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Abstract 

Rationale: Sleep-disordered breathing (SDB), as it pertains to upper airway obstruction, is 

characterized by recurrent respiratory pauses during sleep, with associated increased upper 

airway resistance or pharyngeal collapsibility resulting in snoring and/or increased respiratory 

effort. SDB in pregnancy is associated with an increased risk for gestational hypertension and 

preeclampsia, as well as a 2-3 fold increased risk for gestational diabetes (GDM). Although there 

are a number of observational studies confirming these associations, interventional studies in 

SDB and pregnancy are generally lacking. A few, smaller studies have shown improvements in 

blood pressure using continuous positive airway pressure (CPAP). Although SDB is very common 

in GDM, it is unknown whether CPAP treatment improves glucose control in pregnancy. 

However, prior to embarking on larger trials, it is unknown whether pregnant individuals adhere 

to CPAP, the standard first-line treatment of SDB. Finally, night-to-night adherence to SDB 

treatment with either CPAP or mandibular advancement splints (MAS), an alternative treatment 

to CPAP, in pregnancy has not been well characterized. 

Objectives: The first objective of this thesis was to determine whether pregnant individuals with 

GDM and SDB  adhere to CPAP  and to determine whether CPAP improves 24-hour glucose 

profiles using continuous glucose monitoring (CGM) vs. control in a pilot randomized-controlled 

trial design. The second objective was to further characterize adherence in pregnancy by 

evaluating objective, longitudinal night-to-night adherence patterns in different treatment 

cohorts using CPAP and MAS. 

Methods: Project 1 was a pilot randomized-controlled trial in which pregnant individuals with 

GDM and SDB were randomized 1:1 to either CPAP or nasal dilator strips (control). CPAP 
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adherence data was downloaded at every bi-weekly study visit via the memory chip or by Wi-Fi. 

Seventy-two hours of CGM was performed with glucose measurements taken every 5 minutes 

(~60,000 values) at baseline and ~4 weeks after treatment. Differences in glucose levels at 

various time points were analyzed using a Generalized Estimating Equations approach and 

multiple imputation. For Project 2, which involved night-to-night adherence analysis, three 

separate pregnancy cohorts evaluating treatment for SDB in the second and third trimester 

were used: 1) CPAP in GDM, 2) CPAP in hypertensive disorders of pregnancy (HDP), and 3) use of 

an alternative treatment, MAS. The first 30 days of objective adherence data obtained from 

CPAP and MAS devices were used in this descriptive analysis. 

Results: Forty-five individuals with GDM and SDB (mean±SD age of 36.0±4.3, pre-pregnancy 

body mass index 29.8±7.8 kg/m2) were randomized to either CPAP (n=22) or control (n=23). 

Thirty-four (n=16 CPAP, n=18 control) participants had CGM measurements at follow-up. The 

mean CPAP adherence was 3.0±2.3 hours/night (intention-to-treat). A complete case analysis 

revealed that differences in glucose levels (post-pre) were significantly lower during the early 

morning sleep period (3am: -0.67 mmol/L [95% CI, -1.28 to -0.06], 4am: -0.86 mmol/L [95% CI, -

1.43 to -0.28], 5am: -0.74 mmol/L [95% CI, -1.37 to -0.11] and 6am: -0.79 mmol/L [95% CI, -1.42 

to -0.17]) and at noon (-0.75 mmol/L [95% CI, -1.36 to -0.15]) in the CPAP vs. control group 

(p<0.05).  

For Project 2, data from 36 CPAP users and 14 MAS users was analyzed. For the GDM 

and HDP cohorts, three patterns of adherence were observed: 1) consistent CPAP users (38%), 

2) improved CPAP usage after initial adaptation (16%), and 3) inconsistent CPAP users (46%). For 

the MAS cohort, the three observed patterns of adherence were: 1) consistent MAS users 
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(47%), 2) initial usage with subsequent decrease in adherence (20%), and 3) inconsistent MAS 

users (33%). Participant characteristics (demographics, disease severity) were similar between 

adherence groups. 

Conclusions: CPAP (vs. control) reduced early morning (3-6 am) and 12pm glucose levels in 

pregnant individuals with GDM and SDB, thus reducing fetal exposure to maternal glucose, 

despite overall modest adherence. Overall, objective night-to-night adherence patterns revealed 

that almost half of CPAP and MAS users had difficulty adapting to treatment in the first 30 days 

of treatment. Further research is needed to develop strategies that are shown to improve 

adherence to treatment of SDB in pregnancy. 
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Résumé 

Problématique : Les troubles respiratoires du sommeil (TRS), en ce qui concerne l'obstruction 

des voies respiratoires supérieures, se caractérisent par des pauses respiratoires récurrentes 

pendant le sommeil, associées à une résistance accrue des voies aériennes supérieures ou à une 

pliabilité du pharynx entraînant des ronflements et/ou un effort respiratoire accru. Les TRS 

pendant la grossesse sont associés à un risque accru d'hypertension gestationnelle et de 

prééclampsie, ainsi qu'à un risque de 2 à 3 fois plus élevé de diabète gestationnel (DG). Bien 

que de nombreuses études observationnelles confirment ces associations, les études 

interventionnelles sur les TRS et la grossesse sont généralement insuffisantes. Quelques petites 

études ont montré des améliorations de la pression artérielle grâce à l'utilisation de la pression 

positive continue (PPC). Bien que les TRS soient très fréquents chez les femmes enceintes 

atteintes de DG, on ne sait pas si le traitement par PPC améliore le contrôle de la glycémie 

pendant la grossesse. Cependant, avant de lancer des essais plus vastes, il est nécessaire de 

savoir si les femmes enceintes adhèrent à la PPC, le traitement de première ligne standard des 

TRS. Enfin, l'adhésion nuit après nuit au traitement des TRS, soit par la PPC, soit par des 

orthèses d'avancement mandibulaire (OAM), une alternative à la PPC, n'a pas été bien 

caractérisée pendant la grossesse. 

Objectifs : Le premier objectif de cette thèse fut de déterminer si les personnes enceintes 

atteintes de DG et de TRS adhèrent au traitement par PPC et de déterminer si celui-ci améliore 

les profils glycémiques sur 24 heures en utilisant la surveillance glycémique en continu (SGC) 

par rapport à un groupe témoin, dans le cadre d'un essai pilote contrôlé randomisé. Le 

deuxième objectif fut de caractériser davantage l’adhérence pendant la grossesse en évaluant 
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objectivement et longitudinalement les profils d'adhérence nocturne, nuit après nuit, dans 

différents groupes de traitement utilisant la PPC et l’OAM. 

Méthodes : Le projet 1 était un essai pilote randomisé contrôlé dans lequel des femmes 

enceintes atteintes de DG et de TRS ont été réparties de manière aléatoire (1:1) pour recevoir 

soit une PPC (pression positive continue) soit des bandes dilatatrices nasales (groupe témoin). 

Les données d'adhérence à la PPC ont été téléchargées lors de chaque visite d'étude 

bihebdomadaire via la puce mémoire ou par Wi-Fi. Une surveillance de glucose en continu 

(SGC) sur 72 heures a été effectuée, avec des mesures prises toutes les 5 minutes (~60 000 

valeurs), au départ et environ 4 semaines après le début du traitement. Les différences de 

glycémie à différents moments de la journée ont été analysées en utilisant l’approche des 

Generalized estimating equations et l’imputation multiple. Pour le Projet 2, qui impliquait 

l'analyse de l'adhérence nuit après nuit, trois cohortes distinctes de femmes enceintes évaluant 

le traitement des TRS au deuxième et au troisième trimestre ont été utilisées : 1) PPC dans le 

DG, 2) PPC dans les troubles hypertensifs de la grossesse (THG) et 3) utilisation d’un traitement 

alternatif, les OAM. Les 30 premiers jours de données d'adhérence objective obtenues à partir 

des appareils PPC et OAM ont été utilisés dans cette analyse descriptive. 

Résultats : Quarante-cinq femmes enceintes atteintes de DG et de TRS (âge moyen ± écart-type 

de 36,0 ± 4,3 ans, indice de masse corporelle pré-gestationnel de 29,8 ± 7,8 kg/m2) ont été 

réparties de manière aléatoire dans un groupe PPC (n = 22) ou dans un groupe témoin (n = 23). 

Trente-quatre participantes (n = 16 PPC, n = 18 témoins) ont eu des mesures SGC au suivi. 

L'adhérence moyenne à la PPC était de 3,0 ± 2,3 heures/nuit (intention de traiter). Une analyse 

de cas complet a démontré que les baisses des taux de glycémie (post-pré) étaient 
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significativement plus importantes pendant la période de sommeil en début de matinée (3h : -

0,67 mmol/L [IC à 95 %, -1,28 à -0,06], 4h : -0,86 mmol/L [IC à 95 %, -1,43 à -0,28], 5h : -0,74 

mmol/L [IC à 95 %, -1,37 à -0,11] et 6h : -0,79 mmol/L [IC à 95 %, -1,42 à -0,17]) et à midi (-0,75 

mmol/L [IC à 95 %, -1,36 à -0,15]) dans le groupe PPC par rapport au groupe témoin (p < 0,05). 

Pour le projet 2, les données de 36 utilisateurs de PPC et de 14 utilisateurs d'OAM ont été 

analysées. Pour les cohortes DG et THG, trois profils d'adhérence ont été observés : 1) 

utilisateurs réguliers de PPC (38 %), 2) amélioration de l'utilisation de la PPC après une 

adaptation initiale (16 %), et 3) utilisateurs irréguliers de PPC (46 %). Pour la cohorte OAM, les 

trois profils d'adhérence observés étaient : 1) utilisateurs réguliers d'OAM (47 %), 2) utilisation 

initiale suivie d'une diminution de l'adhérence (20 %), et 3) utilisateurs irréguliers d'OAM (33 %). 

Les caractéristiques des participants (données démographiques, gravité de la maladie) étaient 

similaires entre les groupes d'adhérence. 

Conclusions : La PPC (contre le groupe témoin) a permis de réduire les taux de glycémie en 

début de matinée (3h-6h) et à midi chez les femmes enceintes atteintes de DG et de TRS, 

réduisant ainsi l'exposition du fœtus au glucose maternel malgré une adhésion modeste. Dans 

l'ensemble, les analyses objectives de l'adhérence nocturne nuit après nuit ont révélé que près 

de la moitié des utilisateurs de PPC et d'OAM présentaient des difficultés d'adaptation au 

traitement au cours des 30 premiers jours. Des recherches supplémentaires sont nécessaires 

pour développer des stratégies visant à améliorer l'adhésion au traitement des TRS pendant la 

grossesse.  
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Chapter 1: Introduction 

Rationale 

 Sleep-disordered breathing (SDB) is characterized by recurrent respiratory pauses during 

sleep, with associated increased upper airway resistance or pharyngeal collapsibility resulting in 

snoring and/or increased respiratory effort [1, 2]. SDB can be due to obstructive sleep apnea 

(OSA), central sleep apnea (CSA), or sleep-related hypoventilation/hypoxemia disorder [3]. 

Depending on the age group and sex, the prevalence of moderate-to-severe SDB ranges from 

3% to 50% [1]. Over the last two decades, in accordance with the increasing rates of obesity, the 

prevalence of SDB has increased substantially, with relative increases ranging between 14% and 

55% depending on the subpopulation observed [4]. The prevalence of SDB in various patient 

populations with certain comorbidities, namely obesity, type 2 diabetes, hypertension and 

stroke, exceeds that of the general population [5].   

 SDB prevalence increases from first to the third trimester, affecting 17-45% of women by 

the third trimester [6, 7]. Women with higher body mass index (BMI), increasing age and 

chronic hypertension are at higher risk of developing SDB in pregnancy [7, 8]. As pregnancy 

advances, trimester-specific physiological changes, such as weight gain, fluid retention, and 

upper airway edema, can significantly impact sleep [6]. Additionally, increased urinary 

frequency, back pain and discomfort from the enlarging uterus are additional factors that 

contribute to poorer sleep quality during pregnancy [6]. Mothers experiencing SDB  face an 

elevated risk of associated adverse health outcomes, and this risk may affect the overall health 

of their children as well [6].   
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In the general population, SDB has emerged as an important risk factor for the 

development of hypertension, heart failure, stroke, diabetes, and other cardiovascular 

conditions [9-12]. Animal studies have shown that intermittent hypoxia from SDB causes 

sustained blood pressure increases through sympathetic nervous system activation [13, 14]. 

Mounting evidence also demonstrates that SDB is associated with poor glucose control [9, 15, 

16]. This is also observed in pregnancy, where mothers experiencing SDB are at an elevated risk 

of developing gestational hypertension/preeclampsia and gestational diabetes (GDM) in 

comparison to those without SDB [17].  

 A leading cause of maternal morbidity and mortality is cardiovascular disease [18, 19]. In 

non-pregnancy, SDB triggers an increase in sympathetic activity, inflammatory response and 

oxidative stress in adults [20], and this response may also be relevant in the context of 

pregnancy [18, 21]. Epidemiological evidence suggests an association between the presence of 

SDB and an elevated risk of cardiovascular disease among pregnant individuals. For example, 

Bourjeily et al. found that habitual snorers had a higher likelihood of developing a hypertensive 

disorder during the third trimester of pregnancy (OR 2.3, 95% CI 1.4–4.0), independent of BMI, 

age, parity, and other pregnancy conditions [22]. An analysis of the National Perinatal 

Information Center database (2010–2014, >1.5 million records) found that a diagnosis of SDB 

was associated with an increased risk of cardiometabolic diseases, including pre-eclampsia (OR 

2.22, 95% CI 1.94–2.54), eclampsia (OR 2.95, 95% CI 1.08–8.02), cardiomyopathy (OR 3.59, 95% 

CI 2.31–5.58) heart failure (OR 3.63, 95% CI 2.33–5.66), and GDM (OR 1.51, 95% CI 1.34–1.7) in 

fully adjusted models for BMI, age, race, parity and comorbidities [23]. Facco et. al. [24] also 

showed that in mid-pregnancy, the adjusted odds ratio for preeclampsia when SDB was present 
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was 1.95 (95% CI 1.18–3.23), 1.73 (95% CI 1.19–2.52) for hypertensive disorders of pregnancy, 

and 2.79 (95% CI 1.63–4.77) for GDM, adjusted for age, BMI, chronic hypertension, and rate of 

weight gain during pregnancy.   

Complications during pregnancy have many adverse health effects on both the mother 

and the child. Pre-eclampsia is associated with long-term maternal cardiovascular risk factors 

and disease [25]. Gestational hypertension is associated with a 4.2-fold higher risk for 

developing chronic hypertension postpartum [26], and a greater risk of cardiovascular disease, 

coronary heart disease, and heart failure [27, 28]. The Helsinki Birth Cohort demonstrated an 

increased risk of type 2 diabetes in adulthood for offspring exposed to gestational hypertension 

in utero (HR=1.13, 95% CI 1.00–1.29) [28, 29]. Other adverse birth outcomes (e.g. small-for-

gestational age), have also been associated with poor cardiometabolic health later in life [28]. 

As such, addressing and improving perinatal health to decrease the risk of pregnancy-related 

complications may have major impacts on improving the overall long-term health for both 

mother and baby. 

 GDM, prevalent in 6.9% (95% CI: 5.7–8.3) of pregnant women in Canada and the United 

States [30], is also associated with adverse outcomes for the mother and the offspring. The 

landmark Hyperglycemia and Adverse Pregnancy Outcomes (HAPO) study [31] demonstrated 

that maternal hyperglycemia, measured on a continuum with respect to its severity, increases 

the risk of pre-eclampsia, preterm delivery, caesarean section, large for gestational age (LGA) 

infants, admission to neonatal intensive care units (NICU) and other adverse health effects in 

the mother and child [31, 32]. This study suggests that there may not be one specific threshold 

for glucose targets, but rather, that overall tighter glucose control may be most beneficial. Long-
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term complications of GDM also include an elevated risk of maternal type 2 diabetes and of 

obesity in the offspring [32-34].  

Indeed, the prevalence of SDB in GDM is over 60% in some studies [35, 36]. Because 

interventional studies in this patient population have been sparse [6, 37-43], the causal 

relationship between SDB in pregnancy and GDM is still unclear. Therefore, it remains unknown 

whether treatment of SDB in GDM improves glucose control. As such, conclusive clinical trials 

are imperative to ascertain the degree to which interventions for SDB can mitigate the risk of 

adverse cardiovascular and neonatal outcomes during pregnancy [18]. Currently, guidelines do 

not strongly recommend screening and treatment for SDB, due to a lack of evidence [44, 45].  

The main treatment for SDB, in pregnancy and in the general population, is continuous 

positive airway pressure (CPAP) [46], a device that delivers a steady stream of air through a 

mask to maintain airway patency during sleep. In non-pregnancy, several CPAP trials that have 

failed to demonstrate an improvement in metabolic outcomes were also limited by poor 

adherence to CPAP [47, 48]. However, when CPAP adherence was improved to 8h/night in in-

laboratory proof-of-concept studies, this resulted in better cardiometabolic outcomes, including 

lower blood pressure, improved glucose tolerance and improved insulin sensitivity [49, 50]. In 

pregnancy, sleep quality is often further impaired by less deep sleep and more frequent 

nocturnal awakenings [48, 51], which may influence tolerability and adherence to CPAP.  

However, very few studies to date have examined CPAP adherence in pregnancy. To effectively 

power large, multi-center trials on pregnant women with SDB aimed at improving 

cardiometabolic outcomes, it is essential to first demonstrate the feasibility of treatment by 

establishing adherence to CPAP among pregnant women [48]. 
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Interventional studies to date demonstrate that poor adherence to CPAP remains a 

major barrier for the effective treatment of SDB in pregnancy [37, 52, 53], with an average 

adherence of ~3.3 hours/night. In the general population, CPAP usage in the first few days of 

treatment has been shown to forecast future adherence [54]. Examining data on night-to-night 

CPAP adherence in non-pregnancy revealed that individuals who do not use CPAP on certain 

nights are prone to using it for shorter durations on the nights that they do use it [54]. This 

pattern becomes noticeable as early as the fourth day of treatment [54]. To our knowledge, 

there are no studies that have examined adherence patterns in pregnancy. Mandibular 

advancement splints (MAS) are oral appliances that advance the jaw and tongue forward 

thereby reducing the degree of upper airway obstruction. While MAS devices are better 

tolerated than CPAP, they tend to be less efficacious. Night-to-night adherence patterns to MAS 

have not been reported previously in the literature [55]. As such, longitudinal patterns of 

adherence to CPAP and MAS in pregnancy need to be evaluated, as these could offer valuable 

insights for future interventions that could improve treatment. 

Hypotheses 

Our study was based on two primary hypotheses. Our first hypothesis was that pregnant 

individuals with SDB and GDM adhere to CPAP, demonstrating feasibility of this treatment in 

future trials of SDB and GDM. Also, in secondary analyses, we hypothesized that pregnant 

individuals with GDM treated with CPAP will have better glucose control than those who are not 

treated. For the second project, we hypothesized that pregnant individuals demonstrate varying 

patterns of adherence to CPAP and MAS. 
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Objectives 

As such, to test these hypotheses, this thesis has two objectives. Project 1 addressed the first 

objective: to determine whether pregnant individuals with GDM and SDB adhere to CPAP and 

evaluate whether treatment vs. control improves 24-hour glucose profiles (measured by 

continuous glucose monitoring (CGM)) in a pilot randomized controlled trial (RCT) design. 

Project 2 addressed the second objective, which is to further examine adherence to CPAP (and 

to MAS), by evaluating objective, longitudinal night-to-night adherence patterns to both 

treatment options in different pregnancy cohorts. 
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Chapter 2: BACKGROUND AND LITERATURE REVIEW – Sleep-Disordered Breathing (SDB) 

Overview of SDB 

OSA, the most common form of SDB, is marked by repeated episodes of cessation 

(apnea) or reduction (hypopnea) in airflow during sleep caused by obstruction of the upper 

airway [1]. In the general population, OSA poses several health risks [56], such as increased 

perioperative morbidity [57, 58], hypertension [59], coronary artery disease [60, 61], cardiac 

dysrhythmias [62], sudden death [63], stroke [64] [65], pulmonary hypertension [66], and deep 

vein thrombosis [67]. Clear benefit has been shown for the treatment of patients with 

sleepiness, cognitive or psychological dysfunction, or poor quality of life due to OSA [1, 68-70].  

In pregnancy however, milder SDB is more common, which is primarily characterized by 

frequent flow limitation, snoring and hypopneas with arousals [6, 7, 41, 42, 71-74]. As such, 

consistent with the published literature, in the context of pregnancy for the purpose of this 

thesis, the term SDB specifically refers to the aforementioned obstructive sleep disturbances.  

 

Pathophysiology 

 SDB is characterized by recurrent collapse of the pharyngeal airway during sleep, 

resulting in apneas or hypopneas despite continued respiratory effort [75]. To maintain 

adequate airway patency during inspiration, activation of upper airway dilator muscles is 

necessary [76]. The most important dilator muscle in the upper airway is the genioglossus 

muscle [76]. The genioglossus prevents posterior collapse of the tongue by contracting with 

each inspiration, and it is assisted by the levator and tensor palatini muscles, which advance and 

elevate the soft palate (Figure 1) [76]. It is also assisted by the geniohyoid and stylopharyngeus 
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muscles, which work to oppose the medial collapse of the lateral pharyngeal walls [20, 76]. 

Patients with SDB have a narrow upper airway, typically caused by a higher volume of the soft 

tissue structures surrounding the upper airway [76, 77]. This oral pharyngeal region is where 

one or more sites are susceptible to collapse in patients with SDB [20]. The retropalatal region 

of the oropharynx is the most common site of collapse, but airway narrowing also often 

includes the retroglossal and hypopharyngeal areas [20]. 

Figure 1. Anatomical representation of the upper airway and the muscles controlling 
airway patency (Reproduced from Fogel RB, Malhotra A, White DP. Sleep. 2: pathophysiology of 
obstructive sleep apnoea/hypopnoea syndrome. Thorax. 2004 Feb;59(2):159-63 with 
permission from BMJ Publishing Group Ltd. [78]) 

 
Fluid shift at night and during the day may also influence upper airway obstruction and 

risk of SDB. Throughout the day, gravity causes fluid to accumulate in the interstitial and 

intravascular spaces of the legs. When lying down at night, this fluid shifts rostrally towards the 

neck, potentially narrowing the upper airway and increasing the risk of airway collapse and SDB 

[79]. It has even been shown that day-to-day changes in leg fluid volume and rostral fluid shift 
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may partially explain the intra-individual variability in SDB severity from night-to-night [80]. 

Certain fluid-overload states, such as heart failure and renal disease may exaggerate the impacts 

of fluid shift [81, 82]. 

Another risk factor for SDB is smaller cranial bony structure, which is comprised of a 

reduced mandibular body length, an inferior positioned hyoid bone, and a retro position of the 

maxilla [20]. These differences in the craniofacial structures, which are primarily inherited, 

contribute to a compromised pharyngeal airspace [20]. The larger size of soft tissue structures 

both within and surrounding the airway contributes to airway narrowing and collapse in SDB 

patients [20]. The anterior-posterior airway diameter is compromised by an enlarged soft palate 

and tongue, while in the lateral plane, the constricted airway is attributed to thickened 

pharyngeal walls [20]. In fact, SDB treatment with CPAP, weight loss, or mandibular 

advancement splints has demonstrated improvements in the lateral dimensions of the 

pharyngeal airway [20]. Weight loss reduces soft tissue volume thereby increasing upper airway 

space [83]. In fact, in patients with SDB, obesity and craniofacial abnormalities contribute 

synergistically to increased collapsibility of the pharyngeal airway [84].  

Other craniofacial and upper-airway structure characteristics may also increase the risk 

of OSA [85]. These include a deviated septum or turbinate hypertrophy, retrognathia or 

crowding of the posterior oropharynx, which can be due to larger tonsils, soft palate elongation, 

macroglossia or changes in dental occlusion [1]. Surgical correction of these anatomical defects 

can reduce the apnea-hypopnea index (AHI) and alleviate OSA symptoms [86]. 
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 To compensate for a diminished airway size, during wakefulness, SDB patients have 

significantly greater upper airway dilator muscle activity (namely the genioglossus and tensor 

palatini) compared to non-SDB patients, thereby maintaining airway patency during the daytime 

[75, 87, 88]. At sleep onset, genioglossal muscle activity decreases, however this reduction is 

much greater in SDB patients than normal controls [78, 89]. This decrease in muscle activity in 

SDB patients, who might already have an anatomically compromised pharynx as described 

above, results in the airway narrowing and/or collapsing [78]. The result of these OSA events is 

brief brain activation in a process called arousal or microarousal [90].  This mechanism is 

essential to re-establish airway patency [91], but frequent arousals interrupt sleep continuity 

and prevent deeper sleep [92]. Though these arousals do not generally wake the patient, they 

cause sleep fragmentation, which has been shown to cause excessive daytime sleepiness in SDB 

patients [76, 93-96].  

 Intermittent hypoxemia and sleep fragmentation both activate the sympathetic nervous 

system [97, 98]. This is the major contributor to both acute and chronic elevated blood 

pressure, which is a comorbidity of SDB [20, 76, 99]. Research findings from both case-control 

[100, 101] and observational epidemiological studies [102, 103] suggest that prolonged 

exposure to SDB plays a key role in the pathogenesis of cardiovascular disease [20]. The 

Wisconsin Sleep Cohort Study [59] is a prospective study that found a dose-dependent 

association between SDB severity and hypertension (OR = 1.42, 95% CI: 1.13-1.78). SDB has also 

been associated with left ventricular dysfunction [20]. Patients with SDB are more likely to have 

congestive heart failure than those without SDB (OR = 2.38, 95% CI: 1.22-4.62) [104]. 



 24 

Additionally, SDB has been associated with stroke, coronary artery disease, cardiac arrhythmias 

and pulmonary hypertension [20]. 

 However, it is important to note that in studies demonstrating associations between SDB 

and cardiovascular disease, while dose-response relationships were rare, odds ratios were 

highest for individuals with moderate-severe SDB [20]. Collectively, these studies propose that 

to increase the risk of cardiovascular disease, there is a need for a certain threshold of SDB 

(~25–30 events/hour of sleep) and significant oxygen desaturation [20]. Additionally, in a 

sample derived from two cohort studies, The Outcomes of Sleep Disorders in Older Men (MrOS) 

[105] and the Sleep Heart Health Study (SHHS) [106], Azarbarzin et al. examined the association 

between hypoxic burden and cardiovascular disease (CVD) -related mortality [107]. Hypoxic 

burden, which encapsulates frequency, duration, and depth of the respiratory-event 

contribution to arterial hypoxaemia, was found to predict CVD mortality across populations 

[107]. Such metrics are currently being evaluated in larger cohorts to better understand their 

utility in clinical practice. 

 

Diagnosis and scoring 

 Several studies indicate that in the United States, over 80% of individuals with OSA 

remain undiagnosed and untreated [108-110]. This is due to constraints in healthcare resources 

such as limited availability of sleep laboratories and technicians, as well as the inefficiency of 

current diagnostic tools [108]. Additionally, patients themselves are often unaware of their 

apneic episodes, and rarely report nocturnal choking related to OSA [111]. More public 

awareness of SDB is needed to decrease the incidence of undiagnosed or untreated SDB [112].  
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 There is a lack of clear guidelines for screening and diagnosis of SDB in pregnancy, which 

may be a factor leading to it being underdiagnosed in this population [113]. There has been an 

effort to produce guidelines [45], but the major limitation is that the evidence is either weak or 

lacking, because of a lack of research in the field. Additionally, pregnant women are reluctant to 

undergo a sleep study [113], and even after being diagnosed, the perceived importance of SDB 

is low [114, 115]. 

There are three types of sleep apnea tests for diagnosis of SDB. The gold standard 

diagnostic sleep apnea test is the overnight full polysomnography (PSG), or Level 1, sleep test. 

PSG is the most accurate diagnostic test, as it records many different biological signals such as 

respiratory flow, oxygen saturation, electroencephalography (EEG), electrocardiography (ECG) 

and electromyography (EMG) which are all monitored in real-time by a registered sleep 

technician in a hospital or sleep laboratory [108]. A Level 2 sleep study monitors the same 

signals as a Level 1 PSG, (i.e. airflow, EEG, blood oxygen) except it is performed in the patient’s 

home unattended and the data is screened afterwards [108]. Level 3 sleep studies, or home 

sleep apnea tests (HSATs), offer a convenient way to record breathing, heart rate, and oxygen 

levels in the participant’s home. However, they do not record brain activity, making them 

unsuitable for diagnosing certain sleep disorders. Both at-home Level 2/3 and in-lab Level 1 

sleep tests are done for diagnosing pregnant women, but the convenience and comfort of HSATs 

may be preferred in pregnancy [24, 115]. 

 When determining which diagnostic method should be used, patient preferences, 

comorbidities and clinical setting should be considered [116, 117]. PSG has an increased 

diagnostic accuracy however, due to its ability to differentiate between sleep stages and to 
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accurately capture arousal-based events [116]. HSATs are cost-efficient diagnostic alternatives to 

PSGs, but are currently only recommended for use in patients with a high suspicion of 

moderate-to-severe OSA without significant comorbidities [116].   

The American Academy of Sleep Medicine (AASM) manual recommends scoring an 

apnea and a hypopnea based on different criteria (i.e. drop in signal amplitude, duration of 

event, degree of oxygen desaturation and presence of respiratory effort) for adult vs. pediatric 

scoring [118]. The AHI serves as a single, comprehensive metric for case identification and for 

quantifying disease severity and prevalence [119]. Differences in scoring criteria (AASM vs. 

Chicago), especially for hypopneas, significantly impacts the AHI, which could potentially 

determine the presence or absence of an OSA diagnosis [119]. Chicago criteria allows for 

scoring of hypopneas without arousals or desaturations, thus increasing the sensitivity for 

scoring hypopneas. Chicago criteria describes hypopneas as 1) > 50% airflow reduction or 2) a 

lesser airflow reduction with associated > 3% oxygen desaturation or arousal [119, 120]. 

However, in pregnancy, milder SDB with frequent flow limitation and hypopneas with 

arousals are common [6, 7, 41, 42, 71-74]. As such, the more sensitive Chicago scoring criteria, 

which captures more subtle respiratory events in pregnancy (e.g. reduction in airflow without 

arousal), are used [7, 35, 74]. Flow limitation is especially important to measure in pregnancy 

because it has been associated with numerous adverse pregnancy outcomes [122]. In the 

prospective cohort NuMOM2b (Nulliparous Pregnancy Outcomes Study Monitoring Mothers-to-

Be), greater flow limitation was associated with increased risk of preeclampsia, HDP, and lower 

infant birthweight [122]. 
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 Earlier studies in pregnancy relied on symptom-based assessment particularly snoring, 

as opposed to objective measures like PSG [6]. SDB diagnosis in pregnancy using self-reported 

symptoms presents several challenges. Firstly, studies often employ inconsistent definitions for 

both the frequency and intensity of snoring [17]. Secondly, when not pregnant, women tend to 

underreport symptoms of snoring compared to men [123]. Additionally, the presence of a bed 

partner during questioning can impact reporting of snoring among pregnant women (p=0.05) 

[22]. Lastly, the timing of symptom assessment across different stages of pregnancy can affect 

symptom prevalence, and reporting at delivery can introduce recall bias [6, 124, 125].  

Despite these limitations, a significant association has been established between 

maternal snoring and adverse maternal-fetal outcomes [126, 127]. Screening for SDB in 

pregnancy is different than in the general population. Sleepiness questionnaires alone like the 

Epworth Sleepiness Scale (ESS) [128] cannot reliably diagnose SDB in pregnancy because they 

are not sensitive or specific enough [6, 129]. This is due to the already high prevalence of 

daytime sleepiness in pregnancy (65% in third trimester [130]) and other pregnancy-related 

factors, such as nocturnal awakenings and decreased sleep quality, that may contribute to 

daytime sleepiness [131]. The Berlin [132] and STOP-Bang [133, 134] Questionnaires 

incorporate questions on snoring, but they have mostly been validated in older or male-

predominant populations [6, 132, 135]. These conventional questionnaire-based assessment 

tools perform less well among pregnant women [136]. 

 Facco et al. [137] tested a multi-variable model which combines snoring, hypertension, 

age and BMI in an index to predict SDB in high-risk pregnancies [6]. It performed better in 

diagnosing SDB than either the ESS or Berlin Questionnaire alone (area under the curve, 0.86) 
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[6, 137]. A meta-analysis of four studies [137-140] that applied the Facco et al. criteria [137] to 

their study found a pooled sensitivity of 0.74 (95% CI 0.64–0.82) and pooled specificity of 0.64 

(95% CI 0.58–0.70, AUC 0.82) [45]. Another model incorporating BMI, snoring volume and 

tiredness on awakening was a strong predictor for SDB diagnosis (area under the curve, 0.95) [6, 

141]. However, this tool has not been validated in large groups of pregnant women [6]. 

Developing widely applicable pregnancy-specific clinical prediction methods that can identify 

women at risk for timely diagnosis and potential treatment of SDB remains an important 

objective [6]. Identifying biomarkers for SDB would be a very useful way to assess risk for SDB, 

but this approach has not been well explored to date [6]. Objective PSG sleep recordings are the 

current best way for definitive diagnosis of SDB in pregnancy. 

 

Epidemiology 

In 2009, the Public Health Agency of Canada reported that 26% of Canadian adults have 

symptoms of OSA, but the absence of studies using objective sleep testing make it difficult to 

estimate accurate prevalence measurements in Canada, where only 3% of adults reported a 

formal diagnosis [1]. 

Depending on age and sex, SDB prevalence rates differ. Additionally, SDB becomes more 

common as people age in the general population [142]. For mild SDB (AHI 5-15 events/h), adult 

men have a prevalence rate ranging from 13% to 33%, whereas prevalence rates were 6% to 

19% for adult women [142]. The Wisconsin Sleep Study Cohort revealed that among individuals 

aged 30 to 49, 10% of men and 3% of women exhibited moderate to severe SDB (AHI 15-30) [4, 

143]. Among those aged 50 to 70, 17% of men and 9% of women had moderate to severe SDB 
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[4, 143]. This is in line with the finding of various studies across multiple countries indicating 

that males are at higher risk for severe SDB compared to females, pre-menopause [5, 144]. 

However, post-menopause, SDB prevalence rates in women doubles, independent of age and 

BMI [145, 146].  

In addition, the Wisconsin Sleep Cohort study showed that the prevalence of SDB is 

increasing with trends of increased obesity [147]. In a subset of this cohort (n=690), a 10% 

weight gain was associated with a 6-fold greater risk of developing SDB [148]. Obesity is the 

main risk factor for SDB and has increased in prevalence worldwide over the past four decades 

[144]. The global epidemic of obesity is contributing to increased rates of SDB, in both children 

and adults [144].  

SDB occurs in 17-45% of pregnant women by the third trimester of pregnancy [6]. This 

wide range is due to differences in BMI, gestational age, SDB symptoms, type of sleep test, and 

scoring criteria in the studies that were used to obtain these prevalence rates [6]. As pregnancy 

progresses, the prevalence of SDB rises significantly: according to one study that used objective 

PSG testing, the occurrence rate of SDB (defined by Chicago scoring criteria [120]) escalates 

from 10% in the first trimester to 27% by the third trimester [6, 7]. The NuMoM2b study [24], 

which has the largest prospective cohort to date in pregnancy (n=3,702), found that the 

prevalence of SDB went from 3.6% in early pregnancy to 8.3% in mid-pregnancy. This study used 

Level 3 HSATs without EEG [24, 149], and so the assessment could not capture hypopneas with 

microarousals, which are a predominant form of SDB in pregnancy [7, 74].  

 

Maternal SDB and adverse health outcomes 
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In pregnancy, airway dimensions are reduced, which could increase the risk of 

developing SDB [6, 150, 151]. This could be due to several factors, such as increased abdominal 

girth and reduced functional residual capacity [6, 152]. Additionally, an increase in adipose 

tissue associated with weight gain or underlying obesity could also increase the risk of SDB [6]. 

Though this mechanism has not yet been explored in pregnancy, increased blood volume [153] 

and elevated estrogen levels [154] in pregnancy may cause a buildup of mucosal edema, which 

in turn could lead to narrowing of the upper airway [6]. There may also be hormonal influences 

which may predispose pregnant women to SDB. Over 20% of women experience gestational 

rhinitis as a result of elevated estrogen and placental growth hormone levels [155, 156], which 

predisposes them to SDB by causing nasal obstruction, more specifically nocturnal congestion 

[6, 157]. This is a known risk factor for SDB in the general population [158, 159], and as such it is 

possible that gestational rhinitis could increase the risk of SDB. Though progesterone increases 

upper airway muscle dilator activity [160], it also increases ventilatory drive [161, 162], which 

results in respiratory instability and more negative intraluminal pressures, thereby worsening 

SDB [6]. As such, the observed increase in progesterone levels during pregnancy also exerts an 

influence. 

 During pregnancy, respiratory events predominantly manifest as obstructive rather than 

central [6, 163]. Pregnant women present increased inspiratory flow limitation more often than 

conventionally defined apneas or hypopneas, which is associated with adverse health outcomes 

[6].  

 SDB has been associated with various HDP, such as pre-existing or chronic hypertension, 

gestational hypertension, and preeclampsia [17, 24]. Preeclampsia is caused by various 
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pathogenic mechanisms, such as ischemia-reperfusion injury, oxidative stress, and endothelial 

dysfunction [6, 164]. The way these mechanisms work is similar to how SDB causes 

cardiovascular issues in the general population [6, 165, 166].  

Preeclampsia is also associated with volume overload, which can potentially lead to 

upper airway narrowing caused by nocturnal rostral fluid shift during recumbency at night [6, 

167, 168], as demonstrated in a study that found decreased airway dimensions in pregnant 

women with preeclampsia relative to healthy pregnant women [150]. This is consistent with 

findings from studies on non-pregnant populations, which show that patients with conditions 

causing fluid overload, such as end-stage renal disease (ESRD) have a higher prevalence of SDB 

(50-60%) [169-172]. Patients with chronic heart failure have a higher prevalence of OSA (26%) 

and CSA (21%) as well [81]. One study found that ESRD patients with SDB (AHI ≥15) have a 

higher extracellular fluid volume than those without SDB, which is correlated with SDB severity 

[82]. This effect was most marked in males, but nonetheless is consistent with the evidence that 

fluid overload contributes to the pathogenesis of SDB. Given that preeclampsia involves fluid 

overload, it is pertinent to consider fluid shift as a factor contributing to the etiology of SDB in 

pregnant populations.  

Additionally, various other studies with differing definitions of SDB, either symptom-

based or by objective sleep recordings, found a significant relationship between maternal SDB 

and gestational hypertension and/or preeclampsia (OR, 2.5; 95% CI, 1.8-3.5) [6, 24].  

Independent of obesity, SDB is associated with both poor glucose control and type 2 

diabetes in the non-pregnant population [6, 47, 173]. In pregnancy, the mother undergoes 

physiologic changes that predispose patients to hyperglycemia [174, 175]. Early on in 
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pregnancy, insulin sensitivity increases resulting in an increased uptake of glucose into adipose 

tissue to meet the high energy demands of later stages of pregnancy [176, 177]. However, as 

pregnancy advances, an increase in certain hormone levels, including estrogen, progesterone, 

leptin, cortisol, placental lactogen, and placental growth hormone together increase the body's 

resistance to insulin [177, 178]. As a result, there is a slight increase in blood glucose during 

pregnancy [177].  

The evolution of SDB remains unknown in the postpartum period, however. Several 

studies have shown an improvement in SDB from three months to two years postpartum [6, 

179-181]. However, more frequent sleep studies spanning various intervals before, during, and 

after pregnancy are necessary to draw conclusive findings [6]. 

 

Maternal SDB and gestational diabetes (GDM) 

GDM is glucose intolerance first recognized during pregnancy [174]. Based on the 

International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria [182], the 

most used screening method worldwide, a meta-analysis reported the global prevalence of 

GDM was 14.7% [183]. However, the prevalence of GDM varies widely across the world. 

Different countries use different diagnostic criteria [177, 184], Additionally, even when the same 

criteria and screening methods are used, prevalence ranges from 1% to 28% [183]. This is due to 

differences in population characteristics, such as age [185], ethnicity [32, 186, 187], obesity 

[188], lifestyle and diet [175]. Across most populations however, GDM prevalence is increasing 

[186], most likely due to the rising prevalence of obesity among pregnant individuals.  
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GDM has been associated with adverse health outcomes in the mother and the child 

[174]. GDM increases the risk of complications in pregnancy, especially HDP [189, 190]. After 

adjusting for age, BMI, ethnicity, parity and prenatal care, GDM was associated with an 

increased risk of severe preeclampsia (OR=1.5, 95% CI: 1.1, 2.1), mild preeclampsia (OR=1.5, 

95% CI: 1.3, 1.8), and gestational hypertension (OR=1.4, 95% CI: 1.2, 1.6) [189]. The HAPO Study 

followed over 25,000 women in the second-through-third trimester of pregnancy [31]. It found 

that higher maternal glycemia was associated with increased frequency of birth weight above 

the 90th percentile, caesarean section, clinical neonatal hypoglycemia, C-peptide level (a 

measure of hyperinsulinemia) above the 90th percentile, admission to NICU and neonatal 

hypoglycemia [31, 191].  

GDM is also associated with long-term adverse health outcomes in the mother and the 

child. After pregnancy, 20 to 50% of women with GDM develop type 2 diabetes, and this risk has 

doubled in the last decade [6, 192-195]. A meta-analysis that included 20 studies and over 

675,000 women found that GDM patients had an increased risk of developing type 2 diabetes 

compared with women who had a normoglycemic pregnancy (RR=7.43, 95% CI 4.79-11.51) 

[196]. GDM is associated with subsequent cardiovascular morbidity [197-199]. In a study 

following up on ~63,000 women, even only 7 years after pregnancy, GDM was significantly 

associated with a higher risk of CVD (adjusted OR=1.25, 95% CI: 1.09–1.43) [199]. Women with 

a history of GDM were also found to have a higher risk of malignancies, such as breast, uterine, 

and ovarian cancer (adjusted HR=1.3, 95% CI: 1.2-1.6) [200], ophthalmic morbidity (adjusted 

HR=2.0, 95% CI: 1.5-2.8) [201], and renal morbidity (OR=2.34, 95% CI: 1.4-3.7) [202, 203].  
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Maternal hyperglycemia is also strongly associated with development of type 2 diabetes 

in the offspring later in life. In a multi-ethnic retrospective case-control study, exposure to 

maternal diabetes was independently associated with type 2 diabetes in the offspring (OR=5.7, 

95% CI: 2.4–13.4) [204]. Additionally, GDM is associated with obesity in the offspring (OR=1.53, 

95% CI:1.03-2.27) [205, 206], and long-term endocrine disease during childhood (adjusted 

OR=3.1, 95% CI: 2.2–4.4) [207], among other conditions such as cardiovascular, 

neurodevelopmental, and ophthalmic morbidity [203]. This is consistent with Barker’s 

hypothesis on fetal origins of disease, which states that an adverse intrauterine environment is 

associated with epigenetic disruptions in the developing fetus' metabolic genome, thereby 

predisposing the offspring to chronic and metabolic disorders later in life [208-210].  

After diagnosis of GDM, treatment starts with lifestyle and behaviour modifications, 

including nutrition counselling, physical activity and weight management. These measures alone 

can be effective in 70-85% of GDM patients [211], but are sometimes not achieved. Lifestyle 

modification does not achieve adequate glucose control in 15% to 30% of GDM patients [212], 

necessitating pharmacologic treatment with insulin or other antidiabetics therapy [213], thus, 

highlighting the need to investigate for other risk factors that worsen glucose control in 

pregnancy. Insulin is the first line agent recommended for treatment of GDM in Canada [214], 

after which other non-insulin agents like metformin and glyburide can be prescribed. However 

both of these latter agents cross the placenta [213], and no long-term safety data is available for 

any oral agent [215].  

Despite current strategies to manage GDM, adverse neonatal outcomes such as neonatal 

hypoglycemia and NICU admissions still occur, prompting further investigation into the 
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identification of novel, reversible risk factors to improve overall glucose control. A meta-analysis 

of observational studies found a strong association for SDB and GDM with an OR=2.11, 95% CI: 

1.38- 3.23 [17]. Another meta-analysis of ~10,000 participants enrolled in observational studies 

found that after adjusting for BMI, women with SDB had a more than threefold increased risk of 

GDM, with a pooled OR=3.06, 95% CI: 1.89-4.96 [9]. However, a case-control study of non-obese 

women (BMI < 35) found no association between GDM and sleep-disordered breathing in 

pregnant women [216], but another observational case-control study found a strong association 

between SDB and GDM in an obese population (OR=6.60, 95% CI: 1.15–37.96) [217]. As such, it 

is still unclear whether the interaction between SDB and GDM is independent of obesity.  

Continuous glucose monitoring (CGM) tracks glucose levels in real-time with periodic 

measurements every 5 minutes. This offers a more dynamic understanding of blood glucose 

control compared to traditional markers like HbA1c, which misses daily fluctuations. Using CGM, 

our group has previously shown that a 10-unit increase in the AHI was associated with increased 

nocturnal (11pm-3am: 0.2 mmol/L [95% CI, 0.04-0.4]) and morning (8am: 0.3 mmol/L [95% CI, 

0.08- 0.4]) glucose levels in GDM, even after adjusting for BMI and diabetes medications (Figure 

2) [35]. Interventional studies examining GDM and SDB are lacking [6, 37-42, 179], and so it 

remains unknown whether treatment of SDB in GDM improves glucose control.  
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Figure 2. Mean hourly 24-hour glucose profiles in relation to category of sleep-disordered 
breathing severity. SE bars are shown. (Reprinted from: Newbold, R., Benedetti, A., Kimoff, R. J., 

Meltzer, S., Garfield, N., Dasgupta, K., Gagnon, R., Lavigne, L., Olha, A., Rey, E., & Pamidi, S. 
(2021). Maternal Sleep-Disordered Breathing in Pregnancy and Increased Nocturnal Glucose 

Levels in Women with Gestational Diabetes Mellitus. Chest, 159(1), 356–365, with permission 
from Elsevier [35]) 

 
 
Maternal SDB and child health outcomes 

 There are limited studies examining the effects of maternal SDB on fetal outcomes. In 

nonpregnant SDB patients, cardiac output and left ventricular stroke volume both decrease with 

a concurrent drop in oxygen saturation, which compromises tissue oxygen delivery [218]. As 

such, it is plausible that maternal SDB could disrupt hemodynamics and reduce placental tissue 

perfusion, which in turn decreases fetal growth potential [6]. Small for gestational age (SGA) 

infants face an increased risk of developing cardiometabolic health issues and mortality later in 

life [6]. Recent studies using PSG have demonstrated that maternal SDB was related to the 
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delivery of SGA infants [74, 122, 219]. As such, mild maternal SDB, even without major oxygen 

desaturation, could pose a risk of negative health outcomes for the developing baby [74].  

 Maternal SDB has also been associated with preterm birth (OR = 1.47, 95% CI = 1.14–

1.91) [220], which increases the risk for mortality and a variety of other health concerns later in 

life, including respiratory, gastrointestinal, immunologic, and cognitive problems, among many 

others [221]. A recent study found that even mild maternal SDB during pregnancy is linked to a 

smaller head circumference in newborns [222]. These infants also exhibited a unique pattern of 

head growth during the following three years of life. While newborns with slightly smaller head 

circumferences (still within normal ranges) might catch up quickly within the first year, this early 

difference could have lasting effects [222]. Recent research suggests that head circumference 

growth reflects brain development and that atypical head growth patterns are linked to an 

increased risk of developing neurodevelopmental disorders [222, 223]. 

 In addition, maternal SDB during pregnancy affects adiposity acquisition from birth until 

infancy [222]. Offspring of mothers with mild SDB have a compromised weight-to-length ratio at 

birth in addition to exhibiting rapid subsequent catch-up growth, which increases the risk for 

coronary heart disease [222, 224]. They also have an increase in weight and an increase in 

adiposity acquisition in the next three years of life [222].  

 Adverse fetal outcomes of maternal SDB have also been modeled in animals. Gozal et al. 

demonstrated in a gestational rat model that exposure to intermittent hypoxia and sleep 

fragmentation, the two hallmarks of SDB, results in an increased risk for catch-up growth in the 

male offspring and worse glucose control, which are both risk factors for developing obesity 



 38 

later in life [225, 226]. To fully understand the long-term effects of maternal SDB on children's 

health, we need well-designed studies involving human subjects. 

 

Treatments of SDB 

 The gold standard treatment for OSA is CPAP for its benefits regarding sleep-related 

symptoms as well as quality of life [227]. A CPAP machine generates airflow that is delivered 

through a nasal or oronasal mask into the upper airway, thereby maintaining a generally 

constant pressure in the upper airway throughout the respiratory cycle [228]. CPAP works like a 

pneumatic splint, using air pressure to keep the upper airway open throughout each breath, 

resulting in decreased respiratory effort and gas-exchange perturbations [228]. 

 Despite the high efficacy of CPAP, treatment effectiveness relies on patients’ adherence 

to prescribed therapy. In the non-pregnant population, using the conventional 4 h/night cut-off, 

29 to 83% of patients are non-adherent to CPAP [229]. Patterns of adherence are usually 

established early, within the first week of treatment, and they predict the patient’s long-term 

use [54]. Skipping nights of CPAP therapy is also associated with shorter nightly use durations, 

averaging 3 h/night [54].  

This level of detailed adherence has not been described in pregnancy. Interventional 

CPAP studies have given similar adherence rates to the general population. For example, in a 

recent RCT of 340 participants evaluating the effects of CPAP on blood pressure and 

preeclampsia in women with high-risk pregnancy, CPAP adherence rate was 32.7% with average 

use of 2.5 h/night [230]. Another smaller RCT of CPAP in a GDM population revealed that 46.7% 

of participants were adherent to CPAP with average adherence 3.39 h/night [37]. Night-to-night 
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adherence in pregnancy is an important gap in knowledge in this field and needs to be 

examined for improving our understanding of patterns of adherence in pregnancy, which may 

provide clues for novel interventions to improve overall adherence.  

 Oral appliances offer an alternative treatment option for SDB patients who are intolerant 

to CPAP or simply prefer a different approach [1]. Either a mandibular advancement splint 

(MAS) or tongue-retaining device is fitted and worn to bed nightly, though tongue-retaining 

devices have been less frequently used in recent years due to intolerability, being almost 

completely replaced by MAS [231]. MAS are considered a less invasive, tolerable, and silent 

treatment option for mild-to-moderate SDB [231, 232]. MAS push the jaw forward, thereby 

opening the airway. This position, however, might put stress on the teeth and jaw muscles due 

to constant counterbalancing forces trying to return the jaw to its natural position. This stress 

could potentially affect tooth alignment and jawbone health in up to 24% of oral appliance 

patients [231]. While oral appliances can help reduce sleepiness, a systematic review and meta-

analysis found they are less effective than CPAP in lowering the AHI in non-pregnant individuals 

(weighted mean difference: -7.08, 95%CI: -9.06∼-5.10) [233]. However, patients often find them 

much easier to tolerate (80-90% adherence vs. 50-70% for CPAP) [1]. This higher adherence 

might make them just as effective overall for mild to moderate cases of OSA [234]. Additionally, 

like CPAP, oral appliances can slightly improve blood pressure [234-237]. However, further 

research is needed to see if they offer other cardiovascular benefits. 

In addition to CPAP and MAS, alternative treatments for SDB include upper airway 

surgery, namely tonsillectomy or tracheostomy [1]. Maxillomandibular advancement surgery is 

a major procedure reserved for SDB patients who cannot tolerate other treatments, but the risk 
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of major complications that require readmission is high, and minor complications can occur as 

well [1]. Bariatric surgery for weight loss is also an option to help treat SDB, but in general, 

surgery for SDB only becomes an option when conventional therapies fail to significantly 

improve a patient's quality of life, and diagnostic tests reveal clear anatomical reasons for the 

airway blockage [238]. 

 Beyond traditional treatments for SDB, simple lifestyle adjustments can offer additional 

benefits for an improvement in sleep quality. Behavioural interventions like weight loss, a 

healthy diet and exercise can decrease SDB severity and may be the most effective first-line 

treatment, before any pharmacological or surgical intervention [238]. Smoking cessation, 

quitting alcohol and positional therapy are other behavioural lifestyle changes that SDB patients 

can consider to compliment conventional therapies [238].  

 

Knowledge gaps 

 SDB is associated with an increased risk of GDM in pregnant individuals which can cause 

adverse health outcomes in both the mother and the child [6]. It is still unknown if treatment 

with CPAP, the main treatment for SDB, 1) demonstrates adequate adherence in pregnancy, and 

2) improves glycemic profiles of pregnant women with SDB and GDM (Objective 1). Additionally, 

since CPAP is the first-line treatment for pregnant women with SDB, to assess whether it 

improves metabolic outcomes in pregnancy, it is necessary to evaluate in detail adherence to 

CPAP (and alternative forms of treatment for SDB) in this population, and characterize any 

ensuing patterns of adherence (Objective 2).   
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ABSTRACT 

Rationale: 

Sleep-disordered breathing (SDB) in pregnancy is associated with a 2-3 fold increased risk for 

gestational diabetes (GDM). It is unknown whether continuous positive airway pressure (CPAP) 

treatment of SDB improves glucose control in pregnancy. 

Objectives: 

In pregnant individuals with GDM, to assess 1) the objective adherence to CPAP and 2) the 

impact of CPAP on 24-hour continuous glucose monitoring (CGM) profiles.  

Methods: 

In this pilot randomized-controlled trial, pregnant individuals with GDM and SDB were 

randomized 1:1 to either CPAP or nasal dilator strips (control). Seventy-two hours of CGM was 

performed at baseline and ~4 weeks after treatment. Differences in glucose levels at various 

time points were analyzed using a generalized estimating equations approach.  

Measurements and Main Results: 

Forty-five individuals with GDM and SDB (mean±SD age of 36.0±4.3, pre-pregnancy body mass 

index 29.8±7.8 kg/m2) were randomized to either CPAP (n=22) or control (n=23). Thirty-four 

(n=16 CPAP, n=18 control) participants had CGM measurements at follow-up. The mean CPAP 

adherence was 3.0±2.3 hours/night (intention-to-treat). Differences in glucose levels (post-pre) 

were significantly lower during the early morning sleep period (3am: -0.67 mmol/L [95% CI, -

1.28 to -0.06], 4am: -0.86 mmol/L [95% CI, -1.44 to -0.28], 5am: -0.74 mmol/L [95% CI, -1.37 to -

0.11] and 6am: -0.80 mmol/L [95% CI, -1.42 to -0.17]) and at noon (-0.75 mmol/L [95% CI, -1.36 

to -0.15]) in the CPAP vs. control group (p<0.05) (per-protocol).  
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Conclusions: 

CPAP (vs. control) reduced overnight early morning glucose levels in pregnant individuals with 

GDM and SDB, thus reducing fetal exposure to maternal glucose.  

 

 

Abstract word count: 250 
 
 
Key words: sleep apnea, sleep-disordered breathing, pregnancy, gestational diabetes, 
continuous positive airway pressure, glucose monitoring 
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INTRODUCTION 

Gestational diabetes mellitus (GDM) is defined as glucose intolerance first recognized 

during pregnancy [1]. The global prevalence of GDM is up to 30% [2, 3], with rates increasing 

worldwide [4]. Importantly, elevated maternal glucose in GDM is associated with poor neonatal 

outcomes, such as large-for-gestational age infants [5], neonatal hypoglycemia and neonatal 

intensive care unit admissions [3, 6-8]. Long-term complications of GDM also include an 

elevated risk of maternal type 2 diabetes and of obesity in the offspring  [3, 9, 10]. Gestational 

sleep-disordered breathing (SDB) is common, occurring in ~17-45% of pregnant individuals by 

the third trimester [11-15]. Moreover, the prevalence of SDB in GDM is over 60% in some 

studies [16, 17]. SDB has also been shown to be associated with a 2-3 fold increased risk of 

GDM, even after adjusting for body weight [18].  

Continuous glucose monitoring (CGM) allows for the measurement of dynamic and 

temporal changes in glucose, with measurements taken every five minutes, providing a 

comprehensive measure of fetal exposure to maternal glucose levels [19, 20]. Additionally, CGM 

allows for nocturnal glucose assessments, which are not measured with conventional daytime 

capillary blood glucose testing. Even small elevations in glucose in pregnancy are clinically 

relevant [21], and elevations in nocturnal glucose, rather than daytime glucose, have been 

associated with the delivery of large-for-gestational age infants [22].  

We have previously shown that a 10-unit increase in the apnea-hypopnea index (AHI) 

was associated with elevated nocturnal (11pm-3am: 0.2 mmol/L [95% CI, 0.04-0.4]) and 

morning (8am: 0.3 mmol/L [95% CI, 0.08- 0.4]) glucose levels in GDM, even after adjusting for 

BMI and diabetes medications [16]. However, the causal relationship between SDB in pregnancy 
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and GDM is still unclear, as interventional studies in this patient population have been sparse 

[11, 23-29]. Thus, it remains unknown whether treatment of SDB in GDM improves glucose 

control.  

Previous CPAP trials in non-pregnancy that did not show improvements in metabolic 

outcomes have also been limited by poor adherence. Higher CPAP adherence improves 

cardiometabolic outcomes. In pregnancy, there are unique sleep complaints that could affect 

CPAP adherence, and so to power larger, multi-center trials for improving cardiometabolic 

outcomes in pregnant women with SDB, adherence to CPAP in this population must first be 

assessed. As such, CPAP adherence is the primary outcome of this trial. In this pilot randomized-

controlled trial, we therefore assessed whether individuals with GDM and SDB were able to 

adhere to CPAP, and whether CPAP improves 24-hour glucose profiles using CGM.  

Some of these results have been previously reported in the form of an abstract [30].  

 

METHODS 

This was a pilot, multicenter, unblinded randomized-controlled parallel-group study 

comparing CPAP treatment vs. nasal dilator strip (NDS) control for the treatment of SDB in 

pregnant individuals with GDM. Participants were recruited from specialized gestational 

diabetes clinics at the McGill University Health Centre (MUHC) and Centre Hospitalier 

Universitaire Sainte-Justine (CHU Ste-Justine) in Montreal, Quebec, Canada. The study was 

registered under clinicaltrials.gov (NCT02245659) and was approved by the Research Ethics 

Board at both sites (14-004-BMB). All study participants provided informed consent prior to any 
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study assessments. The protocol and design of this study has previously been reported [31]. 

Additional details on the methods can also be found in the Online Supplement.  

In brief, participants were screened for eligibility if they were pregnant, aged ≥ 18 years 

and before 34-weeks gestational age with a diagnosis of GDM during their current pregnancy. 

The criteria for diagnosis of GDM was based on the preferred two-step approach (i.e. initial 50g 

glucose challenge test followed by a 75g oral glucose tolerance test if indicated) as 

recommended by the 2013 Canadian Diabetes Association Clinical Practice Guidelines [32]. 

Participants with pre-existing or pregestational diabetes and multiple pregnancy were not 

eligible. Other eligibility criteria are available on the Online Supplement. 

 Participants with GDM were subsequently screened for SDB using a one-night Level 2 

screening home polysomnogram. The polysomnogram (Titanium unit, Medcare, Natus Inc., 

Mississauga, ON) was set up by a sleep technologist in the participant’s home. Further details 

are available in the Online Supplement. A diagnosis of SDB was made if the apnea-hypopnea 

index (AHI) was ≥ 10, based on Chicago respiratory scoring criteria [33]. During pregnancy, since 

milder SDB with frequent flow limitation and hypopneas with arousals are common [11, 14, 15, 

27, 28, 34-36], the more sensitive Chicago scoring criteria were used [14-16].  

Within two weeks of the diagnostic screening sleep study, participants who screened 

positive for SDB were randomized 1:1 to CPAP vs. control groups using web-based 

randomization with permuted blocks of varying size (Dacima software, Montreal, Quebec). 

Participants randomized to the CPAP arm were initiated on nightly auto-adjusted PAP (APAP; 5-

18 cm H2O; Philips Respironics). Standard initial CPAP adaptation and education was performed 

by a respiratory therapist and study nurse. For the control group, nightly nasal dilator strips 
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(NDS; Breathe Right, GlaxoSmithKline, Brentford, UK) were provided to participants as a control, 

as has been previously reported [38]. Both groups had follow-up visits every two weeks by the 

study nurse for education and troubleshooting of side effects until delivery, and for download of 

the CPAP adherence data via the memory chip in the machine or by Wi-Fi [37]. Participants 

assigned to CPAP were encouraged to use the device for as many hours as possible until 

delivery. The strips function by widening the nasal passages, thereby easing breathing and 

reducing snoring; however, they have not been shown to treat SDB in the pregnant population 

[39]. Participants in the NDS group were also assessed every two weeks for comfort, side effects 

and subjective adherence to therapy.   

 Since this was a pilot study, the primary outcome was objective adherence to CPAP. The 

secondary outcome was glucose levels at various time points measured by CGM. Intention-to-

treat (ITT) was used for assessing objective CPAP adherence from CPAP initiation to delivery by 

downloading CPAP usage reports at each study visit (every two weeks) to document nightly 

CPAP hours of usage. At the baseline visit, and again at a follow-up visit 2-4 weeks after starting 

CPAP or the NDS, the study nurse inserted a subcutaneous single-use, sterile electrode (Enlite, 

Medtronic Minimed Inc., Northridge, CA) in the abdomen, connected to the CGM device 

(iPro2®, Medtronic, Northridge, CA). The well-validated iPro2® [40-43] measured interstitial 

glucose levels every five minutes over a 72-hour period [44]. To obtain accurate measurements, 

the CGM was calibrated against capillary blood glucose measurements that were measured 

~four times/day by the participant, and were verified for accuracy using the minimal mean 

absolute difference, as previously described [45, 16, 68]. The CGM was blinded so participants 

could not see their glucose levels. Insulin doses (if applicable) at each visit were documented. 
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All participants received education on diet and exercise by a dietician and/or nurse in the GDM 

clinics as part of routine clinical care.  

 CPAP adherence was reported as the mean usage (h/day) and percent acceptable usage 

(using the conventional definition of ≥ 4h/night average nightly use for >70% of nights) over all 

days of the treatment period during pregnancy. Intention-to-treat analysis for adherence to 

CPAP was performed by assigning an overall of 0h/night of adherence to the individuals who did 

not use CPAP at all. Completer analysis (per-protocol) included the usage of CPAP among 

individuals who completed the study.  

Analysis of 24-hour glucose profiles was performed using ITT with multiple imputation 

(primary analysis), and also, using a complete case analysis (secondary analysis). The study 

statisticians and CGM outcome assessors were blinded to treatment allocation. Statistical 

analyses were performed using R version 4.3.0 and SAS version 9.4. Between group differences 

in imputed CGM data was compared using a Welch two-sample t test. In the complete case 

analysis, the within-group (CPAP, NDS) and between-group (CPAP vs. NDS) differences in glucose 

levels at all time points (i.e. every five minutes over the 72-hour period) was determined using a 

generalized estimating equations (GEE) approach for repeated measures to account for the 

correlation in the data. Pre-pregnancy BMI was selected as an a priori confounder in these 

analyses and the same model was fit while adjusting for BMI [17, 46].  At baseline and follow-up 

visits, CGM-derived mean 24h, daytime (6am-11pm), late night (11pm-3am) and early morning 

(3am-6am) glucose values were calculated over the 72-hour CGM measurement period and at 

each individual hourly time point. Between-group differences in baseline characteristics and 
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insulin doses were assessed by performing the Wilcoxon Rank sum test. Significance level was 

set at 0.05.  

For this pilot study, the sample size calculation was based on achieving acceptable CPAP 

adherence rates, similar to what would be expected in the non-pregnant population [31]. For 

instance, a sample size of 20 in the CPAP group was needed to observe an adherence rate of ≥ 

4h/night of usage for 70% of nights with a confidence interval width of ≤ 0.36 with >90% 

probability. 

 

RESULTS 

Participants were recruited from March 2015 until December 2018. A total of 45 

pregnant individuals with GDM and SDB were randomized 1:1 to CPAP vs. NDS (Figure 1). Of the 

22 participants allocated to CPAP, one participant did not receive CPAP because she was induced 

and thus delivered early. Four participants discontinued CPAP due to intolerance and were lost 

to follow-up, and one participant was intolerant to CGM with CPAP data transmission issues, 

leaving 16 with complete follow-up data available. 5/16 (31.3%) of participants on CPAP were on 

fixed-CPAP ranging between 6-11 cmH2O, and 11/16 (68.8%) had their device set to auto-CPAP 

between 4-20 cmH2O. Of the 23 individuals who were randomized to NDS, one delivered early 

and did not receive the control intervention, and an additional four were lost to follow-up 

and/or discontinued the NDS (Figure 1), leaving 18 with follow-up data available. Analyses for 

24-hour glucose profiles were performed in completers (16 individuals from the CPAP group and 

18 in the NDS group). The participants (mean±SD age of 36.0±4.3) who were randomized (n=45) 

were recruited at an average gestational age of 29 weeks, with a mean pre-pregnancy BMI of 
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29.8±7.8 kg/m2. Out of all participants, 58% (26/45) had moderate-severe OSA (AHI ≥ 15 

events/h). The mean oxygen desaturation index (ODI) was 4.0±5.5 events/hour. Baseline 

characteristics, including insulin requirements, were balanced between groups except for a 

higher total sleep time in the CPAP group (p=0.028; Table 1). Though mean 4% ODI was higher 

in the control group, the difference was not significant (p=0.20). Baseline characteristics 

between CPAP and control groups among completers (i.e. n=16 and n=18, respectively) were 

similar to those who were randomized, except for mean early morning (3am-6am) glucose and 

total sleep time being slightly higher in the CPAP vs. NDS group (Table 1).  

Complete data on the primary outcome, objective adherence to CPAP, was available for 

16 out of 22 participants allocated to CPAP. In ITT analysis (n=22), including the 4 participants 

who discontinued CPAP, the mean objective adherence was 3.0±2.3 hours/day. Complete 

adherence data was not available for 6 participants (n=4 discontinued CPAP and were lost to 

follow-up; n=1 had data transmission issues; n=1 had induced delivery before CPAP treatment 

could begin). More details on adherence data are in the Online Supplement. In the per-protocol 

analysis (n=16), mean objective adherence was 3.9±2.0 hours/day over a treatment period 

(CPAP initiation until delivery) of 41.8±18.1 days, and 44% of participants used CPAP for greater 

than or equal to 4 hours/day for at least 70% of days (Table 2). The mean time interval from 

CPAP initiation to the post-treatment CGM measurements was 25.7±10.9 days. CPAP adherence 

was 2.8±2.8 hours/day (ITT) or 4.1±2.5 hours/day (per-protocol) in the two weeks preceding and 

including the 72-hour CGM measurement period. Additionally, at time of CGM, mean usage of 

CPAP was 53.4±39.5%. 
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 There were 6/16 (38%) participants on insulin at baseline in the CPAP group vs. 7/18 

(39%) in the NDS group. At the post-treatment follow-up visit when CGM measurement 

occurred (mean gestational age 35.5±2.37 weeks), 11/16 (69%) were on insulin in the CPAP 

group vs. 11/18 (61%) in the NDS group. The total 24-hour (19.8 vs. 19.1 units) and nighttime 

(14.7 vs. 11.1 units) insulin requirements at baseline were slightly higher in the NDS group vs. 

CPAP group (Table 3), but these were not significantly different (p=0.96 and p=0.67 

respectively). At the post-treatment follow-up visit at time of CGM measurement, the mean 24-

hour (47.7 vs. 39.7 units) and nighttime (34.2 vs. 26.6 units) insulin requirements remained 

higher in the NDS group vs CPAP group, though not significant (p=0.70 and p=0.52 respectively), 

and daytime insulin requirements were also similar between groups (p=0.98). Gestational age at 

follow-up CGM was higher for the CPAP than for the control group (p=0.0096). 

In the primary analysis of CGM data using multiple imputation (missing post-treatment 

CGM data in 11 participants; n=6 CPAP and n=5 NDS), the difference of differences (CPAP-NDS; 

post-pre) was -0.28 mmol/L, 95% CI -0.80 to 0.25 mmol/L for mean 24-hour glucose, -0.34 

mmol/L, 95% CI -0.92 to 0.24 mmol/L for mean glucose values from 11pm-3am, and -0.67 

mmol/L, 95% CI -1.2 to -0.16 mmol/L for mean glucose values from 3am-6am, the latter being 

statistically significant (p=0.01). In a secondary, complete case analysis of CGM data (n=16 in 

CPAP and n=18 in NDS; ~60,000 total glucose values), the GEE model was fit with an 

exchangeable correlation structure based on the QIC metric. The model demonstrated that the 

mean reduction in 24-hour glucose levels was -0.40 mmol/L, 95% CI -0.86 to 0.05 mmol/L, 

p=0.08 from pre- to post-treatment in the CPAP vs. NDS groups. The mean reduction in glucose 

levels during the daytime (6am-11pm) was -0.36 mmol/L, 95% CI -0.82 to 0.10, p=0.12, during 
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late night (11pm-3am) was -0.21 mmol/L, 95% CI -0.86 to 0.44, p=0.52, with a statistically 

significant reduction during early morning hours (3am-6am) of -0.71 mmol/L, 95% CI -1.27 to -

0.16 mmol/L, p=0.01, in CPAP vs. NDS groups. Hourly post-pre and between-group differences 

are shown in Table 4. Twenty-four-hour continuous glucose monitoring profiles showed that 

glucose levels in the CPAP group post-intervention vs. baseline were generally lower starting at 

3am until mid-afternoon, with significant within-group reductions from 4-8am (Figure 2A). 

Increases in glucose post-intervention were observed from late afternoon to the following 

evening, with significant differences at 4pm and 9-10pm. For the NDS control group, post- vs. 

pre-intervention glucose levels were generally higher from mid-afternoon until early morning 

the next day. Within-group significantly higher levels were observed in NDS post- vs. pre- at 

12pm, 4pm, from 7-10pm and midnight to 2am (Figure 2B). Analysis of the difference of 

differences using GEE between the CPAP and the control groups revealed that there was a 

greater reduction in glucose levels in the CPAP vs. control group in a 24-hour period (Figure 2C). 

Significant reductions were observed from 3-6am (range of glucose reduction -0.7 to -0.8 

mmol/L), and again at 12pm (Table 4). Similar results were observed when adjusting the model 

for pre-pregnancy BMI.  

 

DISCUSSION 

To our knowledge, this is the first randomized controlled trial assessing the impact of 

CPAP treatment on 24-hour glycemic control in pregnant individuals with GDM and SDB. This 

pilot study showed that CPAP adherence was ~3h/night in intention-to-treat analysis (3.9h/night 

in per protocol analyses), which is similar to recent large cardiovascular trials in SDB involving 
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non-pregnant participants (eg. 3.3h/night in the SAVE trial [47], 2.8h/night in ISAAC trial [48]).  

Two weeks prior to follow-up CGM testing, mean CPAP usage improved to 4.5h/night, 

suggesting a possible adaptation period for CPAP in individuals with GDM. Despite the modest 

CPAP adherence, in post-hoc analyses, we found that the between-group (CPAP vs. control) 

CGM results showed that overnight, and especially in the early morning, glucose levels were 

significantly lower in the CPAP vs. control groups. 

By using CGM monitoring, we were able to show novel findings assessing the impact of 

CPAP on longitudinal and temporal changes in glucose levels in pregnancy. Our results indicate 

that while there were no significant differences between groups in 24-hour mean glucose levels, 

improved glycemic control for the CPAP group was observed in the early morning hours (3-6am) 

and at 12pm. Insulin requirements were similar in both groups. Thus, it is unlikely that the lower 

glucose levels observed in the CPAP group are due to the actions of insulin. The increase in 

glucose levels observed in the control group in our study at post vs. pre-treatment assessments 

(~ 35 vs. 29 weeks gestation) likely reflect a physiologic increase in insulin resistance in GDM as 

pregnancy progresses, resulting from growth of the placenta, and subsequent increases in 

hormone levels (e.g. human placental lactogen, estrogen, progesterone) which are known to 

interfere with the actions of insulin [49-51]. Thus, it is possible that CPAP may partly mitigate 

the increase in glucose levels (and potentially insulin resistance) as pregnancy progresses, with 

untreated SDB and GDM likely exacerbating this process. 

Our findings suggest that SDB may be a novel reversible risk factor for GDM by 

contributing to poor overnight glucose control in pregnancy [16-18, 52, 53], independent of 

obesity. One RCT of 36 pregnant participants with GDM by Chirakalwasan et al. showed that 
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there was improved insulin secretion among those adherent to CPAP vs. controls after two 

weeks (per protocol analysis) [23]. However, no significant differences were identified in the 

primary or secondary metabolic outcomes in the intention-to-treat analysis. This study did not 

use CGM to measure 24-hour glucose profiles. Our observations of a reduction in early morning 

glucose levels, rather than daytime glucose, in the CPAP vs. control groups may be due to 

reversal of SDB-specific increases in glucose [54]. In one study, Rahmi et al. showed that obesity 

in pregnancy was associated with elevated mean nocturnal glucose levels at night vs. non-obese 

controls [55]. However, this study did not screen individuals for SDB, making it plausible that a 

substantial proportion of the study population had undetected and untreated SDB. In one study 

of CPAP withdrawal in a non-pregnant population, SDB dynamically increased nocturnal glucose 

levels in individuals without diabetes, but morning oral glucose tolerance testing remained 

normal, suggesting possible rapid recovery of metabolic function upon awakening or 

compensation by endogenous insulin secretion [56]. As has been shown in another study [57], 

there may also be a carryover effect of CPAP with possible improvement in postprandial glucose 

levels, as suggested by significant improvements in lunch-time glucose levels in our study in 

CPAP vs. controls. However, given the small sample size and lack of reliable documentation of 

timing of meals, these findings would need to be replicated in future, larger studies. 

In a recent paper by Law and colleagues [22], who used CGM to measure glucose control 

in 162 pregnant individuals with GDM, elevated nocturnal glucose levels (12:30am-6am) were 

significantly higher (~ 6.0 vs. 5.5 mmol/L) among women who delivered a large-for-gestational-

age (LGA) infant vs. non-LGA infant. Importantly, there was no difference in the glucose values 

during the daytime between groups nor the time in range between the groups, suggesting that 
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nocturnal glucose levels, even with the relatively modest mean difference of 0.5 mmol/L, were 

the most important factor driving the overall differences. Importantly, SDB was once again not 

assessed in this study. While we were not powered to assess for LGA infants in our study, CPAP-

related reductions by ~0.7mmol/L in early morning glucose levels as shown in our study is 

therefore an important justification for future studies powered to examine whether CPAP 

reduces the incidence of LGA infants in GDM. Infants born LGA are at high risk for birth 

complications, hypoglycemia and fetal death, and as such, LGA is a critical outcome in the 

prevention and control of GDM [58, 59].  

 Based on our results, it is plausible that fetuses of individuals with GDM and untreated 

SDB are exposed to higher nocturnal glucose levels than those treated with CPAP. This is 

consistent with our prior work showing that greater severity of SDB was associated with 

elevated nocturnal and morning glucose levels in GDM [16]. Moreover, another study in 

pregnant individuals without GDM also showed that increasing severity of SDB and oxygen 

desaturation index was associated with higher levels of glucose using 24-hour CGM [60]. 

Extrapolating from the HAPO study [21], these observations may suggest an elevated risk of 

perinatal complications related to fetal exposure to maternal hyperglycemia. Undiagnosed and 

undetected SDB may be especially relevant since many babies with macrosomia are born to 

mothers who are obese, but without GDM [61]. Thus, SDB may be an additional factor related 

to obesity contributing to macrosomia, that currently is not routinely screened for in GDM [62, 

63].  

Our findings may also be relevant to the theory of the developmental origins of health 

and disease. Developmental programming is the phenomenon by which events occurring in the 
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early stages of development, even before pregnancy, can affect the occurrence of various health 

conditions like diabetes, cardiovascular diseases, asthma and more [64]. Accordingly, high 

circulating levels of glucose in mothers with GDM have been associated with significant changes 

in the epigenome of the infants, more specifically in the DNA methylation patterns, resulting in 

an increased susceptibility to metabolic disease later in life [65]. As such, if CPAP therapy could 

potentially contribute to lowering glucose levels in patients with GDM and SDB, this could offer 

a protective mechanism against obesity and diabetes later in life. Animal studies by Gozal et al. 

[66, 67] have shown that exposure to sleep fragmentation and intermittent hypoxia during the 

gestational period increases insulin resistance and markers of obesity in the offspring.   

 Our study is not without limitations. Since this is a pilot trial, all results are considered 

preliminary and should be interpreted with caution. Importantly, possible lifestyle differences 

between groups may have occurred, such as different nutritional habits and levels of physical 

activity. This was mitigated to some extent by both groups receiving standard of care with 

respect to education on lifestyle measures from the dietician and treating physician. Since we 

did not exclude individuals who required insulin, variations in dosing may influence our glycemic 

outcomes. However, we carefully examined insulin doses at baseline and at time of follow-up 

CGM to ensure the effect could not be explained by different insulin doses between the two 

groups. Due to the small sample size of the pilot trial, we did not do further analyses on 

adherent vs. non-adherent participants. 

 Our study demonstrated improved glycemic profiles of pregnant women, particularly in 

the early morning sleep period. Assessing for nocturnal glycemic control is normally missed with 

conventional daytime-only capillary blood glucose checks that are part of monitoring 
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recommendations for individuals with GDM. As such, our pilot study results indicate that SDB 

may be an undetected reversible risk factor for fetal exposure to elevated maternal glucose 

levels. Future, larger studies with strategies to improve overall adherence to therapy of SDB in 

this population are needed to replicate our findings and to assess for the impact of CPAP on 

improving perinatal outcomes in GDM. If verified, these results might suggest that screening 

and treatment for SDB may reduce the burden of GDM.  

 
 
 
FIGURE LEGENDS 

Figure 1: Participant flow diagram 

CONSORT flow diagram. CONSORT = Consolidated Standard of Reporting Trials. CPAP = 

Continuous Positive Airway Pressure. CGM = Continuous Glucose Monitoring. The number of 

participants who were enrolled, assessed for eligibility, randomized to each treatment arm, and 

included in the analysis. 

 

Figure 2: Mean 24-hour glucose profiles during pre- and post-treatment continuous glucose 

monitoring (CGM) 

(A)Difference of mean glucose levels pre- and post-intervention for the CPAP group. (B) 

Difference of mean glucose levels pre- and post-intervention for the NDS group. (C) Difference 

of differences between CPAP and NDS groups. 95% confidence interval bands are shaded 

around respective curves. Significant differences between groups (p < 0.05) are identified by red 

star symbols. 
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Table 1. Baseline Characteristics of the Study Population* 

 

 Intention-to-treat (n=45) Per-protocol (n=34) 

 
CPAP  
(n=22) 

Control  
(n=23) 

CPAP (n=16) Control (n=18) 

Age, years 36.5 (4.7) 35.5 (4.0) 38.4 (4.9) 35.3 (4.5) 

Race, n (%)     

     White 13 (59.1) 8 (34.8) 9 (56.3) 7 (38.9) 

     Black 3 (13.6) 3 (13.0) 2 (12.5) 1 (5.6) 

     Middle Eastern 3 (13.6) 5 (21.7) 2 (12.5) 3 (16.7) 

     Other 3 (13.6) 7 (30.4) 3 (18.8) 7 (38.9) 

Gestational age at baseline 
(weeks) 

30.1 (2.9) 28.7 (4.6) 32.0 (2.8) 27.6 (4.6) 

Gestational weight gain (kg) 10.0 (7.3) 8.8 (6.6) 10.8 (7.5) 9.4 (6.9) 

Pre-pregnancy BMI (kg/m2) 29.1 (9.1) 30.5 (6.4) 31.0 (9.8) 29.1 (5.4) 

Neck circumference (cm) 36.8 (3.1) 35.7 (3.3) 39.5 (3.0) 35.7 (3.7) 

Hypertension disorder of 
pregnancy, n (%) 

3 (13.6) 1 (4.3) 1 (6.3) 1 (5.6) 

Mean fasting glucose (mg/dL) 93.2 (8.3) 92.6 (16.1) 99.1 (7.2) 91.9 (18.0) 

Mean 24-hour glucose (mg/dL) 105.4 (8.3) 104.5 (12.6) 113.4 (8.4) 103.5 (13.3) 

Mean late night (11pm-3am) 
glucose (mg/dL) 

103.0 (16.3) 99.6 (13.6) 110.2 (17.3) 98.5 (14.1) 

Mean early morning (3am-6am) 
glucose (mg/dL) 

94.7 (10.4) 90.0 (12.3) 104.1 (8.2) 89.9 (12.2) 

Use of insulin at enrolment (yes), 
n (%) 

9 (40.9) 11 (47.8) 6 (37.5) 7 (43.8) 

Mean 24-hour insulin dose 
(units) 

18.0 (32.4) 23.5 (42.4) 19.1 (36.8) 21.0 (45.2) 

Mean total daytime insulin dose 
(units) 

6.4 (19.7) 5.4 (18.9) 7.9 (22.9) 5.2 (20.5) 

Mean total nighttime insulin dose 
(units) 

11.6 (19.0) 17.9 (26.8) 11.1 (20.4) 15.5 (27.8) 

Use of metformin (yes), n (%) 1 (4.5) 1 (4.3) 1 (6.3) 1 (5.6) 

Epworth sleepiness scale score 7.0 (4.0) 7.2 (5.0) 8.6 (4.0) 8.1 (5.1) 

Total sleep time (hours) 6.9 (1.1) 6.3 (1.1) 7.6 (1.2) 6.4 (1.1) 

Apnea-hypopnea index 
(events/hour) 

19.4 (8.7) 21.1 (10.5) 21.7 (9.6) 22.3 (11.3) 

4% oxygen desaturation index 
(events/hour) 

2.6 (3.3) 5.2 (6.8) 3.2 (3.7) 5.9 (7.5) 
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Microarousal index (events/hour) 30.6 (7.5) 30.3 (10.4) 34.4 (7.7) 31.4 (11.2) 

 
 

Definition of abbreviation: CPAP = Continuous Positive Airway Pressure. 
Data are mean ± SD unless otherwise specified. Hypertension was considered to be present 
if systolic or diastolic blood pressure >140 or >90 mm Hg respectively. Gestational weight 
gain was defined from pre-pregnancy to date of enrolment. Mean fasting glucose levels were 
obtained from oral glucose tolerance tests (OGTT). Mean 24-hour, evening, sleeping and 
daytime glucose levels were obtained from continuous glucose monitoring (CGM) for three 
consecutive days. Total sleep time, apnea-hypopnea, oxygen desaturation and microarousal 
indices were obtained from a level 2 screening home polysomnogram. * All available data 
was used in the primary analysis (i.e. all participants who were randomized and completed 
baseline assessments). In bold are significant differences (p<0.05) found between groups 
(CPAP vs NDS) using the Wilcoxon Rank-sum test. 
 
Reprinted with permission of the American Thoracic Society.   
Copyright © 2024 American Thoracic Society. All rights reserved.   
Cite: Joshua Smocot, Andrea Benedetti, Raphieal Newbold, Sara Meltzer, R. John 
Kimoff, Natasha Garfield, Evelyne Rey, Kaberi Dasgupta, Robert Gagnon, and 
Sushmita Pamidi/2024/ "Impact of Continuous Positive Airway Pressure on Glucose 
Profiles in Gestational Diabetes: A Pilot Randomized Controlled Trial." American Journal 
of Respiratory and Critical Care Medicine, 210(5), pp. 677–679 [239] 
The American Journal of Respiratory and Critical Care Medicine is an official journal of 
the American Thoracic Society.   
 
 
Table 2. CPAP Adherence Data* 
 
  
 CPAP  

(n=16) 

Duration of treatment period (CPAP start to delivery) (days) 41.8 (18.1) 

Average usage (all days) (hours/day) 3.87 (2.01) 

Average usage (days used) (hours/day) 4.58 (2.01) 

% Days used minimum of 4h/day 54.5 (31.0) 

CPAP used < 2 hours/night, n (%) 3 (19) 

CPAP used 2-4 hours/night, n (%) 6 (38) 

CPAP used ≥ 4 hours/night, n (%) 7 (44) 

Days with device usage 37.9 (18.5) 

Days without device usage 4.27 (3.31) 

P90 (cm H2O) 9.14 (2.95) 

Residual AHI 1.62 (1.23) 

Time in Large Leak (avg per day) (min) 1.95 (3.34) 

Time interval from CPAP start to CGM measurement (days) 25.7 (10.9) 

Average CPAP usage 2 weeks before CGM (hours/day) 4.53 (2.18) 
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Data are mean ± SD unless otherwise specified. Treatment period corresponds to time 
of CPAP start until delivery. P90 was defined as the pressure delivered by the CPAP 
device in auto- mode for ≥ 90% of the time. Residual AHI (Apnea Hypopnea Index) was 
the AHI after being on auto-CPAP. * All available CPAP data was used in the per-
protocol analysis shown here. Average usage (days used), % Days used minimum 
4h/day, Days with and without device usage, Time in large leak and Average CPAP 
usage 2 weeks before CGM was missing for n =1 participant. 

 
 
 
 

Table 3. Insulin doses at baseline and at time of post-treatment follow-up visit 
 
 CPAP 

(n=16) 
NDS  

(n = 18) 
p-value 

Gestational age at baseline (weeks) 29.7 (2.77) 27.6 (4.61) 0.30 

Gestational age at post-treatment follow-up visit 
(weeks) 

36.6 (2.11) 34.5 (2.20) 
0.0096 

Total 24-hour insulin (units) at baseline  19.1 (36.8) 19.8 (44.1) 0.92 

Total 24-hour insulin (units) post-treatment 39.7 (53.9) 47.7 (64.4) 0.78 

Change in total insulin (units) 20.6 (24.4) 27.8 (34.7) 0.62 

Total daytime insulin (units) at baseline 7.94 (22.9) 5.17 (20.5) 0.52 

Total daytime insulin (units) post-treatment 13.1 (32.7) 13.4 (34.0) 0.68 

Change in daytime insulin (units) 5.19 (14.4) 8.28 (18.2) 0.31 

Total nighttime insulin (units) at baseline 11.1 (20.4) 14.7 (27.2) 0.86 

Total nighttime insulin (units) post-treatment 26.6 (30.4) 34.2 (37.2) 0.62 

Change in nighttime insulin (units) 15.4 (16.0) 19.6 (20.8) 
0.63 

 
 
Data are mean ± SD. Post-treatment assessment of insulin doses occurred at the time 
of the visit for the post-treatment CGM measurement. Participants who were not lost to 
follow-up (i.e. analyzed groups) are represented in this table. Change in insulin 
represents post-treatment minus baseline. Daytime insulin indicates short-acting insulin 
doses taken during the day. Nighttime insulin indicates long-acting insulin doses taken 
at bedtime.  
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Table 4. Between-group differences of glucose levels (mmol/L) unadjusted for BMI 

24-hour time NDS POST-PRE difference CPAP POST-PRE difference Difference of differences 
(CPAP – NDS) 

00:00 0.60 
(0.09 to 1.11) 

0.46 
(-0.11 to 1.02) 

-0.15 
(-0.91 to 0.62) 

01:00 0.50 
(0.07 to 0.94) 

0.38 
(-0.24 to 1.00) 

-0.13 
(-0.88 to 0.63) 

02:00 0.53 
(0.07 to 0.99) 

0.05 
(-0.45 to 0.55) 

-0.48 
(-1.15 to 0.20) 

03:00 0.43 
(-0.07 to 0.94) 

-0.24 
(-0.58 to 0.10) 

-0.67 
(-1.28 to -0.06) 

04:00 0.42 
(-0.07 to 0.91) 

-0.44 
(-0.74 to -0.13) 

-0.86 
(-1.44 to -0.28) 

05:00 0.13 
(-0.37 to 0.62) 

-0.61 
(-1.00 to -0.23) 

-0.74 
(-1.37 to -0.11) 

06:00 -0.04 
(-0.45 to 0.36) 

-0.84 
(-1.32 to -0.36) 

-0.80 
(-1.42 to -0.17) 

07:00 -0.25 
(-0.73 to 0.22) 

-0.75 
(-1.24 to -0.26) 

-0.49 
(-1.18 to 0.19) 

08:00 -0.26 
(-0.74 to 0.22) 

-0.69 
(-1.28 to -0.10) 

-0.42 
(-1.18 to 0.34) 

09:00 -0.12 
(-0.51 to 0.27) 

-0.53 
(-1.41 to 0.34) 

-0.41 
(-1.37 to 0.55) 

10:00 0.07 
(-0.25 to 0.40) 

-0.44 
(-0.90 to 0.03) 

-0.51 
(-1.08 to 0.06) 

11:00 0.24 
(-0.20 to 0.67) 

-0.02 
(-0.40 to 0.36) 

-0.26 
(-0.83 to 0.32) 

12:00 0.65 
(0.37 to 0.92) 

-0.11 
(-0.65 to 0.43) 

-0.75 
(-1.36 to -0.15) 

13:00 0.19 
(-0.14 to 0.52) 

-0.35 
(-0.97 to 0.27) 

-0.54 
(-1.24 to 0.16) 

14:00 0.22 
(-0.08 to 0.52) 

-0.17 
(-0.72 to 0.37) 

-0.39 
(-1.01 to 0.23) 

15:00 0.29 
(-0.13 to 0.70) 

0.20 
(-0.27 to 0.68) 

-0.08 
(-0.71 to 0.55) 

16:00 0.63 
(0.14 to 1.11) 

0.36 
(-0.03 to 0.76) 

-0.26 
(-0.89 to 0.36) 

17:00 0.41 
(-0.18 to 0.99) 

0.16 
(-0.38 to 0.70) 

-0.24 
(-1.04 to 0.56) 

18:00 0.37 
(-0.09 to 0.82) 

0.14 
(-0.49 to 0.77) 

-0.23 
(-1.01 to 0.55) 

19:00 0.52 
(0.17 to 0.87) 

0.21 
(-0.33 to 0.75) 

-0.32 
(-0.96 to 0.33) 

20:00 0.50 
(0.12 to 0.89) 

0.26 
(-0.20 to 0.73) 

-0.24 
(-0.84 to 0.36) 
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Data are mean (95% confidence interval). Glucose levels were obtained from continuous glucose 
monitoring for three days and averaged on the hour, which was performed pre-intervention (NDS 
or CPAP) and 2-4 weeks post-intervention. At hours 3, 4, 5, 6 and 12, the difference between the 
groups is statistically significant (shown in bold).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21:00 0.59 
(0.07 to 1.10) 

0.64 
(0.21 to 1.06) 

0.05 
(-0.62 to 0.71) 

22:00 0.62 
(0.00 to 1.24) 

0.53 
(0.00 to 1.07) 

-0.09 
(-0.90 to 0.73) 

23:00 0.39 
(-0.14 to 0.93) 

0.45 
(-0.02 to 0.93) 

0.06 
(-0.66 to 0.77) 
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Figure 1. Participant flow diagram 

 

 

 

      CONSORT Flow Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assessed for eligibility (n=1246) 

Excluded (n=1201) 
   Not interested (n=474) 
   Too late in pregnancy (n=179) 
   Type 2 diabetes (n=153) 
   Lives too far away (n=83) 
   Type 1 diabetes (n=74) 
   Language barrier (n=43) 
   No diagnosis of GDM (n=13) 
   Previous CPAP use (n=13) 
   Prediabetes (n=11) 
   Other (n=158) 
 -admitted in hospital, cardiovascular disease, 

psychiatric disease, IVF, twins, steroid use 
 
 
 
 
 
 
 
 
 
 
 
 

Analyzed (n=16) 

 Excluded from analysis (n=1) due to 

intolerance to CGM  
 
 

Discontinued intervention and lost to follow up 
(intolerance due to acid reflux symptoms (n=1), 
nasal congestion (n=2), and URTI (n=1)) (n =4) 
 

 
 

Allocated to CPAP (n=22) 

 Received CPAP (n=21) 
 Did not receive CPAP (induced delivery) (n 

=1) 

Lost to follow-up (premature delivery) (n=3) 
 
Discontinued intervention and lost to follow up 
(life stress) (n=1) 
 
 
 
 
 
 
Discontinued intervention (n=7) 

Allocated to NDS (control) (n=23) 

 Received NDS (n=22) 
 Did not receive NDS (premature delivery) 

(n=1) 

Analyzed (n=18) 
 

Allocation 

CGM Analysis 

Follow-Up 

Randomized (n=45) 

Enrollment 
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Figure 2A. Difference of mean glucose levels pre- and post-intervention for the 
CPAP group. 
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Figure 2B. Difference of mean glucose levels pre- and post-intervention for the 
nasal dilator strip (NDS) group 
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Figure 2C. Difference of differences between CPAP and NDS groups 
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METHODS 

Inclusion and Exclusion Criteria 

 The inclusion and exclusion criteria were described in a previously published protocol 

(1). Participants were screened for eligibility if they were pregnant, aged ≥ 18 years and 

between 20- and 34-weeks gestational and referred to the gestational diabetes mellitus (GDM) 

clinic at the McGill University Health Centre (MUHC) or the Centre Hospitalier Universitaire 

Sainte-Justine (CHU St-Justine).  

A) Diagnosis of GDM: The criteria for diagnosis of GDM was based on the preferred two-

step approach. A positive screening non-fasting 50-g glucose load (24-28 weeks 

gestation) of >11.1 mmol/L indicated a diagnosis of GDM. If the 50g test was abnormal 

but not in the diabetic range (7.8-11.1 mmol/L), then a fasting, standard, 75-g oral 

glucose tolerance test (OGTT) was performed. GDM was diagnosed in our study with 

either an abnormal 50-g glucose tolerance test with level ≥11.1 mmol/L or from one of 

the following from the 75-g OGTT: 1) fasting glucose ≥5.1 mmol/L, 2) 1-h glucose ≥10.0 

mmol/L, or 3) 2-hr glucose ≥8.5 mmol/L (2). These results needed to occur in the 

absence of pre-existing or pregestational diabetes.  

B) Diagnosis of SDB: Participants were scheduled for a one-night level 2 home 

polysomnogram within one week of their initial GDM clinic visit. The complete 

polysomnogram (Titanium unit, Medcare, Natus Inc., Mississauga, ON) was set up by a 

sleep technologist in the participant’s home and all signals were verified. The sleep 

recording device was then picked up by a driver in the morning and returned to the 
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sleep laboratory after the sleep recording was completed. The data from the recorder 

was then downloaded and the Registered Polysomnographic Technologist scored the 

sleep studies, which were then reviewed by one of the study’s sleep physicians. To 

ensure scoring reliability, standard quality assurance measures such as ensuring a 

minimum of ~4h total sleep time were applied. To ensure accurate scoring of respiratory 

events, oximetry, electroencephalogram (EEG) and nasal cannula signals were verified 

for adequate signal quality. American Academy of Sleep Medicine (AASM) criteria were 

used to score sleep-wake state, arousals and periodic limb movements (3), and 

respiratory events were scored using Chicago criteria (4). A diagnosis of SDB was made 

based on features indicative of SDB (AHI ≥ 10 according to Chicago criteria). During 

pregnancy, milder SDB with less oxygen desaturation but frequent flow limitation and 

arousals is common (5-10). As such, the more sensitive Chicago scoring criteria was used 

for diagnosis of SDB, as has been used in prior studies in pregnancy (11, 12). 

Participants were excluded if they had known pre-gestational Type 1 or 2 diabetes, 

multiple pregnancy, conception by IVF, chronic renal disease, cardiovascular disease, stroke, 

active psychiatric disease, active malignancy, HIV infection, Hepatitis C or B, prior treatment for 

SDB, occupation involving shift work or travel across time zones, or inability to provide informed 

consent. Cigarette smoking, alcohol consumption and the use of illicit drugs was also exclusion 

criteria. Participants who had severe SDB (AHI ≥30 events per hour) accompanied by notable 

daytime sleepiness (ESS ≥15), or significant oxygen desaturation (4% oxygen desaturation index 

≥30 or sustained hypoxia <80%), were excluded from the study and were referred for urgent 

evaluation at the Sleep Clinic in our establishment. 
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NDS as a control 

For CPAP studies, there has been significant uncertainty on the optimal control group. A 

sham CPAP device is similar in appearance to a therapeutic CPAP, but it can cause sleep 

disruption because of discomfort and frustration from wearing a mask that delivers suboptimal 

treatment pressures (13). In a recent large RCT that randomized participants to sham-CPAP or 

therapeutic CPAP, mean nightly usage of sham-CPAP was less than therapeutic CPAP (3.4h vs. 

4.2h) (14). In pregnant individuals, due to the greater sleep disturbances resulting from 

pregnancy itself (15),  a sham CPAP device may interfere with sleep quality and shorten sleep 

duration. This in turn might worsen glucose control and therefore bias the results in favor of the 

active intervention arm, since sleep fragmentation is independently associated with poor 

glucose metabolism (16). Thus, sham CPAP was not used as the control in this study. 

Randomization and treatment 

Eligible participants were randomized 1:1 to CPAP vs control groups, using web-based 

randomization with permuted blocks of varying size (Dacima software, Montreal, Quebec). Once 

all complete participant information concerning eligibility was entered (i.e. age, AHI, GDM 

diagnosis, medical problems, etc.), the website then displayed the group to which the 

participant was randomized. Participants allocated to CPAP were given a variety of nasal masks 

to try, and if mouth-breathing or intolerance occurred, then an oronasal mask was fitted. 

Supplementary ad-hoc visits or telephone calls were made by the study nurse if difficulties with 

adaptation occurred.  
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Repeated CGM at follow-up 

Some individuals (n=15) had another repeated CGM measurement two weeks after the 

first follow-up CGM, but many delivered prior to this so only the first follow-up CGM was used 

for all participants.  

 

 

RESULTS 

Table 1 - Baseline characteristics: missing data 

 All available data was used in the primary analysis for CPAP adherence (i.e. all 

participants who were randomized and completed baseline assessments). Gestational weight 

gain and pre-pregnancy BMI were missing from n=1 participant in the Control group. Mean 

fasting glucose was missing in a total of n=9 participants (n=3 in the CPAP group and n=6 in the 

Control group). Mean 24-hour, late night and early morning glucose levels were missing from 

n=1 participant in the CPAP group. Epworth Sleepiness Scale score was missing from n=1 

participant in the CPAP group and n=2 participants in the Control group. 4% oxygen 

desaturation index and microarousal index was missing from n=1 participant in the CPAP group. 

Adherence data 

Intention-to-treat analysis included all 22 participants randomized to CPAP:  

• 16 who completed the study. 
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• 4 who discontinued the study and were lost to follow-up (3 of which did not use CPAP at 

all and so were assigned 0 h/night average usage, and one who had an average usage of 

0.40 h/night).  

• One who did not receive CPAP because she delivered early (assigned 0h/night). 

• One who did not complete the post-treatment CGM and had some CPAP data 

transmission issues, who had an average usage of 2.72 h/night.  

Per-protocol analysis included only the 16 participants who completed the study (pre- and post-

CGM).  

CGM data 

For the CPAP group, CGM data was complete in 13/16 participants. 1/16 participant was 

missing 1 day of pre-treatment CGM data, and 2/16 participants were missing half a day of post-

treatment follow up-visit CGM data. For the NDS group, CGM data was complete for 15/18 

participants. 2/18 participants were missing 1 day of post-treatment CGM data and 1/18 

participants was missing half a day of post-treatment CGM data.  All other available data from 

these participants was still used in the analysis.  
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Linking section: Importance of adherence to therapy in SDB 

 The first-line treatment for SDB is CPAP therapy. However, a major hurdle exists – 

adherence rates are low, between 30-60% [240]. Inconsistent CPAP use significantly weakens its 

effectiveness, leaving many patients with SDB vulnerable to its associated complications, such 

as an increased risk of comorbid cardiometabolic disorders [59, 103, 241], persistent daytime 

sleepiness [242, 243], and a significantly diminished quality of life [240].  

 Therefore, for pregnant women with SDB to experience the optimal benefits of CPAP 

therapy, such as reduced blood pressure and reduction in preeclampsia risk [38, 39], adherence 

to treatment is imperative. As such, to examine the systemic and metabolic effects of CPAP in 

pregnant patients with SDB and GDM, it is first important to assess adherence and ensure 

optimal CPAP use in this population.  

 A key study by Kribbs et al. [244] investigated objectively measured CPAP adherence in 

the general population. This study found that only 46% of participants met the criteria for 

regular use, defined as using CPAP for at least 4 hours on at least 70% of the nights [244, 245]. 

Further studies using objective monitoring confirmed similar average nightly CPAP use of 

around 4.7 hours [246, 247]. As such, a trend of less-than-optimal adherence emerged, and it 

became clear OSA patients have difficulty using CPAP consistently throughout the night. It is 

unknown what threshold for adherence is optimal, but one study in the non-pregnant 

population found a dose-dependent relationship between increased CPAP use and reducing 

daytime sleepiness, but only up to 7 hours of use [248]. Studying adherence to treatment in 

pregnancy is especially important because of the higher prevalence of SDB in this population 

(17-45% [6]), and the implications for both maternal and fetal health and well-being. 
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Beyond investigating adherence rates, Kribbs et al. [244]  aimed to identify factors that 

could help predict which patients were more likely to be adherent to CPAP therapy. Specifically 

in this study, it was found that patients who adhered to CPAP therapy tended to have higher 

levels of education and professional occupations [244]. More recent studies have confirmed 

that socioeconomic status may play a role in CPAP adherence, suggesting that patients with 

higher income have an increased odds of CPAP adherence [249-251]. Other factors like marital 

status, partner involvement, attitude towards treatment, and partner’s sleep quality have also 

all been suggested to predict long-term adherence behaviour [252].  

 Indeed, a central theme in CPAP research has become the identification of significant 

predictors for adherence [252-254]. Investigators have touched on a wide range of elements 

that might influence how well patients adhere to CPAP therapy. These factors fall into five main 

categories: patient characteristics, disease severity and characteristics, the design and features 

of the CPAP machine itself, how the therapy is initially introduced, and the patient's emotional 

and social well-being [240]. Several studies have identified an association between daytime 

sleepiness and CPAP adherence [244, 255, 256].Despite this comprehensive examination, no 

single factor has emerged as a consistent predictor of adherence [240]. Instead, the evidence 

suggests that a complex interplay of unique factors for each individual likely determines how 

well they adapt and adhere to CPAP treatment [240].  

Adherence to CPAP in pregnancy is not well characterized, as there have been few 

interventional trials exploring this to date. One study found the average reported CPAP usage 

was 6 hours per night for 7 days a week, however the sample size was small (n=7) [42]. Two 

other studies with small sample sizes (n=12) demonstrated high mean CPAP adherence as well 
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(5.4 h/night [41] and 7 h/night [40]), yet a more recent trial with a larger sample randomized to 

CPAP (n=153) found a mean average-CPAP use of 2.5 h/night [230]. As such, pregnant 

individuals’ adherence to CPAP remains to be better characterized.  

 Therefore, a key research goal in treating pregnant women with SDB is to identify and 

better characterize CPAP adherence in pregnancy. This includes investigating specific factors that 

distinguish women who consistently use CPAP from those who do not. Night-to-night adherence 

in pregnancy remains unclear, but understanding these patterns could offer valuable insights, 

particularly since adherence during the first week of treatment is a strong predictor of long-

term usage in the general population [54, 255, 257, 258]. With the emergence of alternative 

treatments like MAS, it is also important to understand how pregnant women adhere to this 

form of treatment. It would be particularly interesting to address whether adherence patterns 

for MAS differ from those observed with CPAP, specifically in the pregnant population. 

Subjective adherence is often overestimated by the patient (by 69±110 min) and inaccurate 

[244]. As such, with embedded electronic chips, it is now possible to obtain objective measures 

of adherence. 

 Thus, a critical gap exists in our understanding of how pregnant women adhere to SDB 

treatments like CPAP and MAS on a night-to-night basis over time (longitudinal adherence 

patterns). This knowledge gap hinders the development of optimal treatment plans for this 

vulnerable population. The next chapter aims to bridge this gap by investigating these patterns, 

ultimately paving the way for improved treatment regimens and efficacy for pregnant women 

with SDB. 
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ABSTRACT 

Purpose: Night-to-night adherence to sleep-disordered breathing (SDB) treatment with either 

continuous positive airway pressure (CPAP) or mandibular advancement splints (MAS) in 

pregnancy has not been well characterized. The objective of this study was to assess night-to-

night adherence patterns from existing CPAP and MAS data in pregnancy. 

Methods: Three separate pregnancy cohorts evaluating treatment for SDB in the second and 

third trimester were used: 1) CPAP in gestational diabetes mellitus (GDM), 2) CPAP in 

hypertensive disorders of pregnancy (HDP), and 3) mandibular advancement splints (MAS). The 

first 30 days of objective adherence data obtained from CPAP and MAS devices were used in this 

descriptive analysis. 

Results: Data from 37 CPAP users and 15 MAS users was analyzed. For the GDM and HDP 

cohorts, three patterns of adherence were observed: 1) consistent CPAP users (38%), 2) 

improved CPAP usage after initial adaptation (16%), and 3) inconsistent CPAP users (46%). For 

the MAS cohort, the three observed patterns of adherence were: 1) consistent MAS users 

(47%), 2) initial usage with subsequent decrease in adherence (20%), and 3) inconsistent MAS 

users (33%). Participant characteristics (demographics, disease severity) were similar between 

adherence groups. 

Conclusion: Overall, objective night-to-night adherence patterns revealed that almost half of 

CPAP and MAS users had difficulty adapting to treatment in the first 30 days of treatment. Early 

usage patterns in pregnancy may provide insight into identifying patients who are at risk for 

poor adherence and for developing tailored and timely interventions to enhance adherence to 

therapy.  
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INTRODUCTION 

Maternal sleep-disordered breathing (SDB) occurs in 17-45% of women by the third 

trimester of pregnancy and is associated with adverse pregnancy outcomes [1-3]. Interventional 

studies to date demonstrate that poor adherence to CPAP remains a major barrier for the 

effective treatment of SDB in pregnancy [4-6].  

Among nonpregnant individuals, CPAP usage patterns in the first few days has been 

shown to forecast future adherence [7]. Analysis of night-to-night CPAP usage data revealed 

that those who skip nights of CPAP are more likely to use it for a shorter duration on the nights 

they do use it [7], with this trend becoming evident as early as the fourth day of treatment [7]. 

There is a scarcity of studies, however, evaluating CPAP usage patterns in pregnancy [4-6]. 

Mandibular advancement splints (MAS) are a well-tolerated alternative treatment to CPAP in 

pregnancy [8], but night-to-night usage patterns of MAS in pregnancy have not been reported. 

As such, the aim of this study was to evaluate objective, longitudinal adherence patterns to 

CPAP and MAS in pregnant individuals, as they may provide important insights for future 

interventions aimed at improving treatment. 

Some of these results have previously been reported in the form of an abstract [9]. 

METHODS 

 Three separate pilot studies assessing treatment for SDB in the second to third trimester 

were used for this study: 1) CPAP in a gestational diabetes mellitus (GDM) population [5], 2) 

CPAP in hypertensive disorders of pregnancy (HDP) [6] and 3) mandibular advancement splints 

(MAS) in pregnancy [8]. All studies were conducted in Montreal, Quebec, Canada. The Research 

Ethics Board at the McGill University Health Centre (MUHC) and Centre Hospitalier Universitaire 
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Sainte-Justine (CHU Ste-Justine) approved the above studies. All participants provided informed 

consent. 

 For the GDM study, participants were recruited from GDM clinics at MUHC and CHU Ste-

Justine (2015-2018) [10]. Participants were eligible if they were diagnosed with GDM and were 

found to have SDB (apnea-hypopnea index; AHI ≥ 10, Chicago scoring criteria [11]) using a level 

2 home polysomnogram (Titanium unit, Medcare, Natus Inc., Mississauga, ON). Individuals 

randomized to CPAP were started on nightly auto-titrated CPAP for the remainder of pregnancy.  

 For the HDP study, pregnant participants with a diagnosis of hypertension were 

recruited from obstetrics clinics at the MUHC (2017-2021) [12]. SDB was also diagnosed as 

above but with an AHI cut-off ≥ 5 [11].  

Both GDM and HDP studies used objective adherence data obtained from periodic 

online or manual downloads from the CPAP devices’ microchip and troubleshooting was 

provided as needed [6, 10]. 

 For the MAS study, participants were recruited from obstetrics clinics at the MUHC 

(2016-2017) and were eligible if they had mild-moderate SDB (AHI 10-29 events/h, Chicago 

criteria) [8]. Eligible participants were treated with MAS (SomnoDent Flex, SomnoMed, USA), 

with rapid titration based on comfort [8]. Dental sleep specialists performed troubleshooting on 

a weekly basis by telephone. An embedded thermosensor/DentiTrac® (Braebon Medical 

Corporation, Kanata, ON) measured objective adherence [13], from which data was 

downloaded at the end of the study.  

 The first 30 days of objective adherence data obtained from these 3 studies was used. 

An a priori definition for consistent adherence (≥ 4h/night for at least 70% of nights [14]) was 
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used to ascertain consistent vs. inconsistent users. In exploratory analyses, statistical 

comparisons were performed using a Student’s t-test (R version 4.3.0) to evaluate for 

differences in baseline characteristics between consistent and inconsistent users. Patterns of 

night-to-night usage were assessed by visual inspection of the 30-day adherence data displayed 

graphically for individual participants. Since this was an exploratory analysis with relatively small 

sample sizes for each cohort, error bars were omitted from the curves to reflect the preliminary 

nature of these findings and to avoid implying statistical significance. 

RESULTS 

 For the GDM CPAP cohort, complete 30-day night-to-night objective adherence data was 

available for 15/21 participants who were randomized to and received CPAP vs. control (nasal 

dilator strip). Adherence data was not available for 6 participants due to intolerance (n=4) or 

data transmission issues (n=2). Of those accepting to use CPAP, the mean objective adherence 

was 3.9 ± 2.0 h/night. Three mean patterns of night-to-night adherence were observed: 1) 

consistent CPAP users (≥ 4h/night at least 70% of nights; n=7 (47%)), 2) improved CPAP usage 

after initial adaptation (initial usage <4h/night but improved and sustained to ≥ 4h/night later 

on; n=4 (27%)), and 3) inconsistent CPAP users (<4h/night; n=4 (27%)) (Figure 1). Various 

interventions (i.e. mask interface change, switch to fixed CPAP, addition of expiratory pressure 

relief) were instituted for participants in Group 2. The residual AHI for the GDM cohort was 

(mean±std) 1.6±1.3 events/hour, and no patients had a residual AHI>5.  

 For the HDP CPAP cohort, complete 30-day night-to-night objective adherence data was 

available for 22/27 participants randomized to CPAP vs. control (nasal dilator strip) (n=5 

participants were intolerant). The mean objective adherence was 3.2±2.3 h/night [6]. The same 
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three mean patterns of adherence from the GDM CPAP cohort were also observed in this cohort 

(Figure 2). 7/22 (32%) participants were consistent CPAP users, 2/22 (9%) had improved CPAP 

usage after an initial adaptation period and 13/22 (59%) were inconsistent CPAP users. The 

residual AHI for the HDP cohort was 0.4±0.5 events/hour, and no patients had a residual AHI>5. 

 In the MAS cohort, 15/17 participants had objective adherence data available (n=2 

participants had chip malfunction) with a mean adherence of 6.9±1.9 h/night. In this cohort, the 

three different patterns of adherence observed were: 1) consistent MAS users (n=7 (47%)), 2) 

Discontinued MAS treatment after initial consistent usage (n=3 (20%)) and 3) Inconsistent MAS 

users (n=5 (33%)), of which n=2 barely used the MAS and n=3 used it for ~50% of nights (Figure 

3). A total of n=12/15 participants had residual sleep apnea (AHI>10) (9 mild, 3 moderate 

cases), however due to the time delay of 79 ± 42.4 days between baseline (second trimester) 

and on-treatment PSG (third trimester), this could be due to the worsening of SDB severity as 

pregnancy progresses [8, 15].  

 Participant characteristics were examined between consistent and inconsistent users of 

each cohort (Table 1). In the GDM cohort, total sleep time was higher in the consistent (8h) vs 

inconsistent (6.3h) CPAP users (p = 0.02). In the HDP cohort, consistent CPAP users had a higher 

gestational age (28.3 weeks) than inconsistent users (23.2 weeks) (p = 0.04). No other significant 

differences were found between consistent and inconsistent MAS users. Additionally, there 

were no differences in patient characteristics between those who completed the CPAP studies 

and those who dropped out or were lost-to-follow-up.  

DISCUSSION 
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 To our knowledge, this is the first description of night-to-night objective adherence 

patterns to CPAP and MAS in the pregnant population. For the CPAP studies, adherence rates 

ranged from 32-47%, and the MAS study had 47% of participants who were adherent. The CPAP 

data from the GDM and HDP patient populations showed the same three patterns of 

adherence: 1) consistent usage, 2) improved usage after initial adaptation period, and 3) 

inconsistent usage. Almost half of participants used CPAP consistently in the GDM study, 

whereas only a third had consistent usage in the HDP study. While patient characteristics 

between the two groups may play a role, it is also important to note that ~20% of patients in 

the GDM and HDP groups did not have data available because of early drop out due to 

intolerance to CPAP. Pattern 2 indicates the possibility of an adaptation period during the first 

few days of treatment. The MAS study showed the same consistent and inconsistent patterns of 

adherence, but surprisingly, there was a group who started with consistent MAS usage and then 

discontinued treatment. Additionally, participants in Group 1 (adherent users) in the MAS 

cohort averaged a higher usage time (~8 hours/night) vs. in the CPAP cohorts (~6 hours/night).  

 Initial reports of adherence to MAS in non-pregnancy suggested higher adherence rates 

compared to CPAP therapy [16]. However, many of these studies were based on self-reported 

rather than objective adherence [17]. In our analysis, although the MAS cohort had a higher 

proportion of adherent patients, it was also the only cohort where a group of patients started 

consistently then discontinued treatment in the first 30 days. This could be due to increases in 

AHI as pregnancy advances [15], and a lack of further titration (i.e. advancement) of MAS later 

in pregnancy. Future protocols may benefit from reassessment of SDB severity later in 

pregnancy to determine if additional MAS advancement is necessary.  
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 Other than an increase in total sleep time during the night of the sleep test (GDM) and 

being more advanced in pregnancy (HDP), we did not identify any other patient factors (i.e. 

demographics or underlying SDB severity) that were associated with consistent or inconsistent 

usage. Larger studies with more broader cohorts and diverse populations are needed to 

examine potential predictors of adherence to SDB therapy in pregnancy.  

While this is the first description of objective night-to-night adherence patterns in both 

CPAP and MAS users during pregnancy, our study also has important limitations. In addition to 

small sample sizes, we limited our analyses to descriptive analyses given that we were not 

powered to compare groups for statistical differences. Thus, our findings should be considered 

exploratory and need to be replicated in future, larger studies. We also did not have qualitative 

data to explain our usage patterns. Finally, all our CPAP data was from individuals who had 

either GDM or HDP. These comorbidities could affect adherence by possibly adding an 

additional burden to frequent medical visits. However, it is particularly relevant to study 

adherence in the context of GDM and HDP, as the most compelling evidence to date linking SDB 

with adverse pregnancy outcomes pertains to these two conditions [2]. Additionally, nasal 

congestion, a common side-effect, could affect mask and pressure tolerance. 

Night-to-night adherence may provide important information on adaptation and barriers 

to therapy in pregnancy. Qualitative research is needed in future studies to help explain the 

reasons behind usage patterns, and how we can use novel, patient-oriented methods to 

improve the effectiveness of treatment of SDB.  
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FIGURE CAPTIONS 

Fig. 1: CPAP adherence patterns in GDM cohort 

Night-to-night CPAP adherence patterns of three groups in GDM pregnancy cohort. Group 1: 

Consistent CPAP users (n=7). Group 2: Improved CPAP users after initial adaptation period (n=4). 

Group 3: Inconsistent CPAP users (n=4). The dotted line represents 4 hours of usage per night, 

corresponding to the conventional threshold for adherence. 

 

Fig. 2: CPAP adherence patterns in Hypertensive Disorders of Pregnancy (HDP) cohort 

Night-to-night CPAP adherence patterns of three groups in HDP pregnancy cohort. Group 1: 

Consistent CPAP users (n=7). Group 2: Improved CPAP users after initial adaptation period (n=2). 

Group 3: Inconsistent CPAP users (n=13). The dotted line represents 4 hours of usage per night, 

corresponding to the conventional threshold for adherence. 

 

Fig. 3: Adherence patterns in Mandibular Advancement Splint (MAS) cohort 

Night-to-night MAS adherence patterns of three groups in MAS pregnancy cohort. Group 1: 

Consistent MAS users (n=7). Group 2: Discontinued MAS treatment after initial consistent usage 
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(n=3). Group 3: Inconsistent MAS users (n=5). The dotted line represents 4 hours of usage per 

night, corresponding to the conventional threshold for adherence. 
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Table 1. Patient characteristics of consistent and inconsistent users of 3 pregnancy cohorts * 
 
 
 

 
 
Data are mean ± SD unless otherwise specified. Bolded are those that are significantly different (p < 
0.05, from Student’s t-test). * All available data was used in the primary analysis (i.e. all participants 
who were randomized and completed baseline assessments). 
 
 
 
 
 

 GDM HDP MAS 

 Consistent 
CPAP users 

(n=7) 

Inconsistent 
CPAP users 

(n=4) 

Consistent 
CPAP users 

(n=7) 

Inconsistent 
CPAP users 

(n=13) 

Consistent 
MAS users 

(n=7) 

Inconsistent 
MAS users 

(n=5) 

Ethnicity n (%)     
White 4 (57.1) 1 (25) 3 (42.9) 5 (38.5) 4 (57.1) 3 (60) 
Black 1 (14.3) 1 (25) 3 (42.9) 4 (30.8) 2 (28.6) 2 (40) 
Arab/West Asian 0 (0) 1 (25) 0 (0) 2 (15.4) 1 (14.3) 0 (0) 
East Asian 1 (14.3) 0 (0) 1 (14.3) 0 (0) 0 (0) 0 (0) 
Latin American 1 (14.3) 1 (25) 0 (0) 2 (15.4) 0 (0) 0 (0) 

Age (years) 36.7 (5.8) 35.5 (3.1) 36.9 (4.9) 35.8 (5.1) 35.6 (4.7) 35.6 (3.8) 

Gestational age at 
baseline (weeks) 

29.8 (1.2) 28.5 (5.4) 28.3 (3.7) 23.2 (3.5) 24.4 (7.3) 27.5 (5.8) 

Pre-pregnancy BMI 
(kg/m2) 

30.4 (14.3) 26.5 (4.9) 35.5 (8.3) 32.5 (8.2) 28.8 (5.4) 26.7 (5.7) 

Hypertension, yes/no 
n(%) 

0 (0) 0 (0) 7 (100) 13 (100) 2 (28.6) 0 (0) 

Insulin, yes/no n(%) 2 (28.6) 2 (50) 2 (28.6) 1 (7.7) - - 

Total sleep time 
(hours/night) 

8 (0.7) 6.3 (1.0) 6.2 (0.9) 6.0 (1.9) 6.7 (0.9) 5.9 (1.4) 

Apnea-hypopnea 
index pre-treatment 
(events/hour) 

17.9 (7.3) 28.1 (13.8) 27.2 (26.6) 19.3 (9.1) 15.8 (5.8) 18.4 (4.5) 

Oxygen desaturation 
index, 4% 
(events/hour) 

1.1 (1.1) 7.7 (3.6) 2.3 (2.2) 1.2 (1.8) 3.5 (4.9) 1.8 (2.0) 

Epworth Sleepiness 
Score 

9.7 (4.1) 8.7 (2.9) 10 (4.1) 11.4 (3.0) 11 (6.2) 11.2 (5.4) 
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Figure 1. CPAP adherence patterns in GDM cohort 

 

Figure 2. CPAP adherence patterns in Hypertensive Disorders of Pregnancy (HDP) cohort 
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Figure 3. Adherence patterns in Mandibular Advancement Splint (MAS) cohort 
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Chapter 5: DISCUSSION 

Objective 1: Examining whether pregnant individuals adhere to CPAP and if CPAP improves 

24-hour glucose profiles using CGM. 

 This pilot study explored the use of CPAP in pregnant women with both SDB and GDM. 

The main outcome was CPAP adherence (feasibility outcome for a pilot trial), and the main 

health outcome was glucose control as measured by CGM. The objectively-measured average 

nightly use of CPAP in intention-to-treat analysis was ~3 hours. Among participants who 

completed the study protocol (per-protocol analysis; n= 16), the average nightly CPAP use 

increased to 3.9 hours. Intention-to-treat analysis for adherence to CPAP was performed by 

assigning an overall of 0h/night of adherence to the individuals who did not use CPAP at all. As a 

result, drop-outs may have contributed to the cohort's overall lower adherence rates. This is 

most likely due to their intolerance to CPAP, which is an issue that needs to be investigated in 

further qualitative studies. Interestingly, even with this modest level of CPAP adherence, the 

CGM results revealed lower overnight glucose levels in the CPAP group vs control, with 

significant differences in the early hours of the morning (3am-6am).  

There have been previous large cardiovascular trials in SDB involving non-pregnant 

populations, and these have exhibited similar adherence rates to what we reported. For 

instance, the SAVE trial examining if CPAP could prevent cardiovascular events in OSA reported a 

mean adherence of 3.3 hours/night [259]. Similarly, the ISAAC trial reported a mean adherence 

of 2.8 hours/night [260]. As such, the results from our pilot study suggest that pregnancy does 

not inherently lower adherence rates compared to the general population. The ITT analysis 

showed a sleep duration of 3 hours/night, which is below the conventional threshold of 4 hours. 
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Despite this, the intervention was still effective in reducing glucose levels, even in the ITT 

analysis. 

By leveraging CGM, this study demonstrated novel findings on the longitudinal and 

temporal effects of CPAP on gestational glycemic control. While our analysis revealed no 

statistically significant differences in mean 24-hour glucose levels between groups, the CPAP 

group showed improved glycemic control during the early morning period (3am-6am) and at 

noon. Both groups had comparable insulin requirements, which suggests the CPAP group’s 

decrease in glucose levels is not a direct consequence of insulin action.  

 Throughout pregnancy, insulin resistance exhibits a gradual rise. This culminates in a 

decline of insulin sensitivity to approximately 50% of its normal expected value by the third 

trimester [261]. Several factors are believed to contribute to this decline in insulin sensitivity 

during pregnancy, including rising levels of hormones like estrogen, progesterone, and human 

placental lactogen (hPL) [261]. This would explain why post-treatment (~35 weeks gestational 

age) glucose levels were higher than pre-treatment (29 weeks) levels in the control group 

(Figure 2B). Our findings suggest that CPAP therapy might offer some protection against the 

increase in blood glucose levels (and potentially insulin resistance) that typically occurs during 

pregnancy, particularly in the early morning hours. Conversely, leaving both SDB and GDM 

untreated could worsen this physiological process. 

 Our study is consistent with findings in the nonpregnant population. A study 

investigating the effects of CPAP on a group of mostly obese type 2 diabetics found that 

sleeping, nocturnal and mean 24-hour glucose levels were reduced and sleeping interstitial 

glucose levels were less variable during CPAP treatment [262]. Another prospective study using 
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CGM showed that patients with severe SDB and type 2 diabetes exhibited a significant reduction 

of nocturnal glucose variability and improved overnight glucose control when using CPAP 

therapy [263].  

 Based on our findings, SDB may be a novel reversible risk factor for GDM by contributing 

to poor nighttime glucose control in pregnancy [24, 35, 36, 47, 264], independent of obesity. 

One study in pregnant participants with SDB and GDM found that two weeks of consistent use 

of CPAP resulted in an improved insulin secretion, but not in glucose control [37]. This study did 

not use CGM however, so nighttime glucose levels were not assessed. Additionally, the SDB 

severity in this study was mild, and so was the hyperglycemia, which could explain the 

insignificant change in glucose levels [37]. Future studies to examine whether the benefit of 

CPAP varied by SDB severity (i.e. AHI, ODI, hypoxic burden) would be beneficial in elucidating 

who would derive the greatest benefit from treatment in pregnancy. We are unfortunately 

limited in our ability to perform this analysis due to the small sample size of our CPAP group. 

Our study’s observation of a nighttime, rather than daytime, decrease in glucose levels in 

the CPAP vs. control groups might be explained by CPAP mitigating the increase in glucose 

specifically caused by individual SDB events [262]. Since our findings indicate that early morning 

hours (3-6am) were most susceptible to reductions in glucose in the CPAP group, REM-related 

SDB may be a more clinically relevant subgroup to explore in future studies.  

Multiple studies have shown that obese pregnant women have higher nocturnal glucose 

levels than non-obese controls [265, 266], but these studies did not screen for SDB, so the 

possibility that a significant portion of the study population might have had undiagnosed and 

untreated SDB is plausible. A different study showed SDB patients without diabetes had 
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increased nocturnal glucose levels when they stopped using CPAP, however levels normalized 

shortly after awakening in the morning, suggesting compensation by normal insulin secretion 

[267].  

In one study with GDM participants, even slightly elevated nocturnal glucose levels (~ 

6.0 vs. 5.5 mmol/L) were associated with an increased risk of delivering large-for-gestational 

(LGA) age infants [268]. In this study, daytime glucose levels and time in range did not differ 

between the groups. This suggests that even a relatively modest difference of 0.5 mmol/L in 

nighttime glucose levels was a significant factor influencing the outcomes observed in the study. 

In a study using CGM, it was demonstrated that even subtle differences in glucose in pregnancy 

can affect neonatal clinical outcomes, such as LGA, neonatal hypoglycaemia, admittance to 

NICU, and infant length of hospital stay [269]. SDB was once again not assessed in these studies, 

however. Our study showed CPAP-related reductions by ~0.7mmol/L, which therefore provides a 

compelling rationale for future, adequately powered studies to definitively determine whether 

CPAP intervention can reduce the incidence of LGA infants in the context of GDM. LGA births are 

a great concern, as they are associated with an increased risk of complications for both mother 

and infant [270]. These complications can include birth difficulties, hypoglycemia in the 

newborn, and even fetal death [271, 272]. Consequently, preventing LGA births is a crucial 

objective in managing GDM. 

Our results suggest that fetuses of individuals with GDM and untreated SDB may be 

exposed to higher glucose levels at night, compared to those whose mothers received CPAP 

therapy. Our findings support our previous work, which identified a link between the severity of 

SDB and elevated blood glucose levels, particularly at night and in the early morning, among 
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women with GDM [35]. Similarly, another study using CGM demonstrated that increasing 

severity of SDB (measured by AHI and ODI) was related to higher 24-hour glucose levels in 

pregnant SDB patients without GDM [273]. The HAPO study, which recruited a large 

multinational, racially and ethnically diverse cohort, showed that an increase in maternal 

glucose during pregnancy increases the likelihood of adverse pregnancy outcomes, such as LGA, 

cesarean section, fetal insulin levels and neonatal fat content [274]. As such, if SDB is left 

untreated in GDM and glucose levels are left unchecked, this can increase the risk of these 

perinatal complications related to the fetus’ exposure to maternal hyperglycemia. Obesity is the 

main risk factor for SDB [275], and since many babies are born LGA from obese mothers who do 

not have GDM [276], undiagnosed and untreated SDB becomes especially relevant. Therefore, 

SDB represents a potential, yet often overlooked, contributor to macrosomia. 

Our study’s findings hold potential implications for the understanding of the 

developmental programming of health and disease theory, which states that perinatal 

exposures, encompassing even the pre-pregnancy period, are increasingly recognized as 

potential contributors to the etiology of diverse chronic health conditions, including diabetes 

mellitus, CVD, and asthma [209].  

 Emerging evidence reveals an association between chronically elevated blood glucose 

levels in mothers with GDM and epigenetic modifications in their offspring, specifically 

alterations in DNA methylation patterns [277]. Houde et al. showed that subtle variations in 

maternal glucose levels, even below GDM thresholds, have been shown to exert an influence on 

the offspring's epigenome [278]. This study specifically identified an association between 

maternal hyperglycemia, even within the normal range, and altered DNA methylation patterns 
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in the placenta and cord blood. Notably, these changes occurred at three specific gene loci: 

BRD2, LRP1B, and CACNA1D, all of which are considered strong candidates for influencing the 

development of obesity and cardio-metabolic diseases [278]. Therefore, if CPAP therapy could 

lower circulating glucose levels among patients with GDM and SDB, it could potentially serve as 

a preventative measure against the development of obesity and diabetes later in life in the 

offspring. 

A strength of our study is the CGM, which allowed for dynamic monitoring of glucose 

levels. Because participants checked their glucose levels using capillary blood glucose 

monitoring four times a day, the CGMs were calibrated. Further, CGM values were verified for 

valid calibrations using the mean absolute difference (MAD), as we have previously published 

[35]. 

 However, our study is not without limitations. Because this is a pilot study, our sample 

size was small and was not powered for glucose control, but rather for the primary objective of 

verifying objective CPAP adherence. Our analysis was therefore limited and unable to explore 

the full extent of changes in CGM values after CPAP use, in relation to CPAP adherence. 

Stratifying by adherence is an important question, however these analyses would be 

significantly underpowered. We are currently undertaking a comprehensive on-treatment 

analysis, which is taking into consideration the time of CPAP usage in relation to CGM 

measurement (~15,000 post-treatment CGM values for the CPAP arm alone). These ongoing 

post-hoc analyses will further examine the relationship between CPAP adherence and CGM 

glucose control in exploratory analyses, since we have corresponding hourly CPAP adherence 

data for the 72-hour CGM per participant. 
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 While our primary focus was on nocturnal blood glucose due to its relevance to SDB, 

exploring potential differences in other clinically important thresholds could also yield valuable 

insights. We are currently undertaking additional analyses using over 60,000 measurements of 

CGM values (pre- and post- from both treatment arms) to ascertain clinically meaningful 

thresholds such as time in range, % time above and % time below.  

 Additionally, while participants maintained nutrition journals, this data was not 

analyzed, leaving our results unable to account for glucose fluctuations related to dietary intake. 

The feasibility of a larger-scale trial may be constrained by the poor adherence observed in this 

cohort, with a notable dropout rate of approximately 24%. To ensure the intervention's efficacy 

for a broader population of women, it is crucial to address adherence challenges before 

proceeding with a larger trial. 

 

Objective 2: Evaluating objective night-to-night adherence patterns to SDB treatment (CPAP or 

MAS) 

 This is the first description of night-to-night adherence patterns to CPAP and MAS in the 

pregnant population. Adherence rates hovered between 32-47% for the CPAP studies and 47% 

of participants in the MAS study were adherent. Three distinct patterns of adherence were 

revealed in the GDM and HDP patient populations: 1) consistent usage, 2) improved usage after 

initial adaptation period, and 3) inconsistent usage. MAS adherence mirrored CPAP, with 

consistent and inconsistent users. However, a subgroup started well but treatment adherence 

slowly declined later. 
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 Interestingly, CPAP pattern 2 suggest a potential adaptation period during the first few 

days of treatment. However, this is in contrast to data from the non-pregnant population, which 

showed that adherence in the first four days of treatment usually indicates the patient’s level of 

adherence for the entire course of treatment [54].  

 The major challenge of CPAP treatment is achieving adequate adherence but defining a 

threshold for adequate adherence remains controversial in the field. In 1993, Kribbs et al. 

defined “regular use” as using CPAP at least 4 hours/night for 70% of the days monitored [244]. 

Following the successful introduction of PAP therapy for OSA, the Centers for Medicare and 

Medicaid Services (CMS) authorized coverage for thousands of units due to its demonstrated 

effectiveness [279]. Data from 2009 indicates that CPAP therapy incurred total costs of $213 

million, with CMS authorizing coverage for 2.6 million associated services [279, 280]. The 

number of patients being prescribed CPAP increased, however many of them had difficulty 

adapting to the novel therapy, which resulted in the urgent need to establish adherence criteria 

for valid coverage [279]. The CMS adopted Kribbs et al.’s definition (4 hours/night for 70% of 

nights) which has been the prevailing norm for coverage policies and evaluation of CPAP 

adherence ever since [279]. This has been controversial, especially in the United States, where if 

Medicare patients do not meet this minimum adherence threshold, their PAP may be 

confiscated, which limits the opportunity for some patients to receive treatment [281]. One RCT 

found that even if patients are sub-optimally adherent to PAP (<4 hours/night), they still found a 

decrease in daytime sleepiness and improved quality of life compared to the sham-PAP group 

[282]. This adherence cutoff has sparked significant debate in the field [283]. As such, evaluating 
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these adherence patterns involves greater complexity, particularly in vulnerable populations 

such as pregnant individuals. 

One study in the general population found early data on adherence to MAS that 

suggests potentially better adherence compared to CPAP [234]. In this study, analysis of the 

intention-to-treat polysomnography data revealed significant improvements in all SDB metrics 

for both treatment groups [234]. However, the magnitude of improvement was greater for CPAP 

compared to MAS therapy. When examining health outcomes, however, results were similar 

after 1 month of optimal MAS and CPAP treatment in patients with moderate-severe SDB [234]. 

This may be explained by the less optimal adherence of CPAP being compensated by a greater 

efficacy relative to MAS, resulting in similar effectiveness between groups [234]. Further 

research is needed to investigate whether the same health outcomes in pregnancy improve 

equally with either CPAP or MAS.  

 In our descriptive study, the consistent users for MAS averaged a higher usage time (~8 

hours/night) than those in the CPAP cohorts (~6 hours/night). Thus, similar to the general 

population, MAS demonstrates higher adherence than CPAP in pregnancy, and is therefore 

better tolerated as a treatment option. As such, when treating the pregnant population, MAS 

may represent an alternative treatment option for those unable to tolerate CPAP therapy. 

Future protocols may benefit from reassessment of SDB severity later in pregnancy, not only for 

re-titration of MAS but also for reassessing efficacy, especially considering increases in AHI as 

pregnancy advances [7]. This might explain why some patients stopped using it after initial 

consistent use, having noticed recurrence of symptoms due to decreased efficacy of MAS.  
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 Beyond an observed increase in total sleep time during the sleep study night for GDM 

patients and a later stage of pregnancy for HDP patients, no other patient characteristics, 

including demographics or baseline SDB severity, were associated with consistent or 

inconsistent CPAP/MAS use. Future studies with larger, more diverse populations are warranted 

to explore potential factors influencing adherence to SDB treatment during pregnancy. In these 

larger cohorts, it would be interesting to see if baseline factors differentiating adherent vs. non-

adherent patients previously identified in others CPAP studies, such as level of education and 

occupation [244], remain significant when comparing MAS patients.  

 While this study offers the first objective assessment of night-to-night adherence 

patterns in both CPAP and MAS users during pregnancy, it is important to acknowledge some 

key limitations. Our analysis is limited by the relatively small sample size. Additionally, the study 

design was not powered to statistically compare adherence patterns between CPAP and MAS 

users. Therefore, our findings should be considered preliminary and require confirmation in 

future studies with larger participant groups. Furthermore, the absence of qualitative data in 

this study limits our understanding of the reasons behind the observed usage patterns. 

 Lastly, the CPAP adherence data was collected from individuals with either GDM or HDP, 

comorbidities that could potentially negatively affect adherence by adding an additional burden 

to the already frequent medical visits and treatments for those conditions. However, 

investigating adherence in GDM and HDP is especially important because the strongest existing 

evidence linking SDB to negative pregnancy outcomes is concentrated in these two conditions 

[24].  
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 The importance of night-to-night adherence is underscored by its ability to provide 

important information on adaptation and barriers to therapy in pregnancy. Early identification 

of inconsistent treatment use, followed by timely interventions like CPAP mask/pressure 

adjustments or MAS protrusion modifications, could be the key to improving adherence. Future 

studies should incorporate qualitative research to explore the motivations behind these usage 

patterns. This deeper understanding will guide the development of innovative, patient-centered 

interventions to enhance adherence and ultimately improve SDB treatment efficacy. 
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Chapter 6: CONCLUSION 

 While SDB is linked to a 2-3 fold increase in GDM risk [24], the impact of CPAP treatment 

on blood glucose control during pregnancy remains unknown. This highlights a critical gap in our 

current knowledge for treatment of this comorbid condition. Our results indicate that pregnant 

individuals overall have difficulty adhering to CPAP, yet despite the modest adherence observed, 

those randomized to CPAP in a pilot RCT had lower glucose levels than control after treatment, 

with significant differences in the early hours of the morning (by ~0.7 mmol/L). Recent research 

has suggested that an increase in circulating glucose during pregnancy of even as low as 0.5 

mmol/L could increase the risk of adverse fetal health outcomes, such as large-for-gestational 

age infants [268]. Additionally, more research is needed to determine what thresholds of usage 

are related to outcomes in pregnancy.  

Our study suggests that SDB may be a novel and treatable risk factor for GDM by 

contributing to impaired overnight glucose control in pregnancy [24, 35, 36, 47, 264], 

independent of BMI. As such, SDB may also be an undetected reversible risk factor for fetal 

exposure to elevated maternal glucose levels. To solidify our findings and evaluate the potential 

impact of CPAP on pregnancy outcomes in women with GDM, larger studies are warranted. 

These future studies should implement strategies to enhance overall adherence to SDB therapy 

in this specific population. 

 CPAP is the established gold standard treatment for SDB. However, its acceptability and 

tolerability among pregnant women with SDB remain uncertain. Our descriptive study 

investigated and revealed longitudinal patterns of night-to-night adherence, which were 

previously unexplored in this population. Four distinct patterns were observed: 1) consistent 
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users (CPAP or MAS), 2) improved usage after initial adaptation period (CPAP), 3) initial usage 

with subsequent decrease in adherence (MAS), or 4) inconsistent users (CPAP or MAS). More 

qualitative research is needed to understand these patterns of adherence and put forth 

potential treatment interventions geared towards improving adherence. These solutions should 

be patient-oriented, which will ultimately improve the effectiveness of treatment of SDB. 

 This thesis has successfully addressed both objectives. In the pilot RCT using continuous 

glucose monitoring, we showed that CPAP is adhered to less than 50% of the time in pregnant 

individuals, and despite this poor adherence, it improves 24-hour glucose profiles vs. control 

(Objective 1). The following descriptive study evaluated longitudinal night-to-night adherence 

patterns to CPAP or MAS in pregnant individuals, thereby characterizing adherence to SDB 

treatment in this patient population (Objective 2). However, future larger cohort studies are 

needed to validate our preliminary findings regarding glucose control. Additionally, qualitative 

research is needed to understand CPAP or MAS adherence and determine optimal 

interventional strategies to improve adherence in pregnancy.  
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Appendix 1: Other work: Maternal sleep-disordered breathing in pregnancy and risk of 
adverse health outcomes in mothers and children: A follow-up study of the 3D pregnancy and 
birth cohort 
 

Background 

 Maternal sleep-disordered breathing occurs in 17-45% of women by the third trimester 

of pregnancy, depending on the level of the study, scoring criteria and comorbidities [6]. In 

pregnancy, SDB is associated with gestational hypertension and gestational diabetes [24].  
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It is not well understood if SDB in pregnancy: 1) is associated with greater risk of SDB and 

adverse health outcomes in offspring, or 2) is associated with an increased risk of persistent SDB 

after delivery and adverse health outcomes in the mother. Gestational animal models have 

shown that sleep fragmentation and intermittent hypoxia, which are the two hallmarks of SDB, 

increase the risk for catch-up growth in the offspring, which in turn increases the risk of 

developing obesity later in life [225]. Accordingly, glucose levels were higher in exposed 

offspring, showing worse glucose metabolism [226].  

Rationale and hypotheses 

 As such, the goal of this longitudinal study is to determine whether maternal SDB is 

associated with adverse child health outcomes, such as obesity, cardiometabolic disease and 

worse cognitive outcomes, and to determine if childhood SDB is a potential mediator for these 

adverse health effects.  

Objective for current pilot study 

 The objective of the current pilot study is to determine the feasibility of performing 

simultaneous home-based measurements in both mother and child (Level 2 Sleep studies in 

children, Level 3 studies in mothers, 24-hour ambulatory blood pressure monitoring (ABPM) 

and actigraphy in both). The results from this pilot study will help fine-tune the protocol for the 

future larger study.  

Objectives for future larger study 

 The objectives of the future larger study are to determine whether maternal SDB during 

pregnancy adversely affects the following health outcomes, assessed 9-11 years after delivery.  
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Our primary objective is to determine whether children born to mothers who had SDB 

during pregnancy, compared to children born to mothers who did not have SDB, are at 

increased risk of the following adverse outcomes: obesity (from BMI z-scores/DEXA scans), 

cardiometabolic risk (24-hours ABPM, fasting lipids, C-reactive protein, HOMA-IR), 

neurocognitive and behavioural measurements, and presence of childhood SDB measured by 

polysomnography Level 2.  

Our secondary objective is to determine whether women who had SDB during 

pregnancy, compared to women who did not have SDB, are at increased risk of the following 

adverse outcomes: Persistent SDB in the mother (9-11 years after delivery) using simplified 

portable sleep studies (Level 3), increased blood pressure, impaired quality of life, and worse 

depression scores. 

Methods 

Participants 

Mothers and children from the 3D (Design, Develop, Discover) cohort were recruited 9-

11 years after delivery. This birth cohort had around 2400 participants, out of which 1000 are 

currently being followed-up on, from which we are recruiting for our study. While the large 

cohort study will include 392 participants, this smaller pilot study includes 43 participants. The 

exposed group is a random sample of women with SDB during pregnancy (i.e. women who self-

reported loud snoring more than once a week during the third trimester). The unexposed group 

is a random sample of women without SDB during pregnancy, so women who reported never 

snoring in the third trimester. 

Outcomes 
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This pilot study includes one single home visit to minimize participant burden. All 

children took a level 2 polysomnography test in their homes, which includes simultaneous 

recordings of sleep state, nasal respiration, cardiac rhythm, muscle activity, gas exchange, and 

snoring. Oxygenation metrics and sleep stages were measured too. Mothers underwent a level 

3 HSAT (without EEG). Additionally, 24-hour ABPM which measures day and night blood 

pressure, was performed for both mothers and children. 7-day actigraphy was done as well. 

Anthropometric measurements were taken by the research assistant in the participants’ home: 

height, weight, waist, neck, and head circumference measurements were recorded. During this 

home visit is when the research assistant administered questionnaires, which included the 

Epworth Sleepiness Scale, the Hospital Anxiety and Depression Scale, the Insomnia Severity 

Index and others. 

Results 

The pilot study has been completed, 43 mother-child dyads have been recruited and 

have performed the home sleep apnea test. The results of the pilot study suggest excellent  

feasibility, with oximeter, nasal cannula, abdominal RIP (respiratory inductance 

plethysmography), and thoracic RIP signal qualities being very satisfactory, for both mothers and 

children. 97.6% of mothers and children completed the ABPM, 100% of mothers and children 

completed the actigraphy, and 100% of mothers and 93% of children completed the home sleep 

test. 

Conclusion 

 Home-based simultaneous sleep study and outcome measurements are feasible in both 

mothers and children. Participant burden is minimized while maintaining adequate signal 
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quality. The larger phase of the study will reveal any associations between maternal SDB in 

pregnancy and long-term maternal and child health outcomes. 


