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) STATEMENT OF ORIGINALITY

.To the author's knowledgé, the specific problem
treated in this thesis has not been attempted by any other
researchers. Therefére all of the experimental results
presenpted here are considered to be unigue contributions
to oriéinal knowledge.

‘Although many aspects of the ray—shocg theory presented
iﬁfthis hesis have been well established previéusly, the

solution{of the ray-shock relatfgss for the attenuated shock

Mach n r is believed go be an griginal contribution as well.
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= RESUME

*

On étudie l'atténuation d'une onde de choc plane ‘
< ]

causée par une fente simple transversale amenagé&e dans la

paroi d'un.tube rectangulaire, pour des chocs ayant un

-

d 2.44 et pour des largeurs

)
de fentes comprises entre Q.068 et 1.250 pouces. A l'aide

nombre de Mach allant jusqu

-~

de la photographie schlieren a étincelle, on étudie et on

mesure l'atténuation prés de la fente. La vitesse de 1'onde

est mesurée a une distance d'environ dix diamétres hydrauliques

en aval de la fente a l'aide de jauges a pression. A l'aide
de la théorie de Whitham sur le rayon-choc, on prédit
l1'atténuation init}ale et on construit un diagramme qui
décrit le mouvement des ondes transversales syur le front de
choc;

On observe que 1l'atténuation provient de la diffraction
du choc par la fente, méme‘si cet effet est neutralisé en
paréie par une réflection dd Mach se produisant sur le bord

du coté aval de la fente. On montre que le mouvement de

l'onde transversale résultante est pseudo-stationnaire. En

raccord avec la théorie, 1'atténuation observée est faible et

l'effet de la largeur de la fente est de second ordre. E%Q

plus grande réduction mesurée pour le nombre de Mach du choc

est de_7%. On note un accord raisonnable avec la théorie pour

toute la gamme deg tests effectués. Enfin la stabilité du choo

atténué est mise en évidence a partir du diagramme des ondes.

s
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; \\ ABSTRACT

A

Attenuation of a planar travelling shock wave due
to the interaction with a single transverse slit in the
wall of a square tube is investigated for shock Mach ,

numbers up to 2.44 and for slit widths between 0.068 and

1.250 inches. Spark schlieren photography is employed . )

to examine and measure the attenuation nearxr the slit. !
Wave speed measurements roughly ten ﬁ;araulic diameters

downstream from the slit are performed using pressure

transducers., Whltham s ray-shock theory ig' employed to

predict the initial attenuation and to construct a wave

diagram that describes the transverse wave motion on the -

r

shock front.
|

The attenuation is observed to result from tge

— N

diffraction of the shock through the slit although this
effect tends to be offset by a Mach reflection process
at the downstream edge of the slit. The subsequent -
transverse wave motion is demonstrated to be essentially.

pseudo-stationary. In accordance with the theory the

attenuation is observed to be weak and the'effect of slit
Awidth secondary. The largest measured reduction'in'shock
Mach number is'7%. Reasonable agreement with thcory is \
observed ove} the rangg of thedtests. Stability of the

f \
attenuated shocﬁnis deme;gtrated from the wave diagram. q
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L

LATIN SYMBOLS
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//
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e

> F
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.

‘_,,_//T"/;efincd by eq. 14:

-~

.-duct cross sectional area

shock-shock velocity
sound speed,spced defined by eq.22
specific internal encrgy

arca-Mach number function

defined by eq. 1

defined by.eq. 14 '

) duct width

Chester function, eq. 5
defined on/page 32

shock stand-off distance
slit widtvth

MWach number

characteristic angle, eq. 25\

.

2/K ' ;

0
positive characteristic variable

fluid pressure T

3

negative characgﬁrﬁstic variable
gas constant
specifié entr oy,

t

temperature

time

x component of fluid velocity

L

\._,,1‘_"
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LATIN SYMBOLS

v

X

Y

z

GREEK SYMBOLS

v
X

SUBSCRIPTS

3

=

L Nt

e
H

(contd.)

b

axial

'

transverse coordinate

defined on payge 65 ’

r;y—shock coordinate
ray-shock cooréinate
ratio of specific heats
flow deflection angle

characteristic coordinate defined on Pages 27, 38

-

Q

>
flow direction
detachment angle

defined on page 28, also Mach angle a

e

Prandtl-Meyer angle

chakacteristic coordinate defined on pages 27, 38
fluid density

time required for a sound wave to traverse the jet

function defined on page 32, function defined on
page 66 .

Mac¢h stem contiquity direction

shock-shock locus angle

refers to expansion wave
refers to fluid jet
mean value

refers to shock wave
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‘ SUBSCRIPTS S : ' ‘
t E tail of exygﬁéion wave _
w refers to the duct wall ’ a
x ahead of shock t .
:‘ Y behind shock - °
. .
o ‘ambient L(um’sturbed) conlditions 1
1 behind ‘undisturned shock . ¢
’ 2, behind disturbed shock ‘ b
* refe%s to shock when just at downstream edge of

slit, also critical (sonic) conditions
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o CHAPTER I

INTRODUCTION

o T ———— e o

1.1 Relevance and Brief Description of the Problem

‘Recently, there has been a resurgehce of interest.in
the interaction of blast waves with obstacles on account Bf
the growing concern regarding unconfined vépor cloud expib—
sions. Since the quéntity oé combustible gases that is being
transported within many industrialized countries is steadily
increasing, there igté real danger.of catastrophe if large.
spills occur. Documented accounts! of industrial accidents
‘hage shown that in the last few years there has been a marked

h\}ncrease in both the number of such incidents and the damage
inflicted by them. 0

Due to the ever increasing -cost of energy, natural
gas that was previodusly burned off in many large oil fields
is soon to be stored and transported in large supertankers.
These, with envisié;ed capacities of up to three milklion
cubic feet of liquefied natural gas (LNG), are expected to -

present ? significant'danger to tran;port and storage faci-
lities.zl This concern ygé prompted a recent Dutch investi-
gation3 into the hazar%g.associated with a pianned LNG tanker
terminai}—/The gas dynamic aspects of the problem constitute

I

1
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a major portion of the study.

3

Generally, the spillage and subsequent ignition of a
. A &

o

large qu@ntitf}of a combustible gas presents several distinct
prébltms to the engineer. Among these is the ability of the

t
surrounding structures to survive a catast%ophic explosion.

1

Obviously, the study and design of blast resistant structures

#

- LIRN °
can lead to a reductiongiﬁ'the damage done. - Also associated

with this aspect of the problem is -the question 'of how far
must a conventional structure be located from an explosive
source in-order to syrvive? This guestion ariges in the

placement of gas processing facilities relative to lo&ding'g

5 s

facilities, storage sites—as well as population centers.
§.

4

Another important consideration is the possible

’
L
't
. v
t

transition from deflagration to detonation in fuel-air explo-

sions, the latter causing, considerably more damage. It is

- s

well known that a deflaération,yave often drives a precursor
shock ahead{of.itself and that reflection of this shock from

an obstacle may lead to temperatures and pressures suffi-

ciently high to initiate'détonation. This is especially

a

true in the mneighborhood of the_triple point of Mach refildec-
» s LY

tion. In addition, the shock waves produced by flying debris
’ 3

from an initial explosion may eventually initiate detonation.

Thus it appears desirable to find some means of weakening

these shocks before this can occur. & | ;
. !

Similar dangers exist in coal mining operations as

s

well,‘aithough in this case explosions are more confined and,
LSF X
tend to propagate through branches of underground tunnels.

.
i

/
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The same is true of gas_ llne e¥blosions in industrial plants.
-v.,{ 4 1l

“In these cases as well, there appears to be a real need to

investigate practical methods of dissipeting and attenuating
- (2

shQck waves which may be acc1deﬁtally generated. )
In general, shock wave attenuation is a complex pro-
cess and since the equations which describe shock wave dyna-
migé are nonlinear, there are no simple solutions ﬁe this
typeggf'pIOSIem. Aside from the natural tendency of'glast
4 o
waves to attenuate due to area divergence effects, shock

wave attenuation usually reSUItS .from the generation. of .an.

/exefiilon wave somewhere in the ‘flow field which overtakes

.

~éﬁe shock and weakens it. Fory,an unconfined shoc@ this pro-
cess can be rather gradual,‘zgpecially if the expi;sion is
quite localized initially. However, for shock waveé in
ducts, multiple reflection of an expansion,waverfrom the
duct walls provides a mechanism by which the attendation pro-
cess ean be accelerated. In this case, the expansion wave
can traverse the shock several times before it is dissipated.
The present study examines the attehuation of an
initially planar shock wave as it passes over a single slit
in the wall of a ;ectangular duct of cogstant cross section.
Such attenuation clearly results from diffraction of the =
shock wave through the slit. TMe expulsion through”the slit
of gas originally compressed b;lﬁhe Ehock generates an expan-
sion wave which overtakes the shock and tends to weaken it.

This effect is comperisated to some degree by the subsequent

reflection of the diffracted shock from the downstream edge

g
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of the' slit. The net rdsult is, however, a reduction in
shock strength. Since the energy flux through the slit
F

depends mainly upon the.sirength of the incident shock, the

attenuation rate depends upon this parameter also.™
The simple shock tube facility employed here is not

intended to simulate a blast wave. The latter always decays
. K

- e -

because the initiation ené§gyﬁigwdistributed over an ever

7

increasing volume of fluid as it propagates away from its

pq}nt of origin while for the former the shock is "pumped"
at a constant shock Mach number. In the present caée, this'
difference is desirable as the attenuating effect of the

slit alone can then be evaluated.

al
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l.2 The Naﬁhre of the Problem

»

Some of the charactéfi;tics of the shock-slit inter-
action process have been deécribed previously" for the case
where the particle velocity behind the incident shock is
subsonic. The situation is depicted in the drawings of
Figupé 1.1 which shows the development of the wave interac-
£ions when the wall of the duct’méy be considered to be very
thin. 1In fa) the initially planar shock iéjdiffracted as it
passes into the slita the shock curves a%gund the oéening to
maintain contact with the wall. At the same time a nearly
cylindrical expansion wave is generated at the upstream edge
of the slit. As time progresses this wave spreads out into
the channel and is responsible for the attenuation of the
shock. Since the Earticle velocity is taken to be subsonic,
the head of the expansion wave also moves upstream. Further-

more, since there is no characteristic length involved, this

initial stage of the interaction is self-similar, the confi-

guration differs from instant to instant only by a scale
factor.

However, the insertion of the downstream edge of the
slit into the probiem introduces a characteristic length
(the slit width) angd tﬁe self-similar nature of the‘flgﬁ'is
destroyed. In physical terms, this is accomplished by the
reflection of the diffracting shock from the downstream edge
which proauces a secondary shock which also spreads out into

the flow. This compression wave which.is also nearly
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cylindrical then terminates the initial expansion and tends
to reduce the attenuation of the main sﬂock. It is inter-
esting to note that when the secondary shock'progresses up-
stream, it eventﬁally collides with the opposite edge of

the slit to produce a third shock which then moves downstream
to collide with the other edgé. This reflection process
¢ontinues until the colliding waves become so weak that the

motion is entirely acoustic.

The experimental evidence indicates that the reflec-

&
AY

tion of the diffracting shock is a Mach reflection i.ei, a
three shock configuration wigﬁ a Mach stem which is normal
to the duct wall at its foot. While there is no reason to
suppose that tonditions can not be found for which the re-
flection process is regular, only the Mach configuration will
be @onsidered here. It is the Mach stem which is in fact the
attenuated wave and since this wave must lag behind the inci-
dent "(undisturbed) portion of the main shock, significant
shock curvature is exhibited in the vicinity of the triple
point.

After some time the wave configuration” becomes more
or less fixed with the internal flow characterized by the
féur traveling waves~described above. Outside, tlie external

a
traveling waves move far away from the sl¥t.and for all prac-

“tical purposes, no longer influence the flow there. A steady
+ fluid jet is established at the slit which is inclined at

some anglc 65 to the duct axis. This situation for purelym}

J
subsonic flow behind the attenuated shock is dépicted in

“~



Figurce 1.1 (c).

In ceneral, the jet structurce depoends upon the pres-
) ‘ .
sure ratio across the slit ‘as well as the particle velocity
1 " . .
behind the shock. Thyée {low regions mey be distinguishoed :
" ;’{ '
for the jet. These are (i) purely subsonic flow, (ii) mixced
sub and supersonic flow i.e., choking and (i1i) purely supcr-
sonic flow for which there is a Prandtl-Meycr expansion at
the upstrean edge of the slit. Troshin® has analyzed steady,
two-dimensional irvrotational’ compressible [low through an
apertua™ in the wall of a duct using compiressible hodograuw
Tk
theory and bhis results may be applied to case (1) above.
°© ) i
This analysis gives an approximate thecory for the jot angld
Ojas well as the contraction ratio. In pyinciple, 1t'is
b 4
possible to usc this method to compute the jet structure
alsaer
Regime (iii) existgs when the porticle velocity behind
the incident shock is supersonic. For this case the inter-
nal waves are not ablc to propagate upstream and they remain
essentially attached to their point of origin. Thus a
Prandtl-Mecyer cxpansion exists at the upstream cdge of tEg
slit and a slightly detached shock cxists at the doénstrcam

edge as shown in Figure 1.1 (d). The jet structure is guite

complex duc to the reflection of the detached shock from the

. .

jet boundary.” However, it will be shown later than an approx-
imate thcory due to Moeckel® can be used to compute the shape
of this detached shock and thc method of characteristics can

then be empléyed to compute thc,jpt structure. vUnfortunately,

L

N
{ 2. “



little or no information exists concernine regine (1.) and

litt1e more can he gard abonml it. Yor shocks 1in air, chokino

(Regime (i1)) is theorctically possaible for f"S&}_]OC]\' Mach nuam-
. *

4

bers greater then 1.21 ond svperconic parlicle velocities ;

Regime ®(v11)) exist for shoel I'ach numbeors bevond 2. 07,

i

" Cleerly, the developnert of the jet structure 15 tied
s <

o the wave interactions that toKe place in the immediate
vicinity of the slit and as mentioned above, these become
acouslic in nature as time progresscs. A thceory by' Rudinger’

for tha reflection of a shock wave from the open end of a
{

duct provides sone information about such processcs. 1bwgus~

l 3

i

tic theory is Qﬁp?oycd to describe the reflection of shecks

n
-

from a duct end fi1tted with an orifice plate as well.

According to the theory the pressurc adjustnent is asynpro-

tic &lthough it is virtually conpletc in: a timL“t s 4t
wherg  is the time required for an acoustic wévo to tLiraversce
the cexist section of the ducL or orifice.

From the'foregoing description of the shock-gslit
interaction it can be scen that the strength of the attenu-
ated shock is constant along the wall dowﬁstream of the slit ‘
provided thot the QUct is infinitely wxde./ ?f course in
the practical case it is not and both the é;bansion wave and
seconda;g (reflected)!shock will undergo multiple reflections
from the walls of the tube as #he main shock“propagatcs down
the tube. Thus the attenuation as mrasured at the wall con-

taining the slit, will procecd in distinct jumps corresponding

to the arrival of the reflected waves at the wall. Furthermorce

K
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the frequency of the reflections, and hence the attenuation

rate, will depend upon the
a practical case; multiple

cient atteﬁuation and this

e , :

@

¢

r o

width of the duct. However, in
slits would provide more effi-

effect would become secondary.
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1.3 Sheoeck Diffrection and Reflection Procosoes
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. Over the last thirtv yrars or so, a concydrabloe

[

“ .
cifort has becn directed towards the uncerstending of llast

waves and their effects.  SFtudies have been majnly councorned
¥
with the production and propagation, theorctical deseription

and cxper bmental measurement of blast veves as vpll as the

N »

blast loading of vavious stiructures. A comprghensive cum-
mary of thesc cfforts and an extensive bibliography arc pro-

sented in Reference 8. Aticention has also been focusced on

the invoerse prollem, that is, the modification of blast and
I '

shocl, waves by various structures and chstaclea.  The latter

topic falls into a rather bhroad aspect of gas dynamics which

. . '
"shocl. wave interactions" and has bicn the

subject ol considerable rescarch over the years. It was

miaght bo termed

mentioned 1n Section 1.2 that the shocl-slit dinteraction

;

involves both diffraction and reflection of the incident

wave, therefore ‘some of the more pertinent contributions in
& e

this field.w11l now be dascussed briefly. The early work of

Lighth111'® provided a viable thecory for the motion of a

t

shock at an expansion or corpression corner as well as the

e -
bhead on reflection of a plane shock from an irregulor sur-
[ .
oLz . - , . . .
, face. Hawvever, since the theory is based on a linearization
. ' Y

of the equalions of motion its validity appears to be Te-
stricted to small deflections of the shock wave.

. The complexities and limitations of Lighthill's

‘ theory led to a search fox alternate methods of solution to

B
.

»



o
shock diffractien problers.  turcrical schewes were dove lepod,

most notably by ILudlof! and Tricdman'''? vho not only rolved

the cauations of motion 1 their usual hyperbolic form bul
also in the cllip&ical form associated with the "pocudos la-
tionary" orfsimi]nriiy coordirates x/t, yv/t. They note that

]

the forreu wethod is to bhe preferrod due to 1ts relative

simplicrty and effectiveness. The same approadh has been

employed by Rusanov!'?® in the Soviet Union to solve several
shock diffraction ond reflection probileing., Numerical solu-
tion of shock propnqatioq through chamnels with sudden and

gradual enlavgerents (1‘;» \«@ﬂl as branches hos hoc:n&accmrw
- - =

10

plished by Gururajd afd Deciker . An cxcellont overall

review 0f|thc humericql meihods 1n gas dynamics has boen
given by ‘}%olotsorkovskii and Chushkin, 'S althouah ths v.@rk
focuses mainly on the elfforts of Soviet vescarchers. A
summary of the mathermatical tochqiqucs, both analytic and
numeric, thal have been appliecd to many shock diffraction
and refllecticn problems hasg been 5reseutcd by Pack.'S©
Perhaps the most versatile method of solution for
shock wave motion problems is the ray-shock theory due to
¥hitham.'”? Dased on some concepts from geometrical acous-
tics, the method employs successive shock positions and
their orthogonal trajectories (the rays) as coérdindtés.
This lcads to one differential equation relating shock Mach
number M and ray-tube arca A. A seccond relation between A
aﬁd,M is approximated from the well known CCW (Chester-

e

Chisnell-Whitham) Theory'® for the motion of a shock wave

o -



down a tube of varying cross section. The resulting equations

turn out to be hyperbolic and a solution is conveniently
expressed by the method of characteristics which describes the
motion of kinematic waves on the shock front. These are in-
terpreted as the intersection of\acoustic waves with the shock
and the case where these waves sbreak is termed é "shock-shock" I
which corresponda:to/ﬁhe well known phenomenon of Mach reflec-
tion. Th%ixthe theory is able to describe~£he trajectory of
the triple point of Mach reflection but unfortuna%ely it 1is
unable to provide any information concerning the fléw field
behind the mgip shock front.

The ray-shock method is so general and flexible that
it has been applied successfﬁlly'to a wide variety of shock
dynamics problems. In his original paper, Whitham!'’ exaﬁiﬁed
the diffraction of plane shocks by an expansion or compression
corner, shock motion along an arbitrarily aped‘wall and
the stabifity of plane and cylindrical ;hoiis. The method
was extended to three dimensiodns'® for @hich shock stability
and the diffraction of a plaﬁe shock by a cone or an arbitrary
slender body is examined. It is also shown that a direct
analogy with linearized supersonic flow problems exists.

Experimental verification of the ray-shock theory has

'

been undertaken by many investigators covering a wide’variety
of problems. Diffraction of a planar shock at an expansion
corner has been studied by Skews for both sharp?® and rounded?’

L]

corners via schlieren photography in a %hock tube. As
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anticipated by Whitham, reasonable agreement between the

'

experimental and theoretical shock profiles js observed only
for shock Mach numbers M greater than about "3.0. For lower -
values of M Whitham observed that the theory concentrates the

disturbance over too small a segment of the shock. In actua-

" - a

-lity, the disturbance is spread over the entire region encom-
passed gy the sonic circle emanating from the corner, as is
verifield.by Skew's experiments.

For a given initial shock Mach number, the ray-shock
theory predicts a critical diffraction corner angle which
corresponds to a wall shock Mach number which is just unity.
Beyond this angle, no solution is possible corresponding to
the degeneration of the shock into a Mach wave. Again, at
lower shock Mach numbers a considerable discrepency is noted
by Skews. For example at M = 115 the critical diffraction
angle is roughly 90° while the experiments show a finite
shock strength even for M = 1.2 and a diffraction angle of
nearly 180°. For corner angles léss than 90° the theory is
observed to pr?dict the wall shock Mach number fairly well
throughout the entire range of the tests (M = 1.0 to 5.0

approximately).

A fundamental assumption in Whithams formul;tion of
the ray-shock theory is that there, is no interaction of any
kind b cween neighboring ray tubes. Oshima et. al.?? have .
i Ztated shear stresses due to turbulent mixing across

ray tubes into the theory and claim a significamt, improve-

ment. However, since they employed a constant value of the
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Chester Mach number function K(M) in the integration of the
characteristic relations, these results should be treated
with some reserve until more experimental evidence is accu-

mulated. An improvement of this tﬁeory for weak shocks has

also been given.??

.: Miles?" has studied theoretically, the éroblém of
the head on coilision 6f:a bldst wave with the bow wave .
attached to a t;ig wedge moving at supersonic speed. 1In
this case the diffracted shock is obklique to the (relative)
upstream flow and a tangentigl velocity component is con- ‘
served across it. This is incorporated into the ray-shock

r
theory according to a modification originally pfoposed by

Chisnell.?2® = -

The ray—shock‘%heory has been employed successfully
by Bryson and Gross?® to predict shock-shock trajecftories
for diffraction of a plane shock by cones, éylinder and
spheres at shqgk Mach numbers of the order of 3.0. The
independence ég the diffraction pattern from shock Mach num-

.
ber as predicted by Whitham in €his range was observed by
these anthors for the case of a cylinder. Other applications
of the theory include the prediction of the trajecgorles of
transverse distrybances c0 a converging cylipﬁricalfdeton—‘

1

7 and the amplification of a shock wave as it pro-

ation wave?
Igresses into a conically convergent channel.?® with the aid
of the ray-shock theory Skews?® has demonstrated the analogy
in shock shape for diffraction at an expansion corner and

¢

regular reflection at®a coqpression corner.

a ‘ .0

° |
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"An interesting use of whithams technigue jis employe;}

0

in the concept of shock wave shaping?®®’ for which cdllapse of

a shock in a convergent channel is accomplished without finite’

reflections from the walls. This leads to significant ampli-
ficqtion of the shock and the production of high enthalpy gas
near the point of collapse. It haf been shown*%?? that from
ray-shock theory the correcé,wall shaﬁé for a two-dimensional

channel is a logrithmic spiral contr%&%f&n and this has been

3

s .
studied extensively by Milton?®?® who alsg 'confirmed these re-

3
s

sults with experiments and investigated axisymmetric shock
- . '

e
' ¢

collapse as well. Additiohal experimental results have also

e

o
been given.3%3?

-An important consideration in shock propagétion pro-
blems is an analysis of shock reflectién précesses. Normal
reflection and the regulaf (two shock) configura?ion of
oblique reflection of shock waves are well descYibed by .

3 - ,
invisid analyses which may be found in any gasdynamics text-

+ book. ?®*7  However, for the obligque case if the angle of

i&ncidence is too large or the shock too weak the more compli=

”i/) ~ .

zqgted;Maéh (three shock) configuration occurs. 1In thi; case
if the sho;ks are assumed to be straight in the immediate
vicinity of their pointabf confluence (the triple point},
two-dimensional invisid theory élgoagives a straightforward
solution. This is most easily accémplished from hodograph

) . . ' v
theory a2.e., the intersection of two shock wave polars,'®3%3?

)
L3R a1
LAY § .

-and although this method is widely uscd, agreement with .

experiment is adequate for,strong shocks and decidedly
) ¢

inaccurate for weak shocks. K The deficiency of the three

Vol e
ta v"‘ L4
A\ ’

)
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4
:‘W . shock theory has lead to.the proy;osal” that the flew near
4
” the triple point can not be-tescribed by the usual jump

&

(Rankine-Hugoniot) conditions. Most investigators agree that

. ’ . g

the usual scale of laboratovyvexperimcnts d¢oes not afford
- - s

sufficient resolution tb accurately exemine the flow phenomena

EY

. " near” the triple point.
AN ' R '
« The transition from regular to Mach reflection is not

rd
[

,} yet completely understood.and it is nog. known whethar this -

odcurs when the, deflection atross the reflected shoq&bis
| ‘ - 0w
maximum or when-the flow behind it is just sonic. Kawamura

“ ) s . 3 . '
and Saito’® concluded from their shock tube experiments that
z . -

the flow is singular at the triple point when the flow

&

@

' behind-the refilected shock is subsonic. #Guderley (sce 16)
inserted a Prandtl-Mcyer expansion at the triple point to

give a different, but plausible type of intersection of the .
j >
shock polars for .those cases where iqﬁcrs@ction was previ-

Al

Iy
Bxist. Thd reflection of curved shocks
[ . ) .
in a steady flow of Mach number 2.8 .has been studied by

ously ‘thought not te

U '

— ’
Mo]der"1 who showed that’ @ smooth transition from reqular to
) , .

o

~ Mach refleégtion occurs as shock strgnétﬁ“is decreased. \
For the case whe%e'a traveling planar shqck is inci-

dent upon a‘stat%pnary wedge or raﬁp Fasat the Mach reflection .

‘ configuration occurs, ‘it is w;ll'known that it grows uniformly

with time and is termed "pscudo-stationary"” in the si%ilarity

. coordinates x/t, y/t. The locus of the triple point then

‘ follows a linear path fr¢m theﬂ apex o\f the wedge and this

==

" o

angle (which is just the "shock=zshock" trajectory described

t
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i

bj’Whitham) can be computed from the ray-shock theory. It

.was demonstrated by Whitham®’ that for strong shocks the

theory is not especially accurate for such calculations
(maximum error of about 25%) except for large ramp angles.
For incident ShocK Mach numbers of 1.51 and 2.42 Milton?®®

used known experimental results to show that the ray-shock

theo}y adequately predicts the triple point locus angle
except for ramp angles less than about 10-15 degrees. For

ramp angles approaching zero, acoustic theory is observed

to give better results. * For the same shock Mach numbers,

the ray-shock theory is seen to give a good estimate of the

stem shock Mach number’, except at large ramp angles. Thus

7

in general,. -the theory is good for predicting wall shock’

Mach number but poor for estimating the triple point locus.

- - - )
-
~ -
- N O,
. 4 ~
o




LT T -megasurcd -decay rate is not qUite as rapid as PrediCted'

- flows with mass, momentum and energy transfer has been pre-

1.4 Shock Wave Attenuation

s

To date, most of the work on attenuation of traveling
shock or blast waves has been focused on nearly plane waves

-t
moving through ducts. For the case of shocks propagating

through diverging channels the decay in, shock Mach number 77~
can be estimated from the CCW theory for which fhitham's

formulation'’

is the simplest. Available experinental evi-
dence®? indicates reasonable agreement with theory for weaker
shocks and duct divergence angles up to 45° althouyh the -
"‘:@,,

Attenuation of shockg traveling in ducts can be
accomplished bygmaSS, momentum or enerdy transfer either
ahead or behind a wave which would otherwise propagate at
a uniform velocity. A general analysis of shock bounded

*3. Howaever, since a linearized theory is

sented by Mirels
employed it is restricted to weak shocks or cases where the
variation in fluid properties is small. A further study""

demonstrates that self sifilar'shock attenuation is possible

provided the mass, momentum and energy flux terms have a

very specific form. Unfortunately, for most practical pro-

blems it appears unlikely that these conditions can be met.

. \
Since disturbances are often communicated to travel-

-

ing shocks by acoustic waves, the method of characteristics
“is a likely method of analysis for shock pripagation problems.

This approach has been employed by Rosciszewski."'® His method
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is essentially a linearization of the one dimensionalE

eharaétériétic equations which presumably limits appli-- - . _ _ __
cation to cases where disturbances in the flow field are

relatively small. However, it is demonstrated that the

method is simply~a generalization of the CCW theory thus its
applicability is wider than might be supposed.

One of the problems specifically-treated by Rosciszewski
is the attenuation of a plane shock travelling in a perforated
tube. Expansion waves are generated by-the expulsion of
fluid through the perfor;tions which then overtdake and gradual}ya
weaken the travelling shock. The problem has been studied for

6

square tubes"® using the CCW theory and round tubes“/ via the

‘method "of characteristics. Experimental measurements from K
both studies show good agreement with theory and also demon-
strate that RoscitSzewski's calculations predict a much too
rapid shock decay rate and this is attributed to errors in
evaluation of the mass, momentum and energy flux through the
perforations rather than a flaw in the general anaiysis.

An altergéte scheme for shock attenuation is to r?flect
the energy of the wave upstream by placing obstacles in the
path of a travélling shock.’ This can be accomplished with
cylinders, grids'® and similar objects. For one study,
orifice plates werc also sUspended ndrmal to the axis ;f a

duct and.measuremcnts 0f the reflected and transmitted shock

strengths were recorded.”® The transmission.of a weak shock . |

e W

waveuihrough orifice plates with and without baffles as well as

abrupt area contractions and expansions was investigated

v |
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® A simple one dimensional theory was

[ -

by Davies and Dwyer. °

found to give good results. A similaruépproach has been

51,52 to0 describe the passage of

employed by Deckker and Male
a shock wave through the juncture of two equaI area ducts.
-The theory is found to predict the attenuation of the trans-
mitted shock fairly well-but not for the strength of the

shock propagated into the side branch. The discrepency- is

agtributed to wave reflection from the walls of the juncture.

LD s

o Rt



1.5 Scope of the Prescnt Tnveslication

P

Accordiyng to the previous discuscions, the flow
| .
phe nomena associated with the shock~%&it intera¢tion ave
|
fairly complex hence the greater part of the present study

is exparimental. However, some attention®is paid to a
1 ) s
theoretical description of the,problem and it will be shoun

below that the ray-shéck thcory provides an adequate descrip-

a
v

tion of the attenuation process.
A siwple air/air shock tube with a two inch (nominal)
square- crese section e emploved forothe tests. Using an

evacuated diiven section, Lthe practical range of operation

of this tubce is for shock Mach numbers up to about 2.50

This range is considerced adequate to describe Lhe present
¥

problem as it exlends into the regime where supersonic
particle velocaties exist behind the incident shock. Thus
the testing capability of the shock tube covers all threec
regimes described in section 1.2. A square cross section is
chosen so that the simpler two dimensional interaction may
be studied. .

Two types of tests are perforﬁcd. The first is a
photographic gtudy, the aim of which is largely definitive.
Spark schlieren photography is employed to examine the
physical features of both the internal and external flow
fieldssover the entire range'of shock Mach numbers. In this
way, the intuitive description of the shock-slit interaction

S~

presented previously can be confirmed. At the same time,

-

<
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reasurcenents taken from the photnaraphs can be usced to veillw

some of the theoorelical descraiptions that have beoen ol ferod.
Using o tinme dclayed spark system paramcters approptiate to
the external flow field such a« jet angle, development time

and contradtion ratio can be ecasily measured.” Fov the intes-

nal flow ficla, Vo]ocit1@s‘of hoth the undisturbed and altie-

4

nuatced wavern, secondary shock and expansion wave radii and
triple point {rajcctories can be obtaincd from the photo-

graphs. However, since only one photograph can be obtained

-

—fer each fiving of the .shock . tube repeatability of the test
¢onda tions is of paramounl importance 1n order to obtain an

accurate timr history of the cvents.

f

The sccecond phase of thg tests is a straight forwvard
measurement of the incident and attenuated wave velocities
upstream and downstrcam of the glit. This is accowplished
with six barium tiltanate plrezo-electric prossurce transducers

used as shock detectors. Thesce are cmployed in the usual
]

way mounted in the shock tube wall in two groups of thrce
(one trioger, two pickups) and connected to the vertical
input terminals of a dual bcam oscilloscope. A complete

L
description of the experimental apparatus is given in Chapter

iv.

[y

For theoretical considerations, the ray-shock thcory

is cHecen as this is the simplest approach. Althouyh this

>

theory assumes the working fluid to be inviscid and perfect,
it has been used successfully to describe many other problems

and 1is expected to be adcguate for the present purposcs.

s



"Thus viscous effects are ignoréd completely despite the fact

Eﬁﬁat béﬁnaafyflayer attenuation of shock waves is a well
documented phenomenon. (It will be shown later that cali-
bration of the shock tube indiqates that viscous attenu@tion
his not significant under ‘the prsent test conditions). A
critique and generalization of the ray-shock theory will be
presented in Chapters II and III. Analytic solutions of the
ray-shock theory for shock diffraction and Mach reflection
processes appropriate to the present problem are then giben.
However, the resulting transcendental equations for the
atteguated shock Mach number must be solved by iteration.
Unfortunately the ray-shock theory does not provide any
information concerning the flow field behind the attenuated
shock therefore, aside from some o} the egperimcntal results,
this matter will not be considered in the prescnt study.

The ray-shock theory canvbe used to construct a wave
diagram depicting the Mach reflectiop and expansion wave

interaction processes as the attenuaked shock progresses down N
PR

the duct after passing over the slit{ However, since the
ray-shock theory does not give a very good estimate of the

triple point trajectory within .the Mach number range of the

l
present study a somewhat crude empirical relation is substi-

tuted. For one of the tegt conditions, approximately two -

. M ¢ N
\and onekhalf cycles of thd motion (one cycle is taken to be
when the triple point has traversed the duct twice) are

lotted out on a wave diagram and comparison with experiment
i

for one cycle shows fairly good agrcement. The role of the

‘ \—




| . .
. S wave diagram in a stability analysis of the attenuated wave

o g e e e

- -
. is.demonstrated. . :
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e / - CHAPTER II
>

A REVIEW OF THE CCW THEORY

"2.1° The Area~Mach-Number Relation

The ray-shock theory developed by Whitham makes use of
what is often termed the "CCW Relation", which describes the
motion of an 1n1t1ally planar shock wave as it travels along
a duct of non- unlform cross sectiont. In particular, this

description takes the form of a unique relation between the

local duct cross sectional area and the (averaged) shock Mach
number over that local ¢ross sectional area. In order—to- —._.
understand the limitations and approximations inherent in the
ray-shock theory, it is worthwhile to first examine the CCW
theory in some detail" ’

¢ Chester®® was the first to derive the differéntiﬁl form
of the CCW relation by using a quasi-one dimensional linearized
analysis approprigte to small area variations, which was shown
to be valid locally. Shortly afterward, Chisnell®* obtained .
the same result with a strictly one dimensional "steady state"
analysis, again on the basis of small area variations but valaid
only far away from the non-uniform region. It was thus
concluded that the shock strength averaged over the cross
sectional area does not vary as the shock progresses along ar'”\
uniform tube downstream of an arbitrary (but still small) anea
change. However, since disturbances generated at the areaa
change may still continually overtake the shock from behind; it
was reasoned that these disturbances , which modlfy the shq;k .

locally, must effectively cancel each other when avcraged agro<s

the shock surface. Finally, Whitham'® derived the same reldtion
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’

using the daffeorentinl chirvacteriatic form of the unstoandy

one—dintinsronal =quations of wotion. These cof forts hove boon
summarired by Chescer’” in a later paper. Whithwm's
derivation 1s the sinplest, so it will be given first. Then

the more 1llJuminating contributions of Chester and Chisnclld

-

will be discussed.

x

Consuder the cquations of motion for an arbitrary-

one-dimensional flow of a perfoct gas

D 7 - hY o ha 4 2NV
C/., 4 U SR SN 3 L 4+ L. LT = (f, -(:\ (:\,'.',) (1)
;.l (I’g Z(J,‘ ¢ (O J()’ p C
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/7 ot e ¢
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YR - A A B O A
0. |
= ) [ )
e t)
whert: the function$;£l, f7 and f3 express the fact thet thore

may be mass, momentum or encrgy cxchange hetween the surroundings

and a control volumc cncompawsing the {luid. In this form,

the terms on thie right gide of oqndtions (1) represent the

volunetric mass, momentum and encrqgy flux across the control

surface. These may be due to ()) mass flow across the 'sides

of the control volume, (2) viscous shecar and body forces (electro~

magnetic, gravity) and (3) external heat transfor,'extc%nal WOrh

and work against body forces, respectively. For exomple, ia a

S €
recent study of shock propagation along a porous duct for which
3=O) 14

pfl (x,t)—= =2cnid where the last three factors are the perforation

momentum and cnergy defects are not considered (f2=f

ratio, discharge coefficient and ideaét@ﬁ?s flow through the

perforations, respectively. Oshima?;\examined the diffraction

~

of planar shocks around a corner using the ray-shock theory and

taking into account turbulent shcar forces alone and not the work



done by then (fl;fer). In‘*this casco of2 (X,t)=T& whero
‘ - Ty is the turbulent shear stiess. '

Whitham considered the simple situation where there’

is area variation alone, fl'«f2=f3=0. In this casc the

differential charactevistic foim of cguations (1) is
| i -

I)u‘z‘

3 e ————

‘—‘ﬁ o along C+

(2)
~ Jo o pedu v prin da
: S = T 0 along C-
______ -2 7
- ——— 7" - -~
é‘b) . C C}/J - O along S
where the diffcerential opetators correspond to the
directional derivatives
S U N NI I 5, 0

—— .
e ,\— -
— e gaan

D
Tg T Tac ot ey ) "{q Tu-e AT oX )

. in the respective characteristic directions
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———
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Now, Whitham's reasoning is as follows: if eguations (2)

describe the flow field behind a propagating shock, the

positive (C+) characteristics will follow a trajectory that

is close to that ¢f the shock itself (Figure 2.1). Then,
\ the first(;fequations (2), which is valid along a C+
‘ characteristic, can be applied to the shock itself as a first



approx

’
imation.

This is done with the ‘aid of the Rankine-Hugoniot

. 4 ,
equations, which express the change in the dependant flow

variables across the shock

and M is the shock Mach number.

A ]

B L2 el
ftd ol &)
W -

Ce b'H (M- M)
£ = ,_L__"_

fo 2+0=1) M

c . ML Lzrm*—-1)]

Co

(r+) M

T

24+ - M*

2y M¥ - (1-1)

~

(3)

Tt

It is assumed that the flow

ahead of the travelling shock (subscript 0) is uniform and

guiesc

ent.

Therefore, differentiating equations (3) with respect.”’

- o

to M and substituting this into the firs§ of equationSH}éﬁw

(this process is Whitham's Well-known "characteristic rule")

yields

where

d

S———

A

—

A
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bl

M") ]

(4)

(5)
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is a slowly varying function ol shocli'Mach nuwaber

(KD >0.5, 0.36% as’Lfﬂ ) respectively) ofte n called the

"Chester Function™ as Chester was the first tO{dCY]VP vk, to
although in a somevhat ditferent forwm,  The variation of
K{M) is snown in Tigure 2.2. Fquation (1) expresses the
fact that for a given change in arca A, the change in shocl :
Mach‘num?wr \m\dépcndﬁ only on M and A, “This A-M roliation
is the wel 1~}ncwn'“Ck\ru ation. Tt is important to noirs 0
thait the reclation hold\\for finite area chanages since no
lincafization has b&en cmployod in its derivation, although
large arca variations will likely lead to a violataion of the
quasi-one dimen%ional flow model. Furthermore, cqualion (4)
should be quite accurate for wealk shocks since, in this cacoce,
the shock Erajectory -is very close to thal of the posilive
charactcrislics; as M>1 they arc the same, i L

At this juncture, the noture of the Engnwvanmxﬁanxs
that have bden made in order to oblain the GCW relatian, arc

not apparent:  In order to clarify matters semewhat, the

- Chester and Chisnell analysis must he examined in more dotail.

Chester arrived at an cquivalent form of equatiowr (4) by
employing the full thhee dimensicnal cquations of molion anli
considering only small areca'variations i.e. the lancarizcod

case where the flow iy perturbed alovit the initial flouw behind

=%

the undisturbed travelling shock. It is shown that pressure
dlStUdenQOo brought 1bout by area changes arce propagated back
intohflow field behind the nmoving shock by acoustic waves
and this inforﬂation is sufficient to allow solution of tht

N . 13 .
equations 1f the flow variables are averaged over.the cross

e AN
’section of the duct. Thus, the analysis is quasi-one dimensional

and, although it is too complex to be reproduccd here, the
essential features can be retained by making the onc @imensjonal
app10x1mailon at the onsect. This samplnflcatlon of Chester's

work was flrst given by Whltham.

)

v
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T . N

Slncc chanaeJ in pressure and VLlOClEy are carrled

by acoustlc waves and changes in entropy are carried alonq
particle pdths, the . appropriate equatlons to linearize are

the characterislic cquations (2). Then for small arca
variations -the flow bchind the travellipg shock is perturbed
about the initially uniférm flow behind the undisturbed shock.
?his is denotcd by the supscript (L). Thus

@
-
[y

g‘f*'"/o\CrC\;U\.\-;- lC\?“U,\_ AA-

- along C+
A
A+ C ! .
. . v Gy ) | (6)
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= along C-
L, + 0 ! YA .
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R SR 4 = along S
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and integrating along the respective characteristics
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‘ wf)e_re the arbitrary functions F, G and H express the fact

that disturbances are carried along each of the]three
. characteristic families. These disturbdﬁcesl which are €ach
generated in a different location in the duc?, arrive
simultaneously to produce a net change in deﬁgity, pressure
and particle velocity at the (arbitrqry) point in the flow
field which is under consideration. It can be seen from
equations (7) that changes are also brought about by local
area variations. ,
The functions F ¢ and H are determined from the
houndary conditions. Since the positive (C+) characterigfiss
. carry no ddasturbance in the initial flow far away from the
shock, F Must be identically zero. This means that for the
lihearized case (small area yariations), the disturbances
carried by the C+ characteristics are of second order and
are therefore neglected in the analysis. Then with Fz0,
G and H can be determined from,the boundary conditions at the
shock i.e., the Rankine-Hugoniot equations.(3)... __ __ e
For example, Gl#-(w-¢)t] can be determined in the d
) following way. Adding and subtracting the first two of

equations (7) yields

-
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Now, to first order at the shock (x=Ut)

. \@—-'P, = 4_’_‘_&_ Mo (M-Mo> \ (9)
FHl . )
L{- LL\ - 2Q° l+
X ( )(M Mo)

where MO is the initial undisturbed shock Mach number.

Then' eliminating M—MO from these relations

- e ~ -
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———— —-
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where use is made of equations (3) again. Then substituting

equations (8) and simplifying .

biryy PO AK-A)
U.F'-—-C.m ‘ Al

where




‘ Thus finally _ N
G [ x=lu-e)t] (10)
X—-
¢)(Mu) KJC,’-L({'- A (JQ [K"(u-l" C.)t])"A‘
uil_c"l. A\

The function H{X-W+t) can be determined in a similar way.

Then, if equation (8) is evaluated at the shock front

where

Ax)

X=Vt AU*Q[.K‘ -C.)tj)“

(.

and use is made of equations (3), the final

(9) and (10),
result is, after some simplification and droppiﬁg the

subscripts

L A NUUVSH S [, . ”

_SA

Sressa——

A

2MeM
(M= 1) k(M)

—

-~

which is just the CCW relation, equation (4).
The significance of the "characteristic rule" now

becomes more evident. According to it, the first of equations

(2) is approximately valid at the shock (x=Ut).

L SQJ’ "")*z”c(u 5t 5‘)

lee A dx :

Hence




. ' but in general -

ol B )+f> L.-&;C-gwg;) ~

Therefore the rule applies if at the shock .

AN S, duy .
0 u+c_(‘b'§+/o°5&)~0n ()

L4

But in the linearized case, differentiation of the first of

L
e et = et ke

equations (7) glves (with F=0) : —

.

, p) ow _
gf-»fc\ = 0

o

Hence equation (11) and, therefore, the CCW relation, is

exactly correct in the linearizéd case. However, this does

not explain why the methods works so well in the more general

case where area variations are finite, although it is evident

that equation (11) must be approximately true in that situation.
Chisnell also derived an equivalent form of the CCW

relation on the basis of small area variations aw%-one dimensional

steady flow. This analysis is straightforward and will not be




prégented here. However, since it is bﬁfed on the steady

flow relations, its validity is restricted to a region far
away from\ﬁhe actual area variations. Since the final result
is identicéi\ﬁo Chester's, which is valiq locally, Chisnell
concluded that the average shock strength over the cross
section does not vary after the area change, despite the fact
that, in the actual case, multi-dimensional wave interactions
due to reflected disturbances will continue to overtake the
shock and alter it locally.

Chisnell's approach is significant because he then goes
on to integrate the CCW relation, thereby extending it to
finite area variations as an approximation. Written in terms
of shock pressure rdtio, it is demonstrated that equation (4)
has an exact integral although-the final result is rather
complex. An obvious simplification is to consider the Chester
function K(M) to be constant at some suitable average value.

.~ —.Then the integrated form of the CCW relation is

ot et

o e i

s e e B L

3

AK (MZ }> = ConsTANT (12)

qh@ch<is then exact for very weak shocks (K+0.5) or very strorg

shocks (K+0.394). In the former case

M~ 1/TA

a result which is well known from acoustic theory. For very
weak shocks, then, it is expected that the CCW thecory would give
good results. In this case, the shock can be approximated as
an acoustic wave (characteristic) which is, of course, just the
esscnce of the "chayactcrf%tic rule"”. Chester/put it anothon
way. In the acoustic limit, both the (wecak) shock and the
disturbances behind travel at the same speed. Therefore, these
disturbances are unable to overtake the shock so that the only
changes in shock strcngih come from area variations right at

the shock front.
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‘ * In his analysis, Chiznell reasened that, for finite
area variations, the disturbancecs in the flow field behind
the shoc#% are also {inite and the dte of the integratod
form of "Eh‘eaccw relation i% aantamount to neglectinqg, their
modifying'f' effcct altogether. However, he goces ‘on to show,
through o somevhat complicated approximate analysis, that
for strong converging cylindrical and spheraical shocks these
disturbances, ‘vjdhich are conmunicated to the shock by the
positive characforiétics, actually tend to nearly comwpletely
cancel cach other - a rather remarkable and, Lortunate
circumstance. Since there is " no reanon to supposce \.t\hat the
situation is not qualitptively different for ncarly planar
or moderate strength shocks, it may be concluded that the
CCW thcory is at Jeast approximately correct for these cascs.
To sum up, then, it appears that the CCW relation in

cither its differential or inlegrated form, can be applied

e arh-Seme deg ree of—eonfidence to a uide variety of shock

‘ wave dynamics problems for which there is area variation alone.
The theory is exact for small arca variations -or very weak
shocks and approximately correctr for finite arca variations
duc to cancellation of reflected disturbances. Thd success
of Whitham's "characteristac rule" in the general casc then
appcars to be linked to the relative smallness of hoth factors

1

in equation (11).

Y
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2.2 Extensions and Modifications of the CCW Theory

Thus far, only the effect of area changes on travelling
shocks have been considered. Several investigators have
examined the more general situation where mass, momentum and
energy transfer may influence the shock motion as well. Thesc
provide further insight into the CCW theory. '

! Rosciszewski'’s performed an analysis somewhat different
* from Whitham's while retaining the mass, momentum and energy :
flux terms on the right side of equation (l). 1In this case,

the characteristic equations are more compact written with the

Riemann variables

{
Y= 3‘_—; CaW

& as dependant variables. Making use of the thermodynamic relation

TS = AL\——(L ée%——}?é(‘ ) (13)

]

- as well as the perfect gas equation of state p=pRT and the

"—  isentropic equation c?=yp/p .equationg (1) can be

transformed into

%__E ;& i; +l/(.(. B)MA - $\+QL‘\'£3 :_:..i(xlt) (14)

—

da ¢ d8 BL\AA KGN :3@@)




‘ where as before

are the directional derivatives in the respective characteristic
directions. The situation is again shown in Figure (2.1) where

the region of non-uniform shock propagatlon is taken to start

at X=0. Now, Rosciszewski's method is to’integrate the flrst

of equations (14) along two neighbouring 9051t1ve character- -
istics from the initial undisturbed region of flow (1) to the

shock front (2). Then subtracting the two relations thus
obtained®sand taking the limit as the characteristics are

allowed to approach each other for the case where A=A (xX) alone

T T VST PR

Applying Liebnitz' rule for differentials of integrals with
variable limits and noting that all quantities in region (1)

are constants for uniform flow ahead of the shock

(dlgais - %Asl ;g (55 Y d a4
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and making use of the mea; ;élue theorem for integrals
d¢ Co
A?L - (,sz,‘S|)( ?’E)M - m és-._

A (BVAER ) & s dlaa,

Ut Cr - '

= (£~ 2 )40, + & 32,

v . . . s
where the subscript (M) denotes mean values. .
Now, for the linearized case where variations in both A and £
are small all the’ terﬁxs in the above relation which contain
‘mean values can be taken as second order and neglected. Then,

dropping the subscripts

o | 4 1 A | £ |
- S - ~~*~é ;s L S NSS4 W S e e e e e -
. Lﬁ-mdM>&M+%\%&c}%A = dx (15)

*

®»

Oshima et al?? arrived at the same result in a very similar

way. Integrétion of (14) along a-positive characteristic gives
R R ' 2
we
dY - L AS + — AXAAA
YR u+C
' | \ {

-
!
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{ .
Now diffe:ent&eting with respect to X and again applying

Liebnitz'  rule yields

: ' 'z.
R _e 4-3——“% (B)ds + %5 Mt
X b/R QL)( Uyt Cqy dx

+ MC_}AJMA SN 19..(.%_)-3%

byt &, oX \ hiC

! -\
At this point, the authorsrsimply state that the integral
terms can be neglected in the linearized case without
gfving much justification as such. Although they go on to

demonstrate that this in fact requires variatiohs in area to

“be small, 11ttle is said about f at this stage of the analysis.

However, from ROSC1szewsk1 s approach it can be seeM immediately
that variations in £ should be small as well. Undex these
restrictions equation (15) is then obtained directly.

Now, by making use of the Rankiné—ﬂugoniot relations (3)

» o=

and equation (13) as well as

CH,—— wlcc\c—_(,oﬁ (16) -
it can be shown in a straightforward way that at the shock

- 4

UH—C(AP g C}%) - 2 M

we L dm ¢R IM (M=1) k(M)
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Therefore, equation (15) is

C dx )
}A4 (17)

This, then, is the generalized form of the CCW ;elation.
€lea
of Area variations alone i.e., it is exact only for the

, its validity corresponds to that of the simpler case

inearized case where variations of- A and f are smafi or the
»~ shock is very weak.
It is evident that a unique area-Mach number function
—¢an Tot be“obtatmed by integration-ef-eguation (17} despite - - --
*the fact that f(x,t) could be an implicit function of shock
Mach number alone. This is so because the shock trajectory
M(x) -is not known in advance. Furthermore, the second of
equations (14) offers no additional information since another
unknown,’qu, is introduced.

Equation (17) also demonstrates that the effects of body
forces and flux of mass, momentum and energy are equivalent
td.area changes. Furthermore, if A is fixed (dA=0), equation (17)
can be integrated directly to give the shock trajectory if :
f(x,t) is specified as a function of either x or M. This"
approach has been employed successfully to describe shock wave
attenuation in a uniformly pef%orated duct of constant cross
section'® However, in such cases where variations in £ (x,t) are
finite, it 1is expected that equatlon (17) ig only approximately

correct for the same reasons that arose in the discussion of
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cquation (4), namely the teudency of reflected waves goneratl: d

by finite distwrbances to cancel each other.
As a final note, it cshouvld bhe pointed out that Choctieor's
perturbation solution “is not quite correct as it iss singular
when the particle velocity behind the und inturbed shocl- is
just sonic. This occurs for 1=2.07 in aix, for cxample.
Fricdman®’ recouaniged that this is a congsedq§nce of the ]Jn;arr
ization process itself bylwhlbh the cocefficients (u-c) arc
replaccd by (u]— Cl) in equations’(6). For initially oo flow,
the disturbances on tho negative cliaracteristics resulting fron
small arca changes then accumulate to finite proportions sinnc
they are stationary according to Clrester's,theory. In tha actual
casc small disturbances will lcad to values of (u-c) different
from zero and are thevefore carriced away to sproead out in the {low
ficld. ‘ )
This unrcalistic buildup of small disturbances is remedicd
for the case of small areca varjations by lincarizing all the terms

invthe cquations of motion except those containing-the cocfiacient

(u-¢). Sincc no-difficulty is encountered along the positave

»

characteristics or the particle paths,?ihc arbitrary function?
G{x—(ul+ Cl)é], H(x—ult) arc rofnjnod as in Chogtor's theory.

The solution is given 1in terms of a differcential equation with
(u~c) as dependant variable which can be integrated if the duct
area variation is specified. Tt is shown that the solulion reducces
to Chester's when the initial particle velocity is far from the
sonic condition. Although the details are not presented here,
Friedman's analysis is noteworthy because it predicts the location
and trajectory of rsecondary shocks which may form due to the
confluence of negative characteristics in the flow fiecld behind

the incident shock wave, . Tt shaquld also be pointed out that the
improvement of Chester's thcory docs not compromise any of @be
conclusions drawn from it in section 2.1 since Friedman's agalysis
is restricted to the lincarized case of small area variations as

well,
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+Figure 3.1. In “the prescnt case the, flow is taken to be two-

" CHAPTIFR III

THE RAY-SHOCK THIORY
)

3.1 Formulation of the Theory

The ray-shock theory d%yc]oped ry Whithan'’ to describe
the moticn of a traveling curved shock is an approrinate rothnd

which makes use of some concepts bhorrowed from the theory of

cometrical acoustics. This is done by infroducing a sct of [}
s T

/ C )
— - ——goordinsttes-- {4, £rwhere o ropresents . the . inslantancous. shock o

shape and 6 the orthogonal Lrajectory of a given arbitrary
point on the shock front. Thellattor arc termed "rays" in
analogy tg‘ﬁhose encountered in acoustic theory. Therefore
succesgive positions of a moving curved shock are denoted by
lipgs a = c,t where C, is the (constant) sound specd ahcad
of the shock. Thus the distance hetween successive shock
positions a and ¢ + da is Mdo. Similarly B may be choscn so

that the distance hetween neighboring ray@ Pand B + d8 is
i

Adf where A is sthe local area bounded'by the rays as shown in

*

dimensional although Whitham demonstrated in a later paper '’

N

there is little difficulty in extending thesc concepts to

three dimensfons.

.‘\‘ ; N - 4
; ,
k ,
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From the geometry of Figure 3.1 alone, Whitham was

¢ s
-

3 R

able tb deduce that

'
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(18)

where 0 is the local inclination of the rays relative to a

Ed
4

given direction for example).

(the %-axis,
(18) contain the £hréz depéndaﬁf'variables
Whitham reasoried that if ‘a unique relation
between any two, these equations could, in
solved directly for the shock positions at
Up to this point, the arguments have
the second rela

metric; therefore,

dxqamics of the shock motion. Cleakly,

Now, eguations
6, M and A and
could be found

principle, be -
any instant.).
}
'
been purely jeo-

t come ifrom the |

CCW Theogy des~- ‘

cribed in Chapter II provides just such a rellation between

A and M.

Then, substitution of the general

Xpression given

by equation (17) ifito eguations (18) and notggé that 3/9x =

a/Mda yields

N2y 2A . oM AL
OB (M=1)kimy O% C
90 L DM
' €2y &= =0

A}

s -
<

‘::?&
o 3

(19)

.\“quwever, this approach does not appear to help much since

despite the fact that the.nonhomogeneous term f/uc may be an ”

e v

&
"y

~

implicit function of M above, an explicit relation betweep A
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4

and, M is still needed to solve the equations. On the other
hand if_the function f(x,t) describing the external mass,
momentum and energy flux is)zero or small enough to be
neglected then A can be considered a function of M aione
given by direct integration of the simpler form of the CCW

relation equation (4).

J'ZMAM ‘ ﬂ (20)
—_ T/ (MELOK (M .o
A= Fm) = ke ) B
Then equatiqnék(l9) become
20 Fltmy -
- ) oM o O (21)

OB  Alm) oA

ol ! oM ’

I - — =0

2K AlM) 94

Accorging to the discussions of the CCW theory presentcd

in Cﬁq?ter II, it can be seen that the use of éhe CCW relataon ’
renders the ray-shock theory to be quite épproximate for feveral
reasons. First of all, it has been demonstrated that the
CCW relation is approximate to begin with, and the use of
the integrated form only increases the degree of approximation.
More important, the rays are not streamlines although they do
coincide with the streamlines just at the shock front but not
bechind. Thercfore, in gegéral, the function f(x,t) is not
zero and one can only hope that it can be neglected. However,
if, in a particular problem, only purely convective effects vere

considered, f (x,t) would be identically zero just at the shoo't.

4
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In the more gencral situation where there are body forces,
radiation or turbulent mixing, for example, this would nat
he thie casc.
Thus the ray-shock theory'treats the rays as solid

boundariecs ani jgnarcs any mass, nomentum or encrgy flux
across them. Furthermore, the use of the integrated afea—
Mach number reclat ion is equivalent t@ﬁ?eglecting any reflectel]
disturbances which may arise from arca variations alonc;
although, as was noted carlier, this approximationlnay“be -
justificd for converging shocks. Also, the CCW relation is
the result of an esscntially once-dimensional theory. Fortunat-
ely, this limitation may be alleviated somevhat by the fact
that tﬁo ray tubes can be made arbitrarily small.

Solution of the non-homogerp ous Fguations is not
entirely out of the question as was demonsirated by Oshima
and his associales in their study of shock iLffraction

~

around a corner.??

For this problem turbulent mixing across
the ray tube boundaries was included by making use of the
Prandtl‘mixing length hypothesis to compute the turbulent
shecar stress. While this analysis ignores mass and encrgy
transport effects, it is a poéitive step towards a morne
general solutuon of the problem. The cssence of the theory

is that the cffects of turbulent mixing are assumed to be
small compared to thosec due to area changes so that equations
(19) can .be linearized. The zero order solution is then just *

the solution of the homogcneous equations (21). However, the

non-homogencous term in the first order equation is rather



rder.

up to second

comnlicated, containing derivatives of

In order to obtain a solution Oshima ma‘e a further assump-
tion that’all dependant varsables are funcltions of a single

similariiy paramcter f/n. The final result is then the sum

of the zero and fivst aud solutions,
A
Thus Oshime's solution 1s somocvwhat limited. In addi-
4

tion, introduction of the mixing length hypothesis brings a

new unknown (the mixing length) into the problem which must

be determined bv exneriment. Therefore the results are not

generally applicable. Tn snite of itls deficicncies, the

metho@l is valuable as it sheds some light on possible

entensions to Whitham's analvsig,

¥

With the prec eding remarl’s in mind, the ray-shock
theorv is formulated on the basis of the homogencous

equations (21) which arc guasi-lincar first order relations.

Whithom showed that these could be conveniently solved by

the method o characteristics. In characteristic form they

are

where it can be shown that

Y i
Tk de L fmdm
T del A dA (22)
and .
. . 4 ‘
LY = Sl,.f. v ' ' (23)



~

Therefore, along the respective characteristics C! the

characteristic invariants are >

4
’ ‘r~‘l - . - ~ -
SRR IR U B N PR I AN

('24)
where the positive sign corresponds to the positive charac-

teristics,

-]
For the case of a simnle wave where once family of
] Y

11
characteristics originates in a region of uniform state, it

»

is possible to deduce from equations.(22), (23) and (24)

that the othar family of characteristies arc straicht lines

e Hoaser i A ——
. A

in the (n, ) planc.and furthermore” that 0 and M arce constart
h -

along them as well.,  This turns out to he a very convenient

property as jintegration along the characteristics is greatly

facilitated in-this casc. . It apnpears that most cases 1t is

easier to worhk in the (%, y) rathcr than the (a, B8) plane
1)
and 1L is convenient to introduce the characteristic angle

m which is defincd as the anale between the characteristic
{
and ray dircctiong. Fromr Figure (3.2) it is casily scen
?

that

LY

} o
el YA = éLE{@L = fisi« (25)
- M d . I

and the ecquations describing the characteristics in the

'pﬁygiéé{/plaﬁe are then

oy n . |
Cy s v ;&(;_: b (O+¥4) ~ (26)

- éjL f:’*qu(e‘Vﬂ)
d x



\. Thus simple waves are straight lines in the (x, vy) piane as

well.

Now, in most problems the object is to determine the

©

shock shape at various instants. From gxamination of Figure

3.2 it can be seen that this can be accomplished in several
\ L3
‘ different ways i.e., by integration along characteristics,

rays, or along the shock. Noting that the component of Mda

along a C+ is Mda/cog m and that the components of this

quantity in the x and y\directions respectiv )‘Ef‘e"eM cos

o/cos The coordinates

(6 + m) da/cos m and M sin (6

. of the shock front (X , YS) are

Jg_‘m

oo (2
s /\45w(e~m)¢1

\65:‘304'%‘, .Cos wm
odo

where (Xo’ Yo) are the initial coordinates of the character-

istic and a, is the corresponding time at which the point
(Xg, Yg5) occupied the position (X, Y ). Integrating along

t%e shock and noting that dx = -(AdB) sin 6, dy = (AdB) cos 8§,

t

.3

A = A so D c!/g. i
. . o : (28
' ds= Y+ /QA C) cl/g

v

-

= £



approaches a constant value namely

where Xx,'y and B are evaluated at the boundary along which ?

the shock propagates. )
Before turning to specific applications of the ray-
shock theory, it is convg?ient to @rite out the expressions
for certain parameters sd%ﬂ as ¢, w, etc. which will bé
used later. However, a difficulty prises when the CCW
relation is substituted into equation (22} for c (M) in that

the expression is not readily integrated and Whitham gave

the exact results only for the limiting cases where K(M)

Y

»,

M—s 1, kii)—so.tfy 5 M—0 0, Kit)—>.395

AN

, 2
Neither of these cases is appropriate for the present pro-

Elem therefore they will not be discussed further. Instead,
since K(M) is a slowly varying function of M over most of
it's range (see Figure 2.2) an obvious simplification is to
consider K(M) a constant and use an a@erage value in a given
situation. It sﬁouldrbe pointed out, however, that this
simplafication could lead to siénificant error if applled
over a large shock Mach number interval, especially for

l <M < 2. Thus, this apﬁroach is not expected to yield
good results ;or the diffraction of a modecrate strength
shock around a convex corner with lg;gg_ggrning'anqlo, for
exampile. For the present probleﬁ however, it\will be shown
later that the approximation is justified.

Then for X(M) = consthnt and defining n = 2/K. The

following relations aré¢ casily derived
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. wha're AO is theo area corresponding to the undisturbed shock

Ach number 1M,.  For convenicnce, A is taken to be unity sd

hat the other paremetoers hecome
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- In addition to these, for the case of a simple wave where the
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C~ characteristics originate in a region where M = My
0 =0, = 8*“’”
A AENIVS I
G}(;\j\\ —. U\)([\j\) —_ /'\N\‘L / ¥V >
M - —-
' Mo+ 147 (31

@ =M (@osh"‘ﬁd - (u',o:.h_‘Mo)
A

1



<«

<z

- 52 - . .

3.2 Application to Shock Diffraction and Mach Reflection

Diffraction of an initially planar shock by both con-

cave and convex corners has been examined by Whitham!’ in detail

so the theory will be discussed only briefly here.

For the case of diffraction at a convex corner formed

from the intersection of two planes, the simple wave situ-

‘ation discussed earlier exists and one family of character-

istics is simply a fan composed of straight, radial lines
centcred at the corner. This is shown in Figure 3.3. Each
characteristic carries a constant value of 6 and M and:
correspondé to the appearance of acoustic waves in tﬁe
physical plane which spread out and perform the modification
of the shock. In fact, the characteristic lines are just
the paths of the intersection of each acoustic wave with

the shock. The path of the head characteristic is given by

equation (30).
LofaE |
o WMy = M \)___9.___._ S (32)
- 0 %)

where M  is the undisturbed shock Mach number.

Now, the shock shape can be éalculated by integration
along characteristics (e¢quation 27) and the shock (equation
28) o; along rays instead. For thé’present work, the former
method is chosen as it is simplest and the development for
moderate strength shocks will be presented in section 3.3.
For the diffraction of a very strong shock Whitham chose the

latter method and found that the shock shape is given




- 53 - | - ,

»

. universally in Lerms of the similarity parametersX/.ii ond
o N

'

Y/UMU-,
The approximate nature of the ray-shock theory as
demonstrated by the fact that for a given shock Mach nﬁmbor

there exists a limiting value of the turning angle Ov
» v !

which corresponds to.a wall shock lMach number Mw thot isv

>
¥

just unity.

' Vimaye T v (33)

M(,

Beyond Omax no solution cxists for a given M,. This

, .
limitation can be quite restrictive at low initial shock !Mach

. nunbers. Tor cexample, at M, = ].2,Om:ly = 72.5 according

- to Whitham's weak shock relations.

| Exbogimcnta] cvidence indicates that neither cquation
(32) nor cduation (33) is accurate fér low or cven moderate
shock lMach numbers. For the diffraction problem 1llustrated
in pigure 3.3 the head of the expansion wave is (thcoreti-
cally) cylindrical with a radius of ¢, t and center located
-a distance u,t from the corner, a result which is conftirmed

28
by experiment . ‘'Therefore, it is a simple matter to

! . A 1 g, 2 0 -
show from () that theoretica&jgagﬁ

- Fon W&c, - (M "‘)T *‘(U'l)f‘/\‘]
! ‘ f . QH-O /v

(34)
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. From his experiments, Skews?%?% demonstrated that eguation

({34) is indeed cérrect and ‘that considerable error results
if equation (32)fis used for M, < 3. In fact, equations
(32) and (34) do not converge to the.same result until

- &

| M, = 5 as shown in Figure 3.4, These results imply that

the ray-shock ﬁheory will likely not accurately predict
‘ /the character%étic angle m (equation (30)) at any arbitrary
location on t#e diffracted shock as well. This fact is
particular%%ﬁimportant when constructing the wave diagram
for the present problem and will be discussed later in
section 3.4.

ﬂ’#‘Skews experiments further show that eguation (33)
is unrealistic. Schlieren photography?? demonstrates that
a finite shock strength is observed at M, = 1,2 fog all
corner angles tested (up to nearly 180%) while the theory
breaks down at 0 = 72.5° as noted above. Skews concludes
that in general the ray-shock theory is adequate for all
shock Mach numbers if the corner angle is less than about
30°, For large corner angles, good agreement with the
theory is ohserved only for M, > 3. These results graphi-
éally illustrate the approximate nature of the ray—shock'
theory in general.

The casé'Qﬁ shock diffraction by a simple concave .

corner usually corresponds to the well known phenomenoh of
Mach reflection. However, if the corner angle excceds a

. certain critidal value (which depends on the undisturbed

shock Mach number M, and is usually relatively large)



reqular reflection may be observed. The Mach configuration

is characterized by the confluence of three shocks: The

incident, réflected and the so called "Mach stem". 'The

point of confluenée, which is often referred to as the . .
“triple point", lies some diséance away from the wall and
experimental evidence indicates that, for the two-dimensional
case which is being considered here, the triple point follows
a straight line path from the corner. For subsonic particle
velocity behind the incident shock, the reflecfed shock

hag a somewhat cylindrical shape which allows it to propa-
gate upstream as well as downstream. Otherwise, the reflected
shock will face downstream with a straight segment attached

to the corner. The Mach- sfem, which extends from the triple
point to the wall, is usually taken to be straight althoﬁgh
experiments have shown that this is not necessarily the case,
particularly in the region surrounding the triple point.“
Since part of the gas ahead of the advancing shock wave

system is processed by twb shocks (incident and reflected)

and part by only one shock (the Mach stem) a slip-line forms
in the flow field behind the Mach configuration. The situ-
ation is shown diagramatically in Figure 3.%.

Analyéis of the Mach reflection configuration by the
ray-shock thogry is relatively simple if it is assumed that
both -the incident shock and Mach stem are stfgight over
their entire length. Application of the ray-shock theory,
however, precludes the acquisition of any informatloq‘con—

- . “)7“ ~
cerning the reflected shock. Now the triple point is &ﬁﬁiﬁ\
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the "shock-shock" in Whitham's parlance and from his analysis
it was shown that the shock-shock velocity C = AB/4a in the
(a, B) plane is .

7
1 / a

A

MEF Mg

Cr =-
A?.‘“*‘,Ad":. . (35)

where Mo, A, and M, A‘refer’ﬁo the incident shock and Mach
sten respectiéely. Now from the geometry given in Figure

(3.5), if B=0.is taken to repreéent the wall and time is

.
LS

measured from the instant at which the incident shqck
reaches the corner, the coordinates of the triple point are
(o, B) so that the angle X representing the path of the

triple point is given by

y AC
tow. ¥ = /3’Q/M<>L = =
M
From this Whitham was able to deduce that

A (1= rem Y
L O el G LD
"LM?(* Ao T (36)

l‘(ﬂ/'%r'
b 02 = Ml -@ay1 e
Mo+ M (4/A)

(37)

Thus by making use of the CCW relation hetween area and shock

Mach number these equations can be solved to give ¥ and M for
a given corner angle 6 and incident shock Mach number M,.
\ . t
\
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Calculations were carried out by Whitham using the strong
shock relation equivalent to equation (29) and it was found
_that the predicted values of the triple point locus angle X
were somewhat greater than those given by -the éonventional

three shock théory. Both theories show that X decreases

\

rapidlx as 0 is increased. . \
Again, the approximate nature of the ray-shock theory

is revealed by comparison of the above relations with

“

experimental yresults. Milton®?, using a fairly accurate -

1}
¥

approximatioﬁ to the Chester function K(M), compared the

ray-shock theory to a compendium of experimental results for

g -

M, = 1.51 and 1.42 which is reproduced in Figures, 3.6 and

3.7. From these, it Sin be seen that the ray—shéék theory

. . {
tends to overestimate X somewhat for deflcction angles 8

i -

greater than around 20°. However, for lower 6 the agrecment
is not good at all for M, = 1.51 and fair for M, = 2.42,

The experiments corréctly show thtat as 0 approaches zero and
, the reflected shock strength diminishes to that of an
acoustic wave, X' approaches' the value given by the acoustic
relation (34). The ray-shock theory however is seen to
unaerestimate this value by about 50% and 20% for M, = 1.51

-
and 2,42 respectively. This error undoubtably results from

4

the inability of the ray-shock theory to correctly predict the

(acoustic) characteristic,angle m as was noted carlier in the
~

discussion of equation (32). Thus it is concluded that the
ray-shock thco%y does not accurately predict the triple point

locus ang%p ¥ for moderate to weak incident shock strengths.,



'
)

e

l. v %
. Fortunately the situation is betEer with regard to the
' Y
stem shock Mach number M as demonstrataed in Pigure 3.8

whigh again shows the result of Milton's calculations. ?rom

x

these results it capn'be concluded from equation (35) that
e
for moderate strength shoctks the ray-shock theory yields an

i
i

acceptablt estimate of the stem shock Mach‘numger if the
\

o

corner angle_ is not too large.
In view of the abhove diécussion it is evident that the

- ray-shock theory should be applied cautiously to shock
diffrdction and reflection problems particularly if the
Q
< -
shock Mach number is less than about 3.0. 1In spite of this,

o

the evidence stuggests that under, certain conditions the ray-

shock theory hay lead to acceptable results. In the next

( 3
section it will be reasoned that the present problem falls

v

into this category:

oo
- * B
- R N
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3.3 Application to the Pro®eat Problenm @ 1

Before procceding with the details of the mathematical-
aﬂal&sjs it is worth Coﬁsjderinq again the hafure of the pro-
blem. Tn this way the limitetions of the ray-shoclk theory

~as they apply to the prescent problem can be hetler uander-
stood. 6
The situation is depicted in Figure 3.9 which shows

- Q

an initially planar shock wave propagating doun a channel

having a uniformlrecta}gular cross scction of hoight h. -
At the Jocation x = 0 the shock encounters a slit of wvidth
g and is subscyuently diffracdted around the ecdge of the
slit. The channel wall is assumed to be very thin so that
the corner anale is eascentially 360" and viscous effects do
not play a large role in the formation of the fluid jet
whidh cmerges from the slit at some angle 6j. Upon encoun-
tering tho\downstream cdge of the slit the diff{racted shock
i% reflected and unlc?s the incident shock strength 15 very
‘5;oatﬁ the Mach confiéur%tion will-occur which then propa-
qatés downstream along with tﬂe g%pansion wave qonegzted hy
the i1nitial diffraction process. "AS noted in Chapter I,
multiple refiéctions will ;ccur within the slit untrd—the
fluid jet is fully formed. |

Now, the presence of the upper wall at y = h plays a

present the disturbance produced by the shit would continue
' Lo

to propagate falonqg the traveling shock essentially unchanged

fundamental role in the subsequent motion. If no wall were



arntd the motion would eventually become self-similar once

the fluid jet from the slit is fully developeé and the inci-

dent shock is far=away.hwihe.Mach stem which is in contact

with the lower wall would then probagate at a uniform velo-

city indefinitely. However, if the upper wall,is present, .
the disturbance reflects from it and eventually returns

again to the lower wall where it then modifies the Mach

stem. Thus in this case, the Mach stem undergoes a decler-

atlon in flnltO ]umps, the frequency of which depends on

the channel helght h and the incident shock Mach number M - \
This behavious continues until the disturbance is so diffused
by multiple rcflections and viscous action~that the attenu-
ation érocess bccomef eséentially continuous but very graduai
i.e., asymptotic.

For the present investigation, only the -wave motion
within the duct or in the immediate vicinity ofithe slit will
be considecred. Atténuation will be focused primarily on the

internal shock attenuation and viscous effects will not he

considered so that it is expected that the analysis will

‘adequatcly describe only the initial stages of the attenu-

ation process. This limitation is not considered restrictive
3

v

since only‘this phase of the process is of practical interest.

With these concepts ih mind, thé ray-shéck theory can
now be/gmployod to describe” the attenuation process. As
noted in previeus scctions the theory i1tself is quite approxi-
mate. Mevertheless, it should, at the very least, provide
a qualitative description of the wave interaction phénomena.

A .
FJ‘
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According to the theory the initial diffraction of the
incident shock wave corresponds to a simple wave in the

. B) plaﬁe and theuggfiiéve characteréstigf are straight
lines centered at the upstream edge of the slit which is
taken as the origin of coordiné%es. In the physical plane
the C+ characteristics ate also linear with slopes given

)
by)équation (26) . As noted in section 3.1, local shock Mach

number M and ray orientation 0 are constant along ecach C+

in this case. This means that the local shock Mach number and

inclination of the wave approaching the downstream edge of

the slit is always the same regardless of the slit width 2.
Thus the stem shock Mach number just downstream of the slit

is also independent of £ i.e., the initial attenuation does
‘ 3

. not depend on. the slit width. However, the attenuation

rate further downstrcam does dcpend on the slit width since

this is governed by the wave interactions. Increasing the

slit width tends to shift upstrcam the point where the heaqd w:»
|

of the reflected expansion wave arrives at the lower wall

and thus agntributes to greater attenuation rates. This

fact will become morec obvious after construction of the

wave diagram. The important point is that according to the

‘ray-shock theory the slit width &£ provides only a secondary

—

-

2

’ékfect on the overall shock attenuation.

At this point some remarks concerning the expcected
accuracy of the ray—sﬁock analysis of the present problem arec
in order. The theory is applied in the following rather
straight forward way. Thd relations appropriate to the

dif fracted shock can be solved directly for M and ©




along any ol the Ct characleristics indicated in Pigurae 3.3,
In varticular, the solution as sought along the positive
chavaiclberistic vnsch coinéfﬁoq witlh the X axis as thiw

gives the local M and © jugt prior to the Moch rmeflectaon
proccss alt the downslream edae of the slit. Since tpo Mach
stemn after reflection nust be normal to the wall at its
foot, the effective cormer antglce i1s just the O found pre-
viously. This information is then sulficient to allow

solution ol the Mach reflectieon relations for the ston

hasaad VY

sh@c£~53chﬁmnmbcr- The subscaguent vave interactions are
found by construction of the vave diagrom.

Now, it wos noted in the previoas scction that Fo%
modcrate strongth shocls the ray-shock theory yields
acceprable predictions of the ntem shock Mach nﬁmber 11 the
c¢orner angle is not toe lorqge. TFor the present problcowm,

.
most of the diffraction occurs outaide the duct thorefore
it appears that this condition can be.met since bﬁlv Lthe
internal flow will be considered. That the internal por tion
of the shock does nol become excessively curved for moderate
strength shocks can also be deduced from the d;ffrdction
cequations. This is nol the case for very strong incidont

-

shocks, however, Unfortunately, the situvation is not as
!

optimistic with regard to the tri?lc point loc'is angle ¥

orrﬁhg characteristic angle m. F&r moderate strength

shocks neither parameter 1s expccted to be predicted accu-
‘ 7/

) r .
rately. lowever, the former fortunately does not enter into

the initial attenuation calculation and the latter can

1



T
> ;q-
alwvays be computed from the acoustic relation, (34). Thus

S

1t appears that the rav-shock theory can be arp licd to thic
I Y ) P ,

/

present problem with some degree of confidence despitc the
fact Lhat onlv moderate strength shocoks will bhe conciderod.

In addicion, the Chester function (M) can probably be

o

tal.on as a conistant since large vaviaticns in M are not
expected Lo evist along that portion of the diffracted
shock wvhigh 1cmains inside the duct.

. _ . _As noted above, the mathomatjcal analysis is straight

forward. Time 1s measured from the instant ‘the undisturbed i
shocli 1caches the upstream cdge of the 51it so that o = 0 T
Lhere.  The subscript (*) is used to denote conditions at

3

that Jocatiolr on Lhe diffracted shock wvhich just cormes anto

I

contdQE\ﬂéth the dovinstreanm edge of the s1it i.e., o = 0%*

at that instont. Since the simple wave conditions hold
? A

along the C+ characteristics (11, 0"and m arc constant along

them) integration of cquations (27) givo% directly

.

. X o= g Gosldien) i
( *, _‘:‘ W\ -

S e ey wmr o AL

’ (v Ir”\

.

l ' \3 - ﬂ/“/i Stin ((’?"P\r"'x‘) ¢

]

~ -

In particular, the solution is sought along'the characteristic

which coin¢ides with thc X axis, hence setting y = 0 yields
. X ‘ %
“ 1
~ .
, .
Fly = = W (/u‘ ;:-‘) .
N S . v (38)
e . . . .
A ) . "
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.. and setting X = ¢ at a = a*, The other relation gives

Y Ms.

b
—

Bl Cos m(Me) O

and making use of ‘equation (30)" for K(M) = constant

: _{_ _ fonymé= (39)
" olyx s v

v o Since a* is unknown this eguation can not be solved for M*

l just at the downstream edge of the slit. However, another

. \

relation between a* and M* _i% obtained by integrating along ' .
° 3 *)Y,

the shock. Since the undisturbed portion of the incident

shock travels a distance X* = Mja* when contact is just

made with the downstream edge, equation (28) gives (taking

B = 0 where M = M,) . >
/g , Pe (40)
—_— = /“ M d%. 4Q*5Vn G)CJF; ‘
Ny Mo 0 *

0
Now along any C+ characteristic ¢ = B8/a so dB = a*dc

along the shock at t = t*, Hence

and if K(M) is assumed to be constant at some suitable average

value making use of equations (29) and (30) leads to

?



so that qu@kion (40) is \ :
\

M*

b Zg- — /__ A+ ‘ S QC:IM
f ’ 0(:(— f\Ao ""\ WMD M ‘JM -
‘ . N . i 0

‘Again noting that the simple wave conditions hold, ¢ is

T o —wliminated by making use Df“equati‘m'r ﬁﬁf_—ﬁgki“ﬁm“* T T e T

substitution
%’-‘,Co)l«"ﬁ;{
The above relation becomes | "o
\‘ 2*
Yl \ .
j_{i._ = |- 2 (s A o Son 02 Cosh2 42
‘, R Mo
oy M,
2,
X - -

tER ST | L W7 Ll 242 .

2

4

5 Integration by parts and simplification gives the final

result
. . , ”"’“"\ (;1)
LoV med,
: *



where

o

P, (o, ) = T Lon

e 3

My + Mg -1

'

Therefore equating (39) and (41) leads to a single equation

for M* . )

. i
e —
M i | o (Mo BET

My | z<)

‘ = )
+ M, C?DS BWM(%‘::’%)] _ UHD\/:@ -1 =0 (42)

Since this is a rather complicated transcendental equation

it is best solved by iteration. At the same tlme the
iteration foﬁ n = 2/K can be conveniently 1nc1uded How-
ever, it turns out that M* has a double rcot so that the
usual technicaues ( such as requla falsi or the secapt method)
do not donverge well, This difficulty can be easily over-
come when' it is realized that under the conditions of a

¢ double rcot the solution of F(M*) = 0 is also given b§

o

solution of . ”

d e = -
y My .

ot Therefore, the equation to bé solved is

AaY
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Llized situalion which 1s talien to reopresont the local

bl :
\‘l (HJ.\)-"{., -t ~ ,

and this cquation is casils colved for I'* by conventional

. P\
iteration methods,  Once Hlis cormuted, 6% 1scalcul, i

t
1 .

from cquation (31). The shope of the diffracted shoch

could ke compuled for any instant of time by a similar
1 ' ’\
approach. \ '

Once M* and 0* arce known, the Mach refleclion cguations

| ‘ \

can bo solved for the stem shock Mach nunmbier M. The 'Ldoa(—

-

conditions just at the downstream cdge of the slit 1s s<hov,u/

in Pigure 3.10. Such a representotion anwcars to be

justificed by the facl that the offect of the diffracted

,shc::]? curvature can he later accounted for by constiruclion

t

of the wave diagram. Thus Tigure 3.10 i taken to ropresent
the actual situatibn just at the instant reflection beging
and is tho corrcct one locally. The calculation of M is .

-

therefore not couwpromised provided it is kept in mind that

M corresponds to the stem shock Mach nunpber at its foot.,

x

Again taking K(M) to be constant

= \

at some averacce ¢

value and recall ing that 0* = -m(M*) equation (30) gives
| ’7!' Yo | = T
C.AA K“B% e I BT 'l L M Y ) =TT PA _—l
Vig ‘““;{‘\
’ * C N -
“ ) ' , |
{ i : . * & .
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' and cauction (29) is a
T BT
N S AN "

SO A

— ff,l' \ f‘xi?'"' ? /\

There fore 1T bhoth these relotions are substituted into

equation (37) a single ecquation is obtained M alone.
The renult ia

@

’ - ™ 4
1 ! ,(\/i?‘/ué;h‘> L/’ ....{/t“' - i .?
\ ~ \ l”\ ‘l b4
e e LAV 44
IAT L,‘ I (MJ_J T J — (44)
- VL LAY [/ .

As before, this cauation can bhe s.olvcd by itevation fo-r M
and the itevation for n = 2/K is casily incorporated into
. Lhe scheme. B . o
This complcetes the solution for the iI;itla]. attcenuation
of the incident shock wave., ng noted carlicr, M will remain
constant (ncaglecting viscous attoenuation) until the cxpan-
sion wave reflects from the uppdr wall and returns to the

. . i

Jower wall to further attenuate {;,he shock. However,
arrivatl(of the reflected shock in a similar manner a short
time later tends to undo any gain in attcenuation. The

. - solution for M given by caquation (44) is then likely to
provide a good cstimate of the stem shock Mach number for
some distance downsi;ream of the slit. llow qc;od this
\approximation is decpends upon the wave interactions them- &

dclves. These are examined via a wave diagram, the dcotails

. . !
. of which are discussed in the next section.
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3.4 "The Vave Diagran

Construciion of the wave diagram is Jmportant in “the

a

prescenl probloen bocause this is virtually the only convens -
ent way by which the wave intcroclions can be analyzed.

Using lhis moethod the addilional attenuation of the shock

[ .
some dagstance downstreanr of the slit can be estimatod. jt

. . ‘ N _ ‘
should be realized, however, that gsince the characleristic

relations come¢ from the ray-shock theory, the method is

-

guite approxinate for the rcasons discussed carlicer. The
fact that the flow field behind the travelling shock is
neglectad in the analysis becomes gquite evident during the

J1
construction. Only the iTttersection of the ecuwpansion vrave
>

and the reflccted shock with the main shock is consicder od
and the wove diagram is nolhing more than the computed
trajectorics of Lhcese points. The trajectory of the triplg

pownt is, of coursc, the "shock- shock” described bY Wiz them

o

and its role in the wave diagram is exactly analagous to

that of a shock wave in the nore familiar case of unstcady

N

one-dinensional gas flow. 1In other words, the shock-shock
5" -

y ‘
represents a discontinuity, not only Lo the physical flow

field but to the characteristics as well,  The change in

the characteristic jnvﬁgjants ag the characteristics cross

:

the shock-shodk is thcn described by the Mach reflection

-
in the present problem is shown in Figure 3,11, From this

1

o
relations given igr the last scctions. ' . e
. N P , , -
A sketch of the wave diagram for the intfprnal flow

© it can pc scen that therg are four types of interactions 0
: s ¢t

P

[ -

~-
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Id

ksconsidered. These are (l) crossing of characteristics

of opposite family, (2) reflection of characteristics from '

a solidﬁboundary, (3) crossing of the shock-shock charact-

eristics of either family and (4) shock-shock reflection

from a solid boundary.
The first two cases are easily handled in the usual
way by making use of the characteristic invariants

'P—_{ ©+rw = ConsTanT  Along Cr f",

. (45)
C_Q: O-w = CowitanT Along C-

Usually, two of the four variables iq’the relations are
known so it is a simple matter to solve for the other two.
For the case of crossimg cTharacteristics, P and Q are °
usuélly known.
For reflection of characteristics from a solid
boundary the characteristic invariant along the incident N

characteristic is known as is the wall direction Bw.

Hence adding equation® (45)
PrQ =2 Ouw :

at the point of reflection. For the present problem since

©

& = 0 along either wall,

ie

(46)

o
>
W
|
U
r_/‘o_—-\
of
\
(@]
Ao
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.' Interactions involving shockr-shocks are more complicated as

the characteristic invariant P or @ changes discontinuously
across them. Thus the characteristic slopes downstream of
the shock-shock are unknown ,since 6 and M are unknown there.

However, if A0 aeross the shock-shgck is chosen, the Mach

—

}éflection relations can be used to compute M so it is
possible to develop an iteration scheme if angther relat}on
between M,and € can be found. \ -
. - \\Miltoné3 has.suggested such a schem \\\Corsidef the
case Whggg twq, neighbouring C- charaéterjstics cross the
shock-shock as illustrated in Figure (3.11). It is assumrd
that the solution for the first interaction (1) has already

been completed wso that Ml, 61, M; and O; are known where

primes indicate guantities downstream of the shock-shock.
“Also, it is assumed that M2 and 62 are kpown on the upstream
side of the neighbouring interaction (2) ei&her by computation
or interéolation of the characteristic net. It is desired
to find O;, M;.

Now, downstream of the shock-shock the Mach stem, which
i ’ is assumed to be locally straight, will have a different
orientation on characteristics 1' and 2'. Thus the effect
of the char&cteristic intersections with the shock-shock
| | is to bring about a‘curvature of the Mac@ stem. Since the
characteristic .wesh is ffnitc, the curved Mach stem is
represented by a,seriosoof straight linc se&ments connected

. . together. The point of-tonnection appropriate to two

neighbouring characteristic€; then follows' some path in the

~

T
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roovre, sinee it s choactorvastics .
themsolven whicoh car@ry the disturbances, it is logica! to
acsuame that fox>a tinitie checacters istic gesh thhrs path,
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M from the Mach rofloctlou 1clations.
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% \ .
dpn't‘agrpc, a new A0 is assumed..
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For the case where ositive
| &

shotk-shock it is a simple matter

relation td eéuaﬂgggv?iy)

1
Y
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pared with that computexd from cquation (47) and if they
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to dgr1ve the anéfogous )
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n

M Cosy (B -alem +m])

M, QLos 4 (0! -0) +ml+my) (48)

It should'be pointed out that there is no difficulty evaiu—
ating the very first interactiop 1-1' sincé 8; is known in
that case to be equal to Ow = 0 as the Mach stem is taken

to be gtraight and normal to the wall initially. The samé

holds true aﬁtef reflection of the shock-shock from either

\

wall. R o .

Shock-shock reflection from a solid boundary 18 easily
handled when it is recognized that the incident ;hock and
Maéh stems simply interchange posigigns in the three shock
configurétion. In this case s%nce the new Mach stem is

again normal to the wall,the AR for thé shock-shock reflec-

tion is thcn'e;, the- Mach stem orientation just prior to

the reflectioﬁ'procéss.‘ The "incident" shock Mach number

3

is M;. This‘informatlon is sufficiént to allow determin-
ation of the héw stem shock Mach number from the Mach
reflection cquations.

From fl1e above relatiors the wave diagram is then
donsﬁructeq step by, step. TE start it, the simple wave
co;responding to the initial shock diffraction through the
slit is constructed by arbitrarily choosing seitable values
of M betwecen Mo and M*, Since Q ié known from thc upstrecam
¢onditions, P and A/ can then be computed for gach of the

chosen C+ characteristics. Also, the initial stem shock

J A
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I
Mach! number is known from the analytical solution so the

. initial shock-shock trajectory is also known. i
Since the wave diagram construction involveé iteration
at the shock-shock points, it is perhaps easiest to use
graphical methods for all the calculations. For such
purposes curves of x vs. A8, and M/Mo vs. AB constructed o
from the ray-shock theory and are presented in Figures
(3.12) and (3.13) for various incideﬁt shock Mach numbers

M Also, itlﬁas\found convenient to use graphs instead

0"
of numerical computation of the charactdristic angle m (M)

) and w(M). These are shown in Figures (3.4) and (3.14).
The lattef was calculatéd for M, = 1.4 which was the
incidenE’éhock Mach number chosen for the wave diagram, .

s construction. It was noted earliér, however, that the

’ ray-shock theory does not appear té predict the shock-shock

angle ¥ very accurately. Thus the actual values given by )
Figures (3.12) were not used for the wave diagram construct-
)ion; ‘they were corrected by an empirical relation. The

e{act form of this relation will be given later in Chapter V,

after the experimental results have been discussed. . :
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A simple air/anr shock tube with o squarce cross scctaon

- * S oag. ";'Af.m].nh ING and A ax
2.06 % 2,06 1nchen von omvinved [or all tests.” P enpia AU,
! Y

was construcled fromy ceamlesa siructural steel tubing with a

A

1/4 inch wall ‘._],n\{ neass apd consisleod of a driver scction fu
i T S o

feot Tang folloved by a dreven scction of coual length which

’
LS

vas in turn followed by a shorter test scction in which all

measu e nts vire performed. The combaiatively lono driver
*
seclion was chosen Lo ensure that peither the contact sw face
nor the erpansien vvave oraginating at the daaplhragn vould
, b
-
. enter the test section until Jong after the events of interest

. .

\
had bcen completed.  Mylaxr plastic sheets of 1, 2 and 5 mi)

bl
thicknesses vere used as the diaphragie material. A schematic P
of the shock tulic faé]lity‘is presentced Ain I'gure 4.3, P

Tests were perfvimed wish)y the driven scclion both at
. ° partadl :

Y
atnospheric conditions and inA vacuum so two differént test

sections capable of permatting schlicren viewing were built.

"

The fiirst (designated "A") was constructed by simply nilling
avay a 5 inch scdment on two oprwosite wvalls of a 17.5 inch
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length of tube to expose the interior. Plexiglass plates
1/2 inch thick were then clamped over the opening, being

sealed with rubbezfgaskets.h These were extended well above

the slit in order to preserve the iwo-dimensional nature of

the cgternal flow field. A 0.275 inch slit was milled in ¥

]
one of the remaihing walls and externally chamferred at 307

to simulate a thin wall tube. In this way the structural
integrity of the test section was not compromised. A sche-
matic of test section A is given in Figure 4.2 (a).

The second testtsectlon (designated "B") wa$ constructed
in a similar manner to also provide a 5 inch view of the
internal flow field. However, in this case the entire seg-
ment of the tube was enclosed so that it could be evacuated.
In addition, the upper wall &which contains the slit) was

\
cogstructed of removable flanges so that the slit width
could be varied. A 10° external slit chamfer was used in
this case. Ordinary plate glass side %;yls were. uscd for

f

schlieren viewing. The shock tube was Bxtended 20 inches

past the test section so that pressure measurecments well

downstream of the slit could be performed. The details arc

shown in *gure 4.2 (b).

Photograbhjc studies were carried out in botﬁ‘test
sections using a time delayed spark schlieren optlical system
which was trigqgered by a pressurc transducef located just
upstream of the test section. The trigger pulse was divided

g0 that a pulsec was also sent "simultancously to\trigger an

osilloscope¢ beam. 1n addition, the output pulse from the

T



. capacitive tirme delay unit was divided so that one high

-
voltage pulse was sent to fire the spark unit and another

o

was sent to the vertical input terminals of the oscillo-
scope. In this way the actual time delay was measured.

T
The high voltage (11 kv) spark was used as a light source

for a conventional double mirror schlieren optical system

\

using 48 1/2 inch focal length mirrors. The system magni-
fication was roughly 80% and all photographs were recorded

on 3000 ASA Polarcid Film (Type 47). Z;

/ -3

The pressure measurements were accomplished with "hore
made" iezoelec@&ic ressure transducers utilizing a 1/4
) g

inch barium titanate piezo-element bonded by silver epoxy

. ' ) LN

to a zinc rod which serves to delay reflection of acoustic

- waves from the end of the element. The entire elemrent-rod

11

combination is encased in rubBber to minimize the effects of

mechanical vibration and housed in a 1/2 inch threaded brass

N

> tube.* This gauge was found to have a poor rise time and~ "’

PEEY

short time constant but the output wa§'§h£ficiently,high to
‘allow it's use as a shock detector.x For thig/reason, no-

charge amplifier was used in conjunction with this type of

~ gauge. - .
t
Shock veldbeity measurements were performed by employitg

1
%

the transducers in groups of three with the first transducer
-4
used to trigger an oscilloscope (Tektronix Model 555) bean.
G ‘" -

[} “

*The transducers vere designed and constructed by
. Prof.<R. Knystautas of the Shock Wave Physics Group of the
Department of Mechanical Enginecring and the authox 1S 1n-
debted to him for the loan of these devices. )
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The following two gauges were connected to the input termin-

als of the oscilloscope vertical deflection plates. Knowing

the trangducer spacing and the oscilloscope time scale, shock
< velocities were easily coﬁputed from the oscilloscope traces

. which*were recorded on Polaroid film. For the present tests,

]
L ]

.trigger. transducers were alWways located 2 inches upstream

of the first pickup transducer and a transducer spacing of

2

4 inches was employed for all shock velocity measurements.

P
’

-5
°
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Test sectlion A was used exclusively for photographic
purposes in the shock Mach number range 1.17-1.67. Since -
only one photograph was obtained from cach firing of the
shock tube, the photoqﬁaphic history of the shock-slit
interdction was pieced tOgether by employing a successively
greater spark delay for each r\ln.~V Also, since consistent
diaphragm bursting pressures were obtained, the incident shoc-

velocity was not measured with transducers fpr cach run.

v
1

Instead, this was deduced from the photographs since the tai~e

‘delay was measured. Thus good repecatibility was essential fcr

nsistent results. This aspect of the tests will beée discuss. .

morc fully in the next scction.

Both photoqréphic and pressure measuremepts were

'

o
?

performed with test sectien B which was used in the gshock

\

Mach number rangé“%.28—2.44. For the photographic survey,
exaétiy the same test procedure described above was c%ploycd.
It washobsorved from the photographic results that

only approxiﬁat;ly onc half cycle of the wave motion doép—
strecam of the sait was qbtained using the full 2 inch channcl.
Therefore once séries of tests was performed with the remova%l}
flanges containing the slit mounted further into the channel )
to give h = 0.68 inches, For a 0.35 inch slit photographs

of ncarly one full cycle of the motion were subsequently

obtained. fﬁ\ﬂxder to preserve the same upstream f{low

_conditions as before, it was nccessary to extend the new

\.
channel wall far upstream. K However, when this test section
4
was used for shock velocity measurements alone, measurements

’
S~
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were performed both upstream and downstream of the slit.
In this case, for each shock Mach number-slit width
combination five identical runs were performed and the

results were averaged. Altogether, four slit widths -

0

ranging from 0.068-1.250 inches were tested. 1In addition,

4 1 -

tests were conducted with no slit i.e., a straight uniform

tubé in order to determine the magnitude of viscous attenuat-
;1

ion alone. The location of both the upstream}and downstream

‘ f ,.

1

edges of the slit relative to the fixed transducer stations
' (
was not the same"for each slit width so the appropriate

dimensions.are tabulated in Figure 4.3.

-

amrEm—

4

e
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16 Slicaan In Vieore .4 vhicoh v bt oad for an o dnecdent oo

- ’ toch nurder or 1,67 ard a1 1/4 lm('h atil., T Tover Loy \
corrcoponcs to the incident shock vheeh according to Taoure

4.3 was neasnred holicen statinns 6,43 ond 2.44 inches vpaln oo,
of the ~l1t.  The aticnuated shook (rper boam) velocrly s

neasulcd beoivesn stations 18018 ond 273.18 inches dovno b oo

of the slit. The mavinum obseived vertation an ancrdont

- o~

. shock Mach nunber wae about 4% from the average of Five
runs ond in nost casces the viaraiation was 2% or less.  Pucthes

more, the variations wverc observed to boe farrly symnotyjo

v -~

about Lhe mean o that these levels were consaidered Lo bo .

-t

acceplahle.  This wdes borne out by the observation that
variations in the ratio of atlenuated to incident shock Mdach
number were 1% and again fairly symnrctric about the mean

L] I3 a
for five runs.  Thus although the mastimum obscrved (average)

dttcnugﬂ@n vias only aboul 6% for any of the tests, 1t s

i
2

felt that the resulis are reasonably accurate.
Repeatability was considered to he more crucial for e

° . o
the photouraphic tests since the incident shocdk Mach number
: y
- was mcas‘ufod from successive photngraphs. This was possible

. - } because an undisturbed portion of the incident shock remalns

A I

visible until the expansion wave reaches the wall opposite
Voo .

: ) . |
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. the slit.” The shock speed measurement can be done in two

ways knowing the time difference between successive pﬁ%to—

e

graphs. The first is done by measuring the change in the

locatioh of the undisturbed scgment of the shock between

any twoj] photographs. However, since the location.of,the
slit ig,_known relative to the time delay trigger transducer,
k speed can alternately be computed by divxdigg the
4 digtdnce betwcen the undisturbed‘shock scgment and the

trigger transducer by the overall time declay for cach photo-

graph. LN

In the course of the tests, anomalies in the time delay

of the order 2-3 microseconds were obscrved. Since the

2

relative time delay between successive photographs was as

; low as 10 microseconds, use of the first mcthod described
. v

above could lead %o considerable error in camputed shock

-

speed. This crror becomes more significant for higher ‘

-

incident shock Mach numbers. However, since the lowest abso?
| lute time delay used for the tests was about 100 microseconds,

the second method is considerably more accurate and was ‘

‘adopted. Using this method, the .vaxgation in shock Mach

>

number for M, = 1.41 (average) vas found to be approximately
( .§ +2% for example. \ ( . e
: It should be rcalized however, that when computing
various parameters such aﬁ}tfiplc point trajectorics and
expansion wavtc velocity, for example, the calculations are
\

. ' L .
. subject to the larger crrors described above. This fs So |

because time is measured relative to the instant the shock

g

-~
oy
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] ' -
arrives "at the upstream edge of the slit. 1In most cascs,

.this condition was not observed directly so that this time

had to be estimated from the (more accurately) computed
incident shock spced. Fortunately, as the QVe§ts procecd,
the possible 2-3 microsecond error becomes los; significant.
For example, at M, = 1.41 the gvents are Obscrvabl® for aboug

¢

85 microsecconds after the shock passcs the slit so the maxa-

mum estimated error is about 3% at .thais time.
v,Due to the rc]ééive roughness of tpe shock tubeiwqgls
thside’of the 5 inch’region of observétifn i1t was necessary
to investigate the natural shock attenuation due to viscods
boundary layer effects-alonc. The shock tube had been so
calibrated duiing glcvious studies and the results are pre-
sented in Flgure~4.5 for shock, Mach numbers between 1.4 and
1.85. The measurcments encompa;;_the region bectween 70 and .
110 inches from the diaphragm. For the presént tesés, the
region of 1intercst is nearly the samc therefore these results
are dircctly Q?p}icabie. From the figure, it can be sccn
that the shock\éétenuation is practlcally[neglig1ble in the
shock/&qch number range tested. These results are in gonefﬁ]
accord with the findings of Glass, et.,ai.59 for which no

attenuation was found for shock Mach numbers below 1.7. In

the terminology of these authors, onfy a "formhtion‘dccrgment”

| \

strength. ' “ '

ol

A]though‘ or the pfcsont tests|shock Mach numbers as
\

[



"

- o s

high as 2.44 were qmployed, this was done with an evacuated

driven section so that it is presumed that due to the much
lower density, viscous attenuation was not significant. The
data in Figure 4.5 was obtained with an atmospheric driven

section. —~ e

» m . ' . # c‘r)ﬂ
In spite of‘some of the difficulties no¥éd above, the

> 1

expenimental results are considered to be reasonab accurate
. - {
and consistant. tk\ .
\ .
,

e
i

[N ) . Y

v
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CHAPTER, V

| RESULTS AND DISCUSSION ‘

t
5.1 Photographic History of the Shock-Slit Interaction

In this section a qualitative description of the shock:r
[}

»s8lit interaction process is provided from the photographic o~

study described briefly in Chapter IV. This part of the - -
~ - A

analysis }ields valuable information regarding the nature

of the shock attenuation process and other assocjated -

phenomena.

A séquence of sixteen schlieren photographs depicting

-
the shock-slit interaction for an incident shock Mach number

L] N /
of 1:41%nd a slit widtg“of 0.275 inches is presented in
Figure 5.1. Numbers onathe left side of the photographs ’ §

gi&e the time delay in microseconds relative to the instant

v the shoék passes the spark lamp trigger transducer 2.875
inches ahead of the slit. The field of view is roughly

. 1l 3/4 X 3 1/4 inches in the two inch channel.

//A

From the photographs it can be seen that the incident

-3

shock is quite plane. In accordance with the discussion

that hag been givon’in Section 1.2 interpretation of the

. d
, B ¥




e
!

-

photootaphn s strarehtd O rd. Pholocranhs By and (o)
Ay

depict the drffyactiron of thd shash throush e slit and

the subagoaucnt (NV%LrEfifni of o nearlty erlind: sealy oo pan-

sion wave (dark recaon) which roves Lranasvers 1y acroos

4 . . ’
the shoct.. In {(d) colligion of {he A1 T race v shocl wilh
. ; °

¢

the downstream odge of the 11t and 1he generotion of a

- v . —~ 3
nearly cylindrical roflected shiocl dia shovn.  Sproeading

of these waves into the filowv Field is 1llustrated in (o)
. ¢ . . o
throush (i). As cuploincd an Sectaon 1.2, tho reflocted
{

shock lLa¥cs on a Mach configuration and the slip lince
emanating from the triple point is visible in the photo-

graphs. §

The development of the fluid jel emerging from the

slit is the main fcaturc to he observed wn photographs (9).

- » 1 <
through (p). A rather large_vortex accompanics the jeot

formation and as anticipated, the jet is inclined to the

duct axis. In this case the jet pressure ratio excceoods

N

the‘rqifica] value so that choking occurs. This corres-

ponds to the mixed flow ( regime (ii)) discussed in Section

1.2. In the immediate vicinity of the slit the flow is

subsonic, the free streamlines frpm the cdges of the slit

exhibiting consid@rable curvaturé. The shear iayor on
both sides of the jet boundary is\quite pronounced. The
jet appears to be fairly well established rouqghly 100ps.
after arrival of the incident shock wave.

Figure 5.1 clcarly demonstrates the attenuation

mechanism. The effect of the expansion wave is to induce
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a small amount of shock curvature which is indicative of K

. retardc’ﬁ:'ion. Tpi; is offset somewhat by tHe reflected L
shock which follows closeiy behind and terminates the
expansion. The net effect isﬁa reduction inm shock strength - —
as the Mach stem iags behind the undisturbed segment of the
incident shock. Thus the attenuaéed portion of the shock
exhibits siqnificént curvature and the Mach stem is normal
to the wall’'only at its foot. Clearly, the.attenuation
process will be gradual since the energy loss through the
slit is communicated to the ghock gy transverse waves and a
finite time is required for these waves to process the

y o incident shock. Additional attenuation will result from
multiple reflection of the transverse waves from the duct
walls so that the attenuation rate is then controlled by
the wall spacing. Continual spreading of the éxpansion‘wave
will also_contribute to a gradual attenuation process.

A similar but less extensive study of the sequence of
events is presented in Figures 5.2 through 5.5 for shock
Mach nuTbers bé;woen 1.17 and 1.67. 1In these cases the
partic{; velocity behind the incident shock is subsonic

so the internal wave motion is similar to that describeéd-
" i

above. The jet structure is controlled b§ the pressure
ratio across the slit which is (theoretically) subcritical

for M, less than 1.21. Thus in Figure 5.2 the jet %;

entirely subsonic. -
. ‘,; . - .
} . ° For the other cases choking is theoretically possible. ~
\ A
| - . . .
i . It is interesting to obsecrve in Figures 5.3 through 5.5

- .



-

»’

that although the flow is initially subsonic the cylindrical

expansion wave accelerates the fluid near the”slit to somric
velocity and a Prandtl-Meyer expansion is established at
the upstream edge of the slit. 1In this way a small patch

of supersoﬁlc flow is establishéd. Eventually, thevég,
for M, = 1.45 the reflected shock passes through this’
region and the flow beéomes subsonic near the slit again.
For the higher shock Mach numbers the reflected éhock has
éifficulty penctrat;nql£he supersonic patch and tends to

bend around 1it.

The reason™ for this sudden wqgkeniﬁg/;f the jet is

%
Y

-

not immediately obvious although é passible explanation
is that it is due to the arrival in the test section of
the contact égyface separating the shocked and expéndgd ‘
flows generated by the rupture of the shock tube d%?pgragm.
Howevc%, a simple calculation shows that this-contact sur-
%aCe is still far upstream at this time. It turns out

that this peculiarity is} in féct, a result of wave reflec-
tions from the wall opposite the slit (see Figure 5.12).
Apparently the re—reflecteé shoclk "pumps" itself througg

the supcrsonic patéh. Although this :phenomenon is-not
observed in Figures 5.5 and 5,5 no definite conclusions

can be drawn as the testg were terminated prior to the
érrival of tge reflected waves from the opposite Qall (seeA

f
Figure 5.4 (4d)). \

!

As miqht be anticipated on purely intuitive grounds

the photOgrLﬁgjc results show that the inc}ination of the

N

. : e

s .
< ~ e




fluid jet decreases as shock Mach numbeﬁ increases. A

similar behaviour is observed for the jet‘dcvelopment time.

T o)
In order to exgminn,the jet struciture more closely,
4

[

additional tests were performed with a |greater optical ,

t '

magnification for a field of view enc@mpassing only the

immediate vicinity of the slit. The results are shown in
FjguresLS.ﬁ,and 5.7 for shock Mach numbers of 1.45 and ) y
1.55 rcépectively. These clearly show thé choking effects
and .the modifications to the jet structure attributed to
re~-reflected waves,.

It was noted in Section 1.2 that when the particle
velocity behind the incident shock is supersonic, a
Prandtl-Meyer expansion will be established at the upstream
edge of the slit so that the fluid jet is entirely super-
sonic. Furthermore, the expansion wave and reflected shock
are unable to propagate upstream against the supersonic
stream and remain essentially attached to their respective
points of origin. oThi§.situation is shown in Figure 5.8
which depicts the shock-slit interaction for M, = 2.14.

Actually, the reflected shock is observed to be
slightly detached from the edge gf the slit possibly due
to a slight Yluntness oi the eége (0.03 inches approximately).
Inszde the duct the reflected shock has.a straight segmént
characteristdic of supersonic wedge flows which joins s%oothlv

-

to the cylindrical segment which propagates transversely.
R :
The slip linc originating at the triple point of the reflect-d

1«

shock is particularly cvident in these photoqraphé.



' N
The structiure .of th omeved o CIand g0t e ween o

- u

e aurte coa fen dac to pod oot von Grom th o ok b o
ol tho evternanl posLion of thy yeflloct @ <hook,  The
sub~cauent lv fornesd exnansion wave (\vrmt-u‘wl]", 1ol ot s
agoan to Tora an obdague Chogl g Fhe jeb. A i Tar

behavior 18 obarrver for Lhe oap o ns1on wave oriownal 'no .

.

from the blunat 1ip of the cormsbreoam e’ce of the alart. .c

.

Tn the last fou fromes of Prgure 5 8 the arrival
of th reflected shock from the Oppoatte vall 1s swcn ro ‘
result in % reagular re-reflecticn. Thoe point of contact . |
moves upstream so it appears that these waves will event-
welly reach the «lat and modify the structure of the jot
to some oxtent. ‘ .

Figqure 5.9 shows the shock-slit interaction fm; the

highest Mach number tested, M, 2.44, buc to the Jow, ~

\
density in the test section the cuality of the photogiaphs

v
H

r t
is poor, howvever, the esscntial features can be sech.

The jet structure for the supersonic case is shown

.

in greater detail in Figures 5.10 and 5.11, for M, =~ 2.14
and 2. 33 respectively, due to the greater.optical magnifi-
cat.lob,&omployod. Tho bluntnecss of the downstream edge of

the slit and the subsequent detachment of the reflected

'

shock'isiﬁ%—sre evident in these photographs.  The obligue shock
formation in the external jet is also.yery clearly demon-

strated. It is also interesting to ohserve the contact .

«

surfac¢ (curved white line) separating the shocked and .

expanded gases as the incident shock diffracts through

. -
4

the slit. . t
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i R

Guale andsoms exironcans vaves due Lo lealaae are visil o

s ‘ K

in the photooraphs.

-

Howdver, thece do not appear to

seriously comprromise the cualitative fcatures of the flou.
p .
fn Figure 5.12(a) and (b) the drffraction and 1ceflec=

tron proceosys are shown Lbofore., Pigquies 5.12(c), (d)

Ao

i .
and (¢) show the transversce and upstream propagation of
/

4

and reflected shock as wwil as the

' ‘ /

4 :
subhscouent reflection of thése waves from the opposite

the co<pansion vave

wall. In (d) the head of the reflected expansion haes

traveled about half way bacl to the lower wall while in

(e) the reflected shock occupies about the same position
althouoh the triple point is just arriving at the oper
wall. T is intcresting to note that at this time, which

is taken to be the completdon of one half eycle of the

)
I

motion, the attenuated shock is'again nearlyiplanef
. The rest of the seguence depicts the continued

‘re-reflection of the transverse waves. Photograph (h)

shows the situation after one complete cycle of the motion

as the triple point has just returned to the wall containing

the slit. The last framc. shows about one and a half cycles

of the motion. .

L4



\'  The effect of the wave reflections upon the jet

structure can be discerned in the last few photographs -
in the sequence. Re-reflection of the secondary shock

from the upper wall is seen to be regular with two points

’ of contact propagating in opposite directions. That

moving upstream ié forced or "pumped" through the flow
sur%ounding the slit. In addition several segments of
the reflected-;shock then merge/gb form what would appecar
to be a fairl§ strong secondary shock whidc tends to move
slowly upstream. This p;pcess;is quite evident in the
last two frames near the rightlhana edge of the photographs.
Clearly, the effect of the multiple reflections from
the walls of the duct is to erther attenuate the incident
shock wave. As the shock moves through the duct, these:
transverse waves continually sweep across it so that the
shock Mach number at either wall tends to be altered in a
cyc¢lic fashion. However, as the motion prdéresse§'tbe head
of the expansion wave tends to outrun the reflected shock so
that the cyclic motion goes out of phase and the a?tenuétion
becomes more continuous although gradually wcaker. This
aspect of the attenuation prdqess will be shown more clearly
by the wave diagram which illustrates the wave motion on the

shock. This will be presented later in Section 5.5.
-

To summarize, then, the attenuation mechanism has been

1
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A\ t
deamns trate? Ty the photoaraphio study,  The anithal atton -

wition of the linciaent chockerc walts foom the i1 (ract ion
\ - _——

N

process threudh the 5114 althonah £hia ot oot is reducen by
tJ:O}SLnJSLxuu'xxi reflection ot the down =t ecam odee,  Thus tho
) v , ’ . .

1pitial attenuvation is cioected to be velatively vieak,

Furthermore, the additional attormstaion which takes place. as
[ o .

Lhe shoch v ogrenses down Lthe duct wiil be aqraduval, since

the enoray’ loss Lhrovgh the st is  communicafed to the

shock by transveree waves which veouire a ceortain period of

time to process the shock. 1In addition, the transverse

'

waves spread out bhehind the shock so that their effect hecomess

less concentrated.  The wall spacing rather Lhan the slit
width therefore tends to control the attenuation rate.
Finally, the effect of shock MEQ% numher on the exbternal
flow faeld has been illuztrated. Doﬁending on thoe pressure
ratio, the fland Jjet escawing throuqﬁ the slit may bhe purely
suhsonic, ‘mixed sub and supcrsonic o% purely supersonic. The
. .,
inclination of the jet is scen to ﬁepend on shock Mach number. |
From the photographic study £hat has been prescnted if
is possible to measure various ﬁarometers associated with the

shock-slit interaction. The results .of such measgrements

will be discussed in the following two sections.
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5.2 EXTERNAL FLOW FIELD MEASUREMENTS

In this section the various parameters which describe
the fluid jét emerging from the slit are presented. From

the photographs presented in Section 5.1 it is possible to

L

measure the jet angle, contraction ratio and the time required

for the jét to become established at the slit. These are

»
compared with .%proximate theoretical predictions given by

variows authors. In addition, it is possible to construct

a wave diagram depicting the jet structure for the case where

M

the flow behind the incident shock is initially supersonic.
This is done by the method. of characteristics mqkiné use of
an approximate theory for the shape of the detached shock at

the dowﬁétream‘edge of the slit.

_ The jet angle variation with shock Mach number is

presented in Figure 5.13 and as noted in the last section

8. decreases as M increases. This behaviar is to be expected
J ’

since 'as the local particle velocity ahead’of the slit increases
it becomes increasingly difficult to turn the flow through the

8lit. This, then, is an inertia or Reynolds number effect.

-

For shock Magh numbers up to abowt 1.6 the measqred jet

. angle appears to be predicted fairly well by an approxima?e

theory due to Troshin?®.

. — 1
9. = COSs (V/Vj) (49)

J
‘where V is the particle velocity approaching the upstream edge

»

©



is supercritical. Rather, the jet overexpapd

"'96" =]

¢

“of the slit and Vj is the ultimate velocity achieved by

o
P

the jet after expansion into the surrounding fluid. Now,
equation (49) is derived from compressible hodograph theory
under the assumption that the slit is Qery small so that

the mo%entum of the escaping jet is small compared to that
of the approaching stream. Furthermore, Troshin assumed the
flow to be subsonic everywhere so extension of his theory
into the supercritical regime is questionable. However,
since the derivation is based solely on momentum principles

~

this does not seem to compromise the generality of equatlon (49) .
Ea

The dlfflculty arises from the fact that the jet does not

ultimately achieve a uniform velocity when

pfa§suré ratio

and a repet-

itive unsymmetrical, cellular structurec appcgars and Vj has
little significance in this context. In fact,~
velocity that appears in the jet interior will far exceed Vj“
which is computed from the pressure ratio alone.™ Thus,
equation (4 1s not expected to be accurdte in the supercriti-
cal regime and this conjecture is verified by the expe{imental
results. a . - .

Figure 5.14 shows the measured jet contraction ratio
which is defined as the ratio of the minimum flow area of the
jet to the arca of the slit. ~Again, Troshin® gives a

solution for subcritical flow (M<1.21 in air) although the .

theory is much too complex to be given here. For supersonic’
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particle velocity behind the incident shock wave (M>2.07 in air)

a Prandti—Meyer expansion exists at the upstream edge of the

slit so6 that in this case there is no contraction of the jet

as such. /gowever, since the jet passes through the slit

obliquely there is an effective reduction in flow area. This ’

is shown theoretically in Figure 5.14 by a solid line which

is terminated at M = 2.07 sincé this is the th;oretical lower

limit for which supersonic flow can exfst. .
According to Figure 5.14 the contraction ra<¢io

(theoretically) increases with incréasing shock Mach number’ in

both the subcritical and supersonic flow regimes. For the

former case this behaviour is similar to that observed in simple

~ .
orifice flows for which compressible contraction ratios are
always observed to be greater than incompressible ones so-1;;;"
as the flow is subcritical. This is due to the fact that E
p}eséu;e forces (éuemtahexpansion)“E;edbminate over inertia

or viscous forces which is again, a Reynolds number effect. In
the supersonic flowjregime i;.is clear that the Pr%ndtl*Meyer
expansion will turn the jet more towards the normal to the duct
axis as shock Mach number intreases so therefore the contrac-
tion ratio must increase. Despite this, the overall inclincatiﬁn
of the jet decreases slightly, as shown in Figq;e 5.13. In
this discussion, the effect of the detached shock at the down-
stxecam edge of the slit has beén ignored as such effects are

likely small except, perhaps, when\the supersonic Mach number

approaching the downstream edge is very close to unity. “

‘
. " i
AN
i -
-
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\‘ A The experimental results show good adreement with theory
in the supersonic &}ow régime. In' the subcritical flow regime
there is only one éata point although it does tend to support
the trend predicted by Troshin's$ theory. Ingthe mixed flow
regime, for which there is no‘%heory available, the experimental
results indicate that the contraction rgfio decreases steadily

e
as shock Mach number increases. This behaviour suggests a

Reynolas number effect i.e., in this regime inertia forces
predominate so that the flow can not be easily turned to pass
v through the slit.

Measurement of the jet development time from the
photographs is a somewhat subjecgfve process. For &his
purpose, the jeé was taken tg be fully developed when the flow
pattern in the immediate vicinity of the slit ceases to change
significantly with time. Since the objective of this part of

\ f
» the tests is to observe the pressure adjustment at the mouth

of the slit, changes in the jet structure due to wave reflections

from the oppasite wall are not considered. Thus, in Figure

(Sil) the jet is taken to be established at about 100us. after

14

, “arrival of the incident shock at the upstréam edge.
The cxperimental results are given in Figure 5.15 and are
compared to theofet}cal ﬁredictions based”on a theory developed
by Rudinger’ for the pressure adjustment when a shock reflects
from an open)end of a duct. The theory is essentially acoustic
so it applies mainly to weak shocks. For the present case

i

' the opening (slit) is transverse t6 the incident shock while
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. . , . 1 .
Rudinger coxamined the situation wherd the.opentng ic noraal
- al "\}, - . o

motion of the incident shock. He found
;o
¢

adjustment is asymototic

to the direction of

that the throrcticel pressurc’

12

although esscntially complele in a

Rp

ti%o t=41 where T ig the

ime reguire T an ¢ sti
time reguired for an acoustic
° 0

9 L3

through the opening.

’

throughout the adjustment

wave tQ traverse the {low

Singe this time could vary congiderably
b}

t
process, use of an average valuc is

2

recommended. « .

3

Despite the obvious limitations, Ru8inger's theory is

applied to thce present problem as a yrough approximation. TFor

the enlerging jet, the time required for an acoustic wave to
i

transversp the jet is casily computed if the jet is assumed to

be uniform andnstrajght near the slit although inclined to the

axig of the tube. This assumntion is likely to be quite crude

°

in the sdberitical and mixed flow reqgimes when,tﬁerc is

considerable contraction of the jef-as it emerges from the

©
’

« slit. The result, which is Qerived in Appendix A, is

j/- M’*Swé?*- M Cos ;

)

1

A

The line t=47 is plotted in Figure 5.15 and it can be seen

9

that the medsured values are greater than the theoretical

PN

predigfio%ﬁi?y a nearly constant factor of about six. 1In

. ;
r ! e

e
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addition, the nressure ad-fustirent at the s1it 1s ahout fonur
times longer at M = 1.17 than it is at M= 2.44. 'This

. behavicur is ottributeld to a decorease in jot angle and an

. sy, . . .
increasce in particle velocity as shock Mach numbey incrcasces.

Thus, deepite sone rather crude assdmntwons, the Rudinger

theory docs predict the right trends for the jet develorment
/

e

e

process.

et

An example of the computation of the structux of the
emerging fluid jet is presented in Figure 5.16 for M=2.33.

‘In this casec, the particle velocity behind the incident shock
[

is supcrsonic and the jet structure is alo ¢ntirely supersonic.

The calculation 1s basced on the method of ,hxracteristjcs for

1

. , two-dimensional stcady flow &nd the details, are given in

Agpcndix B. The most difficult part of the calculation is the
determination of the shape and stand-off distance of the

detached shock and this is overcome by employing an approximate
theory given by Moeqkel6 for which the shock shape‘isﬂassumed

to be hyperboli§. The result is presented in Figure 5.16

and is seen to céﬁﬁaré favourably with the expgrimental results
hiven“in Figure ..5.11 for:the samfe shock Mach number. Espccially ..

-

noteworthy is the oblique shock formation due to reflection of

expansion waves from the  jet boundary. The approximate analysis
appears to predict this formation rather well.

In principie, one could extend Troshin's woérk to include -

a calculation of the jet boundary for purely subcritical flow.

‘ 0

-4
-




\ -*101 -~

o

However, the analyveaeis in rathoer comdov, involsing inf aitce
seric, of ratios of hypevageomelric funm-éc»nq‘ vhich (IYJ’,‘*"“(_EH{;‘]V
converqe very slovly if at all. Thus the mothed doegs not APP 2
to be attractive. TFurthermore, extension of the theory into t+ho

transonic (roxed flow) regime 1v also a rather f&midahle tashk

and will not bhe considered here.,

The present diccussion concernince meastrcements of tho
N r
external flow field is concluded with an examination of the

[N

diffracted portion of the incillent shock whidh rassces through

‘

the s1it and thon continnes to erpand as tinme progresses. It

.

was noted from the photographs tﬁGt the diffracted shogi SPSIRE e

nearly cylindrical in shape within the present pqribd of obhsecr-

vation. The fadiﬁ; and cppter of this cylindricdf‘shock can

be casily determined from the photograplis by a simple geometric

construction and plotted out. Now, Whitham! 7 found that for

strong diffracting shocks the shock expands uniformly with time
CX/uh and

so that the quantitiesAy/mM are similarity coordinates. For

the present case, similar results are obtained as shown in

Figurce 5.17 which give the diffracted shock radius ¥/oM and

r

center X/oM measu¥ed relative to theupstrecam edge of the slit.
A single, smooth curve for both quantities is obtained. It
can be seen that the diffracted shock is weak, expanding
uniformly with a speed close to the sound speed behind the
incident shock. At the same time the center ofhthe diffracted

wave moves slowly downstream at a uniform rate. The reason for

this bchaviour is not clear but it is probably related to the

-
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development process for the emerqging fluid jet.

The 1s:igults that have becn presented in this section
show that tﬁe various paramcters associated with the fluid -
jet emerging from the slit arc not predicted OSpeciahly well |
by the theory that h;s been given. The jet angle is‘
describc@ well by Troshdin's thcofy only for wcaker incident
shocks and the jet development turng out.to 5@ rough]y six

times longer than predicted by a someowhat crude use of )

Rudinger's thcory. Both, however, predict the proper trends,
¢ Fortunately, the jet contréction'ratjo appears to follow the

theoretical precdittion except in the mixed flow regime for

which there is no theory presently available.
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5.3 INTERNAL FLOW FIELD MEASUREMENTS

_The various parameters that describe the intewnal
wave motion associated with the shock attenuationﬁprocess -
will now be considered. From the photographs that have
been presented in Section 5.1 measurements of the transverse
wave motion can be performed to provide a quantitative
analysis that complements the qualitative description that °°
has been pre?ented earlier. o : P

It waé pointed out in Chapter I that the motion of the
expansion wave ié ideally self-similar when viewed in a

coordinate system which is fixed to the upstre§m edge of the

.
R

slit. This notion is confirmed byathe experimental data that
5
is presented in Figure 5.18 which shows the expansion wave
radii measured from the photographs. These results were
obta;ned in two ways. First, several points on each wave were
measured aqd the average from several photographs plotted in
the similarity coordinates X/aM, Y/oM. These points are shown
by the symbols on the figure. At the same time the expansion
wave radius and center can be easily determined from a simple
geometric cBnstruction. The former are shown by solid lines
and the wave centers by the symbols on the positive X-~axis.
The data shows that the expansion wave is essentially

pseudostationary as all the data for a given«shock Mach number

fall onto a single curve characteristic of that Mach number.

$



°
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. The curve is very ncearly cyviindrical in shoope so Lhat tnn

expansion vave spreads ont vnifoimly vith time. Yor

<

supersonic particle velocitices the wave cen not propagate

upstream and is therefore Jjoined to the edyc of the slit .~

by a straiaht scagment inclined af the local Mach angle. The

3

Yexpansioun wave centor is also convected dewnstreanr witle a

uni forn speea, ' \
\ ﬁ .
Tdeally, the:expansion wave radius r  and ¢fsnter
e

coordinate X, arc given hy r = ¢ t and Xc: u t where ¢ and |
- C 1 . 1 )

’
"

u  arc the sound spced and particle velocity bhehind the
1 3

! un-disturbed shock. .These relationships are confirvmed by the

<

cxperimental resdlts which are suvmmarized in Figure 5.109.
. ..

The agreement betweén thpofy and cxperiment is quite qgood.
Similar results are oblained for the reflected shock
wave which are shown in Figures 5.20 énd 5.21. In this
case, the coofdinate system is now fixed at the,downstfcam
edge: of the slit. As for the expansion wave, the wave shape
is nearly cylindrical except near the inf{ersection with the

incident shock wave. However, for M°> 1.67 t%e &pearance of

. the supersonic "patch” tends to déstroy the self-similar

///// motion. , .

Figure 5.21 shows that the reflected shock spreads
- out at a rate that”is not too diffé&gnt from the acoustic
velocity c - This does not necessajily imply that the |
reflected shock is weak, however since it is advancing into

. a flow which is directed towards itself by the preceeding

\/f\
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. s * N . ° o,
. expransion wvave,  Interectivgly, Lhe chark center is con-

vectoed downatream b a specd voaghlyv equat to that for tho

. v

expansion wave, iwc., at the velocity 11) .
According to the ray-shotk theory the locus 05 the
point of intersection botween the ervansion wave oand the
| incicdrnt Rh%Ck is Qrstraiqht 11ﬂ€£ the siope being the tangant
of the characteristic angle n%). Thic fact is confirwrd by
the experinental results presentod in Figure 5.22 and 5.23
for respective shock Mach numbers of l.4l'and 2.41. Similoally,
the triplq/point trajqéiz}ies taken from the iﬁme photaaraphs
arc _found to be linecar as well.%_ While it is well knoun thot
the path 15 straight for simple Mach rofloption it is no+ *
clear \J?Xi his should be so in the prescnt case where the
. . incident shock 1s somewhat curved. The photographic‘ results
do indicate, however, that the dG:(jliQ(‘ of curvature is not too :
large in the prosentl casce and perhaps this explains why a
lincar path is obscrved.
According to the discussion given in Section 3.2 it is
CL expected that the chafacteristic angle mk would be best predic-
s ted thooretically by the acoustic relatién, equation (34),
rather than the ray-shock theory, equation (32). ExaminatNon

,

\
of Figure 5.24, which present the present experimental

- "

measurements, demonstrates that this is indeed the case and g
» 3+

,‘r‘

confirms the measurements iously given by Skews??72°% '

“hey,
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Similayliv, {he variaticn in the tripld point Jooun

. anale ¥ wilh incirdont shocry “ard nurber 15 preconted n

Ficure 5.25 which <hovs (hal v varies onlwy sTiahtly oo
the yonge of thoe tﬁ"'.)tt.. The values predicted by thoe »av-
shocl theorv ave also precsented ond os wicht be anticinated
the theory econsicdeoraply wderectimabes vo This discrepoency
is alttributed not onlv to ithe deficiconcies of the rav--<hoct

theory discussed in Chapteors 17T andd T1T but to the sicni- r

ficant shoclk curvature near the triple point a< well vinch

L3
‘
N
S~

is not acewunted {or in the theory, TEn ~s~p’i‘t(' of this, the

-~

corrcectly predict thnt the varirations in y dreo

e

theory doo:}%
small,
‘ The simple three~shocl theory can also he employed |
o to p'rc-dict ¥ bul unfortunntely, the error turns out rouqh,]_v
the same®as for the rav-shock theory which is pgain attri-
buted to shock curvature,
Examination of {the photographs revcals that'o’nce the "
. triple point 'has moved well away {rom the wall, the triplep
point lie\s roughly half way between thel break in the Mach

\ s
stem and the break in the in&id€nt shock (due to the

expansion wave). This suggests the simple empirical relation

" X‘l (2"*“’70)/& : ‘ " (51)

’

o ) .
R

‘ . ‘where X' is the value given by the ray-shoék theory (or

alternately by ‘:the simple three-shock thecory).and m is

- ?

fH



given by the acoustic relation, equation (34). From

Figure 5.25 it can be seen tha®¥"equation (51) -fits the
experimental data‘fairl& well except ét low shock Mach
numbers. In the absence of a better theory,'the only
recourse seems to be to employ equation (51) .for the ///
construction of the wave diagram, Although the method is 7
somewhat crude, the e#perimental results suggest it should
lead to acceptable results.,

In this section the pseudo-stationary nature of the
transverse wave motion accompanying thT attenuvation pro-
cess has been demonstrated from the experimental results.
Both the sonic intersection and triple point peths have
been shown to be linear, tpe former well predicted bi K ‘
acoustic theory. The.failuﬁg of the ray-shock theory to
accurately descrige the triggi p;int logus angle necéssi-
tates the impiementation 6f an empirical relation in its

place.
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oA Atopon-tron of {he Sheck 1y

T Secteon 5.1 10 waa denoastrotec thoet the dttouaticrn

of the incident chaerk procends in oo phoeor, Th-v 3 an -

~

initi1al cttoenualion Cne o the M fFivyaciior and reflocl 1on
i
Proce sses ge the choek pogoeg’ ocer AL st vhielh rosrits
F
n oa Mich ad o shoock velngaytiy 1ol is Jorer than the nei-

kS
1]

Y
dent vave coeed,  The Mach atom then proceeds olone the call

-~

at » uniforp snoed until the ocond vhase of the attoriatron
/
prox-ss bocgairs,  TIws occurs vhren the Lyanasver s¢ waves 1o fleocl

s

!
from the thock wall onpasite the 531t and return to nody iy

the Mach oten velocity aacgain, This proceas is (‘q.?t_ilm«,r?

- -~
indefinitcly as the vave systems ‘undgrao successive rofloec-
tions fromw the walls of the duckt, Tn this sbetion the rave

. o

spaecd measurcments cormoesponding to theon two phases of
the attenuation process will he exanined and discusson.
The first phase of the attenuation process whieh is

associrated uyith the initial shock--elit interaction can bhe

~

measured directly frbm the photographs presented in Scction

-«

5.1. Adcording to the discussion that was given there this

initial jattenuation i1s expected to be weak since most of

, ©

the shodk diffraction occurs outside the duct and becausce

of fthe dompensating effect of the reflection process at

the downstream cdu¢ of the slit. As noted previously, the
enerqy loss associated with the mass flux through the slit
is communicdated to the shock via a transversely propagating
expansion wave and a finite time is.required for its full

effect to be felt at the shock front.

A}



. - - 100 -

.
¢

"
i

’ PJoeasuscore nts woere pey formest from the pliotogragis 1n
. A

tvo vavs., Mirst, distance and time were measnrved rc]:d Tare
to one vhaotoaraph, L&‘Zkﬂ\i1?] v the Tirst shoving the attonuat o

¥
wave, o rover, thoe wave specds obtlained 1in L};_m vay déd
not yiela agood results sb an alternate mothod vas acopted.
The tiwy at which the shocy reach-.s rhe imvnﬁtroam cdagn
of thczé1it ves estimaticed (From thoe measuvred incidont <hocel:
specad and nealecting shoch curvatm o) and used as a 1refer-
ence time for the colculations., The aticnuated wave sp&od
was then obtained from measuromnent of }ho distance k?nvo]gd

by the Marh stem from the downstream edae of the slit. 1In

gome cases this procedure led Lo wave speeds greater than ST

. the 1nhcident wave speed so the date wvas discarded in such
occurrancs., The average wave gpeced for each series of |

. -~
photographs was then plotted as a single point. Generally, F
» :

v

the average was computed from at least three scparate

photographs although for M, = 1.67 only one photograph /

yielded acceptable results. b
I

0

The results of the mecasurements are presented in

o

Figure 5.26 from which it can be seen that the agreement
with theory is quite good despite the fact that measurement

from the photographs is not especially accurate. As antici-

+

pated, the initial attenuation is reiatively weak, ranging
between.3yand 7% over the range éf the tests. Intuitively
it is expected that the greatest attenuation would occur for

. the highest shock Mach numbers since t-he diffraction effects
are relatively greater in that case. [The exper Mnental

H
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results showlthat this notion is indeed correct. |
- It should be pointed out that the experimental data

presented in Figure 5.26 correspond to two different slit

widths. For Mb§h1.67 a slit width of 0.275 inches was empl-
oyed while for the greater shock Mach numbers a slit width of
0.375 inches was uséd, an increase of 35%. However, as was
pointed out in :Sections 1.2 and 3.3 the diffraction process

is self-similar since no characteristic length enters the
problem initially. Thusjh%s is also revealed by the ray-shock
theory, the diffracted shock Mach number approaching the
downstream edge of the slit is the same for all slit widths
for a given incident shock Mach number (M and 6 are constant
along\each of the ray-shock charaéteristics). Therefore, it is
not surprising to see no discernable effect of slit width in

-

the results given in Figure '5.26 although it is recognized that

'
b

more éxtensive testing is required for conclusive evidence.
.

As explained in Chapter IV, attenuated wave speeds were
also measured with pressure transducers roughly two feet down-
stream of the slit in order to examine the effect of wave reflec-
tions on the attenuation rate. In this case the attenuation is
therefore expected to be greater than that measured from the
photographs although not significantlyeso because of the gr al
nature of this phase of the attenuation process.

Results are shown in Figqure 5.27 for slit widths -

between 0.07 and 1.25 inches. As anticipated, the theoreti-

cal curve, which does not take into account the increased

»




;. at much larger distances downstream of the slit. However,
1} t
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attenuation due to wave reflections, still adequately
describes the observed attenpation. Thus the effect oﬁ;

wave reflections appears to be slight at this point of :m
measurement. However, the results do show a small tendency

towards increased attenuation as slit width is increased.

This is shown more cléarly in Figure 5.28 where the ratio

of attenuated to incident shock Mach number is given. ) /
For an incident shocﬁ Mach number of about 1.3 increasing

the slit width by a factor of about eleven from 0.068 to

_ ]
0.75 inches increases the attenuation by only about half,

from 4% to 6%. TFor higher shock Mach numbers this effect

'is even smaller. This behavior is attributed to the fact

~ 1
that increasing the slit width actually tends to increase

the number of wéve reflections that ocowur. Thig will be

shown more clearly in the next section when the wave dia-
gram for the transverse wave motion is presented and dis-
cussed in detail.

From the results that have been presenteq so far it
can only be concluded that the inéreased attenuation due
to reflections and the corresponding effect of slit width
is relatively small within the scope of thé present tests.
Naturally, it is to benexpected that the theoretical pre-~

dicfions according to the ray-shock theory would not

agree as well with experimental measurements performed

such measurements are probably outside the range of

St

Ay
1

practical interest.

\ |
. . o
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- Curiously, the experimental results presented in

Figure S.iﬁ“fﬁf”thg\ﬁigﬁé§x§hock Mach numbers show a°

slightly 1owgr~attenﬁatibn rate than that measured from:. -

the phbtographs, when in fact the opposite is to be

expected. The reason for this is not immediately evidept

although a possible explanation lies with efperimental

~

error. At the hiéher wave speeds the distahce measured

¥

from the ?§pilloscope traces become$ correspondingly

smaller amd the susceptibility to exﬁerimental error

increases. Moreover, the quéntitg,that is beifig measured
(the attenuati?n) is of the s§meié}der of magﬂitude as
the errors that might be expected from this type of mea-
surement. However, as noted earlier) the experimental
results do -appear to be fairly CSnsistant. For the lower
shock Mach numbers the anticipated slight increase in
shock atteﬁuétion downstream of the slitmzé in fac{%f
observed! ‘ '

'Aﬁother and perhaps more speculative explanation is
that the number of cycles of éﬁe transverse wave‘motion
changes as incident shock Mach number is increased,ﬂalthough
Figures 5124 and'5:25 sugdest that such changes would be
small over most ogwthe range.of the present tests. Since }
the measurements were performed at a fixed location for
each series of tests it is poséible that the‘measurements
corresponding to two different shock Mach numbers also

3

correspond to somewhat different phases of the transverse

Y
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" likely resulting from deterioration of the piezo-element.

motion. This then, might explain the unexpected positive

slope of the experimental results in Figure 5.28.

A
Results are also shown for the casqawhere there, is

no slit in the side wall so that the effect of viscous

attenuation alone could be estimated. For the lower

&

shock Mach number§:some attenuation is observed although
it is generally smaller than that observed with an open

slit. Some data scatter is present and this gives some
TRy

idea of possible experimental errors. At hiéﬁgr shock
Mach numbers almost no attenuation is observed and this is

attributed to low ambient air density in the test section.

%

For the largest slit width tested, £ = 1.25 inches,
% .

the tests were prematurely terminated at moderate shock
L)

strengths due to a sudden degradation of transducer output

Generally, the results of this section confirm the

o |

intuitive expectatioh that the shock attenuation due to a
single slit is both,weakdénd gradual. Within the séope
of the tests the effect of slit-width is secondary and
the éﬁpe;imental results are therefore adeéuately described "

by the ray-shock theory. —
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5.5 The Wave Diagram and Stability of the Attenuated o
Shock Wave i

-3 "_:\;} ’ N )
The wave diagram illustrating the transverse wave motion

on the shock frontawas'constructed for}the case M, = 1.4, :
"2 = 0.35 inches, b = 0.68 inches according to the method

of characteristics appropriate to the ray-shock theory as
outlined in Section 3.4. Th}s case corresponds directly to

that shown in the photographs of Figure 5.12 and the com-

pleted wave diagram is presented in Figure 5.29. In the

14

figure all distances are made noﬁaimensional with respect
to the channel width of 0.68 inches and about two and a
half cycles of the theoretical shock motion are shown,
According to the ray-shock theory the cylindric%l -

expansion wave which is generated when the shock diffracts
through the slit corresponas to a simple wave originating
at the upstream edge of khe slit. For construction pur-
posés, five finite elements were used to initially repre-
sent the essentially continuous wave. These are showa as
light solid lines on the diagram. Only the internal -
motion is of interest here hence that part of the simple
wave which corresponds to the external shock diffraction

o,

is omitted from the di&&?am,_

*“

Collision of the diffracted shock with the downstream
edge of the slit 'generates a reflected shock and the accom-
!
panying phenomenon of Mach reflection. This corresponds

to the generaffon of a shock-shock originating from the




downstream edge of the slit and its subsequent trajectory

on the wave diagram i§ shown as a heavy solid line. 1In
accordance with the principles Qutlined in Section 3.4
the history of the kinematic waves is/éhen worked out.
The fesults of the calculations are summarized in TablekS.l.
From the’wave diagram it can be seenj that the expan-
sion wave reflects from the upper wall and then'interacts

with the shock-shock to modify it as it propagates towards

the wall. The effect of this interaction is to cause the

_“shock—éhock trajectory to curve towards the upper wall

-~

slightly. The shock-shock then reflects and again meets
the expansion wave which by this time has reflected from ,
the lower wall. The reflectian processes then continue T
in a more or less cyclic manner. However, it can be seen
that as the shock proceeds down the duct the expansion

wave spreads out more and more until it becomes indistinct

" not only on the wave diagram but in the schlieren photo-

graphs of Figure 5.12 as well. At the same time the head

of the expansion wave is seen to "outrun" the shock-shock

so that the motion goes out of phase and the attenuation

process becomes more diffused and gradual. Although the

schlieren photograpﬁs of Figure 5.12 show only a little |
more than about one(complete cycle of the motion this is

sufficient to allow experimeqtal measurement of the shock- ,

shock trajectory. On the wave diagram the experimental

points are shown by circles and it can be seen that the
v



. ﬁ shock-shock trajectory is predicted quite well by the ray-

. shock theory.- Only one point exhibits appreciable error
and this is likely dué;to significant experimental vari-\
atiop in the incident %hock speed. It should be recalled,

. ﬁowever, that the empié}cal relation, equation ( 51) rather
than the ray-shock relation is employed to compute the
shock—shock locus angle x. In addition, thg acoustic rel-

‘ ation, equétion (34), must be used to com&gt the charac=

teristic slopes otherwise the-wave diagram will be in .con-
siderable error from the start. For the present case the
shock-shock‘path‘is observed to be fairly straight over

the range of tHgC&alculatlons. Even when the head of the
expansion wave overtakes the shock- shock after roughly two
cycles of the motion, the subsequent change in the tra-
jectory is small, at least theorétically.

The effect of slit width on the attenuation rate can
also be deduced from the wave diagram. From theﬁslopes of
the shock-shock trajectory as well as the qharacter&stics
it can be seen that increasing the slit width tends to

\}ncrease the number of reflections of the expansion wave

and therefore tends to increase thé‘shock attenuation rate.
This is so because an increase in slit width tends to move
the point where the head of the reflected expansion reaches
the lower wall (point 15) further upstream i.e., ‘closer to

the slit. The same is seen to be true for the additional

. reflections (points 26, 37, 48) and the above conclusion

4




thus follows.

The cyclic naturelof the transverse wave motion is
illustrated by plotting out the’theoretical variation in
shock Mach number aléng both walls of the duct. This
data which is taken from Table 5.1 is presented in Figure

5.30. From these reéﬁlts the»attenuatigg mechanism is
) /

4

clearlx demonstrated as it is observed that the peak
shock Mach number for each cycle is slowly decreasing
along-both walls. The spreading of the expansion wave
and the subsequent change in phase of the motion is also
evident in this figure.

It is also interesting to note from the data at the
lower wall that the effect of the expansion wave is to
weaken the shock-shock initially when the motion of the two
waves is more of less opposed. Howevér, later on at
roughly X/h = 10 the motion of both waves is in the same
direction and the shock-shock tendé to be reinforced some-
what. Thus the transverse wave interactions aée analogous

to "beating” phenomenon that is observed when linear waves

of different frequencies are superimposed. However, in this

4
i

case the amplitude of the motion must slowly decrease.

From the completed wave diagram it is possible to
trace in the theoretical shock shape with the aid of the \
tabulated resufﬁs. These are shown on the wave diagram,
Figure 5.29, as solid lines sketched into the flow field.
In the figure, the initial Mach stem curvature due to any \

1
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characteristics which may be generated by the”initial
interaction between the expansion wave and the shock-shock
is ignored. Thus the Mach stenf is taken to be stfaight
initially. -

It can be seen from the diagram that thetinitial
effect of the expansion wave is to induce a significané
amount of curvature in the incident shock wave which is
almost immediately counterbalanced by the arrival of the
shock-shock. Owing to the reflection of the expansion
wave from the upper wall a small degree of curvature is
reta;qed, however. This is amplified by re-reflection of
the expansion wave from,the lower wall and then reduceé

again by the shock-shock whlich has returned after reflection

from the upper wall. Thus the shock curvature tends to

R AR

. increase and decrease alternately in a cyclic manner T,

which is related to the frequency of the reflections of
the transverse waves from the walls of the duct.

In addition, it can be seen from the wave diagram
that the effect of the tranéyerse wave motion is to also
reverse the shock curvature periodically. This effect is
readily discerned from tﬁe sthlieren photographs in Figure
5.12 as well.

Thevacéuracy of the wave diagram can be further
checked by compa?ing the theo;etical shock shdpe to that
obtained gxperimentally. This was done'by blowing up the

schlieren photographs of Figure 5.12 by roughly four times

-~




‘ and sketching the photographic results into the appropriate

location on the wave diagram. These results are shown as
dotted lines in Figure 5.29 from wh?ch it Lan be seen ! ‘
that the agreement between thebry and experiﬁent is rea-
sonably good. Both the sense and the degree of curvature
“
.appear to be fairly well predicted by the wave diagram
¢ . over the fi{st complete cycle of the motion. Since no
experimental results were obtained for the subsequent
cycles of the motion no further copclusions regarding the
accuracy of the wave diagram can JC drawn. -
) In addition to the information described above the
wave diagram also demonstrates that the travéling shock: "
ig.stable i.e., perturbations in the wave form:tend §p
decrease as the shock advances along the duct after passigg -
over the slit. This is easily shown by measuring’ the
¢ theo}etical total perturbation in the wave form directly
from.the wave diagram. For this purpose the total per-
turbaéion"is taken to be the-maximum (horizontal) distance
between any two points on the shock wave at a given in§tant.
’ The sense of the curvature is disregarded so that  the
total perturbation is always taken to be a positi&e\
quantity.
The results of measurements from the wave diagram are
presented in Eigure 5.31. It can be seen that, as anti-

cipated from the previous discussions, the total pertur-

‘ bation varies in a cyclic manner. Clearly, the shock is
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stable since the perturbation amplitude decreases as/fg///
shock Roves down the duct,.0 The experimental results
obtained by measurement from the schlieren photographs in
Figure 5.12 are élso includéd on the figure.! Frqm.these
it can be seen that the wave diagram underestimates the
égfturbatioihiﬁﬁiiyude somewhat for the first half cycle Y
of the motion and overestimates for the resti‘ Thus the
experimental results ihdicate that the shock tends to a d
planar form much more rapidly then the wave diagram
suggests. However, as noted earlier, the wave diagram
does appear to give the proper frequency Jﬁ the motion
at least within th? range of the experiment;l tests.

Some qualitative insight into {the stability mech-
anism is provided by the wave‘diagram. It is the expansion
wave which induces the\greatest curvature in the shéck //

wave and the Mach reflection érocess {or shock-shock)

which tends to counteradt its}effect. Clearly, the

expansion wave.spf¥eads out as time progresses so the

induced curv ureﬂtends to decrease. Since the shock is

confined by the duct walls, the total pgrturbation pro-

duced gy the expansion wave must therefore tend to decrease , ’
as the shock moves down the duct. The spacingpbetween

the duct walls controls the frequency with which the

transverse waves move across the shock front hence this

parameter alsoydetermines the rate at which the shock

will

approach a planar form. It is evident that if no badk wall
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forrmc and {heypevturbation would conltinue to grov inde £~

{roat vvorld nover achicve a plane

v

. nitely.
c / i ’ )
Stabality of initi1ally nlanar shock-vave:s has bogn

p 0 61 i / "
' for the casc vhygr g

Sd vt d thf\r rolically by Frecman
a <hel travelding 1n o uaniforne duclht encountors a small
\

chang > in cross scectional oreca. By oxtending a lincear

' theory due to Lighthill ard Chestlor, Preooman vas able to
deduce that the pecrturbation in wvave form is inversely

oy -

proportional (o {he 3/2 povier of the diztance travelcd
by the shock. The theory is valid however, only far

f

‘ - to undergo a larqge number of refleclions from thre walls.
' 62 _
Tapworth has invesligated cexperimentally the
’ /
stability of] sfiocks perturbed by "roof top" obstacles
?

placed on tHe }Lidewalls of a shock tube and concluded that

the 3/2 pgw#t law is approximately corrcct in that case.
Examinotion ofi“*Figure 5.31 indicates that the present
experimental results appear to be adeqguately described
by the 3/2 power law as well although the amount of the
- data is insbfficient to allow one to draw any definite
contlusions. Howcver, itfwas noted by Lapworth that che
mdgnitﬁde of the perturbations predicted by Frecman's

: r
theory were significantly greater than those actually

| . \

obsecrved.

. . In view of the above discussion regarding the wave

L .

1 ¥

away from the oriagin of the disturbances vhich are assumed

I

v
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diaaram for {hee birozeont mobleny it 10 not cum asare Yo o
}

that Procow ' scabilid choory pradict ovelie variatsyons
Y P y

.

in the shoclk frdnt perturiatior.  Hevwooor, acoordin:g Lo

Ltheory the peorturboLion shonild poriodically aporoach

zoko althnuah the Adota preasented 1 Faoeure 5031 suege <o
thrs in foact doos not occur in the preaent caooe.
According to the wave motron described by the vave dicgaram
it in \7:\1[11c11l]§7’ imposcible for Lhis to vocur althouch the
parturbation can theeretically bocome velatively small,
Tapworth arvriv d at a similar covclusion from hits expoy -
montal resulls. It nust be recalled though thelb the
crpevriments show only the et few cycles of ‘the motion
\
and the theory really does not apply so closce to the
origin of the disturbances.
N ¥

AS%& final comment regarding the chock wave stability
it should be pointed out that Frt-omar;':; analysis is auite
approximate and rather complicated as well. For many
practical probhlems construction of the wave diagram may
be a preferable alter?ativc despatc its complexity and
appar¢nt inaccuracy in predicting the perturbation amplastude.

In summal:y, for the single casc 1illustrated, it has

been demonstrated that the wave diagram constructed a

raccording to the principlesfof the ray-shock theory not; s

only provides valuable insight into the shock attenuation
mcchani sm but yields some aquantitative information as well.

1
The shock-shock trajectory for the first cycle of the wave

o



. motion is‘predicted reasonably well although the perturbations

to the wave front are generally overestimated. Stability

of the attenuated shock wave is also readily demonstrated

3
r

by this technique. \

n

&

Y



Cencludina Peraiks ' : g

Attenuaiion of an ifnitiallv plarnar shock vave has
examined for incident 3hock Mach numbers hetween,

and 2.44 and for slif wvidths befween 0,068 and 1.25

inches. TIxperimental measurcements have bheen performed

via spark schliercen photography and using pressure trans-

¢

3
ducers to meastire shock velocity. Theoretical consider-

* v '
ations have been based on Whithems ray-shoct theory.

Within the scope of the present investigation the main,

results are summarized and conc]usgons drawn:

(1)

(2)

(3)

The photographic history of the shock-slit inter-
action demonstrates the attenuation mechanisin-

diffracition of the shock through the slit and a

suhsequent Mach reflection. The transvepse waves (i:
jpsoudo—

thus generated are nearly cylindrical an

- S

stationary in their respoctive‘féme frames.
LN
e e

‘Attenuation of the incident shock by a single slit

§ ,

is relatively wecak. <The gregtest decrease in shock
Mach number observed for the present tests was about
7% and occurred for éhe largest slit width. The
additional attenuation due to transverse wave ‘
reflections is also very gradual so that the ray-
shock theory adeqguately predicts the attenuated wave,
speed even some distance.aownstrcaﬁ~of the slit.

The tendency "for the initial shock attenuation to

be independant of slit width according to the ray-shock



(4)

(5)

(6)

- 125 -

A
v (v}

theory is observed in prqpticef Although increasing
the slit width produces a small increase in 'shock
attenuation some distance downstream from the slit,

this effect is attributed to transverse wave

reflections-which are not accounted for by the theory.

Thus the most efficient attenuation would be produced

by a series of closely spaced narrow slits.
The external flow field is characterisgé by the
appearance of a fluia jet which is established at
@ ‘
the mouth of the slit and the character of this jet
is observed to depend on the pressure ratie across
the sl}t: Steady flow is established roughly six
times longer than éredicted by an approximate theory.
A wave diagram constructed according to the ray-shock
theory is observed to faithfullyldescribe the trans-
verse wave motion on' the attenuating shock. The
cyclic nature of this wave motion is clearly demon-
strated. However, the success of‘the wave diagram
-technique in predicting the shock-shock grajectory
¥s based on antiempirical relation for the triplé
point locus angle x.
Stability of the attenuating shock is clearly demon-
strated by the wave diagram technique. Pexrturbations
on the shock front ére also observed to possess a

cyclic nature although the perturbation amplitude

steadily decreases as the shock moves down the duct.’

’

- \,/\
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The experimentally observed perturbdtion is found o
|

to decrease much more rapidly than predicted by the

wave diagram.
I

o N

+

£7) Tée photographic study clearly sho&s the formation
oféajneag}y plane secondary shock in the flow field
which oriézﬂites in the vicinity of the slit and
propagates upgtream against the main flow. This
shock‘is observed to be produced by coalescence of

o 4

the components of transverse wave reflections.

Although the present investigation may be regarded as
successful iﬂ achieving the stated objectives of\é@fining
and describing theoretically the attenuation process, what
has been presented here is by no means a comple£e examinat-
ion of the problem. Considerations for future wor} should
include an investigation of shock attenuation for much stronger
shock waves which are more likely to be encountered in actual
practice. An experimental study of the attenuation produced
by a series of closely spaced slits is also called for.
Improvement of the theoretical aspects of the problem
are called for althodgh it is recognized that this task is
a rather formidable one. From what has been discussed in
Chapters II ‘and III it can be seen that extension of the éCW
and ray—éhock theories is at best<§ difgicult job. At the
séme timé it can be seen that due to its complexity and approx-

imate nature elimination of the wave diagram via improvement of

the theoretical technique is desirable.

T

-
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Finally, a theoretical description in the transonic

o

;e%ime for the fluid jet emerging from the slit is needed

At present, there ‘seems to be many difficulties to be

overcome regarding such an extension of compressible o

o

hodograph theory. At the same time, an extension of

Rudingef's work on the transition from unsteady to steady

flow conditions is required for an ad%guate description

of the present pFoblem:

o
(o]

R
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Appendix A
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Idealized estimate of the average time required for a
sound wave to traverse the flow through the slit.
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. According to Rudinger's approximate tk{eory7 the jet
,  development time is proportional to the time required for
/ a sound wave ta traverse the flow in the vicinity of the
slit. An average value between the initial and final"flow
.o 'configurations is recommended and this is computed on the
basis of an idealized representation of the actual flow
conditionsL* '

For an incident shock Mach nqpber M the Mach number,
pr?gsure and sound speed Mi’ P, C, bghind‘it are known
from the Raﬁkine—Hugoniot equations in terms of the ambient
conditions (subscript 0). Now initially, before the jet
is formed tpe speed of a:sound wave is simply u + ¢, so

the time required for the wave to traverse a slit of width

L is

- -

' Cot ¢./C, »

———— -

’e ’+M‘ ’ "(Al)

An idealized representation of the flow conditions

4

| after the jet is formed is shown in figure (Al). For the
purposes of this calcql?tion the jet is assumed to be
locally uniform with some veloéity V and straight while
inclined to the'duct axis at some angle 6 . If c is the

L=} J
local sound speed then from the figure

Y = (VESu ))& (L -Vt Cor®))



‘ and solving for t

| . ‘ \ .
S N P N e A 1Y}
1 Qz,_'\,-a,

’

Then simplifying this further and introducing the local Mach

number M = V/¢

Gt _ [ e yra iy, (a2).
7 l-M"‘ \]l MStM (‘9 Co\@]
.o /

H
" Then the average time is

9 cot - QOT: )
z T x ‘
I L AT T Y o ,_‘j“ . (a3)
1{:“4. ¥ '_ML[\L-M N Mcosé,] \

! Once the local Mach number at the slit is established the

calculation of t is straight forward.
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. . Appendix B .
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¢
Calculation of .the external jet structure
and a slit width of 3/8 inches.
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. -
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for M = 2,33
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FarN

The supersondc flow field in the immediate vicinity
of the slit is sketched in Figure él. Due’to a slig£t
bluntnegs (0.0; in.) and oblique flow direction, the "~
stationary portiol of the shock stands off a distance L
from the downstream edgé of the slit. Since the particle
velocity is supersonic, a Prandtl-Meyer expansion stands
at the upstreémiedg of the slit and at the shoulder of the ’ ,,
downstream edge as well. The external portion of the
detached shock reflects from the boundary of the emerging
fluid jet and gives fise to a decidedly unsymmetrical and
complex jet structure. The purpose of this section is to‘@
show that once the stand off distance L and the shock shape
can be estimated from an approximate theory due t; Moeckel®,
‘the jet structure can be easily computed By the method of
characteristics.

The details of Moeckel's theory are not given here
although it is based on the fact that the shape o0f detached :
shock waves are séﬁewhat insensitive to the actual shape of
the body that causes them. Then the shock shépe is assumed to

be hyperbolic so that for a gilven free stream Mach number M

it is given by

\ »

zjl —_ A\xll‘_ ‘;? ‘\\1
, ‘ — B
’ (B1)"

< ©

NI



“cation of-a simplified continuity relation leads to an
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17 [+ =3

[

and X; is the distance from Ehe wave vertex to the inter-

section of its asymptotes as shown in the figure. Appli-
4

o

expressionwfor X, which is conveniently plotted versus M

by the author. The shock standoff distance L is determined
from a simple geometric argument based on the experimental
evidence that the gody sonic point is often very close to

a sharp shoulder. It is found that

Lo_ ook o T (e

%»

C

where y;,is the coordinate of the body sonic point (shoulder)

and 8. is the détadhment aﬁélé“corresbonéing to M. Therefore/

d
if the Mach number M approaching the downstream edge of the

slit is known the shock shape can be easily constructed from
equations (Bl) and (B2) with ia given from Moeckel’s data.
It should be pointed out that equation (Bl) is considered

to be valid only up to the shock gonic point. This is
determined by assuming the sénic line is straight in the
case of sharp shouldered bodies. However, for the present
case equation (Bl)lis extended beyond the sonic point to

the jet boundary as a further approximation.

Now since L is not known in ‘advance M is not known
either. 1In other words, the Mach line from the upstream
edge of the slit which just .intersects the x' axis at

' ‘

[} 1
X = X, is not known beforehand. It can, however, be found

by iteration. Choose an X", y" coordinate system fixed at

RS
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| the dpstream edge of the slit. The equation of the Macﬁ

. lines™ (which are C+ characteristics) is

d [

kb" = -x" +oan (O-m)

/ p , also

{ S L (XS = Yo s

H

(B3)

Therefore, eliminating y% '

K_ #Me

A _-ﬁmm%wTGWB

The iteration is carried out by assuming a value for 6.

(B4)

Since the Mach number and flow direction (6 = 0) are known
ahead of the Prandtl-Meyer expansion, this immediately gives
a trial value of M from which (86 - ﬁ) and then X"/t is com-
v B puted. Then L/ if~givén by (B3) and compared to the value
| given by (B2). Tﬂ; iteration is continued until these two
values agree.

A detailed calculation is presented for an incident

?“:‘

* shock Mach number M = 2.33, p, = 0.95 psia and ¢ = 3/8 inches.
sDenoting the flow variables behind the undisturbed shock

, - .
by the subscript (1) it is easily found by straight forward

~ . .
) calculation that

ol My=113 y,/ﬁ, =647, fe, Jp, = 13.63

Q
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If the flow conditions downstream of the Prandtl-Meyer
expansion are given the subscript (j) then again straight-

forward calculation gives

s
/

Mj =236, 8;=33.55" ) ¥ =Ff ~

and iteration of equations (B2), (B3) and (B4) gives with

b/g = 0.08 “

:~M= 2-’07—) 9225-0") [_/‘e=0clbq),eé:23'25-o

where the latter value is taken from appropriate tables.

Fur thermore, from Moéckel's data (Figure 3 of his report)

/w«*) ) _;- -“ b GesS B : :
v, o E——
/’ so X,/¢ = 1.350. §rerefore from (Bl) the equation of the
// shock is ’
" x' 2 '\t «
, (Z) = 3‘”"(%’) + 1823 (B5)

The next step is to compute the strength of the Prandtl-
Meyer expansion at the shoulder of the downstream edge of

the slit. Adong the stagnation streamline ahead of the

\ ] )
detached shock M =M = 2.02 and from the normal shock tables
X

p y/ptx = ,7115, py/px = 4.594 hence downstream of the shock
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N ‘ pt = 9,21 psia, p = 4.364 psia. Now according to ‘the

Y Yy
approximate theory the head of the expansion wave is the
sonic line M = 1 and the pressure there is p* = ,.,52828 (9.21)

= 4,87 psia. At the tail of the expansion wave the pressure

is ambient,‘po. Hence the pressure ratio across the
expansion wave is p*/p, = 5.122 and the Mach number Mt

' at the tail of the expansion is easily computed since the -

stagnation pressure is known.

- ;0, - \ ' - h ’

r\ -
At the shoulder Moeckel’s analysis assumes that the flow

0
inclination is Bd relative to the "free stream" (86 = 25 )

hence

\/'\

e* = 23.25"‘25 = 48:25°
Op= Ox - Av = 48.25-30.14 = AT

which is the initial slope of the jet boundary downstream
of the shoulder; the flow does not follow the surface of
the wedge forming the downstream edge of the slit.
The wave diagram is calculkted on the basis of the

characteristic relations s,

C+: %i - '}OM (970«) ; P= O+V = ConsSTquT

. (B6) ?
C-: é}:)"&«(ey) ) Q== B+V = ConwsTauT J
_ P-0 _ PO
4 6= &=, V="1=



and the diagram is started by using five elements to represent
the expansion wave which is a C- famii& according to the
chosen coordinate system. For éonvenience M is chosen for
each element and using the same procedure as was done to
compute pt,
easily d;termined. Then from equations (B6) Q is known

the flow angle 6 for each characteristic can be
along each of the characteristics.*

During the course of the construction of the diagram
severai differeﬁt types of interactions must be considered.
First consider the reflection of the detached shocklfrom
the jet boundary. Since the shock shape is known beforehand
the point of reflection can be found graphically. Then the
slope of the shock can be computed from differentigtion of
equation (B5). It is found that the shock angle ¢ = 70.06°
relative to the (x, y) coordinate system by transforming the
coordinates. However, the yach number and flow direction
ahead of the shock are Mj = 2.36: éj = 33.59° so the effe§§ive
shock angle is Gs = 36.43° and from the obligue shock charts
the flow déflection § = 13.0° and Mach number downstream of
the shock is M = 1.83. This is denoted by point 6 on the
diagram, Figure (5.16). As before, the pressure ratio across
the reflected expansion wave is easily €@omputed and this gives
the new jet boundary Mach number M , = 2.313,

Three elements are uséd to represent the reflected
expansion wave which is a C+ family. As before, M is chosen
for each element\and the characterdstic invariant P is founad

for each in the same manner as before.
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Fortunately, almost the entire porfion of the wave diagram )
that has been worked out corresponds to isentropic flow and
the characteristic mesh is simple to construct in that case
since P and Q are known on each of the respective character-
istics. 6 and v (and hence M and u) are computed immediately
from equations (B6) and the ﬁésh is, constructed using the
average slope between successive points.

Reflection of characteristics from the jet boundary is
also easily handled as 6 is known from the previous steps.
Hence eiiher P and 6 or Q and © are known in equations (B6)
and it is a gimple matter to solve for the ;emaining two
variables.

Both expansion waves eventually reflect from the.jet

boundary as compression waves and ultimately converge taQ

. form oblique shock waves. This merging of characteristics

is handled in the usual approximate way; the slspe of the
shock is taken to be the ave}age of the slopes of the Ewo
merging characteristics. 1In the present case both shocks
formed in this ménner are seen to reflect from the jet
boundary again (as expansion waves) shortly after tggir
formation. Thus as a first approximation they may be con-
sidered weak so that the change in the characteristic
invariants across them may be neglected. -

The completed wave diagram showing the first "cell"
of the’emerging jet is shown in'Figure (5.16). In spite
of the many approximati;ns employed for éhe construction,

it surprisingly seems to give a fairly faithful picture of




,

the actual flow field observed from schlieren photography.

y3

The pertinent parameters associated with each point shown

on the diag{am is presented in Table (Bl) which is self-

explanatory .-
w
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(a) DIFFRACTION (b) DIFFRACTION AND MACH

- REFLECTION

(c) STEADY STATE CONFIGURATION  (d) STEADY STATE CONFIGURATION

(SUBSONIC FLOW)

FRIGURE 1.1:

(SUPERSONIC FLOW)
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THE SHOCK-SLIT INTERACTION
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FIGURE 3.2: CHARAGTERISTIC COORDINATES IN THE x-y PLANE
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FIGURE 3.3: SHOCK DIFFRACTION AT A CONVEX -CORNER. THE CASE
FOR SUBSONIC.PARTICLE VELOCITY BEHINDTHE UNDIST-
URBED SHOCK IS SHOWN. )
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FIGURE 3.9: WAVE CONFIGURATIONS FOR SHOCK ATTENUATION IN
\ A RECTANGULAR CHANNEL WITH A SLIT IN ONE WALL.
o . EXPANSION WAVES ARE INDICATED BY BROKEN LINES.
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° FIGURE 3.10: IDEALIZED REPRESENTATION OF THE MACH REFLECTION
° PROCESS AT THE DOWNSTREAM EDGE OF THE SLIT
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FIGURE 3.14: THE FUNCTION w(M) IN DEGREES FOR M_ = 1.4 \
® . ACCORDING TO THE RAY-SHOCK THEORY YQUATION 30)




- S ~ CAMERA |
: . PRIMARY. DRIVER
. DRIVER SECTION SECTION \
° \14 5 . . 5 » -~
o i i ek © TowcuuN
: _PUMP
- - TRANSDUCE
AIR FILL
LINE STATIONS
Q _ . SCHLIEREN =
BEAM 4
/ 0SCILLOSCOPE TIME DELAY :
UNIT \

FIGURE 4.7: - scHEMAnc'FGF‘ 2X2 INCH SHOCK TUBE AND ANCILLARY EQUIPMENT

.

Lot e




Q

AR EVANLIE NN

\. |PLEXIGLASS
STATION L [ N | PLATES
T T T T T T . . .

TJTRANSDUCER

| ~ - .
| i Y —te 208 - ‘ .
b .‘ R R Il -1 - o JOPEN
PG ‘ £y
_L_J ’1 - “- - ’.'—“-—\ \_{‘:(;) \\ .- :
i I

_ r‘j ] 5 ‘“b‘:"‘l - b - / S

< R A
|
(a) TEST SLCTION “A" ' : .

TRANSDUCER e = e PLATE GLASS WINDOW  TRANSDUCLERS

STATIONS AND COVER PLATL. r}4_j
oo o '
I N LE——— e
I —— !
- <4 |
; e 65 e J475 - - -
| : ,
e prom e 370 —— e
/
(b) TEST SECTION "B" o

/
FIGURE 4.2: TEST SECTION, SCHEMATICS:’ ALL DIMENSIONS ‘IN INCHES.
: \

i
e 1

3



)

TEST
SECTION

B
B
B

068
250
.750
.250

.275
.375
.350 7

2.442
2.142

2.442

2.875

3.375.

2.692

e
X X
3
4.0 —

4.0 20.183
4.0 20.183
4.0 19.683
4.0 19.183

4.0 ——
4.0 —
4.0 ~ —

h

4,‘~‘



.

2
# FIGURL 4.4: ATTYPICAL OSCILLOGRAPH .RECORD FOR M, = 1.67

AND 1.25 INCHES. THL TIME SCALE IS-°
50, 5 /DIVISTUN, ‘

M <
o

-

o




- SHOCK MACH MUMBER M

4

1.2

1.0

FIGORE 4.5:- MEASUREMENTS OF SHOCK ATTENUATION DUE TO VISCOUS FORCES ALONE (NO SLIT).

~

i

s

4/
L- ]
o o B - 3
YA\ b X A
A\ A A A A
| X=0
68 INCHES FROM , :
DIAPHRAGM “
S R | l 1 | L= | l |
-0 2 3 6 8 10 12 14 16 18 20 22
.. DISTANCE, X/h . C



-~

17§ 3HN9IA

R




~




o

L ,

. .

”; \(Alll
-

{

I




I TGURL

a

i

Do

"3 4

INTLRACT Ton

SHOCK-SLIT
.84,

CMAGRTIFTICATION

FOR

M
0

e

PN i

LYY

275 A



o

FIGURE 5.4:
MAGNIFICATION

0.84.

Ca

SHOCK-SLIT INTERACTION FOR Mo

i}

1.60, -

<z R—

)

R

b

275 THCHE

%
H
5.




’ L4
- .
. :
) } * kPN c r\~... \\\\\\\\\\\ ;{‘:\‘ )
FIGURE 5.5: SHOCK-SLIT INTERAcnci« FOR M = 1.67, ¢ = .275 [HCHES.
b . ' —_
: MAGHIFICATION = .84. T ‘
- o e . ’
®
- e .
-, t - e e S
- N . ) ]
! 4}









ek

o,
oy g 2 e







FUR M(, 375 THOHES.













. , A o' ) \ 4 - . - ¢ .
- .‘ ) q r . . - . _ R _ [
. - - , ©ITONW-L3I0 GELC @ m%wE
¢ ) e ) = N ° . ) . - _
- 2 "Wt 0N HOVW BoQHS e € n =
o N L LA T SR 1 SEN 1 SR 1 SR S W A AN A W M .
. | T 1 S R R o8 :
. f o— . R I SO A
~—— . N e .
. ~o0 . ~ | b=
” ™~ INIWIY¥IdXI O S e
N L wV B
4 - N
< [<p)
. 2 ‘ o ¢
. R e
o
m - L
[p)
o
- - : m - i
m .
, ‘ Eara 1.S02 = Fo -
a % N & [}
- ° L3 —
T~ L
. \ -
o p N . 4
wvw/éq..w -
o .
} b _
! - ) - ; s




. /A

CONTRACTION RATIOVA

TROSHIN

PRANDTL-MEYER
] EXPANS ION
Ad_ @ . — THEORY
. O EXPERIMENT |
.30 | [ | | l | | 1
1.0 12" 1.4 1.6 1.8 | .2.0  2.2. 2.4 - 2.6 ‘

FIGURE 5.14: JET CONTRACTION RATIO.|

]

’ 1
© SHOCK MACH NO.nM, /

\



8.0
6.0
C,t
L
4.0 e
‘ - © >~ L 5 | O EXPERIMENT
, \
~ !
) T — R
2.0 . Lo
. BASED ON RUDINGER T -
__— / THEORY t=dt : 0
. & }‘ « .
\\\; !
0 ! S 1 1 | ' *
1.0 1.2+, 1.4 1.6 ST, 2. 2.22 2.4 2.6
-
| ., SHOCK MACH NO.~MY —
_ FIGURE 5.15: JET* DEVELOPMENT TIME
S } ) .
/—/

1




FIGURE 5.16:

M

0]

=2.33

2 =.375 INCHES




EX
"
,

X/aM,

1.0 1.2¢

SHOCK MACH NO.'\aMo

3

FIGURE 5.17: EXTERNAL DIFFRACTED SHOCK

2.

0

2.

6



1.0 '
1 - "\ -
) o - e
()
0.8} ‘ s
A I 0 \
- ”
A \\
0.6 ’ \
Y/CXMO &4 J
®
0.4 — n
()
O M=1.17
i O M=1.41
-~ O M=1.67
0.2 - A M=2.14
g M=2.44
7~
-0.6 -0.4 -0.2 0 - 70.2 0.4 0.6 0.8

X/aM,

FIGURE 5.18: EXPANSION WAVE MEASUREMENTS




e

/ X =ut ‘ "
0 A
0.2 ﬁ e 1 o EXPERIM‘ENT ﬁ
0 | ] ] i l L i |
2.4 2.6

1.0 1.2 1.4 1.6 1.8 . 2.0 N 2.2

SHOCK MACH'NO.'\:Mo

FIGURE 5.19: EXPANSION WAVE CENTER AND RADIUS

. \ ,




0.
Y/aM,

0.

0.

61

al_

21

-0.6 -0.4

FIGURE 5.20:

eq

X/aMo

REFLECTED SHOCK MEASUREMENTS.

e




<3

.

e




sl S |
* ) ,’ . ‘
i SONIC - : : 5 |
INTERSECTION .
3k —\
Y/z“ \
. MT1.41 J /
2 ! ¢
}
\- .
] e * ! F
o | _ TRIPLE POINT '
0o i ' ?
m e L
‘ 0 | L | \ 1 .
0 1 2 3 4 5 6

X/2

FIGURE 5.22: SONIC INTERSECTION AND TRIPLE POINT LOCUS FOR M = 1.4]
' 7 AND 2 = 0,275 INCHES i

~




\4 B
. ' /,';/
SONIC : * ® - “
3. M,= 2.14 INTERSECTION 5‘
Y/%
2 P
LN S
0 L
0

X/%

FIGURE 5.23: SONIC INTERSECTION AND TRIPLE-POINT LOCUS FOR M
AND 2 = 0.375 INCHES




|
|
. s '
|
’v
T '
: ’ T
} : 'EQUATION 34 p
30— s /‘
3 | A . N
- i ° \NM“_
:‘/ A - L —————
|
| |
[ 20 |
- i \
my |
| . | A EXPERINENT
( DEGREES) _ ;
(;\10_/. . ; -
_‘ / . ‘ ef
! -
l 0 ~ 1 | P | N Ly
1.0 1.2 1.4 1.6 1. 2.0 2.2 2.4
/" , .

'FIGURE 5.24: THE CHARACTERISTIC ANGLE m

|
|
SHOCK MACH NOL~M,

o
b

1

i
.
! .
}
i
]
|
1
|




30 .
- (=T !
. ; = i
20 ) A A &
W 8 A A U
Y - / ! -
<X T

RAYV-SHOCK

(DEGREES) . ' ///’~_ THECRY (4') .
10 ’ O — 3
B iEE;T/,,,ﬂ~”"'ﬁﬂﬁfﬂaﬂ*d—~“__f- > C >
. f

° A EXPERIMENT
O 3-SHOCKX THECRY

. ‘ : r [ o P

1.0 - 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2 5

.o SHOCK MACH NO.wM, | : |
\ FIGURE 5.25: "TRIPLE POINT LOCUS ANGLE x -
‘ ) - N )
!
I -
: ! .

—___J__‘_hkiffﬂ H




2 Fo)
[ \ \
® - ®
| é r & .
‘1 :&
T ¢ =
x F hd )
o
LY E i
;: | ) < Qe 7
\")1 .
L% o” N i ‘
) - TN ’ :
1.0 ! : : /
o - 5=
- ‘D (o)
- ,
., 9 |
- -~ Q,'
M/M, L o
: | THEORY
.8 :
. \_/—\O EXPERIMENT
T o > ‘
. 1 1 1 | ] | 1 1
1.0 1.2 1.4 1.6 1.8 2.0 . 2.2, +4 2.6
S K : | q _ . :
° . SHOCK MACH N0 .M, .
FIGURE 5.26: SHOCK WAVE ATTENUATION NEAR THE SLIT




KTTENUATED SHOCK MAQH«NUNBER M

‘2.

1

2.4 O
4 s t&
2.20 .~ )
0
’ o
0__. &
o RN
1:8 ’ 0
. ’ .
1.6_ O } .
. ' Qe =0 -
ON oLS= .068 .
s ¢ D i AJL .2509
N * Dl = ,750
2 » NL o= 1.25
—— THEORY
1.0 | | i | |
1. 1.2 1.4 1.6 . 1.8 7 2.0 2.2 2.4

INCIDENT SHOCK MACH NO.~-M,

~

FIGURE 5.27: SHOCK WAVE ATTENUATION FAR DOWNSTREAM OF THE SLIT

-~




280} l | ! l L
1.0 - 1.2 1.4 1.6 1.8 . 2.0 . 2.2
SHOCK MACH NO. M, '
. FIGURE 5

’z

.28:SHOCK. WAVE ATTENUATION FAR DOWNSTREAM OF THE SLIT




Moy

\

D —fm s — = — F

3
A

o

i

OEXPERIMENT

- X/h

Y

10 11

FIGURE 5.29: WAVE DIAGRAM SHOWING TRANSVERSE WAVE MOTION ON THE SHOCK FRONT

FOR M = 1.4, & = .35 INCHES, h = .68 INCHES.

«

£ | 47 | 5

12

N




WALL SHOCK MACH NUMBER M

L4

l L 1 [ . 'll

N

-

FIGURE 5.30:

4 6 8 10 .12
X/h

SHOCK MACH NUMBER VARIATION ALONG THE DUCT WALLS
FOR M, = 1.4 ACCORDING TO THE WAVE DIAGRAM.

14



A5

A WAVE DLAGRAM
10 - O EXPERIMENT N

k%]

§/h

.05

X / h -

e




FIGURE Al: IDEALIZED FLOW, THROUGH THE SLIT AFTER THE
. ' JET HAS BEEN E{STABLISHED



‘18 34N9I4

\

s

/, g
0°1l AﬂzumoL‘thm JHL ONIANNOYYNS GT13I4 MOTF 3IHL
X
6
/ y
\\ \\* -
A , KA
P \\ \/ - ?<
—§ I-I.l|l||,,v. S ~ A m2¢+ﬁqIXV“7
] o R —
\ 71
N
W k) mp == \ __/ / Sy
PN
MOOHS~ \
' => «q x

— O+e—



\

TABLE 5.1
Point P Q M ] w m f+m 8-m
1 -45.96 0 1.237 -22.98 -22.98 22,98 0 ~45.96
2 -42.00 0 1.250 -21.00 =-21.00 26.75 5.75 -47.75
3 -26.85 0 1.300 -13.43 -13.43 27.50 14.07 -40.93
4 -12.88 0 1.350 -6.44 -6.44 28.00 21.56 -34.44
5 0 0 1.400 0 0 28.25 28.25 -28.,25;
1! -7.0 7.00 1, 0 -7.0 27.9 27.90 -27.90
2! -6.10 3.70 1.363 -1.20 -4,90 28.10 26.90 -29.3 "
3! -6.38 3.12 1.364 -1.63 -4.75 28.10 26.47 -29.73
6 =-24.06 . O 1.310 -12.03 =12.03 27.60 15.57 =-39.63
6! -6.23 2.77 1.366 -1.73 -4.50 28.20 26.47 -29.93
7 -6.44 6.44 1.350 0 -6.44 28.00 28.00 28.00
8 -12.88 6.44 1.328 3.22 -9.66 27.75 °30.97 -24.53
9 -16.38 6.44 1.315 -4.97 =11.41 27.70 22.73 -32.67
9} -10.17 9.63 1.326 -0.27 -9.,90 27.75 27.48 -28.02
10 -12.88 12.88 1.304 0 -12.88 27.55 27.55 -27.55
11 -17.53 12.88 1.288 -2.33 -15.21 27.35 25.02 -29.68
11} -11.63 13.97 1.305 1.17 -12.80 27.60 28.77 -26.43
12 =-15.21 15.21 -.1.288 0 -15.21 27.35 27.35 -27.35
13 -18,47 15.21 1.277 -1.63 =-16.84 27.20 25.57 -28.83
13! -11.75 16.25 1.296 2.25 =-14.00 27.45 29.70 =-25.20
14! 1.306 0
15 =2.77 2.77 1.378 0 -2.77 28.15 28.15 -28.15
16 -2.77 9.63 1.353 3.43 -6.20 28.00 31.43 -24.57
17  =2.77 13.97 1.337 5.60 -8.37 27.90 33,50 =-22.30
18 -2.77 16.25 1.328 6.74 -9.51- 27.80 34.54. -21.05
19 -9.63 9.63 1.327 0 -9.63 27.77 27.77 =-27.77
20 -9,63 13.97 1.311 2.17 -11.80 ~-27.60 29.77 25.43
21 -9,63 16.25 1.303 3.31 -12.94 27.55 30.86 -24.24
22 -13.97 13.97 1.297 0 -13.97 27.50 27.50 =27.50
23 =13.97 16.25 1.289 1.14 -15.11 27.35 28.49 -26.21
24 -16.25 16.25 1.280 0 -16.25 27.25 27.25 =27.25
181 -3.76 12.24 1.340 4,24 -8.00 27.85 32.09 -23.61
21! -9.99 13.61 1.311 1.81 -11.80 27.60 29.41 -25.79
23! -14.16 14.44 1.294 0.14 -14.30 27.40 27.54 +«27.26
24! -16.46 15.14 1.284 -0.66 =-15.80 27.30 26.64 -27.96
25! 1.287 0
26 -3.76 3.76 1.370 0 -3.76 28.1 28.1 -28.1
27  -9.99 3.76 1.348 -3.12 -6.88 26.7 23.58 -29.82
28 -14.16 3.76 1.332 -5.20 -8.96 27.85 22. -33.05
29 -16.46 3.76 1.323 -6.35 =10.11 27.75 21.40 -34.10
30 -9,99 9,99 1,326 0 ~9,99 27,77 27.77 -27.77
31 -14.16 9.99 1.310 -2.09 =-12.08 27.60 25.51 -29.69
32 -16.46 9.99 ».301 -3.24 -13.23 27.50 24.26 -30.74
33 -14.16 14.16 1.295 0 -14.16 27.45 27.45 -27.45
34 -16.46 14.16 1.287 -1.15 =15.,31 27.35 26.20 -28.50
35 ~16.46 16.46 1.279 0 -16.46 27.20 27.20 =27.20
29 -13.05 4.75 1.333 -4.15 -8.90 27.85 23.70 -32.00
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TABLE ontinued
4
) (/‘) Point P Q M 8 e w m 8+m 8~m
/. 32 -14,18 9,88 1.310 -2.15 -12.03 27.60 25.45 -29.75
34" -15.35 14.45 ¥4290 -0.45 -14,90 27.35 26.90 -27.80
35! -15.,80 16.60 1.281 +0.40 -16.20 27.25 27.65 -26.85
36! X 1.283 0
37 -4.75 4.75 1.364 0 -4.75 28.10 28.10 -28.10
38 -4,.75 9.88 1.345  2.57 -7.32 27.90 30.47 -25.33
39 ~4.75 14.45 1.329 4.85 -9.60 27.80 32.65 -22.95
40 -4.75 16.60¢ 1.320 5.93 -10.68 27.70 33.63 -21.77
41 -9.988 9.88 1.326 0 -9.88 27.75 27.75 =27.75
42 -9.,88 14.45 1.310 2.29 -12.,17 27.60 29.89 -25,31
43 -9.88 16.60 1.301 3.36 -13.24 2%.50 30.86 -24.14
‘ 44 -14.45 MT4.45 1.293 0 -14.45 27.40 27.40 -27.40
45 -14.45 16.60 1.286 1.08 -15.53 27.35 28.43 -26.27
46 -16.60 16.60 1.278 0 -16.60 27.20 27.20 =-27.20
- 40} -5.67 13.53 1.329 3.93 -9.60 27.80 31.73 -23.87
41 -10.49 14.71 1.306 2.11 -12.60 27.55 29.66 -25.44
45! -14.63 15,79 1.288 0.58 -15.21 27.35 27.93 -26.77
‘46 -18.42 5.67 1.310 -6.25 -12.17 27.60 21.35 -33.85
47! 1.343 0
48 -5.67 5.67 1.356 0 -5.67 28.0 28.0 -28.0
49 - -10.44 5.67 1.339 -2.41 -8.08 27.90 25.49 -30.31
50 =14.63 5.67 1.323 -4.48 -10.15 27.75 23.27 -32.23
51 ~10.49 10.49 1,322, 0 ~10.49 27.75 27.75 =27.75
52 -14.63 10.49 1,307 -2.07 -12.56 27.55 25.48 -29.62
53 -18.42 10.49 1,293 -3.97 -14.46 27.40 23,43 =31,37
54 ~14.63 14.63 °1.290 0 -14.63 27.35 27.35 =27.35
55 -18.42 14.63 1.279 -1.90 -16.53 27.20 25.30 -29.10
56 -18.42 18.42 1.266 0 -18.42 27.05 27.05 -27.05
53! -8.76 12.22 1.322 1.73  -10.49 27.75 29.48 -26.02
541 ~9.,50 15.70 1.305 3.10 -12.60 27.55 30.65 -24.45
56! ~10.71 19.71 1,288 4.5 -15.21 27.35 31.85 22.85
57 =12.22 12.22 1.309 0 -12.22 27.60 27.60 -27.60
58 -12.22 15.70 1.297 1.74 -13.96 27.50 29.24 -25.76



TABLE B 1

Point P Q (©) \V M u O-yu 8+u
0 48.25 -48.25 48.25 0 1.00 90.0 -41.75 138.25
1 54.29 -53.31 53.80 0.49 1.05 72.25 -18.45 126.05
2 54.29 -41.95 48.12 6.17 1.30 50.28 -2.16 98.40
3 54.29 -24.57 39.43 14.86 1.60 38.68 0.75 78.11

.4 54.29 -7.11 30.70 23.59 1.90 31.76 -1.06 62.46
5 54,29 6.03 24.13 30.16 2.14 27.86 ~-3.73 51.99
6 68.19 ~-25.01 46.60 21.59 1.83 33.12 13.48 79.72
7 68.19 -24,51 46.38 21.81 1.84 32.92 13.46 78.30
8 68.19 -7.11 37.65 30.54 2.16 27,65 10.00 65.30
9 68.19 6.03 31.08 37.11 2.42 24.46 6.62 55.54

10 81l.59 -25,01 53.30 28.29 2,07 28.89 24.41 82.19

11 81.59 -24.57 $3.08 28.51 2.08 28.74 24,34 81.82

12 81.59 -7.11 44.35 37,24 2.42 24.41 19.94 68.76

13 81,59 6.03 37.78 43.81 2,71 21.65 16.13 59.43

14 94.33 -25.01 59.67 34.66 2.31 25.59 34.08 85.26

15 94,33 -24.57 59,45 34.88 2.33 25.47 33.98 84.92

16. 94.33 -7.11 50.72 43,61 2,70 21.74 28.98 72.46

(17 94,33 6.03 44.15 50.18 3.08 18.98 25.17 63.13

18 68.19 -7.97 38.03 30,16 2.14 27.86 10. 65.89

19 81.59 -7.97 44.78 36.81 2.41 24.57 20.2 69.3

20 81.59 -21.27 51.43 30.16 2,14 27.86 23. 79.29

21 94.33 -7.97 51.15 43.18 2.68 21,91 29.24 73.06

22 93,89 -24 .57 59.23 34.66 2.31 25.59 33.64 84 .82

23 93,89 ~7.11 50.50 43.39 2,63 21.82 28.68 72.32

24 93,89 6.03 43.80 49,96 3.01 19.40 24.40 63.20

25 93,89 -7.97 50.93 42.96" 2.67 22.00 28.93 72.93

26 76.43 -7.11 41.77 34.66 2,31 25.59 16,18 67.36

27 76.43 6.03 35.20 41.23 2.59 22.71 12,49 57.91

28 76.43 -7.97 42,20 34.23 2.30 25.77, 7.97 76.43

29 63.29 6.03 28.63 34.66 2,31 25.59 3.04 54.22

30 63.29 -7.97 35.64 27.66 2.05 29,27 6.37 64.91

31 42.63 -7.97 25.30 34.66 2.31 25.59 -0.29 50.89

32 94.33 -21,27 57.80 36.53 2.39 24.73 33.07 82.53

33 93.89 -21,27 57.58 36.31, 2.39 24.79 32.79 82.37

34 76.43 -21.27 48.85 27.58 2,05 29.27 19.58 78.12

35 63.29 -21.27 42.28°21.01 1.81 -33.54 8.74 75.82

36 42.63 -21.27 31.95 10.68 1.49 42.16 -10.21 74.11

37 94,33 -34.01 64,17 30.16 2.14 27.86 36.31 92.03

38 63.29 -34.01 48.65 14.64 1.60 38.83 4.91 87.48




