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Abstract

The research work presented in this thesis deals with flight control problems. Based
on robust control techniques such as H_ control and u —synthesis, we develop control

faws that are efficient in reducing gust loads on flexible aircraft. Uncertainty models
for flexible aircraft are proposed and shown to be well adapted for robust control
design, while tightly covering unknown but bounded variations of flexible mode
parameters. One of the models presented introduces a new complex-rational controller
design methodology that takes advantage of the uncertain plant structure and achieves
good performance criteria. Other uncertainty models are presented for the first time
for the purpose of closed-loop reduction of flexible models. We propose a new
model/controller order reduction method for flexible aircraft preserving robust
performance in closed loop. Two case studies of complex aircraft are presented with
the objective of full flight envelope control. Solutions for scheduled control laws are
given to maintain performance objectives along the entire flight envelope. We adapt
to our complex aircraft case study known gain scheduling techniques. such as
observer-form controller scheduling, and we propose new gain scheduling techniques,
including a robust performance blending/interpolation design, an optimal multi-

switching methodology and a scheduled-partitioned controller.



Résumé

Dans cette thése, on développe des lois de commande robustes, comme la commande

H, etla synthése u, qui sont appliquées & plusieurs problémes en aéronautique. Cette

Y

‘thése contribue a plusieurs aspects de la commande de vol evoluée. On résout
plusieurs problémes théoriques dont les solutions élaborées sont susceptibles de
donner satisfaction sur’ des modéles complexes d’avions réels. Nous traitons le
probléme des rafales et leurs effets sur un avion flexible. Nous montrons 1’efficacité
d’intégrer des lois de commande robustes afin d’alléger les effets de rafales sur
P’avion. L’étude de la commande robuste nous améne 4 parler de modélisation
d’incertitudes. Nous proposons dans cette thése de nouveaux modéles d’incertitudes
qui représentent finement les variations des paramétres caractérisant les modes
flexibles ainsi que pour la réduction de modéles d’avions. Ce dernier objectif est pris
en compte dans notre recherche et une méthode de réduction d ordre du modéle et du
compensateur pour les structures flexibles, en boucle fermée et préservant la
performance robuste est proposée. S’ajoute & ceci une étude du gain scheduling avec
de nouvelles méthodes proposées pour un avion STOVL Harrier et pour un avion
flexible B1. Une loi de commande a performance robuste est réalisée et on prouve la
stabilité pour des approches basées sur I'interpolation et jugées ad hoc dans la

littérature.
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Claims of originality

Flexible aircraft and gust load alleviation problem

One of the main objectives of this thesis is to study aircraft flexible models. These models are of
high order and tend to be difficult for robust control design. However, these flexible models are
more realistic than rigid-body models typically used in the flight control literature. Neglecting the
flexibility aspect of an aircraft, especially large aircraft, can have dangerous consequences when
control laws are implemented. Since the flexible models are sensitive to gust effects, we focus on
designing robust control laws, using H_ control and x - synthesis, shown through this thesis to be
able to reduce undesirable acceleration caused by gust loads. A motivating justification for the use
of H_ control fdr optimal gust load alleviation is given. This problem has not been treated in the
literature using robust control techniques in application to flexible aircraft. We include in the
robust control setup for gust loads alleviation problem, representative models for severe gust
generation. The use of such models in this thesis gives a realistic study of the effects of gusts on
the flexible aircraft. Comparisons of results we obtain using robust control techniques
(weighted H, and H_ control) with modern control techniques such as LQG or classical H,, are

given in Chapter 2 for a BS2 flexible bomber. These results show significant difference in reducing

the acceleration of the aircraft due to the gust effects in favor of robust control techniques

Uncertainty modeling

Robust control design needs tight bounds of uncertainties when variations in the aircraft dynamics
are taken into account. For flexible aircraft, we investigate modeling the variations of flexible
mode parameters. In the literature, e.g., [Bal99], [Mad], no tight models, without unrealistic
heuristics, have been proposed. We present in Chapter 4 two uncertainty models based on coprime
factorization approach and modal coordinates approach, respectively. These models are well
adapted for a less conservative robust control design. The uncertainty model, based on the modal
coordinates approach, leads to an efficient complex-rational controller design newly introduced in
this thesis. This complex-rational control methodology achieves good robust performance indices
and is shown to be the first step of the controller design. The second step will be that of recovering
a robust real-rational controller for implementation purposes. The efficiency of the uncertainty

models and the complex-rational control methodology is shown on three-mass flexible models.



In addition, we present in Chapter 3 a new uncertainty model for flexible modes called “inverse
uncertainty”, with lower upper bounds than the usual additive uncertainty model, that is efficient

for robust control design under a closed-loop order reduction framework.

Order reduction techniques

Many order reduction techniques [Glo84], [Enn84b] were proposed in the literature. However, these
techniques are usually for open-loop order reduction. Although, some techniques, [Wortel94], are
developed for closed-loop order reduction, the physical meaning of the state is lost after reduction.
For this reason and because each flexible mode has its specific state representation, we introduce a
model/controller closed-loop order reduction preserving performance indices. The method we
propose in Chapter 3 has the virtue of treating the reduction of the flexible model and the controller in
the same framework. Using new pafametric uncertainty models, which include reduction effects of a
given number of flexible modes and with a robust performance u—analysis, we are able in the first
step of our methodology to give the statement of the best flexible mode combination to truncate,
without losing performance specifications. We propose then Theorem 3.1 that gives a sufficient
condition under which, starting from the full-order controller of the best flexible mode combination,
and under certain conditions, a reduced-order controller preserving the robust performance
specifications obtained by the full-order controller can be obtained. Applicability of the proposed
technique is validated by many examples from flexible aircraft to flexible structures models.

In addition to this technique, we propose uncertain closed-loop order reduction methodology for
which we use the inverse uncertainty model developed in this thesis. Results in favor of this
uhcertainty model compared with additive uncertainty model are highlighted through examples in

Chapter 3.

Gain scheduling

Huge progress in gain scheduling research has been achieved this last decade because of its
importance for flight control research. In general, we classify gain-scheduling techniques into
simple, practical methods, however ad hoc, and sophisticated parameter-varying techniques that
offer some stability guarantees. In this thesis and through Chapter 5 and Chapter 6, we propose
gain-scheduling techniques based on the simplicity of the ad hoc methods, while providing robust
stability and performance guarantees (see Chapter 6). In fact, complexity of STOVL Harrier
aircraft studied in Chapter 5 is a hard constraint that imposes the use of simple gain-scheduling
schemes such as the new blending/interpolating technique that we propose in this thesis. In

addition to this technique, we provide an observer-form controller solution and a multi-switching

Vi



algorithm based on the linear quadratic bumpless transfer technique. All these developments are
made under an Integrated Flight Propulsion Control methodology used in this thesis. This
methodology leads to a sub-optimal decentralized controller easy to implement and for which we
propose a new scheduling-partitioning technique.

In Chapter 6, for the model of a flexible B1 bomber, and based on the availability of linear
parameter varying model, we propose techniques based on interpolation of Riccati equation
solutions and a redesign technique. In addition to this, we propose, based on the
blending/interpolating technique developed in Chapter 5, a robust performance controller design
and analysis tools for the entire envelope of the aircraft considered. We propose a methodology to
represent the nonlinear system of the flexible B1 bomber by a linear uncertain model, which
covers the aircraft flight envelope by the variation of its parametric uncertainty. Then we propose

Theorem 6.1, which uses u—robust performance setup properties to give a necessary and

sufficient condition to obtain a gain-scheduled controller guaranteeing robust performance
specifications. This result allows us to use simpler techniques than linear parameter varying
control, while still guaranteeing stability and performance specifications. In addition to Theorem
6.1, we present in Lemma 6.1 general necessary tools for the stability and performance analysis of
the gain-scheduled controller, based on the blending/interpolating technique presented in Chapter
5. In particular these tools can be used for the analysis of the robust performance gain-scheduled

controller obtained by Theorem 6.1.
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Chapter 1

Introduction

1.1 Robust flight control
In this thesis, we devélop robust techniques for various flight control problems including gust load
alleviation for flexible aircraft. Open research questions are treated using advanced control techniques

such as H_ control, x-synthesis and gain scheduling.

The gust load alleviation problem for flexible aircraft is defined with the necessity of integrating
robust control techniques in Chapter 2. Flexible aircraft models are chosen as case studies for this
problem because taking into account the flexibility in the aircraft and its interaction with gust effects is

more realistic than simply using rigid-body models. Motivation to use H_ and weighted- /, control

for the gust load alleviation problem is given and efficiency of these proposed control technologies
demonstrated and compared to other classical types of control strategies. |
Flexible aircraft, which are represented in general by high-order models, naturally led us to consider
the order reduction problem for the model and/or the controller. This problem is treated in Chapter 3
by our new model/controller order reduction technique achieving closed-loop robust performance
criteria. The propbsed method is suitable for flexible models, which up to now have been usually
reduced in open loop using classical order reduction techniques that do not take into account the
physical interpretation of the flexible modes. In addition to this method, we discuss uncertain models
for closed-loop reduction methods for which we introduced a new type of uncertainty, suitable for
reduction of the flexible systems, and called “inverse uncertainty”. This type of uncertainty facilitates
the controller design based on the reduced-order model chosen.

In modeling flexible aircraft, or in general flexible structures, one needs to have information about the
accuracy of the values for the damping ratios and natural frequencies of the flexible modes. This is
not generally the case, which spurred research to develop parametric uncertainty models for these
uncertain coefficients. Existing uncertainty models in the literature [Mad98], [Bald99] often suffer

from being too conservative and sometimes use questionable heuristics. Thus, we propose in Chapter 4



two tight uncertainty models based on coprime factorization and that are suitable for robust control

design. In addition, we present a way of calculating 4, the structured singular value, that can be very

useful when the uncertainty models contain many uncertainty blocks, real and complex. The problem

of calculating x is still open for research, and existing solutions are not always satisfactory for high-

order uncertain models. For real flight control applications, aircraft control should obviously function
over the entire flight envelope considered. This leads to the study in Chapter 5, of the gain scheduling
problem, which is still open for discussion and improvements. Noting the complexity and numerical
problems associated with gain scheduling techniques such as linear parameter-varying control, we
prefer to adapt ad-hoc methods in the literature that have proved to achieve acceptable performance on
a complex Short take-off and vertical landing (STOVL) Harrier aircraft. In this chapter, an integrated
flight propulsion control (IFPC) framework is introduced and described in some details. Under this
framework, and in addition to adapting an observer-form interpolating scheduling technique
[Aouf2000d], we propose a new blending/interpolating [Aouf2000c] technique and extend a bumpless
switching technique [Turn2002] for a multi-switching control structure. We close Chapter 5 with the
introduction of a partitioning technique for IFPC systems and propose a scheduling approach for a
partitioned controller. Starting from a linear parameter-varying model of the nonlinear B1 flexible
aircraft, we present in the first part of Chapter 6 two gain scheduling techniques: one based on
interpolation of the solution of Riccati equations used in robust control techniques, and the second
technique is based on controller redesign along the flight envelope as the dynamics change. In the
second part of this chapter, we present a new gain scheduling robust performance controller design
and analysis based on blending/interpolation technique, which is introduced in Chapter 5. A proof of
stability is given for the gain scheduling controller based on interpolation methods. This represents a
step forward as such controllers have been designated as ad-hoc methods for their lack of guarantee on

the stability of the gain-scheduled closed-loop system.

1.2 Aircraft and gust modeling

In this section we give some background and generalities on aircraft modeling and specifically for
flexible aircraft, which is one of our applications of interest. Aircraft models that include structural
flexibility are more realistic than rigid-body models. For small aircraft, it is often admissible to ignore

the flexibility that exists in the aircrafi, e.g., in the aircraft wings. However for commercial aircraft that



are usually of large dimension, ignoring the flexible modes of the aircraft may systematically cause a
problem of accuracy of the model representing the real aircraft.

We introduce the problem of gust load alleviation as a flight performance objective of interest. We
will study the effect of turbulence on the acceleration of the aircraft, and by means of advanced control
techniques, we will propose control laws to reduce passenger discomfort caused by vibration induced

by the turbulence.

1.2.1 Rigid-body aircraft model

In this aircraft motion modeling analysis, we use the earth frame axes XgYzZy and the aircraft frame
axes XplpZp. The rigid aircraft is assumed to have the same distance between any two points on its
structure over the entire flight envelope. When an aircraft is assumed to be rigid, its motion has six
degrees of freedom. The following study is derived from the textbook [Mcl90] where detailed
information can be obtained. The motion equations of a rigid-body aircraft are deduced by applying

Newton’s second law. The forces acting on the aircraft along the aircraft axes are:
d
F=—{mJV,
s {mr} (1.1)

F, =my(U +QW -VR)
F =iF, +jF, +kF, , F,=my(V +UR~PW) (1.2)
F, =m,(W +VP -UQ)
and V, =iU +jV +kW |
where m is the mass of the aircraft, V7 is the velocity of the aircraft, expressed in the aircraft’s frame,
with derivatives: gt—VT =iU+ jV +kW, (i, j,k)are the orthonormal vectors associated with the
B
body axes XplYpZp and parameters P,(J,R represent the angular roll, pitch and yaw velocities

respectively.



Figurel.1: Body and Earth axes system
Other types of forces such as the gravitational forces acting on the aircraft should be taken into

account in the modeling of motion equations. For the following we define ¢,6, as the roll, pitch and
yaw angles, respectively. The coordinates of the gravitational forces along the aircraft axes are:
Fy =-m,gsinf
F, =mygcosfsing . (1.3)
F, =mygcosfcosg

Using Newton’s second law for the moments applied on the aircraft, we obtain:

M:1H+a)xH (1.4)
dt
I, -1, -1,
where H =/w is the angular moment, @ is the angular velocity, and I =|-1_, I, -1 |is the
-1 -/ I
xz vz zz

inertia matrix.
The simplified coordinates of the moments along the aircraft axes Xz¥pZp are given respectively as
follows [Mcl90]:

ALl AL=LP-I_(R+PQ)
M=|AM |, AM =10+ (P"-R) (1.5)
ANJ  AN=IR-I_(P-OR)
Using perturbation theory, which considers the movement of an aircraft as small deviations from

equilibrium around a stationary operating point, the equations of motion of a rigid-body aircraft are

given for the equilibrium operating point represented by subscript 0, as:



FX0 =.m, [QOWO ~ RV, +gsin ®o]
E, =my[URy~ P, — g cos @ sin @, ]
F, =my[ PV, —QU, - gcos @y cos @, |

(1.6)
LO = QORO(Izz -]yy)—R)QOIJa
My =R =R+ ~1,)PR,
Ny =1.0.R, +(1yy -1 )R,
For the perturbed part;

AFy, = m, [u+WOq+Q0w~VOr—R0v+gcos®()9]

AF, =m, [\}+Uor+R0u—Wop-—E)w—(g.cos®0 cos @, )p+(gsin®, sin@o)ﬁ]

AF, =m, [W+ VP + Py —U,q Qg +(gcos @, sin®; ) g+ (gsin®, cos @, )6 | 7

AL=1, p~1i+(I,~L,)(Qr+Rq)~1,(Bqa+Q,p)
AM =1, g+(1,—1,)(Fr+Rp)-(2Rr-2Fp)l,
AN =17~ p+(L, 1, )(Pyq+Qyp)+1.(Qor + Ryq)

- where each variable X is written X, +x; X, is the value of the variable X at the equilibrium.
Using certain assumptions, [Mcl90], on the motion of the aircraft, a simplified representation of the
perturbed coordinates can be given as:

AF, =m,[i+W,q+g cos©,0]

AF, :m0[1'7+Uor—WOp+gcos®O¢] (1.8)
AF, =m,[w-U,q+gsin® 4]
| AL=1_p—I_F
AM =1, (1.9)
AN:[ZZ;;—IXZP

and the coordinates of angular velocity @ of the aircraft, which represent the rotation of the aircraft

axes to the earth axes, are given as:



p=¢-ysin®,
g=6 (1.10)
r=ycos®,

1.2.2 Longitudinal motion
Throughout this thesis, we consider the longitudinal motion of different types of aircraft. Thus we give
more details on the longitudinal motion, rather than the lateral motion of the aircraft. Under
equilibrium operating conditions, the longitudinal and lateral equations of motion could be separated
as given in the following:

AF, = x=m,[i+W,g—gcos ©,0)]

AF, :z-—:mo[_W—UOqugsin@OB] (1.11)

z

M=m=1I4q
where: x,z,m are the variations of displacement on X, axe, of displacement on Z,axe and of pitching
moment, respectively.
y=m,[v+Uyr~W,P—gcos©,g]
I=1_p-1_F (1.12)
n=17-1_p
where: y,l,n are the variations of displacement on ¥,axe, of rolling moment and of yawing moment,

respectively.
In the following, the only actuator considered for the longitudinal motion is the elevator. Developing
in Taylor series the coordinates of the forces acting on the aircraft in (1.7), we obtain the following

equations:



oF, oF, oF, . oF, &F, . 0F,

U +—=1+ W+ —=W+ q+—=>=q+ Oy
Ou O ow oW oq oq 00,
+%5E = my[# +Wyq + g cos O ]
E
o u+6F? u+5FZ W+ F? W+ 7 q+aF.Z q+6FZ Ox
ou ot ow ow oq oq 06, (1.13)
+g§18E:mo[W—qu+gsin®09]
E

oM oM. oM oM. oM oM . M
U+—t+——W+—W+—g+—G + Oy

ou o ow ow oq oq 08,
oM

+——0, =14

PR

Note that if we considered other command surfaces such as the horizontal canard J,,, then terms such

as -@’iﬁE +-ai?%5E could be added for each Taylor series developed for variables: $=F_,F, or M .

05, " 95,

Using the standard notations in aeronautics:

x = L%
T om, Ox
Z’“:Zi"% (1.14)
0
P 7
T o

where X _,Z_ M are called stability derivatives, the longitudinal equations of motion are given as:
U= Xu+ X+ X w+ X W+ X g+ X g+Wq
—gcos @b+ X, 5, +X535E
w=Zu+Zu+Z w+Z w+Z g+Z72.g+Uyq
—gsin®0+7Z, 6, +Z; 5 (1.15)
qg=Mu+M i +Mww+Mww+qu +qu
M, 5, +M; 8,
0=
The stability derivatives mentioned above depend on the type of aircraft and the operating point in the

flight envelope. They are generally estimated offline by wind tunnel tests.



If certain stability derivatives are neglected [Mcl90], the longitudinal equations of motion can be
simplified to:
n=Xu+X w+W,q—-gcos® b
w=Zu+Z w+Uyg—gsin® 0+ Z§E§E
g=Mu +MWW+MWW+M4¢1+M5E5E (1.16)
0=g

These equations are more suitably written, for control system objectives, in a state-space

A|B
representation G(S):{E'*B} =C(s[-A)"'B+D. By choosing the state variables vector as:

x=[u w ¢ 6] and the actuator vector as &5, we get the matrices

X, X, W, -gcos®,
Z Z, U, -—gsin®
A= o g;.;.“ ° (1.17)
u w q é
0 0 1 0
and
X5,
Z
B=| (1.18)
SE
L0
where:

M,=(M,+M,Z))

Mw :(Mw +Mwa)

M, =M, +UM,)

M, =(-gM,,sin y,)

M% = (MJE +szaj)

If a short-period approximation is desired, which means neglecting the variations of speed due to

deflections of control surfaces, then u =0, thus the state variables for the longitudinal motion are

‘ w
reduced to x:[ } and
q



4= zZ, U, ;
) {(Mw M,z,) (M, +U0M'wﬂ (1.19)

B = Za, 1.20
Ty, +Z,M,) (1.20).

1.2.3 Background on flexible structures

Using the Hamilton principle for undamped systems

S t

[8(1 -2yt = | Grar (1.21)

4 4
where 7 is the effort of the non-conservative forces, 7 is the kinetic energy and Z/ is the deformation
energy. If we discretize the structure studied into a finite number of elements represented by n nodes
located on the contour of the structure, then an approximation of the displacements of the structure is

given as:
uj(x)y7zat):Zni(x7y>z)qi(t) (122)
i=1

where:

q,(t) are genéralized coordinates,

n,(x,y,2,0) are the basis functions of the approximation.

Reformulating the Hamilton principle by taking into account Equation (1.22) leads to the Lagrange
equations as:

where F, is generalized force corresponding to the generalized coordinates ¢;and given
as: 0t = F.0q, .

For small displacements of the elastic systems, an approximation of the kinetic energy and the

deformation energy is given as:

T=123 3 4 My, =1/24 M (124)

i=1 j=1

U =1/23 % 4 K,q,=1/2¢"Kq (1.25)

i=] j=1



then the Lagrange equation in (1.23) is rewritten as:
Mg(t)+ Kq(t) = F(t) (1.26)
For damped systems, we need to add a term to model the force of viscosity dissipation. Thus the
global flexible structure model is given as:
Mgty +Cq(ty+ Kq(t) = F(¥) (1.27)
where: M. is the semi-definite mass matrix.
¢ viscosity-damping matrix.
K: positive stiffness matrix.

F’ generalized forces.

1.2.4 Flexible aircraft model

In this thesis, we are interested in models of aircraft that include structural flexibility. These models
are more realistic and have the potential to yield more reliable controller designs than rigid-body
models neglecting the flexibility aspeét of the aircraft. In the following, we show how, starting from
rigid-body dynamics, aeroelastic effect can be included in the state-space representation of the flexible
aircraft model. As explained above for general flexible structures, and assuming small aircraft

structure displacements, each flexible damped mode 7 can be represented by generalized coordinates

q,: 44,+Bq,+Cyq,=0,. (1.28)
where A4,B,,C, are the coefficients of the generalized coordinate g, and (), represents a generalized
aerodynamic force. Each differential equation in (1.28) representing the ith flexible mode can be
included in the global state space representation of the flexible aircraft. This can be done by adding,

for each flexible mode taken into account, two states

E;]:['C?/Af —B,-I/A}Ej“{l/ug (29

In general the state-space matrix 4 of flexible aircraft model can be partitioned as:

10



A 2" Tee

a ee

T4, A4 :
A :L " m} where A _, A, are the state matrices of the rigid-body part and the elastic part of the

aircraft. 4, 4, are the coupling matrices of the rigid part to the flexible part and of the flexible part to

the rigid part. The coupling terms can be estimated from wind tunnel tests.

To be more generic in our modeling of the aircraft, we do not specify the output equations of the
models. This depends on the type of aircraft and the performance objectives. The vector of outputs can
include acceleration measurements with different position accelerometer on the aircraft. Also roli,
pitch and yaw angles can be measured uéing gyros. For instance, some of the outputs variables do not
necessarily have to be sensed. They may be aircraft or engine variables that need to be simulated or

controlled indirectly.

1.3 Gust load alleviation problem

Problems caused by gusts acting on aircraft started to be studied in the early fifties and research
programs were elaborated to overcome those problems. In 1949 a program, concerning the aircraft
Bristol Barbazon, was proposed to develop a system that would a]leviate loads due to turbulence and
flight maneuvers. The objective of this program was to reduce wing deflection due to turbulence, and
execute the required flight maneuvers. This program resulted in a prototype but was never flight-
tested, as opposed to other programs developed between 1955 and 1960 in England for the Avro
Lancaster aircraft. All of these early systems had difficulty reacting fast enough to counteract the
turbulence effects on the aircraft. These deficiencies have been noted by Attwood, Canon, Johnson
and Andrew [Att61], who applied for a patent, which was awarded in 1961. This work proposed to
measure the normal and angular acceleration of the aircraft and use its auxiliary control surfaces to
produce the necessary forces and moments to minimize the undesirable accelerations caused by wind
gusts.

In 1964, damages to a military B52 aircraft caused by severe turbulence, of 35m/s maximal velocity,
accelerated the development of a research program including extensive flight testing called Load
Alleviation and Mode Suppression (LAMS) in 1965. Results of this program were presented in
[Bur68] and continued until 1973. Other programs focused on gust alleviation objectives have been

described m [Sto73].

11



Startiné from the early seventies, the use of control surfaces became widespread for the gust
alleviation problem. The incorporation of classical control design techniques for this problem was
obvious. Research works as in [Mcl78], [Krag79], [Abel82], [Van86], [Mats88], treated some aspects
of gust alleviation problem using classical control techniques. In [Osb94] [Muk92], [Ban92] modern
robust control methods started to be applied to aerospace problems, especially for rigid aircraft, where
unmodelled perturbation effects have been studied. One objective of this thesis is to adapt modern

robust control techniques to flexible aircraft subjected to wind gusts.

1.3.1 Turbulence modeling

Atmospheric perturbations may have a considerable effect on the performance of an aircraft. They
may cause premature airframe fatigue and reduce passenger comfort. As mentioned above, one of the
objectives of active control surfaces is the suppression of undesirable effects of turbulence on the
movement of the aircraft.

Turbulence can be defined as a series of discrete gusts acting on the aircraft at different times. Two

functions modeling gusts are generally used in the literature: the first one consists in
w, ()= ;—[1 - cos(z%)t] where: T'=L/U, is the period of the gust, U,is the velocity of the aircraft

at the equilibrium point and L is the wavelength. The second function modeling the gust is the delta
gust and mathematically is given as:
A;t— for0<r<f

1

# (0= —A-;—+2A fort, <t<t,
1
|0 elsewhere

where 4 is the maximum of gust magnitude.

A turbulence acting on the aircraft is a random phenomenon, which can be defined by its root mean
square value (rms) and its gaussian amplitude distribution. As shown in the literature [Hob88], this

phenomenon can be generated by a superposition of infinite sinusoidal components as:
(0= Jp(@)Aw. cos(wt +y,) (1.30)
i=1

where: |/¢(@,)Aw ,y,represent the magnitude and the phase, respectively; w,, #(w,)are the frequency

and the total average power of sinusoid of frequency ,, respectively.

12



y(f) for ~T <t<T

and assuming the existence of the Fourier transform of y, (f) as:
0 elsewhere

Defining y,(f)= {
Flo)= f v, (De”’™dt , the power spectral density (PSD) of the function y(¢) is given as:

T 1 2 . 1 4 1 Foo oo . Jor - joe
#(0) = lim —|F(@)[ = }ﬂi—ﬁF(w)F(—w)-hm—é;—y—;I_m [ nr@yr (o)’ dede (131)

T—= 27T
T
assuming & =7+ 7 then
1 po . 1 po ior _1 w iwr
¢(60)=; Lo[hmgfj%yT(t)yT(tH)dt]e e =~ | R@e7dz (132)

T—>w

where: @(@), R(v) are the real, even, positive PSD function and the autocorrelation function defined

T .
as: R(r) = }1.1330 -21?- f y(O)y(t+7)dt = y(f).y(t +7), respectively.
-T

The autocorrelation function R(7)is connected to the PSD function, through the Fourier transform, as

follows:
R(r):Tqﬁ(a))cos(a)r)da) A (1.33)

This implies that o (the rms), which represents the intensity of the turbulence, is calculated as:

R(O) = y*(t)= o> = j:¢(a))da) = :1”:¢(a))da) .

Analytic, continuous forms of the PSD of the turbulence acting on the aircraft are available in the
literature [MclI90]. The most known forms are the Von Karman model [Von37] and Dryden model.
These are given in Table1.1:

Table 1.1: Gust models

Von o [1+84(1,33020)" | 4 (0) = 20,’L, .
. = =WV u

Karman n[l +(1,339L,Q) ]% ” [l +(1,33 9Lu9)2] i

models

Dryden 27 [1+3(LO)> 20,°L
p(@)= 2L ) —ah

models ”[1+(Lig)2] 7‘{14‘(1:1:(2) }
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where Q=w/U,, which implies that ¢(w)=g(U,Q).The indices 7=w,vis for the vertical and

transversal gusts, respectively. Subscript # is for the longitudinal gusts.

1.3.2 Gust loads on aircraft

On Figure 1.2, we represent the most influent forces acting on an aircraft along its flight.

Lift L,

Propulsion P

Weight W,
Figure 1.2 Aircraft subject to forces

where: 0 is the pitch angle and o is the angle of attack.

Mainly, L,, called the lift force, is the vertical component of the aerodynamic force that opposes the
weight force W to allow the aircraft to fly. The “drag” force, 7, has an opposite direction to the
velocity of the aircraft and opposes the propulsion force P. Note that for horizontal flight L, =% and
P=T.

Assuming that the trim velocity of a flying aircraft is U, then wind gusts acting on the aircraft results
in a change in the angle of attack « by Aa . In Figure 1.3 we show how a vertical gust affects the angle

- of attack of the aircraft.

| Velocity of
Vertical gust o y O
velocity srerat

0 Relative velocity 1/,

Figure 1.3: Turbulence effect on aircraft velocity
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This change in the angle of attack and thus the velocity of the aircraft has a direct effect on the lift
force L. This effect has been studied in [Hob88], where it is quantified as:

AL, = —’-;UOZSCL“Aa (1.34)

where:
p: air density,
S: wing surface,

C,, :tangent of L, on a axis,

gust
wg: velocity of the vertical gust,

Aa=wy/Up.

In practice, the effect of the gust on the aircraft is measured by a factor of gut load given as:

{i; ngOSCLa —l

AL J (1.35)

= £ =

w w

At this stage, we have a specific description of the turbulence, its statistical characteristics and how it
affects the aircraft. In the next chapter, we will present a real application of turbulence modeling,

starting from a white noise perturbation, in a system ready for use in a feedback control design.
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Chapter2

Robust control techniques with application to gust load alleviation
of flexible aircraft

2.1 Intreduction

The aim of this chapter is to introduce the reader to some optimal and robust design techniques that will be
used along this thesis. These days, a modern multivariable feedback control strategy is needed, especially
for aerc;space applications where the complexity of the models and performance objectives need efficient
control algorithms meeting realistic constraints. General control objective concerns a minimization of the
effect of exogenous input signals (w) on some error signals (e). These signals (w)can include reference
signals to be tracked and/or disturbances signals. The formulation of optimal control problems, in state-
space representation, initially developed in [Doy89] spurred the adaptation of this optimal control theory to
complex industrial problems [Skog96], and applications to aerospace vehicles [Vid95], [Nie96]. In fact,
theories such as H,,H,_ and u control received a great deal of interest since the 90's, compared to the
classical optimal LQR and LQG/LTR [Kal60], [Gup80] actively used in the 80s. The optimization
framework of these theories, based in general on a common setup, provides solutions in state space using

efficient solutions to Riccati equations as well as linear matrix inequalities.

2.2 Problem setup

Consider the general block diagram of a unity feedback control system shown below.

4“';&‘1

W,
d
YP++0 W y
G a y TP
Yy
Vu + n
Of— 7, —

Figure 2.1: Typical feedback control system
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The weighting functions W, are added for different reasons (although they are rarely all present in a given

design):

-To enforce closed-loop performance speciﬁcations (weighting functions on output signals and error
signals).

-To represent the frequency contents of disturbances and noises

- To limit actuator responses to reasonable control effort.

The choice of the weighting functions W, W, , W, , WV, is not trivial. It varies from an application to the next,

and from objective to objective. The weighting functions essentially have to take into account the closed-

loop performance objectives with realistic constraints imposed on the system.

For simplicity, we assume that c;’,. =0, 7= 0, and we consider the regulator problem where the effect of the

output disturbance d~0 on the weighted output ¥ must be minimized. This system can be recast as a linear

fractional transformation (LFT) as shown below in figures 2.2 and 2.3.

A§1

w, &
4 W. 4“ da z w
VVc o ‘ ‘_.‘_.._
‘] l P(s)
+ u I
043+ c ¢
— - —e
P b K(5) “
P K
Figure 2.2: plant augmentation Figure 2.3: equivalent setup
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where P(s):= [Rl (s) Plz ()
L2 (s) Py(s)

obtained from the paths relating each input signal to each output signal. Here we have:

], and the transfer matrix entries of this generalized plant are readily

-

The closed-loop transfer function from wto z,7,

2w

is represented as an LFT given below:
T,,(5) = F, [P(s). K(5)] = P, () + By()K()[I = By()K(S)] " P(s) 22)

Depending on the application, the exogenous input w , in Figure2.3, can include references for tracking, and

then the generalized plant P of the problem setup can be constructed in an analog manner.

2.3 Weighted /, optimal control
2.3.1 Motivations on weighted /1, design

The performance criterion used in this control design theory is defined over the space RH,, which consists

in the real-rational, strictly proper transfer matrix functions that have all their poles in C™, the open left-haif

of the complex plane. The inner product in this space is:
(F,G), = _LT Tr {F* (jo)G(jo)} do 2.3)
C " 2 y

for two elements F'and G € RH, , and where Tr {} denotes the trace of the matrix .

The objective of the H, control design, given an augmented plant P as in Figure 2.3, is to find a state-space

controller K, which internally stabilizes P and minimizes ”F L[P(s). K (s)]“2 defined in (2.4).
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Let us , before going into the synthesis procedure, give basic information on the A, norm. If P € RH, with

a state space realization:

A|B
P= { C O} where 4 is Hurwitz. Then the A, norm of P is defined as:

7l =

—;—T r{P"(jo)P(jw)}dew = J' P dt = J'Tr { B oA CeA’B}dt=Tr(B"YOB)

(2.4)

where Y, denotes the observability grammian. Similary, we show that ||P“§ =Tr(CX,C") where X, is the

controllability grammian of the state-space realization.

The requirement to minimize the H,norm of the map from wto zin the synthesis of the stabilizing

controller K has a significant meaning on performance objectives. In fact, If we consider w as a stationary

random process, the signal variance is given by:
Var [w@)|" =Tr {R,(0)} = —23— [rr{s,(@)}do (2.5)
7 -0

where R and S, represent respectively, the autocorrelation matrix an its Fourier transform, for the signal

w.If z=Pw then S, (@) = P(jw)S,(jo)P(jw)" and then
Var|z(t)| = -2-17; [rr{P(j@)S, (jo)P" (jor)} do = [1r{P*o)P(j@)S,(j)do  (26)

If the signal wis just a unit intensity white noise, then S, (jw) =1, which results in Var |z(t)|2 = UPHi .

Thus the /7, norm can be interpreted as the output variance for a white noise input.

In the case where the spectrum of the input signal is known, another interpretation of the H,norm can be
given. Let us consider the case where w(¢)is scalar-valued, given as a delta Dirac function w(?) =6(¢),

then:
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2 i % 1 T P . +2 N ) 9
Il = |- <r)z(r)dt=57—[—_£ z (jw)z(jw)dm—zl;l P (jo)P(jo)do=|P. @7

This means that when the system input is scalar-valued, the H,norm of P gives us a direct measure of the

system oufput energy.

Now that we have shown the importance of performance measure delivered by the H,norm of a mapping
of input, output signals of a closed loop system, we give, in the following, the steps needed for an

H, control synthesis:

2.3.2 Background on algebraic Riccati equations

Let 4,Q, R bereal nxn matrices with O, R symmetric. Then an algebraic Riccati equation (ARE) is the

following matrix equation:
AX+XA+XRX +0=0 (2.8)

Associated with this ARE is the 2nx 2n Hamiltonian matrix:

A4 R
H = LQ _A*} 2.9)

This matrix will be used to solve the ARE for the matrix X . A direct relation between this Hamiltonian
matrix and the ARE is the following reformulation of the ARE as:

[X —J]HUJ:[X ~1][_4Q _ﬁ*}u}:o. 2.10)

The Ric function is now defined. Assume that Hamiltonian matrix H has no eigenvalue on the imaginary
axis. Then, H has n eigenvalues in the open right half-plane and » eigenvalues in the open left half-plane.

Consider the # -dimensional invariant spectral subspace X_(H) corresponding to the » eigenvalues of H

in the open left half-plane. By finding a basis for X_(H), we get:
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2

: ¥ ‘

X__(H)"—'RQ{[XI}}, XIBXZ EC"X” (211)
If X, is nonsingular, then we can define X := X, X;" and the Hamiltonian matrix H uniquely defines X .
Thus the function H +> X is called Ric and defined explicitly on:

Ric: dom{Ric} ¢ R***" — R™" (2.12)
where dom{Ric} is taken to be Hamiltonian matrices that have no eigenvalues on the imaginary axis, and

have a nonsingular X .

The following resuit states that X := X, X, is a solution to the algebraic Riccati equation:

Theorem 2.1 [Kuc72}

Suppose that H € dom{Ric}, and X=Ric(H). Then:

(i) X is real symmetric,

(ii) X satisfies the ARE,

(iii) 4 + RX is stable (all of its eigenvalues are in the open LHP).

2.3.3 H, synthesis

Suppose that a state-space realization of P(s) is given by

(2.13)

Notice the special off-diagonal structure of D: D,, is assumed to be 0 so that B, (s) is strictly proper, and
D, is assumed to be 0 so that B (s) is also strictly proper (which is a necessary condition for F,(s) to be
in H,.). This off-diagonal structure allows us to give details on the synthesis procedure with the maximum
of simplifications. Details on how to construct a H, controller with the general structure (D, and D,, #0)

are given in [Gre95]. Further assume that D,, bas full column rank and D, has full row rank.
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First define R, = D, D), and R, = D, D}, , and the two Hamiltonian matrices:

A-B,R"'D,C, -B,R'B,
H, = . (2.14)
2 * -1 % 1 aE
-G (I“D12R1 D12)C1 "(A'“Ble DIZCI)
A-BDLR'C,Y ~CIR;'C
J2 - ( 142144 2) 282 M2 (2.15)

~B, ([_D;Rz_lsz)B: “(A“BxD;1R;]C2)

Note that H,, J, € dom(Ric) and X, =Ric(H,) =0, ¥, :=Ric(J,)=0.

Theorem 2.2 [Doy89]:

If the following assumptions hold:

1.The pair (4, B,) is stabilizable and the pair (4,C,) is detectable ( This assumption is necessary and
sufficient for P to be internally stabilizable).

2.R =D,D, >0 and R, =D, D, >0

"A—jwl B,

1o * | has full column rank for all @
Cl Dll_
[A-jwl B |

. has full row rank for all @
L Cz D21 i

Then, the unique H, -optimal output controller minimizing HFL [P(s), K (s)]||2 is given by

K _(5)= h 2 (2.16)
S .
opt Fz 0
where :
L2 = —(YZC; + BlD;)Rz—] 5 (217)
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F,=-R'(B; X, +Dj,C,), (2.18)

A, = A+B,F,+L,C,. 2.19)
Remark: Assumptions 3 and 4 ensure that f,, J, € dom(Ric)
2.3.4 H, State feedback via LMIs

In the following, we treat the special case of state feedback controller design with an efficient solution
method, which consists in the solution of a system of linear matrix inequalities. The availability of the states
as outputs of the aircraft model will certainly simplify the design and permit the use of efficient tools of
controller synthesis. This is not in general the case in reality, but it may be possible for certain models, as the

ones we have in our applications.

The following proposition introduces a relation between the 1, norm and the feasibility of special linear

matrix inequalities.

Propeosition 2.1

Suppose P is a system with state-space realization (4, B,C,0). Then

"P"2 <1 and A4 is Hurwitz, iff

3 symmetric matrix X >0 such that 7r {CXC"} <1and AX + X4+ BB’ <0.

The augmented plant P in the case of state feedback synthesis has the following state space representation:

(2.20)

and the controller in this case is just a static feedback gain K(s)=K .
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Theorem 2.3

K (s) = K that internally stabilizes P and satisfies “F, [P(S), K (S)]”2 <1 if and only if

there exist a matrix ¥ suchthat : K = ¥X™' where X > 0is symmetric and satisfies :

[4 Bz][ﬂ{x Y*][;:}Blako and Tr{C,XC/}+2Tr{ D,YC/ |+ Tr{D,YX 'Y D}, } <1

2

The above trace condition cannot be directly analyzed by means of LMI tools because of the nonlinear term
existing in the third trace. Therefore, we have to introduce a new variable, which permit us to write this trace

condition in the form of an LMI.
Using the following Schur complement operation result we can transform the above constraint into an LMI.

Proposition 2.3 (Schur-Complement result) [Horn85]

Suppose R is a complex matrix, and M and Q are symmetric complex matrices then:

‘ L M R o
QO <0and M —-RQO'R" <0 are true is equivalent that [R* Q} < 0 is satisfied.

Assuming the monotonicity of the trace under matrix inequalities:
Tr{Duyx“Y*D;}:igf Tr{Z} (2.21)

where D, YX 'Y’ D, < Z.
Using the result of proposition 2.3, the above inequality can be written into the following LMI:

[ Z Dy

LY*D* ' ]>0 which simplify the trace condition in the given theorem into the following LMI
12

condition, easy to analyze:

TrC,XC, +2TrD,YC, +TrZ <1 (2.22)

24



2.4 H_Optimal control

Refering to Figure 2.3, the standard H_ optimal control problem is to find all stabilizing controllers

K which minimize:
|7, [P(s). K(9)]|, =sup&| F, (P.K)(jo)] (2.23)

where &(.)denotes the maximum singular value of the matrix.

We note that using the F_norm as a performance criterion introduces a more severe constraint compared to
the H,norm. In fact, the H,norm specification expresses an average behavior of the linear closed-loop
system. The optimization based on H, criterion corresponds to an optimization of the average behavior of a

system’s response to a white noise, i.e., it minimizes the total average energy of the frequency response. In

contrast, the H_ criterion corresponds to the maximum gain of energy, and also to the worst case of an
input signal producing an output signal of maximum amplitude. Minimization of the H_ norm ensures that

for all possible sinusoidal input signals, the amplitude of the output signals will be less than or equal to the
H_ norm times the amplitude of the input signal.

The H_ optimization consists then in minimizing the peak of the maximum singular value of the closed

loop system F, [P(s), K (s)]’ . It can be also interpreted in the time domain as the induced 2-norm: If

5=

z=F,[P(s),K(s)]w then “FL [P(s),K(s)]ll = max !lllzlhz where ||z], = JTZ,*Z[ (l)!2 dt is the 2-norm of
0 w(t)=0 ||lw !
2

-0

the vector signal.
The H_ minimization problem can be written as:

1}{28”5 [P(s), K(9)]|. (2.24)

where : S represents the set of all stabilizing controller X and F, [P(S), K (s)] is the closed-loop transfer

matrix from the exogenous input w to the output z. The optimization of (2.24) is very difficult

theoretically and numerically. Thus, for practical design, a solution to the suboptimal H_ problem stated as:
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Let y., be the minimum value of ”E’, [P(s),K (s)]’Lo over all stabilizing controllers. Then, given

7 >¥.. >0, find all stabilizing controllers such thatuFL [P(s),K (s)]“w <y.

2.5 LMI approach to /{_ control

The LMI solution for the H_ control problem avoids the restrictive assumptions that are usually needed in
the classical solution initially presented in [Doy89]. The LMI approach is actually an efficient way to solve
the sub-optimal /_ controller synthesis. In addition to the numerical efficiency of the LMI solvers, this

approach of solving the H_ control problem gets rid of constraining assumptions that must be satisfied in

the state space solution of [Doy89]. In the following we introduce a useful lemma for the solution of the

H_, sub-optimal problem presented below:
Lemma 2.1 (Bounded real lemma revisited) [Gah93,Gah%94a,Wan98]

If we consider the transfer function P(s) = D+C(sI — A)™' B then the following statements are equivalent:
- P(s)e RH ,and |P(s)||, <1.

AX+Xx4 XxB C'
- Thereexists X = X" >0 suchthat| B'X -1 D'|<0.
C D =]

D. D C -
Now if we consider a minimal realization of the plant P(s)={D1‘i (;2}{5](”?1 - A) ][Bl B,]
21 2

where 4 € R™", D, € R?™ D, e RP>"

and we assume that:
- The pair (A4, B,) is stabilizable and the pair (4,C,) is detectable

Given a proper controller K , the closed loop realization with this controller has the following state space

C, D

¢l ol

. Acl B cl
representation: F (P, K) = where :
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B, + B,Dy Dy,

| _—[A—i-BZDKCZ BZCK} _[
cf ° el ‘BKI)21

B,C, Ay
Dcl =D, + szDKDzl

:I;Ccl = [Cl + D, DiC, Dlch];

By using the Bounded real lemma presented above, we can statute on the stability and the H_norm

constraint of the closed-loop system |F, (P, K)||, <7 . For this H,, norm constraint, the marix inequality

AL'ITXCI +X01Acl XcchI CCIT
B, X, —yI D) |<0 (2.25)

i ol
Cy D, el

for some symmetric matrix X, > 0 of dimension (n+k)x (n+ k) will be used. However, this inequality is

not an LMI since the unknown variables are X ,, 4,,B,,C,and D, .

The following theorem provides a system of LMI’s, whose solvability represents a sufficient and necessary

condition for the existence of a stabilizing controller that verifies the H_ norm constraint.

Theorem 2.5 [Gah93a]

Assuming that

S Nl ., [R M |
»Xc, :=[NT *} X ::[MT *] (2.26)

with R,S € R™"and M, N € R™* . Consider the minimal realization of P(s)given in (2.12), assume that

the pair (4, B,) is stabilizable and the pair (4,C,) is detectable, and let N ,, and N ,, denote orthonormal

bases of the null spaces of (321 D ) and (C,, D,, ) respectively.

Then the suboptimal H_ problem of performance y is solvable if and only if there exists two symmetric

matrices R,S e R"™" satisfying the following system of LMIs:
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Ny, O 7 s || Ny O
B'S —vI D <0 228
[ 0 ]j] 1 4 11 0 1 ( )

B 2.29
I s|? (2.29)

Moreover, there exist y-suboptimal controllers of order k < niff the constraints (2.27-2.29) hold for some
R, S that verify:

Rank(I -RS)<k (2.30)

The optimization problem given by the LMI system (2.27-2.29) is convex and its feasibility results in pairs
(R, S) that solve the y-suboptimal ,_ problem. Many efficient algorithms were developed, in [Gah94b],
to solve the LMI feasibility problem . For a reduced order controller the matrix inequality (2.27) imposes a
~ constraint that verifies the possibility of H,, stabilisable reduced controller [Gah93]. ’

Let us define the convex set of feasible pairs (R,S) as 9, . Any feasible pair (R, S) determines a set of y -
suboptimal controllers. Consider & := Rank(] - RS)and compute the two full-column-rank matrices
M,N e R™* using the singular value decomposition (SVD) such that: MN” =] —RS. These matrices

uniquely define the matrix X, using (2.26). X, is the unique solution of the linear equation:

o B R 231
“IM” ool |o NT @31)

Once an X, > 0is calculated,[Gah93], the matrix inequality in (2.25) becomes an LMI with respect to
controller parameters Ay , By ,Cyand D, . Thus , we can associate to X ,a convex set of y-suboptimal

controllers K (R,S,7). This set is, in fact, the set of controllers K(s)= D, +C,(s] — 4, )" B, such that
(2.25) holds for some X, compatible with (2.26 ).
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The controllers K (R,S,y)can be calculated by solving efficiently the LMI (2.27-2.29). For that,
algorithms are available in the literature [Gah94b]. When no additional constraints on A, , B, .C,and
D, are made, analytical solution can be found and explicit formulas can be used to construct the y-

suboptimal H_ controller [Gah93].

2.6 Uncertainty modeling

Any mathematical representation of a physical system needs approximations, which lead to model
uncertainties. Different forms exist to represent these uncertainties according to what information we want
to include. These representations reflect at the same time the knowledge of the physical phenomena that
cause these uncertainties and our capacity to represent them in an easy to manipulate form. For an aircraft,
whose parameters vary with the flight conditions, a linear mathematical model can be obtained by
linearizing the equations of the aircraft at different points of flight. This will lead to an interval of variation
for each parameter of the model obtained. These intervals of variations can represent structurally and
accurately the uncertainties in the model but are not easy to manipulate. On the other hand, we can use a
global form representation of the uncertainties as dynamical perturbation of the nominal model of the

aircraft.

2.6.1 Unstructured uncertainties

2.6.1.1 Additive uncertainty model

Suppose that the unknown pertutbed transfer matrix G ,(s) of a system (aircraft) differs from a nominal

transfer matrix model G(s) that we have of it. The difference between these two models comes from an
unknown dynamical perturbation A(s) representing the unmodeled dynamics of the aircraft. Suppose that
this perturbation is additive, call it A_(s), and that we know a function &, (@) >0 that bounds its norm

(maximum singular value) for each frequency:

G, (5) = G(s)+ A, (s) (2.32)

with A, G| < 6,(0), Ve (2.33)
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Note that the upper bound &,(w) represents the "size" of the uncertainty of the model at each frequency. It

is often taken to be the magnitude of a scalar transfer function. This form of representation is called additive
uncertainty because the perturbation's transfer matrix is added to the nominal model. This type of
uncertainty is also called unstructured because the only information we use is just the upper bound of the

norm of the uncertainty, and not its structure.

The figure below shows a closed loop system with such an additive uncertainty model. Again, it is

important to emphasize that we do not know what A,(s) is, we only know that it is bounded by

A, G| <8, (@), Var.
We can define a family of perturbed plant models as the set

P={G,(s):]A, (jo)| < 5, (@)} (2.34)

Then, robust control theory assumes that the unknown, "true" plant model belongs to 7. Thus, robust
control design consists of designing a controller that can maintain a desired performance level for all plants

in P (robust performance) or just stabilize all plants in P (robust stability).

Returning to the aircraft example, we might choose the nominal model G(s) as the transfer matrix

corresponding to an average flight condition. We can obtain 6,(w) by calculating a large, but finite number

of perturbed transfer matrices {G » (s)} L corresponding to various possible flight conditions (altitudes and

Mach numbers). It is then reasonable to expect that the corresponding additive perturbation A ,(s) would be
bounded by:

max |G, (jw) - G(jo)| (2.35)
at each frequency. We would then try to find an uncertainty bound J,(w) such that

max |G, (jo) ~ G(jo)| < 5,(w) (2.36)
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Figure 1.4: Additive uncertainty

Another way to represent the uncertainty in the system under study is the direct multiplicative uncertainty

that can be related to additive uncertainty. This uncertainty has two forms of representation:
2.6.1.2 Output multiplicative uncertainty

The first representation is for direct multiplicative uncertainty taken at the output of the system:

G,(j@) =, + A, (jo)G(jw) @37

with 1A, o) < 8, (@) Ve (2.38)

+V+

u Y Y

}}‘!;—LT%E . r yg—’

Figure 2.5: Output multiplicative uncertainty

2.6.1.3 Input multiplicative uncertainty

The second perturbed model is such that the direct multiplicative uncertainty appears at the input of the

system:

G,(jo)=G(jo)I, + A, (jo)) (2.39)
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with 1A, G| < 6,(w) V. (2.40)

’——PAM
Yi + l
»Tea{x Ty G >

Figure 2.6: Input multiplicative uncertainty

Other models of representing dynamic uncertainties exist but are not widely used in industrial applications. We
mention the input inverse multiplicative uncertainty and the output inverse multiplicative uncertainty, which can
be useful to represent uncertainties that appear in the denominators (e.g., poles) of sensor and actuator transfer
functions respectively.

Such unstructured models of uncertainty can be conservative and even lose information about the
uncertainty in the physical system, but these kinds of models are general and can represent different

uncertainties of various nature.

2.6.1.4 LFT uncertainty representation

Most of the uncertainty models described above can be cast into an LFT uncertainty representation. The
perturbed model is a linear fractional transformation (LFT) of the nominal system model on the

perturbation:

G, (s) = Fy [P(5), A ()] = By () + Bu(O)[ I = A, ()P, ()] A (B, (s)

1 (2.41)
= By () + Ba (A, ()T = By (A, ()] Po(s)

with A, (jw)|< 8 (@), Yo.

The figure below shows a feedback controlled upper LET with the perturbation.
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Figure 2.7: LFT uncertainty representation
Example 2.1
Output multiplicative uncertainty expressed in LFT form

Output multiplicative uncertainty can be written as

G,(s)=[1, +A4,(s)]G(s)
= G(s)+ A, (5)G(s)
= Py () + By ([ = A, (DB A, (B, (5)

and by identification with the entries of P(s), we get
Po(s)=G(s), Py(s)=1, R()=0, B,(s)=G(s)

In the following we consider different types on uncertainties and see what models can represent these
uncertainties:

a- Parametric uncertainty: The variation in the parameters of the model can be represented by the
additive, the direct multiplicative model and the also the reverse model if the system is square by
comparing G(jw)™ and G,(jw)” .

b- Actuators uncertainties: This comes essentially from the fact that the dynamics of actuators may
not be well known or may even be neglected. These uncertainties can be take into account by using the
two forms of the direct and reverse multiplicative uncertainty at the input.

c- Sensors uncertainties: The sensors are often fragile devices, so they can be partially damaged and
deliver erroneous measures. These kinds of uncertainties can be represented by the direct and the

reverse multiplicative uncertainties at the output.



d- Nonlinearity and reduction of the model: The nonlinearities can be taken into account if their effect can
be bounded in the frequency domain. Reduction of the model is often used to simplify the control design.
When we are using this technique we can take into account the neglected dynamics as uncertainty and can

be represented by any type of model uncertainty.

2.6.2 Robust stability theorem
We now discuss the robust stability problem, using the small-gain theorem. Consider in the LFT in Figure
2.8. The matrix A(s) represents the uncertainty in the model and M(s) the nominal matrix transfer

function of the closed-loop system. All of the models with different types of uncertainties can be recast in
the M — A format. The intermediate step to achieve this is to transform the block diagram into an LFT first

as sown below: Then M (s) = F, [ P(s), K(s)] .

——|  A(s)
A(s) (€
" N——
Ps) z v
e M(s)
——| K (5)

Figure 2.8: Equivalent LFT and M — A interconnection:

Theorem 2.6 (Small-Gain Theorem) [Zam66]

Under the assumption that M(s) and A(s) are stable and real-rational, i.e., M(s) e RH,, A(s) € RH,,, the

M — A interconnection shown above is stable for every perturbation A(s) such that ”A"w <1 iff HM Hw <1

This theorem gives a necessary and sufficient condition for robust stability under the assumptions that the

nominal closed-loop system M (s) is stable, and that the uncertainty A(s) is also stable and normalized to
have an H_-norm less than 1. The assumption that A(s) be stable is not too restrictive since such

perturbations can generate unstable perturbed plant models with appropriate uncertainty models, such as

inverse multiplicative or feedback uncertainty models.
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Using this theorem to the different uncertain systems presented above will result in conditions of robust
stability depending on the uncertainty model chosen. We will show explicitly the application of the above
theorem for an LFT type uncertainty and we will give a robust stability condition specific to that uncertainty

model.
Theorem 2.7 (Robust stability with linear fractional uncertainty)
Under assumptions that:
- Nominal open loop and perturbed open-loop have the same number of unstable poles.

- Any unstable pole of the perturbed open-loop system is also an unstable pole of the nominal open-loop

System.
- The nominal closed-loop system is stable.

then closed-loop system of Figure 2.8 is stable if:

VoeR, |A (jo)||F [PUe) K(jo)]| <1, (2.42)

or, equivalently, |7 [PG@). K(ja)]| < 8, (@) (2.43)
Furthermore, under assumption that M (s) and A(s) are stable, the closed-loop system of Figure2.8 is stable
if and only if:

VoeR ,|F [P(jo).K(jo)]|< 5 (o) (2.44)

The block diagram of a feedback controlled upper LFT with the perturbation (Figure 2.8) is the most general
representation as all other robust stability conditions (for other types of uncertainty) can be obtained from
the LFT one. Typically, the generalized plant P(s) would embed all of the weighting functions used to

specify performance and also weighting functions that shape the uncertainty.
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The first condition given in the above theorem is just sufficient conditions for robust stability. But the
second condition given based on the small-gain theorem is necessary and sufficient, and proves to be the

most useful to control engineers.

The uncertainty bound 8(w) is usually specified by a scalar stable rational weigthing function W (s) as
follows. Let the perturbation be defined as A(s) == W (5)A(s) where A(s) is a normalized perturbation in

RH_ such that “Z&(s)”w <1.Then

laGo)| <P (jw)|=6(w), YoeR
<>
|77 Ge)a(jo)| = |AG®)| <1, YoeR
=
i, <1

Thus, the upper bound “Z&(s)“ <1 on the H_-norm of the normalized perturbation can be used in the

theorems, along with the weighting functions.

2.6.3 Structured uncertainty

If the system studied is subjected to multiple sources of uncertainties or take into account the robust

performance objective, a representation of a multiple uncertainty structure is needed. The uncertainties

A (s)e C"* and 6,€ R i=1,...,npresent in the first control setup, when this setup is transformed to an

LFT representation for a control design procedure, have to be pulled out into one structured uncertainty

block as shown in Figure 2.9 below.
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P(s) |€—

L—» K(s)

Figure 2.9: structured uncertainty setup

The best example to introduce the structured uncertainties is the use of parametric uncertainties to describe

this aspect of multiple uncertainty blocks.

2.6.3.1 Parametric uncertainties

A(p) | B(p)

Let us define the transfer matrix P(s, p) = {C( ) | D(p)

} where pis a vector of parameters. From this

A B

c D] augmented by exogenous input w, outputs

transfer matrix, we extract a constant matrix P(s) = {

Z connected to the parameter dependent uncertainty block A(p), as shown below:

[}

-

S\

Figure 2.10: Parametric uncertainty setup

A general method is proposed, in [Bal95] to lead to the structure representation given in Figure 2.10.
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A B B A, B, B
Consider [ 2 (p)} ={A0 ‘ } +p, [ ! "} i=1,...,r where {AO O} is the nominal system
C(p) D(p) G D, G Dy 0 0 :

. B. :
and {?' . } represent the amount of uncertainty in the nominal system parameters. For simplicity, we

ti i
suppose variations of system parameters at the same time (we mean if one parameter vary along an interval,
it has one corresponding combination variation of the other uncertain parameters along their respective

» o ] Ali 'Bli Al BJ .
intervals of variation), thus = and i =1.
Cll ‘DII Cl Dt

Two ways of constructing the uncertainty structure given in Figure 2.10 are discussed:

a-Classical method

1 BI

Depending on the number, 7, of non-zero elements of [ }, we can extract, one by one, 7

[ 12

augmented input/output link w,/Z, .

Example2.2

Let us define a perturbed system in its state-space representation:

X=ax+u=(a,+pa)x+u=a,x+ pax+u

Yoz (2.45)

If we propose a new variable to control z = g,x and an exogenous input W= pa,x then w= pZz . This will

allow us to write, as follows, an augmented system based on the nominal system of .

I=aX+u+w
Z=ax (2.46)
y=x

t Bt

This procedure can be applied to all non-zero elements of [ } However this approach is not

1 ¢

automatic and can be conservative. In the following a systematic approach is presented.

38



b-SVD approach

D

1

4 B
In this approach we generate a number 77, of repeated uncertainties such that 7, = rank[{c' ’D <7.

i

., B

A i
Cl Dl ‘

This can be achieved by means of an singular value decomposition of [

[é 2}[][2, o}VTz[ng' 0][% vl=um,

Bf
D

1

Al
where 7 = rank(
C

!

:1) and I/Vl-‘:ZrV;.

Thus the original system can be written as:

{A(p) B('D)} ——-[AO BO}+p|iA' B’] which is written as:[A(p) B('D)} =
Clp) Dp)| [C Dy ¢ D] C(p) D(p)

[Ao Bo} [Uu],.
+ w
G D, Uy, |

U
with w=pE, Z=[W, W,], U, ={ ”:I and W, =[W,; W,,|then the augmented system is given as:

2

4, B, U
Bsy=\c, D, U, (2.47)
i oo

2.6.3.2 Structured singular value

The structured singular value is a generalization of the maximum singular value of constant complex

matrices. Consider the feedback interconnection presented in Figure 2.8. The closed-loop poles are given by

det[/ - M(s)A(s)]=0, and the feedback system becomes unstable if det[7 - M(s)A(s)]=0 for

somes e C, (closed RHP) . Using the small gain theorem the robust stability margin g, is defined as:
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=[], =sup &(M (5)) = sup & (M (j))
ﬁmax seCe (2.48)

such that A < B, and A(s) is unstructured.

For any fixed complex number s, € C. , the maximum singular value, [Doy82], E(M (s)) can be written

as:

1
min{&(A):det(7— M (s,)A)=0,Ae C"?}

M (s, )| = (M (s,)) = (2.49)
Therefore, the reciprocal of the largest singular value of M (s,) is a measure of the smallest unstructured

A e CP7 that can cause instability of the feedback system.

For the smallest destabilizing structured complex A, the concept of maximum singular value needs to be

generalized. We define,[Doy85],

1
pa (M (s,)) = min{é"(Ax) rdet(/-M(s,)A,)=0,A, is structured} (2.50)
0, det(7—-M(s,)A,)#0 VA,

as the largest structured singular value of M (SO) with respect to the structured complex perturbation A, .

Then, the robust stability margin S, of the feedback system with structured complex uncertainty A, is

given by: =sup 4, (M(s)) = Sup 41, (M(]a))) 2.51)

ﬂmax s€Cy

In the following, we consider the general case of a S -scalar-block, F -full-block structured perturbation,

“where the scalar blocks may be repeated. Let M e C™*, and By m,,...,m, be positive integers

9q9

N F
satisfying Z 7+ Z m; = n (this is just for bookkeeping of the dimensions of the uncertainty blocks).

i=] Jj=l

40



We define the block structure I’ < C™ a5

l’ b] qrq)

Ci={A, =diag{8],,.-,8,0, A2 |16, €C,A € cl 2.52)

Definition2.1 structured singular value

For a complex matrix M e C™", the function £ : C™" — R is defined as

‘A, eT, det(J - MA,) = 0}]“l 2.53)

He (M) = {min {]

AS

unlessno A, e ' makes det(/ - MA,) singular, in which case 2 (M) =0.
Define the " unit open ball" of complex structured perturbations:

Bl :={AeT:|A|<1} (2.54)
Then, an alternative expression for g (M ) follows from the definition:

s (M) =max p(MA,) (2.55)

A eBl

Where p(.)is the spectral radius.

Since the spectral radius is a continuous function, the structured singular value y. :C™ — R, isalso a

continuous function. However, x () is not a norm, since it does not satisfy the triangle inequality.

In the special cases of only a single scalar block, and only a single full block, s (M ) reduces to the

following.

fr={6/:6eC} (S=1,F=0,5; =n), then

(M) = p(M), | (2.56)
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which is the spectral radius of M.

ET=C" (S=0,F=1Lm =n),then

p(M)=5(M) 2.57)

Obviously, for a general uncertainty structure I as defined in the beginning, we must have
{61,:6eClcT cC™.

The bigger the uncertainty set, the more possible it is for a small perturbation to make 7 — M A, singular.
We conclude that:

p(M)< py (M) <&(M) (2.58)

The gap between p(M) and &(M) can be large, which makes the evaluation of the structured singular

value using these bounds difficult.

However, the bounds can be refined by considering transformations on M that do not affect u, (M ) , but

do affect p(M) and (M) . To do this, define the following two subsets of C™" :
U={Uel:UU =1}, (2.59)
which is the set of structured unitary matrices, and

D= {diag{Dy,.rs Doy syl o1, }: D, €T, D, = D] >0,d, e R,d, >0}

Y mp > Ty

(2.60)

which is the set of matrices that commute with any A, eI'. Mathematically, for any

A, eT,U e U, De D, we have the following properties:

U eld, UA €T, AUeTl, &(UA)=5(aU)=5(4,),
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DA, =A,D.
Consequently, we have:
Foral Ueld,DeD:
pir (MU) = p (UM) = i (M) = . (DMD™) (2.61)
Therefore, the lower and upper bounds on £ in (2.58) can be tightened to:
- o = -1
max p(UM) < max p(B,M)= g (M) < inf &(DpMD™) (2.62)
The lower bound of the expression obtained above is always an equality:
max p(UM) = 4 (M) < inf &(DpMD™) (2.63)

Unfortunately, the function p(UM ) can have multiple local maxima which are not global. Thus local

search cannot be guaranteed to obtain g (M ) , but can only yield a lower bound. The upper bound can be

reformulated as a convex optimization problem, so the global minimum can, in principle, be found.

Unfortunately, the upper bound is not always equal to 24 (M ) . For block structures I" with a number of
scalar blocks and full blocks satisfying 2.5+ F <3, the upper bound is always equal to (M ) , and for

block structures with 2.5 + F >3, there exist matrices for which z4. (M) is less than the infimum [Pack88].

2.6.3.3 Robust stability with structured uncertainty

In the following we give conditions of robust stability of a closed loop system subjected to a block of
structured uncertainties. Let us define the set of real-rational, proper, stable structured perturbations:

S= {As(s)eRHm (A (s,) el Vs, e@+} (2.64)
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and consider the perturbed feedback loop in Figure2.8 where A(s)=A,(s) € S. The LFT is simply reduced
to an M(s)—A,(s) interconnection, such that F, [P(s), K (s)] , and we can use a generalization of the
small gain theorem to assess robust stability.

Theorem2.8 Robust stability with structured perturbation (small- »/ theorem)

Assume controller K(s) is stabilizing for the nominal plant P(s). Then given S >0, the closed-loop

system in Figure 2.8 is well-posed and internally stable for all A €S, IAS Hm < p if and only if:

sup i 7, [P0) Ko} < -

A,

In particular, if the structured perturbation is normalized, i.e., As eS, <1, the condition becomes:

sup f {F [PGo).K(o)]} <1.

2.6.3.4 Robust performance

Consider the closed-loop system presented in Figure 2.11 where z,(f)e R™ and w,(f) e R™ . Define the

A, 0 an . .
new uncertainty structure : Q := {[ O" A j] A elA, eC™™ } . A fictitious uncertainty A, was added
» ;
to the structure. It accounts for the performance objectives under a classical robust stability framework
described above. A, (s)
. As) 0
0 A
o -=-
; !
8 i
E «—.
z, === P(s) 4-_!W2
L——p K(9)

Figure 2.11: robust performance setup
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The following theorem gives the conditions for robust performance criteria.

Theorem2.9: Robust performance with structured perturbation

Assume controller K(s) is stabilizing for the nominal plant P(s). Then for the closed-loop system in the

figure, forall A, € S,

o0

A, “w < [ the closed-loop system is well-posed, internally stable and “TZZWZ S}E if

and only if

sup g {7, [P(j@), K (je)]} < (2.65)

1
B
where T, ,, is the transfer matrix from the input w, to the output z, .

The controller design technique called x — synthesis is based on the use of the upper bound on xin (2.58).
We minimize the supremum of {FL [P( jo),K( ja))]} over all frequencies by solving the optimization
problem:

(2.66)

min
K(5).D(s)

{D o}FL(P’ K)[D“ o}
0 I 0 I

where K must stabilize the plant perturbed by any A, e S and “AS

o0

_ <1. The D(s)scales must be
minimum phase and invertible in RH, . The optimization in (2.66) can be solved iteratively by fixing

the Dscales and solving 1}{1(11)1 HDFL (G.K)D™! “w, then for a given controller K(s), by

solving inf “D]’, (G.K )D! ”m This optimization procedure is called D-K iteration and is detailed in

DD e,
[Bal95]. However, this procedure is not optimal in the sense that the controller K(s) obtained only achieves
a sub-optimal  value in closed loop. This procedure depends on the nature of the uncertainties, complex,

real or a mix of the two, and the D-scales used. Many papers, e.g., [You90], [You92], treated this open
research topic and obtained results on what D-scales are best to use in the D-K iteration procedure to match
the plant uncertainty. For the mixed uncertainty control problem, a similar algorithm called D-G-K iteration
[You93] was developed td cope to the conservatism presented by the D-K iteration algorithm.
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2.7 H_loopshaping design

The loop-shaping design technique is based on the H_robust stabilization procedure developed in
[Mcf90],[Hyd91], where the plant is robustly stabilized with respect to coprime factor uncertainty
using H_ optimization. The plant has to be shaped, following a well-developed procedure [Hyd91], by
means of pre and post compensators to give a desired shape to the singular values of the open-loop
system, specifying the performance objectives over the frequency range considered.

In the following, we briefly review the H_ robust stabilization procedure that has the virtue to be
systematic in its solution and takes into account the uﬁcertainty modeling or the choice of the
performance weighting functions.

2.7.1 Robust stabilization

The dynamic, bounded norm uncertainty used in the classical u — synthesis must be stable to use
robustness theorems presented earlier. H_loopshaping approach avoids constraints that restrict the

plant and the perturbed plant to have the same number of unstable poles. We consider the stabilization

of a plant G which has a normalized left-coprime factorization:

G=M"'N (2.67)
then the perturbed plant model G, can then be written as:

G=(M+A,,)Y" (N+A,) (2.68)

+ - v

AN AM

@
+
“ y
P N +’ B M
£ le

Figure 2.12: H_ robust stabilization problem

where A, ,A, are stable unknown transfer functions representing the uncertainty in the nominal

model G. The objective of H_ robust stabilization it to stabilize the family of perturbed plants defined
by
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G, ={(M+a,)" (N+a,):[A, A, JeRE,|[8,8,]], <} (2.69)

where ¢ >0 is the stability margin.

The stability of the interconnection in Figure 2.12 is robust if and only if the nominal feedback system
is stable and

y: =”[Il<jl(1 ~GK) M| < %:- (2.‘70)

o0

where y is the H, norm of the transfer matrix linking ¢ to [uJ The objective of this robust
y

stabilization is to obtain the lowest value of y which represents the maximum stability margin. The

lowest achievable y obtained in [Mcf90] is given by:

y =gl = {I—H[NM]HZ}% =(1+ p(XZ))% Q.71
where | |, denotes the Hankel norm, p denotes the spectral radius and Z, X are the solutions of the
following Riccati equations:

| (4-BS™'D'C)Z+Z(A- BS“‘DTC)T ~ZC'R'CZ+BS'B" =0 (2.72)
(4-BS'D'C) X+ X(A-BS'D'C)-XBS'B'X +C'R'C=0 (2.73)

where: R=1+DD",S=1+D"D.
A central controller, which guarantees that

<y (2.74)

o0

{ﬂ(l ~GK) " M™

for a specified ¥ > 7., is given in [Mcf90] by

r

K=[A+BF+ 7 ()" zc™ (C+DF) ‘ y () ZCT}

/ , (2.75)
B'X ] -pD"

where: F = -8 (D'C+B'X), L=(1-y")I+XZ.

As mentioned above, the plant which has to be used in the previous H_ robust stabilization is indeed a

shaped plant model of the real system. In the literature, [Mcf90], [Hyd91], [Pap98], the loop shaping
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procedure was developed to become more and more systematic. In fact, we can summarize it in two

steps [Hyd91]:

2.7.2 Loopshaping procedure

1- Scale all inputs and outputs of the plant to reflect the bandwidth of the actuator efforts and to unify
the output units, respectively. Reorder the plant to present it as diagonal as possible.

2-Based on the frequency responses of the transfer functions linking each actuator to all outputs and

all actuators to each output, propose weighting functions %, and W,in order to obtain a roll-off of
20db/decade at the desired frequency bandwidths. For that, include an integral action in the proposed
W, weighting function. |

At this point, a shaped plant including performance specifications is obtained. It has been shown

[Mcf90], that the performance specifications included in the shaped plant reflect also the performance

specifications of the closed-loop system after the controller procedure design. The shaped plant is now
ready to be used in the H_ robust stabilization procedure presented earlier. The indicator 7, , related
to the robustness of the system, can be used as a criterion of controller design satisfaction. Practically
the best value of Y, is between 4 and 5, which allows at minimum 25% of robust stability margin for

the system.

2.8 u - Synthesis using H, controllers
The synthesis procedure typically used for the x —controller design is based on the D-K (eventually

D-G-K for the mixed uncertainty type [You93}) iteration algorithm. This algorithm presents certain
major deficiencies that cause problems in its adaptation for real flight control systems. Adding to the

problem that the w value can not be exactly calculated, especially for a robust performance criterion,

‘the scalings needed to solve the optimization problem in the D-K (D-G-K) iteration can have certain
dynamics that will dramatically increase the order of the system submitted to a large number of

uncertainties. In fact, with these problems the complexity of the 4 — controller design will increase
and the upper bound of the u value will be conservative, which does not guarantee the convergence to
the u —optimal controller and does not statute on the performance objective criteria used. All these

inconveniences pushed us to explore other possible ways of implementing z — controller design. A
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method of designing a u — controller using weighted H, optimization [Yan97] is adapted in our work

and proved useful when compared to the classical D-K iteration algorithm. In the following, we give a

description of the method proposed:

Theorem2.10 [Yan97]
Suppose there exists a scalar frequency-dependent weight W (s) such that the H, controller

K, = arginf |WF,(P,K)|, (2.76)
K .
satisfies
I F (P, K )Y jw)] =y, =const V& 277
sl B, (P, K Y ja)] =|WF,(P,K)|, V& 2.78)

then K, is the optimal u — controller
inf sup 1, [F, (P, K)jo)] = [ F, (P, K, @) =7, (2.79)

This theorem gives a sufficient condition of the existence of - controller originally synthesized
using H,optimization as in (2.76) and satisfying the conditions in (2.77), (2.78). Once the concept of
designing such controllers is admitted, the main issue is to find the weighting function W(s) that

satisfies:

K, = arginf [VF, (P, K)|, =inf sup 1, [F, (P, K)(jo)] (2.80)

The optimization in (2.76) is solved iteratively, where a weighting function T/f/,.(s) is used for each

iteration to lead to the optimal controller. Note that in practice there is no guarantee of the

convergence to an optimal controller with the best u — bound.
An algorithm for designing the u — controller based on weighted H,optimization is presented in the
following:

1-Set W,(s)=1, i=0.

2-Compute K, = arginf HVI}OF (P, K )”2 using the H,optimization technique
K

3-Compute ,[W,F, (P, K, )(jo)].
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Do the following step unless sup yA{W‘;.FL (P, K )(jw)]—sup ﬂA[W;,lFL (P,K, ))(jw)l <& where £>0is

the a tolerance value.

4-Set deg(W,)=n,, , where W, is a scalar, minimum phase function.

S-Fit 1, [, F, (P, K., ) (@)l by (o).
6-Compute K, = arginf "Vf{FL (P,.K )“2
K

7-Compute w1, [W,F, (P, K,)(je)].
The incorporation of the weighting function W,.(s) with the nominal plant P in the augmented P, can

W), 0
0

be done as following: P, ={ P where [ is the dimension of the variable to control z and m

m_j

is the dimension of the output y. This method of x — controller design has the virtue of decreasing the
order of the augmented system by half compared to the D-K iteration algorithm. It also decreases the
complexity of the design by using H,optimization and can reach a less conservative upper bound of
the x—value. This method allows one to design, at each iteration, a - controller based on
H,optimization. In our adaptation of this method to our work, we ran many design iterations design
and we take the z— optimal controller leading to the smallest u - value. Becausé the weighting
function proposed in the above algorithm is based on a fitting procedure of a u — frequency response,

the convergence cannot be guaranteed as claimed theoretically [Yan97]. Even with this drawback, the

method often leads to satisfactory upper bounds for z for high-order uncertain systems compared to
the classical D-K iteration. Another advantage of this method is the fact that it yields a u — controller
based on an A, design with an observer-based structure facilitating implementation and lending itself

to gain scheduling.
In the rest of this chapter, we treat the gust load alleviation problem by using robust control

techniques. We give motivation of applicability of the H_ control design to an optimal control

problem and compare results of other control techniques.
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2.9 B52 flexible bomber application
2.9.1 Introduction

H, (LQG), weighted- H, and H_ techniques are used to establish a nominal performance baseline for the

vertical acceleration control of 2 B-52 aircrafi model with flexibilities.

Figure 2.13: B52 bomber

The dynamic model of the aircraft used for control design includes five flexible modes. Such a model is
more realistic than a rigid-body inodel, but it can also make the Gust Load Alleviation (GLA) feedback
control design problem more challenging. The aircraft is assumed to be subjected to severe wind gusts
causing undesirable vertical motion. The purpose of the controllers is to reduce the transient peak loads on
the airplane caused by the gust. Our designs account for the flexible modes of the aircraft model. The gust
signals are assumed to be generated by the Dryden power spectral density model. This model lends itself
well to frequency-domain performance specifications in the form of weighting functions. Since the Dryden
gust model is simply a white noise driving a stable real-rational linear time-invariant filter, it is natural to
consider the design of an LOG controller, or its equivalent deterministic 4, counterpart. However, as a
bumpy flight experience would suggest, wind gusts are acting only over brief periods of time. Air
turbulence in a localized area may last for a time long enough to warrant the Dryden colored noise
approximation. But the point here is that an aircraft momentarily passing through the turbulence will only
experience its effect for a brief period of time. Thus, rather than using signals of finite average power for
LQG GLA control design, we suggest that such behavior may be best captured by bounded-energy signals
with spectral contents given by the magnitude of the Dryden filter. In the deterministic, worst-case L

setting, this remark gives some motivation to design a baseline GLA controller with an A performance
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specification. The technique of w -synthesis and analysis is used to study the robust performance of the

aircraft taking into account specific input and output multiplicative uncertainty models. Robust performance

is achieved with a g -synthesis controller design using a D-K iteration procedure.

2.9.2 Vertical gust model

An expression for the Dryden filter G, (s) can be found with more details in chapter 1 as following:

Yy +s

G(5) = 3U,0% 3L,

w aL, !iUo T (2.81)
—2+s

where: L, =580 m (1750 ft), o, =Tm/sQ21ft/s).

A proposed alternative use of the Dryden model is to consider the noise # to be any deterministic

finite-energy ~ signal in N = {ne[i[o,oo):]]n]]2 51}. The gust signal then lives in
W:={Gn:neN}c L]0,0),and its energy is bounded by ”wg“z <|G,|. =0.9v20, L, /U, -

Furthermore, such signals taper off at infinity in the time domain. Hence, they may be more
representative of real wind gusts acting on an aircraft passing through turbulence. Although the
stochastic nature of the signal is lost, the resulting set of bounded-energy gust signals can be used for a

worst-case H_ design, which may be desirable in a safety critical application such as GLA.

2.9.3 Flexible model description

The short-period approximation for the rigid-body motion of the B-52 aircraft is considered. The rigid-

body dynamics are augmented by a set of modal coordinates associated with the normal bending

modes of the B-52. The i” flexible mode is represented by the following equation in terms of its

modal coordinate 7, :

}-71‘ +2gia)ii71 +wi277f = pi¢i (2.82)

where ¢,,®,, p, are the damping ratio, frequency and gain of the i” flexible mode, and ¢, is its

corresponding generalized force. Thus, the rigid-body dynamics may be augmented with pairs of first-

52



order equations corresponding to each flexible mode considered. Five structural flexible modes were
considered significant and were kept in the B-52 aircraft longitudinal dynamic model taken from
[Mcl190]. The control inputs for the longitudinal motion are the deflection angles (in radians) of the

elevator 0, and the horizontal canard &, . The longitudinal dynamics of the flexible aircraft are given

by:

X = Ax+Bu+ B,w, 2.83)
y=Cx+Du '

where x(¢) € R is the state vector given by:

X=lagn om0 g nlu@=[s, 5,,6]7' e R? is the control vector (rad) y(r) e R

is the vertical acceleration (g), w, (t)=[Wg1 w

P ]T eR® is the vertical gust velocity at three

stations along the airplane (m/s), a(f) € R is the angle of attack (rad), ¢(rf) e R is the pitch rate
(rad/s). There are couplings between the flexible modes and the rigid-body mode. The eigenvalues of

A corresponding to the rigid-body mode are A,, =-1.803+ j2.617. The five flexible modes are listed
in Table 2.1 below.

Table2.1: Flexible modes

o, (rd/s 7.6( 15.2 19.73 20.24 38.29

Si 0.39 0.05 0.011 0.067 0.023

Note that the second and third gust signals wg; and w,s are actually delayed versions of wg;. The
second gust is delayed by z; = Up/x; = 0.06 s, where x; is the distance from the first body station to the

second. The third gust input is delayed by 7o = Uy /x; = 0.145 s. First-order lag approximations of the

time delays are used, e.g., w_, = —————w .
Y & Mo = 06s +1 2
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2.9.4 Problem setup

A block diagram of the closed-loop GLA design problem with weighting functions is shown in Figure2.14

below:

z z
W, (s W,(s) —!

>o—Csl K(s) L, G()
------------- s w
Lyl F(5)G, (5) F iy
£

X

We

S

Figure 2.14: Problem setup

where w, (1) e R is an acceleration measurement noise used to regularize the controller design
problem, with amplitude specified by £=10" as w, is normalized, r(f)e R is the vertical
acceleration setpoint (7(¥) =0), e(r) e R is the measured error, z (¥) € R is the weighted measured

acceleration, z,(f) € R” is the weighted controller output, and F(s) contains the lags approximating

the delays. The plant transfer matrix G(s) mapping [v w gT]T to y is given by

(2.84)

605y = [A (B Bg]}

C | D0]

The GLA problem of Figure2.14 can be recast into the standard H ,and H_ optimal control problem of
Figure2.3.

The vector of exogenous inputs in Figure2.3 is w:=[n w_]" for the H, controller designs, or

W u

u

w:=[w," w,]" for the H,controller design. The signals to be minimized are collected in z:= {le }

The nominal generalized plant
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(2.85)

#6) 2[31(3) Pm(ﬂ

Py(s) Pu(s)
has a minimal state-space realization
X=Apx+ B, w+ Bpu
z=Cpx+Dpyw+ Dppu (2.86)
¥y =Cpyx+ Dpyyw+ Dppu

which combines the aircraft model, the Dryden filter (for the H, controller) and the weighting

functions. For convenience, we will use the notation 7, := x > y for closed-loop transfer matrices.

2.9.5 H, control
Assuming that the origin of the gust is a zero-mean gaussian white noise of unit intensity, we first

design an unweighted H, controller that is more related to classical LQG design technique. This

control design is based on the generalized plant with exogenous inputs w=[n w,]' and outputs

z =|:z1 z; ]T. Thus, the gust vector generator FG, is embedded in the generalized plant P. For

regular M, control design, we used the weighting functions' W, =1 and W, =1. Closed-loop
performance is indirectly specified by G, . For instance, choosing o, =7m/s and L, =580m i G,

for simulation purposes, we obtain a gust that has most of its power concentrated in the frequency

band [0.1, 6] Hz . The objective of the H, controller design is to minimize

T,

wz

|

the H, norm of T, , over all finite-dimensional, linear time-invariant stabilizing controllers K(s).

- [—2-1; [ o, (ja,)}dm]z 2.87)

Assuming that z(¢) is ergodic, its average power is then minimized as

]im-l—Jiuz(t)||2dl =E{”z(t)”2}=|{Twz *. This has the effect of decreasing the 7, norm of sub

T 3T

matrices of 7,, by virtue of the fact that [[G, G, ]”Z =|G.[; +|G,|; - For example, the closed-loop

vertical acceleration of the aircraft can be written in terms of the uncorrelated white noises » and w,
as follows:

y=T,w=T n+T, w (2.88)

wy WY R
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The H, norms of the transfer matrices 7,, and 7, , satisfy z s||7;||j The H, controller

2
ny 5 +

Ty

Twn)’

obtained had 20 states and achieved HT e H , = 0.2. Figure 2.14(a) shows the spectral norms of 7 (j@)

and 7,  (jo) withthe H, controller for comparison with the other controllers.

H, H, .
(a) (b) P Ge)
107 T 10"
' 7, (o)
-3 -
10-5 Gw (Ja))l 10‘53
10 10
7,,, (o) 1., (o)
N
10° w (IOI%V) Hlos 10° o (log) 108
(¢c) IWl_l(jw){/
10°
(o))
1073
10°
Ir..., o))
S
10° o (log) 10®

Figure 2.15: Norms of closed-loop transfer matrices

2.9.6 WEIGHTED H, AND H_-OPTIMAL CONTROL
2.9.6.1 Weighted H, Controller

In order to improve the performance obtained with the regular 7, controller, we introduce a
performance weighting function

k,
a,s+1

Wi(s)= (2.89)

on the acceleration y, with &k, =500, g, = 0.05. This weighting function is the same as the one used

for the H,_ design in order to compare the results obtained for both controllers. We obtained

7.

. . . 2 2 .
, =15 with the weighted- H, controller, which means that “WlTny \ +”WxTw,,y ,S225. Figure
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2.15(c) shows that the weighting function led to much better GLA performance at low frequencies by

trading off sensor noise rejection, which deteriorated slightly, but remained acceptable.

2.9.6.2 H_-Optimal Design
As gusts act over a relatively short period of time, they can be considered as signals with finite energy.
Such signals can have spectral contents similar to the PSD of stochastic Dryden gust signals by using

G,(s) as a filter. This remark provides motivation for H, GLA control design as

7T w

wz

minmax
KeS weW

= minmax||T,.G,n|, = f}gig]TmGw | where S is the set of all stabilizing controllers.

2 KeS neN

2.9.6.2.1 Weighting functions for nominal performance
The specification is that our controller has to be able to regulate the vertical acceleration in the gust

bandwidth with an amplitude attenuation of at least —54 dB (500). The closed-loop vertical acceleration

of the aircraft can be written in terms of the gust vector w, and the noise w,:

y= ngng +T, w ' (2.90)

W,y n

The gust alleviation performance specification on

ngy ( jco)” can be enforced through the use of a

<1 with

@D

weighting function W; of magnitude at least 500 over [0.1, 6] Hz, as long as we get “Wl T

ng

the controller K , which implies

T, o) <) (291)

The weighting function is as given in (2.22). A plot of |W1 ( ja))I“] is shown in Figure 2.15(b)(c). The
controller outputs consist of deflection angles (in radians) of the aircraft's elevators and horizontal
canards. In order to keep these angles within acceptable limits, we used a suitable weighting function

W, on u such that quTw

. <1. The weighting function W, is a constant diagonal matrix
W, =diag {kul .k, } so that the above H -norm condition implies

1T G <k, 2.92)
and

IT G| < &, (2.93)
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Uy

T
where T, =[ W'A}, Here k,” =02, k, ™ =0.5 are the maximum allowed control gains in closed

wu2

loop. It is preferable to use a constant weighting matrix for this application, since it does not increase

the order of P(s). Hence, the resulting H_ controller has a lower order.

2.9.6.2.2 H_optimal Controller

The overall objective in this H, controller design was to minimize |7, ”w over all finite-dimensional,
linear time-invariant stabilizing controllers K(s), in order to get “TWZ“w < 1. This would guarantee that
the performance specification is satisfied. A norm of ||T,.|_=0.68 was achieved. Figure 2.15 shows

that our H_ controller meets the GLA performance specification given above. We can see that the

maximum singular value of T, is well below 10™ over 27{0.1, 6] rd/s. The spectral norms of the

frequency responses of 7, . and T, , satisfy the constraints of (2.91), (2.92) and (2.93) respectively.

2.9.63 1~ controller

A ; AW4

o | [l ‘l yl
+V+ + Y
Qs

>0 ;
! ol i

Figure 2.16. Setup for robust control design

The H, controller design of the previous section provides nominal performance. That is, performance

is ‘guaranteed only if the model represents the aircraft's dynamics perfectly, which is clearly too
optimistic. In this section, uncertainty in the frequency responses of the actuators and sensors is taken

into account in the model and the controller design. Note that this uncertainty may also include
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variations in the aerodynamics of the control surfaces, which may be caused by changes in altitude and
velocity of the aircraft. As shown in Figure 2.16, we include two complex multiplicative uncertainty

blocks in the model: A, :=diag{A,;,A,,}, A,,A,, € C and A e C. These perturbations represent the

uncertainty in the frequency responses of the actuators and the sensor, respectively. We chose the

corresponding weighting functions to be:

0.75s+50 0
W= s+400
e 0.75s+22.5 2.94)
s+400
_0.155+30

= 295
" 5 +1000 (295)

These weighting functions are selected such that the magnitudes of their frequency responses represent
the maximum error in the actuators and sensor models at each frequency. Typically, muitiplicative
perturbations are small at low frequencies and rise towards or above one at high frequencies. The
weighting functions can be obtained by finding an upper bound on several Bode plots of possible

perturbations. For example, suppose that an uncertain, parameterized model G,(p,s) of the sensor is
available, where p is the vector of parameters with known bounds. Then, one can fit a weighting

function W, (jo) such that its magnitude is a tight upper bound of all the plots of ‘GS (p,,jo)— 1] for

uncy
i=1,...,M, where p, is a set of parameters within their bounds. The weighting functions can also be
obtained from experimental frequency-response input-output data.

One must keep in mind that these weights represent the size of the uncertainty and should thus be seen
as hard constraints, not design parameters. It is the performance weighting functions that may be
éhanged until a good robustness/performance tradeoff is obtained in the design.

The block diagram of Figure 2.16 can be recast into the general u-—synthesis setup as given by Figure
2.9. Define the complex structured uncertainty set

Q:={A = blockdiag{A,,4,,A, } :,1,A,5.A, € C} < € (2.96)
and the augmented structured uncertainty set

I'={A, =blockdiag{A,A } :AeQ A, eC*} cC” ey
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where A e C*® is a fictitious uncertainty linking the exogenous inputs [wg wn] to the output

variables |z, z2]T. This fictitious perturbation is included to transform a robust performance design

problem into an equivalent robust stability problem, which is easier to solve [Bal95] as explained

earlier. The inputs and outputs of the structured uncertainty A (s)e H,, A, (jo)e I in Figure 2.9 are,

. T 7
. T T r T r
respectively, the vectors z, = [23 zZ, z Z } eR® and w, = [w3 w, W, wn] eR’.

A robust controller design based on g (which is the structured singular value with respect to the
uncertainty structure ') is less conservative than a robust H_ design (not to be confused with our H
controller of the previous section which is optimal for the nominal ’model, but was not designed to be
robust to model uncertainty). This is because the structured uncertainty A, is taken into account as a
full block of uncertainty in a typical robust H_ design.

We used the D-K iteration [Bal95] algorithm to design the x4 —controller able to give the best robust

performance level[ Aou2000b].

2.9.6.4 Simulation results
We used the Dryden model with parameters o, =7m/s, L, = 580m to generate severe wind gust
signals for simulation purposes. Figure 2.17(a),(b),(c) shows the resulting gust signals. The open-loop

vertical acceleration response of the B-52 to these gust signals is shown in Figure 2.17(d).
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Figure 2.17: Gust signals and open-loop response
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Figure 2.15(a) shows a magnitude plot of the frequency response of the Dryden filter for the
simulation. We see that the performance specification enforced by the weighting function W, used for
the weighted- H,and H_ controllers (Figure 2.15(b)(c)) should result in efficient gust alleviation.
Time-domain simulations were conducted and results are presented below. The results shown in
Figure 2.18(a)(b) confirm that the H, controller can dramatically reduce the effect of wind gusts on
the vertical acceleration of the aircraft for the nominal model. This controller also seems suitable from
the point of view of control effort. From Figure 2.18(a), it can be seen that the elevator angle remained
within +0.25 radians (+14") in the simulation. The H_ controller gave the best GLA performance
without exciting the flexible modes of the model or generating large control angles that could saturate
the control surfaces. A comparison of peak vertical accelerations with the H_ controller (Figure

2.18(b)) and without any feedback control (Figure 2.17(d)) indicates that the /1, controller reduced

the acceleration by a factor of 10°. This could translate into dramatic improvements in flight comfort

and reduced airframe loads.
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Figure2.18: Simulation results
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In contrast to the H_ controller, the H, controller only reduced the peak acceleration by a factor of 14
as seen in Figure 2.18(%).

A significant performance improvement was obtained over regular H, by using a weighted- H,
control approach, as evidenced by Figure 2.18 (d). The performance obtained with the weighted- H,
controller is more comparable to the performance of the H_ controller, although still about 20 times

worse in terms of peak acceleration. The H,_ controller appeared to control the flexible modes better,

which is not surprising in view of its low closed-loop

Ty ( ja))ll in the frequency range of the flexible

modes (see Figure 2.15(b)).

I/Vlmcu] (S) O jl

Figure 2.19 below shows the magnitude of the weighting functions W, (s) =[ 0 W)
uncu s

W ey (8) - These weighting functions specify the amount of uncertainty in the actuators and the sensor,

respectively. We specified nearly 20% of uncertainty at low frequencies for the first actuator
(elevator) and around 8% of uncertainty for the second actuator (horizontal canard). For the sensor we
assumed an uncertainty of 3.5% at low frequencies. These uncertainties grow with frequency until

they reach a constant level at high frequencies.

weighting uncertainties

! szmcul (J a)) I

10 ¢
‘I/VlmcuZ (Ja))‘

10 10° 10 10 10

Figure 2.19: Norm bounds for uncertainties
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Our u controller obtained using D-K iteration reached the robust performance specified. Figure 2.20
shows the g —bounds for the controller obtained in the second D-K iteration. The maximum of the

upper bound for u across frequencies is equal to 0.792, and therefore robust performance was

achieved.
CLOSED-LOOP ML CONTROLLER #2
08 T

o

0.7

086

08 -
2 10 10! 1
FREQUENCY (rad/s)

Figure 2.20: Upper and lower bounds on g for g design

An H_ controller designed for the mode! with uncertainties led to an maximum norm of the frequency
response of the closed-loop system equal to 15.35. This is too high and hence unacceptable from a
robust performance point of view. A u—analysis was done for the H_ controller and the results are
shown in Figure 2.21. It is seen that the maximum of 4 obtained with the H_ controller is equal to

3.1.This value being much larger than one confirms the loss of robust performance.

CLOSED-LOOP MU: CONTROLLER #1
3.5 T T T

05t . , -
10" 10° 10 1g 10
FREQUENCY (radfs)

Figure 2.21 Upper and lower bounds on x, H,, design

This was expected because the H_ design is unable to take into account the structure of the

uncertainty as opposed to the g —design.
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Chapter 3

Order reduction techniques for flexible aircraft

3.1 Introduction

High-order plant models make robust control design techniques difficult to use and often lead to
conservative results. Although controllers satisfying the performance specifications could be
obtained, the resulting high-order controllers would be difficult to implement. Thus, order reduction
methods have to be considered, especially for flexible systems that generally are of high order. In the
literature, starting from [Ske80], [Enn84a], [Enn84b], [Glo84] going to [Ske90], [Wor94], [Godd93],
[Beck96], methods have been proposed for either model order reduction or controller reduction.
These methods use open-loop or closed-loop performance criteria. In this chaptqr, we give an
overview of a few well-developed order reduction methods, and we propose new approaches adapted
to our main problem of interest, namely order reduction of flexible dynamics through modal

truncation.

3.2 Open-loop order reduction methods

The objective in these methods is to obtain either a reduced order model or controller that has an
input/output behavior close to that of the full-order system considered. Different approaches have
been proposed in the past to guarantee a minimum error between the reduced-order system and the
full-order system based on various measures of the closeness of these systems. We describe in the

following, proven, efficient reduction methods that appeared in the literature.

3.2.1 Algebraic dominance [Woe85]

Consider the stable transfer matrix G(s) of the system to be reduced as:

G(S):{(A%Jl—g], y=C(sI - A" Bu (3.1

Any transfer function linking the kth output to the jth input can be written as follows:
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Vi = Gy, = {Z Gy (S)(")}u ; Where G (5)? is the contribution of mode i to the transfer function

=1

Gy(s).
Let us define: limy (t):limzn:sG ON :iR “ where the coefficient R, represents the
T 0 k M ace K i ki o P

contribution of mode I to the inial value of the output due to an input u (s) =1, 1e., u (1) =5(7).

lim yk(t)zlimZG,g(s)(” :ZS,Q.(” where S,d(i) is a static gain and represents the steady state
t—p00 530

i=1 i=1
contribution of mode i due to an input u.(s) =1/s.

As+B

then R =A and the static gain
P 2 ki g
8°+26.0.8 +

For example, if we assume that G, (s)” =

@ _ 2
Sy =Blw;.
In this proposed method, we associate the modal dominance parameter D, = max le]'(")I,
»J

where ij(i) = kj(") or S,q.(i) , to mode /. We use this parameter as a criterion for order reduction. In fact,

mode i is kept in the model whenever D, is larger than a threshold.

If we decompose, through each mode i, the effect from the input # to the output y as:

y= [z G(s)ﬂu =3 [CsT - 4)" B J

i= | (.2)

, .

~ | 2co o | 5 |b| x I .

where 4, :[ 291"0)’ az; ‘i,Bi :{O}C' =[¢, ¢&,] where &,,¢,,are functions of the frequency mode
i

..

1

In this case the modal dominance parameter is:

e8] o -
=|F®

P - IS(i)Izll——éila;lBiill: _b:,% ifu(s)=1/s (3.3)
mi

3.2.2 Devillemagne-Skelton approach
Based on the approximation of the transfer matrix of the system by its series development in a

frequency interval, this method was proposed in the seventies by Devillemagne-Skelton [Dev87].
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This method, developed for an asymptotically stable system, does not preserve the physical meaning

of the states of the full-order model The original model G(s)as given in (3.1) can be expanded

around the zero frequency as :

G(s)=-3 s"CA*B (.4)

i=1
where at M;® = CA™'B are the moments at the frequency 0.

G(s) can be also expanded around the infinite frequency as:

G(s)=-Y, Z.lﬂ CA'B where M = CA'B are the moments at the frequency oo.
. i=] : .

The objective in this method is to be able to find a matrix transformation applied to full- order state-
space system such that the reduced state-space system can recover the moment’s expansion of the full
order system. To make this more clear. Let suppose we have a state-space representation of a single

input/single output full-order system with » modes as (4,B,C,D) then a reduced order model of

order r that recovers 2r first low frequency moments of the full-order model expansion can be given

as follows:
A =LAR
B =LB
C =CR , |
sl (3.5)
where: L=| = |,.Z=[4" . . A'B|,R=2(LZ)".
LCA—1

3.2.3 Cost decomposition order reduction

Assuming the asymptotic stability of the system with no direct transmission from the inputs to

outputs, each component of the system, either input, output or state has an effect on the performance

of the system. This effect can be measured using a quadratic criterion. In [Ske80], Skelton proposed
o oV

the cost contribution of the component p, as ¥/, =1/2— p, where V represents the total cost of the

system and express an energy criterion:

V= [ vy Qx()dr (3.6)
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y(?) is the output of the system to an impulse input.

The total cost can be easily calculated as V' = frace(X,C' QyC )= trace(Y,BO,B") where:
Q,is a diagonal matrix related to the magnitude of the inputs, X, and ¥, are the solutions of the
following Lyapunov equations, respectively:
X A +AX, +BQ B =0 G.7)
YA+ A'Y, +CTQyC =0 )
Because our interest in the order reduction is the state of the system, we orient our cost evaluation for

the components states p, = x,. The cost contribution for each state can be given as:
Vx, =[X vC |ch](i,i) (3-8)

For specific state-space representations, another way to calculate the global cost value can be given. If
we could obtain a balanced representation of the system, then the global cost value could be obtained

as:

V ==2Tr {ZZA} where: T is the diagonal matrix of singular values of 4.
Q,=land(Q, =1.

The objective of the reduction technique proposed in this method is to eliminate the states that have
less influence on the performance of the system. Thus we discard the states that have the smallest cost

value V. More specifically, we can propose to minimize the cost difference AV =V -V, where V]

represents the global cost value of the system reduced to order 7.

3.2.4 Modern, optimal order reduction techniques
The objective of model order reduction is to preserve the behavior of the outputs of the full-order
model and the reduced order model subject to the same type of inputs. To do so, the reduced model is

viewed as an approximation to the full-order model. This can be done as follows:

min HG(S) -G, (s)“p 3.9)

G, (s)eRH
Where p specifies the type of system norm used.

The objective then, is to find a reduced-order system G, (s)that is close enough, in terms of a
specified norm, to the full-order systemG(s). The norms that are typically used for that
approximation problem are the A, norm for an average approximation problem and the H_ norm for

a minmax approximation problem.
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This approximation criterion can be extended to include a desired frequency range of approximation.

This can be done by minimizing a weighted approximation criterion:

min [ (sXG(s)-G, ()], (3.10)

G, (5)eRH,,
where W (s) a weighting function that specifies the frequency interval where the minimization should

be effective.
Before giving more details on modern, optimal order reduction techniques we will give a brief

introduction to some concepts used later in the thesis:

a- Truncation of order r

Al B
Consider a nominal model of order n G = [CT}vD} This state-space representation can be partitioned

A 7 Art ‘B 4
as G=|4, A | B, |then a reduced rth order model could be defined in state space representation
c C |D

as: G = { C’ Drjl . This state-space representation can be deduced by simply applying the truncation

r ¥

r

transformation 7, :[ ] to the original system, which results in:

g

¥

1°4T, | T8
(3.11)

CT | D
This method would give a good reduced order model if we could represent the full-order model in a

modal form where the modes can effectively be decoupled (4,4, ~0).

b- Residualization of order r
Let G be the full-order system as specified earlier in (3.1), then a residualization of rth order can be
given in its state-space representation as:
o [A-aaa, |8 -aus
" |C.-CAT4, | D-CATB,

The residualization offers, compared to the classical truncation method, the possibility to keep the

(3.12)

reduced system close to the full-order system in the low frequencies, generally of main interest.
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3.2.4.1 Balanced reduction
Balanced reduction was first presented by Moore [Moo81] and was revisited by Glover in [Glo84],
[Bal91b] and [Ske88]. Let us define a balanced réalization of a system. Stability of the full-order
model G is assumed. Then the controllability and observability gramians of G, denoted as P and O
respectively, are calculated. We define the balancing transformation pair (Z,R), which transforms the
gramians 7 and ) mto

LPL=R'OR=% (3.13)
where T is the diagonal matrix of the ordered Hankel singular values of the system G .
The balanced realization of GG is defined as follows:

a - LAR | LB 314
bal CR D ) ( . )

The balanced reduction can be now defined as the truncation of the balanced realization of the full

L AR | LB
G o = cR D J (3.15)

balanced model:

where - —

OR =1,

It has been proven‘in [Glo84] that the distance of the reduced balanced realization from the nominal

model can be measured in H as :

”G - Gr,bal

2Oy e Oy) (3.16)

Using the residualization technique, a balanced residualization can be obtained starting from the

balanced realization of the full-order model G, , .

3.2.4.2 Mode balanced modal réduction
The modal reduction technique was discussed in many papers as [Bon82], [Dec76]. In the following,

we present an overview of this technique on a balanced approach. In fact a mode-balanced reduction
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begins with a balanced modal realization, followed by a truncation of the less significant modes in the
dynamics.

If we assume that the nominal system G has a block diagonal 4 matrix, then a mode-balanced

-
Gmod ebal [

where A, =diag{A,..,A.}and A, =diag{A, ... A} .

realization is given as:

(3.17)

[A | B
For this balanced representation, the mode-balanced reduction is given as: G, - r} and the

r,mode = LC D

r

A | B
mode-balanced residualization is given as: G, .. = { Cr | Dr_ CATR :!
2 =t t

3.2.4.3 Optimal /,norm reduction

As mentioned before different norms can be used to characterize the approximation in (3.10).
Consider a full-order system given in its minimal state-space representation as in (3.1). The objective

A

¥

then is to find a reduced state-space representation of a system G, :|i r:‘ solving the following

C lo

minimization problem:

. N -1 —1
min |C(s7,— 4" B-C (s, - 4,)'B,

(3.18)

2
The first results for the H,norm reduction was obtained by Wilson in [Wil70], [Wil74]. Then Hyland

and Bernstein [Hyl85] proposed optimal projections that are used for the H,norm reduction as
follows:
Compute P and Q by solving

| [T (AP+PA"+BB) =0
. . (3.19)
(A0+04+CO)1, =0

where rank(P) = rank(Q) = rank(PQ) = r , then the optimal solution of projection(Z,,R,) proposed is

given as:
PQ=RMEI,
LR =1 (3.20)
I,=RL,
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where I1 , M are chosen and diagonal matrices.

CR 0

”

L AR | LB
Finally, a reduced-order model could be obtained as G, = :

3.2.4.4 Optimal Hankel-norm reduction
Optimal Hankel-norm reduction was originally developed by Glover in 1984 [Glo84] and was used

also by Safonov in [Saf90]. The minimization objective of the optimal Hankel-norm reduction is:

min |G(s)~G,(s)|,, (3.21)

" G, (s)eRH,,
It was shown in [Glo84] that: “G(s)~G,(s)HH >6,,,(G) where &is the Hankel singular value

(&, =[4@Q]") and the norm |G(s)—G, (s)|, using the reduced model G, obtained from the hankel-

norm reduction can be bounded by 22 g, as the balanced reduction method presented above. The

1=r+l

research done by Glover showed that by manipulating the D matrix of the full-order system, one can

obtain |G(s)~G. ()|, < 3 &, .

i=r+1

3.2.4.5H_ optimal reduction
Most of the research on order reduction has been based on the H_norm approximation problem
[Had89], [Kav93], [Kav94]. Kavranoglu m [Kav93] derived a solution to the H_norm reduction

‘problem: r%in"G(s) -G.(s)|, sy forevery y >, (3.22)

where y, is the minimum value.

In [Kav94], Kavranoglu proposed an algorithm, based on the solution of specific Riccati equations
and a balancing procedure, that gives a sub-optimal solution to the problem in (3.22).

The use of LMI’s in control has shown their efficiency to find solutions to complex control problems.
Helmersson in [Helm95b] proposed an order reduction method that leads to the solution of a set of
LMIs. He used the Hankel norm approximation, and he tried to improve the H_norm of the error.

Helmersson proposed that
| min |G| =min|G-G,|

(3.23)

00

is equivalent to finding the smallest ¥ and symmetric positive definite matrix X such that :
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A X+XA, XB, C!

Bl X -yl D! |<0 (3.24)
C, D, =yl

4B A 0 B
where { . :} =0 4 |B

CV D\J

cC -C. ] D-D,

. Xy A, : : .,

By partitioning X'as X =| > 0 then the inequality (3.24) can be written as:
<212 22

ATXU +)(11A ATXm +X12Ar )(llB - X12Br CT
147TX1T.2+X1];A A}TXzz’*’XzzAv XszB‘XzzBr CrT <0 (3 25)
B'X,-B'X., B"X,-B'X, ~yI D' -Df '

c C, D-D, —y1

Helmersson proposed an iterative algorithm to solve the minimization problem in (3.23) through the
solution of the LMI in (3.24).

4 |3,
C D

¥ ¥

Based on the reduced model, G, 2[ }, obtained from Hankel-norm reduction, we keep the

matrices A and B, constant and solve the LMI in (3.25) by minimizing y with variables
X,C and D . Keeping X, and X, (3;24) and minimizing y we obtain a solution

> >

X,4,B.,C.,D,. These last two steps can be repeated until one could obtain an acceptable

approximation error: |G—G
pp -

o

3.2.5 Weighted order reduction

The general problem of a weighted order reduction can be posed as:

min w ”W(s)(G(s) -G, (s))V(s)"P (3.26)

G, (s)eRH,
Where V(s) and W () are input and output weighting matrices. Minimization of the Hankel-norm, the
H, norm and the H_ norm can be extended to the weighted order reduction problem. Worterboer

[Wor94] gave necessary conditions for the extension of Hankel-norm approximation and extended his
iterative algorithm of H,norm for the weighted approximation case. Perhaps the best-known method

used for the weighted order reduction problem is the balanced truncation method. Enns in 1984

[Enn84a], [Enn84b] was the first to extend the balanced reduction problem to a weighted case.
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C, 1D

o o

A|B 4 | B, A4, | B,
Consider the state space representations: G = Vo= W = where the order

of the nominal system is #, then

4 0 BC |BD,

BC A, 0 | 0 A|B
WGV, = ~—{ } (3.27)

T o o 4 | B |T|C]o

H

DC C, 0 |oJ

AP+PA +BB" =0

= .= - The input and
QA+AQ0+CC=0

Consider P and O the solutions of the Lyapunov equations:

output weighted gramians P and Q) can be calculated as:
=/ 7
P={I, olp” =/, 0 .
. 075 |o-. og| 7]

. . L 0
Consider a nonsingular matrix 7 such that: 7PT =(7") Q7" :[01 5 } where
2.1
Y. =diag(o,,...,0,), 2, =diag(o,,,,...,0,). This transformation 7" leads to a balanced sate-space

’ Au Alz BI-’ ‘

_ i TAT™ | TB
representation of the nominal system as: - =4, 4, |B,
cT 0
- ¢ C, |0

-

and then a reduced order

model of order 7, can be obtained as: G, =

All BI |
R

L
3.3 Closed-loop order reduction

The techniques proposed earlier deal with open-loop order reduction but do not take into account the
performance objectives of the closed-loop system. The order reduction of a closed-loop system means
either a reduction of the plant or the controller designed while keeping an acceptable level of
performance of the nominal closed-loop system. Much research effort has been directed towards
obtaining a systematic methodology for closed-loop order reduction [Hay90], [Har%4]. Staﬁdard ways
to achieve this include: reducing the model order, and based on the achieved reduced order model,
design a reduced-controller; reducing the full-order controller designed based on the full-order model;
and starting from a full-order model, directly design a reduced-order controller. The first method of
closed-loop order reduction presented above is probably the most frequently cited in the literature.
However there is a danger to have the reduced-controller, designed based on the dominant modes of
the system, destabilize the full-order system.
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Consider the standard optimal setup of Figure2.2 where G represents the nominal model of the system

without the performance weighting functions. The closed-loop system is written as a combination of

the model and the controller: 3(G,K') . The order of the closed-loop system is then given by the order

of the plant n, plus the order of the controller 7, . The transfer matrix J can be written in terms of

SG  S§-1

G and K
o as[Sd’ SK

} where § =(I+GK) " is the sensitivity matrix.

3.3.1 LQG and A _balanced reduction
The LQG balanced reduction uses results obtained by Jonckheere in [Jonc83] and assumes that the

controller designed for the nominal plant G is an unweighted 4, controller, known as the normalized
LQG controller. This controller, which minimizes the H,norm of the closed loop system J, has a

state-space representation as:

(3.28)

| A-BB6-0C’C | oC”
s\ _B'g 5 0

|

where @ and @ are the solutions of the Riccati equations:
AD+®A' + BB -C'CD =0

(3.29)
A'G+64+C"C-0BBO=0

The matrices ® and & are related to the closed loop gramians Py and O by:

PS:E) g}{ﬂQ[l 71

oelt 00

_ B  [4-BBG|®C
Q is the controllability gramian of { }

(3.30)

where

. o ) A-®CC |.
¥ is the observability gramian of | —+

B'6

An LQG balanced realization is obtained by finding a transformation matrix pair (L,R) that yields

® =0 = diag(¢) where ¢ = diag(\JA(®8)) . This transformation pair can be applied to either the
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plant or the controller to get their respective balanced realization. Finally, a reduced rth order model

or controller is deduced by truncating the states that are less important according to the balanced

gramians ® =6 .

The results obtained for the LQG type of controller can be extended to the case of H  type of control

- as given in [Must89]. The controller design is based on the minimum entropy H _ solution, which is

not optimal, but gives a bound y > y,on the H_ -norm of the closed-loop system 3(G,K). However,

this controller can be calculated in one step, as opposed to the classical /_ controller.

Following the same methodology of LQG balanced reduction; the matrices ® and & used for the

balancing procedure are calculated for this case as:
A0+84-(1-y*)BBB'O+CC=0 (3:31)

AD+ @4 —(1~y*)YPCCO+BB =0

Once these matrices are obtained; an /_ balanced reduction of the plant or the controller is possible.

3.3.2 Closed-loop balanced reduction

Much research has been conducted to develop normalized balanced reduction for closed-loop system
[Wor93], [Cet93]. Wortelboer in {[Wor94] was inspired from the work of Enns [Enn84b] on
frequency-weighted reduction presented earlier. He extended this approach to the closed-loop system

case. Let us note the controllability and observability gramians of the closed loop system 3(G,K)
are: Py and Oy then P, and (,are the gramians of G that can be deduced from the gramians of the
closed-loop system. Similarly, P, and O, are the gramians of the controller.
Define the Hahkel singular values of the sub-systems (G and X in the closed loop system as:
Gg = JAF0s)
Ty = N AFOx)

Remark that in general: &,;,0, @ &5 where & are the Hankel singular values of the closed-loop

(3.32)

system 3(G,K).
Note that &, and o are independent of the realizations G(s)and K(s). By partitioning the

controllability and observability gramians of the closed-loop system according to the sub-systems G

and K as follows:
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o PG PGK . QG QGK
PS‘[P;( P }’Qﬁ"[Q;K QJ G33)

The balanced model realization can be obtained by finding the pair (Z,R) that yields to
P, =Q, =diag(o) . Similarly for the controller, the objective is to find a pair (L,R) to have

P, =0, =diag(o,) . Note that the gramians of the closed-loop system using the balanced

realizations (5,, and K, have the following structure:

o; - = - o — e

F. Sbal . :QS,baZ = ’ (3-34)

- - - Oy - = . O

L - b =

Where (-) means ignored terms.

The balanced reduction can be carried out on either the plant G or the controller X as used in the
open-loop balanced reduction technique.

In [Wor94] an explicit link between the closed-loop balanced reduction and the frequency-weighted
balancing procedure has been established. In fact, it has been shown that taking the weighting transfer
KS}’W" =[S SK] in the frequency-weighted balanced reduction developed by

Enns will lead to the closed-loop balanced reduction presented above.

matrices as W, :[

3.3.3 Closed-loop performance preserving controlier reduction methods

The closed-loop reduction methods presented above have no explicit link to the performance
degradation of the closed-loop system, except some of the results obtained by wortelboer in [Wor%4].
As explained earlier a closed-loop system reduction can be either carried out as a reduction of the
controller, the plant or both. In the following, we describe a few additional methods for controller
reduction, which preservé the level of performance of the closed-loop system. Anderson and Liu
[And89] extended Enn’s approach to find weighting functions for the controller reduction problem
that can maintain closed-loop performance. The more recent reduction methods guarantee the
preservation of closed-loop stability and performance, especially for controller reduction techniques.

Goddard and Glover [Godd93], [Godd98] developed sufficient conditions to design a stabilizing
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reduced-order controller achieving a preserved level of performance. This work was based on the

following idea: Given a full-order controller X , achieving the performance level y = “FL (P.K, )”w,

and selecting ¥, >y, weighting functions W,,W, are derived such that

[ (K, - K| <1 R PR, <n (3.35)

Where X, i1s the reduced-order controller, P is the nominal full-order generalized plant model, and

F(P,K.)=RB,+P,(I-K,P,)" K,P, is the lower linear fractional transformation whose H,,--
norm should be kept small. The work of Lenz in [Len88a)], [Len88b] proposed a choice of weighting

functions for controller reduction in an 4, framework. The sufficient condition proposed is as

follows: “W{1 (K, - K W™ Nw <1/\2 =||F,(P,K,)|, <+/27, . This means that given a frequency

weighted error less than 1/+/2 then H ., performance is degraded by at most a factor of J2 . Goddard
improved the bound on closed-loop performance obtained by Lenz. He proposed a perturbed form of

the controller. For an additive perturbation, K = K° +W,AW,, A e RH_ , where K° is a nominal
controller. For coprime factor perturbation case [(7 171 = [(70 170] +W, [Aﬁ A; ] W, where
K=V"U, K°=V,'U, and A=[A; A, ]|,AeRH,. A set of weighting functions

W, and W, proving the existence of a reduced stabilizing controller has been found in {Godd98]. For

the closed-loop performance preservation, a theorem, which was the basis of the solution provided by

Goddard, has been presented in [Godd98]. It says that for any well-dimensioned F,(N, (), where

N, N ,

N = {Nn le} , assuming the feedback is well posed; and if N, has full row rank (,, has full
21 22

column rank) with N™N = (NN~ =1), where N"(s)= N"(-s), then |F;(N,Q)|. <1 if and only if

0], <1. Structures have been proposed to transform the closed-loop system analysis of F,(G,K)

- . ~1/2 7 R _1/2
into an analysis of F;(R,A) whereR = [7 I 0 {Rn 12 ”i?’ I 0 } and
0 Wik Rpj| 0 W,

T K v
Ry R\, K" I )
R= is the redheffer star product S| G, (S|G,| I 0 for the coprime
Ry Ry L0 K - J
0 -
_ B -
factor case). Note that R =S(G,K ) = F(G.K,) . Giall Ky G) ™ Ky, such that
Kzl (I - GzzKu)— G21 P; (Ka Gzz)
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G, G K. K
G= { e } K = { neoe } A is the additive uncertainty or the coprime factor uncertainty on
G21 GZZ K21 K22

the controller, depending on the case considered. Using the results of the theorem presented above

and the structures proposed, the following can be proven:

<1

o0

AL <t

(
= [ER )| <1=]F 6.5, <1

W; (K-—KQ)WTI

w o V-0, V,

} <1 for coprime factor perturbation case) (3.36)

To guarantee a preserved level of closed-loop performance with a reduced-order controller, it is
sufficient to find weighting functions W, and W, such that the matrix Ris inner, which has been

achieved in [Godd98]. The main criticism that could be addressed to Goddard’s method is the

numerical complexity to find the weighting functions W, and W, and their high order. Wang and

Sreeram in [Wang2001], based on an additive perturbation description of the closed-loop system,

proposed low-order weighting functions #, and W, that minimize the following criterion:

v, R | where V= (1= oK) By Yy =B (14K (1= BoK) T B

3.4 Order reduction of flexible systems in a closed loop framework

Our main interest in order reduction is the truncation of the less influent flexible modes on the closed-
loop system behaviour of the flexible system studied. All of the above order reduction methods do not
take into account the physical interpretation of the truncated states. An optimal reduced-order model
(or controller) may achieve the best level of performance in closed loop, but may only provide limited
insight to a structure engineer if the state vector has lost its physical meaning. The majority of order
reduction methods developed so far for linear time-invariant continuous-time systems are carried out
in open loop and do not take into account closed-loop stability and performance. Although closed-
loop order reduction methodé were developed [Wor94], [Cet93], no strong link exists between the
model] order reduction and how the preservation of closed-loop performance could be improved. The
main performance criterion used throughout this thesis is the robust performance level of the closed-
loop system. Although recent progress in [Beck96] on the open-loop order reduction of uncertain
system is to be noticed, no order reduction technique proposed in the literature takes into account a

closed—loop robust performance criterion. In the following, we propose methods for order reduction
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(model and/or controller) that are more adapted to flexible modes truncation, in a closed-loop

framework, and taking into account a robust performance criterion.

3.4.1 Uncertain flexible modes truncation

The robust control setup, which takes explicitly into account the uncertainty in the dynamics of the
plant [Bal91a] is extended to represent the neglected flexible dynamics, i.e., the flexible modes we
want to truncate [Gaw96]. In the following, we present two methods of order reduction based on two

different uncertainty representations.

3.4.1.1 Additive uncertainty reduction

As presented in Chapter 2 the variations in the dynamics of the system can be taken into account in an

A
C

B
additive uncertainty model. Assume a nominal system G(s) = Ii 0} containing # flexible modes.

and represented in its diagonal modal form:

) 1-¢2w, _
A=diag{4}, 4 = ° b @ B=[B . . B,)C=| |BeR"™ CeR"™.

-1-{lo, Lo, |
The modes of the full order model are ordered following singular values of 4, T = diag {0'1, ey 0'2,1} .
The reduced model of r flexible modes to be obtained is G, (s). The additi\}e unéertainty approach
proposed, as in [Josh98], is to account for the truncated flexible modes as additive uncertainty A (s)
acting on a reduced model G.(s).
G(5) = G. (s)+ T, (54, (5) (337)

A,(s) is normalized as |

A, ()|, <1 by the use of the weighting function W,(s)=G(s)-G, (s) as

shown in the following figure:

W, —»f 4
Yo+ _Jr_f’
K
P én u Gr Y+ Y

Figure 3.1. Additive uncertainty reduction
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The additive uncertainty bound increases according to the number of truncated flexible modes we

want, as

.

|

where G,(s) = Z C,, (s~ A)7'B,,,, represents the truncated flexible modes part.

i=n—r

0 :“G—G"

=G (3.38)

From an open-loop reduction view, the objective is to reduce the model such that: rrcl;in”Wa "w

Assuming that

|

where o,,,(0,,, >...>0,) is the Hankel singular value corresponding the (r+)th flexible mode, the

.

. =lGl, =0 (3.39)

open-loop reduction can be carried out by truncating the flexible modes whose corresponding singular
values are the smallest. Since we are interested in the closed-loop behaviour, a reasonable objective

would be to have a guarantee bound on the norm of the error

A
”Fu (F(G,K),A)—F,(F(G,,K), A)”w where A = [ 0” } includes a fictitious uncertainty A, for the

A

performance. From a mathematical point of view, no explicit expression connecting the minimization
of the error between the full-order and reduced-order closed-loop systems, and the error in open loop

could be obtained. However a heuristic says that, since the reduced model G, (s) is close to the
nominal model G(s), then by increasing the uncertainty bound W, (s) we should obtain worse closed-
loop performance levels with the reduced-order model. Thus the performance criterion used in these

uncertain closed-loop reduction methods is: ||F,(F(G,,K),A)|, . We compare this norm for all

possible combinations of n-r flexible modes to truncate to decide what the best combination is for

truncation, while preserving closed-loop performance.

3.4.1.2 Inverse uncertainty reduction

The additive uncertainty proposed previously has certain deficiencies when the damping ratios of the
flexible modes to truncate are small. This irﬁplies that the additive uncertainty bound W (jw)
includes peaks in its magnitude due to the truncated flexible modes. Thus, the high uncertainty bound
complicates the design of a robust controller with additive uncertainty. From this starting point, we
propose a new type of uncertainty used for order reduction. We call it “inverse uncertaingy”.

This type of uncertainty links the reduced-order model to the full-order model as follows:
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G(s) =[G.(s) +W,, (A, ()] (3.40)
where A, (s), the inverse undertainty, is normalized as |A,, (s)|, <1 using the weighting function

W, (s)=G"(s)—G '(s) as shown in the following figure:

inv iny

Figure 3.2: Inverse uncertainty reduction

This uncertainty representation often results in a lower bound compared to the additive uncertainty
bound. Moreover, when small damping ratios are considered in the truncated part, the inverse
uncertainty bound will take into account the inverse of the peak magnitudes which do not increase the
bound. This facilitates the design of a roBust controller for the reduced-order uncertain plant model

considered. As can be noted, the inverse uncertainty approach needs the full-order model G(s)to be
invertible. The inverse uncertainty bound W, (s)=G'(s)—G.'(s) can be rendered proper using a

strictly propef filter that neglects the high-frequency dynamics, which are not very important for the
performance of the flexible system. The criticism of this uncertainty model is that for open-loop
reduction, no specific rule guiding the truncation of the flexible modes such as the one in (3.39) for
additive uncertainty could be obtained. However, since we are concerned with closed-loop reduction,
such a rule is not required. Rather, a test of closed-loop performance for all possible combinations of
flexible modes to truncate 1s used. A

To illustrate the uncertainty based reduction approach and to show the efficiency of the proposed
inverse uncertainty approach compared to the additive uncertainty approach, we present the following
example.

Example 3.1

The model we use here is similar to the family of three mass system [Gaw96]. In this model, we have

three flexible modes with damping ratios ¢, =0.07, £, =02, £, =0.3 and natural frequencies
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3
w, =5, w, =15, w, =20. More precisely, the full-order model can be written as: G(S)ZZGi(S)

=1

where G,(s)=

7} :'32”—3“ 7, A4 =014,=014,=05 and B =100, B, =100, B, =100. The
S* 2w+,

open loop frequency response of the full order system is given in Figure 3.3:

10°
10° \/\ |G(jw)|
N\
1072} \
N
AN

10 \
10.6 -2 IO 12 ‘4 5

10 10 10 10 10

@
Figure 3.3: open loop frequency response

In this example, we consider the truncation of just one flexible mode from the full-order model. The
possible truncations are obviously: flexible mode 1, flexible mode 2 and flexible mode 3. The
additive uncertainty approach proposes mode 3 for truncation, which corresponds to the smallest
singular value, as the best candidate for open-loop reduction. However, since in this study,
consideration is given to closed-loop performance, a check of all possible combinations is required. In

Figure 3.4 we show the uncertainty bound W, (s) for the three possible truncations:

W, ()= G(s)=G,(s) for the first flexible mode to be truncated
W,(s)=1W, (s)=G(s) - G,(s) for the second flexible mode to be truncated (3.41)
W, (s) =G(s) - G,(s) for the third flexible mode to be truncated
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Figure 3.4: Additive uncertainty bouAids
The robust controllers designed for the three different possibilities of truncation were obtained using
[Gah94b]. The closed-loop performance levels obtained for the three possible truncation of one
flexible mode truncation are as follows: y,, =25.88, y,, =3.07, ¥,, =0.765 This shows that the best
possible reduction of one flexible mode is the third flexible mode.

Using the inverse uncertainty approach, and for the three possible truncation modes, the inverse

uncertainty bound is given as:

W, . (8)=G"(s)—G;(s) for the first flexible mode to be truncated
W, (s)=3W, ,(s)=G"(s)—G, (s) for the second flexible mode to be truncated (3.42)
| W,,.(s) =G (s)~ G, (s) for the third flexible mode to be truncated

and is shown in Figure3.5.

A4 IPVM\G (]Cl))

10 10° 10 10" 10°

Figure3.5: Inverse uncertainty bounds
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Notice, from Figure 3.4 and Figure 3.5, how the inverse uncertainty bound is smaller than the additive
uncertainty modes especially in the low frequency interval. This frequency range is the most
important in our design since the natural frequencies of the flexible modes belong to that specific
range. The closed-loop performance levels obtained for the three flexible modes truncation are as

following: 7,, =0.501, y,, =0.504, ., =0.73 the best flexible mode to be truncated following this
mverse épproach is mode 1, corresponding to the best reduced closed-loop performance y , .
Figure 3.6 describes a g — analysis of the truncation of flexible mode 3 using the two approaches

proposed. It 1s shown that the design obtained using the inverse uncertainty approach achieves better
closed-loop robust performance level Same remark can be made for the other flexible mode
truncations, simply by comparing their respective level of performance y,,,7,,; Figure 3.7 confirm

that for flexible model truncation.

0.8 . : 30 T T ~r
orl 1 —upper —bqund with W,
a5l
ol —upper t-bound with W, . _
/u ! . —~uppe kbound with 17,
04 rﬂ\__g\ j \ ] 15 | e
\ ]J 1. —upper —bound|with W, _,
03} \ J i 4 w0l
0.2+ 1 .
0:1 \\/l i °f /
o o 10° 0 v 10° 10° ?0“7 13" 1;3" —rh:‘oj 10
0
Figure3.6: u—upper bounds for Figure3.7. u—upper bounds for
flexible mode 3 truncation flexible model truncation

3.4.2 Model and controller reduction for flexible aircraft preserving robust performance

3.4.2.1 Introduction
In this section, we present a systematic approach to reduce the order of a model-controller pair for a

flexible aircraft. Numerical examples are given for a flexible model of a B-52 bomber and for a three-

mass flexible system.
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The method, based on mixed u -synthesis, determines which flexible modes can be truncated from the

full-order model of the aircraft and finds a corresponding reduced-order controller preserving robust
closed-loop performance. This. method is of interest for practical model and controller reduction for
flexible aircraft because in this context it is important to keep the physical interpretation of the
truncated and remaining modes.

Our proposed reduction method, inspired from the work of Kavranoghu [Kav96], involves modal
truncatioﬁ, i.e., the truncation of states corresponding to flexible modes of the model. The method then
generates an associated reduced-order controiler Satisfying’ a closed-loop robust performance
specification since in our approach, the main reduction criterion is the achievable closed-loop robust
performance level. We use the novel idea of introducing a repeated real parametric uncertainty J in
the flexible modes selected for truncation. This real perturbation, when equal to -1, represents the

effect of the truncation of these modes in the aircraft model. Thus, a controller that can maintain some

closed-loop performance level for the perturbed full-order aircraft model V|6]<1, can also achieve

this robust performance level on the truncated model.

We now describe our reduction procedure. Suppose that it is desired to truncate % flexible modes from
the aircraft's full-order model. As a first step, our procedure lists all combinations of £ flexible modes
from the N flexible modes of the nominal model. This list of mode combinations is shortened by
checking specific criteria of robust stability and performance that have to be met. For each candidate

combination & of flexible modes to be truncated in the list, a full-order controller K ,, (s) is designed

and kept in the set K, if it achieves the desired robust performance level. Robust performance is
measured using the structured singular value with respect to the parametric uncertainty covering the
uncertainty in the flexible mode parameters and the truncation of these flexible modes. The result of
this first step is the set K of full-order controllers, each one corresponding to a specific combination
of flexible modes to be truncated, that meet the desired performance specification both for the full-
order aircraft model and its corresponding reduced-order model obtained through a truncation of the k

modes.

N!

=————— full-order controllers, it is
kYN - k)!

: N
Since the first step in our approach calls for the design of (kj

limited to aircraft models with up to around 15 flexible modes, depending on computing power and
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time available for design. Nowadays, it is not unreasonable to assume that a few hours of
computations would represent a relatively small cost in the overall design of a new commercial aircraft
with flexibilities, What is paramount is to guarantee robust performance with a reduced-order
controller.

The second step of our procedure consists of generating a reduced-order controller for the best full- |
order controller K ; =K, €Ky corresponding to mode combination &. The controller reduction
problem is set up as a minimization of the weighted error norm between the nominal closed-loop
sensitivity matrix and the reduced one, and its solution yields robust performance preservation with the
reduced controller. Preservation of robust performance of the reduced model/controller pair is obtained

from a structured singular value setup, and.controller reduction is thus viewed as a robustness problem

against uncertainty in the controller. Any controller reduction technique may be used at this stage, as
long as the resulting frequency responses of K and K , are close enough to ensure that robust
performance is preserved with the reduced-order controller. We treat both model and controller

reduction through the same two-step procedure to obtain a good pair of reduced-order model and

controller.

3.4.2.2 Problem setup
The nominal finite-dimensional, linear, time-invariant transfer matrix model of a flexible aircraft

mapping the control surface inputs # to the measured outputs y , which may be composed of the

aircraft's position, angles, linear and angular velocities, and accelerations (available to the controller),

can be expressed as:

G(s)=G,,, () +G,(s) (3.43)

Where the modal state-space realization of the flexible dynamics G (s) is given by:

B,
G (s)= [éj O> } =C,(s] — 4,)"' B, (3.44)

L
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. . ANX2N =+ . . - ia)i 1__4’220)i
In this equation, 4, € R is in modal form, ie, 4, =diag{4d}, A4 =
) - l“gizwi _éwf
i=1..,N,and N is the number of flexible modes of the model; {,, w, are the damping ratio and the

undamped natural frequency of the i mode, respectively, B, € R*™ C, e R”*" The transfer

matrix G, _(s) models rigid-body dynamics and includes any direct feedthrough terms (D, matrix)

rbm
that might appear in the flexible dynamics. Truncation of the i flexible mode from the nominal model

can be seen as eliminating the effect of this mode. Because there is no interaction between the modal

states in the modal realization of G, (s), this truncation corresponds to setting to zero the 2x2 matrix

4. and the corresponding rows and columns of matrices B, and C,, respectively.

3.4.2.3 Uncertainty model

Parametric uncertainty may be less conservative than other types of uncertainty and may lead to a
more realistic representation of the differences between the dynamics of a flexible aircraft and its
model. In our approach, we treat both this kind of uncertainty and the truncation of the corresponding
modes through the same setup, and with the use of a single repeated real scalar perturbation. Robust

performance is optimized against this uncertainty in the design of full-order controllers K , .

For a desired fixed number of flexible modes to be truncated %, we define the set of all possible

combinations of & flexible modes to be truncated as follows:
A = {a ={a,...ay} &, e{O,l},ZZlai :k},
where @, =1 to truncate and @, = 0 to keep the i/ mode. For each mode combination a €A, , we

define corresponding perturbations of the modal state-space matrices representing modal parameter

uncertainty and the truncation effect of these specific modes. First, let 7, =diag{a,/,,...,ay1,}. The

perturbed plant model is then defined as follows:

G,(8) =G, (5)+ G4 (5) (3.45)

(3.46)

4, +AL | B, +AZ
GfP(S):{CﬁAC ; 5
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where the perturbations of the state-space matrices are defined by:

4 A A, B
S P i R, 0] < 3.47
% el T) oeme 4

and the fruncation matrices A4,,B,,C are given by:

4, =T, 4, B, =T,5,,C, =C,T, (3.48)
The real perturbation & lies between —1 and 1, covering more than a single objective. The
correspondence between values of the parameter § and the objectives in our design is given as

- follows:
o =-1: Truncate mode combination
6=0: Nominal full-order model
Sel-1,0[u lo, l] : Parametric uncertainty of the truncated modes
The latter interval covers variations in the frequencies and damping ratios of the flexible modes to be
truncated, as well as their corresponding gains. This uncertainty is useful as the modes truncated from

the model are still present (but uncertain) in the aircraft.

Grbm Grbm Grbm
— s B s lj_> s
+ + -+ v X
— [4 B 1 0] |&| 9y~ T[4 5 1 0] ¢ 4 4 B U
y4—047r‘ Co 0 01 4‘J'u <—O4.r c, 0 0 1} [y y<—O<;— - 0"’ U“” L U
. I~ 0 00 < ] I 0 00 PR y f Wo . 612 y
0 I 00 <_ 0 I 0 OJ ‘_ z all al2
Vs [Aa B, ] —J [‘ j
! S| |y — ,
_0 ol J c, 0 J Vszl r Ual 5['

“igure 3.8 ‘Parametric uncertainty  Figure 3.9 :SVD decomposition of the Figure 3.10 :Augmented plant
njection uncertainty representation

The truncation matrices 4,,B,,C, are shown on the block diagram of G,(s) in Figure 3.8. In fact,

azr Taz

these matrices can be lumped in the augmented plant model. However, the multiplicity of the
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‘ B
associated real perturbation ¢ is high. Using a singular value decomposition of [ C" Oﬂ’ we can

reduce the number of repeated perturbations ¢, which leads to a less conservative uncertainty model

[Zho96]:

-

4, B . o7
[Ca Oﬂ} = U(ZZJ/;T :[Ua} Ua2]1: gf OJ[Val]:UalZarVal = UalWal (3‘49)

a a2

ar” al *

A, B :
where r:rank{:ca O”}Smax{ZN—i—m,ZN%-p} and W =ZX_V_. Figures 3.9 and 3.10 show,

[24

respectively, how the multiplicity of & is reduced to r and the matrices W, =[W,, W,,],

U

al

U,z

al2

:{ it } are incorporated in the augmented plant.

The reduction in the multiplicity of & yields a less conservative uncertainty set. From Figure 3.10, the

transfer function between # and y is given by:

G, (8) =G &)+ [ 7, (M, 571),51, | (3.50)
AO B 0 Uall )
Where M, =| C, 0 U,, | is the real matrix representing the "generalized plant" in Figure
Wull Walz O

3.10. Define the transfer matrix H, (s) = F, (M, s™'I) such that

B}:Hﬁ@[ﬂ (3.51)

Where u is the vector of actuator inputs, w is the output of the repeated real perturbation &7,, y, is

the output of the flexible part of the aircraft's dynamics, and z is the input of the repeated real

perturbation. Reversing the order of the inputs and outputs of H _(s), we obtain the augmented plant
. . . w z . .
model O, (s), as given by Figure 3.11, mapping l: } to L} } Figure 3.11 represents a typical setup
u i

for robustness analysis against a single repeated real perturbation.
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Figure 3.11 : Robust analysis setup Figure 3.12 : Robust performance setup

Exogenous inputs of interest, e.g., reference signals and disturbances, are grouped together in d , and

outputs to be controlled, e.g., tracking error and control signals, are grouped in é. These signals are

added to O_(s) together with the performance weighting function WP (8) such that e(s) =W, (s)é(s)
w z

to obtain the augmented plant model P, (s) mapping | d | to | e |. Note that the rigid-body part of the
u Ly

dynamics G, _(s) is also embedded in P, (s) using standard block diagram manipulations.

rbm

Figure3.12 shows the u - synthesis setup for robust performance. The perturbation A, € C*™ is a

fictitious uncertainty included for performance, linking the exogenous inputs d to the outputs to be

controlled e. The uncertainty structure is defined as follows:

I'=<A:= oL, 0 A eCY™ feR 3.52
=ed= 0, 1A, E ,0eR, (3.52)

P
and the corresponding set of stable structured perturbations is defined as

D= {A(s) S “A(S)“w <1, A(sy) eI, VRe{s,} > O} (3.53)
The perturbed plant model is thus given by F, [P, (s), A(s)], where A(s) e D;..

3.4.2.4 Model and controller reduction

Mixed- z theory can be used to design a full-order controller achieving the best robust perforniance

index with, e.g., a DGK-iteration or a minimization of sup g {5’-1 [Pa (Jo),K ., ( ](0)}} based on
) weR .

90



successive H, designs [Yan97]. At the end of the first step, we have the set K, of full-order

controllers, which achieve robust performance whether or not the corresponding candidate modes have
been truncated.

The second step, after the design of the full-order robust controllers, consists of finding a reduced
controller K_(s) of desired order g from the best full-order controller K +(8) € K corresponding to
the "best" combination ¢ of candidate flexible modes to be truncated. Our proposed controller order

reduction method preserves robust closed-loop performance, which is not the case for most earlier

works. Consider the optimization problem over the set of stabilizing reduced controllers K, (s) of

desired order ¢:

inf sup -(3.54)

K, (s)
stabilizing (f%

FAR[RO.R,]61}- 7 {7 [P6).K ()].61,}

v

That is, we want the perturbed closed-loop frequency responses with the full-order and reduced-order
controllers to be as close as possible, as measured by the co-norm. A specification can be expressed

with p >0 as:

FAR[R6.R, )] 61} -F AR [R6).K 6)].61})

<p,V[5|<1  (355)

Note that o should be chosen such that implies robust performance with the reduced-order controller.

For example, if sup u[F, (P&,li' F)(Jw)]=y <1, then one should pick p <1-y . The complex variable
weR

s is henceforth dropped to simplify notation. The optimization problem in (3.54) can be represented

as in Figure3.13, where:

r R A 7
Z] :V w} , V,:E(Pény): 11 12
el d ' 1 1/22

I Zl
e &
< p 4——£" S

e, Z

o

2

~

Az

A

LDE
]

Figure 3.13 : Controller reduction 91




This setup can be recast in the robust performance design setup shown in Figure3.14:

ol

27

<,
| p e

e, ’L ik
KY

Figure 3.14 Augmented plant with the reduced order controller

z w , y Ry, R, KR;
where: |e, |=R| d ,Z=Ll},w=[wl}ep:Pbl(el"ez)wR: Ry Ry Ryl
y u ? ? Rs) R, Ry,

V 0 V, 0
Ru:[g)l P :lv R12:{Pu]> RISZ{ }» Rm:[Vzl me]= Ry =Vy=Fom. Ry=Fy,

a1 212 |
R, :[O Pd31]a R, :Pézz: Ry =Dy

With the inclusion of a fictitious perturbation A, for the “closeness” performance objective, the final

[4

. This robust performance controller
0 1,

augmented plant is shown in Figure3.15, where A, :=[

design can be transformed into a controller reduction procedure by means of robust performance

analysis.
At
> A ;
2] ¥ Y R U
R
H U K,
K
g ks K,-K,
Figure 3.15 : Uncertainty block Figure3.16: Introduction of the closeness of
augmentation the full and reduced controllers
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AL

Figure3.17 : Augmentation of the
plant by adding A, uncertainty

From the two equivalent block diagrams shown in Figure 3.15 and 3.16, we obtain in Figure 3.17 a

robust performance setup in which ZSK ::W;(Ie ,—K,) is viewed as a normalized controller
uncertainty, where W, is a stable scalar weighting function. The idea is to ensure that K, is close

enough to K + such that the size of Ag(jw)= (I% +~K, ) jo) is within the admissible uncertainty

bound for which the system in Figure 3.17 will be robustly stable.

We use the Main Loop Theorem [Zho96] to prove the following result providing a basis for the
proposed controller-order reduction technique. The theorem says that if the reduced-order controller is
close enough to the full-order controller, then we can obtain both robust performance, and closed-loop

frequency responses that are close to each other. Define the uncertainty structures:

I, 0 O
I=<A=] 0 A, 0 [|:A, eC"% SR A, €C"? (3.56)
0 0 A,
A, 0 :
T,=1{A, = }:ACG(C"" " SeR (3.57)
0 51, |

Theorem 3.1

Assume that K, is a full-order stabilizing controller achieving robust performance, i.e.

2

sup p[F, (P,K,)(jw)] <1 and assume that the reduced-order controller K, has the same number of

weR

unstable poles as K, . If, for every @, up [F(jw)]<1 and "(K 5 ~K.X ja))" < !qu ( ja))l , then:
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1. K, stabilizes 7, [F;

<1,

2.sup 4, [, (P,K, )(j)] <1, and

weR

R VAR S SYIM AN STIH |

Proof:
Assume that 4 [F(jw)l<1 and "(K KX ja))"ng,;l( ja))l. Then, for any A, such that

K, =K, — Ay has the same number of unstable poles as K, and such that [|A, (jew)| < ‘W;jl ( ja))‘ , We

have up [F, (F, ANjo)l<1, Y@ by virtue of the Main Loop Theorem. In particular, taking
Ay =K,-K, and working our way back to the equivalent system of Figure 7, we have

tr [F (R, K, ) jw)] <1 which, by the Main Loop Theorem, implies

A AEACR SR AT

<1, we have

o
Ilfv [E(P,K,)ﬁl,]—' U[E(P,K»,M, < b
Hence, |
|7 S (AR STATEAFACY S A |
HEm[R@K)6L]| <prr<i

Finally, the robust stability of F; [f; (P,K,), 5[,] follows from the Main Loop Theorem and the
small-gain condition coming from the argument that the Nyquist plot of det[[ ~-K.F, (R, At)]
(Figure 3.16) must not be equal to 0, where K, = K, — A, has the same number of unstable poles as
K, (Zho9%6).

To get a reduced controller achieving the specifications, we first proceed as follows. With the use of a

fine grid of frequency points, an upper bound (@) on |A, (jw)| is found such that the feedback

interconnection in Figure 3.17 is robustly stable.
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This is carried out by using, for each frequency w,, a bisection technique to find the upper bound

w{w,) that leads to [F(jw,)]=1. Then a fitting procedure can be used to obtain the stable

weighting function W, (s) such that IWK“1 ( ja))l = w(w). The upper bound y (@) is also used as a

criterion to reject the mode combinations for which the controller cannot be truncated without losing

robust performance. For mode combination a, if 3 @, for which there is no y(w;) > 0 such that

”A «(Jo, )"w <y(w,) and g [Fa (o, )} <1, then combination « is rejected because the existence of

a corresponding reduced-order controller satisfying the robust performance specifications cannot be
guaranteed. The application of this criterion avoids the need to resort to a heuristic in choosing what

subset of mode combinations can be safely truncated.

The last step for controller reduction is the following: Given an order ¢ < deg{l% 1}, find a reduced
g"-order controller K, with the same number of unstable poles as K , and such that
"I% sJo)-K.( ja))” < IWK“1 ( jw)l. If such a K, cannot be found for K ., then the second-best (in terms

of the "mu-norm" supu[F (P, K, )(jw)]) full-order controller can be used, and so forth.

welR

Alternatively, the order ¢ may be increased. For this weighted controller approximation problem, any

suitable reduction technique can be used, e.g,[Glo84] [Enn84b]. In the example below, we used the
weighted Hankel-norm approximation because of its close upper bound on the norm of the error

between the nominal and the reduced controller. Note that since a u —synthesis may produce an
unstable controller, it is suggested that only the stable part be used in the reduction. This ensures that

K, has the same number of unstable poles as K, and hence Theorem 1 can be used.

3.4.2.5 Modal reduction over the full flight envelope of a flexible aircraft

For practical flight control applications, one has to keep in mind the changes in aircraft dynamics
according to the flight conditions. If these changes can be modeled as slow variations in the modal
parameters, one could introduce a suitable complementary uncertainty model capturing these

variations for the remaining modes, using for example the technique presented in [Aouf2001]. Our
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modal truncation method could then be adapted to yield a reduced-order model which, in closed loop,
might achieve the robust performance criterion over the entire flight envelope, provided all possible
modal parameter variations over the flight envelope could be covered by the complementary
uncertainty model. In this case, it might be possible to truncate the flexible modes in such a single-
plant model setup. The truncated modes would then represent the less influent modes in terms of
performance degradation over the entire flight envelope.

In the case where all possible modal parameter variations over the flight envelope could not be
efficiently represented with a structured perturbation connected to a single generalized plént, our
reduction method could be applied for different operating points. Each of these frozen operating points
would be chosen such that the uncertainties that cover the modal parameters would produce
overlapping sets of perturbed plants with the neighboring operating points. After applying our model
order reduction technique at each trim point, one could truncate from all aircraft models their shared
flexible modes that can be truncated, if this set were nonempty. This truncation of a common set of
modes across all models covering the flight envelope would preserve a consistent model struéture. The
reduced-order models could then be interpolated to produce a linear parameter-varying (LPV)
reduced-order aircraft model covering the full flight envelope, and for which a reduced-order

scheduling or LPV controller could be designed.

3.4.2.6 Flexiblé system example

This example is a flexible system taken from [Gaw96], consisting of three masses

m, =11L,m, =5m, =10, linked together and to rigid walls through springs of stiffnesses
k. =k, =10,k, =50k, =55, and dashpots of viscous dampings d, =0.01%,, i =1,2,3,4. The input u
is applied such that f, =u, f, =2u, f, =—5u where f,,i=123 are the forces applied on each mass
respectively. The output is y, =2q, —2g, +3q,, where ¢,,i =123 are the mass displacements. A

disturbance d, is added to the plant output y, to get the system output y =y, +d . We represented this
system in the state-space modal form such that the nominal damping ratios and frequencies

respectively are: ¢, =0.0044, @, =0.87,{,=0.012, w, =243, £,=0025 w,=5.12.
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The performance level and the constraint on the controller specified for the nominal model are given

s+3
—e———— ()
by the weighting function W, (S):{60,55+0,03 , which specifies that the closed-loop
L 0 1/0.7

sensitivity should be smaller than 0.01 at low frequencies. The sensitivity consists, in this case, of the

transfer function 7, (s) from the disturbance d to the output of the system y. We start by removing one

flexible mode to see if it can be truncated without losing robust closed-loop performance. All three
"combinations” of one mode are considered. Table3.1 below gives the results obtained for each
flexible mode considered for truncation. For the initial design, we selected p=0.1, then three full-
order controllers of order 28 were designed, with corresponding reduced-order controllers of order 11.
Note that the relatively high order of the full controliers comes from the use of various weighting

functions and scalings in the minimization of the structured singular value to obtain robust

performance.
Table 3.1: Results for truncation of a single flexible mode
max /[ F; (P, K )(jo)) | max e[ 7 (B K (o)) | K e - K0,
Mode 3 | 0.7609 0.7609 <le-015
Mode 2 | 1.0928 1.0928 0.0005211
Mode 1 | 1.0544 1.0544 9.1063e-013
Note that if the condition “(1& F—K)(jo)| < ‘W};l ( ja))l were satisfied with a reduced-order controller

with the same number of unstable poles as for R , the performance specification would still be met.

Figures 3.18 and 3.19 below represent, respectively the Bode plots of A.(s) and W, ' (s), and the
upper and lower bounds of yr[ﬂ(g,le AUw)] and . [F (B ,K,)(jo)] for flexible mode 3

truncated.
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From the results obtained, we conclude that the best truncation of a single mode that we can do is the

truncation of mode 3. It satisfies the required specifications of robust performance, both for the full-

order and reduced-order controllers, and the closeness of the corresponding closed-loop sensitivities.

To show the role of the sufficient condition A G| S!W;;l ( jco)., we tried to obtain a reduced

controller of order 8 with the truncation of mode 3. Figure 3.20 shows that this condition was not

satisfied. As a consequence, a degradation in performance occurred and we obtained, as shown in

Figure 3.21, maxu.[F (F,K,;)(jow,)]=09851, whereas maxyr[};(@,]%f)(ja)i)]:0,7609 as

given in Table 3.1.

10°

&, -& o)

[N

107+

V

10"

10° 10° 10°

4

10

10

6

@
Figure 3.20: Magnitudes of the norm of

(K, ~K,) and of W,

0.8l Upper bound
0.6 "
Al |
\ | ‘
LA / ]
04 \ | \ Lower
\ honnd
02} | '
\
0 , J
-2 2 4 &
10 10 10 10 © 10

Figure 3.21: u bounds for both full and
reduced controllers
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When we tried to truncate two of the three flexible modes, all three possible combinations considered
were discarded because these truncations did not meet the evaluation criteria. The results were as
follows:

For combination 1 (mode 2 and mode 3): max [, (£, K, )(jw,)]=1.87
&

For combination 2 (mode 1 and mode 3): max u.[F, (P, K, )(jo,)]=1.74

For combination 3 (mode 1 and mode 2): max up.[F, (5, K ;) (jo,)] =1.41

These truncations did not initially achieve the performance specification with the full-order
controllers, and obviously with any corresponding reduced-order controller. In the case where we

relaxed thé performance criteria and were willing to accept the degradation of performance resulting in
the truncation of two flexible modes, the best combination retained by our method was combination 3

(mode 1 and mode 2).

3.4.2.7 Flexible aircraft example

We illustrate our reduction approach using a flexible model of a B52 bomber used in chapter2
[Mcl90]. It consists of one short-period rigid-body mode, represented by the angle of attack and the
pitch rate, and five bending modes taking into account the flexibility of the airframe. The state-space
representation of the aircraft is given as:

X=Ax+Bu+B,w,

3.58
y=Cx+Du ©358)

Where x € R'? is the state vector given by,

X=laqgn gom g a0l u=[8, &,] R is the vector of control surface angles

W,

T . .
2 wgs] e R* is the vertical gust

[radians], yeR is the vertical acceleration [g], w, :[wg1
velocity at three stations along the airplane [m/s], @ € R is the angle of attack [radians], ge R is the
pitch rate [radians/s], and 7, is the modal coordinate of the i”-mode. The five flexible modes taken

into account in the model are characterized by their frequency and damping ratio as given in Table 3.2.
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Table 3.2: Flexible modes

1 2 3 4 5
w, [rd/s] | 7.40 15.21 19.73 20.24 38.29
o 0.337 0.056 0.010 0.067 0.023

The control objective is to reduce the effect of the wind gusts acting on the aircraft. This can be
achieved by regulating the vertical acceleration of the aircraft subjected to these gusts. Using our

order reduction procedure, we want to check what flexible mode(s) can be truncated and how
much reduction can be performed on the controller while maintaining the robust performance
obtained with the original full-order model/controller pair. Thus, we obtain a reduced

model/controller pair that maintains the nominal robust performance level. The weighting

functions on the acceleration and the control inputs are given respectively by: W, (s) = 6~(%0———1—,
n 055 +

125 0 . . . g y

and W, = 0 0250 respectively. The weighting function W,(s) required in our procedure is

composed of both W (s) and W, (s) .

Considering the effect of truncating a single flexible mode, we obtained from our reduction

technique that the best choice is to truncate mode 1, the lowest-frequency mode. The resulting full-

order controller K r =K, was of the 40"-order and it achieved the robust performance level of

max p[Fy (B, K ;1 )(jw,)]=0.9999 . Choosing p =107, we found that we could reduce the order

of the controller down to 18 with “WK (K, -K fl)lL0 =3.0888x107 < p, and therefore without

losing robust performance. Figure 3.22 below shows the magnitude Bode plots of the two entries

of K, —K,, and of W', while Figure 3.23 shows the mixed-mu bounds for both X 5 and K (the

curves actually sit on top of each other). These figures show that robust closed-loop performance is
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preserved  for  the  reduced 18"order  controller, which  also achieved

max 4. [F, (B, K, X j@,)] = 0.9999,
2
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Figure 3.22 : Magnitudes of the two Figure 3.23 : u bounds for both
entries of (K, — K, )and of W, full and reduced controllers

The other four candidate modes for truncation yielded full-order controllers that could not meet the

robust performance specification. Their resulting computed " 1 -norms" are given below.
max 44 (7, (B, K ;) )] = max [, (P K 1. )0)] = 1.018
max i (7, (B, K 13)(j,)] = 1.046
max g1 7, (B, K ) )] = 4.20

Since robust performance was met with an extremely small margin for the truncation of a single

flexible mode, no other flexible mode could be further removed.

3.4.3 Discussion of u -sensitivity order reduction for flexible structures
To save computation time for the method above, we propose the use of u -sensitivity tools. Their

adaptation to our problem may help determine which mode combination is to be reduced without
affecting much the closed-loop robust performance. We shall introduce in the following the notion of

1t -Sensitivity:

101



3.4.3.1 u-sensitivity

: ) M, M,
Consider a matrix function: M :[ 1 12

and a corresponding uncertainty block
MZ] M22 :‘

A= { ! A ] that fit into the M — A structure shown in Figure2.8. By introducing a scalar weight in
2

I 0lfA, 0] [aA, O
@ ! W_~_ a5 that can be included into the
0 I[0o A0 A

the uncertainty structure as: A :{

I O\|M, M " aM. M.
augmented plant as: M(a):{a H 1 12W aM,; aM,,

= } . Then the u -sensitivity with
0 ] M21 M22 B L M 21 MZZ

respect to A, is defined, [Braat91] as: Su = lim p M)~ 4 (M(a—Aa))i

. 6u can be interpreted
a0 Aa

o=l

as the derivative of g with respect to « . The higher the value of du, the more critical the model
perturbation A, is in the value of 4 . In practice, g - bounds are used in the calculation of

i — sensitivity instead of the exact value of x [Braat91], [Fan91].

3.4.3.2 u - sensitivity for order reduction

In this proposed approach, we keep the uncertainty model representation introduced in Section 3.4.2.3,
which leads to the robust performance setup given by Figure 3.12. For this study, we propose an
uncertainty model that corresponds to a combination of reducing all flexible modes of the flexible
structure using the methodology of uncertain model used in section 3.4.2.3. With the uncertainty

model set up, we proceed to test the u— sensitivities corresponding to all possible flexible mode

combinations of a given number of flexible modes to truncate. Define dy, ,i=1,..,N as the

1 — sensitivity of the ith flexible modes combination, then by calculating all the g — sensitivities the
best combination to truncate with respect to robust performance criteria corresponds to the smallest
value among the NV u - sensitivities. After finding the best combination to truncate, the corresponding
reduced-order controller is deduced using the same methodology of section 3.4.2.4. This approach can
be time saving since with one robust control design, we determine the best flexible modes combination
for a given number of flexible modes to truncate. However, the conservatism of using all flexible

modes of the aircraft m the perturbation can influence the u —sensitivity results. Research is
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underway on the possibility of proving some local additive property of the u — sensitivity adapted to
flexible models, so we can predict the next mode to truncate in the case where we proceed iteratively.

By “proceeding iteratively”, we mean that if we increase the number of flexible modes to truncate to

t, from f,, what is the best flexible mode combination of size 7, 1, to be truncated.
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Chapter 4:

Uncertainty models and robust complex-rational

controller design

4.1 Introduction

Flexible structures are generally characterized by their damping ratios and the frequencies of
their flexible modes. These parameters are subject to errors when they are estimated. These
uncertainties are important and should be taken into account in a robust controller design.

The proper capture of modal parameter uncertainties in dynamical models of flexible structures
for robust control has been the subject of ongoing efforts. Previous research [Bal91a], [Smi94]
used additive dr multiplicative uncertainty models to take into account the variation in the
dynamics of the plant. Another way is to use certain heuriétics to facilitate the representation of
the parametric uncertainties in the flexible modes by a parametric model [Mad98]. These
heuristics represent approximations in the parameter variation that are not generally realistic and
lead to conservative controller designs, i.e., designs that cannot provide the desired performance
in the face of realistic levels of parametric uncertainty.

Recently, a model to represent parametric uncertainties in the modes of a flexible structure has
been discussed in Reference [Bald99]. Note that such models have been developed [Boul97] a
few years ago. In the latter reference a model of dynamic uncertainty covering parametric
variations in the flexible modes of a flexible structure has been developed. This dynamic
uncertainty has the virtue of being non-conservative, but only when the frequencies of the
flexible modes are close to each other.

In this section, we propose to represent the variation in the (damping, frequency) pair of each
flexible mode by a tight low-order dynamic uncertainty. Thus, we reduce the order of the

augmented plant by half, and transform the mixed real/complex robust performance u—design
into an easier complex u —design representation. We use two techniques: the first is based on

the coprime factorization framework [Mcf90] and the second uses a complex diagonal modal

representation to model the dynamics of the flexible structure and to take into account the
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parametric uncertainties. The advantage of our methods consists in transforming the real modal
parametric uncertainties into a smaller number of complex uncertainty blocks. These cover all
(damping, frequency) variations in the flexible structures and reduce the complexity of the
augmented plant. '

The robust controller design we propose takes into account two aspects: the robustness to the
uncertainties in the modal parameters, and the closed-loop performance specified for our model.
The second uncertainty model proposed results in a complex-rational nominal plant. This led us
to develop a new procedure to design a robust controller. A robust complex-rational controller is

first obtained via a g —synthesis, and then a real controller keeping the robust performance level

is designed to approximate the frequency response of the complex-rational controller.

4.2 Problem setup

Due to lack of exact knowledge of natural frequencies and damping ratios, the control designer

needs to estimate uncertainty bounds for the modal parameters £, and w,, i=1,...,n. These

!

bounds are used in the design to achieve the required robustness. Suppose that:

é/i =§in +5§‘] and W, =@y, +5w,- ’

where &, ,

w,, are the ith nominal damping ratio and frequency, respectively. The real numbers

6, .0, Ttepresent the uncertainty in each parameter and are bounded in magnitude by:
|5m.-‘ <t, and|5¢i| <t .

These uncertainties have to be taken into account in the design of a robust controller. The most
used and efficient design to achieve robustness and performance for mixed type of uncertainty is

the mixed u -design based on the D-G-K iteration algorithm [You93], [Bal95].

In our design, we considered, respectively for each flexible mode, two parameter variations &, ,

d,, - For these variations, no tight, efficient and realistic parametric model is available in the

literature. Consequently, it is difficult to deal with real uncertainties representations to achieve
robust performance criteria. Moreover, when the number. of scalar perturbations increases, it
causes a problem of dimension complexity in the controller design procedure “D-G-K
algorithm”. The order of the system augmented by the D-G scales will be very high and the
controller synthesis will be difficult. This is even more difficult when the order of the nominal

flexible structure is high. Even though the u -synthesis procedure used in this chapter, which is

“ u controller based on H, design” from [Yan97], reduces the dimension of the scales by half, a
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solution to the parametric uncertainty tightness and conservativeness still has to be found. A
novel way to deal with this problem, under a new concept of complex controller design, is

proposed.

4.3 Coprime factorization approach
This is the uncertainty modeling technique inspired and adapted from the version presented in
[Boul97]. Consider the nominal dynamic equation of the flexible structure, of m inputs and p

outputs, in modal coordinates:

ii+Dn+An=Bu
7 n n @.1)
y=Cn
where: D=diag{2{,®,....2{,®,}
A= diag{a)f,...,a),f}

BeR™,CecR™, {a)l,...,a)n},{é'l,...,g’n} are the frequencies and the damping ratios of the

flexible modes.

Taking the Laplace transform of (4.1), we obtain

n(s)= (s +sD + A)" Bus)

(4.2)
s)=Cnls)
Let us define: G(S) = (SZI +5D + A)—1 and let s> +as +b be Hurwitz with real zeros.
G(S) can be written as : G = M N such that:
M(s)= ——2-———1—-diag {s2 + 26,05 + @),
s +as+b (43)
s ST+ 2L 0,5+ a)f}
N(s) diag{ 1 : 4.4
= s+as+b’ s +as+b @4

Mand N form a left coprime factorization of G in RH_. The perturbed plant can be written

as:

G, = (i + Ak ) (W +AN) (4.5)
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AM, AN e RH_ include all the parameters variations in the flexible modes.

26,6, +26, (@, +8, ) |s+20,8, +6.

dia 9
5 s +as+b
AM = 4.6)
{2@”5% +28, (@, +8,, ):|s +20,5, +5°
7 ' +as+b

AN = diag{0,...,0}
Each element of AM , representing a family of strictly proper transfer functions, can be tightly

bounded with a second-order weighting function using the bound of each parameter variation 7, ,

t, i=1,...,n. Thus, AM can be bounded by the magnitude of the following weighting function

@y

(see Examplel):

[251,,% +21, (@, +1, )]s a8, +1

di )
% s> +as+h
W-. = 4.7
& [%ml‘w,, +2, (w, +1, )]s+2a)mta,n +£, “7
E s +as+b

The resulting bound is structured, representing complex structured blocks of uncertainty. This
bound is more general than the bound obtained in [Boul97], which had the assumption that the

modal frequencies of the flexible structure were close to each other.

4.4 Modal coordinates approach
Suppose that the state-space model in modal coordinates of a flexible structure, and particulary a
flexible aircraft model, is given as:

x= Ax+ Bu

y=Cx+Du -8

where 4 =diag{4}, i=1,...,n

- _Ciwi"‘ja)i\/l_é’iz 0 (49)
0 —giwi~jwivl_gz

4
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(sI-4)=diag{s/ - 4}.

we use the approximation ¢, <<1, which is verified in many examples of flexible structures

models. Let us define the coi‘nplex—rational factorization in CH :
Gls)=(sI — 4)" = #i(s)" N(s) and M = diag{M’,} :

1

M, = (sl~4) .
ST . ,sz@{l - }
1 s+ (8 +)) 0 s+a  s+ta
_s+a{ 0 s+a),.(§,.—~j)}

where s+ o is Hurwitz.

The perturbed model can be written as:

G, =(¥ -+ A¥z)" (N +AN)

s+, (L, +7)+o,0, .
+5a), (é:n + -]) + 5@54"
= blkdiag? ‘ ' (
0 s +a)in (é,m *—-]) + a)inaé'i
+§a),— (é’in —J) +5f0i 5§i
i=l...,n
I a)iné‘{i + 560,‘ (é/i” + J) 0 |
1 15, 5¢_
W, = x blkdiag - (
M7 sva 0 @,,6, +8, (S —1J)
+5wi 54, 1)

i=1,...,n

AN := diag{0....,0}.

(4.10)

(4.11)

(4.12)

The magnitude of each sub-block AM .» such that AM = diag {AM i} , can be tightly bounded by

using the maximum on each parameter interval ¢, , {, . Because we are interested by the

magnitude of the uncertainty that the system is subjected to, it is possible to use the complex-

rational weighting function W, given below to bound AM in the design (see Example 2).
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a)intg,» + tm, 4in 0
+tw1t§1 + jtm,»

0 a)int ] +tmié’in
+Ho e — I,

. ot

~ 1 .
AM,(5) = x diag . (4.13)
. S+a

The uncertainty block in the design will be tightly covered by a modal bound AM, (s) repeated

as many times as there are uncertain parameter pairs of flexible modes.

4.5 Control design

Our control design methodology is based on the coprime factorization obtained from both
uncertainty representation approaches. We use the u -design technique to take into account the
robust performance specification. The design concept is explained by Figure 4.1, where

AN = diag{O,...,O}.

Figure 4.1: Coprime factorization Control

The robust performance is taken into account in the u—design by including a fictitious
uncertainty A, linking the input w to the outputs (z,,z,). We transform the scheme given in the

previous figure to the classical x —setup. We obtain the robust design given by Figure 2.8:

7 - 4 o A, 0 ~ ~
Where: zzz[le vN7 z' zzr} , wzz[w: rYJ A:‘: : }, Acz[AM —AN],
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A o N ]
0 0 B
pP=\-wcMm' -w, -W,NB (4.14)
0 o "
| CcM™ 0 NB |

Since in our case AN is null, then A, = AM which is in diagonal form and contains the complex

uncertainties that cover the parameters variations in each flexible mode.

An advantage that our uncertainty models offer is that we can recast the structured dynamic
uncertainties, obtained using our uncertainty models, into one complex block of uncertainty. In

fact, for the frequency interval considered, the highest magnitude uncertainty bound:

[2§inttui + 2’{, (a)in + tw, )] s+ 2a)intw, + taz)

AM,, = > ~for the coprime factorization approach (and
s +as+b
~ a)zt+té’m+t t +jt . . o
AM,, =25 2 - &% 2 for the modal coordinate approach, respectively) tightly
s+o

covers the uncertainty set of all the dynamic structured uncertainties obtained. Thus, we reduced

the number of perturbations to one complex block of magnitude A, (AM,,). This, in general,

will simplify the design of a x - controller achieving the performance and robustness required.

4.6 Simulation and new control design strategy :

To validate our methods, we chose two flexible systems representing the well-known three-mass
system [Gaw96]. '

Example 1

In the first example, the damping ratios and the frequencies of the flexible modes are

£, =0.072,¢,=0.023,£,=0016, » =091, w, =18L, @, =1.5. The input matrix B is given by
B=[0 2.4 4.4]T. We assume that the uncertainties in {,,0,, i=1,2,3 are 10% and 0.1%
respectively. Thus, the controller to be designed has to be more robust against variations in the

damping ratios. The level of performance specified is given by W = +3 and the

2 10.55+0.03

constraint on the controller is specified by: w, =1/0.7 . In this example, we use the first approach

described above. Figure 42 gives the Bode plots of the first diagonal entry in Ai/ which

110



concerns all the parameter variations in the coefficients of the first flexible mode and the
magnitude of the first diagonal entry of ;.

It is easy to see that this magnitude tightly bounds all the variations in the first diagonal entry of
AM . This observation is valid for the other flexible modes as well. Thus, the weighting function
W, represents a tight bound of A47 .

A u controller was designed for this example taking intc account the complex uncertainty W,
covering all the parameters variations in all the flexible modes. Figure4.3 gives the i —upper
bound that we could get with this g controller. The x —~upper bound obtained is less than 0.72,

showing that our controller design effectively guarantees the robust performance specified, in

spite of parameter uncertainties in the flexible modes.
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Figure 4.2: Upper bound on magnitudes of Figure 4.3: Upper bound on y
perturbations for Example 1 for Example 1
Example 2

The second example representing the three-mass SISO system is given in a complex modal
representation as described above. The damping ratios and the frequencies of the flexible modes
are £, =0.025, £, =0012, {,=0.0043, w, =5.12, ®, =2.43, w, = 0.87 . The uncertainties that
the damping ratios and the frequencies of the flexible modes are subjected to represent 10% and
3%, respectively. These uncertainty levels, especially in the frequencies, are quite demanding for
a robust control design. The weighting functions w,and w, are the same as the ones used in the
first example.

Figure 4.4 shows that the magnitude of the first element in W, tightly bounds all the variations

in the first entry of AM .
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The magnitude of the second entry on the diagonal of AM, is the same as that of the first entry

(this also holds for the other flexible modes). Thus, W,; is a good candidate for bounding the

complex parametric uncertainty in AM .

5 lAM(ugU“’)l ‘
2

10
6

10 10° 10° 10° PR
Figure 4.4: Upper bound on magnitudes
of perturbations for Example 2
The u-synthesis setup used for the complex-rational controller design is based on scaled H,
optimization problems [Yan97]. These optimizations were treated and solved by means of
solving two Riccati equations: ,
(4-B,R'D,C) X +X(4-B,R'D,C,) @.15)
- XB,R"B,X +C; (I-D,R'D},)C, =0

(4-BD},R,'C,) Y +Y(4- B.D,R;'C,)
~YC,R;'CY + B/ (I - Dy R;' D, ) B =0

(4.16)

where: R =D,D,,, R,=D,D,,.
The complex-rational scaled augmented plant P in its simplified state-space representation is

given by:

4.17)

n,xn R, %A, n,xn, B
AeC”" B eC""™ B, eC"™ C eC*™

nyxnl, nyxn, nyxnw
C,eC”",D,eC*" D, eC"™.

where: " and 7, is the number of modes.
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The fact that the state matrices involved in the Riccati equations belong to a complex set gives us
the possibility of designing a complex-rational - controller achieving the performance and
robustness specifications required.

The complex-rational 4 controller designed in this case achieved the specified robust
performance criterion. Figure 4.5 shows the u—upper bound obtained for this design. lts

maximum equals 0.99.

Note that the u controller designed is not optimal, and this is because of the uncertainty block
structure. This problem of suboptimality of a u-design has been mentioned in the literature
[Bal95]. However, the u-design still appears to be the best strategy to deal with structured
uncertainties in practice. The complex-rational controller design allowed us to deal efficiently
with the parametric uncertainties under a complex representation. An uncertainty of up to 3% in
the modal frequencies could be tolerated, a level rarely reported in the literature.

After designing a complex-rational controller achieving the robust performance specification, we
have to recover a realizable real-rational controller. This controller has to maintain the
performance specifications obtained by the complex-rational controller. The problem can be

posed as:

(4.18)

rea

min||K - K,
Krea

0

where:

K is the complex-rational controller designed and K, is the real-rational controller to be found.

By enforcing closeness of the frequency responses of the two controllers using the infinity norm,
we can ensure that both controllers will act in the same manner on the generalized plant when
closing the feedback loop. Thus, the level of performance obtained by the complex-rational
controller can be approached by using a real-rational controller. One way to solve the
minimization problem above is to fit the magnitude and the phase generated by the complex-

rational controller, by a real-rational system K _,. Tools that have the ability to provide a solution

in this fitting procedure can be found in Matlab’s Identification toolbox [Ko0l97]. One of the
benefits of this real procedure design is the reduction of the real-rational controller. In fact, the
typical constraint of maintaining the structure of the original controller in most classical
reduction procedures is not present in the fitting procedure proposed here: The structures of the
original complex-rational controller and the reduced real-rational controller may differ. Thus, a

low order, real-rational controller, achieving robust performance criteria, can be obtained.
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A real-rational controller of order 2, achieving a robust performance level of 0.85, was generated
for our example. The robust performance level for the real controller is shown in Figure 4.6. The
robust complex-rational controller is of order 28. This high order resulted from the number and
order of the scales in the g -design. Due to the non-optimality of the u-design, the robust

performance of the real-rational controller was better than the one obtained by the original

complex-rational controller.
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Figure 4.5: Upper bound on u with Figure 4.6: Upper bound on u
complex-rational controller for Example 2 with real-rational controller for
Example 2
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Chapter 5

Gain scheduling techniques for STOVL Harrier aircraft

5.1 Introduction

Multivariable gain scheduling has been an open problem until now. Many techniques have been
developed from standard interpolation and switching techniques [Hyd91], [Han87] from linear
parameter-varying model approaches [Rugh90], [Sham91], to modern interpolation techniques
[Stil99]. Applications of these gain-scheduling techniques for flight control have been extensive in the
last decade [Hyd91], [Rei92], [Fial97], [Pap98]. The recent developments in linear parameter Varying
control [Apk95], [Wu95a], [Wu95b] have spurred research on the stability aspects of gain-scheduled
controllers that is considered a deficiency of ad hoc gain scheduling techniques (interpolation and
switching techniques). In this thesis, and due to the complexity of the models we deal with, we
preferred to approach the gain-scheduling problem of Chapter 5 and Chapter 6 by proposing new
methods, based on ad hoc techniques, but improved in terms of stability and performance guarantees.
The research developed in this part of the thesis concerns the gain-scheduling aspect of a control
design for a large flight envelope of a Short Takeoff and/or Vertical Landing (STOVL) aircraft. In
[Bate99] a robust integrated flight propulsion controller was designed for an experimental STOVL

aircraft configuration, using the method of Hloopshaping. Results of piloted simulation trials with a

centralized Integrated Flight Propulsion Control (IFPC) system are reported in [Bate2000]. The IFPC
system examined in these trials was designed at the 80 knots point of the STOVL flight envelope,
where control of the aircraft is starting to pass from purely propulsion system effectors ( thrust
vectoring nozzles, etc..) to conventional aerodynamic control surfaces. These trials examined the
handling qualities of the IFPC system over a range of speeds from 50 to 110kn. While the single
controller was found to deliver level 1 handling qualities, [Bate99], at speeds close to its design point,
performance was seen to degrade to level 2 quality, [Bate99] as the aircraft moved further away from
the 80 kn point of the flight envelope. This degradation in performance is caused by the large changes
in both aerodynamics and engine dynamics as the aircraft accelerates from hover to fully wingbourne

flight.
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In this research study, in order to cope with the performance degradation, we develop the design of
alternative scheduling schemes for the IFPC system which provide Level 1 type handling qualities as
the Harrier STOVL aircraft, under study here, accelerates from hover to 120 knots, while also keeping
the specified engine variables within their safety limits.

Our methodology of control design, based on the H_ loopshaping, led us to investigate first how to

adapt the observer-form interpolating technique [Hyd91}, to our IFPC control design. Furthermore, we
propose two other methods trying to improve performance objectives.

The second approach of controller scheduling proposed is a new version of the blending technique
implemented successfully for a missile application in [Tich96]. In this technique, we are interested by
the output signals of controllers rather than the structure of the controllers themselves.

Adding to the previous scheduling methods proposed, we investigate how we can use a
straightforward switching technique between the controllers designed. We develop a new multi-
switching methodology based on the Linear-quadratic bumpless transfer technique introduced recently
in [Turn2000]. We propose, finally, an innovative scheduling technique based on a partitioned
controller obtained from a partitioning procedure applied to the centralized controller designed in the

beginning of the IFPC methodology.

5.2 Integrated methodology for propulsion and airframe control |

The desire to improve the overall performance of multi-components dynamically coupled systems has
stimulated researchers to develop integrated system control design methodologies. One example of
interest is the control design of a Short TakeOff and Vertical Landing (STOVL) aircraft. The use of
forces and moments produced by the propulsion system to extend the flight envelope of the aircraft
results in significant coupling between the airframe and propulsion systems. Traditional control design
methodologies, as separate control design for flight and propulsion systems, cannot deal with such
coupling. The recent STOVL aircraft include supersonic flight capabilities, which add more
complexity in their configurations than subsonic aircraft. This complexity spurred the research in
Integrated Flight and Propulsion Control (IFPC) [Garg93a]. The objective of the IFPC research is to
consider methodologies to improve the overall system performance. It exploits potentially significant
gains in terms of improved flying qualities which may be obtained through the use of propulsive

system generated forces and moments for aircraft manoeuvring in the low region of the flight
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envelope. These methodologies have to take into account dynamical coupling between the airframe
and propulsion systems of STOVL aircraft.

A study program on Design Methods for Integrated Control Systems (DMICS) was undertaken in the
1980°s to develop IFPC control laws for an advanced tactical aircraft. The aircraft configuration for
the DMICS Study included thrust-vectoring and thrust-reversing capabilities that add dynamic
coupling between the propulsibn and airframe system. The DMICS study proposed two design
methodologies: the first one consists in a complex centralized approach that led to a centralized
controller design, with the potential to give the best performance, and taking into account all specified
criteria. However, this approach is suffering from the complexity of implementing this kind of
controller in existing' airframe-propulsion control system hardware structures. The second
methodology is based on a decentralized hierarchical approach. This approach is highly iterative, leads
to lower performance and assumes that the subsystems are weakly coupled, which is not generally the
case.

The integrated methodologies for propulsion and airframe control (IMPAC), based on the experience
of DMICS study, have the objective to search a new IFPC methodology that takes into account the
airframe and the propulsion systems as one integrated system. For this integrated system, initially, a
centralized controller design, for each design point, is suggested taking into account all the
specifications required, from the performance to the dynamical coupling existing between subsystems.
In fact, the starting point of IFPC methodologies was the IMPAC program, which led to good applied
results for STOVL aircraft [Garg93b].

5.3 STOVL Harrier Aircraft:

Our research work concerns the well-known STOVL Harrier jump-jet aircraft (Figure 5.1).

i ks

; ‘ . 117
Figure 5.1 : A version of STOVL Harrier aircraft



Many versions of this aircraft were developed since the original P1127 Harrier created in 1960. The
recent versions include much-advanced avionics and improved handling qualities. The STOVL aircraft
are of a particular importance for the military aerospace industry regarding the advantages they offer
for military operations. The performance objectives required from recent version of the STOVL
Harrier aircraft impose a high workload on the pilot. This is mainly due to the instability of the aircraft
for a longitudinal motion at low speed: the inceptor configuration has a difficulty to deal with complex
operation moments and the poor decoupling level. A multivariable control technique is then required
to reach the speciﬁed Harrier aircraft handling qualities while reducing the pilot workload. A modern
control strategy was successfully developed for a previous version of the Harrier aircraft in [Hyd91].

In this study, we are concerned with more complex version of the Harrier aircraft. In fact, due to the
development of actuator technologies, we could fully integrate the flight and propulsion control
systems rather than being restricted to control the longitudinal motion of the aircraft [Hyd91]. The use
of the propulsion system to generate forces and moments for aircraft manoeuvring results in
significantly increased coupling between the airframe and engine sub-systems. In its simplest form this
coupling may be unidirectional (propulsive forces and moments affecting airframe states) but in
general the use of novel effectors such as reaction control systems will also affect the engine operating
point, [Garg93a], [Garg93b]. This coupling necessitates an integrated approach to the overall flight
control system design problem, in order to ensure that (a) optimal use is made of the various
propulsion system effectors for aircraft manoeuvring control, and (b) limitations due to engine safety
considerations are taken into account in the overall design. This integrated approach is realized in our
research study by an Integrated Flight Propulsion Control (IFPC) methodology, which was first
successfully developed in [Garg93a].

The aircraft simulation model used in this study has been developed at defense evaluation and research
agency (DERA) Bedford (UK) in order to investigate the problems and opportunities associated with
the integration of flight and propulsion control systems for STOVL aircraft. The airframe model is
based on the nonlinear DERA Bedford Harrier T.Mk4 Wide Envelope Model (WEM). This model has
been established through flight trials as being representative of the real aircraft. In order to fuily
explore the possibilities of advanced engine control under an IFPCS framework, the original Pegasus
engine previously included in the WEM has been replaced with a high-fidelity thermodynamic model
of the Rolls Roycé Spey engine shown in Figure5.2, produced by DERA Pyestock. The Spey is a two—

spool reheated turbofan engine with the same basic architecture, for the purposes of control, as the
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EJ200, which is used to power the Eurofighter. The thermodynamic model of the Spey allows the
control law designer full access to engine parameters such as inlet guide vane angle, fuel flow rate and
exit nozzle area. The engine thrust is vectored through four nozzles similar to the standard Harrier.
Total thrust and high-pressure bleed flow to the Reaction Control System (RCS) is scaled to match the
performance of the Pegasus engine. The effect of high-pressure bleed flow (to the RCS) on the engine
operating point is modeled, and the effect of front/rear thrust split on engine performance is assumed
to be negligible. ‘

To increase the design difficulty, the front pair of nozzles has been moved forward and downward to
displace the center of thrust from the center of gravity and introduce thrust/pitching moment
interactions. Also unlike with the standard Harrier, the thrusts from front and rear nozzle pairs can be
modulated and vectored independently. Representative nonlinear actuation systems including both rate
and magnitﬁde limits (as well as deadzones and hysteresis for the thrust vectoring nozzles) have been
placed on all control motivators. The model offers a six-degree of freedom nonlinear simulation over a
flight envelope from hovér to 250 knots, and linearized models for controller design purposes can be

generated over the full flight envelope.

ENGINE INPUTS
Inlet guide vane angle Main fuel flow rate (MFF) Exit nozzle area
{(IGvA) (ENOZA)
\ n 1
Ly - N
THE ROLLS-ROYCE
SPEY TURBOFAN ENGINE

R ™

—n
\ \ \ High pressure turbine

Low pressure High pressure compressor  3tator outlet temperature

COMPIEssOr SuIge - surge margin (LPSM) (T10)
Low pressure margin (HPSM)
compressor ENGINE CONTROLLED VARIABLES
spool speed
{NLPC)

Figure5.2: Spey engine scheme
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Nomenclature

y : Flight path angle (deg).

o : Aircraft angle of incidence(deg).

7 : Flight path angle rate(deg/s).

VT : Velocity along the flight path(knots).

NLPC  :Low-pressure compressor spool speed(%).

710 : High-pressure turbine stator outlet temperature(K).

HPSM : High-pressure compressor surge margin(%).

LPSM : Low-pressure compressor surge margin(%).

THM : Thrust magnitude(kN).

ETAD : Elevator position (-15deg to 15deg).

ETASTK : Pitch reaction control system position (-15deg fo 15deg).
FNOZ : Front Nozzle position (-5deg to 120deg).

RNOZ : Rear Nozzle position (-5deg to 120deg).

SPLIT : Engine thrust split (0 to 1 : 0= all to front, 1=all to rear).
MFF : Main fuel flow (0 to 1.2 kg/s).

ENOZA : Exit Nozzle area (0.8307 to 0.1602 sine petal angle).
IGV : Inlet guide vane angle (-8deg to 35deg).

The results presented in this chapter relate to the control of the longitudinal axis only, and the control
law is required to follow a two-inceptor strategy. In this scheme, fore/aft displacement of the center
stick produces a change in flight path angle rate y, and displacement of the left-hand inceptor
demands aircraft velocity VT parallel to the flight path. Functional specifications for the IFPC system
are given as follows:

a) Flight Path Manoeuvre Demand: The rigid hand pitch control law will command flight path angle
rate and should actively hold flight path with the stick centered. Stick displacement will produce a
flight path rate demand up to a maximum of 3" /sec. Flight path demands should aim to be
decoupled
from axial manoeuvres, with a maximum demand of +2knots transient speed change during any

flight path manoeuvre.
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byVelocity Demand: Left-hand inceptor displacement will demand velocity parallel to flight path
(VT). A maximum transient deviation of +0.3"in flight path angle is desirable during velocity
changes of up to +30knots .
¢) Incidence Limit: To avoid extreme incidence angles, which can lead to lateral/directional
instability, an incidence boundary is necessary. The aircraft angle of incidence, «, should therefore
be kept within +12"and —6 during all manoeuvres.
d) Engine Safety Limits: To protect engine components from dangerous over stress and over
temperature, and to ensure avoidance of surge conditions, the following set of engine limits are to be

respected during all manoeuvres:

1- Low Pressure Spool speed (NLPC) <102%

2- High Pressure Turbine Stator Outlet Temperature (T10) <1430K

3- High Pressure Compressor Surge Margin (HPSM)>10%

4- Low Pressure Compressor Surge Margin (LPSM)>10%

Recommended maximum limits were also provided for five other engine variables — see [Bate2000]

for details.

5.4 Centralized IFPC system design

The technique chosen for our IFPC system is the H_loopshaping procedure described in [Mcf90].
This procedure provides certain advantages over the traditional mixed sensitivity H_ optimization. A
report produced by the British Aerospace on full-authority fly-by-wire, [Hyd91], indicates that
separating the design into two steps of 1) command feed-forward design and 2) robust closed-loop
stabilization leads to an effective design approach. This is typically the case of the H_ loopshaping
technique, which offers good handling qualities while maintaining a good stability margin.

Since a comprehensive tutorial on the H_ loopshaping design method is given in Chapter 3, we give
only a brief outline of the H_loopshaping technique used to design the individual controllers. The
aircraft nonlinear model was trimmed and linearized at 0,20,50,80 and 120 kn points of the flight
envelope. The H_ loopshaping controllers were designed for linearized models of the aircraft/engine

dynamics, generated at the operating points specified. The resulting state-space models of the

integrated airframe and engine systems, plus actuators, have 35 states and are of the form:
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%= Ax+Bu (5.1
y=Cx+Du (5.2)
The control inputs are given by

u=[ETAD, ETASTK , FNOZ,RNOZ ,SPLIT , MF'F , ENOZA,IGV ]

while the vector of outputs y includes 8 airframe and 19 engine variables. Based on the performance
requirements previously detailed, the vector of controlled variables z was chosen as

z=[a,VT,y, NLPC,T10, HPSM ,LPSM]

The angle of incidence o was included in z in order to explicitly minimize deviations from its trim
point during maneuvers. The H_loopshaping design method used to design the controllers, [Mcf90],
is essentially a two-stage process. First, the open loof) plant is augmented by (generally diagonal)
weighting matrices to give a desired shape to the singular values of thé open-loop frequency response.
Then, the resulting shaped plant is robustly stabilized with respect to coprime factor uncertainty using
H_optimization. The implementation structure for the H_ loopshaping controller used in the piloted

simulation trial is shown in Figure 5.3.
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Figure 5.3: H_ loopshaping controller implementation for piloted trials

With reference to this figure, the weighting matrix W,(s)is chosen generally to add integral action and

ensure reasonable roll-off rates for the open-loop singular values around the desired crossover
frequencies. The scalar weighting matrix k is then used to adjust control actuation requirements to

satisfy the various actuator rate and magnitude limits. For each of the linear designs between 0 and

120 knots the weighting function W, (s), containing pure integrators, was thus chosen to be of the form
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+ . : : . , .
Wi(s)= is—a , with the parameter a varying smoothly between different designs points. Note that in

this configuration the nonlinear Spey-Wem aircraft model is assumed to be scaled so as to be
approximately normalized with respect to maximum allowable input signals. The scalar matrix W, is
used to prioritize airframe-controlled variables (which must achieve specific handling qualities
characteristics) over engine variables (which have simply to be limited within certain {falues). For the
50 kn controller for example, the three weighting matrices were chosen as:

s+2

k=diag(.13,.1,.25,25,25,2,2,2), W, ="—=x1,

W, = diag(1,1,1,1/200,1/800,1/200,1/500)
The second stage of the H_ loopshaping design method involves the use of H_ optimization to
compute a controller block K_ which robustly stabilizes the shaped plant against a particular type of
uncertainty description, based on stable perturbations to each factors in a normalized coprime
factorization of the plant. The K_block controller for each operating design point was respectively
designed as described in Chapter 3 by means of the solutions of the Riccati equations given in
(2.72),(2.73). The final step of the design procedure is to add the constant prefilter K(0),in order to
ensure zero steady-state tracking error, assuming integral action in W,. The K, controller block for
each operating point is of order equal to that of the shaped plant, i.e, for each of our designs K has

43 states.

5.5 Observer-form implementation and scheduling
In [Sef90], It was shown that the controller resulting from the H_loopshaping procedure can be

written as an exact plant observer plus state feedback. Assuming, purely for notational convenience, a

strictly proper shaped plant, with stabilizable and detectable state space realization

AA' Bﬁ ~
G, = c 1o (5.3)

the equations of the plant observer plus state feedback of the H_loopshaping controller are:
%, =A% +H,(C3~y,)+Bu, 54

u,=Kx, (5.5)



where %, 1is the observer state, u,and y,, are respectively the input and the output of the shaped plant,
and

H =-ZC, | (5.6)

K, ==B[I-y?*I-y"XZ]'X, (5.7

where Z and X, are the appropriate solutions to the generalized algebraic Riccati equations, (2.72),

A, | B

(2.73) for a given G, :{ c D‘“

8 5

} In general an H_controller cannot be written as an exact plant

observer combined with a state feedback gain matrix, as there will be a worst-case disturbance term
entering the observer state, [Doy89]. However, for a controller produced by the H_loopshaping
method, this clear structure exists, as mentioned, and lends itself to gain-scheduling in that the

controller matrices K, and H, can be simply scheduled as a function of one or more aircraft

parameters. Figure 5.4 shows the observer implementation structure of the IFPC system scheduled as a
function of aircraft speed. At a given speed v, each matrix in the observer structure is linearly

interpolated, using the ith and jth (can be (i+1)th or (i-1)th) adjacent designs, as:

H [AM]=[1-AW]H,, + A(v)H, (5.8)
where A(v)e[0,1].
Note that the observer is for the shaped plant G,, and thus this places some limitations on the choice

of weighting functions for each of the linear controller designs — in particular they must have a fixed
structure and vary smoothly over the envelope to smooth the dynamics change of the shaped plant.
Otherwise, from an implementation point of view, the interpolation of the weighting functions will be

difficult and there will be little differences between H_ loopshaping controllers written in this form

and the classical LQG/LTR structure of modern control theory, [Ste92].
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For successful operation of the scheduled system it is essential that the controller gains K, and
H_ vary smoothly with operating point. A theorem in [Hyd91] can be used to show that this condition

will be satisfied provided the Riccati solutions X and Z and the stability margin y vary smoothly.

Theorem 5.1
Let 4.(8),D,(6),C,(6)be analytic nxn matrix functions of & defined on a real interval [a, p ], with

D (0) positive semi-definite Hermitian, C,(6) Hermitian, and (4,(8), D,(6)) stabilizable for every
8 e[a, B] the Riccati equation:
X(6)D,(6)X(6)-X(B)A,(8)— A, () X()-C,(0) =0 has a Hermitian solution. Further assume that

4.0) -D.(6)

, | 1s constant.
-C(0) -As(ﬁ)}

the number of purely imaginary eigenvalues of M(8) = {

Then the maximum solution X, (6) (given 6 X, (6) > X,(6) Vi) is an analytic function of 8 & [a, B].
Using the above theorem for the solutions of the Riccati equations used in the H_loopshaping design

AS

BS‘
C Ol } of a shaped plant G, , we need the following conditions to hold:

&

of a state space realization {

For

AX+XA, -XBBX+C.C,=0 | (5.9)
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1- B, B, is positive semi-definite Hermitian.
2-C.C, is Hermitian.

3-(A4,, B,B,)is stabilizable.

4, -BB N :
4-M (1) = c ;C P has a constant number of purely imaginary eigenvalues.

For

AZ+74"~ZC'CZ+BB =0 (5.10)
5-C"Cis positive semi-definite Hermitian.
6- BB’ is Hermitian.

7-(A4,C C)is stabilizable.

4 -CC . :
8-M.(t) = [ 35 n } has a constant number of purely imaginary eigenvalues.
The first three conditions are satisfied trivially, and by assumptions for solution of the normalized

coprime factor robust stabilization problem [Mcf90]. Adding to that, if (4,B) and (C,4)are

stablizable and detectable respectively, then M_and M, have no imaginary eigenvalues. Thus the

conditions (4,8) for the Riccati equations (5.9),(5.10) are satisfied.

This result confirms that a smooth interpolation of the parameters of the shaped plant matrices will
lead to smooth solutions to the Riccati equations and hence smooth observer and state feedback gains.
The shaped plant matrices A4, B,,C, have to vary smoothly with operating point, while also capturing
the important changes in the dynamics of the plant over the specified portion of the envelope —
knowledge of the aircraft and engine dynamics needs to be used here to decide on the position and
number of design points required for interpolation. Some extra freedom can also be introduced by

using weighting functions in the interpolation of the different matrices, }

A4,)=(1-AW)")H 4, +A(v)" 4, (5.11)
where: A(v) e [0 1].
A(v) =0 corresponds to the design i, A(v) =1 corresponds to the design j.

so that the exponent p can be used to get a better match between the interpolated linear system and the

actual non-linear system. In fact with our knowledge of the nonlinear model of the aircraft, and
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because we interpolate parameters of two linear models, we can give more weight to the state matrices
of the most faithful linear model. With that technique, we can also use more weight on the gains of the
controllers that we have a confidence in their efficiency around a specific interval of operating points
by playing with the tunable exponent p. Note that the constant prefilter must be recalculated at each
operating design point to take account of the different structure of the observer-form implementation.
Using the linearization of the nonlinear Spey-Wem model around a fixed speed and the structure of the

observer-based controller of Figure 5.4, the output of the linearized system is given as:

y=~(+THW,) (TB, + GWk)r (5.12)
with
T =GWK, (sl - 4, - H,C, - BK,)" (5.13)
in order to have steady-state error we choose a constant prefilter K, given by
K, =—(T(0)B, + G(OW, (O)k)'1 (I+T(0)H W,(0)) (5.14)
Assuming integral action in W, this simplifies to
K, =(1+RB)) " (-RHW,(0)) (5.15)
where
R=-K,(4,+HC, +BK,)" (5.16)
This constant prefilter must then also be scheduled as a function of speed in order to take account of
variations in the low-frequency gain of the controller over the envelope.
Simulation results show that the observer-form implementation of the H_loopshaping is suitable in
terms of performance. Figure 5.5 (in terms of 7 demands, velocity coupling and engine limits) and
Figure 5.8 (in terms of velocity tracking) present improved performance of the observer-form structure
comparing to the classical one-degree-of-freedom H_ loopshaping structure. This improvement is due

mainly to the feedforward block, which was recalculated at each operating design point.
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Nonlinear simulation results for the scheduled IFPC system in the acceleration from hover phase are
shown in Figures 5.9 to 5.12. The figures show close tracking of velocity demands as the aircraft
accelerates from O to 120 kns, with only small deviations in flight path angle during the maneuver
(comparison with results obtained in [Hyd91]). In addition, the four directly controlled engine
variables are kept within their specified limits (Figure 5.12) and « is regulated close to its normal
value throughout (Figure 5.9). The necessity for a gain scheduling scheme to preserve performance
throughout this portion of the ﬂight envelope is demonstrated in Figure 5.13 to 5.14, which compare
the performance of the scheduled IFPC system with a single controller designéd at the hover operating
condition. As seen from the figures the hover controller, which gives good performance at low speed,

is unable to cope with the large changes in the aircraft dynamics as it accelerates to wingbourne flight.
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Figure 5.9 : Response of scheduled IFPC system for pilot
demands VT in the acceleration from hover
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5.6 Antiwindup methodology

5.6.1 Problem statement

In this part of the gain scheduling for Harrier aircraft we want to extend the flight envelope over 150kn
of velocity. For that, we design a controller at the 150kn operating point. However, a nonlinear
simulation of this 150kn controller, depicted in Figure 5.15, shows an increase of the front nozzle
effort opposite to the rear nozzle effort. This was not really permitted with previous Harrier aircraft,

however the model that is currently in use in this thesis gives more flexibility on the actions of the pair

(front nozzle, rear nozzle) actuators.

On the other hand, with this flexibility, we need to prevent saturation of the split causing the actuators
to saturate. The results of observer gain scheduling technique from Hover to 150kn, in Figures 5.16,
5.17, 5.18, 5.19 show reduced performance on velocity tracking and coupling with unreasonable

actuator effort leading in some cases to saturation. Thus, an antiwindup strategy is needed for better

performance results.

VT degrees  gamma
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kn s ]
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time(secs)}

Figure5.15: Results of 150kn controller:

Velocity tracking
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5.6.2 Antiwindup technique
Antiwindup techniques attempt to improve the performance of control systems with saturation
constraints. Many such techniques have been reported in the literature and have been implemented for

real plant. The most used one is the Hanus conditioning scheme [Han87]. This technique requires the
controller to be invertible and minimum phase. The H_ loopshaping controllers designed for Okn,
20kn, 50kn, 80kn, 120kn,and 150kn operating points satisfy those conditions. However, the
implementation of this technique showed its limits for the observer-form /_ loopshaping controller

[Hyd91]. Thus, an observer antiwindup technique is necessary for our 150kn controller. The general

setup for this technique is given in Figure 5.20 [Hyd91]:

B '
Ui o l/- Up

Ws _/I G e

Uobs

Figure5.20: Observer form antiwindup
technique

w

{AW‘BW},W:! -B,D,'C, |0 B,D, |
e |D, 0

Without saturation on up , the controller W, is acting as W, . The actual plant inputs u ,are used to

drive the observer form controller, which results in the controller states remains consistent with the

plant states. In the opposite to Hanus technique, the observer-form controller uses the signal u

obtained from the feedback signal u,through W, (see Figure 5.4).
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5.6.3 Application of the observer from antiwindup technique:

Because of the direct effect of the split actuator on the front and rear nozzles, and indirectly on all the
actuators, we decided to include antiwindup block just for the split. We designed a 150kn “safe”
controller, for which results are shown in Figure 5.21. The performance of the safe controller is lower
than results obtained with the original controller without antiwindup. However, with this controller the

front and rear nozzles efforts have reasonably decreased compared to the controller without

antiwindup.
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Figure5.21: Results of 150kn safe

controller: Velocity tracking
To extend the flight envelope to 150kn velocity, we propose to compare an observer-form scheduling
controller using the 150 kn controller without antiwindup, and using the 150 kn controller with
antiwindup strategy. Results obtained with the antiwindup strategy show, in Figure 5.22, 5.23, 5.24,
5.25, that by constraining the split effort has a positive effect on all actuator efforts. This can be
explained by the fact that the split is responsible on directing the thrust magnitude for front and rear

nozzles. In addition, an indirect effect is noticed from split on other actuators. The tracking of the
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velocity demands is quite good with small coupling in the flight path angle and reasonable actuator

efforts.

Kilo Newtons

gammadot THD
4 4 |
| |
ol 2 e gl
& 2 o L
$ oy B Tk
2 T e, A
o ] o - D
-4 H 5 H
0 50 50 100
time(secs) time(secs) time(secs)

Figure5.22: Results of scheduled controller from hover
to150kn with antiwindup technique. (a)
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5.7 A control signal blending/interpolating approach:
The approach to scheduling of H,_ loopshaping controllers described above requires controllers at

different operating points in the flight envelope to have the same state-space structure. A drawback of
this requirement is that standard usual controller order reduction techniques, [Glo84], cannot be used
to reduce the order of each controller prior to scheduling, as this will destroy the consistency of the
state-space structure across different designs. This issue is of particular concern for the IFPC problem
considered here, which, due to the complexity of the airframe/engine model, results (initially) in high-
order controllers at each operating point. Initial attempts at order reduction suggested, however, that
these fixed-point controllers could be significantly reduced in order without any change in their
closed-loop behavior.

One solution to the above problem would be to try to reduce the order of each controller using
technique which preserve the physical interpretation of the state variables, see for example the
approach described for an aero-engine control design in [Harf99]. In general such techniques are not
well developed and not systematic, however, and so in this study we opted to investigate a second
approach for scheduling the fixed-point controllers which imposes no constraint on their structure or
order. The approach proposed, called the blending/interpolating method, presents a new version of the

approach introduced in [Busch99]. Our method adopted here is different from the one presented in
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[Busch99], mainly, in that the controller signals are continuously interpolated as a funcﬁon of speed
with the result that no “bumpless transfer” type conditioning is required. In fact, interpolating the
outputs of two controllers, between their adjacent operating points of design, gives us the smooth
change of the controller outputs and thus prevent better the bumps that can occur in the classical
method presented in [Busch99].
The H_ loopshaping controllers are kept in their observer form as this structure was seen previously
to provide slightly improved time-domain responses when compared with the implementation
structure used in the piloted simulation trials. Now, writing the ith fixed-point controller as

% = 4%+ H} (Ci2 -y} )+ B, (5.17)

u = K&, | (5.18)
then the scheduled controller output is calculated in real-time along the region between two design
points i and i+1 as :
u, =(1-A)u, + A" (5.19)

where u!is the output of the ith controller and #." is the output of the i+1th controller. The

vi
. Aefo. 1].

interpolation factor A(v)is given by :;
v

Where v, v and v'*' are the current velocity, velocity at the ith design point and the velocity at i+1th
design point, respectively. The structure of the blended/interpolated IFPC system is shown in Figure
5.26. Note that the blending/interpolating of the control signals is done at the input of the shaped plant
— the weighting functions for the plant were then interpolated in the same way as for the previous
scheduling scheme. This was seen to give better performance than direct blending/interpolating of the
control signals at the plant input. A possible reason for this is that, assuming different weighting

functions #, and including pure integrators, signals after W, will have large differences and widely

varying blended/interpolated signals will result.
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Each controller we used in this blending/interpolating technique assures stability and achieves
reasonable performance in a region around the corresponding operating point (hover, 20, 50, 80 or
120kn). A significant advantage of this approach is that no requirements are placed on the structure or
order of the different fixed-point controllers — in fact they could even be designed using different
synthesis methods to optimize the performance achieved. This structural freedom was exploited to
reduce the order of each individual controller as much as possible without sacrificing performance or
robustness properties. With respect to the observer form structure chosen to implement
~the H_ loopshaping controllers, we opt to reduce the order of the shaped plant for each design given by

N

where G! =G! +G.,; G. is the stable part of the shaped plant, G' is the unstable part of the shaped

plant.

to the lowest order shaped plant

G! 4, | B 5.21
st Ci 0 . ( ° )

where G =G!

SFPE

. i
+G,,

i i
Gss - Gsrs

such that '

i <tol, and then re-calculate the controller gains for the reduced-order shaped

plant G!,. Note that the unstable part and the stable part were added again at the end of the procedure.
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Using this approach we were able to significantly reduce the orders of each fixed-point controllers
without losing their respective performance locally. Depending on the point in the envelope, final
fixed-point controllers of order 14-19 were obtained.

Nonlinear simulation results for the blended IFPC system are shown in Figures 5.27 to 5.30, for
acceleration from 20 to 120 kn. The figures show excellent tracking of velocity demands with minimal

coupling into y and «. In addition, all internal engine variables are held within their specified safety

limits.
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Extending the schedule to include the hover flight condition produced the results shown in Figures
5.31 to 5.34. The results show slightly increased coupling into y due to the large variations in the
aircraft dynamics between 0 and 20 kn. Overall the results compare favorably with those achieved
with the observer-form scheduling scheme, especially considering that the order of individual

controllers has been significantly reduced.
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5.8 Optimal multi-switching technique

5.8.1 Introduction

The approach in this section is slightly different: we consider several isolated design points as in the
interpolated scheduling case, but instead of a blend between two controllers we consider a
straightforward switch. This not only has the conceptual advantage of simplicity, but it is often easier
to implement switched control architecture than a scheduled one. When compared to ’previous
scheduling approaches it also has advantages in terms of design time and is considerably less
computationally demanding. The system under study seems ideally suited to switching (see[Hyd91]
for an application of the Hanus technique [Han87] to a simple STOVL Harrier flight control problem)
however, which has obvious advantageé in the fact that no additional modeling needs to be carried out
and, as already stated, in the relatively low computational demands it makes.

It is well known that an abrupt switch between linear controllers can cause transients, or bumps, which
can lead to unacceptable closed-loop behavior, both in terms of actuator irregularities and also in
system response. These bumps arise out of an inconsistency between the states and graphs of the
controllers and, in their most malicious form, may give rise to instability when switching occurs.
Hence, we base our proposed switching strategy on a recently introduced bumpless transfer technique
[Turn99],[Turn2000], to reduce the transients at the time of switching. The technique, based on

optimal control methods, leads to a feedback matrix, ', which produces a signal, a(¢), fed into the

off-line controller to ensure that its output tracks the current on-line control signal, while also heeding

the difference between «(f) and the current input to the on-line controller. In other words the method

seeks to minimize, in a weighted LQ sense, the difference between the responses of the on and off-line
controllers, in an attempt to preserve performance.

The LQ bumpless transfer methodology has already been demonstrated on a helicopter example in
[Turn2000] and [Turn99]. Here we consider a more complex example, which requires switches
between multiple controllers due to the highly nonlinear nature of the plant's dynamics. This leads to
an implementation technique to reduce on-line computational burden. Both the LQ bumpless transfer

technique and the multi-switch concept are described in more detail later.
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5.8.2 Linear quadratic bumpless transfer :

The idea of linear quadratic (LQ) bumpless transfer was introduced in [Turn2000] to facilitate, in an
optimal manner, dynamic transfer between two linear controllers.

Essentially the method of attempting to ensure bumpless transfer is a feedback matrix, /', (which we
assume has access to the on-line controller's states), which drives the off-line controller in order that
its butput tracks that of the on-line controller, while also ensuring the off-line cohtroller input does not
deviate too sharply from the on-line controller input. In [Turn99], the method was extended to include
a low-pass filter in each charmel of the vector, a(r) prodﬁced by F'. The aim behind this was to ensure
a less pronounced switch between the on and off-line controllers, albeit at the consequence of
introducing dynamics into the bumpless transfer compensation scheme. In our experience this second
method works better and thus it was preferred as the basis of the methodology proposed here. In what
follows we shéll introduce some new modified formulae for the bumpless transfer compensator. This
should familiarize the reader with the LQ methodology. Note that the formulae of [Turn99] could not
be used directly as that paper only considers strictly proper controllers; the controllers here are not
strictly proper.

The subsequent subsections are intended more as an overview of the LQ bumpless transfer method and

for more technical details on the derivation of the formulae, the reader is referred to [Turn2000].

5.8.2.1 Finite Horizon compensator formulae

Consider Figure 5.35 where #(f) € R"is the on-line control signal, u(¥) € R™is the off-line control

signal, r(¢) € R" is the reference demand and y(7) € R" is the plant output.
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The vector produced by the feedback matrix F isar(f) € R™ and the low-pass filtered version of this is
a(t) e R™ .We assume that the off-line controller, K, (s), is governed by the following equations
x=Ax+B(r+a)+ B,y (5.22)
u=Cx+D(r+a)+D,y (5.23)
and that the low-pass filter, L(s), is governed by the following equations
% = Ax,+Bor (5.24)
a=Cx, (5.25)
Note that we are assuming that the controller has two degrees of freedom. This allows more generality
in our results and by making obvious assumptions, the results hold for one-degree-of-freedom

controliers. We assume that matrix F has access to both the controller and filter states as well as the

vectors #, y and r.

Following are the assumptions we made for the method presented:

Assumption 1 : The controllers' state-space realizations are all stabilizable and
detectable.

Assumption 2 : Given K (s) is the off-line controller and K, (s) is the on-
line controller, let the following equivalent conditions be satisfied

1.The on and off-line controllers locally stabilize the plant and the intersection of these locally
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stabilizing domains is not empty. Furthermore the point of switching is in the intersection of these
domains.

2.For the nonlinear plant

_{x” AL (5.26)

y = h(xp9 u)
Let K, (s) be designed at the operating point x, and assume K, (s) stabilizes P Vx, € X, where
x, eint X .
Let K,,(s) be designed at the operating point x’ then K, (s) stabilizes P Vx, € X, where
xheintX,.
Furthemore, we assume that X = X NX ¢ and switching takes place in X .

The motivation for Assumption 2 is practical in that we would like to switch between two stabilizing
controllers and, furthermore, at the point of switching we would like both controllers to yield stable
closed loops. It is unreasonable to expect good behavior from the switched system if the switch takes
place at a point in the system's operating regime where one of the controllers does not stabilize it! This
is quantified by the assumption that we switch in X , where both controllers are stabilizing.

One could, in principle, make a stronger assumption, given sets Z, < X, and Z, < X where the

respective controllers are not only stable but also yield, in some sense, good performance. The

stronger condition would be that the switch takes place in Z=Z,NZ, #¢, which would thus

guarantee a certain performance level is maintained. This is more difficult to quantify, but some
intuition can be used in implicitly determining this set. In practice Z will be used instead of X, as it is
normally desirable for some performance, and not purely stability, to be maintained.

The aim of the LQ technique of bumpless transfer is to derive a matrix F such that at the time of
switching the transient produced by the controller are minimal. To do this, we would like uand # to
be as close as possible at the time of switching, but also we would like & to be as small as possible to
ensure that when switching has occurred, any abrupt change at the controller input does not manifest
itself at the controller output (plant input). To pose this problem in the LQ framework we consider the

minimization of the following functional

J@.0.T) = [l2, 0 W, 042,07 Woz @)l +2 2, S2,(T) (5.27)
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where : z,(8) =u(t) —u(t) (5.28)
z,(t) = a(t) (5.29)
Note that we do not minimize &(¢) directly, but rather minimize a(¢) instead. As the input to the off-
line controller is r(¢)+a(t) and &(¢) is the output of the low-pass filter, this enables the input to the
controller to gradually deform into purely »(¢) when the off-line controller is switched on-line, which

helps avoid a bump at the controller input. In this setup, we assume that the switch between on and
off-line controllers occurs at time 7', and hence we seek the cost at this time to be minimized also. The

matrices W, and W, are positive definite matrices which are used to weight the relative importance of
ensuring # ~ # and minimizing «.
Combining the dynamics of the off-line controller and the low-pass filter we obtain
¥=A4A%+Bw+Ba (5.30)
u=Ci+Dw (5.31)

where

- 4 BC, | - B B | - 01 -~ - 1
A= ! ’.' B=|"" T7?|B = C=[C 0]D =[D, D)= * we=l"
0 4 | 0 0 B, X, y

Substituting this into the performance index (5.27) we obtain
J@,a,T)= —;; :j[(é;z + Dw—a) W (Ci+ Dyw i) +a Waldt + —;—zu (T) Sz, (T) (5.32)
Forming the Hamiltonian [Lew86] yields:
H= —;-{(C‘i + Dw—a)' W (Ci+ Dw—ii) + a"ma} + A" (A% + Bw+ B,a) (5.33)

Invoking standard procedure from LQ optimal control [Lew86], we obtain the first-order necessary
conditions for a minimum as

oH

—(—9——=x~1£+§1w+l§2a=x (5.34)
OH _ xrpy e 3700 AT By (T 5
—5 =C WG+ A2+ CW, Dow=C'W i = =2 (5.35)
X

40£=W6a+1§§/1:0 (5.36)

ox

These can be combined to obtain
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where the following definitions have been made
R=BwB (5.38)
0=Cw,C (5.39)
Using the method of Sweep (i.e, assume the linear relationship A(¢) = I[1(1)X(¢) — g(¢¥) and combining
this with equation (5.37), a is obtained as
a=-W"'BA (5.40)
where A :=TI1x— g is found from the differential equations
T1(t) + T A+ AT + TIORII(H + 0 =0 (5.41)
(A- RN g—(CW,D+T1BYWw+C" Wi =g (5.42)
which are respectively solved from the terminal points
(T = C7SC (5.43)

—g(T) =C"SDw(T) - C"Sii(T) (5.44)

5.8.2.2 Infinite horizon compensator formulae
The finite-horizon formulae are often not appealing from a practical point of view. Firstly, in order for

a(t) to be computed, the signals w(f)and 4(¢) must be known beforehand, which in a flight control

situation is not realistic. Secondly, the feedback is time-varying and optimality is associated very
much with the horizon length. Therefore these finite horizon results are extended to an infinite time
support in order to ease implementation difficulties.

The infinite horizon results assume that the switch between controllers occurs infinitely far in the

future (T — o) and one could certainly raise objections to this assumption. However, if the dynamics

are such that a steady state is reached relatively fast, and of course the control signal is relatively
constant over a period of time, and then one can apply these infinite horizon formulae with some
confidence.

It is well known in the optimal control literature [Lew86] and for specific detail [Turn2000] that in
order for the solution of the differential Riccati equation, (5.41), to converge to the positive semi-

definite stabilizing solution of
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ATI+TI4+TIRTI+Q (5.45)
as T — oo we require (;1, R, \/5 Yto be stabilizable and detectable. Note from the definitions of R and
Q and strict positive definiteness of W, andW,, as it was assumed (Assumption 1) that our controller

is stabilizable and detectable, then it follows that (ZI, R, \/5 ) is indeed stabilizable and detectable.
Hence a positive semi-definite stabilizing solution to (5.45) always exists and furthermore it satisfies
;1_1)130 TI(1) =TI(x0) =112 0 (5.46)
Now consider Equation (5.42) and hote that as this develops backwards in time and as A-RIlis
Hurwitz implies —( A—RIT) is anti-Hurwitz, the LQ tracking technique of [Athans66] can be applied.
With the assumption that w(f)and #i(¢) are constant then it follows that
limg()=g = —~(A - RID) " [—(1B, + C"W,B)w+C"W, ii] (5.47)

Inserting this into the expression for o gives
a=F|w (5.48)
where F'is given by

F=-W Bl | ~((4- Ry " (T1B, + C'W, D))" (5.49)
(A-Ry " C"w,)"
Note that the off-line control loop will be stable as T1 > 0 is the stabilizing solution to the ARE, (24);

therefore it follows that the off-line ‘A’ matrix, (;1 - IEH) , 18 Hurwitz (which also ensures the

existence of (4— RID™).

5.8.2.3 Stability

So far we have only given guarantees of the stability of the off-line control loop. Our basic assumption
also guarantees the stability of the system at the control design points. However nothing has been said
about the stability of the system as a whole; that is the stability of the switched system. In fact plant
states would trigger switching and we could have limit cycles in which case the assumption that

switching occurs at 1 — o« do not hold.
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One of the main problems with a control switching strategy is that it introduces certain technical
problems and thus it can be quite difficult to give any rigorous guarantee of stability. The process of
switching makes the system's differential equations discontinuous in their right-hand side, and it is
therefore nontrivial to guarantee existence and uniqueness of solutions. ‘

It is also worth mentioning that most results on stability of switched systems tend to concentrate on the
switching of linear systems. Here we are dealing with an uncertain nonlinear system, so it is not valid
to apply results on the stability of switched linear systems.

We thus can make no concrete guarantees of stability, but can offer experience and guidelines, which
lend credibility to our approach. Practical results in the literature [hyd91], [Turn2000] have shown that
for sensible switching boundaries, stability is never a problem. One could envisage potential stability
problems if the switching boundaries were too close and thus limit cycling could occur. However for
switching boundaries sufficiently far apart, and maybe with appropriate hysteresis introduced, we

believe stability is not likely to be a problem.

5.8.3 A multi-switching technique for controller implementation
5.8.3.1 Supervisory control |
In a control system which consists of several switched controllers it is necessary to have some suitable
switching protocol to determine the current on-line controller and the points at which control is
switched to the other controliers. The mechanism which implements this protocol is often referred to
as a “supervisor”, the behavior of which has stability and performance implications. There are,
broadly, three classes of protocols, which govern control switching
- Time-based - the supervisor will switch to a certain controller at a specified time.

There are generally no stability problems with this method.
- State-based - the supervisor will switch to a certain controller when the plant's state crosses a given

boundary in the state-space. There are many potential stability problems with this method.

- Event driven - the supervisor switches control when an external event takes

place. This type of switching protocol is difficult to analyze, particularly if the

external event is an indirect function of the plant's state.
Here we consider the second type of protocol, which is the most suitable in the aircraft application. For
this type of switching protocol the current on-line controller is determined by the plant state's location

in its state-space. The instances at which the control laws are switched can be described by boundaries
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in the state-space. In general these boundaries will be manifolds. For example in Figure 5.36, the
boundary at which the controller switches from controller K| is described by the 1-dimensional
manifold x} +x? = #*, which happens to be a circle of radius . When there are several controllers and

there are several states on which switching depends, these switching boundaries can appear complex

and the study of the switched system's stability is more difficult.

Xy
K, | K, | K, | K,
X Switching points
. 1 o s
Figure 5.36 : An example of switching Figure 5.37 : Switching points on an interval

boundaries which are manifolds

In this case we consider a particularly simple form of switching protocol of the state-based class: when

the switch only depends on the value of one of the states. We think of this as partitioning the state
space, X, into the Cartesian product X, = Ix X B
where 3 < R'is the subspace associated with the parameter on which switching is dependent and

X » C R""is the remainder of the state-space. Note that switching is independent of the state x 'S

position in X , and is only dependent on the state's position within 3. As 3 is the open line the

boundaries at which switching occurs thus become points and, more importantly, induce a certain
order in which the controllers can switch.

For example, Figure 5.37, for three controllers, K, K,, K, , there will necessarily be two switching
points. At the first switching point let the switch take place between controllers and K, ; at the second
switching point let the switch be between controller X, and K. Then, providing the resulting

switched closed-loop system has a continuous solution, it is evident that a switch is unable to take

place directly between the controllers K, and K, - the only way of getting from K, to K, is by first

switching to X, .
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Extending this idea to N controllers we have the conclusion that K, can only be switched to X, ; or
K., (1<i< N).Of course, if the controller is K| it can only be switched to X, and if the controller is
K, it can only be switched to X, , as these controllers are operative at the beginning and end of the

line 3.

5.8.3.2 A multi-switch methodology for the VSTOL aircraft

The flight envelope considered in our VSTOL application is simplified as a function of speed alone.
To be more specific, we consider the interval between hover (0 kn) and approximately 140kn. This is
the region over which there is a significant change of the aircraft's dynamic behavior, and the
linearization obtained at, for example, 20 kn differs substantially of the linearization at 120kn. In other
words, the subspace we take as J is the line, which represents airspeed. In actual fact, we have
limited our envelope to be a closed interval within J for obvious practical reasons. From the previous
subsection, we know that allowing the current on-line controller to depend on the position of one state
within an interval allows a sensible, well-defined switching strategy to be used.

To cover the full flight envelope considered for our application, we chose four control design-
operating points. Even though we could obtain satisfactory and stable performance with only two
extreme controllers, by increasing the number of controllers, we were be able to preserve better the
performance objectives over the full flight envelope. The operating design points considered are
20,50,80, and 120kn. Each loopshaping controller designed presents a good performance locally

~ around its design operating point. This region can be seen as a ball with the operating point velocity
being one of the coordinates of its center. We noticed that the radius of this ball could be considerably

enlarged without losing significant performance criteria. Denoting the controllers, Ky, K, K, and
K., , in terms of Assumption 2 we are assuming that:

K, stabilizes P for all x, € X,

K, stabilizes P for all x, € X,.

Ky, stabilizes P for all x, € X,.

K, stabilizes P forall x, € X ,,.

and that the intersections of these regions are all non-empty.
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itching technique presented above we thought about a multi-switching methodology
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in the state-space. In general these boundaries will be manifolds. For example in Figure 5.36, the |
boundary at which the controller switches from controller X, is described by the 1-dimensional
manifold x! +x. = 7, which happens to be a circle of radius » . When there are several controllers and

there are several states on which switching depends, these switching boundaries can appear complex

and the study of the switched system's stability is more difficult.
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Figure 5.36 : An example of switching Figure 5.37 : Switching points on an interval

boundaries which are manifolds
In this case we consider a particularly simple form of switching protocol of the state-based class: when

the switch only depends on the value of one of the states. We think of this as partitioning the state

space, X, into the Cartesian product X, = 3x X »

where 3 R'is the subspace associated with the parameter on which switching is dependent and
X » C R""!is the remainder of the state-space. Note that switching is independent of the state x 'S
position in X , and is only dependent on the state's position within 3. As 3 is the open line the

boundaries at which switching occurs thus become points and, more importantly, induce a certain
order in which the controllers can switch.

For example, Figure 5.37, for three controllers, X, X,, K, , there will necessarily be two switching
points. At the first switching point let the switch take place between controllers and K, ; at the second
switching point let the switch be between controller XK, and K. Then, providing the resulting

switched closed-loop system has a continuous solution, it is evident that a switch is unable to take

place directly between the controllers K, and K, - the only way of getting from K, to K, is by first

switching to X, .
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Extending this idea to N controllers we have the conclusion that K, can only be switched to X, or
K., (1<i<N).Ofcourse, if the controller is K, it can only be switched to X, and if the controller is
K, it can only be switched to K, , as these controllers are operative at the beginning and end of the

line 3.

5.8.3.2 A multi-switch methodolegy for the VSTOL aircraft

The flight envelope considered in our VSTOL application is simplified as a function of speed alone.
To be more specific, we consider the interval between hover (0 kn) and approximately 140kn. This is
the region over which there is a significant change of the aircraft's dynamic behavior, and the
linearization obtained at, for example, 20 kn differs substantially of the linearization at 120kn. In other
words, the subspace we take as 3 is the line, which represents airspeed. In actual fact, we have
limited our envelope to be a closed interval within 3 for obvious practical reasons. From the previous
subsection, we know that allowing the current on-line controller to depend on the position of one state
within an interval allows a sensible, well-defined switching strategy to be used.

To cover the full flight envelope considered for our application, we chose four control design-
operating points. Even though we could obtain satisfactory and stable performance with only two
extreme controllers, by increasing the number of controllers, we were be able to preserve better the
performance objectives over the full flight envelope. The operating design points considered are
20,50,80, and 120kn. Each loopshaping controller designed presents a good performance locally
around its design operating point. This region can be seen as a ball with the operating point velocity
being one of the coordinates of its center. We noticed that the radius of this ball could be considerably

enlarged without losing significant performance criteria. Denoting the controllers, K, Ky, Ky, and
K5 » in terms of Assumption 2 we are assuming that:

K, stabilizes P for all x, € X,

K, stabilizes P for all x, € X;.

Ky, stabilizes P for all x, € Xy, .

K, stabilizes P for all x, € X ,,.

and that the intersections of these regions are all non-empty.
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Based on the switching technique presented above we thought about a multi-switching methodology
that would preserve performance objectives, while also ensuring that only three controllers are running
simultaneously (reducing computational burden).

Let us define:

N : The number of controllers covering the flight envelope considered.

K, the ith controller, 1<i< N.
j, 1< j < N ~1the jth switching point corresponding to a switch between the ith and +1th controller.

The algorithm below presents this new methodology:

Algorithm1 :

1- Design the N controllers covering the flight envelope.

2- Choose the switching boundaries (normally a speed).

3- Start simulation/flight with the ith controller.

4- Condition, using the matrix F, the i-1th and the i+1th controllers. If there is no i+1th controller (the
upper end of the flight envelope is reached), or there is no i-1th controller (the lower end of the flight
envelope is reached), only condition the remaining (adjacent) off-line controller.

5-When the jth (j-1th) switching boundary is reached switch to the i+1th (i-1th) controller.

6- Let the current controller become the i'th controller and go to step 4.

We can see this algorithm requires a maximum of three controllers to be run in parallel and only two at
the upper and lower end of the flight envelope. This point is useful to note for implementation
purposes, particularly when there are a large number of controllers used throughout the envelope.
Obviously, the fewer controllers, which are, conditioned off-line, the less demanding the
computational requirements are. Heuristically, there would be some hysteresis used in the switching
points to prevent possible limit cycles / oscillations arising from change in pilot demand. The level of
the hysteresis required is likely to depend on the pilot-vehicle system. In our work thus far we have not
used any hysteresis as so far no piloted simulations have been conducted, although this is anticipated

in the future. In [Hyd91], hysteresis is used in the switching algorithm proposed for piloted simulation.
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5.8.4 Nonlinear simulation results
5.8.4.1 Without the bumpless transfer scheme

Figures 5.38-5.41 show the system's response to a ramp demand in airspeed V,, without the bumpless
transfer scheme. Note that although reasonably accurate tracking of the ¥, demand is achieved, the
response is punctuated with small transients. The switch from K, to K., occurs at 12 seconds and the

switch from K, to K, occurs at 27 seconds. Although there are certain variables, which show a

“bumpy’” response, the majority of the variables behave reasonably well.

However when at ~ 50 seconds the switch to the 120knots controller is made. At this point the aircraft
exhibits unacceptable transient behavior. Note that the angle of attack, @, “jumps” suddenly from 8 to
almost 5 degrees, before it is regulated back to 8 degrees. This is unacceptable both from a safety point

of view (o must stay above 6 degrees at this point in the envelope) and also from a ride quality point

of view. Similarly, ¥ shows an unacceptable excursion to almost —2°, meaning coupling of almost

2.5" which again is unacceptable from a safety perspective.

The engine variables also suffer, as the magnitude of the transient caused by the bump rises 710 to a
point, which again violates safety limits. Similar large bumps occur in LPSM and NLPC . Also of
concern is the saturation which occurs in the SPLIT variable and the large jumps in the front nozzle
and ETAD . The engine actuators shown in

Figure 5.41 also show signs of saturation and large jumps without the bumpiess transfer scheme.
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5.8.4.2 With the bumpless transfer scheme

Figures 5.42-5.45 show the system's response to a ramp demand in airspeed ¥, with the bumpless
transfer scheme used to condition the off-line controller. The first thing to notice is that the tracking of
the ¥, demand is mruch smoother than before and there appears to be no detectable bumps at the times
of transfer (which were the same as before). Notice also how the coupling intoarand y is considerably
less than for the case without the bumpless transfer scheme. The bumpless transfer scheme has similar
effects on the engine variables (Figure 5.43), where the responses are free from bumps and saturation.
The actuator responses tell a similar story. Although the actuator activity changes significantly

when K, is on-line, the transition from one type of behavior to another is smooth and SPLIT and

nozzle area do not saturate as before.

YT THM
150 ; 74 7
-------- EL--—---.-W
w I
m 3
& (AR
1
]
=]
10d
o :
AR 1 10 YT o SR [ N A = 100 =2 S I
s ]
= o W B OQlepeecmebie e
H 5 .
&0 w0 50 100

time(secs) time(secs) time{secs)

Figure 5.42 : Airframe variables with the
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5.9 Partitioning-scheduling of IFPC design

5.9.1 Introduction

The objective of the IFPC research is to consider methodologies to improve the overall system
performance. These methodologies have to take into account dynamical coupling between the airframe
and propulsion systems of STOVL aircraft. Essentially, an integrated approach has to ensure that
optimal use of the various propulsion system into effectors for aircraft maneuvering control and
limitation due to engine safety considerations are taken éccount in the overall design. One approach
proposed in [Gar93a] to address integrated flight and propulsion control (IFPC) is to design a single
centralized controller for the full-integrated airframe and engine system. This centralized contréller is
optimal in a sense that it has to take into account the overall performance requirements and the
coupling existing between the two subsystems. Multiple criticisms can be addressed to this complex
centralized controller. The high order of the centralized controller is its major disadvantage. The
centralized controller also suffers from a lack of transparency with regards to subsystems
functionality. Independent integrity of both airframe and engine control systems is not maintained.

Thus an independent testing and redesign in reality is not possible. The second approach, using mixed



sensitivity H  techniques, was first proposed in [Garg93a]. This method was used to an IFPC system
for the VAAC Harrier aircraft in [Sar2000]. It partitions the IFPC system into separate airframe and
engine sub-controllers, which are connected via a particular structure, subsequent to the design of a
fully centralized controller. The particular structure used for the centralized controller is a static two-
degree of freedom of a H_loopshaping controller. In this section, we extend the research done in
{Sar2000] by considering the control of a large flight envelope of the Harrier aircraft. We introduce a
novel way of gain scheduling using the structure of the partitioned scheme. The blending/interpolating

technique proposed in [Aouf2000c] was extended for the partitioned controllers designed for chosen ’

operating points over the flight envelope.

5.9.2 Centralized controller and partitioning procedure

The particular implementation structure for the centralized H _loopshaping controller as two separated
blocks, one as feedforward and another as feedback, has been found in practice, [Mcf90] to give better
time domain performance, and in particular smaller overshoot in response to reference demands. This
is because with this structure the references do not directly excite the dynamics of K_ . This can often
result in large overshoot (classical derivative kick), since K_has been designed in the frequency
domain for robustness objectives rather than time-domain performance. The clarity of the observer
form structure implementation, adding to the time-domain performance of the H_loopshaping gives
us a large potential of a transparent and efficient implementation controller structure. The procedure of
partitioning used here can be viewed as a partitioning approach for a static H_loopshaping two-
degree-of-freedom controller, as opposed to the original procedure proposed in [Garg93a], [Garg93b],
which was applied to a standard mixed-sensitivity H_ controller [Doy89]. The particular structure
required for the partitioned IFPC system depends on the nature of the interactions between the
airframe and engine subsystems, as well as on the various requirements arising from industrial and
commercial constraints. In practice, a hierarchical structure has been found to be most appropriate,
with the airframe sub-controller generating commands both for the airframe control surfaces, and for
those propulsion system variables, which directly affect the airframe. The general framework for
controller partitioning is given in Figure 5.46. The centralized IFPC system is partitioned into three
separate sub-controllers. The first is related to the airframe part of the aircraft, the second is related to

the engines and the third manages the coupling existing between the airframe and the propulsion
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systems. A five step procedure, developed in [Sar2000], is described below that leads to blocks of
partitioned IFPC systems starting from the centralized H_loopshaping IFPC controller designed.

: Airframe subcontroller K,

K e (W,
Zac —r—} e (OW oy,

? G(s) 2k
>

interface UE _Z )

subcontrolier K, :

wea (W g 1‘

1
i i
a e
1 i

7z !

Pl O kW (53 !
i 1
' 1
1 i
: Km(S)Wz,‘ :
t 1
i '
' '
1 1

.....................................................

Figure5.46: Partitioning IFPC controller schem

Stepl: Assign the plant’s inputs and outputs to be either engine, airframe or interface variables. For the
control inputs, this decision is based on control effectiveness rather than the physical location of the
actuator. For example, although the front and rear nozzle pairs are physically a part of the propulsion
system, the angle of these nozzle pairs directly affects airframe quantities such as ¢ and V7T, and so it
is natural to consider them as airframe actuators. Variables through which engine control inputs affect
indirectly on the airframe variables are not denoted as interface variables. For example a change in
main fuel flow may be seen to produce a change in velocity. However, this velocity change is more

directly due to the resulting change in thrust magnitude, which we thus denote as an interface variable,
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leaving main fuel flow to be considered as part of the engine subsystem. The plant’s input, output and
interface variables are grouped as presented below:

U, =[ETAD,ETASTK ,FNOZ,RNOZ ,SPLIT| U, =[MFF,ENOZA,IGV']

Z, =[a, VT, 7] |

Z,, =[THM ,NLPC,T10]

Z,=[HPSM,LPSM]

where: U,,U, are the airframe and engine inputs respectively. Z,,Z,,,Z, are the airframe, interface

variables and engine outputs, respectively.

We assume that only interactions from engine to airframe are required to be considered. Interactions
from airframe to the engine are unwanted disturbances to which the designed IFPC system has to be
robust. '

Step 2. An internal engine sub-controller K, is extracted from the centralized IFPC system. This is
done by writing the centralized controller K(s)=W,(s)kK_ (s)W,, and partitioning it as:

Kaa(s) Kae(s)]

Kis)= {Kea(s) Kee(s)

The internal engine subcontroller K, is thus written as a reduced order approximation of the

Kee block of the centralized system.
Step 3: The control requirements for the interface subcontroller are identified by analyzing the closed-

loop frequency responses from the airframe commands Z,, to Z,, with the centralized controller.
Step 4: An H_loopshaping approach was adopted to design the interface sub-controller K, , which

has to meet these control requirements. The full engine sub-controller KE is made up of the internal

engine sub-controller K, and the interface sub-controller K, connected in parallel.

Step 5: With the engine subsystem closed using the centralized controller, as shown in Figure 5.46, we

obtain a state-space representation of the airframe sub-controller block, K, as a reduced order
approximation of the Eto [U, Z,,] transfer function matrix. The airframe sub-controller K4 is then
made up of the K, block along with the blocks K_ W,, and K_, (0)W,,, which are simply extracted

from the original centralized system.
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As can be expected, the overall order of the partitioned IFPC system, shown in Figure 5.46, is greater
than the centralized design. However, each individual sub-controller is of low order, leading to easier

implementation and greater transparency.

5.9.3 Scheduling the partitioned controllers

Centralized FH_loopshaping controllers designed for the particular operating points of 50,80 and
120kn were successfully partitioned following the partitioning procedure described above. In this
section, we consider the portion of the STOVL flight envelope from 50 to 120 knots. We present, here,
a strategy of gain scheduling that fits with the partitioning IFPC system architecture. The strategy is
based on an extension of the blending/interpolating technique, presented in [Aouf2000c], to the

controller structure adopted here. Defining u,(v)i=L..,p,j=1..,n as the ith output of the

controller system for the jth design point, the blending/interpolating technique proposes an

interpolation signal o be used for the actuators as:
u, (V) =(1-AW)u, )+ AWy, (v), ve [VJ--ij Li=l.,p
where: 0</A(v) <1is a function of the aircraft velocity v. v, , and v, are the velocities corresponding

to the j-Ith and jth design operating point, respectively. v

A major advantage of the partitioned IFPC system is that not all of the individual sub-controllers need
necessarily be scheduled — in this study; for example, we were able to maintain the sub-controllers for
the interface variables and the engine at the 50kn operating point sub-controllers design, and focus our
scheduling scheme on the airframe sub-controller. This choice is logical since the most significant
changes in the dynamics of the aircraft in this region of the flight envelope relate to the airframe —
specifically the control effectiveness of the aerodynamic control surfaces. Thus, the proposed

scheduling scheme consists of blending, only, the output control signals of the K, blocks of the

partitioned controllers at 50, 80, and 120kn flight operating points. The blending/interpolating
technique in [Aouf2000c] was proposed to interpolate the outputs of adjacent controller designs. For

our airframe controller, as shown in Figure5.47, we interpolate the output of K, at 50kn and 80kn for
the flight envelope between 50 and 80kn. We do the same with the airframe controller outputs of K,

at 80 and 120 kn when the aircraft operates between 80 and 120 kn.
Our proposed technique has the advantage of scheduling only the airframe controller rather than

scheduling all sub-controllers of the IFPC partitioned controller. This leads to less complexity in the
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controller scheme and less time consuming implementation. Notice that by this scheduling method, we
deal with an airframe controller of an order smaller than the order of the centralized IFPC controller-

scheduling scheme implemented in [Bate99].
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Figure5.47: Blending/interpolating partitioned controller

5.9.4 Nonlinear simulation

The IFPC system designed at the 50 kn operating point could be applied over the full flight envelope
considered from 50kn to 120kn velocity - Figures 5.48, 5.49, 5.50, 5.51 present the results of the
nonlinear simulation using the partitioned 50 kn controller. However, the performance obtained in
terms of decoupling of velocity demands from the flight path angle does not meet the specifications,
and in addition, the front nozzle angle is abnormally increasing as the aircraft accelerates from 100
knots to 120 kn. The results of our scheduling technique are given in Figures 5.52, 5.53, 5.54, 5.55.
The responses show an improvement in the decoupling of flight path angle, which achieves the limit of
+0.3 degrees required for the portion of the flight envelope considered. Furthermore, all actuator

movements now conform to the responses expected.
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Figure 5.51: Actuator responses for 50kn partitioned controller
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Chapter 6

Advanced scheduling techniques for a flexible aircraft

6.1 Introduction _

The multivariable scheduling problem is more difficult to deal with than the single-variable case, for
which the zeros and poles of the controllers can easily be interpolated. Switching techniques, based on
bumpless switching, interpolation techniques [Han87], [AouTurn2000], [Hyd91], and on linear
interpolation of the parameters of the observer-form controller [Aouf2000d], have been présented,
Methods based on the recent results on linear parameter varying (LPV) designs [Pack96], [Wu95a] are
computationally demanding and the solution to get an LPV controller is not guaranteed. Some
criticism regarding the lack of stability guarantees have been directed at methods based on the
interpolating techniques. On the other hand, a judicious choice of the frozen operating design points
with respect to an acceptable range of parameter variation should preserve the stability of the closed-
loop system. However, the ease of real-time implementation of those techniques is their major
advantage. In this chapter, we present a brief review of the LPV and gain scheduled Linear Fractional
transformation (LFT) designs. In addition, we adapt a form of interpolation technique to a B1 flexible
aircraft model and we give some new results on a redesign technique and robust performance gain-

scheduled interpolated controllers.

6.2 LPV gain-scheduled control theory

Extensive research on LPV gain-scheduled control has been done in the last decades and presented in
many papers as in [Wu95a], [Wu95b], [Apk95]. Noting that details and proofs are available in the
papers listed above, we present, in the following, the principal ideas of an LPV controller design. A

state-space representation of a linear parametrically varying system is given as:
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F(r)} N [A(pa), p0) B(p®), /J(I))Mx(t)] -

e ] [C(p0,p®) D(p®),p®)]Ld()
where the vector of parameters p(t) is piecewise continuous and lies in a known compact set P
[Kar84]. The LPV gain-scheduled controller will depend explicitly on the parameters p(t) and
guarantee that stability and performance requirements are met for all allowable trajectories of p(t) in
some known , bounded set. The performance is measured using the Z,-induced norm as:

o el
pel l|d"2;t0 ||d”2
del,

The output feedback case for rate-bounded LPV systems requires the closed-loop system to satisfy the
following exponential stability Lemma [Wu95b].

Lemma 6.1
Given the state-space parameter-dependent system in (6.1), and nonnegative numbers V; , if there

exists a continuously differentiable function w:P - ®_, such that forall p € P, W(p) > 0,

A’(p,ﬂ)W(p)+W(p)A p.B Zﬁ—— W(p)B(p, ) C"(p,B)

l

W) (p.5) L, D (pp)|<0 62)
cp.p) D(p.f) -,

L

where g=[4..8,].
and ],B}<U

i=1,2, --- s, where s represents the number of varying parameters, then there exists a

scalar o. < 1 such that for any p € P, the LPV system of Equation (6.1) is exponentially stable, and if
d e Ly and x(0) = 0, then |e], < a|ld], .

The generalized open-loop interconnection used for robust control design takes on the standard
structure, with some regularity assumptions and resulting in matrices depending on only the vector of

parameters p(s) .
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x(t) A(P(f)) B“(p(t)) Blz(p(t)) Bz(p(t)) x(1)

e (1) _ Gy (P(f)) 0 0 0 a,(t)
e, (1) - C, (P(t)) 0 0 I, d,(®) (6.3)
w(t) %_Cz (p(®) 0 1, 0 u(t)

) T
where p € P, |p|<v, the variables to control and the exogenous inputs are [el 62] and

[dx d, ]T respectively.

A state-space representation of the LPV controller, depending on the parameter p, is given as:
[xk (t)} _ {AK (p().p(O) By (o), p(r))”xk (t)} 64
u(t) | | Cx (P, p(0) Dy (o), o)) ]| »() '

and the closed-loop system can be written as:

FW(’)} 4, (p0.0) B,y (o0, 1)) [xm} 65)
e®) || Cp (0. 5®) Dy (01, 50) | d) |
x}and

where: x,, ={
Xk

A, (p5) = [ A(p)+B,(p)Dy (p, P)C,(P) B2<p>c,(<p,p>}
PAPETL B p)Ci(p) 4P, )
B, (p.p)= [B.(p) Bo(p)+By(P)Dx(p, )
PRI Be(p,p)

. Cy(p) 0
Cy s P) = ) .
@ (2:F) | Co(P)+ Dy (2, P)C, () CK(p,p)}

|0 0o ]
PalPP)=\ g b o)

By applying Lemma 6.1 for the closed-loop system representation introduced above, we deduce the

solution, in the following theorem, of the LPV control synthesis.

Theorem 6.1 [Wu95a]

The LPV Synthesis “y-Performance objective/v-Variation on the varying parameter o ” is solvable if
and only if there exist continuously differentiable real matrix functions X and Y such that for all pe P,

X(0)>0, Y(p) >0, and
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Y(p) A" (p)+A(p)¥(0)+ Zi[v gg—j ~7B,(p)B, (p) Y(p)C(p) B(p)

i

Cy(p)Y (p) | -1, 0 |<0 (6.6)
B (p) 0 -1,

bt (p)x<p>+xcp>z(p)+ii(vfgf)—yc;(p)cz(p) X(PB(p) C'(p)

i=1 ;

Bi(p)X(p) -y, 0 |<0 (6.7)
C (o) 0 71,
L _
and ,
X(p) 1,
20
[ I, Y(p)} ©)
2(/-7) = A(,O) = B,(p)C,(p), B(p)= [Bn (p) Bl2(/0)] .
where: - and +v, means that we take into account

A(p)=A(p)-B,(p)C,(p). €T (p)=[Cli(p) Ch(p)]
both rate limits in the inequalities.

If the conditions of Theorem 6.1 are satisfied, then by continuity and compactness, perturb X such that

the LMIs of Theorem 6.1 still hold and (X -¥~'})> 0 uniformly on P. Then an n-dimensional stricﬂy

proper controller that solves the feedback problem is defined as [Wu95a], [Pack96]:

A (p. )= A+y" [ 0 (P)X(P)L(P)BL(P)+ B, (p)B! (p) | T ()
+B,(0)F(p)+ Q0 (0)X(P)L(p)C,(p)- O (0)H (p, p)

B (p)=-0"(P)X(p)L(p)

Ce(p)=F(p)

(6.9)

where:

O(p) =X (p) Y (p), F(p)=~[ B (P)Y " (P)+Cp(p) ]. L(p) =~[ y X' ()C] (p)+ B, () ]

[?; J+7"C§ (PIC(P)+77 Y (P)B(P)B] (P)Y ' (p)

H(p,p)= {AZ (P (P)+Y 7 (p) 4 (P) + Z[p,-

C
and 4. (p) = A(p)+ B,(p)F(p), C.(p) :z[ n(p) }

Co(p)+F (p)
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6.3 Gain-scheduled LFT control theory

The LFT representation is very useful for control design theory, which incites us to present a gain
scheduling technique based on LFT. The LFT is also convenient to model plant uncertainty, which is
included in our new gain scheduling controller design technique.

Gain-scheduled LFT control assumes that a plant can often be represented as a linear fractional
transformation of a nominal plant with physical parameters that vary within a known range. The
controller to Be scheduled uses these parameters, measured in real time.

Figure 6.1 presents a parameter-dependent plant modeled as an LFT of a time-varying block diagonal

matrix A(f), which is assumed measured in real time and takes values in a known set.

A(?)

£ —>
_—.’K

=

iy P >
—Lip 3B A(f )
Figure6.1: Parameter-dependent plant Figure 6.2: Parameter-dependent
controller

By interconnecting the parameter dependent plant and controller, the closed-loop system will appear as
an uncertain system subject to a time-varying uncertainty A(¢) .

The parameter-dependent system is written in LFT form as:

e d
S (PA@)| (6.10)
Py Py B
- A B
with P definedas: P=|8, B, £, |, "A(t)“m = sup |‘A(I)|I <1 and P 3=[ :l
‘ ef0,o] by Py
' Ba By By

K, K
The objective is to obtain an LET controller # = F, (K7, A1)y, Ky = [K“ KW ]
st B

such that the closed-loop system 7 := F,( F, (P, A®)), F,(K, 5, A(1))) is internally stable for all

parameter trajectories with "A” <1, max max I, .
@ sa)<l et ||d],
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where T is the transfer matrix linking the disturbances d to the errors e.

The closed-loop interconnection structure can be rearranged into the diagram shown in Figure 6.3
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Figure 6.3: Gain scheduled LFT control

setup
Ky rris the central part of the gain-scheduled controller. The structure presented in Figure 6.3 is well
adapted to use the small-gain theorem introduced in Chapter 2. However, the conservatism due to the
time-varying nature of the uncertainties spurred the reséarch in [Pack93] to propose a type-scaling
matrix to reduce this conservatism.

With the scaling matrices J e .7 (7 as defined in [Pack93]), the LFT control synthesis problem is

formulated as:

Search for J e 7 and a stabilizing controller K; 7 such that:

J 0 J' 0
O ],,z E(PRDKLFT) 0 Ind

This optimization problem is expressed as the feasibility of a finite-dimensional affine matrix

<1 (6.11)

inequality [Boy94] (AMI), which renders the problem numerically tractable because of the convexity
of these AMIs. |
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6.4 Riccati solutions interpolation techmique
6.4.1 Introduction

A technique, based on the interpolation of the solutions of the Riccati equations of frozen H_ designs,

is used for gain scheduling of the full flight envelope of a flexible aircraft. The aircraft model consists
of a linear parameter-varying model of a flexible B1 bomber that varies with the Mach number from
0.2 to 0.8Mach. The performance objectives are to track the pitch demand and to alleviate the loads
due to wind gusts acting on the aircraft. The flexibility of the aircraft is taken into account through four
flexible modes. The method presented is shown to provide good results over the full flight envelope,
while allowing for a simple implementation structure.

Modeling the structural flexibility existing in large aircraft is sensible, and makes the control system
design challenging for gust load alleviation objectives. In fact, it can be argued that the detrimental
effect of turbulence (gusts) acting on the aircraft is increased through the bending modes of the
aircraft.

At frozen linear models covering the flight envelope, controllers based on the mixed-sensitivity H_

technique were designed. The same weighting functions for performance were used for the\‘ different
controller designs. This allowed us to automate the design and to unify the performance objectives
along the Mach number variation. The scheduling technique used to cover the full flight envelope
while preserving performance is based on a linear interpolation of the solutions of the two Riccati

equations used in the H_controller design. A version of this method was first introduced and

successfully implemented for a small missile model in [Réi92]. Our approach is different from the
version presented in that paper in the sense that the controller at the intermediate design points is a
function of only the interpolated Riccati solutions variables. In [Rei92], the controller depends on the
interpolated solution of the Riccati equation and other parameters viewed as exogenous inputs upon
which the nonlinear dynamics are dependent. Another advantage to be noticed, in this approach, is the
use of a linear parameter-varying model. In fact, in [Rei92], a nonlinear model is linearized at each
point of the flight envelope to be used in the construction of the controller. This will certainly
complicate the implementation of the controller over the flight envelope. We believe that the mixture
of the LPV models and the interpolating techniques solving the control design problem offers easier

implementation and good results. We propose this approach since the classical LPV control design is
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time-consuming and suffers, as presented earlier, from the difficulty of solving an LMI problem for

high-order systems.

6.4.2 Problem setup

6.4.2.1 Aircraft model

A B-1 bomber is the aircraft under study, and a model of it [Was88], [Van99] taking into account the
structural flexibility is used. The aircraft's dynamics are assumed typical for a high-speed transport:
aircraft, but it includes a ride quality control system (RQCS) that was installed to diminish the
unacceptable vibration due to the turbulence that was apparent in the previous version of that aircraft.

The longitudinal, linear parameter-varying, B-1 model can be represented as:

{J’C = A(p)x + B(p)u

y=C(p)x+ D(p)u (12

where: x = [a LB 7 N O T P /T N N 7 ]r is the state vector which contains the
angle of attack, the pitch rate, and the coordinates of the four flexible modes.

U= [w; AR é'c’] are the gust vector, the elevator, and the canard actuators respectively.

ele v
y= [ Yy Vace ]T are the pitch rate and the acceleration of the aircraft measured by the rate gyro and the

accelerometer, respectively. o = Mach number : is the parameter varying between 0.2Mach and

0.8Mach.

The following model gives the dyﬁamics of the actuators:
5313 - Aact B act 5 ;’:d
5cv - Cact Dar:t 5cmd (6 A 3)

; T
where : {5 i 5;;’“’] are the actuator commands, and

ele
-10 0 10 10 0
Aacz = 7Bac1 = —|’Cact = 5Dac/ = (614)
0 —-50 50 0 1 0

The transfer function representing the turbulence acting on the aircraft is given as:

W | [Ch | Dy | ® (6.15)
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d, :are the intensity, the turbulence scale length and a gaussian white noise, respectively.

The four flexible modes are characterized by their damping ratios ¢, =¢, =¢, =¢, = 0.02 and their
modal frequencies @, =12.57,w, =14.07,w, =21.17,w, = 22.05rd/s. The flexible modes have an

effect at high frequencies and thus can be separated from the rigid-body modes. To be as realistic as
possible, we preferred to use all the flexible modes in the design rather than using conventional
techniques such as notch filters to cope with the reduction of flexible modes.

The high level of flexibility in the B-1 bomber model acts negatively on the aircraft and exhibits high-
frequency transient motions for the pitch rate open-loop response. Thus, a feedback controller design is
needed to improve the pitch rate response and to decrease the acceleration of the aircraft due to

turbulence effects.

6.4.2.2 Controller design
Linear parameter-varying model is used to generate frozen linear models corresponding to a set A of
chosen Mach numbers (operating points). The flight envelope covers the variation of the Mach number

from 0.2 to 0.8 for a given altitude. Hence, our choice of the frozen operating points corresponds to the

set A = {0.2, 0.25,0.3,0.35,0.4,0.45,0.50,0.55,0.6,0.65,0.7,0.75,().8} . The general setup of the frozen

controller designs is given by the figure below:

p F(s)
dg
pc > Linear - el
—p 4 u We_p
wref 1 ?__» Linear controllers p| models
e2 M

ux
4

p Wiy
+ wn
4| Wnoise [4—

Figure6.4: Optimal control setup

XCZ2mo
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Our control objectives are to track the pilot's pitch demand and to alleviate the gust load by reducing

the acceleration of the aircraft due to the effect of the turbulence. For the tracking objective we used a

filter F(s):——z——gl;——:l—é to shape the response imposed to the closed-loop pitch response.
85 +3.28
80
w o=|s+] specifies levels of performance desired from both design objectives.
s O 10
s+15
W = o7 1s-used to constrain the effort of the actuators to reasonable and realistic

Tl 180 (s+15)
157 (s +0.01)

limits which are 15° for the elevator and 15° with zero deflection at the steady-state for the control

vane actuator. W

noise

—4
—_—r”(go O(Z)J represents sensor noise and is used to ensure well-posedness of

the H_ control design.

Note that the performance objectives were unified for all p, € A, by having the same weighting
functions for the augmented plant along the flight envelope. The controller designs in Figure6.4 can be
recast into the general H_, controller des’ign framework [Doy89], where the augmented frozen linear

models can be represented in the state-space form as:

{x = A4,(p.)x+B,(p)u

y=C,(p)x+D,(p)u (6.16)

where: p, € A

With some simplifying assumptions, [Doy89], we consider the state-space representation of the
augmented system as:
4,0) | Bap) B,(p)
G,()=Calp) | 0 Dp(p) (6.17)
(:212 (ICE') l:!a21 (/:h‘) ()

A suboptimal H,, controller [Doy89], for the augmented plant, can be written in its state-space form

as.
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l"’ ~
A, Z”L“’} (6.18)

K, (8)= [F 5

where: F, =-B,, X,
A, = A, +y BBy X, +B,F, +7,L.C,
L,=-Y,C,

Z,=(I~-y"Y,X,)"

The assmﬁption that the terms D,,,,D,,, are equal to zero is not verified in general, and in our case
study in particular. In this case, we use results from H,, control theory [D§y89] that permit to resolve
the general problem posed. These results are:

a- The controller in the case of D, # 0 is K_,(I + D,,K,,)", if we suppose K, is the sub-optimal
controller of G, with the asssumption that D _,, =0.

b- If D,, # 0 and without loss of generality, by normalizing D,,and D ,, , we shall assume that the

augmented plant can be written as:

4.(p) | B.(p) B.(p)
. n Do) Dannlp) 0 6.19
Ga0)) Cal) {Daml(p,.) Dmm(p,-)} H o
Car| oo

such that: ), = D] D, =[o 1.

If we normalize y =1, then there exists a controller K that internally stabilizes G, and

]]}", (G,.K )“O0 <1 ifand only if there is K that stabilizes M and ”.ﬁ (M, K )l]a0 <1. where:

2"’ Bx 4:1*161 { NlR;m Bz + ~1Rf1 ~1*11512
M= 1_“2C1 ! 0 Rl—i/an
C:z "'*Dx.zRfi :1 1 i DZIRI_I/Z Dlefl ;1D12

~ D D * __1 #*
D, = i e }Doo = "‘Dnzz ‘"‘D1121(1‘D1111D1111) D1111D1112
" {DIIZI D1122 +Dw
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*

Rl = [“ﬁnDn'

Thus, an H_ controller can be calculated for our particular models where D, #0and D,,, #0.

Algorithms for this general H_ control problem can be found in [Bal95].

6.4.3 Scheduling technique:

The H_ controllers designed for the frozen design points p, € A depend essentially on the solutions

of the two Riccati equations needed in each H control design.

Define:

K, = f(3,,X,,Y) asthe ith H_ controller for the ith design, where:
4.(p) | Bulp) B,(p)

3, =) Calp) D, (p) Du(p) (6.20)
1Cu(P) | Dai(p) Dan(p)

is the state space representation of the ith augmented plant.

X,,Y,: are the ith solutions of the ith Riccati equations pair used in the ith frozen design.

The advantage of our method is the on-line availability of a faithful linear model at any point of the
flight envelope, using the LPV model available. This model facilitates considerably the
implementation in contrast to the procedure of linearization, which was used at each point of the flight
envelope in [Rei92]. The model 3, can be evaluated for each jth parameter p, €[0.2,0.8]. If we

suppose that p; e[p,,p,,] we use the ith and the (i+1)th controllers designed, K, and

K,

i+l

respectively, to calculate the controller K, . The solutions of the two Riccati equations at any jth
design point are linearly interpolated from the solutions (X,,Y;) and (X,,,,,,, ) as follows:

X, =(-pu)X,+ 1, X0, 1, =0, = ) (Pra = p): 4, €[0,]] (621)
and similarly for Y. Once the jth solutions of the Riccati equations are evaluated and using the state
matrices of 3, the H, controller at jth point of the flight envelope is calculated as shown in the
previous sectionas: K, = f(3,,X,,Y,).

The use of this technique of controller scheduling has the advantage that it does not require any special

structure for the frozen controllers. It can be an H, controller, an H,_ controller or an H_ loopshaping
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controller. These modern controllers have the common specification to be calculated based on

solutions of Riccati equations.

6.4.4 Results and nonlinear simulation

The frozen designs made are based on a mixed-sensitivity H_ setup. The performance objectives were
unified for all frozen design points. The performance indices y obtained are given in the following
table.

Table 6.1: Operating points and performance indices

y |11 | 1.09;1 10.93]|0.860.80(0.74,0.76 | 0.80 | 0.84 | 0.88 | 0.93 | 0.98

£ 102 102503 {035(04 |045|05 (05506 |065{07 [0.75]0.8

Thus, the performance specifications, concerning the pitch demand tracking, the gust load alleviation
and the controller output constraints, were basically satisfied for all the frozen designs. Figure 6.5
shows closed-loop responses and actuator deflections for 0.55Mach. Tt confirms the good pitch

tracking obtained for pilot pitch demand pc=37/180 rd and the reduction of the acceleration with the

H,, design [Aou2000b] using reasonable actuator deflections. The full flight envelope controller
outputs using the technique presented in this work is shown by Figure 6.6. Notice the good
performance level for the pitch-tracking objective. Concerning the gust load alleviation objective, we
obtained a degradation of performance compared to the frozen design results.

However, the worst level of acceleration obtained is equal to ~1.5m/s” =~0.15g which is still
reasonable, taking into account that we are operating over the full flight envelope. We have to
comment that the gust load alleviation problem is in general not easy to deal with for just one
operating point. To our knowledge, our approach to deal with this problem over a full flight envelope
is presented in this thesis for the first time, with good performance results. The actuator responses are
still in the acceptable range of +15° for both the elevator and the control vane actuator. We notice that
certain Bumps essentially for control vane actuators. These bumps are due essentially to the high
degree of change in the dynamics of the aircraft. This change is noticed even between two adjacent
operating points. Although these are undesirable effects on the deflection actuator responses, these

bumps can be handled by the actuators, which are bounded in magnitude and variation rate. We went
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further in our research, trying to avoid those undesirable bumps for the actuator response. We used a
safety technique that consists in constraining the actuator deflections to safe ranges of deflection.
Figure 6.7 shows, respectively, the closed-loop pitch response, the acceleration of the aircraft and the
constrained actuator deflections. We were able to reduce the actuator bumps in magnitude and
variation rate into more homogenous deflections without significantly affecting the performance

obtained in the unconstrained actuator case.
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Figure 6.5: Frozen controller results (pitch tracking and actuator responses)
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Figure 6.6: gain scheduled controller results (pitch tracking and actuator responses)
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Figure 6.7: Constrained gain scheduled controller results (pitch tracking and actuator responses)

6.5 Concept of online redesign of controlier

In the following, we limited our application example to the pitch angle-tracking problem. Our aircraft
model is a two-input (actuators), one-output (pitch angle) system. We believe that with the progress of
computer capabilities these days, an approach based on an online controller design can make sense.

Figure 6.8 proposes the concept of online controller redesign adopted for the simplified B1 flexible

Dynamics change?

model.
References .
——3p| Nonlinear Ly
aircraft
Model
Actuator Output
inputs variables
Delay/ Linear
Holdy Controller <
Design

Generation of

Linear model

using LPV
Model

pi

)

Figure 6.8: Controller redesign setup
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The nonlinear model in this case has an accurate approximation consisting in the LPV model. The
inputs of the nonlinear model are the references (pilot demands), in this case the Mach number (the
velocity of the aircraft), and the actuators efforts. As outputs we obtain the measured Mach number,
which is used to generate the corresponding linear model from the LPV model representation if a
change in dynamics is noticed. At each corresponding change in dynamics a design of a linear |
controller achieving the performance objectives could be used to compute the control signals to
actuators for the nonlinear model.
A controller redesign can be efficient and easy to implement if the following conditions are satistied:

~ 1-The controller design algorithm has to be systematic and robust for any linear model corresponding
1o a trim point of the flight condition.
2-The performance objectives specified by performance weighting functions have to be unified for all 1
linear designs or varying with the parameter of the flight condition.

3-The block Delay/Hold can overcome differences in timing/ between a change in dynamics and

the controller redesign time.
The second condition is, obviously, needed to make the approach systematic online. However, the first

condition is obligatory since it minimizes the time taken for redesign and allows the approach to be

implemented. Since we based the controller design approach earlier on a mixed-sensitivity H_ design,
which is based on an iterative H_optimization, an online redesign controller would appear difficult.
Thus, we propose in our approach to use weighted H, optimization [Aou2000a] or an H loopshaping
control technique, which are both computable through a single pair of Riccati equations. The objective
in our application example consists of tracking the pitch angle with reasonable actuators efforts. The
'H,, loopshaping technique [Mcf90] is used for the controller design. This technique, as presented in
Chapter 2, proposes to shape the plant model by appropriate input and output weighting functions

resulting in the shaped plant G, = W,GW,, and a robust stabilization procedure is used for the shaped

plant G, to obtain an F_loopshaping controller K implemented as W,K_W,. A static gain used to

adjust the steady-state gain is also computed. The weighting functions W, and W, used in our design

are the same over the entire flight envelope. Note that the portion of the global flight envelope
considered here is from 0.2Mach to 0.5Mach. Figure 6.9 presents the design index y for the controller

redesign along the flight envelope considered.
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The inverse of the performance index represents the stabiﬁty margin obtained through the robust
stabilization procedure. Figure 6.9 shows that the interval of stability margin along the flight envelope

is kept close to the level of 36% stability margin.
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Figure 6.9: Robustness measures

Figure 6.10 gives the pitch angle tracking results for the Bl flexible model through the nonlinear

simulation framework proposed in Figure 6.8.
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Figure6.10: pitch angle tracking for redesigned controller

A good pitch angle tracking response is obtained, quick in reaching steady-state, and reasonable

actuators effort, under the physical limits required as shown in Figure 6.11.
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6.6 Robust gain scheduling controller design

6.6.1 Introduction

Intensive research in control over the last two decades led to well developed design techniques
[Doy89],[Bal95],[Ske88]. These techniques sometimes, known as modern approaches, introduced and
improved’ important closed-loop properties such as robust stability and robust performance. These
techniques, usually sub-optimal, are based on linear design methodologies. This means that the
performance obtained, as for all linear techniques, is guaranteed only around specific operating points.
Aerospace applications need control laws that maintain acceptable performance levels over the entire
flight envelope considered for aerospace vehicles, which implies nonlinear dynamics. For thiS reason,
research efforts turned to develop gain scheduling methods such as interpolation of frozen éontrollers,
and to study their real-time on-board implementation [Hyd91]. Other techniques are based on linear
parameter varying (LPV) models and lead to LPV controllers designed via LMI’s (Linear matrix
inequalities). The main advantage of interpolation techniques, compared to other gain séheduling
methods such as LPV methods, is their simple implementation, which is a major issue in the aerospace
industry. ’

A new iﬁterpolation based approach; called blending/interpolating technique [Aouf2000c¢] is pfoposed
in this section. This approach has the virtue to avoid restrictions on the type, structure and order of the
interpolated controllers as opposed to the observer-based interpolation technique in [Hyd91]. As

mentioned earlier, the main criticism regarding interpolation techniques is the lack of guarantees on
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stability of the closed-loop system. These “ad-hoc"; techniques, with a judicious choice of operating
points covering the flight envelope for the frozen designs, may often give satisfactory stability
margins. However, stability guarantees are needed to reassure aerospace engineers whom may be
tempted to try this type of technique. In this section, we present a robust controller design, based on a
blending/interpolating method, that guarantees stability and performance over the entire flight
envelope of aerospace vehicles. This methodology is successfully applied to a Bl flexible aircraft
model. The extension of this methodology to any gain scheduling problem is straightforward. The
variation along the flight envelope is captured by a time-varying uncertainty representation, which is

treated in a u - synthesis framework.

6.6.2 Uncertain model representation

Aerospace vehicles operating over a large flight envelope are represented by nonlinear models
depending on operating conditions. Obviously, to use linear controller design we need linear models
around chosen operating points. This can be obtained by classical linearization procedures for chosen
operating points. Nonlinear models can also be formulated as linear parameter-varying models for use
in an LPV controller design framework. In this section, we represent nonlinear dynamics of the aircraft
models by uncertain systems in linear fractional transformation (LFT) representation used for a

u—setup. The general x- setup is given in Figure 6.12.

A.!' 5
wS
P “
—> —
We iy 5
K
Figure6.12: Standard robust controller setup
. Rl 1)12 ‘Pl3
The objective is stated as: Assuming a model P(s)=| P, P, P, |subject to an uncertainty model
By By By

A, (s)e RH, :||A

8

_ <1, design a controller K (s)such that: |F,(F,(P,K),A,)|, <1and |B,|. <1.
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In the literature, methods where proposed [Fial97],[Hyd91] to construct an LFT model that approaches
the behavior of the nonlinear model along the flight envelope portion considered.

Let us consider A = { Jo /’n} a set of operating design points, where p, represents a vector of flight

parameter conditions, e.g., as aircraft velocity, for the ith chosen operating point. The nonlinear model

is linearized on those chosen operating design points leading to linear state-space representation:
{ Xx=Ax+ Bu
y=Cx+Du (6.22)

foreach p, e A.
Where: 4 € ™, B, € R™,C, ¢ R™", D, ¢ ™7 .
For simplification, we assumeC, =C,D, =0 Vi=1,..,n, which means that changes over the entire

flight envelope are restricted to matrices A and B. We further assume that a single parameter p of the

aircraft is varying; call z its scaled version.
Assume that matrices {Ai}:__l and {Bi}:'=1 are interpolated by polynomials of order 7 with matrix

coefficients:

P(z2)= 2,42-", ze[-11]

: (6.23)
P(z)= ztizi, ze[~11]
That is, at the points {z j}'j'_:1 , we have:
B4(Zj) = Aj
Pz =B, (6.24)
j=1..,n )

Note that the interpolation is assumed to be performed entry by entry of the matrices to fit. In other

words, each scalar polynomial entry of P,(z)and P,(z) interpolates the same entry in matrices
{4} and {B,} respectively.

Define the matrix M including the system dynamics and the matrices .4, 5 as
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then an uncertain system, in an LFT form as in Figure 6.12, [Hyd91], covering the flight envelope

EH

considered, could be retrieved as: F,(P,A,) where P = F,(M,s”'I) and A, =01 .5 is an uncertain

repeated parameter, —1< 6 <1, that depends on the vector of the flight condition parameters. Note that
& is variable z in the matrix polynomials P,(z)and P,(z). By varying ¢ from -1 to 1, we are varying
the flight condition parameter to cover the flight envelope considered. In the example below,
s depends on the Mach number. Thus varying the parameter § means a variation in the Mach number

that the nonlinear model depends on.

6.6.3 Parameterization of stabilizing controllers
The parameterization of stabilizing controllers is important for the development of the method
proposed in this section since it provides a sub-optimal controller with a free-parameter that can be

tuned for pefformance objectives. Let us consider the nominal system of Figure 6.13 relating the

inputs [w’ u ]T to outputs [zT yT] :

P {i 2 ?3} _|T ] ' (6.26)
? ¥ G, | Dy Dzz_l
which its realization is assumed detectable and stabilizable. An internally-stabilizing, observer-based
) A+B,F+LC,+LD,F | -L
controller K(s)can be obtained as: K(s) ={ : 7 2 = % O}Whose F and Lare a state

feedback and observer gain such that 4+ B,F and 4 + LC, are stable.
It has been shown in the literature [Doy89] that all stabilizing controllers for a system P, can be

parameterized as a central controller with a free parameter called “Youla parameter” as in Figure 6.13:
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Figure 6.13: Parameterization of stabilizing controller

The family of all stabilizing controllers is given as follows:

K ={F,(J,0):Qe®RH, and I + D,,Q(x0) non-singular}

A+B,F+LC,+LD,F ~-L|B,+LD,
J = F 0 I (6.27)
~(C,+D,,F)y I | Dy

The closed loop system I depends on the free Youla parameter Q(s) as:

S = F(T,Q) = {T,, +T,,0T,, : Q € RH,_, I + D,,0(e0) invertible}

A+B,F -BF B B,
7. T 0 A+LC, | B+1LD, 0
T—{ 2 "} - 2 2 (6.28)
T, Tzz C1 +D,F -D,F D, D,
0 C, D, 0
H  controllers can also be parameterized as a central controller with a free Youla parameter:
K ={F,(J,0):QeRH, and Q] <7}
A, I -Z L, Z.B,
J=| F, 0 I (6.29)
-C, | I 0
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A, =A+y’BBX_+BF +ZL.C,
F,=-B X,
[ =-Y.C, (6.30)
Z,=(-y1X.)"
X.,Y, and y are solutions of the standard Riccati equations used for the / design for the
A [B B)]

augmented systems state-space representation: !-Cl 0
G,

6.6.4 Robust performance gain scheduling approach

The proposed approach in this section is based on the blending/interpolating technique, [Aouf2000c],
that assumes controllers achieving local performance for chosen operating points have been designed.
Suppose, as earlier, that A is the set of chosen operating points for linear design and define
u,(p)j=1,.,n as the controller output for the jth design point then the blending/interpolating
technique proposes a linearly blended signal to be used for the actuators as:

u(p) =1~ (p)+ AP, (p), pelp,,p;l,j=L.sn (6.31)
where: 0<A(p)<lis a function of the aircraft parameter p. p,, and p,are the velocity
corresponding to the (j-1)st and jth design operating point, respectively.

In the following, the blending/interpolating strategy outlined above is shown to yield a robust stability
and performance ovér the entire flight envelope of the aircraft. Suppose we have two adjacent
operating points j-/ and j where controllers are designed using (6.27) or (6.29) and shown as in Figure

6.13 and suppose the nonlinear model is represented by an uncertain linear parameter-varying system

in LFT form as presented in (6.25). Then an implementation of blending/interpolating control at

operating point p, € [ PP j] is given as in Figure 6.14:
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4(p) ™ P
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Figure 6.14: Blending/interpolating parameterized Figure 6.15: Augmented system into robust
controllers controller setup

The controller signal vector u(0) depends on A(p) which is a function of the operating parameter p.
This parameter p is in turn proportional to the uncertain parameter § used in the uncertainty block

A, as previously mentioned. Figure 6.14 can be recast into a  — framework as in Figure 6.15:
Where the plant P is augmented into: P, = f(P,J,,J,,h), the uncertainty block is augmented into

A

D

A= ol

2p

(6.32)
A

s

. . . , " T ; T .
and h is a scaling function /1=h(5),z=[z£ zy, Zi,:l ,w=[w1T, Wi, wgl] ,A, a fictitious

performance uncertainty.

The following theorem gives the necessary and sufficient condition under a u-framework that

guarantees that a blended/interpolated controller, based on a stabilizing controller parameterization,

will achieve robust performance over the entire flight envelope considered.

196



Theoremb.2:

For a slowly-varying operating point which leads to a slowly-varying system, and for constant D-
scaling matrices D e = {D eR™ ™ :D'D - 1, and DA = AD} then:
The closed-loop parameter-varying system of Figure 6.15 is stable and achieves the desired

performance objectives if and only if3D e » such that|[DTD™'| <1 where T = F,(P,,diag{Q,,0,}).
o I\ a 1 2

" Proof:

The use of real constant D-scalings to take into account the time-varying uncertainties is proven in

[Sham94]. Referring to Figure 6.15 and using the results of robust performanée u—controller design,

the rest of the proof is straightforward.

6.6.5 Optimization based control

G (s)

0 0, (s)j| ,01(5), 0, (s) e RH_ such

The objective is to obtain a controller-parameter O, (s) = {

that:

IQniQn max inf &(DT( jo)D™) (6.33)
where & is the maximum singular value.
This problem cannot be treated efficiently as a p —controller design [Bal95], because of the stability

constraint on the controller-parameter @, ,, which is not guaranteed under u— framework and also

opt ?

because of the dimensionality of the resulting LFT representation in (6.21). Therefore, an optimization

technique for parameters of a fixed structure controller-parameter 0, is proposed. Since stability and

performance are guaranteed for two design points, our objective is to obtain a “controller-parameter”

Q,, that guarantees performance with stability between the two extremities of the operating point

trajectory. We propose a simple structure of controller-parameter ), ,to facilitate the design. The

o) 0 1 .
4 Q(S)} where QO(s) = S+a12pm,ae§R .

Although the choice of the structure of the controller Q, may be different from the structure proposed

proposed structure of @, is givenas: 0, (s) =[

here, we highly recommend a simple structure of controller.
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Different optimization techniques can be formulated for the optimization problem (6.33) posed above,

from nonlinear programming techniques, to least-square minimization. Two of the simplest methods
using gradient descent of the function &(DT(jw)D™), which is well adapted to our fixed controller
structure design, are presented. In [Mora89], an optimization procedure for the free parameter Q(s)of
an Internal Model Control (IMC) structure has been proposed. An analytic expression of the gradient

of the upper bound on x given in [Mora89], can be derived as:

min  max 1nf F(DT(jo)D™) > minmax inf F(DT(jw)D™) where: Qis the frequency interval
Q,,0,eRH, weQ DeD aeft weQ Ded

considered and 2 ={dxJ,,:de®}. If we define®(a)= max inf &(DT. D),  then

aCD ao-‘1( ()I)T(Ja)(lp )D”_I’l)
ba oa

where the max()is attained at w=0,,, the i%f c(DT(jw,)D™) is

obtained at D =D, and D, T( ]a)op)

Consider the closed-loop systemT = F/(F,,0,,) to be normalized at its performance inputs/outputs

' Hll H12 HIS
w,/z, as T =W HW, where H=|H, H, H, |.AnSVD decomposition of:
' H31 H32 H33

DH(j@)D; =[u, U] ZH;’,} (6.34)

|

is needed.
Considering W, = I, an analytic expression of the gradient of ®(qa)is given as [Mora89]:

oP T H -1 aQo t(ja)m) ~1 -

- Re{u D, (W HB](I K, Hy) ——"5;4(1-1133 ) (Hs Hy)Dov,| (635)
A procedure to obtain a satisfactory solution of the minimization in (6.33) can be proposed as follows:
1-Choose an initial value of the parameter a.

2-Obtain @, from the frequency interval considered and obtain the D-scaling matrix D, .

3-Do the SVD decomposition in (6.30).

4-Calculate the gradient %(E
a

5-Readjust the value of the parameter a as a=a— 5%‘3, O<e«l1.
a
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The optimization proposed based on an analytic expression of the gradient can sometimes be

inefficient since the gradient depends on the results @,,and D, that are difficult to estimate.

Therefore we propose another helpful way to optimize (6.33) numerically. It is actually a simple

gradient-based method where the gradient function for the ith iteration search is evaluated as:

I3

Ja(i)

oD ®(a(i))—Dla(i-1))
da(i)  a()-a(i-1)

(6.36)

where ®(a(i—1)) is the result of the previous iteration. ®(a(i)) is evaluated, using the “mu” command

in Matlab [Bal95] , as the minimum value obtained for a constant D-scaling. The parameter g is then

readjusted in step 5.

6.6.6 Robust performance analysis technique

A lack of tools for stability assessment of gain scheduling controllers based on interpolation technique
led us to extend the design proposed earlier for stability and performance analysis over the entire flight
envelope. The accurate uncertainty description of the nonlinear system, introduced above in (6.25), is
adopted in the current section.

We assume that two stabilizing controllers K, K, are designed for the extremities of the portion of the
flight envelope considered. These controllers can be designed using any type of linear control
technique. The blending/interpolating controller implementation in Figure 6.14, where
F(J,,0) and F/(J,,0,) are substituted for K, and K, respectively, is used.

Thus an S-A block structure as given in Figure 6.16 is obtained using the uncertainty block

augmentation as in (6.32) and where:

v S

Figure6.16: S - A structure
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A 0 0

S =f(P,K,K,,hyand A= Op 5L, 0/, z=[zT zy  Zy, ]T,w=[w§ Wy, Wy ]T. This structure
0 0 A,

can be used to énalyze the performance and robust stability objectives through standard u — analysis

[Bal95].

We propose to analyze the blending/interpolating controller to gain confidence in the safety of a real-

time implementation of this controller over the entire flight envelope considered. The following

lemma, adapted from [Sham94], gives the main result of stability and performance analysis of the

blending/interpolating controller.

Lemma 6.2

Stability over the entire flight envelope considered is guaranteed if and only if for

DeD={De®™ " . D'D=1,

S = [:Sll S]Z :l and Agab = [5{)211

SZ i 22

and DA, = A, } , |IDS22D"1!L <1 where

AO ].Furtherrnore a specified level of performance y is preserved if and

§

only if: for De D={De R :D'D=1, and DA=AD}, |

DSD“]L <1.

6.6.7 Application example:

The example showing the applicability of the results and design methodologies of the previous section
consists of a simplified version of the Bl flexible model [Aouf2002]. In this application, we are
interested in a pitch angle-tracking problem. Mixed-sensitivity H_approach is used to design
H, céntrollers for the two extremities (0.2Mach and 0.3Mach) of the flight envelope portion
considered. The tracking results and actuator efforts for 0.2Mach and 0.3Mach are comparable to the
results shown in Figure 6.10, 611 for the redesign approach proposed earlier. The robust analysis
method, given in Lemmaé6.1 is applied for the blending/interpolating #_ controller based on the frozen
0.2Mach and 0.3Mach #H_ controller designs. The specified level of performance required in this H_

controller design is given by w, = 800 25 in the online control design concept. Figure 6.16 presents the

s+1

robust performance u-bound of the worst-case blending/interpolating controller over the flight

envelope [O.2Mach,0.3Mach].
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Figure 6.17: u—bounds for robust Figure 6.18: u - bounds for robust
performance stability

Since a robust stability analysis of this worst case blending/interpolating controller shows, in Figure
6.17, that robust stability is maintained over the flight envelope, we decided to decrease the specified

level of performance to be able to meet the robust performance criterion. Choosing the performance

. . 4 . .
weighting function as:———(—)? we obtained a reasonable upper bound of x for the worst-case blending
5+

/interpolating controller over the flight envelope as shown in Figure 6.18.
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Figure 6.19: u~ bounds with relaxed performance
specification
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In the following, we propose to design a robust performance controller design for the flight envelope

of the B1 flexible model based on the methodology proposed in this part of the cuirent chapter. We

. . 4 . o .
kept the weighting function of performance to ———%.-The varying-parameter in this case study is the
S+

Mach number, i.e., the velocity of the aircraft. A good perturbed model, as in (6.25), is obtained for the
nonlinear dynamics of the aircraft model over the flight envelope considered. The designs of frozen
controllers at the extremities of the flight envelope were done using weighted A, control. We preferred

this design technique over classical #_ for its simplicity, and to show that for the method proposed
optimality is not required in the frozen designs step. In fact, the optimization over the best sub-
controller @, (s) compensates in a way to find a good sub-optimal blending/interpoiating controller.
Figures 6.19, 6.20 present the pitch angle tracking and the actuator responses for the weighted
H,controller designed at 0.3 Mach.

0.06, - 0.05
// DS S N
004 ,/ } Actuator 0 It e
pitch(rd’s) / responses v

f' (rd) o5} A
0.02 AN

| o1l U

ol / e
-0.15 —
0.02L—— J ‘ |
0 2 4 6 8 10 02 k : : :
Time(s) 0 2 4 6 8fime(s) 10

Figure 6.20: pitch tracking for weighted

H, control

Figure 6.21: actuator responses for weighted

H,control

The objective, as presented in (6.33), is to obtain the best sub-controller Q,,(s), thus the best parameter

‘a’, that assures the robust performance criterion of the closed-loop parameter-varying system
presented in Figure 6.15.
A gradient-based optimization method, as presented earlier, is used to search for positive parameter a.

The best values for the parameter g and the D-scaling are obtained equal to 0.14, 0.809, respectively.
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The p-value of the closed loop system with the corresponded sub-controller controller

1
I =1 O
s+a . .
O, (8)= is shown to be reasonable on Figure 6.22.
0 —1
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Figure 6.22: u - bounds for robust
performance

To test the blending/interpolating controller, we proposed to do nonlinear simulation over the entire
flight envelope considered. Figure6.22 shows the pitch angle tracking result and figure6.23 presents
the actuator outputs over [0.2Mach,0.3Mach]. The results obtained from this non-linear

implementation shows a good pitch angle tracking with acceptable range of controller outputs.
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Figure 6.23: pitch tracking for robust gain

scheduling control

6

8

10

0.1

Actuatgro 5l

responses
(rd) 0

-0.05
-0.1

-0.15

0.2+

-0.25¢

0.3

0

|
Y A S TR ]
\ |
| } j \i i
| { VAR
\u
U Time(s)j
S e

Figure 6.24: pitch tracking for robust gain
scheduling control

203



Chapter 7

Summary and Conclusion

In Chapter 1, we presented different robust flight control objectives treated in this thesis. In addition to
this, we introduced the modeling aspect for an aircraft. Furthermore, we gave details on flexible
aircraft modeling. These flexible aircraft models are one of the main applications interest in this thesis
since they are realistic and their sensitivity to turbulence effects has been of great interest in recent
flight control research. Formal models of gust generation are also presented in Chapter 1.

In Chapter 2, details of optimal H, and H_ control theory are given along with a description of recent
advances in their respective controller design under the LMI framework. We described the usual
uncertaihty modeling that is used for robust control design such as u—synthesis. The classical
4 —design via the D-K iteration algorithm [Bal95] presents conservatism when dealing with high-
order uncertain system, as is the case fbr flexible aircraft. Thus, we presented u —synthesis based on
iterative H, designs, which showed better results in many cases. In addition to these techniques,
details on the H  loopshaping procedure are given since we use this design technique in Chapter 5.
The adaptation of robust control techniques such as weighted H,, H_and u—synthesis to gust load
alleviation problem is also given in Chapter 2. Interest in this research problem grew in the eighties,
where progress in modern control techniques, such as LQR and LQG, is noticed. In this chapter,
motivation for using optimal H_ control techniques is provided. H_ control laws developed for formal
gust generation models show their efficiency in reducing undesirable accelerations of the flexible
aircraft due to severe gust effects. A huge difference in terms of gust load alleviation is noticed
between modern control techniques and robust control techniques, the latter proving superior in a
compérison made in Chapter 2. In addition, we extended favorably the H_ control design to a
1 —design when uncertainties in the aircraft dynamics are taken into account.

Working with flexible aircraft models means that we deal with high-order systems that complicate the
robust control design and render it conservative when uncertainty is taken into account. Thus, in
Chapter 3 we investigated model order reduction techniques, to be able to use reduce-order flexible
models that facilitate the robust control design.

We presented an overview of different open-loop model order reduction methods and recent

techniques using closed-loop specifications. In this chapter, we introduced a new order reduction
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technique, adapted for flexible aircraft and respecting the physical interpretation of the flexibility in

the aircraft that provides a reduced, compatible model/controller pair while preserving robust

performance specifications. Under a robust performance u — setup, we propose a two-step procedure:

1. By a robust performance full-order controller design and g —analysis, we deduce the best flexible
mode combination to truncate for a given number of flexible modes to truncate.

2. Then, we present in Theorem 3.1 a sufficient condition under which, starting from the full-order
controller of the best flexible mode combination, and under certain conditions a reduced-order
controller preserving the robust performance specifications obtained by the full-order controller
can be obtained.

The method is extended with g —sensitivity theory, used in the first step of our technique, in order to
save time and render the whole procedure more systematic.
In addition to this important result, we develop a new uncertainty model that we call “inverse
uncertainty”. This model proposes a lower uncertainty bound than bounds usually generated by
common additive and multiplicative uncertainty models. The inverse uncertainty is adapted to robust
control design techniques and shows good results when used for order reduction purposes in a closed-
loop framework.
The order reduction techniques presented in Chapter 3 fill the void of methods adapted for flexible
models. They offer order reduction tools that are indeed needed by aerospace engineers.v
In Chapter 4, we propose uncertainty models able to represent tightly the uncertainty in the flexible
aircraft model dynamics through the flexible mode parameter variations. The two models presented in
this chapter are based on the coprime factorization representation and the modal coordinates
representation. The efficiency of these models is tested on flexible systems and they present favorably
good results in tightly bounding the flexible mode parameter variations and also in the robust
performance levels obtained. Note that with the modal coordinates model, we are led to a new
complex-rational controller design methodology that shows its efficiency under a robust control
framework. For the implementation issue, we can recover a real-rational controller that preserves the
robust performance obtained by the complex-rational controller.

In Chapter 5 and Chapter 6 we treat research problems related to gain scheduling. We introduce the

IFPC design for the STOVL Harrier aircraft. This methodology is needed to take into account the

propulsion system (éngines) and its interaction with the airframe system. For this complex aircraft

model, we have to provide gain-scheduling techniques to cover the entire flight envelope. First, we
adopt an observer-form controller interpolation strategy, which results in good performance from
hover to 120kn. We extend, by means of an observer form antiwindup technique, the flight envelope to

150kn of velocity. Because of the controller order reduction limits of this approach, we propose a new
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approach consisting of a blending/interpolating approach that shows good results in nonlinear
simulations. In addition, we propose an optimal multi-switching methodology, which is successfully
implemented on a nonlinear model of the Harrier aircraft. The complexity of this model induces
complexity in the H_loopshaping frozen controllers designed and used to cover the entire flight
envelope. Thus, a partitioning technique is used to obtain decentralized controllers which is easy to
implement, and for which we develop and successfully implement a new scheduling-partitioning
scheme.

In Chapter 6, after a brief presentation of LPV and LFT gain scheduled control theory, a Riccati based
interpolation method, and a redesign control technique have been developed for a Bl flexible aircraft.
Simulation results for both methods and for pitch tracking and gust load alleviation objectives are
shown to be satisfactory. In addition, with the robust performance gain scheduling controller approach
proposed, based on the blending/interpolating technique of Chapter 5, we enhanced the so-called ad
hoc methods with guarantees on robust stability and performance of the closed-loop system. The gain-
scheduled controller is obtained through an optimization based control approach, for u specifications.
Under a robust performance u-—setup, and by using Theorem 6.1 (Lemma 6.1 is for robust
performance analysis) that proves the robust performance of the gain scheduled controller, we are able
to use the blending/interpolating technique safely. The positive results with this proposed method
obtained for the B1 flexible model will certainly be useful to the aerospace researchers usually adept at

methods based on interpolation techniques.

7.1 Future research

7.1.1 Order reduction ‘

Using u-—sensitivity for closed-loop order reduction for flexible aircraft preserving robust
performance is a promising research direction that can be extended for iterative model order reduction,
In fact, proving an additive property of the 1 —sensitivity, as is the case with A norm, we can predict
the (i+1)th flexible mode to truncate such that i =1,...,n and # represents the global number of the
flexible modes to truncate.

Flexible modes reduction technique over a flight envelope will give the possibility of using frozen
model order reduction over the flight envelope. Then the resulting reduced model could be used, under
linear parameter varying representation, to derive a reduced-order scheduled controller. Research ideas

related to that topic could be of a practical interest to the aerospace industry.
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7.1.2 Uncertainty and gain scheduling:

Accurate uncertainty models presented. in this thesis can be used with flight test data to give tight
- bounds on the variations in aeroelastic parameters of the aircraft. A joint project related to this
research is being explored with NASA Dryden research center.

For the gain scheduling problem, the research reported in this thesis in terms of the gain-scheduled
controller based on blending/interpolating technique and guaranteeing robust stability and
performance opens new horizons for the ad hoc techniques. In fact, we think it is possible to extend
this methodology to the parameter rate variation, which will be useful in analyzing the permissible
region of acceleration of the aircraft without missing any important specification such as aircraft

stability.
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