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Thesis Abstract

This dissertation is an economic investigation into the persistency of Canadïan
unemployment. It examines whether this persistence is caused by sectoral shifts.
Empirica1ly, we test for persistence uSÏDg the Cochrane Variance ratio and the modified
rescaled range test statistics. We estimate unemployment persistence using Bayesian
ARFIMA class of models. To understand employment sectoral dynamics, the thesis uses
data-driven Vector Autoregression madels with empbasis on Classical and Bayesian
estimation techniques. At the theoreticalleve~ two structural Real Business Cycle models
are proposed to explain how aggregate unemployment persistence emerges trom sec:toral
labour mobility. The main difference between these two models is the impetus of the
shock. One model uses relative sectoral technology shocks and the other uses relative
sectoral taste shocks. We show that sectoral phenomena are important in accounting for
aggregate unemployment fluctuations.

Sommaire de la Thèse

Les donnés Canadiennes révèlent un chômage persistant. Est.ce-que le chômage aggrégé
est le résulat des facteurs sectoriels? Je présente les faits persistants du caractère du
chômase sectoriel à l'aide des statistiques de variance de Cochran, de la rescaled-range
modifiée et de l'estimation Bayesian de la classe des modèles ARfIMA. À fin de mieux
comprendre la dynamique du marché de l'emplo~ j'ai recours aux modèles réduits de
Vecteur Autoregressive en portant un intérêt spécial aux techniques d'estimation
Bayesienne et Classique. Au niveau théorique, deux modèles de cycle réel économique
sont suggérés pour expliquer comment un chômage persistant peut résulter de la mobilité
entre-sectoriel des travailleurs(euses). Les deux modèles englobent les deux écoles
dominantes de pensée économique, plus précisement la différence principale entre eux est
dans la nature du choc (choc technologique et préférence des consommateurs). Les
politiques gouvernementales visant à contourner et atténuer le problème du chômage,
doivent porter plus d'attention aux phénomènes sectoriels.

Keywords:
Canadian unemployment, persistence, hysteresis, Cochrane variance ratio, modified
rescaled range test, Bayesian ARFIMA models, seetoral phenomena, Lilien's hypothesis,
Classical and Bayesian Vector Autoregression, identification, Blanchard and Quah
identification, adjustment costs, labour mobility, Real Business Cycle models, sector­
specific technology shocks and sector-specific taste shocks, dynamic programming,
sensitivity analysis.
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0.1 Introduction

This thesis studies the eff'ects of sector-specific shocks on aggregate cyclical fiuctua-

tions in unemployment. By integrating unemployment caused by sectoral shifts into

a formaI dynamic general equilibrium mode!, the aim is to show the importance of

the reIationship between sectoral shifts and the movements of output and employ-

ment observed at the aggregate level in Canadian data. The core mechanism of the

models (presented here) is impulses-amplification-persistence: rea.l random impulses

are amplified. by an adjustment oost to labour movements across sectors and produce

persistence in aggregate unemployment.

This thesis investigates whether persistenœ in aggregate unemployment is a prop-

erty of the impulses that impinge on the economy or a consequence of the structure

of the sectoral interactions in the labour market. The objective is not to dismiss

aggregate shocks and their influence, but to quantify the relevance of sectoral shocks

and how they affect the labour market.

At the theoretical level, 1 use two real business cycle models, calibrate them to

the Canadian economy, and run experiments that evaluate these models. This thesis

addresses the following questions. Do shoclœ which induce sectoraI reallocations (in

terms of inter- and intra-sectoral job flows) have eJIects on the aggregate data mir-

roring the effects of the 'productivity shocks' in the real business cyclel literature?

Do sectora1 shocks account for and capture the dynamics and persistence of unem-

l Business cycles are measured as deviations from the trend and co-movements acrœs time of ag­
gregate variables.
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ployment in aggregate data? Can sectoral shocks alone account for the full volatility

in unemployment? Do small or large idiœyncratic shocks to key sectors influence

greatly the aggregate?

At the empirlcallevel, 1 test for persistenœ in Canadian unemployment series

using the Cochrane va.rianœ ratio test and the modified rescaled range test. Once

'economic persistence' is defined, 1 conduct a Bayesian estimation of 16 univariate

models within the class of Autoregressive Fractionally Integrated Moving Average

(ARFIMA) models. To assess the unemployment dynamics across sectors, 1estimate a

Bayesian sectoral vector autoregressive (BVAR) model to assess the effect of a sectoral

shock on aggregate unemployment. The rationale for using both these apprœches is

explained in the next subsection.

0.1.1 Computationai Economies

Computational analysis in economics has beoome an integral component of, and an

important taol for, the study of business cycle models. In general, quantitative re­

search in economics can he divided into two (non-exhaustive) approaches: the system

of equations approach (SEA) and the calibration approach (CA). These approaches

differ as ta whether the model is designed to possess a steady state, the extent of

information available to the agents, the specification of the dynamic structure of the

model and the nature of the ex:ogenous variables. For example, early SEA applica­

tions ignored the steady state design. Later, attention was paid to the long-run steady

state, specifically with the development of the cointegration and the error correction

modelling (ECM) tools. Nowadays, ECM is the favourite tool for estimating the
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steady state re1ationship. The CA emphasizes the oonstruction of the steady state

by its restrictive built-in assumptions in the model described by its environment and

emphasizes the inter-dependence of agents' economic decisions.

Nickell (1985) oonsidered the case in which an error oorrecting behaviour repre­

sented agents' optimal decisioDS in a dynamic setup. He provided a one-to-one map­

ping (in a general non-mathematiœ1 sense) between adjustment costs in dynamic

modelling and an error correction mechanism. In my view, this note emphasi2ed

the equivalence of the information content in both the system of equations approach

(SAE) and the calibration approach (CA). 1 see bath approaches as complements and

in this thesis 1 will pursue bath. 1 compare information from a data-driven reduced

fonn mode! (Vector Auto-Regressive) to two structural Real Business Cycle models.

The second difference between the approaches is in their integration of dynamics.

The SEA approach does not provide a theory for dynamic lags. It lets the data

decide. The lags are estimated using Classical or Bayesian statistical frameworks. At

the empiricallevel of this thesis, 1 focus on the latter. The CA approa.ch relies on

intertemporal optimization jointIy with the law of motion of the stock variables (with

time to build) to determine the dynamics of the mode!.

The end-resu1t of the CA models can he viewed as a restricted vector auto­

regressive (VAR) mode!. It is a restricted VAR, because it is a VAR in the state

variables and the parameters (non-estimated) are oomplex functions of the calibrated

ones. Whereas, the SEA is an unrestricted VAR because all variables enter the equa­

tions and the parameters are estimated. The following table summarizes the major

modelling differences between the two approa.ches.



• SEA
Steady State Not in older models

Yes, using ECM
Information Partial

Full in financial sectors
Exogenous Conditioned on current value

or deterministic trend
Sourœ: Kim and Pagan (1995, p. 364).

4

CA
By design

From intertemporal optimization

'Irea.ted as autoregressive

•

1 pursue a spectrum of general equilibrium models with the aim of empirically

replicating both employment volatility and dynamics. Stochastic dynamic general

equilibrium models have become the standard hallmark and an efficient taol of eval..

uating macro models. Numerical simulations of these models offer a detailed micro

picture of the economy and provide a constructive platform for assessing economic

palicy issues. 1 also pursue a Bayesian VAR investigation of the same issues. Finally,

1 will compare the resu1ts from both apprœches.

The CA approach provides an appraximate solution where relevant quantitative

information is not available from closed form solutions. 1 hereby follow the five steps

outlined in Kydland and Prescott (1996). Adapting them to the thesis produce the

following:

1) The question posed: can a sector-specific shock in a structural sectoral analysis

account for aggregate fluctuations in employment? This question is oonœrned with

policy evaluation. In a reœssion, government decision makers focus on the level

of aggregate unemployment and talœ measures to reduce it and to provide income

replacement for the unemployed. If evidence of Lilien's hypothesis,2 tested here, is

found in the Canadian labour market, then other policy solutions, such as generating

2 The Lilien (1982) bypothesis argues that balforthe variance in unemployment is due to thesectoral
reallocation of workers.
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easier werker mobility hetween sectors, ought to he oonsidered rather than providing

income replaœment without addressing the source of the problem.

A1so, if such evidence is found, then the 'Intensity Rule,3 - used to detennine

unemployment insuranœ benefits based on the level of local regional unemployment -

should he discarded and replaced with one that: a) is based on the level of aggregate

sectoral unemployment and b) takes into account the worker's last industry attach-

ment. For example, if the manufacturing sector unemployment rate is higher than the

unemployment rate in the service sector, then an unemployed worker in the manu-

faeturing sector should he paid higher replacement ratio than an unemployed worker

in the service sector. Sucb a 'sectoral intensity rule' in determining unemployment

insurance benefits is deemed to he more efficient.

Another implication concerns the 'Stay Option' policy. In Manitoba, between

1974 and 1976, the New Democratie Party (NDP) government ofEd Schreyer applied

this policy. It helped workers stay in their communities, despite changes in local

market conditions that influenced the availability of jobs and levels of incame. Mil-

lions of dollars vrere poured into government-owned or government-subsidized firms

that suffered huge financiallosses. In describing that policy, McCallum(1991, p. 198)

reported that "... a great deal of money was wasted " (my emphasis). Without ad-

dressing the social value of sucb action, the policy W8S not economically efficient.

The government was trying to undertake measures to reduce aggregate unemploy-

ment without proPerly looking at sectora! unemployment. Had this money gone to

3 The 'Intensity Rule' was recently introduced in the Canadian unemployment insuranœ benefit
program as part oC the system overhaul in 1996.
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provide re-training and easier worker mobility between sectors of the economy - such

as financing proper training programs for the workers - the outcome would have been

diHerent for the growth of Manitoba' economy. The merits of such a policy are yet

to he assessed for the Atlantic fishery sector.

2) Which theory? We use stochastic general equilibrium dynamic models. These

models imply that when modern business cycle models are confronted with a technol­

ogy or tastes shock, the mode1s' artificially generated data should display fluctuations

similar to the business cycle data.

3) Constructing a model economy. The critical element of our mode! economy

is the use of a multi-sector framework that incorporates a weIl defined propagation

mechanism. This amendment ta the stochastic general equilibrium models will gen­

erate sluggishness in employment adjustment, therefore producing persistent unem­

ployment at the aggregate level.

4) Calibrating the model. This is done by using Canadian micro data studies to

quantify and ca1ibrate the parameters in the models.

5) Running the eKperiment. The computer program will determine the equilibrium

proœss (the steady state) of the modelled economy and then uses it to generate

equilibrium realizations of stochastic proœsses. We investigate and report the extent

of the match between artificially generated data and business cycle data.

0.1.2 Economie Paradigms

This subsection underlines the schools of thought which operate in the background

of this thesis. Note that the issues discussed here are explored in detail later on.
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Lilien' propœa1- of the sectoral reallocation of worlœrs - highlights the important

raIe played by sector dynamics in explaining aggregate unemployment. This view

opposes the Keynesian perspective. The former view prediets a positive correlation

between unemployment rates and inter-industry worker mobility, while the latter

implies a negative correlation.

The framework l intend ta use is Real Business Cycle (REC) models (i.e., CA

approach). The RBC models can generate Keynesian type results sueb as persistenœ

(s~uggish dynamics) in output and/or unemp1oyment. This persistence cuhninates

from rea1 shocks. These models can also accommodate non-Walrasian assumptions.

In this thesis, using the calibration approach, two RBC mode1s (with relative

sectoraI technology and taste shocks) are fonnulated and simulated. Each model is

simulated at two frequencies, quarterly and annually. At each frequeney, the model

is simulated for different shock sizes and different labour adjustment costs. In total,

sixty models are simulated. Their dynamic properties and their sensitivity to cali­

brated parameters are investigated. These models integrate the type of shock, the

size of the shock, labour sectoral mobility and labour adjustment costs into an RBC

framework.

The first model focuses on supply shocks (relative sectoral technology shocks) that

shift relative sectoral productivity, which shifts sectorallabour demanda The second

foeuses on demand shocks (relative sectoral taste shocks) that shift relative sectoraI

goods demand, which shift relative sectorallabour demanda

Al.so and eonforming to the SEA approach, l estimate a set of Classical and

Bayesian Vector AutoRegression (VAR) models with different identification approaches
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and parameter specifications, using Canadian industry level data to quantify the ef­

fects of a sectoral shock on other sectors'employment. Their impulse responses and

variance deoomposition are reported.

0.1.3 Plan

This thesis uses stochastic dynamic general equilibrium models and ClassiœlfBayesian

Vector Auto-Regression (VAR) te assess the importance of inter-sectoral technology

shocks on the level of aggregate unemployment in Canadian data. In the proœss,

we investigate the sectoral behaviour of the Canadian labour market. Whether one

views this exercise as an investigation of the 'hysteresis' eHect versus a 'temporary'

effect on unemployment is open to debate. A 'hysteresis' effect occurs when certain

cyclical transitory factors (such as a technology or taste shocks) have a permanent ef­

fect on the unemployment level. A 'temporary' effect oœurs if the cyclical transitory

factors have only a transitory effect on the unemployment level. The conclusions of

this thesis report our findings on these.

0.1.4 The Map of the Thesis

Chapter One starts by tracking the development of business cycle models. It high­

lights the dichotomy between the impulse problem and the propagation problem.

Then 1 explain why the labour market is central to business cycle modeling. After

that, 1 present the labour market theories to elucidate the propagation mechanism

and then discuss the types of shocks to the economy to elucidate the nature of the

impulse.

Chapter Two presents the general Uhlig RBC model and the baseline King-
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Plosser-Rebelo RBC mode!. A variety of other RBC models are also discussed. The

intuition of RBC models is explained. Aspects such as de-trending, criticisms and

fallures are reported. The usefu1ness of introducing adjustment oosts is highlighted.

Next, we discuss the question of calibrating the Canadian economy from existing

studies.

Chapter Three presents the rationale for sectoral analysis in macroeconomics. It

discusses the policy implications of the düJerent competing theories of the causes of

aggregate unemployment, focusing on sectoral shifts versus aggregate disturbances.

It also considers the merits of inter-industry labour mobility and the inter· versus

intra- sectora1 shocks. This chapter emphasizes the usefulness of sectora! analysis in

explaining unemployment. It also explores the quantity dynamics of employment.

Chapter Four puts forward the stylised facts of persistence in unemployment. It

discusses hysteresis and persistence. This chapter presents the theories, their implica­

tions and the evidence on hysteresis. It proposes two measures for testing persistence,

specifically the Cochrane variance ratio and the modified rescaled range test. We test

for persistence in Canadian unemployment and report the results within the frame­

work of Bayesian A.RFIMA class of mode1s.

Chapter Five presents the vector auto-regressive (VAR) models. It discusses the

differenœs between the 'Classical' and 'Bayesian' estimation approaches. We ex­

plore both apprœches. The Classical approach is investigated under two identifying

schemes. The Bayesian VAR is estimated using five different parameter specifications.

Topics such as impulse response functions and variance decomposition methods are

discussed and the usefulness of each is noted. This chapter ooncludes by reporting
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impulse response functions of Canadian employment industry-Ievel data. It ends with

resu1ts from the VAR models.

Chapter Six develops two RBC models. The models are labeled modelI (relative

technology shocks) and mode! il (relative taste shocks). We discuss the models' intu­

ition, the size of the shock in the literature and we conduct an empirical exploration

of Canadian industry-level multifactor productivity data. Sucb examination of the

data is useful in identifying relevant empirical regularities to he used for calibration

purpoees. Bath models are simulated using the value-grid method at the annual and

the quarterly frequencies. The justification for employing two frequencies is to exam­

ine the influenœ of aggregation on the models' results. At each frequency, the two

models are simulated, using three different values for the adjustment costs parameter

and live differept values for the size of the shock. In total, sixty sets of parameters

for both models (thirty each) are simulated and the results are reported.

Chapter Seven presents the oonclusions of the thesis. It compares the results from

the system of equations approach (Chapter 4) and the calibration approach (Chapter

6). It also suggests directions for future research.
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Chapter 1

The Business Cycle and the
Labour Market

1.1 Yule, Slutsky, Frisch, Wicksell, Kydland and
Prescott, and Lilien

"AlI business cycle research seeks clarification on a basic, classical question: What
are the sources and propagation mechanisms for the boomfbust patterns of

economic fluctuations in modern economies?"
Quah (1995, p. 1595)

This section traces the development of business cycle models, the origins of the

propagation and the impulse problems, and the central place of the labour market at

the heart of the business cycle models.1

In his 1933 seminal contribution 'Propagation problems and impulse problems in

dynamic economics,' Ragnar Frisch (1933) developed a design for a macrodynamic

innovative model of the business cycle. For the first time in economics, questions

about the business cycle were divided into the impulse problem and the propagation

problem. Frisch offered the first known cycle mode! that incorporated statistica1

analysis with mathematically fonnulated dynamics. The importance of this model

l For an excellent and valuable exposition of the historical development of econometric ideas regard­
ing the businœs cycle, refer ta Morgan (1995, pp. 73-100) .

11
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W8S in the ÏDDovative integration of random shocks into the cycle mode!. Frisch

reported that the original idea of his mode! W8S due to Wicksell. "Knut Wicksell

seems to he the first who has been definitely aware of the two types of problems in

economic cycle analysis - the propagation problem and the impulse problem - ..." (p.

138).

Frisch' mode! was based on the Moore (1925) cobweb model consisting of two­

equations: demand and lagged supply. The former model was to be of the whole

economy. It consisted of a system of mixed differential and diHerence equations and

proved useful in generating oscillations sunilar ta the business cycle data (he focused

on consumption, capital starting and carry-on-activity). Once the internai economic

cycle mechanism (the propagation problem) was fonnulated, the paper questioned

the impetus of the cycle (the impulse problem). Frisch proposed "One way which 1

helieve is particularly fruitful and promising is to study what would become of the

solution of a determinate system if it were exposed to a stream of erratic shocks that

constantly upsets the continuous evolution [of the system]" (p. 197-198).

Twenty-four years after the Frisch proposa! of a solution to the impulse problem,

Solow (1957) provided a theoretica1 estimation of the technology growth based on the

assumption ofa constant returns to sca1e production function and perfect competition.

Later on, the Solow residuals explained how Slutsky's random terms came ta he

summed in economic activity and how Yule's shocks get absorhed into the system.

Kydland and Prescott (1982) fonnulated a model economy that described an in­

ternaI propagation mechanism captured by laws of motion. The mode! viewed Solow's

residua.ls as an impetus to the economic system. A new breed of ma.cro-modelling
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W8S barn, namely the Real Business Cycle CRBC) models. In it, the irregular output

movement over the business cycle W8S viewed as an economy perturbed by real distur-

bances of various types and sizes which propagated ovec time through the economy.

Lilien (1982) sparlœd interest in the e1fects of sectora! shocks on aggregate em-

ployment and unemployment. His studr round that sectoral shifts have negative

effects on aggregate level unemployment. The movement of workers from unsuccess-

ful productive units to new or growing units explained almost half of the variance

in aggregate unemployment. Lilien reported that periods with aggregate downturns

accompanied higher employment variability across sectors. Therefore, the direction

pointed by Lilien was that, even if the economy is subjected to sectoral shocks that do

not directly influence the aggregate, the propagation mechanism of workers moving

&crOSS sectors will amplify the shocks and the effects will he felt on aggregate unem-

ployment. Briefly, sectora! impulses (the impulse problem) are amplified by worker

mobility across sectors (the propagation problem).

1.2 Why the labour market?

".An understanding of aggregate labour market fluctuations is a prerequisite for
understanding how the business cycle propagates over time."

Kydland (1994)

Fluctuations in employment are procyclical. When focusing on economic policy

issues, unemployment and inflation are at the heart of macroeconomics. The labour

market is formed by a very complex: interaction between incentives and disincentives

on bath: the demand and the supply sides of the market. The former is shaped by

2 Lilien (1982) will he described in detaillater.
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basic elements sueb as commodity prices and labour productivity. Other elements

include regulations relating to work time and taxes that increase the cost of workers.

The costs are shaped by reservation wages of workers, the level and the duration

of unemployment, we1fare and transfer payments. These forces meet in the labour

market in a very camplex dynamic ta determine its structure.

Many empirical investigations focus on the causes of unemployment variability.

Fortin et al. (1995) provided a comprehensive study of the macroeconomic and struc-

tural causes of Canadian unemployment. The variables incorporated were: (macroe-

conomie variables) the real ex-ante interest rate, federaI spending, the regional tax

rate, the terms of trade,3 and (structural variables) the minimum wage, the union

density,ol the demographic pressure, and the unem.ployment insurance generosity (the

replacement rate). Using panel data of 500 observations for five Canadian regions and
four demographic groups over the period 1967-1991, the study ranked the importance

of the determinants in explaining the long-term increase in the Canadian unemploy-

ment rate. The ranking in descending arder was as follows: the high real interest rates

episode, the unemployment insurance reform of 1972, and the demographic change

during the same perlod.

Using linear regression analysis, Nickell (1997) explored the effects on unemploy-

ment - for Europe, U.S., Canada, Australia and Japan - of Many labour market

measures for the period from 1983 to 1996. This study concluded that high un-

employment is primarily due ta certain labour market features; namely, generous

3 The terms of trade were measured as the difl'erence between the log of the regional net output
priee and the log of the regional price index. The regional net output priee was defined as the ratio
or nominal to real GDP at factor cost.
4 Union density was defined as the percentage of the regionallabour force who were union members.
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unemployment henefits with no end restriction, high union densities characterized by

coordination fallure (constant friction with management), high overall taxes and poor

educational standards at the lower quartile of the labour market. Also, he found no

evidence that the unemployment rate is affected by generous unemployment henefits

for a fixed amount oftime (i.e., with end restriction), or high union density with high

coordination with management.

1.3 Terminology of the labour market

This section presents a briefing of the labour market vocabulary.

1.3.1 Stocks

In general, unemployment can be divided into three parts: 1) Frictional, 2) Structural

and 3) Cyclical.

Frictional unemployment is the number of people searching for a job. It is com­

posed of people who are new entrants, re-entered or voluntarily quit their jobs. Fric­

tionaI unemployment (search unemployment) exists when the worker invests time and

money in finding a job. This type of unemployment may be voluntary or involun­

tary. The factors that influence frictional unemployment are institutional: such as

unemployment insurance (ur) benefits and school-leaving age.

Structural unemployment is the number of people in the wrong location or with

the wrong skills at the wrong time (mismatch unemployment). Structural unem­

ployment is defined as the mismatch of labour supply and labour demand in certain

occupations, regioDS, and industries. The factors that inHuence structural unemploy-
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ment are demographic.5 Finance Canada's definition of 'structural unemployment' is

as follows, "... where workers are unable ta fill available jobs because they lack the

neœssary skills, do Dot live where jobs are available or are unwilling to work at the

wage rate offered in the market.,,6 The same definition is adopted by Osberg and Lin

(1999). Pearce (1997) considers structural unemployment as "... as a more extreme

form of frictional unemployment ...." Osberg and Lin (1999, p. 25) emphasized that

in labour economics "unwilling to work at the wage rate offered in the market" is not

part of the definition.

Cyclical unemployment is the number of people who are unemployed and are not

in the other two categories.

1.3.2 Flow dynamics

The flows into unemployment (referred to as 'unemployment incidence' ) are divided

into new entrants and job lasers. The flows into employment are divided into job find-

ers and job changers. The flows out of the labour force are divided into discouraged

workers and people who voluntarily leave the labour force.

The rate of job loss depends on 1) technological change, 2) international compet-

itiveness, 3) regional effects and 4) the business cycle.

The rate of job finding depends on the job search process and the reservation

wage. Job search depends on 1) unemployment henefits, 2) minimum wages and 3)

the degree of mismatch.

5 For an excellent investigation of the structural factors' influence on aggregate unemployment in
Canada see HœtJand (1995a, 1995b).
6 See Finance Canada's definition, source: http://www.fin.gc.œ/gloese/glœs-5_e.html#struct•
unemp.
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Under the assumption that the size of the labour force is constant,7 the 'natura!

rate of unemployment' UE- is a function of the rate of job losers (l) and the rate of

job finders (/) (Formally UE- = l~/ where l is the job loosing rate and f is the job

finding rate). Labour market dynamics has been extensively exploited during the last

25 years.

This thesis is concerned with inter-industry labour mobility. Osberg (1991) re-

ported that insufficient inter-industry labour mobility might be responsible for the

rise in the 'natura! rate' of unemployment. This thesis does not debate either the ex-

istence or the labelingB of the natura! rate hypothesis. My intention is to investigate

Osberg' observation.

1.3.3 Cyclical Flows

Data on cyclical flows of labour are useful in understanding sectoral reallocation.

Flows out of industries, measured as net employment change or as gross job destruc-

tion, are highly correlated across industries. Note that total employment turnover is

defined to be equal to the absolute value of gross job creation plus the absolute value

of gross job destruction.

Extensive empirical research and estimates of the job creation and job destruction

rates were reported for U.S. data by Davis and Haltiwanger (1990) and Davis et al.

(1996). However, this line ofempirical research resulted in theoretical models (wherein

job creation results in lower unemployment) that overlook the weIl documented 'Ta-

daro Paradox'. The seminal work of Todaro (1969) - weil known in economic regional

7 That is the Bows of new-entrants, retirees and discouraged workers aU balance out.
à lvIany suggested calling it the 'equilibrium' rate instead of the ~natural' rate.
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sciences - provided a spatial analysis of urban unemployment and emphasized the role

of job creation rates in increasing unemployment. This paradox argues that (Todaro

(1969, p. 147» job creation in urban areas can produce a paradoxical increase in

urban unemployment in less developed countries, because the low marginal cast of

travel will significantly increase the radius of the urban labour market and create new

labour supply even in the absence of migration.

Similarly, such reasoning may also apply if job creation attracts discouraged work-

ers. Specifically, an increase in the job creation rate in a specifie sector of the economy

might result in a significant increase in the employment of discouraged workers and

consequently will not decrease the unemployment rate.

While Todaro focused on rural-urban flow migration, Nakagome (1989) empha-

sized the inter-play of job creation and labour supply through commuting costs. Pr~

senting an endogenous model of the radius of labour supply - determined by the travel

cast of workers - the model highlighted the role of the job creation rate in increasing

wages and consequently expanding the radius of the labour supply. This study was a

spatial extension of the Todaro mode!.

We do not investigate the cyclical flow data of the labour market for the following

reasoDS. Job creation and destruction rates by sector are not weIl documented in

Canada. While the inter-industry accounting system (the input-output9 tables) traces

the fiow of goods and services from one productive sectar ta another, it does not -

unfortunately - trace the flows of labour across sectors. AIso, a prerequisite is to test

9 For a review of the input-output theory and applications see Chenery and Clark (1967, chapter 2
to chapter 13).
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for causality (Le., testing the validity of the Todaro Paradox) and to examine cyclical

c~movements between job creation and unemployment.

1.4 The Canadian Labour Market

This section reports the stylised facts regarding Canadian unemployment. 10 In gen­

eraI, the unemployment rate is high and has an upward trend. The unemployment

rate rose from an average 4.2 percent in the 19505, ta 5 percent in the 1960s, 6.7

percent in the 19705, 9.4 percent 1980s and 9.8 percent in the 1990s (1990-1998).

Despite the recovery of the Canadian economy from the recession of the early 19905,

the unemployment rate stood at 8.3 percent by 1998. From 1992 to 1998, it feU only

by 3.0 percentage points. Canada had never had an earlier decade with such a high

rate since the 1930s.

Regianally, Ontario had the largest proportionate increase in unemployment in

the 19905. By the end of the 1990s, the Prairies and British Columbia were the only

regions that experienced unemployment rates lower than the 1989 pre-recessian level.

The unemployment rate decreases from east ta west, with the highest unemployment

rate in NewfoundIand.

The unemployment rate depends on the growth of employment and the labour

force. The latter is determined by the working-age population and the participation

rate. During the 19905, the grawth rate of the working-age population averaged 1.5

percent a year. This growth relative ta the 1980s is due ta the increase in immigration

in ta Canada. The aggregate participation rate fell during the 1990s to 65.1 percent

10500 Sharpe (1999) (or the complete re(erences.
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from 67.5 percent in 1989. It declined every year from 1990 to 1995. Three-quarters

of the overall decline in the aggregate participation rate was due to young Canadians

and older men.

In 1998, the industry with the highest unemployment rate was in construction at

11.6 percent and the lowest was in financial services and real estate at 2.6 percent.

By sectors, unemployment was relatively higher in the goods producing sector than

in the service sector, 7.6 percent and 4.8 percent, respectively. In the 19905, a net job

creation occurred in the service sector. Over the period from 1989 to 1998, goods-

producing sector employment feU by 79,000, while service sector employment grew by

1,319,000. OIÙY 10.3 percent of the unemployed in 1998 reported that they were job

leavers.

1.5 Shocks to the Macroeconomy

This section explores the impulse problem and reports its treatment in the literature.

Recent RBC models differ widely in their characterizations of the sources of aggregate

variability. Its three predominant driving forces in the literature are:ll asymmetric

information within principal-agent problem, aggregate real shocks (including gov-

emment spending and taxes) and sectoral shifts12 (for the original classification see

llPigou, A.C. in bis book 'Industrial Fluctuations' classified sources of shocks into, 1) Real causes
defined as "changes that have occurred, or about to occur, in actual industrial conditions and
expectations based on these are true or valid expectations". These causes include: harvest variations,
inventions, industrial disputes, changes in fasmon, wars and foreign demand for investment. 2}
Psychological causes defined as "changes that occur in human's attitude of mind, 50 that, on a.
constant basis of fact, they do not fonn a constant judgment". These causes include autonomous
monetary show ta the banking and financial polides. This is the original classification due to Pigou
(as reported by Shiller (1987)}. One can argue that monetary show could be included in a seperate
category.
12The sectoral shifts Cocus on the role of recessions in redistributing labour across sectors of the
economy. Sectoral shifts are discussed later.
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Shiller (1987)). Once a driving force is selected, the Dext step is to choœe a theory

for the framework through which a propagation mechanism story is described and

finally one tries ta explain aggregate varîability. The following summarizes a selective

literature of the suggested shocks and their propagation mechanisms.

1 Literature1 Model 1 Propagation
Principal-Agent Search Job Availability Howitt(1987)
Aggregate Search Finn Factor Demand Kydland and Prescott (1982)

Oil Priees Hamilton (1983)
Desired Consumption Hall (1986)
Barrow/Lend Proœss Bernanke (1981)
Union Membership Blanchard and Summers (1986)

Sectoral Search Cœtly Labour Mobility Lucas and Prescott (1974)
Specific Human Capital Tope! and Weiss (1985)
Demand for Produœd Lilien (1982)
Goods / Services

1 Shock

Since there is no systematic way to determine what is the relative importance of

diHerent sources of macroeconomie variability, the reœnt literature has foeused on

trying to isolate the major sources of aggregate fluctuations and to suggest which

shock is Most significant in explaining these fluctuations.

Fair (1986) used stochastie simulation of a large-scale macroeconomic model- in

the Keynesian' multi-system of equations spirit - for the decomposition of output

variability into a variety of shocks. The conclusion reached was that there was no

single dominant source of shocks.

The existing literature does suggest a wide multiplicity of sources that affect ag-

gregate variability. Here, l focus on the magnitude and the e1fects of sectoral shocks

•
on the Canadian economy. Burnside, Eichenbaum and Rebelo (1995) computed the

sectoraI Solow residuals corrected for capacity utilization. They praxied 'capital. ser-

vices' use by a proportion of 'electricity use' by industry. Theyadvocated the use of
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such a correction for the following reasoos. First, 'electricity use' is a good measure

for capital services. Second, once corrected, there exists no evidence against the hy­

pothesis of constant retums ta scale. They found that using a corrected multi-factor

productivity measure results in lower (but not zero) correlation between the Solow

residual and the output growth rates. Such evidence puts in question the RBC base­

line foundation of the technology shock as the sole impetus of the business cycle. They

also reported evidence of significant heterogeneity across two digit standard industry

classification (SIC) industries in terms of residuals variability and co-movement with

output.

1.6 Conclusions

This chapter tracks the development of business cycle models. It highlights the exîst­

ing dichotomy between the impulse problem and the propagation problem in the lit­

erature. AIso, we present the importance of the labour market in explaining business

cycle fluctuations as a propagation mechanism. This chapter examines the different

shocks to the economy analysed in the literature. Finally, definitions of common

labour market terminology are presented.

This chapter points to the domain (field) of this thesis, Le., the labour market.

Chapter 2 reveals the framework by which we will address and view the labour market,

specifically Real Business Cycle Models (RBC).
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Chapter 2

Real Business Cycle (RBC) Theory

2.1 Real Business Cycle model

Lucas (1977) defined 'business cycles' as the fluctuations of output about trend and

its co-movements with other aggregate variables.1 As mentioned earlier, Frisch (1933)

provided an early theoretical theory of the business cycle. Keynesian oriented multiple

system of equations2 dominated the 1960'5 and the 1970'5. These were followed in

the early nineteen eighties by a new class of models based on Walrasian analysis.

The Real Business Cycle model3 (RBC) is based on the neoclassical growth mode!

and stochastic dynamic programming, (Kydland and Presoott (1982)). The idea

of the basic RBC model is as follows. Adding a stochastic element to a standard

aggregative growth model allows for changes in productivity. After calibrating the

l This definition wu referred ta as 'the business cycle phenomena' in Preseatt (1986).
2 Cooleyand Presoott (1995, p. 3), referred to these modela as "... fully specified artificial economies
....,. Thœe type of models were engineered to study static output determination.
3 Or as 1 prefer ta use [In the language of Lucas (1980, p. 696)} ..... Cully articulated, artificial
economic system ...., .

23
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mode1's microeconomic parameters, stochastic simulations of this model produce time

series for output, employment, consumption and investment. The characteristics of

the moments of the simulated data are then matched to their counterpart in the

busin~ cycle data. In the RBC framework, economic agents are subjected to various

types of shocks and take optimal decisions in adynamie environment.

2.2 General RBC (Uhlig)

This section follows closely the RBC mode! derived in Uhlig (1997). For the basic

stochastic neoclassical growth model, the environment is as follows.

1) Preferences: A representative agent maximizes his expected utility

U= Et [13.ci-~ -1]
t=O 1 1]

(2.1)

where Ct is consumption, 0 < /3 < 1 is the discount factor and Tl > 0 is the coefficient

of relative risk aversion. /3 is equal to 1/(1 + r) where r is the pure rate of time

preference.

2) The technology: Firms have a Cob~Douglas production function

(2.2)

where Kt and Nt are capital and labour, respectively. 0 < p < 1 is capital's share in

production and Zt is the exogenous total factor productivity.

3) The laws of motion that describe how capital and technology evolve through

•
time: For capital, the dynamic equation is

Kt = (1 - 6)Kt- 1 + It- 1 (2.3)
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For the technology shock, the equation is

log Zt = (1 - t/J) log Z + t/J log Zt-1 + et

where et '" iid N (0; 02) and 0 < t/J < 1.

(2.4)

4) Endowment: In each period, the representative household is endowed with one

unit of time 50 that N" = 1 for all t. Also, Ka is set equal to zero.

5) The information set: The representative household chooses Ch N" and Kt given

the above information up ta time t.

Since there are neither extemalities nor distortionary taxes in this economy, the

social planner's solution will be the same as the competitive equilibrium.

2.2.1 The social planner problem

The problem presented for the social planner is to ma..'"<imize e.~pected utility (equation

(2.1» subject ta the feasibility constraint5. That ÎS,

oc [ C1-"l 1]max EL {Jt t -

(CtrKt)~o t=O 1 - Tl

subject to

Ct + Kt = ZtK:_l N"l-P + (1 - 6)Kt- 1

log Zt = (1 - t/J) log Z + 1/1 log Z"-1 + êt

(2.5)

(2.6)

(2.7)

•
(2.8)

Ta solve this problem, one can apply the techniques of dynamic programming (section

2.2.3) or use the Lagrangian method.
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2.2.2 Lagrangian method

The Lagrangian for the above problem is,

(2.9)

Its first order conditions (FOC) (called also the Euler equations) are,

aL
aÀt

aL
aCt

aL
ôKt

(2.10)

(2.11)

(2.12)

The transversality condition - to rule out explosive solutions - is,

(2.13)

It is obtained by summing the planner's problem for T periods rather than for oc

(i.e., obtained from limiting the Kuhn-Tucker condition).

The steady state

Ta solve for the steady state, rearrange the FOC such that,

•

(2.14)

(2.15)

(2.16)
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(2.17)

Equation (2.16) is the Lucas asset pricing equation. Now, drop the subscript t, and

replace the variables with their steady state values. For any variable Mt which denotes

the level, let M denote the steady state value, and mt =log Mt - log M denote the

deviation from its steady state value. fi fflt = 0.05, then Mt is 5 percent above its

steady state value. Re-writing the FOC in steady state yield,

c - Z K P
- (1 - 6)K - K

R - pZ KP-l + (1 - 6)

1 - {3R

(2.18a)

(2.18b)

(2.18c)

Solving each steady state variable as a function of the parameters of the model and

Z,

R - 1//3 (2.19)

K
( pZ ) I/{I-pl

(2.20)-
R-1+6

Y - Z KP (2.21)

C - Y-6K (2.22)

Log-linearization

The following log-linearizes the FOC around the steady states:

•
1) For equation (2.14),

Ct = Zt Kf-l + (1- 6) Kt- t - Kt (2.23)
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(2.24)

- --p - - -Since y = Z K and C = y - êK,

Cc" ::::: Z KP(z" + PG-d + (1 - ê)Kk"_l - Kk"

Dividing by C,

y K- K
Ct. :::= = Zt + '=Rkt - 1 - '=k"

CCC

2) For equation (2.15),

(2.26)

(2.27)

(2.28)

(2.29)

using 1/13 = R =pZ KP
-

1 +1- c5 (Equation (2.18b»,

•

- --p-l
RT" ::::: pZ K (z" + (p - l)k,,-d

sa that

Tt :::= (1 - ,8(1 - c5))(zt - (1 - p)kt-d

(2.31)

(2.32)
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• 3) For equation (2.16),

1 - E. ~(c:J~R.+l] (2.33)

1 [ (?-eC

'-

4
+lr- ]- E /3 RerC+1 (2.34)t C

1 - Et (.BR + /3R(,,(ee - Ct+d + rt+dJ (2.35)

using the steady state equation (2.19) 1 = /3R, then,

4) For equation (2.17),

(2.36)

log Zt - (1 -1/J) log Z + 1/1 log Zt-l + êt. (2.37a)

(2.37b)

(2.37c)

Ta summarize, let us rewrite equations (2.27), (2.32), (2.36) and (2.37c) as:

y K- K
=Zt + =Rke-l - =kt
CCC

(1 - {3(1 - 6»(Zt - (1 - p)kt - 1)

Zt = 1/JZt-l + êt

Solving for the dynamics

(2.38a)

(2.38b)

(2.38c)

(2.38d)

•
Solving for the dynamics by the method of undetermined coefficients is ta postulate

a linear recursive law af motion between the endagenous variables Ct, kt, Tt and the
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• state variables kt-l, Zt•

kt - IIkklct-l + IIkzZt (2.39a)

Tt - IIrkkc-l + IIr%Zt (2.39b)

4 - lIœkc-l + IIczZt (2.39c)

The task is ta solve for the coefficients lIii for i = {k, T, c} and j = {k, z}. Note

that these coefficients are the e1asticities, i.e., if IIck = 0.5 and kt-l = 0.1 (Kt- 1 is

10% above its steady state value), then Ct = 0.05 (Ct is 5% above its steady state

value). Ta solve for these coefficients, one has to substitute the postulated linear law

of motion into the left-hand side of equations (2.38a), (2.38b), (2.38c) and (2.38d).

Note that Et(Zt+d = t/;Zt from applying the linear expectation operator on equation

(2.38d).

1) For the equation (2.38a),

Therefore,

•
1Ie1e - G-Vkk)~

y K
lia - = - =lIcC C

(2.44a)

(2.44b)
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Tt - (1 - ,8(1- 6»)(z, - (1 - p)kt-d
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(2.45a)

I/rlekc-l + lIr.Zt - (1 - ,8(1 - 6))Zt - (1 - ,8(1 - 6»(1 - p)kt - 1 (2.45b)

Therefore,

I/rle - -(1 - ,8(1 - 6»)(1- p)

1/,.. - 1 - ,8(1 - 6)

3) For equation (2.38c),

(2.46a)

(2.46b)

0 - Et [17 ((lIc:klct-l + vaze) - (lIc:kkt + vc:zZt+d) + vrlelcc + vr:;Zt+d

0 - Et [7]lIckkt-l + 17l/ezZt - TJvc:kkt - TJVc:zZt+l + I/rlekt + I/,.:Zt+l]

0 - Et [17vc*kc-l + TJVaZe + ClIrle - TJvdc)kc + (vr: -l1l1ez)Zt+d

0 - TJI/cJr:kt - 1 + (l/rle - 7] vck)kt + TJl/czZt + (vr: - TJVcz )1/JZt

0 - TJvcJr:kt- l + (vrle - TJvc/c)1cc + «1Ir=- TJvez)'t/J + TJvez)Zt

0 - TJVc/ckc-l + (vrle - 'lvck)(vleklcc-l + VbZe) + «vr• -l1Vez)t/J + 1]vcz )Ze

0 - «vrle -1JVcIc)VIeIe + TJvdc)kt - t + «vrle -1JVcIc)V/CZ + (vr: - T]Vcz)tj; + T]vc:;;)Zt

therefore,

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

To summarize, the equations that will solve for the 'undetermined' coefficients are,•
o - (l/rle - 1JVcIc)Vlelc + TJVc/c

o - CVrle - 1JVcIc)VIcz + (vr=- T]Va J1/J + 17Vez

(2.55a)

(2.55b)
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(2.44a), (2.44b), (2.46a), (2.46b), (2.55a) and (2.55b).

Zlck - G-VU) ~
y K

ZIa - C - C ZlIe%

IIrle - -(1-{3(1 - 6))(1 - p)

IIr: - 1- ,8(1- 6)

0 - CVrle -l1l1dt)V'dc + 11l1eJc

0 - CVrle - l1Vdt)VIe% + (vr: - f"Jl/cz)1/J + 11 l1cz

Ta solve for the system (6 equations and 6 unknowns), substitute equations (2.44a)

and (2.46a) into (2.55a).

o - (-(1- ,8(1- 6))(1- p) - TI G-Vkk) ~) Vu + TI G-Vkk) ~ (2.56)

o - -(1- ,8(1- 6))(1 - p)Vkk - TI G-Vkk) ~Vkk + TI G-vu) ~ (2.57)

Then divide the last equation l1K/ C to get:

0
-(1 - ,8(1 - 6»)(1- p)C 1 2 1

(2.58)- VIc/c - -Vicie + Vicie + - - 1I1c/c
l1K ,B ,B

0
2 (-(1- ,8(1- 5))(1- p)C 1 1) 1 (2.59)- V,el: + - - - Vicie + -

~K 13 13

0 2 ((l-,8(1-6))(I- P)C 1 1) 1 (2.60)- II IcIc - + - + Vicie + -
l1K f3 (3

Now rewrite the last equation 85,

where '"'( =(l-p(l~~(l-e)~ + k+ 1) .Note that from the steady state relations Y =

Z K P and C = y - 6K, therefore C/K = Z K P
-

1
- 6. .AIso from equation (2.18b),•

2 1o= vicie - '"'(lIu + -
f3

(2.61)
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• --p-l 1/{3-1+6 1- {3 + 136
(2.62a)ZK - - p{3p

C --p-l 1-{3 + {36 _ 6 = 1 -{3 + P6 - ppô
(2.62b)

K - Z K -6=
pp pp

C 1 -{3 + (1 - p){36
(2.62c)

K - p{3

Note that 1 is defined as,

_(1- {3(1- 6»(1- p)C 1 )
1= +-+1

TJK {3

Now replace i into 1 to get:

(
1 - ,8(1 - ô»)(l - p)(l- {3 + (1 - p){3é) 1 1)

1= +-+
~p{3 {3

Note that 1 > O. Solving the quadratic equation (2.61) of Vld: yields,

(2.63)

(2.64)

Vlele
1± J12 -4/f3

(2.65)- 2

'Y J",/2 - 4/(3 (2.66)Vicie - 2"± 4

Vlele - ~±JGr-~ (2.67)

The product of the two roots is equal to 1/{3. The smaller root is the stable one, Le.

smiller than one in absolute value. Therefore,

(2.68)

•
Once Vicie is computed, the rest of the coefficients can he derived. Equations (2.46a)

and (2.46b) compute IIr le and V n directly from the parameters. Substitute (2.68)

into (2.44a) to get Vc:k. Plug (2.44b) into (2.55b) and solve for liiez. Finally, replace
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Vk~ by its value in (2.44b) to get Vez. For sorne 'calibrated' quarterly parameters, the

coefficients are:

p = 0.990 p = 0.360 7] = 1.000 6 =0.025 Z = +1.000

ViA: = 0.965 IIk~ = 0.075 l/cIc = 0.618 lia = 0.305 IIr lc = -0.022 IIrz = 0.035

Impulse Response Function (!RF)

The system (2.39) can he used to graph the impulse response function of the mode!.

First to simulate the model, pick some initial values for k_1 and Zo J then generate

et. Using the system of Zt = 1/JZt-l + et (equation (2.37c)) and le" = lIlckke- 1 + LlkzZty

generate all the other variables Ct, rt and Yt. The IRF is traced out by setting ~l = l,

and et = 0 for t > 1. The effect of sucb a shock on all variables is then graphed.

2.2.3 Dynamic Programming

A dynamic programming problem is an optimization problem in which decisions are

taken sequentially aver a period of time. Usually, decisions taken in any period

inBuence the environment. A 'state' variable represents the environment and moves

through time in respanse to the actions taken by the decision maker. Also, it restricts

the actions available ta the decision maker at any point of time.

Taylor and Uhlig (1990) compared a set of alternative methads to provide numer­

ical solutions for nonlinear rational-expectations models. The eight solution meth­

ods compared were: Value-Function Grid, Quadrature Value-Function Grid, Linear­

Quadratic, Backsolving, Extended Path, Euler-Equation Grid, Parameterizing Ex­

pectations and Least Squares projections. They showed that different methods do
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lead ta different results. Of the methods mentioned (more on methods later) above,

we choose to use the value-funetion grid. However, a much easier and faster method

is the parameterizing expectations method of Den Haan and ~[arcet (1990). This

method uses the first..order conditions for the dynamic problem. A power function

approximates the conditional expectation function then a nonlinear regression is es-

timated on one set of initial parameters. Iteration on the parameters continues Wltil

minimization of the mean square error between the power function and the conditional

expectation is achieved.

2.3 Baseline RBC (King, Plosser & Rebelo)

This section underlines and follows the calibration process of the 'Baseline4 RBC

mode1'5 as presented in King, Plosser and Rebelo (KPR) (1988a).

The baseline model assumes a single type of output that is consumed or invested.

The output is produced by a Cobb..Douglas tecbnology with constant returns to scale.

Labour and capital are inputs. Consumers' .. infinitely lived agents - preferences

are ordered by the time discounted momentary utility over log of consumption and

weighted log of leisure. The use of the log is adoptee! to match the positive trend in

real wages and the zero trend in annual hours per worker.

... Preferences

.. Also, referred to as the 'Benchmark RBC mode!' in the literature.
5 Reproduced in the appendix with data measurements for the U.S. economy.

•
oc

EtE (jt [ln(Ct) +8ln(Lt )]

t=O
O<{3<l (2.69)
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- Technology

and (the impulse)

ln(A&) =4t = 'Ya + PaD.t-l + et

- Capitallaw of motion (the propagation)

Kt = le + (1 - 6) Kt- 1

- Resource constraints

and

Nt+Lt=l

O<a<l

et ,...., iid(O, (jI!:)

0<6<1

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

•

Ta compute the model' predictions, maximize the utility function subject to the tech-

nology and the constraints. This equilibrium solution of the model is a function of

the parameters which imply a stochastic process for the variables Ct, Le, Nt, Kt, lt and

Qe. In genera1, the solution is a non-linear function of the parameters and there is

no closed-form solution. 50, numerical methods are needed to calculate the stochas-

tic process for the variables.6 Approximating the solution by the log-linearization

of the Euler equations yields a vector autoregression (VAR) for the logarithms of

6 Methods of numerical solutions are exhaustively reviewed and compared in Taylor and Uhlig
(1990).



•
37

the variables are nonstationary (except for ne) and are represented by stationary

deviations about ac, which follows an integrated process by assumption (when Pa7

equation (2.71), page 36 is equal to one). Therefore, they are cointegrated with a

common trend, namely t1c. Note that the coefficients of the VAR are complicated

functions of the parameters of the model. Once these values are replaced numerically

(calibration), the equilibrium can be generated and the autocovariance generating

function of Xc = ( .!lCt, .!lie, .!lq", n~) follows. Final1y, the properties of these artificially

generated stochastic processes are compared with the real world data.

The first arder conditions for this basic RBC model are

(2.75)

Le., the marginal rate of substitution between leisure and consumption is equal to

the real ~tage rate (under the perfect competition condition). This implies that if the

real wage rate increases and the utility function has Uu, Uce < 0, then consumption

will increase and leisure will decrease. And

(2.76)

•

so that consumption growth is related to the net retum on capital.

In this setup, the only source of fluctuation in the economy is At (which represents

technology shocks). A change in At will change the quantity of labour demanded. The

extent to which employment will be infiuenced following a shock depends crucially

on the labour supply function. More technically, it depends on the intertemporal

substitution of labour supply (see section 2.5 for details). If labour supply is infinitely

7 The first order coefficient of the technology process.
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e1astic, then the efi'ect of the shock on employment will he maximized and the real

wage will exhibit an acyclical pattern. Note that empirical micro level studies indicate

that the labour supply - especially for adult men - is inelastic (vertical) in the long-run.

The choire of parameter values8 for quarterly variables in the U.S.A. over 1948-

1986 is:

- ct =0.58, equal to the average value of labour's share of GNP over the period.

- 'YiJ = 1.04, as the common trend of log per capita values of real GNP, consumption

of non-durables and services, and gross fixed investment.9

- 6 = 0.025, to yield a gross investment share of GNP of appraximately 30 percent.

- 8 = 0.20, 50 that the model steady-state value of N (= 0.20) matches the average

workweek as a fraction of total. hours over the period.

- (3 = 0.988, sa that the model's steady-state annual interest rate matches the

average rate of return on equity over the perîod. (f3 =1;,,)

- u~ = 0.01, as a convenient norma1ization.

2.4 Intuition of RBC

For the baseline model, the predictions following, say, a negative technology shoclc

are of an immediate faU of employment. Output falls because of the direct effect

of the decline in employment and the e1fect of the decline in productivity. Sinre

capital is unaffected, the marginal product of capital and thus the interest rate fall.

Consumption - govemed by the intertemporal Euler equation - tises and investment

declines by more than the decline in output. This is followed by graduaI increases in

8 King, Ploeser and Rebelo (1988b, p. 314 footnote 3).
g King, PlOEller and Rebe10 (1988a, p. 226 and footnote 35 on the same page).
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the interES; rate and real wage back to their normallevels. As a result, consumption

falls back to normal and employment rises back to normal.

Alter calibrating the King, Plosser and Rebelo (KPR) model, the study concluded

that the model successfully reproduced the relative ranking of the variances of con-

sumption, labour hours, investment and output in business cycle data. However, the

model failed to reproduce the appropriate stylised fact on the interaction between

output and labour hours.

Before presenting varieties of RBC models and their results, l will address two

issues pertaining to RBC in general. The first is the importance of elasticities. The

second is the issue of de-trending. These issues are important to understand RBC

criticisms.

2.5 Elasticities

Since the extent of the effect of a shock on employment depends on the intertempo-

rai substitution of labour supply, this subsection defines and emphasizes the role of

elasticities in the baseline RBC mode!. For the general momentary utility function,

U(C,L) = V(e). CCL) = _1_C1-<r. 1 L1-<r1 (2.77)
1- u 1- 0'1

We have,

•
Uc = C-~V(L) > 0

Ucc = -uC-l-~\-"(L) < 0

UCL = ULC = C-<rL-~l > 0

(2.78)
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The elasticities of marginal utility Ua with respect to C and Lare,

(2.79)

(2.80)

The intertemporal elasticity of substitution in consumption equals q. As u increases

(approaches 1, Le. logarithmic), the decrease in Ua is more rapid in response ta an

increase in C, and the consumer is less willing to accept deviatians fram a uniform

pattern of consumption.

The elasticities of marginal utility UL with respect to C and Lare,

ULcC C- trL-trlC
,---- -l-qULe - U - L-trl_1_Cl-tr -

L 1-CT

The intertemporal elasticity of substitution in leisure equals 0"1, as shawn by,

2.5.1 The Frisch Elasticity of Labour Supply

(2.81)

(2.82)

It is useful ta consider the À-constant or Frisch labour supply. Let Àbe the Lagrangian

mwtiplier associated with the worker's intertemporal budget constraint. The first-

arder condition associated with the labour supply is,

(2.83)

where Wt denotes the real wage in period t stated in period 0 priees (discounted to

period 0). The Frisch inverse labour supply function is the marginal clisutility of work

•
stated in wage units:

.!. .8U(n1' ..., nt, .•.nT)
,.\ 8nt

(2.84)
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When U is additively separable in labour, this can be solved to simplify for the labour

supply as a function of the current wage. When U is not additively separable, the

supply price of work in one period is a function of the leve! of work in that and other

periods.

The elasticity of the labour supply schedule is

n-n
(= crl· -­

n
(2.85)

.'

It is equal to the intertemporal elasticity of substitution in leisure, U l, multiplied by

the ratio of non-work time to work time. The elasticity ç controis labour supply over

the life cycle. H the wage rate were to double (fuily anticipated by the worker at age

20) over the same period, a worker with an ç of 1 will \\o1)rk twice as many weeks at

age 40 as at age 20. Empirical evidence points to ( being near the values 0.1 ta 0.2.

A larger Frisch elasticity generates larger responses ta economic shocks in equilibrium

modeIs, since agents are more willing to substitute leisure across time.

For the utility kernel (1 - <1» log Ct + <l>log(l - fi.t), the Frisch elasticity of labour

supplyequals (1- n}/n, the steady-state ratio of leisure to labour, or 4J/(1- cP). The

intertemporal elasticity of leisure is equal to 1. A 1% change in leisure results in l~~%

change in hours of employment. This kernel is often criticized that its labour supply

elasticity is much higher than that of prime age males estimated from panel data.

Christiano and Eichenbaum (1992) used a range of 3 to 5 for the Frisch elasticity.

Theyestimated <P to be equal to 5/6. Prescott (1986) choose a value for ifJ doser ta

2/3, but typically magnifies this elasticity by allowing past values of leisure to enter

into the utility fonction. A value of 2/3 means10 that 2/3 of the time is allocated ta

10
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non-market activities. Swanson (199gb) used a value of 1.7/3.

Lloyd and Niemi (1979) investigated if the labour supply elasticity shifted over

time, and for which demographic groups it did. Using quarterly U.S.A. data,ll the

study found evidence of statistically significant shifts - from the period 195&-1965

to 1966-1976 - in the labour supply elasticity. The most significant shift was due

to sectoral shifts in demand, unfavourable ta men and favourable to women (Le.,

increased female participation rates).

2.6 De-trending

Lucas' (1977) definition of the term 'business cycle' requires detrending the business

cycle data. If 'business cycle' fluctuations are defined as deviations around a trend,

then a natural first step to examine the fluctuations is to de-trend the data. One way

of eliminating the trend is to use the Hodrick-Prescott filter (Hodrick and Prescott

1980).

The first step of the HP curve-fitting method is to take the logarithms of the

variables for two rea.sons: 1) ta compress the units in which the variables are measured

in, and 2) because of the inherent exponential trend in most aggregate economic

variables. The selected trend path {Tt} is one which rninimizes the sum of squared

deviations from a given series {lit} subject to the constraint that the SUIn of the

squared sum differences not be large. Formally,

(2.86)

This is the value we adopt in this thesis.
llSource: Employment and Eamings.



43

• subject to

T-l

E [(Tt+l - Tt) - (Tt - Tt_d]2 < Il
t=2

(2.87)

where p. is a parameter governing the smoothness of the trend. The smaller p. is, the

smoother it is. If p. = 0, the least squares time trend is lïnear. Usually, p. is set 50

that the Lagrangian multiplier À of the constraint equals 1600. When the observation

period is in quarterly frequency, this produces the appropriate degree of SIDoothness.

Therefore, the minimization problem reduces to

T T-l

min E(l't - Tt)2 + ~ .E [(Tt+l - Tt) - (Tt - Tt_d]2
{1"«}T=l t=l t=2

T T-l

min ECl't - Tt)2 + 1600· E [(Tt+l - Tt) - (Tt - Tt_d]2
{1"tH'=l t=l t=2

(2.88)

(2.89)

The second sum of the squared. term is an approximation of the derivative of Tt at

time t. One attempts to minimize two sums of squares: the sum of squar~ cyclical

residuals and the SUIn of squared ~2Tt. The smoothing parameter À gives relative

weight to these two suros of squares.12 This parameter sets as a penalty for the

acceleration of growth. Finally, the deviations from trend are computed as,

y;d = Yi - Tt for t = 1, ....T (2.90)

•

The HP filter is a high band pass filter that eliminates all frequencies of 32 quarters

(8 years) or greater. It decomposes the macroeconomic time series into a nonsta-

tionary trend component and a stationary cyclical component. Over the past twenty

12The rationale for setting ~ = 1600 œas follows. The parameter À =a~/~, where a~ denotes the
variance of the cyclical component and O'~ denotes the variance of the trend component. Hodrick
and Prescott used "... the prior view that a five percent cyclical component is moderately as large
as is one-eight of one percent change in the rate of growth in 8 quarter ...". Therefore, À1/2 = ffi
or À =1600 as a value for the smoothing parameter.
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years, the HP filter became the standard practiœ to detrend and the hallmark of real

business cycle models.

Proponents of the use of the HP filter often explain that it is just a computational

procedure used ta fit a smooth curve through the data, i.e., that lit is just a curve-

fitting technique'. Opponents of the use of the HP filter have shawn that the filter

distorts the dynamic properties of the data. The filter is responsible for generating

spurious business cycle periodicity when there is no cycle present in the original data

(see Cogley and Nason (1995)). Also, King and Rebelo (1993) provided examples in

which the use of HP filter alters substantially measures of persistence, variability and

c(?-movements of economic time series data. They advocated the implementation of

a trend component in RBC models to eliminate the use of any filtering.

There are also other detrending methods in the literature. For example, Lucas

(198Gb) employed an exponential smoothing filter (ES) in bis investigation of the

quantity theory of money. The ES filter solves a rninjmjzation problem similar to the

HP filter. It is

(2.91)

•

Note that the parameter À here penalizes for the changes in the growth component.

2.7 Criticisms

For a complete review of RBC controversies, see the series of discussion papers in

The Economic Journal (1995). In my view, criticisms of RBC models are classmed

as ideological, methodological, end-result and goodness-of-fit.
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Ideologically, critics attack the built-in Wa1rasian market clearing foundation as

a way of describing markets behaviour, especially that of the labour market. Many

economists object ta the notion ofagents' intertemporal decisions to generate a labour

supply. Their argument is as follows. ExpJaining the Great Depression on the basis

that the labour supply is the product of agents' intertemporal decisions, is likely to he

unrealistic. To explain the Great Depression using sucb decisions, the assumption has

to he that agents anticipatOO WWII a decade prior to its start and decided to hold

off their supply for labour until the increase for demand generated by WWII. Such a

voluntary-unemployment explanation during 19305 is unreasonable. In his criticism,

Stiglitz (1986) questioned also capital (i.e., machines) unemployment during the same

era.

lVlethodologically, the criticisms were about the objectivity versus the subjectivity

of the calibrating exercise. The use of Solow residuals as impetus came under heavy

criticism. The criticisms of the end-r~ll1t of RBC point to the models' inability to

reproduce certain stylised facts such as: variability of employment exceeding that

of productivity, the instantaneous correlation between employment and productivity

close to zero and average productivity that leads the cycle.13 Goodness-of-fit criticisms

highlightOO and strongly condemned the ad-hoc method(s) of judging the merits of

each mode!. The absence of a metric, by which one measures how good is the mode!

as an approximation ta the business cycle data, is still a topie of research. Also,

the absence of formai statistieal tests 100 many to label the RBC as 'unworthy' of

acceptance.

13Usually referred to as 'labour produetivity cycle' in the literature.
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The success of RBC modeling in explaining business cycles is still a question

open to debate. However, Eichenbaum (1995, p.16D9) reiterated - in defense of the

brittleness of RBC - that "We do not need high power econometrics ta tell us that

modeIs are false. We know that. What we need are interesting diagnostic tools ta

help us understand the dimensions along which misspecified models do well and the

dimensions along which they do poorly" .

The real business cycle literature shows that if one is to reconcile the cyclical and

persistent pattern of the data with a general equilibrium stochastic macroeconomic

mode1, one must use the same pattern in the 'productivity shocks' that drive the

model impulse responses.14 Empirical measures of aggregate technology are obtained

by calculating the Solow (1957) residuals. However, the standard deviation for the

U.S.A. Solow residual equaIs 0.763, while the standard de~iation of Gross National

Product (GNP) is 1.8 percent. How can one use the 'productivity shocks' (measured

by the Solow residual) pattern to drive the model impulse responses and get a result

of LB percent variability for GNP?

Cogley and Nason (1993) elaborate on this point. They showed that in a typical

(baseline) RBC mode!,15 output dynamics are determined by impulse dynamics. In

other words, the output series generated from the artificial model is represented as

a filtered transformation of the external shocks to the model. For example, if the

shock is an AR(1) process, then output is an ARMA(3,2) process. In brie!, extemal

shocks comp1etely drive the mode!'s generated output series, pointing out how weak is

14This is usually re(ened ta as 'The baseline real business cycle mader in the literature.
15The Cogley and Nason (1993) typical RBC model is in the appendi~t as weil as the parameters
values used in their study.
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the propagation meebanism of.typical RBC models. The output dynamic properties

are only a reftection of the impulse dynamic properties. There are just not enough

dynamics (the propagation mechanism is very weak) in the typical RBC models since

the output dynamic properties are completely dominated by impulse dynamics.

2.7.1 Goodness-of-fit

Real Business Cycle research has often relied on matching unconditional second mo­

ments from the data in the real economy with unconditional second moments from

the data generated by an artificial model economy. Such an approach to assess the

model's goodness-of-fit was heavily criticized and labeled - by many - as 'the eye-ball

metric'. A c1assical alternative was suggested by Watson (1993). This study devel­

oped a goodness-of-fit measure for the class of dynamic econometric models in w~ch

aIl the endogenous variables are covariance stationary. In this conte.xt, the economic

model is an abstraction of the real economy and is viewed as an approximation to the

stochastic process generating the data. To measure the quality of this approximation,

Watson proposed a measure of goodness-of-fit motivated by models of measurement

errors in the Slutsky (1927) spirit. His appreach was te quantify how much stochastic

errer must he added ta the model's variables so that the model's artificial second

moments do match the real economy' moments. This treats the discrepancy between

the mode! and data as a stochastic process. Once this error is computed, one can con­

struct a measure of fit from its size. This approach to rninimizing the approximation

errar, in a sense, mirrors the R2 in simple linear regression.

The criticisms of Watson' procedure are: 1) it can not account for moments other
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than the second ones and 2) nonlinearities and variations in conditional second mo-

ments (such as ARCH type time series) are ignored for simplicity. Another criticism

is on how the procedure views the parameters. In the usual calibration exercises

parameter values are viewed as a point-mass priors &round the values.

A different procedure was propœed by Bayesian analysis. DeJong et al (1996)

proposed a Bayesian approach to deal with the parametric uncertainty. By specifying

a prior distribution over the parameter values, one can generate a distribution over

the statistical properties of the simulated artificial data. In the case of the typical

RBC model, this procedure concluded that modest prior specification is the road to

take.

In general, the ratio of the standard deviations of aggregate hours to those of

output has been emphasized in the literature as a measure of the simulated model

economy's goodness of fit (see KydIand and Prescott 1982 and Hansen 1985). It is

1.47 for the U.S.A. data.

2.8 Varieties of RBC

This section presents different varieties of RBC models and their results discussed in

the lîterature.

2.8.1 Indivisible Labour

This approach,16 developed by Hansen (1985), assumes that all variations in employ-

ment happen at the extensive margine It creates a highly elastic labour supply at the

16Such methodology have proven successful results when confronted with U.S. data but failed when
European data was in question. This approach is to endogenize the labour supply.
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aggregate level irrespective of the e1asticity of the individual agents. Forma1ly,

(2.92)

where <Pt is the proportion of individuals working and ho is the fixed shift length. In

this setup, the agent works or does not work because of fixed costS.17 After using a

lottery ta determine which individuals are working and make the preference space18

convex, the mode! draws on a Iinear utility function in employment. This setup

supports a constant marginal utility of leisure regardless of the hours worked and

gives rise to a highly e1astic labour supply. Individuals can either work or not work.

As a result, this framework does not add persistence in unemployment, but accounts

for employment volatility.

2.8.2 Labour hoarding

The locus in this model is on the intensive margin. Developed by Burnside et al

(1993), this mode! kept the \Valrasian essence and added a sequential decision-making

tree. The production function used is

(2.93)

•

where et, ho represent the effort and the work shift length respectively. The product

et.ho represents the labour supplied by the individual. Labour hoarding increases as

et goes to zero, and diminishes to zero when operating at full capacity (et = 1). In

this model, leisure is specified by T - X- et.ho where T and Xare the time endowment

and the fixed cast of hiring respectively.

17For example commuting time.
lSSînce the preference space is binary, ta work or not ta work.
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The sequential decision process is as follows. The firm chooses Nt prior to the

realization of the shock St, then choœes et after the shock. The firms' decisioDS on

hiring and firing are based on the expected productivity shock and it can adjust the

amount of labour demanded only in the following period. By persuading workers to

contribute more effort following a positive shock, the firm focuses on the intensive

margin and effort is adjusted to clear the labour market.

Boileau and Normandin (1997) concluded that the labour hoarding model provided

a better account of employment dynamics than alternative mocleIs applied ta the

U.S.A. data.

2.8.3 Search

In this framework, Pissarides (1990) and Merz (1995) produce persistence using a non­

\Valrasian analysis in the sense that the marginal productivity of labour is not set

equal ta the real wage. The key in these mocleIs is a matching function of unemployed

workers ta firms added to the law of motion of emplayment, which is

(2.94)

where 6ft is the proportion of the outftow from employment ta unemployment and

fflt is the matching fonction of the new hires. In these mocleIs, the Beveridge curve

represents the matching function between unemployment and vacancies. The match­

ing function is:

•
(2.95)
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where A is the efficiency of labour market clearing, Vt is the number of vacancies and

1 - nt is the number of unemployed. The distribution of income created from the

matching function depends on the firm's monopoly power and the worlœrs' ability to

bargain. The supply of vacancies determined by the firms depends positively on the

level of unemployment. The higher is the unemployment, the easier it is ta fill jobs

at a lower oost.

2.8.4 Results of ail Varieties of RBC models

In an attempt ta explain unemployment persistence in the U.K., Millard,19 Scott

and Sensier (1999) simulated aIl of the abo'le varieties of RBC models. The business

cycle data are quarterly for the U.K. covering the period from 1976:Q2 to 1996:Q2.

Their simulated results for the standard deviation of the following variables relative

to output standard deviation and compared ta the business cycle data are:

Consumption Investment Employment Unemployment
Business Cycle Data 0.97 2.47 1.11 8.43
Basic RBC 0.38 1.42 0.22 0.12
Indivisible Labour 0.83 3.05 0.36 0.20
Labour Hœrding 0.32 1.61 0.42 0.25
Search 0.87 1.48 0.22 0.13

Sourœ: Millard, Scott and Sensier (1999, p. 26).

Across all models, the basic RBC performs the worst in terms of replicating em-

ployment and unemployment variability. Labour hœrding provides the best per-

formance for bath variability. However, the suggested values are much lower than

the respective business cycle data. The conclusion is that all models generate low

volatility in either employment or unemployment and cannot explain the observed

19l would like to thank Stephane Millard for providing the computer codes.
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persistenœ of U.K. unemployment.2o

2.8.5 Labour Adjustment Costs

Riddell (1999, p. 24) acknowledged employer adjustment oosts as an explanation

for the high unemployment in Europe. Amano and Macklem (1998) estimated a

dynamic linœ.r quadratic model of aggregate labour demand for Canada, the U.S.A.

and Germany. They concluded that the adjustment costs of the labour demand are

very sunilar in Canada and the U.S.A. and are an important sourœ of employment

fluctuations.

In general, adjustment costs occur when it is cœtly for firms to adjust employment.

Employment persists for many periods and sluggishly adjusts following an economy

wide technology shock. Given the inability of the above varieties of RBC in simu-

lating unemployment petsistence or adequate employment volatility, and the Riddell

(1999) acknowledgment, this thesis investigates two derivatives of RBC models (im-

pulse mechanism) that include labour adjustment cœts. Note that by its nature, the

adjustment costs will induce smaller employment volatility. When faced with a oost

(in terms of 100 leisure) to reallocate, representative agents will Dot to change employ-

ment across sectors so frequently as without oosts. In theory, adjustment costs (i.e.,

propagation mechanism) are a useful means of generating unemployment persistence.

2°Results for persïstenœ are not replicated here. ReCer ta Millard, Scott and Sensier (1999, p. 27-32)
for the full analysis.
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2.9 RBC failures

This section focuses on RBC fallures ta account for observe<! employment variability

and output persistence.

2.9.1 Observed employment volatllity

Prescott (1986) reported that observed employment is twice as volatile as the one

simulated from the standard RBC economy. In the U.S.A. data, the variance of hoW'S

worked relative to the variance of output equals 0.95 percent. A usual RBC baseline

model generates a ratio of 0.52 percent. l'vlost RBC models generate a substantially

smaller volatility in employment than that in the data.

Campbell (1994) investigated this issue. The study found that a one percent

shock, decreasing technology, lowered employment by 0.45 percent in the baseline

RBC mode!. Therefore, to explain a decline of three percent employment in reces­

sion, one must assume a seven percent decrease in technology, a number which is

obviously unrealistic. For Europe, employment did not rise during the 1970-1985

period, although total factor productivity increased more than twice as much as it

did in the U.S.A. Failure of RBC models to generate matching employment variabil­

ity sparked wide interest among researchers and led to a search for alternatives that

could explain this observation. Examples included: indivisible labour, nominal wage

contracts and labour market search.

Fraisie and Langot (1994, p. 1581) asked the same question: "Can RBC models

be saved?" They considered a mode! with indivisible labour, labour hoarding and

adjustment costs. They concluded that "... the introduction of labor adjustment
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costs is a necessary condition for the mode! to reproduce a productivity cycle ..." (p.

1582). However, theyalso concluded that labour hoarding is a necessary assumption

to achieve a one period gap between productivity and employment (in business cycle

data, employment is coincident and productivity is leading).

2.9.2 Persistence in aggregate output

Cogleyand Nason (1995) concluded that actual output dynamics are more persistent

than those generated from standard RBC models. Since the baseline KPR mode!

is driven only by the single technology shock, the persistence of the output, con-

sumption and investment depended heavily on the persistence assumption used in

the technology shock.

The baseline model fails to account for the heterogeneity of the workers or jobs.

It does not contain incentives for a worker ta change jobs and no suggestion that a

worker might he more productive in the new job than the current one. The focus here

is on the movement of workers from unsuccessful productive units ta growing ones.

2.10 Adjustment Costs and the autocorrelation of
output

One dimension in which adjustment costs are useful is in matching of the autocorre-

lation function of output growth. A weakness (among many, see section 2.7) of the

baseline RBC is its inability to prediet (match) the positive seriai autocorrelation in

business cycle output growth rates. In the U.S.A. data, real output growth rates are

positively serially correlated and the seria! autocorrelation is significantly higher than

zero for lags of one and two quarters (see Cogley and Nason 1995). This discrepancy
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between model generated and business cycle data is present in a wide class of RBC

models.

Data
King et al mode! (1988b) (KPR)
Schmitt-Grohé model (1998)

lst autocorrelation 2nd autocorrelation
0.37 0.22
0.02 0.02
0.18 0.12

•

Using a two-sector RBC model, and a random walk technology shock, Grohé-

Schmidt (1998) focused on the matching of the autocorrelation function of output

growth rates. The investment sector and the consumption goods sector were charac-

terized by increasing returns and constant returns to scale, respectively.

l\ifost RBC models correctly predicted this positive autocorrelation. These differ-

ent models used a wide variety of assumptions: e.g., employment lags in the labour

hoarding process, sucb as in Burnside, Eichenbaum and Rebelo (1993), adjustment

costs in factor inputs [in this thesis, in employmentJ, an AR(2) technology shock or

government shock.

2.11 Aggregate Returns ta Scale and RBC

Cole and Ohanian (1999) questioned the sensitivity of RBC models to the parametric

fonn and the value of the aggregate returns to scale.21

If aggregate returns are constant or decreasing, then there is no mechanism by

which a monetary-shock driven extension mode! of RBC can reproduce the procyclical

labour productivity stylised facto In the simple case where the monetary transmis-

sion mechanism holds in the model, a monetary shock will induce an increase in

21 Aggregate returns to sca1e are defined as the percentage of the change in output relative ta the
percentage change in factor inputs.
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employment (movement along the marginal productivity of labour) without shifting

the demand for labour. Therefore, labour productivity will not be procyclical. Note

that when the production function exhibits constant or decreasing returns to scale, a

technology shock (a supply shock) generates procyclicallabour productivity.

However, if aggregate returns are increasing, a monetary shock driven RBC can

generate the procyclicality of labour productivity. In the case where the per capita

production function of the household depends on the aggregate per capita output (as

extemality),22 then a monetary shock generates procyclicallabour productivity. Note

that if the value of the increasing returns is large, then the model equilibria might

not be unique. See for example Benhabib and Farmer (1994) where Keynesian type

'animal spirits' generate business cycle fluctuations.

Since a monetary shock is not the focus of this thesis, the models proposed do "not

attempt ta include a monetary or a fiscal sector. l will adapt a constant returns to

scale production function.

2.12 Calibration and the Canadian Economy

Calibration originated in the computable general equilibrium (CGE) modelling. Early

calibration methods required setting an equilibrium point (as a benchmark) in the

product space of the model variables and linearizing a non-lïnear system around it.

In the general equilibrium (GE) setting, calibration became the quantification of

unknown parameters either by using micr<rlevel data estimates (plug-in estimates)

or by just fixing the parameters (backward reasoning) sucb that the mode! produces

22In the model, the value for the externality parameter determines aggregate returns to scale.
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a steady state within a given interval. For these quasi-scientific praetices, calibration

bas long been a subject of debate in the economic profession.23 In brief, calibration

is the proeess of choosing parameter values based on microeconomics evidence.

To calibrate the modeIs proposai in this thesis, 1 refer to the pioneering work of

Goldstein (1998). His studyexamined the projections of Canadian long-term eco-

nomie growth prepared by various forecasters. It provided a range of parameter

estimates which are well suited to this thesis. By reporting values for the basic com-

ponents that make up a potential output projection, Goldstein discussed how the

assumptions made (by different forecasters' institutions) in the estimation process,

impacted on the projection as a whole. Based on formal and weIl documented models,

Goldstein (1998) reported the estimates of the following institutions: The Conference

Board of Canada (CBoe), the University of Toronto's Fiscal and Economic Analysis

Program (PEAP), DRI-~IcGrawHill (DRMG), Informetrica (Info) and the Depart-

ment of Finance (DoF).

Growth Accounting

In general, potential output is estimated using principles of growth accounting. The

ratio of actual output relative to potential output is useful for fiscal and monetary

policies. It gives an indication of demand pressure on the economy. Once the trend

in real grass domestic product (GDP) is identified, one can project potential output.

There are two approaches to identifying the historical trend in real GDP.

The time series approach to find the trend in GDP data involves a simple regression

23For an excellent exposition of the merits of calibration versus estimation, see Quah (1995), and
for the statistical aspects of calibration in macroeconomics, see Gregory and Smith (1993).
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of real GDP on a time trend (linearlyor non-linearly) or using the Hodrick-Prescott

filter. One criticism ofsuch an approach is that it is not possible to identify historically

the sources of the trend movements (example: the impact of the aging or the growth

rate of the population over the trend growth rate) and therefore difficult to forecast.

Another criticism regarding the HP filter concems the reliability of the end points.

An alternative approach is to use a macro mode!. Using a formal production

function, one can break the level of output into different components. The levels of

these components are then de-trended and forecasted over time. The projected trend

levels are then introduced into the production function to fonn a potential real GDP

projection. The former approach is ref~ed to - in the literature - as a 'To~Down'

approach, while the latter is referred to as a 'Sottom-Up' approach.24

The CoblrDouglas function with a constant returns ta scale assumptian to model

output is,

yt = At.K~.L~-Q (2.96)

•

where Y: K, L denote output, capital stock and labour input respectively. A is the

total factor productivity (TFP) and refiects the Hicks-neutral technological change.

UsualIy, A is estimated as the residual25 (the amount of output not accounted for by

either capital or labour). Under the assumptions of perfect competition and constant

returns to scale production functian, Q denotes the capital share in incarne (nominal

GDP at factor cast). Q is the elasticity of output with respect to capital. Taking logs

of bath sides of equatian (2.96) and differentiating yields the growth rates equation

24Goldstein (1998, p. 144).
25A is refened to as Solow' residuals sinœ Solow (1957).
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(lower case letters represent the log)

aa = ay _aak _(l_a)al
a y k l

where ~ denotes the growth rate of the TFP and is the estimated residual using

actual real GDP and the actual values of the inputs. Note that this estimate of the

residual may differ from the true one if one uses a misspecified assumption on the

returns to scale of the economy. A1so, equation (2.97) is useful in computing labour

productivity (the growth in output per worker) as follows,

(2.98)

•

For the Canadian economy, various estimated shares in income values over 1980-1996

Finance CBoC PEAP DRMG Infa
Labour 0.64 0.61 0.70 0.62 0.605
Capital 0.31 0.39 0.30 0.32 0.395

Source: Goldstein (1998, p.149).

From the table, note that the weights do not sum to one in two cases: Finance and

DR.J.vIG. Because both assume a third factor of production, namely natural resources

for Finance and energy consumption for DIL\-IG. AIso, CHoC and PEAP use the units

of workers in measuring labour input in contrast to the units of hours worked used

in the Finance and DRJ.vIG studies. The above table is very useful in calibrating the

income shares parameters for the Canadian aggregate production function.

The labour input is measured either in terms of hoW'S worked or workers. It is

made of: a) the labour force27 source population (the most important changes in

26The Conference Board of Canada (CBoC), the University of Toronto's Fiscal and Economie Anal­
ysis Program (PEAP), DRI-McGraw Hill (DRMG), Informetrica (Info) and the Department of
Finance (DoF).
21
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which are due to the changes in fertility rates28 and immigration rates29 ), b) the

aggregate participation rate (changes due ta the aging of the population), c) the

assumed natura! unemployment rate (Finance, CBoC and DRJ.\fG estimates are 8.9,

7.4 and 8.0 respectively.) and d) a measure of average hours worked per worker. Note

that the decomposition of labour input measure depends on the unit in which it is

measured.

The capital input is usually decomposed into machinery/ equipment and non-

residential construction used in non-government commercial activity. D&\1G includes

the federal and provincial/local governments' capital stock as weIl. The capital in-

put is computed using a standard accumulation IUle Kt = It + (1 - 6)Kt - 1 o There

are different measures for the capital stock depending on the depreciation assump-

tians used and depending on the level of disaggregation used.30 Two approaches are

proposed to measure aggregate capital: the linear aggregator and the Cobb-Douglas

aggregator. For the former, data on aggregate capital is generated by summing up

machinery/ equipment (me) and non-residential construction (nr) capital. This im-

plies that these both types of capital are perfect substitutes and therefore have infinite

elasticity of substitution (DRMG, CBoC and Inro). However for the latter, using a

Cob~Douglas functional specification ( K total = K~'eK~~6 ),31 these types of capital

The labour force is computed by multiplying the source population by the aggregate participation
rate.
28The fertility rate was around 1.7 50 that, on average, a woman living to the age of 45 had 1.7
children.
29In Canada, immigration averaged a 250,000 per year during 1997.
30CBoC uses more disaggregated data than Finance and PEAP. Inro divides capital stocks into 75
industries.
31The VJeights used to compute the share of total capital income are determined as follows. The
share of machinery/equipment equaJs the sample average of UCm/eKm/e/(UCm/eKm/e+UCnrKnr),
where UCm/e denotes the user cost of machinery/equipment. This user cost is a function of the
priee deftator, the tax credit, the depreciation rate, the expected infiation, the corporate tax credit
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have elasticity of substitution equal to one.

In Canada, the depreciation rates broken by category over the period 1980-1996

are:

Finance CHoC
Total 5.9 6.1
ldach/Equip 12.2 35.6
~()~~ 3.2 1.9

Sourœ: Goldstein (1998, p.169).

PEAP DRMG Info
8.9 5.5 5.3
15.5 12.3 6.8
4.9 3.5 4.7

•

2.12.1 Canadian preferences for work

This section is on ca1ibrating the Canadian leisure weight in the utility function.

Drolet and Morissette (1997) investigated the Canadian Survey ofWork Arrange-

ments 1995 data to test if work redistribution would eliminate unemployment. Their

study (Table 2 , page 19) shows preferences to work (fewer, same or more hours) of

employees by industries. This is taken into account when 1 calibrate the intertempo-

raI substitution of labour parameter in the RBC models. Preferences for work time in

percentage as weil as the average hours spent on the job by industry are reproduœd

in the next table.

ME~ WOl\JlEN
Industry fewer same more hours fewer same more hours
Agriculture 2.8 72.0 25.3 48.5 - - - -
Forestry and mining 4.9 75.9 19.2 44.6 - - - -
Construction 2.4 63.3 34.3 41.8 - - - -
Agriculture, et above. - - - - 9.2 77.1 13.7 35.9
Manufacturing 5.2 71.9 23.0 41.1 8.4 69.1 22.5 38.1
Distributive Services 5.9 66.9 27.2 41.7 8.1 69.6 22.3 35.7
Business Services 5.0 67.6 27.4 40.5 8.6 69.7 21.7 35.5
cx,nsumer Services 3.7 57.7 38.7 39.0 3.4 56.2 40.4 32.0
Public Services 7.9 70.7 21.4 39.4 9.3 67.0 23.6 33.5

and the real interest rate. This function implies that if the user cast of an input rails, it will lower
the marginal product of the input.
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Source: Drolet and Morissette (1997).

They concluded that mœt Canadians would prefer to work longer rather than

shorter hours. Thœe who would prefer shorter hours are professionals at the higher

quartile of earnings. Acoordingly and based on their conclusion, we calibrate the

steady state of hours worlœd for the representative agent in Chapter 6.

2.13 GeneraI Equilibrium (GE) Framework

•

This section links Chapter 2 to Chapter 3.

GE models are not able ta account for the persistence in aggregate leveloutput

and unemployment. My interest is at the sectoral disaggregated industries level. The

plan is to use general equilibrium artificial economies associated. with severallabour

market institutions to account for aggregate employment behavioUI'.

Within a multi-sectar framework, Dupor (1996) considered the aggregate effects

of sector-specific shocks to production. This study concluded that the law of large

numbers - implying that positive shocks in sorne sectors are offset by negative shocks

in others - applies and that such a modelling strategy is unnecessary ta explain the

business cycle character. More generally, if there are many independent shocks and

labour were mobile between sectors, then the law of large numbers implies that their

effect on the aggregate economy would average out to zero. The method used. was to

introduce interaction between sectors byan input-use matrix in a general equilibrium

framework. Dupor's model assumed that every sector sells sorne intermediate inputs

to some other sectors in the economy and that all sectors are equally importanL
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Several recent studies in the literature suggested different mechanisms by which

the law of large numbers can he wealœned. Mechanisms sucb as asymmetries, thresh­

old effects, non-linœ.r settings and monopolistic competition have proved useful (see

Boldrin et al (1990) and Scheinkman (1990)) in modelling the effects of inter·sectoral

shocks on the aggregate level.

For example, building on the Dupor mode!, Horvath (1997) simulated greater

aggregate volatility from sector-specific shodes. He avoided the law of large numbers

and assumed that sorne sectors are more important input-suppliers than others. This

assumption relies on the relative sizes of the sectors.

From the above discussion, we will address the following: 1) a multi·sector general

equilibrium framework is useful (Chapter 3, section 3.1), and 2) sector size is impor­

tant (Chapter 6, section 6.6). The point is that, when looking at the sectorallevel,

one has to incorporate the size of the sector relative to the economy.

2.14 Plan

Explaining output dynamics is a central aim of quantitative macroeconomics. In this

thesis, we intend to use employment dynamics at the sectoral level to account for

output movement and to generate persistenœ that will match empirica.l regularities.

To explain the stylised fact of productivity leading output, üi (1962) proposed

treating labour as a quasi-fixed factor. In booms, firms increase their output but the

labour input is a quasi-fixed factor. This can he explained by training costs, usually

modelled by labour adjustment cœts.



•

•

64

Bils and Cho (1994) focused on explaining the cyclica1 behaviour of employment

(workweek) , effort, capital utilization32 and productivity. They integrated procyclical

labour and capital utilization into a real business cycle mode!. The capital utilization

rate increases as workers increase their effort or increase their hours per week. The

model also featured oosts of adjustment in capital, workers' preferences over weeks

of work, hours per week of work and effort per hour at work. This mode! did mimie

certain important stylised facts,33 namely: a) employment peaks a full quarter alter

output (employment Iags the cycle), and b) effort, capital utilization, and produetiv-

ity all sharply lead the business cycle. Therefore, the adjustment cœts of factor inputs

can lead to favourable results in terms of replicating many business cycle data char-

acteristics. However, BUs and Cho's mode! fell short in one aspect, namely, labour

hours generated. were less variable than observed ones.

By introducing a law of motion that captures the cœtly fiow of employment he-

tween industries following a sector-specific shock (propagation mechanism as adjust-

ment oost in labour mobility), and also by taking into account the size of the industries

relative to the economy, one an explain the persistence of aggregate output and un-

employment. In short, a correctly specified law of motion that captures the labour

market structure will add to our understanding of aggregate dynamics and adequately

characterize the employment behaviour.

In this thesis, the concern is ta extend RBC models to include sectora! shocks (the

impulse problem) and to generate persistent unemployment in the end-result by using

32Swanson (1999) focused on variable capital utilization within a sectoral framework. See section
3.1 for details of this study.
33Documented in Kydland and Presoott (1990).
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an adjustment oost for workers to move across sectors (the propagation problem).

This represents an enhaœment of RBC models and enables the investigation of Lilien'

hypothesis.
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2.15 Appendix: U.S.A. Business Cycle Data

This appendix reports descriptive moments for the U.S.A. business cycle data and

their definitions, in the literature.

2.15.1 Bils and Cho (1994)

Bils and Cha (1994) reported the following 5nmmary of U.S.A. data statistics. The

data are taken from Citibase, quarterly covering the period from 1955:3 to 1984:1 AIl

series are logged, detrended using the Hodrick-Prescott filter.

Series StDev Correlation with Output
y 1.74 1.00
C 1.29 0.85
Cl 0.81 0.65
l 8.45 0.91
K 0.63 0.05
Q 1.74 0.77
H 0.46 0.76
N 1.50 0.81
Y/H 1.18 0.35

Source: Bils and Cho (1994).

Where Y denotes real GNP, C denotes consumption of nondurable and services,

Cl denotes the consumption series used by Christiano, which equals C plus the flow

of services from durable goods. l is for gross private domestic investment and K is

the nonresidential equipment and structures. Q is aggregate hours measured as hours

of all persons. H is weekly hours per persan at work. N is for all persons at work,

Le., total employment. Finally, YIR denotes labour productivity measured as output

divided by aggregate hours.
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2.15.2 Prescott (1988)

Prescott (1986) reported the following descriptive statistics for the cyclical behaviour

of the U.S.A. economy. AIl series are measured as deviations from trend covering the

period from 1954:Ql to1982:Q4.

Variable StDev Cross Correlation with GNP
X"-l X" Xt+l

GNP 1.8% 0.82 1.00 0.82
Persona! Consumption

Services 0.6 0.66 0.72 0.61
Nondurables goods 1.2 0.71 0.76 0.59

Fixed Investment 5.3 0.78 0.89 0.78
Nonresidential 5.2 0.54 0.79 0.86
Structures 4.6 0.42 0.62 0.70
Equipment 6.0 0.56 0.82 0.87

Capital Stocks
Total Nonfarm Inventories 1.7 0.15 0.48 0.68
Nonresidential Structures 0.4 -0.20 -0.03 0.16
Nonresidential equipment 1.0 0.03 0.23 0.41

Labour Input
Nonfarm Hours 1.7 0.57 0.85 0.89
Average Weekly Hours in manufacturing 1.0 0.76 0.85 0.61

Productivity (GNP/Hours) 1.0 0.51 0.34 -0.04

Source: Prescott (1986).
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Chapter 3

Sectoral Analysis

3.1 From Aggregate ta Sectoral

"Macroeconomies has always rested on the fiction that the behaviour of agg!'egates
was stable and, therefore, individual market phenomena could he safely ignored."

Sheffrin (1984, p. 482)

"The sectoral shifts hypothesis has attracted attention preci.sely because it departs
sharply from traditional notions about the driving forces behind aggregate economie
fluctuations."

Davis (1987, p. 329)

Theoretically, most business cycle models treat production as taking pIace in one

industry. To emphasize the changes in the technologies of different industries, one

has ta investigate sectorallevel economies. A technology shock in one sector might

influence the aggregate economy even without an aggregate level shock. For example,

an adverse shocle to one sector might reduce the wealth and the employment in the

whole economy. This idea is the key to the first of Kaldor's laws.

68
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Nicholas Kaldor c1aimed three propositions in the late 1960s. They are referred

to as the Kaldor's laws in the literature. The first is that the manufacturing sector is

the key in determining the overall rate of eoonomic growth. The second (also known

as Verdoom'8 law) is that manufacturing productivity growth is positively correlated

with output growth. The third is that faster growth in the manufaeturing sector

implies !aster growth in overall productivity growth.

Empirica1ly, contemporaneous sectoral aggregation of economic time series dis­

torts the dynamic properties. Swanson (1999) reported that failure to consider sec­

toral phenomena resulted in a wide acceptance of a procyclical rea.l wage. Swanson

questioned this finding and found that accounting for sectoral variables results in real

wages becoming countercyclical with respect to the state of their respective industries.

Rossana and Seater (1995) examined the effects of temporal aggregation on the

estimation of the class of autoregressive integrated moving average (ARlMA) models.

They reported that temporal aggregation resulted in substantiallosses of information.

In economics, aggregated time series data are usually the sum or average of disaggre­

gated ones. Averaging distorts the time series properties and the dynamic behaviour.

For example, Christiano, Eichenbaum and Marshall (1991) concluded that rejecting

the random walk consumption theory might he an artifact of temporally aggregated

data.

Rossana and Seater (1995) found that annual aggregates created from monthly

data exhibits no low-frequency (i.e., business cycle) variation. This is why most an­

nual data usually fit weil a low-order linear time series mode!. Also, the absence of

the reliability of the impulse response function and the variance ratio as persistence
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mœsures (described in the persistenœ chapter of this thesis) is due to the temJX'

rai aggregation. This lœs of low-frequency cycles (i.e., cyclical variations) might he

single-handedly responsible for rejecting many of the (most reliable) competing mod-

els of business cycle. The study also reported that annual observations have much

more persistence1 than disaggregated data. The same finding W8S reported by Krol2

(1992).

1 argue that it is necessary to move away from the investigation of the aggre-

gates and resort to investigation at the sectoral3 level. Davis (1987) reported that to

understand the driving forces behind economic fluctuations, one has te consider the

specialization and the reallocation of resources over time and across sectors. By 'al-

locative disturbanœs', Davis (1987, p. 326) meant "... the events that impinge on the

eoonomy by inducing a cœtly, time-consuming reallocation of specialized resources

"

Economists are aware of the important potential of allocative disturbances on

aggregate fluctuations since Ricardo's Principles in 1817. However, the idea of using

'allocative disturbances' as a channel for a propagation mechanism in business cycle

models was only presented after Lilien's (1982) observation. Today, the difficult task

facing business cycle theory is how to incorporate specialization and reallocation

technologies into tractable general equilibrium models of economic variability. This

should he sucb as to capture the substantial shift in inputs acrœs sectors - following

a sectoral shock - which results in aggregate variability.

1 They measured 'persistence' by a unit mot.
2 Krol measured 1Jersistence' by the Cochrane variance ratio.
J In Canada, data are available relative ta the level of aggregation of Input-Output tables. There
are, S-level: 13 industries; M-level: 35 industries; and L-level: 112 industries.
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Davis (1987) argued that al10cative disturbances have a large inHuenœ on ag-

gregate unemployment 8.uctuations. This study reported three rea.sons why labour

reallocation is the largest component of short-run unemployment 8.uctuations: 1)

the co-movement pattern observed - in CPS data on unemployment duration - he-

tween the unemployment rate and the inflow/out8.ow rates ta/from unemployment,

2) a zero oontemporaneous correlation between changes in labour force participation

(~LF) and the out8.ow from the unemployment pool, and 3) higher incidence of

permanent separations during reœssions.4

Note that in Canada, each industry is often concentrated in one region of the

country. For example, the financial and services sector is ooncentrated in Toronto

while textile manufacturing is in Montreal. l intend to use industry level analysis when

dealing with sectoral analysis, 50 that, the ward 'sectoral' will be used interchangeably

with 'industry'.

Long and Plosser (1983) presented a multi-sector mode! for the co-movement of

real aggregates acrœs sectors in response to a sector specific shock. Noting that many

sectors in the economy tend to move together and others tend ta lag the economy-

wide activity, the model motivated interest in exploring structural macroeconomic

dynamics with an accent on the labour market. Dropping the assumption of a com-

mon or an aggregate shock that drives the economy's fluctuation over the business

cycle, opened a new perspective to a fruitfulline of research agenda, namely sectora1

analysis. In my view, multi-sector analysis is crucial in explaining unemployment.

4 Permanent and temporary job separations can he œlculated from CPS data on unemployment by
reason. Empirically, bath contribute about equal amounts ta the rise of unemployment in recessions.
Davis argues that raw numbers on temporary separations overstate its importance.
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In each sector, a fraction of factor inputs are highly specialized. A sector-specific

shock to technology will induce resource reallocation between and within sectors. If

labour is highly specialized, then it will be costly to move between sectors and hence

adjustment cast models are necessary to explain the deviation of unemployment from

its long-run level.

In the search for the normatiVe and positive aspects of the business cycles, macr~

economists are often concerned with two 'stylized facts': the correlated movements in

aggregate output over time and the c~movement in output and employment across

sectors. The emphasis on persistence in the former reflects the assumption that ec~

nomie agents make rational correlated decisions that are refiected in aggregate output

movements. To understand the eo-movement in output and employment aeross sec­

tors, intertemporallinkages must be specified in multi-sector models ta produce the

mechanism by which an aggregate shock or a sector-speeme shock propagates in the

economy.

Consider an extreme economy in which workers have no disutility from v.."ork and

the equilibrium is at full employment. Here, a sector-specifie shock will cause oppas­

ing e~movements in employment across sectors (increases in a few and decreases in

others). This shock may produce a movement of resources across sectors generating

a negative employment co-movement (i.e., negative employment correlation across

sectors). Employment increases in a few sectors and decreases in other sectors. Here,

the economy is at full equilibrium. In this extreme case of no disutility from work

combined with perfect labour mobility across sectors, the substitution effect is re­

flected in the negative co-movement. This effect is aIso present ta a certain degree in
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less extreme cases (Lilien 1982, Abraham and Katz 1986, Rogerson 1987).

However, there exist other alternative models in which a positive co-movement of

employment across sectors is generated. Lucas (1972, 1975) described an economy

in which aggregate monetary disturbances are the driving force, coupled. with agent

information asymmetry. In this economy, an economy-wide shock increases output in

a1l sectors, thereby generating a positive employment co-movement.

Long and Plasser (1983, 1987) presented a multi-sector model in which they traced

the influence of a sector-specmc shock on the aggregate Buctuations. Shocks to the

production function in one sector were spread over time and to other sectors creating

persistent aggregate Buctuations. The propagation mechanism in the model was

provided by the 'factor demand flows'. A technology shock in a single sector led

to an expansion of that sector's output. The output of one sector was fed as an

intermediate input into other sectors. This extra output was partly consumed and

partIy used as an input in the production of the other sector output in the next

period. The result was that this adclitional output effect was spread over time and

over the other sectors creating persistent aggregate fluctuations. However, because

of the specific formulation of preferences, employment levels did not fiuctuate in the

modeI. AIs0 , this type of 'intermediate input linkage' models (Long and Plosser

(1983) and Horvath (1997» address only movements in aggregate output and do not

provide an explanation of the cyclicality of aggregate productivity.

Cooper and Haltiwanger (1990) presented two seetor models for an imperfectIy

(with sellers having market power, the model was labeied as section I) and a per­

fectly competitive economy (iabeied as section II). Their propagation mechanism was
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'the normality of demand for final consumption goods'. This mechanism excluded

the production of commodities by other commodities. The approach relied on the

holding of inventories by the firm in one sector. Other sectors produced goocls and

services which cannat he he1d in inventories. A build-up of inventories5 in one sector

would reduce production in that sector which then 100 to a reduction in demand for

the products of other sectors. These demand linkages created output and employ-

ment movements when the economy was in the under-employment state due to the

imperfect competition. The conclusion reached was that, within a framework of a

representative agent, perfectly competitive economies will tend to exhibit more sub-

stitution between labour supply decisions across sectors than imperfectIy competitive

economies with heterogenous agents.

How does a sectoral shock affect the aggregate economy? Phelan and Trejos (1996)

pointed out that one should account for at Ieast three phenomena or facts. These are:

1) The process of realiocating workers across sectors, (Le., the extensive margin). 2)

The increase in heurs in the growing sectors is small relative to the decrease in the

shrinking sector (i.e., the intensive margin). 3) The shock propagation threugh the

unaffected sectOI'S.

Phelan and Trejos (1996) showed that isolated sectoral shifts can have important

aggregate implications, even if the size of the 'impulse' is small. The study concluded

that a on~time change in the fundamentals (technologies) that determine the sectoral

composition of the economy could prompt a significant downturn, which persisted and

3 Formally presented as an endowment shock to the inventory good. This shock was the initial
source of fluctuations in the economy.
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propagated across sectOl'S into a recession. They considered a one-tbne permanent

military cut-back shock in the 19905.

To explain Lilien's (1982) observation, sectoral shock models focus on the costly

adjustment of labour between sectors. Tbese modeJs assume that the unemployed

workers spend time searching for a match when moving between sectors (search un-

employment) or incur training costs ta join a different sector (structural unemploy-

ment). In this setup, the sectoral law of large numbers6 does not hald (because of

the adjustment cests) and recessioDS are periods of costly inter-sectoral labour ad-

justment.

Others have used a sectoral framework to explain aggregate returns ta scale. Basu

and Ferna1d (1997) in an attempt to explain aggregate increasing returns to scale,

formulated a tw~sector madel economy. The mode! featured a durable and a non-

durable manufacturing sectar. The former sector was characterised by higher returns

to scale and higher markup of priee over marginal cast than the latter. A reallocatian

from the latter ta the former (from the lower return, lower markup ta the higher

one) 100 to an increase in aggregate output relative to inputs and consequently to an

economy that possessed increasing returns to scale. However, empirical support for

increasing returns in U.S.A. sectors was weak since plant-Ievel data failed to support

evidence of significant increasing returns ta scale (see Baily, Hulten and Campbell

(1992) and Burnside (1996) for 2-digjt manufacturing industries). Also empirical re-

sults suggested strong differences in capital utilization.7 Swanson (1999b) attempted

6 The sectorallaw of large number states that 'given that the economy is made out of a large number
of sectors, a sectoral shock to the economy will move labour between sectors and will have no effect
on the aggregate leve1 of activity'.
7
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to explain the empirical observations using variable capital utilization acrœs sectors

but with a constant return to scale production function.

Before discussing the Swanson (1999b) findings, let us consider one more piece of

evidence for constant retums to scale in sectoral-Ievel data. Burnside. Eichenbaum

and Rebelo (1995) argued the same point empirically. Using quarterly and annual

data from 1972:1 to 1992:4 for aggregate and disaggregate industries (two digit levelof

the Standard Industrial Classification (SIC) code), they corrected the Solow residuals

for capital utilization. The measure used to proxy capital services utilization was

'electric use'. Once this correction was made to the Solow technology shocks, the

hypothesis of constant retums to scale was not rejected.

Swanson (199gb) demonstrated severa! strengths and shortcomings of the sectoral

reallocation models. This study showed (proposition 1, p. Il) that unless a wedge

between the marginal products of inputs in different sectors is introduced, the model

will fail to explain the effects of sectoral reallocation on aggregate productivity or

related variables (sucb as the real wage). Swanson's model featured greater cyclicality

in the utilization of capital in the durable manufacturing sector. An increase in the

fraction of durable manufacturing output increased output relative ta the inputs, and

increased aggregate productivity and real wages. This study advocated the use of

variable capital utilization across sectors ta explain the procyclicality of the aggregate

productivity and real wages.

Shapiro (1996) reported that 40 percent of the cyclical variation in manufacturing employment
originated from work in evenings and late shifts.
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Swansan (l999a) reported that the myth of post-wu U.S.A. procyclical real wages

was unfaunded. Swanson (1999a) used data covering the 45~NBER Productivity

Database, and the 2-digit Jorgensen's 34-sector KLEM data set. The NBER data

contain all sectoral data far aIl manufacturing industries at the 4-digit (SIC) level,

covering the annual period from 1958 to 1994. After defiating by sectoral product

prices and controlling for changes in intermediate input prices, Swanson (1999a) re­

ported evidence of a cauntercyclical real wage.

This review indicates that sectaral empirical and theoretical investigations are

clearly promising avenues for future research.

3.2 Sectoral Shifts versus Aggregate Disturbances

The debate over sectoral shifts versus aggregate disturbances foeuses on the structural

versus the deficient-demand causes of unemployment. In recessions, is large observed

unemplayment structural or cyclical? If observed unemployment is structural, then

sectoral shifts might be the cause; otherwise, it is cyclical and the economy is in need

of demand-management policies.

Brainard and Cutier's (1993, p. 222) definition of realIocation shocks and ag­

gregate shocks was that "Realloeation shocks are defined as changes in tastes or

technologies that cause changes in the sectoral pattern of returns that are sufficiently

large and persistent to induce shifts in the equilibrium distribution of capital among

sectars. Aggregate shocks are defined as transitory shocks that have no lasting effects

on the distribution of capital profitability across sectors." Their sectoral shift hypoth­

esis refers to those inter-sectoral shocks that are the primary cause of fluctuations in
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the aggregate unemployment rate.

The importance of sectoral reallocation following a sector...specific shock is a su},

ject of ongoing debate among researchers. As in other debates, crucial empirical

findings paved the way and resulted in different models reflecting different views.

The competing views to explain unemployment are: the sectoral labour adjust­

ment versus the aggregate demand policies (sectoral shode versus aggregate shock).

There exist empirical difficulties in distinguishing between sector-specific and aggre­

gate shocks. Does an inaease in unemployment reflect a contraction in aggregate de­

mand that results in workers being laid offor does it refiect a sector specific shock that

changes the pattern of demand and the composition of labour supply across sectors?

The debate on the validity of aggregate demand policies to reduce unemployment

took a sectoral view with the article of Lilien (1982). This debate mainly revolved

around the rea.sons for cyclical fluctuations in aggregate unemployment. Models that

explain cyclical unemployment were proposerl.

First, a note on the consequences: if the sectoral view is the correct one, aggregate

monetary and fiscal policies (demand policies) are not appropriate eures for high

unemployment. Therefore, the economy is in need of a supply-side poliey to ease the

transition of ex-workers across the sectors. On the other hand, if the aggregate view

is the correct one, then a demand policy can reduee the unemployment level.

Second, the intuition in the former view is that a change in sectorallabour demand

implies labour reallocation across sectors from the Iow demand one to the higher one.

The consequence of a sectorai shocks view on economic theorizing is that Most un­

employment fluctuations are induced by sectora! structural shifts within the economy
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and are better described as fluctuations of the Datura1 rate itself (refer to section 4.4) .

Building on the micr~foundationmode! of the equilibrium unemployment rate of

Lucas and Prescott (1974) and adding the assumptioD of a time varying variance of

the shock to the product demand in individual markets,8 Lilien (1982) constructed an

equilibrium rate of unemployment that varies as the quantity of labour reallocation

varies within the economy. The study evaluated sectorallevel data and concluded that

sectoral shifts played a role in inducing the economic downturn. It claimed that half

of the postwar unemployment variance was due to the fluctuation of the natura! rate

brought about by slow adjustment of labour to shifts in employment across sectors.

Equivalently, a large component of unemployment fluctuations could he explained

by the dispersion of employment growth across industries (also calIed the dispersion

hypothesis, or inter-sectoral shifts in employment across industries). Also, Shaw ànd

Arden (1968) showed that sectoral shifts represented as much as one-fourth of the

output change over the period 1947-1965.

Lilien designed a dispersion index to measure the variance of employment across

industries. This index was shown to have explanatory power for unemployment (using

linear regression technique). Formal1y, the Lilien dispersion index (Tt is computed as

[

N ] 1/2

trt = ~ lit1Lt • {logelitllit-Il - log(LtlLt- IlF

where lit denotes employment in industry i at time t. Le denotes total employment.

8 The Lucas-Prescott (1974) model assumed that: l} aggregate demand is constant, 2) product
demand in individual markets is subject ta stochastic fluctuations and 3) the mobility of labour
&CrOSS sectors takes time and is costly. The last assumption implied that positive unemployment
will exist in a stationary equilibrium. The second assumption implied that a change in an individual
labour market demand will create a wedge between wages in dift'erent markets (wages differentiaIs).
The mode! emphasized the sectoral shifts of labour supply that resulted from werkers leaving the
low wage market for the higher one. In this model, the variance of the shock ta the product demand
was constant over time and aeated a constant equilibrium unemployment rate.



•

•

80

The index is a weighted standard deviation ofannual employment growth by industIy.

A higher value of the index means more dispersion. Shortly after Lilien' observation, a

wave of empirical evidence against and for the dispersion hypothesis followed. Lilien's

index was later proven to reftect both demand and sector shocks (Abraham and Katz

(1986».

Abraham (1983) and Abraham and Katz (1986) argued that bath a pure shock

to the leve1 of demand or ta the structure of demand (sectoral view) can produce a

positive correlation between the dispersion of employment growth rates «(jt) and the

change in the unemployment rate (tJ.UE). Their study contradicted Lilien's findings

that the sectoral shock was solely responsible for the positive correlation. Using the

information content in the job vacancy rate (proxied by the help wanted index)9 they

claimed that one can distinguish empirically between the two processes: pure sectoral

shift and pure aggregate demand. If the former process applies, then the job vacancy

rate should he positively related to the dispersion of the employment growth rates.

However, if the latter process applies, then the relationship should he negative (known

as the Beveridge Curve). la Changes in the structure of the economy will shift this

curve. For example, an increase in the dispersion of the employment growth rates

across sectors shifts this curve outward, implying an increase in unemployment and

vacancies at the SaIne time, hence a positive relation between them due ta a sectoral

9 In Canada, the help wanted index (HWI) source is CANSIM matrix 105. The Canadian' HW! is
pattemed after the U.S. one produced by the Conference Board. A survey of twenty metropolitan
newspapers is conducted. The base year is 1981 in Canada and 1967 in the U.S.A.
lOThe Beveridge Curve daims a negative relationship between unemployment and job vacancies in
response ta aggregate shocks. A negative aggregate shock reduces the demand for labour &Cross
many (if Dot ail) sectors producing a reduction in job vacancies with an increase in unemployment.
However t the sectoral view proposes that reallocation shocks increase job vacancies in sorne sectors
and reduce them in others. Therefore the aggregate eff'ect on job vacancies may be positive with an
increase in unemployment (an outward shift of the Beveridge Curve).
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shock. Using annual data on the help wanted index and the dispersion of the rates,

Abraham and Katz (1986) concluded that the sectoral view was rejected in favour of

the aggregate demand story. However, a strong criticism against the study is the use

of proxy variables which lead to an artifact result due to statistical mismeasurement

(see Davis 1987 for references).

Rogerson (1987) pointed out that the analysis of Lilien (1982) and of Abraham

and Katz (1986) used time series approaches ta study the aggregate behaviour of

unemployment following a sectoral shack. Using adynamie general equilibrium model

.. a tw()o-period, tw()o-sector version of the Lucas--Prescott (1974) model in which the

sectaral shock was permanent - Rogerson (1987) showed how mobility costs acress

sectors influence aggregate-Ievel variables in the economy.

Sheffrin (1984) acknowledged the dispersion hypothesis effect and posed a different

question "... does inter-sectoral dispersion activity influence aggregate variables (such

as consumption and investment spending) other than unemployment?" The study

designed two measures of economic dispersion based on variation of, 1) persona!

income growth and 2) investment spending across states. In general, Sheffrin proposed

a modified trt dispersion index,

1

Ut = [t ((~:)·(alogx;t - a log Xt))r (3.2)

•
where Xe denotes the aggregate level of economic activity in year t, Xit reCers ta the

economic activity in sector i in year t and ~ is the difference operatar. This dispersion

index is a weighted squared deviation of the growth rate in sector i as compared to

the overall growth rate for aIl the sectors. A value of zero means that ail sectors grew
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(or fel1) at the same rate. A high value means more dispersion. Sheffrin constructed

two indices, namely rr11 and rr1. The former index is 11500 for the consumption study

and is basOO on Xie as the deBated disposable income for the 48 mainland U.S.A.

states covering annually the period from 1951 to 1982. The latter index is used for

the investInent study and is based on XiC as the non-farm new plant and equipment

expendituresll over the same period with quarterly data. The study concluded by

pointing to evidence for the dispersion hypothesis as having explanatory power over

aggregate consumption and investment.

Davis (1987) tested the effect of sectoral shifts on aggregate unemployment. The

study covered the period from 1924 to 1985. Indices of cross-sectoral (weighted)

covariance measures were constructed and used in the testing process. These indices

of the current direction of the labour reallocation relative to past directions are (Davis

1987, p. 330):

j = 1, ... , J (3.3)

•

where Xlc denotes employment in sector i at time t, Xc is aggregate employment at

time t. ajXi,t is equal to (lnXit - lnXi.t-;) and N is the number of labour market

sectors broken down by industrial classification. C7~ indexes the time t direction of

labour reallocation over one period horizon relative to the (t - 1) direction over a j

period horizon. High (Low) values ofO'~ t t1t2 ••.t1~J inclicate that the time t direction of

labour reallocation reinforces (reverses) past patterns of labour reallocation. Evidence

of the sectoral-shifts hypothesis was found when the estimated partial correlation

11Bath are taken from the Survey of Current Business.
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between these indexes and the aggregate unemployment rates was positive.

Neelin (1987) tested the sectoral shifts hypothesis using Canadian data over the

period 1954-1984. She found that Lilien's inde."( is positively correlated to unemploy­

ment in Canada. However, when the index ~ëLS decomposed into two components,

one which was attributable ta aggregate activity (ta test causality from aggregate

to sector) and one which was not, ooly the former component was correlated with

unemployment. The results suggested that, in Canada, economy-wide shocks cause

shifts in the industrial composition of employment which influence the aggregate un­

employment level.

Highlighting the importance of the sector-specmc shocks for national aggregate

output growth, Stoclanan (1988) posed a different question. He asked how the fraction

of the variations in output growth can be attributed ta industry specifie shocks versus

a nationwide shock. In a eomparison of national output grawth across seven European

nations and the U.S.A., the aim was to quantify how much variation was due to

national fiscal and monetary policies specifie ta the country versus how much variation

was due ta industry-specmc shocks common across natioDS. In a broader sense, the

study assessed the validity of the supply-side driven real business cycle view versus

the aggregate demand driven view in macro-economic modelling. Out of a dynamic

general equilibrium mode! in which N nations and J industries interacted, a linear

statistical model was derived and estimated using international data. Formally,

where y:n denotes the output growth of industry i in country n at time t. The two•
~ ln y:n = I(i, t) + g(n. t) + u(i, n, t) (3.4)
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functions I(i, t) and g(n, t) referred ta an industry-specmc eomponent and a nation­

specifie eomponent respectively, while u(i, n, t) is an idiosyncratie component. The

results cast doubt on the hypothesis that most macroeconomie fluctuations are the

result of technology shocks alone. Also, the study conc1uded that bath types ofshocks

are empirleally present and important.

Using data from the Current Population Survey cepS) on prime-age males over

the period 196~1985, Murphy and Topel (1987) identified movers across industries

by tracking the workers' move across 2-digit industries. They eoncluded that non­

movers aceounted for most of the variations in unemployment. Qnly two ta four

percent of unemployment was due to industry switchers. AIso, this eomponent lacked

any cyclical variation pattern. The measured mobility of workers between sectors was

procyelical. This stands as clear evidence against the Lilien hypothesis.

Loungani and Rogerson (1989) doeumented the correlation between permanent

sectoral reallocation and business cycle data using the ~Iichigan Panel Study of In­

come Dynamics (PSID). Their study differed from l\Iurphy and Topel (1987) in sorne

aspects. The definition of 'industry switcher' differed in two ways (a) They distin­

guished between permanent movers and temporary ones and Cb) if the worker moves

from industry 1 to unemployment, then stays unemployed for any period of time,

then moves into industry 2, the worker is classified as switcher. The latter classifica­

tion will include individuals who experienced any length of unemployment spells in

the process of moving across industries (usually referred to as 'long-spell switchers').

Using PSID da.ta over the period 1974-1984, the study concluded the following: a)

movers from the goods-producing sectors towards the services sectors showed an in-
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cresse during reœssioDS, b) movers from the services-producing sectors towards the

durables goods-producing sectors showed an increase during booms, and c) switchers

accounted for over a quarter of total weeks of unemployment during booms and over

40 percent during recessions. Evidence (a) and (c) support, while (b) contradicts,

the Lilien hypothesis. Evidence of (b) implies that labo~ mobility is procyclical. If

true, then in recessions very little unemployment is due to labour mobility. A clear

contradiction to Lilien's hypothesis.

Meanwhile, Layard (1991) proposed a dissimilarity index to capture employment

dispersion across industries. It is calculated as,

N

0.5. L 1(lit/Le) - (lit-IlLe-di
i=l

(3.5)

•

This index is half of the SUIn of absolute changes in employment sharE~ by industry.

Nowadays, it is used jointIy with the Lilien dispersion index in most empirical inves-

tigations of the sectoral reallocation hypothesis (see Gera and Massé (1996) for an

extensive use of both indices).

Krol (1992) studied trends and persistence measures (such as unit root and vari-

ance ratio) in industrial production of U.S.A. industries. Using seasonally adjusted

monthly Citibase data for 22 industries covering the period from January 1947 to

~Iarch 1987, Krol investigated trends and e5timated variance ratios. The study con-

firmed the heterogenous nature of the trend properties of industry output. For exam-

pIe, all durable goods industries were trend stationary but most non-durable goods

were not. Krol also concluded also that individual industries did exhibit heterogenous

industry-specific shocks which infiuenced aggregate unemployment.
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Using time--series analysis, Brainard and CuIter (1993) developed a new measure

of reallocation shocks. The innovation to. methodology12 was the use of a series

constructed from the variance of sectoral stock market excess returns13 (iabeled as

cross-section volatility) instead of constructing a measure from the labour market

flows. Formally,

Ri,t = {3o; + {31i!lm,t + éi,t (3.6)

Ri," and Rm.t denotes the retum on the portfolio at time t of industry j and the

base market m (where the base market is the Standard and Poors Composite In-

dex) respectively. The excess return from the industry-specific component of retum

variation is computed as

TIi,t = ~Oi + êj,t (3.7)

Next, one can fonn a measure of cross-section volatility as the weighted variance of

one-quarter excess returns (CSV)

Nt

CSlie = L Wi,t(TJj,t -17e)2
i=1

(3.8)

•

where Nt is the number of industries and the weight Wi,t = E j ,,,/Et is the share of

industry employment relative to total employment. Here, Ei,t. denotes employment

in industry i at time t and Et denotes aggregate employment.

Brainard and Cutler confirmed that - \ISing their measure - excess returns pre-

dicted increases in employment within industries. The study concluded that, on av-

erage, the reallocation shocks accounted for a moderate variation in unemployment.

12First introduced by Loungani and Prakash (1989) (see aIso, Rush and Tave (1990)) .
13This me8BW'e is based on the weighted variance of one-quarter excess returns where the weights
are the me of industry employment relative ta total employment.
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It clid account for the increase of unemployment in the mid-1970s and late 19605,

while it did not do 50 for the late 19505 and the early 19808. A similar conclusion

was reached in Lilien (1982). Also, Brainard and Cutler compared the cross-section

volatility measure to the Lilien employment dispersion measure in terms of explaining

the unemployment duration. They found that the former explains large fluctuations

in longer spells of unemployment while the latter explains shorter duration spells.

Using plant-Ievel data, Davis and Haltiwanger (1990, p. 166) confirmed that

"... the frictions associated with the reallocation of jobs and workers play a major

role in business cycle fluctuations ...". AIso, using firm-level data, Holzer (1991)

analyzed the relationship between unemployment/employment outcomes and sales

growth variation within and between local labour markets. To compute various mea­

sures of product and labour demand shifts, the sales grO'wth variable was used from

the Employment Opportunity Pilot Project (EOPP) survey of firms in 1980 and

1982. The data was for 28 local labour market sites and included about 3400 firms.

Given the firm-Ievel data, three types of shifts \\"ere considered. They were 1) shifts

in demand between local markets, 2) shifts in demand within local markets but be­

tween industries, and 3) shifts within local markets and within industries. The result

showed that wage and employment adjustments for firms were based on the shifting

of the labour demand caused by changes in the product market. Demand shifts be­

tween local labour markets did have a substantial impact on observed unemployment

and employment growth rates only when adjustments of these shifts involved costly

migration between markets. (~Iodels in this thesis adopt and integrate this aspect)

Also, with micro-level data, Hyclak (1996) found an important and significant
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positive effect of changes in the structure of labour demand on the unemployment

rate. He studied a sample of 200 metropolitan labour markets for the period 1976 to

1984 in the U.S.A. Using a measure of structural job shifts, he showed that changes

in the structure of labour demand across industries had an important statistically­

significant positive effect on the unemployment rate.

Using a time series analysis vector autoregressive (VAR) approach, Campbell and

Kuttner (1996) reached a conclusion similar to Lilien's finding. They investigated

the macroeconomic effects of reallocation shocks. Using three different identification

schemes within a VAR approach, they concluded that reallocation shocks accounted

for the majority of the variance in employment shares and dispersion. The three

identification schemes were as follows: the naïve identification where aggregate em­

ployment was a lag ahead of manufacturing's employment share in a \Vold causal

chain; the reallocation shocks scheme which accounted for the stochastic trend in

manufacturing's employment share; and the reallocation shocks combined with the

priee of crude petroleum scheme where the shocks relied on the changes in the priee.

The first identification denied the existence of the sectoral shifts hypothesis. The

second emphasized the Lilien observation. The third was to test the Loungani (1986)

view. The latter view focused on the following chain of events. The changes in the

priee of crude petroleum affected aggregate employment to the extent that they gener­

ated employment reallocation. The results - under a variety of identifying restrictions

- showed that sectoral shocks (alone) were responsible for at least 27% of the variance

in aggregate employment.

Greenwood et al. (1994) used a stochastic dynamic general-equilibrium model to
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. assess the relative importance of each shock, aggregate versus sectoral, and to analyse

the cyclical behaviour of the rates of job destruction and job creation at the same

time. Their mode! Ceatures a momentary utility function that accounts for workers

searching Cor a job, and a production technology that encompasses aggregate and

sectoral shocks as well as featuring the low productivity of new workers hired. The

cast of hiring is an increasing function of the number of workers hired. The model

emphasizes the intensive margin of employment decisioDS by including a lottery over

the consumption and labour allocation decisioDS. The generated model moments

matched the U.S.A. business cycle data over the quarterly period from 1976 to 1987,

where emphasis was on the cyclical behaviour of the rates of job destruction and

job creation. Regarding the Lilien hypothesis, the model concluded that each type of

shock can be independently held responsible for 1 percent of aggregate unemployment.

3.3 Inter-industry labour mobility

Inter-industry labour mobility is one of the major dynamic mechanisms by which the

labour market adjusts to structural changes in the fundamentals (technologies) of the

economy. Understanding its determinants and its dynamics wa.s and still is a major

challenge in economic theorizing.

The empirical relationship between inter-industry labour mobility and aggregate

unemployment has been investigated for Canadian data. If the relation is character­

ized by a positive covariance, one has to accept the 'dynamic real1ocation' hypothesis

proposed by Lilien (1982). In this hypothesis t the rising unemployment rate is due

to the increased dispersion in the net hiring rates of firms. On the other hand, if evi-
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dence of negative covariance is found, then one is more like1y to accept the Keynesian

'chjJJjng' rationale14 as an explanation. This rationale argues that high unemploy-

ment 'chills' the labour market. An example of it is the cobweb mode! in which the

quantity of labour supplied depends on last period'g traded quantity. Whichever way

it is, the causal re1ationship between inter-industry labour mobility and aggregate

unemployment is not clear (see Osberg 1991).

Lilien (1982) argued that employment dynamics caused by the time-to-find a job

for the unemployed could explain the increase of the U.S.A. unemployment rates in the

1970'5. In brief, the Lilien 'dynamic reallocation' hypothesis is a search modeL The

unemployed mobility is characterlzed by a joh-unemployed-job process where finding

a job takes time. For Canada, Samson (1985) found evidence that the 'dynamic

reallocation' model best fit the Canadian data.

Ratti (1985) showed that unexpected inflation and the rate of growth of real GNP

explain between 60 percent and 85 percent of the variability in relative sectoral em-

ployment. In a reverse causation conclusion (i.e., aggregate variables cause sectoral

variability instead of the other wayaround). Ratti questioned the basic fundamentaIs

of the sectoral shock view. This view is that aggregate fluctuations - mainly unem-

ployment15 - are due to sectoral shocks that induce employment variability across

sectors. Hatti focused on the al10cative consequences of unexpected inflation. Using

14The chilling rationale argues that the level of aggregate unemployment infiuences the decision­
making proœss of the economic agents.
15For evidence on consumption and investment see SheJfrin (1984) .
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a dispersion of sectoral employment index Ut calculated as

i= 1, ...,K (3.9)

•

where K denotes the number of sectors. DXt(i) is the rate of growth of employment

in the ith sectorJ DXe is the rate of growth of total employment, Ut(i) is the average of

the proportion of total employment in the ith sector in periods t and t -1. ur (K) could

be computed using the number of employees N or the total number of man hours

H, depending on the definition of employment. The measure of annual employment

variability is taken from the nonagricultural data of Employment and Earnings for 28

sectors over the period 1947-1978. A proposed model- in which sectoral employment

variability is a quadratic function of inflation surprises and the real rate of GNP

growth - reported significant explanatory evidence. In this view, cyclical aggregate

factors are found ta have sectoral reallocative consequences as opposed to the sectoral

shock view.

Osberg (1991) investigated the factors that influence inter-industry labour mobil­

ity and its relationships with the aggregate unemployment level in Canadian data.

Using Canadian micro data on male and female workers - from 1980/81,1982/83 and

1985/86 - the estimated logit mode! found evidence supporting the ~Chilling' mode!.

The conclusion reported that individuals react to the aggregate labour market, show­

ing how cyclically sensitive the behaviour of the market is.

Mills, Pelloni and Zervoyianni (1996) tested for the presence of the sectoral shifts

hypothesis in UK data. They constructed a 'purged' sectoral employment growth ta

use in the Lilien index. They purged the sectoral employment growth from aggregate
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inBuences by regressing each relative sectoral employment growth rate on its lagged

value, four seasonal dummies and other composite variables based on the narrow

money growth rate, the logarithm of the short interest rate and the unemployment

rate.16 Using quarterly UK data covering the period from 1976 to 1991, they tested

the significance of the sectoral shifts hypothesis. They found supporting evidence of

the hypothesis.

Lu (1996) used both quarterly and annual data on both one-digit and two..digit

U.S.A. code industries,17 and reported no evidence of the sectoral shifts. Using data

from Citibase covering the period from 1948 ta 1994, the study concluded that the

significance of Lilien' results diminishes at quarterly level data suggesting that Lilien

resu1ts might be a special case.

Others explored sectoral data to assess their influence on unemployment. For ex-

ample, Corak and Jones (1995) investigated the influence of sectoral unemployment

henefits on the persistence of aggregate unemployment. They defined full persistence

as a unit root and tested its presence using the Dickey-Fuller statistic. The study

concluded that no evidence of a direct mechanism - through which the unemploy-

ment henefits overhaul in 1977 influenced the level and the persistence of aggregate

unemployment - was found. In brief, evidence of the sectaral shifts is sensitive ta

the methods used and to the data employed ta measure it. However, from a policy

standpoint there is a growing consensus on its importance.

16See p. 58 for the exact reference of the variables used.
17Note that Lillen, Abraham and katz have used only annual data on one--digit code industries.
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3.4 Inter- versus Intra-Sectoral Shocks

Since the dispersion in the returns to human capital is not observable, one needs to use

a proxy for inter- and întra-sectoral shocks. If mobility across industries is costless,

then a difJerence in the returns to human capital will induce labour reallocation. The

problem is that wage differentials across and within sectors reflect other aspects such

as workers' characteristics. Therefore, the average wages do not represent a good

proxy. By assuming that capital and labour are complements, Shin (1995) computed

proxies for inter- and intra-sectoral shocks and studied their effects on the level of

aggregate unemployment. Using accounting data from the manufacturing industries

to calculate returns on capital, Shin generated proxies for both shocks.

As outlined above, Lilien (1982) used the variance of industry employment rates to

measure the inter-sectoral shock. Abraham and Katz (1986) noted that if industrial

trend growth rates and the cyclical sensitivities of the industries are negatively cor­

related, then the Lilien proxy can aIso he used ta measure aggregate shocks. Lougani

et al. (1990) used the stock market dispersion index of output price growth rates as

a proxy for inter-sectoral shocks. This innovation of using stock market data 'was in­

vestigated further in Brainard and eutIer (1993). They used the variance of industry

stock market returns as a proxy.

Most studies assumed that firms are homogenous within industries, 50 that an

intra-sectoral shock need not existe If one relaxes such assumptions to highlight the

fact that there are some labour reallocations within industries, then intra-sectoral

shocks emerge and need ta be approximated. Empirical micro studi~ reported a pas-
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itive correlation between tenure and re-employment within industries but not across.

The intuition behind the innovation is that mœt reallocations are within industries

and that it requires lower adjustment costs on the part of the workers which create

an incentive to search for re-employment in the same industry.

A variance decomposition methodology was used in Shin (1995) to decompose the

variability of firms' capital returns into 1) the variance of the Mean returns across

industries (proxy for inter-shocks) and 2) the average of the variances within indus-

try (proxy for intra-shocks). Ta measure the retum ta capital, one can use either

accounting data or stock priee data. Shin used accounting data, after noting that

stock price data are affected by anticipated future shocks while accounting data are

immune to such expectations. The variance decomposition of the returns on capital

was computed as

where rijt denotes the retmn of firm i in industry j at time t. AIso,

rit = Ec(Tijt 1 Industry i) = E WijtTijt

jEi

and

Vit = Vart(rijt 1 Industry i) = E Wijtr~jt - (Et(rijt 1 Industry i))2
jEi

(3.10)

(3.11)

(3.12)

•

where rit and Vit are the weighteci expectation and variance of the return conditional

on industry i at time t. The weight Wijt is the size of the capital share relative to the

industry.

(3.13)
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Shin concluded that the magnitude of the intra-sectoral shocks was greater but the

inter-sectoral shocks explained to a better degree the fluctuation in aggregate unem-

ployment.

3.5 Quantities versus Priees

In this section, 1will clarify my decision to focus on unemployment rather than average

industry wages, so that the focus will be on the quantities - rather than priees - in

the labour market.

Gerlach (1989) outlined three approaches in the literature in which a model is able

to produce output that exhibits serial correlation (persistence) in response to serially

uncorrelated shocks. The first is multi-period wage contracts (priee dynamics), in

which the persistence of unemployment is due to shocks affecting the no~al priee

level until all existing wage eontracts have been renegotiated. The second foeuses on

the law of motion of stock variables - such as inventories (Blinder and Fischer 1981)

or physieal capital (KydIand and Prescott 1982) - to produce the persistenee effect.

The temporary shock is amplified in the model by the stock variables wlùch evolve

over time.18 The third approach explores the informational structure of the economy.

This view stresses the seriai correlation of the errors associated with the rational

expectations hypothesis, as in Lucas (1975) and Brunner et al. (1980). Briefly, this

Une of investigation addresses the informational structure available ta the economic

agents. For example, Gerlach (1989) used the assumption that the agents oever

observe the underlying shocks but only their impact on the endogenous variables.

18Hence the label ~Time ta Build'.
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Coe (1990) eoneluded from extensive empirieal anaIysis that industry wages are

heavily affected by aggregate eonsumer priees as well as by industry output selling

priees. Although there was sorne evidence of a higher unemployment influence on

wages in the manufacturing sector than the service sector, the study concluded that

industry unemployment plays a less significant raIe in the determination of industry

wages.

Adjustment costs are also relevant to the determination of the optimal wage rate

(the wage setting proeess). In Scarth (1988), the optimal rate of wage change is the

one that minimizes two types of costs. First, agents incur casts whenever the wage w

differs from the equilibrium w, which is the wage rate that would make employment

equal to its long-run desired level. Second, households and firms incur adjustment

costs whenever wages have to be renegotiated. The negotiation costs are a positive

function of the gap between the actual rate of change in w and the percentage change

in w. Whenever w > w, firms will resist incurring the cast and whenever w < W

workers will resist. Therefore, the determination of the optimal wage rate will he the

outcome of the rnjnjrnjzation of the sum of these two costs. One of these is due ta

being away from equilibrium (the difference between w and w), and the other is due

to different rates of change between w and w. Farmally, the decision rule19 can he

rewritten as

(3.14)

•
This sticky-wage approach has also been studied by Mussa (1981) and rvIcCallum

19See Scarth (1988, pp. 15-16) for the derivations.
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(1980).

Sargent (1979) demonstrated that if the finn is subject to an adjustment cast

in altering employment, the desired short-run level of employment will depend on

its lagged values. In other words, persistence in employment could be achieved by

a costly quantity adjustment specification. His study added a neoclassical laboW'

supply function and resulted in equilibrium output depending on its lagged values.

It showed that persistent unemployment can he due ta voluntary search behavioW'.20

Sargent captured 'persistence' by a lagged dependent variable.

Cuthbertson and Taylor (1987) aIso suggested a costly quantity adjustment model

in which agents chose CUITent 'short-run' value of Yt in arder to minimize expected

costs Ct with information available at t - l, that is,

(3.15)

•

where y. denotes the long-nm equilibrium value. ao and al are parameters. D

denotes the discount factor for the quadratic adjustment cost and E is the expectation

operator. In this setup, agents have quadratic costs of being away from their long-run

equilibrium value. This formulation is a multi-period generalization of the first-order

partial adjustment equation. y might be any real variable such as the capital stock or

employment (either one is costly to adjust). The firm minimizes costs to determine

employment, within the overall objective of maximizing the discounted present value

of future profits. The choice of a quadratic form has the advantage of providing

a linear solution in expectations (Euler equations are linear). A linear solution in

20In search modeIs, the positive and finite probability that individuals will receive a wage offer below
their respective reservation wage implies that unemployment will persist.
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expectations is a case in which the solution does not depend on the variance of the

forecasts errors.

1 adopt the view that focusing on quantity dynamics rather than priee dynamics

will result in a framework which better captures the sectoral shifts of employment

across sectors.

3.6 Conclusions

This chapter presented the rationale and usefulness of sectoral analysis in macroeco­

nomies. Different theories of unemployment, namely sectoral shifts versus aggregate

disturbances, VIere examined. It aIso explained our further use of labour quantity

dynamics. This chapter serves as a basis for the presentation of sectoral general

equilibrium models (Chapter 6).

Chapter 4 addresses unemployment persistence. It discusses the persistent na­

ture of Canadian unemployment. Chapters 5 and 6 discuss the dynamics of sectoral

reallocation shocks and how these sectoral phenomena can explain unemployment

persistence?
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Chapter 4

U nemployment Persistence

This chapter investigates the persistence of Canadian' unemployment using sectoral

level data. The long-standing confusion regarding the definition of persistence is

highlighted and we propose a definition for 'economic persistence'. We test for the

presence of persistence using the Cochrane variance ratio and the modified rescaled

range statistic. Finally, using a Bayesian ARFThtIA class of madels, we attempt to

quanti!)· Canadian unemployment persistence.

4.1 Introduction

Unemployment returns about one third of the way to its normallevel1 each year after

a shock displaces it. This is the case for the U.S.A. and Canada. In general, mod­

elling persistent unemployment requires a fluctuation mode! that is able to generate

stationary but highly serially correlated movements of unemployment and to mimic

the cyclical c~movements of output and employment.

Persistence in unemployment bas long been documented, explored and investi­

gated at the theoretical and applied levels. To understand unemployment persistence,

1 Hall (1998, p. 34) .

99
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one has to investigate Iong-term structural policies. These policies can he divided into

two groups: structural changes and reform changes. The former type of policy ad-

dresses the changes intended to reduce the business cycle fluctuations that result from

any economic shock (henee the title of the thesis); the latter type concerns methods

that williower the natura! rate of unemployment.2 The focus here is on the former.

Coe (1990) investigated the hysteresïs3 hypothesis for 14 industrialized countries

using annual data from 15 industries of each country. Using OECO data covering the

period from 1971 to 1986 for 14 industrialized countries and using a linear regression

type specification that nests two versions of insider-outsider mode1s, the study found

evidence that the institutional structure for the determination of industry wages con-

tributes more ta the persistence ofunemployment in Europe than North America and

Japan.

Insider-outsider-l modeIs assume that workers falI into three homogeneous groups,

defined as follows: i) the 'insiders', whose positions are protected by significant labour

turnover costs, ü) the 'entrants', who have recently acquired jobs with a future

prospect of gaining insider status, but whose current positions are not associated

with significant turnover costs, and ili) the 'outsiders'.

By quantifying the extent to which wages are set by insiders within the industry,

one can provide an explanation for the persistent unemployment rates. Coe (1990)

2 The issue of the natural rate has been under much scrutiny recently. For an excellent review see
Cross (1995).
3 The concept of 'hysteresis' although difl'erent from 'persistence' will be used interchangeably for
the present.
.. Insider-outsider modeIs usually generate real wage rigidity and turnover. The idea is that - from
the firm's point of view - insiders are costly to replace by outsiders. Therefore, insiders enjoy a
monopoly power that they exert ta lœep their wages higher than the market clearing level. Insider­
outsider models were used by Benassi, Chîrco and Colombo (1994, p. 100) ta explain unemployment
fluctuations.
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pointed out one critical explanation for the cross-country difl'erence in unemployment,

namely industry wage determination. This thesis investigates the view that differ-

ences in unemployment rates across countries are due to different industry-specmc

structures combined with an argument regarding the ease of labour mobility across

industries.

Winter-Ebmer (1991) snmmarized different tests, used in the literature, of persis-

tence. Different tests that quantify the pœsible effects on long-term unemployment5

in a Phillips-type wage setting equation, in a Beveridge curve equation! and on capital

formation were investigated. Other tests involved the simple analysis of the autocor-

relation patterns of the unemployment time series. This study focused on modeling

employer and worker acceptance functions within a search framework.

Heckman and Borjas (1980) asked if current unemployment causes future unem-

ployment and found evidence of unemployment persistence. This study presented

statistical methods for testing the true state dependence hypothesis in unemploy-

ment. Heckman and Borjas drafted four ways of modeling state dependence, namely

Markovian, occurrence, duration and lagged duration dependence.

Among others, for example, Carey (1997) attributed the unemployment persis-

tence to inflation expectations relative to the actual inflation rate at the end of a

recession. The intuition is that constant inBation is consistent with a rising cyclical

unemployment if expected inflation is persistently higher than its current level, espe-

cially for the post-1993 data period. Therefore, persistent unemployment is caused

5 Usually, long-term unemployed are defined in the U.S.A. as unemployed for a period in excess of
six months and in excess of one year in Canada and the OK.
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by persistent excess in1lationary expectations.6

The fact that 'unemployment exhibits persistence' is weIl documented. Explaining

persistence bas been and still is a challenging task for macroeconomists. Many direc-

tions have been pursued, each of which contains some truth, but none is a completely

satisfactory explanation.

4.2 The Confusion between Hysteresis and Persis­
tence

There does not currently exist a consensus in the empirlcalliterature on the definition

of 'hysteresis' in unemployment. Different authors use different definitions for this

term. As many contributions confuse 'hysteresis' with 'persistence', the first step in

our investigation is to address this issue.

Section 4.3 presents the origin and history of hysteresis. Section 4.3 explains

the role of hysteresis in economics. Section 4.4 presents the implications and the

consequences of the hysteresis. Section 4.5 discusses the factors that cause and the

proposed theories that explain hysteresis. Section 4.6 reviews a selected set of articles

on economic hysteresis. Section 4.7 defines economic persistence. Sections 4.8 and

4.9 present a persistence measure (Cochrane variance ratio test) and report evidence

of Canadian unemployment persistence at sectorallevel. Section 4.10 examines the

relationship between persistence, long-memory and fractionally integrated models.

Section 4.11 investigates and tests for the presence of persistence in sectoral Canadian

unemployment data using the modified rescaled range test statistic. Using a Bayesian

6 Other studies aJso have investigated the relationship between unemployment and policy variables
and labour market rigidities (see Nickell (1997) and Riddell (1999) for excellent expositions).
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fractionally Iinear time series class of models - namely the class of autoregressive

fractional moving average (ARFIMA) - section 4.12 estimates persistence in quarterly

total Canaclian unemployment and reports the results. Finally, section 4.13 concludes

this chapter.

4.3 Hysteresis in economics

The basic principle of hysteresis was well recognized by economists - such as Frisch,

Kaldor and Schumpter7
- well before its revivaI in the seminal work of Blanchard and

Summers (1986).8

Two ~-ague ideas revolve around the use of this term. in economics. The first is

the path dependence property and the second is the permanent effect of transitory

shocks. The former imply that the equilibrium state of the system depends on the

transition towards it while the latter underlines the persistent effects of a shock ta the

system. The latter property is a major source of confusion between what is known as

tbe 'unit root persistence in discrete time,g and 'hysteresis'.

In the literature, 'hysteresis' is generally defined as a particular type of response

of a non-linear system when one modifies the value of the input: the system is said

to exhibit the remanence property when there is a permanent effect on output after

the value of the input bas been modified and brought back ta its initial position.

Briefty, hysteresis occurs in non-linear models that exhibit multiplicity of equilibria

and the remanence property. On the other band, 'unit root persistence' lacks the

7 See Cross and Allen (1988).
8 Details of their study will he given later.
t A special case of the 'zero foot dynamics' in physics.
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remanence effect with asymmetric persistence mainly in linear models. Two forms of

hysteresis are well documented: the weak fonn at the micro level and the strong fonn

(aggregation of a large number of heterogeneouslO agents) at the macro level.

The path dependence property; used by Blinder (1988), was described as (in the

hysteresis section) "... for these {models} bring Keynesian economics [in which the

economy can get stuck in low level production] with a vengeance nIl (my emphasis).

Briefty, the hysteresis notion implies the non-uniqueness and the path-dependence of

the natural rate. Also, it revives the Phillips curve trade-off not in levels but in first

differences.

In most textbook cases, testing persistence in a general series Yt uses,

~ lnYe = a + b [lnYt-l - (Q - {1(t - 1))] + et (4.1)

where t denotes the trend and a refers to the first difference linear operator. If Y

reverts toward its trend, then b is negative and non-zero. fi it does not, then b is zero.

Rewrite equation (4.1) as in Ramer (1996, p. 176),

alnyt. = Q' + I3't + blnYt-l + et (4.2)

•

where et = a - ha + bl3 and 13' == -b{3. The usual test is Ho : b = 0 (permanent

shock where y does not revert ta trend and has a unit root) versus HI: b < 0 (trend

reversion).12

lOCalled lhysteron'.
llAlso, from the conclusion section l'... and hysteresis seems ta characterize some economies some
of the time, not ail economies a1l the time ..." .
12See also l'4ïckeU (1985, p. 119).
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4.4 Implications of hysteresis for policy analysis

The concept of the natura! rate of unemployment - since its introduction by Friedman

in an analogy ta Wicksell's concept of the natural rate of interest and its fonnulation

by Phelps - applies the doctrine of monetary neutrality to the unemployment level.

Monetary policies are neutral in the long term if they only affect nominal variables

and have a transient effect on the unemployment rate which converges sooner or later

to its naturallevel. As Friedman put it " It [the natura! rate] is the level that would

he ground out by the WaIrasian system of general equilibrium equations." In the

early 1950's and through the 1960'5 and 1970's, the Phillips curve became the major

policy trad~off.13 However, the experience of stagflation in the 1970's cast sorne

doubts on the usefulness of the Phillips Curve and the natura! rate of unemployment

hypothesis as a policy taol and a policy goal. ~Iany voices suggested correcting the

hypothesis to explain what happened and a few went even further to discard the

hypothesis (see Blanchard et al. (1988) and Goodinson et al. (1994)). Hysteresis

was adopted to explain the behaviour of high unemployment even when the initial

shock (supply shack) to the economy was removed. Hysteresis - juxtaposed with the

NAIRU - is an explanation of how the natura! rate is affected by the disequilibrium

path of the economy, and in a way discredits both the Phillips Curve and the natural

rate of unemployment hypothesis. Given hysteresis, the NAIRU would be unstable.

Hysteresis is not a concept which can he accommodated within the natura! rate

hypothesis or within the classical doctrine of neutrality. The natura! rate proponents

13For a survey of the natural. rate hypothesis evolution, see Goodinson and Frohlich (1994) .
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tried ta amend hysteresis by postulating that the natura! rate will be a strong at­

tractor for actua! unemployment in the long-run. However7 the debate still goes on.

A survey of the seminal contributions to the natural ratel" hypothesis is presented

later.

The high unemployment rate in Europe and in Canada in the 19905 can be ex­

plained by labour market rigidities that cause high cests of adjustment for firms. Ta

investigate such an explanation, the empirical agenda would rely on pin-painting the

factors that have caused wage and price equations to shift. The increase in unemploy­

ment could be due to the increase in unemployment insurance benefits measured by

a generosity index or due to hysteresis. The debate on this is still open. If the actual

unemployment rate is high because it is high relative ta its natura! rate, one should

observe a decrease in inflation rates (a recessionary gap in aggregate demand / ag­

gregate supply analysis) i otherwise, one's intuition tends ta suspect that the natura!

rate itse1f is high.

Whenever evidence of hysteresis is found, there exists room to decrease the UIl-

employment rate without changing any structure in the organization of the labour

market. How fast the unemployment rate can he decreased depends on the hysteresis

mechanism. AIs0 , disinflation policies based on the unemployment rate will prove

very costly in terms of lost output. Since unemployment exhibits hysteresis, it will

never go back to its original starting point. This is a vital implication of hysteresis,

and applies ta the Bank of Canada's disinftation policies pursued in 1981-1982 and

again in 1988. When hysteresis is present, the short-run adjustment of the economy

14Note that the mechanics of measuring the natural rate of unemployment is not of interest here.
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can take place over a very long period.

4.5 Factors and theories

This section reviews the propœed factors in the literature that cause hysteresis and

the theories that explain it. The factors can be classified into the following categories:

1) aggregate variables where long periods of low growth and investment decrease the

potential of the economy, 2) human capital where a long spell of unemployment leads

to deterioration of skills and work ethic and 3) the price mechanism where the wage

formation process, in wage bargaining context, is responsible for hysteresis.

The theories that explain hysteresis are:

1) Duration theory.

This is concemed with the negative effects of unemployment duration on the

labour demand and the labour supply of the unemployed. The hwnan capital story

explains this as follows. The longer an unemployment duration is, the less likely

is an unemployed worker to be offered a job because firms hold the helief that the

long-term unemployed are low-quality workers. In other words, if firms are using

unemployment experience as a screening device, then unemployed persons with long

unemployment durations are perceived as less promising candidates. AIso, the longer

the unemployment duration, the more discouraged the worker will become and the

more likely the agent is to drop out of the labour force.

2) Insider-outsider theory.

This is concerned with the loss of the influence on wage formation by the long-term

unemployed. The so-called insiders (incumbent workers) pœsess market power in
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determining wages independently of the unemployment in the economy. The market

power of the insiders is due to high labour turnover costs, which make it costly for

firms to replace an insider by an outsider (an unemployed worker). This allows unions

ta influence wage determination. Insider-Outsider models are based not on hwnan

capital but on the cillferentiation between insiders and outsiders in a wage bargaining

context (see Blanchard et al. 1986 for an exposition).

3) The capital stock theory.

An adverse demand shock leads ta a reduction in firms' capital stock. Firms may

close plants or scrap capital (firms reacbing the shut down point on their respective

marginal cast function where, given the priee, the marginal cost is lower than the

average variable cast). This will cause unemployment to persist because firms can

not suddenly open their plants, once the shock is removed and product demand

increases.

In this thesis, 1 add to the above the sectoral view as an additional mechanism

for generating persistence.

4.6 Evidence of persistence in the labour market

There does not exist a consensus on the definition and evidence of hysteresis. ~Iany

papers tested whether hysteresis is present in Canada, the U.S.A. and in many Euro­

pean countries. A selective review of the literature follows and for each the definition

used is reported.

Gordon (1989) used a simple version of a reduced-form equation. Formally, the

tmderlying model was 1t't = Q1rt-l +(3(Ut - Ut), where 1r is the inflation rate, U is the
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level of unemployment and U- is the natural rate of unemployment (or the NAIRU)

obtained for the steady-state 1rt = 11"1.-1. Ta add hysteresis, the model was amended

by the equation, Ut- = T/Ut.-l + "",Zt. Inserting the latter equation in the former one

yields, 1re = Q1I"t-1 + {3(1 -11)U" + {3TJâUt - f3...,.Z", where ~ denotes the difference

operator and Z" refers to a set of structural variables. Gordon defined full hysteresis

as the case of 1] = 1, and persistence as TI < 1. This study concludecl that no evidence

of full hysteresis was found in live countries (France, Germany, USA, Japan and U.K.)

for the time period 1873-1986.

Fortin (1989, 1991) tested for the presence of hysteresis in Canadian data covering

the period from 1957 to 1990. By adding and modeling expected inflation, Fortin was

able to undertake a more accurate test for hysteresis. The Phillips curve tested

was 1rt = Ckl1rt-l + Q21t'~ + .8[(1 -1])Ut + TJ~Ud - f3"{Zt, where 1i'f denotes expected

inflation. Fortin defined positive hysteresis as Tl < 0 and negative hysteresis as 1] > O.

The cases of TJ = 0 and 1] = 1 are no hysteresis and full hysteresis, respectively.

Fortin (1991) reported the presence of negative hysteresis for the data from 1957 ta

1972. Positive hysteresis was detected for the data covering the period from 1973

to 1990. Full hysteresis was not rejected for the latter period. Fortin pointed ta

the Canadian unemployment insurance benefits, producthity slowdown, and union

density as possible sources for hysteresis.

Graafland (1991) reported that the labour market in the Netherlands in the 1980s

was characterized by a high and persistent level of unemployment. The long-term

unemployed made up more than 50 percent of total unemployment. This study in­

vestigated the relevance of the duration and insider-outsider theories in explaining



•

•

il0

hysteresis in the Netherlands. It used a small macro labour market mode! - consist­

ing of four equations (Graaftand (1991), p. 157) describing the dynamics of wages,

employment, long-term unemployment and vacancies - and estimated it using 2SLS

for 1960-1987. The endogenous variables were: number of vacancies, real wage (de­

ftated by consumer prices), labour demand (employment plus vacancies), long-term

employment (over one year), actual employment and short-term unemployment. The

exogenous variables were: the ratio of value aclded priees of firms to consumer priees,

labour productivity, the rate of income taxes and social transfers (as a fraction of

wage cests) , the labour force, the replacement ratios of short-term and long-term

unemployeci, the real value added of firms and a time trend. This study found evi­

dence of duration effects after 1982 in the data. Lapez et al. (1996) reported that

monthly unemployment in Spain was consistent with an insider-outsider model and

hysteresis. 1S The data in this study was monthly, from 1977:6 to 1994:10.

~Ieasuring shock persistence in time series can be divided into two major ap­

proaches. The first is the 'unit root' approach presented by Nelson and Plosser

(1982). Such an approach was heavily criticized regarding the low power of unit root

tests and the failure to test for structural breaks. Most importantly, using Bayesian

analYSÎ5, DeJong and Whiteman (1991) reversed the Nelson and Plosser results. The

second approach is ta use the Beveridge-Nelson decomposition ta assess the relative

importance af the transitory and the permanent companent in the time series. In

empirical terms, it amounts to estimating an unrestricted law-arder ARIMA.

Recently, Natt (1996) did not find evidence of hysteresis in Canadian data. Yet,

lSHysteresis is defined as in Blanchard and Summers (1986).
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a non-linear Phillips curve was not rejected. The method followed Fortin (1991) in

testing for the presence of hysteresis by estimating a linear Phillips curve equation.

The data covered the period from 1954 ta 1995. Nott's results contradicted Fortin's

findings of hysteresis and showed how sensitive the latter's results were to the sample

period used.

Jones (1995) investigated the hysteresis hypothesis in Canadian data at the mi-

croeconomic and macroeconomic level. He concluded that the overall picture is not

one of hysteresis, but did not rule out the presence of persistence (dependence) in

unemployment rates.

\Vilkinson (1997) investigated the hysteresis hypothesis in Canadian data using

the Labour ~Iarket Activity Survey (L~S). Defining hysteresis as ineversibility in

the change of the unemployment rate and by testing evidence of negative duration

dependence in unemployment spells, the study conc1uded that there is evidence of

hysteresis at the micro level of the data. Wilkinson attributed the evidence of hys-

teresis to the loss of skills hypothesis of human capital (the human capital v"Ïew is

in subsection 4.5). The intuition is that prolonged periods of unemployment erode

the skill level of the unemployed which decreases the probability of exiting the un-

employment spell and finding a job. Therefore, unemployment spells will exhibit

negative duration dependence.16 Using the L1vIAS data, single-risk17 hazard rates

were estimated, then aggregated to estimate hysteresis at the macro level. The study

16Negath-e duration dependence means that the probability that a speU will end shortly decreases
as the spell increases in length (Kiefer 1988, p. 652, and Lancaster 1990, p. 9, figure l.l.(b) p. 10
and p. 39).
17Single-risk hazard rates occurs when no distinction between transition to work or transition ta out
of the labour force is made.
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concluded that hysteresis accounts for three percent ta eight percent of the Canadian

unemployment rate. This small upperbound points to the difficulty of estimating

hysteresis in the aggregate data.

However, Heckman and Singer (1984) argued that negative duration dependence

of exit rates in the data is by no means a signal of persistence. They examined

econometrically the negative duration dependence view and showed that the existence

oftwo types of jobs, good and bad (Le., using the dual labour market theory), creates

unobserved heterogeneity in aggregate unemployment data. This heterogeneity will

always bias the estimated hazards towards negative duration dependence. Therefore,

negative duration dependence might be a signal of unobserved heterogeneity and not

of persistence in the data.

Hence, while there is no consensus on the definition of hysteresis, empirical e"i­

dence of the existence of hysteresis (each author with a distinct definition) is mount­

ing.

4.7 Definition

For the purpose of this thesis, we define 'economic persistence' as the 'effect of the

shock felt for a minimum period of two years'. We assume that following a shock, a

system that exhibits persistence will return to its steady state after a period of two

years.
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4.8 Cochrane's Variance Ratio Test

In time series analysis, the slow decline in the sample autocorrelation function is gener-

ally viewed as an indication of an integrated process. Similarly, Cochrane (1988) pro-

posed using the variance ratio to test for non-stationarity. If a process Yt is stationary

(i.e., 1(0» then its var(YC+1 - Yt) = 2var(yc) +C1 and var(YC+Ie+l -Yt) = 2var(yc) + Clet

where Cl and Cie are non-negative constants. Note that ifYt is a white noise, then Cl and

Cie are zero. However, if the process is 1(1), then var(YC+Ie+1-YC) = (k+1)var(YC+1-Yt).

Therefore, one can use the following ratio to test for non-stationarity,

vk = 1 var(Yt+k+l - Yt) = 1+ 2t (1 - _i_) pc.Ay) (4.3)
k + 1 var(Yt+1 - Yc) ;=1 k + 1 1

where pj~Y) denotes the jth autocorrelation of ~y. If the process is stationary, then

Vie tends to zero as k -+ 00. To estimate this quantity Vie, one uses the sample

autocorrelation rj instead of the population Pj' 50 that,

Vi = 1+2~ (1- _i_) r~AY)
L.J k+1 1
j=l

The standard deviation of this ratio is,

-- Vie
StDev(VIc) =~

3 Tim

(4.4)

(4.5)

•

-Therefore, once the Vic are computed, one graphs it along with two standard deviation

bands to assess the persistence in the series.

If the value of Vk tends ta 1 as k increases, the time series exhibits integrated

behaviour. It is a driftless integrated process. If the value is negligible, then perma-

nent shocks have no lasting effects. If the time series is a random wa1.k, the level of
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the variable becomes increasingly uncertain. Specilica1ly, the variance ratio of two

consecutive time periods increases as time goes on. H the value of the ratio converges

to zero, then the series shows temporary changes when faced with a shock. Cochrane

suggested that a value higher than 1 implies strong persistence.

4.9 Canadian industry-Ievel unemployment

This section reports Cochrane's variance ratio test of Canadian industry-Ievel unem-

ployment. Table 4.1 identifies the data source and their CANSIM labels. Figures 4.6

and 4.7 graph the unemployment rates for the Canadian industries. The two reces­

sions of 1981-1982 and 1990-1991 are weIl identified across the board. Unemployment

rises sharply during recessions reaching a peak of 14.2 percent and 12.0 percent for

both recessions, respectively.

For the tables, a1l series are in log-level form and detrended using the Hodrick­

Prescott (HP) fllter. 18 Table 4.2 reports basic descriptive statistics for Canadian

unemployment. Table 4.3 presents the correlation matrix between Canadian sectoral

unemployment. Services unemployment is highly correlated (0.836) with total unem­

ployment. Also, manufacturing unemployment is highly correlated with goods sector

unemployment (0.877). AlI unemployment series are positively correlated with each

other. Table 4.5 shows the cross correlation of the unemployment series at differ­

ent lags. Goods and manufacturing lead total unemployment, while services unem­

ployment is coincident with total unemployment and lags goods and manufacturing

unemployment.

18Section 4.11.1 examines the effect of the HP filter on persistence.
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Table 4.4 reports the sample &utocorrelation for all unemployment series and for

a maximum lag of 6. AIl monthly unemployment series exhibit slow decay. Faœd

with a shock, al1 monthly unemployment series qualify for persistenœ. However, the

higher the time aggregation level, the pattern tends ta stationarity. If one analyses

only the annual level data, one is bound to miss this evidence of persistence. AIl

autocorrelatioDS are significant at the 1 perœnt leveL For all autocorrelations, the

QLB statistic19 rejects the null of independent error terms at less than 1 percent level.

Table 4.5 reports the cyclica1 properties of the unemployment series.

Figures 4.8 to 4.11 show, for each unemployment level data series, the Cochrane

variance ratio at two different frequencies. Again, the same proposition holds. The

lower the frequency, the less significa.nt becomes the evidence of persistence. The

total unemployment variance ratio reaches a quarterly value of 3.0 after 12 quarters

and then declines sharply, whereas after the same duration measured. in months, the

value is relatively lower but increasing. The monthly (quarterly) series tends to 2.8

(0.8) at the limit as k încreases, a clear evidence of more persistence in the monthly

frequency. AlI other unemployment series refiect the same pattern.

Figures 4.12 to 4.15 show the Cochrane variance ratio and its confidence level for

aIl monthly unemployment series. Figure; 4.16 to 4.18 show the same ratio for quar-

terly data. After 3 years, the persistenœ ranking of the Canadian unemployment

series (frOID highest to lowest) is: total unemployment, serviœs, goods and manu­

19The Ljung-Box statistic for the sample autocorreJation is oomputed as Collows,

QLB =T(T + 2) E~l [;.!k] ",CUlt ~M)" This test statistic is used ta test Ho : independently
distributed error terms. In amall sample, the QLB suifers from Jack of power. This is the principal
reason for not undertaking annual data persistenœ analysis.
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lacturing unemployment. For the subsequent sections in this chapter, we locus on

documenting this persistence in aggregate unemployment.

4.10 Persistence, Long Memory and Fractional In­
tegration

This section presents another approach ta testing and estimating long-range depen-

dence. The rescaled range test statistie presented here has a distinct advantage over

conventional methods - such as the Cochrane variance ratio test - for determining

long-range dependence. For the superiority of the rescaled range test statistic over

analyzing variance ratios, see Mandelbrot (1972).

There is a growing literature on long-memory processes. NIost of this literature

treats long-memory processes as fractionally integrated processes (for reasons emp_ha-

sized beIow). It focuses on the hyperbolically decaying autocorrelations and impulse

response weights properties of the time series under investigation. Note that a hyper-

bolle decay rate is lower than the exponential rate observed with the A!è\t!A class of

models.

By derivation, the ARMA c1a.ss of models considers ooly the exponential or geo-

metric rate of decay on the Wold decomposition coefficients. Often in economics, time

series proc~es exhibit a hyperbolie rate of decay that is neither consistent with an

1(1) process nor an I(O} process. A fractionally differeneed (Le., long memory) procee;s

can he regarded as a midpoint [labelled as "halfway house" by Baillie (1996, p. 6)J

between 1(0) and 1(1) processes. The attractive feature of long-memory processes is

their long run predictions and e1fects of shocks. These predictions are very different
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from conventional ARMA class modeling. The next subsections present the formal

definitions of long memory and fractionally integrated processes.

In our view, the main reason for regarding total unemployment as a long memory

process is the following. Granger (1980) examined the time series behaviour of a

contemporaneously aggregated panel data. Formal1y, let

N

Zt = LYit
i=l

(4.6)

which is the aggregate of N component and independent processes Yit, such that for

i = l, ..., N,

(4.7)

Hence, each individual process is an AR(l) with the autoregressive coefficients Qi to

he drawn from a Beta(O,l) distribution?O

o< Q $ l, p> 0, q > 0 (4.8)

•

Interestingly~ Granger (1980) showed that in the limit for large Nt Ze is an integrated

process with 1 ( 1 - ~). In other words, Ze is a fractional process (defined in subsection

4.10.2). In brief, Granger (1980) showed that the contemporaneous aggregation of

panel data resulted in fractionally integrated processes.

Given that total unemployment is a contemporaneous SUIn of N sectors unem-

ployment, 9."e choose ta proceed with long memory analysis for the Canadian total

unemployment21 level data. The plan is as follows. Given the long memory definition

20The standardized Beta probabilty distribution function [Zellner (1987t p. 373)} is given by,
. 1 1 61 1 1p(zla, b) = Bea, b} Z4- (1 - z) - t for 0 S z S 1 and B(a, b) == Jo Z4- (1 - Z)b-

1dz.

21Note that - as mentioned in Chapter 3, footnote 3 - the L-level includes 112 industries.
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of Mcleod and Hipe! (1978), we show that long memory processes are to he modeled

as fractional integrated processes. Next, we test for a unit root in aggregate unem-

ployment and report the results. FinaIly, we estimate unemployment persistence by

a Bayesian ARFIMA class of modeIs.

4.10.1 The Long-memory Process

FollovlÎng the definition22 of l\tlcLeod and Hipel (1978), a process is considered ta be

a long memory if the quantity

ft
ft~E Ipil

i=-n

(4.9)

is nonfinite. Pi denotes the autocorrelation at lag j. Note that this is equivalent

to an unbounded spectral density [frequency domain analysis} of the process at low

frequencies.

4.10.2 The Fractionally Integrated Process

In this chapter, we cansider only linear univariate madels. The process Yt is said ta

be integrated of order d, or I(d), if

(4.10)

•

where L is the lag operator, E(êt) = 0, Eee;) = (T2, and E(êtê~) = 0 for s :f: t and

where the fractional parameter d is possibly a noninteger.23 The process is weakly

stationary for d < 0.5 and invertible for d > -0.5.

22For other definitions of long memory, see Resnick (1987).
23An autoregressive integrated moving average process ARnvIA (p,d,q) process is defined as a process
that reqUÎles d'II. differenœs to produce a stationary ARMA (p,q) process. 'd' denotes an integer.
cp' denotes the number of autoregressive lags and 'q' reCers to the number of moving average lags.
FormallYt an ARIMA (p,d,q) process is written as (1- 4J1L - .•. - 4JpLP)(l- L)c1yt = c + (1 + SIL +
... + 9"L")ët o



•
119

The infinitEH)rder autoregressive representation of the process is given by,

oc

Yt =E 'trIcYt-1c + êt
k=O

where the weights 'tric are obtained !rom the binomial expansion,

(4.11)

(1 - L)tl - f)-llke)Lk (4.12)
Ic=O k

(:) d(d - l)(d - 2)(d - 3) ...(d - k + 1)
(4.13)- k!

(1 - L)tl {1 _ dL d(d - 1)L2 d(d - l)(d - 2)L3
}

(4.14)- + 2! + 3! + ..-

Therefore,2-1

r(k - d) k - 1 - d _ II j - 1. - d ~cuy rk(-d-d
1
)

tric = r(-d)r(k + 1) = 1r1c-l k
O~~1c J -

where r(.) is the gamma function.25 =::cuYdenotes the (asymptotic) limit.

(4.15)

Similarly, the infinite moving average representation of the process can he ex-

pressed as,

where,26

_ r(k + d) _ k - 1+ d _ II j - 1+ d _cuy kd
-

1

tPlc - r(d)r(k + 1) - tPle-l k - j - r(d)
O~~1c

(4.16)

(4.17)

•

Note that the cumulative impulse response ta a unit innovation is given by 1P(1) =

2::0 'I/Jj' Equation (4.17) shows that the impulse respanse coefficient t/Jle decays at

2"For the derivation, see Baillie (1996, p. 18).
2sThe gamma funetion is defined as, r(q) = J; uq-1e-udu for 0 < q < 00 [Zellner (1987, p. 364,
equation A.6)]. Here, one uses the following property of the gamma fonction: r(q + I} = qr(q) for
q> Q.
26For derivation see Baillie (1996, p. 18) and Hamilton (1994, pp. 448-452).
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a slower rate than the geometric decay of ARMA class.27 For this reasoD, Granger

and Joyeux (1980) proposed the fractionally integrated process as an approach to

modeling long memories in time series.

The autocorrelatioDS of a fractional white noise process follow,

= r(k +d)r(l- d) = II i -1 +d =:cuv r(l- d) k2d- 1 = C k2tl- 1 (4.18)
Pie r(k - d + l)r(d) 0< .<Ie i - d r(d)

~-

where C denotes a constant term. Given the definition of long memory by ~lcLeod

and Hipel (1978) (equation (4.9», fractionally integrated processes are long-memory

processes.

The autocorrelation coefficients have the same sign as d. When d < 0, the process

is called 'anti-persistence' or 'short memory'. When d > 0, the process possesses a

long-memory. Note that bath cases imply long-range dependence.

If -0.5 < d < 0.5, then et is a stationary and ergodic process with bounded

and positively valued spectrum at aIl frequencies. For 0 < d < 0.5, the process is

a long-memory process satisfying equation (4.9), Le., the autocorrelations are not

summable. The autocorrelations are all positive and decay at a hyperbolic rate. For

-0.5 < d < 0, the process autocorrelations SUIn to a constant. The process is said

to he a 'short memory' process and all its autocorre1ations (excluding lag zero) are

negative and decay hyperbolically to zero.

There are quite a few non-Bayesian statistical techniques to estimate ARFThIA

class of models. The most commonly used techniques can he classified as follows, 1)

Maximum Likelihood methods (Sowell (1992a»; 2) Approximate rvlaximum Likeli-

27For example, compare ,pic for the cases where d = 0 versus d 1: o.
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hood methods (Baillie and Chung (1992), Li and Mcleod (1986), or using the Whittle

approximation as outlined by Fox and Taqqu (1986», where the estimation of the

parameter 'd' is done at the same time as the estimation of the other parameters

(coefficients of the AR and the MA parts); 3) Tw~Step procedures (Geweke and

Porter-Hudak (1983) and Janacek (1982». The tw~stepprocedure unfolds as follows.

The first step is to make use of spectral analysis ta estimate 'd'. The second step is

to use (1 - L)dY; to estimate the ARMA parameters. Finally, 4) The non-iterative

approximation based estimators as in Durbin (1959, pp. 307-308) and Galbraith and

Zinde-Walsh (1994, pp. 144-147). This method relies on approximating the moving

average process by an autoregressive mode! and uses the pattern of autoregressive

coefficients to deduce estimates of the parameters of the underlying process. The

Galbraith and Zind~Walsh estimator have a lower bias than Durbin's for a given

approximation order. This class of estimatOIS are asymptotically efficient and more

robust - regarding misspecification - to maximum likelihood based methods.

Applications of the non-Bayesian ARFThIA mode! was used in Koustas et al.

(1996) to model output and unemployment at the aggregate and the disaggregated

data level for Canada and the U.S.A. As mentioned earlier, the advantage of the

ARFTh'IA class of madels is that the 'd' parameter captures the long run behaviour

of the series. When 'd' is smaller than l, the time series exhibits mean reversion. In

otl~er words and follawing their definition, the parameter 'd' is a coherent measure of

the degree of hysteresis.

Koustas et al. (1996) used time series long-memory modeling ta test for the

presence of hysteresis in Canada and in the U.S.A. They defined hysteresis as the
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lack of tendency in the rate of unemployment to revert to some mean value following

a shock. In other words, they looked at it as shock persistence through time. Evidence

of hysteresis was measured by shock persistence. 'Full hysteresis' was regarded as a

'unit root'. They reported that i (the estimate of d) is higher in Canada relative ta

the U.S.A. In other words, unemployment persistence in Canada is higher than in the

U.S.A.

We tested for unit roots using the Augmented Dickey-Fuller test.28 Including a

trend and 12 lags,29 the nul1 hypothesis of a unit root was not rejected. at the l, 5 and

10 percent levels for alliogs of the monthly level of unemployment series covering the

period 1976:1 to 1998:12.

Table 4.A
AnF MacKinnon (1990)
Test Statistic Critica1 Values

Total Unemployment -2.040 1 percent -3.996
Manufacturing Unemployment ...2.148 5 percent -3.428
Services Unemployment -1.821 10 percent -3.137

However,30 any evidence of a unit root is weak, since 1(1) is the nul1 and the result

could he attributable ta structural breaks in the series. The reœssions of 1981-1982

and 1991...1992 are weIl documented and apparent in the graph of the series (Figures

6 and 7). As noted by Rappoport and R.eichlin (1989), among others, mœt unit

roots tests have difficulty discriminating between an 1(1) process and an 1(0) process

28Tbe Augmented Didcey-Fuller test the null hypothesis of unit root as follows, ~l/t = Qll/t-l +
Q2Trend+ Lj {3jâ llt-j +et for j = 1,2, ...p. where et is an independent, stationary process, and p
is the 1ag length chosen for the dependent variable. The null hyppothesis of a unit root is equivalent
ta testing QI =O. The test statistic is then compared ta MacKinnon (1990) critical values. Other
unit root tests can he found in Hamilton (1994, Cbapter 17, pp. 475-543).
29UsÏDg the AIC criterion, we experimented with other lag lengths and similar results were ooncluded.
30Within the chapter, tables are numbered alpha-numerically. In the Appendix, tables are numbered
using numerals.
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with a shift in its mean. They found that most unit root tests tend to favour the

difference stationary (OS) mode! whenever the true process. is a segmented trend. As

a result, the DS mode! provides the better 'fit' in most applications. In my viewt

another important finding of their paper is - Rappoport and Reichlin (1989, p. 176)

- "Many quantity series appear to he adequately parametrised by segmented trends,

which undergo intermittent shocks, between which they behave as trend stationary

processes." For our analysis, this quote suggests that the unemployment series might

behave as a segmented trend type rather than a difference stationary type. In sum-

mary, structural breaks induce a bias towards non-rejection of the null hypothesis of

Wlit root. Enders (1995, pp. 243-248) has a good exposition of unit root tests in the

context of structural breaks.

Next, we shift the focus towards the midpoint between 1(1) and 1(0) processes,

Le., long-memory processes. To start, we investigate the shape of the sample autocor-

relations to assess if further long-memory analysis is ta be carried out. The following

tables (Tables 4.B t 4.C and 4.D) illustrate the correlogram of monthly level data for

total, manufacturing and services unemployment. The apparent pictorial evidence31

of a hyperbolic decay rate of the sample autocorrelations will be formally tested

later (see section 4.11.1). \Ve then proceed to estimate and test this long-memory

behaviour.

31Note that, Newbold and Agiakloglou (1993) argued that the detection of long-memory properties
through the examjnation of the ample autocorrelatioDS is almost impossible.
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• Sample: 1976:011998:12
Included observations: 276

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

1 0.986 0.986 271.36 0.000
2 0.971 -0.043 535.59 0.000
3 0.955 -0.075 791.77 0.000
4 0.936 -0.096 1038.7 0.000
5 0.915 -0.066 1275.5 0.000
6 0.892 -0.056 1501.6 0.000
7 0.870 0.012 1717.3 0.000
8 0.845 ..Q.067 1921.9 0.000
9 0.821 -0.023 2115.4 0.000

10 0.795 -0.034 2297.6 0.000
11 0.768 -0.047 2468.4 0.000
12 0.742 0.035 2628.4 0.000
13 0.718 0.061 2778.7 0.000
14 0.693 -0.041 2919.4 0.000
15 0.669 0.012 3050.8 0.000
16 0.645 -0.025 3173.5 0.000
17 0.621 -0.019 3287.5 0.000
18 0.596 -0.046 3393.1 0.000
19 0.572 0.030 3490.8 0.000
20 0.549 -0.008 3581.0 0.000
21 0.526 -0.011 3664.1 0.000
22 0.502 -0.034 3740.3 0.000
23 0.478 -0.053 3809.7 0.000
24 0.454 -0.016 3872.4 0.000
25 0.432 0.087 3929.6 0.000
26 0.410 -0.035 3981.2 0.000
27 0.388 -0.034 4027.5 0.000
28 0.365 -0.048 4068.6 0.000
29 0.343 0.036 4105.2 0.000

1 1 30 0.322 -0.025 4137.4 0.000

•
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Correlogram of UE_MANUFACTURING

Sample: 1976:011998:12
Incfuded observations: 276

Autccorrelation Partial Correlation AC PAC Q-Stat Prob

1 0.960 0.960 257.18 0.000
1 1 2 0.922 0.009 495.47 0.000

3 0.883 -0.038 714.79 0.000
4 0.840 -0.071 914.03 0.000
5 0.787 -0.160 1089.4 0.000
6 0.733 -0.043 1242.3 0.000
7 0.674 -0.105 1371.7 0.000
8 0.618 0.019 1481.0 0.000
9 0.559 -0.057 1570.7 0.000

10 0.495 -0.096 1641.2 0.000
11 0.437 0.055 1696.6 0.000
12 0.392 0.125 1741.3 0.000
13 0.357 0.129 1n8.4 0.000
14 0.320 -0.020 1808.4 0.000
15 0.286 -0.033 1832.4 0.000
16 0.263 0.070 1852.8 0.000
17 0.245 0.021 1870.6 0.000
18 0.228 -0.022 1886.1 0.000
19 0.214 -0.025 1899.8 0.000
20 0.201 -0.038 1911.9 0.000
21 0.190 -0.055 1922.7 0.000
22 0.182 0.014 1932.7 0.000
23 0.165 -0.097 1940.9 0.000
24 0.148 -0.002 1947.6 0.000
25 0.149 0.218 1954.3 0.000
26 0.143 -0.053 1960.6 0.000
27 0.128 -0.097 1965.7 0.000
28 0.110 -0.055 1969.4 0.000
29 0.090 -0.064 1971.9 0.000

130 0.062 -0.136 1973.1 0.000

Table4.C

•

•
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• Sample: 1976:01 1998:12
Included observations: 276

Autocorrefation Partial Correlation AC PAC Q-Stat Prob

1 0.980 0.980 268.08 0.000
2 0.963 0.057 527.79 0.000
3 0.946 -0.010 779.13 0.000
4 0.926 -0.056 1021.3 0.000
5 0.906 -0.042 1253.8 0.000
6 0.884 -0.068 1475.9 0.000
7 0.862 0.001 1688.0 0.000
8 0.838 -0.070 1889.2 0.000
9 0.814 -0.029 2079.5 0.000

10 0.788 -0.039 2258.7 0.000
1 1 11 0.763 0.001 2427.4 0.000
1 1 12 0.739 0.023 2586.3 0.000
1 1 13 0.717 0.023 2736.1 0.000
1 1 14 0.694 -0.001 2877.1 0.000
1 1 15 0.673 0.026 3010.1 0.000

16 0.650 -0.036 3135.0 0.000
17 0.628 -0.030 3251.7 0.000
18 0.605 -0.038 3360.5 0.000
19 0.584 0.050 3462.3 0.000
20 0.564 -0.002 3557.7 0.000
21 0.543 -0.021 3646.6 0.000
22 0.520 -0.087 3728.4 0.000
23 0.500 0.030 3804.1 0.000
24 0.478 -0.038 3873.6 0.000
25 0.459 0.078 3937.9 0.000
26 0.440 -0.006 3997.4 0.000
27 0.418 -0.108 4051.1 0.000
28 0.396 -0.010 4099.7 0.000
29 0.378 0.072 4144.2 0.000

1 1 30 0.361 0.015 4184.7 0.000

•
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4.11 Testing for Persistence

We test for the presence of long-range dependence using the modified rescaled range

test and we quantify persistence by estimating the fractional integration parameter

using a Bayesian ARFIMA model. The question at band is how to distinguish between

short-range and long-range dependence?

The most widely used notion of short-range dependence is the concept of 'strong

mixing' due to Rosenblatt (1956). It measures the decline of statistical dependence

between events separated by successively longer spans of time. As the time span

increases and the maximal dependence betwt:eIl events becomes trivially small, then

the time series is a strong-mixing one, such as the class of Afu\!A models wherein

the autocorrelations decay exponentially. Dependence between events over a long

span defines long-range dependence, such as long-memory processes (or fractionally

integrated processes given the definition in equation (4.9».

4.11.1 The Rescaled Range Statistic (RIS)

Originally due to Hurst (1951), the rescaled range statistic is set te detect long-range

dependence. It is defined as RT / ST,

(4.19)

•
(4.20)

where R is the range, ST is the sample standard deviation, and y denotes the sample

mean. La (1991, pp. 1287-1288) showed that T-l/2RTlST is asymptotically dis-
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tributed as the range of a standard Brownian Bridge on the unit interval and has ex-

pectation of ('Ir/2)1/2 = 1.253 and a standard deviation of [( 'Ir/2) ('Ir - 3)/3]1/2 = 0.272.

The most important shortcoming of the rescaled range is its sensitivity to short-

range dependence. For example, if the process is an AR(I), i.e., purely short-range

dependent, then the mean of the rescaled range limiting distribution will be biased.

To counter and to correct for the impact of short-range dependency on the test

statistic, Lo (1991, p. 1289) proposed using a modified rescaled range statistic. By

correcting for short-range dependency, the limiting distribution of the modified statis-

tic is invariant to many forms of short-range dependency but sensitive to the presence

of long-range dependency. The modified statistic is robust to many forros of hetero-

geneity and weak dependence. AIso, it is able to discriminate between short- and

long-range dependency.

The modified rescaled range statistic is defined as,

RT
QT= -(-)

UT q

where,

q

Uf(q) = Co + 2E Wj(q)Cj
j=l

(4.21)

(4.22)

Cj denotes the jth order sample autocovariance of Yc and Wj(q) are the Newey and

West (1987) weights using a Bartlett window defined as,

In the presence of long memory, the normalized statistic T-l/2QT weakly converges•
Wj(q) = 1- [-.L]

q+1
q<T (4.23)



129

• ta the range of a Brownian Bridge. The distribution is given by,

00

F(z) = L (1- 4.1;2j2) exp[-2x2j2]
;=-00

(4.24)

This distribution is positively skewed and its fractiles are tabulated in Lo (1991, p.

1288). The modified rescaled range statistic is robust to short-range dependence and

consistent with a general class of long-range dependent stationary Gaussian alterna-

tives (see Baillie (1996, p. 28».

The choice of q is a subject open to debate. For our analysis, since we are using

quarterly data, we computed the modified statistic at q = 1,2,3,4,5,6, 7, 8 and q =

[kT], where [kT] denotes the greatest integer less than or equal ta kT. As defined and

proposed by Lo (1991, p. 1302), [kT] is a data-dependent approach for the choice of

q,

== (3T) 1/3 ( zp ) 2/3
kT 2 1- p2

where p is the estimated fust-order autocorrelation coefficient of the data.

(4.25)

•

The follov.,ing table (Table 4.E) reports the results of the modified rescaled range

(QT) statistic for the first difference of the log form level of total unemployment,

manufacturing and services unemployment. For each q, the first column reports the

2:1=1 Wj(q)Cj, i.e., the sum of the weighted autocovariances. Subsequent columns

report the logarithm of QT and the normalized test statistic value ~.

Given the reported critical values in La (1991, p. 1288), we test the null hypothesis

of a simple Li.d. process. AIl series are in log fonn and Yt denotes the log of the time

series. Table 4.E computes the normalized test statistic values for llYt and Table

4.F computes the same statistic for the Hodrick-Prescott filtered y". Note that the
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nonnaUzing factor .fT is diff'erent in both tables. For Tables 4.E and 4.F, the sample

size is 91 and 92 observations, respectively. The reason for computing bath tables

is to investigate the sensitivity of the modified test statistic resuIts to the method

of detrending. Also, to check the sensitivity of the statistic to the lag length, the

DormaIized test statistic is computed for severa! different values of q. Given that the

DormaIized test statistic follows a Brownian Bridge process, the null hypothesis is

examined at the 95 percent confidence level by not rejecting or rejecting according to

whether the normalized test value is or is not contained in the interval [0.809 , 1.862].

Table 4.E significantly rejects the simple null hypothesis of i.i.d. process at most

values of q. Long-range dependence is evident in Canadian total, manufacturing and

services unemployment. Table 4.F gives similar results. However, persistence of total

unemployment is less evident at the data-dependent value of q. Shorter values of q are

picking up the short-range dependence. Using the Hodrick-Prescott filter increases

the q lag where the first evidence of persistence is reported. For example~ evidence of

persistence for total unemployment is first reported at q = 4 when using aYt and at

q = 5 when using HP filtered Yt. This one lag delay holds for total and manufacturing

unemployment. For services unemployment, the lag delay is longer.

Given the strong evidence of long-range dependence in the series ~Yt, we decided

to continue our analysis of long-range dependence. The next section proposes a

Bayesian approach to estimate severa! ARFIMA models in order to quantify the

fractional integration parameter.
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Table 4.E
Modified Range over Standard Deviation (RIS) Test Statistic (Lo (1991»

[he change ofthe log ofQuanerly Canadian Unemployment Time Series

[otal Unemployment

Sum ofWeights Log(RJS) Normalized Test Statistic

q=l 0.00083 0.99843 1.04450

q=2 0.00132 0.94306 0.91947

q=3 0.00170 0.90835 0.84884
q=4: 0.00197 0.88583 0.80594·

q=5 0.00215 0.87287 0.78226·

q=6 0.00227 0.86382 0.76612·

q=7 0.00236 0.85764 0.75530·

q=8 0.00244 0.85233 0.74613·

Manufacturing Unemployment

Sum ofWeights Log(RIS) Normalized Test Statistic

q=l 0.00095 1.00146 1.05182

q=2 0.00257 0.86828 0.77404·

q=3 0.00468 0.76656 0.61241·

q=4 0.00717 0.68730 0.51025·

q=5 0.00991 0.62423 0.44127·

q=6 0.01282 0.57275 0.39195·

q=7: 0.01585 0.52954 0.35483·

q=8 0.01899 0.49237 0.32572·

Services Unemployment
Sum ofWeights Log(RIS) Normalized Test Statistic

q=1 0.00306 0.89904 0.83085

q=2 0.00462 0.84992 0.74198·

q=3: 0.00560 0.82397 0.69896·

q=4 0.00616 0.81050 0.67761·

q=5 0.00619 0.80973 0.67641·

q=6 0.00600 0.81438 0.68369·

q=7 0.00578 0.81970 0.69211·

q=8 0.00565 0.82271 0.69692·
: : Denotes the value for [kT]
• : Indicates significance at the 5 percent level.
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Table 4.F
Modified Range over Standard Deviation Test Statistic (Lo (1991»
HP Filtered Log ofQuarterly Canadian Unemployment Time Series

rrotal Unemployment
Sum ofWeights Log(RIS) Normalized Test Statistic

q=1 0.00432 1.08805 1.27690

q=2 0.00837 1.00475 1.05403

q=3 0.01201 0.95025 0.92972

q=4 0.01513 0.91232 0.85197

q=5 0.01771 0.88538 0.80073·

q=6 0.01975 0.86611 0.76598·

q=7 0.02132 0.85241 0.74219·

q=8 0.02247 0.84294 0.72618·

q=25: 0.01193 0.95127 0.93192

Manufacturing Unemployment
Sum ofWeights Log(RIS) Nonnalized Test Statistic

q=1 0.00755 0.98624 1.01006

q=2 0.01415 0.90783 0.84321

q=3 0.01951 0.86003 0.75534·

q=4 0.02348 0.83040 0.70551·

q=5 0.02608 0.81297 0.67775·

q=6 0.02764 0.80315 0.66260·

q=7 0.02854 0.79771 0.65435·

q=8 0.02906 0.79460 0.64969·

q=14: 0.02810 0.80035 0.65834·

Services Unemployment
Sum of Weights Log(RIS) Normalized Test Statistic

q=1 0.00310 1.06064 1.19881

q=2 0.00598 0.97848 0.99216

q=3 0.00853 0.92493 0.87708

q=4 0.01069 0.88799 0.80555·

q=5 0.01244 0.86213 0.75898-

q=6 0.01380 0.84391 0.72781-

q=7 0.01481 0.83134 0.70704*

q=8 0.01551 0.82308 0.69373*

q=21: 0.00974 0.90338 0.83462*
: : Denotes the value for (kT]
* : Indicates significance at the 5 percent level.

132



•

•

133

4.12 Bayesian ARFIMA

To mode! and to measure the persistence effect of shocks, we investigate the class of

Bayesian Autoregressive Fractionally Integrated Moving Average (ARFIMA) models.

On the ARThIA class of models, Sowell (1992b) argued that ARTh'IA models tend

to fit the short-run properties of the data and they are too restrictive in terms of

the behaviour of the time series under investigation. Long-run inferences based on

ARTh'IA models could - and in most cases do - lead to biased predictions. ARF~IA

models allow the fractional integration parameter to adequate!y capture the long-run

properties of the series while preserving the short-run properties to be picked up by

the ARl~IA part in it. The theoretical properties and characteristics of ARFI~1A

class of modeIs are outlined in Beran (1994), Brockwell and Davis (1991) and Odaki

(1993).

As mentioned earlier, the main rea.sons for undertaking the long-memory analysis

of the quarterly aggregate Canadian unemployment are: 1) the evidence of persistence

reported by the Cochrane variance ratio test and the modified rescaled range test

statistic; 2) the non-rejection of the null hypothesis of a unit root (that might be due

to structural breaks); and 3) long memory may still appear at the macro Ievel due to

contemporaneous aggregation. Fina1ly, in support of our argument, we quote Koop,

Ley, Osi€'\·alski and Steel (1997, p. 150) ''when analyzing aggregated data, we should

keep the possibility of long memory open."

Adopting a Bayesian approach to estimate ARFIMA has some advantages over

the classical techniques. First, it provides exact finite sample distributions for the
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impulse response and the &actional dift'erencing parameter. Second, for predictive

purposes, the Bayesian approach allows one ta average across models instead of just

picking one model. Third, one can perform small sample tests of memory properties

to discriminate between ARlMA and ARFIMA models simply by attaching a posi-

tive prior ta the point where the fractional integration parameter32 equals one. The

notation and derivatioDS in this section closely follow Koop, Ley, Osiewalski and Steel

(1997).

Sînce the modified rescaled range test statistic pointed to strong evidence of per-

sistence in t!.Yt, and to avoid any artificial distortion of the statistical properties of

the data induced by the Hodrick-Prescott filter,33 we focus our analysis on the first

diff'erence of the quarterly log of total Canadian unemployment-level. Rewrite the

ARFL\tIA process as,

(4.26)

The ARF~IA(p,0, q) representation of this process is,

- (4.27)

•

are polynomials in the lag operator and the roots lie outside the unit circle. Let

8 E C9 and <p e cP. The erroIS et are Li.d. N(0,cr2), 6 =d -1 and 0 E (-1,0.5). In

other words, we are restricting the space of the fractional differencing parameter to

32Defined later.
33The HP filter "removes important time series components that have traditionally been regarded as
representing business cycle phenomena" King and Rebelo (1993, p. 208). For a complete discussion
of the negative effects of the Hodrick-Prescott, see Stadler (1994, pp. 176er1769). For spurious
cyclical behaviour induced by the filter, see Harvey and Jaeger (1993, pp. 233-235).
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d E (0.0, 1.5). In the case where 6 = 0, d equals 1 and the process Yt is modeled as

an ARlMA(p, 1, q), i.e., Zt is an ARMA(p, q). The restriction on the space of 6 merits

some explanation. The lower bound of 6 (-1) ensures that tJ.Yt is invertible (see Odaki

(1993)). Also, &om Table 4.B (page 124), the autocorrelations are positive and decay

hyperbolically. Therefore, restricting the lower bound of d to zero is coherent. A

reasonable implication of the unit root test (Table 4.A, page 122) is to restrict the

upper bound to 0.5 which ensures that AYt is stationary. 'Whenever d E (0.0,0.5),

Yt is said to be trend-stationary with long memory. Whenever d E (0.5,1.5), AYt is

stationary with intermediate memory for d < 1 and with long memory for d > 1.

Let I(n) denote the impulse response function of this Yt process. The impulse

response function measures the impact of a shock of size equal to 1 at time t on

Yt+n. For a stationary process Zt, [(n) equals the coefficients of the infinite-~IA re~

resentation of the process. Formally, the coefficients of the infinite-~IA are A(L) =

(1- L)-6ifJ-l(L)v(L). The n th arder partial sum of these coefficients is the cumulative

response for Zt. They also represent the impulse responses [en) for the level of Yt.

Formally, [en) could be represented by the nth coefficient of A-(L) =(l-L)-lA(L) =

The coefficients of tP-1 (L)v(L) are defined as,

J(i) - 0 i+l-j<O (4.28)

(4.29)

•
q

J(i) - L 6j !i+l-j

j=O

Il - 1 and fil. =-(rJ>lfh-l + ... + <pplh.-p) for h 2= 2. (4.30)



•
136

Therefore, the coefficients of A-CL) == (1- L)-"tj)-l(L)v(L) are computed as follows,

"
l(n) =E Ci(-d)J(n - i)

i=O

(4.31)

where Co(.) == 1 and cj(a) == n~l(k-~-a). \Vben 6 =0, d = 1 and Ci = 1 for i ~ o. In

the limiting case, where 6 = -l, d =0, 50 that Co(O) = 1 and Ci(O) = n~l(l - i) =

0.0, since Cl(O) = 0.0. In the latter case, the impulse responses coefficients l(n) equal

J(n), Le., they collapse to the same coefficients as an ARMA(p, q) process. We now

examine the behaviour of the impulse responses under different fractional parameter

specifications. In the limit,

lim l(n) - 0
ft-OC

_ A(l) = v(l)
lP(l)

- 00

if 6 < 0, i.e., d < 1

if 6 =0, i.e., d = 1

if 6 > 0, i.e., d > 1

(4.32)

(4.33)

(4.34)

•

The problem at hand is the following. Whenever 6 deviates from D, 1(00) equals 0

or 00. Since finding an estimate for 6 that is different from zero is highly likely, an

impulse response that is infinite or zero will also be highly likely. This theoretical

weakness of ARFIMA is documented in Hauser, Pijtscher and Reschenhofer (1992,

p. 8). They argued that ARFThIA modelling is inappropriate for the purpose of

estimating persistence (defined as 1(00».

Here, we adopt the answer to this criticism given by Koop, Ley, Osiewalski and

Steel (1997, p. 154). Since 1(00) is of little relevance to the economic forecaster, they

defined the following. If the frequency of the data at hand is quarterly, and we refer

to 1(4),1(12) and 1(40) as the short-run, medium run and long-run impact of a shock
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respectively, then an economist is only interested in these quantities: 1(4), 1(12) and

[(40). Note that our definition of 'economic persistence' is consistent (section 4.7 of

this chapter) with their definition. fi one accepts our definition of economic persis­

tence, computing the suggested impulse responses will quantify persistence. Also, our

definition makes no distinction between the intermediate and the long run impact, as

classified by Koop, Ley, Osiewalski and Steel (1997, p. 154).

By giving a positive prior mass to the point where 6 = 0, one reaches a non­

degenerate distribution for [(00). The point masses for [(00) at 0 and 00 are to be

measured by the posterior probability of P(6 < 0) and P(6 > 0), respectively. The

posterior probability distribution for l (00) will be continuous and non-zero between

oand 00.

Here 9-·e consider only the class of ARFINIA models. Given the above notation, the

problem we are facing is a standard Bayesian one. The parameter space is partitioned

into 1J., (j2 and wT =(6, eT, ~T), where e =(817 ... , 8q)T E Cq and 4> =(tPl' ... , 4Jp )T E

cP. Let w denote the observed vector of data, with wT = (~Y17 ...,~YN )T, and let

w·T denote the predictions of the observed data, with w·T == (t1YN+b ..., t::,.YN+n)T.

The model is defined as,

.',

(4.35)
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• where

(:.)­
(:.)

(4.36)

(4.37)

LN refers to an N x 1 vector of ones. The elements of V are given by Vij = (7'-21'( i - j)

for i,j = 1, ..., N +n. '1(s) denotes the autocovariance function given in Sowell (1992a,

p. 173, equation (8». The sampling density distribution of w is given by,

where f§ormol is the N-variate Normal density function. Formally,34

2 i0'2Vill-! {l T 2 l )}p(wlw, J,L, 0' ) = N exp --2 (w - JJrLN) (0' Vid- (w - J,LLN
(21r)T

The prior over the parameters is assumed to be as rollows,

(4.38)

(4.39)

(4.40)

•

where w E n =(-1,0.5) x Cq x Cp. IJ E R and 0'-2 E ~. The improper prior on

CT-2 leads to perfect rabustness with respect ta aIl (N + n)-varîate elliptical densities

with the same location and scale.33 Given the sampling distribution and the prior,

we integrate out JJr and cr-2, which yields the posterior density for w.

34See Zellner (1987, p. 379, equation (B.l)) .
3SSee Osiewa1ski and Steel (1993) for the proof.
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where L~ refers to the transpose of N x 1 vector of ones,

K - LlVill-!(L~VlïlLT)-iSSE-T.' p(w)dw (4.42)

SSE - (w - jlLN)TViï1(w - jlLN) (4.43)

"P- ( T V:-1 )-1 T tI,-l (4.44)- LN 11 LN "N 11 W

The posterior density is computed using ~ronte-Carlo simulations. The procedure is

as follows. \Ve draw a value for 6 from a uniform distribution over the interval (-LO

, 0.5}, then we compute its antithetic replication by projecting the value through the

mean.36 \Ve also draw the values for p and q from a uniform distribution that is

bounded to ensUIe the stationarity and invertibility of the process. This procedure

efficiently enforces the ARMA stationarity part as outlined in ~Ionahan (1984, p. 403,

equation (1)). Then, we compute the likelihood and the variance-covariance matrix.

Next we evaluate the log of the posterior for the parameters using the Sowell code.

We repeat this exercise 25,000 times. Simulation is carried on i686 machine running

LINUX 2.2.14-5.0. The FORTRAN 77 code is from Koop, Ley, Osiewalski and Steel

(1997) with modifications to fit OUI problem.37

The algorithm used is importance sampling combined with antithetic replications.

\Vhenever the posterior density is nonstandard - from which it is difficult or impossible

to generate random draws - importance sampling allows the random draws w to be

generated from a substitute density f (w). The empirical density is then adjusted ta

36The anthitetic replication is computed by projecting the draw through the mean of the uniform
distribution [-1.0,0.5), i.e., -0.25: Therefore, ~he anthitetic value eguals -0.25 - [draw - (-0.25)}.
Formally. the anthitetic value 6-1 = E(6) - [8' - E(6)] = 2E(6) - ~. See Dorfman (1997, p. 21) for
more details.
37Conditional on the number of parameters in each model, the average time for simulating one model
is 23 minutes.
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account for the differences between the substitute density and the actual posterior

distribution p(wl y, X) of w. To increase the efficiency of the numerical approximation,

the algorithm relies on antithetic replications. Generating random draws from the

substitute density results in an empirical density that is not a random sample fcom

the posterior distribution. Therefore, the simple averages cannat be used to estimate

the posterior mean. Instead, one corrects the simple averages by computing weighted

averages as follows,

where S(Wi) refers to the importance weight for the ith observation in the empir-

ical distribution, g(Wi) denotes any quantity function of interest (e.g., the sample

average) and the superscript 1S denotes that the estimator is based on the impor-

tance sampling density.38 Note that the combination of importance sampling with

antithetic replications increases the numerical efficiency for any symmetrical or near-

symmetrical posterior distribution {Dorfman (1997, p. 25». '\Ve did not focus on

other methods of simulation, such as the Gibbs sampling algorithm. The Gibbs sam-

pling algorithm has been used for the analysis of univariate time series by Barnett,

Kohn and Sheather (1996), Chib and Greenberg (1994), ~IcCul1och and Tsay (1994),

and for ARFL\IA processes by Pai and Ravishanker (1996).

The predictive distributions are based on p(w·IData). Note that YN+n = YN +

38For regularity conditions ensuring the convergence of g(w) , see Dorfman (1997, p. 24). The general
criteria Cor choosing an importance function are discussed in Bauwens, Lubrano and Richard (1999,
pp. 77-82).
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• l:~W- = YN + np. + 1.;e-. The posterior predictive density is given by,

p(YN+..lw, Data) - Lf(YN+..lw)p(wIData)dw (4.46)

where V22•1 = \122 - V21Viï1Vi2' and /:(.Ir, b, A) is the k-variate Student t density with

r degrees of freedom, location vector b and precision matrix A. Formally,39

(N-1)~r(~)
P(YN+nlw, Data) = 1r~r(!!.f) 2

1

N
[

( Tt' 1'-1 )2] -1 2- 1 TV; n - Ln v21 v 11 LN

SSE Ln 22.1Ln + Tt,-l
LNvU LN

J.V-l+ (4.49)

The posterior density of the parameter J1. is given by,

1 - T -1 T -1
p(J,Llw, Data) = /5 (p.IN - 1, J,L, SSE LNV;1 LN) (4.50)

•

Note that the last two densities are conditional on w, therefore one integrates it out

through a numerical procedure. Our objective is to assess the relative importance of

persistence in aggregate Canadian unemployment. Therefore, we Cocus on reporting

and analysing the rE~ults for the parameter 8 and the impulse responses.

As presented here, a caveat of Bayesian inference regarding the fractional dif-

ferencing parameter is that the arder of the ARFIMA is assumed ta be fixed, i.e.,

39See Zellner (1981, p. 383, equation (B.20)).
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known. Therefore, we consider a range of values for the orders P and q ta cover mode!

uncertainty.

4.12.1 Madel Comparison, Sensitivity and Robustness

The posterior distribution provides a basis for "estimation of parameters conditional

on the adequacy of the entertained mode!" and the predictive distribution enables

"criticism of the entertained mode! in light of CUITent data" (Box (1980, p. 383».

The scope of Bayesian model comparison and mode! assessment is quite broad. In

the literature on Bayesian mode! comparison, there are 1) the marginallikelihood

approach, 2) the 'super-model' or 'sub-model' approach and 3) the criterion-based

methods sucb as the L measure and the calibration distribution (see Chen, Shao and

Ibrahim (2000) for an excellent exposition of all methods and the references therein).

The second approach is efficient whenever the posterior means or modes are not far

from zero. The last approach does not require proper prior distributions over the

models. Here, we adopt the ~arginal likelihood approach. This approach (outlined

later) is essentially the same as the Bayes factor approach.

Let the joint density for potential data y and parameters w be

pey, wlM) = p(ylw, M)p(wIM) (4.51)

where flII indicates conditionality on the model specification. This model can also be

factored as

where p(yIM) = Jp(ylw, M)p(wIM)dw denotes the predictive distribution. With an•
pey, wlM) = p(wly, M)p(yIM) (4.52)
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actual data vector Yd.,

p(Yd.,wIM) =P(WIYd, M)P(YdI M ) (4.53)

where the first term on the right hand side of equation (4.53) refers ta the posterior

distribution of w, given Yd,8S

P(WIYd, M) ex: p(Ydlw, M)p(wIM) (4.54)

The second term on the right hand side of equation (4.53) refers ta the predictive den-

sity associated with the particular data type Yd actually obtained. Figure 1 illustrates

this for a single parameter w and a sample space Yd of n = 2 observations.

Prier distribution
P(Q)IM)

VI ~
P(CJ))yd,Ml
Posterior distribution

P(YlM)
+- Contours ofpredictive

distribution

...._----------------y.

•
Figure 4.1: Prior distribution, posterior distribution and predictive distribution for a
single parameter w and a sample of two observations (Box (1980, p. 386».

The posterior distribution p(w1Yd, M) allows all estimation inferences of interest

to be made regarding w. However, if Yd was not generated by the model M, it could be
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assessed by reference to the density p(Yd(M) to the predictive reference distribution

p(y(M). The success of the Bayesian predictive distribution as a mode! checking device

is discussed at length by Geisser (1993) and Geisser and Eddy (1979). To reach

successful prediction, a mode! must incorporate or consider structural aspects. Here,

we do not address the prediction aspect of the proposed mode!. Our focus is on the

persistence issue.

Other methocls for exarnining robustness are sensitivity analysis approaches via:

1) .asymptotic approximation; 2) scale mixtures of normaJs; and 3) prior partitioning.

The last method relies on working the problem 'backward'. Rather then choosing

(fixing) the priors, one chooses a set of posteriors that produce a given conclusion,

and determines which priar inputs are consistent with the desired results, given the

observed data.

Provided that the set of models under consideration is exhaustive, mixing over

the models is optimal for forecasting purposes.40 Here, we investigate the set of

ARFn.L~ models up to and including the orders of ARFThlIA(3, 6, 3). This set is

Dot exhaustive, but since most of economic time series can be well approximated by

low order AR.\-IA models, we stop at the orders P = q = 3. The AR.\1A part of

the ARF~IA should be able to capture short-range dependency and then we can

investigate the long-memory properties of the process based on the estimate of 8.

Since we do Dot consider all conceivable models for the problem at hand, model

comparisons based on the posterior odds do not change if a new unspecified third

~oUsing a squared error 10ss, mixing over the modeJs is optimal for forecasting (see Min and Zellner
(1993) for the proof).



•
145

mode! is introduced. Given the intuitive economic argument, we suggest that the

Independence of Irrelevant Alternatives (lIA) property holds (see Poirier (1997, p.

ISO) for the definition and for an excellent exposition).

There are 16 models under consideration Ml, M 2••• , MIS. For model Mi Ci -

1, ..., 16), the posterior distribution takes the form,

(4.55)

where L(wiIData, Mi) is the likelihood function and 1r(wiIMi) denotes the prior dis-

tribution. The marginal likelihood is given by,

ll'(DataIMi ) = JL(wiIData,M,)ll'(Wili\.f,)dwi (4.56)

To compare the models, one computes the marginallikelihoods and chooses the model

that yields the largest marginallikelihood. Basically, the marginallikelihood approach

is the same as the Bayes factor approach. Note that 1r(DataIMi ) is the normalizing

constant of the posterior distribution 1r(wiIData, Mi). The posterior probability of

model i, lvIi, is given by,41

(4.57)

•

where 1r(J"fi ) is the prior mode! probability of Mi and Ki is as defined in equation

(4.42).

We consider the same models investigated by Koop, Ley, Osiewalski and Steel

(1997), corresponding ta all possible ARFIMA(p, Ô, q) for p, q < 3.

USee Box (1980, p. 408, equation (*», Carlin and Louis (1996, p. 47, equation (2.17» and Chen,
Shao and Ibrahim (2000, p. 237, equation (8.1.3)).
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The plan proœeds as outlined by "Given the appropriate tools, the mœt straight-

forward way of demonstrating a lack of dependenœ on the prior is to compute the

summary measures of interest for a range of plausible priar densities" (Skene, Shaw

and Lee (1986, p. 282)). The priar probabilities for each model Mi are all taken as

equal (Le., 1r(Mj ) = 1/16 for i = 1, ..., 16) ta refiect ignorance, i.e., 'non-informative'

prior.42 We also adopt a second 'informative' prior. The reason for assuming an

'informative' prior is the following. For the models where the AR term is zero - i.e.,

ARFIMA(O, é, q) - one should expect the parameter 6 ta capture any short-range

dependency present in the data since there is no AR term ta adequately reflect it.

Therefore, inferenœ ba.sed on 6 would he misleading. This 'informative' prior down-

weights the prior weight of ARFIMA(O, é, q) by assigning three times less prior mass

to ARFIMA(O,6,q). For example, the prior for ARFIMA(O,6, 1) equals to 0.5/16 and

the prior for ARFIMA(1,6,0) equals ta 1.5/16.

Figure 2 illustrates the pœterior of a simple mix of 6 over the 16 ARFIMA models.

The pœterior distribution is highly non-lïnear and reflects important mass on the

positive realline for 6. However, this bias towards mass over the positive rea1lin~ is

due ta the presence of pure moving average models. In these models, the parameter

6 ref1ects and captures both the short- and the long-range dependenœ of the series.

As expected and illustrated in Figures 3 and 4, ARFIMA models without autore.

gressive terms - sncb as ARFIMA(0,6, 1) and ARFIMA(O,6, 2) - pull the pœterior

distribution towards the positive side of the realline. In these cases, 6 captures both

420n the quantification of ignorance, Bee the excellent exposition in Bauwens, Lubrano and Richard
(1999, pp. 107-109). Briefly, the approach adopted here maximizes the entropy orthe model density
over the parameter spaœ.
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the short-range and the long-range dependency of Canadian unemployment. Au-

toregressive components models tend to put higher mass on the negative realline.

In other words, when the autoregressive component is present, i is smaller than 1.

Canadian aggregate unemployment is a long-memory process that ed1ibits the mean

reversion property. Figure 4 shows that as the number of autoregressive parameters

increases (i.e., from ARFIMA(l,o,O) to ARFIMA(2,o,O», more probability is given

to the negative realline and specifical1y to the range °e (-1.0, -0.5).

The question at hand is the following. Conditional on the entertained class ofmorl-

els and the assumptions made regarding the priors and the sample data, is aggregate

Canadian unemployment trend stationary with long memory or is its first differenœ

stationary with intermediate memory? The answer lies in Tables 4.G and 4.H. Table

4.G reports the posterior mode! probabilities under the assumptions of both priors:

a fiat and an informative. Conditional on the model, Table 4.H reports the poste-

rior mean, standard deviation and the mode of é. The reason for reporting all these

descriptive statistics is that the posterior is highly non-linœr and non-symmetrical.

Therefore, conditional on the loss function43 used, one is faœd with a different opti-

mal Bayesian point estimate. Choosing the zero--one loss function produœs the 'most

likely' estimate point but a small estimation error is treated the same as a large

one. Choosing the quadratic loss function protects against outliers and skewed tails.

The advantage of using the quadratic 1088 function is that it uses all the information

present in the posterior distribution to derive the mean. We report the descriptive

43Common choices of lœs functions are: 1) the quadratic lœs L(i,6) = (1- 6)2, 2) the abiolute lœs
L(5, 6) =/5- 61 and 3) the zero-one loss L(5, 6) =c ü 5 :F 6 and L(i,6) =0 if5=6. See Dorfman
(1997, p. 10) for the derivations. Choœing the quadratic (abiolute, ~ne) loss rœults in the
mean (median, mode) as the Bayesian optimal point estimate.
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statistics, and to conform with the ethos of Bayesian point estimation, we adopt the

quadratic 1088 function as our approach.

Regardless of the prior used (ignorance or informative), Table 4.H points to

ARFIMA(l, 6, 0) as the model with the highest pœterior probability. Conditional

on the prior and the sample data, this model is the mœt likely to adequately fit the

data. Based on the pœterior mode! probabilities, the overall ranking is as follow:

ARFIMA(l, 6, 0), ARFIMA(3, 6, 3) and finally, ARFIMA(l, 6,1). Note that the pos-

terior mode! probability is scattered acrœs aIl models, which caution against choosing

just one mode!. More specifically, the standard deviation increa.ses with the number

of parameters leading to higher unœrtainty in choosing only one model (with the

exception of the boundary mode! ARFIMA(3, 6, 3)).

The posterior odds44 in favour of (-0.5 < 0 < 0.0) against (0.0 < 0 < 0.5)

are 0.5192 to 0.4808. This evidence supports the helief that ~Yt is stationary with

intermediate memory. Quantitatively, the ARFIMA(l, 6, 0) model estimates a small

negative value for 6, whereas the overall model estimates a small positive value for

the saIne parameter.

44Here, we adopt the symmetric '~Ki' loss function, as defined in Bauwens, Lubrano and Richard
(1999, p. 29). The probability of errors of type 1 and n are equal. See also Zellner (1971, p. 292)
where "under a symmetric 1068 structure, a comperison of the pœterior probabilitiœ will provide a
bBsis for choœing between Ho and Hl."
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'lBble 4.G
Posterior Model Probabilitïes for ARFIMA(p, 6, q)
Mode1 Flat Prior Informative Prior

(0,6,0) 0.0733 0.0646
(0,6,1) 0.0681 0.0300
(0,6,2) 0.0108 0.0047
(0,6,3) 0.0359 0.0158
(1,6,0) 0.3139 0.4155
(1,6,1) 0.1128 0.0995
(1,6,2) 0.0219 0.0193
(1,6,3) 0.0235 0.0207
(2,6,0) 0.0584 0.0773
(2,6,1) 0.0541 0.0478
(2,6,2) 0.0173 0.0152
(2,6,3) 0.0218 0.0192
(3,6,0) 0.0090 0.0119
(3,0,1) 0.0280 0.0247
(3,6,2) 0.0323 0.0285
(3,0,3) 0.1181 0.1042

Table 4.H
Posterior Characteristics of 6
Model Mean St-Dey Mode

(0,6,0) 0.429 0.055 0.500
(0,6,1) 0.313 0.113 0.325
(0,6,2) 0.281 0.133 0.275
(0,6,3) 0.019 0.173 -0.075
(1,0,0) ·0.034 0.263 ·0.200
(1,6,1) 0.053 0.326 0.400
(1,6,2) 0.052 0.313 0.250
(1,0,3) -0.173 0.360 0.000
(2,0,0) -0.189 0.352 0.025
(2,0,1) .0.132 0.329 ·0.175
(2,0,2) 0.019 0.335 0.150
(2,6,3) 0.042 0.400 0.475
(3,0,0) -0.085 0.333 ·0.100
(3,6,1) -0.321 0.329 -0.575
(3,0,2) .0.222 0.362 -0.425
(3,6,3) 0.318 0.208 0.425
Overall Model45 0.036 0.359 0.425

45Bayesian Mode! Avelaging (BMA) 88 outlined by Hoeting, Madigan, Raftrey and Volinsky (1999)
uses the mode! posterior probabilities as weights. Here, the 'overall mode!' is computed as the
average or a11 16 pœterior probabilities at each bine
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In brie!, conditional on the entertained. class of models, the prior assumptions

and the sample data, the first difference of the log of Canadian unemployment is

stationary with intermediate memory. Among the c1ass of low order ARFIMA models,

an ARFIMA(I, 6, 0) model is the most likely one to he observed, with '6 = -0.034,

i.e., i = 0.966.

A natura! question arises. What are the effects of a one time shock to the series?

Further, for how long will the e1fects 1ast? Table 4.1 and Figure 5 answer these

questions. For the chosen model, Figure 5 illustrates the impulse responses for n =

4,12 and 40. As expected from previous results, the pœterior standard deviation

increases for longer horizons. It is highly skewed and exhibits fat tails.

Table 4.1
~~(1,6,O) Overall Model

•

n = 4 2.235 2.253
(0.372) (0.153)

n = 12 2.618 1.144
(0.861) (2.301)

n = 40 2.874 1.684
(1.750) (4.997)

(.) denotes the pœterior standard deviations.

Note that the impulse response function 1(n) mE'.astlI'es the impact of a shock

of size equal to l at time t on Yt+n. Table 4.1 and Figure 5 show that eoonomic

persistenœ is present. The effect of the shock persists for at lœst 12 quarters. For

the ARFIMA(l, 6, 0) model, the variance - and the unœrtainty of drawing conclusions

- grows to n = 40. With more confidence in the results, one can report evidenœ of

short- and intermediate-run persistenœ in total unemployment. The influence of

model averaging is apparent in the impulse responses of the overall mode!. Higher
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variance and Iowa- persistenœ occur relative to the ARFIMA(l, 6,0). For the longer

horizon n = 40, the shock is responsible for a large variance. Table 4.1 and Figure 5

quantify and illustrate the increase in the variance of the effect of the shock at longer

horizons.

In brie!, economic persistenœ holds in the short· and intermediate-run. How.

ever, economic persistence ove!" longer horizons is uncertain due to the large variance

associated with n = 40.
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4.13 Conclusions

This chapter tested for economie persistence in sectora! unemployment using the

Cochrane variance ratio and the modified rescaled. range statistic tests. Both tests

showed significant evidenœ of persistenœ. The Cochrane variance ratio shows evi­

dence of high instability, persistent changes or regime shifts. The modified rescaled

range test statistic aJso provides evidence of persistenœ. We conclude that fluctua­

tions in the sectoral Canadian unemployment series are characterised by persistence.

Conditional on the entertained elass of mcxlels, the prior assumptions and the sam­

pIe data, the first diHerenœ of the log of Canadian unemployment is stationary with

intermediate memory. Economie persistence holds in the short- and intermediate-run.

However, this is uncertain over longer horizons.

In summary, shocks to sectoral and aggregate unemployment have lasting effects.

This chapter was within the univariate ttamework. The questions still to be addressed

are: what types of dynamic relationships exist between aggregate, manufaeturing and

services unemployment? If a shock impinges on one sector, what are its effects on

the other sector, and the aggregate? These questions are addressed in Chapter 5,

which uses a reduced fonn data-driven approach (Le., VAR modelling). Chapter 6

presents two RBC models to explain the sources of shocks and to investigate possible

propagation mechanisms in order to explain how persistenœ could oecur.
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• Table 4.1
~C:""'!"AN~S=IM~SO~UR:="C=E::--------------"

MONTHLY DATA FROM 1976:1 Ta 1998:12

TOTAL UNEMPLOYMENT
UNEMœLOYMŒNT-GOODS
UNEMPLOYMŒNT - MANUFACTURING
UNEMPLOYMŒNT - SERVICES

0980712
0968135
0968140
0968141

•

Label
Title

Subtitle

Factor
Unit
Source
Upclate
Period
Frequency

Label
Title

Subtitle

Factor
Unit
Source
Upclate
Period
Frequency

: D980712 (UPDATED to 2000)
: CDA LF CHARACTERISnCS MONTID..y SA 1UNEMPLOYMENT AGE 15+ SA
CDA

: CANADA, LABOUR FORCE CHARACTERISTICS, MONTHLy FROM JAN
1976, SEASONALLY ADJUSTED.INCLUDES LFCIfARACTERISTICS BY
AGE" SEX; LABOUR fORCE, UNEMPLOYMENT" UNEMPLOYMENT RATE
BY INDUSTRV; EMPLOYMENT BY INDUSTRY, OCCUPATION" eLASS OF
WORKER; HOURS Of WORK SY INDUSTRY.

:THOUSAND
: PERSaNS
: SOOS 3701 STe (71-001)
: II April, 2000
: January 1976 - March 2000
: monthly

: 0968135 (UPDATED ta 2000)
: CDA LF CHARACTERJSTICS MONTHLy SA / UNEMPLOYMENT
GOOOS-PRODUCING SECTOR SA eDA

: CANADA, LABOUR fORCE CHARACTERISTICS, MONTI«.y FROM JAN
1976, SEASONALLy ADJUSTED. INCLUDES LF CHARACTERISTICS SV
AGE" SEX; LABOUR FORCE, UNEMPLOYMENT" UNEMPLOYMENT RATE
BV INDUSTRY; EMPLOYMENT BY INDUSTRY, OCCUPATIaN" CLASS Of
WORKER; HOURS OF WORK SY INDUSTRY.

:THOUSAND
: PERSONS
: SOOS 3701 STe (71-001)
: Il April, 2000
: January 1987 - March 2000
: monthly



• Label
Title

Subtitle

Factor
Unit
Soun:e
Update
Period
Frequency

Label
Tille

Subtitle

Factor
Unit
Source
Update
Period
Frequency
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: 0968140 (UPDATED to 2000)
: CDA LF CHARACTERlSnCS MONTHLy SA 1UNEMPLOYMENT
MANUFACTURING SA CDA

: CANADA, LABOUR FORCE CHARACTERlSnCS, MONTHLy FROM JAN
1976, SEASONALLY ADJUSTED. INCLUDES LF CHARACTERISnCS sy
AGE.t SEX; LABOUR FORCE, UNEMPLOYMENT" UNEMPLOYMENT RATE
BY INDUSTRY; EMPLOYMENT BY INDUSTRY. OCCUPATION" CLASS OF
WORIŒR; HOURS Of WORK SY INDUSTRY.

:THOUSAND
: PERSONS
: SDDS 3701 STC (71-00I)
: Il April,2ooo
: January 1987 • March 2000
: monthly

: 0968141 (UPDATED tG 2000)
:CDA LFCHARACTERISnCS MONTHLYSA/UNEMPLOYMENT
SERVICES-PROOUCING SECTOR SA COA

: CANADA, LABOUR FORCE CHARACTERISnCS, MONna.y FROM JAN
1976, SEASONALLy ADJUSTEO. INCLUDES LF CHARACTERISTICS BY
AGE cl: SEX; LABOUR fORCE, UNEMPLOYMENT" UNEMPLOYMENT RATE
BY rNDUSTRY; EMPLOYMENT 8Y INDUSTRY, OCCUPATION & CLASS OF
WORIŒR; HOURS OF WORK BY INDUSTRY.

:THOUSAND
:PERSONS
: SOOS 3701 STC (71-001)
: Il April, 2000
: January 1987 • March 2000
: monthly

Monthly Unemployment Rate Data used in Figures 4.1 and 4.2.

•

Total Unemployment Rate
Goods Sector Unemployment Rate
Primary Unemployment Rate
Agriculture Unemployment Rate
Manufacturing Sector Unemployment Rate
Services Sector Unemployment Rate

0980745
D980766
0980767
D980768
D980770
0980772
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(M) denotes MONTHLy
(Q) denotes QUARTERLy
(A) denotes ANNUAL

Table 4.2

DESCRIPTIVE STATISnCS FOR CANADIAN
UNEMPLOYMENT by INDUSTRY • HP-FILTERED

ANNUAL
Series Obs MEAN St-Dev MIN MAX
Total UE (A) 23 0.0000 0.1487 -0.20S0 0.2927
UEGOODS (A) 23 0.0000 0.1609 -0.1984 0.3719
UE MANUF. (A) 23 0.0000 0.1680 -0.2097 0.4673
UE SERVICE (A) 23 0.0000 0.1317 -0.2170 0.1985

QUARTERLY
Total UE (Q) 92 0.0000 0.0934 -0.2085 0.2399
UEGOODS (Q) 92 0.0000 0.1110 -0.2113 0.3813
UE MANUF. (Q) 92 0.0000 0.1235 -0.2341 0.4230
UE SERVICE (Q) 92 0.0000 0.0792 -0.1869 0.1992

MONTHLY
Total UE CM) 276 0.0000 0.0364 -0.1624 0.1243
UEGOODS (M) 276 0.0000 0.0585 -0.2377 0.2320
UE MANUF. CM) 276 0.0000 0.0751 -0.2306 0.2299
UE SERVICE (M) 276 0.0000 0.0353 -0.1297 0.1042

156
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CORRELATION MATRIX - HP FILTERED DATA

157

UE MANUF. (M) UE SERVICE (M)

•

Total UE (M)
UEGOODS (M)
UE MANUF. (M)
UE SERVICE (M)

Total UE (M)
1.000000
0.836181
0.717364
0.853827

UEGOODS (M)

1.000000
0.877487
0.619120

1.000000
0.540794 1.000000
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Table 4.4

AUTOCORRELATION ofCANADIAN UNEMPLOYMENT
HP - FILTERED DATA

K=1 K=2 K=3 K=4 K=5 K=6
Total UE (M) 0.7552 0.5894 0.4882 0.3193 0.1773 0.0696
UEGOODS (M) 0.7817 0.6020 0.4555 0.3154 0.1683 0.0327
UE MANUf. (M) 0.7319 0.5725 0.4449 0.3255 0.1811 0.0835
UE SERVICE (M) 0.6274 0.4275 0.3239 0.2245 0.1527 0.0813

Total UE(Q) 0.9105 0.7436 0.5469 0.3421 0.1691 0.0323
UEGOODS (Q) 0.8574 0.6195 0.3595 0.1324 0.0077 -0.0579
UE MANUF. (Q) 0.8118 0.5464 0.2490 -0.0181 -0.1383 -0.1455
UE SERVICE (Q) 0.8874 0.7170 0.5105 0.2961 0.1285 -0.0161

Total UE (A) 0.6342 0.1411 -0.2573 -0.4802 -0.5080 -0.4618
UEOOODS (A) 0.5600 0.1308 -0.2492 -0.4255 -0.4267 -0.4039
UE MANUF. (A) 0.4857 0.1471 -0.2090 -0.4413 -0.3700 -0.3801
UE SERVICE (A) 0.6225 0.1668 -0.1508 -0.3129 -0.3636 -0.3483

158
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• Table 4.5

CROSS CORRELATION between CANADIAN UNEMP by INDUSTRY
AT DIFFERENT LAOS • HP FILTERED

TOTAL UNEMPLOYMET
T+3 T+2 T+l T T-I T-2 T-3

UEGOODS 0.3327 0.4657 0.6424 0.8362 0.7123 0.6067 0.5512
UEMANUF 0.3083 0.4166 0.5676 0.7174 0.6234 0.5564 0.5392
DE SERVICES 0.3684 0.4631 0.6042 0.8538 0.6665 0.5117 0.4446

UNEMPLOYMENT GOODS
T+3 T+2 T+I T T-I T-2 T-3

UEMANUF 0.3989 0.5347 0.6994 0.8775 0.7085 0.5728 0.4748
UE SERVICES 0.4505 0.4972 0.5496 0.6191 0.5312 0.399 0.3287

UNEMPLOYMENT SERVICES
T+3 T+2 T+1 T T-1 T-2 T-3

UEMANUF 0.4516 0.4743 0.4976 0.5408 0.5019 0.3901 0.3524

•
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Unemployment Rates
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•
V(k) for Total Unemployment - MANUF. Sector
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• •V(k) for Total Unemployment - SERVICE Sector
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Chapter 5

Vector Auto-Regression (VAR)

and Sectoral Canadian Data

This chapter investigates the effects of a sectoral shock on Canadian employment

using two approaches: a Classical and a Bayesian Vector Auto-Regressive (VAR).

5.1 Introduction

VAR models are dynamic models which postulate that all the variables in the system

of equatioDS are endogenous. Formally, the VAR approach writes each variable as a

linear function of its own lagged values and the lagged values of all the other variables

in the system, leading to a linear system of equations. The rationale for focusing on

linear systems is that, since monthly and quarterly macroeconomic time series are

usually weil approximated by linear processes (see Brock and Sayers (1988)), non­

linearity in the conditiona1 mean is of marginal interest unless one examines higher-

178
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fcequency data.

Proposed as an alternative to large structural models,l VAR models are useful

because they a.nswer the following questions. How does one assess. the in-sample

additional predictive content of one variable for another? How does one assess the in­

sample effect of a typieal shock on the rest of the system by using impulse response

funetions and variance decompositions? What are the effects of policy changes on

out-of-sample unconditional and conditional forecasts? Here, the purpose of VAR

modeling is to learn about the historical dynamics of the behaviour of sectoral 00­

employment, specifically the interaction between total employment, manufacturing

employment and services employment. Another important issue is to investigate the

presence of 'economic persistence'. Does a sectoral reallocation shock generate 'eco­

nomie persistence' in total employment?

In this chapter, we estimate and report the results for two bivariate Classical VAR

models and three (two bivariate and one trivariate) Bayesian VAR models. Each

Classical VAR is identified using the Blanchard-Quah and the Bernanke-Sims identi­

fication approaches. The Blanchard-Quah identification used in this thesis is adopted

from that in Blanchard and Quah (1989). It is slightly different to the one proposed

in Blanchard and Quah (1989) and we will refer to it as the B-Q identification. The

Bayesian VAR models are identified with the Bemanke-Sims method.

The two Classical VAR models are as follows. Madel C-I is a bivariate VAR be-

tween the growth rate of total employment and a measure of manufacturing sectoral

reallocation. Model C-II is a bivariate VAR between the growth rate of total em­

l See section 5.4.4 for details.
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ployment and a measure of services sectoral reallocation. For the identifying schemes

used here, a trivariate VAR is arduous in terms of the economic restrictions to impose

on the system. The 'Ili-variate VAR is estimated using the Bayesian approach with

different variables.

The three Bayesian VAR models are as follows. ~Iodel B-I is a bivariate VAR

between total employment and manufacturing employment. Model B-II is a bivariate

VAR between total employment and services employment. Finally, model T-III is a

trivariate V...t\R that encompass all of the three employment series. For sensitivity pur­

poses, each model is run under five different parameter specifications for a total of 15

sub-models. Note that, for model B-I, total employment is defined as all employment

minus manufacturing employment. For model B-II, total employment is defined as

all employment minus services employment. In other words, model B-I (B-II) inves­

tigates the dynamic relationship between manufacturing (services) employment and

the rest of employment. For model T-III, total employment is defined as all emplay­

ment minus bath manufacturing and services employment. Nlodel T-III examines the

dynamic behaviour between manufacturing employment, services employment, and

the rest of employment.

The purpose of this chapter is to understand and ta report Canadian employ­

ment dynamics at the sectorallevel. AIl results are conditional on the model specifies

(i.e., assumptions and identification method). Notably, the aim is to produce data

driven impulse responses for sectoral employment and most importantly to investigate

the evidence (if any) for economic persistence. For the Bayesian VAR models, the

'best' model- among many specifications - based on the Theil U statistic criterion for
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in-sample forecasts is cbosen. Once the best model is chœen, its forecast errar decom-

position/impulse respooses are compared with the ones reported from the Classical

VAR models and the RBC modeIs (Chapter 6) and a final conclusion is drawn.

5.2 Mathematical derivations

This section presents the mathematical derivation2 of VAR models. It draws heavily

on Canova's (1995, pp. 74-79) notation.

The building black in the analysis of VAR is the Wold theorem. Using properties of

Hilbert spaces, one cao decompose any stochastic vector process of dimension m into

the SUIn of two orthogonal components: one which is linearly predictable based on the

information available at time t - 1 while the other is linearly unpredictable. For this

purpose, let çt he the information set available at time t and note that et = Çt-l e (e7

where et-l is the information set available at time t - l, Ce is the space spanned by

new information, and E9 indicates a direct space sumo Because Çt-l is orthogonal ta

(t, we can \\Tite

(5.1)

•

where Pis the linear projection operator and Ye has a zero mean. Note that the

equivalence between the first two expressions cornes from the fact that Ye is adapted ta

çe. Since, at each t, {t can he decomposed into the SUIn of twa orthogonal components,

one containing information available one period earlier and the other containing new

2 For details on the mathematica1 derivations, see Rozanov(1967), Brockwell and Davis(l989) and
Quah(1993).
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• information, equation (5.1) can be solved backward to obtaïn

oc
Yc = P [Yt 1e-oc] +L P [Yt 1(t-i]

j=O
(~.2)

where the first term on the right hand side of equation (5.2) is the linearly de-

terministic part of Yc (the part that is predictable given the infinite past, where

e-oc = n~Oet-i) and the second term is the linearly regular part. Since P is a

linear operator, one can write P [Yt 1(c-i] = BiCec_j (\:Ij), where ee-i is defined by

ee~i == Yt-j - Pt-j [Yt-i 1et-i-tl· The innovation sequence {et}:o is a white noise

process (Le., E(éc) =0 and E(ecer_~) = ~e if s =0 and zero otherwise) and the coef-

ficients of the projection satisfy L:~o BJe < 00 and Bjo = l (Le., square summable).

Usually one assumes that Yc is a zero mean process so that the linearly deter-

ministic component of equation (5.2) is omitted. If Yt is assumed to be covariance

stationary (Le., E(ycY'f-,) depends on s but not on t) then the projections in equation

(5.2) are independent of t. However, equation (5.2) holds regardless of the stationarity

assumption. In general, most economic time series need a transformation to meet the

covariance stationarity requirement (for example, if a unit root is present, then take

the first difference). For a covariance stationary proces5, it is customary ta rewrite

equation (5.2) in an infinite moving average (oo-~IA) fonn as

yc = DUJc + B(L)êt (5.3)

where Wc is a vector including aIl deterministic components of the process, Disa

vector of coefficients, Wt E e-cxp B(L) =1+ B1L + B2L2 + ..., with Let =et-l, and

each Bi matrix j = 1,2, ...00 is of dimension m x m.
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Two issues come ta mind regarding equation (5.3). The first is the issue of fun­

damentalness and the second is the issue of renormalization. The former issue is

concemed with the possibility ofrepresenting y byequation (5.3). The latter focuses

on the properties of et. However, a VAR must be identified before one moves to draw

conclusions from its structural fonn. Identification of a VAR is analogous ta the prc:r

cedure of recovering the structural parameters from a reduced fonn in a simultaneous

equations system. Structural innovations can be recovered using three techniques:

first, a semi-automatic (SA) normalization scheme which imposes a recursive strùc­

ture on the contemporaneous innovations (a Wold Causal Chain); second, by using

economic restrictions such as homogeneity on real variables in the long-run; third,

by imposing information delay restrictions on the long-run (cointegration) and short­

run system dynamic behaviour. The first method involves the use of the Cholesky

decomposition of the variance.covariance matrix of the errors ~ (described later). In

this chapter~ l will address the Blanchard-Quah and the Bernanke-Sims identification

approaches based on economic restrictions.

In summary, ta compute the impulse responses and the variance decomposition,

one needs to write the VAR as an oo-MA. A covariance statianary VAR can be written

in the oo-~IA farm (issue of fundamentalness). Once inverted, the errors of the 00­

~IA are not orthogonal (issue of renormalization). The advantage of working with

orthogonalized errors is the usefulness of exarnjning the effects of a shock ta a single

variable in isolation.
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5.2.1 Issue of fundamentalness

For any non-singular matrix H (L) such that H (z) bas no pales (singularities) for

1z 1< 1 and satisfying H(L)1fT(L- l ) = l, where ](l'(L-l) defines the transpose (and

possibly complex conjugate) of H(L-l), there exists an infinite MA representation

for Yt of the fonn:

(5.4)

where B(L) == B(L)H(L) and Et =}(T(L-l)et. Note that E(ëtl;) = E(êeê[). There-

fore, the two representations (systems (5.3) and (5.4» are equivalent fram the point

of view of the autocovariance function of Yt. H (L) are labelled Blaschke factors and

are of the form:

R

H(L) = II k,.Q(Àr , L)
r=l

(5.5)

(5.6)

•

where Àr are the roots of B(L), 1Àr 1$ 1, k,.k; = l, and, for each T, Q(Àr , L) is

given by!

[

1 0 0 ]
Q(À

r
, l) = ... ·ï-.\.. ...

o l-.\;lL 0
o 0 1

For different sets of coefficients in B (L), one can produce a different MA presentation.

Among the class of equivalent MA representations for Yt, it is typical to consider

the one which is 'fundamental', Le., the one for which 1 BoEtêtê;Bo 1 is maximal.

Fundamental representations, also called Wold representations, are identified by the

requirement that the completion of the space spanned by linear combinations of the

Yt 's has the same amount of information as the completion of the space spanned by

linear combinatioDS of êt 's. Let system (5.3) be such a representation.
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5.2.2 Issue of renormalization

This issue is concerned with renormalizing the system to obtain errors that are con-

temporaneously uncorrelated. Since the covariance matrix of the €'s is - in general

• non-diagonal (i.e., correlated}, it is useful to transfonn system (5.3) to have inno-

vations which are contemporaneously uncorrelated. This representation is obtained

by renormalizing the system and is equivalent to the system from the point of view

of the autocovariance function of Yt. To obtain sucb a representation, let ~ be the

covariance matrix of €t in system (5.3) and decompose ~ such that ~ =ZVzr, where

V is a diagonal matrix.3 Therefore the system

(5.7)

is equivalent to system (5.3) for B(L) =B(L)Z and ~t == Z-lét and V =E(~ti[).

When the polynomial B(z) has all its roots greater than one in modulus (this is

ensured by the restrictive condition that {Bi};o is square summable," i.e., L~o BI <

00), it is învertible and there exists an autoregressive (AR) representation which

expresses ée as a !inear combination of current and past values of Yt as in,

(5.8)

•

where A(Lt =(B(L»-l, and F =(B(L»-lD and A(ot =J. ~Ioving lagged terms

in y's on the right hand side and grouping, we obtain a vector autoregressive (VAR)

3 Note that V == Z-l~ (Z-~r .
C Absolute summability (2:;=0 1Bj 1< (0) is a slightly stronger condition than square summabil-
ity (I:~oBi < (0). The usefulness of these coefficients' restrictions is the following. A square
summa~lesequence of coefficients impUes that the MA presentation of the process generates a mean
square convergent random variable. Note that absolute summability implies square summability,
but the reverse is Dot true. Absolute summability impUes also that the process is ergodic for the
mean. Ergodicity for the mean is satisfied whenever the time average y of a covariance stationary
time series 1/c converges in probability ta E(yt) as t -+ 00. See Hamilton (1994, pp. 46-47) for the
definition.
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representation

Yt = F(L)Wt + A(L)Ye-l + êt (5.9)

where A(L) == [L-lA(L)eJ+ and the notation [.]+ indicates the annihiJator operator

(e.g., Sargent (1987, p. 452»). In general, the polynomials F(L) and A(L) will have

finite length for any reasonable specification of the polynomial B (L).

5.3 First-Order Bivariate VAR

This section presents the derivation of a first-order bivariate VAR. The purpose is to

higlilight the dynamics and the identification issue which is readily translated into

higher arder VAR models (see Enders (1995, p. 294)). For example, we show the nec­

essary derivations for estimating the VAR using the Blanchard-Quah identification.

This section explains the identification schemes used in this thesis within a first arder

context. Section 5.4 builds on the identification approaches presented here, using

higher order lags.

Let Yu and Y2t represent the two variables under consideration in the structural

VAR. The 'fust-order' label refers to the maximum number of lags present in the

VAR. Formally, the two structural (primitive) equations are written as,

•

Yu - b10 - b12Y2t + "YllYU-l + '"Y12Y2t-1 + é Illl

Y2t - ~o - ~lY2t + "Y21YU-l + 122Y2t-l + ê nt

(5.10)

(5.11)
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• where, by assumption,5

[::~]-([:],[~~, ~:]) (5.12)

Rewrite the system in matrix format as,

[ 1 bU] [ Yu ] = [ b10 ] + [ ~u ~12] [YU-l ] + [ e~.. ] (5.13)

~l 1 Y2c ~o -r21 1'22 Y2C-l €nc

or in compact fonn as,

B . Yc = f 0 + fi· YC-l + Et (5.14)

Now this system is estimated using a reduced form VAR, such as,

Yt = B-1 • f o+ B- l
• fi . Yt-l + B-1 • Et (5.15)

[ ~ ] [au a12] [ elt ] =B-l':tLet Ao = == B-I·fo , Al = =B-I·r l , and et =
al a21 a22 e2t

al
blO + b12b2Q

(5.16)-
1 - b12b21

au
"'Yu (5.17)- 1 - b12b21

a12
b12"'Y22 (5.18)-

1- b12~1

b2Q + ~lblO
(5.19)a2 - 1 - b12b21

a21
~1"'Y11 (5.20)-

1 - b12~1

a22
"'Y22 (5.21)- 1 - b12b21

Rewrite the reduced form system in a compact from, such as,

• Yt = Ao + Al . Yt-l + et (5.22)

5 See the discussion after equation (5.56).
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[eu]The are serially uncorrelated and each is with a constant variance. The

e2t

re1ationship between the residuals of the reduced form and the residuals from the

structural form is summarized as follows,

eu
ê yU - b12ê tl2c- 1- b12621

e2t
ê snt - ~1êYlt-

1 - b12b21

Therefore, E(eu) = 0 and E(e2C) = o. Also,

(5.23)

(5.24)

_ E [(EyU - b12ê snt ) (ê!l1C-i - b12ê Y2t_,)] = 0
(1 - b12b2d2

_ E [(êY2c - b21ê y1t ) (êWt-' - b21ê y1C_.)] = 0
(1- b12b2d2

') b2 2

E(e~c)
U;u + 120'sne- (1- b12~d2

2 b2 2

E(eic)
U!nt + 210'Yu- (1- b12~d2

(i i= 0) (5.25a)

(i :F 0) (5.25b)

(5.26a)

(5.26b)

Equations (5.25) show that the erroIS are serially uncorre1ated.6 The two equations

(5.26) imply that the variances of the reduced fonn residuals are tim~independent.

The contemporaneous relationship between the reduced farm residuals is,

(b210';1& + b12u~J

(1- b12~d2
(5.27)

•
Let D denote the variance-covariance matrix of the reduced form residuals.

D =[01 U12]
0'21 O'~

6 The equations are showing the autocovanances.

(5.28)
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Due ta the feedback inherent in the system, the structural system of the equations

can not be estimated directIy. The resson is that Yu is correlated with ê!l21 and Y2t

is correlated with E1I1c • Therefore, standard estimation techniques will yie!d inefficient

parameters. At best, one can estimate 9 parameters from the reduced fonn VAR.

that there are 10 structural form parameters and they are non-linear functions of the

and O'J/2t'

The issue of identification is whether one can recover all the information present

in the structural system. In our setup, if there are no restrictions on the structural

parameters, then the system is underidentified. H there is only 1 restriction, then

the system is just identified. Finally, if there are more than one restrictions then the

system is overidentified.

5.3.1 Cholesky Identification

One way to identify the mode! is to use the Cholesky identification which relies on

setting b21 = O. This implies that Yu bas no contemporaneous effect on Y2t. The

structural shocks ê llu and Elne affect Yltt but êJl2t affects only Y2t. ê lll1 bas no direct

effect on Y2t. tille has an indirect effect on Y2t in the sense that within the second

equation, the lagged values of Yu affect the contemporaneous value of Y2t. The key

issue of Cholesky is the imposed asymmetry on the structural system, which implies

an ordering of the variables. When b21 = 0, it is implied that Y2t is a 'prior'7 ta Yu .

1 In a general, non-Bayesian sense.
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• In this setup,

Var(eu) - 2 62 tr? (5.29)(1vu + 12 Jl2c

Var (e2t) - ~c (5.30)

Cov{eu, e2t) - -b12~& (5.31)

eu = ê 1l1c - b12ê rnc and e2t = êJl2c. The observed residuals from the second equation

are the estimates of the {ê1l'2c} sequence. The observed values for e2c are completely

attributed to 'pure' shocks to the {Y2t} sequence. This decomposition of the model

into a triangular fonn is called the Cholesky decompœition (see Sims (1980)). The

Cholesky decomposition provides a minimal set of assumptions that can be used ta

identify the primitive mode! in the spirit of Sims' argument against the "incredible

identifying restrictions" .

Note that under the assumption that u;u = a~c' the residuals eu = ê Ylt +

p(elt, e2t)ê3l2c and e2t = ê!l2c imply an ordering of the variables. In this identifica-

tian scheme, the importance of ordering depends on the value of p(elt t e2t). As a rule

of thumb (Enders (1995, p. 309», if 1p(eu, e~) I~ 0.2 then ordering is immaterial.

However, if 1p(eu, e2t) 1> 0.2, then ordering is significantly important. In the lat-

ter case, one compares the results of the impulse response functions under different

ordering specifications. H the results are quite different in their implications then

additional investigation into the relationship between the variables in the VAR is

•
necessary.

In this context of a first arder two variables VAR system, the impulse response

function of the reduced form is based on the moving average (co-MA) representation
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• of the system,

[Yu]
Y2t

(5.32)

(5.33)

•

where Cïj(k) denotes the elements of C". Plotting Cï;(k) against k represents the

impulse response function. c;j(O) are the impact multipliers. For example, C12(O) is

the instantaneous impact of a on~unit change in EY:zt on Yu. cn(l) and C12(1) are

the one period responses ta a change in é'Jlu-l and ê 3l2t- 1 , respectively on Yu. The

L~o C12(k) is the cumulated effect after n periods of ê Y2t on Ylt. If one lets n --. oc,

then 2:::0 C12(k) is the long-run multiplier.

\Vhen the number of variables n in the system is higher then 2, it is often not

practical to try n! ordering alternatives. In general, it is rare ta find all variables

with low residual correlations in the system. After aIl, the variables in the VAR

were selected on the basis of a priori comovement. In the case where there are many

variables in the system with high residual correlations, an alternative identification

is recommended. In our case, we will explore both the Blanchard-Quah and the

Bernank~Sims decompositions.
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5.3.2 The Blanchard and Quah Identification

Blanchard and Quah (1989) proposed an identifying assumption based on a long-run

economic description of the VAR system. In this setup, both variables must be in

stationary forme Re-write the system in its infinite Moving Average (oo-MA) notation

as,

oc 00

Yu - E cu(k) EyU_. + E C12(k) Ewl- ar
k=O é=O
oc oc

Y2t = E C21(k) êyU_" + E C22(k) E1'2c_"
é::O é=O

or equivalently in its compact matrix fOnD,

(5.34)

(5.35)

(5.36)

where
[

éUll ] [1 0]" -independent White Noise with ~. = .
"']I2c 0 1

•

Cij(L) are polynomials in the lag operator L such that the individual coefficients of

Cij(L) are denoted by Cij(k). For example,8 the second coefficient of C21 (L) is C21(2).

The coefficients of Cu(L) represent the impulse responses of a ê Yte shock on Yu.

For convenience, the shocks' variances are normalized ta 1. E(êyu , ê Jl2l ) = 0 implies

that bath structural shocks are uncorrelated. The key underlying argument is that

one assumes that ê Yte is the portion of the (economic) shock that does not change

(orthogonal to) in response to a change in ê Jl2c ' and vice versa. Since E{êJllt, êVlC ) = 0,

one interprets ê VJc as a shock (or the portion of a shock) that is unaffected. by a total

8 In general, Cl1 (L) = cu(O) + cl1(l)L + cl1(2)L2 + ...
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employment shock, i.e., 'pure' sectoral shock. For a similar discussion, see Blanchard

and Quah (1989, p. 671).

Since Ye is stationary, neither shock bas a long-run effect on Yt. Also, assuming

that êVl1 bas no effect on the long-run level of Yu amounts to setting E::o Cl2(k) = Q.

In Blanchard and Quah (1989, p. 657), Yu and Y2e referred to the growth rate

of GNP and the unemployment rate, respectively. ê yU and ê Vlc denoted aggregate

demand and aggregate supply shocks, respectively. They assumed that aggregate

demand shocks have no long-run effect on the level of GNP. Formally, they set

E::o cll(k) = O. A similar restriction was used by Schmidt-Grohé (2001, p. 1147) and

by Davis and Haltiwanger (1999, p. 1244) wherein it was labeled as the 'Neutrality

Restriction'.

In our study for the Classical VAR, Ylt and Y2t refer to the following notation:

First Variable:
Total Employment

~Iodel C-I Yu == El\JIP T

~rodel C-II Yu =ElvIP T

Second Variable:
Sector Employment

Y2t =E~IP ~IfT

Y2t = E~IP SfT

•

For our analysis, Yu refers to employment growth. Employment is defined as total

employment. AIso, we estimated the same models (C-I and C-II) using another

definition of total employment, namely wherein total employment is defined as the rest

of employment. The results were similar in terms of ecanomic persistence. However,

the initial effect of a sectoral shock is different. Ta investigate the Blanchard-Quah

identification scheme, we were inclined ta use total employment rather than the rest

of employment for the long-run restriction to he meaningful. Y2t refer to the log of
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the square of the growth of employment share in a given sector.

Formally, Y2t = m[(se - St_l)/SC_l]2 = 2ln [1 Sc - se-d/se-l1, where St denotes the

share of sectoral employment. We consider 112& as a proxy for employment sectoral

real1ocation. As labour is rea1located acrœs sectors, a decrease in the share of employ­

ment in one sector implies an increase in the share of employment of other sectors.

Y2t is computed as 2ln[lst - sC-11/se-l]. We bound ISt - St-li from below by 10-8

to avoid instances of constant employment share. This funetional form is arbitrary.

We tried diff'erent variables transformation and similar results were concluded, e.g.,

Y2t = ln[(St - st-d2/st_l], Y2t = (St - St-d/St-l and Y2t = St·

For all Classical VAR models, total employment (Yu =El\IP T) refers to the

growth rate of total employment computed as the difference in logs. In mode! C-I,

Y2t =E~IP ~I/T, refers to the square of the grov.,-th rate of the fraction of manufaetur­

ing employment relative to total emplayment. Y2t is meant ta capture manufacturing

reallocation shocks. In model C-II, Y2t =E~IP S/T, refers to the square of the

growth rate of the fraction of service employment relative ta total employment. Here,

Y2t is meant to capture service reallocation shocks. Note that Y2t treats percentage

decreases in the sector's employment share symmetrically with increases. This is a

reasonable first approximation. For example, Campbell and Fisher (2000, p. 1329)

argued that \ISing a symmetric per-job adjustment costs, yields reasonable results in

their simulations. In Chapter 6, we symmetrically treat increases and decreases in

the sector's share of employment.

AIl series are the annualized growth rates of quarterly data. lvIodel C-I refers to

a bivariate VAR in EMP T and E:MP MIT. Model e-U refers to a bivariate VAR in
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EMP T and ElvIP SfT.

To explain the usefulness of the square term, note the bivariate first-order VAR

outlined in section 5.3.

Yu - 610 - 612Y2t + "YUYU-l + "Y12Y2t-1 + é'le

Y2t - ~o - ~lY2t + "Y21YU-l + "Y22Y2t-1 + éWi

(5.37)

(5.38)

Reallocation of labour in response to a 'pure' sectoraI shock OCCUIS whenever man­

ufacturing's share in total employment either increases or decreases. By squaring

the growth rate of Sc, it is implicitly assumed (at least as an approximation) that

increases and decreases in St have symmetric effects on employment. That is, the

adjustment cost of moving employment into manufacturing is roughly the same as

the adjustment cast of moving labour out of manufacturing and into another sector.

é tllt and ê!l2t denote 'aggregate' and 'pure' sectoraI shocks, respectively. E::o C12(k) =

Ois equivalent to assuming that 'pure' sectoraIshocks have no long-run effect on the

level of total employment. A 'pure' sectoral shock - when combined with labour 00­

justment costs in terms of moving workers across sectors - redistributes employment

across SectOIS and does Dot affect the total employment level in the long-rune

Since the total employment and the 'pure' sectoral shocks are not observed, the

issue is to recover them from the VAR estimation. The reduced form of the VAR is

Yc = A(L)Yt-l + et (5.39)

•
where A(L) is a 2x2 matrix with e1ements equal to the polynomials Aij(L) with

coefficients denoted by Cli;(k). eu is the one-step ahead forecast error for Ylt, Le.,
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eu = Yu -Et-Il/u . From the oo-MA representation, the one-step ahead forecast error

(5.40)

and similarly for Y2t. In compact form,

(5.41)

H the coefficients Cï;(O) were known, it would be possible to recover ê yU and ê Y2t from

the regression residuals eu and e2t.

Blanchard and Quah (1989) showed that using (5.41) and the long-run restriction

(2:::0 CIL(k)eru- t = 0), there are four restrictions to be used to exactly identify the

four Ci; (0) coefficients. The four restrictions are,

Var(ed - Cu (0)2 + CI2(0)2

Var(e2) - C21(Q)2 + C22(Q)2

E(ele2) = Cu (O)C21 (0) + C12 (0)C22(Q)
ac

E cll(k)e~u_. - 0
k=O

(5.42a)

(5.42b)

(5.42c)

(5.42d)

The system (5.42) is four equations in four Ct; (0) unknowns. Therefore, one can

recover the coefficients and exactly identify the VAR.

For our analysis here, the fourth restriction is replaced by L::O C12(k)é1/2t_t = o.

To transform this restriction into its VAR representation, the following algebraic

•
derivation must be carried. First, rewrite the VAR as,

Yt. = A(L)LYt + et (5.43)
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Next, some transformations are neœssary,

(1 - A(L)L] Yt = et

Ye - [1 - A(L)L]-l et

[

1 - A22(L)L A12(L)L ]

[
yu] = ~A_2_1(L~)L_~1-~A_ll_(L_)L-=- [eu]

11- A(L)L 1
Y2t e2t

[

(1 - E::o a22(k)Lk+l) (cU(O)€YIC + C12(O)€1I2t) ]

_ + (L~o a12(k)Lk+l) (~21(O)eyU + c22(O)ell2c )

Yu - 11 - A(L)L 1

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

•

Making the assumption that ell2t has no long-run effect on the log level of employment

implies,

Setting the long-run restriction E::O C12(k)€Y2c_t equals 0, yields

(5.51)
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The 1ast equation presents the fourth restriction needed for our identification. Equa-

tions (5.42a), (5.42b), (5.42c) and (5.51) are four equations in four unknowns used to

identify the coefficients cu(O), C12(O), C21(O) and C22(O).

The method proceeds by estimating the reduced VAR, then computing the variance-

covariance matrix of the residuals. Once computed, one calculates the sums E:=o a22(k)

and E::o a12(k) then proceed to compute the Cij(O) coefficients. Using these coeffi-

cients and the VAR residuaIs (eu, e2t), one can identify the entire sequences of é'1IU-A:

and êY:Zt-A:'

(5.52)

•

Finally, proceed with impulse response function analysis. For the Bayesian ap-

proach to the Blanchard-Quah identification see Koop (1992, p. 409). Applying

the Blanchard-Quah technique ta the Bayesian VAR models proposed here is beyond

the scope of my iocus in this thesis. In my view, the Classical approach provides

fertile ground for imposing economic restrictions on the VAR system. As proposed in

section 5.4.4, the Bayesian VAR is used to highlight empirical regularities. Our aim

is ta understand the dynamics of sectoral reallocation in the Canadian data.

5.4 Structural / Reduceà Form Models and Iden-

tification

Based on information criteria for lag selection, a first arder VAR is rarely chosen

for estimation. This section expands the first-order bivariate VAR system presented
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in section 5.3 ta a higher arder bivariate VAR. Using matrix notation, this section

presents and explains the restrictions imposed on the variance-covariance matrix of

the reduced fonn estimates of the residuals under difJerent identification schemeS in

higher order VAR. Let the structural (primitive) VAR he,

BYe = ra + r1Ye-l + r 2Ye-2 + ... + rpYt-p + êt

and the reduced Corm VAR he,

Ye = Ac + A1Ye-l + A2Yt-2 + ... + ApYt-p + ee

with

(5.53)

(5.54)

where

êt "J (O,~) and

and

et "J (0, D) (5.55)

(5.56)

•

The assumption that the covariance of structural shocks is zero, ïmplies that we are

treating these shocks as 'pure' structural shocks (Enders (1995, p. 325». We assume

that the structural shocks are uncorrelated at allleads and lags. The same assumption

was made by Blanchard and Quah (1989, p. 659). Similarly, the assumption that the

two disturbances are uncorrelated does not restrict the channels through which 'pure'

structural shocks affect Yt. We refer to 'pure sectoral' shock as the component of the

shock that is orthogonal to the 'pure aggregate' shock. This is similar to Schmidt-

Grohé (2001, p. 1147). This interpretation is reasonable and useful in understanding

the dynamics of sectoral reallocation shocks.



•
200

Starting with the reduced fonn VAR , the innovations of the reduced form can be

written in terms of uncorrelated structural error terms,

(5.57)

•

where G is a matrix with zeros on the diagonal. Let B = 1- G and A = B-l.

There!ore, the re1ationship between D and ~ can he presented as follows. ~ = BDBT

5.4.1 The Cholesky approach

Using the Cholesky decomposition of symmetric positive semi-definite matrices, one

decoIJ1Poses D into ppT, where P is a lower triangular matrix. P = B-lytl/2.

There!ore, D =B-I~ (B-I)T and B = (p (~1/2rl) -1.

5.4.' The Blanchard-Quah approach

One decomposes D into ppT, where P = C(I)-IG. Here, C(l) is the long-run mul-

tiplier sum of the oo-~IA coefficients. G is the lower Cholesky decomposition of

C(I)O(C(I))T. In this setup, B = p-l and ~ is the identity matrix. Here, we as-

sume that the 'pure' sectoral shock has no long-run effect on the level of the aggregate

variable. A 'pure' sectoral shock bas short-run effects on the level of employment be-

cause of the adjustment costs of moving labour across sectors, but the level of the

long-rtJIl employment is unaffected.
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5.4.3 The Bernanke-Sims approach

One decomposes D into B-l~ (B-1)T . In this setup, one chooses - based on economic

theory - ta set certain non-diagonal e1ements of B equal to zero. For example, if one

assumes that no contemporaneous relationship between the two variables exists, then

B collapses ta the identity matrix. In this case, one expects the relationship between

the two variables to take effect with a delay of at least one periode For sensitivity

analysis regarding the identification scheme, we assume that a 'pure' sectoral shock

do"es not effect the 'aggregate' variable instantaneously. \Ve aIso assume that an

'aggregate' shock does not effect the 'sectoral' variable instantaneously and we test

for over-identification. \Ve adopt the Bernanke.Sims identification as an approach ta

emphasis sensitivity analysis regarding the Blanchard-Quah identification.

5.4.4 Identification and Reality

Amadei is identifiable if aIl its possible structures are identifiable, i.e., each structure

is associated with a different distribution. A simple dynamic multi-equation provides

a statistical distribution for the variables involved. The problem is that many (un­

known) mode1s could have been the true data generating process of these variables

of interest. To understand the purpose and the development of identification, we

present the traditional 'Cowles Commission', the LSE and the VAR approaches to

identification.

The traditional approach ta macroecanometric modelling - referred ta as the

'Cowles Commission' approach - aims at the quantitative evaluation of the impact
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of changes in the exogenous variables in the system on the endogenous ones. Policy­

controlled variables are considered as exogenous while final goals variables are por­

trayed as endogenous. The palicy experiment consists of assessing the impact on

final goal variables by modifying the exogenous ones. Identification in these models

is achieved by imposing coefficient restrictions (e.g., zero value for the coefficient)

on the structural equation to ensure that the rank condition is satisfied. In this ap­

proach, the inclusion of exogenous variables increases the chances for the model ta

be identified. Three stages are upheld in this tradition: 1) specification and iden­

tification of the theoretical model, 2) estimation of the relevant parameters and 3)

simulation of the effects of exogenous variables on the final goal ones. Note that the

identified structure is estimated without testing if the implied probability structure

of the model properly describe the data.

The traditional approach broke down in the 1970s after the well-known critiques

of Lucas (1976) and Sims (1980). Lucas' critique emphasized that the coefficients

of the structural equations that describe the impact of a poliey, depend on the pal­

icy regime under which they were estimated. No model estimated under a speeifie

regime ean he used to assess a dift'erent policy regime. Given that many parameters

are expectations-dependent, it is natura! that a model based. on optimizing agents is a

better framework for policy evaluation. Note that deep parameters (i.e., expectations­

independent parameters such as taste and technology) are estimated by traditional

econometric methods. Lucas' critique pointed out that the traditional 'Cowles Com­

mission' approach do not take explicit account for expectations, so that these models

are unstable across different policy regimes.
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Sims' critique paralleled that of Lucas's. Sims focused on the ad hoc exogeneity of

some variables in the traditional model to achieve identification. In a forward-Iooking

world, agents' behaviour depends on the solution of an intertemporal optimization

problem and therefore, no variable is exogenous. By incorrectly assuming exogeneity,

these models induce spurious effects.

The LSE approach was developed by Denis Sargan9 and advocated by bis stu-

dents,lO e.g., David Hendry (1995). Ba.sed on the theory of reduction (Le., simplifi-

cation process), the LSE approach evolved to correct the fallures of the traditional

approach. It interprets the econometric model as a simplified representation of the

unobserved data generating process (DGP). For the representation ta be 'congruentll

, the information lost in the specification process must be irrelevant to the problem

at hand, e.g., omission of relevant variables. One can test the model adequacy by

analysing the reduced fonn. The approach here reverses the one used in the tradi-

tiona1 case (see Spanos (1990, p. 90)). In the traditional case, the statistical baseline

model describes structural relationships and the reduced fonn is then derived. Here,

one starts by specifying and identifying a general reduced fonn mode!. The reduced

fonn mode! should be sufficiently general ta produce a congruent representation of

the underlying unknown DGP. The LSE approach emphasizes the lack of validation of

the reduced fonn that existed within the traditional approach. This lack of validation

is interpreted as a lack of credibility in the structural model estimates. The system is

9 Denis Sargan (1924-1996) was a leading British econometrician. He played a central role in es­
tablishing a basis for modem time series econometrics. For a biographica1 history of Denis Sargan's
career and review of his contribution to econometrics, see Ericsson, Maasoumi and ~lizon (2001).
IOFor the list of Sargan's students, see Ericsson, Maasoumi and Mizon (2001, Table 2, p. 20).
Il (Congruent' is used here as in Henciry's terminology to mean (vaUd' .
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validated by applying an extensive number of tests. The absence of mis-specification

symptoms are viewed as sucœss, e.g., in rejecting residuals non-normality and aut~

correlation. A series of diagnostic tests are undertaken to verify the congruency of

the baseline mode!. The general criterion for assessment is that congruent models

should feature true random residuals. Any departure from this criterion is viewed as

a sign of ~specification.Once the baseline is validated, one reduces the dimension­

ality of the reduced fonn by eliminating the equations for those variables for which

the null hypothesis of exogeneity is not rejected. Another stage in the simplification

proœss is to impose rank reduction restrictions based on cointegration vectors (see

the Blanchard-Quah identification in the previous section). The final product of this

simplification process is a statistiœ1 model for the data and a structural model that

is identified and estimated. Finally, the structural model is use<! to perform forecast­

mg and palicy evaluation. In this thesis, we use the LSE approach to discover the

dynamic relationships between a sectora! reallocation shock and total employment.

The long-run structure is discussed in relation ta the Blanchard-Quah identification.

Siros' critique 100 ta the development and estimation of VAR models. The VAR

approach to modelling rejects the Cowles Commission identifying restrictions as ~in­

credible' for reasons similar to the LSE approach. However, the VAR approach focus

on and try to answer a diHerent question from the one proposed within the LSE a~

proach. This apprœch emphasizes a new raIe for empirica1 ana1ysis, that is to provide

stylized evidence ta include in the theoretical model adopted for policy analysis.

Using a VAR approach, the estimates provide empiriœ1 evidence on the response

of macroeconomic variables to impulses in order to discriminate between alternative
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theoretical models of the economy.l2 BrieBy, using theory-free restrictions and taking

into account the potential endogeneity of the variables in the system, VAR mod-

els concentrate on shocks, and provide a theory-independent dynamics that serve as

criteria for general equilibrium model evaluation (see Favero (2001, p. 266)). Corrob-

oration of the theoretical general equilibrium model is achieved when the resporu;es

of variables to shocks in the theoretical model match the stylised facts derived from

the empirical VAR.

To conform with Sims' methodology, we estimate the Bayesian VAR models in

levels. We assume that the variables are non-stationary and center the prior of each

own lag variable around the value 1. A priori, one suspects that the level vari-

ables - total and setoral employment - are cointegrated. Such a relation is examined

within the Classical VAR combined with the Blanchard-Quah identification. In this

identification, the long-run behaviour of sectoral reallocation shocks provide accept-

able restrictions to be compared to our Real Business Cycle models of Chapter 6.

The long-run restriction of zero impact on total employment is stated in terms of a

cointegration relationship and in terms of the cumulative impulse response function.

The Cholesky decomposition is another identification approach that depends on the

ordering of variables. It is a recursive economic structure.

However, imposing the wrong cointegrating restrictions on the system leads to the

inconsistency of the estimates. Siros, Stock and Watson (1990) argued that a VAR

12For exarnple, Christiano, Eichenbaum and Evans (1996a, 1996b) applied the VAR approach ta
derive a set of 'sty1ised faets' on the e1fect of a contractionary policy shock and conc1uded that
plausible models should be consistent with their findings. The point here is that, their findings
or rather their 'stylised facts' are solely qualitative in nature and rely primarily on the implied
behaviour of the variables by impulse responses funetion, e.g., the aggregate priee level initially
responds very little to the monetary shock.
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in levels in the presence of cointegration is over-parametrized. This characteristic

implies that the estimates of the parameters of interest are ineflicient, but consistent.

One has to weight the risk of inefficiency against inconsistency. We choose to explore

both. Assuming that the impœed cointegration relationship on the Classical VAR

is wrong - as shawn by the Blanchard-Quah identification - the models will exhibit

inoonsistency. However, the Bayesian VAR models in levels will exhibit inefficiency.

Impulse response functions are used ta make statements about structural sys­

tems. To make such statements, one needs an identification scheme. There is no

known method to mechanically choœe the identification scheme. However, it is al­

ways reasonable to use an identification that represents one's understanding of the

relationship.

Hamilton (1994, pp. 335-336) emphasized that "Even so, it must he recognized

that convincing identifying assumptions are hard to come by. For example, the or­

dering ... is clearly somewhat arbitrary, and the exclusion restrictions are difficult to

defend. Indeed, if there were compelling identifying assumptions for such a system,

the fierœ debates among macroeconomists would have been settled long ago! Simul..

taneous equations bias is very pervasive in the social sciences, and drawing structural

inferences from observed oorrelations must always proceed with great care. We surely

cannot a1ways expect ta find credible identifying assumptions to enable us to iàentify

the causal relations among any arbitrary set of n variables on which we have data."

The L8E and VAR approaches would reject the 'Cowles Commission' identifying

restrictions as 'incredible' (See Favero (2001, p. 164)). Here, we investigate bath these

apprœches. Priar to undertaking identification, we tested for Granger-causality13
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between Ytt and Y2t. Briefiy, the test investigates whether the lags of one variable

enter into the equation for another variable. Yu does Dot Granger cause !ht if and

only if aIl the coefficients of A2l (L) in equation (5.54) are equal zero. Thus if Yu does

Dot improve the forecasting performance of Y'lt, then Ylt does not Granger cause Y2t·

Note that this test is a weaker condition than the condition for exogeneity wherein

the current and past values of Yu do not affect Y2t. For the details of the test, see

Enders (1995, pp. 315-316) and the Appendix of this chapter. The following table

reports the results of the Granger causality tests,

Null Hypothesis

E:MP T does not Granger-cause EMP MIT
EMP MIT does not Granger-cause EMP T

EMP T does not Granger-cause EMP 8/T
EMP 8/T does not Granger-cause EMP T

P-value

0.0395
0.9240

0.1289
0.7222

•

At the 5 percent significance level, the test result rejects the nul!; EMP T does not

Granger-cause EMP MIT. H one attempts to identify the VAR using a Cholesky

scheme, then EMP T should he ordered first. Our other tests do Dot reject the nul! at

the 5 percent significanœ level. Here, we interpret Granger-causality as a statement

regarding the importance of a variable in forecasting another variable. Given the

result that EMP T does not Granger-cause EMP S/T, we attempt to pursue the

VAR estimation of model e-ll 50 as to investigate the 'economic persistence' effect

onlyas illustrated by the impulse responses.

We computed the Granger-causality test statistic for different lags. As expected,

the results of the test prave<! to he sensitive to the lag length of the VAR mode!. See

L3Tbe Granger-eausality test is outlined in the Appendix of this chapter.
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Hamilton (1994, p. 305) for the discussion relating the lag length to the Granger­

causality test statistic. We found that the shorter the lag, the higher was the ~value.

Consequently, we reject the test and conclude that there is evidence of causality.

However, one conclusion can he drawn from the 1ag sensitivity issue: sectoral reallo­

cation variables do reject the null- of not Granger-causing EMP T - under any lag

length. This is strong evidenœ of the importance of sectoral reallocation variables

in foreca.sting EMP T. Finally, to assess the relative merits of the chœen lag length

in the VAR, we tested bath VAR models for lag exclusions. The results of the lag

exclusion tests are discussed in subsection 5.6.1 and reported in Tables 5.2 and 5.7

for models C-I and C-II, respectively.

In the following, we advance the arguments for the choice of the Blanchard-Quah

and Bernanke-Sims identification schemes. We view shocks affecting Ylt as 'aggregate'

shocks that impinge directIy on employment growth. However, these shocks can also

indirectly influence Y'lt. For example, an inflow into the labour force will increa.se

total employment in the first instance. This inflow of new workers will feed into the

sectorallabour markets. Also, a favourable aggregate technology shock will shift the

labour demand in ail the sectors. Therefore, we assume the existence of an indirect

channel - equally distributed aa'oss sectors - that transmits the effect of an aggregate

shock into sectoral employment growth.

We also propose that 'pure' sectoral shocks that influence Y'lt have an indirect

influence on Ylt. For example, sectoral taste shocks can display such an impulse. For

instance, the demand for more nutritious food products at the beginning of the 1980s

increased relative to the demand for other food products. This relative increase for the
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product of one sector relative to others shifted the firms' derived demand for factor

inputs, such as labour. The demand for labour in declining industries decreased.

Also, relative technological shocks across industries will produce a similar pattern in

the labour market. A favourable sector-specific technology shock œn spill over to

other sectors by rendering their products obsolete. As discussed in Chapter 6, these

shocks are combined with adjustment costs of moving labour acrœs industries.

Whenever labour is immobile and cœtly to move across sectors, aggregate employ­

ment will fall. Therefore, we assume the existence ofan indirect influence on aggregate

employment. This influence is transitory and reBects the time it takes labour to fully

adjust &crOSS sectors. These effects are typiœl of models with adjustment costs (See

Sargent (1986, p. 399)). Therefore, in the long run, we assume that a 'pure' sectoral

shock to Y2t have no long-run effects on the log level of total employment. Similar to

Blanchard and Quah (1989), these two assumptions - that the structural shocks are

UDcorrelated. and the structural shocks to Y2t have no long-run effect on the levelof

employment - exactly identifies the mode!.

The existence of a propagation mechanism that delays the adjustment of the vari­

ables to a shock œn he captured by the lags in a structural VAR mooel. Similar to

Blanchard and Quah (1989, p. 671), we interpret the 'pure' sectoral shock as a shock

(or the portion of a shock) that is unaffected by a total employment shock. Given the

assumptions that both shocks are uncorrelated and that a 'pure' sectoral shock has

no long-run efi'ect on the level of employment, we proœeded ta estimate a structural

VAR using the Blanchard-Quah identification. Also, we investigated the argument of

contemporaneous dichotomy between the growth rate of employment and the growth
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rate of sectoral employment; the effects of an aggregate (pure sectoral) shock will

take at least one period to reach the sectora! (aggregate) variable. Note that if total

employment is defined. as total employment minus manufacturing employment, then

this assumption is plausible whenever the frequency of data collection (measurement)

is different. To examine the dynamic implications of this view and to serve as sensi-

tivity analysis for the Blanchard-Quah identification, we estimate the VAR using the

Bernanlœ-Sims identification scheme under the assumption of independent shocks.

5.5 Specification and Estimation

Siros (1980) suggested formuJating unrestricted VAR models, treating all variables

as endogenous at a first stage in order to avoid infecting the model with spurious or

faIse identifying restrictions. Statistical procedures determine the lag length, the form

of transformation (log or differenœ) and the appropriate de-trending procedures (if

any). Then, OLS is consistent and efficient under the normality of erraIS. Since our

interest revolves around two variable systems, this section will use the finite order

bivariate (BVAR) mode! of order p of the form (similar in notation ta the system

(5.9»

( Ylt ) = (Fu(L) Fu(L») ( Wtt ) + (Au(L) A12(L») ( Ylt-l ) + ( êlt )
Y2t F21 (L) F22(L) W2t A21 (L) A22(L) Y2t-1 ê2t

(5.58)

where Yu and Y2t are vectors of dimensions ml x 1 and 1n2 xl, respectively, with

m == ml + m2. In our application, ml = m2 = 1. Here, the added dimensionality

is useful in explaining the Johansen approach ta determine the order of integration
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and cointegration of the system Csee subsection 5.5.1). The matrix F(L) contains

the coefficients on w[ = [WIt, W2t]T, which include aIl deterministic oomponents

in the two b10cks of Equations. e[ = [êu, ê2t]T are white noise, conditional on ~tJ

with oovariance matrix ~l:. {t represents the information set available at time t and

Atj(L) = Atjl+Atj2L + ... + A.j"V- I , (Vi,j), where Lis the 1ag operator.

For a oovarianœ stationary proœss, the system (5.58) can he written in its MA

representation as,

( :: ) = (g~:~~~ g~~~~) (:: )+ (g~:~~~ g:~~l) (:~:) (5.59)

where CCL) == (1 - A(L)L)-l and D(L) == C(L)F(L).

The four approaches to specification and estimation differ in the types of restric­

tions placed on the A(L) matrix in system (5.58). As outlined by Canova (1995, p.

79), the four specifications are:

1) Specification using Classical Statistical Theory.

2) Specification using Bayesian Statistical Theory.

3) Specification based on dynamic economic theory.

4) VAR as index models.

Here, 1 will address only the first and the second approaches for ressons discussed

below. Before exploring these, we investigate the presence of non-stationary variables.

5.5.1 VAR, Unit Roots, Differencing and Detrending

In specifying the VAR model, one has to acoount for non-stationary variables or

structural breaks in the time series. Because testing hypotheses on the coefficients of
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integrated variables require nonstandard asymptotic theory, determining the arder of

integration (to make the time series stationary) is crucial for correct inference.

Different modelling strategies have been propœed to deal with the problem ofesti­

mating a VAR that is plagued by variables suffering from non-stationarity. Examples

are:

1) Conduct univariate unit roots tests, then difference the series if found non­

stationary. This method leads to a loss of information.

2) Engle & Granger (1987) 'two step procedure'. They suggested checking for

the presence of cointegration restrictions to avoid univariate unit root procedures

that end up generating many unit roots. First, test for the presenœ of a stochastic

trend in each variable, then take the OLS estimates of the coefficients of the long run

relationships as if they were the true ones, then transform the VAR into a stationary

vector errar correction model (VECM) and proceed with standard estimation and

inference.

3) Johansen's (1988) approach determines the order of integration and cointegra­

tion of the system using standard unit root and cointegration tests and models the

VAR in the space of integrated processes of order 1(0). In this method, first choose

the VECM form, then distinguish between the three cases listed below.

Let n he the matrix containing the factor lœdings for the cointegration vectors,

then check the rank of n. li

a) the rank of n equals m, then all variables in the system are 1(0), where m is

defined on page 210.

b) the rank of n equals 0, then all variables are stationary in the first difference,
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i.e., 1(1).

c) intermediate case: there are some linear combinations of the variables which

act as a common statistical trend. In this case, one can factor fi into fi = a{3' and

jointly estimate the cointegrating factor and the coefficients of the VAR model under

the rank restrictions on fi with a maximum likelihood technique. Because restrictions

are imposed on the coefficients in the A(L) matrix, one needs a system-wide method

such as FThtIL for efficient estimation. King (1992) and GiaDDini (1992) provided

useful insights on the economic interpretation of the {3' vector in the factorization.

AIso, Sims, Stock and Watson (1990) provided a solution to testing the problem in

the context of VARs with polynomial functions of time and one or more unit roots.

Sims (1980) and Doan (1992) argued against differencing. Their argument was as

follows. If the aim of using a VAR is to determine the interrelationships among the

variables and not to focus on the structural parameter estimates, then differencing

a time series included in the \"AR leads ta a 1055 of information. On the issue of

detrending, they argued that a Bayesian approach to estimate the parameters that

relies on the 'Nfinnesota Prior'u is best.

However, the majority view, specifica1ly within the classical framework is to f~

cus on the structural VAR estimates, their properties and the underlying economic

assumptions.

In conclusion, if one is to estimate a VAR, then one is bound to test for station-

arity before moving to the estimation of the reduced VAR. Since l will apply both

(Classical and Bayesian) specification approaches, l will correct for non-stationarity in

UThe 'Minnesota Prior' is described in the 'Bayesian Specification' section of this chapter.
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the Classical approach prior to estimation. Note &Iso that using the Blanchard-Quah

identification imposes a long-run cointegrating relationship.15 Within the Bayesian

approach, - specifically, the Minnesota priar used here - it is required that the VAR

variables he in their original state. Since the Minnesota prior assumes that the vari-

able is a random walk, there is no need to correct for stationarity prior to estimation.

This is the main reason for using different transformations on the variables under

both approaches. The Classical VAR uses the growth rates whereas the Bayesian

VAR uses the level series. Note that the main goal is understanding the dynamics.

5.5.2 Specification using Classical Statistical Theory

In general, economic theory, empirical observations and experience is used to select

the variables included in Yt.- The steps and the choices concem:

1) The variables to include in Yt from economic theory or experience.

2) The lag length p of the autoregression.

3) The type of the deterministic component to be included in Wt.

4) The approach to follow if a unit root exists in the A(L) matrix.

The lag length p of the autoregression

There exist two issues in choosing the lag: the degree of dimensionality and the correct

specification of the model. A trade-off between overparametrization and oversimplifi-

cation is at the heart of the selection criteria in choosing p. Note that since the number

of parameters increases with the number of lags of the system, and since the number of

degrees of freedom in a VAR depends on the total number of free parameters appear­

lSFavero (2001, pp. 169-170) outlines the interpretation of the Blanchard-Quah identification as a
cointegrating relation imposed on the impulse response function.
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ing in the system, moderately sized systems become highly overparametrized relative

to the number of observations, leading to insignificant or inefficient est~~tes of short

run parameters. On the other hand, a short lag length willleave serial correlation in

the e's, and consequently induces spurious significance and ineffi.cient estimates.

Sims (1977,1980a) suggested a procedure in which the number of parameters is a

function of the sample size. Berk (1974) suggested that the number of parameters be

chosen according ta the rule mp = Tl/3, where m is the dimension of the time series

andT is the sample size.

The choice of the lag length in VAR is a subject ta debate. FormaI selection

criteria to determ.ine the arder p in univariate and multivariate autoregression are

weIl documented. The mechanics of the procedure are straightforward. Given a

sample size T, the value fi is chosen if the mean square errar of the system due to

the addition of the fi + 1 lag is larger than the mean square error induced by the lag

p. One chooses 15 ta minimize Cany of) the following criteria aver j alternatives, Le.,

Pi E {D, 1, ···,Pmu}

AIe (Akaike Information Criterion)(1974)

SIC (Schwartz Information Criterion)(1978)

HQ (Hannan and Quinn Criterion)(1979)

log 1~~(pi) 1+2N;Pi

log 1~~(pi) 1+ N2pj~og(T)

log 1~~(Pi) 1+2N2pj lO:Oog(T»

~ILR (~Iodified Likelihood Ratio) Sîms (1980) (T - 1) Ilog det ~c(Pi) 1

FPE (Final Prediction Error) SSRIsI.±K.=l
t T-K-l k = 1,2...p·

•
where N denotes the number of parameters estimated, T is the sample size, 1 is a

correction factor, and ~c(Pi) is the estimated covariance matrL~ of the residuals for a
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given specification of lag length Pi.

Estimation

Here, 1 will briefty discuss different methods of estimation within the classical frame­

work.

1) The OLS estimates of the coefficient matrix ACL) are consistent. Since

only predetermined variables and deterministic fonctions appear on the RHS and

E(ê&e'f-,) =E(e&yl'-,) =0, ('t8) , OLS estimates are consistent. Criticisms of the use

of the OLS estimates focus on the following. Sînce all variables enter the system with

the same Iag length, that may reduce the efficiency of the estimates. The OLS is an

'aIl variables in the system and all variables are in equallength' approach.

2) Hsiao's sequential procedure is a 'specific to general' approach. By com­

bining Akaike's FPE approach for univariate autoregression with Granger-causality

testing to decide which variables should enter each autoregression and what number of

lags should be used, this approach reduces the number of parameters to be estimated.

~Iany critics of this procedure voiced three major concerIlS. First, the approach relies

on separating the mechanical specification step and the rational tests of economic

hypothesis. Second, the second stage hypothesis testing may be sensitive to type 1

errors committed at the first stage. Finally, the same variables do not appear in all

equations, 50 that system-wide methods, sucb as full information maximum likelihood

(FIML), are needed for efficient estimation of the parameters.

3) Unrestricted VAR: Given ail available information, we need to select an

unrestricted 'congruent' VAR. Congruent is defined as (a) it captures the dynamics
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of the relationships existing in the data, (b) it is free from specification errors, and

(c) it bas constant parameters. Once such a mode! is found, then the dimensionality

of the VAR is reduced by purging insignificant lags using t-tests and F-tests.

In summary, VAR specification and estimation under the classical approach în­

volve two general mechanic steps:

1) One choœes a model which is dynamically weil specified (in terms of functional

faImS, variables included, lag length, non-correlation, and possibly the normality of

residuals), extracts as much information as possible from the data, and tests for

the presence of unit roots and cointegrating restrictions, taking iota account the

possibility of regime shifts, segmented trends, etc.

2) Then one transforms the system. and estimate a VAR using the two step proce­

dure of Engle and Granger, or estimate the original VAR model under a rank restric­

tion using the l'IIL approach of Johansen. Then testing hypotheses on the coefficients

of the transforme<! system can be undertaken by standard asymptotic theory.

Note that the tests of economic hypotheses are conditional on the results of testing

for the model specification (Le., integration, cointegration and lag length). In other

words, inference depends on the procedure used ta select the model.

5.5.3 Specification Using Bayesian Methods

Litterman (1980; 1986a; 1986b) and Todd (1984) suggested a Bayesian perspective

ta the VAR specification. Within sucb a framework, one attempts ta filter as much

information from the data prior ta the model specification, using a symmetrical 'athe­

oretical' prior - ta decide which variable at which lag should he included - on all
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variables, 50 as to compromise the trac1EH>iT between the overparametrization and

oversimplification of the mode!. Too many (few) lags lead to over parametrization

(oversimplification).

One reason - advanced by Litterman (1980, 1986) - for sucb an approach is that

economic data suffer from a very low signal-to-noise ratio, which leaves little confi­

dence about the useful economic structure at hand. In general, this depends on the

type of data and the type of conclusions one tries ta infer.

Bayesians daim that the prior on the lag coefficients acts as an antenna and,

when appropriately specified, may clarify the signal. The prior is characterized by

a small number of parameters. The prior is non-standard from the point of view of

Bayesian analysis and is 'objective' in the sense that it is based on experience and

has no economic interpretation.

In general, a Bayesian VAR is composed of two sets of equations

(5.60)

(5.61)

where (Je is a stacked version of Ae(L) and Ce(L), lJ is the unconditional mean of {j, G

and F are mp x mp matrices, and Ut is a white noise process with covariance matrix

ne.

Note that this is the same as system (5.9) except that the coefficients are allowed

to be time variant. In equation (5.60), the coefficients are allowed ta be time varying.

Equation (5.61) represents the prior law of motion of the coefficients and usually is

very broadly formulated. Special cases of this system are:
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1) IfG = 0 and F = l, then the coefficients are random around the unconditional

mean.

2) If G = l and F =0, then the coefficients are random walks.

3) Ifnt = 0, then the coefficients deterministically evolve over time and the system

collapses to system (5.9).

4) If G = 0, F = [ and nt = n, the unconditional distribution of the (jt 's are

constant. In this setup, one needs to specify the 3m2(p+ l)(m2(p+ 1)+ 1) parameters

contained in the matrices G, F, n and {j.

This approach relies on making the parameters of these matrices depend on a low

dimensional vector of parameters (J which inde."(es various extraction filters.

The commonly used '~finnesotaPrior' specification is

G=801

F=I-G

(5.62)

(5.63)

- { 1/3ijl = 0
if i = j,l = 1 }

otherwise
(5.64)

!loijl = (ltf(i,j)h (1) tri
tri

(5.65)

(5.66)

Equations (5.62) and (5.63) imply that the coefficients are ARCI) processes with sorne

decay toward the mean. Equation (5.64) implies that the time zero mean is one for
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the first own lag coefficient and zero otherwise. Equation (5.65) assumes that the time

zero variance of the coefficients shrinks with lags. 1denotes the lag. The function h(l)

is typically chosen to have a geometric decay of the form h(l) = Ill. The variance is

smaller for coefficients of other variables in each equation (f(i,j) < I(i, i), 'Vi::f: j),

and is scaled by the ratio of standard deviations of Xi and Xj. It is also regulated by

a tightness parameter 81• Equation (5.66) assumes that the covariance matrix of the

coefficients at each tisa fixed (scaled) function of the covariance matrix at time zero.

In this formulation, the VAR coefficients are time varying. The vector 9 == (80,81,82 )

describes the time invariant structure of the system.

There is no reason ta suggest a particular restriction on the coefficients of a dy­

namic structure sucb as the one ~ed in the polynomial distributed lag models. No

'hard shape' restriction on the coefficients seems theoretically sound. To deal with

this problem, shrinkage estimators (on the lag coefficients) have heen suggested and

are more suitahle for the analysis here. Dropping a lag from the dynamic structure

is equivalent ta forcing its coefficient to zero. Rather than adopting a lag or no lag

approach, it seems reasonable that coefficients on longer lags are likely to he closer to

zero than on shorter lags and one can ~e this in the prior specification. However, if

the data show significant evidence of a long lag, one must allow for it. In brief, using

a Bayesian framework in the dynamic structure allows the data to determine the lag

structure.

Litterman (1986) and Todd (1984) suggested a Bayesian framework for the VAR

specification. Within such an approach, one attempts ta filter as much information

from the data prior to the mode! specification, and lets the data decide on the lag
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specification in the system. Using a symmetrical 'atheoretical' prior to decide which

variable at which lag should be included will balance the trade-off between the over-

parametrization and oversimplification of the model. The prior reftects ignorance and

bas no economic interpretation. In this specification process, using the VAR in levels

amounts to ignoring the long-run structure of the reduced fonn, this step is skipped

oolyat the risk of loss in efficiency (See Favera (2001, p. 95)). In this Bayesian VAR

approach, our focus is on the dynamics.

Rewrite the VAR model as

Yt = Cans + ~l·Yt-l + 4»2·Yt-2 + ... + c1Jp.Yt-p + êt (5.67)

where,

(5.98)j = l, ... ,p
(i) Ci) )_(~11 ~ .. ~lm

4»j -: ..:
Ci) (i)A.. • •• A.

Y'ml Y'mm

m denotes the number of variables and p denotes the number of lags in each equation.

The coefficient 4>~) gives the relation between Yit and Yk,t-j (i, k = 1, ..., m. j =

1, ... ,p). Note that Yt is a m-dimensional vector Yt = (Ylt, ... ,Ymt)T and et is also a

Write the VAR system in the form of a multivariate regression mode! as 1

(5.69)

Ze and ~ are of dimension m x 1, (mp + 1) x 1 and (mp + 1) x m, respectively. The

~.•
matrix version of this system is,

Y=ZcI»+E (5.70)
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Throughout this chapter E is assumed to follow E ""1 MNTxrn.(O, ;@I). MN denotes

a matricvariate normal distribution as defined in Bauwens et aL (1999, p. 301) and

reported in the Appendix of this chapter.

Also, the VAR mode! can be cast in the form of a SURE model, which is a set

of regression equations whœe error terms are correlated. The SURE model can he

written as

i = l, ..., m. (5.71)

where Yi, Zi and 4li are of dimension T x l, T x ~ and le;, x 1, respectively. In compact

matrix format,

y =Z4l += (5.72)

where

Yi cIl l El
1'2 cil2 E2

Y ~= - (5.73)- --
Ym 4lm Em

Zl 0 0 0
0 Z2 0

Z - (5.74)

0
0 0 ... Zm

Here, it is assumed that ::: f"tJ NTm(O, 't @ IT). Note that in this formulation, ::: =

vec(E). For the properties of the vec operator,16 see Hamilton (1994, p. 265). The

16The vec operator is obtained by stacking the columns of a matrix A, one below the oth[er~l:n]th

the columns ordered fram left ta right. For example, if A = [4U 4 12 ], then vec(A) = a21 •
a21 422 a12

422
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usefulness in writing the system in this fonn is apparent when one derives the posterior

distributions of the parameters.

One can relax the assumption of normality and homoscedasticity along the Unes

of Geweke (1993) to allow for heteroscedasticity or fat-tailed marginal distributions

for êc for some priors. This line of investigation will not be pursued here.

The following notation will he used (following Kadiyala and Karlsson (1997»),

(tilde) and - (bar) denote the parameters of the prior and the posterior distribution,

respectively. The OLS estimates of ~ and f/J are denoted by Ci and ~. The likelihood

function is given17 by (see aIso Zellner 1971, p. 22)

(5.75)

(5.76)

(5.78)

Therefore, the likelihood function is proportional to the product of an inverse Wishart

density for ~ and a normal density for fi> conditional on ~.

Using different priors, one ends with different posterior distribution. The following

table is a summary of different priors and their respective posterior distributions.

17With some modifications to Kadiyala and Karlsson (1997, p. 101) and Bauwens et al. (1999, p.
266, see a1so theorem A.19, p. 307-308).
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~ I,-p_n_·o_r I~p_œt_en_·_o_r _

Minnesota tPi ~ N(~i' ~i) tPily ,..., N(~i' ~i)
~ fix and diagonal

- --1
with ~i = (~i + O'ii1zrZ)-1

Diffuse (Jeffrey's) p(t/J,~) ocl ~ 1-(",+1)/2 ttly ~ MT(z'I'z, (Y - Z~)T)

x(Y - Z.j), i,T - k)

Normal-Wishart tPl~ ~ N(l/J, ~ ® 0), ttly - MT(O-l,~,~,T + Q)
~ ~ iW(~,Q)

Source: Kadiyala and Karlsson (1997, p. 103)
For the distributions, please refer to the Appendix of this Chapter.

Kadiyala and Karlsson (1997) examined the forecasts' properties under different

priar assumptions for two VAR models, large and small. They concluded that mixed

evidence exists in terms of forecast performance. Different results are reported and

are sensitive to the priar used. They emphasized that their preferred choice is the

Normal-Wishart when the priar beliefs are of the Litterman type (1997, p. 129).

However, the ~linnesota prior reported acceptable results and in few instances was

better than other priors for small VAR models. Here, we adopt the ?vIinnesota prior.

Note that when using the Minnesota prior, one need Dot render the time series

stationary. For example, see Kadiyala and Karlsson (1997, p. 113), where the level of

the Swedish Wlemployment and the level of the logarithm of the industrial production

index were used.
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The Minnesota Prior

Litterman (1979, 1986), Sïms (1980) and Doan, Litterman and Sims (1984) suggested

using this prior to circumvent the "incredible identifying assumptions" made by the

'Cowles Commission' approach.

In this Bayesian approach, the residual variance-covariance matrix ~, is taken to

be fixed and diagonal. The likelihood function results in a product of independent

normal densities for tPi. The prior can be generalised by allowing for a non-diagonal

~ and/or unknown ~. An additional assumption that can he made is that ~ has a

fixed diagonal and an unknown non-diagonal element.

The 1vIinnesota priorI8 is informative on aIl the coefficients of 4»i matrices, and

non-informative on the other parameters. The prior assumes that the VAR system

consists of m random walks. The prior covariance matrix of all parameters in ~i

is diagonal. This amounts ta assuming that each equation in the system is a-priori

uncorrelated with any other equation.

This Bayesian procedure is implemented by placing a normal prior with mean

zero on the coefficients of the lags,19 and allowing for a smaller standard deviation

the longer the lag, Le., the importance of lagged variables decreases with the lag

length. Usually, a mean of one is placed on the first own lag, and means of zero on

all other coefficients. This centers the prior around a random walk process. Formally,

tP~:) = 1 and ail other tP~) =0 (i #: kt i :f: 1) ta characterize the mean of the prior

18The label 'Minnesota Prior' was given to this approach when both Sims and Litterman were at
the University of Minnesota and working on the prior. The label was used to identify the specifie
prior proposed by Litterman (see MeNees 1986, p. 5, Amisano et al. 1997, p. 9 and Bauwens et al.
1999, p. 269) .
19Except the own first lag.
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distribution of the coefficients. This is equivalent ta 8SSuming that for each variable

in the VAR,

Yt = Yt-l +Et (5.79)

Note that the prior assumes that the variables are 1(1) but not cointegrated. However,

this prior and al! extensions from it do not rule out cointegration. For a discussion of

the Bayesian analysis of cointegrated VAR, see Bauwens and Lubrano (1994, p. 272),

Dorfman (1995, p. 49) and Koop (1992b, p. 105).

Litterman assumed a diagonal variance-covariance matrix for the prior distribu­

tion, with ""( referring to the standard deviation of the prior distribution for f/>~i)

(5.80)

For the other coefficients, the standard deviation of the prior decays with respect to

the lag.

fur i;i: k (5.81)

Let k refer to the variables in the system (k = Eo,E lt E2) and i refer to the equation

whose dependent variable is i. Define the standard deviation of the prior distribution

for lag l of the variable k in equation i as

Si
Sei, k, l) = {"'f.g(I)./(i, k)}

Sk
(5.82)

where I(i, i) = g(l) = 1.0 such that <p~:) "-i N(l, ""(2), as above. ï is the degree of

overall tightness and represents the confidence in the prior information.

A value of""( = 0.2 means that one bas a confidence of 95% that ~~i) is no smaller

than 0.6 and no greater than 1.4 (the mean is equal ta 1). Si is the standard deviation
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of the residuals of a univariate autoregression on the dependent variable of equation i

(OLS of Yit on a constant and own p lags). silSë represents a correction for different

scales of the variables. In other words, it is an adjustment for the units in which the

data are measured. In equation i, I(i, k) is the tightness on variable k relative to

variable i, while 'Y represents the overall tightness.

Standard functional forms for gel) and I(i, k) are,

I(i, k) = symmetric where f(i,k) = { ~ i =k }
i:l:k

(5.83)

where w is a weight parameter, and represents the relative tightness applied ta all

off-diagonal variables in the system. To have more confidence in the prior belief that

tP~) = 0 than the prior belief that tP~:) =0, W should be less than one. A comman

choice in applied economic time series is w = 0.5 and "Y = 0.2. As w goes ta zero,

the system reduces ta a set of univariate autoregressions. In other words, it forces

coefficients on other than own lags taward zero. gel) is the tightness on lag l relative

to lag 1. It captures how the standard deviation changes with increasing lags. The

gel) lag decay function is

{

harmonie
gel) =

geometric

gCl) = l-ct }

gel) = d'-
1

(5.84)

•

where d is the lag decay parameter for the harmonic (geometric) function. A large

(small) value for d reflects a tighter (looser) priar. Note that the lag decay function

g(l) is a bad choice when one is faced with seasonal data. In brief, a low tightness

forces the system ta a VAR, while a high tightness forces it ta an OLS.

Many criteria for choosing the parameters of the prior are discussed in the liter-
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ature. Among others, one can use the log determinant of the covariance matrix of

out-of-sample forecast errars or use a forecast performance statistic such as the Theil

U statistic (the ratio of the root mean square error of the mode! to the root mean

square error of the naïve forecast of no change in the dependent variable). The latter

is used here. The Theil U statistic is a unit free measure, and provides a compari­

son with the naive (no change over time) forecast. A value higher than one (of the

statistic) means that the model is doing worse than the naive one.

The Bayesian approach is very flexible. It allows different lags for different equa­

tions. There is neither a restriction on lags, nor specification restrictions. The pres­

ence of trending variables does not cause any particular problems in this framework.

Inference is based on the likelihood principle. The approach requires normality of

residuals and 'good' priors, but is invariant ta the size of the dominant root of the

system. Estimation is carried out numerically, passing through the sample recursively

with the Kalman filter algorithme

When ~~ and the coefficients on lags are Dot time varying parameters, the system

of equatioIl'S (5.60) and (5.61) forms a VAR mode! with a set of uncertain linear re­

strictions on the linear coefficients. The unconditional distributions of the coefficients

are constants. HequatioD (5.61) is regarded as a dummy observation appended to the

system, the estimation of the model can be carried out with mixed-type estimation.

The result is a restricted estimator which shrinks the data toward the information

contained in the priar restriction. This interpretation of the VAR is similar ta the

single equation ridge regressions: whenever the noise in the data is influential, the set

of uncertain linear restrictions acts as a constraint on the filter extracting information
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from the data.

One might ask if this method will introduce an alternative source of bias such as

shrinking the mode! to an incorrect parameter vedor. A solution ta this bias is to

specify a prior distribution over different trend specifications, trying different distri­

butional assumptions on the innovation of the VAR model, and computing pairwise

posterior odd ratios using numerical integration.

5.5.4 Impulse responses and variance decomposition

This section discusses the usefuiness of the VAR approach. Once the parameters of the

primitive VAR are recovered, one computes the impulse responses and the variance

decomposition. Both are methods of describing the dynamic properties of the model

following certain shocks and both are in-sample forecasting exercises. They are similar

with respect to the information they report about the model under investigation. The

former is used for better economic understanding, while the latter is used for econamic

testing. They describe the effect on the system of equations of a 'typical' shock ta a

variable, where 'typical' is used in the sense of a one standard error shock.

In general terms, suppose that Yt is a covariance stationary process (possibly after

some transformation) with MA representation.

For such a Yh ~c is in general non-diagonal. One can use a Cholesky decomposition to

transform the system in such a way that the shocks to each equations are uncorrelated.

Given that ~c is a real symmetric positive definite matrix, let Z he a non-singular
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lower triangular orthogonal matrix with ones on the main diagonal and let V he a

diagonal matrix. fi we decompose ~c =Z-lV(Z-l)T, the system can be normalized

as,

( :: ) = (~~:~~~ ~~~~) ( :: ) + (g~~~~l g~~~~) ( ~~:) (5.86)

where G(L) =B(L)Z and Vt = Z-lee. Because Z is lower triangular, 50 is G(L) and

innovations in the variable i do not contemporaneously affect variable k if variable k

precedes variable i in the list of elements of Yt- Note that Z-l Vl/2 has the standard

deviation of Et. along its principal diagonal. Thus, a shock ofone unit te Vt is equivalent

to a shock of one standard deviation ta et-

The VAR system (5.86) has a ~called Wald causal chain form. This orthogonal­

ization procedure is not unique and depends on the ordering of the variables, Le., the

position of each variable in the Yt vector (simply interchanging the rows or columns

in ~c' will yield a different Cholesky factor).

The ,,-ariables on the top of the triangle contemporaneously feed into all the other

variables and the variables on the bottom of the triangle contemporaneously affect

ooly themselves. Our interest in both concepts (impulse responses and variance d~

composition) arises due to their advantages.

1) Variance decomposition tells us how much of the average squared forecast error

variance of one variable at the kth step ahead is associated with surprise movements

in each variable of the mode!.

2) The impulse response function traces out the moving average representation

of the system and describes how one variable responds over time to a single shock
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increase in itselfor in any other variable. The impulse response measures the responses

of the system to a particular initial shock.

Whenever the system is correctly identified, the impulse response function (IRP)

interpretation is straightforward. It describes the response of the system Yt to a shock

in the innovations. Hthe errors have a common component which can not be identified

with any specific variable, then the IRP will reflect the response to the innovation

shock and ta the common component. One bas to treat the results with caution since

the results are conditional on the assumptions used for structural identification.

IMPULSE RESPONSE

The matrix G(L) in system (5.86) represents the impulse response functions and is

useful in examining the effects of typical shocks to the variables of the system in the

short and long rune The oo-~IA representation of the VAR is the complete set of

impulse responses. The standard deviations for the estimated impulse responses are

usually carried out through bootstrap resampling technique or by normal density a~

proximation.2O There are few methods for computing confidence intervals for impulse

responses. These are the delta-method, the bootstrap, the bias-adjusted bootstrap,

the asymptotic parametric inference methods and the Bayesian ~Ionte-Carlo integra-

tion Methode Wright's new proposai is a size-adjusted delta based Methode In an

attempt to overcome the low coverage of traditional methods that compute confidence

20See Runkle (1987) for a detailed analysis and see Ripley (1987, p. 175) for the properties of the
standard errors of the impulse respon.ses estimates using bootstrap methods. Fachin and Bravetti
(1996) examined the performance of bootstrap and asymptotic parametric inference methods. They
concluded that the bootstrap delivered superior results in terms of bath length of the confidence
interval and coverage when the variance of the forecast error is considered. See Fachin and Bravetti
(1996, p. 339) for details.
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intervals for the impulse responses in a vector autoregression, Wright (2000) proposed

a new approach. This approach relies on the Normality assumption of the innova­

tions and the lag arder. His proposed confidence interval controls for coverage and

addresses the coverage versus width trade-off. For our study here, we adopt the boot­

strap method (Runkle 1987) in the Classical VAR. As mentioned, Sims, Stock and

Watson (1990) argued that a VAR in levels in the presence of cointegration implies

that the estimates of the parameters of interest are inefficient, but consistent.

For the Classical VAR, we bootstrap the residuals 1000 times for each impulse

response. We choose the residuals at the same time period for each equation to

preserve the contemporaneous relationship. Then we simulate the system using the

new residuals, the coefficients and the actual series as initial values. We estimate the

VAR and compute the impulse responses. \Ve repeat this exercise 1000 times, then

we calculate the 95 percent coverage (Le., the 2.5 and the 97.5 percentiles) of the

impulse responses. This method uses the percentile approach described in Mooney

and Duval (1993, pp. 3~37) and Stine (1990, pp. 249-250).

Each Gi describes the response of the vector Yt to innovations j periods ago. The

kth row of each Ci measures the responses of Ylct to innovations in the system which

occurred j periods ago, j = 0,1,2, .... Finally, the hth element of the kth row of

G(l) measures the cumulative effect on Ylct of an innovation in Yht that occurred j

periods ago, where j ~ 00.

From a Bayesian point of view, the posterior density function of the impulse
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response fonction is defined as follows (Koop (1992a, p. 398),

(j = l, ...,i)

(5.87)

where k denotes the variable of interest. 1'(YIc,e,.) is the response, i periods later, of

the variable Ylc to a shock ellie • The shock occurs at period T + 1. Therefore, the pro~

ability density function is conditioned on observed data and the shock. A criticism

arises here regarding mode! uncertainty. A Bayesian approach offers the possibility

and recommends averaging the impulse responses across severa! different models us-

ing weights the posterior probability that each mode! is true. However, such exercise

requires that one adopt an informative proper prier, which is relatively difficult te

defend in Bayesian analysis.

VARIANCE DECOl\1POSITION

From system (5.86), one computes the variance decompesition of Yt 1

(5.88)

•

For the special case where21 ml = m2 = 1, the variance of Ylt has two components.

One component is due to the impact of its own innovations from time t to time

t - j, j = 1,2, ... , and the other one is due to innovations in Y2t from time t ta

time t - j. HY2t is shocked at time t - j and left unperturbed afterward, then one cao

examine how much of the variability of Yt at time t is due to that innovation, for aIl j.

As seen from equation (5.88) the variance decomposition represents the contribution

of the shock to each variable's forecast error variance.
21See page 210 for the definitions of ml and m2.
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5.6 Data Analysis

This section reports the results of the VAR estimation for the Canadian industry-

level (goods sector, manufacturing sector and services sector) data on employment

level. AIl series are quarterly Canadian data covering the period from 1976 to 1998.

The reform of the Canadian system of unemployment insurance was introduced in

the early 19705. Mixing two different policy regimes induces parameter instabilitys

therefore we eoncentrate on a single regime. To circumvent the effect of the change

in poliey on the data, we used post-1976 data. The variables used in the Classieal

VAR are defined on page 193.

5.6.1 Classical VAR Results

Prior ta estimating the VAR models, we used the multivariate Ale and Schwarz

criteria ta select the lag length for bath models. On this hasis, we estimated the

VAR model at lag 8. In each model, two dummy variables were added ta the list of

exogenous variables in the VAR to account for the structural breaks identified by the

graphs. vVe added these dummy variables to remove the outliers.22

Using the Likelihood Ratio test, we tested for llag and 4 lags exclusions. Bath

mode! C-I (Table 5.2) and mode! C-II (Table 5.7) signifieantly rejected the null of

excluding the last lag and the last four lags. The former exclusion tests the null

hypothesis that the last lag is zero. The latter exclusion tests jointly the null; the

that the last four lags equal zero. For models C-I and C-II, each hypothesis was

220utliers are defined as observations generating observed residuals of a magnitude exceedings in
absolute value, three times the standard deviation of fitted residuaJs. See Favero (2001, p. 142) for
the definition.
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rejected at the 5% leveL

Tables 5.1 to 5.5 report the results for model C-I and Tables 5.6 to 5.10 report

the results for mode! C-II. We report the results of the Bernanke-Sims as sensitivity

analysis ta the Blanchard-Quah identification.

Model C-I Results

Table 5.1 reports the Jarque-Bera normality test, the Lagrange-multiplier seriaI au-

tocorrelation test and the Lagrange-multiplier ARCH test for the reduced form VAR

residuals.23 Evidence of deviations from normality appears only for ErvIP rvI/T, where

normality is rejected. The residuals of the reduced fonn are serially uncorrelated and

no evidence of conditional heteroskedasticity is found. Table 5.2 presents sorne statis-

tics of interest regarding the estimated reduced form VAR.24

Table 5.3 reports the VAR results under two identification schemes; Bernanke-

Siros and Blanchard-Quah. The matrices notation B, DO.s and B-1 DO.s are used

to be consistent with the notation in section 5.4. Note the difference in matrix D

across the identifications. From the matrices, the initial effect of a one standard

deviation structural shock on the variables is computed from B-1 DO.s. Focusing on

the Blanchard-Quah rt~ults, the initial effect of a one percent standard deviation

'pure' sectoral shock on the growth rate of total employment is negative. The growth

of total employment decreases whenever a 'pure' sectoral shock occurs. This res1.Ùt

suggests the presence of adjustment costs that impinge on labour mobility. The

23As defined in the literature, aU tests are outlined in the Appendix.
24The value of p(EMP T, EMP MIT) =-0.024, which indicates that ordering is unimportant if
one assumes the Cholesky decomposition.
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usefulness of normalized varïables25 in the VAR lies in the easier interpretation of the

impulse response figures. For example, the first point of the impulse response curve

is given by B-lDO.5 .

From the matrix B-1DO.5, (Table 5.3), in the initial period of the shock for the

Blanchard-Quah identification, a one standard deviation structural 'aggregate' shock

leads to 60.8 percent increase in employment growth and to 20.4 percent increase in

the square of the manufacturing employment growth rate. In the initial period of the

shock, a one standard deviation structural 'pure' manufacturing shock leads to 86.4

(84) percent - using the Bemanke-Sims (Blanchard-Quah) - increase in the square of

the manufacturing employment growth rate. A 'pure' sectoral shock decreases the

employment growth rate by 16.4 percent in the initial period. Note that by identifying

assumption, the initial effect is nil in the Bemanke-Sims case.

The accumulated responses to a structural shock (one standard deviation) for

~IA(16) and ~IA(00)are,26

16 16

Yu - L cll(k) ê Ylt_ k +L CI2(k) ê Y2t- k
k=O k=O
16 16

Y2t - L C21 (k) ê JlU- II +L C22 (k) ê trlt_1I

k=O k=O

oc oc

Yu - L Ca (k) ê JlU- II +L C12(k) ê trlt- k

k=O k=O
oc oc

Y2t - L C21(k) êJlU-i: +L C22(k) êtrlt-i:

k=O k=O

(5.89)

(5.90)

(5.91)

(5.92)

•
25Each VAR is r~run using normalized variables. A normalized variable is defined as the ratio of
the deviation &om the mean relative ta its standard deviatian.
26k = 16 is arbitrary and is computed for comparison purposes.
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MA(k = 16) MA(k =00)

Bemanke-Sims Yu = 3.145 Ellu- 11 + 0.813 éWe-II Yu = 3.141 ë llu__ + 0.841 E
3f2t

_
t

Y2t = -0.85 éY\e-11 + 0.962 éJl2e-ll Y2t = -0.846 é llU__ + 0.924 é!l2c_t

Blanchard-Quah Yu = 3.229 é lne- ll - 0.027 éwe-II Yu = 3.232 é
llu

__

Y2t = -0.594 é tlu- us + 1.156 EWe- le Y2t =-0.599 EIIU_
At

+ 1.118 é Y2t__

Source: Table 5.3.

The initial effect of a one standard deviation shock is given by the matrix P ==

B-lDO.5. Note that P pT is the variance covariance matrix of the residuals. To trans-

fonn the initial impact ta a structural shock of 1 - rather than a one standard deviation

- one normalizes the B-1DO.s matrix such that the SUIn of each row equals one. For

the normalized variables, the effect of a 'pure' sectoral shock on employment growth

is negligible after 4 years (16 steps in Table 5.3). By construction, in the long-run

(oo-steps in Table 5.3), the accumulated infiuence of the Blanchard-Quah sectoral

'pure' shock is zero on the level of total employment.

For the Bemanke-Sims identification, the system is overidentified; the likelihood-

ratio rejects at the 5% level the extra restriction imposed on the structural matrix.

Therefore, we focus on the Blanchard-Quah identification for the rest of our analysis.

Table 5.4 reports the forecast error variance decomposition of a structural shock

that equaIs one. It determines the proportion of the k-step ahead forecast error

variance of the ith variable attributable to a shock ta the jth variable. Each period

in this table should he read as follows. The first (second) raw of each cell refers ta

the variance of the first (second) variable. The first (second) element is the k-period
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variance proportion in the first variable attributable ta a shock to the first (second)

variable. Note that each row sums to 100 percent.

Regarding the Lilien hypothesis, after 12 periods and using the Bernanke-Sims

identification, a shock to manufacturing reallocation (term used loosely ta denote

E~IPMIT) is responsible for 11.95 percent variation in the growth rate ofemployment

and for 89.81 percent of its own variability. As expected, since the Bernanke-Sims

identification is more restrictive in terms of the shock effect in the initial period, ail

cross variables' forecast error variance decompositions are lower than their counter­

parts when using the Blanchard-Quah identification. When one assumes that there

is no long-run effect on the level of employment following a 'pure' manufacturing

shock (i.e., Blanchard-Quah identification), after 4 years, a manufacturing realloca­

tion shock is responsible for 13.87 percent variance in the growth rate of employment.

Assuming that the effect of the same shock is Dot felt immediately (Le., Bernanke-Sîms

identification), it is responsible for 12.23 percent of employment growth variability

after 4 years.

Table 5.5 reports the reduced form coefficients estimates. To compute the struc­

tural fonn coefficients, one has ta multiply the reduced fonn coefficients by the re­

spective rows of matrix B-1DO.5 (from Table 5.3).

Model C-II Results

Madel C-II examines the reallocation shock to the service sector. Table 5.6 reports

the Jarque-Bera normality test, the Lagrang~multiplierseriai autocorrelation test
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and the Lagrange-multiplier ARCH test for the reduced fonn VAR residuaIs.27 The

residuals of the reduced can not reject nonnality. They are serially uncorrelated

and no evidence of conditional heteroskedasticity is found. Table 5.7 presents few

statistics of interest regarding the estimated reduced form VAR.28

Table 5.8 reports the VAR results under the two identification schemes; Bernanke-

Sims and Blanchard-Quah. The initial effect of a one standard deviation structural

shock on the variables is computed from B-lDO.5. In the initial period of the shock, a

one standard deviation structural 'aggregate' shock leads to a 66.11 percent increase

in employment growth and to a 29.17 percent decrease in the square of the service

employment growth rate.

Using the Bernanke-Sims identification (Blanchard-Quah identification), in the

initial period of the shock, a one standard deviation structural 'pure' service shock

leads to 66.25 (59.49) percent increase in the square of the service employment growth

rate. What is puzzling in the Blanchard-Quah identification is that a 'pure' reallcr

cation shock to services increases employment growth by 23.28 percent in the initial

period, then drops sharply to 2.3 percent after 4 years, while a one standard deviation

aggregate shock reduces the reallocation of service employment by 29.17 percent in

the initial period. \Ve otIer two reasons for this observation. First, it is due to the

distinct nature of realIocation shocks ta service employment. This sector of employ-

ment integrates into almost aIl the other sectors of the economy. Second, from the

Granger-causality tests, EMP 8/T does not Granger-cause E~IP T and EJ\lIP T does

27As mentioned, all tests are outlined in the Appendix.
28p(EMP T, EMP S/T} = -0.11, 50 that ordering is unimportant if one assumes the Cholesky
decomposition.
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not Granger-cause El'dP S/T. The inability of the tests ta reject any of the hypoth-

esis, leads one ta believe that the information content in each variable is not useful

for predicting the other. Changes in St are mostly due ta changes in other sectors'

employment.

ln terms of employment dynamics, this relationship needs a VAR that includes

other variables or simply an alternative approach to investigating it. Given the en-

couraging results of the C-I model, we drop further investigation into the dynamics

of reallocation service shocks and focus on the quantitative effect ta deduce evidence

of the existence of persistence, if any.

The accumulated responses ta a structural shock (one standard deviation) for

rvIA(16) and ~IA(oo)are,

wIA(k=16) ~IA(k = (0)

Bemanke-Sims Yu = 3.171 é'Y1C-12 - 1.108 é'~C-12 Yu = 3.146 é YlC_ t - 1.163 é!l2c-t

Y2t = -0.203 ê YU- 12 + 2.491 ê!l2C-12 Y2t = -0.19 é'Yu_t + 2.538 é'!I2c-t

Blanchard-Quah Ylt = 3.479 é YU- 12 + 0.057 é'Y:ZC-12 Yu = 3.48 ê YIt-A:

Y2t = -1.289 é'YlC-12 + 2.168 é!l2C-12 Y2t = -1.297 ê yu __ + 2.215 ê Y2c -A:

Source: Table 5.8.

Regarding the Lilien hypothesis, Table 5.9 reports the forecast error variance de-

composition of a structural shock that equals one. After 16 periods and using the

Bemanke-Sims identification, a shock ta service' reallocation (term. used to denote

E~IP SfT) is responsible for 4.34 percent variation in the growth rate of employment

and for 84.64 percent of its own variability. For the same period, the same service

shock is responsible for 13.11 percent of employment growth variability. The VAR
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system is overidentified with the Benianke-Sims identification; the likelihood-ratio re­

jects at the 5% level the extra restriction imposed on the structural matrix. Hereafter,

we focus on the results for the Blanchard-Quah identification.

When one assumes that there is no long-run effect on the level of employment

following a 'pure' service shock (i.e., Blanchard-Quah identification), alter 4 years, a

service shock is responsible for 13.11 percent variance in the growth rate of employ­

ment.

Table 5.10 reports the reduced fonn coefficients' estimates. To compute the struc­

tural form coefficients, one has ta multiply the reduced form coefficients by the re­

spective rows of matrix B-1DO.5 (from Table 5.8).

Classical VAR Figures Results

The upper graphs of figures 5.1, 5.2 and 5.3 plot the HP detrended variables - E~œ

T, E~IP MIT and ElVIP 8/T, respectively - used in models C-I and C-II. The lower

graphs plot the sample autocorrelation as weil as the standard error band. The

outliers present in aIl variables during the recessions of the early 1980s and the early

1990s pointed to us the need to include a dummy variable for each periode

Figures 5.4 ta 5.7 illustrate the accumulated impulse rffiponses ta a shock with

the Blanchard-Quah identification. The accumulated response of a shock to E~IP

MIT represents the effects of a manufacturing reallocation shock on the log of total

employment (instead of the growth rate of employment). Similarly, the accumulated

response for a shock to EMP SIT represents the effects of a service reallocation shock

on the log of total employment. Figures 5.6 and 5.7 illustrate the impulse responses
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for normalized variables.

Figure 5.6 illustrates the accumulated impulse response ta a reallocative manu­

facturing shock. The initial eHect of the shock on employment is negative and equals

16.4 percent. Moving labour across sectors - combined with adjustment costs - implies

a decrease in employment. Given the transitory nature of the shock, after 4 years,

employment returns ta its initial pre-shock level. In terms of persistence, the effect of

the shock is felt for a mjnjmum of 10 quarters. The initial negative effects last only

for 2 quarters. After 6 quarters, employment overshoots its lang-run steady state

level and then retums to it after 9 quarters. The labour adjustment process from

manufacturing to total employment lasts for 8 quarters. Coming out of a recession

and following a decline in wealth (due ta the loss of labour incarne), workers supply

more labour during the adjustment and capital build up processes.

In conclusion, from the impulse respanse and the forecast variance decomposition,

one can deduce that the variance of employment is influenced far at least 10 quarters.

Given a transitory shock, employment returns to its initial pre-shock level after 4

years.

Figure 5.7 illustrates the accumulated impulse response ta a reallocative service

shock. The initial effect of the shock on employment is positive and equals 23.28

percent. This observation, combined with the results of the Granger-causality tests

lead us ta eschew modeling service employment in the next chapter. In terms of

persistence, the effect of the shock is felt for a minimum of 10 quarters.
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Table S.l: Residual Analysis

[Slgmficance]

larque-Bera Ljung-Box Lagrange Multiplier
Normality Test Residual Residual ARCH

Autocorrelation
m(2) LB(24) ARCH (24)

EMPT 0.9526 14.1949 8.5763
[0.6211] [0.5842] [0.9984]

EMPMIT 6.1818 22.2956 26.0556
[0.0455] [0.1339] [0.3504]

.

•
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Red.cecl-Form Raid.als
cr(EMPn 0.6305
cr(EMPWf) 0.8646
p(EMP T, EMP Wf) -0.0248

Multivariate Normaüty
Skewness 22.8451

[0.0000]
Kurtosis 744.7952

[0.0000]
Joint 767.6402

[0.0000]

Log-Likelihood -185.1554
Log-Determinant ofthe
Residual variance- -1.2142
covariance Matrix

AlC -0.2985
BIC 0.8089

2.0388 0.4394
Estimated Sum orthe (0.6362) (0.5212)
VMA( OC) ) coefficients
And Standard Errors -0.5494 0.4827

(0.2497) (0.2046)

LR Test for exclusion of the
Last Lag Z(4) 4.5230

[0.3398]
Last 4 Lags Z (16) 14.6581

[0.5498]

(Slgmficance]
(Standard Error)
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Bemanke-Sims Blanchard-Quah
MatrixB B, where B, where

o - inv(B)·SIGMA*inv(B)· o - inv(B)·SIGMA*inv(B)·
EMP T EHP MIT EMP T EHP MIT
1. 0000 0.0000 0.9385 0.2023
0.0000 1.0000 -0.2851 0.9385

1.5409 0.0000 1.4819 0.0000

Matrix 0 112 0.0000 1.9142 0.0000 1. 8600

LR Test for Overidentification
LR-Z(I) 50.4139

Signiticance Level 0.0000

EME' T EMP MIT EMP T EMP MIT

Matrix B·I 0 112 1.5409 0.0000 1. 4879 -0.4009
0.0000 1. 9142 0.4520 1. 8600

Accumulated Effect of a Nonnalized Structural Shock =One Standard Deviation
Out to 16 Steps EHP T EMP MIT EMPT EH? MIT

3.14564 0.81386 3.22949 -0.02154
-0.85054 0.96209 -0.59401 1.15616

Out to <Xl Steps EMP T EH? MIT EMP T EH? MIT
3.14114 0.84116 3.23218 -0.00000

-0.84660 0.92406 -0.59925 1.11819

Normalized Variables
EHP T EHP MIT EMP T EMP MIT

Matrix B-1 0 112 0.6305 0.0000 0.6088 -0.1640
0.0000 0.8646 0.2042 0.8401

Out to 16 Steps EMP T EMP MIT EMP T EM? MIT
1. 28109 0.33300 1. 32140 -0.01127

-0.38416 0.43455 -0.26832 0.52221

Out ta <Xl Steps EMP T EMP MIT EMP T EM? MIT
1.28549 0.34411 1.32250 0.00000

-0.38239 0.41731 -0.21066 0.50505
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Bemanke-Sims Blancbard-Quab

Foreeast Error Variance Decomposition
PeriodO 1.00000 0.00000 0.93231 0.06769

0.00000 1.00000 0.05576 0.94424

Period 1 0.99570 0.00430 0.94313 0.05687
0.05934 0.94066 0.11404 0.88596

Period 2 0.99541 0.00459 0.94359 0.05641
0.05625 0.94375 0.11218 0.88782

Period 3 0.99041 0.00959 0.93947 0.06053
0.05847 0.94153 0.11449 0.88551

Period 4 0.97829 0.02171 0.93041 0.06959
0.05983 0.94017 0.11563 0.88437

Period 5 0.96995 0.03005 0.93119 0.06881
0.06976 0.93024 0.12724 0.87276

Period 6 0.92742 0.07258 0.90323 0.09677
0.09232 0.90768 0.15808 0.84192

Period 7 0.91092 0.08908 0.88975 0.11025
0.09248 0.90752 0.15832 0.84168

Period 8 0.89048 0.10952 0.87364 0.12636
0.09731 0.90269 0.15946 0.84054

Period 9 0.88247 0.11753 0.86566 0.13434
0.09982 0.90018 0.16279 0.83721

Period 10 0.88188 0.11812 0.86542 0.13458
0.10048 0.89952 0.16294 0.83706

Period Il 0.88085 0.11915 0.86415 0.13585
0.10112 0.89888 0.16404 0.83596

Period 12 0.88048 0.11952 0.86411 0.13589
0.10186 0.89814 0.16458 0.83542

Period 13 0.87823 0.12177 0.86225 0.13775
0.10262 0.89738 0.16572 0.83428

Period 14 0.87825 0.12175 0.86181 0.13819
0.10206 0.89794 0.16541 0.83459

Period 15 0.87843 0.12157 0.86198 0.13802
0.10263 0.89737 0.16588 0.83412

Period 16 0.87767 0.12233 0.86122 0.13878
0.10276 0.89724 0.16615 0.83385
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Model C-I
Redaeed Form Coefficients Values

EMPT EMPMrr
1. EMP T{I} 0.49455 -0.31253
2. EMP T{2} -0.12157 0.12191
3. EMPT{3} 0.01768 -0.03662
4. EMPT{4} 0.05490 -0.04470
5. EMP T{5} 0.19273 -0.10146
6. EMPT{6} -0.05469 -0.13565
7. EMP T{7} 0.06917 -0.02125
8. EMP T{8} -0.04663 0.08206
9. EMP Mff{l} 0.05899 -0.05755
10. EMP Mff{2} -0.00936 -0.23199
11. EMP Mff{3} 0.07738 -0.01185
12. EMP M!f{4} 0.07122 -0.03441
13. EMP Mff{S} 0.06735 -0.04075
14. EMP Mff{6} 0.18015 -0.15871
15. EMP Mff{7} 0.07017 0.00516
16. EMP Mff{8} -0.15738 -0.13333
17. DUMI -4.92409 1.23483
18. DUM2 -3.64221 -2.25146
19. Constant 0.38133 3.83456
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Jarque·Bera Ljung·Box Lagrange Multiplier
Normality Test Residual Residual ARCH

Autocorrelation
JB(2) LB(24) ARCH (24)

EMPT 1.1464 21.2679 9.7828
[0.5637] [0.1684] [0.9954]

EMPSrr 3.2615 18.270S 17.9593
[0.1958] [0.3083] [0.8050]

[519mficance]
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Table 5.7

(Slgmficance]
(Standard Error)

Reduced-Form Residuals
a(EMPl) 0.7009
a(EMP SrI) 0.6625
p (EMP T, EMP sm -0.1170

Multivariate Normality
Skewness 109.5324

[0.0000]
Kurtosis 29736.1239

[0.0000]
Joint 29845.6562

[0.0000]

Log-Likelihood -171.3079
Log-Detenninant of the
Residual variance- -1.5479
covariance Matrix

AlC -0.6322
BIC 0.4752

EMPT EMP 8fT
Estimated Sum of the
VMA( CIO ) coefficients 1.83668 -0.74034
And Standard Errors (0.66210) (1.04249)

-0.11124 1.61449
0.48848 0.76912

LR Test for exclusion of the
Last Lag Z(4) 1.9819

[0.7391]
Last 4 Lags Z(16) 10.5523

[0.8362]

.

•
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BernaDke-Sims BlaDchard-Quab
MatrixB B, where B, where

o - inv(B)*SIGHA*inv(B)' o - inv(B}*SIGHA-inv(B)'
EMPT EMP S/T EHPT EHP S/T
1.0000 0.0000 0.8528 -0.3437
0.0000 1.0000 0.3653 0.8528

1.7131 0.0000 1.6158 0.0000
Matrix otl2 0.0000 1.5722 0.0000 1.4116

LR Test for Overidentification
LR-X(l) 64.8082

Significance Level 0.0000

EMP T EMP S/T EMP T EMP S/T
Matrix B-I Dia 1. 7131 0.0000 1.6158 0.5690

0.0000 1.5722 -0.6922 1.4116

Accumulated Effect ofa Normalized Structural Shock = One Standard Deviation
Out to 16 Steps EMP T EMP 5/T EMP T EMP 5/T

3.17105 -1.10858 3.47908 0.05791
-0.20397 2.49111 -1.28911 2.16895

Out to CCl Steps €MPT EMP S/T EMP T EMP 5/T
3.14638 -1.16395 3.48018 0.00000

-0.19056 2.53829 -1. 29724 2.21576

Nonnalized Variables
EMP T EMP 5/T EMP T EMP 5/T

Matrix B-1nl12 0.7009 0.0000 0.6611 0.2328
0.0000 0.6625 -0.2917 0.5949

Out to 16 Steps €MPT EMP 5/T EMP T EMP s/T
1.29748 -0.45359 1. 42352 0.02370

-0.08595 1. 04977 -0.54324 0.91401

Out to co Steps EHP T €MP s/T EME' T EMP sir
1.28739 -0.47625 1. 42397 -0.00000

-0.08030 1. 06965 -0.54667 0.93374
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BeruaDke-SilDs BlaDchard·Quah

Forecast Error VariaDce DecompositioD
Period 0 1.00000 0.00000 0.88967 0.11033

0.00000 1. 00000 0.19383 0.80617

Period 1 0.99905 0.00095 0.89839 0.10161
0.07871 0.92129 0.26193 0.73807

Period 2 0.98702 0.01298 0.89841 0.10159
0.07899 0.92101 0.26274 0.73726

Period 3 0.97630 0.02370 0.88940 0.11060
0.10379 0.89621 0.27360 0.72640

Period 4 0.97294 0.02706 0.88520 0.11480
0.11597 0.88403 0.28755 0.71245

Period 5 0.97200 0.02800 0.88688 0.11312
0.12740 0.87260 0.29208 0.70792

Period 6 0.97217 0.02783 0.88602 0.11398
0.12621 0.87379 0.29122 0.70878

Period 7 0.97129 0.02871 0.88391 0.11609
0.14642 0.85358 0.31585 0.68415

Period 8 0.96509 0.03491 0.87731 0.12269
0.14661 0.85339 0.31576 0.68424

Period 9 0.95893 0.04107 0.87111 0.12889
0.15034 0.84966 0.31562 0.68438

Period 10 0.95769 0.04231 0.87018 0.12982
0.15227 0.84773 0.31602 0.68398

Period Il 0.95767 0.04233 0.87016 0.12984
0.15236 0.84764 0.31607 0.68393

Period 12 0.95765 0.04235 0.87001 0.12999
0.15223 0.84777 0.31600 0.68400

Period 13 0.95764 0.04236 0.86996 0.13004
0.15274 0.84726 0.31648 0.68352

Period 14 0.95735 0.04265 0.86942 0.13058
0.15274 0.84726 0.31650 0.68350

Period IS 0.95668 0.04332 0.86888 0.13112
0.15359 0.84641 0.31632 0.68368

Period 16 0.95660 0.04340 0.86887 0.13113
0.15355 0.84645 0.31628 0.68372
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ModelC-n
Redacecl Form CoefficieDu Values

EMPT EMPSrr
1. EMP T{I} 0.S6366 -0.26882
2. EMP T{2} -0.17991 0.18894
3. EMP T{3} -0.03787 0.07712
4. EMP T{4} -0.00083 -0.19688
5. EMP T{S} 0.17423 0.23282
6. EMP T{6} -0.06583 -0.06184
7. EMP T{7} 0.06925 -0.12330
8. EMP T{8} -0.08272 0.11338
9. EMP Srr{l} -0.03852 0.06448
10. EMP S!f{2} -0.11520 -0.05671
Il. EMP SIf{3} -0.OS562 0.02615
12. EMP Str{4} -0.02666 0.05314
13. EMP SIf{5} -0.02559 0.04405
14. EMP S/f{6} 0.04253 0.09759
15. EMP SIf{7} 0.05341 0.11159
16. EMP Srr{8} -0.09115 0.02262
17. DUMI -4.64465 1.39361
18. DUM3 0.84187 -10.52298
19. Constant 1.01705 -0.00920
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5.6.2 Bayesian VAR results

For the Bayesian VAR models, the results are reported, as weIl as their corresponding

impulse response functions and variance decomposition. Three Bayesian VAR models

are estimated. Each model is estimated using five different parameter specifications,

for a total of 15 sui;models.

The first model (B-I) is a bivariate VAR (=BVAR) including total employment

and manufacturing employment (where total employment is defined as al1 employ-

ment less manufacturing). The second model (B-II) is a bivariate VAR (=BVAR)

including total employment and services employment Cwhere total employment is de-

fined as aIl employment less services). The third model (T-Ill) is a trivariate VAR

C=TVAR) including total employment, manufacturing employment and services em-

ployment (where total employment is defined as all employment less manufacturing

and services). AlI monthly employment series are in log fonn. AIl tabular results are

reported, as weIl as the impulse responses graphs. The different specifications are,

Specification
Univariate OLS
Univariate VAR
Simple Bayesian VAR
Common Bayesian VAR
OLS VAR

Tightness ('Y)
2

0.1
0.1
0.2
2

Weight to off-diagonal (w)
0.001
0.001
0.5
0.5
1.0

•

As the value of w approaches zero, the system approaches a set of univariate autore-

gressions, Le., forcing all coefficients on other than own lags toward zero. A smal1er

value for..., forces the own lag coefficient closer to the prior Mean. A higher value for ...,

erases the Bayesian part from the VAR system and results in a general OLS. For each

specification, the impulse responses are graphed, and the variance decomposition and
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the Theil U statistics are reported. To impose a minimum restrictions on the VAR

in levels, all models are identified with the Bernanke-Sims scheme.

The tables for the variance decomposition read as follows. The first column is the

standard-error of forecast for the variable in the title of the model. The remaining

columns provide the variance decomposition. Each row adds up to 100 percent. For

example, if the value of the last column at step 1 is 88.35 percent, then 88.35 percent

of the one-step forecast error of the variable in the last column is due to the innovation

in the variable title.

The Theil U statistic is a unit free measure. It is computed as the ratio of the

root mean square errors of the model relative to the root mean square errors of the

naive forecast mode!. The naive forecast model is computed assuming no change in

the dependent variable over time. The Theil U statistic is an in-sample performance

measure. The VAR is estimated. before the end of data and the Theil U statistic is

computed as an in-sample forecast. A value of the Theil U statistic higher (lower)

than 1 indicates that the VAR model is worse (better) than the naive one. The

changing patterns in the Theil U values are used to discriminate between different

specifications. A lower Theil U value indicates a better mode!. Once selected, the

impulse responses are examined and conclusions are drawn regarding persistence.

Table 5.12 defines the employment-Ievel data used in the Bayesian VAR estimation

and shows the CANSIM source labels. AlI series are in log fonn and caver the monthly

period from 1976Ml to 1998M12 for a total of 276 observations. We carried a series

of information criteria tests to determine the lag length and we choose 24 lags for the

VAR We included a constant, a trend and two dummy variables in the commonly
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used BVAR. The dummy variables are set to capture both recessioDS. For mode! B-1,

employment is the log-level of total employment minus manufacturing employment.

For mode! B-II, employment is computed as the log-leve! of total employment minus

services employment. The following table reports the residuals analysis for both

Bivariate models. Note that for the Classical VAR, we used the quarter frequency.

Table 5.11 reports the Jarque-Bera normality test, the Lagrange-multiplier seria!

autocorrelation test and the Lagrange-multiplier ARCH test for the reduced farm

VAR residuals. Evidence of deviations from normality appears only for tata! employ­

ment in mode! B-II, where normality is rejected. For both models, the residuals of the

reduced form are serially uncorrelated and no evidence of canditional heteroskedas­

ticity is found.
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larque-Bera Ljung-Box Lagrange Multiplier
Normality Test Residual Residual ARCH

Autocorrelation

MODELB-I

EMPT 0.4377 14.9124 25.4518
[0.8034] [0.7814] [0.3816]

MANUFACTURING 4.9398 15.2519 19.1632
[0.0846] [0.7618] [0.7432]

MODELB-fi

EMPT 7.2552 10.8087 17.6403
[0.0266] [0.9510] [0.8201]

SERVICES 1.7720 12.0973 20.2782
[0.4123] [0.9127] [0.6809]

[Slgmficance]
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Table 5.13 reports - HP filtered29 - basic descriptive statistics for employment

time series &crOSS sectors. Service employment is as variable as total employment.

The highest employment variability is recorde<! for the agriculture sector. Table 5.14

presents the correlation matrix between de-trended employment series. Total. employ-

ment is highly correlated with services employment (0.68), with goods30 employment

(0.77) and with manufacturing employment (0.62). Agricultural employment records

the lowest correlation (0.18) with total employment. For these ressons, we focus on

the dynamic relation between total employment, services employment and manufac-

turing employment.

Tables 5.15 to 5.34 present the results for models B-1 and B-1I. The results include

the Theil U statistic for 5 different specifications of each model (Tables 5.15 to 5.24).

\Ve also report the variance decomposition for each specification of each mode! (Tables

5.25 to 5.34). Tables 5.15 to 5.19 report the Theil U statistics for mode! B-1 (bivariate)

VAR between total emplayment and manufacturing emplayment. The statistics are

reported for al! the 5 specifications. The Theil U statistic far the ste~1 farecast is

lowest within the commonly used Bayesian VAR (specification: 'Y = 0.2 and w =

0.5). 1t equals 0.78 and 0.88 respectively for total employment and manufacturing

employment (ste~1 in Table 5.17).

The ste~1 forecast is computed using 12 observations (i.e., one year). The higher

the forecast steps, the smaller the number ofobservations used ta compute the statistic

and the less reliable it becomes. Base<! on the Theil U statistic, the Bayesian VAR

29Since we are using monthly data, the smoathing parameter À is set ta 14400. See section 2.6 for
details regarding À.
30Goods employment is classified mto manufactwing and non-manufacturing employment.
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specification for the dynamic relation between total employment and manufacturing

employment best fits the data.

Tables 5.20 ta 5.24 present the Theil U statistics for madeI B-ll (bivariate) VAR

between total employment and services employment. For all five specifications, the

ste~l (orecast statistic is lowest within univariate OLS (specification: 'Y = 2.0 and

w = 0.001) for services employment (ste~l in Table 5.20) and equals 0.782. However,

ta forecast total employment in this univariate OLS specification, the Theil U statistic

value is 1.08 (step-l in Table 5.20). This indicates a poor forecasting specification.

Across all models, the commonly used Bayesian VAR (Table 5.23) is the best in terms

of Corecasting ability Cor both total and services employment. The statistic equals 0.88

and 0.87 for total and services employment, respectively.

Given that the Bayesian VAR mode1s were conducted with focus on exploring

empirical regularities. We treat these results with caution. No economic suggestion is

made regarding the behaviour of the statistics. Tables 5.25 ta 5.29 report the variance

decomposition for model B-1 for all parametric specifications. Table 5.25 suggests that

an innovation shock in manufacturing employment is responsible for a variance in the

rest of employment of 1.76 percent after one month (step-l) and has an effect similar

in magnitude up to and including three years (step-36). However, since the Theil U

statistic points to a commonly used Bayesian VAR as a better specification (Table

5.18), Table 5.28 is of interest here and we focus on the commonly Bayesian VAR

results ooly to investigate economic persistence from the impulse responses. Table

5.28 suggests that a shock in manufacturing employment is responsible for a high

(20 percent) variation in the rest of the employment forecast after one year from the
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shock (step-12). The effect djminjshes to 14.3 percent after three years (step-36). The

dynamic relationship between manufacturing employment and the rest ofemployment

is not symmetric. A shock in the rest of employment predicts 19.53 percent variation

in manufacturing employment after 3 years (step-36) and 7.47 percent after one year

(step-12).

Tables 5.30 ta 5.34 report the results for the variance decomposition for model

B-II for ail parametric specifications. Table 5.33 is the variance decomposition for the

commonly used Bayesian VAR between total employment and services employment.

A shock of one percent in services employment is responsible for a maximum of 6.12

percent of the variance of total employment after 30 months (step-30). Thereafter, the

effect of the shock dimjnishes. A one percent shock in the rest of employment proves

powerful in terms of the effects on services employment. Almost one third of services'

employment variation after two years is due ta the shock in total employment. The

effect peaks at 34.44 percent at two years, then slowly decreases.

Results for model T-III are presented in tables 5.35 ta 5.44. Tables 5.35 to 5.39

report the Theil U statistic for the trivariate VAR between total, manufacturing and

services employment. In this setup, total employment is defined as all employment

minus manufacturing and services. Tables 5.40 to 5.44 report the variance decom­

position for model T-III. None of the specifications dominates the others. However,

for manufacturing and services employment, the Bayesian Tri-VAR provides the low­

est Theil U statistic for their forecast. Table 5.38 points ta the usefulness of the

Bayesian approach in describing the dynamic relationship. For step-l forecasts (for

the next month), the Tri-VAR is better than the naive mode! of no change in the de-
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pendent variables. The Theil U value is 0.95 and 0.71 for manufacturing and services

employment, respectively.

Tables 5.40 to 5.44 present the variance decomposition of the tri-VAR Specifically,

the Bayesian approach (Table 5.43) suggests that a one percent shock in total em­

ployment is responsible for 12.24 percent and 51.35 percent variance in manufacturing

and services after 28 months, respectively. A one percent shock in manufacturing em­

ployment influences service employment the most, 18.71 percent effect after two years

(ste~24). A one percent shock in service employment influences equally both total

employment and manufacturing employment over a period of two years.

Figures 5.8 to 5.22 present the impulse responses of all 15 models. \Ve focus on

the commonly Bayesian VAR, i.e., Figures 5.8 and 5.9. Figures 5.10 to 5.14 are the

impulse responses of model B-1. Figures 5.15 to 5.17 are the impulse responses of

model B-I1. Figures 5.18 to 5.22 are the impulse responses of model T-II1.

Model B-I, Figure 5.8 (upper graph) shows that a one percent shock to total.

employment results in a peak influence (0.6 percent) on manufacturing employment

after 7 montbs, then it becomes negligible. The effect of the shock dies after 22

months. In the lower graph, a one percent shock to manufacturing employment

results in a peak of 0.58 percent change in total employment. The influence peaks

after 24 months and persists for 36 months.

Figure 5.9 presents the impulse response for model B-II. The figure shows the dy­

namic relation between total employment and services employment. The upper graph

shows that a one percent shock to total employment influences services employment

by at most 0.32 percent after 15 months. The influence of the shock decreases with
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time and becomes negligible after 36 months. The lower graph shows a one percent

response of total employment to a shock in services employment. The shock reaches

a peak effect at 0.75 percent after 10 months but diminishes quickly thereafter.

Figure 5.21 shows the impulse responses of a shork in each employment series

and the responses of the other two series. The upper graph shows the symmetry

with which a shock to total employment influences both services and manufacturing

employment. The effect on both series is similar, reaching a peak of 0.25 percent and

disappearing after 8 months. The middle graph shows the responses of a shock to

manufacturing employment. The shock mostly affects total employment - reaching

0.4 percent - and, more importantly, the effect persists throughout the time line of 36

months. The lower graph shows the symmetric effect a shock to services employment

has on the economy. A shock of one percent increases both total employment and

manufacturing employment by the same percentage, reaching a peak after 8 months

and then diminishing slowly thereafter.



• •
~
E-fNnUfKturlng

-,
l ,, ,, ,- ,

1 .... _-
1

,-,,
1 ~, ..... _, ......... ~-.

,
" - ... ... ---... ... -. .....

---~-.

, , , ii i i i Iii i i , i , , , , i' i , i i i 1 i i 1 i j , i i , f , i i , , i , i i i i i i , , , , , , , , r,
0 7 14 21 28 35 42 49 56

Months

Plot (scaled) of Responses To Employment
TIghtness 0.20000 othe, 0.50000

1.2

1.0

0.8

.. 0.6

en 0.4.!
C
G» 0.2e
G»

-0.0a.
-0.2

-0.4

-0.6

Plot (scaled) of Responses To E-manufacturing
Tlghtness 0.20000 othe, 0.50000

\
\
\, '"

\ ' ,,\
_,\ 1 \

\ l ,
\ 1 \;"., ,,,

54

EmpIorn-"'
E.m.nulacturïng

48423624 30
Months

18126o

1.0

0.8

CD 0.6m
.!
c

~ 0.4
G»

CL

0.2

0.0

Figure 5.8



• •
~
E·SeMcM

... , ... , , .... - - .... ...
-" ... 1 ,

" , ,- ... ,
1

,.
'---, - ... "'- ... - . .... ---._- ....... ......

i , , i i i i i i 1 i i i i, ,Ii 1 il i i i , t 1 i , i i i , i i i i j i i j, , , i , i , , i i , l

7 14 21 28 35 42 49 56
Months

Plot (scaled) of Responses Ta Employment
Tlghtness 0.2oo00other 0.50000

1.12

0.96

0.80

CI» 0.64
en
J! 0.48C
CI»e 0.32.,
A.

0.16

0.00

-0.16
0

Plot (scaled) of Responses Ta E-Services
Tlghtness 0.20000 other 0.50000

56494235

ErnpIoyrMnI
E·SeMceI

21 28
Months

, ... ... ....
' \ "',

\"- ,. ... " ......

~ ----------------

14

... -

7

1\
\ , \ \
\ ,- , \, ,

o

1.25

1.00

CD
0.75

CI)

S 0.50C•e• 0.25A.

0.00

-0.25

Figure 5.9



•

•

271

5.7 Conclusions

The Lilien (1982) hypothesis argued that 50% of employment variability is due ta

sectoral reallacation. Under difrerent identifying restrictions, Campbell and Kuttner

(1996) found that reallocative shocks are responsible for at least 27% of aggregate em­

ployment variation (See Campbell and Kuttner (1996, p. 113) and Swanson (1999b,

p. 1)).

Here, using Canadian data over the 1976 to 1998 period, across all considered

Bayesian VAR models, the model with a tightness parameter 'Y (standard deviation

of own-lag prior) equal to 0.2 and an off-diagonal tightness parameter w (standard

deviation ofoff-diagonal prior) equal to 0.5, best explained the dynamics between total

employment and manufacturing employment. Also, the same specification proved the

best in terms of forecasting ability for bath total and services employment.

Based only on the Bayesian n~ults, in the short-run, Kaldor's first law holds for

Canadian employment data over the period 1976 ta 1998. A shock in manufacturing

employment of one percent is responsible for at most 20 percent of the variation in

the rest of employment after one year. Using the Classical VAR, a reallocation shock

of one standard deviation in manufacturing is responsible for 13.87 percent variation

in the growth rate of employment after 4 years (Table 5.4).

In terms of variability, the VAR results for the Classical (C-1) and Bayesian (B-1)

models are,
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C-I B-I
Bernanke-Sims Blanchard-Quah

Shock in: EmpM/T EmpM/T Manu!. Emp.
EfFect on variance of: EmpT EmpT Rest of Emp.
1 Year 2.17 % 6.95 % 20.00 %
2 Years 10.95 % 12.63 % 16.35 %
3 Years 11.95 % 13.58 % 14.30 %

Source: Tables 5.4 and 5.27.

The VAR results for the Classical C-II and Bayesian B-II models are,

c-n B-ll
Bemanke-Sims Blanchard-Quah

Shock in: Emp 8/T Emp 8/T Sery. Emp.
Effect on variance of: EmpT EmpT Rest of Emp.
1 Yeu 2.70 % II.48 % 3.29 %
2 Years 3.49 % 12.26 % 5.63 %
3 Years 4.23 % 12.99 % 5.64 %

Source: Tables 5.9 and 5.32.

One should proceed with caution in interpreting the results frOID the above tables.

First, note that the variables are different across the Classical and Bayesian VARs.

SecoDd~ one cannat easily compare the results across approaches. Third, the results

of the Blanchard-Quah identification for model C-II are counter-intuitive for reasons

emphasized in the Classical VAR results section.

Using the Blanchard-Quah identification, we assumed that there is no long-run

effect on the level of employment following a 'pure' manufacturing shock. A manu-

facturing real1ocation shock is responsible for (at mast) 13.87 percent variance in the

growth rate of employment after four years. This is much. lower than the 27 percent

reported for the employment level by Campbell and Kuttner (1996) and definitely

narrower than the 50 percent upper bound suggested by Lilien.
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After four years, a one standard deviation 'pure' sectoral shock to the square of

the growth rate of the fraction of service employment is responsible for at most 13.11

percent variation in the growth rate of employment. Agam, this percentage is much

lower than the reported 27 percent by Campbell and Kuttner (1996).

In terms of persistence and from the impulse response figures, a 'pure' sectoral

shock decreases the employment growth rate by 16.4 percent in the initial periode

The effect of a 'pure' sectoral shock on employment growth is negligible after 4 years.

From the impulse response and the forecast variance decomposition, one can deduce

that employment variability is influenced for at least 10 quarters. Given the transitory

nature of the shock t employment returns to its initial pre-shock level after 4 years.

Regardless of the source of the reallocation shock, ail shocks assert an influence for

at least 2 years.

Note that our results are conditional on the model, approach, specification and

identification used. Given our goal of sectoral exploration, these results suggest that

sectoral shocks are quite significant for aggregate fluctuations. Empirically and in

terms of magnitude, sectoral shocks are less influential than reported in the literature.
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5.8 Appendix: Distributions and Tests

This appendix reproduces the densities referred to in the Bayesian section. The

source is Zellner (1971) and Bauwens et al. (1999). It aIso reports the tests used in

the CIassical VAR estimation process.

5.8.1 The Matricvariate Normal Distribution

Let X and vecX denote a p x q random matrix and its pq-dimensional column ex-

pansion respectively. X is said to have a matricvariate normal distribution with

parameters M E Rpxq, P E CJH Le., X l'"V kINpxq(vecM, Q ® P) if and only if

vecX ""-1 Npq {vecM, Q ® P}. As derived in Bauwens et al. (1999, p. 301), its den-

sity function is given by,

/:tJ(XIM, Q® P)
{

CM'N(P,Q;p,q) }

- x exp { -~ [vec(X - M)T(Q @ p)-lvec(X - M)] } (5.93)

{

CM~(P,Q;p,q) }
- { 1 ["q ~q ii( )Tp-l( )]} 5.94)x exp -'2 L.ti=l ~i=l q Xi - Tnt. Xj - mi

{

CM~(P,Q;p,q) }

- x exp { -~tr [Q-l(X - M)TP-l(X _ M)] } (5.95)

- {(21r)P'l 1P Iq 1Q IP}1/2 (5.96)

•

AIl the properties of the multivariate normal distribution apply to the matricvariate

normal distribution through the vec operator. See Bauwens et al. (1999, pp. 301-302)

for details.
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5.8.2 The Inverted Wishart Distribution

A random matrix ; E Cq has an inverted Wishart distribution with parameters

SE Cq and v > q -1, i.e., ~ - IWq(S,v), if its density function is given by,

(v+q+l)

r1W(~18,v) - C~(8,vjq) 1~ 1 2 exp [-~tr (E-18)] (5.97)

vq q(q - 1) " . 1
CÏ~CS, V; q) = 2-2" 'Ir 4 II r (v + 1 - t) 1s 1-2v

(5.98)
i=1 2

The recursion on the dimension q is the key device for deriving many of this density

properties.

5.8.3 The Jarque-Bera Normality Test

Bera and Jarque (1981)31

BJ = ~ (8kewness) 2 + ~ (Kurtosis - 3)2

Under the null hypothesis of normality, the test statistic is - ~ (2).

5.8.4 The Ljung-Box Seriai Autocorrelation Test

(5.99)

Ljung-Bax (1978) devised the following statistic to test for seriai autocorrelation,

11:

Q(k) = T(T + 2) LCT - m)-lp2(m)
,"=1

(5.100)

•
where k denotes the lag of the sample autocorre1ation. The null hypothesis of linear

independence is tested and the test statistic is ,.", X2(k).

31Bera, Anil K. and Jarque, Carlos M. (1981) "An efficient large sample test for normality of ob­
servations and regressions residuaIs." Working Paper in Econometries no. 40, Australian National
University, Canbetta. AIso as "Model specification Tests: A simultaneous Approach." Journal of
Econometries, vol. 20, pp. 59-82.
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5.8.5 The Granger Causality Test

Granger (1969) proposed32 the following test ta answer the following question: how

useful are some variables in forecasting others? y is said to Granger·cause x, if x can

be forecast better using past x and past y than just past x. One concludes that y

fails ta Granger·cause x if for all s > 0 the mean squared error of a forecast of Xt+s

based on (Xt, Xt-l, ••• ) is the same as the MSE of a forecast of Xt+s that uses both

(Xt, Xt-lt ... ) and (Yh Yt-l, ...). Formally, for linear functions,

(5.101)

Equivalently, x is exogenous in the time series sense with respect to y. Grangerts point

of view was; if an event y cause another event x, then the event y should precede

the event x. This test of causality is based on the autoregressive representation. For

other tests, see Pierce and Haugh (1977) and Geweke, ~Ieese, and Dent (1983) for33

a survey.

(5.102)

(5.103)

Then, one constructs an F test of the null hypothesis,

(5.104)

•
32Granger, Clive W. J. (1969) "lnvestigating Causal Relations by Econometrie Models and Cross­
Spectral Methods." Econometrica, vol. 31, pp. 424-438.
33Pierce, David A. and Haugh, Larry D. (1977) "Causality in Temporal Systems: Characterization
and a Survey." Joumal of Econometries, vol. 5, pp. 26~293.

Geweke, John. Meese, Richard. and Dent, Warren. (1983) "Comparïng Alternative Tests of Causal­
ity in Temporal Systems: Analytic Results and Experimental Evidence.n Journal of Econometries,
vol. 21, pp. 161·194.
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The test statistic is

(5.105)

where RB51 and RS50 refer to the SUIn ofsquared residuals of the regression equation

(5.102) and of a univariate autoregression of x, respectively. One rejects the null that

y does Dot Granger-cause x if 5 is greater than the 5 percent critical values for a

5.8.6 The ARCH Test

This test is based on the notion that the nonlinearity in the residuals is of the multi-

pUcative type.

where R2 is the coefficient of determination of the following regression

p

e~ = 00 +L Qie~_i + Vt

,=1

(5.106)

(5.107)

•

Under the null hypothesis of no ARCH eifect, the statistic L~I is X2(P). \Veiss (1984)34

concluded that ignoring the ARCH efl'ect will result in identifying ARMA models

containing too many parameters, i.e., overparametrized. This leads to a downward

bias in the standard errors associated with the parameters of the mode!.

34Weiss, Andrew A. (1984) "ARMA models with ARCH errors." Journal of Time Series Analysis,
vol. 5, pp. 129-143.
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• Table 5.12
r-::C~AN~S~IM-=-=S~O":"":U~R~CE=-------------

MONTHLYDATAFROM 1976:1 Ta 1998:12

TOTAL EMPLOYMENT
EMPLOYMENT-GOODS
EMPLOYMENT - PRIMARY
EMPLO~T-AGRICULTURE

E~LO~T-~AC~G

EMPLOYMENT-SERVlCES

0980595
0980626
0980627
D980628
D980634
D980638

•

Label
Title

Subtitle

Factor
Unit
Source
Update
Period
Frequenc:y

Label
Tide

Subtitle

Factor
Unit
Source
Update
Periocl
Frequenc:y

Label
Title

Subtitle

: D980595
:COALFCHARACTE~STICSMONTHLYSA/EMœLOYMENTAGEI5+SA

CDA
: CANADA, LABOUR FORCE CHARACTERISTICS, MONTm..y FROM JAN

1976, SEASONALLy ADJUSTEO. INCLUDES LF CHARACTERISnCS BV
AGE &. SEX; LABOUR FORCE, UNEMPLOYMENT &. UNEMPLOYMENT RATE
SY INDUSTRY; EMœLOYMENT BY INDUSTRY, OCCUPATION &. CLASS OF
WORKER; HOURS Of WORK SY INDUSTRY.

:THOUSAND
: PERSONS
: SOOS 3701 STC (71-001)
: II April, 2000
: January 1976 - March 2000
: monthly

: D968117 (WAS 0980626 from 1976 to 1998)
: COALFCHARACTERISTICSMONTHLYSA/EMœLOYMŒNT
GOOOS-PROOUCING SECTOR SA CDA

: CANADA, LABOUR FORCE CHARACTERISnCS, MONTHLy FROM JAN
1976, SEASONALLy ADJUSTED. INCLUDES lF CHARACTERlSnCS SV
AGE &. SEX; LABOUR FORCE, UNEMPlOYMENT &. UNEMPLOYMENT RATE
SY INDUSTRY; EMPLOYMENT SY INDUSTRY, OCCUPAnON & CLASS Of
WORKER; HOURS Of WORK BY INDUSTRY.

:THOUSAND
: PERSONS
: SODS 3701 STC (71-001)
: 11 April, 2000
: January 1987 - Marc:h 2000
: monthly

: 0989542 (WAS 0980627 from 1976 to 1998)
: CDA lF CHARACTERISTICS MONTHLy SA 1EMPLOYMENT PRIMARY OCC
SACOA

: CANADA, LABOUR fORCE CHARACTERISnCS, MONTHLy FROM JAN
1976, SEASONALLy ADJUSTED. INCLUDES LF CHARACTERISnCS BV
AGE &. SEX; LABOUR fORCE, UNEMPLOYMENT &. UNEMPLOYMENT RATE
SY INDUSTRY; EMPLOYMENT SY INDUSTRY, OCCUPATION &. CLASS Of
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Façtor
Unit
Source
Update
Periocl
Frequency

Label
Title

Subtitle

Factor
Unit
Source
Update
Period
Frequency

Label
Title

Subtitle

Factor
Unit
Source
Update
Period
Frequency

Label
Title

Subtitle

Factor
Unit
Source
Update
Period
Frequency
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WORKER; HOURS OF WORK SY INDUSTRY.
:TIlOUSAND
:PERSONS
: SODS 3701 STC (71-001)
: Il April, 2000
: January 1987 - March 2000
: monthly

: 0968118 (WAS 0980628 ftom 1976 to 1998)
: COA LF CHARACTERISTICS MONllILy SA 1EMPLOYMENT AGRICUL11IRE
SACOA

: CANADA, LABOUR FORCE CHARACTERISnCS, MONTHLy FROM JAN
1976, SEASONALLY ADJUSTED. INCLUDES LF CHARACTERISnCS sy
AGE & SEX; LABOUR FORCE, UNEMPLOYMENT" UNEMPLOYMENT RATE
SY INDUSTRY; EMPLOYMENT SY INDUSTRY, OCCUPAnON" CLASS OF
WORKER; HOURS Of WORK BY INDUSTRY.

:THOUSAND
: PERSONS
: SDOS 3701 STC (71-001)
: Il April, 2000
: January 1987 - March 2000
: monthly

: 0968122 (WAS D980634 trom 1976 to 1998)
: COA LF CHARACTERISnCS MONTHLy SA 1EMPLOYMENT
MANUFAC~GSACDA

: CANADA, LABOUR FORCE CHARACTERlSnCS, MONTHLy FROM JAN
1976, SEASONALLy ADJUSTED. lNCLUDES LF CHARACTERISnCS sy
AGE" SEX; LABOUR FORCE, UNEMPLOYMENT" UNEMPLOYMENT RATE
SY INDUSTRY; EMPLOYMENT BY INDUSTRY, OCCUPATION" CLASS OF
WORKER; HOURS Of WORK SY INDUSTRY.

:THOUSAND
:PERSONS
: SDOS 3701 STC (71-001)
: Il April, 2000
: January 1987 - March 2000
: monthly

: 0968123 (WAS 0980638 trom 1976 to 1998)
: CDA LF CHARACTERISnCS MONTHLy SA 1EMPLOYMENT
SERVICES-PRODUCING SECTOR SA CDA

: CANADA, LABOUR FORCE CHARACTERISnCS, MON1lfi..y FROM JAN
1976, SEASONALLY ADJUSTED. INCLUDES LF CHARACTERISnCS BY
AGE" SEX; LABOUR fORCE, UNEMPLOYMENT" UNEMPLOYMENT RATE
SY INDUSTRY; EMPLOYMENT SY INDUSTRY, OCCUPAnON" CLASS OF
WORKER; HOURS Of WORK SY INDUSTRY.

:THOUSAND
:PERSONS
: SDOS 3701 STC (71-001)
: 11 April, 2000
: January 1987 - March 2000
: monthly
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• TableS.13

DESCRIPTIVE STATISTICS fOR CANADIAN EMPLOYMENT BY INDUSTRY

Series Obs Mean St-Dey MIN MAX CV
TOTALEMP 276 12160.40 1291.73 9694.20 14563.40 0.10622
GOODSEMP 276 3644.39 160.85 3358.20 3957.60 0.04414
PRIMARYEMP 276 749.39 34.77 675.30 845.20 0.04639
AGRIEMP 276 463.44 25.96 411.10 511.00 0.05601
MANUFEMP 276 2069.20 113.66 1844.50 2299.10 0.05493
NON-DURABLE MANUF 276 1051.38 50.03 935.60 1164.60 0.04758
DURABLE MANUF EMP 276 1017.81 70.38 876.10 1157.70 0.06915
SERVEMP 276 8515.85 1226.24 6258.60 10659.80 0.14399

HP-FILTERED
Obs Mean St-Dey MIN MAX

TOTALEMP 276 0.000 0.0047 -0.0175 0.0129
GOODSEMP 276 0.000 0.0112 -0.0336 0.0336
PRIMARYEMP 276 0.000 0.0183 -0.0586 0.OS08
AGRIEMP 276 0.000 0.0232 -0.0550 0.0813
MANUFEMP 276 0.000 0.0131 -0.0452 0.0358
NON-DURABLE EMP 276 0.000 0.0186 -0.0612 0.0414
DURABLE MANUF EMP 276 0.000 0.0169 -0.0535 0.0391
SERVEMP 276 0.000 0.0043 -0.0118 0.0118

Table 5.14

CORRELATION MATRIX for CANADlAN EMPLOYMENT by INDUSTRY
HP-FILTERED MONTHLy DATA

•

irOTAL EMP (T)
GOODS EMP (G)
PRIMARY EMP (P)

~GRIEMP(A)

MANUF EMP (M)
~ON-DURMANUF EMP (NO-M)

PURABLE MANUF EMP (D-M)
SERVEMP(S)

T G P A M NO-M D-M S
1.000
0.770 1.000
0.404 0.568 1.000
0.189 0.349 0.782 1.000
0.627 0.864 0.324 0.180 1.000
0.331 0.570 0.141 0.105 0.779 1.000
0.616 0.722 0.353 0.163 0.701 0.099 1.000
0.680 0.065 -0.021 -0.110 -0.002 -0.118 0.129 1.000



• TableS.!5

UNIVARlATE OLS
TIOHTNESS =2.0 AND OTHER =0.001
FORECASTSTATSFORTOTALE~

Step MeanError M-Abs-E RMS Error Theil U N.Obs

1 0.0016727 0.0027867 0.0034271 0.7521584 12

2 0.0034727 0.0043482 0.0056645 0.7195202 Il
3 0.0057194 0.0057821 0.0081841 0.7322284 10

4 0.0086669 0.0090463 0.0109629 0.7495283 9

5 0.0109197 0.0109197 0.0133081 0.7800742 8

6 0.0130572 0.0130572 0.0151628 0.773552 7

7 0.0150176 0.0150176 0.0157095 0.7289284 6

8 0.0178576 0.0178576 0.0181958 0.7363538 5

9 0.0214799 0.0214799 0.0216058 0.7496881 4

10 0.0228395 0.0228395 0.0228655 0.7406318 3

Il 0.0259076 0.0259016 0.0259079 0.7566061 2

12 0.0279762 0.0279762 0.0279762 0.7728518 1

FORECAST STArS FOR MANUF EMP
Step Mean Error M-Abs-E RMS Error Theil U N.Obs

1 0.0021936 0.0096066 0.0117538 0.9760758 12

2 0.0038035 0.0146427 0.0176497 0.9659807 Il

3 0.0036875 0.0182561 0.0224189 0.9852402 10

4 -0.000368 0.0181366 0.0205055 0.8712569 9
5 -0.001927 0.0186495 0.0211061 0.842223 8

6 -0.003673 0.0171415 0.020618 0.8114458 7

7 -0.004157 0.0131815 0.0147045 0.7331044 6

8 -0.002429 0.0072416 0.0086208 0.6170038 5

9 0.0012839 0.0074125 0.0079519 0.5962764 4

10 0.0156558 0.0156558 0.0160054 2.8414892 3
Il 0.0246708 0.0246708 0.0246998 3.2210737 2

12 0.0294555 0.0294555 0.0294555 4.2811652 1

•
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• TableS.I'
Univariate VAR
TIGHTNESS =0.1 AND OTHER =0.001
FORECASTSTATSFORTOTALE~

Step MeanError M-Abs-E RMS Errer Theil U N.Obs

1 0.001607 0.0028211 0.0035296 0.7746607 12

2 0.0034605 0.0045158 0.0057629 0.7320109 Il

3 0.0055028 0.005915 0.0081977 0.7334428 10

4 0.0083015 0.0088376 0.0107862 0.7374477 9

S 0.01018 0.0102134 0.0127451 0.7470742 8

6 0.0120432 0.0120432 0.014414 0.7353499 7

7 0.0138203 0.0138203 0.01458 0.6765171 6

8 0.0164486 0.0164486 0.0168481 0.6818151 5

9 0.0201716 0.0201716 0.0202898 0.7040228 4

10 0.0213819 0.0213819 0.0214256 0.6939935 3

Il 0.0243668 0.0243668 0.024368 0.7116349 2

12 0.0259546 0.0259546 0.0259546 0.7170036 1

FORECAST STATS FOR MANUF EMP
Step Mean Error M-Abs-E RMS Errar Theil U N.Obs

1 0.0014465 0.0093345 0.0116346 0.9661758 12

2 0.0026764 0.0142987 0.0175363 0.9597773 Il

3 0.0021034 0.0179809 0.0220548 0.9692395 10

4 -0.00251 0.0178888 0.020811 0.8842361 9

5 -0.004689 0.0185088 0.0214261 0.8549953 8

6 -0.007084 0.0184439 0.0213083 0.8386143 7

7 -0.008093 0.0143181 0.016126 0.8039745 6

8 -0.006933 0.0092213 0.0101478 0.726294 5

9 -0.00431 0.0084418 0.00987 0.7401038 4

10 0.0090406 0.0090406 0.0100797 1.7894769 3

Il 0.0170499 0.0170499 0.0171459 2.2359736 2

12 0.0187721 0.0187721 0.0187721 2.7284029 1

•
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SIMPLE BAYESIAN VAR
TIGHTNESS =0.1 AND OTHER =0.5
FORECAST STATS FOR TOTAL EAoiP
Step Mean Error M-Abs-E RMS Error Theil U N.Obs

1 0.0014734 0.0029452 0.003641 0.7991053 12

2 0.0031935 0.0045192 0.006067 0.7706402 Il

3 0.0050239 0.0063723 0.0085601 0.7658645 10

4 0.0073253 0.0084532 0.0109347 0.7475985 9

5 0.0087536 0.0094848 0.0124638 0.730584 8

6 0.0100925 0.0106216 0.0133546 0.6813034 7

7 0.0116339 0.0116339 0.0127906 0.5934882 6

8 0.0139913 0.0139913 0.014497 0.5866693 5

9 0.0173461 0.0173461 0.0174547 0.6056499 4

10 0.0188784 0.0188784 0.0189428 0.613573 3

Il 0.0221716 0.0221716 0.0221807 0.6477577 2

12 0.0237108 0.0237108 0.0237108 0.6550197 1

FORECAST STATS FOR MANUF EMP
Step Mean Errar M-Abs-E RMS Errar Theil U N.Obs

1 0.0002889 0.0084766 0.0108582 0.9017032 12

2 0.0010762 0.0131693 0.0155608 0.8516569 Il

3 0.0008308 0.0162474 0.0193382 0.8498545 10

4 -0.002135 0.0169377 0.020666 0.8780768 9

5 -0.003054 0.0182353 0.0223201 0.8906689 8

6 -0.004941 0.0185658 0.0216222 0.850967 7

7 -0.007116 0.0160408 0.0170961 0.8523379 6

8 -0.005787 0.0103302 0.0105196 0.7529046 5

9 -0.001436 0.0072493 0.0079955 0.5995482 4

10 0.0123675 0.0123675 0.0136687 2.4266484 3

Il 0.0225094 0.0225094 0.0225129 2.9358746 2

12 0.0258313 0.0258313 0.0258313 3.7544124 1

• TableS.17

•



• TableS.18

COMMONLy USED BAYESIAN VAR
TIOHTNESS = 0.2 AND OTIŒR = 0.5
FORECAST STATS FOR TOTAL EMP
Step MeanError M-Abs-E RMS Erroe Theil U N.Obs

1 0.0014247 0.002927 0.0035977 0.7896079 12

2 0.0030361 0.0043657 0.0060657 0.7704837 Il

3 0.0048892 0.0064376 0.008631 0.7722129 10

4 0.007093 0.0084017 0.0110526 0.7556573 9

5 0.0085861 0.0097792 0.0127028 0.7445893 8

6 0.0097783 0.0104359 0.0133346 0.6802867 7

7 0.0112327 0.0112327 0.0126077 0.5850022 6

8 0.0134269 0.0134269 0.0139966 0.5664195 5

9 0.0163692 0.0163692 0.0165052 0.5727046 4

10 0.017941 0.017941 0.017985 0.5825481 3

Il 0.0213031 0.0213031 0.0213079 0.6222693 2

12 0.0232047 0.0232047 0.0232047 0.6410378 1

FORECAST STATS FOR MANUF EMP
Step Mean Error M-Abs-E RMS Error Theil U N.Obs

1 -0.000244 0.0082155 0.0106981 0.8884065 12

2 5.714E-05 0.0126666 0.0149493 0.8181887 Il

3 -0.000471 0.0157365 0.0186111 0.8178999 10

4 -0.003377 0.0166761 0.0203388 0.8641724 9

5 -0.004369 0.0179516 0.0220638 0.8804412 8

6 -0.006731 0.0186372 0.0216912 0.8536818 7

7 -0.009697 0.016346 0.0181336 0.9040657 6

8 -0.008788 0.0124489 0.0127213 0.9104865 5

9 -0.004843 0.0075531 0.0084194 0.6313353 4

10 0.0087291 0.0087291 0.0102686 1.8230225 3

Il 0.0189701 0.0189701 0.0189739 2.4743666 2

12 0.0237665 0.0237665 0.0237665 3.4543131 1

•
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• TableS.19

OLS VAR
TIGHlNESS =2.0 AND OTHER =1.0
FORECAST STATS FOR TOTAL EMP
Step Mean Error M-Abs-E RMS Error Theil U N.Obs

1 0.0013945 0.002789 0.0035537 0.779956 12
2 0.0029152 0.0043989 0.0060105 0.7634691 Il

3 0.0048093 0.0063726 0.0086569 0.7745296 10
4 0.0069448 0.0084638 0.011119 0.7601956 9
5 0.0085488 0.0100119 0.0129049 0.7564394 8
6 0.0096205 0.0103992 0.0133969 0.6834625 7
7 0.0110386 0.0110386 0.0126754 0.5881439 6
8 0.0131067 0.0131067 0.0138264 0.5595299 5
9 0.0156254 0.0156254 0.0158073 0.548487 4

10 0.0172525 0.0172525 0.0172827 0.5598009 3
Il 0.0205095 0.0205095 0.020518 0.5992021 2
12 0.0226438 0.0226438 0.0226438 0.6255418 1

FORECAST STArS fOR MANUF EMP
Step Mean Error M-Abs-E RMS Error Theil U N.Obs

1 -0.000633 0.0079918 0.0107059 0.8890559 12

2 -0.000625 0.0125939 0.0146735 0.8030947 Il

3 -0.001346 0.0156326 0.0183083 0.8045911 10
4 -0.004207 0.016696 0.0203486 0.8645897 9

5 -0.005298 0.0182794 0.021737 0.867401 8

6 -0.008175 0.0182987 0.0215338 0.8474892 7

7 -0.011523 0.0161183 0.0187691 0.9357499 6

8 -0.010678 0.013399 0.0140802 1.0077465 5

9 -0.007554 0.0084313 0.0099451 0.745736 4

10 0.0058173 0.0062679 0.0076346 1.3553969 3

Il 0.0161602 0.0161602 0.0161624 2.1077203 2

12 0.021264 0.021264 0.021264 3.090584 1

•
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• TableS.10

UNIVARIATE OLS
TIGHTNESS = 2.0 AND OTHER = 0.001
FORECAST STATS FOR TOTAL EMP
Step MeanError M-Abs-E RMS Error Theil U N.Obs

1 0.0022544 0.006215 0.0079894 1.08573 12

2 0.0039435 0.0094213 0.0114939 1.0452384 Il

3 0.0053808 0.0131603 0.0157363 1.1113262 10

4 0.0034572 0.013256 0.014545 1.0206347 9

5 0.003035 0.0128292 0.0143061 0.9830675 8

6 0.0022756 0.0113019 0.0131741 0.9805946 7

7 0.0026777 0.0063859 0.0080823 0.7877344 6

8 0.0053137 0.0076964 0.0091971 1.23429 5

9 0.0089196 0.0089196 0.0108846 2.2092925 4

10 0.0194563 0.0194563 0.0197185 1.7377428 3

Il 0.0236425 0.0236425 0.023649 1.4594222 2

12 0.0299192 0.0299192 0.0299192 1.4615068 1

FORECASTSTATSFORSERVE~

Step Mean Errar M-Abs-E RMS Errar Theil U N.Obs

1 0.0014984 0.0030992 0.0038371 0.7822123 12

2 0.00325 0.004319 0.0062066 0.7569028 Il

3 0.0051046 0.0065186 0.0089595 0.7515565 10

4 0.0075765 0.0088094 0.0114716 0.7371194 9

5 0.0090112 0.0101042 0.0130369 0.7280364 8

6 0.0101661 0.010872 0.013759 0.6693107 7

7 0.0117187 0.0117187 0.0135685 0.600136 6

8 0.0141362 0.0141362 0.0152338 0.5915024 5

9 0.0171646 0.0171646 0.0173703 0.5808457 4

10 0.0177315 0.0177315 0.0178535 0.5615521 3
Il 0.0205521 0.0205521 0.020S83 0.5839924 2

12 0.0205594 0.0205594 0.0205594 0.5753333 1

•
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• Table 5.21

Univariate VAR
TIGHTNESS =0.1 AND OTHER =0.001
fORECASTSTATSFORTOTALEMœ
Step Mean Error M-Abs-E RMSError Theil U N.Obs

1 0.0025675 0.0062123 0.0078056 1.0607534 12

2 0.0046412 0.0094955 0.0117152 1.0653588 Il
3 0.0061531 0.0127713 0.0156481 1.1050982 10

4 0.0046721 0.0129759 0.0145654 1.0220662 9

5 0.00477 0.0130995 0.0145906 1.0026157 8

6 0.0044332 0.0114203 0.013446 1.0008341 7

7 0.0052897 0.0079833 0.0097977 0.954931 6

8 0.0082957 0.0087357 0.0108347 1.4540661 5

9 0.0119032 0.0119032 0.0130251 2.6437387 4

10 0.0224183 0.0224183 0.0225531 1.9875541 3

Il 0.02793 0.02793 0.0279341 1.7238647 2

12 0.034134 0.034134 0.034134 1.6673953 1

FORECASTSTATSFORSERVEMœ
Step Mean Error M-Abs-E RMSError Theil U N.Obs

1 0.0014069 0.0031677 0.0038944 0.7938901 12

2 0.0031652 0.0041939 0.0061714 0.7526119 Il

3 0.0048817 0.0066515 0.0089152 0.7478414 10

4 0.0072798 0.0085402 0.0113315 0.7281166 9

5 0.0084473 0.0096962 0.0125981 0.7035334 8

6 0.0096438 0.0105643 0.013465 0.6550066 7

7 0.0110512 0.0110512 0.0129624 0.5733264 6

8 0.0131516 0.0131516 0.0142864 0.554718 5

9 0.0163764 0.0163764 0.0165757 0.5542744 4

10 0.0168571 0.0168571 0.0170086 0.5349769 3

Il 0.0195003 0.0195003 0.0195367 0.5543044 2

12 0.0191512 0.0191512 0.0191512 0.5359258 1

•
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• Table 5.22

SIMPLE BAYESIAN VAR
TIGHTNESS =0.1 AND OTHER =0.5
FORECAST STATS FOR TOTAL EMP
Step MeanError M-Abs-E RMS Error Theil U N.Obs

1 0.0008871 0.0049808 0.0066245 0.9002462 12

2 0.0017751 0.0074065 0.0090329 0.8214364 Il

3 0.0025544 0.0106205 0.0121801 0.8601832 la
4 0.0009716 0.0115657 0.0128471 0.9014971 9

5 0.000362 0.0120282 0.0138162 0.9493989 8

6 -0.00134 0.0102889 0.0126695 0.9430391 7

7 -0.002762 0.0078267 0.0090253 0.879651 6

8 -0.00176 0.005061 0.0061032 0.8190721 5

9 0.0008909 0.0038443 0.0042118 0.8548826 4

10 0.0091922 0.0091922 0.0093436 0.8234249 3

Il 0.0153169 0.0153169 0.0153301 0.9460501 2

12 0.0196141 0.0196141 0.0196141 0.9581181 1

FORECASTSTATSFORSERVEMœ
Step Mean Error M-Abs-E RMS Error Theil U N.Obs

1 0.0015976 0.003482 0.0041914 0.854447 12

2 0.0034307 0.0051116 0.0068889 0.8401142 Il

3 0.0050329 0.0076129 0.0097513 0.8179782 10

4 0.0070229 0.0090984 0.0121117 0.7782487 9

5 0.007884 0.0098428 0.0130334 0.727842 8

6 0.0087428 0.0099882 0.0131848 0.6413749 7

7 0.0101321 0.0102729 0.0122825 0.543256 6

8 0.0124438 0.0124438 0.0134958 0.5240183 5

9 0.0159074 0.0159074 0.0160491 0.536667 4

la 0.0173756 0.0173756 0.0174783 0.5497519 3

Il 0.0203652 0.0203652 0.0203818 0.5782841 2

12 0.0211998 0.0211998 0.0211998 0.593255 1

•
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• Table 5.23

COMMONLy USED BAYESIAN VAR
TIGHTNESS =0.2 AND OTHER =0.5
FORECAST STATS FOR TOTAL EMP
Step MeanError M-Abs-E RMS Error Theil U N.Obs

1 0.0003136 0.004683 0.0064767 0.8801573 12
2 0.0008338 0.0067347 0.0082878 0.7536775 Il

3 0.0015321 0.010158 0.0114708 0.810086 10
4 -0.000209 0.0114397 0.0127437 0.8942406 9
5 -0.001139 0.0118865 0.0139067 0.9556224 8

6 -0.00352 0.0103964 0.0130293 0.9698145 7

7 -0.005678 0.0076778 0.0100154 0.9761471 6

8 -0.005231 0.0068466 0.0078569 1.0544348 5

9 -0.003215 0.00377 0.0054939 1.1151225 4

10 0.004657 0.004657 0.0049277 0.4342664 3

Il 0.0101671 0.0101671 0.0101807 0.6282695 2

12 0.0140976 0.0140976 0.0140976 0.6886477 1

FORECASTSTATSFORSERVEMœ
Step Mean Error M-Abs-E RMS Error Theil U N.Obs

1 0.0016337 0.0035023 0.0042685 0.870168 12

2 0.0033753 0.0055531 0.0071047 0.8664335 Il

3 0.004881 0.0077728 0.0099633 0.8357621 10
4 0.0066828 0.0093209 0.0123242 0.7919034 9

5 0.0074666 0.0100226 0.0132847 0.7418739 8

6 0.0079436 0.0100981 0.0129289 0.6289262 7

7 0.0091676 0.0096404 0.0116932 0.5171924 6

8 0.0114542 0.0114542 0.0126532 0.4913003 5

9 0.0146708 0.0146708 0.0148677 0.4971613 4

10 0.0162189 0.0162189 0.0163171 0.5132285 3

Il 0.0193309 0.0193309 0.0193509 0.5490334 2

12 0.0205606 0.0205606 0.0205606 0.5753655 1

•
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• Table 5.24

OLS VAR
T1GHlNESS = 2.0 AND OTHER =1.0
FORECAST STATS FOR TOTAL EMP
Step MeanError M-Abs-E RMS Error Theil U N.Obs

1 -0.000158 0.0046158 0.0065313 0.8875797 12

2 0.000183 0.0065725 0.0078669 0.7153994 Il

3 0.0009088 0.0097087 0.0109709 0.7747844 10
4 -0.000837 0.0116674 0.0128942 0.9048026 9
5 -0.001812 0.0118818 0.0138718 0.9532247 8
6 -0.004699 0.0099652 0.0130117 0.9685034 7

7 ..0.007131 0.0076243 0.0105862 1.0317799 6
8 -0.006883 0.0070865 0.0087874 1.1793065 5
9 -0.005573 0.0055731 0.0080058 1.6249721 4

10 0.002304 0.0030482 0.0034999 0.3084353 3
Il 0.0073337 0.0073337 0.0074242 0.4581614 2

12 0.0093857 0.0093857 0.0093857 0.4584763 1

FORECAST STATS FORSERVEMœ
Step Mean Error M..Abs-E RMS Error Theil U N.Obs

1 0.0016936 0.003534 0.0044221 0.9014775 12

2 0.0034031 0.0058834 0.0072778 0.8875389 Il

3 0.0048144 0.0078039 0.0100496 0.8430036 10

4 0.0065504 0.0093539 0.0124746 0.8015685 9

5 0.0073844 0.0102634 0.0135414 0.7562108 8

6 0.0075562 0.0101217 0.0127863 0.6219898 7

7 0.0087522 0.0094342 0.0114973 0.5085281 6

8 0.0111219 0.0111219 0.0124576 0.4837083 5

9 0.0140872 0.0140872 0.0143378 0.4794428 4

10 0.0157015 0.0157015 0.0158098 0.4972701 3

Il 0.0189535 0.0189535 0.0189936 0:5388957 2

12 0.0204172 0.0204172 0.0204172 0.5713535 1

•
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Table 5.25

UNIVARIATE OLS TIGHTNESS =2.0 AND OTHER =0.001
TOTALEMP MANUFACTIJRING EMP
Step St-Dev TOT MANUF Step St-Dey TOT MANUF

1 0.00306 100 0 1 0.00909 1.76798 98.232

2 0.00417 100 0.00001 2 0.01257 1.76153 98.2385

3 0.00545 100 0.00002 3 0.01538 1.75266 98.2473

4 0.00666 99.9999 0.00006 4 0.01808 1.74144 98.2586

5 0.00787 99.9999 0.00011 5 0.02080 1.72931 98.2707

6 0.00916 99.9998 0.00019 6 0.02298 1.71663 98.2834

7 0.01014 99.9997 0.00031 7 0.02468 1.70377 98.2962

8 0.01120 99.9996 0.00045 8 0.02645 1.6912 98.3088

9 0.01216 99.9994 0.00062 9 0.02860 1.67981 98.3202

10 0.01308 99.9992 0.00081 10 0.03075 1.67039 98.3296

Il 0.01393 99.999 0.00102 Il 0.03259 1.66246 98.3375

12 0.01469 99.9988 0.00124 12 0.03455 1.65658 98.3434

13 0.01540 99.9986 0.00145 13 0.03621 1.65216 98.3478

14 0.01607 99.9984 0.00164 14 0.03754 1.64888 98.3511

15 0.01667 99.9982 0.00179 15 0.03887 1.64735 98.3527

16 0.01732 99.9981 0.00187 16 0.04000 1.64709 98.3529

17 0.01807 99.9982 0.00185 17 0.04096 1.64795 98.3521

18 0.01878 99.9982 0.00178 18 0.04175 1.64963 98.3504

19 0.01946 99.9983 0.00167 19 0.04247 1.65244 98.3476

20 0.02005 99.9984 0.00158 20 0.04326 1.65698 98.343

21 0.02064 99.9985 0.00153 21 0.04394 1.66239 98.3376

22 0.02120 99.9984 0.00163 22 0.04448 1.66808 98.3319

23 0.02168 99.998 0.00198 23 0.04522 1.67689 98.3231

24 0.02223 99.9973 0.00272 24 0.04587 1.68623 98.3138

25 0.02272 99.996 0.00405 25 0.04637 1.69528 98.3047

26 0.02323 99.9939 0.00608 26 0.04679 1.7045 98.2955

27 0.02372 99.991 0.00902 27 0.04717 1.71421 98.2858

28 0.02419 99.981 0.01301 28 0.04749 1.72396 98.276

29 0.02467 99.9818 0.01816 29 0.04773 1.73328 98.2667

30 0.02512 99.9754 0.02464 30 0.04793 1.74261 98.2574

31 0.02557 99.9675 0.03248 31 0.04814 1.75295 98.2471

32 0.02603 99.9583 0.04115 32 0.04831 1.76313 98.2369

33 0.02650 99.9475 0.05247 33 0.04842 1.77205 98.228

34 0.02697 99.9353 0.06469 34 0.04851 1.78123 98.2188

3S 0.02741 99.9215 0.07853 35 0.04857 1.78946 98.2105

36 0.02783 99.906 0.09398 36 0.04859 1.79579 98.2042
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TableS.26

UNIVARIATE VAR TlGHTNESS =0.1 AND OTHER= 0.001

TOTALEMP MANUFACTURING EMP

Step St-Dey TOT MANUF Step St-Dey TOT MANUF
1 0.00312 100 0 1 0.00920 1.6931 98.3069

2 0.00438 100 0 2 0.01282 1.69311 98.3069

3 0.00562 100 a 3 0.01566 1.69314 98.3069

4 0.00682 100 0 4 0.01832 1.69319 98.3068

5 0.00800 100 0 S 0.02090 1.69326 98.3067

6 0.00922 100 0 6 0.02310 1.69335 98.3067

7 0.01026 100 0 7 0.02495 1.69346 98.3065

8 0.01129 100 0 8 0.02683 1.69361 98.3064

9 0.01227 100 0 9 0.02895 1.6938 98.3062

la 0.01319 100 0 10 0.03103 1.69403 98.306

Il 0.01405 100 0 Il 0.03292 1.69428 98.3057

12 0.01483 100 0 12 0.03482 1.69456 98.3054

13 0.01557 100 0 13 0.03649 1.69488 98.3051

14 0.01628 100 0 14 0.03788 1.69522 98.3048

IS 0.01694 100 0 15 0.03918 1.6956 98.3044

16 0.01763 100 0 16 0.04033 1.696 98.304

17 0.01838 100 0 17 0.04131 1.69643 98.3036

18 0.01910 100 0 18 0.04212 1.69688 98.3031

19 0.01979 100 0 19 0.04287 1.69737 98.3026

20 0.02042 100 0 20 0.04364 1.6979 98.3021

21 0.02102 100 0 21 0.04433 1.69846 98.3015

22 0.02160 100 0 22 0.04491 1.69904 98.301

23 0.02213 100 0 23 0.04561 1.69971 98.3003

24 0.02268 100 0 24 0.04624 1.7004 98.2996

2S 0.02320 100 0 25 0.04675 1.70108 98.2989

26 0.02370 100 a 26 0.04718 1.70176 98.2982

27 0.02419 100 0 27 0.04755 1.70245 98.2976

28 0.02465 100 0 28 0.04786 1.70313 98.2969

29 0.02512 100 0 29 0.04811 1.70379 98.2962

30 0.02556 100 0 30 0.04832 1.70444 98.2956

31 0.02600 100 0 31 0.04852 1.7051 98.2949

32 0.02644 100 a 32 0.04867 1.70573 98.2943

33 0.02688 100 a 33 0.04878 1.7063 98.2937

34 0.02730 100 0 34 0.04886 1.70682 98.2932

35 0.02772 100 a 35 0.04892 1.70727 98.2927

36 0.02811 100 0 36 0.04894 1.7076 98.2924



293

SIMPLE BAYESIAN VAR TIGHTNESS =0.1 AND OTHER =0.5
TOTALEMP MANUFACTURING EMP

Step St-Dey TOT MANUF Step St-Dey TOT MANUF

1 0.00300 100 0 1 0.00856 1.52918 98.4708

2 0.00416 99.8779 0.12206 2 0.01156 0.88343 99.1166

3 0.00527 99.5711 0.42888 3 0.01373 0.9091 99.0909

4 0.00632 99.2352 0.76476 4 0.01575 2.01315 97.9869

5 0.00732 98.9119 1.08808 5 0.01774 3.61352 96.3865

6 0.00831 98.5381 1.46194 6 0.01954 6.25117 93.7488

7 0.00914 97.9995 2.00049 7 0.02122 9.58097 90.419

8 0.00993 97.5188 2.48116 8 0.02300 12.2254 87.7746

9 0.01065 96.9538 3.04623 9 0.02499 13.7543 86.2457

10 0.01131 96.2012 3.79884 10 0.02694 14.4861 85.5139

Il 0.01191 95.2985 4.70152 Il 0.02875 15.0242 84.9758

12 0.01243 94.4068 5.59325 12 0.03055 15.1239 84.8762

13 0.01291 93.5509 6.44914 13 0.03212 15.1118 84.8882

14 0.01336 92.5398 7.46025 14 0.03345 15.1634 84.8366

15 0.01378 91.508 8.49203 15 0.03469 15.0282 84.9718

16 0.01422 90.5706 9.42944 16 0.03578 14.8073 85.1927

17 0.01469 89.8773 10.1227 17 0.03671 14.6027 85.3973

18 0.01514 89.1723 10.8277 18 0.03754 14.4332 85.5668

19 0.01557 88.4959 11.5041 19 0.03832 14.2162 85.7838

20 0.01595 87.8147 12.1853 20 0.03914 13.8698 86.1302

21 0.01631 87.0908 12.9092 21 0.03989 13.5232 86.4768

22 0.01665 86.4048 13.5952 22 0.04055 13.1965 86.8035

23 0.01696 85.7108 14.2892 23 0.04131 12.7378 87.2623

24 0.01728 85.0631 14.9369 24 0.04200 12.3289 87.6712

25 0.01758 84.4782 15.5218 25 0.04254 12.0222 87.9778

26 0.01787 83.9759 16.0241 26 0.04300 11.7728 88.2272

27 0.01814 83.5622 16.4378 27 0.04340 11.5559 88.4441

28 0.01839 83.2184 16.7816 28 0.04375 11.3745 88.6255

29 0.01864 82.9396 17.0604 29 0.04404 Il.2272 88.7728

30 0.01887 82.7155 17.2845 30 0.04429 11.0989 88.9011

31 0.01909 82.5573 17.4428 31 0.04453 10.9823 89.0177

32 0.01930 82.4504 17.5496 32 0.04473 10.892 89.108

33 0.01950 82.3917 17.6083 33 0.04488 10.8315 89.1685

34 0.01969 82.3765 17.6235 34 0.04499 10.7902 89.2098

35 0.01986 82.3912 17.6088 35 0.04507 10.7711 89.2289

36 0.02002 82.4245 17.5755 36 0.04511 10.7727 89.2274

• Table 5.27

•
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Table 5.28

COMMONLy USED BVAR TIGHTNESS = 0.2 AND OTHER = 0.5
TOTALEMP MANUFACTURING EMP
Step St-Dev TOT MANUF Step St-Dev TOT MANUF

1 0.0028 100.000 0.0000 1 0.0081 2.1460 97.8540

2 0.0038 99.7630 0.2370 2 0.0107 1.2699 98.7301

3 0.0048 99.2973 0.7027 3 0.0124 1.4299 98.5701

4 0.0057 98.9139 1.0861 4 0.0141 3.2931 96.7069

S 0.0066 98.6708 1.3292 5 0.0157 4.8288 95.1713

6 0.0074 98.4119 1.5881 6 0.0171 8.0467 91.9533

7 0.0080 97.9316 2.0684 7 0.0184 12.5517 87.4483

8 0.0086 97.6312 2.3689 8 0.0197 15.7595 84.2405

9 0.0091 97.1771 2.8229 9 0.0212 17.2861 82.7139

10 0.0096 96.4561 3.5439 10 0.0225 17.5731 82.4269

Il 0.0100 95.5750 4.4250 Il 0.0237 18.0482 81.9518

12 0.0103 94.8409 5.1591 12 0.0248 17.9681 82.0319

13 0.0106 94.2691 5.7309 13 0.0258 17.7784 82.2216

14 0.0109 93.3148 6.6852 14 0.0265 17.8114 82.1886

15 0.0111 92.3079 7.6921 15 0.0272 17.5790 82.4210

16 0.0114 91.3378 8.6622 16 0.0278 17.2717 82.7283

17 0.0118 90.7729 9.2271 17 0.0282 17.0073 82.9928

18 0.0121 90.0304 9.9696 18 0.0286 16.8342 83.1658

19 0.0124 89.3295 10.6706 19 0.0290 16.6577 83.3423

20 0.0127 88.6339 11.3661 20 0.0295 16.2740 83.7260

21 0.0129 87.8118 12.1882 21 0.0300 15.9353 84.0647

22 0.0132 87.0573 12.9427 22 0.0303 15.6633 84.3368

23 0.0134 86.2280 13.7720 23 0.0309 15.1151 84.8849

24 0.0136 85.3214 14.6786 24 0.0313 14.6607 85.3393

25 0.0139 84.4497 15.5503 2S 0.0317 14.3315 85.6685

26 0.0141 83.6845 16.3155 26 0.0320 14.0376 85.9624

27 0.0143 83.0409 16.9591 27 0.0324 13.7540 86.2460

28 0.0146 82.4566 17.5435 28 0.0327 13.5044 86.4956

29 0.0148 81.9138 18.0862 29 0.0330 13.2805 86.7195

30 0.0150 81.3996 18.6004 30 0.0332 13.0721 86.9280

31 0.0152 80.9426 19.0574 31 0.0335 12.8600 87.1400

32 0.0153 80.4893 19.5107 32 0.0338 12.6891 87.3109

33 0.0155 80.0715 19.9285 33 0.0340 12.5735 87.4265

34 0.0157 79.6956 20.3044 34 0.0342 12.4632 87.5368

35 0.0158 79.3353 20.6647 35 0.0344 12.3939 87.6061

36 0.0160 78.9717 21.0283 36 0.0345 12.3733 87.6267
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• Table 5.29
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OLS VAR TIGHTNESS =2.0.-\ND OTHER =1.0

TOTALEMP MANUFACTURING EMP

Step St-Dey TOT MANUF Step St-Dev TOT MANUF
1 0.00286 100 0 1 0.00821 1.98871 98.0113

2 0.00389 99.4243 0.57573 2 0.01090 1.15269 98.8473

3 0.00510 98.3329 1.66714 3 0.01305 2.05359 97.9464

4 0.00622 97.4406 2.55942 4 0.01537 5.89861 94.1014

5 0.00729 96.9274 3.07264 5 0.01753 7.60773 92.3923

6 0.00840 96.4345 3.56553 6 0.01953 11.5699 88.4301

7 0.00925 95.5956 4.40441 7 0.02163 17.1615 82.8386

8 0.01010 95.1525 4.84746 8 0.02375 20.7732 79.2268

9 0.01088 94.3465 5.6535 9 0.02612 22.2453 77.7547

10 0.01163 93.2384 6.76165 10 0.02834 22.1783 77.8217

Il 0.01232 91.9482 8.0518 Il 0.03041 22.667 77.333

12 0.01290 90.8925 9.10748 12 0.03255 22.6004 77.3997

13 0.01341 90.2404 9.75957 13 0.03424 22.3352 77.6648

14 0.01392 88.9896 11.0105 14 0.03570 22.4032 77.5968

15 0.01436 87.8443 12.1557 15 0.03713 22.22 77.78

16 0.01483 86.7185 13.2815 16 0.03827 21.8997 78.1004

17 0.01535 86.3077 13.6923 17 0.03922 21.5337 78.4663

18 0.01587 85.6087 14.3913 18 0.04010 21.3125 78.6875

19 0.01633 84.9768 15.0232 19 0.04092 21.0765 78.9235

20 0.01673 84.3702 15.6299 20 0.04178 20.5645 79.4355

21 0.01713 83.655 16.345 21 0.04260 20.1318 79.8682

22 0.01749 83.1006 16.8994 22 0.04328 19.8116 80.1885

23 0.01779 82.5043 17.4957 23 0.04410 19.147 80.853

24 0.01814 81.8145 18.1855 24 0.04478 18.5974 81.4026

25 0.01845 81.1584 18.8416 25 0.04526 18.2129 81.7871

26 0.01877 80.6309 19.3691 26 0.04570 17.8774 82.1226

27 0.01907 80.221 19.779 27 0.04611 17.5628 82.4372

28 0.01934 79.8549 20.1451 28 0.04645 17.3038 82.6962

29 0.01962 79.5346 20.4654 29 0.04676 17.0791 82.9209

30 0.01986 79.2746 20.7254 30 0.04704 16.8839 83.1161

31 0.02011 79.0924 20.9076 31 0.04733 16.6806 83.3194

32 0.02035 78.9315 21.0685 32 0.04757 16.5165 83.4835

33 0.02057 78.831 21.169 33 0.04772 16.4252 83.5748

34 0.02080 78.7992 21.2008 34 0.04786 16.3392 83.6608

35 0.02099 78.786 21.214 3S 0.04795 16.2884 83.7116

36 0.02115 78.7852 21.2148 36 0.04800 16.2791 83.7209
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Table 5.30

UNIVARlATE OLS TIGHTNESS =2.0 AND OTHER =0.001
TOTALEMP SERVICES EMP
Step St-Dey TOT SERY Step St-Dey TOT SERY

1 0.00685 100 a 1 0.00307 1.9059 98.094

2 0.00984 100 2E-05 2 0.00413 1.9022 98.098

3 0.01248 100 8E-05 3 0.00527 1.8962 98.104

4 0.01511 100 0.0002 4 0.00627 1.8893 98.111

5 0.01736 100 0.0005 5 0.00726 1.8817 98.118

6 0.01957 99.999 0.0009 6 0.00833 1.874 98.126

7 0.02132 99.998 0.0015 7 0.00906 1.8664 98.134

8 0.02293 99.998 0.0024 8 0.00991 1.8593 98.141

9 0.02467 99.997 0.0035 9 0.01060 1.8532 98.147

10 0.02617 99.995 0.0048 10 0.01121 1.8484 98.152

Il 0.02753 99.994 0.0064 Il 0.01180 1.8452 98.155

12 0.02887 99.992 0.0081 12 0.01239 1.8443 98.156

13 0.02982 99.99 0.0102 13 0.01289 1.8455 98.155

14 0.03077 99.988 0.0125 14 0.01335 1.8493 98.151

15 0.03161 99.985 0.0149 IS 0.01383 1.8569 98.143

16 0.03223 99.982 0.0177 16 0.01432 1.8686 98.131

17 0.03272 99.979 0.0208 17 0.01495 1.8868 98.113

18 0.03316 99.976 0.0241 18 0.01561 1.9102 98.09

19 0.03365 99.973 0.0274 19 0.01626 1.9384 98.062

20 0.03400 99.969 0.0311 20 0.01682 1.9695 98.031

21 0.03428 99.965 0.035 21 0.01740 2.0062 97.994

22 0.03460 99.961 0.039 22 0.01797 2.0478 97.952

23 0.03492 99.957 0.043 23 0.01844 2.0919 97.908

24 0.03524 99.953 0.0471 24 0.01892 2.1426 97.857

25 0.03552 99.949 0.0514 25 0.01935 2.1979 97.802

26 0.03577 99.944 0.0559 26 0.01979 2.2595 97.741

27 0.03601 99.94 0.0605 27 0.02017 2.3252 97.675

28 0.03619 99.935 0.0653 28 0.02057 2.3971 97.603

29 0.03633 99.93 0.0704 29 0.02096 2.4748 97.525

30 0.03644 99.924 0.0756 30 0.02130 2.5556 97.444

31 0.03652 99.919 0.0811 31 0.02167 2.6426 97.357

32 0.03658 99.913 0.0866 32 0.02205 2.7345 97.265

33 0.03662 99.908 0.0923 33 0.02244 2.8313 97.169

34 0.03663 99.902 0.0981 34 0.02283 2.9313 97.069

35 0.03664 99.896 0.104 35 0.02323 3.0345 96.965

36 0.03664 99.89 0.1099 36 0.02360 3.1395 96.861
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Table 5.31

UNIVARIATE VAR TIOHTNESS = 0.1 AND OTHER = 0.001

TOTALEMP SERVICES EMP

Step St-Dev TOT SERY Step St-Dev TOT SERY

1 0.00693 100 0 1 0.00315 1.9733 98.027

2 0.00994 100 0 2 0.00435 1.9733 98.027

3 0.01252 100 0 3 0.00546 1.9733 98.027

4 0.01502 100 0 4 0.00649 1.9733 98.027

5 0.01725 100 0 5 0.00748 1.9733 98.027

6 0.01937 100 0 6 0.00849 1.9733 98.027

7 0.02118 100 0 7 0.00931 1.9733 98.027

8 0.02285 100 0 8 0.01014 1.9733 98.027

9 0.02454 100 0 9 0.01086 1.9733 98.027

10 0.02606 100 0 10 0.01151 1.9733 98.027

Il 0.02746 100 0 Il 0.01213 1.9733 98.027

12 0.02875 100 0 12 0.01273 1.9734 98.027

13 0.02978 100 0 13 0.01327 1.9734 98.027

14 0.03075 100 0 14 0.01378 1.9734 98.027

15 0.03159 100 0 15 0.01431 1.9735 98.027

16 0.03225 100 lE-OS 16 0.01486 1.9736 98.026

17 0.03279 100 lE-OS 17 0.01551 1.9737 98.026

18 0.03329 100 lE-OS 18 0.01618 1.9738 98.026

19 0.03378 100 lE-OS 19 0.01685 1.9739 98.026

20 0.03418 100 2E-OS 20 0.01745 1.9741 98.026

21 0.03452 100 2E-OS 21 0.01805 1.9742 98.026

22 0.03487 100 2E-05 22 0.01862 1.9744 98.026

23 0.03523 100 3E-OS 23 0.01912 1.9746 98.025

24 0.03559 100 3E-OS 24 0.01961 1.9748 98.025

25 0.03589 100 4E-OS 25 0.02006 1.975 98.025

26 0.03617 100 SE-OS 26 0.02050 1.9752 98.025

27 0.03641 100 6E-OS 27 0.02091 1.9754 98.025

28 0.03661 100 7E-OS 28 0.02130 1.9756 98.024

29 0.03677 100 8E-OS 29 0.02169 1.9759 98.024

30 0.03689 100 9E-OS 30 0.02206 1.9761 98.024

31 0.03698 100 0.0001 31 0.02243 1.9764 98.024

32 0.03705 100 0.0001 32 0.02281 1.9767 98.023

33 0.03710 100 0.0001 33 0.02320 1.9769 98.023

34 0.03712 100 0.0002 34 0.02358 1.9772 98.023

35 0.03713 100 0.0002 35 0.02397 1.9775 98.023

36 0.03713 100 0.0002 36 0.02433 1.9778 98.022
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Table 5.32

SIMPLE BAYESIAN VAR TIGHlNESS =0.1 AND OTHER = 0.5
TOTALEMP SERVICES EMP
Step St-Dey TOT SERY Step St-Dey TOT SERY

1 0.00660 100 0 1 0.00302 1.639 98.361

2 0.00926 99.701 0.299 2 0.00410 1.2714 98.729

3 0.01143 98.726 1.2736 3 0.00S07 0.8667 99.133

4 0.01351 96.891 3.1094 4 0.00594 0.6317 99.368

5 0.01535 94.819 5.1811 5 0.00676 0.5405 99.459

6 0.01713 92.093 7.9066 6 0.00757 0.5507 99.449

7 0.01873 88.84 11.16 7 0.00820 0.7747 99.225

8 0.02023 85.773 14.227 8 0.00883 1.0509 98.949

9 0.02182 82.89 17.11 9 0.00935 1.4509 98.549

10 0.02330 80.238 19.762 10 0.00980 1.937 98.063

Il 0.02470 77.894 22.106 Il 0.01023 2.4578 97.542

12 0.02600 76.083 23.917 12 0.01062 2.9358 97.064

13 0.02709 74.441 25.559 13 0.01097 3.479 96.521

14 0.02811 73.221 26.779 14 0.01130 4.0622 95.938

15 0.02900 72.32 27.68 15 0.01164 4.5148 95.485

16 0.02974 71.508 28.492 16 0.01199 4.9468 95.053

17 0.03036 70.774 29.226 17 0.01242 5.0976 94.902

18 0.03094 70.207 29.794 18 0.01286 5.0744 94.926

19 0.03150 69.858 30.142 19 0.01328 4.9668 95.033

20 0.03198 69.5 30.5 20 0.01365 4.8893 95.111

21 0.03241 69.228 30.772 21 0.01400 4.8222 95.178

22 0.03283 69.189 30.811 22 0.01433 4.7688 95.231

23 0.03324 69.358 30.642 23 0.01461 4.818 95.182

24 0.03363 69.561 30.439 24 0.01488 4.8972 95.103

2S 0.03397 69.726 30.274 25 0.01512 4.9699 95.03

26 0.03427 69.875 30.125 26 0.01534 5.0278 94.972

27 0.03454 69.994 30.006 27 0.01553 5.0748 94.925

28 0.03476 70.078 29.922 28 0.01572 5.0943 94.906

29 0.03494 70.129 29.871 29 0.01590 5.084 94.916

30 0.03509 70.16 29.84 30 0.01606 5.056 94.944

31 0.03521 70.174 29.826 31 0.01623 5.0025 94.998

32 0.03530 70.182 29.818 32 0.01639 4.9259 95.074

33 0.03537 70.175 29.825 33 0.01657 4.8326 95.167

34 0.03541 70.148 29.852 34 0.01673 4.7369 95.263

35 0.03543 70.116 29.884 35 0.01690 4.6483 95.352

36 0.03544 70.09 29.91 36 0.01704 4.5771 95.423
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Table 5.33

COMMONLy USED avAR TIGHTNESS =0.2 AND OTHER =0.5
TOTALEMP SERVICES EMP
Step St-Dey TOT SERY Step St-Dey TOT SERY

1 0.0063 100.000 0.0000 1 0.0029 2.1806 97.8194
2 0.0087 99.5256 0.4744 2 0.0038 1.8814 98.1186
3 0.0107 98.1124 1.8876 3 0.0047 1.3194 98.6806
4 0.0127 95.5623 4.4377 4 0.0055 0.9996 99.0004
5 0.0142 93.6958 6.3042 5 0.0062 0.7862 99.2138
6 0.0157 90.8001 9.1999 6 0.0069 0.6335 99.3665
7 0.0170 87.2325 12.7675 7 0.0074 0.6650 99.3350
8 0.0182 84.3003 15.6998 8 0.0079 0.6972 99.3028
9 0.0195 81.2932 18.7068 9 0.0083 0.8243 99.1757

la 0.0206 78.5454 21.4546 10 0.0087 1.0397 98.9604
Il 0.0217 75.9642 24.0358 Il 0.0090 1.3037 98.6964
12 0.0227 74.2135 25.7865 12 0.0093 1.4967 98.5034
13 0.0234 72.5563 27.4437 13 0.0095 1.7957 98.2043
14 0.0242 71.3934 28.6066 14 0.0098 2.2656 97.7344
15 0.0248 70.6765 29.3235 15 0.0100 2.5956 97.4044
16 0.0253 70.0087 29.9913 16 0.0103 3.1496 96.8504
17 0.0258 69.4097 30.5904 17 0.0107 3.3970 96.6031
18 0.0262 69.0059 30.9941 18 0.0110 3.4610 96.5390
19 0.0267 68.9218 31.0782 19 0.0114 3.4154 96.5846
20 0.0272 68.7449 31.2552 20 0.0117 3.4323 96.5677
21 0.0276 68.6241 31.3759 21 0.0120 3.4968 96.5032
22 0.0280 68.8796 31.1204 22 0.0122 3.5671 96.4329
23 0.0285 69.4722 30.5278 23 0.0125 3.8490 96.1510
24 0.0290 70.0437 29.9563 24 0.0127 4.2670 95.7330
25 0.0294 70.6060 29.3940 25 0.0129 4.7166 95.2835
26 0.0299 71.1654 28.8346 26 0.0131 5.1527 94.8473
27 0.0304 71.6731 28.3269 27 0.0133 5.6355 94.3645
28 0.0308 72.1436 27.8564 28 0.0135 6.0733 93.9267
29 0.0312 72.5429 27.4571 29 0.0137 6.4649 93.5351
30 0.0315 72.9114 27.0886 30 0.0139 6.8697 93.1303
31 0.0319 73.2354 26.7646 31 0.0141 7.2429 92.7571
32 0.0322 73.5450 26.4550 32 0.0142 7.5561 92.4439
33 0.0325 73.8215 26.1785 33 0.0144 7.7797 92.2203
34 0.0328 74.0056 25.9945 34 0.0146 7.9819 92.0181
35 0.0330 74.1511 25.8489 35 0.0148 8.1094 91.8906
36 0.0332 74.3006 25.6994 36 0.0150 8.2250 91.7750
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• Table 5.34

300

•

OLS VAR TIGHTNESS = 2.0 AND OTHER = 1.0

TOTALEMP SERVICES EMP

Step St-Dey TOT SERY Step St-Dey TOT SERY

1 0.00629 100 0 1 0.00290 1.9646 98.035

2 0.00892 99.106 0.894 2 0.00384 1.5991 98.401

3 0.01123 96.365 3.6351 3 0.00483 1.0082 98.992

4 0.01361 91.877 8.1228 4 0.00569 0.7403 99.26

5 0.01546 89.879 10.121 5 0.00654 0.7603 99.24

6 0.01749 86.061 13.939 6 0.00745 0.7005 99.3

7 0.01932 81.393 18.607 7 0.00807 1.0833 98.917

8 0.02087 78.282 21.718 8 0.00878 1.3394 98.661

9· 0.02273 74.928 25.072 9 0.00934 1.7566 98.243

10 0.02442 72.018 27.982 10 0.00983 2.3283 97.672

Il 0.02603 69.338 30.662 Il 0.01030 2.9601 97.04

12 0.02755 67.589 32.411 12 0.01073 3.3585 96.642

13 0.02873 65.949 34.051 13 0.01110 3.861 96.139

14 0.02992 64.887 35.113 14 0.01144 4.6807 95.319

15 0.03091 64.256 35.744 15 0.01176 5.0461 94.954

16 0.03170 63.632 36.368 16 0.01214 5.795 94.205

17 0.03239 63.067 36.933 17 0.01260 6.0317 93.968

18 0.03302 62.636 37.364 18 0.01306 6.0356 93.964

19 0.03364 62.586 37.414 19 0.01349 5.8529 94.147

20 0.03419 62.371 37.629 20 0.01383 5.752 94.248

21 0.03467 62.106 37.894 21 0.01417 5.6874 94.313

22 0.03514 62.219 37.781 22 0.01450 5.5747 94.425

23 0.03555 62.65 37.35 23 0.01474 5.634 94.366

24 0.03595 63.001 36.999 24 0.01501 5.7911 94.209

25 0.03630 63.367 36.633 25 0.01523 5.9689 94.031

26 0.03662 63.699 36.301 26 0.01546 6.0845 93.916

27 0.03691 63.969 36.031 27 0.01564 6.2528 93.747

28 0.03714 64.228 35.772 28 0.01582 6.3482 93.652

29 0.03735 64.393 35.607 29 0.01600 6.3841 93.616

30 0.03750 64.5S1 35.449 30 0.01614 6.4215 93.579

31 0.03763 64.671 35.329 31 0.01630 6.4194 93.581

32 0.03774 64.771 35.229 32 0.01646 6.3728 93.627

33 0.03782 64.86 35.14 33 0.01663 6.2715 93.729

34 0.03787 64.875 35.125 34 0.01680 6.1669 93.833

35 0.03790 64.868 35.132 35 0.01695 6.0563 93.944

36 0.03792 64.869 35.131 36 0.01709 5.9671 94.033
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• Table 5.35

UNIVARIATE OLS TIGHlNESS =2.0 AND OTHER =0.001
FORECAST STATS fOR TOTAL EMP
Step MeanError M-Abs-E RMS Error Theil li N.Obs

1 0.00213593 0.00766815 0.00985663 1.1182676 12

2 0.00231306 0.00767823 0.00984517 0.9767387 Il

3 0.00360493 0.0087236 0.01012651 1.002243 10

4 0.00450827 0.00863514 0.00997602 0.9226643 9

5 0.00559027 0.01075743 0.01339741 0.8765388 8

6 0.00565128 0.00955499 0.0127967 0.7918073 7

7 0.00683713 0.00683713 0.00762872 0.466616 6

8 0.008963 0.00929232 0.01076544 0.5343405 5

9 0.00974681 0.01049567 0.01171587 0.5133011 4

10 0.01168661 0.01168661 0.0134108 0.5118952 3

11 0.01370781 0.01370781 0.01412413 0.5023511 2

12 0.02377091 0.02377091 0.02377091 0.6066029 1

FORECAST STATS FOR MANUF EMP
1 0.00202395 0.00955618 0.01172775 0.9739156 12

2 0.00347008 0.0145096 0.0175955 0.9630171 11

3 0.0031805 0.01819255 0.02236879 0.9830375 10

4 -0.0010766 0.01808897 0.02058463 0.8746193 9

5 -0.0028562 0.0187116 0.02128898 0.8495219 8

6 -0.0048177 0.01773282 0.02094106 0.8241593 7

7 -0.0055038 0.01373605 0.01521843 0.7587275 6

8 -0.0039955 0.00823719 0.00920944 0.6591352 5

9 -0.0005201 0.00742491 0.00787809 0.5907429 4

10 0.01361525 0.01361525 0.01404171 2.4928676 3

11 0.02244999 0.02244999 0.02248486 2.9322215 2

12 0.02688495 0.02688495 0.02688495 3.9075556 1

fORECAST STATS FOR SERVICE EMP
1 0.00144974 0.0030893 0.00381628 0.7779735 12

2 0.00315801 0.00429013 0.00615604 0.7507389 Il

3 0.0049626 0.00648489 0.00887489 0.7444624 10

4 0.00738234 0.00865886 0.01133881 0.7285849 9

5 0.00876036 0.00997386 0.01285754 0.7180193 8

6 0.00985093 0.01063963 0.01351912 0.6576398 7

7 0.01134597 0.01134597 0.01323818 0.5855263 6

8 0.01370118 0.01370118 0.01482771 0.5757343 5

9 0.01667637 0.01667637 0.01688686 0.5646797 4

10 0.01719089 0.01719089 0.0173199 0.5447694 3

• 11 0.01998612 0.01998612 0.02001968 0.5680085 2

12 0.01990209 0.01990209 0.01990209 0.5569386 1
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• TableS.J'

Univariate VAR TIGHTNESS =0.1 ANOOTIŒR=O.OOI
FORECAST STATS FOR TOTAL EMP
Step Mean Error M-Abs-E RMS Error Theil U N.Obs

1 0.00371441 0.00818204 0.0096298 1.0925327 12

2 0.00564265 0.00866718 0.01086901 1.0783138 11

3 0.00837129 0.010312 0.01192161 1.179909 10
4 0.01075046 0.01090604 0.01319744 1.2206079 9

5 0.0132374 0.01595912 0.01752909 1.1468581 8
(; 0.01479811 0.01479811 0.01841301 1.1393218 7

7 0.01733114 0.01733114 0.01773557 1.0848094 6

8 0.0206073 0.0206073 0.02137033 1.060712 5

9 0.02275361 0.02275361 0.02370819 1.0387139 4

10· 0.02599669 0.02599669 0.02689344 1.0265324 3

II 0.02923634 0.02923634 0.02930935 1.0424413 2

12 0.03958974 0.03958974 0.03958974 1.0102791 1

fORECAST STArS fOR MANUF EMP

1 0.00145589 0.00933667 0.01163708 0.9663856 12

2 0.00269519 0.01430642 0.01754333 0.9601618 11

3 0.00213132 0.01799241 0.02206541 0.9697048 10

4 -0.0024749 0.01790141 0.02081583 0.8844427 9

S -0.004645 0.01852037 0.02142798 0.8550685 8

6 -0.00703 0.01843458 0.02130407 0.8384458 7

7 -0.0080269 0.01431185 0.01610338 0.8028473 6

8 -0.0068512 0.00918154 0.01009647 0.7226213 5

9 -0.0042113 0.00844866 0.00983015 0.7371186 4

10 0.00916494 0.00916494 0.01019437 1.8098386 3

Il 0.01719855 0.01719855 0.01729361 2.2552367 2

12 0.01893742 0.01893742 0.01893742 2.7524319 1

FORECASTSTATSfORSERVlCEEMœ
1 0.00140678 0.00316763 0.00389431 0.7938804 12

2 0.00316498 0.00419374 0.00617127 0.7525965 11

3 0.00488133 0.00665143 0.00891497 0.7478246 la
4 0.00727928 0.00853982 0.01133121 0.7280963 9

5 0.00844674 0.00969602 0.01259772 0.7035096 8

6 0.00964303 0.01056377 0.01346443 0.6549792 7

7 0.01105031 0.01105031 0.01296155 0.5732906 6

8 0.01315053 0.01315053 0.01428545 0.5546794 5

9 0.01637515 0.01637515 0.0165745 0.5542346 4

10 0.01685574 0.01685574 0.01700726 0.5349357 3

Il 0.01949895 0.01949895 0.01953529 0.5542651 2• 12 0.01914955 0.01914955 0.01914955 0.5358796 1
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SIMPLE BAYESIAN VAR TIGHlNESS =0.1 AND OTHER=0.5

FORECAST STATS FOR TOTAL EMP

Step Mean Error M-Abs-E RMS Error Theil U N.Obs

1 -0.0029427 0.00777809 0.00997986 1.132249 12

2 -0.0072347 0.01276924 0.01483073 1.4713555 11

3 -0.0104649 0.01494538 0.01837827 1.8189385 10

4 -0.0148704 0.01951879 0.0222703 2.0597401 9

5 -0.0188584 0.02490553 0.02694343 1.7628013 8

6 -0.0237229 0.02802896 0.02963885 1.8339305 7

7 -0.0263741 0.02637413 0.02792276 1.7079164 6

8 -0.0263605 0.02636049 0.0267845 1.3294433 5

9 -0.0258647 0.02586471 0.02630351 1.1524209 4

10 -0.0235081 0.0235081 0.02391353 0.9127883 3

11 -0.0179233 0.01792329 0.01866567 0.6638792 2

12 -0.0146323 0.01463231 0.01463231 0.3733978 1

FORECAST STATS FOR MANUF EMP

1 -0.0010832 0.00863978 0.01154125 0.9584278 12

2 -0.0021382 0.01415406 0.01751324 0.9585148 11

3 -0.0049543 0.01937973 0.02338364 1.0276369 10

4 -0.0116915 0.02369432 0.0276955 1.1767525 9

5 -0.0169195 0.02845157 0.0319305 1.2741642 8

6 -0.0239182 0.03095348 0.03524498 1.3871066 7

7 -0.0305342 0.0310902 0.03620599 1.8050797 6

8 -0.0329746 0.03297461 0.03520612 2.5197613 5

9 -0.0320933 0.03209334 0.03345899 2.5089394 4

10 -0.0205082 0.02050817 0.02198002 3.9021805 3

11 -0.0114971 0.01149713 0.01166962 1.5218201 2

12 -0.0117095 0.01170949 0.01170949 1.7018993 1

FORECASTSTATS FOR SERVICE EMP

1 0.00071521 0.00308996 0.00362631 0.7392477 12

2 0.00175087 0.0041499 0.0055466 0.6764163 11

3 0.00244925 0.00635021 0.00788419 0.6613587 10

4 0.00354379 0.00789872 0.00951953 0.6116856 9

5 0.00337112 0.00818945 0.00993716 0.554933 8

6 0.00307455 0.00823132 0.00959186 0.4665978 7

7 0.00299473 0.00580185 0.00660582 0.292176 6

8 0.00385324 0.00558443 0.00602987 0.2341293 5

9 0.00629593 0.00629593 0.00654035 0.2187029 4

10 0.00680805 0.00680805 0.0072328 0.2274959 3

11 0.00958773 0.00958773 0.00969817 0.2751613 2

12 0.00891029 0.00891029 0.00891029 0.2493448 1

• TableS.37

•
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• Table 5.38

COMMONLy BAYESIAN VAR TIGHTNESS =0.2 AND OTHER =0.5
FORECAST STATS FOR TOTAL EMP
Step Mean Error M-Abs-E RMS Errar Theil U N.Obs

1 -0.0037939 0.00859013 0.01101828 1.250061 12

2 -0.0086067 0.01474901 0.0169089 1.6175308 11

3 -0.011953 0.01763599 0.02124403 2.102569 10
4 -0.0169944 0.02283159 0.02589836 2.3952931 9

5 -0.0211227 0.02830015 0.0304685 1.9934325 8

6 -0.0267419 0.0309159 0.03287846 2.0343845 7

7 -0.0298855 0.02988555 0.03147735 1.9253353 6

8 -0.0295842 0.02958424 0.0299528 1.486701 5

9 -0.0293973 0.02939729 0.02968445 1.3005482 4

10 -0.026542 0.02654198 0.02683835 1.0244297 3

Il -0.0210406 0.02104059 0.02173307 0.7729772 2

12 -0.0185039 0.01850388 0.01850388 0.4721951 1

fORECAST STATS FOR MANUF EMP
1 -0.001275 0.00831019 0.01146731 0.9522878 12

2 -0.0026016 0.01396936 0.01714247 0.9382221 11

3 -0.0056408 0.01994736 0.02361376 1.0377498 10

4 -0.0125739 0.02457293 0.0288025 1.2237878 9

5 -0.0180915 0.02935786 0.03326188 1.3272921 8

6 -0.0265778 0.03262643 0.03724566 1.4658455 7

7 -0.0346123 0.03461227 0.03961549 1.975063 6

8 -0.0370813 0.0370813 0.03930792 2.8133346 5

9 -0.0362187 0.0362187 0.03740613 2.8049176 4

10 -0.0243214 0.02432139 0.02539216 4.5079491 3

Il -0.0147242 0.01472417 0.01503454 1.9606345 2

12 -0.0137459 0.01374594 0.01374594 1.9978844 1

fORECASTSTATSfORSERVlCEEMP
1 0.00077534 0.00310408 0.00348727 0.7109027 12

2 0.00184889 0.00431182 0.0055192 0.6730759 Il

3 0.00251463 0.00650677 0.00799588 0.6707272 10

4 0.00348308 0.0079908 0.00975229 0.6266416 9

5 0.00332827 0.00848324 0.01041135 0.5814136 8

6 0.0027571 0.00830604 0.00986294 0.4797842 7

7 0.00248429 0.00564843 0.00665551 0.294374 6

8 0.0031724 0.00519398 0.00572954 0.2224681 5

9 0.00544073 0.00544073 0.00586525 0.1961281 4

10 0.00625372 0.00625372 0.00678551 0.213427 3

Il 0.0093558 0.0093558 0.00952013 0.27011 2• . 12 0.00888693 0.00888693 0.00888693 0.2486911 1
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•

TableS.39

OLS VAR TIGHTNESS =2.0 AND OTHER =1.0
FORECAST STATS FOR TOTAL EMP
Step Mean Error M-Abs-E RMS Errer Theil U N.Obs

1 -0.0041069 0.00890336 0.01198808 1.3600873 12

2 -0.0089658 0.0154523 0.01774121 1.7601047 Il

3 -0.01183 0.0184435 0.02191065 2.1685459 10

4 -0.0170851 0.02399354 0.02700188 2.4973558 9

5 -0.0205841 0.02918211 0.03110608 2.0351464 8

6 -0.0266179 0.03037613 0.03271111 2.0240294 7

7 -0.0302117 0.03021165 0.03169123 1.9384178 6

8 -0.0300237 0.03002373 0.03030571 1.5042177 5

9 -0.0303193 0.03031925 0.03080254 1.3495346 4

10 -0.0267597 0.02675975 0.02726563 1.0407388 3

Il -0.0226567 0.02265672 0.02371529 0.8434784 2

12 -0.0231799 0.02317991 0.02317991 0.5915215 1

FORECAST STATS FOR MANUF EMP
1 -0.0013872 0.00791102 0.0119692 0.9939668 12

2 -0.0030572 0.01393323 0.01702278 0.9316716 11

3 -0.006283 0.02060027 0.02409163 1.0587508 10

4 -0.013143 0.02533134 0.03006983 1.2776352 9

5 -0.0182505 0.02972916 0.03425421 1.3668903 8

6 -0.0282491 0.03363506 0.03810348 1.4996059 7

7 -0.0370859 0.03708588 0.0412123 2.0546734 6

8 -0.0384132 0.03841316 0.04043938 2.8943148 5

9 -0.0378309 0.03783091 0.038849 2.9131123 4

10 -0.0260617 0.0260617 0.02687598 4.7713767 3

Il -0.0160889 0.0160889 0.0172416 2.2484545 2

12 -0.0152622 0.01526221 0.01526221 2.2182646 1

FORECASTSTATSfORSERVlCEEMœ
1 0.00084831 0.00334132 0.00354037 0.7217278 12

2 0.00211743 0.00431881 0.00545395 0.6651182 11

3 0.00277993 0.00683291 0.00813817 0.6826631 10

4 0.00376076 0.00790912 0.00993862 0.6386141 9

5 0.00382188 0.00862903 0.0109501 0.6114996 8

6 0.00320415 0.00848818 0.01040112 0.5059643 7

7 0.00299222 0.00589862 0.00732108 0.3238122 6

8 0.00359726 0.00579051 0.00646442 0.2510021 5

9 0.00579477 0.00579477 0.00660758 0.220951 4

10 0.00683171 0.00683171 0.00768101 0.2415938 3

11 0.01020556 0.01020556 0.01056112 0.2996454 2

12 0.00923306 0.00923306 0.00923306 0.2583773 1

30S
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Table 5.40

t

UNIVARIATE OLS TIGIITNESS - 2.0 AND 011 1ER ::; 0.001 VARIANCE DECOMPOSITION

TOTAL EMPlOYMENT MANUFACTURINO EMPtOYMENT SERVICES EMPlOYMENT

SICp SI-Dey TOT MANUF SERY Sicp SI-Dev TOT MANUF SERY Sicp SI-Dev TOT MANUf SERV

1 0.010154 100 0 0 1 0.009081 0.09064 99.90936 0 1 0.003071 0.00274 2.91764 97.07962

2 0.013948 99.99997 0.00001 0.00002 2 0.012545 0.09059 99.9094 0.00001 2 0.004127 0.00272 2.91117 97.01612
3 0.016573 99.99984 0.00005 0.00011 3 0.01S339 0.09043 99.909S 0.00006 3 0.OOn59 0.00266 2.90049 97.09615
4 0.019322 99.99951 0.00014 0.0003.5 4 0.018018 O.09OOS 99.90979 0.00017 4 0.006254 0.OO2Sl 2.18701 97.11039, 0.021522 99.99885 0.00028 0.00086 ,5 0.020724 0.08921 99.91046 0.00033 , 0.007233 0.00236 2.17111 97.12646

6 0.02337 99.99766 0.000,52 0.00181 6 0.022878 0.08199 99.91143 0.00058 6 0.008281 0.00212 2.15296 97.14492

7 0.02469,5 99.99.566 0.00089 0.0034,5 7 0.024.5,57 0.08633 99.91274 0.00093 7 0.009013 0.00111 2.8JJ19 97.16494
8 0.02"82 99.99253 0.00139 0.00608 8 0.026306 0.08399 99.91468 0.001)3 1 0.009854 0.0016 2.81091 97.18749
9 0.026621 99.98832 0.00198 0.0097 9 0.028433 0.08088 99.91742 0.00169 9 0.010S26 0.00141 2.78769 91.2109

10 0.0214 99.982S7 0.00274 0.01468 10 0.010SS3 0.0772S 99.9207 0.0020S JO 0.011127 0.00137 2.76312 97.23551
Il 0.028177 99.97S42 0.00366 0.02092 Il 0.032371 0.0734S 99.92414 0.00242 Il 0.011704 0.001S6 2.7371S 97.26129
12 0.028864 99.96671 0.00475 0.02851 12 0.034105 0.06926 99.92801 0.00273 12 0.012219 0.00206 2.7103 91.21764
13 0.029348 99.9,5602 0.0061 0.03788 13 0.035946 0.06518 99.93177 0.0030S Il 0.012761 0.00]08 2.68382 97.1131
14 0.029719 99.94353 0.00711 0.04875 14 0.037262 0.06146 99.93516 0.00338 14 0.013207 0.00471 2.6574 97.33719
1,5 0.0]0092 99.92905 0.0096.5 0.0613 as 0.038569 0.05776 99.938,58 0.00366 15 0.013675 0.00697 2.63099 97.36204
16 0.030309 99.91249 0.01192 0.07559 16 0.039689 0.OS4S8 99.94149 0.00393 16 0.0141S2 0.00992 2.60544 97.38464
17 0.030486 99.89411 0.01451 0.09137 17 0.040637 0.05212 99.94169 0.00419 17 0.01476 0.01323 2.511l1 97.40546
18 0.030651 99.8741 0.01742 0.10848 18 0.041416 0.0.5066 99.9449 0.00444 18 0.0IS399 0.01719 2.55979 97.42303
19 0.0309]7 99.85]78 0.02043 0.12S8 19 0.042134 0.04997 99.94536 0.00468 19 0.016032 0.02193 2.54111 97.4369S
20 O.OlIISS 99.83154 0.02372 0.14474 20 0.042913 0.049" 99.94558 0.00487 20 0.016S73 0.02793 2.'2467 97.4474
21 0.031325 99.801]6 0.02736 0.16528 21 0.043599 0.05029 99.94468 0.00.504 21 0.011136 0.03466 2.51128 97.45406
22 0.011591 99.78]02 0.01107 0.1859. 22 0.04413] 0.0521.5 99.94206 0.0052 22 0.017683 0.04214 2.50088 97.4561.
23 0.031897 99.75801 0.03486 0.20713 23 0.044881 0.OS431 99.94043 0.00526 23 0.018128 0.0517 2.4924 97.4559
24 0.03227 99.73281 0.03871 0.22848 24 0.045546 0.05721 99.9375 0.00529 24 0.01859 0.06194 2.48754 97.45052
2.5 0.032543 99.70451 0.04304 0.25239 25 0.046056 0.06203 99.93265 0.00533 25 0.019001 0.0738 2.48534 97.44085
26 0.0]2746 99.67353 0.04177 0.2781 26 0.046486 0.06832 99.92635 0.00534 26 0.019412 0.08676 2.48657 97.42667
21 0.032955 99.64098 0.05265 0.30637 27 0.046881 0.07569 99.91899 0.00.532 27 0.019778 0.10141 2.48996 97.4086]
28 0.033086 99.60515 0.05796 0.33689 28 0.047214 0.08451 99.91019 0.00529 28 0.020148 0.1171 2.49672 97.38619



•
Table S.41

'7
UNIVARIATE VAR TIOIITNESS - 0.1 AND OIIlER == 0.001 VARIANCE DECOMPOSITION
TOTAL EMPLOYMENT MANUFACTURING EMPLOYMENT SERVICES EMPLOYMENT

Stcp SI-Dev TOT MANUF SERY Stcp St-Dev TOT MANUF SERY Stcp St-Dey TOT MANUF SERV
1 0.010298 100 0 0 1 0.009195 0.19962 99.80038 0 1 0.003154 0.00584 2.47734 97.51682
2 0.014289 100 0 0 2 0.012819 0.19962 99.800]8 0 2 0.004348 0.00584 2.47732 97.51684
3 0.017232 100 0 0 3 0.015657 0.19962 99.80038 0 3 0.005457 0.00584 2.4773 97.51686
4 0.020003 100 0 0 4 0.018315 0.19962 99.80038 0 4 0.006487 0.00514 2.47727 97.51688
S 0.022347 100 0 0 5 0.020902 0.19961 99.80039 0 5 0.007485 0.00584 2.47724 97.51692
6 0.024352 100 0 0 6 0.023099 0.1996 99.8004 0 6 0.008487 0.00584 2.4772 97.51695
7 0.025885 100 0 0 7 0.024946 0.19959 99.80041 0 7 0.009307 0.00585 2.47717 97.51699
8 0.027065 100 0 0 8 0.026829 0.19958 99.80042 0 8 0.010142 0.00585 2.47712 97.51703
9 0.028251 100 0 0 9 0.028945 0.I99S6 99.80044 0 9 0.01086 0.00585 2.47708 97.51707

10 0.02926 100 0 0 10 0.031031 0.19954 99.80046 0 10 0.011512 0.00586 2.4770] 97.51711
Il 0.0]022 99.99999 0 OO1סס.0 Il 0.032917 0.19952 99.80048 0 Il 0.012132 0.00516 2.47699 97.51715
12 0.031067 99.99999 0 OO1סס.0 12 0.03482 0.19949 99.80051 0 12 0.012732 0.00586 2.47694 97.'172
1] 0.03174 99.99999 0 OO1סס.0 13 0.036487 0.19946 99.80054 0 13 0.013271 0.00587 2.47689 97.5172"
14 0.032339 99.99998 0 OO2סס.0 14 0.037875 0.19943 99.800S7 0 14 0.013784 0.00587 2.47685 97.51727
15 0.0]2816 99.99998 0 OO2סס.0 15 0.039177 0.1994 99.8006 0 IS 0.014313 0.00588 2.4768. 97.5173
16 0.033197 99.99997 0 OO3סס.0 16 0.04033 0.19936 99.80063 0 16 0.014863 0.OOS89 2.47678 91.S.733
17 0.033526 99.99996 0 0.00004 17 0.041305 0.19933 99.80067 0 17 0.015506 0.OOS9 2.47676 91.51134
18 0.033849 99.99995 0 OO5סס.0 18 0.042116 0.19929 99.80071 0 18 0.016179 0.OOS9 2.47615 91.51135
19 0.034265 99.99993 0 OO7סס.0 19 0.04287 0.19925 99.80074 0 19 0.016846 0.00591 2.47674 97.51734
20 0.034646 99.99992 0 OO8סס.0 20 0.043638 0.19921 99.80078 OO1סס.0 20 0.017448 0.00592 2.47675 91.51733
21 0.035002 99.9999 0 0.0001 21 0.04432 0.19917 99.80082 OO1סס.0 21 0.018041 0.00593 2.47676 97.51731
22 0.035436 99.99988 0 0.00012 22 0.044906 0.19913 99.80086 OO1סס.0 22 0.01862 0.00594 2.47679 97.51727
23 0.035925 99.99985 0 0.00014 23 0.0456 0.19908 99.80091 OO1סס.0 23 0.019117 0.00595 2.47682 97.51723
24 0.036465 99.99983 0 0.00017 24 0.046235 0.19904 99.80095 OO2סס.0 24 0.019609 0.00595 2.47687 97.51718
25 0.036918 99.9998 0 0.0002 25 0.046743 0.19899 99.80099 OO2סס.0 25 0.020063 0.00596 2.47692 97.51711
26 0.037307 99.99976 0 0.00024 26 0.047169 0.1989S 99.80103 OO2סס.0 26 0.026497 0.OOS97 2.47699 97.51704
27 0.037664 99.99972 OO1סס.0 0.00028 27 0.047544 0.19891 99.80101 OO3סס.0 27 0.020905 0.00598 2.47706 97.51695
28 0.037956 99.99967 OO1סס.0 0.00032 28 0.047859 0.19886 99.8011 OO3סס.0 28 0.0213 0.00599 2.41715 97.'1686



•
Table 5.42

~8

SIMPLE DAVESIAN VAR TIOIITNESS = 0.1 AND OTI mR = 0.5 VARIANCE DECOMPOSITION

TOTAL EMPLOVMENT MANUFACTURING EMPLOYMENT SERVICES EMPLOYMENT
Stcp St-Dev TOT MANUF SERV Step St-Dev TOT MANUF SERY Step St-Dey TOT MANUF SERY

1 0.009219 100 0 0 1 0.008264 0.31711 99.68289 0 1 0.002943 0.00035 3.81168 96.18797

2 0.012333 99.66425 0.25667 0.07908 2 0.011135 0.58098 99.1509 0.26811 2 0.00]959 0.042]1 3.6817] 96.27596
3 0.014352 98.4306' 0.96665 0.6027 ) 0.013202 1.18266 97.78994 1.0274 3 0.004841 0.20583 3.42612 96.36805
4 0.016094 96.33787 1.72123 1.94091 4 0.015064 2.09856 95.41019 2.49126 4 0.00560' 0.28'08 J.14678 96.'6814
5 0.017434 9J.571'9 2.5177 3.9107 5 0.016817 2.892' 93.01351 4.09398 5 O.OO6JI 0.41411 2.90'34 96.680'4
6 0.018622 89.679'1 3.42839 6.89209 6 0.018317 3.88216 89.91053 6.20731 6 0.006999 O.SOII 2.67907 96.11213

7 0.019604 85.0671 4.26532 10.66758 7 0.019652 4.7217 86.48892 8.78938 7 0.007'2 0.""6 2.410'6 97.03J18
8 0.020475 80.01463 4.87733 15.10804 8 0.021028 5.• 5679 83.89582 10.94739 8 0.008034 0.55394 2.15983 97.28623
9 0.021483 74.57619 5.08695 20.33686 9 0.022571 5.17126 82.37602 12.4527. 9 0.008441 0.51106 1.95645 97.5325

10 0.022'05 69.22063 5.3102' 25.46911 10 0.024086 4.7954 81.65633 13.54827 10 0.008797 0.47705 1.84479 97.67816
Il 0.023'17 64.S3535 '.47407 29.99058 II 0.025469 4.38996 81.11398 14.49606 Il 0.009134 0.52796 1.87912 91.59233
12 0.024402 60.77939 5.53396 33.68665 12 0.026862 3.97617 80.98325 1'.04057 12 0.009465 0.711'3 2.0412 97.24026
13 0.025194 S7.4744 1 S.49S17 37.02982 13 0.028051 3.64672 80.98255 1'.37074 13 0.0097'9 0.9'914 2.3'501 96.61'8'
14 0.025914 54.71008 5.58384 39.70608 14 0.029014 3.40897 80.98179 15.60924 14 0.010051 1.26468 2.83546 9'.89986
IS 0.026494 52.54045 5.71293 41.74662 as 0.029921 3.22712 81.12244 15.65044 IS 0.010366 1.6930] 3.35712 94.94985
16 0.026985 '0.72987 '.82231 43.44782 16 0.030735 3.17723 81.21725 1'.60552 16 0.010688 2.0107 3.83094 94.15836
17 0.027401 49.2'789 5.90571 44.83639 17 0.031431 3.23856 81.23161 1'.52983 17 0.011067 2.33445 4.03613 93.62942
18 0.0277'9 48.08066 6.06823 45.85111 18 0.032038 3.3784 81.17756 15.44404 18 0.011468 2.83616 4.1887 92.97445
19 0.028082 47.241'2 6.25471 46.50378 19 0.032627 3.59039 81.12618 15.28343 19 0.011853 3.49339 4.31381 92.19281
20 0.028353 46.52861 6.4294 47.04199 20 0.033296 4.01494 80.98463 15.00042 20 0.012179 4.19054 4.49717 91.31229
21 0.028593 45.90692 6.75101 47.34207 2' 0.03394 4.58408 80.73916 14.67671 21 0.012486 4.83965 4.68234 90.47801
22 0.028842 45.44768 7.16233 47.38999 22 0.034493 S.0591S 80.62627 14.31459 22 0.012759 5.44835 4.85693 89.69472
23 0.029081 45.12521 7.56892 47.30588 23 0.035162 5.53053 80.67733 Il.79214 23 0.012975 5.97301 5.14789 88.879'
24 0.029367 44.71463 8.18246 47.10291 24 0.035793 6.07635 80.61295 13.3107 24 0.013'71 6.36292 5.43234 88.20474
25 0.029642 44.06245 9.00479 46.93276 25 0.0363 6.55985 80.49196 12.94819 25 0.013336 6.7461 5.75114 87.50276
26 0.029918 43.30157 9.89457 46.80386 26 0.036741 6.97236 80.35454 12.6731 26 0.013486 7.12009 6.09353 86.78639
27 0.030196 42.52168 10.74108 46.73724 27 0.037164 7.35777 80.17913 12.4631 27 0.013622 7.530B7 6.45837 86.01075
28 0.030466 41.77219 11.56716 46.66064 28 0.037573 7.7627' 79.91308 12.32421 28 0.013757 8.00245 6.81676 85.18079



•
Table 5.43

t

COMMONLV USED DAYESIAN VAR TIGIIl"NESS "" 0.2 AND OTIIER =0.5 VARIANCE DECOMPOSITION

TOTAL EMPLOYMENT MANUFACfURING EMPLOYMENT SERVICES EMPLOYMENT

Step St-Dev Tor MANUF SERV Step St-De" TOT MANUF SERY Stcp St-Dev TOT MANUF SERV
1 0.008741 100 0 0 1 0.C»07845 0.25564 99.74436 0 J 0.002805 0.00006 4.187S 95.11244

2 0.011574 99.08795 0.81144 0.10061 2 0.01044 0.66456 98.74226 0.59317 2 0.003697 0.09073 4.20597 95.7033

3 0.013471 96.31765 2.54212 1.13963 ) 0.012462 1.55466 96.52147 1.92387 ] 0.004574 0.49072 3.99636 95.51292

4 0.01S309 92.57678 J.8756 J.S4762 4 0.014386 2.9357 92.52679 4.SJ7SI 4 0.OOS364 0.S447 J.67639 95.71191

S 0.016687 81.S2072 .5.0948 6.38448 5 0.016217 3.76863 89.5J807 6.6933 .5 0.005997 0.74431 3.4243 95.13132
6 0.018029 83.13912 6.30588 10.555 6 0.017776 5.18757 15.27042 9.54201 6 0.006725 0.13659 3.21935 95.94406

7 0.019123 77.77599 7.18679 15.03721 7 0.019223 6.40332 80.45602 13.14066 7 0.007227 0.88966 2.90762 96.20272
8 0.020049 72.33886 7.78122 19.87992 1 0.020719 6.95434 77.01006 1.5.96559 8 0.007773 0.89822 2.64102 96.46076
9 0.021239 66.3484 7.64904 26.002.56 9 0.02231.5 6.99739 75.26505 17.73756 9 0.001181 0.8347.5 2.38912 96.77612

10 0.022455 60.62.566 7.68354 31.6908 10 0.023992 6.31289 74.7407 18.88641 10 0.008541 0.76594 2.20795 97.0261 J
11 0.023634 55.97625 7.64573 36.37802 II 0.025445 5.82795 74.05338 20.11867 Il 0.008886 0.77525 2.15944 97.06531
12 0.024581 52.72496 7.54681 39.72823 12 0.026925 5.29322 73.8645.5 20.84223 12 0.009223 0.96326 2.20157 96.83517
13 0.02544 49.731S8 7.2622S 43.00617 13 0.028117 4.86616 73.91162 21.22222 13 0.009506 1.12872 2.38501 96.4862

14 0.026246 47.21079 7.22487 45.56434 14 0.029037 4.59706 73.91716 21.48578 14 0.009785 1.33491 2.78532 95.87976
15 0.026834 45.4042 7.27003 41.32577 15 0.029924 4.33271 74.17354 21.49375 15 0.010088 1.74721 3.24097 9.5.01112
16 0.027343 43.82641 7.29341 48.88018 16 0.030696 4.1691 74.31124 21.44966 16 0.010384 1.87383 3.6659 94.46027
17 0.027777 42.54989 7.24141 50.2087 17 0.031329 4.09955 74.57828 21.32217 17 0.010749 1.95812 3.72384 94.31804
18 0.0281.58 41.52582 7.32091 51.15326 18 0.031869 4.07316 74.73145 21.195]9 18 0.011139 2.28958 3.77937 93.93105
19 0.028.5 40.88871 7.43498 51.67631 19 0.0]2371 4.06748 74.91204 21.02048 19 0.011504 2.85365 3.19148 93.35487
20 0.028782 40.30311 7.508 .52.18888 20 0.032976 4.29674 75.01562 20.68164 20 0.01179 3.434.52 3.87878 92.6861
21 0.029627 39.77011 7.78941 52.44048 21 0.033562 4.6t)883 74.97185 20.32932 21 0.012069 3.96316 3.96108 92.06976
22 0.029284 39.43341 8.17249 52.39409 22 0.033995 4.89796 75.1484 19.95364 22 0.012311 4.4197 4.00812 91.51198
23 0.029502 39.28402 8.46805 .52.24793 2] 0.034.581 5.1367 7.5.56549 19.29781 23 0.01249 4.92142 4.20671 90.87186
24 0.029808 38.98807 9.0701.5 51.94177 24 0.035119 5..5622 75.72629 18.71151 24 0.012654 S.17275 4.40204 90.42521
25 0.030097 38.41671 9.90908 51.67421 25 0.03552 5.89529 75.79768 18.30703 25 0.012786 5.43623 4.65622 89.90755
26 0.030385 37.7377 10.7.5609 .51.50621 26 0.035869 6.14844 75.84139 18.01018 26 0.012969 5.6729 4.94649 89.38062
27 0.03068 ]7.04]3 Il.48679 51.46991 27 0.0]622 6.38511 75.84965 17.76524 27 0.013014 5.9541 .5.27508 88.77012
28 0.0]095 36.40102 12.24269 .51.35629 28 O.OJ6S6] 6.65556 75.73583 17.60861 28 0.01l121 6.31736 5.58392 88.09872



•
Table S.44

~

0145 VAR TIOIITNESS - 2.0 AND OTI mR • 1.0 VARIANCE DECOMPOSITION
TOTAL EMPLOYMENT MANUFACTURING EMPI.OYMENT SERVICES EMPlOYMENT

Stcp SI~Dcy TOT MANUF SERY SICp St~DeY TOT MANUF SERV SICp St-Dey TOT MANUF SERV
1 0.00842 100 0 0 1 0.007597 0.27964 99.72036 0 1 0.002721 0.00248 4.09435 95.90317
2 0.011309 98.2825 1.10712 0.01039 2 0.010165 1.12016 98.03515 0.84409 2 0.003519 0.126S3 4.27064 95.60283

3 0.013395 93.59131 4.5]411 1.86859 ] 0.012401 2.16035 95.32194 2.51111 3 0.(045)2 0.96975 4.20166 94.82259
.. 0.015564 88.32757 6.349B4 5.32259 4 0.014576 ".10911 89.37915 6.51175 4 0.005251 0.16011 3.87262 95.2672
5 0.017073 83.83807 7.87593 8.28599 5 0.016SS2 4.74015 86.60907 8.65078 5 0.005955 1.18141 3.56956 95.24903
6 0.018722 17.48253 9.27292 13.24455 6 0.01821S 6.48398 81.9855 11.53052 6 0.006739 1.16517 3.42592 95.40132
7 0.019898 72.63667 9.74715 17.61618 7 0.01984 8.06184 76.64625 15.29191 7 0.00725 1.22054 3.01543 95.69403
8 0.020767 68.11825 10.24968 21.63207 8 0.021539 8.71135 72.75667 18.53198 8 0.001844 1.225 2.85239 95.9226
9 0.02212 61.91474 9.82819 28.25647 9 0.023336 8.95201 70.64996 20.39803 9 0.008263 1. Il769 2.51007 96.28224

10 0.023543 56.10925 9.69388 34.19687 10 0.025008 8.06136 70.56211 21.37653 10 0.008646 1.0703 2.36009 96.56961
Il 0.024853 51.70522 9.411S7 38.88321 Il 0.026586 7.42042 69.77242 22.80716 II 0.009016 1.02381 2.26235 96.71384
12 0.025829 48.97249 9.23807 41.7B944 12 0.028222 6.7834 69.34235 23.87426 12 0.009356 I.lB683 2.19917 96.61399
13 0.026725 46.33231 8.72594 44.94175 13 0.029445 6.25632 69.42867 24.31502 13 0.009641 1.25736 2.27244 96.4702
14 0.027649 43.83686 8.60877 47.55438 14 0.030362 5.99785 69.44783 24.55432 14 0.00992 1.33067 2.59926 96.07007
15 0.02823 42.32877 8.54217 49.12906 15 0.031292 5.72474 69.68629 24.58896 15 0.010221 1.80493 2.96655 9S.2345.

16 0.028768 40.87385 8.53)07 50.59308 16 0.032093 5.46262 69.87211 24.66527 16 0.01051 1.80748 3,38215 94.81031
17 0.029229 39.69949 8.36804 51.93247 17 0.032716 5.31281 70.17818 24.50901 17 0.010871 1.742]5 3.34529 94.91236
18 0.029665 38.69236 8.38566 52.92198 18 0.033231 5.19651 70.4403 24.36]19 18 0.011267 1.92744 3.38958 94.68299
19 0.030024 38.18102 8.44377 53.37~21 19 0.033706 5.01878 70.72838 24.19285 19 0.0116]3 2.41601 3.31445 94.26954
20 0.03032. 37.69899 8.4554 5J.84S61 20 0.034296 5.18167 10.948S2 23.86982 20 0.011896 2.86073 3.J2865 93.81062
21 0.030585 37.20737 8.68424 S4.10839 21 0.034887 5.47441 70.97422 23.55136 21 0.012165 1.29036 3.38471 93.32493
22 0.030873 36.93554 9.05328 54.01118 22 0.035297 5.48886 11.31417 23.19691 22 0.012395 3.73663 3.32472 92.93865
23 0.03106 36.91162 9.23702 53.85135 23 0.035857 5.SS025 71.94389 22.50586 2J 0.012552 4.16418 3.4224 92.41341
24 0.0]1]92 36.66243 9.84037 5].4972 24 0.036368 5.89429 72.22357 21.88215 24 0.012696 4.34348 J.5J54 92.12112
25 0.031681 36.20078 10.57429 53.22494 25 0.036732 6.15644 72.35778 21.48578 25 0.012815 4.52276 3.72949 91.74774
26 O.O]I99S 35.60]08 Il.28827 53.10865 26 0.037057 6.35817 72.4413 t 21.20053 26 0.0129]5 4.63794 3.951J6 91.41069
27 0.0]2313 J4.957S5 Il.8524 53.19005 27 0.037394 6.S2097 72.56462 20.91441 27 0.01302 4.80304 4.22941 90.96754
28 0.03257] 34.41188 12.5332 53.05492 28 0.0377 6.68757 72.5406 20.77183 28 0.01311 5.09164 4.45394 90.45442
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Chapter 6

The RBC Models

This chapter proposes two RBC models to investigate persistent unemployment. Bath

models incorporate sectorallabour mobility. Madel 1 is driven by relative technology

shocks, and model II is driven by representative agent relative taste shocks. This

chapter presents and reports the results for both models.

6.1 Introduction

In the previous chapter, we studied the dynamic relationship that existed between

total and sectoral employment. The emphasis was on the use of linear specification

models. There is ongoing debate regarding the usefulness of linear versus non linear

models. Our justification for using RBC models in this chapter is that linear models

do not provide an acetU'ate structural description of the dynamic relationship between

total employment and reallocation shocks. AIso, as a research strategy, we opt for

stochastic dynamic general equilibrium (SDGE) models to deal with the Lucas and

Sims critiques. These SnGE models provide intertemporal optimal paths for variables

of interest that encompass the expectational beha~;our of non-deep parameters.

In our view, linear and non-lïnear models should he regarded as complements

326



•

•

327

instead of substitutes. RBC simulated employment series exhibit an inherent non­

linearity. Prior to presenting the RBC models in this chapter, we test for Donlinear

temporal dependence in total Canadian employment.

From a time series perspective, linear models neglect empirical testing for non­

linearities. The non-linear Euler equations of a SnGE mode! are usually solved by

finding a linear approximation around the steady state. Therefore, linear approxima­

tions are methodologically present in time series and in SnGE models. However, the

propagation mechanism by which a shock impacts on the economy is generally absent

in time series modelling and is, in most instances, specified to by an economic story

that imposes identifying restrictions.

The literature on nonlinear dynamics has proposed a wide range of tests to de­

tect, and models to investigate, nonlinearities in macroeconomic time series. Brockt

Dechert and Scheinkman (BDS, 1987) derived and adopted a test for independence

and identical distribution based on the correlation integral. The correlation integral

was originally proposed by Grassberger and Procaccia (1984) as a U-statistic estima­

tor to determine the fractal dimension of an attracting set. The U-statistic was first

introduced by Hoeffdring (1948). He showed that this class of U-statistics could be

approximat~using a projection representation as the SUIn of Li.d. random variables.

U-statistics are generalizations of sample averages. Mizrach (1994) corrected for the

failure of the BDS statistic in small samples and derived the simple nonparametric

test (SNT) by changing the kemel usoo in the BDS statistic.

The SNT test was originally devised to discriminate between linear and non-lïnear

time series models. If nonlinearities are present, models such as ARCH, GARCH,
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switching Markov, bilinear time series and others are used to capture the nonlinear-

ities. Note that rejecting the null of Li.d. on the residuals of fitted linear time series

models does not imply that the alternative is only a non-linear time series mode!.l

The rejection of the null simply implies that the linear specification is not accurate;

no hints are given regarding its alternative. This thesis uses the SNT test to investi-

gate nonlinearity in Canadian unemployment. fi evidence of temporal nonlinearities

is found in Canadian unemployment, using SnGE models is one option to pursue.2

Given evidence of economic persistenœ, how could this persistence have been gener-

ated? To answer this, we propose the use of SOGE models.

6.2 U-Statistics and BDS statistic

This section briefiy introduœs the U- and the BDS statistics. For a detailed deriva-

tions, see Mizrach (1994) and Cromwell, Labys and Terraza (1994, pp. 32-36).

U-statistics are generalizations of sample averages. The components of a U-

statistic include a kernel, a symmetric mea.surable function h : Jr'l --+ R, and a

permutation operator, Ln.m that sums over the (~) distinct combinations of m-

elements in a sample space of size n. Let {Xi} he a strictly stationary stochastic

proœss with a distribution function F, and let {Xl, ...,Xn } he a sarnple of size n.

Define the canonical mapping,

U" =U(X], ...,X,,);: (:) -]~:>(X1>...'X,,)
n,m

(6.1)

•
Two examples follow to show how this U statistic relates ta the sample moments. H

l This point is similar in essence ta tbat of Poirier (1997).
2 It O18y he arguecl that non-lïne&r time series models can produœ a better fit and indeed they
might. However, our conœrn is net with the 'fit' of the data.
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m == 1, h(xi) = Xi, (~) -1 = ~, then U(X1, ••• , XR ) = X, i.e., the sample mean. If

- 2 h( ) - (Z4-
zÛ2 (n)-1 2 h U(X X ) aIs th 1m= , Xi-X; = 2 '2 =n(n_l),ten l,···, n equ esampe

variance. Now, consider the vector valued version of (6.1). Let x~ E œn he a

random vector in 1r', and let F(xr) he its joint distribution. Define the kernelas,

h : Ir" x fl!'I --+ R,

h(x~,x=,) = 1[11 x~ - x:' 11< eJ =I(x~,x~,e:)

where 1 is the indicator function, and Il . " denotes the max norm,

m-l

I(x~,x~,ê)= I[m~ rr IXt+; - %8+;1 < e:]
i=O

The correlation integral is given by,

C(m,ë) = LLI(xf',x:',ë)dF(xf')dF(x:')

A oonsistent estimator of the correlation integral is given by,

2 N-I N

C(m,N,e) == N(N -1) E E I(x;n,X~,e:)
t=l .t=t+l

(6.2)

(6.3)

(6.4)

(6.5)

where N = n - m + 1. Note that C(m,/tl,e:) is the expected number of m-vectors

less than e away from any given m-vector. In other words, C(m,e:) measures the

probability that any particular pair in the time series are 'ë-close'. The BDS test

statistic is computed as,

If the series is linear but exhibits autocorrelation, then the BDS will reject the nul!.

Therefore in practice, the BDS is usually applied to the residual of a linear mode!.•
.../N C(m,N,e) - C(1,N,ë)m -+«1 N(D, 1)

..jvar(C(m,N,ë) - C(1,N,e)m)
(6.6)
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6.3 The Simple Nonparametric Test (SNT)

The SNT has three advantages over the BOS. It involves sîmpler computation at the

order of N rather than N2. The varianœ of SNT is similar to that of a binomial

random variable. And mœt importantly, the SNT is properly sized in small samples.

At a sample size of 50 observations, the BOS rejects five times more frequently than

it should under a conventional 5 percent test. This high rate of error of Type l led

Mizrach (1991) ta propose the SNT test,

By replacing the kernel in the BOS test statistic by h : R -+ R,

{
1, if Xt < e }

h(Xt) = I[Xt < e] = . =J(x", e)
O,otheIWlSe

(6.7)

Due to the choice of this kemel, the correlation integral (CI) at dimension m suros

m-independent3 events under the assumption of i.i.d.,

A consistent estimator for the CI is,

N m-l

fJ(m,N,e) = E II I(xt.+i,e)/N
i=l i=O

The expected number of m-chains with a value of 1 in a sample of size N îs,

Il =N6(m,e) = ~X(~)6(m,e)'(1- 6(m,e»N-Z

(6.8)

(6.9)

(6.10)

•
The variance is given by,

3 To examine this 'spatial' correlation, the time series x(t) must he embedded in m-spaœ by oon­
strueting a vector. The choice of m for the dimensionality of the vectors is subjective. See Cromwell,
Labys and Terraza (1994, p. 33) for details.
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N

= ~ - JL' = tX2(~)8(m,e)"(1- 8(m,e))N-" - N'l8(m,e)2
z=O

- N8(m:ê)(1 - 8(m,ê»
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(6.11)

(6.12)

Using bath moments, Mizrach (1991) oonstructed the following statistic and showed

that it has an asymptotic normal distribution,

SNT=v'Fï 8(m,N,ê)-8(m-l,N,ê)8(1,N,ê) -iJN(O 1)
- 8(m -1, N,ê)8(1, N, ê)(1- 8(m - 1, N,ê))(I- 8(1, N,ê» ,

(6.13)

Mizrach (1994, pp. 381-382) studied the small sample properties of the SNT statistic

and reported that it betters the BDS statistic in sma1l samples.

Ta compute the SNT test, we use the log of the quarterly Canadian unemployment

series. It covers the period from 1916:1 to 1999:4. Any linear dependency in the

data should he removed and given that the autoregressive compvnent captures it, we

fit ARIMA(p, 1,0) models, where the choice of p is carried to minimize the Akaike

criterion. We experimented with different values for p and concluded that p = 4

provides the minimum value for the Akaike statistic. Then, we added a dummy

variable ta offset the effect of the reœssions in the data. Finally, we computed. the

residuals from the estimated linear ARMA(4, 1, 0) that includes the dummy variable.

The SNT test4 is carried out on these residuals,

4 We acknowledge the support of Bruce Mizrach in making the FORTRAN code avaiJable. We
modified the code to compute the SNT directly. The estimation of the ARMA models were carried
using E-Views. The SNT test W8S compiled on Linux 2.2.17-14.•

m=l
m=2
m=3

SNT
-2.253
5.425
9.630
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We also investigated the robustness of these results with respect to the outliers in the

series and reached a simi1ar conclusion. Our oonclusion also holds under alternative

values for m. To compare the results with thœe of Mizrach (1994), \'Je focus on

m = 2. Mizrach (1994, p. 384) reported evidenœ of non-linear temporal dependenœ

in the French and Italian unemployment series. Here, the SNT rejects the null of

i.i.d. for the Canadian unemployment.6

6.4 The RBC Models

The previous chapter documented employment persistenœ in Canadian data. We em-

phasized and reported evidence of the persistence e1fects of a sectoral shock to total

employment. We present, simulate and report the results of two multi-sector RBC

models. We report empirical regularities of sectoral Canadian multi·factor productiv-

ity data. The usefulness of this investigation is to be understood when calibrating the

sectoral RBC models. Specifically, the transition probability matrix of the impulse

to the models is inferred from the seriaI oorrelation of multi-fa.ctor productivity.

For simplicity, both models use a log-linear utility function that allows for a con-

\'eX cost function c(~Nlt~aN2t) to capture the cœtly movement of labour between

sectors. Increasing labour in sector i is costly. Note that the c(., .) function can he

viewed as capturing search unemployment (time invested in finding a job) or structural

unemployment (training oost of switching between sectors). The log-linEm' utility im-

plies an intertemporal elasticity of substitution of leisure equal to one. Given local

5 Preci!Jely, the conclusion is robust to and iDcluding m = 5.
6 It may be argued that the SNT re8ects dependence in the second moments !rom autoregressive
conditions1 heterœœdasticity (ARCH). Bere, we were satisfied as to the presence of non-linearity
and dt'Cided to pursue the SnGE models.
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nonsaturation and no extemalities, competitive equilibria - which exists for this Zoo

commodity7 spaoe economy (Bewley (1972) theorems) - are Pareto Optima (using the

competitive welfare theorems of Debreu (1954)). Given a single agent in this eoon-

omy and oonvexity, there is a unique optimum to this maximization problem. This

optimum is the unique competitive equilibrium allocation and supports the Pareto

optimum. Therefore, one can solve for the social planner's problem using concave

programming techniques.

Multi-sector RBC models have been proposed and studied in the literature. Long

and Plœser (1983, 1987) presented a multi-sector model in which they traced the

inHuence ofa sector-specific shoclt on the aggregate fluctuations. Murphy, Shleifer and

Vishny (1989) argued that labour immobility across sectors is of central importance

in explaining cross-sectoral movement of outputs and labour inputs. Other models

were proposed and we discussed them in Chapter 3, such as: Cooper and Haltiwanger

(1990), Basu and Fernald (1997), Horvath (1997) and Swanson (lgggb). Reœntly,

Boldrin, Christiano and Fisher (2000) outlined that habit persistence and limited

labour mobility are necessa.ry to generate output persistence.

Weinberg (1999) studied the effects of long term changes in labour demand on

wages using cross-industry variations in demand growth. The focus was on the re-

sponses of wages to low frequency shocks, defined as over five or ten year periods and

1 The space l(XIoonsists of all sequences x = (%11%21 •••)' X" E R, that are bounded in the norm
Il :t 1100= sup, 1Xi 1.

This spaœ is very important for the two welfare theorems. The spaœ '(XI ensures that 8SSUm~
tions 15.3 and 15.5 (Stokey and Lucas {with Prescott) (1989, p. 455» hold for the preferences and
technologies of interest. For infinite horizon stocbastic optimal grDwth models, any spaœ of the 1"
spaœs other than loc causes serious difficulties. Stokey and Lucas (1989) defined this spaœ (pp.
447-449), emphasized its role in the two welfare theorems (pp. 458-460), and explained its extension
ta stochastic growth models (p. 462).
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labelled as persistent show. Weinberg (1999, p. 2) argued that the persistence of in­

dustrial shifts could be generated by changes in praduet demand, international trade

patterns and technology changes. This study reported evidence of slow employment

adjustment proces (1999, p. 23). In this chapter, we argue that persistent aggregate

unemployment is a result of sectoral phenomena - such as relative technology shocks

or relative product demand shocks - and emerges due ta adjustment costs to labour

mobility across sectors. We integrate a two sector framework into a stachastic general

dynamic equilibrium model ta assess the validity of Lilien's hypothesis. We propose

the following two RBC models.

Since our V.AR result suggest that manufacturing reallocation shocks are infiu­

ential in terms of total employment persistence, we foeus OUI RBC models on the

empirieal regularities of models C-I and B-I in Chapter 5.

6.4.1 MODEL 1 (Sectoral Technology Shocks)

NIany manufaeturing processes can be charaeterized by fixed, or almost fixed, propor­

tioDS.8 Therefore, we assume the following: a) the representative firm's production

function exhibits perfeet complem.entarity in the labour input across sectors and con­

stant returns ta scale between labour and capital, b) the representative agent incurs

a cost in terms of leisure to maye labour across sectors, c) the sector-specifie shock

ta the labour input in sector i is inversely symmetric to the one in sector j, and d)

the cost function is quadratic. The first assumption reftects the high degree of labour

specialization in each sector. This assumption justifies the existence of a cest ta move

8 See Ferguson (1969, p. 177).
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between sectors (the second assumption). Assumption c) is neœssary for the shocks

ta be 'pure' allocation shocks.

Assumptions c) and d) are to induce symmetry in the way labour adjusts across

the sectors from the low productivity to the high productivity sector. Specifically,

assumption c) reflects the following idea. Under our assumptions, a sector specific

technology shock will Dot shift the aggregate production function. Since there are

only two sectors, a relative shock to sector 1 implies a shock in reverse direction -

and equal in magnitude - in sector 2. Therefore, labour demand increases in sec-

tor 1, and decreases in sector 2. This setup ensures that the aggregate production

function is stable and any employment variation in the mode! is to be considered as

structural, not aggregative. This symmetry is useful for investigating 'pure' sectoral,

shock effects. These technology shocks shift the sectoral labour demands and leave

the aggregate production function intact. Relative to sector 2, a shock to sector l

increases the labour demand in sector 1 and decreases it in sector 2. Without sym-

metry, one can note isolate the efIects of a sectoral shock from those of a general

produetivity shock, since aIl shocks would entai! a mixture of both.

Representative agents' preferences are presented by a utility function which is

time separable and state independent. We study the dynamics of a two..sector model

in industries which are characterized by strong complementarities in the production

process and a highly specialized labour input. The mode! is as folIows.

00

max E E [,Bt (ln Ce + 'Y In(T - Nlt - N2t - c(l:lNlt , ~N2t)))] (6.14)
(Cc ,Kc+l ,N1C.N2C)::O t=O



•
336

subject to

I t - K t+1 - (1 - 6)Kt

(6.15)

(6.16)

Ct + lt < Yi (6.18)

(6.19)

(6.20)

where f (z) =max(z, O) and c(~N1t, aN2t ) denotes the cast function to move labour

between sectors 1 and 2. So there is a cast only if there is an increase in employment.

d denotes a cast parameter. T is the total time endowment of the agents. A is the

aggregate shock (here constant). Bi denotes the sector specifie shock. The represen-

tative firm. chooses the minimum level of employment. fi employment increases in

seetor l, it decreases in sector 2. Moving employment ta sector 1 from sectar 2 will

impose a cast on the representative agent in terms of lost leisure. The shock 81 follows

a Markov process9 which is govemed by the following transition probability matrix

(6.21)

•

where Àij = Pr(Zt =ilZt-l = i). The Bellman equation solved, subject ta the above

9 For the theoretical derivations and implications of ~Iarkov processe5, see Noms (1997) .
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constraints by the social planner in this setup is

v(NU- 1,N2"-l,Kt ,Zt) = max [inCl. +'Yln(T - Nu - N2t
(Nu,N2t.Kc+l)

(6.22)

where z denotes the state of the economy «(h, 92). Given the symmetry of the problem

imposed by the 'min' function between sector 1 and sector 2 technologies, we define

the sector specifie shock as 91 == l2. Let fJ =81• Under the symmetry condition, the

Bellman equation for being in state 1 can be rewritten as,

(6.23)

. We also impose a symmetry condition on the transition matrix A. The transition

probability ta move from state 1 ta state 2 (Â12) equals the transition probability to

move from state 2 to state 1 (~21). In this setup as in others, the disequilibrium wage

differentials that will exist between the workers across sectors are eliminated when

the labour input is perfectIy mobile and the cost function c(~Nlt, ~N2t) equals zero.

Without adjustment costs, the first order conditions are,

•
Nt

(1 - Q)AK:-S1
-

O NtO 1'(1 + 8;) = 0
Ct (1 - (1 + 8 ) Nt)

-1 +{jQAKr+ï1(SN,.) 1-0 + 1- 6 = 0
Ct Ct+1

(6.24)

(6.25)
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In the steady state, the theoretical model has a stationary solution wherein the varÎ-

ables are constant. Solving for the steady state values for Nt and Kt respectively, one

obtains,

N••

K•• =

(6.26)

(6.27)

Following a shock, employment is falling in sector 1 and rising in sectar 2. It is

pOssible that employment does not falI to the point of fixed proportionlO in sector

1. In the current period, instead of firing all unproductive employment, keeping a

part of this employment reduces the adjustment costs in the next period. Note that

this employment produces no output. This situation refiects the possibility of labour

hoarding. With adjustment costs, the derivative of the utility function with respect

to sector 1 employment is,

~ 0 (6.28)

>
1

(6.29)
dLtf3

>
1

(6.30)
dLtf3

•

where Le denotes leisure in period t. The last inequality is derived using Table 6.A.

The first term on the right hand side of the first equation is the present cast of

increasing labour in sector 1 in terms of lest leisure. This cast is a function of the

weight of leisure in the utility function. The second term is the discounted value of

the expected future marginal utility henefit arising as a consequence of increasing

lODue to the minimum function.
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labour in sector 1 in the current periode Note that this depends on the state of the

shock in the Dext periode In the case of an interior solution, a positive marginal

henefit implies that firms in sector 1 are inclined to hoard labour. Hoarding labour in

the current period reduces the adjustment costs in the next periode Equation (6.30)

gives the marginal benefit from incre8Sing employment in sector 1 above the level of

fixed proportions. At the optimal solution t we verified that the effect of an increase

in Nu is negative, 50 that workers are always employed in fixed proportions between

the two sectors.

The reason for maximizing over sector 1 labour and capital is as follows. Given

the perfect complementarity between sector 1 and sector 2 labour, there will a1ways

exist a fixed proportion between them. Therefore, maximizing over the grid of sector

1 labour and then computing sector 2 labour from this value is similar to maximizing

over both values of sector 1 and sector 2 labour.u

6.4.2 MODEL II (Sectoral Taste Shocks)

\Ve assume the following: a) the representative firm's production technology is iden­

tical for both sectors, b) the representative agent incurs a cast in terms of leisure to

move labour across sectors, c) the sector-specmc tastes shocks to consumption are

inversely symmetric, and d) the cast function is quadratic. In brief, we adopt the

same assumptions as for model l except that there is no capital in this economy.

We explicitly mode! the two goods' markets and study the dynamics of the economy

subjected to tastes shocks.

11See section 6.9 for details.
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The model used is as follows,

oc

max EL [If (BlinCu + B2 lnC2t + "Y m(T - Nu - N2t - c(ANu , AN2t)))]
(Cu,C2t.Nu,N2t)::o t=0

(6.31)

subject ta

Cu A N 1-
Q (6.32)- 1 U

C2t A N.1- Q (6.33)- 2 2t

C(~1Vlt,AN2t) - d· (f(Nu - Nu_d)2 + d· (f(N2t. - N2t_d)2 (6.34)

Nu + N2t + C(~Nlt, tJ.N2t) < T (6.35)

Nu > 0 N2t ~O (6.36)

where f (z) == max(z, 0) and c(ANu , AN2t ) denotes the cast function ta move labour

between sectors 1 and 2. So there is a cast only if there is an increase in employment.

d denotes a cast parameter. T is the total time endowment of the agents. A is a

constant. We assume that A = Al = A2. (Ji denotes the sector specifie tastes shock.

The shock (Jl follows a ~Iarkov process which is governed by the following transition

probability matrix,

(6.37)

•
where >"i; = Pr(Zt = ilzt-1 = i). We also impose a symmetry condition on the

transition matrix A. The transition probability to move from state 1 to state 2 (>"12)

equals the transition probability to move from state 2 ta state 1 (>"21)' The Bellman
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equation solved by the social planner in this setup is,

(6.38)

•

where z denotes the state of the economy (81, ( 2). Given the symmetry of the problem

imposed by assumption (e) one can define the sector specifie shock as th =8~. Let

(J == (JI- Under the symmetry condition, the Bellman equation for being in state 1 and

in state 2 can he rewritten as

+~ ln(T - Nu - N2t

This model [model II] is similar to model l in terms of wage differentials whenever the

cast function is zero and labour is perfectly mobile. Note that the computation of real

output in mode! II is done by solving the inter-temporal representative maximization
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• problem,

maxL
1

(6.41)- 8InCl + lilnC2 +'\(M - Cl - PC2)
Cl.G2

aL (J
(6.42)aCl

- --..\=0
Cl

aL 1
(6.43)

âC2
- --).p=o

9C2
(J 1

(6.44)
Cl - ..\ = 8PC2

P Cl
(6.45)- 82C2

where P is the priee of good 2 relative to good 1 and Atl refers to incorne. Similarly,

1s is the priee of good 1 relative to good 2. Nominal output equals Cl + PC2, and

real output is eomputed. at a base year price, Cl + p,O)C2 •

6.5 The Models' Intuition

Allowing a two-sector framework is one way ta capture missing dynamics and to

counter the weak propagation mechanism in the general equilibrium modeIs adapted

ta analyze business cycle fluctuations. Assuming that optimizing agents encounter no

market fallure and that productivity shocks are serially independent across sectors, a

sector-specific shock will have its primary effect on the originating sector depending

on how large or small the sector is relative to the economy. Such a setup will help

quantify aggregate level fluctuations due to independent sectoral shocks. Therefore,

policy making can address unemployment in a more appropriate sectoral manner

instead of just focusing on the aggregate economy. The mechanism by which workers

.' lose jobs in response to an adverse technology shock and the slow process of re-

employment, is the propagation mechanism of the persistent periods of slack.
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The single consumer is assumed to be representative12 of the society as a whole.

A change in the level of her utility reflects and is equivalent to a change in the overall

level of social welfare. An increase (decrease) in her utility13 implies an improvement

(loss) in social welfare. Dinwiddy and Teal (1988, p. 104) noted that "This convention

is commonly used by economists wishing to abstract from questions of distribution in

arder to concentrate upon problems dealing with the allocation of resources." With

only a representative consumer, questions regarding the distribution of wealth do not

arise. H there are two or more consumers, with differing factor endowments and/or

utility functions, then economic change will clearly have difFerent consequences for

each. For simplicity, assume the case of two consumeIS. H bath gain or both 1ose, the

calculation of welfare change is unambiguous. However, should one gain and the other

1ose, computing the value of welfare change is difficult without sorne explicit value

judgments (e.g., the Nash equilibrium, the Bergson-Samuelson welfare function).

The a&,aregate production function exhibits constant returns to scale in model I.

This assumption refiects the empirical assessment of the Canadian production struc-

ture reached in Paquet and Robidoux (1997). Once the Solow residuals were corrected

for capacity utilization in the U.S. and Canada, Paquet and Robidoux (1997) con-

cluded that - over the period from 1962Q1 to 1993Q4 and from 197DQl ta 1993Q4

for the U.S. and Canada, respectively - the U.S. and Canadian market structures are

well described by constant returns ta scale. For model II, each sectoral production

function is constant. fi one adds a fixed and sector specific amount of capital, say ï{,

12For an excellent and comprehensive development of the representative agent in macroeconomics
modeling, reCer ta Hartley (1997).
13The aetual numerical value of utility is irrelevant. A change in the utility level provides a measure
of the direction of welfare change.
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to each production function, then each production function exhibits constant returns

to scale.

Model l emphasizes sectoral relative technology shocks. The argument is based

on the following. While technological change leads to job lasses in certain industries

- specifica1ly, in the manufacturing sector - it does not imply that employment must

faIl at the aggregate level. Therefore, we adopted a relative technology shock to keep

the aggregate level insulated from the shock. The only resson for unemployment here

is the labour reallocation proces5, which is not instantaneous.

Crities against the use of technological change as a major cause of Canada.'s higher

unemployment rate, argue that, with similar technological trends in the U.S.A. and

Canada, it is unlikely that technological change can lead to high unemployment in

Canada when it does not have that effect in the U.S. (see Sharpe (1999, p. 31». We

view this argument as flawed for the following reason. It is widely accepted that both

countries face and enjoy sunHar technological trends; however, the Canadian economy

suffers gaps across the spectrum of industries. Some industries are non-existent in

the Canadian economy. These gaps impinge on workers, making labour mo~ement

&crOSS industries more difficult and time consuming. For example, the aerospace and

manufacturing industries suffer from - and exhibit - these gaps. In this thesis, we

argue that, faced with a similar technology shock, the Canadîan economy will incur

higher persistence in terms of output and unemployment. This persistence is due ­

in part - to the nature of existent institutional structures. loi

For model I, the shock is symmetric. Due to the presence of the 'min' function in

14We a1so investigate the size of the relative technology shock in section 6.8.
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the production function, at the steady state

(6.46)

(6.47)

•

and total labour supply equals NI + N 2 = (1 +82)NI . In model II, total employment

equals the SUIn of employment in both sectors.

For mode! l, the following table summarizes the change in sectoral employment

as a function of the state of the economy.

Table 6.A
MODEL! Change of employment Change of employment

in sector 1 in sector 2
Previous state was low in sector 1
Present state is low in sectar 1 Nt,t - NI,t-l f)2(Nl ,,, - Nt,t-d

Previous state was high in sector 1
Present state is high in sector 1 Nl,t - (J2 N1,t-l (J2 1Vl ,t - Nl,t-l

During recessions, matching workers to jobs is time-consuming and costly in terms

of time lost. In the models, and following an adverse relative sectoral shock: jobs

are destroyed in one sector and new ones are created in the other sector. \Vorkers

search and are willing to move to the sector with the high demand for labour. This

search process increases non-cyclical unemployment. As time goes OD, unsuccessful

workers (in finding a job) suffer a loss of skills or find themselves with the wrong

skills to move to the other sector. This process raises non-cyelical unemployment.

Therefore, an adverse shock results in increasing the natura! rate of unemployment

and decreasing output. In this thesis, the aim is Dot to explain the search or the loss

of skills proeesses. Through a sectoral shock, the foeus is on explaining the increase

in the natural rate of unemployment. In model l, the impulse is a relative technology
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shock, while in mode! n, the impulse is a relative taste shock that increases the

product demand in one sector and reduces it in the other.

In a ~sector mode! without adjustment costs ta labour mobility between sec-

tors, there is no change in structural unemployment. Given the market clearing

nature of RBC models augmented by the perfect mobility of labour assumption, a

symmetric productivity shock reduces labour demand in one sector and simultane-

ously increases it in the other sector. To explain the sharp rise in unemployment

during recessions, one is inclined to make use of adjustment costs to labour mobility.

These costs impinge on labour mobility following an adverse productivity shock. If

one is ta interpret these costs as 'searching costs' or 'aequiring new skills costs', then

the natural rate of unemployment will inCIease during recessions. Note that the for-

mer costs explain the increase in frictional unemployment, while the latter explains

the iDcrease in structural unemployment. The end-result is that an adverse sectoral

supply shock (sectoral productivity shock) will increase unemployment and reduce

output.

fi one is able ta quantify the magnitude of the increase in the natura! rate of

unemployment relative to the generallevel of unemployment from the model, then a

clear poliey response is in sight. At the aggregate level, the problem is the following.

The unemployment rate increases sharply during recessions. Part of this increase is

due to an increase in the natura! rate15 and part is due to cyclical unemployment.

In this thesis, we suggest that a good explanation of the former is the reallocation

15In this thesis, changes in the natural rate includes any transitional changes in unemployment
resulting from the reallocation of labour between sectors.
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of labour. Therefore, a best policy response is to deal independently with each part

of the unemplayment increase. H most of the increase in unemployment is due ta

the cyclical component, then an aggregate demand policy cauld alleviate the burden.

If the increase in unemployment is due ta a fluctuation in the natura! rate, then a

supply policy such as eHminating (or reducing) b.-riers to labour market adjustment

and costly regulations will reduce unemployment. Next, we study two important

issues. The first relates ta the size of the shock and the second advances the issue of

calibrating the transition matrix A.

6.6 Size and Economie Fluctuations

This section explains our interest in simulating our RBC models with different shocks

size. Bianchi and Zoega (1996) emphasized the size of the shock issue. They asked

the question: "Does the size of the shock matter in explaining unemployment persis­

tence?" Using statistical analysis based on switching regression models (~Iarkovian

regime shifts in the mean) and non-parametric density estimation techniques (as an

exploratory tool to investigate the data) they identified and quantified the size of

the shift in the unemployment series mean of 17 OECD countries. The annual data

covered the period 1960-1993. They criticized the use of linear time series models

in which the mean is constant (time invariant), as is the case with A.lù\JIA models.

Therefore, they proposed a time series ~Iarkov switching regime type model, in which

the unemployment Mean is a function of the state of the economy. The model was

labeled as 'the shifting mean value (SMV) mode!'. The methodology is as follows:

First, test for time invariant parameters using stability tests on the recursive least
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squares. Next, use the nonparametric density estimation and the bootstrap multi­

modality tests to test for the number of the states in the density of the frequency

distribution of unemployment rate series. Then, estimate the switching regresSion

model to detect the timing of the shift points. Once the dates at which the shocks

occurred were identified, they removed the changes in the mean and concluded that

there was little evidence of unemployment persistence in most countries. They found

that large annual changes in the unemployment mean (large shocks) are consistent

with the hysteresis models of unemployment (see Chapter 4). ~Iost of the persistence

was accounted for by a few large shocks rather than by numerous small shocks. They

suggested further investigation into the non-linearity properties of unemployment (a

time variant Mean of unemployment). For Canada, a shift was found in 1975. Note

that in Canada, the unemployment insurance reform took place in 1972.

The point is that the size of the shock matters. On a technical issue, the size

of each industry can be measured as the proportion of the industry output relative

ta the total economy-wide output. The size of each industry shock cao he proxied

by the Mean af the industry Salow residuals (corrected far capital utilization) à la

Burnside, Eichenbaum and Rebe10 (1995). Once computed, the respective Mean can

he used ta calibrate the size of the industry shock. However, in this thesis, the size

of the shock is calibrated such that the models' steady state workweek hours match

the one in the business cycle data. Over a range fram smal1 to large, values around

the size of this shock are investigated. We use 8 = {LI, 1.15,1.2, 1.25, 1.3}, Le., we

investigate shocks with size of 10 percent to 30 percent.
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6.7 Multi-Factor Productivity Data

This section highlights the usefu1ness of the Canadian Solow residuals for calibrat-

ing the transition probability matrix A. Table 6.1 identifies the CANSIM source of

Canadian value-added multifactor productivity across sectors, specifical1y for goods,

manufacturing and services. Table 6.2 presents basic descriptive statistics for total

factor productivity, as weIl as for detrended GDP. Table 6.3 shows the correlation

matrix between each of the productivity series and detrended GDP. The shocks are

generated using a ~Iarkov transition probability matnx. The probability to stay in the

same state À11 is usually set to equal the serial correlation coefficient of the sectoral

Solow residual. The seriai correlation coefficients for different sectors' multifactor

produetivity are,

Table 6.B
Annua! Data
~IultifactorProductivity: Sector GOOnS
Multifactor Productivity: Sector MANUFACTURING
Nlultifactor Productivity: Sector SERVICES

Source: Table 6.4.

First Seriai Correlation
0.861
0.875
0.892

•

We choose an upper bound value of 0.92 for Âu in the transition matrix A. This value

equals the first seria! correlation of GDP over the period from 1961 ta 1998. Values

of 0.92 and 0.72 are chosen to calibrate the probability ta stay in the same state for

all models quarterly and annua1ly, respectively. Given the relatively small value of

..\111 one can use (0.92)4 ~ 0.72 as a good approximation. For symmetry purpose, we

set Â22 = Ân . The values of Â12 and À21 are computed directly from ..\11 and ..\22.

Greenwood et al. (1994, p. 9) used Z = {exp<, exp-'} as values for the shock in

a tw~state world. 'denoted the standard deviation of the sectoral Solow residual.
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However, the w;e of the exponential form requires psssing the HP filter on the model­

generated data ta de--trend it (since the study assumed an exponential trend in the

shocks). Here, there is no need to pass the HP filter on the models generated data,

since there is no trend present.



• Table'.!
~C-AN~S~IM~S"'='O=-=UR="C'=":E=-------------

Multifactor Productivity: Sectar Goods 1700601
Multifactor Productivity: Sector Manufacturing 1700606
Multifactor Productivity: Sectar Services 1700602

Table ,.2

DESCRIPTIVE STAllSnCS
HP FILTERED GDP and MULTIFACTOR PRODUCTIVITY

351

Series
GDP
GOODS
MANUF
SERV

Table 6.3

Obs
36
36
36
36

Mean
0.000
89.78
83.99
92.50

Std Error Minimum Maximum
0.031 -0.060 0.045
10.56 64.40 103.50
14.47 54.10 105.10
6.85 76.90 100.90

cv

0.11761
0.17222
0.07402

Correlation Matrix between GDP and MUtTIFACTOR PRODUCTIVITY
HPFILTERED

GDP
Goods
Manufacturing
Services

Table 6.4

GDP
1.00000
0.27750
0.24606
0.49571

Goods

1.00000
0.99038
0.93505

Manufacturing

1.00000
0.91468

Services

1.00000

•

AUTOCORRELATIONS
HPFILTERED

K=I K=2 K=3 K=4 K=5 K=6
GDP 0.74062 0.42863 0.12036 -0.0786 -0.17629 -0.1690
GOODS 0.86150 0.74388 0.65160 0.57931 0.51717 0.45888
MANUF 0.87547 0.75754 0.65741 0.59064 0.54040 0.49102
SERY 0.89202 0.76224 0.63591 0.52803 0.43223 0.34775
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6.8 Models Calibration

Independent evidence on an appropriate value for D (the adjustment cast parameter)

is not available.16 For our calibration of D, we follow the pioneering work of Cardia

(1991) and Greenwood, Hercowitz and Krusel1 (1992) in setting the adjustment cast

parameter 50 that the generated series match the variance of em.ployment in the

business cycle data. Using an open economy dynamic general equilibrium model,

Cardia (1991, p. 423) chose to calibrate the adjustment cost parameter to 0.5 because

this value reproduced the observed volatility for the investment series. Here, we are

interested in explaining unemployment and use the values of the adjustment cost

parameter as D = {5, 10, 15}.

When dealing with sector level data, Long and Plasser (1987) argued that using

monthly data will reduce the potential role for shocks that influence some sectors with

some time delay. On the other hand, using quarterly data will mislabel a portion of

the shock that is already propagated ta other sectors within the quarter. Here, we

will explore the quarterly and the annual frequencies. To compare the results from

both frequencies (annual and quarterly), the time endowment is set to one unit for

the quarterly frequency and to four units for the annual frequency.

The value of A (constant) was computed in each model sucb that the model

possess a steady state on the grid mesh. It is computed as a function of the steady

state values of the decision variables. The following table reports the value of A for

each frequency for model 1. Note that A is not a function of the adjustment cast

16Note that d = 0.5 D. In the literature, d is used as the adjustment cost parameter. Here, we
calibrate and report our results in terms of D. Similar use of notation was reporte<! by Cardia
(1991).
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parameter D.• Table 6.C
ModelI
Annual- A
Quarterly - A

8 = 1.10 8 = 1.15 8 = 1.20 8 = 1.25 8 = 1.30
4.762 4.918 5.078 5.242 5.410
3.155 3.259 3.365 3.474 3.586

•

Over the period from 1980 to 1996, the calibrated parameters for the Canadîan econ-

omyat both frequencies are taken from Section 2.12, and are given in Table 6.D,

Table 6.D
1 Q = 0.35 1 «5 =0.06 l 'Y = 2/3 1

Ct is the capital' share in income, 6 denotes the capital depreciation parameter and-,

denotes the momentary leisure shape parameter. The leisure shape parameter 'Y = 2/3

implies that tw~thirds of the household time is allocated to non-market activities

and the elasticity of the labour supply equals 2. The same value was used by Prescott

(1986). Calibrated parameters differ for bath frequencies and are set out in Table

6.E,

Table 6.E
Quarterly p = 0.01 {3 = 0.99 '\11 =0.92 T=l
Annual p = 0.04 {3 = 0.96 '\11 =0.72 T=4

where p denotes the time rate of preference and {3 denotes the discount factor. T is

the units of time endowment in each periode

Each model is simulated with all combinations of D = {5, 10, 15} and (J =

{LI, 1.15, 1.2,1.25, 1.3}. Therefore, in total, 60 models were simulated. The rati~

nale for these simulations is to investigate the sensitivity of the results to calibrated

parameters and to the frequency.

Values of 9 = {l.10, 1.15, 1.20,1.25, 1.30} around 8 = 1.20 are chosen so that

the mode! yields a steady state value of N equal to 0.20 which matches the average
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workweek as a fraction of total hours over the time periode Since the week contains

168 hours, 20 percent for hours of work time implies 33.6 hours on the job. Note also

that a workweek of 40 hours implies that N· equals 0.238, a value which is not· far

from the chœen 0.20.

We use a random Dumber generator to determine the incidence of a shock. To

simulate the time series, the procedure is as follows. First, assume that the eoonomy

is resting in state 1 with probability '\11 to stay in the same state for the next periode

Second, generate a uniformly distributed random number. H the random number is

higher than Àu , then the eoonomy will move to state 2. If state 1 is the state wherein

sector 2 enjoys the high value of (J (high productivity in model 1 and high product

demand in model fi) and sector 1 collects 110, then when the economy moves to state

2, the role of (} is switched for bath sectors. The random number generator is used to

simulate the models. For example, assume as described that the economy is in state

1 and sector 2 is the high (} sector (0 = 1.2). If the value of the random number is

higher than Àu , then sector 1 enjoys a shock of (} = 1.2, which implies that sector 2

is experiencing a shock of (} = 1/1.20 = 0.83. For mode! l, this shock translates into a

20 percent increa.se in the labour demand in sector 1 and a 17 percent decrease in the

demand for labour in sector 2. For model il, this shock translates into a 20 percent

increase in the demand for sectar 1 goods and a 17 percent decrease in the demand

for sector 2 goods. The range of analysis is chosen to caver the range from a small

shock (10 percent) ta a relatively large shock (30 percent).
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6.9 Algorithm, Robustness and Validity

In the context of RBC models, Romer (1996, p. 158) pointed out that bis model

(1996, p. 152) cannot be solved analytica1ly. This model assumed two types of

shocks, technology and govemment,17 and included a mixture of non-lïnear and linear

elements. Our models - in this thesis - possess a mixture of non-linear and linear

elements such as a Leontiff production function, a log-linear preference function and

convex adjustment cests. Note also that given the inherent asymmetry of the f(.)

function, the adjustment costs function is positive only if the change in employment is

positive. Consequently, it is highly unlikely that our models can be solved analytically.

We proceed further by solving the models numerically.

Solving the models using a numerical approach lead to the study of different

numerical methods, as outlined in Taylor and Uhlig (1990). They compared seven

different numerical methods, namely the value-function grid, the quadrature value-

function grid, the linear-quadratic, backsolving, the extended-path, the parametrizing

expectations and the least-squares projections. One of their conclusions was that if

the measuring stick is the 'clœeness' of the numerical solution to the true decision

rule, then grid methods are "... likely to do very well." Taylor and Uhlig (1990, p.

16). They pointed that when computing time is the measuring stick, linear-quadratic

approximation methods exhibit financially significant savings in terms of computing

time. In our case, we accepted the burden of computing time and choose 'closeness'

as a measuring stick. Therefore, we choose the value-function grid method.

lTRamer dropped the government sector and also assumed complete capital depreciation to solve
the mode! analytically.
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The method relies on approximating the continuous valued problem by a discrete-

valued one. The method evaluates and iterates on the Bellman equation over a grid

of points with respect to the choice variables. The choice variables are capital and

labour in model 1. For mode! il, the choice variables are sector 1 and sector 2 labour.

Model 1was maximized over 20,000 grid points of capital and sector 1 labour. The

value for sector 2 labour was computed from sector 1 labour. Sector 2 employment

is computed as N2 = (;2Nl • Total employment was set to N = (1 + 82)N1• The mesh

size for mode! 1 differed across the frequencies, annually and quarterly. For capital,

it is set to 0.2 and 0.02 for annual and quarterly frequencies, respectively. For sector

1 labour, the mesh is set ta 0.009 and 0.0003 for annual and quarterly frequencies,

respectively. Madel II was maximized over 22,500 grid points of sector 1 and sector

2 labour. The mesh size was set to 0.006 for all sub-models. AlI grids were centered

around the steady state. At first, we simulated a representative of each model [mode!

1 and model II]. After a process of trial and error, we located for each model the

steady state on the grid. Then we changed the extremum of the grid to center it

around this steady state. Final1y, we carried out our sensitivity analysis.

Judd (1998, pp. 413-414) devised an error bound on the value function. Once

an approximate solution is computed, the computation of the error bound on the

Bellman equation is carried out. The contraction property used to iterate the value

function implies that each iteration satisfy the inequality,

•
1

1-{3
(6.48)
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One stops the value function iteration at the first iterate sueb that,

(6.49)

The last inequality becomes the convergence rlÙe given one's goal EV. This implies

that the initial convergence stopping rlÙe is E = EV(l - /3). In our program, we set

the stopping rule to l.E - 10. This ruIe implies that the following values for EV were

used,

Table 6.F
Quarterly (/3 =0.99)

1.E-12

Annual (/3 = 0.96)

4.Fr12

•

When 1 VA: - V k - 1 1< I.E - 10, iteratioDS stop and the policy rules are computed

from the steady state. Once they are computed, the variables are simulated and their

properties are investigated.18

We have examined. the robustness of the results to variations of the parameters

within their support. There are two types of sensitivity analysis: global and local.

Local sensitivity analysis focuses on local perturbations of the parameters. Our focus

here is to study local robustness (next section). Global sensitivity analysis focuses on

'how robust the simulation results are to changes of the parameters in a small neigh-

bourhood of a particular vector of calibrated parameters?' For the global approach,

see Pagan and Ullah (1999).

We stuclied the models' rE~u1ts in the neighbourhood of local parameter pertur-

bation. We simulated the models by fixing all calibrated parameters but one. We

18Each sub-model is run seven times to ensure that convergence is reached. AlI models are pro­
grammed in Fortran77 and run on a Linux/Unix operating systems base<! machines using the g77lm
compilers. We acknowledge the tolerance of the Computer Science department and the permission
to run these programs on their Unix/Linux machines.
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decided to investigate the effect of adjustment oost sizes, relative shock sizes and

the frequency used on the results. Therefore, we simulated each mode! [mode! l and

mode! n] under three adjustment cast sizes, five relative shock sizes and two frequen­

cies (quarterly and annually). AIl parameter variations were taken in a small local

neighbourhood around the steady state (see section 6.S for the values used).

As for the validity of the results, the following quotes best present our view of

this calibration exercÎ5e. "A calïbrationist takes the opposite view: the model, as

a DGP [Data Generating ProcessJ for the data, is faIse. That is, as the sample

size grows, it is known that the generated data by the mode! will be at increasingly

greater variance with the observed time series. An economic model is seen, at best1

as an approximation to the true DGP which need not be either accurate or realistic

and, as such, should not he regarded as a mill hypothesis ta he statistically tested.n

(Prescott (1991, p. 5)). AIso on the same issue, "In confronting the mode! with the

data, a calibrationist wants ta indicate the dimensions where the approximation is

poor and suggest modifications to the theoretical model in arder ta obtain a better

approximation." Canova (1994, p. 5124). The conclusion of this chapter points ta

the dimensions where the models were successful.
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6.10 Local Sensitivity Analysis

Kim and Pagan (1995, pp. 380a381) prop05ed two approaches (local and global) ta

sensitivity analysis in computable general equilibrium models. Since our focus is on

local sensitivity analysis, we computed the "sensitivity elasticities" for the models'

parameters. These elasticities are based on the Taylor series expansion of a function

of the calibrated parameters g(B) &round 8- featured in the mode!. Formally,

g(9) ::< g(9°) + [~JfI=8" (9 - 9°)

In tertns of proportionate changes,

9(B) - g(rr) _ ~ . [(8; - B;)J
(B-) - L." TI] 8~

9 ;=1 1

where,

{[ag
] [B.]}71' = - .2.

J - aB; 9 9=9.

(6.50)

(6.51)

(6.52)

•

71; is the sensitivity elasticity for the jth coefficient. These elasticities are computed

numerically by perturbing the coefficients of interest. Tables 6.G and 6.H report

the models elasticities, where 9 is defined as the ratio of the standard deviations of

model output ta sample GDP. Table 6.G reports the sensitivity elasticities for the

adjustment cast parameter D.
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MODELU
8· = 1.2

ANNUAL '1 ANNUAL 'Il

D=10 0.5268 0=10 0.0998
D=15 0.4613 D=15 0.0773

QUARTER '7 QUARTER TI
D=10 0.9072 D=10 -0.040
D=15 0.5104 0=15 0.1046

Table 6.G

1

~ODELI
8 = 1.2•

From the above results, at low 1eve1s of adjustment cast [range 5 to 10J, if one changes

D by 1 percent, mode! 1 (annual frequency and shock size 8 = 1.2) implies a change of

0.526 percent in the ratio of the model output standard deviation relative ta business

cycle data GDP standard deviation. For similar conditions (i.e., same frequency and

fixed shock size), mode! n implies a change of 0.099 percent in the ratio of the mqde!

output standard deviation relative to business cycle data GDP standard deviation.

~Iodel II (annual frequency) sensitivity results suggest that the mode! implications

are insensitive to the adjustment cast parameter.

Overall, model 1results are more sensitive (relative to modellI) ta changes in the

adjustment cast parameter. In the absence of formai educational institutions that

facilitate labour mobility across sectors (Le., high adjustment cast parameter D=15),

a 1 percent change in D influences considerably the model output variability. H the

parameter D can be thought of as an index that measures the absence, the rigidity

or the presence of institutions that facilitate labour mobility in the economy, then a

•
small policy change can influence the severity of output lost during a recession that

is generated by a sectoraI technological change.
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Overall, the sensitivity elasticities for mode! n imply that regardless of the shape

of the adjustment cost parameter, the efFects of a sectoral tastes shock are robust in

terms of output variability. Table 6.H reports the sensitivity elasticities for the size

of the shock at the annual frequency.

Table 6.H
MODEL! MODELU

ANNUAL ANNUAL

D=5 D=5
(J = 1.15 7.632 (J = 1.15
(J = 1.2 5.853 (} = 1.2
(J = 1.25 4.489 f) = 1.25
8 = 1.3 4.024 f) = 1.3

0=10 D=lO
() = 1.15 7.466 f) = 1.15
8 = 1.2 5.496 f) = 1.2
(J = 1.25 4.428 (} = 1.25
(J = 1.3 3.750 (J = 1.3

D=15 D=15
(} = 1.15 6.988 (} = 1.15
(J = 1.2 5.409 (} = 1.2
8 = 1.25 4.257 (J = 1.25
() = 1.3 3.691 (} = 1.3

1.030
0.607
0.541
0.048

0.239
0.432
0.413
0.556

0.324
0.098
0.346
0.208

•

With the exception of the case of low adjustment cast and low size of t~e shock (i.e.,

D = 5 and 8 = 1.15), mode! II results are insensitive ta the change in the size of the

shock. The size of the sectoral technology shock in model l is very important ta the

model's results on output variability. Overall and almost at allievels of adjustment

costs, output variability is very sensitive to the size of the sectoral technology shock.

A pattern that emerges from Table 6.R is that, as the size of the sectoral tech-

nology shock increases, the elasticity decreases. This implies that output variability
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is very sensitive to large sectoral technology shocks. Appendix B presents sensitivity

analysis19 for model I. Appendix B, Figure 2, illustrates the sensitivity ofconsumption

and output to the capital depreciation parameter 6. Appendix B, Figure 3, shows that

labour supply is an increasing function of the size of the sectoral technology shock.

As 6 increases, unemployment and the labour supply increase.

6.11 Stochastic General Equilibrium Results

This section reports and analyses the results of the simulated models, their character-

istics and ability to match business cycle data. First, the section is divided by type of

resmts, tables and figures. Final1y, the sub-section 'average labour productivity' in-

vestigates the merits of each mode! relative to its performance in replicating observed

labour productivity characteristics. In what follows, 'output' is used to describe the

real GDP simulated series, and 'GDP' is used to refer to the real business cycle data.

6.11.1 Results (Tables)

Tables 6.5 ta 6.15 report the empirical regularities of the Canadian business cycle

data. Table 6.5 identifies the data source and their CANSIM labels. Data caver

the period 1976 to 1999 and are for gross domestic product (GDP) , employment

(EMP), consumption (CONS) and investment (INVST). GDP is measured from the

expenditure side at 1992 market priees. Consumption is measured as expenditure on

consumer goods and services. Investment is mea.sured. as business gross fixed capital

19To investigate the sensitivity of model 1. Appendix B undertakes parameter sensitivity analysis.
This was done using MATHCAD programs. 1 acknowledge the support of Stephen Millard at the
Bank of England in providing me with the prototype MATHCAD program for the basic real bussiness
cycle model used in Millard et al. (1999) .
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formation. AIl are in 1992 dollars. Employment is measured as actual hours. Note

that measuring employment as the total number of people above 15 years of age who

are employed, reduces employment variability with respect to GDP. Relative to GDP,

actual hours are more variable than total employment. Figure 6.1 illustrates the time

series of GDP, consumption and investment.

Tables 6.6 and 6.7 report basic descriptive statistics for the cyclical component

of each series at each frequency. The cyclical component is computed as deviation

from the trend, where the trend is extracted by the Hodrick-Prescott filter. Prior ta

61tering, aIl series were in log forme In terms of valatility: investment is the most

volatile, followed by employment, gross domestic product and then consumption.

For Canadian data covering the period from 1976 ta 1998, the volatility measures

are,

Table 6.1
Standard Deviation relative ta GDP
QUARTERLY ANNUAL

UGDP 1.6% 2.56%
uEJ.,IP/aGDP 1.09 1.04
uINvST/aGDP 3.29 3.29
trCONS/UGDP 0.82 0.94
Corrl(APN", GDP,,) 0.074 0.079
Corrl(APN"t GDP,,+2) 0.183 0.711

Source: Tables 6.6 and 6.7. APN denotes labour productivity.

Tables 6·.8 and 6.9 show the cross correlations of each series with GDP at differ-

ent lags. AlI series (consumption, investment, employment and labour productivity)

are procyclical. Consumption, investment and employment are coïncident, whereas

labour productivity is leading.

Tables 6.10 and 6.11 report the correlation matrix of the series. Ranking the vari-
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ables using the correlation with GDP - from highest to lowest - results in employment,

consumption and ïnvestment. Tables 6.12 and 6.13 report the serial autocorrelations

of each series for the detrended data. For all series, the autocorrelations are signifi­

cantly different from zero. Tables 6.14 and 6.15 are the autocorre1ations for the growth

series. The Canadian GDP growth rate is significantly serially autocorrelated at lag

1 with a value of 0.276 and 0.381 for annual and quarter frequencies, respectively.

Tables 6.16 ta 6.33 report the results of the simulated data for model 1 (relative

technology shock). Tables 6.16 and 6.17 show basic descriptive statistics for output

generated by mode! I. Each row represents the results of a simulated mode! at diHerent

parameter specifications: three different adjustment cast parameters (parameter D)

and five different shock size parameters (parameter 8).

At the annual and quarterly levels, the highest variation for output is produced by

the model which includes the highest shock size (8 = 1.3) and the highest adjustment

cast parameter CD = 15). The last rows of Tables 6.16 and 6.17 show that model

1 produces 13.5 percent and 4.42 percent output variability, for the annual and the

quarterly simulations, respectively. The selection of the following madeIs is based

primarilyon their ability to match output variability. From tables 6.16 ta 6.23, the

modeis which match cyclical variability (Tables 6.6 and 6.7) are gjven in Tables 6.J

and 6.K,
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Table 6.J
Model 1 - ANNUAL St-Dev Relative ta Output

GDP EMPL INVST CONS
DATA 2.56% 1.03 3.29 0.94
Model 1 - D =5 - Theta = 1.15 4.53 1.34 3.48 0.59
Model 1 - D =5 - Theta = 1.2 5.99 1.34 3.45 0.57
Model 1 - 0 = 10 - Theta = 1.1 4.24 1.30 3.21 0.63
Madel 1 - 0 = 15 - Theta = 1.1 5.19 1.26 3.08 0.66

Source: Table 6.6 and Tables 6.16, 6.18, 6.19 and 6.20.

For the quarterly frequency simulation,

Table 6.K
Model 1 - QUARTERLY St-Dev Relative ta Output

GDP El\IIPL INVST CONS
DATA 1.6% 1.09 3.29 0.82
Madel 1 - D = 5 - Theta = 1.2 1.37 1.46 3.38 0.58
NIodel 1 - D = 10 - Theta = 1.1 1.31 1.42 2.63 0.63
~Iodel 1 - 0 = 10 - Theta = 1.15 1.86 1.43 2.78 0.51
Model 1 - D = is - Theta = 1.1 1.62 1.40 2.70 0.57

Source: Table 6.7 and Tables 6.17,6.21, 6.22 and 6.23.

Tables 6.24 to 6.29 show the correlation matrix of the simulated modeIs. For

annuaI simulations (tables 6.24 to 6.26), employment correlation with output increases

if e is higher for a given levei of adjustment costs. The same pattern emerges for

the correlation between investment and output. However, consumption exhibits no

correlation pattern with output. Tables 6.27 ta 6.29 show that such patterns disappear

at quarterly level simulations.

Tables. 6.30 to 6.33 report the output autocorrelations at different lags for aIl

mode! 1 simulations. At the annuallevel, a comparison between Tables 6.12 (reaI

business cycle data) and 6.30 (simulated model 1 data) reveal that lower adjustment

costs generate a near match for the first lag (K=l) autocorre1ation. However, no

model is able to approximate reality for the subsequent lags. In the output growth
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data (Tables 6.32 and 6.33), all models &gain come short of producing a near match.

Tables 6.34 to 6.57 report the results of the simulated data for model II (relative

tastes shock). Tables 6.34 and 6.35 present basic descriptive statistics for mode! II

simulations. Each row in the tables shows output statistics for each mode!. As in

mode! l, higher adjustment costs result in higher output volatility. For the highest

values of adjustment costs and shock sizes (i.e., D = 15 and () = 1.3), output variabil­

ity is 1.75 percent and 2.4 percent for annual and quarterly frequencies, respectively.

However, as compared with model l, output variability is cut at least by hal!. Relative

ta model II, model 1yields lower output variability.

Tables 6.36 ta 6.41 relate the variability ta the output of the simulated series. The

results are summarized in tables 6.L and 6.M. Compared with GDP, annual frequency

modeIs underestimate output volatility and show an increasing pattern for D and fJ.

Quarterly models overestimate output volatility and show a pattern that peaks at

8 = 1.2. At the annuallevel, to generate an output volatility matching the data, one

needs higher values for the parameters D and (J. At the quarterly level, to generate

output volatility matching ta data, one needs lower values for the parameters D and

8. In other words, a. small shock and a smaller acljustment cast parameter for mode!

II can match output volatility in quarterly data. As expected, in all quarterly suir

models of mode! II, employment volatility is small and is due to adjustment costs. At

the annual frequency of model II, models D = 5 and D = 10, when combined with

the highest value of the relative taste shock, produce a near match for employment

volatility relative to GDP.

Table 6.L
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Madel n - ANNUAL St-Dey Relative to Output
GDP EMPL APN CONS

DATA 2.56% 1.03 0.367 0.94
Madel II - 0 =5 - Theta = 1.15 1.54 0.61 0.874 0.79
Madel II - D =5 - Theta = 1.2 1.58 0.70 0.912 0.81
Madel II - D = 10 - Theta = 1.1 1.61 0.74 0.534 0.82
Madel II - D = 10 - Theta = 1.3 1.72 1.02 0.755 0.91
Model II - D = 15 - Theta = 1.1 1.67 0.77 0.429 0.82
Madel II - D = 15 - Theta = 1.3 1.74 1.03 0.641 0.92

Source: Table 6.6 and Tables 6.36, 6.37 and 6.38.

For the quarter &equency simulation,

Table 6.M
Model fi - QUARTERLY St-Dey Relative ta Output

GDP E~L APN CONS
DATA 1.60% 1.09 0.13 0.82
Madel II - D = 5 - Theta = 1.2 2.37 0.45 L07 0.79
~Iodel II - D = 10 - Theta = 1.2 2.38 0.56 LOS 0.81
Madel II - D = 10 - Theta = 1.25 2.32 0.83 1.32 0.91
Madel II - D = 15 - Theta = LI L90 0.58 l.07 0.95

Source: Table 6.7 and Tables 6.39, 6.40 and 6.41.

Tables 6.42 ta 6.53 show the correlation matrix of the simulated model II data.

For the annual frequency, a pattern emerges for the correlation of output with employ-

ment. The higher the size of the shock, the lower p(E, Y), p(C: Y) and p(APlV, Y)

are. The higher the adjustment cests parameter, the higher is peE, y). For a given ad-

justment cost, a higher size of the shock drives the average productivity of labour from

being procyclical ta countercyclical. For the annual frequency, the highest peE, Y)

[equals 0.94] is recarded in model n - D = 15 - (J = 1.1.

For the quarterly frequency, average productivity of labour is countercyclical re-

gardless of the size of the shock and the adjustment cast parameter values. The

correlation of output with employment is relatively smaU, reaching at most 0.22 in

model II with D = 15 and 8 = 1.3.
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By construction, the correlation between sector 1 and sector 2 consumption is

negative and increases with the value of the shock. Note that this correlation is

higher with a smaller adjustment cost. A higher adjustment cost reduces the value

of p(C1, C2). Model II correctIy predicts a negative correlation between sector 1 and

sector 2 consumption movements. For the annual frequency, output, employment

and total consumption are all positively correlated. Tables 6.54 to 6.57 report the

output autocorrelations at dilferent lags for all model II simulations. For the annuaI

frequency, Table 6.54 shows success in producing a similar first lag autocorrelation in

the data.

6.11.2 Results (Figures)

Figure 6.1 illustrates the time series behaviour of the aggregate Canadian variables:

GDP, consumption and investment. Figures 6.2 to 6.5 graph the simulated output

autocorrelation at both frequencies for both models. For models 1 and II, a near

perfect match of the first and second seriai autocorrelation is achieved with the annual

simulftion. ~[odel 1 quarterly simulations explain (at best) twcrthirds of the first lag

autocorrelation. This result is for D = 15, 8 = 1.25 and (J = 1.3. Both sulrmodels

reach twcrthirds of the fust-order seriai autocorrelation of GDP. For model II, almost

hal! of the first lag of quarterly output seriai autocorrelation can he explained by

relative taste shocks combined with sectoral reallocation and adjustment costs. For

quarterly data, one-third of the autocorrelation can be explained by model II.

Figures 6.6 to 6.11 graph impulse responses for model I. Figures 6.6 ta 6.10 are
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for employment and figures 6.11 and 6.12 are for output and consumption. Figures

6.6 to 6.10 capture the essence of adjustment cests. Following a technology shock,

total employment decreases. The time it takes to revert to its original state is due to

the adjustment costs. The higher the adjustment cast is (parameter D), the longer it

takes employment to adjust. For mode! I, quarterly frequency (Figure 6.6), the small

value for D = 5 implies a 7.3 percent reduction in employment and two quarters

to adjust. For higher values for D , a 20 percent technology shock induces a 14

percent reduction in employment. One can deduce the importance of the effect of

adjustment cests on employment variability. The severity of the faIl of employment

is positively correlated with the adjustment costs. Figure 6.6 illustrates that the

decrease in employment double across the given range of adjustment cests.

From Figure 6.11, a 20 percent technology shock produces a reduction in output

of 7 percent. For the higher value of D, the shock induces an Il percent reduction in

output.

Unemployment persistence is generated at higher values for D. Quarterly, it takes

9 periods at mœt for employment to adjust following a shock (Figure 6.6). In this

setup, persistent unemployment could be explained by a technology shock followed

by adjustment C05ts to reallocate between sectors.

Figures 6.12 to 6.21 illustrate impulse responses for model U. Figures 6.12 to 6.17

are for consumption by sector, by shock size and by adjustment cast respectively.

Figure 6.12 shows that sector 2 consumption takes at least four years (for a smaller

shock value, see Figure 6.13) to adjust following a change in agents' tastes. Given the

nature of a small shock, sector 1 consumption adjusts quickly relative to the other
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sector. For higher adjustment costs (Figure 6.14), sector 2 consumption takes five

periods to adjust fully. For higher shock size (Figures 6.16 and 6.17), consumption in

sector 1 takes from two ta five periods to adjust.

Figures 6.18 to 6.21 illustrate employment impulse responses. Following a 20

percent relative taste shock, employment decreases at most by 4 percent. Employment

takes at most 4 periods ta retum to its steady state level.

6.11.3 Average Productivity of Labour (APN)

In most simulated RBC models, the correlation between the average productivity of

labour (APN) and GDP is positive. A positive technology shock increases the demand

for labour and output. Such shocks are responsible for the generated positive labour

productivity, a result that matches the observed positive correlation in Real Business

Cycle data.2o In periods of booms, workers produce more output during each hour

worked than they do during a recession.

For mode! l, following a relative technology shock, the reallocative process of

employment across sectors reduces total employment and increases the average pro­

ductivity of labour. A slow reallocation process, due to the presence of adjustment

costs, rE~ults in decreasing average productivity of labour. Therefore, the average

productivity of labour is countercyclical. This result shows that sectoral technology

driven shocks can generate countercyclical average labour productivity.

One of the strong points of the basic RBC model is that, to generate a procyclical

APN, one needs an aggregate productivity shock. Without an aggregate productivity

20See Abel, Bemanke and Smith (1999, p. 299). Also, see Tables 10 and 11 in this chapter' appendix.
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shock (i.e., a non-shifting production function), an inClease in labour during booms

will reduce the average productivity of labour because of the diminishing marginal

product of labour. Therefore, a stable aggregate production function generates a

countercyclical average productivity of labour. This r~ult is reached in model I.

The challenge then becomes: how to generate procyclical APN without productivity

shocks? The answer is the impulse mecbanism in mode! ll.

Model II focuse; on changing labour demand without changing the production

function. In model n, households' relative taste; change and they demand higher

quantities of a specifie good (sector 2 good) relative to the other (sector 1 good).

Firms answer by supplying more of the desired good and by increasing their derived

demand for labour in this sector. Here, there is no productivity shock. Figures 6.22

ta 6.25 illustrate the impulse responses of labour productivity for bath models.

The following results are for model II,

Table 6.N
APN CORRELATION WITH OUTPUT
ANNUAL

T+2 T+l T T-I T-2
~rodel II - D = 5 - Theta = 1.2 0.0677 0.0056 0.9257 0.0916 0.0920
Model II - D = 10 - Theta = 1.2 -0.0006 -0.0756 0.8721 0.1738 0.1360
Model II - D = 15 - Theta = 1.2 0.0063 0.0191 0.9024 0.1896 0.1006

~Iadel II is successful in generating the observed procyclical labour productivity.

Model IIoffers a non-technology driven explanation for procyclical productivity. How-

ever, the results show a high correlation with output and that labour productivity is

coïncident, as apposed ta leading ïn observed data.

What is interesting is the apparent overshooting of the adjustment process, evident

in Figures 6.24, 6.25 and 6.26. For mode! l, a relative technology shock reduces total
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employment and output. Since output equals consumption plus investment, this r~

duction in output must be matched by a reduction in consumption and/or investment.

Given the preference for smoothing consumption by the representative household, a

large reduction in consumption to match the 1055 of output is undesirable. Therefore,

investment fal1s by more than the reduction in consumption. This reduction in in­

vestment produces a reduction of capital over subsequent periods, linked by the law

of motion for capital (Le., the time-to-build characteristic). The reduction in capi­

tal acts as a negative wealth effect that impacts on the households' decisioIlS. The

representative agent responds by increasing labour supply and reducing consumption

and leisure. This effect, when combined with the cast of adjustment in terms of

leisure lost to move across sectors, produces overshooting (see Figure 6.26). Note

that this characteristic is similar te the empirical regu1arity found in Chapter 5 by

the Blanchard-Quah identification for the VAR model C-I. The size and the timing

of overshooting are positively correlated with the size of the shock and with the cost

of adjustment parameter.

6.12 Conclusions

Sensitivity analysis was undertaken with regard to the size of the shock, the frequency

- quarterly and annually - of the shock and with regard to the adjustment cast pa­

rameter for aIl simulated models. The success of the RBC models is defined in the lit­

erature as their ability to mimic general business cycle correlations/moments. In this

chapter, we acided the criterion of explaining the observe<! unemployment persistence.
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Our simulations examined the dynamics between sectoral shocks and unemployment.

Specifical1y, they tried to answer the questions: How much of the increase in struc­

tural unemployment in recessions is due ta sectoral reallocation? Which impulse and

propagation mechanisms, if any, can generate persistence in unemployment similar to

that in the data?

At the absolute level, sectoraI reallocation and adjustment costs combined with

relative taste/technology shocks produced a range of variations in unemployment.

~pending on the size of the shock and the degree of difficulty in moving across

sectors, volatility in unemployment was found to be between 10 percent to 37 percent.

Note that this range is smaller than the one suggested by Lilien (1982). Our results

do encompass the Campbell and Kuttner (1996, p.113) observation that sectoral

real1ocation is responsible for at least 27 percent of aggregate unemployment variation.

For model l, employment correlation with output increases if f) is higher for a

given level of adjustment costs. The same pattern emerges for the correlation be­

tween investment and output. AIso, higher adjustment costs result in higher output

volatility. For model II, the higher the size of the shock, the lower are p(E, Y),

p(C, Y) and p(APN, Y). The higher the adjustment costs parameter, the higher is

p(E, Y). For a given adjustment cast, a higher size of the shock can change average

productivity of labour from being procyclical to countercyclical.

Model 1dominates model II with respect to higher unemployment variance. ~Iodel

II performs poody in terms of output volatility. Madel 1 results are more sensitive ta

the calibrated parameters and one should read its results with caution. A smaller taste

shock and a smaller adjustment cost parameter for mode! n can generate a match for
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the data on output volatility at the quarterly leveL Model n successfully produces

procyclicallabour productivity without reeourse to a technology shock. However, the

generated labour productivity is cyclically ooincident, and not leading as in the data.

Bath models show partial sucœss in matching empirical regularities.

Bath models sucœssfully generate unemployment persistence. It takes a smaller

technology shock and a relatively larger taste shock to generate a similar decrease

in employment. The results presented are oonditioned on the calibrated parameters

and the models' formal specification. For bath models, the adjustment mechanism

is similar. Also, a symmetry by which a shock influences the economy is present.

Leisure utility is lost from employment search. However, the models also differ in

many aspects. Model 1 includes a capital stock, whereas model il does note Model II

encompasses two weIl defined goods sectors.

The absolute value of the adjustment costs parameter D is of no significant im·

portance. However, as our results suggest, employment variance varies with the

adjustment cœts parameter. A policy - sucb as training - aimed at reducing these

costs will significantly recluce the variance of employment.

One ment of our framework - among many - is its ability to produce the increase in

employment following the adjustment process. This theoretical sucœss in capturing

the empirical wealth effect is emphasized in Figure 6.26. Note that this characteristic

is similar to the empirical regularity found in Chapter 5 by the Blanchard-Quah

identification for the VAR mode! C-I.

Given the simulated results, an observed unemployment persistence is equally

likely to he the product of a technology shock or a taste shock. In the absence of
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institutions that ease labour mobility across sectors (higher adjustment cœts) un­

employment displays persistence regardless of the source of the shock. A smaller

adjustment cast tends to generate higher persistence for a technology shock than for

a taste shock. Comparing shocks of the same magnitude ta technology and tastes,

the former produces higher employment volatility, longer unemployment persistence

and a deeper recession.
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• Table'.S

CANSIM SOURCE

GROSSDOMŒSTICPRODUCT
EMPLOYMENT
CONSUMPTION
INVESTMENT

LABEL

D14872
D980662
D14842
D14851
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Label
Tide

Subtide

factor
Unit
Source
Update
Period
Frequency

Label
Title

Subtitle

Factor
Unit
Source
Update
Period
Frequency

Label
Title

Subtitle

Factor
Unit
Source
Update
Period
Frequency

•

: 014872
: G.D.P. AT 1992 PRICES. EXPENDmJRE-BASED 1GROSS DOMESTIC
PRODUCT AT MARKET PRICES

: GROSS DOMEsnc PRODUCT AT 1992 PRICES, EXPENDITURE-BASED.
BY QUARTER, IN MILLIONS Of 1992 DOLLARS, SEASONALLY
ADJUSTEO AT ANNUAL RATES

: MILLION
: DOLLARS
: SOOS 1901 STC 13-001
: Il April. 2000
: 1961Ql - 1999Q4
: quanerly

: 014842
: G.D.P. AT 1992 PRICES, EXPENDIlURE-BASED 1PERSONAL
EXPENDITURE ON CONSUMER GOOOS &. SERVICES

: GROSS OOMEsnc PROOUCT AT 1992 PRICES, EXPENDITURE-BASED.
BY QUARTER, IN MILLIONS Of 1992 DOLLARS, SEASONALLy
ADJUSTEO AT ANNUAL RATES

: MILLION
:OOLLARS
: SOCS 1901 STC 13-001
: Il April, 2000
: 1961Ql - 1999Q4
: quarterly

: 014851
: G.O.P. AT 1992 PRICES, EXPENDITIJRE-BASED 1BUSINESS GROSS
FIXEO CAPITAL FORMATION

: GROSS DOMEsnc PROOUCT AT 1992 PRICES, EXPENDITURE-BASEO.
BY QUARTER, IN MILLIONS OF 1992 DOLLARS, SEASONALLY
ADJUSTED AT ANNUAL RATES

: MILLION
: DOLLARS
: SOCS 1901 STe 13-001
: II April, 2000
: 1961Ql - 1999Q4
: quarterly
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Label
Tide
5ubtitle

factor
Unit
Source
Update
Period
Frequcnc:y
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:0980662
: COA LF CHARACTERlsnCS MONnaY SA 1ACTUAL HOURS SA CDA
: CANADA, LABOUR fORCE CHARACTERlSnCS, MONllfLy FROM 1AN

1976, SEASONALLy ADJUSTED. INCLUDES LF CHARACTERlSnCS BY
AGE 4 SEX; LABOUR fORCE, UNEMPLOYMENT & UNEMPLOYMENT RATE
SY INDUSTRY; EMPLOYMENT SY INDUSTRY. OCCUPATION" CLASS Of
WORKER; HOURS Of WORK SY INDUSTRY.

:THOUSAND
:HRSJWEEK
: SOOS 3701 STe (71-001)
: 28 Marcb, 2000
: January 1976 - febuary 2000
: montbly
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Table 6.7

DESCRIPTIVE STATISnCS
CYCLICAL COMPONENT QUARTERLy

Series Obs Mean Std Errar Minimum Maximum
CGDP 96 0.00000 0.01607 ..0.05372 0.02939
CEMP 96 0.00000 0.01752 ..0.05115 0.03936
CINVST 96 0.00000 0.05299 ·0.09831 0.16151
CCONS 96 0.00000 0.01316 ·0.04134 0.03010
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• Table 6.8
ANNUAL CORRELATION WITH GDP
HPFILTERED

T+2 T+l T T·I T·2
CONS 0.0515 0.5687 0.9033 0.7113 0.3570
INVST -0.1065 0.3282 0.7838 0.7182 0.5075
EMP -0.0880 0.4543 0.9351 0.7831 0.3534
APN 0.7116 0.5121 0.0797 -0.4130 -0.5302

Table 6.9

QUARTERLY CORRELAnON WITH GDP
HPFILTERED

T+2 T+l T T·l T-2
CONS 0.7132 0.8332 0.8699 0.7702 0.6627
INVST 0.4075 0.5872 0.6484 0.6129 O.S 153
EMP 0.5619 0.7693 0.8825 0.8728 0.7714
APN 0.1835 0.0980 0.0741 -0.1213 -0.2608

Table 6.10

CORRELATION MATRIX ANNUAL
HPFILTERED

GDP EMP INVST CONS
GDP 1.000000
INVESTMENT 0.783799 1.000000
CONSUMPTION 0.903289 0.692864 1.000000
EMPLOYMENT 0.935138 0.876700 0.832255 1.000000

Table 6.11

CORRELATION MATRIX QUARTERLY
HPFILTERED

GDP EMP INVST CONS
GDP 1.000000
INVESTMENT 0.648365 1.000000
CONSUMPll0N 0.869922 0.667140 1.000000
EMPLOYMENT 0.882469 0.704124 0.776721 1.000000

."
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• Table'.!2

AUTOCORRELATIONS ANNUAL
HPFILTERED

K=1 K=2 K=) K=4 K=5 K=6
GDP 0.6605 0.1712 -0.2409 -0.4043 -0.4812 -0.4467
CONSUMPTION 0.7500 0.3076 -0.1424 -0.4523 -0.6230 -0.6459
INVESTMENT 0.6381 0.1891 -0.2830 -0.5087 -0.5135 -0.3696
EMPLOYMENT 0.6582 0.1079 -0.3347 -0.4808 -0.4381 -0.3235

Table '.13

AUTOCORRELATIONS QUARTERLY
HPFILTERED

K=l K=2 K=3 K=4 K=5 K=6
GDP 0.8890 0.7068 0.5144 0.3099 0.1427 0.0063
CONSUMPTION 0.8207 0.7028 0.5562 0.3758 0.2469 0.1111
INVESTMENT 0.8720 0.6785 0.4414 0.2182 0.0587 -0.0289
EMPLOYMENT 0.8441 0.6864 0.5074 0.3895 0.2397 0.0627

Table 6.14

AUTOCORRELATIONS ANNUAL
Growth Rates

K=1 K=2 K=3 K=4 K=5 K=6
GDP 0.2768 -0.0862 -0.3340 -0.1697 -0.1611 -0.2407
CONSUMPTION 0.3943 0.0168 -0.2639 -0.2794 -0.3003 -0.4319
INVESTMENT 0.1651 0.0304 -0.2469 -0.2646 -0.2224 -0.2372
EMPLOYMENT 0.3692 -0.1053 -0.3906 -0.3057 -0.0848 -0.2130

Table 6.15

AUTOCORRELATIONS QUARTERLY
Growth Rates

K=1 K=2 K=3 K=4 K=5 K=6
GDP 0.3815 0.0442 0.0346 -0.1462 -0.1547 -0.1392
CONSUMPTION -0.0874 0.0720 0.1841 -0.2053 -0.0343 0.0059
INVESTMENT 0.2617 0.1758 -0.0437 -0.2484 -0.2855 -0.1652
EMPLOYMENT 0.0225 0.0710 -0.1663 0.0916 0.0970 0.0319

•
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DESCRIPTIVE STATISnCS FOR SIMULATED OUTPUT ANNUAL

Obs Mean St-Dey MIN MAX CV
MODEL 1-0=5 - TIŒTA= 1.1 1100 11.3662 0.3444 10.1090 11.9747 0.0303
MODEL 1- 0 = 5 - THETA = 1.15 1100 11.2768 0.5114 9.8745 12.1052 0.0453
MODEL 1- 0 = S - THETA= 1.2 1100 11.1544 0.6690 9.5694 12.2682 0.0600
MODEL 1.. 0 = 5 - THETA =1.25 1100 11.0293 0.8064 9.1756 12.5110 0.0731
MODEL 1-0 =S - THETA= 1.3 1100 10.9157 0.9443 8.7159 12.5436 0.0865
MODEL 1- 0 = 10 .. THETA =1.1 1100 11.2521 0.4771 9.6995 12.1339 0.0424
MODEL 1.. D =10 .. THETA = 1.15 1100 11.0968 0.6967 9.4016 12.5779 0.0628
MODEL 1- D =10 - THETA =1.2 1100 10.8977 0.8874 8.7898 12.6638 0.0814
MODEl 1- 0 =10 .. TIŒTA =1.25 1100 10.7008 1.0590 8.2678 12.8543 0.0990
MODEL 1- D =10 .. THETA= 1.3 1100 10.5236 1.2170 7.7788 13.0890 0.1156
MODEL 1- D = IS .. THETA =1.1 1100 11.1584 0.5790 9.4212 12.3796 0.0519
MODEL 1- 0 = 15 - THETA =1.15 1100 10.9412 0.8156 8.9754 12.6557 0.0745
MODEL 1- 0 =15 - THETA = 1.2 1100 10.6993 1.0295 8.1698 13.1034 0.0962
MODEL 1.. D =15 - THETA =1.25 1100 10.4359 1.2104 7.6666 13.2503 0.1160
MaDEL 1.. 0 = 15 - THETA =1.3 1100 10.1989 1.3786 7.1738 13.3993 0.1352

Table 6.17

•

DESCRIPTIVE STATISnCS FOR SIMULATED OUTPUT QUARTERLY

Series Obs Mean St-Dey MIN MAX CV
MODEL 1.. D=5 - THETA =1.1 1100 1.8095 0.0009 1.8094 1.8247 0.0005
MODEL 1- D =5 - THETA = 1.15 1100 1.8976 0.0034 1.8675 1.8986 0.0018
MaDEL I-D= 5 .. THETA= 1.2 1100 1.9818 0.0271 1.8650 1.9947 0.0137
MODEL 1- 0 =5 - THETA =1.25 1100 2.0042 0.0415 1.8377 2.0321 0.0207
MODEL 1- 0 =5 - THETA= 1.3 1100 2.0017 0.0484 1.8035 2.0335 0.0242
MODEL 1· 0 =10 - THETA =1.1 1100 2.0096 0.0264 1.8438 2.0275 0.0131
MODEL 1- D =10 .. THETA =1.15 1100 2.0037 0.0373 1.8445 2.0334 0.0186
MODEL [ • D =10 - THETA =1.2 1100 2.0038 0.0501 1.7985 2.0403 0.0250
MODEL 1- 0 =10 - THETA =1.25 1100 1.9992 0.0603 1.7529 2.0406 0.0302
MODEL 1- D=10 - THETA =1.3 1100 1.9964 0.0714 1.7066 2.0485 0.0358
MODEL 1- D=15 - THETA =1.1 1100 2.0068 0.0325 1.8274 2.0303 0.0162
MODEL 1- D=15 - THETA =1.15 1100 2.0037 0.0469 1.8130 2.0391 0.0234
MODEL 1- D =15 .. THETA = 1.2 1100 1.9996 0.0603 1.7534 2.0431 0.0302
MODEL 1- D =15 - THETA = 1.25 1100 2.0058 0.0743 1.7097 2.0643 0.0371
MODEL 1- 0 =15 .. THETA = 1.3 1100 2.0029 0.0885 1.6533 2.0711 0.0442
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Table 6.18

ANNUAL St-DEY RELATIVE TO OUTPUT
St-Dey
OUTPUT EMP INVST CONS

MOOEL 1-0= 5 - nlETA= 1.1 0.03030 1.36510 3.63069 0.60058
MODEL 1-0= 5 - nlETA= 1.15 0.04535 1.34857 3.48052 0.59246
MODEL 1- D = 5 - THETA =1.2 0.05998 1.34972 3.45472 0.S7523
MODEL 1 - D = 5 - THETA = 1.25 0.07311 1.35061 3.44253 0.57113
MODEL 1-D= 5 - THETA= 1.3 0.08650 1.34612 3.46030 0.56606

Table 6.19

ANNUAL St-DEY RELATIVE Ta OUTPUT
St-Dey
OUTPUT EMP INVST CONS

MODEL 1- D = 10 - TIŒTA =1.1 0.04240 1.30363 3.21659 0.63696

MODEL 1- D =10 - THETA =1.15 0.06278 1.30403 3.22101 0.63024

MaDEL 1- D =10 - THETA =1.2 0.08143 1.30101 3.25222 0.61899
MaDEL 1- D =10 - THETA = 1.25 0.09896 1.29697 3.22683 0.62214

MaDEL 1- D = 10 - TIŒTA =1.3 0.11564 1.29728 3.22997 0.61579

Table 6.20

ANNUAL St-DEV RELATIVE TO OUTPUT
St-Dey
OUTPUT EMP INVST CONS

MODEL 1- D =15· THETA =1.1 0.05189 1.26721 3.08228 0.66702

MODEL 1 - D = 15 - THETA =1.15 0.07454 1.26960 3.07409 0.65671

MODEL 1- D =15 - THETA =1.2 0.09623 1.27587 3.08671 0.64760

MODEL 1.. D =15 - THETA =1.25 0.11598 1.27744 3.08975 0.64340
MaDEL 1.. D = IS .. THETA =1.3 0.13517 1.27515 3.09557 0.64136
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QUARTERLY St-DEY RELATIVE TO OUTPUT
St-Dey
OUTPUT EMP INVST CONS

MODEL 1- D = 5 - THETA = 1.1 0.00052 0.00019 4.71369 3.20435
MODEL 1- D =5 - THETA =1.15 0.00178 1.45783 2.54962 1.62565
MODELI -0=5 - THETA= 1.2 0.01367 1.46641 3.38891 0.58105
MODEL 1· D =5 - THETA = 1.25 0.02072 1.46056 2.87428 0.44345
MODEL I-D=5 - THETA= 1.3 0.02419 1.45537 2.84703 0.42092

Table 6.22

QUARTERLY St-DEY RELATIVE TO OUTPUT
St-Dey
OUTPUT EMP INVST CONS

MaDEL 1· D = la· THETA =1.1 0.01314 1.42570 2.63552 0.63265
MaDEL 1- D = la· THETA =1.15 0.01862 1.43973 2.78979 0.51223
MODEL 1• D = 10 • THETA = 1.2 0.02502 1.41958 2.77362 0.48737
MODEL 1• D = 10 • THETA = 1.25 0.03016 1.42279 2.83022 0.43561
MODEL 1· D = 10 .. THETA = 1.3 0.03577 1.41238 2.76274 0.46718

Table 6.23

QUARTERLY St·DEV RELATIVE TO OUTPUT
St-Dey
OUTPUT EMP INVST CONS

MODEL 1- D = 15 • THETA =1.1 0.01619 1.40983 2.70117 0.57294
MODELI·D= 15 -THETA= 1.15 0.02342 1.40413 2.69224 0.52227
MaDEL 1· D = 15 - THETA = 1.2 0.03015 1.40516 2.71212 0.48784
MaDEL 1- D = 15 - THETA = 1.25 0.03706 1.40886 2.73788 0.50101
MODEL 1- D = 15 - THETA = 1.3 0.04419 1.39254 2.74680 0.50085

(.



385

• Table 6.24

CORRELATION MATRIX ANNUAL

MODEL 1· D = 5 - THETA= 1.1
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.88098 1.00000
OUTPUT 0.95819 -0.86356 1.00000
INVST 0.96516 -0.86570 0.88941 1.00000
CONS 0.46947 -0.42975 0.67920 0.26860 1.00000

MODEL 1- D = 5 - THETA = 1.15
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.91760 1.00000
OUTPUT 0.95672 -0.89350 1.00000
INVST 0.97703 -0.90161 0.89973 1.00000
CONS 0.51916 -0.50181 0.73224 0.36158 1.00000

MODEL 1- D =5 - THETA= 1.2
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.92608 1.00000
OUTPUT 0.95663 -0.90217 1.00000
INVST 0.98476 -0.90788 0.90962 1.00000
CONS 0.53305 -0.53592 0.74844 0.40527 1.00000

MODEL 1- D =5 - THETA =1.25
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.92368 1.00000
OUTPUT 0.95771 -0.90195 1.00000
INVST 0.98675 -0.91180 0.91233 1.00000
CONS 0.54201 -0.53850 0.75494 0.42024 1.00000

MODEL 1- 0 =S· THETA= 1.3
EMP UNEMP OUTPUT INVST CONS

EtvlP 1.00000
UNEMP -0.92948 1.00000
OUTPUT 0.95728 -0.90873 1.00000
INVST 0.98860 -0.91539 0.91377 1.00000

CONS 0.53380 -0.54423 0.75096 0.41797 1.00000

•
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• Table 6.25

CORRELATION MATRlX ANNUAL

MODEL 1· D =10 - THETA =1.1
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.88789 1.00000
OUTPUT 0.95174 -0.85585 1.00000
INVST 0.97614 -0.87203 0.89040 1.00000

CONS 0.57980 -0.52912 0.79098 0.42578 1.00000

MODEL 1· D = 10 - THETA =1.15
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.90297 1.00000
OUTPUT 0.95373 -0.87645 1.00000

INVST 0.98146 ..0.88225 0.89404 1.00000

CONS 0.58099 ..0.56069 0.79287 0.43585 1.00000

MaDEL 1- D = 10 - THETA= 1.2
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.90724 1.00000
OUTPUT 0.95232 -0.88094 1.00000

INVST 0.98573 -0.89050 0.89842 1.00000

CONS 0.56969 ·0.55683 0.78930 0.43948 1.00000

MODELI-D= 10-THETA=I.25
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.91136 1.000~~

OUTPUT 0.95340 -0.88450 1.00000

INVST 0.98598 -0.89545 0.89814 1.00000

CONS 0.57750 ..0.56241 0.79385 0.44558 1.00000

MODEL 1- D = 10 .. THETA = 1.3
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.91759 1.00000

OUTPUT 0.95333 -0.89345 1.00000

INVST 0.98705 -0.90043 0.90146 1.00000

CONS 0.57985 -0.57789 0.79564 0.45503 1.00000

.'
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• Table 6.26

CORRELATION MATRJX ANNUAL

MODEL 1- D =15 - THETA =1.1
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.88113 1.00000
OUTPUT 0.95025 -0.85398 1.00000
INVST 0.97627 -0.85618 0.88155 1.00000
CONS 0.60359 -0.56849 0.81444 0.44404 1.00000

MODEL 1- D =15 - THETA =1.15
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.89259 1.00000
OUTPUT 0.95097 -0.86278 1.00000
INVST 0.98233 -0.87226 0.88871 1.00000
CONS 0.60969 -0.57677 0.82084 0.46763 1.00000

MODEL 1- D =15 - THETA =1.2
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.90354 1.00000
OUTPUT 0.95198 -0.87670 1.00000
INVST 0.98471 -0.88485 0.89322 1.00000
CONS 0.61037 -0.59006 0.82058 0.47598 1.00000

MaDEL 1- D =15 - TIŒTA =1.25
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.90694 1.00000
OUTPUT 0.95258 -0.88286 1.00000
INVST 0.98563 -0.88556 0.89555 1.00000
CONS 0.61289 -0.60383 0.82165 0.48220 1.00000

MODEL 1- D = 15 - THETA = 1.3
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.91241 1.00000
OUTPUT 0.95280 -0.88956 1.00000
INVST 0.98584 -0.89107 0.89619 1.00000
CONS 0.61143 -0.60867 0.82025 0.48133 1.00000

•
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• Table '.27

CORRELATION MATRIX QUARTERLY

MODEL 1- D = 5 - THETA = 1.15
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.98826 1.00000
OUTPUT 0.96076 -0.93973 1.00000
INVST 0.29819 -0.21291 0.18875 1.00000
CONS 0.64381 -0.68259 0.75176 -0.50568 1.00000
MODEL I-D=5 - THETA= 1.2

EMP UNEMP OUTPUT INVST CONS
EMP 1.00000
UNEMP -0.99274 1.00000
OUTPUT 0.97436 -0.96627 1.00000
INVST 0.96528 -0.94849 0.91877 1.00000
CONS -0.01716 -0.00492 0.16213 -0.24061 1.00000

MODEL 1- D= 5 - THETA = 1.25
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.96016 1.00000
OUTPUT 0.97872 -0.93683 1.00000
INVST 0.99128 -0.94795 0.95531 1.00000
CONS 0.40979 -0.39475 0.57755 0.31044 1.00000

MODEL 1- D=5 - THETA = 1.3
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.96176 1.00000
OUTPUT 0.97844 -0.93828 1.00000
INVST 0.99481 -0.95605 0.96188 1.00000
CONS 0.44707 -0.42275 0.61507 0.37601 1.00000

•
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• Table 6.28

CORRELATION MATRIX QUARTERLY

MODEL 1- D = 10 - THETA= 1.1
EMP UNEMP Oun»UT INVST CONS

EMP 1.00000
UNEMP -0.93162 1.00000
OUTPUT 0.97034 -0.89712 1.00000

INVST 0.96330 -0.89862 0.90372 1.00000

CONS 0.47682 -0.42662 0.64951 0.26145 1.00000

MODEL 1- D = 10 - THETA = 1.15
El\.fP UNEMP OUTPUT INVST CONS

EMP 1.00000

UNEMP -0.93965 1.00000

OUTPUT 0.97516 -0.90914 1.00000

INVST 0.98490 -0.92959 0.93919 1.00000

CONS 0.42714 -0.37180 0.60255 0.29185 1.00000

MODEL 1- D =10 - THETA = 1.2
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000

UNEMP -0.94121 1.00000

OUTPUT 0.97343 -0.90422 1.00000

INVST 0.99127 -0.93307 0.94718 1.00000

CONS 0.44235 -0.38110 0.62721 0.34429 1.00000

MODEL 1- D =10 - THETA =1.25
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000

UNEMP -0.94852 1.00000

OUTPUT 0.97255 -0.91802 1.00000

INVST 0.99557 -0.94721 0.95878 1.00000

CONS 0.42214 -0.37775 0.61428 0.36474 1.00000

MaDEL 1- D = 10 - TIŒTA =1.3
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000

UNEMP -0.94969 1.00000

OUTPUT 0.97302 -0.91666 1.00000

INVST 0.99446 -0.94918 0.95330 1.00000

CONS 0.45957 -0.40184 0.64604 0.38533 1.00000

•
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• Table 6.29

CORRELATION MATRIX QUARTERLY

MODEL 1- D=15 - THETA = 1.1
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.91794 1.00000
OUTPUT 0.96808 -0.88149 1.00000
INVST 0.97768 -0.90463 0.92301 1.00000
CONS 0.44252 -0.37394 0.63212 0.28531 1.00000
MODEL 1- D=15· TIlETA =1.15

EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.92057 1.00000
OUTPUT 0.97045 -0.88046 1.00000
INVST 0.98848 -0.92028 0.94030 1.00000
CONS 0.47523 -0.37947 0.66207 0.36747 1.00000

MODEL 1- D=15 - THETA =1.2
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.93467 1.00000
OUTPUT 0.97161 -0.89881 1.00000
INVST 0.99316 -0.93470 0.94984 1.00000
CONS 0.48349 -0.40935 0.66943 0.40354 1.00000

MaDEL 1- 0 =15 - THETA =1.25
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.92798 1.00000
OUTPUT 0.97642 -0.89864 1.00000
INVST 0.98765 -0.92045 0.94491 1.00000
CONS 0.48333 -0.41817 0.64965 0.36503 1.00000

MODEL 1- 0 =15 - THETA = 1.3
EMP UNEMP OUTPUT INVST CONS

EMP 1.00000
UNEMP -0.93035 1.00000
OUTPUT 0.97425 -0.89536 1.00000
INVST 0.98920 -0.92228 0.94452 1.00000

CONS 0.46507 -0.39665 0.64260 0.35527 1.00000

•
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Table 6.30

AUTOCORRELATIONS OF SIMULATED OUTPUT
LEVEL

ANNUAL
K=1 K=2 K=3 K=4 K=5 K=6

MODEL 1- D = 5 - THETA= 1.1 0.6704 0.4653 0.3233 0.2702 0.2185 0.1875
MODEL 1- 0 = 5 - THETA = 1.15 0.6683 0.4708 0.3458 0.3007 0.2542 0.2314
MODEL 1- 0 = 5 - THETA= 1.2 0.6644 0.4757 0.3465 0.2961 0.2418 0.2197
MODEL 1- 0 = 5 - THETA = 1.25 0.6661 0.4693 0.3431 0.2977 0.2458 0.2242
MODEL 1-D =5 - THETA = 1.3 0.6663 0.4755 0.3479 0.3049 0.2488 0.2237
MODEL 1- D = 10 - THETA = 1.1 0.7704 0.6101 0.4849 0.4113 0.3376 0.2988
MODEL 1- D = 10 - THETA = 1.15 0.7586 0.5982 0.4772 0.4108 0.3387 0.2959
MODEL 1- 0 = 10 - THETA= 1.2 0.7596 0.5971 0.4725 0.4058 0.3354 0.2883
MODEL 1- D = 10 - THETA = 1.25 0.7544 0.5898 0.4699 0.4035 0.3386 0.2960
MaDEL 1- D = 10 - THETA = 1.3 0.7518 0.5880 0.4680 0.4046 0.3352 0.2908
MaDEL 1- 0 = 15 - THETA = 1.1 0.8136 0.6737 0.5572 0.4824 0.4040 0.3523
MODEL 1- 0 = 15 - THETA = 1.15 0.8069 0.6653 0.5530 0.4810 0.4093 0.3553
MODEL 1-0= 15 -THETA= 1.2 0.S013 0.6537 0.5363 0.4636 0.3890 0.3375
MODEL 1- D = 15 - THETA= 1.25 0.7942 0.6452 0.5299 0.4575 0.3851 0.3337
MODEL 1- D = 15 - THETA = 1.3 0.7909 0.6420 0.5259 0.4553 0.3820 0.3327

Table 6.31

AUTOCORRELATIONS OF SIMULATED OUTPUT
LEVEL

QUARTERLY
K=1 K=2 K=3 K=4 K=5 K=6

MODEl 1- D =5 .. THETA= 1.1 0.8703 0.7423 0.6180 0.4995 0.3887 0.2877
MODEL 1.. D = 5 - THETA = 1.15 0.1257 0.0340 0.0599 0.0350 0.0368 0.0301
MODEL 1- D =5 - THETA = 1.2 0.2934 0.0940 0.1112 0.0961 0.0891 0.0707
MODEL 1- D = 5 -TIIETA = 1.25 0.4203 0.1709 0.1112 0.0810 0.0682 0.0512
MODEL 1- D =5 - THETA= 1.3 0.4228 0.1787 0.1175 0.OS19 0.0755 0.0623
MODEL 1·0 = 10 - TIŒTA = 1.1 0.5400 0.2923 0.1966 0.1192 0.0870 0.0694
MODEl 1- D = 10 - THETA = 1.15 0.5204 0.2611 0.1654 0.1134 0.0799 0.0678
MODEL 1- D = 10 - THETA = 1.2 0.5420 0.3040 0.2088 0.1564 0.1298 0.1111
MODElI - D = 10 - THETA = 1.25 0.5295 0.2890 0.1956 0.1412 0.1146 0.0931
MODEl 1.. D = 10 - THETA= 1.3 0.5319 0.2885 0.1955 0.1426 0.1200 0.1010
MODEL 1- D = 15 - THETA = 1.1 0.6009 0.3526 0.2417 0.1691 0.1176 0.0929
MaDEL 1.. 0 = 15 - THETA= 1.15 0.6066 0.3727 0.2638 0.1968 0.1575 0.1243
MaDEL 1.. 0 = 15 - THETA = 1.2 0.5956 0.3580 0.2514 0.1874 0.1481 0.1195
MODEL 1.. 0 = 15 - THETA= 1.25 0.5984 0.3579 0.2400 0.1650 0.1256 0.0950
MODEL 1- D = 15 - THETA = 1.3 0.6073 0.3753 0.2644 0.1962 0.1572 0.1251
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Table 6.32

AUTOCORRELATIONS Of SIMULATED OUTPUT
GROWTH

ANNUAL
K=I K=2 K=3 K=4 K=S K=6

MODEL 1- D = 5 ... THETA = 1.1 0.0539 -0.0855 0.0127 -0.0296 0.0097 -0.0145
MODEL 1- D = 5 ... THETA =1.15 0.0523 -0.0805 0.0125 -0.0283 0.0094 -0.0138
MaDEL 1- D = S ... THETA= 1.2 0.0522 -0.0759 0.0122 -0.0276 0.0090 -0.0137
MaDEL 1- D = 5 ... THETA =1.25 0.0439 -0.0611 0.0109 -0.0226 0.0076 -0.0115
MODEL 1-D=5 ... THETA= 1.3 0.0423 -0.0557 0.0104 -0.0207 0.0072 -0.0105
MODELI-D= IO-THETA= 1.1 0.0537 -0.0811 0.0129 -0.0283 0.0097 -0.0136
MaDEL 1 - D = 10 ... THETA = 1.15 0.0536 -0.0767 0.0128 -0.0273 0.0094 -0.0134
MODELI-D= 10-THETA= 1.2 0.0456 -0.0610 0.0115 -0.0222 0.0080 -0.0115
MaDEL 1 - D =10 ... THETA = 1.25 0.0436 -0.0538 0.0112 -0.0198 0.0076 -0.0103

MaDEL 1 - D =10 - THETA = 1.3 0.0427 -0.0507 0.0109 -0.0186 0.0073 -0.0097

MaDEL 1- D = 15 - THETA = 1.1 0.0553 -0.0810 0.0133 -0.0279 0.0099 -0.0136
MODELI-D= 15 -THETA= 1.15 0.0478 -0.0637 0.0122 -0.0226 0.0087 -0.0114

MaDEL 1- 0 = 15 - THETA= 1.2 0.0457 -0.0560 0.0118 -0.0204 0.0080 -0.0105

MaDEL 1- D =15 - THETA = 1.25 0.0448 -0.0515 0.0116 -0.0187 0.0078 -0.0096
MODEl 1 - D = 15 - THETA = 1.3 0.0430 -0.0460 0.0111 -0.0168 0.0073 -0.0091

Table 6.33

AUTOCORRELATIONS Of SIMULATED OUTPUT
GROWTH

QUARTERLY
K=1 K=2 K=3 K=4 K=5 K=6

MaDEL 1 - D = 5 - THETA = 1.1 0.1484 -0.0591 0.0123 -0.0108 0.0044 -0.0026

MaDEL 1 - D = 5 - THETA =1.15 0.1476 -0.0609 0.0127 -0.0113 0.0047 -0.0028

MaDEL 1- D = 5 - THETA = 1.2 0.1458 -0.0619 0.0131 -0.0116 0.0051 -0.0028

MODEL 1 - D = 5 - THETA = 1.25 0.1462 -0.0640 0.0130 -0.0123 0.0048 -0.0033

MODEL 1 - D = 5 ... THETA= 1.3 0.1439 -0.0630 0.0129 -0.0123 0.0046 -0.0033

MaDEL 1 ... D = 10 - THETA = 1.1 0.1487 -0.0649 0.0133 -0.0123 0.0051 -0.0032

MaDEL 1- 0 = 10 ... THETA = 1.15 0.1484 -0.0654 0.0132 -0.0125 0.0050 -0.0033
MODEL 1 ... D = 10 ... THETA = 1.2 0.1483 -0.0654 0.0131 -0.0126 0.0049 -0.0034
MaDEL 1 - D = 10 ... THETA =1.25 0.1447 -0.0637 0.0129 -0.0124 0.0047 -0.0034

MaDEL 1- D = 10 - TIŒTA =1.3 0.1506 -0.0661 0.0130 ...0.0127 0.0048 -0.0035

MODEL 1- D = 15 - THETA= 1.1 0.1530 -0.0666 0.0133 -0.0129 0.0053 -0.0033

MODEL 1 - D = 15 - THETA = 1.15 0.1488 -0.0651 0.0131 -0.0124 0.0050 -0.0033

MaDEL 1• D = 15 - THETA = 1.2 0.1518 -0.0669 0.0131 -0.0128 0.0049 -0.0034

MODEL 1 - D =15 - THETA =1.25 0.1459 -0.0657 0.0128 -0.0131 0.0046 -0.0037

MaDEL 1- D =15 - THETA = 1.3 0.1518 -0.0686 0.0129 -0.0137 0.0045 -0.0041
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Table 6.34

DESCRIPTIVE STATISnCS FOR SIMULATED OUTPUT ANNUAL

Obs Mean St-Dey MIN MAX" CV
MaDEL n·o =5 - THETA= 1.1 1100 2.3625 0.0348 1.3721 2.3859 0.0147
MaDEL fi - D = 5 - THETA = 1.15 1100 2.2383 0.0345 1.3193 2.2697 0.0154
MOOELll-0=5-THETA= 1.2 1100 2,1285 0.0336 1.2729 2.1599 0.0158
MaDEL n· D = 5 - THETA = 1.25 1100 2.0344 0.0329 1.2320 2.0677 0.0162
MaDEL n-D =5· THETA= 1.3 1100 1.9520 0.0316 1.1957 1.9846 0.0162
MODELll-D= IO-THETA=- 1.1 1100 2.3632 0.0382 1.3721 2.3869 0.0162
MaDEL n-D = 10 - THETA = 1.15 1100 2.2364 0.0365 1.3193 2.2645 0.0163
MODEL II - 0 = 10 - THETA = 1.2 1100 2.1294 0.0354 1.2729 2.1665 0.0166
MODEL 11- D = 10 - THETA =- 1.25 1100 2.0336 0.0344 1.2320 2.0691 0.0169
MODEL II - D = 10 - THETA =1.3 1100 1.9508 0.0337 1.1958 1.9914 0.0173
MODEL II - D =15 - THETA = 1.1 1100 2.3616 0.0396 i.3721 2.3792 0.0168
MODEL II - D = 15 - THETA =1.15 1100 2.2367 0.0380 1.3193 2.2688 0.0170
MODEL II - D =15 - THETA =1.2 1100 2.1281 0.0363 1.2729 2.1602 0.0171
MODEL II - D = 15 - THETA = 1.25 1100 2.0332 0.0352 1.2320 2.0735 0.0173
MODEL II - D = 15 - THETA = 1.3 1100 1.9506 0.0340 1.1957 1.9904 0.0175

Table 6.35

DESCRIPTIVE STATIsncs FOR SIMULATED OUTPUT QUARTERLY

Obs Mean St-Dev MIN MAX CV
MODEL II - D =5 - THETA = 1.1 1100 0.9725 0.0187 0.9469 1.3721 0.0193
MaDEL II - D =5 - THETA = 1.15 1100 0.9187 0.0201 0.8913 1.3193 0.0218

MODEL II - D =5 - THETA = 1.2 1100 0.8711 0.0207 0.8369 1.2729 0.0237

MaDEL II - D =5 - THETA = 1.25 1100 0.8315 0.0184 0.7959 1.2320 0.0221

MODEL II - D =5 - THETA= 1.3 1100 0.7975 0.0198 0.7634 1.1958 0.0249

MODEL II - D = 10 - THETA =1.1 1100 0.9725 0.0187 0.9469 1.3721 0.0193
MODEL n-D = 10· THETA = 1.15 1100 0.9183 0.0205 0.8845 1.3193 0.0223

MaDEL II - D =10 - THETA = 1.2 1100 0.8700 0.0208 0.8410 1.2729 0.0239

MODEL II - D = 10 - THETA = 1.25 1100 0.8305 0.0193 0.7925 1.2320 0.0232

MODEL II - D = 10 - THETA = 1.3 1100 0.8001 0.0188 0.7566 1.1958 0.0235

MODEL II - D =15 - THETA =1.1 1100 0.9711 0.0193 0.9400 1.3721 0.0199

MODEL II - D = IS· THETA = 1.15 1100 0.9172 0.0206 0.8845 1.3193 0.0225

MODEL 11- D = IS - THETA = 1.2 1100 0.8694 0.0209 0.8341 1.2729 0.0241

MODEL II - D =15 - THETA = 1.25 1100 0.8303 0.0200 0.7856 1.2320 0.0241

MODEL II - D =15 - THETA =1.3 1100 0.7993 0.0198 0.7498 1.1958 0.0248
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ANNUAL St-DEY RELATIVE TO OUTPUT
St-Dey
OUTPUT EMP CONS APN

MODEL R - D =5 - TIŒTA= 1.1 0.01471 0.49288 0.78874 0.80662
MaDEL II - D = 5 - TIŒTA = 1.15 0.01540 0.61861 0.79824 0.87462
MaDEL R-D= 5 - THETA= 1.2 0.01580 0.70018 0.81158 0.91292
MODELll -D =5 - nIETA= 1.25 0.01615 0.78216 0.83136 0.97700

MaDEL il - D = 5 - TIŒTA = 1.3 0.01618 0.89325 0.87516 1.03098

Table 6.37

ANNUAL St-DEY RELATIVE TO OUTPUT
St-Dey
OUTPUT EMP CONS APN

MODEL 11- D = 10 - THETA =1.1 0.01616 0.74219 0.82849 0.53436

MaDEL Il - D = 10 - THETA =1.15 0.01633 0.81416 0.85198 0.58730
MODEL II - D = 10 - THETA = 1.2 0.01663 0.88952 0.87491 0.65895
MODEL I1- D = 10 - nIETA = 1.25 0.01691 0.95843 0.89695 0.72126
MODEL II - D = 10 - THETA =1.3 0.01728 1.02536 0.91870 0.75539

Table 6.38

ANNUAL St-DEV RELATIVE Ta OUTPUT
St-Dey
OUTPUT EMP CONS APN

MODEL II ... D = 15 - THETA =1.1 0.01676 0.77755 0.82979 0.42975
MODEL II ... D = 15 - THETA = 1.15 0.01700 0.85300 0.85426 0.48851

MaDEL II ... D =15 - TIŒTA = 1.2 0.01707 0.90052 0.87408 0.53059
MaDEL II ... D = IS - TIŒTA =1.25 0.01731 0.96991 0.89884 0.59509

MaDEL II ... D = 15 - THETA =1.3 0.01745 1.03225 0.92537 0.64171

•
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QUARTERLY St-DEY RELATIVE TO OUTPUT
St-Dey
OUTPUT EMP CONS APN

MODEL fi -D= 5 - nŒTA= 1.1 0.01925 0.44854 0.95076 1.05351
MODEL fi - 0 = 5 - THETA = 1.15 0.02183 0.39552 0.83894 1.04216
MODEL fi -0= 5 - THETA= 1.2 0.02372 0.45902 0.79260 1.07527
MODEL fi - D =5 - THETA =1.25 0.02214 0.72272 0.90264 1.30005
MaDEL Il - 0 =5 - THETA =1.3 0.02486 0.66825 0.80398 1.12970

Table 6.40

QUARTERLY St-DEY RELATIVE Ta OUTPUT

MaDEL II - D = 10 - THETA =1.2
MODEL II - D = 10 - THETA =1.25
MODEL II - 0 = 10 - THETA =1.3

Table 6.41

St-Dey
OUTPUT
0.02386
0.02325
0.02346

EMP
0.56452
0.83677
1.02233

CONS
0.81555
0.91062
0.96987

APN
1.05845
1.32669
1.35236

QUARTERLY St-DEY RELATIVE TO OUTPUT
St-Dey
OUTPUT EMP CONS APN

MODEL 11- D = 15 - THETA = 1.1 0.01989 0.58273 0.95526 1.07666
MaDEL II - D = 15 - THETA = 1.15 0.02248 0.58303 0.86254 1.07730
MaDEL n- 0 = 15 - THETA = 1.2 0.02409 0.67845 0.84438 1.13547
MaDEL n - D =15 - THETA = 1.25 0.02412 0.91168 0.91699 1.35331
MaDEL II - 0 =15 - THETA = 1.3 0.02481 1.09027 0.96979 1.35352

•
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CORRELATION MATRIX ANNUAL

MODEL n -D=5 -THETA= 1.1
EMP UNEMP APN OUTPUT CI C2 CONS

EMP 1.0000

UNEMP -0.7658 1.0000

APN 0.3783 -0.7638 1.0000

OUTPUT 0.7246 -0.8899 0.9108 1.0000

CI 0.1359 -0.1853 -0.2296 -0.1379 1.0000

C2 0.5770 -0.7015 0.8810 0.9229 -0.5087 1.0000

CONS 0.7621 -0.9425 0.8162 0.9366 0.2179 0.7294 1.0000

MODEL II - D = 5 - THETA = l.15
EMP UNEMP APN OUTPUT Cl C2 CONS

EMP 1.0000
UNEMP -0.6555 1.0000

APN 0.0184 -0.5929 1.0000

OUTPUT 0.5844 -0.8298 0.8205 1.0000

CI 0.1467 -0.1255 -0.3519 -0.2306 1.0000

C2 0.3673 -0.5632 0.7970 0.8713 -0.6784 1.0000

CONS 0.6519 -0.8895 0.6719 0.9054 0.2044 0.5804 1.0000

MODEL II - D =5 - THETA =1.2
EMP UNEMP APN OUTPUT Cl C2 CONS

EMP 1.0000

UNErvIP -0.6691 1.0000

APN -0.1343 -0.4397 1.0000

OUTPUT 0.5379 -0.7832 0.7615 1.0000

Cl 0.1037 -0.1035 -0.3666 -0.2726 1.0000

C2 0.3000 -0.4644 0.7234 0.8285 -0.7646 1.0000

CONS 0.5976 -0.8484 0.6111 0.8980 0.1785 0.4977 1.0000

MaDEL II - 0 = 5 - THETA = 1.25
EMP UNEMP APN OUTPUT Cl C2 CONS

EMP 1.0000

UNEMP -0.7014 1.0000

APN -0.2774 -0.2789 1.0000

OUTPUT 0.4800 -0.7420 0.7082 1.0000

CI 0.1084 -0.0842 -0.3699 -0.2848 1.0000

C2 0.2183 -0.3915 0.6646 0.7850 -0.8174 1.0000

CONS 0.5430 -0.8028 0.5684 0.9069 0.1457 0.4509 1.0000

• Table 6.42

•
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MODEL II - 0 =s-THETA =1.3
EMP UNEMP APN OUTPUT CI C2 CONS

EMP 1.0000
UNEMP -0.7354 1.0000
APN -0.3934 -0.1167 1.0000
OUTPUT 0.4642 -0.7061 0.6304 1.0000
Cl 0.0662 -0.0755 -0.2717 -0.2293 1.0000
C2 0.2040 -0.3286 0.5390 0.7089 -0.8490 1.0000
CONS 0.4967 -0.7457 0.5322 0.9238 0.1609 0.3848 1.0000
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CORRELATION MATRIX ANNUAL

MODEL n -D = 10 - THETA = 1.1
EMP UNEMP APN OUTPUT CI C2 CONS

EMP 1.0000
UNEMP -0.8410 1.0000
APN 0.4530 -0.7344 1.0000
OUTPUT 0.9011 -0.9126 0.7927 1.0000

CI 0.4058 -0.3310 -0.0964 0.2160 1.0000

C2 0.8120 -0.8440 0.8370 0.9645 -0.0494 1.0000

CONS 0.9259 -0.9218 0.7244 0.9809 0.4016 0.8948 1.0000

MODEL II - D =10 - THETA = 1.15
EMP UNEMP APN OUTPUT Cl C2 CONS

EMP 1.0000
UNEMP -0.7905 1.0000

APN 0.1725 -0.5804 1.0000
OUTPUT 0.8459 -0.8898 0.6693 1.0000

Cl 0.3015 -0.2461 -0.1521 0.1320 1.0000

C2 0.7161 -0.7796 0.7116 0.9299 -0.2419 1.0000

CONS 0.8673 -0.8957 0.5955 0.9732 0.3565 0.8203 1.0000

MODEL 11- 0 = 10· THETA = 1.2
EMP UNEMP APN OUTPUT Cl C2 CONS

EMP 1.0000
UNEMP -0.7247 1.0000
APN -0.0611 -0.4576 1.0000
OUTPUT 0.7929 -0.8591 0.5580 1.0000

Cl 0.2406 -0.2108 -0.1480 0.0969 1.0000

C2 0.6322 -0.7077 0.5894 0.8913 -0.3649 1.0000

CONS 0.8093 -0.8651 0.4941 0.9716 0.3297 0.7587 1.0000

MaDEL II - 0 = 10 - THETA= 1.25
EMP UNEMP APN OUTPUT Cl C2 CONS

EMP 1.0000
UNEMP -0.6963 1.0000

APN -0.2183 -0.3366 1.0000

OUTPUT 0.7547 -0.8305 0.4739 1.0000

Cl 0.2210 -0.1742 -0.1875 0.0609 1.0000

C2 0.5355 -0.6270 0.5152 0.8367 -0.4957 1.0000

CONS 0.7748 -0.8361 0.4085 0.9712 0.2971 0.6820 1.0000

•

• Table 6.44
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Table 6.45

MODEL fi - D = 10 - THETA= 1.3
EMP UNEMP APN OUTPUT Cl C2 CONS

EMP 1.0000

UNEMP -0.6784 1.0000
APN -0.3236 -0.2252 1.0000
OUTPUT 0.7431 -0.7949 0.3915 1.0000
CI 0.1734 -0.1486 -0.1365 0.0613 1.0000
C2 0.5108 -0.5691 0.4084 0.7926 -0.5600 1.0000
CONS 0.7535 -0.7985 0.3499 0.9785 0.2658 0.6498 1.0000
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CORRELATION MATRIX ANNUAL

MODEL II - 0 =15 - THETA =1.1
EMP UNEMP APN OUTPUT Cl C2 CONS

EMP 1.0000

UNEMP -0.8897 1.0000

APN 0.5786 -0.7718 1.0000

OUTPUT 0.9473 -0.9301 0.8073 1.0000

Cl 0.4248 -0.4264 0.1121 0.3399 1.0000

C2 0.9050 -0.8865 0.8255 0.9789 0.1404 1.0000

CONS 0.9531 -0.9372 0.7735 0.9893 0.4734 0.9386 1.0000

MaDEL fi - D =15 - THETA =1.15
EMP UNEMP APN OUTPUT Cl C2 CONS

EMP 1.0000

UNEMP -0.8149 1.0000

APN 0.2225 -0.5796 1.0000

OUTPUT 0.8979 -0.8945 0.6271 1.0000

Cl 0.3915 -0.3161 -0.1450 0.2370 1.0000

C2 0.8000 -0.8201 0.6892 0.9531 ...0.0683 1.0000

CONS 0.9163 -0.8992 0.5625 0.9837 0.4079 0.8830 1.0000

MODEL II - 0 =15 - THETA = 1.2
EMP UNEMP APN OUTPUT CI C2 CONS

EMP 1.0000

UNEMP -0.7857 1.0000

APN 0.0420 -0.4663 1.0000

OUTPUT 0.8688 -0.8796 0.5296 1.0000

Cl 0.2791 -0.2589 ...0.1458 0.1544 1.0000

C2 0.7397 -0.7584 0.5775 0.9183 -0.2492 1.0000

CONS 0.8806 -0.8869 0.4738 0.9803 0.3464 0.8222 1.0000

MODEL II - D = IS - THETA =1.25
EMP UNEMP APN OUTPUT Cl C2 CONS

EMP 1.0000

UNEMP -0.7384 1.0000

APN -0.1547 -0.3346 1.0000

OUTPUT 0.8338 -0.8474 0.4151 1.0000

Cl 0.2739 ...0.2180 -0.1790 0.1436 1.0000

C2 0.6601 -0.6998 0.4797 0.8803 -0.3430 1.0000

CONS 0.8483 -0.8505 0.3620 0.9820 0.3280 0.7749 1.0000

• Table 6.46

•
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•

MODEL II - D =15 - THETA =1.3
EMP UNEMP APN OUTPUT Cl C2 CONS.

EMP 1.0000
UNEMP -0.7182 1.0000
APN -0.2836 -0.2399 1.0000
OUTPUT 0.8138 -0.8357 0.3253 1.0000
CI 0.2425 -0.1909 -0.1251 0.1568 1.0000
C2 0.6115 -0.6607 0.3696 0.8309 -0.4192 1.0000
CONS 0.8218 -0.8339 0.2906 0.9857 0.3212 0.7251 1.0000
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CORRELATION MATRIX QUARTERLY
MODEL II - D =5 - THETA = 1.1

EMP UNEMP APN OUTPUT Cl C2 CONS
EMP 1.0000
UNEMP -0.9303 1.0000
APN -0.3316 0.3722 1.0000
OUTPUT 0.1081 -0.03SS 0.9020 1.0000
CI O.OSOI -0.02SS ·0.1777 -0.1638 1.0000
C2 0.0328 -O.OO4S 0.6834 0.7347 -0.7896 1.0000
CONS 0.1247 -0.0475 0.6084 0.6986 0.5914 0.0280 1.0000
MODEL II - 0 =5 - THETA =1.15

EMP UNEMP APN OUTPUT Cl C2 CONS
EMP 1.0000
UNEMP -0.9102 1.0000
APN -0.2967 0.3436 1.0000
OUTPUT 0.0942 -0.0111 0.9228 1.0000
CI 0.0407 ..0.0130 ·0.3770 ..0.3762 1.0000
C2 0.0208 0.0032 0.7345 0.7739 ..0.8779 1.0000
CONS 0.1235 -0.0213 0.5732 0.6479 0.4621 0.0189 1.0000
MODEL II - D = 5 - THETA = 1.2

E!vfP UNEMP APN OUTPUT Cl C2 CONS
EMP 1.0000
UNEMP ..0.9301 1.0000
APN -0.3795 0.3833 1.0000
OUTPUT 0.0677 ~·0.0306 0.8972 1.0000
Cl 0.1122 ..0.0155 -0.4801 -0.4596 1.0000
C2 -0.0491 ..0.0028 0.7447 0.7765 -0.9165 1.0000
CONS 0.1661 -0.0451 0.5318 0.6568 0.3679 0.0348 1.0000
MODEL II - D =5 - THETA = 1.25

EMP UNEMP APN OUTPUT Cl C2 CONS
EMP 1.0000
UNEMP -0.8716 1.0000
APN -0.6501 0.4527 1.0000
OUTPUT -0.1050 -0.0658 0.8237 1.0000
Cl 0.4224 ..0.0232 ·0.5308 -0.3853 1.0000
C2 -0.3780 -0.0049 0.7226 0.6684 -0.9439 1.0000
CONS 0.2580 -0.0822 0.3328 0.6235 0.4812 ·0.1648 1.0000
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MODEL II - D =5 - THETA = 1.3
EMP UNEMP APN OUTPUT Cl C2 CONS

EMP 1.0000
UNEMP -0.9423 1.0000
APN -0.4791 0.5541 1.0000
OUTPUT 0.1545 -0.0351 0.7930 1.0000
Cl 0.0230 -0.0188 -0.4373 -0.4780 1.0000
C2 0.0328 0.0034 0.6117 0.7128 -0.9567 1.0000
CONS 0.1883 -0.0533 0.5369 0.7339 0.2459 0.0467 1.0000
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CORRELATION MATRIX QUARTERLY
MODEL II - D =10 - TIlETA = 1.1

EMP UNEMP APN OUTPUT Cl C2 CONS
EMP 1.0000
UNEMP ..Q.9303 1.0000
APN -0.3316 0.3722 1.0000
OUTPUT 0.1081 -0.0355 0.9020 1.0000
Cl O.OSOI -0.0255 ~0.1777 -0.1638 1.0000
C2 0.0328 -0.0045 0.6834 0.7347 -0.7896 1.0000
CONS 0.1247 -0.0475 0.6084 0.6986 0.5914 0.0280 1.0000

MODEL II - 0 = 10 - THETA =1.15
EMP UNEMP APN OUTPUT Cl C2 CONS

EMP 1.0000
UNEMP -0.9653 1.0000
APN -0.4019 0.3735 1.0000
OUTPUT 0.0574 -0.0700 0.8910 1.0000
Cl 0.0817 -0.0289 -0.3663 -0.3586 1.0000
C2 -0.0251 -0.0175 0.7209 0.7735 -0.8690 1.0000

CONS 0.1198 -0.0899 0.5602 0.6704 0.4523 0.0482 1.0000

MODEL II - D = 10 - THETA =1.2
EMP UNEMP APN OUTPUT Cl C2 CONS

EMP 1.0orjJ
UNEMP -0.9024 1.0000
APN -0.3776 0.4611 1.0000
OUTPUT 0.1797 -0.0397 0.8429 1.0000
Cl 0.0690 -0.0280 -0.4347 -0.4178 1.0000

C2 0.0341 0.0016 0.7007 0.7615 -0.9070 1.0000

CONS 0.2386 -0.0630 0.5071 0.6806 0.3812 0.0435 1.0000

MaDEL n - D = 10 - THETA::: 1.25
EMP UNEMP APN OUTPUT Cl C2 CONS

EMP 1.0000
UNEMP -0.9102 1.0000
APN -0.6606 0.5312 1.0000
OUTPUT -0.0083 -0.0960 0.7558 1.0000
Cl 0.3270 -0.0398 -0.4603 -0.3384 1.0000

C2 -0.2658 -0.0048 0.6591 0.6547 -0.9329 1.0000

CONS 0.2479 -0.1215 0.3515 0.6768 0.4636 -0.1134 1.0000
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MODEL II - D =10 - THETA =1.3
EMP UNEMP APN OUTPUT CI C2 CONS

EMP 1.0000
UNEMP -0.9113 1.0000
APN -0.6778 0.6569 1.0000
OUTPUT 0.1525 -0.1020 0.6225 1.0000
CI 0.3050 -0.0307 -0.3766 -0.1991 1.0000
C2 -0.2069 -0.0109 0.5517 0.5369 -0.9336 1.0000
CONS 0.3303 -0.1125 0.3335 0.7897 0.4440 -0.0935 1.0000



• Table 6.52

406

•

CORRELATION MATRIX QUARTERLY
MaDEL n - D = 15 - THETA= 1.1

EMP UNEMP APN OUTPUT Cl C2 CONS
EMP 1.0000
UNEMP -0.8977 1.0000
APN -0.3973 0.3909 1.0000
OUTPUT 0.1701 -0.1176 0.8366 1.0000
Cl 0.0978 -0.0567 -0.1606 -0.1133 1.0000
C2 0.0446 -0.0383 0.6586 0.7333 -0.7586 1.0000
CONS 0.2049 -0.1343 0.5711 0.7362 0.5890 0.0797 1.0000
MODELII-D= 15 -THETA= 1.15

EMP UNEMP APN OUTPUT Cl C2 CONS
EMP 1.0000
UNEMP -0.9547 1.0000
APN -0.4005 0.4117 1.0000
OUTPUT 0.1675 -0.1301 0.8362 1.0000
Cl 0.0567 -0.0610 -0.3199 -0.3109 1.0000
C2 0.0528 -0.0294 0.6763 0.7598 -0.8541 1.0000
CONS 0.1986 -0.1672 0.5367 0.6959 0.4662 0.0619 1.0000
MaDEL II - 0 = 15 - THETA =1.2

EMP UNEMP APN OUTPUT Cl C2 CONS
EMP 1.0000
UNEMP -0.9426 1.0000
APN -0.4931 0.4698 1.0000
OUTPUT 0.1475 -0.1347 0.7875 1.0000
Cl 0.0840 -0.0483 -0.3745 -0.3651 1.0000
C2 0.0100 -0.0296 0.6465 0.7413 -0.8955 1.0000
CONS 0.2089 -0.1692 0.4881 0.7041 0.4040 0.0453 1.0000
MODEL n - D = 15 - THETA =1.25

EMP UNEMP APN OUTPUT CI C2 CONS
EMP 1.0000
UNElvIP -0.9353 1.0000
APN -0.6728 0.5352 1.0000
OUTPUT 0.0432 -0.1750 0.7093 1.0000
Cl 0.3237 -0.0535 -0.4452 -0.3055 1.0000
C2 -0.2423 -0.0272 0.6412 0.6456 -0.9244 1.0000
CONS 0.2803 -0.2033 0.3333 0.7086 0.4554 -0.0814 1.0000
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MaDEL II - 0 = 15 - THETA= 1.3
EMP UNEMP APN OUTPUT CI C2 CONS

EMP 1.0000
UNEMP -0.9210 1.0000
APN -0.6820 0.6746 1.0000
OUTPUT 0.2214 -0.1575 0.5611 1.0000
Cl 0.3109 -0.0435 -0.3765 -0.1689 1.0000
C2 -0.1809 -0.0238 0.5410 0.5332 -0.9239 1.0000
CONS 0.3852 -0.1696 0.2918 0.8152 0.4332 -0.0554 1.0000
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AUTOCORRELATIONS OF SIMULATED OUTPUT
LEVEL

ANNUAL
K=1 K=2 K=3 K=4 K=S K=6

GDP 0.6605 0.1712 -0.2409 -0.4043 -0.4812 -0.4467
MODEL n-0 = S - TIŒTA = 1.1 0.3649 0.1563 0.0707 0.0419 0.0295 0.0149
MODEL II - D = 5 - THETA = 1.15 0.3899 0.1719 0.0994 0.0691 0.0525 0.0324
MODEL fi -D=5 - THETA= 1.2 0.3972 0.1724 0.0873 0.0671 0.0541 0.0328
MODEL fi - D = 5 ... THETA =1.25 0.3880 0.1710 0.0909 0.0732 0.0578 0.0335
MODEL fi - D =5 ... THETA= 1.3 0.3808 0.1839 0.0968 0.0794 0.0605 0.0404
MODEL II - D = 10 - THETA= 1.1 0.5759 0.3517 0.2198 0.1422 0.0945 0.0615
MODEL fi - D = 10 - THETA =1.15 0.5810 0.3611 0.2313 0.1469 0.0923 0.0604
MODEL II - D = 10 - THETA = 1.2 0.5786 0.3594 0.2312 0.1567 0.1042 0.0695
MODEL II - D = 10 - THETA = 1.25 0.5759 0.3494 0.2154 0.1479 0.0946 0.0619
MODEL II - D = 10 - THETA = 1.3 0.5818 0.3544 0.2254 0.1544 0.1017 0.0692
MODEL II - D =15 - THETA = 1.1 0.6327 0.4171 0.2844 0.1943 0.1365 0.0933
MODEL II ... D =15 - THETA = 1.15 0.6357 0.4207 0.2844 0.1934 0.1320 0.0910
MODEL II - D =15 - THETA= 1.2 0.6380 0.4208 0.2865 0.1987 0.1382 0.0966
MODEL n-D = IS - THETA = 1.25 0.6339 0.4161 0.2836 0.2019 0.1422 0.0995
MODEL II - D =IS - THETA =1.3 0.6338 0.4183 0.2841 0.2043 0.1436 0.1021
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AUTOCORRELATIONS OF SIMULATED OUTPUT
GROWTH

ANNUAL
K=I K=2 K=3 K=4 K=5 K=6

MaDEL fi -0=5 -THETA= 1.1 0.1447 -0.0737 0.0143 -0.0156 0.0060 -0.0046
MaDEL fi - 0 = 5 - THETA = 1.15 0.1515 -0.0737 0.0141 -0.0152 0.0059 -0.0045
MaDEL fi -0 =5 - THETA= 1.2 0.1530 -0.0708 0.0138 -0.0143 0.0053 -0.0043
MaDEL II - D = 5 - THETA =1.25 0.1559 -0.0694 0.0136 -0.0138 0.0051 -0.0040
MaDEL II - D =5 - TIŒTA = 1.3 0.1588 -0.0678 0.0134 -0.0132 0.0048 -0.0038
MaDEL fi - 0 =10 - THETA == 1.1 0.1756 -0.0909 0.0147 -0.0179 0.0072 -0.0050
MaDEL II - D = 10 - THETA == 1.15 0.1837 -0.0908 0.0143 -0.0173 0.0067 -0.0048
MaDEL II - D == 10 - THETA == 1.2 0.1873 -0.0881 0.0141 -0.0163 0.0063 -0.0047
MaDEL 11- D = 10 - THETA = 1.25 0.1879 -0.0842 0.0139 -0.0154 0.0059 -0.0043
MODEL II - 0 = 10 - THETA == 1.3 0.1975 -0.0860 0.0134 -0.0150 0.0058 -0.0041
MODEL II - D = 15 - THETA = 1.1 0.1876 -0.0961 0.0147 -0.0182 0.0075 -0.0049
MODEL II - D = 15 - THETA =1.15 0.1911 -0.0930 0.0144 -0.0171 0.0070 -0.0047
MODEL 11- D = 15 - THETA = 1.2 0.1955 -0.0906 0.0141 -0.0163 0.0067 -0.0043

MaDEL II - D =15 - THETA = 1.25 0.2003 -0.0889 0.0137 -0.0155 0.0064 -0.0041

MaDEL II - 0 =15 - TIŒTA = 1.3 0.2032 -0.0864 0.0135 -0.0147 0.0060 -0.0037
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AUTOCORRELATIONS OF SIMULATED OUTPUT
LEVEt

QUARTERLY
K=I K=2 K=3 K=4 K=5 K=6

GDP 0.8890 0.7068 0.5144 0.3099 0.1427 0.0063
MODELII·D==5 ·THETA= 1.1 0.4649 0.3722 0.3108 0.2655 0.2237 0.1902
MODEL II· D =5 - THETA = 1.15 0.5141 0.4201 0.3511 0.2999 0.2527 0.2157
MODEl II-D = 5 - THETA= 1.2 0.5077 0.4111 0.3440 0.2952 0.2496 0.2143
MODEL II - D = 5 - THETA == 1.25 0.4052 0.2955 0.2248 0.1929 0.1659 0.1386
MODEl II - 0 =5 - THETA = 1.3 0.4631 0.3576 0.2798 0.2341 0.2047 0.1723
MODEl II - D =10 - TIŒTA = LI 0.4649 0.3722 0.3108 0.2655 0.2237 0.1902
MaDEL II - 0 =10 - TIlETA =1.15 0.4977 0.3986 0.3328 0.2846 0.2401 0.2045
MODEl II - 0 =10 - THETA = 1.2 0.5335 0.4253 0.3427 0.2890 0.2503 0.2141
MODEl II - D == 10 .. THETA =1.25 0.3947 0.2995 0.2144 0.1624 0.1417 0.1213
MODEL II .. D =10 - THETA = 1.3 0.3407 0.2142 0.1330 0.0890 0.0814 0.0692
MODEl II - D = 15 - THETA = 1.1 0.4688 0.3661 0.2899 0.2427 0.2089 0.1797
MODEl II - 0 = 15 .. THETA = 1.15 0.5231 0.4199 0.3363 0.2826 0.2445 0.2068
MODEL II .. D =15 - THETA = 1.2 0.4979 0.4240 0.3406 0.2931 0.2554 0.2198
MODEL II .. D = 15 - THETA = 1.25 0.3895 0.2420 0.1923 0.1462 0.1285 0.1083
MODEl II - 0 = 15 .. THETA =1.3 0.3684 0.1982 0.1182 0.0805 0.0701 0.0610
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AUTOCORRELATIONS Of SIMULATED OUTPUT
GROWTH

QUARTERLY
K=I K=2 K=3 K=4 K=S K=6

MaDEL fi - D = 5 - TIŒTA= 1.1 0.2188 -0.0418 0.0078 -0.0039 0.0024 0.0000
MODEL fi - D = 5 - TIlETA = 1.15 0.2270 -0.0397 0.0074 -0.0032 0.0025 0.0004
MODELn - D=5 - THETA= 1.2 0.2329 -0.0385 0.0066 -0.0031 0.0020 0.0002
MaDEL II - D =5 - THETA =1.25 0.2398 -0.0370 0.0061 -0.0027 0.0019 0.0003
MaDEL n - D =5 - THETA = 1.3 0.2465 -0.0352 0.0059 -0.0021 0.0021 0.0006
MaDEL II - D = 10 - THETA= 1.1 0.2188 -0.0418 0.0078 -0.0039 0.0024 0.0000
MODEL fi - D = 10 - THETA =LIS 0.2270 -0.0397 0.0074 -0.0032 0.0024 0.0004
MaDEL n - D = 10 - THETA =1.2 0.2329 -0.0386 0.0066 -0.0032 0.0020 0.0001
MODEL fi - D = 10 - TIŒTA = 1.25 0.2397 -0.0370 0.0060 -0.0028 0.0018 0.0002
MaDEL Il - D =10 - THETA =1.3 0.2438 -0.0364 0.0053 -0.0030 0.0014 -0.0001
MaDEL n - D = 15 - THETA = LI 0.2187 -0.0419 0.0077 -0.0040 0.0023 -0.0001
MaDEL II - D = IS - THETA =1.15 0.2269 -0.0398 0.0073 -0.0033 0.0024 0.0003
MaDEL II - D = 15 - THETA = 1.2 0.2327 -0.0386 0.0065 -0.0032 0.0020 0.0001
MaDEL II - D = 15 - THETA = 1.25 0.2397 -0.0371 0.0060 -0.0028 0.0018 0.0002
MaDEL II - D =15 - THETA =1.3 0.2438 -0.0365 0.0052 -0.0030 0.0014 -0.0002
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AUTOCORRELATION of OUTPUT - ANNUAL
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AUTOCORRELATION of OUTPUT - QUARTERLy
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6.14 Appendix B: MathCAD Programs

This appendix presents results for a MathCAD21 program to undertake a parameter

sensitivity analysis for mode! 1. As figure 1 shows, output and consumption are convex

functions of the parameter 8. Both (output and consumption) reach a maximum at

the point where 8 = 1.2. This is an implication of the calibration exercise. Figure

2 illustrates the efFect of the capital depreciation parameter on consumption and

output. A change in 6 bas greater impact on consumption than output. As capital

depreciates, more work effort is put in place for the same level of production and

consumption is lower. Figure 3 shows that labour supply is an increasing function of

the size of the sectoral technology shock 8. As IJ increases, unemployment increases

and consequently the labour supply increases.

21Thanks to Stephen Millard Cor supplying the base code.
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Representative Agenfs Problem

Maximise

Subjectto

Euler Equations - given the symmetry just solve for state 1

Forn

Fork

Steady State

- 1 k a. 1- a. • a. ~ , e2 - -; ~ ~ 1 92 _. t..f1 ( 1- a.) ~ t..­J -a)-A·()·9 -0 -~1- ,1- i·o__a~l·\ - :.·_A-a. -(9-n) -u-a._

Set Parameters:

Cl =0.35

P =0.96

6 =0.06

: 1\
P =\p) - 1

Initialise Variables

Capital's Share of GOP A =10

Discount Factor e =1.2

Depreciation Rate 1 ,= 2

p =0.042

Technology Aggregate

Labour Shock

Weight of Leisure in U funetion

•
D =0.5 Labour

k =9 Capital Stock



•
440

il \ ~

0uIput(Cl,P,8,5,A, T) =A·L \Capital(Cl,", 9,5,A,T)œ; ·(9·Labom(Cl, " .O,a,A,y»l-œJ

OuIput(Cl.P,8.6,A,y) =9.608

lDvesllDalt(Cl,P,O,6.A,T) =S·Capitalœ," .9,6,A,y)

IDvesImad(Cl,p,e,S,A,T}:: 1.985

COIISUIDptioa(Cl, P,9,8. A, T) ::OutpUl(Cl, P,8.8, A,y) - Iuveslmcnt(Cl, P,8,5 ,A, y)

CoasumptioD(Cl, P,e.8, A,1) :: 7.623

( 2)LabourSuppIy(Cl.P.8,8,A.y) :: li ~ 8 ·Laboar(CI,P,8,S,A,y}

LabourSUppIy(Cl,P,8,8,A,y) :: 0.291

Create a range variable. This wiU be the variable whose value you are interested in changing.

As an example, let's look at the effect of varying the utility weight on leisure. A

o =0.9, L 3

ln the graphs below, the user should alter the x-axis label. The graphs will then be redrawn.

Graph of Effect of depreciation on Consumption, Investment, and Output
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Steady State Analysis
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•
gl(Cl,~,a,a,A,T) =FiDd(n,k)

Laboul(a,p ,e,a,A,T) '=81(a, p,a, 5,A,1)0

C.pital(Cl, P, e,5,A,T)= 81(Cl, P,a, 5, A,T)I

0.119
gl(a,p ,e,a.A, T) =

33.075

LaboUl(l1,p,9.a.A,T) =0.119

Capital(11, P,8,a,A,1) = 33.07S
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6.15 Appendix C: Indices

This sections reviews index numbers. Indices are used to report total multi-factor

productivity. In this thesis, the total multi-factor productivity in Canadian sectors

and the calibration of the RBC modeJs depend on.

Quantity indices - published by Statistics Canada - are: the Tômqvist, the Paasche,

the Laspeyres and the Fisher ideal. AlI quantity (volume) indices are computed using

a 'bottom-up' approach. They are initially estimated at the disaggregated industry

level, then weighted according to their contribution ta the industry, then summed to-

gether. For the properties of index numbers, see the comprehensive review by Diewert

(1987).

The Tômqvist22 volume index is a geometric weighted average of the ratios of the

CUITent and previous year's quantities.

(6.53)

similarly expressed as,

(6.54)

•

where i = l, ..., n represents industries, and Wi denotes average value of the shares of

the industries in total output at time 0 and 1. The Tomqvist index is used to estimate

multi-factor productivity. It corresponds to the (general form) translog production

function.

The Laspeyres volume index is an index of the growth in quantities valued at the

22Source: Statistics Canada (1994, p. 22).
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previous year's priees,

(6.55)

The Paasche volume index is an index of the growth in quantities valued at the eurrent

year's priees,

(6.56)

The Fisher ideal volume index is a geometric mean of the Paasche and Laspeyres

indexes,

(6.57)

Priee indices are derived from quantity and value indices. Value (V), Volume (Q) and

Priee CP) indices are related as fol1ows,

Therefore, implicitly, one can compute the price index as,

Pl Vi
Po = ~(Ql/QO)

(6.58)

(6.59)

Indices emphasize relative changes in the time series as opposed to leve1s. However,

one cao re-construct the absolute level values23 from the indices as in

Index .
100 • 1986 base of the vanable (6.60)

•
Note that the growth rate of the series is the same whether one calculates it from the

index or trom the absolute level data.

23For example, see the value in Statistics Canada (1996, p. 115) Table 1.
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Chapter 7

Conclusions

This dissertation studied unemployment persistenœ and the influence of sectoral

shocks on aggregate fluctuations in Canadian data. Among other hypotheses, it

investigated the Lilien hypothesis using Canadian data. Chapter 4 documented the

persistent nature of aggregate and sectoral Canadian unemployment. Chapter 5 ex­

plored the dynamic relation between sectoral and aggregate employment. Chapter

6 examined and propœed a theoretical framework wherein sectoral shocks generate

observed aggregate persistence. We showed that the sectoral influence on aggregate

variables is significant and relevant to policy decisions.

More specifically, this dissertation examined. whether persistence in aggregate un­

employment is a property of the impulses that impinge on the economy or a con­

sequence of the structure of the sectoral interactions in the labour market. The

objective W8S not ta dismiss aggregate shocks and their influence, but to underline

and quantify the relevance of sectoral shocks.

Throughout the dissertation, the results are conditioned on: the model, identifica­

tion approach, variables de-trending procedures, variables transformations, functional

specifications and other assumptions.

445
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We addressed the robustness of the results. Relative to the assumptions made, we

performed sensitivity analysis on the specifie choice of prior distributions (Chapter 4),

the specific transformation of the variables and the identification approach (Chapter

5), and the assumptions used to build the stochastic dynarnic models (Chapter 6).

We made reasonable modifications to the initial assumptions, recomputed quantities

of interest and observed whether the modifications change<! the conclusions. We

investigated or used:

• The influence of the frequency of the data on the reported evidence of persistence
by the Cochrane varianœ ratio in Chapter 4.

• The influence of the de-trending procedure on the reported evidence of persis­
tenœ by the modified rescaled range test in Chapter 4.

• The number of fixed parameters in the Bayesian ARFnvlA in Chapter 4, which
100 us to estimate 16 models.

• The prior used in the Bayesian ARFIMA (non-informative and informative) to
compute the posterior probability of each mode!.

• Two identification approaches and variables transformations in Chapter 5 to
estimate the Classical VAR models.

• Five different specifications in Chapter 5 to estimate the Bayesian VAR models,
which 100 us to estimate 15 models.

• Three values for the adjustment oost parameter, the live values for the size of
the shock and the two frequencies in Chapter 6, which led. us to simulate 60
models.

• The method of the grid value function, which 100 us to evaluate the error bound
for each mode! in Chapter 6.

• The calibratOO parameters, which 1ed us ta compute elasticities as a measure
for local sensitivity analysis in Chapter 6 and in Appendix B of Chapter 6.

In the VAR mode1s, we used information criteria to select the lag length. We

tested for lag exclusions and mode! over-identification in the Classical VAR. In the
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Bayesian ARFIMA, we use<! the quadratic 1085 function to select the mean as the

optimal point estimate.

We addressed model uncertainty throughout the thesis. We used Bayesian·av­

eraging to compute an overall model in Chapter 4. For the Classical VAR mode1s

in Chapter 5, we tested the residuals for misspecification signs. We also conducted

Granger-causality tests. For the Bayesian VAR models in Chapter 5, we adopted

the Theil U statistic as the criterion for model selection. For the RBC models, we

adopted the comparison of the model generated impulse responses with the VAR one.

We a1so used the informa! moment matching approach.

Chapter 4 investigated persistence in Canadian unemployment data. Using the

Cochrane variance ratio and the modified rescaled range test statistics, we reported

significant evidenœ of persistence in total and manufacturing unemployment. Us­

ing a system of equations approach (SEA) ta assess sectoral employment dynamics,

Canadian employment data shows that Kaldor's first law holds for the period 1976

to 1998. Lilien's hypothesis does not hold in Canadian data. However, the results

do suggest that a significant percentage of employment variability is due to sectoral

shocks.

Adopting a statistica1 persistence measure as the fractional integration parameter

in ARFIMA class of models, Chapter 4 estimated a range of low frequency mod­

els using a Bayesian approa.ch. However, a commonly voiced ooncem with Bayesian

methods is their reliance on sources of uncertainty such as the prior distribution and

the precise parametric fonn of the likelihood function. Given the uncertainty over

the models, we computed each model's pœterior odds as a tool for mode! selection.
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Our results showed that the first difference of the log of Canadian unemployment

is stationary with intermediate memory. Pœterior analysis of the impulse responses

confirmed that the efFect of a shock persists for at least 12 quarters. Chapter 5 exam-

ined the empirical dynamics between sectoral and aggregate Canadian employment

data. The empirica1 investigations in Chapter 5 concluded with the fol1owing,

PersistenœVariation in:Mode!

Employment Growth

Manufacturing
C-I 3 years: 13.58 % 2.5 years

Reallocation
Service

C-ll 3 years: 12.99 % 2.5 years
Reallocation

Total Employment

Manufacturing B-I 3 years: 14.3 % 3 yearsEmployment
Services

a-ll 3 years: 5.64 % 0.83 yearEmployment

1 A Shock to:

These results show that alter 3 years, sectoral shocks are responsible for at most

14 percent of the variation in aggregate employment. In terms of persistence, al!

investigated models showed effects over 2.5 yeatS, except for services employment

shocks. In terms of employment variation, it is less than the 27 percent reported by

Campbell and Kuttner (1996) and less than the 50 percent suggested by Lilien.

Chapter 6 presented two theoretical stochastic structural dynamic programming

models to explain the effects of sectorallabour mobility on aggregate unemployment.

•
We compared the impulse response results from the theoretical models with the em-

pirical ones used in Chapter 5. We also used the Kydland-Prescott informai moment

matching approach.
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Is persistent unemployment a property of aggregate demand or aggregate supply

fluctuations? Two RBC models were use<! to capture these two possibilities. In these

models, relative sectoral technology shocks and taste shocks acted as impulse mecha-

nisms. Sectoral reallocation and adjustment costs acted as propagation mechanisms

and resulted in responses significantly greater than due to œch one alone. Actual

business cycle moments were employed as (pseudo) critical values to determine the

merits of each mode!.

Comparing the RBC models' results with the unrestricted time series Bayesian

VAR models showed that relative technology shocks generated higher employment

volatility and longer unemployment persistence. This result held even for small ad-

justment costs incurred by the representative agent in terms of lost leisure. For higher

adjustment cœts, unemployment persistenœ was equally weIl generated in both mod-

els (relative technology shocks and relative taste shocks). Taste-shock models offered

a good explanation1 of non-technology driven procycliœllabour productivity. They

also allowed non-technology driven reœssions. During reœssions, one does not o~

serve a large technological regress, as assumed by basic RBC models. Here, with a

modest size shock to tastes, a reœssion was generated.

This thesis established that it tex>k a smaller technology shock and a relatively

larger taste shock to generate a similar dec:rease in employment. For both models,

the adjustment mechanism was similar. The models differed in some aspects, e.g.,

mode! 1 included a œpital stock whereas mode! il did note

L While our simulations yield this result, many economists do not subscribe to changes in tastes as
a significant cause of business cycles.
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Our results showed that employment variance varied directly with adjustment

cœts and that a palicy aimed at reducing these costs will result in significa.nt re­

duction in employment variance. Our simulated results indicated that observed un­

employment persistence could he the product of technology shocks or tastes shoclcs.

Higher adjustment costs generated similar unemployment persistence regardless of

the source of the shock. Smaller adjustment cœts generated higher persistence for a

technology shock than a taste shock. Given a shock of the same magnitude to both

technology and to tastes, the former produœd higher employment volatility, longer

unemployment persistence and a deeper reœssion.

7.1 Contributions

This dissertation studied the effects of sector-specific shocks on aggregate fluctuations

in unemployment. The plan was to find evidenœ of persistent unemployment and to

integrate unemployment caused by sectoral shifts into a formaI stochastic dynamic

general equilibrium model.

We argued and concluded of the importance of sectoral real1ocation in determining

aggregate unemployment. We advanced the view that sectora! policies aimed. at

reducing unemployment are efficient and should he used. Sectoral policy solutions

ought to he considered such as generating easier worker mobility between sectors.

Empirlcally and using a. univariate analysis, we concluded that ail monthly un­

employment series echihit slow autocorrelation decay. Using the Cochrane Variance

Ratio and the Modified Rescaled Range Statistic, we significantly rejected the simple

nulI hypothesis of Li.d. process. Long-range dependenœ is evident in Canadian t~
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ta!, manufaeturing and services unemployment. We estimated this persistenœ using

Bayesian ARFIMA class of models to capture the omnipresent long memory. The

results showed that Canadian aggregate unemployment is a long-memory process

that exhibits the mean reversion property. In terms of persistence, the Effect of a

shock persists for at least 12 quarters. Given the confusion regarding the definition of

persistence in the literature, we proposed a new definition for 'economic persistence'.

Empirically and using a multivariate analysis, we estimated a Classica1 and a

Bayesian VAR to assess the impact of a sectoral reallocation shock on employment.

With a focus on identification issues, the Classiœl VAR concluded with the following

observation. A reallocation shock of one standard deviation in manufacturing is

responsible for 13.8 percent variation in the growth rate of employment arter 4 years.

The Bayesian VAR focused on the variance decomposition and the impulse responses.

The results showed that Kaldor's first law holds in Canadian employment data over

the period 1976 to 1998. Also, a shock in manufacturing employment of one percent

is responsible for at most 20 percent of the variation in the rest of employment after

one yea.r.

Overall and empirica1ly in terms of magnitude, sectoral shocks are less influential

than reported in the literature but important.

Theoretically, we proposed. and constructed two stochastic dynamic general equi­

librium models to explain unemployment persistence, namely a relative technology

shocks (model 1) and a relative taste shocks (mode! II). For model l, a one percent

technology shock induces at most a 0.7 percent increase in unemployment and 0.55

percent decrease in output. The effect of the shock persists for 4 to 6 periods depend-
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ing on the difficulty of sectoral reallocation. For model n, a one-percent taste shock

induœs at mœt 0.2 percent increase in unemployment. The e1fect of the shoc.k persists

at most for 4 periods. Both models sucœssfully generate unemployment persistence.

Among many, few important findings follow~ It takes a smaller technology shock

and a relative!y larger taste shcxk to generate a similar decrease in employment.

Technology shoclcs generate higher employment volatility and longer unemployment

persistenœ. This result holds even for sma1l adjustment oosts. For higher adjust­

ment cœts, unemployment persistence muld equally he generated from bath models

(technology shocks and taste shocks). Employment variance varies directly with the

adjustment cœts parameter. A policyaimed at reducing these costs will result in

significant reduction of employment' variance.

Also, mode! il offers a. good explanation of a non-tech.nology driven procyclical

labour productivity. It also presents a realistic view of a non-technology driven reces­

sion. During reœssions, one does not observe a large technological regress as outlined

by basic RBC models. Here, with a modest sÏ2e shock to taste, a reœssion is gen­

erated. Also, model II is successful in generating the observed procyclical labour

productivity.

Comparing the models, we showed that model 1 dominates model II on higher

unemployment variance and that bath models show partial sucœss in matching em­

pirical regularities. Given a shock with the same magnitude ta both technology and

to taste, the former produces higher employment volatility, longer unemployment per­

sistenœ and a deeper reœssion. AIl models showed that employment variance varied

directly with adjustment costs.
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7.2 Future Research

Asymmetries in output movements over the business cycle are weil documented. In

general, there exist two types of asymmetries: first arder and second arder.2 The

former refers ta the magnitude of the fluctuations around the mean: if the fluctuations

around the mean are not symmetric, then the series is said to exhibit a first arder

asymmetry. The second arder asymmetry refers ta the length of the fluctuations:

whenever the length of the cycles varies, the series is S8.id ta exhibit a second arder

asymmetry. The literature reports the asymmetry in output and unemployment ta

he of the second type.3

For further research, we suggest replacing symmetric by asymmetric costs of ad-

justment, so as ta produce non-linear short-nm fluctuations in stochastic dynamic

general equilibrium models. This extension is important towards fully understanding

the dynamics of the sectoral-shock efFect on unemployment (see Pfann (1996) for a

discussion) .

Another extension would he ta relate the adjustment casts to the state of the

economy. For example, in booms, one expects sorne adjustment costs to he lower than

in reœssions. In sucb a setup, the adjustment cast parameter D should he stochastic

and follow a transition probability matrix. Also, future research could apply the four

steps outlined in Schorfheide (2000) to oompute the posterior probabilities of each

RBC model outlined here (modelI and mode! II in Chapter 6), using as reference our

estimated VAR in Chapter 5.

2 These terms (first and second) are used in a non-mathematical sense.
3 For direct and model besed de6nitioDS of asymmetry, reCer ta Potter (1994, pp. 315-319) and
Neftçi (1984).
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Finally, extending the models ta include more than two sectors is a definite must to

understanding sectoral dynamics and their inHuenœ on aggregate behaviour (Swanson

(1999b)). Allowing a multi-sector framework in which each sector is calibrated to its

business cycle data should yield a better perspective on business cycles and sectoral

policies. Sectoral theoretica1 modelling and empirical investigations offer promising

avenues for future research.
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