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Abstract

The most natural stochastic models for describing the time evolution of the collective

risk reserves of an insurance company are jump or point process models. However,

there are difficulties in obtaining from snch models explicit and tractable expressions

for important quantities such as the probability of ruin and these have spawned the

development of procedures to approximate point process models. In this thesis, the

nature of weak approximations, as put forward by Iglehart (1969) and Furrer, Michna

& Weron (1996), is examined closely with a view toward assessing their value. An

interpretation of these approximation procedures is given and a method by which

the value of weak approximations may be improved is suggested by considering their

Lévy-Grigelionis-Jacod characteristics.

Resumé

Le plus naturel des modèles stochastiques servant à décrire l'évolution dans le temps

d'un portefeuille de risques d'une compagnie d'assurances est le processus de sauts.

Cependant, il est difficile d'obtenir pour ce type de modèles, des expressions explicites

et traitables pour des quantités impE>rtantes telle que la probabilité de la ruine, ce qui

a mené au développement de procédures d'approximation pour processus de sauts.

Dans cette thèse, la nature faible des approximations, telle que soulignée par Iglehart

(1969) et Furrer et al. (1996), est examinée en profondeur, avec le but cl' établir

leur valeur. Une interprétation de ces procédures d'approximations est donnée et

une méthode servant à améliorer l'approximation est suggérée en considérant les

characteristiques de Lévy-Grigelionis-Jacod.
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Notation
N = {1,2,3,···}

No = Nu {a}

Z is the set of integers

lR is the set of reals

IR = lR U {-oo,oo}

lR \ {a} is the set of reals except 0

~ = [0,00)

lR+ = [0,00]
(0, :F, P) is a probability space

(O,:F, F, P) is a filtered probability space

F ={J=theiR+ is a filtration

Sa ((J', /3, Jl) is the collection of aIl a-stable random variables

Sa(l, /3,0) is the collection of aIl standard a-stable random variables

N(j..L, (J'2) is the collection of aIl Normal random variables

N(O, 1) is the collection of aIl standard Normal random variables

B(lR) is the Borel 17-algebra on lR

B(r) is the Borel 17-algebra generated by the topology r

1) means equal in distribution
a.s. 1P= means equa -a.s.

E is the expectation operator with respect to P

V is the variance operator with respect to P

COy is the covariance operator with respect to P

i.i.d. means independent and identically distributed

X Il y means the random variables X and Y are independent
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x ilF means the random variable X and the a-algebra Fare independent
P-a.s. p

----+) means converges to -a.s.

~ means converges in probability P

P Hm means the limit in probability P

~ means converges in distribution

=} means converges weakly

lxJ means the floor of x

IIP means independent increment process

SIlP means stationary and independent increment process

x /\ y means min{x, y}

x Vy means max{x, y}

PJR is the set of Borel probability measures on :IR

MJR is the set of Borel measures on :IR

MJR\{o} is the set of Borel measures on lR \ {D}

M~ = {M EMIR: frR 1dM(x) < oo}

Mi\{o} = {M E MJR\{o} : fR\{O} 1dM(x) < oo}

M~~~~} = {M E MR\{o} : fJR\{O}(l/\ Ixl)dM(x) < oo}

Mi\{~} = {M E MJR\{o} : fJR\{o} (1/\ x2)dM(x) < oo} = Lévy measures

v



Chapter 1

Risk Theory

A risk business is a commercial enterprise that operates under conditions of signifi­

cant financial uncertainty, manifesting themselves in highly variable rates of incarne,

expenditure, or bath. For a risk business to be a successful enterprise, it must ac­

curately analyze the nature of these uncertain conditions and adjust its operations

ta prepare for the possible occurrence of financially extreme events, which, if not

prepared for, would ultimately ruin the business. A broad interpretation of what

is meant by the subject area called Risk Theory would inelude such general con­

cerns. More traditionally, Risk Theory has been a branch of actuarial mathernatics

concerned with analyzing the operation of insurance businesses and it is from this

context that the subject of this thesis is drawn.

A non-life insurance business begins with sorne initial capital in a reserve fund and

poliey holders pay regular premiums into the fund in arder ta he eligible ta rnake a

daim if sorne specifie eontingency occurs sucb as fire, car accident, disability, or death.

The expenditures associated with daims occur at random tirnes and are of random

magnitudes, resulting in sudden financial shocks ta the fund. Premium payments are

generally smaller and occur more frequently, resulting in a relatively stable rate of

incarne. Life insurance businesses operate in mirrored contrast; after paying regularly

into a fund over rnany years, building up equity or becoming vested, policy holders
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then draw a regular pension or life insurance annuity until the random occurrence of

sorne policy terminating event. If, at this time, the amount actually paid to the policy

holder is less than the amount expected ta be paid then the difference is considered as

positive incorne; it is money that no longer needs to be allocated to a particular policy

holder and can therefore be freed up in the fund for general use. Here, the initial

capital is the equity in the fund at the time payments commence, the expenditures

are regular, but incorne is received in random amounts at randorn times. This mirror

symmetry between the two types of insurance often allows techniques for analyzing

non-life insurance businesses to be easily modified for the analysis of life insurance

businesses and we therefore now restrict our attention to non-life insurance.

The initial approach to insurance business was that of Individual Risk Theory,

first appearing in the rnid-1700's, in which each insurance policy was analyzed on an

individual basis. An individual's premium for a given period of time was required

to be greater than the mathematical expectation of the individual's daims for that

period, which was based on the business' experience with the individual. The risk

to the insurance business was the deviation of the individual's daims from their

expected value and it was recognized (Bernouilli (1738) and DeMoivre (1738)) that

an insurance business would eventually be ruined if it failed to indude a margin in

its favor. In the absence of rigorous methods to quantify this risk, large premiums

and conservative estimates of the individual's distribution of daims were employed.

If the individual's claims were covered by the premiums charged, market competition

cornpelled the return of a portion of the excess in the form of a dividend or a refund,

the remainder being kept in reserve.

As insurance businesses acquired larger numbers of policy holders, their portfo­

lios were, from the point of view of Individual Risk Theory, seen merely as a large

collection of individual policies, each treated individually. Collective Risk Theory,

on the other hand, viewed portfolios as aggregates of large numbers of independent

individual risks. The total assets of the insurance portfolio were considered as a

whole, attention being paid only to the incarne, the daim occurrence times, and the
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daim severities. The details of any individual's poliey or information about which

particular policies gave rise to daims is disregarded. If the number of policy hold­

ers was sufficiently large and their individual effects were sufficiently small, central

limit theorem arguments were used to justify normal approximations to the aggregate

distribution of daims over a given period. Considering the business as a collective

provided a greater statistical sample and proved to be useful, providing a systematic

method for assessing risk (Cramér 1930). However, it soon became apparent that

better mathematical tools were needed for situations in which the individual effects

were not smaIl, the number of poliey holders was not large, and there appeared to

be a dynamical dependence on time. In 1903, before the development of a general

theory of stochastie processes in the 1930'5, Lundberg (1903, 1909) proposed the use

of dynamie continuous time stochastic models to address these problems, introducing

the idea of Dynamic Collective Risk Theory, which, since the 1930's, has developed

significantly, stimulating and making use of many advancements in both statistics and

the theory of stochastic processes. For a review of these developments see Janssen

(1981).

Further restricting our attention to the Collective Risk Theory of non-life in­

surance businesses, we consider point processes as the natural models for insurance

portfolios. The practical focus of this thesis is the problem of determining from mod­

els of this type the probability that the reserve fund becomes negative after sorne

time, called the finite time ruin probability, and the probability that the reserve fund

eventually becomes negative, called the ultimate ruin probability. However, point

process models have practical computational problems. Even when significant and

unrealistic simplifying assumptions are imposed, analytical expressions for the proba­

bilities of ruin and distributions of stopping times, if they exist, are obtained through

difIicult arguments and are nat very tractable for applications. As a means of obtain­

ing mathematically tractable results, Iglehart (1969) showed that a properly defined

sequence of such models converges weakly ta a Wiener process, thereby enabling one

to bring aIl the powerful tools of stochastic calculus and the corresponding analyt-
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ical results for varions stopping times to bear on the problem. Unfortunately, the

performance of the Wiener process approximations is less than ideal. The Wiener

process approximation is mediocre, particularly for skewed or heavy tailed daims

distributions (Asmussen 1984). Furthermore, the Wiener process approximation is

not applicable for infinite variance claims distributions. Recently, Furrer et al. (1996)

have extended Iglehart's weak convergence argument to permit the approximation of

point process models with highly skewed daims distributions, possibly with infinite
... ~

variance, by a-stable Lévy processes. However, preliminary numerical resu1ts are not

quite satisfactory and so a closer examination of weak approximations is required.

We begin this thesis by defining a general point process model and describe sorne

il1ustrative specializations to indicate sorne of the analytical difficulties involved in

such modeis. We then describe the theory of convergence of stochastic processes,

as required by Igiehart's application and the more recent application of Furrer et al.

Background materiai on a-stable distributions and a-stable processes is aiso provided.

Bath Iglehart 's and Furrer et al's weak convergence arguments are examined in detail.

An interpretation of both weak convergence arguments is provided and a special case

of interest is pointed out. This interpretation, together with a closer look at infinite

divisibility, provides sorne insights into weak lirnit approximations. Furthermore, this

interpretation suggests that a deeper study of the structure of weak approximations in

terms of their Lévy-Grigelionis-Jacod characteristics may prove fruitful for improving

their quality and for finding procedures to statistically fit them to the point process

modeI, an issue of importance not only in Risk Theory but in any application of point

process models.
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Chapter 2

Point Process Reserve Models

2.1 The Model

We propose a study of the following model R = {RthElR+ for risk reserves with

rnixed portfolio composition consisting of N(lI) sources of premium incarne and N(X)

sources of claims. For 1 ~ i ~ N(lI), Ii = {IlhelR+ is the accumulated income

process due to premium payments from the ith source. The payments have random

magnitudes {lI~}kEN and occur at random times {Tpi}kEN where Tri < Tr-:.l for k E

N. The counting process associated with {Tpi}kEN is defined by Npi = L:kEN l{Tri~t}'

giving the number of payments during [0, t] and so Il = L:~!: lIt. Similarly, for

1 ~ j ~ N(X), {XtJkEN and {T:
j

}kEN are the magnitudes and occurrence times

of daims from the jth source, T:
i

< T:':' l for kEN, N{.i = L:keN 1{T: j ~t} gives
. N'Xi.

the number of daims in [0, t], and Cl = 2:k~l xl defines the accurnulated daims

process Ci = {Cl helR+' We consider empty sums to be zero. The portfolio consists

of a finite number of policies and sa from each source we observe a finite number of

payments and daims during any bounded time interval [0, t]. Furthermore, payments

and daims are finite in magnitude and so the processes {Ii}~~) and {Ci}f~~) are

assurned to be almost surely finite on [0, tl, i.e., without explosion. Letting Rn be

5



the initial capital in the reserve fund, possibly randorn, we then define R to be the

superposition of its constituent processes:

N(n) N(X)

Rt = Ro+ Ll;- Lct
i=l ;=1

N(n) Npi N(x) Nf;

- Ro+ LLI1~- LLx{
i=l k=l ;=1 k=l

tE~ (2.1)

The processes {Ii}~(?) and {Ci}:J~) are piecewise constant, right continuous, and

finite over any bounded tirne interva1. Therefore, the incorne and daims processes,

and hence R, are càdlàg (sample paths are almost surely right continuous with finite

left lirnits).

To formalize this in a way that permits the use of stochastic calculus, assume that

we have a complete, filtered probability space (0, F, F, P) which satisfies the usuaI

conditions, namely, the filtration F = {FthER+ is right continuous (Vt E 114, Ft =
ns>tFs) where we take F oo- = Vt Ft, F oo = F, F is P-cornplete, and F o contains

aIl of the P-null sets of F. We assume that aIl incorne and claims processes are

F-adapted and that Ro is .ro-measurable so that R is F-adapted. By Kolmogorov's

existence theorem (Billingsley 1995) we can always construct a P-complete probabil­

ity space (n,:1=, P) carrying the processes R, {Ii}~(~) and {Cj}fJ~), and the randorn

variable Rn (as weIl as any additional processes and variables one may require). Fur­

thermore, we can generate the natural filtrations for each of the income and daims

processes, augment each with the P-null sets of F, and generate a cornrnon filtration

F = {Ft} tER+ from the union of the individual filtrations. Since aIl processes are

càdlàg, F 50 generated is right continuous and .rD contains aIl P-null sets of F; this

filtration is the smallest filtration containing aIl information about the probabilistic

evolution of aIl processes and their interdependence. A space (O,:F, F, P) constructed

in this manner satisfies the usual hypotheses. Thus, we assume hereafter that sorne

model (n, F, F, P) has been constructed carrYing aU processes and variables under

consideration and satisfying the usual hypotheses.
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To ensure that {Ii}~(f) and {Cj}~~) are without explosion, it is suffieient to

require that the counting processes {Nn i
} :;;~) and {NXi

} ~~) are without explosion.

sinee premiums and daims have finite magnitudes. Since {Ii}~(f) and {Cj}~~)

are càdlàg , {Tpi}kEN and {T,;i }kEN are F-stopping times for any 1 ~ i ~ N(Il)

and 1 ~ j ~ N(X). Defining the F-stopping time T!l,i = sUPk Tf\ the explosion

time of the ith premium eounting process NfI\ we see that {(t, w) : Npi (w) = oo} =
{(t,W):tE(T!l,i{W),CO)}. IfP{T~i < co} > Othen, forsomen E N, p{T~i <
n} > 0 and henee p{N:;i = oo} > O. To have p{N:;i = co} = 0 for aH n E N

we insist that p{T~i < n} = 0 for aIl n E N. Thus, we adopt the assumption that

T~i ~. T~ a~. 00 for 1 ~ i ~ N(Il) and 1 ~ j ~ N(X) to avoid explosions.

The model (2.1) is very general but refiects the essential qualities of the phe­

nomenon: continuous time evolution, diseretely occurring events, and finite magni­

tudes. No assumptions have been made on {Il~}kEN, {xt}kEN' {Tpi}kEN, or {T,:i}kEN

about their distributions or interdependence. {Il~}kEN and {x{}kEN are not assumed

to he .ro-measurable; doing so is equivalent to assuming their distributions do not

depend on time of occurrence. Assuming only that the income and claims processes

are F-adapted allows for time dependent distributions and thereby includes processes

with conditionally independent inerements such as martingales (Gerber 1979) or Cox

processes (Grandell1991) now being actively investigated in Risk Theory. Thus, (2.1)

appears to be the most natural framework in which to describe risk reserves as weIl

as other financial and eeonomic processes.

Any application of (2.1) would require a statistical analysis ofpast daims data, the

formulation of parametrie models for daims processes, the estimation of all relevant

parameters, and lastly, a decision about what premiurns to charge and how often

to colleet them. The foeus of attention here is how to decide on a premium policy

for a model of the form (2.1) assurning the form of the daims proeesses have been

specified. A quantity of key practical importance is the probability that R becomes

negative during sorne time interval [0, TJ or [0,00); this oceurs when a claim exeeeds

available reserves, eausing the financial ruin of the business. Define the F-stopping

7



time "time to ruin" by

rr = inf{t > 0 : Rt < O}

the probability of ruin in [0, Tl by

w{Ro, T) = P{TT E [0, Tl} = P{? ~ T}

and the probability of ultimate ruin by

w(Ro, 00) = P{TT E [O,oo)} = P{TT < oo}

(2.2)

(2.3)

(2.4)

A premium poIicy must be chosen so that w(Ro, T) and \l1(Ra,oo) are accept­

ably small, premiums are competitive, and that any regulatory requirernents are

met. Ideally, one would like to derive explicit, tractable expressions for 'iJ!(Ro, T)

and \}f (Ra, 00) in terms of the prernium incorne processes {Ii}~(~) and that an opti­

mal prernium policy could then be determined. Unfortunately, (2.1) is too general a

framework to determine expressions for w(Ro, T) and w(Ra, 00). In fact, even when

further considerable and unrealistic simplifying assumptions are imposed on the struc­

ture of the incorne and daims processes, only rarely can tractable expressions for ruin

probabilities he obtained.

2.2 Renewal Models: Deterministic Premiums

Typically, premium payments occur frequently and in small amounts relative to

daims, which occur infrequently and in relatively large amounts. It is therefore natu­

raI to approximate the incorne processes by a deterministic function since the daims

processes are the dominant sources of variability in R. For the rest of this chapter

we consider Ro = u > 0 as constant and the case N(Il) = N(X) = 1, suppressing

indexes. Thus,

NP Nf

U + :EIIk - :E Xk
k=l k=l

8
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with payments {IIk}kEN and c1aims {Xk}kEN occurring at times {TP}kEN and {Tf}kEN.

To see how one may construct an approximation of 1 = {It hEI4' suppose that

premium payments are made at times separated by a constant time interval of length

Ô,t, for example, at the end of each month. One would then set Tf = kb,.t for kEN

and sa

N t
ll =L l{Tr~t} = L l{k~t~t} = l~tJ

keN kEN

1 · . l "L~tJ II ~ lM 1 "L"ti
t

JTI "n II E[!]resu tlng ln t = LJk=1 k' .l'or n E .1'q, n~t = LJk=1 k = LJk=1 k 50 n~t =
L:~=l E[IIk ]. A reasonable approximation to J then would he a smooth function

1r(t) going through the points {(nb,.t, L:~=l E[IIk])}nENo so that 1r(nô't) = E[InAt] for

n E N. For instance, one could choose a piecewise linear function or a polynomial

fitted to the points {(nb,.t, L:~=l E[fIk])}nENo' For such a choice for 1i(t) we have for

aIl t E lR.r that

l~tJ l t J
E[Itl = (; E{Ilkl = 71"( tlt tlt)

If b,.t is small compared to inter-claim times and to any time horizon of business

activity, we can suppose l~tJ b,.t ::::::: t. Since {IIk}kEN, and hence {E[IIkJh:eN, are

small compared to claim severities, we suppose 1r(t) is sufficiently smooth sa that

l~tJ ô,t ::::::: t => 1r( l~tJ b,.t) ~ net) uniformly in t. Our approximation of l is such

that E[Jt ] ~ 1r(t), properly describing the trend of J. If, in addition, {V[Ilk]}kEN

are smaIl then the volatility of the process l is Iow and 50 l remains near E[It ] with

a high probability. We can then use the approximation I t ::::::: 1r(t) if the observed

premiurn incorne process is fairly smooth with low vaIatility. If 1r(t) is differentiable

then 1r'(t) represents the instantaneous rate of premium payment.

Now, suppose that the business is operating in an environment in which seasonal

variations, variations in the number of policy holders, or any other factors that might

induce fluctuations in claim intensities and/or daim severities are aIl negligjble. Sup­

pose also that policy holders expose thernselves to risks in a similar but independent

manner. Thus, {Xk}keN can he considered an i.i.d. sequence. The inter-c1aim times

9



7"k = Tf - Tf-l' kEN, are aiso likely to he similar and unrelated and so too can be

considered an i.i.d. sequence. Furthermore, the assumed time homogeneity suggests

that the severity of daims has little to do with daim occurrence times and so {Xk}kEN

can be assumed to he independent of {'k}kEN. With these assumptions, the generai

model (2.5) takes the form

N'X.
t

Rt = U+1r(t) - L Xk for t E ~
k=l

(2.6)

~.'.'~.

which is an ordinary renewai process. A modification couid he made ta allow the

first inter-daim time Tl to he distrihuted differently than the other inter-daim times,

resulting in a modified renewal process. This may better model the more realistic

situation in which the ends of accounting periods do not necessarily coincide with

{T{}kENo (see Janssen (1981) for modified renewal models and Garrido (1987) for

modified renewal modeis subject to interest and inflation). The assumption of i.i.d.

claims and inter-daim times as weIl as their mutuai independence are strong and are

often unrealistic.

The techniques of renewai theory can be used to find expressions for the ruin

prohabilities 'I1(u, T) and '!I(u,oo), as defined in (2.3) and (2.4). Assume that in

(2.6), NX is an ordinary renewai process 50 as to avoid the extra technicalities of

modified renewai processes. Let Fr and Fx he the inter-daim time and daim severity

distribution functions respectively. Define the corresponding probabilities of non-ruin

r(u, T) = 1 - \lI(u, T) and f(u, 00) = 1 - \lI(u, (0). Furthermore, define these noo­

ruin probabilities conditioned on the first daim time Tl as well as on the first daim

magnitude Xl hy feu, Ti'l = t), feu, Tixi = c), and feu, 001' 1 = t, Xl = c). Using

the law of total probahility twice and the fact that 7"1 and Xl are distributed by Fr

and Fx respectiveIy,

10



r(u,T) =

(2.8)

Noting that

o if u + 1r(t) - C < 0

r(u, TITI = t, Xl = c) = 1 if t > T

r(u + 1r(t) - C, T - t) if t E [0, T] & u + 1r(t) - c> 0

we then obtain

fT f U +7r(t) (OO
Jo Jo r(u + 1J"(t) - c, T - t)dFx(c)dFT(t) + JT dFT(t)

fT (u+7r(t)

- Jo Jo r(u + 1J"(t) - c, T - t)dFx(c)dFr(t) + 1 - FT(T) (2.7)

Finally, letting T --+ 00 gives an equation for the probability of ultimate non-ruin:

(OO (u+7r(t)

r(u, 00) = Jo Jo r(u + 1r(t) - c, oo)dFx.(c)dFT(t)

Depending on 1J"(t), Fx and FT, solving (2.7) and (2.8) for r may pose a significant

problem. Using (2.7) and (2.8) in an optimization scheme where 1r(t) is the unknown

to be found may pose even greater problems. In short term policies, competitive

market conditions may influence the choice of 1r(t). In long term plans, such as life

insurance, market conditions are less restrictive and so it is in these situations where

an optimization of (2.7) and (2.8) may be useful when feasible.

Suppose J.L = E[Xk] is finite and let M(t) = E[Nf] be the renewal funetion of the

process NX.. Then,

E[R,] = u + rr(t) - E [~Xk] = u + rr(t) - E[N,lE[xkl = u + rr(t) - J.LM(t)

One can define a net aecumulated premium poliey 1J"o(t) = J.LM(t) so that E[Rt ] =
u+1ro(t)-J.LM(t) = u ensuring that the premium incorne 1ro(t) exaetly offsets claims on

average. Sinee deviations from the expeeted behaviour will oeeur, the business must

protect itself by adding a safety loading factor (J(t) > 0 to 1ro(t) to set a gross aggregate

premium poliey 1r(t) = [1 + O(t)]1ro(t) = [1 + O(t)]J.lM(t). This gross premium will

Il



ensure that the average net income is strictly positive, allowing for the accumulation

of reserve capital, but certain choices of (J(t) may still result in unacceptably high

probabilities of ruin, again requiring an optimization involving (2.7) and (2.8). The

form 1r(t) = [1 + 9(t)JJ.LM(t), or perhaps 1r(t) = [1 + (JJp,M(t) where 8 > a is a

constant, may facilitate optimization but in general, exact expressions for M(t) are

infinite sums of convolutions and are therefore unlikely to lead to simplifications.

A minimal requirement ensuring that p{Tr = oo} > 0, ie, there is sorne chance

the business will always be able to cover its c1aims, is that P limt~oo ~ > O. This

essentially says that for very large t, R t is like u + at in Iaw for sorne a > a and that

enough sample paths remain near u + at > 0, and hence above zero.

Since p, = E[Xk] > 0 and ...\-1 = E[rkJ > 0 are finite and limt-+oo M?) = .À we have

that

P Hm Rt = P lim [~+ (1+8(t))/J. M(t) - ~~ Xk] = (l+B(oo))J.LÀ-tLÀ = 8(oo)J.LÀ
t~oo t t-+oo t t t L...J

k=l

And, requiring that P Iimt-+oo ~ > a means requiring that (J(oc) = lirnt-+oo 8(t) > 0,

which is certainly satisfied if B(t) = () > 0, a constant.

Writing (2.6) in terms of the safety loading factor (J(t) and the renewal function

M(t) we have

Nf

Rt = U + (1 + B(t))J.LM(t) - E Xk for t E IR,-
k=l

(2.9)

Thus, once the claims process has been specified, tL and M(t) are, in principle,

known, the remaining free parameters being O(t) and u. In practice, however, u may

be determined by circumstances or by law sa that only (J(t) remains as a decision

variable which itself may he further subject ta market conditions.
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2.3 The Classical Poisson Model

The classical Poisson risk reserve model is a very specialized version of (2.6) in which

NX is a Poisson process with rate À E (0,00), ie, the inter-claim times are Li.d. and

exponentially distributed with mean À-1 and common distribution function Fr(t) =
(1- e-.\t)1[O,OO} (t). In this case, M(t) = E[Nf] = Àt represents the average number of

daims in [0, t]. Tt is aiso assumed that 1r(t) = 7ft where 7f > 0 is a constant aggregate

rate of premium payment reflecting the assumption of a constant number of policy

hoiders, constant portfolio composition, and premium payments are regular. Using

a constant safety loading factor () > 0, we have that 1r(t) = 'Trt = (1 + fJ)J-jÀt so

that 1r = (1 + B)J-jÀ is the aggregate gross premium rate with 1ro = J-jÀ being the net

aggregate premium rate. (2.9) then becomes

Nf

R t = U + (1 + B)J-jÀt - LXk for tE Rr
k~l

Specializing (2.7) yieids

r(u, T) - loT IoU+~' r(u + 1rt - c, T - t)dF,,(c)dFT(t) + 1 - F,(T)

- loT foU+~' r(u + 1rt - c, T - t)dF" (c):Àe->"dt + e->'T (2.10)

Letting T ~ 00 we obtain

(2.11)

where we have used the substitution x = U + 'Trt.

Assuming (2.11) and (2.10) are differentiable in u and that dFx.(c) = fx(c)dc we
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obtain by differentiating

and

ar À À /.U-a(u, (0) = -feu, (0) - - f(u - c, oo)dFx(c)
u 7r 7r 0

(2.12)

(2.13)

(2.12) is a Volterra integro-differential equation having a limited number of analytical

solutions and for which nurnerical solutions exist only for certain choices of Fx' In

general, (2.12) is not a practical rnethod of computing the probability of ruin in finite

time (see for exarnple Linz (1985». (2.12) and (2.13) can be put into the forro of

renewal equations and solved, in principle, by Laplace transfarms where the difficulty

is in the inversion (Feller 1966). On the other hand, as long as Fx has a density,

(2.13) can clearly be handled nuroerically, for example, by an Euler scheme plus a

discretization of the integral or by the technique of product integration (Ramsay &

Usabel 1997). Also, we may, depending on Fx' differentiate again with respect ta u

to obtain a second order ODE with delay, possibly being able ta solve. Finally, in

a direct Monte-Carlo simulation of small ruin probabilities there is a large relative

error unless a very large sample of paths are simulated (Asmussen 1984) which can

be computationally intensive.

2.4 Renewal Models: Stochastic Premiums

We suggest here a simple rnethod of allowing for stochastic premiums while retair..ing

mathematical tractability. Describe daims and premium incarne together in a single

point process as follows. Let the occurrence times of premiurn incame and daims

be given by a P-a.s. strictly increasing sequence {Tk}kEN of F-stopping times as

before where To = O. Suppose, as before, that T00 = SUPk Tk = 00 P-a.s. so that
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the associated counting process N is without explosion. Suppose the premium and

daim magnitudes are given by a single sequence {Xk}kEN of random variables whose

range is:nt A positive value of the X k would represent premium income at time Tk

and a negative value would represent a daim. The risk reserve process could then be

described by
Nt

R t = U + LXk for tE R.r
k=l

One would want the distributions Fk of the X k to he such that there is no rnass at

zero as well as having the probability of a daim at Tk, given by Pt = P{Xk < O} =
J~oo dFk(X) > 0, and the probability of a premium at Tb given by Pp = P{Xk > O}

= Jo-oo dFk(X) > 0, to match observed hehaviour or to refiect assumptions about

anticipated variations in incorne and daims. In addition, one would want the "shape"

of Fk(x) for x < 0 to match the observed distribution of daims and the "shape" of

Fk(x) for x > 0 to match the observed distribution of premiums. For instance, if

I:(x) , x ~ 0, and ff!(x) , x ~ 0, are the observed density functions of the daims and

premium magnitudes, respectively, then, since pil + px = 1, one could set

and

Fk(x) = 1: fk(t)dt

If one supposes that the {Xk}kEN are i.i.d. and that N is an ordinary renewal process

then renewal theory techniques can again he applied ta determine ruin probabilities.

It should he noted that such an assumption amounts to allawing the incarne to occur

at purely random times, passibly an undesirable feature. Again,

r(u, T) =f f r(u, TIXI = C, Tl = t)dFx(c)dFT(t)

and

r(u, TITI = t, Xl = c) =
o if u + c < 0 and t E [0, T]

r (u + c, T - t) if u + c ~ 0 and t E [0, T]

1 if t > T

15
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so we then obtain

qu,T) = loT [~r(u + c, T - t)dF,,(c)dFT(t) +{'" dFx (c)dFT(t)

- loTl~ r(u + c, T - t)dF,,(c)dFT(t) + 1 - FT(T)

Finally, letting T -+ 00 gives an equation for the probability of ultimate non-ruin:

qu,oo) = 10''''l~ r(u + c, oo)dF,,(c)dFT(t)

- l~qu + c,oo)dF,,(c)

yielding expressions for ruin probabilities of a similar level of tractability as (2.10)

and (2.11).

2.5 Generalizations

The special cases of renewal models discussed above describe the time homogeneous

evolution of a risk reserve fund. There are situations in which both claim severities

and daim occurrence times fiuctuate either deterministically or randomly. For ex­

ample, the south eastern US seaboard experiences hurricanes more frequently and of

greater scale in the summer months than in the winter months resulting in a greater

number of more sizeable daims during the summer. Icy road conditions in the winter

may lead to similar seasonal fluctuations in the size and frequency of claims asso­

ciated with automobile accidents. Thus, there is a need for more realistic models

incorporating such fluctuations. As already mentioned, Cox processes are being in­

vestigated by Grandell (1991), periodic variations in arrivaI intensity by Chukova,

Dimitrov & Garrido (1993), and piecewise continuous Markov processes by M.H.A.

Davis and Paul Embrechts. These approaches, while providing more realistic models,

will unlikely yield more tractable expressions than the simpler models. The inade­

quate performance of the simpler models (Seai 1983) and the expected increase in
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complexity of the more realistic point process models adds impetus ta the search for

useful approximations.
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Chapter 3

Approximation of Point Process

Reserve Models

3.1 The Classical Normal Approximation

As seen in Chapter 2, the determination of ruin probabilities for point process models

poses difficulties, even for the simpler classical Poisson mode!. One way of treating

this problem is to find a good approximation to the point process model which allows

the explicit determination of ruin probabilities. Initial approaches involved normal

approximations of the claim magnitudes experienced over a given time interva!. A

natural extension of this is to perform such a normal approximation at each instant

of time. Let Rt = U + 1ft - L~!l Xk for tE.Rt- be a classical Poisson reserve model

with rate À E (0, (0), {Xk}kEN are i.i.d. with jJ. = E[Xk] > 0 and 00
2 = V[Xk) > 0,

u > 0 is the initial capital and 1r > 0 is the aggregate premium rate. Let il denote

the approximating process based on performing a normal approximation of R at each

time t. If the laws of R and il are to be "close" enough that their relevant macroscopic

properties are the same then a necessary requirement is that the first two moments

match at aIl times: E[Rt] = E[RtJ and V[Rt ] = V[Rtl tlt E lltr· E[Rt] = u+(1r- J.LÀ)t
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(3.1)

and V[Rt] can be computed via the formula V[Rtl = E[V[RtINtll +V[E[RtINtJ]. For

each nE N,

E[RtINf = n] = E (u + 1rt - t Xk] = U + 1rt - nJ.l
k=I

and, knowing that E[NfJ = V[Nf] = At, we have

AIso,

V[RtINf = nJ = V (u+ 7rt - t Xk] = na2

k=l

and so

Bence, V [RtJ = Àt(a2 + J.l2). The obvious normal approximation would then be

U + (1r - J.LÀ)t ± vAt(a2 + J.l2)Z where Z rv N(a, 1). But, VtZ rv N(a, t), which

resembles a standard Wiener process W. We are therefore led to the approximation

Rt = U + (1r - J.lÀ)t - JA(a2 + J.l2)Wt, partially justified by the fact that Rand

il have the same trend and volatility at each time and that W and C are both

stationary independent increment processes, sharing a similar structure. The utility

of the Wiener diffusion approximation is that Wt rv N(a, t). Thus, "R ~ fI." suggests

that P{Rt ~ x} ~ P{Rt ~ x} and so we have

where the transformation s ~ s-:;-(7r-P.À)t was used as weIl as the substitutions
À(q2+p.2)

A = vA(a2 + J.L2) and B = 1r - J.LA. The distribution of Tr(R) = inf{t > a:Rt < a}
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'1J(u,T) =

is also known explicitly:

- - A lT
3 1[u

2 2Bu (Bu)2]P{T'"(R) ~ T} = -- s-'2e- 2 ~+Jr+ A S ds
uV2i 0

(-BT-U) -2B.. (BT-U)
- <Jl . j;r; +e~<Jl n

AvT A T
(3.2)

where <Jl(x) = k J~oo e-s2
/

2ds is the distribution function of the standard normal

distribution. The integral representation can be found in Karlin & Taylor (1981)

and the evaluation of the integral via Laplace transforms can be found in Darling &

Siegert (1953). Letting T -+ 00 then yields the probability of ultimate ruin

(3.3)

~.'.. ', ...co

(3.2) and (3.3) lend themselves easily to an optimization scheme for determining an

optimal premium policy 7r.

The above derivation relies on the ease of computing the mean and variance of

the Poisson process N'X. and the Wiener process W. For general counting processes

N'X., computing the mean and the variance may be non-trivial making the matching

of moments difficult. AIso, unless N'X. is Poisson, R is not an independent increment

process and so is structurally different from R. Thus, there is a serious drawback,

even in the Poisson case: there is no satisfactory justification of the assumption that

il provides a good approximation of R since matching the first two moments does

not guarantee that' the long run behaviour or functionals of these processes match.

The more modern approach to this latter problem, based on the theoretical work

of Prohorov (1956), Skorokhod (1956), and Billingsley (1968) and then applied by

Iglehart (1969), is to construct a sequence of point processes {R(n)}nEN such that

R(n) converges to a limit process R(oo) in a sense strong enough to ensure that for

useful functionals j, j(R(n» converge to f(R(oo). The hope is that our original point

process model R is "close" in law to R(oo) so that feR) will he close to j(R(oo» and,

most importantly, that f(R(oo» has an explicit, tractable expressicn which could

then serve as a useful approximation to f(R). The natura1 setting for considering the
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limits of sequences of càdlàg stochastic processes and their functionals is the space of

càdlàg functions endowed with a probability structure which we now describe.

3.2 Weak Convergence in D[a, T] and D[a, 00)

For any T E 114, let D[a, TJ = {x : [0, T] ~ lR : x is càdlàg }. Let AT be the set

of maps À : [0, T] ~ [0, TJ that are onto, strictly increasing, and continuous with

IIÀIIAT < 00 where /IÀll Ar = sUPO~s<t~T lIn (.\(tt~;(s») 1. For x, y E D[O, T] define

rh(x, y) = inf.\EAT {IJÀIIAT VSUPSE[O,TJ{lx(s) - y 0 À(s)1 Al}}. For T = 1, dl is a

metric on D[O, 1] and (D[O, 1), dl) is a complete, separable metric space (Billings­

ley 1968). It is clear that the same is true for (D[O, T], dr) for any T E 1I4.
Let D = D[O,oo) = {x : IR,- ~ lR : x is càdlàg}. Let A be the set of maps

À : 114 ---t 114 that are onto, strictly increasing, and Lipschitz continuous with

IIÀ/IA < 00 where /IÀI/A = sUPo~s<t<oo lIn ('\(t~=;(S») 1. For x, y E D, À E A, and

T E Il4, set p(x,y,J..,T) = SUPSE[O,T]{lx(s) - y 0 À(s)1 A 1} and defining the met­

ric d(x, y) = inf'\EA {IIÀ/IA V JJR+ p(x, y, À, T)e-T dT} on D we have t.hat (D, d) is a

complete, separable metric space (Ethier & Kurtz 1986). The following theorem

characterizes convergence in (D, d).

Theorem 1 (Ethier & Kurtz, 1986, pg. 125) Let {Xn}nEN C D and x E D.

d(xn , x) ~ 0 if and only if the following three conditions hold for each t E 1I4 and

aU sequences {tn }nEN C R..t- such that t n ~ t:

1) Ixn(tn ) - x(t)1 /\ Ixn(tn) - x(t-)J-+ 0

2) If Jxn(tn) - x(t)1 ~ 0, Sn ~ tn, Sn ~ t then Ixn(sn) - x(t)l-+ 0

3) If Ixn(tn) - x(t-)I ~ 0, Sn ~ tnl Sn -+ t then Ixn(sn) - x(t-)/ ~ °
However, as Pollard (1984) mentions, if the limit x is continuous or lies in sorne

separable subset of D then convergence with respect ta the uniform metric given

by mT(xn , x) = SUPsE[O,T] Ixn(s) - x(s)1 on aIl compacts [0, T] is equivalent ta con­

vergence with respect to d. Thus, convergence in the space (C[O, 00), m), where
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m(x, y) = SUPtER.r Ix(t) - y(t)l, implies convergence in (C[O, Tl, TnT) for all T and

therefore in (D, d). Here we want a framework that will allow for discontinuous

limits and so we always work within CD, d).

The metric topology T on D (resp. D[a, Tl) determined by d (resp. dr) is Sko­

rokhed's JI topology. Let 8(r) he the Borel a-algebra on D (resp. D[a, Tl) gener­

ated by r. Our risk reserve model R is an lR-valued stochastic process whose sample

paths are in D. Considering our reserve model as a random element of D, assume

a probability model (O,.r,P) and let R : n ~ D be a .r/B(r)-measurable map.

The distribution of R is given by the induced probability measure P = P R-1 on

B(r), called the law of the process R. For processes {R(n)}nEN and R(oo) on D let

{pen) = P R(n)-l}nEN and p(oo) = P R(oo)-1 be the corresponding induced probability

measures. The sequence of laws {p(n)}nEN is defined to converge weakly te p(OO) ,

written pen) ~ p(OO) , if for alI bounded, continuous functions f : D ~ lR we have

limn-+ooiDf(x)dP(n)(x) = fDf(x)dP(oo)(x), or equivalently, limn-.ooE[f(R(n»)] =
E[f(R(oo»]. In this case we say R(n} converges in distribution to R(oo) and denote

this by R(n) ~ R(oo) or by ~n} ~ ~oo) where in this context ~n) is taken ta mean

the process R(n), not just its value at time t.

For kEN and {tr, . .. ,tk} c Rr let the projections 7rh ,.. ' ,tk : D ~ ]Rk be defined

by 1l"tl,... ,tk(R(n» = (~~), ... ,Rt»). If we consider only the finite dimensional distri­

butions PR(n)-I1l"h,... ,tk-lof a process R(n) induced on B(IRk ) by 7rtll ... ,tk(R(n») then

weak convergence ofPR(n)-l7rtll... ,tk -1 to PR(oo)-l1l"t l,. .. ,tk -1 isjust the ordinary weak

convergence of distribution functions (Billingsley 1968). P R(n}-1 => P R(oo)-l implies

the weak convergence of aIl finite dimensional distributions. However, weak conver­

gence of aIl finite dimensional distributions P R(n}-l1l"t}, ... ,tk -1 to P R(oo)- l1rh ,'" ,t" -1

does Dot determine the weak convergence of P R(n)-l to P R(oo)-I. Thus, weak con­

vergence for laws of processes is a stronger notion that the weak convergence of finite

dimensional distributions, even for processes with P-a.s. continuous sampIe paths,

and turns out to be the mode of convergence that is strong enough for the conver-
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gence of functionals. We now collect sorne theorems on weak convergence for later

use.

Theorem 2 (Billingsley, 1995, pg. 331) Let {X(f&)}nEN and l be processes in D[O, 1]

where l is the non-random identity process in D[a, 1] defined by I(t,w) = t for aU

(t, w) E [0,1] x n and where .À > a is a constant. Then, x(n) =>.ÀI {:::::? x(n) .!+ >"1.

Theorem 3 (Billingsley, 1968, pg. 27) Let {x(n)}nEN, X, and {y(n)}nEN be pro­

cesses in D[a, 1]. If x(n) => X and yen) .!+ .ÀI for sorne .À > a then (x(n), yen») =>
(X, .ÀI). In other words, the induced probability measures {p(x(n), y(n»)-l }nEN con­

verge weakly ta P(X, ~1)-1 on D[a, 1] x D[a,lJ endowed with the product topology

r ® r generated by the sets {A x B : A, BEr} and the Borel a-algebra B(T l8l r)

generated by r ® r.

Theorem 4 (Davidson, 1994, pg. 355) Let {x(n) }nEN and {yen) }nEN be processes

in D such that x(n) ::::} X and yen) => a where a is a non-random element of D (Jor

alt (t,w) E 114 x n, a(t,w) = a(t) J. Then yen) +x(n) => a+X and y(n)x(n} => aX.

Theorem 5 (Billingsley 1968, pg. 50) Let h : D[a, 1] -4 IR be B(r)/B(IR)- mea­

surable and let Dh = {x E D[O, 1] : h is discontinuous ai x}. If {p(n) }~=l and

Pare probability measures on B(r) such that pen) => P and P(Dh) = a then

pen)h-1 => Ph-1 where {p(n)h-1}nEN and Ph-1 are the corresponding induced prob­

ability measures on B(R).

Corollary 1 (Billingsley 1968, pg. 31) If x(n) => X and P X-l(Dh ) = 0 where

h is as in Theorem 5 then h(x(n») => h(X).

Note that Theorem 5 and Corollary (1) remain true if (D[a, 1], dd is replaced with

any complete, separable metric space, such as (D, d).

Theorem 6 (Billingsley 1968, pg.25, 225) Let {x(n)}nEN and {y(n)}nEN be se­

quences of random elements ofD[a, 1]. Since (D[a, 1], dl) is a separable metric space,

the map d(x(n) , yen») : n -+)R defined by d(x(n) , y(n»)(w) = d(x(n) (w), y(n) (w)) is a

random variable. If x(n) => X and d(x(n), yen»)~ a then yen) => X.
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Theorem 7 (Prohorov, 1956) Let {xin )}k~:,nEN be random variables such that for

each n E N, {Xin)}k~: are i.i.d. with E[xin )] = 0, V[xin )] = a(n)2 ~ (2 > 0, and

36> 0 such that SUPnENE[lxin)12+Ô] < 00. Define on (C[O, 1], md the process

[ ~ij ](n) 1 (n) (n)
JI; = (vn t;Xk + (nt-lntJ)XLnIJ+l

Then, yen) => W where W is a standard Wiener process.

for t E [0,1]

The next theorem is a generalization of Billingsley's result for random time

changes. As with other results taken from Furrer et al. (1996), not yet published, a

detailed proof is provided here.

Theorem 8 (Furrer et al. 1996) Let {x(n)}nEN' X, and {N(n)}nEN be processes

in D such that x(n) :::} X and N(n) :::} )../ for sorne À > o. Suppose also that the

sample paths of {N(n) }nEN are non-decreasing and N(n) (0) = O. Then, x(n) 0 N(n) :::}

X 0 ÀI where (x(n) 0 N(n»t = X(n(n) and (X 0 )d)t = X)"t for t E 114.
Nt

Proof. Let Do = {.p E D : .p(O) = 0 and .p non-decreasing }. Define a composition

map 1/J : D x Do ~ D by 7jJ(x,4J)(t) = x 0 4J(t) = x(4J(t)). We will show that

when D x Do is suitably topologized, 1/J is measurable, (x(n), N(n» :::} (X, ÀI), and

P(X, ÀI)-l(D.,p) = 0 where Dt/J is the set of discontinuities of 7jJ and P(X, ÀI)-l is the

probability measure induced by (X, ÀI). Corollary (1) is then applied to conclude

that x(n) 0 N(n) = 'l/J(x(n) , N(n» => 'lj;(X, ),.1) = X 0 ÀI.

Let ro he the metric topology on Do determined by dl Do. ra is therefore the relative

topology induced on Do by T and can be described by {UnDo : U E 7}. Let B(ro) be

the Borel a-algebra generated by ro which can be described by {B n Do : B E B(r)}.

However, Do is closed with respect ta d and so Do E 8(7). 8(70) can therefore be

descrihed by {B C Do : B E B(r)}.

The metric d = d V dlDo determines the product topology r ® ro on D x Do

which can he generated by the sets {U x Ua : UEr, Uo E 70}' Let B(T ® ro)
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be the Borel O'-algebra on D x Do generated by r ~ ra. Since (D, d) is separable,

B(r ® ro) = 8(r) ® B(ro) where B(r) 18l B(ro) is the product cr-algebra generated by

{B x Ba : B E B(r), Bo E B(ro)}. Now, for {tl ,··· ,tn } C ~ we have a projection

1rtt,... ,tn : D -+ Rn defined by 1rtt,. .. ,tn(x) = (x(td,'" ,x(tn)). 8(r) is in fact generated

by the sets {1r~~... ,tn (BI X ••• x Bn ) : n E N, Bi E B(R) , {tl, ... ,tn } C 114} and

similarly for B(ro) (Lindvall, 1973). B(r) ® 8(ro) is also generated by the pre-images

of Borel rectangles under similarly defined projections of D x Do and hence so is

B(r ® ro). Thus, 1/J : CD x Do, B(r ® ra)) -+ (D, B(r)) is measurable since for aIl

tER..- the projection 1rt0'lf;: DxDo -+ lR defined by 1rto1/J(x, 4» = 1rt(xor/J) = x(lj>(t))

is B(r ® ra) / B(lR)-measurable (pg. 232 Billingsley 1968). AIso, {(x(n), N(n») }nEN

and (X, >"1) are :FIB(r ® 'o)-measurable and so are random elements of D x Do.

By composingmeasurable maps, it follows that {'lf;(x(n),N(n»)}nEN and 'l/J(X, AI) are

Ff.B(T)-measurable and 50 are random elements of D .

. By Theorem 2, N(n) => >'1 is equivalent to N(n} ~ >'1. By Theorem (3), N(n) .!+
>'1 and x(n) => X imply that (x(n) , N(n») => (X, >'1) in the space (D x Do, B(rQ?Jro)).

Now, let P = P(X, Al)-l be the probability measure on B(r®ro) induced by (X, >'1).

Let D.,p = {(x, rP) E DxDo : 'lf; is discontinuous at (x,4»}. Ifwe show that P(Dt/J) = 0

then since 'l/J is measurable and (x(n) , N(n») => (X, >'1), Corollary (1) implies that

1/J(x(n} , N(n}) => 'lf;(X, >'1), proving the result.

Noting that D.,p = [D,p n (D x {>'1})] U (D?/! n (D x {>'1} )C] and P = P(X, >"1)-1

we have that P(D,p n (D x {>'I}Y) = 0 and 50 P(D?/!) = P(D.,p n (D x {>'1}).

Thus, we need to consider the continuity of 'l/J only at points in D x {AI}. Let

(x, >'1) E D x {).,1} be arbitrary and let {(xn, rPn) }nEN C D x Do he any sequence such

that d( (xn , 4>n), (x, ).,1)) -+ O. This is equivalent to d(xn,x) -+ 0 and d( lj>n, AI) -+ O.

We want to show that xn0rPn = 'lf;(xn , rPn) -+ 'lf;(x, >'1) = xo)..1 and 50 we use Theorem

1 characterizing convergence in D.

Let t E R.r and {tn}nEN C Rr be such that tn -+ t. We want to verify that the

conditions of Theorem (1) hold for the sequence of processes {xn °<Pn}nEN and x °>"1.

Since tn -+ t, there is an M such that t E (0, M] and {tn}nEN C [0, M]. Since).,1 is
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continuous, d(cPn, Àl) --7 0 is equivalent ta the uniform convergence of cPn ta Àl on

compacts. Renee, for aIl € > 0 there is an no snch that n > no implies IÀtn - Àtl < ~

and IcPn(s) - Asi < ~ for s E [0, M], so, in particnlar, /4>n(tn) - Àtnl < ~. Thus,

IcPn(tn) - Àt/ ~ /cPn(tn) - Àtnl + IAin - Àtl < ~ + ~ = € and hence if>n(tn) --7 ).,t. Note

that this is true for any sequence of times converging to t.

Since d(xn , x) --7 0 we know the conditions of Theorem (1) hold, more specifically,

we know they hold for sequences of times {if>n (tn)}nEN converging ta Àt. Thus,

Hm IXn 0 4Jn(tn) - x 0 ÀI(t)/ Â /xn 0 if>n(tn) - x 0 ÀI(t-)1
n~oo

- Hm IXn(cPn(tn»- x(Àt)IA Ixn(4)n(tn )) - x«Ài)-)1
n~oo

- 0

and 50 since t and {in}nEN were arbitrary, the first condition holds for {xn 0 if>n}nEN

and x 0 Àl. For the second condition, suppose /xn 0 if>n(in) - x 0 Àl(t) 1 --7 0, Sn ~ in,

and Sn --7 t. Each cPn is non-decreasing 50 cPn(Sn) ~ cPn(tn) for all n and we know

that if>n(sn) --7 Àt. The second condition holds for {Xn}nEN and x so IXnocPn(sn) -xc

Àl(t)1 = IXn(cPn(sn)) - x(Àt)j --7 0 hence the second condition holds for {xn 0 4>n}nEN

and x 0 À1. By a similar argument, the third condition is also seen to hold for

{xn 0 cPn}nEN and x 0 >"1. Therefore, by Theorem 1, d(xn 0 cPn, x 0 Àl) --7 0, and

50 'if; is continuous at aU points of D x {ÀI}. Hence D,p n (D x {AI}) = 0, so

P(Dt/J) = P(D,p n (D x {ÀI}) = °and the result follows.

o

3.3 The Wiener Process Approximation

We discuss in this section the result of IgIehart (1969) on the weak convergence of

a sequence of reserve processes {R(n) }nEN to a Wiener process R(oo). Let {yen) }nEN

and {xin)}~~f,nEN be as in Theorem (7) and define a new sequence {x(n) }nEN by

X;n) = ç1 z:t;:t xin) for t E [0,1]. If we show dl (y(n) , x(n») ~ 0, then, since

yen) :::} W, we can then apply Theorem (6) ta conclude that x(n) :::} W where W
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is a standard Wiener process. Iglehart uses a more elaborate result of Liggett and

Rosén (1968) to conclude that x(n) :::} W although Theorem (6) suffices. In addition,

Iglehart does not explicitly show that dl (y(n) ,x(n») ~ 0 and so it is shown he:"~

for completeness.

_ dl(y(n)(w), x(n) (w)

- inf {E > 0 : 3A E Al, IIAIIAI V sup I~(n}(~) - xtèl)(w)1 < E}
tE[O,I]

~ inf{€>O: sup 1~(n)(w)-Xt(n)(w)1 <E}
tE[O,I]

_ sup I~(n)(w) - xfn)(w)! = sup nt - Lntj Ix(~~ +l(w)1
tE[O,l] tE[O,I] çVii L J

sup rl~ Ixi~~J+l(W)1 = max r le IXkn)(w)1
tE(O,I) ':. V n l~k~n ':. V n

Proof: Let w E n and n E N. Since the choice A(t) = t yields liAI/Al = 0 we

have that the set {E > 0: SUPtE[O,I] I~(n)(w) - x1n)(w)j < E} is contained in the set

{€ > 0 : 3A E Al, "AllAl V SUPtE{O,I] !yt(n)(w) - xiëi)(w) 1 < €} and sa

dl(y(n),)(n»(~)

Thus, for any a> 0,

where Chebychev's inequality is used with power 2 + ~ > 0 to pass ta the expecta­

tion. Now, choose li > 0 so that M = SUPnENE [lxLnll2+6] < 00. Thus, "In E N,
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P{w : d(y(n) ,x(n»(w) > a} ~ n 6/ 2(%.F+6 and so ddy(n) , x(n» -.!...r O.

o
Thus, x(n) => W. If we set Nin) =~ then from Theorem (17.3) in Billingsley

(1968) we have that Nin) ::} :At. Now, applying Theorem (8), we conclude that

N'X. lnNfn)J
1 nt 1
. Ifi L X~n) = Iii L xin ) = (x(n) 0 N(n»t => (W 0 }"I)t = W>.t

( V Il, k=l ( V '" k=l

so, using the self-similarity of Wiener processes, .In 2:~E~ X~n) ::} (W>.t 'D ,VAWt .

We can now present Iglehart's main convergence theorem and a slight simplifica­

tion of his proof.

Theorem 9 (Iglehart, 1969) Let N'X. be a renewal counting process with finite mean

inter-claim time }..-1 > O. Define a sequence {R(n) }nEN of risk processes by

(
N~t)-mn) = ln u(n) + 7r(n)nt - L x~n) for t E [0,1]

~ k=l

whereforeachn E N, {Xin)}k~i arei.i.d. withE[X~n)] = M(n) > 0, V(xin)] = a(n)2 > 0,

and, :36 > 0 such that sUPnEN E[lxin ) 1
2+8] < 00. Suppose also that u(n) = u..jiï + o(,;rï) ,

7r(n) = :n + o( Jn), /-L(n) = -Jn + o( Jn), and a(n)2 -+ (2 > °for constants u, 7r, /-L, , > O.

Define ~OO) = u + (n - J.L}..)t - (v'XWt for t E [0,1). Then, R(n) ::} R{oo).

Proof: First, write ~n) in the following forro:

(n) 1 N~t N'X. (n)
~n) = ~ +1r(n) vnt - - L (x(n) _ j.L(n» _ ntJ.1.

Vii Vii k=l k vn
_ (u + o(.J1ï)) + (1f + 0(1/.J1ï)) t __1_ E(x(n) _ jt(n))

Vii l/vn 0i k=l k

_ N;t ( + o(l/Vii»)
n J.L I/Vii

By Theorem (17.3) in Billingsley (1968), ~ =>}..t and clearly Ji. + O\1f~ => J..L 50 by

Theorem (4), ~ (J.L + o\Yf*') ::} J.LÀt, a non-random function. AIso, it is clear that
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Ii.~.,.."..:.

( u + O(j#» + ('Ir + O(ll/*,) t => U + 'Trt and so again by Theoreln (4) we have that

(u + O(j[» + ('Ir + O(ll/~) t - ~ (Jl + o<llfj[» => U + 'lrt - JlÀt = u+ ('Tr - JlÀ)t.

The random variables xin) - J.L(n) satisfy the conditions of Theorem (7) sa by the

previous argument, ,In E~Ei (xin) - f.L(n») => çJ:\Wt • Applying Theorem (4) once

again yields ~n) => u + ('Ir - /-LÀ)t - çv!XWt 'D u + (1T - J.LÀ)t + (VXWt .

o

Iglehart extends these convergence results to D[a, 00) using a result of Stone

(1963). However, Lindvall (1973) has corrected a small error in Stone's theorem and

we therefore use Lindvall's version. Given a probability measure P on D[a, 00) define

Tp = {t : P{x : x(t) = x(t-)} = 1}. For T E 1R,., define the time index restriction

map TT : D[a, 00) --t D[a, T] by (TT(X))(t) = x(t) for t E [0, T).

Theorem 10 (Lindvall, 1973) If P and {p(n)}nEN are pTobability measures on

D[a, 00) then pen) => P if and only if p(n)r:r l => PrTI for ail T E Tp .

Now, extend {R(n)}nEN and R(oo) to D[a, T] and D[O, 00) by simply enlarging the

array of random variables {Xin)}~~~,nEN ta {Xin)}k,nEN retaining the i.i.d. properties

as before and allowing t E [0, T] or t E lltr. AIl of Billingsley's results carry over to

(D[a, Tl, dT) for aIl T E ~ and hence Iglehart's convergence results holds as weIl on

(D[a, Tj, dT) for all T E 114. Thus, P(rT(R(n»))-l = PR(n)-lrTI =} PR(oo)-lr:r 1 =

P(TT(R(oo»))-l for all T E 114 which, by Theorem (10), is more than sufIicient to

ensure that PR(n)-l => PR(oo)-t, ie, R(n)::::} R(oo) on (D,d).

The projection functional 7ft : D --t 1R defined by 1Tt(x) = x(t) is B(r)/B(R)­

measurable and almost surely continuous with respect to the measure P R(oo)-l (Lind­

vaU 1973). Since P R(n)-l => P R(oo)-l on D we can apply Theorem (5), which

applies to any complete, separable metric space, to conc1ude that P R(n)-l1Tt l =>
P R(oo)-l'Trt l • Thus,
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using the fact that 8(-00,x] = {x} has zero measure since ,moo) is a continuous

random variable (see Billingsley (1968)). Similar to the derivation of (3.1), we can

obtain a tractable expression for P{~oo) ~ x}.

The functional TT : D ~ :IR defined by TT(X) = inf{t > 0 : x(t) < D} is also

B(r)/B(lR)-measurahle and continuous almost surely with respect to P R(oo)-l on

D[a, 00) since x E D is measurable and the Wiener measure P R(oo)-l corresponds to

a process with P-a.s. continuous sample paths (Stroock 1993). Applying Theorem

(5) again we have that P R(n)-l (TT)-l => P R(oo)-l (TT)-l and thus

P{TT(R(n» ~ t} - P R(n)-lTr- 1 ( -00, tl
~ P R(oo)-lTT-l( -00, t] = P{TT(R(oo») < t}

whose distribution is as in (3.2). It should he noted that these convergence results

apply to any model having a renewal counting process NX, without explosion, for

daim arrivaIs which need not be independent of the claim severities. However, it is

seen that if the claims are not distributed in a reasonably symmetric manner this

approximation doesn't perform weIl (Gluckman 1979). Furthermore, it is often the

case that claim severities are highly skewed with infinite second moments, ruling out

altogether the use of the Wiener process approximation (Embrechts & Veraverheeke

1982). For example, Pareto, LogGamma, Weibull distributions and others are com­

monly used to model claims distributions (Hogg & Klugman 1984). As a way of

dealing with this problem, Furrer et al. (1996) have considered a larger class of ap­

proximating processes based on a-stable distributions, of which the Wiener process

approximation is a close neighbor.

3.4 a-Stable Lévy Processes

Definition 1 A random variable X has a stable distribution if it has a non-empty

domain of attraction: there is an i.i.d. sequence random variables {Xn}nEN, with

common distribution function F, and sequences of real numbers {an}nEN and {bn}nEN
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with an > D such that a: I:~=l (Xk - bn)=> X in which case we say that F is in the

domain of attraction of X.

Thus, stable distributions are the only possible distributions that can arise as weak

Iimits of sequences of normalized partial sums of i.i.d. random variables, which, by

the Central Limit Theorem, includes the family N(j.L,a2) of normal distributions. The

stable distributions also possess another interesting property : infinite divisibility.

Definition 2 A random variable X with Law P and characteristic function P(9) is

infinitely divisible (ID) if one of the following equivalent conditions holds:

(1) 'Vn E N 3 n i.i.d. random variables {X~n}}k=l such that X ;g X~n) + ... + X~n)

(2) 'Vn E N 3 Pn E 'Pli such that P = p:n

(3) 'Vn E N 3 ~(e) S'uch that P(B) = [~(9)]n and 13;;(0) = 1

Pn and ~ (9) are the law and characteristic function of the {X~n)}k=l. A beauti­

fuI classical result completely characterizes ID laws in terms of their characteristic

functions:

Theorem Il (Lévy-Khintchine) A random variable X is infinitely divisible if and

only if its characteristic function is of the form P(O) = e~(O) where

4J(O) = i(}j.L - ~92(T2 + r (e iOX - 1 - i9?/J(x)) dM(x)
2 ~\{O}

for some Il E 1R, (T E 114, M E M~{~), and?/J is a bounded measurable function

'lj; : R \ {D} ~ R \ {O} satisfying sUPJR\{O} 11/J(:~-x 1 < 00.

Proof: See Stroock (1993).

The above representation is not unique since there is considerable freedom in the

choice of 'if;. For a fixed choice of ?/J the above representation is unique, and, for this

reasoD, (Il, 172 , M) are called the Lévy characteristics of X and M is the corresponding

Lévy measure of X. The original choice ?/J(x) = 1':x2 of Lévy and Khintchine together
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with the definition of a stable distribution leads to the Lévy characteristics for stable

randorn variables (J-L, q2, D) and (tL, 0, M) where J-L E R, à E ll4, and M E Mi\{~} is

given by
Q P

dM(x) = Ixla:+1 1(-00.0) (x)dx + Xa+11(0.00)(x)dx

for sorne Cl! E (D, 2) and P, Q E Rr such that P + Q > D. P and Q give the relative

weighting of positive and negative values of X (Kolmogorov & Gnedenko 1968).

The first set of characteristics (tL, q2, 0) when a = 0 yields PC0) = e iOJL corre­

sponding to the unit point mass at J-L. The first set (j1., 0-2, 0) when ëJ > 0 yields

pee) = ei8JL-~02q2 which corresponds to a N(J-L, ëJ2) law. The second set (11,0, AI) is of

primary interest here. Setting (3 = ~~§ E [-1,1] to represent skew and performing

an integration as described in Feller (1966), yields the explicit representation

.......() {-a01e!a [1 - i.8sign(O) tan 1T2a] + ij1.8 if Cl! E (0,1) U (1,2)
InP 0 =

-0"101 [1 + 2~sign(0) ln 191] + iJ-L8 if Cl! = 1

where sign(O) = 1(0,00)(9) - 1(-00,0)(9) and a > 0 is a constant (different ta the à

appearing in the Lévy characteristics). The parameters 0:, fi, a and J.t are unique.

Setting 0" = 0 in the above characteristic function yields the law 6p., the unit mass at

tL. In this case, the parameters Cl! and (3 are irrelevant. Setting Cl! = 2 in the above

yields a N(J.L, 20"2) distribution, in which case (:J is irrelevant. Thus, the above family

of characteristic functions includes aIl stable characteristics functions if we allow the

cases a = 0 and a: = 2 and accept non-uniqueness of the irrelevant parameters.

Denote the entire class of a-stable distributions by 80 (0", (3, J.L) where Cl! E (0,2] is the

index of stability, a E 1I4 is the dispersion, .8 E [-1,1] is the skewness, and tL E lR

is the location. Since the Dirac mass 6p. has exceptional properties, we exclude it

from further consideration by the restriction a > 0, which will be implicitly assumed

from here on. The following arithmetic properties of stable random variables can be

deduced directly from the form of the characteristic function above.

Proposition 2 If X ",80 (0", (3, J.L) then for anya E R, X + a '" 8a ,(a, (3, J.L + a,)
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Proposition 3 If X ro...ISo(u, (3, J.L) then for anya ER \ {O},

{

SQ(lalu, ,8sign(a) , aJ.L) if a ;/= 1
aXro...I

So(lalu, (3sign(a) , aJ.L - 2a;fJ ln laI) if a = 1

Proposition 4 If Z ro...ISo(1,,8, 0), U > 0, and J-L E IR then

X = uZ + J.L rv 8Q (u, /3, J.L) if Cl: ;/= 1

X = uZ + (J.L + 2~fJ In(a)) '" 8 0 (u, /3, J-L) if Cl: = 1

Thus, with a simple scale-location transformation we can move from So(1,,8, 0) to

SQ(a, {3, p) and so for simulation purposes we only need ta consider distributions from

SQ(1, /3, 0).

Proposition 5 If Xi ro...I So (Ui, /3i' J.Li), i = 1, 2 are two independent random variables

then Xl + X 2 rvSo(u,,8, J-L) where

/3 - /3laf + ,82a2 J-L = J-Li + J.L2, a = (aQ

I + a2Q ) 1/0
- (lQ + U O '

1 2

Proposition 6 Let {Xk}kEN be i.i.d. random variables distributed as 8Q (a,,8, J.L).

Then,

nhex L:~=I(Xk - J-L) rv 8 0 (a, (3, 0) if a f= 1

nIl/ex L:~=l (Xk- J-L - 2U: ln n) rv So(a, {3, 0) if Q = 1

Surprisingly, the inversion of the characteristic function of a stable distribution is

known explicitly in only four cases, despite the fact that it is known that they are

continuous, unimodal distributions (Zolotarev 1986).

1.) The Normal distribution 82 (a, (3, J.L) = N(J.L, 2(2
) with density

1 {_(X-J.L)2}
J(x) = ~exp 4 2

41ra2 a

2.) The Cauchy distribution 8 1 (a, 0, J.L) with density

(J

J(x)----"'7""':"'-~-~
- 1r((x - 1l)2 + ( 2 )
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3.) The Lévy distribution 5! (li, 1, J.L) with density
2

(li)î 1 {li}f(x) = 21l" (x _ J.L)3/2 exp 2(x _ J-l) 1(J.',00) (x)

and its refiection J(-x).

4.) The Dirac delta function 8 Q (0, 0, p,), oJ.'(x).

The next three figures are densities from 5cr (a, (3,0) for various values of Ci, (3 and

u and were obtained by numerically computing

J(x) = 2
1 100

e- i6xP(9)d9.
1r -00

J.L = 0 is chosen for convenience since it is merely a location parameter. Tt is clear

from the graphs that 8 Q (u, /3, J.L) is a very rich family.
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Stable Denstties: sigma=1.5, beta=O.O,O.2,0.4,O.6,O.8,1.0, mu=O.O
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Stable Densities :sigma=1.0, beta=O.O,O.2,O.4,0.6,0.8,1.0, mu=O.O
alpha=2.0 alpha=1.8 alpha=1.6 alpha=1.4

CD CD CDo 0 0
III CD Cl!

~o x O xO
~~ ~~ ~~

o ci °
~~:~~~
o 0 0 '------~

Cl r-------., Cl ,..---------,

~ --"---o '--------'
-4 ·2 G 2 4 -4 ·2 G 2 4 -4 ·2 0 2 -4 ·2 0 2 4

alpha=12

-4 ~ G 2 4

alpha=1.1 alpha=1.0

Cl Cl Cl

li! CD Il)

0 0 ci
CD CD CD

~o 'k0 )('0Il
~'lt ~'t ~'t

ci 0 ci
N

~
CIl

~
CIl

0 ci ci
0 0 Cl
ci ci 0

-4 ·2 0 2 4 -4 ·2 0 2

alpha=O.9

-4 ·2 0 2 4

CD Cl!

~~--A. ~~~
o 0 1....--."..--=-----'

-4 ·2 0 2 4

Cl ,..----.-------,

CD
ci

alpha=O.1

-4 ·2 0 2 4

alpha=O.5
Cl ,---------,..
CD
ci
CD

xci
;:''t

o
N

°
~L=~~~~~

alpha=O.6

Cl

CD
ci
CD

l('ci
::''t

~
ci
N
ci
0
ci

-4 ·2 0 2

a1pha=O.2

Cl..
CD
ci

~

...... L
-4 ·2 0

alpha::O.3

-4 ·2 0 2 4

-4 ·2 0 2 4

Cl,-------,

alpha::O.7

ID
ci

alpha=O.8

CDo

alpha=O.4

-4 ·2 0 2 4

-4 ~ 0 2 4

Cl ....----..-------,

Cl!o
CD

l('ci
::''lt

o
~

~ L.=:=~~~==:J

36



Stable Densities :sigma=0.5, beta=O.0,O.2,0.4,O.6,O.8,1.0, mu=O.O
alpha=2.0 alpha=1.8 alpha=1.6 alpha=1.4

Cl Cl ~ Cl

CIl CIl CIl CIl
ci ci ci ci
CIl CIl li! CIl

'Xc

~
j('ci

~
x O

-"-
j('0

;:''lt ;:'" ;:'" ~'lt

ci ci c:i c:i
<II <II <II

~ci ci c:i

Cl Cl 0 0
0 0 c:i ci

-4 ·2 0 2 -4 ·2 0 2 -4 ·2 0 2 4 -4 ·2 0 2 4

alpha=1.2 alpha=1.1 alpha=1.0 alpha::O.9

Cl C! q Cl..
CIl CIl CIl CIl
0 ci ci 0
CIl III

~
CIl

--Â-
III

j('ci

-'l-
j('ci j('ci -0

le
;:''lt ~ ... ;:' ... ;:''lt

0 ci ci ci
<II <II <II <II
ci ci ci ci

~ '! 0 Cl
0 ci 0

-4 ·2 0 2 4 -4 ·2 0 2 4 -4 ·2 0 2 4 -4 ·2 0 2 4

alpha=O.8 alpha::O.7 alpha::O.6 alpha=O.5

~ C! C! Cl

CIl 111 CIl CIl
0 ci ci 0
co CIl UI CIl

j('ci :go xO xC
;:'" .... 'It ;:''It ;:' ...

0 ci ci ci
<II <II <II <II
0 ci ci 0
0 0 0 0
ci ci ci 0

-4 ·2 0 2 4 -4 ·2 0 2 4 -4 ·2 0 2 4 -4 ·2 0 2 4

alpha=O.4 alpha=O.3 alpha::O.2

Cl C! C! Cl

Il) CIl CIl CIl
0 0 ci 0
CD III CD CD

xO x O )('0 -0
le

;:'" ;:''It ;:''lt ;:' ...
ci 0 ci ci
<II COi (Il

Lci 0 0
~0 0 Clci ci 0

-4 ·2 0 2 4 -4 ·2 0 2 4 -4 ·2 0 2 4

t ~;:;:
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Note that as Q -+ 0, our numerical inversion of the characteristic function becomes

inaccurate due to the sensitivity of the inversion to the truncation of the integration

range. Note also that as œ -+ 1 from above or below we see that increases in {3

have the effect of spreading the densities along the axis. This singular behaviour at

a = 1 is merely a consequence of the particular way the family So(a, (3, J.L) has been

parametrized via the choice of 'if;. Reparametrizing by a different choice of 'if; would

have the effect of altering J.L, P, and Q only (and hence (3 and a) but does not alter the

value of a. For instance, Feller (1966) and Zolotarev (1986) work with the functions

'ljJ(x) = sin x 'ljJ(x) = Xl[-I,IJ(X)

Another method to reparametrize So:(a, /3, J.L), employed extensively by Zolotarev

(1986), Chambers, Mallows & Stuck (1976), and Kanter (1975), other than a different

choice of 'if;, is to reparametrize the characteristic function for the case a :f:. 1 by

the following scheme. Consider the characteristic function for a =f:. 1, ln 'fi(0) =
-0'°1810: [1 - ij1sign(O) tan 71"2°] + iJ.LO, and represent the first term in complex polar

form:

-aO:IOIQ [1 - ij1sign(O) tan (1r
2
a)]

- -o"~IOIO: exp [-i{32Sign(8)~K(a)]

- -0"~1010: cos (82iK(a)) [1 - isign(O) tan ({32~K(a))]

where, for a suitable choice of K (œ), we can find the new parameters (32 and 0'2 from

and

Ii.l..·.·
~

With this parametrization the characteristic function takes the form

....... ) {-a~IOIQeXP(-ij12Sign(8)~K(a))+iJ.d} ifa=f:.1
InP(B = .

-0'/01(1 + ~sign(8) ln IO/) + iJ.LO if a = 1

Zolotarev (1986) has used both K(a) = l-11-al and K(a) = œ-1+sign(a-1),

which both ensure that (32 E [-1, 1], in his investigations into integral representations
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of stable density functions. Chambers et al. (1976) have used one of Zolotarev's

integral representations involving K(a) = 1 - Il - al to derive a representation of

densities in Sa(l, ,82, 0) in terms of a pair of independent uniform and exponential

random variables. Let U f'V Uniform(-~,~)E "J Exponential(l) be independent

and let c = ~K(a). Then

{

sin(a(U+c)] (cos[u-a(u+c)]) l~Q if a =1= 1
S (1 R 0) - (cos up/o E

ct , fJ2, - ( ( 11' ) )

~ (~+ ,82U) tan U - ,82 ln 2!f~;2S% if a = 1

Chambers et al. (1976) define yet another parametrization that yields a charac­

teristic function continuons at a = 1 as weIl as give an efficient and numerically

accurate algorithm for simulating these densities. As in Janicki & Weron (1994), we

choose to work with the parametrization arising from the choice 'l/;(x) = 1':x2 and

so a modification of the above representation must be made. This can be done by

noticing that
'Ir{32 1 [ ( 'Ira ) ]c = 2a K(a) = ;tan-1 ,8tan 2"'"

and for (]"2 = 1 we have that (]" = cos[tan-l(,Btan(7l";))]~. Thus, defining

C",p = ; tan-1 [.8 tan cr;)] and D",p = cos (tan-1 [.8 tan cr;)]) :,1

we then get that

{

D sin[ct(U+CQt8)] (COS[U-ct(u+Cot,B)]) l~Q if a ....t. 1
Sct(l,,8,O) = ct,/3 (cos u)l/o E -r

~ ((~ + PU) tan U - pIn (t::;~U)) if a = 1

Note that the case a = 1 is unchanged. Also note that this expression was given

incorrectly in Janicki & Weron (1994). The foIlowing figures numericaIly demon­

strate its correctness by comparing the densities computed numericaIly using the

inverse Fourier transform and the densities of 30,000 deviates simulated with the

above representation. The discrepancies for the smaIler values of a are due primarily

to the increased sensitivity of the Fourier integral to the range truncation involved in

its numerical computation.
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Stable Densities :Simulated vs. Numerical Fourier Transform : sigma=1.0, mu=O.O
a1pha=2.0, beta=·1.0 alpha=2.0, beta=-o.5 alpha=2.0, beta=O.O alpha=2.0, beta=O.5 a1pha=2.0, beta=1.0

-4 ·2 0 2 4

alpha=1.6, beta=·1.0

-4 ·2 0 2 4

alpha=1.6, beta:.Q.5

-4 ·2 0 2 4

alpha=1.6, beta=O.O

-4·2024

alpha=1.6, beta=O.5

-4 ·2 0 2 4

alpha=1.6, beta=1.0

-4 ·2 0 2 4

alpha=1.2, beta=·1.0

-4 ·2 0 2 4

alpha=1.2, beta=.Q.5

-4 ·2 0 2 4

alpha=1.2, beta=O.O

-4·2024

alpha=1.2, beta=O.5

-4 ·2 0 2 4

alpha=12, beta=1.0

-4·2024

alpha=1.1, beta=·1.0

-4 ·2 0 2 4

alpha=1.1, beta=.Q.5

-4 ·2 0 2 4

alpha=1.1, beta=O.O

-4·2024

alpha=1.1, beta=O.5

-4·2024

alpha=1.1 , beta=1.0

-4·2024

alpha=1.0, beta=·1.0

-4 ·2 0 2 4

alpha=1.0, beta=·O.5

-4 ·2 0 2 4

alpha=1.0, beta=O.O

-4 ·2 0 2 4

a1pha=1.0, beta=O.5

-4 ·2 0 2 4

alpha=1.0, beta=1.0
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Stable Densities :Simulated vs. Numerical Fourier Transform :sigma=1.0, mu=O.O
a1pha:O.9, beta=-1.0 alpha=O.9, beta=.().5 alpha=O.9, beta=O.O a1pha=O.9. beta=O.5 alpha=O.9, beta=1.0

-4 ·2 0 2 4

alpha=O.8. beta=-1.0

-4 ·2 0 2 4

alpha=O.8, beta=-o.5

-4 ·2 0 2 4

alpha=O.8, beta=O.O

-4 ·2 0 2 4

a1pha=O.8, beta=O.5

-4·2024

alpha=O.8, beta=1.0

-4 ·2 0 2 4

alpha=O.6, beta=-1.0

-4 ·2 0 2 4

alpha=O.6, beta=-o.5

-4 ·2 0 2 4

alpha=O.6, beta=O.O

-4·2024

alpha=O.6, beta=O.5

-4 ·2 0 2 4

alpha=O.6, bela=1.0

-4 ·2 0 2 4

alpha=O.4, bela=-1.0

-4 ·2 0 2 4

alpha=O.4, beta=-o.5

-4 ·2 0 2 4

alpha=O.4, beta=O.O

-4 ·2 0 2 4

alpha=O.4, beta=O.5

-4·2024

a1pha:..O.4, bela=1.0

E:W E:[lJ E:[l] E:[I] E:UJ-0 -0 "0 .... 0 .... 0

o 0 0 0 0
ci ci ci ci ci

-4 ·2 0 2 4

alpha=O.3, bela=-1.0

-4 ·2 0 2 4

alpha=O.3, beta=-o.5

-4 ·2 0 2 4

alpha:O.3. beta=O.O

-4 ·2 0 2 4

alpha=O.3, beta=O.5

-4 ·2 0 2 4

alpha=O.3, beta=1.0

11.,..:
Ill'

~:DJ ~:[]] ~:[]] ~:[I] ~:[[]
-4 ·2 0 2 4 -4 ·2 0 2 4 -4 ·2 0 2 4 -4 ·2 0 2 4 -4 ·2 0 2 4

41



We now collect sorne results on domains of attraction and series representations

of a-stable random variables and a-stable Lévy processes.

Definition 3 A function L(x) is said to be slowly varying at infinity if for aU a > 0,

Hm L(ax) = 1
x~oo L(x)

Theorem 12 (Mijnheer 1975) A distribution function F is in the domain of at­

traction of Set (1 , (3, 0) for sorne a E (0,2) and (3 E [-1, 1] if and only if

(1) LF(X) de! xet[l - F(x) + F(-X)] is slowly varying at infinity

(21 ) l' F(-x) 1-{3
/ Imx~oo 1-F(x)+F(-x) = -2-

Furthermore, if F is in the domain of attraction and {Xn}nEN are i.i.d. random

variables distributed by F then the sequences {an}nEN and {bn}nEN, an > 0, such that

a~ 2:~=1 (Xk - bn ) =} Set(l, (3, 0) satisfy

Hm nLF(n) =
n~oo a~

rel - a) cos et21l" if 0: E (0, 1)

a if Cl: = 1
11"

r~.=-;) 1 cos et21l" 1 if Cl: E (1,2)

which implies that an = n 1/ o L(n) for sorne L slowly varying at infinity and bn can be

chosen according to

o if Cl: E (0,1)

~..'.'~;

bn= an fJR sin a: dF(x) if a = 1

fJR xdF(x) if 0: E (1,2)

Note that the crucial parameters here are a and {3. The scale-location parameters J.L

and a can be incorporated into the sequences {an}nEN and {bn}nEN for the general

case of Set (a, (3, J.L) domains of attraction. The case 0: = 2 is taken care of by the

centrallimit theorem: Fis in the domain of attraction of N(O, 1) if and only if F has

finite mean and variance.
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Definition 4 An F-adapted process Lisa Lévy process if

(1) La a.s. 0

(2) L has independent increments: 'ri s, t E 114, L t+s - Ls II :Fs •

(3) L has stationary increments: 'ri s, tE Rt, L t+a - La 'D Lt

(4) L is stochastically continuous: V t E Rt, P lims-+t L~,{J = L~,{J

Theorem 13 Every Lévy process has a unique càdlàg modification which is also a

Lévy process (X is a modification of Y if 'rit E ~, P{Xt = Y;} = 1).

Proof: See Protter (1990) We can therefore always choose to work with càdlàg

modifications.

Definition 5 An F-adapted process Lo,{3 is a standard a-stable Lévy process if

(1) La,{3 is a Lévy process

(2) Lo,{3 has a-stable-stable increments: V t E IR;., L~,f3 rv Sa (tl/O: ,(3, 0)

When Ci = 2, f3 is irrelevant and 72L2,{3 is a standard Wiener process.

Theorem 14 (Samorodnitsky & Taqqu) If Lo,{3 is a standard a-stable Lévy pro­

cess on [0,1] for sorne a E (0,2) and {3 E [-1,1] then

ifa = 1

if a E (0,1)

if a E (1,2)

{ c~/o LnEN Inr;l/Ql{Un~t}}
tErO,l]

{ c~/a LnEN ('Ynr;1/O:1{Un~t} - f3tb~O:») - ,Btlln l}
""<: 7T 1r tE[O,l]

{C~/o LnEN ('Ynr;1/O:1{Un~t} - ,Btb~O») }
tE[O,l]

where {'Yn}nEN are i.i.d. withP{'Yn = 1} = l~{3 andP{'Yn = -1} = 1;{3, {rn}neN are

the jump times of a Poisson process with unit arrival rate, and, {Un}nEN are i.i.d.

and uniformly distributed over [0,1]. Furthermore, {'Yn}nEN, {rn}nEN, and {Un}nEN

are mutually independent. The constants Co and {b~o)}nEN are given by

Co: = { r(2-~)~os T if a E (0,1) U (1,2)

~ if a = 1
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f,[l. _1_J x-2 sin xdx if Ct = 1
b ct = n t n-1

n ( 0-1 0-1)
Q~l n-O - (n - 1)-0 if Ct E (1,2)

The essential elements in this series representation are the jump times {Un}nEN,

the jump directions {"Yn}nEN (1 for up and -1 for down), and the deereasing jump

heights {r~l/Q}nEN' whieh are aIl independent of each other. The b~Q) and Ca are

only constants.

3.5 The a-Stable Lévy Process Approximation

Theorem 15 (Furrer et al, 1996) Let {Xk}kEN be a sequence of i.i.d. random

variables having mean J.L and common distribution function F in the domain of at­

traction of SQ(l,,8, 0) for sorne Ct E (1,2) and (3 E [-1,1]. Let cp(n) = nI/aL(n)

where L(n) is the function slowly varying at infinity such that

1 n

-en) E(Xk - J.l) => 80 (1, (3,0)
cp k=l

whose existence is given by Theorem (12). Let {N(n)}nEN C D be a sequence of

point processes such that for some constant À > 0, N(~(-;SÀI => O. Define ~n) =
u(n) + 7r(n)t - cpln) E:l:> Xk and ~oo) = U + '!rt - Àl/aL~,/3 where '!r(n) - ÀJ.l cp(n) --> '!r

and u(n) --> u. Then, R(n) => R(oo).

Proof: First, write .mn
) in the following farro:

Sinee
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we have that

and 50

but

and since

we have that

<p(n) nI/aL(n) ( n ) l/a L(n)
<p(LntJ) = (lntJ)I/aL(lntJ) = LntJ L(lntJ)

L(n) 1 and Lntj -+ t
L(LntJ) -+ n

lntJ
L~n) d;j (ln) L(Xk - 1-") => tl/aLf,{3 1) Lf,{3

cp k=l

S· N(n)-nÀI ~-ÀI p 0 d l/a-IL() 0 ~ 1 h hInce !pen) = n1/a-1 L(n) -+ an n n -t lor Cl > we ave t at

N~n) _ >"1 ~ 0 and 50 N~n) => AI. Applying Theorem (8) we get that

by the self-similarity of stable processes and so the result is proved.

o
The generality gained by this result is that the second moment of the c1aims

distribution need Dot exist and the claim arrivaIs need not form a renewal process.

However, Cl! is restricted to (1,2). The case Cl = 2 is handled by the Wiener diffusion

approximation. The range Cl E (0,1] has been excluded. Fortunately, many of the

applicable heavy tailed distributions, such as the Pareto or LogGamma distributions,

are in a domain of attraction for sorne 0:' E (1,2). Also, for Cl E (1,2) we have finite

rneans whereas for Cl E (0: 1] we do not.
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Thearem 16 (Furrer et al. 1996) If {R(n)}nEN and R(oo) are the risk processes

defined in Theorem (15) for which R(n) =} R(oo) then Tr(R(n») =} TT(R(oo») where

Tr(x) = inf{t > 0 : x(t) < D} is the ruin functional on D.

In arder to prove this theorem we first need three lemmas.

Lemma 1 (Furrer et al. 1996) Let X t = 'Trt - À~Lr,{3 for t E ~. Then, \:If. > 0,

P-a.e. trajectory of X crosses 0 for infinitely many times in [0, E].

Proof: Let {tn}nEN C 114 he a sequence of times snch that tn ~ O. We will show

that for infinitely many n, X tn < Dand Xtn > 0 P-a.s.

P{li!!!n{Xtn ~ O}} ~ limnP{Xtn ~ O}

- limnP {À~Lr~,6 ~ 'Trtn }

- limnP{(Àtn)~Lf'P ~ 'Trtn }

- limn P{Lf',6 ~ 'TrÀ-~t~-~}

~ limnP{Lf',6 ~ 'TrÀ-~}

- P{Lf',6 ~ 'TrÀ-i-}

since Ct' > 1 and tn ~ 1 implies that t~-~ ~ 1. The support of the density of L~'P

for 0: > 1 is al! of:IR sa it follows that P{Lf',6 ~ 'TrÀ-~} = 1 - p < 1 for sorne p > D.

Thus, P{liilln{Xtn ~ D}} < 1. Also, hy right continuity,

X tn = X tn - X o = X tn - lim X tn+N +1 = lim [Xtn - X tn+N +1 ]
N~oo N~oo

N 00

- J~ :L:[Xtn+k - X tn+k+l ] = :L:[Xtn+k - Xtn+k+l]
k=O k=O

Let Qn = a-(Xtn+k - Xtn+k+l : k E No)· Thus, X tn E Qn for aIl n and therefore

liron{Xtn ~ O} E nnEN Qn' From the Kolmogorov 0 - 1 law, P {liffin{Xtn ~ O}} = 0

or 1 but we have that P{limn{Xtn ~ D}} < 1 and 50 P{limn{Xtn ~ D}} = O. Thus,
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P{lillln{Xtn < O}} = 1, and so X tn < 0 for infinitely many n P-a.s. So, for any € > 0,

X < 0 P-a.s. for infinitely many time points in [0, €]. By a similar argument, X > 0

P-a.s. for infinitely many times in [0, e] and therefore, P-a.s., X crosses 0 infinitely

often in [0, e].

o

Lemma 2 (Furrer et al. 1996) Let To = inf{t > 0 : R(oo) = o}. Then, for aU

€ > 0, P-a. e. trajectory of R(oo) crosses 0 for infinitely many times in the stochastic

interval [To,To+ e].

Proof: Define a process X t = Er':lt - 140;). By the strong Markov property of Lévy

processes (Protter 1990), X is again an a-stable Lévy process starting from Xo = 0

P-a.s. Furthermore,

X t - U + 7T'(To+ t) - À 1/0:L~:rt - (u + 7T'To- À 1/0:L~t]

Trt - (L0:,(3 - L0:,(3] g 7T't _ À 1/0:Lo:,f3
- To+t Ta t

Thus, from Lemma 1 we have that for P-a.e. w E n, X(w) crosses zero infinitely

often in every right neighborhood of zero. Let w E n be such that X (w) crosses zero

infinitely often in every right neighborhood of zero. Since X(w) is simply R(oo)(w)

started at To(w) we have that R(oo)(w) crosses zero infinitely often in every right

neighborhood of To(w) and 50 the result follows. 0

Lemma 3 (Furrer et al. 1996) Let {Tn}nEN be the jump times of the process R(oo).

Then

Proof: First, since

U{R~~~ =1= O} = UU{~~~ =1= O,Tn ~ k}
nEN nENkEN
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we need only show that P{~~~ '# 0, Tn ~ k} = 1 for any n and k in N. However,

Since {.m~~ i= 0, Tn ~ 1} C {~~~ i= 0, Tn ~ k} for aIl k, n E N it suffices ta show

that P{~:O~ ;f:. 0, Tn ~ 1} = 1 and so we can consider ~oo) with t, {Tn}nEN C [0,1],

in which case P{Tn ~ 1} = 1 and the jump times are uniformly distributed on [0,1].

First, note that P{R~~ '# O} = P{.m~) - Âmr:;) ;/= D}. Now, using the series

representation for a-stable Lévy proeesses on [0,1],

ÂR~~) = R~~) - R~~
J J J

- {u + 7r(Tj) - )..1/aL~;,8} - {u + 7r(Tj-) - )..1/0L~;~}

_ Àl/aLa,,8 _ À 1/aL a,,8Tj Tj-

- Àl/ac~/o L {')'nr~l/al{Tn~Tj} - 13Tjb~Q)}

nEN

_)..l/ac~/aL {')'nr~1/Ql{Tn~(7J-)} - f3(Tj- )b~o)}
nEN

- Àl/ac~/a')'irjl/Q

and so

P{R~~ ;fO}

- P { R~~) - ~R~~) i= °}
- P {u + 7rTj + (ÀCa)l/o (13Ti bla) - L {')'nr;I/Ctl{Tn~Tj} - 13Tjb~Q)}) ;f o}

nEN\{j}

Now,

P {u + 7rt + (ÀCa)I/0 (13tb1a) - L. {'Ynr~l/al{Tn~t} - (3tb~a)}) =1 a}
nEN'\{J}

- P {u + 1ft - .À1/a L~',8 '# 0 , t < Tj }

- 1

sinee it is known that stable densities are continuous (Zolotarev 1986). Using the law

of total probability, the independence of the random variables in the series represen-
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tation, and the fact that the jump times are uniformly distributed over [0,1] we have

that

P {R5,~J. # 0, Tn ~ 1}

- P {R5,~ # o}

- P {u + 1fTj + (ACar) ~ ( E. {1'nr:fI 1{7"n~1J} - (3Tjb~ar)} - (3TjbJar)-) # o}
nEN\{J}

- [p {u + 1rTj + (ÀCQ)~ ( L {'Ynr:fll{7"n~Tj} - (3Tjb~Q)} - (3Tj b)Q») # 0 Tj = t} dl
o nEN\{j}

- [p {u + 1rt + (ÀCcr )~ ( L. {1'nr~l l{7"n~t} - (3tb~Q) } - /3tb}Q») # o} dt
o nEN\{J}

- l11dt = 1

o

Proof of Theorem 16:. If we can show TT (x) = inf{t > 0 : x(t) < O} is continuous

for P R(oo)-l_a.e. trajectory in D then we ean apply Corollary (1) to conclude that

sinee R(n) => R(oo) we have that Tr(R(n») => TT (R(oo») , proving the result.

For .moo) = u +1ft - Al/Q L~,{3, let A c n he the set such that for w E A, R(oo)(w)

crosses zero infinitely often in every right neighborhood of S(w) = inf{t > 0 : .moo)(w) = O}.

By Lemma (2), P(A) = 1. Let B = nnEN{R~~ =P D} where {Tn}nEN are the sequence

of jump times of R(oo). By Lemma (3), P(B) = 1. Thus, P(A n B) = 1.

Now, let w E An B and set x(t) = ~oo)(w). Let {Xn}nEN C D he any sequence

such that X n --+ x in (D, d). Assume that Tr(xn) does not converge ta Tr(x). Thus,

either limnTr(xn) # Tr(x) or lirnnTr(xn) =P Tr(x). In either case we can find a

subsequence {Xnk}kEN snch that Tr(xnk ) --t T # Tr(x). There are two cases.

In the first case, 0 ~ TT(X) < T ~ 00. Now, x has countably many jumps so

we ean find an abitrarily small 61 > 0 such that x is continuous at TT (x) + 81 , ie,

~X(TT(X) + 61) = 0 where ~x(t) = x(t) - x(t-). Since TT(X) < T we can find an
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arbitrarily small 62 > 0 such that Tr(x) + 02 < T. Finally, Tr(x) is defined as an

infimum 50 we can find an arbitrarily sma1l63 > 0 such that x(Tr(x) +(3 ) < -€ < 0

for sorne € > O. By the right continuity of x we can find a single 6 > 0 such that for

sorne € > 0

Since x is continuous at Tr(x) + 0, xnk(Tr(x) + 6) ~ x(Tr(x) + 0) and so 3K1

such that k > KI =? xnk(Tr(x) + 6) < € + x(Tr(x) + 6) < 0 and so for k > KI,

Tr(xnk ) ~ Tr(x) + 6 < T, or, in other words, k > KI => IT - Tr(xnk )/ > 0 > 0 which

contradicts that Tr(xnk ) -+ T.

In the second case, 0 ~ T < Tr(x) ~ 00. Since x nk ~ x and Tr(xnJ ~ T we

have from Theorem (1) that xnk (Tr(xnrJ) ~ x(T) or x(T-). If the limit is x(T) then

since T < Tr(x), x(T) ~ O. But, xnk(TT(xnrJ) :::;; 0 for aIl kEN 50 x(T) :::;; O. Thus,

x(T) = O. Similarly, if x(T-) is the limit then x(T-) = O. Suppose that x(T) = 0 is

the limit. Since S(w) = inf{t > 0 : ~oo)(w) = D} = inf{t > 0 : x(t) = O} we have that

S(w) :::;; T. By Lemma (2), x crosses zero infinitely often in every right neighborhood

of S(w). Choose p> 0 such that T + P < Tr(x). Thus, ::It* E [S(w), T + p] such that

x(t*) < 0 but since t* < Tr(x) we have a contradiction. Now suppose x(T-) = 0

is the limit. Since wEB, X(Tn(W)-) =f:. 0 for aIl jump times Tn and so T is not a

jump time of x. Thus, x(T) = x(T-) = 0 and as in the case x(T) = 0 we obtain a

contradiction. Thus, TT(Xn) must converge to TT(X) and so Tr is continuous at RCoo)

for any w E An B, proving the result.

o

Unfortunately, the lack of path-wise continuity and explicit forms for stable densi­

ties makes it diflicult to obtain exact expressions for the ruin probabilities. However,

an upper bound has been obtained which is easily computed numerically:

Proposition 7 (Furrer et al. 1996) For approximations with standard a.-stable Lévy

processes Lo,{3 for a. E (1,2), fJ E [-1,1] and U, 7r, A> 0,

P{Tr(u + 1ft - Àl/°L~'P) < T} :::;; .!.P{L~tP > uA-I/o}
p
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where p = ~ + 1r~ arctan({3 tan( 1f2a)).

Now, we apply these results to reserve models with a large class of renewal daim

arrivaIs. Note that a small error in the second case of the proof below has been

corrected.

Proposition 8 (Furrer et al. 1996) Let NX be a renewal counting process with

inter-claim times {Tk}kEN. If there is a À > 0 and a function L slowly varying

at infinity such that rpln) L:t;~ (Tk - À-l) => Wt where ep(n) = nl/2L(n) then for

a E (1,2) we have that

Proof: Since SUPsE[O,t] n-l/aIN~s - Àns/ ~ n-l/oIN;t - Àntj it sufficient to show

that SUPsE[O,tj n-l/aIN~s - Ànsl ~ O. Now, SUPsE[O,t] n-l/oIN~s - Ànsl > E if and

only if 3s* E [0, t] such that IN;'s" - Àns*/ > Enlia which occurs if and only if

N:'s" > En
l
/ o + Àns* or N:'s" < -En

l
/ o + Àns*. Case 1: N;s" > f.nl /

o + Àns*.

Since
N'X. lEn1/O+Àns"J

noS"

nS*~LTk> L Tk
k=l k=l

we have, setting nUl = f.n l / o + Àns*,

which follows from

Case 2: N;'s" < _Enl / a + Àns·.

Since
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we have, setting nU2 = -EnI/a + Ans·,

which follows from
1 ln(u2+ l / n)J

.:. < - '" (Tk - A-I
)A nI/a L..J

k=l

Since we have that the two variables UI E Ul (n) de! (EnI/a-l, En1/ a - 1 + At] and

Ù2 = U2 + lin E U2(n) de! [lin - EnI/a-l, lin - En1/ o - 1 + At],

lnud lnud
n-1/ o L(Tk- A- 1

)
p

n-1
/
a L (Tk - A-1 ) ~Osup --+ 0 =>

uIEUl(n) k=l k=l

and

lnÙ2J ln1Ï.2J
sup n-1/ a L (Tk - A- 1

) ~O => n-1/
a L (Tk - A- 1 ) ~O

1Ï.2EU2(n) k=l k=l

Thus, if either of these supremums converges to zero in probability then it follows

that SUPsE(O,t] n-1
/
aIN~s - Ansl~ 0, proving the result.

From the assumption that

we have that
1 1 lntJ

nl / 2- 1/ aL(n) nI/a L(Tk - A-
1

) => Wt

k=l

But, for Ci < 2, 1/2 - 1/0. < 0 so n 1
/ 2- 1/ a L(n) -). 0, anô so for each t we must have

that
1 lntJ

nI/a L(Tk - A-
1

) => 0
k=I
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which is equivalent to
1 LntJ

nI/a LCrk - ..\-1)~ 0
k=1

Finally, for any bounded interval [a, b], this implies that

1 LntJ
sup nI/a ECrk - À-

1
) ~ 0

tE [a,b] k=1

Since we know the intervals in the supremums U1(n) = [€n1/ o - 1 , €n1/ o - 1 + Àt] and

U2 (n) = [lin - enI/a-l, lin - en1/a- 1+ Àt] are bounded in n if Q E (1,2), the supre­

mUIDS do converge to zero in probability in either case and so the result follows.

o
Now, given a risk process R t = U + 7ft - E:!l Xk where NX is a Poisson process

with rate À, {Xk}kEN are i.i.d. with cornrnon distribution funetion F, mean j.l, and

F is in the domain of attraction of Lr,fJ for sorne Q E (1,2) and /3 E [-1,1], Furrer

suggests the following "weak approximation".

8ince NX is Poisson process, N:~nt => -yÀ3!2Wt where 'Y is the variance of the

inter-c1aim tirnes and W is a standard Wiener process (Billingsley 1968). Thus, for

Q E (1,2),
N;t - Ànt = Vii N;t - Ànt =} 0

nI/a nI/a.jiï

sinee n~ ---+ O. Now, for eaeh fixed n E N we have

\II(u, T) - P{Tr(R) ~ T}

- P { inf (U+1rt - EXk) < o}
tE[O,T] k==1

_ P { inf (_U + _1rt - _1f: Xk) < o}
tE[O,T] cp(n) cp(n) 'P(n) k=I

_p{ inf (_U +_1rnt __
1 ~Xk) <o}

tE[O,~] cp(n) cp(n) 'P(n) k=I
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'",
Considering this last process

we see that for n large we have that

and

and so this process is "close" to

Using 1r = (0 + l)j.LÀ we have that the process is close to

~ + ()J.LÀ-.!!:-t - À1/ a LCY.,/3
~(n) ~(n) t

which then leads to an approximation for the ruin probability:

where p = ~ + 1r~ arctan (13 tan (1r2a)) and which can be evaluated by a feasible nu­

merical procedure (see Proposition (7)).

54



Chapter 4

Conclusions &, Further Research

4.1 An Assessement of Weak Approximations

The Wiener process approximation is very tractable but its poor performance in

the case of highly skewed daims distributions prompted the generalization to Q­

stable Lévy process approximations, somewhat less tractable but still feasible. Thus,

the work in Chapter 3 points to two issues absolutely crucial in any application of

weak approximations: (i) accuracy, or fit, and (ii) tractabiIity. In this chapter we

focus on fit, not a numerical evaluation of weak approximations, easily found in the

Risk Theory literature (Asmussen (1984), Furrer et al. (1996)), but a theoretically

based assessment/interpretation which appears ta be conspicuausly absent in from

the literature. If an understanding of how weak Iimits fit the original process can

be obtained, one could then make informed choices in sacrificing fit for tractability.

Ideally, one hopes ta be able ta select from a very tractable class of models one that

fits the original process very weIl, avoiding the adopting of unrealistic simplifying

assumptions.

Let Rt = U+7rt- 'E~!1 Xk be an ordinary renewal reserve model with finite mean

inter-daim time À -1 > 0 and i.i.d. daims {Xk}kEN having finite mean and variance

J-l = E[Xk] and (72 = V[Xk)' Let M(t) = E[Nf] and V(t) = V[Nf] be the renewal and
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variance functions, respectively, for the process NX. We wish to assess the fit of the

weak limit approximation R(oo) arising from Iglehart's construction of {R(n)}nEN as

well as provide a satisfying interpretation of the procedure. Iglehart (1969) remarks

only that the convergence R(n) :::} R(oo) enables one to approximate the distributions

and functionals of R(n) for n large by those of R(OO) , the so-called heavy traffic ap­

proximation, but there is no mention of how well R(oo) fits R. In order to use the

heavy traffic approximation, R must be "close" to R(n) for some large n so that R

is then "close" to R(oo) via the proximity of R(n) to R(oo). However, there is a great

deal of freedom in choosing u(n), /T(n) , /-L(n) , and a(n)2, and hence even more freedom

in choosing {X~n)}k,nEN since two moments do Dot uniquely specify a distribution.

It is therefore possible to construct a sequence {R(n) }nEN that is never "near" R

or that "diverges" significantly from R, rendering R(oo) a poor approximation of R.

Ta ensure that {R(n) }nEN does not "miss" R we insist that R(l) = R and to avoid

"divergence" from R we match moments. In addition, we show that following this

procedure leads to intuitively appealing choices for u(n), /T(n), and {xin )}k,nEN, clari­

fies the role of the norrnalization factor Jn, and indicates why the cornmon choice of

.moo
) = U + (/T - /-LÀ)t - av'XWt to approximate R is an inappropriate application of

Iglehart's result (see Grandell (1977,1991) or Asmussen (1984) for example).

First, define a sequence of reserve processes by ~n) = u(n) +7r(n)t - 2::l:> xin
), for

t E ll4, n E N, and note that this differs from Iglehart's prescription in that the nor­

malization factor Jn has been absorbed into u(n), /T(n), and {Xin)}kEN, and, in addition,

7l"(n) has further absorbed the time compression factor n. Setting U(l) = u, n(l) = 7i,

xiI) = Xk for kEN, and NP) = Nf ensures that R(1) = R. Now, we choose u(n), 7ï(n) ,

and {Xin)}kEN for n ~ 2 according ta a satisfying approximation principle that keeps

{R(n)}nEN "close" to R(I) = R. The procedure we use is cornrnon in the physical

sciences: approximate the behaviour of a finite number of particles, each contribut­

ing a finite amount of sorne property to the ensemble's rnacroscopic behaviour, byan

infinite number of particles, each contributing infinitesimal1y. Such an approximation

is constructed so that all relevant macroscopic behaviours are held constant as the
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number of particles is allowed to increase to infinity and their contributions become

infinitesimal. For reserve models, we think of the number of daims per unit time as

the number of partides, the daim sizes as the amount of the property contributed

to the ensemble, and the aggregate daims made per unit time (or the aggregate net

income per unit time) as the macroscopic property of interest. To construct a se­

quence {R(n) }nEN whose macroscopic behaviour closely resembles R, we incorporate

the probabilistic structure of R into the approximating sequence by insisting that for

each n E N, N(n) is again an ordinary renewal counting process independent of the

LLd. daims {Xin)}kEN. Thus, for each n E N, R(n) is an ordinary renewal mode!. We

want the number of daims per unit time to increase in n at some reference rate, say

o (n). A natural way to achieve this is to compress the time scale by a factor of ~

by setting Nt(n) = N;t, as Iglehart and Furrer et. al. have done. Since M?) ~ À and

M~;t) ~ À as t ~ 00 we have that M(nt) ~ nJvl(t) for large t, giving the desired D(n)

increase in average arrivaI rate. In order to keep the laws of {R(n) }nEN "constant"

and "close" to that of R(l) = R we match the first two moments for aIl t E 114 and

n E N. Let /-L(n) = E[xin)] and a(n)2 =V[xin)]. We have E[Rtl = u + 7ft - /-LM(t) and

E[mn)] = u(n) + 7r(n)t -- /-L(n) M(nt). Performing a conditioning argument similar to

the one in the dassical Normal approximation, we obtain V[RtJ = a 2M(t) + IL2V(t)

and V[mn
)] = a(n)2M(nt) + j.t(n)2V (nt). Equating means and variances and noting

that M(O) = a yields

VnEN

u(n) = u, Vn E N

(n) _ j.tM(t) + (1r(n) - 1r)t

IL - M(nt) ,

(n)2 _ 2 M(t) 2 V(t) (n)2 Vent)
a - a M(nt) + /-L M(nt) - IL M(nt) , Vn EN

(4.1)

(4.2)

(4.3)

Thus, for given choices of 1r(n) , we must choose u(n) and {Xin)}kEN to satisfy (4.1),

(4.2), and (4.3) in order to match the first two moments of Rand R(n). It is im­

portant to note that if p,(n) or a(n)2 are time dependent then the assumed form of
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R(n) is incompatible with moment matching since the daims distributions are time

dependent and so are not i.i.d.

For the remainder of this section, we restrict ourselves to the case in which NX

is a Poisson proeess of rate À. Then, M(t) = V(t) = Àt and from (4.2) and (4.3) we

obtain

()
f.L 1l'(n) - 1T'

f.L n = - + ,\:In E N
n nÀ

(4.4)

(4.5)

which are bath independent of time. If we further consider the deterministic parts

of the processes separately, not involving them in the weak approximation of the

stochastie components, we would set u(n) + 1T'(n)t = U + 1rt whieh, with (4.1), gives

and so (4.4) and (4.5) become

7r(n) = 1r, \:In E N

f.L(n) = !!:., \:In E N
n

(4.6)

(4.7)

\:In E N (4.8)

li
~.;

That j.t(n) = ~ is intuitively appealing sinee our approximation principle would require

the n-fold inerease in daim arrivaIs to be balaneed by a ~ reduction in claim sizes

to keep the aggregate daims constant. Similarly, the reduction in variance is asymp­

totically like l which is desirable since the variance of the sum of n i.i.d. random
n

variables is n times the variance of one of them, again requiring a n-~ balance. Note

that the daims size reduction is precisely like ~ whereas the reduction in variance is

only asymptotically 50.
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Adopting (4.6) and choosing {Xin)}kEN to satisfy (4.7) and (4.8), the approximat­

ing sequence takes the form

Nin)

.mn) = u(n) + 1r(n)t - L xin}

k=l

N~t

- U + 1rt - L xin)

k=l

- Jn (uv'n + Jnnt -~v'nX~n) )

(
N~t)1 -en) + -en) t ~ -en)- vn U 1r n - L.J Xk
k=l

where we have set ü(n) = uvn, ir(n) = Jn, and xin} = vnxin} for k, n E N. Let

p,(n} = E[xin}] = -jn and ü(n)2 = V[xin)] = (j2 + J.L2 - ~ and, for technical purposes

only, add the condition that there ::1 cS > 0 such that sUPn E[lxin)1
2+°] < 00, which is

a mild requirement that the tails of xin ) decrease sufficiently quickly with n. Now,

noticing that à(n)2 = (j2 + J.l2 - ~ --* (2 = (J2 + J.L2 and ü(n), ir(n) and {xin) }k,nEN

satisfy the conditions of Iglehart's theorem (Theorem (9)), we can apply his result

with (2 = (j2 + p,2 to conclude that

which is precisely the classical Normal approximation.

This argument provides additional justification for the classical Normal approx­

imation in the form of a rigorous convergence argument constructed according to a

satisfying approximation principle and whose limit is fitted ta R by the matching

of moments. At the same time, it demonstrates a consistency between our approx­

imation procedure and Iglehart's construction; the presence of the crucial balance

between the n-fold increase in arrivaI rate and the ~ decrease in average daim size.

Iglehart 's choices for u(n) , 7r(n) and {xin)}keN, and his use of the normalization fac­

tor Jn appear to be motivated by the presence of the normalization factor Jn in
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Prohorov's theorem (Theorem 7), the engine behind his proof. Tt is now clear that

his choices merely disguise the n-~ balance between claim arrivaIs and claim size.

Finally, we give a satisfying interpretation of the term Àç2 = À(0-2 + J.L2). Recall the

formula V[Rt] = E[V[RtINf]J +V[E(RtINf]]. V[~oo)] = Àt(a2 + J.L2) represents the

variance accumulated by R(oo) up to time t. Consider now the accumulated variance

V(Rt ] of R up to time t, which has two sources: the variance in jump heights and the

variance in the number of jumps over [0, tJ. During [0, t], R experiences an average

of At jumps, each jump contributing a variance of a 2 to R. Thus, the "average"

accumulated variance in R due only to jump height variance is Àt x 0-2 • This variance

corresponds to the term E[V[RtINfJJ. During [0, tl, the Poisson counting process has

an accumulated variance of Àt j umps2, or an accumulated deviation of VJJ; jumps,

and the average jump height is f..L. Thus, the "average" accumulated deviation in R

due only to the variance in the number of jumps is VJJ; x f..L, or an "average" accumu­

Iated variance of Àt x f..L2. This variance corresponds to the term V[E[Rt/NfJJ. Since

jump heights and inter-daim times are independent, we expect to be able to just

add these two independent sources of variance to get a total "average" accumulated

variance of Àt(a2 + J.l2) in R over [0, t]. This interpretation shows that important

information about the probabilistic structure of R (ie: jump height and jump time

variances) has been correctly carried into the limit process R(oo). It also makes clear

why the commonly used approximation u + (11" - j.tÀ)t - av'XWt cannot he considered

as the appropriate approximation to R: the total process variance of Ris dependent

on f..L and so any reasonable approximation should reflect this dependence. The vari­

ance term aVX of the approximation u+ (1r - J.LÀ)t- o-JXWt is completely insensitive

to changes in J.l and so has not been correctly fitted to R.

Now, consider R as before except that the i.i.d. claims {Xkn)}kEN have finite

mean J.l but infinite variance. The infinite variance rules out the use of the Wiener

diffusion approximation but an approximation by an a-stable Lévy process is still

possible. Recall that NX is Poisson with rate À. The approximating sequence
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N(n) ()
R(n) = u(n) + 1I"(n)t - Ek~l Xkn was constructed with the choices

u(n) with u(n) -+ u (4.9)

1 n

<pen) with (n) L(Xk - J.L) :::} 8 0 (1, (3, 0) (4.10)
cp k=l

1l'(n) with ( 1I"(n) - j.tÀ....!!:.-) --t c > 0 (4.11)
cp(n)

N(n) - N~t (4.12)t

(n) 1
(4.13)Xk - cp(n)Xk

which was shown to converge to .moo) = u + ct - Àl/a Lf,{3. Since R(n) and R(oo) have

finite first moments and NX is Poisson with rate À, (4.1) and (4.4) apply yielding

u(n) = u and J.L(n) = *+ 1r(~;1r , Vn E N. Since xin) = rpln) Xk we have that

j.t(n) = E[X~n)] = E ['P(~)] = 'P(n) \In EJli'

and so combining (4.4) and (4.14) we obtain

1T(n) - J.LÀ-
n

- = 11" - J.LÀ Vn E N
<pen)

(4.14)

(4.15)

Thus, matching first moments determines u(n), 1I"(n) and that c = 11" - J.LÀ yielding the

"fitted" approximation

There are two problems with this approximation. First, the dispersion of R(oo) (mea­

sured by the Q-stable parameter (]') is the same for aIl mean daim sizes J.L in the

original model. As argued in the Wiener approximation, this cannot be considered

correct. Second, the D(n) rate of increase in arrivaIs is not precisely balanced by

the rpln) decrease in mean claim sizes (recall that <p(n) = nl/aL(n) for sorne slowly

varying L) and represents an arrivaI rate/claims size rescaling that is at odds with

our approximation principle. Furthermore, this imbalance necessitates an adjustment

of the premium rates according ta (4.15) which is also undesirable.
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Finally, it should he noted that the sequence of processes defined in Furrer et al.

(1996) in the application of their weak approximation to the ruin functional is not

weakly convergent. The said process can he written in the form
N'X.unI nt (N:t - nÀt)

<p(n) + (11" - J.!À) <p(n) t - <p(n) t;(Xk - J.!) - J.! <p(n)

and has as a drift term 7r(n) - ÀJ.Lrp(n) = (7r - ÀJL) !pen) which does not converge to sorne

c > 0 if 7r - /-LÀ t= 0 (see Theorem (15) and the discussion following Proposition (8)).

Thus, their application does not make direct use of their theorem on the convergence

of functionals (16); the ruin functional is considered in an ad hoc manner and in

isolation.

As a way of recovering the balance between arrivaI rate and claim sizes in the œ­

stable Lévy process approximation, as weIl as to include a dependence of the limiting

dispersion on the mean daim size, we provide the following convergence argument

which properly includes Iglehart's result but is not included in the result of Furrer et

al.

Theorem 17 Let R t = U + 'Trt - I::!1 Xk be a reserve model where NX is an ordinary

renewal cou.nting process with mean inter-claim time .,\-1 and Xk are i.i.d. SQ(a, (3, J.L)

random variables for sorne Dt E (1,2], a E 114 \ {O}, /3 E [-1,1], and JL E:IR. Define a

1 b pen) + t "N;t (n) / {(n)} .. d S (u(n) (3 l!:.)sequence 0 processes Y.L"t = U 7r - wk=l Xk Jor Xk kEN Z.Z.. Q n-1/a:' 'n

random variables and where a(n) --7 ( for sorne ( > 0 with a(l) = ()". Then,

~n) =::;. R(co} d;J U + (7r - J.LÀ)t _ (À1/ Q Lf,[3

Proof:

~n)
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where we have set xin) = :~~) xLn) 80 that

l/a (-en) J.L _ n (n) J.L
Xk - U(n)nl-1/0: - U(n) Xk - n) f'J Sa(1, (3, 0)

From the arithmetie properties of a-stable-stable distributions,
(n) n

a "'" (_(n) j.L) S ( (n) a 0)
nI/O: LJ Xk - a(n)n1- I / a f'J 0: (J ,jJ,

k=l

and, sinee (J(n) --t ç, we have the trivial convergence

(J(n) ~ (-(n) j.L)
nI/a L...J Xk - u(n)n1-1/0: * Sa(Ç, (3, 0)

k=l

Binee ~ ~ Àt we then have the convergence of the composition of the processes

(n) N;t
(J ~ (-(n) J.L) * çÀ l/aL a ,{3
nI/a: LJ Xk - U(n)nl-I/o: t

k=l

and the result follows.

o

This formulation has the following desirable properties: R(I) = R, E[x~n)) = *
which exactly offsets the O(n) arrivaI rate increase, the premium rate is not adjusted

to obtain convergence, the extra parameter çallows a fitting of the limiting dispersion,

and the crucial shape parameters a and (3 remain constant during convergence: the

trivial convergence So:(a(n) , (3, 0) ~ 80:((, (3, 0) is "clean" in the sense that the claims

distribution is not reshaped by the convergence procedure and so no information

about the daims distribution of R is distorted or lost in the limite

The two disadvantages are that , cannot be specified by matching second moments

since they don't existe However, E[lxkIP) < 00 for 0 ~ p < a and alliogarithmie mo­

ments exist (Zolotarev 1986) 50 it may he possible to determine an appropriate value

for ( through the matching of fractional or logarithmic moments. Another drawback

is that the daims distribution of R may not be a-stable. The family So:(a, /3, j.L) is

extremely rich, possessing the right qualitative features for daims distributions and

so one may be able to find values of a, /3, j.L, and a that provide a good fit to the

daims distribution (see Samorodnitsky & Taqqu (1994)).
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4.2 Weak Approximation' and Infinite Divisibility

The three cases discussed in the previous section essentially involved the weak ap­

proximation of compound Poisson surns, re-centered about zero by subtracting off

their means. We are interested in studying the nature of weak limits of sequences of

compound Poisson sum laws. A corollary to the Lévy-Khintchine Theorern is that

the set of aIl ID laws is the weak closure of the set of aIl compound Poisson surn

laws, or, equivalently, the point-wise closure of the set of aIl characteristic functions

of compound Poisson surns, which we now examine closely.

Let Zt = Ef::l X k where N is Poisson with finite rate À and {Xk}kEN are i.i.d.

jumps with law P E PR.. Since Nt has law

nE No

the law of Zt is given by

where we take p.o = 00, the point mass at O. Therefore P Zt-1 = e-Àt LnENo (~t p*n.

Using dominated convergence, the characteristic function is given by

e-Àt!eiBx L (~r dpon{x) = e-Àt L (~r! ei8xdp·n (x)
nENo nENo

= e->.t" (Àt)n Fn(O) = e-Àt "" (Àt)n [p(B)]n
L....i n! LJ n!
nENo nENo

_ e->'teÀtP(O) = eÀt(P(O)-l)
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and thus Zt is ID. Denote the set of aIl such characteristic functions by

~ = {exp [0, l (eiO
% - 1) dP(X)] : P E PR }

AH possible weak limits of compound Poisson sum laws correspond to the point-wise

closure of Po. We examine the structure of these weak limits by considering how the

point-wise closure of Po is formed. The free parameters of Po are the finite arrivaI rate

À and the jump law P. Combine these paramteres by defining the measure M = ÀP E

Mi and consider aIl sequences {M(n)}nEN such that limn-+oofIR(ei8x - l)dMen )(x)

exists for each ().

First, M is a finite measure on IR and ei8x - 1 is zero for x = 0 so we can eliminate

zero from the range of integration:

~ = {exp [t l\{Ol (éox -1) dM(X)] : M E Mi}
For M E M~, the unit mass at zero do, and f : lR. ---7 R define

Men) = M + f(n)80 E M~

Now, limn-+oofIR\{o} (eu/x -1) dMen)(x) = fIR\{O} (eiOx -l)dM(x) for each B. Thus we

can drop the restriction that M( {ü}) is finite; we only require that M E M~\{o}:

~ = {exp [t l\{Ol (e iO
% - 1) dM(X)] : M E Mi\{o} }

For M E M~\{o} and a E :IR define another sequence by

ltiseasytoshowthatlimn-+ooflR\{O} (e iOx -1) dM(n) (x) = iBa+!JR\{O} (eiOX -1)dM(x).

Since a E lR is arbitrary we have enlarged A; to

P; = {exp [i/lat + t l\{Ol (eiO
% - 1) dM(X)] : M E Mi\{o} }
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For M E Mi\{O} and CT E 114 define a sequence by

2

M(n) = M + ~ (o~ + o~) E M~\{o}

for which lilIln-+oo IR\{o} (ei8x
- 1) dM{n) (x) = -!92a2 + flR\{o} (eil1x -l)dM(x) and sa

15;. has been enlarged ta

p; = {exp [i/Jat - 8
2
;2 t + t L'lO} (eiOZ -1) dM(X)] : M E M~\{O}}

where a E IR and a E ll4 are arbitrary.

The condition that M E Mi\{o} ean he weakened further to M E M:;'~~} sinee

it can he seen that

I

r (ei8x
- l)dM(x) 1 ~ 2e181 1. (1 /\ Ixl) IdM(x) 1

lJR\{o} R\{O}

This weakening can be achieved, for example, by the sequence of measures

and results in the enlargement

15; = {exp [i8at - 82t t + t L'lO} (eiOz
- l)dM(X)] : M E M~\\~} }

2 ~

A further weakening to M E M~\{O} completes the closure of Po. However, there

is a slight complication; the integral fJR.\{O}(e i8X - l)dM(x) does not exists for M E

Mi\{~} \ M~~~~}. The Taylor series expansion of ei8x -1 about x = 0 yields eiOx
- 1 ~

i(Jx for x near zero which does not go to zero quickly enough to dominate the ;2
singularity of M near x = O. If we subtract off the term iBx1[_f,f](x) for any € > 0

then near x = 0, ei8x - 1 - i91[-f
1
f](X) ~ _0

2
;2 which is enough to dominate the x12

singularity of M. Setting € = 1 for convenience and noting that for ill E M~~~~}

both integrals

1. (ei8x - 1 - iBxl[-l,l] (x»dM(x)
R\{O}
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iOl Xl[-l.l]dM(x)
R\{O}

exist, we can extract the second integral and rewrite 1'; in the form

P; = {exp [iOJLt - 9
2;2 t + t L,{o} (e

i9
% -1- i9X1r-l.lJ(X»dM(X)] : M E M~~~~}}

where we have set J.l = a + fR\{O} Xl[-l.l] (x)dM(x). Now it can be seen that

Il (ei9z - iOl[_I,l](X»dM(X)! ~ 2e'611 (1/\ x2
) IdM(x)/

R\{~ R\{~

and 50 allowing a weakening to M E M~\{~}, for example, by the sequence

M(n) = ( À ) p =? _À_p
1 /\ x 2";2 1 /\ x 2

maintains the integrability of ei6x - 1 - iOxlr-l.l] and so we obtain the enlargement

:p;. = {exp [i9JLt - 92t t + t L'IO} (ei9X
- 1 - i9x1r-l.1] (x») dM(X)] : M E M~\fo}}

where J.l E :IR and (j E Jl4 are arbitrary. By the Lévy-Khintchine Theorem, ~ = ~
and we have obtained the cIosure.

Each step in the forming the closure has a probabilistic interpretation. For the

compound Poisson process Zt = I:~~l Xk where IV is Poisson with rate À and jump

law P, we have the Lévy measure M = ÀP E M~: all jumps arrive at the rate À. The

sequence M(n) = M + f(n)80 allows M to be singular at x = a which corresponds

to allowing the jumps of zero height to arrive at an arbitrary rate, even infinitely

quickly. This weakening does not result in new characteristic functions since jumps

of zero height contribute nothing to the process.

The sequence M(n) = M + n6~ corresponds to a perturbation of the compound
n

Poisson process by an external agent that causes additionaljumps ofheight i to arrive

at rate n. The infinitesimal perturbation "limn-too nJ~" is a unifonn embedding of
"

infinitesimally small jumps arriving infinitely quickly and results in the appearance

of a new drift term iOa in the characteristic function.
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The sequence M{n) = M + ;2 (â_~ + o~) is again due to an externally supplied

perturbation that causes additional symmetric jumps of heights _!!. and !!. to arrive atn n

the rate n;. The infinitesimal perturbation "liInn-+oo ~2 (o_~ + o~)" is a symmetric,

uniform embedding of infinitesimally smalljumps arriving infinitely quickly. However,

the rate ~2 is much faster than the rate n of the first perturbation and so these

symmetric jumps are more densely embedded. The first order effects of the equal

and opposite jumps cancel, resulting in no contribution to the drift but the density of

these jumps is such that a second order effect appears: variance. le, the symmetric

jumps are sufliciently dense that at any time scale, there are an equal number of up

jumps and down jumps and hence no net drift. However, they are not so dense that

aIl randomness associated with the arrivaI of these symmetric jumps is 10st. Thus, for

M E MlR\{O}, the compound Poisson process Z subject to these two perturbations

has a characteristic function of the form

[
()2a2 1. ]exp i()at - -2-t + t (e~9x - l)dM(x)

IR\{O}

which corresponds to a process of the form at + aWt + Zt where W is a standard

Wiener process independent of Z.

The successive weakenings M E M~\~~I} and M E Mi\{~} allow for smaller jumps

to arrive at different rates. The examples to keep in mind are

À

Ml = 1/\ Ixl P

À
M 2 =--P

1/\ x 2

For jumps outside of [-1,1], Ml = M 2 = )'P and so these jumps aU arrive at rate À.

For jumps in [-1,1] \ {D} we have

À
dMI (x) = j;fdP(x)

À
dM2(x) = 2 dP(X)

x
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with non-uniform arrivaI rates 1;1 and ~, respectively. These rates are non-uniform

and are obtained as the original uniform rate À is made to vary in the limit using the

sequences

M(n) = ( À ) P À P
1/\ Ixl n;l ::::} 1/\ Ixl

M(n) = ( À ) P ::::} À p
1 ~ 1/\ 2/\x n x

As mentioned, the weakening to M E M~\{~} has an interesting complication

which we now describe. Since P{Nt < co} = EneNo P{Nt = n} = LneNo ("\t):~->'t =
1 and P E PJR., 50 that P{Xk < oo} = 1, Z is without explosion. The total

variation of Z on [0, t], given by VJ(w) = :E:~;w) IXk(w) l, is P-a.s. finite. How­

ever, the average total variation E[VJ] = E[Nt]E[lXklJ = Àt fJR.lxldP(x) may be

infinite. If E[v~n < 00, then E[Zt] = E[Nt]E[Xk] = At IJR xdP(x) = (mean # of

jumps in [O,t]) x (mean jump height) is finite and represents the average net varia­

tion of Z during the time interval [0, t]; AIJR\{o} xdP(x) is therefore the average net

variation over the unit interval [0,1], or, the drift rate of Z. If E[v(n = 00 then

we cannot identify the drift rate as the average net variation over [0, 1]. We are

interested in weak limits involving c1aim size rescalings so we focus our attention

on the average net variation due to those jumps with sizes in [-1, 1] by using the

truncation function 'l/J(x) = X1[-l,l](X). Now, IIR.\{o} X1[-1,1] (x)dP(x) exists for any

P E Pa, P([!l,l]) IR Xl[-l,l] (x)dP(x) is the average jump size of those jumps with

magnitudes in [-1,1], and so fax1[-l,l](x)dP(x) is a weighted contribution of the

average net effect of the smaller jumps. As stated in the Lévy-Khintchine Theo­

rem, any bounded, measurable function 'lj;(x) satisfying sUPIR.\{O} 11/J(~t-x 1 < 00 would

emphasize the smaller jumpsj 'if; being bounded rescales larger jumps ta within its

bounds sa that fJR\{o} 'ljJ(x)dP(x) is finite and the supremum condition forces 'ljJ(x) ta

behave like x near zero, leaving the smaller jumps at their original size. The choice

'l/J(x) = 1':x2 is differentiable and is useful in calculations and limit theorems; this

was the function used in calculating the characteristic function of a-stable densities.
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?/J(x) = Xl[-l,l](X) is more intuitive for understanding ID distributions since it com­

pletely disregards the larger jumps and leaves the jumps in [-1, IJ scaled exactly as

they were. Now define b = À IR X1r-l,l] (x)dP(x) = IR\{o} X1[-1,1] (x)dM(x) , which is

finite, to represent the weighted contribution of the smaller jumps to the average net

variation over [0,1]. Note that b is neither arbitrary nor unique but depends on the

choice of 'l/J(x). Other choices of 'l/J(x) result only in a reparametrization of the family

of characteristic functions by b~ b+ !JR\{O} ('l/J(x) - Xl[-l,l](X)) dM(x).

Now, up to and including the weakening M E M~\~~J' b is finite and so we can

extract or reabsorb this drift in the characteristie functions:

:p; = {exp [ilJat - (Pt t + t L\{o} (ei9z
- l)dM(X)] : M E M~\~} }

- {exp [ilJJLt - (Pt t + t l\{o} (e iOz
- 1 - i9x1[-1.lJ(X))dM(X)] : M E M~\~~I} }

where we have set J.L = a+b. Thus, we ean deeompose these processes as at+o-Wt+Zt

or J.lt + o-Wt + Jt where J is a "partially eompensated;' process that results from

extraeting from Z the average net effeet of the jumps in [-1,1].

However, in the weakening M E Mi\{~l' the internally arising drift b must first

be extracted before the limit is taken. This drift cannot be reabsorbed into the

limiting integral and so we no longer have two deeompositions of the process for

M E M~\{~} \ Mi\~~}, we only have the deeomposition J.Lt + uWt + Jt .

For M E M~\~~} it is always possible to distinguish between the internaI drift of

the compound Poisson process and the external drift due to the infinitesimal pertur­

bation "limn~oon6!!." sinee
n

a = external drift - J.l- f Xl[-l,l] (x)dM(x)
lIR\{o}

b = internai drift - ( xl [-1,1] (x)dM(x)
lIR\{o}

are both finite quantities. As the limit is taken, the integrals fIff.\{o} (ei(Jx -l)dM(n)(x)

and flR\{o} Xl[_l,l](x)dM(n) (x) diverge even though fIR\{o} (ei8x - 1 - i8'l/J(x»dM(n) (x)
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converges. AIso, there is no other rescaling 'l/J(x) that will make all three integrals

exist in the limit simultaneously (Stroock 1993). The embedding of the smaller jumps

is just too dense to isolate their effect from any externally applied perturbation; the

drifts are bound together in fL in such a way that results in the renormalization of

infinite quantities in the limit: f.l is finite but

a = externai drift - fL - 1. X1[-l,l](x)dM(x) = =fOO
IR\{O}

b = internaI drift - 1. Xl[-l,l] (x)dM(x) = ±oo
IR\{O}

This marks a fundamental shift in the path structure.

We now examine the limiting procedures .that give rise to the Wiener and a-stable

Lévy process approximations in terms of nonuniform changes in arrivaI rates, changes

in jump laws~ and external perturbations. We formed the closure of Po by sequences

of the form

dM(n)(x) = .-\(n, x)dP(x)

We set .-\(1, x) = ,,\ 50 that M(1) = "\P corresponds to the original compound Poisson

process of rate "\, jump law P, and characteristic function exp [t J(e iOx - l)dM(x)].

Case 1: "\(n, x) = ,,\(n) such that ,,\(1) = ,,\ and ,,\(n) --+ ,,\(00). Thus M(n) = ,,\(n) P has

a constant jump law, aIl jumps arriving with rate ,,\(n) and which changes uniformly

to ,,\(00); aIl jumps experience the same uniform change in arrivaI rate and 50 only

the time of the original process has been rescaled. The limit is another compound

Poisson sum with finite rate A(oo) and jump law P and if À =1= A(oo) then

AJ. (ei9x
- 1)dP(x) =1= A(oo) 1. (ei8X

- l)dP(x)
IR\{O} IR\{O}

Case 2: A(n, x) is bounded in x and "\(n, x) --t A(oo,x). For example, A(n,x) =

~A(n)(1 + Ixp-n) where A(l) = À and A(n) --+ ,,\(00). In this exampIe, jumps of different

sizes can arrive at different rates but, asymptoticaIly~ aIl jumps arrive at the rate

~,,\(oo) and have jump law P. Another example is À(n, x) = "\(n)[(1 - ~)f(x) + ~] for
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sorne function I(x) bounded in x. In this case the limiting jump law Q and rate are

dQ( ) = l(x)dP(x)
x f f(x)dP(x)

and À(OO)! j(x)dP(x)

In either case, we obtain compound Poisson laws. However, in this case it would be

interesting to investigate if it is possible to find a .:\(n, x) such that

.:\1 (eiOX
- l)dP(x) = r (eiOX

- l).:\(n, x)dP(x) = .:\(00)1 (eiOX
- l)dQ(x)

R\{O} JR\{O} R\{O}

for aIl n; perhaps it is possible to "steer" via À(n, x) the original process of rate À and

jump law P to another compound Poisson process with rate À(oo) and jump law Q

that is particularly easy to work with, for example, where Q is exponential, Normal,

or Poisson.

Case 3: Suppose .:\(n, x) converges to .:\(00, x) for each x and is non-constant in x;

it may be unbounded in x for each n or in the limit as n -+ 00. This case is seen in

the last two steps in forming the closure where the conditions on M were weakened

twice. For any n we have that .:\(n, x) can at most become singular near x =°like 1;'

or x\' Such non-uniform changes in the jump arrivaI rates is a significant perversion

of the original process and is the nature of the a-stable Lévy process approximation.

Recall that the Lévy measure M is given by

Q P
dM(x) = Ixlo +11(-OO,O)(x)dx + Xct+11(O,00)(x)dx

where P, Q E 114, P+Q > 0, and a E (0,2). For convenience we take P = Q = 1 and

write the measure as dM(x) = Ixl-o
-

1 l x ;6o(x)dx. For any œ E (0,2), IJR\{o} dM(x) =

00 and 50 we are not in the regime of compound Poisson processes. It is easy to verify

that IR\{O} (1 /\ x2 )dM(x) is finite for œ E (0,2). However, fR\{O}(l /\ /xl)dM(x) is

finite for a E (0,1) and is infinite for œ E [1,2). Thus, the a-stable Lévy processes are

neatly split into two classes by their Lévy measures. From the previous discussion,

we know that for a E (0,1) we can extract the internaI drift and so can distinguish

it from any external perturbation resulting in drift. However, for a E [1,2), we

cannot. Probabilistically, this means that the a-stable Lévy processes for a E (0,1)
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are "closer" in structure to compound Poisson processes than those with a E [1,2).

This is intuitively apparent in the simulated paths of a-stable Lévy processes as

presented in Janicki & Weron (1994) and Samorodnitsky & Taqqu (1994). This

singularly non-uniform distortion of the original arrivaI rate, the indistinguishability

of the drifts for a E [1,2), and the ability to only match first moments raises doubt

about the suitability of a-stable Lévy process approximations and may explain the

large relative errors observed in simulation comparisons (Furrer 1996).

Case 4: The first order perturbation nc52. is an insertion of a jump of height ~ with
n n

rate n. This is a very localized disturbance of the compound Poisson process in the

sense that the rate of only one jump is increased. The limit results in the addition

of a linear drift rate, which represents only a translation of the compound Poisson

law. The second order perturbation n2
2
(c5_~ + o~) is again a localized insertion of

n n

jumps but results in something qualitatively new. As mentioned, the first order drift

effect of the symmetric jumps cancel. The second order effect arises from the much

faster arrivaI rate and the limit amounts to an insertion of an independent Wiener

process with variance 0'2, and significantly changes the character of the process. In

this light, the convergence of sequences of Poisson reserve processes to a Wiener

process is extremely contrived. For example, consider the measure

() n-1(n 2
) ÀMn = -- no~ + -(c5=:!!! + nc5~) +-pn n 2 n n n

where M = ÀP corresponds to the compound Poisson process to be approximated.

1t is easy to see that

Hm r (eîOx - l)dM(n) (x) = iBIJ- - ~02O'2
n-+oo JIR\{O} 2

There is no careful balancing of rates and jump sizes in this example; IJ- and (J'2 are

completely arbitrary and are not connected to the original process in any way. Even

if they were, this convergence argument is simply the progressive phasing in of one

ID law and phasing out of another and therefore seems quite arbitrary.

For our approximation procedure, a more precise formulation of the fitting prob­

lem is this. Given a compound Poisson process of rate À and jump law P and a
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subdivision of the process that results in an n-fold increase in arrivaI rate, ie: n.À,

can we find a sequence of probability measures {p(n)}nEN such that

À1 (eiOX
- l)dP(x) = nÀ1 (eiOX -l)dP(n)(x)

lR\{O} lR\{O}

which would ensure that the laws of the processes remain exact. If not, then perhaps

Hm lÀ 1. (eiOX
- l)dP(x) - n.À { (ei6x

- l)dP(n)(x) 1
n~oo IR\{O} JlR\{O}

might serve as a useful measure as to the accuracy of the weak limit as an approxi­

mation.

One final point on bath the Wiener and a-stable Lévy process approximations. In

both convergence arguments, the mean was extracted from the sumo In the Wiener

process case

1=xinl
= 1= (xinl

- ~) + Itr:'
k=l k=l

In the a-stable Lévy process case

~ (n) ~ ((n) J.l) (N;t -nÀt) ,n
LJ Xk = L...J Xk - n + J.l n + /-LA cp(n)
k=l k=l

For any n, the components ofthese decompositions invoiving the daims and counting

h . II d d 1 h 1" N'X. P \ d N'X. -nÀt 0process are stoc astlca y epen ent. n t e lmlt, /-L~ --+ J.lAt an n~(n) ~ sa

aH stochastic information is "squeezed out" , in particular, the stochastic dependence

is lost.

4.3 Lévy-Grigelionis-Jacod Characteristics

In the previous section we considered only time homogeneous Poisson models and

possible reasons for the poor fit of the corresponding weak approximations were iden­

tified. Uitimately we are interested in non-Poisson arrivaIs as weIl as non-stationary

arrivaIs and daims distributions.
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We saw that for non-Poisson c1aim arrivaIs, M(t) is not linear and from (4.2),

(4.3), and (4.6) we have

J.L(n)(t) = J.L M(t)
M(nt)

(n)2 2 M(t) 2 V(t) 2 M2 (t)V(nt)
a = q M(nt) + J.L M(nt) - IL M3(nt)

which are time dependent and 50 moment matching is incompatible with the mod­

elling assumptions. However, since M~;t) -+ À, M(nt) is asymptotically like n for

any t and so lJ.(n)(t) = J.L ::C~~) is asymptotically like ~, as desired. If it were the

case that lJ.(n)(t) was only mildly time dependent (for example, for each n E N,

SUPtEIR+ J.L(n) (t) - inftEIR+ J.L(n) (t) or SUPtEIR+ 11tJ.L(n) Ct) 1 are acceptably smaIl) one could

set pen) = limt~oo tJ; IL(n) (s)ds or sorne other time average of J.L(n) (t). Using this

time average pen) for J-L(n) (t) we can approximate the ratio Aic~~) by ,ü~n) and from

(4.3) obtain
a(n)2 ~ q2P(n) + J-L2 E [(Nt

X
)2] _ (p(n»)2 E [(N;t)2]

J.L M0~ M0~

E[(N" )2JIf NX has a finite second moment and for each t E lR..r, limn~oo nMr~t) exists then

a(n)2 is asymptotically like~. Even if J.L(n) = J.L ~~~) were free of time, a(n)\t)

t ·II b t' d d t R .. th t M(t) E[(Nf)2] d E[(N;t)2] b t'may SIe IIDe epen en . equirIng a M(nt) , M(nt) , an M(nt) e IIDe

independent and that limn~oo E~~r~~;] exists may pose significant restrictions on NX.

For instance, merely requiring that M (t) he linear forces NX to he Poisson. These

requirements might therefore rule out renewal counting processes which are not well

approximated by a Wiener or a-stable Lévy process. One could attempt to match

higher moments, resulting in further conditions involving higher moments of N'X. as

weIl as the daims distribution, perhaps providing a finer criterion for the suitability

of these approximations. It is also possible that as higher moments are matched,

these increasingly complex requirements rule out aIl processes, indicating that such

weak approximations are never appropriate. This time dependence suggests that we

may have to weaken our modelling assumptions; rather than insisting that the limit

be a SliP, we drop the requirement of stationarity and look at IIP's. As long as we
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can construct a sequence {R(n)}neN by an infinite subdivision of the original process

R which converges to sorne process R(oo) then it rnay be possible to fit R(oo) to R by

matching their Lévy-Grigelionis-Jacod characteristics. AIso, dropping stationarity

introduces the possibility of weakly approximating non-stationary models as weIl

and it is here that the Lévy-Grigelionis-Jacod characteristics of IIP's may prove very

useful.

In the previous section we considered stochastically continuous SIIP's as weak

approximations. Let L he a stochastically continuous SlIP; its characteristic function

can he written in the form

E[ei6Lt J = exp [i8J1.t - ~(p(]"2t + t r (ei6x
- 1 - iO'l/J(X))dM(X)]

2 lIR\{o}

= exp [i9Bt - ~92Ct + f' 1. (ei9x
- 1 - iO'l/J(x))dv(s, x)]Jo IR\{O}

where

dv(s, x) - ds ® dM(x)

for sorne J1. E lR, (7 E 1I4, M E MJk\{~}, where ds is Lebesgue measure, and ?/J(x) is

as in the Lévy-Khintchine Theorem. The triplet (E, C, 11) uniquely determines the

process. The stationarity of L is the reason the time derivatives Et = Il- and Ct = (72

are constant and the jurnp measure dll(S, x) is a product measure of ds and dM(x);

the drift perturbation arrivaI rate, the variance perturbation arrivai rate, the jump

arrivai rate and jump size distribution are aIl constant in time.

If one drops the stationarity assumption and replaces it with a "local stationarity"

then B t and Ct may have non-constant time derivatives and dv might not be a

product measure, reflecting a dependence of jump arrivai rate and size on time.

The interesting feature of the characteristics is that they appear to he amenable ta

a statisticai fitting procedure. Furthermore, it turns out that B t , Ct, and dll are

deterministic if and only if the process is an HP.
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Let X he a stochastically continuous HP with time index set [0, T] for T < 00.

This is true for càdlàg processes since the set of discontinuities is at most countahle.

For nE N let

n(n) = {{tin)} : 0 = t~n) < ... < t~7l) = T, ken) EN}

he a sequence of partitions of [0, T] such that limn~oomaxl~k~k(R) Itin) - ti~ll = 0 and

n(n) c II(n+l), ie, a normal, refining sequence of partitions of [0, T]. For the process

X, define corresponding sequences of increments by

~in)X = Xt(n) - Xt(R) n E N, 1 ~ k ~ ken)
k k-l

Now, define

B~n) = L E[1/J(~~n)X)]
k:tln)~t

~(n) = L {E[1/J(~in)X)]2 - (E[7/J(~in)X)])2}
k:tin)~t

Ef1n
) = L E[f(Liin )X)]

k:tlR)~t

(4.16)

(4.17)

(4.18)

where f : IR -+ IR is a hounded continuous function that is zero in sorne neighborhood

of zero and 1/J(x) is as in the Lévy-Khintchine Theorem.

Proposition 9 Suppose that {II(n) }nEN is a normal, refining sequence of partitions

of [0, T] such that UnENI1(n) contains aU points of stochastic discontinuity. Then, for

t E [0, T],

Bt = lim B~n)
n-too

vt = lim ~(n)
n~oo

E ft = lim E ft(n)
n-too

where the convergence is uni/oTm on [0, T].
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(4.19)

(4.20)

(4.21)



Proof: See Kwapien & Woyczynski (1992) or Jacod & Shiryaev (1987).

Bt is the first characteristic of X. The second characteristic of X is the unique

measure von lR \ {O} x [0, TI snch that for any t E [0, TI and 1: IR -4-lR continuous,

bounded, and zero in a neighborhood of zero,

r I.t
I(x)dv(s, x) = Elt = Hm Elt(n)

JR\{O} 0 n~oo

And, to define the third characteristic of X, we restrict ourselves to IIP's X such

that B t is of bounded variation (see Jacod & Shiryaev (1987) for the general case).

In this case we redefine V;(n) = :Lk:tin)~t E[7/J(~in)X)J2. It can be shown that Vi =
Hmn~oo ~(n) exists and the convergence is uniform on [0, TI. Now, one can define the

third characteristic of X by

Ct = Vi - r i t

'l/J(x)2dv(s, x)
JJR\{O} °

These quantities are highly suggestive. One could estimate these quantities from a

point process under consideration and perhaps by performing sorne kind of smoothing

one would end up with smaoth characteristies yielding a process that fits the point

process weIl and is mathematically tractable. This is a topie for future study.

Characteristics have been significantly generalized to the case of semi-martingales

where B, C, and v are the unique (up to modification) predictable stochastic processes

completely characterizing the semi-martingale. These are referred to as the Lévy­

Jacad-Grigelianis semi-martingale characteristics. This result as weIl as many weak

convergence results far IIP's and processes with conditionally independent increments

are treated extensively in Jacad & Shiryaev (1987) and warrant further study.

The case of semi-martingale characteristies is similar but involves canditianing.

Let X he an F = {FthE[o,Ttadapted càdlàg process. Suppose also that X satisfies

the following property: Vf. > 038 > 0 such that far any partition 0 = to < ti < ... <
t n = T,
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Define

~(n) = L E[1/J(~1n)X)I:Ftind2

k:t~n}~t

(4.22)

(4.23)

(4.24)

Proposition 10 Suppose that {l1(n)}nEN is a normal, refining sequence ofpartitions

of [0, Tl such that UnENTI(n) contains ail points of stochastic discontinuity of X and

X satisfies condition B. Then, for tE [0, Tl,

B t = Hm B~n)
n-HX)

lit = Hm ~(n)
n~oo

E ft = Hm E ft(n)
n~oo

where the convergence is uniform in probability on [0, Tl.

(4.25)

(4.26)

(4.27)

It,'·,,

B t is the first characteristic. The second characteristic of is the unique measure

v on :IR \ {D} x [0, Tl snch that for any w E f2, t E [0, T) and f : R ---* lR continuous,

bounded, and zero in a neighborhood of zero,

r lt f(x)dv(s,x,w) = Eft(w) = Hm Et)(t)(w)
JJR.\{O} 0 n~oo

And, the third characteristic of X is

Ct(w) = vt(w) - 1. lf 'lf;(x)2dv(s,x,w)
lR\{O} 0

A recent result of S0rensen (1996) extends a classical martingale method for com­

puting rnin probabilities ta a large class of semi-martingale reserve models. The key

property used is the following:
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Proposition Il For a quasi-left-continuous semimartingale X with characteristics

(E, C, li), the process Y defined by

yt(w) = exp [i8Xt (W) - i8Bt(w) - ~82Ct(w) - rtl (ei8x
- 1 - i(}'ljJ(X))dll(S,x,w)]Jo JR\{O}

is a local square-integrable martingale for each ().

Praof: See Jacod & Shiryaev (1987).

Although there is no discussion of fit in S~rensen (1996), the methods he develops

offer the possibility of using more interesting models for reserves. We believe that

Lévy-Grigelionis-Jacod characteristics may be very helpful even in the case of random

characteristics.

A related topie that warrants further study is the special form that characteristics

of stochastic integrals take. The idea here is that a point process reserve model R

could be expressed as a stochastic integral of sorne process H with respect to a

compensated point process:

R,. = f HsdNs

where Nt = Nt - Àt for some point process N having predictable compensator À. In

this framework, one could consider sequences of processes {H(n)}nEN and {N(n)}nEN

and examine the convergence

l
t

H(n)dN(n) =} l t
H(oo)dN(oo)

s s s s
o 0

in terms of the nice convergence results for characteristics of stochastic integrals (see

Jacod & Shiryaev (1987)).

A particularly interesting possibility is if the limiting stochastic integral is with

respect to a Wiener process. In this case, the process J~ H~oo)dN~oo) is a continuous

martingale, a class of processes that exhibits a high degree of tractability and for

which many results are known (Revuz & Yor 1992). AIso, interesting work has

appeared recently on the construction of strong solutions to stochastic differential

equations driven by a compensated Poisson process whieh may enable the explicit
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calculation or efficient simulations of ruin probabilities (Ruiz de Châvez, Léon &

Tudor 1996). Finally, the recent work on multilevel, bilinear stochastic differential

equations, whose weak limits under various space/time rescalings are measure-valued

processes (Dawson 1993), offer the possibility of modelling coupled daims and income

processes, as required in the general model introduced in Section (2.1). Particularly

of interest in this case is where the multilevel, bilinear system of SDE's is driven by

point processes.
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