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Abstract

Charged polymers are critical components of biological systems. DNA, F-actin,

and bacteriophages are some examples of highly charged polymers. Because of their

size, complexity, and of the long-range forces involved, full computer simulations

can only be used for short times. Even standard theoretical approaches, such as

mean-field theory, predict qualitatively wrong results.

We seek to determine how parallel pairs of flexible like-charged polymers behave.

We use minimal models to represent the polymers, and determine three particular be-

haviors: 1) How and when the polymers exhibit like-charged attraction. 2) Whether

deformations away from a straight line are stable or unstable. 3) If allowed to evolve

freely, what long-term structures would form.

We represent our pair of infinite parallel charged polymers as a string of point

charges linked with a spring potential. Counterions are represented by free point

charges. With this system, we perform Monte Carlo simulations to find the following

results:

1. Given two straight chains at fixed separation R, we reproduce the attractive

interaction seen in other systems (real and simulated).

2. We find that the attraction decreases with temperature, lending support to the

Wigner crystal model of this interaction.

3. We find a typical ground-state configuration, and calculate the interaction di-
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rectly.

4. We find an expression that fits the force curve for a wide range of distances.

5. Using the force curve, we develop a simple approach to estimate the stability

of the chains against small deformations.

6. Given wavelength deformations, we determine via simulations which modes

decay and which grow, using three different methods. (linear stability analysis).

7. Initializing the system in the most unstable modes, we determine the structures

formed in four cases: rigid, flexible-planar, flexible-free, and helical.

8. We find that flexible polyelectrolytes tend strongly towards a 1/f noise profile,

when allowed to move freely at finite temperature.

In summary, we developed and studied a minimal model of flexible polyelectrolytes,

and investigated many of the core features of this system.
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Abrégé

Polymères chargés sont des éléments essentiels des systèmes biologiques. ADN, F-

actine, et bactériophages sont des exemples de polymères fortement chargés . En

raison de leur taille , de la complexité et des forces à longue portée impliqués , les simu-

lations informatiques complets ne peuvent être utilisés pour de courtes durées. Même

les approches théoriques standards (comme la théorie du champ moyen ) prédisent

des résultats qualitativement erronées.

Nous cherchons à determine comment les paires parallèles de polymères comme -

chargées flexibles se comportent. Nous utilisons des modèles minimaux pour représenter

les polymères, et de déterminer trois comportements particuliers: 1) comment et

quand les polymères attirent (attraction comme chargée). 2) Si les déformations au

départ de la ligne droite sont stables ou instables. 3) Si a permis d’évoluer librement,

ce que les structures à long terme feraient.

Nous représentons notre paire de polymères chargés parallèles infini comme une

châıne de charges ponctuelles liées à un potentiel du ressort. Les contre-ions sont

représentés par des charges ponctuelles libres. Avec ce système, nous effectuons des

simulations de Monte Carlo pour trouver les résultats suivants:

1. donné deux châınes droites à la séparation fixe R , nous reproduisons l’ inter-

action attractive vu dans d’autres systèmes ( réelles et simulées ).

2. Nous constatons que l’ attraction diminue avec la température , en appuyant

sur le modèle de cristal de Wigner de cette interaction.
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3. On retrouve une configuration typique de l’état fondamental , et nous calculons

l’interaction directe.

4. Nous trouvons une expression qui correspond à la courbe de force pour une

large gamme de distances.

5. En utilisant la courbe de force, nous développons une approche simple pour

estimer la stabilité des châınes contre de petites déformations.

6. Compte tenu des déformations de longueur d’onde , nous déterminons via des

simulations qui modes décroissance et qui poussent , en utilisant trois méthodes

différentes. ( analyse de stabilité linéaire ) .

7. L’initialisation du système dans les modes les plus instables , nous déterminons

les structures formées dans quatre cas : rigide , flexible sur plane , flexible libre,

et hélicodaux.

8. Nous constatons que les polyélectrolytes flexibles tendent fortement vers un pro-

fil de bruit à 1/f , lorsqu’ils sont autorisés à se déplacer librement à température

finie .

En résumé, nous avons élaboré et étudié un modèle minimal de polyélectrolytes flex-

ibles, et étudié la plupart des fonctionnalités de base de ce système.
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a symmetry-breaking potential, and quickly rises to a saturation point

(at 0.09 rad per monomer) as the strength of this parameter is increased.115
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Chapter 1

Introduction

1.1 Problem

Bio-molecular or polymer systems are difficult to analyze theoretically. Even basic

tenets of electrostatics such as “like-charges repel” can appear to be violated due

to complicated inter-particle interactions and correlations. For instance, when a

polyelectrolyte is placed in a solvent such as water, two chains of the same charge

can attract each other[6].

This has a number of important implications, since many bio-polymers are poly-

electrolytes: DNA, RNA, F-actin fibers, microtubules, and aggregating viruses, to

name a few[7]. A great number of other polyelectrolytes (PEs) have various techno-

logical applications, and are used as thickeners, emulsifiers, or in water treatment.

Medical applications of PEs include implant coatings and controlled drug release [1].

This attractive force, which has been observed in experiment[8] and simulations[9],

and which has been attributed to numerous (sometimes competing) mechanisms[9][10][11],

has been studied mostly for rigid rods[1], rigid finite-sized segments[12], rigid bundles[13],

or completely free chains[14]. However, each of these studies was restricted in its scope

because of the complexity of the system.
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There has not yet been a study of a single pair of infinite, flexible polyelectrolytes,

and the behaviors they exhibit. This is what we address in this work.

1.2 Minimal models

Much is said about the enormous and growing computational power available to

researchers today. Even so, we can only perform full QM simulations of a few hun-

dred atoms, for a few picoseconds[15]. The biological and chemical systems we are

interested in are far outside the realm of what can be solved numerically for all sit-

uations of interest[16]. Barring a quantum leap in computer power, we need to turn

to higher levels of abstraction to represent the molecules and polymers we wish to

study. In most cases, researchers today use classical molecular dynamics (MD) simu-

lations with phenomenological force fields. But in order to produce accurate models

for simulation, we need to understand and account for all forces involved, even those

that do not arise from mean-field theories and simple force fields.

We chose to perform simulations using as few elements as possible. To this end,

we did not consider solvent effects (except by modifying the dielectric constant), we

used periodic boundary conditions and only two parallel chains. All our particles are

point charges, with repulsive potentials. Though we are studying this system with

the intention to compare it to DNA or F-actin or other polyelectrolytes, our model

polymer consists of nothing other than the charged particles of those polymers (i.e.

no base-pairs, backbone sugars, etc.).

Though we could model a given polyelectrolyte system in far more detail than

presented here, and even run it for long enough to obtain interesting results, we

choose to restrict our attention to this model. By focusing on these core features,

we are able to see more clearly what causes attraction, how the chains deform, and

what structures they form.
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1.3 Thesis Overview

This thesis is divided into two parts, “Background & Methods”, and “Results &

Discussion”. The Methods section in Part I includes a description of our model

system (section 3.1), and lay out the tools we will use to simulate polyelectrolytes in

solution.

Part II is divided into three core chapters, covering the three stages of our analysis

as described above. Namely, whether two parallel chains attract each other and how

strongly they do so (Ch. 4), how this attraction initially affects the shape of the

chains as they approach each other (Ch. 5), and what is the long-term (possibly non-

linear) behavior of the chain-chain pairing (Ch. 6), including their strong tendency

to form helical structures.
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Part I

Background & Methods
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Chapter 2

Theory & Review

2.1 Overview

Many systems, and most of those in biology, involve large molecules immersed in

water. This is significant because water is polar, and weakens ionic bonds[17]. When

the ionic bonds in a polymer are broken, the ions float free, leaving a charged surface

behind. This is the mechanism by which DNA obtains its high charge[18]. This charge

is necessary for function (for instance, in protein binding[19]). However, electrostatics

is hard to calculate explicitly for any large system.

DNA is one important example of this. The phosphate groups on the DNA

backbone dissociate in water, leaving behind a highly charged surface. The linear

charge of DNA is 6e/nm[20] (where e is the elementary charge). This charge is

important for many functions (e.g. DNA binding proteins). DNA is far from the

only polyelectrolyte system that has been studied extensively. For instance, F-actin

and filamentous bacteriophages are both polyelectrolytes, with linear charges on the

same order as that of DNA[21][22].

We will review the mean-field theory, Poisson-Boltzmann[23], that describes this

situation. We will also present the Debye-Hükel linearization of this theory[24], and
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how it leads to counterion condensation. We will also briefly outline two competing

theories for how this condensation can lead to attraction between these highly charged

surfaces[25][26][10].

2.2 Literature review

Until the mid-seventies, researchers believed that like-charged polymers and col-

loidal particles could only repel. This was supported by all the theories of the time,

such as Poisson-Boltzmann [23], DLVO theory [27], and Manning condensation [28].

However, several experiments with polymers or colloids in electrolyte solutions showed

attraction instead [29].

Manning condensation theory is a mean-field-theory that describes whether coun-

terions condense onto charged rods or chains, and under what conditions (charge,

temperature, and concentration) this takes place. Though it was more successful

than other approaches at predicting the threshold for condensation in many experi-

ments involving DNA[30], it still did not explain the like-charged attraction itself[31].

In 1980, Patey published a paper titled “The interaction of two spherical colloidal

particles in electrolyte solution. An application of the hypernetted-chain approxima-

tion” [32], which had the results shown in Fig. 2.2.
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“Itisimmediatelyapparentthat
the[potentialofmeanforce]isnot
alwaysrepulsiveaswemighthave
expectedfrompreviouswork.”
-G.N.Patey([32],originalemphasis).

Figure2.1:Thefirstclearsignthatlike-chargedcolloidsmightnotrepel.

Notonlydidhisnumericalresultsexhibitattraction,theyalsoshowedthatthe

attractionbetweenlike-chargedcolloidsinanelectrolytesolutionwasduetoelec-

trostatics,andwasnotduetovan-der-Waalsorhydrationforces. Hewentonto

speculatehowthisforcecouldcausesomeoftheunexpectedfeaturesfoundinpre-

viousexperimentalwork. However,Pateyhadnoexplanationforthiselectrostatic

attraction.

Overthenextseveralyears,Bloomfield[33]andR.Podgorniketal.[34]conducted

experimentstoattempttodeterminetheforcesunderlyingDNAcondensation.Mean-

while,J.X.Tangetal.[35]wereaddressingsimilarquestions,butwithF-actinand

microtubules. Alloftheseexperimentalpapersledtothesameconclusion:adding

polyvalentsaltsleadstoattractionbetweenlike-chargedpolymers[20].

Agreatnumberofexperimentshavebeenperformedonpolyelectrolytesystems,

especiallythosepresentinbiology.InthefieldofDNAexperiments,theattractive

interactionwearestudyingistermedDNAcondensation,andhasbeenexaminedin

detail[36][37][38].Thecoreresultsofthesestudiesisthatattractiveinteractionsby

multivalentcounterionsiswhatmakesitpossibletocompressthestronglycharged

moleculeintoanucleusorvirus[39][8].

Stilltherewasnoagreementonthephysicsbehindthisattractiveinteraction.
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Various simple theoretical arguments (such as [40] or [41]) did show attraction, but

they disagreed on a number of important features; they even disagreed on the un-

derlying source of the attraction, and on whether the attractive force increased or

decreased with temperature.

In 1997, Niels Grønbech-Jensen and his colleagues, perhaps spurred by the lack

of direct investigations into the matter, simulated a truly simple model of a polymer

pair [1], in the hopes of recreating on a computer the like-charged attraction seen in

experiment and theory. They used two rigid line-charges to represent a polymer pair,

several point charges to represent the counterions in the electrolyte solution, and

Brownian dynamics to incorporate water and a heat bath at a specified temperature.

Despite the simplicity of this approach, the results reproduced the attractive force,

and hinted at its source. In this thesis, we will extend the results of [1], by replacing

their rigid line-charges with flexible chains of discrete particles1, simulating much

larger systems for longer times, and look at possible shape instabilities of the charged

chains.

2.3 Polyelectrolytes

An electrolyte is simply a salt. In other words, when placed in solution, it will

dissociate into positive and negative ions. A polyelectrolyte (PE) is a polymer that

contains salts, so that when placed in solution, one charge-species of ions separates

from the chain (becoming counterions), leaving a charged polymer behind.

1Manning published two versions of his counterion condensation theory. The first version [42]
modeled the polymers as line-charges, while the later version [43] used discrete charges.
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Figure 2.2: An electrolyte is a salt, dissociating into ions when in solution. In the
case of DNA, the DNA chain becomes negatively charged, and therefore conductive,
when dissociation occurs.

In water, it is the polarity of the H2O molecules that breaks apart the ionic bonds

in a given salt. For other solvents, a rough measure of a solvent’s polarity is given

by that solvent’s dielectric constant, where dielectric constants larger than 15 are

considered polar, in that they strongly shield the ionic bonds present in an electrolyte.

As we’ll see later, this dielectric shielding is enough to allow salts to dissociate at the

appropriate temperatures, even when no explicit polar solvent molecules are used in

our simulations.

Polyelectrolytes have a number of interesting properties. For instance, because

the entire chain is of the same charge, different parts of the chain repel each other

and the chain stretches out. This causes a solution of polyelectrolytes to become

extremely viscous, since the extended chains are more likely to entangle [2].

In some situations, the counterions released from the chain (or other counterions

introduced into the solution) remain loosely bound to the chain. This phenomenon is

called counterion condensation. Because the counterions are of the opposite charge,

the overall chain charge is diminished or neutralized, and chains no longer repel as
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strongly. Thus, if salt is added to a PE solution, the chains return to their bunched or

coiled arrangements. This process is at work with DNA condensation, the process by

which DNA is wound tightly into a cell nucleus, virus, or even man-made gene delivery

vehicles [3][4]. In the following chapters, we will review the mean-field description of

the counterion-PE system, as well as the theory describing the condensation of the

counterions onto the PE chains.

2.4 Poisson-Boltzmann Theory

As mentioned, there are many situations where a charged surface is immersed in a

solution with ions present. We would like to know how these coions and counterions

distribute themselves around the charged surface.

There are many possible variations to this situation. The solution can contain

added salts, and therefore there will be more cations and anions in solution than those

disassociated from the macromolecule[20]. These salts can be symmetric, or asym-

metric, and the charged macromolecule can have regions of both positive and negative

charge[44]. Fortunately, the simplest situation (a macromolecule of one charge, sur-

rounded by neutralizing counterions and no added salts) is the most prevalent, and

is applicable to DNA and other biopolymers in solution[20] [36] [13].

The mean-field approach is our starting point, and correctly predicts many of the

important features of this system. Since our work consists of finding and explaining

departures from the predictions of this theory, we will begin by reviewing the Poisson-

Boltzmann equation.

We begin with the Poisson equation, which relates the electric potential ψ(~x) to

the charge distribution ρ(~x). For a collection of ions, the charge density at any point

is the sum of the individual ion number densities: ρ(~x) = ez+n+(~x)+ez−n−(~x). Here

n(~x) is the number density of ions, and z is the ion valency.
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The Poisson equation so far is:

∇2ψ(~x) = − 4π

ε0εr
ρ(~x) = − 4π

ε0εW
(z+n+ + z−n−) , (2.1)

where εW is the relative dielectric constant of water (εr ' 80). Now, since the ions

are free to move under the influence of the electric potential, then n(~x) is not fixed.

In other words, the number density adjusts to the presence of the electric potential,

and the equation remains self-consistent.

To find the distribution of ions, we incorporate the fact that, at thermal equilib-

rium, the ion density also obeys a Boltzmann distribution:

ni = n
(i)
0 eeziβψ (2.2)

Here n0 is the reference density for which ψ is 0. This Boltzmann distribution

is the mean-field result for the distribution of multiple ion species around a charged

surface. For a single species of ion, combining the two equations, we obtain the

Poisson-Boltzmann equation:

∇2ψ(~x) = − 4π

ε0εr
n0 exp [−`Bψ(~x)] , (2.3)

where we introduced the Bjerrum length `B = e2/4πε0εrkBT . Solving this equation

for various geometries is what yields the mean-field counterion distribution for that

system.

In the case of a charged rod or cylinder, symmetry reduces the PB equation to a

single variable, the radial distance r from the axis. In this case, the PB equation can

be written as:

1

r

d

dr

(
r

dψ(r)

dr

)
= κ2ψ(r) , (2.4)

where we introduce the Debye length κ−1 =
√
ε0εrkBT/Znq2 (Z is the counterion
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valency). We will use the PB equation in the next section, to derive the conditions

for condensation.

2.5 Counterion condensation

When polyelectrolytes are placed in solution with ions of opposite charge, these

counterions are attracted to the polyelectrolyte. If the attraction is stronger than

the thermal energy, the counterions will condense onto the charged polymers. The

conditions for this condensation were first derived by G. Manning and F.Oosawa, and

is termed Manning-Oosawa condensation [42] [43].

Figure 2.3: Simulations snapshots showing condensation in our system. Looking
along the axes of two parallel polymers, here we see the counterion distribution as we
lower the temperature. Lowering temperature, or increasing the counterion valency,
leads to the counterion condensation phenomenon shown here. In the last figure,
almost all counterions have condensed onto the polymers.

It is this condensation of counterions onto the polymer chain that produces all the
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rich and complex behavior in our system, so we will begin by summarizing Manning-

Oosawa condensation theory in the case of neutralizing counterions only. That is,

there is no added salt, and all counterions are dissociated from the chain itself [5].

We treat the chain as a cylinder of radius a and linear charge density ρ = e/b,

where e is the electron charge and b is the monomer spacing. We assume the cylinder

is long enough so that we can ignore end effects. We will sketch the derivation

of counterion condensation, based on [2]. For cylindrical symmetry, we saw in the

previous section that we end up with the following equation:

1

r

d

dr

(
r

dψ(r)

dr

)
= κ2ψ(r) . (2.5)

Here κ is the Debye-Hükel screening parameter introduced earlier, which has

dimensions of inverse length. If we substitute y = eψ(r)/kBT and x = κr, we have:

d2y

dx2
+

1

x

dy

dx
− y = 0 . (2.6)

This is one of the Bessel equations, and the solution is given by:

y =
2ξK0(κr)

κaK1(κa)
≈ 2ξK0(x) , (2.7)

where Ki is the modified, or hyperbolic, Bessel function of the second kind.

Here we introduced ξ = (e2/4πεrε0b)/kBT , the Manning parameter, which is the

ratio of the electrostatic energy of two charges at a distance b, to the thermal energy

of the system.
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For monovalent counterions, the charge density is:

q(r) = −n0e

[
exp (+eβψ(r))− exp (−eβψ(r))

]
= −n0e

[
exp (y)− exp (−y)

]
= −n0e

[
exp (2ξK0(κr))− exp (−2ξK0(κr))

]
. (2.8)

Integrating this expression radially, for different values of ξ produces different

behaviors. If ξ < 1, then the radial integral is well-behaved as κr → 0. If ξ > 1,

then the integral diverges as κr → 0. In other words, there are an infinite number

of counterions with a radius greater than the polyelectrolyte radius. To avoid this

divergence, counterions condense onto the polyelectrolyte until the effective linear

charge density reduces ξ to 1.

For our purposes, the key thing to note here is that ξ = 1 is the threshold for

counterion condensation. If ξ < 1, then counterions condense onto the chains, and

all manner of interesting behavior occurs[45][46][47]. Otherwise, we simply have two

line-charges interacting with a slightly screened Coulomb potential.

2.6 Counterion mediated interactions

Once condensed onto the polyelectrolyte, counterions strongly influence the PE-PE

interactions. There are two main theoretical approaches to studying how counterions

affect these interactions. The first by Oosawa presents fluctuations of counterion

density along the chain as the source of attractive interactions.

The other picture imagines that each counterion remains near a charge on the

chain surface, and that counterions on the opposite chain will arrange themselves

in a staggered or zipper configuration. This is the Wigner crystal model, and is

in some sense a limit of the Oosawa model for wavelength going to b, the monomer
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spacing. We will examine each in turn, very briefly. We then compare their attractive

interactions, and the key characteristics of each.

Figure 2.4: Oosawa (a) vs. Wigner crystal (b).[2]

2.6.1 Oosawa model

Oosawa tackled the problem of the distribution of counterions around a charged

surface first by ignoring the discrete nature of the counterions, and working with

charge density waves.[33] [35]

Oosawa’s simple arguments lead to the following expression for the force f between

two cylinders a distance R apart, in the limit of large R:

f(R) ≈ kbT

(
1

Z2`BR
− (Zξ)2

1 + (Zξ)2
1

R2

)
. (2.9)

In this equation, the first term is due to the Poisson-Boltzmann repulsion between the

rods. The second term, however, depends on the Manning parameter ξ, and describes

the long-wavelength charge density fluctuations from Oosawa’s model[1]. As we will

see, though this expression yields attraction, it is not in line with our results, since

this attraction is long-ranged, and increases with temperature.
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2.6.2 Wigner crystal model

We have shown in section 2.5 that counterions will condense onto a charged polymer

given certain conditions. In the limit T = 0, these condensed counterions will form a

Wigner crystal. In this section, we will see how this crystal arrangement can lead to

an attractive interaction, and that the persistence of the crystal structure correlations

up to finite temperature is one model of like-charged attraction in polyelectrolytes.

We begin with the correlation energy of a single ion around a segment of the

polyelectrolyte. The ion rests at a distance ρ from the PE center. If we approximate

the PE segment as being a disk or radius ρ, the energy ε is given by,

ε =
e2

ε
qV (0) (2.10)

βε =
e2

εkBT
qV (0) (2.11)

= `B qV (0) (2.12)

= `B q(−2πρσ) , (2.13)

where `B is the Bjerrum length, V (0) the potential at the center, and σ the surface

charge.

We now use the fact that the Wigner crystal is neutral to find that the surface

charge of the PE in this segment must be equal to q. That is, σπρ = q. By introducing

the fact that we only have one ion in this cell, we can say that the density of ions,

n, is given by n = 1/πρ2. We substitute accordingly, and arrive at the correlation

energy:

βε = −2`Bq
2
√
πn . (2.14)
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2.7 Like-charged attraction

We have shown that, in the Wigner crystal picture, the correlation energy of a single

ion around a PE rod segment is βε = −2`Bq
2
√
πn. If two such PE rods approach

one another, the Wigner crystal lattices stagger due to the counterion-counterion

repulsion. Therefore, a counterion on rod A will also be near an exposed region of

rod B. This leads to a negative energy change, and therefore to attraction [48].

The Oosawa model, despite being a model of two continous line-charges, can also

exhibit attraction. Using the Oosawa model of continuous charge density waves of

wavelength λq, the pressure Π between two PEs is[49]

βΠ = − π
d2

(
`Bq

2λq
1 + `Bq2λq

)
. (2.15)

The Oosawa model demonstrates that attractive forces can exist at long-ranges as

well. One important thing to note is that this pressure decreases with temperature.

Combined with the discrete Wigner crystal model, we are ready to proceed to our

own analysis of the like-charged attraction between two PEs, and to study how this

interaction affects their structure and behavior when the rods are allowed to be

flexible.
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Chapter 3

General Methods

3.1 Overview

The system we will study consists of two chains of discrete charges, and several

ions of opposite charge. These will all be enclosed in a periodic box; the number and

charge of the counterions is chosen to make the unit cell neutral. The chains will

both be parallel to the y-axis, and separated from each other by a distance R.
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Figure3.1:Ourmodelsystem.N chainparticlesareusedtorepresenteachchain.
Periodicboundariesmaketheseinfinitelylong. WeplaceNcounterionsinthebox,
andallowthemtomove. Thechainsareeithera)heldfixedataseparationR,
b)sinusoidallyperturbedwithwavelengthλ=Ly/n,orc)allowedtomovefreely.
Thesearediscussedinchapters4,5,and6respectively.

Thechargedmonomerswillbespacedadistancebapartfromeachother.The

chainswillbeeitherstraightorsinusoidallyperturbed,dependingonwhetherwewish

tostudytheattractiveforceitselforitseffectonperturbedchains.Thecounterions

willstartuniformlydistributedinthebox. Theywillthenbesubjecttoonlytwo

potentials:electrostatics,andrepulsiveLennard-Jones. Thefirst,electrostatics,is

simplytheCoulombforceduetothechargedparticles,andwillcausethecounterions

tomovetowardsthechainchargeswhilekeepingawayfromthelike-chargedcoun-

terions.TherepulsiveLennard-Jonesforcegivesalltheparticlesasize,toprevent
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them from overlapping each other.

Electrostatics alone would cause the counterions to bond directly to the chain

particles, and not move from there. However, it’s critical to remember the role of

temperature in our simulations, through which both counterions and chain particles

fluctuate.

Neighboring chain particles, or monomers, will be subject to a chain potential

as well as the electrostatic and repulsive interactions. The monomers at the end of

a chain will be attached, via this potential, to the periodic image of the beginning

monomer.

3.2 Monte Carlo

3.2.1 Overview

The number of particles in our system ranges from 70 to 164 particles, each of

which interacts with all others. Each counterion is free to move anywhere inside the

simulation region, and the chains can be made free to translate and to fluctuate about

the mean axis. The number of configurations in this system is extremely large. To

explore such a large phase space, and to take full advantage of large-scale parallel

computing, we decided to use Monte Carlo for our studies.

Every system can be characterized by a list of numbers, called the state of the

system (list of particle positions, field values at lattice points, number of votes for each

political candidate, etc). When there are far too many possible states, it becomes

impossible to try them all to compare which state is most likely to actually occur.

Moreover, most of these combinations are extremely unlikely (all the particles in one

corner, for example).

Imagine that every state corresponds to a particular point on a 1 meter x 1 meter

rubber grid. The system would be a ball rolling on this grid; wherever the ball is, the
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system is in the state characterized by that point’s list of numbers. The grid is not

flat, but has peaks and valleys. Peaks correspond areas that are particularly unlikely

(the ball/system will not stay there long). Valleys are places that are more likely, in

that the ball/system will stay there longer.

Figure 3.2: A physical analogy for Monte Carlo simulations. Each grid point is a list
of numbers characterizing the state of a system. The ball is a marker for the current
state of the entire system, and vibrating the sheet causes the marker to move from
one state to a nearby state, staying more often close to valleys and away from peaks.

If we now shake the sheet and keep track of where the ball goes, we are performing

a Monte Carlo simulation. The harder we shake, the higher the temperature we are

using and the less likely that the ball will get stuck in a valley. If we shake too hard

though, the shaking matters more than the peaks and valleys, and we are not getting

much information about which areas are more likely. If we don’t shake at all (zero

temperature), the ball will simply roll towards the nearest minor dip and stay there

even if there are far bigger valleys/more likely states elsewhere.

Since we often need to simulate a particular temperature, we need to make sure

that this temperature will not move the ball/system too erratically, or conversely,
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not move the system enough. At a fixed temperature, we can change the weight of

the ball to achieve this balance. Keeping this rough analogy in mind, we will briefly

review the theory of Monte Carlo simulations, and afterwards discuss the details of

our implementation for this system.

3.2.2 Theory

In order to average a quantity A(z) over a probability p(z), we need to calculate

〈A〉 =

∫
A(z) p(z)dz∫
p(z)dz

. (3.1)

where the integral is over all possible values of z. If this cannot be done analytically,

we can approximate the average by taking discrete samples:

〈A〉 ≈
∑N

i=0A(zi) p(zi)∑N
i=0 p(zi)

. (3.2)

In the limit of N →∞ this approximation converges on the correct average. However,

for finite sampling, the rate of convergence depends very much on how the sample

points are chosen and on the shape of the probability distribution p(z) [50].

If p(z) is practically zero everywhere except for a few sharp peaks, then any sample

points that lie away from these peaks will not contribute anything to the average. In

an ideal case, we could simply use p(z) to pick our sample points. However, to do

this, p(z) must have an exact and invertible antiderivative. In practice, this is rarely

possible (even for the simple Gaussian distribution), so we need a different way to

choose sample points. Monte Carlo is one way to pick sample points in such a way

that the sums in (3.2) converges quickly.

Since we are dealing with a physical system and want to average over equilibrium

states, we need to ensure that we choose sample points in a way that is compatible

23



with physical equilibrium. To do so, we need to ensure that each step is time-

reversible. That is, the probability of being in state x and going to state x′, which

we denote T (x|x′), is equal to the probability of being in state x′ and going back to

state x:

p(x)T (x|x′) = p(x′)T (x′|x) . (3.3)

We know p(x) up to a constant Z (which cancels out). Putting these known prob-

abilities and rearranging yields the detailed balance condition, given the energies E

and E ′ of the two states:

e−βE

Z
T (x|x′) =

e−βE
′

Z
T (x′|x)

T (x|x′)
T (x′|x)

= e−β(E(x′)−E(x)) . (3.4)

Any transition function that satisfies this criteria would work to move from one

sample point to another. Following Metropolis [51], we make a reasonable choice:

the move is always accepted if the energy is lowered (i.e. if the new state is more

probable). Since the transition probability will be a function of x and x′, we now

have:

T (x|x′) =


1 , E(x′)− E(x) < 0

f(x, x′) , E(x′)− E(x) ≥ 0 .

(3.5)

Plugging this into the detailed balance condition and solving for f yields the Metropo-

lis algorithm:

T (x|x′) =


1 , E(x′)− E(x) < 0

exp(−β(E(x′)− E(x))) , E(x′)− E(x) ≥ 0 ,

(3.6)
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which can be rewritten as

T (x|x′) = min [1, exp(−β∆E)] . (3.7)

This then provides the procedure for choosing a new sample point in accordance with

detailed balance, and thus moving through the configuration space of the system along

equilibrium configurations. By taking measurements of the variable A at each step

(whether the system has moved to a new configuration or not), we are performing an

average over equilibrium configurations.

To summarize, if we have a system with a very large configuration space and

we cannot calculate the antiderivative of the probability distribution, nor can we

calculate the normalization factor, then we need to sample a number of discrete

points. To move through the space in a way that satisfies equilibrium yet moves

towards areas of high probability, we use the Metropolis algorithm.

3.2.3 Specifics

In our system, we have two kinds of particles: chain monomers and free counterions.

We sometimes need to hold the chain particles fixed, while averaging over counterion

configurations. At other times, we let both move freely. Because we sometimes

want to average over many counterion configurations for each chain configuration,

we also need to be able to adjust how much the chain particles move relative the

free counterions. All of this can be accomplished if we choose to have two different

step-sizes, one for each particle type.
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Figure 3.3: Here we see how step size ∆x and temperature kBT affect the acceptance
rate for our simulations. For a given temperature, we can now choose a step-size that
yields a close to optimal acceptance rate.

Figure 3.4: Fitting the previous figure allows us to find an analytical expression for
optimal step-size given the temperature. We find an exponential relationship between
∆x and kBT .

The optimal MC acceptance rate for most systems is ∼ 0.24 [52]. Because we

varied the temperature in our simulations, we needed to find the step sizes that
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would yield this optimal acceptance ratio for each temperature.

We also needed to have a different step size for counterions and for chain particles.

This allowed us to tune each separately, as they had different potentials and therefore

different acceptance rates for the same step-size and temperature. Having different

step-sizes for chain and counterion particles also allowed us to easily fix the chains

(setting chain step size ∆xc = 0.0), and to average over a great many counterion

configurations for each chain configuration (by setting ∆xc � ∆x).

3.3 Periodic Boundary Conditions

We need to simulate infinite chains. To do this, we can make the boundaries of

our simulation periodic. If we plan to orient our chains along the y-axis, we must set

the periodic slab height Ly equal to some multiple1 of b, the monomer spacing. The

simulation box is ∼ 5Ly in the other two dimensions, which we found to be large

enough for our purposes. We also prescribe that a counterion that passes through

the top or bottom of the slab, comes out at the opposite side:

ywrapped = mod (y + 2Ly, Ly) , (3.8)

where mod(a, b) is the remainder of a/b.

When computing the y distance between two particles i and j, the image of

particle j might be closer to i than particle j itself. To restrict the range that y can

take in our calculations, we need to take the distance to the nearest image (here nint

is the nearest integer function):

yij = (yi − yj)− Ly nint

(
yi − yj
Ly

)
. (3.9)

1To avoid situations where every nth monomer has the same displacement, it is best to use a
prime number multiple for the slab height. For example, box heights of Ly = 41b or Ly = 23b are
better than 40b and 20b.
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In making the system periodic, we must be careful with the long-ranged Coulomb

interaction2. We are faced with the problem of an infinite number of particles and

an infinite number of interactions to consider. Since the Coulomb force gets weaker

with distance, we could argue that we should only take the nearest N particles into

account. However, because the Coulomb force decays relatively slowly (as opposed

to, say, e−r), we would still need a very large number of periodic images to get a

reasonable estimate. In other words, the sum
∑∞

j=1
qiqj
rij

converges slowly[53].

In 1921 Ewald published a simple trick [54] that made it more manageable (though

it only applies to overall neutral systems). His trick was to split the interaction into

long-range and short-range components. The short-range component considers only

the particles in the simulation box. The long-range component is due to the periodic

images. By summing the short-range component in real-space and the long-range

component in reciprocal space, we have two rapidly converging sums to replace the

original slowly converging sum. This technique has since been extended to other

potentials and to other periodic boundary conditions. The case for Coulomb potential

in our 1D slab geometry is called a Lekner potential[55], and is discussed in the

following section.

3.4 Interaction Potentials

The evolution of our Monte Carlo simulation is determined entirely by the energy

potentials we use and the initial conditions. There are no constraints on the system,

other than those imposed through potentials. For instance, we do not force the

particles to remain on the chain, we simply make it energetically favorable to do so.

Because of this, it is important that we describe the potentials in detail.

2We would have to be careful with any infinite ranged interaction, but Coulomb is the only one
in our system.
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3.4.1 LeknerPotential

r
xz

y

L
y

ThedominantinteractioninoursimulationsistheCoulombpotential.However,

duetoperiodicity,weneedtosumovernotjusttheparticlepairs,butalsotheir

periodicimages(uptoapredeterminedcutoff).Itiswellknownthatthissum

convergesveryslowly,andthestandardprocedureforperiodicityin3Distouse

Ewaldsums.Ewaldsumsbreakthesumintotwocomponents,oneshort-rangeand

onelong-range.Theshort-rangesumisevaluatedinreal-space,whilethelong-range

componentinFourierspace. Theextensionofthisresulttoperiodicityalongone

dimension(ourcase)iscalledLeknersummation[56].

Figure3.5:Thecoordinatesystemused.Theslabisperiodicintheydirectionand
infiniteinthexandzdirections.Fortheparticlesshown,yisthedistancebetween
theirnearestimages,andrxzistheirradialdistanceonthexzplane.

Thepotentialenergybetweenparticles1and2isgivenby:
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V12(rxz, z) = −2
q1q2
Ly

ln rxz + 4
q1q2
Ly

∞∑
n=1

cos

(
2πn

z

Ly

)
K0

(
2πn

rxz
Ly

)
, (3.10)

where K0(·) is the modified Bessel function of the second kind, which is an exponen-

tially decaying function[57].

3.4.2 Repulsive Lennard-Jones Potential

So far, the total force on a counterion is given by the Coulomb force (represented by

the Lekner sum). With this alone, nothing prevents particles of opposite charge from

coming arbitrarily close to one another. This is unphysical, because in a real system

we would expect repulsion at short-range, no matter what charges the particles have,

due to excluded volume effects[58]. We will use a repulsive Lennard-Jones model to

capture the short-range repulsion, as is standard in studies such as these (e.g. [1],

[14]).

The purely repulsive Lennard-Jones potential between two particles a distance r

apart, is given by,

URLJ =


4ε
[(

σ
r

)12 − (σ
r

)6
+ 1

4

]
, r ≤ 21/6σ

0 , r > 21/6σ .

(3.11)

Here ε is an energy, and it determines the strength of the interaction. The parameter

σ is related to the effective size of the particle. This potential, and the resulting force,

are continuous at 21/6σ. The negative gradient of URLJ gives us the force:

FRLJ =


24εσ6

[
2σ6

r13
− 1

r7

]
r̂ , r ≤ 21/6σ

0 , r > 21/6σ .

(3.12)
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To express this in Cartesian coordinates, use r̂ = 1
r

(xijx̂ + yijŷ + zij ẑ), r =
√
x2ij + y2ij + z2ij,

and xij ≡ xi − xj. This force is calculated for all particle pairs (chain-ion, ion-ion,

and chain-chain). Note that, due to periodicity, y values need to be wrapped to the

nearest image.

3.4.3 Spring Potentials

We now turn to the bonded potentials that turn our collection of particles into a

polymer chain. Our spring potential also serve to model the polymer’s stiffness or

persistence length, and as we shall see, our choices here affect the stability diagrams

of Chapter 5.

As with many minimal polymer simulations, we need to ensure that the bonds be-

tween monomer units do not grow to unrealistic lengths. This is usually accomplished

with the finitely extensible nonlinear elastic (FENE) potential[59]:

VFENE(r) = − hL
2
max

2
ln

(
1− r2

L2
max

)
. (3.13)

Here h is the spring constant. In all our simulations, we choose h = 0.82nN/nm to

approximate the spring constant of single-stranded DNA[60].

This potential has no minimum length, so it is important that the chain particles

also have the repulsive Lennard-Jones potential (described in the previous section)

to prevent the monomers from overlapping or colliding. The FENE potential, as

implied by the name, can only extend to a maximum length of Lmax, and the energy

increases asymptotically as r → Lmax.

3.4.4 Helical symmetry-breaking potential

Our simple polymer model is built of charged particles connected in a spring. As

is, there is no reason for a section of the polymer to prefer to bend in one direction
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a
1

a
2

a
3

φ

asopposedtotheother.Thisleadstoarbitraryfluctuationsaboutthemeanaxis.

However,DNAhasbase-pairsalongoneside,andthesebasesformhydrogen

bondswiththeircomplements. Thesehydrogenbondsareweakrelativethebare

electrostaticchargeofthebackbone,buttheydohaveoneimportantconsequence.

Becausethebackbonebondshaveanasymmetricpreferredangle,thebackbonetends

tobendoneway,andnottheother[61].

Figure3.6:Thisishowwedefinethedihedralangleφbetweencorrespondingparti-
clesonthetwochains.Thevectorsa1anda3followthebondedpotentialbetween
consecutiveparticlesonthesamechain.Thereisnobondedpotentialalonga2.

Weintroducedaphenomenologicalpotentialbetweeneachmonomerunitandthe

correspondingunitdirectlyacrossfromit.Theformofthepotentialisasfollows:

Vbp(r,φ)=bp(φ−φ0)
2. (3.14)

HereφisthedihedralangleshowninFig.3.6andiscalculatedfrom3:

φ=atan2(|a2|a1·[a3×a2],[a1×a2]·[a3×a2]), (3.15)

3Becauseourvectora3isreversedfromtheusualdefinition,ourdihedralangleusesa3×a2
whereotherdefinitionswouldusea2×a3instead.
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where atan2(y, x) takes into account the signs of the arguments.

This potential will be absent from all our studies except for the very last section

on “Flexible chains, symmetry-breaking”. Even then, it will only be used with a very

small energy (relative the other energy scales). We introduce it here for completeness.

3.5 Numerical Details

Our system has periodic boundary conditions, long-range forces with exponential

singularities, and several other complicating factors. Because of this, we must take

care with the numerical methods used. In particular, the Lekner sums are prob-

lematic. Because of the challenges in this system (periodic boundary conditions,

long-range forces, short-range forces, risk of overflows/underflows, etc.), we will dis-

cuss a few of the techniques needed to obtain good behavior and results from this

system.

3.5.1 Interpolation

Convergence problems

The Lekner potential is the most computationally intensive computation in each

MC step. Moreover, though the sum converges quickly relative to the full Coulomb

summation over images, it still does not converge quickly enough at small distances.

Since we are often in a situation with small distances between ions and counteri-

ons, this is an important limitation. Worse, truncating the sum produces a false

periodicity that strongly affects the results of the simulation (see Fig. 3.7).
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(a) (b)

(c) (d)

Figure 3.7: We see the need for care when using truncated Lekner sums. Subfigure
(a) shows the Lekner potential when truncated at 7 terms, (b) when truncated at 30.
Convergence is very poor as rxz → 0, as can be seen by the oscillations there. In (c)
we see the analytical limit rxz → 0, and in (d) we apply this to the potential.

To remedy this situation, we have used a 2d interpolation (based on Numerical

Recipes) for the calculation of the Lekner potential. This provides a significant

speedup. Also, since we only need to calculate the interpolation table once, we can

use a very large number of terms resulting in an increase in accuracy.

Convergence is much faster with Lekner sums than doing the direct Coulomb

sum. However, there are still significant oscillations about the correct value when rxz

is small, as can be seen in figure 3.7. How close to 0 these oscillations occur depends

on the number of terms kept in the infinite sum. For the points near rxz ∼ 0 where

the oscillations start to appear, we transition smoothly to the analytical limit rxz → 0
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instead

lim
rxz→0

[
−2

q1q2
Ly

ln rxz + 4
q1q2
Ly

∞∑
n=1

cos

(
2πn

z

Ly

)
K0

(
2πn

rxz
Ly

)]
(3.16)

=
q1q2
12

[
γ + log

( π
24

)
+

∂

∂n

[
Lin(e−iπy/12) + Lin(eiπy/12)

]
n=0

]
. (3.17)

Here rxz, z, Ly, and qi are as before, K0 is the zeroth order modified Bessel function

of the second kind, and Li is the logarithmic integral, defined Li =
∫ x
µ

dt/ ln t.

Parametrization

The Lekner sum is a function of the slab height Ly, which we need to be able to vary.

Instead of calculating a new interpolation table for each value of Ly, we can instead

parametrize the equation and create one interpolation table, applicable to all Ly. To

do so, we need to define ρ ≡ rxz/Ly and ζ ≡ z/Ly, and rewrite the Lekner function

as follows:

V12(rxz, z) = −2
q1q2
Ly

ln rxz + 4
q1q2
Ly

∞∑
n=1

cos

(
2πn

z

Ly

)
K0

(
2πn

rxz
Ly

)
(3.18)

V12(ρLy, ζLy) = −2
q1q2
Ly

ln(ρLy) + 4
q1q2
Ly

∞∑
n=1

cos (2πnζ)K0 (2πnρ) (3.19)

V̂12(ρ, ζ) =
2q1q2
Ly

[
2
∑

cos (2πnζ)K0 (2πnρ)− ln (ρ)︸ ︷︷ ︸
I(ρ,ζ)

− ln (Ly)

]
(3.20)

V̂12(ρ, ζ) =
2q1q2
Ly

[
I(ρ, ζ)− ln (Ly)

]
. (3.21)

Since it is free of Ly dependence, we can now generate a single interpolation table for

I(ρ, ζ).4

4Another consideration: since the function increases exponentially as rxz → 0, we need to use a
higher density of points in that region.
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3.5.2 Equilibration

As with any Monte Carlo simulation, we need to perform several time-steps before

gathering data in order to let the system forget the arbitrary initial conditions we

imposed. A common approach to speed up the equilibration process, and to prevent

the system from getting stuck in a local minima early in the equilibration stage, is

to start at a high temperature and decrease it slowly towards the desired value in a

simulated annealing. Though this did help, we found that the number of time-steps

required at each temperature led to very long equilibration times.

Instead, we chose an alternative to this. We started the system as before (counte-

rions randomly distributed near the chains), but all charges were scaled to q′ = q/100.

Since the interaction starts weak, counterions are free to move away from the chains.

We then slowly ramped up the charge until its full value. In a sense, we were slowly

introducing the electrostatic interaction. Also note that since all charges were scaled

equally the system remains charge-neutral throughout this process.

3.6 Units

Our simulation units were chosen so that the parameters (lengths, energies) for a

DNA-like system were of O(1). Our choices are as follows:

Table 3.1: Code Units

Code unit SI other

Ê 2.9390335× 10−21J 0.423 kcal/mol

L̂ 10−9m nm

Q̂ 1.602× 10−21C 1e
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Part II

Results & Discussion
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Chapter 4

Like-charged Attraction

4.1 Overview

In our three-part study, our first goal is to find out if and when two charged

polymers would attract each other. Once this is established, we can investigate

how this attractive force affects the polymer’s stability to deformation (Ch. 5), and

what kinds of long-term structures result (Ch. 6). This chapter is dedicated to

answering the first part of this study: determining how and when do our minimal

model polyelectrolytes attract each other.

To study the attractive force between two straight like-charged polymers, we

will examine three things. First, the force on the chains as a function of chain

separation R, and how it compares to known results. Second, we want to determine

how this force curve changes when we vary the parameters for counterion valence qCI,

or temperature T .

4.2 Setup

For all simulations in this chapter, we held the chains fixed at a separation R, while

allowing the counterions to move freely. We used a parameter set that is similar to
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the conditions of DNA in solution (within the constraints of our model). Our choice

for the parameters for this simplified DNA-like system are summarized in the table

below:

Table 4.1: Simulation Parameters

Parameter Symbol Real units Code units

thermal energy kBT 300 K 1.409Ê
monomer spacing b 3.4 Å 0.34 nm

periodic height Ly 108.8 Å 32b = 10.88nm
chain particle charge qchain −e -1.0

counterion charge qCI 2e 2.0
particles per chain N` 32 -

number of counterions NCI 32 -

In section 4.3.3 we look at how the force curve changes when we vary temperature;

so we run simulations for kBT ranging from 0.001 to 1.75, while keeping all other

parameters fixed at their default values.

4.3 Results

We now turn to one of the more unexpected features of this system: the fact that

the negatively charged polymers attract each other. As is the case with DNA, we

only see attraction when surrounded by divalent or polyvalent cations, and not with

monovalent ions. As we will show, this is a result of the particular parameters of

DNA in aqueous solution, and not a general result.

We will also examine how this attractive force is affected by various changes in

the system parameters, such as counterion valency and temperature. From this, we

are able to deduce that the dominant source of the like-charged attraction in our

system is the Wigner crystals that form at zero temperature, and the persistence of

those correlations to finite temperatures.
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4.3.1 DNA-like system with divalent counterions

We begin by verifying that our simulations reproduce experimental fact: two DNA

strands in solution with multivalent counterions will attract each other.
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Figure 4.1: The force between two parallel charged polymers surrounded by counte-
rions. We can see that the force is negative (attractive) when separation R & 0.2 nm.

Figure 4.1 shows attraction at R & 0.2 nm, on to infinity. We expect, of course,

that the force should decay to zero at infinity. This attraction agrees, qualitatively

and quantitatively, to that calculated by Gronbech-Jensen by other methods[1].

This figure tells us that the rods are very weakly attractive at long range, very

strongly attractive at close range, and repel strongly once the counterions no longer fit

between the chains. As we will see, the shape of this force curve will have implications
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for the stability of the chains against deformation, once we move from these straight-

chain/rigid studies to flexible ones.

4.3.2 Counterion valency

Now that we have seen that our system does exhibit an attractive interaction, we

will see how this interaction is affected by varying one parameter, the counterion

valency. Most experimental studies include some variation in the counterion charge,

as it is a very easily accessible parameter; one simply needs to add different cations

to the solution, and watch to see if DNA precipitates or not. Experiments such as

these find that, for DNA, if we introduce multivalent counterions, they condense. If

the solution contains only monovalent ions, there is no condensation.

We can perform similar studies by varying the charge of the counterions. Note

that, in order to keep the charge of the chain monomers the same, and the overall

system neutral (as required by the Ewald/Lekner approach to periodic electrostatics),

we need to reduce the number of counterions accordingly.
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Figure 4.2: As expected from experiment, we see that monovalent counterions (open,
upward triangles) do not exhibit attraction (that is, the force is never negative). For
valencies 2 and 4, the attractive force increases, as expected from previous experi-
mental and analytical predictions.

We see in Fig.4.2 that monovalent counterions are not sufficient to produce at-

traction, and that it requires divalent or higher1. We also see that the higher the

valency, the stronger the attractive force. We note that with other parameter sets

we can see attraction regardless of the valency of the counterions. However, it is a

well-known experimental result that only multivalent counterions (ZCI > 1) induce

attraction. This is a misleading and incorrect statement that is repeated often in

the experimental literature (e.g. [33], [1], [62]). What they should say is: for these

1Throughout we refer to the counterion valencies, and keep the chain charged fixed. But it should
be noted that what matters is the ratio of these two, not the absolute value of the charge.
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given polymers (e.g. DNA), in this particular dielectric medium (water), at this

temperature (300K), only multivalent counterions induce attraction. Though more

cumbersome, this statement has the virtue of being correct (see [14] for more on this).

4.3.3 Temperature

The final parameter we varied was temperature. At very low temperatures, such as

kBT = 0.001 ∼ 200mK, the electrostatic energy dominates over the thermal energy,

and we always have attraction. As we increase the temperature, the strength of the

attractive force gradually diminishes, until it disappears above a critical temperature

T ≈ 0.79488 = 169K. This temperature agrees very well with the critical temperature

we expect from setting the Manning parameter ξ = 1, namely Tc = 0.795. Recall

that the Manning parameter is the ratio of the electrostatic energy to the thermal

energy.

Figure 4.3: The force curves for increasing temperatures. As we can see, at higher
temperatures, the curve is no longer attractive (negative) at any point.
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Figure 4.4: From the previous figure, we took the minimum value of the force, and
plotted it as a function of temperature. We can see that the force begins attractive
(negative) at kBT ∼ 0, and linearly increases (becomes less attractive) until the
threshold at the Manning critical temperature of Tc = 0.795. Beyond this point, the
force between the chains is increasingly repulsive.

These results demonstrate that the counterion induced attraction is strongest

at zero temperature, but that the ground-state order (and associated attraction)

survives into finite temperature. This suggests two important questions. First, we

want to determine where the counterions are found at zero temperature (i.e. the

ground-state configuration). Second, we would like to determine the cause of the

linear decrease in the attractive force (Fig. 4.4).

Since we have run simulations at very low temperature, we already have the answer

to the first question of where the counterions are located. At near-zero temperature,

the counterions have minor fluctuations around their ground-state configuration, a

snapshot of which is seen in the following figure.
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Figure 4.5: Here we have an initial ground-state configuration after equilibrating the
counterions only (chains held fixed at distance R = 13.6Å).

4.4 Discussion

We now have simulation results regarding the like-charged attraction between two

chains. We have seen that, with our system, we can reproduce the core features of

this interaction.
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Figure4.6:Acomparisonbetween(a)Niels-GronbechJensen’sresults[1]and(b)our
forcecurves.Notethatwelistthecounterioncharge,whiletheylisttherodcharge.
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Moreover, since we have found the force to be caused by the ground-state Wigner

crystal configuration, we can calculate the force on this particular configuration di-

rectly, using the Lekner sums and the appropriate particle positions.

4.4.1 Force curve fitting

In later chapters, we will need an analytic expression for the force curve, whether

exact or an approximate fit. The force curve may seem similar to that generated by

many long-range attraction/short-range repulsion potentials, such as the Lennard-

Jones type forces, or generalizations thereof.

However, there is no simple power law, or combination of power laws, that fits

the entire range of interest. In order to find the relevant ansatz for our fits, we

incorporated a number of functions that are characteristic of this system. Namely,

we incorporated exponentials, Bessel functions, and logarithms into Mathematica’s

linear combination fitting function, to obtain:

F (R) =
[
AK0(R)2 +B log(R)

]
× exp

(
−CR2

)
−D . (4.1)

The resulting function satisfies our requirements, and fits our curve with R2 = 0.983

(parameters given below).

Table 4.2: Force curve fit parameters for DNA-like system.

A 503
B 968
C 2.82
D 5.04

A key difference between this function, and power-law functions, is the slow tran-

sition from attraction to repulsion. We will see later that the width of this well is

what gives flexible polyelectrolytes the relatively large regions of instability that we
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find.
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Figure 4.7: Though it seems a simple Lennard-Jones type power law should fit
the force curve, this is not the case. Here we see our best fit, using the form
[AK0(R)2 +B log(R)]×exp (−CR2)−D. Simpler forms cannot fit both the repulsive
and attractive portions.

4.4.2 Direct computation

We have seen that at low-T , in a typical stationary configuration the counterions

are arranged roughly as follows:
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Figure4.8: Wewillcalculatetheforcebetweenthechainsduetothisconfiguration.
Thisconfigurationhashalftheinter-chainbindingsitesfilled,andtheyalternate
betweenoccupiedandemptyalongthechain.

Nowthatwehavelocatedthecounterionsinatypicalconfiguration,wecanuse

Leknersums[55]tocalculatetheforceonanyoneparticleanalytically.Ifwehave

periodicityalongthey-axis,theCoulombforcecomponentperpendiculartothey-

axis,betweentwoparticlesiandj,isgivenby[56]:

Fρ=
2qiqj
Lyρ

+
8πqiqj
L2y

∞

n=1

ncos
2πn(yj−yi)

Ly
K1

2πnρ

Ly
, (4.2)

whereρ= (xj−xi)2+(zj−zi)2,Lyistheheightoftheunitslab,andK1isthe

modifiedBesselfunctionofthesecondkind(firstorder).

Tofindtheforceontheentirerightchain,wesimplyneedtocalculatetheforces

onparticles(3)and(4)duetoallotherparticles(bothchainsandcounterions).The
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force on i in the x-direction, due to all N particles is:

F (i)
x =

N∑
j 6=i

[
2qiqj
Lyρ

+
8πqiqj
L2
y

∞∑
n=1

n cos

(
2πn(yj − yi)

Ly

)
K1

(
2πnρ

Ly

)]
(xi− xj)

ρ
.

(4.3)

If the counterion charge qCI = −2qchain, the system would be neutral and the force

on the right chain would be FR
x = (F

(3)
x + F

(4)
x )/2. If the system is not neutral, we

need to incorporate additional neutralizing charges. However, we cannot simply add

a single compensating charge q0 at the origin. In our simulations, any counterions not

condensed onto the chains moved freely within the unit cell. To approximate this in

our analytical calculations, we should add a uniform background charge of q0 to a box

of the same size as the simulation cell. Lekner sums with uniform background charges

are highly non-trivial, so instead, we will create a uniform lattice of N ′ compensating

charges q0/N
′. The force on the right chain is calculated as before, except we also

include the N ′ neutralizing charges. This force is plotted in Fig. 4.9.
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no counter-ions

qchain

2qchain

qchain

2

Figure 4.9: The analytical force curves for the Fig. 4.8 configuration. The curves
are shown for different counterion charges qCI . Note that we have not included
any short-range repulsion effects. As we can see, all counterion valencies have an
attractive (negative) region.

The configuration we have studied so far has only half of the possible binding sites

filled. Yet, with only half the sites occupied by counterions of charge qCI = − qchain
2

,

the force becomes attractive at small separations. As we increase the counterion

charge qCI , the attraction gets stronger and longer-ranged.

We next consider the configuration shown in Figure 4.10. It has fully occupied

counterion sites.
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Figure4.10:Thisconfigurationhasalltheinter-chainbindingsitesfilled.Theforce
iscalculatedforthisconfigurationaswell.

Weusethesameprocedureasbeforetocalculatetheforceontherightchain.Note

thatsincethisconfigurationhasasmanyboundcounterionsaschainparticles,the

systemisneutralwhenqCI =−qchain. Forotherchargeratios,weneutralizethe

systemasbefore.TheforcecurvesareshowninFig.4.11.
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qchain
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qchain
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Figure 4.11: The analytical force curves for the Fig. 4.10 configuration. Once again,
all three valencies exhibit an attractive (negative) region, and the highest valency,
2qchain was attractive for all chain separations. Note again that we did not take into
account and short-range repulsive forces.

Again the attraction is present (at short-range) even if the counterion charge is

half the chain charge. If the counterion charge is at least equal to chain charge, the

attraction is present for all R.

4.5 Summary

We have verified that attraction exists in our simulations. This is the essential first

step for the following studies of how the chains initially deform on approach, and how

they pair up and form structures. We have also determined the parameter ranges that

are similar to a DNA-like system. This allows us to compare our minimal model of a

polyelectrolyte to experiments of real systems, at least qualitatively. For instance, we
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verified that for DNA-like parameters, only multivalent counterions induce attraction.

We have also performed the force analysis over a very wide range of temperatures,

and found that the attraction is due to the zero-temperature Wigner crystals that

form between the chains. We have used the Lekner sums to numerically calculate

the force between two chains, and found that it is indeed attractive due to this

arrangement.

We then found an analytical expression, eqn. 4.1, that fits the force curve, over

the entire range of interest (that is, from 0 to where the force is negligible). This ex-

pression will be essential later, when we want to explore approximations that require

an analytical expression for the force. Armed with these results of the force between

two rigid polyelectrolytes, we can begin to explore how the attractive force affects

flexible polyelectrolytes, something which has not been explored in detail.
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Chapter 5

Stability Analysis

5.1 Overview

A straight chain models a perfectly inflexible polymer. This has some real-world

analogs, but in biological systems, even stiff polymers (such as F -actin) have some

degree of flexibility. This leads to an important question: whether the attractive

interaction between two flexible like-charged polymers causes the polymers deforma-

tions to grow, leading to interesting structures, or to decay and cause the polymers

to remain fully extended.

If they did deform and buckle in every possible scenario, then the entire discussion

about how and why two polymers attract would be moot; no polymer pair would

remain extended long enough for the attraction to have any effect. Fortunately, the

polymers do not always buckle under this attractive force.

We will begin by reviewing linear stability analysis, and how to use it to determine

whether the given chain configuration is stable, and if not, which sinusoidal mode we

would expect to dominate in the linear regime. This will let us predict what kinds

of structures we might see in a two-chain system, and by extension, in a solution of

flexible charged polyelectrolytes.
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Before performing extensive simulations of this system to answer these questions,

we will try to predict, using a mean-field theory, what we might expect to see. Our

approach uses the chain-chain force curve, a quantity that is relatively accessible

experimentally, to make these predictions. Finally, we will explain the three numerical

methods we used to determine the stability curves of our system, and compare their

results to our mean-field predictions.

5.2 Motivation

Stability against deformation is an important part of the behavior of these poly-

mers. We have already seen that a pair of PEs will attract each other, meaning

that they will approach each other. We wish to determine whether they deform as

they approach, or if they remain extended. We are also interested in the patterns

and structures they might form, and how these are affected by the parameters of the

system.

How pairs (and bundles, by extension) of polyelectrolytes behave as they approach

each other is an important area of study. It affects how polyelectrolytes form packing

structures, it affects DNA condensation[29], and can lead to novel structures such

as F-actin liquid crystals[3]. The linear stability analysis of this chapter gives us a

first-order approximation to answer these questions.

5.3 Theory

Linear stability analysis is a way to predict what large-scale periodic structures will

form. The approach is to take the linear system, make a very small perturbation of a

particular wavelength, and see if that perturbation will grow or if it will decay back

to flat. The rate at which the perturbations grow or decay tell us which wavelength

is likely to survive and grow to the point that it becomes visible at a larger scale.
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5.3.1 Linear Stability Analysis

In this section we will present only the elements of linear stability analysis that are

relevant to our particular system. First we must clarify what it means for something

to be unstable. In the context of our system, a chain is said to be unstable against

deformations when any deformation away from a straight line configuration grows

over time.

Let us say we start with a straight chain that experiences a certain force, due to

the counterions around it and to the other chain. Suppose that when we move one

monomer to the right, it feels a force to the left. Then this small deformation away

from linearity experiences a restoring force, so the deformation decays and the chain

remains straight (i.e. that deformation is stable).

Now suppose that under different circumstances, when we move one monomer to

the right, it feels a force to the right. Then this deformation would grow exponentially,

and eventually the chain would deform drastically and possibly break. Or, once the

deformation grows beyond a certain point, we are no longer in the linear regime (small

amplitude), and non-linear effects may come into play.
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x

δ
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F
x

Figure5.1:Aperturbationcaneithergrowordecay,dependingontheexactnatureof
theforcesonagivenmonomer.Iftheforceisinthesamedirectionasthedisplacement
(rightfigure)itgrowsexponentially,otherwiseitdecays. Whetheritgrowsordecays
isafunctionofthewavelength.

HowquicklyadeformationgrowsiscalledthegrowthrateΓ.Ifitispositive,the

deformationgrowsexponentiallyandthechainbuckles;ifnegative,thedeformation

decaysexponentially.Forsmalldeformations,itisexpectedthatthegrowthrateof

adeformationisdirectlyproportionaltotheforceonthedeformedportion,F,and

inverselyrelatedtotheamplitudeofdistortionδ.

Γ=
∆F

δ
. (5.1)

Thechainscanbeperturbedinmanyways. Weneedtodeterminewhatkindof

deformationweshoulduse.Fortunately,forsmallperturbations,wecandecompose

anydeformationawayfromastraight-lineasaFourierseriesofsinusoidaldeforma-

tions.Eachofthesemodesareindependentinthelinearregime,sowecanexamine

themeachinturn.

Thewavelengthofthesesinusoidsvariesfrom2btoLy. Thesmallestmodeis

2b,duetothemonomerspacingconstraint;Lyisthelongestmodeallowedbyour
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periodic slab. Another way of looking at this: only an integer number of wavelengths

is allowed in the y direction, in order to preserve periodicity (λ = Ly/n). Hence, our

maximum wavelength of Ly/1. The Nyquist criterion for sampling frequency states

that for our sample points spaced b units apart, the minimum wavelength is 2b.

In summary, our goal in this chapter is to determine which scenarios cause the

chains to buckle (become unstable), and which cause them to remain extended (sta-

ble). The tools we use to determine this are various implementations of linear stability

analysis.

5.3.2 Mean-field Predictions

We can now be more concrete in explaining our approach. We will distort one

chain sinusoidally with wavelength λ. For each particle i, we output the force Fi(R)

divided by that particle’s displacement δi. Then the growth rate Γ(R) is given by

1
Nc

∑
i(Fi(R)−Fstraight(R))/δi, where Fstraight(R) is the force curve from the previous

chapter. We will repeat the process for different wavelengths λ, and combine this

information into stability diagrams (e.g. Fig. 5.8) that show where the growth rate

Γ(R, λ) is positive, and where is it negative.

Mean-field growth rate

If we have the force curve as a function of chain separation R, we can predict what

stability diagram we might expect using the following procedure.
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R+A
R

R-A

F(R)

Figure 5.2: The force curve above is for a pair of straight chains a distanceR from each
other. If we deform one chain slightly (amplitude exaggerated here), then the force
on a monomer i at a distance R+δi will be approximately equal to F (R+δi)/N`. We
can average ∆Fi/δi over all monomers to compute the stability of the chain against
small perturbations.

Beginning with two straight chains, we deform one of them, as shown in Fig. 5.2.

Now the force experienced by each monomer unit in the perturbed chain varies from

f(R − a0) to f(R + a0). The total force is the average of all the forces felt by each

monomer unit i at a displacement δi from the mean, as well as the restoring spring
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force fsp:

Ftot(R) =
1

Nl

Nl∑
i=0

f(R + δi) + fsp (5.2)

=
1

Nl

Nl∑
i=0

f (R + a0 sin(2πik/Nl)) + fsp . (5.3)

As before, k is the wavenumber and Nl is the number of monomers on one chain.

The spring force in the x direction on a monomer i is simply the sum of the spring

force due to the monomers above and below it:

fsp = fch,x(ri, ri+1) + fch,x(ri, ri−1) (5.4)

= fch,x(R + δi, R + δi+1) + fch,x(R + δi, R + δi−1) . (5.5)

If we now plug in δi = a0 sin(2πik/Nl) and fch,x(xi, xj) = h(xj − xi)/(1 − (b2 +

(xj − xi)2/L2)), and simplify, we get:

fsp = a0hL
2

[
sin (2πik/Nl)− sin (2π(i− 1)k/Nl)

(b2 − 1)L2 + 4a20 cos ((2i− 1)πk/Nl + φ)2 sin (πk/Nl)2

+
sin (2πik/Nl)− sin (2π(i+ 1)k/Nl)

(b2 − 1)L2 + 4a20 cos ((2i+ 1)πk/Nl)2 sin (πk/Nl)2

]
. (5.6)

To get the growth rate, and therefore the stability diagram, we use Γ = ∆F/δ:

Γ =
1

Nl

∑ Ftot(R)− f(R)

δi

=
1

Nl

∑ f (R + a0 sin(2πik/Nl)) + fsp − f(R)

a0 sin(2πik/Nl)
. (5.7)

For any given force curve f(R) (or approximation thereof), this equation yields the

stability diagram for any free parameters we choose.
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Force curve derivative

If we fix the wavenumber k at some number, then sin(2πik/Nl) ∼ O(1) ≡ s, and

Γ becomes:

Γ =
1

Nl

Nl∑ f (R + a0s)− f(R)

a0s
. (5.8)

The procedure above immediately suggests one possible simplifying idea: in the limit

a0 → 0, the growth rate should approach the derivative of the force curve.

The k dependence is lost in this limit, but it is still a useful limit in that it gives

us a great deal of qualitative information about the stability as a function of R or

other parameters, based solely on the derivative of the force curve for that parameter

set.

Lennard-Jones force

To simplify our qualitative explorations of the stability of our system, we will not

use a fit or interpolation of the force curve found in Chapter 4. Instead, we use a

Lennard-Jones type force to model the chain-chain interactions.

This allows us to predict qualitative behavior without getting sidetracked by the

precise form of the force curve. As we shall see later, this qualitative behavior does

indeed hold, even though the actual chain-chain force is different from Lennard-Jones.

The force we use in this section is given by:

Fmf (R) = −24εσ6 (R6 − 2σ6)

R13
(5.9)

Using this force in the Γ equation yields, for each i:

Γi =
csc
(
2inπ
Nl

)
a0

fsp +
24εσ6 (R6 − 2σ6)

R13
−

24εσ6
(
−2σ6 +

(
R + a0 sin

[
2inπ
Nl

])6)(
R + a0 sin

[
2inπ
Nl

])13
 .

(5.10)
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We can now use the mean-field Γ =
∑

Γi equation to plot stability curves for various

parameters.

Chain force

Our first parameter variation is the restoring force h of the FENE chain potential.

The amount of stretching a monomer experiences is directly related to the frequency

of the deformation. The highest frequency mode corresponds to the greatest possible

distance between neighboring monomers, since at this frequency the monomers zig-

zag or alternate between x0− a0 and x0 + a0. We therefore expect that the restoring

force is strongest at high frequencies. Mean-field predictions of the stability, for

various chain force strengths h, are shown below.

2 4 6 8 10 12

-320

-240

-160

-80

0

80

Γ

wave number (k)

 h=0
 h=250
 h=500
 h=750
 h=1000

Figure 5.3: Here we see how varying the spring constant h results in more negative
(more stable) high-frequency modes.

The fact that the higher frequency modes are most dampened (most negative),
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and that the damping increases as the chain stiffness increases, are both intuitive

results. However, the precise shape of these stability curves is not trivial, and we will

use it as a basis of comparison with our simulation results.

0 1 2 3
-60

-40

-20

0

20
Γ

wave number (k)

 h=0
 h=250
 h=500
 h=750
 h=1000

Figure 5.4: Zooming in to the first three wavenumbers, we can see that they are
non-zero. We expect Γ→ 0 as k → 0.

We have also seen that the stability curves approach 0 as the wave number ap-

proaches 0. Since we are removing the mean force before producing these diagrams,

it is a requirement that the 0th mode be zero.

Interaction energy

Now we investigate how the interaction energy of the chain-chain force affects the

stability/instability of the perturbations. Holding all other parameters fixed (e.g.

chain-chain separation R, spring force h), we see in figure 5.5 that the effect of the

interaction energy is to dampen all modes shown.
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Figure 5.5: For the Lennard-Jones force example, we varied the energy parameter ε.
The result of this, for this particular chain separation R, is to stabilize the perturba-
tions.

However, as we shall see later, increasing the interaction energy does not always

stabilize the deformations. More generally, a higher ε leads to stabilizing modes that

are already stable, but also to further destabilizing unstable modes. In other words,

ε controls the strength of the effect, whether positive or negative.
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Chain separation

R=0.2
R=0.3

R=0.5

R=1
0.2 0.3 0.4 0.5 0.6

200

100

100

200

Figure 5.6: Here we hold ε and h fixed, and plot the growth rate for various chain
separations R. We see that the growth rate needs to be a function of both k and R,
since the sign of the growth rate depends on both of these variables.

Stability Diagrams

In the previous sections, we have seen that the linear stability of the chains depends

on two variables, wavenumber k and separation R. All others are held fixed at their

physiological defaults (kBT = 300K, h = 0.82nN/nm, etc.). Since our main concern

is the sign of the growth rate, we can summarize what we have learned about the

stability of this system in a single diagram.
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Figure5.7:StabilitydiagramwithLennard-Jonespotential.Chainseparationgoes
upalongthey-axis,wavenumberkalongthex.Inreds/orangesaretheunstable
regions.Notethateachregioncontainsthosewithstrongerspringforceaswell.For
example,h=1isabandthatextendsfromR∼0.8to0.25.

Thisstabilitydiagramshowsthatthereisabandofinstabilitywithintheattrac-

tiveR 0.2region. Thedistancethatthisbandextendsdependsstronglyonthe

stiffnessofthechain. Basedonthisdiagram,weexpectthatatlargeseparations,

chainswouldapproacheachotherinaparallelandextendedconfiguration.Asthey

entertheinstabilityband,thechainswouldbegintodeform.

Theabovefigure,aswiththerestofthissectionsofar,hasbeenusingthe

Lennard-Jonesforcecurvetoproducequalitativeresults.However,becausewehave

foundagoodanalyticalfittotheforcecurvefortheseparameters,wecanalsouse
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thatfitasourfunctioninthegrowthrateequation(Eq.5.7),toobtainastability

diagramandstabilitysurfacethatisclosertoourrealsystem.

Figure5.8:Stabilitydiagramwithforcecurvefittingfunction. Thedashedline
atR∼0.2marksthebeginningoftheattractiveregion. Onceagain,eachregion
containsthosewithstrongerspringforceaswell.

Itisimportanttonotethatwearestillusingthegrowthrateasapproximatedby

themean-fieldmodel.Thisapproachdoesnottakeintoaccountthatthenearnessof

therodshouldaffectthecounterionconfigurationandthereforetheforceandgrowth

rate.

Still(aswewillsee),thegeneralfeaturesareinlinewithourmorerigorousresults,

andwecanmakeanumberofobservations.Itisclearthatwearemorelikelytofind

unstablemodesatlowfrequencythanhigherones,andatlowseparationratherthan
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higher ones.

This tells us that the chains are stable while attracted towards each other, and be-

come unstable near each other, beginning with long-wavelength oscillations. Whether

this behavior persists beyond the small-amplitude linear regime is not something we

can address with the current method.

5.3.3 Summary

With our mean-field model, and based solely on a qualitiative chain-chain interac-

tion, we have gathered a number of predictions for how our simulations might behave.

We have seen that the chain-chain separation R is an important parameter in de-

termining the sign of the growth rate, and so we will investigate our system using

various R’s as initial conditions. We have also determined that the stability curves

should be able to be approximated by the derivative of the force curve.

Using our predictions, we have also found hints as to where we might expect to find

unstable modes. Namely, at long-wavelengths, with small chain-chain separations,

and in situations where the attractive interaction is strong (e.g. multivalent coun-

terions, and not monovalent ones). With this information, we are ready to explore

the parameter space of our simulated system, and investigate the stability curves we

find.

First, we will describe the three approaches we will use to generate stability curves

from our simulations. Then, we will present the results of these simulations. And

finally, in the discussion section, we will compare our results to the predictions made

in this section.
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5.4 Setup

Now that we have a qualitative expectation for the growth rate Γ as a function of

the system parameters, we can attempt to establish the growth rate using computer

simulations.

5.4.1 Static analysis

As we saw in section X, one way to find the growth rate is by averaging the force-over-

displacement (∆F/δ) over all particles on the chain. To do this with our simulations,

we perturb the chains with a sinusoidal displacement of a particular wavelength

(again, one that is Ly/n), and keep the chains fixed in space with this displacement.

We then allow only the counterions to move. Every 10 Monte Carlo sweeps, we record

and output the force felt by each chain particle.

For each timestep, we need to find out if the force on a given particle is stronger

or weaker than the average force on the whole chain. If it is weaker, then when we

subtract the mean undisplaced force, the ∆F will be negative. This procedure is

identical to calculations of tidal forces: if the far side of the earth is pulled towards

the moon with a weaker force than the near side, the effect once the center-of-mass

force is removed is a residual outward force on both sides.
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Figure5.9:Eveniftheforceonallchainmonomerswereinthesamedirection(say,
attractedtowardstheotherchain),thedeformationsmaystillbeeitherstableor
unstable.Thisdependsontheforcefeltbytheperturbedmonomersaftersubtracting
themeanforce.Thisisanalogoustotidalforces.

Wethendividetheforcedifference∆Fofeachparticlebythatparticle’sdis-

placement(whichneverchanges,sincethechainparticlesareheldfixed).Ifwethen

averagethisquantityovertime1,weobtainanestimateofΓ,thegrowthrate,for

thatparticularsetofparameters.

Thisprocedure,whichwecallstaticanalysis,ismuchsimplerthantheupcoming

dynamicanalyses.Itisalsoclosertothemean-fieldapproachwedescribedearlier.

However,thereismuchthatwecannotdiscoverwiththismethod(suchasthepoint

wherethesystemleavesthelinearregime),andsowelatersupplementthiswith

dynamicalternatives.

1Notethattheorderofaveragingisimportant.Thatis, F/δ= F/δ. Averagesovertime
andoverparticlenumber,however,areinterchangeable.
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5.4.2 Dynamic Analysis

Amplitude Tracking

An alternative approach to the static analysis described previously, is to introduce

a sinusoidal perturbation of wavelength Ly/n, as before, and then allow the chain

particles to move. We then track the root-mean-square amplitude as a function

of time (Arms(t)). If the amplitude grows, then this particular wave number n is

unstable; if it decays, this n is stable. The rate of growth/decay can be compared

across different n’s.

For every 10th MC sweep:

For each particle i on left chain:

xL += x[i]/Nl; //calculate avg x of left chain

End

For each particle i on left chain:

sumsq += (x[i]-xL)*(x[i]-xL); //calculate sum of squares

End

rms = sqrt(2.0*sumsq/Nl); //calculate rms

Output rms;

End

This approach is not ideal. First, while a given mode may be decaying, a com-

peting mode might be in the process of growing. At early times (linear regime), this

other mode is negligible, but the exact point at which other modes start to wash out

the signal of the current mode in question, is hard to determine.

Energy Tracking

We can also manually increase the amplitude from 0 → ε, and track the potential

energy of the system. If the potential energy decreases for a particular wavelength,

then that mode is favored, and it will be unstable. If the energy increases, the selected

mode is stable.
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initChain(R,0); //initialize at flat, distance R

For every 10th MC sweep:

For each pair of particles:

totalE += energy(i,j); //calculate total interaction energy

End

Output totalE;

initChain(R,amp+epsilon); //increment deformation amplitude

End

This method easily yields the sign of the growth rate. However, it is not imme-

diately apparent how to go from the increase/decrease in energy into a growth rate.

Because of this, and because Power Tracking (next section) yields better results, this

method was not used.

Power Tracking

One final dynamic approach that is more accurate than amplitude tracking, is power

tracking. As before, we start the chain with an initial small perturbation of a par-

ticular wavelength, and then allow both the chain particles and the counterions to

move freely.

Instead of tracking the amplitude itself as a function of time, we take the Fourier

transform of the position data, and analyze that. Because the system starts at one

particular wavelength, the power of the Fourier transform will have a peak at the

corresponding frequency, and be zero elsewhere. If the mode is unstable, that peak

in power will decay exponentially. If it is stable, it would increase in power.

We initialize the system with a particular wavelength, and run ncp random seeds of

this. At each timestep, we output the coordinates. All coordinates, for all particles

and all random seeds, are combined into a single results table. This results table

is input into Matlab for analysis. The first step is to load the file, extract the x

coordinates as a 1D array, and reshape it into an N` × nts × ncp × nks matrix.
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function [gamma, ks, fxt] = autostab(filename, Nl, n_ts, n_cp, n_ks)

A = load(filename);

x= A(:,2);

clearvars A;

xtc = reshape(x,Nl,n_ts,n_cp,n_ks);

// x coords in matrix of

// Nl : particle index

// n_ts: timestep

// n_cp: random seeds

// n_ks: initial perturbation

We then find the mean x coordinate, so we can get the deformation δ = x−xm away

from the mean. We then obtain the power spectrum of δ, and then median of this

over all random seeds.

xm = squeeze(mean(xtc,1));

xma = zeros(Nl,n_ts,n_cp,n_ks);

for i = 1:Nl

xma(i,:,:,:) = xm(:,:,:);

end

fxtc = abs(fft(xtc-xma,[],1)); // power spectrum

fxt = squeeze(median(fxtc,3)); // median over seeds

We then extract the k values from the data (max peak at 0th timestep). We track

the evolution of this peak over time, and fit to an exponential. The exponent gives

us the growth rate we are seeking.

ks = [];

for i=1:n_ks

m_index = find(fxt(:,1,i) == max(fxt(:,1,i)))-1;

m_index = m_index(1);

ks = [ks m_index]; // get k values

end

ks = ks(1,:)

gamma = nan*zeros(1,n_ks); // initialize gamma w/zeros
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for i=1:n_ks

// for each k value, find a git to an exponential

e = fit([0:(n_ts-1)]’,fxt(ks(i)+1,:,i)’,’exp1’);

// growth rate for that k value given by fit

gamma(i) = e.b;

end

// sort k values, add units

[val ind] = sort(ks);

ks = sort(ks);

ks = 2.*pi.*ks./(Nl*0.34);

gamma = gamma(ind);

figure

plot(ks,gamma)

As we will see, this method, though more difficult to implement, yields better

results than amplitude tracking. It does not suffer from the washing out effect of

amplitude tracking, since we can see each mode independently. Also, we can always

track the height of the initial primary peak (the excited mode), and compare it to

the other modes.

5.5 Results

Previously we described several methods we could use to determine the stability

curves of this system. Here we will examine the results of each of these methods in

turn. In the next section, we will discuss what these results imply for the long-term or

large-scale structure of the polyelectrolyte systems, as well as compare these results

to the predictions we made using the force-curve.

5.5.1 Static Growth Rate

In holding the chains fixed at a given amplitude, while outputting the average

force felt by each monomer, we obtained a rough estimate of the growth rate Γ. In
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all parameter sets used, the overall shape of the Γ surface remained the same. The

only differences we found were in 1) the strength of the high-frequency damping, 2)

the overall scale of the effect, 3) the zero-point of the surface.

Γ surface

Shown below is a Γ surface as a function of the perturbation wavenumber and

the chain-chain separation. Despite the poor statistics and jagged results, we can

see many of the features that persist when we obtain stability surfaces by more

complex means. For instance, there is the flat region at large separations (right edge

of diagram). The instability rises slowly and peaks at around R ∼ 0.4nm, and then

drops rapidly as the chains approach each other further.

Figure 5.10: Here we see the stability surface of our system, based on the static
analysis approach. Despite the poor statistics, the general shape is consistent with
more involved methods.

76



The key point is that there is a positive region on the surface. These are the

regions of interest, because it is here that the polyelectrolyte will tend to deviate

from an extended configuration and form other (possibly non-linear) shapes. The fact

that the positive regions are mostly in the intermediate-separation/long-wavelength

corner imply that it is only when the chains are close that a long-wavelength structure

begins to form.

5.5.2 Dynamic Growth Rate

We now present the results of our dynamic approaches, where we initialized the

chains in sinusoidal configurations, and then let them evolve freely. Our aim for

this section is to present all the results that lead up to our core results, the various

stability curves and stability diagrams. We focus mostly on the data and the chain

of reasoning. Discussion of these results is left to the next section, 5.6, where our

focus will switch to the implications of these results.

Amplitude Tracking

The rms deviation from the average axis position, Arms ≡
√

1
Nl

∑
(xi − 〈x〉)2, is

an easy to calculate metric. Over a short time, this amplitude will tend to either

grow or decay, depending on the wavelength. However, after long enough times, the

amplitude will simply fluctuate about an average variance (one that is dependent on

the temperature, the chain stiffness, amongst other parameters).

To be sure that we are tracking the growth/decay of only one mode, we were very

conservative in our choice of cut-off time. As we can see, the growth or decay of the

modes seem essentially linear, as opposed to exponential. What we are seeing is the

first-order linearization of the exponential decay/growth.
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Figure 5.11: Here we plot the rms amplitude of a chain over time (MC time
steps). The chains were perturbed with a small amplitude, and wavelengths λ =
2, 3, 4, 6, 8, 12. As we can see, some of these wavelengths lead to a growing ampli-
tude, others to decay. The slope of the lines give us the growth rate Γ for that
wavelength.

With the fits we obtain in the above figure, we can obtain the exponential rate

constant (growth or decay) for each of the wavenumbers we simulated. Plotting these

growth rates as a function of wavenumber yields our first simulation stability curve:
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Figure 5.12: Stability curve, amplitude variation. Here we see several individual runs.
The variance is large, because of the drawbacks of the amplitude tracking approach.
Also, there are several clear outliers in these results.

Once again, we see the characteristic s-curve we have seen in other approaches.

With this approach, we can also see there are a number of outliers, and that each run

produces different results within a wide band. To determine the most likely behavior,

we averaged the above curves (each of which was itself an average of several hundred

random seeds). The resulting average is smooth, and represents the stability of our

chains against deformation for this parameter set.
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Figure 5.13: Averaging over a large number of initial configurations yields a very
smooth growth rate curve. For this particular system (R = 0.355 and h = 100), we
see that the transition between the stable (negative) and unstable (positive) regions
occurs at k = 0.172, which corresponds to a wavelength of 36.5 nm, which is compa-
rable to the persistence length at this stiffness. Note that, due to outliers and poor
data in the high-frequency region, we have only plotted the first 8 points here, and
are missing the upturned tail of the rest of the stability curve.

Once again, the shape of this is in line with what we expected from our mean-field

approach. If we now take the same procedure and apply it to varying parameters

(albeit with fewer statistics), we can see how parameters affect the result. In this

case, we varied the chain stiffness h.
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Figure 5.14: Growth rate as a function of wave number, for various spring constants.
As expected intuitively, as the spring constant h increases, the more quickly any
high-frequency perturbations will decay.

While these results are valid stability curves, the very large number of independent

random seeds that were required to produce smooth averages led us to look for

alternative ways of generating stability curves.

Energy Tracking

Here are the results from increasing the perturbation amplitude manually from

0 to ε over the course of T timesteps. The goal was to see whether the potential

energy U increased or decreased as ε increased (i.e. dU/dε). While we did find that

long-wavelength modes were stable and high-frequency modes unstable, two factors

prevented us from proceeding towards a stability curve based on these potential

energy measurements.
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Figure 5.15: An alternative approach to determining the stability of a particular
wavelength perturbation. Here we manually increase the perturbation amplitude,
and plot the energy. If the energy increases, then the wavelength is unstable. If the
energy decreases, the mode is stable.

First, the mapping of dU/dε (a rate of change in potential energy vs amplitude)

into a growth rate constant (change of force over displacement), is not trivial. And

secondly, we needed to either increase the amplitude very slowly, or to wait for

equilibration after each increase step. Both of these procedures resulted in long run-

times for our simulations, making them prohibitively expensive in terms of CPU

time.

Power Tracking

We started the chains with a small amplitude perturbation of wavelength λ, and

allowed the chains to move freely. Here we see a fourier analysis of the displacement
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from the mean, as a function of time. In other words, we have the spectrogram of

the chain displacement.

Figure 5.16: The spectrogram of the chain, perturbed at the highest possible fre-
quency. We can see that the initial power spectrum (along bottom-left axis) shows a
single peak at the maximum frequency, and zero power along other modes. As time
advances (right-ward), this peak decays.

We now have a fourier power spectrum as a function of time. This tells us at a

glance, which mode is dominant (if any) at any given time. We can also see that,

even when we start with full power in one mode and none in any other, eventually

some other modes begin to grow.

Each spectrogram we see here is actually the average of many hundreds of spec-

trograms, each using the same excitation mode, but using different random seeds for

the initial configuration of the counterions and the initial perturbation phase.

In order to find the linear region, we plotted the ratio of the highest mode to the

second highest. Since the highest mode at first will always be the initially excited

mode, this tells us the ratio in power between the excited mode and the other modes.
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Figure 5.17: Ratio of initial excited mode to the second highest mode. We restrict
our attention to t < 500.

Our cutoff is chosen so that the excited mode is still 10× the next highest mode.

This is what we define to be the linear regime for our purposes.
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(a) (b)

(c) (d)

Figure 5.18: Four example spectrograms, each with a different excited mode. Here
we can see that the high frequency mode in (a) decays rapidly. Though not as clear,
in figure (d) we have a low-frequency mode that is increasing.

For each spectrogram, we have a single excited mode that either grows or decays.

Once again, it is the rate constant of that exponential growth/decay that we are

after. For each spectrogram we isolate the dominant mode, and perform a fit to

exponential, as seen in Fig. 5.19.
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Figure 5.19: Growth or decay rate of for three example excited modes (k = {1, 4, 12}).
An exponential fit is shown for each. The rate constant of this exponential is the
growth rate Γ.

Performing this fit for all possible modes in the system, and plotting the rate

constant as a function of either k or R yields the stability curves for those variables.

We can see in the Γ(k) results the characteristic curve due to the restoring chain

force, and in the Γ(R) results we see the influence of the force gradient.
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Figure 5.20: Here we have the growth rate as a function of wavenumber for fixed R.
The s-curve shape is the same as seen in other methods.
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Figure5.21: GrowthrateasafunctionofRforfourdifferentwavenumbers. As
expected,thehigherwavenumbersaremorestable(morenegative). Thepeakat
R∼0.45meansthatitisatthatseparationthatthepolyeletrolytesaremostlikely
todeform.Fork=1,thereisabroadrangeoverwhichthegrowthrateispositive
andunstable.
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Figure 5.22: A stability surface generated by combining the four curves from the
previous figure. Once again, red denotes instability, blue stability.

In these power tracking results we have seen some features that were missed with

the other methods (but not, as we will see, with the force curve derivative). For

instance, there is a persistent peak and valley pairing near the growth rate maxima

at R ∼ 0.45.

5.6 Discussion

Force curve derivative

In section 5.3.2, we claimed that d/dR of the force curve was a good guide to the

qualitative shape of the stability curve as a function of R.2

2Recall that the force-derivative approach discarded the wavenumber variations.
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Figure5.23:Here(a)isthenumericalderivativeoftheforcecurvefromCh.4,and
(b)isthegrowthrateasafunctionofR,asfoundwithourPowertrackingresults.
Theagreementisclear,evendowntothepresenceofasharppeakatR∼0.45. We
however,donothaveaconciseexplanationforthispeakundereithermethod.One
possibilityisthatthereisasemi-stableregionataradiusjustbeforethepeak,which
leadstoagreatercontrastwiththeunstablepeakitself.

InFig.5.23wecanseethattheagreementbetweentheforcecurvederivativeand

thegrowthrateresultsfromsimulationsisverygood. Minordifferencesareapparent,

however.Forinstance,thelarge-Rbehaviorisnotthesame. Wehavenotbeenable
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to investigate whether these minor differences would persist if we had better statistics

for both the force curve and the power tracking simulation.

5.6.1 Mean-field with real force

In our qualitative predictions, we had used a Lennard-Jones-type interaction between

the chains to make our predictions. Here we will use the same procedure used to

produce the stability diagram of section 5.3.2, but instead of using a L-J force or a

fit, we will use an interpolation of the actual force curve from Chapter 4.

Figure 5.24: As before, the vertical axis is the separation R, and horizontally we have
the wave vector k. Reds and oranges show the positive regions of the growth rate for
various spring constants. The staircase pattern here is an artifact of the plots used
and is not a feature of the system.
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Because the stability diagram is related to the derivative of the force curve, the

details of this stability diagram are sensitive to the exact interpolation method used

on the force curve data (in this case, cubic B-spline).

Unlike other stability diagrams so far (using the Lennard-Jones force and the fit),

this diagram shows regions where a chain enters a region of instability on approach,

then leaves it, and then enters another one (see h = 100 region, at k = 4). This

is due to a the peaks and valleys seen in the force curve derivative of the previous

section (and in the stability curve result it is compared to).

5.6.2 Changing spring force

We have seen that our mean-field approach based on the force curve, predicts a

strong k-dependence when the chain force is strong. This makes sense, since the

higher frequency perturbations have a more rapid change in displacement from one

monomer to another, and therefore a greater distance and greater restoring force.

Though we expect, based on our mean-field results and on intuition, that the chain

would be more stable for high frequency perturbations, the shape of the stability

curve might have been very different from our predictions.
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Figure 5.25: Comparison of our prediction (a), and simulation result (b). The growth
rate as a function of k has a sigmoidal shape in both, and the strength of the high-
frequency damping is related to the chain stiffness h.

As we can see from the comparison of our mean-field predictions, and of our

simulation results, the k-dependence behavior is the same. This verifies that our

mean-field approach is at least qualitatively correct. It also strengthens the argument

that we should use low-frequency perturbations and low stiffnesses if we are trying

to excite the chains to form interesting structures in the long-term.
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5.7 Method comparison

In this chapter, we have attempted to determine under what conditions flexible poly-

electrolytes are stable against small deformations. To determine this, we used various

methods of increasing complexity. We review these here.

First, we perturbed the chain, held it fixed at that given amplitude, and calculated

Γ = 〈∆F/δ〉. From this we generated the Γ surface as a function of R and k, paying

close attention to the sign of Γ. This method was coarse, and produced noisy results

despite a large number of runs. Second we tracked the root-mean-square amplitude

after exciting the system in a single mode. This procedure was straight-forward, and

produced usable results. Finally, we performed a fourier transform of the chain’s

x-displacement, and tracked each excited mode’s evolution over time. This method

was most accurate.

We note that, if we simply want a qualitative sense of how a given system would

behave, the force curve derivative would be the ideal approach. It requires no simu-

lations of dynamics, and uses only the force curve to predict many of the features of

the system’s stability.

5.8 Summary

In this chapter, we have presented a simple way to predict many of the proper-

ties of a flexible polyelectrolyte’s stability against deformation, by simply examining

the force curve. We were able to predict how the stability of our system would be-

have when changing the chain stiffness, the interaction strength, and the chain-chain

separation.

We found that the stability against deformation is a function of both the wave-

length of deformation, and of the chain-chain separation. To summarize the depen-

dence of the stability on these two variables, we produced stability diagrams for a
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test potential of a Lennard-Jones form (Fig. 5.7), and for an analytical fit to our

simulation force curve (Fig. 5.8). We also examined the stability surface of our sim-

ulation directly, using various methods, and found qualitative agreement with our

predictions.

We found that one can even predict the behavior of flexible polyelectrolytes by

simply differentiating the force curve. The derivative of the force curve was found to

have a direct relationship to the growth rate, and even duplicated details such as peaks

and valleys (Fig. 5.23). Overall, we were able to determine the stability of flexible

polyelectrolytes against small deformations, using several methods, varying widely in

approach and in how exact/approximate. All approaches agreed qualitatively, which

gives us great confidence in results.

Armed with this information, we can now examine how our system behaves over

the long-term, and how these initial linear-in-amplitude perturbations evolve over

time. By using the results of this chapter, we can initialize they system in states

that are more likely to produce interesting structures. That is the subject of the next

chapter.
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Chapter 6

Fluctuations & Structure

6.1 Overview

In the previous chapters, we established that two infinite parallel strings of point

charges surrounded by multivalent counterions would experience an attraction. We

also established that the force between them would lead to some sinusoidal modes

which grow in amplitude. However, the analysis we used only tells us how the modes

behave at very short times and small amplitudes.

In this chapter, we will see how the chain pairs evolve together over time, and

whether or not they form any kind of structure. If they do, we wish to determine how

that structure is affected by the parameters of the system. We also wish to determine

which mode eventually wins and dominates the final structure. If there are several

dominant modes, we are interested in the relationship between these excited modes.

6.2 Setup

We begin as before, with a random distribution of point charges to represent the

counterions. During equilibration, the chains are initially held fixed and linear, a

distance R apart from each other. Once equilibrated, we allow both the counterions
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and the chains to move freely. Since we are interested in how flexible pairs of poly-

electrolytes behave as they approach each other, we will begin by examining rigid

rods, and then slowly introduce flexibility in stages and see how the chains react.

We have already seen that our minimal model can describe the like-charged attrac-

tion seen in real systems and in more complex simulations. Because we have already

established where, in real parameter ranges, we are more likely to find unstable and

non-linear behavior, we can greatly simplify our following analyses by restricting the

thermal energy to ∼ 0.

Our low temperature results form distinct Wigner crystals, reinforcing the sup-

port for this mechanism of attraction (versus Oosawa charge density fluctuations).

Because lowering the temperature is equivalent to increasing the charge strength or

lowering the solvent dielectric, we are essentially looking at the purest form of these

interactions. Higher temperatures are smearing out these patterns, making them

harder to detect.

6.3 Results

We begin our studies by simply letting the system evolve freely, at finite temper-

ature, and examine the results. Once this has been done, we lower the temperature,

implement various constraints, and examine the various ground-state structures that

result under those constraints.

For each situation, we will first present a snapshot of the system in its final

configuration, which is (or close to) the ground-state configuration for that parameter

set. After we have gathered our results, we will compare them to what is know about

similar systems, in the discussion section.
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6.3.1 1/f Noise

As part of our investigation of long-term structure, we initialized the system in a

flat white noise profile, and watched it evolve over a long time. Though snapshots

of the system at various time are not extremely revealing, a time series of the power

spectrum is.
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Figure 6.1: Individual snapshots of the power spectrum, for one particular random
seed, at different times. The initial conditions are a white noise perturbation (flat
line). As the system evolves, we can see from the snapshots that the initial white
noise profile is lost after only 20 sweeps. We later collect the final power spectrum
for thousands of starting configuration, and average them in Fig. 6.3
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Figure 6.2: Power spectrum of the sinusoidal deformations under free evolution. At
t = 0 the system begins with a flat (white noise) profile, but very quickly lower
frequency modes begin to dominate (red peaks).

The power spectrum at different times in Fig. 6.1 show a great deal of variability.

A spectrogram (Fig. 6.2) shows more clearly that there are no persistent patterns

from one time to the next. This suggests that we can average the results over several

MC sweeps. We have done this in Fig. 6.3, and found a result that was surprising.
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Figure 6.3: Here we see the initial white noise spectrum, and the result of averaging
the power spectrum over time. The power spectrum is very clearly of the form 1/f .
The deviation from this at higher frequencies is common, due to greater variability
in this region.

We found that the power spectrum tends very quickly, and very strongly, towards

1/f noise. We discuss the implications and possible causes of this in the discussion

section. For now, we proceed with the original intention: to examine the structures

that flexible polyelectrolytes form. To this end, we continue with the most constrained

system, and examine its ground-state.

6.3.2 Rigid rods

We begin by examining the ground-state configuration of a pair of rigid chains,

when fixed at a separation greater than the equilibrium chain-chain distance. In this
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case, we enforce rigidity by simply increasing the chain force parameter h by several

orders of magnitude.

Figure 6.4: We held the rods (blue chained particles) fixed at distance R = 1.5nm,
and allowed only the counterions (black particles) to move freely. Here we see a
ground-state configuration for this system.

Here, the counterions have been allowed to move in order to find their ground-

state configuration for this separation. Our starting configuration is similar to that

of two widely separated chains. This suggests that, though the chains are being

attracted to each other at large distances, their counterion arrangements remain at

their independent configurations until the chains are very close to each other.

We then allow the chains to move freely as well. They immediately approach one

another, and the counterions in between them stagger into a line. The end result

is that there are twice as many counterions in between the rods as outside of them.

Also to note, even though both rods and counterions were free to move in three

dimensions, the final arrangement was entirely planar.
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Figure 6.5: Same configuration as previous figure, after allowing the chains to move
rigidly and laterally only. As we can see, they moved towards each other, and the
counterions arranged themselves in a regular lattice, with twice as many between the
chains as outside of them. This is known as a Wigner crystal [2] .

6.3.3 Flexible chains, restricted to plane

We now remove the rigidity constraint, but still allow our chains to move only on

the xy-plane. This restriction has no physical analog, and is only a simplification so

we can examine the structures that form. Counterions are free to move throughout

3D space.
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Figure 6.6: Here we can see that, when the chain is restricted to the xy-plane, the
chains form mostly long-wavelength perturbations. A key thing to note is that the
counterions also form charge density waves of the same wavelength.

We find that, for moderate values of the spring constant, the chains remain planar

but undergo long-wavelength fluctuations (in this case, of the same size as the periodic

height Ly). Once again, this seems to be related to the tendency of the system towards

1/f noise, as can be seen by the first few modes of the power spectrum in Fig. 6.7.
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Figure 6.7: The power spectrum for the flexible planar ground state. The two longest-
wavelength modes are dominant, and the first three have a 1/f slope.

Even though we have been mostly interested in somewhat stiff polymer parameters

(to model DNA, F-actin and the like), we have also produced results for the ground-

states of far more flexible chains. The structure formed when the chain particles are

restricted to the xy-plane, can be seen in Fig. 6.8.
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Figure 6.8: When restricted to the xy-plane, but given a very weak spring constant,
the polyelectrolyte chains form this structure. It is essentially a 2D ionic crystal,
with weak bonds holding all negative chain particles together.

6.3.4 Flexible chains, free

If we remove the xy-plane restriction, similar results are obtained. As we will see,

this tendency towards coplanarity is a general feature of this system, at least for the

parameter sets we use.
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Figure 6.9: Our low-temperature results for flexible and free polyelectrolytes, for two
different spring constants.

One thing to note, however, is that when allowed to move off-plane, the loose

runs exhibit a very clear long-wavelength mode which, unlike in the rigid rod case,

is in phase for both chains. The counterions and chain particles in this case are still

arranged in a 2D ionic crystal.

6.3.5 Flexible chains, symmetry-breaking

In the previous sections we have progressively removed the artificial constraints

from the system, until the chains were allowed to move freely under the three main po-
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tentials (electrostatics, repulsive core, and chain forces). We now investigate whether

the introduction of a very weak potential to prefer (locally) one sense of torsion over

another would be all that’s required to produce a helical configuration.

We ran simulations using free chains with the symmetry breaking potential:

Vbp(r, φ) = εbp(φ− φ0)
2 ,

where again φ is the dihedral angle between corresponding monomers on opposing

chains. What we found is that, even when the base-pair energy was weak when

compared to the electrostatic energy (εES/εbp ∼ 1/100), the chains would coil into

helices.

Figure 6.10: The final stable configuration of a chain pair, when allowed to move
freely, with a weak symmetry-breaking force. The average pitch for this configuration
is 2.4nm, which is reasonably close to DNA’s 3.4nm, given the simplicity of the model.
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Figure 6.11: Here we have the final configuration for a stiffer chain. The resulting
pitch is 8.8nm, which is ∼ 40% as coiled as DNA. We were unable to use parameters
for stiffer chains, such as F-actin, due to the size of the simulation required (F-actin
has a pitch of 70nm [3], meaning we would only have one turn per 70nm/0.34nm =
200 monomers).

We then examined the degree of helicity as a function of the symmetry breaking

potential ebp. We wished to determine whether helicity increased linearly as the

potential was increased, or if there was a threshold value, below which helicity was

0, and above it finite. To do this, we simply calculated the angle between the two

matching monomers on each chain, and summed the difference of this angle along the

entire length of the chains. If the sum was positive, that indicated a right-handed

twisting.
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Figure 6.12: Amount of helicity as a function of the symmetry-breaking potential
ebp. We can see that even at near-zero values, the potential was enough to produce a
net positive helicity. As the potential was increased, the total helicity for the chain
quickly approached a saturation value at ∼ 0.09 rad (the average ∆θ per monomer).

What we found is that helicity begins to appear as soon as any amount of symme-

try breaking is introduced, within the precision of our study. The amount of helicity

over the whole chain then rapidly reaches the saturation value for that given preferred

angle. The implications of this will be addressed in the discussion section.

6.4 Discussion

6.4.1 1/f Noise

We have seen that, whether we start our system with a single excited mode (stable

or unstable), with white noise, or even flat, the chains quickly begin to fluctuate with

a 1/f power spectrum. This type of noise (also called flicker noise, long-term mem-

ory, or pink noise) has been found in economics, behavioral psychology, atmospheric
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physics, electronic signals, city populations, and the neural activity of the brain. No

single simple explanation exists for its ubiquity. A power law spectrum also implies

that the perturbations of this system are scale-free. In other words, when we increase

or decrease the scale of the system (the periodic height Ly), our noise profile should

be identical. We have verified that this is indeed the case, with simulations at twice

and half the size of our main results.

Based on the Bak-Tang-Weisenfeld sandpile model of self-organized criticality[63],

we can attempt to find a phenomenology to explain the 1/f scale-invariant fluctua-

tions in our system. While other models that aren’t based on self-organized criticality

might apply, we found that the BTW sandpile model had the closest phenomenolog-

ical mapping to our system. Based on the sandpile model, three things are needed:

a medium, a random disturbance, a critical threshold of stability, and a restoration

after reaching criticality. For the sandpile model itself, the following are the elements

needed for self-organized criticality, and 1/f noise.

1. The sand pile as a medium.

2. Random addition of sand grains to surface sites.

3. A critical threshold of instability for each site.

4. A way for the disturbing sand grains in an unstable site to propagate to its

neighbours.

5. An eventual restoration of the medium.

In our system, we have the following:

1. The chain as a medium.

2. Random addition of counterions to ”sites” along the chain.
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3. A critical threshold of stability for the whole system (as seen by stability dia-

grams). Since random local addition of counterions changes the system’s aver-

age R & k, this addition can also move the system past the stability threshold

4. When the local pertubation is unstable and grows, the deformation propagates

to the site’s neighbours.

5. The chain-chain attraction, and the spring restoring force, will eventually bring

restore the system.

Though we have only phenomenological similarities between the two models,

there are parallels for every element. As with other systems with self-organized

criticality[64], ours is robust to fine-tuning: all initial conditions and parameters re-

sulted in 1/f noise spectrum eventually. A theory of the self-organized criticality of

this system would be of interest. It should be noted, however, that this 1/f noise has

only been observed so far to extend over one decade, and that a more in-depth study

of this phenomenon should first establish whether this noise profile extends over a

larger region.

6.4.2 Structures

Given that most studies on flexible polyelectrolytes use finite and free segments, our

results in this chapter are novel. We have seen that various features from line-charge

studies persist even when the constraints are removed, such as the collinearity of the

counterions both inside and outside the chain, the coplanarity of the entire system.

If we couple the fact that the counterions and chain particles are entirely coplanar,

and that they are always fully condensed if the Manning parameter is ξ < 1, then we

might be able to perform these Monte Carlo simulations entirely in 2D, while using

the same potentials (albeit with z = 0). This would greatly reduce the phase space

of the system, and speed up the simulations.
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(a)

(b)

Figure 6.13: Results from (a) our simulations, and (b) from [4]. We can see that
the ground state configuration for rigid lines is the same in both cases, despite using
different simulation methods.

As can be seen by the comparison Fig. 6.14, our results are comparable with stud-

ies by [4]. They used a different simulation package (ESPResSo, whereas our was as

described earlier), different periodic potentials (their MMM1D vs. our Lekner sums),
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different repulsive potentials (Weeks-Chandler-Anderson vs. Repulsive Lennard-

Jones). This further supports the robustness of these results, since they do not

depend on the details of the simulation methods used.

The main thing to note with our flexible chain simulations is that the power spec-

trum is still partially 1/f even at these low temperatures, and that the perturbations

result in a corresponding wave of charge density.

Figure 6.14: Results from [5]. Here we have (a) uncondensed F-actin and (b) con-
densed F-actin bundles. The counterions are seen to form a charge density wave,
which in turn couples with the F-actin helix. This has been verified with X-ray
measurements as well.

This kind of charge density wave has been seen wherever there is any topological
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variation along the chain axis. For instance, F-actin has grooves that, when pairs of

F-actin attract, cause the counterions between them to form waves. From our other

studies it is clear that these waves are not required to create like-charged attraction.

The ground-state structures we found depended greatly on the constraints on the

system, but they all shared some general features. First, unless one direction was

made energetically favorable (using the symmetry-breaking potential), the chains and

counterions remained essentially coplanar even when allowed to be completely free.

We also note that even in these zero-temperature limits, the final configuration

exhibits some degree of 1/f noise. This suggests that this is a fundamental feature of

the system and the energies involved, and not only a feature of higher temperature

fluctuations.

As for helicity, we note that the potential used is ∼ 100 times weaker than the

other potentials, yet still had a strong effect overall. Also it should be noted there

were instances of torsion and helicity even when there was no symmetry-breaking

potential.

We found that, for the parameters in the DNA-like system, the amount of helicity

in the final structure was very sensitive to the symmetry breaking potential. Even

when εES/εbp ranged from 1/1000 to 1/10 there was a significant tendency towards

forming helices, as can be shown in figure 6.15.
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Figure 6.15: The tendency towards helicity starts immediately upon the addition of
a symmetry-breaking potential, and quickly rises to a saturation point (at 0.09 rad
per monomer) as the strength of this parameter is increased.

While our parameters attempt to model a DNA-like system, our model is still

too minimal and coarse to make general statements about the tendency of real DNA

strands to form helices, and whether the counterion-induced like-charged attraction

has a significant role to play in this process. Nevertheless, the strength of the tendency

towards helicity is surprising, and merits further study.
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Chapter 7

Conclusions

7.1 Further work

There is much more that could be done, even without extending our model system.

For instance, we have not explored the time-dependent dynamics of the chains when

free or investigated how they fluctuate. In focusing on the attractive force, the

stability to deformation, and the final configurations, we have not considered the rich

behavior that a time-dependent study would yield.

A closer link to experimental results, by determining thresholds of stability for real

finite polyelectrolytes for instance, would help us to use this model to lend support

(or detract from) theories regarding the origin of certain behaviors and interactions

(such as the like-charged attraction or DNA’s ability to condense).

If we were to extend our current model slightly, we could investigate a great

number of other behaviors. For instance, we could incorporate a hydrogen-bonding

interaction between adjacent monomers of opposite chains, to simulate the base-pair

bonding of DNA.

Another aspect that has not been addressed is end-effects. We have not considered

how our results would change if we turn our infinite chains into finite chain segments.

116



Also, experiments with adjustable “dumbell” counterions have shown that counterion

size can have an important effect on the interaction between polyelectrolytes.

Whether the chains are initialized with a single excited mode, white noise, or

flat, there seems to be a strong tendency towards a 1/f noise profile. We have a

phenomenological explanation based on the sandpile model, but we have not inves-

tigated this in detail (either analytically or numerically). We have not determine

whether the noise is a result of the periodicity of the system, and whether it is truly

scale-invariant.

7.2 Summary

In this work, we have successfully examined the behavior of a minimal model of two

infinite, flexible polyelectrolytes. With such a complex problem space (infinite range

electrostatics, large number of potential configurations), it is noteworthy that we

were able to reproduce many of the behaviours seen in real systems.

For instance, we successfully reproduced the like-charged attraction seen in other

works (both experimental and simulated). We extended this by finding an approx-

imate analytical expression for the force curves, based on modified Bessel functions

of the second-kind (which arose from the discrete particle-particle electrostatic inter-

actions in a 1D periodic slab).

We then used the force curve to predict how two parallel polyelectrolytes would

respond to deformations. Since most previous studies examining the like-charged

attraction between polyelectrolytes used rigid rods, this was an interesting area of

examination. We found that the polyelectrolytes were mostly stable outside a cut-off

separation, and that the deformations were linearly unstable (at long-wavelengths)

as the chains approached each other. This agreed with predictions based on a simple

mean-field force curve approach.
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Finally, we used the information about the force and the linear stability to initial-

ize the system in states that were more likely to lead to interesting structures. We

examined the ground-state structures under several constraints: rigid rods, planar

flexibility, full flexibility, and bond-angle preference.

We found that the general behavior of each step was a predecessor for those

following. Step zero is counterion condensation. Step one is “approach”, where the

rods close the gap and approach their equilibrium separation. Step two is “zippering”,

where the counterions surrounding each individual chain would begin to arrange

themselves in a staggered line between the chains. If the chains are then allowed

to flex, they would now begin Step three, “deformation”. The wavelength of this

deformation was dependent on the stiffness of the chain force, as expected from the

stability analysis.

We found that even if the rods were not restricted to moving within the xy-plane,

they would remain on that plane unless a symmetry breaking potential was intro-

duced. On adding this potential, we found that the chains would wrap around each

other in a helix, and that the helix would undulate with a characteristic wavelength.

We also found that the tendency towards helicity did not require the symmetry break-

ing potential to be above a certain threshold.

Finally, we found that pairs of infinite flexible polyelectrolytes in solution with

neutralizing counterions exhibit fluctuations of 1/f noise. This result was robust to

all parameters used. We briefly presented a possible parallel to the sandpile model

of self-organized criticality.

Though we used only point-charges, interacting via electrostatics, a chain poten-

tial, and a repulsive core, our model has given us information on how a pair of long

flexible polyelectrolytes behave as they approach each other.

In summary, we gain valuable insight with models such as these. They allow us

to determine the minimal set of features required to reproduce the behavior we are
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interested in. This reduction of the problem to its core elements is in itself a result,

as we are exposing the mechanisms that make the most significant impact on overall

behavior and structure.
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