INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UM! directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

A Secure, Anonymous and Scalable
Digital Cash System

Feng Xue

School of Computer Science
McGill University, Montreal
August 1999

A thesis submitted to the
Faculty of Graduate Studies and Research
In partial fulfillment of the requirements for the degree of
Master of Science

© Feng Xue, 1999

i+l

Your Sle Votre réfdrence

Our fle Notre référence

L’auteur a accordé une licence non
exclusive permettant 2 la

National Library Bibliothéque nationale
of Canada du Canada
uisitions and Acquisitions et)

Bibliographic Se:vices services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-

exclusive licence allowing the

National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-64484-7

Canadi

Table of Contents
Résuméccccuuee... cocssscccns stsessrescasessesterannsssannssescccancsass cocesssss vi
Abstract cectsessseceencsscee csecsesccncesessesssanctssessescsccsssesss cesccces vii
Acknowledgementscceceeeeienciincccancccencnaes sesevscccecassoseass cessscsscannce viii
Introduction cetsesecstccaaacencosrasrensasccatacssans cesereescscecsnsescassesscocannns ix
Chapter 1. E-commerce and cryptographic techniquesccccceeecacennnn... 1
1.1 E-commerce and digital payment systemscc.cceveeviiniinnninnnn 1
1.2 Cryptographycc.oneeiiiiiiiii i te et aenes 2
1.2.1 Security attacksccooiiiiiiiiiiiiiiiiiiieiiiiiiieeeaeees 2
1.2.2 SeCUrity SEIVICESoeonneiiiiiiiniinieeeeeanseeotianeeniaeeiannes 3
1.2.3 Cryptographic techniquescooiiiiiiiiiiiiiiia... 4
1.2.3.1 Encryption and decryptionccccininnann..ne. 4
1.2.3.2 Digital signaturesccccccevieriieiniinneinnn. 10
1.2.3.3 Certificates and certification authorities 14
1234 RSA e 15
Chapter 2. Digital payment SyStemsccccceetieranrecceseccsscssccsens creesssssens 17
2.1 Secure credit card SYStEMSooviniiiiiiiiiiiiiiiiie e 17
P20 U8 1 PN 17
2.1.2 Other systems in this categorycccoceiiiiiiiiiininenn 19
2.2 Credit-debit SYStemScocvvueiiniiiiiiiiiiiieeieiaeeenacrietaanteneeenans 20
2.3 Digital cash Systemscccoiiiieiiiiiiiiiiiiiiic i 21
2.3.1 Properties of digital cash systemsccccccvveeeineinneann... 22
2.3.2Double-spendingccoiciiiiiiiiniiiiiiieeeiirieieee e 26
2.3.3 Digital cash proposalsccvceiiiieeenerineiiiornreneanene 27
Chapter 3. eCash and NetCash eessessersetscencstatcestsessssscccencacannosanes 29
3.0 eCash .. uieiiniii i e e et ee et e e ane 29
3.1.1 Blind Signaturecccocciiiiiiiiiiienieiiniiiiiiieieea, 30
3.1.2 Cryptography basis for blind signaturee. 30
3.1.3 Withdrawal of eCash coinsccoocevveiiiiiiiiiiinniinen 31
3.1.4 Payments with eCashcoinsccoeeeviiiiiiiiiiiiiin 33
3.1.5Depositof eCash coinsccciieieriiieiiiiiiiiinnin., 34
3. 1.6 DiSCUSSION ...ociinnniiii i iiiii e rie ittt 34
B2 NEtCashoeiniiiiiiiiiii e r e et aes 35

3.2.1 Withdrawal of NetCash Coinsccovveeeerreeneiiiiiiiiienen. 36

3.2.2 Money-exchange

3.2.3 Payments with NetCash Coinsccccevviiiiieiiiininnnan.
3.2.4 Deposit of NetCash Coinscccceeeeiiinnininiiinininaninn.
3.2.5 DiSCUSSION ...covviuiiiniiiiiiiiieieiiriiniieiaieiaeietiseaenanns

3.3CoNCIUSION ..cvvvevrerenrniiineiinennnnes

Chapter 4. Combinaﬁ“n 0fwash and Netc.sh 00RO PORP0000000000000000OOOGOIOIOIOIOIRTIS

4.1 Combine eCash and NetCash
4.1.1 Digital coin and digital note .

4.1.2 Entities and protocols

oooooooooooooooooooooooooooooooooooooo

4.1.3 Server side mechanisms for double spending detection

4.1.4 Digital cash withdrawal
4.1.5 Digital cash exchange

ooooooooooooooooooooooooooooooooooooooo

.......................................

4.1.5.1 Exchange note forcoinsc..ocoocoeieen..n..
4.1.5.2 Exchange coins forcoinsccccvieeveeennnnnnn.

4.1.6 Digital cash payment
4.1.7 Digital cash deposit

.......................................

4. 1.8 DISCUSSION ...oenreeiiiiereenaenensartenseteeeseeneneeeeennsenes

4.1.8.1 Multi-party security

oooooooooooooooooooooooooooooooooooooo

4.1.8.2 Unconditional Anonymitycc.cccveieeenan....
4.1.8.3 Enhanced scalabilityccooeiiiiiiiiiiiii..

4.2 Extending the system
4.2.1 Enhance scalability

ooooooooooooooooooooooooooooooooooooooo

.......................................

4.2.2 Extend cash exchange mechanismc.cccoeinenan
4.2.2.1 Offer payees unconditional anonymity

4.2.2.2 Offer “Divisibility”

fordigitalcash

Chapter 5. Implementation cosssssnssasessnassrassecns sesecessosesssaces

5.1 Introductioncocoevviniiiiiinnnne..
5.2 System requirements and architecture .

5.3 Implementation tool

5.4 What have beendone
5.5 Implement blind signature
5.5.1 Generate public/private key p

.......................................

11 ¢

5.52Blindtheserial numberccooviiiiieiiiiiiiiiiiiiraiaiiaann

5.5.3 Sign a blinded serial number

5.5.4 Unblind and verify the bank’s signature
5.6 Implement the server-client communicationcccoceeeenen.....
5.7 Implement database aCCESSceeeveriineiiniinrenriiintreerinceneeres
5.8 Implement graphic user interface (GUI)cccooviiiininiiian...

36
36
37
37
40

41
41
41
42
43

46
46
48
48
50
51
51
52
53
54
55
58
59
60

62
62
62

66
68
69
70
70
71
73
76

78
79
82

List of Figures and Tables

Figure | — Encryption and decryptionc.ccoiiiiiiiiiiiiiiiiiiiniiinne..
Figure 2 — Encryption and decryption with symmetric algorithms

Figure 3 — Encryption and decryption with asymmetric algorithms
Figure 4 — Digital signatures with public-key algorithmsc.ccoieinnil.
Figure 5 - Entities and protocols in typical digital cash payment systems
Figure 6 — Entities and protocols in the new digital cash system
Figure 7 — Server-side databases for detecting double-spending
Figure 8 — One new database is added for enhancing the system scalability
Figure 9 - Exchange anote foranew notecccccocviiniiiiiiiiiiiieiiincnnnn.
Figure 10 — Exchange coins foramnotecocovveemiiimiiiiiiiiiiiiiinie,
Figure 11 — System architecturec.ccoeeiiiiineiiiiniiiiiiiiic e
Figure 12 — Class diagram in package ca.crim.dcash (UML)
Figure 13 — Classes in package ca.crim.dcash with details (UML)
Figure 14 — GUI: Configurationoeiiiiiiiiiiiiiiiiiiiiiiiciii e
Figure 15— GUIL: Denominationsccooiiineiiiineeceotitieeeaaeiicmaeeaenenienas
Figure 16 — GUIL: WIthdrawc.ooiiiiiiiiiiiniiiie i ioiiiiiiiice e e e

Table 1 — Comparing eCash and NetCashccooevvieviiiiiiiiiiiiiiiiuniaenns
Table 2 — Table Denomination in thedatabase Bankccceveevrireriieiiiereinnenens
Table 3 — Table Notesinthedatabase Clientc..ooeuiiierieiiioeeeeeniaiiennnnns

iv

14
22
43

56
59
60
63
65
67
76
77
77

40
74
76

Résumeé

Les signatures a [’aveugle réalisent I’anonymat dans les systémes de paiements
électroniques. Cependant, une fois déployées dans les systémes d'argent numérique tels
que « eCash », les signatures a /’aveugle engendrent des inconvénients tels que la
mauvaise résistance aux changements d’échelle et 'anonymat non garanti. Dans ce
mémoire, nous proposons de combiner les signatures numeériques a un autre mécanisme
appelé « Money-exchange » existant dans « NetCash » pour élaborer un nouveau systéme
de paiement électronique. Dans le nouveau systéme, deux formes d'argent numérique
sont introduites : les billets numériques et la monnaie numérique. Nous avons étendu le
mécanisme « Money-exchange » pour permettre 'échange d'argent d'une forme a une
autre. Du coté de I'émetteur d'argent numérique, au moins deux bases de données sont
maintenues pour détecter le double paiement. Ce nouveau systeme d'argent numérique est
trés sécuritaire du fait qu’il utilise deux algorithmes de cryptage symétrique et
asymétrique. La combinaison des signatures a4 /’aveugle avec notre extension du
meécanisme « Money-exchange » offre un anonymat complet et inconditionnel. Cette
combinaison permet aussi une meilleure résistance aux changements d’échelle du

systeme par rapport au nombre de clients a servir.

vi

Abstract

Blind signatures make anonymity a reality in digital cash systems. However, when
deployed in digital cash systems such as eCash, blind signatures raise such drawbacks as
bad scalability and unfair anonymity. In this thesis, efforts have been done to combine
digital signatures and a mechanism called “money-exchange” found in NetCash to build a
new digital cash system. In the new system, two forms of digital cash are introduced:
digital notes and digital coins. “Money-exchange” is extended to permit cash exchange
from one form to the other. At the side of the digital cash issuer, at least two databases
are maintained to detect double-spending. The new digital cash system is secure due to its
deployment of both symmetric and asymmetric encryption algorithms. The combination
of blind signatures and the extended money-exchange mechanism offers unconditional
and fair anonymity, and it makes the system mdre scalable with the regards to the number

of clients served.

Acknowledgements

First of all, I wish to give my thanks to my thesis supervisors Professor Petre Dini and
Professor Claude Crépeau for their guidance, advice, and encouragement throughout the
research. This thesis benefits from their careful reading and constructive criticism.

I truly thank CRIM for supplying me a wonderful researching environment and the
generous financial supports.

I also wish to thank the School of Computer Science for the graduate courses and the
research environment. Thanks to our graduate secretary Franca Cianci for her wonderful
works.

Finally, I am especially grateful for the supports and encouragements from my wife Tiao
during the graduate studies and research.

Introduction

A secure, anonymous and scalable digital payment system is critical to persuade people
into e-commerce activities. Since 1980s, many digital payment systems, mechanisms and
protocols have been proposed, and among them, some are being evaluated or even have
been commercially deployed. There are many forms of electronic payment systems just
as there are many forms of traditional payment instruments. Generally, they fall into three
categories: secure credit card system, credit-debit system, and digital cash system. Each
one has its advantages as well as disadvantages. For example, the secure credit card
system is the easiest one to implement, and it is the most similar to the current
conventional bank payment systems. However, clients’ privacy such as purchase habits is
exposed to the financial institutions. Therefore, it does not offer anonymity. Currently, it
is widely accepted that digital cash systems stand for the future of digital payment
systems, because they offer anonymity to individuals.

The fundament of digital cash systems for offering anonymity is blind signature. Blind
signature extends RSA digital signature algorithm in such a way that a message is
concealed from the signer when it is being signed. When blind signatures are deployed in
digital cash systems, they give a client a way to hide the identities of digital cash when
they are withdrawn from a bank. Thus, the spending pattern of the client with the bank-
blindly-signed digital cash is undetectable to others. eCash is such a digital cash system
which makes full use of blind signature mechanism. However, it has been pointed out
that blind signatures also produce some shortcomings. First, the scalability of the system
is quite unsatisfactory due to the deployed mechanism of detecting double spent digital
cash, and the bad performance of the mechanism is due to the deployment of blind
signatures. Second, anonymity offered is not fair. Only payers are unconditionally

anonymous, while payees are not.

There is another presented digital cash system, NetCash, which offer anonymity through
a mechanism called money exchange. Although the provided anonymity is not
unconditional, it is fair to both payers and payees and the performance of its double-
spending detection mechanism is better than that of eCash. It is imaginable that
combining blind signature and cash exchange could be a practical solution for building a
better digital cash system.

The main purpose of this thesis is to present the attempts of building this new system.
The contents of the paper are divided into five chapters. Chapter 1 introduces the current
states of e-commerce and discusses cryptographic techniques. Chapter 2 addresses
vanant digital payment systems. Chapter 3 delves into two digital cash systems eCash
and NetCash, with emphasis on blind signatures and money exchange mechanisms,
respectively. In Chapter 4, the attempts of combining eCash and NetCash are presented
in details. In Chapter 5, a partial implementation of the presented system is included.

Finally, conclusions of the thesis and future works are given.

Chapter1 E-commerce and
Cryptographic Techniques

1.1 E-commerce and digital payment systems

Information technologies are significantly changing the ways we store, distribute and
access information. Financial information is also greatly impacted by these technologies.
In recent years, electronic commerce (e-commerce) has created quite a buzz in the world

of finance, commerce and trade as well as IT industry. So what is e-commerce?

E-commerce doesn’t always mean buying and selling goods and services on the Internet.
In fact, it has been found [ITAA98] that the e-commerce activities are split between
business-to-customer transactions (such as sales and customer service), and business-to-
business transactions (such as those supporting sales, order processing, and resource
management). Also it is discovered that the latter even has made more significant gains
recently. Therefore, any activities involving financial, commercial or business
information exchanges via telecommunication means such as telephone and computer
networks may be regarded as e-commerce activities. In this thesis, the discussion is
focused on one aspect of the business-to-customer transactions, the digital payment

systems.

It is widely accepted that the Internet will be the main media and means for e-commerce
because of its ever-increasing popularity. At the time of writing, it has been estimated
that world total population online is 158 million [Nua]. However, among them, it is found
that 82.5% do one, less than one or none purchase each month [GVUI10]. And it is also
discovered [GVU10] that only 4.3% are not at all concerned about security when making
purchases or banking over the Internet. It is estimated [ITAA98] that more and more
transactions are either solely Internet-based or based on a mix of proprietary networks
and the Internet. Current e-commerce doesn’t fulfill people’s expectation for a secure and
privacy-respecting e-commerce infrastructure. This state is in a large degree due to the

vulnerable characteristics of Internet itself. We must accept the fact that e-commerce is

Chapter 1 E-commerce and Cryptographic Techniques 2

still under definition and construction, and a lot of work is needed to do to make the
Internet a mature digital market.

Digital payment systems have been the prime target for research in e-commerce for over
two decades. This should not be a surprise. Commerce always involves a payer, (who is
called Alice in this thesis), a payee, (who is called Bob) and at least one financial
institution, (who is named Cyber Banque). Analogous to the current finance and trade
markets based on traditional payment instruments such as cash, checks, credit cards, debit
cards, etc, a digital market must be based on a robust, secure and efficient digital payment
scheme. Only after such a digital payment system is built up, a digital market with all the
traditional commerce elements such as shopping, bidding and bargaining, brokerage, and

delivery may be constructed.
1.2 Cryptography

Security is the most concerned in a digital payment system. Cryptographic techniques are
the most often applied in various payment systems for security purposes. This section
starts the introduction on some basic techniques in cryptography by addressing variant

security attacks against the communication across an open network

1.2.1 Security Attacks

In the context of the communication across a network, the following attacks can be

identified:

* Disclosure: Release of message contents to any unauthorized person.

* Traffic analysis: Discovery of the pattern of traffic between parties.

® Masquerade: Insertion of messages into the network from a fraudulent source.

= Content modification: Changes to the contents of a message, including insertion,

deletion, transposition, and modification.

Chapter 1 Eccommerce and Cryptographic Techniques 3

® Sequence modification: Any modification to a sequence of messages between parties,
including insertion, deletion, and reordering.

* Timing modification: Delay or replay of messages.

* Repudiation: Denial of receipt of message by destination or denial of transmission of

message by source.

1.2.2 Security Services

Four general security services encompass the various functions required for an

information security facility.

® Confidentiality ensures that the information is protected against unauthorized
disclosure. In a digital payment system, disclosure of critical transaction information

such as credit card numbers to illegitimate parties may cause a disaster.

® Authentication ensures that the origin of the information or the identity of a

participant is correctly verified.

» Integrity ensures that the information is protected against unauthorized modification,
and indicates whether or not such modification has occurred. In a digital payment
system, attackers could attempt to change the transaction information by deleting,
replaying or altering a message. For example, a malicious attacker could intercept the
payment information from Alice to Bob, change some critical data such as the

payment amount, and then retransmit it to Bob.

® Non-repudiation ensures that any party involved in the information transmission
cannot deny either the participation in or the content of that transmission. In a digital
payment system, for example, Alice could fraudulently claim that she did not, (in fact
she did), authorize a payment to Bob, which could cause profit loss to Bob.

Chapter 1 E-commerce and Cryptographic Techniques 4

1.2.3 Cryptographic techniques

The first concern of cryptography is how to keep communications private. Encryption
ensures privacy by keeping information hidden from anyone for whom it is not intended.
Decryption is the reverse of encryption; it transforms encrypted data back into an
intelligible form.

However, nowadays cryptography is more than encryption and decryption.
Authentication is as important as privacy when information is communicated
electronically. Digital signatures and digital certificates are among the cryptography
mechanisms to offer authentication. In this section, these cryptographic techniques are

discussed that are quite critical for developing digital payment systems.

1.2.3.1 Encryption and Decryption

How to render a message incomprehensible to an unauthorized reader is the traditional
aim of cryptography. The words, characters, or letters of the original intelligible message
contribute the plain text. The words, characters, or letters of the secret form of the
message are called cipher text. The process of converting plain text into cipher text is
encryption. The reverse process of converting cipher text into plain text is decryption. An
encryption/decryption algorithm and the associated encryption key and decryption key
are required for the processes. (See Figure 1.) The algorithm is a set of mathematical
rules to determine the transformation process of encryption and decryption. The keys act
as a parameter of encryption/decryption algorithm and control the transformation
processes. If P is the plain text message, and £ and D are the encryption and decryption
algorithms respectively, it is required that

DEP) =P

That is, decrypting the encrypted message results in the original plain text message.

Chapter 1 E-commerce and Cryptographic Techniques 5

Alics

Figure 1 - Encryption and decryption

Confidentiality of transaction information in a digital payment system can be achieved by
applying encryption techniques. Alice and Bob can agree on a certain method of
encryption and decryption prior to the transmission of transaction data to ensure that the

data is not understandable to others.

Note that, while modern cryptography is growing increasingly diverse, it is
fundamentally based on problems that are difficult to solve. The problems are hard
because they are intrinsically difficult to complete. Prime factorization of a large integer
is an example of such problems. Given a large integer n, it is not easy to find the prime
factors p and q such that n = pg. In fact, factoring is the underlying, presumably hard
problem upon which several cryptography algorithms are based, such as the RSA
algorithm, (refer to section 1.2.3.4). The security of the RSA algorithm depends on the
unproved assumption of factoring problem being difficult and the presence of no other

Chapter 1 E-ccommerce and Cryptographic Techniques 6

types of attack'. The theory of computational complexity is relevant here, since it
classifies algorithms according to their difficulty. Difficulty in this case refers to the
computational requirements in finding a solution. If an encrypted message cannot be
decrypted by an attacker within practical time and with acceptable amount of resources, it
loses its value for the attacker. In other words, whether a cryptography system is secure
or not is relative. For example, in 1997, it was found that, a RS4 512-bit key might be
factored for less than $1,000,000 in cost and eight months of effort [Rob95]. Therefore,
an RSA 512-bit key at that time was not secure enough for corporate use, while it might
be secure enough for casual personal use. Today, it is recommended the key sizes of 768
bits for personal use, 1024 bits for corporate use, and 2048 bits for extremely valuable
keys [RSA98].

Encryption/decryption algorithms fall into two categories: symmetric algorithms and
asymmetric algorithms.

s Symmetric encryption

Symmetric encryption, also referred to as secret-key encryption, makes use of an
algorithm that applies a unique key for both encryption and decryption. The key is often

referred to as secret key.

With the plain text P and the encryption key X as input, at the side of the sender Alice,
the encryption algorithm computes the cipher text C denoted as

C=EP K)
The intended receiver Bob, in possession of X is able to invert the transformation:

P=ID(C, K)

! There has been some recent evidence that breaking RSA is not equivalent to factoring [DB98].

Chapter 1 E-commerce and Cryptographic Techniques 7

The fact is the encryption algorithm E and the decryption algorithm D are publicly
known. The attacker Jack, observing C and having knowledge of £ and D, but not
possessing K or P, will find that it is impractical to recover P or K or both P and XK.

Alice Unique Secret Key

Figure 2 - Encryption and decryption with symmetric algorithms

The security of a symmetric encryption is based on the assumption that the sender and the
receiver exclusively share the key. Therefore, when deploying symmetric encryption, the
principal security problem is maintaining the concealment of the key. If Alice generates
the key, she must also transmit it to Bob by means of some secure channel, such as a
confidential mail. (See Figure 2.) Alternatively, a third party, trusted by both Alice and
Bob, could generate the key and securely deliver it to both Alice and Bob.

The most widely used symmetric encryption algorithm is Data Encryption Standard
(DES).

Chapter 1 E-commerce and Cryptographic Techniques 8

® Asymmetric encryption

Asymmetric encryption algorithms are also referred to as public-key algorithms. Instead
of using the same key, an asymmetric algorithm makes use of two separate but
mathematically related keys for encryption and decryption respectively. The creator of
the key pair maintains one key secret (the private key) and makes the other key (the
public key) known to anybody he or she may want to correspond with. A message
encrypted with one key of the pair can only be decrypted by the other. It is not
computationally possible to deduce one key from the other given knowledge of the
algorithm. Thus, a message encrypted by Alice with Bob’s public key can only be
decrypted by Bob using his private key. No other people can decrypt the message
because only Bob knows his private key. (See Figure 3.)

With this approach, all participants have access to public keys of the correspondents, and
private keys are generated and kept locally by each participant and therefore never need
to be distributed. As long as the private keys are protected from disclosure, the

communication is secure.

In this thesis, a public key is represented as the letter K with a subscript naming the

owner; for instance, Kgop Stands for Bob’s public key. The associated private key of Bob

is represented as K 'gop.

Chapter 1 E-commerce and Cryptographic Techniques 9

Public Networks

Alice's Local Copies of Bob's Local Copies of
Other People’'s Publ ic Key Other Peop le's Public K ey

Figure 3 - Encryption and decryption with asymmetric algorithms

With the plain text message P intended for Bob and Bob’s public key Kpop as input, Alice
forms the ciphered message C with the encryption algorithm £:

C = E(P$ KBob)

Bob, in possession his matching private key K 'gob, is able to invert the transformation to

recover the plain text with the decryption algorithm D:

P=D(C, K" o)

Chapter 1 E-commerce and Cryptographic Techniques 10

The attacker Jack, observing C, having access of Ko, and having knowledge of £ and D,
but not possessing K 'gob or P, will find that it is impractical to recover P or K 'gop or both
P and K ' g

The RSA algorithm is the most widely accepted and implemented general-purpose
approach to asymmetric encryption. The RSA algorithm will be discussed at the end of
the chapter.

1.2.3.2 Digital signatures

Digital signatures are fundamental in authentication, authorization, and non-repudiation.
Although asymmetric cryptography is the mostly employed means for digital signatures,
symmetric cryptography can also be used to authenticate a message.

® Message authentication codes (MACs)

A message authentication code (MAC) is an authentication tag (also called a checksum)
sent along with the original message. A MAC is computed as a function of the message M
and a secret key K shared by the sender and the receiver. That is, MAC = AM, K).

The receiver, knowing f and K, can also compute the MAC and compare it with the
received one. If they match, the message’s integrity and the sender’s identity are correctly
verified.

It should be noted that a sender could repudiate a previously authenticated message by

claiming the secret was somehow compromised by the recipient who shares the secret.

There is no means within MACs to resolve this dispute.
® Hash functions and message digests

A hash function H is a transformation of the form:

Chapter 1 E-commerce and Cryptographic Techniques 1

h = H(x)

where x is a variable-length message and # is the fixed-length hash value. The hash value
is also called the message digest. A hash function A employed in cryptography is usually

chosen to have also the following properties:

® H(x) is easy to compute for any given x ,
®* H(x) is one-way,

® H(x) is collision-free.

For any given code A, if it is computationally infeasible to find x such that A(x) = A, the
function A is referred to as one-way. For any given message x, if it is computationally
infeasible to find y # x such that H(y) = H(x), H is referred to as weak collision-free. If it
is computationally infeasible to find any pair (x, y) such that x # y and H(x) = H(y), H is

referred to as strong collision-free.

Two well-known hash functions are Message Digest 5 (MDS5) and Secure Hash
Algorithm (SHA-1).

One of the main roles of a cryptographic hash function is in the provision of digital
signatures.

* Digital signatures

It is a good solution to authenticate messages using a secret key if the parties involved are
confident in the key’s secrecy and if no disputes can arise. However, such a solution can
never prove that a message came from the sender. Since both the sender and the receiver
know the key, either one could have sent the message. Verifying the sender’s identity and

resolving disputes require digital signatures.

Chapter 1 E-commerce and Cryptographic Techniques 12

A digital signature of a message is a block of data dependent on some secret known only
to the signer, and, additionally, on the content of the message being signed. A digital
signature is verifiable; if a dispute arises as to whether Alice signed a message, an
unbiased third party should be able to resolve the matter equitably, without requiring

access to Alice’s secret information.

Thus, a digital signature scheme consists of a signature generation algorithm and an
associated verification algorithm. A digital signature generation algorithm is a method for
a signer to produce a digital signature on a particular message. A digital signature
verification algorithm is a method for verifying that a digital signature is authentic, (i.e.,
was indeed created by the specified signer).

A digital signature generation algorithm (the signing process) must use some secret
information that is only accessible to the signer. A digital signature verification algorithm
(the verifying process), in contrast, uses some public information about the signer to
verify the signature. Some public-key cryptography algorithms, among other
mechanisms, can be deployed as digital signature schemes: the signer signs a message
with his or her private key, while anyone else may verify the signature using the public
key of the signer. It should be noted that with some public-key cryptography algorithms
such as RSA, signing a message is actually employing the encryption algorithm on the
message with the signer’s private key, and verifying a signature is actually employing the
decryption algorithm on the signature with the signer’s public key. But this is not always
the case for all public-key systems. The following discussions on digital signature
mechanisms are based on public-key cryptography algorithms that are the likes of RSA
algorithm.

Suppose Alice wants to send a signed message M to Bob (see Figure 4). Generally the
first step is apply a one-way hash function H to the message, creating a message digest A.

h = H(M)

Chapter 1 E-commerce and Cryptographic Techniques 13

To create a digital signature S, the signing process usually signs the message digest A
instead of the message itself. In this way, it saves a considerable amount of time, because

a message digest is shorter compared to the message itself.

Next, by encrypting the message digest & with her private key K ! alice, Alice actually
creates a digital signature S on 4 with a secret of herself:

S = Sign(h, K atice)

Alice sends Bob the signature S together with the message. In order for Bob to verify the
signature, he must first apply the same hash function H as Alice did to the message M she

sent him:
hy = HM)
Then he verifies Alice’s signature S using her public key:
Ve en_'/jJ(S, KAlicc’ hl)
The verification process above is actually accomplished in two steps. First, it decrypts S
with Alice’s public key K4 to get a value A;. Second, it compares h; and A;: if they are
the same, it means that the signature is successfully verified; otherwise, the verification

fails, that may suggest that either someone is trying to impersonate Alice, or the message

itself has been altered since Alice signed it, or an error occurred during the transmission.

Chapter 1 E-commerce and Cryptographic Techniques 14

(——T\ HashH ()
T
| N)
L ‘

4

!

Compare A/ and A2

Verity ()
[
el
7 *M
BoIPrlvno
Key

Alice’s Locat Copies of Bob 's Loc alCople s of
Other People 's Public Othe r P eopt e's Publi ¢
Keys Key s

Figure 4 - Digital signatures with public-key algorithms

1.2.3.3 Certificates and certification authorities

Public keys are sometimes considered simpler to manage because they can be distributed
across insecure channels. However, for example, when Alice wants to communicate with

Bob she must be assured that she is using Bob’s correct and authentic public key, and if

Chapter 1 E-commerce and Cryptographic Techniques 15

she receives a signed message from Bob she must have a way to check that the signature
is authentic and still valid.

The usual solution is for users to register their public keys with a trusted registry or
certification authority (CA). The CA distributes certificates, which are public keys
carrying the digital signature of the CA. To verify a certificate, a user needs only the
CA'’s public key that can be published in many ways and places.

A certificate contains more than just the public key. The user’s public key is combined
with other significant information before signed by the CA. Such information may
include the name of CA, validity period (start and finish dates) and the name of the user.

1.2.3.4 RSA

RSA is an asymmetric cryptography system that offers both encryption and digital
signatures [RSA78]. In this thesis, RSA will be employed to offer some most important
features of the presented digital cash system, so in this section, a brief description of the
algorithm is given.

RSA works as follows:

1. Randomly generate two large primes, p and q.

2. Compute their product n = pq; n is called the public modulus.

3. Select a number, e, less than 7 and relatively prime to (p-1)(g-1), which means
e and (p-1)(g-1) have no common factors except 1.

4. Compute another number d, the multiplicative inverse of ¢ modulo (p-1)(g-1),
which means (ed - 1) is divisible by (p-1)(g-1). (d is also denoted as e! or
l/e.))

Chapter 1 E-<commerce and Cryptographic Techniques 16

The public key is the pair (n, €); the private key is d. The value e is called the public
exponent; the value d is called private exponent. The factors p and g may be secretly kept
with the private key, or destroyed.

®* RSA Encryption

Suppose Alice wants to send Bob a message p, and she is in possession of Bob’s public

key (n, e). She creates the cipher text ¢ as:
c=p°modn

She sends ¢ to Bob. By decrypting it with his private key d, Bob get the plain message:
pP= ¢?mod n

The relationship between e and d ensures that Bob correctly recovers p. Moreover, since

only Bob is in possession of d, no one else other than Bob can decrypt this message.
* RSA Digital Signature

Suppose Alice wants to send Bob a digitally signed message p, and her public key (n, €)
is known to Bob. Alice creates a digital signature s on p with her private key d:

s=p°mod n

She sends p and s to Bob. To verify the signature, Bob checks if the following is
satisfied:

p=s°mod n.

17

Chapter 2 Digital Payment Systems

In Chapter 1, several cryptographic techniques, encryption/decryption, digital signatures
and digital certificates, are discussed respectively. In this chapter, applications of these
techniques on various digital payment systems are addressed. Digital payment schemes
generally have three models: secure credit card systems, credit-debit systems, and cash-

like system, (also called digital cash systems).

2.1 Secure credit card systems

This model enhances the traditional credit card payment system by securely protecting
the credit card number from eavesdropping. This model is anticipated to be the most
acceptable to all entities because it is based on a mechanism that both consumers and
merchants are familiar with, and it maintains the benefits of the government and the
traditional financial institutes. One proposal of this payment model, iKP, is shown in the
following subsection, and other well-known proposals are addressed at the end of the

section.

2.1.1 iKP

The iKP protocols are a family of protocols — iKP (i = 1, 2, 3) — for secure digital
payments over the Internet. The protocols implement credit card-based transactions
between customers and merchants using the existing financial networks for clearing and
authorization. [iKP95]

The reason iKP was focused on the credit card payment model is that its developers
believed that this model “is anticipated to be the most popular in the future.” However at
the same time, it is claimed that they *“‘can be extended to apply to other payment models,
e.g., debit cards and electronic checks”. [iKP95]

Chapter 2 Digital Payment Systems 18

iKPs make use of public-key cryptography. As the increase of the number of parties that
possess their own public/private key pairs, indicated in the name of each protocol by i,

the iKP protocols offer increasing level of security and complexity.

IKP, the simplest in the family, requires that only the “acquirer gateway” (the iKP
term for a bank) possess public/private key pair. Customers and merchants need only
to possess the authentic public key of the gateway, or the authentic public key of an
“authority” that validates the gateway’s public key via a signed certificate. [iKP95]

When Alice makes payment to Bob, she encrypts her credit card number and possibly
associated PIN with the public key of Cyber Banque, and binds them with the
relevant purchase information. She then sends the message to Bob, who immediately
forwards this message to Cyber Banque for verification. Cyber Banque decrypts the
message with its private key, checks the card number and possibly the PIN. If they
are valid, the bank will authorize the transaction by digitally signing it with its private
key, then return it to Bob. It is easy to see that customers of /KP are actually
authenticated based on their credit card numbers, and possibly associated secret PINs.
In addition, since Alice’s card number and PIN are encrypted with Cyber Banque’s
public key, therefore no one except Cyber Banque will be able to uncover the secrets.

IKP does not offer non-repudiation for messages sent by customers and merchants.
There is no mechanism for the acquirer to get a proof of transaction authorization by
merchants. The proof of transaction authorization by customers are the credit card
numbers and PINs, which are deniable proof since the disclosure of these secrets is

not impossible.

2KP requires that merchants should, in addition to acquirer gateways, possess
public/private key pairs and key certificates. Non-repudiation is consequently offered
for messages originated by merchants. This is achieved by requiring the merchants
digitally signing the transaction data with their private keys. Moreover, 2KP enables
customers to verify that they are dealing with genuine merchants. This is achieved by

Chapter 2 Digital Payment Systems 19

checking the merchants’ certificates issued by a central certification authority (CA).
In 2KP, still no mechanism for authenticating payment orders originated by the
customers, therefore non-repudiation is not offered for messages proposed from the

customer.

® 3KP requests that each involved party has a public/private key pair, therefore it
provides full multi-party security. It achieves non-repudiation for all messages of all
parties involved. Payment orders from the customer are authenticated both by the
credit card number (and PIN), and a digital signature of the customer generated with
her private key. Merchants consequently can authenticate the customer with her
public key. A CA is required to provide certificate of the customer’s public key as

before.

The developers expect that, as public key technology becomes more pervasive, more and
more parties will hold public/private key pairs. A gradual deployment of the iKP
protocols thus makes sense: begin with /KP, then move to 2KP and finally to 3KP.

[IKP95]

iKPs provide a customer some privacy or anonymity against the merchants in the sense
that “the customer uses a pseudo-identity ... which is different in each transaction”.
However, since the system follows the credit card-based payment model, it requests the

customers to reveal their identities for the credit card number verification, so it doesn’t

offer customers anonymity against the payment system provider.

2.1.2 Other systems in this category

There are many other digital payment proposals which fall into the category of secure
credit card systems, such as SET (Secure Electronic Transaction) [SET] and CyberCash
[CyberCash]. One of the common features among them is that they all deploy
cryptography techniques for security reasons, and as more parties involved possess a

public/private key pair, more security features are achieved, just like iKP.

Chapter 2 Digital Payment Systems 20

2.2 Credit-Debit Systems

The common feature of payment systems in this category is there is a centralized
accounting server who transfers balances between two accounts. There are no separate,
identifiable digital tokens that can be stored on a hard drive or in the memory of a smart
card, and subsequently transferred to others in payment without going through the
centralized server. In other words, one can send a digitally signed payment message to
the accounting server which results in a balance transfer, but one doesn't receive from the
server a digital token or piece of digital cash carrying the server's signature, and
promising to work as payment instruments on demand. A typical proposal in this
category, NetBill, is described in this section.

NetBill

NetBill is designed by Carnegie Mellon University and Mellon Bank Corp. for micro-
payments, especially for information delivered over the Internet, such as payment of a
few cents for access to a Web page or an electronically archived research journal. The
system attempts to guarantee that customers receive the information they request, and

that merchants receive payment for goods delivered. [NetBill]
NetBill uses an account server, which maintains accounts for both customers and
merchants, linked to conventional financial institutions. The NetBill server acts as an

aggregator to combine many small transactions into larger conventional-sized

transactions.

The payment structure is designed for the easy construction of pseudonyms to allow

buyers to protect their identities.
The basic steps in the payment protocol are the following:

1. Alice requests a price quote from Bob.

Chapter 2 Digital Payment Systems 21

2. Bob responds with a quote to Alice.

3. Alice accepts or rejects the price quote.

4. If she accepts, Bob delivers the information in encrypted form.

5. Alice sends an electronic payment order to Bob.

6. Bob sends the electronic payment order and key to the NetBill server.
7. The NetBill server sends a receipt to Bob.

8. Bob sends a receipt to Alice, allowing Alice to decrypt the information.

In step 1, Alice and Bob authenticate each other using public-key certificates. They
establish a symmetric session key to encrypt subsequent messages. Bob's price quote
(step 2) will be based on Alice's identity (to allow for price discrimination). If Alice
accepts the quote (step 3), Bob sends the purchased information to her in an encrypted
form while withholding the encryption key K (step 4). Alice makes up an electronic
payment order that describes the transaction and includes a message digest of the
information from Bob in step 4. The payment order is signed with the private key of
Alice and sent to Bob (step 5). Bob verifies the message contents using Alice's public
key, appends the key K, endorses the order with his digital signature, and sends it to the
NetBill server. The NetBill server checks Alice's account balance, debits this balance and
credits Bob's balance, and sends a digitally signed receipt—which includes the key K—
back to Bob (step 7). Bob forwards the receipt to Alice (step 8), who now has the key X
to decrypt the purchased information.

There is little personal anonymity in this process: the NetBill server keeps transaction
records of purchases made from different merchants, and this potentially allows all
information requests to be linked.

2.3 Digital cash systems

In a digital cash system, there exists at least one bank, (a cash server usually), minting
digital cash which a customer can withdraw from and deposit to the bank, keep in his or
her digital purse, (which is usually a smart card or a PC hard disk), and pay to others.

Chapter 2 Digital Payment Systems 22

Therefore, there are at least three entities, a bank, a payer and a payee involved in at least
three protocols, withdrawal, payment and deposit. (See Figure 5.)

I

i |
{ |
Cyber Banque (Bank)

Withdrawal Deposit

Payment

Alice (Payer) Bob (Payee)

Figure § - Entities and protocols in typical digital cash payment systems.

2.3.1 Properties of digital cash systems

A digital cash system is an electronic payment system, so it must offer security first.
Beyond that, distinctive from a secure credit card system or a credit-debit system, a
digital cash system bears other properties such as anonymity (untraceability and
unlinkability), transferability and divisibility etc.

Chapter 2 Digital Payment Systems 23

* Security

Security means more for digital cash systems. First, it must be guaranteed that any entity
will not suffer from any malicious attacks during the flow of value before, during and

after one payment.

Additionally, for the payer Alice, she must be assured that:

She is withdrawing genuine digital cash of the exact amount as she required from
the verified bank where she has an account set up.

After she deposits some amount of digital cash to her account, she is provided
such proof from the bank that the bank won’t be able to deny the receipt of the

deposit.

3. The money will not be stolen by others while transferred via the network.

After she pays Bob (the merchant) for some merchandise or service, some proof is
provided by him so that he won’t have the ability to repudiate receiving that

money.

Similarly, for the payee Bob, he must be assured that:

1.

He will receive a proof from Alice, so that she wouldn’t be able to repudiate
ordering and paying for the service he provides.
He will also receive a proof from Alice after he has delivered the service she

ordered, so that she won’t be able to repudiate having received the service.

He must have a way to assure himself that money Alice paid him is not
counterfeited, neither spent already. This issue is known as double-spending,
which will be discussed in details later.

Chapter 2 Digital Payment Systems 24

For the benefits of the bank, at least, it must be assured that:

1. It has such proof that its customers wouldn’t be able to repudiate their withdrawal
of particular amount, nor would they be able to claim a non-exiting deposit.
2. It has a way to verify the genuineness of the money deposited by its customers,

and it must have a way to detect or eliminate double-spending.

Since security issues of multiple entities should be covered in a digital cash system, the
term multi-party security is used to refer to these issues entirely. Cryptographic

techniques are most often used to offer multi-party security.
* Anonymity

Anonymity generally means the inability to determine an individual’s sources of income
or spending patterns. In other words, it involves a couple of aspects, untraceability and

unlinkability.
— Untraceability

Untraceability refers to the inability for a bank to match an individual’s
withdrawals of digital cash with his subsequent payments. To gain untraceability,
the information a person reveals about himself by making payments must be
statistically independent of the information a person reveals about himself while
making withdrawals. [DC82]

— Unlinkability

Unlinkability refers to the inability of a bank (even colluding with merchants) to
determine that two payments were made by the same person.

Chapter 2 Digital Payment Systems 25
= Scalability

Scalability of a digital cash system refers to its ability to be expanded or contracted as

needed to service more or less customers over time.
= On-line vs. Off-line

In an on-line payment system, a third party (usually the bank) must be contacted in order
for a payment between a payer and a payee to be successfully proceeded. For example, in
DigiCash’s e-Cash, after receiving digital cash payment from Alice, Bob must contact
the e-Cash bank asking for aids of double-spending detection [eCash]. On-line systems
obviously require more communication, while in general, they are considered more

secure than off-line systems.

Off-line payments involve no contact with a third party during payment, i.e. the payment
transaction involves only the payer and the payee. The obvious problem with off-line
payments is that it is difficult to prevent double-spending. Present offline digital cash
systems with no exception make use of tamper-resistant devices such as smart cards at

the payer end. [CAFE, Mondex, SB95]

* Transferability

Transferability is a feature that allows an individual to spend the digital cash just received
without having to contact the bank in between.

In a system offering transferable digital cash, the bank will not have any idea of the
transactions with the digital cash after it is withdrawn from the bank. For example, if
Cyber Banque mints transferable digital coins, Bob can consume a coin paid to him by
Alice without contacting the bank. Furthermore, the person paid by Bob can spend the
coin without contacting the bank too, and so on. Cyber Banque will be able to trace these
transactions only if each consecutive spender of that coin cooperates with it.

Chapter 2 Digital Payment Systems 26

In addition, it makes it harder for detecting forged or double-spent digital cash. A double-
spent coin can only be discovered when two copies of the same coin have been deposited,
and at that time, that coin may have been paid to many people.

« Divisibility

A digital cash system offers divisibility if the coins minted are divisible: a coin can be
"divided” into smaller coins whose total values are equal to the value of the original coin,
and the division can be done off-line. This property allows exact off-line payments to be

made without the need to store a supply of coins of different denominations.

2.3.2 Double-spending

Double-spending refers to fraudulently spending the same money more than once. Since
digital cash is just a bunch of bits, a piece of digital cash is very easy to duplicate. On-
line systems and off-line systems deploy different mechanisms to detect or prevent

double-spending.

In an on-line system, the bank typically maintains a database of records of digital cash
that has been spent, and hence does not authorize transactions involving previously spent

cash.

In some off-line systems, a similar database is maintained in a tamper-resistant chip in
the user’s smart card. The chip keeps records of all the pieces of digital cash spent by that
smart card, and hence will detect an attempt of double spending and refuse to authorize
the transaction. Since the chip is tamper-resistant, the owner cannot modify the database
without permanently damaging the smart card.

In other off-line systems, some cryptographic mechanism is designed to reveal the
identity of the double spender at the time the piece of double-spent digital cash makes it
back to the bank. One way of doing this is that, before accepting a payment, the payee

Chapter 2 Digital Payment Systems 27

will issue an unpredictable challenge to which the payer’s equipment must respond with
some information. By itself, this information reveals nothing about the payer. However, if
the payer spends the same money a second time, the information yielded by the next
challenge gives away his identity (or his secret key) when the cash is ultimately
deposited.

The presented new digital cash system in this thesis is an on-line system and its effort on
dealing with double-spending is focused on how to detect it. There is no mechanism

developed to reveal a double-spender’s identity in this thesis.

2.3.3 Digital Cash Proposals

NetCash by University of Southern California, Mondex, eCash and CAFE are among the
most well known digital cash systems. Recently, Stefan Brands also proposed his digital
cash system [SB95], which is being incorporated into eCash system. In this section,
CAFE and Mondex are described briefly; both are off-line systems with additional
hardware. In the next chapter two on-line systems, eCash and NetCash, are discussed in

details because of their critical contributions to the presented system in this thesis.
e CAFE

CAFE (Conditional Access For Europe) is aimed to be used as a pan-European cash-
based mechanism for digital payments [CAFE]. The system makes use of public-key
cryptography techniques and tamper-resistant hardware. It can be regarded as the off-line

version of eCash.

The tamper-resistant device is an electronic wallet containing a “guardian”, a smartcard
with a dedicated cryptographic processor. The wallet protects the interests of the user,
and the guardian protects the interests of the money issuer. No transactions are possible
without the co-operation of the guardian, who maintains a record of all the coins spent to
prevent double-spending. In addition, the guardian endorses each payment by giving it a

Chapter 2 Digital Payment Systems 28

digital signature. The identity of the payer is encoded into the serial number of each coin
he spent in such a way that the identity can and only can be recovered if the coin is spent

more than once.

A user saves coins to his electronic wallet by withdrawing them from a coin issuer. When
the user spends money, the device transfers some coins to the payee’s device and mark
them spent locally within the payer’s device. The payee cannot spend these coins until
they are deposited to a coin issuer. Thus, CAFE doesn’t offer transferability.

s Mondex

Mondex card is an electronic wallet on which Mondex cash can be transferred from a
bank account by using specially equipped telephones. [Mondex]

When Alice wants to make a purchase at Bob’s store, Bob uses a Mondex card reader to
withdraw the purchase amount from the card and transfer it to a terminal in the store. Bob
can then send his receipts directly to his bank account by telephone. Bob will not know
Alice’s identity. However, during the payment Bob’s card reader will pull off a 16-digit
identifying number and transmit it to the bank. Hence the use of the Mondex cash can be
traced to Alice by the bank, and all her transactions can be linked.

As a feature, Mondex is designed to allow off-line transferability: two Mondex card
holders can transfer cash between their cards.

29
Chapter 3 eCash and NetCash

In Chapter 2, three categories of digital payment systems, secure credit cards system,
credit-debit system, and digital cash system are briefly discussed. In this chapter, two
digital cash systems, eCash and NetCash, are discussed in more details. Both systems
provide mechanisms to offer anonymity, which is the most researched topic within digital
cash systems. The solution of eCash is blind signatures, while the mechanism of NetCash
is “money exchange”. Although anonymity offered by NetCash is not unconditional,
NetCash has some advantages over eCash such as scalability and fair anonymity.

Most of the current works on digital cash systems are around security, anonymity and
double-spending issues. Therefore, the discussion of the two systems is focused on theses

issues as well as others such as scalability.

Note a fact that digital cash must be identified in some way, and usually it is a serial
number that is applied. Bearing identification, digital cash will be able to be traced.
Generally, to cut the link between the digital cash and people who owns them or spends
them, identity of the digital cash must be changed either when they are withdrawn from
the banks or before they are spent. [HB89] This chapter shows how eCash and NetCash
cut the link respectively in this chapter.

3.1 eCash

eCash is designed by DigiCash who claims that the payment solution offers a secure, low
cost and private payment option to consumers for payments of any amount, and the
systems were specifically designed to be privacy protecting for consumers... {eCash].
Anonymity in eCash is achieved based on David Chaum’s Blind Digital Signature
algorithm [DC82).

Chapter 3 eCash and NetCash 30

3.1.1 Blind Signature

It is first realized by Chaum [DC82], that the most satisfactory way to ensure anonymity
of payments is to destroy the relation between the information that the bank sees when it
certifies a message, and the information that is transferred to the service provider in the

corresponding payment protocol.

According to Chaum’s blind signature scheme, to get the digital cash, Alice creates the
serial number locally and submits it to Cyber Banque for signing. The number should be
randomly chosen to provide uniqueness and should be encrypted in such a way that the
bank won’t be able to see it while Alice can decrypt it after it being signed. The
mechanism of blinding the serial number will not affect the bank correctly signing the
coin and validating its signature in the future when it is spent. In addition, distinctiveness
of different coin values is achieved by using different signing keys by the bank.

Because the bank doesn’t see the serial number of a particular coin, the link between the

coin and its owner is in fact cut from the immediate start of the coin’s circulating.

In the following sections, we will first give the cryptography theory for blind signature,

and then discuss its mechanisms following the circulation of an eCash coin.

3.1.2 Cryptography Basis for Blind Signature

Blind Signature makes use of public-key cryptographic systems such as RSA4. As before,
if we denote encryption and decryption of a message M as:

E(M) and D(M)

RSA has a property that both encryption and decryption are commutative. That is:

Chapter 3 eCash and NetCash 31

D(EM)) = E(DM)) =M

RS4 also has the property of multiplicative homomorphism, that is, for any messages M,
and Mz:

EM, - M2) = E(M)) - E(M>)
DM, - M?) = D(M,) - D(M?)

If Alice wishes a signature of Bob on message M, she first generates a random number r
and encrypts it with Bob’s public key, then gets M muitiplied by the encrypted r. The

resulting product, M - E(r), is submitted to Bob for a signature, and he has no clues about
what the original message M looks like. Bob signs the product using the decryption
algorithm with his private key:

DM - E(r)) = D(M) - IXE(r)) = D(M) - r

The result D(M) - r is sent back to Alice who can remove r from the product by
multiplying it with 1/r which yields the signed message D(M)".

3.1.3 Withdrawal of eCash coins

When Alice requests, for example, a ten-dollar eCash coin from Cyber Banque, Alice's

eCash client software will:

1. Generate a random serial number w for the coin. This w should be long
enough, (Chaum suggests 100 digits), so that if used with a good random
number generator, it will be guaranteed with high probability that two coins
will not have the same serial number.

2. Choose a random blinding factor r.

! Refer to section 1.2.3.4 for a definition of }/r.

Chapter 3 eCash and NetCash 32

»

Calculates the value:
w=w-r°modn

where e is the bank's "worth $10" RSA public exponent, and n is the RSA
public modulus of the bank.

4. Sign w’ with the Alice's private key, then

S. Encrypt it with the Cyber Banque's public key, and then

6. Send to Cyber Banque for signing.

Upon receiving the withdrawal request, Cyber Banque will:

1. Decrypt the message with its private key.

2. Check the signature of Alice.

3. Take out of her account the amount in the form of a digital coin (a ten-dollar
coin in our scenario).

4. Sign the coin with its own private key by calculating like:
s’=(w')l/cm0dn=(r- w!®) mod n
where 1/e acts as the private key for coins of ten-dollar denomination, (refer to
Chapter 1 for details on RSA.)
5. Encrypt s’ with Alice's public key.
6. Send it back to Alice.

With the bank-signed coin, Alice's software will:

1. Decrypt it with her private key.

Chapter 3 eCash and NetCash 33

2. Un-blind it by doing the following computation®:
s=s"-1/rmod n=w" modn

Note that r is only known to Alice. Now Alice got an anonymous $10 eCash coin signed
by Cyber Banque, which bears two parts denoted as:

(w, s)

Itis a genuine $10 coin because it is signed with the bank’s 10-dollar private key //e. It is
anonymous because when Cyber Banque signed it, it could only see the product with »,
and r is a secret of Alice. So the bank won’t know which coin was issued, neither does it
have the ability to associate Alice’s withdrawal with the future circulation, including
payment and deposit, of the same coin.

3.1.4 Payments with eCash Coins

It is quite easy for Alice to spend her eCash coins. Suppose she is paying Bob ten dollars

with eCash coins. What she needs to do is as simple as:

1. Combine purchase information, such as type of service requested, amounts
requested, together with eCash coins of the required value into a message
package.

Optionally sign it with her private key if Bob doesn’t accept anonymous purchase.
Encrypt the package with Bob’s public key.

Send the message to Bob.

w oA wN

Receive the service or a receipt from Bob.

2 I/ris the multiplicative inverse of r modulo n, which means r - 1/r - 1 is divisible by n.

Chapter 3 eCash and NetCash 34

For Bob, it is a little more complicated. When Bob receives a ten-dollar eCash coin from
Alice, he can verify the value of the coin with Cyber Banque’s public key for ten-dollar
coins. However, Bob cannot convince himself the coin is not spent before without

contacting the bank for verification. Here the issue of double-spending should be
addressed.

The eCash way for preventing double-spending relies on a database. At the side of the
bank, a database of all coins ever spent is maintained. The records of the database should
include at least the serial numbers of the spent coins. Requested by Bob for double-
spending detection, Cyber Banque can check against the database for the serial number of
the coin Alice paid. Different resuits will trigger different actions:

= If there is a match, the bank knows that the coin was spent before and should
notify Bob with an alarm; Bob, consequently can refuse accepting Alice’s
payment and refuse delivering the service. It is worth to note that the bank
doesn’t know exactly about whether Alice or Bob is cheating; however this

unawareness does no harm to the bank.

= If there isn’t a match, it means the coin is never spent before, the bank can
notify Bob of the validity of the coin, meanwhile add the serial number to the
database. Bob, consequently, is assured that the coin is valid and will make

the delivery to Alice.

3.1.5 Deposit of eCash Coins

In the scheme of eCash, whenever a payee receives eCash coins, in addition to contact
the bank for detecting double-spent coins, he must also deposit the coins if they pass the
validation. Therefore, an eCash coin is not transferable. Moreover, because the coin is

deposited to a non-anonymous account, the payee must reveal his identity to the bank.

Chapter 3 eCash and NetCash 35

3.1.6 Discussion

There is a prominent disadvantage of efficiency and scalability due to eCash’s scheme
for double-spending detection. The database of spent coins will accumulate over time;
therefore the average time per double-spending detection will increase in positive
proportion to the service time of the bank. Therefore, the database will finally become the
bottleneck of the whole system, and it would limit the scale of the system.

Why doesn’t eCash maintain a database of all coins in circulation for preventing double-
spending purpose, (the mechanism deployed by NetCash, which will be discussed later)?
This is due to the blind signature mechanism. Since it is not the bank, but each customer,
who gives coins identities (serial numbers), and since these numbers are hidden from the

bank, the bank is not be able to know the numbers of coins in circulation.

Another reason for the bad performance in scalability is that the database is enforced with
a one-record-per-coin policy. Since the value of a coin can be as small as one cent and as
big as one hundred dollar, it is imaginable how quick the database would grow if a great
part of the transactions take place with values like $999.99.

Another shortcoming of eCash is its unfairness with regarding to anonymity. In our
scenario, Alice is granted unconditional anonymity, while Bob isn’t. This can be
overcome with a feature of NetCash. We will address it in next section.

3.2 NetCash

NetCash is a framework for electronic transactions that combines the benefits of
anonymous transactions with the scalability of non-anonymous online payment protocols.
It is proposed from the Information Science Institute at the University of Southern
California [NetCash]. Unlike eCash, it is an academic research project only, and hasn’t
yet been applied for practical purposes.

Chapter 3 eCash and NetCash 36

3.2.1 Withdrawal of NetCash Coins

With NetCash, there is no blind signature in the picture. Unlike eCash, it’s the bank that
determines which serial number is assigned to each digital coin withdrawn by its clients.
This number is recorded at the bank as it is issued, and will not be deleted until the coin is
deposited or exchanged (refer to 3.2.2). Each digital coin is signed with the bank’s

private key.
3.2.2 Money-Exchange

Money-exchange (or cash-exchange) is another mechanism NetCash provides. That is,
any customer of NetCash can exchange an old coin for a new coin. The customer
generates a new symmetric secret key for the session and sends this key and other
transaction information along with the coin to the bank. The whole message is encrypted
with the bank's public key to keep it secret.

Requested for coin exchange, the bank first verifies its signature on the old coin to detect
forged coin. Then the bank checks the coin against the maintained database of coins in
circulation. If there is a match found, the coin is not spent before. The bank now can
create a new digital coin bearing a new serial number, and update the database by
replacing the record of the old coin with a new record for the new coin. Finally, the bank

digitally signs the new coin and returns it to the customer, encrypted with the session key.
It is easy to see that the maintained database is relatively static and should be much

smaller than that an eCash system maintains. Thus, the efficiency of coin verification will

be improved and scalability of the system won’t be a great obstacle.
3.2.3 Payments with NetCash Coins

The payer sends the payee some digital coins, together with the identifier of the
purchased service, a freshly created secret key and other information, all encrypted with

Chapter 3 eCash and NetCash 37

the payee's public key. The secret key will be employed later during the session by the
payer and the payee to encrypt and decrypt their transaction information.

Receiving coins from the payer, the payee first contacts the bank and asks for double-
spending detection. This is done in the same way as shown in coin-exchange. If the coins
pass the detection, the payee may deposit them or request for a coin-exchange right away
in order to claim the ownership of the coins. Otherwise, the payer would be able to spend
the coins again before the payee can spend it; even worse, if another payee deposits or
exchanges the coins double spent by the fraudulent payer, there is no way for the first
payee to claim his ownership of those coins. If the payee has been properly paid by the
payer, he returns the payer a receipt signed with his private key and encrypted with the

session secret key.

The buyer can then use the transaction identifier and the session key to obtain the service

purchased.
3.2.4 Deposit of NetCash Coins

Receiving a request for depositing a NetCash coin, the bank first detects whether it was
spent before, and, if not, deletes the coin from the database it maintains. Finally, the bank
credits the user’s account by the amount of the coin. The communication between the
customer and the bank is encrypted to protect the privacy and the transaction is digitally

signed for authentication and non-repudiation.
3.2.5 Discussion

It should be noted that scalability of NetCash is gained by loss of anonymity. The bank
now has a way to record to whom it has issued a particular digital coin, and in the future,
when some merchant deposits that particular coin, the bank will be able to link it with the

previous withdrawal.

Chapter 3 eCash and NetCash 38

Fortunately, NetCash provides some conditional anonymity for its users. This is also
achieved by the coin-exchange mechanism. As long as the bank can verify the old coin is
valid, (neither forged nor double-spent), it is not necessary to verify the origin of the
exchange request. This means an exchange request won’t require any customer

identification. Hence, anonymity is achieved.

However this kind of anonymity is quite weak and the preserved anonymity depends on

such elements as:

= the bank does not keep records pairing the coins accepted for exchange with those

newly issued;

® the payee will choose first exchanging the coins received from the payer rather than
depositing them to the bank directly.

Consider this scenario: Alice withdraws one ten-dollar NetCash coin from Cyber Banque.
Before issuing the coin to Alice, the bank may connect the coin’s serial number, say N/,

with the identification of Alice, noted as:

N1 € Alice

Some time later, Alice spends the coin NI/ for a service from Bob. To claim the
ownership of the coin, Bob will deposit or exchange it. Suppose Bob chooses to deposit it

rather than exchange it, the bank now gets a connection like

Alice € N1 €- Bob

Thus, the bank detects that Alice consumed ten dollars for some service from the

merchant Bob.

Chapter 3 eCash and NetCash 39

Alice has a choice to maintain her purchase anonymity by herself. Before spending the
coin NI, Alice exchanges the coin for a new one that bears a new serial number N2. Since
both Alice herself and anyone else who is paid with the coin N/ can make the exchange,
the bank doesn’t know exactly who has made such an exchange, thus it won’t be able to
connect N2 with Alice now. However, it can be proved that anonymity achieved this way
is conditional. Consider the worst situation if all merchants who can receive NetCash
coins collude with the bank in such a way that none of them will exchange coins before
deposition, the bank will absolutely know it is Alice who made the exchange if there ever
occurred an exchange request for coin NI/. Consequently, the bank can update the

connection between the coin and Alice:
N1 €& N2 €& Alice

The proceeding story of Alice is the same as before: her purchase will be linked with her
previous withdrawal. Noted that the same thing would happen to the payee Bob if Alice
colludes with the bank. That means, if Alice likes, she can inform the bank which coin
she has paid to Bob. The bank then will have the ability to trace that particular coin and,
with the same assumption as in the case of Alice discussed previously, link Bob’s

purchase in the future even he exchanges the coin before spending it.

Of course, if every payer and payee involved is honest, anonymity of purchase and
incomes can be achieved against the bank, and this anonymity is fair to both payers and
payees, (this is different from eCash). However, in practice the only entity one can trust
is he himself, so unconditional anonymity can only be achieved by each people himself.
By now, the only solution is still blind signature.

In NetCash’s digital cash mechanism, although it doesn’t offer transferability for digital
cash, by deploying the coin exchange mechanism, it gives a sense of transferability: the
payee, although still has to contact the bank on-line for exchange, doesn’t have to deposit
the coin before he can spend it. This is another advantage NetCash over eCash.

Chapter 3 eCash and NetCash 40

. 3.3 Conclusion

First of all, a shortcoming must be indicated in the implemented anonymity of both
systems: the network address of a client is exposed to the bank. This gives the bank a clue
to relate the transactions from a particular network address with the particular client. One
solution is that the client may try not to stick to a network address for many transactions.

Table 1 compares the performance of eCash and NetCash and it suggests that blind
signatures and money-exchange combined together may give a system offering both

anonymity and scalability. This is the topic in Chapter 4.

ECash NetCash
2 . * Unconditional |®= Conditional
2 Untraceability .
5, ® Payers only = Fair to Payers and Payees
S
< | Unlinkability Not Offered’ Not Offered*
Scalability Bad Good
Multi-
party Offered Offered
Security
Off-line or
g On-line On-line
= On-line
o
Transferability Not Offered Not Offered’
Divisibility Not Offered Not Offered
Table 1 - Comparing eCash and NetCash
‘ 34 Unlinkability can be achieved by deploying anonymous accounts as shown in [HB89].
5 NetCash makes its coins seem transferable, but users have to be on-line in order to make the value of a

coin “transferable™.

41

Chapter 4 Combination of
eCash and NetCash

In this chapter, a new digital cash proposal is presented. The presentation has been
divided into two sections. In the first section, it will show that the presented proposal is
actually the combination of mechanisms from eCash and NetCash, and how multi-party
security, unconditional anonymity and enhanced scalability are all achieved by this

combination. The second section introduces possible mechanisms to extend the system.
4.1 Combine eCash and NetCash

It will be shown that, in the proposed system, not all digital cash services require an
entity to have opened an account in the bank in order to be qualified for the services.
However, let us start our discussion assuming that each customer has a non-anonymous

account in a common bank that offers digital cash services.
4.1.1 Digital Coin and Digital Note

Unlike other systems, there are two forms of digital cash involved, digital coin and
digital note. Each item of cash, no matter it is a coin or a note, must bear a serial number
as its identification. Practically, serial numbers of digital notes and coins don’t have to
share a common name space although it is not a problem if they do. For instance, all
digital notes may have serial numbers starting with a “N”, while all digital coins may
have serial numbers starting with a “C”. Therefore, N123456789 may be the serial
number of a note, while C123456789 may be the serial number of a coin.

The most distinctive difference between a digital coin and a digital note is analogous to
that between a metal coin and a paper note: usually a metal coin bears lower value while
a paper note bears relatively higher value. Similarly, a digital coin usually bears relatively

Chapter 4. Combination of eCash and NetCash 42

smaller value than a digital note. (For example, Cyber Banque may mint digital coins of
such denominations as 1-cent, S5-cent, 10-cent, 25-cents, l-dollar and 2-dollar;
meanwhile, it may issue digital notes of such denominations as S5-dollar, 10-dollar, 20-
dollar, 100-dollar and 1000-dollar). However, in the system there is no mechanism that
prevents the bank from issuing a digital coin with a denomination the same as or higher
than that of a digital note. In other words, the bank can issue, for example, S00-dollar
digital coins even if the highest denomination of digital notes it ever issues is, for
example, 100 dollars. No matter what choices the bank makes on the denominations of
notes and coins, a note of any denomination must be able to be changed to a set of coins
whose total value is the same as the note’s denomination. Such a prerequisite is necessary
to make possible the features of the presented system. For this reason, we assume the
Cyber Banque doesn’t mint digital coins with a higher denomination than that of digital

notes it issues.

It is another very important feature in the system that a user can only withdraw digital
notes. Withdrawals of digital coins are not supported. This regulation is reasonable in real
life since most people are inclined to withdraw money of relatively large denomination
and then spend it little by little. If the customer wants to get digital coins, he must ask the
bank to exchange the notes for coins, (the exchange mechanism will be discussed later).
In addition, it will be shown that this withdrawal restriction contributes to the enhanced
scalability of the system.

There is no distinction between coins and notes with respect to payment abilities
however. That means a customer can pay a service provider with notes, coins or both for

a single payment; on the other hand, the service provider can accept notes, coins or both.
4.1.2 Entities and Protocols
This proposal involves three entities: a consumer Alice, a service provider Bob, (both

Alice and Bob are customers of the bank), and a bank Cyber Banque, and four protocols:
withdraw, exchange, payment and deposit. (Refer to Figure 6.)

Chapter 4. Combination of eCash and NetCash 43

Unlike NetCash, the exchange protocol can be deployed either from a digital note to
digital coins or from digital coins to digital coins.

[Payment With Notes / Coins >

Alice Bob
Figure 6 - Entities and Protocols in the new digital cash system.

4.1.3 Server Side Mechanisms for Double-Spending Detection

The bank has similar mechanism as that of eCash and NetCash for detecting double-
spending. Like eCash and NetCash, the presented system is also an on-line system: a
client must contact the bank for security reasons such as double-spending detection.
However, unlike eCash and NetCash, there are two rather than one database maintained
by the bank. One database maintains all digital coins in current circulation (like
NetCash), which we denominate as DB..ixs, While a second database maintains digital

Chapter 4. Combination of eCash and NetCash 44

notes exchanged or deposited already, which we denominate as DB,,.;. Practically, we
may have serial numbers of those coins in circulation maintained in DB_,ins, and serial
numbers of those notes exchanged or deposited maintained in DB,o.s. (See Figure 7.) We

will talk about the mechanisms of both databases in more details later.

[\ ()2} =
1L

B

7Ry
(—

Figure 7 - Server-side databases for detecting double-spending

f
f

4.1.4 Digital Cash Withdrawal

Recall that in the presented proposal, only digital notes can be withdrawn, while digital
coins cannot. It must be stated that to maintain anonymity for its customers, Cyber
Banque must limit the types of digital notes denominations it ever mints to a small
number, and these denominations shouldn’t change regularly. (The reason will be shown
later, now we just assume it). This doesn’t mean the total cash amount per withdrawal is
limited: as long as Alice has enough balance in her account, she is not prohibited from

withdrawing an amount of money her balance permits.

Chapter 4. Combination of eCash and NetCash 45

Suppose Cyber Banque mints 100-dollar digital notes. If Alice is withdrawing 100 dollars
the withdrawal protocol is initialized by Alice who:

1

2)

3)

4)

Randomly generates a serial number N for the note. As eCash, the bits of the number
should be long enough so that it is not possible for any people (including Alice
herself) to generate the same number again.

Blinds N. The same mechanism as that of eCash is deployed for blinding a message.
For each different denomination, a distinct public key is known to Cyber Banque’s
customers for blinding withdrawal request messages.

Digitally signs the blinded message with her private key. In this proposal, we make
use of an asymmetric digital signature algorithm such as RS4 combined with a one-
way hash function such as MDY5, to sign a message.

Encrypts the message with the public key of Cyber Banque, and then sends the
encrypted message to the bank.

Receiving the withdrawal request, Cyber Banque:

)
2)
3)

Decrypts it with its private key.

Checks Alice’s signature against her public key.

If verification fails, it notifies Alice (encrypted and signed.) If verification succeeds,
the bank then checks Alice’s account to see if there is enough balance for the
withdrawal. If not, it notifies Alice (encrypted and signed); otherwise, the bank debits
100 dollars from Alice’s account, signs Alice’s original message with its 100-dollar
private key, encrypts it with Alice’s public key, then sends it back to Alice.

Receiving the message, Alice:

1) Decrypts it with her private key.
2) Un-blinds it.
3) Checks the validity of the note with the 100-dollar public key.

Chapter 4. Combination of eCash and NetCash 46

4) Keeps the note in her “digital purse™.

Note that nobody other than Alice has the knowledge of what serial number the note
bears, thus a note withdrawn this way is protected from being traced in its future

circulation.
4.1.5 Digital Cash Exchange

There are two kinds of exchanges supported: from digital notes to digital coins and from
digital coins to digital coins. At any time, any party, no matter whether or not he has an
account in Cyber Banque, as long as he has digital cash issued by Cyber Banque, he is
able to perform cash exchanges. This point is quite different from withdrawal and

deposit.

Like NetCash, cash exchange is client anonymous. In other words, if Alice wants to

exchange her money, she doesn’t have to disclose her identification to the bank.

4.1.5.1 Exchange Notes for Coins

It is necessary for Alice to make this kind of exchange if she is intended to pay Bob, for
example, 2 dollars, while in her “digital purse” she only has a 100-dollar digital note.
(Although we will extend the scheme to make the digital money divisible, we will not
cover this issue in this section). She can request Cyber Banque for exchanging her 100-

dollar note to get a 2-dollar coin.
To request for such an exchange, Alice will:

1) For this exchange transaction, generate a new secret key of a symmetric encryption
algorithm (such as DES).

Chapter 4. Combination of eCash and NetCash 47

2)

Take the note out of her “digital purse”, combine it with the transaction secret key to
make up a message, encrypt the message with Cyber Banque’s public key, and send
the message to the bank.

Upon receiving this exchange requirement, the bank will:

D
2)

3)

4)

5)

6)

Decrypt it with its private key to get the note and the transaction key.

Verify its signature on the note. If the verification fails, the note is not genuine and
the bank will refuse to proceed with the exchange.

Otherwise, check the validity of the note against the database DB oes.

If there is a match, it means the note is exchanged or deposited already, in other
words, there is an attempt to double exchange or deposit the same note. Cyber
Barique may refuse the request.

If there isn’t a match, Cyber Banque can be assured that this is the first time the note
is being exchanged. The bank will add the serial number of the note to DByes,
generate some digital coins whose total values are equal to that of the digital note, add
the serial numbers of these coin to DB.,,. The information about what coin
denominations Alice would like to get can be included in the withdrawal request
message as an optional feature.

Cyber Banque signs these coins digitally, gets them encrypted with the secret
transaction key provided in Alice’s original message, then sends back to Alice.

Receiving these coins, Alice can decrypt (with the secret key) and verify them just as she
did before.

Note that since the bank doesn’t know who possesses a particular digital note, and the

exchange processing is anonymous, it won’t be able to know who will possess the

returned digital coins.

Chapter 4. Combination of eCash and NetCash 48

4.1.5.2 Exchange Coins for Coins

Requested by Alice (or Bob) for exchanging a digital coin for a new coin, (as the
previous case of exchanging a note for coins, the customer will provide a new symmetric

secret key for this exchange transaction), Cyber Banque will:

1) Verify its signature on the coin. If the verification fails, the coin is not genuine, and
the bank may refuse the request.

2) Check its validity against the database DB .. If there isn’t a match, the coin has
already been exchanged or deposited. If it was the payer Alice who made the
exchange request, then Alice is attempting to exchange a coin multiple times. If it was
the payee Bob who made the exchange request, then Bob is cheated by Alice with a
coin spent before, (we will talk about this later). However, the bank cannot
distinguish between these two cases because it doesn’t know who made the request.
Anyway, the bank may notify the requester that the coin is not in circulation and
refuse the request. If there is a match, the bank can now generate a new coin bearing a
new serial number which has never been used by any coin before, replace the old
serial number with the new one in the database DB_,;ns, and send the new coin back to
the requester after encrypting it with the secret transaction key. It is easy to see that
the mechanism here is the same as that of NetCash. It will be discussed later that this
kind of exchange will offer a payee the ability to “launder” the money he was paid, so
that he can spend it anonymously.

4.1.6 Digital Cash Payment

To make the discussion aimed at the essence of the system, now we assume that Alice
has the exact amount of digital cash (notes, coins or combination of both) that Bob
charges her. In other words, Alice won’t have to get her money changed to be able to pay
Bob the exact amount of charge. To pay Bob with digital coins, Alice will:

Chapter 4. Combination of eCash and NetCash 49

Y

2)

For this payment transaction, generate a new secret key of a symmetric encryption
algorithm (such as DES).

Take some digital cash out of her “digital purse”, use Bob’s public key to encrypt the
package including the cash, the transaction secret key and other purchase information,

and send the message to Bob.

Receiving the message, Bob will:

1)

2)

3)

4)

Decrypt the message with his private key, and draw out the digital cash from the
message.

Verify Cyber Banque’s signature on each of the cash with the bank’s public key
associated with the denomination of each of the cash.

If verification fails, return the cash to Alice and notify her (encrypted with the
transaction key sent in Alice’s message and digitally signed with his own private
key).

If verification succeeds, Bob has the following options to deal with the money:

e Deposit the cash to the bank.

e Request the bank to exchange the coins for new coins, and exchange notes (if

there are any) for coins.

Bob must undertake one of the actions above, because if he doesn’t, he actually
doesn’t claim his ownership of the money, i.e., Alice will have the ability to spend

them again or deposit them without being caught.

No matter which option Bob takes, (we will talk about the bank’s role in a deposit
protocol later), the bank will first undertake a process to detect double exchanged or
double deposited digital cash. If there is such notes or coins detected, the notification
from the bank may cause Bob to refuse Alice’s payment and return her digital cash
with a notification of the reason (again encrypted with the transaction secret key and
digitally signed.)

Chapter 4. Combination of eCash and NetCash 50

S) If the coins pass the tests of step 4, Bob can deliver the service or a receipt of the
payment to Alice (encrypted with the transaction secret key and digitally signed with
Bob’s private key.)

Note that in this payment protocol, Alice’s purchase is maintained anonymous. Because
Alice generates a new secret key for each payment, Bob has no more information about
her other than her network address. The bank cannot figure out Alice’s identity either,
since it cannot connect the digital cash Alice paid Bob with her identity.

4.1.7 Digital Cash Deposit

No matter which kind of digital cash Alice has, notes or coins, the protocol for depositing
them to her account in the bank is almost the same. Note that in either case, she must

disclose her identification to the bank.

To deposit digital cash, Alice signs the deposit request with her private key, encrypts the
message with Cyber Banque’s public key, and then sends it to the bank.

Receiving the message, the bank will:

1) Decrypt the message with its public key.

2) Verify Alice’s digital signature on the message.

3) Check its own signature on the cash.

4) If the cash is a digital note, detect if it was exchanged or deposited before by
checking it against the database DB,s.

S) If the cash is a digital coin, detect if it was spent or deposited before by checking it
against the database DB_,ins. (Refer to the section about the exchange protocol).

6) If the cash passes the checks, credit Alice’s account with the amount of the cash, then
update either database. If the deposited cash is coins, delete their records from
DB_,ins, otherwise add records of the notes to DB,,,es.

Chapter 4. Combination of eCash and NetCash 51

7) Notify Alice with a receipt of deposit (signed digitally and encrypted with Alice’s
public key.)

4.1.8 Discussion

The proposal until now is constructed by combining features of eCash and NetCash. The
advantage of eCash is its unconditional anonymity for payers, but due to its deployment
of blind signatures, its scalability and efficiency is limited. Moreover, eCask doesn’t
offer payees any anonymity. NetCash, on the contrary, is scalable and efficient, and it
offers fair anonymity to both the payer and the payee. The disadvantage of NetCash is the

anonymity it offers is not unconditional.

The presented proposal offers multi-party security and unconditional anonymity to both
the payer and the payee, and its scalability and efficiency is improved compared to that of
eCash.

4.1.8.1 Multi-party security
It is common to the three entities (payers, payees and a bank) that:

e Communication between any two entities is encrypted so that the information won’t
disclose to anyone else other than entities involved.

e Each digital note and coin is digitally signed with the bank’s private key, which
makes fraudulent counterfeiting computationally infeasible.

Requests for withdrawal and deposit are all digitally signed by the customers. This gives
the bank an un-deniable proof to protect it against repudiation from the customers.

Because of those two databases (DB .ins and DB,..s) deployed at the bank, the bank and
payees are protected against payers double spending a coin, double exchanging a note

and double depositing any digital cash.

Chapter 4. Combination of eCash and NetCash 52

Requiring payees to return payers signed receipts after the payees receive the payment,
the system protects payers from repudiation of received payment by payees.

4.1.8.2 Unconditional Anonymity

For the payer Alice, the presented system offers her unconditional anonymity. In the
withdrawal protocol, the serial number on the digital note is concealed from the bank; in
the exchange protocol, the identity of the customer is not disclosed to the bank; in the
payment protocol, the identity of the payer is not disclosed to neither the payee nor the
bank. Thus, the purchase by the payer with the exchanged digital coins is not traceable by
the bank even if the bank colludes with the payee.

It is not a good idea not to limit the types of the denomination of cash (both notes and
coins) the bank can issue. For the bank, if it offers the customer an option to determine
arbitrary denomination of the cash, such as 14.99-dollar, it makes the bank impossible to
assign each denomination with a unique asymmetric key pair. For customers of the bank,
if they could withdraw a note with the denomination, for example, 14.99 dollars, this
particular denomination would act as a clue for the bank to link this note with her future

exchange and purchase even if she has blinded the serial number of the note.

For the payee Bob, he can also get some degree of anonymity. By exchanging received
cash for new coins instead of depositing them directly, Bob can conceal this profit from
the others except Alice, and he can spend the new coins without revealing his identity in
the future. Note that Bob’s identity is revealed to Alice during the procedure of purchase
and payment, (this conforms to the pattern of conventional commerce). Alice has the
exact idea what serial number each coin bears, so if Alice colludes with the bank, the

bank can trace Bob’s exchanging of coins and further payment with the new coins.

In the next sections, we will extend the system to offer even Bob unconditional

anonymity so that he can spend the payment from Alice un-traceably by anyone else. But

Chapter 4. Combination of eCash and NetCash 53

we won’t extend it so that the truth that he has got paid by Alice is unconditionally
concealed from others, because current policy doesn’t encourage it.

It must be pointed out that sometimes the anonymity can be impaired. Suppose at some
time, (for example, when the Cyber Banque just began its service), the bank notices that
all 100-dollar digital notes it ever issued have been deposited or exchanged to coins, and
at that time Alice withdraws a 100-dollar note. And some time later before the bank
issues any other 100-dollar notes, it receives a 100-dollar note for exchange. Since the
withdrawal exposes the identity of Alice, the bank knows it is Alice who is exchanging
that 100-dollar note. Consequently, the bank will be able to trace the circulation of the
exchanged coins. It can be imagined that the more notes of 100-dollar are still in the
hands of customers, the less possibility is there for the bank to have a chance to impair

Alice’s anonymity.
4.1.8.3 Enhanced Scalability

Scalability is enhanced comparing with eCash. The bank maintains two databases now.
The first, DB, s, records all digital coins in circulation, the second, DB,,..s, records all

digital notes exchanged or deposited.

It is easy to see that the size of DB, ;s Will be statistically fluctuating around a relatively
static value. Note-to-coins exchange is the only contribution to the increment of DB, y;ns,
while coin-deposits decrease the size. Transferring a coin between two customers of the
bank doesn’t increase the size of DB.,.. In other words, the size of DB.,,s won’t
increase dramatically as time elapses as soon as the amount of the digital cash issued

reaches the minting capacity of the bank.

As t0 DB,oes, it is true that its size will increase as time elapses, hence bring in scalability
problems (similar to eCash). However, it is worth to be noted that it is a database of
digital notes and each note bears the value of many coins in combination. For instance,
one 100-dollar digital note can be exchanged for digital coins of forty 2-dollar’s, ten one-

Chapter 4. Combination of eCash and NetCash 54

dollar’s, twenty 25-cent’s, forty 10-cent’s, ten 5-cent’s and fifty 1-cent’s. Suppose Alice
withdraws 100 dollars respectively from Cyber Banque who provides services presented
in this thesis, and an eCash bank, she contributes one record to DB,y.s, and
comparatively she might contribute 170 (that is 40+10+20+40+10+50) or even more (if
she prefers smaller denominations for the coins) records to the database in the eCash

server. Thus, the database DB, will not increase too quickly as time elapses.

The main cause for scalability problem of eCas#h is because the size of its database for
detecting double spent cash increases quickly as time elapses. By introducing two
separate databases, one maintained a static size statistically and the other decreased its
size expansion speed, we overcome the shortcoming of eCash, i.e., enhance the

scalability of the digital cash system.
4.2 Extending the System

In this section, efforts of extending the proposed system will be presented. Before we
continue, let’s first find out what problems or disadvantages still exist in the system:

A. Customers are bound to a common financial institute;

B. The database DB,,.s grows anyway despite its low growing speed;

C. The payees are not unconditionally anonymous when they spend the digital
cash received;

D. Digital cash is not divisible.

For A, it is easy to solve by deploying the multiple banks solution in NetCash, which will
not be covered in this thesis. For B, we will address in subsection 4.2.1, and for C and D,

we will cover in subsection 4.2.2.

Chapter 4. Combination of eCash and NetCash 55

4.2.1 Enhance scalability

The enhancement is achieved as following. In addition to the serial number, Alice now
also provides the bank two other parameters for a digital note: the initial date of
validation (/¥) and the duration of its validation (DV). In order not to impair her
anonymity, she must blind them too. One practical way to do that is to make /V and DV
contributes some predefined digits as part of the serial number. For example, it might be
a rule between the server at the bank and Alice’s digital cash software that a serial
number of a digital note is made up of three fields:

YYYYMMDD (IV) XX (pv) SN

The first 8-digit long field /¥ holds the initial year (YYYY), month (MM) and day (DD)
of the note. The second 2-digit long field DV holds the number of days (XX) of the note’s
validity. SN is the randomly generated serial number which Chaum suggests length of

100 digits.

As an example, suppose Alice is withdrawing a digital note from Cyber Banque, and she
needs the note valid from March 6, 1999 and its validity lasts for 10 days, the serial

number will look like:

1999030610XX XX
14243
100 Randomly Generated Digits

Chapter 4. Combination of eCash and NetCash 56

(M) ==
1T

n
> AY
—

Tr
on....
Figure 8 - One new database is added for enhancing the system scalability.

At the side of the bank, in addition to the databases DB, and DB,,.s, one more database
DB oresvic is deployed. (Refer to figure 8.) This new database keeps records of all notes
which are exchanged or deposited and have expired, and the old DB,ses now only
maintains records of notes that are exchanged or deposited and are still in their validity
period. The server software at the bank thus has to do some routine works by moving the
records of expired notes from DBnoes t0 DBpoesni- The interval of the routine is
determined by the minimal time scale deployed in the system to define a note’s validity
period. It is acceptable to both the bank and its customers to deploy “day” as the minimal

scale, since it is the case in most conventional financial transactions.

The process of detecting double exchanged or deposited notes is adapted also. Whenever
a request for withdrawal of digital note is received, the bank signs it knowing none of its

Chapter 4. Combination of eCash and NetCash 57

. three fields above. Whenever a request for note-to-coins exchange or note deposit is
received, the bank will:

I.

Verify its signature on the note.

2. Get the fields IV and DV out of the serial number of the note, and find if this

note is in its validity period.

For example, if the date is now March 12, 1999, then Alice’s note is in its
validity period, the bank will proceed to detect whether it is exchanged or
deposited before by checking it against DB,,.s as before. If the date is before
March 6,1999, then the note isn’t valid yet. In this case, if Alice is asking for a
deposit, the bank will deposit it to her account; if Alice is asking for an
exchange, the bank will refuse it and return the note with a notification of the
reason. If the date is after March 16, 1999, then the note is expired, the bank
will return it with a notification even if the note is not exchanged or deposited

before.

For expired notes, customers can rescue the money by arguing to the bank.
This can be done by checking the serial number of the note against DB, yesox. If
there is a match, then the note is exchanged or deposited before, i.e., the
customer is cheating; otherwise, the note is never exchanged or deposited, the
bank can rescue the money for the customer. There are a few ways to do that.
The bank may return the customer a new generated note carrying a customer
generated serial number, or exchange the note for coins and return the
customer the coins, or deposit the value to the customer’s account. The bank
may choose an option following customer’s preference. The process can be
either anonymous or not depending on the policy of the bank, and the bank
can charge a fee for the processing to encourage its customers to exchange a

note for coins within its validity period.

Chapter 4. Combination of eCash and NetCash 58

Noted that by separating the exchanged or deposited notes into two databases
according to whether they are expired or not, the scalability is enhanced even
more. Since the bank will punish a customer if he exchanges or deposits an
expired note, most of the detection will be checked against DB,,.s, whose size
is statistically static. Thus, the scalability issue in the presented proposal due
to the ever-growing DB, is solved.

As t0 DBpoeshi, it can be stored in some secondary storage devices such as
tapes since it is not frequently accessed. The bank may maintain a separate
database of this kind for, for example, each month to decrease the average
accessing time per query. In this way, scalability can be improved even
further.

It also should be pointed out that the customer, if she expects anonymity,
should not always define IV as the date when she withdraws, since this may
give the bank some clues to link the note with her identification. It would also
be deployed by the bank that, although not necessary, DV is limited to some
bank predefined values, such as, following the previous example, 01 (for one

day), 07 (for one week), 30 (for one month) and so on.

4.2.2 Extend Cash Exchange Mechanism
In this subsection, we try to extend the exchange mechanism in the following ways:

A. Make it possible to exchange some coins for a note or an old note for a new
note. This will offer the payee unconditional anonymity when he spends the
received money.

B. Make it possible to exchange a coin of a larger denomination for coins of
smaller denominations. This will give a sense of dividable digital cash.

Chapter 4. Combination of eCash and NetCash 59

4.2.2.1 Offer Payees Unconditional Anonymity

We have shown in the previous section that the payee Bob is not offered unconditional
anonymity when he spends the digital cash paid by the payer Alice. In order to fix it, we
extend the exchange mechanisia to make a note exchangeable for a new note (refer to
Figure 9), and coins of some particular value exchangeable for a note (refer to Figure 10).
To generate the new note, the customer requesting for this service must provide the

randomly generated serial number and again must blind it from the bank.

} =

€
]

[Payment With Notes & Coins J‘>--" %Co'ns
Alice Bob

Figure 9 - Exchange a note for a new note.

For example, when Alice pays Bob 100 dollars (a valid 100-dollar digital note) and 10
cents (a valid 10-cent digital coin), Bob can exchange the note for a new note right away.
Of course if Bob likes, he can do a second exchange: from the new note to coins.
Anyway, Bob’s future purchase with the new digital cash is anonymous since the serial
number of the new note (and the serial numbers of the exchanged coins) cannot be linked
to his identification due to the deployment of blind signature on the new note. As to the

10-cent coin received, Bob can first make a coin-to-coin exchange to claim his ownership

Chapter 4. Combination of eCash and NetCash 60

on it then store it in his “digital purse”. In the future, when he has already accumulated,
for example, 10 dollars of coins, he can request the bank to exchange them together for a
10-dollar digital note. Once again, he must generate the serial number for the note
randomly and blind it against the disclosure to the bank.

Figure 10 - Exchange coins for a note.

It is worth to note that in the exchange process, Bob must provide the bank with a secret
key (such as one in DES) for the exchange transaction, in order to give the bank a way to
encrypt the transaction while not being able to know his identity.

4.2.2.2 Offer “Divisibility” for Digital Cash

It is easy to extend the exchange mechanism to offer the customers the ability to change
the digital coins between different denominations. For example, a 50-cent coin can be
exchanged for two 25-cent coins, and vise versa. So if Alice is charged 25 cents by Baob,

Chapter 4. Combination of eCash and NetCash 61
she can requests the bank to exchange her 50-cent coin for two 25-cent coins and then
pay Bob with one of the 25-cent coins. This gives the sense of dividable digital cash.
(Note that, this “divisibility” is on-line based, so it is not real divisibility according to our
definition in Chapter 2). Consequently, the bank should update the database DB ;s by
deleting the record of the 50-cent coin, and adding two records of the two 25-cent coins.

62

Chapter S Implementation

5.1 Introduction

In the previous chapters, a digital payment system is presented, which combines eCash
and NetCash. In the presented system, there are three entities, a payer, a payee and a
bank, involved in four protocols, withdrawal, exchange, payment and deposit.
Cryptographic techniques such as digital signature and encryption/decryption are
deployed to assure multi-party security. Moreover, it has been shown that the presented
system is based on two mechanisms: blind signature and cash exchange. Blind signatures
make unlinkability and untraceability available for digital cash, while exchange
mechanism solves the drawbacks, such as bad scalability and unfair anonymity, which
blind signatures introduce. In the presented system, there are two types of digital cash,
digital notes and digital coins. Only notes can be withdrawn from the bank, while they
can be exchanged for coins if necessary. At the bank, some databases are maintained to

check the digital cash’s genuineness and detect double-spending.

The system presented has been partly implemented. In this chapter, ideas of the
implementation will be talked. The reason for implementation is just to show that the
system is applicable. In other words, the implemented system is not a commercial

product.
5.2 System requirements and architecture

The system is a typical three-tiered client/server system (refer to Figure 11). At the client
tier, a GUI presentation should be implemented for digital cash clients to easily request
and receive services from the bank. It should be noted that in the presented system, a
client is active in participating in many aspects of the digital cash service. As an example,
a client will generate and blind a note serial number, and on receiving signed note from
the bank, he will un-blind the signature. Therefore, the client tier is not only a GUI, but

also a computation concentric module.

Chapter 5. Implementation 63

Figure 11 - System architecture

The middle-tier implements the digital cash services offered by the bank. This tier
exhibits most of the logics of digital cash services. First, these two basic mechanisms,
blind signature and cash exchange, have to be implemented. Blind signature depends on
RSA cryptographic techniques, while other security issues such as digital signatures and
encryption/decryption involved in the protocols rely on cryptography too. That means,
we have to either implement some cryptographic algorithms or deploy some existing
cryptography implementations. Cash exchange is primarily based on database processing,
on which other features such as prevention of double-spending is built. Therefore, an
efficient accessing interface to the third tier, the database systems, is another critical
aspect in this tier. Another important issue worth to be noted is to implement the
communication methods between the first and the second tier. TCP/IP networks are the
most popular currently, and its future is very encouraging. Therefore, implementing the

communication on the TCP/IP protocols should be a smart decision.

The third tier is the data storage. In this tier, all the information about clients,
transactions, etc is maintained. It can be estimated that most digital cash services
providers will be the existing financial institutes, who may already have some kinds of

database management systems. The third tier can be build on these DBMS’s, as long as

Chapter 5. Implementation 64

they provide some interfaces such as API’s or drivers for accessing data they maintain.
Therefore, for the data storage tier, the main task is to find some way to integrate it with
the first and the second tiers.

5.3 Implementation tool

Java 2 SDK is chosen as the implementation tool for this system. Java’s platform-
independence property makes the first reason for this selection. Second, Java’s object-
oriented characteristic makes the implementation easy to be managed; it also permits the
Java codes to be easily extended to fully implement the presented system. Third, Java 2
SDK offers some very intriguing packages that are extremely critical for the system.
Java Cryptography Architecture (JCA) and Java Cryptography Extension (JCE) provide
the cryptographic engines such as digital signature and encryption/decryption. Java
Database Connectivity (JDBC) offers the ability of accessing different relational
databases with the same APIs. Java Foundation Class (JFC) makes Java competent in the
development of graphic user interface (GUI).

5.4 What have been done

At this writing, several classes have been developed (refer to Figure 12). For the two
basic mechanisms (blind signature and cash exchange) only the former is implemented.
As to the four protocols (withdrawal, exchange, payment and deposit), only the first is

implemented.

The class DcashServer has the main method of the server side program. It has an instance
of class Bank, which defines the properties and actions of a bank that offers digital cash
services. The class Bank makes use of class KeyMachine to generate RSA key pairs for
each denomination of digital cash it is to mint. The class DcashClient has the main
method of the client side program. It implements a simple GUI, and it has an instance of
class Client, which defines the properties and actions of a digital cash client.

Chapter 5. Implementation 65

Figure 12 - Class diagram in package ca.crim.dcash (UML)

A Bank generates an instance of class ClientDealer whenever a Client requests for
services. This ClientDealer serves the Client with a reference to the Bank. The
communication between the ClientDealer and the Client is carried out by class Messager,

of which both the ClientDealer and Client each has an instance.

The class Cash is the super class of the class Note. The former implements digital cash,
while the latter implements digital note, which is one form of digital cash. In a Note

object, an instance of Client named owner is defined to stand for the owner of a note.

The class Constants defines some constants shared by classes in the package. The next
sections will address how these classes are implemented respectively.

Chapter 5. Implementation 66

5.5 Implement blind signature

One of the main efforts of the implementation is to implement blind signature. Blind
signature is based on RSA digital signature, as shown in chapter 1. The cryptographic
engines in Java that provide for digital signatures and the like are provided as a set of
abstract classes in the Java security package. However, Sun does not provide an
implementation of the RSA4 digital signature engine. Fortunately, the Java cryptography
infrastructure atlows third-party implementations of the engines. And, in the terms of
programming, the infrastructure provides a consistent API that can be used by all
programs, regardless of who is providing the actual implementation. In this sense, several
third-party implementations of RSA4 digital signature is tested for the purpose of blind
signature. Namely, they are JCE’s from Cryptix, Forge Research, and Australian
Business Access (ABA). The results are disappointing. As we have shown, the signature
returned from the signer is signed on the blinded message. This signature is actually the
multiplicative inverse of the signature that was signed on the un-blinded original
message. Therefore, some modular arithmetic, as shown in chapter 3 and chapter 4, must

be done on the returned signature.

However, Java cryptography infrastructure defines an RSA digital signature as byte/],
which is a DER-encoded PKCS#1 block as defined in RSA Laboratory's Public Key
Cryptography Standards Note #1. This results to that decoding the signature must be done
before we can do any arithmetic processing on it. For this reason, blind signature was
directly implemented in this thesis following David Chaum’s theory without making use
of any existing RSA digital signature implementations.

Chapter 5. Implementation
] Cash 7
ca.crin. dcash o -msOIth- g $denom Skng
’. T +Cash{ String, Biginteger){constructor}
1 lcmp!(Sodun(mm} Denominaton Sk
ﬁlmil Ohimlmid #getSevialNumber(): Biginteger
% Fn-
e Bgiger “ownar:Clend
-n:Biglnteger -:Biglnteger
1 pSubl:Biginteget -bildldSmdluhn Biginteger
m‘ 6 ONou(Swing, Qlll)lmnﬁm]
g eeSeruiNmbertEghneger
:mdn(Bank, Messaget){constructor} mfl’ab:;:um ; | edS '"‘ml (1B g
1 P ’SWW mm; Biginge void
Pud onertOf(String): Biginteger Fverify(
%“:acww(« ww nde #keepInPurse(}-void

“hasPublicExpanentAs(Biginteger)}hoolean 1
#genarste ExponentPair{ Skring, md):-void
#getPubicModulus() Biginteger
#gotP{) Biglnteger
#getQ() Biginteger
bank |} sgeiPublicExponentsTeble(). Hashiable . owmer |,
Bank a
“*m:KeyMachine Client
Suloe ot
;mBS(L e) -bankIP:InstAddrass
—senpRM(sa.d],mmmd SankPortmt
-startService(inf)-void -5:Sockst
ogutPublicExponentsTable{):Hashtable -msgrMessager
egetPublicModulus():Biginteger » int
*getkMStrength{ }int -nBigineger chiabla
+checkBalanceOf{ String, Sting}:boote <o | -dencwsinations: Hashtable
sissueNote(Sting Swing, wm:m ;:;lmgu M Sting Swing !, Smg)(ml
*de mq String)-void
benk “' sleeveBuni(Fyoid
+getDenominations(}:Emumetation
.::tl‘m() Biginte (S B
M get
Coastants +geiBankKeySt -t
R PUBLIC RV o (] oot
. WITHD AL:Swing (final) +getdb BRL():Swring
#A FAIL OUT OF BALANCE S¥ing {fnal} m,ﬁx}.m
client
1
[DeasshCllent
abbedPune T TobbedFus
~clientID:String
4dbcURL String
-bankHostStrng
-bankPortSwing
1 ~client Client
] . iend{){constructor
R — #adke TexiPonsi{ Swing) Component
“bankc {static} <actionPerformed(ActionEvent)-void
smam({ String{}]:-void {static} sman(String)-void (static)

Figure 13 - Classes in package ca.crim.dcash with details (UML)

67

Chapter 5. Implementation 68

5.5.1 Generate public/private key pairs

The following codes generate p, g, n and ¢ of an RSA signature scheme:

p = new Biglinteger(keyStrength, certainty, random); /I randomly generate large primes p

do{
g = new Biginteger(keyStrength, certainty, random);
/1 and q, each roughly the same size of
1/ keyStrength
} while (p.equals(q)); // make sure p and q are distinct
if (p.compareTo(q) < 0) { // make sure p > q
Biginteger tmp = p;
P=q
q = tmp;
}
n = p.multiply(q); // compute n = pq
pSub1 = p.subtract(one);
qSub1 = q.subtract(one);
phi = pSub1.multiply(qSub1); /l and ¢ = (p-1Xg-1)

The code snipping above is pasted from the furnOn method of the class KeysMachine.
This class generates the public/private key pairs for signing and verifyiing the digital cash
issued by the bank. As mentioned in chapter 3 and chapter 4, for each denomination of
digital cash, the bank should deploy a distinct key pair. It is also suggested by DigiCash
that it is applicable to deploy the same public modulus n for each digital cash
denomination, and deploy distinct public exponent e for each denomination. The
following code snipping is pasted from the method generateExponentPair, which
generates the public/private exponent pairs (e/d pairs).

Chapter 5. Implementation 69

Biginteger one = Biginteger.valueOf(1);
Biginteger three = Biginteger.valueOf(3);
Biginteger e.d;
do{

do {

e = new Biginteger(eNumBits, random);
/l Generate a random e,

} while (e.compareTo(three) < 0 || hasPublicExponentAs(e) || e.compareTo(phi) >=0);

// which is bigger than 3, smaller than ¢, and
/1 distinct from those for other denominations,
while (e.gcd(phi).equals(one)) {
e = e.add(one);
} Il such that gcd(e, ¢) = 1.

} while (e.compareTo{phi) >= 0 || hasPublicExponentAs(e));

d = e.modinverse(phi); /l Compute d, which is e’s multiplicative inverse
I/l of modulus ¢.

Biginteger{] exponentPair = {d, e};
exponentsTable.put(denomination, exponentPair);
/l Save the exponentS pair.

Thus, we get a group of public/private key pairs: a public key is denoted as (n, e), while
its associated private key is 4. One more thing need to be noted that, verification of
signatures is significantly faster than signing if the public exponent is chosen to be a
small number, and no weakness have been reported resulting from such a policy [AJM
97]. Since the implementation is based on client/server pattern, it is applicable to deploy
this public exponent selection policy to make the computation on the client side more
efficient. Thus, in the implementation, the eNumBits parameter, which determines the

maximum length e, is chosen to be 7 bits in length.

5.5.2 Blind the serial number

The following code snipping is pasted from the constructor of the Note class, which
defines the digital note as presented in chapter 4. The client program will call this
constructor to generate a Note object. As shown in chapter 3 and chapter 4, this is done,
at the client side, by randomly generating a serial number for the note, and blinding it
with an also randomly generated blinding factor r, then sending the blinded serial number

to the server side for signing.

Chapter 5. Implementation 70

SecureRandom sr = SecureRandom.getinstance("SHATPRNG");

serialNumber = (new Biginteger(bankKeyStrength, certainty, sr)).mod(n);
// Randomly generate the serial number which is
/! smaller than n

Biginteger g;
Biginteger one = Biginteger.valueOf(1);
do{
r = new Biginteger(bankKeyStrength, certainty, sr);
// Randomly generate a prime r,
r =r.mod(n); /1 which is smaller than n,
g =r.ged(n);
} while (g.compareTo(one) != 0); I/l and ged(r,n) = 1.

Biginteger e = owner.getBankPublicExponentOf(denomination);
1/ Get the bank'’s public exponent e for the
// particular denomination.

blindedSerialNumber = (seriaiNumber.muitiply(r.pow(e.intValue()))).mod(n);
// Blind the serial number, compute the blinded

// serial number.

5.5.3 Sign a blinded serial number

The following code snipping is pasted from the method issueNote of the class Bank. The
server program at the bank generates such a Bank object, who deals with the issue of
signing a blinded serial number. Note that the variable serialNumber holds the serial

number the bank sees, in other words, the blinded serial number.

Biginteger bankSignature = serialNumber.modPow(d, getPublicModulus());
// Sign the blinded serial number

return bankSignature; /l Return the signature

5.5.4 Unblind and verify a bank’s signature

The following code snipping is pasted from the method unblind from the class Note. It
unblinds a signature from the bank.

Chapter 5. Implementation 71

bankSignature = (blindedSignature.muitiply(r.modinverse(n))).mod(n);
// Unblind the signature of the bank

The following code snipping is pasted from the method verify of the class Note. It verifies

a bank’s signature after it is unblinded.

Biginteger e = owner.getBankPublicExponentOf(denomination);
Biginteger n = owner.getN();

Biginteger x = bankSignature.modPow(e, n); // Verify

if (serialNumber.compareTo(x) == 0) {

return true; // Signature verified
}
else {

return false; 1/ Signature is not valid.
}

5.6 Implement the server-client communication

The communication between the bank server and a client program is message based.
Usually, a client sends to the server a request, then waits for the response from the server.
On the server’s side, it listens to any request from the client, and responds to it by
returning some messages. The class Messager is developed to provide this

communication.

Messages between the server and a client are quite varied. For instance, when a client
asks for the public key of the bank, the bank will respond with a signature, which in
Java’s definition, is a Byre/]. In another situation when the client requests for a
withdrawal of a digital note, the bank should return a Note object. Therefore, it will be
very difficult and inefficient if each type of message is addressed in the class Messager,
especially it is the case when the system needs to be extended to support more functions.
The solution to this issue is defining the message as a Java Object. In this way, what the
class Messager deals with is always the same type: Object. The following code snipping
is pasted from the class Messager.

Chapter 5. Implementation 72

public class Messager {

private Socket socket;
private ObjectinputStream ois;
private ObjectOutputStream oos;

protected Object listen() {
i"......
Im......
ois = new ObjectinputStream(socket.getinputStream());

return ois.readObject();
I......
In......

}

protected void speak(Object obj) {
n......
...
oos = new ObjectOutputStream(socket.getOutputStream());
oos.writeObject(obj);
oos.flush();
...
n"......

}

Following this design pattern, there are at least two ways to parse the uniform Object
messages into particular types. We can extend the class Messager to a particular one, who
deals with a particular type of messages, such as NoteMessager who deals with the Note
objects. The second way is leave the parsing responsibility to the receiver or deliver of
the Object message. The present implementation follows the second way. There is a
Class ClientDealer developed, one of whose functions is parse a client’s request and
respond according to the result of the parsing. The following code snipping is pasted
from the class ClientDealer, showing how this works.

Object clientRequest;
while (! (clientRequest = mgr.listen()).equals(null)) { I/l A Messager mgr listen to the
/I request from the client
if (clientRequest instanceof String) { // The received Object is a
Il String

String sRequest = (String) clientRequest;
if (sSRequest.equals(Constants.R_PUBLIC_KEYS)) {

Chapter 5. Implementation 73

/I Client requests public keys of
// the bank
n......
n......
/...
mgr.speak(bank.getN());
mgr.speak(bank.getPublicExponents());
// Respond the client with the
// bank’s public keys.

}
else if (sRequest.equals(Constants. R_WITHDRAWAL)) {
/I Client request a withdrawal.

mgr.speak(bankSignature); // Respond with bank’s
// signature on the issued cash

}
/l Eise ?

}
I/l Else ?

5.7 Implement database access

At both server and client side, there is database access involved. The server program at
the bank maintains clients’ balance, and the databases for cash double-spending
checking. At the client side, it should at least maintain a local database of digital cash
withdrawn or exchanged from the bank, or paid by other clients. Java offers a package
called JDBC, which can access any relational database system as long as it provides a
JDBC driver. Most of the main RDBMS’s (Relational Database Management System)
support JDBC, and in this implementation Microsoft Access 97 was chosen as the
RDBMS, and JDBC-ODBC Bridge was chosen as the JDBC driver. However, it must be
noted that JDBC’s benefit is its RDBMS-independence. That means, only a bit of codes
need to be modified to confirm to any other RDBMS such as ORACLE and SYBASE.

At the time of writing, the double-spending ability has not been implemented yet. It is
easy to implement, however, since all it involves is just a verification of the bank’s
signature on digital cash, (which we have shown above in verify method of the class

Note,), and some database queries as shown in chapter 3 and 4.

Chapter 5. Implementation 74

At the time of writing, one database is developed at each side. At the server side, a
database Bank is generated with two tables, Accounts and Denominations. The former
maintains clients’ balance; the latter maintains denominations of digital bills together
with their public exponents and private exponents. The following table shows what the
latter looks like.

5 A, ROk - Jona] TRESELER 3
10 00 m8648492301 24340821 61 7085422140986365913 7
85357 125099886025396322974684439546230858

316349885289376444516446319827383

100.00 195708906034 11396484655987629384212448042 13
98384611559975451623823409932033133034338
7142907445238656957420038227320517 :

20000 19358163531635185653301031242108207005346 23
' 86445648390845283671390546780597990283965
46739627990947585122306899857 19207 o

72500 98698025887893680547618558303360036914699 29
53060325539531372413247369053787782974897 .
826380047814322689733381347398709

5.00 51294672952489547238009644996369911658177 31

- 17540312556387272401 150066354 119098678710
339874935244002831581864857967071

Table 2 - Table Denominations in the database Bank

It is clear to see, for each denomination the bank mints, its public exponent e and private
exponent d is maintained. Because the public modulus 7 is shared by all denominations, it
is not kept in this table.

At the client side, a database Client is generated with one table Notes, which maintains
the digital notes in the client’s “purse”. In this table, each digital note has three fields:
Denomination, SerialNumber, and BankSignature. The following shows what a client has

in his “purse” after he made some withdrawals.

Chapter 5. Implementation 75

There are some classes at the time of writing dealing with database access. The following
code snipping is pasted from the method debit4dccount of the class Bank, just to show
how to manipulate a database with JDBC.

Connection dbConnection = DriverManager.getConnection(dbURL);
// Connect to the database

Statement st = dbConnection.createStatement();
// Initialize a SQL statement object

st.executeUpdate("UPDATE Accounts " +
"SET balance = [balance] - " + denomination +
" WHERE customer =™ + client + ™);
/I Define the SQL statement, and
1/l execute it.

st.close();
dbConnection.close(); /I Clearing work.

This method is called to debit the client’s account after the bank issues a digital note to a
client. The next code snipping is pasted from the method keepInPurse of the class Note.
The method is called after the client received a note from the bank and has verified the
bank’s signature on the note.

dbConnection = DriverManager.getConnection(owner.getdbURL());
Statement st = dbConnection.createStatement();

String sqiString = "INSERT INTO Notes (Denomination, SerialNumber, BankSignature)" +
"VALUES (™ + getDenomination() + ™, "+ ™ +
getSerialNumber().toString() + ™, " + ™ +
getBankSignature().toString()+ ™)";

st.executeUpdate(sqiString);

st.close();
dbConnection.close();

Chapter 5. Implementation 76

DSOS BRI SEA

10.00 :279756966546134202847659425456 | 1637521136682088875676156756078942611445
:346454264023228358286123965557 14056850483590282424811567096956721595806
1209782166164530480684116826872 /64004 1836227665465350912675373059210
2776971959343844486109524 :

100.00 '216086031311420097029042533865 2399146449839274049335054897717202864714
:302471034166336752830816120481 :8319238530403353525038109667632858039024
:255016877591439951438756507522 :853321072790787831822913766566286269
'31771730391048133516048181

200.00 :282485339934277287527999813319 9536291670905871346899243540536706553516
'221217513204281301988565794138 9034803504756580233604496746386122203694
023000062500473955253265488366 :81734656262710625769504847902676254
05096195942166512562635669

25.00 -292648465404317989804400444263 2886355443559004779223783001070394747602
670357227370225455511227710361 0834172188105569637954461463394659268807
.839063051740224435683695711768 '666969133149076657045921294867171764
-48980114670396154472931417 ‘

5.00 25641 3889896667534204659956344 1953768113030455030761728937036587494241
895879779348642548479809310445 ' 1053127530156210914801141821399248648998
;495842774542561281934276379016 .480675523747624666271077635363076047
855751884 18768888762849781 .

Table 3 - Table Notes in the database Client
5.8 Implement graphic user interface (GUI)

The implementation includes a simple GUI for the client side. It is implemented with

Java Foundation Class (JFC). The following figures show what it looks like.

dbc:odbe:Client

Figure 14 - GUI: Configuration

Chapter 5. Implementation

AR T

s

Figure 16 - GUI: Withdraw

77

78

Conclusion and future works

In this thesis, we have discussed three categories of digital payment systems: secure
credit card system, credit-debit system, and digital cash system. Among the three, digital
cash systems are most discussed. We have delved into two digital cash systems
respectively: eCash and NetCash. The former deploys the blind signature mechanism to
offer unconditional anonymity, while the latter deploys a mechanism called money-
exchange to offer some degree of anonymity. Blind signatures, however, also produce
such payoffs as unsatisfactory system scalability and unfair anonymity. On the contrary,
the mechanism of cash-exchange, although offers anonymity which is not unconditional,
it is fair to both payers and payees, and its scalability performance is better.

A new digital cash system is presented by combining both blind signatures and cash-
exchange mechanisms. The most important feature of the system is that it defines two
forms of digital cash, digital notes and digital coins. A note often bears a bigger
denomination than a coin, and only notes can be withdrawn from the bank. A note can be
exchanged to coins. Payments and deposits can be undertaken with both notes and coins.
An extended system also allows exchanges between notes, or between coins, or from
coins to a note. At the bank, two, instead one, databases are deployed to detect double-
spending, double-exchange and double-deposit. An extended system even adds a third
database to enhance its scalability further. The resulting system is a digital cash system
which offer fair unconditional anonymity, and its scalability is greatly improved.

The system is partially implemented with Java SDK 2. It makes uses of JCA, JCE, JDBC
and JFC to fulfill requirements of the system implementation. Blind signatures, server-
client communication, database access, withdrawal protocol and a client side GUI have
already be implemented. In the future, another base mechanism cash-exchange needs to
be implemented. Then, other protocols (payment, exchange, and deposit) can be built

upon blind signatures and cash-exchange.

79

Reference

[AIM97] A.J. Menezes, P. C. van Oorschot, and S. A. Vanstone
“Handbook of applied cryptography”, ISBN 0-8493-8523-7

[CAFE] The ESPRIT project CAFE: High Security Digital Payment Systems

<http://www.informatik.unihildesheim.de/FB4/Projekte/sirene/lit/abstr94
html#BBCM1_94>

[CyberCash] <http://www.cybercash.com/>

[DB98] Dan Boneh, R. Venkatesan: Breaking RSA may not be equivalent to
factoring; In Proceedings Eurocrypt '98, Lecture Notes in Computer
Science, Vol. 1233, Springer-Verlag, pp. 59--71, 1998.

[DC82] David Chaum, “Blind signatures for untraceble payments”, Advances in
Cryptology —Proceedings of Crypto *82, Lecture Notes in Computer

Science, Springer-Verlag, pp. 199-203.

[eCash] <http://www.digicash.com>

[GVU10] GVU’s Tenth WWW User Survey Graphs
<http://www.gvu.gatech.edu/gvu/user_surveys/survey-1998-10/>

[HB89] H. Biirk, A. Pfitzmann. Digital Payment Systems Enabling Security and
Unobservability. Computers & Security, 8/5 (1989), 399-416.

<http://www.semper.org/sirene/publ/BufPf 89.ps.gz>

[iKP95] Mihir Bellare et al. IKP — A family of Secure Electronic Payment
Protocols (Extended Abstract)

<http://www.zurich.ibm.com/Technology/Security/extern/ecommerce/>

Reference

{ITAA98]

[Mondex]

[NetBill]

[NetCash]

[NetCheque]

[Nua]

[Rob95]

[RSA78]

[RSA98)

[SB95]

80

E-Commerce Market Snapshot by Information Technology Association

of America.

<http://www.itaa.org/ipecmmrl.htm>

<http://www.mondex.com/>

<http://www.ini.cmu.edu/NETBILL/>, <http://www.netbill.com>

Gennady Medvinsky & B. Clifford Neuman, “NetCash: A design for

practical electronic currency on the Internet”

<http://nii-server.isi.edu/info/netcash>

Nua Internet How Many Online.

<http://www.nua.ie/surveys’how many online/index.html>

M.J.B. Robshaw. Security estimates for 512-bit RSA. Technical Note,
RSA Laboratories, June 1995.

R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the
ACM, 21(2): 120-126, February 1978.

RSA Data Security, Inc. Frequently asked questions about today’s

cryptography, version 4.0.
<fip://ftp.rsa.com/pub/labsfag/labsfaq4.pdf>

Stefan Brands. Electronic Cash on the Internet

<http://www.cwi.nl/ftp/brands/e-cash.ps>

Reference

[SET]

[WS98]

The SET Standard Specification
<http://www.setco.org/set_specifications.html>

William Stallings, “Cryptography and network security. Principles and
Practice”, second edition, page 300. ISBN 0-13-869017-0.

81

Appendix: Source codes of the implementation

82

Appendix: Source codes of the implementation

/**‘***‘**#*****tttt‘t

* DcashServer.java

‘8*8**#’:#*‘8*3#***#*/

import ca.crim.dcash.Bank;
class DcashServer {
private static Bank bank;
public static void main(String[] Args) {

try {
String dbURL = "jdbc:odbc:Bank”;
String[] mintTable = {"200.00", "100.00", "25.00", "10.00", "5.00"};
int kmStrength = 384;
int eNumBits = 7,
int servicePort = 8888;
bank = new Bank(dbURL, mintTable, kmStrength, eNumBits, servicePort);

>

catch (Exception e) {
System.out.printin(e);

}

/*****t***ttt**#t*t‘tt

* Bank.java

t***‘ttt*t*tt*t&tt**tl

package ca.crim.dcash;

import java.util.Hashtable;
import java.io.*;

import java.net.Socket;
import java.net.ServerSocket;
import java.math.BigInteger;
import java.sql.*;

pubtic class Bank {

private KeyMachine km;
private String dbURL;

public Bank(String dbURL, String[] mintTable, int kmStrength, int eNumBits, int servicePort) {

setupDBS(dbURL); // set up databases
setupKM(mintTable, kmStrength, eNumBits); // set up key machine
startService(servicePort);

}
private void setupDBS(String dbURL) {

this.dbURL = dbURL;

83

Appendix: Source codes of the implementation

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver”).newlnstance();

>
catch (Exception e) {
}

}

private void setupKM(String[] mintTable, int kmStrength, int eNumBits) {

km = new KeyMachine(kmStrength);
km.tumon();

try {
Connection dbConnection = DriverManager.getConnection(dbURL);

PreparedStatement pst = dbConnection.prepareStatement(
"INSERT INTO Denominations (denomination, d, e)" +
"VALUES (?,7,?)"
):

String denomination;
for (inti = 0; i < mintTable.length; i++) {

denomination = mintTable[i];
km.generateExponentPair(denomination, eNumBits);

pst.setString(1, denomination);

pst.setString(2, km.getPrivateExponentOf(denomination).toString());
pst.setString(3, km.getPublicExponentOf(denomination).toString());
pst.execute();

}

pst.close();
dbConnection.close();

}
catch (SQLException e) {
}

b

private void startService(int servicePort) {
try {

ServerSocket server = new ServerSocket (servicePort);

System.out.printin("Ready for service ... ");

while (true) {
Socket s = server.accept();
Messager mgr = new Messager(s);
ClientDealer cd = new ClientDealer(this, mgr);
cd.start ();

}

}
catch (I0Exception e) {
}

}

public Hashtable getPublicExponentsTabie() {
retum km.getPublicExponentsTable();
}

public BigInteger getPublicModulus() {
return km.getPublicModulus();
}

public int getKMStrength() {
return km.getStrength();

Appendix: Source codes of the implementation

}

public boolean checkBalanceOf(String client, String denomination) {

try {
Connection dbConnection = DriverManager.getConnection(dbURL);

Statement st = dbConnection.createStatement();
ResuitSet rs = st.executeQuery("SELECT balance FROM Accounts WHERE customer = ' + client + ™");

if (rs.next()) {
if (rs.getFloat("balance™) > Float.parseFloat(denomination)) {
st.close();
dbConnection.close();
return true;

else {
st.close();
dbConnection.close();
return faise;
}
}
else {
return false;
}

}
catch (Exception e) {
return false;
}
>

public BigInteger issueNote(String client, String denomination, Biginteger serialNumber) {
// this number is given & blinded by client

if (! checkBalanceOf(client, denomination)) return nuil;

BigInteger d = km.getPrivateExponentOf(denomination);
if (d == null) return null;

BigInteger bankSignature = serialNumber.modPow(d, getPublicModulus());
debitAccount(client, denomination);

return bankSignature;

}
public void debitAccount(String client, String denomination) {

try {
Connection dbConnection = DriverManager.getConnection(dbURL);
Statement st = dbConnection.createStatement();
st.executeUpdate("UPDATE Accounts " +
"SET balance = [balance] - " + denomination +
" WHERE customer = '" + client + ™");
st.close();
dbConnection.close();

}
;atch (Exception e) {

Appendix: Source codes of the implementation

/ttttttttttttttttttttt

* KeyMachine.java

8*‘*****"***‘:*#####/

package ca.crim.dcash;

import java.util.Hashtable;

import java.util. Enumeration;
import java.math.BigInteger;

import java.security.SecureRandom;

public class KeyMachine {

private BigInteger p, q, n, pSubl, qSub1, phi;
private int strength;
private Hashtable exponentsTabie;

protected KeyMachine(int strength) {
this.strength = strength;
}

protected int getStrength() {
return strength;
}

protected void tumOn() {
try {

int keyStrength = (strength + 1) / 2;

SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
int certainty = 100;

BigInteger one = BigInteger.valueOf(1);

p = new Biglnteger(keyStrength, certainty, random);

do {
q = new Biglnteger(keyStrength, certainty, random);
} while (p.equais(q));

if (p.compareTo(q) < 0){
BigInteger tmp = p;
p=q;

q = tmp;

n = p.multiply(q);

pSubl = p.subtract(one);
qSubl = g.subtract(one);

phi = pSubt.muitiply(qSubl);

exponentsTable = new Hashtabie();
}
catch (Exception ex) {
}
}
protected BigInteger getPublicExponentOf(String denomination) {
BigInteger[] keyPair = (BigInteger(]) (exponentsTable.get(denomination));
if (keyPair == null) {
return null;

else {
return keyPair[1];
}

}

86

Appendix: Source codes of the implementation

protected Biginteger getPrivateExponentOf(String denomination) {
Biglnteger[] keyPair = (BigInteger{]) (exponentsTable.get(denomination));
if (keyPair == null) {
return null;

else {
return keyPair{0];
}

}
private boolean hasPublicExponentAs(Biginteger e) {

Enumeration exponentPairs = exponentsTable.elements();
BigInteger[] exponentPair;

while (exponentPairs.hasMoreElements()) {
exponentPair = (Biginteger{]) (exponentPairs.nextElement());
if (exponentPair[1).equais(e)) return true;

}

return faise;

protected void generateExponentPair(String denomination, int eNumBits) {

try {
SecureRandom random = SecureRandom.getinstance("SHA1PRNG");
BigInteger one = BigInteger.valueOf(1);
BigInteger three = BigInteger.valueOf(3);

BigInteger e,d;
do {
do {
e = new BigInteger(eNumBits, random);
} while (e.compareTo(three)<0 || hasPublicExponentAs(e) || e.compareTo(phi)>=0);
while (le.gcd(phi).equals(one)) {
e = e.add(one);
}
} while (e.compareTo(phi) >= 0 }| hasPublicExponentAs(e));
d = e.modInverse(phi);
BigInteger[] exponentPair = {d, e};
exponentsTable.put{denomination, exponentPair);

}
catch (Exception ex) {
>

protected BigIlnteger getPublicModulus() {
retumn n;
}

protected BigInteger getP() {
return p;
3}

protected BigInteger getQ() {
return q;

87

Appendix: Source codes of the implementation

}

public Hashtable getPublicExponentsTable() {
Hashtable publicExponentsTable = new Hashtable();
String k;
Biginteger publicExpo;

for (Enumeration e = exponentsTable.keys(); e.hasMoreElements();) {
k = (String) e.nextElement();
publicExpo = ((BigInteger{])(exponentsTable.get(k)))[(1];
publicExponentsTable.put(k, publicExpo);

return publicExponentsTable;

/*****83*&&***‘#***&##

* ClientDealer.java

"***t****‘tlt’t*****,

package ca.crim.dcash;

import java.net.*;

import java.io.*;

import java.util.*;

import java.math.BigInteger;

public class ClientDealer extends Thread {

protected Bank bank;
protected Messager mgr;

public ClientDealer (Bank bank, Messager mgr) throws IOException {
this.bank = bank;
this.mgr = mgr;

}

pubilic void run () {

try {
Object clientRequest;

while (! (clientRequest = mgr.listen()).equats(null)) {
if (clientRequest instanceof String) {
String sRequest = (String) clientRequest;
if (sRequest.equals(Constants.R_PUBLIC_KEYS)) {
mgr.speak(new Integer(bank.getKMStrength()));
mgr.speak(bank.getPublicModulus());
mgr.speak(bank.getPublicExponentsTable());

}
eise
if (sRequest.equals(Constants.R_WITHDRAWAL)) {
System.out.printin("Client withdrawal requested.”);
Object 00 = mgr.listen();
if (! (00 instanceof String)) {
System.out.printin("Protocol unexpected.”);
return;

88

Appendix: Source codes of the implementation

}

String client = (String) o0;

Object o1 = mgr.listen();

if (! (o1 instanceof String)) {
System.out.printin("Protocol unexpected.”);

retumn;
}

String denomination = (String) ol;

Object 02 = mgr.listen();

if (! (o2 instanceof BigInteger)) {
System.out.printin("Protocol unexpected.”);

return;
}

Biginteger serialNumber = (BigInteger) o2;
BigInteger bankSignature = bank.issueNote(client, denomination, serialNumber);
if (bankSignature != null) {

mgr.speak(bankSignature);

}
>

magr.finish();

catch (Exception e) {
}

/tt*t**t**&#tt**t#**tﬁ

* Messager.java
t't*tt:ttt***t*tt*t*#/

package ca.crim.dcash;

import java.net.*;
import java.io.*;

public class Messager {
private Socket socket;
private ObjectInputStream ois;
private ObjectOutputStream oos;
public Messager(Socket socket) {
try {
this.socket = socket;

}

catch (Exception e) {
System.out.printin(e.getMessage());

>

}

89

Appendix: Source codes of the implementation

protected Object listen() {
try {
ois = new ObjectInputStream(socket.getinputStream());
return ois.readObject();
}
catch (Exception e) {
return null;
}
}
protected void speak(Object obj) {

try {

00s = new ObjectOutputStream(socket.getOutputStream();;

00s.writeObject(obj);
00s.flush();

}
catch (Exception e) {
}

}
protected void finish() {

socket.close();
ois.close();
0os.close();

}
catch (IOException ioe) {
}

/*t#."**‘tttt*tlt#***

* DcashClient.java

#t**************tttt*/

impaort ca.crim.dcash.Client;
import java.util. Enumeration;
import java.awt.*;

import java.awt.event.*;
import javax.swing.*;

import javax.swing.border.*;

public class DcashClient implements ActionListener {

JTabbedPane tabbedPane;
String clientID;

String jdbcURL;

String bankHost;

String bankPort;

Client client;

Appendix: Source codes of the implementation

public DcashClient() {

tabbedPane = new JTabbedPane(SwingConstants.TOP);
Border paneEdge = Borderfactory.createEmptyBorder(10,10,10,10);

JPanel panell = new JPanei(faise);
panell.setBorder(paneEdge);
panell.setLayout(new GridLayout(4,2));
JLabel labeltl = new JLabel("Client ID:");
JTextField textField11l = new JTextField(20);
textField11.setActionCommand("txtfid11");
textField11.addActionListener(this);

JLabel labell2 = new JLabel("JDBC URL:");
JTextField textField12 = new JTextField(20);
textField12.setActionCommand("txtfid12");
textField12.addActionlListener(this);

JLabel labell3 = new JLabel("Bank Host:");
JTextField textField13 = new JTextField(20);
textField13.setActionCommand("txtfild13");
textField13.addActionListener(this);

JLabel label14 = new JLabel("Bank Port:");
JTextField textFieldi4 = new JTextField(20);
textField14.setActionCommand("txtfld14");
textField14.addActionListener(this);
panell.add(labelll);
panell.add(textField11);
panell.add(label12);
panell.add(textField12);
panell.add(labell3);
panell.add(textField13);
paneil.add(labell4);
panell.add(textField14);
tabbedPane.addTab("Configuration”, null, panell, "View / Modify system parameters”);
tabbedPane.setSelectedIndex(0);

JPanel panel2 = new JPanel(false);
panel2.setBorder(paneEdge);

JButton button21 = new JButton("Refresh");
button21.setActionCommand("bttn21");
panel2.add(button21);

final JTextArea textArea2l = new JTextArea();
textArea2l.setEditable(false);

textArea21.setFont(new Font("Serif", Font.BOLD, 16));
JScrofiPane areaScroliPane21l = new JScroliPane(textArea2l);
areaScrollPane21.setVerticalScroliBarPolicy(JScroliPane.VERTICAL_SCROLLBAR_ALWAYS);
areaScrollPane21.setPreferredSize(new Dimension(150, 250));
areaScroliPane2l.setBorder(
BorderFactory.createCompoundBorder(
BorderFactory.createCompoundBorder(
BorderFactory.createTitledBorder("Digital Bills"),
BorderFactory.createEmptyBorder(5,5,5,5)),
areaScrollPane21.getBorder()));
panel2.add(areaScroliPane21);

JTextArea textArea22 = new JTextArea();
textArea22.setFont(new Font("Serif", Font.BOLD, 16));
JScrolliPane areaScroliPane22 = new JScrollPane(textArea22);
areaScroliPane22.setVerticalScroliBarPolicy(JScroliPane.VERTICAL_SCROLLBAR_ALWAYS);
areaScrollPane22.setPreferredSize(new Dimension(150, 250));
areaScrollPane22.setBorder(
BorderfFactory.createCompoundBorder(
Borderfactory.createCompoundBorder(
BorderfFactory.createTitiedBorder("Digital Coins"),
BorderFactory.createEmptyBorder(5,5,5,5)),
areaScrollPane22.getBorder()));
panel2.add(areaScrollPane22);

91

Appendix: Source codes of the implementation

tabbedPane.addTab("Denominations”, null, panel2, "Get dcash denominations the bank offers");

JPanel panel3 = new JPanel(new BorderLayout(), false);
panel3.setBorder(paneEdge);

JPanel panei31 = new JPanel(new BorderLayout(), faise);
panel31.setBorder(
BorderfFactory.createCompoundBorder(
BorderFactory.createCompoundBorder(
BorderFactory.createTitiedBorder("Select a bill denomination"”),
Borderfactory.createEmptyBorder(5,5,5,5)).
panel31.getBorder()));

JButton button31 = new JButton("Withdraw a bill");

final JComboBox comboBox31 = new JComboBox();

panel31.add(comboBox31, BorderLayout.NORTH);

panel31.add(button31, BorderLayout.SOUTH);

final JTextArea textArea3l = new JTextArea();

textArea3l.setFont(new Font("Serif", Font.BOLD, 16));

JScroliPane areaScrollPane31 = new JScrollPane(textArea3l);
areaScroliPane31.setVerticalScroliBarPolicy(JScroliPane. VERTICAL_SCROLLBAR_ALWAYS);
areaScroliPane31.setPreferredSize(new Dimension(150, 250));
areaScrollPane31.setBorder(

BorderFactory.createCompoundBorder(

Borderfactory.createCompoundBorder(

BorderfFactory.createTitliedBorder("Bills in my purse”),
BorderfFactory.createEmptyBorder(5,5,5,5)),

areaScrolliPane31.getBorder()));

panel3.add(panel31, BorderLayout.WEST);

panel3.add(areaScroliPane31, BorderLayout.EAST);

tabbedPane.addTab("Withdraw", null, panel3, "Withdraw dcash bills from the bank");

Component panel4 = makeTextPanel("Blah blah blah blah");
tabbedPane.addTab("Payment”, null, panel4, "Does nothing at all");

button21.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
textArea2l.setText(null);
client = new Client(clientID, bankHost, Integer.parselnt(bankPort), jdbcURL);
System.out.printin{"Connected to bank.");
client.RequestBankPublicKeys();
System.out.printin("Got Keys.");

Enumeration denos = client.getDenominations();

while (denos.hasMoreEiements()) {
String de = (String) denos.nextElement();
textArea2l.append(de + "\n");
comboBox31.addItem(de);
//c.withdraw(de);
System.out.printin(de);

H

>
3

button31.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
String deno = (String) (comboBox31.getSelecteditem());
client.withdraw(deno);
Enumeration notes = client.listPurse().elements();
textArea3l.setText(null);
while (notes.hasMoreElements()) {
textArea31.append(((String) notes.nextElement()) + "\n");
}
}
}oH

92

Appendix: Source codes of the implementation

protected Component makeTextPanel(String text) {
JPanel panel = new JPanel(false);
JLabel filler = new JLabel(text);
filler.setHorizontalAlignment(JLabel.CENTER);
panel.setLayout(new GridLayout(1, 1));
panetl.add(filler);

s return panel;

public void actionPerformed(ActionEvent evt) {
String src = evt.getActionCommand();

if (src.equals("txtfid11")) {
clientID = ((JTextfield) evt.getSource()).getText();
System.out.printin("Client ID: " + clientID);

}

else if (src.equals("txtfid12")) {
jdbcURL = ((JTextField) evt.getSource()).getText();
System.out.printin("JIDBC URL: " + jdbcURL);

}

eise if (src.equals("tctfild13")) {
bankHost = ((JTextField) evt.getSource()).getText();
System.out.printin("Bank Host: " + bankHost);

}

else if (src.equals("txtfid14™)) {
bankPort = ((JTextField) evt.getSource()).getText();
System.out.printin("Bank Port: " + bankPort);

}

¥

public static void main(String s{]1) {
JFrame frame = new JFrame("dcash Client");

frame.addWindowlistener(new WindowAdapter() {
public void windowCliosing(WindowEvent e) {
System.exit(0);
}

.

ClientGUI gui = new ClientGUI();
frame.getContentPane().setLayout(new GridLayout(1, 1));
frame.getContentPane().add(gui.tabbedPane);

frame.pack();
frame.setVisible(true);

93

Appendix: Source codes of the implementation

/gt*t*

* Client.java

.ttttt’**t*‘t*‘t***tt/

package ca.crim.dcash;

import java.io.*;
import java.net.*;
import java.sql.*;

import java.math.BigInteger;
import java.utili.Hashtable;
import java.util. Enumeration;
import java.util.Vector;

public class Client {

private String personallD;
private String dbURL;

private InetAddress bankIP;
private int bankPort;
private Socket s;

private Messager msgr;

private int bankKeyStrength;

private BigInteger n;

private Hashtable denominations;

public Client(String ID, String bankHost, int bankPort, String dbURL) {
this.personallD = ID;

this.dbURL = dbURL;
initDBs();

try {
bankIP = InetAddress.getByName(bankHost);

}

catch (UnknownHostException e) {
System.out.printin("Unknown DNS name.");

}

this.bankPort = bankPort;

try {
s = new Socket(bankIP, bankPort);
msgr = new Messager(s);

}

catch (I0Exception e) {
System.out.printin("Connection fails.");

}

}
public void RequestBani<PublicKeys() {

msgr.speak(Constants.R_PUBLIC_KEYS);
Object 00 = msgr.listen();

if (! (00 instanceof Integer)) {
System.out.printin("Protocol unexpected.");
return;
}

Appendix: Source codes of the implementation

bankKeyStrength = ((Integer) o0).intValue();
Object o1 = msgr.listen();

if (! (o1 instanceof Biglnteger)) {
System.out.printin("Protocol unexpected.”);
return;

}
n = (Biginteger) o1;

Object 02 = msgr.listen();

if (! (02 instanceof Hashtable)) {
System.out.printin("Protocol unexpected.");
return;

}

denominations = (Hashtable) 02;

public void withdraw(String denomination) {
try {
Note note = new Note(denomination, this);
msgr.speak(Constants.R_WITHDRAWAL);
msgr.speak(personallD);
msgr.speak(denomination);
msgr.speak(note.getBlindedSerialNumber());

Object 00 = msgr.listen();
System.out.printin("Got: " + 0Q);

if (o0 instanceof BigInteger) {
note.unblind((BigInteger) 00);
if (note.verify()) {
note.keepinPurse();

else {
if ((00 instanceof String) &8& ((String)o0).equals(Constants.A_FAIL_OUT_OF_BALANCE)) {
System.out.printin("Bank responds: Out of balance.");

}
else System.out.printin("Protocol unexpected.");

}
;atch (Exception e) {
}

public void leaveBank() {
msgr-.finish();

public Enumeration getDenominations() {
return denominations.keys();
}

public BigInteger getBankPublicExponentOf(String denomination) {
return (Biglnteger) (denominations.get(denomination));

}

public BigInteger getN() {
return n;

}

95

Appendix: Source codes of the implementation

public int getBankKeyStrength() {
return bankKeyStrength;
}

private void initDBs() {
try
Class.forName("sun.jdbc.odbc.JdbcOdbeDriver”).newlnstance();
}
catch (Exception e) {
b
}

public String getdbURL() {
return dbURL;

}

public Vector listPurse() {

try {
Vector notes = new Vector();

Connection dbConnection = DriverManager.getConnection(dbURL);
System.out.printin("DB: connect ok.”);

Statement st = dbConnection.createStatement();
System.out.printin("Statement ok.");

ResultSet rs = st.executeQuery("SELECT Denomination FROM Notes");

System.out.printin("Execute SQL ok.");

while (rs.next()) {
notes.addElement(rs.getString("Denomination™));

st.close();
dbConnection.close();

return notes;

>

catch (Exception e) {
return null;

}

>

/*t#'*lt‘tt*tttt***t*#

* Cash.java

##’%l*ttl'*‘t*t/

package ca.crim.dcash;
import java.math.BigInteger;
public class Cash {

protected String denomination;
protected Biginteger serialNumber;

public Cash (String denomination, BigInteger serialNumber) {
this.denomination = denomination;
this.serialNumber = serialNumber;

Appendix: Source codes of the implementation

protected String getDenomination() {
return denomination;
b

protected BigInteger getSerialNumber() {
retumn serialNumber;
}

}

I***t#***'tﬁtt**t*‘*#‘

* Note.java
****##**ttttt*t###tt*/

package ca.crim.dcash;
import java.math.Biglnteger;
import java.security.SecureRandom;
import java.security.NoSuchAlgorithmException;
import java.sql.*;
public class Note extends Cash {
private Client owner;

private BigInteger r;
private BigInteger blindedSerialNumber;

private BigInteger bankSignature;
public Note(String denomination, Client owner) throws NoSuchAlgorithmException{
super(denomination, BigInteger.ZERO);

this.denomination = denomination;
this.owner = owner;

SecureRandom sr = SecureRandom.getInstance("SHA1PRNG");
int bankKeyStrength = owner.getBankKeyStrength();
BigInteger n = owner.getN();

int certainty = 100;

serialNumber = (new BigInteger(bankKeyStrength, certainty, sr)).mod(n);

BigInteger g;
BigInteger one = BigInteger.valueOf(1);

do {
r = new BigInteger(bankKeyStrength, certainty, sr);
r = r.mod(n);
g = r.gcd(n);

} while (g.compareTo(one) != 0);

BigInteger e = owner.getBankPublicExponentOf{denomination);
blindedSeriaiNumber = (serialNumber.muitiply(r.pow(e.intVaiue()))).mod(n);

Appendix: Source codes of the implementation

protected BigInteger getBankSignature() { // called after the bank’s signature is un-blinded
return bankSignature;
}

protected Biginteger getSerialNumber() {
return serialNumber;

}

protected BigInteger getBlindedSerialNumber() {
return blindedSerialNumber;
}

protected String getDenomination() {
return denomination;

}
protected void unblind(BigInteger blindedSignature) {

BigInteger n = owner.getN();
bankSignature = (blindedSignature.muitiply(r.modInverse(n))).mod(n);

}
protected boolean verify() throws Exception {

BigInteger e = owner.getBankPublicExponentOf(denomination);

BigInteger n = owner.getN();
BigInteger x = bankSignature.modPow(e, n);

if (serialNumber.compareTo(x) == 0) {
return true;

else {

return false;
}
}

protected void keepInPurse() {
Connection dbConnection;

try {
dbConnection = DriverManager.getConnection(owner.getdbURL());

Statement st = dbConnection.createStatement();

String sqiIString = "INSERT INTO Notes (Denomination, SerialNumber, BankSignature)" +
"VALUES ('™ + getDenomination() + ™, " +
™" + getSerialNumber().toString() + ™, " +
™" + getBankSignature().toString()+ ™)";

st.executeUpdate(sqiString);

st.close();

dbConnection.close();

}

catch (SQLException €) {
System.out.printin("In keepInPurse: " + e);

}

Appendix: Source codes of the implementation

/*t**t*#tt‘t***t**tttt

* Constants.java
ttttttttt#tt#t#tttt/

package ca.crim.dcash;

public class Constants {
protected static final String R_PUBLIC_KEYS = "BKK";
protected static final String R_WITHDRAWAL = "WDRL";

protected static final String A_FAIL_OUT_OF_BALANCE = "FBLC";
}

