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Abstract

This thesis describes the Transfer Function and Eigenfunction Analysis (TFEA) method: an
efficient eigenanalysis method for estimating the small signal stability of large interconnected
power systems. The method consists of reducing the order of each generator, which is accurately
modeled by m state-variables, to only two state-variables, including rotor speed and angle
deviations. This efficiency is achieved without loss of dynamic accuracy because the information
of the other (m-2) state-variables is compacted into transfer functions in a frequency-dependent
state-matrix [A(®)]2.gx2ng. Because the computation count of QR eigenanalysis increases with the
cube of system dimension, computation efficiency arises from evaluating the reduced state
matrix [A(@)]ongx2ng, instead of the full state matrix [A]mxng)x(mxng), IN @ pOWeEr system consisting
of ng generators. The acceptability of the method is based on the engineering knowledge that the
electromechanical modes are the least damped modes, and the system stability depends on these
eigenvalues’ being on the left side of the complex s-plane. In practice, only a small number of
low-frequency electromechanical modes determine stability. Consequently, the accuracy of the
TFEA method is improved for selected electromechanical modes by applying the eigenvalue
sensitivity formula. In the next step, the TFEA method is combined with the well-known Arnoldi
method for further improvement of efficiency.

This thesis also develops a method for simultaneous tuning of power system stabilizers
(PSSs). The proposed method combines the timesaving TFEA method with the eigenvalue
sensitivity concepts and optimization techniques. The key feature of the method is the eigenvalue
sensitivity formula, which relates perturbation changes of eigenvalues to perturbation changes of
stabilizer parameters. In PSS tuning, the parameters are one amplification gain and the many
time constants of each PSS. Tuning consists of formulating an objective function which embeds
the desirable improvement in damping of the eigenvalues. To this end, an optimization algorithm
(from MATLAB) is applied to satisfy the objective function while meeting the size constraints
placed on the parameters.

The accuracy, efficiency and robustness of the TFEA method and the PSS tuning method are
compared with the benchmark eigenvalues based on the full state matrix [A]gnxng)x(mxng). The
numerical tests use a 16-generator and a 69-generator power system. The test results,

demonstrate the effective performance of the proposed methods.



Abrégé

Cette thése décrit la Fonction de Transfert et 1'Analyse de la méthode de la Fonction propre
(TFEA): une méthode efficace d'évaluer stabilité¢ de petits signaux dans les grandes installations
¢lectriques connectées. La méthode consiste en réduire I'ordre de chaque générateur qui est
précisément modelé par des variables d'état m a seulement variables de deux états incluant la
vitesse de rotor et des écarts angulaires. L'efficacité est réalisée sans perte d'exactitude
dynamique parce que les informations des autres variables d'état (m-2) sont rendues compactes
comme des fonctions de transfert dans 1’état de matrice [A(w)]angx2ne que dépend on fréquence.
Car le compte de calcul d’analyse QR augment avec le cube de dimension de systéme, 1'efficacité
de calcul vient d'évaluer état de matrice [A(w)]ongxang Téduit au lieu de état de matrice
[(A)]mxng)x(mxng) plain de générateurs ng. L'acceptabilité de la méthode est basée sur la
connaissance d'ingénierie que les modes électromécaniques sont les modes moindres amortis et
la stabilité¢ dépend de leurs valeurs propres étant sur le c6té gauche du s-plan de complexe. En
pratique, seul un petit nombre de modes électromécaniques a basse fréquence déterminet la
stabilité. Par conséquent, 'exactitude de la méthode TFEA est améliorée pour ces modes en
appliquant la formule de sensibilité de valeur propre. Dans I'étape suivante, la méthode TFEA est
combinée avec la méthode bien connue d’ Arnoldi pour plus d'amélioration de I'efficacité.

Cette thése développe également une méthode d'ajustassions simultanée des stabilisateurs
(PSSs). La méthode proposée combine la méthode d’économie de temps TFEA avec le concept
de sensibilité de valeur propre et de techniques d'optimisation. La fonctionnalité clé de cette
méthode est la formule de sensibilité qui relie les changements de la perturbation des valeurs
propres aux changements de la perturbation de parametres de systéme d’alimentation électrique.
Dans le réglage de PSS, les parameétres sont une amplification gain et les nombreuses constantes
de temps de chaque PSS. Le réglage consiste a formuler une fonction objective qui intégre
I'amélioration souhaitable de I'amortissement des valeurs propres. A cette fin, un algorithme
d'optimisation (a partir de MATLAB) est appliqué pour satisfaire la fonction d'objectif tout en
réalisant contraintes de taille placées sur les parameétres.

L'exactitude, l'efficacité et la robustesse de la méthode TFEA et la méthode réglage de PSS
sont comparées avec les valeurs propres d'un référence basé sur I'é¢tat complet de matrice
[(A)]n <ng)x(m=ng)- Les tests numériques utilisent un 16-générateur et un 69- générateur du systéme

d’alimentation électrique. Les résultats présentés, démontrer 1'efficacité des méthodes proposées.
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Chapter One

1.Introduction

1.1 Power System Stability

“Power system stability is the ability of an electric power system, for a given initial operating
condition, to regain a state of operating equilibrium after being subjected to a physical
disturbance, with most system variables bounded so that practically the entire system remains
intact” [1]. According to the nature of the disturbance, the system configuration and the initial
operating conditions, different stability issues exist. The definitions and classifications of power
system stability are explained in [1, 2, 3, 4].

An important stability problem is rotor angle stability, which involves the study of the
electromechanical oscillations inherent in power systems [1]. The analysis of rotor angle stability
is classified under: (i) transient stability and (ii) small signal stability. Transient stability studies
include identifying critical fault clearing time and assessing system stability margin, when
subjected to a severe disturbance. The working tool makes use of digital simulation. In small
signal stability, it is assumed that the power system has reached the steady-state equilibrium. The
question is whether it returns to its equilibrium after encountering a small disturbance. Small
signal stability problem is usually associated with insufficient damping of oscillations [1]. The
working tool is eigenvalue analysis. Small signal stability is assured when all the eigenvalues of

the linearized state matrix of the power system lie on the left side of the complex s-plane.



1.2 Problem Definition: Efficient Eigenanalysis of Power
System for Small Signal Stability Analysis

As power systems have pooled together to enjoy the benefits of scale of large interconnections,
they have been troubled by inter-area oscillations. IEEE and CIGRE have issued special
publications to monitor the subject [5, 6, 7, 8, 9]. Viewed as a small signal stability problem,
inter-area oscillations have been tackled by eigenfunction analysis applied to the linearized,
time-invariant power system state matrix [4] [10, 11]. The full state matrix [A4] is very large,
unsymmetrical and non-sparse. The well-known QR method, which is robust and has fast
convergence, is suitable [12]. However, it cannot be applied directly when the state matrix
dimension is large, because it is very time consuming and inefficient [12, 13, 14]. The derivation
of the full state matrix is shown in Section 1.3.

Detailed modelling of the entire system is required for accurate power system studies. A
system with ng generators, each having an average of m=11 state variables, has system order of
11ng. Solving all the eigenvalues of an 11ngx11ng state matrix is overly time-consuming when
ng is large. Therefore, there has been research based on reducing the computation time by
developing fast and efficient methods [15, 16, 17]. This consists of finding only a selected
number of eigenvalues, which from the engineering experience are the dominant
electromechanical modes. The methods taken from mathematicians include the Arnoldi method
[15, 16] and power iterations [18]. Another method, which integrates the insights of engineers
familiar with power networks, is the AESOPS (Analysis of Essentially Spontaneous Oscillations
in Power Systems) algorithm [19]. A brief introduction on these methods is provided in Section
1.4.

In power system eigenanalysis, it is the accuracy of the eigenvalues closest to the imaginary
axis that determine stability. This fact is implicitly acknowledged by the researchers of [15, 16,
17], because the speed-up efficiency in their algorithms is derived from solving the few
dominant eigenvalues clustered together. However, without laboriously solving the eigenvalues
of the 11ngx11ng state matrix, a priori, one does not know where the dominant modes are.

The research of this thesis fills the gap by offering a preview of the eigenvalues of all the
electromechanical modes so that a decision can be made regarding which are the dominant

modes. In general, all the well-known and accurate eigenanalysis methods, such as Inverse



Iteration [18], Arnoldi method [15, 16] and AESOPS [19], require such previews for efficient
performance. This thesis presents the Transfer Function and Eigenfunction Analysis (TFEA)
method, which formulates a reduced order frequency-dependent [A(w)]2ngx2ng matrix that
efficiently determines all the eigenvalues of the system. The TFEA method is introduced in

Section 1.5.

1.3 Full State Matrix of Power System

The dynamics of a power system is represented by an N-tuple vector x, governed by a set of first
order ordinary differential equations, such as

dx ]
Z—J_p(ﬁ)- (1-1)

Vector x includes the dynamics of the states of the system components, such as the synchronous
generators.

In small signal analysis, the state vector is written as x=X;+Ax, where the operating state
vector Xj is solved by a load flow algorithm, and Ax is the vector of small disturbance. The small

signal perturbation is then performed by first order Taylor series expansion,

AR _ i, +an
I () | (2
=f(X,)+ [5—] x, Ax +second and higher order terms.
J x X

Retaining the first order perturbation state in (1-2), one obtains the linearized equation of

R INN: (13)
where [4]yxy is the Jacobian matrix evaluated at Xj in (1-2) and is called the full state matrix of
the system.

When each synchronous generator of the power system is represented by m-state variables,
and the power system has ng generators, then N=mxng. The m-state variables represent the
magnetic fluxes (currents) of the generator, the rotor angle, the rotor speed and additional states

from turbine/governor, Automatic Voltage Regulator (AVR), exciter, power system stabilizer

(PSS) and other controlling elements.



To derive the full state matrix, all the generator equations are perturbed and arranged in the

state space form of (1-3), which results in the non-sparse matrix of [4]mxng) x(mxng)»

[ st].g] ] i St].gl ]
SHg, S48,
d : — :
E ’ - [A](mxng)x(mxng) ' (1-4)
Stlgng St]gng
_Stmg”g_ (mxng)x1 —Stmg"g— (mxng)x1

In (1-4), stig; is the i" state-vector of generator j. In this research, the number of states per
generator is m=11.

[A]pmxng)xm=ng) 15 @ time-invariant matrix and has (mxng) eigenvalues. Based on selective
modal analysis in [20], [4] has (ng-1) pairs of complex conjugate eigenvalues, which are
distinguished from the others by their long time constants. Each pair belongs to one or to a group
of generators. From the interpretation of the eigenvectors, these modes are associated with the
states representing the rotor angle and speed; thus, they are known as electromechanical modes.
The remaining state-variables relate to the electrical quantities and to the dynamics of controlling

elements.

1.4 Background on Selective Eigenanalysis

The linearized power system model of (1-4) is easy to derive for QR eigenanalysis [12].
However, this full state matrix is in general not sparse, making QR analysis prohibitively
expensive for large power systems. In contrast, sparsity-based methods have been developed,
which have the following features:

- Selective eigenanalysis that finds a specific set of eigenvalues efficiently; and

- Good convergence characteristics and numerical stability [16, 21].



Different methods have been proposed to derive sparse system models [17, 22, 23], to be used
by the sparsity-based methods. The important sparsity-based eigenvalue methods for general
unsymmetrical matrices are [16]:

- Power Iterations and Inverse Iterations [18];
- Lanczos method [18];

- Simultaneous (Subspace) Iterations [24]; and
- Arnoldi method [15, 16].

The most powerful method is the classical method of Power Iterations [18]. This method
consists of repeated matrix-vector multiplications, which converges to the eigenvector
corresponding to the dominant eigenvalue. The Lanczos method [18], based on the algorithm of
Power Iterations, is very successful for the symmetrical eigenvalue problem. A modification of
Lanczos method suitable for unsymmetrical matrices is described in [18, 21]. The application of
Lanczos method to the eigenanalysis of power systems is mentioned in [17, 23, 25].The Power
Iterations method is very robust, but it has slow convergence [26, 27]. The Rayleigh Quotient
Iterations method (RQI) of [28] and the Newton method are modifications to Power Iterations to
improve convergence speed. The Newton method has quadratic convergence properties, but it is
not robust [29, 30, 31].

Simultaneous (Subspace) Iterations (SI), is a generalization of Power Iterations, in which
instead of a single vector solution, a subspace solution is obtained. Simultaneous Iterations,
although robust, suffer from the same slow convergence as Power Iterations. This method was
originally proposed in [24] for the symmetrical eigenvalue problem and then extended to general
unsymmetrical matrices [16, 32, 33].

The Arnoldi method is similar to Simultaneous Iterations [15, 16]. The subspace is built as a
unitary Krylov subspace to approach the dominant invariant subspace of a matrix [4] [34, 35].
The Arnoldi method is explained and applied to the research of this thesis in Chapter 4. Both
Simultaneous Iterations and the Arnoldi method have reliable convergence characteristics. Both
are successful in the eigenanalysis of large power systems. The Arnoldi method is the faster of
the two.

In addition to the sparsity-based methods, other methods exist for the purpose of selective
eigenanalysis, such as the S-Method [17] and Selective Modal Analysis (SMA) [20]. The S-

Method is efficient in determining the unstable modes belonging to a group of a few generators.



Selective Modal Analysis (SMA) has been developed to find a group of important eigenvalues of
a power system by reducing the system order [20]. The reduced order model is achieved using
special techniques to identify variables that are relevant to the selected modes [36, 37].

The iterative method of AESOPS (Analysis of Essentially Spontaneous Oscillations in Power
Systems) introduced in [19], is a computer program developed specifically for the study of
oscillations in large electric power systems. This method finds one eigenvalue at a time. It
calculates the eigenvalues of the electromechanical modes without formulating the entire system
state matrix. It uses a frequency response approach to calculate the eigenvalues associated with
the rotor angle modes. References [22, 25, 38, 39, 40] describe improved implementations of the
AESOPS algorithm.

The initial estimate in such iterative methods is very important to the speed of convergence.
According to [25], the intermediate results of the AESOPS method may be used as an initial
estimate for Inverse Iterations for more rapid convergence. For example, it can be seen from [25]
that, in some case studies, the AESOPS algorithm converged after 45 iterations. However, if the
non-converged eigenvalue estimates, obtained from the 10th iteration of the AESOPS algorithm,
was used as the initial estimate for the Implicit Inverse Iteration algorithm, convergence was
obtained after 6 iterations. This simple example verifies the importance of methods such as

TFEA for providing a preview of all electromechanical modes.

1.5 Proposed Method: Transfer Function and Eigenfunction
Analysis (TFEA) Method

1.5.1 Stability of Electromechanical Oscillations

Small signal stability is assured when all the eigenvalues of the linearized system state matrix lie
on the left side of the complex s-plane. As the eigenvalues associated with electrical circuits and
control “black boxes” lie on the far left (i.e., heavily damped), this thesis focuses on lightly
damped electromechanical modes associated with the rotor angle and speed deviations.
Electromechanical oscillations between interconnected synchronous generators are phenomena
that are inherent to power systems. The stability of these oscillations is of vital concern, and is a

prerequisite for secure system operation [3].



Small signal stability analysis, using the full state [4] matrix of (1-4), is not attractive for the
following reasons.

1- The computation time of the QR eigenanalysis method increases with N°. For N=m xng,
the computation time becomes prohibitive when ng, the number of generators, is large. It
is very time consuming for large matrices and is not practical.

2- Small signal stability is determined by electromechanical modes.

Therefore, it is desirable to have the state matrix of electromechanical oscillations only. This

matrix is called the Reduced State Matrix.

1.5.2 Reduced State Matrix [4(®)]2ngx2ng

For each generator in the power system, Newton’s Law in the rotational frame, governing the

speed of the rotor with the moment of inertia of H, consists of
-1 7_ -
pA®, =L (T, -T) (1-5)
po =wAw, (1-6)
where T, is the mechanical input torque, and 7, is the generator electrical torque. Additionally,
Aw, 1s the per unit rotor speed deviation, ¢ is the rotor angle in electrical radians, wy is the base

rotor electrical speed in rad/s and p is the differential operator d/dt, with time ¢ in seconds [2].

Perturbing and linearizing (1-5) and (1-6) results in

PA®, =51 [AT, ~AT] (1-7)

PAO = 0. (1-8)
The perturbation electrical torque AT, is resolved into two components: one in phase with the

rotor angle deviation and the other in phase with the rotor speed deviation [1]:

AT = KAS+K A, (1-9)
Therefore, (1-7) is written as
PA®, =5 [AT, — K AS— K A0 (1-10)

where Kg and Kp are called synchronizing and damping torque coefficients, respectively.
Insufficient synchronizing torque causes an increase in rotor angle through a non-oscillatory

mode, and insufficient damping torque can cause rotor oscillations of increasing amplitude [1].



Combining (1-8) and (1-10) results in the matrix form of

[ﬁﬂ{_& _é}[iﬂ{L}ATm- (1-11)
" 2H 2H r 2H

Because the rotor angle and speed deviations are the only state variables in (1-11), the state
matrix is called the “reduced state matrix”. It should be borne in mind that the full state matrix of
(1-4) has m (i.e., 11) state variables per generator.

When sufficient information is available for Ks and Kp, solving the reduced state matrix of
(1-11) yields the eigenfunctions associated with electromechanical modes. The contribution of
this research is to provide such information for an interconnected system.

The method adopted in this thesis is an extension of the synchronizing and damping torque
coefficients of (1-9), developed for a single generator to ng generators. To embed the dynamic
properties of (m-2) state variables, the power system stabilizer, the exciter and other electrical
state variables are represented by transfer functions. Therefore, the synchronizing and damping
torque coefficients take the form of transfer functions [Ks(w)] and [Kp(w)]. This method is given

the name Transfer Function and Eigenfunction Analysis (TFEA).

1.6 Thesis Contributions

1.6.1 Transfer Function and Eigenfunction Analysis (TFEA)
Method

It is the ambition of all researchers to contribute to their national economies and to the
knowledge in the field. The main contribution is the Transfer Function and Eigenfunction
Analysis (TFEA) method. As computation counts by the QR method are proportional to the cube
of the matrix dimension, the cost reduction in reducing from [A]ii1ngxi1ng t0 [A(®)]2ngx2mg 1S
significant. The TFEA method is fully described in Chapter 2.

The inherent weakness in the TFEA method is that [4A(w)] is frequency dependent. In a
system with ng generators, there exist (ng-1) electromechanical oscillatory modes, which have
modal frequencies w, (n=1, 2,..., ng-1). Because (ng-1) eigenvalue evaluations of [4(w,)] (n=1,
2,..., ng-1), would be expensive, the thesis performs only a few eigenvalue evaluations of

[4(wk)] at the so-called representative frequency wg.
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1.6.2 Accurate Prediction from Eigenvalue Sensitivity Formula

It is shown in Chapter 2 that the eigenvalues predicted by [4(wg)], which have modal
frequencies w, (n=1, 2,..., ng-1), are accurate only for modes whose frequency w, are close to
ok . Recognizing such weakness, a computationally efficient method, based on the eigenvalue
sensitivity formula of [41], has been developed and shown to be efficient and accurate.

In application, the TFEA method enables all the electromechanical modes to be solved from
the eigenanalysis of [A(wk)], so that the few dominant ones that determine stability are
identified. Improved accuracy for each mode w, can be economically obtained by using the

eigenvalue sensitivity formula.

1.6.3 Improving Computational Efficiency by Applying Curve
Fitting Interpolation to the TFEA Method

Applying the eigenvalue sensitivity formula can be helpful; however, it is costly when all the
modes are required to be determined accurately. Such cost, although less than the cost of
eigenanalysis, motivates the research to proposing an original method that reduces the
computation cost while preserving the accuracy. The method is based on a combination of: (i)

the TFEA method, (ii) eigenvalue sensitivity, and (iii) curve fitting interpolation.

1.6.4 Combining TFEA with Modified Arnoldi Method

The TFEA method is combined with the well-known Modified Arnoldi Method (MAM) [16],
demonstrating the ability of TFEA to facilitate more accurate methods, thereby improving their

efficiency. The efficiency comes from applying MAM to [A(®)]ongx2ng inStead of [A]1ngx11ng-

1.6.5 Coordinated Tuning of Power System Stabilizers (PSSs) of
Large Power Systems

The TFEA formulation of [4(w)] matrix includes Power System Stabilizers (PSSs) as transfer
functions. Each PSS has one amplifier gain and several time constants of a “black box”, which
compensates for the long delay of the field winding. The amplifier gain and the time constants

are treated as parameters to be “tuned” in the eigenvalue sensitivity formula. Because the [4(w)]



matrix couples ng generators together, the eigenvalues can be “tuned” simultaneously, as
required in an interconnected power system. The thesis turns to optimization algorithms
available in the MATLAB library as mathematical tools to implement the tuning method.

This research has developed a general computation tool for all kinds of tuning strategies such
as minimizing the PSSs gains or maximizing the damping of the low frequency modes. The
tuning exercises involve a 16-generator and a 69-generators system, in which each PSS have one

amplifier gain and four time constants.

1.7 Thesis Overview

In this thesis, the TFEA method is explained in Chapter 2. In Chapter 3, a discussion of the
method’s efficiency is provided, and the curve fitting interpolation is introduced to reduce the
computation time without losing the accuracy. In addition, the application of TFEA to selective
eigenanalysis by the Modified Arnoldi Method is described in Chapter 4. Chapters 5 and 6 show
that a combination of TFEA, eigenvalue sensitivity and optimization algorithms constitutes a
powerful computational tool for coordinated tuning of PSS in a large interconnected power
system.

In each chapter, numerical results from different test systems are presented to demonstrate the
efficiency of the proposed method. Finally, the conclusion of the research and future research

subjects are provided in Chapter 7.
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Chapter Two

2.Transfer Function and Eigenfunction Analysis

(TFEA) Method

2.1 Overview

This chapter introduces the reduced state matrix of [A(®)]zngx2ng, Which is formed by the TFEA
method. The method combines the equations of synchronous generators and associated controls
with the equations of the system network in the format of small signal stability analysis.

It will be shown that for a system with ng generators, [Ks] and [Kp] of (1-9) are expanded as
frequency-dependent matrices of [Ks(w)] and [Kp(w)]. Therefore, for ng generators, the torque

equation of (1-9) would be reformed as,

AT, | Ky (). K, (0). K, () Tas] [ K (@). K (@). K, (@) [ 2w,

el

AT, |=| Kg(@).Ky(®).Kg, (@) || A, |+| K,y(@).K,(0).K,, (@) || Ao, |. (2-1)

) 1

(AT, | K(@). K, (). K, () | _A5 | K (@) K, (@) K, (@) || A

eng_| ng | mg_|
One defines

[Ks(0)]=[Kg,(@)] ij=12,..., ng (2-2)

[Kp(@)]=[Kp(@)] i,j=12..., ng (2-3)

Therefore, the reduced state matrix of (1-11) is rearranged for ng generators as,

11



AS Ad Ao a, a, || Ad
{Aw} O [Aa’z] " {ij i [azl azj[Aw,]' e

(3

It should be noted that the mechanical torque is assumed to be constant, so A7), is neglected. The

state variables and sub-matrices of (2-4) are:

AS=[AS,...,AS, ) (2-5)
Aw =[A,....Ad, ] (2-6)

[, =10]0 2-7)

[a,) = 1], (2-8)

(@, (@)] = ~[H],,..,, [K{(@)],,., (2-9)
[a, (@) = ~[H], 4 [K ()], 1 (2-10)

where Ao; (i=1, 2,..., ng) and Aw,; (i=1, 2,..., ng) are the perturbation rotor angle and speed
deviations for the ng generators. [[],oxne 1s the identity matrix, wo is the system nominal
frequency (i.e., 377 rad/s), and [H],gxne 1s the diagonal matrix of generators inertias, as

[H],.. =diag(2H) i=12,..., ng. (2-11)

ngxng

[A(w)] 1s the frequency-dependent reduced state matrix for a system with ng generators. Since
each generator is modeled by two state variables, regardless of the system complexity, the order
of the matrix [4(w)] is always 2mg. Once this matrix is formed, the QR analysis provides
complete information for the electromechanical oscillations. The simple diagram of Figure 2-1
shows the steps performed in TFEA to form [Ks(w)] and [Kp(w)] matrices. All the steps are

described in the following sections.
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Generator Equations

v

v

generator voltages in terms of
generator currents, rotor angle and
speed

generator torque equation in
terms of generator currents

network

equations

generator currents in terms of
generator rotor angle and speed

>
A 4

generator torque equation in terms of
generator rotor angle and speed

v

torque coefficients form the synchronizing and

damping torque matrices

Figure 2-1: TFEA intermediate paths to form the reduced state matrix.

2.2 Complete Set of Electrical Equations of the Synchronous

Generator

The generator equations include the mechanical equations of (1-8) and (1-10) as well as the

electrical equations shown in this section. The background of this section is taken from Chapter 3

of reference [2]. The generator equations are expressed in dg0 frame in per unit with time in

seconds. In the following equations, two g-axis damper windings are considered with the

subscripts 1g and 2q. Only one d-axis damper winding is considered with the subscript 1d [2].

The subscript a and fd are denoted to the stator and field circuits respectively. The L,;-base

reciprocal per unit system is chosen which reflects most closely the physical features of the

generator [2]. In the L,s-base per unit system, all the mutual inductances between the stator and

rotor circuits on each axis (d and ¢q) are equal and are called L,; and L,, respectively. Therefore,

Lafd :Lfda =L, =Ls,=L,

a

L

akq

=L

kqa aq

13

=L for k=12

(2-12)

a

(2-13)




L L

e (2-14)
The per unit stator and rotor flux linkage equations in dg0 frame, with the inductances in (2-12)-

(2-14), are:

fdd =

W, =L+ Liy+Liby (2-15)
W, =-Lji+Lj,+L.pb, (2-16)

Y, =-Lj, (2-17)

Yo =Lyt Laha = Luda (2-18)
W =L+ L — Loy (2-19)
VY, =Lj,+Lj,—Lj, (2-20)

VY, =L+ Log,—L.j, (2-21)

where i; and i, are the stator currents in d and g axes respectively. L, and L, are the stator self-
inductances and Ly, L;4, Li14 and Ljy, are the self-inductances of the field and damper winding
circuits.

Based on the flux linkages, the per unit stator and rotor voltage equations are as below:

e,=p¥,-Y 0.-Rji, (2-22)
e,=p¥ +¥,0-Rj (2-23)
e =p¥y—Rj, (2-24)
e, =pY  +R i, (2-25)
e,=0=pY¥, ,+Rj, (2-26)
e,=0=p¥ +Rj, (2-27)
e, =0=p¥, +Rj, (2-28)

in which p is the differential operator that can be replaced by (s/w() where wy is the nominal
frequency in rad/s and s is the Laplace operator [42]. w, is the system frequency in per unit; i and
R are the current and resistance of the corresponding circuits respectively.

Finally the per unit air-gap torque is,

T,=",i-Yi, (2-29)
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which is the most important electrical equation for the use of this research.

2.3 Deriving Electric Currents by Compacting the Generator
Equations

2.3.1 Dynamic Model of Generator in d-g Frame

As the torque in (2-29) is expressed in terms of currents, the objective of Sections 2.3 and 2.4 is
to find a closed form solution for the generator currents.
Combining the flux linkage and voltage equations of (2-15)-(2-28), the generator voltages and

currents can be related in the closed form of,
e =N+ @[PILLL +[RL (2-30)
In addition, the torque equation of (2-29) can be written as,
T.=i"[LITPV i (2-31)
where

> 05 05 O]T (2_32)

e=le,e,e

L=(igyi gy, ] (2-33)

L. 00
— 'frd 'fd1d
Wes=|  —L,0 L, L,0 0 (2-34)
I

R, 00000]
0-R 0000
00R,000
— /d

[Rlss=| 000, 00 (2-35)
0000 R, 0
(00000R, |
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0-10000]
100000
1000000
[Plee=| 000000 |
000000
1000000

(2-36)

Linearizing (2-30) about the steady-state operating point (ip, @) and dropping the steady state

terms, results in the following equation:

Ae=|_-[L]+ o [PI[L]+[R]| Ai + Aw[P][L}, (2-37)

in which @¢=1 pu and

Ae=[Ae,,Ae,,Ae,,,0,0,0] (2-38)
Ai =[Aiy, Ai ,Ai , Aiyy, Al AL T (2-39)
Ip= [iow iOq’ iOfd’ Ioa» iOlq’ iozq]T~ (2-40)
From (2-31), the perturbation electrical torque is
AT, = Ai'[LYTPiy + i [LI'[P]" Al (2-41)

For simplicity in calculations, it is desirable to derive equations involving d and g axes quantities
only, from the equations involving six-tuple vector.

The voltage equations of (2-37) can be shown as,

Ae, |=| &) &% & || Ay |+Aw, [P[L]i, (2-42)
Aeyy, g §11) g§lz) gglz) Aiyy,
where

Ae, =[Ae, Ae ] (2-43)
Ai = [Ai » Aiq]T (2-44)
A—ekdq = [Aeld’ Aelq’ AeZq]T = [09 O’ O]T (2-45)
&kdq = [Ailda Ailqa AiZq]T (2'46)

&S| (s
81 8 &3 = E[L]"'a)ro [PI[L]+[R]]. (2-47)

o L0 0 0

831 83 833

The sub matrices in (2-47) are:
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-R, - S% L,
e = 0 (2-48)

e} sL
-Lw R — /
dr0 a a)o
1 SL%
g la=| /@, (2-49)

Lad a)rO

sL
/ _Laqa)r() aq rO
[g13]2><3 SL/ SL/ (2-50)
ad rO

(23] = [ SL%)O 0}
g%, = [R +SLA%J (2-52)

@%M=F%ﬁé 0 ﬂ (2-53)
0

(2-51)

[ge=| O —“7£ (2-54)
sL,
L 0 B / 0)0_
SLfdld
1 a)o
(g3 )50 = 3 (2-55)

R, +%h %) 0 0
0
sL sL
[g(l)]3x3 0 qu + “q/a)o / . (2-56)
sL, s

Since the voltages across the damper windings are zero, as given by (2-45), the effects of Aig,

can be embedded in the perturbation currents of Aiy, Ai, and Aiy. Mathematically, this consists of

eliminating Aix, using the third row of (2-42). Therefore,
A—edq:l |:g11 gl(?j| [Aidq} |:L } ;
= +Aw, | i (2-57)
|:Aefd g21 gzz Ai 0 =
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where

Loy = liggs fogp foga]” (2-58)
L= [_OLd 5 L(:j (2-59)
(g7 =gl 1-[g1gHT el (2-60)
(2] =[] [g11gnT 9] (2-61)
(g0 = (g1 -[gW[eR] Tel] (2-62)
(g5 =[g0]-[gW][giT Tghl. (2-63)

Consequently eliminating Aig in (2-57), we have,
Ae,, =[g VA, +[g%] Ay +Ad,[L)iny (2-64)

where

(g ] =812 15 e8] (2-65)
(2] =[5 1eRT" (2-66)

2.3.2 Modeling Excitation System and Power System Stabilizer

In (2-64), the field voltage Aey is the point of entry for feedback from excitation control and

power system stabilizer (PSS), as shown in Figure 2-2 [2].

eqtje, _+ Vief
> 1+s7, Ka > ¢
+/\WVy

Aw, I% ST, T+ 57,
ST 1+5T; > 1+s7,

Figure 2-2: Exciter and PSS model [2] .

Based on the transfer functions of the exciter and PSS in Figure 2-2, Aey; can be written in the
following form:

Aefd = Gexc (S) A—edq + G (‘S) Awr (2'67)

pss
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where

chc( ) ( ) ( )I:edO er] (2_68)
sT, 1+sT| i

in which K, and K7 are the exciter and stabilizer gains, and 7', 7} and 75 are the stabilizer time
constants; eq and e, are the steady state terminal voltages, and T is the voltage transducer time
constant.
Substituting (2-67) for Aey, in (2-64) gives
([I] 22 - [gl(;)] Gexc (S)> &dq [gl(?)]—dq ([ ] lOdqf + [g12 Gpss(s)) (2-70)

where [/],x; 1s a 2x2 identity matrix.

Now the currents can be extracted from (2-70) as,

Ai,, =[A(s)Ae,, +[B(s)] Aw, (2-71)

where
[A(5)]o =[85T" (L]~ [851G0(9)) (2-72)
[B () = g5 ((LJiosy +[851G,,(5)) (2-73)

2.3.3 Transformation from d-q Frame to R-I Frame

In a network with ng generators, there exists ng sets of equations (2-12)-(2-73), while the final
useable form for this research is (2-71). Each equation set is valid in the d-g frame of the
individual generator. The standard technique is to unite all the generators by transforming the
individual d-g frames to the common Real-Imaginary (R-/) frame of the system grid. Figure 2-3
illustrates the relationship between the d-g frame of an individual generator and the R-/ frame of
the system. According to this figure, the rotor angular orientation ¢ is the angle by which the ¢-
axis leads the reference R [2]. As the result of load flow, the rotor angle J,, and the steady state d-

g currents Iq4n, and voltages egqyn of all the ng generators (i.e., n=1, 2,..., ng) are obtained.
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. . 2

€d

Figure 2-3: Relationship between the d-g frame of a single generator and the R-/ reference frame

of the system.

According to Figure 2-3, the generator voltages and currents in the R-/ frame can be found

using an orthogonal rotation matrix, say [C(d,)]. Therefore for n” generator,

where

Consequently the new steady state components for n” generator are:

where

Linearizing (2-74) and (2-75) about the steady state operating point eors, and iorz,, we have:

&dqn = [C(é‘n)]T&R]n + % [C(an)] zORln Aa)

Crim = [C(5n)]§dqn n=1 2,..., ng

I =[CO) kg n=12..., ng

_|sin(d,) cos(0,) _
[C(an)]zxz - [_ cos (5}1) sin (5n) n= 1, 2, e

Cn =lesne,] n=12,..., ng

idqn = [idn, iqn] n= 1, 2, ..oy NG

Gorin = [C(Jn)]%dq,, n=1 2,..., ng

iORln = [C(én)]lqu n= 15 29 LYY ng

Gatgn = o €ogn] n=12,..., ng

l.Odqn = [iodna ian] n= 1, 2, ..., NG.

rn

rn

20

> Ng

qun = [C(5)1)]T¥Rln + % [C(5)1)] gORIO Aw n= 17 25 coe

n=1, 2,...

(2-74)

(2-75)

(2-76)

(2-77)

(2-78)

(2-79)

(2-80)

(2-81)

(2-82)

(2-83)

(2-84)



where Aeg;, and Aigy, are the voltage and current perturbations for generator n, in the R-I frame,

and Aw,, is the perturbation rotor speed for generator n. It should be noted that

[ACE)]=[CE)'AS, =[CE)T 2 Aa,,.

2.3.4 R-I Frame Equations of ng Generators

Inserting (2-83) and (2-84) in (2-71) results in the current equation for n” generator in the R-I

frame:
Aig, =14, ()Aey, +[B(Aw,  n=12... ng (2-85)
where

(4], =[COI[4,(H[CS)  n=L2.. ng (2-86)

[B,1,.0 =2 (IC@O)IA, (Y@ eys, ~[CE) i) HICGIB, ()] n=1, 2,..., ng (2-87)

and [4,(s)] and [B,(s)] are defined in (2-72) and (2-73).
Equation (2-85) can be expanded for all the ng generators, which gives the following closed

form matrix equation:

Aigs = [Afull(S)] Ae,, st [Bfull(S)] % (2-88)

where
&Rh_ﬁ:/l = [&;n .. ‘&zlng]T (2-89)
Aey_ s =[Dey... Ay, ] (2-90)

are vectors of the size 2ng, and

[4,(s)] 0 . 0
0 [4,()] . . 0
[A;‘ull () angrang = : : oo . (2-91)
0 . .0 [A,;g ()] ]
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B(s)] 0 . . 0 |
0 [By(s)] . . 0
(Bt (D ongrns =| - S N (2-92)
0 . .0 [B(9)]

2.4 Integrating Power System Network Equations to
Generator Equations

In order to eliminate Aegrsu in (2-88), network equations should be incorporated. It is assumed
that the network has Nb buses, from which the first ng are the generating buses. Therefore, from

the bus impedance matrix we have,

& b
e”g = |:Zbusll Zbus12:| l‘"g (2_93)
.vng-%—l bus21 Zbu522 NbxNb | ‘ng+l

ROV LNy

where [ey,...,€ng €ng+1,-.., er]T and [iy ..., ing Ing+1,.., iNb]T are the vectors of bus voltages and bus
injected currents respectively, and Z,; (i, j= 1, 2) are the sub-matrices of the bus impedance
matrix.

After perturbing (2-93) we have,

Ae, Ai,

Ae, :[Z,m“ ZW} Ai, (2-94)
Avng+1 bus21 bus22 ) NbxcNb A’ng+1

LAV, | [Ady, |

From the first ng rows of (2-94), generator voltages would be extracted as,

Ael All Aingﬂ
= [Z us ]n Xn, +[Z us ]n X —n . (2'95)
Aeng busl1dngxng Alng bus12d ngx(Nb—ng) Al'Nb

At the same time, the load currents [Ai,g+1...., AiNb]T in (2-95) can be eliminated from the second

(Nb-ng) rows of (2-94), while considering (2-96). Equation (2-96) implies the relationship
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between the load voltages and the load currents. This relationship (function f()) depends on the

load type, and in general can be considered as:

Avng-H Aing-%—l
Av,, Aiy,

Therefore, from (2-94) the load currents are:

_Ai17g+1 -1 .All
: . = (f - [ZbuSZZ] (Nb—ng)X(Nb—ng)) [ZbuSZ l] (Nb—ng)xng : . . (2-97)
Aiy, A

lng

Now replacing (2-97) for [Ai,g+1...., Ains]" in (2-95), the generator voltages are obtained,

Ae, Ai,
: =[Z,.l: (2-98)
Ae,, Ai,,

-1
[Ztatal] ngxng = [Zbusl l] ngxng + [ZbuSIZ] ngx(Nb—ng) X (f - [Zbus22] (Nb—ng)X(Nb—ng)) [Zbus21] (Nb—ng)xng (2-99)

In order to extract the R-I components of (2-98), [Z] should be decoupled into real and

where

imaginary parts as,
[Rtotal]nang = Real {[Ztotal]ngxng} (2-100)

[Xtotal] ngxng = Imagin