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This thesis describes the design and development of reductive amination methodologies of
unactivated carbon-oxygen bonds using palladium on charcoal as a heterogeneous catalyst. The
underlying premise is the transformation of starting materials that can be obtained from bio-renewable
resources into commodity chemicals. Specifically, 2-cyclohexen-1-one and phenol were used as lignin

building-block surrogates for C-N bond formation.

The first chapter places the work developed in this thesis both in a global and a scientific context.
Its objective is to provide an overview of our societal needs while describing the latest scientific
developments related to this thesis topic. Thus, it begins by exploring the United Nation's Sustainable
Goals, followed by an overview of petroleum and lignin chemistry, and finishes with a review on amino

acid N-modification.

In chapter two, the development of a novel methodology for the N-arylation of a-amino acids
using 2-cyclohexen-1-one is described. Palladium on carbon was chosen as the catalyst, and several
reaction conditions were explored to obtain optimal yields. This methodology's attractiveness lies in the
absence of an aryl halide or protecting group on the 2-cyclohexen-1-one for the N-arylation to proceed.
The reaction requires substoichiometric amounts of base and oxygen as the terminal oxidant. Aliphatic
amino acids were ideal substrates for the reaction, and cyclohexanone provided the N-biarylated amino

acids in good yields (up to 74%).

Chapter three describes efforts to improve the harsh conditions required for the N-arylation of a-
amino acids, resulting in the development of a novel methodology for their N-cyclohexylation in water, at
room temperature, using phenol as a coupling partner. The reaction successfully achieves N-
cyclohexylation for 17 out of the 20 naturally occurring amino acids without racemization with up to

guantitative yields. Furthermore, small peptides were also successful substrates for the reaction.

The fourth chapter explores the possibility of applying the latter methodology for the formation

of one- and two-component peptide staples using tyrosine as a handle. The one component staple was
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investigated using acetyl-lysine and acetyl-tyrosine, while the two-component staple was investigated
using acetylated-tyrosine 2,2'-(ethylenedioxy)bis(ethylamine). While model substrates proved to couple
successfully under previously optimized conditions, concentration and characterization proved to be
challenging for working with larger peptides. Additional experiments exploring the possibility of using
tyrosine amination as a pH responding hydrogel are also described in this chapter.

Finally, chapter five explores the possibility of synthesizing diphenylamines from phenol and
ammonia formate as a convenient ammonia surrogate. Seventeen different diarylamines were
synthesized with palladium on charcoal as the catalyst, with yields ranging from good to excellent.
Notably, water and CO; were the only byproducts generated from this transformation. Triphenylamine

was also obtained in combination with the methodology described in Chapter 1.

Résumé

Cette these décrit la conception et le développement de méthodologies d'amination réductives
utilisant le palladium sur charbon en tant que catalyseur hétérogéne. Le principe sous-jacent a cette thése
est latransformation de matiere premiére pouvant étre obtenues a partir de ressources bio-renouvelables
en produits chimiques de base. Plus précisément, le 2-cyclohexen-1-one et le phénol ont été utilisés pour
la formation de liaisons C-N comme molécules modeéles de substitution remplacant les unités constituant

la lignine.

Le premier chapitre place les travaux développés dans cette these a la fois dans un contexte global
et scientifique. L’objectif est de donner un apergu de nos besoins sociétaux tout en décrivant les derniers
développements scientifiques liés a ce sujet de thése. Ainsi, les objectifs durables des Nations Unies seront
d’abord exploré, depuis un apercu de la chimie du pétrole et de la lignine sera donné, avant de terminer

par un examen de la N-modification des acides aminés.

Dans le chapitre deux, le développement d'une nouvelle méthodologie pour la N-arylation
d'acides a-aminés a I'aide de 2-cyclohexen-1-one est décrit. Le palladium sur charbon a été choisi comme
catalyseur, et plusieurs conditions de réaction ont été explorées afin d’obtenir des rendements optimaux.
L'attractivité de cette méthodologie réside dans I'absence d'halogénure d'aryle ainsi que de groupe
protecteur sur le 2-cyclohexene-1-one lorsque la N-arylation se déroule. La réaction nécessite des
guantités sous-stoechiométriques de base et d'oxygene comme oxydant terminal. Les acides aminés
aliphatiques se montrent étre des substrats idéaux pour la réaction, et le cyclohexanone a fourni les acides

aminés N-biarylés avec de bons rendements (jusqu'a 74%).
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Le chapitre trois décrit les efforts visant a améliorer les conditions difficiles requises pour la N-
arylation des acides a-aminés, en aboutissant au développement d'une nouvelle méthodologie pour leur
N-cyclohexylation dans I'eau, a température ambiante, en utilisant le phénol comme partenaire de
couplage. La réaction accomplit avec succes la N-cyclohexylation pour 17 des 20 acides aminés naturels
sans racémisation avec des rendements jusqu'a quantitatifs. En outre, les petits peptides sont également

des substrats efficaces pour la réaction.

Le quatrieme chapitre explore la possibilité d'appliquer cette derniere méthodologie pour la
formation d'agrafes peptidiques a un ou deux composants en utilisant la tyrosine comme poignée.
L'agrafe a un composant a été étudiée a |'aide d'acétyl-lysine et d'acétyl-tyrosine, tandis que l'agrafe a
deux composants a été étudiée a l'aide de tyrosine acétylée 2,2 '- (éthylénedioxy) bis (éthylamine). Alors
qgue les substrats modeles se sont avérés étre couplés avec succés dans des conditions précédemment
optimisées, la concentration et la caractérisation se sont avérées difficiles pour travailler avec des
peptides plus longs. Des expériences supplémentaires explorant la possibilité d'utiliser I'amination de la

tyrosine pour former un hydrogel sensible au pH sont également décrites dans ce chapitre.

Finalement, le chapitre cing explore la possibilité de synthétiser des diphénylamines a partir de
phénol et de formiate d'ammonium utilisé comme un substitut plus pratique a I''ammoniac pratique. Dix-
sept diarylamines différentes ont été synthétisées en utilisant du palladium sur charbon de bois comme
catalyseur et avec des rendements bons a excellents. L'eau et le CO; étaient les seuls sous-produits
générés par cette transformation. La triphénylamine a également été obtenue en combinaison avec la

méthodologie décrite dans le premier chapitre.
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May all beings be happy and safe, may their hearts be filled with joy.

Fragment of the Metta Sutta
Sutta Nipata 1.8
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Chapter 1. Introduction

The work developed in this thesis is placed into both a global and a scientific context by first
providing an overview of our societal needs and finishing with specific scientific developments in the
relevant field related to this thesis. Thus, it begins by exploring the United Nation's Sustainable Goals,
followed by an overview of petroleum and lignin chemistry, and finishes with a review on amino acid N-

modification.

1.1 A Global Perspective of Green Chemistry

In September 2015, the General Assembly of the United Nations adopted the 2030 agenda for
sustainable development.! This agenda has been summarized into the seventeen Sustainable
Development Goals (SDGs, Figure 1) and a set of 169 specific targets to measure and achieve them. Their
purpose is to attain our society's overall well-being and the prosperity of our planet by 2030. Notably,
resource management is closely intertwined with the fulfillment of these resolutions.

NO GOOD HEALTH QUALITY GENDER CLEAN WATER
POVERTY AND WELL-BEING EDUCATION EQUALITY AND SANITATION

s

DECENT WORK AND 10 REDUCED J CTIES RESPONSIBLE
ECONOMIC GROWTH

INEQUALITIES CONSUMPTION

13 CLIMATE 1 6 PEACE, JUSTICE ‘I 7 PARTNERSHIPS
ACTION AND STRONG FOR THE GOALS
INSTITUTIONS

Figure 1. The United Nation's Sustainable Development Goals?

From a chemical point of view, goals 9 and 12 must be highlighted as they address the efficient
allocation of resources. SDG 9 encourages the development of sustainable industries through the
adoption of environmentally sound technologies and industrial processes;! while SDG 12 strives towards
sustainable production patterns by efficient management of our natural resources. Within the specific
targets of SDG 12, is the management of chemicals throughout their lifecycle; reducing, recycling and

reusing; and removing inefficient usage of fossil fuel subsidies.!

1



1. Introduction

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

The aim of these two SDGs could be summarized as aiming to elongate the lifetime of our
resources by developing processes that are "benign by design." With this latter resolution being at the
core of green chemistry's 12 principles (Figure 2),® in a general sense, green chemistry focuses on
developing chemical processes that do not risk human health or threaten the environment. Upon
analyzing these principles, one can conclude that chemistry plays a role at the molecular level for
sustainability to be achieved.* It is essential to ensure that chemical processes bolster responsible
practices, given that chemistry renders a service that touches practically every industry, ranging anywhere
from the production of batteries to pharmaceuticals. In the words of Prof. Paul Anastas, fundamental

chemistry must, therefore, be "..healthful rather than toxic, renewable rather than depleting, and

restoring rather than degrading...".”

While several of these principles might seem obvious, the lack of a framework made it challenging
for chemists to place value on the entire supply chain of a chemical reaction instead of placing value
exclusively on the products of any given process. Thus, several chemical processes have been transformed
since the publication of the 12 principles of green chemistry.® Upon the publication of the United Nations’
SDGs, chemists took it upon themselves to strive for far more inclusive practices, especially within the
chemical industry.” ! It is essential to highlight that greener alternatives not only represent an opportunity
for chemical innovation and social advancement, but are also exceptional business opportunities.
According to the 2019 OECD report on Chemicals Management, the chemical industry is one of the world's
largest, valued at USD 5.7 trillion in 2017, and expected to reach a value of USD 22 trillion by 2060.1> On
the other hand, the fulfillment of the SDG's by 2030 has been estimated to be worth USD 12 trillion in

development opportunities.’®

Thus, it is clear that chemistry benefits from substantial economic and social drivers. Nonetheless,
these opportunities are currently leveraged only by a small group, with 42% of the global chemical
production in 2017 coming from OECD countries.’ In other words, 37 out of 195 countries controlled
almost half of the entire chemical industry in 2017. This power imbalance has caused an erosion of trust
in the public perception of the industry.!s Furthermore, innovation in the chemical sector has been
deemed risky, expensive, challenging, and lengthy,® and for good reason. Currently, most companies allot
4 to 6% of their total annual sales to R&D,** only to have some of the most prolonged cycles for product
development. The latter is depicted in Table 1, where the time cycles for new products and new processes

for different industries are directly compared.*®
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The 12 Principles of Green Chemistry

1 | Prevention: Itis better to prevent waste than to treat or clean up waste after it has been created

2 | Atom economy: Synthetic methods should be designed to maximize the incorporation of all
materials used in the process into the final product

Less hazardous chemical syntheses: Wherever practicable, synthetic methods should be
3 designed to use and generate substances that possess little or no toxicity to human health and
the environment

4 | Designing safer chemicals: Chemical products should be designed to effect their desired
function while minimizing their toxicity

5 | Safer solvents and auxiliaries: The use of auxiliary substances (e.g., solvents, separation agents,
and others) should be made unnecessary wherever possible and innocuous when used

Design for energy efficiency: Energy requirements of chemical processes should be recognized
6 | for their environmental and economic impacts and should be minimized. If possible, synthetic
methods should be conducted at ambient temperature and pressure

7 | Use of renewable feedstocks: A raw material or feedstock should be renewable rather than
depleting whenever technically and economically practicable

Reduce derivatives: Unnecessary  derivatization (use of  blocking  groups,
g | protection/deprotection, temporary modification of physical/chemical processes) should be
minimized or avoided if possible because such steps require additional reagents and can
generate waste

Catalysis: Catalytic reagents (as selective as possible) are superior to stoichiometric reagents

Design for degradation: Chemical products should be designed so that at the end of their
10 | function they break down into innocuous degradation products and do not persist in the
environment

Real-time analysis for pollution prevention: Analytical methodologies need to be further
developed to allow for real-time, in-process monitoring and control prior to the formation of
hazardous substances

11

Inherently safer chemistry for accident prevention: Substances and the form of a substance
used in a chemical process should be chosen to minimize the potential for chemical accidents,
including releases, explosions, and fires

12

Figure 2. Principles of green chemistry.?

Table 1. Time cycle for new products and processes for different industries'®

Time cycle for new Time cycle for new
Industry
products (years) processes (years)
Personal computers <0.5 2-4
Semiconductors 1-2 3-10
Pharmaceuticals 7-15 5-10
Petrochemicals 10-20 20-40
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Despite these drawbacks, society has pushed forward for faster implementation of these
processes through consumer movements that support environmentally responsible businesses.’ This
push has prompted enterprises to evaluate their products and processes by their (1) economic, (2)
environmental, and (3) social factors, also known as a product's "triple bottom line."'” Furthermore, green
chemistry initiatives have been proven to decrease the associated costs of waste removal and safety
liabilities, as well as to increase regulatory compliance and manufacturing security.® This evidence points
to green chemistry as a design strategy that can maximize efficiency while minimizing health and
environmental hazards by focusing not only on applications but also on new products' implications.!”

Moreover, this approach can help establish transparency throughout the supply chain and increase public

acceptance of new technologies by re-establishing trust through actions.

Green chemistry is a driver for innovation that can help redesign any stage of a chemical's life
cycle. There are four main components in a chemical's life cycle: (1) The sourcing of raw materials, (2) The
transformation of the raw materials through any given chemical process, (3) The use, as well as the health
and environmental impact of the products obtained, and (4) The end of life for all chemicals involved

throughout this process.'” This cycle is more clearly illustrated in Figure 3.

’—\

RAW MATERIAL EXTRACTION MANUFACTURING

/ PRODUCTION
&.N ‘
v b
DISPOSAL TRANSPORTATION

RECYCLING

AN

UTILIZATION
REUSE

Figure 3. The lifecycle of a chemical'®

Traditionally, raw materials for chemicals have been sourced from petroleum feedstocks. While
only 3-5% of the total petroleum consumption is designated to chemicals, petroleum sources represent
over 98% of chemical feedstocks.’® Crude oil is processed through refining, generating bulk organic

materials like benzene, ethylene, propylene, xylene, toluene, etc. These basic chemicals then undergo

4
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chemical processing to give fertilizers, industrial chemicals, plastics, etc. These products go to different

industries for further processing before reaching the end consumer.* This flow is depicted in Figure 4.

Other industries
Textiles, automobiles, etc.

Specialty chemicals !
| Rubber and plastic goods, ——|

paints, adhesives, ‘
performance chemicals

I Petroleum Bulk Chemical Industrial chemicals | | | :
Crude oil —7 M . B . o ' Consumers
! Refining petrochemicals Processing plastics,fertilizers '

Consumer care products | !
Soap, detergents,
laundrey aids, hair care,
fragrances, bleaches, etc.

Basic chemicals

Life Science products
Pharmaceuticals,
agrochemicals,

Chemicals industry biotechnology

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4. Overview of the basic chemicals and industries derived from crude oil**

The British Petroleum Company (BP) predicts that the world demand for petroleum will continue
to increase despite different regulations coming into place (Figure 5). In all anticipated situations (1) oil
continues to play a significant role throughout 2040, with demand ranging from 80 Mb/d to 130 Mb/d,
and (2) trillions of dollars in investment are required to meet the required global oil demands.?
Furthermore, due to the rising popularity of electric cars and efficient engine development, the usage
distribution of petroleum is expected to shift. The share dedicated to transportation is predicted to decline

starting in 2025, while its conversion to petrochemicals is expected to rise steadily (Figure 6).%

0 980

U 2000 Z010 2020 2030 2040

@

Figure 5. Demand and supply of crude oil and natural gas liquids®

T Based on the International Energy Agency's 2018 world energy outlook assumption that future investment is
limited to developing existing fields and there is no investment in new production areas.
Mb/d = million barrels per day.
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2040
2035
2030
2025
2020
2015
2010
2005
2000

B Materials®

M Industry
Buildings and power
Transportation

| | |

0 20 40 60 80 100

Petroleum demand (% of total)®
Figure 6. Projection of the share of petroleum demand?*
a. Materials are non-combustion uses of liquids, such as petrochemicals, lubricants, and bitumen. b. Includes crude

oil, natural gas, biofuels, coal-derived liquids, gas-derived liquids, and refinery processing gains.

While a massive investment in the oil sector is one approach to closing the oil supply gap with the
predicted demand, this would immediately invalidate both the efforts towards achieving the SDGs and
the 12 principles of green chemistry. Thus, one solution is investigating renewable resources that could in
part replace oil as a raw material. Moving towards renewable feedstocks would bring benefits to chemists,
chemical companies, and consumers alike.'” For chemists, it would represent an opportunity for
innovation. For companies, it would provide a source of starting material not dependent on fluctuation in
oil prices. For society, it would represent an advancement towards safer and more environmentally
responsible chemicals. In the words of Langdon Winner, green chemistry must focus on "work that locates
n 22

the center of research in an area of basic scientific ignorance that lies at the heart of a social problem,

further highlighting the great importance of addressing this challenge.
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1.2 Petroleum Chemistry

To understand why petroleum plays such a critical role as a feedstock for chemicals, it is necessary
to break down this complex mixture into its different components. Broadly speaking, crude oil is a complex
mixture of hydrocarbons which, depending on their chain length, are present in either the gaseous, liquid
or solid state.?®> Minor amounts of other elements such as sulfur, nitrogen, oxygen, iron, copper, nickel,
and vanadium have also been identified and are ubiquitously present.?* The exact molecular composition
of crude oil depends heavily on the sediment from which it is extracted. However, the proportion of
chemical elements in oil is fairly consistent.?* The ranges for these elemental proportions are depicted in

Figure 7.

M Carbon: 83%—85% w/w Hydrogen: 10%—14% w/w M Nitrogen: 0.1%-2% w/w
m Oxygen: 0.05%—-1.5% w/w Sulfur: 0.05%—6% w/w Metals: 100-5000ppm w/w

Figure 7. Elemental composition of crude 0il?®

The roughest oil classification is commonly done by analyzing its specific gravity and subsequently
categorizing it as a light or heavy crude.? The specific gravity varies inversely with the H/C atomic ratio.
As previously depicted, this varies widely depending on the source. Specific gravities for various crude oils
range from 0.7 to 1.0 and are often expressed in degrees API.2 Transforming specific gravities to degrees
API results in a broader range that goes from 70 to 5, allowing for a more precise categorization (Equation
1). This classification, while vague, has vast economic impacts. According to the Canadian Energy Research
Institute, light crudes have a WTI differential cost of CDNS1.00/bbl due to lower quality than the West

Texas Intermediate (WTI) international standard toll, which includes gathering, tankage and transport of



1. Introduction

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

CDNS$4.00/bbl. On the other hand, heavy crudes have a WTI differential of CDN$8.00/bbl and a toll of
CDNS$6.00/bbl.2®

141.5

°API = -
Specific gravity

315

Equation 1. Conversion from specific gravity to degrees API%

API| stands for American Petroleum Institute

Another way to describe crude oil is to relate it to the mass of its components obtained upon
distillation.?” An overview of the wide variety of products derived from petroleum, based on the number
of carbons and their distillation ranges, is summarized in Figure 8.2 A widely adopted profiling, provided
by categorizing petroleum by the main hydrocarbon fractions obtained upon extraction, is SARA. The
name of this profiling is an acronym of the four main hydrocarbon fractions obtained from petroleum:
Saturates, Aromatics, Resins and Asphaltenes.?” 2 The separation of crude oil by SARA is illustrated in
Figure 9.2% 28 The complexity of describing a specific fraction increases with the number of carbon atoms,
and SARA falls short in this regard. Thus, improved profilings, such as Extended-SARA (E-SARA),?® have
been reported in an attempt to further characterize petroleum. For a comprehensive review regarding
developments in novel categorization techniques of petroleum, in particular heavy fractions, please refer

to the comprehensive 2020 review by S. Simon et al.?’
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Figure 8. Principal petroleum products by boiling range temperature and number of carbon atoms?®
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Crude oil

Dilution with n-alkane
(e.g. n-heptane)

Deasphaltered oil - Precipitates -
Maltenes solution Insolubles
Adsorption onto silica or alumina Dilution with
chromatographic column benzene or toluene

Alkane elution Aromatic elution Polar solvent elution
(e.g. heptane) (e.g. benzene or toluene) (e.g. benzene-methanol)

Saturates Aromatics { Resins } {Asphaltenes Insolubles

Dilution with CS,
or pyridine

Carboids 4 Carbenes

Figure 9. Fractions of crude oil by SARA%* 28

Although somewhat overlapping, these fractions serve to describe the main hydrocarbons found
in crude oil in a practical manner.3° Saturates refers to saturated hydrocarbons that can be further
classified as paraffins or naphthenes. Paraffins or alkanes are saturated hydrocarbons with straight or
branched chains but without any ring structure.?? On the other hand, naphthenes or cycloalkanes are
saturated hydrocarbons containing one or more rings which may have paraffinic side chains.3! Aromatics
refers to any hydrocarbon with an unsaturated ring structure stabilized by resonance due to the overlap
of T-orbitals.3> Belonging to the aromatics fraction are benzene, toluene, xylenes (BTX), and

ethylbenzene, some of the most important precursors in the petrochemicals industry (Figure 10).3?

Resins and asphaltenes have significantly higher boiling points.?! The distinction between the two
is that resins are miscible in n-heptane (or pentane) whereas asphaltenes are not. This is due to an
increase in aromaticity resulting in robust TT-stacking interactions due to the higher molecular weight of
the asphaltene fraction (>1000 gmol™).3* In addition, there is a higher presence of heteroatoms, such as
nitrogen and sulfur, and a higher amount of metals due to coordination to the manifold ring systems.3!
These compounds are generally considered a nuisance due to their negative impact on the environment
and on our health.?? Furthermore, they impair catalyst activity by coke deposition.” In petroleum
chemistry, resins are molecules with condensed aromatic systems; either being catacondensed, meaning

they have four adjacent aromatic hydrogens - such as in chrysene; or being pericondensed, an even more

10
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condensed aromatic ring system - such as in pyrene (Figure 10).3%3® The asphaltene fragment precipitates
during production, causing dreadful well and reservoir plugging.3! Furthermore, it can stabilize emulsions,
causing difficulty for oil-water separations.?’ By definition, carbenes and carboids are less soluble than the
asphaltenes and are often classified within the asphaltene fraction.3* These fractions are the onset of
coke formation.3* It is worth noting that the term carbene in petroleum chemistry is different to the one
in organic chemistry, and does not refer to a divalent carbon intermediate, but rather to a polyaromatic

fraction of oil derived from asphaltenes that is soluble in CS;, as shown in Figure 9.

It is important to point out that alkenes, such as ethylene and propene, are also essential building
blocks in the petrochemicals industry.®> However, given that cracking is unavoidable during distillation, it
cannot be concluded that olefins are native to crude oil despite them being found in distilled fractions.3!
Nevertheless, some petroleum reservoirs have been verified to contain considerable portions of olefins,

causing revision to the original theory.3! The presence of dienes or acetylenes remains unfounded.?!

N
Saturates O

paraffins and naphthenes

hexane cyclohexane
Aromatics © © ©/ @\ ©/\
benzene toluene o-xylene m-xylene p-xylene ethylbenzene

Resins | ‘O O‘OQ

chrysene pyrene
= —
Unsaturated hydrocarbons = N AN =
ethylene propene buta-1,3-diene acetylene

Figure 10. Selected examples of diverse hydrocarbons found in petroleum
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1.2.1 Benzene

Benzene is one of the building blocks with widespread use in the petrochemical industry. It is an
important precursor to many commercial products such as phenol, nylon, and styrene.?? It was first
commercialized as an explosive during World War IlI; until then, it was only used as a solvent or as a
gasoline blender given its good gasoline octane characteristics.3> Due to increasing demand for benzene,
it started to be recovered from coke ovens at steel mills. Coke is a nearly pure form of carbon resulting
from heating coal above 2000 °C in the absence of air.* Since there is a small percentage of complex resins
in coal, these aromatic systems can crack apart, leaving behind benzene rings (conversion < 25%) and
coke.® Other manufacturing processes, including catalytic reforming of hexane or cyclohexane to
benzene, toluene hydrodealkylation, and toluene disproportionation, were also developed to keep up
with the demand for benzene.® In the 1970’s benzene was discovered as a by-product in olefin plants

that used naphtha or heavy gas oil as feedstocks.?®

Benzene is conformed of six sp? hybridized carbon atoms, each symmetrically positioned at 1.39
A from each other to form a hexagon (average C=C length for non-aromatic compounds is 1.33 A).¥ It is a
very stable molecule (33 kcal/mol more stable than an acyclic molecule with three double bonds) due to
the even delocalization of the six it electrons through the overlapped p orbitals, which grant benzene its
aromaticity.>® Given benzene’s stability, it does not react under the same conditions as simple alkenes.
Nonetheless, benzene can undergo five different types of electrophilic aromatic substitutions, namely: (1)
halogenation, (2) nitration, (3) sulfonation, (4) Friedel-Crafts alkylation, and (5) Friedel-Crafts acylation

(Figure 11).

Halogenation occurs in the presence of a Lewis acid catalyst with diatomic halogen molecules.
This process occurs through the generation of a strong electrophile (i.e. CI®, Br®, or I5*) which is
subsequently stabilized by the formation of a o-complex, a delocalized cation, upon the electrophilic
attack of the benzene.3® The ring’s aromaticity is restored upon loss of a proton.®® Halogenated benzenes
can be used for a plethora of chemical transformations, making them valuable intermediates in synthetic
chemistry. Nitration of benzene is also possible by submitting benzene to a mixture of concentrated nitric
and sulfuric acids.3® Sulfuric acid protonates nitric acid to produce a nitronium ion (NOZ) through the
displacement of a water molecule. Given that the nitronium ion is a strong cationic electrophile, benzene
undergoes electrophilic substitution through the formation of a o-complex. Nitrobenzenes are also

versatile compounds due to their viable transformation to anilines by reduction of the nitro group.

12



1. Introduction

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

Sulfonation can be achieved through a slow reaction between benzene and sulfuric acid, similar to the
formation of the nitronium ion; one molecule of sulfuric acid protonates another one to ultimately yield
benzenesulfonic acid.?® The Friedel-Crafts alkylation requires an alkyl halide, an alkene, or an alkyne,
which can be polarized with a Lewis acid. In the case of unsaturated compounds, the presence of a proton-
releasing co-catalyst is required.>” Upon forming a polar addition complex through the coordination of the
Lewis acid to the alkylating agent, the o-complex is formed, and aromaticity is re-established through
proton loss.?” Finally, the Friedel-Crafts acylation occurs similarly but by using an acyl halide or anhydride
inthe presence of a Lewis acid catalyst. However, in this case, two equivalents of the Lewis acid coordinate

to the carbonyl group of the acylating agent to form an acylium ion, R-C=0*, in ionizing solvents.?’

X2 ©/X
Lewis Acid
H2SO4 ©/N02
HNO,
: H o
i: H,SO, SO;H : Bl
g ©/ i + ,
benzene i c-complex E
R'I_x : R1 """""""""
Lewis Acid
(@] (0]
X)J\Rz - R2
Lewis Acid

X=Cl, Br, |

Figure 11. Electrophilic substitution of benzene

A significant number of chemical transformations rely on substitution reactions of the
aforementioned benzene derivatives, especially aryl halides. Aryl halides are versatile electrophiles and

substrates to a plethora of metal-catalyzed cross-coupling reactions. Given that their sourcing relies solely

13
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on the refinement of petroleum and subsequent electrophilic substitution, it leads to highly polluting
processes that also result in halogen persistence.* Furthermore, in the 20" century, environmental
regulators responded to the conclusive evidence that benzene was a carcinogen, even when present in
trace amounts in gasoline vapours.>® Nonetheless, before petroleum deposits were exploited, the only
available sources of pure organic compounds were microorganisms, plants, and animals.®® Therefore,
organic synthesis and the production of dyes and pigments were limited by the availability and
transformation of these natural feedstocks.3® Upon the discovery of petrochemicals, the quantities
became sufficient to satisfy the growing demand of the chemical industries, which started to include

industrial production of synthetic pharmaceuticals such as acetylsalicylic acid.®

Ultimately, petroleum feedstocks are biomaterials that have been under reductive conditions for
millions of years, resulting in the stripping of all their functionalities to yield simple hydrocarbon
molecules.* Chemists have learned how to add complexity to these simple molecules, despite this
superfluous process' negative connotations.* Natural feedstocks are inherently different from
petrochemicals, as they are complex molecules with high degrees of oxidation.'” Learning how to harness
molecules with high degrees of oxidation would allow us to use renewable feedstocks as starting materials

for the chemical industry.?
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1.3 Lignin Chemistry

In choosing natural feedstocks as an alternative to petrochemicals, the sustainability of the
material of choice needs to be considered. An ideal renewable raw material must (1) be sustainably
sourced, (2) preserve the natural biodiversity of its ecosystem, (3) ideally be valorized from useless wastes
from other sustainable industries, and (4) be transformed through cost-effective and sustainable

methodologies at an industrial scale.®

Renewable hydrocarbon sources include enzymatic fermentation products of biomass, vegetable
oils, selected microalgae with high lipid content, and lignin.?® Lignin is a polyaromatic polymer in plant cell
walls, and it is considered the most abundant noncarbohydrate polymer on earth,* accounting for 30%
of all terrestrial nonfossil carbon.3 In addition, lignin is a major industrial side product mainly coming from
the pulp and paper industry and cellulosic ethanol production.*! In 2019, the annual amount of lignin
waste was approximated to be between 150 to 200 million tons.3 Historically, lignin has been burnt for
heat and power, with less than 2% of lignin available being sold to formulate dispersants, adhesives, and
surfactants.*? The value of lignin that is burnt is estimated to be $0.18 USD/kg.*! In comparison, lignin
employed for chemical purposes is valued at $1.08 USD/kg, highlighting the importance of developing
methods to utilize lignin as a platform for different chemicals.** Nonetheless, the aromaticity and carbon

richness of lignin renders it an attractive starting biomacromolecule as renewable feedstock.*

Lignin is a three-dimensional polymer with a molecular weight of 1000-15000 Da, and is a highly
stable crosslinked polymer consisting primarily of methoxylated phenylpropane structures.®® In plant cell
tissues, lignin performs a binding and hardening function by filling the space between cellulose and
hemicellulose whilst protecting these polysaccharides against biochemical stresses.?® The percentage of
lignin found in a plant varies depending on the source. For example, grass contains 17-24% w/w lignin,
softwood contains 18-25% w/w lignin, and hardwood contains 27-33% w/w lignin.*?* Lignin is
biosynthetically generated through the radical polymerization of three main monomers: p-coumaryl,
coniferyl, and sinapyl alcohols (Figure 12).3 More than 50% of lignin is constituted by these monolignols
being bound mostly through B-O-4 ether bonds, with -1 bonds also considerably found but to a lesser
extent (Figure 13).3> 3 These linkages are considerably robust as emphasized by their high bond
dissociation energies (BDE, Figure 13). Other linkages found include a-O-4 (BDE 60 +14 kcal/mol), 4-0-5
(BDE 78-83 kcal/mol), B-B’ (66-82 kcal/mol), B-5 (125-128 kcal/mol), and 5-5’ linkages (BDE 115-118

kcal/mol).3* %
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While the breakage of these phenolic linkages is key to yielding lignin-derived platform chemicals,

the first step in lignin valorization is extracting this biopolymer from the cellulose and hemicellulose matrix

in which it is found (Figure 14). Lignin must be first obtained via fractionation, and its polymeric structure

will vary significantly depending on the isolation method used, thus altering its chemical properties.

Natural, untreated lignin is referred to as protolignin, and its exact structure is still unknown due to this

isolation caveat.®® Several isolation methods have been reported.?> ** These methods can be classified

into two major categories: (1) methods resulting in significant structural modifications (Table 2) and (2)

methods resulting in mild structural modifications (Table 3).3% %! Yoo et al. have also described the effect

of different pretreatment strategies based on their impact to preserve the polysaccharide fractions.*®
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Figure 14. Overview of the transformation of lignocellulose into lignin-derived platform chemicals

Table 2. Fractionation procedures that cause significant structural modifications3 !

Name Conditions Modifications

Kraft lignin NazS(q) + NaOHag), 170 °C, pH 13 1.5-3% sulfur incorporation as thiol

Klason lignin 72% H2S04, 140 °C, pH 2-12 Significant damage to the native structure

Sulfite lignin Sulfites or bisulfites 4-8% sulfur incorporation as sulfonate — water soluble
Alkali lignin NaOHjaq), 150-170 °C, pH 11-13

Table 3. Fractionation procedures that cause mild structural modifications*

Name Conditions Modifications

Organosolv lignin Organic solvent extraction (e.g. Leads to partial degradation of 3-0-4
EtOH/H20) 150-200 °C linkages. Might lead to repolymerization.

Milled-wood lignin (MWL) Extensive grinding + solvent Milling can add carbonyl and hydroxyl
extraction (Bjorkman process) groups. Yield 20-40%

lonic liquid (IL) lignin ILs treatment Difficult to separate and recycle costly ILs

Cellulolytic enzyme lignin Cellulolytic enzymes + solvent EMAL and CEL give the highest molecular

(CEL) and enzymatic mild extraction weights for isolated lignin

acidolysis lignin (EMAL)
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Once theisolation of lignin is achieved, lignin needs to be depolymerized to yield various platform
chemicals. As previously mentioned, botanical origin and the fractionation method through which lignin
was obtained will impact the efficacy of the depolymerization method. The addition of functionalities
(especially those containing sulfur) will affect the role of the catalysts. In addition, if the molecular weight
of the resulting lignin is too large, it might not allow for effective interaction with heterogeneous catalysts.
Specific depolymerization methods may lead directly to the attainment of bulk chemicals (e.g. phenol,

BTX), fuels (e.g. cyclohexane), and fine chemicals (e.g. vanillin, syringaldehyde, benzaldehyde).

The depolymerization methods can be classified as (1) reductive, (2) oxidative, (3) acid-catalyzed,
(4) base-catalyzed, (5) thermal, and (6) enzymatic. Comprehensive reviews regarding these processes
have been authored by Arapova et al.3°, Sun et al.*!, Cao et al.*’, and Gale et al.*® Thus, only a brief
introduction to each of these strategies is provided in Figure 15. For specific methodologies categorized
by the type of their bond cleavage capacity, consult the thorough review of Shen et al.** For a review
focused on reductive depolymerizations involving hydrogen in model compounds, refer to the work of
Jing et al.*® Electrochemical depolymerization of lignin has been reviewed by Garedew et al.>® Advances

in enzymatic depolymerization of lignin have been summarized by Chan et al.** and Weiss et al.>*

Noble metals are most commonly used as heterogeneous catalysts for the depolymerization of
lignin. Often, very active noble catalysts are alloyed to generate bimetallic catalysts to improve activity or
selectivity. Supports also play a significant role based on their surface area and microporosity.
Nonetheless, their acidity; basicity; particle size; pore size and shape; and hydrophobicity and
hydrophilicity; will also impact the reaction’s efficiency.*® Solvent plays a significant role, and selection

will depend on the catalytic system used.*®
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Lignin

Reductive depolymerization
Hydrogenolysis of C-O bonds
Phenols, cresols and arenes

Hydrogenolysis followed by hydrogenation
Cyclohexane and hexane

Oxidative depolymerization

Strong oxidants:hydrogen peroxide - can disrupt the aromatic ring

Mild oxidants: air, oxygen, nitrobenzene - keep aromatic ring intact

Oxidation can also be achieved through electrochemistry, photocatalysis, heterogeneous catalysis, or
ionic liquids catalysis.

Vanillin, syringaldehyde, benzaldehyde, and benzoic acid

Two-step methodologies involving initial oxidation of the secondary alcohol followed by a reductive C-O
ether bond rupture have become increasingly popular due to the decrease in BDE of the p-O-4 linkages.

> Acid-catalyzed depolymerization

Dilute aqueous acids (e.g. H,SO4, H3PO4, and HCI), organic acids (e.g. formic acid) and solid acids (e.g.
zeolite, SiO,-Al,03 oxides) catalyze depolymerization at mild temperature through p-O-4 cleavage.
Methoxyphenols and hydroxyphenols

Base-catalyzed depolymerization

NaOH, KOH, K,CO3, CaO and MgO break ester linkages and can break 3-O-4 bonds in two stages
through pre-oxidation

Methoxyphenols and hydroxyphenols

Thermal depolymerization

Gasification, hydrothermal carbonization, pyrolysis, microwave-
assisted depolymerization

Synthesis gas, carbon nanotubes, graphene, graphite, hydrochar,
acetic acid, phenol, aromatic compounds, CO and methane

Enzymatic depolymerization

Oxidative enzymes such as lignin peroxidases (LiP), manganese peroxidases (MnP), versatile
peroxidases (VP). Auxiliary enzymes including glyoxal oxdase (GLOX), aryl alcohol oxidase (AAO), and
cellobiose dhydrogenase (CDH).

Ferulic, vanillic coumaric acids and phenol.

Figure 15. Depolymerization methods and main fragments obtained

Although selectivity and product distribution continue to be a challenge for the transformation of

lignin, significant advances have been achieved. Among the products obtained from lignin, we can list

saturates,®* arenes, phenols, and moieties ready for incorporation into natural products,*® or

pharmaceuticals.** Additional value-products include jet fuel, food additives, carbon fibre, hydrogels,

cleaners, and resins.”® Although all of these chemicals add to the desirability of using lignin as a

biorenewable resource, we will focus on phenol precisely due to its applicability in the production of

nylon, pharmaceuticals, cosmetics, and biofuels.*
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1.3.1 Phenol

Phenol is one of the most sought-after target products from lignin. Methoxy bonds, C.-OMe,
and carbon-carbon bonds, C.ryi-Co, Nneed to be effectively cleaved to generate the desired product from
lignin. Selective cleaving of the methoxy C.ryi-OMe bonds is challenging, as the phenolic hydroxyl groups
need to be maintained. Thus, catalysts that can provide modest catalytic hydrogenolysis and low
hydrogenation activity are required for this process to be carried out successfully.* The selectivity of
hydrogenolysis can be enhanced with bimetallic catalysts to finely tune the activity of the catalyst.
Supported metal sulfide catalysts (e.g. CoMoS/Zr0O,) have also been tested. However, the loss of sulfur
limits their application.*® Metals commonly used are Ni, Ru, Pd, Fe, Co, and W.*® Supported gold catalysts
have also attracted considerable attention due to their high selectivity.* It is worth noting that the size of
metal nanoparticles can affect the hydrogenation activity, catalytic activity, and distribution of the
products.*® Regarding cleavage of the C.y-Cq bonds, acid-catalyzed dealkylation has been proved to be
the most effective and appropriate for industrial applications.* Most experiments of this nature have
been performed using lignin model compounds, with the main challenge being the potential
disproportionation and transalkylation of the starting material. HZSM-5 zeolite is one of the solid acid
materials that has shown the best performance in this regard. Combinations of heterogeneous catalysts
with the zeolite have also proven successful in this regard and provide a breakthrough towards the
industrial production of phenol and olefins from lignin.* Advances in phenol production from lignin model

compounds and lignin are summarized in Table 4.%

Table 4. Overview of the production of phenol from lignin model compounds and lignin®

Feedstock Catalyst Medium Major product Phenol yield  Ref.
propylphenol H-ZSM-5 H.0 phenol and propylene 98 mol% 53,54
ethylphenol H-ZSM-5 H,0 phenol and ethylene 95 mol% 55
2-methoxy-4-propylphenol  Pt/C + zeolite H,0 phenol 60 mol% 56
2-methoxy-4-propylphenol  Au/TiO2 + H-ZSM-5 benzene phenol and cresol 60 mol% 57
pine wood Pt/C + MoP/SiO; + ZSM-5 benzene phenol and olefin 9.6 mol% 58
organosolv lignin oil Ni/SiO; + Hierarchical ZSM-5  H,0 phenol and propylene  20% w/w 59
organosolv poplar lignin Ru/CeO; + CuCl, H,0 phenol 13% w/w 60

Currently, phenol is synthesized through either (1) the reaction of functionalized benzene, (2) the
oxidation of alkyl-substituted benzene, (3) through the direct oxidation of benzene, or (4) through

aliphatic transformation. Since no reagent can directly hydroxylate the benzene ring due to the inability
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of any reagent to generate the necessary *OH electrophile, additional synthetic manipulations departing
from the available substituted benzene products are required. Industrially, phenol is obtained through
the cumene (Scheme 1) or the Dow process (Scheme 2). The cumene process also produces acetone, and
98% of the world’s production of these products is achieved through this strategy.®! At a small scale,
phenol can be obtained by reducing the nitro group, followed by diazotization of the resulting aniline and
displacement of N, to introduce a hydroxyl group (Scheme 3).3¢ Other non-lignin sources of phenol include

62, 63

its extraction from coal tar using strong alkaline media, deep eutectic solvents, or through high-flux

centrifugal extraction.®

O-OH OH o
H3PO4 Oz H;O* )J\
© + /\ —_— —_— —_— +
30 atm radical

250 °C initiator
cumene cumene
hydroperoxide
Scheme 1. Cumene process
Cl
Cl, High T & P ~ T 1) NaOH
> —_—— —_—
FeCl, NaOH 2) Neutralization

benzyne
intermediate

Scheme 2. Dow process

H,/cat. NaNO,, HCI : H,0

o™ SN o
—_— _— > l— —_—
or Sn/HCI H,0, 5 °C ©/ c Cucat., A

Scheme 3. Nitrobenzene to phenol

Phenol is an appealing target molecule due to its potential to replace aryl halides as substrates in

cross-coupling reactions. Nonetheless, the hydroxyl group in phenols is very reactive due to its acidity; pKa
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10 compared to cyclohexanol, pK, 16.3° Furthermore, the C.y—O bond has a high dissociation energy.
Thus, earlier studies focused on finding ways to transform phenols into phenol derivatives as a way to
remove the acidic proton and reduce the BDE of the C,,—O bond (Scheme 4).%° Several methodologies
have been developed using various phenol derivatives and have been previously reviewed and
summarized by our group.®®> However, it is far more desirable to directly cross-couple phenols with

nucleophiles via Cary—O cleavage.

Phenol cross-coupling in the gas phase was first explored in 1966 and has since been optimized
for amminolysis, with some gas-phase thiolation efforts.®® Furthermore, these processes require very high
temperatures (above 250 °C), carefully designed heterogeneous catalysts, and continuous flow reactors,
limiting the applicability of these methodologies.®* The first example of phenol cross-coupling in the liquid
phase was reported in 1985, where phenol and cyclohexanol can be coaminated with ammonia by
employing cyclohexanol as the hydrogen transfer reagent in the presence of Pd/C as the catalyst at 250
°C.%¢ In 2012, our group developed a dehydrogenative aromatization process using 2-cyclohexen-1-one

(and cyclohexanone) as the substrate to yield aromatic ethers or anilines (Scheme 5).%’

In 2015, inspired by our findings and notable findings from Stahl,% % our group reported a mild

and highly efficient methodology to directly couple phenol with amines (Scheme 6). ©

Relative difficulty of the C,,-O bond cleavage

1
A
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Scheme 4. Relative difficulty of cross-coupling reactions with phenol and derivatives®
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Scheme 6. Formal direct cross-coupling of phenol with amines”

This procedure achieves the coupling of phenol with amines by using sodium formate as the
hydride source and Pd/C as the catalyst, in the presence of catalytic amounts of TFA. This transformation
proceeds through a hydrogen-borrowing strategy which consists of dearomatizing the ring to generate a
ketone, condensation of the amine to the ring, and rearomatization to yield the corresponding aromatic
compounds (Scheme 7).7° The reaction tolerates a broad scope of phenols, catechols and naphthols with
primary, secondary, aliphatic and aromatic amines as nucleophiles. The reaction can also be performed in

a flow reactor.”*
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Scheme 7. Proposed mechanism for the direct cross-coupling of phenol with amines”
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1.4 Amino Acids and their N-Modification

While lignin can serve as a biorenewable hydrocarbon supply, amino acids can serve as a source
for nitrogen and chirality. Amino acids are simple organic compounds containing at least one amino and
one carboxylic function. a -amino acids have a primary amino group (except for proline) and a carboxylic
group substituent on the same carbon atom (Figure 16). More than 700 amino acids have been discovered
in nature, and most of them are a-amino acids.”? Bacteria, fungi and algae and other plants provide nearly
all of these, which exist either in the free form or bound up into larger biomolecules.”? Since deciphering
the genetic code, 22 proteinogenic L-o.-amino acids have been encoded.” These serve as building blocks
in living cells for protein synthesis, and they are fundamental to all life forms as building blocks for
peptides and proteins.”? There are many production methods, such as extraction, chemical synthesis,
fermentation, and enzymatic conversion. * Most amino acids are now produced by fermentation, which
is suitable for large-scale production of optically active compounds, although some such as glycine or dl-

methionine are still made through chemical synthesis or enzymatic production.”

N-terminus 0 C-terminus COOCH
HN_a H N+H
2 \.)J\OH 2
:B R
\ Y L configuration
R

S amino acid

Figure 16. Amino acid structure and configuration

Peptides typically display high potency and target selectivity, making them valuable leads in
developing new therapeutics, however, converting lead peptides to drugs represents a considerable
challenge. ® This is due to the lack of oral bioavailability of peptides due to their susceptibility to
proteolysis in the gut, inefficient transport across the intestinal wall, proteolytic degradation in the

bloodstream, and rapid clearance by the kidney.”

The N-terminus is a ubiquitous and practical handle, which can introduce diverse functional groups
that can significantly alter the amino acid’s physiological and pharmacological activities,”® 7’ especially
when incorporated into peptides.”® This is due to the loss of hydrogen-bonding potential at the affected

site, reducing main-chain hydrogen bonds' role and potentially altering its binding properties.” Including
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N-modified amino acids into a peptide sequence has been shown to enhance potency, change receptor
subtype selectivity, and protect the peptide from proteolytic degradation.” In addition to their potential
as structural backbones for pharmaceuticals’ 8 and agrochemicals, 7> 8 82 gq-amino acids also play an

838 or ligands.®® Furthermore,

essential role in organic synthesis and may function as organocatalysts
these modifications can facilitate the characterization of the N-terminal amino acid when adding
fluorescent tags that can help identify them by light-absorbing methods’® or in a peptide chain by mass

spectrometry.?’

Unfortunately, the sluggish nucleophilicity of amino acids, their pH sensitivity, and the broad
range of functionalities at the a-position makes them challenging substrates for any coupling reaction.
Despite these challenges, the N-arylation of amino acids has been achieved using the classical Ullmann®
8 or the Buchwald-Hartwig coupling reactions.?® N-mono-alkylation has been often attained by reductive
aminations using boron or transition metal complexes as the reducing agents," %2 and most recently,
through hydrogen-borrowing strategies allowing the use of aliphatic alcohols as the alkylating reagents.®*
% However, challenges such as the use of organic halides, low selectivity and high temperatures remain

to be addressed.
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1.5 Summary and Outlook

The need for sustainable chemical transformation is critical to our society's continuous
development, as highlighted by the 2030 agenda for sustainable development of the United Nations. The
vast majority of chemicals rely on petroleum supplies, which not only invalidates the efforts towards
achieving the sustainable development goals but will also require a significant investment in heavy oil
refinement due to depletion of this nonrenewable resource. Lignin is a biorenewable resource that could
in part replace oil as a raw material. Lignin is a polyaromatic polymer in plant cell walls and is considered
the most abundant noncarbohydrate polymer on earth. While its isolation and depolymerization pose
significant challenges, significant advances have been made in both regards. Phenol is commonly a target
product of lignin depolymerization. Studies have shown that it is possible to obtain this product from
natural lignin using catalytic systems involving platinum, nickel, or ruthenium. Phenol is appealing due to
its applicability in cross-coupling reactions. However, most strategies require the modification of the
hydroxyl group to generate a more labile C,ryi-O bond while removing the acidic phenolic proton. More
atom efficient methodologies involving the reduction and rearomatization of the phenolic ring have been

developed, allowing for more direct phenol utilization in organic synthesis.

On the other hand, amino acids are a naturally abundant and biorenewable source of chirality and
nitrogen. Their N-modification is a challenging yet essential endeavor required for increasing the stability
of these compounds, especially when incorporated into pharmaceuticals or agrochemicals. N-arylation of
amino acids has been achieved through Ullman and Buchwald-Hartwig couplings, requiring aryl halides or
triflates as cross-coupling partners. N-mono-alkylation has been attained by reductive aminations and,
most recently, through hydrogen-borrowing strategies allowing the use of aliphatic alcohols as the
alkylating reagents. Given that no methodologies had been developed for the formal cross-coupling of
phenol with a-amino acids, the development and optimization of the given methodology is the subject of

the following chapters.
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Chapter 2 . N-Arylation of a-amino acids using cyclohexenone

2.1 Background

The N-arylation of amino acids has been a longtime sought by chemists. As discussed in the
previous chapter, amino acid N-arylation can impact the amino acid's physiological interactions due to the
loss of hydrogen bonding potential at the N-terminus.! In addition, the introduction of the aryl can induce
other non-covalent interactions,? while simultaneously blocking the possibility of chain elongation
through amide-bond formation.> These modified qualities make N-arylated amino acids especially
attractive for drug design and development, as these moieties can be recognized by a biological target
while blocking its conventional pathway. Furthermore, the aromatic m-system can form non-covalent
interactions with other molecules bearing m-electrons through it stacking, with halogens through halogen-
T interactions, or with cations in a cation-minteraction, allowing these moieties to interact more efficiently
at a macromolecule's binding site.? -Interactions range from 1.8 to 5 kcal/mol (with mt-cation interactions
being the strongest).? These interactions occur when two aromatic rings are positioned face-to-face with
a slight offset. This is due to the electrostatic attraction generated from the positively charged o-
framework with the negatively charged p-cloud or the ring, and the offset arises as the positive charge is
largely on the peripheral due to the exposed hydrogen atoms.* These Van der Waals forces are

proportional to the area of contact, thus weakened depending on the necessary offset.*

Some examples of incorporating N-arylated amino acids into bio-active compounds include PKC
activators,® VLA-4 antagonists,® and bradykinin antagonists.” Protein kinase C is composed of 11 isozymes,
making the synthesis of selective activators crucial to identify individual isozymes in physiological
processes.> While inhibitors target enzymes, antagonists target receptors. VLA-4 stands for very late
antigen 4. It is a transmembrane receptor present in leukocytes that bind to endothelial cells and lead to
leukocyte infiltration before causing tissue damage in inflammatory diseases such as asthma, multiple
sclerosis and arthritis.® Lastly, bradykinin is a nonapeptide that is implicated in various physiological

responses such as pain, rhinitis, inflammation and allergies, causing pain and swelling.”
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®
CO2H —
N

PKC Activator VLA-4 Antagonists Bradykinin Antagonists
Figure 2.1 Selected examples of bioactive compounds with N-arylated amino acids

The synthesis of N-arylated amino acids has been carried out using hypervalent iodine® or

nucleophilic aromatic substitution.> 1* More recently, the N-arylation of amino acids has been achieved

11, 12 9, 13, 14

through cross-coupling reactions using copper, palladium, or enzymes® as catalysts. The
aromatic coupling partners in these reactions are aryl halides, in the case of the Ullmann reaction, or aryl
halides or pseudo-halides, in the case of the Buchwald-Hartwig coupling. These reactions proceed through
oxidative addition to generate the corresponding aryl-copper or aryl-palladium species, followed by ligand
displacement by coordination of the amino acid to the metal and completing the catalytic cycle through

reductive elimination to yield the corresponding N-arylated product.!®

Jain et al. reported in 2016 a successful microwave-induced Ullmann coupling for obtaining N-
arylated a-amino acids.!? Previously reported copper-catalyzed methods employed harsh conditions,
including high temperatures, stoichiometric use of copper, and use of DMF or DMSO solvents, that
ultimately resulted in racemization. This methodology allows for the N-arylation of natural and unnatural
amino acids in its zwitterionic form with electronically and sterically diverse aryl and heteroaryl coupling
partners without affecting the enantiopurity of the product, rendering this methodology especially
attractive. Remarkably, strongly electron-withdrawing groups, including o-nitro, p-trifluoromethyl, o,p-

difluoro, and m,m-difluoro, were well tolerated as substrates.
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PEG-400, H,0
50 min, 90 °C, MW 34 examples

78 - 98% vyield

Scheme 2.1 Microwave-assisted Ullman coupling for the N-arylation of a-amino acids®*

In 2016, 21 years after the first report of the Buchwald-Hartwig reaction, the group of Buchwald
reported an optimized method for the palladium-catalyzed N-arylation of a- and B-amino esters.'® The
reaction tolerated methyl, tert-butyl, and benzyl esters as substrates. Reaction conditions result in
minimal racemization of the amino acid ester. This reaction's success is attributed in part to the t-
BuBrettPhos third-generation (G3) precatalysts, which enable the use of mild reaction conditions. The N-
arylation of hydrophobic, aromatic, and polar amino acid esters was successfully achieved. The group of

Proulx has more recently adopted this procedure for the N-arylation of resin supported peptides.”

e

H2N Cs,CO5 (3 eq)

ana)

‘BuBrettPhos Pd(ll) G3 Hohe»-Pd—0-8-GH,

OTf 5\2 (5 mol%) @;ﬁ )R\Z oo b g, ©
+ - Pr
R’ CO,R3 N~ ~CO,R3 ipr
: N co, S

N

2-Me THF, 50 °C, 2 h P ome

33 examples BuBrettPhos Pd(ll) G3

69 - 98% yield
55 -99% ee

Scheme 2.2 Buchwald-Hartwig coupling for the N-arylation of a-amino esters®?

In 2019, the group of Poelarends reported a biocatalytic route for the asymmetric synthesis of
various N-arylated aspartic acids using ethylendiamine-N,N’-disuccinic acid lyase (EDDS lyase) as a

biocatalyst.?

This strategy uses arylamines and fumarate as substrates, yielding the corresponding
products upon enzymatic transformation. The enzyme demonstrated to have a broad receptivity to
different arylamines and was limited to fumarate as the electrophile. Nonetheless, the products were
obtained with high enantiomeric excess. This methodology greatly differs from other chemical strategies

in the sense that chirality is created from fumarate, a prochiral a,B-unsaturated acid to form the Ca
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stereocenter of the target N-arylated amino acid in a single asymmetric step, showing both the

importance of this type of building blocks, as well as the development of biocatalysts for organic synthesis.

;‘.“‘\ jo
¢ ’» 5 -
N e &
X _COsH
HO,C” 2

EDDS lyase

‘\‘% A
Pt
NaH,PO4/NaOH Buffer, pH 8.5 /@—R
5% DMSO H

NH, N
RE CO,H
room temperature HOZC)\/ 2

|

R = H, m-F, m-Me, m-OMe, p-X (F, CI, Br, 1), 14 examples
p-Me, p-OMe, p-CO,H, p-Et, p-iPr, m,p-diMe 52 - 89% yield
ee > 99%

Scheme 2.3 Biocatalyzed synthesis of N-arylated aspartic acids®®

2.2 Research objectives and plan

Given that most methodologies developed for the N-arylation of a-amino acids have mostly
focused on using aryl halides or aryl triflates as the starting materials, we sought to find conditions for a
more direct N-arylation without the need of pre-functionalized phenolic moieties. Based on previous
research in our group using 2-cyclohexen-1-one and phenol to obtain N-alkylated'® ° and N-arylated?®
22 amines, we focused on testing a-amino acids as potential coupling partners under the reported

conditions.

Amino acids are challenging substrates for coupling reactions due to their low nucleophilicity, pH
sensitivity, and the broad range of reactive functionalities at the a-position. Initially, we tested phenol as
the arylating reagent for L-alanine methyl ester hydrochloride under the previously reported conditions
by our group (Scheme 2.4).%° However, decarboxylation of the starting material was observed due to the
high temperature required for the de- and re-aromatization of phenol. Only trace amounts of the desired
product were detected by NMR despite modifying the amounts of sodium formate and triflic acid present

in the reaction mixture.
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OH Pd/C (10 wt%) 10 mol% H (0]
. 9 HCO,Na N _
_H3N _ @ o)
07+
Cl : TFA

Toluene, 140 °C, 12 h
4% + 2

Scheme 2.4. Initial screening of the reaction between L-alanine methyl ester hydrochloride and phenol
using previously reported conditions by our group?
In light of these results, we decided to remove complexity from our initial plan and solely focus

on the N-coupling feasibility. Thus we decided on (1) using glycine as the model substrate to avoid
difficulties due to the amino acid's side chain, (2) use the methyl ester hydrochloride salt of the amino
acid to prevent the formation of 2,5-diketopiperazines (dimerization product) and avoid decarboxylation,
and (3) use 2-cyclohexen-1-one instead of phenol as the coupling partner to remove the dearomatization
step required for the condensation to occur, allowing us to focus solely on the condensation and

aromatization steps of the reaction (Scheme 2.5).

0 O oD
H2N\)ko/ +

N
o~
*HCI

Scheme 2.5. Model reaction for the coupling of a-amino acids with 2-cyclohexen-1-one
We opted to first test different solvents due to the poor solubility of the hydrochloride salts in

toluene, followed by the screening of acids and bases as additives in order to favour imine formation.
While prior deprotonation of the substrate would have allowed for better solubility, the formation of 2,5-
diketopiperazines remained a challenge, forcing us to work with the salts. Lastly, we would explore the

substrate scope before revisiting the possibility of using phenol as a coupling partner.
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2.3 Results and discussion

2.3.1 Condition Screening

The transformation was initially tested at a 0.2 M concentration using palladium on carbon with
a 10 mol% Pd loading under an argon atmosphere and an excess amount of 2-cyclohexen-1-one (2) to
facilitate nucleophilic addition. The reaction was first tested using dioxane as the solvent (Table 2.1, entry
1). The desired N-arylated product 3 was obtained in 26% vyield, together with 107% phenol (5). In
addition, N-Cyclohexylated glycine (4) was obtained as a byproduct in 9% yield and ketal 6 as a side
product in 16% yield. We presumed that the yield might be improved if the solubility of salt 1 was
enhanced. Thus, we tested different alcohols as co-solvents (Table 2.1, entries 2-4). An increase in yield
for product 3 was observed. However, side product 6 was consistently observed despite different alcohols
being present in the reaction mixture. Furthermore, there was high variability in the yield for reactions
being run under the same conditions. We reckoned that ketal 5 had to be the result of the starting material
1 undergoing hydrolysis. Having glycine in its free carboxylic form would lead to decomposition of the
starting material due to decarboxylation, as had been previously observed. In order to test this hypothesis,
the reaction was run with 0.5 equiv of water (Table 2.1, entry 5), and with water as a co-solvent (Table
2.1, entry 6). Indeed, the formation of product 3 was suppressed, while the building of ketal 6 was still
observed. To circumvent this obstacle a less hygroscopic solvent was tested. Toluene yielded desired
product 3 in 47% yield with higher reproducibility and without the formation of side product 6 (Table 2.1,
entry 7). Although results were nearly identical to those from entry 4, the hygroscopic nature of dioxane

deterred us from choosing it as the solvent.

With the optimal solvent at hand and having observed the feasibility of the desired N-arylation,
different additives were tested to favour imine formation (Table 2.2). Imine formation is favoured at a pH
of 4.5, with acids catalyzing the hydrolysis while bases ensure the availability of the lone pair of electrons
in the nitrogen for the nucleophilic attack to the ketone to be possible. Given that glycine was being used
in its hydrochloric salt form, an addition of only 10 mol% of the acid additives was tested (Table 2.2, entries
2-5). Acid additives did not improve the reaction yield, and stronger acids decreased the formation of
product 3. Basic additives were then tested (Table 2.2, entries 6-11). Calcium carbonate gave the best
results, yielding 63% of 3, and 15% of 4 (Table 2.2, entry 10). Increasing the quantity of base resulted in
the loss of activity (Table 2.2, entry 11).
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Table 2.1 Solvent screening for the palladium-catalyzed N-arylation of glycine methyl ester hydrochloride

H H
©/N\/COOMe O/N\/COOMe
+

using 2-cylohexen-1-one

(0]
H,oN COOMe Pd/C (10 wt%) 10 mol%
hel - . 140 °C, 15 h, argon 3 4
> OH MeO_ OMe
solvent (1 mL)
1 2 + +
1 equiv 2 equiv © ij
5 6
| yield (%)
entry solvent 36l 40 5o g1
1 dioxane 26+10 9+10 107 16 £ 14
2 dioxane : MeOH 8:2 3121 Traces 83 14 +12

3 dioxane : 'PrOH 8:2 31+1 Traces 112 32 +16

4 dioxane : '‘BUOH 8:2 47 +6 14+7 97 Traces
dioxane
5 . 7 ND 44 13
+ 0.5 equiv H,0
6 dioxane : H,O 8:2 ND ND 60 24
7 toluene 47 +6 20+ 13 104 Traces

Reaction conditions: 1 (0.24 mmol, 1 equiv.), 2 (0.48 mmol, 2 equiv.), Pd/C (5 wt%, 0.48 mmol), additive,
Ar saturated toluene (1 mL), 15 h, 140 °C, in a high pressure microwave vial. ? Yield determined by *H
NMR using 1,3,5-trimethoxybenzene as the internal standard. ! Yield determined by GC-MS. ND: not

detected.
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Table 2.2. Acidic and basic additive screening for the palladium-catalyzed N-arylation of glycine methyl
ester hydrochloride using 2-cylohexen-1-one

0 OH
H,N___COOMe Pd/C (10 wt%) 10 mol% ~_-COOMe _-COOMe
Hel . 140 °C, 15 h argon ©/ O/
toluene (1 mL)
1 2 5
1 equiv 2 equiv 1 equiv

additive yield (%)
entry

(mol%) 3l 4! 5lb]
1 - 47 20 98
2 AcOH (10) 44 22 94
3 TFA (10) 42 14 69
4 MsOH (10) 36 17 95
5 TFSA (10) 32 16 92
6 DMAP (50) 40 ND 91
7 NaHCO; (50) 45 18 77
8 Cs2C0;3(50) 40 30 88
9 K,COs (50) 42 24 90
10 CaC0s(50) 63 15 95
11 CaC03(60) 44 28 72

Reaction conditions: 1 (0.24 mmol, 1 equiv.), 2 (0.48 mmol, 2 equiv.), Pd/C (5 wt%, 0.48 mmol), additive,
Ar saturated toluene (1 mL), 15 h, 140 °C, in a high pressure microwave vial. ? Yield determined by *H
NMR using 1,3,5-trimethoxybenzene as the internal standard. ! Yield determined by GC-MS. ND: not
detected.
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The formation of compound 4 was investigated by kinetic studies (Figure 2.2). From these results,
it appears that the excess of hydrogen obtained from the dehydrogenation of both the intermediate
leading to product 3 and the dehydrogenation of 2 to give phenol (5), eventually creates an H; saturated
reaction atmosphere leading to the formation of product 4. We originally thought that product 4 might
be a reaction intermediate, however, it is clear that it decomposes with time without increasing the yield
of product 3. Thus, we hypothesized that finding a way to remove H, from the reaction media might lead

to higher yields of the desired product 3.

OH

o H H
HoN._ COOMe Pd/C (5 v:/t%) 10 mol% N.__ COOMe N.__ COOMe
HCI + 140 °C, argon + +
3 4

toluene (1 mL) 5

1 2

140
120

A Product 3!

100 Product 4l¢!
80 Product 5]

60
40 A A A A A A

Yield (%)

20

0 10 20 30 40 50
Time (h)

Figure 2.2. Kinetic studies under argon!!

I Reaction conditions: 1 (0.24 mmol, 1 equiv), 2 (0.48 mmol, 2 equiv), Pd/C (5 wt%, 0.48 mmol), argon
saturated toluene (1 mL), 140 °C, in a high pressure microwave vial.

bl Yield determined by *H NMR using 1,3,5-trimethoxybenzene as the internal standard.

[l Yield determined by GC.
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Running the reaction under an atmosphere of oxygen was investigated to decrease the
concentration of H, present in the reaction.? This led to a 64% yield of 3 and a decrease in the formation
of 4 to 8%. Traces of the bis(arylated)ated product 7 were also detected. The formation of product 7
indicated an increase in the catalytic activity of the system (Table 2.3, entry 1). This result prompted us to
investigate lower amounts of base in the system, with 20 mol% of CaCOs proving optimal for the formation

of 3in 69% yield (Table 2.3, entry 3).

Table 2.3. Oxidative atmosphere to quench formation of PdH; and increase the catalyst's turnover

H H
N._COOMe N._COOMe
+
3 4

0]
HyN_ COOMe Pd/C (10 wt%) 10 mol%
HCI + 140 °C, 15 h, argon

1 ) toluene (1 mL) OH ©
1 equiv 2 equiv + +
©/N\/COOMe
5 7
1 equiv
additive yield (%)
entry atm
(mol%) 3[b] 4! g5lb] 712l
1 0, - 64 8 82 traces
2 0, CaC03(30) 52 ND 105 8
3 0, CaC0s(20) 69 +3 71 81+8 traces

Reaction conditions: 1 (0.24 mmol, 1 equiv.), 2 (0.48 mmol, 2 equiv.), Pd/C (5 wt%, 0.48 mmol), additive,
oxygen saturated toluene (1 mL), 15 h, 140 °C, in a high pressure microwave vial. ? Yield determined by
'H NMR using 1,3,5-trimethoxybenzene as the internal standard. ! Yield determined by GC-MS. ND: not

detected.

44



2. N-Arylation of a-amino acids using phenol

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

Having observed that the yield of product 3 remained constant regardless of how long the
reactions were being run for, a kinetic profile for the oxidative conditions was performed (Table 2.4). This
study showed that the reaction was completed within 4 hours, obtaining the desired product 3 in 74%

yield (Table 2.4, entry 5).

Table 2.4 Kinetic studies using optimized parameters!?!

0 H H
Pd/C (5 wt%) 10 mol%
H,N.___COOMe N.__COOMe N.__COOMe
Hel 2N~ . b 140 °C, oxygen ©/ ~ X O/ ~

4 toluene (1 mL) 3 4
2 CaCOj 20 mol%

‘ yield (%)
entry time (h) 30 41
1 0.5 32 6
2 1 49 10
3 2 66 18
4 3 66 19
5 4 74 10
6 6 72 14
7 8 74 6
8 15 69 7

8] Reaction conditions: 1 (0.24 mmol, 1 equiv), 2 (0.48 mmol, 2 equiv), Pd/C (5 wt%, 0.48 mmol), oxygen
saturated toluene (1 mL), 140 °C, in a high pressure microwave vial.

b Yield determined by *H NMR using 1,3,5-trimethoxybenzene as the internal standard.

[l Yield determined by GC.

ND: not detected.
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2.3.2 Substrate scope

With the optimized conditions in hand, various amino acids and cyclohexenones were tested as
substrates (Figure 2.3). Overall, amino acids with aliphatic R chains gave the best reaction yields. Glycine
tert-butyl ester afforded the product 3a in 25% yield. Compared to glycine methyl ester, the lower yield
might be the result of the tert-butyl group being cleaved under the reaction conditions, leading to de-
carbonylation of the starting material. B-Alanine gave a lower product yield of 3b, which might result from
the increased nucleophilicity at the N-H group upon increasing the distance between the carboxylic group
and the nitrogen, rendering it more likely to stay protonated under the reaction conditions. Amino acids
can racemize following the formation of the Schiff base as the a-proton can be abstracted from the
pseudo-anhydride imine intermediate.'® 2* The enantiomeric retention of products 3¢ (52% ee), 3d (97%
ee) and 3e (100% ee) indicates that the substitution and steric hinderance at the a-position can impact
the rate in which the acid-base equilibrates, leading to improved enantiomeric retention. Tert-butyl
protected serine (Figure 2.3, product 3i) gave higher yields than other heteroatom-containing amino acids
(3p-3x). Deprotected or benzyl protected serine (3p, 3q) led to decomposition of the starting material and
diphenylamine formation. Amino acids with aromatic R! chains (phenylglycine, phenylalanine and
tyrosine) gave poor yields (3j-31), as dearomatization of the R!chain was also obtained as a side product.
The cyclohexenone scope proved to be more limited (products 3m-30). Based on previous work by our
group, we anticipated that sterics and electronics would have substantial effects,?! a result which seemed
to be enhanced when using less nucleophilic amines, since imine formation happens more reluctantly (3y-
3aac). We theorize that racemization occurs upon deprotonation at the a-position, therefore making it

harder for sterically hindered substrates to racemize.
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o Pd/C (5 wt%) 10 mol% "
HaN_CO:R? 140 °C, 4 h, 0, NYCOzRZ
SHCL o + R3 R
toluene (1 mL) R3
1, 1a-1k 2, 2]-2n 20 mol% CaCOg 3, 3a-3n
h Cco,M N N o
N _cor SN P N OO PN OO P N OO
PR N H H H :
H A —l_
3 R=Me74% 3b 3c 3d 3e
3a R= Bu 33% 30% 50% (8 h), 52% ee 69%, 97% ee 68%, 100% ee
H 'I’h H
o N COaMe p N~ COaMe N_coge o \/COZMe p N~ CO2Me
Y L: \o'Bu
3f 3g 3h 3i 3j
60% (15 h), 81% ee 56% 55% (4 h), 60% ee 50%, 40% ee 37%
H H H H H
ph \/CO Me /N ; N\/COZMe chone l N\/COZMe
3k 3l 3m 3n 30
38% (8 h), 57% ee 43%°! 66% 18% (24 h) 20% (18 h)
H,N___CO,Me H,N___CO,Me H,N__CO,Me H,N__CO,Me
w w Y w Y
OH 0Bz T IN
M
H HCl
3p 3q 3r 3s 3t
Decomposition Decomposition Decomposition 50% yield of N-Cy product No Product
to diphenylamine
MeO,c N N H N_ _com
e “Ph R oy N~ - COMe ph” 2ve
o o \l\;%COZMe 0
NH, OtBu OMe
0?0
3u 3v 20% comblned yield 120/3)(. d
16% yield 17% yield o yle

H,N_ _CO,Me
HCl

3y
Mixture of products
Cy ring can aromatize

CO,Me 35 _-COMe i
Ph” CO,M
>< ~_-CO2Me ©/ \Q/ o P0Me

8% yleld

3aa
No Product

3ab
Trace

Ph

3ac
17%

Figure 2.3 Amino acid and cyclohexenone substrate scope for the N-arylation reaction

Reaction conditions: 1, 1a-1k (0.24 mmol, 1 equiv.), 2, 2I-2n (0.48 mmol, 2 equiv.), Pd/C (5 wt%, 0.48
mmol), CaCOs (0.048 mmol, 0.2 equiv.), O, saturated toluene (1 mL), 140 °C. 50 mol% of CaCOs was
used. Modified reaction times are shown in parenthesis. P!O-'Bu tyrosine methyl ester ¢HCl was used as

starting material.
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In parallel, cylohexanone (8) was tested as a possible substrate, based on the fact that 2-
cyclohexen-1-one has the potential to be reduced during the reaction process. Under the optimized
conditions (Table 2.5, entry 1), the formation of bis(arylated)ated product 7 was obtained in higher yields
than when 2-cyclohexen-1-one was used as the substrate. Upon increasing the catalyst loading to 20
mol%, the base to 5.0 equiv., and running the reaction for 24 h, bis(arylated)ated product 5 was obtained
in 65% yield (Table 2.5, entry 2). We propose that the requirement for higher loading of Pd/C is because
an oxide shell forms on palladium throughout the reaction, as was observed by XPS. When 2-cyclohexen-

1-one (2) was tested under the latter conditions, 55% yield of product 7 was obtained.

Table 2.5 N-Arylation of glycine methyl ester hydrochloride using cyclohexanone under different
conditions

O
H
HoN.__COOMe 140 °C, 0, N._ COOMe ;
HCI ¥ ©/ ¥ N -COOMe
toluene (1 mL) ©/
1 8 3 7
yield (%)™
entry conditions

3 7

2 equiv. 8, Pd/C (5 wt%) 10 mol%,
16 58 10
0.2 equiv. CaCOs3, 15 h

4 equiv. 8, Pd/C (5 wt%) 20 mol%,
2[bl 26 65
5.0 equiv. CaCOs3, 24 h

Yields determined by 'H NMR using 1,3,5-trimethoxybenzene as the internal standard. [Reaction
conditions: 1 (0.24 mmol, 1 equiv.), 8 (0.48 mmol, 2 equiv.), Pd/C (5 wt%, 0.48 mmol), CaCOs (0.048 mmol,
0.2 equiv.), O, saturated toluene (1 mL), 140 °C, 15h, in a high pressure microwave vial. ’Reaction
conditions: 1 (0.24 mmol, 1 equiv.), 8 (0.96 mmol, 4 equiv.), Pd/C (5 wt%, 0.96 mmol), CaCOs (1.2 mmol,
5.0 equiv.), O; saturated toluene (1 mL), 140 °C, 24 h.

Finally, the optimized reaction conditions were tested with phenol as a coupling partner.
Unfortunately, no reaction was observed. Nonetheless, this result was not unusual, given that there is no
hydride source present in the reaction. Given this, the initial reduction of phenol to 2-cyclohexen-1-one

or cyclohexanone cannot proceed, leading to the observed results.
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OH  pd/C (5 wt%) 10 mol%

HCIH2N\/COOMe © 140 °C, oxygen
+ No reaction

toluene (1 mL)

1 5 CaCOj3 20 mol%

Scheme 2.6 Palladium-catalyzed N-arylation of glycine methyl ester hydrochloride using phenol

2.3.3 Mechanistic considerations

We propose the following mechanism for this transformation (Scheme 2.7). Initially, the addition
of the amino acid to 2-cyclohexen-1-one occurs with water loss to generate imine intermediate A. A can
subsequently undergo a-palladation, forming intermediate C, which can effectively undergo B-hydride
elimination. This step releases species D, which can quickly tautomerize to give the desired product E, as
well as the HPd!""H species. The dihydride species can then regenerate the Pd® catalyst upon releasing
H,. The addition of O, can accelerate this process. ICP studies were performed after reaction completion,
and it was determined that leaching of Pd"™ had occurred, further confirming the presence of this species
as an intermediate. This Pd" species is most likely present in the form of PdCl, given the presence of the

Cl species as the counterion for the amino acid salts.
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)\H/OMe OMe
)\H/OMe cat. H'
+ H2N
- H,0 -~

% ﬁ
N
H—Pd® e
Pd(”
~
H H

B-H elimination

Scheme 2.7 Proposed mechanism for the palladium-catalyzed N-arylation of glycine methyl ester
hydrochloride using 2-cylohexen-1-one

2.3.4 Additional experiments

While previous work in our group regarding the arylation of secondary amines used Pd (ll) as the
catalyst,?! we have only achieved arylation of primary amines using heterogeneous Pd (0) catalysts.?° We
reasoned that this might be due to primary amines readily coordinating to the Pd (IlI) heterogeneous
catalysts, leading to decomposition of the starting material by B-hydride elimination. The only Pd(ll) that
afforded the desired product 3 was Pd(TFA), (Table 2.6, entry 3). However, it quickly formed a palladium
mirror on the walls of the reaction vessel. On the other hand, Pd© species (Table 2.6, entries 7-10)

afforded the desired product in moderate yields regardless of them being Lewis acidic or basic, except for
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Pd(PPhs)s. These results strongly suggest that Pd(0) is the active catalytic species, in agreement with

similar reported catalytic systems.?
Table 2.6 Different palladium catalysts for the N-arylation reaction using 2-cyclohexen-1-one!®
o H H
H,N.__COOMe catalyst 10 mol% N._COOMe N.__COOMe
Hel . 140 °C, 4h, O, ©/ N O/
3 4

1 toluene (1 mL)
2 CaCOj 20 mol%

yield (%)
entry catalyst
3[b] 4l
1 Pd/C (5 wt%) 74 10
Pd(TFA); + 20 mol% 2-
2 traces N.D.
NMe;,Py
3 Pd(TFA),! 25 N.D.
4 Pd(OAc); traces N.D.
5 PdCl; traces N.D.
6 PdCl,(PPh;Me), N.D. N.D.
7 Pd(PPhs)s N.D. N.D.
8 Pd/Al,05 (10 wt%) 57 19
9 Pd/CaCOs 42 17
10 Pd(dba), 57 N.D.

8] Reaction conditions: 1 (0.24 mmol, 1 equiv), 2 (0.48 mmol, 2 equiv), catalyst (10 mol% palladium
loading), CaCOs (0.048 mmol, 0.2 equiv) , O, saturated toluene (1 mL), 140 °C." Yield determined by *H
NMR using 1,3,5-trimethoxybenzene as the internal standard. [ Yield determined by GC-MS. ! Palladium

mirror forms immediately after starting the reaction. N.D.= not detected.
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XPS studies were performed using the model reaction (yielding product 3) to analyze the
possibility of an oxide-shell forming on the palladium catalyst. The surface analysis revealed the presence
of the following elements: C, O, Cl, Pd, Ca and N (Figure 2.4). The nitrogen present on the Pd/C might
explain why yields are lower than the conversion, which was consistently 100%. Deconvolution of the XPS
spectra of the catalyst before and after the reaction are shown below (Figures 2.5, 2.6). Analysis of the
fresh catalyst shows Pd® as the sole species, whereas the catalyst after reaction shows a mixture of Pd°
and oxidized palladium, Pd". The shift of the new peak (336.8 eV) might indicate the presence of PdO
and/or PdCl,. The former might be the result of oxidation with the O, atmosphere. While the latter, might

be the result of the Cl anions from the amino acid salts being adsorbed onto the surface of the oxidized

catalyst.?®
Suney Clils
2.00E+057 ’ c1x O 1s
Cl 2p
Pd 3d
1.50E+0571 Ca2p
% N 1s
b O1s
w
T 1.00E+05%
3 e
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5.00E+04 N% ( MMWM ,J.,Af? M\J &5
eintidnr e ‘
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Figure 2.4 Elemental survey of the catalyst after reaction

52



2. N-Arylation of a-amino acids using phenol

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

Peak Position ~ Area FWHM 6L
) TEEEAY 1658390 1291V 80%

Pd(0) 3d,;,

t t t A t J\\f\j\
]4‘5,0 ]1‘2,!] 330 Binding Energylo¥] 3:0 330 3300
Figure 2.5 Deconvolution of the XPS survey for the fresh catalyst
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Figure 2.6 Deconvolution of the XPS survey of the catalyst after the reaction
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2.4 Conclusion and outlook

In this chapter we reported efforts to develop a methodology for the N-arylation of amino acids
without the need for aryl halides as arylating reagents. Upon screening several reaction conditions, we
achieved a novel N-arylation of a-amino acids with 2-cyclohexen-1-one. Various amino acids can be
arylated with cyclohexanone using Pd/C as the catalyst, substoichiometric amounts of base, and oxygen
as the terminal oxidant. In addition, the use of cyclohexanone provides N-bis(arylated)ated amino acids
in good vyields. Aliphatic amino acids were ideal substrates for the reaction, as sterics and electronics
greatly impacted the reaction yield. A mechanism for the reaction was also proposed, and additional
experiments such as ICP and XPS were performed in order to support our proposal.

Lastly, while this work presents a novel methodology for amino acid N-arylation, several
challenges remain to be addressed. First, the high temperature necessary for re-aromatization leads to
undesired reaction pathways such as decarboxylation and racemization of the enantiomerically pure
starting materials. Furthermore, the reaction is run in toluene, limiting its overall sustainability and
applicability to biological systems. Moreover, phenol was not successfully used as a starting material, one
of the initial desired outcomes. Thus, finding reaction conditions that could satisfy these requirements

would increase the overall impact of the methodology.

2.5 Contributions

Prof. Chao-Jun Li realized project conceptualization. Methodology, experimentation and
characterization was performed by myself with the assistance of Dr. Inna Perepichka. Dr. Alain Li ran and
deconvoluted the XPS spectra. Julio Terra helped in designing and setting the ICP analysis. High resolution
mass spectrometry was performed by Dr. Nadim Saadeh and Dr. Alexander Wahba at the McGill University
Department of Chemistry Mass Spectrometry Laboratory. The publication manuscript, which shares some
common content with this thesis chapter, was written by myself, edited and proofread by Dr. Zoé Hearne,

Dr. Wenbo Liu, and Dr. Zihang Qiu and Prof. Chao-Jun Li.
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2.6 Experimental section

2.6.1 General Information

* Pd/C (5 wt%) 10 mol% H
H,N.__COOMe 140 °C, 4 h, O, N._COOMe
HCl l/ . . ©/ he
toluene (1 mL) R
1 equiv 2 equiv 20 mol% CaCOg;

All reactions were run in 5 mL U-shaped microwave vials using aluminum seals with silicone septa.
Reaction vials and stir bars were washed with aqua regia, neutralized using a saturated solution of NHCOs,
thoroughly rinsed with distilled water and acetone, and left overnight in a drying oven at 110 °C. Prior to

use, vessels were flamed dried and allowed cooled down to ambient temperature in a desiccator.

In U- shaped microwave vial, charged with a stir bar, the amino acid (0.24 mmol, 1 equiv), CaCO3
(4.8 mg, 0.048 mmol, 0.2 equiv), and the preactivated Pd/C (5% wt) (0.48 mmol, 51.1 mg) were added
under air. The vial was flushed with oxygen three times and 1 mL of dry, oxygen saturated toluene was
then added under an oxygen flow. 2-Cyclohexen-1-one (0.48 mmol, 47 uL) was finally added to the vial
via syringe. The vial was capped with a silicon lined aluminum seal and was submerged to a preheated oil
bath at 140 °C with stirring at 500 rpm for the indicated time. The reaction vessel was then lifted from the
oil bath and left to cool down to room temperature without interrupting the stirring. The aluminum cap
was removed, and the reaction mixture was diluted using ethyl acetate. The Pd/C was then removed by
filtration by using a Pasteur pipette filled with 1 cm of celite, washing with ethyl acetate. The solvent was
removed in vacuo, and the residue was analyzed by GCMS and NMR, yields were obtained by NMR upon
adding 1,3,5-trimethoxybenzene as the internal standard. Isolation was done through preparatory TLC

using the indicated solvent system.

Note 1: Palladium on carbon was activated in large batches (3-5 g) by heating to 140 °C under vacuum,
with stirring, for at least one hour; Pd/C was kept in a desiccator for a week before repeating this

procedure.

Note 2: In order to saturate toluene with oxygen, oxygen gas was bubbled through the dry solvent for 2

hours before use.

Note 3: Different results were obtained when using different sources of the Pd/C catalyst.?® %’
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2.6.2 Analytical Data

H
_N.__CO,Me
3

Ph

Product was isolated by thin layer chromatography in a system of 40% CH,Cl, in hexanes, R=0.2

'H NMR (500 MHz, CDCl5)  7.23 - 7.17 (t, 2H), 6.76 (t, J = 7.3 Hz, 1H), 6.62 (d, J = 7.8 Hz, 2H), 4.28 (br, 1H),
3.93 (s, 2H), 3.79 (s, 3H). 3C NMR (125 MHz, CDCl5) § 171.8, 147.1, 129.5, 118.4, 113.1, 52.4, 45.8.
HRESI-MS calc. for CoH12NO, [M+H]* 166.0863, found 166.0861

H ¢
N._ CO,Bu
3a

Ph”

Product was isolated by thin layer chromatography in a system of hexanes: ethyl acetate (3: 0.5), R=0.6
'H NMR (500 MHz, CDCl3) 6 7.19 (dd, J = 8.4, 7.5 Hz, 2H), 6.74 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 7.7 Hz, 2H),
4.38 (br, 1H), 3.80 (s, 2H), 1.49 (s, 9H). *C NMR (125 MHz, CDCl5) 6 170.4, 147.3, 129.4, 118.2, 113.2, 82.1,
46.7, 28.2.

HRMS calc. for C1,H17NO;Na [M+Na]* 230.1151, found 230.1157

Ph. CO,M
H/\/ 2Me

3b

Product was isolated by thin layer chromatography R~=0.8 in a system of hexane: ethyl acetate:
dichloromethane (2:1:1)

'H NMR (500 MHz, CDCl5) 67.21 - 7.16 (m, 2H), 6.76 — 6.70 (m, 1H), 6.63 (dd, J = 8.5, 0.9 Hz, 2H), 4.06 (br,
1H), 3.70 (s, 3H), 3.46 (t, / = 6.4 Hz, 2H), 2.63 (t, / = 6.4 Hz, 2H).

13C NMR (125 MHz, CDCl3) §173.0, 147.6, 129.5, 117.97, 113.24, 51.9, 39.6, 33.8.

HRMS calc. for C10H1aNO, [M+H]* 180.1019, found 180.1016
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H
o N« COzMe

3c

Product was isolated by thin layer chromatography in a system of 30% CH,Cl in hexanes R=0.30

IHNMR (500 MHz, CDCls) & 7.18 (dd, J = 8.4, 7.5 Hz, 2H), 6.74 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 7.8 Hz, 2H),
4.16 (g, J=6.9 Hz, 1H), 4.16 (br, 1H), 3.73 (s, 3H) 1.48 (d, J = 6.9 Hz, 3H).1*C NMR (125 MHz, CDCl5) § 175.2,
146.7, 129.5, 118.5, 113.5,52.4,52.1, 19.1.

HRAPCI-MS calc. for C10H14NO; [M+H]* 180.1019, found 180.1018

HPLC analysis ((DAICEL chiral OJ-H, 10% IPA—hexanes, 1.0 mL/min, 254 nm) indicated 52% ee: tg (minor) =

14.0 min, tg (major) = 22.9 min. In agreement with literature values.*®

DAD1 A, Sig=254.4 Ref=360,100 (ALEJANDRA\ALA_2016-10-21.D)
mAU ﬁ
] f
80 & A
] o |
i A I
60 A [
] ) Il [
40 I N [
] Il I .
] I | ! |
20 I | [
] A | \ i \
i i | I‘. | | |
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5 10 15 20 25 min|
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

1 15.029 BB 0.2904 1168.12976  62.99067 23.8198
2 25.265 BB 0.5582 3735.90039 104.72784 76.1802

H
prr N~ -CO2Me

//;\\\
3d

Product was isolated by thin layer chromatography in a system of 5% ethyl acetate in hexanes, R=0.3

'H NMR (500 MHz, CDCl3) § 7.19 — 7.14 (m, 2H), 6.73 (t, J = 7.3 Hz, 1H), 6.63 (d, J = 7.7 Hz, 2H), 4.11 (br,
1H), 3.87 (d, J = 5.9 Hz, 1H), 3.71 (s, 3H), 2.12 (dq, J = 13.5, 6.8 Hz, 1H), 1.05 (d, J = 6.9 Hz, 3H), 1.02 (d, J =
6.8 Hz, 3H). 3C NMR (125 MHz, CDCl3) 6 174.3, 147.4,129.5, 118.4, 113.7, 62.6, 52.0, 31.7, 19.2, 18.9.
HRESI-MS calc. for C1oH1sNO, [M+H]* 208.13321, found 208.13290
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HPLC analysis ((DAICEL chiral OJ-H, 5% IPA—hexanes, 1.0 mL/min, 254 nm) indicated 97% ee: tg (minor) =
11.4 min, tg (major) = 21.16 min.

DL-3c
mAU ]
1000 %
7 |
800 “\ 3
] \ 8
600 | \
] | I
400 || [
4 | \
200 | [
7 ‘ \ I\ \\
0 il A AN DN L S
— ‘ — — — — ‘
5 10 15 20 25 min
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
e R P s P |ommmeee | -omeeee |
1 11.022 BB 0.3499 2.56746e4 1085.52722 49.3223
2 20.544 BB 0.6156 2.63801e4 658.11902 50.6777
L-3c
DAD1 A, Sig=254.4 Ref=360,100 (ALEJANDRAADH-VALINE-NMR_2016-11-22.D)
mAU o
600 g
500 | "g
400 | “.‘
3009 I\
200 -
] > [
100 N [\
0 d - h—--'L—F — y) -
: — : — : T — : :
5 10 15 20 25 mir|
Peak RetTime Type Width Area Height Area
#  [min] [min] [mAU*s] [mAU] %

ceeefeneeees e | ommmmnneee o |-meeeee |
1 11.291 BB 0.2678 441.20041 25.25135 1.5914
2 20.690 BB 0.6207 2.72830e4 670.60022 98.4086

H
_ N vCOzMe

T

3e

Ph

Product was isolated by thin layer chromatography in a system of hexanes: ethyl acetate (3: 0.5), R=0.65
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'H NMR (500 MHz, CDCl3) 6 7.17 (dd, J = 8.5, 7.4 Hz, 2H), 6.73 (t, J = 7.3 Hz, 1H), 6.65 (d, J = 7.8 Hz, 2H),

4.16 (br, 1H), 3.81 (s, 1H), 3.68 (s, 3H), 1.06 (s, 9H). *C NMR (125 MHz, CDCls) 6 174.1, 147.8, 129.5, 118.5,
113.9, 65.6,51.7, 34.6, 26.9.

HRESI-MS calc. for C13H20NO, [M+H]* 222.1489, found 222.1486
HPLC analysis (DAICEL chiral OJ-H, 10% IPA—hexanes, 1.0 mL/min, 254 nm) indicated 100% ee: tz (not

observed)= 26.5 min, tg (major) = 39.9 min.

DL-3d
DAD1 A, Sig=254 .4 Ref=360,100 (INNA\HXY 2017-05-03 16-35-37\ALETBULEU000001.D)
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Signal 1: DAD1 A, Sig=254,4 Ref=360,100
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
ceeef e P |+emmneeee R oo |
1 26.468 BB ©.6088 1.96940e4 505.24619 49.6360
2 39.942 BB 1.0867 1.99828e4 289.72604 50.3640
L-3d
DAD1 A, Sig=254 .4 Ref=360,100 (INNA\HXY 2017-05-03 16-35-37\ALETBULEU000002.D)
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Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
S R R . [=nmmmmeees |=emmmemees |=mmmmee |
1 36.667 BB 0.7311 442.06027 9.22376 2.7933
2 39.9@8 BB 1.0661 1.53834e4 228.30119 97.2067
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H
_N vCOzMe

3f

Ph

Product was isolated by thin layer chromatography in a system of 5% ethyl acetate in hexanes, R=0.45
H NMR (500 MHz, CDCls) & 7.18 (dd, J = 8.3, 7.5 Hz, 2H), 6.74 (t, J = 7.3 Hz, 1H), 6.63 (d, J = 7.8 Hz, 2H),
4.12 —4.09 (m, 1H), 3.98 (br, 1H), 3.71 (s, 3H), 1.81 (tt, J = 13.4, 6.7 Hz, 1H), 1.71 — 1.61 (m, 2H), 1.00 (d, J

= 6.6 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H). *C NMR (125 MHz, CDCl5) 6 175.4, 147.1, 129.5, 118.5, 113.5, 55.3,
52.2,425, 25.0, 22.9, 22.3.

HRESI-MS calc. for C13H20NO2 [M+H]* 222.1489, found 222.1486

HPLC analysis ((DAICEL chiral OJ-H, 10% IPA—hexanes, 1.0 mL/min, 254 nm) indicated 84% ee: tg (minor) =

10.2 min, tg (major) = 17.2 min. In agreement with literature values.*®

DAD1 A, Sig=254,4 Ref=360,100 (ALEJANDRA\ADH-380-LEU-2ND_2017-01-10.D)
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el R O |-mmmmnneee |-ommmnneee | ommmeeee |
1 10.155 BB 0.2705 642.12982 36.63871 7.9706

2 17.163 BB 0.4975 7414.09424 230.38000 92.0294
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H
/N CO2Me
Ph

39

Product was isolated by thin layer chromatography in a system of 30% CH.Cl, in hexanes, R=0.15

'H NMR (500 MHz, CDCl3) 6§ 7.20 — 7.15 (m, 2H), 6.73 (t, J = 7.3 Hz, 1H), 6.61 (dd, J = 8.5, 0.9 Hz, 2H), 4.08
(br, 1H), 4.06 (t, J = 6.5 Hz, 1H), 3.72 (s, 3H), 1.89 —1.80 (m, 1H), 1.75 (dd, J = 14.1, 7.0 Hz, 1H), 1.47 - 1.28
(m, 4H), 0.91 (t, J = 7.1 Hz, 3H). *C NMR (125 MHz, CDCls) & 174.9, 147.0, 129.5, 118.4, 113.5, 56.7, 52.2,
33.0, 27.9, 22.6, 14.0.

HRAPCI-MS calc. for C13H20NO; [M+H]* 222.1489, found 222.1486

Ph
N_ _CO,Me

(T

3h

Product was isolated by thin layer chromatography in a system of 5% ethyl acetate in hexanes, R=0.24
IH NMR (500 MHz, CDCls) & 7.23 (dd, J = 8.5, 7.4 Hz, 2H), 6.72 (t, J = 7.3 Hz, 1H), 6.56 (d, J = 8.0 Hz, 2H),
4.26 (dd, J = 8.6, 1.9 Hz, 1H), 3.72 (s, 3H), 3.59 (td, J = 8.5, 3.1 Hz, 1H), 3.37 (dd, J = 15.8, 7.9 Hz, 1H), 2.34
—2.25(m, 1H), 2.23 = 2.10 (m, 2H), 2.11 — 1.93 (m, 1H). 3C NMR (125 MHz, CDCl5) & 175.2, 146.8, 129.4,
116.8,112.1, 60.9, 52.3, 48.4, 31.1, 24.0.

HRESI-MS calc. for C1;H16NO; [M+H]* 206.1176, found 206.1185

H
N._CO,Me

Ph”

0By
3i

Product was isolated by thin layer chromatography in a system of hexanes: ethyl acetate (3: 0.5), R=0.5

'H NMR (500 MHz, CDCls) 6 7.17 (t, J = 7.9 Hz, 2H), 6.74 (t, J = 7.3 Hz, 1H), 6.63 (d, J = 7.9 Hz, 2H), 4.54 (br,
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1H), 4.20 (t, / = 4.1 Hz, 1H), 3.78 (dd, J = 8.8, 4.0 Hz, 1H), 3.73 (s, 3H), 3.69 (dd, / = 8.8, 4.2 Hz, 1H), 1.17 (s,
9H). 3C NMR (125 MHz, CDCl5) § 172.9, 146.9, 129.4, 118.5, 113.8, 73.6, 62.6, 57.4, 52.3, 27.5.

HRESI-MS calc. for C14H2:NOsNa [M+Na]* 274.1414, found 274.1406

HPLC analysis ((DAICEL chiral OJ-H, 2% IPA—hexanes, 0.8 mL/min, 254 nm) indicated 40% ee: tg (minor) =

18.4 min, tz (major) = 25.4 min

DAD1 A, Sig=254,4 Ref=360,100 (INNA\A277IPAZMLMINQG8_2017-03-31.D)
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1 4.938 BB 0.2682 61.83662 3.46460 0.4502
2 18.403 BB ©.6682 4195.90674 96.70419 30.5496
3 25.473 BB 1.0126 9476.97266 142.36989 69.0001

3j

Product was isolated by thin layer chromatography in a system of 25% dichloromethane in hexanes,
R=0.25

'HNMR (500 MHz, DMSO-ds) 6 7.55 — 7.47 (m, 2H), 7.40 — 7.35 (m, 2H), 7.34 — 7.29 (m, 1H), 7.05 (dd, J =
8.4,7.4 Hz, 2H), 6.67 (d, J = 7.7 Hz, 2H), 6.56 (t, J = 7.3 Hz, 1H), 6.32 (d, J = 8.1 Hz, 1H), 5.24 (d, J = 8.1 Hz,
1H), 3.63 (s, 3H). 3C NMR (125 MHz, DMSO-dg) § 172.3, 146.9, 137.8, 128.8, 128.6, 128.0, 127.6, 116.8,
113.0, 59.6, 52.2.

HRESI-MS calc. for C1sH1sNO2Na [M+Na]* 264.0995, found 264.0989
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H
N._CO,Me

3k

Ph”

Product was isolated by thin layer chromatography in a system of 30% dichloromethane in hexanes,

R=0.11

'H NMR (500 MHz, DMSO-ds) 6 7.30 - 7.26 (m, 4H), 7.24 —7.17 (m, 1H), 7.05 (t, J = 7.8 Hz, 2H), 6.59 — 6.51
(m, J=8.0 Hz, 3H), 6.06 (d, J=9.0 Hz, 1H), 4.22 (dd, J = 15.2, 8.1 Hz, 2H), 3.55 (s, 3H), 3.08 — 2.97 (m, 1H).
13C NMR (125 MHz, CDCl3) 6 173.0, 146.5, 136.4, 129.5, 129.4,128.7,127.2,118.6, 113.7,57.9, 52.2, 38.8.
HRESI-MS calc. for C16H1sNO; [M+H]* 256.1332, found 256.1328

HPLC analysis ((DAICEL chiral OJ-H, 10% IPA—hexanes, 1.0 mL/min, 254 nm) indicated 57% ee: tg (minor) =

35.5 min, tg (major) = 46.5 min. In agreement with literature values.®®

DAD1 A, Sig=254.4 Ref=360,100 (ALEJANDRA\ADH-PHE_2016-11-29.D)
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1 35.529 BB 1.8352 8615.74512 126.408659 21.4601
2 46.480 BB 2.2228 3.15320e4  200.93112 78.5399
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H

ph ¥~ CO2Me H,N.__CO,Me
o A
3l

11

Amino acid 1l was used as starting material to obtain product 3l. Product 3l was isolated by thin layer
chromatography in hexanes: ethyl acetate (3 : 0.5), R=0.15

IH NMR (500 MHz, CDCls) 6 7.17 (dd, J = 8.5, 7.4 Hz, 2H), 7.02 (d, J = 8.5 Hz, 2H), 6.77 — 6.71 (m, 3H), 6.60
(d, J=7.8 Hz, 2H), 4.96 (br, 1H), 4.32 (t, J = 6.1 Hz, 1H), 4.06 (br, 1H), 3.67 (s, 3H), 3.07 (qd, J = 13.8, 6.1 Hz,
2H). 3C NMR (500 MHz, CDCl3) 6 173.9, 154.8, 146.4, 130.6, 129.5, 128.4, 118.7, 115.6, 113.8, 58.0, 52.3,
37.9.

HRESI-MS calc. for C16H1sNO3 [M+H]*272.1281, found 272.1276

H
N._CO,Me o

3m 2m

Cyclohexenone 2m was used as starting material to obtain product 3m. Product 3m was isolated by thin
layer chromatography in hexanes: ethyl acetate (3 : 0.5), R=0.35

IH NMR (500 MHz, CDCls) 6 7.10 (t, J = 7.7 Hz, 1H), 6.61 (d, J = 7.4 Hz, 1H), 6.51 — 6.44 (m, 2H), 3.93 (br,
2H), 3.78 (s, 3H), 2.29 (s, 3H). 'H NMR (500 MHz, CDCl3) 6 171.6, 146.6, 139.4, 129.4, 119.9, 114.5, 110.8,
52.4,46.2,21.7.

HRAPCI-MS calc. for C10H1aNO; [M+H]* 180.1019, found 180.1020
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H
)‘\(:E\IVCOZMG (0]

3n 2n

Cyclohexenone 2n was used as starting material to obtain product 3n. Product 3n was isolated by thin
layer chromatography in hexanes: ethyl acetate (3 : 0.5), R= 0.4

'H NMR (500 MHz, CDCls) 67.04 (d, J = 7.7 Hz, 1H), 6.82 (dd, J = 7.7, 1.7 Hz, 1H), 6.58 (d, J = 1.6 Hz, 1H),
5.30 (br, /= 0.7 Hz, 1H), 5.03 — 5.01 (m, 1H), 4.23 (br, 1H), 2.99 (s, 2H), 3.81 (s, 3H), 2.21(s, 3H), 2.13 (d, J
= 0.5 Hz, 3H). *C NMR (125 MHz, CDCls) 6171.7, 144.7, 143.8, 140.5, 130.1, 122.1, 115.4, 111.6, 107.3,
52.3,45.8,22.0,17.1.

HRMS calc. for C13H1sNO> [M+H]* 220.1332, found 220.1324

H
O N._CO,Me

Cyclohexenone 20 was used as starting material to obtain product 30. Product 30 was isolated by thin

30

layer chromatography hexanes: ethyl acetate (3 : 0.5), R=0.8

'H NMR (500 MHz, CDCl;) & 8.67 (d, J = 8.2 Hz, 1H), 8.16 (d, J = 8.5 Hz, 1H), 7.92 — 7.85 (m, 2H), 7.76 (d, J=
9.2 Hz, 1H), 7.66 — 7.62 (m, 1H), 7.62 — 7.57 (m, 1H), 7.53 (t, J = 8.0 Hz, 1H), 6.68 (d, J = 7.7 Hz, 1H), 5.13
(br, 1H), 4.11 (s, 2H), 3.85 (s, 3H). 3C NMR (125 MHz, CDCl5) § 171.8, 143.1, 132.0, 131.4, 130.7, 128.6,
127.3,126.7,126.7,126.1,123.5, 120.8, 118.9, 113.2, 106.9, 52.6, 46.22.

HRMS calc. for C17H1sNO,Na [M+Na]* 288.0995, found 288.0993
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©/N\/COOM6
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Product was isolated by thin layer chromatography in hexanes: ethyl acetate (3 : 0.5), R=0.6

'H NMR (500 MHz, CDCl3) § 7.28 (t, J = 7.9 Hz, 4H), 7.04 — 6.97 (m, 6H), 4.47 (s, 2H), 3.75 (s, 3H). *C NMR
(125 MHgz, CDCl5) 6 171.5, 147.5, 129.4,122.1, 120.8, 54.1, 52.2.

HRMS calc. for C1sH1sNO,Na [M+Na]* 264.0995, found 264.0984
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Chapter 3. N-Cylohexylation of a-amino acids using phenol

3.1 Background

N-alkyl-a-amino acids have become increasingly popular as materials for surfactants,! as buffering
agents in the pharmaceutical and cosmetic industries,> as peptide N-modifications,® as well as crucial
building blocks for the manufacture of plastics and herbicides.* However, the mono-N-alkylation of a- or
B-amino acids is challenging, especially if enantiomeric retention is being considered. Nevertheless,
chemists have been able to circumvent these difficulties through the development of methodologies that
may involve nucleophilic substitution, reductive conditions, or metal catalysts. A brief review of these

methodologies, applied specifically for the synthesis of N-cyclohexylated amino acids, is herein described.

The first report for the preparation of N-cyclohexylaminoisobutiric acid was from Nelson and Sinclair
in 1960 (Scheme 3.1).° Their aim was to synthesize a nitrogen containing analogue to naturally occurring
estrogens. Their methodology consists of using cyclohexylamine as the starting material and condensing
it to acetone cyanohydrin, later on hydrolyzing the nitrile to yield the corresponding N-cyclohexylated
amino acid in quantitative yields. Evidently, this procedure is limited in scope and does not yield an
optically active compound. Nonetheless, subsequently developed techniques maintained

cyclohexylamine as the starting material.

N

/
//

(0]
NH2 CN conc HCI H
— | ] O/ OH

Quantitative Quantitative

Scheme 3.1 Synthesis of N-cyclohexylaminoisobutyric acid from cyclohexylamine®

In 2004, Hu, Chen and Yang reported the synthesis of N-cyclohexylated glycine using a solid
support (Scheme 3.2).6 The PEG-bound product was prepared through an ester linkage using bromoacetyl
bromide and PEGsa00. The polymer-supported product is obtained by precipitation and washing, followed
by reacting with a variety of amines at room temperature to afford the corresponding PEG-bound N-
modified amino acids. The advantage of this strategy is that no excess reagents are needed, and over

alkylation of the corresponding amino acid is unlikely due to the steric bulk provided by the PEG support.
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1) CH,Cly,, overnight, rt O

. H
NH, Brjjxo/o 2)NaOH,H20,3h,6O>C N\)J\OH

PEG
support

82% yield

Scheme 3.2 Solid supported synthesis of N-cyclohexylated glycine®

The group of Tomkinson reported in 2007 a method for the formation of N-alkyl glycine
derivatives using primary amines and glyoxylic acid (Scheme 3.3).” The reaction proceeds through a
formylated intermediate, which is cleaved through the addition of 2 M hydrochloric acid, yielding the
glycine derivatives as the chloride salts. The reaction scope included amines with different functionalities
such as alkenes, carboxylic acids and substituted benzylic substrates. The proposed mechanism involves
an imine intermediate upon condensation of the amine with glyoxylic acid, which then adds to a second

molecule of glyoxylic acid to form, upon rearrangement, an N-formylated intermediate.

O O
NH, H
1) H,O, 24 h, rt N
O/ ' O\\\)J\OH ittt Ao
H 2) aq. HCI, reflux
2eq 86% yield

Scheme 3.3 Synthesis of N-alkyl glycine derivatives using primary amines and glyoxylic acid’

In 2015, inspired by our group's previous work,® Vaccaro et al.® published a hydrogenation-
reductive amination of phenol in water-efficient at room temperature for 12 h or at 60 °C under
microwave radiation for 20 min (Scheme 3.4). The protocol was adapted to work under continuous flow
to yield different cyclohexylated amines in gram scale. The reaction scope includes 14 examples of various
aliphatic amines and substituted phenols, with yields ranging from 35% to 85% yield. In particular, the N-
cyclohexylation of phenylalanine methyl ester was achieved using this methodology, obtaining the N-
cyclohexylated product in 64% yield. While no enantiomeric purity nor the diasteromeric ratio were
reported, it set a precedent for the N-cyclohexylation of an aromatic a-amino acid ester under aqueous,

reductive conditions.
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OH

Pd/C (10 mol%)
HCO,Na (20 eq) y

+  H,N-R

2 equiv
aliphatic amines

Scheme 3.4 Hydrogenation-

> R mn
H,0 : MeOH g
Lw® «

14 examples s
up to 85% yield

reductive amination of phenol to yield substituted cyclohexylamines®

An N-alkylation of unprotected amino acids with alcohols was reported in 2017 by the group of

Feringa.’® This methodology uses a ruthenium catalyst which can oxidize the primary alcohols into its

aldehyde form while generating a Ru-H species. The aldehyde and the N-terminus of the a-amino acid

then condense to give an imine intermediate, which is reduced thanks to the Ru-H species, regenerating

the catalyst and yielding the desired N-alkylated product. With the exception of isopropanol, the reaction

yielded the di-N-alkylated

products. The substrate scope included dipeptides and a tripeptide, and

excellent retention of optical purity was observed in most cases.

/H\
o Shvo Catalyst (1 mol%) g g P O 3 ek
- ° - | Phph
SRS WACETT A W

excess
aliphatic alcohols

Scheme 3.5 N-alkylation of

-Ru Ru
R neat or CF3CH,OH R o ~n""¢o°
27 examples
74% - 99% yield
86 - 99% ee

Shvo's Catalyst

unprotected amino acids with alcohols®®
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3.2 Research objectives and plan

Given the harsh conditions required for the re-aromatization of the cyclohexyl ring, we envisioned
favouring the formation of the fully hydrogenated product (Scheme 3.6). Ideally, this methodology would
allow for (1) the use of phenol as the starting material, (2) the use of unprotected amino acids, (3) the use
of a benign solvent, and (4) no heating to avoid racemization; while being applicable to a wide range of
amino acids and peptides. In this case, the use of a hydride donor is necessary for the initial reduction of
phenol into cyclohexenone or cyclohexanone for the condensation reaction to take place. Therefore, our
study would begin with the screening of sodium formate before exploring the reaction scope. While the
work of Vaccaro is similar in the sense that the reaction is run in water,® we envisioned a system where
the amino acid is the limiting reagent, is broadly applicable to all amino acids as opposed to only

phenylalanine, and without the use of microwave irradiation.

Scheme 3.6 Model reaction for the N-cyclohexylation of a-amino acids

3.3 Results and discussion

3.3.1 Condition Screening

We used glycine as the model substrate at room temperature in water, with a slight excess of
phenol as the coupling reagent (1.5 equiv) and palladium on charcoal (10 mol%) as the catalyst. Each
equivalent of sodium formate decomposes to give 1 equivalent of H which adsorbs to the palladium
catalyst to give the PdH, intermediate. One equivalent of PdH, can react with phenol to give
cyclohexenone, thus forming the desired reactive species. However, using 2 equiv of HCO,Na with respect
to phenol only produced the desired product in 11% yield with respect to glycine (Table 3.1, entry 1), and
by increasing the loading to 4 equiv, the yield dramatically improved to 96% (Table 3.1, entry 2). Further
increasing the loading to 6 equiv led the reaction to proceed quantitatively (Table 3.1, entry 3). Attempts
to reduce the amount of phenol (Table 3.1, entry 4) or Pd/C (Table 3.1, entry 5) resulted in lower yields of
N-cyclohexylglycine (3). Nonetheless, we were pleasantly surprised to find that the Pd/C catalyst could be
recovered and reused for up to three cycles upon filtration before a decrease in activity was observed

(Table 3.1, entries 6-8).
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Table 3.1 Optimization of the reaction conditions for the N-cyclohexylation of glycine using phenol

OH
Pd/C (10 wt%) 10 mol%
H,oN CO,H
N . @ HCO,Na

>
' o

H
: N__-COH
3

H,O (1 mL)
1 2 24 h, tt, Ar
2 HCO2Na yield (%)
entry . ) S A S A—
(equiv) (equiv)® 30]
1 1.5 2 11
2 1.5 4 96
3 1.5 6 >99
4 1 6 86
5 1.5 6 9
6 1.5 6 >99
7 (€] 1.5 6 >99
g (fl 1.5 6 89

Reaction conditions: 1 (0.2 mmol, 1 equiv), 2, HCO,Na, Pd/C (10 wt%, 0.2 mmol), H,O (1 mL), 24 h, rt.

8] Equivalency respective to phenol.

bl Yield determined by *H NMR using DMSO as the internal standard.

[l 5 mol% of Pd/C (10 wt%) was used instead of 10 mol%.

[ pd/C recycled for the first time. ¢! Pd/C recycled for the second time. ! Pd/C recycled for the third time.
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3.3.2 Substrate scope

The reaction scope was investigated under the optimized conditions, proving to be efficient in the
N-cyclohexylation of 17 out of the 20 naturally occurring amino acids without protecting groups (Figure
3.1). Sulphur-containing compounds would deactivate the palladium catalyst, thereby making them
inaccessible substrates for this methodology. Amino acids with nonpolar, aliphatic R! chains, including B-
alanine (3, 3a-3d), as well as those with polar uncharged (3e-3i), aromatic (3j-31), and polar charged R!
chains (3m-3q) were excellent substrates for the reaction and showed that functional groups such as
alcohols, carboxylic acids and amides were compatible. In the case of O-unprotected tyrosine (3k), the
phenol ring was also reduced, despite having only 2 eq of formate present in the reaction. This problem
was circumvented by using O'Bu-Tyr (3l) which prevents the formation of the ketone intermediate while
adding steric bulk to the ring. Given that we were interested in mainting the natural functionality of the
amino acids, more equivalents of sodium formate were not tested to further push the reaction towards
the formation of 3k. Lysine resulted in the doubly N-cyclohexylated product (30), and for which reason
the amount of phenol being added was required to be doubled. The case of tryptophan was particularly
interesting, as the reaction's favoured product was the result of a Pictet-Spengler condensation (3r). Some
substrates required the use of gentle heating at 50 °C or the addition of methanol to the reaction solvent
in order to facilitate the reaction through the improvement of the substrate's solubility in water. With this
in mind, we were set to test more challenging substrates such as di-, tri- and tetra- peptides which, if
necessary, could be later on conjugated to longer amino acid chains through traditional coupling
processes. Glycine peptide chains were chosen as model substrates and were successfully N-
cyclohexylated (3s-3u), with solubility being the only limitation to the process. The solubility of these
peptides can be readily tuned by modifying the different substituents in the R! chains, making this an
efficient procedure for their N-modification. Finally, various phenolic compounds were examined as the
coupling partners, with para-substituted compounds being well-tolerated (3w-3x), and di-substituted
phenols leading to a lower yield due to steric effects (3y). When para-chlorophenol (3z) was used as the
substrate, the product with the cleaved chlorine was obtained in quantitative yields, in agreement with
observations of previous reports.® To test for enantiomeric retention we selected product 3j since the a-
proton could easily racemize due to its benzylic position. In addition, the reaction for phenylalanine (3j)
was performed at 50 °C, making the conditions harsher than for most of the substrates. Upon running the
reaction under the described conditions, we found that the N-cyclohexylated product 3j was generated

without any racemization.
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OH

Pd/C (10 wt%) 10 mol%

co. H
HaN 2H HCO,Na, 6 equiv NYCOzH
+
R’ R
RrZ H,0 (1 mL), rt, Ar R?
1, 1a-1t 2, 2u-2y 3, 3a-3x
1 equiv 1.5 equiv
L 9 Q h 0 L 9 L 9 cy o L 9 L9
\
N C N N N N N
cy” \)]\OH y\u/\)l\OH cy” \:)LOH cy” \:)]\OH cy” OH MOH cy” j)‘\OH cy” \:)LOH
. P HO HOT N
3 3a 3b 3c 3d 3e 3f 3g
>99% >999%allb) 90% 62% 70%!e! >99% >99% 81%
L 9 L9 w0 L 9 0 w0 L 9 o
H
R N N N oA oA M A,
o = = 2 = 2 o 2 = z
NH, /( ©/ /O/ /©/ EH/ /( K(
HNT Yo HO 'BuO HO” Yo
o
3h 3i 3j 3k 31 3m 3n v 30
82% 73% 959%al o 41%/alb 84%al 76% 73% 90%[albl
OH
L © - L © L 0 L 9
o
N Q H \ NH Cy/N\)LN/\"/OH Cy/N\)LN/\n/N\)LOH Cy/N\)J\N/\n/N\)LN/\"/OH
/N\)J\ N N H H H H
cy” Y “OoH Cy OH N o o [e] o
: ~ 3r 60% 3s 3t 3u
f HN\;NH 60%: >99%aHe] 80%lalel 66%2]
HN +
+ H i H i H i H i OH
H NH N N N N
2 2 \)LOH \)LOH \)LOH \)LOH /©/
cl
3p 3q 3v 3w 3x 3y 3z
>99% >99%lalib] >99% >999%al >99lal 46% >99%
conversion to product 3
Figure 3.1 Amino acid and phenolic substrate scope for the N-cyclohexylation reaction. Reaction

conditions: 1, 1a-1t (0.2 mmol, 1 equiv), 2, 2u-2y (0.3 mmol, 1.5 equiv), HCO;Na (1.8 mmol, 6 equiv), Pd/C

(10 wt%, 0.2 mmol), H,0 (1 mL), 24 h, rt. ! Temperature increased to 50 °C to improve solubility. ! 1 mL

of a 1:1 MeOH:H,0 mixture was used as the solvent.? 1 mmol of starting material used in 0.3 mL of 20%

MeOH in H;0.

3.3.3 Mechanistic considerations

Following our group’s results to probe this mechanism,'! we tested cyclohexanol, cyclohexanone

and 2-cyclohexen-1-one as coupling partners under the optimized conditions (Figure 3.2). As suspected,

the alcohol was the only species unsuitable for the transformation since the imine formation cannot

proceed. The mono N-cyclohexylation was observed when using both cyclohexanone and 2-cyclohexen-

1-one. These results further support the mechanistic proposal that phenol is reduced in-situ to a ketone,

aminated, and also reduced to yield product 3.
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Pd/C (10 wt%) 10 mol%

HCO,Na, 6 equiv vco Me
CoH A

; H,O (1 mL), rt, Ar, 24 h

H,N

1 equiv 1.5 equiv
3
yield (%) ND 89 94

Figure 3.2 Different coupling partners for the N-cyclohexylation of glycine. Reaction conditions: 1 (0.2
mmol, 1 equiv), A (0.3 mmol, 1.5 equiv), HCO;Na (1.8 mmol, 6 equiv), Pd/C (10 wt%, 0.2 mmol), H,O (1
mL), 24 h, rt. Yield determined by *H NMR using DMSO as the internal standard. ND: not detected.

3.4 Conclusion and outlook

The N-alkylation of amino acids and peptides using phenol as a bio-renewable alkylation reagent
was successfully achieved with Pd/C as the catalyst. While N-arylation requires high temperatures due to
the high energy required to aromatize the cyclohexyl ring, the N-cyclohexylation was achieved for 17 out
of the 20 naturally occurring amino acids under bio-compatible conditions without racemization. With
this technique in hand, we hope to move towards the usage of more sustainable feedstocks to modify
bio-compounds with applications in chemical biology, pharmaceuticals, and agrochemicals. Furthermore,
this methodology could use tyrosine's side chain as a handle, without compromising the composition of
the rest of the peptide sequence, to produce polymerization products, selective protein tagging, or

macrocyclic peptides.

3.5 Contributions

Project conceptualization was realized by Prof. Chao-Jun Li. Methodology, experimentation and
characterization were performed by myself with the assistance of Dr. Inna Perepichka. High-resolution
mass spectrometry was performed by Dr. Nadim Saadeh and Dr. Alexander Wahba at the McGill University

Department of Chemistry Mass Spectrometry Laboratory. The publication manuscript, which shares
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common content with this thesis chapter, was written by myself, edited and proofread by Dr. Zoé Hearne,

Dr. Wenbo Liu, and Dr. Zihang Qiu and Prof. Chao-Jun Li.
3.6 Experimental section

3.6.1 General Information

H.N CO-H oH Pd/C (10 wt%) 10 mol% H
2 \r 2 HCO,Na (6 equiv) NYCOZMe
+
R R
. 15 . HQO (1 mL)
1 equiv .5 equiv 24 h. rt, Ar

In a U-shaped microwave vial, charged with a stir bar, the amino acid (0.2 mmol, 1 equiv), phenol
(0.3 mmol, 1.5 equiv), HCO,;Na (1.8 mmol, 6 equiv) and Pd/C (10% wt) (0.2 mmol, 25.5 mg) were added
under air. The vial was flushed with argon three times, and 1 mL of distilled water was then added under
an argon flow. The vial was capped with a rubber septum, and stirring was set at 500 rpm for 24 h at the
indicated temperature. The septum was then removed, and the reaction was diluted using distilled water.
The Pd/C was then removed by filtration through celite, followed by washing with additional water. The
reaction was acidified to pH=0 with HCl to be able to remove formic acid in vacuo. The reaction mixture
was then concentrated in vacuo and filtered with cold methanol to remove NaCl to obtain the pure

product.

3.6.2 Analytical Data
H
Cy/N\)J\OH
3

IH NMR (500 MHz, D,0) & 3.94 (s, 2H), 3.28 (tt, J = 11.4, 3.7 Hz, 1H), 2.19 (d, J = 11.5 Hz, 2H), 1.95 (d, J =
13.2 Hz, 2H), 1.80 — 1.69 (m, 1H), 1.58 — 1.36 (m, 4H), 1.34 — 1.17 (m, 1H). 3C NMR (126 MHz, D,0) &
170.4, 57.6, 45.6, 28.9, 24.6, 24.1.

HRAPCI-MS calc. for CgH1aNO, [M-H] 156.1019, found 156.1018
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O

Cy\N/\)J\OH

H
3a

'H NMR (500 MHz, D,0) & 3.47 (t, J = 6.7 Hz, 2H), 3.33 — 3.24 (m, 1H), 2.96 (t, J = 6.7 Hz, 2H), 2.20 (d, J =
11.3 Hz, 2H), 1.94 (d, J = 13.0 Hz, 2H), 1.82 — 1.73 (m, 1H), 1.55 — 1.37 (m, 4H), 1.35 — 1.24 (m, 1H). 13C
NMR (126 MHz, D;0) 6 172.8, 56.4, 38.6, 29.1, 27.5, 23.2, 22.7.

HRESI-MS calc. for CoH1sNO> [M+H]* 172.1332, found 172.1340

'H NMR (500 MHz, MeOD) & 4.18 (g, J = 7.2 Hz, 1H), 3.21 - 3.11 (m, 1H), 2.18 — 2.03 (m, 2H), 1.88 (d, J =
11.8 Hz, 2H), 1.71 (d, J = 13.1 Hz, 1H), 1.59 (d, J = 7.2 Hz, 3H), 1.46 — 1.26 (m, 5H). *C NMR (126 MHz,
MeOD) 6 172.0, 57.1, 53.3, 30.3, 30.2, 26.0, 25.5, 16.3, 15.6.

HRESI-MS calc. for CsH17NO;Na [M+Na]* 194.1151, found 194.1149

IH NMR (500 MHz, MeOD) & 3.47 (d, J = 4.1 Hz, 1H), 3.04 — 2.96 (m, 1H), 2.21 (dtd, J = 14.0, 7.0, 4.1 Hz,
1H), 2.16 — 2.06 (m, 2H), 1.86 (d, J = 12.0 Hz, 2H), 1.70 (d, J = 12.8 Hz, 1H), 1.46 (ddd, J = 24.3,12.2, 3.4 Hz,
1H), 1.40 — 1.27 (m, 3H), 1.26 — 1.15 (m, 1H), 1.06 (dt, J = 16.6, 8.3 Hz, 6H). 3C NMR (126 MHz, MeOD) &
172.6,67.0,59.3,31.2,31.0, 29.7, 26.1, 25.8, 25.7, 19.1, 18.6.

HRESI-MS calc. for C1;H,:NO;Na [M+Na]* 222.1464, found 222.1476
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ZT

Cy~ OH

3d

IH NMR (500 MHz, MeOD) & 3.86 (t, J = 6.8 Hz, 1H), 3.12 — 3.03 (m, 1H), 2.19 — 2.02 (m, 2H), 1.93 — 1.77
(m, 4H), 1.72 (d, J = 12.7 Hz, 1H), 1.67 — 1.58 (m, 1H), 1.46 — 1.30 (m, 4H), 1.27 — 1.17 (m, 1H), 1.02 (dd, J
=12.0, 6.3 Hz, 6H). 13C NMR (126 MHz, MeOD) § 172.5, 58.1, 40.7, 31.1, 29.9, 26.1, 26.0, 25.6, 25.5, 23.3,
22.1.

HRESI-MS calc. for C12H24NO; [M+H]* 214.1802, found 214.1806

3e

'H NMR (500 MHz, CDCls) 6 3.85 (ddd, J = 10.4, 7.8, 4.3 Hz, 2H), 3.13 (tt, J = 11.7, 3.2 Hz, 1H), 2.92 (td, J =
10.4, 7.4 Hz, 1H), 2.34 (dt, J = 10.9, 5.9 Hz, 1H), 2.20 (dtd, J = 11.4, 9.5, 4.5 Hz, 1H), 2.15 — 2.04 (m, 2H),
1.97 - 1.83 (m, 4H), 1.69 (d, J = 13.1 Hz, 1H), 1.57 — 1.38 (m, 2H), 1.35 — 1.21 (m, 2H), 1.19 — 1.08 (m, 1H).
13C NMR (126 MHz, CDCl3) 6 170.8, 66.5, 63.4, 51.6, 30.2, 29.1, 28.5, 25.2, 25.0, 24.9, 24.3.

HRESI-MS calc. for C11H1sNO;Na [M+Na]* 220.1308, found 220.1300

79



3. N-Alkylation of a-amino acids using phenol

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

0]

N

HO

3f

IH NMR (500 MHz, D;0) 6 4.61 (t, J = 3.4 Hz, 1H), 4.45 — 4.37 (m, 2H), 3.59 (ddd, J = 15.5, 7.7, 3.8 Hz, 1H),
2.40 (t, J = 14.3 Hz, 2H), 2.13 (d, J = 13.1 Hz, 2H), 1.94 (d, J = 12.9 Hz, 1H), 1.79 — 1.67 (m, 2H), 1.60 (qd, J
=12.9, 2.9 Hz, 2H), 1.52 - 1.40 (m, 1H). 3C NMR (126 MHz, D,0) 6 170.7, 59.1, 56.9, 29.1, 29.0, 24.6, 24.2.
HRESI-MS calc. for CsH1sNOsK [M+K]* 226.0840, found 226.0839

O

H
Cy/N\.)J\OH

HO™ ™
39

H NMR (500 MHz, MeOD) & 4.16 (p, J = 6.4 Hz, 1H), 3.90 (d, J = 6.6 Hz, 1H), 3.12 (tt, J = 11.7, 3.8 Hz, 1H),
2.11 (dd, J = 16.7, 14.0 Hz, 2H), 1.88 (d, J = 13.1 Hz, 2H), 1.69 (d, J = 12.8 Hz, 1H), 1.63 — 1.50 (m, 1H), 1.48
—1.32 (m, 6H), 1.31 - 1.18 (m, 1H). 3C NMR (126 MHz, D,0) & 170.1, 66.0, 65.4, 63.3, 58.6, 29.5, 28.4,
24.5,24.3,24.2,19.4.

HRESI-MS found for C10H20NO3 [M+H]* 202.1438, found 202.1426

0

H
Cy/N\E)J\OH
o z
Y
NH,

3h

'H NMR (500 MHz, D,0) & 4.44 (t, J = 5.6 Hz, 1H), 3.23 (tt, J = 11.5, 3.8 Hz, 1H), 3.08 — 2.98 (m, 2H), 2.07
(t, J=14.4 Hz, 2H), 1.81 (d, / = 13.4 Hz, 2H), 1.63 (dd, / = 9.9, 3.1 Hz, 1H), 1.39 (qd, J = 11.8, 2.6 Hz, 2H),
1.34 - 1.22 (m, 2H), 1.21 — 1.09 (m, 1H). *C NMR (126 MHz, D,0) 6 173.0, 170.7, 57.4, 53.4, 38.8, 33.4,
28.9, 28.8, 24.4, 24.0.

HRESI-MS calc. for C10H1oN203 [M+H]* 215.1390, found 215.1390

80



3. N-Alkylation of a-amino acids using phenol

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

O

H
Cy/N\;)J\OH

L

H,N" Y0
3i

IH NMR (500 MHz, D,0) & 3.19 (dd, J = 8.5, 5.4 Hz, 1H), 2.31 (tt, J = 10.9, 3.5 Hz, 1H), 2.20 — 2.05 (m, 2H),
1.89 (d, J = 12.0 Hz, 1H), 1.77 (dtd, J = 16.8, 11.2, 5.7 Hz, 1H), 1.72 — 1.61 (m, 4H), 1.57 (d, J = 12.3 Hz, 1H),
1.29 — 1.02 (m, 4H), 0.93 (qd, J = 12.4, 3.4 Hz, 1H). 3C NMR (126 MHz, D,0) & 182.6, 182.6, 60.4, 55.0,
34.3,33.3,31.1,30.1, 25.6, 24.7, 24.4.

HRESI-MS calc. for C11H20N203 228.1241, found 228.1237

3j

'H NMR (500 MHz, D,0) 8 7.34 (t, J = 7.3 Hz, 2H), 7.30 — 7.21 (m, J = 15.5, 7.3 Hz, 3H), 3.52 (dd, J = 8.5, 5.4
Hz, 1H), 2.92 (dd, J = 13.2, 5.2 Hz, 1H), 2.76 (dd, J = 13.1, 8.8 Hz, 1H), 2.36 (t, J = 10.9 Hz, 1H), 1.92 (d, J =
11.6 Hz, 1H), 1.68 (d, J = 11.5 Hz, 3H), 1.59 (d, J = 11.8 Hz, 1H), 1.31 — 1.04 (m, 4H), 0.96 (dd, J = 22.4, 10.6
Hz, 1H). *C NMR (126 MHz, D,0) 6 181.7, 138.1, 129.2, 128.5, 126.5, 62.1, 54.7, 39.3, 33.3, 30.9, 25.6,
24.7,24.4.

HRESI-MS calc. for CisH21NO;Na [M+Na]* 270.1464, found 270.1469

HPLC analysis ((Chiralcel IC, 80:20:0.1 hexane:IPA:TFA 3.0 mL/min, 210 nm) no racemization. tr (L-Phe) =
4.2 min, tg (D-Phe) = 5.2 min.
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—=5.224

Reaction ran using D,L-phenyl alanine as the starting material according to described procedure

— 4485

Reaction ran using L-phenyl alanine as the starting material according to described procedure

5474

Reaction ran using D-phenyl alanine as the starting material according to described procedure
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)

H
Cy/N\.)J\OH

AT

3k

IH NMR (500 MHz, MeOD) & 4.10 — 4.02 (m, 1H), 3.50 (tt, J = 10.8, 4.1 Hz, 1H), 3.15 — 3.05 (m, 1H), 2.11
(dd, J=24.9, 11.8 Hz, 2H), 2.01 — 0.95 (m, 20H). 3C NMR (126 MHz, MeOD) 6 171.5, 71.1, 58.2, 56.5, 38.1,

35.9,35.7,34.5,32.7,31.3, 30.9, 29.8, 25.9, 25.6, 25.5.

HRESI-MS calc. for CisH2sNO3 [M+H]* 270.2064, found 270.2066

0]

H
Cy/N\:)J\OH

BuO :

3l

H NMR (500 MHz, MeOD) & 7.17 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 3.43 (dd, J = 7.7, 6.3 Hz, 1H),
2.82 (ddd, J=19.6, 13.4, 7.0 Hz, 2H), 2.40 (tt, J = 10.6, 3.7 Hz, 1H), 1.94 (d, J = 12.3 Hz, 1H), 1.76 (d, J= 12.1
Hz, 1H), 1.68 (dd, J = 17.7, 8.4 Hz, 2H), 1.59 (d, J = 11.7 Hz, 1H), 1.34 — 1.06 (m, 13H), 0.96 (qd, J = 12.3, 3.5
Hz, 1H). 2*C NMR (126 MHz, MeOD) 6 181.6, 154.7, 135.6, 130.9, 125.0, 79.3, 64.0, 56.3, 40.8, 34.9, 32.9,

29.2,27.2,26.3, 26.0.

HRESI-MS calc. for Ci19H29NO3Na [M+Na]* 342.2040, found 342.2034
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O

H
Cy/N\.)J\OH

-

OH

3m

'H NMR (500 MHz, D,0) 6 4.49 (dd, J = 6.2, 4.9 Hz, 1H), 3.23 (dt, J = 15.5, 3.8 Hz, 1H), 3.17 — 3.00 (m, 3H),
2.25-2.17 (m, 1H), 2.13 (d, /= 11.8 Hz, 1H), 1.88 (d, J = 13.1 Hz, 2H), 1.70 (d, / = 13.0 Hz, 1H), 1.53 - 1.30
(m, 4H), 1.30 — 1.17 (m, 1H). *C NMR (126 MHz, MeOD) § 171.4, 170.2, 59.2, 54.5, 34.9, 30.5, 29.9, 25.9,

25.6, 25.5.

HRESI-MS calc. for C1oH16NO4 [M-H] 214.1085, found 214.1095

3n

'H NMR (500 MHz, D,0) 6 3.23 (dd, J = 8.1, 5.5 Hz, 1H), 2.35 (t, J = 10.8 Hz, 1H), 2.16 (pd, J = 14.7, 5.7 Hz,
2H), 1.93 (d, J = 11.0 Hz, 1H), 1.81 (dq, J = 17.1, 5.8 Hz, 1H), 1.76 — 1.65 (m, J = 16.4 Hz, 4H), 1.61 (d, J =
11.6 Hz, 1H), 1.33 — 1.06 (m, J = 41.0, 24.6, 12.4 Hz, 4H), 0.97 (dd, J = 22.2, 10.3 Hz, 1H). 3C NMR (126
MHz, D,0) & 182.6, 60.4, 55.0, 34.3, 33.3, 31.1, 30.1, 25.6, 24.8, 24.4.

HRESI-MS calc. for C11H1sNO4 [M-H] 228.1241, found 228.1233
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_NH
Cy 30

'H NMR (500 MHz, CD30D) 6 4.17 — 4.11 (m, 1H), 3.15 (t, J = 11.6 Hz, 1H), 3.11-3.01 (m, 3H), 2.21-1.94
(m, 6H), 1.87 (d, J = 8.8 Hz, 4H), 1.84 — 1.32 (m, 14H), 1.30 — 1.15 (m, 2H). **C NMR (126 MHz, CD30D) &
171.1,58.5,58.4,57.8, 45.2, 31.0, 30.8, 30.4, 30.3, 29.9, 26.9, 26.1, 26.0, 25.6, 25.5, 23.3. HRESI-MS calc.
for CigH3sN20, [M+H]* 311.2693, found 311.2687

HoN NH,

3p

IH NMR (500 MHz, D,0) & 4.33 (dd, J = 7.3, 4.8 Hz, 1H), 3.35 (dd, J = 13.1, 6.2 Hz, 3H), 2.25 — 2.04 (m, 4H),
1.97 — 1.68 (m, 5H), 1.50 (qd, J = 12.0, 3.3 Hz, 2H), 1.44 — 1.32 (m, 2H), 1.32 — 1.15 (m, 1H). 1*C NMR (126
MHz, D,0) 6 171.3, 156.8, 57.3, 56.5, 40.6, 29.3, 29.0, 26.4, 24.6, 24.3, 24.3, 23.9.

HRESI-MS calc. for C1,H2sN40,7257.1972, found 257.1971
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IH NMR (500 MHz, D,0) & 8.91 (s, 1H), 7.68 (s, 1H), 4.71 (dd, J = 8.0, 5.2 Hz, 1H), 3.75 (dd, J = 15.8, 5.0 Hz,
1H), 3.64 (dd, J = 15.8, 8.2 Hz, 1H), 3.48 (ddd, J = 11.6, 8.0, 3.9 Hz, 1H), 2.26 (t, J = 14.5 Hz, 2H), 1.98 (d, J =
12.8 Hz, 2H), 1.79 (d, J = 12.9 Hz, 1H), 1.65 — 1.53 (m, 2H), 1.46 (q, J = 13.0 Hz, 2H), 1.30 (q, J = 12.9 Hz,
1H). 3C NMR (126 MHz, D,0) 6 169.9, 134.4, 126.1, 118.6, 57.5, 55.7, 29.2, 29.0, 24.7, 24.6, 24.3.

HRESI-MS calc. for C12H20N30,* 238.1550, found 238.1548

0]
H
Cy/N\)J\”/\[(OH
0]
3s

IH NMR (500 MHz, D;,0) § 4.07 (s, 2H), 4.00 (s, 2H), 3.19 (tt, J = 11.3, 3.7 Hz, 1H), 2.09 (d, J = 11.6 Hz, 2H),
1.86 (d, J = 13.2 Hz, 2H), 1.75 — 1.64 (m, 1H), 1.47 — 1.26 (m, 4H), 1.25 — 1.09 (m, 1H). 13C NMR (126 MHz,
D,0) 6 173.3, 166.9, 57.7, 45.0, 41.2, 40.4, 28.8, 28.7, 24.4, 23.9.

HRESI-MS calc. for CioH1sN2OsNa [M+Na]* 237.1210, found 237.1208

e e
Cy/NQJ\H/\H/N\)J\OH
o
3t

'H NMR (500 MHz, MeOD) 6 4.00 (s, 2H), 3.95(s, 2H), 3.929s, 2H), 3.18 — 3.09 (m, 1H), 2.12 (d, J = 10.0 Hz,
2H), 1.92 — 1.83 (m, 2H), 1.71 (d, J = 13.0 Hz, 1H), 1.48 — 1.31 (m, 4H), 1.31 — 1.18 (m, 1H). **C NMR (126
MHz, MeOD) 6 172.8, 171.6, 167.3, 58.6, 46.3, 43.2,43.2,41.8,41.7, 30.2, 26.0, 25.5.

HRESI-MS calc. for C1,H21N304Na [M+Na]* 294.1424, found 294.1414
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4O e
Cy/N\)J\H/ﬁ(N\)J\”/\I(OH
@) 0]
3u

'H NMR (500 MHz, MeOD) 6 3.95 (s, 2H), 3.91 (s, 2H), 3.75 (s, 2H), 3.34 (s, 2H), 2.41 (tt, J = 10.6, 3.7 Hz,
1H), 1.94-1.86 (m, J = 6.3 Hz, 2H), 1.80 — 1.68 (m, 2H), 1.67 — 1.58 (m, 1H), 1.35 - 1.03 (m, 5H). Chemical
HRESI-MS calc. for C14H24N4OsNa [M+Na] 351.1639, found 351.1646

IH NMR Mixture of Isomers (500 MHz, D,0) & 3.51 — 3.44 (m, 1H), 3.35 (tt, J = 12.0, 3.8 Hz, 1H), 2.25 (dd,
J=14.1,2.1Hz, 2H), 2.04 — 1.87 (m, 8H), 1.77 (qd, J = 9.0, 4.2 Hz, 2H), 1.66 — 1.50 (m, 5H), 1.18 (qd, J =
13.6, 3.3 Hz, 2H), 1.11 (d, J = 7.0 Hz, 4H), 1.04 (d, J = 6.6 Hz, 3H). 3C NMR Mixture of Isomers (126 MHz,
D,0) 6 169.4, 57.7,57.3,45.2, 44.9, 32.5, 31.1, 28.9, 28.8, 27.4, 24.4, 21.4, 18.3.

HRESI-MS calc. for CsH1sNO, [M+H]* 172.1332, found 172.1327

H NMR Mixture of Isomers (500 MHz, D,0) 6 3.42 —3.36 (m, 1H), 3.25 (tt, J = 12.0, 3.9 Hz, 1H), 2.19 (dd,
J=14.2,2.2 Hz, 2H), 1.98 (d, J = 12.0 Hz, 2H), 1.91 (ddd, J = 9.7, 9.2, 4.1 Hz, 3H), 1.85 — 1.74 (m, 3H), 1.72
—1.55 (m, 7H), 1.50 (ddd, J = 24.9, 12.4, 3.5 Hz, 2H), 1.42 (p, J = 7.4 Hz, 3H), 1.35 — 1.22 (m, 3H), 1.07 (qd,
J=13.6, 3.2 Hz, 2H), 0.98 — 0.91 (m, 7H). *C NMR Mixture of Isomers (126 MHz, D,0) 6 169.6, 169.6, 57.8,
57.2,45.3,44.9,37.6,34.5, 30.1, 28.8, 28.7, 26.6 24.8, 24.5, 11.4, 10.9.

HRESI-MS calc. for CioH1sNO,Na [M+Na]* 281.1308, found 208.1309
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H\)J\OH
3x

IH NMR Mixture of Isomers (500 MHz, D,0) & 3.51 — 3.43 (m, 1H), 3.25 (tt, J = 12.0, 3.9 Hz, 1H), 2.23 (dd,
J=12.9,3.2 Hz, 1H),1.99-1.83 (m, 5H), 1.74 — 1.62 (m, 5H), 1.59 — 1.46 (m, 1H), 1.34—-1.27 (m, 1H), 1.23
—1.13 (m, 1H), 0.98 (d, J = 6.7 Hz, 6H), 0.95 (d, J = 6.8 Hz, 3H). 3C NMR Mixture of Isomers (126 MHz, D,0)
6 169.6, 169.6, 57.8, 56.9, 45.5, 45.0, 42.3, 40.5, 31.8, 28.9, 28.4, 27.3, 25.2, 24.5, 20.0, 19.3. Chemical
HRESI-MS calc. for C11H21NO;Na [M+Na]* 222.1464, found 222.1466

IH NMR Mixture of Isomers (500 MHz, MeOD) & 3.61 — 3.56 (m, 1H), 3.20 (tt, J = 12.0, 3.8 Hz, 1H), 2.11 —
1.97 (m, 3H), 1.81 — 1.66 (m, 4H), 1.62 — 1.51 (m, 1H), 1.32 — 1.23 (m, 2H), 1.04 — 0.94 (m, 10H), 0.72 —
0.58 (m, 1H). 'H NMR Mixture of Isomers (500 MHz, MeOD) & 3.61 — 3.56 (m, 1H), 3.20 (tt, J = 12.0, 3.8
Hz, 1H), 2.11 - 1.97 (m, 3H), 1.81 — 1.66 (m, 4H), 1.62 — 1.51 (m, 1H), 1.32 — 1.23 (m, 2H), 1.04 —0.94 (m,
10H), 0.72 — 0.58 (m, 1H).

HRESI-MS calc. for C10H1oNO;Na [M+Na]* 208.1308, found 208.1311.
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Chapter 4. Peptide stapling using tyrosine as a handle

4.1 Background

Proteins are responsible for complex and interrelated processes that constitute all living
organisms. Proteins can be classified based on their (1) shape, (2) composition, or (3) function (Figure 1).
Based on their shape, proteins are classified as fibrous or globular. Fibrous proteins are mainly structural
and are not enzymatic, while globular proteins are mostly enzymatic with a compact and rounded aspect.!
Based on composition, proteins can be classified as simple or conjugated. Simple proteins consist solely
of amino acids, while conjugated proteins involve amino acids and a non-proteinic prosthetic group or co-
factor.! Metalloproteins, chromoproteins, and glycoproteins are all part of the latter classification. Given
that proteins have several functions within organisms, the classification by function is more extensive.
Furthermore, proteins might be performing one or more functions within an organism.! Examples of
structural proteins are collagen, actin and myosin. Myosin and actin are also classified as contractile
proteins. Storage proteins include albumins and glutelins. Transporting proteins include myoglobin and

hemoglobin. Antibodies are defense proteins, while insulin and the growth hormone are regulatory

proteins.
Classification of Proteins
Shape Composition Function

1. Fibrous (fibrillar) proteins 1. Simple proteins (holoproteins) 1. Structural

2. Globular (corpuscular) proteins 2. Conjugated proteins 2. Enzymatic
3. Storage
4. Transporting
5. Defense
6. Regulatory
7. Contractile

Figure 4.1. Different classifications of proteins

A protein's role is ultimately determined by the specific coding of the amino acid chain and its
correct folding into its biologically active structure.? Thus, a protein's native state is essential to

understanding its biological function and functional mechanism, making protein structure prediction a
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coveted goal for biologists and computational scientists.? Anfinsen proposed that the three-dimensional
structure of a protein is under thermodynamic control, stating that the biologically active conformation is
the global minimum in Gibbs energy, causing the amino acid chain to fold spontaneously.? While the Gibbs
energy hypothesis can only be studied computationally; it has been experimentally proven that the

unfolded and native states exist in equilibrium with one another.?

Three main interactions control native protein stability: (1) the hydrophobic effect, (2) hydrogen
bonding, and (3) configurational entropy.? The hydrophobic effect takes into account the high energy
associated with the transfer of hydrophobic groups folded towards the protein's interior to water .2 The
energetical contribution of hydrogen bonding depends on the equilibrium between the intra- and
intermolecular interactions.? In proteins, hydrogen donors and acceptors might solely involve amino acid
chain residues - intramolecular hydrogen bonding - or the surrounding water molecules - intermolecular
hydrogen bonding. Lastly, configurational entropy refers to the destabilizing energy from restricting the
amino acid chain into its active state, causing the loss of rotational and torsional flexibility in the protein's
backbone.? Given that several interactions are in balance, small changes in temperature, pH, or

concentration can largely affect the equilibrium.?

These interactions will ultimately dictate the structure of a protein at four different levels. Each
level of structure, primary, secondary, tertiary, and quaternary, examines a protein's structure with
increasing complexity. The primary structure of a protein represents the sequence of amino acids held
together through peptide bonds.! As previously mentioned, the primary structure does not give any
insight regarding a protein's functionality. The secondary structure refers to the two main stabilized
hydrogen bonding structures found in proteins: a-helixes and B-pleated sheets.! The tertiary structure of
a protein refers mostly to globular proteins. This compact and rounded shape is obtained upon different
amino acid side chains to establish different interactions upon acquiring their secondary structure, leading
the chain to become multi-folded and acquire a three-dimensional and active conformation.! Lastly, the
guaternary structure of a protein refers to oligomers that consist of two or more protein units that are

joined together by non-covalent forces.?
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4.1.1 Secondary protein structure

The a-helix is a single peptide chain coiled into a rigid, rod-like structure. The a-helix is established
by hydrogen bonds between the amino (-NH), and carbonyl (-CO) groups situated 3.6 amino acid residues
ahead in the linear sequence of the main peptide chain.! The distance between the points per turn, also
known as the pitch, is 0.54 nm.! Certain amino acids such as alanine, glutamine, leucine and methionine
are more commonly found in helical structures.! The a-helix may be right-handed or left-handed, but in
most biological proteins, a-helixes are right-handed due to the innate presence of L-amino acids. A helix

may also contain both hydrophobic and hydrophilic ends, making it amphipathic in nature.!

While a-helixes only involve hydrogen bonding between residues of a single polypeptide chain, B-
pleated sheets are formed by both intra- and intermolecular hydrogen bonds with two or more
polypeptide chains lined side by side.! Each individual polypeptide chain is referred to as a B-strand.
Rather than being coiled, pleated B-sheets are stabilized by hydrogen bonds formed between the -CO and
-NH groups of the adjacent B-strands.! The functional groups of each amino acid in the B-strand alternately
project above and below the plane of the sheet, leading to a two residue repeat unit.! B-Sheets may be
parallel or antiparallel, with antiparallel sheets being more stable.! Parallel sheets have polypeptide chains
arranged in the same direction, i.e. the N-terminus of all the chains lies on the same edge of the sheet,
with the opposite being true for antiparallel sheets.! A comparison between the two secondary protein

structures is presented in Table 1.1

Table 4.1. Characteristics of secondary protein structures®

Alpha helix Beta pleated sheet

Coiled structure Parallel or antiparallel sheets

Compact structures commonly found in globular proteins  Extended structures commonly found in fibrous proteins

Involves a single polypeptide chain It involves two or more polypeptide chains
Axial distance between two residues is 0.15 nm Axial distance between two residues is 0.35 nm
H bonds formed among residues of the same chain H bonds formed among the residues of different chains
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4.1.2 Peptide stapling

Modern therapeutics mostly rely on small molecules that can target enzyme pockets with high
affinity.* Nonetheless, only 10% of all human-protein targets possess an accessible hydrophobic pocket
on their surface.* Protein-protein interactions (PPIs) mediate many critical cellular functions and regulate
metabolic pathways. However, they have traditionally been considered undruggable due to their large
and shallow interfaces.> ® Thus, considerable interest has arisen in protein therapeutics which could
provide broad target recognition capabilities, high specificity and potency.*>7 Despite these advantages,
peptides possess several drawbacks such as low oral bioavailability, poor metabolic stability, poor
membrane permeability, and rapid clearance.® Furthermore, there is a high entropic penalty for binding
a peptide, which possesses a low intrinsic secondary structure in solution, in the specific conformation

that mimics that of the target protein's binding partner.®

In order to circumvent these issues seen with native peptides, constrained peptides have been
developed to lock the peptide strands into their bioactive conformation.* 7 This strategy can greatly
improve the pharmacologic performance of peptides, increasing their target affinity, proteolytic
resistance, and serum half-life while conferring on them high levels of cell penetration through endocytic
vesicle trafficking.* Furthermore, additional chemical modifications can be introduced to improve the
peptide's hydrophilicity and specificity.” Restricting the conformational freedom of a peptide can be
achieved by different means. Among these strategies, there is head-to-tail, side chain-to-side chain, and
side-chain-to-terminus macrocyclization; incorporation of a proline which fixes the dihedral angle, or

incorporation of unnatural amino acids for chemical stapling.®

Stapled peptides possess multiple favourable properties, including reinforced helical
conformation, resistance to proteolytic degradation, and enhanced cell permeability through an active
transport mechanism, making them ideal for targeting PPIs of interest.” The term "peptide stapling" being
firstintroduced by Verdine and co-workers, who expanded on the work by Grubb's ring-closing metathesis
for stabilization of a-helices on peptides, demonstrating that stapled peptides are able to target PPls
effectively.’ Since the a-helix is the most common secondary structure in PPls, the introduction of a
hydrocarbon staple has been found in numerous examples to confer high levels of a-helical content. This
modification has been associated with a 5- to 5000-fold increase in target affinity, strong protection from

proteolytic degradation, robust cell-penetration by endocytic vesicle trafficking, elongation of their in vivo
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half-life, and specific antagonism of PPIs in cultured cells.? In vivo experiments on stapled peptides were

investigated by Walensky et al., further establishing them as attractive therapeutics.®

Peptide stapling can be divided into one- or two-component coupling reactions. One-component
reaction refers to staples that form between side-chains of unnatural amino acids incorporated into the
sequence (Figure 2).1* On the other hand, two-component staples require a separate bifunctional linker
to bridge two unnatural amino acid residues (Figure 3).1* In both cases, the secondary structural fold of
the a-helix can be synthetically covalently reinforced. Depending on the distance at which the staple is
placed, the staple may stabilize one or two helical turns. On average, there are 3.6 amino acid residues
per helical turn in an a-helix.! Thus, a staple to stabilize one turn might be separated by three (i, i+3) or
four (i, i+4) amino acids.> 1! On the other hand, two turns are more commonly spaced in an i, i+7 fashion.

Three turns are less common but have also been reported at a distance of i, i+11.> !

W MJ
Figure 4.2. One-component peptide stapling®

RS

Figure 4.3. Two-component peptide stapling®?

Various peptide stapling techniques have been investigated. One-component reactions include
ring-closing metathesis, lactamisation, cycloadditions, disulphide, oxime, and thioether stapling.!! On the
other hand, two-component staples include photo-switchable linkers and functionalized double-click
linkers.!! However, the hydrocarbon and the triazole staples have been among the most chemically and

biologically stable linkages.> The seminal work by Blackwell and Grubbs's on stapled peptides describes a
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ruthenium-catalyzed ring-closing metathesis between cis-olefinic amino acid chains (Scheme 1).22 In this
report, a,a-disubstitution and macrocyclic bridge formation between the olefin side chains are introduced
into the peptide to induce an a-helix upon ring-closing metathesis. Triazoles staples, on the other hand,
are formed by the Cu(l)-catalyzed "click" cycloaddition between azido and alkynyl functionalities on the
side chains of the amino acid residues. One-component!? (Scheme 2) and two-component®? (Scheme 3)
click reactions have been used to enhance helicity in peptides. These reactions allow for a more
comprehensive exploration of chemical space than hydrocarbon staples, as different dialkynyl linkers can

be installed.®

CUSO4’5H20
sodium ascorbate

Scheme 4.2. Cu(l) catalyzed azide-alkyne cycloaddition®?

R
N\
N N
3 NS é % N,
CUSO4.5H2O
sodium ascorbate

THPTA

Scheme 4.3. Double click Cu(i) catalyzed azide-alkyne cycloaddition®*
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Several considerations must be taken into account when designing a peptide staple. For instance,
the staple position must be placed on the same side of the helix for the macrocyclization reaction to
proceed efficiently, with i, i+3 staples being most favourable with an (R,S) stereochemistry; i, i+4 staples
having an optimal stereochemical combination at (S,S), and i, i+7 favouring the (R,S) configuration.®> The
lengths for hydrocarbon staples also have to be optimized for maximal crosslinking efficiency and helicity.
If the linker is too short, the reaction cannot proceed efficiently, while if the linker is too long, it might not
provide sufficient helix stabilization. Staples of type i, i+3 usually contain either six or eight carbon atoms
in length, depending on the hydrophobicity desired.® The staple's position must be such that it does not

interfere with any critical interacting residues, which might weaken its affinity.’

4.2 Research objectives and plan

Based on the results that we observed for the N-cyclohexylation of deprotected tyrosine and
lysine,’®> we envisioned the possibility of using tyrosine as a handle for protein stapling (Figure 4.4). We
hypothesized that given the unique phenolic functionality of tyrosine, we could selectively staple peptides
through one- and two-component staples (Figure 4.5), without the need to introduce extrafunctional
groups. Given that the reaction conditions had been previously optimized for the amino acid's
modification at the N-terminus, we would commence our screening by using N-acetylated tyrosine as a
model substrate and coupling it to an amine to see if the reaction yield could improve to quantitative
yields as observed for other phenolic substrates. We would then focus on the one-component Lys-Tyr
staple, followed by the possibility of having a two-component Tyr-Tyr staple. Based on these results, we

would design a model peptide for testing these staples.

0] )

H H
Cy/N\:)J\OH Cy/N\;)J\OH

HO/O/
_NH

41% Cy
d.r. 1:1 90% yield

Figure 4.4 Tyrosine and lysine under optimized conditions for the N-cyclohexylation reaction using phenol
and Pd/C as a catalyst. Reaction conditions: amino acid (0.2 mmol, 1 equiv), phenol (0.3 mmol, 1.5 equiv),

HCO,Na (1.8 mmol, 6 equiv), Pd/C (10 wt%, 0.2 mmol), MeOH:H,0 (1 mL, 1:1 mixture), 24 h, 50 °C.%
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N

/O/NH HN

ZT

OO

One component Two component
Lys-Tyr staple Tyr-Tyr staple

Figure 4.5 Model one- and two-component peptide staples using tyrosine as a handle

4.3 Results and discussion

4.3.1 Condition Screening

We began by testing glycine (1) and N-acetyl-L-tyrosine (2) under our previously reported
conditions for amino acid N-cyclohexylation. We were delighted to see that the reaction proceeded in
guantitative yields to give condensation product 3 in a 1:1 diastereomeric ratio. The diasteromeric center
comes from the addition of the glycine in either a cis or trans conformation with respect to the amino acid

moiety.

o H
R Pdic (10 wt%) 10 mol% AC/N\)J\OH

Ac Y OH HCO,Na, 6 equiv :

HaoN_COoH + z ’ _ =

/©/ MeOH:H,O (1 mL, 1:1) A~ /O/

° HO,C™ N

HO 50 °C, Ar 2 N 2

1 2 >99%

1 equiv 1.5 equiv d.r. 1:1

Scheme 4.4 Coupling of glycine at the N-terminus with the phenolic side chain of N-acetyl-L-tyrosine
Reaction conditions: 1 (0.2 mmol, 1 equiv), 2 (0.3 mmol, 1.5 equiv), HCO,Na (1.8 mmol, 6 equiv), Pd/C (10
wt%, 0.2 mmol), MeOH:H,0 (1 mL, 1:1 mixture), 24 h, 50 °C.

With these results at hand, we proceeded to screen reaction conditions for the one-component

Lys-Tyr staple model reaction (Table 4.2). Given that this methodology could be useful for the synthesis
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and modification of biologically active compounds, we focused on testing milder conditions than those
used in our model reaction to strengthen its applicability further. The amides proved to be more soluble
in water than the free amino acids, only requiring 20% v/v of methanol for solvation. The reaction
proceeded in 93% yield at room temperature (Table 4.2, entry 1), with slightly increased yields at 40 °C
and 60 °C (Table 4.2 entries 2-3). Running the reaction under air instead of argon did not impact the

formation of product 5 (Table 4.2, entry 4).

Table 4.2 Optimization of the one-component staple between N-acetyl-tyrosine and N-acetyl-lysine

Pd/C (10 wt%) 10 mol% H H
HCOgNa (6 equiv) \[( OH HO W(
0 o)
H20 MeOH 4:1
24 h, Ar N
H
2 4 5
T conversion yield 5t [°]
entry

(°C) (%) (%)
1 r.t. 99 93
4e 60 99 95

[l Reaction conditions: N-acetyl tyrosine (0.2 mmol, 1 equiv), N-acetyl-lysine (0.2 mmol, 1 equiv), Pd/C
(10 wt%, 0.2 mmol), HCO,Na (1.2 mmol, 6 equiv), Ar, 24 h. r.t.= room temperature.
bl Determined by *H NMR using dimethyl sulfoxide as the internal standard.

[l Reaction was run in open air.

Encouraged by these results, we proceeded to screen the possibility of a two-component staple
using tyrosine (2) and PEG-diamine (6) (Table 4.3). The reaction proceeded smoothly at 60 °C under argon
after stirring for 24 hours, resulting in the formation of product 7 in 91% yield (Table 4.3, entry 1). Given

this favourable result, we considered lowering the overall reaction concentration from 0.2 M to 0.1 M,
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hoping to simulate biocompatible conditions. However, decreasing the concentration resulted in a lower
yield of 80% (Table 4.3, entry 2). We considered increasing sodium formate amounts in the reaction,
hoping to push the reductive amination at the lower concentration. Nonetheless, the reaction yield
decreased even more than the standard conditions at 0.1 M (Table 4.3, entry 3). Given that this could
result from the reaction's pH not favouring the imine formation due to the concentration of sodium
formate present, we ran the reaction in sodium formate and formic acid buffer. However, no overall

improvement was observed (Table 4.3, entry 4).

Table 4.3 Optimization of the two-component staple between N-acetyl-tyrosine 2,2'-
(ethylenedioxy)bis(ethylamine)
(0] (0]

N H
N N

P NH Np, PA/C (10 wt%) 10 mol% \[( OH HO \ﬂ/

\[]/N OH 2 2 HCO,Na (6 equiv) o] I
o N 1C0zNa (6 equiv
0 0 H,0:MeOH 4:1 NH N
had 24 h, Ar, 60 °C
OH
: : O\_/O
1 equiv 0.5 equiv
7

concentration HCO,Na  conversion  vyield 7%

YT M fequiv) (% (%)
1 0.2 6 98 91
2 0.1 6 82 80
3 0.1 12 70 50
4 0.1 Buffer 77 54

[l Reaction conditions: N-acetyl-tyrosine (0.2 mmol, 1 equiv), PEG-diamine linker((2,2'-(Ethylenedioxy)bis

(ethylamine)) (0.1 mmol, 0.5 equiv), Pd/C (10 wt%, 0.2 mmol), HCO,Na (1.2 mmol, 6 equiv).

bl Determined by *H NMR using dimethyl sulfoxide as the internal standard.
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4.3.2 Substrate scope

The model compounds had been successfully obtained in high yields (Figure 4.6). However,
several challenges arose when diastereomeric separation was assayed. Diastereomers co-eluted even
when using prep-HPLC for purification. The free carboxylic acids significantly increased the compounds'
polarity, requiring very polar solvent systems for the compounds to elute. This poses a significant
impediment as separation will be necessary for the model peptides to be stapled through this
methodology. Future steps in this project should consider the esterification of the model compounds at
their C-terminus to facilitate the characterization of the products. Once this challenge is overcome, the
model peptides 8 and 9 should be tested under the optimized reaction conditions to form the desired
stapled peptides (Figure 4.7). However, the reaction will necessarily have to be run at a microscale due to

the limited availability of these compounds.

(0] (0]
NH HN
) N
H
(0] (0]
A4
5 7
95% vyield by NMR 91% yield by NMR
99% Conversion of SM 98% Conversion of SM

Figure 4.6 Model compounds for the one- and two-component tyrosine staples

e e 0 e e L0
WN N/\WN\)J\N OH WN NWN\)J\N/\H/N OH
0o H o H 0 H o H g
OH OH HO
. NH,

Figure 4.7 Model peptides for the Tyr-Lys one-component staple and the Tyr-Tyr two-component staple
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4.3.4 Additional experiments

4.3.4.1 Protein tagging

In parallel, we envisioned using this methodology to target tyrosine in larger molecules such as
proteins selectively. In this regard, we considered selectively tagging tyrosine using a fluorophore (Scheme
4.5). However, a brief screening of the reaction conditions at concentrations necessary for protein
chemistry proved that the reaction did not proceed (Table 4.4). We speculate that these results might be
linked to our catalyst's heterogeneous nature, preventing effective interactions from occurring at such
low concentrations. Furthermore, three common fluorophores were surveyed as potential candidates for
our tag (Scheme 4.6). Unfortunately, decomposition products were obtained when submitting the

fluorophores to the standard reaction conditions.

i ¢ 1
Pd/C cat.
OH OH
W HCOgNa \[(
@) A > )
HoN
rt, H,O
OH N
H
Scheme 4.5 Model reaction for the tagging of tyrosine residues in proteins
Table 4.4 Screening for the reduction of tyrosine at micromolar concentrations
H H H
N COOH Pd/C (10 wt%) 10 mol% N COOH N COOH
g HCO,Na (6 eq) g N
o O + 0]
rt, 24 h, Ar
OH OH o)

entry [Ac-Tyr]  [HCO;Na] [Pd/C] volume (mL) conversion

1 0.2mmol 1.2mmol 0.2mM 1 100%
2 100uM  120mM 100 pM 0.5 ND
3 100 puM 120 mM 1000 pM 0.5 ND
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Pd/C (10 wt%) 10 mol%
HCO,Na (6 eq)
Fluorophore > Decomposition products

H,0
rt, 24 h, 0.2 M, open air

I CO,H
Fluorophore: ,/ \\ X I

Dansyl-ClI Fluoresceln Rhodamine-B

Scheme 4.6 Stability of common fluorophores used for protein tagging under standard reaction conditions

4.3.4.2 Tyrosine hydrogels

Since the reaction had proven ineffective at micromolar concentrations, we decided to focus on
the possibility of self-polymerizing tyrosine to form hydrogels. Taking advantage of the chain's zwitterionic
nature, we envisioned a material that could modify its characteristics based on pH (Figure 4.8).
Furthermore, the reaction concentration would no longer be required to be maintained as low compared

to protein substrates.

N i N i o N i o
® OH ® 0 T 0
~ ~ ~
- “n - “n - n
pH 2 pH7 pH 11

Figure 4.8 Polymerized tyrosine through C-N bonds between the N-terminus and the phenolic ring and

the protonation at different pH
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We began by testing the reaction under standard conditions (Table 4.5, entry 1). However, no
product was detected. We then examined the impact of the temperature in the reaction (Table 4.5, entries
2-4). The reaction seemed to proceed most desirably at 80 °C, forming the desired C-N bond in 77% yield
(Table 2.4, entry 3). Maintaining this temperature constant, we increased the sodium formate amounts in
hopes that the yield would improve (Table 2.4, entries 5-6). However, a decrease in the reaction yield was
observed most likely linked to the increase of the pH in the reaction mixture, inhibiting imine formation.
The reaction time was then modified (Table 4.5, entries 7-8), with the best results obtained after leaving
the reaction stir for 72 h. Once the reaction conditions had been optimized, the reaction mixture was
analyzed by ESI in order to determine the chain length. Unfortunately, results showed only short chains

forming (Figure 4.9), which might indicate that the polymerization is not preceding the hydrogenation.

Table 4.5 Screening of reaction conditions for the polymerization of tyrosine through reductive amination

H,N.__COOH Pd/C (10 mol%) H
HCO,Na N._ COOH
24 h, Ar
N
10 L .
n

temperature time HCO;Na conversion®

YT ) (equiv) (%)
1 rt 24 6 ND
2 60 24 6 69
3 80 24 6 77
4 120 24 6 52
5 80 24 9 33
6 80 24 12 30
7 80 48 6 80
8 80 72 6 90

sl Reaction conditions: tyrosine (0.2 mmol, 1 equiv), , Pd/C (10 wt%, 0.2 mmol), HCO;Na (1.2 mmol, 6

equiv), 1 mL H,0, Ar, 24 h.
bl Determined by *H NMR using dimethyl sulfoxide as the internal standard.
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Figure 4.9 ESI results for the polymerization of tyrosine under optimized conditions

Other phenolic monomers were tested in hopes of increasing the polymer's length. Bisphenol F

and Bisphenol A were both tested under optimized conditions. Given the high solubility of PEG-diamine,

we used 2-methoxyethan-1-amine as a model substrate. While bisphenol F did not reduce under the

standard reaction conditions (Scheme 4.7), bisphenol A gave moderate yields in the coupling with excess

PEG-diamine (Table 4.6). It is worth noting that one of the biggest challenges was removing the Pd/C from

the resulting reaction mixture. The sta

ndard workup for these reactions involved centrifuging, washing

the pellet with DMF and hydrazine to sequester any leached palladium, followed by dialysis in tubing with

a 3.5 kDa cut-off to remove remaining starting materials, in particular sodium formate.

Pd/C (10 mol%) 10 wt%
HCO,Na (6 eq)

/O\/\N/O/\O\N/\/O\

O
HO OH 1mL H,0 H H
11 12 No reduction of
0.5 eq 1eq 4,4'-methylenediphenol detected

Scheme 4.7 Bisphenol F coupling with 2-methoxyethan-1-amine under optimized conditions
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Table 4.6 Polymerization with BPA

Pd/C (10 mol%) 2 equiv H o
i -
Bt
HO OH 24 h, Ar
13 6 1mL H,0 n
BPA PEG-diamine conversion

entry . .

(equiv) (equiv) (%)
1 1 1 16
2 1 2 58
3 2 1 35

[BIReaction conditions: BPA (0.1 mmol, 1 equiv), PEG-diamine indicated amount, Pd/C (10 wt%, 0.2 mmol),
HCOzNa (1.2 mmol, 12 equiv), 1 mL H,0, Ar, 24 h.
bl Determined by *H NMR using dimethyl sulfoxide as the internal standard.

Given that removing the excess of sodium formate from the reaction mixture proved problematic,
we proceeded to test hydrogen as the reductant (Table 4.7). Phenol and 2-methoxyethan-1-amine were
chosen as model substrates. While the reaction proceeds quantitatively under the standard reaction
conditions (Table 4.7, entry 1), hydrogen still allows for the reaction to occur with a small decrease in the
reaction yield (Table 4.7, entry 2). Nonetheless, this opens up the possibility of replacing sodium formate

with hydrogen gas in future investigations.

Table 4.7 Hydrogen as a reductant in the model reaction between phenol and 2-methoxyethan-1-amine

Pd/C (10 mol%) H
OH > N~
@) o
©/ + H2N/\/ ~ 24 h, Ar O/
1mL H,0
14 12 15
ield 15

Entry® reductant y

(%)
1 HCO2Na (6 equiv) guantitative
2 H (25 bar) 80

8] Reaction conditions: phenol (0.2 mmol, 1 equiv), 12 (0.2 mmol, 1 equiv), Pd/C (10 wt%, 0.2 mmol),
HCO:Na (1.2 mmol, 6equiv), 1 mL H,0, Ar, 24 h.
bl Determined by *H NMR using dimethyl sulfoxide as the internal standard.
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4.4 Conclusion and outlook

Benefiting from the phenolic moiety of tyrosine under our optimized conditions opens the
possibility of applying this methodology for the synthesis of stapled peptides. We demonstrated the
possibility of forming one- and two-component staples through the coupling of Lys-Tyr or Tyr-Tyr using a
diamine as a linker, respectively. The coupling of model substrates was successfully achieved, resulting in
the formation of the desired products in high yields. However, challenges regarding diastereomeric
separation and concentration remain to be addressed for this methodology to be widely applicable.
Additional transformations that could benefit from tyrosine's unique phenolic functionality under our
reaction conditions, such as protein tagging and tyrosine hydrogel formation, were investigated.
Nonetheless, several impediments were encountered. Research in homogeneous palladium catalysts that
could accomplish the desired transformation would be highly beneficial, as it would help address most of

the challenges that we faced.

4.5 Contributions

Project conceptualization was realized by Prof. Chao-Jun Li. Methodology, experimentation and
characterization were performed by myself with the assistance of the summer student Anita Wang and
Dr. Inna Perepichka. Protein tagging experiments were run with the aid of J.P. Daniel Therien. Jean-Louis
Do performed GPC experiments for polymerization reactions. Mihai Mesko aided in the setup of the
dialysis experiments. High-resolution mass spectrometry was performed by Dr. Nadim Saadeh and Dr.

Alexander Wahba at the McGill University Department of Chemistry Mass Spectrometry Laboratory.
4.6 Experimental section

4.6.1 General Information

o o 4 0 0
H HO N\H/ Pd/C (10 wt%) 10 mol%
N HCO,Na (6 eq) OH HO
g OH 0 T \g 70(
o)
H,0:MeOH 4:1
on 60 °C, 24 h, Ar
NH,

In a U-shaped microwave vial charged with a stir bar, N-acetyl tyrosine (0.2 mmol, 1 equiv) and

ZT
ZT

Iz

N-acetyl lysine (0.2 mmol, 1 equiv), together with HCO,Na (1.2 mmol, 6 equiv), and Pd/C (10 wt%) (0.2
mmol, 21.3 mg) were added under air. The vial was then flushed with argon three times, and 0.8 mL of

distilled water plus 0.2 mL of methanol were injected under an argon flow. The reaction was stirred at
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500 rpm for 24 h at 60 °C. Upon completion, the reaction was diluted using distilled water. The Pd/C was
removed by filtering the reaction mixture through a celite plug, followed by washing with additional water
and methanol. The reaction was acidified to pH=0 with HCl to be able to remove formic acid in vacuo.
Upon evaporation of the solvents, the reaction residue was filtered with cold methanol to remove NaCl

and to obtain the pure product.

H 9 \H N, PO/C (10 wt%) 10 moi% \[f OH HO \n/
\[rN OH 2 2 HCO,Na (6 eq) o 0
0 + \ —_—
o o H,0:MeOH 4:1 NH HN
N— 24 h, Ar, 60 °C
OH
o_ 0

In a U-shaped microwave vial, charged with a stir bar, the N-acetyl tyrosine (0.2 mmol, 1 equiv),
diamine PEG linker (0.1 mmol, 0.5 equiv), HCO,Na (1.2 mmol, 6 equiv), and Pd/C (10 wt%) (0.2 mmol, 21.3
mg) were added under air. The vial was then flushed with argon three times, and 0.8 mL of distilled water,
0.2 mL of methanol were injected under an argon flow. The reaction was stirred at 500 rpm for 24 h at 60
°C. Upon completion, the reaction mixture was diluted using distilled water. The Pd/C was removed by
filtering the reaction mixture through a celite plug, followed by washing with additional water and
methanol. The reaction was acidified to pH=0 with HCl to be able to remove formic acid in vacuo. Upon
evaporation of the solvents, the reaction residue was filtered with cold methanol to remove NaCl and

obtain the pure product.

107



4. Peptide stapling using tyrosine as a handle

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

4.6.1 Analytical Data

e
AC/N\i)J\OH

HO,C” N’ i
H

3

IH NMR Mixture of Isomers (500 MHz, D,0) 6 4.29 —4.16 (m, 2H), 3.62 (s, 3H), 3.22 (br, 1H), 3.08 (t, J =
11.4 Hz, 1H), 2.61 - 2.46 (m, 1H), 2.45 — 2.37 (m, 1H), 2.19 — 2.04 (m, 10H), 2.01 - 1.82 (m, 5H), 1.81 —
1.59 (m, 8H), 1.59 — 1.49 (m, 2H), 1.48 — 1.36 (m, 3H), 1.21 —1.00 (m, 2H).

13C NMR Mixture of Isomers (126 MHz, D,0) & 180.1, 173.7, 162.9, 57.0, 56.0, 53.7, 53.5, 53.41, 47.3,
46.9,40.2,40.0, 38.3,37.2,33.1, 32.6,32.1,31.1, 31.0, 29.5, 29.1, 27.7, 25.6, 25.2, 22.0.

HRESI-MS calc. for C13H21N20s [M-H] 285.1456, found 285.1443

o § Q
WN OH HO Nj{

0] )

Iz

IH NMR (500 MHz, D,0) & 4.14 — 4.05 (m, 2H), 2.51 — 2.48 (m, 3H), 2.38 — 2.33 (m, 1H), 1.98(s, 3H), 1.97(s,
3H), 1.87-1.84 (m, 1H), 1.78 — 1.70 (m, 2H), 1.65 — 1.59 (m, 2H), 1.56 — 1.38 (m, 7H), 1.35 — 1.24 (m, 3H),
1.02 — 0.88 (m, 2H).

13C NMR (126 MHz, D,0) Mixture of diastereomers & 176.3, 176.3, 174.4, 174.3, 56.8, 55.8, 53.0, 52.5,
44.6,44.2,36.9, 32.6, 30.5, 29.9, 29.4, 29.2, 28.5, 28.3, 27.3, 25.3, 25.2, 25.0, 24.5, 24.2,22.2, 22.2, 21.6
HRESI-MS calc. for Ci9H3406N3 [M+H] * 400.2427, found 400.2442
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\[( OH HO j(
(@] (@]
O\_/O
7

IH NMR (500 MHz, D,0) & 4.29 — 4.19 (m, 2H), 3.86 — 3.83 (m, 4H), 3.80 (t, J = 3.0 Hz, 4H), 3.29 - 3.18 (m,
5H), 3.12 —3.05 (m, 1H), 2.22 — 2.04 (m, 7H), 2.02 — 1.83 (m, 6H), 1.79 — 1.62 (m, 8H), 1.59 — 1.51 (m, 2H),
1.47 —1.29 (m, 3H), 1.22 — 1.00 (m, 2H).

13C NMR (126 MHz, D,0) 6 176.0, 176.0, 174.5, 174.4, 69.6, 65.7, 65.6, 57.1, 56.2, 51.2, 51.1, 51.0, 50.9,
44.1,36.8, 33.5,32.6, 31.7, 30.5, 29.4, 29.2, 28.4, 28.3, 27.3, 25.4, 24.5, 24.2, 21.8.

HRESI-MS calc. for CasHs10sNs [M+H] * 571.3701, found 571.3701
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Chapter 5. Diphenylamines from phenol and ammonium formate
5.1 Background

Arylamines are valuable commodity chemicals, owing to their broad application as antioxidizers
and as synthetically relevant building-blocks. Diphenylamine (DPA) is primarily used as a stabilizer for
nitrocellulose explosives’ 2 and the detection of oxidizers,. In contrast, C-alkylated diphenylamines are
widely used as antioxidants for the preservation of fruits,*® oils,” and polymers (Figure 5.1).% Further uses
of arylamines include being a precursor for the synthesis of (azo-)dyes,®!! and non-steroidal anti-
inflammatory drugs.*? Additionally, triphenylamines are important for the preparation of optoelectronic
materials (Figure 5.1).131® For a thorough review on the use of these compounds, please see reference

articles by Drzyzga'” and Layer.®®

H
OO o
Diphenylamine Triphenylamine

Figure 5.1 Diphenyl and triphenylamine chemical structures

Arylamines are commonly prepared from amine precursors through metal-catalyzed C-N coupling

reactions. Methods for the formation of these compounds include the Stille,Y® Chan-Evans-Lam,2%2*

2527 and Buchwald-Hartwig® 2° couplings (Scheme 5.1). In addition, other methods including

Ullmann,
P(IN)/P(V)=0 catalysis,*® iodine,! sulfonium triflates,3? various nanoparticle catalysts,**3* and Pd/C for the
formation of arylamines from aliphatic substrates,®>3” have also been reported (Scheme 5.1). Similar

developments for the formation of diaryl ethers have also been reported.?® 3°
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Scheme 5.1 Different methodologies for the synthesis of diphenylamine

Phenol can be obtained from natural sources as one of the basic units of lignin, making it an
attractive bio-renewable feedstock for synthesis.®® In an attempt to replace the use of aryl halides as
starting materials, our group has investigated the possibility of using phenols as the coupling partner for
the formation of C-N bonds through the use of heterogeneous palladium as a catalyst (Scheme 5.2).
In 2017, our group published a methodology to access N-cyclohexyl anilines from phenols using hydrazine
or hydroxylamine* (Scheme 5.3). The latter is a deoxyamination process that involves a complex C-O
bond and N-N/O bond-cleavage to yield N-substituted cyclohexyl anilines from an array of phenols by

finely controlling the reaction conditions in moderate to good yields.
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R'-NH, H

Pd/C cat.
HCO,Na, [H]* cat.

H
N A
OH // - \\\\) -
;—\(' ~— 1 N/ "3
N oozt R N
R - - RO/ SO
Pd/C cat. YR

NaBH, cat., [H]" cat.

Y H
- N
e
Pd/C cat. R’

HCOZNa

Scheme 5.2 Phenol as a coupling partner for C-N bond formation through (1) redox neutral pathway*! (2)

reductive aromaticity transfer®? (3) reductive coupling.*®

Pd/C (10 mol%)

NH,NH,*H,O  HCO,Na (2 equiv) H
XYt or »~ R—'\ hl
RT NH,OH-HC| TFA (1 equiv) L R
toluene (0.2 M)
150 °C 53 - 85% vyield
19 examples

Scheme 5.3 Synthesis of N-cyclohexyl anilines from phenols with hydrazine or hydroxylamine**
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5.2 Research objectives and plan

In our continuous drive to develop methodologies for the sustainable access to nitrogen-
containing chemicals, we envisioned the synthesis of diphenylamines using phenol as the arylating
reagent. The use of a safe and stable nitrogen source was also of high interest to us, as this would greatly
expand the applicability of the process. Thus, we proposed using ammonium formate, a stable and non-
corrosive salt, to generate ammonia in-situ (Scheme 5.4). Notably, the transformation would generate
CO; and water as the only by-products. Based on our previous research,* the reaction conditions would
be screened by first testing the required equivalencies of phenol required for the transformation, followed
by the screening of temperature, reaction time, palladium sources, and basic additives. The optimal
conditions would be then used to explore the reaction scope and the feasibility of synthesizing triaryl

amines.

OH

2 + HCO,NH,  --mcemmeoee - ©/ \@ +CO,T + 2H,0

Scheme 5.4 Model reaction for the synthesis of diphenylamines using phenol and ammonium formate

H
N

5.3 Results and discussion

5.3.1 Condition Screening

We began by investigating the synthesis of diphenylamine using 4 equivalents of phenol (1a) and
one equivalent of ammonium formate (2), with Pd/C as the catalyst at a loading of 20 mol%. m-Xylene
was used as the solvent, and the reaction was run for 24 hours at 160 °C under an argon atmosphere. As
opposed to the previous methodologies described, it is worth noting that since ammonium formate is the
amine source, it is also the limiting reaget, therefore also limiting the amount of formate present in the
reaction. To our delight, we were able to obtain the desired product (3a) in 54% yield (Table 5.1, entry 1).
Upon increasing the loading of phenol (1a), we were able to obtain diphenylamine (3a) in 98% yield (Table
5.1, entries 2-4). While high amounts of phenol are required for the transformation to drive the
equilibrium towards our desired product. Nonetheless, phenol can be recovered during the work-up
through extraction at pH 14. The reaction was run neat using the optimized equivalencies of phenol,
resulting in the formation of product 3a in 95% yield (Table 5.1, entry 5). Although this experiment shows

the feasibility of running the reaction without solvent, m-xylene was kept as part of the reaction system
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to facilitate the stirring of the reagents. Upon optimizing reagent equivalencies and seeing that traces of
triphenyl amine (4) were present, a lower loading of palladium at 10 mol% was tested. Unfortunately, the
reaction yield dropped to 72%, which convinced us to keep the original loading (Table 5.1, entry 6).
Palladium hydroxide on carbon was also tested at a 10 mol% loading. However, 20 mol% Pd/C still proved
optimal (Table 5.1, entry 7). It is important to point out that the palladium catalyst had to be activated

prior to the reaction in order to obtain optimal yields.

Table 5.1 Effect of the concentration of phenol for the formation of diphenylamine

e (L, L)

OH .
©/ + HCO,NH, m-xylene (0.5 mL) *
160 °C, 24 h, Ar
0.2 mmol

1a 2 3a 4

Entryld Conditions Yield (%)™
y 1a (equiv) Catalyst (mol%) 3a 4

1 4 Pd/C, 20 54 ND
2 6 Pd/C, 20 86 ND
3 8 Pd/C, 20 90 Traces
4 10 Pd/C, 20 98 Traces
5l 10 Pd/C, 20 95  Traces
6 10 Pd/C, 10 72 ND
7 10 Pd(OH),/C, 10 84 ND

8] Reaction conditions: 1 (x equiv), 2 (0.2 mmol, 1 equiv), catalyst (x equiv), xylene (0.5 mL).
(I NMR yield using CH»Br, (0.2 mmol, 7 uL) as an internal standard and calculated based on HCO;NH,.

[ Reaction was run neat. ND: not detected.

Aiming to see if we could push the reaction for the formation of triphenylamine, we analyzed the
effect of temperature in the reaction (Table 5.2). Lowering the reaction temperature, even by 10 °C,

caused a significant decrease in the yield of product 3a (Table 5.2, entry 1). Increasing the temperature
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barely impacted the yields of diphenylamine (3a) and triphenylamine (4) observed, prompting us to
maintain 160 °C as the optimized temperature (Table 5.2, entries 2-4). Higher temperatures were not

screened due to safety concerns regarding vial pressure build-up.

Table 5.2 Temperature effect on the reaction between phenol and ammonium formate

Pd/C

OH
©/ * HCONH, ). xylene (0.5 mL
160 °C, 24 h, Ar
0.2 mmol
1a 2 3a 4
Yield (%)[®!
Entry® T [°C] (%)
3a 4
1 150 65 ND
2 160 96 ND
3 170 87 Traces
4 180 96 Traces

8 Conditions: 1 (2.0 mmol, 10 equiv), 2 (0.2 mmol, 1 equiv), Pd/C (10 wt%, 0.4 mmol), xylene (0.5 mL).
(I NMR yield obtained using CH,Br; (0.2 mmol, 7 L) as an internal standard. ND: Not detected.

The reaction time was then investigated (Table 5.3). Short reaction times did not favour the
formation of product 3a, resulting in a significant drop in the reaction yield (Table 5.3, entries 1-4). The
reaction proved to have an optimized yield when allowing the reaction to stir at 160 °C between 20 h and
28 h (Table 5.3, entries 5-7). Given that the yields were determined by NMR, these entries (Table 5.3,
entries 5-7) can be considered to work with the same efficacy. Doubling or tripling the standard reaction

time resulted in the decomposition of desired product 3a without increasing triphenylamine formation

(4).
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Table 5.3 Time dependence of the reaction between phenol and ammonium formate

rac rowss zomary (L, LI, (L
OH + HOONH d/C 10 wt% (20 mol%) NH N NH
* 274 m-xylene (0.5 mL) * *
160 °C, Ar
3a 4 5

10 equiv 0.2 mmol
1a 2
. Yield (%)™®!

Entry®?  Time (h)

3a 4 5
1 2 30 ND 15
2 4 46 ND 13
3 6 66 ND 14
4 9 71 ND 12
5 20 97 ND ND
6 24 96 Traces ND
7 28 >99 ND ND
8 48 80 Traces ND
9 72 82 Traces ND

8] Conditions: 1 (2.0 mmol, 10 equiv), 2 (0.2 mmol, 1 equiv), Pd/C (10 wt%, 0.4 mmol), xylene (0.5 mL).

(I NMR yield obtained using CH,Br; (0.2 mmol, 7 L) as an internal standard. ND: Not detected.

Having found conditions we believed to be optimal, we proceeded to test the reaction scope.
However, the reaction yield dropped considerably upon substitution of the phenolic ring. This prompted
us to screen different palladium supports and additives in strive to resolve this difficulty. In order to find
a broadly suitable catalyst or additive for all substrates, we decreased the reaction temperature while
maintaining phenol (1a) as the model substrate. This was primarily done given that the reaction was

already nearly quantitative, making it impossible to track any further improvements.

Different palladium supports were first screened at 150 °C, allowing the reaction to proceed for
20 h (Table 5.4). Using Pd/C as the catalyst in a concentration of 20 mol%, gave the product 3a in 88%
yield (Table 5.4, entry 1). Using basic supports such as MgO or BaSO, did not improve the reaction yield,

even when doubling the catalyst's loading (Table 5.4, entries 2-3). Finally, using SiO; as an acidic support
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also proved inefficient (Table 5.4, entry 4). Based on these results, Pd/C was maintained as the catalyst

for the reaction.

Table 5.4 Effect of different supports on reaction yield

OH catalyst - H
©/ + HCOzNH, m-xylene (0.5 mL) ©/ \©
150 °C, 20 h, Ar
10 equiv 0.2 mmol
1a 2 3a
Entryb Catalvst Yield 3al!
ntry atalys
(%)
1 10 wt% Pd/C (20 mol%) 88
2 5 wt% Pd/MgO (20 mol%) 80
3 5 wt% Pd/BaSO4 (40 mol%) 22
4 5 wt% Pd/SiO; (40 mol%) 43

[BIReaction conditions: 1 (2.0 mmol, 10 equiv), 2 (0.2 mmol, 1 equiv), catalyst, xylene (0.5 mL). Reaction
was run at 150 °C in order to observe the effect of different catalyst supports on the reaction.

(I NMR yield obtained using CH,Br; (0.2 mmol, 7 L) as an internal standard.

We further decreased the temperature to 140 °C to test additives that could favour the
condensation between phenol and ammonium formate. At this temperature, the formation of 3a
decreased to 44% (Table 5.5, entry 1). Molecular sieves, MgO, and CaO, were screened as drying agents
(Table 5.5, entries 2-4) to remove water produced during the condensation step, potentially competing
with ammonia as a nucleophile. Although the reaction yield was improved in all three cases, we looked
into using basic additives to improve ammonia formation, as the prevalence of NH,* inevitably hinders
product formation (Table 5.5, entries 5-6). We were pleased to find that at 40 mol% LiOH improved the
reaction yield (Table 5.5, entry 5). We proceeded to compare CaO and LiOH as additives at different
loadings (Table 5.5, entries 7-12). Finally, the optimal concentrations of these bases were compared at
150 °C (Table 5.5, entries 13-14). Although lithium hydroxide might act as a competing nucleophile, 40

mol% proved to be optimal and was kept for all further screening.
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Table 5.5 Screening of additives at a lower temperature

Pd/C 10 wt% (20 mol%) H

OH . N
©/ + HCO,NH, m-xylene (0.5 mL) ©/ \©
140 °C, 24 h, Ar

10 equiv 0.2 mmol
1a 2 3a
Entry! Additives 3:i(i/|3[b]
1 none 44
2 Molecular Sieves 100 mg 66
3 MgO (0.2 mmol) 62
4 Ca0 (0.4 mmol) 73
5 LiOH (0.08 mmol) 53
6 KOH (0.1 mmol) ND
7 Ca0 (0.2 mmol) 55
8 CaO0 (0.4 mmol) 73
9 Ca0 (0.5 mmol) 69
10 LiOH (0.05 mmol) 43
11 LiOH (0.08 mmol) 53
12 LiOH (0.1 mmol) 44
13 Ca0 (0.4 mmol) 75
141 LiOH (0.08 mmol) 84

3 Reaction conditions: 1 (2.0 mmol, 10 equiv), 2 (0.2 mmol, 1 equiv), catalyst, xylene (0.5 mL). The reaction
was run at 140 °C in order to observe the effect of different additives on the reaction.
(I NIMR yield using CH2Br; (0.2 mmol, 7 pL) as an internal standard and yield was calculated by HCO,NH,.

[c] Reaction ran at 150 °C. ND: not detected.
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5.3.2 Substrate scope

With the optimized reaction conditions in hand, the reaction scope was tested using phenolic
compounds 1a — 1q (Scheme 5.5). The reaction temperature was raised to 170 °C due to the sluggish
reactivity of some substrates. Phenolic rings with a single methyl substitution at the ortho-, meta-, and
para- positions proved to be successful substrates for the reaction (3b — 3d). Ethyl, propyl, and tert-butyl
substituents were well tolerated at the ortho- and para- positions (3e — 3i). Having 2,6-dimethyl
substitution proved to be a challenge due to the increased steric bulk, yielding only 27% of the desired
product 3j. On the other hand, rings with dimethyl substitution at the 3,6- and 3,4- positions gave the
corresponding products 3k and 3l in good yields. Benzyl phenol (1m) gave the corresponding diarylated
product 3m in 68% yield without dearomatization of the benzyl ring. Using 2,3-dihydro-1H-inden-4-ol (1n)
as the phenolic source gave the desired diarylated amine 3n in 25% yield. We presume that the yield is
lower due to the fused system, which might render both the hydrogenation and the rearomatization
processes more sluggish. 1- and 2- naphthalenols (10 — 1p) yielded the corresponding products 30 and 3p
in 64% and 52% yield, respectively. Due to the fused ring system, which made the substrates more robust
disfavouring the reduction step, an additional hydrogen source was necessary to reduce the phenolic ring
to the corresponding enone. Thus, 1 equivalent of sodium formate was added for these substrates.
Pyrocatechol (1q) also proved to be a successful substrate for the reaction, yielding phenazine (3q) as the

reaction product in 49% vyield.
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10 wt% Pd/C (20 mol%)

OH LiOH (40 mol%
G oo L0

m-xylene (0.5 mL)

10 equiv 0.2 mmol 170°C, Ar
1a-1q 2 3a-3q
NH NH NH NH
2 2 2 2
3alal 3b 3c 3d
98% 73% 83% 70%
NH NH NH NH
2 2 2 2
3e 3f 39 3h
85% 88% 79% 66%
NH @“H NH NH
2 2 2 2
3 3ol 3k 3|
62% 27% 72% 75%
NH
21 0 S
2 )
2
3m 3n 30
68% 25% 64%!°!
“ﬁw CrO
3q
52%[01 49%(cHdl

Scheme 5.5 Reaction scope using different substituted phenols and ammonium formate

8] Reaction ran at 160 °C ®) NMR yield obtained using CHBr; (0.2 mmol, 7 pL) as an internal standard. [

HCO,Na (0.1 mmol, 6.8 mg) was used in the reaction. ¥ Obtained from pyrocatechol as the starting

material, reaction ran for 66 h.
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Finally, we proceeded to test the feasibility of forming triphenylamine (5) from diphenylamine
(3a). Unfortunately, resubmitting 3a to the optimized reaction conditions did not yield 5 in sufficient
amounts. Therefore, we decided to use 2-cylcohexen-1-one (6) as the coupling partner under our
previously reported conditions in order to facilitate the condensation step,® yielding the desired

compound 5 in 33% yield (Scheme 5.6).

o Pd/C (10 wt%) 20 mol% @ O
©\ /@ 5 equiv CaCOj; N
N + -
H

24 h, 140 °C
O, saturated toluene
1 equiv 4 equiv (1 mL) 33% yield
3a 6 5

Scheme 5.6 Formation of triphenyl amine using our previous methodology

5.3.3 Mechanistic proposal

The proposed reaction mechanism for this reaction is shown in Scheme 5.7. Ammonium formate
decomposes in the presence of Pd(0) to give a Pd(ll) dihydride species, CO, and ammonia.*® Phenol can
then react with the Pd(ll) dihydride to yield the corresponding cyclohexenone, which in turn can undergo
condensation with the ammonia present in the reaction mixture. The resulting imine can undergo a
second condensation, through enamine formation, to give intermediate A. Finally, intermediate A can

dehydrogenate in the presence of Pd(0) to provide the corresponding product 3a.
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Pd(0)
HCO,NH, —> HPd(Il)H + CO, + NH;

HPd(I1)H © HPd(I1)H
o oy

NH;
NH
H,0
NH
HPd(IH %\ @f\
A

Scheme 5.7 Proposed reaction mechanism

5.3.4 Additional experiments

It is important to mention that the preparation of the palladium catalyst for the reaction had a
significant impact on the reproducibility and overall yield of the reaction (Table 5.7). Using Pd/C without
any pre-treatment resulted in 88% yield of diphenylamine (3a) under optimized conditions (Table 5.7,
entry 1). Drying the catalyst under vacuum overnight resulted in a slight increase in the reaction yield
(Table 5.7, entry 2). Best results were obtained when the catalyst was dried for 2 hours at 130 °C, making

it our selected strategy for this transformation (Table 5.7, entry 3).
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Table 5.6 Effect of pre-drying Pd/C on reaction yield

Pd/C (10 wt%) 20 mol%

H
OH N
©/ + HCO,NH,4 m-xylene (0.5 mL) ©/ \©
160 °C, 24 h, Ar

10 equiv 0.2 mmol
1a 2 3a
Entryl! Pd/C preparation Yield 3%
i
y prep (%)
1 Straight from the bottle 88
2 Dried with vacuum overnight 92
3 Dried for 2 h at 130 °C 98

8] Conditions: 1 (2.0 mmol, 10 equiv), 2 (0.2 mmol, 1 equiv), Pd/C (10 wt%, 0.4 mmol), xylene (0.5 mL)

bl NMR yield obtained using CH,Br; (0.2 mmol, 7 ulL) as an internal standard.

5.4 Conclusion and outlook

In conclusion, we were able to synthesize 17 different diarylated amines from a convenient
ammonia source using phenols as arylating reagents and Pd/C as the catalyst. Yields for the reaction
ranged from good to excellent, except for severely sterically hindered substrates bearing multiple ortho
substituents. Furthermore, using our previously described arylating methodology with 2-cyclohexen-1-
one, proved to be a viable synthetic route to triarylamines. This work demonstrates a pathway to
synthesizing N-containing chemicals from reductive amination using biomass-derived compounds as

arylating reagents and stable ammonia salts as the nitrogen source.

5.5 Contributions

Project conceptualization was realized by Prof. Chao-Jun Li. Methodology, experimentation and
characterization were performed by myself with the assistance of Dr. Inna Perepichka. High-resolution
mass spectrometry was performed by Dr. Nadim Saadeh and Dr. Alexander Wahba at the McGill University
Department of Chemistry Mass Spectrometry Laboratory. The publication manuscript, which shares some
shared content with this thesis chapter, was written by myself, edited and proofread by Dr. Zihang Qiu,
Dr. Adam A. Elmehriki and Prof. Chao-Jun Li.
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5.6 Experimental section

5.6.1 General Information

10 wt% Pd/C (20 mol%)

OH LiOH (40 mol%)
Oy e 2,0
N

m-xylene (0.5 mL) R R
170 °C, Ar H

10 equiv 0.2 mmol

1a-1q 2 3a-3q
To a flame-dried Schlenk-type reaction flask (10.0 mL) equipped with a Teflon-coated magnetic
stirring bar, phenol (2.0 mmol, 10 equiv), ammonium formate (2) (0.2 mmol, 1 equiv), lithium hydroxide
(0.08 mmol, 0.4 equiv), and dry®® 10 wt% Pd/C (0.2 mmol, 20 mmol%), were added. For substrates 1o —
1q sodium formate (0.1 mmol, 0.5 equiv) was added as an additional source for hydrogen. The resulting
mixture was evacuated and backfilled with ultra-purified argon thrice, to which anhydrous m-xylene (0.5
mL) was added. The reaction flask was placed into an oil bath at 160 °C for phenol (1a), and 170 °C for all
other substrates (1b — 1q), with stirring. After 24 hours, the reaction mixture was diluted with EtOAc,
filtered through a pad of silica gel and the organic solvent was evaporated. An aqueous solution of 2 N
NaOH (100 mL) and EtOAc (20 mL) were added to the reaction crude, and the mixture was stirred for 15
mins. The organic layer was extracted with EtOAc (2 x 20 mL), and the combined organic phases were
washed with brine and dried over sodium sulphate. The solvent was removed in vacuo, and the residue
was purified by column chromatography on silica gel using hexane: ethyl acetate (5:1) as the eluent to

give the corresponding pure product.

lIDried at 130 °C under vacuum for 2 h

5.6.2 Analytical Data
H

T
Diphenylamine (3a)

Use the general procedure described, compound 3a was obtained from ammonium formate (0.20 mmol,

12.6 mg) and phenol (2.0 mmol, 188 mg) in 98% yield. R¢ (hexane/EtOAc 5:1): 0.6.
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'H NMR (500 MHz, CDCl5): 6 7.33-7.22 (m, 4H), 7.11 (dd, J = 8.4, 1.0 Hz, 4H), 6.95 (t, J = 7.4 Hz, 2H), 5.80
(br, 1H). *C NMR (126 MHz, CDCls) 6 143.06, 129.35, 121.01, 117.82.
HRMS (ESI) m/z: [M + H]* calculated for C12H1;N 170.09643, found 170.09660.

ZT

Di-o-tolylamine (3b)

Using the general procedure described, compound 3b was obtained from ammonium formate (0.20

mmol, 12.6 mg) and o-cresol (2.0 mmol, 216 mg) in the presence of LiOH (0.08 mmol, 2 mg) in 73% yield.

'H NMR (500 MHz, CDCl3) 6 7.21 (d, J = 7.4 Hz, 2H), 7.15 (t, J = 7.7 Hz, 2H), 7.02 (d, J = 8.0 Hz, 2H), 6.93 (t,
J=7.4 Hz, 2H), 5.16 (br, 1H), 2.30 (s, 6H). 3C NMR (126 MHz, CDCls) § 141.9, 130.9, 127.6, 126.9, 121.5,
118.4, 17.9. HRMS (ESI) m/z: [M + H]* calculated for C14H16N 198.12773, found 198.12796.

H
o
Di-m-tolylamine (3c)

Using the general procedure described, compound 3¢ was obtained from ammonium formate (0.20 mmol,

12.6 mg) and m-cresol (2.0 mmol, 216 mg) in the presence of LiOH (0.08 mmol, 2 mg) in 83% yield.

'H NMR (500 MHz, CDCl5) 6 7.19 (dd, J = 8.7, 7.6 Hz, 2H), 6.97 — 6.86 (m, 4H), 6.79 (d, J = 7.3 Hz, 2H), 5.63
(br, 1H), 2.35 (s, 6H). 3C NMR (126 MHz, CDCls) 6 143.3, 139.3, 129.3, 121.9, 118.7, 115.1, 21.7. HRMS
(ESI) m/z: [M + H]* calculated for Ci4H16N 198.12773, found 198.12797.
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H
JORSN
Di-p-tolylamine (3d)

Using the general procedure described, compound 3d was obtained from ammonium formate (0.20

mmol, 12.6 mg) and p-cresol (2.0 mmol, 216 mg) in the presence of LiOH (0.08 mmol, 2 mg) in 70% vyield.

'H NMR (500 MHz, CDCl3) § 7.06 (d, J = 8.1 Hz, 4H), 6.95 (d, J = 8.4 Hz, 4H), 5.52 (br, 1H), 2.29 (s, 6H). *C
NMR (126 MHz, CDCls) 6 141.3, 130.3, 130.0, 118.0, 20.8. HRMS (ESI) m/z: [M + H]" calculated for CisH16N
198.12773, found 198.12801.

20000

Bis(3-ethylphenyl)amine (3e)

Using the general procedure described, compound 3e was obtained from ammonium formate (0.20
mmol, 12.6 mg) and 3-ethylphenol (2.0 mmol, 244 mg) in the presence of LiOH (0.08 mmol, 2 mg) in 85%
yield.

IH NMR (500 MHz, CDCl3) 6 7.18 (t, J = 7.7 Hz, 2H), 6.93 — 6.88 (m, 4H), 6.77 (dd, J = 7.5, 0.5 Hz, 2H), 5.65
(br, 1H), 2.61 (g, J = 7.6 Hz, 4H), 1.23 (t, J = 7.6 Hz, 6H). *C NMR (126 MHz, CDCls) 6 145.7, 143.4, 129.4,
120.7, 117.5, 115.3, 29.1, 15.7. HRMS (APCI) m/z: [M + H]* calculated for CigH2oN 226.15903, found
226.15936.
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ZT

Bis(3-isopropylphenyl)amine (3f)

Using the general procedure described, compound 3f was obtained from ammonium formate (0.20 mmol,
12.6 mg) and 3-isopropylphenol (2.0 mmol, 272 mg) in the presence of LiOH (0.08 mmol, 2 mg) in 88%
yield.

'H NMR (500 MHz, MeOD) & 7.11 (dd, J = 9.9, 5.7 Hz, 2H), 6.95 (t, J = 1.8 Hz, 2H), 6.86 (ddd, J = 8.0, 2.2,
0.8 Hz, 2H), 6.70 (d, J = 7.6 Hz, 2H), 4.85 (s, 1H), 2.81 (hept, J = 6.9 Hz, 2H), 1.22 (d, J = 6.9 Hz, 12H). 13C
NMR (126 MHz, MeOD) 6 151.1, 145.4, 130.0, 119.3, 116.4, 116.0, 35.5, 24.5. HRMS (ESI) m/z: [M + H]*
calculated for CigH24N 254.1903, found 254.1897

ZT

Bis(3-(tert-butyl)phenyl)amine (3g)

Using the general procedure described, compound 3g was obtained from ammonium formate (0.20 mmaol,
12.6 mg) and 3-(tert-butyl)phenol (2.0 mmol, 300 mg) in the presence of LiOH (0.08 mmol, 2 mg) in 79%
yield.

IH NMR (500 MHz, CDCls) § 7.21 (t, J = 7.9 Hz, 2H), 7.15 (t, J = 1.9 Hz, 2H), 6.97 (d, J = 7.8 Hz, 2H), 6.89 (dd,
J=17.9, 1.5 Hz, 2H), 1.31 (s, 18H). 3C NMR (126 MHz, CDCls) § 152.6, 143.1, 129.1, 118.1, 115.2, 115.0,
34.9, 31.5. HRMS (ESI) m/z: [M + H]* calculated for CyoH2sN 282.22163, found 282.22249.
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Bis(4-(tert-butyl)phenyl)amine (3h)

Using the general procedure described, compound 3h was obtained from ammonium formate (0.20
mmol, 12.6 mg) and 4-(tert-butyl)phenol (2.0 mmol, 300 mg) in the presence of LiOH (0.08 mmol, 2 mg)
in 66% yield.

1H NMR (500 MHz, CDCls) & 7.29 — 7.27 (m, 4H), 7.00 (s, 4H), 5.59 (br, 1H), 1.31 (s, 18H). 3C NMR (126
MHz, CDCls) 6 143.7, 141.1, 126.2, 117.5, 34.3, 31.6. HRMS (ESI) m/z: [M + H]* calculated for CaoHasN
282.22163, found 282.22088

H
/\/©/N\©\/\
Bis(4-propylphenyl)amine (3i)

Using the general procedure described, compound 3i was obtained from ammonium formate (0.20 mmaol,

12.6 mg) and 4-propylphenol (2.0 mmol, 272 mg) in the presence of LiOH (0.08 mmol, 2 mg) in 62% yield.

IH NMR (500 MHz, CDCls) § 7.07 (d, J = 8.4 Hz, 4H), 6.97 (d, J = 8.3 Hz, 4H), 2.53 (t, J = 7.6 Hz, 4H), 1.61 (dft,
J=14.8, 7.4 Hz, 4H), 0.95 (t, J = 7.3 Hz, 6H). 3C NMR (126 MHz, CDCl3) § 141.4, 135.3, 129.4, 118.0, 37.5,
24.9, 14.0. HRMS (ESI) m/z: [M + H]* calculated for CisH24N 254.19033, found 254.19038.

ZT

Bis(2,6-dimethylphenyl)amine (3j)

Using the general procedure described, compound 3j was obtained from ammonium formate (0.20 mmol,

12.6 mg) and 2,6-dimethylphenol (2.0 mmol, 244 mg) in the presence of LiOH (0.08 mmol, 2 mg) in 27%
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yield. Using our purification procedure, it was not possible to isolate compound 3j. For this reason, only
the crude *H NMR spectra is solely provided for this compound. *H NMR (500 MHz, CDCl5) § 7.11 (d, J =
7.5Hz,4 H),6.90 (t,/J=7.5Hz, 2 H), 2.37 (s, 12 H).

ZT

Bis(3,5-dimethylphenyl)amine (3k)

Using the general procedure described, compound 3k was obtained from ammonium formate (0.20 mmaol,
12.6 mg) and 3,5-dimehtylphenol (2.0 mmol, 244 mg) in the presence of LiOH (0.08 mmol, 2 mg) in 72%
yield. *H NMR (500 MHz, CDCls) & 6.70 (s, 4H), 6.58 (s, 2H), 5.53 (br, 1H), 2.27 (s, 12 H). 3 C NMR (126 MHz,
CDCls) 6 143.4, 139.1, 122.9, 115.9, 21.6. HRMS (ESI) m/z: [M + H]* calculated for CisH20N 226.15903,
found 226.15847.

H
L
Bis(3,4-dimethylphenyl)amine (3l)

Using the general procedure described, compound 3l was obtained from ammonium formate (0.20 mmaol,
12.6 mg) and 3,4-dimethylphenol (2.0 mmol, 244 mg) in the presence of LiOH (0.08 mmol, 2 mg) in 75%
yield.

'H NMR (500 MHz, MeOD) & 6.93 (d, J = 8.1 Hz, 2H), 6.81 (d, J = 2.2 Hz, 2H), 6.76 (dd, J = 8.0, 2.4 Hz, 2H),
2.19 (s, 6H), 2.17 (s, 6H). 3C NMR (126 MHz, MeOD) & 143.6, 138.0, 131.0, 128.9, 120.1, 116.0, 20.1, 19.0
HRMS (ESI) m/z: [M + H]* calculated for Ci¢H20N 226.1590, found 226.1582.
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sUsaele

Bis(4-benzylphenyl)amine (3m)

Using the general procedure described, compound 3m was obtained from ammonium formate (0.20
mmol, 12.6 mg) and 4-benzylphenol (2.0 mmol, 368 mg) in the presence of LiOH (0.08 mmol, 2 mg) in 68%
yield.

H NMR (500 MHz, CDCls) 6 7.32 = 7.27 (m, 4H), 7.22 — 7.17 (m, 6H), 7.07 (d, J = 8.5 Hz, 4H), 6.98 (d, J =
8.4 Hz, 4H),3.93 (s, 4H). 3 C NMR (126 MHz, CDCl5) 6 141.7,141.6,133.7,129.9, 129.0, 128.6, 126.1, 118.0,
41.4. HRMS (ESI) m/z: [M + H]* calculated for Ca6H24N 350.1903, found 350.1892.

ZT

Bis(2,3-dihydro-1H-inden-4-yl)amine (3n)

Using the general procedure described, compound 3n was obtained from ammonium formate (0.20
mmol, 12.6 mg) and 2,3-dihydro-1H-inden-4-ol (2.0 mmol, 268 mg) in the presence of LiOH (0.08 mmol, 2
mg) in 26% yield.

IH NMR (500 MHz, MeOD) 6 7.02 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 0.4 Hz, 2H), 6.79 (dd, J = 8.0, 2.1 Hz, 2H),
2.81 (q, J = 7.3 Hz, 8H), 2.04 (p, J = 7.4 Hz, 4H). *C NMR (126 MHz, MeOD) 6 146.1, 144.4, 136.7, 125.4,
117.1, 114.6, 34.0, 33.0, 26.8. HRMS (APCI) m/z: [M + H]* calculated for CisHoN 250.15903, found
250.16005.

ZT
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Di(naphthalen-1-yl)amine (30)

Using the general procedure described, compound 30 was obtained from ammonium formate (0.20
mmol, 12.6 mg) and naphthalene-1-ol (2.0 mmol, 288 mg) in the presence of LiOH (0.08 mmol, 2 mg) and
HCO;Na (0.1 mmol, 6.8 mg) in 64% yield.

IH NMR (500 MHz, MeOD) & 8.15 (d, J = 8.5 Hz, 2H), 7.85 (d, J = 8.1 Hz, 2H), 7.52 — 7.44 (m, 4H), 7.42 (ddd,
J=8.2,6.8, 1.4 Hz, 2H), 7.31 — 7.25 (m, 2H), 6.86 (dd, J = 7.4, 0.9 Hz, 2H). 3C NMR (126 MHz, MeOD) &
142.9, 136.2, 129.3, 128.7, 127.1, 126.9, 126.8, 123.9, 122.9, 116.7. HRMS (ESI) m/z: [M + H]* calculated
for CaoH1sN 270.1277, found 270.1285.

YD

Di(naphthalen-2-yl)amine (3p)

Using the general procedure described, compound 3p was obtained from ammonium formate (0.20
mmol, 12.6 mg) and naphthalene-2-ol (2.0 mmol, 244 mg) in the presence of LiOH (0.08 mmol, 2 mg) and
HCO;Na (0.1 mmol, 6.8 mg) in 52% yield.

IH NMR (500 MHz, DMS0) & 7.83 (d, J = 8.8 Hz, 2H), 7.76 (dd, J = 19.3, 8.1 Hz, 4H), 7.62 (s, 2H), 7.40 (dd,

J=14.5,7.4 Hz, 4H), 7.29 (t, J = 7.3 Hz, 2H). 3C NMR (126 MHz, DMSO) 6 141.0, 134.4, 128.9, 128.4, 127.4,
126.4, 126.3, 123.0, 120.2, 110.0. HRMS (ESI) m/z: [M + H]* calculated for CaoHisN 270.1277, found
270.1269.
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N
e
L 10
N
5,10-Dihydrophenazine (3q)

Using the general procedure described, compound 3q was obtained from ammonium formate (0.20
mmol, 12.6 mg) and pyrocatechol (2.0 mmol, 220 mg) in the presence of LiOH (0.08 mmol, 2 mg) and
HCO;Na (0.1 mmol, 6.8 mg) in 49% yield.

'H NMR (500 MHz, MeOD) 6 8.25 (dd, J = 6.7, 3.4 Hz, 4H), 7.95 (dd, J = 6.8, 3.4 Hz, 4H). 3C NMR (126 MHz,
MeOD) § 144.5, 132.3,130.2. HRMS (APCI) m/z: [M + H]* calculated for C1,HsN> 181.0760, found 181.0752.

SA®
Triphenylamine (4a)

Using the general procedure described, compound 4a was obtained from ammonium formate (0.20 mmol,

12.6 mg) and phenol (2.0 mmol, 188 mg) at 180 °C for 24h in 18% vyield.

IH NMR (500 MHz, CDCl3) & 7.28 — 7.23 (m, 6H), 7.11 (d, J = 7.6 Hz, 6H), 7.03 (t, J = 7.3 Hz, 3H). 3C NMR
(126 MHz, CDCl3) 6 147.0,129.2, 124.2,122.7. HRMS (ESI) m/z: [M + H]* calculated for CigH1gN 246.12773,
found 246.12774.
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Chapter 6. Summary and closing remarks

Motivated to shift chemistry towards the use of biorenewable starting materials, we envisioned
developing a methodology to use phenol and amino acids as coupling partners to form C-N bonds. We
have presented the possibility of using 2-cyclohexen-1-one for the N-arylation of a-amino acids and
phenol for the N-cyclohexylation of a-amino acids and peptides. While the N-arylation requires high
temperatures due to the high energy necessary to aromatize the cyclohexyl ring, the N-cyclohexylation
was successfully achieved for 17 out of the 20 naturally occurring amino acids under bio-compatible
conditions without racemization. Our initial efforts towards applying this methodology for the synthesis
of stapled peptides were also studied. Lastly, a methodology for synthesizing diphenylamines with
ammonium formate, a stable ammonia source, was established. Seventeen symmetric diarylated amines
were synthesized using phenols as arylating reagents and Pd/C as the catalyst. Yields for the reaction
ranged from good to excellent, except for severely sterically hindered substrates bearing

multiple ortho substituents.

Developing safer and more sustainable chemical methodologies is an iterative process, whereby
each innovation can improve on the previous state-of-the-art. Thus, while advantages can always be
attributed to any given approach, there is still room for improvement. Palladium on charcoal has proven
to be an effective catalyst for reducing and rearomatizing phenols. Rearomatization necessarily requires
high temperatures and hydrocarbon solvents to proceed; however, the reduction can occur at room
temperature in aqueous conditions. The retention of activity and stability of Pd/C in water is remarkable
for a heterogeneous catalyst, especially if this methodology is later adapted for the valorization of lignin.
The heterogeneous nature of Pd/C made it ideal for catalyst recyclability. However, undeniable challenges
such as mass transfer, dispersion, and chemisorption to determine the available number of active sites
remain to be addressed. This proved especially troublesome when proteins were tested as substrates.
While one alternative to this problem could be the use of miniproteins or globular proteins with a side-
chain to increase the local concentration of the catalyst at the desired site, it might be better to circumvent
this problem altoghether by the investigation of other catalysts. In this regard, the development of water-
tolerant homogeneous or heterogeneous catalysts with an improved pore structure to promote mass
transfer becomes crucial. A complementary alternative to homogenous catalysts comes from the

potential development of versatile ionic liquids, which could successfully promote the reaction.
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Alternatively, the use of light for the activation of C-H bonds could prove extremely compelling. Solving
these challenges becomes increasingly relevant as more complex substrates, such as lignin, are targeted.
Given that we chose phenol as a model compound, subsequent methodologies could look into using more

robust substrates to strike a fairer balance between synthetic efforts and lignocellulose fidelity.

The use of sodium formate as a hydrogen donor and ammonium formate as both the hydrogen
donor and the nitrogen source presents a safe alternative for research and development laboratories, as
it circumvents the need for the manipulation of both hydrogen gas and ammonia. The next improvement
in lignin valorization may involve designing a hydrogen transfer system that could benefit from using lignin
itself as the hydrogen source. This self-production would result in a high atom economy and would entirely

remove desalination challenges upon reaction completion.

While simple innovations can be readily adopted on a short timescale, more profound innovation
can have more economical and sustainable implications. Herein, we have reported three novel
methodologies that shift from traditional chemistry, in the sense that they do not part from highly reduced
starting materials' functionalization. Instead, they harness phenol’s intrinsic functionality. Furthermore,
phenols can be found as monomers of naturally abundant lignocellulose. Some of the reactions reported
in this thesis have already been adopted by other research groups, highlighting their utility. Finally, it is
worth noting that while scientists might understand and accept this notion of continual improvement, it
might confuse the general population, who often prefer definite answers. Based on this, | find it essential
that scientists take a more active role in explaining emerging developments in their fields while becoming
implicated in developing science-based policies or overlooking these processes' industrial
implementation. Personally, | have also learned a lot from the development of these methodologies and
hope other people will have as much growth shall they take it upon themselves to continue with the work

presented herein.
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Figure 19. 'H NMR spectra for compound 3i
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Figure 20. *C NMR spectra for compound 3i
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Figure 21. *H NMR spectra for compound 3j
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Figure 23. 'H NMR spectra for compound 3k
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Figure 24. *C NMR spectra for compound 3k
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Figure 25. 'H NMR spectra for compound 3l
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Figure 27. *H NMR spectra for compound 3m
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Figure 33. 'H NMR spectra for compound 5
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Figure 1. 'H NMR spectra for compound 3
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Figure 3. 'H NMR spectra for compound 3a
A40



Appendix 2. NMR Spectral Data for Chapter 3

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

=

T P a——
T

S9TT_

£EET
ESLE

£r6z - &

ES'BE E

SE9—

140 130 120 110 100 S0
f1 (ppm)

150

—
170

BBELI—

180

hH

190

13C NMR (126 MHz, D:0) 5 172.8, 56.4, 38.6, 3,13, 3.5, 23.2, 2.7,
OH
160

200

Figure 4. 3C NMR spectra for compound 3a

A4l



Appendix 2. NMR Spectral Data for Chapter 3

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

FL l'l
SET o

I SE'[] =
= LET
= BTy o
% 04 [_|. | (=]
— [44]

3 H’[*_I o
= S§°Tq I| |||||I M-
& ER T - = T-\II = izrt
e oL 1sga 0971 L= s0b i
- SR e v |
) g@|w- |l A
s a- =<1 68T F51 | o
= EA T or1 Z} D e A
= o™ 0r'e M
- wed
E“ L 1

. o~
91'€+
o |
§ EI’::'E'|I \ I
— TEEn | \ L <
00 E L : \ ! ' e
. = TEE \ | L 00"
n aly aeresl | = F0T L
- 443 | 1
s ™M
o
=]
oo .
- 91" L
= gal ) 660
= =7 61% | I

g 0z v | 0
E <+
S - £
o L8y ) =g
® "
ci =
=) L
— L1
E
: L

|
& 0
e | o
- o
= S
(o]

-
! X

&
= L 2

. [=a]
-+ .
b= x

s}
o -3

5] e
=8 ° P
E\ N o | :
T |0
o [=)]
E [an]

Z g o
z S

Figure 5. 'H NMR spectra for compound 3b

A42



Appendix 2. NMR Spectral Data for Chapter 3

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

=

09°ST~__

(17+] S

Z59°52
10°9¢—
1Z°0E -
FEQE

30

50

T T T T T T T
150 140 130 120 110 100 90
f1 (ppm)

OH
T
170

o 10eLT—

CHsy

NH
T
180

13¢ NMR (126 MHz, MeOD) 5 172.0, 57.1, 53.3, 30.3, 30.2, 26.0, 25.5, 16.3, 15.6.
T T
190 160

T
200

Figure 6. 3C NMR spectra for compound 3b

A43



Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

Appendix 2. NMR Spectral Data for Chapter 3

au b
90'1-|

, o]
=) 60°T
N }
N
s |
ﬁ o |||
Ll EO —_ L.
I -~ EXN [
- =) —_ E&

; T E&
2 8% e
=] (&) ’%"E
z - - fIsyg

=) — 153
oo Eals.
:‘§ o™ 33{
= 8]
gw
o g
=
X es| e~ |
S @ 1:}'27{3
T ogd )
=t — = ] -:‘
ﬁg‘ e/ <n | a—
- |

- e
o) 9p'c|
;* {pEd
= &
oo
= =
Il q': |
~ ]
%% 98 -
Ef"ﬂ
=

i —
Er--
=
~ -
EI
°F
T
| &
x =
-]
<
=
N e
T e
< o
g

[
g4
=+ =
)
g I
o o
Q= .
ﬁ@ o] [+
Eﬁ T
s d 2 P
oo
o =
)
Z =
:h

Figure 7. *H NMR spectra for compound 3¢
Ad4

oot

=60

40 35 30 25 20 15 10 05 00

4.5

5.5

95 90 85 80 725 70 65

10.0

f1 (ppm)



Appendix 2. NMR Spectral Data for Chapter 3

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

=]
(I
—
85°81~__| o
e | [ R
9£'92y—= r
e _ 4 | o
ez | ™
89606~
99'8k o
£8'8b \
006t \ \
\— AN : arEe——— | E
1e6s— - Q
6699 ——
L =
[
g
= - &
=) —
— o E
! e
Wy S
o -
- Y
og o
v S
(o] —
X!
S L&
l"‘-: —
(=]
(o]
=1 o
— - M
o —
o
e L §
Pt —
e
W
= L R
E —
S -3
i —
2=}
[~ I
a [s]
3 £ s
s o 3] 55 2UT— —
o o
= < &
g Z 0
= T =
== m =
F.
Z
o L 8
o ~

Figure 8. 13C NMR spectra for compound 3¢
A45



Appendix 2. NMR Spectral Data for Chapter 3

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

uu b —D.
E‘\ ID'I-|| d o
- [4in}
é Eﬂll |
o0 (]
i
I l%‘“g L2
% —E] =" h
'_'n 5:"'\ I'—il
E (U I,-\m L 1
= =aH ESB —
E =m Eh::u_ﬂ
ES|w-—H
~ o~ =L o
. EAI T
[ v
~
= L\
(] ~
Ly
- _—
= £ =
-+ mmI . M
E" _ L
-
. (¥
= IEEf o
I e T 99932-2 00T I
L] = e
=) ¥ o
— 88°E =
(o]
LM
E m <
o _
] ¥ —
.-;;98# - _G.E_
o =
—~ i
(| e
E*“ L\
= LA
EE
@ | <
o [¥a)
S &
| ™
o e n
= G
e
==
'—4.-.,: =]
[ - | =t
= F ™~
% o
.TI:C! "
S = o~
=5
i —
) o
e = o
w r T
a - o O
Q! £ |0
[
S8 e} o @
§5“ L ©
== z o
S E
Wy
= A |
- o
§|
z# <
- S

Figure 9. 'H NMR spectra for compound 3d
A4d6



Appendix 2. NMR Spectral Data for Chapter 3

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

F O
| <
i
bI'TTA
STET
55T L9
79'ST=—
€097~
80'97 o
68627 ™
60°TE-
bOb—-— [ F
006t
LT'6b -
[~ A
80°85—— o
=]
L ©
M~
=]
= s]
s -8
o
e —_
I;" g5
b =N
(o] —
'\J_-';\ Y
: 2
=
=
= o
—_ -~
'\-D‘ Ll
]
S
4 o
& -2
: o
= .
= kA
-
— =
A 5
Wy
s
- o
- F WD
(L=} @ —
— I T
ja o O
C o~ D
O T l =
E © © pszir—| | T
= - L §
E =
P o
& -2
Z.
o~ o
ol ]
=
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Figure 11. *'H NMR spectra for compound 3e
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Figure 13. H NMR spectra for compound 3f
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Figure 15. *H NMR spectra for compound 3g
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Figure 17. *H NMR spectra for compound 3h
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Figure 18. *C NMR spectra for compound 3h
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Figure 19. *H NMR spectra for compound 3i
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Figure 37. 'H NMR spectra for compound 3s
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Figure 39. 'H NMR spectra for compound 3t
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Figure 41. *H NMR spectra for compound 3u
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Figure 42. *H NMR spectra for compound 3v
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Figure 43. 13C NMR spectra for compound 3v
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Figure 44. 'H NMR spectra for compound 3w
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Figure 45. 13C NMR spectra for compound 3w
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Figure 46. 'H NMR spectra for compound 3x
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Figure 47. 3C NMR spectra for compound 3x
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Figure 48. 'H NMR spectra for compound 3y
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Figure 1. 'H NMR spectra for compound 3
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Figure 2. 3C NMR spectra for compound 3
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Figure 3. 'H NMR spectra for compound 5
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Figure 4. 3C NMR spectra for compound 5
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Figure 5. *H NMR spectra for compound 7
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Figure 6. 3C NMR spectra for compound 7
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Figure 1. 'H NMR spectra for compound 3a
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Figure 3. *H NMR spectra for compound 3b
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Figure 5. 'H NMR spectra for compound 3¢
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Figure 7. 'H NMR spectra for compound 3d
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Figure 9. 'H NMR spectra for compound 3e

A103



Appendix 4. NMR Spectral Data for Chapter 5

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

10

LS — i

T
20

90'6— = -

| |
60 50 40 30

70

|
100 90 80

T
110
f1 (ppm)

T § Eo— —] F
SLN -1
69°02T——

120

SERll— =

130

T
140

GEEP T~
OSSP |

CHy

MNH
E—— | T
180 170 160 150

T
190

BC NMR (126 MHz, CDCE) 6 145.7, 143.4, 1294, 120.7, 117.5, 115.3, 29.1, 15.7.
T
200

T
210

Figure 10. 3C NMR spectra for compound 3e

A104



Appendix 4. NMR Spectral Data for Chapter 5

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

L <
=
|
=
L=
=) —
= & o SR S ECT
= £TT el - FST9|
o Ly
) -
: Lo
I 40T -2
- 8027 | |
g’ 5.£'3'|| |I | -
= 7 182 | |I E e
< o 92 |
= -
o Al b L€0T
=1 w =
[aa'
) 0E's I
< 16E -0
r\i: -
(]
) L9
= =+
1] I
o (]
o |
3 o
S S8 b—- Bo0T | o
o B I.F;.r-\
) E
- &
[ L]
E e
QCI -
o o
= wo
-’_.-rf -
3 - L
g se — s
= o8 — 13 2 2—[}0‘[ |
= Z28 = =23 =101
o o | oY =660 - 2
£3 <~F oot |
T3 . = _
i 5
53 f - o | -2
*g © SR 1 699 Ly 69 I
L4 i 1rg———= 0T 3 &9 o
g = I 0 | -2
== 989 w _
= — £8'9| ‘ -3 |0
o L= .{819'\"|I y
L] p= - L
5% = 25 I (A== 10T I
Q! < v L9 =
= . o P
b = S6'9 J ) I
N @o|l 69— 660 o
= % =
o . . -
o T F |
g% O 8- o0t Lol o :
2 SR e —— 001 |
Zn @ Ay "
— QGl T - ]
= = =]

Figure 11. *H NMR spectra for compound 3f
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Figure 13. *H NMR spectra for compound 3g

A107



Appendix 4. NMR Spectral Data for Chapter 5

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

10

T
20

T
30

b TE—
wye———f |

60 50 40

T
70

1694 |
9T'LL }
827 B

T T
100 90 80

T
110
f1 (ppm)

86'F 11
[rs1 3 |

608TT- =

120

0redl—— -

130

T
140

0T e T——

CHy
CHs

T
150

€95 ——

T T
180 170

T
190

CHs
T
200

HsC
HiC

C NMR (126 MHz CDCh) 8 152.6, 143.1, 129.1, 118.1, 115.2, 115.0, 34.9, 31.5.
T .
210

Figure 14. 3C NMR spectra for compound 3g

A108



Appendix 4. NMR Spectral Data for Chapter 5

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

L =
=
Ly
=]
L =2
f Lol
—-— _— I—m‘m -
b "
! o
| L
L 2
i~
| w
™~
—
]
L v
™
L=
b
" |0
L & -
oo
- i -
) L 2§
":. """&
,_L B —
— L
: (Tl
= 555—-:[—5['[ L

o
= L
A =
l.ﬁ' w
;:'\ L
= | in
) ¥
8 L
r- Ly 00 ;} ;

. T _ 0w | o
) £ P 071+ ~
= TS | ey |
E 6TL 1 "
~ < o~
I T
- F
o Lo
A @
o
(7<) r
= z |
'E vl
3 i
) L =
= o
2 . i
- T
7 E 1
;; =
P o F
z £ 9 S
- T e
L —

Figure 15. 'H NMR spectra for compound 3h
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€60
960 1
09T+ -
19T '
sa‘rﬁ—?p_—;‘_
g1
152
£57— =
Sz
|
|
69
86'9~_ _

0L~ f ]
mx et
9T

Al11

E61'9

E1iv'y

Fon'y

e0't
KGU#

0.

0.5

40 35 30 25 20 15 10

4.5

8.0 7.5 7.0 6.5 6.0 5.5 5.0
f1 (ppm)

8.5

9.0

9.5

10.5 10.0

1.0



Appendix 4. NMR Spectral Data for Chapter 5

Palladium Catalyzed Reductive Amination of Unactivated C-O Bonds

10

66'ET—— —1 |

20

BY——3

30

B E—

T
40

50

T
60

70

T
90 80

T
100
f1 (ppm)

T
110

LA —

T
120

T
130

SE'E-ZIf

CH,

EESEl-—"" T
DFTH'\ -

MH
T T T T T
190 180 170 160 150 140

T
200

BC NMR (126 MHz, CDCh) & 141.4, 135.3, 129.4, 118.0, 37.5, 24.9, 14.0.
HsC

T
210

Figure 18. *C NMR spectra for compound 3i
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Figure 19. Crude *H NMR spectra for compound 3j
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Figure 20. 'H NMR spectra for compound 3k
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Figure 22. *H NMR spectra for compound 3l
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Figure 24. 'H NMR spectra for compound 3m
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Figure 26. 'H NMR spectra for compound 3n
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Figure 28. 'H NMR spectra for compound 30
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Figure 29. 13C NMR spectra for compound 30
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Figure 30. *H NMR spectra for compound 3p
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Figure 31.%3C NMR spectra for compound 3p
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Figure 32. 'H NMR spectra for compound 3q
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Figure 33. 13C NMR spectra for compound 3q
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Figure 34. 'H NMR spectra for compound 4a
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Figure 35. 13C NMR spectra for compound 4a
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