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This thesis gives an overview of the method

estimation available

4

for homogeneous Poisson pro&esses. The main objec\t;ive is to co'mpare

a

. the different estimators in terms of bias and mean-squared error.

.

. ®

-

Several numerical results are given for the problem of estimating

the parameter of the process and its reliability fumctionm.
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Dans cette th&se on présente une revue détaillde des ;néthodgs

- \

d'estimation relatives aux processus homogénes de Poisson.

- 3

°

.

»

L'objectif premier est de comparer le bigis et 1'erreur quadratique

o

moyenne des divers estimateurs proposés. Plusieurs résultats

o )

numériques sont présent&s, concernant l'estimation du paramétre du

-

processus‘ ainsi que de sa fonction de fiabilité. .
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INTRODUCTION : . .

e
Very often, one has to deal with phenomena in which events of some

-

type occur randemly in time. The Poi.'sscm process is the formal model of

.such phenomena. If the rate at which the events occur does not change

with time, the process is said to be homogeneous.

The purpose of .this thesis is twofold. First, a number of statistical
methods are described f}ar the problem of estimating the parameter A of

the homogeneous Poisson process. Second, various estimators for the

reliability function of the process are described and their bias and

mean~squared error are compared nuner:}cally.

In the reliability comtext, the events a#e often called "failures”,

|
and the reliability function of the process represents the probability

” -

that the process will continue without failure throughout a period of

°

duration x -, say./ Interest in this ptobabilitjx is aroused by its °
frequent invocation to describe the "relq‘.abilicyy of a piece of eqUipment,

or of a systenm. ' \,
. \ .
\

Some of the methods studied in this thesis wel}'e dmlbped recently,

while others are well knewn but are described here more briefly for

| @

comparison and completeness.
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For the problem of estimating the reliability deéiiBn of the pracess,

'the data on which the estimation is based ‘may be available in two forms.

In the first form, -only the number of events in given time periods is

W

observed, while in the second, the respective positions of the events in-

the time periods are also recotded. The method of estimation depends om’
the form in which the data are given. The analysis using "counts" will be

[

discussed in the sections entitled "Poisson anaf}sis" , while for

B .

"intervals" , the sections will be denoted by "exponential analysis”

1

- I
The thesis concludes with some numerical results for both typés of analyses.

>

It seems to the author that many distributional results (so far not

@ i

available) for the statistics discussed hereafter may be obtained by means

-of the bootstrap method. However, this issue is not addressed here.

& .

» o

Discussion is regstricted to homogeneous Poisson processes for which the

v

. literature is quite extensive. A further useful contribution to the field

would be the unification and assessment off;ﬁe work on non—homogeneousx

-

Poisson processes.

’
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1. Preliminaries

!

Consider a stochastic process (,B,P) defined on a sample space §2

and let w € 2 be a realization of the process. Define Nt(m) as the
T o
number of events in the time interval (0,t] for the realization we

t

Definition 1 : The counting process {Nt ; t20} is called a homogeneous

Poigson process if the following conditions are satisfied:

(a) for almost all w, with respect to the probability measure P,
each increment of ¢t + Nt(w)j is of unit magnitude,
P

(b) for any s,t 2 0, the randog@ variable (Nt-i-s - N:) is independent

of {N_ ; ustl,
* (c) for any s,t 20, the distribution of (N, = N ) is independent

-+ ’
v of t. "

'3

3

The random variable Nt (w) will be cletaxot:edv hereafter by Nt’ assuming
a fixed realization w of the process. The f611mp'.ng” results can be

derived from Definition (1); the proofs will be omitted but can be found

in Qinlar [1975, p.74-].

‘ -
B s v
¥ ¥ 4

Proposition 1 : Let {N,; ; t20} be a homogeneoys Poisson process.
- : * ' \

1 T

»Pr{Nt - n} = OO ) =i0,l,...,
L -, ol b g R
. for somé constant A20, called the mean rate of occurrence. ‘ v
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{ Proposition 2 : "Let T,,T,,... be the times of occurrence of successive
P et 0% ime ,

_events in a homogeneous Poisson process. Then, for any k20 ,

i ; \ )

; * - . \ .
4

- e | T ‘ -At '
.- - , Pr{Tk+1 -‘Tk st | Tq,Tl,...,Tk} = l-e , t20 ; .

(]
X . o - .
5 in other words, tlie.process has independent and exponentially distributed
s ’ ‘ " ) e - >
increments. ; . ' L ) ,
< { ’ . . a ?*\
i < » ' e ’ ' "

i ' o

Somg of the methods of estimation discussed here are based onthe .
. r"' o N .o, >,

» - . - » L4 - L4 * Tt
Poisson distribution of the number of,events in. a given interval whereas

. ' . o . . 1 v . H
others make use of the fgct that the intervals between successive events

-
- .

are -exponentially’ disttributed. , ' : N .. ,
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2, Estimation of the parameter A

Let {Nt ; t20} be a homogeneous Poisson process with unknown

&

p’araui’etex A20 . In this chapter, various methods for estimating A
will be discussed. The first section assumes that the data are available

in the form of counts whereas the second explores the analysis based on

~
S

intervals between events.

2.1 Poisson analysi.s.

Suppose that the process hf:ls been observed over the interval (0,to]
and let no dénote the number of events observed in this interval. 1In
the context of point estimation, three estimators will now be studied:
the maximum likelihood estimator (XML), the minimum variance unbiased
estimator (XMV'U)’ and a minimax estimator (XMINMAX)‘ it t;ums out
that these three estimators are the same.

2.1.1 The maximum likelihood and minimum variance unbiased estimators of A.
N

The maximum likelihood estimator of A is well known to be

(-]

- Do
‘ML te °
A
This estimafbr is unbiased and moreover, since it is based on the complete
sufficient statistic no , it is also the minimum variance unbiased

estimator of A, by the Lehmann-Scheffé Theorem [Lehmann, 1983, p.80].

Thus,

iy e o em e -~ N SO U, [



As an aside it is worth noting that an unbiased estimator for A

can also be found by seeking a function f(m,) that satisfies the identity

Neo ﬂtu
D e - Qeo) ° e =
no=0 no! -
But this implies
® n
E f(no) . (_A_E.gl—— = Aext°
ne=0 no!
and .
f(n,) = 0o
to
since
cx)e © -1 A
Z Nag * (Atu)‘r"o = ZA . ()\to)no = Je to .
to n°! zno_I;!
noe=0 ne=0

~

2.1.2 The minimax estimator of .

4

The derivation of the minimax estimator, which %3 perhaps not as
well known as the derivation of the two previous estimators, is presented
here. for the sake of completeness. This discussion can be found in the
paper written by Dvoretzky, Kiefer and Wolfowitz [1953]. The authors
consider two different risk functions: the first one incorporates the

N
cost function and the second ignores it.

* - . » - * »
Let- RA(X,to) denote the risk function associated with the estimator

X when the process is observed over the interval (0,t.].
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If , c(to) represents the cost of ¢bserving the process over (0,t.] ad

LAY is th; loss function
LD =1 - 07, (1)

x
then R)‘(X,to) is defined as follows:

Bt = 8 {e) +10D) @

.

where E {'} denotes the expectation with respect to the distribution

vith parameter A. The loss fufiction in (lv) was proposed by Hodges
and Lehmann [1951], and l?y “Gifshickland Savage '[1951]. The main reasons
for using (1) instead of :i:he: classical loss function (X - )\)2 are the
following:

(a) the loss function in (1) measures the seriousness of errors

in terms of the difficulty of estimation, expressed by the

variance, A,

(b) the classical loss function (X - )«)2 gives infinite minimax

¥isk and when this happens, every estimator is minimax.

.

The minimax estimator is derived from the Bayes estimator, X

A

B t
which minimizes the average risk

o
P

Rho = [ B @n 3)
7]

vhere F “$s the prior distribution of A and ¢ 1is the parameter space.

The minimax estimator should minimize the maximum risk, not just the

Al
average risk. ‘
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; However, if for every to,20 there exists a digtribution F of A guch that

¢
v

l 4 .
. SR @n S e . @
J B0t 8

[ . >

N ]

then XB is also # minimax estimator of A [Lehmann, 1983, p.249]. The result
in (4) cofte's‘ponds to a situatiaf/l*where the average risk of the Bayes

estimator, XB’ is equal to its maximum risk. This  happens, for instance,

»

when the risk is constant for all values of A in the parameter space ¢ .

°

The relationship between minimax estimators and Bayes estimators is now
. . e
obvious. If the maximum risk of an arbitrary estimator X is less tham or

equal to the risk of a Bayes estimator satisfying (4), then X is also .
mini.ma:;.. ""Ehe same result holds for sequences of Bayes estimators. ’

, The foregoing is used to construct a minimax estimator of A based.on
a fixed observation period (0,t,]. The value of t that minimizes the cost
function, namely to, will be determined later on. For the moment, the cost

function is left out of the derivation and the risk function comsidered

becomes o,

e —— RM = E { L(X,DL} ) (5) "

the average risk with respect to the distribution F is then

°
[y

R,(R) = f R_K(X) dF()) . tq) )
. ® ' -

4 % t

IO

N

Observe that the only difference between the risk functions defined in (2)

Y

(1 and (5) is the presence (or absence) of the cost function.,

s Wty B S WeE

a

o




_ posterior risk, defmed as“follo&s" Fopr 0 F I

A Bayes estimator can be obtained by minimizing the risk defined in

(6), but a more convenjent 'way of deriving it consists in minimizing the ~

¢ -

* . b 'Y

S

Re(% | m) = EA{L(x,x(n))-l N - n}

= .fa;‘(X) aF(X | n) . .

°

where E}‘; U f denoteJ the e‘p:‘:pectation with respect to F(; | n) and
where F(A | n) 1is the posterior dis;ruibution ;é A given N = n,

wa RF(X | n) is independent of n, the posterior risk is said to be
independent of the sample. Working; with the pc;stt;.rior risk instead of

the risk itself simplifies the derivation of the Bayes estimatozt in many

.

situations. The fact that the estimator thus obtained is Bayes follows

v

eagily from the next theorem [Lehmann, 198|3, p.239}:

i

-

?

Theorem 1 : Let A have distribution F and let N have distributidnf

x* Suppose, in addition, that the following assumptions hold for the

problem of estimating A with monnegative loss function L(A,X)

P

(a) there exists an estimator X with finite risk,

(b) for almost all n, there exists a value XF(n) ‘minimizing

EA{L()\,X(n)) RE n} . g

Then §~F(n) is.a Bayes estimator.
The first condition in Theorem (1) follows easily from the convexity

of the loss function. Since

¢ -~

CEE)

. \
©

- a
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the convexity of L(A\,%) implies that for all .X in a given intervgl
. J ,
(a’b) ? J ' ) .

LD &+ 3 =02 < (}-;—-:—%{- (2 - 02+ (H)% ®-n%

+ -
. i <

and hence the risk function R)\(X) - E)\{L(A,X)} satisfies

*x) b-%X (@) + 7% - ®) .
5® < (X)mw + (Logne

L3

[
]

The risk function:.is therefore convex and thua Qconti.nuous on (a,b).

-

Consequently, R)\(X) is finite for all & in (a,b) and condition (a)

is satisfied. . ~ , .

!

Dvoretzky, Ki;fe; and Wolfowitz [1§53] make use of the f'ollowing

theorem from decision theory to show that the -estimator -::-13- is not only
L s

the maximum likelihood and minimum variance unbiased estimator of A,

but also its minimax estimagor. ¢

e

Theorem 2 : Suppose that for évery t20, there exists a sequehce of
distributions Fk(k = 1,2,...) for which there are corresponding Bayes

solutions X; with the property that the posterior risk associated with

Fk and X: is independent of the sample n(t), and suppose that there

exists a AC for which

hY

[N

R(t) = sup '(Xt) = lim &5 . . (73" .
R\ R)‘- k-*wRFk k ' .

¥

If there exists a to (0S™sSxo) for which

< vy e " f P e =

" kv

PO 1 e i oy b T D

i sy




«

- 11 - .0 N

c(te) + R(te) = min [o(t) + R(E)]
t20

a
holds, théhthe fixed-time estimator X% is minimax.

4 .
Proof of Theorem 2 : To prove this theorem, consider any other estimator,

°

*
x* say, with associated tipe of observation- t . Then, ) ~
" 2 o) d;' (;o (as
wnah 2 [ua e,
‘ 14 .
: t
> [ra) o
. : ¢/ i
for @all k, since X: is the Bayes solution, that is, the estimator which'
minimizes the right-hand side of (8). Hence, ~ ... ’ .
&* > 1i f‘ (5 aF, ()
sup 2 lim
‘A RX ‘ k+ .W 4 RA k k f ° . P
N . t . )
\, - lim B, (55) - -
\ ke A . ,
= sup R)‘(Xt) , from (7) e
A

s;:p Rx(x*)a 2 ‘81;9 R)‘(xt") ’

since to. minimjzes sup R)\(Xt) over all values o:‘Eg. Therefore, A°°° .
A . f

is a minimax estimator for A.

[ 0

[Ep——
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Referring now,to Theorem A@), Dvoretzky, Kiefer and Wolfowitz [1953]

0

propose the sequence of distribution functions Fk(J\), k=1,2,... on the _

3
-

half-line A >0 with density:

2
o

£0) = LM gcacw . (9)
k. k .\
€ 4 .
This sequence of ,pr{ors seems to be a convenient choice as it produces a
. gequence of Bayes estimators with constant risk., However, the authors
give no other justification to their choice of~prior distribution. 1In .

principle, a prior distribution should be selected by combining experience

(knowledge about the parameter) and convenience, but the selection in this -

case seems to be based on mathematical convenience only.
Corresponding to the sequence of priors given in (9), is a seguence

of posterior density functions which follows easily using Bayes Theorem:

3

£ Q) £ @ | D)
qpffkm RSPV

£,0 | n) =

-X/kg . } ()™ e—xtf .

nl

) - !
; ‘ ];% e—k/kf . ?(xg e'ktzdk .
) 0

o4 .

» : AR oA (t41/K) ’ /

)‘ﬂ Q—X(t-’.l/k) di -

Ry
[=]

AR e—k (t+1/%)
n! >
(e+1/K)"FL

n+l e-k(t+1/k) S 0<A<w,

-/ - %‘; (e+1/k)

I

-

/
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Ll
*

{ K ' vhich is a Gamma density with parameters o = ntl and B = (t+l/k)-l.

&

_ The posterior Tisk thén becomes
/ .

¥

r's

RGE" |0 - fE";;l: K@) - 02 | nz aFO |,
w a

e

. -~

but since the sample value n is now fixed, the integrand becomes the

loss function itself, so that

[
1

. R (" | n) -f%(xt-k)sz(kln)dk .-

'

Lehmann [1983, p.239] shows that if the two assumptions of Theorem (1)
%w .. " hold and if the loss function is equal to '

-

O ' LD = w) (£ - gm1?

‘then the Bayés estimator is given by
}

s t . . | /
| P - {00y <500 lnﬁ . ae

e {w0) | n} ;

L4

%
A

Here, w()) -% and g(\) = X so that (10) becomes .

t E {1 n} - ’
[ xk = l ‘ qg"
) E {1/)\ | n} , ‘
/ - 7
’ ' 1
fl £ 0| o ax ‘
- x -
0 ) '
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Hiww B

“
@

n!

- it

- . (e+1/0)™H JA“"I e A EH/K).

= n!

(e+1/k)7H

=« (n~1)!
(t+1/K)"™

~
o P v 5 e e A e Amad

n
. . t + 1/k -
s T e ) . .
The corresponding posterior risk is \Eixt\shown to be equal to
1 . — .

1] o

¥ ' gt 1
© | S v R
. | - o

© , m
Rk(x; ' n) = /"X]:' 1-‘:—3&7—{ - l; ka\ ' n) dl
-0 .

. ) —_
a . 5
L. ;

. : 2 n ’
- 1 n__ LA n+l  ~x(e+l/k)
- . , f X i——”l k )&‘ o7 (e+1/%) e . da

. . 0 .
o 4 o .
. n-1 -
- f)‘nl (t+1/k)“ 1 e A (t+1/k) n2 &
' 0
. [+4]
) n . -
| - z,f é—; (41710 o MEH/K) gy
é . 0 o -
. ‘ AT+ n+l EA (e+1/k)
. + . i (t+1/k) e dA
. . n %
- -
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1§ : ' a2 n~-1 n-l oA (t+1/K)

- & (en1/0) 2y , a

i

n
- -(—77;_‘1‘ - [ %—,— (e+1/)HE AERLR) 4 gy

[ ]
+ (n+l) Ao+l

(e+17k). , (n+1)!

(t41 Je)o+2 e—'A(t+1/k? a

but since the last two integrands in (l11) constitute the posterior density,
. .

the corresponding integrals are equal to one. Thus, ) . >

e O Y s o WAttt ooy, G5 ¥, 113

l 2
: -1 (n-1)! 2n (n+1)
i G e = 2 (en/0®
R Oy al (e+1/10" (t+1/ET (t+1/%) _ .
, P ’ - n - 2n + n+l : : ‘4‘-‘* ‘\:
{ : t+1/k D t+1/k t+1/k _ .
i - 1 '-
4 " R . t <+ 1 k * - , ' ) \
i .

iy , P
The posterior risk is independent of n and hence of the sample since

n is a sufficient statistic. The posterior risk being constant over all
values of A, the Bayes estimator X:: is algo minimax for all k21, by
; the result described earlier in (4).

Consider now the usual estimator
s t

- xt-

8

- ©  Referring to Theorem (2), AT is minimax if, first of all,

R(t) = l;:p Rx(xt) -;h nk(X:) . (12)

.
o s ts et bt s ”
.
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(. The left~hand side of (12) is "gi'gen by \/

L

| o 2© = s 5O}

l./n \2 )
- m;p EX;T(? - l) ) _ .

- Bup;l‘-Va.r{%}
A

&
"

WVar{n} ' ,.

[. |

L}

»

-] >
L -]
Det] 2ot
2

e >

|

L4

The risk funcfion of the sequence of Bayes est‘ihatdi:s"was shown earlier

to be
\
ety 1 v ,
so that the right-hand side of (12) becomes
- Lin B () = lim i -
. k+ o k+ @ = .
9 - 1
t ’ -
.- : and the first condition of Theorem (2) is satisfied.™ The next step consists

‘ in choosing a te (0St«<w) for which . ’
, : ’ c(te) + R{(ty) = min c(t) + R(t')} R

. t20
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P : holds, for 'the cost function ' c¢(t) of interest. The following theorem
s Lt * re , .
' can now be stated: w '
¥ ' 4 '
5 A3 ' - .' . J N . \ “ . ( .l '
“ Theorem 3 : For the Poisson process with 0 < A X ' and loss function (1), -
C ’ ‘ vl . . .,
' . a winimax estimation procedure is to take a single observation n, at time
¢ . 8 “ o7
) : N . N . *" o ' -
: t = t, for which c(t) + 1/t becomes a minimum, and to estimate A by
* ‘e A N . ' ’ ! »
_ £ .. = D
\ NMAX to
_ where m, 1is the number of events in {(0,t.]. .
k . ,
“ ' . ¥ ! i
2.1.3 Estimators of bounded relative error.
, 'I'he point estimator just described, %—"— , has many desirable properties.
4 . . ' [ !
x It:%main advantages are that ‘ ‘ R L
‘i ) - o . [} N i L
g (a) it maximizes the likelihood of the obiserved ‘s:*-unple,,
% (b) 'it is unbiased for A, . o h _ ' ' -
: - : . Le) it is minimax, B Yoy ’
3 . . . PR . .
% L e (d) it is.conveniént to use since bnly_ the number of events in '(0,t,]
i- '

. is needed, no“t their respective positions in the intetrval.
4 IS . ‘ , -
However, the main disadvantage of this estimator is that it is not possible
'to make a confidence.statement about its reliability. Indeed, it will be

1

.shown shortly that the distrib}xtioﬁ of the' T io -§- dépends on A. This

ratio is a reasonable:indicator of the reliabi_l}.\éy of an estimator X. -

[

. N s . f [
Thérefore let C L ‘ B .
s - A
- . B LA RPN ’ .
f ' fan \x;««m ey et
a = éh; (1 - Y) $ ‘x s (1\ + in - L3 . . (1.3) Py
Al M ] v
l : | N ,‘ - . - - L
) * s F :" £ ‘
' ’ . *
1 > ! -+ ’ ) .
S . ' " ™ s
e

. g e ke e 0w B e anen = oy e oa 12 o
SIS e, TS A ; el 7y Ty e




P

-

A ]

or & of.\ is said to be of “bounded
¢ <

ible to say with confidence coefficient «

is fixed in advance. An est

T RRR, .,

relative error" if it is p

-

, [
that X does not differszom A by more than 100y percent of :\, where
- L)

awen y

AR

a

neither a mnor Yy depénd on the t@ue value of A. In other words, the

Y 14 °

probability in (13) can be evaluated and does not depend on A. ‘

For the estimator X = %3 , it.is easy to show that this probability
. ° ’ .

&

depends on A. Indeed,

L (Y

o

Pr ;(1 - Y)S §° S (1+7v) } = Prg Ato(l = ¥) S no S‘kﬁo(l +v)

b .

i,

()\to)j e-At°

LY - \d .

A . &

% 3 ry

N - s/ - 3 1 -
-7 e M ) "

&, j=a

12 ! ¢ a

f '«\'” T
where a = Ato(l-y). and b = Ato(l+y), but this is a function of A..
Girﬁhick:“Rubin and Sitgréayes'[1952] propose some alternative
. .

estimation prbcedureés which yield estimators of bounded relative error.
1 w7

The procedure% are discussed in terms of .a problem of particle counting,
A 4

- e e ST, b I BRI e g s e
-

in which a set| of inert particles is randomly distributed over a microscope

H
i

slide of area 'A . It is assumed that the pfdbébility-of n -particles

T

, .
. . v . . e 3
falling in a subset of area a_ is , - ﬁ\\\\a>

)

. n- -Aa ) S 0 N
. Pr%wN = 1 f - g.g_)____e___.. , 0 < A< 0" . )
a . n! )

. ' The following discussion is a restriction of their resilts to the case

where the continuous variable is time instead of area. The results can

P 4
- N g U A . .
also be extended to problems in higher. dimengional Euclidean spaces. ~
. + u‘ ‘o ¥ ’ . : ! o
**3 ' . . ‘
| h - IV - -
L . ; - .. "
- - ¥, - "“" - . %'i.’ -,‘ — (o ?r‘- :{— ‘—,-":-‘{;« i.,.f-‘?'%gmy.m_w;, e o
R - R 'J‘ » -3

A
v .
T
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Consider the procedure in which the Poisson process is observed umtil
a fixed number of events, n , has occured, The time required to observe n
events becomes a random variable and its distribution depends only on A,
which appears-as a scale parameter.

a

Theorem 4 : If a Poisson process is observed until a specified number =n
IR N

of events is ‘counted, and if ‘1‘]:1 is the time requix:ed to observe' n events,
then the random variable ZATn has a chi-squared distribution with Zn
degrees of t(reedon':. ' ' - '

<@

Proof of Theorem 4 : . To prove this result, notice that the event 'I‘n : t

is equivalent to the event ''the number of events observed in (0,t] is

less than n'. Thus,

Pr’iTnSt: = Pr{N>n «
= 1 ()\t)J e-)\t
3!
j=0 -
= Fx(t) .

v -

Differentiating Fl(t) with regspect to t gives

-1 -
j . —At j=1 ., =\ \ '
£,(e) = e At 4 E - 0e)) pe - apl” jre

3!
j=t
- o)l ) tz20 , >0 .
(1 (nr1)1!

-
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It now follows easily that the moment generating function of 2)\'1‘n is

(1 = 2x) ® which is the moment generating function of a chi-squared random

' u

variable with 2n. ~deérees of freedom.

The following theorem ensures the existence of- an estimator of bounded

L

relative error, with the additional property that it is minimax: .
§ -

-

Theorem 5 : If A 1is a scale parameteér and is the only' unknown parameter

; , ° » - » . . » . °
in a distribution, then there always exists a minimax estimator of it which (\
M 4

/

is of bounded relative error, with a confidence coefficient o which is ’

independent of A.

The proof of this theorem can be found in Blackwell and Girshick
[1954, p.318]. . .

Suppose now that an observation Tn is made, where Tn» is, as before,

the time-required to observe n events. Let

°

rd

L ST

A ' .
n . .

“7

be an estimator for A, where b 1is a given positive number. ‘If Yy 1is

the” desired bound on the relative error, then

- % v W ’ kN
Wl PO ¥ b b
Pr X0 =) ‘-:rns"(l*"’)} ;Prgmsmnsr-“f oo :

v +
s 3
' n~1 -x ’

e ~ dx ’

) X
" * » = N ' (n"'].;!

Cc s

- GY(bm), say, independent of A,
A %

s oo st g ks

. '
. = s - .
“ ot - G g R
" ’ =, oL

1 — e e et e e =
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. *
" Clearly one would like to find that value of b, say b

, for which

GY(b,,n) is a maximum. Because of the shape of the Gamma distributionm,

as b varies from zero to infinity, the wvalue of GY(b,n)

increases

*
continuously from zero to a maximum value G'Y(b ,n), and then decreases

[ 13 * L - * L
again to zero. To determine the maximizing value b , comsider

-1 Pt
d L d x dx
R E[G‘Y(b’n)] = '&"l‘; n_l
- L
1=y . T ldy
1 d_ , xn-l X g4x n-1
(@-1)! db e x
0
Using the Fundamental Theorem of Calculus, \
, ' ~b_ -b_
n-] 1~y 1+y
gb[c (b’“)] = (nl:m —— - =
1-v (1+v)

: : *
The maximizing value b is the single finite positive value of, b for

which

. ‘-1-5[@ b n)] o,

“
that is for which
n-1 ~b/1-y -b/1+y
b e _ e - 0
- 11! *
eI DU ] Gyt g+t

(14)
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) ‘

The nonzero solution to (14) is given by

~

[ -

. ) .
* _ nQl-vy7) 1+
b 7y In gl —y

*
and the corresponding value of Gy(b ,1) becomes

~ LI X_ il ¢ X dx
GY(b ,h) = /‘Tn—_‘i-ﬂ—
o :

x
= GY(n) , 8ay ,

<

= JnQl =1y 1+ v a(l +v) l1+y
where .gi { Y ln‘[l\_ Y]’ 7y 1n, T =y .

*
For a fixed value of Y, the function GY(n) is a sjingle-valued
. *
monotone increasing function of n. The monotonicity of Gy(n) implies

*
that, defining n, to be the least integer such that GY(n) 2 a, the

function n,o = HY(a) is a single—valued monotone increasipg function of a.

In other words, the number of events that need to be observed

increases -
with the confidence level, required for estimating A. )
Choosing ne. to be the least integer such that
é*( ) anI e * dx > (15)‘
v (-1 ‘ e

<

-

an exact sequential procedure can be applied by taking observations in

° ¢

sequenice, and by compdffhg after each observation (n=1,2,...) the value of

* ’ .
Gy(n). The procedure terminates when the inequality in (15) is satisfied,

L]

and the resulting value of n is called n,.
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The estimator then becomes . -
N i
* [+]
x(l) ' D -
No T ¢
No

- 8 .

To measure the efficiency of this procedure, and to avoid the repeated

evaluation of the integral in (15), one may approximate the number 'm.’ of - ,

4

observations required to achieve the desired degrée of accuracy, for different

-

values of ¥ ‘and o,

?or n > 40 , the distribution of {\/ AA'IJ'R - \’lm -1 } is

approximately Normal with zero mean and unit variance. To prove this result,

‘

consider the random variable ZATn vhich has a chi-squared distribution with

L -

2n d;grees of freedom. Then, by the Central Limit Theorem, the asymptotic .

distrib&s_ion of the random variable

\
% (4 -

2AT - 2n
n

Ve o \
is the Normal distribution with zero mean and unit variance. Now, since the i
. iV

,

range of ZATn is the set of all positive real numbers, then ' ;

-

b

Theorem 6 : As n+ « ,

p:,ylaun' - yén =1 su},a 12 B S 'S S

N

e -

- - 1 - N .~ ’
The proof of Theorem (6) is given here for the sake of completeness.

[
>

i B LA ey vt § R G W
> B

— A

faaa b R TR A T T e e, R R e R
0 YL R ol
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Proof of Théorem 6 :

Lim Pr|aAT_ - \[lm—l Sk lin Pri{/AAT_ - yfén k’

n+ o . n+ %

lim Pr \[axrn Sk + \/TE]

o+ ©

. -  lim Pr &ATnSk2+2k n + 4n

.
nd> «© L

/

‘= LlimPr| AT s K+ k\lm +

, ' o+ o 2 l ) -
4

. 2AT - 2n k2 .
J ) ~ = lim Pr 1 L + Lk

<
n+ ﬁ;. 24/ 4n

) N - =  limPry{——— £k .

e | =

Th}lﬁ 9 ‘l

¢ - n(l -y) . )+ al+y) , J1+y
G,Y(n)~ Pr{ 7y lng1 — Y%S A:r s 7Y 2 Y}}

. P:{Jlm(l - gwxi ol s xs Ian(lw) {wf JFE} L

o ] - - e e

where X = \[tmn - Vlm -1° and

n . . - |

it b
Iy

T "‘ms ol TR D el B o

e s g f o e vh e S

ey

e i, 5 ki T
. N
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Since 0<.Y< &, a further approximation can be obtained by replacing

[

4
-57:- lng%}z-: by its Taylor series expansion, to get

: . 3 .5 7
ooy 1 Y . X
\ 2Y1n§ N {ZlY+§_+s *TU

’

2 4 6
Y I..“_Y_..‘["
1+3+5+7$ 4n

\/5}.‘_%3)_ 1n,i—-fy1$— Vil o ‘/4:1(141()
‘ 2 4 _6q"
= fin {El-{-’y) (1 +:3Y-—+55L+;— - 1}

o = Y

2
Y+Y 47 3] -
ldg+gtgey|-1

-

‘% .

4.
e

and equivalently,

() | () _ . 2 7 .3 :
‘/.'ZY 1n§1_Y‘ \én 1,,.\]'175{1}3-‘21,—; Z-gy} .

]

i

. * ’
Therefore, GY(n) can be approximated by

* . 2 7 3
G () = ¢{\IZ;1[:2!+24+Z—-84Y}} —¢{ﬁ

3 )
- r

Now, since n is large, \’lm = 1, can be replaced by 4n  to get

o

b et bt

o

[

.
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" Por values of Y and «a which are generally of practical interest,

a good approximatjion for the required value. of n 1is given by the relation
%

LI -

1 -7-... -’ . |
."lm. 2 2 + 58Y Za . . (%6)
vherg Za ’i‘ tl;e value for which

¢{Za} - e:»{-za} - a .

LY

'rableflll gives the value of n, for \'y- 0.01,(0.01),0.10 and

g,

[y

a = 0.90,0.95,0.99 , using the approximation in (16).

If the loss function is taken to be

x(l) : oo -

0 if §° -1 s v,

’ (1)
L(A,Xm) -
1 “otberwise,
x(l)
No

then the estimator is the best invariant., Since the loss functiom

is bounded, it is also minimax [Girshick and Sa;age, 1951]. The risk, defined

,
as *

(1) (1) S
R,\(ch) - E{L(K,Xn‘ )f /

is then equal to

‘ (1) £V / o C
RX(X ) = Pr n _, >y . -
o a™x . , ‘ /
, B - 1 - G (no) . T // //
—_— N / /// ,

‘
b s e o P PRSI U e o - PSS S N . e ey - = et e gy e e e i s
- - = - ; - - N + A p—
€ Al ‘ - o - v . - e B
N s e .

Ty 1Rk b AT P
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Girshick, Rubip and Sitgreaves [1952] present a table of values of
* ’ he 1
Gy(n.) for four values of ¥y (0.01, 0.05, 0.10 and 0.20) and for n, S 40, -

For values of n, larger than 40, one can use the Normal app;Bximation |

-
'

described earlier.

Interval sampling . o

@ .

_Thé\authors 8lso propose another procedure of bounded relative error.

Instead Af obsgrving the process continuously until n }events have occurred,
it may be\more convenient to adopt a sampling procedure consisting of
observxng\counts in k subzntervals. In the j—th sibinterval, the process.

is observed until a fixed number nj of events is counted, with in. =n,
j=1

and with the provision that the subintervals are nonoverlapping.

1

This procedure will be useful in some situations where the process

cannot be observed continuously for long periods of time. The information

[

collected in different non—adjacent time intervals will be sufficient to

’
\

estimate A. Another situation where this procedure may be more convenient .

is when many realizations of short duration are available from the Poisson

process, instead of one realization over a long time interval.

.

If '1'j is the time required in the j-th subinterval to observe n3

I3 N .
N ]

events, then A is estimated by

(2)._ b S S
X _

*
where b  is determined as before.
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Since each of the ’XTj is independently distributed in a Gﬁmna
distribug}on with parameters o = ﬁj and B = 1, their sum has a Gamma

J
distribution with parameters o =n and 8 1'1, because of the additive

property of the Gamma distribution. The theory then goes through as before.

- L e -

. The two main classes of estimators proposed in the previous sectioms,

namely the fixed-time-and fixed-count estimators, are somewhat difficult to

l

compare. * In the fixed-tiﬁe procedure, the number of events, n, , is a

random variable, whereas in the fixed—count procedure, no is a constant

@

whose value depends on the desired degree of accuracy.

In the first procedure, the time of observation, to, , is .chosen t6
'minimize the cost of ogsefving the process. Even ch;ugh the second
procedure produces an estimator of bounded relative error, an vaious

criticism of this technique is that it does not take into account the cost

function. Once the confidence coefficient a is selected, neo is chosen

~

. . \
to maximize the probability that the estimator lies within\the predetermined

bounds on the relative error. '

.

"

A variation of the bounded relative error criterion just discussed is

given by Birnbaum's [1954] suggestions of two estimators which{/instﬁad of

1

minimizing the relative error, minimize the absolute error. N\“N}

(- @

2.1.,4 Estimators of bounded absolute error.

iﬁe absolute error of an estimator X-of A ip defined as

a = Pr{A-vysSX s +v . .
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¥

i

The first method proposed by Birnbaum [1954] consists in observing

)
the process until a spec;ifigd number, n, , of events have been ohserved.
If Tn denotes the time required to observe n, events, it is possible
-] - .
to find values of L and U such that ) \\\/\
. : L ’ U ¥
PriL S AT SU; = Prisz—SASomp—p = o . (17)
Do Do .
The values of L and U can be found in a table of the chi-squared
A ., distribution with 2n, degrees of freedom. According to (17), a is the

‘- probability that the true value of A satisfies the inequalify’

A

L U '
- ﬁ— SAS —2',1,—— « - ) ‘(18)
Ro .o

Given this inequality, the maximum percentage deviation of A from an

estimator X 1is minimized by taking
g

L+U
X o= T ’
No

and this maximum percent:age“ deviation is equal to

] , v
’ L+U ]
- 4T A
-2 Qo
max = max * 100 %
A A b Lt
. * 4T .
_ Ne
L+U _ L
4T 2T
. - e 100 % .
L+U )
. LT .

L 'S

4




Y

@ a" = ;g;‘tz.’loo%

I

= € , say .

3

The absolute error is therefore equal té

-
1

T+L

However, the magnitude of this bound cannot be ust\ad to determine the value

of na necessary to satisfy it, The reasom for this is that the bound -

itgelf dependg on the value of A.

e
» ~

-

. ‘ The second method has the advantage of producing an estimator with a

prescribed absolute error, that is an estimator X - such that

.

Pr 1—Ys°sz+yz 2a , . ad .

~
]
-

vhere o and 'Y are fixed positive constants,’ - |

Let n be a positive integer. Observe T, » the time required for the’

occurrence of n events. Let !

\
[

. ‘ L . A ol
S . 2n .

%

Perform additional observation of the process for {-i;:-%——-} unit&f time,
’ n

and let N' be the number of events observed in this period. Consider the

I

estimator

>

AT e M, . tah P i o e
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The fact that P

here. Notice that -

but‘ gsince ZATn

has a chi-squared ciistribu’:i.on with

hnd 3 1‘ -

<

E ;,Zc'f N'
n

-’AC

|

2¢ E;E{T N T}s

) n n
2c E%T En{n'l,‘T }%

ll N n n .

N
o

A}

L)

.
)
A S

satisfjes the conditigd in (19) is demonstrated

i)

A

)+ o}

= 2en

.

d
L]

T

[ S—'
Nt
S o

\Y;

&

2z

‘2n degreés of freedom,
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Then Tchebycheff's inequality. gives
- 7o

-resulting estimator.

® . s

X'-Al syp 2 1-%2 = a .
B 'Y :

Pr

3
r

No further investigation has been made so far to determine the optimal

LN
+ e

choice of n , that is, the value- that will mlnlmlze the add1t10na1 amount

of observation E%T— without destroylng the de91red‘pf0pert1es of éhe
n .

1‘ - .

o
a

All the hethods‘desc;ibed so far wefe>based on the analysis of the ,

number of events, n, , in fixed or random tlme 1ntervals. -None of them

a N °

made use of the particular instants of .time at which the events occurred.

\

3y
)

- . . . . . ) '
The fact that n. is sufficient for A explaing the frequent 'use of the

ap
Poisson analysis, and the following considerations jusﬁffy:it_as well.

2.2 ‘Expohential analysis. . : .

4

1 TZ’ cee s Tn represenq“the times of ocqurrené? of n successiwe
. & .

. b
events and if Xi is defined as :

If T

» ii- 2,...,11 » . r\
5 s 2 . . !

L s 2 - LN L " N
with. Xl = Tl , it is welliknownfthgt the gi's are independent identically

. . I ' ..
v

distributed random variables having an exgonential, distribution with

\

¥

<~

parhmeter":e'- %-. Then the usual estimator is o

~ry

E

P N U S
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4n°

This estimator will have the gsame value as the estimator X = T
-]

’
apart from a marginal difference due to the fact that the time stretch
considered may not be precisely the same in the two cases. ‘

The analysis based on intervals between events.is likely in many

cases to be more expensive than counting events falling 1\5; assigned

’ ]

intervals, whether it is done by continuous observation.with a stop-watch
/

or by automatic recording. Since both estimators are essentially the same,

*

the analysis based on counts is yﬂually preferred because of its practical
, .-

convenience and its lower cost« .

>

The following sections are specially concerned with estimation of the

o

reliability function associated with a homogeneous Poisson process.
5

(U [ S !
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3. Estimation of the reliability function

.-
,

If (0,T] denotes a fixed time interval, then the reliability function

. ’
is defined as :

I

\ . 3 3
where X denotes the time to the first event. In the reliability context,

1

the parameter A represents the constant failure rate and the "events" are

called "failures".

1

It is desired to estimate r. (denoted hereafter by r) for a specified
J 7

#

- ~

value of T , based on a record of past events over a fixed ‘time to. The

intervals (0,7T] and (0,te,] will be called hereafter '"mission period"
and "observation period" , respectively., (It°is also possible to estimate
r based on iﬁ , which denotes the mean of the time intervals between the

first k failures, or to combine information on counts from k intervals
¥

(non-overlapping) of length (O,to.]. This particular case will be the
subject of a later ' section. For the moment, it is assumed that only ome

interval is available for observation.) , :

[}

[ ]

3.1 Estimation bédsed on one interval,

In the absence of, any prior information about the unknown failure rate

A, the maximum likelihood estimator ;ML or the minimum variance unbiased

Myy: may be uged. - . b



/

P

3.1.1 The maximum likelihood and minimum variance unbiased estimators of r.

The maximum likelihood estimator of A was shown earlier to be

+
.

AT

so that by the invariance property, .the maximum likelihood estimator of r

is given by ; .

ML
- Do T v
. o T ] -
The minimum variance unbiased estimator is equal to .

to
.
g"l)
St g’
l Fl
(o]
P N
o —
R —
|
nlr-l
o
3
S

{1 _x }j (ro)d e
3!

e-kc.z {(Ju:.) (1 - 't/to)}j
3! ’
3=0

e-At° e}‘t°(1 - t/te) » provided ';:/t. <1,
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The fact that thi's estimator is also the nsi\mum variance unbiased estimator

for r follows from the Lehmann—Scheffé Theorem [Lehmann, 1983, p.80].
" If the assumption of a prior density. g()) , is justified, the Bayes
estimator ;B , by definition, has the smallest mean risk and should
\J

>
therefore betused. ; .

3.1.2 The Bayes estimator of r.-

. ¥, . . .
Throughout this discussion, the loss function is assumed to be

-

L, D) = (r - 5?2 : (20)

\
and the prior density of the random variable A is taken to be

v

-

gh) = %e_)‘/a . °<)‘<°°x . (21)

) 4 |
)

1

where ‘a > 0 is known. This prior was proposed by Beg and Alal}l [1977]
without any justification, other than mathematical convenience. ’
The Bayes‘estin_lator corresponding to the loss function in (20) is,

according to Lehmann [1983, p.240],

-

. ;B = E{rIN.- no} s \ (22)

where n, 1is, as before, the observed number of failures in the observation

0 -

period (0,t.]. Hence, .

o

;B = ]r £(r|ns) dr ) '

~

0
o

= [etfa o,
0

;n
'

- . ‘ ra
.o

0y
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where A represents the value of the random variable A for this

particular realization of the process. The posterior demsity. £(A|n.)
1 g

was shown in the previous chapter to be

+ -
‘ 1] 2% aa(te + 1/a)
f()\lno) - ;—:l-[to +;] e ° ’

so that the Bayes estimator becomes .

o "
No net+l _' ,
fB - [E-AT AT [to +lj| e A(te + 1/a) ar i
nol a
0 ‘ .
© § © B
n°+1“ - ) A
(to +n1{a) _ ’/‘)‘n, e A(te + 1/a + 1) O
Q » . .
(to + 1/a)%*1 - 0,1
n°! (to + l./a + T)n°+1 " \

L e +1/m et
,-[(t.+1/a)+1:] » T>0 .

| o~

rMVU. and ;B in terms of mean risk.

3.1.3 ,Compariso'n of T, *

}- 8
The risk function associated with the maximum likelihood estimator

T

M, 18 by def:.nﬁl.tv‘on

' 2
Rr(tm.') - Egrm.—ri
De

2 . v
-1
= Ele’ B0 - M .
Let ¥'= %;- so that the risk function becomes ' ;
- Do - - Ny \ - . J
R (T,) = x’ewz - 2e“zze#% + o AT (. N

e - fe e e e T N m s p ey e S
) T
- he [y B - - “""_
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o . . . -t
s - j =t Q s i _Ate .
. o283 Qo) e 7, AT 95 Qte)- e ° 7 -2\t
it : it
j=q - 30 .

23

_“‘ e-—)\t.[l -e ] - Ze-X[T+ to (1l - e_a.l"] + e-zkr .

The mean risk with‘respecw the prior density . (21) is equal to

J L}

4 1

- -2 -3, .
. s - L =Ato[l = & 1 _ ,.~Alt + te(l -~ e )] +2AT (.
Rg(x;m) ES {g | 2e +e " }

[- -] [ -4

-2¥ I '
) j’ Sl L Ma gy fe-ur +r-e )] LM g,
0 T ' 0 |
3 'r- -
u oDl Ma g
. ‘0 ) .
.1 fe‘-xq/a +ea(-e2h) zﬁ-l[l/a T4t meD]
9 0
;. o, fe:-x[l/a+zr] o
\O ‘ﬂ
1 1 ' o 2 - . o
2l1/a+ (1 - 2% 1/a + T+ to(l = & 9) e+t
1 2 1
- > - = i e, SEENCN

1 + %0 -e“9 1 + ¥+ ¥ (-e”)

wvhere ¥ = at and Y, = ate ..

2

The risk function for the minimum variance unbiased estimator is equal

to 7
'n(‘il)-n?"‘—;z
r MVU° /!NU\V

‘ }
1 . . \
.
» . .
.. - P —

Bt o R e D - — g 7 g
Tev P Tt T - - B

R R T4 T - T

a

¥ '
AR sy s sty Y e 3
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where o = -
» t°

R (T =

¥
{cg(‘fm)

\
"as before; \
5
Z‘“ T ' R \ - Z“ § -t ’
: “Ato - . J _—At, -
(1__8‘)2.3 (Ato) j? - 2e AT (l_ag)J (Xto) j? + e 2\t
j=0 j=0 A '
2
e-Ato e(l-a‘) (Ato) - ze A(T"‘to) ?(1-3') (Ato) + e"n‘l‘
e-)rcz-a‘)._ e—27\'t
- e-z)\r{e)\?"r _ 1} .
Th&@ mean risk of the minimum variance unbiased estimator becomes .
. { AT - _ e-zu}
g ! v
© ’ w© '
f A2 =D Ii‘ Ma g J ST %_ Ma g
0
[ ; 0 -
.1 Ofe-ka[l/a + 1201, fg—l(l/a + 211 g
0
1 1 - 1 ©
a )1i/a + 12 - &) 1/a + 21
1 1 e e N
T3 -9 TF2¥ SN
/!
‘/
(24)
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, 1\ } The risk function associated with the Bayes estimator 'is given by
-’) g‘
- ~ 2
R (rg) = E;rn - r‘
( no+1 2 -
- E (tg + l./a) - e—at
(te + 1/2) + 1
: ~N .
] ) 2(no+l) , . \Ret+l ’
- (to + 1/a) - (to + 1/a) -AT | - ~2T
E ((to + 1/8) + T) 2<(to + 1/8) +7T e Fe
- uz E {u }Zno _ Zue-h E{ " }no + e—ZM' , . ' -
. - (‘t-o + 1/8) .
.. ' /4\ ‘ where U (te +1/a) + 1 ’ }
- i -t - j -t
. - o - . | - ° - s
- u2 § ;HZJ (Ato) j? . - 2pe M:Z ;uj (Ato) j? + e 2AT
A J X
// 2 L] '
2, Ato (1= u™)  _ Zue-\n = Ato(l - ) + o AT )

/ - U

¢

: . ,
The mean risk .with respect to the prior demnsity (21) is then equal to

1

/
2
Rg(gn) - E {uzelt.(l ¥ = 2ue X‘l’r Ate(l =) eZM}

-

o0
. PR o i
) uzje“'““’-}e”‘ax _ ZHJ;MR.(IH)%QA/;&
' 1

. e

- ,
. ' + / e~2AT % e—)‘/a dA .
. ‘ ' 0 )

b i B

r} g Ommitting the lengthy details involved in the simplification, the mean risk

becomas ‘
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. 2
- - (to + 1/a) ’
‘ Rg(rn) (te + 1/a + '1')2 9 . (to + l/a)2 )
: ° a 1 4+ atoll ~ 2 '2 \
(to + 1/3 + T) !
- Z(to + 1/8) + 1

(e d Al vars “°{’; -wE I/:/i)i} i

-

¥ : A (25)

(L+2v) [+ ‘,)5 + Yo (1 + 2¥) ] ) Ce e

a

Of the thfee estimators considered above, the Bayes estimator, by
-~ . N - +
definition, gives the smallest mean risk, provided the chosen prior density

does correctly represent the true density of A . To compare the two

classical estimators ;ML and ;MVU ¢ congider the situation where the

migsion time , T , is much smaller than the observatic{h time t, . Under

these circumstances, e ° can be approximated by - )
e-3‘221-3'+-§-:-£ . < (26)

L3

' ‘ In practice, one should always be wary of estimating r from an

observation period t, less than mission period T so that this

’

assumption agrees with common sense.

Using the approximation in (26), the mean risk for the maximum

likelihood estimator satisfies
T ’ 3 ;

\ . .

- 1 2 -1 ) !
R(r, ) =~ - + .
8 ML + ¥ [1~(1~ 2 | 2, 1+ : i
1+¥.(1-(-23+22)] | +w.{1-(1-a‘+ 5‘5)} c o

N

)
=
A A e e bbbt Ty m o

.
- e \-\-ﬁ:.,:‘;’;'"w: e
0 SR




. 1 _ 4 + 1
1+2f0d - O 7+ %G - D T+ 2¢

28¢ (1 +z\»-m/

" TUFTI 2 +4Y -9 (1 + 27 - 290

2¢ (2¢ + 1)
(1 +2¥) (1 =€) (1 = 4e) ’

| where € = CLA .
2(1 + 29) *

)

The mean risk for the minimum variance unbiased estimator can also

il

be written in terms of V¥ and € as follows. According to (24),

© R@GE.) = ¥ ;
g MVU T+29 [T +¥2 -] .
'_ 2e
T+yC =97
- 2e o
(1+zw>{1-?-1-’—f—2,ﬁ} ‘ [

1 3

- © 26
(1+ﬁ)(1—’2—§7' y

To compare ;HL and fm for the situation considered, let

Rg (rm.)

4

where K s denotes the approximate value of kg.
’ , a n ) -

-

j

1
H

.
e+ SRS S e g = - _—
: e ST LR IR LT RS 2% Sy T D I T T T e



Then, g

“2¢
Q+29) (1 - 29

. I 2¢ (2 + 1)
T+2y) (1v-¢) (1 - 4g)

(1 - €) (1 - 4¢)
(1 - 2¢) (1 + 2¢)

W
]

) 1 - Se + 4>

(1 - 4;2)

e(SA - 8€)
(1 - 4

$ “®

but

lay

0<e<

since

€ -‘ k4 <
2(1 + 29) =

&log

This shows that for the situation cémsidered (1/to small), the maximum
likelihood estimator is almost as good as the minimum variance unbiased

estimator, when the basis for comparison is taken to be the mean risk. %

3.1.4 Comparison of T and ;HVU in terms of bias and mean—squared error.

In the absence of any prior information about A , it may be more
] ° * .
appropriate to compare the maximum likelihood and minimum variance unbiased

' éstipatorl from another point of view.
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The numerical results given in the paper by Gaver and Hoel i1970],
and expanded here to a higher deg;ee of accuracy, may perhaps furnish a
guide to choice of an estimator under given circumstances. Comparison
is based on bias.and mean-squared error and is éarried out numerically
for different values of the ratio mission time : obsgrvatién time (T/to).

It is assumed again that only one interval (O,t.] is available for
obgservation and that the estimation is- based on the number , no, , of
failures in this interval. The case where more than one interval can

-~

be observed will be discussed in a later section.

Consider the maximum likelihood estimator

- Do
-~ to T
Ty = e .
whose w—th moment is given by - -
n o
o ~ (- . -
' c . - — T . -
O ‘
°  _jm 5
- E eT ta (lto)J e-kto
oo il
i=0 O
o0 ' - -TB j
-XCO E {At‘ e t’
bd e . [3 Al
3 , J!
j=0
4 - Im
. oMt Atee .
-
Tt
= exp —Xto{l -e '} . 27

. Putting m=1 in (27), ié ie possible to infir from |

e e e s . S
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' determined earlier in chapter (3), p. 38

- X
1-e % 1—31—{——+T2i

. ° 2t

(V) ' / 2, '
3 o = :[__ - __T.‘a.“ il

to 2¢2 ) ‘ -
< )

. 3 to

that
- ) ""T/to _'
E{Ty ¢ = exp “Ato(l - e )b > exp{-Ato(T/te)} = T .

3
-

Hence the maximum likelihood estimator has a positive bias. However, as
the observation time, t, , becomes large, the bias app?oaches zero.

Similarly, the variance of. T is derived from (27) : , '

ML

o = éxp{-kéo(l - e—ZT/t°)} - exp{;ZAFo(l - e-T7t°)} .

N
-

Observe that the variance also tends to zero as to becomes large,

-

which together with the asymptotic unbiasedness, implies the consistency
f ¢ /

v

of the maximum likelihood estimator, It should be noticed that the

N

congistency also follows, under certain regularity conditions, from the

‘
e v

fact that the estimator is based on independent and identically distributed

* randowm variables. '

\

The mean-squared ‘error of the maximum likelihood estimator was
\ o Q

..
3




¢

AT 22
e T
1 ) ’ <' N

;= exp{-kto(l-e-ZT/t°j} -v2exp{—AIT+to(l*e-T/t°)1} + éxp{-ZlT} .

* v

The minimum variance unbiased estimator 'was shown earlier to be
J

-

No
~ N T .
= - —— T t ..
Mvy )1 to > TS bo . .

It is perhaps appropriate at this point to notice that when T = t.,

that is when mission time equals observation time, the estimator ;MVU

’ 3 N -

reduces to

1 ifne =0 ‘L

N ¢ 0 i.f No 21
’ . N

[

The latter has the advantage qf ‘being distribution-free, that is it does
) . 2 . .
not depend on the assumption Fhat the Poisson model is true, However,

it tengs to be inefficient if the Poisson assumption is justified, It

should also be noticed that if T >»t, , that is if migsion time is larger .
-~ . : ’ ‘ e

than observation time, the estimator EMvﬁi becomes negative for odd

~

values of fho ~ In this case, one must define. c

v - i
I.MVU : ’ erU »

[

However, this situation is not likely to be encountered’fdr reasong 1

© {
mentioned earlier. . ’ ' a '

-
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- The m-th moment of ;M’VU can be fpund directly

[

'E{;MVU}“‘ - E{(l - T/t,,)“°}m

[*<]

j At
z _ mj (Ato)d e°°
(1 T/to) T

5=0

. -mZm:—..,) (1 - /e

j=0

“Ate Ato(l = T/to)™
e e
= exp{-)\to[l - (1 - T/to)m]} . (28)

is then equal to
(
2 \ .

~ 2 -~ -AT
MSE(rMVU) = E{rMVU-e } o

The mean—squared error (or variance) of IvvU
'4

2
a exl‘:{iZM(eM /te _ 1)} \

13

which{(approaches zero as the observation time t, becomes large.
The values in Tables (2), (3), (4), and (5) illustrate the behavior
of the maximum likelihood and minimum variance unbiased estimators. The

ratio mission time : observation time was chosen to ‘be 0.1 but the

1.0 . It can be seen that in

-

results are also given for T/t., equal to

order to decide which estimator should be used, one must have an idea of
) : £ ’ :

the, true value of the reliability function r .
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I1f the ratio T/t, is equal to 1.0 , which represents a rather
undesirable situation, the maximum likelihood estimator ;ML should
definitely be used, unle'ess r is expected to be very small (r S 0.1) .
Although it exhibits a larger bias than ;MVU (which b§ definition has
no bias at all), it cbmpensates by having a substantially: smaller
mean—sduared error. ’

However, if T/t, is taken to be 0.1 , the maximum likeﬁlihood .
estimator should only be used if high reliability values are expected.

Otherwise, the minimum variance unbiased estimator should be adopted as

it exhibits a slightly smaller mean-squared error.

3.1.5 The jack~knifed estimator of r ,

In addition to the two classical estimators described in the previous

section, Gaver and Hoel [1970] also propose a new estimator which is a
modified (jack-knifed) version of the maximum likelihood estimator.

The jack~knifed procedure proposed by the authors consiscs@ in
dividing the interval (0,t,] into ¢ equal, non-overlapping intervals
of duration t'.i - {i s, 1 =1,2,...,c . Let L be the observed number
of failures in the i:-th il;tewal. The random variable Ni has a P?i'sson
distribution with parameter A—z—°— , and Ni is independent of Nj for
ifj.

Let P(i) denote the maximum likel(ihoéd estimator of r obtained -

bSv deleting the count for the . i-th interval; for instance,

_!nl +x13 4+ .0 +nc‘{ c }t
{ te Jle~1

A

r (bZ) e
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Next, form the "pseudovalues'
° &
(i) s

] ;éi) = cfy - (DT .

-

Under some reguiarity conditiens given in Brillinger [1964], the
%\pseudovalues w} 1 reduce the bias of the regular maximum likelihood
estimator. Finally, average the pseudovalues to obtain the jack-knifed

~

estimator

\
e
: @ = L3
1'.J’K(C) CZIML
i=1
(e-1) §.(1)
- c— i
Cryy -—E—ZP .
\ i1 *
Defining

i) c n.
vy (c-Dto j=1 -3 ’

i

the jack-knifed estimator can now be written as
& (‘

c
, _¢(1)
JK(c) - ce-x{ﬂ.‘r- - -S-C-E-Q- E e xHL T,

T
i=]
Let d = [l § and § = 2~ . Then the expected value of T (c) is
[ teo JK

given by

[

, ; @), .
E{?m(c)} = E{ce XHLt"a‘ - dzexmtt‘t

:‘ «:ﬂ.,-l
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(A
- cexp{-Kto(l-e—a‘)} - ch{e)‘MLT} .

-

Looking at the expectation of I'(l) for example,
{ -(n2h3+...+nc)3'/d} - { ,#d -n,¥/d —nca‘/d}
Ece = E<(e e ees €
| \ © . c~1
. E:e-ja'/d (itofc)) eAEe/e
!

=0

( | ' : -irexl;{-dktoil-e—a‘/d)} ,

- 2 . . ﬁ%)ﬁi%y
so that the expectation of the jack-knifed estimator becomes ;g}é 5

3')} - (c = Dexp{-dit (1 ~ ;

E {?m(c)} - cexp{-lcg(l -e
The mean—squared error of EJK(c) is then equal to

!

MSE(E  (c)) = E{;.ﬁ((é) - .r}z

- E {‘r‘_m(c)}z - 27T ® ﬁx@‘} + AT
/V//Al> ‘

—

/

—

Now, T
-X&)r ' AL oy
E {fm(c)}z =E cze_leﬂ.T - 2(c-1)e-xHLT£1e + dz e .
s 1= R i1=]1

The expression on the right-hand side wili now be divided into three parts - ~—

and each term will be dealt with separately as follows: ) :

1

et g i e e e . R O
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E{é“(c)}z - Cempfreo 1 - e-za‘)}

—Xm‘rie-{g)‘r ; N

!

r - 2(c~1l) Ele (29)
(i) = ( G
-2 i) T -X 1.) - J)T
+ a? E’Z ZL{: X’“‘ . (30)
i= i=] j=1
ikj )

Looking at (29),

3;%’72"; “’g [t ST

AT -XI(!;“) T ’

- < e
8[n1 + (14 c~1)"2 + ... + (14 c_l)ncl
= c.E{e »

and using the fact that

the expectation in (29) becomes

c E %e-a.n]'}- :E ge-g[g%l]nzg . i - %(1 - e-a‘)} -

- c,,p{

o, exp{-du.(l - e"(d‘;l)‘“\)}

S - &

- cexp/{-lt.{-é—(l-e-a‘) + a(l-e-a‘(“l) /d)}} .

»
2

Looking now at the expectation in (30) , notice that it ¢an also be written

as follows : ‘ K




-

R e L A e ]
-

-~

H
L

. - - 52 -
i ' c -zx(i‘)‘r c i -X(i)r -X&)Tg -
. ML ML
E e + e . e
T i)
(i) (D (2)
-2 T = T
- ; xm‘ §+c(c—1)E§exm' exm" 2
)
= cexp}-d)\t,(l -e 23‘/‘1% .
(n,+n,+...4n )3/d <(n,4m +...4n )¥/d
+c(c—1)Ege 23 ¢ e 173 ¢ %
D‘/d(n 40,420+ «ot2n )
- cexpg-d)tt,(l - e 28'/d§ +clc~-1)Eqe 3 cf
: -2t /a )2 %, /d )
' - cexpg-d)\tg(l - e 23'/di + c(c-1) ;E 3(! % o {E ;e 1
- 3-dlt°(1 -23/d ‘ |

A °(°'1?ex"$' €2 xe.q - e-za‘/d); exp%- 2 xeo1 - e'a‘/d)f

cexpz-dlt.(l - e-?'s/d); =

. + c(c-l)éxpg “‘°[<c -2) (1 -2 4 50 - e‘”"’)]g .
|

Hence,
| E % ; (c) %2 - C e )"At (1 -e 2#) . o
‘ JK XpymAte ] : -
L7 - Z\c(c-l)exp “Atof = (1 -e a.) +d( - Si(d-i-l,)/d)]g

+ d(c-l)expz-dlt,(l - e 23'/d ) . (31)

+ dz(c-l)expg- )\—2-3- [(c;Z) a- e-zv/d) + 2(1 - e's/d)]£.

Correcting the minor errors in the result given by Gaver and Hoel [1970],
it should be noticed that the last line of (31) appeared with the coefficient

'+ (c-1) instead of dz(c-l) and with a minus sign instead of a plus sign.
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. The mean~squared error of ?m(c) is obtained by adding to (31) the

_expression

‘

e AT _ Zg-)‘T[cexp§-Xt.(1 - e_»a‘)g - (c-1)exp§-dlto(1 - e"?'/d)z ] .

The authors performed several tabulations for reasonable values of
the paramet:e;' and they observed that the bias of the jack-knifed estimator
decreased whgn the numger of intervals c ihcreased. These results led
them to define a new estimator obtained by letting ¢ tend to infinity.

In practice, it is unreasonable to timink of an infinitely jack-knifed |
estimator, but the next best solution is t:o. look for an estimator whose ‘
expectation is equal to the limioting expectation of the jack-knifed
estimator. ‘ . | °-

Writing the expectation of EJK(C) as follows :

k)

[%

Et?m(c)‘ - c[axp}-kt.(l—e—‘r/t")z - expi-)\t.-*-(;g}l-)- (- ;-crl(c-l)tl")‘]

+ exp%‘lto (c:i) (- e-cT/(c-l)to)£
[

and letting c +® , or € = -:'—‘- + 0 , the limiting expectation becomes

lim -g—'—[expz—lt.(l-e-rlc°)$ - exp{~Ato(1-€/ts) (1-e"T/te (1=€/t0), ]

+ lin expi-Ate(l-e/t,) (1-e /tell-e/tadyt
er 0 - ‘

’ °
14 N B 4

Applying L'Hopital's rule, this expression becomes

e+ 0 t:s(l--e/t.)2

® [expz-lt.(l-—e/t.) (Lﬂq/t'(l'e/t')a + wg-kt.(l - e-'t/t.)i

@

lin -t [1(1 - e TH/telmelte)y 1 - eley) VB T ]

a

L 4
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- and simplifies to

c- ©

/Ilif\ Ej;JK(C)g - 'toexpg-)‘ta(l - e-T/t°)§ [X(l - e ‘t/t.) t. e"T/to]

' ’ R expj-)\to(l - e-T/h)%

- expg-kto(l—e-r'ltf’)i [l - At,(l-—eﬂj/t‘) + )\Te—T/t° . (32)

It is now desired to find an estimator whose expe;étationl is identical
to the limiting expectation given im (32). The follgwing definition of the
infinitely jack-knifed estimator achieves that purp;{se and was proposed by -

/
the authors without any justification: - /

. .
. /t /
r (oo) a/fxp, [1 - no(et/te 71 - 'r/t.,)] e (33)

Indeed, . /

1

/

E}?M"’)% i Ege—n.'t/t. - paeT/teg et/ L et/

o Z‘JT/to ()\to)J Ao +
J.l

=0

e-Atn »extoe-T/to

eT/t'° + T/ts) e-)‘t"')\t.e

+t°

[+ 2]

NeT e'ﬁot/to

j=0

[ ]

1 = Ate + (1 + T/ts) Atee ¥/te

T/°°+¢/t ) Z -jt/te (Me)J

"T/to e

L =
= expg-kto(l - Ll - Ato(l - e—T/to) +‘ATE-T/t‘
= 1lim E! 7, (¢) .
R A
///
/
o/
/
/

y = T - g s e o s e e Y S v

L& Ty T e




It can be shown that the infinitely jack-knifed estimator reduces the _
bias. However, for some specific values of the parameter, the mean—squared
error increases with c , 80 that EJK(‘”) becomes inefficient.

3.2. Estimation based-on the interval (0,kt.]. /

In this section, the effect of increasing the period of observation
from (0,te] to (O,kte,] will be examined. The question addressed in
the seqﬁel is to what extent the maximum likelihood and minimum variance
u;li:iaagd estimators will exhibit a substantial reduction in their mean-

squared erwors.
The first part is based on observation of the number of failures in

k non-overlapping intervals of duration t, (Poisson analysis), while the

second uses the time intervals betyeeh k successive failures (expomential

analysis). We will distinguish the estimators obtained in the exponential

~atullysis by the superscript E.
| »

-~

3.2.1 Poisson analysis.

Let Ni » 11 ;.00 k , denote the number of failures observed in the

i~th interval of duration to . It is well known that the random variable ‘

. E,
1

i=], ©

«

-AT

is a sufficient statistic for A ( and hence for r = e ) , and had a

Poisson distribution with piramter kA , denoted by Po(kA) .
(4

Based on these records of past evénts over the observation periods
(0,ta] . (tes2tel , ... , ( (k=D)te,kte]

an estimator of r is desired for the mission period (0,T].

/
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Zacks and Even [1966] compare the relative efficiency of the maximum
likelihood estimator t,y end gpinimum variance unbiased estimator Ty
The relative efficiency considered by the authors is the ratio of the
Cramer-Rao lower bound of the variance of unbiased estimators, to the
mean—-squared error of the considered estimator. The comparison will be

made here in terms of bias and mean-squared error.

In order to simplify the notation, let
‘ \
- ‘ g - -'L and H = kAto .

M kto
An unbiased estimator for r = e-a.u is given by
L M .
' k =
. since 4
| e} - el o
- w - . ) .
j J oTH '
- a-3 Hﬁj—l—-

# . J'.;O
1 - o !
a g - - j
’ - euz:iu(l j!d‘)f )
: j=0
oW M-

b

= g .

The fact that T ) is also the unique minimum 'variu?c’a unbiased estimator

. again follows from the Lehmann~Scheffé Theorem [Lehmann, 1983, p.80].

-

/



\ A :

*Mvu

- (1-9S

?

The m—th moment of ;MVU (m = 1,2,...) is the value of the probability

generating function of Po(u)

E {Em}“ -

Accordingly, the mean—squared error (variance) of ;MVU

nsg(fm) - apg-u[l - (1 - mzli - expg-za\it '

- ool [of] ]

at (L - D™ since

\

2,3 (1~ b.)sz"'

mé
E;(l -3
-} ) j -u
_ @] U e —
j

m
oM eu(l -9

exp$-u[1 - (1 - 9N % .

»

Since the reliability function r = e

v

“&@j

PO

its maximum likelihood estimator is simply

- i T

kto

e-ﬁ-

G

is given by

3

(34)

is a one—to—one function of A’
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'

The. m—th moment of ;ML (m=1,2,...) 1s equal to

E{EML}"" - E)e-a‘si“"

- Ze°3jm uj ‘e-u
3!
j=0
= exp;—u(l - e-gm)z ‘, 8 (35)

The mean-squared error of EML is then given by

—

MSEG, ) - E&*‘,ﬂ- - :‘2 _

t i -
= expg-u(l - e‘2’32 - Zexp;ru(l + 8- e-53€ + expg-zéhi .

+

3.2.2 Exponential analysis. Lo .

" Now let Xl ’ Xz s ese s Xk represent the time intervals between k
successive failures. Let 6 denote the meal; time ltween failures (MTBF)
of the process. It was mentioned in sectioh (2.2) that the ki's are
indemdmt identically distributed random variables having an exponential

distribution with parameter 6 , where ) /
6 = 5 . (36)
The reliability function can now be expressed as .

e-r/ﬁ

r = » 0L T<™®



-

.= 39 -

Let L '

‘Since the random variable T has a Gamma distribution with parameters
?

k.and 8 , the minimum variance unbiased estimator of r 1is given by

the unique solution to

=
\

oo ™

1

r(x) Tl-——- xk-1 e—"’(/e dx = e“T/e . an
8 T(k)

The equation in (37) simplifies to

- 1- ;(x) xk-l e-x/e dx = e-'l'/e
8 (k=1)! . “
,’\
o ~
[ ] ~
-1/8 : .
—_ —————: r(x) ick 1 e (x-1)/8 dx = e /8 ///
‘ o (k-1)1 J : -
— r(x) xk"_1 e_(x_T)/e dx = Fek(k-—l)!
0
— i) ™l 2 (r-pk?

» (cf. pp. 12 and 14)

)

which leads to. the unique solution

k-1
coee s -2
MVU

~)

- g i sy 8 g s
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The mean-squared error.(variance) of Ly 18 8iven by the expression

~

MSE(E ) = EJEo. (38),

~E ) - 2T/8
MVU

where the expected value on the right-hand side of (38) is equal to

2 27k-2 k-1 ,
E zEMgugr = U/@_- ;] -%--— X0 gy . (39)
. T (k) .
) .

<

Letting u = % , the integral in (39) becomes
2 2k-2 k-1
ez El - 1-;_u] (CDLIR N
* 9 T(k)
/6
: IR N | MR 3 ol S S
(k=1)1 Bu vooe o«
1'/6
2k=-2
- T—sz (%)) r/ewt ot ™ au
2k-2
= ?E_—r E (Zk 2)(1’/9) /k-l- e.-u du
1/6 o
00 N
DT E (%7%) Crrew f“"‘l ™ 4y
1=0 , /e -
; 2k-2 P ’
N :E:: 2k-2
+F)__ ( ) (=1/6u) '/—-l—m du . '(40)
L=k
* /8

e cmrertmi e - P
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.The k integrals in the first sum of (40) are related to the Poisson

distribution according to the relationship

= <]

[uk‘l'l e_u»;’ldu = (k-i-1)! Po(k=-i-1;71/8) , i = 0,...,k=1 ,
/8 ) J -

x] . .
Ad e—}‘ 7
where Po(x;A) = T ,

- j-O

[x] Dbeing the integer part of x .

The (k~1) integrals in the second sum of (40) are related to the

exponential integral as follows :

Ei(—T/G) = f— du . ' (41)

- ' CQ 9,

The values of E, (—‘r/B) can be found in Jahnke and Emde [1945]3 Looking

only At .
' 2k-2
1-kT/e

and expanding the terms of this summation gives

%k=2 © ®

e d e ¥
- Tl_r.+—1 u = —d + -——du+’...+ k2 k—l du
/8 /e ‘r/ﬁ' /9 /8

—

i
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The value of the first integral on the right-hand side can be found

using (41) and the second integral cam be written in terms of the first one

as follows :

me-u -T/B e-u
- Ei("t/e) = T du = W du
T/6

so that

o U e—T/G \/(:~ .
~ u—z—du = my + Ei T/) . .

/0

Similarly, the third integral of the summation is equal to

[ -]
-u -‘r/ﬁ
e—:s—-du = -;— —— du
’ u (1.'/9)

1/86 T/B

' »
. e—T/e e-‘r/B

1
= - - -~ E.('T/e) -
Z(T/e)z 2(x/9) 21

Proceeding in a similar way for remaining (k~4) integrals, the value of (42)

s
#

becomes
k‘Z _ % 2k-2 i-k -~
j+l (i=-k-j)! -k+1
f I S | TP e
1-k'r/e imk i=1 (3')

8o that , finally, the expect?ion given in (40) is equivalent to the

following expression : 5\

) &
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(Zk_ ) (1/6)

3 HVU; (k—l) i!

Po(k-i-1;1/6)

2k=2 (2&-2)

"‘l.'/e E
i=k

)k

i-k
iyt G=k=j)! S ot
(-1) = T + (-1) E; (-1/8)

( i=1
The mean-squared error of EH&U is obtained by subtracting e-ZT/e from
3. .

Evaluati.on‘gﬁf the mean-squared error using (43) only requires the use
of tables. However, the integrals in (40) may be evaluatéd numerically
with little cost on the computer. In the appendix, where some numerical
results are given, the Gauss—Laguerre quadrat;ure me;:hod was used
successfully as a method of numerical integration.

AP}

The maximum likelihood estimator of r is given by

)
B

vhere

4

LN

. (43)
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. k-1 -kx/8
E;;ﬂi% -' e-‘l‘/x x e dx
0/%)%T (k)
0

k
- (§) zrf'mﬁ@?'%‘%"
0

xk‘.l dx . (44)

~

With t = _lgx; , the expectation in (44) becomes

w *

. k — _ k=1
dadl- () wor [l R @) H
' 0

- T-Tkil 7 ‘/;k-l exp;—[-é%+ t]i dt .
0 .

’

'Si.milarly,
P 1 o1 (e,
ML (k=1) 1 eXP T8t :
) 0
Since ’
~ b . -;—(n-l)
/;1 expg-[ax +;]2 dx = 2[%—] Kn_l(Z‘Jab )
o ° L3

where Kn(y) is the modified Bessel function of the second kind of order n
at the point y , it follows that

1
- 5(k) !
ftk 1 expi—[% + t]i dt = 2[:-;-!]2 Koy (24/Tk/0) .

, 0

e
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Now, using the identity ¢
K (o =K/ for all n=0,1,2,... ,
the expectation in (44) can be written as
k/2
1~ E 2 Tk 4 .
E rlﬂ.% = m-s—!- [-é—-] !\k(z,‘/'l'k;e ) . (45)

The bias of the maximum likelihood estimator is obtained by subtracting
e/ from 45).
tet l\dk(‘t/e)‘ denote the expectation given in (45). The mean—squared

error of the maximum likelihood estimator can be expressed as

2
~ E ~ E
HSE(rHL) - E%rm‘ - tz
2
- =~ E _ ,.~T/8 ~ E -21/8
E; O, 2e Ez TMr + e
- M_(2t/8) - 22 /O M (r/0) + ¥T/0 (46)
k k /
r
3.2.3 Comparison of ;HL . fm_g‘ , ;HVU and ;HEU in terms of bias and

mean—squared error.

The bias and mean—squared error of the maximum likelihood and minimum
;ariance unbiased estimators are given in Tables (6) to (9), and (10) to (13),
respectively, for the Poisson analysis. The equivalent results for the )
exponential analysis can be found in Tables (14) to (16). Notice that the
results for the minimum variance unbiased estimator are only given for

{ k = 4, since the value k = 8 caused overflow, and brought no further

insight to the comparison.
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The c;ompu‘tations were carried out on the McGill computer, using the
Gauss-Lagueri'e quadrature method to solve the integrals in (40). The results
are given for k equal to 4 and 8 , where k is the number of intervals
of observation, and for values of r between 0.0l and 0.99 .

The.r:umerical resultn:s given in Tables (6),(8),(10),(12) and (14) to (16)
can be found in the paper by Zacks and Even [1966], where they are presented
in the form of graphs. The authors only considered the case where the ratio
missi.—on time : observation time (T/t,) 1is equal to 1.0 . Since this
represents a very risky situation, thé x;at:io T/to equal to 0.1 1is gstudied
here and the results are given in Tables (7),(9),(11)', and (13) for the

Poisson analysis.

Even though the choice of estimator is not influenced by this change
of ratio T/t, , the reduction in bias and mean—-squared error is substantial
for both estimators. For instance, the mean-squared error of the minimum

variance unbiased estimator for k =4 and r = 0.1 goes from 0.008 to

0.0006 when the ratio T/t, is taken to be 0.1 instead of 1.0 .

These results reinforce the fact that the accuracy of estimatiom is
highly dependent on the length of the observation period, compared to that
of the missipn period. |

14

Comparison in terms of mean—squared error can be made from two different

°

points of view :

(1) comparing the maximum likelihood and minimum variance unbiasged

estimators for a given type of analysis (Poisson or exponential),

2 coupéring the two types of analyses (Poisson and exponential) for
a given estimator (MLE or MVUE). ’

[}



Ml ey

e

- 67 -
Zacks and Even [1966] only considered the first type of comparison
and their results are summarized in Table (17), for the ratio Tt/t, equal

to 1.0 . Observe that, despite the inverse relationship between the .

i

parameters A and 0 (A = %) » there is no such ccfrrespondence between
intervals of Tt over which the minimum variance unbiased estimator is
superior/to the maximum likelihood estimator. In the Poisson analysis, the
maximum/ likelihood estimator is superior when the expected number of ’
failures during the mission period , AT , is smaller thap one (r2 ~0—.4) .

Notice that in situations where high reliability values are expected, the

value of AT is usually smaller than ome.

If the analysis is based on times between failures (expomential analysis)
and high reliability values aré expected, the choice of estimator requires
a precise knowledge of the expected value of r .

For values of r between 0.6 and 1.0 , the minimuw variance unbiased
estimator performs better in terms of mean-squared error. The maximum
likelihood estimator should be used if r 1is expected tc; lie between 0,03
and 0.6 . The superiority of the minimum variance unbiased estimator

A

reappears for very small values of the reliability function (r<~0.03) .

Most of the time it is not possible to choose between the Po\iggon and
exponential analyses. The type of analys:'.g will depend on the data available,
in the form of actual counts of the number of 'failutea or in the form of
time intenjis bgtweeti failures. In that case one may use"!‘at;le (17) to

decide which type of estimator is appropriate.

I3
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If the analyst is consulted before data collection and is able to
predict the approximate range of values for the reliability functiom,then
the following considerations should be kept in mind to determine which

sampling scheme is to be adopted.

The data shown in Tables (6) to (1¢) indicate that the exponential ,
analysis, based on the observation of times bet::een failures, should be
perf;:rmed if high reliability values are expected (r > 0.4), whether
one uses the maximum likelihood estimator or the minimum variance unbiased
estimator. The bias of the maximum dikelihood estimator, in the exponential
analysis, becomes negative for high reliability values, and is slightly
larger (in absolute value) than in the Poisson analysis. However, a
negative bias is more appropriate than a positive bias when high reliability’
values are expected, as it provides a conservative estimate in the
reliability sense.

These results agree with common sense in the following way : the
Poisson analysis is based on counts on1§,from k intervals;and does not
take into accout(:t‘ the respective positions of the failures in the time
intervals considered. The exponential analysis describe't;l here is ba;ed on
observation of time intervals between k successive failures. When the
reliability function is large, the number of failures in any given intervlal
is small /and may even be zero if the interval is too small. In that case,
the Poisson analysis must be performed on the basis of a very large
observation period to avoid-undereatima,tion of the reliability function.

On the other hand, in the exponential analysis, the period of observation

is not determined in advance; the observation process continues until the

first k failures have occurred, and then stops.
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3 [y

nlﬁooking at the maximum likelihood estimator more closely, it can'be
3

‘observed that for values of r smaller tham 0.08 and for k = 4 , the

Poisgon analysis yields the best results in terms of mean—squared error,

the difference in bias being negligible. If k = B intervals are considered

-for estimation, the Poisson analysis can be used for values of r wup to

0.2 . As the. reliability function increases, the difference in mean-squared
error becomes highly significant and should convince one that the Poisson
analysis becomes inadequate in those eircumstances. For instance, with
k=4 and r = 0.99, the mean-squared error in the Poisson analysis“is
approximately equal to 0.0019, vwhile in the exponential analysis, it is

only 0.000097 .

If the minimum variance unbiased estimator is being used, the Poisson

analysis can be performed for values of r up to 0.3, and as the reliability
Y

function increases, the exponential analysis becomes more appropriate.

N—
The reduction in mean—squared error becomes very significant for values of
r larger than 0.9 . For instance, when k =4 and r = 0.99 , the

mean-squared error goes from 0,0025 to 0.000047 when the Poisson analysis

¢
B

is replaced by the analysis based on intervals between failures.

The above discussion and a comparison of Tai)les (14) and (15) indicate
that if a high reliability value is suspected (r > 0.6), the best desiﬁn is
the exponential analysis and the best strategy is to use the minimum

variance unbiased estimator.

-
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) Table 1 : Values of n, for estimators of bounded relative error,

using the approximation in (16) of chapter (2).

> e 0.90 | 0.95 0.99
0.01 27059 | 38414 | 663027 .
0.02 6763 9602 | 16573
0.03 | 3005 4266 7363
0.04 1690 2399 4140
0.05 1081 153 | 2648 |
0.06 750 1065 1838
0.07 551 782 1349
0.08 421 598 1032

| 0.09 333 472 815
0.10 269 382 659
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4

Table 2 : Bias and mean-squared error of the maximum liicelihood estimator
in the Poisson analysis based on k = 1 interval

with ratio 7T/te = 1.0 .

] BTAS MEAN~SQUARTD FRPOFR
0.0 0, B442C07E-M 0.17656126%-01
0.02 0.6434238%7~01 0.3N98576%=01
0.03 9,78982537-01 2.4252034%-01
0,04 0.9071743E2-01 Ce5297997%-01
0.C5 0.1005193% 00 0.62408533%-01
0.06 0. 1089058% 00 2.71134637=-01
0.07 0.1161929F 20 0,7915509%-01
0.09 9.,1225914F 00 0.965859u%=-01
0.09 0.1282505% 00 0.93u87203-01
010 0.1332811% 090 N.939307UK%-01
0.20 0. 16154865 00 0.,7440%17F 09
n.130 0.16717285 00 5.1627858% 00
.80 0.1603429F 002 0.1645345% 00
0.50 J.14522732 00 0.1539465% 00
£.60 0.1240438% 00 N.136094%7 G0
0.70 0.93147695~01 0.1072116% 00
0.80 0.6346270%~01 0.7501996%=-01
0.990 7.35563R3E=01 2.39901577=-01
0.91 0.3212643%-01 7.3511959E~01
0492 0.2R65757F-01 7.3131086%-01
0.93 0.25162828-01 0.2747655F-01
0.94 0.2164227%=~01 0.2361774E-01
0.95 2.1809639%=~01 N.1373480%-01
De96 0.14525593-01 0.15829562-01
0.97 N.10930243-01 Do 1'190233F~-01
0.98% 0.7310569E~02 0.795C7uE=02
.99 0.39869553-02

0.36670572-02
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Table 3 : Bias and mean-squared error of the maximum likelihood estimator
in the Poisson analysis based on k = 1 interval
with ratio T1/t. = 0.1 . )

) B3T3 METYN-SNTARED FRIOD
0.1 «28953435=-02 0.3701376%-04
0.922 D.U166€55%=-22 N.,26563168=073
.02 0,55453252~-02 N.5729617%=03
0.04 0.,6739508F%=02 0.73u46361%=03
0.C5 07797103502 2.1101787%-02
N.06 N.97475857-02 f,1887832%-Q2
0,37 0.96095830%5-02 Ce1817379%-02
C.0R 7.10%303727=01 0.2207261%-0"
0.09 N«1111853F7=-01 0.251479£7=02
0.10 0.11792R/5%=01 C.3023562u%=02
0.20 0.1A19257%-01 0.78951072-02
Je 30 J¢1789142%-01 N.11970805~01
0,40 2.,13128637-01 0,1845316%-01
0.59 N.1704937E-01 0.1760769E-01
Ce.60 0.1501113%=C N.,17813167%=-01
0.70 J.1218241FE-21 N.,16796657=01
0.80 J.3582370°%=-32 0.1342338%=01
0.90 NeB593T9ET~-02 0.7265965%=02
0e91 D.81611195~02 C.7194625E=92
0.92 043718317%-02 TN.6UFNIIGER?
0.93 743270566%5~02 0.57528027-02
0.94 0.2817750%-02 0.50028597=02
0.9% N.236010€67%=02 Q.,42285922-02
0. 35 Ne.1897573E-02 0.,34830426%-02
0.97 - 0.,14302737=02 0,2608R776F=-0?
0.99 Ce95820432-03 0.17624023==-07

.99

0.43142672-03

0.89395C5F-23
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Table 4 : Mean-squared error pf4khe minimum variance unbiased estimator

in the Poisson analysis based on k = I« interval

with ratio T/te = 1.0 .

R “EAN~SQUARED ERRQP
o e mam e er e em e e - ——— -
. 0.01 0.,9900004%”=-02
0.02 0.1960000F=01
. 0.93 0.291000CFE=-01
0.0 0.3840001E-01
0.05 ~ 0.4750000E-01 ’
0.06 N.5640001F-01
0.07 0.6509995F~01
0.08 0. 7359999F-01
0.09 N.83189994F%=-01
0.10 0.8999997F-01
0.20 0.1600000F% 07
0.30 X 0.2100000% 00
2,40 0.,2399999F 00 -
0.50 0.,2499999EF 00 °
9,50 0.2399999F 00
0.70 0.2099997F 90
0.90 0.1599994% 00
0.90 0.8999968F-01
0.91 7.8199976%~01 ’
0.92 - ;i  0.7359958E-01
0.93 T~ 0,6509912E-01
0,94 0.5639969%-01
0.95 0.4749983F=Q1
0.96 0.3839942F=-01
0.37 N.290998UE-01
C.99 0,1959953%-01

0.99 0.98992677-02
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Table 5 : Mean-squared error of the minimum variance unbiased estimator
in the Poisson analysis based on k = 1 interval

with ratio T/t, = 0.1 .

RA MTAN-SQUARFC ZRRQr
0.01 0,5868931F-04
0.02 2.1915029:8-03
. 0.03 0.37799655-03
0.08 0.6075676%-03
- 0.05 . : 0.8732071£-02
0.05 7.11676597-02
. 0.07 0.14927258-02 .
0.0R »  0.1838929F-C2
0.09 0,220529€E-92
0.10 0.2589246%-02
0.20 0.A9847435-02
’ ' 0.30 0.11514982-01
, 0.40 2.1535325E-C1
10.50 0.1794316%-01
" 0.60 0.1886732F-01
0.70 . . 0.1779247%-01
' 0.89 0. 1444153%7-01
0.90 0.9579124%-02
0.91 0,7846045F=-02
0.92 0.7086322E-02
y 0.93 0.6299250E5-02
0.94 © 0,543007UF-02
0.95 , 0.46408448T-02
AN 0.96 , 0.3769529E-02
0.97 % 0.28696057-02
, 0.99 : 0,1941727F-02
- 0.99 7.9851693F-03

%
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Table 6 : Bias and mean-squared error of the maximum likelihood estimator

in the Poisson analysis based on k = 4 intervals

with ratio T/t, = 1.0 .

4

B STiS MEAN-SQUAPEC ERROP

0.01 0.6998353r-02 N.8716497%-02
0.62 0.1138749E-01 0.,12630057~02
0.02 0.1493260%-01 0.22143332-02
0.04 0.1795713E-01 0.3270304E~02
0.05 0.2060780%<01 D.4399940E~92
0.06 Ce22967307-01 0.5582586E~02?
0.07 0.2509248E-01 0.6803943F=~02
0.08 0.2701819E-01 0.9252899€5~02
0.09 0.2877283=-01 0.9220769E~02
0.10 0.30377578-01 0.1060060%-01
0.20 0.40742937-01 0.2311859E~01
0.30 O.ulU63434%-01 J.3355193E~-M
0,40 0.uu85328u4F-01 0 4079765E~01
0.50 Cel1563758-N1 N.44340912-01
.60 0.36369858E-01 0.43903112-01
.70 D.29362202-01 0.3932488E~01
0.80 0.2083206E-01 0.3051138%-01
0.90 0. 109906 2%-C1 0.174124R2-0"
0.91 0.9940922F-02 N.1586545=~01
0.62 0.8379960E-02 0.1427561E~01 "
0.93 0.78077912-02 0.1264179%~01
0.94 0.6724417F-02 0.1096529E~01
0.95 0.5630255¥%-02 0.9246051=~02
0.96 0.4525304%-02 0.7483304%~02
0.97 0.3409684%-02 0.5677760E~02
0.98 0.2283514%-02 2.3827999E2~02
0.99 O« 1146853E-02 0,1935601E~02

o ——
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Table 7 : Bias and mean-squared error of the maximum likelihood estimatog
in the Poisson analysis based on k = 4 intervals

with ratio 7T/t. = 0.1 .

] PTAS “Z3N-SOUARID TR9OR
0.01 0,5RTFPIG==03 9.,13653235-04
0,02 O.QQ3§281?-03 0,8505552F-04
0,73 0,13326037-02 0.9932245%-04
0.04 2.15281052-02 D.,18U40016%=013
0.05 0.,1891416F-02 0.,2074253E-03
0.06 0.21231152-02 0.2783S14E-03
0.07 0.2345622%-02 0,3557589%-C2
0.28 0,25440455-02 J.43883555-03
0.02 7.2725§553=02 0.5268641°~03
[rs e 0.2B94398F-02 0,61918058~023
0.20 0.4C29810=-02 0.16205832-02
0,30 0.,4510522<-02 2,2779901F-C2
0.40 7.,45685775-02 0.3715098E-02
0.50 0.4314184=-02 0.,43L49053E-02
0.6 0.3811061E-02 1.4578650F=072
0.70 7.3101249%-02 0.43230655-02
0.80 0.2215624F-02 0.3512300%-02
0.90 0.1175059F=02 0.2029358%=02
0.91 0.10644205-02 0.19100315-02
0,92 0.95129017-03 0,17259128-02
2.93 0.8369088F-03 0.1534283E~-02
0.94 0.7211566E=-03 0.13356217-02
0.95 0.6041527E-03 0.1130283F-02
0.956 0.485R8375%-03 0.9179711£-03
0.97 0.36627057=02 0.6995797F=-03
0.97° 0,2453923%=03 0.,4730225%=-013
0.99 0.1233220E=-03 0.,2402653E~03
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Table 8 : Mean~squared error of the minimum variance unbiased estimator
in the Poisson analysis based on k = 4 intervals

with ratio T/te = 1.0 .

° MTAN-SCUARED ERROR
0.01 0.2162279E-03
0.02 0.6636593E-03
0.03 0.1262831F=-02
0.05 0.2786858%-02
0.05 0.3673859E-02
0.02 0.5633924%E-02
0.09 0.5688505F-02
0.1¢C 0.,7782787F-02
0,20 0.1981391E-01
0.30 0.3160797=-01
0.40 v 0,4118929%-01
0.50 0.4730156=%-01
0.60 0.4903889E-01
0.70 0.456996%F—01
0.80 0.36717S4E-01
0.90 0.2161953E-01

s 0.91 0.1975608F-01
0.92 0.1782841F~01
0.93 0.15834327%-01
0.34 0.1377423E-01
0.9% 0.9453516%-02 ]
0.97 0.71q1956,'.—02
0.98 0.486255RE~02
0.99 0.2864794F-C2
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Table 9 : Meanrsquared error of the minimum variance unbiased estimator

in the Poisson analygsis based on k = 4 intervals )

with ratio T/t. = 0.1 .

2 MPAN-SQUAPED ZRROR

0.01 0.12201312-04
0,02 0.4109689T=-04
0.03 0.92U5344F=00
0,04 0. 1340761E-03

. 0,08 0.19442118=03
0.06 0.2623231E-03
0.07 0.3368300E-03
0.08 0.4171450%-03
0,09 ®0,.5025805F-03 -
0.19 0.5925372E-03
0.20 0.1642227F-02
0.30 0.2750106E-02
0,40 0.3707430F-02

. N.50 © 0.4369736E-02 ‘
0.60 0.46266212=02
0.70 ‘ 0.4388418F-02 4
0.30 0.3579713E8-02 s
0.91 0.1954601F=02
0,92 . 0.1766132E-02
0.93 0.15704827=02
0.94 0.1367643E-02
0.95 0.1157630F-02
0.95 0.9404297E=-03
0.97 0.7160550E~03
0.98 \ 0.4845157E=03
0.99 Oe2u58249E-03
* /
/
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Bias and mean-squared error of the maximum likelihood estimator

Table 10 :
in the Poisson analysis based on k = 8 intervals
with ratio T/te = 1.0 .
“\

. P 3IAS MZAN-SQUARED *RROR
0.01 0.3181074E-02 De12532147-03
0.02 0.5288713F=-02 0.37362617~03
0.013 0.7021710E=-02 0.56976353%-03
0.04 0.8517951F-02 D.1077596°%=-02
0.05%5 0.9841144E-02 0.15013432702
0.06 0,1102842%-01 0.1960327E-02
0.07 0.12103863-01 0.2448041E-02
0.08 0.13084598-01 0.2959345%-02
0.09 N.1398301F~01 0.3490027E-02
0,10 0.1480901E-01 0.480365223%-02
0.20 0.2026784F=01 0,9849995%=-02
0.30 0.22463808-01 0e1529855E-01
0.u40 0,22597072-01 0.1953179E-01
0.50 0.2122395%5-01 0.2208731F-01
0.60 0.,1866663E-01 " 0.,2256554E-01
0.70 0.,1513541F-01 ’ 0.2078009E-01
N0.80 0.1077843%-01 ’ 0.1651973E<01
0.90 0.5705118F-O2 0.9635448%-02
0.91 0.,5161822E-02 0.8796930¢E-02
0.92 0.46123272-02 0.,7932186E-02
0,93 0.,4056633%-02 0,7038236E-02
0.94 0.3494799:~-02 0.6117344%~02
0.95 0,2926946E-02 0.5168438E~02
0.96 0.2353251%=02 0.4191220%=-02

' 0.97 0,1773596F=-02 0.3186166E-02
; 0.98 0.,1188099:-02 0.2152026E-02
; 0.99 0.1090467E~02

T S O e T

e

- T

A
oy,

1

0.5968809E=03

y
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Table 11 :

R

0.01
0.02
0,03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.20
0.30
0,40
0.50

0.60°

0.70

0.80.

0.90
0. 91
0.92
0.93
0.94
0.95
0.96

0.97.

.98
0.99
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with ratio T/te = 0.1 .

0,2907962E-03

. 0.4G629602F=03

0.6619990%~03
0,R095540%-03
0.9410083F=-03
0.1059934E-02
0.11682517-02
0.1267612E-02
0.1359046%-02
0, 1443505%-02
0.2013505E-02
0..2256632E~02
0.,2287745E-02
9.2161801E-02
0.1910746%-02
0. 1555741F-02
0.1111984%-02
0.,5903840%=-03
0.5343556F~03
0.4776120F-03
0,42015318-03
0.3620386E-03
0.3033280%8-03
0,24390227-03
0,1838803E-03
0.1232028F-03
0.6192923E~04

=

—

MEAN-SQUAPED ERPOPR

in the Poisson analysis based on k = 8 intervals

}

0.62622137-05
0.20963617-04
0.41912037-04
0.679714 1E-04

.983R003F-04
0.1325209F-03
0.1699254%-03
0.21019218-03
0.25296218-03
0.2979636%-03

0.820644 2E-03,

0.1369119F-02
0.1840949F-02
N.2165496E-02
0,22991767-02
0.2167940F=02

0.176638B4E-02 -

0.10537512-02
0.9638071E~03
0.8711219E-03
0.,7746816E-023
0.6743670E-03
0.57041652-03
0.4634857E~-03
0.3536344E-03
0.2389954E-03
0.12201075=-03

Bias and mean-squared error of the maximum likelihood estimator -

ST e, e e ey s
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Table 12 : Mean~squared error of the minimum Variance unbiased estimator
in the Poisson analysis based on k = 8 intervals

with ‘ratio T/teo = 1.0 .

3 * MEAN-SQUARFD TRIOR
0.01 0.7782795F-04
0.02 v 0.2522755F=03
0.03 0.4950904E-03
0,04 0.7925578E-03
~ 0.05 0.1135539E-02 -
D.06 0.15172158=-02
0.07 0.1932171E=-02
0,08 - 0.23759412-02
0.09 - 2,2844720%-02
‘ ;0410 0.333521CE=02
0020 003913763E-02 B ‘I
. 0.30 0.14616995=-01
0.50 02262689%-01
0.60 0,2373667E-01
0.70 0,2234023F%~-01
- ' 0.80 0,181Q242E-01 .
0.90 \ 0.,1073819%E-01 ] /
0.91 0.9819601E-02 ‘
0.92 N.8867789E-02
. 0,93 0.7881280E=02
0.94 0.6860148%-02
0.95 0.5804501E-02
, 0.96 D .U7T14452E-02
! . 0.97 0.3588352F-02
- 0,98 , 0;2828074E=02

0.99 0.1231930E~02
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Table 13 : Mean-squared error of the minimum variance unbiased estimator
in the Poisson analysis based of k = 8 intervals

with ratio T/t, = 0.1 .

bi¢ WFAN-SQUARFD ERPOR
cmme | eeaceeemcecccsccaao :
0.01 . 0.5925379%-05
0.02 0.2004624E-04
. 0.03 0.,40325R35E=-04
0.04 0.6568919E~04
0.05 0,9539143E-04
0.07 . 0.,1656160F-03
0,08 0.2052797%-03
0.909 . “0,2475090E-03
0.10 : 0.2913959EF-03
. 0.20 0,9128355%-03
0.30 " ° 0.1364710E-02
0,40 0,18431102-92 '
<0450 062175333F-02
0.50 0,2305757E-02
0.90 0.1066790F-02
0.91 0.,9761162E-03 -
0.92 0.8822589E-03
0.93 2,7844162%-03
0.94 0.6834026E-07
0.95 . 0.,57338U44E-02
" 0.96 0.4702148F~-03
, 0.97 0.3580274E-03 .
0,98 * . 0.,2417999%=03
0.99 |- 0.,1224452F-03
- 6 » -
. N . i
[
. 5 b . ~
: - [ a
{ . '
CETTE T o, BoE o m——— Y s ’“*"*Tmﬂmj%mf ;

P #E
P L
- 'Y R R




Table 14 :

0.01
0.02
0003
0.04
0.05
0.06
0.07
0.03
0.09
0.10
0.20
0.30
0,40
0.50
0.60
0.70
0.80
0.90
0.91
0.92
0.93
o.9u
0,95

0.96 °

0.97
0.98
0.99
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Bias and mean-squared error of the maximum likelihood estimator

in the exponential analysis based on k = 4 intervals

with ratio T/te = 1.0 .

L X R P P R T )

0.11366503-01
0.13611739-01
0.1435579%-01
0.14328712-01
0.1382509F-01
0.12996962-01
3. 1193876201
0.1069808%=01
0.93282467-02
0.78549982-02
-0.92314482-02
-0.26101771-01
-0,6007641%=01
-0.49946712-01
-0.5445093%-01
-0.52956350E-01
-0.443483)3-01
-0,2730685%-01
-0.2507871E-01+
-0.22743465~01
-0.20300098-01
-0.1775409%-01
-0.1509130E-01"
-0,12315818-01
-0,94245085-02
-0,5409287E-02
-0.32693158-02

J

r

MTAN-SQUAREL EPRFOR o

0.12891215-02
0.2359S09%-02

0.3367020%=02

0.43371548-C2

0.5281456%-02

0.5206479E=02

0.7116229%-02

0.90133128=C2

0.8299316F-02 j
0.9775508%=0.2
0.1802141F=01
0.24989252¢01
0.29199725-01
0.3192948%-01
0.30461327E=01
0.2506214E=-01
0.1631802%=01
*J.61053045-02
0.5167365E-02
0.4264414F=02
0.34121275-02
0.2631068E=02
0.1913190E-02.
0.1286209E=02
0.7662177E=03
0.3606C817=03
0.9673834E-0U

A

s > .
'V-Wm e e e et et
’ +,7 o,

|
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H

Table 15 : Hean-hqu,ared error of the minimum variance unbiased estimator
in the exponential analysis based on k = 4 intervals

with ratio T/t. = 1.0 .

R YRAN-SQUARED EPROR

0,01 9,9261533E-03
0,02 ©0.2180642E=-92
0.03 0,3559331F~02
9,04 0.,5018495%-92
0,05 Ne6511254F=02
0.06 0.9022142E=02
0.07 0.954530LE~-02
0.08 5.1106273E~01
0.09 0.1256422F-01
0.10 0., 1404212F-01
0,20 0.2691957E~-01
0.30 0.3507417F~-01 '
0.40 0.3807992E-01
0.50 0.3628272F~-01 .
0,70 0.2192903EF-01
. 0.90 0.3861904F~-02 .
0.91 0,32026777-0" '
0,92 0,2591729F=~02
0.93 0.2032340%~02
0,98 0, 1529932E-02
0.95 0.1089096F~-02
0,96 0.7146597E-03 -
0,97 0.4121661E~03 )
0.98 0.,1872778E-03
0.92 0.4738569E~04

S gt £ e
Tk %,
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Table 16 : Bias and mean-squared error of the maximum likelihood estimator
in the exponential analysis based on k = 8 intervals
with ratio 7T/to = 1.0 ,

e - . - - - - - - — - - — - - —
!

0.01

0,63947817=-02

S

o i e

7.50544697-01

D.02 0.731790SF-D2 0.1046728F-02
0.03 0.82300527-02 0.15014172-02
0.04 0.8277%332-02 J.2163048%-02
0.05 0,7965513%-02 C.27280685E~02
0.06 0,74%2555E2-02 0.,3284115%-02
0.07 D.57966587-02 0.3859267%-02
0.0% N.3J336043F-02 0.4421951%=-02
0.09 0.S197227E-02 0.49309185-(C2
2.10 0,4299819%-02 0.553041320%-02
0,20 -0.57971487F=-02 N.10595837F=Q1
N.30 -0.1517642%-01 D.1430315%-0\1
0,40 -0,2235931%-01 0.1619959F-01
0.59 -0,2679676%~-01 0.1609081E-01
0.60 -0.28195267-01 7.1404107E-01
- 0,70 -0,2536594°%-01 0.1042783Z-01
0.80 -0.,2114707%-01 0.5975783F-02
0.90 -0.12u0617°=01 0.1899719%=-02
0.91 -0.,1133317%~01 D.1572967E-02
0.92 -0,1022375%7-01 0.1274289E-02
0.93 -0.907510%5%-02 0.9992123E=03
0.94 -0.7891715E-02 N.7487535%-03
0.95 -0,66722047-02 0.5375147E-03
0.96 -0,5412579€E-02 0.3496408Z-03
0.97 -N.4117429%-02 0.2037883%-03
0,92 -0,2784014F-02 0.9888411=-04
0.99 -0.14140017=02 0.31113622-04"

/
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‘Table 17 : Comparison of mean-squared error for the maximum,likelihood estimator (MLE)

POISSON
ANALYSIS

" EXPONENTIAL

ANALYSIS

and minimum variance unbiased estimator (MVUE), in the Poisson and exponential analyses.

MVUE *

MLE

MLE

-MVUE

.025

3 3
L v 1 g

[

05 9,1 0.2 0.3 0.4

0.5

0.6 0.7 0.8

0.9

wil MLE
n MVUE

MVUE

MLE

o
4

* The estimator on top represents the one with the smallest mean—squared error (most efficient).

- /8 -
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