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Abstract 

The use of a noise-shaping system in oversampled filter banks has been shown to improve 

the effective resolution of subband coders. Although the filter banks directly determine 

the noise-shaping coefficients, a comparison between theoretical and simulated results has 

not been done, while the effect of the selection of the filter banks on the performance 

of the noise-shaping system has not yet been evaluated. Therefore, an algorithm for the 

generation of cosine-modulated perfect-reconstruction filter banks is presented, such that 

the generated filters could be used as a test bed. The optimal noise-shaping coefficients are 

then derived, and the noise-shaping system is inserted into the subband coder. 

It is found that the theoretical results agree with the simulations, but that the perfor­

mance of the noise-shaping system is limited by ill-conditioning at higher system orders. 

An increase in filter length and an increase in the degree of overlap between neighbouring 

channels contribute independently to a better performance. AIso, it is seen that near­

perfect reconstruction filter banks are limited by their reconstruction error but yield good 

results at low bitrates. 
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Sommaire 

Il a été démontré que l'utilisation d'un système de mise en forme du bruit dans les bancs 

de filtres sur-échantillonés améliore la résolution des codeurs de sous-bandes. Bien que les 

coefficients des filtres dédiés à la mise en forme du bruit dépendent directement des bancs 

de filtres sélectionnés, la comparaison entre les résultats théoriques et ceux provenant de 

simulations n'ont pourtant pas encore été éffectuées. Il en est de même pour l'étude des 

répercussions du choix de bancs de filtres. Conséquemment, l'élaboration d'un algorithme 

générant des bancs de filtres modulés en cosinus et à reconstruction parfaite est présentée, 

pour qu'ensuite ces bancs filtres puissent être utilisés en tant que banc d'essai. Par la 

suite, les signaux de sous-bande sont quantifiés, les coefficients optimaux sont dérivés et 

puis introduits dans le codeur de sous-bandes. 

Il est remarqué que les résultats théoriques correspondent aux résultats des simulations, 

mais que le conditionnement limite la performance du système de mise en forme du bruit. 

De plus, il est démontré qu'un allongement des filtres ainsi qu'un plus grand chevauchement 

entre les sous-bandes adjacentes contribuent indépendemment à une amélioration de la per­

formance du système de mise en forme du bruit. En outre, les bancs de filtres approximant 

la reconstruction parfaite sont limités par leurs erreurs de reconstruction. Cependant, à un 

bas taux de débit, ils réussissent pourtant assez bien. 
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Chapter 1 

Introduction 

A filter is defined as being any system that modifies certain frequencies relative to other 

frequencies [1]. Thus, if it is desired to focus attention on a particular interval of frequencies, 

a filter that attenuates aU the frequency content outside of that interval would be useful. 

lndeed, if the frequency distribution of a class of signaIs were nonuniform, it stands to reason 

that there is interest in treating different intervals in a different manner. For example, 

if a class of signaIs generaUy has more energy content at low frequencies than at high 

frequencies, it would make sense to use a better code on the first interval, while perhaps 

cutting sorne corners on the second interval, in an attempt to corn press the signal by 

removing non-essential content or to reduce the complexity of a system. This is in fact the 

motivation for the development of subband coders for speech and image processing, since 

the frequency distribution of these signaIs is indeed quite nonuniform [2]. 

1.1 Subband coders 

In order to analyze the different frequency intervals separately, a uniform digital filter bank 

is used: a digital filter bank is defined as a collection of digital filters with a common 

input or a common output [3]. Thus a filter bank with a common input separates the 

input signal into, say, N signaIs, whose frequency content is mostly limited to the intervals 

briN::; w::; (k+ 1)7fIN, for 0::; k::; N -1, where w is in radians. This filter bank is then 

termed an analysis filter bank. On the other hand, a filter bank with a common output 

combines, say, N input signaIs with limited frequency content into one output signal and 

is therefore termed a synthesis filter bank. 

2005/04/20 



1 Introduction 2 

Figure 1.1 illustrates a basic subband coder and decoder, where the Hk(z) are the 

component filters of the analysis bank, while the Fk(z) are the component filters of the 

synthesis bank. 

x(n) x(n) 

Fig. 1.1 General subband coder and decoder. 

Recapitulating, the analysis filter bank splits the input signal x(n) into N signaIs xdn), 

while the synthesis filter bank combines the xk(n) into the output signal x(n). 

The use of filter banks is by no means confined to subband coders: they find applications 

in areas such as digital audio co ding and voice privacy systems [3] and transmultiplexers 

[4]. Further, as will be discussed in Chapter 2, a judicious design of the analysis filter 

banks allows for a reduction by a factor of M of the sampling rate of the outputs of the 

filter banks, denoted by lM in Figure 1.1. The signaIs vk(n) at the reduced rate are 

called subband signaIs, from which an approximation x( n) of the input signal x( n) can 

be obtained, by increasing their rate by a factor of M and by combining them using an 

appropriate synthesis filter bank. Thus, a subband coder is a specifie form of the wider 

class of multirate systems [4]. 
In most cases, the advantage of subband coding is seen during the process of quantizing 

the subband signaIs vk(n): due to the nonuniform distribution of the content of the input 

signaIs in different frequency bands, it is possible to use quantizers with different degrees of 

precision for the various vk(n). The degree of precision of a given quantizer is governed by 

the number of bits it uses to represent a certain signal. This strategy then provides a means 

by which to either reduce the number of bits needed to represent a signal (compression), 

or alternatively a way in which to represent a signal more accurately given a certain fixed 

total number of bits [3]. 

Finally, as will be dealt with in more depth shortly, in the case that M = N, the 
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system is referred to as critically sampled, since there is precisely the sufficient amount 

of information needed to reconstruct the original signal x( n), given a judicious choice of 

analysis filters. On the other hand, if M > N there will be a loss of information and the 

original signal will be corrupted, while if M < N, the system is referred to as oversampled 

as there are more samples than absolutely necessary in the subband signaIs. 

1.2 Oversampling the subband signaIs 

The main motivation for oversampling the subband signaIs cornes from the benefits achieved 

in oversampled analog-to-digital conversion. In this case, the conversion accuracy can be 

improved in two ways: either by using quantizers with finer resolution or by decreasing the 

sampling period, equivalently increasing the sampling rate [5]. In modern A/D conversion, 

the accuracy is improved by oversampling the input signal, in order to avoid the high costs 

involved in the construction of high-resolution quantizers. This then suggests that lower 

resolution quantizers cou Id be used in the subband coder by oversampling the subband 

signaIs. 

Furthermore, oversampling provides a redundant representation - which can be inter­

preted as an overcomplete expansion - of the input signal. It is then possible to take 

advantage of this redundancy in a variety of ways: for example, it was noted that a so­

phisticated selection of information from this redundancy could yield good compression 

schemes [6]. Indeed, as shown in [7], although the full potential of the compression schemes 

based on overcomplete expansions has not yet been explored, they show results on par with 

standard compression schemes. Another example is the robustness to erasure demonstrated 

by overcomplete expansions [8], [9], suggesting that oversampling is useful for packet-based 

communication systems, where packet loss may be inevitable. 

Moreover, the oversampling of the subband signaIs can be exploited in the design of 

the synthesis filter banks. While in the case of critically sam pIed filter banks only one 

synthesis filter bank provides the perfect reconstruction! of the input signal given a specifie 

analysis filter bank, oversampled filter banks provide more freedom in the design of the 

synthesis filter banks, yielding the opportunity to design filter banks with added desirable 

characteristics [10], [11], [12], [13]. 

Another way to exploit the inherent redundancy is through insightful processing of 

1 More on this in Chapter 2. 
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the subband signaIs such as linear prediction of the subband signaIs or quantization noise 

shaping [14]. 

1.3 Noise-shaping in oversampled fllter banks 

The introduction of a noise-shaping system into oversampled filter banks stems once more 

from the use of a such a system in oversampled A/D conversion. In fact, single-bit code­

words obtained from artificially high sampling rates were achieved soon after delta mod­

ulation was introduced by Cutler in 1946 [15]. The idea was simple: the overall error 

of the system was reduced by measuring the quantization error in one sample and then 

subtracting this quantity from the next sample. Subsequently, more sophisticated systems 

were designed, yielding an improved performance. In the context of oversampled filter 

banks, the strategy is to shape the quantization noise in the subband signaIs vk(n) in such 

a way that it will be attenuated by the synthesis filter bank. lndeed, the optimal noise­

shaping system given a certain filter bank was derived in [14] and were shown to improve 

the effective resolution of the quantizers. 

However, the manner in which the choice of the filter banks affects the performance of 

the noise-shaping system has yet to be studied. Firstly, the aim of this work is to correlate 

the results of simulations with the theoretically predicted performance and secondly to 

explore the effect of the different characteristics of various filters on the performance of the 

noise-shaping filters. 

1.4 Outline 

Since it was desired to study the effect of the selected filter banks on the performance of the 

noise-shaping system, there are two distinct topics to be covered: the design of the filter 

banks and the introduction of a quantization noise-shaping system into a subband coder. 

However, they are interrelated and will thus be discussed in a concurrent fashion. 

Chapter 2 first introduces fundamental notions in multirate systems, permitting the 

development of the constraints on filter bank design for perfect reconstruction of the input 

signal as well as an introduction to the frame-theoretic approach to oversampled filter 

banks. 

Chapter 3 then focuses on the design method selected for the filter banks, followed by 
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an analysis of the quantization noise in oversampled filter banks. Subsequently, the optimal 

noise-shaping coefficients are derived. 

Chapter 4 turns to the explicit implementation of the design algorithm, followed by 

a demonstration of the obtained filter banks. Next, the subband signaIs are quantized 

with uniform quantizers, the noise-shaping system is introduced into the subband coder 

and a discussion of the theoretical and simulation results ensues. Finally, the effect of 

varying different filter bank characteristics on the performance of the noise-shaping system 

is evaluated. The effects of varying such characteristics as filter lengths, degree of overlap 

between the subbands and perfect versus near-perfect reconstruction filter banks are shown. 
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Chapter 2 

Multirate systems 

Multirate systems contain both linear filters and time-varying operations and are therefore 

part of the class of linear time-varying systems (LTV). As they form the background for 

the present work, this chapter will deal first with sorne underlying concepts to facilitate 

subsequent discussions, followed by a deeper look at digital filter banks along with their 

design and finally an introduction to oversampled filter banks from a frame-theoretic point 

of view. 

2.1 Basic notions in multirate systems 

In order to appreciate the possible advantages of multirate systems, sorne essential opera­

tions pertaining to them must be defined beforehand. First, the decimation and interpola­

tion operators, which allow for a reduced bit rate in the subband signaIs, will be explained 

and an elucidation of the polyphase decomposition, which allows for more elegant solutions 

and leads to lower computational complexity, will ensue. 

2.1.1 Decimation and interpolation 

Decimation and interpolation are the two most fundamental operations in multirate digital 

signal processing [3]. In this section, they are first explained in the time domain for an 

intuitive approach, followed by a frequency do main interpretation leading to the basics of 

aliasing. 

2005/04/20 
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Time Domain 

The explanation of decimation and interpolation requires the definition of two new building 

blocks: the decimator and the expander. 

Simply put, the decimator can be viewed purely as sampling the signal at an M-times 

lower rate [1], where M is constrained to be an integer. This leads to the coining of new 

terms, such as downsampling and subsampling. The decimator block, as shown in Figure 

2.1, transforms the input sequence xd(n) into the output sequence YD(n) by retaining only 

Fig. 2.1 Decimator. 

the values that are at time indices which are a multiple of M: 

Upon doser inspection, it should be obvious that a simple unit delay at the input of the 

decimator will not lead to a delay of the output by one sample. lndeed, 

YD(n - 1) = xd(M(n - 1)) 

=l=xd(Mn - 1). 

It is concluded that downsampling is a time-varying operation. 

As opposed to the decimator block, the expander block, (Figure 2.2), inserts L - 1 zeros 

Fig. 2.2 Expander. 

between the samples, yielding a signal that has been effectively upsampled; that is there 

are more samples in the expanded signal YE(n) that in the input signal xe(n): 

( ) 
_ { xe(n/ L), if n is an integer-multiple of L 

YE n -
0, otherwise. 
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To complete the interpolation process, a lowpass filter is appended, in order to convert the 

inserted zero-valued samples of YE(n) into interpolated samples YI(n); that is, samples that 

are the approximation to the original underlying analog signal - assuming a band-limited 

signal- sampled at a higher rate, as shown in Figure 2.3. 

7rlYing anatogy:::at 

q 
n n n 

Fig. 2.3 Interpolation process. 

Frequency Domain 

In the case of the decimator, it can be shown that the expression in the frequency domain 

for YD(e jW
) as a function of Xd(ejW

) is [3]: 

(2.1 ) 

For a more insightful discussion, a graphical interpretation of this equation is given. 

The first step is to obtain Xd(e jw
/
M ) by stretching Xd(ejW

) by a factor of M (see Figure 

2.4(b)). The second is to create M - 1 shifted copies of this stretched version, resulting 

in X d (e j (w-2trk}/M) for k = 1, ... , M - 1; and the third and final step is summing these 

stretched copies and dividing by M, such that there is a copy every 271". The result is 

YD(ejW
) (see Figure2.4(c)). 

Taking a closer look at these figures, it becomes clear that in order to retain aIl the 

information in the frequency spectrum of Xd(ejW
), it is imperative that the frequency 

content of the signal be limited to 71"/ M; otherwise, during the summation of the copies 

of Xd(ejw/ M ), there will be overlap, resulting in a loss of information (see Figures 2.4(d) 

and 2.4(e)) and the impossibility of recovering the original signal xd(n) from YD(n). This 

overlap is a phenomenon known as aliasing. In order to ensure that aliasing will not occur, 

or at least to minimize its effects, an anti-aliasing filter is inserted before the decimation 
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-2Tr 

-2Tr 

-2Tr 

-Tr Tr 

(a) Original signal. 

2Tr 

(b) Stretched signal. 

Xd(d(w.brk)IM) 

lIM 

2Tr 

(c) Downsampled signal YD(eJW ). 

'wlM 
Xd.aliasing(e' ) 

(d) Stretched signal with wc> 1r/M. 

-Tr 

/1 
X ,,/t!(w.brk)IM) 

d, allasmg{t 

Tr 

(e) Aliased signal. 

Tr 

w 

W 

W 

w 

w 

Fig. 2.4 Illustration of the downsampling process. 

9 
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process, which is essentially a lowpass filter that strongly attenuates the frequency content 

above 7r/M. 

Next, in the case of the expander, the frequency domain expression for YE(ejW ) can be 

shown to be [3]: 

(2.2) 

This represents an L-fold compression of Xe(e jW ), and, in addition, images at every 27r/L, 

called the imaging effect(see Figure2.5(b)). 

(a) Original signal. 

-61t1L 67t1L w 

(b) Upsampled signal YE(e jW ). 

6 1 

~(é") 
1 Q • 1 

-br -7r 7r W 

(c) Interpolated signal YI (e]W). 

Fig. 2.5 Illustration of the upsampling process. 

Finally, considering a case in which a signal (say Xd(e jW ) from Figure 2.4(a)) were to be 

adequately downsampled (yielding Xe (e jW ) from Figure 2.5(a))and subsequently upsampled 

(Xe(e jwL )), it is evident that in order to reproduce the original signal Xd(ejW ) , the expanded 

signal should be lowpass filtered. This shows once more the use of the interpolation filter; 

indeed, the interpolated signal Y1(ejW ) is identical to Xd(ejW ). This phenomenon is referred 

to as perfect reconstruction. Tt should be noted that had the downsampling process entailed 

any aliasing, perfect reconstruction would not be possible, as the high-frequency content 

would have been compromised. 
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2.1.2 Polyphase decomposition 

Another of the basic techniques used to derive more efficient implementation structures for 

linear filters is the polyphase decomposition. Not only does it reduce the computational 

complexity of multirate systems, it allows for a greater simplification of theoretical results, 

and will thus be used in subsequent sections. 

As it was seen previously, in a subband coder where it is desired to manipulate different 

frequency intervals independently, the input signal is first divided into the various frequency 

subdivisions by means of an analysis filter bank. Then, the output signaIs of the filter bank 

are downsampled, and processing - such as quantization, for example - may be done at 

this point. After the intended operations are completed, these subband signaIs are then 

upsampled and are passed through the synthesis filter bank, completing the interpolation 

and reconstruction procedure. Therefore, originally, the decimator and the expander were 

cradled between two filters in each subband. However, there are two identities, one in the 

case of downsampling and the other in the case of upsampling, that can be derived [1] that 

are helpful in the manipulation and understanding of the polyphase decomposition: they 

are the interchangeability of the order of the filtering operation and the decimator and 

expander blocks. 

x(n) ·1 
H(ZM) 1 xdn) .~ • y(n) 

(a) 

x(n) .~ xorn) .1 H(z) ~ y(n) 

(b) 

Fig. 2.6 Interchangeability of the filter and the decimator. 

Considering Figure 2.6(a), it is clear that: 

(2.3) 
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Next, recalling Eq. (2.1): 

M-l 

Y(e jW ) = ~ L X F(e j(w-27rk)/M), (2.4) 
k=O 

and substituting Eq. (2.3) into Eq. (2.4): 

M-l 

Y(e jW ) = ~ L H(ej(w-27rk»)X(e j(w-27rk)/M). 

k=O 
(2.5) 

Finally, since H(e j(w-27rk») 

Eq. (2.5) becomes: 

H (e jW ) due to the periodicity of the Fourier transform, 

M-l 

Y(e jW ) = H(ejW ) ~ L X(e j(w-27rk)/M) 
k=O 

= H(ejW)XD(ejW), 

proving that the filtering and decimation order can be interchanged. 

.@] x(n)--~ xdn) .1 G(zL) ~ y(n) 

(a) 

·1 x(n)-~ G(z) 1 xF(n) .@] • y(n) 

(b) 

Fig. 2.7 Interchangeability of the filter and the expander. 

Similarly, referring to Figure 2.7, 

and therefore, from Eq. (2.2): 

Y(e jW ) = XF(ejwL ) 

= G(ejwL)X(ejwL), 
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leading to (also following from Eq. (2.2)): 

proving that the order of filter and the expander may be reversed. These identities (illus­

trated in Figures 2.6 and 2.7) are referred to as the Noble identities. 

In the original implementation of a subband coder (Figure 1.1), the analysis filter bank 

outputs a value for every time sample n and then the downsampler discards M -1 samples 

for every sample it retains. This suggests that there should be a manner by which only 

the retained samples are computed, rather than wasting resources by computing useless 

samples. 

Considering the decomposition of the impulse response of a filter h(n) into the M 

subsequences hi(n): 

hi(n) = { h(n + i), 
0, 

if n is an integer-multiple of M 

otherwise, 

it is straightforward to see that h(n) can be recovered through: 

M-l 

h(n) = L hi(n - i). 
i=O 

(2.6) 

The hi(n) are, in fact, an equivalent M-parallel-filter implementation of the original filter 

h(n). 

Next, if the subsequences hi(n) are downsampled by M, the resulting sequences ei(n) 

(2.7) 

are called the polyphase components of h(n). Combining Eq. (2.6) and Eq. (2.7) the 

frequency domain expression relating the polyphase components to the original filter is 

M-l 

H(z) = L Ei(ZM)Z-i. 

i=O 

This equation corresponds to the system shown in Figure 2.8(a) and is an equivalent im-
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plementation to the one shown in Figure 2.6(a). 

x(n) ----r~ 

y(n) 

(a) Filtering process using the polyphase decomposition. 

x(n)----r~ 

y(n) 

(b) More efficient implementation. 

Fig. 2.8 Polyphase implementation of H(z). 

Recalling the previously enunciated identity (Figure 2.6), the order of the polyphase 

component filters and the decimator can be reversed yielding the system in Figure 2.8(b). 

Because the downsampling pro cess now occurs before the filtering, the unused samples are 

no longer computed, resulting in an economy on the number of computations [1]. 

Similarly, in the case of the reconstruction process, where the upsampling process pre­

cedes the synthesis filters Fk(z) (see Figure 1.1), the zero-valued samples inserted by the 

expander are operated on by the filters. Therefore, savings will be incurred if the filters 

can be modified such that they deal only with samples containing pertinent information. 

Through an identical manipulation, a filter f(n) can be decomposed into its polyphase 

components: 
L-l 

F(z) = L R(ZL)Z-i, 
i=O 

and can be graphically depicted as shown in Figure 2.9(a). Again, applying the identity 
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x ( n) ------.----+1 y(n) 

(a) Filtering pro cess using the polyphase decomposition. 

x (n) ------.----+1 y(n) 

(b) More efficient implementation. 

Fig. 2.9 Polyphase implementation of F(z) 
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for the case of the expander, the system in Figure 2.9(a) can be rearranged to yield the 

system depicted in Figure 2.9(b). 

As in the case of the downsampling operation, the economy in computation results from 

the fact that the filtering is done at the lower sampling rate, rather than the higher one [IJ. 

Finally, it is convenient for theoretical and experimental manipulations to introduce 

the expression of the polyphase components of a filter bank in matrix form. The N x M 

analysis polyphase matrix E(z) has elements [E(z)kn defined as [14J: 

00 

[E(z)kn = L hk(mM - n)z-m, (2.8) 
m=-oo 

where k = 0, ... , N -1 and n = 0, ... , M -1. Here, N corresponds to the number of subbands, 

hk(n) is the filter corresponding to the k-th subband, while M is the downsampling factor. 

Similarly, the Mx N synthesis polyphase matrix R( z) has elements [R( z) kn defined as 

[14J: 
00 

(2.9) 
m=-oo 

where k = 0, ... , N - 1 and n = 0, ... , M - 1. 

By replacing the filters with their polyphase components and reversing the order of the 

filtering and downsamplingjupsampling blocks, the subband coder from Figure 1.1 can be 

redrawn as shown in Figure 2.10. 

x(n)-----,-~ x(n) 

E(z) R(z) 

Fig. 2.10 Matrix representation of a subband coder using the polyphase 
decomposition. 



2 Multirate systems 17 

2.2 Filter bank design 

One of the advantages of multirate systems is that the sampling theorem need only be sat­

isfied on the sum of the channels, rather than on each one individually [4]. Consequently, 

unrealizable ideal bandpass filters are no longer needed in the analysis bank, while simul­

taneous design of the bank is now required. This section takes a doser look at the parallel 

design of the filters contained in the filter bank. First, the possible distortions that may 

be caused by a filter bank are discussed, followed by a presentation of the conditions guar­

anteeing perfect reconstruction of the input signal. Finally, the lossless lattice structure is 

introduced, which will be used in the design of the filter banks in Chapter 3. 

2.2.1 Distortion 

There are three types of distortion that a signal passing through a filter bank may be 

subjected to: Aliasing Distortion, Amplitude Distortion and Phase Distortion. 

Aliasing Distortion (ALD) 

Referring to Figure 1.1, the overall relation that governs the system, using Eq. (2.1) and 

Eq. (2.2), is 
N-l M-l 

X(z) = ~L L Fk(z)Hk(zWn)X(zwn), 
k=O n=O 

(2.10) 

where W n replaces e-j~n for simplicity [2]. From this equation, it is clear that the output 

X(z) contains the original signal X(Z) and M - 1 aliasing components X(zW n
) where 

n> O. It stands to reason that if it were possible to choose Hk(z) and Fk(z) appropriately 

such that 
N-l M-l 

L L Fk(z)HdzWn)X(zwn) = 0, 
k=O n=O 

the overall system would be alias-free. lndeed, such choices do exist and the conditions to 

be met are set out in the next section. 
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Amplitude Distortion (AMD) 

Assuming that Aliasing Distortion is eliminated, the transfer function relating X (z) and 

X(z) is given by: 

which is a linear time invariant system (LTI). Now, if IT(ejW)1 is not constant for all w, then 

the output signal x( n) will suffer from amplitude distortion. Therefore the overall transfer 

function must be constrained to be all-pass in order to eliminate AMD [2J. 

Phase Distortion (PHD) 

Again, if ALD is caneeled, the output signal x(n) will still suffer from phase distortion if 

the transfer function T(z) do es not have linear phase. Consequently, the transfer function 

T(z) must be FIR and have linear phase [2]. 

2.2.2 Conditions on perfect reconstruction 

During the design of filter banks, FIR filters are often desirable, sinee they are always 

stable, their numerical properties are good and they can achieve linear phase behaviour 

[4]. In particular, if the filters that compose the filter bank are linear phase, then the 

overall transfer function of the system will be linear phase [2] and PHD is eliminated. 

Furthermore, FIR filters do not require pole-zero caneelation between distinct filters during 

the reconstruction proeess [4], which could cause instability in the case where the pole-zero 

caneelation is imperfect due to the precision of the coefficients. Consequently, FIR filters 

were chosen for the simulations in this study and so only the conditions on FIR filter banks 

will be discussed here. 

In [4], two fundamental properties of subband coders are stated and proven. However 

before they are reproduced here, the matrix Hm(z) is introduced: 

Ho(zW) 

H1(zW) 

HO(ZW N - 1 ) 

H1(zWN-l) 

HM-l (ZW N
-

1
) 
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This matrix is alternatively called the modulated filter matrix, due to the W k factors, 

or the alias-component matrix, whose meaning is obvious when recalling Eq. (2.10). 

With this tool in hand, the following properties can be proven [4] 

i) Aliasing-free output is achieved if 

where E(z) is the vector of synthesis filters, and T(z) is an arbitrary transmission filter. 

ii) Perfect reconstruction is obtained if 

where z-k is an arbitrary delay. This ensures that AMD is eliminated as the overall transfer 

function is now all-pass and that PHD is eliminated since the phase distortion is now linear 

(simply a delay). Further, it can be shown that for perfect reconstruction it is sufficient 

that the determinant of E(zM) be a pure delay, and that the delay constraint becomes 

necessary for the case of a downsampling factor of 2 and when the filters are modulated 

[4]. The role of the determinant of the analysis filter matrix is analogous, in the case of a 

single filter, to the minimum phase requirement to achieve reconstruction [4]. 

A theorem is proven in [4]: 

Theorem 1. Aliasing-free reconstruction in a subband coder is possible if and 

only if the analysis filter matrix Hm(z) has rank M (the downsampling factor). 

Although the details of the pro of are excluded here, an intuitive reasoning is given. If 

the matrix E(ZM) has rank M, then each input signal will have a distinct output signal, 

representing a one-to-one transformation (injection). On the other hand, if the rank is 

less than M, then groups of signaIs will yield the same output, making the original signal 

unrecoverable [4]. 

In the derivations in [4], non-linear effects such as quantization were not considered, for 

they cannot be completely eliminated. However, the manner in which they can be reduced 

is reserved for a later discussion. 
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2.2.3 Lossless matrices 

Recalling Figure 2.10, it is clear that if the analysis filters and synthesis filters were designed 

in such a way that they would "cancel" each other's effects in sorne way, the result would be 

a perfect reconstruction system. Indeed, it was proven in [16] that a necessary and sufficient 

condition for perfect reconstruction is that the overaIl response P(z) of the cascade of the 

analysis and synthesis polyphase matrices R(z)E(z) have the foIlowing form 

where d is an arbitrary nonzero constant and K is the overaIl delay through the system. 

Next, if this condition is satisfied the synthesis filters will, in general, be IIR, since , given 

E(z), the determination of R(z) will involve the inversion of E(z). However, in order to 

obtain a linear phase response, aIl the filters employed must be FIR filters, as mentioned 

previously. Referring to the previous section, it is required that the determinant of E(z) 

be a delay. Fortunately, there exists a family of FIR filters for which the determinant is a 

delay: lossless matrices [2]. 

If a transfer matrix L(z) describing the input-output relationship of a system whose 

input vector is ;&.(z) and output vector y"(z) is such that 

where Ev == Ln Qt (nh!.(n) , and c > 0 holds for any input ;&.(z) , the system is said to be 

lossless [2]. Equivalently, the transfer matrix L( z) is lossless if it is stable and 

L(z)L(z) = cl ,for aIl z, (2.11 ) 

where L(z) denotes conjugation of the coefficients, transposition of the matrix and replace­

ment of z by Z-l. This property implies that 

where O(ejW ) denotes transpose conjugation. This further indicates that JcL(z) is unitary 

on the unit circle. 

If E(z), the analysis polyphase matrix, is chosen to be lossless, E-1 (z) is simply E(z), 
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inversion is avoided and the synthesis polyphase matrix R( z) can easily be FIR by choos­

ing R(z) = z-KE(z). Thus, if E(z) can be chosen to be lossless, the objective is thus 

accomplished: aIl filters are FIR, the phase is linear and the filter bank satisfies the perfect 

reconstruction property. FinaIly, choosing R( z) in this manner leads to the following choice 

of filter coefficients: 

f k ( n) = 0: h k( no - 1 - n) 0:::; k :::; N - 1, (2.12) 

where no is the length of the longest analysis filter and 0: is an arbitrary non-zero constant 

[2]. 

The manner in which a lossless E( z) can be achieved and the design of the filter bank 

are reserved for discussion in Chapter 3. 

2.3 Oversampled filter banks 

Attention is now turned to the oversampling of the subband signaIs in a filter bank. Fig­

ure 2.3 reproduces the subband coder with N subbands and a downsampling factor of Al, 

from Figure 1.1 for sake of continuity. (It is also recalled that oversampled filter banks are 

implemented by choosing M < N.) In this section, in order to take a more formaI approach 

x( n) ----,-~ x(n) 
L-__ ------' 

Fig. 2.11 Subband Coder. 

to the problem, a few results on frame expansions in the context of filter banks are first 

presented1 . Subsequently, their relation to subband signaIs and oversampled filter banks is 

drawn. 

1 For a more in depth treatment of frame theory applied to oversampled filter banks, one is referred to 
[6] 
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2.3.1 Frame expansions 

It is well-known from linear algebra that given an N-dimensional vector space RN, any 

vector x in the space can be represented as a linear combination of a set of vectors Ü~i}' 

i = 0,1, ... , K, given that this set of vectors span the space RN. The scalar weights of the 

linear combinat ion are given by the inner product (denoted by (.,.)) of the vector ~ with 

the spanning vectors 12.i' yielding 

K 

~ = L (~, 12.i)12.i· 
i=O 

This is analogous to frame theory. Although an in-depth analysis of frame theory is beyond 

the sc ope of this work, a few results pertinent to filter banks are presented here. 

It can be shown [6] that a given signal x(n) can be expanded as 

N-l 00 

x(n) = L L (X,4>i,j)1/Ji,j(n). (2.13) 
i=O j=-oo 

where the 4>i,j and the 1/Ji,j are members of the families of vectors <I> and 'II respectively, as 

defined in [6]: 

<I> = { 4>i,j : 4>i,j(n) = 4>i(n - jM) i = 0, ... N - l,j E Z }, 

'II = { 1/Ji,j : 1/Ji,j(n) = 1/Ji(n - jM) i = 0, ... N - l,j E Z }, 

where M ::; N. Thus, the analysis of x(n) is performed through a sliding window, using N 

elementary waveforms 4>i (n), while the synthesis is done using the 1/Ji (n). 

In order for Eq. (2.13) to hold for any x( n) that is an element of the space of square 

summable series f2(Z) (i.e. finite energy signaIs) and be implemented in a numerically 

stable way, the families <I> and 'II must constitute frames in ('2(Z). A frame is defined as 

the family of vectors <I> that satisfy the condition 

N-l 00 

Allxl1 2
::; L L I(x, 4>i,j) 12 

::; Bllxl1 2
, (2.14) 

i=O j=-oo 

for sorne constants A > 0 and B < 00 and for any x E ('2(Z). Further, it is emphasized 
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that <I> and \li can only be frames if M :::; N. 

Summarizing, if a signal x(n) is decomposed using the frame <I>, it can be recovered 

through another frame \li. It should be noted that given a certain frame <I>, the recon­

struction frame \li is not necessarily unique [6]. However, there is one solution which is of 

interest: the dual frame to <I> [17]. It is the only synthesis frame that leads to maximal 

noise reduction as the orthogonal component of the additive noise with respect to the range 

of the expansion will be projected to zero (more on this in Chapter 3). 

2.3.2 Filter bank frames 

It can be shown that for a given frame <I>, the filter bank with N subbands whose impulse 

responses hi (n) are related to the members of <I> through 

for i = 0, 1, ... , N - 1, implements a frame expansion, and <I> is termed a filter bank frame 

[6]. lndeed, recalling Figure (2.3), the subband signaIs vi(m) can be written as the inner 

products 

(2.15) 

where hi,m(n) = hi(mM - n) [14]. 
Next, if <I> does in fact constitute a frame, then the signal x(n) can be recovered from 

the subband signaIs when the synthesis filters are given by the members of the synthesis 

frame \li: 

If the filter bank satisfies the perfect reconstruction condition, the reconstructed signal i:( n) 

is equal to the input signal x(n) and can be expressed as 

N-l 00 

i:(n) = L L (x, hi,m}/i,m(n), 
i=O m=-oo 

where /i,m(n) = ft(n - mM). Comparing this result with Eq. 2.14, it is seen that the filter 

bank expands the input signal x(n) as a function of the set {/i,m(n)} [14]. 
Next, a few theorems on filter bank frame expansions are given; for the proofs the reader 
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is referred to [6]. 

Theorem 2. A filter bank implements a frame expanSIOn if and only if its 

polyphase analysis matrix is of full rank on the unit circle. 

Theorem 3. A filter bank implements a tight2 frame expansion if and only if its 

polyphase analysis matrix is paraunitary E(z)E(z) = cl. 

24 

It is noted that these theorems share sorne common points with the conditions on perfect 

reconstruction for filter banks enunciated in the previous section. This is expected, since 

the existence of an analysis frame <I> implies the existence of a frame 'l! that will yield the 

recovery of the original signal x( n). 

Finally, if the filter bank do es implement a frame expansion, the subband signaIs vi(m) 

satisfy (recalling Eqs. 2.14 and 2.15) 

N-l 00 

Allxl1 2
::; L L IVi(j)12::; Bllxl1 2 

i=O j=-oo 

for any signal x(n) in €2(Z). 

2.3.3 Oversampled fllter bank frames 

In the critically sampled case (M = N), the subband signaIs vi(m) yield orthogonal or 

biorthogonal expansions of the input signal x( n) to the filter bank. On the other hand, 

in an oversampled filter bank (M < N) the vi(m) form a redundant representation of the 

signal x(n) [14]. Further, by defining a filter bank analysis operator T that assigns the set 

of subband signaIs vi(m) to an input signal x(n), it is shown in [14] that the range space 

R of the operator T is only a subspace of the codomain [€2(Z)]N of T. 

Similarly, a synthesis filter bank operator U can be defined that maps the set of subband 

signaIs vi(m) to the reconstructed signal x(n). Because the subband signaIs vi(m) are 

contained in a subspace of [€2(Z)]N, U is not unique. This is instrumental in the justification 

of the freedom in the design of the synthesis filters, inherent to oversampled filter banks 

[14]. While only one synthesis filter bank will have the maximal noise reduction property, 

others might have desirable design characteristics. 

2A tight frame corresponds to Allxl1 2 = L:;:~1 L:~-oo I(x, (!>i.j) 12 = Bllxl1 2 
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Again, the details of this theory is beyond the scope of this text, so only an intuitive 

overview was given because the result is pertinent to the design of the noise-shaping system 

used in oversampled filter banks, which will be treated in the following chapter. 

2.4 Summary 

In this chapter, notions instrumental to multirate signal processing such as downsampling, 

upsampling and the polyphase decomposition were first introduced. Subsequently, topics 

in filter design were discussed in order to facilitate the obtention of filter banks. In par­

ticular, the condition for perfect reconstruction was enunciated and a manner in which it 

is satisfied while keeping aIl filters at a finite length was described. FinaIly, oversampled 

filter banks were presented in the context of frame theory, which was briefly touched upon. 

The conclusion was that oversampled filter banks not only permit a certain design freedom 

for the synthesis filter bank, but also yield a redundant representation of the signal input 

to the analysis filter bank. The manner in which this redundancy can be used is the main 

focus of Chapter 3. 



Chapter 3 

Oversampled filter banks with 

quantization noise shaping 
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ln order to investigate the performance of an oversampled subband coder, the design of 

the filters used in the signal decomposition according to the conditions enunciated in the 

previous chapt ers is essential. The first topic discussed in this chapter will thus be the 

method used in the design of these filters. Then, attention is turned to the derivation of 

the noise-shaping filters, based on the previously obtained analysis and synthesis filters. 

3.1 Iterative fllter design 

ln this section, it is first discussed how the design method for the filter banks was chosen, 

followed by an outline of the selected method and finally a description of the optimization 

algorithm. 

3.1.1 Justification of the choice of the design method 

As mentioned previously, there is a certain amount of design freedom inherent to over­

sampled filter banks: because the subband signaIs vi(m) are contained within a subspace 

of the codomain [f2 (Z)]N, the reconstruction frame is not unique. Hence, there are many 

synthesis filter banks that willlead to the recovery of the original signal x(n). Indeed, there 

is an emerging exploration of this freedom [10], [12], [13], [11]. However, of all the possible 

reconstruction frames, there is one frame that has a maximal noise reduction property: the 

2005/04/20 
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dual to the analysis frame. 

The para-pseudo-inverse is defined as: 

R(z) = [E(z)E(z)t1E(z). 

Recalling that perfect reconstruction is obtained if the analysis and synthesis polyphase 

matrices satisfy R(z)E(z) = lM, the para-pseudo-inverse R(z) of E(z) is the minimum­

norm least-squares solution [18]. Applied to filter banks, this means that R(z) is the 

particular solution that minimizes the reconstruction error variance due to the quantization 

pro cess 1 , when compared to all other perfect reconstruction synthesis filter banks. This is 

in fact equivalent to the frame dual to the analysis filter bank [14]. Further, recalling the 

definition of a lossless matrix (Eq. (2.11)), if E(z) is chosen to be lossless, R(z) is then 

given by 
, - 1-
R(z) = [cI]-lE(z) = -E(z). 

c 

And so the choice of a lossless E(z) is once more justified: not only does it produce FIR 

synthesis filters as the inversion of E(z) is avoided, but it also yields the synthesis filter bank 

corresponding to the frame dual of the analysis filter bank, minimizing the reconstruction 

error (more on this in Section 3.2). 

Because this work is focused on noise-reduction, it is not desired to take advantage of 

the design freedom of the filter banks. Consequently, filter banks that satisfy the perfect 

reconstruction condition for a critical sampling rate are adequate. In fact, if M < N for 

an N-channel filter bank designed for the critically sample case, the reconstructed signal 

i(n) will not be affected, except for a scale factor [19], given that the oversampling ratio 

K = N / M is an integer. Furthermore, perfect reconstruction filter banks allow for a 

comparison in performance between critically and oversampled filter banks. 

Cosine-modulated filter banks were chosen for this work, as their design involves the 

construction of only one filter: the prototype filter is then modulated in order to obtain 

the remaining member filters of the filter bank. Moreover, cosine-modulated filter banks 

were chosen since their subband signaIs are real-valued, given that the input signal is also 

real-valued, as opposed to discrete Fourier transform filter banks whose resulting subband 

signal will be complex [10]. 

Ithe reconstruction error variance due to the quantization process will be defined in the following section 
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The selected design method was proposed by Koilpillai and Vaidyanathan [20J. This 

method was chosen because the resulting filter banks satisfy the perfect reconstruction 

condition, the number of channels can be arbitrarily selected and aIl the analysis and 

synthesis filters are of equallength. Furthermore, the objective function to be optimized is 

relatively simple and requires a smaIl number of parameters to be optimized, while it can 

be shown that the perfect reconstruction property is maintained, even when the coefficients 

are quantized [20J. 

Finally, the optimization method for the objective function was based on [21J. The 

minimization is achieved using the modified Newton method, which allows for the selection 

of the search direction and the size of the steps used to find a solution. This selection is 

critical as a larger step size will increase the speed with which the algorithm converges to 

a solution, while if it is too large the optimal solution may never be reached [22J. 

3.1.2 Cosine-modulated fllter banks using a lossless lattice structure 

Since the perfect reconstruction property of the filter bank is ensured by the choice of a 

lossless analysis filter bank E(z) [20], conditions on the design of E(z) such that it is lossless 

must first be enunciated. To do so, the polyphase representation of the prototype filter 

Po(z) is first rewritten as 

2mN-l 
Po(z) = L po(n)z-n 

n=O 

2N-l m-l 

= L L po(q + 2pM)z-q+2PN 
q=O p=o 

2N-l L z-qWq(z2N). 
q=O 

(3.1) 

It is noted that this equation appears different than the previously defined polyphase de­

composition, but upon doser inspection it is dear that it is essentially the same. This 

new expression is possible because the length of the prototype filter is constrained to be 

Lh = 2mN, as the polyphase components are constrained to a length of 2m. It will be seen 

shortly that this re-indexing simplifies the derivation and implementation of the design 

strategy. 
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Indeed, since the prototype filter is linear phase (and hence symmetric) and its length 

is Lh = 2mN, the polyphase components Wq(z) are related by 

(3.2) 

Next, it can be verified [20] that a necessary and sufficient condition for E(z) to be lossless 

is that the appropriate pairs of polyphase components of Po(z) be power complementary: 

(3.3) 

Further, it is noted that due to the symmetry of the prototype filter demonstrated by 

Eq. (3.2), the power complementary condition in Eq. (3.3) is redundant. An equivalent 

condition is then given by 

for Neven, while 

Wk(Z)Wk(Z) + WN+k(Z)WN+k(Z) 

Wk(Z)Wk(z) 

for N odd [20]. 

2~ for 0 :::; k :::; llf J - 1, 

2~ for k = N:;l 

It is observed that in the case of an odd number of channels N, the component 

W(N-l)/2(Z) (and WN+(N-l)/2(Z) by symmetry) is constrained to be a pure delay, deter­

mined by the length of the prototype filter Lh. 

Next, attention is turned to the manner in which these pairwise power complementary 

polyphase components can be obtained. It is stated in [20] that any FIR bounded-rea12 

pair {S(z), T(z)} that satisfies 

S(z)S(z) + T(z)T(z) = 1, Vz (3.4) 

can always be realized as the nonrecursive cascade of two-channel lossless lattice structures 

[20]. Thus, the pair {Wk(z), WN+k(z)} can be generated by the cascade of m - 1 lattice 

structures, shown in Figure 3.1. In this figure, the superscript p denotes the pth lattice 

2A stable digital filter H(z) with real coefficients is said to be bounded-real if IH(ejW)1 ::; 1, Vw. 
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Fig. 3.1 Two-channel lattice section 

section (1 ::; p::; m - 1), Ck,p = cosek,p and Sk,p = sinek,p. Henee, the k {Wk(z), WN+k(Z)} 

pairs (0 ::; k ::; l ~ J - 1) are obtained as the output of k parallel implementations of the 

cascade of m - 1 two-channel lattice sections. 

Next, given that the transfer functions from the input to the output of the pth section 

of the k th lattiee are {W~p) (z), W:lk(z)} , they can be written as 

[

COS ek,p sin ek,p 1 
- sin ek,p - cos ek,p [ 

W~P-l) (z) 1 
-lW(P-l)() , 

z N+k Z 
(3.5) 

1::;p::;m-1 ,O::;k::; l~J-l. 
Finally, the lattice transfer functions are initialized as 

(3.6) 

° < k < lNJ -1. - - 2 

Summarizing, Eq. (3.3) gives the power complementary condition on the pairs of polyphase 

components {Wk(z), WN+k(z)} of the prototype filter Po(z) that ensures that the polyphase 

analysis matrix E(z) is lossless. This then guaranties that the resulting filter bank will have 

the perfect reconstruction property [20]. Next, it was noted that any FIR bounded-real 

pair satisfying Eq. (3.4) can be generated using a cascade of two-channellattiee structures. 

Consequently, the pairs of polyphase components are generated using the l q. J parallel 

cascade of m - 1 lattiee sections, while the remaining components are found using the 
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symmetry defined in Eq. (3.2) and, in the case of N odd, W(N-l)/2(Z) and WN+(N-l)/2(Z) 

are forced to be pure delays. Thus, 2N polyphase components are generated, each with 

length m, and the resulting prototype filter Po(z) has length Lh = 2mN. 

It now remains to determine the optimal parameters (h,p of the two-channel lattice 

structures. This is the focus of the following section. 

3.1.3 Optimization procedure 

Because the perfect reconstruction property is inherently satisfied by the two-channellattice 

structure, it need not be included as a constraint on the optimization of the parameters 

ek,p. The objective function for the minimization is then selected as the stopband energy 

of the prototype filter, defined as [20] 

where the choice of E governs the transition bandwidth of the prototype filter. 

This equation is then rearranged to facilitate the computation: 

where ~(w) = [ COS((Lh - 1)w/2) COS((Lh - 3)w/2) ... cos(w/2)]T 
and ~(n) = [Po(O) po(1) ... po(mN - 1) ]T, i.e. the first mN elements of po(n) [21]. 
The dependence of p on the ek,p stems from the coefficients po(n), who themselves are 

related to the polyphase components Wk(Z2N) through Eq. (3.1), which are generated with 

the two-channel lattice structure whose parameters are the ek,p. 

In order to minimize the stopband energy p(ek,p), Newton's method is used. In order 

to carry out the optimization, the vector e is first defined as an ml ~ J x 1 vector arranged 

as e = [eo,o ... eL-'tJ,o eO,l ... eL-'tJ,m ]T. Then, as derived in [22], the recursive 

adaptive algorithm is given by 

(3.7) 

where en is the vector of parameters to be optimized, en- 1 is the vector from the previous 
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iteration n - 1 and p(.) is the objective function to be minimized. 

Further, the gradient of the objective function \7 p(8) is denoted by D(8) and is deter­

mined by [21] 

{ 
8l!o(n)}T 1 

[D(8)]i = 2 8[8]i UsEo(n), (3.8) 

where Us is Us = J:/2M+ê ~(w )ç{ (w)dw and the subscript i indicates the i th element of a 

vector (1 ::; i ::; ml!f J ). The second order gradient \72 p( 8) is denoted by H (8) and i ts 

elements are determined by [21] 

(3.9) 

The manner in which the vector D(8) and the matrix H(8) can be efficiently obtained 

through various two-channel lattice structures will be presented in Chapter 4. 

Applying Eq. (3.7) to the optimization under study, the nth iteration is then given by 

(3.10) 

Thus, by computing the appropriate matrices, a method has been described through which 

the lattice parameters (h,p can be optimized, based on the algorithm described in [21]. 

With the filter banks generated through this method in hand, attention is now directed 

to the manner in which noise can be reduced by introducing a noise-shaping system into 

the subband coder. 

3.2 N oise-shaping system 

Although there is no noise injected into the system by the subband coding process given 

that the filter banks in Figure 2.10 satisfy the perfect reconstruction condition, if quantizers 

were to be inserted between the polyphase analysis and synthesis filters E( z) and R( z) 

quantization noise would affect the performance of the system. This noise is targeted by 

the noise-shaping system proposed by Bolcskei and Hlawatsch in [14]. In this section, an 

analysis of the quantization noise in oversampled filter banks is first given, followed by an 

explanation of the introduced noise-shaping system. 
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3.2.1 Quantization noise analysis 

In order to facilitate the analysis of the quantization noise, it is convenient to gather the 

inputs Xj(z), j = 0, 1, ... , M -1, to the analysis polyphase filter bank E(z) (see Figure 2.10) 

into the vector ;f(z) = [Xo(z) X1(z) ... XM_1(Z)]T and similarly with the outputs of 

the polyphase synthesis filter bank R(z), t(z) = [Xo(z) X1(z) ... XAJ_l(Z)]T. AIso, 

the additive quantization noise CJ.(m) represents the vector of the quantization noise qi(m), 

i = 0, 1, ... , N - 1, in each subband, yielding 

CXJ 

m=-CXJ 

It is further assumed that CJ.(m) is a wide-sense stationary, zero-mean process, with power 

spectral matrix Sq(z) given by 

CXJ 

Sq(z) = L Cq(l)z-I, 
I=-CXJ 

where the autocorrelation matrix Cq(l) = E{CJ.(m)CJ.H (m - ln· 
This notation then leads to a convenient representation of the subband coder, shown in 

Figure 3.2. 

q(z) 

!(z)~ E(z) ~ R(z) f-.g(Z) 

Fig. 3.2 Subband coder with additive quantization noise 

It is then straightforward to see that the reconstructed signal t(z) is simply 

t(z) = R(z)[E(z);f(z) + CJ.(z)]. 

Assuming a perfect reconstruction system (i.e. R(z)E(z) = lM), the expression for the 
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reconstructed signal becomes 

t(Z) = {f(z) + R(z)2:(z), 

If the reconstruction error dz) is taken to be the difference between the input and recon­

structed signaIs 

~(Z) = t(z) - {f(z) 

= R(z)2:(z), 

it can be shown [3] that it is also wide-sense stationary and zero-mean. AIso, its power 

spectral matrix is given by 

00 

/=-00 

= R(z)Sq(z)R(z). 

The reconstruction error variance a; is then found to be [14] 

(3.11) 

which can be interpreted as the average of the reconstruction error of each subband, a 

familiar result [3]. 

Next, if the noise signaIs qi(m) are assumed to be uncorrelated, white and with identical 

variances a;, the power spectral matrix reduces to [14] Sq(z) = a;IN and Eq. (3.11) is 

simplified to 

a; = a; lTi Tr{R(ejW)RH (ejW)}dw. 
27rM -Ti 

Recalling that the filter bank analysis operator T, defined in Chapter 2, mapped the 

input signal x(n) to a subspace R of the codomain [t'2(Z)]N, it can be shown [14] that 

(again assuming that the subband noise signaIs qi(m) are white and uncorrelated) the 

reconstruction error can be split into two components: one lying in the range R of T, say 

~·dz), and one lying in its orthogonal complement3 , Rl.., say ~R-dz). Moreover, these two 

3In general, any subspace has an orthogonal complement, and together they span the entire space [23]. 
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components are uncorrelated due to the orthogonality of n and nl.. Consequently, the 

reconstruction error variance a; is the sum of the variances of the two components: 

(3.12) 

Further, it can be shown [14] that for a paraunitary filter bank with normalized analysis 

filters, the frame expansion is tight and the frame bounds are A = B = f<, where K is the 

integer oversampling factor. This in turn leads to [14] 

(3.13) 

From Eq. 3.13 it is clear that in the critically sampled case (K = 1), the reconstruction 

error variance a; is simply the quantization noise variance a~. This is expected since the 

only source of noise in this system is the quantization process. By renaming the critically 

sampled reconstruction error variance a~ and inserting it back into Eq. 3.13, the following 

equation is obtained: 

which is consistent with the results in [15] for oversampled analog to digital conversion. 

This equation indicates that there is a reduction in the overall reconstruction error variance 

proportional to 1/ K simply due to oversampling. This can be explained intuitively by the 

fact that, in general, the range subspace n becomes "smaller" relative to the codomain4
, 

as the oversampling factor increases. This, in turn, leads to a reduction of the in-range 

noise component a~.L [14]. Therefore, the redundancy injected by the oversampling of the 

subband signaIs induces an improvement in the subband coder's performance: a reduction 

in error variance represents a gain in output signal-to-noise-ratio (SNR) 

SNR = 10 loglO ( :~) , 

where a; is the signal variance. However, this of course cornes at the cost of a rate increase 

in the subband signaIs by a factor of K. 

4The codomain of a function is the set within which the values of a function lie [23]. 
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3.2.2 Goal of the noise-shaping system 

As mentioned previously, noise-shaping was first developed in the context of oversampled 

analog to digital conversion. When the band-limited analog signal is oversampled, the 

resulting digital signal is then bandlimited to 0 ::; W ::; 'Tf / K as opposed to occupying 

the entire frequency range (0 ::; W ::; 'Tf). However, the power spectral density of the 

quantization noise do es occupy the entire range. It then stands to reason that if this 

noise cou Id be somehow transformed such that it were constrained to the 'Tf / K ::; W ::; 'Tf 

interval, it could be completely eliminated by subsequently applying a lowpass filter with 

cutoff frequency Wc = 'Tf/K. lndeed, the practice is to first estimate the error in the interval 

o ::; w ::; 'Tf / K and then subtract a quantity containing this prediction from the quantization 

error [15]. 

This is analogous to the objective of noise-shaping in oversampled filter banks. Recalling 

that the range n of the previously defined analysis filter bank operator T is a subspace 

of the codomain [€2((Z))]N, the goal is to use the redundancy in the subband signaIs 

vi(n) to effectively "push" the quantization noise into the orthogonal complement nl.. 
[14]. This concept is illustrated in Figure 3.3: the subband signal Vi(z) is limited to 

Sq(e JOJ
) 

~ __ ~~L--+ __ ~~~ __ ~~~~-+ 
2" m 

Fig. 3.3 Illustration of a noise-shaping filter 

w ::; 'Tf / K, while the power spectral density of the noise extends over the full frequency 

range. Recalling that the reconstruction error can be split into two components (as weIl 

as their respective variances, Eq. (3.12)), the purpose of the noise-shaping filter G(z) is to 

predict the component of q:(z) than will cause ~R(z). This quantity can then be subtracted 

from q:(z) and thus attenuate ~R(z) or, ideally, remove it completely. Subsequently, the 

synthesis filter bank will attenuate ~R.L (z). Again, if the synthesis filters are chosen as the 

dual frame, the noise in nl.. will be completely removed. Recalling that the para-pseudo­

inverse R(z) corresponds to the dual frame, its use as the synthesis filter bank is once more 

justified: it can be shown [14] that R(z) removes the component of the noise lying in nl... 
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Thus, it is theoretically possible to completely remove the reconstruction error through a 

judicious choice of both the noise-shaping filters and the synthesis filters. 

3.2.3 System design 

The system proposed by Bülcskei and Hlawatsch [14] is illustrated in Fig. 3.4. The block 

E(z) Q I---~~ R(z) ;(z) 

Fig. 3.4 Oversampled filter bank with noise-shaping 

labeled Q represents the quantizers introduced in each subband and are the source of the 

quantization error 9..(z), referred to previously. The noise-shaping system G(z) is inserted 

between the analysis and synthesis filters such that it may act directly upon the quantiza­

tion noise. Further, the noise-shaping system is an N x N multiple-input-multiple-output 

(MIMO) system. It has been shown that although single-input-single-output (SISO) sub­

band linear prediction systems yield good performances ([24], [25]), better performances 

are achieved using a MIMO system [26]. Intuitively this makes sense: the subband signaIs 

cannot in practice be constrained to a certain frequency band, since the analysis filters 

themselves have a certain transition bandwidth and imperfect attenuation in the stopband. 

Hence, there will necessarily be residual information from neighboring subbands in the 

particular subband under consideration. Consequently, the noise-shaping system - which 

is also a linear predictor as will be seen shortly - is expected to perform better if a MIMO 

system is used. This will indeed be shown in Chapter 4. 

Returning to the system in Figure 3.4, the quantization error 9..(z), taken as the difference 

between the input and the output of the quantizers Q, is fed through the noise-shaping 

filters to produce the estimate of the component lying in R, ~(z). This estimate is then 

subtracted from the subband signaIs Q(z) and the result is subsequently quantized. The 
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reconstructed signal i(z) is thus given by: 

i(z) = R(z)[Q(z) - ~(z) + ~(z)] 
= R(z)[E(z)±(z) - {IN - G(z)}~(z) + ~(z)] 
= R(z)E(zh:(z) + R(z)G(z)~(z). 

38 

Then, if perfect reconstruction filters are used (R(z)E(z) = lM) the reconstruction error 

~(z) will be given by 

~(z) = i(z) - .;r(z) 

= R(z)E(z).;r(z) + R(z)G(z)~(z) - .;r(z) 

= R(z)G(z)~(z), 

the power spectral density matrix of the reconstruction error is 

1=-00 
- -

= R(z)G(z)Sq(z)G(z)R(z), 

and the reconstruction error variance is 

Again, if the quantization error is assumed to be white and uncorrelated and with equal 

variance in all subbands (Sq(z) = (J~IN), the variance of the reconstruction error reduces 

to [14] 

(3.14) 

The objective now is to find the noise-shaping filters G(z) that minimize the reconstruc­

tion error. It was demonstrated in [14] that, using the dual frame for the synthesis filter 

bank, the ideal noise-shaper do es indeed project the noise onto R-i., thus eliminating the 

noise completely, since the synthesis filter bank subsequently suppresses this noise. How­

ever, the ideal noise-shaper cannot be implemented because it is not causal. Non-causality 

indicates that the estimate of the current noise sample depends on both past and future 
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noise samples. This system could therefore not be used in a feedback loop, since the future 

values of the noise samples are not available to the estimator for the simple reason that 

they have not yet been computed. Consequently, the MIMO noise-shaper is constrained to 

be FIR, causal and of the form: 

L 

IN - G(z) = L G1z-1, 
1=1 

where L is the order of the noise-shaping system. 

Hence, the quantization noise estimate ~(n) is given by 

L 

~(n) = L G1!J.(n - l). 
1=1 

It is now obvious how the noise-shaping filter can be interpreted as a linear predictor [22]: 

the estimate of the current noise sample ~(n) is a linear combinat ion of the L previous 

noise samples !J.(n). 

3.2.4 Derivation of the noise-shaping system coefficients 

With aIl these tools in hand, it is now possible to calculate the coefficients G i . First, the 

manner in which the full MIMO system can be obtained will be described, followed by two 

alternatives that are less computationally demanding. 

Complete Interchannel N oise-Shaping System 

As shown in [14], the reconstruction error variance a; under the assumption Sq(z) = a;IN 
as given by Eq. (3.14), can be rewritten 

2 L L L 

a; = ~ Tr{ro - L[rIGT + rTGd + L G~ L r m-1Gd, 
1=1 m=l 1=1 

(3.15) 
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where the ri are defined as: 

m=-oo 
00 

m=-oo (3.16) 
00 

m=-oo 

and the Rrn are defined by R(z) = L~=-oo Rrnz-m. Moreover, for causal filters of finite 

length Lh = J M (J EN), Rrn = 0 for m < 0 and m > J. This results in ri = 0 for 

Ill> J, lending itself weIl to matrix computations. 

Next, it is desired to determine the G i that minimize Eq. (3.15). Therefore, the partial 

derivatives ~2. are set to 0, for i = 1,2, ... , L, and the linear set of equations 

r -(L-I) 

r -(L-2) 
(3.17) 

is obtained [14]. Recalling the definition of the ri, they are essentially the product of time­

shifted versions of R(z) and so could be seen as a type of autocorrelation of the synthesis 

filters. With this interpretation in mind, Eq. (3.17) is reminiscent of the normal equations 

[22], [26], which, when solved, yield the linear least squares estimator. Once more, it is 

observed that the noise-shaping filters are akin to predictors. Although the noise itself is 

assumed to be white, the noise-shaping filters essentially predict the components of the 

quantization noise samples that will be passed by the synthesis filter bank R(z). 

FinaIly, solving Eq. (3.17) yields the complete interchannel noise-shaping coefficients. 

Rewriting Eq. (3.17) with Gi,opt as the solution to Eq. (3.17) 
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and inserting into Eq. (3.15), the minimum reconstruction error variance a;,min is found to 

be [14] 

(3.18) 

As a last note, for a lossless filter bank with normalized analysis filters Tr{ro} = ~. 
2 

Inserting this result into Eq. (3.18), a;,min = ~ corroborating the result in Eq. (3.13). 

Local interchannel noise-shaping system 

In order to reduce the computational complexity of the system, the number of interchan­

nel dependencies considered is reduced. Here, the use of dependencies on only the ad­

jacent channels is explored. This strategy is expected to yield only a slight degradation 

in performance when compared to the complete interchannel noise-shaping system since 

the transition bandwidth of the synthesis filters cause the most significant overlap of the 

frequency responses to be in adjacent subbands. Therefore, the correlation between ad­

jacent synthesis filters is greater than that between the remaining filters and so the local 

interchannel noise-shaping system exploits most of the useful information available to the 

MIMO system. 

In this case, the ri are modified such that only the main and off-diagonal elements of 

the ri are selected, while the remaining entries are set to o. They are then re-inserted into 

Eq. (3.17), which is solved to yield the local interchannel noise-shaping system. The only 

nonzero elements of the resulting N x N noise shaping filter G(z) are then also located 

on the main and first off-diagonals. Finally, the minimum reconstruction error variance is 

[14]: 

(3.19) 

(1) [ ] (1) [] where the 9i,i correspond to G I i,j and the li,i = ri i,j· 

Intrachannel Noise-Shaping System 

Because the solution to Eqs. (3.17) involves the inversion of a matrix whose dimensions 

grow linearly with the order of the noise-shaper and the length Lh of the synthesis filters, 
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performance is once more traded for reduced complexity and (as will be seen in Chapter 4) 

better conditioning of the matrices. Here, the system under consideration is SISO. Although 

it cannot perform as weIl as the MIMO system [26], fair results can still be expected [24], 

[25], especially for a small system or der. 

The noise-shaping system is therefore constrained to take advantage of intmchannel 

dependencies only, meaning that there are separate noise-shaping systems in each channel, 

and thus a diagonal G(z) [14]. Consequently, Eq. (3.15) is reduced to: 

2 L L L 
2 _ aq {(O) '"'[ (1) (1) (1) (1)] '"' (m) '"' (m-I) (I)} 

ae - M Tr li,i - L li,i 9i,i + li,i 9i,i + L 9i,i L li,i 9i,i' 
1=1 m=1 1=1 

(3.20) 

Again, by setting the derivatives :a; = 0, for i = 0,1, ... , N - 1 and l = 1, ... , L, the N 
T'l,l 

L x L linear sets of equations: 

",\",L (l-m) (m) (1) 
L..m=1 1 i,i 9i,i = I(i,i) for l = 1, ... , Land i = 0, ... , N - 1, (3.21 ) 

are obtained. Further, the obtaining of the noise-shaping coefficients is simplified by ar­

ranging Eq. (3.21) as 

Ai9 =, for i = 0,1, ... , N - 1, 
-t -t 

(3.22) 

where [Ai]1 m = ",,(l-m) [9.]1 = 9(/) and ["".]1 = ",,(1). Finally using ",,(m-/) = ",,(m-/) from 
1 11,1' -1. t,1 ....!....t It,t ' It,t 1t,1 

Eq. (3.16) and inserting the solution to Eq. (3.22) into Eq. (3.20), the minimum recon-

struction error variance in this case is given by [14] 

(3.23) 

3.3 Summary 

In this chapter, the use of cosine-modulated filter banks using a lossless lattice structure 

was first justified: aIl the filters are FIR - allowing for an ove raIl linear phase - and the 

resulting synthesis filter bank corresponds to the frame dual to the analysis filter bank, 

which eliminates the noise in Rl.. Further, perfect reconstruction cosine-modulated filter 

banks permit a comparison between critically sampled and oversampled filter banks. Then, 

the two-channellattice structure was discussed, leading into the optimization of the lattice 
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parameters. An analysis of the noise in a subband coder introduced by the quantization 

process was then given, followed by the goal of the noise-shaping system: predicting the 

noise component in R in order to be able to remove the corresponding estimate from the 

subband signaIs. Only the noise component in Ris of concern, seeing as the synthesis filters 

employed subsequently remove the compone nt lying in Rl... Finally, a manner in which to 

obtain the optimal noise-shaping coefficients was described, including more computationally 

efficient noise-shapers whose reduction in complexity came at the cost of an expected 

decrease in performance. 
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Chapter 4 

Investigation 

Although, the optimal noise-shaping system was derived in [14], there was only a limited 

amount of experimental results. It was thus desired to study the effect of using different 

filters on the performance of the noise-shaping system. In this chapter, the setup of the 

investigation is first presented: in order to form an adequate test bed, it was required 

to generate filter banks with a different number of subbands and different filter lengths. 

Subsequently, the noise-shaping system in Figure 3.4 was implemented, using the designed 

filter banks. It was then possible to firstly discuss the theoretical and simulation results, and 

secondly to evaluate the effects of different characteristics of the filter banks, such as filter 

length, degree of overlap between subbands and perfect-versus near-perfect reconstruction. 

4.1 Iterative fllter design 

This section first describes the manner in which the generated filter banks were obtained, 

followed by the presentation of the resulting filter banks. It is then verified that they satisfy 

perfect reconstruction by introducing them into a subband coder. 

4.1.1 Design algorithm 

An algorithm based on [21] using the tools described in sections 3.1.2 and 3.1.3 was im­

plemented using MATLAB, in order to obtain filter banks pertinent to the discussion. An 

outline of this algorithm is presented here. 

2005/04/20 
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Step 1 

First, the vector 8 is initialized by setting the ml !f J elements to 

() _ { ~, P = 0, 0 ::; k ::; l ~ J - 1 
k,p - ~,1 ::; P ::; m - 1, 0::; k ::; l ~ J - l. 

( 4.1) 

By substituting these values into Eqs. (3.5) and (3.6) and subsequently using the determined 

polyphase components to generate po(n), it ca be deduced that [20] 

( ) 
_ { 1, (mN - N) ::; k ::; (mN + N - 1) 

Po n -
0, else. 

(4.2) 

It is stated in [20] that this prototype generally has a stopband attenuation of approximately 

13 dB and a cutoff frequency Wc < :r rad. Indeed, Figure 4.1 shows an example of the 

prototype filter 1 generated using the initial conditions given by Eq. (4.1) and N = 16 

subbands: it is observed that the stopband attenuation is approximately 14 dB, while 

the 3 dB cutoff frequency Wc ~ ~, well below the desired cutoff frequency of ;6. The 

optimization procedure is thus begun with a valid filter. 

30 

20 
1-... Po(~ initial 1 

EO 10 
2-.., 
"0 

0 2 
·2 
0Il 
<Il 

::; -10 

-20 

-30 
0 0.5 1.5 2 2.5 3 3.5 

Frequency (rad) 

Fig. 4.1 Magnitude of the frequency response of the prototype filter 
(IPo(ejw)I) using the 8k,p given by the initial conditions in Eq. (4.1), with 
N = 16 and m = 2. 

1 Here and in ail subsequent figures, the phase of the frequency response is omitted as it is always linear 
and provides no further insight. 
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It is further noted that it is appropriate to compute the matrix Us (see Eqs. (3.8) and 

(3.9)) at this point, as it is do es not depend on 8. 

Step 2 

The elements of the vector D(8) and the matrix H(8) are now computed for the (n - l)th 

iteration of 8. 

Recalling Eq. (3.8), the partial derivatives of the first mN coefficients prototype filter 

with respect to the [8L must be obtained. Using Eq. (3.1), 

(4.3) 

such that D(8) can be directly obtained from the partial derivatives of the polyphase com­

ponents. Further, it was noted that these partial derivatives could be obtained efficiently 

through the cascade of two-channellattice structures (see Appendix A): 

= [ cos (h,i 

sin Ok i 
sinOki 1 

- COSOk,i 

and the lattices are initialized as: 

= [ - sin Ok,i cos Ok,i 1 
cos Ok,i sin Ok,i 

and 

[ 

âW~O\z) 1 [. 1 âBk smOk,O. 
âW(Ol'o(z) 0' Z = P = 0 , 

Ntk - cos k 0 
âBk,o ' 

i>p 

for 0 ::; k ::; l ~ J - 1, while the remaining partial derivatives are aU 0 (Appendix A). 

(4.4) 

The elements of the vector D(8) are then obtained by rearranging the polyphase com­

ponents via Eq. (4.3) to yield the 8po(n)/80k ,p for this iteration, while 8E~(n)/8[8li is taken 

as the first 8po(O)/80k ,p'" 8po(mN - 1)/80k ,p and substituting the appropriate values into 

Eq. (3.8). 

Next, recaUing Eq. (3.9), the second order partial derivatives of the first mN coefficients 
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prototype filter with respect to the [8]i, [8]j must be obtained. From Eq. (3.1), 

(4.5) 

it is seen that H(8) can be directly obtained from the second order partial derivatives 

of the polyphase components. Again, the elements of H(8) can be obtained through the 

cascade of two-channel lattice structures (see Appendix A). This time, there are 4 cases 

for which the second order partial derivatives are non-zero: 

1. i > p and i > q 

2. i = p < q 

3. i = q < p 

4. z = p = q 

[

COS fh,i sin fh,i 1 
sin Ok' - cos Ok . ,1- ,1 

[
-sin Ok,p cos Ok,p 1 
cos Ok,p sin Ok,p 

[
-sin Ok,q cos Ok,q 1 
cos Ok,q sin Ok,q 

= [ - cos Ok,p - sin Ok,p 1 
- sin Ok,p cos Ok,p 

Finally, the second order partial derivatives are initialized as 

[ 

_8 W(p-1)(Z) 1 
8(h,q k 

-1 8 (p-1) 
Z 8(h,qWN +k (z) 

[ 

_8 W(q-1)(",) 1 
80 k "" 

-1 k'a W(q-1)() ; 
z 80 N+k z k,p 
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Step 3 

Recalling Eq. (3.10), the search step size À is then set and the vector en can now be 

computed. With this new set of parameters, Step 2 and 3 are repeated, until an appropriate 

number of iterations have been made. The appropriate number of iterations is determined 

by the rate of convergence of the algorithm: by monitoring the stopband energy p, it is 

possible to determine the number of iterations needed for the stopband energy to stabilize 

at a minimum. It was found to be in the vicinity of 10 iterations for the employed filter 

banks. 

Increasing the fllter lengths Lh = 2mN, m > 2 

Recalling the initialization of the vector e (Eq. (4.1)), it is clear that the initial prototype 

filter is independent of the length factor m. lndeed, this corresponds to only 2N coefficients 

being non-zero (Eq. (4.2)). Consequently, this approach works well for small values of m 

[20], but breaks down at higher values. This phenomenon was observed in the implemented 

algorithm and was resolved using a method suggested in [20]. An minit for which the 

algorithm works well is selected and the first minit l ~ J values of e are obtained. These 

are then used as the initial conditions, while setting the remaining Bk ,minit+ 1 = 7r /2. The 

algorithm is then run again, with the new initial conditions. This can then be repeated for 

bigger m. 

4.1.2 Obtained fllter banks 

Because of the filters available for comparison purposes, perfect reconstruction filters of 

lengths N = 8, 16,32 were generated using the described algorithm. 

N=16 

An analysis filter with N = 16 subbands was first generated, such that the results presented 

in [14] could be verified. 

Figure 4.2 shows the magnitude of the frequency response of the generated 16-subband 

prototype filter, with Lh = 2mN = 64, along with the initial prototype filter from Fig­

ure 4.1. The corresponding filter coefficients po(n) are given in appendix B.2. 
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It is clear that the iteration was successful: it decreased the stop band attenuation by 

approximately 25 dB. 

N=8 

Next, as will be seen shortly, it was desired to evaluate the effect of variations in filter 

length and degree of subband filter overlap on the noise-shaping system. Thus, Lapped 

Orthogonal Transform (LOT) filters [27] were used for their wider transition bandwidth, 

with N = 8 and Lh = 16. Due to their relatively short lengths, this type of filter bank can 

be alternatively interpreted as block transforms, whose basis functions overlap adjacent 

blocks by 50%. The LOT was developed with the aim of reducing the discontinuities in the 

reconstructed signal at block boundaries. Consequently, their design involves the constraint 

of the basis functions being both orthogonal within the same block as weU as with the basis 

functions of the two neighboring blocks, meaning that the design of aU the filters of the 

filter bank must be done simultaneously, as opposed to the cosine-modulated case, where 

only the prototype filter is designed, as discussed in section 3.1.1. 

Thus, for an appropriate comparison, it was then required to generate filters with 8 

subbands, since the employed LOT fil ter bank had also been designed for 8 subbands. The 

frequency responses of the designed filters are shown in Figure 4.3, and their corresponding 

coefficients are given in appendix B.l. 
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It is seen that increasing the length factor m does increase the stopband attenuation: 

by taking m from 2 to 3 (effectively increasing the length Lh from 32 to 48) there is 

approximately a 5 dB stronger attenuation. The frequency response of the first filter in the 

filter bank from [27] is also shown, and it is clear that the transition bandwidth is much 

wider, inducing a larger overlap between neighboring subbands. Again, the effect of the 

degree of overlap on the system will be discussed in section 4.2. 

N=32 

Next it was desired to compare the performance ofperfect versus near-perfect reconstruction 

filter banks. It might seem counterintuitive to produce near-perfect reconstruction when 

perfect reconstruction has been shown to be achievable. However, as was seen previously, 

there is a highly non-linear relation between the prototype filter po(n) and the lattice 

coefficients. Thus, the optimization procedure is very sensitive to changes in the lattice 

coefficients [28]. Consequently, it is difficult to design perfect reconstruction filters with a 

high stopband attenuation. By relaxing the perfect reconstruction condition, it is actually 

possible to design near-perfect reconstruction filters with a high stopband attenuation [28]. 

lndeed, Figure 4.4 shows the frequency responses of the perfect reconstruction prototype 

filter po(n) (Lh = 128, m = 2) and that of the first filter of a near-perfect reconstruction 

filter bank (N = 32, Lh = 256), from [28]. The stopband attenuation achieved by the near-
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perfect reconstruction filter is almost 55 dB, while that the perfect-reconstruction filter 

is barely 15 dB. Further, it is shown in [28J that although perfect reconstruction is not 

achieved, the most significant aliasing terms are canceled and so near-perfect reconstruction 

is accomplished, with the reconstruction error being of the same order as the stopband 

attenuation of the filters. 

4.1.3 Filter bank implementation 

Next, the obtained prototype filters were cosine modulated to obtain the member filters 

of the filter banks. It can be verified [20J that through this procedure the analysis and 

synthesis filters are then related as in Eq. (2.12). Subsequently, the filters were normalized 

(such that Ihk(n)1 = 1, for k = 0, ... , N - 1), since it was shown in [14J that paraunitary2 

filter banks with normalized analysis filters corresponded to a tight frame expansion. Next, 

the analysis and synthesis polyphase matrices were obtained by using Eqs. (2.8) and (2.9) 

and it was verified that R(z) = kE(z) for paraunitary filter banks with normalized analysis 

filters, as shown in [14J. Finally, the subband coder in Figure 2.10 was implemented such 

that the reconstruction of the input signal could be confirmed. With aIl obtained filter 

2Lossless matrices are paraunitary, and thus the resulting filters will also be paraunitary 
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banks, the signal-to-noise-ratio (SNR) was obtained as 

SNR = 1010g10(:~)' (4.6) 

where CT; is the variance of the input signal, while CT; is the variance of the reconstruction 

error (taken as the difference between the input and the output). For aIl the perfect 

reconstruction filter banks, the SNR was found to be in the vicinity of 280 dB (a good 

approximation to perfect reconstruction within the confines of finite-precision arithmetic). 

On the other hand, the reconstruction error for the near-perfect reconstruction filter banks 

is only 53.5 dB, which confirms that the reconstruction error is of the same order as the 

stopband attenuation of the analysis and synthesis filters. Moreover, it was observed that, 

without noise-shaping (i.e. L = 0) Eq. 3.13 he Id and is verified by aIl of the figures 

in the foUowing section that show the normalized reconstruction error variance. Indeed, 

an oversampling factor of K = 2 yields a normalized reconstruction error variance of 
a 2 . a 2 . 
€!~,n ~ -3 dB, K = 4 yields €!~,n ~ -6 dB, etc. 
a q a q 

4.2 Noise-shaping system 

The noise-shaping system proposed by B6lcskei in [14] and reproduced in Figure 3.4 was 

then implemented. The quantizers used had equal stepsizes in aU subbands and an infinite 

dynamic range. AIso, unless otherwise specified, the input x(n) was taken to be a ran­

domly generated auto-regressive (AR(l)) pro cess , with a correlation factor Pg = 0.9. In 

this section, the theoretical performance given by the equations for the minimum recon­

struction error variance is first studied and compared with simulation results, foUowed by 

a comparative study of the various filters. 

4.2.1 Discussion of theoretical and simulation results 

Using Eqs. (3.17) and (3.22), the optimal coefficients for the noise-shaping system were 

found, for the intrachannel, complete and adjacent interchannel noise-shaping systems. 

These were then substituted into Eqs. (3.18), (3.19) and (3.23) to find the theoretical 

reduction in reconstruction error variance due to the noise-shaping system, with respect to 

the quantization noise variance. The coefficients were then inserted in the feedback loop 
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and the simulated reconstruction error variance was obtained. It is noted at this point that 

only a selected set of results are shown in this section that exemplify the observed behavior 

of the various systems studied. 

Ill-conditioning of the matrices 

It was found that the simulation results coincided with the predicted values, up to a certain 

order of prediction. This is exemplified in Figure 4.5, where the normalized error variance 
2 

- taken as 10 IOglO(c~';'in) - is shown as a function of the noise-shaping system order L. 
q 
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Fig. 4.5 Comparison of theoretical and simulation results of the complete 
interchannel and the intrachannel noise-shaping systems, demonstrating the 
deviation in performance of the complete interchannel noise shaping system 
from the projected result (N = 16, Lh = 64 and K = 8). 

It is clear that although the intrachannel noise-shaping system performs consistently 

at higher system orders, the complete interchannel system does not. In addition, the 

theoretical prediction of the reduction of the reconstruction error deviates from expectation: 

while an increase in system order should yield a better estimate of the reconstruction 

error lying in nl.. (and thus a better reduction in reconstruction error) , it seems that 

the performance actually deteriorates beyond a system order of L = 4. Upon further 

investigation, it was found that this deterioration in performance coincided with an increase 

in the condition number of the matrices in Eqs. (3.17) and (3.22) (see Figure 4.6). 
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For an invertible real or complex square matrix A, the condition number I"i:(A) is defined 

as [29]: 

I"i:(A) = IIAIIIIA -111, 

where Il . Il is the operator norm. The operator norm of a linear operator A : X -+ U 
is defined as IIAII = sup IIA(~) Il [18]. In the case that the linear operator A is given by 

11±1I=1 
a matrix A - as is the case here - the IIAII is given by the square root of the largest 

eigenvalue of the matrix (equivalently the largest singular value) [23]. Thus, the condition 

number of an matrix is given by the ratio of the largest singular value of a matrix to the 

smallest singular value of the matrix. 

As shown in [29], condition numbers estimate the relative error in the solution of a 

linear set of equations A~ = :g, due to the relative error both in ~ and A. Further, it was 

stated that taking the base 10 logarithm of the condition number yields the loss of precision 

in numbers of digits. Thus, when a matrix has a very large condition number, it is termed 

ill-conditioned since there is a considerable loss of accuracy in the solution of the set of 

linear equations. Returning to Figure 4.6, it is clear that the matrices used in the solution 

for the complete interchannel noise-shaping system are ill-conditioned for a system order 
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L 2:: 4, and thus the obtained results beyond this point are increasingly inaccurate. 

Finally, it is noted that in subsequent figures, where the matrices are ill-conditioned the 

corresponding performances of the noise-shapers were omitted. 

Comparison of the intrachannel, complete and local interchannel noise-shaping 

systems 

Although the minimum reconstruction error vanance was derived in [14] for the three 

different noise-shaping systems, no comparison between the obtained system was given. 

Further, as it was observed that the matrices for the intrachannel noise-shaping system 

were better conditioned than those of the complete and local interchannel systems, it was 

desired to compare the performances of these three cases, to establish whether or not the 

intrachannel system could produce better results by increasing the system order, when 

compared to the point at which the remaining two failed, due to ill-conditioning. 

Figure 4.7 compares the performance of all three noise-shaping systems for a filter bank 

with N = 16 subbands. As expected, the complete interchannel noise-shaping system 

consistently outperforms the other two systems, while the local interchannel system does 

show an impressive performance. 
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Fig. 4.7 Comparison of the intrachannel, complete and local interchannel 
noise-shaping systems (N = 16, Lh = 64 and K = 4). 
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The superiority of the complete interchannel system is expected: as mentioned pre­

viously, the MIMO system takes advantage of the most possible information from aIl the 

other subbands. On the other hand, for low system orders (L ::; 3), the performance of local 

interchannel noise-shaping system is almost identical to that of the complete interchannel 

system. As discussed in chapter 3, the good performance of the local system is due to the 

fact that the most significant overlap of the analysis filters is in adjacent bands, such that 

this MIMO system exploits most of the information useful to the noise-shaping process. 

Indeed, Figure 4.8 shows the logarithm of the magnitude of the entries of the N L x N L 

matrix in Eq. (3.17), for the complete interchannel noise-shaping system. 
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Fig. 4.8 Graphical representation of the matrix of ri 's of Eq. (3.17) for 
a system order L = 4, N = 16 subbands and K = 4, where brightness is 
proportional to the logarithm of the magnitude of the entries of the ri 

Recalling the expression for the elements of the synthesis polyphase component matrix 

in Eq. (2.9) and that for the N x N C in Eq. (3.16), it is clear that the ,;~k represent 

the correlation between the synthesis fil ters Fi (z) and Fj (z), for different time-shifts l. 

Thus, the diagonal elements of the ri are the autocorrelations of the synthesis filters, while 

the first off-diagonal elements are the cross-correlations of the synthesis filters in adjacent 

subbands3 . Examination of Figure 4.8 reveals that the cross-correlations between adjacent 

subbands is much greater than that of the remaining channels, confirming the postulation 

3This justifies the derivation of the local interchannel noise-shaping system by setting al! but the main 
and first off-diagonal elements of the ri to zero. 
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that most of the information useful to the MIMO noise-shaping system is inherent to the 

adjacent subbands. 

Further, the local interchannel system cornes at a reduced complexity: it only has 3N-2 

noise-shaping filters, while the complete interchannel system has N 2 filters. 

Unfortunately, the intrachannel noise-shaping system performs rather poorly, when 

compared to the other two systems. Thus, although it is generated using better condi­

tioned matrices, it is still advantageous to use both the complete or local interchannel 

systems. 

4.2.2 Performance evaluation 

Attention is now turned to the comparison of the the performance of the noise-shaping 

system with the use of filters with different characteristics. 

Length of filters and degree of overlap between subbands 

As mentioned previously, the LOT filter bank was chosen as a basis for comparison on the 

topics of length of filters and degree of overlap between subbands, due to their short length 

and their significant overlap between subbands (recall Figure 4.3). 

In order to evaluate the significance of the length of the filters, the performance of the 

three filters - the LOT and the designed cosine-modulated perfect reconstruction filter 

banks, denoted by CMpR - was compared using the intra-channel noise-shaping filters. 

Their performance is shown in Figure 4.9. 

It is clearly observed that increasing the length of the filters improves the performance of 

the noise-shaping filters. This is attributed to the fact that longer filters induce longer-term 

dependencies, which in turn lead to a greater gain. 

The results become more interesting when the performance of the complete interchannel 

noise-shaping system is studied. Referring to Figure 4.10, it is observed that the LOT filter 

banks slightly outperform the CMpR. This is due to the greater amount of overlap between 

adjacent subbands of the LOT filter bank: the effectiveness of using a MIMO system is 

fully appreciated here. 

Moreover, it is noted that increasing the length of the CMpR filters still leads to an 

improvement in the performance. In fact, as the length of the CMpR increases, it is observed 

that its performance approaches that of the LOT filter bank. In addition, the CMpR benefit 
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from better conditioning of the matrices. Indeed, in the case of K = 4 with Lh = 48 a 

gain of approximately 8 dB is achieved by using a noise-shaping system of order L = 3, as 

opposed to using a system order of L = 2 for the LOT. Also, a further gain of approximately 

10 dB is possible by using the CMpR with a shorter length (Lh = 32), but a greater system 

order L = 5. 

Perfect reconstruction vs. near-perfect reconstruction fllter banks 

The focus is now shifted to the performance of the noise-shaping system for near-perfect re­

construction filter banks, denoted by CM. The theoretical performance was first generated 

using Eq. (3.18) and is shown in Figure 4.11. It is seen that the near-perfect reconstruc-
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Fig. 4.11 Performance of the complete interchannel noise-shaping system 
for the designed CMpR filter bank of length Lh = 128 and the near-perfect 
reconstruction filter bank CM of length Lh = 256 (N = 32, K = 4,8,16). 

tion CM filter bank outperforms the perfect reconstruction filter bank and is once more 

explained by the fact that the CM filters have a greater length. However, when the theoret­

ical performance was compared to the simulation results a different behavior was observed 

(Figure 4.12). While the theoretical results predict a further improvement with increasing 

noise-shaping order L, the experimental results show that the performance flattens out 

after a certain prediction order, depending on the oversampling factor. 
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The explanation of this behavior becomes apparent when the resulting SNR is studied. 

Figure 4.13 shows the output SNR of the system in Figure 3.4 for different quantizer 

stepsizes s = 0.1,0.25,1 which lead to quantization error variances, (J~ = -31, -23,-11 

dB respectively, in aU subbands. 

This figure demontrates that beyond an SNR of 53.5 dB, the noise-shaping system no 

longer provides an improvement in the performance of the near-perfect reconstruction filter 

bank. This point coincides exactly with the observed SNR at the output of the filter bank in 

the case that there are no quantizers present. Thus, the performance of the noise-shaping 

system for near-perfect reconstruction filter banks is limited by the reconstruction error 

of the filter bank itself. This is expected since the noise-shaping filters operate on the 

quantization noise and so do not affect the reconstruction error. 

FinaUy, it is noted that there is motivation to use the noise-shaping system when the 

stepsizes of the quantizers are large (Le. a large quantization error) since in this case the 

noise-shapers provide a good improvement in SNR. For example, with a stepsize s = 1, an 

improvement of over 20 dB is achieved by using a noise-shaper of order L = 4. 
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Rate-distortion characteristic 
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Although a large improvement in performance has been shown by the introduction of the 

noise-shaping system, it cornes at the cost of a rate increase, proportional to the oversam­

pling factor. It then stands to reason that the performance of the noise-shaping system 

should be studied from a rate-distortion point of view. The rate-distortion curves show the 

SNR as a function of the bitrate required to transmit the signal. 

It can be shown [30] that the minimum rate needed for reliable transmission of data 

is given by the entropy of said data. The entropy of an n-dimensional set X of possible 

symbols is defined as 
n 

H(X) = L P(Xi) log2 P(Xi), 
i=l 

where Xi is the i th possible symbol, P(Xi) is the probability of occurrence of that sym­

bol and H(X) is in bits per sample. The entropy of each subband signal was estimated 

experimentally: the probability of symbol was taken as 

P( 
.) _ number of occurences of Xi 

X t - . 

total number of samples 
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Then, the total entropy of the subband signaIs was taken as the sum of their entropies, 

divided by the downsampling factor M, since there are M-times less samples in each sub­

band signal than in the input signal. It is finally noted that the entropy gives the minimum 

achievable rate and can only be approached by means of sophisticated source coding4. 

Unfortunately, the results in [14] were confirmed: although an increase in system order 

did provide a better rate-distortion characteristic, actually decreasing the oversampling 

factor provided a better gain. 

However, it was observed that using longer filters did improve the rate-distortion char­

acteristic at high bitrates. lndeed, Figure 4.14 shows that using the CMpR with a longer 
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Fig. 4.14 Rate-distortion characteristic of the complete interchannel noise­
shaping system using the generated filters, with N = 8, K = 2 and Lh = 32,48. 

length Lh = 48 resulted in an increase in SNR without a corresponding rate increase, at 

high bit rates (i.e. greater than 10 bits per sample). 

4.3 Summary 

This chapter began with the outline of the algorithm used in the design of cosine-modulated 

perfect reconstruction filter banks, followed by a presentation of the obtained filters along 

4For a more in-depth analysis of source coding, one is referred to [30]. 
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with a discussion of the other filters used as a comparison basis for the noise-shaping sys­

tem. Subsequently, an experimental approach to the study of the effects of the varying 

filter characteristics was undertaken. The problem of ill-conditioning of the matrices used 

in the derivation of the noise-shaping filters was reported and a comparison of the intra­

channel, complete and local interchannel noise-shaping systems ensued. It was then seen 

that increasing the length of the filters in the filter bank resulted in an increase in effec­

tiveness of the noise-shaping system, while the advantage of using a MIMO system was 

evident when comparing performances of filters with a different degree of overlap between 

subbands. Next, it was shown that the near-perfect-reconstruction filter banks were limited 

by their reconstruction error. Finally, it was observed that although the improvement in 

performance due to the noise-shaping filters was not justified by the rate increase, longer 

filters did improve the rate-distortion characteristic. 
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Chapter 5 

Conclusion 

5.1 Summary 

The aim of this work was to evaluate the impact of the selection of the filter banks on the 

performance of a noise-shaping system inserted into an oversampled subband coder. Thus, 

sorne basic notions pertinent to subband coders and filter banks were first developed, laying 

the groundwork to introduce sorne concepts in filter bank design, such as the condition for 

perfect reconstruction and the use of lossless matrices to satisfy this condition. 

In addition, these concepts allowed the relation of filter banks to frame theory, reiter­

ating that perfect reconstruction is possible by using the dual to the analysis frame as the 

synthesis frame. Further, the use of frame theory yielded a formulation of the redundancy 

inherent to oversampling the subband signaIs: the range space n of the the analysis op­

erator T is a subspace of the codomain e2 (Z)N, and thus the synthesis operator U is not 

unique. However, only the synthesis frame dual to the analysis frame has the maximal 

noise-reduction property, as it is the only one that projects the noise-components lying in 

nJ.. to the zero vector, o. 
Subsequently, the choice of critically sampled cosine-modulated perfect reconstruction 

filter banks as the test bed for the noise-shaping system was justified: not only do they 

sim ply require the design of one prototype filter, but the corresponding synthesis filter 

bank also yields the dual to the analysis frame. It was also shown that the prototype filter 

could be efficiently obtained using a lossless two-channel lattice structure, ensuring that 

the perfect reconstruction condition was met; the coefficients of the lattice structure were 

to be optimized using Newton's method. 
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Attention was then focused on the noise-shaping system, whose goal is to push the 

quantization noise to R-I., such that it would be attenuated by the synthesis filter bank. 

The MIMO noise-shaping filters were constrained to be FIR and their derivation led to the 

theoretical calculation of the reconstruction error variance for three cases: the complete 

interchannel, the local interchannel and the intrachannel (8180) noise-shaping systems. 

The implementation of the algorithm used in the design of the filter banks was then 

outlined, and it was shown that increasing the filter length improved the stopband atten­

uation of the component filters, while this attenuation was even better for near-perfect 

reconstruction filter banks. The perfect reconstruction of the input signal was verified, 

while it was seen that the reconstruction error of the near-perfection reconstruction filter 

was on the same order as the attenuation of the stop bands of the filters. 

Next, quantization was performed on the subband signaIs and the noise-shaping sys­

tem was implemented: simulation results were compared with the theoretically computed 

values for the normalized reconstruction error variance. It was found that the simula­

tions agreed with the predicted results, except when the matrices used in the derivation 

of the noise-shaping coefficients were ill-conditioned, leading to inaccurate results. Thus, 

ill-conditioning limited the order of the noise-shaping filters. While the intrachannel noise­

shaping system remained better conditioned for higher noise-shaping orders, both the com­

plete and local interchannel systems outperformed it, even with their lower implementable 

orders. Further, the local interchannel noise-shaping system provided a good approxima­

tion to the complete interchannel noise-shaping systems - for small orders - at a reduced 

computational load. 

It was finally possible to compare the performance of the noise-shaping filters using 

filters with different characteristics. First, it was found that longer filters could achieve 

a greater reduction on reconstruction error. 8econdly, it was observed that filters with a 

larger overlap between subbands could yield further reduction in reconstruction error and 

thirdly it was found that near-perfect reconstruction filter banks were limited by their re­

construction error, which depended, in turn, on the stopband attenuation of the component 

filters of the filter bank. 

The performance of the noise-shaping filters were then examined from a rate-distortion 

point of view. Previous results [14] were confirmed: critically sampled filter banks outper­

form oversampled noise-shaping filter banks, and thus the rate increase proportion al to the 

oversampling ratio is not justified by the use of noise-shaping filters. However, it was noted 
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that an increase in fEter length did improve the rate-distortion characteristic. 

5.2 Future Work 

The immediate extension to this work would be to design filter banks with the objective 

of maximizing the performance of their corresponding noise-shaping filters, given the char­

acteristics that improved their behaviour: increased filter length, larger overlap between 

subbands and st ronger attenuation in the filter banks. 

Of course, these design characteristics come at a cost. For example, increased filter 

lengths lead to a longer delay through the system: the delay - in number of samples -

is equal to the length of the filters in the filter bank. Thus, this is a problem in real­

time systems, where it is desired to restrict processing delay to a minimum. Moreover, 

larger overlap between subbands leads to a poorer frequency resolution in the subband 

signaIs. If it had been desired to accomplish sorne other type of processing on the subbands 

separately, the larger degree of overlap would contaminate the subband content with that of 

neighboring subbands. Finally, the design of filter banks with higher stopband attenuation 

requires the elaboration of sophisticated design algorithms. 

While it is doubtful that it would then be possible to achieve a better rate-distortion 

characteristic than in the critically sampled case, these filters could be useful in systems 

that are already oversampled, for other purposes. For instance, as mentioned previously, it 

might be desirable to trade an increase in rate for simpler quantizers as the introduction of 

a noise-shaping system on the subbands improves the effective resolution of the quantizers. 

Another example is the use of oversampled filter banks in audio signal processing: because 

it is desired to analyze an audio signal in a manner emulating the human ear, the frequency 

bands will be non-uniform [31]. This then leads to aliasing due to unequal processing of the 

subbands, which can be reduced below the level of human hearing by using oversampled 

filter banks [11]. 

This leads then to the question of whether or not there are perceptual advantages to 

using noise-shaping in oversampled filter banks. lndeed, perceptual audio coding is well­

documented and used in many international and commercial standards [32]. Here, the 

coding noise is shaped such that it is below the masking threshold: thus, compression is 

achieved by allowing a certain degree of error, as long as it is imperceptible to humans. 

Applying this to the situation at hand, not only might there be perceptual advantages 
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to the investigated noise-shaping system, but perhaps a more effective noise-shaper could 

be developed combining the knowledge of the filter bank used and the knowledge of the 

perception of sound. 

As a final note, noise-shaping in oversampled filter banks need not be constrained to 

one dimension: it would be interesting to evaluate the performance of the noise-shaping 

system for images. In this case, the phase bears more pertinent information to the recovery 

of the original signal than for speech. It would thus be interesting to once more evaluate 

the benefits of noise-shaping, and in addition, perhaps develop a noise-shaper making use 

of the additional information inherent to images. 



Appendix A 

Lattice structure for partial 

derivatives of the polyphase 

components 

A.l First-order partial derivatives 

68 

Recalling Eq. (3.5), the first order partial derivatives of the polyphase components with 

respect to the lattice parameters (h,p can be computed as follows: 

aw/
i
) _ [( a ) i-l (a (i-l)) ] ~ - w cos B[,i Wl + aB. Wl cos Bl,i 

k,p k,p k,p 

-1 [( a . B ) Wi-1 (a W(i-l)) . B ] + z aBk,p sm l,i N+l + aBk,p N+l sm l,i . 

(A.l) 

for 0 :::; k, i :::; l ~ J and 1 :::; p, i :::; m-l. A similar equation can be written for the remaining 

aW~~1 b' . d h . h' f' (F h h d d f h ô() , ut IS omit te ere m t e mterest 0 conClseness. urt er, t e epen ance 0 t e 
k,p 

polyphase components on z is considered to be implicit: as it do es not affect the partial 

derivatives, it is dropped for clarity.) 
(il 

In the case k =1= l, aa
w() 1 = 0, since k, i are the indices of parallel lattice structures and 

k,l' 

thus the polyphase components W~i) are generated only by those parameterized by Bk,p' 

If k = l, the partial derivatives can be separated into three cases: 
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Case 1. i < P 

aw(i) () 
Here, 7iif- = 0, since the parameters Ok, pare not yet included in the generation of W1

1 
, 

k,p 
aw(·-l) 

when i < p. Consequently, 1 = 0 also for aU i ::; p. a(h,p 

Case 2. i = p 

. aw?-l) 
Smce ail = 0 for i = p, Eq. (A.l) can be reduced to 

k,p 

while similarly, 

aw~p) . 0 W(p-1) -1 0 W(p-1) 
----'-'-- = - sm k,p k + Z cos k,p N +1 , 
aok,p 

aw(p) 
N+k 0 W(p-1) -1· 0 W(p-1) 

ao = cos k,p k + Z sm k,p N+I , 
k,p 

for p =1= 0, which can be easily obtained using a two-channel lattice structure. Next, for 

p = 0, (see Eq. (4.4)) 
aw~O) . 
ae = smOkO 

k 0 ' aw(O) , 
~- 0 ae - - cos k 0, 

k,O ' 

yielding the initial conditions for these lattices. 

Case 3. i > p 

In this case, aea 
COSOk,i = al sinOk,i = 0 and Eq. (A.l) is reduced to 

k,p k,p 

and similarly, 

Once again, these can be obtained easily using a two-channellattice structure, whose initial 

conditions are obtained from the output of the lattice structures for the case i = p. 
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A.2 Second order partial derivatives 

From Eq. (A.1), the second order partial derivatives with respect to the (h,p are written as: 

8
2 

(i) _ [( 8
2 

) (i-1) (8 ) 8 (i-1) 
8e. 8e W[ - 8e. 8e cos el,i W l + 8e. cos el,i 8e. W l 

],q k,p ],q k,p ],q k,p 

( 
8 ) 8 (i-l) (8

2 
(i-l)) 1 + ~ cos e[,i 8e. W[ + cos e[,i 8B. 8e W[ 

k,p ],q ],q k,p 

-1 [( 8
2 

. e ) W(i-1) (8 . e ) 8 W(i-l) + z 8e. 8e sm l,i N+[ + 8e. sm [,i 8e. N+l 
],q k,p ],q k,p 

(A.2) 

( 
8 . e ) 8 W(i-l) . e ( 8

2 
W(i-l))] + ~ sm l,i 8e. N+l + sm l,i 8e. 8e N+l , 

k,p ],q ],q k,p 

for 0 ~ j, k, 1 ~ l ~ J and 1 ~ p, q, i ~ m - 1. Once more, a similar equation can be written 

f h .. a2w~~1 b' . d h . h' f' or t e remammg ao. ao ' ut IS omltte ere m t e mterest 0 conClseness. 
],q k,p 

A . C k..j.·..j. 1 th d d t' 1 d" a
2w/ i

) O' k' 1 gam, lor T J T e secon or er par la envatlves ao ae = , smce , J, 
],q k,p 

denote the separate two-channel lattice structures. Also, for k = 1 = j, in both cases that 

i < p or i < q, the partial derivatives are 0, since either ek,p or ek,q are not included in the 

parametrization of the polyphase component W~i). The non-zero cases are then: 

Case 1. i > p and i > q 

In this case, ao a~o cos ek,i = 0 for i =1= q or i =1= p, al cos (h,i 
k,q k,p k,., 

o for s =1= 1. and 

aoa W~i-1) = 0 for s =1= i - 1. Hence, Eq. (A.2) is reduced to 
k,,<j 

82 82 

W (t) - e W(i-1) ..,.-1' e . W(i-l) 
-8-e-8-e- k - cos k,t 8e 8e k + '" sm k,t 8e 8e N +k 

k,q k,p k,q k,p k,q k,p 

and through similar steps 

8
2 

W(t) _ . e 8
2 

W(i-l) -1 e 8
2 

W(i-1) 
8e 8e N+k - sm k,t 8e 8e k - Z cos k,i 8e 8e N+k 

k,q k,p k,q k,p k,q k,p 

which can be obtained efficiently using the cascade of two--channellattices. 
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Case 2. i = p and i > q 

H 82 () 0 . -t- 8 W(p-l) 0 c -t- d 82 W(P-l) ere, 8e 81) cos k,p = as Z r q, ao- k = lor q r P - 1 an Be 8e k = 0 
k,q k,p k,q k,q k,' 

for q i= p - 1. Thus, Eq. (A.2) is reduced to 

8
2 

W(p) - . () 8 W(P-l) -1 () 8 (p-l) 
8() 8() k - - sm k,p~() k + Z cos k,p~() W N+k ' 

k,q k,p U k,q U k,q 

and similarly for the remaining polyphase components are given by 

8
2 

W(p) () 8 W(p-l) -1· () 8 W(p-l) 
8() 8() N+k = cos k,pae k + z sm k,pae N+k' 

k,q k,p k,q k,q 

Again, the implementation using the lattice structure is apparent. 

Case 3. i > p and i = q 

Through similar manipulations as in case 2, Eq. (A.2) is reduced to 

82 
W(q) . () 8 W(q-l) -1 () 8 (q-l) 

8() 8() k = - sm k,qae k + Z cos k,qae W N+k ' 
k,q k,p k,p k,p 

and 
8

2 
W(q) () 8 W(q-l) -1· () 8 (q-l) 

!:l()!:l() N+k = cos k,q~() k + Z sm k,q~() W N+k ' 
U k,qU k,p U k,p U k,p 

which are again amen able to the lattice structure. 

Case 4. P = q = i 

This time, 8e8 W~P-l) = 0 and 828e
2 W~P-l) = 0, such that Eq. (A.2) is reduced to 

k,p k,p 

8
2 

W(p) () W(i-l) -1· () W(i-l) 
82() k = - cos k,p k - Z sm k,p N+k' 

k,p 

while 
8

2 
W(p) . () W(i-l) -1 () W(i-l) 

8 2 () N+k = - sm k,p k + Z cos k,p N+k' 
k,p 

once more implementable through a the appropriate lattice structure. 
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Finally, the second order partial derivatives are initialized as 

and 
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(}2 (0) 
~ Wk = - cos rh,o, 

k,O 

(}2 (0) . 
~WN+k = -sm(h,o. 

k,O 
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Appendix B 

Generated coefficients 

The coefficients of the prototype filters generated by using the algorithm are presented. 

Only the first mN coefficients are given, since the remaining mN are symmetric. 

B.l N=8 

B.1.1 m = 2, Lh = 32 

po(n) = [ -0.0524 -0.0433 -0.0282 -0.0103 0.0120 0.0457 0.0992 0.1768 

0.2790 0.3978 0.5241 0.6488 0.7608 0.8499 0.9110 0.9424 1 

(B.1) 

B.1.2 m = 3, Lh = 48 

po(n) = [ -0.0051 -0.0052 -0.0031 0.0014 -0.0012 -0.0062 -0.0174 -0.0288 

-0.0360 -0.0366 -0.0298 0.0000 0.0000 0.0598 0.1224 0.2039 

0.3030 0.4155 0.5349 0.6524 0.7579 0.8423 0.9004 0.9297 1 

(B.2) 
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B.2 N = 16, m = 2, L h = 64 

po(n) = [ -0.0755 -0.0729 -0.0673 -0.0592 -0.0491 -0.0372 -0.0237 -0.0084 

0.0090 0.0291 0.0526 0.0801 0.1124 0.1496 0.1919 0.2391 

0.2915 0.3475 0.4047 0.4624 0.5198 0.5761 0.6306 0.6824 

0.7309 0.7752 0.8148 0.8491 0.8775 0.8996 0.9149 0.9231 1 

(B.3) 
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