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Abstract 

This thesis describes the Transfer Function and Eigenfunction Analysis (TFEA) method: an 

efficient eigenanalysis method for estimating the small signal stability of large interconnected 

power systems. The method consists of reducing the order of each generator, which is accurately 

modeled by m state-variables, to only two state-variables, including rotor speed and angle 

deviations. This efficiency is achieved without loss of dynamic accuracy because the information 

of the other (m-2) state-variables is compacted into transfer functions in a frequency-dependent 

state-matrix [A(ω)]2ng×2ng. Because the computation count of QR eigenanalysis increases with the 

cube of system dimension, computation efficiency arises from evaluating the reduced state 

matrix [A(ω)]2ng×2ng, instead of the full state matrix [A](m×ng)×(m×ng), in a power system consisting 

of ng generators. The acceptability of the method is based on the engineering knowledge that the 

electromechanical modes are the least damped modes, and the system stability depends on these 

eigenvalues’ being on the left side of the complex s-plane. In practice, only a small number of 

low-frequency electromechanical modes determine stability. Consequently, the accuracy of the 

TFEA method is improved for selected electromechanical modes by applying the eigenvalue 

sensitivity formula. In the next step, the TFEA method is combined with the well-known Arnoldi 

method for further improvement of efficiency. 

This thesis also develops a method for simultaneous tuning of power system stabilizers 

(PSSs). The proposed method combines the timesaving TFEA method with the eigenvalue 

sensitivity concepts and optimization techniques. The key feature of the method is the eigenvalue 

sensitivity formula, which relates perturbation changes of eigenvalues to perturbation changes of 

stabilizer parameters. In PSS tuning, the parameters are one amplification gain and the many 

time constants of each PSS. Tuning consists of formulating an objective function which embeds 

the desirable improvement in damping of the eigenvalues. To this end, an optimization algorithm 

(from MATLAB) is applied to satisfy the objective function while meeting the size constraints 

placed on the parameters. 

The accuracy, efficiency and robustness of the TFEA method and the PSS tuning method are 

compared with the benchmark eigenvalues based on the full state matrix [A](m×ng)×(m×ng). The 

numerical tests use a 16-generator and a 69-generator power system. The test results, 

demonstrate the effective performance of the proposed methods. 
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Abrégé 

Cette thése décrit la Fonction de Transfert et l'Analyse de la méthode de la Fonction propre 

(TFEA): une méthode efficace d'évaluer stabilité de petits signaux dans les grandes installations 

électriques connectées. La méthode consiste en réduire l'ordre de chaque générateur qui est 

précisément modelé par des variables d'état m à seulement variables de deux états incluant la 

vitesse de rotor et des écarts angulaires. L'efficacité est réalisée sans perte d'exactitude 

dynamique parce que les informations des autres variables d'état (m-2) sont rendues compactes 

comme des fonctions de transfert dans l’état de matrice [A(ω)]2ng×2ng que dépend on fréquence. 

Car le compte de calcul d’analyse QR augment avec le cube de dimension de système, l'efficacité 

de calcul vient d'évaluer état de matrice [A(ω)]2ng×2ng réduit au lieu de état de matrice 

[(A)](m×ng)×(m×ng) plain de générateurs ng. L'acceptabilité de la méthode est basée sur la 

connaissance d'ingénierie que les modes électromécaniques sont les modes moindres amortis et 

la stabilité dépend de leurs valeurs propres étant sur le côté gauche du s-plan de complexe. En 

pratique, seul un petit nombre de modes électromécaniques à basse fréquence déterminet la 

stabilité. Par conséquent, l'exactitude de la méthode TFEA est améliorée pour ces modes en 

appliquant la formule de sensibilité de valeur propre. Dans l'étape suivante, la méthode TFEA est 

combinée avec la méthode bien connue d’Arnoldi pour plus d'amélioration de l'efficacité.  

Cette thése développe également une méthode d'ajustassions simultanée des stabilisateurs 

(PSSs). La méthode proposée combine la méthode d’économie de temps TFEA avec le concept 

de sensibilité de valeur propre et de techniques d'optimisation. La fonctionnalité clé de cette 

méthode est la formule de sensibilité qui relie les changements de la perturbation des valeurs 

propres aux changements de la perturbation de paramètres de système d’alimentation électrique. 

Dans le réglage de PSS, les paramètres sont une amplification gain et les nombreuses constantes 

de temps de chaque PSS. Le réglage consiste à formuler une fonction objective qui intègre 

l'amélioration souhaitable de l'amortissement des valeurs propres. À cette fin, un algorithme 

d'optimisation (à partir de MATLAB) est appliqué pour satisfaire la fonction d'objectif tout en 

réalisant contraintes de taille placées sur les paramètres.  

L'exactitude, l'efficacité et la robustesse de la méthode TFEA et la méthode réglage de PSS 

sont comparées avec les valeurs propres d'un référence basé sur l'état complet de matrice 

[(A)](m×ng)×(m×ng). Les tests numériques utilisent un 16-générateur et un 69- générateur du système 

d’alimentation électrique. Les résultats présentés, démontrer l'efficacité des méthodes proposées. 
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Chapter One 

1. Introduction 

1.1 Power System Stability 

“Power system stability is the ability of an electric power system, for a given initial operating 

condition, to regain a state of operating equilibrium after being subjected to a physical 

disturbance, with most system variables bounded so that practically the entire system remains 

intact” [1]. According to the nature of the disturbance, the system configuration and the initial 

operating conditions, different stability issues exist. The definitions and classifications of power 

system stability are explained in [1, 2, 3, 4]. 

An important stability problem is rotor angle stability, which involves the study of the 

electromechanical oscillations inherent in power systems [1]. The analysis of rotor angle stability 

is classified under: (i) transient stability and (ii) small signal stability. Transient stability studies 

include identifying critical fault clearing time and assessing system stability margin, when 

subjected to a severe disturbance. The working tool makes use of digital simulation. In small 

signal stability, it is assumed that the power system has reached the steady-state equilibrium. The 

question is whether it returns to its equilibrium after encountering a small disturbance. Small 

signal stability problem is usually associated with insufficient damping of oscillations [1]. The 

working tool is eigenvalue analysis. Small signal stability is assured when all the eigenvalues of 

the linearized state matrix of the power system lie on the left side of the complex s-plane.  
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1.2 Problem Definition: Efficient Eigenanalysis of Power 
System for Small Signal Stability Analysis 

As power systems have pooled together to enjoy the benefits of scale of large interconnections, 

they have been troubled by inter-area oscillations. IEEE and CIGRE have issued special 

publications to monitor the subject [5, 6, 7, 8, 9]. Viewed as a small signal stability problem, 

inter-area oscillations have been tackled by eigenfunction analysis applied to the linearized, 

time-invariant power system state matrix [A] [10, 11]. The full state matrix [A] is very large, 

unsymmetrical and non-sparse. The well-known QR method, which is robust and has fast 

convergence, is suitable [12]. However, it cannot be applied directly when the state matrix 

dimension is large, because it is very time consuming and inefficient [12, 13, 14]. The derivation 

of the full state matrix is shown in Section 1.3. 

Detailed modelling of the entire system is required for accurate power system studies. A 

system with ng generators, each having an average of m=11 state variables, has system order of 

11ng. Solving all the eigenvalues of an 11ng×11ng state matrix is overly time-consuming when 

ng is large. Therefore, there has been research based on reducing the computation time by 

developing fast and efficient methods [15, 16, 17]. This consists of finding only a selected 

number of eigenvalues, which from the engineering experience are the dominant 

electromechanical modes. The methods taken from mathematicians include the Arnoldi method 

[15, 16] and power iterations [18]. Another method, which integrates the insights of engineers 

familiar with power networks, is the AESOPS (Analysis of Essentially Spontaneous Oscillations 

in Power Systems) algorithm [19]. A brief introduction on these methods is provided in Section 

1.4. 

In power system eigenanalysis, it is the accuracy of the eigenvalues closest to the imaginary 

axis that determine stability. This fact is implicitly acknowledged by the researchers of [15, 16, 

17], because the speed-up efficiency in their algorithms is derived from solving the few 

dominant eigenvalues clustered together. However, without laboriously solving the eigenvalues 

of the 11ng×11ng state matrix, a priori, one does not know where the dominant modes are.  

The research of this thesis fills the gap by offering a preview of the eigenvalues of all the 

electromechanical modes so that a decision can be made regarding which are the dominant 

modes. In general, all the well-known and accurate eigenanalysis methods, such as Inverse 
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Iteration [18], Arnoldi method [15, 16] and AESOPS [19], require such previews for efficient 

performance. This thesis presents the Transfer Function and Eigenfunction Analysis (TFEA) 

method, which formulates a reduced order frequency-dependent [A(ω)]2ng×2ng matrix that 

efficiently determines all the eigenvalues of the system. The TFEA method is introduced in 

Section 1.5. 

1.3 Full State Matrix of Power System 

The dynamics of a power system is represented by an N-tuple vector x, governed by a set of first 

order ordinary differential equations, such as 

  ( ).
dx

f x
dt

=  ( 1-1) 

Vector x includes the dynamics of the states of the system components, such as the synchronous 

generators.  

In small signal analysis, the state vector is written as x=X0+∆x, where the operating state 

vector X0 is solved by a load flow algorithm, and ∆x is the vector of small disturbance. The small 

signal perturbation is then performed by first order Taylor series expansion, 

 

0

0
0

0

( )
                      ( )

( )
( ) [ ] second and higher order terms.X

d X x
f X x

dt
f x

f X x
x

+ Δ = + Δ

∂
= + Δ +

∂

 ( 1-2) 

Retaining the first order perturbation state in ( 1-2), one obtains the linearized equation of 

  [ ]N N

d x
A x

dt ×
Δ = Δ  ( 1-3) 

where [A]N×N is the Jacobian matrix evaluated at X0 in ( 1-2) and is called the full state matrix of 

the system.  

When each synchronous generator of the power system is represented by m-state variables, 

and the power system has ng generators, then N=m×ng. The m-state variables represent the 

magnetic fluxes (currents) of the generator, the rotor angle, the rotor speed and additional states 

from turbine/governor, Automatic Voltage Regulator (AVR), exciter, power system stabilizer 

(PSS) and other controlling elements. 
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To derive the full state matrix, all the generator equations are perturbed and arranged in the 

state space form of ( 1-3), which results in the non-sparse matrix of [A](m×ng)×(m×ng), 

  [ ]

1 1 1 1

1 1

1 1

( ) ( )

1 1

( ) 1 ( ) 1

.

m m

j j

m ng m ng

m j m j

ng ng

m ng m ngm ng m ng

st g st g

st g st g

st g st g
d A
dt st g st g

st g st g

st g st g

× × ×

× × × ×

   
   
   
   
   
   
   =   
   
   
   
   
   
      

 

 

 

 

 

 ( 1-4) 

In ( 1-4), stigj is the ith state-vector of generator j. In this research, the number of states per 

generator is m=11. 

[A](m×ng)×(m×ng) is a time-invariant matrix and has (m×ng) eigenvalues. Based on selective 

modal analysis in [20], [A] has (ng-1) pairs of complex conjugate eigenvalues, which are 

distinguished from the others by their long time constants. Each pair belongs to one or to a group 

of generators. From the interpretation of the eigenvectors, these modes are associated with the 

states representing the rotor angle and speed; thus, they are known as electromechanical modes. 

The remaining state-variables relate to the electrical quantities and to the dynamics of controlling 

elements. 

1.4 Background on Selective Eigenanalysis 

The linearized power system model of ( 1-4) is easy to derive for QR eigenanalysis [12]. 

However, this full state matrix is in general not sparse, making QR analysis prohibitively 

expensive for large power systems. In contrast, sparsity-based methods have been developed, 

which have the following features:  

- Selective eigenanalysis that finds a specific set of eigenvalues efficiently; and 

- Good convergence characteristics and numerical stability [16, 21]. 
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Different methods have been proposed to derive sparse system models [17, 22, 23], to be used 

by the sparsity-based methods. The important sparsity-based eigenvalue methods for general 

unsymmetrical matrices are [16]: 

- Power Iterations and Inverse Iterations [18]; 

- Lanczos method [18]; 

- Simultaneous (Subspace) Iterations [24]; and 

- Arnoldi method [15, 16]. 

The most powerful method is the classical method of Power Iterations [18]. This method 

consists of repeated matrix-vector multiplications, which converges to the eigenvector 

corresponding to the dominant eigenvalue. The Lanczos method [18], based on the algorithm of 

Power Iterations, is very successful for the symmetrical eigenvalue problem. A modification of 

Lanczos method suitable for unsymmetrical matrices is described in [18, 21]. The application of 

Lanczos method to the eigenanalysis of power systems is mentioned in [17, 23, 25].The Power 

Iterations method is very robust, but it has slow convergence [26, 27]. The Rayleigh Quotient 

Iterations method (RQI) of [28] and the Newton method are modifications to Power Iterations to 

improve convergence speed. The Newton method has quadratic convergence properties, but it is 

not robust [29, 30, 31]. 

Simultaneous (Subspace) Iterations (SI), is a generalization of Power Iterations, in which 

instead of a single vector solution, a subspace solution is obtained. Simultaneous Iterations, 

although robust, suffer from the same slow convergence as Power Iterations. This method was 

originally proposed in [24] for the symmetrical eigenvalue problem and then extended to general 

unsymmetrical matrices [16, 32, 33].  

The Arnoldi method is similar to Simultaneous Iterations [15, 16]. The subspace is built as a 

unitary Krylov subspace to approach the dominant invariant subspace of a matrix [A] [34, 35]. 

The Arnoldi method is explained and applied to the research of this thesis in Chapter 4. Both 

Simultaneous Iterations and the Arnoldi method have reliable convergence characteristics. Both 

are successful in the eigenanalysis of large power systems. The Arnoldi method is the faster of 

the two. 

In addition to the sparsity-based methods, other methods exist for the purpose of selective 

eigenanalysis, such as the S-Method [17] and Selective Modal Analysis (SMA) [20]. The S-

Method is efficient in determining the unstable modes belonging to a group of a few generators. 
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Selective Modal Analysis (SMA) has been developed to find a group of important eigenvalues of 

a power system by reducing the system order [20]. The reduced order model is achieved using 

special techniques to identify variables that are relevant to the selected modes [36, 37]. 

The iterative method of AESOPS (Analysis of Essentially Spontaneous Oscillations in Power 

Systems) introduced in [19], is a computer program developed specifically for the study of 

oscillations in large electric power systems. This method finds one eigenvalue at a time. It 

calculates the eigenvalues of the electromechanical modes without formulating the entire system 

state matrix. It uses a frequency response approach to calculate the eigenvalues associated with 

the rotor angle modes. References [22, 25, 38, 39, 40] describe improved implementations of the 

AESOPS algorithm.  

The initial estimate in such iterative methods is very important to the speed of convergence. 

According to [25], the intermediate results of the AESOPS method may be used as an initial 

estimate for Inverse Iterations for more rapid convergence. For example, it can be seen from [25]  

that, in some case studies, the AESOPS algorithm converged after 45 iterations. However, if the 

non-converged eigenvalue estimates, obtained from the 10th iteration of the AESOPS algorithm, 

was used as the initial estimate for the Implicit Inverse Iteration algorithm, convergence was 

obtained after 6 iterations. This simple example verifies the importance of methods such as 

TFEA for providing a preview of all electromechanical modes. 

1.5 Proposed Method: Transfer Function and Eigenfunction 
Analysis (TFEA) Method 

1.5.1 Stability of Electromechanical Oscillations 

Small signal stability is assured when all the eigenvalues of the linearized system state matrix lie 

on the left side of the complex s-plane.  As the eigenvalues associated with electrical circuits and 

control “black boxes” lie on the far left (i.e., heavily damped), this thesis focuses on lightly 

damped electromechanical modes associated with the rotor angle and speed deviations. 

Electromechanical oscillations between interconnected synchronous generators are phenomena 

that are inherent to power systems. The stability of these oscillations is of vital concern, and is a 

prerequisite for secure system operation [3]. 
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Small signal stability analysis, using the full state [A] matrix of ( 1-4), is not attractive for the 

following reasons. 

1- The computation time of the QR eigenanalysis method increases with N3. For N=m×ng, 

the computation time becomes prohibitive when ng, the number of generators, is large.  It 

is very time consuming for large matrices and is not practical. 

2- Small signal stability is determined by electromechanical modes. 

Therefore, it is desirable to have the state matrix of electromechanical oscillations only. This 

matrix is called the Reduced State Matrix. 

1.5.2 Reduced State Matrix [A(ω)]2ng×2ng 

For each generator in the power system, Newton’s Law in the rotational frame, governing the 

speed of the rotor with the moment of inertia of H, consists of 

  1 ( )
2r m ep T T
H

ωΔ = −  ( 1-5)  

  0 rpδ ω ω= Δ  ( 1-6) 

where Tm is the mechanical input torque, and Te is the generator electrical torque. Additionally,  

Δωr is the per unit rotor speed deviation, δ is the rotor angle in electrical radians, ω0 is the base 

rotor electrical speed in rad/s and p is the differential operator d/dt, with time t in seconds [2]. 

Perturbing and linearizing  ( 1-5) and ( 1-6) results in 

  1 [ ]
2r m ep T T
H

ωΔ = Δ − Δ  ( 1-7) 

  0 .rp δ ω ωΔ = Δ  ( 1-8) 

The perturbation electrical torque ΔTe is resolved into two components: one in phase with the 

rotor angle deviation and the other in phase with the rotor speed deviation [1]: 

  .e S D rT K Kδ ωΔ = Δ + Δ  ( 1-9) 

Therefore, ( 1-7) is written as  

  1 [ ]
2r m S D rp T K K
H

ω δ ωΔ = Δ − Δ − Δ  ( 1-10)  

where KS and KD are called synchronizing and damping torque coefficients, respectively. 

Insufficient synchronizing torque causes an increase in rotor angle through a non-oscillatory 

mode, and insufficient damping torque can cause rotor oscillations of increasing amplitude [1]. 
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Combining ( 1-8) and ( 1-10) results in the matrix form of 

  
00 0

.1
22 2

mS D
rr

TK K
HH H

ωδ δ
ωω

   Δ Δ   = + Δ      ΔΔ − −         


  ( 1-11) 

Because the rotor angle and speed deviations are the only state variables in ( 1-11), the state 

matrix is called the “reduced state matrix”. It should be borne in mind that the full state matrix of 

( 1-4) has m (i.e., 11) state variables per generator. 

When sufficient information is available for KS and KD, solving the reduced state matrix of 

( 1-11) yields the eigenfunctions associated with electromechanical modes. The contribution of 

this research is to provide such information for an interconnected system. 

The method adopted in this thesis is an extension of the synchronizing and damping torque 

coefficients of ( 1-9), developed for a single generator to ng generators. To embed the dynamic 

properties of (m-2) state variables, the power system stabilizer, the exciter and other electrical 

state variables are represented by transfer functions. Therefore, the synchronizing and damping 

torque coefficients take the form of transfer functions [KS(ω)] and [KD(ω)]. This method is given 

the name Transfer Function and Eigenfunction Analysis (TFEA). 

1.6 Thesis Contributions 

1.6.1 Transfer Function and Eigenfunction Analysis (TFEA) 
Method 

It is the ambition of all researchers to contribute to their national economies and to the 

knowledge in the field. The main contribution is the Transfer Function and Eigenfunction 

Analysis (TFEA) method. As computation counts by the QR method are proportional to the cube 

of the matrix dimension, the cost reduction in reducing from [A]11ng×11ng to [A(ω)]2ng×2ng is 

significant. The TFEA method is fully described in Chapter 2. 

The inherent weakness in the TFEA method is that [A(ω)] is frequency dependent. In a 

system with ng generators, there exist (ng-1) electromechanical oscillatory modes, which have 

modal frequencies ωn (n=1, 2,…, ng-1). Because (ng-1) eigenvalue evaluations of [A(ωn)] (n=1, 

2,…, ng-1), would be expensive, the thesis performs only a few eigenvalue evaluations of 

[A(ωK)] at the so-called representative frequency ωK.  
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1.6.2 Accurate Prediction from Eigenvalue Sensitivity Formula 

It is shown in Chapter 2 that the eigenvalues predicted by [A(ωK)], which have modal 

frequencies ωn (n=1, 2,…, ng-1), are accurate only for modes whose frequency ωn are close to 

ωK . Recognizing such weakness, a computationally efficient method, based on the eigenvalue 

sensitivity formula of [41], has been developed and shown to be efficient and accurate.  

In application, the TFEA method enables all the electromechanical modes to be solved from 

the eigenanalysis of [A(ωK)], so that the few dominant ones that determine stability are 

identified.  Improved accuracy for each mode ωn can be economically obtained by using the 

eigenvalue sensitivity formula. 

1.6.3 Improving Computational Efficiency by Applying Curve 
Fitting Interpolation to the TFEA Method 

Applying the eigenvalue sensitivity formula can be helpful; however, it is costly when all the 

modes are required to be determined accurately. Such cost, although less than the cost of 

eigenanalysis, motivates the research to proposing an original method that reduces the 

computation cost while preserving the accuracy. The method is based on a combination of: (i) 

the TFEA method, (ii) eigenvalue sensitivity, and (iii) curve fitting interpolation. 

1.6.4 Combining TFEA with Modified Arnoldi Method 

The TFEA method is combined with the well-known Modified Arnoldi Method (MAM) [16], 

demonstrating the ability of TFEA to facilitate more accurate methods, thereby improving their 

efficiency. The efficiency comes from applying MAM to [A(ω)]2ng×2ng instead of [A]11ng×11ng. 

1.6.5 Coordinated Tuning of Power System Stabilizers (PSSs) of 
Large Power Systems 

The TFEA formulation of [A(ω)] matrix includes Power System Stabilizers (PSSs) as transfer 

functions. Each PSS has one amplifier gain and several time constants of a “black box”, which 

compensates for the long delay of the field winding. The amplifier gain and the time constants 

are treated as parameters to be “tuned” in the eigenvalue sensitivity formula. Because the [A(ω)] 
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matrix couples ng generators together, the eigenvalues can be “tuned” simultaneously, as 

required in an interconnected power system. The thesis turns to optimization algorithms 

available in the MATLAB library as mathematical tools to implement the tuning method.  

This research has developed a general computation tool for all kinds of tuning strategies such 

as minimizing the PSSs gains or maximizing the damping of the low frequency modes. The 

tuning exercises involve a 16-generator and a 69-generators system, in which each PSS have one 

amplifier gain and four time constants. 

1.7 Thesis Overview 

In this thesis, the TFEA method is explained in Chapter 2. In Chapter 3, a discussion of the 

method’s efficiency is provided, and the curve fitting interpolation is introduced to reduce the 

computation time without losing the accuracy. In addition, the application of TFEA to selective 

eigenanalysis by the Modified Arnoldi Method is described in Chapter 4. Chapters 5 and 6 show 

that a combination of TFEA, eigenvalue sensitivity and optimization algorithms constitutes a 

powerful computational tool for coordinated tuning of PSS in a large interconnected power 

system. 

In each chapter, numerical results from different test systems are presented to demonstrate the 

efficiency of the proposed method. Finally, the conclusion of the research and future research 

subjects are provided in Chapter 7.   
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Chapter Two 

2. Transfer Function and Eigenfunction Analysis 

(TFEA) Method 

2.1 Overview 

This chapter introduces the reduced state matrix of [A(ω)]2ng×2ng, which is formed by the TFEA 

method. The method combines the equations of synchronous generators and associated controls 

with the equations of the system network in the format of small signal stability analysis.  

It will be shown that for a system with ng generators, [KS] and [KD] of ( 1-9) are expanded as 

frequency-dependent matrices of [KS(ω)] and [KD(ω)]. Therefore, for ng generators, the torque 

equation of ( 1-9) would be reformed as,  

1 11 1 1 1 11 1 1

1 1

1

( ).. ( ).. Δ ( ).. ( )..

: .. : ..

.. ( ).. ( ) Δ ..

: .. :

( ).. ( )..

( )

( )

( )

( ) ( )

Δ

e S S j S ng D D j D ng

ej Sj Sjj Sjng j Dj

eng Sng Sngj Sngng ng

T K K K K K K

T K K K K

T K K K

ω ω ω δ ω ω ω

ω ω ω δ ω

ω ω ω δ

Δ     
     
     
     Δ = +
     
     
     Δ     

1

1

:

 ( ).. ( ) .

.. :

( ).. ( ).. ( )

r

Djj Djng rj

Dng Dngj Dngng rng

K K

K K K

ω

ω ω ω

ω ω ω ω

Δ   
   
   
   Δ
   
   
   Δ   

 ( 2-1) 

One defines  

  ( )[ ] ( )     , 1,  2, ,  S SijK K i j ngω ω= = …    ( 2-2) 

  ( )[ ] ( )    , 1,  2, ,  .D DijK K i j ngω ω= = …    ( 2-3) 

Therefore, the reduced state matrix of ( 1-11) is rearranged for ng generators as,  
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  [ ] 11 12
2 2

21 22

Δ Δ Δ Δ   
( )    or  .Δ Δ  Δ Δng ng

r rr r

a a
A

a a
δ δ δ δω ω ωω ω×

       = =              

 
   ( 2-4) 

It should be noted that the mechanical torque is assumed to be constant, so ΔTm is neglected. The 

state variables and sub-matrices of ( 2-4) are: 

  1Δ [Δ  ,Δ, ]T
ngδ δ δ= …  ( 2-5) 

  1,Δ [ Δ  ,Δ ]T
r r rngω ω ω= …  ( 2-6) 

  11[ ] [0]n ngga ×=  ( 2-7) 

  12 0[ ] [ ]n ng ga Iω ×=  ( 2-8) 

  ( )[ ] [ ] [ ]1
21 ( )g gSn ng n nga H Kω ω−

× ×= −  ( 2-9) 

  ( )[ ] [ ] ( )[ ]1
22 Dn ng ng ngga H Kω ω−

× ×= −  ( 2-10) 

where Δδi (i=1, 2,…, ng) and Δωri (i=1, 2,…, ng) are the perturbation rotor angle and speed 

deviations for the ng generators. [I]ng×ng is the identity matrix, ω0 is the system nominal 

frequency (i.e., 377 rad/s), and [H]ng×ng is the diagonal matrix of generators inertias, as 

  ( )[ ] 2        1,  2, ,  .ng ng iH diag H i ng× = = …   ( 2-11) 

[A(ω)] is the frequency-dependent reduced state matrix for a system with ng generators. Since 

each generator is modeled by two state variables, regardless of the system complexity, the order 

of the matrix [A(ω)] is always 2ng. Once this matrix is formed, the QR analysis provides 

complete information for the electromechanical oscillations. The simple diagram of Figure  2-1 

shows the steps performed in TFEA to form [KS(ω)] and [KD(ω)] matrices. All the steps are 

described in the following sections. 
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Figure  2-1: TFEA intermediate paths to form the reduced state matrix. 

2.2 Complete Set of Electrical Equations of the Synchronous 
Generator  

The generator equations include the mechanical equations of ( 1-8) and ( 1-10) as well as the 

electrical equations shown in this section. The background of this section is taken from Chapter 3 

of reference [2]. The generator equations are expressed in dq0 frame in per unit with time in 

seconds. In the following equations, two q-axis damper windings are considered with the 

subscripts 1q and 2q. Only one d-axis damper winding is considered with the subscript 1d [2]. 

The subscript a and fd are denoted to the stator and field circuits respectively. The Lad-base 

reciprocal per unit system is chosen which reflects most closely the physical features of the 

generator [2]. In the Lad-base per unit system, all the mutual inductances between the stator and 

rotor circuits on each axis (d and q) are equal and are called Lad and Laq respectively. Therefore, 

  1 1afd fda a d da adL L L L L= = = =  ( 2-12)  

        1, 2   akq kqa aqL L L for k= = =  ( 2-13) 

Generator Equations 

generator voltages in terms of 
generator currents, rotor angle and 

speed 

network 
equations 

generator currents in terms of 
generator rotor angle and speed 

generator torque equation in 
terms of generator currents 

generator torque equation in terms of 
generator rotor angle and speed

torque coefficients form the synchronizing and 
damping torque matrices 
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  1 1 .fd d dfdL L=  ( 2-14) 

The per unit stator and rotor flux linkage equations in dq0 frame, with the inductances in ( 2-12)-

( 2-14), are: 

  1d d d ad fd ad dL i L i L iΨ = − + +  ( 2-15) 

  1 2q q q aq q aq qL i L i L iΨ = − + +  ( 2-16)  

  0 0 0LiΨ = −  ( 2-17) 

  1 1fd ffd fd fd d d ad dL i L i L iΨ = + −  ( 2-18)  

  1 1 11 1d fd d fd d d ad dL i L i L iΨ = + −  ( 2-19)  

  1 11 1 2q q q aq q aq qL i L i L iΨ = + −  ( 2-20)  

  2 1 22 2q aq q q q aq qL i L i L iΨ = + −  ( 2-21)  

where id and iq are the stator currents in d and q axes respectively. Ld and Lq are the stator self-

inductances and Lffd, L11d, L11q, and L22q are the self-inductances of the field and damper winding 

circuits.  

Based on the flux linkages, the per unit stator and rotor voltage equations are as below:  

  d d q r a de p R iω= Ψ − Ψ −  ( 2-22) 

  q q d r a qe p R iω= Ψ + Ψ −  ( 2-23)  

  0 0 0ae p R i= Ψ −  ( 2-24) 

  fd fd fa fde p R i= Ψ +  ( 2-25)  

  1 1 1 10d d a de p R i= = Ψ +  ( 2-26) 

  1 1 1 10q q q qe p R i= = Ψ +  ( 2-27)  

  2 2 2 20q q q qe p R i= = Ψ +  ( 2-28) 

in which p is the differential operator that can be replaced by (s/ω0) where ω0 is the nominal 

frequency in rad/s and s is the Laplace operator [42]. ωr is the system frequency in per unit; i and 

R are the current and resistance of the corresponding circuits respectively.  

Finally the per unit air-gap torque is, 

  e d q q dT i i= Ψ − Ψ  ( 2-29) 
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which is the most important electrical equation for the use of this research. 

2.3 Deriving Electric Currents by Compacting the Generator 
Equations 

2.3.1 Dynamic Model of Generator in d-q Frame  

As the torque in ( 2-29) is expressed in terms of currents, the objective of Sections 2.3 and 2.4 is 

to find a closed form solution for the generator currents. 

Combining the flux linkage and voltage equations of ( 2-15)-( 2-28), the generator voltages and 

currents can be related in the closed form of, 

  
0

)( [ ] [ ][ ] [ ] .r
se L i P L i R iωω= + +  ( 2-30) 

In addition, the torque equation of ( 2-29) can be written as, 

  [ ] [ ]T T T
eT i L P i=  ( 2-31) 

where 

  [ , , ,0,0,0]T
d q fde e e e=  ( 2-32)  

  1 1 2[ , , , , , ]T
d q fd d q qi i i i i i i=  ( 2-33) 

  [ ] 1
6 6

1 11

11

     0           0    0
     0        0      0         

    0         0    0
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    0        0     0       
      0       
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aq q aq

aq

L L L
L L L

L L L
L L L L

L L L
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×

−
−

−
= −

−
− 220     0         aq qL L

 
 
 
 
 
 
  

 ( 2-34)  

  [ ]6 6
1

1

2

 0  0  0  0  0
0    0  0  0  0
0  0    0  0  0
0  0  0    0  0
0  0  0  0    0
0  0  0  0  0  

a

a

fd

d

q

q

R
R
R

R R
R

R

×
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− 

 
=  
 
 
 

 ( 2-35)  
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  [ ]6 6

0 1  0  0  0  0
1  0  0  0  0  0
0  0  0  0  0  0 .0  0  0  0  0  0
0  0  0  0  0  0
0  0  0  0  0  0

P ×

− 
 
 =  
 
  

  ( 2-36)  

Linearizing ( 2-30) about the steady-state operating point (i0, ωr0) and dropping the steady state 

terms, results in the following equation: 

  ( )0 0
0

Δ [ ] [ ][ ] [ ] Δ Δ [ ][ ]r r
se L P L R i P L iω ωω= + + +  ( 2-37) 

in which ωr0=1 pu and 

  [ , , ,0,0,0]T
d q fde e e eΔ = Δ Δ Δ  ( 2-38)  

  1 1 2[ , , , , , ]T
d q fd d q qi i i i i i iΔ = Δ Δ Δ Δ Δ Δ  ( 2-39)  

  0 0 0 0 01 01 02[ , , ., , , ]T
d q fd d q qi i i i i i i=  ( 2-40) 

From ( 2-31), the perturbation electrical torque is 

  0 0Δ Δ [ ] [ ] [ ] [ ] .ΔT T T T T
e

TT i L P i i L P i= +  ( 2-41) 

For simplicity in calculations, it is desirable to derive equations involving d and q axes quantities 

only, from the equations involving six-tuple vector.  

The voltage equations of ( 2-37) can be shown as, 

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
[ ][ ]

1 1 1
  11 12 13

1 1 1
   021 22 23

1 1 1
  31 32 33

     Δ Δ
Δ     Δ Δ
Δ Δ    

dq dq

fd fd r

kdq kdq

g g ge i
e g g g i P L i
e ig g g

ω
    
    = +
        

 ( 2-42) 

where  

  Δ [Δ ,Δ ]T
dq d qe e e=  ( 2-43)  

  Δ [Δ ,Δ ]T
dq d qi i i=  ( 2-44) 

  1 1 2Δ [Δ ,Δ ,Δ ] [0, 0, 0]T T
kdq d q qe e e e= =   ( 2-45) 

  1 1 2Δ [Δ ,Δ ,Δ ]T
kdq d q qi i i i=  ( 2-46)  

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
[ ] [ ][ ] [ ]( )

1 1 1
  11 12 13

1 1 1
   21 22 23 0

1 1 1 0
  31 32 33 6 6

     
    .
    

r

g g g
sg g g L P L R

g g g
ωω

×

 
  = + +
 
 

   ( 2-47)  

The sub matrices in ( 2-47) are: 
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  ( ) 0
0

2 2

0
0

1
11[ ]

d
a q r

q
d r a

sLR L

sL
L R

g
ωω

ω ω
×

 − − =  − − −  

 ( 2-48)  

  ( )
2 1 0

0

1
12 ][

ad

ad r

sL

L
g ω

ω
×

 
=  
  

 ( 2-49)  

  ( ) 0 0
0

2 3

0
0 0

1
13[ ]

ad
aq r aq r

aq aq
ad r

sL L L

sL sL
L

g
ω ωω

ω ω ω
×

 − − =  
  

 ( 2-50)  

  ( )
1

0

1
21 2[ ] 0adsLg ω×

 = −  
 ( 2-51)  

  ( )
1

0

1
22 1][ ffd

fd

sL
Rg ω×
 = +  

  ( 2-52)  

  ( ) 1
1 3

1
23

0
] 0[ 0fd dg

sL
ω×

 =   
 ( 2-53)  

  ( )
0

31 3 2
1

0

0

]

0

[

0

0

ad

aq

aq

sL

sL

sL

g

ω

ω

ω

×

 − 
 = − 
 

− 
 

 ( 2-54)  

  ( )

1

0

32 3 1
1[ ] 0

0

fd dsL

g
ω

×

 
 
 =
 
  

 ( 2-55)  

  ( )

11
1

0

11
33 3 3 1

0 0

22
2

0 0

1

0 0

] 0

0

[ .

d
d

q aq
q

aq d
d

sLR

sL sL
R

sL sLR

g

ω

ω ω

ω ω

×

 + 
 = + 
 

+ 
 

 ( 2-56) 

Since the voltages across the damper windings are zero, as given by ( 2-45), the effects of Δikdq 

can be embedded in the perturbation currents of ∆id, ∆iq and ∆ifd. Mathematically, this consists of 

eliminating Δikdq using the third row of ( 2-42). Therefore, 

  
( ) ( )

( ) ( )

2 2
11 12

2 2 0
2

1

1 22

Δ Δ   ΔΔ Δ 0  
dq dq

dqfr
fd fd

e ig g
e ig g

L iω    =  
  

+        
 ( 2-57) 
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where  

  ( ) ( ) 0 0
0

1( )   
1

A
exc d q

R t

K
G s e e

sT e
−=   +  ( 2-68) 

  1

2

1
( )

1 1
W

pss STA
W

sT sT
G s K K

sT sT
+= + +  ( 2-69) 

in which KA and KST are the exciter and stabilizer gains, and Tw, T1 and T2 are the stabilizer time 

constants; ed0 and eq0 are the steady state terminal voltages, and TR is the voltage transducer time 

constant.    

Substituting  ( 2-67) for Δefd in ( 2-64) gives 

 ( ) ( )( ) ( ) [ ] ( )( )
2 2

3 3 3
012 11 121[ ] [ ] Δ Δ [ ] ( ) Δ[ ]dq dq dqfexc pss rI g  G s e i i g   G s ωg L

×
− = + +  ( 2-70) 

where [I]2×2 is a 2×2 identity matrix.  

Now the currents can be extracted from ( 2-70) as, 

  ( ) ( )Δ [ ]Δ [ ] Δdq dq ri A s e B s ω= +  ( 2-71) 

where 

  ( ) ( ) ( )( )3 31
2 2 11 2 2 12[ ] [ ] [ ] [ ] ( )excA s g I g G s−
× ×= −  ( 2-72)                         

  ( ) ( ) ( )( )3 31
02 1 1 11 12[ ][ ] [ ] [ ] ( )dqf pssB s g L i g G s−

× = − +  ( 2-73) 

2.3.3 Transformation from d-q Frame to R-I Frame 

In a network with ng generators, there exists ng sets of equations ( 2-12)-( 2-73), while the final 

useable form for this research is ( 2-71). Each equation set is valid in the d-q frame of the 

individual generator. The standard technique is to unite all the generators by transforming the 

individual d-q frames to the common Real-Imaginary (R-I) frame of the system grid. Figure  2-3 

illustrates the relationship between the d-q frame of an individual generator and the R-I frame of 

the system. According to this figure, the rotor angular orientation δ is the angle by which the q-

axis leads the reference R [2]. As the result of load flow, the rotor angle δn and the steady state d-

q currents i0dqn, and voltages e0dqn of all the ng generators (i.e., n= 1, 2,…, ng) are obtained. 
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where ΔeRIn and ΔiRIn are the voltage and current perturbations for generator n, in the R-I frame, 

and  Δωrn is the perturbation rotor speed for generator n. It should be noted that 

0( ) ( ) ( )[Δ ] [ ] Δ [ ] Δn n n n
T T

rnC C C sδ δ δ ωδ ω= = .  

2.3.4 R-I Frame Equations of ng Generators 

Inserting ( 2-83) and ( 2-84) in ( 2-71) results in the current equation for nth generator in the R-I 

frame: 

  ( )' 'Δ [ ] Δ [ ( )] Δ 1,  2, ,        RIn RInn n rni A s e B s n ngω= + = …  ( 2-85) 

where 

  [ ] ( )[ ][ ]2
'

2[ ] ( ) ( ) 1         ,  2, ,  T
n n n nA C A s C n ngδ δ× = = …  ( 2-86) 

( )( ) ( )' 20
2 1 0 0[ ] [ ( )][ ][ ( )] [ ( )]  [ ( )][ ]   1,  2, ,  n n n n RI n n RI n n nB C A s C e C i C B s n ng

s
ω δ δ δ δ× = − + = … ( 2-87) 

and [An(s)] and [Bn(s)] are defined in  ( 2-72) and ( 2-73).   

Equation ( 2-85) can be expanded for all the ng generators, which gives the following closed 

form matrix equation: 

  ( )] ( )]' '  [ [RI full rRI fulfu lll fulli A es sB ω− −Δ = Δ + Δ
 

 ( 2-88) 

where 

  1Δ [Δ Δ ]T T
R

T
RI full I RIngi i i− = …  ( 2-89)      

  1Δ [Δ  Δ ]T T
RI

T
RI Rful Ingle e e− = …  ( 2-90)      

are vectors of the size 2ng, and  

 

  

'
1

'
2

2 2
'

'

[ ( )] 0 . . 0

0 [ ( )] . . 0

( )] . . . . .

. . . . .

0 . . 0 [ ( )]

[ full ng ng

ng

A

A s

A s

s

A s

×

 
 
 
 =
 
 
 
 

 ( 2-91) 
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'
1

'
2

2

'

'

[ ( )] 0 . . 0

0 [ ( )] . . 0

[ ( )] .. . . . .

. . . . .

0 . . 0 [ ( )]

full ng ng

ng

B s

B s

B s

B s

×

 
 
 
 =
 
 
 
 

  ( 2-92)        

2.4 Integrating Power System Network Equations to 
Generator Equations 

In order to eliminate ΔeRI-full in ( 2-88), network equations should be incorporated. It is assumed 

that the network has Nb buses, from which the first ng are the generating buses. Therefore, from 

the bus impedance matrix we have,  

  

1 1

11 12

1 121 22

n nbusg g

g

bus

n nbus bus Nb Nb

N

g

Nbb

e

e Z Z
v Z

v

iZ

i

i

i

+ +×

   
   
    =     
   
      

 

 

 ( 2-93) 

where [e1,…,eng, eng+1,…, eNb]
T and [i1,…, ing, ing+1,…, iNb]

T are the vectors of bus voltages and bus 

injected currents respectively, and Zbusij (i, j= 1, 2) are the sub-matrices of the bus impedance 

matrix. 

After perturbing ( 2-93) we have, 

  

1 1

11 12

21 221 1

.g gn nbus bus

bus bus Nb Nbn

b

ng

N N

g

b

i

i

e

e Z
Z i

Z

i

Zv

v

×+ +

Δ Δ   
   
Δ Δ    =    Δ Δ    
   Δ Δ   

 

 

 ( 2-94) 

From the first ng rows of ( 2-94), generator voltages would be extracted as, 

  
11 1

11 12 ( )[ ] [ ] .
ng

bus ng ng

g

bus ng Nb ng

n bn Ng

iie
Z Z

ie i

+

× × −

ΔΔ Δ     
    = +
    Δ Δ Δ     

    ( 2-95) 

At the same time, the load currents [Δing+1,…, ΔiNb]
T in ( 2-95) can be eliminated from the second 

(Nb-ng) rows of ( 2-94), while considering ( 2-96). Equation ( 2-96) implies the relationship 
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between the load voltages and the load currents. This relationship (function f ()) depends on the 

load type, and in general can be considered as: 

  
1 1

.
gn

Nb

g

Nb

ni

i

v
f

v

+ +Δ Δ    
    =
    Δ Δ    

   ( 2-96) 

Therefore, from ( 2-94) the load currents are: 

  ( )
1 11

22 ( ) ( ) 21 ( )[ ] [ ] .
n

bus Nb ng Nb ng bus N

g

b g

b ng ng

N n

i
f Z

i
Z

i

i

+ −
− × − − ×

Δ Δ   
   = −
   Δ Δ  
   ( 2-97) 

Now replacing ( 2-97) for [Δing+1,…, ΔiNb]
T in ( 2-95), the generator voltages are obtained, 

  
1 1

[ ]total

n gng

ie
Z

ie

Δ Δ   
   =
   Δ Δ   
   ( 2-98) 

where 

( ) 1

11 12 ( ) 22 ( ) ( ) 21 ( )[ ] [ ] [ ] [ ] [ ]total ng ng bus ng ng bus ng Nb ng bus Nb ng Nb ng bus Nb ng ngZ Z Z f Z Z
−

× × × − − × − − ×= + × −  ( 2-99) 

In order to extract the R-I components of ( 2-98), [Ztotal] should be decoupled into real and 

imaginary parts as, 

  [ ]{ }[ ] Real total totng n alg ng ng
R Z× ×=  ( 2-100) 

  [ ]{ }[ ] Imaginary ng ntotal totalg ng ngX Z× ×=  ( 2-101) 

From ( 2-98), it can be shown that the complete generator currents and voltages in the R-I frame 

are related as, 

  [ ]Δ ΔRI full RI fulle D i− −=  ( 2-102) 

where 

  [ ]
11 2 2 1 2 2

2 22 2

1 2 2 2 2

[ ] [ ]
[ ]

[ ] [ ]

ng

ijng ng

ng ngng

D D
D D

D D

× ×

××

× ×

 
 =
 
 


 


 ( 2-103) 

and  

  2 2[ ]        , 1,  2, ...,  ij ij
ij

ij ij

r x
D i j ngx r×

− = =  
 ( 2-104) 

in which rij and xij are the (i,j)th entry of [Rtotal] and [Xtotal] respectively. 

Finally, ΔeRI-full in ( 2-88) is replaced by ( 2-102): 
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  [ ]' 'Δ [ Δ [( )]  ( )] ΔRI full RIfull fullfull ri A i Bs D s ω− −= +
 

( 2-105)

  and ΔiRI-full is derived in terms of all generators speed deviations Δωr, as: 

  ( )( ) ( )1' '
2 2Δ [ ] [ ] [ .[ ] ]ΔRI full ng ng full full ri I A s D B s ω−

− ×= −     ( 2-106) 

2.5 Perturbation Generator Torque 

Having ΔiRI for each generator, it is now possible to form the electrical torque variations. From 

( 2-41):  

  0 0Δ Δ [ ] [ ] [ ] [ ] ΔT T T T T
e

TT i L P i i L P i= +  ( 2-107)   

where 

  1 1 2[ , , , , , ]T
d q fd d q qi i i i i i iΔ = Δ Δ Δ Δ Δ Δ  ( 2-108)  

  0 0 0 0 01 01 02[ , , , , , ]T
d q fd d q qi i i i i i i=  ( 2-109) 

and [L] and [P] are defined in ( 2-34) and ( 2-36) respectively.  

The currents in ( 2-108) can be easily found in terms of Δωr from ΔiRI of ( 2-106). From ΔiRI 

for each generator, back-substitution by [C(δn)] of ( 2-76) to the d-q frame gives Δidq for each 

generator. Also Δikdq and Δifd are found in terms of Δidq from the 3rd row of ( 2-42) when 

considering ( 2-45). By having the currents of ( 2-108), the perturbation torque of ( 2-107) for all 

the ng generators can be arranged as, 

  
1 1'': [ ( )] :

e r

eng rng

T
A s

T

ω

ω

Δ Δ   
   =
   Δ Δ   

 ( 2-110)  

where [A"(s)] is a full and frequency-dependent matrix. Forming [A"(s)] is straight forward and is 

explained in Appendix B.  

2.6 Damping and Synchronizing Torque Matrices 

For each mode, whose modal frequency is ωn, the rotors of every generator oscillates at the 

speed of ωn. The perturbation speed can be written as an ng-tuple vector Δωr in the following 

form: 
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  { }Δ ( ) Real Ω nj t
r t e ωω =  ( 2-111) 

where 

  T
1 2, ,Ω [Ω Ω  Ω ]ng= …  ( 2-112) 

in which  ( 1, 2, ..., )i i ngΩ =  is a phasor quantity. 

Each generator is oscillating at the perturbation speed of ( 2-111), which through the generator 

currents of ( 2-71) makes all other electrical variables oscillate with the same frequency, 

including the perturbation torque. Therefore, the vector of perturbation torques of ng generators 

would be, 

  ( ) { }Δ Real  nj t
e eT t T e ω=  ( 2-113) 

  1 2, ,[  ]T
e e e engT T T T= …  ( 2-114) 

where   ( 1, 2,..., )e iT i ng= is a phasor quantity.  

Substituting ( 2-111) and ( 2-113) in ( 2-110) yields 

  
1 1"

Ω
: [ ( )] : .

Ω
g

n

e

ng ng

eng n

T
A

T
ω ×

  
   =
     

 ( 2-115) 

On the other hand, because the rotor speed and angle deviations are related by 

  0 rnjω δ ω ωΔ = Δ , ( 2-116) 

one can define a vector of angle deviations Δδ : 

  { }Δ ( ) Real  nj tt e ωδ = Δ  ( 2-117) 

where 

  T
1[  ]gnΔ …Δ Δ=  ( 2-118) 

and  ( 1, 2, ..., )i i ng=Δ  is a phasor quantity. 

From ( 2-116), iΩ  and iΔ are related by 

  
1 1

0

Ω
: : .

Ω

n

ng gn

j
ω
ω

   
   = −
  Δ

Δ

 
 ( 2-119) 

In conclusion, the matrices of synchronizing torque coefficients [KS(ω)] and damping torque 

coefficient [KD(ω)] are derived by incorporating ( 2-119) into ( 2-115), as 

  ( ) ( ){ }( )"
0 [ ] Imaginary [ ] /ng ng ng ngS n n nK Aω ω ω ω× ×= −  ( 2-120) 
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 (a): Synchronizing torque coefficient. 

 

(b): Damping torque coefficient. 

Figure  2-5: Torque coefficients for single generator system. 

The first step of TFEA is therefore to choose ωK, the representative frequency of the spectrum 

of interest. For instance, one prevailing interest is on the lowest frequency modes because their 

damping coefficients are very low, however, there is a disturbing note that some high frequency 

modes can also be lightly or negatively damped [41]. In this research, the entire 

electromechanical frequency range is of interest. According to [3], this range is 0.1-0.8 Hz for 

inter-area modes and 0.7-2 Hz for local oscillations. Therefore, a frequency range of 0.7-12.5 

rad/s is considered, and a moderate frequency of 5 rad/s is chosen as ωK. The expectation is that 

modes with frequencies ωn close to ωK are accurately predicted and this has been borne to be true 
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from numerical evaluation. The effect of different representative frequencies on the TFEA 

performance will be discussed in Section 2.10.2.  

2.8 Correction by the Eigenvalue Sensitivity Formula 

Having pointed to an important source of inaccuracy, this section offers a computationally 

economical route of obtaining better estimates by applying the eigenvalue sensitivity-with-

respect-to-parameter-variation formula of [41], with explanation given in [43].  

For a matrix [A] with an eigenvalue λ, the sensitivity formula determines the eigenvalue 

change Δλ due to a perturbation of Δ[A] [41]:   

  [ ] T

T
r A u

r u
λ ΔΔ =  ( 2-122) 

where the vectors u and r are the eigenvectors of [A] and [A]T respectively. The vectors u and r 

are sometimes called the right and left eigenvectors of [A] [44]. 

  [ ]  A u uλ=  ( 2-123) 

  [ ]   TA r rλ=  ( 2-124) 

From TFEA, the eigenvalues λn=σn±jωn and the eigenvectors un and rn, n=1, 2..., (ng-1), of 

[A(ωK)] are retained. If the nth mode is of interest, a new [A(ωn)] is formed evaluated at the 

frequency ωn. For the nth mode with right eigenvector un and left eigenvector rn of [A(ωK)], the 

correction for [A]=[A(ωn)] is based on small perturbation Δ[A]=[A(ωn)]-[A(ωK)] in ( 2-122). 

Therefore, the eigenvalue sensitivity correction is, 

  
[ ] [ ]( )( ( ) )n K n

n

T
n

T
nn

r A A u

r u

ω ω
λ

−
Δ =   ( 2-125) 

and the new improved eigenvalue estimation is, 

  _ Δn imp n nλ λ λ= +         ( 2-126) 

where λn is the nth eigenvalue of [A(ωK)]. 
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2.9 Numerical Results 

In order to establish the feasibility of the method, it is necessary to provide unimpeachable 

eigenvalue references for comparison. The model of the test references represents the damper 

windings, the excitation system and PSS of each generator as state-space equations. In general, 

each generator with exciter and PSS, is modeled by m=11 state-variables. This matrix is the full 

state matrix [A]11ng×11ng as in ( 1-4). The 11 state variables include six flux variables, rotor angle, 

rotor speed and three control states from exciter and PSS. From the (11ng) modes, (ng-1) pair of 

complex conjugate electromechanical modes are sorted out for comparison with the results of the 

TFEA method. The (ng-1) electromechanical eigenvalues of the full state matrix are the 

benchmark results for comparison. 

The TFEA results are from the eigenanalysis of the reduced state matrix [A(ωK)]2ng×2ng, where 

ωK is chosen 5 rad/s. The eigenvectors of [A(ωK)] are retained for improved accuracy estimation 

using the eigenvalue sensitivity formula of ( 2-125). 

Eigenanalysis of both the reduced and full state matrices are solved in MATLAB by QR 

Algorithm [18].  

2.9.1 Single-Generator System 

To start with a basic example, the single generator model of Figure  2-4 is considered in this 

section. The generator data and the operating conditions, taken from [2], are presented in 

Table  2-1 and Table  2-2 respectively. The values are in per unit. It is assumed that the generator 

is equipped with the exciter and PSS modeled in Figure  2-2, with the parameters in Table  2-3. 

Table  2-1: Generator parameters in per unit for the system of Figure  2-4. 

Lad Laq Lleakage Lfd L1d L1q L2q Ra Rfd R1d R1q R2q 

1.4 1.36 0.16 0.15 0.14 0.07 0.11 0.003 0.0006 0.024 0.006 0.022 

Table  2-2: Operating conditions for the system of Figure  2-4. 

id0 (pu) iq0 (pu) ed0 (pu) eq0 (pu) efd0 (pu) δ0 (deg) 

0.83 0.45 0.68 0.73 2.395 79⁰
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Table  2-3: Exciter and PSS parameters. 

KA TR(s) KST Tw(s) T1(s) T2(s) 

200 0.02 9.5 1.4 0.154 0.033 

 

The TFEA method is applied to this system to find [KS(ω)] and [KD(ω)] and form the reduced 

[A(ω)] matrix. This system has only one electromechanical mode, as shown in Table  2-5 for 

three different cases of Table  2-4. The purpose of case studies in Table  2-4 is to gather data 

which shed insights on the method. For example, exciters are known to give rise to negative 

damping while the PSS is to resolve it. The case studies of Table  2-4 are used through the entire 

chapter.  

Table  2-4: Different case studies based on the generator model. 
Case number Damper windings Exciter PSS 

1 ✓ × × 

2 ✓ ✓ × 

3 ✓ ✓ ✓ 

Table  2-5: Eigenvalue estimation results for the single generator system. 

Case 

number 
Benchmark results of [A]11×11 

λ(ωK=5)  

of  [A(ωK)]2×2 

λimp = λ(ωK=5)+Δλ 

of  ( 2-126) 

1 -0.17±j6.47 -0.29±j6.43 -0.19±j6.45 

2 0.53±j7.38 0.51±j7.49 0.55±j7.36 

3 -1.08±j6.8 -1.05±j7.1 -1.15±j6.85 

 

Table  2-5 has four columns. The first column lists the case number from Table  2-4. The 

second column is the benchmark result obtained by the eigenanalysis of the full state matrix from 

[2]. The third column is the eigenvalue estimation by TFEA for the representative frequency 

ωK=5 rad/s and the last column shows the improved estimation of eigenvalue from ( 2-126), when 

Δλ is calculated from ( 2-125). 



 

Comp

agreemen

2.9.2 M

Three dif

generator

system s

networks

The g

three test

system lo

ΔiNb) in (

All ge

power sy

are given

analysis. 

also know

considere

links or F

paring the r

nt with the b

Multi-Ge

fferent multi

r test system

size is incre

s. 

generators dy

t systems. Th

oads are assu

( 2-95)). 

enerators are

ystem data in

n in Append

The load fl

wn as “Che

ed so the me

Flexible AC 

esults in Ta

benchmark re

nerator P

i-generator p

ms taken from

ased to see 

ynamic mod

he transmiss

umed to be c

e equipped w

ncluding the

dix C. The p

low program

erry Tree Sc

echanical to

Transmissio

able  2-5, it 

esult.  

Power Sy

power system

m [11] and t

if the prop

del, transmis

sion lines are

constant, the

Figure  2-6: 

with the exc

 operating c

power system

m used in th

cientific Soft

rque is assu

on System (F

31 

is observed

ystems 

ms are used 

the 69-gener

posed metho

sion lines an

e modeled as

erefore, in sm

Pi-line mod

citer and PS

conditions, a

m operating 

his research i

ftware” [11, 

umed constan

FACTS) stab

d that the f

in this resea

rator system

od is applica

nd the load 

s pi-line mo

mall perturb

del [46]. 

SS modeled 

as well as the

 condition i

is the MatN

47]. The tu

nt. No other

bilizers [48]

final result 

arch: the 4-g

m taken from

able and eff

models are 

del of Figur

ation Δiload=

in Figure  2-

e exciter and

is the result 

NetFlow prov

urbine/govern

r system dev

are consider

λimp, is in 

generator an

m [45]. The p

fective for l

the same fo

re  2-6. The p

=0 (i.e., (Δing

 

-2. The com

d PSS param

of the load 

vided by Ro

nor model i

vices such a

red.  

good 

nd 16-

power 

larger 

or the 

power 

g+1,..., 

mplete 

meters 

flow 

ogers, 

is not 

as DC 



 

2.9.3  4

The 4

[11]. The

electrom

Case 1 

Case 2 

Case 3 

 

4-Genera

-generator o

e eigenanaly

echanical os

Tabl

Mode nu

Benc

λ

Benc

λ

Benc

λ

ator Test

or two-area t

ysis results f

scillatory mo

Figu

le  2-6: Eigen

umber 

chmark results

λ(ωK =5) 

λimp= λ+Δλ 

chmark results

λ(ωK =5) 

λimp= λ+Δλ 

chmark results

λ(ωK =5) 

λimp= λ+Δλ 

t System

test system o

for this syst

odes as show

ure  2-7: 4-Ge

nvalue estim

s 

s 

s 

32 

of Figure  2-7

tem are show

wn in this Tab

enerator test 

mation results

1 

-0.15±j2.79

-0.061±j2.81

-0.15±j2.78

0.073±j3.46

0.10±j3.45 

0.075±j3.46

-0.27±j3.37

-0.26±j3.29

-0.27±j3.37

7 has 13 bus

wn in Table

ble  2-6.  

system [11]

s for 4-gener

-0.8

-1.0

-0.8

-1.0

-1.1

-0.9

-2.4

-2.

-2.

ses and 14 tr

e  2-6. This 

]. 

rator system

2 

88±j6.45 

05±j6.12 

84±j6.31 

00±j6.66 

19±j6.12 

94±j6.41 

41±j6.40 

41±j5.6 

21±j5.9 

ransmission 

system has 

m. 

3 

-0.59±j6.

-0.78±j6.

-0.58±j6.

-0.67±j7.

-0.97±j6.

-0.65±j6.

-2.29±j6.

-2.40±j6.2

-2.18±j6.4

lines 

three 

 

72 

52 

66 

11 

69 

98 

75 

20 

44 



 

The th

rad/s are

estimatio

show per

Case 3 is

to the ben

2.9.4  1

From the

which be

This s

formatted

hree cases co

e shown in 

on, the sensit

rfect agreem

s approximat

nchmark res

16-Gener

e 4-generato

elongs to a 6

system has 1

d in the sam

ome from T

the second 

tivity formul

ment with the

tely 8%. The

sults. 

rator Tes

or system, te

8-bus system

Figur

15 oscillatory

me way as T

Table  2-4. In

row, which

la is applied

e first row: 

e rest of the 

st System

ests have be

m as shown i

re  2-8: 16-ge

y electromec

Table  2-6: fo

33 

n each case i

h are obtain

d and the imp

The dampin

results have

m 

een conduct

in Figure  2-8

enerator test 

chanical mo

or each case

in Table  2-6

ned form A[

proved pred

ng prediction

e less than 5

ted on the 1

8.   

system [11]

odes as show

e the first ro

, the predict

[(ωK=5)]8×8. 

dictions listed

n error for m

% prediction

16-generator

] . 

wn in Table 

ow being th

tions under ω

To improv

d in the third

modes 2 and

n error comp

r system of 

 2-7. This tab

he benchmar

ωK=5 

ve the 

d row 

d 3 of 

pared 

[11], 

 

ble is 

rk for 



34 
 

comparison; the second row shows the eigenanalysis results from [A(ωK=5)]32×32 and the third 

row is the improvement based on the sensitivity formula. The best overall agreement is found in 

the low frequency and low damping modes, which are fortunate because they are also the modes 

of concern for stability predictions.  

Table  2-7: Eigenvalue estimation results for 16-generator system. 

Mode number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Case 

1 

Benchmark 

results 

-0.94 

±j0.89 

-0.28 

±j2.04 

-0.10 

±j2.90 

-0.18 

±j4.79 

-0.27 

±j5.57

-0.31 

±j6.15

-0.51 

±j6.88

-0.39  

±j7.10

-0.49 

±j7.76

-0.33 

±j7.84

-0.65 

±j8.15 

-0.92 

±j9.07 

-0.92 

±j9.30

-0.81 

±j10.85

-0.65 

±j11.03

λ(ωK=5) 
-0.51 

±j0.93 

-0.07 

±j2.08 

-0.04 

±j2.90 

-0.16 

±j4.79 

-0.32 

±j5.54

-0.41 

±j6.10

-0.71 

±j6.70

-0.66 

±j6.98

-0.94 

±j7.50

-0.62 

±j7.78

-1.07 

±j7.78 

-1.74 

±j8.42 

-1.80 

±j8.60

-1.02 

±j10.60

-1.99 

±j10.50

λimp =λ+Δλ 
-0.91 

±j0.95 

-0.28 

±j2.01 

-0.097 

±j2.91 

-0.17 

±j4.79 

-0.28 

±j5.55

-0.31 

±j6.13

-0.51 

±j6.82

-0.39 

±j7.07

-0.49 

±j7.67

-0.34 

±j7.84

-0.62 

±j8.08 

-0.90 

±j8.96 

-0.95 

±j9.22

-0.87 

±j10.8

-0.61 

±j11.01

Case 

2 

Benchmark 

results 

0.08 

±j1.15 

0.13 

±j2.82 

0.07 

±j3.26 

-0.13 

±j4.85 

0.07 

±j7.00

0.35 

±j7.25

-0.38 

±j7.66

0.27 

±j7.96

0.07 

±j8.33

0.15 

±j8.69

-0.68 

±j8.95 

-0.66 

±j9.82 

-0.43 

±j10.11

-0.91 

±j10.72

0.21 

±j11.86

λ(ωK=5) 
0.06 

±j1.10 

0.11 

±j2.79 

0.08 

±j3.25 

-0.11 

±j4.86 

-0.17 

±j6.99

0.24 

±j7.30

-0.85 

±j7.30

-0.15 

±j8.04

-0.31 

±j8.30

-0.63 

±j8.64

-1.71 

±j7.9 

-2.1 

±j8.68 

-1.88 

±j9.1 

-0.73 

±j10.5

-1.60 

±j11.57

λimp =λ+Δλ 
0.09 

±j1.15 

0.13 

±j2.82 

0.07 

±j3.25 

-0.12 

±j4.85 

0.07 

±j7.01

0.35 

±j7.26

-0.39 

±j7.59

0.28 

±j7.98

0.09 

±j8.3j

0.15 

±j8.74

-0.81 

±j8.83 

-0.75 

±j9.78 

-0.60 

±j10.08

-0.87 

±j10.56

0.22 

±j12.04

Case 

3 

Benchmark 

results 

-0.08 

±j1.11 

-0.07 

±j2.79 

-0.17 

±j3.19 

-0.35 

±j4.81 

-1.02 

±j6.58

-1.16 

±j6.78

-1.86 

±j7.20

-2.14 

±j7.64

-1.22 

±j7.74

-2.38 

±j8.14

-1.33 

±j8.54 

-3.91 

±j8.66 

-4.63 

±j8.72

-1.31 

±j10.69

-1.90 

±j10.97

λ(ωK=5) 
-0.12 

±j0.79 

-0.09 

±j2.68 

-0.17 

±j3.13 

-0.34 

±j4.78 

-1.23 

±j6.67

-1.37 

±j6.83

-2.30 

±j6.86

-2.30 

±j7.78

-1.50 

±j7.86

-3.13 

±j7.9

-2.21 

±j7.74 

-4.80 

±j7.10 

-5.80 

±j6.71

-1.00 

±j10.50

-3.50 

±j10.80

λimp =λ+Δλ 
-0.06 

±j1.23 

-0.07 

±j2.79 

-0.17 

±j3.18 

-0.35 

±j4.78 

-1.11 

±j6.54

-1.27 

±j6.73

-1.97 

±j6.91

-1.99 

±j7.68

-1.30 

±j7.66

-2.63 

±j8.05

-1.53 

±j8.55 

-4.02 

±j8.10 

-4.95 

±j8.21

-1.10 

±j10.65

-2.10 

±j10.67

Cases 1, 2 and 3 correspond to each generator connected to the exciter and/or the PSS as 

described in Table  2-4. In Case 2, a number of modes have positive real parts and therefore the 

system is unstable. However, these modes are stabilized by the introduction of PSS in Case 3. 

 The results of Case 3 in Table  2-7 are plotted in Figure  2-9 for a visual check of the accuracy 

of the predictions. In this figure the blue stars are the benchmark results, the green plus are the 

eigenanalysis results of [A(ωK=5)] and the red triangles are the modified eigenvalues from the 
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sensitivity corrections. Overlap of the blue stars and red triangles show excellent agreement 

between the benchmark and modified eigenvalues, specifically for the low frequency modes. 

 

Figure  2-9: Complex plane for the results of Case 3 in Table  2-7. 

The summary of the prediction accuracy is provided in Table  2-8 for the results of Table  2-7. 

In this table the error of the TFEA results for damping and frequency predictions are obtained by 

comparing the improved eigenvalue λimp, with the benchmark results. 

Table  2-8: Error of the TFEA predictions for 16-generator system. 

 Damping Frequency 

Case 1 All modes have less than 6% error. All modes have less than 7%. 

Case 2 10 modes have less than 10% error. 
Maximum error is limited to 39%. 

All modes have less than 2%. 

Case 3 4 modes have less than 5% error. 
12 modes have less than 10% error. 
Maximum error is limited to 25%. 

8 modes have less than 1% error. 
Maximum error is limited to 10%. 

2.9.5  69-Generator Test System 

The 69-generator system of Figure  2-10 has 300 buses [45]. This system is considered big 

enough for educational purposes [49].The numerical results for this system are shown in 

Table  2-9. This table shows the result when exciters and PSSs are in operation which 

corresponds to Case  3 in Table  2-4. The representative frequency is chosen to ωK=5 rad/s. The 
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Table  2-9: Eigenvalue estimation results for 69-generator system. 

Mode 
number 

Benchmark 
results 

λ(ωK=5) λimp =λ+Δλ Mode 
number 

Benchmark 
results 

λ(ωK=5) λimp =λ+Δλ 

1 -0.08±j1.78 -0.19±j1.96 -0.11±j1.80 35 -0.79±j7.73 -1.58±j7.35 -0.79±j7.66 

2 -0.2±j2.38 -0.23±j2.54 -0.21±j2.41 36 -0.86±j7.75 -1.29±j7.44 -0.85±j7.69 

3 -0.12±j2.90 -0.14±j2.97 -0.12±j2.91 37 -0.82±j7.90 -1.24±j7.45 -1.00±j7.71 

4 -0.16±j3.05 -0.13±j3.10 -0.16±j3.05 38 -1.04±j7.90 -1.35±j7.44 -1.00±j7.75 

5 -0.17±j4.05 -0.14±j4.06 -0.17±j4.05 39 -1.15±j7.89 -2.15±j7.29 -1.11±j7.78 

6 -0.32±j4.88 -0.30±j4.85 -0.31±j4.85 40 -0.89±j7.96 -1.60±j7.44 -0.79±j7.85 

7 -0.4±j5.33 -0.42±j5.28 -0.39±j5.29 41 -0.99±j7.99 -1.21±j7.64 -0.87±j7.88 

8 -0.4±j5.55 -0.45±j5.49 -0.39±j5.51 42 -0.97±j8.02 -1.33±j7.63 -0.99±j7.91 

9 -0.08±j5.59 -0.06±j5.6 -0.08±j5.60 43 -1.07±j8.07 -1.47±j7.62 -0.94±j7.93 

10 -0.52±j5.77 -0.64±j5.65 -0.51±j5.69 44 -1.00±j8.12 -1.47±j7.63 -0.98±j8.02 

11 -0.39±5.79 -0.48±j5.73 -0.39±j5.75 45 -0.87±j8.14 -1.90±j7.69 -0.85±j8.08 

12 -0.38±j5.82 -0.47±j5.73 -0.37±j5.77 46 -1.26±j8.15 -1.59±j7.69 -1.21±j8.02 

13 -0.25±j5.85 -2.61±j5.18 -0.24±j5.85 47 -1.19±j8.20 -1.79±j7.61 -1.21±j8.02 

14 -0.52±j6.06 -0.23±j5.85 -0.51±j6.00 48 -1.32±j8.28 -1.31±j7.84 -1.28±j8.14 

15 -0.56±j6.10 -0.63±j5.95 -0.56±j6.02 49 -1.01±j8.39 -1.61±j7.99 -0.99±j8.3 

16 -0.58±j6.12 -0.74±j5.94 -0.58±j6.03 50 -0.87±j8.44 -1.48±j8.02 -0.86±j8.37 

17 -0.47±j6.21 -0.79±j5.96 -0.46±j6.16 51 -1.08±j8.48 -1.70±j8.00 -1.05±j8.38 

18 -0.55±j6.32 -0.62±j6.11 -0.54±j6.26 52 -0.92±j8.93 -1.74±j8.43 -0.91±j8.87 

19 -0.48±j6.38 -0.70±j6.17 -0.49±j6.33 53 -1.24±j8.91 -1.85±j8.38 -1.20±j8.79 

20 -0.62±j6.52 -0.69±j6.27 -0.61±j6.45 54 -1.11±j8.99 -1.55±j8.41 -1.15±j8.82 

21 -0.56±j6.78 -0.85±j6.32 -0.55±j6.74 55 -1.12±j9.10 -2.10±j 8.40 -1.12±j9.01 

22 -0.56±j6.84 -0.76±j6.64 -0.56±j6.78 56 -1.04±j9.31 -1.97±j8.74 -1.03±j9.24 

23 -2.12±j6.59 -0.88±j6.67 -2.19±j5.59 57 -1.22±j9.69 -2.42±j8.87 -1.19±j9.61 

24 -0.79±j6.96 -1.07±j6.72 -0.77±j6.89 58 -1.15±j9.71 -2.32±j8.97 -1.14±j9.64 

25 -0.67±j6.97 -0.99±j6.74 -0.67±j6.88 59 -1.14±j9.96 -2.39±j9.24 -1.13±j9.89 

26 -0.64±j7.06 -0.97±j6.84 -0.64±j6.98 60 -1.19±j10.22 -2.52±j9.42 -1.19±j10.19 

27 -0.63±j7.08 -1.90±j6.65 -0.62±j7.02 61 -1.27±j10.66 -2.88±j9.68 -1.26±j10.68 

28 -0.78±j7.09 -0.89±j6.89 -0.78±j7.12 62 -1.39±j10.74 -2.94±j9.75 -1.37±j10.73 

29 -0.65±j7.24 -1.16±j6.97 -0.64±j7.19 63 -1.52±j11.67 -3.52±j10.48 -1.48±j11.71 

30 -0.87±j7.25 -1.07±j6.97 -0.84±j7.16 64 -1.54±j11.79 -3.64±j10.45 -1.53±j11.85 

31 -0.71±j7.39 -1.02±j7.16 -0.69±j7.33 65 -2.07±j12.59 -4.67±j10.59 -2.02±j12.70 

32 -0.91±j7.44 -0.94±j7.06 -1.01±j7.26 66 -2.28±j12.99 -5.13±j10.75 -2.21±j13.14 

33 -0.71±j7.49 -1.14±j7.24 -0.70±j7.43 67 -2.05±j13.13 -4.86±j11.12 -1.99±j13.29 

34 -0.80±j7.51 -1.23±j7.20 -0.79±j7.42 68 -2.21±j13.49 -5.09±j11.37 -2.13±j13.67 
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The results of Table  2-9 are plotted in Figure  2-11 to visually show that the modified 

eigenvalues (red triangles) are in very close agreement with benchmark results (blue stars).The 

prediction error is given in Table  2-10. The damping prediction error is limited to 5% for 63 out 

of 68 modes. High error observed for few high frequency modes, which are of less concern. 

 

Figure  2-11: Complex plane for the results of Table  2-9. 

Table  2-10: Error of the TFEA predictions for 69-generator system. 

 Damping Frequency 

Case 3 63 modes have less than 5% error. 
Maximum error is 37%. 

67 modes have less than 3% error. 
One mode has 15% error. 

2.10 Discussion of the Accuracy of the TFEA Method 

In this section, it will be shown that the nature of frequency dependency of the method would not 

cause accuracy problems. The discussion is based on the TFEA results of the 16-generator 

system. 
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2.10.1 Sufficient Accuracy of Predictions 

Depending on the accuracy criteria and application of TFEA results, one can conclude if the 

TFEA accuracy is “sufficient” or not. The power system requires assurance that the system is 

stable in small signal perturbation. This means that only the damping factor of the eigenvalue 

closest to imaginary axis counts. It does not matter whether the eigenvalues of the remaining 

modes are inaccurate.  If another technique, such as Nyquist stability criterion is used, stability is 

assured when the open loop transfer function does not encircle any eigenvalue or the -1 point [4, 

50]. The designer is oblivious of the other eigenvalues. 

Although the prediction errors in Tables  2-8 and  2-10 provide good means of knowing the 

accuracy of the TFEA method, the relationship between accuracy and small signal stability 

criteria must be remembered. For example, with the explanations above, the accuracy of heavily 

damped modes are not important. 

Another point is the application of TFEA results. As mentioned in Chapter 1, the initial 

objective of this research is to present estimates of all the electromechanical modes so the user 

can choose the few dominant (least damped) ones which he will use in more accurate methods 

like the Modified Arnoldi Method (MAM) [16], to compute the eigenvalues precisely.   

Considering Case 3 of Table  2-7, the user attention, on scanning the second row, is drawn to -

0.09 of mode 2 as the least damped mode. For assurance, an improved estimate is sought and this 

requires applying the sensitivity method which yields the value of -0.07 equal to the benchmark 

result. What is useful is that the estimate based on the representative frequency ωK=5 rad/s, is 

“good enough” to call attention to the fact that mode 2 is a dominant and least damped mode. 

Also for the heavily damped modes, the TFEA accuracy is sufficient to classify them as non-

dominant modes. For example, for mode 15 the damping is -3.5. Accurate prediction using 

eigenvalue sensitivity correction, as shown in the third row, is -2.1 which is close to the 

benchmark value of -1.9. However, the initial damping estimation is “good enough” to classify 

mode 15 as a non-dominant mode. 

2.10.2 Choice of Representative Frequency 

Choice of representative frequency ωK is the first step of applying the TFEA method. Numerical 

results of Section 2.9 acknowledge that only the modes whose modal frequencies are close to the 
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representative frequency ωK are accurate. The experiment done in this section shows the effect of 

different representative frequencies on the TFEA results. 

Considering the 16-generator system, Table  2-11 lists the eigenvalues of modes 1, 2 and 3 

(lowest modal frequencies) and modes 14 and 15 (highest modal frequencies), obtained by TFEA 

for three representative frequencies ωK=1.0, 5.0 and 10.0 rad/s. For ωK=1.0 rad/s, the estimates 

of the damping of the lowest frequency modes are reasonable and the sensitivity correction 

results (fourth column) are very good. On the other hand, the entries of mode 15 are left blank 

because eigenvalue subroutine yields real rather than complex conjugate numbers. In other 

words, the prediction is poor because the frequency 10.9 rad/s is too distant from ωK=1.0 rad/s. 

Similarly, for ωK=10.0 rad/s, there is no prediction for mode 1, because the frequency of 1.11 

rad/s of mode 1, is too different from ωK=10.0 rad/s. For the high frequency modes, the estimates 

of damping coefficients of modes 14 and 15 are reasonable.   

For a spread of frequency between 1.11 to 10.9 rad/s, ωK=5.0 rad/s is a good representative 

frequency. Depending on the expected frequencies of the dominant modes, the user is helped by 

choosing ωK close to it.   

Table  2-11: Choice of representative frequency ωK. 

Mode 
number 

Benchmark 
results 

λ(ωK=1) λimp =λ+Δλ λ(ωK=5) λimp =λ+Δλ λ(ωK=10) λimp =λ+Δλ 

1 -0.08±j1.11 -0.08±j1.12 -0.08±j1.12 -0.12±j0.79 -0.06±j1.23   

2 -0.07±j2.79 -0.02±j2.87 -0.09±j2.79 -0.09±j2.68 -0.07±j2.79 -0.14±j2.28 -0.06±j2.85 

3 -0.17±j3.19 -0.32±j3.14 -0.18±j3.20 -0.17±j3.13 -0.17±j3.18 -0.21±j2.75 -0.16±j3.25 

14 -1.31±j10.69 -1.03±j10.20 -1.10±j10.80 -1.00±j10.5 -1.10±j10.65 -1.06±j10.73 -1.07±j10.78

15 -1.90±j10.9   -3.5±j10.8 -2.10±j10.67 -2.16±j10.86 -2.14±j10.7 

2.10.3 Perturbation of Eigenvectors 

The eigenvalue sensitivity method depends on small perturbation linearization. The accuracy of 

the estimate of ( 2-125) relies on the invariability of the eigenvectors for frequencies ωn close to 

ωK. 
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Figure  2-12: Complex eigenvector for mode 1, Case 3 of Table  2-7, 16-generator system. 

The bar graphs in Figure  2-12 compare the 32 real parts and the 32 imaginary parts of the 16 

generator complex eigenvectors for mode 1, Case 3 of Table  2-7. It is shown for two 

representative frequencies: ωK=1.0 and ωK=5.0 rad/s. Each bar corresponds to one state variable; 

the first 16 bars are associated with the generators rotor angle while the rest relate to the rotor 

speed variation. If the accuracy of the lowest frequency modes are of interest, for instance, it is 

necessary to use the eigenvectors of ωK=1.0. If ωK=5.0, the differences as shown in Figure  2-12 

would lower the accuracy.  

2.11 TFEA Robustness 

Robustness of eigenanalysis methods is important to verify the method accuracy under different 

system conditions [40]. In this section, the robustness of TFEA method is tested for lightly and 

heavily loaded systems. This includes three loadings for the 16-generator system and two 

loadings for the 69-generator system, as shown in Table  2-12. 
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Table  2-12: Loading cases for TFEA robustness test. 

16-generator system 69-generator system 

Original loading 
(MW) 

Loading 1 
(MW) 

Loading 2 
(MW) 

Loading 3 
(MW) 

Original 
loading 
(MW) 

Loading 4 
(MW) 

Loading 5 
(MW) 

18000 6300 11700 23400 23600 15300 29700 

 

The eigenanalysis results for the first three loadings of Table  2-12 are shown in Table  2-13. 

The results demonstrate that the dominant modes are predicted accurately irrespective of the 

level of loading. The results of Loadings 4 and 5 are shown graphically in Figure  2-13 and 

Figure  2-14. The scale is sufficient to show that the dominant modes, which are closest to the 

imaginary axis, are close to the benchmark results. 

Table  2-13: Eigenvalue estimation results for 16-generator system under different loadings. 

Mode number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Loading 

1 

Benchmark 

results 

-0.09 

±j2.49 

-0.20 

±j3.43

-0.34 

±j4.10 

-0.29 

±j4.98 

-1.09 

±j6.29

  -1.26 

±j6.68

  -1.73 

±j6.98

-2.17 

±j7.23

-0.95 

±j7.76

-2.04 

±j7.84

-2.52 

±j7.81 

  -3.54 

±j7.44 

-3.76 

±j8.56

-0.89   

±j8.66

-1.60 

±j11.16

λimp =λ+Δλ 
-0.09 

±j2.49 

  -0.20

±j3.42

  -0.34 

±j4.08 

  -0.29 

±j4.96 

  -1.25 

±j6.15

-1.31 

±j6.47

-3.36 

±j5.46

-2.41 

±j6.23

 -1.00 

±j7.71

-1.85 

±j6.77

-2.25 

±j7.54 

-2.59 

±j6.69 

-4.26 

±j6.69

-0.96   

±j8.66

 -1.86 

±j11.35

Loading 

2 

Benchmark 

results 

-0.09 

±j2.19 

-0.21 

±j3.29

-0.24 

±j4.00 

-0.32 

±j4.91 

-1.17 

±j6.50

-1.41 

±j6.73

-2.11 

±j7.21

-1.95 

±j7.33

-2.56 

±j7.81 

-1.18 

±j7.74

-3.69 

±j8.23 

-2.00 

±j8.37 

-4.69 

±j8.43

-0.94  

±j9.73

-1.84  

±j10.96

λimp =λ+Δλ 
-0.09 

±j2.20 

-0.21 

±j3.29

-0.25 

±j4.00 

-0.33 

±j4.89 

-1.28 

±j6.35

-1.53 

±j6.63

-2.37 

±j6.69

-2.09 

±j7.24

-2.14 

±j7.49

-1.28  

±j7.72

-3.76 

±j6.96 

-2.86 

±j7.58 

-5.65 

±j6.43

-1.04   

±j9.73

-2.17   

±j11.09

Loading 

3 

Benchmark 

results 

-0.16 

±j2.39 

   0.05 

±j2.93

  -0.35 

±j4.67 

  -0.78 

±j6.58 

  -0.97 

±j6.88

  -1.52

±j7.12

  -1.04

±j7.61

-1.69 

±j7.94

-0.69 

±j8.72 

-0.88 

±j8.91

-2.19 

±j8.46 

  -3.57 

±j8.46 

-4.60 

±j8.88

-0.27 

±j10.08

-1.50 

±j10.59

λimp =λ+Δλ 
-0.16 

±j2.41 

   0.06 

±j2.94

-0.36 

±j4.65 

-0.90 

±j6.59 

-1.08 

±j6.88

 -1.71 

±j7.04

  -1.17

±j7.61

  -1.87

±j7.99

-0.78 

±j8.60

-0.95 

±j8.81

  -2.42 

±j8.48 

  -3.89 

±j8.19 

  -5.23

±j8.45

  -0.31 

±j10.09

 -1.78 

±j10.58
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Figure  2-13: Complex plane for the results of 69-generator system under loading Case 4. 

 

Figure  2-14: Complex plane for the results of 69-generator system under loading Case 5. 

Table  2-14 summarizes the prediction error based on the results of Loading 1 to Loading 5. 

This table with Table  2-8 and Table  2-10 show that the TFEA method is robust for different 

system loadings, because the TFEA method predicts the same level of accuracy in all of the three 

tables for different system operations. 
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Table  2-14: Error of the TFEA predictions for five different loadings.  

 Damping Frequency 

Loading 1 9 modes have less than 10% error. 
Maximum error is limited to 26%. 

10 modes have less than 5% error. 
Maximum error is limited to 22%. 

Loading 2 5 modes have less than 5 % error. 
14 modes have less than 20% error. 

13 modes have less than 10% error. 
Maximum error is limited to 23%. 

Loading 3 7 modes have less than 10 % error. 
All modes have less than 20% error. 

All modes have less than 5 % error. 

Loading 4 62 modes have less than 5% error. 
Maximum error is 11%. 

65 modes have less than 3% error. 
Maximum error is 38%. 

Loading 5 63 modes have less than 5% error. 
Maximum error is 25%. 

64 modes have less than 3% error. 
Maximum error is 8%. 

2.12 Chapter Summary 

The chapter has described a two-stage method of estimating the electromechanical eigenvalues 

of interconnected power systems. The first stage consists of evaluating all the eigenvalues and 

eigenvectors of a 2ng×2ng [A(ωK)] matrix evaluated at a representative frequency ωK. From the 

damping coefficients of all the electromechanical modes, the dominant modes are identified. For 

added reliability, the second stage offers a computationally economical method of obtaining 

more accurate estimation of the eigenvalues selected from the first stage. Although the 

eigenvalue sensitivity formula is well known, it is applied to obtain improved estimates, without 

having to re-compute the eigenvalues. 

The accuracy of the estimations has been tested against the benchmark results computed from 

a full state matrix which models the damper windings, exciters and power system stabilizers 

(PSSs). The numerical results from different test systems have shown acceptable accuracy of the 

proposed method. A discussion of accuracy in Section 2.10 also showed that the feature of 

frequency dependency of TFEA would not cause accuracy problems. The chapter is concluded 

by an important discussion of TFEA robustness under different system loadings. Next chapter 

will elaborate on the TFEA computational efficiency.   
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Chapter Three 

3. TFEA Computational Efficiency 

3.1 Overview 

This chapter elaborates on the computation count and efficiency of the TFEA method and the 

eigenvalue sensitivity. In Chapter 2, the TFEA method was introduced as a frequency-dependent 

eigenanalysis method for large power systems. The eigenvalues λn=σn±jωn and the right and left 

eigenvectors un and rn (n=1, 2…, ng) of [A(ωK)] are retained. If the nth mode is of interest, a new 

[A(ωn)] is evaluated at frequency ωn. An improved estimate of the eigenvalue is then obtained by 

applying the eigenvalue sensitivity formula of ( 2-125). It will be shown in this chapter that the 

cost in applying the sensitivity formula can be reduced significantly by using a curve fitting 

interpolation method.  

The numerical results of this research were obtained on a conventional PC with a memory of 

4 GB. However, the elapsed CPU time is not a measurement of computational efficiency as it 

changes from one PC to another. The efficiency of an algorithm such as TFEA can be estimated 

by counting the number of elementary operations performed by the algorithm, in which an 

elementary operation requires a fixed amount of time to perform [18]. The computation count is 

expressed using big O notation, which excludes coefficients and lower order terms [51]. 

All of the subroutines of the TFEA package were written by the author as part of his research 

work. The TFEA package contains several MATLAB subroutines. 
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3.2 Computation Count 

The total computation count for the eigenanalysis, determined by TFEA and applying sensitivity 

formula, can be derived from the following five steps. 

Step 1: Forming [A(ωK)]   

The major computation cost in forming the [A(ωK)] matrix is in solving the 2ng equation set of    

( 2-105) for currents. For ng generators, the computation cost is on the order of (2ng)3. 

Step 2: Solving eigenvalues and eigenvectors of [A(ωK)]  

The most computationally intensive part is in solving the eigenvalues (λ1, λ2,…, λng) and the 

eigenvectors (u1, u2,…, ung ) of  [A(ωK)] matrix. The computation cost is on the order of (2ng)3.  

Step 3: Solving eigenvectors of [A(ωK)]T 

The transpose matrix [A(ωK)]T has the same eigenvalues as [A(ωK)]. In solving its eigenvectors 

(r1, r2, …, rng ), the cost is (2ng)3.  

The eigenvalues (λ1, λ2,…, λng) and eigenvectors (u1, u2,…, ung ) and (r1, r2, …, rng ) are solved 

only once, and they are retained for the application of the sensitivity formula. 

Step 4: Improved estimation of eigenvalue for mode n 

To improve the accuracy of mode n, using eigenvalue sensitivity, it is necessary to form the 

[A(ωn)] matrix. The major computational burden lies again in solving the 2ng equation set of 

( 2-105) and the cost is on the order of (2ng)3.    

Step 5: Applying Sensitivity Formula 

Computing the sensitivity formula of ( 2-125) is trivial, because un and rn are available from the 

storage of (u1, u2,…, ung ) and (r1, r2, …, rng ) in Step 3.   

Table  3-1 summarizes the computation count of the five steps and show the total count and 

speed-up efficiency, compared to full state matrix eigenanalysis. This increase in speed is 

166/(ng+3) if a sensitivity correction is applied to all ng modes (worst case). In the case of no 

sensitivity corrections, the increase is approximately 56. 

 

 



47 
 

Table  3-1: Computation count. 

Computation  
Step 

TFEA 
Correction by 

sensitivity for one 
mode 

TFEA 
(with no 

sensitivity) 

TFEA+ sensitivity 
applied to all ng 

modes 

Eigenanalysis of 
the full state 

matrix 
[A](11ng×11ng) Step 1 Step2 Step3 Step4 Step5 

Computation  
Count 

(2ng)3 (2ng)3 (2ng)3 (2ng)3 - (3)(2ng)3 (ng+3)(2ng)3 (11ng)3 

Speed-up Efficiency (compared to eigenanalysis of full state matrix)
(11ng)3 /(3) 
(2ng)3≈56 

(11ng)3 /(ng+3) (2ng)3 

=166/(ng+3) 
 

3.3 Discussion of Speed-up Efficiency 

In Table  3-1, when sensitivity correction is applied to all of the modes, there is no increase in 

speed when ng is greater than 163. However, the advantage of TFEA is similar to those of 

selective eigenanalysis methods, such as AESOPS and MAM, in which only a few modes must 

be known accurately. Therefore, few sensitivity corrections are needed in practice.  

Moreover, in situations such as for online dynamic security assessment, there can be a speed 

increase of 56 because sensitivity correction of TFEA can be undertaken by parallel computing 

with supercomputers. This means that the accuracy of each mode is improved separately by the 

processing unit assigned to it, and the real-time computation count is 3×(2ng)3
. Therefore, the 

increase in speed for ng corrections compared to full state matrix analysis, will be approximately 

(11ng)3/3×(2ng)3 ≈ 56. 

To have a better understanding, the actual elapsed CPU times for the results of Section 2.9 are 

presented in Table  3-2. 

Table  3-2: CPU time. 

 
Eigenanalysis of the full state matrix 

[A](11ng×11ng) 
TFEA with sensitivity correction 

applied to all ng modes  

16-generator system 0.09 sec 0.008 sec 

69-generator system 2.77 sec 0.85 sec 
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3.4 Improving the Computation Count by Applying Curve 
Fitting Interpolation to the TFEA Method 

3.4.1 Contribution of Curve Fitting Interpolation 

The interpolation method is a simple but important contribution to methodology. It is a 

contribution to experimental research that comes from combining observation with intuition in 

software experimentation.  

According to Table  3-1, the cost of sensitivity correction for each mode ωn lies in the 

formation of the matrix [A(ωn)]. If the correction sensitivity formula is applied to all ng modes, 

the total cost is ng×(2ng)3
, which is a relatively high cost. To reduce such computation cost, a 

simple curve fitting interpolation will be applied during the procedure of evaluating [A(ωn)]. 

Because forming the matrix [A(ωn)] relies on arithmetic rules, the elements aij(ωn) of [A(ωn)] 

are expected to change continuously with frequency. These changes are shown in Section 3.4.3. 

However, since the author does not have the required mathematical training, a proof cannot be 

presented to demonstrate the robustness of interpolation. The contribution consists of evaluating 

[A(ω)] for only a small number of frequencies (called sampling frequencies), and using curve 

fitting to span the frequency gaps between the sampling frequencies. The accuracy of the method 

relies on the closeness of sampling points and the range over which the sensitivity formula is 

accurate.  

3.4.2 Implementation of Curve Fitting Interpolation 

The curve fitting interpolation method implies that [A(ω)] be computed not for all ng frequencies 

but only for a very small number of sampling frequencies. Then, interpolation is applied for the 

full range of frequencies between the sampling frequencies, which is achieved by the following 

three steps. 

Step 1: Choosing sampling frequencies 

For the electromechanical frequency range of 0.7-12.5 rad/s, the sampling frequencies are chosen 

as ωsample= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 rad/s. The number of sampling frequencies is nsample=10. 

Step 2: Forming [A(ωsample)] 

[A(ω)] is calculated for all of the sampling frequencies: [A(ωsample=1)],…, [A(ωsample=10)]. 
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Step 3: Forming [A(ωn)] 

For the nth mode, [A(ωn)] can be found by interpolating the matrices of [A(ωsample)] calculated  

in step 2, as: 

( ) {
( )

sample n sample

n

1
[ ( )] [ ( )] [ ( 1)] [ ( )] ( )    for 

1 10  rad/s

[ ( )] [ ( 10)] [ ( 10)]-[ ( 9)] ( -10) for 10  rad/s.

n sample sample sample n sample
n

n sample sample sample n

A A A A

A A A A

ω ω ωω ω ω ω ω ω ω

ω ω ω ω ω ω

< < += + + − × − ≤ ≤

= = + = = × >
 ( 3-1) 

3.4.3 Smoothness of [A(ω)]2ng×2ng 

The accuracy of the interpolation method depends on the smoothness of the entries of [A(ω)]. 

According to the TFEA in Chapter 2, the [A(ω)] matrix has four sub-matrices: the important ones 

are [a21(ω)] and [a22(ω)]. For the 69-generator system, [a21(ω)] and [a22(ω)] are 69×69 

frequency-dependent matrices. The feasibility of interpolation depends on the smoothness of 

these sub-matrices. To show this, Figures  3-1 and  3-2 show 10 random diagonal entries of 

[a21(ω)] and [a22(ω)], respectively. This process is repeated for the off-diagonal entries in 

Figures  3-3 and  3-4. According to these figures, it can be observed that the elements of [a21(ω)] 

and [a22(ω)] are smooth curves such that the proposed curve fitting interpolation could be 

implemented and utilized successfully. 

It should be emphasized that these curves are obtained by having ωsample= 1, 2,…, 10 rad/s, 

forming [A(ωsample)]2ng×2ng and using curve fitting to plot these figures. A small “kink” around 

ω=5 rad/s is observed in all four of the figures. Investigation shows that the “kink” is due to 

frequency-dependent elements such as exciter and PSS. It is not related to ωK=5 rad/s.   
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Figure  3-1: 10 random diagonal entries of [a21(ω)]69×69. 

 

Figure  3-2: 10 random diagonal entries of [a22(ω)]69×69. 

 

Figure  3-3: 10 random off-diagonal entries of [a21(ω)]69×69. 
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Figure  3-4: 10 random off-diagonal entries of [a22(ω)]69×69. 

3.4.4 Numerical Results 

To examine the proposed method of interpolation, the two test systems from Chapter 2 are used: 

the 16-generator and the 69-generator test systems. The operating conditions, the system 

parameters and the exciter/PSS model are the same as in Chapter 2. 

Table  3-3 shows the complete results for the 16-generator system, when the sensitivity 

method is applied to all 15 modes for both without and with interpolation. In this table, the first 

three columns are taken from Table  2-7, Case 3. The 3rd column of Table  3-3 is based on 

determining Δλ1 by the sensitivity formula of ( 2-125), when [A(ωn)] is found without 

interpolation. In contrast, after forming [A(ωn)] using the curve fitting interpolation of ( 3-1), Δλ2 

is obtained by applying the sensitivity formula, and the final results are placed in the 4th column. 

In both cases, the total modified eigenvalue is λimp.  

The prediction error for the results of Table  3-3 is indicated in Table  3-4. According to these 

tables, the modified eigenvalues obtained with interpolation (λimp2) are in good agreement with the 

modified eigenvalues obtained without interpolation (λimp1). 
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Table  3-3: Applying sensitivity correction by interpolation, 16-generator system. 

Benchmark results λ(ωK=5) 
λimp1 =λ+Δλ1 

(without interpolation) 

λimp2 =λ+Δλ2 

(with interpolation) 

-0.08±j1.11 -0.12±j0.79 -0.06±j1.23 -0.06±j1.23 

-0.07±j2.79 -0.09±j2.68 -0.07±j2.79 -0.07±j2.78 

-0.17±j3.19 -0.17±j3.13 -0.17±j3.18 -0.18±j3.18 

-0.35±j4.81 -0.34±j4.78 -0.35±j4.78 -0.34±j4.78 

-1.02±j6.58 -1.23±j6.67 -1.11±j6.54 -1.11±j6.54 

-1.16±j6.78 -1.37±j6.83 -1.27±j6.73 -1.29±j6.73 

-1.86±j7.20 -2.30±j6.86 -1.97±j6.91 -1.93±j6.90 

-2.14±j7.64 -2.30±j7.78 -1.99±j7.68 -1.98±j7.67 

-1.22±j7.74 -1.50±j7.86 -1.30±j7.66 -1.32±j7.66 

-2.38±j8.14 -3.13±j7.90 -2.63±j8.05 -2.65±j8.05 

-1.33±j8.54 -2.20±j7.74 -1.53±j8.55 -1.54±j8.55 

-3.91±j8.66 -4.80±j7.10 -4.02±j8.10 -4.09±j8.10 

-4.63±j8.72 -5.80±j6.71 -4.95±j8.21 -4.99±j8.20 

-1.31±j10.69 -1.00±j10.50 -1.10±j10.65 -1.10±j10.6 

-1.90±j10.97 -3.50±j10.80 -2.10±j10.67 -2.11±j10.68 

Table  3-4: Error of the TFEA predictions with curve fitting interpolation, 16-generator system. 
 Damping Frequency 

Error of λimp2 relative to λimp1 All modes have less than 5% error. All modes have less than 1% error. 

Error of λimp2 relative to benchmark 

results 

8 modes have less than 10% error. 

Maximum error is 25%. 

8 modes have less than 1% error. 

Maximum error is limited to 10%. 

 

To appreciate the accuracy and efficiency of the method, it is necessary to test the method on 

a larger system. Table  3-5 shows the results for the 69-generator system. The corresponding 

columns of this table are taken from Table  2-9. The columns of Table  3-5 are formatted in the 

same way as in Table  3-3.  
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Table  3-5: Applying sensitivity correction by interpolation, 69-generator system. 
Benchmark 

results λ(ωK=5) λimp1 =λ+Δλ1 λimp2 =λ+Δλ2 
Benchmark 

results λ(ωK=5) λimp1 =λ+Δλ1 λimp2 =λ+Δλ2 

-0.08±j1.78 -0.19±j1.96 -0.11±j1.80 -0.058±j1.72 -0.79±j7.73 -1.58±j7.35 -0.79±j7.66 -0.79±j7.66 

-0.2±j2.38 -0.23±j2.54 -0.21±j2.41 -0.18±j2.08 -0.86±j7.75 -1.29±j7.44 -0.85±j7.69 -0.86±j7.68 

-0.12±j2.90 -0.14±j2.97 -0.12±j2.91 -0.12±j2.89 -0.82±j7.90 -1.24±j7.45 -1.00±j7.71 -1.01±j7.71 

-0.16±j3.05 -0.13±j3.10 -0.16±j3.05 -0.17±j3.01 -1.04±j7.90 -1.35±j7.44 -1.00±j7.75 -1.00±j7.75 

-0.17±j4.05 -0.14±j4.06 -0.17±j4.05 -0.18±j3.95 -1.15±j7.89 -2.15±j7.29 -1.11±j7.78 -1.11±j7.78 

-0.32±j4.88 -0.30±j4.85 -0.31±j4.85 -0.31±j4.84 -0.89±j7.96 -1.60±j7.44 -0.79±j7.85 -0.80±j7.85 

-0.4±j5.33 -0.42±j5.28 -0.39±j5.29 -0.39±j5.28 -0.99±j7.99 -1.21±j7.64 -0.87±j7.88 -0.87±j7.89 

-0.4±j5.55 -0.45±j5.49 -0.39±j5.51 -0.39±j5.50 -0.97±j8.02 -1.33±j7.63 -0.99±j7.91 -0.99±j7.91 

-0.08±j5.59 -0.06±j5.6 -0.08±j5.60 -0.09±j5.59 -1.07±j8.07 -1.47±j7.62 -0.94±j7.93 -0.94±j7.93 

-0.52±j5.77 -0.64±j5.65 -0.51±j5.69 -0.51±j5.68 -1.00±j8.12 -1.47±j7.63 -0.98±j8.02 -0.98±j8.02 

-0.39±j5.79 -0.48±j5.73 -0.39±j5.75 -0.39±j5.734 -0.87±j8.14 -1.90±j7.69 -0.85±j8.08 -0.85±j8.08 

-0.38±j5.82 -0.47±j5.73 -0.37±j5.77 -0.37±j5.77 -1.26±j8.15 -1.59±j7.69 -1.21±j8.02 -1.21±j8.02 

-0.25±j5.85 -2.61±j5.18 -0.24±j5.85 -0.25±j5.85 -1.19±j8.20 -1.79±j7.61 -1.21±j8.02 -1.21±j8.01 

-0.52±j6.06 -0.23±j5.85 -0.51±j6.00 -0.51±j6.00 -1.32±j8.28 -1.31±j7.84 -1.28±j8.14 -1.28±j8.14 

-0.56±j6.10 -0.63±j5.95 -0.56±j6.02 -0.56±j6.01 -1.01±j8.39 -1.61±j7.99 -0.99±j8.3 -0.97±j8.31 

-0.58±j6.12 -0.74±j5.94 -0.58±j6.03 -0.57±j6.03 -0.87±j8.44 -1.48±j8.02 -0.86±j8.37 -0.86±j8.37 

-0.47±j6.21 -0.79±j5.96 -0.46±j6.16 -0.46±j6.15 -1.08±j8.48 -1.70±j8.00 -1.05±j8.38 -1.05±j8.38 

-0.55±j6.32 -0.62±j6.11 -0.54±j6.26 -0.54±j6.26 -0.92±j8.93 -1.74±j8.43 -0.91±j8.87 -0.91±j8.87 

-0.48±j6.38 -0.70±j6.17 -0.49±j6.33 -0.49±j6.32 -1.24±j8.91 -1.85±j8.38 -1.20±j8.79 -1.20±j8.79 

-0.62±j6.52 -0.69±j6.27 -0.61±j6.45 -0.61±j6.44 -1.11±j8.99 -1.55±j8.54 -1.05±j8.89 -1.05±j8.89 

-0.56±j6.78 -0.85±j6.32 -0.55±j6.74 -0.55±j6.74 -1.12±j9.10 -2.10±j8.40 -1.12±j9.01 -1.12±j9.01 

-0.56±j6.84 -0.76±j6.64 -0.56±j6.78 -0.56±j6.78 -1.04±j9.31 -1.97±j8.74 -1.03±j9.24 -1.03±j9.24 

-2.12±j6.59 -0.88±j6.67 -2.19±j5.59 -2.19±j5.59 -1.22±j9.69 -2.42±j8.87 -1.19±j9.61 -1.20±j9.61 

-0.79±j6.96 -1.07±j6.72 -0.77±j6.89 -0.77±j6.89 -1.15±j9.71 -2.32±j8.97 -1.14±j9.64 -1.14±j9.64 

-0.67±j6.97 -0.99±j6.74 -0.67±j6.88 -0.67±j6.88 -1.14±j9.96 -2.39±j9.24 -1.13±j9.89 -1.13±j9.89 

-0.64±j7.06 -0.97±j6.84 -0.64±j6.98 -0.64±j6.98 -1.19±j10.22 -2.52±j9.42 -1.19±j10.19 -1.19±j10.20

-0.63±j7.08 -1.90±j6.65 -0.62±j7.02 -0.62±j7.02 -1.27±j10.66 -2.88±j9.68 -1.26±j10.68 -1.26±j10.65

-0.78±j7.09 -0.89±j6.89 -0.78±j7.12 -0.78±j7.12 -1.39±j10.74 -2.94±j9.75 -1.37±j10.73 -1.37±j10.73

-0.65±j7.24 -1.16±j6.97 -0.64±j7.19 -0.64±j7.19 -1.52±j11.67 -3.52±j10.48 -1.48±j11.71 -1.49±j11.71

-0.87±j7.25 -1.07±j6.97 -0.84±j7.16 -0.84±j7.17 -1.54±j11.79 -3.64±j10.45 -1.53±j11.85 -1.53±j11.85

-0.71±j7.39 -1.02±j7.16 -0.69±j7.33 -0.69±j7.33 -2.07±j12.59 -4.67±j10.59 -2.02±j12.70 -2.03±j12.70

-0.91±j7.44 -0.94±j7.06 -1.01±j7.26 -1.01±j7.27 -2.28±j12.99 -5.13±j10.75 -2.21±j13.14 -2.21±j13.14

-0.71±j7.49 -1.14±j7.24 -0.70±j7.43 -0.70±j7.43 -2.05±j13.13 -4.86±j11.12 -1.99±j13.29 -2.00±j13.29

-0.80±j7.51 -1.23±j7.20 -0.79±j7.42 -0.79±j7.42 -2.21±j13.49 -5.09±j11.37 -2.13±j13.67 -2.14±j13.67
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Table  3-6 shows the errors for the results of Table  3-5. It is observed that λimp1 and λimp2 are in 

good agreement. The acceptable numerical results as well as the expected smoothness of [A(ω)], 

demonstrate the feasibility and the effectiveness of the interpolation method. 

Table  3-6: Error of the TFEA predictions with curve fitting interpolation, 69-generator system. 
 Damping Frequency 

Error of λimp2 relative to λimp1 62 modes have less than 2% error. 

Maximum error is 15%. 

67 modes have less than 2% error. 

Maximum error is 13%. 

Error of λimp2 relative to 

benchmark results 

59 modes have less than 5% error. 

8 modes have error between 5 and 10%. 

Maximum error is 27%. 

66 modes have less than 5% error. 

Maximum error is 15%. 

3.4.5 Computation Count with Curve Fitting Interpolation 

Since the number of electromechanical modes is much greater than the number of sampling 

frequencies, it is expected that the curve fitting interpolation will significantly improve the 

computation count. 

According to the results in Section 3.4.3, the sampling frequencies of ωsample= 1, 2,…, 10 rad/s 

(nsample=10) are sufficient for the range of 0.7-12.5 rad/s. In other words, because the usual 

frequency range of power system eigenanalysis is 0.7-12.5 rad/s [3], the sampling frequencies 

are chosen regardless of the system size and topology, which is the most important advantage of 

this method. A comparison of the computation counts is provided in Table  3-7. 

Table  3-7: Computation count for applying interpolation in forming [A(ωn)]. 

Eigenanalysis by TFEA method: applying sensitivity 

correction to all ng modes 

Without interpolation 

(from Table  3-1) 
With interpolation 

(3+ng)(2ng)3 (3+ nsample)(2ng)3 

 

Therefore, the speed up efficiency of interpolation method from Table  3-7 is, 

  
( ) ( )

( ) ( )
( )

( )
3

3

3 2 3
32

.
3 samplesample

ng ng ng
nn ng
+

+
=+

+
  ( 3-2) 
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According to Table  3-1, the TFEA method has a speed up efficiency of 166/(ng+3). Therefore, 

considering ( 3-2), the total increase in speed with interpolation, compared to the QR analysis of 

the full state matrix, would be, 

  ( )
( )

( ) ( )
3166 166 .

3 3 3sample sample

ng
ng n n

+× =+ + +
 ( 3-3) 

For nsample=10, it would be approximately 13 times faster than conventional QR analysis of the 

full state matrix. It should be reemphasized that this increase in speed is for the worst case, in 

which the sensitivity formula is applied to modify all ng modes. The interesting point is that the 

speed-up efficiency of ( 3-3) depends only on nsample, which is a fixed number regardless of the 

number of generators, ng, and the states per generator, m.  

3.6 Conclusion of TFEA Advantages 

The TFEA method has been introduced and tested in Chapters 2 and 3. Based on the results of 

these chapters the following conclusion can be made regarding the advantages of the TFEA 

method. 

3.6.1 TFEA for Power System Security Assessment 

Because power system outage affects gross national productivity, there is a need for continuous 

power system security assessment. TFEA has potential as one of the next-generation on-line 

methods for power system analysis tools, such as DSA Tools offered by Powertech [52], to 

assess all forms of stability in close to real time.  

Currently, the Modified Arnoldi Method (MAM) is the workhorse for small signal stability 

analysis because it has both speed and accuracy for large-dimension matrices. However, its 

application is limited to a few eigenvalues. Because only the eigenvalues closest to the imaginary 

axis of the complex s-plane affect stability, MAM is adequate in principle. In practice, one does 

not know a priori which modes are lowly damped.  

Since the TFEA method solves all the electromechanical eigenvalues, it can be used to 

identify the modes that have low damping. The eigenvalues of modes with modal frequencies ωn 

distant from ωK are inaccurate. Improving their accuracy by the sensitivity method is an option. 

Usually, it is unnecessary because stability is determined by the eigenvalue closest to the 
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imaginary axis.  In application, the TFEA is first used to scan all of the modes to identify the few 

with the smallest real parts. If required, improvement of accuracy by the sensitivity method is 

applied to only the few ones. Therefore, the method is fast.  If all of the eigenvalues must be 

determined accurately, one can turn to the curve fitting interpolation method. 

3.6.2 Summary 

The TFEA method: 

- Avoids redundant calculation, because it does not find any eigenvalue more than once; 

- Is not iterative, so it does not have the issue of convergence; 

- Does not require any initial guess or estimation; 

- Does not require any preconditioning transformation as in MAM and Inverse Iterations; 

and 

- Is adaptive to any system complexity: the power system elements such as exciter, PSS, 

governor, and FACTS devices could be easily accounted for with the method. The state 

matrix order is always 2ng, regardless of the power system model and complexity. 

Finally, the advantages of eigenanalysis by the TFEA method could be summarized as: 

- Good estimate of all of the electromechanical modes; 

- Improvement in computational efficiency; 

- Selective eigenanalysis, as it can find more accurate result for selected modes by applying 

the sensitivity formula;  

- The use of different approaches to improve the overall computational efficiency when 

applying the sensitivity formula, such as the proposed interpolation method and parallel 

computation; and 

- Near real-time assessment of small disturbance stability. 
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Chapter Four 

4. Selective Eigenanalysis by Applying Modified 
Arnoldi Method (MAM) to TFEA 

4.1 Overview 

Small signal stability is assured when all the modes of the linearized [A]-matrix are positively 

damped. However, the only important oscillatory modes are the few that have the lowest 

damping factors. This shows the importance of special methods introduced in Section 1.4 that 

can efficiently find a limited and selected number of eigenvalues. The Modified Arnoldi Method 

(MAM) is one of the most successful ones in power system applications [16].  

In contrast, a production program for eigenvalue estimation of power systems could 

incorporate more than one algorithm. A good example is provided in Section 1.4.2, in which the 

Inverse Iterations method is used to improve the convergence of the AESOPS algorithm. The 

Program for Eigenvalue Analysis of Large Systems (PEALS) in [40] also employs the two 

methods of the AESOPS algorithm and the Modified Arnoldi Method (MAM) to compute 

eigenvalues. 

This chapter draws attention to applying MAM to [A(ωK)] formed by TFEA for the efficient 

calculation of a limited and selected number of eigenvalues. It is shown that when the interest 

lies only in oscillatory modes around a specific frequency ωn, then the TFEA method is 

sufficiently accurate if ωK≈ωn, and there is no need to apply the sensitivity formula of ( 2-125). 
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4.2 Contributions 

The first contribution of this chapter is to investigate whether the TFEA can be combined with 

the well-known method of MAM. The second contribution is to reduce the computation cost for 

selective eigenanalysis.  

Computation cost reduction comes from applying MAM to the reduced 2ng×2ng matrix of 

[A(ωK)], instead of the higher rank full state matrix, as shown in Figure  4-1. In this figure, the 

blocks on the left show the steps for applying MAM to TFEA. [A(ωK)] is formed and passed on 

to MAM stage, which produces a lower rank [H]p×p matrix. The QR method is then applied to 

obtain the eigenvalues of [H]. To compare, the blocks on the right follow the same steps except 

that MAM is applied to the full state matrix.  

Choosing ωk

Forming the 
reduced 2ng×2ng 

matrix A(ωk)

Applying MAM and 
forming a low rank 

matrix H 

Eigenanalysis of H 
by QR method

Forming the full 
satate matrix 

[A]11ng×11ng 

Applying MAM and 
forming a low rank 

matrix H 

Eigenanalysis of H 
by QR method

 

Figure  4-1: Applying MAM to [A(ωK)] and to the full state matrix. 

4.3 Modified Arnoldi Method (MAM) 

4.3.1 Background on MAM 

The Arnoldi method is the most efficient method for determining a set of dominant eigenvalues 

(i.e., largest moduli) of an unsymmetrical matrix, and it has been successfully applied to large 

power systems. The Arnoldi method was first introduced in [15]. However, because of its poor 
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numerical properties, it was not successful initially, and it required several modifications to be 

satisfactory [16]. Different modifications to the Arnoldi method have been presented. The 

algorithm used in this research was taken from [16] and it is called the Modified Arnoldi Method 

(MAM). Another recent modification is the Implicit Restarted Modified Arnoldi (IRMA) of [53, 

54]. Based on IRMA, the Arnoldi Package (ARPACK) of [55] computes a few eigenvalues and 

their eigenvectors of large, sparse matrices. It is beyond the scope of this research to review these 

methods. 

4.3.2 Implementation for TFEA Application 

The Arnoldi method is based on building the dominant invariant subspace of a matrix [A]. The 

subspace is built as a unitary Krylov subspace [34, 35]. The process starts with a single random 

vector x and then proceeds by calculating the second vector as [A]x and orthonormalizing it 

relative to x, and so on. During this process an upper Hessenberg projection matrix [H] of order p 

is automatically obtained, where p is the number of Krylov steps and is much smaller than the 

rank of original matrix [A] [35]. An upper Hessenberg matrix has zero entries below the first 

sub-diagonal. 

Chiefly, the procedure forms an orthogonal basis Vp={v1,v2,…, vp} for the Krylov subspace of 

[A], κp(A,x), through a lower rank upper Hessenberg transformation matrix [H]:  

  p p pAV V H=   ( 4-1) 

  ( ) 2 1, { , , , ..., }.p
p A x x Ax A x A xκ −=  ( 4-2)  

Equation ( 4-1) implies that the eigenvalues of [H] are approximates of the dominant 

eigenvalues of [A]. The dominant eigenvalues are those with the largest moduli. Choosing the 

number of Krylov steps, p, depends on the number of desired eigenvalues. 

When the desired eigenvalues are not the dominant ones, a transformation should be applied 

to [A] matrix to transform the desired eigenvalues into dominant ones. A simple way is to use the 

spectral transformation of ( 4-3) when the eigenvalues around λt are of interest [16]: 

  1[ ] ([ ]  [ ]) .t tA A Iλ −= −  ( 4-3) 

This transforms the eigenvalue λA of [A] to  

  1
( )At

A t

λ λ λ= −    ( 4-4) 
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or consequently 

  1
A t

At

λ λλ= +    ( 4-5) 

where, for this research, [I] is the 2ng×2ng identity matrix, [A]=[A(ωK)], and λt=(jωK) because 

the eigenvalues around ωK are of interest. 

The complete procedure performed in this chapter can be summarized as follows. 

1- The desired frequency range, ωK is chosen. 

2- [A(ωK)] is formed by the TFEA method. 

3- [At] is formed as in ( 4-3). 

4- The order of [H] is chosen, depending on the number of desired eigenvalues. 

5- MAM is applied to [At], and [H] is  formed. 

6- The eigenvalues of [H] are calculated by a QR algorithm. 

7- The desired eigenvalues of [A(ωK)] are retrieved as in ( 4-5). 

4.4 Numerical Results 

To evaluate the proposed method, the 69-generator test system of [45] has been used. The 

operation conditions, system parameters and the exciter/PSS model are the same as in Chapter 2. 

Table  4-1 shows the results of applying MAM for four different ωK for the frequency range of 1-

6 rad/s. For each ωK, [A(ωK)] is formed, and MAM is applied to determine the selected 

eigenvalues. The selected eigenvalues are those around ωK.  

The first column of Table  4-1 shows the benchmark values, which are the results of QR 

eigenanalysis of the full state matrix. For each ωK in this table there are two columns: the first 

column shows the eigenvalues of [A(ωK)], and the second column, under [H], shows the 

eigenvalues of MAM applied to [A(ωK)]. Only the eigenvalues around ωK are presented as the 

desired modes. There is good agreement between the results in the two columns, confirming that 

MAM can be successfully applied to TFEA. Although the overall estimation for each ωK is 

acceptable, the best results are high-lighted in yellow. 
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Table  4-1: Applying MAM to [A(ωK)] for the 69-generator test system. 

Benchmark 

values 

ωK =2 ωK =3 ωK =4 ωK =5 

A(ωK) 
[H] 

(p=20) 
A(ωK) 

[H] 

(p=20) 
A(ωK) 

[H] 

(p=20) 
A(ωK) 

[H] 

(p=20) 

-0.08±j1.78 -0.11±j1.79 -0.11±j1.79 -0.18±j1.82 -0.18±j1.82 -0.19±j1.89 -0.21±j1.88 -0.19±j1.96 -0.19±j1.96

-0.2±j2.38 -0.15±j2.39 -0.15±j2.39 -0.23±j2.42 -0.23±j2.42 -0.24±j2.48 -0.25±j2.49 -0.23±j2.54 -0.23±j2.54

-0.12±j2.90 -0.08±j2.89 -0.08±j2.89 -0.12±j2.91 -0.12±j2.91 -0.13±j2.94 -0.13±j2.94 -0.14±j2.97 -0.14±j2.97

-0.16±j3.05 -0.18±j3.01 -0.18±j3.01 -0.16±j3.04 -0.16±j3.04 -0.14±j3.07 -0.14±j3.07 -0.13±j3.1 -0.13±j3.1 

-0.17±j4.05 -0.36±j3.96 -0.3±j3.95 -0.22±j4.02 -0.22±j4.02 -0.17±j4.04 -0.17±j4.05 -0.14±j4.06 -0.14±j4.06

-0.32±j4.88   -0.63±j4.74 -0.63±j4.74 -0.41±j4.82 -0.41±j4.81 -0.30±j4.85 -0.30±j4.85

-0.4±j5.33     -0.59±j5.22 -0.59±j5.22 -0.42±j5.28 -0.42±j5.28

-0.4±j5.55     -0.62±j5.44 -0.62±j5.44 -0.45±j5.49 -0.45±j5.49

-0.08±j5.59     -0.002±j5.65 -0.002±j5.65 -0.059±j5.61 -0.059±j5.61

-0.52±j5.77     -0.69±j5.66 -0.66±j5.66 -0.64±j5.65 -0.64±j5.65

-0.39±j5.79     -0.68±j5.67 -0.69±j5.67 -0.48±j5.73 -0.48±j5.73

-0.38±j5.82     -0.85±j5.86 -0.87±j 5.87 -0.47±j5.73 -0.47±j5.73

-0.25±j5.85     -0.23±j5.86 -0.23±j 5.86 -0.23±j5.86 -0.23±j5.86

-0.52±j6.06       -0.63±j5.95 -0.63±j5.95

-0.56±j6.10       -0.74±j5.94 -0.74±j5.94

4.5 Computation Speed-up Gain 

According to [56] the cost of forming the upper Hessenberg matrix of [H]p×p with MAM is on 

the order of np2, where n and p are the ranks of original matrices [A]n×n and [H]p×p respectively. 

Therefore, the speed up efficiency when applying MAM to [A(ωK)]2ng×2ng instead of [A]11ng×11ng 

would be 11/2=5.5.  
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4.6 Choosing p 
Before applying MAM, the order of [H] should be determined depending on the number of 

desired eigenvalues. As explained in [16], there is not a specific rule for choosing p. As p 

increases, the number of accurate eigenvalues increases, as well as computation cost, making a 

trade-off in choosing p. To test the effect of p, MAM is applied to determine the low frequency 

modes. The representative frequency is chosen as ωK=2, and MAM is evaluated for p=5, p=10 

and p=15. Table  4-2 summarizes the results for the frequency range of 1-3 rad/s; the first column 

shows the benchmark values while the other columns show the results of MAM. From this table, 

it can be observed that for p=5, only 2 eigenvalues are found, while more eigenvalues are 

calculated by increasing p to 10 and then to 15.  

Table  4-2: Effect of p in MAM. 

Benchmark values 
[H] 

 (p=5) 

[H]  

(p=10) 

[H] 

 (p=15) 

-0.08±j1.78 -0.11±j1.79 -0.11±j1.79 -0.11±j1.79 

-0.20±j2.38 -0.15±j2.39 -0.15±j2.39 -0.15±j2.39 

-0.12±j2.90 - -0.08±j2.89 -0.08±j2.89 

-0.16±j3.05 - - -0.18±j3.01 

4.7 Conclusion 

The Modified Arnoldi Method (MAM) [16] is a well-known, accurate method in finding limited 

numbers of eigenvalues. It has been shown that, for a selected desired number of eigenvalues 

around a specific frequency ωK, the input to MAM could be [A(ωK)]  instead of the full state 

matrix of [A]11ng×11ng. This process led to a more efficient calculation, while preserving the 

accuracy. Rather than efficiency, the ability of TFEA to be combined with MAM showed the 

prospective development opportunities for TFEA. 
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Chapter Five 

5. Application of TFEA in PSS Tuning: 
Contributions and Methodology 

5.1 Overview 

This chapter presents the application of TFEA method in power system stabilizer (PSS) tuning. 

This research shows that the time-saving TFEA method can be combined with eigenvalue 

sensitivity concepts and optimization techniques to yield a fast and robust method for 

coordinated tuning of gains and time constants. The proposed tuning method is first applied to 

PSS gain tuning. Tuning is followed by simultaneous gain and time constants tuning. 

This chapter is organized as follows. A review of work previously accomplished and a 

background on PSS design and tuning are presented in Section 5.2. Section 5.2.2 presents a brief 

review of PSS tuning using eigenvalue sensitivity principles, which forms the basis of this 

research. The contribution is presented in Section 5.3. The method employed begins in Section 

5.4 with PSS tuning implementation explained in Section 5.5. A chapter summary is provided in 

Section 5.6. The numerical results and validation tests based on the contribution and 

methodology of this chapter are given in Chapter 6. 
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5.2 Introduction 

5.2.1 Classic Design of Power System Stabilizer (PSS)  

As electric utilities have interconnected to take advantage of economies of scale, the size 

increase has resulted in weakened dynamic systems with low frequency and lightly damped 

oscillatory modes. Power system stabilizers (PSSs) were developed to increase system damping 

by introducing a perturbation torque proportional to the perturbation angular velocity of the rotor 

[57, 58].  

Early feedback design was not successful until it was realized that there is a large  phase lag 

due to the long time-constant of the field winding. The PSS operation of a single generator was 

explained as phase-compensation of the transfer function between the voltage reference input to 

the Automatic Voltage Regulator (AVR) and the electrical torque developed on the shaft of the 

generator [57, 59]. The method is called the P-Vr method, and it is based on the concept of 

synchronizing and damping torques [57, 59].  

GEP (Generator, Excitation and Power systems) and the method of residues are the other 

classic phase compensation methods for PSS design. GEP is similar to P-Vr and is based on the 

measurement of the voltage reference of the AVR/exciter and the generator terminal voltage. 

However, determining the stabilizer gains with this method is not considered as robust [59, 60, 

61]. 

The method of residues, allows the “poles” of partial fractions of a transfer function to predict 

the damping factor and the oscillating frequency [62, 63, 64]. Residues yield only a limited 

number of phase angles that can be used with confidence for design purposes. The remaining 

residues for rotor modes are affected by the variability of participation factor angles and by 

interactions from other generators [61].  

From PSS designed for the operation of a single-generator, attention is next turned to the 

tuning of the stabilizers of multi-generator power system [58, 65]. In this regard, the 

coordination among stabilizers is important because it is believed to constitute the origin for 

some damping deterioration [66].  
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5.2.2 Coordinated Tuning of Local PSSs Using Eigenvalue 
Sensitivity 

Different research groups have considered the problem of coordinating the settings of local PSSs 

to improve the overall dynamic performance of the system [67, 68, 69, 70]. Iterative methods 

based on eigenvalue sensitivities, have been used widely as a result of modal analysis to 

determine the eigenvalue shift due to a change in PSS parameters [44, 71, 72, 73, 74]. In this 

regard, linear programming has proved successful for the problem of PSS gain coordination [71, 

72, 75, 76]. 

The proposed method in this research is similar to the method of [76] , which has used the 

concept of induced torque coefficients (ITCs) to form the eigenvalue sensitivity. However, the 

torque coefficients in this research are obtained by the TFEA method. The important feature of 

both ITC and TFEA is that the interactions between any stabilizer and any generator in the 

system can be quantified. This ability is important because such interactions can enhance or 

degrade the damping of certain electromechanical modes [66]. 

Independently, others have developed techniques for the coordination of stabilizers based on 

the calculation of eigenvalue shifts from the residues [63, 71, 77, 78]. 

5.2.3 Recent Developments in Stabilizer Design  

In recent years, many design methods have been centered around new control concepts. Research 

has been done on PSS design, based on probabilistic sensitivity indices [79], the linear parameter 

varying approach [80], Adaptive Control [81, 82], Neural Network [83, 84] and Genetic 

Algorithm [79, 85]. An important development is the identification technique of [85], based on 

standard Prony analysis [86]. The method is claimed to have the ability to extract crucial 

dynamic characteristics from a system of any size to develop a robust controller. The objective is 

to reduce the system order, as with the TFEA method. The difference is that Prony depends on 

high observability and controllability indices whereas TFEA models the intrinsic dynamics of the 

generator, with the exciter and the PSS as transfer functions.  

With the advent of Flexible AC Transmission Systems (FACTS), damping improvement is 

sought in coordinating the power electronic controllers of FACTS to supplement the capabilities 

of individual PSSs [66, 87, 88]. Additionally, the development of phase measurement units 
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(PMUs) offers wide-area measurements, by which large power systems can be stabilized using a 

central controller that is  effectively a “Global PSS” [89, 90] that augments the damping from  

local PSSs. These methods are not addressed in the research of this thesis. 

5.3 Contribution 

The contribution of this research is to show that a combination of (i) computationally efficient 

Transfer Function and Eigenfunction Analysis (TFEA) method, (ii) the eigenvalue sensitivity 

concept and (iii) optimization techniques makes a powerful tool for the coordinated tuning of 

power system stabilizers to meet the stability objectives of the power system. The distinguishing 

feature of the research is the TFEA method, which brings about computational efficiency.  

Eigenvalue sensitivity formulation ensures full controllability of the perturbation vector of 

electromechanical eigenvalue shifts, by the perturbation vector of parameter changes. Therefore, 

PSS gain and time constants can be tuned, as perturbation parameters, for the desired eigenvalue 

shifts. The tuning depends on the powerful optimization techniques available in MATLAB [91, 

92]. The MATLAB optimization algorithms have linear programming and non-linear 

programming capabilities, which enable PSSs gains and time constants to be simultaneously 

tuned to meet the stability objectives [93]. 

The tuning research of this chapter is performed in two steps, as shown in Table  5-1. The 

method is first applied to PSS gain tuning to demonstrate the feasibility of the method. With 

positive experience in tuning a few parameters, research is encouraged to continue to complete 

the tuning of gains and time constants simultaneously. The computation tool allows different 

stability concerns to be addressed as objective functions of optimization under constraints, as 

shown in Table  5-1.  
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  0
3 3 3T T T= + Δ  ( 5-4) 

  0
4 4 4T T T= + Δ  ( 5-5) 

where the original and perturbation parameters form the vectors of  

  0 0 0
1[ ,..., ]T

ST ST STngK K K=  ( 5-6) 

  0 0 0
1 11 1[ ,..., ]T

ngT T T=  ( 5-7) 

  0 0 0
2 21 2[ ,..., ]T

ngT T T=  ( 5-8) 

  0 0 0
3 31 3[ ,..., ]T

ngT T T=  ( 5-9) 

  0 0 0
4 41 4[ ,..., ]T

ngT T T=  ( 5-10) 

  1[ ,..., ]T
ST ST ST ngK K KΔ = Δ Δ  ( 5-11) 

  1 11 1[ ,..., ]T
ngT T TΔ = Δ Δ  ( 5-12) 

  2 21 2[ ,..., ]T
ngT T TΔ = Δ Δ  ( 5-13) 

  3 31 3[ ,..., ]T
ngT T TΔ = Δ Δ  ( 5-14) 

  4 41 4[ ,..., ] .T
ngT T TΔ = Δ Δ  ( 5-15)  

The parameters together are represented by a 5×ng tuple vector pa. The perturbation parameters 

are represented by the vector ∆pa, 

  0pa pa pa= + Δ  ( 5-16)  

  1 2 3 4[ , , , , ]T T T T T T
STpa K T T T T=  ( 5-17) 

  0 0 0 0 0 0
1 2 3 4[ , , , , ]T T T T T T

STpa K T T T T=  ( 5-18) 

  1 2 3 4[ , , , , ] .T T T T T T
STpa K T T T TΔ = Δ Δ Δ Δ Δ  ( 5-19) 

The eigenvalues shifts due to perturbation parameters of ( 5-11)-( 5-15) would be obtained in the 

general form of 

  ( )f paλΔ = Δ  ( 5-20) 

where Δλ is the (ng-1) tuple vector of the eigenvalue shifts as  

  1 1[ ,..., ] .T
ngλ λ λ −Δ = Δ Δ  ( 5-21) 
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5.4.2 Modeling Excitation System and Power System Stabilizer to 
Insert PSS Parameters into Equations 

Based on the transfer functions of the exciter and PSS in Figure  5-1, Δefd can be written as 

  ( )Δ Δ ( ) Δdqfd exc pss re G s e G s ω= +   ( 5-22) 

where 

  1

42

311
( ) .

1 1Spss A T

sTsT
G s K K

sT sT
++= + +  ( 5-23) 

Gexc is the transfer function of the exciter, with the gain of KA, defined in ( 2-68). Δedq is the 

vector of terminal voltage defined in ( 2-43) and Δωr is the perturbation rotor speed. The 

parameters Kst, T1,T2,T3 and T4 in ( 5-23) are defined in ( 5-1)-( 5-5) which carry the perturbed 

parameters. Now, the field voltage of ( 5-22), which contains the PSS perturbed parameters, is 

used by the TFEA method to form [A(ωn)]. As shown in the next section, [A(ωn)] will be used in 

the sensitivity formula to determine the eigenvalue shift.  

5.4.3 Eigenvalue Shift: Implicit and Explicit Evaluation of Δλ 

The eigenvalue sensitivity formula of ( 2-122) repeated below plays the key role in forming the 

eigenvalue shift:  

  [ ] T

T
r A u

r u
λ ΔΔ =   ( 5-24) 

To estimate Δλ for the nth mode due to the PSSs parameters of ( 5-1)-( 5-5), the correction Δ[A] in 

the eigenvalue sensitivity formula of ( 5-24) would be 

0 0 0 0 0 0 0 0 0 0
1 1 2 2 3 3 4 4 1 2 3 4[ ] [ ( , , , , , )] [ ( , , , , , )]ST ST STn nA A K K T T T T T T T T A K T T T Tω ωΔ = + Δ + Δ + Δ + Δ + Δ −  

 ( 5-25) 

where 0 0 0 0 0
1 2 3 4[ ( , , , , , )]STnA K T T T Tω  is the original matrix before parameter perturbation, and 

0 0 0 0 0
1 1 2 2 3 3 4 4[ ( , , , , , )]ST STnA K K T T T T T T T Tω + Δ + Δ + Δ + Δ + Δ  is the matrix after parameter 

perturbations. Both matrices are evaluated at the frequency of ωn. The eigenvectors r and u are 

obtained from 0 0 0 0 0
1 2 3 4[ ( , , , , , )]STKA K T T T Tω . 

From ( 5-25) for each mode, the eigenvalue shift takes the implicit form of  
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 1 2 3 4( , , , , , )         1,  2,...,  ( -1).STn n nf K T T T T for n ngλ ωΔ = Δ Δ Δ Δ Δ =  ( 5-26) 

Considering the PSS transfer function of ( 5-23), it is realized that ( 5-26) is a non-linear function 

of time constants. However, for gain tuning only, ( 5-26) would be a linear function of PSSs gains 

and can be formed explicitly as  

  [ ] STC KλΔ = Δ  ( 5-27) 

where [C] is a real (ng-1)×npa matrix, (ng-1) is the total number of electromechanical modes, 

and npa is the number of PSSs gains to be modified.  

As the interest of this research is only in the damping part, we have 

  [ ]  STD KσΔ = Δ  ( 5-28) 

where 

  [ ] ([ ]).D real C=  ( 5-29) 

For a specific Δ(5-28 ) ,ߪ allows ΔKST to be determined as   

  -1([ ] [ ]) [ ]T T
STK D D D σΔ = Δ  ( 5-30) 

where ([D]T[D])-1[D]T is called the generalized (pseudo) inverse of [D] [35]. 

5.4.4 Choice of Representative Frequency 

The accuracy of eigenvalue sensitivity of ( 5-24) depends on the eigenvectors r and u. It was 

shown in Chapter 2 that these eigenvalues are computed only once (i.e., from [A(ωK=5)]) for 

economic reasons. However, for better accuracy in PSS tuning, three ωK are used in this chapter, 

as in Table  5-2.  

The representative frequency ωK is like a portable magnifying glass, which can be held over 

any region in which accuracy is needed. From the results of Section 2.10, the choice of ωK for 

accurate estimation of eigenvalues in the modal frequency range is shown in Table  5-2.  

Table  5-2: Choosing ωK according to the frequency range. 

Representative frequency (rad/s) Modal frequency range  (rad/s) 

ωK 1 =2  0.5-3.5 

ωK 2 =5  3.5-7 

ωK 3 =8  over 7 
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5.5 Implementation of PSS Tuning  

5.5.1 Gain Tuning  

For the PSS gain tuning in this research, it is assumed that the time constants are set from a prior 

manufacturer PSS design and the task is to tune the gains to fulfill a specific damping objective 

(i.e., pa0≠0 in ( 5-18)). According to Table  5-1, the first objective of PSS gain tuning is to verify 

whether any desired damping is achievable from ( 5-30). 

The second objective, however, returns to the goal of increasing the damping of the few least 

damped modes. There is concern that, as the power system continues to grow in size, the power 

system will weaken, resulting in low frequency modes, which are usually lightly damped [94]. 

This research explores whether the damping of the low frequency modes can be improved by 

relaxing the damping constraints placed on the modes that have higher damping. Tuning is based 

on maximizing the damping of the target modes (i.e., low frequency modes) under constraints.  

The objective function is  

  2min         target modesj j
j

W jσ
 

− Δ = 
 
  ( 5-31) 

where Wj is the weighting factor of the jth mode, and Δσ is a linear function of PSSs gains from 

( 5-28). 

5.5.2 Simultaneous Tuning of Gains and Time Constants: Iterative 
Tuning by Optimization Using Non-linear Programming 

For a realistic multiple PSS design, the tuning procedure should consist not only of the gains but 

also of the time constants, with no pre-set manufacturer design (i.e. pa0=0 in ( 5-18)). This 

requirement is fulfilled by formulating them as objective functions under constraints, which are 

solved by an optimization algorithm, based on searching in the parameter space of ∆pa. 

Remembering ( 5-26), when considering the time constants the problem involves applying a non-

linear programming. The optimization algorithm used is the Sequential Quadratic Programming 

(SQP) method [93] from a built-in MATLAB function.  

The SQP method represents the state of the art in non-linear programming methods by 

outperforming every other tested method in terms of efficiency, accuracy, and percentage of 
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successful solutions [96]. With each iteration of SQP, a Quadratic Programming (QP) sub-

problem is solved to determine the search direction for a line search procedure. The QP sub-

problem is formed by an approximation of the Hessian of the Lagrangian function, using a quasi-

Newton updating method [97, 98]. 

To illustrate how the proposed method can be applied for simultaneous gain and time 

constants tuning, this section focuses on two design objectives of Table  5-1. 

Objective 1- This objective follows the design philosophy of [76] which states, “low stabilizer 

gains reduce not only the effect of limiting in the stabilizer, AVR and excitation systems, but 

also Mvar swings on generators for small disturbances”. In tuning objective, the PSSs gains are 

minimized under the constraint that the damping ratios for all the electromechanical modes are at 

least 5%. Therefore, 

  min       1, 2,...,   j STj
j

W K j ng
 

= 
 
  ( 5-32)  

subject to  

  5%           for all electromechanical modes.f

f

σ
ω ≤ −  ( 5-33) 

Wj is the weighting factor that can be unity, or it can be chosen in such a manner to bias the 

solutions in favor of the most effective stabilizers [76]. In addition, σf and ωf are the final 

damping and oscillation frequency, respectively, after the PSS tuning: 

  0( )f realσ λ λ= + Δ  ( 5-34) 

  0( )f imaginaryω λ λ= + Δ  ( 5-35) 

where λ0 is the vector of original eigenvalues with no PSS, and Δλ is the vector of eigenvalue 

shifts obtained from ( 5-26).  

Objective 2- Similar to Section 5.5.1, the tuning objective is to maximize the damping of few 

target modes (i.e., low frequency modes) by 

  2min         target modes.j j
j

W jσ
 

− Δ = 
 
  ( 5-36) 

where Δσ is the real part of ( 5-26). The constraint on the damping factors of the non-target 

modes is the 5% damping ratio limit: 
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  5%           for non-target modes.f

f

σ
ω ≤ −  ( 5-37) 

For both tuning objectives, the eigenanalysis of the system shows whether the damping 

requirements are fulfilled by the PSS tuning. If the optimization constraints are not met, the 

tuning can be continued for more iterations.  

The iterative tuning procedure can be summarized as follows.  

I- Set the initial PSSs parameters of ( 5-18) to zero, pa0=0. 

      At each iteration j (j=1, 2,…): 

II- Set the PSSs parameters to paj-1, apply the TFEA method to form the reduced 

[A(ωK)], and then apply the QR algorithm to obtain λ0 and the right and left 

eigenvectors;  

III- From the sensitivity formula in ( 5-26), the eigenvalue shift ∆λ and consequently the 

objective function are formed. 

IV-  ∆pa is calculated, fulfilling the objective function and the constraints. The tuning 

parameters are set as paj= paj-1+∆pa.  

V- Considering paj, new eigenvalues are calculated by the QR algorithm. If the 

constraints are all satisfied, the search in parameter space is complete. Otherwise, 

repeat from step II. 

VI- The final tuning parameters are pa= paj. 

5.6 Chapter Summary 

This chapter has presented a tool for coordinated tuning of PSS for large power systems. The 

tool consists of the TFEA method, eigenvalue sensitivity analysis and optimization. 

Developed from the TFEA method and the eigenvalue sensitivity method of Chapter 2, the 

method has formulated Δλ=f(Δpa). The eigenvalue shifts of selected modes are specified in Δλ, 

and the parameters of selected stabilizers are specified in Δpa.  

The methodology has been introduced in two steps: PSS gain tuning; and simultaneous PSS 

gain and time constants tuning. For each type of tuning, two objective functions have been 

proposed to verify the tuning method. Several test results based on the objective functions are 

explained in Chapter 6. 
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Chapter Six 

6. Application of TFEA in PSS Tuning: 
Validation Tests and Discussions 

6.1 Overview 

This chapter presents the validation tests for the PSS tuning method of Chapter 5. The procedure 

is performed separately for gain tuning and simultaneous gain and time constants tuning based 

on the objectives of Chapter 5. The tests are conducted on the 16-generator and 69-generator 

systems of Chapter 2. All the generators are equipped with the exciter and PSS modeled in 

Figure  5-1 and the power system operating conditions are the same as in Chapter 2, provided in 

Appendix C.  

6.2 Test Results for PSS Gain Tuning on 69-Generator Test 
System 

The philosophy of PSS gain tuning is that the initial values of the PSSs parameters are known 

from some prior design. These values are taken from Appendix C for the gains and time 

constants. In validating the PSS gain tuning of Section 5.5, the benchmark used consists of the 

eigenvalues of the full state matrix of the 69-generator system.  

The [D] matrix of ( 5-28) is formed to provide the linear relationship between the damping 

factor shifts Δσ and the perturbation gains ΔKST. According to Table  5-1, two tests are conducted. 

The numerical results are presented in this section.  

Test 1: Achieving desired damping shift 
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According to ( 5-30), one can find ΔKST for a specification of Δσ. In this test, desired damping 

improvement values are assigned to the first five modes and no changes are specified for the 

other modes, as  

  68 1 0.06, 0.1, 0.06, 0.08, 0.0[ ]8, 0,...,0 Tσ × − − − − −Δ =  ( 6-1) 

The test results are shown in Table  6-1. Based on KST
0, the original eigenvalues are solved 

from the full state matrix. The eigenvalues of the 5 target modes are entered in the second 

column of Table  6-1. From the desired damping improvement of ( 6-1), ΔKST is solved from 

( 5-30). The gains (KST
0+ΔKST) are inserted in the full state matrix and new eigenvalues are solved 

by the QR method. The benchmark damping improvement in the fourth column is the differences 

of the real parts of the new and original eigenvalues. The close agreement between the desired 

and benchmark damping improvements validates the application of: (i) eigenvalue sensitivity 

method and (ii) the generalized inverse method, which to the author’s knowledge is seldom used.  

Table  6-1: Results of desired damping improvements for 69-generator system. 

Mode  number 
Original 

eigenvalue 
Desired damping improvement from 

( 6-1)  
Benchmark damping 

improvement 

1 -0.080±j1.78 -0.06 -0.065 

2 -0.198±j2.38 -0.10 -0.11 

3 -0.123±j2.91 -0.06 -0.06 

4 -0.160±j3.05 -0.08 -0.083 

5 -0.172±j4.05 -0.08 -0.078 

 

Test 2: Maximizing damping improvement 

Tuning consists of modifying the PSS gains to maximize the damping of a few target modes. 

According to Section 5.5.1, the minimization objective function is ( 5-31) with Wj=1, 

  { }2min    1, 2,3,4,5j jσ− Δ =  ( 6-2)  

and the gain constraints of  

  0 015% 15% .     STST STkK K− ≤ Δ ≤  ( 6-3) 

The target modes are j= 1, 2,…,5 which have the lowest frequencies and damping. The constraint 

of ( 6-3) is chosen to keep the final PSS gain close to KST
0. The problem is solved in MATLAB 
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using a linear optimization algorithm. The tuning is performed for 5 case studies. Cases 1 to 4 

differ in the damping constraints placed on the non-target modes.   

  Case 1: 0                      i i jσ = ≠Δ  ( 6-4) 

  Case 2: 030%            i i i jσ σ≤ ≠Δ  ( 6-5) 

  Case 3: 0                      i i jσ ≤ ≠Δ  ( 6-6) 

  Case 4:                      i free i jσ ≠Δ  ( 6-7)  

 Case 5: The gains of all 69 generators are set to the maximum.  

In ( 6-5), σi0 is the original damping before gain tuning. Table  6-2 summarizes the results of the 

five case studies. In each case of this table, there is a row for benchmark damping shift and a row 

for estimated damping shift. They are respectively from eigenanalysis of the full state matrix and 

[A(ωK)] matrix of TFEA, after ΔKST have been solved by optimization. The results are shown for 

the five target  modes as well as modes 9, 13, 30, 46 and 68, which have been randomly chosen 

to check if the constraints of ( 6-4)-( 6-7) are fulfilled.  

Case 1: The goal is to find the maximum possible damping improvement for the 5 target 

modes while keeping the damping of other modes unchanged. Table  6-2 shows that there is small 

improvement in the target modes. This is for the strict constraint of ( 6-4). The non-target modes, 

9, 13, 30, 46 and 68 have no damping change, as required by ( 6-4). Figure  6-1 shows the results 

of perturbation gains ∆KSTn, plotted against the generator numbering, n=1, 2,…, 69. This figure 

shows that only 5 gains have reached the maximum limit of 15% and 35 gains have decreased.  

 

Figure  6-1: Change in PSSs gains from optimization results of Case 1. 
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Table  6-2: Maximum damping improvement for 69-generator system. 

Mode number 1 2 3 4 5 9 13 30 46 68 

Original benchmark 
-0.08   

±j1.78 

-0.20   

±j2.38 

-0.12    

±j2.90 

-0.165 

±j3.05 

-0.17 

±j4.05 

-0.08 

±j5.59 

-0.25 

±j5.85 

-0.87  

±j7.25 

-1.26 

±j8.15 

-2.21 

±j13.49 

Case 

1 

Benchmark 

damping shift 
-0.03 -0.12 -0.042 -0.011 -0.031 0 0 0 0 0 

Estimated 

damping shift 
-0.028 -0.09 -0.047 -0.009 -0.030 0 0 0 0 0 

Case 

2 

Benchmark 

damping shift 
-0.11 -0.15 -0.09 -0.077 -0.064 0.01 0.03 0 0.004 -0.035 

Estimated 

damping shift 
-0.11 -0.12 -0.086 -0.070 -0.063 0.012 0.006 0 0.003 -0.043 

Case 

3 

Benchmark 

damping shift 
-0.11 -0.15 -0.089 -0.075 -0.062 -0.01 0 0 0 -0.025 

Estimated 

damping shift 
-0.11 -0.12 -0.081 -0.068 -0.062 -0.009 0 0 0 -0.03 

Case 

4 

Benchmark 

damping shift 
-0.12 -0.15 -0.093 -0.08 -0.06 0.013 0.03 0 0.004 -0.04 

Estimated 

damping shift 
-0.11 -0.12 -0.086 -0.07 -0.06 0.014 0.007 0 0.003 -0.05 

Case 

5 

Benchmark 

damping shift 
-0.12 -0.15 -0.09 -0.077 -0.064 0.055 0.08 0 0.004 -0.09 

Estimated 

damping shift 
-0.11 -0.12 -0.088 -0.071 -0.064 0.054 0.04 0 0.004 -0.10 

 

Case 2: In this optimization, the non-target modes are permitted to decrease in their damping 

by 30%. The relaxation of ( 6-5) allows damping improvement over Case 1. The damping of 6 

modes have deteriorated including modes 9, 13 and 46 as shown in Table  6-2. From Figure  6-2, 

41 gains have reached their maximum gain limit while no PSS has its gain decreased.  
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Figure  6-2: Change in PSSs gains from optimization results of Case 2. 

Case 3: In this optimization, the damping of non-target modes are allowed to remain 

unchanged or improve. The results in Table  6-2 for the target modes are very similar to Case 2. 

However, there is no damping deterioration for any mode. Figure  6-3 shows that 32 gains have 

reached the maximum gain limit while the gains of 2 PSSs have decreased.  

 

Figure  6-3: Change in PSSs gains from optimization results of Case 3. 

Case 4: In this study, there is no constraint placed on the damping shifts of non-target modes. 

Consequently, some damping deterioration is observed in non-target modes while damping 

improvements of the target modes are similar to Cases 2 and 3. In this case, 39 gains have 

reached the maximum limit and no gain has decreased, as shown in Figure  6-4. 
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Figure  6-4: Change in PSSs gains from optimization results of Case 4. 

Case 5: From examining the gains of 69 PSSs in the four case studies, improvement in 

damping seems to come from increasing the gains to their maximum limit. To test this, the gains 

of all the 69 generators are set to the maximum limit. Comparing the results of Case 5 in 

Table  6-2 with the results of Cases 1 to 4, there is not much difference in damping improvements 

for the target modes. What is significant is that the damping of modes 9, 13 and 46 are lowered. 

The deterioration can be from stabilizer interactions as reported in [66]. However, as increasing 

all the PSSs gains does not improve the damping for all modes, tuning based on optimizing 

under constraints, such as in Case 3, is a better method.  

6.3 Test Results for Simultaneous Tuning of PSSs Gains and 
Time Constants 

The tuning is performed based on the two objective functions of Section 5.5.2. The PSS tuning 

for each objective is conducted on the 16-generator and 69-generator systems. For each test 

system the tuning robustness is analysed based on the tuning results. The iterative tuning steps 

are explained in Section 5.5.2. Unlike PSS gain tuning there is no prior design in this study. 

6.3.1 Boundaries for Tuning Parameters 

It is found that the optimization algorithm does not converge to a solution when parameter limits 

are not set. Setting lower and upper bounds on the parameter limits require extensive field 

experience. Considering the different design covered in [94], the following ranges for the PSSs 

parameters are chosen: 
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  0 20     STK< ≤  ( 6-8) 

  10.08 0.12     T≤ ≤  ( 6-9) 

  20.01 0.04     T≤ ≤  ( 6-10) 

  30.08 0.12     T≤ ≤  ( 6-11) 

  40.01 0.04.    T≤ ≤  ( 6-12) 

6.3.2 16-Generator Test System, Objective 1: Minimizing the PSSs 
Gains 

The tuning results of Objective 1, for the 16-generator system, are shown in Table  6-3. The 

system has 15 electromechanical modes. The tuning procedure is accomplished in two similar 

iterations. At each iteration an optimization problem is solved to find the PSSs parameters in 

order to minimize the sum of the gains of ( 5-32) considering the constraints of ( 5-33) and the 

parameters ranges of ( 6-8)-( 6-12). There are three columns under each iteration in Table  6-3. The 

first column shows the eigenvalue prediction results obtained from TFEA. The second column 

shows the benchmark results from the QR eigenanalysis of the full state matrix and the third 

column shows the benchmark damping ratio.  

First, it should be noticed that the TFEA results in the first column of each iteration are in 

very good agreement with the associated benchmark results. To be more precise by comparing 

the predicted and benchmark results of the second iteration, it is realized that the damping 

prediction for 8 out of 15 modes has less than 5% error, three modes have approximately 15% 

error and the maximum error happens for the last mode and it is 18%. For the frequency 

prediction, on the other hand, the maximum error is limited to 3%. 

The next step is to check the damping ratios to see if the design constraint of ( 5-33) has been 

achieved. From Iteration 1 of Table  6-3 the damping ratio of 5 modes are below 5%. In Iteration 

2, all the modes have a minimum of 5% damping ratio and the tuning procedure is complete. All 

other modes (rather than electromechanical modes) are carefully observed to be positively 

damped. 

The sum of the gains after Iteration 2 is 92.5, giving an average gain of 5.43. The gains cannot 

be lowered further because 2 generators in Iteration 2 have damping ratio of 5.1%, close to the 

constraint of ( 5-33). The tuning results of the PSSs parameters after Iteration 2 are shown in 
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Figure  6-5 to Figure  6-9 for the gains and time constants. Figure  6-6 to Figure  6-9 show that the 

time constants tend to migrate to the boundaries of ( 6-9)-( 6-12). This is discussed in Section 6.4. 

Table  6-3: Results of PSS tuning for Objective 1, 16-generator system. 

 Iteration 1 Iteration 2 

Mode 

number 

Predicted results 

after PSS tuning 

Benchmark  

results after PSS 

tuning 

Benchmark 

damping ratio 

(%) 

Predicted results 

after PSS tuning

Benchmark  

results after PSS 

tuning 

Benchmark 

damping ratio 

(%) 

1 -0.076±j1.47 -0.076±j1.46 5.2 -0.13±j1.46 -0.13±j1.45 8.9 

2 -0.31±j2.95 -0.29±j2.95 9.83 -0.40±j2.91 -0.37±j2.92 12.6 

3 -0.17±j3.53 -0.15±j3.54 4.2 -0.20±j3.51 -0.18±j3.52 5.1 

4 -0.27±j4.77 -0.26±j4.79 5.4 -0.35±j4.73 -0.34±j4.74 7.1 

5 -0.28±j6.90 -0.26±j6.91 3.7 -0.40±j6.76 -0.39±j6.77 5.7 

6 -0.53±j7.02 -0.47±j6.96 6.7 -0.62±j7.02 -0.53±j6.97 7.6 

7 -0.55±j7.44 -0.56±j7.53 7.4 -1.48±j7.17 -1.28±j7.16 17.8 

8 -0.52±j7.68 -0.46±j7.69 5.9 -0.57±j7.36 -0.58±j7.44 7.7 

9 -0.41±j7.97 -0.37±j7.99 4.6 -0.63±j7.86 -0.54±j7.87 6.8 

10 -0.41±j8.17 -0.38±j8.21 4.6 -0.42±j8.17 -0.42±j8.21 5.1 

11 -1.10±j8.44 -1.08±j8.72 12.3 -1.12±j8.4 -1.07±j8.66 12.3 

12 -0.91±j9.92 -0.93±j9.88 9.4 -2.86±j9.18 -2.57±j9.48 27.1 

13 -0.90±j9.82 -0.82±j10.04 8.1 -1.03±j9.36 -1.02±j9.55 10.6 

14 -1.06±j9.37 -1.04±j9.58 10.8 -1.41±j9.69 -1.34±j9.79 13.6 

15 -0.54±j11.02 -0.46±j11.09 4.1 -0.69±j10.84 -0.58±j10.94 5.3 

 

 

Figure  6-5: Results of PSSs gains: 16-generator system, Objective 1. 
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Figure  6-6: Results of PSSs time constants T1: 16-generator system, Objective 1. 

 

Figure  6-7: Results of PSSs time constants T2: 16-generator system, Objective 1. 

 

 

Figure  6-8: Results of PSSs time constants T3: 16-generator system, Objective 1. 
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Figure  6-9: Results of PSSs time constants T4: 16-generator system, Objective 1. 

6.3.3 16-Generator Test System, Objective 2: Maximizing Damping 
Improvement for the Low Frequency Modes 

The objective of PSS tuning in this case is to maximize the damping of the low frequency modes. 

Therefore, the target modes in ( 5-36) are the first three modes and j=1, 2, 3 with weighting factor 

Wj=1. The tuning constraints in ( 5-37) provides a 5% damping ratio for other electromechanical 

modes. The boundaries for PSSs parameters are in ( 6-8)-( 6-12). 

The results are shown in Table  6-4. This table is organized as Table  6-3. Table  6-4 shows the 

damping ratio of the low frequency modes are significantly larger than those of Table  6-3. 

Tuning accuracy is obtained by comparing the predicted and benchmark results. From Iteration 

2, the damping prediction for 7 modes has less than 5% error and the rest have less than 12% 

error except for mode 6 which has 17% error. For the frequency prediction, the error is less than 

3% except for mode 5 which has an error of 11%. It is seen in Iteration 1 of Table  6-4 that modes 

11 and 15 have damping ratios less than 5%. After Iteration 2 all modes have damping ratios 

over 5%. After the design, all the system modes obtained from the full state matrix are checked 

to be stable. In this design the sum of the gains after Iterations 1 and 2 are 185 and 188 

respectively, which shows a very small change that is sufficient to improve the damping for 

modes 11 and 15.  
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Table  6-4: Results of PSS tuning for Objective 2, 16-generator system. 

 Iteration 1 Iteration 2 

Mode 

number 

Predicted results 

after PSS tuning 

Benchmark  

results after PSS 

tuning 

Benchmark 

damping ratio 

(%) 

Predicted results 

after PSS tuning

Benchmark  

results after PSS 

tuning 

Benchmark 

damping ratio 

(%) 

1 -0.18±j1.45 -0.18±j1.43 12.5 -0.18±j1.45 -0.18±j1.43 12.6 

2 -0.44±j2.90 -0.41±j2.91 14.1 -0.44±j2.90 -0.41±j2.91 14.1 

3 -0.55±j3.51 -0.49±j3.50 14.0 -0.55±j3.51 -0.49±j3.50 14.0 

4 -0.38±j4.73 -0.36±j4.75 7.5 -0.38±j4.73 -0.36±j4.75 7.5 

5 -3.02±j5.98 -3.27±j5.36 61.0 -3.02±j5.98 -3.27±j5.36 61.0 

6 -2.25±j6.11 -2.03±j5.90 34.4 -2.39±j6.06 -2.03±j5.90 34.4 

7 -4.10±j6.29 -3.68±j6.28 58.5 -4.09±j6.29 -3.68±j6.28 58.6 

8 -3.13±j6.27 -2.83±j6.55 43.2 -3.03±j6.40 -2.83±j6.55 43.2 

9 -4.03±j6.40 -3.86±j6.98 55.30 -4.05±j6.39 -3.86±j6.98 55.3 

10 -2.07±j7.09 -1.71±j7.30 23.4 -1.74±j7.31 -1.71±j7.30 23.4 

11 -0.21±j8.23 -0.21±j8.23 2.5 -0.45±j8.15 -0.44±j8.16 5.3 

12 -1.47±j8.26 -1.47±j8.22 17.8 -1.43±j8.25 -1.46±j8.22 17.7 

13 -1.04±j8.27 -1.07±j8.45 12.6 -1.04±j8.28 -1.07±j8.47 12.6 

14 -2.78±j10.29 -2.92±j10.55 27.6 -2.78±j10.29 -2.93±j10.56 27.7 

15 -0.50±j11.54 -0.46±j11.52 3.9 -0.62±j11.48 -0.57±j11.47 5.0 

  

The PSSs parameters after Iteration 2 are shown in Figure  6-10 to Figure  6-14 for the gains 

and the time constants. Comparing Figure  6-5 and Figure  6-10, it is clear that the higher gains of 

Objective 2 lead to higher damping. From Figure  6-11 to Figure  6-14, the time constants tend to 

migrate to the limits set by ( 6-9)-( 6-12). 
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Figure  6-10: Results of PSSs gains: 16-generator system, Objective 2. 

 

Figure  6-11: Results of PSSs time constants T1: 16-generator system, Objective 2. 

 

Figure  6-12: Results of PSSs time constants T2: 16-generator system, Objective 2. 
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The eigenanalysis results of the three case studies are shown in Table  6-5 for the low 

frequency modes. As shown in this table, the damping ratios of the lowest frequency modes are 

over 5%. The other modes are all positively damped.  

Table  6-5: Eigenanalysis results under different operating conditions, 16-generator system. 

Case 1 
Mode -0.08±j0.86 -0.21±j2.69 -0.40±j3.04 

Damping ratio (%)  9.3 7.8 13.1 

Case 2 
Mode -0.09±j0.71 -0.23±j2.43 -0.42±j3.02 

Damping ratio (%)  12.7 9.5 13.9 

Case 3 
Mode -0.13±j1.12 -0.23±j2.02 -0.42±j2.98 

Damping ratio (%)  11 11.4 14 

6.3.5  69-Generator System, Objective 1: Minimizing the PSSs Gains 

The study of Section 6.3.2 for the 16-generator system is repeated for the 69-generator system of 

[45]. The objective function is minimizing the gains as in ( 5-32) with the damping ratio 

constraints of ( 5-33) and parameters ranges of ( 6-8)-( 6-12). Instead of listing the eigenvalues as 

in Table  6-3, the locations of 68 eigenvalues in Figure  6-16 summarizes the results of the 

method. All the eigenvalues lie on or to the left of the red line representing the 5% damping ratio 

limit. The sum of the gains is 345 as shown in Figure  6-18, which gives an average gain of 5. 

Similar to the tuning of the 16-generator system, the tuning is completed in two iterations.  

In Figure  6-16, there are many plus (predicted) and circle (benchmark) signs which overlap or 

are close together indicate the results accuracy. Comparing the damping from TFEA and 

benchmark results, there are 34 modes with less than 5% error and 16 modes with error between 

5-10%. Three modes exceed the error of 15%. For the results of oscillation frequency, 39 modes 

have less than 5% error and the maximum error is limited to 10%. The tuning results for the 

PSSs parameters after Iteration 2 are shown in Figure  6-18 to Figure  6-22 for the gains and time 

constants. 
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Figure  6-16: Complex plane for the tuning results of Objective 1, 69-generator system. 

Figure  6-17 shows the time domain response to a perturbation disturbance. The solid line is 

Δω(t) calculated for the generator 44. The two dashed curves are damped responses of the 

slowest and the fastest modes.  

 

Figure  6-17: Time domain damping of Δω44(t) after tuning for Objective 1. 
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Figure  6-18: Results of PSSs gains: 69-generator system, Objective 1. 

 

Figure  6-19: Results of PSSs time constants T1: 69-generator system, Objective 1. 

 

Figure  6-20: Results of PSSs time constants T2: 69-generator system, Objective 1. 
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Figure  6-21: Results of PSSs time constants T3: 69-generator system, Objective 1. 

 

Figure  6-22: Results of PSSs time constants T4: 69-generator system, Objective 1. 
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Figure  6-23: Complex plane for the tuning results of Objective 2, 69-generator system. 

According to Figure  6-23, the eigenvalues lie on or to the left of the red line representing the 

5% constraint of ( 5-37).  On damping prediction by TFEA, 29 modes have less than 5% error, 22 

modes have an error between 5-10%. From all the 68 modes, the maximum error does not exceed 

15%. Frequency prediction is much better since 43 modes have less than 5% error and the 

maximum error is limited to 10%. Figure  6-24, which shows the response of generator 44 to 

perturbation disturbance, confirms that damping has increased compared to Figure  6-17.  

 

Figure  6-24: Time domain damping of Δω44(t) after tuning for Objective 2. 
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1222. The average gain is 17.7 compared to the average gain of 5 in Objective 1. The gains of 58 

PSSs has reached to the limit of KSTMAX =20 in ( 6-8) as shown in Figure  6-25. It can be realized 

that the extent of the left shift is determined by the gains. The results of the time constants are 

shown in Figure  6-26 to Figure  6-29. 

 

Figure  6-25: Results of PSSs gains: 69-generator system, Objective 2. 

 

Figure  6-26: Results of PSSs time constants T1: 69-generator system, Objective 2. 

 

Figure  6-27: Results of PSSs time constants T2: 69-generator system, Objective 2. 
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The eigenanalysis of the full state matrix is solved after the fault happened in each of the three 

cases. Some values of the low frequency electromechanical oscillations are listed in Table  6-6. 

The results of other modes are not shown as they are almost unchanged. Because of topological 

change, the mode shapes are different from the pre-fault modes. In all the three cases, all the 

modes are positively damped. 

Table  6-6: Eigenanalysis results under different operating conditions, 69-generator system. 

Case 1 
Mode -0.099±j1.82 -0.28±j2.19 -0.11±j2.89 -0.10±j2.77 -0.22±j4.77 

Damping ratio (%) 5.4 12.7 3.7 3.6 4.6 

Case 2 
Mode -0.13±j2.90 -0.063±j2.1 -0.32±j2.2 -0.5±j3.3 -0.18±j4.7 

Damping ratio (%) 4.4 3.0 14.3 15.0 3.9 

Case 3 
Mode -0.07±j2.14 -0.32±j2.22 -0.12±j2.8 -0.50±j3.39 -0.1±j4.5 

Damping ratio (%) 3.2 14.4 4.2 14.7 2.2 

6.4 Discussion of the Tuning Results by Optimization 

From the results of Figure  6-25, the gains of 58 PSSs reached the limit of KSTMAX=20. In 

optimization to reach objective function ( 5-36), the parameters T1, T2, T3 and T4 seem to migrate 

to the upper and lower limits set by ( 6-9)-( 6-12). This is illustrated by Figure  6-26 to 

Figure  6-29. Optimization methods tend to locate their objectives at the parameter limits. But 

does this tendency yield meaningful tuning?  To check on this, the tuned time constants T1, T2, T3 

and T4 of generators 1, 10 and 44 have been selected and listed in Table  6-7. 

Table  6-7: Time constants from optimization results of Objective 2. 

 T1(S) T2(S) T3(S) T4(S) 

Configuration 1 (generator 44) 0.12 0.01 0.12 0.01 

Configuration 2 (generator 1) 0.08 0.04 0.08 0.04 

Configuration 3 (generator 10) 0.12 0.04 0.12 0.04 

 

Figure  6-31shows a single generator connected to the power system at Δδ, the generator angle 

and at Et, the stator voltage [11]. In the first instance, the rest of the system is disregarded. This is 

by holding the generator angle Δδ constant. The objective is to study how the time constants of 
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Figure  6-33: Bode diagram of PSS, exciter, generator for Configuration 2. 

 

Figure  6-34: Bode diagram of PSS, exciter, generator for Configuration 3. 
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Figure  6-35: Damping torque of a single generator. 

The damping torque when the rest of the system is included is more complex. It must take 

into account the interactions of the other 68 generators of the power system. It is evaluated using 

the formula from ( 2-1), which is:  

 1 1( ) [ ,..., ,..., ][ ,..., ,..., ]      1,  2,...,  .T
ej Dj Djj Djng j ngT k k k j ngω ω ω ωΔ = Δ Δ Δ =  ( 6-13) 

For a typical generator, such as generator 44 (i.e., j=44 in ( 6-13)), the damping torque from 

( 6-13) takes the form as shown in Figure  6-36 and Figure  6-37. 

 

Figure  6-36: Damping torque of generator 44 from Objective 1. 
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Figure  6-37: Damping torque of generator 44 from Objective 2. 

From Figure  6-35 to Figure  6-37, the general trend is that low frequency oscillation has low 

damping torque. As Objective 2 is optimized to have increased damping in the target modes, 

Figure  6-37 shows marked increase in damping torque at the low frequency region of the 

spectrum. 

6.5 Computation Time 

The computation time for the tuning method is taken by forming ( 5-26) and by the optimization 

algorithm. Table  6-8 shows the time components for both test systems. The 3 minutes in 

Table  6-8 come from forming ( 5-26)  by the TFEA method. The 1.5 minutes are attributed to the 

optimization algorithm coming from evaluating ( 5-26) as the PSSs gains and time constants are 

repeatedly changed by the algorithm to reach the objective function. Table  6-8 shows that the 

scope for improvement is in organizing the evaluation of ( 5-26) in a time efficient way.   

Table  6-8: CPU time for PSS tuning. 

 Forming ( 5-26) by TFEA Optimization 

16-generator system 3 min 1.5 min 

69-generator system 190 min 5 min 
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6.6 Discussion of Accuracy and Efficiency 

Prior to the research of this chapter, reference [76] has been published as a pioneer study in 

coordinated PSS tuning, and therefore there is interest in making a comparison. As only the two 

components of eigenvalue sensitivity and optimization package are common with [76], it is hard 

to compare the efficiency when the TFEA method is the major component of the proposed 

tuning method. What this thesis has shown is that any coordinated PSS tuning can be 

implemented using the TFEA method. Since TFEA makes PSS tuning computationally efficient, 

planners are not deterred in using a tuning method even if it requires more iterations to find gains 

and time constants for which small signal stability is robust. 

The tuning method of [76] has the following four major steps. 

A- Time constants tuning: 

Step 1: The transfer function (time constants) of each PSS is separately designed by the P-Vr 

method [57, 59]. 

B- Iterative Gain tuning: 

Step 2: Incremental induced torque coefficients (IITC) are obtained [76]. To form the 

[IITC(ωj)]lk, two things are required; participation factors and the transfer function between the 

reference input of stabilizer l (l= 1, 2,…, ng) and the electrical power output of generator k (k= 1, 

2,…,ng) at frequency ωj (j= target modes). 

Step 3: The eigenvalue shifts due to PSSs gains are quantified based on the IITCs of Step 2. 

Step 4: An optimization problem is formulated and solved to tune the PSSs gains for a 

specific damping improvement.  

Comparing the method of this thesis with [76], the following conclusions can be made 

regarding the speed of the method: 

- TFEA is fast compared to forming (ng×ng×j) transfer functions in step 2 of [76].  

- The gains and the time constants of the PSSs are obtained simultaneously in the method of 

this thesis, therefore the tuning is faster. 

As to the accuracy, Table  6-9 summarizes the accuracy of the predictions of the tuning results 

of this thesis and the results of [76]. It should be mentioned that the tuning in [76] has performed 

on a 29-generator system. According to this table, the accuracy of the predictions of both 

methods is similar. 
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Table  6-9: Accuracy comparison between the results of this research and the results of [76]. 
 Damping Frequency 

Results of Section 6.3.5 

and 6.3.6 

More than half of the modes have less 

than 5% error. 

Maximum error is less than 20%. 

Most of the modes have less than 5% error. 

Maximum error is 10%. 

Results of Table 4 in [76] Most of the modes have less than 10% 

error. 

Maximum error is 15%. 

Half of the modes have approximately 10% 

error. 

Maximum error is approximately 20%. 

6.7 Chapter Summary 

This chapter has presented the validation test results for the PSS tuning method of Chapter 5. 

The performance of the tool has been tested in the 16-generator and 69-generator test systems. 

The test consists of using the reduced matrix from TFEA to tune parameters by optimization. 

Then the tuned parameters are used to construct the full state matrix whose eigenvalues are the 

benchmark for comparison. The agreement is strong validation that tuning can be approached 

from the reduced [A(ωK)] matrix of TFEA.  

The tests have been performed for PSS gain tuning and simultaneous gain and time constants 

tuning based on the optimization of objective functions. Design philosophies, operational and 

strategic planning are evaluated by formulating two objective functions under constraints. 

Objective 1 consists of minimization the PSSs gains and Objective 2 consists of maximizing the 

damping of target modes. Tuning of time constants has been achieved using non-linear 

programming and showed a successful phase compensation for PSS design. Results based on 

eigenanalysis, transient response and damping torque spectrum have been presented to show that 

the objectives have been met under constraints. Robustness studies showed that after key 

transmission lines have been cut, the eigenvalues of degraded system are still on the left side of 

the complex s-plane.  
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Chapter Seven 

7. Conclusion 

7.1 Thesis Summary 

7.1.1 New Methodologies for Small Signal Stability Analysis 

Power engineers, responsible for the stability of the power grid under their care, apply transient 

stability analysis, as a matter of course, to ensure that the system returns to stable operating 

condition after faults are cleared. However, the simulations of transient stability analysis 

programs are never long enough to assure small signal stability. Small signal stability requires a 

different research tool. It consists of linearizing the non-linear dynamic equations of power 

system about the steady-state operating point to obtain a linear [A] matrix. Small signal stability 

means that all the eigenvalues of [A] lie on the left side of the complex s-plane.    

Small signal stability is not widely used because the computations required to evaluate the 

eigenvalues (typically the QR method) increase roughly by N3, where N is the dimension of [A].   

When the power system has ng generators and each generator has to be modeled by m state 

variables, N=m×ng. Because power systems have interconnected to take advantage of economy 

of scale, ng is reaching sizes of 1000 and higher. Including auxiliary equipment such as the 

exciter and power system stabilizer, each generator has to be modeled by m=11 at least.  

This thesis is concerned with making small signal stability analysis practical for large power 

systems. This is by developing methodologies, such as TFEA. The methodologies are validated 

in two power system models in which m=11 and ng=16, 69.  
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7.1.2 TFEA 

Transfer Function and Eigenfunction Analysis (TFEA) method, is the centerpiece of the thesis. It 

reduces computation time by reducing the size of the matrix from (m×ng) in the full state matrix 

to 2ng in the reduced matrix of [A(ωK)]. Instead of m state-variables, each generator is 

represented by two mechanical state variables: the perturbation rotor angle and the perturbation 

rotor speed. This recognizes that eigenvalues closest to the y-axis (lowest damping) are the 

electromechanical modes. The other (m-2) state variables are embedded in transfer functions, 

making the reduced state matrix frequency dependent.  

7.1.3 Eigenvalue Sensitivity Formula 

The second methodology is the eigenvalue sensitivity formula which is exploited in two 

situations: (i) to improve the accuracy of TFEA; (ii) to relate the eigenvalue shifts to the tuning 

parameters (gains and time constants), for PSS tuning. 

7.1.4 Efficient Improvement of TFEA Accuracy 

For ng generators, there are (ng-1) oscillatory modes with angular frequencies ωn, n= 1, 2,…, 

(ng-1). If the eigenvalues of [A(ωn)]2ng×2ng  is  evaluated at angular frequencies ωn, the nth mode 

would be accurately represented. There are two problems here: First, a priori one does not know 

what value to use for ωn. Second, (ng-1) eigenvalue evaluations is very expensive.  

In the interest of lowering the cost, the eigenvalues and eigenvectors of matrix [A(ωK)] are 

evaluated for one or few representative frequencies ωK. Using the right and left eigenvectors in 

the eigenvalue sensitivity formula, improved accuracy is economically obtained by treating (ωn-

ωK) as a parameter to be corrected.   

7.1.5 Curve Fitting Interpolation 

It is shown that the cost of forming [A(ωn)], used in the eigenvalue correction, can be 

improved by applying the curve fitting interpolation. The improvement in computation is very 

significant and there is no effect on accuracy.    
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7.1.6 Modified Arnoldi Method (MAM) 

Although TFEA is a computation time-saver method, [A(ω)] is a large matrix when ng is large. 

As MAM is used with confidence in finding a close cluster of eigenvalues of very large matrices, 

it has been shown that it can predict the selected eigenvalues of [A(ω)] accurately. 

7.1.7 Tuning of PSS Parameters  

The eigenvalue sensitivity formula relates perturbation of eigenvalues to perturbation parameters 

of the reduced state matrix. This opens up the ability to use parameters of all the PSSs of power 

system to tune the damping of selected modes. The thesis developed the tuning method by 

optimization under Constraints.  

7.1.8 Optimization under Constraints 

This thesis shows that software packages such as MATLAB has optimization tools which are 

available for adoption and adaptation for simultaneous tuning of the PSSs of large power 

systems. Strategic and operational planning proposals can be evaluated by formulating them as 

objective functions to be optimized under constraints. Examples, which the optimization method 

has evaluated, are:  

(a) The possibility of increasing the damping of target modes under different conditions such 

as relaxing the damping of heavily damped modes or maintaining a damping ratio limit.   

(b) The possibility of minimizing the PSSs gains while maintaining a damping ratio limit.   

The thesis shows that a combination of TFEA, eigenvalues sensitivity, and optimization 

makes a promising tool for PSS tuning. The feasibility of the method has been validated  by 

examples in 16-generator and 69-generator test systems.  

While the objectives of this thesis are mainly to develop tools which can predict and tune the 

electromechanical modes of large power systems, experience in optimization has uncovered the 

following: 

1. The time constants of the PSS successfully compensate the generator phase lag.  This 

observation comes from detailed analysis of Section 6.4.  This comes as a surprise mainly 

because the time constants are reached by optimization of a power system consisting of 

69 generators.   
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2.  The gain of the PSS plays an important role in increasing the damping of the modes.  

7.2 Thesis Contributions 

With the explanation in Section 7.1 the research contribution is summarized in the following 

items. 

1. Presenting a frequency-dependent method for an efficient eigenanalysis of 

electromechanical oscillations. The method is called Transfer Function and Eigenfunction 

Analysis (TFEA) method. 

2. The method combines the electrical and mechanical equations of generators and power 

system network equations. No approximation is considered as all the information of 

power system elements are embedded as transfer functions. 

3. The method uses the eigenvalue sensitivity formula for more accurate eigenanalysis.  

4. Selective and limited eigenanalysis performed by applying the Modified Arnoldi Method 

to the TFEA method.  

5. A Coordinated PSS tuning has been analysed by using the three tools of TFEA, 

eigenvalues sensitivity and optimization algorithms. 

6. Numerical tests conducted on three test systems including 4-generator, 16-generator and 

69-generator systems. The 69-generator system is considered large enough for 

educational purposes. 

7.3 Future Work 

Assuring small signal stability for large power systems is a wide research area for further studies. 

The advance of fast computational technologies such as parallel computation is hindered by the 

lack of parallel eigenanalysis methods. Until such a breakthrough comes to pass, some 

opportunities for further research consist of improving the methodologies developed in this thesis 

or filling gaps which have not been covered. 
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7.3.1 Improving the Power System Model in TFEA 

The power system and generator models should be improved by:   

- Considering different power system elements such as FACTS devices and non-constant 

current loads. 

- Considering the model of turbine/governor for damping the very low frequency modes. 

7.3.2 Improving the Efficiency of Accurate Eigenanalysis Methods 

Similar to the research of Chapter 4, the TFEA method could be combined with more accurate 

eigenanalysis methods. The TFEA results could be used as initial guess for the AESOPS and 

Power Iterations methods to analyse the improvement in convergence and efficiency of the these 

methods.   

7.3.3 Improving the Efficiency of TFEA 

The TFEA method can be modified to improve the computation speed up without loss in 

accuracy by: 

- Mathematically proving that the curve fitting interpolation method of Chapter 3 is robust 

and showing that the synchronizing and damping torque coefficients are continuous 

functions of frequency. 

- Presenting alternative and more effective methods rather than curve fitting interpolation.  

- A complete study on the  choice of representative frequency.    

7.3.4 Improving the Robustness of PSS tuning 

More investigation is needed on the robustness of PSS tuning using non-linear programming, 

specifically for the time constants tuning. 
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• R. Jalayer, B.T. Ooi, “Estimation of Electromechanical Modes of Power Systems by Transfer 
Function and Eigenfunction Analysis“, IEEE Transaction on Power Systems, vol. 28, issue 1, 
pp. 181-189, Feb 2013. 
 

• R. Jalayer, B.T. Ooi, “Co-ordinated PSS tuning of large power systems by combining 
Transfer Function-Eigenfunction Analysis (TFEA), Optimization and Eigenvalue 
Sensitivity” , IEEE Transaction on Power Systems, vol. pp, issue 99, pp. 1-9, 2014. 

 

A.2 Conference Proceedings 

• R. Jalayer, B.T. Ooi, “Frequency dependant estimation of damping and synchronizing torque 
coefficients in power systems”, in IEEE PES General Meeting, San Diego, July 2012. 
 

• R. Jalayer, B.T. Ooi,”Efficient Estimation of Electromechanical Modes by Applying 
Modified Arnoldi Method (MAM) to Transfer Function and Eigenfunction Analysis (TFEA) 
Method”, in IEEE PES General Meeting, Vancouver, July 2013. 
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Appendix B: Computation of the Elements of 
A"(s) of Section 2.6 

From ( 2-42)-( 2-66), for each generator n (n=1, 2,…, ng), 

  Δ ( ) Δ ( )Δkdqn dqnkdqn kdqn rni A s i B s ω= +  (B-1)  

  Δ ( ) Δ ( )Δdqnfdn fdn fdn rni A s i B s ω= +  (B-2)  

where 

  ( ) ( ) ( ) ( ) ( )( )11 1 1
33 31 32kdqn n n n fdng g gA s A s

−
= − +            (B-3) 

  ( ) ( ) ( ) ( )11 1
33 32kdqn n n fdngs sgB B

−
= −         (B-4) 

  ( ) ( ) ( )[ ] ( )( )1 12 2
22 21fdn n exc n ng gA s G A s

− −= −        (B-5) 

  ( ) ( ) ( )[ ]( )1 12
22 [ ( )]fdn n pss exc n nB s G G A s B sg

− −= −    (B-6) 

Replacing  Δidqn with ΔiRIn by ( 2-82), Δin can be found as below, 
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0
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dqn
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C i
si I

i i A s C i B s A s C i
s

i A s
B s A s C i

s

ω δ
ωδ δ ω
ω δ

×

 
       = = + +        +  

 (B-7) 

where ΔiRIn can be found in terms of Δωr 

  Δ (2 1)    (2 ) Δ
TT T

RIn rtotal totali a n a n ω= −    (B-8) 

where atotal (j) is the jth row of [Atotal], and [Atotal] is defined in ( 2-105), as 

  [ ] ( ) [ ]( ) ( )2

1
' '

2 2( )
g gtot n nal ng full fullng I A s DA s B s

−

××
 = −          (B-9) 

Therefore, Δin would be 
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   (B-10) 

Back to ( 2-107), ΔTen is a function of Δin, and can be found as,  

  ''Δ ( )Δn rneT a s ω=  (B-11) 

where ''( )na s forms the nth row of "( )A s  in ( 2-110).  
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Appendix C 

C.1 Operating Conditions for 4-Generator System 

Table C-1: Operating conditions for 4-generator system. 
Generator 

number 
id0  iq0  ed0  eq0  δ0 (deg) 

1 0.3261 -0.0913 1.0000 0 25.6085 

2 0.7685 -0.3468 1.0100 -0.0047 39.0863 

3 0.8020 -0.1204 1.0042 0.2290 52.7424 

4 0.7935 -0.4545 1.0088 0.0500 38.0890 

Table C-2: Exciter and PSS parameters for 4-generator system. 

KA TR(s) KST Tw(s) T1(s) T2(s) 

400 0.02 10 10 0.08 0.02 
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C.2 Operating Conditions for 16-Generator System 

Table C-3: Operating conditions for 16-generator system. 
Generator 

number 
id0  iq0  ed0  eq0  δ0 (deg) 

1 0.9688 -0.3014 0.9762 0.3729 53.7662 

2 0.7244 0.0817 0.8955 0.3981 65.3428 

3 0.8396 0.1694 0.8788 0.4404 72.5651 

4 0.7234 0.3312 0.8656 0.4947 81.0879 

5 0.7213 0.1679 0.8880 0.4832 70.4692 

6 0.7688 0.1704 0.8872 0.5615 72.3557 

7 0.6769 0.1792 0.8739 0.6052 72.9770 

8 0.6065 0.2528 0.9196 0.4639 72.4411 

9 0.6799 0.3852 0.8655 0.5492 83.7539 

10 0.3978 0.1200 0.9251 0.4054 48.9238 

11 0.5831 0.2291 0.9033 0.4291 70.5751 

12 0.7237 -0.1126 1.0048 0.1479 48.9594 

13 0.2266 -0.0815 1.0110 0 18.8760 

14 0.0998 0.1491 0.4696 0.8829 78.6641 

15 0.0626 0.0784 0.5600 0.8285 65.6276 

16 0.2386 0.2821 0.5006 0.8657 88.9070 

 

Table C-4: Exciter and PSS parameters for 16-generator system. 

KA TR(s) KST Tw(s) T1(s) T2(s) 

400 0.02 10 10 0.08 0.02 
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C.3 Operating Conditions for 69-Generator System 

Table C-5: Operating conditions for 69-generator system. 
Generator number id0  iq0  ed0  eq0  δ0 (deg) Generator Number id0  iq0  ed0  eq0  δ0 (deg)

1 -0.0328 -0.6558 1.0146 0.0378 -0.5571 35 0.4875 -0.4547 0.9212 -0.3892 14.7170

2 -0.0477 -0.6515 1.0203 0.0221 -1.6645 36 0.3419 -0.5350 0.9623 -0.4201 5.0416 

3 -0.0777 -0.6614 1.0000 -0.0453 -4.8479 37 0.2373 -0.6230 0.8858 -0.4641 2.0192 

4 -0.2126 -0.6624 0.9125 -0.2928 -17.8546 38 0.6030 -0.2175 1.0081 -0.2556 36.9220

5 -0.3179 -0.6148 0.8556 -0.4424 -27.4055 39 0.4208 -0.5171 0.8962 -0.4436 14.1295

6 0.5086 -0.4054 0.9755 -0.3148 18.4485 40 0.6133 -0.2324 0.9775 -0.2788 36.8655

7 0.5749 -0.2666 1.0374 -0.1749 28.4929 41 0.1241 -0.6483 0.9407 -0.3676 -1.9536

8 0.6127 -0.1620 1.0452 -0.1194 35.1557 42 0.6554 -0.1222 0.9597 -0.2812 44.7247

9 0.6659 -0.0312 0.9670 -0.2547 41.0443 43 0.6121 -0.1689 1.0046 -0.3054 38.4228

10 0.5730 -0.3537 0.9266 -0.3485 22.4751 44 0.5415 -0.3969 0.9450 -0.3049 20.9869

11 0.5878 -0.2504 1.0406 0.0783 39.7346 45 0.4109 -0.5166 0.9514 -0.3390 11.2444

12 0.4588 -0.4625 0.9919 -0.2516 19.7183 46 0.6186 -0.1413 1.0323 0.1960 44.5936

13 -0.2157 -0.6236 0.9548 -0.3302 -19.1409 47 0.6345 0.0018 1.0263 0.2252 52.0901

14 -0.4454 -0.4483 1.0475 -0.1252 -28.0345 48 0.6442 0.0449 1.0037 0.2411 55.4630

15 0.6158 -0.1522 1.0510 -0.0049 38.7069 49 0.6549 -0.0539 1.0110 0.0837 47.5721

16 0.6291 -0.1115 1.0411 0.0708 43.0193 50 0.6298 -0.0770 1.0302 0.2068 47.9158

17 0.5720 -0.2716 1.0503 0.0726 34.7878 51 0.3270 -0.5437 1.0309 -0.2032 10.5697

18 0.5946 0.2177 1.0426 0.1465 61.0278 52 0.6280 -0.0904 1.0448 0.1112 45.2582

19 0.5742 -0.2366 1.0694 0.0936 36.5768 53 0.6402 0.0995 1.0053 0.2196 58.2993

20 0.6089 0.1722 1.0418 0.1569 67.5614 54 0.6275 -0.0966 1.0489 0.0481 42.8016

21 0.6385 0.0209 1.0290 0.1735 56.6588 55 0.5301 -0.3884 0.9844 -0.2452 21.9056

22 -0.0569 0.6899 0.9597 0.0791 4.3821 56 0.6253 -0.1079 1.0507 0 40.9632

23 0.7174 0.0159 0.9290 0.0013 53.4707 57 0.6306 -0.2232 0.9896 -0.1188 41.5765

24 -0.1229 -0.6670 0.9666 -0.1781 -10.4880 58 0.6060 -0.2427 1.0203 -0.0427 40.5954

25 0.6291 -0.0756 1.0496 0.0740 44.9250 59 0.6036 -0.2599 1.0138 0.0369 41.5104

26 0.5746 -0.3279 1.0077 -0.0008 32.4793 60 0.6651 0.0238 0.9955 0.1112 60.2253

27 0.6098 -0.1720 1.0483 -0.0902 36.0003 61 0.4174 -0.5290 0.8930 -0.4257 14.2314

28 0.6139 -0.1223 1.0645 0.0320 40.9638 62 0.6345 0.0070 0.9921 0.3461 61.6370

29 0.6073 -0.1518 1.0649 0.0175 39.1605 63 0.6199 -0.1354 1.0499 0.0414 47.1855

30 0.5454 -0.3190 0.9847 -0.3791 20.5495 64 0.6103 0.2437 0.8364 0.5741 75.5257

31 0.6334 -0.0836 1.0213 0.2142 48.6406 65 -0.5465 -0.3881 0.9379 -0.3308 -38.4256

32 0.5341 -0.3823 0.9486 -0.3610 19.6051 66 -0.6520 0.1390 0.9443 -0.3290 -64.1309

33 0.6141 -0.2419 0.9878 -0.2105 31.5796 67 -0.6571 0.1128 0.9535 -0.3014 -62.1146

34 0.5772 -0.3230 0.9337 -0.3797 22.3096 68 0.6548 -0.1250 0.9924 -0.1230 39.6594

35 0.4875 -0.4547 0.9212 -0.3892 14.7170 69 0.6345 0.0070 0.9921 0.3461 61.6370
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Table C-6: Exciter and PSS parameters for 69-generator system. 

KA TR(s) KST Tw(s) T1(s) T2(s) 

40 0.02 25 10 0.06 0.02 
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