

and #4. While the PDB-derived statistics of water positions give an approximation of the likely 

locations of water molecules, it was believed that refinement may be needed. This refinement could 

be performed by using gradient descent optimization in order to position the water molecules at 

regions of energy minima. Thus, the free energy score obtained from statistics was complemented 

with MM, the latter of which precludes any clashes, considers any other interactions with the 

nucleic acids, and enables an energy optimization necessary to refine PW positions. A new function 

and corresponding parameters (force field, or FF) for computing the nucleic acid-PW and ligand-

PW interaction energies were developed for use in energy evaluation and optimization of PWs 

including directionality of hydrogen bonding (challenges #3) and polarization (challenge #4).  

Finding a Suitable Function and Parameters for Modelling Hydrogen Bonding between 

Nucleic Acids and PWs. Functions (Equation 2.1) and parameters were trained to reproduce the 

energy profile of the interaction between nucleic acids and water molecules at the MP2/6-

31+G(d,p) level of theory, as illustrated in Figure 2.4 and further discussed in the Appendix A. 

 

Equation 2.1. Hydrogen Potential Function of PWFF.  

𝐸𝑃 =
𝐴

𝑟6
−

𝐵

𝑟5
−

𝐶

𝑟3
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Figure 2.4. Hydrogen bonding potential in QM (red) as compared to the developed PWFF (blue) 

for a linear distance scan for Ado-N1 (A) and Ado-H62 (B). The corresponding chemical structures 

are shown on the right, with distances labeled in dashed lines (magenta). 

This equation describes the hydrogen bonding and electrostatic energies between two 

atoms (Ep), as a function of their separation distance (r). A, B, and C are specific parameters to 

describe the strength of hydrogen bonding interaction between pairs of atoms (eg. AdoN1···Owater). 

This FF was named the Particle Water Force Field (PWFF). In PWFF, dispersion and Pauli 

repulsion terms were obtained from Lennard-Jones potential of Amber ff95. As PWs are neutral, 

the hydrogen bonding term implicitly accounted for electrostatic interactions. A Lennard-Jones 6-

5/3 term was found to best reproduce this energy profile obtained through QM calculations 

(Equation 2.1). 

Methodology Used to Develop the Particle Water Force Field. Optimizations were 

performed on entire nucleic acid fragments (ie. adenine, guanine, cytosine, thymine, uracil, ribose, 

deoxyribose, phosphate) in QM while the model for water molecules was derived from TIP3P. To 

develop the PWFF, H-bonding energy profiles between nucleic acid fragments and water molecule 

were calculated using the previously described QM- and MM-levels of theory (Figure 2.5). To 
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derive the H-bonding potential, the difference between the QM energy profile and the van der 

Waals MM energy profile was used (Equation 2.2). After attempting various Lennard-Jones 

potentials, including the well-known 12-10, 12-8, and many others, a 6-5/3 term was found to best 

reproduce the H-bond potential.  

 

 

Figure 2.5. Model used for evaluating the energy at A) MP2/6-31+G (d,p) and B) MM, with united 

atom representation of water molecule. Arrows depict the path taken during the potential energy 

scan. C) Energy as a function of distance, depicting the enthalpic energy calculated in QM (red), 

van der Waals energy (blue), calculated using Amber ff95, and the difference of the former and 

latter (green), which is the hydrogen bonding potential. 

 

Equation 2.2. Equation used for fitting and parametrizing PWFF.  

𝐸𝐻−𝑏𝑜𝑛𝑑 (𝑃𝑊) = 𝐸𝑄𝑀 − 𝐸𝑀𝑀: 𝐿𝐽 12−6 

 

Incorporating Directionality of Hydrogen Bonding into Particle Water Force Field – 

Challenge #3. In the past, attempts to include directionality of H-bond terms in some force fields 

were reported,40-42 although no clear improvements in performance were noted and these terms 
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were subsequently discarded. However, these previous developments were largely tailored towards 

MD simulations and not towards water placement methods or in silico docking studies. To this 

end, the angular dependence of H-bonding with respect to simplified nucleic acid subunits were 

investigated by scanning water positions with respect to these subunits (Figure 2.6). 

 

Figure 2.6. Simplified subunits used to probe the relationship between enthalpy and angles. I) 

pyridine, II) aniline, III) tetrahydrofuran, and IV) 1-methylpyridin-4(1H)-one are shown. Polar 

atoms of interest are in red, while angle bisectors are depicted by dashed lines. 

An angular contribution function (Figure 2.7A) was next developed to account for the 

directionality of the H-bonding, penalizing deviations of H-bonding from ideal positions. For H-

bond acceptors and donors, the ideal angle was designated at the positions of the electron lone 

pair(s) and directly opposite the R-H bond, respectively.  An example of the H-bonding potentials 

as a function of angles in both QM and the developed PWFF potentials for various chemical 

fragments are shown (Figure 2.7B-E). 

The angular contribution function utilizes a normal distribution-like function, which is always 

bound between 0 and 1. At ideal angles, the angular contribution function yielded a value close to 

1, which instates the full strength of the hydrogen bond. In contrast, when far from the ideal angle, 

the hydrogen bonding is essentially turned off by a value close to 0. The augmentation of PWFF 

with angular contribution function (PWFFa), although not perfect, reproduced the QM energy 

profile for these molecules, even at non-ideal H-bonding geometries. Equation 2.3, along with 

Table 2.1 describes the PWFFa function form, along with its various associated parameters, the 

latter of which are the same as those used for PWFF.  
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Equation 2.3. The hydrogen bonding potential for PWFFa.  

𝐸𝑃 =

{
 
 

 
 (

𝐴

𝑟6
−
𝐵

𝑟5
−
𝐶

𝑟3
)

⏟          
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

∙  (𝑒−(𝛼𝜃)
2𝑛
)⏟      

𝑎𝑛𝑔𝑙𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛      

      

(
𝐴

𝑟6
−
𝐵

𝑟5
−
𝐶

𝑟3
)

⏟          
  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

, 𝑖𝑓 𝑟 < 𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

  

 

More specifically in equation 2.3, the hydrogen bonding energy, Ep, is now also expressed 

as a function of θ which is the angular deviation from “ideal” hydrogen bonding geometry defined 

above. Two other parameters, α and 𝑛 help to define the curvature of the well and how quickly the 

well depth changes as a function of θ. The ideal hydrogen bonding geometry for hydrogen bond 

donors and hydrogen bond acceptor was designated as the line connecting the donor and donor 

antecedent atoms and line connecting the electron lone pair and the acceptor atom, respectively. 

A potential ambiguity with this angular contribution function could arise if a PW was within steric 

clashing distance, but at a non-ideal angle. In order to prevent this from occurring, a threshold 

distance was given for different atoms. For hydrogen atoms, this value was 1.5 Å while all other 

heteroatoms were assigned a value of 2.5 Å. At distances less than these values, the full steric clash 

would be restored.  
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Figure 2.7. (A) Angular contribution function implemented into PWFF for various atom types. 

(B-E) Energy profile as a function of deviation from the angle bisector, obtained by EQM-EVDW for 

both in-plane and out-of-plane angles, with respect to the ring, as compared to the developed PW 

potential, (B) pyridine, (C) aniline, (D) tetrahydrofuran and (E) 1-methylpyridin-4(1H)-one are 

shown. For acceptors with more than one lone pair (ie. tetrahydrofuran and 1-methylpyridin-

4(1H)-one), both in-plane and out-of-plane PW potential are shown. 

Incorporating Polarization of Hydrogen Bonding into Particle Water Force Field – 

Challenge #4. Polarization of water molecules in nucleic acids occurs more frequently than in 

proteins due to the anionic charge of the phosphate backbone and presence of countercations such 

as Mg2+ and K+. Polarization has been found to lead to artifacts during MD simulations of 

proteins,9, 10 and methods to address this problem have been proposed.43, 44 However, it remains to 

be addressed for the more polar nucleic acids. From our quantum mechanics (QM) calculations, it 

was observed that a water molecule bridged by two polar atoms experienced an overall potential 

unequal to the sum of the two individual potentials (Figure 2.8). 
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Figure 2.8. A) H-Bond potentials between CH3NH4
+ and H2O (in QM) when the latter is: not part 

of a bridge (green), in a bridged to (CH3)2PO4
-(blue), and in a bridge to another CH3NH4

+ (red). 

B) Corresponding schematics are shown in (i-iii), respectively. 

At each water position, the two greatest hydrogen bonding energies were selected, and 

polarization factors were assigned to these two interactions. Five distinct classes of polarization 

were created: 1) strongly stabilizing, 2) strongly destabilizing, 3) weakly stabilizing, 4) weakly 

destabilizing, and 5) unchanged. A polarization factor was introduced for each of these cases. The 

first case involved the interaction of oppositely-charged polar atoms, and was given a polarization 

factor of 1+β. Similarly, the second case involved like-charged polar atoms interacting, and was 

given a polarization factor 1–β. The third and fourth cases involved an uncharged polar atom and 

a charged polar atom. In both cases, the uncharged atom was given a polarization factor while the 

charged was not. More specifically, the third case involved a HBA-HBD+ or HBD-HBA- pair and 

was given a polarization factor of 1+α while the third case involved a HBD-HBD+ or HBA-HBA- 

pairs and was given a polarization factor of 1-α. Finally, the polarization between uncharged 

groups were expected to be minimal and no polarization was given. Different sets of factors were 

evaluated by varying both α and β parameters between 0.0~0.9 at 0.05 increments with the criteria 

that α ≤ β and the optimal values were found to be α = 0.2 and β = 0 (Table 2.2). This polarizable 

force field was named polarizable PWFF with angle contribution function (pPWFFa), which is 

shown in equation 2.4. 
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Equation 2.4. Hydrogen bonding potential for pPWFFa.  

𝐸𝑃 =

{
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Equation 2.4 expresses the hydrogen bonding potential, Ep, as a function of previously 

defined parameters in equation 2.2 and 2.3. In addition, a polarization factor, fpol, was introduced 

to modulate the strengths of hydrogen bonding, depending on the five different types of 

neighboring environments as discussed above.  

Water Placement Strategy. In our newly developed fully automated program (challenge 

#5), SPLASH’EM, water molecules are initially placed in the centers of the top 50 most populated 

grid points for each polar atom based on the previously collected statistical information obtained 

(Figure 2.2). At this point, each PW was assigned a binding free energy and force field energy 

based on its position relative to all polar atoms in the complex. PWs sterically clashing with the 

receptor and ligand were removed, along with PWs not located in the binding site. As our focus 

was on nucleic acid-ligand complexes, only bridging water molecules were considered (i.e. waters 

interacting with both the nucleic acid and a ligand). Finally, PWs are ranked energetically (force 

field and/or free energy), and placed from most to least stable, with the criteria that a PW does not 

clash with a previously placed PW and is not located on the water-exposed surface.  

Validation Dataset for Water Placement. As of December 2018, there were over 4,000 

nucleic acid crystal structures available in the PDB. Of these, approximately 300 nucleic acids 

contain ligands and at least one water molecule. To compile a validation set for water placement, 

a further refinement of the nucleic acid crystal structures was performed. A filtering step by a 

threshold resolution of 2.6 Å was performed on these previously obtained structures, resulting in 

91 PDBs, which contained a total of 12,955 water molecules. However, many of these water 

molecules were found in bulk water or away from the ligand binding site, and thus unimportant 

for medicinal chemistry applications. Only bridging waters, less than 3.5 Å away from both a 

nucleic acid polar atom and a ligand polar atom were kept, leading to 398 water molecules. Finally, 

in order to ensure that these water molecules, present in the original PDB structures were 
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substantiated by electron density, the corresponding electron density data, containing the 2F0-Fc 

map was used as experimental evidence. To carry out this procedure, EDIA36 calculation was 

performed on each crystal structure. EDIA calculates the experimental support for an atom by 

taking into account the electron density within its van der Waals radius, and allows comparison 

between different structures by normalization. Water molecules with EDIA score of less than 0.24 

were discarded, as suggested by Rarey and co-workers, since these waters are less supported by 

electron density.26, 36 The final compiled validation set was made up of 91 crystal structures, 

containing a total of 230 water molecules. 

 

Table 2.1. PW hydrogen bonding parameters. 

Particle Water-Polar 

Atom Interactions 

Distance Contribution Angle Contribution 

A B C 𝛼 𝑛 

Adenine N1 18310 7535 0 0.015 1 

 N3 27792 11522 0 0.015 1 

 H61 297 0 76 0.01 4 

 H62 297 0 76 0.01 4 

 N7 19187 7814 0 0.015 1 

Guanine H1 1431 886 0 0.01 4 

 H21 163 0 48 0.01 4 

 H22 163 0 48 0.01 4 

 N3 14986 6170 0 0.015 1 

 O6 25510 10500 0 0.015 2 

 N7 20596 8008 0 0.015 1 

Cytosine O2 25590 10568 0 0.015 2 

 N3 20043 8262 0 0.015 1 

 H41 364 0 99 0.01 4 

 H42 364 0 99 0.01 4 

Thymine/ 

Uracil 

O2 17551 7230 0 0.015 2 

H3 800 574 0 0.01 4 

 O4 17311 7521 0 0.015 2 
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Deoxyribose O4’ 17311 7521 0 0.015 2 

Ribose O2’ 14300 6128 0 0.015 2 

 HO2’ 300 0 85 0.01 4 

 O4’ 18899 8090 0 0.015 2 

Phosphate O3’ 22280 8740 0 0.015 2 

 O5’ 22280 8740 0 0.015 2 

 OP1 5000 0 525 0.019 1 

 OP2 5000 0 525 0.019 1 

Pyridine N 22770 9419 0 0.015 1 

Methylamine HN 631 0 231 0.01 4 

Methanol HO 1490 0 965 0.01 4 

 OH 16690 7020 0 0.015 2 

Acetylamide O 17810 7145 0 0.015 2 

 HN 320 0 89.1 0.01 4 

Formate O 5383 0 615 0.015 2 

 

Table 2.2. Polarization factors assigned to H-bond potentials. 

Moving Stationary Polarization Factor 

Weak Donor Weak Donor 1 

Weak Donor Weak Acceptor 1 

Weak Donor Strong Donor 1 - α  

Weak Donor Strong Acceptor 1 + α 

Weak Acceptor Weak Donor 1 

Weak Acceptor Weak Acceptor 1 

Weak Acceptor Strong Donor 1 + α 

Weak Acceptor Strong Acceptor 1 - α 

Strong Donor Weak Donor 1 

Strong Donor Weak Acceptor 1 

Strong Donor Strong Donor 1- β 

Strong Donor Strong Acceptor 1+ β 
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Strong Acceptor Weak Donor 1 

Strong Acceptor Weak Acceptor 1 

Strong Acceptor Strong Donor 1+ β 

Strong Acceptor Strong Acceptor 1 - β 

 

2.4   Results and Discussion 

Assessing the Accuracy of Placed Water Molecules. Assessing the accuracy of water placement 

on nucleic acids is difficult primarily due to its dependence on X-ray crystal structures of nucleic 

acids. The structure is a static representation of a biological molecule in a non-physiological 

environment. Some waters may not be resolved due to their high mobility and low residence times 

at certain positions. Consequently, the placement of a water molecule at these locations should not 

necessarily be considered wrong. Inherent to X-ray crystallography are potential biases which may 

be introduced during the refinement process. This is especially true if the crystal structure is low 

in resolution. In fact, in a few cases, the placement of water molecule would have been satisfied 

in more than one way. For example, during the model construction of the crystal structure of a 

DNA dodecamer complexed with propamidine (PDB ID: 102D45), a single water molecule (O36) 

was placed in the region of high electron density, which yielded an EDIA score of 0.59 (Figure 

2.9). Alternatively, two water molecules could have been placed adjacent to the crystallographic 

water location at distances of approximately 1.7 Å and 1.6 Å away. At these two alternate locations, 

there is also support from electron density with EDIA scores of 0.24 and 0.30. In this case, the X-

ray diffraction pattern caused by these two water molecules would have superposed and created 

the maximum electron density signal at the location of the crystallographic water. In physiological 

conditions, the movement of water molecules would probably have allowed its presence at both 

locations. Consequently, this presents a challenge in scoring of placed water molecules since these 

alternative positions are not considered successful by a first criterion for placement success (PW 

within 1Å from crystallographic water). Using a different second criterion (EDIA ≥ 0.24), these 

water molecules are considered successful. 
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Figure 2.9. Crystallographic water position (green circle) compared to possible alternative water 

positions (blue circles) overlaid with the 2F0-Fc electron density map. EDIA score is given 

adjacent to each water. (A). Placed waters are supported by electron density but are situated away 

(distances of 1.6 and 1.7 Å) from the crystallographic water. (B). Placed waters are not supported 

by electron density but are in close proximity to the crystallographic water (distance of 1.0 Å). 

However, a disadvantage with the latter arises when water molecules which are in close 

proximity to a crystallographic water (less than 1 Å) is considered unsuccessful by electron density, 

as illustrated by another bridging water molecule (Figure 2.9B). In this case, the crystallographic 

water and the placed water had an EDIA score of 0.37 and 0.18, respectively. As a result, the placed 

water was not scored as successful. However, due to their close spatial proximity (distance of 1 Å 

apart), the placed water may still be useful in providing important information for in silico docking. 

As a result, neither of the criterion could satisfactorily measure the accuracy or precision. Even 

worse, the lack of an electron does not necessarily preclude the presence of water. As an example, 

a ligand bound to 2'-Deoxyguanosine riboswitch (PDB: 3SKI46) was found to have two identical 

binding sites (Figure 2.10). In spite of this, one binding site lacked electron density for water 

molecules while the other showed the presence of two water molecules.  

Consequently, until a robust scoring methodology could be envisioned, it is difficult to assess the 

true accuracy of a water placement methodology. Ultimately however, the accuracy of water 

placement methodologies depends on its utility towards a given problem (e.g., docking, MD, 

biocatalysis). Due to our interest in using water placement for docking, the accuracy of the 

developed water placement methodology was given with the first aforementioned criteria. 
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Figure 2.10. 2'-Deoxyguanosine bound to each binding site of the dimeric 2'-Deoxyguanosine 

riboswitch (PDB: 3SKI). Shown in A) and B) are the two co-crystallized ligands in each binding 

site, and their associated 2F0-Fc electron densities. 

Accuracy of Various Placement Methods. In testing the newly developed water 

placement method, the list of 91 crystal structures from the PDB was included in the testing set, 

which contained a total of 230 bridging water molecules (Appendix A). Testing was first carried 

out with random water placement as a reference, which correctly positioned a PW within 1 Å of 

experimentally observed water molecule, in nearly 1 of every 5 cases (Table 2.3). Additionally, 

water placement using our previous protocol, PREPARE,38 (developed for proteins), was tested 

along with the scoring methods developed herein.  

 

Table 2.3. PW placement accuracy of current developments 

Placement method Scoring method Accuracya 

Random  N/A 19% 

Prepare38 PREPARE
38 30% 

Statistics Statistics 51% 

Statistics PWFF 51% 

Statistics PWFFa 56% 

Statistics pPWFFa 60% 

Statistics Splash’Em 62% 

a Number of crystallographic water with a PW within 1 Å.  

 

Each distinct scoring method (free energy from statistics or FF energy) was tested individually and 

in combination to see how it would impact the accuracy of the methodology. In total, five different 
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scoring criteria are reported, including: statistics, PWFF, PWFFa, pPWFFa, and SPLASH’EM, 

which incorporates all of the above.  

Accuracy of PREPARE. Water placement using PREPARE
38 gave an accuracy of 30%. Based 

on recent evidences, it has been suggested that the water network surrounding ligands differ based 

on its identity, as was the case of aminoglycosides binding to RNA.27 However, the water 

placement method in PREPARE did not take the influence of the ligand into consideration. To rectify 

this, each new developed placement methodology took the ligand into consideration.  

Accuracy of Statistics as Water Placement Methods. Statistics as a scoring criterion has 

many advantages, including the implicit incorporation of polarization, directionality of H-bonding, 

and free energies. Using this method for water placement gave a significantly improved accuracy 

of 51%. The additivity of free energies is a challenge in this approach, as the relationship for sum 

of entropy has not been fully elucidated. For this reason, it is difficult to predict the relative stability 

between two potential water positions. Additionally, the lack of available ligand statistics forced 

us to use approximate free energies, which used similar nucleic acid atom types, leading to possible 

errors in free energies. 

Accuracy of Particle Water Force Field as Water Placement Method. The three 

variations of the developed Particle Water Force Field (PWFF, PWFFa, and pPWFFa) yielded 

accuracies of 51%, 56%, and 60%, respectively. We were very pleased that with each additional 

chemical principle incorporated into the force field (ie. angles and polarization), significant 

increases in accuracy were observed.  

The use of PWFFa over PWFF eliminated weak H-bond interactions (Figure 2.11A), which 

were at large angular deviations from the ideal geometry. For example, during the placement of a 

water molecules in the binding site of an RNA riboswitch-SAM - ligand complex (125FJC47), 

PWFF placed a water molecule 2.3 Å away from the crystallographic position (Figure 2.11A). At 

this position, it was within H-bonding distances to two polar atoms: ribose-O2’ and Ado-N3. 

Chemically however, the geometry at this position did not allow for a strong hydrogen bonding to 

ribose-O2’, which was not taken into account by PWFF. On the other hand, PWFFa and pPWFFa 

were able to take directionality of H-bonding into consideration and greatly penalize this 

interaction. Consequently, an adjacent location, 0.4 Å away from the crystallographic water, was 

correctly chosen (Figure 2.11).  
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In spite of the successes of the angular correction function in PWFFa, there were still a 

number of water molecules which were incorrectly predicted—one reason being that it was unable 

to account for the nuance behaviors of the free energy surface, including polarization. pPWFFa, in 

contrast to PWFFa, identified destabilized interactions due to polarization (Figure 2.11B). In other 

cases, pPWFFa also identified stabilized interactions (ie. water bridged by a strong donor and a 

strong acceptor). 

 

Figure 2.11. Comparison of (A) (i) crystallographic water position in red (ii) to water molecules 

placed by PWFF in green and PWFFa in blue. Comparison of (B) (i) crystallographic position in 

red to (ii) to water molecules placed by PWFFa in blue and pPWFFa in orange. H-bonds are 

denoted by black lines while weak H-bonds are denoted by orange lines. 

In another example, during the placement of water molecules of an RNA-Paromomycin 

complex (Figure 2.11B; PDB 2PWT48), PWFF incorrectly selected the water position which 

emphasized interactions with two phosphate groups, which had the deepest innate H-bonding 

potentials.  However, this location was expected to be destabilized since both groups are strong 

hydrogen bond acceptors. Consequently, the crystallographic water molecule was found away 

from this position, and instead H-bonded to a nearby hydroxyl hydrogen of the modified 

Paromomycin ligand although still H-bonded to one of the phosphate groups. This crystallographic 

water position was correctly predicted by pPWFFa, but not PWFFa. 

Originally, it was expected that the hydroxyl hydrogen of the modified Paromomycin 

would increase its hydrogen bonding potential in the presence of a strong acceptor (phosphate 

group). However, during the search for a suitable polarization factor, negligible changes in 

accuracy was observed for incorporating polarization of weak HBA and HBD. As a result, 

polarization for these types of interactions were not included in pPWFFa. More specifically, it was 
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found that polarization factors of α = 0.2, β = 0 yielded optimal accuracies for water placement. 

This meant that the polarization factor for strongly stabilizing, strongly destabilizing, weakly 

stabilizing, and weakly destabilizing was 1.2, 0.8, 1, and 1, respectively (Table 2.2). The fact that 

β = 0 suggests that weakly stabilizing and destabilizing interactions are in general less sensitive to 

polarization. Since pPWFFa does not take into account the distance-dependent nature of 

polarization, no polarization effect for this type of interaction was observed using our method. 

However, subtle polarization is still expected in these types of interactions at close distances 

between the water molecule and HBA/HBD. In the future, a more encompassing polarization 

scheme could be devised, such as varying the degree of polarization, based on the distances 

between water and HBA/HBD. However, the polarization scheme described in this method was a 

proof-of-principle showing that its consideration is important when attempting to accurately 

predict water molecule positions. Overall, in both cases (ie. moving from PWFF to PWFFa and 

PWFF to pPWFFa), the more advanced FF correctly identified the crystallographic water 

positions. 

Accuracy of a Hybrid Scoring Method for Water Placement. We next envisioned that 

the two energy evaluation methods could be combined into a single metric, with the hopes of 

further increasing the accuracy of water placement. More specifically, a large number of 

overlapping PWs were placed, scored with pPWFFa, and two alternative populations of non-

clashing sets of PWs extracted. These two distinct populations were subsequently combined, and 

the approximate free energy (from statistics), was used to select the final list of PWs. This method 

produced an accuracy of 62% on the selected 230 crystal water molecules, which was the final 

version implemented into SPLASH’EM itself integrated into our drug discovery platform 

FORECASTER (challenge #5).38 More interestingly, decomposing the accuracy of this placement 

method into five equal bins of size 46, according to the B-factor of the PDB water molecules 

showed that SPLASH’EM was able to more accurately predict water molecules with lower B-factor 

than those with a higher B-factor (Figure SA5). In fact, the prediction for those water molecules 

with B-factors less than 22 was 70% compared to those with B-factors higher than 42 was just 

52%. Although this is still a small dataset, it shows that SPLASH’EM is able to more accurately 

predict water molecules which are of higher quality or are less mobile. 

SPLASH’EM employs a similar method to hybrid scoring functions developed for molecular 

docking, where two or more methods are used together in hopes of more accurately identifying the 
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correct binding mode of a ligand in the receptor. In the case of water placement, the combination 

of approximate free energy and force field energy gave an increased performance over either of 

these methods used alone.  

2.5   Conclusion 

In conclusion, we showed that the accuracy of water placement in nucleic acid structures is difficult 

to obtain due to the insufficient number of nucleic acid-ligand 3D structures. In addition, due to 

poor resolution, subjectivity during model construction, and a lack of electron density in some 

regions, crystal structures may not contain all of the desired information for validating the accuracy 

of a placement method. Ultimately, the accuracy of a given water placement method rests with its 

utility in a given problem.  

We succeeded in developing SPLASH’EM, a program to identify and place water molecules 

(in the form of PWs) in nucleic acids on the order of seconds. This method was able to correctly 

identify as many as 62% of water molecules in nucleic acids, laying the foundation for water 

placement for these macromolecules. SPLASH’EM utilizes a hybrid scoring function composed of 

statistical data of water occurrences for each polar atom of nucleic acids and ligands; and a newly 

developed pPWFFa FF to describe H-bonding of polar atoms and water molecules. Associated 

parameters for the FF were developed, which is novel in that it adds H-bond directionality and 

polarization to our previously developed united field water model, Particle Waters. pPWFFa is 

expected to be useful with in silico docking of nucleic acids when incorporated into FITTED. 

Overall, SPLASH’EM has been shown, at the time of publication, to be the most accurate water 

placement tool developed for nucleic acids and available for use by chemists.  
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3   Torsional Energy Barriers of Biaryls could be Predicted by Electron-

richness/deficiency of Aromatic Rings; Advancement of Molecular Mechanics 

toward Atom-Type Independence 

 

 

3.1   Preface 

As mentioned in Chapter 1, force fields are used for many different applications in drug discovery, 

from MD simulations to vHTS. Although nucleic acids and proteins are well-parametrized by 

existing force fields, other less commonly encountered organic molecules are often assigned 

inaccurate parameters. This is due to practical limitations as the size of the chemical space and 

desired parameters are too large. As a result, parameters are frequently transferred to “similar” 

molecules. This has a negative impact on the quality of the force field, and results in a loss of 

accuracy when applied to MD simulations and vHTS. To solve this problem, a conceptually new 

method for computing parameters on-the-fly was developed, based on applying organic chemistry 

principles. This effort continues the philosophy of previous works conducted by Liu et al (2016, 

2018) and Champion et al (2019), and applies it to biaryl molecules. The reason for first focusing 

on biaryl systems was due to its importance and abundance in pharmaceuticals. With this method, 

more accurate vHTS and docking could be performed. 

 

This chapter is based on work from:  Wei, W. L.; Champion, C.; Liu, Z. M.; Barigye, S. J.; Labute, 

P.; Moitessier, N., Torsional Energy Barriers of Biaryls Could Be Predicted by Electron 

Richness/Deficiency of Aromatic Rings; Advancement of Molecular Mechanics toward Atom-

Type Independence. J. Chem. Inf. Model 2019, 59, 4764-4777. 

Author contributions: I performed the calculations, analysis, and write-up of the manuscript. 

Zhaomin Liu, Stephen Barigye, Candide Champion, Paul Labute, Prof. Nicolas Moitessier, and I 

designed the described methods.  
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3.2   Introduction 

Biaryls. Biaryls are a class of conjugated molecules comprised of two aromatic systems, connected 

by a single bond. These compounds are of particular interest to the pharmaceutical field as they 

are found in many natural products and pharmaceuticals.1 In fact, many essential drugs such as 

atorvastatin, celecoxib, nifedipine, rosuvastatin, valsartan, and others contain biaryl moieties 

(Figure 3.1). Many natural products containing biaryl fragments, extracted from plants and other 

organisms, have frequently been shown to possess biological activity.2 For example, 

licopyranocoumarin extracted from Xi-bei licorice plant, was found to inhibit the cytopathic 

activity of HIV.3 These types of molecules are ubiquitous in nature and are important bioactive 

pharmacophores. Besides their utility in pharmaceuticals, they are also well adapted for use in 

building polymers, sensors, and transition metal catalysts.1 

 

Figure 3.1. Commercially available drug molecules that possess biaryl fragments, with the torsion 

bonds of interest labelled in red. 

Biaryls and molecular mechanics. Despite biaryls being promising pharmacophores and 

drug scaffolds, existing molecular mechanics (MM) force fields (FF) are not well-adapted to 

predict their conformational energy landscapes, apart from a few well-parametrized cases.4, 5 In 

particular, the torsion parameters of biaryls are lacking for most compounds, due to the diversity 

of biaryls in drug-like molecules (Figure 3.1).4 The accuracy of in silico docking methods directly 

rely on a robust torsional energy term for binding affinity calculations between the receptor and 

the ligand to predict the correct binding mode.6 Consequently, this presents an interesting but 

difficult problem for structure-based drug design. Over the past decade, in silico docking methods 
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have proven to be an indispensable tool in the field of drug discovery, allowing millions of 

compounds to be screened quickly and cheaply.7 Virtual high-throughput screening (HTS) using 

docking has allowed an enrichment of active compounds for subsequent synthetic or biological 

testing efforts.8-10  

Besides its utility in HTS, a robust FF would also greatly improve the accuracy of 

molecular dynamics (MD) simulations, where it could be employed to study conformational 

changes of molecules over time.11 This methodology has been used in various fields, such as 

enzyme catalysis,11 pharmaceutical research,12 and energy conversion.13 

Biaryl torsional energy profiles. Torsion energy for biaryl molecules are difficult to 

predict.14 While experiments and quantum mechanical (QM) calculations have shed light on the 

energy profiles and preferred geometries of individual compounds on a case-by-case basis, there 

have been no holistic, collective approach to studying these biaryls and predicting their torsion 

barriers. Past work on OPLS FF,15-17 by Jorgensen and coworkers, empirically fit the torsion 

parameters to match the QM profiles for thirty-three biaryl compounds most frequently found in 

pharmaceuticals.5 Although this allowed the energy profiles of these aforementioned thirty-three 

compounds to be predicted accurately, the number of possible biaryl compounds (and diversely 

functionalized biaryls) are several orders of magnitudes higher and may be in the millions. At this 

rate, it is both impractical and impossible to parametrize each biaryl torsional barrier, individually. 

In addition, the torsion profile of these biaryls were found to vary drastically and cannot be 

transferred from one compound to another without a loss of accuracy. Consequently, separate 

parameters must be developed for each biaryl molecule. For example, while the torsion barrier of 

biphenyl was approximately 2.1 kcal·mol-1, 2-(1H-pyrrol-1-yl)pyrimidine had a much greater 

barrier of 11 kcal·mol-1.5 As a result, MM FF torsional parameters for most biaryl compounds are 

still inadequately parametrized,4 and there still exists an unfilled need to accurately model biaryl 

torsion energy barriers.  

In a separate study on biaryls, Stern et al., as a part of The Open Forcefield Consortium, 

found that the Wiberg bond order was an good descriptor of the torsional barrier strength.18 This 

descriptor attempts to quantify the degree of bonding between connected atoms.19 However, 

calculating the Wiberg bond order requires computationally expensive QM methods. 

Consequently, it may face challenges when applied to a drug discovery project, which must 

routinely screen thousands of drug candidates, containing distinct biaryl fragments. 
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In MM FFs, torsion is one of the bonded terms, along with bond and angle stretching 

(equation 3.1).20-22 In combination with non-bonded terms (eg, electrostatics and van der Waals 

interactions), the linear combination of these terms give rise to the total MM energy, which 

determines the preferred geometry of molecules, such as cis/trans propensity. Each of these terms 

in equation 3.1 are modelled by different potential energy functions. In most FFs, including the 

General Amber force field (GAFF) 2,23, 24 a simple elastic potential is used for bond and angle 

terms, while Coulomb’s potential is used for electrostatic interactions, and Lennard-Jones 12-6 

potential is employed for van der Waals and steric repulsion. The truncated Fourier series is most 

commonly employed (equation 3.2) for torsions. Although some FF use up to four terms within 

this series, only the first two (ie. 𝑖 = 1,2) have been identified as chemically meaningful.25, 26 The 

second term, V2, describes the unmodulated amplitude of torsional energy barrier. In biaryls, V2 is 

describes the strength of conjugation. This means that increasing values of V2 increases the relative 

energy at dihedral angles of 0˚ and ±180˚ with respect to ±90˚. Effectively, an increase in V2 

decreases the overall strength of conjugation in biaryl systems. On the other hand, the first term 

describes the cis/trans preference of a dihedral angle, with V1 parameter denoting the energy 

difference between cis and trans geometry. For biaryl systems, an increasing V1 increases the 

relative energy of the cis geometry (0˚) with respect to the trans geometry (±180˚). This V1 energy 

term further modulates and adds upon the V2 energy term, along with other higher order terms. The 

third and fourth (ie. i = 3,4) are said to be correction terms. It should be noted that V1-4 parameters 

are divided by 2 to allow these properties to be identified quickly. The γ describes the phase-shift 

while θ is the torsional angle.  

 

Equation 3.1. Potential energy function of standard MM FFs.   

𝐸𝑀𝑀 = 𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑎𝑛𝑔 + 𝐸𝑡𝑜𝑟⏟            +

        𝑏𝑜𝑛𝑑𝑒𝑑

𝐸𝑒𝑙𝑒 + 𝐸𝑣𝑑𝑤⏟      
𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑

 

 

Equation 3.2. The torsional energy function of MM FFs.  

𝐸𝑡𝑜𝑟 =∑
𝑉𝑛
2
[1 + cos 𝑛(𝜃 − 𝛾)]

4

𝑖=1
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Atom-type independent FFs. In the recent past, several groups, including ours, began 

developing predictive MM FFs, which are atom type-independent.25-28 Briefly, an atom type is a 

concept in MM, which allows parameters developed for one atom to be transferred to another by 

virtue of similarity of chemical environment, element identity, hybridization, and connectivity. As 

stated previously, the use of atom types imposes a limit on the accuracy of the FFs due to the issue 

of transferability. In fact, torsions suffer from one of the worst transferability within bonded 

interactions,14, 29 which prompted us to develop torsion terms without depending on atom types. 

Other groups developed methods, based on QM calculations, to automate and accelerate the 

process of deriving atom-type parameters.29-34 These include recent developments such as 

QUBEKit,29 QMDFF,30 GAAMP,32 ffTK,33 Paramfit32,34 and Parmscan33.31 These methods are 

well suited for use in MD simulations and free energy perturbations of a few specific receptor-

ligand interactions. However, as stated previously, QM calculations are computationally 

expensive, which may limit its utility for HTS. Consequently, for drug discovery and possibly 

other fields, the process of deriving torsion parameters needs to be fast, without relying on QM 

calculations.  

To accomplish this task, inspiration was drawn from chemical principles and knowledge 

accumulated by organic chemists. In the past, our first efforts were directed towards generating 

torsion parameters on-the-fly for molecules containing simple σ-bonds (eg. haloalkanes, 

alkylammonium). During that project, it was found that the strength of σ → σ* hyperconjugation 

played a major role in determining the height of the torsional energy barrier.6 It was also shown 

that this energy barrier could be quantitatively predicted based on the electronegativity of atoms 

within the dihedral angle. This lead to the development of H-TEQ 1.4 (Hyperconjugation for 

Torsional Energy Quantification 1.4), a standalone program based on the quantification of 

chemical principles to derive torsion parameters on-the-fly (Table 3.1). After this initial success, a 

similar strategy was used to predict the torsion barriers of molecules containing electron lone pairs 

in the central atom of the dihedral angle (eg. methanol, methylamine); thereby quantifying η→ σ* 

hyperconjugation.25 This effort lead to the development of H-TEQ 2.25 In our last report, we began 

quantifying torsion interactions between benzylic and allylic bonds adjacent to conjugated 

systems, by looking at π → σ* and σ → π* hyperconjugation, which lead to the development of 

H-TEQ 3.0.35 
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Table 3.1. Previous Developments of H-TEQ. 

H-TEQ Supported Torsional Bonds Hyperconjugation Type Example Molecules 

1.46 Saturated alkanes without 

adjacent electron lone pairs 

 

 

2.025 All saturated alkanes  

 

 

3.035 Single bonds adjacent to a 

double bond without 

adjacent electron lone pairs 

 

 

 

3.3   Understanding Chemical Origins 

Qualitative predictions. Many physical and chemical properties have been employed by organic 

chemists to qualitatively explain observations of conformational preferences and reaction 

outcomes for decades. For example, hyperconjugation could explain gauche and anomeric 

effects,36 while aromaticity gives a rationale for the superior stability of benzene compared to 

hexatriene.37 In addition, hard and soft acids and bases (HSAB) theory has been used to account 

for the speeds of reaction and stability of formed products.38 Unfortunately, despite the abundance 

of organic chemistry knowledge, many of these interactions remain qualitative. By understanding 

the underlying chemical principles, we aimed to quantify these interactions so that they could be 

applied to FFs. 

Brief Overview of Hyperconjugation. Torsional energy profiles of molecules are 

primarily influenced by the effects of hyperconjugation, conjugation, sterics, and electrostatics.4,25, 

26, 39, 40 Although most existing FFs contain the two latter terms, the strengths of the two former 

terms have not been previously explored nor quantified.  

In the context of hyperconjugation, two major factors modulate the strengths of stabilization: 

spatial overlap and molecular orbital energy match between the donor bonding and acceptor 
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antibonding orbitals.41, 42 Spatial overlap dictates that hyperconjugation is maximized when the 

acceptor and donor bonds are properly aligned and overlap sufficiently to allow donation of 

electron density from the filled to the unfilled orbital. Taking fluoroethane as an example, the 

donation of σC-H → σ*C-F hyperconjugation is maximum when the θH-C-C-F angle is 180˚ (i.e. C-H 

pointing opposite in direction to C-F).36 On the other hand, at 0˚, this donation is much weaker. 

Furthermore, when these orbitals are orthogonal, donation is virtually impossible due to having 

little or no overlap (Figure 3.2). This requirement for orbital overlap is true for all types of 

hyperconjugation. The orbital energy match of the donor and acceptor orbitals also plays a role in 

the strength of this interaction. Since the antibonding, unfilled orbitals are higher in energy than 

the bonding, filled orbitals, the former must be energetically accessible for donation of electron 

density to occur (Figure 3.3). Hence, a smaller energy gap increases the strength of 

hyperconjugation. In general, electronegative and electropositive atoms are known to lower and 

increase the overall energy levels of molecular orbitals, respectively.37, 41, 43-45 Consequently, for 

stronger hyperconjugation interactions to occur, a more electronegative atom should comprise the 

acceptor orbital, while a more electropositive atom should be incorporated in the donor orbital. 

 

 

Figure 3.2. Two distinct conformations of fluoroethane: (a) θH-C-C-F = 180˚ and (b) θH-C-C-F = 0˚, 

are shown along with bonding (blue) and antibonding (red) orbitals participating in σC-H → σ*C-F 

hyperconjugation depicted. For simplicity, not all bonds nor orbitals are shown. 
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Figure 3.3. σ → σ* hyperconjugation in a) ethane and b) fluoroethane with selected orbitals 

(bonding orbital is shown in blue, while antibonding orbital is shown in red) and energies shown. 

In both cases, the σ-bond orbital energy level is the same, while the σ*-antibonding orbital energy 

for fluoroethane is lower than ethane. This causes a greater amount of hyperconjugative 

stabilization for fluoroethane compared to ethane. 

Chemical Origins of Hyperconjugation and Conjugation in Biaryl Systems. Biaryl 

molecules are comprised of two aromatic cycles connected by a single bond. Consequently, various 

types of hyperconjugation effects exist, as exemplified by 2-(pyridin-2-yl)oxazole (Figure 3.4). 

The various orbital interactions of biaryl molecules affecting the central torsion, include σ → σ*, 

π → σ*, σ →π* hyperconjugation, and π → π* conjugation.37, 46 In biaryl systems, the σ → σ* 

hyperconjugation (Figure 3.4b) and π → π* conjugation (Figure 3.4d) are in-phase and combined 

constructively. These interactions are maximum when the biaryl system is planar. In this 

orientation, the spatial overlap between σ and σ* orbitals and also the π-orbitals of both aromatic 

rings are at a maximum. Similarly, π → σ* and σ → π* hyperconjugation (Figure 3.4c) are also 

in-phase but are maximum when the two rings are orthogonal in orientation. As a result, the former, 

planar-favoring interactions and the latter, orthogonal-favoring interactions combine destructively, 

and compete with each other to modulate the overall strength of the biaryl torsional barrier. 

It should also be noted that due to the geometric orientation of these orbitals, it is expected 

that the π and σ*-spatial overlap (Figure 3.4e) would be greater than the σ and π* spatial overlap 

(Figure 3.4d), leading to a greater stabilization from the former. 

 



83 
 

 

Figure 3.4. (a) Chemical structure of 2-(pyridin-2-yl)oxazole (with the torsional bond of interest 

highlighted in red) is shown with hyperconjugation of orbitals involving: (b and c) σ → σ*, (d) σ 

→π*, and (e) π → σ *, and (f and g) π → π* conjugation. For simplicity, a maximum of one σ-, 

σ*-, π-, and π*-orbitals are shown in each subfigure. 

In biaryl systems, stabilization due to π-orbitals are derived from π → π* conjugation.37 

Unlike simple σ- and σ*-orbitals, the π- and π*-orbitals of aromatic systems are arranged in a more 

complex manner. In fact, Hückel molecular orbital theory predicted that the molecular orbitals of 

classical 5- and 6-membered aromatic cycles possess degenerate energy levels (eg. benzene and 

cyclopentadienyl anion).37 Consequently, more than one possible π → π* transition is present 

between the two rings, and often in either direction. For example, in a biphenyl molecule (and any 

other biaryls composed of two 6-membered rings), there are 18 theoretically possible conjugation 

interactions (Figure 3.5a). For 2-phenylthiophene and any other biaryls composed of a 5- and a 6-

membered aromatic cycle possesses 15 theoretically possible conjugation interactions (Figure 

3.5b). Likewise, 2,2’-bithiophene, along with other biaryls with two 5-membered aromatic rings, 

has 12 theoretically possible transitions (Figure 3.5c). These interactions involve the conjugation 

interaction involving the donation of electron density from an occupied molecular orbital of one 

ring to an unoccupied molecular orbital of the adjacent ring. In all of these three cases however, 

the strongest conjugation interactions come from transitions that occur between donor and acceptor 

orbitals with the smallest energy gaps. Consequently, ψ2 → ψ5
*, ψ2 → ψ6

*, ψ3 → ψ5
*, and ψ3 → 

ψ6
* transitions are most favourable to occur (Figure 3.5). Despite knowing the theoretical basis 
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from an FMO perspective, it is unclear how the substitution of one atom for a more electronegative 

one would affect the overall strength of conjugation. This is complicated by the number of possible 

transitions in conjugated systems, which will be explored in this manuscript. 

 

 

Figure 3.5. A qualitative molecular orbital diagram of: a) biphenyl molecule, b) 2-

phenylthiophene, and c) 2,2’-bithiophene are shown, along with a major interaction, involving ψ3 

→ ψ5* conjugation. The right and left rings act as the donor and acceptor, respectively in this 

figure. For simplicity, not all possible transitions are shown. 
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3.4   Computational Methods 

Construction of Development Set. 131 biaryl molecules of various types were included in the 

development set (Figure 3.6). The composition of this set included biaryls containing both 5- and 

6- membered rings (ie., 5:5, 5:6 and 6:6 biaryls), as well as neutrally and positively charged central 

atoms. A suitable starting conformation was obtained for each molecule by performing a global 

optimization at the MP2/6-311++G** level of theory using GAMESS-US.47 Subsequently, a 

constrained QM optimization was performed whereby the dihedral angle of interest was varied 

sequentially between -180˚ and 180˚ at 10˚ intervals. This resulted in a total of 36 conformations 

for each biaryl molecule. Single point energies for each conformation was then evaluated using 

MP2/6-311++G** and GAFF2. AM1-BCC charges were assigned to molecules by using the 

default protocol implemented in Antechamber for each torsional conformation.48 These charges 

were subsequently averaged for each atom throughout the torsional angle scan to preclude 

discontinuity in the electrostatic energy profile nor to favor any one particular geometry. 

To obtain the isolated torsional energy, the van der Waals and electrostatics components of 

GAFF2 energies were subtracted from the total energy as computed by MP2, which included 1-4 

non-bonded interactions. A Fourier regression was performed to obtain V1-3 parameters (equation 

3.2) for each molecule in the development set. A variety of different chemical descriptors, 

including electron-richness/deficiency, central atom bond lengths, and electronegativity, were 

assigned to each molecule to observe their effects on the torsional barrier. The descriptor(s) which 

could best reproduce the torsion energy was chosen to formulate our method, which was 

subsequently incorporated into H-TEQ 4.0, our standalone program. To first evaluate whether 

these rules could reproduce the QM energy profiles of torsional rotation, H-TEQ 4.0 was first 

tested on the development set. The total MM energy was calculated by taking the GAFF2 energies 

for all terms in Equation 3.1, except for the torsion energy, which was computed by H-TEQ 4.0. 

Root-mean-square error (RMSE) was calculated for H-TEQ 4.0 and GAFF2 with the QM energy 

profile as a reference. 

 



86 
 

 

Figure 3.6. 131 biaryl molecules used for obtaining the torsion energy within the development set. 

The number on the left of each scaffold indicates the number of molecules contained in that 

category. 

Construction of the Validation Set. 100 molecules were selected to be a part of the 

validation set. The composition of this set included drug-like biaryls used by Jorgenson and 

coworkers (20 molecules),5 the MMFF94 set (32 molecules),49 and a variety of molecules chosen 

from a previous Cytochrome P450  set (48 molecules).50 In order to ensure the robustness of the 

developed method, the validation set was constructed so that it would have no overlapping 

molecules with the training set. From these three sources of molecules, 100 drug-like molecules 

were randomly selected and tested. These molecules also included those which were highly 

substituted, bicyclic, and tricyclic. The full validation set of molecules are shown in Figure 3.7. 
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Figure 3.7. 100 molecules of the compiled validation set. The bonds of interest are shown in red. 
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3.5   Results and Discussion 

Chemical Factors Modulating the Strength of Conjugation in Biaryl Molecules. It is known 

that the degree of π-electron delocalization in aromatic systems is influenced both by the number 

of available π-electrons and the electronegativity of the atoms comprising the π-system. For 

example, 5-member rings, such as pyrroles, are generally more electron-rich than 6-member rings, 

such as pyridine.51-53 This is due to the fact that in the former, six π-electrons are distributed over 

five atoms as opposed to the latter where the same number of π-electrons are distributed over six 

atoms. As a result, it leads to a higher π-electron density in the former. In addition, it is also known 

that aromatic molecules with less electronegative atoms, such as pyrroles are more electron-rich 

than molecules with greater electronegative atoms such as furans. This is due to the propensity of 

more electronegative atoms to withhold π-electron density. To take both of these factors into 

consideration and to measure the electron-richness/deficiency of aromatic systems, a new 

electronegativity parameter, π-electronegativity (χπ) was devised as shown in equation 3.3. 

Furthermore, two other descriptors, χπtot, and Δχπ were derived from equation 3.3, as shown in 

equation 3.4 and 3.5, respectively.  

 

Equation 3.3. Equation for calculating the π-electronegativity of a single aryl group.  

χ𝜋 =
∑ 𝜒𝑖
𝑛
𝑖=0

𝑛(𝜋)
 

 

Equation 3.4. Equation for calculating the total π-electronegativity of a biaryl molecule.  

χ𝜋𝑡𝑜𝑡 = χ𝜋 𝐺𝑟𝑜𝑢𝑝2 + χ𝜋 𝐺𝑟𝑜𝑢𝑝1 

  

Equation 3.5. Equation for calculating the π-electronegativity difference within a biaryl molecule 

∆χ𝜋 = χ𝜋 𝐺𝑟𝑜𝑢𝑝2 − χ𝜋 𝐺𝑟𝑜𝑢𝑝1  

 

In this equation, χi is the electronegativity of atoms comprising the conjugated system and n(π) is 

the number of π electrons of this system. 
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Overall π-electronegativity Modulates Strength of Conjugation. Since biaryl molecules 

are composed of two interconnected aromatic moieties, the χπ
 of both cyclic systems were 

computed. In all tested cases, it was found that the π-electronegativity of the entire molecule, χπtot, 

correlated well with V2, within each category of molecules with differing central bonds (Figure 

3.8). More specifically, it was found that an increase in the χπtot
 correlated with an increased 

magnitude of V2. Since large χπ
 suggests π-electron deficiency, these results indicated that biaryls 

which were more π-electron deficient had a greater degree of conjugative stabilization. Although 

additional calculations and experiments may be required, the increase in χπtot may decrease the 

energy gap between the ψ2 or ψ3 bonding and ψ4* or ψ5* antibonding molecular orbitals of biaryl 

systems (Figure 3.5). In effect, this would decrease the energy barrier required for electron 

donation from the bonding to the antibonding orbitals, leading to increased conjugation strength. 

This relationship between χπtot and V2 was true within each category of biaryls tested, although the 

associated slope and y-intercept of the linear relationship and accuracy of the regression differed. 

For C-C, C-N, and N-N central bonds, squared correlation coefficients (R2) of 0.48, 0.72, and 0.19 

were found, respectively. For positively charged central bonds, C-N+, N-N+, and N+-N+, R2 of 0.72, 

0.65, and 0.60 were observed, respectively. 

Interestingly, the slopes of the linear fit across each group varied slightly. In general, it was 

observed that biaryls with neutral central bonds (ie. C-C and C-N) had greater stabilization, and 

therefore lower V2 than those with charged central atoms (ie. C-N+ and N-N+), despite having the 

same χπtot (Figure 3.8). Furthermore, both these aforementioned groups had greater conjugative 

stabilization when compared to those with large charge-charge repulsion within the central bond 

(N-N and N+-N+). Biaryls, comprising of N-N central bond (eg. 1,1’-bipyrrole), contain two 

adjacent lone pairs, which repel strongly when planar, as was also found in a previous study.54 

However, another explanation may be that a greater π → σ* and/or σ → π* hyperconjugation are 

present in these biaryls, although the exact mechanism of action is not clearly known. 
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Figure 3.8. V2 of 131 biaryl molecules were plotted against the total π-electron density (χπtot), and 

categorized into six distinct groups, which differed by the atomic identity of the central bond. 

Smaller V2 signifies stronger conjugation strength. The R2 for each linear regression is also shown 

in the legends. 

Difference in π-electronegativity between the Two Aromatic Rings Modulates 

Strength of Conjugation. In addition, the difference in π-electronegativity, Δχπ,
 between the two 

aromatic groups of biaryl molecules was investigated. Intriguingly, in some cases, an increase in 

Δχπ increased V2 while in others, a decrease was observed (Figure 3.9). Only for N+-N+ central 

bonds, was there no observable trend, which will be mentioned and explained later in this section. 

For biaryls with uncharged central bonds (ie. C-C, C-N, and N-N), increases in Δχπ decreased V2, 

leading to an increase in the strength of conjugative stabilization. In fact, when V2 was plotted 

linearly against (Δχπ)
2, the squared correlation coefficients of 0.28, 0.69, and 0.73 were observed 

for biaryls containing C-C, C-N, and N-N central bonds, respectively (Figure 3.9A). For biaryls 

containing charged central bonds, trends were also found although they seemed to be influenced 

by another factor—the number of atoms comprising the aromatic moiety. 
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Figure 3.9. V2 of 131 biaryl molecules were plotted against the squared difference of π-electron 

density between the two connected aromatic moieties (Δχπ)
2. Biaryls were separated into: A) 

neutral central bonds: C-C, C-N, and N-N, and B) positively charged central bonds: C-N+, N-N+, 

and N+-N+. C-N+ and N-N+ was further grouped by the identity of the central atom and number 

of atoms on each side of the central bond. Smaller V2 signifies stronger conjugation strength. The 

R2 for each linear regression is also shown in the legends. 

For biaryls containing C-N+ central bonds, an increase in (Δχπ)
2 decreased V2 (Figure 3.9B), 

for those comprised of a 6-membered aromatic moiety with carbon central atom and a 5-membered 

aromatic moiety with a N+ central atom (ie. C(5)-N+(6) ). All other biaryls with C-N+ central bonds 

saw an increase in V2 as (Δχπ)
2 increased.  

Similarly, an increase in (Δχπ)
2 increased in V2 for all N-N+ central bond biaryls, regardless of the 

number of atoms in each ring. However, the trends for both N(5)-N+(5) (R2 = 0.58) differed from 

N(5)-N+(6) (R2 = 0.94) such that the slope and y-intercept differed. Although no relationship 

seemed to exist for N+-N+ central bonds, it was hypothesized that such a trend would be observed 

if it were sorted into N+(5)-N+(5), N+(5)-N+(6), and N+(6)-N+(6) central bonds. However, since 

these biaryls are rarely found in pharmaceuticals, the existing number of molecules was deemed 

sufficient for this current study, and not pursued further. 

The relationship between Δχπ and V2 may also be caused by the lowering of the energy gap 

between adjacent bonding and antibonding orbitals of biaryl systems (Figure 3.5), leading to a 

more stable conjugation. In general, a greater Δχπ in a biaryl system would suggest that the 

aromatic ring with the lower χπ would act as the donor, while the aromatic ring with the higher χπ 
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would act as the acceptor. However, this relationship did not hold for all central bonds, possibly 

due to more complex molecular orbital interactions present in certain biaryls. 

 

Substituent Effects on the Torsional Profile of Biaryls. Substituent effects of biaryl 

molecules on its barrier to conjugation was tested on various molecules, which were categorized 

into two types of substituents: inductive and conjugated. To test the effects of the inductive ligands 

on biaryl molecules, mono- and di-substituted biaryls were tested. More specifically, various 

substituents were placed at various positions on the biaryl molecules, as shown in Figure 3.10. In 

total, 15 different scaffolds and 124 substituted biaryls were tested. Although some di-substituted 

biaryls lead to a change in its torsion energy by as much as 1.5 kcal·mol-1, most substituents had 

negligible effects. In fact, the average change of 8.12% was observed from the original, 

unsubstituted biaryl molecule with 86% of substituted biaryls showing less than 15% change in V2 

(Table 3.2).  

To further illustrate this point, fluoryl, chloryl, methyl, and trifluoromethyl groups were 

placed in the meta- and para-positions of the 1,1’-biphenyl molecule, individually and in 

combination. These results further collaborated that inductive ligands have minor effects on the V2 

of biphenyl molecules. In fact, the differences in V2 of substituted 1,1’-biphenyl to that of the 

unsubstituted never exceeded 0.55 kcal·mol-1 (Table 3.2). Surprisingly, the V2 term of 2,2’-

difluoro-1,1'-biphenyl and 3,3’-difluoro-1,1'-biphenyl only differed by 0.02 and 0.12 kcal·mol-1, 

respectively, when compared to 1,1'-biphenyl, in spite of being substituted by two highly 

electronegative atoms. Similar negligible increases in V2 were observed with 4-(trifluoromethyl)-

1,1'-biphenyl, which had an increase of only 0.12 kcal·mol-1 over the unsubstituted biphenyl. This 

may be due to the fact that σ-orbitals of the inductive substituent and the highly delocalized π-

orbitals of the biaryl system may not interact very well due to their energetic differences. 

Conjugative substituents were further evaluated using a set of 1,1’-biphenyl molecules. 

Amine, dimethylamine, nitro, and alcohol groups were added to the para-position by themselves 

and in combination. The results indicate that these substituents also had little effect on the overall 

torsional energy barrier to rotation, despite having π-electrons which could readily interact with 

the π-system. In fact, the highest difference in V2 in this class of molecules was N,N-dimethyl-4'-

nitro-[1,1'-biphenyl]-4-amine, which saw an increase of 0.57 kcal·mol-1 over the unsubstituted 

biphenyl (Table 3.2, Figure 3.11). As shown at the bottom of Figure 3.11, this increase can be 
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explained by the combination of a strong electron-donating group and a strong electron 

withdrawing group stabilizing a resonance structure leading to a strong double bond character of 

the central bond. However, this was somewhat surprisingly as it was expected that this combination 

would increase the torsional barrier more substantially. This further confirmed that conjugative 

substituents had little effect on the torsional energy barrier of biphenyl. 

Overall, both types of substituents: inductive and conjugated, had minor effects on the 

torsion profile of the biphenyl molecule which was comparable to the level of error found in MM 

FFs, and could potentially be caused by errors in the electrostatics or van der Waals energies. We 

understand that other biaryls may behave slightly differently in the context of substitution, and 

expect some modulation of the overall torsion energy profile. However, the presence of substituted 

ligands did not greatly impact the torsional energy profile of biaryls. Consequently, these effects 

were not further pursued nor considered to build our predictive model for estimating the torsional 

profiles of biaryl molecules. Only the principle aromatic rings of biaryl, directly adjacent to the σ-

bond, was considered. 

 

Figure 3.10. Biaryls used to probe the effects of substituents on its torsional energy barrier. The 

torsional bonds of interest are depicted in red. 
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Figure 3.11. The torsional energy to rotation of biphenyl (red), and biphenyl substituted with 

strong electron-withdrawing and electron donating groups as computed by MP2/6-311++G(d,p) 

level of theory. 

 

Table 3.2. V2 for Various Substituted 1,1’-Biphenyl Molecules 

Biaryl Molecules V2 (kcal·mol-1) 

1,1’-biphenyl -4.25 

Inductive Substituents 

3-fluoro-1,1'-biphenyl -4.29 

3-chloro-1,1'-biphenyl -4.56 

4-fluoro-1,1'-biphenyl -4.26 

4-chloro-1,1'-biphenyl -4.64 

4-methyl-1,1'-biphenyl -4.27 

4-(trifluoromethyl)-1,1'-

biphenyl 

-4.37 

3,3'-difluoro-1,1'-biphenyl -4.37 

3,3'-dichloro-1,1'-biphenyl -4.80 

3,4'-difluoro-1,1'-biphenyl -4.31 
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4,4'-difluoro-1,1'-biphenyl -4.23 

4,4'-dichloro-1,1'-biphenyl -4.69 

4,4'-dimethyl-1,1'-biphenyl -4.23 

Conjugated Substituents 

[1,1'-biphenyl]-4-amine -4.39 

[1,1'-biphenyl]-4-ol -4.38 

benzidine -4.52 

[1,1'-biphenyl]-4,4'-diol -4.46 

N4,N4,N4',N4'-tetramethyl-

[1,1'-biphenyl]-4,4'-diamine 

-4.28 

N,N-dimethyl-4'-nitro-[1,1'-

biphenyl]-4-amine 

-4.82 

4,4'-dinitro-1,1'-biphenyl -4.79 

 

Cis/Trans Preference of Conjugation. The V1 term, responsible for the cis/trans 

preference of a torsion term, was also investigated for the 131 biaryls in the development set. 81% 

of these molecules (106 out of 131 molecules) had a V1 term between the ranges of -1 to +1 

kcal·mol-1, suggesting that V1 terms do not vary greatly for the majority of molecules. For the other 

19% of biaryls, no discernable trends were observed when plotted against various chemical 

properties. 

From a chemical perspective, cis/trans preference is dictated by various chemical effects, 

including: electrostatics, van der Waals, and σ → σ* hyperconjugation. According to the obtained 

results, the strength of the V1 energy term was found to be minor compared to electrostatics and 

van der Waals interactions. This is reflected in the energy profiles of the tested biaryl molecules. 

For example, 2,2’-bipyridine had combined electrostatics and van der Waals energy which varied 

over a range of 10.65 kcal·mol-1 (Figure 3.12). In contrast, the V1 energy term, representing the σ 

→ σ* hyperconjugation, varied over a much smaller range of 1.81 kcal·mol-1. For comparison, the 

V2, term varied over a range of 5.83 kcal·mol-1. These results suggest that the cis/trans preference 

in biaryls are predominately a result of van der Waals and electrostatic interactions, as reported 

previously.4 In addition, although these latter terms are widely used within MM FFs, it is known 

that they also suffer from various sources of errors and simplifications.14 For example, 
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electrostatics in most common FFs cannot be polarized, while van der Waals interactions often 

have a steeper steric wall than in reality. As a result, in addition to hyperconjugation effects, the 

obtained V1 terms may also include correction terms for the errors found in non-bonded interactions 

of FFs. Consequently, for this reason, a method to predict the V1 variable was not included in the 

developed method. 

 

 

Figure 3.12. The energy terms extracted from a torsion scan of 2,2’-bipyridine. The red represents 

the sum of the GAFF2 van der Waals and electrostatics terms. The blue and green are V1 and V2, 

respectively, which were obtained from the torsion term as computed by EQM – (Evdw + Eele). 

Development of H-TEQ 4.0 Rules for Biaryl Molecules. With these observations in hand, rules 

were developed for all investigated biaryl molecules. In order to improve the accuracy of the 

method, separate rules were devised for each distinct central bond biaryls. V2 was predicted based 

on a linear combination of the overall π-electronegativity and difference of π-electronegativity 

between the two aromatic groups, based on the equation 3.4, and its associated parameters (Table 

3.3). 

 

Equation 3.6. Equation for calculating V2 based on electron-richness/deficiency.  

𝑉2 = 𝐴 ∙ χπtot +  𝐵 ∙ (∆χπ)
2 + 𝐶  
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Table 3.3. Associated Parameters to Reproduce V2 for Various Categories of Biaryls 

Central Atoms A B C 

C-C -7.13 -7.75 13.21 

C-N -10.43 -13.37 22.38 

N-N -5.74 -63.81 15.75 

C(5)-N+(5) 

-10.82 

0 24.66 

C(5)-N+(6) 0 24.66 

C(6)-N+(5) -20.46 25.67 

C(6)-N+(6) 34.36 22.60 

N(5)-N+(5) 
-11.07 

15.13 25.05 

N(5)-N+(6) 10.01 22.33 

N+-N+ -5.109 0 14.22 

 

In this equation, A and B are parameters for the weights of contribution of χπtot and (Δχπ)
2, 

respectively. These values were optimized through a multivariable regression to reproduce V2 

together; consequently, they were not the same parameters as those found in the previous section, 

when they were used separately. C represents the inherent strength of conjugative stabilization for 

a particular type of biaryl molecule. The value of these associated parameters (ie. A, B, C) were 

different, depending on the atomic identity of the central bond. It should also be noted that in the 

case of biaryls with both C-N+ and N-N+ central bonds, B and C parameters were also different 

depending on the number of atoms in each aromatic ring. Consequently, biaryls with C-N+ central 

bonds were further separated into four categories of molecules: C(5)-N+(5), C(6)-N+(5), C(5)-

N+(6), and C(6)-N+(6), and N-N+ central bonds into 2 groups: N(5)-N+(5) and N(5)-N+(6). 

 

Accuracy of H-TEQ 4.0 on Training Set- A First Validation. Prior to obtaining the 

accuracy of the developed method on the validation set, the accuracy of H-TEQ 4.0 was first tested 
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on molecules found within our development set. An average RMSE of 0.71 kcal·mol-1 was 

obtained for H-TEQ, as compared to 4.83 kcal·mol-1 for GAFF2 (Figure 3.13) for the 131 biaryl 

molecules. These results indicated the robustness of the developed method. More interesting, H-

TEQ 4.0 predicted a sharp peak at an RMSE of 0.5 kcal·mol-1. Overall, all of the H-TEQ 4.0 

predicted torsional parameters fell within an RMSE of 2.5 kcal·mol-1. In contrast, GAFF2 had a 

broader distribution containing several maximums, with peaks found at RMSEs of 0.7, 3.7, 6.7, 

and 7.9 kcal·mol-1. In fact, there were RMSEs of up to 19 kcal·mol-1. These results suggested that 

while GAFF2 had been parameterized for some molecules, corresponding to the peak of RMSE at 

0.7 kcal·mol-1, it performed poorly for other molecules which were not parameterized. These 

failures may also results from a poor atom type assignment by antechamber. Within the compiled 

training set of 131 biaryls, GAFF2 predicted 36% of the torsional energy profiles below an RMSE 

of 2.5 kcal·mol-1. 

 

Figure 3.13. A smoothed histogram indicates the number of MM energy profile predictions made 

by H-TEQ 4.0 (pink) and GAFF2 (blue) within the training set for 131 biaryls. The RMSEs of 

these predictions are shown on the x-axis. The QM energy profile was used as the reference, with 

values closer to 0 kcal·mol-1 representing more accurate predictions. 

Validation of H-TEQ on a Diverse Set of Drug-like Molecules. To test the accuracy of 

the newly developed H-TEQ 4.0, it was applied to the newly compiled set of 100 biaryl molecules 

(Figure 3.7). The results showed that the developed method had a higher overall accuracy when 

compared to GAFF2 (Figure 3.14) with mean RMSEs of 0.95 compared to 3.88 kcal·mol-1, 

respectively, with reference to the QM torsional profile. In fact, these results indicated that the 

statistical mode of the RMSE distribution for H-TEQ 4.0 (0.55 kcal·mol-1) was lower than GAFF2 

(0.80 kcal·mol-1).  
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In rare cases, GAFF2 performed better than H-TEQ4 for some common biaryls, such as 6-

phenylpyridin-2(1H)-one (1), which had an RMSE of 0.17 compared to 0.97 kcal·mol-1, 

respectively (Figure 3.15a). This is likely due to GAFF2 having been parametrized extensively for 

these molecules. When the torsion of a slightly more complex molecule, such as 6-(1H-imidazol-

2-yl)pyridin-2(1H)-one (2), was computed however, GAFF2 drastically overpredicted the 

torsional barrier by approximately 25 kcal·mol-1, with an RMSE of 14.15 kcal·mol-1 (Figure 

3.15b). This particular biaryl had never been parametrized by GAFF2, leading to an erroneous use 

of a generic double bond torsion parameter, in place of a single bond parameter. In fact, 4,4’-

bithiazole (3) and 6-(furan-2-yl)pyrazolo[3,4-d][1,3]oxazin-4(1H)-one (5) also had similar 

parameter transferability issues (Figure 3.15c and e), leading to an RMSE of 16.95 and 14.17 

kcal·mol-1, respectively when computed by GAFF2. H-TEQ 4.0, being atom type-independent, 

predicted a more accurate torsional barrier for these molecules, with RMSEs of 0.80, 1.10, and 

0.41 kcal·mol-1 for 2, 3, and 5, respectively. 

Despite more accurately predicting the height of the torsion barrier associated with 

conjugation for molecule 1, 2, and 3, some parts of the H-TEQ 4.0 curve also deviated slightly 

from that of the QM profile. This might be due to the fact that the van der Waals term in GAFF2, 

used as a part of the H-TEQ 4.0 energy could not capture the nuance orbital interactions at close 

distances.14 When in the planar geometry, molecule 1 had close steric clash between its two pairs 

of hydrogen atoms, leading to an energetically high barrier at 0˚ and ±180˚ (Figure 3.15a). This 

effect was not reproduced by H-TEQ.4.0 In fact, the GAFF2 van der Waals energy, when used 

with H-TEQ 4.0, seemed to underpredict this barrier. It should be noted that when GAFF2 was 

used independently for 1, it introduced an additional V1 term to offset this error, thereby likely 

“patching” the torsional energy profile. Similarly, molecule 2 also had a pair of sterically clashing 

hydrogen atoms, which lead to small deviations in its H-TEQ 4.0 profile from that of the QM at 

dihedral angles of approximately ±180˚. Its van der Waals energy was also underpredicted by 2.5 

kcal·mol-1. In contrast, the van der Waals energy of molecule 3 was overpredicted by 2 kcal·mol-1 

at approximately ±140˚ dihedral angles when its hydrogen atoms were in close proximity to each 

other. For biaryls without a pair of sterically clashing hydrogens, such as 6-(3-methyl-1H-pyrazol-

1-yl)-1,3,5-triazine-2,4-diamine (4) and 5, H-TEQ 4.0 was able to predict the QM torsional profile 

with still greater accuracy, with an RMSE of 0.37 and 0.41 kcal·mol-1, respectively (Figure 3.15d 

and e). For reference, GAFF2 predicted an RMSE of 1.75 and 14.17 kcal·mol-1, respectively. The 
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problem of GAFF2 van der Waals seemed to extend indiscriminately to all molecules (ie. 1, 2, 3, 

6, 7, 8, and 9) possessing sterically clashing atoms in the ortho position with respect to the single 

bond connecting the two rings (Figure 3.15). Consequently, to further improve the accuracy of 

FFs, there is a need for more accurate models to describe van der Waal energies in the context of 

FFs. 

The success of H-TEQ 4.0 on molecule 4, 5, and 7-(3,4-dimethylphenyl)-2-methyl-7H-

pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-4-ium-3-ide (9) validated our hypothesis that both 

inductive and conjugated ligands had little or no effect on the torsion energy barrier of biaryls 

(Figure 3.15d, e, and i). In fact, 4 was meta-substituted by two conjugated -NH2 and one inductive 

–CH3 group. Similarly, 5 contained a bicyclic molecule and a carbonyl group. Lastly, 9 contained 

three methyl groups and a tricyclic aromatic moiety. In all three cases, H-TEQ 4.0 correctly 

computed the biaryl torsional barriers by only considering atoms within the primary aromatic 

rings. In fact, the RMSE of 9 was 0.29 kcal·mol-1 as predicted by H-TEQ 4.0, compared to 1.44 

kcal·mol-1 for GAFF2. 

The torsional energy profile of 3-(m-tolyl)furan (7) had an RMSE of 0.89 kcal·mol-1 as 

predicted by H-TEQ 4.0. The barrier to rotation at a dihedral angle of ±90˚ was overpredicted by 

approximately 0.8 kcal·mol-1. This might be due to the fact that the developed method was trained 

on a similar molecule, 2-phenylfuran. Neglecting the presence of the methyl group on the former, 

the two are structural isomers. In spite of this fact, the torsional barrier was slightly different, 

suggesting that V2 may be dependent on the position of the heteroatom within the aromatic ring. 

The reason for this is unclear, although it could be due to differences in the electron density of the 

biaryl system. Another reason for this might be due to the differences in the orbital energy of the 

σ- and σ*-orbitals adjacent to the single bond connecting the two aromatic rings. More specifically, 

2-phenylfuran possesses a C-O σ*-antibonding orbital, which is a better hyperconjugation electron 

acceptor than the C-C σ*-orbital found in 3-phenylfuran. This phenomenon could be explored 

more conclusively in the future by using techniques such as energy decomposition analysis.55, 56 

The scaffold present in the molecule, 6-isopropyl-3-phenyl-1,2,3,5-tetrazin-4(3H)-one (8), along 

with many other molecules in the validation set, was not part of the training set. In spite of this, H-

TEQ 4.0 successfully computed the biaryl torsional barrier, V2, using electronegativity of atoms 

comprising the ring. The RMSE for the torsion profile computed by H-TEQ 4.0 and GAFF2 was 

0.67 and 2.53 kcal·mol-1, respectively. 
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In order to also compare the accuracy of H-TEQ 4.0 to GAFF2 for those which were 

parametrized for the latter, a subset of biaryls below an RMSE of 5 kcal·mol-1 was extracted (with 

respect to GAFF2). Interestingly, despite only selecting for those which performed relatively well 

for GAFF2, the accuracy of both methods increased. In this subset, a RMSE of 0.79 kcal·mol-1 

was observed compared to 1.14 kcal·mol-1 for H-TEQ 4.0 and GAFF2, respectively. Even for well 

parametrized biaryl molecules, H-TEQ 4.0 was better able to predict their torsional profiles. This 

further corroborates the idea that other energy terms in the FF, especially van der Waals and 

electrostatics, could be the source of error in certain molecules. Indeed, there has been ongoing 

interest in the FF community to improve the accuracy of these non-bonded interactions.57 

 

Figure 3.14. A smoothed histogram indicates the number of MM energy profile predictions made 

by H-TEQ 4.0 (pink) and GAFF2 (blue) within the validation set for 100 biaryls. The RMSEs of 

these predictions are shown on the x-axis. The QM energy profile was used as the reference, with 

values closer to 0 kcal·mol-1 representing more accurate predictions. 
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Figure 3.15. The torsion profiles of nine representative biaryl molecules (a-f). For each molecule, 

the torsion profiles as calculated by QM profile (red), HTEQ 4.0 (blue), and GAFF2 (green) are 

shown. The reference dihedral angle at 0˚ is marked by a series of four asterisks (*). 

3.6   Conclusion 

Biaryl systems are important pharmacophores, which are abundant in nature and existing drugs. 

Consequently, they are promising for the development of future pharmaceuticals. Unfortunately, 

existing FFs have difficulties in accurately reproducing their torsional profiles, due to the reliance 

on atom types. This limits its applicability towards virtual screening, using in silico docking. For 

example, despite GAFF2 performing well for several well-parameterized molecules, many were 

assigned inaccurate torsion parameters which deviated significantly from the QM torsional energy 

profile, resulting in RMSEs of over 15 kcal·mol-1. 
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Using well-established organic chemistry-based principles, such as conjugation and 

hyperconjugation, as a theoretical basis, we have developed an atom-type independent method to 

predict the torsional energies of biaryls. In fact, by understanding the underlying chemistry, we 

rationalized that the torsional energy of biaryl molecules were composed of electrostatic, van der 

Waals, and various hyperconjugation interactions. More specifically, the latter could be 

decomposed into: σ → σ*, π → σ*, σ →π* hyperconjugation, and π → π* conjugation. Through 

a development set of 131 biaryl molecules, it was found that the strength of torsional barrier was 

directly proportional to the total electron-richness of the aromatic system, χπtot. In addition, it was 

also found to be related to the difference in electron-richness between the two aromatic rings. 

When the developed method, H-TEQ 4.0, was applied to a validation set of 100 biaryl systems, it 

outperformed GAFF2 in two crucial aspects. Firstly, GAFF2 suffered from transferability 

problems arising from atom type incompatibility issues. In fact, GAFF2 atom types were missing 

for several biaryl scaffolds. On the other hand, the H-TEQ 4.0, being a predictive method, more 

accurately computed the torsion parameters. H-TEQ 4.0 was able to solve the transferability issue 

associated with biaryl torsion barriers. Secondly, even for well-parametrized molecules, H-TEQ 

4.0 achieved a higher accuracy than GAFF2. This proof-of-principle validation suggested that 

atom type-independent FFs could potentially solve the issue with transferability of atom types and 

improve the overall accuracy. 

Despite training on GAFF2, this method could be easily applied to other FFs by following 

the same protocol highlighted in this manuscript. This could be done by taking the QM energy of 

the molecule at each dihedral rotation and subtracting the various other MM terms (i.e. bond, angle, 

and non-bonded terms) of the particular FF. Refitting using the same descriptors may be necessary, 

leading to slightly different parameters depending on the FF used.  

In the future, the chemical rationale for the strength of the torsional barrier could be studied 

in more detail, perhaps using high level calculations or experimental methods. In addition, research 

should also focus on the development of more accurate non-bonded terms in FFs, such as 

electrostatics and van der Waals as these were shown to be poor in the current study. Consequently, 

there are still many ongoing developments in FFs.57-61 Finally, in the future, H-TEQ 4.0 should be 

further extended to be applicable to all dihedral angles.  
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4   Use of Extended-Hückel Descriptors for Rapid and Accurate Predictions of 

Conjugated Torsional Energy Barriers 

 

 

 

4.1   Preface 

In Chapter 3, a method to derive force field parameters of biaryl molecules was devised. Although 

pertinent to drug discovery and modelling of these organic molecules, it was strictly restricted to 

biaryls. To expand the utility and scope of this method to all conjugated molecules, other classes 

of molecules were explored. Again, organic chemistry principles and quantum chemistry methods 

were used to develop a method capable of producing parameters on-the-fly. To our delight, a 

simple and general method to predict parameters for all conjugated molecules was found and 

presented below.   

 

This chapter is based on work from:  Wei, W.; Champion, C.; Barigye, S. J.; Liu, Z.; Labute, P.; 

Moitessier, N., Use of Extended-Hückel Descriptors for Rapid and Accurate Predictions of 

Conjugated Torsional Energy Barriers. J. Chem. Inf. Model 2020. ASAP. 

Author contributions: I performed the calculations, analysis, and write-up of the manuscript. 

Zhaomin Liu, Stephen Barigye, Candide Champion, Paul Labute, Prof. Nicolas Moitessier, and I 

designed the described methods.  

  



112 
 

4.2   Introduction 

Conjugated Molecules in Pharmaceuticals. Conjugated chemical moieties are found in many 

druglike molecules and in biological systems.1-3 Many well-known drugs contain these fragments, 

including aspirin, celecoxib, pyrantel, and midazolam, which are pharmaceuticals listed in the 

World Health Organization (WHO) Model Lists of Essential Medicines (Figure 4.1).4 In fact, 90% 

of all currently approved small molecule drugs contain conjugated moieties.5 Out of these 

molecules, 46% contain at least one single bond bridging conjugated moieties. In biological 

systems, conjugated moieties are found in, but not limited to, amino acids (eg. peptide bonds, 

glutamic acid, and tyrosine); nucleic acids (eg. adenine and cytosine), lipids (eg. phosphoinositol 

and triglycerides) and various essential cofactors (eg. nicotinamide adenine dinucleotide and 

pyridoxal phosphate). 

Chemically, the p-orbitals of the conjugated fragments form π-bonds, which are delocalized 

over a part of the molecule. This causes that portion to adopt a more planar and rigid geometry 

than saturated moieties. In many cases, conjugated molecules are involved in unique chemical 

interactions, including the ability to participate in π- π stacking, π-cation, and π-anionic 

interactions. 6-8  

 

Figure 4.1. Commercially available drug molecules, which possess extensively conjugated 

moieties. The torsional bond of interest is highlighted in red. 

Conjugated Molecules and Molecular Mechanics. Despite the importance of conjugated 

functional groups in pharmaceuticals, existing molecular mechanics (MM) methods are not well-

adapted to describe their conformational energy landscapes with the exception of a limited number 

of well-parametrized cases (e.g., butadiene and biphenyl).9-11 More specifically, torsional energy 



113 
 

barriers of conjugated molecules are inaccurate for most small molecules in current FFs. This is 

unfortunate because virtual high-throughput screening (vHTS) is dependent upon an accurate MM 

FFs for binding affinity calculations between the target and the drug candidate.12 In the recent past, 

vHTS has allowed millions of drug molecules to be screened quickly and inexpensively to produce 

enriched libraries of compounds. The reliance of vHTS on poor FFs led to errors in affinity 

calculations, hence increased the number of false positives and negatives. An improvement in the 

underlying FF would, therefore, enhance the accuracy and enrichment capabilities of vHTS for 

subsequent biological testing, accelerating the initial drug discovery process. 

In addition, molecular dynamics (MD) simulations, employing free energy perturbation (FEP) 

techniques, are also often used during this initial drug discovery phase.13, 14 Despite the first use of 

FEP techniques several decades ago, it has only recently emerged as a computationally tractable 

method in drug discovery efforts.15 FEP evaluates the relative binding free energies of analogous 

ligands using alchemical transformations, which performs mutations to the ligands through a step-

wise process. Through ligand annihilation, the absolute free energy could also be calculated, by 

mapping all free energy values to the unbound state of the receptor.16 During FEP calculations, 

non-equilibrium states are occasionally reached, and inaccurate torsional parameters could 

produce erroneous binding free energies. Consequently, an improved FF could enhance the 

accuracies of free energy predictions and have increased utility for future drug discovery efforts. 

Torsional Energy Profiles of Conjugated Molecules. In conjugated and other molecules, 

torsional energy barriers, along with nonbonded interactions, are among the most difficult to 

predict with current FFs.9, 11 Torsional barriers vary greatly depending on their identity. For 

example, while the barrier to rotation of the torsional bond associated with 1H-pyrrole-2-

carbaldehyde was approximately 11 kcal·mol-1, pyrimidine-2-carbaldehyde had a barrier of 7 

kcal·mol-1. Upon introduction of an -O- group a ring position on the former, yielding 5-formyl-1H-

pyrrol-3-olate, this barrier increases to 18 kcal·mol-1 (this work). The chemical space has 

previously been estimated to be as diverse as 1060 distinct molecules.17, 18 Due to its size, FFs were 

never designed to cover all torsion parameters in their entirety, which would be an impossible task. 

Rather, FFs aimed to parametrize representative torsions, whose parameters, it was hoped, could 

be transferred to chemically similar but unparametrized molecules. Unfortunately, however, this 

strategy was found to be flawed due to the unpredictability of torsional energy barriers and the 

complexity of the underlying chemical interactions. As a result, accurate torsional energy barriers 
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have traditionally been obtained computationally using QM torsion scans, due to a scarcity of 

available experimental data.19 This effectively meant that for each torsion in a molecule, 

approximately two dozen QM calculations had to be performed. This approach was prohibitively 

expensive and could not be used to cover the entire chemical space. Consequently, a more 

predictive and adaptable method, based on understanding the chemical interactions governing 

these torsions, was necessary. 

To this end, we recently developed H-TEQ 4.0 (Hyperconjugation for Torsional Energy 

Quantification 4.0),9 which could accurately predict the torsional energy barriers of biaryl 

molecules (e.g. biphenyl) using a molecular metric: the electron richness of the aromatic rings. 

This method was an effective solution to predict biaryl torsional energy profiles. However, its use 

is restricted to this class of molecules. Consequently, we sought to expand and broaden the 

coverage of this method. A general method to predict the torsional energy barrier of all conjugated 

molecules (e.g. butadiene, benzaldehyde, and biphenyl) with a high degree of accuracy was 

envisioned. 

MM FFs are empirical equations, and corresponding sets of parameters, based on classical 

mechanics to reproduce the QM energies and thermodynamic properties of interest. The total 

energy in MM could be decomposed into its constituent potential energy functions (equation 

4.1).20-24 The van der Waals interactions and steric repulsion terms are usually approximated by 

the Lennard-Jones 12-6 potential, while electrostatics are described using Coulomb’s law based 

on atomic partial charges. Previously, hydrogen bonding had been modelled in Amber and other 

FFs using a modified Lennard-Jones 12-10 potential. Together, these interactions make up the 

nonbonded interactions. The bonded terms, on the other hand, include bond and angle stretching, 

a torsion term and an out-of-plane energy term. The second and third terms are usually modelled 

by a harmonic spring function while the latter is described by the truncated Fourier series (equation 

4.2).   

In the context of conjugated molecules, only the first two terms of equation 4.2 have been 

cited to be chemically meaningful.9 The first term in this series (n=1), describes the conformational 

preferences of the conjugated molecule (i.e. cis/trans) in the absence of nonbonded interactions. 

The second term in the Fourier series (n=2), gives an idea of the overall barrier height and strength 

of conjugation.  In this report, a negative V1 term signifies a preference of the molecule towards a 



115 
 

cis geometry (i.e. preference towards 0˚ over ±180˚ geometry) while a negative V2 term signifies 

its preference for the 0˚ and ±180˚ over the ±90˚ geometry (vice-versa for positive V1 and V2 terms). 

 

Equation 4.1. Potential energy function of standard MM FFs. 

𝐸𝑀𝑀 = 𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑎𝑛𝑔 + 𝐸𝑡𝑜𝑟⏟            +

        𝑏𝑜𝑛𝑑𝑒𝑑

𝐸𝑒𝑙𝑒 + 𝐸𝑣𝑑𝑤 + 𝐸𝐻−𝑏𝑜𝑛𝑑⏟              
𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑

  

 

Equation 4.2. Potential energy function of standard torsions in MM FFs.  

𝐸𝑡𝑜𝑟 =∑
𝑉𝑛
2
[1 + cos 𝑛(𝜃 − 𝛾)]

4

𝑖=1

 

 

Atom Type Independent MM FFs. Central to traditional MM FFs, is the concept of atom 

types. An atom type is a specific element associated with a set of parameters in a molecule in the 

context of its connectivity, hybridization, and chemical environment. Chemically “similar” atoms 

in a molecule are grouped together and given the same set of parameters.23 For example, a given 

FF may parametrize the C=C-C=C torsion of a butadiene. Upon encountering a different molecule, 

such as 1,1-difluorohexa-1,3,5-triene, the torsional parameter of butadiene may be used, despite 

their possessing unidentical chemical environments (Figure 4.2). As mentioned earlier, atom 

typing has conventionally been necessary due to the large size of the chemical space. However, 

this has resulted in a loss of accuracy since molecules grouped together may intrinsically possess 

very different conformational preferences. In addition, this grouping of chemically similar 

torsional parameters is also challenging during atom typing.  

 

Figure 4.2. The torsional bond of interest (in red) of hexatriene (left) compared to that of 1,1-

difluorohexa-1,3,5-triene (right) are shown. 

To overcome this problem, research groups have utilized three main strategies. The first 

strategy was to attempt to cover as many functional groups and molecules as possible through 

large-scale parametrization and assume transferability of the developed parameters. This is seen 
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over the years by active atom typing by Parm@Frost FF spanning almost two decades25; and the 

OPLS FF.10, 24, 26, 27 Despite these efforts, the limited transferability of the produced parameters 

limited its utility for non-parametrized molecules. The second strategy include those methods 

which aim to automate the process of developing torsional parameters, thereby simplifying the 

process and reducing the associated human labor costs. This includes methods and FFs, such as 

QUBEKit,28 QMDFF,29 GAAMP,30 ffTK,31 Paramfit32,32 and Parmscan33.33 While these methods 

are well suited to simulate the binding energy of a few receptor/ligand examples, these 

methodologies may face difficulty in the context of vHTS due to the high costs associated with 

performing QM torsional scans. The third methodology involves the development of MM FF 

without reliance on atom-types. Notably, this strategy has been pursued by Gerber et al,34 Mobley 

et al, .35, 36 and our own research group in the past.9, 18, 37, 38 It has the advantage of being generally 

applicable to all molecules within a predefined scope; however, the difficulty of this approach lies 

in being able to identify the underlying chemical principles and their subsequent quantification. It 

should be noted that machine-learning algorithms are promising tools for torsional parameter 

prediction.39 However, to the best of our knowledge, its accuracy has not yet been proven, perhaps 

due to the requirement for a large training set of torsional parameters which are computationally 

expensive to obtain.  

Our efforts toward developing an atom-type free MM FF led us to first focus on the torsions 

of saturated molecules. During this project, it was found that the σ → σ* hyperconjugation was 

the predominant interaction affecting their torsions. A chemistry knowledge-based method was 

developed to estimate the strengths of these interactions (H-TEQ 1.4).38 After this initial success, 

we focused on torsions in saturated molecules involving lone pair electrons on the central atoms, 

thereby quantifying n→ σ* hyperconjugation (H-TEQ 2).18 Next, a method to predict π → σ* and 

σ → π* hyperconjugation was developed to predict the torsional interaction of conjugated bonds 

with adjacent single bonds (H-TEQ 3.0).37 Lastly, as mentioned previously, we began looking at 

the torsional energy barriers of conjugated molecules by first focusing on biaryls thereby 

quantifying π → π* conjugation for a subset of molecules (H-TEQ 4.0).9 

Hyperconjugation as a Main Factor Affecting Torsion Potential. Hyperconjugation has 

been used by organic chemists for decades to explain the conformational preferences and relative 

stabilities of organic molecules, hypothesizing the existence of interactions such as gauche and 

anomeric effects.40,41 For example, 1,2-difluoroethane prefers the gauche conformation over that 
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of the anti due to the greater relative strength of σC-H → σ*C-F hyperconjugation compared to that 

of σC-H → σ*C-H (Figure 4.3). This facilitates the two fluorine atoms to be gauche to each other 

despite their electrostatic repulsion. Similarly, anomeric effect could be observed in D-

glycopyranose, in which the α- is favored over the β-conformation (Figure 4.4).  This could be 

rationalized by the former allowing a stronger n → σC-OH* hyperconjugation to occur, whereas the 

latter is positioned to facilitate the weaker n → σC-H* hyperconjugation. In general, more 

electronegative atoms are better hyperconjugation acceptors due to a net lowering in orbital 

energies. In fact, match in orbital energies between the donor and acceptor orbitals is one of the 

two main factors affecting the strength of hyperconjugation.42 The other factor, spatial overlap 

between the donor and acceptor orbitals, imposes a physical restriction for interaction (Figure 4.5). 

Overall, frontier molecular orbital theory dictates that hyperconjugation and conjugation 

interactions, together, lead to interactions which result in a hybridized occupied molecular orbital 

(MO) of lower energy (and also a hybridized unoccupied orbital of higher energy) from the donor 

and acceptor orbitals.43 

 

Figure 4.3. A qualitative depiction of hyperconjugation of involving a) σC-H → σ*C-H and b) σC-H 

→ σ*C-F. The more electronegative fluorine has an overall lower lying σ*-antibonding orbital than 

hydrogen. Consequently, b) is stabilized to a greater degree than a). 
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Figure 4.4. Hyperconjugation involving n → σ*C-OH interaction in the two ring conformations 

of D-glycopyranose. In a), the hydroxyl antibonding orbital is not properly positioned to accept 

the electron density donation from the lone pair. In b), the hydroxyl group is axial, leading to 

significant orbital overlap between the lone pair electrons on the ring oxygen and the hydroxyl 

oxygen antibonding orbital. This gives noticeable stabilization in energy. For simplicity, only the 

atoms of interest are shown. 

 

Figure 4.5. Hyperconjugation involving σC-H → σ*C-F in 1,2-diflouroethane is shown at two 

different torsion angles. In a), there is very little overlap between the two orbitals, leading to 

weaker overlap, while in b), there is significant orbital overlap, leading to noticeable stabilization 

in energy. For simplicity, only the atoms of interest are shown. 

 

Conjugated molecules, unlike their saturated counterparts, are more complex since they 

possess π-orbitals, in addition to σ-orbitals. For example, the torsion preference in oxazole-2-

carbaldehyde (Figure 4.6a-g) is governed by numerous σ → σ*, π → σ* and σ → π* 

hyperconjugation, and π → π* conjugation interactions. The orientations of the orbitals allow the 

σ → σ* and π → π* hyperconjugation interactions to combine constructively. Similarly, π → σ* 

and σ → π* hyperconjugation interactions are also constructive. However, these two groups 

combine destructively since the former favors the planar and while the latter favors the orthogonal 

conformation. This analysis is true for all conjugated molecules. 
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Due to the ability of electrons to flow freely in delocalized π-orbitals, torsions of 

conjugated molecules may be especially susceptible to the effects of even remote substituents.44 It 

should be noted that although only two conjugation interactions are shown (Figure 4.6f and g), 

many are theoretically possible. For oxazole-2-carbaldehyde, a total of 5 conjugation interactions 

are possible (Figure 4.6h). The number and types of interactions may differ for other molecules. 

Generally, the dominant conjugation interactions should be composed of donor and acceptor 

orbitals which have the smallest energy gaps and the greatest spatial overlap. For oxazole-2-

carbaldehyde, this should be the conjugation interaction depicted in Figure 4.6h. 

 

Figure 4.6. (a) Chemical structure of oxazole-2-carbaldehyde (with the torsional bond of interest 

highlighted in red) is shown with hyperconjugation of orbitals involving: (b and c) σ → σ*, (d) σ 

→π*, and (e) π → σ *, and (f and g) π → π* conjugation. For simplicity, a maximum of one σ-, 

σ*-, π-, and π*-molecular orbitals are shown in each subfigure. h) A qualitative molecular orbital 

diagram of oxazole-2-carbaldehyde is shown, along with the major conjugation interaction. In this 

case, the conjugation interaction involving the smallest energy overlap is depicted. 

    

4.3   Computational Methods 

Construction of a Development Set. A total of 684 conjugated molecules of various types were 

included in the development set. Its composition included various acyclic, aryl, and biaryl 

molecules (Figure 4.7) of which the latter were obtained from a prior study.9 In order to ensure 
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that the developed method would be transferrable to torsions found in various conjugated systems, 

an wide range of molecules were considered, including strongly electron-withdrawing (EWG) and 

electron-donating groups (EDG). Furthermore, extensively conjugated and charged systems were 

also included. 

For each molecule, a suitable starting conformation was obtained by performing a global 

optimization at the MP2/6-311+G** level of theory using GAMESS-US.45 Subsequently, a series 

of constrained QM optimizations were performed whereby the dihedral angle of interest was varied 

sequentially between -180˚ and 180˚ at 10˚ or 15˚ intervals. Single point energies for each 

conformation were then evaluated using GAFF2,46 MAB,34 and MMFF94.47 It should be noted 

that AM1-BCC charges48 were calculated for GAFF2, using the Antechamber module, while MAB 

and MMFF94 used their native charging schemes. In order to obtain the σ → σ* hyperconjugation 

energy, Natural Bonding Orbital (NBO) analysis was also performed at the HF/6-311+G** level 

of theory on the MP2 optimized structures.49 To obtain the isolated torsional energy, the van der 

Waals and electrostatics components of each FF method were individually subtracted from the 

total energy as computed by MP2. This resulted in three distinct torsional energy profiles, each 

belonging to the previously mentioned FFs. For each molecule in the development set, Fourier 

transform was applied to these isolated torsional energies of each FF and σ → σ* hyperconjugation 

energies to obtain the V1-3 parameters (Eq. 3.2). 

A variety of different molecular descriptors were chosen based on what is known to rigidify 

a torsion and tested to predict the strengths of torsional barriers, based on rationalizing how they 

would impact and rigidify them. These descriptors ranged from simple atomic properties such as 

atomic electronegativities to π-bond order obtained by Extended-Hückel theory (EHT). EHT 

properties were calculated using an implementation of this well-known method in Molecular 

Operating Environment (MOE).50-52 In fact, the implementation of this Hückel method and its 

various parameters are identical to that of Gerber et al.34 It has the advantage that it is coordinate-

free and uses a self-consistent field theory to quickly optimize parameters, including off-diagonal 

elements. From EHT, the descriptor(s) which could best reproduce the torsional energy was chosen 

to formulate our method, which was subsequently incorporated into H-TEQ 4.5, which was itself 

incorporated into MOE.53 
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Figure 4.7. Various Molecules included in the development set, categorized into three distinct 

groups: acyclic, aryl, and biaryl conjugated molecules. The torsional bond of interest is highlighted 

in red. 

 

Construction of the Validation Set. A total of 200 conjugated molecules were included 

in the validation set, including: 30 acyclic, 70 aryl, and 100 biaryl molecules, which were randomly 

selected. The biaryls were obtained from a previously constructed set and are  not shown in Figure 

4.8,9 while the rest of the compounds were obtained directly from the MMFF94 validation set or 

truncated in order to limit the number of peripheral torsional bonds.47 In order to ensure the 

robustness of H-TEQ 4.5, the validation set was constructed to contain a wide variety of dissimilar 

druglike molecules, while having no overlapping molecules with the development set. For 

comparative purposes, the full MM energy profile of H-TEQ 4.5, MMFF94, GAFF2, and MAB 

were compared to that of the QM for each molecule. The total MM energy was calculated by taking 

the FF energies for all terms in Equation 4.1, except for the torsion energy, which was computed 

by H-TEQ 4.5. This was done for GAFF2, MAB, and MMFF94. Root-mean-square error (RMSE) 

was calculated for H-TEQ 4.5 and each of the previously mentioned FFs, with the QM energy 

profile as a reference. When comparing between the QM and MM torsional energy profiles, a 

vertical translation was applied to each profile so that their average values were overlaid. 
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Figure 4.8. One hundred new molecules of the compiled validation set. Only molecules containing 

conjugated aryl and linear moieties are shown. The torsional bonds of interest are shown in red. 
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Subunit π-orbital Analysis. To analyze the π-orbitals in a subset of unsubstituted 

conjugated molecules and understand the direction of the conjugation donation, our test molecules 

were submitted for subunit π-orbital analysis, which involved breaking the molecule at the 

torsional bond of interest and capping each side with hydrogen atoms (Figure 4.9). Subsequently, 

both sides of the subunits were optimized at the CCSD(T)/cc-pVTZ level of theory. Thereafter, the 

energy levels of all π-MOs of both subunits were compared to determine the donor and acceptor 

MOs and the direction of the dominant conjugation interaction of the original molecule (Figure 

C1~28). The latter was determined by the smallest energy gap between π- and π*-MOs across the 

subunits. In total, 22 subunits were calculated (Section C1). 

 

Figure 4.9. Schematic showing the subunit π-orbital analysis process. The conjugated molecule is 

separated at the torsional bond of interest and capped with hydrogen atoms. Subsequently, the π-

MOs of both subunits are compared to determine the donor and acceptor side of the original 

molecule. 

4.4   Results and Discussion 

Qualitative Observations. Within the development set of molecules, it was found that the 

chemical nature of the bound subunit directly influenced V2 for both conjugated aryls (Figure 

4.10a) and acyclic molecules (Figure 4.10b). For conjugated aryls, it was found that aldehyde and 

thioaldehyde had lower V2 than imine and phosphethene, which in turn were lower than vinyl and 

methylenesilane, when connected to the aromatic ring via their carbon atoms (Figure C29). By 

performing the subunit π-orbital analysis, it was found that in most cases, the ψ3 π-MO of the 

aromatic ring acted as the donor, while the ψ2 π*-MO of the double bond was the acceptor. In 

addition, moving from vinyl to imine to aldehyde resulted in a sequential lowering of the energy 

of the ψ2 π*-MO, which is consistent with the qualitative effects of electronegativity on σ-MOs. 

This might explain the observed trends of conjugation strength (Figure 4.10a). Similarly, moving 

from methylenesilane to phosphethene to thioaldehyde also resulted in a sequential lowering of 

the ψ2 π*-MO and an increase in conjugation strength. However, this trend does not hold when 
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these row 2 and 3 elements were combined, possibly due to differences in the spatial overlap of 

the π-MOs. Consequently, other factors may play a role in determining the conjugation strength. 

A chemical descriptor, which captured this information well, was the number of electron lone pairs 

on the β-atom (Figure 4.10a). Other possible factors for consideration included the amount of 

orbital overlap between the MOs, bond distances, and other hyperconjugation effects. 

For conjugated acyclic molecules, containing C-C central bonds, the smallest V2 seemed 

to occur when the difference in the number of the electron lone pairs on the β-atoms was greater 

(Figure 4.10b). This might result from aldehyde and thioaldehyde being good π*-acceptors while 

vinyl and methylenesilanes are good π-donors. It is believed that a combination of a strong donor 

and a strong acceptor had the greatest π-MO orbital stabilization, which is the source of torsional 

energy barrier. This is illustrated by the fact that acrylaldehyde (-6.52 kcal·mol-1) had a smaller V2 

than both butadiene (-4.33 kcal·mol-1) and oxalaldehyde (-3.88 kcal·mol-1). 

 

Figure 4.10. a) V2 of 219 unsubstituted, conjugated aryls plotted against the number of electron 

lone pairs on the β-atom with respect to the ring. b) V2 of 13 unsubstituted conjugated acyclic 

molecules, plotted against the absolute difference of electron lone pairs on the terminal position 

(ie. α- and α’-atom to the central atoms).  A representative chemical structure is also depicted, with 

the labels for each atomic position of interest. 

V2 Conjugation Strength in All Molecules are Correlated with Extended-Hückel 

Theory Descriptors. A predictive and transferrable method to predict the torsional barrier of any 

conjugated molecules was desired. At the outset of this project, the torsion term profile and the 
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corresponding V2 values were obtained from the difference between QM energy and, alternatively, 

of GAFF2, MMFF94 and MAB nonbonded energies. V2 values were then plotted against EHT π-

bond order (π-BO), which resulted in an R2 of 0.56 (Figure 4.11a), 0.32, and 0.54 (for each FF 

respectively) across all 684 conjugated molecules in the development set. EHT is advantageous 

over other atomic and molecular properties as it considers the entire π-framework and could adapt 

to changes in the σ-substituents as well. In addition, it has given qualitatively accurate results in 

the past and is computationally inexpensive.51 

 

Figure 4.11. (a-c) Observed trends between various Extended Hückel Theory properties and V2 

strengths of the difference between QM and nonbonded interactions obtained from GAFF (similar 

trends and accuracies were obtained with MAB and MMFF94). In each subplot, V2 is plotted 

against a) π-bond order, b) sum of atomic π-charges and c) product of atomic π-charges of the 
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central atoms. In total, 684 various conjugated molecules were taken into consideration. d) 

Correlation between the predicted and measured V2, based on these descriptors (a-c). 

 

A greater π-BO results from a greater electron density across the torsion of interest. 

Consequently, this resulted in increased rigidity and a greater conjugation strength. Using this sole 

metric, 18 (out of 684) molecules possessed greater than 2.5 standard deviations away from the 

predicted trendline, half of which contained an oxyanion. Another six molecules had central atoms 

containing nitrogen while two other molecules contained hydrogen bonding across the torsion of 

interest. 

Next, π-charges of the central atoms involved in the torsion of interest were plotted against 

V2. The π-charges (electron density of the π system) are based on the population of π-electrons 

(MO coefficients) residing on atoms in a molecule, which when combined with σ-charges, result 

in the total charge on each atom. In this manner, four distinct populations were observed. These 

populations could be grouped according to the average sum of atomic charges: -0.25, 0.0, 0.50, 

and 1.0 qe (Figure 4.11b). The first of these populations at -0.25 qe was composed of molecules 

with a negatively charged oxygen atom γ to the ring. This might be because of π-electron donation 

from the hydroxylate to the central atom, which strongly decreased its charge, and increased the 

torsional barrier Figure 4.12a). The second cluster, around 0.0 qe, consisted of 588 molecules of 

various types. The third and fourth populations at 0.50 qe and 1.0 qe were made up of molecules 

having one and two non-carbon central atoms in the ring(s), respectively (ie. N: or N+). N: or N+, 

when incorporated into the ring, are generally more electron deficient than its neutral, elemental 

counterparts. For example, 1-vinyl-1H-pyrrole could delocalize the nitrogen π-electron lone pairs 

into the ring, which increases its π-partial charge, leading to resonance forms with positive charge 

on the nitrogen atom (Figure 4.12b). Similarly, the N+ of 1-vinylpyridin-1-ium possesses a formal 

positive charge. In general, it was observed that a greater negative charge on the two central atoms 

increased the strength of conjugation, due to greater electron density and hence rigidity. Since both 

π-BO and π-charges are calculated from π-electron coefficients/occupancies, an increase in the 

correlation coefficient on the central atoms, generally led to a lower V2 (higher absolute value) and 

higher conjugation strengths. 
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Figure 4.12. a) The donation of electron density of various oxyanions into the central atoms 

decreased their π-charges. b) The donation of the nitrogen electron lone pair away from the central 

nitrogen into the ring increased its net π-charge. The torsion of interest is in red. 

The relationship between V2 and sum of π-charges did not appear to be entirely additive. 

Consequently, a product of π-charges on the two central atoms helped to augment its description 

of V2 (Figure 4.12c), by describing the polarity of the central bond. A larger charge polarity 

difference between the central bond (ie. central bond atoms with +1 and -1 charge) had a lower V2 

and therefore greater conjugation strength than a molecule with similar charges (ie. central bond 

atoms with +1 and +1 charge). This makes sense as a larger polarity across the torsional bond of 

interest could be a measure of acceptor/donor strength. When the product of π-charges was used 

in combination with the other two EHT descriptors, π-bond order and sum of atomic π-charges 

(Figure 4.12d), an equation to predict the V2 strength was devised (Equation 4.3).  

 

Equation 4.3. Function to predict V2 based on various EHT descriptors.  

𝑉2 = −62.24 ∙ 𝐵𝑂π − 5.96 ∙ (qπA + qπB) + 12.37 ∙ qπA ∙ qπB + 14.76  

 

In this equation, BOπ denotes the π-bond order across the torsion of interest, while qπA and qπB are 

the π-atomic charges on the central atoms, A and B, respectively. It should be mentioned that this 

equation only considers the effects within the π-framework (ie. π → π* conjugation). 

Consequently, some of the other effects, σ → σ*, π → σ* and σ → π* hyperconjugation are missing 

and could be added to improve its accuracy. While σ → σ* hyperconjugation could be and was 

isolated from NBO calculations, π → σ* and σ → π* hyperconjugation cannot be accurately 

obtained from NBO due to its tendency to exaggerate the localization of π-orbitals (eg. partitioning 

the π-system of benzene into three equally localized π-orbitals, instead of treating them together).49 

Consequently, isolating π → σ* and σ → π* orbital interactions are challenging without an 

appropriate energy decomposition analysis methodology. Until such methods are developed, any 

torsion prediction would be restricted within the π-framework and σ-framework, respectively. 
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During the development of these methods, NBO analysis was used to sum up the 8 different σ → 

σ* hyperconjugation interaction energies during torsion rotation. It was found that this overall V2 

of σ → σ* hyperconjugation obtained from NBO calculations correlated with the overall V2 of QM 

energy profile with an R2 of 0.13 (Figure C30). This correlation is poor, possibly because it is a 

minor interaction and due to the stronger presence of other interactions, such as nonbonded 

interactions and π → σ* and σ → π* hyperconjugation effects, which made the σ → σ* 

hyperconjugation effects not observable. However, when the overall V2 of σ → σ* was compared 

to that obtained from the torsional profile of the difference between QM and MM nonbonded 

energy, an even smaller correlation was unexpectedly observed (Figure C31). This could most 

likely be attributed to the poor quality of the nonbonded energy terms in the FFs, especially at 

close distances. This will be further explained in the next section. Fortunately, our obtained results 

suggest that π → π* conjugation is the dominant torsional interaction and much stronger than the 

other hyperconjugation interactions and nonbonded interactions. Thus, modelling this energetic 

stabilization allows a sufficiently accurate prediction of torsional barriers. It should also be 

mentioned that the higher correlation coefficient of H-TEQ 4.5, when used in combination with 

AM1-bcc charges and GAFF van der Waals terms, subsequently led to its adoption over those of 

other FFs. 

V1 Values of Current Force Fields may be Contaminated with Inaccuracies in the 

Electrostatics and van der Waals Terms. In conjugated molecules, σ → σ* hyperconjugation, 

along with electrostatics and van der Waals interactions, are the main interactions responsible for 

determining their overall cis/trans preferences. Consequently, taking the relative energy difference 

as calculated by QM (ΔEQM:cis-trans) between the cis and trans geometry and subtracting out the 

nonbonded interactions (ΔENB:cis-trans) should produce the sum of all σ → σ* hyperconjugation 

energy (ΔEσ→σ*:cis-trans). However, when the V1 values obtained using the former method for 684 

molecules were plotted against the V1 values of the latter as extracted from NBO, no correlation 

was observed for any of the FFs (Figure C32). 

Although this is unexpected, it might be explained by the inaccuracies of current 

nonbonded interactions in FFs. Due to the empirical nature of existing FFs, nonbonded interactions 

are known to be inaccurate, especially when these interactions occur at close distances.9, 54 In 

particular, the use of empirical and approximate scaling factors for 1-4 van der Waals and 

electrostatics in GAFF2 and other FFs is especially problematic when attempting to develop 
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chemically meaningful torsion parameters. The assumption that various long-range interactions 

behave similarly, albeit weaker, at short distances is inherently flawed. In addition, there is no 

agreed-upon consensus for separating nonbonded interactions from that of torsions.55 

Consequently, the results indicate that the obtained V1 values using different MM methods are 

contaminated with errors from nonbonded interactions. In the future, in order to incorporate σ → 

σ* hyperconjugation in FFs, a more accurate description of nonbonded interactions, especially at 

close distances (particularly 1-4 nonbonded interactions), should be first addressed. 

Despite these challenges, our results also indicated that the cis/trans preference of 78.1% of all 

molecules in the training set were correctly predicted without explicitly incorporating a V1 term in 

the torsion parameters using GAFF2 nonbonded parameters. More specifically, this meant that QM 

and GAFF2 nonbonded terms (and by extension H-TEQ 4.5) predicted the same global minimum 

conformations. It should also be noted that an accuracy of 45.7% and 42.8% were obtained for 

MMFF94 and MAB for predicting this global minimum conformation, respectively. In addition, 

66.6%, 51.1%, and 51.5% of molecules possessed a magnitude of V1 (the difference between that 

of QM and MM nonbonded energies) of less than 1.0 kcal·mol-1 using GAFF2, MMFF94, and 

MAB, respectively. 

Validation of H-TEQ 4.5 on a Diverse Set of Druglike Molecules. As an unbiased 

validation of the developed method, H-TEQ 4.5 was tested on 200 diverse druglike molecules and 

compared to other FFs. On these molecules, our developed method achieved an average RMSE of 

1.01 kcal·mol-1, with a sharp peak signifying the mode at 0.54 kcal·mol-1 (Figure 4.13). More 

specifically, H-TEQ 4.5 successfully predicted 63.5%, 90.0%, and 98.0% of molecules below an 

RMSE of 1.0, 2.0, and 3.0 kcal·mol-1, respectively. The remaining 2.0% of the molecules in the 

validation set were predicted with high RMSEs between 3.0 and 4.0 kcal·mol-1. For MMFF94, 

MAB, and GAFF2, average RMSEs of 1.50 1.77, and 3.49 kcal·mol-1 were obtained respectively. 

Both MMFF94, GAFF2, and MAB performed well for most molecules in the validation set as 

could be seen in Figure 4.13 by the relatively sharp peak at around 0.55 kcal·mol-1. However, they 

suffered from high RMSEs for many other molecules, as evidenced by the trailing “tail” region of 

the smoothed histogram. In fact, the torsional errors of molecules in the validation set were 

predicted by MMFF94, MAB, and GAFF2 to be as high as 15.23, 10.48, and 17.40 kcal·mol-1 

RMSE, respectively for some molecules. This could be attributed to the lack of suitable torsion 

parameters in MMFF94 and GAFF2 due to their poor transferability. For example, MMFF94 
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predicted the incorrect energy minima at the torsion angles of ±90° for (S)-6-(4-(1H-pyrrol-3-

yl)phenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one and 2-amino-2-

thioxoethane(dithioperoxo)imidic (Figure 4.14c and i, respectively), leading to RMSEs of 2.32 

and 1.65 kcal·mol-1 compared to 0.51 and 1.53 kcal·mol-1 for H-TEQ 4.5. While GAFF2 predicted 

the correct minima for these two molecules, it dramatically overpredicted the strength of their 

torsional energy barrier, leading to RMSEs of 3.01 and 5.24, respectively (Figure C33). 

Despite MAB being an atom type-independent method, its poorer performance could be due to a 

limited number of molecules in its training set. Overall, H-TEQ 4.5 was shown to have notably 

smaller errors as compared to the other tested FFs for conjugated torsional energy barriers. 

 

Figure 4.13. a) A smoothed histogram and b) a boxplot indicating the number of MM energy 

profile predictions made by H-TEQ 4.5 (pink), MMFF94 (blue), MAB (green), and GAFF2 (grey) 

for the 200 molecules in the validation set. The QM energy profile was used as the reference, with 

RMSE values closer to 0.0 kcal·mol-1 representing more accurate predictions. 

Forty-two molecules were predicted by H-TEQ 4.5 to have RMSEs of greater than 1.5 

kcal·mol-1. The sources of these errors could be attributed to two main factors: the lack of a V1 

model (which accounted for 24 molecules) and imperfections in the V2 model (which accounted 

for 18 molecules). This categorization was performed by plotting the RMSEs of these 42 molecules 

against the magnitude of the V1 obtained from the difference of QM and GAFF2 nonbonded 

energies (Figure C34). It should be clarified that these V1 terms are the ideal values required for a 

perfect torsional energy barrier. Molecules exhibiting a V1 magnitude greater than 1.0 kcal·mol-1 

were classified as V1 deficient while those less than this cut-off was categorized as V2 imperfect. 
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Despite the importance of V1 terms for conjugated molecules in FFs, they were found to be 

contaminated with nonbonded interactions, as discussed in an earlier section. For example, it could 

be observed that the ±180° geometry of 2-amino-2-thioxoethane(dithioperoxo)imidic acid (Figure 

4.14i) is favored compared to that of the 0° conformation. There are two potential sources of 

interactions to explain this behavior. The first interaction disfavoring the ±180° geometry could be 

a strong electrostatic repulsion between the electron lone pairs of the thialdehyde sulphur and 

imine nitrogen group, which was not captured by MM. This is a known limitation of type I FF, 

lacking explicit electron lone pairs. Consequently, accurate nonbonded energies, along with a 

robust σ → σ* hyperconjugation V1 model in the FF, would enhance the accuracy of the FF. As 

another example, the underestimation of the electrostatic at the ±180° conformation of [2,2'-

bipyridine]-1,1'-diium (between the two positively charged nitrogen atoms in the 1-4 position) 

could also be responsible for the inaccurate prediction of its torsion profile (Figure 4.4.14d). 

Interestingly, an increase in the 1-4 electrostatic and van der Waals energy by a factor of 

approximately 6.5 when using H-TEQ 4.5 allowed it to match the QM energy profile for this 

molecule (Figure C35). It should be noted that for this molecule, MMFF94 predicted a more robust 

torsional profile than H-TEQ 4.5. This is because MMFF94 used a different charging scheme than 

that used by H-TEQ 4.5 and GAFF2. Due to these problems, the next step in FF development 

should be to focus on and improve the treatment of electrostatics interactions which could be 

applicable to all small druglike molecules. 

On the other hand, 19 out of the 200 molecules in the validation set possessed imperfect V2 

values. More specifically, it was found that H-TEQ 4.5 performed poorer on molecules containing 

significantly charged centers (Figure 4.14d and e). This could be due to various errors, including 

limitations in the EHT method, the neglect of σ → σ*, σ → π*, and π → σ* hyperconjugation 

interactions, and poor nonbonded interactions of the GAFF2. In order to include the effects of 

other hyperconjugation interactions, an energy decomposition methodology (EDA), appropriate 

for treating π-systems, should first be devised. While NBO provides a decomposition of each of 

these energies, its treatment of conjugated systems is not suitable for these purposes, as mentioned 

previously. Although other EDA methods exist, such as local energy decomposition (LED),56 

natural energy decomposition (NEDA),57 absolutely localized molecular orbitals (ALMO-EDA),58 

and block-localized wavefunction energy decomposition analysis (BLW-EDA),59 these methods 

are currently unable to further decompose to the specific types of hyperconjugation. These methods 
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provide only an amalgamated charge-transfer term, which combines all hyperconjugation and 

conjugation interactions into a single stabilization energy. However, despite the drawbacks of these 

methods, H-TEQ 4.5 predicted the torsional energy profiles of most molecules accurately, by 

focusing on the dominant π → π* conjugation interaction (Figure 4.14a-c,f,h). 

 

 

Figure 4.14. Nine representative structures and their corresponding torsional energy scans as 

calculated by MP2/6-311+G** (red), H-TEQ 4.5 (blue), and MMFF94 (green) for: a) 1-chloro-4-

(3,3-dimethylcycloprop-1-en-1-yl)benzene, b) methyl benzoate, c) (R)-3-(4-(4-methyl-6-oxo-

1,4,5,6-tetrahydropyridazin-3-yl)phenyl)-1H-imidazol-3-ium, d) [2,2'-bipyridine]-1,1'-diium, e) 

3-phenyl-1,2,5-oxadiazole 2-oxide, f) N-((1S,2S)-2-chlorocyclopropyl)benzamide, g) 4-nitro-

1,2,5-oxadiazol-3-amine, h) amino(5-amino-1H-1,2,4-triazol-3-yl)methaniminium, and i) 2-

amino-2-thioxoethane(dithioperoxo)imidic acid. The reference torsional bond of interest is marked 

in red. The reference angle at 0° is marked by a series of four asterisks (*). 
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4.5   Conclusions 

Over the recent years, vHTS has become increasingly important and a staple tool for drug 

discovery, allowing an enrichment of active compounds in the preliminary phase.60 The reliance 

of vHTS on a robust and accurate FF has led to numerous efforts in FF development, spanning 

many decades.10, 20, 24, 26, 27 Unfortunately, however, the accuracy and transferability of these FFs 

are still poor for many druglike molecules. This is especially true for conjugated species due to the 

unpredictability of their torsions despite their abundance in nature. In fact, many of these 

conjugated moieties are important pharmacophores. In this paper, we showed that the torsional 

energy parameters of common FFs were inaccurate for conjugated molecules. Conventionally, FFs 

have relied on a set of pre-parametrized atom types, which possessed poor transferability between 

molecules. In fact, despite accurately predicting the torsional energy profiles for few selected 

druglike molecules, GAFF2 and MMFF94 were found to struggle for others. In addition, the 

original MAB may also have been poor in accuracy due to the limitated number of molecules in 

its training  set and a lack of large-scale validation. In order to improve the accuracy of the FF, a 

conceptually novel method to predict torsional barriers was envisioned. The developed method, 

H-TEQ 4.5, relies on an understanding of the molecular interactions governing torsional energy 

barriers, allowing the FF to adapt and tailor parameters suited for new molecules.   

To this end, EHT was used to calculate the π-BO, sum of π-charges, and product of π-

charges, which correlated well with the torsional energy barriers of conjugated molecules. These 

EHT obtained properties were chosen to capture and describe the π-electron coefficients across the 

torsional bond of interest. Using these three descriptors, the accuracies of H-TEQ 4.5, MMFF94, 

GAFF2, and MAB were tested on 200 torsions of conjugated molecules. This yielded an average 

RMSE of 1.01, 1.50, 3.49, and 1.77 kcal·mol-1, respectively. The higher accuracy of H-TEQ 4.5 

compared to the rest of these FFs showed that atom-type independent FFs are promising as an 

accurate and computationally tractable method to assign torsions in MMs. It should be noted that, 

in contrast to QM methods used to derive parameters, HTEQ 4.5 derives parameters within a 

fraction of a millisecond (ie. approximately 0.25 ms for a biphenyl molecule on a single core of an 

Intel Core i7 6700HQ CPU), allowing it to be applied to vHTS of millions of molecules.   

In the future, it is envisioned that more advanced and chemically perceptive FFs could be 

developed. Future efforts and emphasis in FF developments should be placed on the accurate 

treatment of electrostatics and van der Waals interactions, especially for those at close ranges (1-
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4) interactions. Until such interactions are robustly modelled in FFs, further improvements to 

predicting torsional parameters would be very difficult. 
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5   Influence of Molecular Mechanics Torsional Parameters on Docking 

Accuracies 

 

 

 

 

5.1   Preface 

The development of a conceptually novel type of molecular mechanics force field for small organic 

molecules was undertaken in the previous two chapters. In Chapter 3 and 4, parameters could be 

generated on-the-fly, based on atomic and molecular descriptors based on the degree of 

conjugation observed in molecules. In conjunction to previous developments conducted by Liu et 

al (2016 and 2018) and Champion et al (2019), there is almost complete coverage of the chemical 

space (apart from conjugated molecules containing electron lone pairs). As a result, it was decided 

that the current implementation of this novel force field be tested for practical applications during 

in silico docking of both proteins and nucleic acids. This chapter presents the results of these 

findings and compares our developed force field against other commonly used force fields in the 

literature. This chapter serves to benchmark where we are in terms of small molecule force field 

developments and would be helpful to guide future research directions. 
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5.2   Introduction 

The binding affinity of pharmaceuticals to receptor macromolecules has important implications 

biochemically within living organisms. Increased binding affinity of drugs to their biological 

targets would improve the potency and effectiveness of treatments, and require less dosage, 

diminishing off-target effects and toxicity. The ability to predict the free energy of binding has 

been the subject of many studies and have inspired developments in experimental and 

computational techniques. Experimental determination of binding affinities could be achieved by 

measuring the kinetics and thermodynamics of binding (e.g. Ki’s, which could be converted to 

binding energies), through methods such as isothermal titration calorimetry (ITC) and others.1 

However, these methods are time-intensive, and require the synthesis of the drug candidates and 

the expression and purification of the target macromolecule.  

To accelerate and aid this process, computational chemistry methods have been developed 

to quickly and inexpensively screen drug compounds for a given protein or nucleic acid receptor. 

The most successful of these techniques are molecular docking methods, which are useful for 

predicting the binding mode and their associated energies, although with limited accuracy.2-5 

Docking methods employ various global search algorithms to rapidly identify (ie. conformational 

sampling) and score (ie. binding affinity evaluation) all ligand conformations within a static 

receptor structure. Due to the static nature of this method, configuration and solvation entropy 

changes of the ligand must be estimated using various means. This technique is computationally 

inexpensive and has been previously used to screen billions of compounds. Molecular docking is 

especially useful during the drug discovery and lead optimization stages of medicinal chemistry 

projects. Its recent application to screening 1.3 billion compounds for screening COVID-19 

inhibitors is a testament to its wide adoption and past successes in enriching a compound library 

for potential actives.4 

Molecular dynamics (MD) simulations are also useful in predicting the binding affinity, if 

the correct binding mode is known. MD simulation explores the time evolution of biomolecules 

and gives insights into receptor-ligand interactions and possible conformational changes.6 A 

technique, known as free energy perturbation (FEP) method, could be applied during an MD 

simulation to calculate the free energy differences between ligands through alchemical 

transformations.7 In FEP calculations, the free energy difference between two ligands, ligand A 

and B, would  be computed. This is carried out by first performing an MD simulation on ligand A. 
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Subsequently, its parameters are slowly mutated into that of ligand B, in small incremental steps, 

solving the Zwanzig equation at each iteration. After the completion of the transformation, the free 

energy difference is obtained. This process would be repeated for other, chemically similar ligands. 

Ligand annihilation is also possible to calculate the absolute free energy of ligand binding. Unlike 

molecular docking, FEP is dynamic. Consequently, conformational entropy would be more 

accurately computed. Despite the dynamic nature of FEP, both methods are less reliable when the 

binding site is highly flexible or changes significantly upon ligand binding.8, 9 

Although widely used, both docking and FEP rely on an energy evaluation method for 

determining the conformational preferences and strengths of interactions between the receptor and 

the ligand. To this end, classical molecular mechanics (MM) force fields (FFs) have been the 

method of choice, owing to its speed, despite trade-offs in accuracy.10-13 MM FFs are based on 

Newtonian classical mechanics, which treat all atoms in a molecule as balls connected by springs 

(ie. potentials). As a result, quantum mechanical (QM) behaviors are approximated by a series of 

empirical equations, which when combined attempts to reproduce the total QM energy of the 

system. These empirical equations are classified according to bonded and nonbonded interactions 

(equation 5.1) in classical force fields. The former includes bond stretch, angle stretch, and 

torsional rotation, while the latter contains electrostatic and van der Waals interactions. During 

receptor-ligand binding events, bond and angle stretching terms are not expected to change 

significantly. Consequently, binding affinities and preferred conformations are predominately 

determined by torsions, electrostatics and van der Waals interactions.   

 

Equation 5.1. Functional form found in type I MM FFs. 
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In the equation above, the bond stretching term is composed of a spring constant and equilibrium 

distance of kb and r0, respectively.  Similarly, the angle term is composed of a spring constant and 

equilibrium angle, kθ and ψ0, respectively. Torsion terms uses a truncated Fourier series, where Vn 

denotes the height, n denotes the periodicity, and θp denotes the phase-shift. The coulombic term, 
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is composed of the coulomb’s constant, k and distance of separation, r. The van der Waals is 

composed of A and B, which are parameters to modulate the steepness of the steric and attractive 

forces due to dispersion, respectively. In widely used FFs, such as Amber and OPLS, electrostatic 

charges are obtained using the (restrained) electrostatic potential (RESP; ESP) method.14, 15 Using 

QM calculations, classical atomic partial charges are assigned based on a series of test probes 

surrounding the ligand molecule. Due to the higher computational costs associated with running 

Hartree-Fock (HF) calculations, AM1-BCC charges were developed. The latter was designed to 

closely reproduce RESP charges through semiempirical calculations.16 This approach makes the 

charges accurate for intermolecular interactions. However, despite the successes of these methods, 

the performance of AM1-BCC and RESP charges may suffer at close distances, especially in 1-4 

interactions, as was alluded to previously.17, 18 In addition, both charging schemes are 

conformation-dependent, which may bias a specific conformation during rotamer search or MD 

simulation. As a result, more advanced polarizable FFs have been envisioned and developed, 

although their accuracies are not yet proven. The CHARMM FF is unique in that it optimizes 

partial charges of atoms based on QM interactions with water.19 

Other charge models, such as bond charge increment and empirical rules, taking 

electronegativity into consideration, are more routinely used in small molecule FFs, such as 

MMFF94 and MAB.20, 21 These latter charging schemes are conformation-independent and do not 

require QM calculations. While both charge methods are designed to reproduce ESPs, they may 

suffer from lower accuracies due to their approximations and lack of reliance on QM calculations.  

Despite Morse potential being well-suited to reproduce van der Waals interactions, its high 

computational costs have led to the adoption of other potentials, such as Lennard-Jones (LJ) and 

Buckingham functions.22 Although LJ is used extensively in Amber FFs, CHARMM, OPLS, and 

others for simulating proteins, nucleic acids, and small molecules, its steep steric wall is unsuitable 

for atoms in close contact. To alleviate this issue, MMFF94 uses a buffered LJ 14-7 potential while 

MM2 and MM3 FFs use the Buckingham potential. Traditionally, hydrogen bonding had been a 

separate potential in some FFs, making use of a LJ 12-10 term.23 However, most FFs, including 

Amber and CHARMM, have abandoned an explicit hydrogen bonding term. Rather, its chemical 

effects have been rolled into that of van der Waals and electrostatics, although recent evidences 

have suggested that a distinct hydrogen bonding potential may improve the overall accuracy of 

FFs.24  
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Lastly, torsional energy barriers are also expected to contribute to conformational 

preferences of certain molecules.17, 18, 25, 26 Chemically, the degree of hyperconjugation of electron 

density from filled to vacant molecular orbitals (MOs) are believed to play a major role in 

determining the strength and orientation of torsions. These are exemplified in classical cases such 

as the gauche and anomeric effects (Figure 5.1). In the past, incorporating hyperconjugation into 

classical MM FFs, using empirical organic chemistry principles and extended-Hückel theory 

(EHT) descriptors, was shown to improve the prediction of torsional parameters.17, 18, 25, 26 These 

methods, named H-TEQ (Hyperconjugation for Torsional Energy Quantification), developed in 

our laboratory, has recently been improved in terms of accuracy and transferability. Although 

quantification of torsions containing η → π* interactions are still currently in development (e.g. 

aniline and 2-methoxypyridine), we sought to test the performance of existing H-TEQ (versions 

1.0 to 4.5) methods towards molecular docking and computing conformational energies. The 

former would evaluate its usefulness towards an important method in drug discovery and medicinal 

chemistry. The latter would test the gas-phase accuracy of torsion parameters obtained by H-TEQ. 

 

Figure 5.1. Hyperconjugation interactions are responsible for the observed conformational 

preferences in small molecules. A) The σH → σF* hyperconjugation causes the gauche effect in 

1,2-difluoroethane. B) Similarly, η → σO* causes the anomeric effect in (R)-tetrahydro-2H-pyran-

2-ol. In both cases, donation of electron density from occupied (red) to unoccupied (blue) orbitals 

occur. 
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5.3   Computational Methods 

Self-docking. All in silico docking was performed using our program FITTED. Self-docking was 

carried out on a curated set of structures obtained from the Protein Data Bank (PDB). Self-docking 

is a method which gauges the accuracy of the docking protocol. This is performed by extracting 

the bound ligand and redocking into the binding site of the receptor. The root-mean square 

deviation (RMSD) of the docked pose was subsequently compared with that of the original ligand. 

In self-docking, an RMSD of less than 2.0 Å denotes a successful docking, which corresponds 

approximately to the distance of a strong hydrogen bond. Although this metrics has limitations, it 

is believed to be appropriate to evaluate differences in performance of different docking conditions 

on the same sets. The composition of this set included 178 nucleic acids and 289 proteins, which 

were co-crystallaized with small molecule ligands. The latter belonged to a high-quality set of 

structures, recommended by Astex.27  

 For nucleic acid docking, ligands which were nearly, but not exactly symmetric were 

removed from the dataset. Since X-ray structures are generated from electron density, these ligands 

possesses similar electron densities in more than one orientation. Consequently, docking of the 

ligands yields significantly high RMSDs if docked in the reverse direction. These ligands were 

especially prevalent in DNA minor groove binders.  

 For each PDB structure, three independent docking trials were carried out with different 

FFs: GAFF, GAFF with H-TEQ torsional parameters (henceforth called GAFFTor:H-TEQ) and GAFF 

with all torsions set to zero (henceforth called GAFFTor:0). For the small number of missing 

dihedral parameters still under development, GAFF parameters were used instead. In each docking 

trial, 10 independent runs were performed, where the most energetically favored pose was 

extracted. To preclude the possibility of the search algorithm favoring any specific torsion model 

by chance or due to other inherent biases, the top pose of each FF was scored by the other two. 

Finally, the accuracies of each FF were compiled, analyzed, and compared. The set of protein and 

nucleic acid PDB structures are found in Appendix D1 and D2, respectively.  

 Conformational Energy Analysis. 51 drug molecules were randomly selected from the 

DrugBank database, which possessed torsional parameters covered by existing H-TEQ methods 

(Figure 5.2). Emphasis were placed on drug molecules with several rotatable torsions. SMILES 

strings were used to generate the 3D structures of pharmaceutical drugs within Molecular 
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Operating Environment (MOE). The Scientific Vector Language (SVL) was used to randomly 

generate 20 rotamers, which were not sterically clashing. A steric clash was defined as two atoms 

within 2.0 Å, excluding atoms directly and indirectly bonded (via a shared, third atom). These 

rotamers were not subject to optimization, as the goal was to test the accuracy of torsional 

parameters at reproducing non-equilibrium geometries. The latter are often encountered during 

MD simulations and, to a lesser degree, during in silico docking.  

These generated conformations were then subjected to both QM and MM single point 

calculations. The former was performed at the MP2/6-311+G** level of theory using GAMESS-

US, while the latter used MMFF94 and MAB FFs as available in MOE and GAFF2 as obtained 

using Antechamber. Partial charges were assigned according to the default charging scheme for 

each FF. For MMFF94 and MAB, bond charge increments was used, while GAFF, AM1-BCC 

charges were applied. H-TEQ parameters were generated by an SVL program, which replaced the 

torsional component of GAFF2 and MMFF94. The relative energy of each QM and MM method 

was obtained by taking the raw energy values and subtracting the mean energy of the 20 

conformations. The QM relative energies were directly compared to that of the MM to calculate 

the absolute errors of the latter. 
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Figure 5.2. 51 drug molecules were subjected to conformational energy analysis. The 50 drugs 

above and 1 drug below the dotted line represents those with and without steric clashes in MM, 

respectively. 

 

5.4   Results and Discussion 

Protein Docking. Self-docking on the Astex set of 289 protein-ligand complexes using GAFF 

with various torsion parameters showed that it was crucial for docking. In fact, an accuracy of 

71.3%, 71.6%, and 65.7% for GAFF, GAFFTor: H-TEQ, and GAFFTor:0 was achieved, respectively 

(Figure 5.3). The use of torsion terms on the ligands, regardless of GAFF or H-TEQ, was found to 

improve the self-docking accuracy by greater than 5%. Unfortunately, the use of H-TEQ torsion 

parameters in place of that of GAFF did not significantly affect the accuracy of docking. This is 

likely attributed to the similar accuracy of H-TEQ and GAFF torsions, which was later observed 

in gas-phase QM and MM calculations (below). 

 While most structures (270) remained unchanged when docked using GAFF or GAFFTor:H-

TEQ, 19 structures did change. 10 out of the 289 structures recorded improved accuracies when 

docked using GAFFTor:H-TEQ over GAFF, while 9 out of the 289 structures obtained better 
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accuracies when docked using GAFF over GAFFTor: H-TEQ. In the past, it had been shown that H-

TEQ 4.5 performed significantly better than GAFF torsional energy barriers. Conversely, peptide-

like ligands seemed to perform better when using GAFF over GAFFTor: H-TEQ, perhaps due to 

significant parametrization efforts during the development of the AMBER for peptides and 

proteins.  

 Despite the change in accuracy between GAFF and GAFFTor: H-TEQ being very small, the 

difference between them and GAFFTor:0 was more significant. For example, 64 (or 22.1% of the) 

dockings improved when GAFF and GAFFTor: H-TEQ was used in place of GAFFTor:0. Conversely, 

44 (or 15.2% of the) structures observed an increase in accuracy when transitioning in the reverse 

direction. This suggests that although GAFF and H-TEQ torsion parameters are acceptable for 

many molecules, there exists a smaller number of ligands molecules for which torsion parameters 

are inaccurately parametrized. For this latter class of molecules, having no torsion parameters was 

more beneficial possibly due to two potential reasons. One reason is because a combination of van 

der Waals, hydrogen bonding, and electrostatics was better able to describe their conformational 

preferences. The other reason may be due to the poor and erroneous assignment of torsion 

parameters, which resulted in an incorrect conformation. 

In general, molecules which performed better using torsions assigned by GAFF and H-

TEQ seemed to include many charged groups (Figure 5.4a-c). Those molecules which exhibited 

poorer accuracies by using these torsional parameters had fewer charged groups (Figure 5.4d-f). 

Despite this, many exceptions were identified and it was not clear how and why torsional 

parameters impacted the accuracy of docking differently for different molecules. Nevertheless, in 

most cases, there was a clear advantage to using torsional parameters generated by GAFF and H-

TEQ for docking.  
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Figure 5.3. The accuracy of protein self-docking on 289 protein-ligand complexes were performed 

with GAFF (red), GAFFTor: H-TEQ (blue), GAFFTor:0 (green), and GAFFTor:0 ELE:0 (orange) shown.  

 

 

 In addition, the importance of electrostatic interactions was also investigated. All 

electrostatic interactions within the atoms of the ligand and between the protein and ligand was 

removed during docking of all 289 complexes. This is henceforth referred to as GAFFTor:0; Ele:0. An 

accuracy of 63.0% was obtained by this method (GAFFTor:0 Ele:0), which was a reduction of 3% 

compared to GAFFTor:0. This meant that electrostatic interactions do play a role, albeit a small one, 

in the docking of protein-ligand complexes. The other interactions, such as hydrogen bonding, and 

especially van der Waals interactions, are believed to be the most important factors for during 

docking and for receptor-ligand complementarity. These findings suggest that current electrostatic 

interactions and torsional parameters each contribute approximately 5% and 3%, respectively, to 

the accuracy of protein docking.  

 



152 
 

 
Figure 5.4. Examples of protein binders which were more accurately docked using: GAFF and 

GAFFTor:H-TEQ (a-c) and GAFFTor:0 (d-f).  

 

 

Nucleic Acid Docking. In contrast to protein-ligand complexes, self-docking on a curated 

set of 178 nucleic acid-ligand complexes showed that torsions did not affect its accuracy. In fact, 

nearly identical accuracies of 53.4%, 55.6%, and 55.6% were observed at 2 Å for GAFF, 

GAFFTor:H-TEQ, and GAFFTor:0, respectively (Figure 5.5). Nucleic acids possess polyanionic 

phosphate charges, and Mg2+ and K+ counter-cations. Consequently, more dominant electrostatic 

interactions are present in these macromolecules, which are lacking in proteins. In addition, the 

former also possesses more numerous hydrogen bond acceptors and donors compared with the 

latter, which are essential for many ligands binding. It was found that in nucleic acid docking, the 

combination of hydrogen bonding and van der Waals interactions adequately described most 

systems, without the need for torsion parameters nor electrostatic interactions. In fact, the 95.5% 

of all structures remained unchanged in accuracy between GAFFTor:H-TEQ and GAFFTor:0.  

To understand the importance of electrostatic interactions in nucleic acid docking, 

GAFFTor:0; Ele:0 was also used. Interestingly, setting all electrostatic interactions to zero resulted in 
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only a slight decrease in the accuracy of nucleic acid docking (53.9%). This meant that current 

electrostatic charging schemes provide no benefit to the docking accuracy. Due to the complexity 

of charge distribution and polarity of nucleic acids described earlier, a different charging method 

may be needed to describe the partial charges of ligands bond to nucleic acids. For example, our 

previous findings indicate that the phosphate charges had to be neutralized to implicitly account 

for the presence of Mg2+ cations.   

Another possible reason that electrostatic interactions may not play a significant role in 

FITTED might be due to the use of the LJ 12-10 potential for hydrogen bonding. Hydrogen 

bonding is expected to play a large role for nucleic acid docking, as they improve the enthalpic 

stability of binding.   

   

 

Figure 5.5. The accuracy of nucleic acid self-docking on 178 nucleic acid-ligand complexes were 

performed with GAFF (red), GAFFTor: H-TEQ (blue), GAFFTor:0 (green), and GAFFTor:0 Ele:0 (orange) 

shown.  

Conformational Energy Analysis. To understand why GAFFTor:H-TEQ did not outperform 

the original GAFF FF during docking, conformational analysis in gas-phase was performed. This 

analysis revealed that the original MMFF94, GAFF2, and MAB FFs achieved average accuracies 

of 2.11, 3.74, and 3.80 kcal·mol-1 in terms of mean absolute errors (MAE), respectively, compared 

to the reference QM energies.  The superior performance of MMFF94 over both GAFF2 and MAB 

is explained in part by its use of a phased LJ 14-7 potential for van der Waals interactions. The 

phased nature of this potential, to the right, is more forgiving at close distances. In contrast, GAFF2 
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and MAB FFs both employed a LJ 12-6 term, which overpredicted these interactions at close 

distances. For example, the relative energies of the pharmaceutical, fluconazole, was dramatically 

overpredicted by GAFF2 and MAB, when the two rings were in proximity (Figure 5.6). This 

resulted in MAEs of 66.2 and 66.0, respectively. For this molecule, neither QM nor MMFF94 

registered a steric clash. 

 

 

Figure 5.6. A conformation of fluconazole, which registered a steric clash using GAFF2 LJ 12-6 

potential, but not QM and MMFF94 phased LJ 14-7 potential. 

 

 Unexpectedly, GAFF2Tor: H-TEQ and GAFF2 had similar accuracies, resulting in a MAE of 

4.36 and 4.32, respectively. This was surprising as previous benchmarks of H-TEQ showed that it 

possessed higher accuracies than both MMFF94 and GAFF2. In particular, the accuracy of H-TEQ 

4.0 and 4.5 for conjugated torsions was significantly better than either FFs. In addition, the 

accuracy of H-TEQ 1.0, 2.0, and 3.0 were similar or slightly better than that of MMFF94.  

Their similar accuracies are most likely caused by the large number of nonbonded 

interactions, especially van der Waals interactions, at close distances. In fact, GAFF, GAFFTor:H-

TEQ and MAB share identical van der Waals functional form and parametrization, which is known 

to be very steep at close distances. A large correlation between the MAE of these previously 

mentioned FFs was found to that of GAFF2 VDW energies, alone (Table 5.1 and Figure 5.7). The 

correlation of GAFF2 VDW and MMFF94 was significantly lower. As mentioned previously 

MMFF94 uses a phased LJ 14-7 potential and different parametrization, which achieved greater 

accuracy.  
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Figure 5.7. Correlation of MAE between GAFF2 VDW and various other methods. The squared 

correlation coefficient (R2) are also shown.   

 

As the tested pharmaceutical compounds are large, many more nonbonded interaction pairs 

were present compared to previous validations.17, 18 It is also possible that electrostatic interactions 

of these methods were responsible for producing high MAEs. While restrained electrostatic 

potential (RESP) and AM1-BCC charges attempt to reproduce electrostatic interactions at larger 

distances, it is known that they are not well-suited to describe these nuance interactions at close 

distances. At close distances, quantum effects, such as polarization, multipole expansion, and 

charge-transfer effects predominate, which is difficult to capture using a simple coulombic 

potential. This is especially true in 1-4 and 1-5 electrostatic interactions, where there exists a 

component of a bonded interaction, in addition to electrostatic interactions. Traditionally, FFs did 
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not make a clear distinction between interaction energies belonging to torsional and electrostatic 

interactions. Consequently, torsional energy barriers of larger pharmaceuticals may have been 

more prone to contamination from several inaccurate electrostatic interactions. For smaller 

molecules, GAFF2Tor: H-TEQ was previously found to have much closer agreement with QM 

calculations, and superior accuracy to GAFF2. Consequently, FF development should first focus 

on devising a robust charge method and more accurate van der Waals functional form and 

parametrization prior to making any more progress in torsional parameters. These include the 

special treatment and a method to accurately reproduce 1-4, 1-5, and other close-range interactions.  

It should be mentioned that we opted not to use H-TEQ torsion parameters with the 

MMFF94 FF, due to the self-consistency of that FF. More specifically, the torsion parameters of 

MMFF94 has previously been proposed to work only with its nonbonded interactions (ie. phased 

14-7 LJ and MMFF94 charges). It also has more complex cross-terms, which are not found in 

GAFF2 and MAB. 

 

Table 5.1.  MAE (in kcal·mol-1) of the energies of 50 common pharmaceuticals calculated using 

various MM methods compared to the reference QM. Only drugs without extensive steric clashes 

were included. Bold indicates most accurate MM method. 

Pharmaceutical GAFF2 GAFF2Tor:H-TEQ MAB MMFF94 GAFF2VDW 

acepromazine 4.81 5.42 4.79 2.57 5.69 

acetophenazine 3.97 4.50 4.79 3.53 4.84 

α amyl cinnamic aldehyde 4.82 3.51 4.07 2.40 4.13 

bexarotene 1.72 2.37 2.25 2.18 4.28 

bifonazole 2.02 2.23 2.17 2.09 2.52 

bupropion 5.27 5.37 6.25 1.97 5.15 

cetirizine 5.59 5.61 6.92 5.86 5.32 

cinacalcet 3.16 3.39 3.29 2.41 3.74 

clavulanicacid 3.98 4.08 4.00 0.99 3.53 

cloperastine 2.02 2.38 3.06 1.98 2.64 

dexfenfluramine 2.11 2.24 2.93 1.59 2.91 
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dextronmphetamine 1.47 1.83 1.62 1.06 1.83 

diethylpropion 4.84 4.99 4.62 2.31 5.39 

diphenhydramine 2.31 2.01 2.78 1.77 3.08 

domperidone 3.12 3.21 3.24 1.68 3.95 

droperidol 4.05 4.28 2.61 1.40 4.32 

ecabet 4.64 5.79 6.70 1.53 4.97 

econazole 8.79 8.89 10.93 7.31 9.17 

etoricoxib 3.61 4.44 4.93 4.61 6.07 

flunarizine 2.43 2.95 2.31 2.41 2.73 

flurbiprofen 2.02 2.31 2.16 1.55 2.58 

fluvastatin 14.28 8.00 9.42 2.78 7.02 

forasartan 8.72 9.35 8.83 4.01 8.17 

haloperidol 4.25 3.67 3.39 1.97 5.07 

hydroxyzine 3.10 3.06 3.98 2.64 2.94 

ibudilast 3.70 3.92 3.56 1.75 4.32 

ibuprofen 2.23 2.47 2.52 1.69 2.52 

icosapent 3.71 2.95 2.77 2.20 2.69 

irbesartan 6.70 6.98 7.67 3.35 5.49 

lactulose 4.00 5.19 4.41 2.66 5.36 

luliconazole 5.07 5.86 5.20 4.18 5.70 

meclizine 2.69 2.91 2.70 3.39 3.22 

mefloquine 3.81 4.12 4.66 3.50 3.44 

metyrapone 4.22 4.32 4.57 2.98 5.59 

naphazoline 2.88 2.85 3.02 1.04 2.91 

nitisinone 10.56 10.41 11.70 3.95 10.88 

olopatadine 4.54 4.17 3.44 1.70 4.18 

oxamniquine 9.14 9.35 9.41 2.38 9.09 
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paliperidone 1.93 1.79 1.66 1.63 4.69 

pentolinium 1.16 1.08 1.69 0.86 3.33 

phendimetrazine 0.36 0.94 0.37 0.48 1.21 

pheniramine 2.82 3.30 3.70 3.35 2.56 

propiomazine 4.11 4.46 4.95 3.75 4.65 

risperidone 1.73 1.80 1.81 1.28 2.71 

sevoflurane 6.10 6.37 7.67 3.42 6.68 

telbivudine 3.40 3.45 4.56 1.81 7.18 

tiagabine 10.16 10.06 9.32 5.51 10.97 

tobramycin 7.38 7.70 5.68 3.13 8.58 

triprolidine 2.09 1.65 1.17 1.32 3.25 

xylometazoline 4.50 3.98 4.63 1.93 5.09 
     

 

Average 4.32 4.36 4.50 2.56 4.77 

 

5.5   Conclusion 

In conclusion, torsional parameters of FFs do have impact on the accuracy of docking. This was 

seen in the improved accuracy of GAFF and GAFFTor:H-TEQ over that of GAFFTor:0 in protein 

docking. In nucleic acid docking, all three previously mentioned FFs performed with a similar 

degree of accuracy. Nucleic acids are especially difficult and tricky for docking, due to the greater 

number of charged species and counterions present. In fact, the current charging scheme and 

functional form used by FITTED, electronegativity equalization, was found to be poor for nucleic 

acids, especially at close distances.28 In the future, ligand partial charges may need to be modified 

to implicitly account for polarity of the nucleic acid binding site, which could improve the accuracy 

of docking. For both protein and nucleic acid docking, electrostatic interactions contributed very 

little to the overall docking accuracy. The amalgamated term consisting of van der Waals and 

hydrogen bonding interactions played a greater role in mediating binding of ligands during 

docking. 
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 Unexpectedly, this study also found that GAFF and GAFFTor:H-TEQ had similar accuracies 

for both protein and nucleic acid docking. Upon performing gas-phase calculations, it was found 

that both methods performed equally poorly, with MAEs of 3.74 and 3.88, respectively. This was 

puzzling as H-TEQ torsional parameters, compatible with GAFF, was previously shown to be 

significantly more accurate. However, this previous validation was performed on smaller druglike 

molecules with a limited number of torsions. In addition, the experiment also consisted of rotating 

one torsion at a time. However, upon encountering real drug molecules and generating random 

conformations, the nonbonded interactions, especially charges, may have contaminated the overall 

conformational energies, leading to inaccuracies. Through this study, it has been realized that a 

method to address nonbonded interactions is desperately needed, especially those at close 

distances. For example, GAFF currently indiscriminately lowers the electrostatic interaction 

between 1-4 atoms by a constant factor. However, this is erroneous as there is no evidence to 

suggest that 1-4 electrostatic interactions are dampened by a predetermined constant. Work on a 

more robust electrostatic charge method is required. In addition, the steric wall of LJ 12-6 is too 

steep, and a selection of a softer function for future docking would be promising. 

 Furthermore, docking of face centered and T-shaped π-π stacking is currently achieved by 

a combination of electrostatic and van der Waals in type I FFs. Consequently, it does not take into 

consideration the chemistry and its multipole charge distribution, which may be important for 

ligand binding. In addition, pharmaceuticals often contain halogens, which possess sigma holes. 

For example, despite being mostly negatively charged, CH3F molecule contains a sigma hole of 

positive charge on the fluorine atom, which could be used for binding.  
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6   Conclusion and Closing Remarks 

6.1   Conclusion 

The field of computational chemistry has grown considerably in the past few years and decades. 

Despite these progresses, computational chemistry is still growing rapidly as it is a relatively young 

field with promises of new discoveries and developments. It has an exciting future as further 

improvements in hardware would allow the use of more advanced and accurate simulations, which 

were previously intractable.  The work presented in this thesis has focused primarily on improving 

the accuracy of in silico docking and MD simulations for the purposes of discovering potentially 

new drug candidates and their stabilities. As such, these computational methods had to be 

inexpensive. For this reason, MM was the method of choice rather than more expensive QM 

calculations. To this end, new methodologies docking and FFs were envisioned and developed. 

In chapter 1, an overview of MM FFs for simulating nucleic acids was discussed. Briefly, 

it summarized structural and biological roles of nucleic acids. Historic developments and current 

state-of-the-art MM methods to treat and describe them were also discussed. In addition, it listed 

several hallmark computational studies, which were carried out by others in the past. The role of 

computational chemistry in SBDD was highlighted, with examples of the different binding modes 

of existing pharmaceuticals with nucleic acids and promise of the field. As common, type I MM 

FFs, used for docking and MDs, are simplistic in nature, future developments to improve the 

accuracy of MM FFs were suggested, including the treatment of hydrogen bonding, π-π stacking, 

and noncanonical nucleotides. 

In chapter 2, key problems with regards to docking of small molecules to nucleic acids was 

identified. This was attributed to a lack of dependable water molecules in the binding site of nucleic 

acids during docking as each ligand was expected and shown to possess different water network 

within the same receptor macromolecule. In fact, this work builds upon the cross-docking work, 

started by Moitessier et al (2006), where docking accuracy to aminoglycosides was impacted 

significantly by the different water networks in the ligand binding site.1 By considering a collection 

of water positions, they were able to improve docking to these molecules. However, at the time, 

water positions were manually performed. At the start of the project, no water placement protocol 

specific for nucleic acid-ligand complexes was available. Consequently, SPLASH’EM was 
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developed.2 It used statistics collected from thousands of nucleic acid structures, containing water 

molecules to identify regions of high-water occupancy. In conjunction with a specialized FF, 

developed specifically for the placement of water molecules, it achieved the highest accuracy 

known to-date. In the future, this water placement technique should be incorporated during 

docking, which could improve its overall accuracy. This would be useful vHTS of potential nucleic 

acid binders, along with a development of an appropriate scoring function. Subsequently, organic 

synthesis and biological testing could be carried out on promising nucleic acid binders. 

In chapter 3 and 4, the underlying MM FFs were scrutinized to see if improvements could 

be made. This work was built on previous work conducted by Moitessier and coworkers.3-5 

Torsions of molecules were a combination of steric and hyperconjugation effects. While steric 

effects were already modelled in FFs, hyperconjugation was not. By extracting the 

hyperconjugation and conjugation terms of torsions, we proved that torsional energy barriers of 

small molecules could be quantified and more accurately predicted. Due to the difficulty of this 

strategy, torsions were classified into different chemical groups. In this thesis, conjugated torsions 

were quantified.  

Torsional energy barriers of biaryl and other conjugated molecules were analyzed. Existing 

torsional energy barriers for these molecules were found to be poor in popular MM FFs, including 

GAFF2, MAB, and MMFF94. This could be attributed to the use of atom typing in GAFF2 and 

MMFF94, which has its limitations in terms of transferability and assignment of torsion parameters. 

To circumvent this problem, we developed H-TEQ 4.0 for biaryl molecules (chapter 3), using 

simple molecular descriptors (ie. electron-richness/deficiency).6 This method achieved an RMSE 

of 0.95 kcal/mol, which significantly outperformed GAFF2 on our compiled validation set, 

containing 100 small molecules. Our efforts to first focus on biaryls was attributed to its frequent 

appearances in pharmaceuticals and bioactive compounds. Subsequently, we focused on all 

conjugated molecules (chapter 4) and used bond orders and π-charges obtained from extended-

Hückel descriptors to predict their torsional energy barriers. To our delight, this general method, 

H-TEQ 4.5, worked well for all conjugated torsions, including biaryls.7 Again, testing on the 

validation set of 200 molecules, we obtained more accurate results (1.01 kcal·mol–1) than other 

popular FFs, including GAFF2, MMFF94, and MAB (3.49, 1.50, and 1.77 kcal·mol–1, 

respectively). 
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 In chapter 5, we tested the ability of H-TEQ to improve the accuracy of protein and nucleic 

acid docking. In total, approximately 450 dockings were performed. Unfortunately, H-TEQ had 

similar performance to GAFF. This was unexpected as previous results indicated that H-TEQ had 

superior performance compared to GAFF2. Upon further analysis and inspection, it was 

hypothesized that nonbonded interactions were contaminating the conformational energies of these 

molecules. Consequently, gas-phase energies of 50 frequently used pharmaceuticals were 

compared using MMFF94, GAFF2, MAB, and GAFF2Tor:H-TEQ. From these results, it was realized 

that gas-phase energies of the GAFF2, MAB, and GAFF2Tor:H-TEQ were similar owing to using the 

same LJ 12-6 potential for van der Waals interactions.8, 9 MMFF94 was distinct amongst these as 

it used a phased LJ 14-7, which was much more accurate.10 In addition, electrostatic potential at 

close distances was also identified as being potentially poor, as it currently uses a constant scaling 

factor for 1-4 interactions.11 In addition, 1-5 interactions are also expected to behave differently 

than longer range interactions. This realization with regards to the low quality of the nonbonded 

interactions, especially at close distances, has given ideas for future projects. These include 

focusing on addressing the proximal nonbonded interactions, first, prior to further developing 

additional torsion models. Once a robust nonbonded scheme is ready, previous H-TEQ 

developments could be reoptimized.  

Traditional use of a limited set of torsion parameters cannot be used to cover the entire 

chemical space during vHTS, due to its shear size. As a result, conventional FFs for small 

molecules have often emphasized specific molecular groups within the chemical space frequently 

encountered by existing pharmaceuticals. Since many have suggested that the chemical space of 

existing drug molecules do not evenly represent all the possible small molecule pharmaceuticals, 

the use of atom types, designed for existing drugs may hinder the discovery of novel drugs. Using 

an atom type independent method, such as H-TEQ would allow drug discovery scientists to break 

free from this cycle.  

 

6.2   Closing Remarks 

As alluded to previously, computational chemistry is a relatively young field. The use of 

calculations has complemented experimental studies, where performing the latter would have been 
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prohibitively expensive or sometimes impossible. It would be quite exciting, for example, to 

simulate, using MD simulations, an entire eukaryotic cell, or a collection of cells. If such a feat 

could be achieved, this would lead to a scientific revolution in cellular engineering and medical 

sciences. It would offer limitless possibilities, in terms of applications and benefits, such as 

exploring the effects of therapeutics from a cellular and wholistic perspective. Such simulations 

would allow the interactions of pharmaceuticals with cellular targets to be identified, such as off-

target effects, degradation sites, and other interactions. The field of computational chemistry has 

a bright future, and would no doubt continue to contribute to scientific knowledge for the 

foreseeable future.  
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Appendix A:  

Supplementary Information for “Predicting Positions of Bridging Water 

Molecules in Nucleic Acid-Ligand Complexes” 

 

A1   From Statistics to Binding Free Energy.  

As water molecules are often hydrogen bonded to more than one residue, estimating the free 

energy of water molecule at each position was achieved through the combination of the free 

energy distributions from each nearby polar atom. For example, the bridging water molecule, 

depicted in Figure 2.1, is influenced by the hydrogen bonding of several polar atoms, including 

two Lividomycin ammonium groups, guanine-O6, guanine-N2, and cytosine–O2. Consequently, 

the free energy values of water distribution from each individual atom were added, where they 

overlapped in space, to derive an overall free energy distribution for the entire NA-ligand 

complex. Although entropy is not additive, the sum of statistical information was used as an 

estimate for the binding free energy of water molecules. 

It should be noted that statistical data of water distribution for ligands were not available, 

and thus, the most structurally similar NA functional group statistics was used in its place with 

some modifications pertaining to symmetry. For example, the statistics for deoxyribose-O4 of 

NAs was first symmetrized along the in-plane surface and used in place of ether oxygens of 

ligands. This methodology was used to approximate the free energy of different ligand polar 

atoms. 
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A2   Hydrogen Bonding Potentials of Various Polar Atoms with Water 

 

Figure A1. Hydrogen bonding potential in QM (blue) as compared to the developed MM FF 

(red) for a linear distance scan along the angle bisector of Ado-N1(A) and Ado-H62 (B). The 

MM potential is sum of the 6-5-3 Lennard-Jones hydrogen bonding potential and van der Waals 

12-6 Lennard-Jones potential. Functional form of the developed 6-5-3 Lennard-Jones potential 

for sp2 aromatic nitrogen (C) and amine hydrogen (D) used to describe hydrogen bonding 

potential between polar atoms and water. 

 

A3   Obtaining an Angle Term 

In order to accurately model the relationship between enthalpy and angles, explicit electron lone 

pairs (lp) were needed. These electron lp were at angles corresponding to or near the minimum(s) 

on the PES, of these simplified NA subunits, in accordance with the VSEPR theory. For sp2 
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oxygen, the lp electrons were placed in the plane of the base, at 70° on either side of the bisector. 

However, there were two additional smaller minima at 70° on both PES, directly out-of-the-plane. 

Consequently, dummy lp were also placed at these positions, which were assigned weaker 

potentials, in order to better reproduce the QM PES. In the case of sp3 oxygens, the lp’s were 

placed at 70° on both sides of the bisector in the directions directly out-of-the plane. For anionic 

oxygens, three lp’s were placed at 109.5° from the P-O bond, in a tetrahedral manner that would 

maximize the angle between the bonded atom and the three O-lp angles. For sp2 nitrogens, the lp 

was placed in the plane of the two bonded atoms, at the bisector. 

Due to the differences in chemical nature of different atoms, slightly different potentials 

were selected for different atom types. A normal distribution-like potential was employed at the 

location of the lp electrons, which allowed a better reproduction of the PES of simplified NA 

subunits (Equation. 2.3). The angular contribution function has the advantageous property that it 

is always bound between 0 and 1, and is a continuous function, allowing optimizations to be 

performed easily. In order to prevent a favorable steric clash between a PW and a polar atom from 

occurring (ie. at close distances but large angular deviations), cutoff distances of 2.5 Å and 1.5 Å 

were implemented for hydrogen bond acceptors and donors, respectively (Equation 2.3). Any 

distances closer than these threshold values between the polar atom and nucleic acid would result 

in an angular contribution of 1, restoring the full steric clash potential. As an example, the devised 

potential was able to reproduce the QM energy profile for pyridine (Figure 2.7B) and 1-

methylpyridin-4(1H)-one (Figure 2.7C). It should be noted that where the in-plane and out-of-

plane angular energy profiles differed, the in-plane angular PES was selected as water molecules 

are less likely to occupy a position intercalated between two nucleotide bases. The angle 

contribution function of simplified subunits was applied to chemically similar NA and ligand polar 

atoms. 

 

A4   Removal of Solvent Exposed Waters 

NAs have extremely shallow binding pockets, compared to proteins. Consequently, there are many 

water molecules near its surface, which are affected by bulk waters and/or adjacent 

crystallographic subunits. Additionally, these waters do not mediate direct contact between the 
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nucleic acid and ligand and are often unimportant for docking. A routine was developed to identify 

and remove those. 

In order to remove these water molecules during water placement, the exterior surfaces of nucleic 

acids were mapped by rolling a spherical probe of different sizes along its surface (Figure A2). All 

placed waters within the regions in contact with the probe were considered bulk water, and thus 

removed. The optimal probe radius of 10 Å was selected by testing various sizes, which removed 

approximately a quarter of originally placed water molecules.  

 

Figure A2. Mapping of bulk waters by rolling a spherical probe along the surface of the nucleic 

acid. Placed waters in the light green region were determined to be bulk solvents, and consequently 

removed. 

 

A5   Validation Dataset for Water Placement  

The compiled dataset used in this study for water placement is composed of 91 PDBs (listed 

below) selected using the workflow in Figure A3. 

 

Figure A3. Testing set for water placement. 
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102D, 109D, 166D, 195D, 1D30, 1D43, 1D45, 1D64, 1FUF, 1J7T, 1JTL, 1L1H, 1LEX, 1M6F, 

1NAB, 1O0K, 1PRP, 1VZK, 1Z8V, 298D, 2B0K, 2B3E, 2B57, 2BEE, 2EES, 2EET, 2EEU, 

2EEV, 2ET8, 2FCX, 2FD0, 2G9C, 2GVR, 2I2I, 2I5A, 2NLM, 2OE5, 2OE8, 2PWT, 2XNW, 

2XNZ, 2XO0, 2XO1, 2Z74, 2Z75, 302D, 303D, 311D, 358D, 360D, 3AJK, 3C5D, 3CDM, 

3D2X, 3DIL, 3DS7, 3ERU, 3EUM, 3FO4, 3FO6, 3G4M, 3GAO, 3GES, 3GOT, 3LA5, 3OIE, 

3Q3Z, 3S4P, 3SD3, 3SKI, 3T5E, 3UYH, 403D, 432D, 443D, 453D, 473D, 4AGZ, 4FE5, 4FEP, 

4FXM, 4LVX, 4LVY, 4LW0, 4O5X, 4TZX, 5D99, 5FJC, 5NDH, 5O69, 6BNA 

 

A6   Initial Placement of Water Molecules  

The initial placement of water molecules was scored in order to ensure that there was a sufficient 

coverage of water molecules at the beginning of the placement protocol. To this end, the first 

scoring criteria was used (see methods). It was found that placing waters in the top 5, 10, 15, and 

50 most statistically populated positions for each nucleic acid and ligand polar atom, allowed a 

population of waters with an overall coverage of 70%, 80%, 88%, and 99%, respectively (Figure 

A4). Consequently, 50 voxels were chosen due to its excellent initial water population and 

coverage. As a result, the accuracy of our method will be primarily relying on the accuracy of the 

scoring rather than initial placement.  

 

Figure A4. The top N most frequently populated position(s) around each individual polar atom of 

nucleic acid and ligand was used to place waters. This initial population of particle waters 

contained those which correctly predicted the crystallographic positions and also those which 

incorrectly predicted their positions. The coverage refers to the number of correctly predicted 
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crystallographic waters by each population, irrespective of the number of incorrectly predicted 

water molecules.  

 

 

Figure A5. The accuracy of SPLASH’EM water placement method as decomposed into five 

different bins of equal sizes (46 PDB waters).  
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Appendix B: 

Supplementary Information for “Torsional Energy Barriers of Biaryls could 

be Predicted by Electron-richness/deficiency of Aromatic Rings; 

Advancement of Molecular Mechanics toward Atom-Type Independence” 

 

B1   Overall π-electronegativity Modulates Strength of Conjugation 

The slopes of the linear fit across each group varied slightly, with C-C, C-N, N-N, C-N+, N-N+, 

and N+-N+ central atoms having slopes of -7.58, -13.37, -5.82, -10.82, -11.07, and -4.42, 

respectively. More noticeably, the y-intercept of these molecules differed as well with values of 

13.69, 22.38, 15.51, 24.66, 25.46, and 12.06, respectively. 

 

B2   Strength of Conjugation 

For C-C, C-N, and N-N central bonds, the slopes of -9.30, -24.32, and -63.58 were found, 

respectively. Similarly, the y-intercept of these central bonds differed with values of -3.87, -1.44, 

and 2.61, respectively.  

For biaryls containing C-N+ central bonds, an increase in (Δχπ)
2 decreased V2 (Figure 3.9B), 

for those comprised of a 6-membered aromatic moiety with carbon central atom and a 5-membered 

aromatic moiety with a N+ central atom (ie. C(5)-N+(6) ). The slope and y-intercept corresponding 

to this was -22.11 and -1.74, respectively (R2 = 0.69). All other biaryls with C-N+ central bonds 

saw an increase in V2 as (Δχπ)
2 increased. More specifically, C(5)-N+(5), C(6)-N+(5), and C(6)-

N+(6) had slopes of 7.60, 3.09, 40.25, y-intercepts of -0.99, -3.89, and -7.23, and an R2 of 0.31, 

0.87, and 0.92, respectively. 

Similarly, an increase in (Δχπ)
2 increased in V2 for all N-N+ central bond biaryls, 

regardless of the number of atoms in each ring. However, the trends for both N(5)-N+(5) differed 

from N(5)-N+(6) such that the slope and y-intercept of the former were 13.97 and -1.09, 

respectively (R2 = 0.58) compared to the latter with 12.31 and -6.71 (R2 = 0.94), respectively. 
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B3   Substituent Effects on Torsional Energy Barriers of Biaryls 

R1 R2 Barrier 

Height 

Difference from 

unsubstituted 

Difference from 

unsubstituted   
(kcal/mol) (kcal/mol) 

 

 
H H 4.44 - 

 

CF3 CF3 4.51 0.07 2% 

H CF3 4.86 0.43 10% 

NMe2 CF3 5.08 0.64 14% 

CF3 H 4.23 -0.20 -5% 

NMe2 H 4.75 0.31 7% 

CF3 NMe2 4.60 0.17 4% 

H NMe2 5.04 0.61 14% 

NMe2 NMe2 5.39 0.96 22%      

 
H H 2.29 - 

 

H CF3 2.08 -0.21 -9% 

CF3 CF3 2.09 -0.20 -9% 

NMe2 CF3 2.32 0.03 2% 

CF3 H 2.24 -0.05 -2% 

NMe2 H 2.53 0.24 11% 

CF3 NMe2 2.35 0.06 3% 

H NMe2 2.45 0.16 7% 

NMe2 NMe2 3.14 0.85 37%      

 
H H 4.67 - 

 

H CF3 4.67 0.00 0% 

CF3 CF3 5.11 0.44 9% 

NMe2 CF3 5.17 0.49 11% 

CF3 H 5.33 0.65 14% 

NMe2 H 5.45 0.77 17% 
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NMe2 NMe2 4.26 -0.41 -9% 

H NMe2 5.23 0.56 12% 

CF3 NMe2 5.95 1.27 27%      

 
H H 2.61 - 

 

H CF3 2.71 0.11 4% 

NMe2 CF3 2.77 0.16 6% 

CF3 H 2.78 0.17 7% 

CF3 CF3 2.88 0.28 11% 

NMe2 H 2.93 0.32 12% 

CF3 NMe2 3.11 0.50 19% 

H NMe2 3.17 0.56 21% 

NMe2 NMe2 3.39 0.78 30%      

 
H H 4.40 - 

 

NMe2 CF3 3.92 -0.48 -11% 

H CF3 4.31 -0.10 -2% 

CF3 CF3 4.57 0.17 4% 

NMe2 H 3.86 -0.54 -12% 

CF3 H 4.88 0.48 11% 

NMe2 NMe2 4.31 -0.09 -2% 

H NMe2 4.78 0.38 9% 

CF3 NMe2 5.04 0.64 15%      

 
H H 5.45 - 

 

NMe2 H 4.42 -1.03 -19% 

NMe2 NMe2 5.37 -0.08 -1% 

NMe2 CF3 5.47 0.02 0% 

H CF3 5.48 0.03 1% 

CF3 CF3 5.57 0.12 2% 
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CF3 H 5.87 0.42 8% 

CF3 NMe2 6.04 0.59 11%      

 
H H 4.07 - 

 

NMe2 H 4.03 -0.04 -1% 

NMe2 CF3 4.12 0.05 1% 

NMe2 NMe2 4.13 0.06 1% 

H NMe2 4.18 0.11 3% 

H CF3 4.21 0.14 4% 

CF3 H 4.30 0.23 6% 

CF3 CF3 4.44 0.37 9% 

CF3 NMe2 4.57 0.50 12%      

 
H H 4.50 - 

 

NMe2 H 4.02 -0.48 -11% 

H CF3 4.05 -0.45 -10% 

NMe2 CF3 4.13 -0.37 -8% 

CF3 CF3 4.49 -0.01 0% 

CF3 H 5.10 0.61 14% 

NMe2 NMe2 5.14 0.64 14% 

H NMe2 5.33 0.84 19% 

CF3 NMe2 5.80 1.31 29%      

 
H H 3.66 - 

 

NMe2 H 3.54 -0.12 -3% 

H CF3 3.60 -0.06 -2% 

NMe2 CF3 3.62 -0.04 -1% 

CF3 CF3 3.76 0.10 3% 

NMe2 NMe2 3.92 0.26 7% 

H NMe2 3.98 0.31 9% 
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CF3 H 4.10 0.44 12% 

CF3 NMe2 4.30 0.64 17%      

 
H H 5.89 - 

 

NMe2 CF3 4.90 -0.99 -17% 

H CF3 5.38 -0.51 -9% 

NMe2 H 5.52 -0.38 -6% 

CF3 H 6.90 1.01 17% 

NMe2 NMe2 5.78 -0.12 -2% 

H NMe2 6.25 0.36 6% 

CF3 NMe2 7.16 1.27 22%      

 
H H 8.46 - 

 

H CF3 8.19 -0.27 -3% 

NMe2 CF3 8.20 -0.25 -3% 

NMe2 H 8.24 -0.22 -3% 

CF3 H 9.21 0.76 9% 

NMe2 NMe2 8.62 0.16 2% 

H NMe2 9.01 0.56 7% 

CF3 NMe2 9.90 1.45 17%      

 
H H 5.96 - 

 

NMe2 CF3 5.88 -0.08 -1% 

H CF3 6.01 0.05 1% 

CF3 CF3 6.46 0.50 8% 

NMe2 H 5.73 -0.22 -4% 

CF3 H 6.60 0.64 11% 

NMe2 NMe2 6.16 0.20 3% 

H NMe2 6.32 0.36 6% 

CF3 NMe2 6.93 0.98 16% 
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H H 9.18 - 

 

NMe2 CF3 7.87 -1.31 -14% 

H CF3 8.34 -0.84 -9% 

CF3 CF3 9.10 -0.08 -1% 

NMe2 H 8.52 -0.65 -7% 

CF3 H 10.38 1.21 13% 

NMe2 NMe2 8.71 -0.47 -5% 

H NMe2 9.45 0.27 3% 

CF3 NMe2 10.65 1.48 16%      

 
H H 6.94 - 

 

NMe2 CF3 5.88 -1.06 -15% 

H CF3 6.18 -0.76 -11% 

CF3 CF3 6.62 -0.32 -5% 

NMe2 H 6.31 -0.63 -9% 

CF3 H 7.44 0.50 7% 

NMe2 NMe2 6.64 -0.30 -4% 

H NMe2 7.16 0.22 3% 

CF3 NMe2 7.92 0.98 14% 
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B4   Accuracy of H-TEQ 4.0 and GAFF2 Compared to QM Torsional Energy 

Profile: Training Set- Number of Occurrences vs. RMSE.  

RMSE 

(kcal/mol) 

GAFF 

(count) 

H-TEQ 

(count) 

0.1 2 1 

0.3 4 8 

0.5 6 3 

0.7 7 12 

0.9 3 6 

1.1 0 5 

1.3 3 4 

1.5 3 2 

1.7 0 1 

1.9 0 2 

2.1 1 0 

2.3 0 0 

2.5 2 2 

2.7 0 1 

2.9 0 0 

3.1 0 0 

3.3 1 2 

3.5 0 0 

3.7 0 0 

3.9 0 - 

4.1 0 - 

4.3 0 - 

4.5 1 - 

4.7 0 - 

4.9 0 - 

5.1 0 - 

5.3 0 - 

5.5 1 - 

5.7 1 - 

5.9 0 - 

6.1 1 - 

6.3 0 - 

6.5 0 - 

6.7 0 - 

6.9 0 - 

7.1 1 - 

7.3 0 - 
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7.5 0 - 

7.7 0 - 

7.9 0 - 

8.1 0 - 

8.3 0 - 

8.5 0 - 

8.7 0 - 

8.9 0 - 

9.1 0 - 

9.3 0 - 

9.5 0 - 

9.7 0 - 

9.9 0 - 

10.1 1 - 

10.3 0 - 

10.5 0 - 

10.7 0 - 

10.9 0 - 

11.1 0 - 

11.3 0 - 

11.5 0 - 

11.7 0 - 

11.9 0 - 

12.1 0 - 

12.3 0 - 

12.5 0 - 

12.7 0 - 

12.9 1 - 

13.1 0 - 

13.3 0 - 

13.5 1 - 

13.7 0 - 

13.9 0 - 

14.1 1 - 

14.3 1 - 

14.5 1 - 

14.7 0 - 

14.9 2 - 

15.1 0 - 

15.3 0 - 

15.5 1 - 

15.7 0 - 

15.9 0 - 
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16.1 1 - 

16.3 0 - 

16.5 0 - 

16.7 0 - 

16.9 1 - 

17.1 0 - 

17.3 0 - 

17.5 0 - 

17.7 1 - 

17.9 0 - 

 

B5   Accuracy of H-TEQ 4.0 and GAFF2 Compared to QM Torsional Energy 

Profile: Validation Set- Number of Occurrences vs. RMSE.  

RMSE 

(kcal/mol) 

GAFF 

(count) 

H-TEQ 

(count) 

0.1 2 1 

0.3 4 8 

0.5 6 3 

0.7 7 12 

0.9 3 6 

1.1 0 5 

1.3 3 4 

1.5 3 2 

1.7 0 1 

1.9 0 2 

2.1 1 0 

2.3 0 0 

2.5 2 2 

2.7 0 1 

2.9 0 0 

3.1 0 0 

3.3 1 2 

3.5 0 - 

3.7 0 - 

3.9 0 - 

4.1 0 - 

4.3 0 - 

4.5 1 - 

4.7 0 - 
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4.9 0 - 

5.1 0 - 

5.3 0 - 

5.5 1 - 

5.7 1 - 

5.9 0 - 

6.1 1 - 

6.3 0 - 

6.5 0 - 

6.7 0 - 

6.9 0 - 

7.1 1 - 

7.3 0 - 

7.5 0 - 

7.7 0 - 

7.9 0 - 

8.1 0 - 

8.3 0 - 

8.5 0 - 

8.7 0 - 

8.9 0 - 

9.1 0 - 

9.3 0 - 

9.5 0 - 

9.7 0 - 

9.9 0 - 

10.1 1 - 

10.3 0 - 

10.5 0 - 

10.7 0 - 

10.9 0 - 

11.1 0 - 

11.3 0 - 

11.5 0 - 

11.7 0 - 

11.9 0 - 

12.1 0 - 

12.3 0 - 

12.5 0 - 

12.7 0 - 

12.9 1 - 

13.1 0 - 

13.3 0 - 
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13.5 1 - 

13.7 0 - 

13.9 0 - 

14.1 1 - 

14.3 1 - 

14.5 1 - 

14.7 0 - 

14.9 2 - 

15.1 0 - 

15.3 0 - 

15.5 1 - 

15.7 0 - 

15.9 0 - 

16.1 1 - 

16.3 0 - 

16.5 0 - 

16.7 0 - 

16.9 1 - 

17.1 0 - 

17.3 0 - 

17.5 0 - 

17.7 1 - 

17.9 0 - 
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Appendix C: 

Supplementary Information for “Use of Extended-Hückel Descriptors for 

Rapid and Accurate Predictions of Conjugated Torsional Energy Barriers” 

 

C1   Results of Subunit π-orbital Analysis 

 

Figure C1. Orbital coefficient and molecular orbital energies of 1,2,3-triazine as optimized by 

CCSD(T)/cc-pVTZ. 
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Figure C2. Orbital coefficient and molecular orbital energies of 4H-1,2,4-triazole as optimized 

by CCSD(T)/cc-pVTZ. 

 

 

Figure C3. Orbital coefficient and molecular orbital energies of benzene as optimized by 

CCSD(T)/cc-pVTZ. 
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Figure C4. Orbital coefficient and molecular orbital energies of furan as optimized by 

CCSD(T)/cc-pVTZ. 

 

 

Figure C5. Orbital coefficient and molecular orbital energies of imidazole as optimized by 

CCSD(T)/cc-pVTZ. 
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Figure C6. Orbital coefficient and molecular orbital energies of isothiazole as optimized by 

CCSD(T)/cc-pVTZ. 

 

 

Figure C7. Orbital coefficient and molecular orbital energies of isoxazole as optimized by 

CCSD(T)/cc-pVTZ. 
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Figure C8. Orbital coefficient and molecular orbital energies of oxazole as optimized by 

CCSD(T)/cc-pVTZ. 
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Figure C9. Orbital coefficient and molecular orbital energies of pyrazine as optimized by 

CCSD(T)/cc-pVTZ. 
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Figure C10. Orbital coefficient and molecular orbital energies of 1H-pyrazole as optimized by 

CCSD(T)/cc-pVTZ. 

 

 

Figure C11. Orbital coefficient and molecular orbital energies of pyridazine as optimized by 

CCSD(T)/cc-pVTZ. 
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Figure C12. Orbital coefficient and molecular orbital energies of pyridine as optimized by 

CCSD(T)/cc-pVTZ. 
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Figure C13. Orbital coefficient and molecular orbital energies of pyridmine as optimized by 

CCSD(T)/cc-pVTZ. 
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Figure C14. Orbital coefficient and molecular orbital energies of pyrrole as optimized by 

CCSD(T)/cc-pVTZ. 

 

 

Figure C15. Orbital coefficient and molecular orbital energies of 1,3,5-triazine as optimized by 

CCSD(T)/cc-pVTZ. 
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Figure C16. Orbital coefficient and molecular orbital energies of 1,2,4,5-tetrazine as optimized 

by CCSD(T)/cc-pVTZ. 
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Figure C17. Orbital coefficient and molecular orbital energies of 1,3,4-thiadiazole as optimized 

by CCSD(T)/cc-pVTZ. 

 

 

Figure C18. Orbital coefficient and molecular orbital energies of thiazole as optimized by 

CCSD(T)/cc-pVTZ. 
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Figure C19. Orbital coefficient and molecular orbital energies of thiophene as optimized by 

CCSD(T)/cc-pVTZ. 
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Figure C20. Orbital coefficient and molecular orbital energies of 2H-1,2,3-triazole as optimized 

by CCSD(T)/cc-pVTZ. 
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Figure C21. Orbital coefficient and molecular orbital energies of 1H-1,2,4-triazole as optimized 

by CCSD(T)/cc-pVTZ. 
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Figure C22. Orbital coefficient and molecular orbital energies of 1H-1,2,3-triazole as optimized 

by CCSD(T)/cc-pVTZ. 

 

 

 

Figure C23. Orbital coefficient and molecular orbital energies of methylenephosphane as 

optimized by CCSD(T)/cc-pVTZ. 
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Figure C24. Orbital coefficient and molecular orbital energies of methylenesilane as optimized 

by CCSD(T)/cc-pVTZ. 

 

 

Figure C25. Orbital coefficient and molecular orbital energies of methanethial as optimized by 

CCSD(T)/cc-pVTZ. 

 

Figure C26. Orbital coefficient and molecular orbital energies of ethylene as optimized by 

CCSD(T)/cc-pVTZ. 
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Figure C27. Orbital coefficient and molecular orbital energies of formaldehyde as optimized by 

CCSD(T)/cc-pVTZ. 

 

 

 

Figure C28. Orbital coefficient and molecular orbital energies of methanimine as optimized by 

CCSD(T)/cc-pVTZ. 

 

 

C2   Qualitative Trends in V2 

 

Figure C29. Observed trends in V2. In general, V2 increased from left to right, signifying a 

decrease in torsional energy barrier. 
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C3   V2 of QM vs. V2 from Sum of All σ → σ* hyperconjugation obtained from NBO 

 

Figure C30. V2 of QM vs. σ → σ* hyperconjugation obtained from NBO. 

 

Figure C31. V2 of QM-MMnonbonded vs. σ → σ* hyperconjugation obtained from NBO. 
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Figure C32.  V1 of QM-MMnonbonded of GAFF2 vs. σ → σ* hyperconjugation obtained from 

NBO. 

 

C4   Sample torsional profiles of GAFF2 vs. QM 

 

Figure C33. Comparison between the torsional energy profiles of a) (S)-6-(4-(1H-pyrrol-3-

yl)phenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one and b) 2-amino-2-

thioxoethane(dithioperoxo)imidic as predicted by QM (red) and GAFF2 (blue). 
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C5   Classification of Errors for H-TEQ 4.5 

 

Figure C34. RMSE of H-TEQ 4.5 vs. magnitude of V1 obtained from QM-MMnonbonded of 

GAFF2 are plotted for all molecules with RMSEs greater than 1.5 kcal·mol-1. The green dotted 

line is used to classify molecules based on the performance of H-TEQ 4.5. Molecules to the right 

of this line were erroneous due to a missing V1 term, while molecules to the left were inaccurate 

due to imperfections in the V2 term. 

 

 

Figure C35. Torsional energy profile of [2,2'-bipyridine]-1,1'-diium, whereby the 1-4 

electrostatics and 1-4 Van der Waals energies were multiplied by a factor of 6.5.  

 



206 
 

C6   Accuracy of H-TEQ 4.5, GAFF2, MAB, and MMFF94 Compared to QM 

Torsional Energy  

Table C1. Profile. All RMSEs are reported in kcal/mol. 

Validation Molecules in SMILES rmse_GA

FF 

rmse_MMF

F94 

rmse_Amber14

EHT 

rmse_HT

EQ 

Fc1ccc(C(=O)OC)cc1 0.3448635

37 

0.154829147 0.227455903 0.1136733

42 

O=C(OC)c1ccccc1 0.4071727

36 

0.192810682 0.331505911 0.1289719

91 

O=[N+]([O-])c1ccc(C(=O)O)cc1 0.4479237

62 

0.289627401 0.612737484 0.1485426

49 

Sc1n(-c2ccccc2)ncn1 0.2068963

17 

0.135775192 5.047025484 0.1663220

09 

Clc1ccc(C=2C(C)(C)C=2)cc1 0.9800881

32 

1.390741806 1.17657741 0.1938811

67 

c1(-c2cscc2)ncccn1 0.2542515

35 

0.400457761 0.272532323 0.2183828

5 

POC(=O)c1ccccc1 0.1796950

15 

0.250286722 0.166174208 0.2209250

19 

C(C)(C)(C)c1ccc(-c2nocn2)cc1 0.7659454

34 

0.495294328 0.784602703 0.2373434

77 

[O-][n+]1onc(-c2ccccc2)c1 0.8919153

69 

0.530263269 0.695705889 0.2548436

44 

c1(-c2ccncc2)[nH]ncn1 0.3946580

4 

0.145773332 0.178885311 0.2592316

2 

Nn1nc(-c2ccccc2)cc1 0.6122552

75 

0.429417808 0.474824347 0.2605001

1 

O=C(OCC)Nc1oc(-c2ccccc2)cn1 3.3424342

99 

2.187919348 4.945394308 0.2649448

46 

c1(-c2ccccc2)[nH]ccn1 0.3516452

52 

0.277053035 0.300250393 0.2677316

98 

ClC(=N)c1snc(C#N)n1 16.999024

2 

1.447254299 0.81957583 0.2796522

98 

N#Cc1c(N)oc(-c2ccccc2)n1 0.2757170

6 

0.269247608 0.344334383 0.2806228

76 

S=C([S-])c1[n+H]cc[nH]1 6.4268235

32 

1.086353772 0.686365501 0.2843637

92 

N(C)(C)c1ccc(-c2[nH]c3c(n2)cccc3)cc1 0.3198839

73 

0.361394285 0.389905221 0.2946388

19 

N(C)(C)c1ccc(-c2[nH]c3c(n2)cccc3)cc1 0.3198839

73 

0.361394285 0.389905221 0.2946388

19 

c1(-c2cocc2)ncccn1 0.2416209

14 

0.2593246 0.203649361 0.2983089

36 

Fc1c(F)cc2nc(-c3ccncc3)[nH]c2c1 0.5346426

03 

0.503259432 0.53541416 0.3080547

79 

Cc1oc(-c2ccccc2)nn1 0.4875845

96 

0.366689328 0.587190219 0.3082100

86 
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c1(-c2ccccc2)nocc1 0.8402420

92 

0.594997343 0.594220952 0.3099949

79 

O=C1OC(c2occc2)=Nc2[nH]ncc12 8.3614196

68 

1.14230779 1.208980121 0.3115755

81 

N#C[C@@H]1C(c2ccccc2)=C1 0.7357119

16 

1.049729622 0.898374136 0.3139018

3 

c1(-c2ccccc2)cscc1 0.7289128

43 

0.510713555 0.277257562 0.3323415

62 

c1(-c2ccccc2)c[nH]cc1 0.8202210

58 

0.620152226 0.432019201 0.3368250

93 

Clc1n(-

c2ccc([N+](=O)[O-])cc2)nc(Cl)n1 

0.2768703

19 

0.423068034 5.74634828 0.3404099

3 

O=[N+]([O-])c1c(N)non1 0.6886738

43 

0.254960483 0.657841333 0.3501667

74 

n1(-c2n[nH]cn2)cnnc1 4.9654725

52 

1.779233018 7.773043606 0.3539019

09 

O(C)c1ccc(-c2ncsc2)cc1 0.5311378

35 

0.320566417 0.497811943 0.3586026

87 

c1(-c2ccccc2)cocc1 0.9938930

24 

0.687341371 0.507282969 0.3696413

95 

Cn1nc(-c2ccccc2)nn1 0.5972943

53 

0.407206492 0.723377091 0.3705343

5 

S(C)c1[nH]nc(-c2c(O)cccc2)n1 0.2509069

85 

1.051110751 1.078436321 0.3716800

97 

Fc1ccc(-c2occ(C#N)c2)cc1 0.6740494

48 

0.598179591 0.539634534 0.3779839

46 

c1(-c2ccccc2)nn[n-]n1 0.1948366

84 

0.21648341 0.285933085 0.3785370

11 

Clc1c(N)[nH]nc1-c1ccc(F)cc1 0.7902206

47 

0.660008141 0.410675684 0.3925623

27 

Fc1c(-c2nc(C)[nH]n2)cccc1 0.6588655

45 

0.573913657 1.119020109 0.3931361

79 

Oc1c(O)ccc(-c2n[nH]cc2)c1 0.9955545

43 

0.826558679 0.884083259 0.4028469

97 

Nc1scc(-c2ccc(C)cc2)n1 1.2702218

13 

1.189738897 1.302420857 0.4032705

11 

S(C)c1nn(-c2ccccc2)cn1 0.2593499

93 

0.261665052 5.772864449 0.4050553

68 

O=C(O)c1ccc(NC(=[N+H2])N)cc1 0.6179428

31 

0.298547157 0.841603392 0.4239963

02 

O=C(N(O)c1ccc(C(=O)C)cc1)C 0.6650552

07 

0.832184699 0.787602967 0.4292922

92 

O=C1C(C#N)=CC(c2ccncc2)=C(C)N1 0.6661692

63 

0.558813203 1.64994493 0.4309556

92 

O=[N+]1C(c2ccccc2)=C[N-]O1 0.4119069

42 

0.237240144 0.892644614 0.4332010

34 

Cl[C@@H]1[C@@H](NC(=O)c2ccccc2

)C1 

0.7728517

53 

0.420432722 0.767664508 0.4333006

28 

Cc1cc(-c2cocc2)ccc1 1.1649554

51 

0.833410049 0.660914797 0.4373175

37 
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O=C1N(c2ccccc2)N=NN1 0.4452928

69 

0.377805968 5.833658353 0.4413699

9 

S(C)c1[nH]c(-c2c(O)cc3c(c2)cccc3)nn1 0.9162304

61 

1.436975995 1.725027077 0.4546742

96 

ClCC(=O)c1ccccc1 0.8691772

94 

0.736298884 0.414319731 0.4552912

94 

ClCC(=O)c1ccccc1 0.8693132

73 

0.736200402 0.414153141 0.4553544

87 

O(C#C)C(=O)c1ccccc1 0.2036210

64 

0.506133422 0.232804415 0.4626672

38 

S=C(N)c1n[nH]cn1 6.1159212

74 

0.823471341 1.556434929 0.4638758

73 

O=[N+]([O-])c1sc(N2C(=O)NCC2)nc1 0.2094435

49 

0.886954829 0.758534972 0.4638850

7 

SC(=O)c1ccccc1 0.9936695

77 

0.61042304 0.654307153 0.4806536

86 

c1(-c2ccncc2)ocnn1 0.5159336

61 

0.459219425 0.641663513 0.4823255

7 

Cc1ccc(C=2Sc3n(N=2)cnn3)cc1 0.8335354

91 

0.87011888 1.187898925 0.4863826

09 

O=C(NC)c1ccccc1 0.4761098

01 

0.371985101 0.788793178 0.4890384

15 

[N+H2]=C(N)c1nc(N)[nH]n1 13.999979

43 

0.48165545 0.571153419 0.4903631

21 

O=C1NN=C([C@@H](C)C1)c1ccc(-

[n+]2c[nH]cc2)cc1 

3.0137852

54 

360.1144945 54.69633541 0.5078155

95 

Cl/C(=N\S)/c1snc(C#N)n1 16.786175

52 

1.106180916 0.669622913 0.5172128

45 

S(C)c1nc(-c2ccncc2)[nH]n1 0.5120503

83 

0.279067266 0.472997124 0.5180524

85 

Nc1nc(-c2ccncc2)nc2c1cccc2 0.7920511

3 

0.669264377 0.324424341 0.5260868

54 

O=C(C)c1ccc(N(O)C)cc1 0.8183473

95 

0.835862257 0.924336237 0.5261979

63 

O=Cc1ccc(OC)cc1 0.7756605

04 

0.238308102 0.243621005 0.5311187

1 

c1(-c2[nH]ccc2)[nH]c2c(n1)cccc2 8.9627270

57 

2.210234605 1.793968243 0.5345283

41 

NC=1n2nccc2N=C(c2ccccc2)C=1 0.2972724

39 

0.512878175 0.491960756 0.5377169

23 

Cn1c(-c2ccccc2)ccc1 0.3637856

44 

0.309305444 0.514394691 0.5389471

92 

Oc1oc(-c2ccccc2)nc1 1.1566500

51 

1.140619944 1.358628232 0.5502848

41 

O=S1(=O)CC(c2ccccc2)=CC1 0.5940323

39 

1.321140712 0.72041424 0.5570209

1 

O=C(N)c1cc(OC)ccc1 1.6396886

39 

1.054532089 1.567611525 0.5652283

99 

O=C1SC(c2ccc(C)cc2)=C2SCC(=O)N12 0.2865907

99 

1.105531063 1.453369651 0.5679959

09 
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Fc1cc(c(O)cc1)-c1[nH]ncc1 0.6430986

48 

1.094696457 1.577966185 0.5701861

47 

O/N=C/c1ncccc1 0.4017531

91 

1.685430664 1.758417492 0.5706574

89 

c1(C2=Nc3n(ncn3)C=C2)ccccc1 0.3768763

2 

0.447094316 0.54414095 0.5756641

48 

[N+H](/N=C(\C)/c1c[nH]nc1)=C(N)N 15.959127

07 

0.715602074 0.607913176 0.5826757 

S/C=C(\C#N)/c1ccccc1 0.5438262

42 

0.383777303 1.255406862 0.5878131

9 

O=C(NO)C(=O)NO 2.6565817

96 

4.68244361 2.887852514 0.5887131

5 

[PH2](=O)NC(=O)c1cc(O)ccc1 0.6771390

25 

0.597400869 0.617722057 0.5977988

34 

O=C1NC(c2ncccn2)=CC=C1 0.7865197

36 

0.95405286 0.404229686 0.5987142

81 

Cc1nn2c(n1)-c1c(n(-

c3cc(C)c(C)cc3)nc1)N=C2 

0.9985208

81 

0.32501461 6.098805201 0.5998650

27 

O(C)c1ccc(-c2n3N=CCSc3nn2)cc1 0.6373688

16 

0.665774895 1.013953035 0.6049405

97 

O=C(c1[nH]ccn1)c1cc(OC)c(O)cc1 4.9826267

43 

3.568848262 3.388029366 0.6120854

74 

O=C1N(c2ccccc2)N=NC(N(C)C)=N1 2.2564078

16 

1.809982252 4.416287414 0.6166000

09 

ClC(Cl)(Cl)[C@@H](O/N=C(\N)/c1cccc

c1)O 

0.4771491

12 

0.461381142 0.988516474 0.6201098

75 

O=C(N)c1cc(O)ccc1 1.6881230

64 

1.087946805 1.598232788 0.6213030

13 

O(C)c1c(-c2ccccc2)sc(C)n1 1.4080921

55 

1.46101112 2.467400118 0.6299149

8 

S=C1SC=C(c2ccccc2)N1 0.7968607

06 

0.908144691 0.294396042 0.6483718

43 

O=[N+]([O-])c1oc2c(c1)ccc1c2CCCC1 0.3185772

92 

0.936272002 0.362476908 0.6496990

34 

O=C(OC)c1[nH]c2c(occ2)c1 4.9874260

57 

0.645053085 0.467969932 0.6506026

9 

Cn1c(-c2ncccn2)ccc1 0.8294459 0.836348297 0.669695752 0.6538107

94 

Nc1n(C)c(-c2cc3OCOc3cc2)cn1 0.2807242

26 

0.345969382 0.734612091 0.6646517

01 

O=[N+]1N=C(c2ccccc2)C=C(C)[N-]1 0.5321604

52 

0.76277784 0.557819048 0.6777743

17 

O=C1OC=Nc2n(-c3ccccc3)ncc12 0.5729830

56 

0.319190535 6.110798041 0.6873045

63 

S/N=C(\N)/c1ccccc1 0.4204599

54 

0.385116156 0.800708485 0.6886750

62 

O/N=C(\N)/c1ccccc1 0.5728367

6 

0.452832303 1.140492437 0.7015933

84 

S=C([S-])c1ccc(C(=S)[S-])cc1 1.0900298

83 

1.142181393 1.658964476 0.7044907

71 
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O=C1NC(c2ccccc2)=CC=C1 0.6090260

77 

0.54426994 0.632916481 0.7091557

85 

Cn1c(-c2ncccn2)ncc1 0.875883 0.722238717 0.684548683 0.7097641

27 

Oc1nc(-n2nc(C)cc2)nc(C)c1 1.1645917

99 

1.3639808 5.279048025 0.7153010

37 

O=[N+]1[N-]C(c2ccccc2)=CC(C)=C1 0.4005105

46 

0.407843001 1.402721997 0.7408020

3 

Cl/C(=N/O)/C=N/O 16.915661

56 

2.349280536 0.979549458 0.7490040

19 

Cl/C(=N/O)/C=N/O 16.915661

56 

2.349280536 0.979549458 0.7490040

19 

C(\C=C\C=C)=C/C=C 0.8551332

1 

2.64970466 0.908171814 0.7660199

57 

O=C(N)C=1C(C)(C)OP(=O)([O-])C=1 4.9824187

27 

2.105387051 1.478794069 0.7821947

94 

O=[N+]1C(C)=C(/C(=N/O)/C)[N-]O1 16.278341

24 

7.764517368 2.974362578 0.7864514

28 

O=C(O)N1NN([O-])c2c1cccc2 1.9587608

92 

0.519968756 3.09661365 0.7885090

69 

c1(-c2cnccc2)oncn1 0.9577219

58 

0.724770464 0.941390677 0.7886788

55 

O/N=C(\C#N)/c1ccccc1 0.5574812

18 

0.234403558 0.562344218 0.7994243

86 

O/N=C(\C#N)/c1ccccc1 0.5575793

71 

0.234427008 0.563459904 0.7996411

36 

n1(-c2ccccc2)ncc-2c1N=Cn1c-2ccc1 0.8903817

63 

0.609787455 5.478599672 0.8069619

73 

O=C1N2NC(C)=NNC2=NC(c2ccccc2)=

C1 

0.5045134

44 

0.452731293 0.702348586 0.8081189

36 

C(=C/C=C)\C=C 16.652955

44 

2.616974256 0.602052701 0.8094163

27 

O=[N+]1C(C)=C(/C(=N/O)/C)[N-]O1 16.271405

2 

7.763071509 2.974153326 0.8113541

28 

O=C1NN=C(c2ccc(-

[n+]3c[nH]cc3)cc2)CC1 

1.0702132

29 

0.391216726 0.407829188 0.8591312

01 

Nc1ncnc2n(-c3ccccc3)ncc12 1.2426646

98 

0.802832571 5.485027889 0.8904393

82 

N(C)c1oc(-c2sccc2)nc1 9.5825614

03 

0.891640079 0.594695221 0.8949384

89 

Fc1nn(-c2ccccc2)nc1 0.8418775

25 

0.449549624 5.930674289 0.9014295

58 

FC(F)(F)c1c2c(O)ncnc2nc(-c2sccc2)c1 0.9986645

81 

1.237172844 1.768643222 0.9190792

92 

O=[N+]([O-])c1c2c(n(-

c3[nH]nnn3)nc2)cc([N+](=O)[O-])c1 

3.6561969

11 

3.241984643 7.710520567 0.9209407

26 

n1(-c2ccccc2)c2nc3c(nc2cc1)cccc3 1.2440823

39 

0.857069039 4.476657456 0.9372192

97 

[N+H2]=C(N)c1ccccc1 1.1466606

19 

1.524732782 1.541792396 0.9462727

37 
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[N+H2]=C(N)c1ccccc1 1.1467344

44 

1.524541337 1.541389836 0.9463316

07 

O/N=C(/C=N\O)\C 16.408210

68 

3.895532294 1.024455966 0.9537631

08 

O=C1NC(c2occc2)=CC=C1 9.3941565

58 

1.075943397 0.612069026 0.9697875

12 

O=C(C)c1c(N)c2c(o1)cccc2 4.0484590

35 

1.01364652 1.465785164 0.9942385

13 

O=C(OC)c1c(N)scn1 5.6154050

92 

1.206551206 0.935919593 1.0094302

08 

O=C(OC)c1c(N)scn1 5.6154048

61 

1.206551272 0.935919471 1.0094302

59 

N(=C(\C)/c1sccc1)\c1ccccc1 15.929439

23 

1.493004696 1.491888952 1.0243112

9 

O=C1NC(c2[nH]ccn2)=CC=C1 8.9502972

47 

0.476412579 0.408723964 1.0246843

87 

ClC1(Cl)C(=O)[C@H]2C(C=O)=CC[C

@@H]12 

4.2013445

56 

2.518197344 0.83669135 1.0572996

36 

ClC1(Cl)C(=O)[C@H]2C(C=O)=CC[C

@@H]12 

4.2032565

13 

2.519674415 0.837635723 1.0588330

4 

Clc1ccc(N2C(=O)c3c(N=C2)cccc3)cc1 1.6884680

59 

1.527898811 4.326919626 1.0765052

86 

O=C1NC(n2cccc2)=CC=C1 2.8478342

31 

0.724602231 4.799378073 1.0809981

47 

O=C(OC)C(=O)OC 0.2390539

24 

1.552515546 0.633197841 1.1005820

21 

O=C(OC)C(=O)OC 0.2397138

42 

1.553768849 0.633413431 1.1012435

03 

c1(-c2ncsc2)ncsc1 9.9992402 1.650774258 1.384432733 1.1063458

22 

O=Cc1c2c([nH]c1)cccc2 4.8525418

59 

0.887365916 0.779459335 1.1201929

13 

Nc1nc(N)nc(-n2nc(C)cc2)n1 1.6948396

19 

1.892379706 4.46453309 1.1256659

81 

O=C1NC(c2cscc2)=CC=C1 9.6187586

34 

1.294450974 0.537982149 1.1296090

88 

O=C1NC(c2[nH]ccc2)=CC=C1 8.7279297

95 

0.867038328 0.47146354 1.1431072

99 

O=C(O)C=O 0.4470492

27 

2.376067097 0.831693711 1.1710927

69 

O=C(O)C=O 0.4470492

27 

2.376067097 0.831693711 1.1710927

69 

O=Cc1c(OC)cccc1 1.2705098

66 

1.852742833 1.724611866 1.1929140

05 

O=C(NC)c1nc(C)on1 6.6002664

88 

1.158147759 2.030572728 1.1964697

09 

S(C)c1nc(-c2cnccc2)[nH]n1 1.2345715

68 

0.788802538 0.817597552 1.2146340

7 

O=C1NC(c2cocc2)=CC=C1 9.9405347

48 

1.448461023 0.838195611 1.2394970

15 



212 
 

O=C(NO)C(=O)NO 3.2072863

18 

4.768882604 3.274973491 1.2617210

55 

ClN1C(=O)n2c(c(C(=O)N)nc2)N=N1 7.0439134

9 

3.319620558 3.360477072 1.2631612

34 

S=C(N/N=C/C(=O)O)N 4.0996495

39 

2.570230182 2.027370062 1.2760933

62 

O=C1N(/C(=N\O)/C(=N/O)/C)C=CC=C

1C 

14.096101

46 

1.745917831 3.792881411 1.2804909

36 

O=C(N)c1ncn2C(=O)NN=Nc12 6.6642290

83 

3.096224874 2.99513803 1.3080950

8 

O(C)c1cc(-c2scc(OC)c2)sc1 10.361297

74 

1.909374132 1.021150961 1.3133687

1 

O(C)c1c(-c2sc(N)cc2)cccc1 1.3084329

13 

1.546838167 1.660249398 1.3572048

57 

O[N+H]=Cc1ccc(O)cc1 2.4805014

48 

4.031526076 4.046925697 1.3865268

11 

n1(-c2ccccc2)nc2nccnc2n1 1.4871858

68 

9.89092007 7.257485331 1.4248274

19 

c1(-c2ccccc2)nc2[n+](nc[nH]2)cc1 0.8106839

34 

1.479988209 1.528915707 1.4523872

84 

c1(-c2sccc2)n2NC=CSc2nn1 9.5837210

58 

1.65673613 2.006660771 1.4652551

95 

O=C1NC(c2sccc2)=CC=C1 9.4911079

77 

1.535901132 0.687525988 1.4748106

6 

S=C(N)C(S)=N 5.8996759

69 

2.689375898 3.14893269 1.5058908

79 

[Si]=CC=[Si] 15.914964

78 

3.207132343 2.084531919 1.5128013

76 

O=C(N)c1[nH]cnc1 5.8198527

21 

1.352494606 1.528016448 1.5166635

02 

S=C(NC)c1occc1 6.3259597

3 

0.89389817 1.24136113 1.5292766

89 

S=C(NC)c1occc1 6.3259563

76 

0.893896435 1.241340553 1.5293049

75 

S(S)C(=N)C(=S)N 5.2400466

82 

1.646048796 3.25116104 1.5293763

49 

O=C(c1ccc(N)cc1)c1ccc(N)cc1 0.2902397

84 

0.325888073 0.423010004 1.5429738

95 

S=C1N(N(C)C(C)=C1)c1ccccc1 1.1721780

99 

1.049487503 2.568172072 1.5617539

53 

O=C1N(c2cc3nc[nH]c3cc2)C(=O)c2c1c

ccc2 

0.9559149

55 

1.059718851 6.141028671 1.6438719

77 

O(C(=N)c1snc(C#N)n1)C 17.403693

82 

1.206714187 1.894148267 1.6498311

42 

O=C(N)c1ncsc1 6.8448950

27 

2.26160993 2.369057418 1.6524879

47 

P(=O)(O)([O-])/C(=N/O)/c1ccccc1 3.6155767

5 

1.37681185 1.824296065 1.7358698

46 

S=C(N)c1c(O)cccc1 2.8107702

73 

0.926058984 0.84873544 1.7596659

86 
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O=C(O)C(=O)[O-] 0.7032754

92 

1.8875669 2.330015446 1.8450221

71 

O/N=C(/C(=N/O)/N1CC1)\C 16.405733

3 

3.652155847 3.206282371 1.9061858

14 

O=C(O)/C=C\C(=O)[O-] 1.5610526

93 

1.419842987 1.073441573 1.9330901

3 

S(=O)(=O)(NC)c1c(-c2sc(N)nn2)cccc1 1.8247402

76 

2.237849589 2.322529524 1.9463525

43 

O(C)c1c(c(OC)ccc1)C=1Oc2c(C(=O)C=

1)cccc2 

2.4915119

45 

2.251487198 0.575116797 1.9639392

28 

S/C(=N\O)/c1[n+](C)cccc1 1.4586748

36 

1.420836348 1.392278281 1.9924895

19 

S=C(N/N=C(/C(=O)O)\C(=O)[O-])N 4.4550883

17 

2.02865744 1.300165729 1.9938384

23 

N(\C(C)(C)C)=C/C=N/C(C)(C)C 17.143881

13 

3.026200602 1.347794914 2.0279009

27 

SC(=[N+H][O-])c1ccccc1 1.0337464

67 

1.157291799 0.446161195 2.1101121

82 

O=C1C(=[N+]([O-])c2c1cccc2)c1ncccn1 0.3349648

59 

0.668817023 0.666434097 2.1485362

63 

Clc1ccc(C(=[N+H][O-])C)cc1 0.5209276

74 

1.752374727 0.314908701 2.1588588

2 

SNC(=O)C(=O)N 2.5247196

39 

4.078981821 2.623963116 2.1699511

14 

O=CC=C[O-] 6.0322229

2 

1.961878327 5.371951992 2.3113977

67 

SC(=[N+H][O-])c1ccccc1 1.2726341

42 

1.477962136 0.838812925 2.3417216

75 

O=[N+]([O-])c1c([N+](=O)[O-])nc(-

c2[nH]c([N+](=O)[O-])c([N+](=O)[O-])

n2)[nH]1 

9.6753280

79 

3.726321731 2.521849161 2.4013789

94 

O(C)c1ccc(C=[N+H]O)cc1 4.0711115

52 

3.532083274 3.246781413 2.4311913

13 

c1(-c2[n+H]cccc2)[n+H]cccc1 10.418089

98 

3.039460626 2.510410479 2.4498738

53 

S=C1N(c2cc(C)ccc2)C(C)=CS1 0.8336025

75 

1.075086401 2.670627756 2.5054294

11 

Nc1nc(-[n+]2ccccc2)c2nc[nH]c2n1 3.2268819

49 

3.222861339 3.226907389 2.5427029

6 

Oc1c([n+]([O-])ccc1O)-

c1[n+]([O-])ccc(O)c1O 

3.7916853

41 

4.463054833 1.949826238 2.5706533

74 

Clc1oc(-c2[nH]c3c(n2)cccc3)cc1 9.7723165

24 

2.060080786 1.643920426 2.7060764

84 

O=C(C)C=1C(=O)O[N-][N+H]=1 4.9106418

36 

2.015812059 3.187310322 2.7819435

51 

O=C(NO)C(=O)NO 3.0478665

03 

5.565789814 3.243840021 2.8831990

69 

O=C([O-])C(=O)[O-] 2.3426603

71 

2.407770562 3.353503912 3.0415442

07 
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O=C1C(=C([O-])C)C(c2ccc(C)cc2)=CO

1 

3.6087001

95 

2.20820482 2.310078912 3.2165731

57 

S=C(C(F)F)/C=C/1\SC(C(F)F)=CC(C)=

C\1 

5.6802146

76 

15.23489302 10.47641122 3.7997446

63 

S/C(=N\O)/c1[n+H]cccc1 0.6804560

55 

2.466049315 2.209165292 3.8132530

68 

O=C(/C=C/1\S/C(=C(/C#N)\C#N)/S\1)C 4.3351447

6 

4.82396862 4.018519566 3.9333705

39 

c1(-c2ccccc2)nncnc1 0.6482571

62 

0.518028442 0.48212226 4.0311663

91 

 

Table C2. Ideal V1 and V2 values for 200 druglike molecules using GAFF2, MAB, and 

MMFF94. All values are reported in kcal/mol. 

mol V1_GA

FF 

V1_MMF

F94 

V1_M

AB 

V2_GA

FF 

V2_MMF

F94 

V2_M

AB 

O=CC=C[O-] 1.340 5.421 6.537 -18.372 -18.839 -

17.743 

O=C(C)c1c([O-])on[n+H]1 -2.413 14.724 17.830 -8.455 -12.506 -

11.692 

O=C(/C=C/1\S/C(=C(/C#N)\C#N)/S

\1)C 

-9.338 -9.161 -

10.003 

-11.591 -13.766 -

11.744 

Clc1ccc(C(=[N+H][O-])C)cc1 0.061 0.111 0.055 -5.577 -8.861 -6.102 

S=C(C(F)F)/C=C/1\SC(C(F)F)=CC(

C)=C\1 

-8.004 -21.716 -

11.480 

-11.319 -18.822 -

13.125 

Oc1c([n+]([O-])ccc1O)-

c1[n+]([O-])ccc(O)c1O 

5.2351

05 

-

84.79593

72 

-

90.224

9 

-

8.4691

5 

-

28.72864

76 

-

21.222

1 

O=C(C)c1c(N)c2c(o1)cccc2 -1.677 1.274 0.299 -12.131 -14.044 -

13.071 

O=C1C(=[N+]([O-])c2c1cccc2)c1nc

ccn1 

-0.037 -0.096 -0.131 -4.673 -7.213 -7.857 

O(C)c1ccc([C+H]NO)cc1 -0.067 -0.490 -0.570 -15.818 -18.248 -

16.531 

O[N+H]=Cc1ccc(O)cc1 0.797 0.130 -0.044 -12.012 -13.897 -

11.760 

S=C(N/N=C/C(=O)O)N 0.742 -0.173 0.386 -6.753 -7.080 -7.091 

[N+H2]=C(N)c1nc(N)[nH]n1 -0.051 -0.369 -1.337 -10.721 -6.501 -8.301 

O=C(OC)c1c(N)scn1 -1.760 -0.345 -0.254 -7.888 -9.703 -9.481 

O=C(OC)c1c(N)scn1 -1.760 -0.345 -0.254 -7.888 -9.703 -9.481 

S=C(N/N=C(\C(=O)O)/C(=O)[O-])

N 

-1.705 -21.124 -

17.154 

-9.269 -8.267 -

10.372 

SC(=[N+H][O-])c1ccccc1 -0.023 -0.033 -0.117 -2.576 -5.118 -1.066 

SC(=[N+H][O-])c1ccccc1 -0.027 0.062 -0.019 -2.342 -7.697 -2.657 

O=Cc1c2c([nH]c1)cccc2 3.014 1.744 1.191 -8.366 -9.725 -8.882 

O/N=C(/C=N\O)\C -0.421 -2.040 -3.679 -5.497 -3.621 -5.351 
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SC(=NO)c1[n+H]cccc1 -0.171 1.471 2.313 -5.393 -7.563 -5.101 

S/C(=N\O)/c1[n+](C)cccc1 3.719 2.400 5.492 -3.293 -4.779 -1.735 

O=C(C)c1ccc(N(O)C)cc1 0.416 -0.129 0.169 -6.349 -7.650 -6.227 

O=C(OC)c1[nH]c2c(occ2)c1 -0.094 -0.578 -0.385 -8.996 -10.556 -9.428 

N(=C(\C)/c1sccc1)\c1ccccc1 1.362 -4.076 -4.534 -7.273 -10.572 -7.802 

C(\C=C\C=C)=C/C=C 1.040 0.367 0.968 -6.586 -7.821 -6.752 

O=C1OC(c2occc2)=Nc2[nH]ncc12 -0.473 -2.123 -2.208 -6.777 -7.872 -7.089 

ClN1C(=O)n2c(c(C(=O)N)nc2)N=N

1 

-2.602 -3.056 -2.393 -5.891 -5.517 -5.102 

O=C(c1[nH]ccn1)c1cc(OC)c(O)cc1 0.841 6.730 5.669 -6.720 -6.370 -6.579 

O=C(N(O)c1ccc(C(=O)C)cc1)C 0.036 0.208 0.129 -6.055 -7.845 -6.165 

O=C1N(/C(=N\O)/C(=N/O)/C)C=C

C=C1C 

1.500 10.519 11.957 -6.073 -5.547 -6.614 

[O-][n+]1c(-c2ccccc2)cno1 -0.038 0.005 0.015 -5.758 -5.284 -3.132 

Cl/C(=N/O)/C=N/O -0.171 -1.242 1.101 -4.966 -4.715 -4.892 

Cl/C(=N/O)/C=N/O -0.171 -1.242 1.101 -4.966 -4.715 -4.892 

O=C(N)c1ncn2C(=O)NN=Nc12 -2.902 -6.469 0.975 -5.515 -5.616 -6.070 

O=C(O)C=O 0.200 -0.310 0.055 -3.570 -3.901 -3.656 

O=C(O)C=O 0.200 -0.310 0.055 -3.570 -3.901 -3.656 

O=Cc1c(OC)cccc1 -3.365 -4.175 -5.002 -6.703 -7.469 -6.468 

O/N=C(/C(=N/O)/N1CC1)\C 1.583 -1.325 -1.723 -6.967 -5.543 -7.061 

O=Cc1ccc(OC)cc1 0.376 0.480 0.471 -7.891 -9.260 -8.049 

Cl/C(=N\S)/c1snc(C#N)n1 -0.298 0.549 0.659 -5.243 -8.022 -5.425 

Clc1oc(-c2[nH]c3c(n2)cccc3)cc1 6.567 3.827 4.428 -3.827 -4.591 -3.966 

O=[N+]([O-])c1c([N+](=O)[O-])nc(-

c2[nH]c([N+](=O)[O-])c([N+](=O)[

O-])n2)[nH]1 

5.480 6.573 6.113 -5.300 -4.794 -5.570 

O=C1NC(c2[nH]ccn2)=CC=C1 -1.807 -1.481 -2.075 -3.962 -5.431 -4.561 

ClC1(Cl)C(=O)[C@H]2C(C=O)=C

C[C@@H]12 

-2.624 -1.213 -0.531 -5.917 -6.863 -6.245 

ClC1(Cl)C(=O)[C@H]2C(C=O)=C

C[C@@H]12 

-2.625 -1.201 -0.525 -5.918 -6.850 -6.246 

O/N=C/c1ncccc1 -0.570 -1.922 -3.313 -5.101 -5.655 -4.987 

O=C1NN=C(c2ccc(-

[n+]3c[nH]cc3)cc2)CC1 

0.127 0.217 0.190 -8.405 -9.535 -8.330 

O=C1NC(c2occc2)=CC=C1 0.550 0.609 0.008 -3.358 -5.007 -3.719 

O=C(c1ccc(N)cc1)c1ccc(N)cc1 -0.252 -0.567 -0.325 -2.603 -4.208 -2.687 

[N+H2]=C(N)c1ccccc1 -0.001 0.010 -0.060 -5.207 -9.869 -2.705 

[N+H2]=C(N)c1ccccc1 -0.001 0.010 -0.060 -5.207 -9.870 -2.705 

c1(-c2[n+H]cccc2)[n+H]cccc1 -2.006 4.863 8.001 0.196 -7.527 1.661 

O=C1NC(c2[nH]ccc2)=CC=C1 1.286 1.555 1.195 -2.733 -5.070 -3.206 

Cn1c(-c2ncccn2)ncc1 0.125 0.134 0.162 -7.369 -5.693 -6.830 

O=[N+H]C(=O)C(=O)[N+H]=O -6.411 -8.030 -9.126 -3.372 -3.046 -2.316 
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ClCC(=O)c1ccccc1 0.059 0.115 0.120 -6.043 -8.086 -6.501 

ClCC(=O)c1ccccc1 0.058 0.116 0.120 -6.043 -8.086 -6.501 

O=C(O)[N+]1=N[N+](=O)c2c1cccc

2 

-0.812 0.918 0.751 -11.671 -12.421 -

11.663 

O=C1NC(c2sccc2)=CC=C1 0.656 1.648 0.786 -1.836 -4.648 -1.586 

O=C(O)/C=C\C(=O)[O-] -0.180 -0.886 -1.594 -1.750 -3.383 -5.209 

O(C)c1c(c(OC)ccc1)C=1Oc2c(C(=O

)C=1)cccc2 

0.364 0.200 0.368 -8.044 -4.244 -8.358 

O=C(N)c1[nH]cnc1 -3.924 -1.162 -1.024 -4.937 -6.159 -5.178 

O=C(OC)C(=O)OC 0.028 -0.407 -0.096 -3.035 -3.635 -3.579 

O=C(OC)C(=O)OC 0.033 -0.402 -0.088 -3.034 -3.632 -3.573 

Cn1c(-c2ncccn2)ccc1 0.004 0.081 0.024 -6.699 -6.716 -6.801 

O=C(N)c1ncsc1 -4.068 -2.927 -2.091 -4.894 -5.751 -5.106 

N(C)c1oc(-c2sccc2)nc1 -0.446 -0.472 -0.787 -3.483 -5.331 -4.170 

N(\C(C)(C)C)=C/C=N/C(C)(C)C 3.699 1.311 -1.042 -3.790 -4.332 -3.727 

O=C(O)c1ccc(NC(=[N+H2])N)cc1 0.093 0.157 0.079 -4.704 -6.851 -6.802 

O=C1NC(c2ncccn2)=CC=C1 0.072 0.100 0.029 -7.300 -8.283 -7.918 

O=C(NC)c1nc(C)on1 2.796 1.373 1.063 -3.987 -4.260 -4.200 

P(=O)(O)([O-])/C(=N/O)/c1ccccc1 -1.094 0.982 1.036 -8.150 -5.728 -

10.408 

FC(F)(F)c1c2c(O)ncnc2nc(-

c2sccc2)c1 

-2.208 -3.860 -4.321 -6.197 -9.410 -6.530 

S(C)c1[nH]c(-

c2c(O)cc3c(c2)cccc3)nn1 

0.400 4.291 3.899 -5.307 -5.156 -5.195 

c1(-c2[nH]ccc2)[nH]c2c(n1)cccc2 0.602 -2.152 -2.335 -3.786 -4.889 -4.130 

O=C1SC(c2ccc(C)cc2)=C2SCC(=O)

N12 

-0.059 -0.010 -0.099 -3.444 -9.272 -2.453 

O(C(=N)c1snc(C#N)n1)C 3.885 -1.062 0.407 -3.617 -4.855 -3.774 

c1(-c2ccncc2)ocnn1 0.050 0.067 0.061 -4.136 -5.305 -4.376 

S=C1N(N(C)C(C)=C1)c1ccccc1 0.260 0.435 0.257 0.757 -6.309 0.264 

O=[N+]([O-])c1ccc(C(=O)O)cc1 0.079 0.142 0.117 -5.197 -6.952 -5.835 

O=[N+]([O-])c1sc(N2C(=O)NCC2)

nc1 

0.007 0.133 0.132 -6.603 -8.819 -6.137 

Fc1ccc(C(=O)OC)cc1 -0.036 -0.009 -0.023 -5.225 -7.505 -5.834 

O=C(O)C(=O)[O-] 0.011 -0.547 -0.432 -0.454 0.800 0.698 

O(C)c1ccc(-c2n3N=CCSc3nn2)cc1 0.229 0.195 0.208 -3.672 -4.471 -4.039 

C(=C/C=C)\C=C 1.128 0.572 1.037 -5.277 -6.448 -5.429 

N#Cc1c(N)oc(-c2ccccc2)n1 -0.036 -0.009 -0.033 -4.577 -5.967 -4.963 

S(C)c1nc(-c2ccncc2)[nH]n1 0.003 0.004 0.009 -3.961 -5.705 -4.591 

O=C(OC)c1ccccc1 -0.019 0.015 -0.002 -5.011 -7.083 -5.433 

POC(=O)c1ccccc1 -0.024 0.028 -0.015 -5.736 -7.934 -6.209 

S/N=C(\N)/c1ccccc1 0.046 0.059 0.032 -4.331 -7.171 -4.500 

S(=O)(=O)(NC)c1c(-

c2sc(N)nn2)cccc1 

-2.480 -3.990 -3.075 -4.336 -4.705 -4.476 
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ClC(=N)c1snc(C#N)n1 -0.558 0.192 0.073 -4.766 -7.524 -5.048 

c1(-c2ccncc2)[nH]ncn1 -0.019 0.006 -0.015 -2.823 -4.412 -3.530 

O=C1NC(c2cscc2)=CC=C1 -0.451 -0.511 -0.520 -2.153 -5.199 -2.319 

Oc1oc(-c2ccccc2)nc1 -0.004 0.029 0.023 -3.769 -5.528 -4.561 

c1(-c2sccc2)n2NC=CSc2nn1 -1.109 -3.879 -3.264 -1.237 -2.639 -1.503 

Cc1oc(-c2ccccc2)nn1 0.035 0.067 0.055 -4.217 -5.493 -4.560 

c1(-c2cnccc2)oncn1 -0.023 -0.069 0.237 -2.872 -4.497 -3.429 

N(C)(C)c1ccc(-

c2[nH]c3c(n2)cccc3)cc1 

-0.011 0.036 0.039 -4.562 -6.266 -4.874 

N(C)(C)c1ccc(-

c2[nH]c3c(n2)cccc3)cc1 

-0.011 0.036 0.039 -4.562 -6.266 -4.874 

c1(-c2ccccc2)nc2[n+](nc[nH]2)cc1 0.033 0.002 0.027 -8.639 -10.698 -8.302 

SNC(=O)C(=O)N -0.487 1.371 1.259 -1.707 -2.387 -1.733 

Fc1c(F)cc2nc(-c3ccncc3)[nH]c2c1 -0.008 0.013 -0.031 -4.974 -6.746 -5.275 

c1(-c2cscc2)ncccn1 0.014 0.017 0.010 -5.142 -7.297 -6.002 

O=C(NO)C(=O)NO -0.685 -1.414 -1.604 -5.057 -5.444 -5.223 

O=C(NO)C(=O)NO 0.088 -0.678 -0.894 -4.281 -4.698 -4.503 

S/C=C(\C#N)/c1ccccc1 0.073 0.172 0.097 -6.179 -9.569 -6.143 

O=C1NC(n2cccc2)=CC=C1 -0.159 0.002 -0.261 -1.558 -4.400 -1.034 

S=C([S-])c1[n+H]cc[nH]1 -0.012 0.092 0.035 -4.571 -12.132 -8.175 

O/N=C(\C#N)/c1ccccc1 0.072 0.138 0.134 -6.860 -8.233 -6.657 

O/N=C(\C#N)/c1ccccc1 0.071 0.137 0.134 -6.860 -8.231 -6.656 

O=C(N)C=1C(C)(C)OP(=O)([O-])C

=1 

0.863 0.488 0.871 -3.004 -4.460 -2.515 

O=[N+]1C(C)=C(/C(=N/O)/C)[N-]

O1 

1.382 7.316 6.109 -5.917 -7.249 -6.513 

O=[N+]1C(C)=C(/C(=N/O)/C)[N-]

O1 

1.490 7.319 6.113 -5.920 -7.252 -6.516 

O(C#C)C(=O)c1ccccc1 -0.060 -0.048 -0.074 -5.961 -8.041 -6.467 

S=C(NC)c1occc1 -3.915 -2.327 -1.167 -4.908 -8.191 -5.277 

S=C(NC)c1occc1 -3.915 -2.327 -1.167 -4.908 -8.191 -5.277 

S(C)c1nc(-c2cnccc2)[nH]n1 -1.470 1.113 1.596 -2.058 -4.549 -3.326 

Nc1nc(-c2ccncc2)nc2c1cccc2 0.020 -0.031 -0.073 -6.001 -7.260 -6.207 

O=[N+]([O-])c1oc2c(c1)ccc1c2CCC

C1 

-0.019 0.163 0.194 -6.454 -7.468 -6.395 

[N+H](/N=C(\C)/c1c[nH]nc1)=C(N)

N 

-0.457 -0.308 -0.324 -5.836 -7.623 -5.195 

O=C1NC(c2ccccc2)=CC=C1 0.016 0.124 0.006 -2.940 -7.134 -3.250 

c1(C2=Nc3n(ncn3)C=C2)ccccc1 -0.008 0.044 0.010 -5.914 -8.197 -5.803 

O=C1NC(c2cocc2)=CC=C1 -1.245 -0.463 -0.407 -1.627 -4.150 -1.953 

[PH2](=O)NC(=O)c1cc(O)ccc1 -0.889 -0.138 -0.130 -3.970 -6.990 -4.493 

O(C)c1c(-c2sc(N)cc2)cccc1 -3.377 -3.308 -3.859 -6.093 -10.166 -6.319 

Cl[C@@H]1[C@@H](NC(=O)c2cc

ccc2)C1 

0.079 0.159 0.094 -3.617 -6.258 -3.905 
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O=C(NC)c1ccccc1 0.064 0.112 0.080 -3.397 -5.783 -3.493 

c1(-c2ccccc2)nn[n-]n1 -0.001 0.020 0.006 -5.275 -8.285 -6.940 

O=[N+]([O-])c1c(N)non1 -0.035 0.176 0.233 -5.328 -4.131 -2.914 

O=C(N)c1cc(OC)ccc1 -0.670 -0.526 -0.373 -3.538 -5.806 -3.643 

O=C(N)c1cc(O)ccc1 -0.757 -0.279 -0.262 -3.397 -5.650 -3.488 

S=C(N)c1n[nH]cn1 0.893 -1.987 -1.689 -4.847 -5.917 -4.851 

c1(-c2ccccc2)[nH]ccn1 -0.019 0.011 -0.025 -4.234 -6.088 -4.697 

c1(-c2cocc2)ncccn1 0.043 0.011 0.008 -5.133 -6.850 -5.688 

O=C(OCC)Nc1oc(-c2ccccc2)cn1 0.000 -0.040 -0.051 -3.756 -5.687 -4.012 

SC(=O)c1ccccc1 -0.002 0.070 0.000 -3.541 -7.962 -3.716 

O/N=C(\N)/c1ccccc1 0.037 0.039 0.020 -3.493 -5.652 -3.484 

S=C1N(c2cc(C)ccc2)C(C)=CS1 -0.275 -0.622 -0.415 3.705 -2.841 3.280 

ClC(Cl)(Cl)[C@@H](O/N=C(\N)/c1

ccccc1)O 

0.021 0.079 0.055 -3.480 -5.964 -3.525 

Fc1ccc(-c2occ(C#N)c2)cc1 -0.010 -0.001 0.001 -3.398 -5.350 -3.593 

O=C1C(C#N)=CC(c2ccncc2)=C(C)

N1 

-0.195 -0.142 -0.219 -3.770 -7.051 -3.842 

NC=1n2nccc2N=C(c2ccccc2)C=1 0.033 0.091 0.104 -5.449 -8.090 -5.613 

O=C1N2NC(C)=NNC2=NC(c2cccc

c2)=C1 

0.019 0.063 0.008 -6.235 -8.004 -5.655 

Fc1cc(c(O)cc1)-c1[nH]ncc1 -1.300 -3.828 -2.832 -4.467 -5.564 -4.183 

Nc1nc(N)nc(-n2nc(C)cc2)n1 -0.079 -0.127 -0.212 -6.748 -8.845 -8.223 

O=C([O-])C(=O)[O-] 0.011 0.202 0.228 4.020 1.905 2.193 

S=C1SC=C(c2ccccc2)N1 -0.004 0.047 -0.013 -2.582 -5.543 -2.717 

Nc1nc(-[n+]2ccccc2)c2nc[nH]c2n1 0.082 -2.138 -0.852 -9.061 -9.436 -

10.760 

Nc1n(C)c(-c2cc3OCOc3cc2)cn1 0.300 0.389 0.479 -2.374 -5.798 -2.760 

Oc1nc(-n2nc(C)cc2)nc(C)c1 -0.314 0.461 0.465 -5.446 -7.405 -6.944 

Cc1ccc(C=2Sc3n(N=2)cnn3)cc1 -0.065 -0.026 -0.047 -3.346 -6.388 -2.976 

O(C)c1c(-c2ccccc2)sc(C)n1 0.252 0.739 0.315 -5.009 -10.318 -5.319 

Cn1c(-c2ccccc2)ccc1 0.086 0.232 0.092 -2.388 -5.867 -2.926 

[Si]=CC=[Si] 1.132 -0.068 1.431 -3.499 -4.662 -3.762 

S(C)c1[nH]nc(-c2c(O)cccc2)n1 -0.035 -1.867 -2.410 -4.532 -4.431 -4.998 

O(C)c1cc(-c2scc(OC)c2)sc1 -0.721 -0.094 -0.332 -0.819 -4.300 -0.702 

Fc1c(-c2nc(C)[nH]n2)cccc1 0.855 -0.762 -1.040 -3.493 -3.850 -3.889 

Nn1nc(-c2ccccc2)cc1 0.001 -0.006 -0.025 -3.596 -5.566 -3.371 

O=[N+]1N=C(c2ccccc2)C=C(C)[N-

]1 

0.021 0.055 0.030 -5.491 -8.762 -5.997 

c1(-c2ccccc2)nncnc1 0.871 1.282 0.943 -4.465 -6.493 -4.755 

C(C)(C)(C)c1ccc(-c2nocn2)cc1 0.015 0.082 0.023 -3.416 -4.963 -3.793 

O=[N+]([O-])c1c2c(n(-

c3[nH]nnn3)nc2)cc([N+](=O)[O-])c

1 

-1.429 6.622 5.918 -3.003 -0.783 0.207 
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Clc1ccc(C=2C(C)(C)C=2)cc1 0.010 0.031 0.008 -3.670 -4.108 -3.606 

Cn1nc(-c2ccccc2)nn1 0.079 0.098 0.076 -4.034 -5.212 -4.048 

S=C(N)c1c(O)cccc1 -3.886 0.792 0.918 -1.643 -6.577 -1.577 

Clc1c(N)[nH]nc1-c1ccc(F)cc1 -0.005 0.016 0.026 -2.551 -5.269 -2.481 

O=C1N(c2ccccc2)N=NC(N(C)C)=N

1 

0.417 0.081 0.381 -4.317 -4.565 -4.387 

O=[N+]1[N-]C(c2ccccc2)=CC(C)=C

1 

0.008 0.044 0.045 -5.405 -7.009 -4.698 

N#C[C@@H]1C(c2ccccc2)=C1 0.041 0.069 0.049 -4.044 -4.704 -4.201 

O=S1(=O)CC(c2ccccc2)=CC1 -0.007 0.046 0.002 -4.133 -7.241 -4.667 

c1(-c2ccccc2)nocc1 -0.005 0.029 0.001 -2.957 -5.235 -3.082 

O=C1N(c2ccccc2)N=NN1 0.046 0.022 0.002 -4.222 -7.641 -4.753 

S(S)C(=N)C(=S)N -2.386 -6.697 -3.352 -2.063 -8.754 -2.529 

S=C(N)C(S)=N -1.312 -5.888 -3.996 -2.074 -7.211 -1.995 

Oc1c(O)ccc(-c2n[nH]cc2)c1 -0.548 0.438 0.496 -3.410 -5.476 -3.231 

n1(-c2ccccc2)c2nc3c(nc2cc1)cccc3 0.159 0.262 0.214 -4.418 -5.527 -3.699 

Nc1scc(-c2ccc(C)cc2)n1 0.187 0.215 0.180 -3.538 -5.339 -3.780 

Clc1n(-

c2ccc([N+](=O)[O-])cc2)nc(Cl)n1 

-0.060 0.054 0.108 -2.118 -3.666 -1.175 

Clc1ccc(N2C(=O)c3c(N=C2)cccc3)

cc1 

0.400 0.484 0.051 -3.538 -9.610 -0.873 

O(C)c1ccc(-c2ncsc2)cc1 0.288 0.322 0.327 -3.594 -5.403 -3.790 

c1(-c2ccccc2)c[nH]cc1 -0.063 -0.008 -0.056 -2.641 -5.349 -2.628 

c1(-c2ccccc2)cscc1 0.007 0.072 0.013 -2.763 -6.094 -2.855 

O=C1C(=C([O-])C)C(c2ccc(C)cc2)

=CO1 

0.755 0.549 0.734 -6.819 -8.522 -7.357 

Nc1ncnc2n(-c3ccccc3)ncc12 0.066 0.035 0.060 -4.823 -5.821 -4.544 

[O-][n+]1onc(-c2ccccc2)c1 -0.004 0.029 0.009 -2.897 -3.922 -1.341 

Cc1cc(-c2cocc2)ccc1 -0.008 0.033 -0.011 -2.207 -5.183 -2.542 

c1(-c2ccccc2)cocc1 -0.022 0.033 -0.009 -2.202 -5.115 -2.532 

S(C)c1nn(-c2ccccc2)cn1 0.037 0.066 0.042 -3.167 -5.285 -2.806 

n1(-c2ccccc2)ncc-2c1N=Cn1c-2ccc1 0.052 0.123 0.111 -4.322 -4.906 -3.709 

Cc1nn2c(n1)-c1c(n(-

c3cc(C)c(C)cc3)nc1)N=C2 

0.022 -0.048 -0.447 -3.880 -6.705 -4.036 

Sc1n(-c2ccccc2)ncn1 0.016 0.039 0.056 -2.038 -5.425 -1.548 

O=C1N(c2cc3nc[nH]c3cc2)C(=O)c2

c1cccc2 

0.199 0.165 0.168 -3.047 -2.946 -2.926 

O=C1OC=Nc2n(-c3ccccc3)ncc12 0.105 0.018 0.082 -4.023 -4.668 -3.285 

n1(-c2ccccc2)nc2nccnc2n1 0.007 0.048 0.037 -6.252 -6.662 -4.636 

S=C([S-])c1ccc(C(=S)[S-])cc1 -0.052 0.067 -0.019 -4.050 -10.931 -2.829 

O=C1NN=C([C@@H](C)C1)c1ccc(

-[n+]2c[nH]cc2)cc1 

0.346 -0.047 -0.229 -1.744 -4.462 -1.424 

Fc1nn(-c2ccccc2)nc1 0.000 0.027 0.020 -4.648 -6.046 -4.080 

c1(-c2ncsc2)ncsc1 2.005 1.854 2.453 -3.423 -4.196 -3.476 
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n1(-c2n[nH]cn2)cnnc1 0.028 -0.041 0.016 -0.458 -2.087 -0.787 
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Appendix D:  

Supplementary Information for “Influence of Molecular Mechanics Torsional 

Parameters on Docking Accuracies” 

D1   PDB IDs of Structures Used for Nucleic Acid Self-Docking 

1AJU 1AM0 1ARJ 1BYJ 1EHT 1F1T 1F27 1FMN 1FUF 1KOC 1KOD 1L1H 1LC4 1LVJ 1MWL 

1NBK-A 1NBK-B 1NTB 1NZM-B 1O0K-A 1O0K-B 1O15 1O9M 1RAW 1TOB 1UTS 1UUD 

1UUI 1XPF 1YKV-A 1YKV-B 1YRJ 2AU4 2CKY 2ESI-A 2ESI-B 2ET3 2ET5-A 2ET5-B 2ET8 

2F4S 2F4T 2F4U 2F4V 2FCX 2FCZ-A 2FCZ-B 2G5K 2G5Q 2GDI 2HOJ 2HOK 2HOM 2HOO 

2HOP 2JWQ-A 2JWQ-B 2KXM 2L1V 2L7V-A 2L7V-B 2L8H 2L94 2LWK 2M4Q 2MG8 

2MGN 2MIY 2MS6-A 2MS6-B 2N0J 2N6C-A 2N6C-B 2O3V 2O3X 2O3Y 2OE5 2OE8 2OEY 

2QWY 2TOB 2XNZ 2XO1 2Z74 2Z75 3C3Z 3D2G 3D2V 3D2X 3DIG 3DIL 3DIQ 3DIR 3DJ0 

3DS7 3E5C 3E5E 3E5F 3EM2 3EQW 3ES0 3ET8 3F2Q 3F2Y 3F30 3F4E 3F4H 3FO6 3GES 

3GX2 3GX3 3GX5 3GX7 3K0J 3K1V 3NP6 3NPN 3NPQ 3NX5 3NZ7 3OWI 3OXE 3P49 3Q50 

3R6R 3SD3 3SKI 3SKZ 3SLM 3SLQ 3SUH 3SUX 3TZR 3UD4 3V7E 453D 4AOB 4ERJ 4ERL 

4F8U 4FE5-C 4FXM 4GPW 4GPX 4K31-A 4K31-B 4K32 4KQY 4L81 4LVV-A 4LVV-B 4LVX 

4LVY-A 4LVY-B 4NYB 4NYG 4OQU 4P20 4P3S-A 4P3S-B 4PHY 4RZD 4TS2-A 4TS2-B 

4WCQ 4ZC7-B 4ZNP 5BTP 5BWS 5BXK 5C45 5D99 5FJC 5FK1 5HBW 5KX9 5LWJ 5NEP 

5TPY 

 

D2   PDB IDs of Structures Used for Protein Self-Docking 

1A07 1A0Q 1A1B 1A1E 1A28 1A42 1A4G 1A4K 1A4Q 1A6W 1A9U 1AAQ 1ABE 1ABF 

1ACL 1ACM 1ACO 1AEC 1AJ7 1AKE 1AOE 1APT 1APU 1AQW 1ATL 1AZM 1B58 1B59 

1B6N 1B9V 1BAF 1BBP 1BGO 1BL7 1BMA 1BMQ 1BYB 1BYG 1C12 1C1E 1C2T 1C5C 

1C5X 1C83 1CBS 1CBX 1CDG 1CF8 1CIL 1CIN 1CKP 1CLE 1COM 1COY 1CPS 1CTR 1CTT 

1CVU 1CX2 1D0L 1D3H 1D4P 1DBB 1DBJ 1DBM 1DD7 1DG5 1DHF 1DID 1DIE 1DMP 

1DOG 1DR1 1DWB 1DWC 1DWD 1DY9 1EAP 1EBG 1EED 1EI1 1EJN 1ELA 1ELB 1ELC 

1ELD 1ELE 1EOC 1EPB 1EPO 1ETA 1ETR 1ETS 1ETT 1ETZ 1F0R 1F0S 1F3D 1FAX 1FBL 

1FEN 1FGI 1FIG 1FKG 1FKI 1FL3 1FLR 1FRP 1GHB 1GLP 1GLQ 1GPY 1HAK 1HDC 1HEF 

1HFC 1HIV 1HOS 1HPV 1HRI 1HSB 1HSL 1HTF 1HTI 1HVR 1HYT 1IBG 1ICN 1IDA 1IGJ 

1IVB 1IVC 1IVD 1IVE 1IVQ 1JAO 1JAP 1KEL 1KNO 1LAH 1LCP 1LDM 1LIC 1LKK 1LMO 

1LNA 1LST 1LYB 1LYL 1MCQ 1MCR 1MDR 1ML1 1MLD 1MMB 1MMQ 1MNC 1MRG 

1MRK 1MTS 1MTW 1MUP 1NCO 1NGP 1NIS 1NSD 1OKL 1OKM 1PBD 1PDZ 1PGP 1PHA 

1PHD 1PHF 1PHG 1POC 1PPC 1PPH 1PPI 1PPL 1PSO 1PTV 1QBR 1QBT 1QBU 1QCF 1QH7 

1QL7 1QPE 1QPQ 1RBP 1RDS 1RNE 1RNT 1ROB 1RT2 1SLN 1SLT 1SNC 1SRF 1SRG 1SRH 

1SRJ 1STP 1TDB 1TKA 1TMN 1TNG 1TNH 1TNI 1TNL 1TPH 1TPP 1TRK 1TYL 1UKZ 

1UVS 1UVT 1VGC 1VRH 1WAP 1XID 1XIE 1XKB 1YDR 1YDS 1YDT 1YEE 25C8 2AAD 
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2ACK 2ADA 2AK3 2CGR 2CHT 2CMD 2CPP 2CTC 2DBL 2FOX 2GBP 2H4N 2IFB 2LGS 

2MCP 2MIP 2PCP 2PHH 2PK4 2PLV 2QWK 2R04 2R07 2SIM 2TMN 2YHX 2YPI 3CLA 3CPA 

3ERD 3ERT 3GCH 3GPB 3HVT 3MTH 3NOS 3PGH 3PTB 3TPI 4AAH 4COX 4CTS 4DFR 

4ER2 4EST 4FAB 4FBP 4LBD 4PHV 4TPI 5ABP 5ER1 5P2P 6ABP 6CPA 6RNT 7CPA 7TIM 

8GCH 


