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ABSTRACT

We explore the “Roulette Inflation” model, a variety of two-field Kähler

moduli inflation scenario with a nonstandard kinetic term derived from Type

IIB string theory in the large-volume compactification. We provide an overview

of the model and the cosmological tools used to compute observables. Our

calculations show that entropy perturbations can account for up to 90% of

Ps(k) at COBE scales. We further show that the effective single-field result

over-estimates the scalar spectral index; a full calculation predicts a slightly

red-shifted spectrum 0.92 . ns . 0.98. Calculation of nongaussianity from

the superhorizon evolution of adiabatic modes shows that for most trajecto-

ries examined, Roulette inflation predicts small, positive fNL, which would be

unmeasurable by the upcoming 9-year WMAP data and the Planck mission.

Should they be detectable, momentum-dependent bispectra would provide a

good discriminator between models and inflationary trajectories within mod-

els.
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ABRÉGÉ

Nous étudions le modèle d’inflation de type “Roulette”, un modèle basé

sur la relaxation de modules de Kähler sur une variété Calabi-Yau, ayant un

terme cinétique non-trivial et provenant de la théorie des cordes de Type IIB,

dans le contexte de la compactification à grand volume. Nous démontrons que

l’influence des perturbations d’entropie peuvent compter pour jusqu’à 90% de

Ps(k) à l’échelle de COBE. Nous démontrons que le résultat effectif provenant

de la théorie à un seul champ surestime ns; un calcul complet prédit un spec-

tre décalé vers le rouge 0.92 . ns . 0.98. Nous calculons finalement la

non-gaussianité des perturbations adiabatiques résultant de leur évolution à

l’extérieur du rayon de Hubble, et arrivons à des prédictions de fNL ≪ 1, ce

qui ne serait pas mesurable par les observations des prochaines années. Toute-

fois, s’il s’avère possible de détecter un bispectre dépendant du nombre d’onde

k, ceci servirait d’excellent moyen de différentier divers modèles d’inflation.
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CHAPTER 1

Introduction

The theory of cosmic inflation is arguably one of the greatest successes

of modern theoretical cosmology. In addition to providing an elegant solution

to the shortcomings such as the flatness problem, the horizon problem and

structure formation problem which plague standard big bang cosmology, it

provides a graceful and precise prediction of the distribution of anisotropies

in the 2.7K cosmic microwave background radiation, and consequently to the

distribution of clusters of galaxies on the largest scales in the universe.

However, these successes are so far at the phenomenological level. Ulti-

mately one would like to identify the specific inflation theory, derived from a

fundamental theory, which gave rise to our universe. The observation of non-

standard features, like a nongaussian component in the spectrum of primordial

fluctuations, would provide a powerful discriminator between models.

Recent advances in vacuum stabilization in string theory, most notably the

KKLT [19] and the large volume [15] varieties, have put stringy realizations of

inflation on a much firmer footing. Only when all moduli have been stabilized

does it make sense to study which of them might be candidates for inflation.

String theory provides an abundance of moduli fields, for example the size

and shape of the extra dimensions, and thus many potential opportunities for
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inflation. These include single-field models, such as ref. [14], and multiple-field

models such as the racetrack [6] or the N-flation scenario [17]. Multiple field

inflation has the advantage of more easily providing some of the nonstandard

observational features that one would like for helping to discriminate between

theories. The extra degrees of freedom allow the production of isocurvature

modes (perturbations transverse to classical trajectory) and it has become

apparent [35] that these may give rise to large nongaussianities in the cosmic

microwave background (CMB) temperature fluctuations.

One such model is the Roulette scenario [7], in which the Calabi-Yau

manifold (the compactified extra dimensions of string theory) relaxes from

an initial excited state towards a minimum of its potential. The large volume

compactification that is used ensures that this minimum exists for large ranges

of the microscopic parameters. In addition, unlike KKLT, it does not require

tuning the constant term in the superpotential to very small values, and it

gives a natural expansion parameter, the inverse volume 1/V , providing a

controlled α′ expansion. The last four-cycle and its axionic partner to relax

act as slow rolling scalar fields which drive the final stage of inflation.

We will show, through numerical solution of the field equations, that the

potential corresponding to a generic, wide range of compactification parame-

ters gives a large region of initial conditions for which the slow roll conditions

are satisfied, and inflation occurs, with the prediction of observable parameter

values in accordance with known results from CMB and large scale structure

survey data. We specifically aimed to explore the region of allowable infla-

tion within Roulette inflation, bounded by the threshold needed to achieve a

minimum amount of inflation, and a maximum set by the region in which the

universe exists in a regime of stochastic self-reproduction. Specializing to a

specific set of microscopic parameters, we explored the various trajectories of
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inflation available within the context of this two-field model, and compared

our results to a more generic two-field quadratic inflation model. The influ-

ence of isocurvature perturbations, which seed inhomogeneieties between the

species of fields driving inflation, was found to be quite important.

In addition, recent claims of detection of nongaussianity in the WMAP

CMB data, specifically a nonvanishing nonlinearity parameter fNL [44] have

sparked a large interest in deviations from gaussianity in the spectrum of

primordial fluctuations as an additional observable that must be predicted by

a successful theory of the early universe. Given that precision measurements

of fNL from experiments such as Planck will soon be available, it is all the

more important that the mechanisms governing the production and evolution

of primordial nongaussianities be well understood.

Chapter 2 will provide an overview of the string theory behind the Roulette

inflation model before addressing the model itself. We will also discuss some of

the shortcomings of the model, from a string-theoretical point of view. Chap-

ter 3 will provide an introduction to the classical theory of inflation, followed

by an illustration of the mechanism by which an inflationary universe gener-

ates inhomogeneieties. We will further differentiate curvature (adiabatic) and

isocurvature (entropy) perturbations of the spacetime metric, and will provide

a definition and discussion of the nonlinearity parameter fNL, which is the

most widely-used tool in the modern literature in the context of quantifying

primordial nongaussianity. Section 3.3 will discuss the gradient expansion for-

malism we will use to approach the calculation of observables in the context of

Roulette inflation. Finally, Chapter 4 will contain the results of the numerical

analyses carried out with the method of 3.3.



CHAPTER 2

Roulette (Kähler Moduli)
inflation

The Roulette model is a string theoretic inflationary scenario set in the

context of a Type IIB large volume compactification. Although there may be

evolution of several Kähler moduli, the observable part of inflation is governed

by last (and lightest) one to relax. Since the earlier-evolving moduli stabilize

to deep minuma, they rapidly decouple from the dynamics [7], before the final

60 e-foldings. The name “roulette” comes from the cyclic shape of the poten-

tial, resembling a roulette table whose grooves are the minima toward which

the inflaton eventually relaxes (fig. 2–1). During inflation, the F-term poten-

tial of the large volume compactification is flat enough to allow slow-rolling

over sizeable patches of field space. Reheating, which we will not address

here, occurs when the inflaton fields oscillate at the bottom of the potential.

This model was first proposed as a single-field inflation model by Conlon and

Quevedo in [14], and subsequently generald to include the axion as a second

inflaton field by Bond, Kofman, Prokushkin and Vaudrevange in ref. [7].

As in ref. [7], we use the large-volume compactification [15], in which

the 10 spacetime dimensions of type IIB string theory are separated into a

4-dimensional noncompact spacetime and a conformally Calabi-Yau 3-fold.

4
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Figure 2–1: The potential (2.21) as of function of the volume modulus τ and
its axionic partner θ for parameter set 1.The structure is periodic in the θ
direction.

This compactification contains O3/O7 orientifold planes, D3/D7 branes and

fluxes which contribute to the stabilization of the compact manifold [15]. Only

two Hodge numbers are needed to describe such a manifold: h1,1 and h2,1.

These correspond to the number of Kähler moduli and complex structure

(CS) moduli, respectively. While the latter can be seen as specifying the

overall shape of the manifold, the former, whose elements we shall call T i, can

be thought of as describing the overall sizes of the cycles which make up the

manifold. We will consider the CS moduli, along with the dilaton, to have

been dynamically fixed at their global minima, and shall treat the real and

imaginary parts of Ti = τi + iθi as independent dynamic fields. τi corresponds

to the four-cycle volume modulus, while θi is its axionic parter, arising from

the Ramond-Ramond four-form on the manifold [15]. The only additional
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requirement is that h2,1 > h1,1 > 1. The Kähler potential is:

K =
K
M2

P

= −2 ln

(

V +
ξ

2

)

+ Kcs. (2.1)

Here Kcs is an irrelevant constant since it depends on the CS moduli, which are

assumed to be heavy. ξ arises from α′3 corrections and is essential for obtaining

the large-volume compactification [15]; it is related to the Euler characteristic

of the potential by ξ = − ζ(3)χ(M)
2(2π)3

and may be expressed in terms of the Hodge

numbers through χ(M) = 2(h1,1 − h2,1). It should be noted that there has

been substantial disagreement [5, 13] about additional correction terms to the

Kähler potential within the large volume scenario of the form:

h1,1+1
∑

i=1

E (K)
i

S1τi
+

h1,1+1
∑

i6=j 6=k

E (W )
i

τiτj
. (2.2)

where the sum runs over the Kähler moduli and the dilaton; E (K)
i and E (W )

i

are unknown functions of the complex structure and open string moduli and

S1 is the real part of the dilaton. The first sum originates from the exchange

of Kaluza-Klein modes between D7-branes and D3 branes (or O7 planes and

O3 planes) that are localized within the internal space. The second term,

proportional to 1/τ 2, originates from the exchange of winding strings between

stacks of D7-branes, and their existence depends on the topology of specific

cycles within the model under consideration.

Although the terms proportional to the dilaton and to the overall volume

(1/τ1) should be suppressed and therefore unimportant, it should be stressed

that these terms could potentially spoil the overall flatness of the model, ren-

dering slow-roll inflation unsustainable. It has been claimed in ref. [5] that
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these corrections are “likely” to be of the form:

h1,1+1
∑

i

gi
KE (K)

i

S1V
(2.3)

and
h1,1+1
∑

i

gi
WE (W )

i

V (2.4)

respectively, where gK and gW are functions that determine the scaling of the

KK and winding mode corrections. Given that these are volume-suppressed

and do not depend explicitly on the Kähler moduli, they would not spoil the

F-term potential’s flatness. However, ref. [11] points out that these correc-

tions may be avoided by removing the D7 brane from the inflating cycle, which

has the disadvantage of complicating the reheating process. Given that in a

full string theoretical setup the Standard Model would be most easily located

on this brane, a nontrivial mechanism would be needed to transfer energy to

another location in the compact internal dimensions during reheating. This

could occur via a process akin to the ones studied in multiple-throat inflation-

ary models in warped compactifications. See for instance ref. [3]. Since we will

not address reheating here, we will assume that these corrections are avoided

for the purposes of model-building.

The volume of the Calabi-Yau manifold can be written in terms of two-

cycle moduli ti:

V =
1

6
κijkt

itjtk, (2.5)

where i, j, k range from 1 to h1,1 and κijk is the triple intersection form of the

manifold M. To each two-cycle modulus ti corresponds a four-cycle modulus

τi defined through the transformation:

τi =
∂

∂ti
V =

1

2
κijkt

jtk. (2.6)
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τi coincides with the real part of the Kähler modulus Ti. The matrix κij ≡
∂2

∂τ i∂τj V has signature (1, h1,1 − 1) [7, 9], so the volume may be written as

V = α

(

τ
3/2
1 −

n
∑

i=2

λiτ
3/2
i

)

, (2.7)

where α and λi are model-dependent, positive parameters. This is sometimes

referred to as the “swiss cheese” geometry, with one large modulus τ1 defining

an overall volume, and the other moduli specifying the sizes of holes in the

manifold. τi have units of l4s (ls being the string length), whereas the volume

V naturally has units of l6s .

The standard N = 1 supergravity scalar potential is:

V (φ, φ̄) = eK/M2

P

(

Kij̄DiWDj̄W − 3

M2
P

WW

)

+ D-terms, (2.8)

where i runs over all moduli. The Kähler metric is Kij̄ =
(

∂2K
∂T i∂T̄ j

)−1

, and the

Kähler derivative is:

DiW ≡ ∂iW + (∂iK)W (2.9)

To fix the CS moduli at their supersymmetric minimum we impose the con-

dition that DaW = 0, where a runs over the CS moluli only. Along with the

dilaton, these can then be integrated out making the F-term potential inde-

pendent of these parameters, while leaving the Kähler moduli undetermined

[15]. The complete nonperturbative superpotential is then:

W = W0 +
h1,1
∑

i=1

Aie
aiTi . (2.10)

Ai and ai are model-dependent constants and the sum runs over the Kähler

moduli only. These nonperturbative terms arise from SU(N) gaugino conden-

sation with ai = 2π/N , or from D3-brane instantons with ai = 2π. [15].
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The Kähler potential and superpotential are enough to fully specify an

N = 1 supergravity [15] (the gauge kinetic function is not important for the

present application). We can thus rewrite the full action in terms of the fields

φi and φ̄i and the F-term potential V (φi, φ̄i):

SN=1 =

∫

d4x
√−g

[

M2
P

2
R−Ki,j̄Dµφ

iDµφ̄j − V (φi, φ̄i)

]

. (2.11)

The volume is minimized at an exponentially large value in string units, and

we assume that all but one of the complex Kähler moduli have dynamically

relaxed and are trapped at their respective minima, possibly having driven

some prior epoch of inflation whose effects are far outside the observable patch

of our universe. The assumption is therefore that τ2 and θ2 are the lightest

fields in the theory. Imposition of this hierarchy is necessary to ensure that

only these fields drive the last (observable) era of inflation before the universe

became radiation-dominated. Other models of moduli inflation (see e.g. [6, 2])

have made different assumptions about hierarchies between moduli.

For an overall minimum to exist within the large volume compactification,

the manifold must satisfy h1,1 > 2. As in [7] we will assume here that τ1 is

the positive modulus which governs the overall volume, and τ2 is the lightest

remaining modulus, which will provide the inflaton(s). The elements of the

Kähler metric are the following:
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K11̄ =
3α(4V − ξ + 6α

∑

k λkτ
3/2
k )

4(V
α

+
∑

k λkτ
3/2
k )1/3(2V + ξ)2

(2.12)

K1̄i = −9α2(V
α

+
∑

k λkτ
3/2
k )1/3√τiλi

2(2V + ξ)2
(2.13)

Kij̄ =
9α2λiλj

√
τiτj

2(2V + ξ)2
(2.14)

Kīi =
3αλi[2V + ξ + 6αλiτ

3/2
i ]

4(2V + ξ)2
√
τi

(2.15)

Inverting this, we find:

K11̄ =
4(2V + ξ)(V + α

∑

k λkτ
3/2
k )1/3(2V + ξ + 6α

∑

k λkτ
3/2
k )

3α4/3(4V − ξ)
(2.16)

K 1̄i =
8(2V + xi)2τi(V/α+

∑

k λkτ
3/2
k )2/3

4V − ξ
(2.17)

Kij̄ =
8(2V + ξ)τiτj

4V − ξ
(2.18)

K īi =
4(2V + ξ)

√
τi(4V − ξ + 6αλiτ

3/2
i )

3α(4V − ξ)λi

(2.19)

Substituting the Kähler metric, along with the superpotential (2.10) and

the Kähler potential (2.1) into (2.8) we may write the F-term scalar potential

explicitly:

V (T1, . . . , Tn) =
12W 2

0 ξ

(4V − ξ)(2V + ξ)2
+

n
∑

i=2

12e2aiτiξA2
i

(4V − ξ)(2V + ξ)2
+

16(aiAi)
2√τie−2aiτi

3αλ2(2V + ξ)

+
32e−2aiτiaiA

2
i τi(1 + aiτi)

(4V − ξ)(2V + ξ)
+

8W0Aie
−aiτicos(aiθi)

(4V − ξ)(2V + ξ)

(

3ξ

(2V + ξ)
+ 4aiτi

)

+
n
∑

i,j=2
i<j

AiAjcos(aiθi − ajθj)

(4V − ξ)(2V + ξ)2
e−(aiτi−ajτj)

[

32(2V + ξ)(aiτi + ajτj

+2aiajτiτj) + 24ξ
]

+ Vuplift (2.20)
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After minimizing with respect to all Kähler moduli but T2 = τ2 + iθ2, the

potential can be expressed as a function of τ ≡ τ2 and θ ≡ θ2. After expanding

in powers of 1/V this potential reduces to

V =
8(a2A2)

2
√
τe−2a2τ

3αλ2V
+

4W0a2A2τe
−a2τ cos(a2θ)

V2
+ ∆V +O(1/V3), (2.21)

where ∆V is the uplifting contribution, of order 1/V2 [14], adjusted so that

that V = 0 at its minimum. It is crucial for the naturalness of Kähler moduli

inflation that ∆V depends only very weakly upon τ2 in the case of interest,

where τ1 ≫ τ2. Because of this, ∆V is nearly constant during inflation, and

the slow-roll condition on τ2 is easily satisfied. Fig. 2–1 shows the form of the

potential.

For notational purposes we define φ1 = τ ≡ τ2 and φ2 = θ ≡ θ2.

Lkin =
1

2
K22̄δAB∂µφ

A∂µφB, (2.22)

with the (2, 2̄) component of the Kähler metric given by

K22̄ =
3αλ2[2V + ξ + 6αλ2τ

3/2
2 ]

4(2V + ξ)2
√
τ2

. (2.23)



CHAPTER 3

The cosmological model

3.1 Inflation and the production of inhomogeneities

3.1.1 The basic inflationary picture

The inflationary paradigm as it is known since its creation in the 1980’s

owes its success mainly to the elegant resolution of two issues. First, a calcu-

lation of the horizon distance [33],

DH = a0H
−1 ≃ 6000√

Ωz
h−1Mpc, (3.1)

where a0 is the scale factor today and h ∼ 0.7 is the dimensionless Hubble

parameter, reveals that the horizon at last scattering (redshift z ∼ 1000) was

on the order DH ∼ 100 Mpc, which subtends an angle of about 1 degree

on the CMB sky. This means that surveys such as WMAP should observe

a multitude of causally diconnected regions, in stark contradiction with the

observed uniformity, up to deviations ∆T/T ∼ 10−5 of the 2.726K background

radiation. This is known as the “horizon problem”. The second issue concerns

the flatness of the universe. Current observations [22] place the spatial flatness

at Ω = 1.01 ± 0.02. However, the Ω = 1 universe is unstable, meaning that a

fine tuning of 1 part in 1060 of the flat universe [33] is required to obtain the

bounds observed today.

12
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The inflationary paradigm provides an elegant solution to both of these

issues. We take an early time classical action

S =

∫

d3x
√−g

(

1

2
R + Lm

)

. (3.2)

R is the Ricci scalar corresponding to the (unperturbed) homogeneous and

isotropic Friedmann-Robertson-Walker (FRW) spacetime metric gµν , given by

the line element:

ds2 = gµνdx
µ dxν = −dt2 + a2(t)δijdx

idxj. (3.3)

In units where 8πG = 1, the energy momentum tensor for a perfect fluid is

given by the matter component of the Lagrange density Lm:

T µν =
∂Lm

∂gµν

− gµνLm = (p+ ρ)UµUν + pgµν , (3.4)

where Uµ is the fluid’s four-velocity, ρ is its energy density and p is its pres-

sure. The trace component of the corresponding Einstein equations, which

corresponds to the equation of motion for the scale factor a(t) becomes the

first Friedmann equation:

ä = −1

6
(ρ+ 3p)a, (3.5)

while, in the gauge chosen in (3.3), the second Friedmann equation is:

H2 ≡
(

ȧ

a

)2

+
k

a2
=
ρ

3
. (3.6)

If ρ + 3p < 0, this gives rise to a positive acceleration ä, and therefore to an

accelerated uniform expansion of spacetime. If the particular solution p = −ρ

is valid for a sufficient amount of time (meaning H ≃ const.), we obtain by

solving (3.6):

a(t) = a0e
Ht, (3.7)
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where a0 is the scale factor at some time t = t0. This corresponds to a

de Sitter universe. Such an expansion would have the benefit of removing

“classical hairs,” or inhomogeneities that would have existed prior to inflation

by “expanding them away”, and would also allow large scales in the sky to

have been correlated at early times, solving the horizon problem. The flatness

problem is solved in a similar way, via the second Friedmann equation (3.6),

which we rescale in terms of Ω = ρ/ρc. ρ(t) is the energy density of the

universe, while ρc is the critical density at which the universe is spatially flat.

The curvature today Ω0 can be written in terms of an initial curvature Ωi:

Ω0 = 1 + (Ωi − 1)

(

ȧi

ȧ0

)2

. (3.8)

In the case of the exponentially expanding universe, Ω0 = 1 is therefore an

attractor solution and the flat spatial curvature occurs naturally and without

the need for fine tuning for Ωi ∼ 1.

The most common way to obtain ρ+3p < 0 is through the introduction of

one or several slowly varying classical scalar fields φA whose energy we assume

to have dominated the universe at early times. If Lm = −1
2
∂µφ∂µφ − V (φ),

then the corresponding pressure and density are:

ρ =
1

2
φ̇2 + V (φ) +

1

2
(∇φ)2, (3.9)

p =
1

2
φ̇2 − V (φ) − 1

6
(∇φ)2. (3.10)

If the kinetic and gradient terms are small enough, this gives the equation

of state ρ = −p, thus leading to the de Sitter solution. In models of so-called

new and chaotic inflation, the kinetic term is taken to be small but non-

zero, and the field is taken to roll slowly towards a minimum V (φmin) = 0 in
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the potential, ensuring a “graceful exit” from inflation and giving way to a

radiation-dominated universe via the decay of the inflaton field.

Within this framework, another important aspect of inflation can be real-

ized: the production of primordial inhomogeneieties with a near scale-invariant

power spectrum, which is arguably the greatest success of inflationary theory.

Particle production from quantum fluctuations is guaranteed to be observed in

a time-dependent background and is important in an accelerated frame with

a horizon. Quantum mechanically, this is easiest seen in terms of the con-

formal time η [32] defined such that ds2 = a2(η)(−dη2 + dx2), for the region

∞ < η < 0. For illustrative purposes we take a simple quadratic model of

inflation, where V (φ) = 1
2
m2φ2 corresponding to a classically rolling free field

with mass squared m2. We take φ to start at some finite, non-equilibrium

value φi 6= 0. Making the further substitution χ ≡ a(η)φ, the action (3.2)

becomes 1 :

S =

∫

d3x dη

[

1

2
χ′2 − 1

2
(∇χ)2 −

(

m2a2 − a′′

a

)

χ2

]

(3.11)

Varying this action with respect to χ gives the equation of motion:

χ′′ −∇2χ+

(

m2a2 − a′′

a

)

χ = 0. (3.12)

This is identical to the familiar Klein-Gordon equation for a scalar field, but

with a time-varying “mass” term. We therefore expect the solution on small

scales to similar to a harmonic oscillator. In momentum space, this becomes:

1 For the remainder of this section, primes will denote differentiation with
respect to conformal time η, whereas dots will denote differentiation with
respect to coordinate time t.
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χ′′
k +

(

k2 +m2a2(η) − a′′(η)

a(η)

)

χk = 0, (3.13)

where

χ(x, η) =

∫

d3k

(2π)3/2
χk e

ik·x. (3.14)

If the acceleration of a is positive, two regimes can readily be identified. When

the “mass”

meff ≡ k2 +m2a2(η) − a′′(η)

a(η)
(3.15)

is positive, that is on very small length scales, this is akin to the harmonic

oscillator in Minkowski space, and we therefore expect the spectrum to be-

have as such. On larger length scales, however, the a-dependence becomes

important. This in turn amounts to time dependence of the mass term, which

corresponds to a time-dependence of the system’s Hamiltonian in the Heisen-

berg picture. If the vacuum state is defined as the lowest-energy eigenstate of

the Hamiltonian, the latter’s time-dependence means that even if the universe

is in an initial vacuum state |0〉, a time ∆t later |0〉 will no longer correspond to

a vacuum state. To an observer, this looks like particle creation and is indeed

the mechanism that is believed to have seeded the primordial inhomogeneities

from inflation.

On large, “superhorzion” scales (k−1 & H−1, where the Hubble length

H−1 is the natural length scale under consideration), these inhomogeneieties

can be treated as classical, stochastically-sourced perturbations on top of the

classically rolling inflaton field (see e.g. ref.[34]); once they have grown larger

than the horizon scale, these fluctuations decohere and become essentially

deterministic. This classical evolution will be the subject of the next chap-

ter. The scale of these perturbations at horizon crossing, however, is set by



17

matching the results of the quantum evolution within the horizon with the su-

perhorizon solution. We will give a rough sketch of this mechanism following

the treatment of Ref. [32]. To this effect, we first promote χ and its conjugate

momentum π ≡ χ′ to operators satisfying the usual commutation relations

[32]:

[χ̂(x, η), π̂(y, η)] = iδ3(x − y); (3.16)

[χ̂(x, η), χ̂(y, η)] = [π̂(x, η), π̂(y, η)] = 0. (3.17)

We then expand the field χ̂ in terms of creation and annihilations operators

â±k :

χ̂ =
1√
2

∫

d3k

(2π)3/2

(

eik·xv∗k(η)â
−
k + e−ik·xvk(η)â

+
k

)

. (3.18)

The mode functions vk(η) then obey the equations of motion:

v′′k + ω2
k(η)vk = 0, (3.19)

where ωk(η) ≡
√

k2 +m2
eff(η) and meff was defined in (3.15). The amplitude of

χ is therefore found by solving for the modes vk, which obey the normalization

condition:

v′kv
∗
k − vkv

∗′

k

2i
= 1. (3.20)

For a de Sitter universe we write (3.7) in terms of conformal time: a(η) =

−1/Hη for −∞ < η < 0. Then (3.19) becomes [32, 31]:

v′′k +

[

k2 −
(

2 − m2

H2

)

1

η2

]

vk = 0. (3.21)

With a further change of variables [32] s ≡ k|η|, vk ≡ √
sf(s), eq. (3.21)

reduces to the Bessel equation:

s2 d
2

ds2
f(s) + s

d

ds
f(s) + (s2 − n2)f(s) = 0, (3.22)
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where n2 ≡ 9
4
− m2

H2 . This is solved exactly via the Bessel functions:

f(s) = AJn(s) +BYn(s) : (3.23)

Jn(s) ≡
∞
∑

m=0

(−1)m

m!Γ(m+ n+ 1)

(s

2

)2m+n

, (3.24)

Yn(s) ≡ Jn(s) cos(nπ − J−n)

sin(nπ)
. (3.25)

Therefore:

vk(η) =
√

k|η|(AkJn(k|η|) +BkYn(k|η|), (3.26)

with n defined above. The normalization condition (3.20) further imposes the

constraint:

AkB
∗
k − A∗

kBk =
iπ

k
. (3.27)

To fix the initial conditions, we are required to choose a vacuum. Far in the

past η → −∞: k|η| ≫ 1, Eq. (3.21) is a standard quantum mechanical

harmonic oscillator. The vacuum is the minimal excitation state:

vk(η → −∞) =
1√
ωk

eiωkη. (3.28)

Using this asymptotic solution, and matching it to the Bessel solution:

vk(η) =

√

π|η|
2

(Jn(k|η|) − iYn(k|η|) . (3.29)

This is often written in terms of the Hankel functions, or Bessel functions of

the third kind:

H(1)
n (s) ≡ Jn(s) + iYn(s); (3.30)

H(2)
n (s) ≡ Jn(s) − iYn(s). (3.31)
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If m ≪ H, n = 3/2. To connect with observables, we may finally write the

amplitude of the perturbations about the vacuum δφ in terms of physical wave

modes kph = k/a:

δφ(kph) =
1

2π
a−1k3/2|vk(η)|. (3.32)

Around the time of horizon-crossing of a given mode kph ∼ H this reduces to:

δφ(kph)∗ ≃
H

√

(8π)

(

kph

H

)3/2

(3.33)

where we have used the fact that |Jn(kphH
−1) − iYn(kphH

−1)| ∼ |H(2)
n (1)| =

√

H
(2)
3/2(1)H

(1)
3/2(1) ∼ 1. This approximation will be entirely adequate, given

that modes will be coarse-grained at horizon-crossing using a window function

W(k) before their evolution towards the end of inflation is computed. The

only further assumption was m≪ H in order to fix n.

Given the minimal coupling that exists between the scalar field and the

metric, fluctuations in the field or fields which dominate the universe will in-

evitably backreact on the metric. By the time of recombination, overdense

(positively curved) and underdense (negatively curved, with respect to the

average curvature) regions will give rise to acoustic oscillations of the bary-

oic fluid as pressure competes with gravitation collapse. The photons emit-

ted during this era will be red- and blue-shifted due to a combination of a

doppler shift and a graviational shift (Sachs-Wolfe effect) which manifests it-

self in turn as red- and blue-shift regions of the CMB sky, and as acoustic

peaks when decomposed in terms of multipolar moments. This is the origin

of the anisotropies observed within the CMB temperature map, as measured

by the COBE and WMAP missions, along with many smaller-scale ground-

and balloon-based observations. For recent results, see for instance ref. [22].

The scale of these inhomogeneities is of the order ∆T/T ∼ 10−5, with a nearly
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gaussian distribution. The extent of this gaussianity will be addressed in the

next chapter.

In the context of this single-field inflationary scenario, some first-order

observable quantities may be derived to connect the theoretical picture with

observational evidence, mainly from the CMB temperature maps. The power

spectrum P (k) corresponding to perturbations at length scale2 k−1 is defined

as:

2π2

k3
P (k)δ(3)(k1 − k2) = 〈ζk1

ζk2
〉, (3.34)

where ζ is the curvature perturbation which will be defined in Eq. (3.42). The

power spectrum may be parameterized in the folowing way:

P (k) = As

(

k

k0

)ns−1

. (3.35)

At the COBE normalization scale (k0 = 7.5a0H0) As = 4 × 10−10 [29].

Current measurements from the 5-year WMAP data using a ΛCDM model

put the spectral index at ns = 0.960 ± 0.014 [22]. The contribution of the

adiabatic fluctuations to the scalar power spectrum can be written as in [12]

Ps(k) =
1

50π2

H4
∗

Lkin

≡ δ2 (3.36)

at the scale k = (aH)∗, i.e., the * subscript indicates evaluation at time of

Hubble radius crossing of the mode with wave number k. There is a conven-

tional factor of (2/5)2 here, to connect with the quantity δ2 used by observers

[29]. It is important to note that this result corresponds to the amplitude of

fluctuations at horizon crossing, and therefore underestimates the power spec-

trum in the presence of isocurvature modes. This effect is addressed in the

2 We will henceforth drop the subscript “ph”. k ≡ kph.
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following section and turns out to be significant in multiple-field inflation, in

agreement with ref. [24].

Finally, the spectral index is

ns − 1 =
d lnP

d ln k
= −2ǫ− 1

ǫ

dǫ

dt
= 2η − 6ǫ (3.37)

at leading order in the slow roll parameters ǫ ≡ 1
2

(

V ′

V

)2
and η ≡ V ′′

V
, where

primes denote differentiation with respect to the inflaton field φ, and where

we have again neglected the effect of isocurvature modes.

3.1.2 Entropy perturbations and the conservation of the curvature
perturbation

In the following section we will explicitly distinguish the adiabatic (curva-

ture) and entropy (isocurvature) perturbation modes in cosmological physics,

as well as discuss an important “conservation law” for large-scale fluctuations

that will be useful in the analysis of Roulette inflation observables.

In order to relate primordial fluctuations during inflation to cosmological

observables, it is natural to track the perturbation of the spacetime metric

during inflation, instead of the inflaton field itself. Perturbing the metric to

linear order, we write the line element:3

ds2 = −(1 + 2A)dt2 + 2a2(t)DiBdx
idt+ a2(t) [(1 − 2ψ)γij + 2DiDjE] dxidxj

(3.38)

Here we have fixed the background gauge, but the perturbation gauge has yet

to be fixed. γij is the metric of an unperturbed space of curvature κ. Di are the

3 Note that we are using physical (cosmic) time t here rather than conformal
time η as we were in the previous section.
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usual covariant derivatives with respect to this metric. ψ is the dimensionless

curvature perturbation on fixed-time hypersurfaces. This is related to the

often-used gauge-invariant Bardeen variables [31]:

ΦL ≡ A− d

dt

(

aB − a2Ė)
)

, (3.39)

ΨL ≡ ψ +H
(

a2Ė − aB
)

. (3.40)

The subscript “L” denotes the fact that these quantities are linear in pertur-

bation theory. This fact will be important when discussing higher-order effects

in section 3.2. The anisotropic stress vanishes to linear order for a scalar field

minimally coupled to gravity [18], giving rise to the following constraint:

d

dt

(

aB − a2Ė)
)

+H
(

a2Ė − aB
)

− A+ ψ = 0. (3.41)

In the longitudinal (or “zero shear”) gauge, where a2Ėl−aBl = 0, this reduces

to Al = ψl = ΦL = ΨL in the absence of anisotropic stress. This further

obviates the need to track all but one of the scalar perturbation variables of

(3.38).

We define the curvature perturbation on uniform-density hypersurfaces:

−ζ ≡ ψ +H
δρ

ρ̇
(3.42)

which reduces to the Bardeen potential on uniform-density hypersurfaces. To

linear order, the energy and momentum constraints

δGµν = δTµν (3.43)
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may be written explicitly for a scalar field perturbation of physical wavelength

λ with comoving wavenumber k = 2πa/λ [18]. Without specifying a gauge:

3H
(

ψ̇ +HA
)

+
k2

a2

(

ψ +H(a2Ė − aB)
)

= −1

2
δρ (3.44)

ψ̇ +HA = −1

2
δp, (3.45)

where we have defined the perturbed energy-momentum tensor for a scalar

field to first order:

T µν → (p+ δp+ ρ+ δρ)UµUν + (p+ δp)gµν . (3.46)

Here gµν stands for the perturbed metric (3.38), and the perturbed 3-velocity

of the fluid is U i = ∇iv.

The pressure perturbation can be split into an adiabatic and an entropic

contribution [43]:

δp = c2sδρ+ ṗΓ, (3.47)

where c2s ≡ ṗ/ρ̇ is the speed of sound squared; and Γ is the entropy perturba-

tion, defined as the displacement between hypersurfaces of uniform pressure

and uniform density:

Γ ≡ δp

ṗ
− δρ

ρ̇
≡ S
H
, (3.48)

where we have defined S as a dimensionless, gauge-invariant parametrization

of the entropy perturbation. The distinction between adiabatic and entropy

perturbations is quite important, and worth dwelling on. In a universe pop-

ulated with multiple cosmological particle species X,Y , ..., with number den-

sities nX , nY , ..., we define adiabatic modes as perturbations that affect the

overall matter content, and thus the geometry, without changing the relative

abundances of species:

δ(nX/nY ) = 0. (3.49)
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These modes are also known as curvature perturbations. By analogy with

(3.48), we can further define the entropy perturbation between two matter

quantities X and Y :

SXY = H

(

δρX

ρ̇X

− δρY

ρ̇Y

)

. (3.50)

These are perturbations in which the relative abundance of species changes,

but which leave the overall curvature unperturbed, hence the common appela-

tion of isocurvature modes. Neglecting interactions between species, we may

use the continuity equation ρ̇X = −3H(pX + ρX) for species with constant

respective equations of state pX = wXρX . Dropping the factor of −3,

SXY =

(

δρX

(1 + wX)ρX

− δρY

(1 + wY )ρY

)

. (3.51)

One can form a “basis” of perturbations in which any generic perturbation

can be expressed. Taking the late-time universe as an example, one can de-

compose perturbations into baryon, CDM and neutrino isocurvature modes,

respectively [25]:

Sb ≡ δb −
3

4
δγ

Sc ≡ δc −
3

4
δγ

Sν ≡ 3

4
δν −

3

4
δγ (3.52)

where we have defined entropy shifts with respect to the photon perturbations

δγ, with δX ≡ δρX/ρX and have used the equations of state wγ = wν = 1/3

and wb = wc = 0. The adiabatic mode is characterized by Sb = Sc = Sν = 0.

The picture during the inflationary epoch is more subtle. The case that

will ultimately interest us is inflation driven by multiple scalar fields φA with

a potential V (φA), i.e. multiple species with the same equation of state
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pA = −ρA. As will be shown in Section 3.3, it is possible to define a field

basis in which the same orthogonalization as in eq. (3.52) can be performed.

Defining the trajectory-dependent direction of rolling φ̃1 ≡ φ̇AφA/

√

φ̇Aφ̇A, one

field carries all of the classical kinetic energy and thus essentially dominates

the energy density of the universe. Perturbations δφ̃1 are therefore associated

with adiabatic perturbations, whereas perturbations in field space that are

orthogonal to φ̃1 are associated with the entropy mode (3.48). This decompo-

sition is illustrated in Figure 3–1 for the case of two fields.

φ

χ

δ (e2
A
φA) δ (e1

A
φA)

δφ

δχ

classical inflaton trajectory

perturbation

Figure 3–1: The decomposition of perturbations in the context of two-field
(φ,χ) inflation into a basis of adiabatic (curvature) and entropy (isocurvature)
perturbations. The notation used here is that of Section 3.3, where e1

Aφ
A ≡ φ̃1

and e2Aφ
A ≡ φ̃2.

Independently of these definitions, an important conservation law can be

derived which relates the curvature and isocurvature perturbations on large

scales, and in fact follows directly from energy conservation DµT
µ
ν = 0. On
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constant physical time hypersurfaces, the curvature perturbation ψ evolves

along the unit time-like vector field [43]:

nµ = (1 − A,−∇iB). (3.53)

Contracting this with the above conservation equation nµDνT
ν
µ = 0, where

T µν to first order in perturbation theory [43]:

δ̇ρ = −3H(δρ+ δP ) + (ρ+ p)
(

3ψ̇ −∇2(Ė + v)
)

, (3.54)

where we have used the perturbed energy momentum tensor (3.46). In the

uniform-density gauge where ψ = −ζ, and δp = δpnad is the entropy pertur-

bation, (3.54) reduces to:

ζ̇ = − H

ρ+ p
δpnad −

1

3
∇2(Ė + v) (3.55)

On sufficiently large scales k2 ≪ (aH)2 the gradient term on the right is neg-

ligible, and (3.55) becomes a direct proportionality between the evolution of

curvature modes on superhorizon scales, and the presence of entropy modes.

Although the above long-wavelength conservation law was derived using only

first-order perturbation quantities, it was demonstrated in Ref. [28] that it is

actually valid exactly if the pressure is a unique function of the energy den-

sity. It is often claimed that adiabatic modes are “frozen” once they pass the

Hubble scale (aH)−1. This statement is only true in models of inflation with

generically small entropy perturbations, such as single-field inflationary mod-

els. In fact, the remaining term on the right side of (3.55) is very important

in the context of multiple-field inflation. As will be argued in Section 3.3,

and explicitly illustrated in Chapter 4 for the cases of Roulette and two-field

quadratic inflation, this influence can come to dominate the amplitude of the

curvature perturbation by the end of inflation.
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3.2 Inflation and nongaussianities

Slow-roll inflationary scenarios generically predict a near-scale invariant

spectrum of primordial perturbations, with nearly Gaussian statistics. This is

expected, since individual quantum fluctuations can be treated as independent

results and should therefore be Gaussian by virtue of the central limit theorem.

However, more complex field interactions, along with interactions with gravity,

which is inherently non-linear, are sure to produce at least small deviations

from Gaussianity. Due to the stochastic nature of these perturbations, it

is therefore natural to develop statistical tools to compare predictions of the

theory with CMB observations. Wick’s theorem tells us that the even moments

(2n-point correlators) of a linear field or distribution φL decompose into a

sum over the permutations of two-point correlators, whereas the odd moments

vanish. The measurement of deviations from gaussianity in a field φ(x), can

therefore be made through the bispectrum (the Fourier transform of the three-

point correlator), and through the connected part of the trispectrum, that is,

the part of the Fourier transform of the four-point correlator that cannot be

decomposed into products of the power spectrum.

It is common to parameterize the small deviations from gaussianity in

terms of their effect on the Bardeen potential Φ through fNL [23]

Φ(x) = ΦL(x) + fNL

(

Φ2
L(x) − 〈Φ2

L(x)〉
)

, (3.56)

where ΦL is a purely gaussian random field with 〈ΦL〉 = 0. Even for large fNL

this parameterisation is sufficient, given that the fluctuations Φ are order ∼

10−5. Already with the COBE observations it was shown that the nongaussian

fraction of Φ must be less than a few percent, fNL〈Φ2
L〉1/2 < 0.04 (see for

example [21]). Subsequent measurements have tightened this limit to the level
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Table 3–1: Some recent 95% CL estimates of fNL using WMAP data.

Komatsu et al. (WMAP 1-year) [21] −58 < fNL < 134
Creminelli et al. (WMAP 3-year) [16] −36 < fNL < 100

Yadav and Wandelt (WMAP 3-year) [44] 27 < fNL < 147
Komatsu et al. (WMAP 5-year) [22] −9 < fNL < 111

of fNL〈Φ2
L〉1/2 < 0.003. Some recent published limits on fNL are shown in

table 3–1.

Some of these results [44] suggest that the CMB anisotropies exhibit mea-

surable deviations from Gaussian statistics. Whether or not these detections

are confirmed, future observations such as the 9-year WMAP data and the

Planck satellite data will provide stringent bounds on the primordial bispec-

trum, yielding additional parameters that any successful model of the early

universe will have to match. Although nongaussianities may be measured

from the contribution of any n > 2 connected n-point function, the 3-point

correlator is the easiest to detect due to the smallness of the anisotropies.

In the original (“local”) ansatz (3.56), fNL was taken to be a number,

but by relating it to the bispectrum one sees that more generally it could

be a function of the momenta ki. Taking the Fourier transform and writing

Φ(k) = ΦL(k)+ΦNL(k), is easy to show (noting that 〈Φ3
L〉 vanishes identically)

that the lowest order nonvanishing component of fNL may be written in terms

of the bispectrum and power spectrum:4

fNL ∼ δ(k1 + k2 + k3)
〈ΦL(k1)ΦL(k2)ΦNL(k3)〉

〈ΦL(k1)ΦL(k2)〉2
. (3.57)

4 One must be careful with the sign of fNL, which has been a source of
some confusion in the literature, due to the sign difference between the Bardeen
potential and the gravitational potential (see appendix A2 of ref. [27].) We use
the WMAP convention that positive fNL corresponds to positive bispectrum
of Φ.
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A positive value of fNL would lead to a larger number of overdense regions in

early universe, which in turn leads to a larger number of cold spots in the CMB

map, with respect to the 2.7K background temperature, since overdensities are

responsible for redshifting CMB photons through the Sachs-Wolfe effect.5

Due to the delta function, the wave vectors form a triangle, and the k-

dependence of eq. (3.57) can be expressed in terms of two ratios of momenta,

for example k2/k1 and k3/k1, and an overall scale. Different mechanisms pro-

duce bispectra that peak for differently shaped triangles; for example equi-

lateral (k1 = k2 = k3), or squeezed (k1 ≪ k2 = k3). The latter corresponds

to the prediction of local ansatz. Single-field slow-roll inflation predicts non-

gaussianity of the local type [30], given that the dominant contribution to

the bispectrum should come from the superhorizon influence of small k modes

which act to “rescale” modes as they evolve toward the end of inflation. A

rigorous expansion of the action to third order in perturbation theory is given

in ref. [30]. Other models such as ghost inflation and DBI inflation predict

large fNL for the equilateral configuration [1], in which non-gaussianities are

created before horizon-crossing.

5 An easy way to visualize the effect of fNL on the sky is through the analogy
of the skewness S3 ≡ 〈δ3〉/〈δ2〉2 of a simple statistical distribution for δ. The
median value of a distribution with positive skewness will be slightly larger
that its mean 〈δ〉, resulting in an asymmetrical distribution. Treating the
CMB simply as a coarse-grained set of N pixels, one can in fact get an idea of
nongaussianities from the primary skewness S3 [42, 23]. However, this result
is highly dependent on the scale of coarse-graining, and is therefore a much
less powerful tool than the full bispectrum.
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Although the single-field inflation result is quite important, we will skip

the details of this calculation, given that it is quite involved, and we will be in-

terested in a different formalism for the computation of higher-order quantities

(see Section 3.3). We merely present the result of Maldacena [30]:

〈Φ(k1)Φ(k2)Φ(k3)〉 ∼ 〈Φ(k1)Φ(−k1)〉
1

ρ̇∗

d

dt∗
〈Φ(k2)Φ(k3)〉 (3.58)

∼ (ns∗ − 1)〈Φ(k1)Φ(−k1)〉〈Φ(k2)Φ(k3)〉, k1 ≪ k2 ∼ k3.

The subscript ∗ here indicates evaluation at horizon crossing for the

rescaled modes k2 and k3. Eq. (3.59) is simply a statement that the frozen

mode k1 gives a contribution proportional to the violation in scale-invariance

of the two shorter-wavelength modes. It is therefore a prediction of generic

single-field inflation that

fNL ∼ ns − 1 ≪ 1. (3.59)

If the presence of entropy modes during inflation becomes non-negligible, their

second-order contribution to the curvature perturbation will give an addi-

tional contribution to the superhorizon evolution of curvature modes. De-

pending on the inflaton trajectory in field space, we will expect this to be the

dominant contribution to nonlinear effects in multiple-field inflation. Further-

more, although near-scale invariance guarantees that primordial fluctuations

are (nearly) scale-independent, non-linear evolution of the perturbations can

result in scale-dependence in the bispectrum. For highly curved trajectories,

and hence for large interactions between isocurvature and curvature modes,

our results suggest that Roulette inflation indeed exhibits this type of be-

haviour, albeit quite mildly.
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The preceding results indicate that if future experiments confirm claimed

detections of fNL ∼ 50, a large class of single-field inflationary models would

be excluded. This has prompted a search for alternate realizations of inflation

which would provide not only the required scale-invariant spectrum, but also

a large non-gaussian component. Conversely, if future observations are consis-

tent with fNL = 0, this will rule out a complimentary set of models, making

close proximity to Gaussianity a requirement for model-building.

While some alternatives to inflation, such as the New Ekpyrotic scenario

(see, e.g. ref.[8]) predict large nongaussianities, most efforts to construct mod-

els with large primordial nongaussianities have been from models of inflation.

Among these approaches are the inclusion of features in the inflaton potential

[10], the use of non-local kinetic terms [4], as well as the use of multiple field

inflation to provide a coupling between isocurvature and curvature modes in

order to seed a nonvanishing bispectrum. The latter mechanism is the one we

will focus on in the context of Roulette inflation.

As a closing remark, we should mention that additional, so-called “sec-

ondary” sources of non-linearity can contribute to a measured value of fNL

[23]. These foregrounds include Sunyaev-Zel’dovich (SZ) lensing as well as the

presence of point sources in the map. These must be carefully computed and

subtracted from the ∆T/T map, as they are caused by late-universe dynamics

and structure, rather than inflation itself.

3.3 The gradient expansion formalism

In order to efficiently compute the quantities mentioned above in the con-

text of a multiple-field inflationary model, we will require a complete formalism

that can handle both the classical dynamics and the quantum perturbations
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that give rise to inhomogeneieties. Our focus will be on tracking the pertur-

bative curvature modes from the time they expand beyond the Hubble radius

H−1, until the end of inflation.

The direct expansion of the metric and fields as done above (and as in

ref.[18]) makes it easy follow the quantities under consideration, but can turn

out to be quite unwieldy when carried out to second order. Another formal-

ism, known as the δN approach [40, 43, 26], has seen widespread use in the

computation of second-order quantities (see for example [41, 39]). The premise

behind this approach is fairly intuitive: in the uniform density gauge δρ = 0,

we treat patches of the expanding background spacetime on scales larger than

a certain scale λ0 > H−1 as separately evolving universes (see Figure 3–2).

Curvature perturbations ∆ζ are then equal to a difference ∆N in the number

of e-foldings for which the universe was locally expanding [43] between two

patches a and b:

∆ζ ≡ −ψa + ψb, (3.60)

∆N ≡ Na −Nb, (3.61)

∆ζ = ∆N, (3.62)

where N is the duration of inflation in e-foldings. The problem then reduces

to computing local perturbations in the duration of inflation.

The approach we will favor here, however, is the gradient expansion ap-

proach first introduced in ref. [38] and further developed by Rigopoulos,

Shellard and van Tent [36, 35, 37]. The assumptions of homogeneity and

isotropy of the background FRW inflationary universe allows the use of the

“long-wavelength” approximation, in which the gradient terms of the equa-

tions of motion may be dropped in the classical (unperturbed) equations of
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Figure 3–2: The “separate universe” picture used in the context of the
δN formalism. Spacelike regions of uniform density δρ = 0 and of scale
λ > λs > cH−1 are taken to evolve independently. λ0 is the scale below
which the homogeneous treatment of the background FRW universe holds. In
this picture, the difference in the duration of inflation between regions δN cor-
responds to the local curvature perturbation. Illustration taken from Wands
(2000) [43].

motion (see (3.73), (3.74) and (3.75), below) on scales larger than the Hubble

length H−1. This is simply a restatement of the fact that inflation dilutes

away classical “hair” that may have been present in the universe before the

inflationary epoch.

As a consequence, the inclusion of metric and field perturbations simply

amounts to the inclusion of gradient terms on top of the background, whose

equations of motion are computed from the full field equations of motion. The

advantage of this approach is twofold: no slow-roll approximation is needed to

find and solve the equations of motion, and the resulting equations are exact

(non-perturbative) results. Quantitative computation of power spectra and
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bispectra will require a perturbative expansion of these gradient equations of

motion, but this will turn out to be fairly straightforward.

Since the observable quantities that originate from multiple-field inflation

are usually highly dependent on the trajectory of the effective inflaton field in

field space, we will favor a numerical approach to the solution of the pertur-

bation equations. Analytic results have been developed (e.g. in ref. [35]) in

the context of this formalism, but only within certain constrained limits.

Regardless of the specific inflationary model, we may write the action for

a general multifield potential V (φA) (A = 1, 2, ...) with minimal gravitational

couplings as

S =

∫

d4x
√−g

(

M2
P

2
R− 1

2
GAB∂µφ

A∂µφB − V (φA)

)

. (3.63)

Here R is the Ricci scalar, GAB is the metric in field space and MP = 1/
√

8πG

is the reduced Planck mass. We will henceforth work in units where MP = 1.

At the homogeneous level, and before specifying a choice of spacelike slicing,

the FRW metric is ds2 = −N2(t) dt2 + a2(t)d~x 2, and varying with respect to

the fields φA, a(t) and N(t) gives the equations of motion for the scalar fields

and the Friedmann equations. Here N(t) is the time-lapse function, and a(t) is

the scale factor, from which we define the Hubble parameter H(t) ≡ ȧ/(Na).

To simplify calculations during inflation, we make the coordinate choice

t ≡ ln(a), (3.64)

so N(t) = H−1 ≃ constant during inflation. Dotted fields will from now on

represent differentiation with respect to this time parameter.

Working within the long-wavelength approximation [36], we assume that

the fields are homogeneous and isotropic within the horizon, and thus drop
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the gradient term from the Lagrange density. The kinetic term becomes:

Lkin =
1

2
GABΠAΠB, (3.65)

having defined the velocities

ΠA =
φ̇A

N
= Hφ̇A (3.66)

We will furthermore define covariant differentiation of a field that trans-

forms as a vector within field space [36]:

DBL
A = ∂BL

A + ΓA
BCL

C (3.67)

DBLA = ∂BLA − ΓC
ABLC (3.68)

DµL
A = ∂µL

A + ΓA
BC∂µφ

BLC (3.69)

where ΓA
BC is the connection defined through the metric GAB. Henceforth,

uppercase latin indices A,B,C, ... will represent the various fields, greek will

represent spacetime indices, and i, j, k will be spatial indices. Since we are

interested in a two-field inflation model, A,B,C, ... = 1, 2. In the Roulette

model there is only one independent connection coefficient:

Γτ
ττ = Γθ

τθ = Γτ
θτ = −Γτ

θθ =
6αλτ 3/2 − V

4τ(V + 3αλτ 3/2)
(3.70)

Γθ
θθ = Γθ

ττ = 0 (3.71)

For the analysis of the power spectrum and bispectrum, it will furthermore

be useful to define the orthonormal basis eA
m, where m = 1, 2:

eA
1 =

ΠA

Π
, eA

2 = ǫABe
B
1 (3.72)

where Π ≡
√

ΠAΠA and ǫAB is the antisymmetric tensor. eA
1 is tangent to

the classical field trajectory, whereas eA
2 is orthogonal. Note that lower and
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raised indices m,n are equivalent. In the notation we used in Section 3.1.2

φ̃1 ≡ e1
AΠA.

The scalar field equations of motion are [36, 38]:

DtΠ
A + 3NHΠA = −NGABV,B, (3.73)

∂tH = −1

2
N ΠAΠA, (3.74)

where the Hubble rate (using Mp = 1 units) is

H2 =
1

3
(Lkin + V ) , (3.75)

We will numerically integrate these equations to determine the inflationary

trajectories. The formalism of [35, 36] which we follow makes extensive use of

the “slow roll” parameters,

ǫ =
Π2

2H2
=

Lkin

H2

ηA = −3HΠA +GAB∂BV

HΠ

η‖ = −3 − ΠA∂AV

HΠ2

η⊥ = −e
A
2 V,A

HΠ

χ =
V22

3H2
+ ǫ+ η‖

ξm = −Vm1

H2
+ 3(ǫ− η‖)δm1 − 3η⊥δm2

ξ‖ = ξ1, ξ⊥ = ξ2 (3.76)

where V22 and Vm1 are defined in the orthonormal basis (3.72), such that

Vmn = eA
me

B
n V;AB, with the covariant derivatives over the field metric defined

above. These quantities are nonlinear, depend on both t and ~x, and are

not assumed to be small, although they are small in the slow-roll regime. It

should be noted that some of them are unintuitively named; for example η⊥
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is proportional to the slope of the potential, in the direction orthogonal to

the trajectory, rather than a curvature, and the relation of η‖ to the usual

slow-roll parameters, with respect to the adiabatic direction, is η‖ = −η + ǫ.

Nevertheless we will keep this notation for ease of comparison with ref. [35].

The ǫ parameter does agree with the conventional ǫ (defined with respect to

the slope along the adiabatic direction).

3.4 Computation of the full power spectrum and nongaussianity

We expect the leading contribution to the bispectrum to come from the

influence of isocurvature perturbations on the superhorizon evolution of adia-

batic modes. We will work in terms of gradient variables of the type:

Ci ≡ ∂iA− ∂tA

∂tB
∂iB, (3.77)

which have the property of being invariant under long-wavelength changes of

time-slicing (t, x) → (t̃, x̃) [36]. These are the variables that will serve to track

the inhomogeneities on top of the homogeneous and isotropic background.

The particular choice of variables we will use to describe the fluctuations

in this formalism are

ζA
i (t,x) = eA

1 (t,x)∂i ln a(t,x) − 1
√

2ǫ(t,x)
∂iφ

A(t,x) (3.78)

This quantity can be projected onto the field basis (3.72):

ζm
i (t,x) = δm1 ∂i ln a−

1√
2ǫ
emA ∂iφ

A. (3.79)

These simplify in the gauge t = ln a, where ∂i ln a = 0. At first order, ζ1
i is the

spatial gradient of the usual curvature perturbation, whereas ζ2
i corresponds
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to the isocurvature perturbation. First, in the gauge NH = 1:

Dt∂iφ
A = ∂t∂iφ− ΓA

BC∂iφ
B∂tφ

C

=
1

H
DiΠ

A (3.80)

Taking the covariant time derivative of ζA
i , and using the equations of motion

for the field,

Dtζ
A
i =

(

∂t − ΓA
BC∂tφ

B
)

(

1√
2ǫ
∂iφ

A

)

= − 2

(2ǫ)3/2
(2ǫη‖ − 2ǫ2)∂iφ

A − 1

H
√

2ǫDiΠA

= 2(η‖ − ǫ)ζA
i − 1

H
√

2ǫ
DiΠ

A (3.81)

Taking the second time derivative is somewhat more involved [36]. This gives,

still in the gauge NH = 1, the equation of motion for the ζA
i :

D2
t ζ

A
i −

(

H

Ḣ
− 3 − 2ǫ− 2η‖

)

Dtζ
A
i + ΞA

Bζ
B
i = 0, (3.82)

where:

ΞA
B ≡ V A

B

H2
−2ǫRA

DCBe
D
1 e

C
1 +(3ǫ+3η‖+2ǫ2+4ǫη‖+(η⊥)2+ξ‖)δA

B−2ǫ
(

(3 + ǫ+ 2η‖)eA
1 e1B

)

.

(3.83)

These equations of motion can then be projected onto the field basis, noting

that Dte
A
m ≡ 0. The gradients are combined, along with their respective

velocities θm
i ≡ ∂tζ

m
i , into a 3-component vector,

via = (ζ1
i , ζ

2
i , θ

2
i )

T , (3.84)

The would-be fourth component is not independent, but is determined to be

θ1
i = 2η⊥ζ2

i (3.85)
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by the constraint equations [37] which may be derived from the Einstein equa-

tions and the definition of ζm
i , noting that Dt(∂iφ

A) = Di(NΠA):

∂i lnH = ǫζ1
i , (3.86)

emA∂iφ
A = −

√
2ǫζm

i ,

eA
mDiΠA = −H

√
2ǫ
(

θm
i + η‖ζm

i − η⊥ζ2
i δm1 + (η⊥ζ1

i + ǫζ2
i )δm2

)

.

The relationship between θ1
i and ζ2

i is nothing more than the conservation law

of the curvature perturbation mentioned in section 3.1.2, This is valid to all

orders, as shown in ref. [28].

Combining these with the equations of motion (3.75)-(3.74), the full non-

linear evolution equations may be written in the compact form:

v̇ia(t,x) + Aab(t,x)vib(t,x) = 0. (3.87)

The matrix A is a function of the parameters defined in eq. (3.76) [37]:

A =













0 −2η⊥ 0

0 0 −1

0 3χ+ 2ǫ2 + 4ǫη‖ + 4(η⊥)2 + ξ‖ − 2ǫR2112 3 + ǫ+ 2η‖













(3.88)

Its dominant components are A33
∼= 3 and A23 = −1. The only explicit

dependence on the curvature of the field manifold in A is the term −2ǫR2112 ≡

−2ǫeA
2 e

B
1 e

C
1 e

D
2 RABCD, but we find that this is negligible (∼ 10−6) in Roulette

inflation.

The next step is to solve this system of equations perturbatively. Eq.

(3.87) can be expanded into a hierarchy of linear perturbation equations for

v
(n)
ia , each sourced by the previous order. Since we are interested in super-

horizon evolution, it is reasonable to take the first-order perturbations to be

sourced by a linear perturbation b
(1)
ia , which encodes the effect of quantum
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fluctuations at short wavelengths providing the initial values for the long-

wavelength modes of interest at horizon crossing. Refs. [35, 36, 37] show that

the source term having the right properties is

b
(1)
ia =

∫

d3k

(2π)2/3
Ẇ(k)X(1)

amâ
†
m(k)ikie

ik·x + c.c., (3.89)

where the creation operator has the standard commutator [âm(k), â†n(k′)] =

δmnδ
(3)(k − k′). Superscripts in parentheses indicate the expansion order in

perturbation theory.

The matrix of linear solutions around horizon crossing Xam is the slow-

roll solution of ref. [37] in which it is argued that deviations from linearity on

sub-horizon scales should be slow-roll suppressed:

Xam = − H

4k3/2
√
ǫ













1 0

0 1

0 −χ













. (3.90)

The factor 1/
√

2ǫ comes from the definition of ζ, and the amplitude H is the

result we expect from perturbations at horizon crossing.

The window function W(t, k) is designed to source only the superhorizon

modes, and the final results must be independent of its exact shape. It is

convenient to use a Heaviside step function, W(t, k) = Θ(kR − 1), that has

support only on scales R = (c/aH) = (c/H)e−t (recall we are in the gauge

t = ln a) sufficiently larger than the Hubble radius, where c should be of order

a few. Given that fluctuations that are generated on sub-horizon scales do

not yet feel the effect of curvature, and therefore correspond to fluctuations

in Minkowski space, it is reasonable to expect the spectrum of fluctuations on

these scales to be Gaussian.
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Then

Ẇ(t, k) = δ(kR− 1) =
δ(t− t∗ − ln c)

| − ce−t+t∗| , (3.91)

where t∗ is the time of horizon-crossing of mode k

t∗ ≡ ln k/H∗. (3.92)

Physical quantities are found to be independent of the exact value of c > 1.

The first- and second-order equations can then be written:

v̇
(1)
ia (t,x) + A

(0)
ab (t,x)v

(1)
ib (t,x) = b

(1)
ia , (3.93)

v̇
(2)
ia (t,x) + A

(0)
ab (t,x)v

(2)
ib (t,x) = −A(1)

ab (t,x)v
(1)
ib (t,x). (3.94)

Here, A
(1)
ab = Ā

(0)
abc(t)∂

−2∂iv
(1)
ic (note that ∂−2 is just multiplication by −k−2 in

momentum space.) Ā is given by [37]:

Ā =







































0













2ǫη⊥ − 4η‖η⊥ + 2ξ⊥

−6χ− 2ǫη‖ − 2(η‖)2 − 2(η⊥)2

−6 − 2η‖













0

0 0 0

0 Ā32













−2ǫ2 − 4ǫη‖ + 2(η‖)2 − 2(η⊥)2 − 2ξ‖

−4ǫη⊥ − 2ξ⊥

−2η⊥



















































,

(3.95)

where

Ā32 ≡ −2∂iǫR2112 +













Ā321

Ā322

Ā323













(3.96)
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and

Ā321 ≡ −6ǫη‖ − 6(η⊥)2 − 3ǫχ (3.97)

−4ǫ3 − 10ǫ2η‖ − 2ǫ(η‖)2

−6ǫ(η⊥)2 + 8η‖(η⊥)2 − 3ǫξ‖

−6η⊥ξ⊥ +

√

ǫ

2
(V111 − V221)

Ā322 ≡ −12ǫη⊥ − 6η‖η⊥ (3.98)

+12η⊥χ− 6ǫ2η⊥ + 4(η⊥)3

−4ǫξ⊥ − 2η‖ξ⊥ +

√

ǫ

2
(V211 − V222)

Ā323 ≡ 6η⊥ − 2ǫη⊥ + 4η‖η⊥ − 2ξ⊥ (3.99)

The first index in Āabc stands for the row, the second for the column in (3.95),

and the third for the “depth” dimension of the array, represented here by a

column vector for each Āab. Vlmn is defined as Vlmn ≡ eA
l e

B
me

C
nV;ABC .

The above linear equations can then be solved with the aid of the Green’s

function which is the solution to the inhomogeneous equation

d

dt
Gab(t, t

′) + A(0)
ac (t)Gcb(t, t

′) = δ(t− t′). (3.100)

with Gab(t, t) = δab at equal times. This must be solved only once for each

classical trajectory, which we do numerically on a grid in t, t′, a and b. Once

Gab(t, t
′) is known, the step-function form of W(t, k) simplifies the integration

of the first order solution,

v(1)
am(k, t) =

∫ t

−∞

dt′Gab(t, t
′) Ẇ(k, t′)X

(1)
bm(k, t′)

= Gab(t, t∗ + ln c)X
(1)
bm(k, t∗ + ln c), (3.101)
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where we have defined the momentum-space perturbation as:

v
(1)
ia (x, t) = ∂iv

(1)
a =

∫

d3k

(2π)2/3
v(1)

am(k, t) a†m(k) iki e
ik·x + c.c. (3.102)

The second order solution can be expressed, using the same method, as:

v
(2)
ia (x, t) = −

∫

dt′Gab(t, t
′) Ābcd(t

′) v
(1)
ic (x, t′) ∂−2∂jv

(1)
jd (x, t′). (3.103)

To connect with observables one transforms the time coordinate t in the gauge

of uniform expansion time slices (NH = 1) to T (t, x) which describes uniform

density slices (∂iρ = 0) [37], so a(t) → ã(T, x). Then the curvature perturba-

tion can be expressed as the total gradient of a scalar α̃, ζ̃1
i = ∂i ln ã ≡ ∂iα̃,

which allows observable scalar correlators to be expressed simply. Note that

this result should be identical to results found using the δN formalism de-

scribed above, given that the perturbation δα̃ in the uniform density gauge cor-

responds exactly to the perturbation in the number of e-folds δN ≡ δ ln ã = ζ

[43].

The curvature power spectrum is:

P(k, t) =
k3

2π2
〈α̃α̃〉(k, t) =

k3

2π2
v

(1)
1m(k, t)v

(1)
1m(k, t). (3.104)

The scale-dependence of P comes as expected from the time-dependence of

H in Xam(k, t) (eq. (3.90)), which appears in v
(1)
1m(k, t) through eq. (3.101). It

should be stressed that the power spectrum here is complete, and because of

the influence of isocurvature modes via (3.85) can turn out to be much larger

than predicted by (3.36), depending on the inflationary trajectory.
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The leading contribution to the bispectrum comes from the expansion to

second order in perturbation theory,

〈α̃k1
α̃k2

α̃k3
〉(2)(t) = 〈α̃(1)

k1
α̃

(1)
k2
α̃

(2)
k3
〉(t) + (k1 ↔ k3) + (k2 ↔ k3) (3.105)

= (2π)3δ3(k1 + k2 + k3) [f(k1, k2) + f(k2, k3) + f(k1, k3)]

where

f(k, k′) ≡
(

1

2
v

(2)
1mn(k, k′, t) + η⊥v

(1)
2m(k, t)v

(1)
1n (k′, t)

)

v
(1)
1m(k, t)v

(1)
1n (k′, t)+k ↔ k′.

(3.106)

The second term in parentheses comes from the coordinate change t→ T , and

the first term is given by

v
(2)
1mn(k, k′, t) ≡ −

∫ t

−∞

dt′G1a(t, t
′) Āabc(t

′) v
(1)
bm(k, t′) v(1)

cn (k, t′). (3.107)

Numerically, we will find that this term dominates over the η⊥v
(1)
2m(k, t)v

(1)
1n (k′, t)

term in the Roulette inflation model by five orders of magnitude. These are all

the ingredients needed for evaluation of the nonlinearity parameter fNL [35],

fNL =
〈α(1)

k1
α

(1)
k2
α

(2)
k3
〉 + (k1 ↔ k3) + (k2 ↔ k3)

〈α(1)α(1)〉k1
〈α(1)α(1)〉k1

+ (k1 ↔ k3) + (k2 ↔ k3)
(3.108)
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Simulation and results

We performed numerical simulations of trajectories that gave inflation

within the Roulette model, as well as with the two-field quadratic model,

which was first studied in ref. [20]:

L = −1

2
(∂µφ)2 − 1

2
(∂µχ)2 − 1

2
m2

φφ
2 − 1

2
m2

χχ
2, (4.1)

where, for comparison with ref. [37] we took mφ = 10−5 in reduced Planck

units, mχ/mφ = 12, with initial conditions φi = χi = 13. This gives rise to two

successive eras of inflation, with a total of 86 e-folds from start until log ǫ = 0,

separated by a sharp turn in field space, in which the slow roll parameters

briefly spike. This trajectory is illustrated in Figure 4–1.

In both of these models, we computed the power spectra, first with (3.36),

then with the full numerical result (3.104) which includes the effect of isocurva-

ture modes. The second order solutions v
(2)
amn were then integrated numerically,

allowing the calculation of the bispectrum, and subsequently the non-linearity

parameter fNL. This was done for both the equilateral and squeezed forms.

The Matlab code for the equilateral computation is included in Appendix A.

In the equilateral case, we computed the evolution of fNL for a large range

of modes (corresponding to a time of horizon exit t∗(k) from 15 to 70 e-folds

45
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Figure 4–1: Detailed plot of the trajectory we examined in the case of quadratic
two-field inflation (4.1), superimposed on a contour plot of the (logarithm of
the) inflaton potential. Red dots represent time increments in e-folds.

before the end of inflation), in order to ascertain the scale-dependence of non-

gaussianity. In the gauge NH = 1, modes are simply expressed:

k = k0e
−t∗ (4.2)

where k0 is some reference mode. In the local case, we kept the squeezed

(small k) mode constant, and varied the remaining two modes over the range

of k.

4.1 Generic slow-roll trajectories

In contrast with the KKLT compactifiation, the large volume scenario

places no strong restrictions on the value of W0 in the effective field theory

[15]. We were therefore free to vary the parameters that set the potential

(2.21). Equations (3.75) and (3.73) were numerically integrated, first using
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the parameter sets presented in [7]. Table 4–1 presents the parameter set used

in this investigation. We simulated Roulette inflation trajectories starting

from a variety of initial conditions and it was found that slow roll inflation

was generically obtained, as mentioned in section 6 of [7], and as will be

discussed in Section 4.2. In all cases the fields τ and θ were assumed to start

at rest and were let to roll to the bottom of their potential. The simulation

was terminated and inflation was assumed to finish as soon as the slow-roll

condition broke down, i.e. as soon as log ǫ = 0. Some example trajectories are

illustrated in Figure 4–2. Trajectory A, the “τ -valley” trajectory of Conlon

and Quevedo [14], effectively corresponds to single-field inflation, as the fields

start with θ already minimized. Figure 4–3 shows a more detailed plot of one

of the trajectories, superimposed on a contour plot of the potential.

Values of ǫ were consistently very small, with log ǫ ∼ −13 at the COBE

scale. Typical values of the tensor-to-scalar ratio produced by the fields were

therefore r ≃ 3.5 × 10−12.

Except when explicitly mentioned, all of the analyses of Roulette inflation

were carried out with parameter set 1 of [7], but with the volume V tuned to

achieve COBE normalisation (V = 8 × 108l6s ; see Table 4–1) such that the

power spectrum (3.35) was ∼ 4× 10−10 on COBE scales, in order to compare

the predictions of the model at this scale with observations. This resulted in

inflation of order V 1/4 ≃ 1013 GeV, giving a nominal duration of approximately

65 e-foldings of inflation. Although a more generic method of normalization

is to rescale the potential by an overall factor, the dependence on 1/V of both

terms in the potential gives a way to tune the potential without introducing

additional parameters. In order to get a better idea of the effect of the various

other parameters and initial conditions, we chose to normalize the potential
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Table 4–1: Parameter set used for numerical simulations of the Roulette model.
This corresponds to parameter set 1 of [7], but with V adjusted to meet COBE
normalization - see section 4.3

W0 a2 A2 λ2 α ξ V
300 2π/3 0.1 1 1/9

√
2 0.5 8 × 108

0 2 4 6 8 10 12
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Figure 4–2: Various field trajectories for different intial field configurations
(red dots). The numbers beside each curve are the number of efolds before
the slow-rolling breaks down and ǫ exceedes 1. The potential here used the
parameters from Table 4–1. The labeled trajectories A through G correspond
to the ones referenced in table 4–2

only for one trajectory, corresponding to (effective one-field) slow-rolling in

the τ -valley.

The number of e-foldings tend before the end of inflation as well as the

spectral tilt ns were found to form smooth surfaces as functions of the initial

values of τ and θ. Trajectories typically relaxed towards a τ valley minimum

in the potential before rolling down the valley into one of the roulette pockets

and ending inflation. At constant τ , initial configurations closer to the Con-

lon and Quevedo τ -valley (cos a2θ = −1) rolled towards the minimum faster
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Figure 4–3: Detailed plot of trajectory C from Figure 4–2, superimposed on a
contour plot of the inflaton potential. Red dots represent time increments in
efolds.

and produced lower spectral indices when this quantity was computed with

(3.36). Trajectories that started near the crest cos a2θ = 1 did not allow for

a graceful exit, given that the slope in the τ direction was large enough to

push the volume modulus towards the exponentially flat region of stochastic

self-reproduction, where quantum “kicks” dominate over classical rolling. For

all parameter sets explored, the single-field estimate of ns (figure 4–4) posessed

minima ns,min = 0.96 which were encountered for initial values of a2θ corre-

sponding to the respective extrema of the potential, in the θ direction. ns was

maximal at a2θ = π/2, 3π/2, .... This behavior is quite unsurprising, given the

explicit dependence of the spectral index on η‖. With the exception of some

highly exotic trajectories, the product θ̇V,θ is always negative, making the tau

valleys and crests respective maxima of η‖. Within the τ -valley itself, it is

shown in [14] that η ≈ −1/Ne where Ne is the number of e-foldings before

the end of inflation and η is the standard single-field slow-roll parameter. The
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Figure 4–4: Spectral index ns at COBE scale as a function of the initial field
configuration, for a small range of initial conditions. This was calculated using
the effective single-field result (3.37), without taking isocurvature modes into
account. Note that the parameters used in this set of simulations do not
correspond to the ones detailed in Table 4–1.

power spectrum for single-field, tau-valley inflation (trajectory A) was unaf-

fected by isocurvature modes. Indeed, the power spectrum calculated using

(3.36) was found numerically to agree with the power spectrum (3.104) evalu-

ated at the end of inflation to within 0.3%. This indicates that entropy modes

in the single-field case are very weakly coupled to the adiabatic direction, as

expected, thus ensuring that the adiabatic fluctuations are frozen from hori-

zon exit until reentry during radiation and matter domination, after the end

of inflation.

In the case of more highly curved trajectories, however, the isocurvature

modes were found to have a large, positive effect on the power spectrum of

adiabatic perturbations, and consequently on the scalar spectral index ns.

This was observed in both models under consideration. Large curvature in

field space during the course of inflation resulted in a “projection” of the
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Figure 4–5: Effect of isocurvature modes during superhorizon evolution on the
observed power spectrum at the end of inflation for two-field quadratic inflation
(top, trajectory of figure 4–1) and Roulette inflation (bottom, trajectory C), as
a function of k, where t∗(k) is the time of horizon crossing of the corresponding
mode k. In both cases the bottom (smooth red) line is the power spectrum
computed with (3.36), while the top line is the full curvature power spectrum
at the end of inflation after having considered the effect of entropy modes.
Each point corresponds to a single numerical calculation.
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isocurvature modes onto the adiabatic direction. The effect is most readily

noticed in the context of the sharp turn in field space in the quadratic model

investigated (Figure 4–5 left-hand pane), in which the modes generated after

the curving show no deviation from the single-field prediction (3.36), while

modes produced before the curve show a significantly higher power spectrum,

along with a more red-tilted slope. In trajectories with long periods of curving,

up to 75% of the power spectrum originated from the isocurvature modes.

Table 4–2 gives the proportion of the observable curvature power spectrum at

the end of inflation that results from the influence of isocurvature mode:

piso. ≡
∣

∣

∣

∣

Ponefield − Pcomplete

Pcomplete

∣

∣

∣

∣

t∗=55

, (4.3)

where the subscript t∗ = 55 indicates that these quantities were evaluated

roughly at COBE scale, for modes that crossed the horizon 55 efolds before

the end of inflation. Ponefield is the power spectrum computed with (3.36),

whereas Pcomplete was computed using (3.104). These results are in qualitative

agreement with conclusions of ref. [24], although the latter study only exam-

ined a single trajectory in Roulette inflation. A second result of the influence

of isocurvature modes (also mentioned by ref. [24]) is a lower scalar spectral

index than would be näıvely expected from the single-field result (3.37). The

full scalar spectral index ns at COBE scales was computed by taking the

derivative of a cubic fit of lnPs (RMSE1 < 0.05 in all cases), with the power

spectrum evaluated from (3.104):

n(full)
s =

d lnPcomplete

d ln k
=
d lnPcomplete

dt
|t∗=55. (4.4)

1 Root mean square error.
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Table 4–2: Cosmological observables computed from chosen trajectories (Fig-
ure 4–2).

Trajectory a2τ a2θ fequil.
NL f squeezed

NL N ns = −4ǫ− 2η‖ nfull
s piso

A 48.4 π 0 0 86 0.965 0.965 0
B 47.6 π/2 0.0052 0.0069 62 0.992 0.976 0.70
C 47.0 π/4 0.0105 0.0132 72 1.02 0.940 0.81
D 46.3 π/8 0.0242 0.0272 77 1.02 0.920 0.91
E 38.95 0.36 0.0688 0.0698 77 1.04 0.930 0.90
F 38.93 0.40 0.0068 0.0089 103 1.002 0.948 0.72
G 38 0.38 -0.0060 -0.0060 90 0.964 0.965 0.02

Here we have used the fact that in the gauge NH = 1 with H ∼ const.,

d

d ln k
=

d

d ln(aH)∗
≃ d

dt
. (4.5)

Table 4–2 gives a comparison of both methods of computing ns. Our results

indicate that a significantly larger power spectrum, along with a generically

red-tilted spectrum is an expected result of curved trajectories in Roulette

inflation. This is of particular interest, given that most recent cosmological

data favor a scalar spectral index of ns = 0.96 [22].

4.2 Exploration of the parameter space

Starting with parameter set 1, we varied the different parameters of the

potential (2.21) and the metric in field space K22̄ one by one, in order to

determine whether slow-roll inflation was indeed generically obtained in the

model. Figure 4–6 illustrates our results. Trajectories starting below the solid

red line would not give rise to sufficient inflation, whereas the inflaton evolution

for trajectories that started above the dashed line would be dominated by

quantum fluctuations rather than slow-rolling, giving rise to the never-ending

“random walk” inflation of a self-reproducing universe. This region’s limit was
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found by numerically solving the condition (43) of [7]:

V

12π2
=

1

K22̄

(

V,τ

V

)2

, (4.6)

evaluated in the tau valley where cos(a2θ) = −1.

For each parameter, the slope of minimum inflation (dashed blue) can

be understood analytically: in the single field slow roll approximation, the

number of e-folds from beginning ti to end tf of inflation is

Ne =

∫ tf

ti

H dt =

∫ tf

ti

H

∂φ/∂t
dt =

∫ φi

φf

V

V ′
dφ (4.7)

where φ is the canonically normalized inflaton, and we have used the slow-roll

relations 3H ∂φ
∂t

= −V ′ and 3H2 = V . In the single-field limit of roulette

inflation, this gives [14]:

Ne =
−3W0λ2β

16V2a
3/2
2 A2

∫ a2τi

a2τf

ea2τ

√
a2τ(1 − a2τ)

d(a2τ). (4.8)

Here β is a parameter proportional to the uplift ∆V . For constant Ne = 60,

the qualitative behavior of a2τi as a function of each model parameter can

be deduced from (4.8) without performing the integral. This behavior is in

agreement with the numerical calculation of Figure 4–6.

The existence of slow-roll solutions was largely insensitive to variations

of the Calabi-Yau volume V ; the complex structure contribution to the su-

perpotential W0; the scale of Kähler modulus λ2; the gauge group associated

with τ , a2; along with the scale of the non-perturbative contribution of the

Kähler potential, A2. Note that a rescaling of α would have an identical effect

to varying λ2. Also note that the sign of W0 is unimportant, as a change in

its phase is exactly equivalent to a change in the phase of a2θ, which would

simply correspond to a shift of the potential. Two important effects are worth

pointing out: First, inflation cannot occur for volumes . 2 × 104, using the
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other parameters of set 1 and second, for integer N ,

a2 = 2π/N < 2π, (4.9)

without which sufficient slow-roll inflation is impossible.

4.3 Nongaussianities in the Roulette model

Given recent claims of large isocurvature modes in the Roulette inflation

model [24], and since nongaussianities in the curvature perturbations from

superhorizon evolution are expected to be correlated with interaction with such

entropy modes [37], one would naturally expect to find non-zero primordial

bispectra from Roulette inflation. We therefore sought out deviations from

gaussianity via the mechanism described in Section 3.3.

The algorithm for computing fNL from superhorizon evolution of pertur-

bation modes was benchmarked against two-field quadratic inflation, and was

found to give identical results to [37]. This result is displayed in Figure 4–7.

We then performed an analysis of non-linear mode evolution for a variety of

Roulette inflation trajectories, and for a range of modes k corresponding to a

range of horizon exit times t∗ = ln k/H∗ before the end of inflation. All of our

nonlinearity analyses were carried out with parameter set 1, in the same way

as the first-order analyses.

The Green’s function in eq. (3.100) was found by solving the ODE numer-

ically in matrix form, as a function of t. This was done once per time step t′,

giving a 3×3×M×M dimensional array, where M corresponds to the number

of discrete time steps sampled in the simulation of inflation (typically around

1000 were sufficient). The algorithm in Appendix A gives the exact details

of this. Figure 4–8 illustrates the behavior of the components of Gab(t, t
′) for
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Figure 4–6: Effect of the variation of the different parameters of the poten-
tial (2.21) and field space metric (2.23) in Roulette inflation on the available
space of initial conditions for inflation in the tau valley (single-field inflation).
Solid lines represent the minimum initial value of a2τ to obtain 60 e-folds of
inflation, while the dashed lines are the beginning of the region of stochastic
self-reproduction, where stochastic kicks dominate over the slope of the po-
tential. Vertical lines indicate the values used in parameter set 1. Slow-roll
inflation can only occur in the region bounded by the solid line from below,
and the dashed line from above. In each case, the other parameters were kept
constant.
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Figure 4–7: The non-linearity parameter fNL as a function of time for the two-
field quadratic model of eqn. (4.1), along with the parameters η⊥ and η‖, for
the equilateral configuration (t∗(k) = 60 e-folds before the end of inflation) and
the squeezed configuration, where the squeezed momentum left the horizon 20
e-folds earlier. This is in exact agreement with the results of ref. [37], albeit
with a lower temporal resolution.
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the two-field quadratic inflation, whereas Figure 4–9 shows this behavior for

Roulette inflation.

Inflation in the τ valley, corresponding to the effective one-field scenario

of Conlon and Quevedo [14] produced no nongaussianities originating from

superhorizon interaction between scalar modes (fNL ∼ 10−20, where the de-

viation from zero can be attributed to numerical uncertainty), as expected of

this mechanism, since it is the coupling between curvature and isocurvature

modes that is expected to generate large bispectra.2 In more complex in-

flationary trajectories with sufficient curving in field space, however, values

of fNL between −0.01 and 0.02 were found to be quite generically produced,

2 Recall that other contributions to fNL should give values ∼ ns−1 following
(3.59).
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Figure 4–9: Green’s functions Gab(t, t
′) for t′ = 60 e-folds before the end of

inflation, for Roulette inflation with the parameter set 1 and trajectory C.
Only the nonzero components are labeled.

although the apparent limit:

|fNL| . 0.1 (4.10)

precludes detection of nongaussianities that would originate from this scenario.

For simple two-field quadratic inflation, strong curving in field space,

usually associated with temporary breakdown of the slow-roll conditions [37]

induces a temporary spike in the nonlinearity parameter fNL for modes which

exited the horizon before the curving event. This spike tends to vanish very

quickly as slow rolling resumes, rendering the nonlinearity in the curvature

modes unobservable after inflation. This is visible in figure 4–7.

Figure 4–10 illustrates the time-evolution of fNL associated with certain

wavemodes k from horizon exit to the end of inflation for a chosen trajectory

of Roulette inflation (labeled C in figure 4–2), while figure 4–11 shows the

k-dependence of fNL. The behaviour of fNL in general followed the type

of evolution illustrated by trajectory C: most trajectories we examined that
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curved during the period of observable inflation (i.e. in the last ∼ 60 e-foldings)

produced slightly more pronounced values of fNL during curving, but these

values quickly descended to ∼ 10−2 by the end of inflation. Table 4–2 gives

some computed values of f equil.
NL of various other trajectories for t∗(k) = 55

e-foldings and of f squeezed
NL for k1, k2 and k3 corresponding to t∗(k1) = 60 and

t∗(k2) = t∗(k3) = 55 respectively. Values of fNL are taken at the end of

inflation.

Features in fNL(k) can be identified with corresponding curvature of the

trajectory at the time of horizon exit of particular modes. Modes that expe-

rienced more curving after horizon exit (i.e. modes that exited the horizon

earlier) produced larger magnitude fNL than those that experienced little or

no effects of a change in background field direction of slow roll. These features

in the bispectrum are completely absent in the context of single-field inflation.

Should such precision ever be experimentally possible, the momentum depen-

dence of fNL would therefore provide a way of eliminating certain models of

inflation, as well as certain trajectories in more complex multi-field models.

One feature that was common to curved Roulette trajectories was a slightly

larger bispectrum on large scales, corresponding to the modes which left the

horizon before turning in field space occurred. A simultaneous detection of

larger fNL in the CMB and smaller primordial non-linearity in large-scale

structure may be a way to detect this type of result, but this may only be

possible in the context of models that predict larger fNL from the onset.

The non-trivial field metric K22̄ had no substantial effect on the shape,

size, and magnitude of the bispectrum. Indeed, by taking the Roulette po-

tential but with a canonically normalized kinetic term as a toy model, the

spectrum of observables remained roughly unchanged.
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Figure 4–10: Time evolution of the non-linearity parameter fNL for various
modes, for trajectory C in the equilateral configuration. The beginning of each
curve corresponds to t = t∗, the time of horizon crossing of the mode. Here,
the x-axis is time until the end of inflation, in e-folds.

As illustrated in Table 4–2, the shape-dependence of the observed non-

gaussianities was as expected from this type of model [1]. In all cases, the

computed value of of fNL was larger for the squeezed configuration than in

the equilateral case.
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CHAPTER 5

Conclusions and future
prospects

In the above, we have studied a model of Kähler moduli inflation built

from a realistic construction of Type IIB string theory, and via the formal-

ism developed in Chapter 3, we predicted a set of cosmological observables

that would originate from various trajectories of inflation within this model;

these include the power spectra and the superhorizon influence of isocurvature

modes thereupon, as well as the deviations from Gaussianity of the predicted

curvature spectrum that would originate from the superhorizon evolution of

the curvature perturbation.

From the results obtained in Chapter 4, we may extract a few salient

points. The first is that the Roulette scenario can, for a generous range of

parameters tuned only to O(1), drive a sufficient amount of inflation to solve

the flatness and homogeneitiy problems for our universe.

When the full spectrum is considered, Roulette inflation furthermore pre-

dicts a smooth power spectrum with a slight red-tilt, in excellent agreement

with estimates based on the latest WMAP data. In addition, as evidenced both

from our study of Roulette inflation as well as a generic two-field quadratic

63
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model, the superhorizon influence of isocurvature modes can come to domi-

nate the scalar curvature power spectrum via the relation (3.55). This is the

case for inflationary trajectories with large curvature, which can be imagined

as a “projection” of the isocurvature perturbation modes onto the adiabatic

direction. This contribution, which can account for up to 90% of the cur-

vature power spectrum, must therefore be considered in the context of these

multiple-field inflationary models.

A final conclusion concerns the deviations from Gaussianity of the curva-

ture perturbation in the Roulette inflation model. It is unlikely that the levels

of nongaussianity produced via the mechanism examined in Chapter 4 will be

observable by future missions, given the small values of fNL predicted, which

are of the same order as nongaussianities expected from single-field inflation.

In light of our results, it would appear that the generation of a measur-

able, nonzero value of fNL consistent with observations via this mechanism

would require very sharp curving in field space, as in the trajectory studied

in the context of two-field quadratic inflation in Chapter 4. Two further re-

quirements make this difficult. First, if the trajectory immediately relaxes

to a straight, effectively single-field trajectory, fNL will damp to zero before

the end of inflation, as illustrated in Figure 4–7. Slight curving up until the

end of inflation in the Roulette trajectories we examined prevented this from

happening completely within the latter scenario. Second, large deviation from

Gaussianity from this method is correlated with large isocurvature modes be-

ing projected onto the curvature direction. In the presence of a model with

large fNL, one must therefore be careful that the power-spectrum is not overly

amplified and distorted by this effect.
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Should this mechanism produce sizeable fNL within the context of a sim-

ilar model, momentum-dependent bispectra would provide a good discrimi-

nator between models and inflationary trajectories within models. A way to

measure this would be via the comparison of nongaussianities in the CMB

with fNL measured from Large Scale Structure surveys.

Further issues surrounding the Roulette model remain to be adressed.

The initial conditions, which we took as free parameters to explore, require a

mechanism to fix. For instance, this could be tunnelling from another configu-

ration on a landscape of string theory solutions as discussed in ref. [7]. In this

case, a proper Bayesian analysis of the prior probabilities would be required in

order to get a full grip on the space of allowed initial conditions. In addition, it

remains to be established whether the corrections (2.2) discussed in Chapter 2

are important, and whether they do indeed spoil the flatness of the potential.

It may be interesting to examine other such moduli inflation scenarios

that arise once the assumptions of a strict hierarchy of scale are relaxed (for

instance, the model of Ref.[2] in which the second dynamical field is the inverse

overall volume, rather than the axionic partner). A more general study of

two-field inflationary models with such an exponentially flat potential would

furthermore reveal how generic the above-mentioned behavior is.

A full study of shape-dependence, as in Ref. [1] could also provide insight

into the type of nongaussianities generated via this mechanism. As we hinted

in Chapter 4, the squeezed configuration for fNL generated slightly larger

deviations from Gaussianity, but a full study of the dependence on k1, k2, k3

could further constrain the microscopic parameters of this model. Although

interesting from a purely theoretical point of view, the use of these results in

comparison with data would of course be contingent upon both a successful



66

prediction of measurable fNL and a successful shape-dependent measurement

of fNL in the CMB.

Although the development of ground-up models of inflation such as the

Roulette scenario within string theory is an important step in reconciling the

phenomenological paradigm of inflationary cosmology with fundamental mi-

croscopic physics, it equally important to develop proper discriminators to test

these models against observations. The power spectrum and its tilt, as well

as the bispectrum are among important observables in this respect; we have

sought here to capsulize and apply some very powerful methods to compute

these observables, including the relevant perturbation theory and the gradient

expansion formalism of Rigopoulos, Shellard and van Tent in Chapter 3. We

have shown that this formalism provides a relatively simple way to numeri-

cally compute the observables from any trajectory of models of multiple field

inflation, and have thus predicted some key observables for the Roulette infla-

tion model. With the advent of the Planck mission, as well as the nine-year

data from the WMAP collaboration and the multitude of ground-based CMB

experiments, it is clear that the next few years will represent a culmination of

the so-called era of precision cosmology. It is with whetted anticipation that

we await these results that will further bridge the gap between theory and

observation.



Appendix A: numerical computation of observables

Following is the MATLAB code used to compute first and second-order

quantities v
(1)
am and v

(2)
amn, along with the k-dependent power spectrum and and

the bispectrum in the equilateral triangle k1 = k2 = k3 configuration. The

required input, detailed in the commented section at the top of the script,

was computed via numerical integration of the model under consideration (in

this case two-field quadratic inflation and Roulette inflation). The important

output variables are PObsk and fNLk, m× n arrays where m is the number

of time-steps and n is the number of momenta for which observables were

calculated. This algorithm was used to generate the results of Chapter 4,

along with a similar computation in the squeezed k limit.

% nongauss2field2.m

%Final, working version. Fits perfectly with results from "Quantitative

%bispectra in two-field inflation"

%required input is recordN (vector of evenly-spaced time components),

%recordA (matrix A for each timestep), recordAbar (matrix \bar A for each

%time step), recordChi (vector of \chi), recordH (vector of Hubble parameter)

%calculates power spectrum and bispectrum from simulation results,

% for the equilateral case.

%initialize empty arrays.

c = 3; %Window parameter. Result doesn’t depend on this.

Xmx = [];

v1 = []; %first order solution v

v1k = []; %k-dependent version of v1.

powerSpectrumk = [];

PObsk = [];

%step three (just because steps one and two are nested)

%You only green once. Trust me. You only want to do this once.

sz = max(size(recordN));

if needG ==1

opts = odeset(odeset,’RelTol’,1e-8,’AbsTol’,1e-11,’Vectorized’,’on’);
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%Use these for more precision

global rA;

global rN;

rN = recordN’;

rA = permute(recordA,[3 1 2]); %watch out. Doing this so that the

%twoFieldGreen function works.

masterG = zeros(3,3,sz,sz); %masterG(a b t t’) are the correct indices

for tprime = 1:sz-1

%step one: get the green’s function using builtin ODE solver.\

% Double-checked w/ ode45

[T1,G1] = ode23(@twoFieldGreen,[recordN(tprime) recordN(sz)],[1 0 0]);

[T2,G2] = ode23(@twoFieldGreen,[recordN(tprime) recordN(sz)],[0 1 0]);

[T3,G3] = ode23(@twoFieldGreen,[recordN(tprime) recordN(sz)],[0 0 1]);

%step two: reorganize it so it looks like it’s supposed to

G1 = interp1(T1,G1,recordN(tprime:sz));

G2 = interp1(T2,G2,recordN(tprime:sz));

G3 = interp1(T3,G3,recordN(tprime:sz));

G = cat(3,G1’,G2’,G3’); %Good, but this isn’t where I want my indices.

G = permute(G,[1 3 2]);

masterG(:,:,tprime:sz,tprime) = G;

tprime %just a counter

end

needG = 0; %G won’t be computed again until you rerun the simulation.

end

%%%%%%%%%Now we have the green’s function %%%%%%%%%%%

clear T1 T2 T3 G1 G2 G3 G;

for k = 2:max(size(recordChi))

Xmx = cat(3,Xmx,[1 0; 0 1; 0 -recordChi(k)].*recordH(k)...

./sqrt(recordepsilon(k)));

end

% k-dependence is only important starting here.

%delay is the smoothing function bit in the delta function delta(t’ - t_k +

%.5*log(2/c)
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%delay is an integer

delay = round(.5*log(2/c^2)/freq/dN);

% kOfInterest = 88;

fNLk = [];

for kOfInterest = 15:5:70

v1 = [];

v2 = [];

tk = max(recordN) - kOfInterest;

tkIndex = round(tk/(dN*freq));

X = -1/2*Xmx;

%As suggested by 0511041: take \dot{W} = \delta(kR/sqrt(2) - 1)

% %this is masterG_abtt*Xbmt, with contractions seemingly correct.

% v(a,m,t)

for t = 1:max(size(recordN))

v1 = cat(3,v1,masterG(:,:,t,tkIndex+delay)...

*X(:,:,tkIndex+delay));%no integration needed,

%since we’ve got a delta

end

%first order adiabatic v:

v11m = permute(v1(1,:,:),[2 3 1]);

powerSpectrum = v11m(1,:).^2 + v11m(2,:).^2;

powerSpectrumk = [powerSpectrumk; powerSpectrum];

PObs = powerSpectrum*4/50/pi^2; %this is the spectrum

% in terms of \delta_H

%first order entropy v

v12m = permute(v1(2,:,:),[2 3 1]);

powerSpectrumEntropy = v12m(2,:).^2 + v12m(1,:).^2*25/18/pi^2;

v13m = permute(v1(3,:,:),[2 3 1]);

% v13m = permute(v1(3,:,:),[2 3 1]);

%

%

%%%%%%%first order plots %%%%%%%%%%%%%%%%%%%

% figure

% plot(recordN,powerSpectrum)

% hold on
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% plot(recordN,powerSpectrumEntropy,’r’)

% hold off

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%SECOND ORDER SOLUTION

%first bit of L

Lm1 = [recordEtaPerp.*v12m(1,:).*v11m(1,:);

recordEtaPerp.*v12m(2,:).*v11m(1,:)]’;

Lm2 = [recordEtaPerp.*v12m(1,:).*v11m(2,:);

recordEtaPerp.*v12m(2,:).*v11m(2,:)]’;

L = cat(3,Lm1,Lm2);

clear Lm1 Lm2

integrand = [];

grandintegrand = [];

masterGp = permute(masterG,[4 1 2 3]);

Abarp = permute(recordAbar,[4 1 2 3]);

v1p = permute(v1,[3 2 1]);

for t = 1:sz

for m = 1:2

for n = 1:2

integrand1 = 0*(1:sz);

for a = 1:3

for b = 1:3

for d = 1:3

integrand1(:) = integrand1(:) + masterGp(:,1,a,t)...

.*Abarp(:,a,b,d).*v1p(:,m,b).*v1p(:,n,d);

end

end

end

integrand(:,m,n) = integrand1(:);

end

end

grandintegrand = cat(4,grandintegrand,integrand);

end

% wind up with grandintegrand(tprime,m,n,t).

grandintegrand = permute(grandintegrand, [2 3 4 1]);

% do the integraltrapz(recordN,grandintegrand,1)

integrated = 0*grandintegrand(:,:,:,1);

for t = 2:sz

integrated(:,:,t) = trapz(recordN(1:t),grandintegrand(:,:,t,1:t),4);
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end

integrated(:,:,1) = 0;

size(integrated)

integrated = permute(integrated,[3 1 2]);

LoL = L;

L = L - .5*integrated;

% Now I have L(m,n,t)-

f = 0*recordN;

for m = 1:2

for n = 1:2

f(:) = f(:) + L(:,m,n).*v11m(m,:)’.*v11m(n,:)’;

end

end

f = 2*f; %to account for k’ <-> k

bispectrum = 3*f; %equilateral triangle limit;

%without factor of (2pi)^3*delta(k+k’+k’’)

fNL = bispectrum./(powerSpectrum.^2);

fNLk = cat(3,fNLk,fNL);

PObsk = [PObsk; PObs];

end

% figure

fNLk = permute(fNLk,[3 2 1]);

% plot(recordN,fNL)

function dG = twoFieldGreen(t,G)

%so t is actually an index, and not time. for the corresponding time take

%recordN(t)

% A = getVariable(’A’,’global’);

global rA;

global rN

dG = -getA(t)*G;

function fA = getA(t)

global rA;

global rN

fA = permute(interp1(rN,rA,t),[2 3 1]); %proper approximation:

% lookup and interpolate. Default is linear.
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