
Diffusion of Information in Network
Structures

Shohreh Shaghaghian

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

September 2017

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

c⃝ 2017 Shohreh Shaghaghian

2017/09/15



i

Abstract

Understanding the process by which a piece of data or information disseminates throughout

a network is of great importance in many real world applications. Whether we are in charge

of spreading the information or we are merely able to observe its traces, we need to model

the process by which the diffusion occurs. In this thesis, we develop frameworks to model

the information diffusion processes and propose multiple algorithms to both control and

infer them.

We first study how we can proactively control the process of diffusion of information

among a set of mobile nodes in the absence of a physical network infrastructure. Data

transfer in this setting must rely on unscheduled sporadic meetings between nodes. There-

fore, the main challenge is to develop a mechanism based on which nodes can learn to

make nearly optimal forwarding decision rules despite having no a priori knowledge of

the network topology. The forwarding mechanism should ideally result in a high delivery

probability, low average latency, and efficient usage of the network resources. We pro-

pose both centralized and decentralized single-copy message forwarding algorithms that,

under relatively strong assumptions about the networks behaviour, minimize the expected

latencies from any node in the network to a particular destination. After proving the op-

timality of our proposed algorithms, we develop a decentralized algorithm that involves a

recursive maximum likelihood procedure to estimate the meeting rates. We finally propose

Bayesian versions of the decentralized algorithm that can take into account some external

information about the social ties among the nodes to improve the forwarding decisions.

We also study how we can detect the underlying propagation structure by passively

observing the traces of a diffusion process. The required sophistication of the inference

approach depends on the type of patterns we want to extract as well as the number of

observations that are available to us. We analyze scenarios in which not only the underlying

network structure (parental relationships and link strengths) needs to be detected, but also

the infection times must be estimated. We assume that our only observation of the diffusion

process is a set of time series, one for each node of the network, which exhibit statistical

changes when an infection occurs. Modelling the problem in a Bayesian framework, we

propose both batch and online inference algorithms.
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Sommaire

Comprendre les processus par lequel les données ou l’informations ce diffusent dans un

réseau est important dans plusieurs contextes, autant réels que virtuels. Que nous soyons

responsables de la diffusion de cette information ou que nous en soyons simplement un

observateur, nous devons pouvoir modéliser le processus par lequel la diffusion se produit.

Dans cette thèse, nous développons des cadres pour modéliser les processus de diffusion

d’informations et proposons de multiples algorithmes pour soit contrôler ou bien inférer ces

processus.

Nous étudions d’abord comment nous pouvons contrôler de manière proactive le pro-

cessus de diffusion d’informations entre noeuds mobiles dans l’absence d’une infrastruc-

ture de réseau physique. Le transfert de données dans ce contexte dépend des rencontres

sporadiques et non-planifiées entre les noeuds. Par conséquence, le principal défi est de

développer un mécanisme par lequel les noeuds peuvent apprendre à créer des règles de

décisions d’acheminement quasi-optimales sans aucune connaissance à priori de la topolo-

gie du réseau. Le mécanisme d’acheminement doit idéalement mener à une probabilité de

livraison élevée, une faible latence moyenne, et une utilisation efficace des ressources du

réseau. Nous proposons à la fois des algorithmes centralisés et décentralisés de transmis-

sion de messages à copie unique qui, dans le contexts de certaines suppositions relativement

rigids par rapport au comportement des réseaux, minimisent les latences attendues pour la

transmission entre n’importe quel noeud du réseau et une destination spécifique. Après

avoir démontré l’optimalité des algorithmes proposés, nous développons un algorithme

décentralisé incluant une procédure récursive de maximum de vraisemblance pour estimer

les taux de rencontres entre noeuds. Nous proposons aussi des versions Bayésiennes de notre

algorithme décentralisé capables de prendre en compte certaines informations externes re-

latif aux liens sociaux entre les noeuds, afin d’améliorer les décisions d’acheminement.

Nous étudions également comment nous pouvons détecter la structure de propagation

sous-jacente en observant les traces d’un processus de diffusion. Le niveau de sophistication

de l’approche d’inférence requis dépend du type de modèles que nous voulons extraire, ainsi

que du nombre d’observations qui nous sont disponibles. Nous analysons des scénarios dans

lesquels non seulement la structure du réseau sous-jacente (relations parentales et forces

des liens) doit être identifiée, mais aussi les temps d’infection estimés. Nous présumons que

les seules donnée disponibles relatives au processus de diffusion sont un ensemble de séries
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temporelles, une pour chaque noeud du réseau, qui présentent des changements statis-

tiques lorsqu’une infection survient. Modélisant le problème dans un cadre Bayésien, nous

proposons des algorithmes d’inférence de traitement par lots ainsi qu’en ligne.
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Chapter 1

Introduction

The notion of transmission of information or some sort of contagion from one independent

agent to another, exists in many phenomena around us, such as news propagation, virus

spreading, communication protocols, political grass-roots campaigning, and activation cas-

cades in biological and neural networks. Although the inherent logic and the propagation

patterns are different in each of these phenomena, there is a common rule among all of

them. Once an external cause affects a limited number of nodes, it is solely up to the

dynamics between individual pairs of nodes to spread the information or infection through

the network. We refer to the processes that can be studied in this framework as Diffusion

Processes. There exist three main components in each diffusion process: Nodes, i.e., the set

of separate agents; Infection, i.e., the change in the state of a node that can be transferred

from one node to the other; and Causality, i.e., the underlying structure based on which

the infection is transferred between nodes. The term cascade is often used to refer to the

temporal traces left by a diffusion process.

Depending on the context and the application, diffusion processes may be studied with

two different objectives. We either want to proactively control the diffusion process, or we

intend to passively observe it. We refer to the first study approach as proactive approach

or an approach with the proactive perspective. The goal of the proactive study approach

is to take charge of defining transmission rules with respect to the available resources so

that a desired performance is achieved. The proactive approach is widely used in telecom-

munication networks where we try to route messages to their destinations through efficient

paths in Delay Tolerant Networks (DTNs). Similarly, we refer to the second study ap-

2017/09/15



1 Introduction 2

proach as passive approach or an approach with the passive perspective. From this passive

perspective, the objective is to discover propagation patterns by observing the traces of

the diffusion process in a more passive manner. Detecting these patterns not only gives

us a valuable insight about the existing dynamics between agents, it also helps us predict,

expedite, retard, or prevent future spreads. The passive approach is used to understand

the spread of hashtags in social networks which is caused by influence of users over each

other. Other examples of the passive study approaches include analyzing the propagation

of distortions (caused by external events) among stock returns of different assets in the

stock market, and studying the outbreak of a contagious disease in different geographic

regions.

In this thesis, we study both perspectives of the diffusion processes. We propose ap-

propriate frameworks to model and analyze these processes in each study approach and

develop algorithms to fulfil the requirements of the corresponding applications. In the rest

of this section, we discuss the outline and technical contributions of the remaining chapters

of this thesis.

1.1 Thesis Organization and Contributions

The organization of the thesis is as follows.

⋄ In Chapter 2, we illustrate the context in which we are going to pursue each of the

aforementioned approaches in studying diffusion processes. For each study approach,

we clarify the problem we are trying to solve and its applications. We also justify

the contributions we are going to make in the subsequent chapters, by portraying a

general insight of the problem background and providing a comprehensive literature

review of the existing studies. Finally, we review the studies that have been conducted

after ours to give the reader a comprehensive and up to date insight of the topic.

⋄ In Chapter 3, we study how we can proactively direct a diffusion process in the context

of message routing/forwarding in opportunistic Delay Tolerant Networks (DTNs).

We declare the assumptions we have made and formulate the routing problem as an

optimization problem. We then propose both centralized and decentralized single-

copy message forwarding algorithms that, under simplifying assumptions about the

network behaviour, minimize the expected latencies from any node in the network
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to a particular destination. After proving the optimality of our proposed algorithms,

we develop a decentralized algorithm that involves a recursive maximum-likelihood

procedure to estimate the meeting rates between nodes. We confirm the improvement

that our proposed algorithms make in the system performance through numerical

simulations on datasets from synthetic and real-world opportunistic networks. The

following publications have resulted from this work:

− S. Shaghaghian, and M. Coates, “Opportunistic Networks: Minimizing Expected

Latency”, Proceedings of IEEE International Conference Wireless and Mobile

Computing, Networks and Communications (WiMob), Larnaca, Cyprus, Octo-

ber, 2014, pp. 473 - 478.

− S. Shaghaghian, and M. Coates, “Optimal Forwarding in Opportunistic De-

lay Tolerant Networks with Meeting Rate Estimations”, IEEE Transactions on

Signal and Information Processing over Networks (SIPN), vol. 1, no. 2, pp.

104-116, June 2015.

⋄ In Chapter 4, we continue the proactive approach by studying the routing problem

in a Bayesian framework. We apply the information about the strength of nodes’

relationships as prior probability distributions. After proposing two Bayesian versions

of the decentralized algorithm of Chapter 3, we evaluate their performance efficiency

through simulations on synthetic and real-world datasets. The results of this Chapter

are going to be submitted to a conference.

⋄ In Chapter 5, we study how we can infer some characteristics of a diffusion process by

passively observing it in a Bayesian framework. We assume that our only observation

of the diffusion process is a set of time series, one for each node of the network, which

exhibit changepoints when an infection occurs. After formulating a model to describe

the contagion, and selecting appropriate prior distributions, we seek to find the set

of model parameters that best explains our observations. Modelling the problem in a

Bayesian framework, we exploit Markov Chain Monte Carlo, Sequential Monte Carlo,

and time series analysis techniques to develop batch and online inference algorithms.

We evaluate the performance of our proposed algorithms via numerical simulations

of synthetic network contagions and analysis of real-world datasets. The results of

this chapter are published in the following articles:
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− S. Shaghaghian, and M. Coates, “Bayesian Inference of Diffusion Networks with

Unknown Infection Times”, Proceedings of IEEE International Workshop on

Statistical Signal Processing (SSP), Palma de Mallorca, Spain, June, 2016. pp.

1-5.

− S. Shaghaghian, and M. Coates, “Online Bayesian Inference of Diffusion Net-

works”, accepted for publication in IEEE Journal of Selected Topics in Signal

Processing, Special Issues on Graph Signal Processing (J-STSP-GSP), Septem-

ber 2017.

⋄ In Chapter 6, we summarize this thesis and make the concluding remarks. We also

propose some directions for extending this study.

The only other contributor to the publications mentioned above (and their corresponding

sections of this thesis), is Prof. Mark Coates who provided supervision and guidance. He

developed Algorithms 1 and 2, and proved Theorems 2 and 3. He also helped in developing

Algorithms 3-6. I derived and proved Lemmas 1 and 2, Propositions 1 and 2, and Theorems

1, 3, and 4. I am responsible for formulating the problems, developing algorithms 3-6, and

performing and analyzing numerical simulations.
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Chapter 2

Information Diffusion: Applications

and Literature Review

2.1 Overview

In this chapter, we elaborate on the two perspectives of studying diffusion processes. We

begin with the proactive study approach and specify the exact information diffusion process

that we intend to proactively study. We state where this proactive study approach can be

used in practice. We then move to the passive study approach and review some of the

applications that passively observing a diffusion process may have. Moreover, we provide a

comprehensive review of the existing studies that have been conducted from both proactive

and passive perspectives and indicate the existing gaps that need to be further investigated.

We also clarify how we contribute to this literature and overview the studies that have been

conducted after the publication of the research results reported in this thesis.

2.2 Proactive Approach

We study proactive information diffusion in the context of Delay/Disruption Tolerant Net-

works (DTNs). DTNs are a class of wireless mobile node networks in which the commu-

nication path between any pair of nodes is frequently unavailable. Nodes are thus only

intermittently connected. The history of studying DTNs goes back to 1990s when the re-

search community began to explore how the Internet could fit into space communications

[1]. Later in 2002, some terrestrial applications were found that could be modeled as DTNs

2017/09/15
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but with some inherent differences in the regularity of node meetings. These differences

are the main criteria for classifying DTNs. Node connections can be either scheduled (thus

predictable) or random (hence unpredictable). Space communication networks like the in-

terplanetary Internet project are an example of the first group of DTNs with scheduled node

connections. The second group of DTNs which is the main focus of this thesis, is known as

opportunistic networks because nodes seize the opportunity to transfer data when a com-

munication channel becomes available. In these networks, the meetings between nodes are

unpredictable, so an arbitrary node is not aware of the exact time of its next meeting with

other nodes. Opportunistic networks have been studied intensively in recent years (e.g.,

[1–3]) because they can fulfil a number of useful purposes. In Section 2.2.1, we present

some of the most well-known applications of opportunistic networks deployed so far.

2.2.1 Applications

Some application scenarios are intrinsically opportunistic, in the sense that it is neither

possible nor advisable to provide a more structured network based on legacy routing ap-

proaches [4]. In this section, we overview some examples of such applications that have

been implemented in the real world.

Emergency Response in Disaster Scenarios

What happens when the infrastructural communication services like the Internet and cel-

lular network become lost or degraded in case of natural or social disasters? When the

central communication services become unavailable in such incidents, accessing the nec-

essary information becomes more vital and at the same time more difficult. Under such

circumstances, we may still depend on the services of individual mobile devices to build

applications based on their available short-range communication facilities like ad-hoc Wi-Fi

or Bluetooth. These applications may help first responders to provide a faster triage of the

victims and coordinate a more efficient medical status acquisition. [5] presents a survey on

multihop ad-hoc network paradigms for disaster scenarios and evaluates their applicability

to important tasks in disaster relief operations. Opportunistic forwarding is one of these

solutions that enables effective communication and collaboration in crisis situations via

mobile devices like smart phones, tablets, laptops without the need for telecommunication

infrastructure. Several applications such as ChaosFIRE [6] and Firechat [7] have been
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implemented.

Through simulations in realistic disaster scenarios, [8] investigates the efficiency of the

best known opportunistic routing protocols. We review these protocols in Section 3.2. The

study shows how the different characteristics of an emergency scenario (such as the number

of nodes, the number and size of messages) may impact the behaviour of each method in

terms of delivery rate, delay, etc.

Non-intrusive Wildlife Tracking

In wildlife monitoring systems, the goal is to track wild species to more thoroughly investi-

gate their behaviour such as migration patterns. These systems also aim to understand the

interactions between species and their influences over one another, as well as the species’

reaction to the ecosystem changes. Examples include learning about the effects of human

development on wilderness areas, and the effects of changes of weather patterns or plant

life on the indigenous species [4].

Opportunistic networks provide a reliable, cost-effective, and non-intrusive means of

monitoring large populations in vast areas. Studies such as ZebraNet [9] and SWIM [10]

have examined the research decisions and design tradeoffs of applying opportunistic for-

warding techniques in a mobile sensor network designed to support wildlife tracking for

biology research. The Princeton ZebraNet Project is an inter-disciplinary effort to develop,

evaluate, implement, and test systems that integrate computing, wireless communication,

and non-volatile storage along with Global Positioning Systems (GPS) and other sensors.

The system can be modelled as an opportunistic network in which nodes are zebras wear-

ing special collars. Epidemic and history-based forwarding approaches have been used to

deliver messages to mobile base stations that periodically move around the area: We study

these forwarding approaches thoroughly in Section 2.2.2. In SWIM (Shared Wireless Info-

station Model), whales are the wild species to be monitored and the whales carry special

devices through which the periodic data monitoring is performed. Data is diffused at pair-

wise contacts between whales and eventually arrives at the special fixed and mobile SWIM

stations.



2 Information Diffusion: Applications and Literature Review 8

Provision of Data Communication to Remote and Rural Areas

Over the past decade, communication services have become more and more pervasive.

However, due to the lack of fixed infrastructures, communication is still very expensive

and inconvenient in some remote villages. Opportunistic networks can provide intermit-

tent Internet connectivity to rural and developing areas where it is not cost-effective to

deploy standard Internet access. The most representative village communication network

is DakNet [11], which was developed by the MIT Media Lab and has been successfully

deployed in some remote areas of India and Cambodia. The DakNet system consists of vil-

lage Wi-Fi enabled kiosks, Internet access points, and vehicles equipped with mobile access

points. Vehicles (e.g., public buses) carry mobile access points between village kiosks and

a hub with Internet access. Data automatically uploads and downloads when the vehicle

is in range of a kiosk or the hub.

Saami Network Connectivity (SNC) [12] is another project that provides asynchronous

communication services to the nomads in Finland by focusing on a pure DTN architecture.

Providing network connectivity to the Saami population is a means of protecting and

defending their habits, culture, and traditions while also supporting their integration into

the modern society of their countries [4].

Traffic Offloading in Cellular Networks

Cellular networks are currently overloaded, due to the increasing popularity of various

applications for smartphones. Offloading mobile data traffic through opportunistic com-

munications is a promising solution to partially solve this problem, because there is almost

no monetary cost for it. [13] proposes to intentionally delay the delivery of information

over cellular networks and offload it through the free opportunistic communications, with

the goal of reducing mobile data traffic. The goal is to select the target set with a certain

number of users, such that the mobile data traffic over cellular networks can be minimized.

2.2.2 Literature Review

In most opportunistic networks, the nodes are highly mobile and have a short radio range,

and the density of nodes is low. In many cases, nodes have limited power and memory

resources. These attributes combine with the intermittent connections to make routing

traffic challenging. Routing is usually based on a store-carry-forward mechanism that
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exploits node mobility. In this mechanism, the source transmits its message to a node

it meets. This intermediate node stores and then carries the received message until it

meets another node to which it can forward the message. This process is repeated until

the message reaches its destination. The key ingredients in designing an opportunistic

network routing protocol are the forwarding decisions: should a node forward a message to

a neighbour it meets? should it retain a copy for itself?

Existing routing methods in opportunistic DTNs can be classified as replication-based,

history-based, and social-based algorithms. In the rest of this section, we first describe

each of these classes and overview the existing examples of each group. Since the focus of

Chapter 3 is on deriving routing algorithms whose optimality can be theoretically proved,

we then review the theoretical based studies. These studies try to mathematically optimize

a performance metric related to the routing efficiency under certain assumptions about the

network behaviour. We finally clarify how we are going to contribute to this literature and

briefly overview the related works that have been published after ours.

Replication-based Methods

The first proposed approaches for routing in opportunistic networks were based on ex-

tending the concept of flooding to intermittently connected mobile networks. In these

replication-based methods, a node forwards a copy of the messages stored in its buffer to

all of (or to a fraction of) the nodes it encounters. There is no attempt to evaluate the

capability of a given node to expedite the delivery. These routing algorithms have few pa-

rameters: they determine only how much replication can occur and which nodes can make

copies of packets. One of the earliest algorithms was Epidemic Routing (ER) [14], in which

a node forwards a message to any node it meets, provided that node has not previously re-

ceived a copy of the message. Thus messages are quickly distributed through the connected

portions of the network. Some studies have tried to analytically evaluate the performance

of ER. [15] models the network as a random graph and derives the probability distribution

function of the number of infected nodes, the average number of infected nodes, and the

probability of all nodes becoming infected, all as functions of time. [16] derives a partial

differential equation model for the dissemination of information via ER.

Other replication-based approaches (e.g., [17–22]) manage to reduce the transmission

overhead of ER and improve its delivery performance through modification of the replica-
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tion process and prioritization of messages. One of the most representative of such schemes

is the two-hop routing proposed in [17]. In this multi-copy routing, whenever the source

node encounters another node that does not have a copy of the message, the former for-

wards a message copy to the latter, referred to as the relay node. These relay nodes are

only allowed to forward the message to the destination node. Therefore, all messages reach

their destinations in at most two hops. Modelling the node meetings by a Poisson process,

[18] studies two-hop forwarding and ER using Markov chain models, and derives the aver-

age delay and the number of copies generated at the time of delivery for these two routing

schemes. Using Ordinary Differential Equations (ODEs), [19] derives similar parameters

for ER and some of its variations.

Spray and Wait (SW) is another representative multi-copy routing scheme proposed

in [20], that applies a limit L on the maximum number of relay nodes. Hence, only some

of the nodes of the network can receive copies of the message. Two variants of SW, source

SW and binary SW, are introduced in [20]. In source SW, only the source node is allowed

to hand over copies of the message to other non-destination nodes. Therefore, when L is

set to be infinity, the behaviour is equivalent to a two-hop routing scheme. In binary SW,

the source of a message initially starts with L message copies. An arbitrary node A that

has n > 1 message copies is allowed to forward messages to another node B with no copies.

When A meets B, it forwards ⌊n
2 ⌋ message copies to B and keeps the other ⌈n

2 ⌉ ones for

itself. When a node is left with just one copy, it can only forward to the destination.

Replication-based routing approaches result in a high probability of message delivery

since more nodes have a copy of each message, but they can produce network congestion,

increase overall delays, and drain each mobile node’s limited battery supply. Some studies

such as [23] propose a recovery scheme to delete all copies of the messages that have reached

their destinations to decrease the buffer occupancy in replication-based methods.

History-based Methods

A step towards achieving more efficient routing approaches is to consider the history of

node contacts in the network instead of blindly forwarding packets. History-based (also

called utility-based) routing algorithms assume that nodes’ movement patterns are not

completely random and that future contacts depend on the frequency and duration of

past encounters. Based on these past observations, both the source and the intermediate



2 Information Diffusion: Applications and Literature Review 11

nodes decide whether to forward a message to nodes they encounter or to store it and

wait for a better opportunity. An early example is [24], which extends ER to situations

with limited resources, incorporating a dropping strategy for the case when the buffer

of a node is full. The dropping decisions are based on the meeting history of the node.

PRoPHET (Probabilistic ROuting Protocol using History of Encounters and Transitivity),

proposed in [25], is one of the first well known history-based routing protocols. PRoPHET

assigns a delivery probability metric to each node which indicates how likely it is that

the message will be delivered to the destination by that particular node. This metric is

updated each time two nodes meet, and thus takes into account the history of meetings

in the network. Denoting the delivery predictability that node A has for destination node

B by P (A,B) ∈ [0, 1], three main update rules are defined in [25]. The first rule ensures

that if two nodes are often in contact, they have a high delivery predictability for messages

destined for one another.

P (A,B)new = P (A,B)old + (1− P (A,B)old)Pinit (2.1)

where Pinit ∈ [0, 1] is an initial constant. If two nodes do not encounter each other in a

while, they are less likely to be good relay candidates to forward the messages destined for

one another. Therefore, the second update rule makes sure that the delivery predictability

values decay with time by applying an aging rule

P (A,B)new = P (A,B)old × γk (2.2)

where γ ∈ [0, 1) is the aging constant and k is the number of time units that have passed

since the last time the metric was aged. The value of γ should be chosen according to the

scenario and environment in which the protocol will be used. If encounters are expected to

be very frequent, a lower value should be chosen for γ than if encounters are expected to

be rare [26].

The third rule applies the transitivity effect. If nodes A and B have a high delivery

predictability for messages destined for one another, and similarly nodes B and C are good

candidates for forwarding the messages destined for each other, then A and C will also

have a high delivery predictability.

P (A,C)new = P (A,C)old + (1− P (A,C)old)× P (A,B)× P (B,C)× β (2.3)
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where β ∈ [0, 1] is a scaling constant that decides how large the transitivity impact should

be on the delivery predictability. When two nodes A and B meet, the delivery predictability

metric P (A,B) is updated. In [25], node A transfers a message it has for a destination

node D if P (A,D) > P (B,D). Simulation results in [25] show that in a community based

network topology, PRoPHET has a better performance that ER. Also, it is shown that in

a completely random topology (for which PRoPHET is not designed), the performance of

PRoPHET is still comparable with the performance of ER, but with less communication

overhead. In a later modification PRoPHETv2 [27], some update rules are revised. If an

arbitrary node E has been met by another node at least once, we refer to it as a known

node. The problem with the original transitive update rule is that as long as β > 0, the

delivery predictability for any known node E will increase. This increase in the delivery

predictability occurs regardless of whether any node in the network has recently met node

E or not. In order to address this issue, PRoPHETv2 has changed the third update rule

to,

P (A,C)new = max
(
P (A,C)old, P (A,B)× P (B,C)× β

)
(2.4)

By using the maximum, the evolution of the delivery predictability is allowed without

subjecting it to exaggerated growth when no new information is available. The β parameter

adjusts the weight of the transitive property of PRoPHET. The higher the value of β,

the more rapidly encounters will increase delivery predictabilities through the transitivity

effect [26]. Simulation results show that PRoPHETv2 performs better than PRoPHET

in terms of delivery rate and overhead ratio, especially in heterogeneous network mobility

scenarios.

MaxProp [28] is another well known example of a history-based algorithm. It was

originally proposed for vehicular DTNs. In these networks, nodes move with higher speeds,

reducing the amount of time they are in each other’s radio range. Hence, the two main

limiting resources are the duration of time that nodes are able to transfer data and their

storage capacities. MaxProp uses a variant of Dijkstra’s algorithm to estimate delivery

likelihoods for each message. These estimated likelihoods are used to define the order in

which messages should be transmitted and deleted. At the core of MaxProp is a ranked list

of the nodes’ stored messages based on a cost assigned to each destination. Messages with

highest priority are the first to be transmitted during a transfer opportunity while messages

with lowest priority are the first to be deleted to make room for the incoming messages.
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Beyond this core, MaxProp applies several complementary mechanisms to increase the

delivery probability and reduce the delivery delay. When two nodes meet, first all of the

messages destined to the encountered node are transferred. Second, routing information

is exchanged. Then, acknowledgements are transferred regardless of their sources and

destinations. Afterwards, messages that have not travelled far in the network (i.e., messages

with low hop counts) are given priority. Finally, the remaining messages are transmitted

based on their delivery probability.

Other algorithms that make use of the history of node encounters to make forwarding

decisions are Context-Aware Routing (CAR) [29], Meets and Visits (MV) [30], Shortest

Expected Path Routing (SEPR) [31], Minimal Estimated Expected Delay (MEED) [32],

and Encounter-Based Routing (EBR) [33].

Social-based Methods

More recently, the consideration of social interactions among nodes of a network have

provided a new perspective in designing opportunistic routing protocols. The third group of

routing methods for opportunistic networks, referred to as social-based methods, consider

the fact that mobile devices are usually carried by members of a society and therefore

the contact patterns depend on their social interactions. Social-based routing approaches

are based on the assumption that social relations and behaviours among mobile carriers

are usually long-term characteristics and less volatile than the node mobility patterns.

These methods aim to take advantage of these stabilities to make more reasonable message

forwarding decisions.

[34] divides the social characteristics into positive properties which can be used to im-

prove the relay selection (e.g., community, centrality, similarity, and friendship) and nega-

tive properties which can hurt the routing performance (e.g., selfishness). Several studies

(e.g., [35–38]) strive to take advantage of the positive social properties to predict the node

meeting patterns. The main idea is to measure Social Network Analysis (SNA) parameters

such as nodes’ centralities (i.e., degree, betweenness, closeness) or detect communities to

find more efficient forwarding rules.

In SimBet [35], a node decides to forward a message to other nodes based on their

betweenness centralities and its social similarity with them. Due to the complexity of the

centrality metrics in populated networks, the concept of ego networks is exploited in which
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nodes are not required to exchange information about the entire network topology and only

locally available information is considered. It has been empirically shown in [39] that locally

calculated ego-centric betweenness highly correlates with global socio-centric betweenness.

The SimBet utility metric which is used to make forwarding decisions is defined as the

linear combination of similarity and betweenness utilities.

BubbleRap [36] makes use of community affiliation and nodes’ centrality to make for-

warding rules. It first uses the centrality metric to spread out the messages and then uses

the community metric to direct the messages towards their destinations. Nodes are ranked

based on their betweenness centralities both over the entire network (i.e., global ranks)

and within their communities (i.e., local ranks). Overall popularity of a node as well as

its forwarding capability for any message in the network is determined by its global rank.

The local rank of a node shows its popularity and forwarding ability for messages meant

to be delivered within its community. BubbleRap routing is performed by replicating a

message to more globally popular nodes. However, when a node that belongs to the same

community as the destination of the message is encountered, the message is forwarded to

it irrespective of its global rank. Within a community, the message is replicated to more

locally popular nodes until it reaches its destination. Community detection is performed by

building an unweighted graph that represents the node contacts observed in the network.

The contact graph-based routing algorithm proposed in [37] uses the information de-

rived from a weighted contact graph to make forwarding decisions based on neighbourhood,

community, and the degree centrality of nodes. The suitability of a node as a relay is deter-

mined by three factors. The first factor is the strength of the node’s tie to the destination.

The node with a stronger tie to the destination is given preference for receiving a message.

The next factor is the node’s community affiliation. In order to give more importance to

direct ties, this factor is considered only when the destination of a message is not a neigh-

bour of any of the encountering nodes. The last factor is the degree centrality which is used

only when both neighbourhood and community information are insufficient to differentiate

the forwarding capabilities of the encountering nodes. The performance of the contact

graph based routing algorithm shows that the information learned from an appropriately

constructed weighted contact graph can improve the delivery performance while lowering

other costs.

Other studies focus on the scenarios in which network nodes are uncooperative rational

users who attempt to maximize their own utilities and conserve their resources. These
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selfish behaviours of entities can significantly impact the routing performance. The second

group of social-based studies (e.g., [40–45]) try to develop appropriate incentive mechanisms

to stimulate individually selfish nodes to forward messages for all other nodes. Existing

incentive mechanisms for DTN routing can be categorized into three categories: reputation-

based, tit-for-tat-based, and credit-based (or virtual currency-based). In reputation-based

schemes (e.g., [42]), forwarding services are provided to nodes depending on their reputation

records. When a node provides services for other nodes, it gains good reputation. Nodes

with good reputations can receive services from other nodes. On the contrary, misbehaving

nodes get bad reputations and will be denied participation in the network. The fear of

detection and punishment motivates nodes to cooperate. In tit-for-tat based schemes (e.g.,

[43]), every node forwards as many messages for a neighbour as the neighbour forwards for

it. In this way, a node autonomously lowers services to a neighbour if it detects that the

neighbour is misbehaving. The credit based schemes (e.g., [44,45]) introduce some form of

credit or virtual currency to regulate the message-forwarding relationships among different

nodes. Nodes earn virtual currency by forwarding packets for others. These credits can

be used to obtain forwarding service from any node in the network. For every forwarding

request, the virtual bank charges the sender an extra amount of virtual currency, and the

intermediate nodes redeem their rewards at the bank after successful delivery.

Our work focuses on routing a message to a single destination, but there are connections

to research that addresses the task of spreading information to multiple nodes in a network.

Of particular interest is the gossip-based approach in [46], which greatly reduces the number

of message copies in the network while achieving near-optimal dissemination.

Theoretical Approaches

The experimental-based studies demonstrate the efficiency of their proposed methods by

running simulations on traces recorded from real world opportunistic networks. Experi-

mental analyses are valuable and take into account practical considerations, but they can

leave us with an incomplete understanding of how an algorithm operates and how it will

perform in other untested network conditions. For example, the behaviour of PRoPHET

has been shown to be very sensitive to parameter choice [27]. It is also useful to design

an optimal algorithm under slightly less realistic modeling assumptions, and then consider

how it can be adapted to address the practical limitations, without completely losing its
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desirable features. More recent studies have focused on deriving a forwarding process whose

optimality (in some sense) can be mathematically proved under assumptions about net-

work behaviour. [47] extends the two hop relay strategy of [17] by considering the expected

delivery time to the destination as a metric to find the best set of candidate relays. By

increasing the number of relaying steps recursively, a centralized single-copy multi-hop op-

portunistic routing scheme is proposed for sparse DTNs. The main defect of a centralized

approach is that global knowledge of the network is required in order to make forwarding

decisions.

There have been some efforts towards migrating to decentralized solutions that still

provide performance guarantees. [48] proposes a decentralized time-sensitive algorithm

called TOUR in which message priority is taken into account in addition to nodes’ expected

latencies when making forwarding decisions. Although in TOUR each node only needs to be

aware of the local information about the rates of contacts with its own set of neighbours,

the algorithm assumes that the node knows the exact contact rates. In most practical

scenarios, this assumption is not valid.

Some researchers have explored how imprecision in the measurement or estimation of

network parameters can impact the performance of opportunistic network routing algo-

rithms. In [49, 50], Boldrini et al. discuss different sources of errors that may exist in

parameter estimation like missed encounters, incorrect combination of short contacts, and

memory limitations. They model these errors as a random variable with a normal distribu-

tion and evaluate the performance of four different forwarding schemes under this model.

Although this error analysis is useful, Boldrini et al. do not specify how parameters should

be estimated in order to obtain a performance that approaches what can be achieved when

perfect a-priori knowledge of the network parameters is available.

Our Contributions

Although much research effort has been devoted to the development of opportunistic net-

work routing algorithms [14–17, 20–25, 27–33, 35–38, 40–50], the algorithms are either cen-

tralized, have no performance guarantees, or ignore the need to estimate network parame-

ters. In Chapters 3 and 4 of this thesis, we aim to propose decentralized routing algorithms

that can work with no a priori knowledge of the meeting rates among network nodes. Our

work focuses on the MANET setting, where node speed is much reduced compared to the
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VANET case, and we can assume that there are fewer restrictions on the amount of data

that nodes can transfer when they meet. In Chapter 3, we derive a decentralized rout-

ing algorithm that has performance guarantees (under simplifying assumptions about the

network behaviour). When the meeting times between nodes are independent and exponen-

tially distributed, the routing algorithm minimizes the expected latency in sending a packet

from any source node to a specific destination. We examine the behaviour of the routing

algorithm when the meeting rates are learned online using a recursive maximum likelihood

procedure. We show that, for a stationary network, the decision rules and achieved ex-

pected latencies converge to those obtained when there is exact knowledge of the meeting

rates. We present the results of simulations that compare the performance of the proposed

algorithm to previous approaches, and examine how the algorithm is affected by practical

network limitations (finite buffers, restrictions on data exchange, message expiry times).

The routing algorithm proposed in Chapter 3 can be classified as a history-based routing

algorithm, because the forwarding rules are mainly based on the history of nodes’ contacts.

In Chapter 4, we add some social characteristics of the network to improve the meeting

rate estimation and routing procedures. We use a Bayesian framework and apply the social

properties in prior distributions.

Subsequent Studies

In order to provide the reader with a complete and up-to-date view of the available litera-

ture on the topic of routing in opportunistic DTNs, we review the studies that have been

published after our work (i.e., since 2015) in the rest of this section.

The precision of the analytical models clearly depends on how accurate the estimation

of the meeting rates is. This accuracy directly depends on how well the probability distri-

butions are characterized. [51] proposes new approaches to characterize the distribution of

inter-meeting times that result in more precision of analytical models that are developed

based on exponential distributions. Three different characterizations of the inter-meeting

times are described in [51] and two metrics are used to evaluate them. Relations between

these characterizations are also investigated. [52] studies how detecting the abnormal val-

ues in time series of inter-meeting times can benefit the decision made for the forwarding

rules.

We previously explained that the replication-based routing methods may cause conges-



2 Information Diffusion: Applications and Literature Review 18

tion in the network while the single copy routing protocols have on average high message

delivery latencies. [53] studies how the message copies can be dynamically allocated to

keep a balance between the delay and cost of message delivery. In the routing protocol pro-

posed in [53], the remaining TTL (Time To Live) of a message is used to decide about the

minimum number of copies necessary to achieve a given delivery probability. Experiment

results show that the proposed adaptive multi-step routing protocol has a higher delivery

ratio and a lower delivery cost compared to SW and BubbleRap algorithms.

As a history-based routing protocol, [54] extends the two-hop multi-copy routing scheme

proposed in [20] by developing an optimal dynamic relay node selection algorithm. Similar

to our approach, the goal is to minimize the expected delivery delay. The performance is

evaluated through numerical experiments.

As a social-based routing protocol, CGrAnt [55] uses operational metrics that charac-

terize the opportunistic social connectivity between wireless users. The main idea is that

opportunistic networks are dynamic environments for which swarm intelligence methods,

including approaches based on Ant Colony Optimization (ACO) [56] and Cultural Algo-

rithms (CAs) [57], can be adopted. The most promising message forwarders are selected via

a greedy transition rule based mainly on local information captured from the DTN environ-

ment. Whenever global information is available, it can also be used to support decisions.

[58] explores the structural vulnerability of social-based forwarding and routing methods

in opportunistic networks. It introduces a new problem of assessing the performance re-

liability of opportunistic routing strategies in DTNs from a community structure point of

view. The proposed approach aims to identify the most vulnerable devices in the network

whose non-participation (due to out-of-service or permanent out-of-range) transforms the

current network community structure to a totally different one.

In [59], a solution is proposed to deal with routing attacks in DTNs. First, a general

purpose proactive defence mechanism is proposed for DTNs based on the routing informa-

tion obtained from the messages forwarded by the relay nodes and the acknowledgements

generated by the destination nodes. Then, evolutionary game theory is applied with the

proposed defence mechanism to analyze the strategy changes of the nodes in the networks.

The result is a routing defence scheme which encourages the nodes not to attack but to

cooperate with others.

Studies such as [60] and [61] discuss how maritime networks can be modelled as oppor-

tunistic DTNs. [60] uses shipping lane information to predict the meeting opportunities of
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the ships to optimize the route selection. [61] proposes an improvement over PRoPHET

for underwater communication. [62] evaluates the performance of different DTN routing

protocols including ER and PRoPHET in real world vehicular networks. Different scenar-

ios with different degrees of connectivity and mobility are used to test the feasibility and

efficiency of routing algorithms in real vehicular environments.

2.3 Passive Approach

We now turn our attention from proactive approaches to passive approaches in studying

diffusion processes. Diffusion processes may be observed for different purposes [63]. In

some cases (e.g., [64–68]), the goal is to identify the most influential nodes of the network.

The main concern in other studies (e.g., [69–71]) is to detect the popular topics that have

diffused throughout a network. In this thesis, we pursue the goal of a third group of

studies (e.g., [72, 73]), i.e., to infer the causality component of a diffusion process using

observations related to the cascades. We define infection (or contagion) as the change in

the state of a node that is triggered by an external source or by another node that has

already changed its state. We aim to exploit the available evidence to infer the path that

an infection has traversed in order to reach an arbitrary node. Inferring this path not only

gives us valuable insight about the existing dynamics between the nodes of the network, it

also helps us predict, expedite, or prevent the spread of future infections. In Section 2.3.1,

we state some specific areas that can benefit from the result of each of the three purposes

of observing diffusion processes. We then review the related research studies that pursue

the same goal as ours in Section 2.3.2.

2.3.1 Applications

Propagation of a change in the state or behaviour of individuals or parties is a concept that

exists in various domains. Designing frameworks to model and analyze different realizations

of this concept can provide us with better understanding of each phenomenon and leads to

making better decisions, developing more effective policies, and guaranteeing more balanced

growth.



2 Information Diffusion: Applications and Literature Review 20

Bioinformatics

One of the challenges in the area of brain research is to discover networks describing the

flow of information among communicating neurons in the form of electrophysiological sig-

nals. These networks are thought to be responsible for perceiving and learning about the

environment, as well as producing behaviour. Monitoring these networks is limited by the

number of electrodes that can be placed in the brain of an awake animal [74]. Designing

computational tools to detect, infer, and reason about these networks from the available

data is of crucial importance. Another similar challenge is in protein signalling networks.

These networks play a key role in cellular function, and their dysregulation is central to

many diseases, including cancer [75]. Developing statistical approaches to make inferences

regarding the network structure is required to elucidate the signalling network topology.

Social Network Analysis (SNA)

Social networks such as Twitter and Facebook have created a new media for individuals to

directly or indirectly influence each other’s decisions [76]. A tangible example is the mobile

applications that people install on their smart phones. Learning about an application

that a friend is using can persuade you to install not only because you prefer to use a

piece of software or App that is compatible with his/her version (direct effect), but also

because of the trust you have regarding your friend’s knowledge and choice of technology

(indirect effect). This mechanism can have a cascading effect on the spread of a new

behaviour or product and is being widely used by different industries as a quick and cheap

marketing strategy. As an example, according to [76], Ford Motor Company released its

Fiesta model through social media networks using the top 100 video bloggers (Vloggers) in

2009. This resulted in 3000 reservations for the model by March 2010 by first time Ford

buyers [77]. On the other hand, the diffusion mechanism in social networks may also be used

with malevolent intent to spread malicious gossip or untruthful information. For example,

according to [76], in Summer 2012, false rumours about impending attacks on northeast

Indian migrant workers, caused panic and a widespread migration of these workers back

to their home states in northeastern India [78]. Similarly, following a recent fake tweet

about an explosion in the White House, the Dow Jones industrial average dropped 152

points within seconds [76,79]. Because of the significant positive and negative impacts that

diffusion processes in social network can have on our lives, it’s necessary to thoroughly
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understand their dynamics and develop strategies to control them.

Epidemiology

In numerous cases of disease spreading, social contacts are the main factor of transmission.

Sexually Transmitted Diseases (STDs) are a good example of diseases that depend solely

on personal contacts for dissemination [80]. [81] has studied the propagation patterns of

Severe Acute Respiratory Syndrome (SARS) which was first reported on November 16, 2002

in southern China, and later spread throughout the world and seeded outbreaks in Hong

Kong, Vietnam, Singapore, and Canada. By March 2003, many countries had instituted

general infectious disease control measures, such as quarantine, isolation, and strict hygiene

measures in hospitals. According to [81], delaying the institution of control measures by 1

week would have nearly tripled the epidemic size and would have increased the expected

epidemic duration by 4 weeks. Understanding such implications is essential to help public

health officials to develop appropriate strategies to restrain the spread of the disease.

Finance

In stock markets, distortions in the price of one stock can influence other stocks’ prices

through supply chains or product competitions. Each of the affected stocks may cause

distortions in the returns of a second tier of stocks, each of which can impact others in

the same way. This cascade effect can lead to similar behaviour among seemingly irrel-

evant stocks. Understanding these kinds of interactions helps investors to forecast stock

behaviours and make smarter decisions. As an example, it has been shown in [68] that

industries that are more central in the network of inter-sectoral trade earn higher stock

returns than industries that are less central. In addition, the empirical evidence suggests

that sectoral shocks that contribute to aggregate risk are more likely to pass through cen-

tral industries than peripheral industries. The information diffusion process also exists in

investor populations and influences trading behaviour and returns. [82] studies how the so

called word-of-mouth effects influence behaviour in various financial market settings. [67]

shows that central investors earn higher returns and trade earlier than peripheral investors

with respect to information events.
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2.3.2 Literature Review

A major factor that differentiates network inference methodologies is the type of available

observations and the amount of useful information that can be extracted from them. In

most of the social network inference scenarios, for example, the cascade trace is directly

observable. The moment of time at which an arbitrary node shows infection symptoms

can be easily specified and identified. The majority of the available network diffusion

inference literature (e.g., [72, 73, 83–87]) focuses on such frameworks where the cascades

are directly and perfectly observed. However, there are other scenarios in which we cannot

easily determine when nodes become infected. An example of such a scenario is presented in

Figure 2.1. Having access to the number of weekly reported cases of measles and chickenpox

in seven major cities of England and Wales for almost 40 years [88], we can observe that

different regions become infected at different points in time. The infection then dies away

(the region returns to a “susceptible” state). However, we cannot easily pinpoint the exact

week when a region becomes infected. Therefore, more sophisticated inference methods

are required for cases with limited or indirect observations. [89–92] have studied diffusion

processes in which the cascade trace is not directly observable or is partially missing.

In [90–92], it is assumed that a portion of the cascade data is directly observable and the

authors propose techniques to infer the causality structure from this portion. In [89], the

cascade trace is unavailable, but other observable properties of the cascade are used to

infer the causality structure. Although these approaches can identify how an infection has

traversed the network (in the example of Figure 2.1, which region is primarily responsible

for infecting another), they sometimes do not provide all of the information required to

take appropriate action to mitigate or expedite the spread of an infection. In the example

of a highly contagious disease, we may choose to control transportation and movement

between regions or implement stricter health checks. In the example of the stock market,

we may choose to invest in a stock that is likely to be affected (infected) soon by an external

disruptive influence. To implement such strategies, it is important to estimate when nodes

have become infected and to infer model parameters that allow us to construct predictions

of when future infections will occur.

In the rest of this section, we review the existing research most closely related to our

passive study approach. We first discuss the studies that assume the cascades (infection

times) are perfectly observed and propose methods to infer just the network structure.
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Figure 2.1 Weekly reports of Measles and Chickenpox in 7 major cities of
England and Wales: London (Lon), Bristol (Bri), Liverpool (Liv), Manchester
(Man), Newcastle (New), Birmingham (Bir), Sheffield (She)

Then, we describe the few existing studies that have the same assumption as our research

contribution in Chapter 5, i.e., neither the network structure nor the infection times are

perfectly or directly observed. We finally survey methods for detecting the moment of time

at which the statistical characteristics of multiple time series change. These methods do not

involve any notion of an underlying diffusion network that induces relationships between

the time series. We end this section by clarifying how this thesis contributes to this body

of literature.

Network Inference with Perfect Cascade Observation

Most of the earlier work exploring diffusion network inference techniques assumes that

cascades are perfectly observed, i.e., the infection times are exactly known. [72] models dif-
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fusion processes as discrete networks of continuous temporal processes occurring at different

rates. Given the infection times, the goal is to infer the parental relationships and estimate

the link strengths that maximize the likelihood of the observed data. An algorithm called

NETRATE is developed to solve the convex optimization problem. [73] uses a tree-shaped

graph of the parental relationships inferred from observed cascades of different contagions

to infer the complete set of edges of the graph (for example a friendship graph in a social

network). The proposed NETINF algorithm is used to find the maximum likelihood graph

conditioned on the set of observed cascades.

[85] uses the same setup as [72], but it assumes that the underlying network structure

is not static and infection pathways change over time. A stochastic convex optimization

procedure is employed to infer the dynamic network and an online inference algorithm

called INFOPATH is developed to solve it. [86] studies how the network evolution affects the

diffusion process and proposes a joint continuous-time model to account for co-evolutionary

dynamics between these two processes.

[87] considers inferring the network structure as an intermediate task and focuses on

estimating joint properties of networks and diffusion processes such as the node influence

score of a contagion. The network structure (parental relationships and link strengths)

is assumed to be hidden and the infection times are observed. A Bayesian framework is

used to calculate the expectation of the hidden parameters under the posterior distribution.

Instead of inferring the network structure, [83] and [84] focus on the global influence a node

has on the rate of diffusion through the network. The authors develop a linear influence

model in which the growth in the number of newly infected nodes is expressed as a function

of the infection times of the previously infected nodes. [83] shows that the influence function

of each node can be estimated using a simple least squares procedure by modelling it in

a non-parametric way. [84] uses the same linear influence model, but introduces sparsity

in the estimated influence matrix and applies regularization penalties to take into account

the nodes’ centralities.

Network Inference without Perfect Cascade Observation

We now review the existing inference techniques for scenarios where cascades are not per-

fectly observed. Assuming that the infection times are only partially observed and the

diffusion trace is incomplete, [90] develops a two-stage framework to pinpoint the infection
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source. After learning a continuous-time diffusion network model based on the historical

diffusion trace in the first stage, the source of an incomplete diffusion trace is identified by

maximizing its likelihood under the learned model. Importance sampling approximation is

used to find optimal solutions. Using an SEIR (Susceptible-Exposed-Infected-Recovered)

infection model, [89] assumes that partially observed probabilistic information about the

state of each node is provided, but the exact state transition times (infection times) are

not observed. The underlying network is inferred by minimizing the expected loss over

all realizations of the unobservable trace. The loss function is the negative log-likelihood

of node state probabilities at each observed time point in a realization of infection times.

Although the network structure can be detected using a convex optimization problem, the

transition (infection) times are not estimated.

[91] studies the theoretical learnability of tree-like graphs given the initial and final set

of infected nodes. The traces are defined as sets of unordered nodes and the authors strive

to reconstruct the underlying network. The algorithm proposed in [91] works by observing

the relation that a particular vertex’s infection has on the likelihood of infection at other

locations in the tree. The goal in [92] is to reconstruct the so-called node couplings using

Dynamic Message Passing (DMP) equations. The authors assume that the cascade obser-

vations are only partially available and define coupling of nodes i and j as the probability

that the infected node i transmits the contagion to its susceptible neighbor j.

Changepoint Detection

Another sizeable, related body of literature addresses detecting abrupt changes in the

statistical structure of multiple time series. The moments in time that divide time series

into distinct homogeneous segments are referred to as changepoints. We refer the reader

to [93] for a detailed discussion of the topic.

Most changepoint detection, or time series segmentation, methods strive to detect single

and multiple changepoints in univariate ([93–95]) or independent multivariate ([96]) time

series. More closely related to our work is the approach in [97], which involves an underly-

ing Gaussian graphical model that captures the correlation structure between multivariate

time series. There is no notion of a diffusion process; the model captures contemporaneous

correlation structure. In Chapter 5 of this thesis, we strive to detect the changepoints of

multiple time series in the context of a background diffusion process that dictates when
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the changepoints occur. We combine the indications of change in the statistical character-

istics of the observed cascades with the causality relationships between nodes to infer the

underlying structure as well as the infection times (i.e., the changepoints). We, however,

use the pure statistically detected changepoints as a ground truth to evaluate the infection

times we detect for the diffusion process.

Our Contributions

In Chapter 5 of this thesis, we improve upon the existing methods by proposing an approach

to simultaneously infer the structure and the cascade trace of a diffusion process when the

infection times are completely unavailable. We assume that the only observation we have

from each node is a time series whose characteristics provide an indication of the behavioural

changes caused by receiving the infection. Modelling the problem in a Bayesian framework,

we develop a batch inference algorithm based on Markov Chain Monte Carlo (MCMC) to

detect the causality structure and estimate the unobserved infection times. In this inference

method, we consider the cases where no infection occurs in a batch of data. We then extend

the batch inference model to online scenarios where inference decisions need to be made

before the entire time series is available. We develop an online version of the inference

algorithm using some Sequential Monte Carlo-based (SMC-based) techniques. We evaluate

the performance of our suggested methods using both synthetic and real-world datasets.
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Chapter 3

Proactive Approach: Routing in

Opportunistic Delay Tolerant

Networks

3.1 Overview

As described in Chapter 2, in Delay/Disruption Tolerant Networks (DTNs), a communica-

tion path between any two nodes is frequently unavailable and nodes are only intermittently

connected. Since end-to-end connections cannot be established at any moment, the con-

ventional routing algorithms for MANETs such as AODV (Ad-hoc On-demand Distance

Vector) [98] and DSR (Dynamic Source Routing) [99] do not work properly. Due to this

dynamic nature of DTNs, routing is usually performed based on a store-carry-forward mech-

anism. The source transmits a message to a node it meets; this intermediate node stores

the message by buffering it, then carries it (the mobility of the node is exploited), before

forwarding it to another node it meets. Opportunistic networks are a subcategory of DTNs

in which the node connections are random rather than scheduled. This unpredictability of

meetings in opportunistic DTNs makes designing an efficient routing protocol even more

challenging.

In this chapter, we study the problem of message forwarding in opportunistic DTNs

and propose both centralized and decentralized routing algorithms. Prior to introducing

our algorithms, we state the notations and formulate the problem in Section 3.2. In Section

2017/09/15
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3.3, we assume that a global knowledge of the network is available at a central unit and

propose a centralized algorithm to minimize the expected latency from all nodes of the

network to a particular destination. In Section 3.4, we assume that no centralized unit is

available and each node is only aware of the rates of its own meetings with other nodes

(i.e., partial a priori knowledge). Since each node is responsible for finding its optimal

forwarding decisions, we propose a decentralized version of the forwarding algorithm and

prove that it converges to the same optimal solution of the centralized algorithm. Finally,

we propose a decentralized approach with no a priori knowledge in Section 3.5. In this

setting, an arbitrary node does not even know its own meeting rates. Therefore, all the

meeting rates need to be estimated. The numerical simulation results of applying the

proposed algorithms on synthetic and real-world datasets are presented in Section 3.6. We

also compare the performance of our proposed algorithms with other existing approaches

in terms of latency, delivery rate, hop counts, and buffer occupancy. We summarize the

contributions of the chapter in Section 3.7. Proofs of lemmas and theorems stated in this

chapter are provided in Section 3.8.

3.2 Problem Statement

We consider a set of N mobile nodes N = {1, . . . , N} that have short communication

ranges. When two nodes i and j are located in the communication range of each other, we

say they have met or contacted each other. In this set up, nodes i and j can communicate

with each other only if they meet. We refer to the time between two consecutive meetings

of nodes i and j as their inter-meeting time and denote it by xij. Based on the key char-

acteristic of opportunistic networks, meeting times are not pre-scheduled. Therefore, xij

should be modelled as a random variable. Although the aggregate inter-meeting distribu-

tions of nodes in MANETs often follow a truncated powerlaw distribution [100,101], there

is evidence that the inter-meeting times of individual pairs of nodes can be adequately

modelled by exponential distributions with heterogeneous coefficients [102–105]. In partic-

ular, Conan et al. [102] and Gao et al. [103] conduct statistical analyses of mobile social

network data traces, including the Infocom data set [106] that we analyze in Section 3.6.

They demonstrate that most pairs of nodes have inter-meeting times that are approxi-

mately exponentially distributed. In [104, 105], approximately exponential distributions

of individual meeting times are detected through statistical analyses of car/taxi mobility
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traces. We assume that xij follows an exponential distribution with parameter λij, i.e.,

fxij
(x|λij) = λije

−λijx (3.1)

After nij meetings between nodes i and j, we assume that we have nij independent samples

of this distribution {x1
ij, . . . , x

nij

ij }.
We associate with the network a contact graph which is formed by adding a link between

any two nodes that meet. We assume that the contact graph is connected and denote the

set of neighbours of node i in this graph by Si = {j ∈ N|λij > 0}. We focus on the

scenarios in which all the N nodes of the network aim to send messages to a particular

destination node d and intend to minimize the sum of the expected latencies of all the nodes

in the network to the specified destination. We can effectively provide routing decisions for

all destinations in the network just by solving the same problem for all d ∈ N . Since the

contacts between nodes are not pre-scheduled, we cannot identify end-to-end paths ahead of

time. Hence, solving the routing task is equivalent to identifying the forwarding decisions

that nodes should make when meeting each other. In order to address the scenarios in

which messages are large and nodes’ memory resources are limited, we focus on single-copy

routing algorithms. In these algorithms, only one copy of a message exists in the network

at any time. Each time node i meets one of its neighbours j ∈ Si, it forwards the messages

destined for d with probability pij, or keeps them with probability 1 − pij. When a node

decides to forward its messages to another node, it deletes them from its own buffer. In

Chapter 6, we briefly explain how our proposed single-copy algorithms can be used to

develop multi-copy routing algorithms.

Considering the matrix PN×N comprised of all pairs i and j, we set pij = 0 if nodes i and

j never meet and are thus not neighbours in the contact graph. We denote the forwarding

probabilities of node i by the vector pi; this is the i-th row of the matrix P. Table 3.1 lists

the notations used in this chapter.
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The expected latency from node i to destination d is a function of the probability

decision matrix P and we denote it by Lid(P). Our goal is to find the matrix P∗ such

that the sum of the expected latencies of all the nodes in the network to the specified

destination d is minimized. Let us call this utility function U(P) =
∑

i∈N Lid(P). We

assume that nodes’ buffer sizes are unlimited and message Time To Live (TTL) is infinity.

These assumptions imply that messages never expire and nor are they discarded due to the

buffer overflow. We also assume that nodes’ speed and message lengths are such that any

number of messages can be forwarded during each meeting. The last assumption is that the

network topologies and meeting rates are such that the solution P∗ is unique. If not, our

algorithms guarantee that we reach one of the optimal matrices, but the proofs are more

complicated. The first step towards achieving our goal and finding matrix P∗ is to discover

how the expected latency of an arbitrary node i, Lid(P), depends on the elements of the

probability decision matrix P in general. Using some characteristics of the exponential

distribution, Lemma 1 provides an expression for Lid(P) in terms of P and λij, j ∈ Si. The

proof is available in Section 3.8.1.

Lemma 1. The expected latency of a node i ∈ N to the destination d is

Lid(P) =
1 +

∑
j∈Si

pijλijLjd(P)
∑

j∈Si
pijλij

(3.2)

Based on the expression derived in Lemma 1 (see Section 3.8.1 for the proof), the

expected latency of each node to the destination depends on the expected latencies of its

neighbours. This result raises a substantial question: Does the probability decision matrix

that minimizes the sum of expected latencies of all nodes of the network, P∗, also minimize

the expected latency of each individual node? Before continuing to propose algorithms for

finding P∗, we answer this question and make two points about the structure of P∗ through

the following theorem. The proof is provided in Section 3.8.2.

Theorem 1. Suppose P∗ = argminP∈[0,1]N×N

∑N
i=1 Lid(P). Then:

1. P∗ is a binary matrix (its components are either 0 or 1).

2. For any i ∈ N , the matrix P∗ also minimizes Lid(P):

∀i ∈ N : P∗ = arg min
P∈[0,1]N×N

Lid(P) (3.3)
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Theorem 1 shows that the minimization problem is actually a binary problem. Each

time node i meets one of its neighbours j ∈ Si, it either forwards the message or keeps it.

From now on, we change our notation and use the binary indicator matrix B instead of P

to capture this binary decision. Therefore, the optimization takes the form:

B∗ = arg min
B∈{0,1}N×N

N∑

i=1

Lid(B) (3.4)

Theorem 1 also states that the optimum solution matrix B∗ can be equivalently achieved

by minimizing the expected latency of each of the network nodes to the destination. This

is the main idea of developing centralized and decentralized algorithms for finding B∗. In

the next three sections, we introduce the algorithms we have proposed for solving this

optimization problem and prove that they find the optimal solution.

3.3 Centralized Approach with Global Knowledge

Suppose for each node i ∈ N , the set of neighbours Si and their meeting rates λij, j ∈ Si, are

known at a central calculation unit. Algorithm 1 presents an iterative procedure to identify

a binary decision matrix B. In this algorithm, we first decide on the forwarding rules of

the node that has the most frequent direct contacts with the destination. We refer to this

node as node A. In order to achieve the minimum expected latency to the destination,

node A should forward its generated or received messages only to the destination, ignoring

its meetings with any other nodes. All other nodes that A encounters meet the destination

less frequently and, if they forward their messages to the destination through other nodes,

these other nodes also meet the destination less frequently than A. In subsequent steps of

the algorithm, we consider all the nodes that have direct contacts with the nodes whose

forwarding decision rules have already been made (the set A) and calculate the minimum

latency that each of them can obtain by forwarding through nodes in A to the destination.

At the end of each iteration, we finalize the forwarding decision for the one node that can

achieve the minimum latency and add it to A. We repeat the procedure until the decision

has been made for all the nodes of the network and the elements of the binary matrix B

have all been specified. The next theorem states that the binary matrix B resulting from

applying this procedure, as specified concretely in Algorithm 1, achieves the minimum sum
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Algorithm 1 Centralized Greedy Latency Minimization with Global Knowledge

1: // Initialization

2: A = {d}, B = 0N×N , Ldd = 0, Ljd = ∞ for j ̸= d

3: // Iteratively add nodes to the set A

4: while A ≠ N do

5: for each node i /∈ A do

6: Identify SiA = Si ∩A

7: Calculate Gid = minmi∈{0,1}|SiA|

1+
∑

j∈SiA
mijλijLjd∑

j∈SiA
mijλij

and identify the minimizing m∗
i

8: Denote Di = {j|j ∈ SiA,m∗
ij = 1}

9: end for

10: Identify v = argmini∈N/A Gid

11: Set Lvd = Gvd

12: Set bvj = 1 for all j ∈ Di

13: Set A = A ∪ {v}

14: end while

of expected latencies to the destination. The proof can be found in Section 3.8.3.

Theorem 2. Suppose all meeting rates are different and there exists a unique solution B∗

for the optimization problem (3.4).

1. After each iteration of Algorithm 1,

(a) ∀i ∈ A, ∀j ∈ N : bij = b∗ij

(b) ∀i ∈ A : Lid(B) = Lid(B∗)

(c) maxi∈A Lid(B∗) < mini ̸∈A Lid(B∗)

2. Upon completion, Algorithm 1 identifies a labelling B and associated expected latencies

Lid such that B = B∗

Theorem 2 demonstrates that the iterative optimization procedure expressed in Algo-

rithm 1 finds the solution of the minimization problem in (3.4). If there is not a unique
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solution, then at some point in Algorithm 1, there will be multiple mis that solve the opti-

mization in line 7. It is straightforward to show that choosing any one of these mi vectors

leads to a decision matrix B that achieves the minimum expected latencies.

3.4 Decentralized Approach with Partial a priori Knowledge

Suppose no central unit exists and each node is just aware of its own Si and the meeting

rates λij, j ∈ Si. Algorithm 2 demonstrates how nodes can make their binary forwarding

decisions based on this local information. Since the expected latency of each node depends

on the expected latency values of its neighbours, nodes need to have estimates of their

neighbours’ expected latencies to be able to make forwarding decisions. We denote by

L̂id(j) the estimate at node j of the expected latency from node i to the destination. In

Algorithm 2, each time two nodes meet, they update these estimates and then recalculate

their optimum forwarding rules. Theorem 3 proves that this decentralized approach results

in the same global optimum solution. The proof of Theorem 3 is provided in Section 3.8.4.

In this proof, we assume that the nodes are labelled in order of ascending expected latency

under B∗, i.e.,

L1d(B
∗) ≤ L2d(B

∗) ≤ · · · ≤ L(N−1)d(B
∗) (3.5)

We also define a new set of parameters Tk, k = 1, . . . , N . These parameters will be later

used to prove the convergence of Algorithm 2. We define T1 as the moment of time at

which node 1 meets the destination node for the first time. Similarly, we define Tk as the

earliest time by which node k > 1 has met all nodes in the set {1, . . . , k − 1} ∩ Sk in the

time period (Tk−1, Tk].

Theorem 3. The decision matrix B identified by Algorithm 2 converges to B∗ with prob-

ability 1.

We refer to our proposed decentralized greedy latency minimization algorithm (Algo-

rithm 2) as MinLat and evaluate its efficiency in different random and real-world networks

based on certain performance metrics in Section 3.6. Regarding the computational com-

plexity of finding the minimum expected latency in MinLat, the following lemma shows

that the optimizations in lines 8 and 9 of this algorithm are linear fractional programs and

can be solved quickly using variants from linear programming. Further details are available

in Section 3.8.5.
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Algorithm 2 MinLat: Decentralized Greedy Latency Minimization with Partial a priori
Knowledge

1: // Initialization

2: B = 0N×N

3: ∀i ∈ N /d, ∀j ∈ N : L̂dd(j) = 0, L̂id(j) = ∞

4: while Nodes continue to meet do

5: // Nodes i and j meet at time t

6: Set L̂id(j) = L̂id(i)

7: Set L̂jd(i) = L̂jd(j)

8: Update L̂id(i) = minmi∈{0,1}|Si|

1+
∑

k∈Si
mikλikL̂kd(i)∑

k∈Si
mikλik

and identify the minimizing m∗
i

9: Update L̂jd(j) = min
mj∈{0,1}|Sj |

1+
∑

k∈Sj
mjkλjkL̂kd(j)

∑
k∈Sj

mjkλjk
and identify the minimizing m∗

j

10: Set bi = m∗
i and bj = m∗

j

11: end while

Lemma 2. The minimization problem in Algorithm 2,

L̂id(i) = min
mi∈{0,1}|Si|

1 +
∑

k∈Si
mikλikL̂kd(i)∑

k∈Si
mikλik

, (3.6)

can be converted to a linear programming problem.

Assuming that (3.6) can be solved in polynomial order P (|Si|), the worst case complexity

order of Algorithm 1 is O(N2)P (N) because in the ith round of this algorithm, (3.6) should

be solved for each of the N − i nodes that are not in the set A. In Algorithm 2, each time

node i meets one of its neighbours, it solves a problem of complexity P (|Si|). The only

information that a node needs to share when it meets another node is its estimate of its own

expected latency to the destination. In the general case where messages can be destined to

any node in the network, this exchangable message could be a length N vector of expected

latencies to all nodes.

The following proposition provides a bound on the expected convergence time of the

MinLat Algorithm (Algorithm 2). The brief proof is provided in Section 3.8.4. The bound
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depends on the slowest meeting rate between each node and its candidate relay nodes. This

is a conservative bound, since in practice, a node only needs to meet the relay nodes to

which it actually forwards data under the optimum forwarding rule.

Proposition 1. Assuming that the nodes are labelled in order of ascending expected latency

under B∗, the expected convergence time, E(TN), of Algorithm 2 is bounded as

E(TN) <
1

λ1d
+

N∑

l=2

l − 1

min
i∈{1,...,l−1}

λli>0

λli
(3.7)

3.5 Decentralized Approach with No a priori Knowledge

In Section 3.5, we assumed that as soon as a node meets another node, it has a perfect

knowledge of its meeting rate with that node. In practice, a node will need to estimate

its meeting rates with the neighbours and periodically revise the estimation as meetings

occur (or fail to occur). Consider an arbitrary pair of nodes i and j that meet each other

with rate λij. As mentioned in Section 3.2, we denote the kth inter-meeting time between i

and j, which is the time between kth and k + 1th meetings, by xk
ij > 0. After nij meetings

between i and j, the set {x1
ij, . . . , x

nij

ij } is a set of independent samples of an exponentially

distributed random variable with parameter λij.

In this section, we develop a more practical version of the decentralized MinLat al-

gorithm called MinLat-E. In MinLat-E, nodes do not know their meeting rates and use

Maximum Likelihood (ML) estimation to estimate them. We denote the ML estimate of

the meeting rate between nodes i and j after nij meetings by λ̂
nij

ij . This estimate is by

definition the meeting rate that maximizes the likelihood function

L(x1
ij, .., x

nij

ij ;λij) = f(x1
ij, .., x

nij

ij |λij) = λ
nij

ij e−λij
∑nij

k=1 x
k
ij (3.8)

Therefore, after nij meetings, nodes i and j estimate their meeting rate as

λ̂
nij

ij =
nij∑nij

k=1 x
k
ij

(3.9)

Hence, under the exponential model, a node only needs to remember the last time it

met its neighbour, lij, and the number of times it has met that neighbour, nij. With these
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two pieces of information, it can update its estimation of the meeting rate (λ̂
nij

ij ) from the

previously estimated value (λ̂
nij−1
ij ) using the following equation.

λ̂
nij

ij =
nijλ̂

nij−1
ij

nij − 1 + λ̂
nij−1
ij (t− lij)

(3.10)

where t denotes the time since the network began operating.

As shown in Algorithm 3, MinLat-E solves the similar optimization problems as in

MinLat using the estimated meeting rates. In this algorithm, the decision matrix achieved

by MinLat-E at time t is denoted by B̃t. The ith row of this decision matrix is denoted by

B̃i
t. Further, L̃jd,t(B̃t, i) denotes the estimate at node i at time t of the expected latency

of node j to the destination, when the forwarding decision matrix is B̃t. This estimate

differs from the one obtained in Algorithm 2 , L̂id(i), because MinLat calculates them

using estimated meeting rates λ̂
nij

ij .

The main question here is if MinLat-E converges to the same expected latencies as

MinLat does. The following theorem answers this question. Before discussing the details of

this theorem, we distinguish between two terms: estimated expected latencies and achieved

expected latencies. The term “estimated expected latencies” is used to refer to the expected

latencies, L̃jd,t(B̃t, i), that MinLat-E calculates using the estimated meeting rates and the

decision matrix B̃t. However, the achieved expected latencies are the latencies that are

derived using the true meeting rates and the decision matrix B̃t. We denote the achieved

expected latencies by Lid(B̃t). Theorem 4 states that both the achieved and the estimated

expected latencies converge in probability to the optimum expected latencies Lid(B∗). The

proof is provided in Section 3.8.6.

Theorem 4. For any node in the network, the sequences of estimated and achieved latencies

converge to its optimum expected latency in probability, i.e., {L̃id,t(B̃t, i)}
p−→ Lid(B∗) and

{Lid(B̃t)}
p−→ Lid(B∗). More precisely for any ϵ > 0,

lim
t−>∞

P (|L̃id,t(B̃t, i)− Lid(B
∗)| < ϵ) = 1 (3.11)

lim
t−>∞

P (|Lid(B̃t)− Lid(B
∗)| < ϵ) = 1 (3.12)

We check the claims of Theorem 4 and investigate the convergence speed of MinLat-E

through simulations in Section 3.6.
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Algorithm 3 MinLat-E: Decentralized Greedy Latency Minimization with no a priori
Knowledge

1: // Initialization

2: B̃t = 0N×N

3: ∀i, j ∈ N : nij = 0, lij = 0

4: ∀i ∈ N /d, ∀j ∈ N : L̃dd,t(B̃t, j) = 0, L̃id,t(B̃t, j) = ∞

5: while Nodes continue to meet do

6: // Nodes i and j meet at time t

7: Set nij = nij + 1

8: Update λ̂
nij

ij using (3.10)

9: Set L̃id,t(B̃t, j) = L̃id,t(B̃t, i)

10: Set L̃jd,t(B̃t, i) = L̃jd,t(B̃t, j)

11: Update L̃id,t(B̃t, i) = minmi∈{0,1}|Si|

1+
∑

k∈Si
mikλ̂

nik
ik L̃kd,t(B̃t,i)

∑
k∈Si

mikλ̂
nik
ik

and identify the minimiz-

ing m∗
i

12: Update L̃jd,t(B̃t, j) = min
mj∈{0,1}|Sj |

1+
∑

k∈Sj
mjkλ̂

njk
jk L̃kd,t(B̃t,j)

∑
k∈Sj

mjkλ̂
njk
jk

and identify the mini-

mizing m∗
j

13: Set b̃i
t = m∗

i and b̃i
t = m∗

j

14: Set lij = t

15: end while

3.6 Simulation Results

In this section, we investigate the efficiency of our proposed approach in modelling and

solving the forwarding/routing problem in different opportunistic network scenarios. We

first evaluate the performance of the proposed algorithms on ideal network scenarios where

there is no restriction on message life times, buffer sizes and data exchanges in Section

3.6.1. We then study the network behaviour when these practical challenges are added to

the simulation set ups in Section 3.6.2.

Expected latency values shown in the simulation results only reflect the delay caused
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by carrying the message around before meeting a relay node in the store-carry-forward

mechanism. They do not include other sources of delay such as wireless transmission delay,

queuing delay, or the delay caused by exchanging the routing information.

3.6.1 Idealized Network Models

We test our algorithms using three different networks to model the contacts between N =

41 mobile nodes. The characteristics of the networks are derived from the Infocom05

dataset [106]. This data set is based on an experiment conducted during the IEEE Infocom

2005 conference in Miami where 41 Bluetooth enabled devices (Intel iMote) were carried

by attendees for 3 days. The start and end times of each contact between participants were

recorded. The average time between node contacts in the Infocom05 dataset is 1.3 × 104

seconds (3.7 hours). In our processing, we only consider the contacts in which both devices

recognized each other so that an acknowledged message could be transferred between them.

In the first network, (Net I), we construct a contact graph using an evolving undirected

network model based on the preferential attachment mechanism. [107] studies how oppor-

tunistic networks might be modelled as scale-free networks. We start with a small fully

connected graph ofm0 = 5 vertices and add vertices to it one by one until the graph consists

of N = 41 nodes. At each step, the new vertex is connected to m = 5 previously existing

vertices. The probability that the new vertex is connected to vertex i is ki∑
j kj

where ki is

the degree of i up to this stage. After building the contact graph, we assign a parameter

λij to each pair of nodes i and j which are connected in the contact graph and assume

that they meet with exponentially distributed inter-meeting times with parameter λij. We

choose the parameters λij from a uniform distribution with the same expectation as the

average of node meeting rates observed in the Infocom05 dataset.

In Net II, we set λij to be equal to the inverse of the average inter-meeting time between

nodes i and j in the Infocom05 dataset. We are interested in the behaviour of the algorithms

in relatively sparse networks, so we limit the number of neighbours of each node: node i is

only connected to node j in the contact graph if the meeting rate λij is among the largest

K = 10 meeting rates of either node i or node j. In our simulations, the meeting times

between nodes i and j for Net II are then chosen from an exponential distribution with

parameter λij. In the third experimental network, Net III, we use the actual meeting times

recorded in the Infocom05 dataset. The analysis in [103] indicates that the distribution of
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individual inter-meeting times for most pairs of nodes can be approximated reasonably well

by an exponential distribution; on the other hand, the aggregate distribution of contact

times shows heavy-tailed behaviour and is better approximated using a truncated power

distribution [100,101]. Table 3.2 summarizes the properties of the test networks.

Table 3.2 Test network properties
Net-
work

Contact
Graph

Parameters
Inter-meeting

Times
Number
of nodes

I
Preferential
Attachment

m0 = 5
m = 5

Exponential
λ: uniform

41

II
Sparsified
Infocom

K = 10
Exponential
λ: dataset

41

III
Sparsified
Infocom

K = 10 Dataset times 41

As mentioned in Section 3.4, we call our proposed decentralized greedy latency mini-

mization algorithm MinLat and refer to its more practical version with meeting rate esti-

mations as MinLat-E. In these two algorithms, the decisions that nodes make for future

forwarding rules depend on the (estimated) meeting rates, which are derived from the fre-

quency of past contacts between nodes. Thus, MinLat and MinLat-E can be identified as

history-based routing algorithms. In order to evaluate their performance, we compare them

with existing history-based routing protocols that can be implemented in a distributed fash-

ion and do not need a priori knowledge of the network topology. As mentioned in Section

3.2, the fixed point algorithm proposed in [47] is proved to result in the minimum expected

latency (which is expected to be the same as the result of our proposed centralized Algo-

rithm 1). However, the proposed algorithm in [47] is centralized and needs to be performed

in a control unit where the whole topology of the network is known. The TOUR algorithm

proposed in [48] is decentralized, but each node needs perfect a priori knowledge of its

meeting rates with other nodes. Also, the main focus of TOUR is to find the optimum

way to make forwarding decisions based on the priorities of messages. We have chosen

PRoPHETv2 [27] and MaxProp [28] as the most appropriate candidates for comparison.

We also compare to Epidemic routing (ER) [14], which is expected to result in a high

delivery probability at the expense of high usage of network resources. The parameters

of PRoPHETv2 are set to those suggested in [25] and [27], i.e., Pinit = 0.75, β = 0.25,

γ = 0.98, and time step = 1. In order to put the focus on evaluation of the performance
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efficiency of forwarding rules and eliminate the effect of the buffer management technique

on this performance, the dropping rules proposed for MaxProp in [28] are not applied.

We divide the Infocom05 dataset into slots of 12 hours. In each of these time slots, we

build networks I to III using the nodes that are present in that period. The intermeeting

time exponential parameters (λijs) are estimated based on the meetings that occurred in

that specific time slot and networks I and II are constructed using these estimated pa-

rameters. For each of the first four 12-hour periods (the first two days of the conference),

we send 1000 messages, spaced by 5-second intervals, from randomly chosen source nodes

to a particular destination. We terminate the simulation at the end of the 3-day period,

and calculate the fraction of messages successfully delivered by each of the single copy

(PRoPHETv2, MinLat) and multi-copy (Epidemic, MaxProp) forwarding algorithms. For

each algorithm, we also calculate the average latency of the messages that are delivered by

all four algorithms; the average number of hops that messages pass to reach the destination;

and the average buffer occupancy of the nodes. For each of the 41 nodes of the network, we

calculate the average of performance metrics over the time slots when that node has been

chosen as a destination. Figure 3.1 shows the average and the 95% confidence intervals of

the four performance metrics for different destinations in the three test networks using Epi-

demic, PRoPHETv2, MaxProp, and MinLat forwarding algorithms. There is no restriction

on message life time or buffer size that can cause message dropping in these simulations.

However, the delivery rates in some cases are less than 1 because the simulations are termi-

nated before all of the generated messages are successfully delivered. We observe that in all

the three test networks, MinLat has a better performance than the other existing history-

base single copy algorithm, PRoPHETv2, in terms of delivery rate and average latency. Its

performance is also comparable to MaxProp which is a history-based multi-copy algorithm.

Also, noting that the scale of the vertical axis of Figure 3.1d is logarithmic, we see that

MinLat occupies much less memory of nodes’ buffers on average. For networks I and II,

where the assumption of exponentially distributed inter-meeting times holds, delivering a

higher rate of messages with lower average latencies than PRoPHETv2 is expected from

Theorem 3. However, we observe that this result also holds for network III where the actual

meeting times are used. All algorithms display slightly poorer performance in network III;

this is probably due to heavy-tailed and non-stationary inter-meeting times.

In order to explore how the incorporation of meeting rate estimations in MinLat-E af-

fects the message delivery performance, we conduct further simulations with a different
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Figure 3.1 Comparison metrics in test networks with N = 41

message generation scenario on network II. Figure 3.2 displays the average delivery latency

as a function of time for the history-based routing algorithms PRoPHETv2, MaxProp,

MinLat, and MinLat-E. The delivery latency values are averaged over 32 simulation runs

while the destination node and message generation times are fixed in all the 32 runs. The

simulation is repeated for four different destinations. Messages are generated with inter-

arrival time of t seconds at randomly chosen source nodes where t is uniformly distributed

in [0, 5]. Each point on the curves represents the average latency of the 1500 most recently

sent messages. As Figure 3.2 shows, in all of the three single copy routing algorithms

(PRoPHETv2, MinLat, MinLat-E), the average time it takes for a message to be delivered

at the destination decreases as time goes by. This decreasing trend is due to the fact that
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the forwarding rules discovered by nodes improve as the nodes have more contacts and

their information concerning their neighbours’ message delivery capabilities becomes more

accurate. However, in the multi-copy routing algorithm, MaxProp, the average message

delivery latency increases in the beginning. In MaxProp, the weights assigned to the links

are initialized to be equal, which means that nodes forward messages to more of their neigh-

bours. There is thus a high level of message replication which leads to messages reaching

the destination sooner on average. As time passes, the level of replication decreases and the

average delivery latency increases. We also observe that MinLat-E and MinLat eventually

achieve the same average delivery latencies, as expected from Theorem 4. However, the

convergence to the optimum point is slower in MinLat-E due to the time it takes for nodes

to obtain accurate estimates of their meeting rates.

As proved in Theorem 4, estimated and achieved expected latencies in MinLat-E con-

verge to the optimum expected latencies of MinLat in probability. Our next set of simu-

lations shows how the differences between these two expected latencies and the optimum

values decrease over time. In addition to the decentralized scheme (MinLat and MinLat-E),

we add the recursive maximum likelihood estimation of meeting rates to the centralized

scheme (Algorithm 1) as well. Each time two nodes meet and update their estimations

of their meeting rates, we run Algorithm 1 with the new set of estimated meeting rates.

We conduct experiments using both the centralized and decentralized algorithms operating

on the extension of network I to 100 nodes. We select the λ parameters of inter-meeting

times from a uniform distribution U [0, 0.01]. The destination node is randomly chosen

from the N nodes of the network based on a uniform distribution and is fixed throughout

the simulation. We run the simulation for 5 × 104 seconds and examine some statistical

characteristics of the discrepancies discussed in Theorem 4 over all nodes of the network.

Figure 3.3a shows the median, the 25th and 75th percentiles, the highest values, and the

outliers of absolute differences between the estimated expected latencies and the minimum

expected latencies, i.e., |L̃kd,t(B̃t, k) − Lkd(B∗)| for all k ∈ N . The central mark of each

box is the median, the edges of the box are the 25th and 75th percentiles, the whiskers ex-

tend to the highest values not considered as outliers, and outliers are plotted individually.

Figure 3.3b shows the same characteristics for absolute differences between the achieved

expected latencies and the minimum expected latencies, i.e., |Lkd(B̃t) − Lkd(B∗)| for all

k ∈ N . As expected from Theorem 4, we see that the estimated and achieved discrepancies

both decay to zero as the time goes by (for achieved latencies, it is almost zero for all nodes
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Figure 3.2 Evolution of average delivery latency with time (both in seconds)

of the network after t = 7000 seconds). Figure 3.3 indicates that after a certain time the

decentralized algorithm achieves almost the same difference between estimated (achieved)

and optimum expected latencies as the centralized algorithm. This suggests that the lim-

iting factor is the convergence of the meeting rate estimates rather than the dissemination

of latency estimates through the network.

Comparing Figures 3.3a and 3.3b shows that for both centralized and decentralized

scenarios, the average difference between the achieved latency and the minimum latency is

less than the average difference between the estimated latency and the minimum latency.

This is expected, because the estimated latencies are based on incorrect decision matrices

and estimated meeting rates, whereas the achieved latencies are derived from the actual
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Figure 3.3 Some statistical features of the absolute difference between es-
timated and achieved latencies and the minimum expected latencies

meeting rates. The results suggest that even when there remains substantial inaccuracy in

the expected latency estimates (e.g. at time t = 3000 seconds), the algorithm identifies a

close-to-optimal forwarding decision matrix.

3.6.2 Realistic Network Models

We examine the performance of the forwarding algorithms in larger networks by extending

network I to 100 nodes but with the same average λ parameter for exponential inter-meeting

times. We also make our model more realistic by adding some practical restrictions to the

network model. First, we assume that messages have finite TTL, i.e., a message is discarded

when its lifetime exceeds a certain threshold. Figure 3.4 displays the performance of routing

algorithms for different values of TTL varying from 0 to as large as the simulation time

(almost 2.5 × 105 seconds). Simulations are run 100 times and in each round, a different

destination is randomly chosen from network nodes based on a uniform distribution. The

average latency and average hop count are calculated only for the messages that reach the

destination.

The simulation results in Figure 3.4b show that decreasing the TTL has a similar
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overall effect on all of the algorithms. For larger TTLs, the delivery rate increases, but

the buffer occupancy, average latency and hop count also increase. MinLat outperforms

PRoPHET and MaxProp in terms of delivery rate, average latency, and buffer occupancy

even in a scenario with a restricted message life time. Although inter-meeting times are

exponentially distributed and the contact graph is based on preferential attachment, in

this larger network of 100 nodes, PRoPHET cannot reach 100 percent delivery rate even

without any restriction on TTL.
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Figure 3.4 Effect of TTL on performance metrics

The next step towards a more realistic network model is to consider limits on buffer size.

In the next set of simulations, we assume that TTL is 105 seconds so that all algorithms

reach their best possible delivery rate. We also assume that each node has a limited capacity
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for keeping the messages. When the buffer occupancy of a node reaches its limit, messages

from other nodes are not forwarded to it. Moreover, any generated messages at the fully

occupied node are immediately dropped. Figure 3.5 shows the performance of algorithms

for buffer sizes in the range of 0 to 1250 messages. We see that increasing the buffer size

improves the delivery rate for all algorithms. It also reduces the average latency because as

the buffer size increases, nodes can more frequently follow their optimum forwarding rules.

Buffer Size
0 250 500 750 1000

×10 4

1

2

3

4

5

6
Epidemic
PRoPHETv2
MaxProp
MinLat

(a) Average Latency (sec)
Buffer Size

0 250 500 750 1000
0

0.2

0.4

0.6

0.8

1

(b) Average Delivery Rate

Buffer Size

0 250 500 750 1000
1.5

2

2.5

3

3.5

4

4.5

(c) Average Hop Count
Buffer Size

0 250 500 750 1000
10

0

10
1

10
2

10
3

(d) Average Buffer Occupancy

Figure 3.5 Effect of buffer size on performance metrics

Finally, we assume that the contact duration is limited so that the number of messages

during any meeting is restricted by an exchange limit. We set the buffer size to 1000

messages so that all the algorithms reach their best possible delivery rate. This buffer size

implies 50 MB of node memory if each message is 50 KB. We check the effect of varying the
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exchange limit on the network performance. Figure 3.6 shows the four comparison metrics

for exchange limits in the interval 0 to 500 messages. As we see in the figure, MinLat

cannot achieve the optimum average latency for some values of exchange limit, but it still

has the best performance in terms of buffer occupancy.
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Figure 3.6 Effect of exchange limit on performance metrics

The simulation results displayed in Figures 3.4-3.6 illustrate that although MinLat has

been designed for an ideal network model, it has an acceptable performance when we impose

realistic conditions such as finite TTL, buffer size, and exchange limit.



3 Proactive Approach: Routing in Opportunistic Delay Tolerant Networks 49

3.7 Summary

In this chapter, we used an analytical framework to model the opportunistic data transfer

among mobile devices in DTNs. In our model, the random inter-meeting times of nodes

are assumed to be independent and exponentially distributed. We formulated the rout-

ing/forwarding problem as an optimization problem in which the goal is to minimize the

sum of expected latencies from all nodes of the network to a particular destination. We

proved that the solution of this problem is binary, i.e., when an arbitrary node meets any

other node in the network, its optimum forwarding rule dictates either to always forward

its messages to the encountered node or to never forward any messages to it. We also

showed that the solution of this optimization problem minimizes the expected latency from

each node of the network to the destination as well. Based on these results, we proposed

centralized and distributed versions of an algorithm to find the optimum forwarding deci-

sion rules and proved that each of these algorithms result in the same solution. In order

to evaluate the performance efficiency of the suggested algorithms in different synthetic

and real-world networks, we chose four performance metrics as comparison metrics and

compared our proposed decentralized algorithm (MinLat) with the most similar existing

approaches. In order to evaluate the performance of MinLat in more realistic scenarios,

we conducted simulations in larger networks with practical constraints like limited message

life (TTL), buffer size and message exchange.

One of the main contributions of this work is relaxing the condition of having complete

knowledge of meeting rates at each node for making the forwarding decisions. We used a

recursive maximum likelihood procedure (MinLat-E) to learn the meeting rates online and

proved its convergence in probability to the same optimal solution. The validity of this the-

oretical result was assessed through simulations. Moreover, we compared the convergence

speed of the proposed centralized and decentralized algorithms when the meeting rates are

estimated online. The simulation results show that the decentralized algorithm has almost

the same convergence rate as the centralized algorithm, even though the network topology

is not known at individual nodes.
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3.8 Proofs

3.8.1 Proof of Lemma 1

Lemma 1: The expected latency of a node i ∈ N to the destination d is

Lid(P) =
1 +

∑
j∈Si

pijλijLjd(P)
∑

j∈Si
pijλij

When node i commences in its routing of a message, it must first wait a time Tw before it

meets one of its neighbours. The amount of time before node i meets a specific neighbour

j is an exponentially distributed random variable with parameter λij. The time Tw is equal

to the minimum of the exponentially distributed random variables corresponding to all

neighbours k ∈ Si and its expected value is

E(Tw) =
1∑

k∈Si

λik
(3.13)

The probability that j is the first node that i meets is λij∑
k∈Si

λik
. Hence Lid(P) is

Lid(P) = E(Tw) +
∑

j∈Si

λij∑

k∈Si

λik
[pijLjd(P) + (1− pij)Lid(P)] (3.14)

The last term in (3.14) follows from the memoryless property of the distributions. Substi-

tuting (3.13) into (3.14) leads to (3.2).

3.8.2 Proof of Theorem 1

Theorem 1: Suppose P∗ = argminP∈[0,1]N×N

∑N
i=1 Lid(P). Then:

1. P∗ is a binary matrix (its components are either 0 or 1).

2. For any i ∈ N , the matrix P∗ also minimizes Lid(P):

∀i ∈ N : P∗ = arg min
P∈[0,1]N×N

Lid(P)
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Let us assume that the nodes, excluding d, are labelled in ascending order of their expected

latency under P∗, i.e.,

L1d(P
∗) < L2d(P

∗) < · · · < L(N−1)d(P
∗)

For a given matrix P, we denote by Pī a matrix that consists of all rows of P except the

ith one. If we fix pi and Lkd for k ∈ Si, k ̸= j for some j ∈ Si, then Lid is monotonically

increasing with respect to Ljd (see (3.2)). This implies that if we start with any P and

change only pj to decrease Ljd, then all other Lid values such that j ∈ Si either decrease

or remain the same. The matrix P∗ must therefore satisfy p∗
j = argminLjd(P∗

j̄ ,pj) for

all j. Otherwise we could choose an alternative p′
j that reduces Ljd and hence achieves

U(P′) < U(P∗).

We can examine the partial derivative of Lid with respect to pij at P′ = (P∗
ī ,pi):

∂Lid

∂pij
=
λij[

∑
k∈Si

λikpik(Ljd(P′)− Lkd(P′))− 1]

(
∑

k∈Si
λikpik)2

(3.15)

This derivative has the same sign as: Ljd(P′)− 1+
∑

k∈Si
λikpikLkd(P′)

∑
k∈Si

λikpik
, or equivalently Ljd(P′)−

Lid(P′). This expression for the derivative, together with the requirement that p∗
i =

argminLid(P∗
ī ,pi), implies that p∗

ij = 0 if Lid(P∗) < Ljd(P∗) and p∗
ij = 1 if Lid(P∗) >

Ljd(P∗). Our assumption that the solution is unique implies that Lid(P∗) ̸= Ljd(P∗). Oth-

erwise, from (3.14), it is clear that we could choose any p∗ij between 0 and 1 and achieve

the same Lid(P∗), without affecting any other Ljd(P∗). This establishes statement (1) of

the theorem, namely that P∗ is a binary matrix with entries equal to 0 or 1.

Although we have established that Lid(P∗
ī ,p

∗
i ) = minLid(P∗

ī ,pi), we have not yet shown

that P∗ globally minimizes Lid. We establish this by contradiction. Suppose P∗ does not

minimize the expected latency for some non-empty set of nodes N ′ ⊂ N . In other words,

denoting the minimum expected latency achieved via the minimization in (3.3) for node i

by L∗
id, we have

∀i ∈ N ′ : L∗
id < Lid(P

∗) (3.16)

Let node s be the node in N ′ such that L∗
sd < L∗

kd for all k ∈ N ′, k ̸= s. Denote by ℓ

the ranking of the node with greatest expected latency under P∗ such that Lℓd(P∗) < L∗
sd.

Based on the discussion above, for each node i ∈ {1, 2, . . . , ℓ}, p∗ik = 0 for all k > ℓ and
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hence p∗is = 0. Node s must have at least one neighbour in the set {d, 1, 2, . . . ℓ}. Otherwise,

it could not achieve an expected latency under P∗ that is less than all nodes ℓ+1, . . . , N−1

(observe from (3.2) that Lsd(P∗) > minpsj>0 Ljd(P∗)).

The matrix P′ that achieves the minimum L∗
sd must satisfy p′sk = 0 for all k ∈ N ′,

since for any matrix P′ we have Lkd(P′) ≥ L∗
kd > L∗

sd. We also have p′sk = 1 for k ∈
Ss∩{d, 1, 2, . . . , ℓ} if Lkd(P′) < Lsd(P′). For a fixed choice of p′

s the value Lsd(P′) decreases

if we can reduce Lkd(P′) for any k such that p′sk = 1. The matrix P∗ minimizes Lkd for all

k ∈ {1, 2, . . . , ℓ}, implying that p′
k = p∗

k for all k ∈ {1, 2, . . . , ℓ}. Since Lkd(P′) = Lkd(P∗)

for all k ∈ Ss ∩ {d, 1, 2, . . . , ℓ}, it follows that p′
s = p∗

s. For node s, the values of p′
j for

j /∈ {1, 2, . . . , ℓ, s} have no impact on Lsd, so we have Lsd(P∗) = Lsd(P′) = L∗
sd. This

contradicts the original assumption that P∗ does not minimize the latency for all nodes

s ∈ N ′, and thus establishes statement (2) of the theorem.

3.8.3 Proof of Theorem 2

Theorem 2: Suppose all meeting rates are different and there exists a unique solution B∗

for the optimization problem (3.4).

1. After each iteration of Algorithm 1,

(a) ∀i ∈ A, ∀j ∈ N : bij = b∗ij

(b) ∀i ∈ A : Lid(B) = Lid(B∗)

(c) maxi∈A Lid(B∗) < mini ̸∈A Lid(B∗)

2. Upon completion, Algorithm 1 identifies a labelling B and associated expected latencies

Lid such that B = B∗

We observe that for all i ∈ N , Gid ≥ L∗
id (since the optimizations are the same). Based on

Theorem 1 and its proof, the equality holds only if j ∈ A for all j ∈ Si such that L∗
jd < L∗

id.

The statements in the theorem follow based on an induction argument.

Suppose, without loss of generality, that the nodes are labelled in ascending order of

expected latency under B∗. For node 1, the only neighbour with lower expected latency is

the destination. In iteration 1, the destination is included in A and must be in S1. Recall

that L∗
1d > minb∗1j=1 L∗

jd. Node 1 has the minimum expected latency according to the chosen

labelling and Theorem 1, except for the destination itself. The relationship thus implies
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that d ∈ S1. We therefore have G1d = L∗
1d < L∗

jd ≤ Gjd, and node 1 is selected to be added

to A, with b1d = 1 and bjd = 0 for all j ̸= d. Statements 1(a) to 1(c) in the theorem clearly

hold after one iteration, i.e., after the addition of node 1 to A.

Assume the same statements hold after the addition of node k − 1 to A. Then, for

node k we must have j ∈ A for all j ∈ Sk such that L∗
jd < L∗

kd. Again this implies that

Gkd = L∗
kd < L∗

jd ≤ Gjd for all j > k. Thus, node k is correctly selected for addition to A
and the statements 1(a) to 1(c) hold at the end of iteration k.

It follows that the statements hold for all iterations of the algorithm, and after comple-

tion, when A = N , the second statement follows.

3.8.4 Proof of Theorem 3 and Proposition 1

Proof of Theorem 3

Theorem 3: The decision matrix B identified by Algorithm 2 converges to B∗ with prob-

ability 1.

As mentioned in Section 3.4, we assume that the nodes are labelled in order of ascending

expected latency under B∗. Based on the definition of Tk, k = 1, . . . , N , and due to the

assumption that the inter-meeting times are exponentially distributed, TN is finite with

probability 1.

At T1, node 1 learns its meeting rate with the destination (λ1d). Since the estimated

latencies are initialized to∞ and due to the update equations in Algorithm 2, the estimation

that node 1 has at T1 of the expected latencies of its neighbours i ∈ S1 are upper-bounds,

i.e. L̂id(1) ≥ Lid(B∗). As discussed in the proof of the previous theorems, the minimizer b∗
1

has b1d = 1 and b1j = 0 for all j ̸= d. At time T1, since the term involving d in the update

equation of Algorithm 2 has its minimum value, the vector m∗
1 = b∗

1 identifies the same

minimum latency L̂1d(1) = L1d(B∗). Hence, immediately after time T1 we are guaranteed

that b1 = b∗
1.

At Tk, node k is aware of the minimum expected latencies L̂sd(k) = Lsd(B∗) for the

nodes in the set Vk = {d, 1, ..., k} ∩ Sk. All other expected latencies are upper bounds, i.e.

L̂jd(k) ≥ Ljd(B∗) for j /∈ Vk. The solution b∗
k takes value 1 only for nodes in Vk. The

minimizer m∗
k at time Tk is thus equal to b∗

k and achieves L̂kd(k) = Lkd(B∗). Therefore,

immediately after Tk we will have bk = b∗
k. This argument applies until just after TN , at
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which point we have B = B∗. Since TN is finite with probability 1, the statement of the

theorem follows.

Proof of Proposition 1

Proposition 1: Assuming that the nodes are labelled in order of ascending expected latency

under B∗, the expected convergence time, E(TN), of Algorithm 2 is bounded as

E(TN) <
1

λ1d
+

N∑

l=2

l − 1

min
i∈{1,...,l−1}

λli>0

λli

Algorithm 2 has converged when all of the nodes have met all of their relay candidates

and have identified their optimum forwarding rules. Thus, E(TN), where TN defined above

in the proof of Theorem 3, is the expected convergence time. Considering the worst case

where an arbitrary node k > 1 is connected to all the nodes in the set {1, ..., k − 1}, we
have

E(Tk − Tk−1) = E( max
i∈{1,...,k−1}

xi) (3.17)

where xi denotes the inter-meeting time of node k with its neighbour i and follows an

exponential distribution with parameter λki. Using a standard result for the expected

value of the maximum of non-identical independent exponential random variables, we have

E(Tk − Tk−1) =
k−1∑

i=1

1

λki
−

k−1∑

i=1

k−1∑

j=i+1

1

λki + λkj
+

k−1∑

i=1

k−1∑

j=i+1

k−1∑

l=j+1

1

λki + λkj + λkl
− . . . (3.18)

An upper bound on this value is E(Tk − Tk−1) <
∑k−1

i=1
1
λki

< k−1
min
i

λki
Therefore, an upper-

bound on the convergence time of Algorithm 2 is E(TN) <
1

λ1d
+
∑N

l=2
l−1

min
i∈{1,...,l−1}

λli>0

λli
.

3.8.5 Proof of Lemma 2

Lemma 2: The minimization problem in Algorithm 2,

L̂id(i) = min
mi∈{0,1}|Si|

1 +
∑

k∈Si
mikλikL̂kd(i)∑

k∈Si
mikλik

,
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can be converted to a linear programming problem.

Since we want to use the result of this lemma in Chapter 4 as well, we prove it for a

more general case where mij is not necessarily binary for any i, j ∈ N . Let us return to

considering the probability decision variable vector p instead of binary decision variable

vector (We still expect the optimal solution to be of the binary form). Without loss of

generality, we relabel the nodes k ∈ Si by labels 1, ..., |Si|. The optimization problem that

node i tries to solve in Algorithm 2 follows this general form which is known as linear

fractional optimization problems:

L̂id(i) = min
pi

cTpi + α

dTpi + β

subject to Api ≤ b

(3.19)

where pi
|Si|×1 = [pi1, ..., pi|Si|]

T , α = 1, c|Si|×1 = [λi1L̂1d(i), ...,λi|Si|L̂|Si|d(i)]
T , β = 0,

d|Si|×1 = [λi1, ...,λi|Si|]
T , b2|Si|×1 = [1, ..., 1, 0, ..., 0]T , and the elements of the matrixA2|Si|×|Si|

are

Aij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if i < |Si| & j = i

−1 if i > |Si| & j = i− |Si|

0 otherwise

After applying the following parameter changes (the Charnes-Cooper transformation [108]),

we have

x =
1

dTpi
pi y =

1

dTpi
(3.20)

and the optimization problem 3.19 converts to

min
x,y

cTx+ αy

subject to dTx = 1

Ax ≤ by

y ≥ 0

(3.21)

which is a linear optimization problem and can be solved using Linear Programming (LP)

solution methods [109].
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3.8.6 Proof of Theorem 4

Theorem 4: For any node in the network, the sequences of estimated and achieved latencies

converge to its optimum expected latency in probability, i.e., {L̃id,t(B̃t, i)}
p−→ Lid(B∗) and

{Lid(B̃t)}
p−→ Lid(B∗). More precisely for any ϵ > 0,

lim
t−>∞

P (|L̃id,t(B̃t, i)− Lid(B
∗)| < ϵ) = 1

lim
t−>∞

P (|Lid(B̃t)− Lid(B
∗)| < ϵ) = 1

We first prove the statement of the theorem for estimated latencies. For ease of notation,

we drop the superscript nij from the estimate of meeting rates between nodes i and j and

denote it by λ̂ij in this proof. Without loss of generality, we relabel the nodes such that

L1d(B∗) < L2d(B∗) < ... < LNd(B∗). At node i, MinLat-E forms estimates of the meeting

rates with the contact graph neighbours, λ̂ik for k ∈ Si, and the expected latencies from

each neighbour L̃kd(B̃t, i). The result is a sequence of random variables {L̃id(B̃t, i)}, with a

variable being added to the sequence each time node i meets another node. [110] shows that

the maximum likelihood estimator of the meeting rates is consistent, i.e., ∀i, j ∈ N , λ̂ij
p−→

λij. More precisely,

∀ϵij > 0 : lim
t−>∞

P (|λ̂ij − λij| < ϵij) = 1 (3.22)

Equivalently, writing ϵij = ϵ0λij, we have for any δ > 0 and ϵ0 > 0, there exists a t0 > 0

such that for all t > t0:

P
(
(1− ϵ0)λij < λ̂ij,t < (1 + ϵ0)λij

)
> (1− δ) (3.23)

where λ̂ij,t denotes the estimate of the meeting rate between nodes i and j at time t.

We show that for any set of meeting rates {λij}i,j∈N , there exists an ϵ = ϵ0 for which

the optimum forwarding decision matrix in MinLat-E (B̃t) is the same as the optimum

forwarding decision matrix in MinLat (B∗) with desirably high probability. In order to do

so, we find upper and lower bounds (that apply with high probability) on the estimated

expected latencies for the optimal decision matrices identified by both MinLat and MinLat-

E. We first demonstrate a relationship between the estimated and true expected latencies
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that would hold if the nodes employed the optimal decision matrix B∗. We show that there

exists a tδ,i such that for each node i ∈ N , with probability greater than 1 − δ, for any

positive δ, we have for all t > tδ,i:

(1− ϵ0)i−1

(1 + ϵ0)i
Lid(B

∗) < L̃id,t(B
∗, i) <

(1 + ϵ0)i−1

(1− ϵ0)i
Lid(B

∗) (3.24)

We derive (3.24) by induction. From the arguments made in Theorem 3, we know that

under B∗ an arbitrary node i will not forward any messages to a node that does not belong

to the set {1, .., i − 1, d}. For i = 1, after time tδ,1 such that (3.23) holds, we have, with

probability greater than 1− δ for t > tδ,1:

L1d(B∗)

1 + ϵ0
=

1

1 + ϵ0

1

λ1d
< L̃1d,t(B

∗, 1) =
1

λ̂1d,t
<

1

1− ϵ0

1

λ1d
=

L1d(B∗)

1− ϵ0
(3.25)

Suppose (3.24) holds for all the nodes 1, . . . , k − 1. Denote by tjk > t the last meeting

between node j and k that occurs subsequent to tδ,k−1 but prior to a considered time t.

Then we can identify a tuδ,k so that the following relationship holds with probability greater

than 1− δ for t > tuδ,k:

L̃kd,t(B
∗, k) =

1

Σj∈Sk
b∗kjλ̂kj

(1 + Σj∈Sk
b∗kjλ̂kjL̃jd,tjk(B

∗, j)) (3.26a)

< (
1

1− ϵ0

1

Σj∈Sk
b∗kjλkj

)(1 + Σj∈Sk
b∗kj(1 + ϵ0)

(1 + ϵ0)k−2

(1− ϵ0)k−1
Ljd(B

∗)) (3.26b)

<
(1 + ϵ0)k−1

(1− ϵ0)k
Lkd(B

∗) (3.26c)

Here we have chosen tuδ,k to be sufficiently large such that the inequality on the second

line holds with probability exceeding 1 − δ. Similarly we can identify a tℓδ,k so that the

lower bound in (3.24) holds with probability greater than 1 − δ for t > tℓδ,k. By taking

tδ,k = max{tℓδ,k, tuδ,k}, we see that (3.24) holds for node k as well, and by induction, holds

for all nodes i ∈ N .

We now turn our attention to the forwarding matrix determined by MinLat-E (B̃t). We

first consider a scenario where the estimates of the meeting rates are frozen after a certain

time tf . The minimization procedure in MinLat-E is the same as in MinLat, but operates
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on the estimates of the meeting rates. If these estimates are held constant, then the results

in Theorems 1-3 apply, with the substitution of λ̂ij anywhere we make use of λij. With

probability 1, the optimization algorithm will thus converge after a finite time t′, and the

estimated expected latencies will be consistent across the network. Hence, there exists a

labeling {1̂, 2̂, ...N̂} for which L̃1̂d(B̃tf+t′ , 1̂) < L̃2̂d(B̃tf+t′ , 2̂) < · · · < L̃N̂d(B̃tf+t′ , N̂) We

can now employ the same argument that was used above for B∗ to determine that there is

a finite time tδ,k̂ such that the following bound holds for all k̂ ∈ N with probability greater

than 1− δ for all t > tδ,k̂.

(1− ϵ0)k̂−1

(1 + ϵ0)k̂
Lk̂d(B̃t) < L̃k̂d(B̃t, k̂) <

(1 + ϵ0)k̂−1

(1− ϵ0)k̂
Lk̂d(B̃t) (3.27)

In the actual MinLat-E algorithm, the meeting rates λ̂ are not frozen after t0, but continue

to be updated as more meetings occur. This only results in the probabilistic bounds on λ̂

being tighter, and hence can only tighten the bounds on Lk̂d(B̃t, k̂).

To avoid having node-specific bounds on the accuracy of the estimates, we can rewrite

the bounds as:

(1− ϵ0)N−1

(1 + ϵ0)N
Lkd(B) < L̃kd(B, k) <

(1 + ϵ0)N−1

(1− ϵ0)N
Lkd(B) (3.28)

This bound holds for both B = B∗ and B = B̃t with probability at least 1− δ0 after some

time t0.

Our goal is to show that there exists a moment of time after which B̃t = B∗ is true

with desirably high probability. We can accomplish this by showing that there exists an

ϵ0 (and thus an associated time t0) for which the upper-bound on L̃id(B∗, i) is less than

the lower-bound on L̃id(B̃t, i) for any B̃t ̸= B∗ for all t > t0. If this is the case, then with

probability exceeding 1− δ0, the optimization procedure that derives B̃t will set it to B∗,

because it minimizes the estimated latencies. Hence, ϵ0 should satisfy

Lid(B
∗) < (

1− ϵ0
1 + ϵ0

)2N−1Lid(B̃t) , (3.29)

which leads to

ϵ0 <
e

ln(K)
2N−1 − 1

e
ln(K)
2N−1 + 1

, (3.30)
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where K =
minB ̸=B∗ Lid(B)

Lid(B∗) .

Now that we have established that after a finite amount of time B̃t = B∗ occurs with a

probability desirably close to one, we can show that {L̃id(B̃t, i)}
p−→ Lid(B∗) for any i ∈ N

using the following properties:

1. If Xn
p(or d)−−−−→ X, then g(Xn)

p(or d)−−−−→ g(X) (Continuous Mapping Theorem [111]);

2. If Xn
p−→ X, then Xn

d−→ X;

3. If Xn
d−→ c ∈ R, then Xn

p−→ X;

4. If Xn
d−→ X and Yn

d−→ c ∈ R, then g(Xn, Yn)
d−→ g(X, c) (Slutsky’s Theorem [112]),

where
d−→ denotes the convergence in distribution and g : R × R → R is an arbitrary

continuous function.

Again consider the node labelling such that L1d(B∗) < L2d(B∗) < · · · < LNd(B∗). For

node 1, {L̃1d(B̃t, 1) = 1
λ̂1d

} p−→ L1d(B∗) = 1
λ1d

which is obvious from property 1. For any

node k > 1, if {L̃jd(B̃t, j)}
p−→ Ljd(B∗) holds for any j ∈ {1, ..., k−1}, then due to properties

2-4 we have,

∀j ∈ {1, ..., k − 1, d} ∩ Sk : {λ̂kjL̃jd(B̃t, k)}
d−→ λkjLjd(B

∗) ∈ R , (3.31)

and

{Σj∈{1,...,k−1,d}b̂
∗
kjλ̂kj}

p−→ Σj∈{1,...,k−1,d}b
∗
kjλkj . (3.32)

Property 1 in combination with (3.31) and (3.32) results in the statement of the theorem.

For the achieved expected latencies, Lkd(B̃t), as opposed to those estimated at the

nodes, the proof is more straightforward. For a given decision matrix, B̃t, the expected

latencies Lkd(B̃t)s are functions of the true meeting rates λ and are thus not random

variables. Thus, the sequence {Lid(B̃t)} is only a function of the random sequences {λ̂ij},
j ∈ Si via the optimization that determines B̃t. Since we have established that B̃t converges

in probability to B∗, it follows that {Lid(B̃t)} converges in probability to Lid(B∗) due to

property 1.
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Chapter 4

Proactive Approach: Bayesian

Routing Using Social Information

4.1 Overview

In Chapter 3, we studied how we can proactively control a diffusion process in the context of

solving the routing/forwarding problem in opportunistic Delay Tolerant Networks (DTNs).

We designed a decentralized algorithm called MinLat to find the optimal forwarding rules in

opportunistic DTNs. We also developed a modified version, MinLat-E, in which no a priori

knowledge of the rate of node meetings is required. Based on the classifications presented

in Section 2.2.2, MinLat and MinLat-E are both history-based routing algorithms, because

they only use the contact histories to make forwarding decisions. But, what if we have

some external information about the strength of the relationships between nodes that can

be assumed to influence the frequency of their contacts. How can we exploit this external

information in making more efficient forwarding rules?

In this chapter, we study the routing problem in a Bayesian framework and incorporate

the information about the strength of nodes’ relationships through prior probability distri-

butions. After formulating the problem in Section 4.2, we propose two Bayesian versions

of the MinLat algorithm, BMinLat-I and BMinLat-II, in Sections 4.3 and 4.4. In Chap-

ter 4.5, we evaluate the performance efficiency of these two proposed algorithms through

simulations on synthetic and real-world datasets. We summarize the chapter in Section

4.6.

2017/09/15
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4.2 Problem Statement

In this chapter, we use the same notations we used in Chapter 3 (see Table 3.1). The

additional notations defined in this chapter are listed in Table 4.1. In an ideal scenario, each

node knows its meeting rates with all the other nodes it meets. In Chapter 3, we modelled

the meeting rates as deterministic parameters and proved that the optimal forwarding rules

in these scenarios are binary. It means that a node i either always forwards a message it

has to another node j it meets or always keeps the message. However, when we model the

parameters as random and take uncertainty into account, it is possible that probabilistic

decisions are optimal. For this reason, we use pi (instead of mi) to denote the forwarding

rule vector of node i in this chapter. We proposed MinLat in Section 3.4 to find the optimal

binary forwarding rules. In MinLat, an arbitrary node i solves the following optimization

problem each time it meets another node.

L̂id(i) = min
pi∈[0,1]|Si|

1 +
∑

k∈Si
pikλikL̂kd(i)∑

k∈Si
pikλik

(4.1)

Here, L̂kd(i) denotes the estimate that node i has of the expected latency of node k to the

destination node d and Si denotes all the neighbours of node i, i.e., Si = {j|λij > 0}.
In order to allow us to express the Bayesian formulation of the problem in a more concise

manner, we define the function gi : R|Si| × R|Si| × [0, 1]|Si| → R for node i as

gi
(
λi,Ψi,pi

)
!

1 +
∑

k∈Si
pikλikL̂kd(i)∑

k∈Si
pikλik

=
1 +ΨT

i pi

λT
i pi

(4.2)

where

λi =

⎡

⎢⎢⎢⎢⎣

λi1

λi2
...

λi|Si|

⎤

⎥⎥⎥⎥⎦
, Ψi =

⎡

⎢⎢⎢⎢⎣

λi1L̂1d(i)

λi2L̂2d(i)
...

λi|Si|L̂|Si|d(i)

⎤

⎥⎥⎥⎥⎦
, and pi =

⎡

⎢⎢⎢⎢⎣

pi1

pi2
...

pi|Si|

⎤

⎥⎥⎥⎥⎦

In MinLat, node i solves

p∗
i = argmin

pi∈[0,1]|Si|

gi
(
λi,Ψi,pi

)
(4.3)

and updates its estimate of its optimal expected latency as L̂id(i) = gi
(
λi,Ψi,p∗

i

)
. In this
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case, λi and Ψi are known deterministic vectors.

In a more realistic scenario where meeting rates are unknown, we model both λi and Ψi

by random vectors. We suggested MinLat-E for such scenarios. In MinLat-E, each node i

uses Equation (3.9) to calculate the Maximum Likelihood (ML) estimate of its meeting rate

λ̂
nij

ij with another node j ∈ Si based on the observed inter-meeting times {x1
ij, . . . , x

nij

ij }.
Therefore, node i solves a similar optimization as in (4.1) where λij is replaced with λ̂

nij

ij .

The ML estimated meeting rates get updated as time passes and nodes meet each other.

In MinLat-E, node i replaces λi with its ML estimate, λ̂
n

i , and solves

p̂∗
i = argmin

pi∈[0,1]|Si|

gi
(
λ̂

n

i , Ψ̂
n

i ,pi

)
(4.4)

where

λ̂
n

i =

⎡

⎢⎢⎢⎢⎣

λ̂ni1
i1

λ̂ni2
i2
...

λ̂
ni|Si|

i|Si|

⎤

⎥⎥⎥⎥⎦
, Ψ̂

n

i =

⎡

⎢⎢⎢⎢⎣

λ̂ni1
i1 L̂1d(i)

λ̂ni2
i2 L̂2d(i)

...

λ̂
ni|Si|

i|Si| L̂|Si|d(i)

⎤

⎥⎥⎥⎥⎦

The node then updates its estimate of its optimal expected latency as L̂id(i) = gi
(
λ̂

n

i , Ψ̂
n

i , p̂
∗
i

)
.

We proved that the expected latencies found by MinLat-E converge in probability to the

same values achieved by MinLat. We also verified this result through experimental simu-

lations.

In this chapter, we still focus on scenarios where meeting rates are unknown. Hence, we

model them as random variables. Moreover, the estimate that each node has of its own or

another node’s expected latency should be modelled as a random variable. In order to avoid

confusion and emphasize the randomness of the estimate of the expected latencies, we use

Lid(j) (instead of L̂id(j)) to denote the random estimate at node j of the expected latency

of node i to the destination d in the rest of this chapter. Assuming λi and Ψi are random

vectors, we propose two different methods to solve the optimization problem in (4.3). Since

the optimization is over pi, the result is still a function of λi and Ψi. Therefore, we can

define the function hi(λi,Ψi) as

hi(λi,Ψi) ! argmin
pi∈[0,1]|Si|

gi
(
λi,Ψi,pi

)
(4.5)
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The first idea that we explore in this chapter is to identify a decision rule that minimizes

the expectation of the utility function gi
(
λi,Ψi,pi

)
over the random vectors λi and Ψi.

p∗1
i = argmin

pi∈[0,1]|Si|

Eλi,Ψi

[
gi
(
λi,Ψi,pi

)]
(4.6)

where p∗1
i denotes the optimal forwarding rule matrix. This expectation is with respect to

the posterior distributions given the observed inter-meeting times (or the prior distributions

when there is no observation). We develop a decentralized Bayesian algorithm, BMinLat-I,

in Section 4.3 based on this idea. However, as we are going to see in Section 4.3, solving

the optimization problem in (4.6) is computationally expensive. Therefore, we propose a

heuristic algorithm, BMinLat-II, that finds an approximate solution that often coincides

with BMinLat-I. It is also more computationally efficient. The main idea of this second

method is to consider the expectation of hi(λi,Ψi) as the forwarding rule. Denoting this

forwarding rule by p∗2
i , we have,

p∗2
i = Eλi,Ψi

[
hi(λi,Ψi)

]
(4.7)

Again, the expectation is with respect to the posterior distributions (and the prior when

there is no observation). Details of BMinLat-II and its computational complexity are

provided in Section 4.4.

Before going into the details of the algorithm developments, we specify the distribution

models we are going to use in the rest of this section.

4.2.1 Priors

We wish to improve the performance of the routing algorithms by using some information

related to the social interactions of the nodes in a Bayesian framework. Denoting the type

of the social interactions between nodes i and j by the random variable ζij, we have

f(λij|x1
ij, . . . , x

nij

ij , ζij) =
f(x1

ij, . . . , x
nij

ij |λij, ζij)f(λij|ζij)f(ζij)
f(x1

ij, . . . , x
nij

ij , ζij)
(4.8)

This relationship follows from Bayes’ rule and the function f(.) indicates a probability

density function. We model the prior distribution f(λij|ζij) by a Gamma distribution to
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be able to capture both highly informative and weakly informative knowledge about link

strengths. Hence, we have

f(λij|ζij) = Γ(κζij, θ
ζ
ij) =

θζij
κζ
ij

Γ(κζij)
λ
κζ
ij−1

ij e−λijθ
ζ
ij (4.9)

Due to the prior conjugacy of the exponential and Gamma distributions, the posterior

distribution f(λij|x1
ij, . . . , x

nij

ij , ζij) has also a Gamma distribution. Therefore,

f(λij|x1
ij, . . . , x

nij

ij , ζij) ∝ λ
nij+κζ

ij−1

ij e−λij

(
θζij+

∑nij
k=1 x

k
ij

)
(4.10)

In Chapter 3, we assumed that meeting rates are independent. Therefore, the probability

distribution function of λi is

f(λi|Xi, ζi) =
∏

j∈Si

f(λij|x1
ij, . . . , x

nij

ij , ζij) (4.11)

where Xi = {xk
ij|∀j ∈ Si, k = 1, . . . , nij} is the set of all the inter-meeting times that node

i has observed and ζi = [ζi1, . . . , ζi|Si|]
T .

The time it takes for a message to go from an arbitrary node i to the destination d on a

specific route, consists of the times between meetings of each pair of nodes on the route. The

core assumption of exponentially distributed inter-meeting times leads to a distribution for

the expected latency Lid(i) that is non-Gaussian. We, however, approximate the expected

latency estimates, Lid(i) for all i ∈ N , as being normally distributed. In other words, we

model the posterior distribution f(Lid(i)|x1
ij, . . . , x

nij

ij ; ∀j ∈ Si) as

f(Lid(i)|x1
ij . . . , x

nij

ij ; j ∈ Si) =
1√
2πσi

i

e
− (Lid(i)−µii)

2

2σi
i
2

(4.12)

where µk
i (or σk

i ) denotes the estimate that node i has of the mean (or the standard devia-

tion) of node k’s expected latency to the destination. When two nodes meet, they update

their meeting rate estimations using their most recent inter-meeting times. They also ex-

change their current posterior distributions for their expected latencies by just exchanging

the mean and standard deviation of the approximated normal distribution.
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4.3 BMinLat-I

In this section, we introduce our first proposed Bayesian routing algorithm, BMinLat-I.

Algorithm 4 shows how BMinLat-I works in detail. As mentioned in Section 4.2, BMinLat-

I follows the same logic as in MinLat. However, it tries to deal with the fact that meeting

rates and estimated expected latencies are random by finding the forwarding rules that

minimize the expectation of estimated expected latencies. BMinLat-I intends to find the

solution to the following optimization problem.

p∗1
i = argmin

pi∈[0,1]|Si|

Eλi,Ψi

[
gi
(
λi,Ψi,pi

)]
(4.13)

where

Eλi,Ψi

[
gi
(
λi,Ψi,pi

)]
=

∫ ∫
gi
(
λi,Ψi,pi

)
f(λi,Ψi|Xi, ζi)dλi

dΨi

=

∫ ∫
gi
(
λi,Ψi,pi

)
f(Ψi|λi,Xi)f(λi|Xi, ζi)dλi

dΨi

(4.14)

Since (4.14) does not have a closed form representation, we approximate it with an

empirical distribution based on Ns samples, i.e.,

f(λi,Ψi|Xi, ζi) =
1

Ns

Ns∑

s=1

δ(λi − λs
i ,Ψi −Ψs

i ) (4.15)

where

λs
i =

⎡

⎢⎢⎢⎢⎣

λsi1
λsi2
...

λsi|Si|

⎤

⎥⎥⎥⎥⎦
, Ψs

i =

⎡

⎢⎢⎢⎢⎣

λsi1L
s
1d(i)

λsi2L
s
2d(i)
...

λsi|Si|L
s
|Si|d(i)

⎤

⎥⎥⎥⎥⎦

Samples are independently generated using the posterior distributions described in Section

4.2, i.e.,

∀s = 1, . . . , Ns : λsik ∼ f(λij|x1
ij, . . . , x

nij

ij , ζij) (4.16)

and

∀s = 1, . . . , Ns : Ls
kd(i) ∼ f(Lkd(i)|x1

ij . . . , x
nij

ij ; j ∈ Si) (4.17)
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Algorithm 4 BMinLat-I

1: // Initialization

2: P∗1 = 0N×N

3: ∀i, j ∈ N : nij = 0, lij = 0,κζij = κ0, θ
ζ
ij = θ0

4: µd
d = 0, σd

d = 0 , ∀i ∈ N /d : µi
i = ∞, σi

i = 0

5: while Nodes continue to meet do

6: // Nodes i and j meet at time t

7: Set µj
i = µi

i and σ
j
i = σi

i

8: Set µi
j = µj

j and σ
i
j = σj

j

9: Update κζik = κζik + 1 and θζik = θζik + t− lij

10: Generate Ns samples {λsik}Ns
s=1 from Γ(κζik, θ

ζ
ik)

11: For each k ∈ Si, generate Ns samples {Ls
kd(i)}Ns

s=1 from N (µi
k, σ

i
k)

12: For each k ∈ Sj, generate Ns samples {Ls
kd(j)}Ns

s=1 from N (µj
k, σ

j
k)

13: Set p∗
i = argminpi∈[0,1]|Si| Gi

(
Sλi

, SΨi
,pi, Ns

)
and Ls

id(i) = gi
(
λs

i ,Ψ
s
i ,p

∗
i

)

14: Set p∗
j = argmin

pj∈[0,1]|Sj | Gj

(
Sλj

, SΨj
,pj, Ns

)
and Ls

jd(j) = gj
(
λs

j ,Ψ
s
j ,p

∗
j

)

15: Set p∗1
i = p∗

i and p∗1
j = p∗

j

16: Set µi
i =

1
Ns

∑Ns

s=1 L
s
id(i) and µj

j =
1
Ns

∑Ns

s=1 L
s
jd(j)

17: Set σi
i =

√
1
Ns

∑Ns

s=1(L
s
id(i)− µi

i)
2 and σj

j =
√

1
Ns

∑Ns

s=1(L
s
jd(j)− µj

j)
2

18: Set lij = t

19: end while

We use the notations Sλi
and SΨi

to show the set of generated samples λs
i and Ψs

i , i.e.,

Sλi
= {λsik|∀s = 1, . . . , Ns, ∀k ∈ Si} (4.18)

SΨi
= {λsikLs

kd(i)|∀s = 1, . . . , Ns, ∀k ∈ Si} (4.19)
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By replacing (4.15) in (4.14), we have

Eλi,Ψi

[
gi
(
λi,Ψi,pi

)]
=

1

Ns

Ns∑

s=1

gi
(
λs

i ,Ψ
s
i ,pi

)
(4.20)

Hence, BMinLat-I finds the forwarding rule that minimizes the average of the objective

function gi
(
λi,Ψi,pi

)
over Ns generated samples. Denoting this average by

Gi

(
Sλi

, SΨi
,pi, Ns

)
=

1

Ns

Ns∑

s=1

gi
(
λs

i ,Ψ
s
i ,pi

)
(4.21)

the optimization problem (4.13), can be re-written as

p∗1
i = argmin

pi∈[0,1]|Si|

Gi

(
Sλi

, SΨi
,pi, Ns

)
(4.22)

Using the forwarding rule p∗1
i , Ns samples of the expected latency of node i will be generated

as

Ls
id(i) = gi

(
λs

i ,Ψ
s
i ,p

∗1
i

)
(4.23)

The posterior distributions of expected latencies are updated using the generated samples

Ls
id(i).

The main challenge in performing BMinLat-I is solving the optimization problem (4.22).

Some studies such as [113–115] refer to the functions of the formGi

(
Sλi

, SΨi
,pi, Ns

)
as “sum

of linear ratios” and investigate how an optimization problem with an objective function

of this form can be solved. In the rest of this section, we overview the solution approach

proposed in [113], and then use it to evaluate the computational complexity of BMinLat-I.

In Chapter 3, we explained how the optimization problem in (4.3) can be converted to

a linear optimization. [113] uses the same parameter conversions (the Charnes-Cooper

transformation [108]) used in Lemma 2, i.e.,

xs
i =

1

λs
i
Tpi

pi

ysi =
1

λs
i
Tpi

(4.24)
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Theorem 1 in [113] proves that the optimization problem in (4.22) is equivalent to the

following optimization problem.

argmin
xs
i ,y

s
i

1

Ns

Ns∑

s=1

Ψs
ix

s
i + ysi

λs
i
Txs

i = 1 ∀s = 1, . . . , Ns

Axs
i − b ≤ 0 ∀s = 1, . . . , Ns

1

βs
≤ ysi ≤

1

αs
∀s = 1, . . . , Ns

xs1
i ys2i = xs2

i ys1i ∀s1, s2 = 1, . . . , Ns

(4.25)

where A2|Si|×|Si| and b2|Si|×1 are the same as defined in Section 3.8.5, i.e.,

Aij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if i < |Si| & j = i

−1 if |Si| < i < 2|Si| & j = i− |Si|

0 otherwise

, b2|Si|×1 = [1, ..., 1, 0, ..., 0]T

and
αs = minλs

i
Tpi

Api − b ≤ 0
(4.26)

βs = maxλs
i
Tpi

Api − b ≤ 0
(4.27)

Therefore, in order to globally solve (4.22), we may solve (4.25). However, the constraints

xs1
i ys2i = xs2

i ys1i for s1, s2 = 1, . . . , Ns in (4.22) are quadratic and non-convex. Hence, this

problem belongs to the category of non-convex quadratic programming (which is in general

NP-hard).

If we make a relaxation for (4.25) by discarding xs1
i ys2i = xs2

i ys1i for s1, s2 = 1, . . . , Ns, we

will have a linear optimization problem whose solution is a lower bound for problem (4.22).

[113] devises a linear relaxation of xs1
i ys2i = xs2

i ys1i with −xs
i + lysi ≤ 0 and xs

i − uysi ≤ 0

where l = [l1, . . . , l|Si|]
T and u = [u1, . . . , u|Si|]

T are two boundary vectors in R|Si|. The

result is the following linear optimization problem that can be used to perform a branch-
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and-bound [116] search to find the optimal solution for (4.22).

argmin
xs
i ,y

s
i

1

Ns

Ns∑

s=1

Ψs
ix

s
i + ysi

λs
i
Txs

i = 1 ∀s = 1, . . . , Ns

Axs
i − b ≤ 0 ∀s = 1, . . . , Ns

1

βs
≤ ysi ≤

1

αs
∀s = 1, . . . , Ns

− xs
i + lysi ≤ 0 ∀s = 1, . . . , Ns

xs
i − uysi ≤ 0 ∀s = 1, . . . , Ns

(4.28)

The jth component of l and u can be obtained by solving the following linear programming

problems,
lj = min pij

Api − b ≤ 0
(4.29)

uj = max pij

Api − b ≤ 0
(4.30)

We can now evaluate the computational complexity of BMinLat-I (Algorithm 4) using some

discussions made in [113] about the convergence speed of the proposed branch-and-bound

algorithm.

4.3.1 Computational Complexity

Let us denote the Euclidean norm of a vector by ||.||, and define τs, ψ, and µ as

τs ! max
pi

Ψs
i
Tpi

Api − b ≤ 0
(4.31)

ψ ! max
s

||λs
i || , µ ! max

s
||Ψs

i || (4.32)
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Theorem 4 in [113] proves that for a given tolerance ϵ0, the algorithm proposed in [113]

finds a solution pϵ
i of problem (4.25) such that,

|Gi(Sλi
, SΨi

,pϵ
i , Ns)−Gi(Sλi

, SΨi
,p∗

i , Ns)| ≤ ϵ0 (4.33)

in at most N I
i iterations, for

N I
i = (|Si|+ 1)

⌈
log2(2Ns

ψmaxs τs + µ

ϵ0
)
⌉

(4.34)

Assuming that at each iteration of the proposed branch and bound algorithm the linear

program can be solved in the polynomial order of P (|Si|), node i needs to solve a problem

with the worst case complexity order of O(N I
i )P (|Si|) whenever it meets another node.

Hence, in the worst case scenario where Si = N , node i should solve an optimization

problem of order O
(
N log2(Ns)

)
P (N).

4.4 BMinLat-II

In this section, we develop a heuristic algorithm called BMinLat-II to find the optimal

forwarding solution. As mentioned in Section 4.2, we intend to find the expectation of the

optimal forwarding rules, hi(λi,Ψi), with respect to meeting rates. Expanding Equation

(4.7) we have,

p∗1
i = Eλi,Ψi

[
hi(λi,Ψi)

]

=

∫ ∫
hi(λi,Ψi)f(λi,Ψi|Xi, ζi)dλi

dΨi

=

∫ ∫
hi(λi,Ψi)f(Ψi|λi,Xi)f(λi|Xi, ζi)dλi

dΨi

(4.35)

As explained in Section 4.3, f(λi,Ψi|Xi, ζi) does not have a closed form representation.

We again approximate it with an empirical distribution based on Ns samples. Therefore,

we have

p∗2
i =

1

Ns

∑

λ
s
i∈Sλi

∑

Ψs
i∈SΨi

hi(λ
s
i ,Ψ

s
i ) (4.36)

We need to solve the optimization (4.5) for each sample s = 1, . . . , Ns independently and
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find the binary forwarding rule p∗s
i , i.e.,

p∗s
i = argmin

pi∈[0,1]|Si|

gi
(
λs

i ,Ψ
s
i ,pi

)
(4.37)

Using these Ns forwarding rules, Ns samples of the expected latency of node i will be

generated.

Ls
id(i) = gi

(
λs

i ,Ψ
s
i ,p

∗s
i

)
(4.38)

These generated samples are used to update the posterior distribution of (4.12). Then,

a non-binary forwarding rule p∗2
i is assigned to node i that equals the average of all the

binary forwarding rules p∗s
i . Algorithm 5 shows BMinLat-II in detail.

In the rest of this section, we study the computational complexity of BMinLat-II and

compare it with BMinLat-I. We then evaluate the performance of the proposed Bayesian

algorithm in Section 4.5.

4.4.1 Computational Complexity

In Chapter 3, we showed that for each sample s, the optimization problem in (4.37) can be

converted to a linear program and can be solved in polynomial order P (|Si|). In Algorithm

5, this optimization problem needs to be solved for each one of the Ns samples. Therefore,

node i needs to run an algorithm with computational complexity of order NsP (|Si|). In the

worst case, where Si = N −{i}, the computational complexity of the algorithm is NsP (N).

Recall that the worst-case complexity of BMinLat-I is O
(
N log2(Ns)

)
P (N). Based

on the size of the network (i.e., N) and the number of generated samples (i.e., Ns), ei-

ther BMinLat-I or BMinLat-II may be more computationally efficient. If N ≪ Ns, then

BMinLat-I is a better choice. However, if choosing Ns to be of the same order as N can

result in acceptable performance, then it is more computationally efficient to use BMinLat-

II.

4.5 Simulation Results

In this section, we compare the performance of the two proposed Bayesian routing algo-

rithms for opportunistic networks. We first implement the algorithms in synthetic networks

where the modelling assumptions are exactly met. We then show how these methods can be
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Algorithm 5 BMinLat-II

1: // Initialization

2: P = 0N×N

3: ∀i, j ∈ N : nij = 0, lij = 0,κζij = κ0, θ
ζ
ij = θ0

4: µd
d = 0, σd

d = 0 , ∀i ∈ N /d : µi
i = ∞, σi

i = 0

5: while Nodes continue to meet do

6: // Nodes i and j meet at time t

7: Set µj
i = µi

i and σ
j
i = σi

i

8: Set µi
j = µj

j and σ
i
j = σj

j

9: Update κζik = κζik + 1 and θζik = θζik + t− lij

10: Generate Ns samples {λsik}Ns
s=1 from Γ(κζik, θ

ζ
ik)

11: For each k ∈ Si, generate Ns samples {Ls
kd(i)}Ns

s=1 from N (µi
k, σ

i
k)

12: For each k ∈ Sj, generate Ns samples {Ls
kd(j)}Ns

s=1 from N (µj
k, σ

j
k)

13: Set p∗s
i = argminpi∈[0,1]|Si| gi

(
λs

i ,Ψ
s
i ,pi

)
and Ls

id(i) = gi
(
λs

i ,Ψ
s
i ,p

∗s
i

)

14: Set p∗s
j = argmin

pj∈[0,1]|Sj | gj
(
λs

j ,Ψ
s
j ,pj

)
and Ls

jd(j) = gj
(
λs

j ,Ψ
s
j ,p

∗s
j

)

15: Set pi =
1
Ns

∑Ns

s=1 p
∗s
i and pj =

1
Ns

∑Ns

s=1 p
∗s
j

16: Update µi
i =

1
Ns

∑Ns

s=1 L
s
id(i) and µj

j =
1
Ns

∑Ns

s=1 L
s
jd(j)

17: Update σi
i =

√
1
Ns

∑Ns

s=1(L
s
id(i)− µi

i)
2 and σj

j =
√

1
Ns

∑Ns

s=1(L
s
jd(j)− µj

j)
2

18: Set lij = t

19: end while

used in practice by testing the algorithms on a dataset generated based on the Sigcomm09

dataset [117].

We implement the two proposed Bayesian algorithms on a preferentially attached net-

work of N = 100 nodes. The preferentially attached contact graph is constructed in the

same way explained in Section 3.6 with parameters m0 = 2 and m = 2. If there exists an

edge between nodes i and j in the contact graph, a positive random meeting rate λij > 0

is assigned to the pair. Otherwise, λij = 0. The positive meeting rates are generated
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from a Gamma distribution Γ(1.5, 0.1). Therefore, the average meeting rate between pairs

of nodes with positive meeting rates is 9 meetings per minute. One of the N nodes is

randomly chosen as the destination node based on a uniform probability distribution. We

let the nodes meet each other for the equivalent time of almost 28 hours. We then check

the posterior probability distribution function that each node has estimated of its expected

latency to the destination node using each of the two algorithms. In order to run the al-

gorithms, we use the initial values κ0 = θ0 = 0 for any i, j ∈ N with λij > 0 and generate

Ns = 10 samples.

Figure 4.1 shows the probability distribution function of the expected latencies of 6

nodes for both BMinLat-I and BMinLat-II at the end of 28 hours of running the simulations

on the network. It also demonstrates the expected latencies of MinLat (where the meeting

rates are known) and MinLat-E (where Maximum Likelihood (ML) estimation of meeting

rates is used). As we see in the figure, at the end of the 28 hours of running the network, the

probability distribution of what BMinLat-I and BMinLat-II estimate are tight and close to

MinLat-E. However, we see that in the specific case of Figure 4.1, the expected latencies

that BMinLat-I, BMinLat-II, and MinLat-E estimate are underestimates of the result of

MinLat. This can be explained by taking a closer look at the nodes that have the most

frequent meetings with the destination nodes. In the simulation setup of Figure 4.1, node

78 is the destination node. In the random contact graph of this setup, the destination node

only meets nodes 30 and 47 with respective rates of 2.00 and 5.16 meetings per minute.

Hence, node 47 has the most frequent contacts with the destination and it only forwards

its messages to the destination. Most of the other nodes need to pass through this node to

send their messages to the destination.

The differences we observe between the estimates of MinLat and the other algorithms

(BMinLat-I, BMinLat-II, and MinLat-E) can be justified by a theoretical understanding

of the confidence interval associated with the Maximum Likelihood (ML) estimates. The

95% confidence intervals for ML estimates have ranges of 1 ± 1.96√
n where n is the number

of samples. After 28 hours, a pair of nodes that meet with rate 5.16 meetings per minute

have met each other 8668.8 times in average. Therefore, their ML estimate of their meeting

rate is between 0.98 and 1.02 of its true value 95% of the time. Hence, what they estimate

of the time it takes for a message to reach from one node to the other one is between 11.88

and 11.39 (instead of 11.63) hours. This shows that the difference of about 0.2 hour (12

minutes) is well within the confidence interval.
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Figure 4.1 Probability distribution function of expected latencies of 12
nodes estimated by BMinLat-I, BMinLat-II, MinLat, and MinLat-E
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As shown in Figure 4.1d, BMinLat-I and BMinLat-II estimate the exact same expected

latencies for node 47 and it equals the inverse of the estimated meeting rate between nodes

47 and 78. In order to see how this estimate evolves through time, Figure 4.2 displays the

mean and standard deviation of estimates of expected latencies for node 47 and three nodes

over time. As we see in Figure 4.2a, the expected latencies that BMinLat-I and BMinLat-II

estimate for node 47 converge to the result of MinLat from below. This causes other nodes

to underestimate their expected latencies. Moreover, Figure 4.2 shows that not only do the

means of the estimated expected latencies get close to what MinLat estimates, but also the

standard deviations decrease and the probability distributions get tight.

Figures 4.1 and 4.2 show how individual nodes perform under BMinLat-I, BMinLat-

II, and MinLat-E. In order to get an insight of how the entire network performs, Figure

4.3 shows some statistical characteristics of the differences between the expected latencies

estimated by MinLat and the two Bayesian algorithms BMinLat-I and BMinLat-II for

different nodes. It also displays the difference between MinLat and MinLat-E. The red

lines show the median while the boxes display the 25th and 75th percentiles of estimated

expected latencies over different nodes. Whiskers show maximum and minimum values.

Moreover, 4.3d shows the median of the difference in BMinLat-I, BMinLat-II, and MinLat-

E to make it easer to compare the results. As we see in the figure, the difference between

the expected latencies estimated by all the three algorithms and MinLat decreases as the

time passes. In addition, we see that the result of BMinLat-I and BMinLat-II are close to

MinLat-E. This is because we did not use any external or social information about the ties

between nodes in the simulations of this section. However, as explained in Section 4.1, the

whole point of using a Bayesian framework is to make use of this information to expedite

the process of finding the optimal forwarding rules. In the next section, we use a dataset

generated based on a real-world dataset to show how we can use the proposed algorithm to

achieve this goal. However, before moving on to the next section, we intend to investigate

how the results change if we generate more samples.
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Figure 4.2 Evolution of estimated expected latency with time
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(b) BMinLat-II
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(c) MinLat-E
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Figure 4.3 Some statistical properties of the difference between the expected
latencies estimated by MinLat and the two Bayesian algorithms BMinLat-I
and BMinLat-II across different network nodes
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In order to show the impact of the number of generated samples on the results, we com-

pare the performance of BMinLat-I and BMinLat-II for three different values of Ns. Figure

4.4 shows the same statistical characteristics as in Figure 4.3 for a preferentially attached

network of N = 10 nodes for Ns = 1, 10, 100 samples. When only one sample is generated,

BMinLat-I and BMinLat-II are exactly the same. When the number of generated samples

are increased to 10, we see the difference terms shrink faster. However, the improvement is

less significant when we increase the number of generated samples from 10 to 100. Figure

4.5 makes it easier to compare the results by just displaying the median of differences.

We see that for higher number of generated samples, the results are closer to MinLat-E.

Moreover, we observe that the variability of the estimates also changes with number of

samples. Based on Figure 4.5b, the estimates are still changing relatively significantly after

11 hours. With 100 samples, however, there is very little variation.
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(a) BMinLat-I with 1 sample
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(b) BMinLat-II with 1 sample
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(c) BMinLat-I with 10 samples
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(d) BMinLat-II with 10 samples
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(e) BMinLat-I with 100 samples
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(f) BMinLat-II with 100 samples
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(g) MinLat-E

Figure 4.4 Difference between the expected latencies estimated by MinLat
and the proposed algorithms BMinLat-I, BMinLat-II, MinLat-E across differ-
ent network nodes for different number of generated samples
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(b) 10 samples
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(c) 100 samples

Figure 4.5 Median of the difference between the expected latencies esti-
mated by MinLat and BMinLat-I, BMinLat-II, MinLat-E
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4.5.1 Informative Prior Distribution

In order to show how the proposed Bayesian methods can be used in practice, we test them

on a dataset generated based on the Sigcomm09 dataset [117] collected at the Sigcomm

2009 conference at Barcelona, Spain. Around 100 smart phones were distributed to a

set of volunteers during the first two days of the conference. Each device was initialized

with the social profile of a participant including some basic information such as home

city, country, and affiliation. In addition, each participant was asked to log in to his/her

Facebook profile in order to include the list of Facebook friends and interests in the social

profile. The participants were allowed to edit the social profile before it was uploaded on

the device and recorded in the traces. Participants were instructed to keep the device with

them and powered on at all times, and to use the MobiClique application for mobile social

networking during the conference. The final trace contains data from 76 devices that show

significant activity during the experiment. We use the rate of meetings in the first 12 hours

of the conference and generate a dataset with exponential inter-meeting times for 24 hours.

In order to apply the strength of the social ties between nodes, we define four different

types of social relationships and use the information in the Sigcomm09 dataset, to assign

the parameters for the prior gamma distribution to each group. Table 4.2 summarizes the

assigned values. It also shows what percentage of the population each category forms and

the average meeting rate in each group.

Table 4.2 Different types of social ties in the Sigcomm09 dataset

Property ζij κ0 θ0
Population
Percentage

Average Meeting
Rate (1/hour)

i and j are friends on Facebook 1 1.76 1376 4.62 4.68

i and j have the same research interests 2 2.07 1959 17.37 3.81

i and j have both of the above properties 3 1.80 1462 9.14 4.44

i and j have none of the above properties 4 2.68 3026 68.87 3.19

Figure 4.6 shows the prior probability distribution functions for meeting rates of each

category. We interpret the friendship on Facebook as a personal relationship and the same

research interests as a professional relationship between two nodes. Table 4.2 and Figure

4.6 show that the stronger the personal and professional relationships between two nodes,

the more frequently they meet. The hyperparameters shown in Table 4.2 are derived from

the dataset. Although this is not a practical approach to chose hyperparameters, we just
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Figure 4.6 Prior probability distribution functions for meeting rates

use it to make the point about our proposed Bayesian framework. In practice, other related

sources of information should be used to derive these hyperparameters. In the example of

a conference event, the meeting rates of similar participants in the previous years may be

used to choose the hyperparameters for prior distributions.

We compare the performance of BMinLat-I and BMinLat-II with these informative

prior distributions with the performance of MinLat. Figure 4.7 shows the same statistical

characteristics as in Figure 4.3 for the difference between the expected latencies estimated

by MinLat and the algorithms BMinLat-I, BMinLat-II, and MinLat-E. As we see in Fig-

ure 4.7, the difference terms in BMinLat-I and BMinLat-II are smaller in the beginning

compared to MinLat-E. We have shown all the median points in Figure 4.7d to more eas-

ily compare the algorithms. As we see in this figure, BMinLat-I has the smallest median

values and it is followed by its heuristic version BMinLat-II. MinLat-E has much larger

difference values in the beginning. This can be justified by the fact that MinLat-E does

not have any prior information about the nodes’ meeting rates. However, we see that the

prior becomes almost irrelevant after some time and the three algorithms have the same

ultimate results. Figure 4.8 shows the evolution of the mean and standard deviation of

estimated expected latencies of some of the individual nodes. Again, we see that compared

to MinLat-E, BMinLat-I and BMinLat-II result in expected latencies that are more similar

to the result of MinLat in the beginning. We see in Figure 4.8 that MinLat-E largely

underestimates the expected latencies achieved by MinLat in the beginning. The reason is
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(a) BMinLat-I with informative prior
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(b) BMinLat-II with informative prior
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(c) MinLat-E
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Figure 4.7 Some statistical properties of the difference between the ex-
pected latencies estimated by MinLat and the proposed algorithms BMinLat-I,
BMinLat-II, MinLat-E across different network nodes
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(c) node 22 - mean
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(d) node 22 - standard deviation
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Figure 4.8 Evolution of estimated expected latency with time



4 Proactive Approach: Bayesian Routing Using Social Information 86

that in the specific case of this simulation some critical nodes meet more frequently than

their average meeting rate in the beginning. Therefore, what they think of their meeting

rate is much larger than its true value.

4.6 Summary

In this chapter, we used a Bayesian framework to improve the performance of decentralized

routing in opportunistic DTNs in scenarios where the meeting rates are unknown. The

goal is to apply some external information about the social ties among the network nodes

in addition to the nodes’ contact histories. We developed two algorithms, BMinLat-I and

BMinLat-II, to find the forwarding rules that nodes should use in order to route their mes-

sages to the destination node. The main idea in BMinLat-I is to find a forwarding rule

which minimizes the expectation of the utility function with respect to random meeting

rates. In order to solve the optimization problem, BMinLat-I samples from the posterior

distributions of the meeting rates and expected latencies and identifies the average of ob-

jective functions over all the generated samples. The main idea in BMinLat-II, however, is

to find the optimal binary solution for each sample independently. The ultimate forwarding

rule that is dictated to a node is the average of optimal solutions over the sample set. This

final forwarding rule is not binary and the node uses it as the probability of forwarding a

message to an encountered node.

We evaluated the performance of the proposed algorithms on a synthetic preferentially

attached network. Experimental results show that the probability distribution of the ex-

pected latencies that BMinLat-I and BMinLat-II estimate for nodes get tighter as the time

passes. Moreover, the means of these probability distributions get close to the expected

latencies of MinLat. When no external information is used in the prior distributions,

BMinLat-I and BMinLat-II have almost the same results as MinLat-E. We also showed

that as we increase the number of generated samples in these two algorithms, their results

are more similar to MinLat-E. In order to show how the proposed Bayesian algorithms

can be used in practice, we applied them on a dataset generated based on the Sigcomm09

dataset. We used some information about the social ties between nodes provided in the

Sigcomm09 dataset to make the prior distributions more informative. We observed that

using this information in the prior distribution can expedite the convergence of expected

latencies compared to MinLat-E where no social information is used.
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Chapter 5

Passive Approach: Inference of

Diffusion Networks

5.1 Overview

In Chapters 3 and 4, we focused on how we can proactively control the process of diffu-

sion of information/infection in a network structure. However, as mentioned in Chapter

1, sometimes we want to observe a diffusion process and learn about its dynamic and be-

havioural patterns rather than control it. These detected patterns may be later used to

expedite, retard, or prevent future similar processes. The key factor that determines how

the inference should be performed is the type of the changes we observe in the state of the

nodes when they become infected.

In this chapter, we intend to passively observe diffusion processes to detect the underly-

ing structure. The focus is on scenarios in which the moment of time that a node becomes

infected is unknown. More precisely, our goal is to infer the network structure based on

which the infection spreads throughout the network as well as the infection times and the

strength of the links between nodes. We assume that our only observation of the diffusion

process is a set of time series, one for each node of the network, which exhibit statistical

changes when an infection occurs. We first formulate the problem in a Bayesian framework

and specify the notations we use in Section 5.2. The network inference problem is modelled

as an optimization problem. Since this optimization problem cannot be solved in a closed

form, we use Markov Chain Monte Carlo (MCMC) techniques to find the set of network

2017/09/15
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parameters and temporal cascades that best explain our observations. In Section 5.3, we

develop a batch inference algorithm for the scenarios in which the whole time series is

observed and can be processed in its entirety. We then migrate to an online version of the

inference algorithm which suits the scenarios in which the inference should be performed

before all the observations are available. We use Sequential Monte Carlo (SMC) techniques

to develop the online algorithm in Section 5.4. The performance of the proposed algorithms

are evaluated on both synthetic and real-world datasets in Section 5.5. We summarize the

chapter in Section 5.6 and provide the proofs of lemmas and theorems stated in this chapter

in Section 5.7.

5.2 Problem Statement

In Chapter 1, we defined a diffusion process as the combination of three main components.

In this section, we specify how we model each component.

− Nodes, i.e., the set of separate agents. We consider a set of N agents and denote this

set by N = {1, . . . , N}.

− Infection or Contagion, i.e., the change in the state of a node that is triggered by an

external source or by another node that has already changed its state. When a node

changes its state, we say it has received the contagion (or infection). We call the

nodes that have received the infection from the external source as the source nodes

for the set N . In this work, we consider just two states for each node, susceptible and

infected, and refer to this model as the SI (Susceptible-Infected) infection scenario.

In the susceptible state, a node is prone to receiving the contagion and changing its

state to infected. Once an arbitrary node becomes infected, it never changes its state

afterwards. However, it can cause other susceptible nodes to change their states (See

the next component). Depending on the number and the order of states, different

infection scenarios may be considered. We introduce other possible states and briefly

discuss how our proposed model can be extended for other infection scenarios in

Chapter 6. Considering a discrete time setup, we denote the moment of time at

which node i changes its state by ti and refer to it as node i’s infection time. In

our work, nodes’ infection times are modelled as random variables. We describe the

distribution function of these random variables after specifying the third component
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of a diffusion process. The term cascade is often used to refer to the temporal traces

left by a diffusion process i.e., the realization of the random vector [t1, . . . , tN ]T .

− Causality or Network Structure, i.e., the underlying structure based on which nodes

cause each other to change state. We model this component by a directed, weighted

graph G = (N , E ,αN×N) where E is the set of directed edges, and α = [αij]N×N is a

link strength matrix. When node j ∈ N triggers node i ∈ N to change its state to

infected, we say j has transferred the infection to i or i is infected by j. In this case,

node j is referred to as the parent of node i and is denoted by zi. Each node i has

a set of potential (or candidate) parents πi, but it is infected by only one of them,

i.e., zi ∈ πi. A directed edge j → i exists in E if and only if zi = j. The factor that

determines which member of πi transfers the infection to node i is the strength of the

relationship between node i and each of its potential parents j ∈ πi. We denote this

link strength for nodes i and j ∈ πi by αij. The definitions of parents and candidate

parents simply imply that ∀j ∈ πi : tj < ti and ∀j /∈ πi : αij = 0.

Throughout this chapter, we use [·] to denote vectors and matrices, {·} to denote sets, and

(·) to denote finite ordered lists.

Now that we have modelled the components of the diffusion process, we characterize

the probability distributions that control parent selection and the infection times. Knowing

the set of potential parents of node i and the link strengths, zi is a discrete random variable

whose probability mass function (i.e., f(zi|αij, j ∈ πi)) depends on the strength of the links

between node i and all the nodes j ∈ πi. Moreover, in our model, once zi is infected, the

probability that it transfers the contagion to i decays as time passes and its rate of decay

depends on their link strength. Therefore, the probability distribution function of ti (i.e.,

f(ti|zi, tzi ,αizi)) is a monotonically decreasing function of ti − tz
i
. Hence, for each node i

we model the joint probability distribution of ti, zi and αij, j ∈ πi as,

f(ti, zi,αij, j ∈ πi|tzi) = f(ti|zi, tzi ,αizi)f(zi|αij, j ∈ πi)f(αij, j ∈ πi) (5.1)

In Section 5.3.1, we specify the prior distributions we consider in our Bayesian inference

algorithms for the terms of (5.1).

As mentioned in Section 5.1, we focus on the scenarios where neither the network

structure (i.e., parental relations and link strengths) nor the cascades (i.e., infection times)
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are directly observed. We assume that the only observation we get from an arbitrary node

i ∈ N is a discrete time signal of length NT denoted by di = (d1n, . . . , d
NT
n ). We denote the

set of all observed time signals by d = {d1, . . . ,dN}.
In order to develop inference algorithms for the case where data arrives in a streaming

fashion or in batches, we consider a setting where each node’s data arrives in NB blocks of

length M . Denote the vector of time indices in block b by Bb, i.e.,

Bb =

⎡

⎢⎢⎣

M × (b− 1) + 1
...

M × b

⎤

⎥⎥⎦

and the data in block b for all the nodes in the network by dBb
= {d1

Bb
, . . . ,dN

Bb
}. We

denote the parent for node i at the end of the bth block by zib. If no infection has occurred

by the end of block b − 1, but it occurs during the bth block, then zib−1 has a null-value,

i.e., zib−1 = φ, whereas zib = j for some j ∈ πi. Likewise, the infection time for node i and

the link strength associated with link ij in block b are respectively denoted by tib and α
ij
b .

If no infection has occurred then tib also has a null-value φ. The parameters at the end of

the bth block are denoted by xb = (zb, tb,αb) where

zb =

⎡

⎢⎢⎣

z1b
...

zNb

⎤

⎥⎥⎦ , tb =

⎡

⎢⎢⎣

t1b
...

tNb

⎤

⎥⎥⎦ , αb = [αij
b ]N×N

While the set of potential parents πi is the same for all the blocks, two sets Ci
b and π

i
b are

defined as follows for each block b.

Ci
b = {k|zkb = i} , πi

b = {k|k ∈ πi, tkb ̸= φ, tkb < tib}

Ci
b is the set of nodes that node i has infected before the end of the bth block, i.e., node i

is the established parent of all nodes j ∈ Ci
b. π

i
b ⊆ πi is the subset of potential parents of

node i who have been infected by the end of the bth block. Table 5.1 lists the notation used

in this chapter.
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The goal is to infer the set of infection parameters xb at the end of the bth block that

best explains the received signals up to the end of block b, i.e., dB1:b
. More precisely, we

aim to find the most probable parameters (ẑb, t̂b, α̂b) conditioned on the received signals

dB1:b
. We denote these Maximum A Posteriori (MAP) estimates of infection parameters

by xMAP
b :

xMAP
b = (ẑb, t̂b, α̂b) = argmax

(zb,tb,αb)
f(zb, tb,αb|dB1:b

) (5.2)

Solving the optimization problem in (5.2) is challenging, especially considering the fact

that the data arrives in blocks and we need to make decisions before we have access to

the entire signals. Hence, we resort to Markov Chain Monte Carlo (MCMC) methods

to generate samples from the posterior distribution, f(zb, tb,αb|dB1:b
), and assess the un-

derlying diffusion process based on these samples. We first describe the batch inference

approach based on Gibbs Sampling. We then extend this framework by considering the

cases where no infection time is detected in the interval under study. We use this batch

inference method to generate particles in the first received block of data. We then design

an online inference algorithm based on SMC techniques to find the infection parameters

(i.e., network structure and cascade information) that best explains the observed data at

the end of each block b > 1. In order to do so, the particles for each block b are obtained by

updating particles of block b− 1 using the received signals dBb
. To have a unified notation

throughout this chapter, we use the b batch subscripts from now on for both the batch

and sequential settings. For batch inference scenarios we have x = x1 = (z1, t1,α1) since

NB = 1 and M = NT .

5.3 Batch Inference

Assuming that the entire data signal is available at each node, we develop a batch (of-

fline) inference algorithm based on Gibbs Sampling. Using Bayes’ rule and due to the

dependencies we clarified in Section 5.2, the joint conditional distribution f(x1|dB1) =

f(z1, t1,α1|dB1) is

f(x1|dB1) =
f(dB1 |t1, z1,α1)f(t1|z1,α1)f(z1|α1)f(α1)

f(dB1)
(5.3)
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In the rest of this section, we introduce appropriate prior distributions for components of

equation (5.3). The priors are selected to allow flexibility in the incorporation of prior

knowledge and to facilitate computation. We then use this Bayesian framework to develop

methods for inferring the underlying network structure as well as the cascade traces.

5.3.1 Priors

As opposed to the previous methods and models (e.g., [72,87]), we accommodate scenarios

where an arbitrary node i may never become infected over the study period of length NT .

We indicate this case by assigning null values to the infection time and parent of node

i, i.e., ti1 = φ and zi1 = φ. The conditional probability density function f(ti1|zi1,α
izi1
1 , t

zi1
1 ),

which models the conditional likelihood that node zi1 (infected at time t
zi1
1 ) transfers the

infection to node i at time ti1 > t
zi1
1 . Intuitively, the ability of an infected node to transfer

the contagion to other nodes is expected to decay as time passes. Hence, the monotonic

memoryless exponential distribution is a good candidate. An alternative way to motivate

this model is to consider repeated interactions between the nodes, each being a Bernoulli

trial with a small probability of infection.

Some authors (e.g., [72]) have studied the effect of heavy tailed Power law or non-

monotonic Rayleigh distributions on the inference methods when the cascades are observed.

For our prior distribution, we employ the exponential decay assumption. Since our obser-

vations d are assumed to be discrete time series, we choose the discrete counterpart of an

exponential distribution for f(ti1|zi1,α
izi1
1 , t

zi1
1 ), i.e., a geometric distribution with parameter

pi1 = 1− e−α
izi1
1 .

Consider the case where t11 ≥ t21 ≥ · · · ≥ tN1 , employing the convention that the null

infection time φ > NT . We have f(t1|z1,α1) =
∏

i∈N f(ti1|zi1,α1, t
i+1:N
1 ) where

f(ti1|zi1,α1, t
i+1:N
1 ) =

⎧
⎨

⎩
pi1(1− pi1)

ti1−t
zi1
1 −1 1 ≤ ti1 ≤ NT ,

(1− pi1)
NT ti1 = φ.

(5.4)

The expression for ti1 = φ is simply one minus the value of the cumulative distribution

function of the random variable ti1 at time NT . A similar expression can be obtained for

any arbitrary ordering of the changepoints.

We assume that, conditioned on the link strengths, the probability that one of the
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nodes in the candidate parent set v ∈ πi is the actual parent of node i is independent of the

probability that a node r ∈ πj is the parent of node j. The exponential decay assumption

and the fact that zi1 is the first node that transfers the infection to node i makes the

multinomial distribution a good candidate for capturing the prior distribution of parents

given the link strength values.

f(z1|α1) =
∏

i∈N

f(zi1|α
ij
1 , j ∈ πi) =

∏

i∈N

α
izi1
1∑

j∈πi α
ij
1

(5.5)

As for the prior distribution for strength value of link ij, we choose a Gamma distri-

bution, i.e., αij
1 ∼ Γ(κij, θij). This choice of prior distribution allows us to model a wide

range of α values for different links of the network. We can capture both highly informed

knowledge about strong links or the uninformed case where we have little prior information

about the strength of links. Therefore, assuming that link strength values of different links

are independent, we have

f(α1) =
∏

i∈N ,j∈πi

f(αij
1 ) =

∏

i∈N ,j∈πi

xκij−1e
− x

θij

Γ(κij)θij
κij

(5.6)

Finally, we assume that node i’s observed data, di
B1
, are conditionally independent of

the observations from all other nodes and that they follow the same prior distribution with

two different sets of hyperparameters γ1 = (γ11 , . . . , γ
N
1 ), γ2 = (γ12 , . . . , γ

N
2 ) before and after

being infected at ti. Hence,

f(dB1 |z1, t1,α1) =
∏

i∈N

f(di
B1
|ti1)

=
∏

i∈N

ti∏

j=1

f(dij; γ
i
1)

NT∏

j=ti+1

f(dij; γ
i
2)

(5.7)

The choice of priors f(dij; γ
i
1) and f(dij; γ

i
2) depends on the application. We test cases where

the data are independently drawn from Gaussian and Poisson distributions in our numerical

simulations in Section 5.5, but more complex structure can be readily incorporated in the

time-series model (autoregressive processes, for example). In the next sections, we use

the prior distributions described above to design batch and online inference methods in a
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Bayesian framework.

5.3.2 Gibbs Sampling

With the proposed distributions in (5.4)-(5.7), we can calculate the probability of any

arbitrary (z1, t1,α1) up to a constant 1
f(dB1 )

using (5.3). We use Gibbs Sampling to generate

Ns samples from the posterior distribution of (5.3). In other words, we use full conditional

distributions for each of the infection parameters zi1, t
i
1,α

ij
1 (i, j ∈ N ) to generate samples.

We denote the parents and infection times of all the nodes in the network except node i

respectively by zi1, t
i
1. Also, the vector of link strengths of all node i’s links except the

link between nodes i and j is denoted by αij
1 . The full conditional probabilities for Gibbs

Sampling are as follows.

a) For the parent of node i ∈ N

f(zi1|dB1 , z
i
1, t1,α1) ∝ f(ti1|zi1,α

izi1
1 , t

zi1
1 )f(zi1|α

ij
1 )j∈πi (5.8)

b) For the infection time of node i ∈ N

f(ti1|dB1 , z1, t
i
1,α1) ∝ f(di

B1
|ti1)f(ti1|zi1,α

izi1
1 , t

zi1
1 )

∏

k∈Ci
1

f(tk1|αki
1 , t

i
1) (5.9)

c) For the link strength between nodes i ∈ N and j ∈ πi

f(αij
1 |dB1 , z1, t1,α

ij
1 ) ∝ f(ti1|zi1,α

izi1
1 , t

zi1
1 )f(zi1|α1)f(α

ij
1 ) (5.10)

Building upon this batch inference method, we propose an online inference method in the

next section. In this online approach, the batch inference method is used to make decisions

about diffusion parameters in the first received block of data.

5.4 Online Inference

In the online setting, the goal is to compute the filtering posterior distribution f(xb|dB1:b
).

In the Bayesian framework we have,

f(xb|dB1:b
) ∝

∫
f(dBb

|xb)f(xb|xb−1)f(xb−1|dB1:b−1
)dxb−1

(5.11)
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Since calculating (5.11) is analytically intractable in our application, we use the sequen-

tial Markov Chain Monte Carlo framework proposed in [118] to obtain an approximation

of this filtering distribution. In this framework, instead of striving to directly sample

from f(xb|dB1:b
), which has complexity issues due to the need to perform the marginal-

ization captured by the integral in (5.11), we sample from the joint posterior distribution

f(xb,xb−1|dB1:b
) where

f(xb,xb−1|dB1:b
) =

f(dBb
|xb)f(xb|xb−1)f(xb−1|dB1:b−1

)

f(dBb
|dB1:b−1

)
(5.12)

In the sequential MCMC approach, we maintain a set of particles that provides a

sample-based approximation to the distribution of interest f(xb|dB1:b
). After processing

block b − 1, since the posterior distribution f(xb−1|dB1:b−1
) does not have a closed form

representation, it is approximated with an empirical distribution based on the particle set

{xj
b−1|j = 1, . . . , Ns}, i.e.,

f(xb−1|dB1:b−1
) =

1

Ns

Ns∑

j=1

δ(xb−1 − xj
b−1) (5.13)

Hence, the target distribution f(xb,xb−1|dB1:b
) that we wish to sample from can be approx-

imated as ⎧
⎨

⎩

f(dBb
|xb)f(xb|xs

b−1)∑Ns
j=1 f(dBb

|xj
b−1)

if xb−1 ∈ {xs
b−1|s = 1, . . . , Ns},

0 otherwise.
(5.14)

Here, f(xb|xs
b−1) is referred to as the transition distribution. We will derive an appropriate

expression for this probability distribution in Section 5.4.1.

Algorithm 6 presents our proposed online inference method based on the MCMC-based

particle algorithm used in [118]. As mentioned earlier, we use the batch inference method

described in section 5.3 to generate a set of Ns particles in the first block of the data

and use it as the initial particle set for the SMC procedure of next blocks. In each block

b > 1 of the data, the SMC procedure consists of two main steps. The first step, joint

draw, is a joint Metropolis-Hastings (MH) proposal step in which instead of sampling

from f(xb,xb−1|dB1:b
), we sample from the proposal distribution q(xb,xb−1|xm−1

b ,xm−1
b−1 )

and accept the proposed samples with probability ρ. Lines 11-13 of Algorithm 6 describe
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the components of the proposal distributions. The proposal distributions and the MH

acceptance ratio are respectively derived in Sections 5.4.2 and 5.4.3. The second step of

the SMC procedure, refinement, is an individual refinement Gibbs Sampling step where xb

is updated by sampling from f(xb|xm
b−1,dBb

).

Algorithm 6 SMC-Based Online Inference Method

1: // First block

2: Generate Ns samples xs
1|s=1,...,Ns ∼ f(x1|dB1) using Gibbs Sampling

3: // Next blocks

4: Initialize the particle set P = {xs
1|s = 1, . . . , Ns}

5: Set NMCMC = Nthin ×Ns +Nburn

6: for b = 2, . . . , Nb do

7: Calculate tML
b using (5.20)

8: for m = 1, . . . , NMCMC do

9: // Joint Draw

10: Propose x∗
b−1 uniformly from P

11: Propose t∗b ∼ ht(tb|x∗
b−1; t

ML
b ) using (5.23)

12: Propose α∗
b ∼ hα(αb|x∗

b−1, t
∗
b) using (5.25)

13: Propose z∗b ∼ hz(zb|x∗
b−1, t

∗
b ,α

∗
b) using (5.26)

14: Set x∗
b = (z∗b , t

∗
b ,α

∗
b)

15: Calculate MH acceptance probability ρ using (5.29)

16: Accept (xm
b ,x

m
b−1) = (x∗

b ,x
∗
b−1) with probability ρ

17: // Refinement

18: Generate x∗
b ∼ f(xb|xm

b−1,dBb
) using Gibbs Sampling and set xm

b = x∗
b

19: end for

20: Set P = {xNburn+kNthin

b |k = 1, . . . , Ns}

21: Set xMAP
b as the most repeated particle in P

22: end for
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Finally, thinning and burn-in procedures are performed by storing one out of everyNthin

accepted samples after discarding the initial Nburn samples. In the rest of this section,

we derive the transition and proposal distributions and use them to calculate the MH

acceptance ratio. We then explain the details of the refinement step and conclude the

section by commenting on the computational complexity of Algorithm 6.

5.4.1 Transition Distribution

Using the framework explained in Section 5.2, we have

f(xb|xs
b−1) = f(zb, tb|xs

b−1,αb)f(αb|xs
b−1)

=
∏

i∈N

f(tib, z
i
b|xs

b−1,αb)
∏

k∈πi

f(αik
b )

(5.15)

Due to the characteristics of the online method, once a non-null value has been assigned

to the infection parameters of a node in block b, this decision is respected in the following

blocks. More precisely,

f(αik
b ) =

⎧
⎨

⎩
δ(αik

b − αik
b−1) if tib−1 ̸= φ,

Γ(κik, θik) if tib−1 = φ,
(5.16)

and

f(tib, z
i
b|xs

b−1,α
ij
b )j∈πi

b
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ(tib − tib−1)δ(z
i
b − zib−1) if tib−1 ̸= φ,

∑
l∈πi

b

∑Bb[M ]

x=tlb+1
g1(l, x, i) + δ(zib − φ)×

δ(tib − φ)(1−
∑

l∈πi
b

∑Bb[M ]

x=tlb+1
g1(l, x, i))

if tib−1 = φ,
(5.17)

where

g1(l, x, i) =
αil
b∑

k∈πi αik
b

(pib)(1− pib)
x−tlb−1δ(zib − l)δ(tib − x) (5.18)

and pib = 1 − e−α
izib
b . According to (5.17), if node i has not become infected by the end

of block b − 1, the probability that it becomes infected by node l ∈ πi
b at some time

x ∈ [tlb,Bb[M ]] is g1(l, x, i). Equation (5.18) shows that this probability equals the product

of the geometric and multinomial distributions respectively defined in (5.4) and (5.5). Node
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i remains susceptible (i.e., tib = φ) with a probability that equals one minus the sum of the

probabilities of being infected by each node l ∈ πi at each time step x ∈ [tlb,Bb[M ]].

5.4.2 Proposal Distribution

As presented in line 9 of Algorithm 6, the optimal importance sampling distribution (as-

suming that we adopt the particle-based approximation for f(xb−1|dB1:b−1
)) is:

q(xb,xb−1|xm−1
b ,xm−1

b−1 ) = f(xb|xb−1,dBb
)f(xb−1|dB1:b−1

)

=

⎧
⎨

⎩

f(dBb
|xb)f(xb|xb−1)

f(dBb
|xb−1)

if xb−1 ∈ {xs
b−1, s = 1, . . . , Ns},

0 otherwise.

(5.19)

Although calculating the predictive density in the denominator of (5.19) is not necessary

for sampling, it is eventually required for calculating the acceptance ratio. To avoid nu-

merical integration of the predictive density at every iteration, we benefit from an auxiliary

parameter which can be obtained from the data. In each block b, we calculate the max-

imum likelihood changepoint of each individual time series dBb[1]:Bb[M ] for all i ∈ N . We

denote the vector of these maximum likelihood changepoints by tML
b = [tML1

b , . . . , tMLN

b ]T ,

where

tMLi

b ! arg max
Bb[1]≤t≤Bb[M ]

f(dBb[1]:t; γ
i
1)f(dt+1:Bb[M ]; γ

i
2) (5.20)

Using this auxiliary parameter, we design the following proposal distribution.

q(xb,xb−1|xm−1
b ,xm−1

b−1 ) = h(xb|xb−1; t
ML
b )f(xb−1|dB1:b−1

)

=

⎧
⎨

⎩

1
Ns
h(xb|xb−1; tML

b ) if xb−1 ∈ {xs
b−1, s = 1, . . . , Ns},

0 otherwise.

(5.21)

where

h(xb|xb−1; t
ML
b ) = ht(tb|xb−1; t

ML
b )hα(αb|tb,xb−1)hz(zb|tb,αb,xb−1). (5.22)

Each component of h(xb|xb−1; tML
b ) is the proposal distribution for one of the infection

parameters. For each node i ∈ N , we independently propose an infection time whose dis-

tance from the maximum likelihood tMLi

b follows a geometric distribution with pre-defined
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parameter rib. In other words, we sample from ht(tb|xb−1; tML
b ) =

∏
i∈N hi

t(t
i
b|xb−1; tMLi

b ),

where

hi
t(t

i
b|xb−1; t

MLi

b ) =

⎧
⎨

⎩
δ(tib − tib−1) tib−1 ̸= φ,
∑M

n=1 g2(n, i) + (1−
∑M

n=1 g2(n, i))δ(t
i
b − φ) tib−1 = φ.

(5.23)

and

g2(n, i) =
1

2
rib(1− rib)

|Bb[n]−tMLi

b |δ(tib −Bb[n]). (5.24)

Using the proposed t∗b , we propose α∗
b by generating samples from hα(αb|t∗b ,xb−1) =

∏
i∈N

∏
k∈πi hi

α(α
ik
b |t∗b ,xb−1) where

hi
α(α

ik
b |t∗b ,xb−1) =

⎧
⎨

⎩
δ(αik

b − αik
b−1) if tib ̸= φ, tib−1 ̸= φ,

Γ(κki, θki) if tib−1 = φ.
(5.25)

Finally, we propose z∗b by sampling from hz(zb|t∗b ,α∗
b ,xb−1) =

∏
i∈N hi

z(z
i
b|t∗b ,α∗

b ,xb−1), i.e.,

hi
z(z

i
b|t∗b ,α∗

b ,xb−1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δ(zib − zib−1) if tib ̸= φ, tib−1 ̸= φ,

δ(zib − φ) if tib = φ, tib−1 = φ,
∑

l∈πi
b

αil
b∑

j∈πi α
ij
b

δ(zib − l)+

(1−
∑

l∈πi
b
αil
b

∑
j∈πi α

ij
b

)δ(zib − φ)
if tib ̸= φ, tib−1 = φ.

(5.26)

Proposition 2 shows that the proposal q is normalized. The proof is provided in Appendix

5.7.1.

Proposition 2. h(xb|xb−1; tML
b ) is a probability distribution function. In particular,

∫ ∑

tb∈S1×···×S1

∑

zb∈S2×···×S2

h(xb|xb−1; t
ML
b )dαb

= 1 (5.27)

where S1 = {B1[1], . . . ,Bb[M ],φ} and S2 = πi
b ∪ {φ}.
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5.4.3 Metropolis-Hastings Acceptance Ratio

The acceptance ratio of the Metropolis-Hastings sampling approach proposed in [119] is

ρ = min

(
1,

f(x∗
b ,x

∗
b−1|dB1:b

)

q(x∗
b ,x

∗
b−1|x

m−1
b ,xm−1

b−1 )

q(xm−1
b ,xm−1

b−1 |x∗
b ,x

∗
b−1)

f(xm−1
b ,xm−1

b−1 |dB1:b
)

)
(5.28)

Replacing (5.14) and (5.21) in the second argument of (5.28), we have

f(dBb
|x∗

b)

f(dBb
|xm−1

b )

f(x∗
b |x∗

b−1)

f(xm−1
b |xm−1

b−1 )

h(xm−1
b |xm−1

b−1 ; tML
b )

h(x∗
b |x∗

b−1; t
ML
b )

(5.29)

In evaluating this expression, the first ratio can be calculated directly from the likelihood

expressions. The second ratio can be evaluated from (5.15), using (5.16)-(5.18). The third

ratio can be calculated from (5.22), using (5.23)-(5.26).

5.4.4 Refinement Step

The Gibbs Sampling procedure in the refinement step is basically the same as the Gibbs

Sampling used in the batch inference. For each node i ∈ N , each one of the diffusion param-

eters (tib, z
i
b,α

i
b) is treated as a separate parameter block and is sampled using full conditional

distributions. However, some of the online inference features need to be accounted for while

deriving the full conditional distributions. These distributions are derived as follows.

a) For parent of node i ∈ N

f(zib|xm
b−1,dBb

, zib, tb,αb) ∝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ(zib − φ) if ti
m
b−1 = φ, tib = φ ,

δ(zib − zi
m
b−1) if ti

m
b−1 ̸= φ, tib ̸= φ ,

f(tib|zib,α
izib
b , t

zib
b )f(z

i
b|αik

b )k∈πi if ti
m
b−1 = φ, tib ̸= φ .

(5.30)

b) For infection time of node i ∈ N

f(tib|xm
b−1,dBb

, zb, t
i
b,αb) ∝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ(tib − ti
m
b−1) if ti

m
b−1 ̸= φ ,

f(di
Bb
|tib)f(tib|zib,α

izib
b , t

zib
b )×

∏
k∈Ci

b
f(tkb |αki

b , t
i
b)

if ti
m
b−1 = φ .

(5.31)
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c) For link strength between nodes i ∈ N and j ∈ πi

f(αij
b |x

m
b−1,dBb

, zb, tb,α
ij
b ) ∝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(αij
b ) if ti

m
b−1 = φ, tib = φ ,

δ(αij
b − αijm

b−1) if ti
m
b−1 ̸= φ, tib ̸= φ ,

f(tib|zib,α
izib
b , t

zib
b )f(z

i
b|αb)f(α

ij
b ) if ti

m
b−1 = φ, tib ̸= φ .

(5.32)

Here ti
m
b−1, z

im
b−1, and α

ijm
b−1 respectively denote the infection time of node i, the parent of

node i, and the link strength between nodes i and j in the sample xm
b−1.

5.4.5 Computational Complexity

Line 7 of Algorithm 6 only needs to be performed once per block. In each block b,

we need to evaluate the probability distributions of (5.20) for each node at each time

Bb[1] ≤ t ≤ Bb[M ]. Therefore, the computational complexity of finding tML
b for all blocks

is of order O(NbNM). Lines 11 to 13 of the algorithm involve generating respectively N−1

geometric,
∑

i∈N |πi| gamma, and N−1 multinomial random variables in the worst case.

These random number generation procedures also exist in the refinement step (Line 18)

and the Gibbs Sampling of the first block (Line 2). In practice, we observe that generating

a gamma distributed random variable is significantly more computationally expensive than

generating the other two random variables. Therefore, if we bound
∑

i∈N |πi| by N2, we

observe that, depending on the values of M , N , and NMCMC , Algorithm 6 has computa-

tional complexity of O(NbNMCMCN2) or O(NbNM). The computation grows linearly with

the number of MCMC iterations and is proportional to the square of the number of nodes

in the network.

5.5 Simulation Results

In this section, we investigate the efficiency of our proposed approach in modelling and

solving the inference problem in different diffusion network scenarios. We first test our

method in synthetic networks where the modelling assumptions are exactly met and we

know the ground truth. Then, we use the approach to analyze two real-world datasets.
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5.5.1 Synthetic Data

Since we wish to evaluate the performance of the algorithms in scenarios where the mod-

elling assumptions are exactly met, we generate a dataset based on the model described in

Section 5.3. We assume that node 1 is the source of the infection. For each node i > 1,

we randomly construct πi by including each j ∈ {1, . . . , i − 1} as a potential parent for

i (i.e., j ∈ πi) with probability 0.5. Then, we uniformly choose j ∈ πi for each node i

and build a random directed tree T with edges j → i. We assign the link strength matrix

αR = [αR
ij]N×N to this model and call them the true link strengths. αR

ij ̸= 0 if and only if

j ∈ πi. In this case, αR
ij is drawn from a gamma distribution Γ(κ1, θ1) if j → i ∈ T and

from Γ(κ2, θ2) if j → i /∈ T . We choose the parent of node i from all the nodes j ∈ πi

based on a random sampling with weights αR
ij. These parents are called true parents and

are denoted by zR = [zR1 , . . . , z
R
N ]

T . Knowing the values of zi and αizi , we then generate the

true infection times tR = [tR1 , . . . , t
R
N ]

T based on the geometric distributions described in

(5.4). After choosing the random set of true diffusion parameters (zR, tR,αR), we choose

the length of time series NT to be 10 samples more than the maximum infection time (i.e.,

NT = 10+maxi tRi ). Finally, we generate data signals d = {d1, . . . ,dN} of length NT based

on two different Gaussian distributions for before and after being infected. Hyperparame-

ters γi1 = (µ1, σ1) and γi2 = (µ2, σ2) are used for all nodes i ∈ N .

We aim to investigate whether incorporating the infection diffusion model can improve

the estimation of infection times compared to univariate changepoint estimation. Hence,

we compare two estimates of infection times: the MAP estimate t̂ based on the model and

inference techniques described in this chapter; and an estimate t̂′ = [t̂′
1
, . . . , t̂′

N
]T derived

by maximizing the likelihood of infection time for individual time-series, i.e,

t′i = argmax
t

t∏

j=1

f(dij; γ
i
1)

NT∏

j=t+1

f(dij; γ
i
2) (5.33)

We examine batch and online Bayesian inference algorithms in a network of N = 20

nodes. For the online setup, data signals are divided into four blocks of equal length (B1 to

B4), i.e., M = ⌊NT

4 ⌋. We test inference algorithms in four scenarios. In all of the scenarios,

µ1 = 10, σ1 = σ2 = 1, κ1 = 1, θ1 = θ2 = 0.5, and rb = 0.5. In the first scenario (Scenario

A), µ2 = 100 and κ2 = 40. Hence, not only can the infection times be detected with

high likelihood, but also the links that demonstrate the parental relationships can be easily
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distinguished from the rest of the links due to their high average strengths. In Scenario

B, µ2 = 100 and κ2 = 2. Therefore, the difference between parent and non-parent links

are not significant and the underlying network is not easily detected even though infection

times are still recognizable with high likelihood. The same trend exists in Scenarios C and

D except for the fact that in these two scenarios the means of two Gaussian distributions

are close i.e. in Scenario C, µ2 = 11, κ2 = 40 and in Scenario D, µ2 = 11, κ2 = 2.

Figure 5.1 shows the mean and 95% confidence intervals of deviations of the two es-

timates t̂ and t̂′ from the true infection times tR for 100 realizations of true diffusion

parameters. The deviation between two infection time vectors (e.g., Dt(t̂, tR)) is defined

as the average absolute difference between infection times across all nodes. When the true

infection time is greater than the time index of the end of a batch b (i.e., tRi > Bb[Mb]), we

set the true infection time to null for that batch. If either the estimated infection time of

a node or its true value is null for a batch b, we replace the null value with the end of the

batch when calculating the deviation metric. For each of the algorithms, NMCMC = 105

samples are generated, the first Nburn = 103 samples are discarded, and every Nthin = 10th

of the rest of the samples are kept. The ith component of t̂ denotes the most observed

infection time for node i among the stored samples while the ith component of t̂′ shows the

maximum likelihood estimation of infection time of node i while ignoring other nodes and

the underlying network. As expected, the infection times are perfectly detected in the first

two scenarios even though in Scenario B, the link strengths don’t have significant differ-

ence between parent and non-parent links. As opposed to Scenarios A and B, deviations

of detected infection times from their true values are non-zero in Scenario C and they are

even larger in Scenario D where neither infection times nor parental relationships are easy

to detect. However, we see that for both batch and online inference methods, exploiting

the underlying diffusion network in detecting the infection times leads to more accurate

results on average.

Next, we wish to investigate how not knowing the infection times affects the performance

of detecting the parental relationships and their strengths. In order to do this, we compare

our setup in which all the infection parameters are unknown with a setup in which infection

times are perfectly known and z and α are the only parameters to be detected. The MAP

estimates for the case of unknown infection times are denoted by ẑ and α̂. We use the

same Gibbs sampling method to perform inference for the case when the infection times are

known (except there is no longer a need to sample infection times). The MAP estimates
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Figure 5.1 Deviations in detection of infection times

for this latter case are denoted by ẑ′ and α̂′. We calculate the error metric for parent

identification, Dz(ẑ, zR), as the average number of nodes whose parents are different in

ẑ and zR. Similarly, Dα(α̂,αR) denotes the deviation between detected and true link

strength values and is equal to the average over all links of the absolute difference between

estimated and true αij.

Figures 5.2 and 5.3 show the error metrics for the estimation of parents and link

strengths for the batch and online algorithms. In Scenarios A and B, when infection

times are easy to infer, the knowledge of infection times provides little benefits and the

error metrics are approximately the same. However, when the infection times are hard to

detect (Scenarios C and D), the deterioration in the estimation accuracy is more observ-

able. Figure 5.4 shows the average percentage of samples identifying the correct parents in

Scenarios C and D.

In the rest of this section, we apply our inference approach on three different real-

world datasets. How we model each dataset depends on the nature of its data and our

purpose of studying it. The first two datasets studied in Sections 5.5.2 and 5.5.3 contain
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Figure 5.2 Deviations in detection of parents
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Figure 5.3 Deviations in detection of link strengths
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Figure 5.5 H5N1 HPAI outbreak in 2004-2016

regions using K-means clustering and generate a time series di = {din}n=1:NT
to the ith

region. The value of this time series at day n (i.e., din) is the number of separate locations

within the region i in which the disease was reported on that day. We model the number

of observations in each region by a Poisson distribution. Hence, we have

f(di|ti) =
ti−1∏

n=1

λ1i
dine−λ1i

din!

NT∏

n=ti

λ2i
dine−λ2i

din!
(5.34)

where λ1i and λ2i are the average number of events before and after becoming infected.

Since the individuals who are exposed to disease are birds, it makes sense to relate the link

strengths to the geographic distances between nodes. The link strength parameters κij and

θij of equation (5.6) are derived by fitting a gamma distribution to the inverse of distances

between observation points of regions i and j. Figure 5.6 shows the time series for the

eight regions. Regions R5 and R8 are the first regions in which the disease is observed.

The first infections for these regions were reported on the same day, so we assume that

they were both sources of the infection. We infer the infection parameters for the period

2004-2007 by generating M = 106 samples and discarding the first 104 ones. The green

line in Figure 5.6 shows the end of the study period. Region R4 has almost no reported
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infections for this period so we exclude it when estimating the underlying infection graph.

The detected infection times are shown in Figure 5.6 by red vertical lines. Figure 5.7 shows
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Figure 5.6 Observed time series in the impacted regions. The vertical axis
show the number of separate locations within the region in which the disease
was reported.

the four most probable configurations of the infection network and their percentages among

generated samples. The edge weights in these graphs are estimated link strengths.

5.5.3 Measles and Chickenpox Data

We study the number of weekly reported cases of measles and chickenpox in England and

Wales as shown in Figure 2.1. The analysis is based on the data from seven large cities

(London, Bristol, Liverpool, Manchester, Newcastle, Birmingham, and Sheffield), with pop-

ulations ranging from 300, 000 to 10 million (out of a total population of approximately

50 million). The primary infections occur every two years in the period from September
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(a) Configuration 1, Weight= 48% (b) Configuration 2, Weight= 23%

(c) Configuration 3, Weight= 17% (d) Configuration 4, Weight= 10%

Figure 5.7 Most probable network configurations

to December of the following year. We focus our analysis on these time windows. As

mentioned before, our proposed model can capture scenarios in which infections are caused

by interactions with other cities not included in the model (e.g., visitors from other coun-

tries). It can also explain the case when the residual infection in a city gives rise to a new

outbreak, with no disease transfer from another city.

Quantitative studies (e.g., [121]) have explained the decrease in the number of reported

cases in the data after widespread use of a vaccine began in 1968. Also, studies such as [122]
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have justified the biennial data peaks, claiming that they were caused by exhaustion and

subsequent build-up of susceptibles in the population as well as seasonal changes in virus

transmission. Finally, [123] shows that once an infection starts in a region, the number

of hospitalized cases can be approximated by a log-normal function of the number of days

that have passed since the infection began. The number of hospitalized cases in region i

at the nth week is denoted by hi
n and defined as the cumulative number of cases minus the

cumulative number of deaths and recoveries. Hence, for n ≥ ti1 we have

hi
n =

Ai
h√

2πσi
h7(n− ti1)

exp(−(ln[7(n− ti1)]− µi
h)

2

2σi
h
2 ). (5.35)

Here Ai
h is a constant, σh is the variance parameter of the log-normal, and we set µi

h =

lnDi
h + σi

h
2
, where Di

h = argmaxn hi
n. The coefficient 7 is due to the fact that the data is

reported weekly.

For each time-series, we use the log-normal function to model the data after an infection.

For a candidate infection time, we find σi
h and Di

h such that the Mean Square Error (MSE)

is minimized. We also choose Ai
h such that di

Di
h
= hi

Di
h
. The individual infection time

estimate is then the candidate infection time that has minimum MSE after the log-normal

fit. We model the residual using a Gaussian distribution. We also assume that the data

follows a normal distribution before the individual infection times, i.e.,

din|ti1 ∼

⎧
⎨

⎩
N (µi

1, σ
i
1) if n > ti1,

N (hi
n + µi

2, σ
i
2) if n ≤ ti1.

(5.36)

In these models, we use empirical variances derived from the previous time-period.

Figure 5.8 shows an example for 1958-1959 in Liverpool. The candidate infection times

are shown by red points in Figure 5.8a. In 5.8a, the log-normal fits for each candidate

infection time are shown in black. For the example of 5.8a, the individual infection time

estimate is November 1st. The quantile-quantile plots in Figures 5.8b and 5.8c provide

support for the Gaussian model. Results for other years are provided in Appendix A.
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Figure 5.8 (a) Reported cases time series with best fit log-normals for differ-
ent candidate infection times, (b) Quantile-quantile (qq) plot of the reported
data before the individual infection time versus standard normal distribution,
(c) qq plot of the residual noise after the individual infection time versus stan-
dard normal distribution

Estimating Infection Times

Figure 5.9 shows the reported data for the 1958-1959 study period. The individual infection

time estimates are indicated by the change of color from green to red. In all the four

successive biennial study periods from 1956 to 1963, Liverpool (node 3) has the earliest

individual infection time estimate. We consider this node as the source of the infection.

Given the entire data for each study period, we intend to infer the underlying network as

well as the infection times. We use the prior distributions proposed in (5.4), (5.5), and

(5.6). The data is modelled as in (5.36), with hi
n calculated for each candidate infection

time by minimizing the MSE as explained above. In each study period, we choose the

hyper-parameters µi
1, σ

i
1, µ

i
2, σ

i
2,κ, θ based on the reported data and the individual infection
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time estimates for the preceding period.

Any node j whose individual infection time estimate is earlier than the individual in-

fection time estimate of node i in a study period is considered to be a potential parent, i.e.

j ∈ πi, for the next study period. We generate NMCMC = 105 samples, discard the first

Nburn = 103, and store one out of every Nthin = 10 of the rest. The means of the retained

samples are used to calculate estimated infection times. These estimated infection times

are shown by the black vertical lines in Figure 5.9. The estimated infection times are quite

close to the individual estimates.

Predicting Infection Times

In addition to estimating the infection times, we are interested in predicting them before-

hand without having access to the reported data. After we have learned a model, we can

form a prediction using only the (individual) infection time estimate of the source node.

This allows us to detect the onset of the infection in Liverpool and use it to predict when

infections will arise in London and Manchester, for example. We use the inferred network

structure for each study period to predict the infection times of the next period. For exam-

ple, the infection times for 1958-1960 are predicted using the model learned by processing

1956-1958 data. For every stored sample from the distribution, we predict the infection

time of node i by t
zi1
1 +δiz

i
1 where δiz

i
1 is the mean of a geometric distribution with parameter

1 − e−α
izi1
1 . The mean and 25 − 75% confidence intervals of these predicted values are re-

spectively shown by the vertical and horizontal blue lines in Figure 5.9. Figure 5.10 shows

the absolute difference between the average estimated (predicted) infection times with the

individual infection time estimates for all nodes except for the source.

5.5.4 Earthquake Data

In addition to estimating the infection times, our proposed inference approach can be used

to detect the underlying network structure. As an example, we use our proposed diffusion

framework to study seismic events in different regions of New Zealand [124]. Seismic waves

are energy waves generated by earthquakes, volcanic eruptions, and other sources of earth

vibration. They travel along layers of the earth and across the surface. Each wave is

generated in one location and propagates out to other regions. The epicenter of a seismic

event is the location on the surface of the earth directly above the cause of the wave. Our
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Figure 5.9 Number of reported cases with estimated and predicted infec-
tion times in 1958- 1959. dashed green line: susceptible state, solid red line:
infected state (after individual infection time), black lines: mean and 25-75%
of estimated values, blue lines: mean and 25-75% of predicted values

goal is to locate the epicenter of a seismic event and compare it with the reported real

location. A seismograph is a device that records earthquake waves and we consider the

measuring stations equipped with seismographs as the nodes of the diffusion network. We

approximate the seismic event as a propagation of energy waves between these discrete

nodes. A seismogram, the graph drawn by a seismograph, is a record of the ground motion

as a function of time. The recorded seismograms are used as the observed data signals

in our diffusion model. Three examples are shown in Figure 5.11 for an earthquake that

occurred on November 1st 2015.

We choose the prior distribution for link strength values by fitting a Gamma distribution

to inverse values of the geographic distance between station pairs. We also assume that
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Figure 5.10 The absolute difference between estimated (predicted) infection
times and the individual ones. The central mark of each box is the median,
the edge of the box are the 25th and 75th percentiles, the whiskers extend to
the highest values not considered as outliers.

seismic waves follow two different Gaussian distributions before and after being infected.

This ignores the oscillatory structure and correlations in the time series, but is sufficient

for the estimation of the arrival of the seismic wave. We denote the individual changepoint

estimate of waveform i by t̂′
i
. Denoting the velocity of the seismic waves in the related depth

of the earth by v, we define the set of potential parents for node i as πi = {j ∈ N|t̂′j+ Dij

v <

t̂′
i} where Dij is the distance between stations i and j. More precisely, node i can only

become infected by node j if the time difference between their individual changepoints is

larger than the time required for the seismic wave to traverse their spatial distance. The

precise speed with which seismic waves travel throughout the earth depends on several

factors such as composition of the rock, temperature, and pressure. They typically travel

at speeds between 1 and 14 Km
s [125].

Since we do not know where the source of the infection is, we assume that there is a

dummy node within a radius of Di0 of each real node. These dummy nodes are candidate

sources of the infection and each is a potential parent of its corresponding node. All dummy

nodes become infected at the same time, min
i
(t̂′

i− Di0
v ). As for the prior distribution of the

infection time of node i, we know that it is zero for values less than
D

izi1
v . This probability

increases for greater times up to a certain point and then it monotonically increases. We
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Figure 5.11 Three recorded seismic waveforms for an earthquake happened
on November 1st 2015 (Event ID: 2015p822263)

approximate this behaviour with a geometric distribution as in (5.4).

We run the batch inference algorithm on the diffusion network with NMCMC = 105,

Nburn = 103, and Nthin = 10. For each node, we choose the node that marginally maximizes

the posterior distribution as its detected parent. This marginal MAP approximation is the

parent that occurs most often in the stored samples. We consider the geographical midpoint

of the nodes that are infected by their dummy nodes as the approximate location of the

epicenter. The detected and real epicenters of two seismic events are shown in Figure 5.12

where v = 13Km
s and Di0 = 10Km is used. We see that a tree-like network structure exists

where the root is close to the real epicenter of the seismic event.

5.6 Summary

In this chapter, we presented a Bayesian framework for modelling the diffusion of some sort

of a contagion over a graph structure. We formulated the diffusion process by introduc-

ing three main groups of parameters: parental relationships, the strength of connections

between node pairs, and infection times. The main issue we addressed in this work was

to simultaneously infer these three sets of parameters using data signals observed at each

of these individual nodes. In order to do so, we applied MCMC techniques to generate
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Figure 5.12 Detected network structure for two seismic events in New
Zealand, The distance between real and detected epicenters are (a) 29Km

and (b) 15Km

samples from the posterior distribution of these parameters. One of the main contributions

of this piece of work is to address applications in which parameters must be estimated be-

fore all of the data has been acquired. We addressed this concern by developing an online

version of the inference algorithm.

We evaluated the performance of our proposed inference approaches on both synthetic

and real-world network scenarios. In the synthetic dataset, model assumptions are exactly

met and the ground truth is perfectly known. Simulation results showed that considering

the underlying network structure in estimating infection times improves accuracy compared

to processing the data at each node individually. We compared the precision of detecting the

network structure (parental relationships and link strengths) in scenarios with known and

unknown infection times. Finally, we tested our proposed inference algorithm in practical

scenarios. First, we showed how the algorithm can use the number of reported cases of

a contagious disease as the observed time series to construct estimates and predictions of

the time of the year when disease outbreaks occur in a particular region. We then used

the inference approach to locate the epicenters of earthquakes using the seismic waveforms

recorded at seismic stations.
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5.7 Proofs

5.7.1 Proof of Proposition 2

Proposition 2: h(xb|xb−1; tML
b ) is a probability distribution function. In particular,

∫ ∑

tb∈S1×···×S1

∑

zb∈S2×···×S2

h(xb|xb−1; t
ML
b )dαb

= 1

where S1 = {B1[1], . . . ,Bb[M ],φ} and S2 = πi
b ∪ {φ}.

Replacing (5.22)-(5.26) in (5.7.1), we can check that the integrals are separable for different

nodes. Hence, (5.7.1) is equal to

∏

i∈N

∑

tib∈S1

ht(t
i
b|xb−1; t

ML
b

i
)×

∏

k∈πi

hk
αz(t

i
b) , (5.37)

where

hk
αz(t

i
b) =

∫ ∞

0

hα(α
ki
b |tib,xb−1)

∑

zib∈S2

hz(z
i
b|tib,αb,xb−1)dαki

b
. (5.38)

For each node i, we calculate the component in (5.37) for two cases of tib−1 = φ and tib−1 ̸= φ

separately. When tib−1 ̸= φ, the integral is equal to

∑

tib∈S1

δ(tib − tib−1)×
∏

k∈πi

∫ ∞

0

∑

zib∈S2

δ(αik
b − αik

b−1)δ(z
i
b − zib−1)dαik

b
= 1 . (5.39)

When tib−1 = φ, we start from the innermost integral of (5.38)

∑

zib∈S2

hz(z
i
b|tib,αb, t

i
b−1) =

⎧
⎪⎨

⎪⎩

1 tib = φ ,

1−
∑

l∈πi
b
αil
b

∑
j∈πi α

ij
b

+

∑
l∈πi

b
αil
b

∑
j∈πi α

ij
b

tib ̸= φ .

Hence, hk
αz(t

i
b) =

∫∞
0 Γ(κki, θki)dαki

b
= 1. Similarly for tib−1 = φ,

∑
tib∈S1

ht(tib) = 1. There-

fore (5.37) always equals 1 and h(xb|xb−1; tML
b ) is a probability distribution function.
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Chapter 6

Conclusions and Future Work

In this chapter, we provide concluding remarks and discuss possible directions for future

research. This thesis addresses two different perspectives of studying the process of diffusion

of information in various network scenarios. We referred to these perspectives as proactive

and passive perspectives (or approaches). In a proactive approach, the goal is to control

the diffusion process in order to achieve a desirable performance. In a passive approach, the

goal is to learn about the dynamics between nodes based on the peripheral measurements

of activity and correlation.

Having a proactive perspective, we studied the problem of routing messages in oppor-

tunistic Delay Tolerant Networks (DTNs) in Chapters 3 and 4. We overview the contri-

butions we made to the problem of routing in DTNs as well as the conclusions we made

from analytical proofs and simulation results in Section 6.1. We then suggest some ideas

to further improve or extend our proposed routing methodology. Similarly in Section 6.2,

we overview the contributions and conclusions of the passive study perspective we did in

Chapter 5 as well as suggestions for future studies.

6.1 Proactive Approach

In Chapter 3, we formulated the routing problem in DTNs as an optimization problem

in which we minimized the sum of expected latencies from all nodes of the network to a

particular destination. The arguments of this optimization problem were the forwarding

probabilities pij for all nodes i, j. We showed that the solution of this optimization problem

is binary (i.e., either pij = 0 or pij = 1). We developed both centralized and decentralized

2017/09/15
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forwarding algorithms and proved their convergence to the optimal expected latencies. We

then made the model more realistic by assuming that no a priori knowledge of meeting

rates were available to the network nodes. We added a meeting rate estimation mechanism

based on Maximum Likelihood (ML) estimation to the decentralized algorithm. Through

mathematical analysis we showed that although this additional mechanism decelerates the

convergence process, the resulted expected latencies eventually converge to the optimum

values. We compared the performance of our proposed decentralized algorithm with the

most similar existing routing approaches on both synthetic and real-world networks. Also,

in order to evaluate the performance in non-idealized scenarios, we conducted simulations

in larger networks with practical constraints like limited message life (TTL), buffer size

and message exchange.

We then studied the routing problem in a Bayesian framework in Chapter 4 and showed

how we can apply external information about the social ties to improve meeting rate es-

timations and expedite the convergence to the optimal expected latencies. We developed

two Bayesian versions of the decentralized algorithm proposed in Chapter 3 and evaluated

their performance efficiencies through experimental simulations In the rest of this section,

we discuss two directions to further improve or extend the work of Chapters 3 and 4.

6.1.1 Improvement of Algorithms’ Computational Complexities

The routing algorithms we proposed in Chapters 3 and 4 involve solving at least two opti-

mization problems each time two nodes meet. We showed how each optimization problem

can be converted to a linear programming problem in all cases except for BMinLat-II.

However, we observed through simulations that solving the linear optimization problem

is still the bottleneck for computational complexity of the algorithms. This is more cru-

cial for BMinLat-I in which we solve the optimizations for each sample of the posterior

distributions separately.

In this work, we solved the optimization problems each time two nodes meet without

considering the solution of the last optimization that the nodes have solved. However, we

know that between two successive meetings of node i, at most only two new pieces of infor-

mation are added to what node i already knows about its meeting rates with the neighbours

and their expected latencies. This information may not even change node i’s decision about

its forwarding decisions. A simple example is in the case where meeting rates are known
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(i.e., in the MinLat algorithm). A node can limit its search for optimum forwarding rules

to cases where at least one of its neighbours has a new estimate of the expected latency.

In other words, if node j has not changed its estimate of its expected latency since the last

meeting of i and j, node i can just skip solving the optimization problem and retain its

current forwarding rules. In more general cases where we estimate the meeting rates or we

work with samples of the expected latencies, the current forwarding rules may still be a

good first guess that can be improved. Using Stochastic Local Search (SLS) methods [126],

we may be able to expedite the process of finding the optimal forwarding solution each

time two nodes meet and reduce the overall computational complexity of the algorithms.

6.1.2 Extension to Multi-copy Routing Algorithms

In Chapters 3 and 4, we focused on the scenarios in which messages are large and nodes’

memory resources are limited. In order to address these restrictions, we developed routing

algorithms that allow just one copy of each message in the network at any time. As men-

tioned in Chapter 3, these algorithms are referred to as single-copy algorithms. However,

spreading more than one copy of each message in the network may reduce the expected

delivery latency of each message and therefore increase the overall message delivery rate.

In scenarios where some level of buffer occupancy is tolerable, it is possible to spread more

than one copy of a message in the network and use a multi-copy routing algorithm.

The main question here is if the proposed algorithms of this thesis can be modified

to be used as multi-copy routing algorithms. Assuming that at most M copies of each

message are allowed to be spread in the network, it may not be straightforward to express

the expected latency of a node i to the destination (i.e., Lid). However, we may be able to

use the Bayesian framework introduced in Chapter 4 to make forwarding decisions based

on the estimated expected latencies in the single-copy algorithm (i.e, Equation (3.2)).

In this setup, node i may decide to give a copy of a message it has to node j based

on the overlap between the two posterior distributions f(L̂id(i)|x1
ik, . . . , x

nik

ik ; k ∈ Si) and

f(L̂jd(j)|x1
jk, . . . , x

njk

jk ; k ∈ Sj).

6.2 Passive Approach

Having a passive perspective, we studied how we can infer the underlying network struc-

ture of a diffusion process and estimate the infection times. We assumed that we merely
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observe a related time series from each node of the network. We considered the parental

relationships, link strengths, and infection times as the network parameters and developed

inference algorithms to simultaneously infer these three sets of parameters using data sig-

nals observed at each of the individual nodes. In order to do so, we applied Markov Chain

Monte Carlo (MCMC) techniques to generate samples from the posterior distribution of

network parameters conditioned on the observed time series. We then clarified how these

particles can be updated as we receive more data and developed an online version of the

inference algorithm. Simulation results on synthetic data showed that considering the un-

derlying network structure in estimating infection times improves accuracy compared to

processing the data at each node individually. We also showed how we can practically use

the proposed framework through multiple examples on real-world datasets.

6.2.1 Extension to Multi-state Infection Models

In Chapter 5, we focused on the simple SI (Susceptible-Infected) model in which once an

arbitrary node becomes infected, it never recovers or becomes susceptible again. However,

as we saw in Section 5.5 (e.g., the Measles and Chickenpox dataset), the infection models

can be more complicated in practice. It would be interesting to extend our methodology and

develop more sophisticated algorithms that account for more complicated infection models.

Here, we review some other infection models introduced in the epidemiology literature

(e.g., [127]). Although we explain the models in the context of contagious diseases, these

models can be used in other applications (mentioned in Section 2.3) as well.

− SIR (Susceptible-Infected-Recovered): This model is used to describe a disease from

which infected nodes recover with immunity against reinfection.

− SIS (Susceptible-Infected-Susceptible): In this model, an infected node recovers after

some time and cannot transfer the infection to another node. However, it is not

immune against becoming reinfected. Hence, it returns to the susceptible state again.

− SEIR (Susceptible-Exposed-Infected-Recovered): In some infectious diseases there

is an exposed period after the transmission of infection from susceptible nodes to

potentially infected nodes but before these potentially infected nodes can transmit the

infection. If the exposed period is short, it is often neglected in modelling. A longer

exposed period could perhaps lead to significantly different model predictions [127].
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− MSIR (iMmune-Susceptible-Infected-Recovered): There are several diseases where an

individual node is born with a passive immunity.

The first step towards extending the model is to define other parameters to describe the

transition times between states and choose appropriate prior probability distributions for

these parameters. Then, the conditional probability distributions (i.e., Equations (5.8)-

(5.10)) should be revised to address the probability of transitioning between these new

states.

6.2.2 Extension to Dynamic Networks

In the model we studied in Chapter 5, we assumed that the set of potential parents for node

i (i.e., πi) is known and fixed during the study period. The next step to make the model

more practical is to consider πi (or πi
b in the online setup) as another unknown random

variable and derive its probability distribution conditioned on other variables. Besides, this

can help modelling a dynamic network in which nodes can enter or leave the network or

the set of potential parents changes over time.
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Appendix A

Figures A.1 to A.14 show the quantile-quantile plots for all the seven nodes (cities) in seven

successive biennial study periods (1952-1966) to provide support for the Gaussian model.
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Figure A.1 Quantile-quantile (qq) plot of the reported data before the in-
dividual infection time versus standard normal distribution in 1952-1954
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Figure A.2 Quantile-quantile (qq) plot of the residual noise after the indi-
vidual infection time versus standard normal distribution in 1952-1954
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Figure A.3 Quantile-quantile (qq) plot of the reported data before the in-
dividual infection time versus standard normal distribution in 1954-1956
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Figure A.4 Quantile-quantile (qq) plot of the residual noise after the indi-
vidual infection time versus standard normal distribution in 1954-1956
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Figure A.5 Quantile-quantile (qq) plot of the reported data before the in-
dividual infection time versus standard normal distribution in 1956-1958
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Figure A.6 Quantile-quantile (qq) plot of the residual noise after the indi-
vidual infection time versus standard normal distribution in 1956-1958
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Figure A.7 Quantile-quantile (qq) plot of the reported data before the in-
dividual infection time versus standard normal distribution in 1958-1960
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Figure A.8 Quantile-quantile (qq) plot of the residual noise after the indi-
vidual infection time versus standard normal distribution in 1958-1960
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Figure A.9 Quantile-quantile (qq) plot of the reported data before the in-
dividual infection time versus standard normal distribution in 1960-1962
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Figure A.10 Quantile-quantile (qq) plot of the residual noise after the in-
dividual infection time versus standard normal distribution in 1960-1962
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Figure A.11 Quantile-quantile (qq) plot of the reported data before the
individual infection time versus standard normal distribution in 1962-1964
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Figure A.12 Quantile-quantile (qq) plot of the residual noise after the in-
dividual infection time versus standard normal distribution in 1962-1964
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Figure A.13 Quantile-quantile (qq) plot of the reported data before the
individual infection time versus standard normal distribution in 1964-1966
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Figure A.14 Quantile-quantile (qq) plot of the residual noise after the in-
dividual infection time versus standard normal distribution in 1964-1966
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