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Abstract

The most natural stochastic models for describing the time evolution of the collective
risk reserves of an insurance company are jump or point process models. However,
there are difficulties in obtaining from such models explicit and tractable expressions
for important quantities such as the probability of ruin and these have spawned the
development of procedures to approximate point process models. In this thesis, the
nature of weak approximations, as put fprward by Iglehart (1969) and Furrer, Michna
& Weron (1996), is examined closely with a view toward assessing their value. An
interpretation of these approximation procedures is given and a method by which
the value of weak approximations may be improved is suggested by considering their

Lévy-Grigelionis-Jacod characteristics.

Resumé

Le plus naturel des modeles stochastiques servant a décrire 1’évolution dans le temps
d’un portefeuille de risques d’une compagnie d’assurances est le processus de sauts.
Cependant, il est difficile d’obtenir pour ce type de modéles, des expressions explicites
et traitables pour des quantités impertantes telle que la probabilité de la ruine, ce qui
a mené au développement de procédures d’approximation pour processus de sauts.
Dans cette thése, la nature faible des approximations, telle que soulignée par Iglehart
(1969) et Furrer et al. (1996), est examinée en profondeur, avec le but d’ établir
leur valeur. Une interprétation de ces procédures d’approximations est donnée et
une méthode servant & améliorer ’approximation est suggérée en considérant les

characteristiques de Lévy-Grigelionis-Jacod.
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Notation
N={1,23--}

Z is the set of integers

R is the set of reals

R=RU {—o00,00}

R\ {0} is the set of reals except 0

Ry = [0,00)

Ry = [0, 00]

(22, F, P) is a probability space

(2, F,F,P) is a filtered probability space

F ={Fi},cg, is a filtration

Sa(o, B, 1) is the collection of all a-stable random variables
S«(1,8,0) is the collection of all standard a-stable random variables
N(u,0?) is the collection of all Normal random variables
N(0,1) is the collection of all standard Normal random variables
B(R) is the Borel o-algebra on R

B(7) is the Borel o-algebra generated by the topology 7

Z means equal in distribution

“ means equal P-a.s.

E is the expectation operator with respect to P

V is the variance operator with respect to P

Cov is the covariance operator with respect to P

i.i.d. means independent and identically distributed

X ][] Ymeans the random variables X and Y are independent
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X ][] F means the random variable X and the o-algebra F are independent
P25, means converges to P-a.s.

25 means converges in probability P

P lim means the limit in probability P

2, means converges in distribution

=> means converges weakly

|z] means the floor of =

IIP means independent increment process

SIIP means stationary and independent increment process

z Ay means min{z,y}

z V y means max{z,y}

Pr is the set of Borel probability measures on R

Mp is the set of Borel measures on R

Mg (o} is the set of Borel measures on R\ {0}

Mi = {M € Mg : [ 1dM(z) < oo}

Mingoy = {M € Mrygo} ® fr\(0) 14M (2) < o0}

Moy = {M € Moy + foy oy (1A [2)dM (z) < o0}

M]}{{f;} = {M € M0} : fry(o (1 A z?)dM(z) < 0o} = Lévy measures
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Chapter 1

Risk Theory

A risk business is a commercial enterprise that operates under conditions of signifi-
cant financial uncertainty, manifesting themselves in highly variable rates of income,
expenditure, or both. For a risk business to be a successful enterprise, it must ac-
curately analyze the nature of these uncertain conditions and adjust its operations
to prepare for the possible occurrence of financially extreme events, which, if not
prepared for, would ultimately ruin the business. A broad interpretation of what
is meant by the subject area called Risk Theory would include such general con-
cerns. More traditionally, Risk Theory has been a branch of actuarial mathematics
concerned with analyzing the operation of insurance businesses and it is from this
context that the subject of this thesis is drawn.

A non-life insurance business begins with some initial capital in a reserve fund and
policy holders pay regular premiums into the fund in order to be eligible to make a
claim if some specific contingency occurs such as fire, car accident, disability, or death.
The expenditures associated with claims occur at random times and are of random
magnitudes, resulting in sudden financial shocks to the fund. Premium payments are
generally smaller and occur more frequently, resulting in a relatively stable rate of
income. Life insurance businesses operate in mirrored contrast; after paying regularly

into a fund over many years, building up equity or becoming vested, policy holders



then draw a regular pension or life insurance annuity until the random occurrence of
some policy terminating event. If, at this ti:ﬁe, the amount actually paid to the policy
holder is less than the amount expected to be paid then the difference is considered as
positive income; it is money that no longer needs to be allocated to a particular policy
holder and can therefore be freed up in the fund for general use. Here, the initial
capital is the equity in the fund at the time payments commence, the expenditures
are regular, but income is received in random amounts at random times. This mirror
symmetry between the two types of insurance often allows techniques for analyzing
non-life insurance businesses to be easily modified for the analysis of life insurance
businesses and we therefore now restrict our attention to non-life insurance.

The initial approach to insurance business was that of Individual Risk Theory,
first appearing in the mid-1700’s, in which each insurance policy was analyzed on an
individual basis. An individual’s premium for a given period of time was required
to be greater than the mathematical expectation of the individual’s claims for that
period, which was based on the business’ experience with the individual. The risk
to the insurance business was the deviation of the individual’s claims from their
expected value and it was recognized (Bernouilli (1738) and DeMoivre (1738)) that
an insurance business would eventually be ruined if it failed to include a margin in
its favor. In the absence of rigorous methods to quantify this risk, large premiums
and conservative estimates of the individual’s distribution of claims were employed.
If the individual’s claims were covered by the premiums charged, market competition
compelled the return of a portion of the excess in the form of a dividend or a refund,
the remainder being kept in reserve.

As insurance businesses acquired larger numbers of policy holders, their portfo-
lios were, from the point of view of Individual Risk Theory, seen merely as a large
collection of individual policies, each treated individually. Collective Risk Theory,
on the other hand, viewed portfolios as aggregates of large numbers of independent
individual risks. The total assets of the insurance portfolio were considered as a

whole, attention being paid only to the income, the claim occurrence times, and the



claim severities. The details of any individual’s policy or information about which
particular policies gave rise to claims is disregarded. If the number of policy hold-
ers was sufficiently large and their individual effects were sufficiently small, central
limit theorem arguments were used to justify normal approximations to the aggregate
distribution of claims over a given period. Considering the business as a collective
provided a greater statistical sample and proved to be useful, providing a systematic
method for assessing risk (Cramér 1930). However, it soon became apparent that
better mathematical tools were needed for situations in which the individual effects
were not small, the number of policy holders was not large, and there appeared to
be a dynamical dependence on time. In 1903, before the development of a general
theory of stochastic processes in the 1930’s, Lundberg (1903, 1909) proposed the use
of dynamic continuous time stochastic models to address these problems, introducing
the idea of Dynamic Collective Risk Theory, which, since the 1930’s, has developed
significantly, stimulating and making use of many advancements in both statistics and
the theory of stochastic processes. For a review of these developments see Janssen
(1981).

Further restricting our attention to the Collective Risk Theory of non-life in-
surance businesses, we consider point processes as the natural models for insurance
portfolios. The practical focus of this thesis is the problem of determining from mod-
els of this type the probability that the reserve fund becomes negative after some
time, called the finite time ruin probability, and the probability that the reserve fund
eventually becomes negative, called the ultimate ruin probability. However, point
process models have practical computational problems. Even when significant and
unrealistic simplifying assumptions are imposed, analytical expressions for the proba-
bilities of ruin and distributions of stopping times, if they exist, are obtained through
difficult arguments and are not very tractable for applications. As a means of obtain-
ing mathematically tractable results, Iglehart (1969) showed that a properly defined
sequence of such models converges weakly to a Wiener process, thereby enabling one

to bring all the powerful tools of stochastic calculus and the corresponding analyt-



ical results for various stopping times to bear on the problem. Unfortunately, the
performance of the Wiener process approximations is less than ideal. The Wiener
process approximation is mediocre, particularly for skewed or heavy tailed claims
distributions (Asmussen 1984). Furthermore, the Wiener process approximation is
not applicable for infinite variance claims distributions. Recently, Furrer et al. (1996)
have extended Iglehart’s weak convergence argument to permit the approximation of
point process models with highly skewed claims distributions, possibly with infinite
variance, by a-stable Lévy processes. However, preli;ninary numerical results are not
quite satisfactory and so a closer examination of weak approximations is required.
We begin this thesis by defining a general point process model and describe some
illustrative specializations to indicate some of the analytical difficulties involved in
such models. We then describe the theory of convergence of stochastic processes,
as required by Iglehart’s application and the more recent application of Furrer et al.
Background material on a-stable distributions and a-stable processes is also provided.
Both Iglehart’s and Furrer et al’s weak convergence arguments are examined in detail.
An interpretation of both weak convergence ‘arguments is provided and a special case
of interest is pointed out. This interpretation, together with a closer look at infinite
divisibility, provides some insights into weak limit approximations. Furthermore, this
interpretation suggests that a deeper study of the structure of weak approximations in
terms of their Lévy-Grigelionis-Jacod characteristics may prove fruitful for improving
their quality and for finding procedures to statistically fit them to the point process
model, an issue of importance not only in Risk Theory but in any application of point

process models.



Chapter 2

Point Process Reserve Models

2.1 The Model

We propose a study of the following model R = {R,}ir, for risk reserves with
mixed portfolio composition consisting of NV (II) sources of premium income and N(x)
sources of claims. For 1 < ¢ < N(II), I' = {Ii}scr, is the accumulated income
process due to premium payments from the i** source. The payments have random
magnitudes {II} }ren and occur at random times {T }xen where TJ' < T, for k €

N. The counting process associated with {T" }xen is defined by N' = 3, .y 1 (T <ty

giving the number of payments during [0,t] and so I} = EkNL IIi. Similarly, for
1 <j < N, {X]}ren and {T} }ren are the magnitudes and occurrence times

of claims from the jt* source, T,i‘j < T,g‘j_l for k € N, Nt"j = 3 kenl ¥ <t) gives

the number of claims in [0,¢], and CY = iv;x; X, defines the accumulated claims
process C7 = {C! }ser .- We consider empty sums to be zero. The portfolio consists
of a finite number of policies and so from each source we observe a finite number of
payments and claims during any bounded time interval [0, t]. Furthermore, payments
and claims are finite in magnitude and so the processes {I*}*4" and {C’j};\r:(f) are

assumed to be almost surely finite on [0,¢], i.e., without explosion. Letting Ry be



the initial capital in the reserve fund, possibly random, we then define R to be the
superposition of its constituent processes:

N(IT) Nix)

Ro+ Y I}-> Ci

i=1 Jj=1

R,

N(m) N N(x) N¥

= R+ > M->>'x teR (2.1)

i=1 k=1 j=1 k=1

The processes {I*}*0) and {C? ;V:(i‘) are piecewise constant, right continuous, and
finite over any bounded time interval. Therefore, the income and claims processes,
and hence R, are cadlag (sample paths are almost surely right continuous with finite
left limits).

To formalize this in a way that permits the use of stochastic calculus, assume that
we have a complete, filtered probability space (2, F,F,P) which satisfies the usual
conditions, namely, the filtration F = {F;}, g, is right continuous (Vt € R, ,F; =
Ns>tF;) where we take Fooo = \/, Ft, Foo = F, F is P-complete, and Fy contains
all of the P-null sets of 7. We assume that all income and claims processes are
F-adapted and that Ry is Fy-measurable so that R is F-adapted. By Kolmogorov’s
existence theorem (Billingsley 1995) we can always construct a P-complete probabil-
ity space (2, F, P) carrying the processes R, {I "};Z(lm and {C? ;-V__fi‘), and the random
variable Ry (as well as any additional processes and variables one may require). Fur-
thermore, we can generate the natural filtrations for each of the income and claims
processes, augment each with the P-null sets of F, and generate a common filtration
F = {F.}icg, from the union of the individual filtrations. Since all processes are
cadlag, F so generated is right continuous and JFy contains all P-null sets of F; this
filtration is the smallest filtration containing all information about the probabilistic
evolution of all processes and their interdependence. A space ({2, F, F, P) constructed
in this manner satisfies the usual hypotheses. Thus, we assume hereafter that some
model (2, F,F,P) has been constructed carrying all processes and variables under

consideration and satisfying the usual hypotheses.
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To ensure that {I* :i(ln ) and {C’j};\gi‘) are without explosion, it is sufficient to
require that the counting processes { /N I },Nz(lII ) and {N¥ ;‘;‘{‘) are without explosion.
since premiums and claims have finite magnitudes. Since {I‘}\{" and {CY };V=(f)
are cadlyg , {T™ }xen and {T,z‘j}keu are F-stopping times for any 1 < ¢ < N(II)
and 1 < j < N(x). Defining the F-stopping time TX' = sup, T, the explosion
time of the it* premium counting process N™', we see that {(t,w) : N™ (w) = oo} =
{(t,w): t€ [TT(w),00)}. If P{T < oo} > 0 then, for some n € N, P{TT <
n} > 0 and hence P{NI' = oo} > 0. To have P{N¥ = oo} =0 foralln € N
we insist that P{TI' < n} = 0 for all n € N. Thus, we adopt the assumption that
TI % TY = oo for 1 <4< N(II) and 1 < 5 < N(x) to avoid explosions.

The model (2.1) is very general but reflects the essential qualities of the phe-
nomenon: continuous time evolution, discretely occurring events, and finite magni-
tudes. No assumptions have been made on {ITi }ten, {32} ken, {T/F }ren, or {T,z‘j}kem
about their distributions or interdependence. {Hi}keN and {X;’;}keN are not assumed
to be Fp-measurable; doing so is equivalent to assuming their distributions do not
depend on time of occurrence. Assuming only that the income and claims processes
are F-adapted allows for time dependent distributions and thereby includes processes
with conditionally independent increments such as martingales (Gerber 1979) or Cox
processes (Grandell 1991) now being actively investigated in Risk Theory. Thus, (2.1)
appears to be the most natural framework in which to describe risk reserves as well
as other financial and economic processes.

Any application of (2.1) would require a statistical analysis of past claims data, the
formulation of parametric models for claims processes, the estimation of all relevant
parameters, and lastly, a decision about what premiums to charge and how often
to collect them. The focus of attention here is how to decide on a premium policy
for a model of the form (2.1) assuming the form of the claims processes have been
specified. A quantity of key practical importance is the probability that R becomes
negative during some time interval [0, T] or [0,00); this occurs when a claim exceeds

available reserves, causing the financial ruin of the business. Define the F-stopping



time “time to ruin” by
T" =inf{t > 0: R, <0} (2.2)
the probability of ruin in [0, T] by
U(Ry,, T)=P{T" € [0, T]} =P{T" < T} (2.3)
and the probability of ultimate ruin by
U(Ry,00) =P{T" € [0,00)} = P{T" < >0} (2.4)

A premium policy must be chosen so that ¥(Ry, T) and ¥(Rp,00) are accept-
ably small, premiums are competitive, and that any regulatory requirements are
met. Ideally, one would like to derive explicit, tractable expressions for W(Ry,T)
and (R, 0o) in terms of the premium income processes {I:}V%" and that an opti-
mal premium policy could then be determined. Unfortunately, (2.1) is too general a
framework to determine expressions for ¥(Ry,T') and ¥(Ry, c0). In fact, even when
further considerable and unrealistic simplifying assumptions are imposed on the struc-
ture of the income and claims processes, only rarely can tractable expressions for ruin

probabilities be obtained.

2.2 Renewal Models: Deterministic Premiums

Typically, premium payments occur frequently and in small amounts relative to
claims, which occur infrequently and in relatively large amounts. It is therefore natu-
ral to approximate the income processes by a deterministic function since the claims
processes are the dominant sources of variability in R. For the rest of this chapter
we consider Ry = u > 0 as constant and the case N(II) = N(x) = 1, suppressing

indexes. Thus,
N Ny
Ri=u+l-C=u+) M~ xc teR, (25)
k=1 k=1
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with payments {IIc}sen and claims {xx}xen occurring at times {7 }xen and {T }xen-
To see how one may construct an approximation of I = {l;}:er,, suppose that
premium payments are made at times separated by a constant time interval of length
At, for example, at the end of each month. One would then set T = kAt for k € N

and so
Z Lirngy = Z liratgyy = [ j

keEN keN

resulting in [; = I-A‘J ;. Forn € N, Ia: = Ln‘g‘tJ I, =3 0, Ik so E[I,a)] =
i EIL]. A reasonable approximation to I then would be a smooth function
w(t) going through the points {(nA¢, > ¢_, E[Illk])}nen, so that m(nAt) = E{l,a] for
n € N. For instance, one could choose a piecewise linear function or a polynomial
fitted to the points {(nAt, Y ;_; E[Ilg]) }nen,. For such a choice for #(t) we have for

all t € Ry that
L] :
E[l] = ZEH,,] = [ JAt)

If At is small compared to 1nter—cla1m times and to any time horizon of business
activity, we can suppose [Ait_! At =~ t. Since {II;}xen, and hence {E[Ilt]}ken, are
small compared to claim severities, we suppose =(t) is sufficiently smooth so that
| £ At ~ t = n(| 4] At) = 7(t) uniformly in ¢. Our approximation of I is such
that E[;] ~ =(t), properly describing the trend of I. If, in addition, {V[I1]}xen
are small then the volatility of the process I is low and so I remains near E[I;] with
a high probability. We can then use the approximation I, = 7(¢) if the observed
premium income process is fairly smooth with low volatility. If (¢) is differentiable
then 7'(t) represents the instantaneous rate of premium payment.

Now, suppose that the business is operating in an environment in which seasonal
variations, variations in the number of policy holders, or any other factors that might
induce fluctuations in claim intensities and/or claim severities are all negligible. Sup-
pose also that policy holders expose themselves to risks in a similar but independent

manner. Thus, {x«}xen can be considered an i.i.d. sequence. The inter-claim times
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e = TX —TX |, k € N, are also likely to be similar and unrelated and so too can be
considered an i.i.d. sequence. Furthermore, the assumed time homogeneity suggests
that the severity of claims has little to do with claim occurrence times and so { xx }xen
can be assumed to be independent of {7;}ren. With these assumptions, the general
model (2.5) takes the form

N
Rt=u+7r(t)—Zxk for teR; (2.6)
k=1

which is an ordinary renewal process. A modification could be made to allow the
first inter-claim time 7; to be distributed differently than the other inter-claim times,
resulting in a modified renewal process. This may better model the more realistic
situation in which the ends of accounting periods do not necessarily coincide with
{TX} ke, (see Janssen (1981) for modified renewal models and Garrido (1987) for
modified renewal medels subject to interest and inflation). The assumption of i.i.d.
claims and inter-claim times as well as their mutual independence are strong and are
often unrealistic.

The techniques of renewal theory can be used to find expressions for the ruin
probabilities ¥(u,T) and ¥(u,c0), as defined in (2.3) and (2.4). Assume that in
(2.6), NX is an ordinary renewal process so as to avoid the extra technicalities of
modified renewal processes. Let Fi. and F,, be the inter-claim time and claim severity
distribution functions respectively. Define the corresponding probabilities of non-ruin
I'w,T)=1-¥(u,T) and ['(u,00) = 1 — ¥(u,00). Furthermore, define these non-
ruin probabilities conditioned on the first claim time 7; as well as on the first claim
magnitude x; by ['(u,T|m = t), '(w, T|x1 = ¢), and I'(y, 00|71 = t,x1 = ¢). Using
the law of total probability twice and the fact that 7; and x; are distributed by F;

and F,, respectively,

T(u,T) = / [(u, T|ry = t)dF, () = / / [, Tlri = £, 31 = O)dFy(c)dF) (2)

10



Noting that

0 ifutm(t)—c<0
Fu,Tmn=t,x1=¢c)=4 1 ift>T
Fu+n(t)—c,T—t) fte[0,T|&u+m(t)—c>0

we then obtain

I'(u,T)

]

T putn(t) 0
f / D(u+m(t) — ¢, T — t)dF,(c)dF, () + / dF,(2)
0 0 T

T pu+n(t)
/ / D(u+7(t) — &, T — )dF,()dF,(t) + 1 — FT) (2.7)
0 0

Finally, letting T' — oo gives an equation for the probability of ultimate non-ruin:

I(u,00) = fo ” /0 T S+ 7(t) — ¢, 00)dF () () (2.8)

Depending on 7(t), F, and F, solving (2.7) and (2.8) for I may pose a significant
problem. Using (2.7) and (2.8) in an optimization scheme where 7(t) is the unknown
to be found may pose even greater problems. In short term policies, competitive
market conditions may influence the choice of 7(¢). In long term plans, such as life
insurance, market conditions are less restrictive and so it is in these situations where
an optimization of (2.7) and (2.8) may be useful when feasible.

Suppose p = E[x] is finite and let M (t) = E[N{] be the renewal function of the
process NX. Then,

NE
E[R] = u+7(t) — E [Z xk] = u+ n(t) - E[NJEDa] = u + 7(t) — pM(2)

k=1
One can define a net accumulated premium policy mo(t) = uM(t) so that E[R;] =
u~+mo(t)—pM (t) = u ensuring that the premium income my(t) exactly offsets claims on
average. Since deviations from the expected behaviour will occur, the business must
protect itself by adding a safety loading factor 8(¢) > 0 to mp(t) to set a gross aggregate
premium policy 7 (t) = [1 + 0(¢t)]mo(t) = [1 + 0(t)]uM(¢). This gross premium will

11



ensure that the average net income is strictly positive, allowing for the accumulation
of reserve capital, but certain choices of §(¢) may still result in unacceptably high
probabilities of ruin, again requiring an optimization involving (2.7) and (2.8). The
form #(t) = [1 + 6(t)]JuM(t), or perhaps w(t) = [1 + O)uM(t) where § > 0 is a
constant, may facilitate optimization but in general, exact expressions for M(t) are
infinite sums of convolutions and are therefore unlikely to lead to simplifications.

A minimal requirement ensuring that P{T" = oo} > 0, ie, there is some chance
the business will always be able to cover its claims, is that P lim,_,o & ;- > 0. This
essentially says that for very large t, R; is like u + at in law for some a > 0 and that

enough sample paths remain near u + at > 0, and hence above zero.

Since u = E[xx] > 0 and A~! = Ejri] > 0 are finite and lim; ﬁt@- = )\ we have
that
P lim B _ P lim {—+ (1+6(2)) - —Z = (1+8(oc0))pAr—puA = 6(oc0) A
t—00 t=oo | ¢

And, requiring that P lim, ., & > 0 means requiring that 6(c0) = lim,_,o0 8(2) > 0,
which is certainly satisfied if 6(¢) = 6 > 0, a constant.

Writing (2.6) in terms of the safety loading factor () and the renewal function
M(t) we have

Ny

Ry=u+(1+0@)uME) - xi for teR, (2.9)
k=1

Thus, once the claims process has been specified, p and M (¢) are, in principle,
known, the remaining free parameters being 8(¢) and u. In practice, however, u may
be determined by circumstances or by law so that only 6(¢) remains as a decision

variable which itself may be further subject to market conditions.
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2.3 The Classical Poisson Model

The classical Poisson risk reserve model is a very specialized version of (2.6) in which
NX is a Poisson process with rate A € (0, c0), ie, the inter-claim times are i.i.d. and
exponentially distributed with mean A~! and common distribution function F,(¢) =
(1 —e ™)1(p,00)(t). In this case, M(t) = E[N}] = M represents the average number of
claims in [0,¢]. It is also assumed that 7(t) = 7t where # > 0 is a constant aggregate
rate of premium payment reflecting the assumption of a constant number of policy
holders, constant portfolio composition, and premium payments are regular. Using
a constant safety loading factor § > 0, we have that n(t) = nt = (1 + )uit so
that 7 = (1 + @)uA is the aggregate gross premium rate with mg = pA being the net
aggregate premium rate. (2.9) then becomes

Ny

Rt=u+(1+6’),u/\t—2>gc for teRy

k=1

Specializing (2.7) yields

il

T(u,T) / /0 T P+t — 6T — 8)dF()dF, () + 1 — F(T)

u+-mt
/ / D(u+ 7t — ¢, T — t)dFy (c)he Mdt + AT (2.10)
0
Letting T — oo we obtain

u+mt
I'(u,00) = f / [(u + mt — ¢, 00)dFy () Ae™Mdt

- ie*«" f ’ f "Dz — ¢, 00)dF(c)da (2.11)
0

where we have used the substitution z = u + t.
Assuming (2.11) and (2.10) are differentiable in » and that dFy(c) = fy(c)dc we
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obtain by differentiating

T
2 w1) = /0 I(0,T — 1) fy(u + mt) Ae—dt

T putnt or
+ / / %(u + 7wt — ¢, T — t)f(c)dere™dt  (2.12)
o Jo

and

ar A

2 (w,00) = 2T(u,00) - % /0 “Ilu = ¢,00)dF(c) (2.13)

T
(2.12) is a Volterra integro-differential equation having a limited number of analytical
solutions and for which numerical solutions exist only for certain choices of F}. In
general, (2.12) is not a practical method of computing the probability of ruin in finite
time (see for example Linz (1985)). (2.12) and (2.13) can be put into the form of
renewal equations and solved, in principle, by Laplace transforms where the difficulty
is in the inversion (Feller 1966). On the other hand, as long as F, has a density,
(2.13) can clearly be handled numerically, for example, by an Euler scheme plus a
discretization of the integral or by the technique of product integration (Ramsay &
Usabel 1997). Also, we may, depending on F,, differentiate again with respect to u
to obtain a second order ODE with delay, possibly being able to solve. Finally, in
a direct Monte-Carlo simulation of small ruin probabilities there is a large relative
error unless a very large sample of paths are simulated (Asmussen 1984) which can

be computationally intensive.

2.4 Renewal Models: Stochastic Premiums

We suggest here a simple method of allowing for stochastic premiums while retairing
mathematical tractability. Describe claims and premium income together in a single
point process as follows. Let the occurrence times of premium income and claims
be given by a P-a.s. strictly increasing sequence {Tj}ren of F-stopping times as

before where T, = 0. Suppose, as before, that To, = sup, Ty = oo P-a.s. so that
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the associated counting process IV is without explosion. Suppose the premium and
claim magnitudes are given by a single sequence {X}}xen of random variables whose
range is R. A positive value of the X} would represent premium income at time T}
and a negative value would represent a claim. The risk reserve process could then be
described by
Ne
Rt=u+ZXk for teRy

k=1
One would want the distributions F} of the X; to be such that there is no mass at

zero as well as having the probability of a claim at T}, given by P¥ = P{X; < 0} =
oo ° dF(z) >0, and the probability of a premium at T}, given by PH = P{X; > 0}
= [, dFi(z) >0, to match observed behaviour or to reflect assumptions about
anticipated variations in income and claims. In addition, one would want the “shape”
of Fy(z) for z < 0 to match the observed distribution of claims and the “shape” of
Fi(z) for £ > 0 to match the observed distribution of premiums. For instance, if
fX(z),z = 0, and fl(z),z > 0, are the observed density functions of the claims and

premium magnitudes, respectively, then, since P + PX = 1, one could set

fe(x) = PEfE(—2)1(—000)(%) + P fi (£)1(0,00)(2)

Fu(z) = / © fu)dt

If one supposes that the { X} }ren are i.i.d. and that IV is an ordinary renewal process

and

then renewal theory techniques can again be applied to determine ruin probabilities.
It should be noted that such an assumption amounts to allowing the income to occur

at purely random times, possibly an undesirable feature. Again,

(u, T) = / / D(u, T|X, = ¢, = £)dFx (Q)dF.(t)

and
0 ifu+c<0andtel0,T)
Fw,Tln=tXy=c)=q I'u+¢,T—-t) ifu+c>0andte[0,T)
1 ift>T
15



so we then obtain
T oo 00
T(w,T) = / / L(u+c,T — 8)dFy(c)dF, (t) + / dFy(c)dF (2)
0 -u T
T poo
- / / (u+c,T — t)dFy()dF(t) + 1 — Fy(T)
0 -u
Finally, letting T" — oo gives an equation for the probability of ultimate non-ruin:
I(u,00) = / / I'(u + ¢, 00)dF, (c)dF;(t)
0 —-u
= / ['(u + ¢, c0)dFy(c)

yielding expressions for ruin probabilities of a similar level of tractability as (2.10)
and (2.11).

2.5 Generalizations

The special cases of renewal models discussed above describe the time homogeneous
evolution of a risk reserve fund. There are situations in which both claim severities
and claim occurrence times fluctuate either deterministically or randomly. For ex-
ample, the south eastern US seaboard experiences hurricanes more frequently and of
greater scale in the summer months than in the winter months resulting in a greater
number of more sizeable claims during the summer. Icy road conditions in the winter
may lead to similar seasonal fluctuations in the size and frequency of claims asso-
ciated with automobile accidents. Thus, there is a need for more realistic models
incorporating such fluctuations. As already mentioned, Cox processes are being in-
vestigated by Grandell (1991), periodic variations in arrival intensity by Chukova,
Dimitrov & Garrido (1993), and piecewise continuous Markov processes by M.H.A.
Davis and Paul Embrechts. These approaches, while providing more realistic models,
will unlikely yield more tractable expressions than the simpler models. The inade-

quate performance of the simpler models (Seal 1983) and the expected increase in
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complexity of the more realistic point process models adds impetus to the search for

useful approximations.
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Chapter 3

Approximation of Point Process

Reserve Models

3.1 The Classical Normal Approximation

As seen in Chapter 2, the determination of ruin probabilities for point process models
poses difficulties, even for the simpler classical Poisson model. One way of treating
this problem is to find a good approximation to the point process model which allows
the explicit determination of ruin probabilities. Initial approaches involved normal
approximations of the claim magnitudes experienced over a given time interval. A
natural extension of this is to perform such a normal approximation at each instant
of time. Let Ry = v + 7t — Zkal xx for t € R, be a classical Poisson reserve model
with rate A € (0,00), {Xxk}ken are ii.d. with g = E[xx] > 0 and 02 = V[x] > 0,
u > 0 is the initial capital and 7 > 0 is the aggregate premium rate. Let R denote
the approximating process based on performing a normal approximation of R at each
time ¢. If the laws of R and R are to be “close” enough that their relevant macroscopic
properties are the same then a necessary requirement is that the first two moments
match at all times: E[R,] = E[R,] and V[R,] = V[R,] Vt € R;.. E[Ry] = u+ (m— p)\)t
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and V[R;] can be computed via the formula V[Ry] = E[V[R;|N,]] + V[E[R;|NV,]]. For
eachn € N,

n
E[R|Nf =n]|=E [u+7rt—2xk:| =u+ Tt — nu
k=1

and, knowing that E[N}] = V[N}] = At, we have
VIE[RNY]] = V{u + 7t — N¥yu] = pi Xt

Also,
VRN =n]|=V [u+ Tt — }:xk] = no?
k=1

and so
E[V[R|N{]] = E[athx] = g2\t

Hence, V[R;] = At(0? + p?). The obvious normal approximation would then be
u+ (7 — pA)t = /M(o2 + pu2)Z where Z ~ N(0,1). But, viZ ~ N(0,t), which
resembles a standard Wiener process W. We are therefore led to the approximation
R, = u+ (m — u\)t — /A0 + u®)W;, partially justified by the fact that R and
R have the same trend and volatility at each time and that W and C are both
stationary independent increment processes, sharing a similar structure. The utility
of the Wiener diffusion approximation is that W, ~ N(0,t). Thus, “R ~ R” suggests
that P{R; < =} ~ P{R; < =} and so we have

P{R, <z} = P{u+(r—p\t+ /Mo + p12)W, < z}

z—u=—(r—pui)t
z—u—(m—pA)t 1 [ pxe s M)
= PL{W, KL = e 2
{ A+ ) } Vet J o

1 z s—u—Bt)?
= / eSS g (3.1)
A2t J oo
where the transformation s — S=2=(T—£A Lo used as well as the substitutions

a2 +p?)
A = /A(0? + 4i2) and B = 7 — p). The distribution of T"(R) = inf{¢t > 0: R; < 0}
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is also known explicitly:

2By

T
W) = PR <T)= 2= [ et g,

- o (B2 (213

where ®(z) = 2= [% e *"/%ds is the distribution function of the standard normal

distribution. The integral representation can be found in Karlin & Taylor (1981)
and the evaluation of the integral via Laplace transforms can be found in Darling &

Siegert (1953). Letting T — oo then yields the probability of ultimate ruin
P —2Bu —2(1r—uA!u
U(u,00) = P{T"(R) < o0} = e 4 = e MeTr?) (3.3)

(3.2) and (3.3) lend themselves easily to an optimization scheme for determining an
optimal premium policy 7.

The above derivation relies on the ease of computing the mean and variance of
the Poisson process NX and the Wiener process W. For general counting processes
NX, computing the mean and the variance may be non-trivial making the matching
of moments difficult. Also, unless NX is Poisson, R is not an independent increment
process and so is structurally different from R. Thus, there is a serious drawback,
even in the Poisson case: there is no satisfactory justification of the assumption that
R provides a good approximation of R since matching the first two moments does
not guarantee that the long run behaviour or functionals of these processes match.
The more modern approach to this latter problem, based on the theoretical work
of Prohorov (1956), Skorokhod (1956), and Billingsley (1968) and then applied by
Iglehart (1969), is to construct a sequence of point processes {R™},cn such that
R™ converges to a limit process R(>) in a sense strong enough to ensure that for
useful functionals f, f(R(™) converge to f(R{*). The hope is that our original point
process model R is “close” in law to R(®) so that f(R) will be close to f(R()) and,
most importantly, that f(R(*)) has an explicit, tractable expressicn which could

then serve as a useful approximation to f(R). The natural setting for considering the
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limits of sequences of cadlag stochastic processes and their functionals is the space of

cadlag functions endowed with a probability structure which we now describe.

3.2 Weak Convergence in D|[0,T] and D[0, c0)

For any T' € Ry, let D[0,T) = {z : [0,7] — R : z is cadlag }. Let Ar be the set
of maps A : [0,T] — [0,7] that are onto, strictly increasing, and continuous with
IAlla, < oo where [|Alla; = supogscigr .ln (55%{%‘)-) . For z,y € D[0,T] define
dr(z,y) = infaear {|Allar V supepm{[z(s) —yo A(s)|A1}}. For T =1, d; is a
metric on D[0,1] and (D[0,1],d,) is a complete, separable metric space (Billings-
ley 1968). It is clear that the same is true for (D[0,T},dr) for any T € R,.
Let D = D[0,0) = {z : Ry =& R : z is caddlag }. Let A be the set of maps
A : R, — R, that are onto, strictly increasing, and Lipschitz continuous with
[Alla < oo where [|Alla = suPggscicoo 'ln (-'\-52%’6\-(51)' For z,y € D, A € A, and
T € Ry, set p(z,y,A,T) = supseppr{|z(s) — ¥ o A(s)] A 1} and defining the met-
ric d(z,y) = infyea {”/\”A \Y% fm+ p(z,y, A, T)e“TdT} on D we have that (D,d) is a
complete, separable metric space (Ethier & Kurtz 1986). The following theorem

characterizes convergence in (D, d).

Theorem 1 (Ethier & Kurtz, 1986, pg. 125) Let {zp}nen C D and z € D.
d(zn,z) — 0 if and only if the following three conditions hold for each t € R, and
all sequences {t,}nen C Ry such that t, — t:

1) |za(ta) — ()| A lzn(tn) — z(t=)| > 0

2) If |zp(tn) — z(t)| = 0, sp = t,, sy = ¢ then |zp(sn) — 2()] = 0

8) If |zn(tn) — z(t—)| = 0, sp = t,, Sp = t then |za(sn) — z(t—)| = 0

However, as Pollard (1984) mentions, if the limit z is continuous or lies in some
separable subset of D then convergence with respect to the uniform metric given
by mr(Zn, ) = SUP.ep.r) [ZTn(s) — z(s)| on all compacts [0,T] is equivalent to con-

vergence with respect to d. Thus, convergence in the space (C[0,00), m), where
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m(z,y) = supyg, |z(t) — y(t)|, implies convergence in (C[0,T],mr) for all T and
therefore in (D,d). Here we want a framework that will allow for discontinuous
limits and so we always work within (D, d).

The metric topology 7 on D (resp. D[0,T]) determined by d (resp. dr) is Sko-
rokhod’s J; topology. Let B(7) be the Borel o-algebra on D (resp. D[0,T]) gener-
ated by 7. Our risk reserve model R is an R-valued stochastic process whose sample
paths are in D. Considering our reserve model as a random element of D, assume
a probability model (2, F,P) and let R : @ — D be a F/B(7)-measurable map.
The distribution of R is given by the induced probability measure P = PR™! on
B(7), called the law of the process R. For processes {R™},n and R(® on D let
{P™ = PR™ ™'}, .n and P = PR(®) ™" be the corresponding induced probability
measures. The sequence of laws {P(™},cn is defined to converge weakly to P(*,
written P = P(®) if for all bounded, continuous functions f : D — R we have
limpeo [, f(z)dP™(z) = [, f(z)dP™)(z), or equivalently, limp 0 E[f(R™)] =
E[f(R")]. In this case we say R™ converges in distribution to R(®) and denote
this by R™ = R or by R™ = R{® where in this context R\™ is taken to mean
the process R(™, not just its value at time ¢.

For k € N and {t;,... ,t} C Ry let the projections ... s, : D — R* be defined
by ey 1 (RV) = (RE?), cee (:)). If we consider only the finite dimensional distri-
butions PR™'x,, .., = of a process R™ induced on B(R*) by m, ... s, (R™) then
weak convergence of PR™ 'm, ., ~1 to PR ', ., 1 is just the ordinary weak
convergence of distribution functions (Billingsley 1968). PRM™ ™ = PR implies
the weak convergence of all finite dimensional distributions. However, weak conver-
gence of all finite dimensional distributions PR™ 'z, .., =1 to PR ', ., 1
does not determine the weak convergence of PR™ ™" to PR(™". Thus, weak con-
vergence for laws of processes is a stronger notion that the weak convergence of finite
dimensional distributions, even for processes with P-a.s. continuous sample paths,

and turns out to be the mode of convergence that is strong enough for the conver-
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gence of functionals. We now collect some theorems on weak convergence for later

use.

Theorem 2 (Billingsley, 1995, pg. 331) Let {X™},en and I be processes in D[0,1]
where I is the non-random identity process in D|0, 1] defined by I(t,w) = ¢t for all
(t,w) € [0,1] X 2 and where A > 0 is a constant. Then, XM = M\ <= X®™ 5 1.

Theorem 3 (Billingsley, 1968, pg. 27) Let {X™},en, X, and {Y ™} en be pro-
cesses in D[0,1]. If X™ = X and Y™ B XTI for some A > 0 then (X™,Y™) =
(X, AI). In other words, the induced probability measures {P(X™,Y™)~1}, oy con-
verge weakly to P(X,AI)™! on D[0,1] x D[0,1] endowed with the product topology
T ® T generated by the sets {A x B : A,B € 7} and the Borel o-algebra B(t ® )
generated by T ® T.

Theorem 4 (Davidson, 1994, pg. 355) Let {X™},en and {Y™},cn be processes
in D such that X™ = X and Y™ = q where a is a non-random element of D (for
all (t,w) e R, xQ, a(t,w) =a(t) ). Then Y™+ XM =04+ X and YW X™ = aX.

Theorem 5 (Billingsley 1968, pg. 50) Let h: D[0,1] — R be B(7)/B(R)- mea-
surable and let Dy = {z € D[0,1] : h is discontinuous at z}. If {P™}>, and
P are probability measures on B(t) such that P™ = P and P(D,) = 0 then
PM™ph~t = Ph~' where {P™h~},cn and Ph~! are the corresponding induced prob-

ability measures on B(R).

Corollary 1 (Billingsley 1968, pg. 31) If X = X and PX~'(D;) = 0 where
h is as in Theorem & then h(X™) = h(X).

Note that Theorem 5 and Corollary (1) remain true if (D[0, 1], d;) is replaced with

any complete, separable metric space, such as (D, d).

Theorem 6 (Billingsley 1968, pg.25, 225) Let {X™} ey and {Y™},en be se-
quences of random elements of D[0,1]. Since (D[0, 1], d;) is a separable metric space,
the map d(X™, Y™) : Q — R defined by d(X™,Y™)(w) = d(X™(w), Y™ (w)) is a
random variable. If X™ = X and d(X™,Y™) -5 0 then Y™ = X.
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Theorem 7 (Prohorov, 1956) Let {x{"}i! .y be random variables such that for
each n € N, {x™}22! are iiid. with Ex™] = 0, V[x{"] = ¢™* 5 ¢2 > 0, and
36 > 0 such that sup,en E[Ixfc") +6] < 0o. Define on (C[0,1],m;) the process

[nt]
1 n
Y0 = 2 (S b = e | For te )
k=1

Then, Y™ = W where W is a standard Wiener process.

The next theorem is a generalization of Billingsley’s result for random time
changes. As with other results taken from Furrer et al. (1996), not yet published, a
detailed proof is provided here.

Theorem 8 (Furrer et al. 1996) Let {X™},cn, X, and {N™}, ey be processes
in D such that X = X and N® = I for some A > 0. Suppose also that the
sample paths of {N™ },cn are non-decreasing and N™(0) = 0. Then, X™ o N( =
X o Al where (X™ o N™), = X!(;:(),,) and (X o M), = Xy fort € R,.

Proof. Let Dy = {¢ € D : ¢(0) = 0 and ¢ non-decreasing }. Define a composition
map ¥ : D x Dy = D by ¢¥(z,¢)(t) = o ¢(t) = z(¢(¢)). We will show that
when D x Dj is suitably topologized, v is measurable, (X™), N®)) = (X, AI), and
P(X, I)~Y(D,) = 0 where Dy, is the set of discontinuities of ¢ and P(X, AI)~! is the
probability measure induced by (X, AI). Corollary (1) is then applied to conclude
that X(™ o N® = (X®™ N®™) = (X, ) = X o Al

Let 7o be the metric topology on D, determined by d|p,. 7o is therefore the relative
topology induced on Dy by 7 and can be described by {UND, : U € 7}. Let B(rp) be
the Borel o-algebra generated by 7 which can be described by {BN Dy : B € B(7)}.
However, D, is closed with respect to d and so Dy € B(7). B(7) can therefore be
described by {B C Do : B € B(1)}.

The metric d = d V d|p, determines the product topology 7 ® 7o on D x Dy
which can be generated by the sets {U x Uy : U € 7,Up € n}. Let B(t ® 7p)
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be the Borel o-algebra on D x Dy generated by 7 ® 7. Since (D, d) is separable,
B(r ® 1) = B(7) ® B(79) where B(1) ® B(7y) is the product o-algebra generated by
{B x By : B € B(1), By € B(rp)}. Now, for {t1,---,t,} C R, we have a projection
Tyt - D — R® defined by my, ... 4. (z) = (z(t1), -+ ,z(tp)). B(7) isin fact generated
by the sets {r;,’., (Bi1x---x By) : n € N,B; € B(R),{t1,--,t»} C Ry} and
similarly for B(m) (Lindvall, 1973). B(7) ® B(7o) is also generated by the pre-images
of Borel rectangles under similarly defined projections of D x Dy and hence so is
B(r ® 7). Thus, ¢ : (D x Dy, B(r ® 19)) = (D, B(7)) is measurable since for all
t € R, the projection m;0%) : Dx Dy — R defined by m01(z, @) = m(z0d) = z(¢(2))
is B(T ® 19)/B(R)-measurable (pg. 232 Billingsley 1968). Also, {(X™ N™)} cn
and (X, AI) are F/B(T ® 79)-measurable and so are random elements of D x Dy.
By composing measurable maps, it follows that {1(X™, N(™)}, cn and %(X,AI) are
F/B(7)-measurable and so are random elements of D.

” By Theorem 2, N® = )\ is equivalent to N™® 5 )\J. By Theorem (3), N® 5
M and X™ = X imply that (X, N®) = (X, M) in the space (D x Dy, B(T®1)).
Now, let P = P(X, AI)~! be the probability measure on B(T®7,) induced by (X, AI).
Let Dy, = {(z,¢) € Dx Dy : 9 is discontinuous at (z,¢)}. If we show that P(Dy) =0
then since 9 is measurable and (X N(") = (X, I}, Corollary (1) implies that
P(X ™ NMY = (X, A\I), proving the result.

Noting that Dy = [Dy N (D x {AI})]U[Dy N (D x {M\})¥] and P = P(X, \I)™*
we have that P(Dy N (D x {M\})¢) = 0 and so P(Dy) = P(Dy N (D x {\I}).
Thus, we need to consider the continuity of 1 only at points in D x {A}. Let
(z,AI) € Dx{AI} be arbitrary and let {(Zs, $n) }nen C D x Dy be any sequence such
that d((Zn, ¢n), (z, \I)) — 0. This is equivalent to d(zn,z) — 0 and d(¢n, \I) — 0.
We want to show that z,0¢, = ¥(zn, ¢,) = ¥(z, AI) = zo Al and so we use Theorem
1 characterizing convergence in D.

Let t € Ry and {t,}nen C Ry be such that ¢, — t. We want to verify that the
conditions of Theorem (1) hold for the sequence of processes {Z, © @5 }nen and zo Al.
Since ¢, — ¢, there is an M such that ¢ € [0, M] and {t,}nen C [0, M]. Since A/ is
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continuous, d(@n,AI) — 0 is equivalent to the uniform convergence of ¢, to AI on
compacts. Hence, for all € > 0 there is an ng such that n > ny implies |A¢t, — At| < £
and [pn(s) — As| < § for s € [0, M], so, in particular, |¢n(tn) — Mn| < §. Thus,
|$a(tn) — At| < |Bntn) — Ma| + |Atn — M| < £+ § = € and hence ¢,(t,) — At. Note
that this is true for any sequence of times converging to ¢.

Since d(z,, ) — 0 we know the conditions of Theorem (1) hold, more specifically,

we know they hold for sequences of times {@,(t,)}nen converging to At. Thus,

nll;rﬁlo |Zp © @nltn) — 2 0 AI(E)| A |z 0 Pn(tn) — z 0 A (t=)|
= lim |z0(8a(th)) = Z(A)] A [2a(@n(2a)) — 2((A2) )]
= 0

and so since ¢ and {Z, }nen Were arbitrary, the first condition holds for {z, © ¢ }nen
and z o AI. For the second condition, suppose [z, 0 ¢n(t,) — z 0 AI(t)] = 0, sp 2 tn,
and s, — t. Each ¢, is non-decreasing so ¢,(s,) = ¢n(tn) for all n and we know
that ¢,(s,) — At. The second condition holds for {z,}nen and z 0 |z, 0 Pp(ss) —2 0
M (t)| = |Za(Pn(sn)) — z(At)| = 0 hence the second condition holds for {z, © ¢n}nen
and z o AI. By a similar argument, the third condition is also seen to hold for
{Z, © ¢n}nenx and z o AI. Therefore, by Theorem 1, d(z, © ¢,z 0 AI) — 0, and
so 1 is continuous at all points of D x {AI}. Hence Dy N (D x {AI}) = 0, so
P(Dy) = P(Dy N (D x {A\I}) = 0 and the result follows.

0O

3.3 The Wiener Process Approximation

We discuss in this section the result of Iglehart (1969) on the weak convergence of
a sequence of reserve processes {R™},en to a Wiener process R(>). Let {Y ™ },en
and {x{"}iZ! y be as in Theorem (7) and define a new sequence {X™},en by
XM = 2}17-521&12{ x™ for t € [0,1]. If we show dy (Y™, X™) 5 0, then, since

Y™ = W, we can then apply Theorem (6) to conclude that X = W where W
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is a standard Wiener process. Iglehart uses a more elaborate result of Liggett and
Rosén (1968) to conclude that X = W although Theorem (6) suffices. In addition,
Iglehart does not explicitly show that di (Y™, X™) £ 0 and so it is shown he:

for completeness.
Proposition 1 With {Y™},en and {X™},en as above, dy (Y™, X)) 0.

Proof: Let w € Q and n € N. Since the choice A(t) = ¢ yields ||A|]a, = 0 we
have that the set {e > 0 : sup;ep IY(") (w) - X3 (") w)i < €} is contained in the set

{e>0:3x€ Ay, || Al|a, V supep, J}’; (w) — Xi(t)(w)l < €} and so
G, XM (w) = Y™ (w), XM (W)

= inf{e>0:EI/\eA1,||/\]|A1v sup |V (w) — X{7) (w). }
te[0,1]

< inf{e >0: sup Y;(")(w) - Xt(")(w)l < e}

t€f0,1]
nt — |nt]
= sup |[Y(w —X(") (w (n)
:e[opl] W) = X, )’ te[o 1] S (Vn Xl"tj+1(w)l
— (n) — ("')
2 2 @) = e o )
Thus, for any a > 0,
P{w: d(Y™(w), X" (w)) > a} <P {“’ 2 47 ) >“}
E [(ma'x1<k<n IXk )l)2+6]
_ (n) B ,
= P{w max | x (w )l>C\/ﬁa}< (Cma)s
(n) |20 (n) |2
E [mamgksn |X§cn)|2+6] < E [ZZ=1 |X§cn)|2+6] nk [ ] E [ Xk ]
= CTna)tP < (C/ma)eTe = nIt2(Ca)2+s | pdf2((a)2tt

where Chebychev’s inequality is used with power 2 + § > 0 to pass to the expecta-
246
tion. Now, choose § > 0 so that M = sup,.yE [lx}c")l ] < o0o0. Thus, Vn € N,
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P
P{w: d(Y™, X™)(w) > a} < srgfoyrs and so dy (Y™, XM) = 0.
=
Thus, X® = W. If we set N™ = at then from Theorem (17.3) in Billingsley
(1968) we have that N\™ = At. Now, applying Theorem (8), we conclude that

l_nN(") |

NX

1 8 n n n

%kzxsc) = Z () = (XM oN™), = (Woll), =Wy
=1

so, using the self-similarity of Wiener processes, % Zk ot xfc") = (Wi 2 VAW,
We can now present Iglehart’s main convergence theorem and a slight simplifica-

tion of his proof.

Theorem 9 (Iglehart, 1969) Let NX be a renewal counting process with finite mean

inter-claim time A~' > 0. Define a sequence {R™},cn of risk processes by

Nx
1 nt

R™ = > GO g N, Z ngﬂ) for te]0,1]
k=1

where for eachn € N, {}}*! arei.i.d. withE[x™] = ™ > 0, V[x{™] = o™? >,
and, 38 > 0 such that sup, oy B[ XV |2*9] < co. Suppose also that u™ = uy/n + o(y/n),
7 = =+ o(-ﬁ), pu® = L+ o(ﬁ), and o™ — (% > 0 for constants u,m, u,{ > 0.
Define R = u+ (m — pA)t — (VAW, for t €[0,1). Then, R™ = R*),

Proof: First, write R{™ in the following form:

(n) NX (™)
(n) _ L (n) _ __ (n) (n)y _ {VntH

0(\/@) ( (1/\/—)) @ _ (@)

u+ + 7+ -

( Vn /v E g
Nz o(1/v/n)
n (# + 1/v/n
By Theorem (17 3) in Billingsley (1968), - = At and clearly p+ %L\‘;;—? => 1 so by

Theorem (4), Yat - (,u + °11,, = ) = uMt, a non-random function. Also, it is clear that
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‘_ x«i,:'.l

(u + ."_(.‘/ii@) + (7r + M) t = u+ 7t and so again by Theorem (4) we have that

1/vn
(u+ﬂ¢@)+(w+%)t—%(;¢+ ﬂ}f\,@) = U+t — pt = u+ (1 — p)t.

The random variables xfc") ~ u™ satisfy the conditions of Theorem (7) so by the
previous argument, 71#2,:”:"“‘1()(5:") —u™) = (¢VAW,. Applying Theorem (4) once
again yields Rg") = w4 (7 — p\)t — VAW, Zou+ (7 — pA)t + VAW,
a
Iglehart extends these convergence results to D[0,00) using a result of Stone
(1963). However, Lindvall (1973) has corrected a small error in Stone’s theorem and
we therefore use Lindvall’s version. Given a probability measure P on D|0, co) define
Tp = {t: P{z : z(t) = z(t—)} = 1}. For T € R,, define the time index restriction
map 77 : D[0,00) = D[0,T] by (rr(z))(t) = z(t) for ¢ € [0, T].

Theorem 10 (Lindvall, 1973) If P and {P™},en are probability measures on
D[0, co) then P™ = P if and only if P™r! = Pry! for all T € Tp.

Now, extend {R™},en and R(™ to D[0,T] and D[0, co) by simply enlarging the
array of random variables {xfc") Folinen t0 {xfc")}k,neN retaining the i.i.d. properties
as before and allowing t € [0,T] or t € R;. All of Billingsley’s results carry over to
(D0, T],dr) for all T € R, and hence Iglehart’s convergence results holds as well on
(D[0,T),dr) for all T € R,. Thus, P(rp(R™))~! = PR 'rz! = PR ™ pzl =
P(rp(R(®))~! for all T € R, which, by Theorem (10), is more than sufficient to
ensure that PR™ ™' = PR je. R™ = R on (D, d).

The projection functional m, : D — R defined by m(z) = z(¢) is B(r)/B(R)-
measurable and almost surely continuous with respect to the measure PR (Lind-
vall 1973). Since PR™™' = PR~ on D we can apply Theorem (5), which
applies to any complete, separable metric space, to conclude that PR™ 51 =

PR ™ 11, Thus,

P{R™ < z} = PR™ 771 (~00,z] » PR 5, (~00, 7] = P{R{™ < 1}

29



using the fact that d(—oo,z] = {z} has zero measure since R®™ is a continuous
random variable (see Billingsley (1968)). Similar to the derivation of (3.1), we can
obtain a tractable expression for P{R{® < z}.

The functional 7" : D — R defined by T7(z) = inf{t > 0 : z(¢) < 0} is also
B(7)/B(R)-measurable and continuous almost surely with respect to PR(*)™! on
D|0, 00) since z € D is measurable and the Wiener measure PR ™" corresponds to
a process with P-a.s. continuous sample paths (Stroock 1993). Applying Theorem
(5) again we have that PR™ ™/(T7)-1 = PR (T*)~! and thus

P{T"(R™) <t} = PR™™'T™(—00,¢
— PRI (00, f] = P{T"(R®) < t}

whose distribution is as in (3.2). It should be noted that these convergence results
apply to any model having a renewal counting process NX, without explosion, for
claim arrivals which need not be independent of the claim severities. However, it is
seen that if the claims are not distributed in a reasonably symmetric manner this
approximation doesn’t perform well (Gluckman 1979). Furthermore, it is often the
case that claim severities are highly skewed with infinite second moments, ruling out
altogether the use of the Wiener process approximation (Embrechts & Veraverbeeke
1982). For example, Pareto, LogGamma, Weibull distributions and others are com-
monly used to model claims distributions (Hogg & Klugman 1984). As a way of
dealing with this problem, Furrer et al. (1996) have considered a larger class of ap-
proximating processes based on a-stable distributions, of which the Wiener process

approximation is a close neighbor.

3.4 «-Stable Lévy Processes

Definition 1 A random variable X has a stable distribution if it has o non-empty
domain of attraction: there is an i.i.d. sequence random variables {X,}nen, with

common distribution function F, and sequences of real numbers {an}nen and {b,}nen
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with a, > 0 such that ;=30 (Xi — b,) = X in which case we say that F is in the

domain of attraction of X.

Thus, stable distributions are the only possible distributions that can arise as weak
limits of sequences of normalized partial sums of i.i.d. random variables, which, by
the Central Limit Theorem, includes the family N (1, 2) of normal distributions. The

stable distributions also possess another interesting property : infinite divisibility.

Definition 2 A random variable X with law P and characteristic function ﬁ(ﬁ?) 18
infinitely divisible (ID) if one of the following equivalent conditions holds:

(1) ¥n € N 3 n i.i.d. random variables {X{}r_, such that X 2 X 4 ... 4+ X
(2)Vn € N 3 P, € Pr such that P = P;"

(3) Vn € N 3 Pol8) such that P(6) = [E(o)]" and By(0) = 1

P, and P,(6) are the law and characteristic function of the {X ,(c")};;l. A beauti-
ful classical result completely characterizes ID laws in terms of their characteristic

functions:

Theorem 11 (Lévy-Khintchine) A random variable X is infinitely divisible if and

only if its characteristic function is of the form P(8) = e*® where

#(8) = iy — %9262 + f (€% — 1~ i6y(z)) M (z)
R\{0}

Jor some p € R, 6 e R, M € M&{{f;}, and ¥ is a bounded measurable function
¥ : R\ {0} = R\ {0} satisfying supg\ (o} iﬁ’—’l < 0.

Proof: See Stroock (1993).

The above representation is not unique since there is considerable freedom in the
choice of 7. For a fixed choice of ¢ the above representation is unique, and, for this
reason, (p, 52, M) are called the Lévy characteristics of X and M is the corresponding

z

Lévy measure of X. The original choice ¥(z) = %7 of Lévy and Khintchine together
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with the definition of a stable distribution leads to the Lévy characteristics for stable
random variables (z,2,0) and (4,0, M) where u € R,6 € R;, and M € M}{Qf;} is
given by
Q P
dM(SL’) = -l-x—lml(_oo,o)(l')dx + -:-1;—;_*_-—11(0,00)(:1:)(12:

for some a € (0,2) and P,@ € R, such that P+ @ > 0. P and Q give the relative
weighting of positive and negative values of X (Kolmogorov & Gnedenko 1968).
The first set of characteristics (u,52,0) when & = 0 yields P(6) = & corre-
sponding to the unit point mass at u. The first set (u,52%,0) when & > 0 yields
P(8) = €¥#=39°" which corresponds to a N(u, 52) law. The second set (g, 0, M) is of
primary interest here. Setting 8 = £=2 € [~1,1] to represent skew and performing

PrQ
an integration as described in Feller (1966), yields the explicit representation

—o®(6]* [1 — iBsign(f) tan Z2] + ipd if a € (0,1) U (L,2)

InP(§) = .
—olf] [1+ Z85ign(6) In [0]] + iub ifa=1

where sign(f) = 1p00)(#) — 1(00)(#) and o > 0 is a constant (different to the &
appearing in the Lévy characteristics). The parameters «, 5,0 and p are unique.
Setting o = 0 in the above characteristic function yields the law J,,, the unit mass at
u. In this case, the parameters a and f are irrelevant. Setting a = 2 in the above
yields a N(u, 20?) distribution, in which case 3 is irrelevant. Thus, the above family
of characteristic functions includes all stable characteristics functions if we allow the
cases 0 = 0 and a = 2 and accept non-uniqueness of the irrelevant parameters.
Denote the entire class of a-stable distributions by S, (o, 8, 1) where a € (0, 2] is the
index of stability, o € R; is the dispersion, # € [—1,1] is the skewness, and x € R
is the location. Since the Dirac mass J, has exceptional properties, we exclude it
from further consideration by the restriction o > 0, which will be implicitly assumed
from here on. The following arithmetic properties of stable random variables can be

deduced directly from the form of the characteristic function above.
Proposition 2 If X ~S,(0, B, 1) then for anya € R, X +a ~ Su,(0, 8,1+ a,)
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Proposition 3 If X ~S,(0, B, 1) then for any a € R\ {0},

X Sa(|alo, Bsign(a), ap) fa#l
Sa(lalo, Bsign(a),ap — 2L nfa]) ifa=1

Proposition 4 If Z ~S,(1,3,0), ¢ >0, and . € R then

X =0Z+ p~ Sa(o,B, 1) ifa#l
X =0Z+(u+2n(0)) ~ Sal0,8,1) ifa=1

Thus, with a simple scale-location transformation we can move from S,(1,5,0) to

Sa(o, B, 1) and so for simulation purposes we only need to consider distributions from
S.(1,3,0).

Proposition 5 If X; ~ S,(0i, Bi, 1), 1 = 1,2 are two independent random variables
then X1 + Xo ~Sa(o, B, 1) where
_ 1% + Baos

= — (™ ayl/a

B

Proposition 6 Let {Xi}ken be i.i.d. random variables distributed as Sq(o, B, 1)-
Then,

are Lok=1(Xe — 1) ~ Sa(0,8,0) fa#l

vz Doy (X — 10— 28 nn) ~ Su(0,8,0) ifa=1

Surprisingly, the inversion of the characteristic function of a stable distribution is
known explicitly in only four cases, despite the fact that it is known that they are
continuous, unimodal distributions (Zolotarev 1986).

1.) The Normal distribution S2(o, 8, 1) = N (u,20?) with density

_ 1 —(z — p)?
f(.'E) - \/Z'I—T-O'_z exp { 402

2.) The Cauchy distribution Si(c,0, ) with density

(RS

f(z) =
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3.) The Lévy distribution Sy (0,1, 1) with density

o\ 1 o
flz)= (%) (z — p)irz P {"2(2 — 2 } L(u,00)(2)
and its reflection f(-z).
4.) The Dirac delta function S, (0,0, ), 6,.(z).

The next three figures are densities from S, (0o, 8,0) for various values of «, # and
o and were obtained by numerically computing
1 o0

_ = —-ifz B
= o _ooe P(6)db.

f(z)

4 = 0 is chosen for convenience since it is merely a location parameter. It is clear

from the graphs that S,(o, 8, 1) is a very rich family.
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Note that as «« — 0, our numerical inversion of the characteristic function becomes
inaccurate due to the sensitivity of the inversion to the truncation of the integration
range. Note also that as & — 1 from above or below we see that increases in
have the effect of spreading the densities along the axis. This singular behaviour at
o = 1 is merely a consequence of the particular way the family S,(o, 8, 1) has been
parametrized via the choice of /. Reparametrizing by a different choice of 1 would
have the effect of altering ., P, and @ only (and hence # and o) but does not alter the

value of a.. For instance, Feller (1966) and Zolotarev (1986) work with the functions
Y(z) =sinz Y(z) = 1(1,00)(55) + 1‘1[—1,1](3') - 1(—00,1)(x) Y(z) = -'171[—1,1}(1')

Another method to reparametrize S, (0, 3, 1), employed extensively by Zolotarev
(1986), Chambers, Mallows & Stuck (1976), and Kanter (1975), other than a different
choice of 7, is to reparametrize the characteristic function for the case o # 1 by
the following scheme. Consider the characteristic function for @ # 1, In ﬁ(ﬂ) =
—o%|g|* [1 — i8sign(f) tan %] + iuf, and represent the first term in complex polar

form:
~o°|6f* [1 - ipsign(6) tan ()]
= —05|0|*exp [*iﬂzsign(g)gf{(a)]
= —aZ|0]|*cos (ﬁz%K(&)) [1 — isign (@) tan (ﬁzg-’((a))]

where, for a suitable choice of K («), we can find the new parameters 3, and o, from

T

B tan ( 5 ) = tan (ﬂggK(a)) and 0% = 0§ cos (ﬂzg-K(a))

With this parametrization the characteristic function takes the form

InB(8) = —0%|0|* exp(—ifasign(0)Z K (o)) + iuf if o #1
~o|8|(1 + Zsign(0) In |8]) + iuf fa=1

Zolotarev (1986) has used both K(a) =1—|1—a| and K(a) = a—1+sign(a—1),

which both ensure that 3, € [—1, 1], in his investigations into integral representations
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of stable density functions. Chambers et al. (1976) have used one of Zolotarev’s
integral representations involving K(a) = 1 — |1 — | to derive a representation of
densities in S,(1, B2,0) in terms of a pair of independent uniform and exponential
random variables. Let U ~ Uniform(—%,%) E ~ Ezponential(l) be independent
and let ¢ = 222K (a). Then

t) (steegeal) fak
2(G+a) U - (F57)) ia=1

Chambers et al. (1976) define yet another parametrization that yields a charac-

Sa(ls :32, 0) =

teristic function continuous at & = 1 as well as give an efficient and numerically
accurate algorithm for simulating these densities. As in Janicki & Weron (1994), we
choose to work with the parametrization arising from the choice ¥(z) = Tz and
so a modification of the above representation must be made. This can be done by

noticing that
o= 75 TQ

1. 4
50 (@) = gtan™ [tan (7))
and for o, = 1 we have that o = cos[tan™!(8 tan(’;—g))]ﬁ. Thus, defining

Cop = itan‘1 [ﬂ tan (fz—a-)] and Dgyg = cos (tan_l [ﬁtan (ng)]) B

we then get that

sinfa(U+Cq p) (costU—a(U+ca.B>1)*?T“ fatl

a»ﬂ /e E
Sa(1,8,0) = (coa U) .
2 ((g +BU)tanU — Bln (%%;2)) ifo=1

Note that the case o = 1 is unchanged. Also note that this expression was given
incorrectly in Janicki & Weron (1994). The following figures numerically demon-
strate its correctness by comparing the densities computed numerically using the
inverse Fourier transform and the densities of 30,000 deviates simulated with the
above representation. The discrepancies for the smaller values of & are due primarily
to the increased sensitivity of the Fourier integral to the range truncation involved in

its numerical computation.
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We now collect some results on domains of attraction and series representations

of a-stable random variables and a-stable Lévy processes.

Definition 3 A function L(z) is said to be slowly varying at infinity if for alla > 0,

lim L(az)

AT L

Theorem 12 (Mijnheer 1975) A distribution function F is in the domain of at-
traction of Sa(1,8,0) for some o € (0,2) and B € [—1,1] if and only if

(1) Lp(x) wf z%[1l — F(z) + F(—1)] is slowly varying at infinity

(2) liMemsoo TG AR = 7

Furthermore, if F is in the domain of attraction and {Xp}nen are i.i.d. random

variables distributed by F' then the sequences {an}nen and {bp}nen, an > 0, such that
LS (Xk — b) = Sa(1,8,0) satisfy

F'l—-o)cos®E ifae(0,1)
1i TZ.LF(TL) _ 9 .
im = - = zfa =1
n-—0o a,n
IZaicosam|  ifae(l,2)

which implies that a, = n'/®L(n) for some L slowly varying at infinity and b, can be

chosen according to

0 ifa €(0,1)
bn = q @n Jgsin ZdF(z) ifa=1
Jr 2dF(z) ifa e (1,2)

Note that the crucial parameters here are @ and 3. The scale-location parameters p
and o can be incorporated into the sequences {an}nen and {b,}nen for the general
case of S,(0, 8, 1) domains of attraction. The case @ = 2 is taken care of by the
central limit theorem: F' is in the domain of attraction of V(0,1) if and only if F" has

finite mean and variance.
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Definition 4 An F-adapted process L is a Lévy process if

(1) Ly ¥ 0

(2) L has independent increments: V s,t € Ry, Ly s — L, 11 F,.
(8) L has stationary increments: V s,t € Ry, Lyys ~ L, 2 L,

(4) L is stochastically continuous: ¥V t € Ry, P lim,_,, L% = [®

Theorem 13 Ewvery Lévy process has a unique cadlag modification which is also a
Lévy process (X is a modification of Y if Vit € Ry, P{X; =Y} =1).

Proof: See Protter (1990) We can therefore always choose to work with cadlag

modifications.

Definition 5 An F-adapted process L®* is a standard a-stable Lévy process if
(1) L*# is a Lévy process
(2) L** has a-stable-stable increments: V t € Ry, L®® ~ S,(t1/*, 8,0)

When o = 2, B is irrelevant and %Lz’ﬂ is a standard Wiener process.

Theorem 14 (Samorodnitsky & Taqqu) If L** is a standard a-stable Lévy pro-
cess on [0, 1] for some a € (0,2) and B € [-1,1] then

1/ .
{ a5 nGN'Ynl"n *Lu.< t}} clo.1] ifa€e(0,1)
1282 { {CY* Ten (10 Litgs —ﬁtbS:") ~piZm2} o fa=1
{ l/a neN ( nl'n l/al{u,,gt} - Btbg&))}ce[o . ifa€(1,2)

where {Y, }nen are i.id. withP{y,=1}= 1—'53 and P{y, = -1} = 1—;—4, {Tn}nen are
the jump times of a Poisson process with unit arrival rate, and, {U,}nen are i.i.d.
and uniformly distributed over [0,1]. Furthermore, {Yp}nen, {Cntnen, and {Up}nen

are mutually independent. The constants C, and {bgf') }nen are given by

2 fa=1

T

C. = { I"(2-:x;§os% ifa € (0’ 1)U (172)
a =
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a a=1

2 (v - (- 1) fae1,2)

The essential elements in this series representation are the jump times {U, }nen,

4o — { _[[%’ri_l}:c‘zsinmdm fa=1
(@) =

the jump directions {7V, }nen (1 for up and -1 for down), and the decreasing jump
heights {I'z*/*}nen, which are all independent of each other. The b and C, are

only constants.

3.5 The a~Stable Lévy Process Approximation

Theorem 15 (Furrer et al, 1996) Let {xx}xen be @ sequence of i.i.d. random
variables having mean p and common distribution function F in the domain of at-
traction of S,(1,5,0) for some a € (1,2) and B8 € [-1,1]. Let ¢(n) = n¥/*L(n)
where L(n) is the function slowly varying at infinity such that

ﬁ En:(xk — p) = Sa(1,5,0)
k=1

whose ezistence is given by Theorem (12). Let {N™},en C D be a sequence of

point processes such that for some constant A > 0, N—(&;—;‘M = 0. Define ™ =
(n)

ul® 7t — s Yoo xk and RS = u + mt — AV L3P where o™ — Migles =

and u™ — u. Then, R™ = R(™),

Proof: First, write R in the following form:

N(ﬂ)
1 t
(M) _ ) pmy L
Rt u +7 (,o(n) ;X’c
() N
s my _ A _ [N —mAt) 1 _
v ”(“ w(n)> "( o) "t 2
Since
1 T
—= (o—p) = L*
(P(TL) k=1 '
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we have that
[nt]

SO(L}% ) & Z(Xk p) = LP
and so ;

pn) 1 < §

mm;m — p) = L3P
but
<,0(n) _ nl/aL(n) _ ( - )1/0 L(n)
o(lnt)) — (meD)7=L(|nt]) \Imt]) I((nt])

and since o N

Imp L ¢

we have that ]
1 < D
L(n) def (Xk _ /‘L) = tl/aLd,ﬂ D Lﬂyﬁ
o(n) kZ_: ' ‘

" N(")_
Since N((P)(;;‘” = A IL)E[) 5 0 and nl/e=1L(n) — 0 for @« > 1 we have that

i:;—) — I 50 and so N—:L"—)- = Al. Applying Theorem (8) we get that

n e
’_(1—)1:()(Xk—.u) = -‘p—(la ; (xx —p) = (L("’ON:))t

= (L™ o)), = L3 2 N/eLpf

by the self-similarity of stable processes and so the result is proved.
(]
The generality gained by this result is that the second moment of the claims
distribution need not exist and the claim arrivals need not form a renewal process.
However, « is restricted to (1,2). The case @ = 2 is handled by the Wiener diffusion
approximation. The range o € (0,1] has been excluded. Fortunately, many of the
applicable heavy tailed distributions, such as the Pareto or LogGamma distributions,
are in a domain of attraction for some a € (1,2). Also, for a € (1,2) we have finite

means whereas for o € (0, 1] we do not.
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Theorem 16 (Furrer et al. 1996) If {R™},en and R(™ are the risk processes
defined in Theorem (15) for which R™ = R(®) then T"(R™) = T"(R(*®)) where
T7(z) = inf{t > 0 : z(t) < 0} is the ruin functional on D.

In order to prove this theorem we first need three lemmas.

Lemma 1 (Furrer et al. 1996) Let X, = nt — AaL®” fort € R,.. Then, Ve > 0,

P-a.e. trajectory of X crosses 0 for infinitely many times in [0, €].

Proof: Let {tn}nen C Ry be a sequence of times such that ¢, — 0. We will show
that for infinitely many n, X;, < 0 and X;, > 0 P-as.

P{lim,{X;, > 0}} < lim,P{X,, >0}

= lim, P{AsL3* < 7t,)}
lim, P{(\t,)= L®* < mtn}
lim,P{L3® < mA~35=)
lim, P{L$* < mA7<}
P{L$? < mA~%}

N

since & > 1 and ¢, < 1 implies that t,ll_% < 1. The support of the density of L&
for & > 1 is all of R so it follows that P{L3 < 7A=a} =1 —p < 1 for some p > 0.
Thus, P{lim,{X;, > 0}} < 1. Also, by right continuity,

th = th - XO = th - !‘}g%oxtnuvH = 1&520[‘)(‘“ - th+N+1]
N 00
= 1}}_1;20 4 O[Xtm;.k - Xﬂn+k+1] = k§ 0:[th+k - th+k+1]

Let G, = o(Xt, .o — Xtayun * k¥ € Ny). Thus, X, € G, for all n and therefore
lim,{X:, > 0} € (),en Gn- From the Kolmogorov 0 — 1 law, P{lim,{X,, > 0}} =0
or 1 but we have that P{lim_{X;, > 0}} <1 and so P{lim,{X;, = 0}} = 0. Thus,
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‘ —‘;\.

P{lim,{X;, < 0}} =1, and so X;, < 0 for infinitely many n P-a.s. So, for any € > 0,
X < 0 P-as. for infinitely many time points in [0, ¢]. By a similar argument, X > 0
P-a.s. for infinitely many times in [0, ¢] and therefore, P-a.s., X crosses 0 infinitely
often in [0, €.

O

Lemma 2 (Furrer et al. 1996) Let Ty = inf{¢ > 0 : R = 0}. Then, for all
€ > 0, P-a.e. trajectory of R(™) crosses O for infinitely many times in the stochastic
interval [To, Tp + €].

Proof: Define a process X; = R,(F?lt - Rgﬂ";’) By the strong Markov property of Lévy
processes (Protter 1990), X is again an a-stable Lévy process starting from X, = 0

P-a.s. Furthermore,

Xo = uwtn(lo+1) = NVLgh, — [u+nTo - AL

7t — [L;;it ~ L;;f’] D gt — N\Hopes

Thus, from Lemma 1 we have that for P-a.e. w € Q, X(w) crosses zero infinitely
often in every right neighborhood of zero. Let w € Q be such that X(w) crosses zero
infinitely often in every right neighborhood of zero. Since X (w) is simply R(*® (w)
started at Tp(w) we have that R(°®)(w) crosses zero infinitely often in every right

neighborhood of Ty(w) and so the result follows. a

Lemma 3 (Furrer et al. 1996) Let {1, }nen be the jump times of the process R(™).

Then
P {U{Rﬁ‘f_) 4 0}} =1

neN

Proof: First, since

UBRE2 # 0y = U URS2 # 0, < 4}

neN neEN keN
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we need only show that P{Rﬁf’f_) # 0,7 < k} = 1 for any n and k£ in N. However,
Since {R® # 0,7, < 1} € {R® # 0,7, < k} for all k,n € N it suffices to show
that P{R$:°_) # 0,7, £ 1} =1 and so we can consider R$°°) with ¢, {7 }nen C [0, 1],
in which case P{r, < 1} =1 and the jump times are uniformly distributed on [0, 1].

First, note that P{Ri?i) # 0} = P{RS” — AR +£ 0}. Now, using the series

representation for a-stable Lévy processes on [0, 1],
AR(®) = Rlo) _ ploe)
i 7 T~
= {utaln) 2L}~ {utn(r) - WL}
— Al/aLa)ﬂ — /\I/QLQIB
T =
= /\I/acoll/a Z {7nF;1/a1{fnsrj} _ ﬂij;a)}

neN
— NG N  {l®  rary-ny — BT =)0}
and so
P {2 # 0}

= P{R - AR 20}

=P {u +7T; + (/\Ca)lfa (ﬂ?‘jb_g-a) - Z {')’nF;l/al{‘mSTj} - ﬁijsza)}) # 0}
ne€M\{j}

Now,

P {u + 7t + (ACy) (ﬂtbgf’) = > AW gy — BEbE) }) # 0}

neN\{j}
= Plutm-AVeLp? 20 | t<r}
= 1
since it is known that stable densities are continuous (Zolotarev 1986). Using the law

of total probability, the independence of the random variables in the series represen-

48



tation, and the fact that the jump times are uniformly distributed over [0, 1] we have
that

{Rv('j.;) #0,7, < 1}
- » {2 40}
__1
= P {u+ m7; + (ACa)@ ( Y {»,nr,:* Lirngry) — ﬂij,({")} — Brib\®— | # o}
neM{j}
1 —
N / P {u + 775 + (ACa)= ( > {V"F"?ll{rnsn-} - ﬂ"’ibgza)} - ,@ijg.“)) #Of7 = t} dt
0 neN\{5}

1 =1
= / P {u +mt+ (ACa) ( > {7,,13? Umgt) — ﬁtbg*)} - ﬁtbg‘*)) # o} dt
0

neN\{j}
1
= / ldt=1
0

Proof of Theorem 16:. If we can show T7(z) = inf{¢ > 0: z(¢) < 0} is continuous

O

for PR ae. trajectory in D then we can apply Corollary (1) to conclude that
since R™ = R(>) we have that T7"(R™) = T7(R*)), proving the result.

For R® = u+mt — AVeL®f let A C £ be the set such that for w € 4, R()(w)
crosses zero infinitely often in every right neighborhood of S(w) = inf{t > 0: R (w) = 0}.
By Lemma (2), P(A) = 1. Let B = ﬂneN{RS:"_) # 0} where {7, }nen are the sequence
of jump times of R(®). By Lemma (3), P(B) = 1. Thus, P(AN B) = 1.

Now, let w € AN B and set z(t) = R (w). Let {z,}nen C D be any sequence
such that z, = z in (D, d). Assume that T7(z,) does not converge to T7(z). Thus,
either lim, 77 (z,) # T"(x) or lim,T"(z,) # T7(z). In either case we can find a
subsequence {z,, }xen such that T"(z,,) = T # T"(z). There are two cases.

In the first case, 0 < T7(z) < T < oo. Now, z has countably many jumps so
we can find an abitrarily small §; > 0 such that z is continuous at T"(z) + 4y, ie,
Az(T"(z) + 6;) = 0 where Az(¢) = z(t) — z(t—). Since T"(z) < T we can find an
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arbitrarily small d; > 0 such that T7(z) + d2 < T. Finally, T7(z) is defined as an
infimum so we can find an arbitrarily small 63 > 0 such that z(T7(z) +d3) < —e < 0
for some € > 0. By the right continuity of z we can find a single § > 0 such that for

some € > 0
Az(T"(z) +6) =0, T (z)+6 < T, z(TT(z) +6) < —e <0

Since z is continuous at T7(z) + 8, z,, (T"(z) + §) — z(T"(z) + 8) and so 3K,
such that k¥ > K; = z,,(T"(z) + 6) < ¢ + z(T"(z) + §) < 0 and so for k¥ > Kj,
T7(zn,) < T"(z)+ 6 < T, or, in other words, k > K; = [T — T"(z,,)| > 6§ > 0 which
contradicts that 77 (z,,) — T.

In the second case, 0 < T < T"(z) < oo. Since z,, — z and T"(z,,) = T we
have from Theorem (1) that z,, (T7(z,,)) = z(T") or z(T'—). If the limit is z(T") then
since T < T7(z), z(T) 2 0. But, 2,,(T"(z,)) < 0 for all k € N so z(T') < 0. Thus,
z(T") = 0. Similarly, if z(T'-) is the limit then z(T—) = 0. Suppose that z(T) =0 is
the limit. Since S(w) = inf{t > 0 : R (w) = 0} = inf{¢ > 0 : z(t) = 0} we have that
S(w) € T. By Lemma (2), z crosses zero infinitely often in every right neighborhood
of S(w). Choose p > 0 such that T + p < T7(z). Thus, 3t* € [S(w), T + p] such that
z(t*) < 0 but since t* < T7(z) we have a contradiction. Now suppose z(T'-) =0
is the limit. Since w € B, z(7p(w)—) # 0 for all jump times 7, and so T is not a
jump time of z. Thus, z(T) = z(T-) = 0 and as in the case z(T) = 0 we obtain a
contradiction. Thus, T7(z,) must converge to 7" (z) and so 7T is continuous at R(*)
for any w € AN B, proving the result.

0

Unfortunately, the lack of path-wise continuity and explicit forms for stable densi-
ties makes it difficult to obtain exact expressions for the ruin probabilities. However,

an upper bound has been obtained which is easily computed numerically:

Proposition 7 (Furrer et al. 1996) For approzimations with standard a-stable Léuvy
processes L*? for a € (1,2), 8 € [-1,1] and u,7, A > 0,

P{T"(u + 7t — \2L??) < T} < %P{L@i’ﬂ > uA~/e}
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where p = § + L arctan(g tan(%2)).

Now, we apply these results to reserve models with a large class of renewal claim
arrivals. Note that a small error in the second case of the proof below has been

corrected.

Proposition 8 (Furrer et al. 1996) Let NX be a renewal counting process with
inter-claim times {Tk}keN If there is @ A > 0 and a function L slowly varying
at infinity such that i Y (7, — A1) = W, where o(n) = nl/2L(n) then for

a € (1,2) we have that

L » 0

Proof: Since sup,en~/*|NX — Ans| > n~'/2|N}Y, — Ant| it sufficient to show
that supe(o,y n~Ye|NX — Ans| 24 0. Now, SUD,epoq 7/ |NX — Ans| > ¢ if and
only if 3s* € [0,t] such that |[NX. — Ans*| > en'/® which occurs if and only if
NX. > en'/® + dns* or NX. < —en'/® + Ans*. Case 1: NX. > en!/™ + dns*.

Since
NX. Len.l/“ +Ans'J
ns* = Z T > Z Tk
k=1 k=1

we have, setting nu; = en'/® + Ans*,

[_'n.u1 J

ns* > Z T

k=1
[nu1_1
n [nuy] € 1 1
= Anl/e A > ni/e ; (me = A7)
which follows from
€ 1 Lnen 1
_X>n1/“ (Tk—)\ )

Case 2: NX. < —en!/® + Ans*.
Since
NX. < |—en'/® + Ans*| < |—en/® + Mns*| +1
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we have, setting nuy = —en!/® + Ans*,

|ruz]+1

nug — |nug] —1 € 1 1
= ST +3 <~ kz—'l(Tk—)\ )
which follows from
¢ 1 n(uz+1/n))
-1
;\' < nl/a (Tk - A )

k=1
Since we have that the two variables u, € U;(n) e [ent/e=1 enl/*~1 4 )\t] and
iy = up + 1/n € Usz(n) &) [1/n — ent/*=1 1/n — enl/e—1 4 X¢],

|nu1) [nuy]

sup [n~Ye Z(Tk—/\_l) 250 = |pVe Z(Tk-/\_l) =50

ulEUl(n) k=1 k=1
and
|nita) P [niz2)
sup [|n~l/e Z (e = AN —0 = |n Ve Z (s — A7H) =50
42€Uz(n) k=1 k=1

Thus, if either of these supremums converges to zero in probability then it follows
that sup,ep 7~/ |NX, — Ans| —=£5 0, proving the result.
From the assumption that
1 [nt] B
7L (n) ;(Tk —AT) =W

we have that
1 1 Lnt)

nl/2=1/a L (n) ni/e P EPER 7
k=1

But, for & < 2, 1/2 — 1/a < 0 so n!/2-Y<[L(n) — 0, and so for each ¢ we must have
that

1 Int|
—i/a Z(Tk - /\_1) =0

k=1
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which is equivalent to
Lnt]

l/a Z(Tk— —-)0

Finally, for any bounded interval [a, b], this implies that

[nt]
s S (37 20

t€la,b] | T

Since we know the intervals in the supremums Ui (n) = [en/*~!, en'/>~! 4 Mt] and
Us(n) = [1/n — ent/*"1,1/n — en'/*~! + Xt] are bounded in = if o € (1,2), the supre-
mums do converge to zero in probability in either case and so the result follows.

O

Now, given a risk process R; = u+ 7t — Ef;xl Xr where NX is a Poisson process
with rate A, {xt}ren are i.i.d. with common distribution function F', mean u, and
F is in the domain of attraction of L& for some « € (1,2) and 8 € [—1,1], Furrer
suggests the following “weak approximation”.

Since NX is Poisson process, Eﬁg_r;‘_”é = yA¥2W, where +y is the variance of the
inter-claim times and W is a standard Wiener process (Billingsley 1968). Thus, for

€(1,2),
NY—Ant _ \/n NS - dnt

nl/a nl/a \/ﬁ
since ;‘{7’7; — 0. Now, for each fixed n € N we have

=0

¥(w,T) = P{T"(R)< T}

N
= P inf t — <0

u T 1 ¢
= inf —+ t— <0
w7 \ o(n) o) so(n)zx"

u
= P inf —_— <0
tel0,Z) \ o(n) = @(n) w(n Z Xk
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Considering this last process

u

o (n) w(n) so(n) Z X
u NX, —nAt
= Sl )Z(X" ( o) )

we see that for n large we have that
_ o \/e Lt'!,ﬁ
and

o) O

and so this process is “close” to

u n
—— + (7 — pA)——t — AL
o TN '

Using 7 = (6 + 1)) we have that the process is close to

u n
—— + A ——t — AL
o) " o(n) ‘

which then leads to an approximation for the ruin probability:

U(u,T) ~ P{ inf + Ou)—— t—,\l/ﬂL‘*"’) <0
(w.T) {ze‘[’&n (w(n) kA )

= o {r ([ o] ) <

-1/a
< lP{L‘;’”> ud” }
p w @(n)

where p = L + L arctan (ftan (%2)) and which can be evaluated by a feasible nu-

merical procedure (see Proposition (7)).
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Chapter 4

Conclusions & Further Research

4.1 An Assessement of Weak Approximations

The Wiener process approximation is very tractable but its poor performance in
the case of highly skewed claims distributions prompted the generalization to a-
stable Lévy process approximations, somewhat less tractable but still feasible. Thus,
the work in Chapter 3 points to two issues absolutely crucial in any application of
weak approximations: (i) accuracy, or fit, and (ii) tractability. In this chapter we
focus on fit, not a numerical evaluation of weak approximations, easily found in the
Risk Theory literature (Asmussen (1984), Furrer et al. (1996)), but a theoretically
based assessment/interpretation which appears to be conspicuously absent in from
the literature. If an understanding of how weak limits fit the original process can
be obtained, one could then make informed choices in sacrificing fit for tractability.
Ideally, one hopes to be able to select from a very tractable class of models one that
fits the original process very well, avoiding the adopting of unrealistic simplifying
assumptions.

Let Ry = u+7t— Z,]:';xl Xr be an ordinary renewal reserve model with finite mean
inter-claim time A~! > 0 and i.i.d. claims {xx}ten having finite mean and variance
p = E[xk] and 02 = V[x;]. Let M(t) = E[N)X] and V(¢) = V[N}] be the renewal and
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variance functions, respectively, for the process NX. We wish to assess the fit of the
weak limit approximation R(*) arising from Iglehart’s construction of {R(™},cx as
well as provide a satisfying interpretation of the procedure. Iglehart (1969) remarks
only that the convergence R(™ = R(®) enables one to approximate the distributions
and functionals of R(™ for n large by those of R(®), the so-called heavy traffic ap-
proximation, but there is no mention of how well R fits R. In order to use the
heavy traffic approximation, R must be “close” to R(™ for some large n so that R
is then “close” to R(™®) via the proximity of R(™ to R(®). However, there is a great
deal of freedom in choosing u™, (™ 4™ and ¢™?, and hence even more freedom
in choosing {xfc") }knen since two moments do not uniquely specify a distribution.
It is therefore possible to construct a sequence {R™},en that is never “near” R
or that “diverges” significantly from R, rendering R(*) a poor approximation of R.
To ensure that {R(™},cn does not “miss” R we insist that R) = R and to avoid
“divergence” from R we match moments. In addition, we show that following this
procedure leads to intuitively appealing choices for u™ 7" and {xﬁ") }k.nen, clari-
fies the role of the normalization factor —1;, and indicates why the common choice of
R§°°) = u + (7 — uA)t — o/ AW, to approximate R is an inappropriate application of
Iglehart’s result (see Grandell (1977,1991) or Asmussen (1984) for example).

First, define a sequence of reserve processes by Rf_") = u™ M- Zf;(:) xi"), for
t € Ry ,n € N, and note that this differs from Iglehart’s prescription in that the nor-
malization factor % has been absorbed into u™, 7(®) and { Xin)}keNa and, in addition,
7(") has further absorbed the time compression factor n. Setting uV = u,#(!) = =,
xM = x, for k € N, and N = NX ensures that R®) = R. Now, we choose u(™, 7™,
and {xf:")}keu for n > 2 according to a satisfying approximation principle that keeps
{R™},en “close” to RY = R. The procedure we use is common in the physical
sciences: approximate the behaviour of a finite number of particles, each contribut-
ing a finite amount of some property to the ensemble’s macroscopic behaviour, by an
infinite number of particles, each contributing infinitesimally. Such an approximation

is constructed so that all relevant macroscopic behaviours are held constant as the
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number of particles is allowed to increase to infinity and their contributions become
infinitesimal. For reserve models, we think of the number of claims per unit time as
the number of particles, the claim sizes as the amount of the property contributed
to the ensemble, and the aggregate claims made per unit time (or the aggregate net
income per unit time) as the macroscopic property of interest. To construct a se-
quence { R}, cn whose macroscopic behaviour closely resembles R, we incorporate
the probabilistic structure of R into the approximating sequence by insisting that for
each n € N, N(™ is again an ordinary renewal counting process independent of the
i.i.d. claims {xfc")}ken. Thus, for each n € N, R™ is an ordinary renewal model. We
want the number of claims per unit time to increase in n at some reference rate, say
O(n). A natural way to achieve this is to compress the time scale by a factor of %
by setting Nt(") = NJX, as Iglehart and Furrer et. al. have done. Since ﬁt@ — A and
A—Jﬁ"‘—’z — A ast — oo we have that M (nt) = nM (t) for large ¢, giving the desired O(n)
increase in average arrival rate. In order to keep the laws of {R(™},cn “constant”
and “close” to that of RY) = R we match the first two moments for all ¢ € R, and
n € N. Let s =E[x{™] and 0™ = V[x{"]. We have E[Ry] = u+ 7t — zM(t) and
E[Rﬁ")] = u™ + 7™t - 4 M(nt). Performing a conditioning argument similar to
the one in the classical Normal approximation, we obtain V[R,] = o2 M (t) + 12V (¢)
and V[Rg")] = o™?M (nt) + u(")zV(nt). Equating means and variances and noting
that M(0) = 0 yields

u™ =y, YneN (4.1)
(n) _ HM(E) + (r) — 7)e
[ M (nd) , YneN (4.2)
n?2_ 2 M(2) 2 V() _ ()2 V (nt)
o o M(nt) + p M(nt) 7 M(nt)’ YneN (4.3)

Thus, for given choices of 7(™), we must choose u(® and {x\"}ren to satisfy (4.1),
(4.2), and (4.3) in order to match the first two moments of R and R™. It is im-

portant to note that if ™ or o™’ are time dependent then the assumed form of
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R™ is incompatible with moment matching since the claims distributions are time
dependent and so are not i.i.d.

For the remainder of this section, we restrict ourselves to the case in which NX
is a Poisson process of rate A. Then, M(t) = V(t) = At and from (4.2) and (4.3) we

obtain

(n) _
m_ K TT7
7 e VneN (4.4)
2 2 (n) _ 2
o™? = i;n“ﬁ_ — [s + (i_rﬁ_ﬂ] VneN (4.5)

which are both independent of time. If we further consider the deterministic parts
of the processes separately, not involving them in the weak approximation of the

stochastic components, we would set u(™ + 7"t = u + 7t which, with (4.1), gives

™ =x VneN (4.6)
and so (4.4) and (4.5) become
u™ = % VneN (4.7)
2 2 2
o ZEE B vneN (4.8)
n n

That ™ = £ is intuitively appealing since our approximation principle would require
the n-fold increase in claim arrivals to be balanced by a % reduction in claim sizes
to keep the aggregate claims constant. Similarly, the reduction in variance is asymp-
totically like -11; which is desirable since the variance of the sum of n i.i.d. random
variables is n times the variance of one of them, again requiring a n-1 balance. Note
that the claims size reduction is precisely like % whereas the reduction in variance is

only asymptotically so.
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Adopting (4.6) and choosing {Xin)}keN to satisfy (4.7) and (4.8), the approximat-
ing sequence takes the form

N
Rgn) = o™ 4 g _ Z Xfcn)

k=1

N7
= u+mwt— Z x,(cn)
k=1

NX
1 T nt
= — | uv/n+ —=nt— E Vax
NG vn ot k

1 Nf’l‘t
= —= | @™ + 7nt - >~ 5
k=1

where we have set 4™ = uy/n, 7™ = = and Xfc") = \/ﬁxfc") for k,n € N. Let
i™ = Bz = 2= and 0 = Vgt =02 + 42 - £ and, for technical purposes
only, add the condition that there 3 § > 0 such that sup,, E[i)"(fc")P“] < 00, which is
a mild requirement that the tails of xi") decrease sufficiently quickly with n. Now,
noticing that 5™ = o? + p2? — ‘jl—z — (2 = 0 + 42 and @™, 7™ and {%{ }xnen
satisfy the conditions of Iglehart’s theorem (Theorem (9)), we can apply his result
with ¢2 = o2 + 42 to conclude that

R™ = u+ (7 — M)t — VA2 + 12)W, 2w+ (1 — M)t + V/A(0? + iB)W;

which is precisely the classical Normal approximation.

This argument provides additional justification for the classical Normal approx-
imation in the form of a rigorous convergence argument constructed according to a
satisfying approximation principle and whose limit is fitted to R by the matching
of moments. At the same time, it demonstrates a consistency between our approx-
imation procedure and Iglehart’s construction; the presence of the crucial balance
between the n-fold increase in arrival rate and the % decrease in average claim size.
Iglehart’s choices for u(, 7™ and {x{™}ien, and his use of the normalization fac-

1

tor —= appear to be motivated by the presence of the normalization factor % in
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Prohorov’s theorem (Theorem 7), the engine behind his proof. It is now clear that
his choices merely disguise the n-1 balance between claim arrivals and claim size.
Finally, we give a satisfying interpretation of the term A¢(? = A(02 + p?). Recall the
formula V[R] = E[V[R;|N}]] + VIE[R|NY]]. VIR = (0 + ?) represents the
variance accumulated by R(®) up to time ¢t. Consider now the accumulated variance
V[R;] of R up to time ¢, which has two sources: the variance in jump heights and the
variance in the number of jumps over [0,t]. During [0,¢], R experiences an average
of M\t jumps, each jump contributing a variance of o to R. Thus, the “average”
accumulated variance in R due only to jump height variance is At x 02. This variance
corresponds to the term E[V[R;|N¥]]. During [0, ], the Poisson counting process has
an accumulated variance of A\t jumps?, or an accumulated deviation of VAt jumps,
and the average jump height is . Thus, the “average” accumulated deviation in R
due only to the variance in the number of jumps is v/At x u, or an “average” accumu-
lated variance of At x p2. This variance corresponds to the term V[E[R;|NY]]. Since
jump heights and inter-claim times are independent, we expect to be able to just
add these two independent sources of variance to get a total “average” accumulated
variance of At(c? + p?) in R over [0,%]. This interpretation shows that important
information about the probabilistic structure of R (ie: jump height and jump time
variances) has been correctly carried into the limit process R(*). It also makes clear
why the commonly used approximation u+ (1 — pA)t — o/ AW; cannot be considered
as the appropriate approximation to R: the total process variance of R is dependent
on u4 and so any reasonable approximation should reflect this dependence. The vari-
ance term ov/) of the approximation u+ (7 — )t — o/ AW, is completely insensitive
to changes in 4 and so has not been correctly fitted to R.

Now, consider R as before except that the i.i.d. claims {xg’)}keN have finite
mean u but infinite variance. The infinite variance rules out the use of the Wiener
diffusion approximation but an approximation by an a-stable Lévy process is still

possible. Recall that NX is Poisson with rate A. The approximating sequence
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(n)
R™ = o™ 4 7me — N 34 gag constructed with the choices

u™  with w™ — (4.9)

. 1 «
p(n) with —— " (xx — p) = Sa(1,8,0) (4.10)

p(n) £

) wi (m) n

T with (7r - ,w\—-—) —c>0 4.11
¢(n) (411)
N® = NX% (4.12)
m _ 1 413
X p(n) (4.13)

which was shown to converge to R®° = u +ct — AYoL®?. Since R™ and R(*) have
finite first moments and NX is Poisson with rate A, (4.1) and (4.4) apply yielding

u™ =y and p™ = £y Zf_(%ﬂ, V¥n € N. Since Xin) = ;tl'n‘)Xk we have that

p™ = Ex™] =E L:f:z )} = ‘pé‘n) VneN (4.14)

and so combining (4.4) and (4.14) we obtain

(n) n_o_
A - p A—— =7 -0\ VYn €N 4.15
B 7 (4.15)

Thus, matching first moments determines u(, 7(® and that ¢ = 7 — p yielding the

“fitted” approximation
R§°°) =u-+ (7T — puA)t — )\I/QL?"G

There are two problems with this approximation. First, the dispersion of R(*) (mea-
sured by the a-stable parameter o) is the same for all mean claim sizes x in the
original model. As argued in the Wiener approximation, this cannot be considered
correct. Second, the O(n) rate of increase in arrivals is not precisely balanced by
the 5 decrease in mean claim sizes (recall that ¢(n) = n/eL(n) for some slowly
varying L) and represents an arrival rate/claims size rescaling that is at odds with
our approximation principle. Furthermore, this imbalance necessitates an adjustment

of the premium rates according to (4.15) which is also undesirable.
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Finally, it should be noted that the sequence of processes defined in Furrer et al.
(1996) in the application of their weak approximation to the ruin functional is not

weakly convergent. The said process can be written in the form

U

NY — nit
o (7~ Mt «p(n 20‘" ( " o) )

and has as a drift term 7" — Ay = (7 — )\,u) o) which does not converge to some

n
c>0if m— p) # 0 (see Theorerrf((lt')) and the discussion following Proposition (8)).
Thus, their application does not make direct use of their theorem on the convergence
of functionals (16); the ruin functional is considered in an ad hoc manner and in
isolation.

As a way of recovering the balance between arrival rate and claim sizes in the a-
stable Lévy process approximation, as well as to include a dependence of the limiting
dispersion on the mean claim size, we provide the following convergence argument
which properly includes Iglehart’s result but is not included in the result of Furrer et

al.

Theorem 17 Let Ry = u+7t— Z,Icv;xl Xk be a reserve model where NX is an ordinary
renewal counting process with mean inter-claim time A~! and xx are i.i.d. S,(0, B3, u)
random variables for some a € (1,2], o € R+ \ {0}, B € [-1,1], and p € R. Definea

)

sequence of processes by Rg M= umt— Zk "‘1 X(") for {X )}kGN i.i.d. Sol(;5575,0, %)
random variables and where o™ — (¢ for some ¢ > 0 with o) = o. Then,

R = RO E oy 4 (- pA)t — (AVeL3?

Proof:
N,
Rg") = u+7t-— Zx(")
k=1
NX
Nx nt N
— t — 2'nt ( (n) _ _)
u+mt—- U . ; Xk n
NX
Nr’zct o.(n) = (n) M
= y+7nt-— /J'T - nl/a kz_; (Xk - O_(n)nl_l/a)



where we have set 3\ = -—(—)-x ) so that

1/0:
=(n) _ [k - (n) _ )
X = gopi-Ta — g (X Sa(1, 8,0)

From the arithmetic properties of a-stable-stable distributions,

o'("')

- O I SR (n)
nt/a Z (X’“ a(ﬂ)nl-l/a) Sa(0™, 5,0)

k=1

and, since (™ — ¢, we have the trivial convergence

0'('"-)

Zrm 2 (4 - —hmm) = Sa(¢.8,0)

k=1

Since ¥at = X\t we then have the convergence of the composition of the processes

0'('"')

NX
nt
~(ﬂ) — l‘l’ 1 1ﬁ
nl/a Z (Xk o-(n)nl—l/a) = C/\ /QL?
k=1

and the result follows.
a

This formulation has the following desirable properties: R®) = R, E[xfc")] =&
which exactly offsets the O(n) arrival rate increase, the premium rate is not adjusted
to obtain convergence, the extra parameter ¢ allows a fitting of the limiting dispersion,
and the crucial shape parameters o and § remain constant during convergence: the
trivial convergence S,(c™, 8,0) = S,(¢, 8,0) is “clean” in the sense that the claims
distribution is not reshaped by the convergence procedure and so no information
about the claims distribution of R is distorted or lost in the limit.

The two disadvantages are that ¢ cannot be specified by matching second moments
since they don’t exist. However, E[|xx|"] < oo for 0 € p <  and all logarithmic mo-
ments exist (Zolotarev 1986) so it may be possible to determine an appropriate value
for ¢ through the matching of fractional or logarithmic moments. Another drawback
is that the claims distribution of R may not be a-stable. The family S,(o, 5, 1) is
extremely rich, possessing the right qualitative features for claims distributions and
so one may be able to find values of «, 8, 1, and o that provide a good fit to the
claims distribution (see Samorodnitsky & Taqqu (1994)).
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4.2 Weak Approximation and Infinite Divisibility

The three cases discussed in the previous section essentially involved the weak ap-
proximation of compound Poisson sums, re-centered about zero by subtracting off
their means. We are interested in studying the nature of weak limits of sequences of
compound Poisson sum laws. A corollary to the Lévy-Khintchine Theorem is that
the set of all ID laws is the weak closure of the set of all compound Poisson sum
laws, or, equivalently, the point-wise closure of the set of all characteristic functions
of compound Poisson sums, which we now examine closely.

Let Z, = 3N, X; where N is Poisson with finite rate A and {Xy}xen are i.id.
jumps with law P € Pg. Since NNV; has law

(At)ne-—)\t

P{Ng=’n}= n' s

neN
the law of Z; is given by

PZ(—00,z] =P{Z: <z} = Z P{Z, £ z|N; = n}P{N; = n}

neNp
—/\t
= > P{Xi+ - +X,<zlV= n}(/\t)
neNy
ny—At
=3 p*n(_oo,z](_’\fl‘e__
n!
neNy

where we take P*0 = &, the point mass at 0. Therefore PZ;! = e ™Y, .y Q9% P,

n!

Using dominated convergence, the characteristic function is given by

].:—TZ::I(H) — e—At/ 0z E (’\t) dPam( ) —/\tz Q%/ewmdP*"(x)

neNg n! n€Ng

_ A" - At i

= e At Z ( P*"(g) At Z (n) [ (9)]
n€ENgy n! neNy )

— g MAE0) _ M(P(O)-1)

et J(e¥2-1)dP(z)
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and thus Z, is ID. Denote the set of all such characteristic functions by

i fo [ [ (- ar)] peme)

All possible weak limits of compound Poisson sum laws correspond to the point-wise
closure of Py. We examine the structure of these weak limits by considering how the
point-wise closure of ﬁg is formed. The free parameters of ﬁo are the finite arrival rate
A and the jump law P. Combine these paramteres by defining the measure M = AP €
Mk and consider all sequences {M™},en such that limpoe fp{€® — 1)dM ™ (z)
exists for each 6.

First, M is a finite measure on R and e** —1 is zero for z = 0 so we can eliminate

zero from the range of integration:
Py = {exp [tf (et — 1) dM(:c)] M e M]}(}
R\{0}
For M € M, the unit mass at zero dy, and f : R — R define
M®™ = M + f(n)d, € Mk

Now, lithnse0 [y (g) (€°%° — 1) dM™(z) = [p, 1) (€% — 1)dM(z) for each 6. Thus we
can drop the restriction that M({0}) is finite; we only require that M € M]}{\ o)

i); = {exp [t[ (ew” - 1) dM(.’I:)] M € Ml}l\{ﬂ}}
R\{0}
For M € Mg, oy and a € R define another sequence by
M(n) =M +n§% € M]]I-l\{O}

It is easy to show that limp—0 [ () (€7 — 1) dM™(z) = ia+ fp, (o) (€ —1)dM ().

Since a € R is arbitrary we have enlarged ‘7’; to

P, = {exp [iﬁat + t/ (e —1) dM(Z)] Me Ml}z\{o}}
R\{0}

65



For M € My, (; and o € R, define a sequence by
(n) n? 1
M = M + ? (6% + 6%) c MR\{O}

for which limn0 g (5) (e — 1) dM™)(z) = —16%0 + Jrvo) (€% —1)dM (z) and so
ﬁ has been enlarged to

- 252
P, = {exp [zGat—Lt+t/ (= -1) dM(m] :MGM]%“{O}}
2 R\{0)

where a € R and o € R, are arbitrary.
The condition that M € Mg, (o) can be weakened further to M € MLL/\‘J{%'} since

it can be seen that

/ (€% — 1)dM (z)
R\{0}

This weakening can be achieved, for example, by the sequence of measures

M@ = _’\_ﬂ:l_ p=>_’\_._p
1A |z 1A |z

and results in the enlargement

< 26 /m o (LN D) 1M @)

— 92 2 ) .
e onfo- S -] i)
2 R\{0}

A further weakening to M € Mﬁl{ﬁg} completes the closure of ﬁg. However, there
is a slight complication; the integral [g, (€™ ~ 1)dM(z) does not exists for M €

Mg\foy \M;{{‘{%} The Taylor series expansion of €% —1 about z = 0 yields e —1 ~
i@z for r near zero which does not go to zero quickly enough to dominate the 1:1_2
singularity of M near z = 0. If we subtract off the term ifz1j_ 4(x) for any ¢ > 0
then near z = 0, e® — 1 — i01;_ 4(z) ~ —L£Z which is enough to dominate the
singularity of M. Setting ¢ = 1 for convenience and noting that for M € M;’{I{f)'}
both integrals

/ (%% — 1 — ifz1_1 3y(z))dM (z)
R\ {0}
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10 1-'1[..1,1]dM(I)
R\{0}
exist, we can extract the second integral and rewrite f’; in the form

- 2 2 .
P = {exp [z’ﬁut _%o t+ t/ (e -1~ i6:c1|_1,1](3:))dM(z)] :Me Mllzl{l{::)l}}
2 R\{0}

where we have set p = a + [p, (o) Z1{-1,1)(z)dM(z). Now it can be seen that

[ (e = iota@)iM @)
R\{0}

< 2! f (1A 22) |[dM (z)]
R\{0}

and so allowing a weakening to M € Méﬁ;}, for example, by the sequence

) A
mo (2
= () P~

maintains the integrability of ¥ — 1 — 10x1;_,,1; and so we obtain the enlargement

— . 9202 i0z ) 1A22

Py = {exp |ifut — —t+1 (e°F — 1 ~ 02111 ,y(2)) dM(2) | : M € MK,
2 R\{0} ’

where 4 € R and o € R, are arbitrary. By the Lévy-Khintchine Theorem, ﬁ = ‘73:
and we have obtained the closure.

Each step in the forming the closure has a probabilistic interpretation. For the
compound Poisson process Z; = ZkN;l X where N is Poisson with rate A and jump
law P, we have the Lévy measure M = AP € M}: all jumps arrive at the rate A\. The
sequence M(™) = M + f(n)&, allows M to be singular at = 0 which corresponds
to allowing the jumps of zero height to arrive at an arbitrary rate, even infinitely
quickly. This weakening does not result in new characteristic functions since jumps
of zero height contribute nothing to the process.

The sequence M(™ = M + ndz corresponds to a perturbation of the compound
Poisson process by an external agent that causes additional jumps of height £ to arrive
at rate n. The infinitesimal perturbation “lim,_, nds” is a uniform embedding of
infinitesimally small jumps arriving infinitely quickly and results in the appearance

of a new drift term ifa in the characteristic function.
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The sequence M™ = M + "72 (6_% + 6%) is again due to an externally supplied
perturbation that causes additional symmetric jumps of heights —Z and £ to arrive at
the rate %2 The infinitesimal perturbation “lim,_,o % (5_% + 5%)” is a symmetric,
uniform embedding of infinitesimally small jumps arriving infinitely quickly. However,
the rate "72 is much faster than the rate n of the first perturbation and so these
symmetric jumps are more densely embedded. The first order effects of the equal
and opposite jumps cancel, resulting in no contribution to the drift but the density of
these jumps is such that a second order effect appears: variance. Ile, the symmetric
jumps are sufficiently dense that at any time scale, there are an equal number of up
jumps and down jumps and hence no net drift. However, they are not so dense that
all randomness associated with the arrival of these symmetric jumps is lost. Thus, for
M € Mpy\(g}, the compound Poisson process Z subject to these two perturbations
has a characteristic function of the form

0252

exp [z’@at — t+t / (e¥* — 1)dM (:z:)]
2 R\{0}

which corresponds to a process of the form at + oW, + Z, where W is a standard
Wiener process independent of Z.
The successive weakenings M € M,;/{?(’,'} and M € M;{Qf;} allow for smaller jumps

to arrive at different rates. The examples to keep in mind are

A

Ml:l/\I:z:[P
A
M, = 1Az2

For jumps outside of [-1, 1], M; = M, = AP and so these jumps all arrive at rate A.
For jumps in [-1,1] \ {0} we have

dM;(z) = l_;\—ldp(x)

dM,(z) = é\-z-dP(:z:)
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with non-uniform arrival rates ﬁ and f;, respectively. These rates are non-uniform

and are obtained as the original uniform rate A is made to vary in the limit using the

sequences

woo (2 Voo p
1A [z} 1A |zl

A A
n) — [ —Z
M (1/\3;2"52)}):1/\1:213

As mentioned, the weakening to M € M]}{{f;} has an interesting complication
which we now describe. Since P{N, < oo} =3, n P{Ni=1n} =3 n, L’\—t:‘,’L-M =
1 and P € PR, so that P{X; < oo} = 1, Z is without explosion. The total
variation of Z on [0,t], given by V§(w) = Zf;(lw) | Xk(w)|, is P-a.s. finite. How-
ever, the average total variation E[V{] = E[M]E[|Xk|] = M [; |z|dP(z) may be
infinite. If E[Vf] < oo, then E[Z] = E[NVJE[X}] = At [ zdP(z) = (mean # of
jumps in [0,t])x (mean jump height) is finite and represents the average net varia-
tion of Z during the time interval [0, ¢]; A fm\ {0y T@P(z) is therefore the average net
variation over the unit interval [0,1], or, the drift rate of Z. If E[V{] = oo then
we cannot identify the drift rate as the average net variation over [0,1]. We are
interested in weak limits involving claim size rescalings so we focus our attention
on the average net variation due to those jumps with sizes in [—1,1] by using the
truncation function ¥(z) = z1[_,j(z). Now, fR\ 0y T1-11] (z)dP(z) exists for any
P € Py, m Jz #1[1,1y(z)dP(z) is the average jump size of those jumps with
magnitudes in [—1,1], and so fi z1_13)(z)dP(z) is a weighted contribution of the
average net effect of the smaller jumps. As stated in the Lévy-Khintchine Theo-

-"’(—:_:)f—zl < oo would

emphasize the smaller jumps; 7/ being bounded rescales larger jumps to within its

rem, any bounded, measurable function () satisfying supg, (o

bounds so that j]'R\ ) ¥(2)dP(z) is finite and the supremum condition forces ¥ (z) to
behave like = near zero, leaving the smaller jumps at their original size. The choice
Y(z) = 135z is differentiable and is useful in calculations and limit theorems; this

was the function used in calculating the characteristic function of a-stable densities.
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Y(z) = z1[_1,1)(z) is more intuitive for understanding ID distributions since it com-
pletely disregards the larger jumps and leaves the jumps in [—1,1] scaled exactly as
they were. Now define b = A [ 11 y(z)dP(z) = flR\{O} T1{-1,15(z)dM (z), which is
finite, to represent the weighted contribution of the smaller jumps to the average net
variation over [0,1]. Note that b is neither arbitrary nor unique but depends on the
choice of 9 (z). Other choices of 1(z) result only in a reparametrization of the family
of characteristic functions by b b+ [p\ oy (Y(z) ~ z1-1,y(z)) dM (z).

Now, up to and including the weakening M € Mﬁ{il{"g}, b is finite and so we can

extract or reabsorb this drift in the characteristic functions:

——

2 2 .
P = {exp [ieat— 0Tyt / (e — l)dM(w)] M € Mﬁ?\'{f}'}}
2 R\{0}

- 2 2 .
= {exp liQut - t"‘t/ (e¥" — 1 — ifz1[_1y (z))dM(m)] : M e M]}‘Qﬁl}
2 R\(0}

where we have set u = a+b. Thus, we can decompose these processes as at+ocW;+ Z;
or ut + ocW; + J; where J is a “partially compensated” process that results from
extracting from Z the average net effect of the jumps in [—-1,1].

However, in the weakening M € MI}{{“{”S}, the internally arising drift b must first
be extracted before the limit is taken. This drift cannot be reabsorbed into the
limiting integral and so we no longer have two decompositions of the process for
M e M]}{{“{’; \M;{’{l{mo'}, we only have the decomposition ut + cW; + J;.

For M € M;{\:I{%I} it is always possible to distinguish between the internal drift of
the compound Poisson process and the external drift due to the infinitesimal pertur-

bation “lim,_,e n6%” since
a = external drift = p— / zli_1(z)dM(z)
R\{0}
b = internal drift = f zli-1,1)(z)dM (z)
R\{0}

are both finite quantities. As the limit is taken, the integrals fp, (o, (6" —1)dM™(z)
and fR\ (0} zl{-1,1)(z)dM™ (z) diverge even though fm\ © (€% — 1 — ify(z))dM™ (z)
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converges. Also, there is no other rescaling (z) that will make all three integrals
exist in the limit simultaneously (Stroock 1993). The embedding of the smaller jumps
is just too dense to isolate their effect from any externally applied perturbation; the
drifts are bound together in 4 in such a way that results in the renormalization of

infinite quantities in the limit: u is finite but
a = external drift = p— / rl-1,(z)dM(z) = Foo
R\{0}
b = internal drift = / Tl-1,(z)dM (x) = o0
R\{0}

This marks a fundamental shift in the path structure.

We now examine the limiting procedures that give rise to the Wiener and a-stable
Lévy process approximations in terms of nonuniform changes in arrival rates, changes
in jump laws, and external perturbations. We formed the closure of Po by sequences
of the form

dM™ (z) = \(n, z)dP(z)

We set A(1,z) = A so that M) = AP corresponds to the original compound Poisson
process of rate A, jump law P, and characteristic function exp [t [(e"® — 1)dM(z)].

Case 1: A(n,z) = A(™ such that A = ) and A(®) — M), Thus M™ = A" P has
a constant jump law, all jumps arriving with rate A(® and which changes uniformly
to A(®); all jumps experience the same uniform change in arrival rate and so only
the time of the original process has been rescaled. The limit is another compound
Poisson sum with finite rate A(*®) and jump law P and if A # () then

A (€' — 1)dP(z) # A(o0) (e"%® —1)dP(z)
R\{0} R\{0}
Case 2: A(n,z) is bounded in z and A(n,z) — A(oo,z). For example, A(n,z) =
1A (1 + |z*~™) where A = X and A(™ — A(*), In this example, jumps of different
sizes can arrive at different rates but, asymptotically, all jumps arrive at the rate

1)) and have jump law P. Another example is A(n,z) = A(n)[(1 - 1) f(z) + L] for
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some function f(z) bounded in z. In this case the limiting jump law @ and rate are

f(z)dP(z)
[ f(z)dP(z)

In either case, we obtain compound Poisson laws. However, in this case it would be

dQ(z) = and A / f(z)dP(z)

interesting to investigate if it is possible to find a A(n,z) such that
A (€% - 1)dP() = / (€% — 1)A(n, 2)dP(z) = A / (%% — 1)dQ(z)

R\{0} R\{0} R\{0}
for all n; perhaps it is possible to “steer” via A(n,z) the original process of rate A and
jump law P to another compound Poisson process with rate A{®) and jump law Q
that is particularly easy to work with, for example, where @ is exponential, Normal,
or Poisson.

Case 3: Suppose A(n,z) converges to A(co, z) for each z and is non-constant in z;
it may be unbounded in z for each n or in the limit as n — oo. This case is seen in
the last two steps in forming the closure where the conditions on M were weakened
twice. For any n we have that A(n, z) can at most become singular near z = 0 like ILI
or zz. Such non-uniform changes in the jump arrival rates is a significant perversion
of the orlgmal process and is the nature of the a-stable Lévy process approximation.

Recall that the Lévy measure M is given by
_Q P
dM(z) = P ——=1(_00,0)(Z)dT + —— pors, ——1(0,00) (z)dx

where P,Q € R, P+@Q > 0, and @ € (0, 2). For convenience we take P = @ = 1 and
write the measure as dM(z) = |2|~% " Lozo(z)dz. For any & € (0,2), Jg\ 1) M (z) =
oo and so we are not in the regime of compound Poisson processes. It is easy to verify
that [g\ 10y (1 A 2?)dM () is finite for & € (0,2). However, Jryioy (1 A [z])dM () is
finite for @ € (0, 1) and is infinite for @ € [1,2). Thus, the a-stable Lévy processes are
neatly split into two classes by their Lévy measures. From the previous discussion,
we know that for o € (0,1) we can extract the internal drift and so can distinguish
it from any external perturbation resulting in drift. However, for o € [1,2), we

cannot. Probabilistically, this means that the a-stable Lévy processes for o € (0,1)
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are “closer” in structure to compound Poisson processes than those with a € [1,2).
This is intuitively apparent in the simulated paths of a-stable Lévy processes as
presented in Janicki & Weron (1994) and Samorodnitsky & Taqqu (1994). This
singularly non-uniform distortion of the original arrival rate, the indistinguishability
of the drifts for & € [1,2), and the ability to only match first moments raises doubt
about the suitability of a-stable Lévy process approximations and may explain the
large relative errors observed in simulation comparisons (Furrer 1996).

Case 4: The first order perturbation nds is an insertion of a jump of height £ with
rate n. This is a very localized disturbance of the compound Poisson process in the
sense that the rate of only one jump is increased. The limit results in the addition
of a linear drift rate, which represents only a translation of the compound Poisson
law. The second order perturbation %2(6_% + J2) is again a localized insertion of
jumps but results in something qualitatively new. As mentioned, the first order drift
effect of the symmetric jumps cancel. The second order effect arises from the much
faster arrival rate and the limit amounts to an insertion of an independent Wiener
process with variance o2, and significantly changes the character of the process. In
this light, the convergence of sequences of Poisson reserve processes to a Wiener

process is extremely contrived. For example, consider the measure

_ 2
M® = n-1 (ndg + n—(d-_u +ndg)) + éP
n n 2 n n n

where M = AP corresponds to the compound Poisson process to be approximated.
It is easy to see that
. ; ) 1
Jlim ) (%% — 1)dM™ (z) = ifu — 59202

There is no careful balancing of rates and jump sizes in this example; p and o2 are
completely arbitrary and are not connected to the original process in any way. Even
if they were, this convergence argument is simply the progressive phasing in of one
ID law and phasing out of another and therefore seems quite arbitrary.

For our approximation procedure, a more precise formulation of the fitting prob-

lem is this. Given a compound Poisson process of rate A and jump law P and a
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subdivision of the process that results in an n-fold increase in arrival rate, ie: nJ,

can we find a sequence of probability measures {P™}, ¢y such that

A (6" - 1)dP(z) = n) (%" —1)dP™(z)
R\{0} R\{0}
which would ensure that the laws of the processes remain exact. If not, then perhaps

lim
n-—00

A / (€% — 1)dP(z) — n) (%% — 1)dP™(z)
R\{0} R\{0}

might serve as a useful measure as to the accuracy of the weak limit as an approxi-
mation.

One final point on both the Wiener and a-stable Lévy process approximations. In
both convergence arguments, the mean was extracted from the sum. In the Wiener
process case

0 5 - ) 0428

k=1
In the a-stable Lévy process case

Zx(n)'—Z( ()_%)_{_u(Nyft;n/\t) ‘HM—n—

w(n)

For any n, the components of these decompositions involving the claims and counting
process are stochastically dependent. In the limit, y—-ﬁ!- LN puAt and —nf(%’\t — 0so
all stochastic information is “squeezed out”, in particular, the stochastic dependence

is lost.

4.3 Lévy-Grigelionis-Jacod Characteristics

In the previous section we considered only time homogeneous Poisson models and
possible reasons for the poor fit of the corresponding weak approximations were iden-
tified. Ultimately we are interested in non-Poisson arrivals as well as non-stationary

arrivals and claims distributions.
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We saw that for non-Poisson claim arrivals, M (t) is not linear and from (4.2),
(4.3), and (4.6) we have

p () = u——ﬁg)
m2_ 2 M(t) 5 V() 2 MP(8)V (nt)
o = o’ M) T M) T B

which are time dependent and so moment matching is incompatible with the mod-
elling assumptions. However, since -Ai,%‘ﬂ — A, M(nt) is asymptotically like n for
any t and so p™(t) = u;&ﬂ(% is asymptotically like 1, as desired. If it were the
case that u(™(t) was only mildly time dependent (for example, for each n € N,
sup,eg, 4™ (t) — infier, u™)(¢) or sup,eg, |£u™(2)| are acceptably small) one could
set A™ = limy o0 1 f; 4™ (s)ds or some other time average of u(™(t). Using this
time average (™ for u(™(¢) we can approximate the ratio 7‘-,”%% by 22 and from

u
(4.3) obtain
2 B[(N:)?]

=(n) E ( NX)2]
(n)? ~ 2 M 2 [ i _(rn)
7 o U tH M(nt) (&™) M(nt)
If NX has a finite second moment and for each ¢t € Ry, lim,,c E;[—(ﬁég-;—] exists then

o™? is asymptotically like L Even if p™ = ,U,Mﬂ(n% were free of time, o™’(¢)

may still be time dependent. Requiring that IJA!(_(T%’ %ﬂ, and %ﬁ;ﬂ be time
E[(NX)?]

. " s x
WM (D) exists may pose significant restrictions on NX.

For instance, merely requiring that M(z) be linear forces NX to be Poisson. These

independent and that lim,—, .

requirements might therefore rule out renewal counting processes which are not well
approximated by a Wiener or a-stable Lévy process. One could attempt to match
higher moments, resulting in further conditions involving higher moments of NX as
well as the claims distribution, perhaps providing a finer criterion for the suitability
of these approximations. It is also possible that as higher moments are matched,
these increasingly complex requirements rule out all processes, indicating that such
weak approximations are never appropriate. This time dependence suggests that we
may have to weaken our modelling assumptions; rather than insisting that the limit

be a SIIP, we drop the requirement of stationarity and look at IIP’s. As long as we
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can construct a sequence {R™},en by an infinite subdivision of the original process
R which converges to some process R(°) then it may be possible to fit R(®) to R by
matching their Lévy-Grigelionis-Jacod characteristics. Also, dropping stationarity
introduces the possibility of weakly approximating non-stationary models as well
and it is here that the Lévy-Grigelionis-Jacod characteristics of IIP’s may prove very
useful.

In the previous section we considered stochastically continuous SIIP’s as weak
approximations. Let L be a stochastically continuous SIIP; its characteristic function
can be written in the form

Bje) = exp [t~ 0%+t [ (6% = 1— iy(0)aM (o)
2 R

\{0}
¢
= exp [i@Bt — %02@ +/0 /R\{ }(e“’”c — 1 —16y(z))dv(s, z)}
0

where
B, = ut
C: = o%
dv(s,z) = ds®dM(z)

forsome p € R, c e Ry, M € M]}{\:f;}, where ds is Lebesgue measure, and ¢(z) is
as in the Lévy-Khintchine Theorem. The triplet (B, C, v) uniquely determines the
process. The stationarity of L is the reason the time derivatives B, = © and C‘t = g?
are constant and the jump measure dv(s, z) is a product measure of ds and dM(z);
the drift perturbation arrival rate, the variance perturbation arrival rate, the jump
arrival rate and jump size distribution are all constant in time.

If one drops the stationarity assumption and replaces it with a “local stationarity”
then B; and C; may have non-constant time derivatives and dv might not be a
product measure, reflecting a dependence of jump arrival rate and size on time.
The interesting feature of the characteristics is that they appear to be amenable to
a statistical fitting procedure. Furthermore, it turns out that B;, C;, and dv are

deterministic if and only if the process is an IIP.
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Let X be a stochastically continuous IIP with time index set [0,T] for T < oo.
This is true for cadlag processes since the set of discontinuities is at most countable.
Forn € N let

™ = {{t}j"} 0=t <. <t%) =Tk ¢ N}

be a sequence of partitions of [0, '] such that limy,_,co max; ¢xckm ltfc") - tg‘_)ll =0 and
1M ¢ [I(*+)) e, a normal, refining sequence of partitions of [0, T]. For the process

X, define corresponding sequences of increments by

APX =X — X neN1<ESED
k k-1

Now, define
BM = Y EAarX) (4.16)
kMgt
VW = 3 {ERp(AlX)? - Ep(AP X))} (4.17)
Rt gt
EffY = 3" E[f(APX)] (4.18)
kMgt

where f : R — R is a bounded continuous function that is zero in some neighborhood

of zero and v(z) is as in the Lévy-Khintchine Theorem.

Proposition 9 Suppose that {II™},ex is @ normal, refining sequence of partitions
of [0, T] such that UnewII(™ contains all points of stochastic discontinuity. Then, for
t € 0,7,

B, = lim B™ (4.19)

V; = lim ;" (4.20)

Ef, = lim Ef™ (4.21)
n—oo

where the convergence is uniform on [0,T).
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Proof: See Kwapieni & Woyczynski (1992) or Jacod & Shiryaev (1987).
B, is the first characteristic of X. The second characteristic of X is the unique
measure v on R\ {0} x [0, T] such that for any ¢ € [0,7] and f: R — R continuous,

bounded, and zero in a neighborhood of zero,

t
/ / f(z)dv(s,z) = Ef, = lim Ef™
R\{0} Jo n—00

And, to define the third characteristic of X, we restrict ourselves to IIP’s X such
that B; is of bounded variation (see Jacod & Shiryaev (1987) for the general case).
In this case we redefine V™ = zk:tin) < E[(A™MX)]2. It can be shown that V; =

(n})

lim, 00 V' exists and the convergence is uniform on [0,7"]. Now, one can define the

third characteristic of X by

t
-V _ 2
Ce=V /R\{o}/o P(z) dr(s, )

These quantities are highly suggestive. One could estimate these quantities from a
point process under consideration and perhaps by performing some kind of smoothing
one would end up with smooth characteristics yielding a process that fits the point
process well and is mathematically tractable. This is a topic for future study.

Characteristics have been significantly generalized to the case of semi-martingales
where B, C, and v are the unique {up to modification) predictable stochastic processes
completely characterizing the semi-martingale. These are referred to as the Lévy-
Jacod-Grigelionis semi-martingale characteristics. This result as well as many weak
convergence results for ITP’s and processes with conditionally independent increments
are treated extensively in Jacod & Shiryaev (1987) and warrant further study.

The case of semi-martingale characteristics is similar but involves conditioning.
Let X be an F = {F;}iepo,r1-adapted cadlag process. Suppose also that X satisfies
the following property: Ve > 0 36 > 0 such that for any partition 0=t <t < ... <

t, =T,
(n)
P z |E[¢(th - th—])l‘rtk—ln >0p)<e

k=1
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Define
BM= %" E[w(A(")X)IJ-‘(n)] (4.22)
kMgt
v =Y Epalx) | F (4.23)
kM <t
Eff? = ) E[f(APX)|Fm] (4.24)
k(™ gt

Proposition 10 Suppose that {II™},cn is a normal, refining sequence of partitions
of [0, T] such that UnenII™ contains all points of stochastic discontinuity of X and
X satisfies condition B. Then, for t € [0,T},

B, = lim B™ (4.25)
Vi = lim AL (4.26)
Ef,= lim Ef™ (4.27)

where the convergence is uniform in probability on [0, T).

B, is the first characteristic. The second characteristic of is the unique measure
v on R\ {0} x [0,T] such that for any w € Q, t € [0,7] and f : R — R continuous,

bounded, and zero in a neighborhood of zero,

t z)dv w) = =1 (n) w
/R\{o}fo f(z)dv(s, z,w) = Efi(w) nl—g,loEf (t)(w)

And, the third characteristic of X is

Culw) = Vi(w) — fR o /0 W(z)?dv (s, 7, w)

A recent result of Sgrensen (1996) extends a classical martingale method for com-
puting ruin probabilities to a large class of semi-martingale reserve models. The key

property used is the following:



Proposition 11 For a quasi-left-continuous semimartingale X with characteristics
(B,C,v), the process Y defined by

Yi(w) = exp [iBXt(w) — 0B (w) — %92C¢(w) - /o /R (e -1 - i01/;(m))du(s,a:,w)]

\{0}

is a local square-integrable martingale for each 0.

Proof: See Jacod & Shiryaev (1987).

Although there is no discussion of fit in Sgrensen (1996), the methods he develops
offer the possibility of using more interesting models for reserves. We believe that
Lévy-Grigelionis-Jacod characteristics may be very helpful even in the case of random
characteristics.

A related topic that warrants further study is the special form that characteristics
of stochastic integrals take. The idea here is that a point process reserve model R
could be expressed as a stochastic integral of some process H with respect to a

compensated point process: ,
Rt = / Hsts
0

where N, = N, — ), for some point process N having predictable compensator A. In
this framework, one could consider sequences of processes {H™},cy and {N™}, cn

and examine the convergence
t t
[ B 5 [ EEarie
0 0

in terms of the nice convergence results for characteristics of stochastic integrals (see
Jacod & Shiryaev (1987)).

A particularly interesting possibility is if the limiting stochastic integral is with
respect to a Wiener process. In this case, the process fot H® N is a continuous
martingale, a class of processes that exhibits a high degree of tractability and for
which many results are known (Revuz & Yor 1992). Also, interesting work has
appeared recently on the construction of strong solutions to stochastic differential

equations driven by a compensated Poisson process which may enable the explicit
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calculation or efficient simulations of ruin probabilities (Ruiz de Chavez, Léon &
Tudor 1996). Finally, the recent work on multilevel, bilinear stochastic differential
equations, whose weak limits under various space/time rescalings are measure-valued
processes (Dawson 1993), offer the possibility of modelling coupled claims and income
processes, as required in the general model introduced in Section (2.1). Particularly
of interest in this case is where the multilevel, bilinear system of SDE’s is driven by

point processes.
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