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I\BSTRACT 

An thcorctical analysis of the space-time correlation function for rainfall and its 

rclati/lnship tl) Taylor's hypothesis is presented. The analysis assumes a h1\)mogeneous and 

stutionary random field bcing advccted past a fixed cuordinate system with a constant velocity. 

Wilhin the ll10ving rcferencc frame, the random field is assumed to possess,quadrant symmetry. 

The concept of space-time isotropy is definrd relative to a velocity. This is called the intrinsic 

velocily and reprcscilts a kinematic characteristic of th(~ storm system apart fnQm the advection 

vclocity. A r. liai spacc-timc correlation function is defined over a range of scales where the 

intrinsÎc vclocity remains constant. The effect of the intrinsic velocity on Tayll.llr's hypothesis is 

cxamined and an alternative is proposed. The effect of spatial resolution is eva~uated 

theore:tic.allyon a model space··time correlation. The œsults from the theoretical calculation are 

compart:d with tho:'e obtained from two rain events. The radial space-time correlation functions 

of tlH.~ rtlin cvcnts vary as expected with spatial resolution, but the intrinsic and advection 

vdodties an: inconclusive. The uncertainty for the intrinsic and advection velocities does not 

"lInw for a c1ear rclationship with spatial resolution. Nor does it allow a c1ear determination of 

the c m:ct of :,patial resolutiol1 on the validity of Taylor's hypothesis. The intrinsic velocity may 

hl! Hrproximated as constant over a certain range of time sc ales (15 to 70 min). Of the cases 

mnsidered, the effcct of the internai storm development on Taylor's hypothesis is slight. 

Thercl.'orc, Il 'frnzen turbulence' 1110del for Taylor's hypothesis is still a good approximation. 
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RESUME 

Une analyse théorique est présentée sur la fonction des corrclations cspaœ-ll'mps pOlir la 

précipitation aussi bien que son effet sur l'hypothèse de Taylor. L'analyse '1uppose Ull dWlllp 

aléatoire homogène et stationnaire qui subit un mouvement d'advection avec 1II1~ vélm:ité 

constante par ~apport à un système de coordonnées fixe. Par rapport au systèmc dc référcncc 

mobile, les correlations espace-temps du champ aléatoire sont symmetriques d'un quadrant il 

l'autre. Le concept d'isotropie espace-temps est défini par rapport à une vitesse. On qualifie 

cette vitesse d'interne et elle représente une caractéristique cinématique du systèmc dc 

précipitations indépendante de la vélocité d'advection. Une fonction de correlations 

espace-temps radiale est définie sur un domaine d'échelles où la vitesse interne cst constante. 

L'effet de la vitesse interne sur l'hypothèse de Taylor est examiné et une meillcurc altcrnati vc est 

formulée. L'effet de la résolution spatiale est dételminé théoriquement scIon un modèle des 

correlations espace-temps. Les résültat~ théoriques sont comparés au résultats obtenus il partir dl' 

deux cas de précipitation. Les fonctions de correlation espace-temps radiales changent avec la 

résolution spatiale comme prévu. L'incertitude sur les vitesses intl~rnes et d'advection ne permet 

pas d'évaluer l'effet de la résolution spatiale sur celles-ci ni sur la validité de l'hypothèse de 

Taylor La vitesse interne est à peu près constante sur un domaine d' intervales de 15 il 70 

minutes. L'effet du développement interne de la précipitation des cas examinés sur l'hypothèse 

de Taylor e~t minime. Un modèle de 'turbulence figée' décrit toujours d'une manière appropriée 

l'hypothèses de Taylor. 
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CONTRIBUTION TO KNOWLEDGE 

To the best of the author's knowledge, this thesis contains original elements conccrning the 

space-time structure of rainfall as well as the transformation of temporal statistics into spat inl 

statistics. These elements are: 

1. The complete structure of space-time correlations for rainfall. To the best of the 

author's knowledge, only purely spatial or temporal (either in the Lagrangian or Eulerian 

frames) correlation functions (or alternatively, power spectra) of rainfall in the horizontal 

plane have been analyzed to date . 

2. The identification of the intrinsic velocity as a space-time charactel'istic internai to Il 

storm system as well as the configuration of this velocity throllghollt thc space-limc 

domain analyzed. Consequently, the radial space-lime correlation functions are dclïncd 

and measured for the first time. 

3. The limits imposed by the internaI space-time correlation function on the validity of 

Taylor's hypothesis and the reformulation of Taylor's hypothesis by incorporating the 

internaI storm space-time characteristics. 

P. S. : After submitting this thesis, the author discovered the work of Nakamoto ct al. (1990), 

who obtained space-time correlations for rainfall with diffcrent methous and goals . 
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l. Introduction 

In 1938, G. I. Taylor examined the behavior of a turbulent stream of air where the me an 

vclocity of the flow is much greater than the characteristic velocity of the elÏdies. He assumed 

that these eddies did not change: Hppreciably during their passage through a wind tunnel. In this 

way, the velocity fluctuations observed at a given point over time are comparable to the 

fluctuations at a given time over space. Therefore, the temporal data may be transformed into 

spatial data, and vice versa, using the mean velocity as a conversion factor. This simple 

relationship between space and time is known as Taylor's hypothesis, and although much 

progress has been made in the theory of turbulence since then, interest in this hypothesis has 

rcmained (Heskestad, 1965, and Antonia et al., 19RO). The reason is mainly practical, since it is 

casier to obtain high resolution temporal data at a given place than high resolution spatial data. 

Taylor's hypothesis is tben the simplest way of extracting spatial information from a time series. 

The sume problem occurs in meteorological data, much of it consisting of time series of 

quantities such as temperature, pressure or rainfall, at a given place. Until the 19505, the 

raingage was the principal instrument for measuring rainfall. But with radar, observing rainfall 

in time and over space, the validity of Taylor's hypothesis may be evaluated in a practical way 

(Zawadzki 1973a, Lachapelle 1990). The objective here is to develop a general framework for 

describing space-time correlations in rainfall, and to evaluate Taylor's hypothesis within this 

framework. The focus is on particular rain events, where an advection velocity often exists 

which is approximutely constant. Such a velocity is a necessary first step towards defining 

Taylor's hypothcdis because it serves as a basis for the space to time conversion. This basis is 

independent of the details of the phenomenon under study, be it turbulence or rainfaIl, if we 

assume that the phenomenon and the advection are, to first order, uncoupled. Corrections to this 

space to time conversion factor can be included as a second order effect, depending on the 

characteristics of the advected phenomenon as weIl as a possible relation between it and its 

advection. Such an approach was undertaken for turbulence by Wyngaard and Clifford (1977), 

und for rainfall by Waymire et al. (1984) and by Gupta and Waymire (1987). In this work, we 
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shaH introduce a velocity which characterizes the internaI development of a ston11 system . 

Taylor's hypothesis eun be evaluated and modified on the basis of this velodty along with the 

advection velocity. 

We shaH start by reviewing the theory of random fields and their place in the 

meteorologicalliterature in section 2. Then, in section 3, we examine in tht'ory the effect of 

certain symmetry assumptions about the rainülll field on its space-time C orrelatioll strllctllrl' and 

Taylor's hypothesis. [n section 4, we see the effect of spatial rcsolutioll on the space-time 

correlation function. This is important mainly because radar has a resolution which varies with 

range and the rain field has many scale-dependent properties. Therefore. wc must kllow ils 

effect in order to properly interpret the results. Finally in section 5, wc e~xamine the rcsults from 

real data, compare them with a numerical simulation and assess thcir meaning. Il is hoped lhat 

this work will give a greater understanding of the statistics of rainfall and help in the 

interpretation of temporal data, such as from raingages or vertically-pointing radar . 

2 
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2. Rainfall as a random field 

To make a statistical analysis of precipitation patterns, one must specify the assumptions 

wieù in the analysis and in thl;! interpretation of the results. Normally, statistics refer to the 

properties of a set of inùepenùent realizations. In the case of rainfall patterns, one would need an 

enlire serie:; or storm events which are independent yet similar enough to count as different 

œalizalions of the same synoptk situation. This is very impractical. Fortunately, there are 

certain simplifying asslImptions. These are homogeneity, stationarity and ergodicity. These 

notions are defineù in the next section. 

2.1. I~andom field thcory 

We begin by introducing sorne of the theory of random fields. A random field is just like a 

ntnùom variable except that instead of a number, we have a field in n-dimensional space as the 

outcome of any given trial or reaHzation. The term 'realization' refers to the detennination of 

one possibility out of many possibilities. The result of a coin toss is a realization; the choice of 

one possibility from two equally likely possibiliti(~s. In this case, we have a scalar field (rainfall) 

in two spatial dimensions and one temporal dimension. Put another way, we have R, = R, (x ,y, t), 

where ; is an index identifying one particular realization out of aU possible realizations. Here we 

assume that i is discrete and that the set of aIl possible realizations is countable. For every 

realization i, we attribute a probability P" From this, we can define the mean field, by summing 

over the possible realizations multiplied by their respective probabilities, as 

N 

R(x,y,t) = I. P,R,(x,y,t) 
, =\ 

(2.1.1) 

the variance as 

2 N 2 
cr (x,y,t) = I. P,[R,(x,y,t) -R(x,y,t)] (2.1.2) 

,=1 

N 

Cov(,t .. y\, (l'X2, Y2' (2) = I. P,IR(x\, YI' t\) - R(x\> YI> (\)] [R(x2, Y2' (2) - R (x2, Y2' t2)] 
.=\ 

(2.1.3) 

und the cor.elation between two points as 

3 
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(2.1.4 ) 

Another useful concept is that of the ensemble. An ensemble is a set containing an infinite 

number of identically prepared systems, each independent from the others. This sel allows liS to 

define the mean, variance, covariance and correlation fields, assuming they exist, simply hy 

averaging over the ensemble. The probabilities P, can be intcrpretcd as the relative frcqllcncy 

with which R.(x, y, t) appears in the ensemble. 

Stationarity refers to statistics that are constant in time and homogeneity tn statisties thal 

are constant in space. If we have both, this means R(x,y, t) = Rand cf(x,y, t) = cl. Also, if thc 

statistics are the same over time and space then no partieular point is privilt'ged. Therefore, only 

intervals of time and space matter for the two point functions. In other words, 

(2.1.5) 

and the same applies for the correlation function. Isotropy refers to statistics thm do not change 

with respect to direction, Le. 

(2.1.6) 

is isotropie as well as homogeneous. Note that isotropy refers only to space and thal one cannol 

readily extend this notion to space and time since we are dealing with two physically diffcrent 

quantities. Ergodicity refers to a stationary and/or homogeneous random field where a single 

realization that is sufficiently large contains enough statistical information to reliably estimate 

the ensemble mean, variance and covariance. For example, if we have an ergodic 

one-dimensional random field such as a time series, we need only colleet data for a long lime and 

average over time to estimate the ensemble mean. 

From the correlation function we can define a correlation length (or decorrclatÎon length, 

the two terms are used interchangeably), which is how far apart two points in a random fieL! 

must be before the y can be considered independent. For example, let us consider a stationary 

time series with a correlation function pet), where t = t2 - 1 •. The seale of fluctuation is defincd 

as (Vanmarcke 1983) 

4 
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e = J: p(t)dt = 2 i- p('t)dt (2.1.7) 

and the eharaetcristie seale is (Gupta & Waymire 1987) 

(2.1.8) 

whcre e = 2er• If the integrals diverge then a seale doc!s not exist. One condition necessary for 

its existence is 

tp(t) = 0, as 1 t I~ 00 (2.1.9) 

The correlation function may approach a power law for large t (Le. pet) ~I t l-u, for 

1 t I~ (0), in which case the scale of fluctuation exists if Cl > 1. If the scale of fluctuation exists 

and if the time interval of observation is T, then the ratio Tle can be interpreted as the equivalent 

number of independent observations in the sample (Vanmarcke 1983). The charaeteristic seale 

has certain advantages when dealing with an exponential correlation function pet) = exp(-I tilT) 

because Sc = T. In fact, the characteristic scale is sometimes defined as the point where 

p(ec ) = e-I whether cr not the correlation function is exponential. This is done in a context 

where the correlation function can always be approximated as an exponential and the integration 

is problematical. We can ex tend these definitions to include many dimensions, 

et = f~ p(O, 0, t)dt (2.1.10) 

en = f~ p(a,O.O)da (2.1.11) 

(2.1.12) 

(2.1.13) 
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2.2. Statistics in the literature 

Brgodicity has been suggested by Atlas et al. (1990) for convective rainfall. They argucd 

that convective ceUs have a quasi-detenninistic development. That is the rain rate for a givcn 

cell evolves in a deterministic manner which is modulated by a random component. This is 

because the maximum rain rate R in a storm ceU is detennined by the maximum updrnft and the 

vertical gradient of saturation vapor density (Adler and Mack 1984), along with the maximum 

parcel convective energy (Zawadzki and Ro 1978). During the cell's lifetime, the updraft and 

the rain rate will evolve in a more or less deterministic manner. Addcd to this is the effeet of 

turbulent eddies which enhance or inhibit the local rain rate due to a combination of entrainment, 

growth or evaporation, and convergence. Furthennore, since the intensity of turbulence is 

controlled mainly by the horizontal shear of the vertical velocity, turbulence is proportionaJ to 

the strength of the updraft. And since turbulence causes the random part of the distribution of R, 

we can expect the variance of the probability density function (pdf) to vary with the mean (Short 

and North 1990, also Zawadzki 1973a). In the case of a storm, wc usually have many cells 

c1ustered together. The ceUs in the c1uster intensif y and decay throughout the cJuster's history. 

So at any moment there are man y ceUs at various stages of development, especially if therc arc 

many c1usters in view. Therefore, provided that the evolution of the cells are not synchronous, 

the instantaneous realization of a rain field should give a good approximation of the pdf. 

Assuming, of course, that the distribution of rain rate within a cell and over its lifetime, dominate 

the overall pdf of rain. In this sense the field is ergodic and the statistics over space of a 

realization can yield the ensemble at a given point. Note that the statistics obtained in this 

context refer only to the processes occurring within the predominating synoptic condi lions over 

the region and interval of time of observation. However, the work by Drufuca (1977), where the 

pdf taken from a raingauge over ten years coincides with the pdf obtained from radar data on 

patterns of intense precipitation over a wide region but one summer. Although this coincidence 

is strongest between 10 mm/lu and 100 mm/hr and decreases for higher rain rates, and that the 

radar data was calibrated with respect to the raingage data, it implies nevertheless a weak form of 

ergodicity that extends to many synoptic conditions. This may imply that the pdf is dominatcd 

by cells which do not change very much From one synoptic condition to another. 

A rain field also consists of regions with and without precipitation. Even if we assume th,a 

the rainfall within a precipitating region is ergodic in time and space, there remains the question 

of the statistics of the size, shape and position of these regions. For example, Crane (1990) states 

that for a 256x256 km2 region with 1 km resolution, the cumulative distribution of rain rate may 

be approximated by a lognonnal distribution above the median rain rate when more th an 10% of 
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that region is covered by rainfall. This supports the assumption of ergodicity within precipitating 

regions. A lognormal distribution appears often in the literature, not only for rain rate but other 

quantities as weIl. Indeed, Rosenfeld et al. (1990) show log normal distributions for rain rate and 

Biondini (1976) found evidence for a lognormal distribution of the rain volume, lifetime and 

intensity of rain from Florida cumulus clouds, followed by Lopez (1976, 1977) who 

demonstrated a lognormal frequency distribution of height, horizontal size and duration of cloud 

and radar eeho populations. As for the size of precipitating regions, one study by Dennis & 

Fcrnald (1963) suggeMs that the frequency distribution as a function of radius of isolated 

showers is exponential, with the charaeteristic radius varying with time and place. 

Atmospheric fields can also exhibit seale invariant behaviour. This means that cloud or 

rain fields are similar from one seale to another, relative to a seale changing transformation. The 

seale change transformation is normally a power-Iaw involving the ratio of a quantity from the 

field itself (such as the absolute value of the differenee in rain rate between two points a certain 

distance apart or the spatial average of the rain rate over a square with a certain side length) at 

two different scales and the ratio of the scales themselves. Fields that display such behaviour are 

normally qualified as scaling or self-similar. Early work on scaling fields dealt with patterns in 

cloud or Tain fields that are fractal, essentially geometric shapes that are sealing, either exactly or 

statistically. Lovejoy (1982) showed that the perimeter of a cloud or rain area is proportion al to 

the square root of its area raised to the power of D, where D = 1.35 and is known as the fractal 

dimension of the perimeter. The consisteney of this relationship from length seales ranging from 

1 to 1000 km indicates the absence of a characteristie length scale within this range. The 

area-perimeter relationship was later explained theoretically in terms of turbulent diffusion by 

I-Ientschel & Procaccia (1984). However, Cahalan and Joseph (1989) subsequently found 

different dimensions for different cloud types as weIl as a break in the scaling behaviour of cloud 

base areas at a diameter of approximately 2 km. This line of investigation reached its peak with 

the formulation of a fractal model for rain (Lovejoy and Mandelbrot 1985, Lovejoy and 

Schertzer 1985). 

Fractal models of rainfall were eventually supplanted by multifraetal models (Sehertzer 

and Lovejoy 1987. Lovejoy and Schertzer 1990, 1992, Tessier et al. 1993). Multifractals apply 

to scalar fields with no negative values (i.e. a 'mass' distribution) and so are well suited for 

treating rainfall. They can be thought of as fields where the geometric shapes created by the 

exceedence sets over a given threshold value have fractal dimensions which vary as a function of 

the threshold value, though this is ~()mewhat of an over-simplification. Closely related to 

multifractals are multiplicative cascades (Shertzer and Lovejoy 1987, Gupta and Waymire 1993). 
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A multiplicative cascade is a stochastic process where an initial 'mass' is lInifonnly distrihlltcd 

over an area and subsequently redistributed to smaller areas contained in the original area, when.' 

the redistribution is done by multiplying the original 'mass' by a rnndom vat;able for eadl 

sub-area. These random variables are independent and identically distributed for each sub-arca. 

This opf'ration is then repeated for each sub-arca into even smaller sub-areas and so on, ulltil li 

minimum scale is reached. These types of processes often give rise to multifractal fields. An 

equivalent picture to that of multifractals is expressed as multiscaling (Seeù 1989, Gupta mlli 

Waymire 1990) which refers to the different scaling properties of the different moments of tl'e 

spatially averaged rainfall probability distributions, with respect to the size of the averaging arra. 

Here, no explicit reference to multifractal dimensions is made. 

The relevance of the above discusr,lon on this work has to do with the notion of crgodicily 

and the forrn of the correlation function. It has been demonstrated that a power-Iaw form of the 

correlation function can arise in multifractal (Cates and Deutsch 1987) ami cven simple scaling 

fields (Waymire 1985). And from equation (2.1.9), a churacteristic seule may not exisl 

depending on the value of the exponent of the power-Iaw, thus placing the notion of ergodicity in 

jeopardy. On the other hand, there is empirical evidence showing the existence of an cxponcntial 

form of the correlation function from Zawadzki (1973a, 1987) and Drufuca and Zawadzki 

(1975). We shaH therefore rely on those results and the arguments of Atlas ct al. (1990) when 

analyzing the space-time correlations of the cases presented . 
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3. Space-tirne correlations in rainfall 

Stonn systems are very often advected past the region where they are observed. For the 

Montreal region within the range of the radar (200km), the velority of a given storm system can 

be approximuted as constant over the duration of the event for most cases. It is therefore 

possible to define an Eulerian reference frame, that is, a coordinate system fixed to the ground, 

and a Lagrangian reference frame which moves along with the storm system. If we treat the 

storm system as a homogeneous and stationa')' random field, then in the Lagrangian frame we 

can expcct quadrant symmetry to hold for the space-time correlation function. In other words we 

expcct 

(3. La) 

(3.1.b) 

(3. I.e) 

whcrc al is a spatial interval in the Lagrangian frame, 'CI is a time interval in the Lagrangian 

frame and P/(a/> "CI) is the space-time correlation function. The correlation function should have 

two spatial dimensions but one was omitted From the notation for the sake of simplicity. 

Physically speaking, when we focus on the Lagrangian frame we eliminate the overall motion of 

the storm eaused by large seale forcing and eoncentrate on the smaller scale activity of the storm. 

The first property, equation (3.1.a), holds by definition of the correlation function for a stationary 

and homogeneous field. The second property, equation (3.1.b), holds for a random space-time 

field with no mean motion. That is, over the entire ensemble of space-time realizations the 

average motion of any distinguishable feature is zero. Therefore we only need the region 

() S al < 00,0 S 't, < 00 to determine the entiTe space-time correlation function. The third property, 

equation (3.I.c), holds by virtue of the first and second properties. 

If the St0n11 system is advected with a constant velocity U, we have the Galilean 

transfonnation 

9 

(3.2.a) 

(3.2.b) 



• where a~, 't, are the space and time intervals in the Eulerian frame respectiwly. Again. the 

second spatial dimension has been omittcd and the vclocity is assullled tn he paralkl to the spal.'l' 

intervals. From eq. (3.2.b) we can see that the Lagrangian and Eulerian tune IIltervals arc tht' 

same, so we drop the subscripts when referring 10 them. Thcrcfore, the relation hetween the 

Eulerian and Lagrangian space-time cOlTelation is 

So the function p~(a~, 't) is symmetric about the line a, -U't = O. By symmetric. wc mcan 

that p,(U't - ~a", 't) = p,,(U't + ~ae' 't) for any 't and ~at' Taylor's hypothcsis states 

(JA) 

which, if it holds, is a way of finding the spatial correlation function from the temporal 

correlation function (or vice versa) using the advection velocity. This was the original fonn for 

Taylor's hypothesis (Taylor 1938) and is essentially a statistical statement about temporal and 

spatial data. While the model of 'frozen turbulence', that is il spatial pattern that docs not l'volve 

with time but is advected past a point with a constant velocity U, lcads to clluation (3.4), the 

reverse is not nf'ccssarily true. Other versions of Taylor's hypothesis dcal with the rclatioJlship 

• between time and space derivatives (Heskestad 1965). However, the cxtent ln which Taylor's 

hypothesis allows temporal data to be transformed directly into spatial data lIsing a vcIocity is 

not clear. We shaH deal exclusively with the stalislical version of Taylor's hypothesis descrihed 

in equation (3.4). 

• 

Equation (3.4) also means 

P/( U 't, 't) = PI( U 't, 0) (3.5) 

Therefore, given a Lagrangian space-time correlation function, not only can wc dctcrminc 

the validity of Taylor's hypothesis using the value of the advection velocity of that partieular 

case, but also for any other value. This assumes, of course, that there is no correlation betwccn 

the structure of the Lagrangian space-time correlations and the advection vclocity. 

It sometimes happens that the advection velocity contains a small but persistent 

acceleration that cannot be ignored without biasing the statistics. Fortunately, this nonstationarity 

can be taken into account in an accelerated form of Taylor's hypothesis. The transformation l'rom 

Eulerian to Lagrangian correlation is now 
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(3.6) 

where ï is the time in the middle of the interval t, Uo is the velocity at lime t = 0, and a is the 

acceleration. For a complete derivation of this result, see appendix A. Therefore, if we keep ï 
constant, we can define a new velocity U' = Uo + aï and retrieve the old transformation 

(3.7) 

So in an accelerated system, we can define a local Taylor's hypothesis about an average 

time t where the advection velocity is a linear function oft. 

Il wou Id be instructive to see the effect of a Lagrangian space-time correlation structure on 

the validity of Taylor's hypothesis for a simple case. Let us use the Lagrangian space-time 

correlation function, 

1 

p,(Œ,.t) =exP-((~J +(~ TJ (3.8) 

which, from now on, shaH serve as a simple comparative model. A form similar to this was 

given by Zawadzki (1975), although it implicitly assumed the validity of Taylor's hypothesis. 

We also define an error on Taylor's hypothesis as 

p,(O, t) - p,(U t, 0) 
e(t) = 

p,(O, t) + pAUt, 0) 
(3.9) 

provided the denominator does not vanish. By replacing the Eulerian space-time correlation with 

the Lagrangian, the error becomes, 

(3.10) 

Now, substituting the space-time correlation function of equation (3.8) into equation (3.10) and 

ufler sorne manipulation, we obtain 

-ln(1 +E(t)J_{ ~ (L J2} Ut I-E(t) - 1-1+ TU L (3.11 ) 

In the work by Zawadzki (1973a), a eut-off time was observed for Taylor's hypothesis in 

minfull. This eut-off time was the maximum time interval over which Taylor's hypothesis is 

reasonably valid. Assuming the error is a monotonically increasing function of the time interval, 
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which is the case here, we can define a unique eut-off time 'te when the error uttllins the 

maximum tolerance e('tcl = e".. If the error is not monotonically incrensing with the lime illtclval 

then man y intervals may have the maximum error value. In which case the smallest interval is 

taken as the eut-off time. In addition, we define an intrinsic velocity Ü = LIT which 

characterizes the internaI activity of the storm system rather than an advection. The physkal 

significance of this velocity is not obvious. A high value of the intrinsic velocity may 

characterize a more active storm than a low value beeause, given a fealure (lf size L, a short 

charaeteristic time would imply more activity th an a long one. But supereell thundcrstorms have 

cells of eomparatively small size which ean persist for hours, thus suggesting a low intrinsic 

velocity, and yet they are very active. Perhaps a better interpretation would be as a measure of 

the persistence of features of size L. In this sense, the intrinsic veloeity ehamcterizcs the internai 

kinematic features of the storm rather th an dynamic ones. Put in another way, the intrinsic 

velocity is a space-time conversion factor which allows temporal correlations to be convertcd 

into spatial correlations in the Lagrangian frame. Il defines a Lagrangian Taylor's hypothesis, 

one which is inherent to the storm and does not depend on any actual motion. 

Finally, placing aIl these elements in the previous equation and ussuming that e". 4: 1 so wc 

can expand the naturallogarithm as a power series and keep only the first ter Ill, wc obtain 

Isolating 'te and defining a velocity ratio V, = Ü lU yields 

2e".V,T 
't =r====--

e -V[l + V?I-I 
(3.13) 

Here we have the effeet of the internai development of a storm system and its advection 

velocity on the validity of Taylor's hypothesis summed up in one equation. For a "frozen" 

spatial rainfall pattern, Le. a spatial pattern that is constant with time in the Lagrangian frame, 

which is advected with a fixed velocity U, the temporal seale T --) 00, the veloci ty ratio V, --) 0 

and it is not diffieult to verify that 'te --) 00, as expected. If the rainfall pattern is not frozen but is 

advected very rapidly, such that V,« 1, then by expanding the square root as a power series and 

by neglecting the second and higher order terms, we obtain 'te "" (4e,,/V,)T. Which if we 

postulate V,« 4e". gives 'te» T. Inversely, if we postulate V,» 1 and approximate using power 

series again, we find that 'te:::: 2EmT, or 'te« T. These conclusions probably hold for man y of the 
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space-time correlation functions of the form p/(a/, 't) = p/(rs,)' where r~ = (a/L)2 + ('t/T)2 is a 
dimcnsionless space-timc distance. Figure (3.1) shows a plot of equation (3.13) with the cut-off 

time normalized by (EmT). If the intrinsic velocity, characteristic lime and the error are assumed 

constant, then figure (3.1) shows th~~ relation between the eut-off lime and the inverse of the 

advection velocity given a non-zero intrinsic velocity. 

Simulated cut-off time 

FIG. 3.1. A graphie representation of equation (3.13), showing the 
dependenee of the eut-off time for Taylor's hypothesis as a function 
of the velocity ratio (Vr). Note that the slope for Vr« 1 is -1, and 
for Vr » 1, the curve asymptotieally approaches 2. 
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Incidentally, the motivation for studying this fonn cornes from the fact that the correlation 

functions for rainfall, spatial as weIl as temporal, often resembles an exponential, as shown by 

Zawadzki (1973a), Drufuca & Zawadzki (1975), as weIl as by figures (3.2) and (3.3). AIso, the 

space-time correlation function in equation (3.8) is not separable, the definition and importance 

of which will be made clear in the next section. It has been suggested (Mejfa & 

Rodrîguez-1 turbe 1974, Rodrfguez-Iturbe & Mejia 1974a) that the two-dimensional correlation 

function should have the form rs,KI(rs,), where KI is a modified Bessel function. This is based on 

the work by Whittle (1954), which shows that in a two-dimensional plane the Bessel function 
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Hig h - resolution spotinl correlations 

FIG. 3.2. The spatial correlation function CCcx) = <R(x+cx)R(x» /<R2), 
obtoined using 250 m resolution radar dota of a convective roin 
event on the 1 9th af June, 1 992. R(x) denotes rainfoll rate. 
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FIG. 3.3. The some os in figure (3.2), but for 0 strotiform roin event 
on the 31 st of July, 1992. Note the change in scale of the correlation 
axis. 
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correlation can be obtained from a much simpler stochastic process than the exponentiaL The 

diffcrence between the two is slight, however, and so we will not make such fine distin~tions 

here. 

An explanation for figures (3.2) and (3.3) is needed. Note that the correlation function 

used, C(cx) =< R(x + cx)R(x) > 1 < R2 >, where < > signifies averaging overthe entire space-time 

domain, is not the one shown in equation (2.1.4) since the mean is not subtracted from the rain 

field. This farm of correlation was first used for rainfall by Zawadzki (1972) and has the 

property of never being negative, which is convenient in logarithmic plots. It is also weIl suited 

for studying the possible multifractal nature of rain (see section 2.2). Authors such as Cates and 

Deutsch (1987), Siebesma and Pietronero (1988), Meneveau and Chhabra (1990) and Lee and 

Halsey (1990) have shown that multifractals produced by discrete multiplicative cascades have 

powcr-Iaw correlation functions of the fonn (to within a multiplicative constant) C(a.) = (aJrfb, 

wherc h is sorne positive exponent, ris an inner sc ale of the cascade process below which the 

field is uniform. For multifractal fields, the mean is not subtracted from the field before the 

correlation is detennined. That is why it was not done here, so that any power-law behaviour in 

the correlation would not be obscured by such an operation. 

An illustration of the previous discussion can be seen in figure (3.4). In it, we see the 

Lagrangian space-time correlation function described in equation (3.8) advected with a velocity 

U = 1/2 (arbitrary units), as seen in the Eulerian frame. The Eulerian time correlations are the 

correlations along the line OA, where point 0 denotes the origin. The Lagrangian time 

\.:orrelations are along the line OB. Note that due to the Oalilean transformation (equations 

(3.2.a-b», the Lagrangian lime inlerval, OD, is the same as the Eulerian time interval, OC. The 

intrinsic velocity is Û = 0.4 and it corresponds to the ratio of the space interval OE over the 

corresponding Lagrangian time interval, OB, with the same correlation value. In figure (3.4), the 

intrinsic velocity is the same for any spaee interval and its eorresponding Lagrangian time 

interval. It is therefore constant and the Lagrangian space-time correlation function ean be said 

to be isotropie with respect to this intrinsic velocity, or space-time isotropie. In other words, if 

we were to map the Lagrangian space-time correlation function in the Lagrangian frame and 

convert the time interval axis into a space axis using the intrinsic velocity, 't ~ Û't, the resulting 

correlation funetion would seem isotropic. 

An alternative to the constant intrinsic velocity assumption has been suggested by Lovejoy 

& Schertzer (1991), (1992) and Tessier et al. (1993). They have put forth the idea of a 

seale-dependent velocity in the context of what is called generalized scale invariance (OSI). 

Simply put, if we were to go from one spatial seale to another by means of a multiplicative 
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FIG. 3.4. An illustration of the exponential Lagrangian ~poce-time 
correlation function (equation (3.8» with an intrinsic velocity of 0.4 
(arbitrary units), as seen from the Eulerian frame. The advection 
velocity is 0.5 (arbitrary units). 
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factor, a ~ al'A., then the corresponding correlation contour wou Id rescale in time as, 1: ~ 1:/')..1 -II, 

where H ::::: 1/3. If we view the stonn system as being forced by a turbulent vclocity field wilh a 

constant mean advection velocity, then this scaling relationship deals essentially with the 

intrinsic velocity. As a consequence, the intrinsic velocity rescales as Ü ~ Ü'A,-II. We can also 

express the intrinsic velocity as a function of the time interval, Ü = Ü o('C/'Col, where 

~ = H 1(1-H)::::: 1/2 and Ü 0 and 'Co are some reference intrinsic velocity and time interval 

respectively. This kind of behavior can be seen for vertically-pointing radar data in Tessier et ul. 

(1993), figure 22, here figure (3.5). In it, we see the contours of a two-dimensional power 

spectrum plotted in wavenumber - angular frequency space (k, 00) resulting from the Fourier 

transform of height - time reflectivity data (z,t). The contours are roughly elliptical and are 

elongated along the wavenumber axis close to the origin and along the frequency axis far from 

the origin. The change in elongation with sc ale is supposed to show different scaling properties 

for time and space. The case in question was a stratifonn rain event that included a bright band. 
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FIG. 3.5. Power spectrum contour lines in wovenumber-frequency (k,w) 
space from vertically-pointing radar reflectivity data, originally in 
height-time (z,t) spoce. Note the change in elongotion with distance 
trom the origin . 
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It is not clear what the effeet of the bright band would have on the Fourier tnmsfonn. Since the 

bright band is narrow, long-lasting and approximately ten times brighter thun its surroundingst it 

is possible that it wou Id dominate at low frequencies and stretch the contours lowards higher 

wavenumbers. Thus it produces an appearance of different scaling behaviours that would not be 

present in cases with no bright band or if the bright band were excluded from the analysis. 

Tessier et al. (1993) then show a power spectrum of the reflectivitics as a function of 

wavenumber onlYt with a power-Iaw behaviour (E(k)ock-~) where p-l.4. Howevcr the bright 

band was exeluded and only the reflectivities under the bright band were used in the analysis. 

Then several reflectivity power spectra, taken over time at variolls fixed altitudes, were shown tn 

have an exponent p-I.2. U nfortunately, the difference between these exponents is rather small 

and no errors on the estimation of those exponents were given. Conseqllcntly, il is difficlllt to 

jlldge the significance of this difference. 

Assuming that the intrinsic velocity is constant and the correlation contours are elliptical, il 

is possible to improve Taylor's hypothesis so as to include the intrinsic velocity in ilS 

formulation. For a given time interval OC, with a Eulerian correlation of 0.1 and a Lagrangian 

correlation of 0.237, we wish to find the space interval OE with the same correlation as OC (sec 

figure (3.4». From equation (3.8) we can see that the Lagrangian space-time correlation 

function satisfies 

(3.14) 

because exp-(ltIIT)=exp-(Ültl/L) where Ü/L=l/T (3.15) 

which implies the space-time transformation Cl, = Ü't in the Lagrangian frame. From equation 

(3.2.a), wc see that when 't = 0, a, = Clc • Therefore, the space interval OE is cqual to the time 

interval OB (or OA) multiplied by Ü. We shaH caU the time interval OB the Lagrangian time of 

OC for a fixed correlation value, and shaH denotc it as t /p' In terms of the Lagrangian space-timc 

correlation function, this relationship is expressed as 

(3.16) 

Using equation (3.8), this amounts to 

1 

_~(U't)2 (t )2);: -{I 't, ') -{ü 1 t
, 1) expl! L + T =exp -t =exp L P (3.17) 
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(3.18) 

and equating a. = Ü't/P and multiplying by L, 

(3.19) 

Since Ü = LIT, we obtain the space-rime relationship 

(3.20) 

or 

-'-i 2 -2 P.(O, 't) = pit U + U ,0) (3.21) 

This result applies to any Lagrangian space-time correlation function that has a constant 

intrinsic velocity and is isotropie with respect to that velocity. In other words, it applies to any 

Lagrangian space-time correlation function of the fonn p/(a" t) = plt/p), where .r,p = (a/Üi +~. 
We shall define the function p/(t/p) as a 'radial' correlation function in analogy with a radial 

function in two-dimensional space, except that a velocity is needed to completely specify it. 

Once aguin, given a 'frozen' rainfall pattern, T ~ 00 and Ü ~ 0, equation (3.18) becomes 

a. = 'tU as expected. Note that for the 'frozen' rainfall pattern, the correlation contours Hnes in 

figure (3.4) would emanate from the space interval axis, on either side of the time interval axis, 

and would not meet on the line OB. Rather, they wou Id run parallel to that line and each other, 

and never meet. In that case, it is not difficult to see that the correlations along the space interval 

axis, in the negative direction, are projected directly onto the rime interval axis with the 

udvection velocity acting as a conversion factof. Conversely, if the advection velocity is zero but 

the intrinsic velocity is not, then the space-time correlations are dominated by the internaI 

activity of the storm system and equation (3.20) becomes a. = tU, which reinforces the 

interpretation of the intrinsic velocity as defining a Lagrangian Taylor's hypothesis. 

On the other hand, if the intrinsic velocity is not constant, Ü = Ü('t/p), but the correlation 

contours are still elliptical, such that t:p = (a/Ü (t/p»2 + 't2 still holds, then a radial function can no 
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longer be defined as such. The space-time correlations can be completely specified using the 

Lagrangian time correlation function, the intrinsic velocity function, Ü(tlll) and the mtvcction 

velocity. In that case, equation (3.21) becomes 

P.(O, 't) :; P.( ni U 2 + 0 (tIP)2, 0) (3.22) 

where t/p is itself a function of t. If we assume the scale-dependent alternative to be tnt\!, then t /., 

and tare related by the equation, 't~P = (a/Ü 0)2 (tO/tIP) + t 2
, and it is not difticult to see that the 

space-time transformation for Taylor's hypothesis becomes non-tincar . 
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4. Spatial averaging and space-time correlations 

Ali instruments have limits ta their resolution, temporal as weIl as spatial. Radar is no 

exception. especially with regard to spatial resolution. AIso, the temporal characteristics of 

rainfall depend a great de al on the spatial resolution of measurement. For instance, Bell (1987) 

observed, using data collected by Laughlin (1981), that the decorrelation time 'tA for rainfall 

averaged over an area A = L 2 varies as 'tA = cL 21\ where c is sorne constant. This is important 

because il affects issues such as predictability or the proper temporal resolution for describing 

events at a given scale. It may also give insight into the dynamics of rainfall. 

In this paper, we shall treat spatial resolution as the independent variable and the 

corresponding space-time correlation structure as a function of the fonner. Therefore we shall 

not atternpt to alter the temporal resolution of the data. In fact, we shaH assume that the data 

consists of instantaneous snapshots five minutes apart. This is not strictly true of course, as the 

radar maps are actually composites of smaller picture elements taken at different times over a 

span of five minutes. But in the Eulerian frame, the time between an element on one map and 

the corresponding element on the succerding map is five minutes. We choose to neglect the 

changes that occur to this rule when we move to the Lagrangian frame. 

Given a random space-time ntinfall fieldR(x,y,t), we ob tain a spatially averaged field. 

1 iX+D'2iY+Df2 
RA(x,y,t) = 2 R(x',y',t)dy'dx' 

D x-Df2 y-Df2 
(4.1) 

where A = D 2 and D shaH be known as the averaging length. The averaging is done relative to a 

'top hat' weighting function. That is, the averaging gives equal weight to the field within the 

square A and ignores the field outside this square. An alternative would be the Gaussian 

weighting function (Zawadzki, 1973b) which imitates the averaging effect of a radar beam. The 

covariance of the averaged field, assuming it exists for the original field, is then 

(4.2) 

where El J denotes an ensemble average andR'A(x,y,t) =RA(x,y,t) -RA(x,y,t), where 

RA (x ,y, t) is the ensemble average of the spatially averaged field, which, incidentally, is the same 

as the spatial average of the ensemble average of the original field. Using stationarity and 

homogeneity and perfonning the spatial averaging integrals last, equation (4.2) becomes 
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Since the covariance depends only on intervals, wc can set x, = 0, y, = () and con:;eqllcntly 

a =xz, 13 = yz. We can simplify this further by setting 13 = 0, there is no loss of gcncrality if thc 

field is isotropie. We now have, 

1 ID/'/. rD'2icx+D'2ID'2 
Cov,~(a, 0, t) ="4 J Cov(\X', 13', t)dy'2tLt '2dy',dx', 

D -DI2 -D/2 cx-D/2 -/)/2 
(4.4) 

One can c1arify this even more by changing the variables of integratioll. That is, we integratc 

wnh respect to LV.' =X'2 - X'1t 11' = X'2 + x'., /3' = y'2 - y'. and 'A,' = y'2 + Y')' Wc obtain, after sOllle 

calculation, 

2 iD {i CX

+

D 
CovA(a,O,t)="4 (D -/3') DCov(a',/3',t)da' 

D 0 cx-D 

iCX

+
D i'x }dW + (a - a')Cov(a', /3', t)da' - (u - a')Cov(a',/3'. t)df1.' 

cx a-V 

(4.5) 

Note that a derivation very similur to the preceding may be found in Vanmarcke (l9H3). Also, 

the derivatioll of this result made use of the quadrant symmetry of the covariance funetion. 

Therefore, the funetion in question is the Lagrangian covariance functioll. Seuing a = 0 and 

using quadrant symmetry again, we obtain 

4 iDiD 
CovA(O,O, 't) =-4 (D -a')(D -/3')Cov(a', (3', t)dp'da' 

D 0 0 
(4.6) 

which is in faet the variance of the spatially averaged field when r. = O. We are now in a position 

to find the spaee-time correlation fllnction of the spatially averaged field since, 

(4.7) 

Given that Cov(a, 0, t) = crp(a, 0, t), where cf is the constant variance of the field, we can find 

PA (a, 0, 't) in terms of p(a, 0, 't) only. 
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PA (a,O,t) = D D J(] (D-P') Je Dp(a',p',t)da.' 

2 ( ( (D -a')(D -W)p(a',W,O)dp'da' 0 u-D Jo Jo 

(u+D i U 
Jd A

'} (48) + Ju (a. - a.')p(a.', P', t)da.' - u-D (a - a')p(a', P', t)da.'''' . 

Again, it is the Lagrangian space-time correlation function we are dealing with. Equation 

(4.8) can be made simpler if we consider only the temporal behaviour of the spatially averaged 

correlation function, that is a. = O. 

PA(O,O, t) = r r 1 {(D -Il')[JD Dp(a.',W,t)da' 
2 (D-a.')(D-W)p(a',p',O)da.'dp' 0 -D 

o 0 

+ iD (-a.')p(a.', P', t)da' - i: (-a')p(a.', P', t)da.,]dP} (4.9) 

Givcn quadrant symmetry, p(a, P, t) is an even function. Therefore the bounds of the first 

mtegral of the numerator can go from 0 to D and the integral is multiplied by 2, the third integral 

can be transformed into the second integral. The same process was done to the denominator and 

• the result is 

• 

lD lD(D -a.')(D -p')p(a',p',t)da'dp' 
p,,(O,O,t) =-D-D----------­II (D -a')(D -p')p(a',p',O)da'dp' 

(4.l0) 

lmmediutely, we see thut if the temporal part of the correlation were separable from the spatial 

part, that is p(a, p, t) = ps(a, P)Pt(t) as it is sometimes assumed (Rodriguez-Iturbe & Mejia, 

1974u,b). the temporal part could be factored out of the integrals, leaving PA (0,0, t) = Pt(t), for 

uny A. This means that spatial averaging has no effect on the temporal aspect of a separable 

correlation function, which is in contradiction to the result observed by Bell (1987). 

It wou Id be interesting to see the effect of spatial averaging on the simple exponential 

space-time correlation function introduced in equation (3.8). In order to apply equation (4.8), we 

must expand the correlation function into the form 
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Simulated space correlation 
FIG. 4.1. The effect of spatial averaging 01"' the spatial companent of the 
space-time exponential correlation tunction, eq.( 4.11). Dis the Icngth 
of one side of the square overaging area. 
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Lis the characteristic length tram equation (4.11 ) 

1 

p,(<x,.P,. t) = exp - (( ~J +(~ J +(; JJ (4.11 ) 

where isotropy is assumed. Clearly, this function is difficuIt to evaluate analytically in cquauol1 

(4.8). Therefore, numerical methods are: used to evaluate the integrals. The resulting correlation 

functions for various values of D aJong the lines ~I = 0, 't = 0 and a.1 = 0, PI = 0 are shown in 

figures (4.1) and (4.2), respectiveJy. 

These figures show that upon spatial averaging, an initially exponential correlation 

function is no longer a pure exponential. This is understandable for the spatial component, 

because if we have two non-zero averaging areas (such that D > 0), where one is supcrimposcd 

on top of the other, and we move one area by an infinitesimally small distance, the correlation 

between them shouJd be arbitrarily close to one. Therefore, the derivative of the correlation 

function with respect to al must be zero at al = 0, which explains the shape of the curvcs at small 

intervals in figure (4.1). 
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Simuloted time correlation 
FIG. 4.2. The effect of spatial averaging on the temporal companent af 
the space-time exponentiel correlation function. eq.( 4.11). Dis the 
length of one side of the square averaging area. 
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T is the characteristic time tram equation (4.11) 

Of greater interest is shape of the curves at large intervals. In figures (4.1) and (4.2), we 

see that the curves of the spatially averaged correlation functions are very nearly parallel to the 

original exponentialline. In other words, for large intervals, the spatially averaged correlation 

function differs from the exponential only by a multiplicative constant which is a function of the 

averuging length, D. There is reason to believe this to be the case when one considers the 

one-dimensional correlation function, p(a) = exp -1 ex/LI, and the one-dimensional form of 

equation (4.8). 

1 {ia+D la+D PD(a) = iD Dp(a')da' + (a- a')p(a')da' 
2 (D _ a')p(a')da' a-D Il 

o 

_ (a (a-a')p(a')da'} (4.12) 
Ja-D 

Plucing the one-dimensional correlation function in this formula and assuming that a ~ D, one 

ob tains; 
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{ 
cosh(D/L) -1 } 

PD(CX)= exp(DIL)+(DIL)-1 exp-la/LI (4.13) 

which is the original correlation function multiplied by a function of D. It is then reasonilble tn 

assume that the same separability applies, either exactly or approxinmtely, to the sputial and 

temporal components of the space-time exponential correlation function. However, it is nlsu 

c1ear from figures (4.1) and (4.2) that the temporal compone nt is multiplied by an averuging 

function, M,,(D), which is different than the spatial averaging function, MIl(D). Muthematically. 

we have PIA (0, 0, t) = Mt(D )P/(O, 0, t) and PIA (Cl/, 0,0) = M a(D )PI(cx/, 0, 0), where Mt(D) ~ M(l(D). 

This is because the intervals between the Hnes in figure (4.1) are different than the intervnls in 

figure (4.2). This means that the initial space-time isotropy is lost under spatial avcraging, which 

is to be expected since the space and time components of the correlation function are not 

transformed in the same way. 

Simulated intrinsic velocity functions 

FIG. 4.3. The intrinsic velocities as a function of the normalized time 
interval for various overaging lengths (0) from the exponential Lagrangian 
space-time correlation function with characteristic length Land time T. 
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The effect of spatial averaging on the intrinsie velocities is shown in figure (4.3). There 

we see the function Ü(t/p) obtained by simply finding the correlation at the point (0,0, 't), then 

finding the corresponding point (a.hO,O) and then taking the ratio a/t. Figure (4.3) demonstrates 

that the intrinsic velocity increases with increasing averaging length for shon time intervals, and 

decreases with increasing time intervals sueh that it asymptotically approaches the original 

intrinsic velocity. Meaning that equation (3.21) would hold approximately only for long time 

intervals given spatial averaging and an exponential Lagrangian space-time correlation function 

(equation (4.11». This result implies that spatial averaging introdueell a seale, namely D, near 

which spatial correlations are strong and do not change very rapidly with decreasing space 

interval, especially when compared with the change with decreasing time interval. Therefore, 

the correlation contours will become more and more elongated along the spaee interval axis as 

we get closer to the origin of the space-time correlation map. Physically, this means that spatial 

averaging introduces a minimum length sc ale for the features of the random field but not 

neccssarily a minimum time scale for those features. 

27 



• 

• 

• 

s. Data analysis 

The data used in this study consists of radar reflectivity CAPPI (Constant Altitude Plan 

Position Indicator) maps transformed to represent rainfall. Reflectivity to minfall rclationships 

(Z-R relationships) have the general form 

(S.O.I) 

where Z is the radar reflectivity, R is the rain rate in millimeters per hour und Cl unù h arc 

constants. There is much debate about what the value of a and h should he, hut we use li = 200 

and b = 1.6. The CAPPls were obtained with the McGill FPS-18 wcathcr rad"r, the 

characteristics of which can be found in Table (5.0.1). For each rain cvent three sequences of 

CAPPIs are llS."!d, one with a resolution of 2 km and a diameter of 480 km, anothcr with a 

resolution of 1 km, diameter of 240 km and another with 250 m resolution with a 96 km 

diameter. 

Rain events were recorded for most of 1992 and were selected according 10 two cri Icria; 

length of time of the recorded sequence and apparent statistical properties. The first criterioJ1 

deals mainly with the 250 m resolution CAPPIs since special equipment must be installed tn 

record them. Furthermore, only approximately four hours may be stored with this cquipmcnt. 

Consequently, sorne interesting rain events were discarded because the equipmcnt was activated 

too early or too late. The second criterion deals with the appearance of the rain events. Often, 

rain would be caused by fronts which would appear as a line of highly convective ntinfall 

followed by stratiform rain. Such rain events are manifestly inhomogeneolls since they arc 

composites of different precipitation processes. And since the theory developed in the prcviolls 

sections assume homogeneity and stationary, we can only select those cases with no ostensive 

illhomogeneity or nonstationarity. Of aIl the cases recorded, thereforc. two rain events arc 

chosen, the first occurred on the 19th of June, 1992, the second on the 31st of July, 1992. 

Illustrations of sample CAPPIs for the two cases can be seen in figures (5.0.1) and (5.0.2). Note 

that the figures show the rain events in decibels of reflectivity (dBZ) while the correlations arc 

computed using rain rates . 
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FIG. 5.0.1. Radar reflcctivity CAPPI from a convective rain case on the 19th 
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of June, 1992, is viewcd at an altitudc of 1.6 km and a resolution of 250 m. 59 
Thc stonn system moved with a spced of approximately 40 km/hr towards 
thc north-cast. 55 

dBZ 

FIG. 5.0.2. Radar rcflcctivity CAPPI from a stratifonn rain case on the 31st 
of July, 1992, is vicwcd at an altitude of2.0 km and a resolution of250 m. 
Thc stoml system movcd with a spced of approximately 50 km/hr towards 
the north-cast. 
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Wavelength [cm] 

Peak power [kW] 

Bearn width [deg] 

Pulse length [IlS] 

Table 5.0.1. McGill Radar characteristics 

Minimum detectable reflectivity at 200 km [dBZ) 

Range of elevation angles [deg] 

19 June 1992 

10.4 
1000 

0.86 

18 

0.5 - 34.4 

On the 19th of June, 1992, a low pressure trough beginning over Lake Om:lrio and 

extending in a north-east direction parallel to the St-Lawrence valley callsed sOllt'l-westcrly 

winds over the Montreal region, bringing wann and moist air in the region. S!llce the 

environment was particularly uns table, a mesoscale convective system (MCS) formed und 

moved over the radar site from late in the morning untillate in the afternoon. An atmosphcric 

sounding carried-out in Maniwaki, approximately 200 km north-west from the radar site, 

revealed a convective energy of 1625 JlKg. The lack of a front makes this case weIl suited for 

study since it contains no obvious stru('ture and can be approximated as statistically 

homogeneous. The data collected begins at 12:15 and e:nds at 16:20 local time. The 1 and 2 km 

resolution CAPPIs have an altitude of 3 km and the 250 m resolution CAPPIs have an altitude of 

1.6 km. 

31 July 1992 

On the 31st of July, 1992, a low pressure system centered over Pennsylvania udvectcd 

wann air into the Montreal region. The air was mildly unstable and had a convective energy of 

115 JlKg. The stratiform precipitation it produced was widespread with only a few weak eclls. 

It therefore had a more or less uniform appearance. The precipitation lasted from late morning 

untillate afternoon. Data was collected starting from 13:20 until 17: 10. Ail CAPPI sequences 

have an altitude of 2 km. 

Data processing for the CAPPls 

The radar emits 300 pulses every second (it has a pulse repetition frcquency, PRF, of 300 

Hz). And given the rotation rate of the radar (1 rotation every 10 seconds) this leaves 

approximately 8 pulses for each 10 wide radial scan. From these pulses the mean value of the 

reflectivity, which is related to the liquid water content of the scanning volume, is rctrieved from 
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the fluctuations caused by the interference of the radio waves with the droplets. The method for 

the 1 or 2 km resolution CAPPIs consists of collecting only one pulse for each 10 radial scan 

(thus ignoring the seven others) and finding the maximum reflectivity value in each 1 km wide 

range bin. The maximum reflectivity is then transformed into the me an value by an empirical 

relationship, (Marshall 1971) and the mean is transformed into a rainfall estimate. The rainfall 

values are still in spherical coordinates, so they are averaged in such a way as to yield CAPPIs in 

Cartesian coordinates. The number of values averaged for a given pixel decreases with the 

distance From the center of the CAPPI. 

The method for the 250 m resolution CAPPIs, on the other hand, employs every pulse. For 

each 75 m range bin of every pulse, the logarithm of the reflectivity is stored and then mapped 

into a 250 m resolution CAPPI. Each pixel of the CAPPI contains the average of the logarithms 

of the reflectivity which is then transformed into the logarithm of the average reflectivity 

according to certain theoretical assumptions (Marshall and Hitschfeld 1953, Wallace 1953). 

Finally, the logarithm of the average reflectivity is exponentiated and transformed into rainfall 

using the equation (5.0.1). 

5.1. Defining a scale 

Although the CAPPIs consist of square maps subdivided into smaller square picture 

elements (henceforth ca lied pixels) of a given resolution, the task of defining a scale is not that 

straightforward. The radar beam has a finite angular width, so it gets wider as the range 

increases. Therefore aroufld the edges of the CAPPI the width of the beam can be greater than 

the size of a pixel. This would introduce a dependance between neighboring pixels and affect 

the statisties. Consequently, we shall only colleet statisties within the range where overlapping 

does not oceur. To determine at what range the overlapping of the beam begins, we start by 

noting that the beamwidth is at most one degree. So we can find the spatial beamwidth using the 

formula, 

At = r sin[(1t/180)t:\8] (5.1.1) 

where r is the range in kilometers, t:\8 is the angular beamwidth in degrees and At is the spatial 

width of the beam at that range, also in kilometers. Therefore, if we set the spatial resolution 

equal to t:\x, we have a maximum range beyond which overlapping occurs for that resolution. 

We can determine the maximum range in terms of pixels by dividing it by the resolution. From 

eq uation (5.1.1) we get 
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rmax [( 1t ÎA l 
dX = cosec 180 r8J (5.1.2) 

where d8 :=0 10 and so the maximum range is 57.3 pixels long which we approximate to 60. This 

means lhat as the resolution decreases the maximum range increuses such that we have the saille 

number of pixels. A limit is reached when the maximum range is greater than the size of the 

CAPPI and so the number of pixels decreases with increasing r mu' It is important ln distinguish 

between the pixels given in the original data and the pixels obtained ufter avemging the data. 

The larger pixel is the average of the smaller, original pixels. ln this way, the resolution is 

degraded, which allows for greater range and for greater available arca in sueh a manner that the 

number of pixels remains constant. Note that the resolution used in this analysis shaH range 

from 500 m to 8 km. The 250 m resolution analysis shan be excluded beeause wc only have a 30 

km diameter area available. Given an advection velocity of approximately 40 km/hr, this only 

leaves a 45 min time interval when a given rainfall pattern is in view. 

Now that we have a method describing how to use the most data for a given rcsollltion. wc 

must consider what are its possible effects on the statistics. If there is a storm system with a size 

comparable to the size of the largest CAPPI, a constant advection velocity and a homogeneolls 

interaction with the ground, then the statistics taken over the entire duration of the sequence ure 

identical for a region of any size and location. This is because the storm passes over evcry point 

for approximately the same length of time. On the other hand, if there are noticeable interactions 

at specifie places sueh as orographie effects or strong and localized heat and moisture fluxes 

from the ground, then the statistics are not homogeneous. There are also range dependent effccts 

due to the curvature of the earth and in the processing of the reflectivity data. AIthough the data 

analysis assumes homogeneity and stationarity, we must bear these facts in mind when 

interpreting the results. 

5.2. Defining a space-time correlation function 

In ehapter 2.1, we defined the covariance function for a stationary and homogencous 

random field as 

Cov(a,p,'t) = E[(R(x + a,y + p,t +'t) -R) (R(x, y, 1) - R») (5.2.1) 

where R is the ensemble mean which is constant over time and space. In practice, the only way 

we can approximate averages over the ensemble is to average over the space-time domain of a 

single realization of an ergodic random fiele!. Thus, for a sequence of rainfall maps, we use 
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(5.2.2) 

where A is the available area for that particular resolution, T is the duration of the sequence and < 
> denotes an average over AT. We have a summation rather than an integral because the rainfall 

maps are cornposed of discrete pixels. Similarly, A and T are in fact dimensionless integers since 

they refer to the number of pixels in a map and the number of maps respectively. The covariance 

function is given by 

(5.2.3) 

where A' is the area within A that contains aIl starting points for the displacement vector such 

that the end points are also contained in A. In other words, let us suppose that 't = 0 and we have 

a spatial displacement -;;; = (a, P) for a given map, the area A' is the intersection between two 

copies of that map with a relative displacement --Z;;;. So if the available area is a circle, A' has the 

shape of a football. The same reasoning applies for T' except that we have the simple expression 

T' = T - 't because there is only one dimension to contend with. Of course, as in sections 2.1 and 

4, the correlation function is 

peu, p, 't) = Cov(a, p, 't)/Cov(O, 0, 0) (5.2.4) 

The expression for the covariance contains < R > which was obtained by averaging over A 

und T, not A' und T'. This means that 

< lR(x,y,t)-<R >J >'=A~T' L [R(x",y",t",)-<R >] 
l',}','" 

(5.2.5) 

may not equal zero. Note that < >' im~lies an average over A'T'. Indeed, as the displacement 

tends towards the size of A (1 AXI ~ A 2) and t ~ T, the region of averaging tends to the same 

size or smaller than the correlation length and rime, so that aIl the pixels in it are strongly 

corrclated with each other. Therefore, the covariance at such a displacement becomes very 

unreliable. Another technique would be to define the mean rain rate as the average over A' and 

T', therefore < R > changes with the displacement such that equation (5.2.5) equals zero by 

dcfinition. But at large displacement, < R > becomes highly variable and therefore a random 

variable itself rather than a meaningful characterization of the random field. Again, there is no 

reason to believe this method would improve the covariance at large displacements. So we 

choose to define < R > over the entire space-time region once and for ail. 
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One fact to consider is that the sequences last for approximately four hours and the time 

interval of the correlation function never exceeds two hours. Since the maps are five minutes 

apart, this means that there are approximately 24 pairs of maps two hours ~\part. If the 

correlation time is of the order of thirty minutes, which is a reasonable estimate, this gives us the 

equivalent of four independent observations in time. Assuming the probability dcnsity of min 

rate at a point is lognormal and that the mean and the standard deviation are related by 

< R2 >= 4.35 <R >2 and consequently, 0' = 1.83 < R >, as was shown by Zawudzki (1973a) for 

one storm system, we can estimate the error on the mean for a given number of independcnt 

observations; 

(5.2.6) 

where E is the maximum error of the estimate of the mean for a normal population, Z0/2 is the 

deviation from the mean for a standard normal distribution with a confidence intcrval of a. If the 

spatial displacemeilt is !l0 large that each map holds only one equivalent independent observation 

in space, and the required confidence level is 90%, this yields Zo/2 = 1.65, n = 4 and finully, 

E"" 1.5 < R >. This crude approximation demonstrates that for large space-time displaeements. 

the error 0'1 an estimation of the mean is of the same order as the mean and that there is a 

minimum of four independent observations. The same can probably be said for the estimation of 

the cO\'ariance at large displacements. This is important because an unreliable estimation of the 

covariance also means an unreliable estimation of the correlation. And since Taylor's hypothesis 

depends on comparing the correlation over space with that over time, an unreliable correlation 

function for large displacements, in space and time, would jeopardize any attempt to evaluate it' s 

validity. For example, if Taylor' s hypothesis was in faet valid for a very long time, the 

correlation functions might fortuitously diverge and give an unreliable estimate of the eut-off 

time. 

An alternative to equation (5.2.3) exists in the work of Zawadzki (1972, 1973a and 1975), 

Drufuca & Zawadzki (1975) and Lachapelle (1990), among others. Namelv, the mean is not 

subtracted from the rain field, 

C( 
A )= <R(x+a,y+(3,t+t)R(x,y,t»' 

a,~t 2 
<R > 

(5.2.7) 

34 



• 

• 

• 

where C (Cl, ~, t) is the function introduced in section 3. This function is ideal for treating 

isolated storm systems. Given a storm that can be easily identified and is completely contained 

in an area A, and in a time interval T.n that is over its lifetime T" it never crosses the boundary of 

As, then the statistic 

<R(x + a.,y + ~,t + 't)R(x,y,t) >' =A!T' I. R(x,,+ Cl,y/+ ~,tlc,+t)R(x",y/, tic') 
",J',Ie' 

(5.2.8) 

whcre A" cA' and T.f cT', varies as (A 'T'r' with increasing A' and T'. And since this also 

applies when a. == ~ = t = 0, the function C (Cl, ~, t) remains invariant with respect to A' and l' as 

long as they completely contain the storm. In this way, the manifestly inhomogeneous and 

non-stationary situation of a storm in one region and time interval and nothing anywhere else, 

can be treated in a manner analogous to a homogeneous and stationary random field. This 

method only works when the entire space-time extent of an isolated storm system is available fol' 

analysis and that the analysis focuses exclusively on that storm system. However, in this work 

wc are concerned with storm systems that are bigger th an the region of observation with rainfall 

structures that f)ow in and out of that region. In our analysis the spachlg between isolated 

showers is considered as much a part of the rain field as the showers themselves. In any case, it 

is not always possible to isolate individual elements from the rest of the rain field. This is 

certaillly true for the stratiform case (see figure (5.0.2». Under the se conditions, the original 

invariance is lost because as we increase the area of averaging, new rainfall may be included 

which can change the value of the function. Furthermore, since the me an used in equation 

(5.2.3) is a constant (Le. not dependent upon A' or T) the square brackets product in equation 

(5.2.3) can be expanded as a polynomial and an approximate linear relationship between 

p(u,~, t) and C(u,~, 't) ean be established (see appendix B). 

( cf) <R >2 
C(a.,~,t)= -2- p(a,~,t)+ 2 

<R > <R > 
(5.2.9) 

When there is perfeet correlation, p(O, 0,0) = 1 and C (0, 0, 0) = 1, but when two points are 

uncorrelated, p(oo, 00, 00) = 0 which implies C(oo, 00, 00) =< R >2/ < R2 >. Therefore, when using 

the C-correlation funetion, we do not know how close we are to complete decorrelatîon without 

knowledge of the mean. And if we allow knowledge of the mean, then we might as weIl use the 

p-eorrelation function. In any event, the choice of correlation function is irrelevant as far as the 
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intrinsic and advection velocities are coneerned. Those velocities de pend on the geometl'y of the 

correlation contours and not on the value of the correlation along those contours. And sincc the 

transfonnation from one funetion to the other is linear, it will not alter the shape of the contours. 

5.3. Defining a velocity 

Of equal importance to the definition of a scale is the definition of a velocity. It is :he 

velocity which detennines the space to time relationship essential for Taylor's hypothcsis. The 

apparent motion of a storm system depends not only on the large scale forcing driving it, hut also 

on the internaI developments of the system. A multicell thuilderstoml, for examplc. has ccUs 

which move in one direction, but the generation and dissipation of cells is such that the storm as 

a whole appears to be moving at an angle to that direction. In the cases studicd here, we have 

verified that the cells, or rather the small, high intensity features of the system, movc with 

approximately the same vdoeity as the broad, low intensity regions. 

........ 
\.. 

..c 

FIG. 5.3.1 . The time-averaged advection velocities of the areas of 
rain exceeding the threshold for the rain event on the 1 9th of June, 
1992, and on the 31 st of July, 1 992, using the 1 km resolution 
CAPPls with no spatial averaging . 
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This is shown in figure (5.3.1) where we see the time-averaged velocity of the precipitating 

regions with a rain rate greater than or equal to the thresholds indicated. The internaI structure of 

those regions was ignored when determining the velocities. Only the displacements from one 

CAPPI ta the next of the outlines of the exceeding regions ascertain the velocities. The figure 

shows a slight decreasing trend of the velocity with increasing threshold value for the convective 

case. Even with this trend, the average velocity never deviates more than 16% from its initial 

value at 0.5 mm/hr. The stratiform case has no obvious trend with the threshold value and the 

average velocity never deviates more than 10% from the value at 0.5 mm/hr. Note that the error 

bars represent the standard deviations from the average and that the maximum threshold 

represents the level past which the exceeding regions are tao small and sparse ta give a 

reasonable estimate of the velocity. 
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Eulerian space-time correlation 

FIG. 5.3.2. The spoce-time correlations in the Eulerion frome for 
the roin event on the 1 9th of June, 1 992. Notice a distinct slont 
due to the overall velocity. The resolution is 500 m. 
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The space interval vector has the some orientation as the velocity. 

The definition of the advection velocity in this work is the siope of the Hne which starts at 

the origin of the Eulerinn space-time correlation map and extends along the direction which 

minimizes the rate of decorrelation on the Hne. For example, figure (5.3.2) shows just such an 
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Eulerian space-time correlation mup, and the velocity is clearly the line which extends along Ihl' 

band of high correlation. This has a value of about 3R.5 km/hr and once wc pcrfonn a coordinilll' 

transfonnation as described by equations (3.2.a) and (3.2.b), wc create a new map thm shows thl' 

space-time correlations in the Lagrangian frame, such us figure (5.3.3). Note thm this method of 

defining a velocity does not cause quadmnt symmetry in the Lagrangian map as the hand of high 

correlation could easily have been asymmetrical about the line of least decorrclatioll. Rather, 

quadrant symmetry is an expression of the fact that once the efrect of the driving upper levcl 

winds has been removed, the process in question has, 10 first order, no prcferrcd direction. Also 

note that this method for finding the advection velocity may not give the same rcsults as thosc 

obtained by tracking the shapes of rain areas. This is because the tracking technique docs Ilot 

take into account the developments inside the rain areas. Furthennore, only the displacclllcnts of 

the rain areas between successive CAPPIs (over 5 min.) dctermine the advection velocities. The 

advection velocities obtained from figure (5.3.2) and the like, take into accourU internai 

developments as weIl as displacements over periods longer than 5 minutes. FurthemlOre, SIllCC 

we are concerned with the structure of space-time correlations, we must tienne the advection 

velocity in terms of these correlations. An advection velocity obtained hy an arca trackillg 

technique is therefore unacceptable since il has an imprccise relationship with the spacc-timc 

correlations . 

In practice, we cannot simply find the Eulerian space-time correlations and then transforrn 

the coordinates. This would create a large region in the Lagrangian map where no data is 

available, as in figure (5.3.3), for example. Instead, we track the motion of the storm system and 

deduce an overall velocity. The tracking is done using a cross-correlation algorithm which finds 

the displacement of the general pattern of precipitation between two CAPPIs. Also, in order to 

reduce the short tenn fluctuations, previous displacements are weighted into the cale ulations to 

find the present displacement between two successive CAPPIs. The resuIt is il sequence of 

velocities between two succeeding CAPPIs at a given time. The time series of vclocitics has a 

definite mean and fluctuations about that mean. Often, the mean itself has a trend, or in other 

words, an acceleration is apparent. Such an acceleration, evcn a smaH one, can affect the 

space-time correlations by curving the high correlation band. That is why a least-squares fit is 

perfonned on the velocity time series, defining an initial vdodty, an acceleration and a point 

standard deviation. The space-time correlations are done relative to the frame moving with that 

initial velocity and acceleration. The resulting space-time correlation maps are often slanted 

because the tracking advection velocity does not al ways agree with the space-time c'orrclauon 

advection velocity. Therefore an adjustment velocity is needed From which we can find the truc 

38 



• 

• 

• 

Lagrangian space-time correlation 

FIG. 5.3.3. The Lagrangian space-time correlations for the convective 
case CJn the 1 9th of June, 1992. Note the symmetry about the 0 km axis 
for correlations of 0.2 or greater. The dashed line indicates the region 
where data is not available. 
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Lagrangian frame. So we have a two stage process for defining an advection velocity, which is 

the tracking velocity (and acceleration) plus the adjustment velocity. Note that in the cases 

analyzed, the acceleration is not large and does not induce a large difference in velocity over the 

dllration of the CAPPI sequences relative to the initial velocity. Consequently, the overall 

advection velocity for a given rain event is laken as the lime averaged tracking velocity plus the 

adjllstment velocity. 

5.4 Rcsults 

In section 3, the notion of space-time isotropy relative to an intrinsic velocity was defined. 

And in figure (5.3.3), we can see that the correlation contours, in panicular 0.2 and greater, can 

easily be approximated by 'ellipses' in space-time. The quotation marks are to remind the reader 

that since the uxes of the figure represent different physical unit s, one of lhem may be rescaled in 

such a wuy as to show circ1es. In u way, it is this rescaling which defines the intrinsic velocity of 

the system. Furthennore, if the intrinsic velocity may be evaluated, the radial space-time 
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Intrinsic velocity functions 

FIG. 5.4.1. The intrinsic velocity CU), as a function of the time interval 
(7jp) for the convective case on the 1 9th of June, 1992. The 0.25,1 
and 2 km resolution CAPPls are used for the 0 = 0.5, 1 and 2 km lines 
respectively, where 0 is the averaging length. 
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FIG. 5.4.2. The some os in figure (5.4.1) but for the stratiform case 
on the 31 st of July, 1 992. 
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correlation function (plt1p), see section 3) may also be found. This leads to a considerable 

simplification in the representation of the data. Rather than a two-dimensional contour map. 

which is difficult to read, we have a graph of a one dimensional function coupled with a velocity. 

First, we must detennine the behaviour of the intrinsic velocity as a function of tlp to see if 

it may be approximated as constant. To do so, we find the Lagrangian frame (the line OB in 

figure (3.4» and for each time interval in that frame, we find the correlation value at that point 

(points D or B in figure (3.4». Then we find the point along the space interval axis with the 

same correlation (figure (3.4); point E given point B) and then take the ratio of the space interval 

over the time interval. This method should work weU if the correlations along the space or 

Lagrangian time interval axis are not too erratic. Another method was tried where aU the points 

with the same correlation value as the point in the Lagrangian frame (points D or B) are 

identified and th en an ellipse was found that fits the set of points best, the intrinsic velocity being 

deduced from the shape of the ellipse. However, the results from the ellipse method are not any 

better than those of the ratio method and so are not shown. 

Figures (5.4.1) to (5.4.2) show the resuIts for the two cases. In figure (5.4.1), the resuIts 

for the convective case on the 19th of June, 1992, are shown. It reveals that the constant velocity 

hypothesis is a good approximation from 15 min to 70 min for the 500 m resolution data and the 

2 km resolution CAPPIs and from 25 min to 50 min for the 1 km resolution CAPPls. The initial 

decrease in the intrinsic velocity corresponds well to the result in figure (4.3). The high velocity 

value at 5 min may be the resuIt of spatial averaging. The dramatic increase at long time 

intervals may be due to erratic correlations at large displacements. Indeed, as was mentioned in 

section (5.2) and can be seen in figure (5.3.3), the correlations for large displacements become 

uncertain since there is less data av ail able to compile statistics. Therefore, the sharp increases 

for the 1 and 2 km resolution CAPPIs are likely due to spurious correlations along the space or 

Lugrangian time interval axis. Figure (5.4.2) show the results for the stratifonn case on the 31st 

of July, 1992. Here, thl~ intrinsic velocities are more constant than in the convective case, but the 

dirferent Hnes don't seem to converge to the same value (as in figures (4.3) and (5.4.1». This 

suggests that the correlations for the stratiform case are more susceptible to the method of data 

processing than the convective case. Furthermore, no consistent power-Iaw behaviour can be 

observed from the curves shown (see section 3). 

Approximating the intrinsic velocity as constant and assuming the intrinsic and the 

adjustment (or advection) velocities are known for a given space-time correlation map, the 

correlation contours should follow the Hne, 

41 



• t(t/p, S) = t lp COS(S) (5.4.1 ) 

a(t/p' s, (j, li) :.~ 't/p[ (j sineS) + U cos(S») (5.4.2) 

where 9 is a parameter that describes a position along the contour Hne, (j is the intrinsic vclocily 

and U is the adjustment velocity, such as the one dlscussed previously (or the total advection 

velocity in the case of figures (3.4) or (5.3.2». The parame ter t lp is the mgument of the radial 

space-time correlation function (see section 3). Equations (5.4.1) and (S.4.2) thereforc dcscrihc 

slanted ellipses such as the ones illustrated in figures (3.4) or (5.3.2). 

In practice, we find (j, U and the radial space-time correlation fllnction by making an 

estimate of the intrinsic and adjllstment velocities and choosing a range of values centcrcd 

around those estimates. For e:1ch value of (j and U, we find a corresponding radial space-time 

correlation function by finding the average correlation along the corresponding slanted ellipse for 

each value of t lp (where -rc/2 :s; S $ rc/2, owing to the symmetry of the correlation function). In 

equation forrn, we have 

(S.4.3) 

• where PI can be taken as the radial space-time correlation fllnction obtained From the averuging 

operation for the given fixed values of (j and U (Le. keeping the intrinsic and adjustment 

velocities constant, it is a function of t lp only), Pd is the space-time correlation map obtaincd 

from the data and may require an adjustment velocity to find the Lagrangian frame, and 

• 

9i = rc(ilN - 1/2). The number N increases with tlp in such a way that it is roughly equalto the 

number of data points of Pd that lie on or near the ellipse described by equations (5.4.1-2). Tht.! 

correlation maps taken from actual data consist of a grid of points evenly sp~lccd in limc (S min 

intervals) and space (variable intervals according to the resolution and rain event). Sincc it is 

very unlikely that the data points and sampling points will coincide, the correlation valuc for the 

region in between data points is linearly interpolated from those points. Along with the averagt.!, 

we also find the standard deviation of the correlation for each value of t /p' 

(S.4.4) 

The standard deviations are then summed over aIl values of t lp, thus giving a function of Ü and 

U only . 
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cf,oraJ(Ü, U) = L cf('t/p, Ü, U) 
't/p 

(5.4.5) 

The values of Ü and U which minimize this sum are taken as the 'real' values as well as the 

corresponding radial function (Le. the one obtained from equation (5.4.3) by keeping the 

velocities constant). The variable 't/p is taken at 5 min intervals, starting at 0 min to two hours 

(25 values in ail). This corresponds to the maximum time interval of the space-time correlation 

maps and has the effect of excluding the upper left and right-hand corners of the maps. This 

exclusion removes data that is unreliable. The standard deviations have equal relative weight 

when summed since the points near 't/p = 0 are stable (because p,(O) = 1 by definition) but few, 

while the points at long time intervals are unreliable but numerous. No form of the radial 

space-time funclion is assumed beforehand, only a constant intrinsic velocity and the 

corresponding space-time isotropy. The radial space-time function is free 10 take any fonn, 

exponential, power-Iaw or otherwise, given the isotropy assumption. Note that the radial 

IQ 

Simuloted radial spoce-time correlation functions 

FIG. 5.4.3. The radial spoce-time correlation functions for voriaus 
overaging lengths (D) fram the exponential spoce-time correlation 
function with choracteristic length L and lime T (equoti0n (4.11 )). 

1 00 

3 

2 

c 1 0- 1 
o 

'''::; 
o 

Q3 
~ 
~ 

8 3 

2 

1 0-2 

o 
Il 

o 
V 

+ 
<> 

D==O 
0= 0.5L 
D=L 
0== 2L 
0== 3L 
0== 5L 

~~~~~~~~~~~~~~~~~--~~~~~ 

0.0 0.5 1.0 1 .5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
normalized time intervol (7ip/T) 

43 



• 

• 

• 

-- ----------

space-time correlation may also be interpreted as a Lagrangian lime correlation fUllction which 

has been smoothed by averaging over space-time correlation map. 

We perfonn this analysis first on the numerical simulation of the exponentiul spuce-time 

correlation function. Although space-time isotropy is no longer strictly true ufter spatial 

averaging. we choose to ignore this and treut it as though il were real data. The radial spacc-timc 

correlation functions for various averuging values of (DJL) is shown in figure (~.4J). Wc sec li 

series of curves similar to those in figures (4.1) and (4.2). 

The radial space-time correlation funetions for various averaging lengths, CAPPI 

sequences and rain events are shown in figures (5.4.4) to (5.4.9). As a general rule, the 

correlation increases with increasing averaging length, especially for short lime intervals. For 

the convective case, the radial space-time correlation functions can be approximated by an 

exponential for the 250 m resolution CAPPI sequence, as weil as the 1 km resolution sequcnce, 

but not for the 8 km averaging length funetion from the 2 km resolution sequence. The odd 

shape of that function may be due to the reduced number of pixels available in the 2 km 

resolution CAPPls. Because of the curvature of the earth's surface, the altitude at fur ranges is 

no longer constant but increases with range. Therefore, a maximum radius of 190 km is 

imposed, instead of 240 km. This does not leave as many pixels available to compile statistics, 

especially when one considers the large shadow masks used on those CAPPIs. Also, at the 8 km 

averaging length, the effect of small-scale, high intensity ceUs on the corrclations may bc 

severely impaired, which may in turn affect the statistics. The stratiform case, however, docs not 

decorrelate as rapidly as an exponential and therefore cannot be approximated us such. Rather, 

there is an initial rapid drop, then a linear decrease with time. There is also a problem with 

consistency, in that a radial space-time correlation funetion for a given averaging length oblained 

from a CAPPI sequence with a given resolution does not always agree with another funetion for 

the same averaging length (and rain event) but obtained from a sequence with a different 

resolution. For example, the funetions for D = 1.00 km and D = 2.00 km in figure (5.4.6) 

decorrelate faster than their counterparts in figure (5.4.4), though il is possible, but unlikely, that 

this may be due to the difference in altitude. The same holds true for those functions in figure 

(5.4.7) relative to their counterparts in figure (5.4.5), yet they have the same altitude. Since the 

radial space-time correlation function may also be taken as the Lagrangian time correlation 

funetion, and since the funetions for the convective cases are close to being exponential, figures 

(5.4.14) and (5.4.15) show the 'characteristie' times (i.e. the time interval where the correlation 

reaehes the value e-1
) for the radial funetions. Those figures summarize the previous figures 

(5.4.4) to (5.4.9). As expeeted, the times inerease with averaging length, but there is still a 
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Radial space-time correlation functions 
FIG. 5.4.4. The radial space-time correlation functions of the convective 
case on the 1 9th of June, 1992. for various overoging lengths D. The 
CAPPls have a resolution of 250 m and an altitude of 1 .6 km. 
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FIG. 5.4.5. The some as in figure (5.4.4) but for the stratiform case 
on the 31 st of July, 1992. with 0 resolution of 250 m and on altitude 
of 2.0 km. 
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FIG. 5.4.6. The same os in figure (5.4.4) for the convective case, but 
with 0 resolution of 1 km and an altitude of 3.0 km. 
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FIG. 5.4.7. The sa me as in figure (5.4.5) for the stratiform case, but 
with a resolution of 1 km. 
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FIG. 5.4.8. The same as in figure (5.4.4) for the convective case, but 
with a resolution of 2 km and an altitude of 3.0 km. 
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FIG. 5.4.9. The sa me as in figure (5.4.5) for the stratiform case, but 
with a resalution of 2 km. 
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Intrinsic velocities 

oRes. = 0.25~m 
t:. Res.:: 1 .00 km -
oRes. = 2 00 km 

~8-__ _ 

o ~~~~--~~~--~~~~--~~~~--~~~~ 
o 1 2 3 4 5 6 7 8 9 

averaging length, 0 (km) 

FIG. 5.4.1 O. The intrinsic velocities of the convective case on lhe 
19th of June, 1992, for various overaging lengths and CAPPI 
resolutions. The average intrinsic velocity is 11 km/hr . 
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FIG. 5.4.11. The sa me as in figure (5.4.10) but for the stratiform 
case on the 31 st of July, 1 992. The average inlrinsic velocily 
is 1 5 km/hr . 
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Advection velocities 

~o 
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FIG. 5.4.1 2. The same os in figure (5.4.1 0) but for the advection 
velocities. The average advection velocity is 42 km/hr. 

Advection velocities 

oRes. -= 0.25 km 
A Res. = 1 .00 km 
oRes. = 2.00 km 

9 

35~~~~~~~~~~~~~~--~~~~~~ 

o 2 3 4 5 6 7 8 
averaging length, 0 (km) 

FIG. 5.4.1 3. The some as in figure (5.4.11) but forthe advection 
velocities. The average advection velocity is 45 km/hr. 
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Chorocteri~ltic times 

FIG. 5.4.14. Characteristic times (p = 1 le) of the radial space-time 
correlation functions for the convective case on the 1 9th of June. 
1992. for various averoging lengths and CAPPI resolutions. 
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FIG. 5.4.1 5. The sorne as in figure (5.4.14), but for the stratiform case 
on the 31 st of July, 1 992. 
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problem with consistency. Note that the meaning of the characteristic times for the stratiform 

case is somcwhat unclear since the shapes of the radial space-time correlation functions are not 

exponential. 

The intrinsic and advection velocities (figures from (5.4.10) to (5.4.13» do not show a 

clear relationship with the averaging length. Furthermore, there is again a problem with 

consistency, for advection as weIl as intrinsic velocities. In figure (5.4.12), there seems to be an 

increase of the advection velocity with increasing averaging length and in figure (5.4.13), the 

advection velocities for the 250 ru resolution CAPPIs, except the first one, and the first velocity 

for the ] km resolution CAPPIs, seem aberrant with respect to the others. Since we do not 

expect advection velocities to change with averaging length and since there is no clear 

relationship for intrinsic velocities, the best we can do to characterize the rain events is to find 

the average velocities. Consequently, the convective case has an overaU intrinsic velocity = Il ± 
3 km/hr, advection velocity = 42 ± 4 km/hr, and the stratiform case has an intrinsic velocity = 15 

± 4 km/hr, advection velocity = 45 ± 7 km/hr. The fact that the intrinsic velocities for the 

convective and stratiform cases are so close is surprising considering the very different 

characteristics of these cases. It may be that the spatial and temporal scales change in a similar 

way from storm to storm, though any conclusions are premature given only two cases. 

There are six main factors explaining these discrepancies. The first is the processing of the 

data used. The method used to measure radar reflectivity and convert it to rainfall for the 1 and 2 

km resolution CAPPI sequences is quite different from that used for the 250 ru resolution CAPPI 

sequence. If one method induces greater error in the CAPPIs than the other, then the estimates 

of the correlation will also contain a greater error. It is possible that the D = 1.00 km and D = 
2.00 km functions in figures (5.4.4) and (5.4.6) do not agree for just sueh a reason. The second 

factor is a range dependence in the data. This effeet can be brought on by a range dependent 

minimum detectable reflectivity level, or by the fact that the number of radial scans that are 

averaged to produce one pixel decreases with range. AIso, at far ranges, the reflectivity is 

estimated from a large volume so that any vertical structure of the rainfall affects the estimate as 

weIl. The influence of range dependent effects is heightened by the fact that the maximum 

allowable range for the data changes with averaging length (see section 5.1). The change in 

maximum allowable range may also introduce precipitation patterns into the data analysis that 

were not included previously. That should not have too great an inrluence since for the cases 

analyzed, the bulk of the precipitation passed over the radar site. Nevenheless, that effeet may 

help to explain the problem with the consistency of the radial space-time correlation functions. 
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• The third factor is the influence of ground clutter and shadows. Ground clultcr is a sirong 

retum signal coming from an object on the ground sllch tlS a t1lollntain mnge. A shadow is a 

region of weak or non-existent echoes behind an obstacle (i.e. t1lount41in) which blocks the radar 

beam. Although both the clutter and the shadows are masked out of the CAPPls, tht' dutter has 

scintillation properties which enable it to protrude out of its ml\sked region. And since the 

ground clutter often has a much greater reflectivity than rainfall, its erfeet may be noticcable. 

The masks for the ground clutter were enlarged precise1y for thesc reasons, but it is difficult to 

know with certainty the proper extent of the masks without making them excessively large. 

The fourth factor is the possible difference in advection velocities between l'calures of 

different intensities. The greater the averaging length the more the small, high intensity featun:s 

are attenuated, along with their influence in the determination of an advection velocily. In a 

study by Lachapelle (1990), it was found that for some storms, the time-averageo advection 

velocities for regions with 4 mm/lu of rainfall or greater, could be 25% higher than the 

corresponding advection velocity for regions with 16 mm/hr or grealer. In section 5.3, a similar 

relationship was found for the convective case for rain rate thresholds from 0.5 tn R mm/hr. The 

difference in advection velocity between these thresholds is not great ami secl11s insufliciellt 10 

fully explain the variation of advection velocity with averaging length seen in figure (5.4.12). 

• The fifth factor may be the assumption of a constant intrinsic velocity itself. Wc can see in 

• 

figures (5.4.1) to (5.4.2) that the intrinsic velocity seems constant only over li certain range. The 

initial drop may be explained by spatial averaging and the final erratic increase may he causeo hy 

unreliable statistics. Therefore, the constant intrinsic velocity hypothesis seems rcasonahlc. 

Nevertheless, the variation of the intrinsic velocity can induce uncertainty in the estimations 

using equations (5.4.3) and (5.4.4). Note that the form of the radial space-lime correlation 

function for the stratiform case does not resemble an exponentiai (figures (5.4.5),(5.4.7) and 

(5.4.9» which may explain why the intrinsic velocity functions (figure (5.4.2» do not converge 

to a common value, as in figure (4.3). This is because figure (4.3) is based on an exponential 

radial space-time correlation function (equation (4.11». 

The sixth factor may be the imperfections in the algorithm used to finli the velocities (i.e. 

equations (5.4.3-5». The aberrant advection velocities in figure (5.4.13) (the ones between 50 

and 55 km/hr) are very close to the tracking velocity. Given the high value of the tracking 

velocity, there was a large region on the space-time correlation maps with no data available 

(figure (5.3.3), for example). In addition, the high-correlation band on those correlation maps 

were very broad, causing a high level of uncertainty for the adjustment velocity. U noer those 

conditions, the algorithm favors a low adjustment velocity as this would center the ellipses 
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described in equations (5.4.1-2) with respect to the space-time correlation maps. In other words, 

an adjulitment velocity of zero is the best estimate possible given the uncertainty due to the shape 

of the high-correlation band and the large region of missing data. The broad high correlation 

bands may be explained by the second and third factors, because these effects do not move. In 

other words, embedded in the moving rain field is a fixed structure which may diffuse the slant 

in the space-time correlation function's structure, making the detennination of the adjustment 

velocity more unœrtain. 

The limitations of the algorithm may also explain the increasing trend of the advection 

velocities in figure (5.4.12). Specifically, the last two estimates, which account for most of the 

increasing trend. may be the result of an odd shape of the high-correlation band, in particular the 

end far from the origin of the space-time correlation map, caused by any or aIl of the 

afofcmentioned factors. This seems aIl the more plausible given the odd forms of the radial 

space-time correlation functions fOf the 6 and 8 km averaging lengths for the convective case 

(sec figure (5.4.8» . 
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6. Discussion 

The dispersion in the estimates of intrinsic and advection velocities. as weil as the 

inconsistency of equivalent radial space-time correlation fllnctions. stand in the way of 

establishing a relationship between averaging length and space-time correlation structure. As 

was mentioned previously, the 250 m resolution CAPPls were obtained using a different data 

processing method than the 1 or 2 km resolution CAPPIs. From the description, it is not hard to 

see that the 250 m resolution CAPPls incorporate much more data than the 1 or 2 km resolution 

CAPPIs. Consequently, we expect the 250 m resolution melhod tn yicld more reliablc statistÏl:s 

than the first. A comparison between figures (6.1) and (6.2) seems to contirm this suspicion. 

since both are supposed to represent the same correlations yet figure (6.2) is 'noisier' than (6.1), 

This may explain why the radial space-lime cOlTelation functions in figures (5.4.6) and (5.4.7) 

decorrelate faster than their counterparts in (5.4.4) and (5.4.5), respectively. The influence or the 

error on the rainfall estimates degrades the correlation. 
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FIG. 6.1 . The Eulerian space-time correlations for the stratiform 
case on the 31 st of July, 1992, obtained from the 250 m resolution 
CAPPls averaged to a resolution of 1 km. The CAPPls have an 
altitude of 2.0 km and cover a region with a 96 km diameter. 
The dashed contours den ote negative correlations. 
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FIG. 6.2. The Eulerian space-time correlations for the same rain 
event, altitude and region as in figure (6.1 ), but obtained from 
1 km resolution CAPPls with no averaging. The da shed contours 
denote negative correlations. 
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As was pointed out before, the increase in error may render the detennination of an 

advection velocity more difficult, but it may also affect the intrinsic velocity if spatial and 

temporal statistics are altered differently. On a more fundamentallevel, there may be limits on 

the validity of space-time isotropy. White it seems valid for strong correlations, the correlation 

contours for 0.1 and less can sometimes deviate noticeably from an ellipse. This happens mostly 

for the 1 and 2 km resolution CAPPIs. Figures (5.4.1) and (5.4.2) demonstrate these points 

clearly. A less stringent condition would be quadrant symmetry. Instead of averaging the 

space-lime correlations along slanted ellipses, points of the same space interval but with opposite 

sign (in the Lagrangian frame) can be averaged. Thus we would ob tain a two-dimensional 

correlation map showing only positive lime and (Lagrangian) space intervals, which is not as 

smooth or convenient as a one-dimension al function. 

The scale-dependent intrinsic velocity suggested by Lovejoy & Schertzer (1991), (1992) 

nnd Tessier et al. (1993), cannot be confinned for the two cases analyzed. One must be careful 

when interpreting the data, however. The power-Iaw form suggested for the intrinsic velocity 
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function requires data over man y orders of magnitude to be properly anulyzed. This is not the 

case here since the minimum time interval is 5 min and the maximum 120 min. In addition. Ilot 

aU of that range is reliable or even contains a value of the intrinsic velocity. Furthemlore, it is 

possible that the spatial averaging of the data obscures the power-lnw foml for short time 

intervals. Be that as it may, for the cases observed, a power-Inw with an exponent of 1/2 for the 

intrinsic velocity seems unlikely, rather a constant intrinsic velocity is the most reusonablc. unù 

simples t, assumption. We may question the reasoning that lead to the formulation of the 

scale-dependent intrinsic velocity hypothesis. Tessier et al. (1993) reasoned that since the 

atmosphere is turbulent and exhibits scaling behaviour aIl through the mesoscale range, no 

large-sc ale forcing can be invoked in order to provide an overall advection velocity. Turbulent 

does not mean eompletely random, however. It is weIl known that mid-latitude storm systems 

have a marked tendency to travel from west to east. There may be a north-south component to 

the motion, and occasionally a storm system may move from east to west, though its velocity 

wou Id be greatly redueed. It therefore seems likely that on the whole, stoml systems at 

mid-latitudes have an average velocity towards the east. This is most likely the product of the 

global circulation between the equator and the pol es and the Coriolis force. Surely, this 

constitutes a large-seale forcing. 

The consequences for Taylor's hypothesis are slight for the two euses stuùied, however. If 

we assumed an intrinsie velocity of 20 km/hr and an advection velocity of 40 km/hr, which is 

weIl above any observed velocity ratio, then equation (3.18) yields a space-time conversion 

factor of V" =~ V 2 + Ü2 
"" 45 km/hr. The difference of 5 km/hr between this and the advection 

velocity is close to or within the uncertainty for the advection velocity (±4 km/hr for the 

convective case and ±7 km/hr for the stratiform case). This means that unless the intrinsic 

velocity is comparable to the advection velocity, the improvement made to Taylor's hypothcsis 

would not be signifieant when compared to the error on the advection velocity. Add to this the 

error on the Eulerian time and spaee correlations at large displacements and the fluctuations of 

the intrinsic velocity, and the significance of the improvement is reduced even further. Figure 

(6.3) shows a limited improvement on Taylor's hypothesis, which is by no means the rule. In it 

we can see that the modified space-time conversion factor, V", applied to the Eulerian spatial 

correlation function, produees a curve that is closer to the temporal Eulerian correlation function 

than the one obtained using simply the advection velocity. Thereby implying that we can obtain 

a better estimate of the spatial correlations from the temporal correlations by incorporating the 
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An example of Taylor's hypothesis 
FIG. 6.3. The Eulerian temporal correlations for the case on the 31 st of 
July, 1992, with a 2 km averaging length from the 1 km resolution CAPPls, 
compared with the Eulerian spatial correlations transformed using the 
advection velocity (39.5 km/hr) and the modified velocity (43.5 km/hr). 
The inlrinsic velocity is 18.3 km/hr. 

1.0r-T-~~~~--r-r-~~-r-T-.--r-~~-r-r~~~ 

0.9 

0.8 

§ 0.7 
+-' 
o 

Q) 0.6 
1... 
1.­
a 
o 0.5 

0.4 

0.3 

o 
o 

Temporal corr. 
Spatial corr. 
Mad. sp. carro 

0.2 ~~~~~~~~~~--~~~~--~~~~--~'~ .. ~~~ 
o 5 10 15 20 25 30 35 40 45 50 

time interval (min) 

intrinsic velocity in the space-time conversion. However, we can also see that the difference is 

not great and could easily have been overwhelmed by the error on the two correlation functions 

or the vclocities. 

The consequences for Taylor's hypothesis are slight with respect to spatial resolution as 

weIl. Since the charal~tel1stic times in figures (5.4.14) and (5.4.15) can be taken as estimates for 

the vuriable Tin equation (3.13) and since we know the intrinsic and advection velocities from 

figures (5.4.10) to (5.4.13), we can estimate the cut-off times for Taylor's hypothesis divided by 

the maximum error (tr/Em), using equation (3.13). Note that equation (3.13) is not as accurate for 

the stratiform case since it assume an exponential radial space-time correlation function. 

Nevertheless, figure (6.3) justifies the use of that equation since a direct estimation is too 

unreliable given the errors on the correlation. Figures (6.4) and (6.5) show these estimates. Note 

that since the clIt-off times are divided by the maximum error, which must be much less than one 

for equation (3.13) to hold (Le. Em = 0.1 - 0.01), a value of 1000 minutes may in fact indicate a 

cut-off time between 10 to 100 minutes. In figure (6.4), we see that the upper line has an 
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FIG. 6.4. The eut-off times for Taylor's hypothesis divided by the 
maximum error (Tc/em) as a function of averaging length (D) for 
the convective case on the 19th of June, 1992. 
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FIG. 6.5. The same as in figure (6.4) but for the stratiform case 
on the 31 st of July, 1992. 
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incrcasing trcnd but the lowcr one does not while as in figure (6.5), no trend is immediately 

apparent. Note that the values for the 6 and 8 km averaging lengths in figure (6.4) were omitted 

as they werc excessively high due ta the anomalous shape of the corresponding radial space-time 

correlation functions. AIthough the characteristic times increase with averaging length, implying 

a grcater persistence of the features of the averaged field, there seems to be no definite relation 

between the cut-off limes and the averaging lengths due to the uncertainty on the advection and 

intrinsic vclocities. 

We may conclude that for the cases seen here, the 'frozen turbulence' model is still a 

rcasonably good approximation for Taylor's hypothesis. Only for cases that are slow moving 

and show a great deal of internai development during their passage would the intrinsic velocity 

introduce a significant improvement for Taylor's hypothesis. Moreover, spatial resolution does 

not alter the validity of Taylor's hypothesis in any decided way due mainly to the uncertainty on 

the estimation of the velocities. Indeed, sirnply finding the proper advection velocity constitutes 

in itsclf the main source of error for Taylor' s hypothesis . 
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7. Conclusion 

In order to analyze the space-time correlation structure of a particular min event, the 

existence of a Lagrangian reference frame moving with the overall motion of the stonll is 

assumed. In this frame, the storm is mode lIed by a homogeneous and stalionary random tic Id 

whose space-time correlation function is symmetric with respect to u change of sign of the 

Lagrangian space interval. This is ealled quadrant symmetry and expresses the faet Ihnt in Ihe 

Lagrangian frame there is no overall motion of any stoml element. 

Further, the Lagrangian space-tim~ correlations may be approximated as space-time 

isotropie with respect to a certain velocity. In other words, if the time intcrval axis of Ihe 

space-time correlation function were transformed into a space interval axis by means of a givcn 

velocity and the resulting correlation function were isotropie, then we have space-lime isotropy 

relative to that velocity. For a rain event this is called the intrinsic velocity and represcnls the 

internaI kinematic activity of the storm. An alternative is discussed whereas the intrinsic 

velocity changes with the time interval in the Lagrangian frame. Accordingly, the intrinsic 

velocity would vary as the time interval to the power of 1/2. 

If the intrinsic velocity is assumed to be constant, then the Lagrangian space-time 

correlation function can be made isotropie and reduced to a radial correlation function. The 

space-time correlations can now be reduced to three elements; the advection velocity, the 

intrinsic velocity and a radial space-time correlation function. The spatial and temporal 

correlations in the Eulerian (fixed) frame can be reconstructed using the sc elements. The 

validity of Taylor's hypothesis can also be assessed using the se elements. For instunce, if the 

argument of the radial correlation function was made to have units of time, then the eut-off time 
Il 

for Taylor's hypothesis can be expressed as a function of a time intcrval charactcrizing the 

function, a dimensionless error coefficient and the ratio of the intrinsie velocity with respect 10 

the advection velocity. This was done for an idealized exponential Lagrangian space-time 

correlation function. Taylor's hypothesis can be improved so as to take into account the internai 

development of a storm system. This is done by incorporating the intrinsic velocity into its 

formulation (see equations (3.21) and (3.22)). 

The effect of spatial averaging on the space-time correlation function is detcrmincd 

theoretically to simulate the effect of the variable resolution of radar data. A numericul 

estimation of this effecl is performed on the exponential space-lime correlation function. The 

spatial averaging increases lhe intrinsic velocity at short lime intervals but docs not alter it for 
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arbitrarily long intervals. The radial space-time correlation function, obtained by assuming 

space-time isotropy (i.e. constant intrinsic velocity), increases its correlation value by a 

multiplicative factor greater than one in the long time interval region. 

Two rain events, a convective case on the 19th of June, 1992, and a stratifonn case on the 

31 st of July, 1992, were recorded and analyzed over spatial resolutions ranging from 500 m to 8 

km. The radial space-time correlation functions for the convective case resemble exponential 

decay functions whose correlation value increases with resolution in a manner similar to the 

idealized exponential function. The stratiform case has radial functions with an initial rapid drop 

and then a linear decrease of correlation. The correlation value of those functions also increases 

with spatial resolution. The intrinsic velocities for both cases can be approximated as constant 

over a certain range of the time interval. The stratiform case shows intrinsic velocities that are 

approximately constant over a longer range than the convective case, but the value of those 

velocities changes with resolution in a manner not consistent with the theoretical result found in 

section (4). This may be an effect of the data processing or the structure of the space-time 

correlations or both. The power-Iaw dependence of the intrinsic velocity with time interval 

cannot be observed. There is uncertainty regarding the relationship of the intrinsic and advection 

velocities with spatial resolution. The best that can be done is to find the average value of these 

quantities and assume the effect of spatial resolution to be negligible. For the convective case, 

the intrinsic velocity is of the order Il ± 3 km/hr and the advection velocity, 42 ± 4 km/hr. For 

the stratiform case, the intrinsic velocity is of the order 15 ± 4 km/hr and the advection velocity, 

45 ± 7 km/llf. The values of the advection and intrinsic velocities, along with the errors for these 

velocities, do not allow a meaningful improvement on Taylor's hypothesis as weIl as a clear 

determination of the effect of spatial resolution on its validity. The 'frozen turbulence' model is 

still a good approximation for the cases analyzed given that the uncertainties on the advection 

velocity and on the correlations, are sufficient to overwhelm any improvement on Taylor's 

hypothesis. 
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Appendix A : Accelerated Taylor's hypothesis 

When a homogeneous and stationary random field is udvected past fixed coordinatc systrm 

with a constant acceleration, that acceleration induces nonstationarity in the fixcd frame. 

Taylor's hypothesis can still be defined in this context with the fol1owing modifications. 

Given the Lagrangian coordinates (XI> II) and the Eulerian coordinatcs (X". 1,,). the 

transfonnation of coordinates is 

(A.l ) 

(A .2) 

where Uo is the velocity at time t"o and a is the acceleration. Due to equation (A.I) wc wi Il drop 

the subscripts when referring to time. Aiso. equation (A.2) assumes XI =X, when t = t(). Wc call 

simplify equation (A.2) by setting to = O. 

(A .3) 

In the Lagrangian frame, the spatial interval of the points P J(XI\> lJ) and P 2(X12, (2) transforms 

into the Eulerian spatial interval by the following equations. 

(A .4) 

(Aj) 

(A .6) 

where a and tare space and time intervals respectively, and ï = (tJ + {J)/2 is the average tim~. 

Wh en ï is kept constant, we can define the velocity U' = Uo +aï which gives the trans[offimlion 

(A .7) 

This is the space to time relationship needed to define Taylor's hypothesis. Thercforc, the 

nonstationarity caused by the acceleration can be hidden by choosing a fixed average lime. 
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Appcndix 8 : Relationship bctween the correlation functions 

The correlation function where the me an was subtracted from the field, p(a,~, t), and the 

one where the mean is not subtracted, C(a,~, t), are related by an approximate linear 

relutionship. 

We start by finding the covariance function, 

(B .1) 

where A 'T' is the subarea within the total space-time area AT that contains aIl starting points for 

the space-time displacement vector such that the end points are also contained in AT. Similarly, 

the mean <.R> is defined as, 

whcrc < > denotes an averaging operation over AT. Expressing the product of the square 

brackcts in equation (B.l) as a polynomial, we obtain 

1 
Cov(a,~, t) = A'7" L lR(x,,+ a,yJ ,+ ~,te+t)R(x"'YJ"tlc') 

,',}',Ic' 

We perform the averaging operation on each tenn separately. 

Cov(a,~, t) =< R(x,'+ u,y,.+~. !1c,+t)R(x",yJ" tic') >' - < R(x,,+a,yl'+ ~,tlc,+t) >' <R > 

(B .2) 

- < R >< R (x", y/' te) > '+ < R >2 (B.4) 

whcre < >' denotcs averaging over A' T'. As u,~, 't ~ 0, we have 

< R (x" + u, Yl' + ~,tlc' + t > ' ~< R > and < R (x," y/, tic') > ' ~< R >. So for sufficiently smaU 

space-time displacements, we can approximate equation (B.4) as, 

The correlation functions are defined as, 

( A) Cov(a,~,t) h .-2-_<R2 >_<R >2 p a,.." t = cr w ere u 
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and 

< R (x" + a, y/ + p, Il' + t)R (X," y/. f.,) > ' 
C(cx,p,t)= 2 

<R > 
(Il. 7) 

Substituting equations (B.6) and (B.7) into (B.5) we obtain, 

(/I.X) 

Therefore, by isolating e(a, p, t) and for sufficiently small space-lime displaccmenls. Wl' 

obtain a linear relationship between the two types of correlation functions idcntical tn C(llIation 
(5.2.9). 

( cr) < R >2 C(a,p,t)= -2- p(a,p,t)+-2-
<R > <R > 

(ll.9) 
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