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Abstract

The research work presented in this thesis deals with flight control problems. Based

on robust control techniques such as H co control and fJ- synthesis, we develop control

laws that are efficient in reducing gust loads on flexible airerait. Uncertainty models

for flexible aircraft are proposed and shown to be weU adapted for robust control

design, while tightly covering unknown but bounded variations of flexible mode

parameters. One of the models presented introduces a new complex-rational controHer

design methodology that takesadvantage of the uncertain plant structure and achieves

good performance criteria. Other uncertainty models are presented for the first time

for the purpose of closed-Ioop reduction of flexible models. We propose a new

model/controller order reduction method for flexible aircraft preserving robust

performance in closed loop. Two case studies of complex aircraft are presented with

the objective of full flight envelope control. Solutions for scheduled control laws are

given to maintain performance objectives along the entire flight envelope. We adapt

to our complex aircraft case study known gain scheduling techniques such as

observer-formcontroller scheduling, and we propose new gain scheduling techniques,

including a robust performance blending/interpolation design, an optimal multi­

switching methodology and a scheduled-partitioned controller.



Résumé

Dans cette thèse, on développe des lois de commande robustes, comme la commande

H oo et la synthèse J.1 , qui sont appliquées à plusieurs problèmes en aéronautique. Cette

thèse contribue à plusieurs aspects de la .commande de vol evoluée. On résout

plusieurs problèmes théoriques dont les solutions élaborées sont susceptibles de

donner satisfaction sur des modèles complexes d'avions réels. Nous traitons le

problème des rafales.et leurs effets sur un avion flexible. Nous montrons l'efficacité

d'intégrer des lois de commande robustes afin. d'alléger les effets de rafales sur

l'avion. L'étude de la commande robuste nous amène à parler de modélisation

d'incertitudes. Nous proposons dans cette thèse de nouveaux modèles d'incertitudes

qui représentent finement les variations des paramètres caractérisant les modes

flexibles ainsi que pour la réduction de modèles d'avions. Ce ciernier objectif est pris

en compt~ dans notre recherche et unetriéthode de réduction d'ordre du modèle et du

compensateur pour les structures flexibles, en boucle fermée et préservant la

performance robuste est proposée. S'ajoute à ceci une étude du gain scheduling avec

de nouvelles méthodes proposées pour un avion STOVL Harrieret pour un avion

flexible BI. Une loi de commande a performance robuste est réalisée et on prouve la

stabilité pour des approches basées Sijr l'interpolation et jugées ad hoc dans la

littérature.
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Claims of originality

Flexibleaircra!t and gust load aHeviation problem

One orthe main objectives of this thesis is to study aircrait flexible models. These models are of

higb order and tend to be difficult for robust control design. However, these flexible models are

more realistic than rigid.,body models typically used in the flight controlliterature. Neglecting the

flexibility aspect.of an aircraft, especially large aircraft, can have dangerous consequences when

control laws are implemented. Since the flexible models are sensitive to gust effeets, we foeus on

designing robust controllaws, using H oo control and fi - synthesis, shown through this thesisto be

able to reduce undesirable acceleration caused by gust loads. Amotivating justification for the use

of H oo control for optimal gust load alleviation is given. This problem has not been treated in the

literature using robust· control techniques in application to flexible' aircraft. We include in the

robust control setup forgust loads alleviation problem, representative models for severe gust

generation. The use ofsuch models in this thesis gives a realistic study of the effects of gusts on

the flexible aircraft. Comparisons of results we obtain using robust control techniques

(weighted Hz and H oo control) with modern control techniques such as LQG or classical Hz, are

given in Chapter 2 for a B52 flexible bomber. These results show significant difference in reducing

the acceleration of the aircraft due to the gust effects in favor ofrobust control techniques

Uncertainty modeling

Robust control design needs tight bounds of uncertainties when variations in the aireraft dynamics

are taken into account. For' flexible aircraft, we investigate modeling the variations of flexible

mode parameters. In the literature, e.g., [BaI99], [Mad], no tight models, without unrealistic

heuristics, havebeenproposed. We present in Chapter 4 two uncertainty models based on coprime

factorization approach and modal coordinates approach, respectively. These models are well

adapted for a less conservative robust conttoldesign. The uncertainty model, based on the modal

coordinates approach, leads to an ,efficient complex-rational controller .design newly introduced in

this thesis. This complex-rational control methodology achieves good robust performance indices

and is shownto be the.flrst step of the controller design. The secondstep wiUbe that ofrecovering

a robust real-rational contrùller for Implementation purposes. The efficiency of the uncertainty

models and the complex-ratiùnal control methodology is shown on three-massflexible models.
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In addition, we present in Chapter 3 a new uncerlainty model for. flexible modes called "inverse

uncertainty", with lower upper bounds thanthe usual additiveuncertainty model, that is efficient

for robust control design under a closed-Ioop order reduction framework.

Order reduction techniques

Many order reduction techniques [Gl084], [Enn84b] were. proposed in the literature. However, these

techniques are usually for open-Ioop order reduction. Although, some techniques, [Worte194], are

developed for closed-Ioop order reduction, the physical meaning orthe state is lost after reduction.

For this reason andbecause each flexible mode hasits specific state representation,we introduce a

model/controHer closed-Ioop order reduction preserving performance indices. The method we

propose in Chapter 3 has the virtue oftreating the reduction ofthe flexible model and the controller in

the same framework. Using new parametric uncertainty models, which include reduction effects of a

given numberofflexible modes and with arobust performance ,u-analysis, we are able in the first

step of our methodology to give the statement of the best flexible mode combination to truncate,

without losing. performance specifications. We propose then Theorem 3.1 that gives a sufficient

condition under which, starting from the full-order controller of the best flexible mode combination,

and under certain conditions, a reduceq-order controHer preserving the robust performance

specifications obtained by the full-ordercontroller C;in be obtained. Applicability of the proposed

technique is validated by many examples from flexible aircraft to flexible structures models.

In addition to this technique, we propose uncertain closed-Iooporder reduction methodology for

which we use the inverse uncertainty mode! deve!oped in this thesis. Results in favor of this

uncertainty model comparedwith additive uncertainty model are highlighted through examples in

Chapter 3.

Gain·scheduling

Huge progress in gain scheduling resem:ch has been achieved this. last decade because of its

importance for flight control research. In general, we classify gain-scheduling techniques into

simple, practical methods, however ad hoc, and sophisticated parameter-varying techniquesthat

offer sorne stability gllarantees. In this thesis and through Chapter S.·andChapter 6, we propose

gain-schedulingtechniquesbased on the simplicity of the ad hoc methods, while providing robust

stability and performance guarantees (see Chapter 6). In· fact, complexity of STOVL Harrier

aircraft studied in Chapter 5 is a hard constraint that imposes the use of simple gain-scheduling

schemes such as the new blending/interpolating technique that we propose in this thesis. In

addition to this technique, we provide an observer-form .controHer solution and a multi-switching
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algorithm basedon the linear quadratic bumpless transfer technique. AH these developments are

made under an Integrated Flight Propulsion Control methodology used in this thesis. This

methodology leads to a sub-optimal decentralized controHer easy to implement and for which we

propose a new scheduling-partitioning te.chnique.

In Chapter 6, for the model of a flexible BI bomber, and based on the availability of linear

parameter varying model, we propose techniques based on interpolation of Riccati equation

solutions and atedesign techn.ique. In addition to this, we propose, based on the

blending/interpolating technique developed in Chapter 5, a robust performance controHer design

andanalysistools for the entire envelope of the aircrafi considered. We propose a methodology to

represeni the nonlinear system of the flexible BI bomber by a linear uncertain model, which

covers the aircrafi flight envelope by the variation of its parametric uncertainty. Then we propose

Theorem 6.1, which uses p-robustperformance setup properties to give a necessary and

sufficient condition to obtain a gain-scheduled controller guaranteeing robust performance

specifications. This result allows us to use simpler techniques than linear parameter varying

control, while stiU guaranteeing stability and performance specifications. In addition to Theorem

6.1, we present in Lemma 6.1 generalnecessary tools for thestability and performance analysis of

the gain-scheduled controHer, based on the. blending/interpolating technique presented in Chapter

5. In particular these tools can be used for theanalysis of the robust performance gain-scheduled

controller obtained by Theorem 6.1.
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Chapter 1

Introduction

1.1 Robust flight control

In this thesis, we develop robust techniques for various flight control problems including gust load

alleviation for flexible aircraft. Open research questions are treated using advanced control techniques

such as H", control, fi. - synthesis and gain scheduling.

The gust load alleviation problem for flexible aircraft is defined with the necessity of integrating

robust control techniques in Chapter 2. Flexible aircraft models are chosen as case studies for this

problem because taking into account the flexibîlity in the aircraft and its interaction with gust effeçts is

more realistic than simply using rigid-body models. Motivation to use H", and weighted-H2 control

for the gust load alleviation problem is given and efficiency of these proposed control technologies

demonstrated and compared to other classical types of control strategies.

Flexible aircraft, which are represented in general by high-ordermodels, naturally led us to consider

the order reduction problem for the model and/or the controller. This problem is treated in Chapter 3

by our new modellcontroller order reduction technique achieving closed-Ioop robustperformance

criteria. The proposed method is suitable for flexible models, which up to now have been usually

reduced in open loop using classical order reduction techniques that do not take into account the

physical interpretation of the flexible modes. In addition to this method, we discuss uncertain models

for closed-Ioop reduction methods for which we introduced a new type of uncertainty, suitable for

reduction of the flexible systems, and. called "inverse uncertainty". This type of uncertainty facilitates

the controller design based on the reduced-order model chosen.

In modeling flexible aircraft, or in general flexible structures, one needs to have information about the

accuracy of the values for the damping ratios and natural frequencies of the flexible modes. This is

not generally the case, which spurred research to develop parametricuncertaintymodels for these

uncertain coefficients. Existinguncertainty models in the literature [Mad98], [Bald99] often suffer

from being too conservative and sometimes use questionable heuristics. Thus, we propose in Chapter 4
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two tight uncertainty models based on coprime factorization and that are suitable for robust control

design. In addition, we present a way of ca1culating fJ, the structured singular value, that can be very

useful when the uncertainty models contain many uncertainty blocks, real and complex. The problem

of ca1culating fJ is still open for research, and existing solutions are not ~lways satisfactory for high-

order uncertain models. For real flight control applic~tions, aircraft control should obviously function

over the entire flight envelopeconsidered. This leads to the study in Chapter 5, of the gain scheduling

problem, which is still open for discussion and improvements. Noting the complexity and numerical

problems associated with gain scheduling techniques such as linear parameter-varying control, we

prefer to adapt ad-hoc methods in the literature that have proved to achieve acceptable performance on

a complex Short take-off and verticallanding (STOVL) Harrier aircrafi. In this chapter, an integrated

flight propulsion control (IFPC) framework 1s introduced and described in sorne details. Dnder this

framework, and in addition to adapting an observer-form interpolating scheduling technique

[Aouf2000d], we propose a new blending/interpolating [Aouf2000c] technique and extend a bumpless

switching technique [Turn2002] for a multi-switching control structure. We close Chapter 5 with the

introduction of a partitioning technique for IFPC systems and propose a scheduling approach for a

partitioned controller. Starting from a linear parameter-varying model of the nonlinear BI flexible

aircraft, we present in the first part of Chapter 6 two gain scheduling techniques: one based on

interpolation of the solution ofRiccati equations used in robust control techniques, and the second

technique is based on controller redesign along the flight envelope as the dynamics change. In the

second part of this chapter, we present a new gain scheduling robust performance controller design

and analysis based on blending/interpolation technique, which is introduced in Chapter 5. A proof of

stability 1s given for the gain scheduling controllerbased on interpolation l1lethods. This represents a

step forward as such controllers have been designated as ad-hoc methods for their lack of guarantee on

the stability of the gain-scheduled closed-loop system.

1.2 Aircraft and gust modeling

In tms section we give sorne .background and generalities on aircraft modeling andspecifically for

flexible aircraft, which isone of our applications of interest. Aircraft models that include structural

flexibility are more realistic than rigid-body models.For small aircrafi, it is often admissible to ignore

the flexibility that exists in the aircraft, e.g., in the aircrafi wings. However for commercial aircrafi that
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are usually of large dimension, ignoring the flexible modes of the aircraft may systematically cause a

problem of accuracy of the model representing the real aircraft.

We introduce the problem of gust load alleviation as a flight performance objective of interest. We

will study the effectof turbulence on the acceleration of the aircraft, and by means of advanced control

techniques, we will propose controllaws to reduce passenger discomfort caused by vibration induced

by the turbulence.

1.2.1 Rigid-body airerait model

In this aircraft motion modeling analysis, we use the earth frame axes XEYEZE and the aircraft frame

axes XBYBZB. The rigid aircraft is assumed to have the same distance between any two points on its

structure over theentire flight envelope. When an aircraft is assumed to be rigid, its motion has six

degrees offreedom. The followingstudy is derived from the textbook [Mcl9ü] where detailed

information can be obtained. The motion equations of a rigid-body aircraft are deduced by applying

Newton's second law. The forces acting on the aircraft along the aircraft axes are:

Fx =mo(Ù +QW -VR)

F;::: iFx + jFy +kFz , Fy =mo(V +UR-PW)

Fz =mo(W +VP-UQ)

(1.1)

(1.2)

and Vr =îU+jV+kW,

where m is the mass of the aircraft, VT is the velocity ofthe aircraft, expressed in the aircraft's frame,

with derivatives: dvrl =iÙ+jV+kW, (i,j,k)are the orthonormal vectors ass'ociated with the
dt lB

body axes XBYBZB and parameters P, Q,R represent the angular roll, pitch and yaw velocities

respectively.
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(l.4)

Figure1. 1: Body and Barth axes system

Other types of forces such as the gravitational forces acting on the aircraft should be taken into

account in the modeling of motion equations. For the following we define fjJ,B,1f/ as the roll, pitch and

yaw angles, respectively. The coordinates of the gravitationalforces along the aircraft axes are:

Fx =-mog sin ()

Fy =mog cos () sin q) (1.3)

Fz =mog cos () cos q)

Using Newton's second law for the moments applied on the aircraft, we.obtain:

M=!!..H+OJxH
dt

[

1""
where fl ~ l (j} is the angular moment, (j} is the""&U1ar velocity, and l ~ - 1",

-Ixz

inertia matrix.

-1
>JI

I yy

-1 yz

-1 J-1: is the

1zz

The simplifiedcoordinates of the moments along the aircraft axes XsYsZs are given respectively as

follows [Mcl90]:

AL =InP-Ixz (R+PQ)

Mf =IyyQ+ f xz(P2 _R2
)

tiN =IzzR - Ixz (P -QR)

(1.5)

Usîng perturbation theory, whîch considers the movement of an aîrcraft as small deviations from

equîlîbrium around a statîonary operatîng poînt, the equations of motion ofa rîgîd-body aîrcraft are

gîven for the equîlîbrium operating point represented by subscript 0, as:
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Fxo =mo[QoWo-- l\Fo +g sin 0 0 ]

Fyo =ma [VaRa - PoWo- gcos 0 asin <1>0]

Fzo =ma [~V; -QoOo - gcos 0 0cos <1>0]

Lo = QoRa(Izz -lyy )-PaQafJ2

Mo c:;;;(P0
2
~Ra2)lxz +(1"", -lzz )PoRo

No =1:rzQoRo + (1yy-1J;X)~Qo

For the perturbed part:

M'x:;::: mo[u+ WTQq + Qow -~r~Rav+ gcos0iJ]

M'y:;::: mo[v+Uor+ Rau - WoP-Pow-(gcos0ocos <1>o)rjJ +(gsin0osin <1>0 )eJ
M'z :;::: mo[ w+ VoP+ Pov-Uoq -Qou +(gcos®o sin <1>0 )rjJ+ (gsin®ocos<1>o)eJ
M:;::: 1:o:P -lx/ +(lzz -lyy )(Qor+ f?aq)-lxz (~q + Qop)

AM =1yyi] + (lxx -lzz ) (Par + Rap) ~ (2Rvr - 2Pop) 1xz

dN =1z/--lxzP+(lyy ~1:o:)(P oq+ Qop)+ 1xz(Qor + Rvq)

(1.6)

(1.7)

(1.8)

where each variable X is written Xc + x; X o i8 the value of the variable X at the equilibrium.

Using certain assumptions, [Mcl90], on the motion of the aircraft, a simplified representation of the

perturbedcoordinates can he given as:

M'x = mo[u +Woq·+ g cos 0 oe]
M'y :;::: mo[v +Uo1'-W6p +g cos 0 0 r/J]

M z :;:::moIw-Ooq+qsin00e]

M:;::: 1xxP-1x/­

Mi =Iyyi]

dN=Iz/-IaP

(1.9)

and the coordinates ofangular velocity (j) of the aircrafi, which represent the rotation of the aircraft

axes to the earth axes, are given as:
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p=~-ljfsin00

q=B

r =If/cos 0 0

(1.10)

1.2.2 Longitudinal motion

Throughout this thesis, we consider the longitudinal motion of different types of aireraft. Thus we give

more details on the longitudinal motion, rather than the lateral motion of the aireraft. Under

equilibrium operating conditions, the longitudinal and lateral equations of motion could be separated

as givenin the fol1owing:

l
M; :":trI, [Ù+Woq-gCOS~oB]
~ -z-mo[w-Uoq+gsm00B]
M1=m=Iyyi]

(1.1l)

where: x,z,m are the variations of displacement on X B axe, of displacement on lB axe and of pitching

moment, respectively.

{
y: tri, [~+uor - WoP - gcos 0 0,]

. l-Ixxp 1xzr
n=Izzi'-Ixzp

(1.12)

where: y, l, n are the variations of displacement on YB axe, of rolling moment and of yawing moment,

respeetively.

In the following, the only actuator considered for the longitudinal motion is the elevator. Developing

in Taylor series the coordinates of the forces acting on the aircraft in (1.7), we obtain the following

equations:
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(1.13)

Note that if we considered other command surfaces such as the horizontal canard ohe' then terms such

as ô8 OE + ô~ 8E could be added for each Taylor series developed for variables: 8 =Fx,Fz or M .
ôOE ôOE

Using the standard notations in aeronautics:

x =_1_ôFx
x mo ôx

Z =_1 ôFz
x mo ôx

M =_1_ôMx
x 1 ôx

Y.l'

(1.14)

(1.15)

where Xx,Zx,Mxare called stability derivatives, the longitudinal equations ofmotion are given as:

Û =X"u + Xuû + X ww + X ww+ Xqq + X/Î +Woq

-g cos BoB + X OE 0E + X
JE

8E

W=Zuu + Zuù + Zww+ Zww+ Zqq+ Zi/l +Uoq

-gsin0oB+Zo OE +Zo 8E11 Ull

if =::Muu +Muù +Mww+ Mww+Mqq+ MiA

è=::q

The stability derivatives mentioned above depend on the type of aircraft and the operating point in the

flight envelope. They are generally estimated amine. by wind tunnel tests.
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If certain stability derivatives are neglected [Mcl90], the longitudinal equations of motion can be

simplified to:

il = Xuu + X ww+Woq - g cos°00

w= Zuu+Zww+Uoq- gsin0aO+ Zo/iE

q=Muu+Mww+Mww+Mqq+Mo./iE

é=q

(1.16)

These equations are more suitably written, for control system objectives, in a state-space

representation G(s)=[$}=C(s! - Ar'B +D, By chqosing the state variahles veelOr as:

x=[u w q (Jf and the actuator vector as 8E , we get the matrices

and

where:

X u X w Wo -gCOS0'l
A=

Zu Zw Ua -gsin0o

Mu Mw M q Mo
0 0 1 o J

B=[~:.l
L 0 J

(1.17)

(1.18)

Mu = (Mu +MwZu)

Mw =(Mw +MwZw)

M q =(Mq+UoMw)

Mo = (-gMwsinro)

Mog =(MOE +MwZog )

If a short-period approximation is desired, which means neglecting the· variations of speed due to

deflections of control surfaces, then u =0; thus the state variables for the longitudinal motion are

reduced to x=[;] and
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1.2.3 Background on nexible structures

Using the Hamilton principle for undamped systems

/2 /2

fÔ(T -YJ1t =fôrdt
h h

(1.19) .

(1.20).

(1.21)

where r is the effort of the non-conservative forces, T is the kinetic energy and ZI is the deformation

energy. If we discretize the structure studied into a finite number of elements represented by n nodes

located on the contour of the structure, then an approximation of the displacements of the structure is

glVen as:

"
uj(x,y,z,t) = L7Ji(X,y,Z)qi(t)

i=!
(1.22)

where:

q; (t) are generalized coordinates,

1];(x,y,z,t) are the basis functions of the approximation.

Reformulating the Hamilton principle by taking into account Equation (1.22) leads to the Lagrange

equations as:

(1.23)

where F, is generalized force corresponding to the generalized co0 rdinates qj and glVen

For small displacements of the elastic systems, an approximation of the kinetic energy and the

deformation energy is given as:

T=l/2ffJlMyili =lj2i/Mq
i=1 j=l

n n

ZI =lj2z..z..q;Kijq; =lj2qT Kq
1=1 j=l

9

(1.24)

(1.25)



then the Lagrange equation in (1.23) is rewritten as:

Mq(t) + Kq(t) = F (t) (1.26)

For damped systems, we need ta add a term ta model the force of viscosity dissipation. Thus the

global flexible structure model is given as:

Mij(t) + C q(t) + Kq(t) =FU)

where: M: is the semi-defmite mass matrix.

C : viscosity-'-damping matrix.

K: positive stiffness matrix.

F: generalized forces.

(1.27)

1.2.4 Flexible ab-cran model

In this thesis, we are interested in models of aircrafi that include structural flexibility. These models

are more realistic and have the potential ta yield more reliable controller designs than rigid-body

models neglecting the flexibility aspect of the airerait. In the foUowing, we show how, starting from

rigid-body dynamics, aeroelastic effect can be included in the state~space representation of the flexible

aircraft model. As explained above for general flexible structures, and assuming smaU aircraft

structure displacements, each flexible damped mode i can be represented by generalized coordinates

(1.28)

where Ai> Bi' Ci are the coefficients of the generalized coordinate qi and Qi represents a generalized

aerodynamic force. Bach differential equation in (1.28) representing the ith flexible mode can be

included in the global state space representation of the flexible aircraft. This can be done by adding,

for eachflexible mode taken into account, two states

(1.29)

In general the state-space matrix A offlexible aircraft model can be partitioned as:
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A =lf Arr Are] where Ar, Ae•are the state matrices of the rigid-body part and the elastic part of the
Aer Ae•

aircraft. Ae' A.r are the coupling matrices of the rigid part to the flexible part and of the flexible part to

the rigid part. The eoupling terms ean be estimated from wind tunnel tests.

To be more generic in our modeling of the aircraft, we do not specify the output equations of the

models. This depends on the type of aircraft and the performance objectives. The vector of outputs can

include acceleration measurements with different position accelerometer on the aircraft. A.lso roll,

pitch and yaw angles can be measured using gyros. For instance, sorne of the outputs variables do not

necessarily have to be sensed. They may be aircraft or engine variables that need to be simulated or

controlled indirectly.

1.3 Gust load aileviation problern

Problems caused by gusts acting on aircraft started to be studied in the early flfties and researeh

programs were elaborated to overcome those problems. In 1949 a program, concerning the aireraft

Bristol Barbazon, was proposed to develop a system that would alleviate loads due to turbulence and

flight maneuvers. The objective of this program was to reduce wing deflection due to turbulence, and

execute the required flight maneuvers. This program resulted in a prototype but was never flight­

tested, as opposed to other programs developed between 1955 and 1960 in England for the Avro

Lancaster aircraft. AlI of these early systems had difficulty reacting fast enough to counteract the

turbulence effects on the aircraft. These deflciencies have been noted by Attwood, Canon, Johnson

and Andrew [Att61], who applied for a patent, which was awarded in 1961. This work proposed to

measure the normal and angular acceleration of the aircraft and use its auxiliary control surfaces to

produce the necessary forces and moments to minimize the undesirable accelerations caused by wind

gusts.

In 1964, damages to a military B52 aircraft caused by severe turbulence, of 35m/s maximal velocity,

accelerated the development of a research program including extensive flight testing called Load

Alleviation and Mode Suppression CLAMS) in 1965. Results of this program were presented in

[Bur68] and continued until 1973. Other programs focused on gust alleviation objectives have been

described in [St073].
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Starting from the early seventies, the use of control surfaces became widespread for the gust

alleviation problem. The incorporation of classical control design techniques for this problem was

obvious. Research works as in [Mcl78], [Krag79], [Abel82], [Van86], [Mats88], treated some aspects

of gust alleviation problem using classical control techniques. In [Osb94] [Muk92], [Ban92] modem

robust control methods started to be applied to aerospace problems, especially for rigid aircraft, where

unmodelled perturbation effects have been studied. One objective of this thesis is to adapt modem

robust control techniques to flexible aircraft subjected to wind gusts.

1.3.1 Turbulence modeling

Atmospheric perturbations may have a considerable effect on the performance of an aircraft. They

may cause premature airframe fatigue and reduce passenger comfort. As mentioned above, one of the

objectives of active control surfaces is the suppression of undesirable effects of turbulence on the

movement of the aircraft.

Turbulence can be defmed as a series of discrete gusts acting on the aircraft at different times. Two

functions modeling gusts are generally used in the literature: the fIfst one consists in

wg (t) ::;:: f[1- cos(2~)t] where: T::;:: LjUo is the period of the gust, Ua is the velocity of the aircraft

at the equilibrium point and L is the wavelength. The second function modeling the gust is the delta

gust and mathematically is given as:

t
A - for 0 :s: t :s: t]

t]

A
t 2A fi where A is the maximum of gust magnitude.- -+ or t] < t :s: t2
t]

oelsewhere

A turbulence acting on the aircraft is a random phenomenon, which can be defmed by its root mean

square value (nns) and its gaussian amplitude distribution. As shawn in the literature [Hob88], this

phenomenon can be generated by a superposition ofinfinite sinusoidal components as:

y(t) ::;:: f -1rjJ(OJj )L\co. cos(OJ/ + lf/i)
i=]

(l.30)

where: JrjJ(COi )L\co , lf/i represent the magnitude and the phase, respectively; COi' rjJ(OJi ) are the frequency

and the total average power of sinusoid of frequency OJi , respectively.
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{
Y(t) for - T ~ t ~ T

Defming YT (t) = and assuming the existence of the Fourier transform of YT (t) as:
ü elsewhere

F(w) = l:Yr(t)e-iaJtdt, the power spectral density (PSD) of the function y(t) is given as:

( ) 1 1 12 1 1 J+co Joo " 'rp OJ =hm-- F(OJ) =hm--F(w)F(-w) =lim-- Yr(t)YT(s)e)OJ'e-)[OSdsdt (131)
T-'>co 2trT T-'>oo 2trT 2trT -co -00

T-l>co

assuming s =t + r then

(132)

where: rp«(r), R(r) are the real, even, positive PSD function and the autocorrelation function defined

T

as: R(r) := lim~f y(t)y(t + r )dt = y(t).y(t + r) , respectively,
T-l>OO 2T

-T

The autocorrelation function R(r) is connected to the PSD function, through the Fourier transform, as

follows:
+CO

R(r)= f rp(w) cos (OJr)dOJ
o

(1.33)

This implies that Œ (the rms), which represents the intensity of the turbulence, 1S calculated as:

Analytic, continuous forms of the PSD of the turbulence acting on the aircrafi are available in the

literature [Mcl9ü]. The most known forms are the Von Karman model [Von37] and Dryden model.

These are given in Table1.1 :

Table 1.1: Gust models

Von _ ŒiL; [1+ ~'(1,339LllfJ
2

rpu (0) = 2Œu Lu
rp;(O)- % i= W,V

tr [1 + (l, 339LuOt J~Karman tr[1+(1,339LiofJ 6

models

Dryden ) ()"2L [1 + 3(LO)2] 2 2L
rjJ,(O = " 1 i=w,v rpu (0) = Œu u

tr [1 +(LuO)2Jmodels ' ff[1+(L;0)2T
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where n =OJ!Ua, which implies that qJ(w) =q>(UaO) .The indices i =Hi, V is for the vertical and

transversal gusts, respectively. Subscript uis for the longitudinal gusts.

1.3.2 Gust l{Huls on aircraft

On Figure 1.2, we represent the most influent forces acting on an aircraft along its flight.

Propulsion P

Drag T

Weight Wp

Figure 1.2 Aircrafi subject ta forces

where: e is the pitch angle and ct is the angle of attack.

Mainly, LI' called the lift force, is the vertical component of the aerodynamic force that opposes the

weight force W ta allow the aircraft ta fly. The "drag" force, T, has an opposite direction ta the

velocity of the aircraft and opposes the propulsion force P. Note that for horizontal flight Lj = W and

P=T.

Assuming that the trim velocity of a flying aircraft is Ua, then wind gusts acting on the aircraft results

in a change in the angle of attack a by boa. In Figure 1.3 we show how a vertical gust affects the angle

of attack of the aîrcraft.

Vertical gust
velocity

Velocity of

aircraft

Relative velocity Uo

Figure 1.3: Turbulence effect on aircraft velocity
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This change in the angle of attack and thus the velocity of the aircraft has a direct effect on the lift

force L. This effect has been studied in [Hob88], where it 1s quantified as:

Mgust =i Uo2SCLu'~·a (1.34)

where:

p: air density,

S: wing surface,

C1a: : tangent of Lgust on a axis,

Wg. velocity of the vertical gust,

Lla=wglUo.

In practice, the effect of the gust on the aircraft is measured by a factor of gut load given as:

L'." ~ AL, ~ [~. wp,SCr, ]

W W
(1.35)

At this stage, we have a specific description of the turbulence, its statistical characteristics and how it

affects the aircraft. In the next chapter, we will present a real application of turbulence modeling,

starting from a white noise perturbation, Ina system ready for use in a feedbackcontrol design.
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Chapter2

Robustcontrol techniques with application to gust load alleviation
offlexible aircraft

2.1 Introduction

The aim of tllis chapter is to introduce the reader to sorne optimal and robust design techniques that will be

used along tllis thesis. These days, a modem multivariable feedback control strategy is needed, especially

for aerospace applications where the complexity of the models and performance objectives need· efficient

control algorithms meeting realistic constraints. General.control objective concems a rninimization of the

effect of exogenous input signaIs (w) on someerror signals (e). These signaIs (w) can include reference

signaIs to be tracked and/or disturbances. signals. The formulation of optimal control problems, in state­

space representation, initially developed in [Doy89] spurred the adaptation of this optimal control theory to

complex industrial problems [Skog96], and applications to aerospace vehicles [Vid95], [Nie96]. In fact,

theories such as Hz, H oo and ,u control received a .great deal of interest since the 90's, compared to the

classicaloptimal LQR and LQG/LTR [KaI60], [Gup80] actively used in the 80' s. The optimization

framework of these theories, basedin general cm acommon setup, provides solutions in state. space using

efficient solutions to Riccati equations as weIl as linearmatrix inequalities.

2.2 Problemsetup

Consider the general block diagram ofa unity feedback control system shoWll below.

Figure 2.1: Typical feedback control system
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The weighting functions Wx are added for different reasons (although they are rarely all present in a given

design):

-Toenforce closed-Ioop performance specifications (weighting functions on output signaIs anderror

signals).

- To represent the frequency contents ofdisturbances and noises

- To lirnit actuator responses to reasonable control effort.

The choice orthe weighting functions Wd , w" ,Wy , w: is not trivial. It varies from an application to the next,

and from objective to objective. The weighting functions essentially have to take into account the closed­

loop performance objectives with realistic constraints imposed on the system.

For simplicity, we assume that di =0, il = 0, and we consider the regulator problem where the effect of the

output disturbance do on the weighted output y must be minirnized. This system can be recast as a linear

fractional transformation (LFT) as.shown below in figures 2.2 and 2.3.

-e

d

u

p

A
Z W

oIIIl

- P(s)
~

-e u.. K(s)

Figure 2.2: plant augmentation Figure 2.3: equivalent setup

17



h P() [ ~l(S) ~2(S)] d th .1:: • • f· thi l' d 1 d'lw· ere s:= . , an e transier matnx entries 0 s genera lZe p ant are rea 1 y
LP2](s) P:12 (s)

obtained from the paths relating each input signal to each output signal. Here we have:

(2.1)

The closed-loop transfer function from wto z , J:"" is represented as an LFT given below:

(2.2)

Depending on the application, the exogenous input w, in Figure2.3, can include references for tracking, and

then the generalized plant P ofthe problem setup can be constructed in an analog manuer.

2.3 Weighted Hl optimal control

2.3.1 Motivations on weighted. Hl design

The performance criterion used.in this control design theory is defined over the space RH2 , which consists

in the real-rational, strictly proper transfer matrix functions that have aIl their poles in C- , the open left-half

of the cotUplex plane. The inner product in this space is:

(2.3)

for two e1ements F and G E RH2 , and where Tr {.} denotes the trace ofthe matrix.

The objective of the Hl controldesign, given an augmented plant P as in Figure 2.3, is to find a state-space

controIler K, which internally stabilizes P and minimizes IIFL [P(s), K(s) ll12 definedin (2.4).
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Let US, before going into the synthesis procedure, givebasic information on the H2 nontl.. If P E RH2 with

astate space realization:

l'=[~] whe", A is Hurwitz..Then the H, noOIi of l' is defined as:

Ilpll~ := \P,P)2 = 2~1Tr{P* (JOJ)P(JOJ)} dOJ = IIP (t)12
dt = +JTr {B*eA'tC*CeAt B} dt = Tr(B*YoB)

-co -00-'-00

(2.4)

where Yo denotes the observability grammian. Similary, we show that Ilpll~ = Tr(CXoC*) where Xois the

controUability grammian of the state-space realization.

The requirement to minimize the H2 norm of the map from wto z in the synthesis of the stabilizing

controUer K has a significant meaning on performance objectives. In fact, If we consider wasa stationary

random process, the signal variance i8 given by:

1 +co

Var!w(t)1
2
=Tr{~(O)}=- fTr{Sw(OJ)}dOJ

21r -co

(2.5)

where Rwand Swrepresent respectively, the autocorrelation matrix an its Fourier transform, for the signal

w. If z= Pwthen Sz(OJ) =P(JOJ)Sw(JOJ)P(JOJ)* andthen

Varlz(t)12 =2~ +JTr{P(JOJ)Sw(JOJ)P*(JOJ)}dOJ= JTr{P*(JOJ)P(JOJ)Sw(JOJ)}dOJ (2.6)
-00 -co

If the signalwis just a unit intensity white noise, then Sw(JOJ) =1 , which results in Var Iz(t)1
2= Ilpll~ .

Thus the H2norm can be interpreted as the output variance for a white noise input.

In the case where the. spectrum of the input signal is known, another interpretation of the H2 norm canbe

given. Let us consider the case where w(t) is scalar-valued, given as a delta Dirac function w(t) =5(t),

then:
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Ilzle = +Joo / (t)z(t)dt =_1 +Joo z· (jrv)z(jrv)drv = _1 +Joo p' (jrv)P(jrv)drv = Ilpll~ (2.7)
. 2".· 2"

-0:) . -co -00

This means thatwhen the system input is scalar-valued, the H 2 norm of P gives us a direct measure of the

system output energy.

Now that we have shown the importance of performance measure delivered by the H 2 norm of a mapping

of input, output signals of a closed loop system, we give, in the following, the steps needed for an

H2control synthesis:

2.3.2 Background on algebraic Riccati equations

Let. A, Q, R he real n x n matrices with Q, R symmetric. Then an algebraic Riccati equation (ARE) is the

following matrix equation:

A'X +.xA+XRX +Q=O

Assoeiated with this ARE is the 2n x 2n Hamiltonian matrix:

[AR]H'-
.- -Q -A'

(2.8)

(2.9)

This matrix will be used to solve the ARE for the matrix X. A direct relation between this Hamiltonian

matrix and the ARE is the following reformulation of the ARE as.:

(2.10)

The Rie funetion is now defined. Assume that Harniltonian matrix H has no eigenvalue on the imaginary

axis. Then, H has neigenvalues in the open right balf-plane and.n eigenvalues in the open left half-plane.

Consider.the n -dimensional invariant spectral subspace .1:'_ (H) eorresponding to.the n eigenvalues of H

in the open left half-plane. By finding a basis for .1:'_ (H) , we get:
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(2.11)

If XI is nonsingular, then we can defme X:= X 2X j-
1 and the Hamiltoman matrix H uniquely defines X.

Thus the function H H X is ealled Rie and defined explicitly on:

Rie: dom{Rie} c JR2nx2n -+ JRnxn (2.12)

where dom{Rie} is taken to be Hamiltoman matrices that have no eigenvalues on the imaginary axis, and

have a nonsingular XI .

The following result states that X := X 2X j-
1 is a solution to the algebraic Riccati equation:

Them"em 2.1 [Kuc72]

Supposethat HE dom{Ric}, and X=Ric(H). Then:

(i) X is real symmetric,

(ii) X satisfies the ARE,

(iii) A + RX is stable (aIl ofits eigenvalues are in the open LHP).

2.3.3 H2 synthesis

Suppose tOOt a state-space realization of P(s) is given by

P(Sh[~
BI

B, Ja ~' (2.13)

C2 D21

Notice the special off-diagonal structure of D: Dn is assumed to be aso that ~2 (s) is strictly proper, and

DJI is assumed to be aso that ~I (s) is also strictly proper (whichis anecessary condition for ~I (s) tobe

in H 2 .). This off-diagonal structure allows us to give details on the synthesis procedure with the maximum

of simplifications. Details on how to construet a H2 controHer with the general structure (D11 and· D22 '* 0 )

are given in [Gre95]. Further assume that D12 has full column rank and D21 has full row rank.
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First define RI = D;lD12 andRl =D1ID;], and the two Hamiltonian matrices:

(2.14)

(2.15)

Theorem 2.2 [Doy89]:

Ifthe following assumptions hold:

1.The pair (A, Bl ) is stabilizable and the pair (A, Cl) .is detectable ( This assumption is necessary and

sufficient for P to be intemally stabilizable).

3. [A - j (j)
1 H21 bas full oolumn rnnk for all (j)

Cl D12j

4. [A - j 0)1 BI] has full row rank for all 0)
Cl Dl1

Then, the unique Hl -optimal output controller minimizing IIFL [P(s), K(s) liIl is given by

where:
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A

A2 A + B2 F2 + L2C2 •

Remark: Assurnptions 3 and 4 ensurethat H2 , J2 E dom(Ric)

2.3.4 H2 State feedhack via LMls

(2.18)

(2.19)

In the following, we treat the special case of state feedback colltroller design with an efficient solution

method, wbich consists in the. solution of a system oflinear matrix inequalities. The availability ofthe states

as outputs of the aircraft model will certainly simplify the design and permit the use of efficient tools of

controller synthesis. This is not in general the case in reality, but it may be possible for certain models, as the

ones we have in our applications.

The following proposition introduces a relation between the H 2 norrn and the feasibility of special linear

matrix inequalities.

Proposition 2.1

Suppose P is a system with state-space realization (A,B, C, 0). Then

IIp l12 < 1 and A is Hurwitz, ift'

:3 symmetric matrix X > 0 such that Tr {CXC'} <1 and AX+.KA' +BB' < 0 .

The augrnented plant P in the case of state feedback synthesis has the following state space representation:

r
A Bl

P(s)",Ç, 0

l 0
(2.20)

and the controller in tbiscase is just (l static feedback gain K (s) =K .
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Theorem 2.3

::JK(s) =K thatintemally stabilizes P and satisfiesliFr [P(s), K(s) ll12 < 1 ifand only if

there exist a matrix Y such that: K =rr-J where X > 0 is synunetric and satisfies :

The above trace condition cannot he directly analyzed by means ofLM! tools because of the nonlinear term

existing in the third trace. Therefore, we have to introduce a new variable, wmch permit us to write this trace

condition in the form ofan LM!.

Using the following Schur complement operation result we can transform the above constraint into an LM!.

Proposition 2.3 (Schur-Complement result) [Hprn85]

Suppose Ris a complex matrix, and M and Qare symmetric complex matrices then:

Q < 0 and M - RQ"1R' < 0 are true is equivalent that [:. ~J < 0 is satisfied.

Assuming the monotonicity ofthe trace under matrix inequalities:

--1 • ,where DJ2IT Y D12 < Z .

Using the result ofproposition 2.3, the above ineql.l~ity can be written into the following LMI:

(2.21)

r z
lY'D*

12

D YJ:; .. > 0 which simplifY the trace condition in the· given theorem ihto the following LMI

condition,easy to analyze:
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2.4 Hoc Optimalcontrol

Refering to Figure 2.3, the standard Hoc optimal control problem is to fmd aU stabilizing controUers

K which minimize:

IIFdP(s),K(s)]IL =supcr[~, (P,K)(jm)J
tlJ

where cr(.) denotes the maximum singular value ofthematrix.

(2.23)

We note that using the .Hoc norm as a performance criterion introduces a more severe constraint compared to

the Hz norm. In fact, the Hz norm specification expresses an average behavior of the linear closed-loop

system. The optimization based on Hz criterion corresponds to an optimization ofthe average behavior of a

system's response to a white noise, i.e., it minirn.izes the total average energy of the frequency response. In

contrast, the Hoc criterion corresponds to the maximum gain of energy, and also to the. worst case of an

input signal producing an output signal of maximum amplitude. Minimization of the H", norm ensures that

for all possible sinusoidal input signals, the amplitude of the output signaIs will be less than or equal to the

H", norm times the amplitude ofthe input signal.

The H", optimization consists then in minimizing the peak of the maximum singular value of the closed

loop system ~JP(s), K(s) ]Lj(i)' It can be alsointerpreted in the time domainas the induced 2-norm: If

z =FdP(s), K (s)lw then IIF; [P(s), K (sil = ei;f;\III~~: where Ilzll, ~ ] L,1z,(t)I' dt is the 2-norm of

the vector signal.

The H", minimization problem can be written as:

(2.24)

where : S represents the set of aU stabilizing controUer K and FL [P(s), K(s)] is the closed-loop transfer

matrix frorn. the exogenous input w to the output z. The optimization of (2.24) is very difficult

theoretically and numerically. Thus, for practical design, a solution tothe suboptimal H", problem stated as:
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Let Ymin be the minimum value of II~AP(s),K(s)]llocoverall stabilizing controllers. Then, given

y> rmîn > 0 ,find all stabilizing controUers suchthatIIFdP(s), K(s) 111", < r·

2.5 LMI approach to Hoc control

The LMI solution for the H", control problem avoids the restrictive assumptions that are usually needed in

the classical solution initially presented in [Doy89J. The LM! approach is actuallyan efficient way to solve

the sub-optimal H", controUer synthesis. In addition to the numerical efficiency of the LM! solvers, this

approach of solving the H", cpIltrol problem gets rid ofconstraining assumptions that must be satisfied in

the state spac(: solution of [Doy89]. In the following we introduce a useful lemma for the solution of the

H", sub-optimal problem presentedbelow:

Lemma 2.1 (Bounded reallemmarevisited) [Gah93,Gah94a,Wan98]

If we considerthe transfer function P(s) =D+C(sI ~ A)-IB then the foUowing statements areequivalent:

- P(s) E RH", and IIp(s)1t < 1.

XB CTl~I Dt <o.
D -/

Now if we consider a minimal realization of the plan! P(s) =[~:: ~2H~JsI - At [B, B,]

and we assume that:

- The pair (A, B2 ) is stabilizable and the pair (A, C2 ) is detectable

Given a proper controUer.K, the closed loop realization withthis controUer has the following state space

.[Ael Bel JrepresentatlOn: FL (P, K) := CD.. where:
el el
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By using the Bounded real lemma presented above, we can statute on the stability and the H ao norm

constraint ofthe closed-Ioop system II~~(P,K)IL < r .For this Hao norm constraint, the matrix inequality

(2.25)

forsome symmetric matrix Xc! > 0 of dimension (n +k) x (n +k) will be used. However, this inequality is

not an LMI since the unknown variables are Xc! , Acl ,Bel' Ccl and Del .

The.following theorem provides a system •• ofLMI's, whose solvability represents a sufficient and necessary

condition for the existence ofa stabilizing controller that verifies the H Cf.) norm constraint.

Theorem 2.5 [Gah93a]

Assurning that

(2.26)

with R,S E ml/xI/and M, NE ml/xk
. Consider the minimal realization of P(s) given in (2.12), assume that

the pair (A,BJ is stabilizable andthe pair (A, Cz ) is detectable, and let N 12 and N 21 denote orthonormal

bases ofthe null spaces of (Bi' , DI~ ) and ( Cz, DZ! ) respectively.

Then the suboptimal Hao problem of performance ris solvable if and ooly if there exists two symmetric

matrices R, S Eml/xn satisfying thefollowing system ofLMIs:
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RCT
1

-yI
TDl1

(2.27)

CT]
1.
1
, [N12Dl1 o

-yI
(2.28)

(2.29)

Moreover, there exist y-suboptimal controllers of order k < n iff the constraints (2.27-2.29) hold for sorne

R, S that verify:

Rank(I - RS) s k (2.30)

The optimization problem given by the LMl system (2.27-2.29) is convex and its feasibility results in pairs

(R,S) that solve the y-suboptimal ?-lm problem. Many efficient algorithms were developed, in [Gah94b],

to solve the LMI feasibility problem . For a reduced order controller the matrix inequality (2.27) imposes a

constraint that verifies the possibility of ?-lm stabilisablereduced controller [Gah93].

Let us define the convex set offeasible pairs (R, S) asW1:y ' Any feasible pair (R, S) detennines a set of y­

suboptimal contrpllers. Consider k := Rank(I - RS) and compute the two full-column-rank matrices

M, N E 9înxk using the singular value decomposition (SVD) such that: MNT =1 - RS. These matrices

uniquely define the matrix Xci using (2.26). Xci is the unique solution ofthe linear equation:

(2.31)

Once an Xci> 0 is calculated,[Gah93], the matrix inequality in (2.25) becomes an LMI with respect to

controller parameters AK,BK,CKand DK. Thus, wecan associate to Xci a convex set of y-suboptimal

controllers K (R,S,y). This set is, in fact, the set ofcontrollers K(s) =DK+CK(sI - AKrJBK such that

(2.25) holds for some. Xci compatible with (2.26).
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The controllers K (R,8,y)can be ealculated by solving efficiently the LM! (2.27-2.29). For that,

algorithms are available in the literature [Gah94b]. When no additional eonstraints on AK , BK , CK and

DK are made, analytical solution ean be found and explicit formulas ean be used to construet the y­

suboptimal H ro eontroUer [Gah93].

2.6 Uncertainty modeling

Any mathematieal representation of a physieal system needs approximations, whieh lead to .model

uncertainties. Different forms exist to represent these uncertainties aceording to what information we want

to include. These representations reflect at the same time the knowledge of the physieal phenomena that

cause these uncertainties and our capacity to represent them in an easy to manipulate form. For an arrcraft,

whose parameters vary with the flight conditions, a linear mathematical model can be obtained by

linearizing the equations of the aireraft at· different points of flight. This win ·lead to an interval of variation

for eaeh parameter of the mode! obtained. These intervals of variations can represent structurally and

aceurately the uncertainties in the model but are not easy to manipulate. On the other hand, we can use a

global. form representation of the uncertainties as dynamical perturbation of the nominal model of the

aireraft.

2.6.1 Unstructured uncertainties

2.6.1.1 Additive uncertamty model

Suppose that the unknown perturbed transfer matrix Op (s) of a system (arrcraft) differs from a nominal

transfer matrix model O(s) that we have of it. The difference between these two models cornes from an

unknown dynamical perturbation ~(s) representing the unmodeled dynamics of the aircraft. Suppose that

this perturbation is additive, calI it ~a (s), and that we knowa function Ja (cv) ~ 0 that bounds its norm

(maximum singular value) for each frequency:

with

Gp (s) =O(s) + ~a (s)

II~a(j@)11 < Ja (@), \I@
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Note that the upper bound 5a (m) represents the "size" of the uncertainty of the model at each frequency. It

is often taken to be the magnitude ofa scalar transfer function. This form of representation is called additive

uncertainty because the perturbation's transfer matrix is added to the nominal model. This type of

uncertainty is also called unstructured because the only information we use is just the upper bound of the

norm ofthe uncertainty,and not its structure.

The figure below shows a closed loop system with such an additive uncertainty modeL Again, it is

important to emphasize that we do not know what .6.a (s) is, we only know that it 1S bounded by

We can define a family ofperturbed plant models as the set

(2.34)

Then, roblli;t control theory assumes that the unknown, "true" plant model belongs to P. Thus, robust

control design consists of designing a controller thatcan maintain a desired performance level for all plants

in P (robust performance) or just stabilize all plants in P (robust stability).

Retuming to the aircraft example, we might choose the nominal model G(s) as the transfer matrix

corresponding to an average flight condition. We can obtain 5a (m) by calculating a large, but fmite number

of perturbed transfer matrices {Gpi (S)}:1 corresponding to various possible flight conditions (altitudes and

Mach numbers). It is then reasonable to expect that the corresponding additive perturbation .6.0 (s) would be

bounded by:

~ax IIGpi (jm) - G(jOJ)11
l-l, ...,N

at each :frequency. We would then try to fmd an uncertainty bound 5a (m) such that

~ax IIGpi (jOJ)- G(jOJ)I\ < 8a (OJ)
1-1,...,N
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Figure 1.4: Additive uncertainty

Another way to represent the uncertainty in the system under study is the direct multiplicative uncertainty

that cau be related to additive uncertainty. This uncertainty has two fonns ofrepresentation:

2.6.1.2 Output multiplicative uncertainty

The first representation is for direct multiplicative uncertainty taken at the output of the system:

with

Gp(jOJ) =Ch + Am (jOJ))G(jOJ)

IlAm (jOJ)11 <8m(OJ) VOJ

(2.37)

(2.38)

y

+
y" + y

Figure 2.5: Output multiplicative uncertainty

2.6.1.3 Input multiplicative uncertainty

Thesec6nd perturbed model is such that the direct multiplicative uncertainty appears at the input of the

system:

(2.39)
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with

+

(2.40)

+

y

Yu

Figure 2.6: Input multiplicative uncertainty

Other models of representingdynamic uncertainties exist but are not widely used inindustrial applications. We

mention the input inverse multiplicative uncertainty and the output inverse multiplicative uncertainty, which can

he useful to represent uncertainties that appear in the denominators (e.g., poles) of sensor and actuator transfer

functions respectively.

Such unstructured models of uncertainty can be conservative and even lose information about the

uncertainty in the physical system, but these kinds of models are general and can represent different

uncertainties of various nature.

2.6.1.4 LFT uncertainty representation

Most of the uncertainty models described above can be. cast into an LFT uncertainty representation. The

perturbed model is a linear fractional transformation (LFT) of the nominal system mode! on the

perturbation:

Gp (s) =Fu [P(s), ~l (s)] =P:12 (s)+ ~l (s)[ l - ~l (S)~l (s)t ~l (S)~2 (s)

=li2 (s) + lil (S)~l (s)[ l - ~l (S)~I(S)t ~2 (s)

The figure below shows a feedback controlled upper LFT withthe perturbation.
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...
.1,(s)

......
W 2~ P(S)

~

........

.. K(s)...

z

Figure 2.7: LFT uncertainty representation

Example2.1

Output multiplicative uncertainty expressed in LFT form

Output multiplicative uncertainty can be written as

Gp (s) = [Ip + Am (s)]G(s)

= G(s) + Am (s)G(s)

==~2(s)+~I(s)[I-Am(s)~I(s)r Am(S)~2(S)

and by identification with the entriesof P(s) , we get

P22 (s)=G(s), ~1(s)=I, ~I(S)=O, ~2(S)=G(s)

In the following we consider different types on uncertainties and see what models can represent these

uncertainties:

a- Parametric uncertainty: The variation in the parameters of the model can be represented by the

additive, •the direct. multiplicative model.and the also the reverse model if the system is square by

comparing G(jcvr1and Gp (jcvr l
.

b- Actuators uncertainties: Thiscomes essentiaIlyfrom the fact thatthe dynamics of actuators may

not be weIl knownor may even be neglected. These uncertainties can be take into account by using the

two forms of the direct and reverse multiplicative uncertainty at the input.

c- Sensors unc~rtainties: The sensors are often fragile devices, so they cau be partially damaged and

deliver erroneous measures. These kinds of uncertainties can be represented by the direct and the

reverse multiplicative uncertainties at the output.
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d- Nonlinearity and reduction of the model: The nonlinearities can be taken into account if their effect can

be bounded in the frequency. domain. Reduction of the model is often used to simplify the control design.

When we are using this technique we can take into account the neglected dynamics as uncertainty and can

he represented by any type ofmodel uncertainty.

2.6.2 Robust stability theorem

We now discuss the robust stability problem, using the small-gain theorem. Consider in the LFT in Figure

2.8. The matrix A(s) represents the uncertainty in the model and M(s) the nominal matrixtransfer

function of the closed-Ioop system. AH of the models with different types of uncertainties can be recast in

the M - A format. The intermediate step to achieve this is to transform the block diagram into an LFT fIfSt

as sown below: Then M(s) =~ [P(s),K(s)] .

.. .1.(s)...

........

P(s) ...
~

K(s)...

z
M(s)

v

Figure 2.8: Equivalent LFT and M - A interconnection~

Theorem 2.6 (Sman-Gain Theorem) [Zam66]

Under the assumption that M(s) and N.s) are stable and real-rational, i.e., M(s) E RHetj, A(s) E RH"" the

M -A interconnection shown above is stable for everyperturbation A(s) such thatllAIL < 1 iff IIMt ::; 1.

This theorem gives a necessary and sufficient condition.for robust stability under the assumptions that the

nominal dosed-Ioop system M (s) is stable, and that the uncertainty A(s) is also stable and nOnI1alized to

have an H", -norm less than 1. The assumption that A(s) be stable is not too restrictive since such

perturbations can. generate unstable perturbed plant models with appropriateuncertainty models, such as

inverse multiplicative or feedback uncertainty models.
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Using this theorem to the different uncertain systems presented above will result in conditions of robust

stability depending on the uncertainty model chosen. We will show explicitly the application of the above

theorem for an LFT type uncertainty and we will give a robust stability condition specifie to that uncertainty

model.

Theorem 2.7 (Robust stability with tincar fractional unccrtainty)

Under assumptions that:

- Nominal open loop and perturbed open-Ioop have the same number ofunstable poles.

- Any unstable pole of the perturbed open-Ioop system is also an unstable pole of the nominal open-Ioop

system.

- The nominal closed-Ioop system is stable.

then closed-Ioop system ofFigure 2.8 is stable if:

or, equivalently,

(2.42)

(2.43)

Furthermore, under assumption that M(s) and b.(s) are stable, the closed-Ioop system of Figure2.8 is stable

if and only if:

(2.44)

The block diagram ofa feedback controlled upper LFT with the. perturbation (Figure 2.8) is the most general

representation as all other robust stability conditions (for other types of uncertainty) can be obtained from

the LFT one.· Typically, the generalized plant P(s) would embed all of the weighting functions used to

specify performance and also weighting functions that shape the uncertainty.
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The first condition given in the above theorem is just sufficient conditions for robust stability. But the

second condition given based on the small-gain theorem isnecessary and sufficient, and proves to be the

most useful to control engineers.

The uncertainty bound 8(w) is usually specified by a sca/ar stable rational weigthing function W(s) as

foUows. Let the perturbation be de:fined as &(s):= W(s)À(s) where À(s) is a normalized perturbation in

RH", such.that IIÀ(s)jL < 1. Then

11&(jw)11 < IW(jw)1 =8(w), \iw E ~

<::>

Thus, the upper bound IIÀ(s)jL < 1 on the HO:) -norm of the normalized perturbation can be used in the

theorems, along with the weighting functions.

2.6.3 Strncfured uncertaïnty

If the system studied. is subjected to multiple sources of uncertainties or take into account the robust

performance objective, a representation of a multiple uncertainty structure is needed. The uncertainties

&j(s) E cem,x p
, and 8 j E ~ i =1, ..., n present in the frrst control setup, when this setup is transformed to an

LFT representation for a control· design procedure, have to be pulled out into one structured uncertainty

block as shown in Figure 2.9 below.
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P(s) ......
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......

..... K(s)III"'"

Figure 2.9: structured uncertainty setup

The best example to introduce thestructured uncertainties is the use ofparametric uncertainties to describe

tms aspect ofmultiple uncertainty blocks.

2.6.3.1 Parametric uncertainties

Let us define thé transfer.1IlJlJriX P(s, fJf= [~~~; ~~1 wbere p is a vector of parame!e's. From this

transfer matrix, we extract ft coustanl malrÏJ;: jj(s):= [$1augrnented by exogenous input w, ou1pUts

z connected to the parameter dependent uncertainty block A(p) , as shown below:

~(p)+--

w z
p

Figure 2.10: Parametric uncertainty setup

A general method is proposed, in [Bal95] to lead to the structure representation given in Figure 2.10.
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BO] [A,;+p.
Do 1 C,;

Bti
] .[Ao. 1 = l, ...,r where

Dti Co
BO

] is the nominal system
Do

B.]'.' represent the amount of uncertainty in the nominal systemparameters. For simplicity, we
D,;

suppose variations of system parametersat the same time (we mean if one parameter vary along an interval,

it has one corresponding combination variation of the other uncertain parameters along their respective

[Ali Ba] [AIintervals ofvariation), thus. ..=
Cli Dli C,

BI] and i =1.
D,

Two ways ofconstructing the uncertainty structure given in Figure 2.10 are discussed:

a-Classical method

Depending on the number, 17, of non-zeta .elements of [AI
CI

augmented input/output link wi / Zi .

Example2.2

Let us defme a perturbed system in its state-space representation:

BI]. , we can extract, one by one, 17
D,

x=ax+u = (ao+pa])x+u = aox+ pajx+u

y=x (2.45)

If we propose a new variable ta control z =alx and. an·exogenous input w=paIx then w= pz . This will

allowus to write, as follows, au augmented systembased on the nominal system of.

X=aox+u+w

z=alx

y=x

Thîsprocedure cau be applied toall non-zero elements of [AI
. C,

(2.46)

BI]. However this approach is not
D,

automatic and cau be conservative. In the following a systematicapproach is presented.
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b-SVD approach

ln Ibis approach we gelietale a number 'l, of repeated uneertairities snch t!)at 'l, ~ rank([~ ~ ]J ,s; 'l,

This can he achieved bi1fieaI1S{)fan singular value decomposition of[~ ~ ] ,

[
AI Bt ]where r ~ rank( '..) and ~ =L)-; .
CI DI

Thus the original system çan be written as:

BO ].+ p[4 B., l w)l1ch is written as:[A(P) B(P)] =
Do CI DtJ C(p) D(p)

witli w~ p rz ,. z~ [w" If';,], u, = [~;:]. and If'; =[!f1, w,,] thon the augmented system is given as:

2.6.3.2 Stmcfured singular value

(2.47)

The structured singular value is a generalization orthe maximum singular value of constant complex

matrices. Consider the feedback interconnection presentedin Figure 2.8. The closed-Ioop poles are given by

det[I-M(s)ô(s)] =0 ,andthe feedback systembecomes unstable if det[I - M(s)S(s)] .=0 for

somes E C+(closed RHP). Using the small gain theorem the robust stability margin jJmax is definedas:
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_1_ =.IIMIL, := suy a=(M(s)) =supa=(M(jco))
f3max SEC+ OJ

such that IILlIL, < f3max and Ll(s) is unstructured.

(2.48)

For any. fixed complex number 3D E C+, the maximum singular value, [Doy82], a (M (s)) can be written

as:

(2.49)

Therefore, the reciprocal of the largest 3ingular value of M (so) is a measure of the smallest unstructured

il E Cpx
p thatcan cause instability ofthe feedback system.

For the smallest destabilizing structured complex Lls , the.concept ofmaximum singular value needs to be

generalized. We defme,[Doy85],

p!'. (M(so)) :={••. rnin{if(A,): det(I - MlS;)A,) ~ D,A, IS structured}
0, det(I -M(so)ils):;t°\:I!'J.s

(2.50)

as the largest structured singular value of M (so) with reSpect to the structured complex perturbation ù,.

Then, the robust stability margin f3max of the feedback system with structured complex uncertainty ils is

givenby: (2.51)

In the following, weconsider the general case of a S -scalar-block, F-full-block structured perturbation,

where the scalar blocks may berepeated. Let ME cnxn
, and l'j, ... ,rq ,1nI, ... ,m} be positive integers

S F

satisfying L1j + Lmj =n (fuis is just for bookkeeping of the dimensions ofthe uncertainty blocks).
1=1 j=1
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We define the block structure r c ((/lX/l as

(2.52)

Defmition2.1 strnctured singular value

For a complex matrix M E ((/lXII, the function Jlr : C"X/l ~ 1R+ is defmed as

Pr (M) := [min {11t:\s Il: t:\s Er, det(I - M t:\s) = o}JI

unless no ~5. E r makes det(J - ML1s ) singular, in which case Jlr (M) =O.

Defme the" unit open ball" ofcomplex structured perturbations:

Br := {L1 Er: 11L111 < l}

Then, an alternative expression for Jlr (M) follows from the definition:

Jlr(M) =maxp(ML1s )
LI.,E13r

Where p(.) i8 the spectral radius.

(2.53)

(2.54)

(2.55)

Since the spectral radius is a continuous fonction, the structured singular value Jlr : CC11X11
~ 1R+ is also a

continuous fonction. However, Jlr (.) is not a nonn, since it does not satisfy the triangle inequality.

In the special cases of oruy a single scalar block, and only a single full block, Jlr (M) reduces to the

following.

Ifr={oI:oECC} (S=l,F=O,'Î =n),then

Jlr (M) = p(M),
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wruch is the spectral radius ofM.

flr (M) =O=(M)

Obviously, for a general uncertainty structure r as defined in the beginning, we must have

(2.57)

The bigger the uncertainty set, the more possible it is fora small perturbation to make 1 - M b.s singular.

We conclude that:

p(M):S; flr (M):S; O=(M) (2.58)

The gap between p(M) and O=(M) can be large, which makes the evaluation of the structured singular

value using these bounds difficult.

However, the bounds can be refined by considering transformations on M that do not affect flA (M), but

do affect p(M) and O=(M) . To do this, defme the followingtwo subsets of cnxn
:

(2.59)

which is the set of structured unitary matrices, and

(2.60)

which is the set of matrices that commute with any b.s Er. Mathematically, for any

b.s E r, U EU, D E 'D, we have the following properties:

U· EU, Ub..,. .E r, b..,.u E r, o=(Ub.s ) =O=(LlsU) = 0= (b..,. ),
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Consequently, we have:

For an U E U, DE V :

Pr (MU) = fir (UM) = fir (M) = Pr (DMD-1
)

Therefore, the lower and upper bounds on Jl in (2.58) can be tightened to:

maxp(UM) ~ maxp(L\.,.M) =Pr (M) ~ inf if (DMD-1
)

UeU li,eBr . De'D

The lower bound ofthe expression obtained above is always an equality:

maxp(UM) =Jlr (M)~ inf if(DMD-1
)

UeU De'D

(2.61)

(2.62)

(2.63)

Unfortunately, the function p(UM) can have multiple local maxima which are not global. Thus local

search cannot be guaranteed to obtain Pr (M), but can only yield a lower bound. The upper bound can he

reformulated as a convex optimization problem, so the global minimum can, in principle, be found.

Unfortunate1y, theupper bound is not always equal to Pr (M). For block structures r with a number of

scalar blocks and full blacks satisfying 28 +F~ 3, the upper bound is always equal ta Pr (M), and for

block structures with 28 + F > 3, there exist matrices for which Pr (M) is less than the infimum [Pack88].

2.6.3.3 Robust stability with stmctured uncertainty

In the following we give conditions of robust stability of a closed loop system subjected to •a block of

structured uncertainties. Let us defme the set ofreal-rational, proper, stable structured perturbations:

(2.64)
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and consider the perturbed feedback loop in Figure2.8 where ~(s) = ~,,(s) ES. The LFT is simply reduced

to an M(s)-~s(s) interconnection, such that FL[P(s),K(s)], and we can use a generalization of the

small gain theorem to assess robust stability.

Theorem2.8 Robust stabiUty with structured perturbation (small- J1 theorem)

Assume controller K(s) is stabilizing for the nominal plant P(s). Then given fi> 0, the closed-Ioop

system in Figure 2.8 is well-posed and intemally stable for aU ~s E S, II~s IL < fi if and only if:

SUPJlr {~[P(jw),K(jw)]} s~.
mER fi

In particular, if the structured perturbation is normalized, i.e., As E S, liAs IL <1, the condition becomes:

sup J1r {~ [P(jw), K(jw)]} sI.
tllER

2.6.3.4 Robust performance

Consider the closed-Ioop system presented in Figure 2.11 where Zz (t) E ]Rn'2and Wz (t) E ]RnW2
• Define the

{[~'new uncertainty structure :Q := 0

1

Z2 ~-- P(s)

to the structure. It accounts for the performance objectives under a classical robust stability framework

described above. Xsa (s)
..
..... [- ].D.so(S) 0

Lip(s)
ï -..,. .... --.

'-- .....1 :

•
•.... .

.... .
~-_.

.... Wz....

'------.~I K (s) 1__--1

Figure 2.11: robust performance setup
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The foHowing theorem gives the conditions for robust performance criteria.

Theorem2.9: Robust performance with structured perturbation

Assume controHer K(s) is stabilizing for the nominal plant P(s). Then for the closed-Ioop system in the

figure, for aH /),..1 E 5, II/),.s IL < fJ the closed-Ioop system is weH-posed, intemally stable and IIr
2

W
2

1L ::;; ~ if

and only if

sup Po {:F;_ [P(jaJ), K(jaJ)]} ::;;~ ,
t1Je1R fJ

where Tz w is the transfer matrix from the input w2 to the output Z2 •
2 2

(2.65)

The controHer design technique called p;- synthesis is based on the use of the upper bound on pin (2.58).

We minimize the supremum of Po {FL [P(jaJ),K(jOJ)]} over all frequencies by solving the optimization

problem:

[D 0] [D~l 0
1
] 00min FL(P,K)

K(s),D(s) 0 l 0
(2.66)

where K must stabilize the plant perturbed by any /),.sES and II/),.sIL::;; 1. The D(s) scales must be

minimum phase and invertible in RH",. The optinûzation in (2.66) can be solved iteratively by fixing

the D scales and solving minllD~ (G, K) D-111, then for a givencontroller
K(s) 00

K(s), by

solving .• inf IID~ (G,K)D-111 . This optimization procedure is called D-K iteration and is detailed in
D,D-1er(" 00

[BaI95].However, this procedure is not optimal in the sense that thecontroller K(s) obtainedonly acmeves

a sub-optimal p value in closed loop. This procedure depends on the nature of the uncertainties, complex,

real or a mix of the two, and the D-scales used. Many papers, e.g., [You90], [You92], treated tms open

research topic and obtained results on what D-scales are best to use in the D-K iterationprocedure to match

the plant uncertainty. For the mixed uncertainty control problem, a similar algorithm called D-G-K Iteration

[You93] was developed to cope to the conservatismpresented by the D-K Iteration algorithm.
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2.7 Hoo loopsbaping design

The·loop-shaping. design technique is based on the H oo robust stabilization procedure developed in

[Mcf90],[Hyd91], where the plant is robustly stabilized with respect to coprime factor uncertainty

using H oo optimization. The plant has to be shaped, following a well-developed procedure [Hyd91], by

means of pre and post compensators to give a desired shape to the singular values of the open-Ioop

system, specifying the performance objectives over the frequency range considered.

In the following, we briefly review the H oo robust stabilizationprocedure that has the virtue to be

systematic in its solution and takes into account the uncertainty modeling or the choice of the

performance weighting functions.

2.7.1 Robust stabilization

The dynamic, bounded norm uncertainty used in the classical f.l - synthesis must be stable to use

robustness theorems presented earlier. H 00 loopshaping approach avoids constraints that restrict the

plant and the perturbed plant to have the same number of unstable poles. We consider the stabilization

of a plant G which hasa normalized left-coprime factorization:

G =M- I N (2.67)

then the perturbedplant model Gp can then be written as:

G =(M + l::.Mri (N + l::.N) (2.68)

u

Figure 2.12: H oo . robust stabilization problem

y

where l::.M' l::.N are stable unknown transfer functions representing the uncertainty in the nominal

model G. The objective of H00 robust stabilizationit to stabilize the family of perturbed plants defined

by
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(2.69)

where & > 0 is the stability margin.

The stability of the interconnection in Figure 2.12 is robust if and only if the nominal feedback system

is stable and

r:~ [~J(l.-GK)IM-'
1

~­
&

(2.70)

where r is the H. norn\ of the transfer matrix linking ~ 10 [:l The objective of this robusl

stabilization is to obtain the lowest value of y which represents the maximum stability margin. The

lowest achievable y obtained in [Mcf90] is given by:

1

Ymin =&~~ = {1-II[NMlll:rz=(I+P(XZ))~ (2.71)

where Il . IIH denotes the Hankel norm, p denotes the spectral radius and Z, X are the solutions of the

following Riccati equations:

( A - BS-:IDTe) Z + Z (A - BS-IDTcr-zeTR-leZ + BS-IBI' =0

(A ~BS-IDTeY X + X(A - BS-IDTe)- XBS-IBTX + eTR-le = 0

where:R =1+DDl',S =1 +DTD.

A central controller, whichguarantees that

(2.72)

(2.73)

(2.74)

for a specified r> Ymin' is given in [Mcf90]by

K~[A+BF+r' (:~;ZCT(C +DF)

where: F = -S-I{DTe +BTX), L = (l-y 2 )1 +XZ.

(2.75)

As mentioned above, the plant which has to be used in the previous H 00 robust •stabilization is indeed a

shaped plant model of the real system. In the literature, [Mcf90], [Hyd91], [Pap98], the loop shaping
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procedure was developed ta become more and more systematic. In fact, we can summarize it intwo

steps [Hyd91]:

2.7.2 Loopshaping procedure

1- Scale all inputs and outputs of the plant ta reflect the bandwidth of the actuator efforts and to unify

the output units, respectively. Reorder the plant to present it as diagonal as possible.

2-Based on the frequency responses of the transfer functions linking each actuator to aU outputs and

aU actuators to each output, propose weighting functionsw; and W2 in order to obtain a roll-off of

20db/decade at the desired frequency bandwidths. For that, include an Integral action in the proposed

W; weighting function.

At this point, a shaped plant including performance specifications is obtained. It has been shawn

[Mcf90], that the performance specifications included in the shaped plant refiect also the performance

specifications of the closed-Ioop system after the controUer procedure design. The shaped plant is now

ready to be used in the He<> robust stabilization procedure presented earlier. The indicator rmin, related

ta the robustness of the system, can be used as a criterion of controller design satisfaction. Practically

thebest value of Ymin is between 4 and 5, which allows at minimum 25% of robust stability margin for

the system.

2.8 f.1- Synthesis using Hz controUers

The synthesis procedure typicaUy used for the f.1- controUer design is based on the D-K (eventuaUy

D-G-K for themixed uncertainty type [You93]) Iteration algorithm. Thisalgorithm presents certain

major deficiencies that cause problems in its adaptation for real flightcontrol systems. Addirlg to the

problem that the f.1 value Can not be exactly calculated, especiaUy for a robust performance criterion,

the scalings needed to solve the optimization problem in the D-K (D-G-K) Iteration can have certain

dynamics that will dramatically increase the arder of the system submitted ta a large number of

uncertainties. In fact, with these problems the complexity of the f.1- controller design will increase

and the. upper boundof the f.1 value will he conservative, which does not guarantee the convergence to

the f.1-.optimal controller and does not statute on the performance objective criteria used. AlI these

inconveniences pushed us ta explore. 0ther possible ways of implementing f.1- controller design. A
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method of designing a p- controller using weighted Hz optimization [Yan97] is adapted in our work

and proved useful when compared to the classical D-K Iteration algorithm. In the foUowing, we give a

description of the method proposed:

Theorem2.10 [Yan97]

Suppose there exists a scalar frequency-dependent weight W(s) such that the Hz controUer

Ko =arg inf IIWFL (P, K)lll
K

satisfies

pt,[FL(P, Ko)(jt:ü)] =ro =const Vt:ü

,uô[~ (P, Ko)(jt:ü)] =IIWFL (p,K)llz VOJ

then Kois the optimal p- controUer

ü!sup Pô[~.(P,K)(jt:ü)]=Pô[FL(P,Ko)(jOJ)] =ro
(j)

(2.77)

(2.78)

(2.79)

This theorem gives a sufficient condition of the existence of p- controUer originaUy synthesized

using Hloptimization as in (2.76) and satisfying the conditions in (2.77), (2.78). Once the concept of

designing such controllers is admitted, the main issue is to find the weighting function W(s) that

satisfies:

(2.80)

The optimization in (2.76) is solved iteratively, where a weighting function W;(s)is used for each

Iteration ta lead to.the optimal controller. Note that in practice there is no guarantee of the

convergence to an optimal controUer with the best p- bound.

An algorithm for designing the p- controUer based on weighted Hloptimization is presented in the

foUowing:

I-Set Wo(s)=I, i=O.

2-Compute Ko.= arg}nfIIWoFL(p,K)llz using the H2 optimization technique

A

3-Compute P~[WOFL (P, Ko)(jOJ)].
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Do the following step unless sup JiL\[W:FL(P,K;)(j@)]-suPJiL\Uf;_lFL(P,Ki_l)(jW)] < 6' where 6' > 0 is
m w

the a tolerance value.

4-Set deg(W:) =nw ' whereW:is ascalar, minimum phase function.

5-Fit ,uAW;-lFL(P, Ki-l)(Jw)] by Iw: (JO) )1·

6-Compute Ki =arglnf IIw;FL (p,K)lt

7-Compute ,uL\[W;FdP,K;)(Jw)].

The incorporation of the weighting function W;(s) with the nominal plant P in the augmented Pa can

be done as following: ~. =[W,(sg °lp where 1is the dimension orthe variable to control zand m
1 0 I

mJ

is· the dimension of the output y. This method of ,u - controller design has the virtue of decreasing the

order of the augmented system by half compared to the. D-K iteration algorithm. It also decreases the

complexity of the design by using H 2 0ptimization and can reach a less conservative upper bound of

the Ji - value. This method allows one to design, at each iteration, a Ji - controller based .on

H 2 optimization. In our adaptation of this method to our work, we ran many design iterations design

and we take the f.l- optimal controller leadingto the smallest Ji - value. Because the weighting

function proposed in the above algorithm is based on a fitting procedure of a Ji - frequency response,

the convergence cannot be guaranteed as claimed theoretically [Yan97]. Even with this drawback, the

method often leads to satisfactory upper bounds for Ji for high-order uncertain systems compared to

the classical D-K iteration. Another advantage of this method is the fact that it yields a Ji - controller

based on an H 2 design withan observer.;based structure facilitating implementation and lending itself

to gain scheduling.

In the rest of this chapter, we treat thegust load alleviation problem by using robust control

techniques. We. give motivation of applicability of the H oo control design to an optimal control

problem and compare results of other control techniques.
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2.9 "852 flexible bomber application

2.9.1IntroducHon

H 2 (LQG), weighted~ H 2 ··and H co techniques are used to establish a nominal performance baseline for the

vertical acceleration control ofa B~52 aircraft model with flexibilities.

Figure 2.13: B52 bomber

The dynamic mode! .of the aircraft used for control design includes five flexible modes. Such a model is

more realistic than .arigid-body model, but it can also make the Gust Load Alleviation (GLA) feedhack

control design problem more challenging. The aircraft is assumed ta besubjected to severe wind gusts

causing undesirable vertical motion. The purpose of the controilers is to reduce the transient peak loads on

the airplane caused by the gust. Our designs account for the flexible modes of the aircraft mode!. The gust

signais are assumed tobe generated by the Dryden power spectral density mode!. This mode! lends itself

weil to frequency~domainperformance specifications in the form of weighting functiollS. Since the Dryden

gust model is simply a white noise driving a stable real~rationaIlinear time-invariantfilter, it is natural to

consider the design of an LQG controiler, or its equivaIent deterministic H 2 counterpart. However, as a

bumpy flight experience would suggest, wind gusts are acting only over brief periods of time. Air

turbulence in a localized area may last for a time long enough to warrant the Dryden colored noise

apprQximation. But the point here is· that an aircraft momentarily passing through the turbulence will only

experience its effect for a brief period of time. Thus, rather than using· signaIs of finite average power for

LQG GLA control design, we suggest that such behavior may be best. captured by bounded-energy signaIs

with spectral contents given by the magnitude of the Dryden filter. In the detenninistic, worst-.case ~

setting, this remark gives sorne motivation to design a baseline GLA controiler with an H ro performance
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specification. The technique of fi -synthesis and analysis is used to study the robust perfonnance of the

aircraft taking into account specifie input and output multiplicative uncertainty models. Robust perforniance

is açhieved witha Ji -synthesis controUer designusing a D-K iteration procedure.

2.9.2 Vertical gust mode}

An expression for the Dryden filter Gw (s) can be found with more details in chapter 1 as following:

U
r---:-- __0_ + s
3U00' 2w ...fiLw

~. [i: +s]'
where: Lw = 580 m (1750 ft), o"w =7m / s(21ft 1s) .

(2.81)

A proposeda.lternative use of the Dryden model is to consider the noise n to be any deternlinistie

finite-energy signal ln N .:= {n E L:z[O,oo):llnI12 ;::; l}. The gust signal then lives in

W:= {Gwn: nE N} c L:z[O,oo),andits energy is bounded by Ilwgll
z

~IIGwlloo =o.9fiO'wJLw/ltUo .

Furthennore, •such signaIs taper off at infinity in the time domain. Rence, they may be more

representative of real .wind gusts acting on.an airerait passing through turbulence. Although the

stochastic nature ofthe signal is lost, the resultingset ofbounded-energy gust signals can be usedfor a

worst-caseHoodesign, whichmay be desirable in a safety critical application such as GLA.

2.9.3 Flexible model description

The short-period approximation for the rigid-body motion of the B-52 aircrâft is considered. The rigid­

body dynarriics areaugmented by a set of modal coordinates associated with the normal bending

modes of the B-52. The ithflexible mode is represented by the following equation in tenus of1ts

modal coordinate

(2.82)

where çi' OJ i ,Pi are the damping ratio, frequency and gain of the îthflexible mode, and fjJ i .is its

corresponding generalized force. Thus, the rigid-body dynamics may be augmented with pairsoffirst-
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arder equations corresponding ta each flexible mode considered. Five structural flexible modes were

considered significant and were kept in the B-52 aircraft longitudinal dynamic model taken from

[Mcl90]. The control inputs for the longitudinal motion are the deflection angles (in radians) of the

elevatoroel and the horizontal canard ohe' The longitudinal dynamics of the flexible aircrafi are given

by:

i =Ax+Bu+ Bgwg

y=Cx+Du

where x(t) E JR12 is the state vector given by:

(2.83)

T
Ohe] E JR2 is the control vector (rad) y(t) E JR

is the vertical acce1eration (g), wg (t) =[wg ] wg2 wg3 J E JR3 is the vertical gust. velocity at three

stations along the airplane (mJs), a(t) E JR is the angle of attack (rad), q(t) E JR is the pitch rate

(radis). There are couplings between the flexible modes and the rigid-body mode. The eigenvalues of

A corresponding to the rigid-body mode are /l12 =-1.803 ± j2.617 . The five flexible modes are listed

in Table 2.1 below.

Table2.1: Flexible modes

1 2 3 4 5

OJ j (rd/s 7.6( 15.2 19.73 20.24 38.29

çj 0.39 0.05 o.on 0.067 0.023

Note that the second and third gust signaIs Wg2 and Wg3 are actually delayed versions of wg ]. The

second gust is delayed by 7,) = Ur/x] = 0.06 s, where x] is the distance from the first body station to the

second. Thethird gust input is delayed bYT2 = Uo/x2=O.145 s. First-order lag approximations of the

time de1ays are used, e.g., wg2 = 1 W l'
0.06s +1 g
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2.9.4 Problem setup

A block diagram of the closed-Ioop GLA design problem with weighting functions is shown in Figure2.14

below:

+
wnl

Figure 2.14: Problem setup

where wnl (t) E IR is an acceleration measurement noise used to regularize the controller design

problem, with amplitude specified by li = 10-4 as W n is normalized, r(t) E IR is the vertical

acceleration setpoint (r(t) =0), e(t) E IR is the measured error, Zl (t) E. IR is the weighted measured

acceleration, Zz (t) E IRz is the weighted controller output, and F(s) contains the lags approximating

the delays. The plant transfer matrix G(s) mapping [u W gTt to y is given by

[
A [B Bg ]]

G(s)= C [DO] (2.84)

The GLA problem ofFigure2.14 can be recast into the standard Hz andHce optimal control problem of

Figure2.3.

The vector of exogenous inputs in Figure2.3 is w: = [n w
l1
r for the Hz controller designs, or

w: =[wg T wn ] T for the H ce controller design. The signaIs to be minimized are collected in z: =[~:] .

The nominal generalized plant
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has a minimal state-space realization

x= Apx+ BpJ w+BP2 u

z = CpJx + DpII W + DPJzu

y =Cpzx + DP2J W+ DP2z u

(2.85)

(2.86)

whichcombines the aircrafi model, the Dryden filter (for the Hz controUer) and the weighting

functions. For convenience, we will use the notation T:y:= x ~ y for closed-Ioop transfer matrices.

2.9.5 Hz control

Assuming that the origin of the gust is a zero-mean gaussian white noise of unit intensity, we first

design an unweighted Hz controller that is more related to classical LQG design technique. This

control design is based Oh the. generalized plant with exogenous inputs W = [n W
l1
f and outputs

z=[Zl zJJ. Thus, the gustvector generator FGw is embedded in the generalized plant P. For

regular 'li;. control design, we used the weighting functions W; = 1 and W;, = 1. Closed-loop

performance is indirectly specified by Gw' For instance, choosmg a w=7m / s and Lw = 580m in Gw

for simulation purposes, we obtain a gust that has most of its power concentrated in the frequency

band [0;1,6] Hz. The objective of the 'li;. controUer design is to minimize

1

IlTwz l1 2 =[2~J:Tr{T:(j@)T~<:(j@)}d@Y (2.87)

the 'li;. norm of Twz ' over aH finite-dimensional, linear time-invariant stabilizing controllers K(s).

Assuming that z(t) is ergodic, its average power is then minimized as

lim-.LIT.llz(t)II
Z
dt =E{llz(t)IIZ

}. = IITwzll~. This has the .effect of decreasing the 'li;. norm of sub
T.,..,.oo 2T -1

matricesofTwz by virtue of the fact that II[G] G2]11~ = IIGlll~ +IIG211~· For example, the closed-loop

vertical acceleration of the aircraftcan be written in terms of the uncorrelated white noises n and w
lI

as follows:

(2.88)
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The Hz norms of the transfer matrices T;,y and Twny satisfy IIT"yll~ +IITWnyll: ::; IIT,.:zII~ .The H2 controUer

obtained had 20 states and achieved lITwz 112 = 0.2. Figure 2.14(a) shows the spectral norms of T"y CiOJ)

and TWn1Y (jOJ) with the H2 controller for comparison with the other controllers.

Hz Hoor----,-C--.,.......--------, r--=-~---------:>'l

( a ) (b ) jw 1- ) (j w ) 1

10-31---_~.......

10-5 r---.....

cv (log) 10 8

W-1t

(c)

10 -3 f---------rv

10-5 1::::====-"------,.

Figure 2.15: Norms ofclosed-loop transfer matrices

cv (log)

2.9.6 WEIGHTED H 2 AND Hoo -OPTIMAL CONTROL

2.9.6.1 Weighted H 2 ControUer

In order to improve the performance obtained with the regular ~ controller, we introduce a

performance weighting function

(2.89)

on the acceleration y, with k1 =500, ao = 0.05. This weighting function is the same as the one used

for the 1-fw design in order to compare the results obtained for both controllers. We obtained

IITwz l1 2 = 1.5 with the weighted- ~ controller, which means that 11W;T"yll~ + IIw;TWnyll: ~ 2.25. Figure
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2.15(c) shows that the weighting function led to much better GLA performance at lowfrequencies by

trading off sensor noise rejection, which deteriorated slightly, but remained acceptable.

2.9.6.2 HOC) -Optimal Design

As gusts act over a relatively short period oftime,they can be considered as signaIs with finite energy.

Suchsignals can have spectral contents similar to the PSD of stochastic Dryden gust signaIs by using

Gli' (s) as a filter. This remarkprovides motivation for Hoo GLA control design as

minmaxllr wll =minmaxllr G nll =minllr GII where Sis the set of aIl stabilizing controllers.
KES WEW wz 2 KES nEN wz li' 2 KES WZ li' 00

2.9.6.2.1 Weighting functions for nominal performance

The specification is that our controller has to be able to regulate the vertical acceleration in the gust

bandwidth with an amplitude attenuation of at least -54 dB (500). The closed-Ioop vertical acceleration

of the aircraft can be Wfitten in terms of the gust vector •W g and the noise Wn :

(2.90)

The gust alleviation performance specification on IlTwgy (jm)11 can be enforced through the use of a

weighting function Wj of magnitude at least 500 over [0.1, 6] Hz, as long as we get 11w; T>vgy IL < 1 with

the controller K, which implies

(2.91)

The weighting function is as given in (2.22). A plot of Iw; (jmfl is shown in Figure 2.15(b)(c). The

controller outputs consist of defiection .angles (in radians) of the aircraft's elevators .and horizontal

canards. In order to keep these angles within .acceptable limits, we used a suitable weighting function

w" on u such that 11w"Twu IL < 1. The weighting function WU IS a constant diagonal matrix

Wu =diag {k
Ul

,kuJ so that the above Hoo-norm condition implies

(2.92)

and

(2.93)
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where T =[TWU1
]. Rere k -1 = 0.2, k -1 = 0.5 are the maximum allowed control gains in closed

wu T . u! . U2

wu2

loop. It is preferable to use a constant weighting matrix for this application, since it does not increase

the order of P(s). Renee, the resulting H <fJ controller has a lower order.

2.9.6.2.2 Hej) optimal Controller

The overall objective in this Hej) eontroHer design was to minimizellTwz IL over aH finite-dimensional,

linear time-invariant stabilizing controllers K(s) , in order to get IITwzll", < 1. This would guarantee that

the performance specification is satisfied. A norm of IITwz t = 0.68 was achieved. Figure 2.15 shows

that our H<fJ controUer meets the GLA performance specification given above. We can see that the

maximum singular value of T
wgy

is weIl below 10-5 over 21Z'[O.l, 6] rd! s. The spectral norms of the

frequency responses of Twu1 and Twu2 satisfy the constraints of (2.91), (2.92) and (2.93) respectively.

2.9.6.3 Il - controller

Figure 2.16. Setup for robust control design

The H", controUer design of the previous section provides nominal performance. That is, performance

isguaranteed only if the model represents the aircraft's dynamics perfectly, which is clearly too

optimistic. .In. this section, uncertainty in thefrequency responses of the actuators and sensors is taken

into account in the model and the controUer design. Note that this uncertainty may also include
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variations in the aerodynamics of the control surfaces, which may be caused by changes in altitude and

velocity of the aircraft. As shown. in Figure 2.16, we include two complex multiplicative uncertainty

blocks in the model: .1." := diag{.1.up Ll"z}' LllIp 1\1I2 E <C and Lly E <C. Theseperturbations represent the

unceriainty in the frequency responses of the actuators and the sensor, respectively. We chose the

corresponding weighting functions to be:

(2.94)

(2.95)

o

o 0.75s+22.5

s+4OO

W = 0.15s+30
uney S +1000

0.7Ss+50

W = s+400
uw

(2.97)

These weighting functions are selectedsuch that the magnitudes of their frequency responses represent

the maxi)llumerror in the actuators and. sensor models ateach frequency. Typically, multiplicative

perturbations are smaU at low frequencies and rise toward.s or above one at high frequencies. The

weighting functions can be obtained by finding an upper bound on several Bode plots of possible

perturbations. For example, suppose that anuncertain, parameterized model Gs (p, s) of the sensor is

available, where p is the vector of parameters with known bounds. Then, one can fit a weighting

function Wufley (jm) such that its magnitude isa tight upper bound of all the plots of lG~ (Pi' j (1) -11 for

i == 1, ... ,M , where Pi is a set of parameters within their bounds,Theweightingfunctions can also be

obtained from experimental frequency-response input-output data.

One must keep in mind that theseweights represent the sizeofthe uncertainty and should thus be seen

as hard constraints,. not design parameters. It is the performance weighting functions that may be

changed until a good robustlless/perfoflIlance tradeoff is obtained in the design.

The block diagram of Figure2.l6 can be recast into thegeneral· j-l- synthesis setup as given by Figure

2.9. Define the complex structured uncertainty set

n:={à=blockdiag{AlIl'1\uz' L\.y :L\.u1,L\.u2' L\.y E C} C C3x3 (2.96)

and the augmented structured uncertainty set

L:=:: {Lls =:: blockdiag{Ll,1\p} :.1. EQ,1\p E<c4X3
} c C7x6
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where .6.p E C4x3 is afictitious uncertainty linking the exogenous inputs [wg
T

wnl to the output

variables [ZI Z2r.This fictitious perturbation is included to transform a robust performance design

problem into anequivalel1t robust stability problem, which is easier to solve [Bal95] as explained

earlier. The inputs and outputs ofthestruçtured uncertainty~s(s)E Hoo'~s(j(])}Er in Figure 2.9 are,

respectively, the vectors Z2
T JE]R6 and w., =[W/'

T

wn ] EJR.7
•

A robust controUer design based on Itr (which 1S the.structured singular value with respect to the

uncertainty structure r) is less conservative than arobust H", design (notto he confused with our Hoo

controUer of the previous section which is optimal·for the. nominal model, but was .not designed to he

robust to model uncertainty). This isbecause the structured uncertainty ~s is taken into account as a

full block ofuncertainty in a typical robust Hoo design.

We used the D-K iter~tion [Bal95]. algorithm to design· the fJ- controller able to give the best robust

performance level[Aou2000b].

2.9.6.4 Simulation results

We. used the Dryden model with parameters (J'w =7 mjs, Lw = 580m to generate severe wind gust

signaIs for simulation purposes. Figure 2. l 7(a),(b),(c) shows the resulting gust signaIs. The open-Ioop

vertical acceleration response ofthe B-52 to these gust signaIs is shown in Figure 2.17(cl).

10 10,----~.,..;..-- ....
t(m/': (a) l (m/: Cb)

f :,L..-.--...:...5~10----'" 1.:''--------5------10---'----'15
lime(s) lime(s)

10.----~--___,

S(m/,) (c)

i

!"'--~5--'--~10---'15
lime(s)

2r--------,

~ (d)
I:! 1
t::
.2
1!! 0..
B
l'a -1

~j -2'---__--'__-'

o 5 10 15

tlma(s)

Figure 2.17: Gust signaIs and open~loop response
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Figure 2.15(a) shows a magnitude plot of the frequency response of the Dryden fiIter for the

simulation. We see that the performance specification enforced by the weighting function W; used for

the weighted-H2andH",controllers (Figure 2.15(b)(c)) should result in efficient gust alleviation.

Time-domain simulations were conducted and results are presented below. The results shown in

Figure 2.18(a)(b) confirm that the Hoo controller can dramatically reduce the effect ofwind gusts on

the vertical acceleration of the aircraft for the nominal mode!. This controller also seems suitable from

the pointofview of control effort. From Figure 2.18(a), it can be seen that theelevator angle remained

within ±O.25 radians (±14') in the simulation. The H", controller .gave the best GLA performance

without exciting the flexible modes. of the model or generating large control angles that could saturate

the control surfaces. A comparison of peak vertical accelerations with the H"" controller (Figure

2.18(b» and without any feedback control (Figure 2.17(d» indicates that the H", controller reduced

the acceleration by a factor of 105
• This could translate into dramatic improvements in flight comfort

and reduced airframe loads.
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Figure2.18: Simulation resuIts
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In.contrast to the H oo controller,the Hz controller only reduced the peak acceleration by a factor of 14

as seen in Figure 2.l8(f).

A significant performance improvement was obtained over regular H2 by using a weighted- Hz

control approach, asevidenced by Figure 2.18 (d). The performance obtained with the weighted- Hz

controller is more comparable tothe performance of theHoo controller, although still about 20 times

worse in terms of peakacceleration. The 1too controller appeared to control the flexible modes better,

which is not surprising in view ofits low closed-loop IITwgy(JOJ)11 in the frequency range oftheflexible

modes (see Figure 2.15(b)).

figure 2.19 below shows the magnitude orthe weighting functiol1S Wmro(s) = [Wmû'(S) wm:,(S)}

Wuncy (s). These weighting functions specify the amount of uncertainty in the actuators and the sensor,

respectively. We specified nearly 20% of uncertainty at low frequencies for thefirst actuator

(elevator).and around .8% ofunceliainty for the second actuator (horizontal canard). For the sensor we

assumed· an .uncertainty of 3.5% at low frequencies. These uncertainties grow with frequency until

they reach a constant levelat highfrequencies.

100 r--~_.........,....._~we_i9h_ling...,..un"'rc_ert_ain_tie_s_.-,.--_~--,

1W<mcu!(jl1J)j

Figure 2.19: Norm bounds for uncertainties
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2.5

1.5

Our Il controller obtained using D-K iteration reached the robust performance specified. Figure 2.20

shows the j.t - bounds for the controller obtained in the second D-K iteration. The maximum of the

upper bound for Il across frequencies is equal to 0;792, and therefore robust performance was

achieved.
CLOSED-lOOP MU: CONTROLLER #2

Figure 2.20: Upper and lower bounds onj.t for j.t design

An H 00 controller designed for the model with uncertainties led to an maximum norm of the frequency

response of the closed-Ioop system equal to 15.35. This is too. high and hence unacceptable from a

robust performance point of view. A j.t - analysis was done for the H 00 controller and the results are

shown in Figure 2.21. It is seen that the maximum of j.t obtained with the H 00 controller is equal to

3.1.This value being much larger than one confirms the 10ss of robust performance.

CLOSED-LOOP MU: CONTROLLER #1
3.5r----~--~--~- _ ____,

"1\. \

! \
f i

/ \
j ..

; \'"j .
1 r-".~-..... / \.

..."-..._..../-/ '-...-.-..-
O.5'-:-~-~----'---~----'

1~ 1~ t~ 1t 1~
FREQUENCY (radis)

Figure 2.21 Upper and 10wer bounds onj.t, 1im design

This was expected because the H 00 design IS unable to take into account the structure. of .the

uncertainty as opposed to the. j.t - design.
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Chapter 3

Order reduction techniques for flexible aircraft

3.1 Introduction

High-order plant models make robust control design techniques difficult to use and often lead to

conservative results, Although controllers satisfying the performance specifications could be

obtained, the resulting high-order controllers would be difficult to implement. Thus, order reduction

methods have to be considered, especially for flexible systems that generally are of high order. In the

literature, starting from [8keSO], [Enn84a], [Enn84b], [Gl084] going to [8ke90], [Wor94], [Godd93],

[Beck96], methods have been proposed for either model order reduction or controller reduction,

These methods use open-Ioop or closed-Ioop performance criteria. In this chapter, we give an

overview of a few well-developed order reduction methods, and we propose new approaches adapted

to our main problem of interest, namely order reduction of flexible dynamics through modal

truncation.

3.20pen-loop order reduction methods

The objective in these methods is to obtain either a reduced order model or controller that has an

input/output behavior close to that of the full-order systemconsidered. Different approaches have

beenproposed in the past to guarantee a minimum error between the reduced-order system and the

full-order system basedon various measures of the closeness of these systems. We describe in the

following, proven, efficient reduction methods that appeared in the literature.

3.2.1 Algebraic dominance [Woe85]

Consider the stable transfer matrix G(s) ofthe system to be reduced as:

O(s)=[$], y =C(sI -A)'Bu

Any transfer function linking the kth output to the jth input can be written as follows:

(3.1)
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yk ~ G~ (8)U j = [tG~ (S)'" ]-j where G./s)'" is the contribution of mode i ta the transfer function

n n

Let us define: limYIe(t) =lim :~:>GIq(s)(;) ="LRIe/) where the coefficient RIq(i) represents the
1......0 8 ......'" ;=1 i=1

contribution ofmode l to the inial value of the output due to an input u} (s) =1, i. e., u} (t) = 5 (t) .

n n

limYIe(t) =lim"LGIq(sii) ="LSleP) where SIq(i) is a static gain and represents the steady state
t......'" 8 ......0 ;=1 ;=1

contribution of mode i due to an input Uj (s) =l! s .

l 'f h G ( )(;)- As +B h R (i) A d h .For examp e, 1 we assume t at Iq s - 2 2 t en le) = an t e statlc gam
s +2ç/JJjs + (j)i

S (i) BI 2
Iq" = (j)i'

In this proposed method, we associate the modal dominance parameter Di =max IFIq(i) l,le,]

where FIq (i) =Rkj(i) or SIq(i) , to mode i. We use this parameter as a criterion for order reduction. In fact,

mode i is kept in the model whenever D j is larger than a threshold.

If we decompose, through each mode i, the effect from the input u to the output y as:

(3.2)

In this case the modal dominance parameter is:

(3.3)

3.2.2 Devillemagne-Skelton approacb

Based on the approximation of the transfer matrix of the system by its series development in a

frequency interval, this method was proposed in the seventies byDevillemagne-Skelton [Dt;:v87].
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This method, developed for an asymptotically stable system, does not preserve the physical meaning

of the states of the full-arder model. The original model G(s)as given in (3.1) can be expanded

araund the zero frequency as :

00

G(s) =-L si-lCA- i B
i~l

where at MtO =CA-iB are the moments at the frequency O.

G(s) can he also expanded around the inftnite frequency as:

G(s) =-f ~1 CAiB where MtOO =CA i B are the moments at the frequency 00.
~s .

(3.4)

The objective in this method is ta be able ta fmd a matrix transformation applied ta full- order state­

space system such that the reduced state-space system can recover the moment' s expansion of the full

arder system. Ta make this more cleac Let suppose we have a state-space representation of a single

input/single output full-order system with n modes as (A, B, C, D) then a reduced arder model of

order r that recovers 2r frrst low frequency moments of the full-arder model expansion can he given

as follows:

4=LAR
B =LBr

C =CRr

r

CA-rl

where:L = ·1 ,2 =[l'
LCA-1J

(3.5)

3.2.3 Cost decomposition order reduction

Assuming the asymptotic stability of· the system with no direct transmission from the inputs to

outputs, each component of the system, either input, output or state has an effect on the performance

of the system. This effect can be measured using a quadratic criterion. In [SkeSO], Skeltonproposed

the cost contribution of the component Pi as Vp; =1/2 : Pi where V represents the total cast of the

system and express an energy criterion:

00

V = f y(tY Qyy(t)dt
t~O

(3.6)
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(3.7)

y(t) is the output of the system to an impulse input.

The total cost can be easily calculated as V =trace(XyC 'QyC) =trace(YyBQuB ') where:

Qu 18 a diagonal matrix related to the magnitude of the inputs, Xy and J:, are the solutions of the

following Lyapunov equations, respectively:

XvAT + AXy +BQuBT =0

J:,A + ATr;, +CTQyC =0

Because our interest in the order reduction is the state of the system, we orient our cost evaluation for

the components states Pi =Xi' The cost contribution for each state cau be given as:

(3.8)

For specific state-space representations, another way to calculate the global cost value can be given. If

we could obtain a balanced representation of the system, then the global cost value could be obtained

as:

V =-2Tr {2::2A} where: 2:: is the diagonal matrix of singular values of A .

The objective of the reduction technique proposed in this method is to eliminate the states that have

less influence on the performance of the system. Thus we discard the states that have the smallest cost

value VoX;' More specifically, we can propose to minimize the cost difference i\V =V - ~ where ~

represents the global cost value of the system reduced to order r.

3.2.4 Modern, optimal order reduction techniques

The objective of model order reduction is to preserve the behavior of the outputs of the full-order

model and the reduced order model subject to the same type of.inputs. To do so, the reduced model 18

viewed as an approximation to the full-order mode!. This can be done as follows:

minIIG(s) - Gr (s)11
Gr (S)ERH., p

(3.9)

Where p specifies thetype of system norm used.

The objective then, is to fmd a reduced-order system Gr(s)that is close enough, in terms of a

specified norm, to the full-order systemG(s). The norms that are typically used for that

approximation problem are the H 2 norm for an average approximation problem and the H 00 norm for

a minmax approximation problem.
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This approximation criterion can be extended to include a desired frequency range of approximation.

This can be done by minimizing a weighted approximation criterion:

(3.10)

where W(s) a weighting function that specifies the frequency interval where the minimization should

be effective.

Before giving more details on modern, optimal order reduction techniques we will give a brief

introduction to sorne concepts used later in the thesis:

a- Tnmcation of order r

Consider a nominal model of order n G =[$]. This state-space representation ean be partitioned

[
Ar Art Br]

as G = •A. A, B, then a redneed 7th order model could be defined in state space representation

Cr Ct D

as: G, =[~ 1~ ]. This state-spaee representation ean be deduced by simply applying the truneation

transformation T, = [~:] to the original system, whieh results in:

[
T*AT T*B]G = r r r

r CT D
r

(3.11)

This method would give a good reduced order model if we could represent the full-order model in a

modalform where the modes can effectively be decoupled (Art> 4r R; 0).

b- Residualization of order r

Let G be the full-order system as specified earlier in (3.1), then a residualization of rth order can be

given in its state-space representation as:

(3.12)

The residualization offers, compared to the classical truncation method, the passibility to keep the

reduced system close to the full-arder system in the low frequencies, generally ofmain interest.
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3.2.4.1 Balanced reduction

Balanced reductîon was frrst presented by Moore [MooSl] and was revisited by Glover in [Glo84],

[BaI91b] and [SkeS8]. Let us define a balanced realization of a system. Stability of the full-order

model G is assumed. Then the controllability and observability gramians of G, denoted as P and Q

respectively, are calculated. We defme the balancing transformation pair (L,R), which transforms the

gramîans P and Q into

where 2: is the diagonal matrix of the ordered Hankel singular values of the system G.

The balanced realization of G is defmed as follows:

=[L*AR L*BJ
Gba1 CR D

(3.13)

(3.14)

The balanced reduction can be now defmed as the truncation of the balanced realization of the full

balanced model:

(3.15)

J
J

It has been proven in [Glo84] that the distance of the reducedbalanced realization from the nominal

model can be measured in H00 as :

(3.16)

Using the residualization technique, a balanced residualization can be obtained starting from the

balanced realization of the full-order model Gba1 •

3.2.4.2 Mode balanced modal reduction

The modal reduction technique was discussed in many papersas [Bon82], [Dec76]. In the following,

we present an overview of this technique OIl a balanced approach. In fact a mode-balanced reduction
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begins with a balanced modal realization, followed by a truncation of the less significant modes in the

dynamics.

If· we assume that the nominal system G has a block diagonal A matrix, then a mode-balanced

realization is given as:

(3.17)

r~]For this balanced representation, the mode-balanced reduction is given as: Gr,mode =lC: 1; and the

mode-balanced residualization is given as: G,,,.,,",,,, ~ [~:

3.2.4.3 Optimal H 2 norm reduction

As mentioned before different norms can be used to characterize the approximation ID (3.10).

Consider a full-order system given in its minimal state-space representation as in (3.1). The objective

then is to find a reduced state-space representation of a system G, ~ [~: fd] solving thefoUowing

minimization problem:

(3.18)

(3.19)

The first results for the H 2 nonll reduction was obtained by Wilson in [Wi17ü], [Wil74]. Then Hyland

and Bernstein [HyI85] proposed optimal projections that are used for the H 2 norm reduction as

follows:

Compute P and Qby solving

TIr(AP+PA* +BB*)=O

(A*Q+QA+C*C)TIr =0

where rank(P) =rank(Q) =rank(PQ) =r , then the optimal solution of projection (L"Rr ) proposed is

glVen as:

PQ=~NfL:

L:~ =Jr

TI = 1) L'r ,.L "r r

(3.20)
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where TIr' Mare chosen and diagonal matrices.

[
L:ARy L:B]

FinaUy, a reduced-order model could be obtained as Gy = CRy O·

3.2.4.4 Optimal Hankel-norm reduction

Optimal Hankel-norm reduction was originally developed by Glover in 1984 [Gl084] and was used

also by Safonov in [Saf90]. The minimization objective of the optimal Hankel-norm reduction is:

minl.IG(s) -Gy(s)11
Gr (t)ERH", H

(3.21)

It was shown in [Gl084] that: IIG(s)-Gy(s)IIH:?:: èiy +1(G) where if is the Hankel singular value

(0', =[/4(PQ)f2) and the norm IIG(s)-Gy(s)lloo using the reduced model Gyobtained from the hankel-

n

norm reduction can be bounded by 22: ifi as the balanced reduction method presented above. The
i=y+l

resea.rch·done by Glover showed that by manipulating the D matrix of the fun-order system, one can

n

obtain IIG(s)-Gy(s)lloo S; 2: if; .
i=y+l

3.2.4.5 H 00 optimal reduction

Most of the research on order reduction has been based on the Hoo norm approximation problem

[Had89], [Kav93], [Kav94]. Kavranoglu in [Kav93] derived a solution to the H oo norm reduction

problem: mjn IIG(s) - Gy (s)IL s; r for every r > ro
r

(3.22)

where rois the minimum value.

In [Kav94], Kavranoglu proposed an algorithm, based on the .solution of specifie Riccati equations

and a balancing procedure, that gives a sub-optimal solution to the problem in (3.22).

The. use of LMI's in control has shown their efficiency to fmd solutions to complex control problems.

HeImersson in [HeIm95b] proposed an order reduction method that leads to the solution of a set of

LMIs. He used the Hankel norm approximation, and he tried ta improve the H oo norm of the error.

HeImersson proposed that

minllGelL =minIIG-Gyll,fJ

is equivalent to fmding the smaHest rand symmetric positive deflnite matrix.x such that :

(3.23)
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lA;x+~ XBv

C'JBTX -yI d <0v
Cv Dv -yI

(3.24)

By partitioning X as X =[Xi X 12
] > 0 then the inequality (3.24) can be written as:

X 12 X 22

ATX 11 +XllA

A;X;;' + X;;'A
BT XIl ~B:X;;'

C

ATX 12 +X 124­
A;X 22 +X 224­
BT X12 - B; X 22

Cr

X 11B-X12Br

X~B-X22Br

-yI

D-Dr -yI

(3.25)

Helmersson proposed an iterative algorithm to solve the minimization problem in (3.23) through the

solution of the LMI in (3.24).

Based on the reducedmode), G, ~[tl~l obtained from Hankel-norm reduction, we keep the

matrices 4- andBr constant and solve the LM! in (3.25) by minimizing y with variables

X,Cr and Dr . Keeping X 12 andX22 in (3.24) and mlIDmlZIDg y we obtain a solution

XlP 4- ,Br'Cr' Dr' These last two steps can be repeated until one could obtain an acceptable

approximation error: IIG -Gr.I"" .

3.2.5 Weighted order reduction

The general problem of a weighted order reduction can be posed as:

min IIW(s)(G(s) -Gy(s»V(s)11
Gr (S)ERH", p

(3.26)

Where V(s) and W(s) are input and output weighting matrices. Minimization of the Hankel-norm, the

H 2 norm and the H 00 norm can be extended to the weighted order reduction problem. Worterboer

[Wor94] gave necessary conditions for the extension of Hankel-norm approximation and extended his

iterative algorithm of H 2 norm for theweighted approximation case. Perhaps the best-known method

used for the weighted .order reduction problemis the balanced truncation method. Enns in 1984

[Enn84a], [Enn84b] was the frrst to extend the balanced reduction problem to a weighted case.
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Considerthe state space representations G ~[$Jv. ~ [~ 1~Jw" ~[~: ~: ]Where the order

of the nominal system is n, then

A 0 BCi BDi
BoC Ao 0 0

~[*J~GV;= 0 0 4 Bi
(3.27)

DoC Co 0 0 J

AP+PA* +BB* =0
Consider P and Q the solutions of the Lyapunov equations: __ _* _ _* _ . The input and

QA+A Q+C C=O

output weighted gramians P and Qcan be calculated as:

p~[J, oJP[~lQ~[J" O]Q[~l

Consider a nonsingular matrix l' such that: 1P1- =(T'l)'Q1'" ~ [~ ;J where

2::1 =diag(Cfp ... , Cfr), 22 2 =diag(Cfr+l' ... , Cfn)' This transformation T leads to a balanced sate-space

fTAT-1

representation of the nominal system as: lCT-1

BJ .

~'J and then a reduced order

[~]mode! of ordetr, can be obtained as: G, ~C, 1 0 .

3.3 Closed-Ioop order reduction

The techniques proposed earlier deal with open-loop order reduction but do not takeinto accountthe

performance objectives of the closed-loop system. The order reduction of a closed-loop system means

either a reduction of the plant or the controller designed while keeping an acceptable level of

performance of the nominal closed-loop system. Much research effort has been directed towards

obtaining a systematic methodology for closed-loop .order reduction [Hay90], [Har94]. Standard ways

to achieve this include: reducing the model arder, and based on the achieved reduced arder modeL

design a reduced-controHer; reducing the full-order controller designed based on the full-order model;

and starting from a full-erder model, directly design a reduced-order controller. The first methed of

closed-leop erder reduction presented above is probably the most frequently cited in the literature.

However there is a danger to have the reduced-controller, designed based on the dominant modes of

the system, destabilize the full-order system.
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Consider the standard optimal setup ofFigure2.2 where G represents the nominal model of the system

without the performance weighting functions. The closed-Ioop system is written as a combination of

the model and the controller: 3(G, K). The order of the closed-Ioop system is then given by the order

of the plant nG plus the order of the controHer nK • The transfer matrix 3 can be written in terms of

[
SG S -1] . -1

G and K as where S =(1 +GK) is the sensitivity matrix.
S-1 SK

3.3.1 LQG and H ro balanced reduction

The LQG balanced reduction uses results obtained by Jonckheere in [Jonc83] and assumes that the

controller designed for the nominal plant Gis an unweighted H 2 controHer, known as the normalized

LQG controller. This controller, which minimizes the H 2 norm of the closed loop system 3, has a

state-space representation as:

_[A - BB"e- <l>C"C o<l>C*l.
KLQG - -B*e _

where. <1> and f) are the solutions of the Riccati equations:

A<I> +<l>A* +BB" - <l>C"C<I> =0

A*f) +f)A +C*C -f)BB*f) =0

The matrices <1> and f) are related to the closed loop gramians P::s and Q::s by:

1;, ~ [~ ~H~] o[! !]

!b ~ [~ ~H~!]qi[! 4]

(3.28)

(3.29)

(3.30)

where
[
A - BB'/J 1<PC']a is the controllability gramian of .•.•. .•

[~]'1' is the observability Ilf"l"ian of B'/J.· 1...

An LQG balanced realization is obtained by finding a transformation matrixpair (L,R) that yields

([) =f) =diag(cp) where cp =diag(~..1(<1> f) ). This transformation pair can be applied to either the
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(3.31)

(3.32)

plant or the contro11er to get their respectivebalanced realization. Finally, a reduced rth order model

or controller is deduced by truncating the states that are less important according to the balanced

gramians <f> =B .

The results obtained for the LQG type of controller can be extended toth~ case of H<X) type of control

as given in [Must89]. The controller design is based on the minimum entropyH <X) solution, which is

not optimal, but gives a bound r > ro on the H <X) -norm of the closed-Ioop system :J(G, K) . However,

thiscontroller can be calculated in one step, as opposed to the classical H <X) controller.

Following the same methodology of LQG balanced reduction; the matrices <f> and Bused for the

balancing procedure are calculated for this case as:

A*B+BA- (1-r~2)BBB*B+C*C=0

A<f> +<I>A* - (1- r-2)<f>C*C<f> +BB*= 0

Once these matrices are obtained, an H<X)halanced reduction of the plant or the controlleris possible.

3.3.2 Closed-Ioop babmced reduction

Much research hasbeen conducted to develop normalized balanced reduction for closed-Ioop. system

[Wor93], [Cet93]. Wortelboer in [Wor94] was inspired from the work of Enns [Enn84b] on

frequency-weighted reduction presented earlier. He extended this approach to the closed-Ioop system

case. Let us note the controllability and observability gramians of the closed loop system :J(G, K)

are: P:j and Qz then Pa and Qa are the gramians of G that can he deduced from the gramians of the

closed-Ioop system. Similarly, PK and QK are the gramians ofthecontroller.

Defme the Hankel singular values ofthe sub-systems Gand K in the closed loop system as:

ifa =JÂ(PaQa)

iiK=JÂ(PKQK )

Remark that in general: iia, iiK et. iiz where if:j are the Hankel singular values of the .c1osed-Ioop

system :J(G,K).

Note that iia and iiKare independent of the realizations G(s) andK(s). By partitioning the

controllability and observability gramians of the closed-Ioop system according to the sub-systems G

and Kas follows:
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(3.33)

Thebalanced model realization can be obtained by finding the pair (L,R) that yields to

PG=QG =diag(O"a)' Similarly for the controller, the objective is to fmd a pair (L,R) to have

PK = QK = diag(0"K ). Note that the gramians ofthe closed·loop system using the balanced

realizations Gbal and Kbal , have the following structure:

,Q::s,bal = (3.34)

Where (.) means ignored terms.

Thebalanced reduction can be carried out on either the plant G. or the controller K as used in the

open·loop balanced reduction technique.

In [Wor94] an explicit link between the c1osed·loop balanced reduction and the frequency·weighted

balancing procedure has been established, In fact, it has been shown that taking the weighting transfer

matrices as IV, '" [:S], IV, ~ [S SK] in the frequency-weighted balanced reduction developed by

Enns willlead to the closed·loop balanced reduction presented above.

3.3.3 Closed-Ioop performance preserving controller reduction methods

The closed-loop reduction methods presented above have no explicit link to the performance

degradation of the closed·loop system, except sorne ofthe results obtained by wortelboer in [Wor941

As explained earlier a closed-Ioop system reduction can be either carried· out as a reduction of the

controller, the plant or both. In the following, we describea few additional methods for controller

reduction, which preserve the level of performance of the closed-Ioop systerrl. Anderson. and Liu

[And89] extended Enn's approach to fmd weighting functions for the controller reduction problem

that can maintainclosed-Ioop performance. The more recent reduction methods guarantee the

preservation of closed-Ioop stability and performance,especially for controller reduction techniques.

Goddard. and Glover [Godd93], [Godd98] developed sufficient conditions to design a stabilizing
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reduced-order controller achieving a preserved level of performance. This work was based on the

fol1owing idea: Given a full-order controller KI achieving the performance level y := II~ (P, KI )11"",

and selecting Yl > y , weighting functions ~,W:z are derived such that

(3.35)

Where Kr is the reduced-order controller, P is the nominal full-order generalized plant mode1, and

:Fr.- (P, Kr) := ~ 1 +~2 (! - KrP22 t KrP21 is the lower linear fractional transformation whose H",,­

norm should be kept small. The work ofLenz in[Len88a], [Len88b] proposed a choice ofweighting

functions for controller reduction in an H 00 framework. The sufficient condition proposed is as

follows: IIW2-\Kr -KI)~-l<) < 1/ Ji => IIFL(p,KJII", < JiYl' This means that given a frequency

weighted error less than 1/.fi then H"" performance is degraded by at most a factor of .fi . Goddard

improved the bound on closed-loop performance obtained by Lenz. He proposed a perturbed form of

the controller. For an additive perturbation, K =KO +W;Lx~, Li E ?RH"", where KO is a nominal

controller. For coprime factor perturbation case [UV] =[Ua -cr°J+W2 [Lxe Lxv ]~ where

K =V-lU, KO =Pa-lU° and Lx =[Lxe Lxv], Li E RH"". A set ofweighting functions

fVJ and W2 proving the existence of a reduced stabilizing controller has been found in [Godd98]. For

the closed-Ioop performance preservation, a theorem, which was the basis ofthe solution provided by

Goddard, has been presented in [Godd98]. It says that for any well-dimensioned F; (N, Q), where

[
Nll N12]. . ... .N = , assummg the feedback lS weH posed; and If N2l has full row rank (Nl2 has full
N2l N22

column rank) with N-N =I{NN- =1), where N-(s) = NT (-s) , then IIF;(N,Q)II"" < 1 if and only if

IIQIL < 1. Structures have been proposed to transform the closed-Ioop system analysis of F;{G,K)

intoananalysisof F;(R,Lx)WhereR=[r"'] °l[~l R12 ][r'l'] O]and
o W; J Rzl Rz2 0 W:z

[~1~2] . .( [K O

R =. .. lS the redheffer star product § G,
Rzl Rz2 l
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G=[Gu G12
],K=[Kn Kl2

]. ~ is the additive uncertainty or the coprime factor uncertainty on
. G21 G22 K21 K 22

the controUer, depending on the case considered. Usingthe results of the theorem presented above

and the structures proposed, the foUowing can be proven:

liAIl,,, < 1q 11w;-1 (K - KO )~-11L < 1

(IIW2-1 {[û VJ-[ûo ~ J}~-llL <1 for coprime factor perturbation case)

::::> 1IF;(it~)IL <1=>1IF;(G,K)lloo <1

(3.36)

To guarantee a preserved level of c1osed-loop performance with a reduced-order controUer, it is

sufficient to find weighting functions ~ andW2 such that the matrix Ris inner, which has been

achieved. in [Godd98]. The main criticism that could be addressed to Goddard's method is the

numerical complexity to fmd the weighting functions ~ and W2 éUld their high order. Wang and

Sreeram in [Wang2001], based on an additive perturbation description of the closed-loop system,

proposed low-orderweighting functions w;, andW2 that minimizethe following criterion:

.IIW2-
1V2(Kr -Kf)V;~-lllCX) whereV; =(1 -P22Kt PzpV; =~2 (I +K(J -PzzKt Pn ).

3.4 Order reduction offlexihle systems in a dosed loopframework

Our main interest in order reduction is the truncation of the less influent flexible modes on the c1osed­

loop system behaviour of the flexible system studied. AlI oftheabove orderreductionmethods do not

take into account the physical interpretation of the truncated states. An optimal reduced-order model

(or controller) may achieve the best level of performance in c10sed loop, but may only provide Iimited

insight to a structure· engineer if the state vectorhas lost its physical meaning. The majority of order

reduction methods developed so far for linear time-invariant continuous-time systems are carried out

in open loop and do not take. into account .closed-loop stability and performance. Although c1osed­

loop order reduction methods were developed [Wor94], [Cet93], no strong link existsbetween the

model order reduction and how the preservation of ciosed-Ioop performancecould beimproved. The

main performancecriterion used thro"Ughout this thesis is the robust performance level ofthe c1osed­

loop system. Although recent progress in [Beck96] on the open-loop order reductionof uncertain

system is to be noticed, no order reduction technique proposed in the Iiterature takes mto account a

c1osed-Ioop robust performance criterion. In the following, We propose methods for order redllction
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(model and/or controUer) that are more adapted to flexible modes truncation, ln a closed-Ioop

framework, and taking into account arobust performance criterion.

3.4.1 Uncertain flexible m.odes tnmcation

The robust control setup, which takes explicitly into account the uncertainty in the dynamics of the

plant [Bal91a] is extended to represent the neglected flexible dynamics, i.e., the flexible modes we

want ta truncate [Gaw96J. In the foUowing, we present twomethods of arder reduction based on two

different uncertainty representations.

3.4.1.1 Additive uncertainty reduction

As presented in Chapter 2 the variations in the dynamics ofthe system can be taken into account in an

.dditive uncertainty mode!. A.sume • nomirial system G(s) ~ [ $Jcontaining n flexihlemodes

and represented in its diagonal In()dal form:

r
-(w.

A=diag{4}'4 = g."z
- 1-,1' w,=" 1

The modes of the full arder model are ordered following singular values ofA, :E = diag {(J'l' ...,(J'zn}'

The reduced model of r flexible modes ta be obtained is Gr(s). The additive uncertainty approach

proposed, as in [Josh98], is to account for the.truncated flexible modes as additive uncertainty ~a(s)

acting on a reduced model Gr(s).

G(s) =Gr (s) +w;,(s)~a (s) (3.37)

~a(S) isnormalized as lI~a(s)lloo <1 by the use of the weightingfunction Wa(s)=G(s)-Gr(s) as

shawn in the foUowing figure:

u

Figure 3.1: Additive uncertainty reduction

79



The additive uncertainty bound increases according to the number of truncated flexible modes we

want, as

(3.38)

n

where Gt(s) = L C1:P,i(S!- AJ-lB i ,1:rn represents the truncated flexible modes part.
i=n-r

From an open-Ioop reduction view, the objective is to reduce the model such that: ~in IIWa IL.
r

Assuming that

(3.39)

where O"r+l (a'r +1 > ... > O"J is the Hankel singular value corresponding the (r+ l)th flexible mode, the

open-Ioop reduction can be carried out by truncating the flexible modes whose corresponding singular

values are the smaHest. Since we are interested in the closed-Ioop behaviour, a reasonable objective

would be to have a guarantee bound on the norm of the error

111~ (FI (G, K), A) - F.'(F; (G" K), A)11. wbere A ~ [ A; :]inclUdes a fictitious uncertainty Ap for the

performance. From a mathematical point of view, no explicit expression connecting the minimization

of the error between the full-order and reduced-order closed-Ioop systems, and the error in open loop

could be obtained. However a heuristic says that, since the reduced model Gr (s) is close to the

nominal mode! G(s) , then by increasing the uncertainty bound Wa(s) we should obtain worse closed­

loop performance levels with the reduced-order model. Thus the performance criterion used in these

uncertain closed-Ioop reduction methods is: IIF;, (F;(Gn K),A)llco . We compare this norm for aH

possible combinations of n-r flexible modes to truncate to decide what the best combination is for

truncation, while preserving closed-Ioop performance.

3.4.1.2 Inverse uncerlainty reduction

The additive uncertainty proposed previously has certain deficiencies when the damping ratios of the

flexible modes to truncate are small. This implies that the additive uncertainty bound W/jw)

includes peaks in its magnitude due to the truncated flexible modes. Thus, the high uncertainty bound

complicates the design of a robust controHer with additive uncertainty. From this starting point, we

propose a new type ofuncertainty used for order reduction. We calI it "inverse uncertainty".

This type ofuncertainty links the reduced-order model to the full-order mode! as follows:
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(3.40)

where L\;nv(s), the inverse uncertainty, is normalized as 11L\;nv(s)ll", < 1 using the weighting function

W;nv(s)::= G-1(s)- G,~I(S) as shown in the foHowing figure:

Figure 3.2: Inverse uncertainty reduction

This uncertainty representation often results in a lower bound compared to the additive uncertainty

bound. Moreover, when small damping ratios are considered in the truncated part, the inverse

uncertainty bound will take into account the inverse of the peak: magnitudes which do notinerease the

bound. This faeilitates the design of a. robust controller for the reduced-order uncertain plant model

considered. As can be noted, the inverse uncertainty approach needs the full-order model G(s)to be

invertible. The inverse uneertainty bound W;nv(s) =G~l(S)-G;l(S) can be rendered proper using a

strictly proper filter that neglects thehigh-frequency dynamies, whieh are not very important for. the

performance of the flexible system. The criticism of this uncertainty model is. that for open-Ioop

reduction, no specifie rule guiding the truncation of the flexible modes sueh as the one in (3.39) for

additive uncertainty eould be obtained. However, since we are concerned with closed-Ioop reduction,

such a rule is not required. Rather, a test of closed-loop performance for allpossible eombinations of

flexible modes to truncate is used.

To illustrate the uneertainty based reduetion approaeh and ·to show the effieieney of the proposed

inverse uncertainty approaeh eompared to the additive uncertainty approaeh, we present the following

example.

Example 3.1

The model we use here is similar to the family of three mass system [Gaw96]. In thi~ model, we have

three flexible modes with damping ratios Çl =0.07, Ç2 = 0.2, Ç3 ::= 03 and natural frequeneies
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3

(01 =5, (02 =15, (03 =20. More precisely, the full-arder model can be written as: C(s) =L Gi (s)
i~l

open loop frequency response of the full arder system is given in Figure 3.3 :

Figure 3.3: open loop frequency response

In this example, we consider the truncation ofjust one flexible mode from the full-arder mode!. The

possible truncations are obviously: flexible mode 1, flexible mode 2 and flexible mode 3. The

additive uncertainty approach proposes mode 3 for truncation, which corresponds to the smallest

singular value, as the best candidate for open-Ioop reduction. However, since in this study,

consideration is given ta closed-loop performance, a check of aIl possible combinations is required. In

Figure 3.4 weshow the uncertainty bound Wa(s) for the three possible truncations:

{

~, (s) =O(s) - 0] (s) for the tirst flexible mode ta be truncated

Wo(s) = •W~ (~) ~ G(s) - è, (s)for the second flexible mode ta be tlUncated (341)

~3 (s) =O(s) -03(S) for the third flexjblemode tobe truncated
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Figure 3.4: Additive uncertainty bou~ds

The robust controllers designed for the three different possibilities of truncation were obtained using

[Gah94b]. The c1osed-loop performance levels obtained for the thrce possible truncation of one

flexible mode truncation are as foUows: Yrl == 25.88, Yr2 == 3.07, Yr3 == 0.765 This shows that the best

possible reduction of one flexible mode ls the third flexible mode.

Using the inverse uncertainty approach, and for the three possible truncation modes, the inverse

uncertainty bound is given as:

{

W;nvl (s) == G-1(s) - G1-
1(s) for the first flexible mode to be truncated

w,~ (s) = w,~, (s) =G" (s) ~G;' (s) for the second flexibl~ mode to be truncated

W;nv3 (s) == G-1(s) - G;l (s) for the third flexible mode to be truncated

and is shown in Figure3 .5.

10' !

10' I~nvl (jOJ)1

10°

1<J/ inv2(jOJ)1

10-'

10.3

10--4 l~nv3 (jOJ)I
10-2 10° 10' 10' 10'

(j)

Figure3 .5: Inverse uncertainty bounds

(3.42)
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Notice, from Figure 3.4 and Figure 3.5, how the inverse uncertainty bound is smallerthan the additive

uncertainty modes especially in the low frequency interval. This frequency range is the most

important in our design since the natural frequencies .of the flexible modes belong to that specifie

range. The closed-Ioop performance levels obtained for the three flexible modes truncation are as

following: rrl =0.501, rr2 =0.504, rd == 0.73 the best flexible mode to be truncated following this

inverse approach is mode 1, correspondingtothe bestreduced closed-Ioop performance rrl'

Figure 3.6· describes a p- analysis of the truncation of flexible mode 3 using the two approaches

proposed. It is shown that the· design obtained using the inverse uncertainty approach achieves better

closed-Ioop robust performance level. Satne remark can be made for the other flexible mode

truncations, simply by comparing their respective level of performance rr1> rr2; Figure 3.7 confirm

that for flexible mode1 truncation.

:r
1

20f
i

15

10

~
i"-;uppe rbOUnd with W,

/
-upper-bound with fV;nvl

a>
Figure3.6: p- upper bounds for
flexible mode 3 truncation

Figure3.7: p- upper bounds for
flexible model truncation

a>

3.4.2 Model and COlltroUer reduction for flexible aireraft preserving robust performance

3.4.2.1 Introduction

In this section, we present asystematic approach ta reduce theorder of a model-controller pair for a

flexible aircrafi:. Numerical exarnples are. given for a flexible model afa B-52 bomber and for a three­

mass flexible system.
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The method, based on mixed J1 -synthesis, determines which flexible modes can be truncated from the

full-order model of the aircrafi and finds a corresponding reduced-order controller preserving robust

closed-Ioop performance. This method is of interest. for practical mode! and controller reduction for

flexible aircrafi because in this context it is important to keep the physical int'erpretation of the

truncated and.remaining modes.

Our proposed reduction method, inspired from the work of Kavranoglu [Kav96], involves modal

truncation, i.e., the truncationofstates corresponding to flexible modes of the model. The method then

generates an associated reduced-order controller satisfying a closed-loop robust performance

specification sinee in our approach, the main reduction criterion is the achievable closed-loop robust

performance level. We use the novel idea of introdueing a repeated real parametric uncertainty 8 in

the flexible modes selected for truncation. This real perturbation, when equal to -1, represents the

effect of the truncation of these modes in the aircraft model. Thus, a .controUer that ean maintain sorne

closed-loop performance level for the perturbed full-order aircraft model \;f 181 sI, can also achieve

this robust performance level on the truncated model.

We. now describe our reduetion procedure. Suppose that it is desired to truncate k flexible modes from

the (iircraftls full-order model. As a first step, our procedure lists all combinations of k flexible modes

from the N flexible modes of the nominal model. This list of mode eombinations is shortened by

checking specific .criteria of robust stability and performance that have to be met. For· each candidate

combination a of flexible modes to be truncated in the list, a full-order controller Kja(s) is designed

and kept in the set KF if it achieves the desired robust performance level. Robustperformance is

measured using the structured singular value with respect to the parametric uncertainty covering the

uncertainty in the flexible mode parameters and the truneation of these flexible modes. The result of

this first step is the. set KF of full-order controllers, each one corresponding. to a· specific combination

of flexible modes to be truncated, that meet the desired performance specificationboth for the full­

order aircraft model and its corresponding reduced-order model obtained through a truneation of the k

modes.

Since the first step in our approach calls for the design of (NJ =. N! full-order controllers, it is
k) k!(N-k)!

limited to·aircrafi models with up to around 15 flexible modes, dependingon computing power and
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time available for design. Nowadays, it is not unreasonable to assume that a few hours of

computations would represent a relatively small cost in the overall design of a new commercial aircraft

with flexibilities. What is paramount is to guarantee robust performance with a reduced-order

controller.

The second step of our procedure consists of generating a reduced-order controller for the best full-

order controller KI := Klâ E KF corresponding to mode combination â. The controller reduction

problemis set up as a minimization of the weighted error norm between the nominal closed-Ioop

sensitivity matrix and the reduced one, and its solution yields robust performance preservation with the

reduced controller. Preserv(ltion ofrobust performance ofthereduced model/controller pair is obtained

from a structured singular value setup, andcontroller reduction is thus viewed as a robustness problem

against uncertainty in the controller. Any controller reduction technique may be used at this stage, as

long as the resulting frequency responses of Kr and KI are close enough to ensure that robust

performance is preserved with the reduced-order controller. We treat both mode1 and controller

reduction through the same two-step procedure to obtain a good pair of reduced-order mode1 and

controller.

3.4.2.2 Problem setup

The nominal fmite-dimensional, linear, time-invariant transfer matrix model of a flexible aircraft

mapping the control surface inputs u to the measured outputs y, which may becomposed of the

aircraft's.position,angles, linear. and angular velocities, and accelerations (available to the controller),

can be expressed as:

Where the modal state-space realization of the flexible dynamics G1 (s) is given by:

G/S)~[~ 1~ l=c,(sl ~A,)'B,

86

(3.43)

(3.44)



In tms equation, Av E ~2Nx2N is in modal form, Le., Av =diag{Ai }, .4 =l/OJ"
. - 1-.1". (j).

~l 1

~1-ç,2OJ'1
-(i(j);

(3.45)

i =l, .. .,N , and N is the number of flexible modes of the mode!; (Ï' (j)i are the damping ratio and the

undamped natural frequency of the lh mode, respectively; Ba E IFt
2Nxm

, Co E IFtPX2N. The transfer

matrix Grbm(s) models rigid-body dynamics and includes any direct feedthrough terms (Do matrix)

that might appear in the flexible dynamics. Truncation of the lh flexible mode from the nominal model

can be seen as e1iminating the effect of this mode. Because there is no interactionbetween the modal

states in the modal realization of Gr (s), this truncation corresponds ta setting ta zero the 2 x 2 matrix

.4 and the corresponding rows and columns ofmatrices Ba and Co, respectively.

3.4.2.3 Uncertainty model

Parametric uncertainty may be less conservative than other types ofuncertainty and may lead ta a

more realistic representation of the differences between the dynamics of a flexible aircraft· and its

model. In our approach, we treat bath this kind ofuncertainty and the truncation ofthe corresponding

modes through the same setup, and with the use of a single repeated real scalar perturbation. Robust

performance is optimized against this uncertainty in the design of full-arder controllers K f .

For a desired fixed number of flexible modes to be truncated k, we defme the set of aU possible

combinations of k flexible modes ta be truncated as follows:

1\ :={a:={aj> .....,aN}:ai E{O,l}'Z::lai =k},

where ai =1 ta truncate and ai =° ta keep the lh mode. For each mode combination a E 1\, we

defme corresponding perturbations of the modal state-space matrices representing modal parameter

uncertainty and the truncation effect of these specifie modes. First, let Ta := diag {a/2 , ••• , aN J2 }. The

perturbed plant model is then defined as follows:

Gp(s) Grbm(s) +Gjp(s)

(3.46)

87



where the perturbations of the state-space matrices are defined by:

[~~ ~l~ o[~: ~aJ od~ lol~ 1 (3047)

and the truncation matrices Aa,Ba' Ca are given by:

(3048)

The real perturbation 8 lies between -1 and 1, covering more than a single objective. The

correspondence between values of the parameter 8 and the objectives in OUf de$ign is given as

follows:

8 =-1 : Truncate mode combination

8 =0: Nominal full-order mode!

8 E ]-1, o[ u lO, 1]: Parametric uncertainty of the truncated modes

The latter interva1 covers variations in the frequencies and damping ratios of the flexible modes to be

truncated, as well as their corresponding gains. This uncertainty is useful as the modes truncated from

the model are still present (but uncertain) in the aircraft.
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:<igure 3.8 :Parametric uncertainty
njection

Figure 3.9 :SVD decomposition ofthe Figure 3.10 :Augmented plant
uncertainty representation

The truncation matrices Aa,Ba,Ca are shown on the block diagram of Gp(s) in Figure 3.8. In fact,

these matrices can be lumped in the augmented plant mode!. However, the multipliclty of the
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· rA B]associated real perturbation Ô is high. Using a singular value decomposition of a a, we can
_Ca 0

reduce the number of repeated perturbations Ô, which leads to a less conservative uncertainty model

[Zh096]:

u][Lar

a2 0 (3.49)

[
Aa

where r =rank
Ca

Ba] .o :S:;max{2N+m,2N+p} and Wal =LarVa1 · Flgures 3.9 and 3.10 show,

respectively, how the multiplicity of Ô is reduced to r and the matrices Wal =[Wall Wa12 ] ,

Ual =[UaJl
] are incorporated in the augmented plant.

Ual2

The reduction in the multiplicity of Ô yields a less conservative uncertainty set. From Figure 3.10, the

transfer function between u and y is given by:

Where MaJ~
lWall

(3.50)

Ualll
U

O
" is the real matm tepresenting the "genetalized plant" in Figure

3.1 O. Define the transfer matrix Ha (s) := :Fu (Ma' S-Il) such that

(3.51)

Where u is the vector ofactuator inputs, w is the output of the repeated real perturbation ô/y, Yj is

the output of the flexible part of the aircraft's dynamics, and z is the input of the repeated real

perturbation. Reversing the order ofthe inputs and outputs of Ha (s), we obtain the augmented plant

modcl Q.(s), as given by Figure 3,11, mapping [ :1 to [;J, Figore 3, 11 represents a typicai setup

for robustness analysis against a single repeated real perturbation.
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Figure 3. Il : Robust analysis setup Figure 3.12 : Robust performance setup

Exogenous inputs of interest, e.g., reference signaIs and disturbances, are grouped together in d, and

outputs to be controlled, e.g., tracking error and control signaIs, are grouped in e. These signais are

added to Q,(s) together with the performance weighting function W/s) such that e(s) =Wp(s)è(s)

to obtain the augmented plant modelp" (s) mappiug l:1tor:1· Note tbat the rigid-body part of the

dynamics Grbm (s) is aiso embedded in Pa (s) using standard block diagram manipulations.

Figure3.12 shows the ,u - synthesis setup for robust performance. The perturbation 1:::.p E end xn
e lS a

fictitious uncertainty included for performance, linking the exogenous inputs d to the outputs to be

controlled e. The uncertainty structureis defined as follows:

(3.52)

and the corresponding set of stable structured perturbations is defined as

Dr := {I:::.(s) E 'l-iw :IIA(s)ll", < 1,.A(so) ET,VRe{so} > a} (3.53)

The perturbed plant model is thus given by :f; [Pa (s), 1:::.(s)], where A(s) E Dr .

3.4.2.4 Model and controller reduction

Mixed-,u theory can be used to design a full-order controller achieving the best robust performance

index with, e.g., a DGK-iterationor a minimization of sup,ur {~[Pa(j(O),Kfa(jeo)J} based on
llJElR
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successive Hz designs [Yan97]. At the end of the first step, we have the set K F offull-order

controllers, which achieve robust performance whether or not the corresponding candidate modes have

been truncated.

The second step, after the design of the full-order robust controllers, consists of finding a reduced

controller Kr (s) of desired order q. from the best full-order controller Kf (S)E K F corresponding to

the "best" combination â of candidate flexible modes to be truncated. Our proposed controller order

reduction method preserves robust closed-Ioopperformance, which is not the case for most earlier

works. Consider the optimization problem over the set of stabilizing reduced controllers Kr (s) of

desired order q:

inf supll.ru {~[Pâ(S),k.f(S)J, 8Ir } -:Fu {~[Pâ (s), Ky (S)] ,8Iy}\·'
Kr(s) OEJR <fj

stabilizing 101sI

. (3.54)

That is, we want the perturbed closed-Ioop frequency responses with the full-order and reduced-order

controllers to be as close as possible, as measured by the 00 -norm. A specification can be expressed

with p> 0 as:

(3.55)

Note that p should be chosen such that implies robust performance with the reduced-order controller.

For example, if sup J.lr[~ (Pâ , k.f)(j (f))] =r :::; 1, then one should pick p < 1- r . The complexvariable
aJEll!.

s is henceforth dropped to simplify notation. The optimization problem in (3.54) can be represented

as in Figure3.13, where:

fl;z].
Vzz

d

Figure 3. 13 : Controller reduction 91



This setup can be recast in the robust performance design setup shown in Figure3 .14:

.........~ ,

u

Figure 3.14 Augmented plant withthe reduced order controller

[~21R12 = P ,
&12 J[~l 0]

Rn = 0 P
all

· ,

where l~l=Rl:l,;=[::],w=[::J ,e, =pj(e, -e,),R =l~:

R" =[p~J 11" =[v" J;,,,1'

With the inclusion of a fictitious perturbation ~c for the "closeness" performance objective, the final

augmented plant is shown in Figure3.15, where Llt :=("" 0]. This robust performance controllero ô12r

u

Figure3.16: Introduction of the closeness of
the full and reduced controllers

Figure 3. 15 : Uncertainty block
augmentation

design can be transformed into a controller reduction procedure by means of robust performance

analysis.
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Figure3. 17 : Augmentation of the
plant by adding A7< uncertainty

From the two equivalent block diagrams shown in Figure 3.15 and 3.16, we obtain in Figure 3.17 a

robust performance setup in which AK := Wk(Kf - KJ i8 viewed as a normalized controner

uncertainty, where Wk isa stable scalar weighting function. The idea is to ensure that Kr is close

enough to Kf such that the size of !1K (j(()) =(Kf - Kr)(j(()) is within the admissible uncertainty

bound for which the system in Figure 3.17 will be robustly stable.

We use the Main Loop Theorem [Zh096] to prove the following .result providing a basis for the

proposed controller-order reduction technique. The theorem says that if the reduced-order controller is

close enough to the full-order controller, then we can obtain both robust performance, and closed-Ioop

frequency responses that are dose to eachother. Define the uncertainty structures:

(3.56)

(3.57)

Theorem 3.1

Assume that Kf 1S a fun-order stabilizing controller achieving robust performance, i.e.,

sup ,ur[F[ (P,Kj)(jw)] < 1 and assume that the reduced-order controller Kr has the same number of
CùER

unstable poles as K j . It: for every w, ,url [F(jw)] < 1 and II(Kj - Kr )(j()))\\ ~ IWk~l (j{()l, then:
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1. Kr stabilizes ;:; [Ji (P,Kr ), ofr ],V°E IR, 101 s 1,

2. sup,ud~ (P,Kr )(jw)] < 1, and
"'ER

Pro~f:

Assume that ,urJF(j(O)] <1 and II(Kf-Kr)(jw)llsIWk-l(jeo)l. Then, for any liK such that

Kr = KI -liK has the same numberofunstable poles as KI and such that IlliK (jw)11 s I~-l (jw)l, we

have ,ur [Ji (F,LiK )(j(0)] < 1, \f eo by virtue of the Main Loop Theorem. In particular, taking
2

liK = K f - Kr and working our way back to the' equivalent system of Figure 7, we have

,ur [Ji (R,Kr)(jw)] < 1 which, by the Main Laop Theorem, implies
2

Furthermore, Vo E IR, 101 s 1, we have

Il;; [~(P,Kr),ofr]ILJ -II;; [~(P,Kf),ofr Jt s

Il;:; [Ji(P,Kr),ol,]-;:; [Ji(P,Kf ),olr JIL <p'

Renee,

Il;:; [~(P,Kr)' olr lltJ s II{Fu [Ji (P,Kr ), olr ] -;:; [Ji (P,Kf ),olrJ}t
+IIFu [Ji (P,Kf ), olr ]", < P + r < l

Finally, the robust stability of ;:; [~(P,Kr),olrl follows from the Main Loop Theorem and the

small-gain condition coming from the argument that the Nyquist plot of det[l-K,;:; (R,lit)J

(Figure 3.16) must not be equal to 0, where Kr =Kf -liK has thesame number ofunstable poles as

K f (Zh096).

To get a reduced controller achieving the specifications, we first proceed as follows. With the use of a

fme grid of frequeney points, an upper bound lf/((0) on liliK (jw)11 is found such that the feedback

interconnection in Figure 3.17 is robustly stable.
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This is carried out by using, for each frequency W i , a bisection technique to fmd the upper bound

If{Wi ) that leads to Jlr, [F(jw j )] =1. Thena fitting procedure can be used to obtain the stable

weighting function WK (s) such that IWK -
1 (Jm)1 == V/(w) . The upper bound V/(w) is also used as a

criterion to reject the mode combinations for which the controller cannot be truncated without losing

robust performance. For mode combination a, if.3 wj for whichthere is no V/(mj );:::: 0 such that

IIAK (JOJj )[L ~ V/(w j ) and Pr
1

[Fa (jwj ) ] ~ l, then combination a is rejected because the existence of

a corresponding reduced-order controller satisfying the robust performance specifications cannot be

guaranteed. The application ofthis criterion avoids the need to resortto a heuristic in choosing what

subset ofmode combinations can be safely truncated.

The last step for controller reduction i8 the following: Given an order q < deg{Kf }, fmd a reduced

qth -order controller Kr with the same nUl1lber of unstable poles as Kf , and such that

IIKAjOJ) - Kr (iW)11 ~ IWK -l(jw)l· Ifsuch a Krcannot be found for Kf , then the second-best (in terms

of the lImu-norm" sup Jlr [~(P,Kf )(jw)]) full-order controller can be used, and so forth.
aJER

Alternatively, the order q may be increased. For this weighted controller approximation problem, any

suitable reduction technique can be used, e.g.,[Gl084] [Enn84b]. In the example below, we used the

weighted Hankel-norm approximation because of its close upper bound on the norm of the error

between the nominal and the reduced controller. Note that since a Jl-synthesis may produce an

unstable controller, it is suggested that only the stable part be used in the reduction. This ensures that

Kr has the same number ofunstable poles as Ki' and hence Theorem 1 can be used.

3.4.2.5 Modal reduction over the full flight envelope ofa.flexible aircraft

For practical flight control applications, one has to keep in mind the changes in aircraft dynamics

according to the flight conditions. If these changes can be modeled as slow variations in the modal

parameters, one could introduce a suitable complementary uncertainty model capturing these

variations for the remaining modes, using for example the technique presented in [Aouf2001]. Our
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modal truncation method could then beadapted to yield a reduced-order model which, in closed loop,

might achieve the robust performance criterion over the entire flight envelope, provided aIl possible

modal parameter variations over the flight envelope could be covered by the complementary

uncertainty modeL In this case, it might bepossible to truncate the flexible modes in such a single-

plant model settlp. The truncated modes would then represent the less influent modes in terms of

performance. degradation over the ehtITe flight envelope.

In the case where an possible modal parameter variations over the flight envelope could not be

efficiently represented with a structured perturbation connected to a single generalized plant, our

reduction method could be applied for different operating points. Bach of these frozen operating points

would be chosen such that the uncertainties that coyer the modal parameters would produce

overlapping sets of perturbed plants with the neighboring operating points. After applying our model

order reduction technique at each trim point, one could truncate from aIl aircraft models their shared

flexible modes. that can be truncated, if this set were nonempty. This truncation of a common set of

modes across aIl models covering the flight envelope would preserve a consistent mode! structure. The

reduced-order models could then be interpolated to produce a linear parameter-varying (LPV)

reduced-order aireraft model covering the full flight envelope, and for which a redueed-order

scheduling or LPV controller could be designed.

3.4.2.6 Flexible system example

This example lS a flexible system taken from [Gaw96], eonsisting of three masses

ml =11,m 2 =5, m3 =10, linked together and to rigid walls through springs of stiffnesses

k1 =k4 =10,k2 =50,k3 =55, and dashpots ofviscous dampings di =O.Olk;, i=I,2,3,4. The input u

is applied sueh that J;. =u, /2 =2U'./3 =-Su where ./;, i == 1,2,3 are the forces applied on eaeh mass

respectively. The output is Y1 =2ql - 2q2 + 3q3' where qi' i =1,2,3 are the mass displacements. A

disturbance ci, is added to the plant output YI to get the system output Y =YI +d . We represented this

system in the state-spaee modal form sueh that the nominal damping ratios and frequeneies

respectivelyare: (1 = 0.0044, ml =0.87, (2 =0.012, m2= 2.43, (3 = 0.025, m3= 5.12.
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The performance level and the constraint on the controller specified for the nominal model are given

by the weighting function W,(s) ~r60;s:30.03 °1.' which specifies that the closed-Ioop
L 0 1/0.7

sensitivity should be smaller than 0.01 at low frequencies. The sensitivity consists, in this case, of the

transfer function ~y (s) from the disturbance d to the output of the systemy, We start by removing one

flexible mode to see if it can be truncated without losing robust closed-Ioop performance. AlI three

"combinations" of one mode are considered. Table3.l below gives the results obtained for each

flexible mode considered for truncation. For the initial design, we selected p = 0.1, then three full­

order controllers of order 28 were designed, with corresponding reduced-order controllers of order Il.

Note that the relatively high order of the full controllers cornes from the use of various weighting

functions and scalings in the minimization of the structured singular value to obtain robust

performance.

Table 3.1: Results for truncation of a single flexible mode

max,ltr[Ji (Pa,Kra)(jCûJ] max,ltr[li (Pa' Kra)(jCûJ] IIWk(Kja - Kra)ll",
f1J.. . "',,

Mode 3 0.7609 0.7609 <le-015

Mode 2 1.0928 1.0928 0.0005211

Mode 1 1.0544 1.0544 9.1063e-013

Note that if the condition II(Kf - Kr )U01)11 ::;; I~ -1 u01)1 were satisfied with a reduced-order controller

with the same number of unstable poles as for Kf , the performance specification would still be met.

Figures 3.18 and 3.19 below represent, respectively the Bode plots of ~K(S) and WK-1(S), and the
A

upper and lower bounds of ,ur[Ji(~,Kf)U01)] and flr[Ji(~,Kr)U01)] for flexible mode 3

truncated.
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From the results obtained, we conclude that the best truncation of a single mode that we can do is the

truncation of mode 3. It satisfies the required specifications of robust performance, both for the full­

order and reduced-order controllers, and the closeness of the corresponding closed-loop sensitivities.

To show the role of the sufficient condition IIL\K(j(f))ll :s;1VVA:-1(j(f))1, we tried to obtain a reduced

controller of order 8 with the truncation of mode 3. Figure 3.20 shows that this condition was not

satisfied. As a consequence, adegradation in performance occurred and we obtained, as shown in

Figure 3.21, max,ur[J·~.(~,Kr3)(jcoJ] =0.9851, whereas max.ur[Ji(~,Kf )(jmJ] =0.7609 as
lVi Œj

given in Table 3.1.

10
4
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6

co
Figure 3.20: Magnitudes of the norm of

..... . ...,' .-1
(Kr ~Kf) and of Wk
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Figure 3.21: j.t bounds for both full and
reduced controllers
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When we tried to truncate two of the three flexible modes, aU three possible combinations considered

were discarded because these truncations did not rneet the evaluation criteria. The results were as

follows:

For cOn1bination l (mode 2 and mode 3): rnax,udJi(f:,KjI)(jwJ] = 1.87
Œt

For combination 2 (mode 1 and mode 3): max/lr[Ji (~,Kj2)(jâJi)]= 1.74
"'i

Forcombination3 (mode l and mode 2): max,ur[Ji(~,Kj3)(jâJJ]=1.41
mi

These truncations did not initially achieve the performance specification with the full-order

controllers, and obviously with any corresponding reduced-order controller. In the casewhere we

relaxed the performance criteria and were willing to .accept the degradation of performance resulting in

the truncation of two flexible modes, the best combination retained by our method was combination 3

(mode 1 and mode 2).

3.4.2.7 Flexible aircraft ex~unple

We illustrate our reduction approach using a flexible mode! of a B52 bomber used in chapter2

[Mcl9Û]. It consists of one short~period.rigid-body mode, represented by the· angle of attack and the

pitch rate, and five bending modes taking into account the flexibility of the airframe. The state-space

representation ofthe·aircraft is·given as:

x= Ax+Bu+Bgwg

y=Cx+Du
(3.58)

Where x E J[.tlZ is the state vector given by,

x! =la q 1]1 1]1 1]z 1]Z1]3 1]31]4 1]4 1]5 1]sl, U = [b'el ôhcr E JRZ is the vector of control surface angles

[radians], y E JR is the vertical acceleration [g], wg = [wg1 wgZ wg3J E JR3 is the. vertical gust

velocity at three stations along the airplane [mis), (XE JR is the angle ofattack[radians], q Ë JR is the

pitch rate [radians/s], and 1]i is the modal coordinateof the jth -mode.· The five .flexible modes ·taken

into account in themodel are characterized by their frequency and damping ratio as givenin Table 3.2.
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Table 3.2: Flexible modes

1 2 3 4 5

(()i [nVs] 7.40 15.21 19.73 20.24 38.29

,.. 0.337 0.056 0.010 0.067 0.023,.j

The control objective is to reduce the effect of the wind gusts acting on the aircraft. This can be

achieved by regulating the .vertical acceleration of the aircraft subjected to these gusts. Using our

order reduction procedure, we want to check what flexible mode(s) can be truncated and how

muchreduction can be performed on the controller while maintaining the robust performance

obtained with the original full-order modellcontroller pair. Thus, we obtain a reduced

modellcontroller pair that maintains the nominal· robust performance level. The. weighting

functions on the acceleration and the control inputs are given respectivelyby: Wp~r(s) = . 40 ,
. 0.05s+1

and w" =[1.25 0], respectively. The weighting function Wp (s) required in our procedure is
o 0.25

composed ofboth Wper(s) and ijfu(s)

Considering the effect· of truncating a single flexible mode, we obtained from our reduction

technique that the best choice is to truncate mode 1, the lowest-frequency mode. The resulting full-

order controUer Kf = K fl was of the 40th-order and it achieved the robust performance level of

max,ur[~(~,Kfl)(j(OJ]=0.9999.Choosing p=10-4
, we found that we could reduce the order

iJ)j

of the controller down to 18 with IIWK(Kr -Kfl)lt:o =3.0888xl0-7 <p, and therefore without

losing robust performance. Figure 3.22 below shows the magnitude Bode plots of the two entries

of Ky -Kfl and of W;l , while Figure 3.23 shows the mixed-mu bounds for both K fl and Kr (the

cl.lrves actually sit on top of each other). Thesefigures show that robust closed-Ioop performance is
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preserved for the reduced controller, which also achieved

max,ur[J=t (~,Kr)(jwJ] = 0.9999.
al;

llf

uf

1(('11 L_---'-__----.:~===::::s..__J

10..;ll lOB 103 10" ()) 1O1l

Figure 3.22 . Magnitudes of the two

entries of (Kr - Kil) and of~-1
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a'6[
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Figure 3.23 : ,u bounds for both
full and reduced controllers

The other four candidate modes for truncation yielded full-order controllers that could not meet the

robust perfoffilance sp~cification. Their resulting computed ",u -norms" are given below.

m!x,ur[J=t (P2,Kf J(jw;)] = m!xJlrJJ=t (P4 ,Kf4 )(jwJ] = 1.018
, ,

maxJlr[J=t(~,KI3)(j@;)] = 1.046
Wi

max ,udJ=t (,fs, K 15 )(jw;)] =4.20
Wi

Since robust performance was met with an extremely smaU margin for the truncation of a single

flexible mode, no other flexible mode could be further removed.

3.4.3 Discussion of ,u -sensitivity order reduction for flexible structures

To save computation time for the method above, we propose the use of ,li -sensitivity tools. Their

adaptation to our problem may help determine which mode combination is to be reduced without

affecting much the closed-Ioop robust performance. We shall introduce in the following the notion of

,li -sensitivity:
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3.4.3.1 f-l -sensitivity

Consider a matrix function: M=[Ml! M IZ
] and a corresponding uncertainty block

M ZI M zz

LI. =[LI., Ll.J lhat fit into the M - LI. structure shown in Figure2,8, By introducing a scalar weight in

[
al O][Lll 0] [a&lthe uncertainty structure as: &= =

° 1 ° Llz °
( ) [

al O][Mll MlZ ] [aM!laugmented plant as: M a = =° 1 M ZI M zz M ZI

°]that can be included into theLlz
aMIZ ] Th h .... h•. en t e f..l -sensltlvlty Wlt
M zz

respect to &1 is defined, [Braat91] as: Of..l = Hm f..l(M(a)) - f..l(M(a - &a))[ . Of..l can be interpreted
f::,a-+O+ Lla a=l

as the derivative of f..l with respect to a The higher the value of Of..l, the more critical the model

perturbation Lll is in the value of f..l . In practice, f..l- bounds are used in the calculation of

f..l- sensitivity instead of the exact value of fl [Braat91], [Fan91].

3.4.3.2 f..l ~ sensitivity for order reduct:ion

In this proposed approach, we keep the uncertainty model representation introduced in Section 3.4.2.3,

which leads to the robust performance setup given by Figure 3.12. For this study, we propose an

uncertainty model that corresponds to a combination of reducing all flexible modes of the flexible

structure using the methodology of uncertain model used in section 3.4.2.3. With the uncertainty

model set up, we proceed to test the f..l- sensitivities corresponding to all possible flexible mode

combinations ofa given number of flexible modes to truncate. Define Ofli' i =l, ... ,N as the

f..l- sensitivity of the ith flexible modes combination, then by calculating all the f..l- sensitivities the

best combination to truncate with respect to robust performance criteria corresponds to the smallest

value among the N fl- sensitivities. After fmding the best combination to truncate, the corresponding

reduced-order controller is deduced using the same methodology ofsection 3.4.2.4. This approach can

be time saving since with one robust control design, we determine the best flexible modes combination

for a given number of flexible modes to truncate. However, the conservatism of using all flexible

modes of the aircraft in the perturbation can influence the fl- sensitivity results. Research is
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underway on the possibility of proving some local additive property of the fl- sensitivity adapted to

flexible models, so we can predict the next mode to truncate in the case where we proceed iteratively.

By "proceeding iteratively", we mean that if we increase the number of flexible modes to truncate to

t2 from tl , what is the best flexible mode combination of size t2 - Il to be truncated.
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Chapter 4:

Uncertainty models and robust complex-rational

controller design

4.1 Introduction

Flexible structures are generally characterized by their damping ratios and the frequencies of

their flexible modes. These parameters are subject ta errors when they are estimated. These

uncertainties are important and should be taken into account in a robust controUer design.

The proper capture Of modalparameter uncertainties in dynamical models of flexible structures

for robus! control has been the subject of ongoing efforts. Previous research [BaI91a], [Smi94]

usedadditive or multiplicative uncertainty models ta take into account the variation in the

dynamics of the plant. Another way is to use certain heuristics to facilitate the representation of

the parametric uncertaintiesin the flexible modes by a parametric model [Mad98]. These

heuristics represent approximations in theparameter variation that are not generaUy realistic and

lead to conservative controUer designs, Le., designs that cannot provide the desired performance

in the face·ofrealistic levels ofparametric uncertainty.

Recently, a model to represent parametricuncertainties in the modes of a flexible structure has

been discussed in Reference [Bald99]. Note thatsuch models.have been developed [Boul~7] a

few .years ago. In the latter reference a model of dynamic uncertainty covering parametric

variations in the flexible modes of a .flexible structure has been developed. This dynamic

uncertainty has the virtue of being non-conservative, but only when the frequencies of the

flexible modes are close ta each other.

ln this section, we propose to represenLthe variation in the (damping, frequency) pair of each

flexible mode by a tightlow-order dynamic uncertainty. Thus, we reduce the order of the

augmented plant by half, and transform the mixed real/complex robust· performance fJ. - design

into an easier complex fJ. - design representation. We use two techniques: the first is based on

the coprime factorization framework [Mcf90] and the second uses a complex diagonal modal

representation ta model the dynamics of the· flex.ible structure and ta take .into account the
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parametric uncertainties. The advantage of our methods consists in transforming the real modal

parametric uncertainties into a smaUer number of complex uncertainty blocks. These coyer aIl

(damping, frequency) variations in the flexible structures and reduce the complexity of the

augmented plant.

The robust controUer design we propose takes into account two aspects: the robustness to the

uncertainties in the modal parameters, and the closecl-Ioop performance specified for our model.

The second uncertainty model proposed results in a complex-rational nominal plant. This led us

to develop a new procedure to design a robust controUer. A tobustcomplex-rational controller is

first obtained via a f.1-- synthesis, and then a real controller keeping the robust performance level

is designed to approximate the frequency response of the complex-rational controller.

4.2Problem setup

Due to lack of exact knowledge of natural frequencies and damping ratios, the control designer

needs to estimate uncertainty bounds forthe modal parameters Si and COi' i = 1, ... ,n. These

bounds are used in the design to achieve the required robustness. Suppose that:

Si = Sin + 0(, and COi = COin + 0 w, '

where Sin' COinare the ith nominal damping ratio and frequency, respectively. The real numbers

8(, ' 8w, represent. the uncertainty in. each parameter and are bounded in magnitude by:

These uncertainties haveto be taken into account in the design of a robust controller. The most

used. and efficient design to achieve robustness and performance for mixed type of uncertainty is

the nlixed f.1-design based on the D-G.,.K Iteration algorithm [You93], [BaI95].

In our design, we considered, respectively for each flexible mode, two parameter variations 8("

oW
i

• For these variations, no tight, efficient and realistic parametric mode! is available in the

literature. Consequently, it is. difficult to deal with real uncertainties representations to achieve

robust performance criteria. Moreover, when the number of scalar perturbations increases, it

causes aproblem of dimension complexity in the controller design procecJure "D-G-K

algorithm". The order of the system augmented by the D-G scales will· be very high and the

controller synthesis will be difficult. This is evenmore difficult when the order of the nominal

flexible structure is high. Even though the f.1-synthesis procedure used in this chapter, which is

"p controller based on H 2 design" from [Yan97], reduces the dimension of the· scales by half, a
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solution to the parametric uncertainty tightness and conservativeness still has to be found. A

novel way to deal with this problem, under a new concept of complex controller design, is

proposed.

4.3 Coprime·fadorization approach

This is the uncertainty modeling technique inspired and. adapted from the version presented in

[Boul97]. Consider the nominal dynamic equation of the flexible structure, of m inputs and p

outputs, in modal coordinates:

fi + Dr, + A7] = Bu
y=C7] (4.1)

(4.2)

A =diag{m( ,...,m%}

BE JRnxm ,C E JR?xn, {mi' ...,lün}, {(1' ..., Sn} are the frequencies and the dampingratios of the

flexible modes.

Taking the Laplace transform of (4.1), we obtain

7](s) =(s21 + sD + AtBu(s)

y(s) =C7](s)

Let us define: G(s) = (S2 1+ sD +At and let S2 + as + b be Hurwitz with real zeros.

()
~l--

G s canbe written as : G =M- N such that:

N(s):= diag { 2 1. .. ,..., 2 1 .}
.s +as+bs +as+b

(4.3)

(4.4)

M and N form a left coprime factorization of G in RH~. The perturbed plantcan be written

as:

(4.5)
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ôM,tlN E RH", include aIl the parameters variations in the flexible modes.

W:=diag{O, ... ,O}

11.M:=

. {[2Sin5cq +25Si(~n+5cq)]s+2mln5cq +5~
dmg 2 . ,

s +as+b

[2Ç~S" +2Oc.("v8•. n~+2m~S" +S'~}
..., i +as+b

(4.6)

Each element of I1M , representing a family of strictly proper transfer functions, can be tightly

bounded with a second-order weighting function using the bound ofeach parameter variation tSi '

lm! i ==l, •.. ,n. Thus, t;ij can be bounded by the magnitude of the following weighting function

(see Examplel):

UT ._
"i{ .-

. {[2Sli Oi +2tÇ1 (~n.+tcq )Js+2cqntOi +t~
dmg 2.·.'

S +as+b

[2(,.1" +2t'" (lü., +t")Js +2av" +t~}
..., i +as+b

(4.7)

The resulting bound is structured, representing complex structured blocks of uncertainty. This

bound is more general than the bound obtained in [BouI97], which had the assumption that the

modal frequencies of the flexible structure were close to each other.

4.4 Modal coordinates approach

Suppose that the state-space model in modal coordinates of a flexible structure, and particulary a

flexible aircraft model, 1S given as:

where A = diag {Ai}, i == 1, •.. .,n

x= Ax+Bu

y=Cx+Du
(4.8)

(4.9)
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(sI - A) == diag{s/ - A;}.

we use the approximation Si« l, which is verified in many examples of flexible structures

models. Let us define the complex-rational factorization in CH00 :

where s +a is Hurwitz.

The perturbed model can be written as:

(4.1 0)

=blkdiag

Gp =(M+AMt(N+AN)

(

S+C<I' (ç. +))+@"O"]
+o(j);(çjn+ j)+o(j)lç;

o

i == l, ... ,n

o
-1

(4.11)

W,;j := __1_x blkdiag
. s+a (4.12)

i == l, ... ,n

M := diag{O, ...,O}.

The magnitude of each sub-block ~i' such that AM =diag {t.Mj } , can be tightly bounded by

using· the maximum on each parameter interval tç;, t(j);' Because we are. interested by the

magnitude of the uncertainty that the system is subjected to, it is possible to use the complex­

rational weighting function WM given below to bound !1M in the design (see Example 2).
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- 1
Mfb (s) := --- x diag

s+a
(4.13)

The uncertainty block in the design will be tightly covered by a modal bound llib(s) repeated

as many tîmes as there are uncertain parameter pairs of flexible modes.

4.5 Control design

Our control design methodology is based. on the coprime factorization obtained from both

uncertainty representation approaches. We use the ,Li -design technique to take into account the

robust performance specification. The design concept is explained by Figure 4.1, where

AN;:=: diag{O, ...,o}.

+

u

y

'-----------1 K 1+---'------.,.-0..­
+ r

Figure 4.1: Coprime factorization Control

The robust performance is taken into account in the Ji - design by including a fictitious

uncertainty ~ p linking the input w to the outputs (Zl' zz). We transform the scheme given in the

previous figure to the classical Il-setup. We obtain the robust design given by Figure 2.8:

Where: z::=:[vM 1' v/ ZIT z/J, w::=:[w/ /J Ô.=[d :J, ô.c:=:[LUi-fuYJ,
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M--' 0 N
0 0 B

p= -WCM-' -Wp -WNB (4.14)
JI p

0 0 w"
CM-1 0 NB

Since in our case.M is null, then ~c == AM which is in diagonal form andcontains the complex

uncertainties that coverthe parameters variations in each flexible mode.

A'nadvantage that our uncertainty models offer is that we can recast the structured dynamic

uncertainties, obtained using our uncertainty models, into one complex block ofuncertainty. In

fact, for the frequency interval considered, the highest magnitude uncertaintybound:

[2sii"'i +2t( (min +to) )Js+ 2wii", +t;
ôMbi :== '2 l ' i for the coprime factorization approach (and

s +as+b

- wiç + t",Sin + tO) tt; + jt",
I1Mb!:== ", i' i for the modal coordinate approach, respectively) tightly

s+a

covers the uncertainty set of aH the dynamic structured uncertainties obtained. Thus, we reduced

the number of perturbations to one complex block of magnitude tlMbi (llM
bi

). This, in general,

will simplify the· design of a p - controHer achieving the performance and robusmess required.

4.6 Simulation and new control design strategy :

To validate our methods, we chose two flexible systems representing the well-known three-mass

system [Gaw96].

Example 1

In the first example, the damping ratios and the frequencies of the flexible modes are

ç; = 0.072, = 0.023,Ç3 =0.016, 0 1 = 0.91, O2 = 1.81, ° 3 == 1.5. The input matrix B is given by

B == [0 2.4 4.4Y. We assume that the uncertaintiesin ~,0i' i == 1,2,3 are 10% and 0.1%

respectively. Thus, the controller to be designed has to be more robust against variations in the

damping ratios. The leve1 of performance specified is given by w == . s + 3 and the
p 10.5s + 0.03

constraint on the controller is specified.by: w" == 1/0.7. In this example, we use the tirst approach

described above. Figure 4.2 gives the Bode plots of the first diagonal entry in IY.M which
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concems aH the parameter variations in the coefficients of the first flexible mode and the

magnitude ofthe first diagonal entry of WM .

It is easy to see that this magnitude tightly bounds aU the variations in the first diagonal entry of

tJJ. This observation is vaUd for the other flexible modes as weIL Thus, the weighting function

WM represents a tight bound of !1M .

A J1 controUer was designed for this example taking into account the complex uncertainty WM

covering aH the parameters variations in aH the flexible modes. Figure4.3 gives the J1 ~ upper

bound that we could get with this J1 controHer. The J1- upper bound obtained is less than 0.72,

showing that our controHer design effectively guarantees the robust performance specified, in

spite of parameter uncertainties in the flexible modes.

1~ 1~ 1~ 1~
(j)

Figure 4.3: Upper bound on J1
for Example 1

10'2 0.8

10"

10-6

10'·

10,12 L_.._~__~~_,-:--,_~ ~~_,

10'2 10° 102 104 m 10
6

Figure 4.2: Upper bound on magnitudes of
perturbations for Example 1

Example2

The second example representing the three-mass SISO system is given in a complex modal

representation as described above. The damping ratios and the frequencies of the flexible modes

are S1 =0.025, S2 =0.012, S3 =0.0043, ml =5.12, lüz =2.43, (j) 3 =·0.87 . The uncertainties that

the damping ratios and the frequencies of the flexible modes are subjected to represent 10% and

3%, respectively. Theseuncertainty levels, especiaUy in the frequencies, are quite demanding for

a robust control design. The weighting functions W
p
and~, are the same as the ones used in the

first example.

Figure 4.4 showsthat the magnitude of the first element in WM tightly bounds aU the variations

in the first entry of àM .
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OJ
Figure 4.4: Upper bound on magnitudes
of perturbations for ExalTIPle 2

The ,u-synthesissetup used for the complex-rational controller design is based on sca1ed Hz

optimization prob1ems [Yan97]. These optimizations were treated and solved by means of

solving two Riccati equations:

(A -B2K 1D;2q)* X +X (A - B2R;1 D;2Cl)

- XB2K 1B;X + C; (I - DI2 RI-
1D;2 )C1 = 0

(A-BIDiIR~IC2f y +Y(A - BpiIR~]C2)

- YC2 R;" ICiY + B; (f- DilR;" IDz1 )B; =0

(4.15)

(4.16)

The· comp1ex-rational scaled augmented plant P in its simplified state-space representation is

given by:

rA BI
P,1p(S):colç, 0 ~' (4.17)

Cz DZ1
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The fact that the sfute matrices involved in the Riccati equations belong to a complex set gives us

the possibility of designing a complex-rational Il - controller achieving the performance and

robustn~ss specifications required.

The complex-rational Il controller designed in this case achieved the specified robust

performance criterion. Figure 4.5 shows· the Il - upper bound obtained for this design. Hs

maximum equals 0.99.

Note that the Ji controller designed is not optimal, .and this is because of the uncertainty block

structure. This problem of suboptimality of a Il -design has been mentioned in the literature

[BaI95]. However, the .u -design still appears to be the best strategy to deal with structured

uncertainties in practice. The complex-rational controller design aHowed us to deal efficiently

with the parametric uncertainties under a complex representation. An uncertainty of up to 3% in

themoqal frequencies could be tolerated, a level rarely reported in the literature.

After designing a complex-rational controner achieving the robust performance specification, we

have to recover a realizable real-rational coritroHer. This controller has to maintain the

performance specifications obtained by the complex-rational controller. The problem can be

posed as:

(4.18)

where:

K is the complex-rational controller designed and K r•a is the real-rational controBer to be found.

By enforcing closeness of the frequency responses of the two controllers using the infinity norm,

we can ensure that both controHers win act in the same manner on the generalized plant when

closing the feedback loop. Thus, the level of performance obtainedby the complex-rational

controHer can be approached by using a real-rational controHer. One way to solve the

minimization problem above is to fit the magnitude and the phase generated by thecomplex­

rational controHer, by a real-rational system K rea • Tools that have the ability to provide a solution

in this fitting procedure can be found in Matlab's Identification toolbox [KoI97]. One of the

benefits of this real procedure design is the reduction of the .real-rational controHer. In fact, the

typicaI constraint of maintaining the structure of the original controHer in most classical

reduction procedures is not present in the fitting procedure proposed here:. The structures of the

original complex-rational controHer and the reduced real-rationalcontroBer may differ. Thus, a

low order, real-rational controller, achieving robust performance criteria, can be obtained.
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A real-rational controHer of arder 2, achieving a robust performance level of 0.85, was generated

for our example. The robust performance level for the real controHer is shown in Figure 4.6. The

robust complex-rational controHer is of order 28. This high order resultedfrom the number and

order of the scales in the fl-design. Due to the non-optimality of the fl-design, the robust

performance of the real-rational controUer was better than the one obtained by the original

complex-rational controHer.

0.8

0.6

0.4

0.8

0.6

10
6

OJ

Figure 4.5: Upper bound on fl with
complex-rational controller for Example 2

Figure 4.6: Upper bound on f1

with real-rational controller for
Example 2
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Cbapter 5

Gain scheduling techniques for STOVL Harrier aircraft

5.1 Introduction

Multivariab1e gain schedu1ing has been.an open problem until now. Many techniqtles have been

developed .from standard interpolation and switching techniques [Hyd91], [Han87] from linear

parameter-varying model approaches [Rugh90], [Sham91], to modem interpolation techniques

[Sti199]. Applications ofthese gain-scheduling techniques for flight control have been extensive in the

last decade [Hyd91], [Rei92], [FiaI97], [Pap98]. The recent developments in linear parameter varying

control [Apk95], [Wu95a], [Wu95b] have spurred research on the stability aspects of gain-scheduled

controllers that is considered a deficiency of ad hoc.·gain scheduling techniques (interpolation and

switching techniques). In this thesis, and due to the complexity of the models we deal with, we

preferred to approach the gain-schedulingproblem of Chapter 5 and Chapter 6 by proposing new

methods, based on ad hoc techniques, but improved in terms of stability and performance guarantees.

The research developed in this part of the thesis concemsthe gain-scheduling aspect of a control

design for a large flight envelope of a Short Takeoff and/or Vertical Landing (STOVL) aircraft. In

[Bate99] a robust· integrated flight propulsion controller was designed for an experimental STOVL

aircraft configuration, using the method ofHoo loopshaping. Results of piloted simulation trials with a

centralized Integrated Flight Propulsion Control (IFPC) system are reported in [Bate2000]. The IFPC

system examil1ed in these trials was designed at the 80 lmots point of the STOVL flight envelope,

where control of the aircraft is starting to pass from purely propulsion system effectors ( thrust

vectoring nozzles, etc..) to conventional aerodynamic control surfaces. These trials examined the

handling qualities ofthe IFPC system over a range of speeds from 50 to 110lm. While the single

controller was found to deliver level 1 handling qualities, [Bate99], at speedscloseto its design point,

performance was seento degrade to level 2 quality, [Bate99] as the aircraft moved f1.lrther away from

the 80 lm point of the flight envelope. This degradation in performance is eaused by the large changes

in both aerodymunics and engine dynamies as the aireraft accelerates from hover to fully wingboume

flight.
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In thisresearch study, in order to cope with the performance degradation, we develop the design of

alternative scheduling schemes for the IFPC system which provide Level 1 type handling qualities as

the Harrier STOVL aircraft, under study here, acce1erates from hover to 120 knots, while also keeping

the specified engine variables within their safety limits.

Our method010gy of control design, based on the Hrf) loopshaping, led us to investigate first how to

adapt the observer-form interpolating technique [Hyd9l], to our IFPC control design. Furthermore, we

propose two other methods trying to improveperformance objectives.

The second approach of controller scheduling proposed is a new version of the blending technique

implemented successfully for a missile.application in [Tich96]. In this.technique, we are interested by

the output signaIs of controllers rather than the structure of the controllers themselves.

Adding to the previous scheduling methods proposed, weinvestigate how we can use a

straightforward switching technique between the controllers designed. We develop a new multi­

switching methodology based on the Linear-quadratic bumpless transfer technique introduced recently

in [Turn.2000]. We propose, finally, an innovative scheduling technique based on a partitioned

controller obtained from a partitioning procedure applied to the centralized controller designed in the

beginning of the IFPC methodology.

5.2 Integrated mdhodology for propulsion and airframe control

The desire to improve the oyerall performance of multi-components dynamically coupled systems has

stimulated researchers to develop integrated system control design methodologies. One example of

interest is the control design of a Short TakeOff and Vertical Landing (STOVL) aircraft. The use of

forces and moments produced by the propulsion system to extend the flight envelope of the aircraft

results in significant coupling between the airframe and propulsion systems. Traditional control design

methodologies, as separate· control design for flight and propulsion systems, cannot deal with such

coupling. The recent STOVL aircraft include supersonic flight capabilities, which add more

complexîty in theirconfigurations than subsonic aircraft. This complexity spurred the research in

Integrated Flight and Propulsion Control (IFPe) [Garg93a]. The objective of the IFPC research is to

consider methodologies to improve the overall system performance. It exploits potentially significant

gains in terms of improved flying qualities which may be obtained through the use of propulsive

system generated forces and moments for aircraft manoeuvring in the low region of the flight
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envelope. These methodologies have to take into account dynamical coupling between the airframe

and propulsion systems of STOVL aircraft.

A study program on Design Methods for Integrated Control Systems (DMICS) was undertaken in the

1980's to develop IFPC control laws for an advanced tactical aircraft. The aircraft configuration for

the DMICS study included thrust-vectoring and thrust-reversing capabilities that add dynamic

coupling between the propulsion and airframe system. The DMICS study proposed two design

methodologies: the first one consists in a complex centralized approach that led to a centralized

cOl1troller design, with thepotential to give the bestperformance, and taking into account aU specified

criteria. However, this approach is suffering from the complexity of implementing this kind of

controUer in existing airframe-propulsion control system hardware structures. The second

methodology is based on a decentralized hierarchical apptoach. This approach is highly Iterative, leads

to lower performance and assumes that the subsystems are weakly coupled, which is not generaUy the

case.

The integrated methodologies for propulsion and airframe control (IMPAC), based on the experience

of DMICS study, have the objective to search a new IFPC methodology that takes into account the

airframe. and the propulsion systems as one integrated system. For this integrated system, initially, a

centralized controUer design, for each design point, is suggested taking into account aH the

specifications required, from the performance to the dynamical coupling existing betweensubsystems.

In fact, the starting point of IFPC methodologies was the IMPAC program, which led to good applied

results for STOVL aircraft [Garg93b].

5.3 STOVL H~U"rierAircraft:

Our research work concems the well-known STOVL Harrier jump-jet aircraft (Figure 5.1).
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Many versions of this aircrait were developed since the original P1l27 Harrier created in 1960. The

recent versions include much-advanced avionics and improved handling qualities. The STOVL aircraft

are of a particular importance for the military aerospace industry regarding the advantages theyoffer

for military operations. The performance objectives required from recent version of the STOVL

Harrier aircraft impose a high workload on the pilot. This is mainly due to the instability of the aircraft

for a longitudinal motion at low speed: the inceptor configuration has a difficulty to deal with complex

operation moments and the poor decoupling level. A multivariable control technique is then required

to reach the specified Harrier aircraft handling qualities while reducing the pilot workload. A modem

control strategy was successfully developed for a previous version of the Harrier aircrait in [Hyd91].

In this study, we are concemed with m.ore complex version of the Harrier aircraft. In fact,.dueto the

development of actuator technologies, we could fully integrate the flight and propulsion control

systems rather than being restricted to control the longitudinal motion of the aircraft [Hyd91] .. The use

of the propulsion system to generate forces and moments for aircraft manoeuvring results in

significantly increased coupling between the airframe and engine sub-systems. In its simplest form this

coupling may be unidirectional (propulsive forces and moments affecting airframe states) but in

general the use .of novel effectors such as reaction control systems will also affect the engine operating

point, [Garg93a], [Garg93b]. This coupling necessitates an integrated approach to the overaU flight

control systemdesignproblem, in order to ensure that (a) optimal use is made of the various

propulsion system effectors for aircraft manoeuvring control, and (b) limitations due to engine safety

considerations are taken intoaccount in the overaU design. This integrated approach is realized in our

research study byan Integrated Flight Propulsion Control (IFPC) methodology, which was first

successfuUy developed in [Garg93a].

The··aircraft simulation model used in this study has been developed at defense evaluation and research

agency (DERA) Bedford (UK) in order to investigate the problems and opportunities associated with

the integration of flight and propulsion control systems for STOVL aircraft. The airframe model is

based on thenonlinear DERA Bedford Harrier T.Mk4 Wide Envelope Model(WEM). This m.odel has

been established through flight trials as being representative of the real aircraft. In order to fully

explore the possibilities of advanced engine control under an IFPCS framework, the original Pegasus

engine previously included in the WEM has been replaced with a high-fidelity thermodynamic model

of the RoUs Royce Speyengine shown in Figure5.2, produced by DERA Pyestock. The Spey is a two­

spool reheated turbofan engine with the samebasic architecture, for the purposes of control, as the
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EJ200, which is used to power the Eurofighter. The thermodynamic model of the Spey allows the

controllaw designer full access to engine parameters such as inlet guide vane angle, fuel flow rate and

exit nozzle area. The engine thrust is vectored through four nozzles similar to the standard Harrier.

Total thrust and high-pressure bleed flow to the Reaction Control System (RCS) is scaled to match the

performance of the Pegasus engine. The effect of high-pressure bleed flow (to the RCS) on the engine

operating point is modeled, .and the effect of front/rear thrust split on engine performance is assumed

to be negligible.

To increase the design difficulty, the front pair of nozzles has been moved forward and downward to

displace the center of thrust from the center of gravity and introduce thrust/pitching moment

interactions. Aiso unlike with the standard Harrier, the thrusts from front and rear nozzle pairs can be

modulated and vectored independently. Representative nonlinear actuation systems including both rate

and magnitude limits (as weIl as deadzones and hysteresis for the thrust vectoring nozzles) have been

placed on an control motivators. The model offers a six-degree offreedom nonlinear simulation over a

flight envelope from hover to 250 knots, and linearized models for controUer design purposes can be

generated over the full flight envelope.

ENOINE INPUTS

Inlet guide vane angle
(lOVA)

Main iùelflow rate (MFF) Exit nozzIe area
(ENOZA)

ENGINE CONIROLLED VARIABLES

1'"Law pres5\1l'E! }ijghpressure compressor
•. compressor surge s1ll'gll ma:rgin (LPSM)

Low pn:ssun: margin (HPSM)

compressor
spool speed
(NLPC)

l
nmROLLS-ROYCE
SPEY nnœOFAN ENGINE

Higb preBSl.lIe turbine
stator outlet temperature
(TIO)

Figure5.2: Speyengine scheme
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Nomenclature

r: Flight pathangle (deg).

a: Aircraft angleofincidence(deg).

i :Flight path angle rate(degls).

VI : Velocity along the flight path(knots).

NLPe : Low-pressure compressor spool speed(%).

TIO : High-pressure turbine stator outlet temperature(K).

HPSM : High-pressure compressor surge margin(%).

LPSM: Low-pressure compressor surge margm(%).

THM : Thrust magnitude(kN).

ETAD: Elevator position (-15deg to 15deg).

ETASTK: Pitch reaction control system position (-15deg to 15deg).

FNOZ: Front Nozzleposition (-5deg to 120deg).

RNOZ: RearNozzleposition (-5deg to 120deg).

SPLIT: Engine thrust split (0 to 1: 0== al1 to front, 1=all to rear).

MFF: Main fuel flow (0 to 1.2 kg/s).

ENOZA : Exit Nozzle area (0.8307 to 0.1602 sine petaI angle).

IGV: Inlet guide vane angle (-8deg to 35deg).

The results presented in this chapter relate to the control of the longitudinal axis only, and the control

law is required to follow a two-inceptor strategy. In this scheme, fore/aft displacementof the center

stick produces a change in flight path angle rate ft, anddisplacement of the left-hand .inceptor

demands aircraft· velocity VI parallel to the flight path. Functional specifications for the IFPC system

are givenas follows:

a) FlightPath Manoeuvre Demand: The rigid hand pitch controllaw will command flight path angle

rate and should actively hold flight path with the stick centered. Stick displacement will produce a

flight path rate demand up to a maximum of 3
0

/ sec. Flight path demands should aim tobe

decoupled

from .axial manoeuvres, with a maximum demand of ±2knots transient speed change during any

flight path manoeuvre.
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b)Velocity Demand: Left-hand inceptor displacement will demand velocity parallel to flight path

(VT). A maximum transient deviation of ±0.3' in flight path angle is desirable during velocity

changes of up to ±30knots.

c) Incidence Limit: To avoid extreme incidence angles, which can lead to lateralldirectional

instability, an incidence boundary is necessary. The aircraft angle of incidence, a, should therefore

be kept within +12' and _6' during all manoeuvres.

d) Engine Safety Limits: To protect engine components from dangerous over stress and over

temperature, and toensure avoidance of surge conditions, the following set of engine limits are to be

respected during aIl manoeuvres:

1- Low Pressure Spool speed (NLPC) <102%

2- High Pressure Turbine Stator Outlet Temperature (TI0) <1430K

3- High Pressure Compressor Surge Matgin (HPSM» 10%

4- Low Pressure Compressor Surge Margin (LPSM» 10%

Recommended maximum limits were also provided for five other engine variables - see [Bate2000]

for details.

5.4 Centralized IFPC system design

The technique chosen for our IFPC system is the H oo loopshaping procedure described in [Mcf90].

This procedure provides· certain advantages over the traditional mixed sensitivity H 00 optimization. A

report produced by the British Aerospace on full-authority fly-by-wire, [Hyd91], indicates that

separating the design into two steps of 1) command feed-forward design and 2) robust closed-Ioop

stabilization leads to an effective design approach. This is typically the case of the Hoo loopshaping

technique, which offers good handling qualities while maintaining a good stability margin.

Since a comprehensive tutorial on the H oo loopshaping design method is given in Chapter 3, we give

only a brief outline of the H oo loopshaping technique used to design the individual controllers. The

aircraft nonlinear model was trimmed and linearized at 0,20,50,80 and 120 kn points of the flight

envelope. TheHoo loopshaping controllers were designed for linearized models of the aircraftlengine

dynamics, generated at the operating points specified. The resulting state-space models of the

integrated airframeand. engine systems, plus aduators, have 35 states and are of the form:

121



x=Ax+Bu

y=Cx+Du

The control inputs are given by

u =[ETAD,ETASTK,FNOZ,RNOZ,SPLIT,MFF,ENOZA,lGV]

(5.1)

(5.2)

while the vector of outputs y includes 8 airframe and 19 engine variables. Based on the performance

requirements previously detailed, the vector of controlled variables z waschosen as

z =[a, VT,y, NLPC, Tl 0, HPSM,LPSM]

The angle of incidence a was included in z in order to explicitly minimize deviations from its trim

point during maneuvers. The H oo loopshaping design method used to design the controllers, [Mcf90],

is essentiaHy a two..stage process. First, the open loop plant i8 augmentedby (generaUy diagonal)

weighting matrices to give a desired shape to the singular values of the open-loop frequency response.

Then, the resulting shapedplant is robustly stabilized with respect to coprime factor uncertainty using

H 00 optimization. The Implementation structure for the H <f.! loopshaping controller used in the piloted

simulation trial is shown in Figure 5.3.

Ew~ntl Y&ill,okl; 1Cf
'Irim
P...)Îl.lts

Ou~!,u45 (-0
Outt-ido Wodct
DÎ$plt~J / HUD

NQnfuwat' t---­
spt':';-,<';'cm

M<:Kicl !--r--
z

Figure 5.3: H<f.! loopshaping controUer Implementation for piloted trials

With reference to this figure, the weighting matrix W';{s) is chosen generally to add Integral action and

ensure reasonable roll-off rates for the open-loop singular values around the· desired crossover

frequencies. The scalar weighting matrix k is then used toadjust control actuation requirements to

satisfy the variousactuator rate and magnitude limits. For each of the linear designs between 0 and

120 knots the weighting function W'; (s), containing pure integrators, was thus chosen to be of the forro
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~ (s) =s +a , with the parameter a varying smoothly between different designs points. Note that in
s

this configuration the nonlinear Spey-Wem aircrafi model is assumed to be scaled so as to be

approximately normalized withrespect to maximum allowable input signaIs. The scalar matrix W2 is

used to prioritize airframe-controlled variables (which must achieve specifie handling qualities

characteristics) over engine variables (which have simply to be limited within certain values). For the

50 kn controller for example, the three weighting matrices were chosen as:

s+2
k = diag( .13, .1, .25, .25, .25,.2,.2, .2), ~ = --X /8

S

W2 =diag(l, l, l, 1/200,1/800,1/200,1/500)

The second stage of the H 00 loopshaping design method involves the use of H 00 optimization to

compute a c:ontroller block Koo which robustly stabilizes the shaped plant against a particular type of

uncertainty description, based on stable perturbations to each factors in a nonnalized coprime

factorization of the plant. The Koo block eontroller for each operating design point was respectively

designed as described in Chapter 3 by means of the solutions of the Riccati equations given in

(2.72),(2.73). The final step of the design procedure is to add the constant prefilter K(0)W2 in order to

ensure zero steady-state tracking error, assuming integral action in ~. The K oo controller block for

each operating point is of order equal to that of the shaped plant, i.e, for each of our designs K", has

43 states.

5.5 Observer~formimplementation and schedu.ling

In [Sef90], It was shown that the controller resultingfrom the H oo loopshaping procedure can be

Written as an exact plant observer plus state feedback. Assuming, purely for notational convenience, a

strictly proper shaped plant, with stahilizable and detectable state space realization

G =[113]
s c., 1 0

the equations of the plant observer plus state feedhack of the H 00 loopshaping controller are:
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where X., is the observer state, Us and Ys' are respectively the input and the output of the shaped plant,

and

H, =-Z"C.: (5.6)

(5.7)

where Z, and X s are the appropriate solutions to the generalized algebraic Riccati equations, (2.72),

[~](2.73) for a given G,. = C~ 1D
s

..• In general an H", controller cannot be written as an exact plant

observer combined with astate feedback gain matrix, as there will be a worst-case disturbance term

entering the observer state, [Doy89]. However, for a controller produced by the H", loopshaping

method, tbis clear structure exists, as mentioned, and lends itself to gain-scheduling in that the

controUer matrices K.,. and H.,. can be simply scheduled as a function of one or more aircraft

parameters. Figure 5.4 shows the observer implementation structure of the IFPC system scheduled as a

function of aircraft speed. At a given speed v, each matrix in the observer structure is linearly

interpolated, using the ith andjth (can be (i+l)th or (i-l)th) adjacent designs, as:

(5.8)

where 2(v) E [0,1].

Note that the observeris for the shaped plant 0", and thus this places sorne limitations on the choice

of weighting functions for each of the !inear controUer designs - in particular they must have a fixed

stru.cture and vary smoothly over the envelope to smooth the dynamics change of the shaped plant.

Otherwise, from an implementationpoint ofview, the interpolation of the weighting functions will be

difficult and there will be little differences between H", loopshaping controllers written in this form

and the classical LQGILTR structure ofmodern control theory, [Ste92].
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Figure 5.4: ScheduledObserver implementation of the

For successful operation of the scheduled system it is essential that the control1er gains K, and

H,. vary smoothly with operating point. A theorem in •• [Hyd91] can be used to show that this condition

will be satisfied provided the Riccati solutions X and Z and the stability margin r vary smoothly.

Theorem 5.1

Let As (0), Ds(0), Cs (0) be analytic nx n matrix functions of 0 defined on a real interval [a, p], with

DJO) positive semi-definite Hermitian, Cs(O) Hermitian, and (As(O),D,(O) stabilizable for every

oE [a,pl the Riccati equation:

X(O)DJO)X«(}) - X(O)As(B) -- As (0)' X(O) - C,(B) =0 has a Hermitian solution. Further assume that

. . . [A,(B) -Ds(O)].the number of purely 1magmary e1genvalues of M(O) =. • lS constant.
-C, (0) -As (0)

Then the maximum solution Xm(O) (given B Xm(O) > Xi(B) Vi) is an analytic function of eE [a,p].

Using the above theorem for the solutions of the Riccatiequations used in the Hoo loopshaping design

of a state ,pace realizationli!;'JOfa shflped plant G" we need the following conditions to hold:

For

(5.9)
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1- B.B; is positive semi-definite Hermitian.

2- C;C,. is Hermitian.

3- (As, B.B.;) is stabilizable.

For

- ~~~,;] )las a COllstant number of pure!y imagioary eigenvalues,

AZ + ZAO - ZC·CZ + }3B* =0 (5.10)

5- C·C is positive semi-definite Hermitian.

6- BB* is Hermitian.

7- (A, C*C) is stabilizable.

8. MF Ct) =[_:B' -~~] bas a constant number ofpurely imaginar)' eigenvalues,

The first three conditions are satisfied trivially, and by assumptions for solution of the nonnalized

coprime factor robust stabilization problem [Mcf90]. Adding to that, if (A, B) and (C, A) are

stablizable and· detectable respectively, then Mc and MF have no imaginary eigenvalues. Thus the

conditions (4,8) for the Riccati equations (5.9),(5.10)are satisfied.

This result confinus that a smooth interpolation of the parameters of the shaped plant matrices will

lead to smooth solutions to the Riccati equations and hence smooth observer and state feedback gains.

The shaped plant matrices A., Bs' Cs have to vary smoothly with operating point, while also capturing

the important changes in the dyrtarnïcs of the plant over the specified portion of the envelope ­

knowledge of the aircraftand engine dynamics needs to be used here to decide on the position and

number of design points required for interpolation. Sorne extra freedom can also be introduced by

using weighting functions in the interpolation of the differentmatrices,

(5.11)

where: A(V)E [0 1].

A(V) =0 corresponds to the design i, A(v) =1corresponds to the design j.

so that the exponent p can be used to get a better matchbetween the interpolated linear system and the

actual non..linear system. In fact with our knowledge ofthenonlinear model of the aircraft, and

126



because we interpolate parameters of two linear models, we can give more weight to the state matrices

of the most faithfullinear model. With that technique, we can also use more weight on the gains of the

controUers that we have a confidence in their efficiency around a specifie interval of operating points

byplaying with the tunable exponent p. Note that the constant prefilter must be recalculated at each

operating design point to take account of the different structure of theobserver-form Implementation.

Using the linearization of the nonlinear Spey-Wemmodel around a fixedspeed and the structure ofthe

observer-based controUer ofFigure 5.4, the output of the linearized systemis given as:

(5.12)

with

in order to have steady-state error we choose a constant prefilter K ogiven by

Ko == -(T(O)Bs + G(O)Ufl (O)kt (1 +T(O)H"Wz (0))

Assuming Integral action inUfl tms simplifies to

where

(5.13)

(5.14)

(5.15)

(5.16)

This constant prefilter must then also be scheduled as a function of speed in order to take account of

variations in the low-frequency gain of the controller over the envelope.

Simulation results show that the observer-form Implementation of the H oo loopshaping is suitable in

terms of performance. Figure 5.5 (in terms of f demands, velocity coupling and engine limits) and

Figure· 5..8 (in terms of velocity tracking) present improved performance of the observer-form structure

comparing tothe classical one-degree-of-freedomHoo loopshaping structure.. This improvement is due

mainly to the feedforward block, which was recalculated at each operating design point.
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Nonlinear simulation results for the scheduled IFPC system in the acceleration from hover phase are

shown in Figures 5.9 to 5.12. The figures show close tracking of velocity demands as the aircraft

accelerates from 0 to 120 kns, withonly small deviations.in flight path angle during the maneuver

(comparison with results obtained in [Hyd91]). In addition, the four directly controlled engine

variables are kept within their specified limits (Figure 5.12) and a is regulated close to its normal

value throughout (Figure 5.9). The necessity for a gain scheduling .scheme to preserve performance

throughout this portion of the flight envelope is demonstrated in Figure 5.13 to 5.14, whichcompare

the performance of the scheduled IFPÇ system with a single controller designed at the hover.operating

condition. As seen from the figures the hover controller, which gives good performance at low speed,

is unable to cope with the large changes in the aircraft dynamics as it accelerates to wingbourne flight.

., i', ;··· ,·f

Figure 5.9 : Response of scheduled IFPC system for pilot
demands VT in the acceleration from hover
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5.6 Antiwindup methodology

5.6.1 Problem statement

In this part of the gain scheduling for Harrier aircraft we want to extend the flight envelope over 150kn

of velocity. For that, we design a controller at the 150kn operating point. However, a nonlinear

simulation of this 150kn controller, depicted in Figure 5.15, shows an increase of the front nozzle

effort opposite to the rear nozzle effort. This was not really permitted with previous Harrier aircraft,

however the mode1 that is currently in use in this thesis gives more flexibility on the actions of the pair

(front nozzle, rear nozzle) actuators.

On the other hand, with this flexibility, we need ta prevent saturation of the split causing the actuators

ta saturate. The results of observer gain scheduling technique from Hover ta 150kn, in Figures 5.16,

5.17, 5.18, 5.19 show reduced performance on velocity tracking and coupling with unreasonable

actuator effort leading in sorne cases to saturation. Thus, an antiwindup strategy is needed for better

performance results.
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5.6.2 Antiwindup technique

Antiwindup techniques attempt to improve the performance of control systems with saturation

constraints. Many such techniques have been reported in the literature and have been implemented for

real plant. The most usedone is the Hanusconditioning scheme [HanS7]. This technique requires the

controUer to be invertible and minimum phase. The Hw loopshaping controUers designed for Okn,

20kn, SOkn, SOkn, 120kn,and 150kn operating points satis:fy those conditions. However, the

implementation of tms technique showed its limits for the observer-form H00 100pshaping eontroUer

[Hyd91]. Thus, an observer antiwindup technique is necessary for our 150knGontroUer. The general

setup for this technique is given in Figure 5.20 [Hyd91]:

u

Ws G

w- 1
1

FigureS.20: Observer form antiwindup
technique

Without saturation on up ,. the controUer W:, is acting as ~. The actualplant inputs up are used to

drive the observer form controUer, which results in the controUer states remains consistent with the

plant states. In the opposite to Hanus technique, the observer-form controUer uses the signal U obs

obtained fromthe feedback signal upthrough ~-I (see Figure 5.4).
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5.6.3 Application of the observer from antiwindup technique:

Because of the direct effect of the split actuator on the front and rear nozzles, and indirectly on aIl the

actuators, we decided to include antiwindup block just for the split. We designed a 150kn "safe"

controIler, for wmchresultsare shown in Figure 5.21. The performance ofthe safe controller is lower

than results obtained with the original controller without antiwindup. However, with tmscontroUer the

front and rear nozzles efforts have reasonably decreased compared to the controller without

antiwindup.

SPLIT

,
0,6 --------+-- -----

0.75 o. ---:---------
0,7L-_~___'

o 5 10
time(secs)

10

REAR NDlZLE

40

60 ,..-~--,,------, 0,95 ,-----;----,

0.9 ---------~-------­

0,65 ---------r------ -

,,
38 ---------~----- --,,

-20 L-_~~_---'
o 5 10

time(secs)

o

40 ~c--------

en'" ,l5. 20 ---------:--- J

'""t:l ,

o ---------~--------,

FRONT NOZZLE
44 ,..----,,-----,

Magrt'ffitt~

42

il

1[
5

time(secs)

Figure5.21: Results of 150kn safe
controIler: Velocity tracking

5
time(secs)

---------~~~-----~

VT

gamma

160

150 "",",":::'-'_~_---J

o 5

170 ---------~"-- ---,

-0.5 L-_~__---J

o

190 ,..----:-,---,

kn
180

1 ,..---.,------,

degree
0.5

To extend the flight envelope to 150kn velocity, we propose to compare an observer-form scheduling

controUer using the 150 kn controller without antiwindup, and using the 150 kn controUer with

antiwindup strategy. Results obtained with the antiwindup strategy show, in Figure 5.22, 5.23, 5.24,

5.25, that by constraining the split effort has a positive effect on aU actuator efforts. Thisçan be

explained by the fact that the split is responsible on directingthe thrust magnitude for front and rear

nozzles. In addition, an indirecteffect is noticedfromsplit on other actuators. The tracking ofthe

137



velocity demands is quite good with small coupling in the flight path angle and reasonable actuator

efforts.
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5.7 A control signal blending/interpolating app.roach:

The approach to scheduling of H 00 loopshaping controllers described above requires controllers at

different operating points in the flight envelope to have the same state-space structure. A drawback of

this requirement is that standardusual controller order reduction techniques, [Gl084], cannot be used

to reduce the order of each controller prior to scheduling, as this will destroy the consistency of the

state-space structure acrossdifferent designs. This issue is of particular concem for the IFPC problem

considered here, which, due to. the complexity of the airframe/engine model, results (initially) in high­

order controllers at each operating point. Initial attempts at order reduction suggested, however, that

these fixed-point controllers could be significantly reduced in order without any change in their

ciosed-Ioop behavior.

One solution to the above problem would beto try to reduce the order of each controller using

technique which preserve thephysical interpretation of the state variables, see for example the

approach described for a.n aero-engine control design in [Harf99]. In general such techniques are not

welldeveloped and not systematic, however, and so in this study we opted to investigateasecond

approach for scheduling the fixed-point controllers which imposes no constraint on their structure or

order. The approach proposed, called the blending/interpolating method, presents a new version of the

approach introduced in [Busch99]. Our method adopted here is different from the one presented in
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[Busch99], mainly, in that the controUer signaIs are continuously interpolated as a function of speed

with the result that no "bumpless transfer" type conditioning is required. In fact, interpolating the

outputs of two controllers, between their adjacent operating points of design, gives us the smooth

change of. the controller outputs and thus prevent better the bumps that can occur in the classical

method presented in [Busch99].

The H oo loopshaping controllers are kept in their observer form as this structure was seen previously

to provide slightly improved time-domain responses when compared with the Implementation

structure used in the piloted simulation trials. Now, writing the ith fixed-point controller as

(5.17)

(5.18)

then the scheduled controller output 1S calculated in real-time along the region between two design

points i and i+1 as :

u~ =(1-À)u;+Âu~+1(5.19)

where u~ is the output of the ith controUer and U.~+l is the output of the i+1th controller. The

i

interpolation factor Â(v) is given by v~ v ., Â E[O, 1] .
Vl+ _Vi

Where v, Vi and Vi+l are the CUITent velocity, velocity at the ith design point and the velocity at i+1th

design point, respectively. The structure of the blended/interpolated IFPC system is shown in Figure

5.26. Note that the blending/interpolating of the control signals is done at the. input of the shaped plant

~ the weighting functions for the plant were then interpolated in the same way as for the previous

scheduling scheme. This was seen to give better performance than direct blending/interpolating of the

control signaIs at the plant input. A possible reason for this isthat, assuming different weighting

functions ~ and including pure integrators, signaIs after ~ will have large differences and widely

varying blended/interpolated signaIs· will result.
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Each controUer we used in this blending/interpolating technique assures stability and achieves

reasonable performance in a region around the corresponding operating point (hover, 20, 50, 80 or

120kn). A significant advantage ofthis approach is thatno requirements are placed on the structure or

order of the different fixed-point controUers - in fact they could. even be designed using different

synthesis methods to optimize the performance achieved. This structural freedom was exploited to

reduce the order of each individual controUer as much as possible without sacrificing performance or

robustness properties. With respect to the observer form structure chosen to implement

the H oo loopshaping controUers, we opt to reduce the order of the shaped plant for each design given by

[

Ai
œ= s

s C'
s

(520)

where G; =G;s + o.;u; G~s is the stable part of the shaped plant, o.~ is the unstable part of the shaped

plant.

to the lowest order shaped plant

(5.21)

such that IIG:s- G;rst stol, and then re-ca1culate the controUer gains for the reduced-order shaped

plant G;r' Note that the unstable part and the stable part were added again at the end of the procedure.
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Using tbis approach we were able to significantly reduce the orders of each fixed-point controllers

without losing their respective perfonnanc.e locally. Depending on the point in the envelope, final

fixed-point controllers oforder 14-19 were obtained.

Nonlinea.r. simulation results for the blended IFPC system are shown in Figures 5.27 to 5.30, for

acc.eleration from 20to 120 kn. The figures show excellent trackingofvelocity demands with minimal

coupling into rand. a. In addition, ail internaI engine va.riables are held within their specified safety

limits.
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Extending the schedule to include the hover flight condition produced the results shown in Figures

5.31 to 5.34. The results show slightlyincreased coupling into rdue to the large variations in the

aircrafi dynamics between 0 and 20 kn.. Overall the results çompare favorably with those achieved

with the .observer-form scheduling scheme, especially considering that the order of individual

contrbl1ers has been significantly reduced.
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5.8 Optimal multi-switching technique

5.8.1 Introduction

The approach in this section is slightly different: we consider several isolated design points as in the

interpolated schedu1ing case, but instead of ablend between two controllers we considera

straightforward switch. This not only has the conceptual advantage of simplicity, but it i8 often easier

to implement switched control architecture than a scheduled one. When compared to previous

scheduling approaches it also .has advantages. in termsof design time and is .considerably ·less

computationally demanding. The system under study seems ideally suited to switching (see[Hyd91]

for an application ofthe Hanustechnique [Han87] to a simple STOVL Harrier flightcontrol problem)

however, which has obvious advantages in the fact that no additional modeling needs to be carried out

and, as already stated, in the relatively low computational demands if makes.

It is weIl khown that an abrupt switch between lînear controllers can cause transients, or bumps, which

can lead to unacceptable closed-Ioop behavior, both interms of actuator irregularities and also in

system response. These bumps arise out of an. inconsistency between the states and graphs of the

controllersand, in their most malicious fOIm, may give rise to instabilîty when switching occurs.

Hence, webase our proposed switching strategy on a recently introduced bumpless transfer technique

[Tum99],[Turn2000], toreduce the transients at the time of switching. The technique, based on

optimal control methods, leads to a feedback matrix, P, which produces a signal, a(t) , fed into the

ofMine controller to ensure that its output tracks the current on-lîne control signal, while also heeding

the difference between a(t).and the currentinput to the on-lîne controller. In other words the method

seeks to nlinimize, in a weighted LQ Sense, the difference between the responses ofthe on and off-lîne

controllers, in an attempt to preserve performance.

The LQ. bumpless transfer methodology has already been demonstrated on a helicopter example in

[Turn2000] and [Turn99]. Here we consider a more complex example, which requires switches

between multiple controllers due to the highly nonlînear nature of the plant's dynamics. This leads to

an Implementation technique to reduce on-lîne computational burden. Both the LQ bumpless transfer

tecb.rlique and the multi-switchconceptare described in more detaillater.
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5.8.2 Linear quadraticbumpless transfer :

The idea of !inear quadratic (LQ) bumpless transfer was introduced in [Turn2000] to facilitate, in an

optimal manner, dynanlictransfer between two linear controllers.

Essentially the method of attempting to ensure bumpless transfer is a feedback lllatrix, F , (which we

assume has access tothe on-line controller's states), which drives the off-Hne controller in order that

its output tracks thatofthe on-Hne controller, whilealso ensuring the off-Hne controller input does not

deviate too sharply from the bn-line controller input. In [Turn99], the method was extended to include

a low-pass filter in eachchannel of the vector, a(t) produced by F. The aimbehind.trus was to ensure

a less pronounced switch. between the on and off-Hne controllers, albeit at the consequence of

introducing dynamics into thebumpless transfer compensation scheme. In our experience this second

rnethbd works better and thus it was preferred as the basis of the methodology proposed here. In what

follows we shaH introduce sorne new modified formulae for the bumpless transfer cornpensator. This

should familiarize the reader with the LQ methodology. Note that the forrnulae of [Turn99] could not

be used directly as that paper only considers strictly proper controllers; the controllers here are not

strictly proper.

The subsequent subsections are intended more as an overview of the LQ bumpless transfer method and

for more technical details onthe derivation of the formulae, the readeris referred to [Turn2000].

5.8.2.1 Finite Horizon compensator formulae

Consider Figure 5.35 where îi(t) E ]Rm is theon-!ine control signal, u(t) E )Rm isthe off-lïne control

signal, r(t).E )Rtlr is the reference demand and y(t) E ]RI/y is the plant output.
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Figure 5.35 : Bumpless transfer scheme

The vector produced by the feedback matrixF is a(t) E :!Rn, and the low-pass filtered version of this is

a(t) E :!Rn, .We assume that the off-line controller, K()jf(s), is governed by the following equations

x=Ax+ BI(r +a)+ B2y (5.22)

u =Cx+D1(r+a)+D2y (5.23)

and that the low-pass filter, L(s), is governed by the following equations

(5.24)

(5.25)

Note that we are assuming that thecontroller has two degrees offreedom. This allows more generality

in our results and by making obvious assumptions, the results hold for one-degree-of-freedom

controllers. We assume that matrix F has access to both the controller and filter states as well as the

vectors ft, Y and r .

Following are the assumptions we made for the method presented:

Assumption 1 : The controllers' state-space realizations are all stabilizable and

detectable.

Assumption 2 : Given KojJ(s) is theoff-line controller and Kon(s) is the on-

line controller, let the following equivalent conditions be satisfied

l.The on and off-line controllerslocally stabilizethe plant and the. intersection ofthese locally
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stabilizing domains is not empty. Furthermore the point of switching is in the intersection of these

domains.

2.For the nonlinear plant

{

i p :::: f(xp'·u)
p:::: .

y::::h(xp,u)
(5.26)

Let Koff(s) be designedat the operating point x; and assume K~ff(s) stabilizes P Vxp EXp where

Let Kon(s) be designed at the operating point x;then Kon(s) stabilizes P Vxp E X/1 where

Furthemore, we assume that X ::::: X p(\ X p 1:- rjJ and switching takes place in X .

The motivation for Assmnption.2 is practical in that we would like to switch between two stabilizing

controllers alld, furthermore, at the point of switching we would like bothcontrollers to yidd stable

closed loops.. It is unreasonable to expect. good behavior from the switched system if the switch. takes

place at a point in the system'soperating regime where one of the controllers does not stabilize it! .. This

is quantified by theassumption that we switch in X , where both controllers are stabilizing.

One could, in principlê, make a stronger assumption, given sets Z" C Xv and Z/lc X/1 where the

respective controllers are not only stable but also yield, in sorne sense, goodperformance. The

stron~er condition wpuld be that ..theswitch takes place in Z:::: Zp n Zv 1:- rjJ, which would thus

guarantee a certain performancelevel is maintained. This is more difficult to quantify, but sorne

intuition can be used in irnplicitly determining this set. In practice Z will be used instead of X, as it is

norrnally desirable for sorne performance, and not purely stability, to be rnaintained.

The aim orthe LQ technique of bumpless transfer is to derive a matrix F such that at the time of

switchïng the transient produced by the controller are minimal. To do this, we would like u and ft to

be as close as possibleatthe time ofswitching, but also wewould like ato be assmall as possibleto

ensure that when switching hasoccurred, any abrupt change at thecontroller input does not manifest

itselfat the controller output (plant input). To pose this problem in the LQ framework we consider the

minimization of the following functional

T

J(ii,a,T):::: i. .j[zu(tY'w.,z,,(t) +ze(tf~ze(t)]dt+!z"(TYSz,,(T)
2 0 2
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where: Zu (t) =u(t) - il(f)

ze(t) =a(t)

(5.28)

(5.29)

Note that we do not minimize ii(t) directly, but rather minimize a(t) instead. As the input to the off­

Hne controller is r(t) +â(t) and li(t) is the output ofthe low-pass filter, this enables the input to the

controller to gradually deform into purely r(t} when the off-lïne controller is switched on-line, which

helps avoid a bump at the controller input. In this setup, we assume that the switch between on and

off-Hne controllers occurs at time T , and hence we seek the cost at this time to be minimized also. The

matrices »: and ~ are positive definite matrices which are used to weight the relative importance of

ensuringu ::::;; il and minimizing a.

Combining the dynam.ics of the off-Hne control1er and the low-pass filter we obtain

f=Ax+B,w+B2a

u =Cx+D,w

where

- [A B'Cll - [BI B2 ] - [0] - [ ]- [A:= 0 4 J B,:= 0 0 B2 := BI C:= C 0 DI := D,

Substituting this into the performance index (5.27) we obtain

l'

J(il, a,T) =~ J[(CX + D,w -û)' Wu (Cx + 151W - il) +a'Wp]dt +~zu (T)' SZu (T)
2 0 2

Forming the Hamiltonian [Lew86] yields:

H =i{CCx + D,w- illWu (Cx +D,w- il) +aI'Wea} + AT (Ax + BIw+B2a)

(5.30)

(5.31)

(5.32)

(5.33)

Invoking standard procedure from LQ optimal control [Lew86], weobtain the first-order necessary

conditions for a minimum as

aH -1'--=Wa+B2 Â,=0aa e

These can be combined to obtain
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[i]·[. A -R][X].[· BI 0 ][w]
i = -Q - A' Â + -C'w"DI è'w,,·. u.·

where the following definitions have been made

- -1' -
Q:=C w"C

(5.37)

(5.38)

(5.39)

Using the method of Sweep (i.e, assume. the linear relationship /L(t) =TI(t)x(t) - g(t)andcombining

this with equation (5.37), ais obtained as

-j ­
a=~We BjÂ

where Â:= TIx- g is found from the differential equations

D(t) +TI(t)A + A1'TI(t) +TI(t)RTI(t) +Q=0

(A-RTI(t)f g-(è1'WuD+TIBI)w+è1'wuu =-g

which are respectively solved from the terminal points

lI(T) =è1'sè

- g(T) =èTsDj w(T) - êTSu(T)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

5.8.2.2 Infinite horizon compensator formulae

The finite-horizon formulae. are often not appealing froma practical point of view. Firstly, in order for

a(t) to be cornputed,the signaIs w(t}and ü(t) must be known beforehand, wmch in a flight control

situation is notr~alistic. Secondly, thefeedback is time-varying and optirnality is associated very

much with the horizon length. Therefore these finite horizon results are extended to an Infinite time

support in orderto ease implernentation difficulties.

The Infinite horizon results assume that the switch between controIlers occurs infinitely far in the

future (T -* (0) and one could certainly raise objections to this assurnption. However, ifthe dynamics

are suchthat a steady state is reached relatively fast, and of course the control signal is relatively

constant over a period oftirne, and then one can apply these Infinite horizon forrnulae with sorne

confidence.

It is weIl known in the optimal controlliterature [Lew86] and for specifie detail [Tum2000] that in

order for the solution of the differential Riccati equation, (5.41), to converge to the positive semi­

definite stabilizing solution of
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.ln+nA+nRn+Q (5.45)

as T ~ oowe require (Â,R,jQ)to be stabilizable and detectable. Note from the definitions of Rand

Qand strict positive definitenessof Wu and We, as it was assutned. (Assurnption 1) that our controller

is stabilizable and detectable, then it followsthat (Â,R,jQ) is indeed stabilizable and detectable.

Henee a positive semi-definite stabilizing solution to (5.45) always exists and furthermore it satisfies

lim net) =n(00) ::::; n 2: 0
7'.....00

(5.46)

Now consider Equation (5.42) and" note that as this develops backwards in time and as Â - Rn is

Hurwitz implies -( Â - Rn) is anti-Hurwitz, the LQ tracking technique of [Athans66] can be applÏed.

With the assumption that w(t) and û(t) are constant then it follows that

(5.47)

Inserting tms into the expression for a gives

(5.48)

where F is given by

(5.49)

Note that the off-lÏne controlloop will be stable as n 2: 0 is the stabilizing solution to the ARE, (24);

therefore it follows that the off-Hne 'A' matrix, (Â - Rn), is Hurwitz (which also ensures the

- - Jexistence of (A - Rnf ).

5.8.2.3 Stability

So far we haveonly given guarantees of the stability of the off-lÏne controlloop. Our basic assumption

also guarantees the stability of the system at the control design points. However nothing has beensaid

about the stability of the system as a whole; that is the stability of the switched system. In fact plant

stateswould trigger switching and we couldhave Hmit cycles in which case the assurnption that

switching occurs at t -+ 00 do not hold.
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One ofthe main problems with a control switching strategy is that it introduces certain technical

problems and thus it can be quitedifficult to give any rigon:ms guarantee of stability. The process of

switching makes the system's differential equations discontinuous in their right~hand side, and it is

therefore nontrivial to guarantee existence and uniqueness of solutions..

It is also worthmentioning that most results on stability of switched systems tend to concentrate on the

switching of linear systems. Here we are dealing with an unc.ertain nonlinear system, so it is not valid

to apply results on thestabilityofswitched linear systems.

We thus can make no concrete guarantees ofstability, but can offer experience and guidelines, which

lendcredibility to our approach.Practical results in the literature [hyd91], [Turn2000] have shown that

for sensible switching boundaries, stability is never a problem. One could envisage potential stability

problemsifthe switchingboundaries were too close and thus lirnit cycling could occur. However for

switching boundaries sufficiently far apart, and maybe with appropriate hysteresis introduced, We

belïeve stabilîtyis not likely to bea problem.

5.8.3 A multi-switching technique for controHer implementation

5.8.3.1 Supervisory control

In a control system which consists of several switched controllers it is necessary to have sorne suitable

switching protocol to determine the current on-lîne controller and the points at which control is

switched to the other controllers. The mechanism which implements this protocol isoften referred to

as a "supervisor", the behavior of which has stability and performance implications. Jhere are,

broadly, three elasses of protocols, which govern control switching

- Time-based - the supervisor willswitch to a certaÎllcontroller at a specified time.

There are generally no stability problems "With this method.

- State-based- the supervisor will switchto a certain controller when the plant's state crosses a given

boundary in the state-space. There are many potential stability problems with this method.

- Event driven - the supervisor switches control when an external event takes

place. This type of switching protocol is difficult to analyze, particularly ifthe

externalevent i8 an indirect function of the plant'sstate.

Here we considerthe second type of protocol, which is the most suitable in the aircraft application.For

this type of switching protocol the current on-lïne controller is determined by the plant state's location

in its state-space. The instances at which the controllaws are switched can be described by boundaries
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Switching points

Figure 5.37 : Switchingpoints on an interval

in the state-space. In general these boundaries will be manifolds.. For example in Figure 5.36, the

boundary at which the controller switches from controller KI is described by the l-dimensional

manifold Xl
2 + x; =r 2

, which happens to be a cirde of radius r. When there are several controllers and

there are several states on which switching depends, these switching boundaries can appear complex

and the study of the switched system's stability is more difficult.

rh
1-----1

KI 1 K 21 K3 1 K4

~t~

x
Figure 5.36: An examplelofswitching
boundaries which are manifolds

In this case we consider a particularly simple form of switching protocol of the state-based class: when

the.switch only depends on the value of one of the· states. We think ofthis as partitioning the state

space, X p into the Cartesian productXp =:5 x Xp

where :5 cIR1is the subspace associated with the parameter on which switching is dependent and

Xp c IRn
-

1 is theremainder ofthestate-space. Note that switching is independent of the state xp 's

position in Xpand is only dependent on the state's position within :5 . As :5 is the open Hne the

boundaries at which switching occurs. thus become points and, more importantly, inducea certain

order in which the controllers can switch.

For example, FigureS.37, forthree controllers, Kl'K2 ,K3 , there will necessarily be two switching

points. At the first switching point let the switch take place between controllers and K 2 ; at the second

switching point let the switch be between controller K 2 and K3 • Then, providing the resulting

switched closed-Ioop system hasa continuous solution, it is evident that aswitch is unable to take

place directly between the controllers KI and K 3 - the only way of gettingfrom KI to K 3 is byfirst

switching to K2 •
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Extending this idea to N controllers we have the conclusion that Ki can only be switched to Ki-] or

K i +J (1 < i < N) . Of course, if the controller is KI it can only be switched to K z and if the controller is

Kil[ it can only be switched to KN _I as these controllers are operative at the beginning and end of the

line .3 .

5.8.3.2 A multi-switch methodology for the VSTOL aireraft

The flight envelope considered in our VSTOL application is .simplified as a function of speed alone.

To be more specifie, we consider the interval between hover{O kn) and approximately 140kn. This is

the region over "",hich there is a significant change ofthe aircraft's dynamic behavior, and the

linearization obtained at, for example, 2Ûkn differs substantially of the linearizationat 120kn.ln other

words, the subspace we take as.3 is the line, which represents airspeed. In actual fact, we have

limited our envelope to be a closed interval within .3 for obvious practical reasons. From the previous

subsection, we know that allowing the CUITent on-line controller to depend on the position of one state

within an interval allows a sensible, well-defined switching strategy to be used.

To coyer the full flight envdope considered for our application, we chose four control design­

operatingpoints. Even though wecould obtain satisfactory and .stable performance with onlytwo

extreme controllers, by increasing the number of controllers, we were be able to preserve better the

performance objectives over the full flight envelope. The operating design points considered are

20,50,80, and 120kn. Each loopshaping controller designed presents a good performance locally

around its design operating point. This region can be seeh as a baIl with the operating point velocity

beingone ofthe coordinatesofits center. We noticed that the radius ofthis baIl could beconsiderably

enlarged without losing significant performance criteria. Denoting the controllers, Kzo ' Kso , Kso and

K120 , in terms of Assumption 2 we are assuming that:

Kzo stabilizes P for all x p E X 20 •

Kso stabilizes P for aIl xp E X so .

Kso stabilizes P for aIl x p E X gO •

KJ20 stabilizes P for a11 xp E X 120 •

and that the intersections of these regionsare aIl non-empty.
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__----........... j:i:Chl11lg techniquepresented above we thought about a multi-switching methodology

~~========~rveperformance objectives, while aIso ensuring that only three controllers are running

______ reducing computational burden).

of controllers covering the flight envelope considered.

!iZl;';;;:;;;:..==========::J>11er, 1< i ~ N .

• ~= -=:::1I11~jth switching point corresponding to a switch between the ith and i+lth controller.

---~~low presents this new methodology:

controllers covering the flight envelope.

---..---_;;vvitching boundaries (normally a speed).

the ith controller.

===~;;;::===:o:...i11.g the matrix F, the i-lth and the i+lth controllers. Ifthere is no i+ lth controller (the

flight envelope is reached), or there is no i..1th controller (the lower end of the flight

''-''L-''-''~h only condition the remaining (adjacent) off-line controller.

1th) switching boundary is reached switch to the i+1th (i-1th) controller.

czîEIi1JIIIIIIIIIIIII1I1111111111111I1111111111111&JLt controller become the i'th controller and go to step 4.

.algorithm requires a maximum of three controllers to be run in parallel and only two at

====::::::'l'l'l~#i!lll:.g~~-vJer end of the flight envelope. This point is useful to note for împlementation

::=::::::::=;;;;;;;;;=;;:;::;...:ularly when thereare a large number of controllers used throughout the envelope.

11111:1EE====~ewer controllers, which are, conditioned off-line, the less demanding the

equirements are. Heuristically, there would be sorne hysteresis used in the switching

____==~~~atpossible limit cycles / oscîllations arising from change in pilot demand. The level of

=====~===~quiredis likely to depend on the pilot-vehicle system. In our work thus far we have not

__~~~~~~·sisas so far no piloted simulations have been conducted, although this is anticipated

[Hyd91], hysteresis is usedin theswitching algorithmproposed for piloted simulation.
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in the state-space. In general these boundaries will be manifolds. For example in Figure 5.36, the

boundary at which the controller switches from controller KI is described by the I-dimensional

manifold X l
2 +xi =r 2

, which happens to be a circle of radius r . When thereare several controllers and

there are several states on which switching depends, these swit~hing boundaries can appear complex

and the study of the switched system's stability is more difficult.

KI 1 K 2 1 K 3 1 K 4

~t~
Switching points

Figure 5.37 : Switching points onan interval
x

Figure 5.36 :·An example
1
0fswitching

boundaries which are manifolds

In this case we consider a particularly simple form of switching protocol of the state-based class: when

the switch only depends on the value of one of the states. We think of this as partitioning the state

space, X p intQ the Cartesian product X p =:s x Xp

where :5.•• c ]RI is the subspaceassociated.withthe parameter on which switching i8 dependent and

Xp C ]Rn-lis theremainder of the state-space. Note that switching is independent of the state x p 's

position in Xpand is only dependent on the state's position within :s .As :s is the open Hne the

boundariesat which switching occurs thusbecome points and, more importantly, inducea certain

order in which the controllers can switch.

For example, Figure 5.37, for three controllers, KI' K 2 , K 3 , there will necessarily be two switching

points. At the first switching point let the switch take place between controllers and K 2 ; at the second

switching point let the switch be between controller K 2 and K 3 . Then, p[oviding the resulting

switched closed-loop system has a continuous solution, it is evident thata switch isunable to take

place directly between the controllers KI and K 3 - the only way of getting from K
J

to K3 is by first

switching to K 2 •
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Extending this idea to N controllers we have the conclusion that Ki can onlybe switched to Ki-! or

K i+1 (1 < i < N). Of course, if the controller i5 K J it can only be switched to K 2 and if the controller is

KN it ean only be switched to K N _1 as these controllers are operative at the beginning and end ofthe

line :5.

5.8.3.2 A multi-switchmethodology for the VSTQL aircraft

The flight envelope considered in our VSTOL application is simplified as a function of speed alone.

To bemore specifie, we consider theinterval between hover (0 kn) and approximately 140kn. This is

the region over whiehthere is a·significant change of the aircrafesdynamie behavior, and the

linearization obtained at, forexample, 20 lm differs substantially of the linearizationat 120kn.ln other

words, the subspace we take as:5 is the line, which represents airspeed. In actual fact, we have

limited our envelope to be a closed interval within :5 for obvious practical reasons. From the previous

subsection, we know that allowing the current on-Hne controller to depend on the position of one state

within an Ïllterval allows a sensible, well-defined switching strategy to be used.

To. cover the full flight envelope considered for OUf application, We chose four control design­

operating points. Even though We could obtain satisfl;lctoryand stable performance with only two

extreme controllers, by increasingthenumber of controllers, we were be able.to preservebetter the

performance objectives over the full flight envelope. The operating design points considered are

20,50,80, and 120kn. Each loopshaping controllerdesigned presents a good performance locally

arounq its design operating point. This region can.be seen as a baIl with the operatingpoint velocity

being one .of thecoordinatesof its center. We noticed that the radius of this baIl could be considerably

enlarged without 10sing significant performance criteria. Denoting the controllers, K 20 ,Kso ,K 80 and

Kl2O , interms.of Assumption 2we are assuming that:

K 20 stabilizes P for aIl xp E;;. X 20 •

Kso stabilizesP for aIl xp E;; Xso .

K80 stabilizes P for aIl xp E X80 .

Kl20 stabilizes P for aIl xp E %120'

and that the intersections of these regions are aIl non-empty.
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Based on the switching technique presented above we thought about a multi-switching methodology

that would preserve performance objectives, while aiso ensuring that only three controllers are running

simultaneously (reducing computational burden).

Let us define:

N: The number of controllers covering the. flight envelope considered.

Ki the ith controller, 1< i:s; N.

j, 1< j ::; N -1 the jth switching point corresponding to a switch between the ith and i+!th controller.

The algorithm below presents this new methodology:

Aigorithml :

1- Design the N controllers covering the flight envelope.

2- Choose the switching boundaries (normally a speed).

3- Start simulationlflight with the ith controller.

4- Condition, using the matrix F, the i-1 th and the i+1th controllers. If there is no i+1th controller (the

upper end ofthe flight envelope is reached), or there is no i-lth controller (the lower end of the flight

envelope is reached), only condition the remaining (adjacent) off-tine controller.

5-When the jth (j-lth) switching boundary is reached switch to the i+!th (i-lth) controller.

6- Let the current controller become the i'th controller and go to step 4.

We can see this algorithm requires a maximum of three controllers to be run in parallel and only two at

the upper and lower end of the flight envelope. This point i8 useful tonote forimplementation

purposes, particularly when there are a large number of controllers used throughout the envelope.

Obviously, the fewercontrollers, which are, conditioned off-line, the le§s demanding the

computational requirements are. Heuristically, there would be sorne hysteresis usedin the switching

points to prevent possible limit cycles / oscillations arising from change in pilot demand. The level of

the hysteresis required is likely to depend on the pilot-vehicle system. In our work thus far we have not

used any hysteresis as so far nopiloted simulations have been conducted, although this is anticipated

in the future. In [Hyd91], hysteresis is used in the switching algorithm proposed for piloted simulation.
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5.8.4 Nonlinear simulation results

5.8.4.1 Without thebumpless transfer scheme

Figures 5.38-5.41 show the system's re~ponse to a ramp demand in airspeed V;, without the bumpless

transfer scheme. Note that although reasonably accurate tracking of the V; demand is achieved, the

response i8 punctuated with small transients. The switch from K20 to K so occurs at 12 seconds and the

switch from K 50 to Kso occurs at 27 seconds. Although there are certain variables, which show a

"bumpy" response, the majority of the variables behave reasonably. well.

However when at :::eJ 50 seconds the switch to the 120knots controner is made. At this point the aircrait

exhibits unacceptable transient behavior. Note that the angle of attack, a, "jumps" suddenly from 8 to

aImost 5 degrees, before it is regulated back to 8 degrees. This is unacceptable both from a safety point

ofview (a must stay above 6 degrees at this point in the envelope) and also from a ride quality point

ofview. Similarly, r shows an unacceptable excursion to aImost -2', meaning coupling of almost

2.5' which again is unacceptable from a safety perspective.

The engine variables also suffer, as the magnitude of the transient caused by the bump rises Tl0 to a

point, which again violates safety litnits. Sitnilar large bumps occur in LPSM and NLPC. Also of

concern is the saturation which occurs in the SPLIT variable and the large jumps in the front nozzle

and ETAD. Theengine actuators shown in

Figure 5.41 also show signsofsaturation and large jumps without the bumpless transfer scheme.

158



10050

THD

50 100
time{secs)

90,----,------,
,

BD ---~-----"--- -----

,
;.. ,. a 10.. __ .;. __...;.

65 '----~-----'
o

THM
90 ,------:-__---,

85

60

'"al

~ 70
al
-c

10050

VT

gamma

'"c
~ BD

, ... Q)

: z 75
.......... • ·w·,.· 1::1

i ~ 70

50L--~---'

50 100 0
time(secs)

oo

50 --

100

10050

gammadot

50
time(secs)

5
o

6 -.------ "----.--.

alpha

.
-1 -------- ~--------

-1.5
o

B~""""''<n!',,-,J\. _

~ p"r "100

~ 7 -.------~ -.--.--- ~
al .".

-0

Figure 5.38: Airframe responseswithout
bumpless transfer scheme

NLPC Tl0
105 r-------r---,------, 1500 r-__---r -,------,

HPSM

, .. .
-,- -,. - - r-" - -.-

1450 ----·----i---------:----- - -, ,
-s~----:----r·§ 14DO-----·-·-r-·-----·r····-··-

1350 . ----+---- ---:-."------
l ' ,, ,

1300 ' ,
o 20 40 60

LPSMM

604020
85 !------'--~~---'

o

, ,
100 ---------:---------:------"--, ., ,, ., .

'iP. 95 --.-----.:.-"-.-.-.:.-.- -.--, ., ., ,
90 ' ---- 1__ ... ---.-

6020 40
time(secs)

_w·_.·.;.·. t--- -----.:.t--,.. .- .. ,...,...-
, ,, ,, .

20 ---------~---------~--- .----
, ., ,, ,

10 !----~'--~' __--'

o

40

50 ,-----.------.----,

'iP. 30

6020 40
time(secs)

10o

30 --.- ••• -.: •• -.- •••• :-.-------, ,, ,, ,, ,, ,
20 ;. : .1 . _

40 ,--~--.------.------,

Figure 5.39: Engine variables without bumpless
transfer scheme

159



5 0===.,...,.,,------,
ETAD FRONT NOIZLE

100

90

80

70

60
0 50 100

time(secs)
10050

SPLIT

ETASTK

-1 -- ---- -- • -- --- ---

-2
o10050

REAR NOIILE

-15 '--__'--_ _,_1

o

o --- ----- ~--- -----
m 00

~ IDm ~5 -~--~-~- ~-------- ~

m • ~
-C .: r "'C

-10 -------- :~--------

90,.----,..------,

60

'"<Il

~ 70
Dl
!Il..,

III

:> 0.8

,
0.9 -----,--- ~-------...;

-------- r--------
,

-------- r--------,,,
--~----_.---

E
1i' 0.7
E

0.6

,
,

BD ---------~---.----
,

---- :----------

100
50 '---~---,-I 0.5 '----~---'

O' 50 100 0 50
time(secs) tirne(secs)

Figure 5.40 : Actuator responses without
bumpless transfer scheme

MAIN FUEL FLOW NOZZLE AREA
1.3 r----..,-----,-----, 0.84 ,..-----,-,.------,-..........---,

EO20 40
timll(secs)

, ,, ,, ,
--------_._-~-----_._-- -----, ,, ,, ,, ,
---------~---------T--------, ,

-----' -,-y----':'"

0.74 L..-_~,___~~ _ ___,

o

ID 0.82
m
ai 0.8
0;

[O.7B
ID

.~ 0.76

6020 40

IGVANGLE

0.8 L..-__~__'___ ___'

o

,, ,, ,
1,2 ---------~---------~---------, ,, ,, ,

---------~---------~---- ----, ,, ,, ,, ,---------T---------r--- -.---, ,, ,, ,
0.9 ---------1---------1--- -----

~ 1.1
en

6020 40
time(secs)

- - - - - 1"=-""'--=--_..r::":-t-=-=-=>-

,, ,___ ~ • w. _

, ,, ,, ,, ,
-6 '----~'--~'----'

o

-5

,,
, ,

-3 ----- ----1- -- ----- -1- --- -----, ,, ,, ,, ,'"ID
~ -4
m
ID
-0

Figure 5.41 : Actuator responses without
bumpless transfer sheme.

160



5.8.4.2 Withthe bdmpless transfer scheme

Figures 5.42-5.45 sbow the system's response to a ramp demand in airspeed Tl;, with the bumpless

transfer scheme used to. condition the off-lïne controller. The first thing to notice is that tlle tracking of

the V; demand is much smoother than before and there appears to be no detectable bumps at the times

oftransfer(whichwere the same as before). Notice alsohowthe coupling intoaand r is considerably

less than for the case without the bumpless transfer scheme. The bumpless transfer scheme has similar

effects on the engiue variables (Figure5.43), where the responses are free from bumps and saturation.

The actuator respouses tell a similar story. Although the actuator activity changes significantly

when K
I20

is on-Hne, the transition from one type of behavior to another is smooth and SPLIT and

nozzle area do not saturate as before.
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5.9 Parlitioning-scheduling of IFPC design

5.9.1 Introduction

The objective of the IFPC research is toconsider methodologies to improve the overall system

performance. These methodologies have to take into account dynamical coupling between the airframe

and propulsion. systems of STOVL aircraft. Essentially, an integrated approach· has to ensure that

optimal use of the various propulsion system into effectors for aircraft maneuvering control and

limitation due to engine safety considerations are taken account in.the overall design. Oneapproach

proposed in [Oar93a] toaddress integratedflight and propulsion control (IFPe) is to design a single

centralized controller for the full-integrated airframe and engine system. This centralized controller is

optimal in a. sense that it hasto take into accountthe overallperformance requirements and the

coupling existing between the two subsystems. Multiple criticisms can be addressed to this complex

centralized controller. The .highorder of the centralized controller is itsmajor disadvantage. The

centralized controUeralso suffers from a lack of transparency with regards to subsystems

functionality. Jndependent integrity of both airframe and engine control systems is not maintained.

Thus an independent testing and redesign in reality is not possible. The second approach, using mixed
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sensitivity H", techniques, was first proposed in [Garg93a]. This method was used to an IFPC system

for the VAAC Harrier aircraft in [Sar2000]. It partitions the IFPC system into separate airframe and

engine sub-controllers, which are. connected via a particular structure, subsequent to the design of a

fully centralized controller. The particular structure used for the centralized controller is a static two­

degree of freedom of a H 00 loopshaping controller. In this section, we extend the research done in

[Sar2000] by considermgthe control of a large flight envelope of the Harrier aircraft. We introduce a

novel way of gain scheduling using the structure of the partitioned scheme. The blending/interpolating

technique proposed in [Aouf2000c] was extended for the partitioned controllers designed for chosen

operating points over the flight envelope.

5.9.2 Centralized controllerand partitioning procedure

The particular Implementation structure for the centralized H", loopshaping controller as two separated

blocks, one as feedforward and another as feedback, has been found in practice, [Mcf90] to give better

time domain performance, and in particular smaller overshoot in response to reference demands. This

is because with this structure the references do not directly excite the dynamics of K",. This can often

result in large overshoot (classical derivative kick), smce K", has been designed in the frequency

domain for robustness objectives rather than time-domain performance. The clarity of the observer

form structure· Implementation, adding to the time-domain performance of the H", loopshaping gives

us a Jargepotential.of a transparent and efficient implementation controller structure. The procedure of

partitioning used here can be viewed as a partitioning approach for a static H 00 loopshaping two­

degree-of-freedomcontroIler, as opposed to the original procedure proposed in [Garg93a], [Garg93b],

which was applied to a standard mixed-sensitivity H oo controller [Doy89]. The particular structure

required for the partitioned IFPC system depends on the nature of the interactions between the

airframe and engine subsystems, as weIl as on the various requirements arising from industrial and

commercial constraints. In practice, a hierarchical structure has been found to be most appropriate,

with theairframe sub-controller generatmg commands both for the airframe çontrol surfaces, and for

those propulsion system variables, which directlyaffect the airframe. The general framework for

controller partitioning is given in Figure 5.46. Thecentralized IFPC system is partitioned into three

separate sub-controllers. The first is related to the airframe part of the aircraft, the second is .related to

the engines and the third· manages the coupling existing between the airframe and the propulsion
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systems. A five step procedure, developed in (Sar2000], is described below that leads to blocks of

partitioned IFPC systems starting from the centralized H co loopshaping IFPC controller designed.

-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-i 1

i Airframe subcontroller K~, 1

1

Zac

Z eac

Interface

subcontroller K""

~._._.-._._._._._._._._._._.-._._._._._._._.-._._._.,

Z ec

Engine subcontroller Ke,

Figure5.46: Partitioning IFPC controller scheme

Step1: Assign the plant' s inputs and outputs to be either engine, airframe or interface variables. For the

control inputs, this decision is based on control effectiveness rather than the physicallocation of the

actuator. For example, although the front and rear nozzlepairs are physically a part of the propulsion

system, the angle of these nozzle pairs directly affects airframe quantities such as a and VT , and so it

is natural ta cOnsider them as airframe actuators. Variables through which engine control inputs affect

indirectly on the airframe variables are not denoted as interface variables. For example a change in

main fuel flow may be seen to produce a change in velocity.However, this velocity change 1s more

directly due to the resulting change in thrust magnitude, which we thus denote as an interface variable,
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leaving main fuel flow to be considered as part ofthe engine subsystem. The plant's input, output and

interface variables are grouped as presented below:

Ua = [ETAD,ETASTK,FNOZ, RNOZ, SPLIT] Ue = [MFF,ENOZA,IGV]

Za =[a,VT,y]

Zea =[THM, NLPC, Tl 0]

Ze = [HPSM,LPSM]

where: Ua,Ueare the airframe and engine inputs respective1y,Za,Zea,Zeare theairframe, interface

variables andengine outputs, respectively.

We assume that only interactions from engine to airframe are required to be considered. Interactions

from· airframe to the engine are unwanted disturbances to which the designed IFPC system has to be

robust.

Step 2. An internaI engine sub-controller Kee is extracted from the centralized IFPC system. This is

done by writing thecentralized controller K(s) =~ (s)kKoo (s)W2, and partitioning it as:

[
Kaa(S) Kae(S)]

K(s) == . .
Kea(s) Kee(s)

The internaI engine subcontroller Kee is thus written as a reduced order approximation of the

Kee block of the centralizedsystem.

Step J: The control.requirements for the interface subcontroller are identified by analyzing the closed­

loop frequencyrespollses from the airframe commands Zac to Zea with the centralized controller.

Step 4: An Hooloopshaping approach was adopted todesign the interface sub-controller Kea' which

has to meet these control requirements. The full engine sub-controller XE is made up of the internaI

engine sub~controller Kee and the interface sub-controller Kea connected in paraUel.

Step 5: With the engine subsystem closed usingthecentralized controller, as shown in Figure 5.46, we

obtain a state-space representation of the airframe sub-controller block, Ka as a reduced order

approximation of the Eto [Ua Zea] transfer function matrix. The airframe sub-controller KA is then

made up of the Ka block along with the blocks K",aW2a and Kooa (O)W2a , which are simply extracted

from the original centralized system.
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As can be expected, the overall order of the partitioned IFPC system, shown in Figure 5.46, is greater

than the centralized design. However, each individual sub-controller is of low order, leading to easier

implementation and greatertransparency.

5.9.3 Scheduling the partitioned controllers

Centralized H 00 loopshaping controllers designed for the particular operating points of 50,80 and

120kn were successfully partitioned following the partitionil,1g procedure described above. In this

section, we consider the portion orthe STOVL flight envelope from 50 to 120 knots. We present, here,

a strategy of gain scheduling that fits with the partitioningIFPC system architecture. The strategy is

based on an extension of the· blending/interpolating technique, presented in [Aouf2000c], to the

controller structure adopted here. Defining uu(v) i == l, ...,p ,j == 1, ...,n as the ith output of the

controller system for the jth design point, the blending/interpolating technique proposes an

interpolation signal to be used for the actuators as:

ui (v) == (1':- Â(v))ui,j_J (v) + Â(v)ui,j (v), v E [vj _p v), i == 1..., P

where: 0 ~ À(v) ~ 1is a function of the aircrafivelocity v. vj_J and vj are the velocities corresponding

to thej-lth andjth designoperating point, respectively.

A major advantage of the partitioned IFPC system is that not aIl of the individllal sub-controllers need

necessarily be scheduled -in this study; forexample, we were able to maintain the sub-controllers for

the interface variables and the engine at the 50kn operating point sub-controllers design, and focus our

scheduling scheme on the airframe sub-controller. This choice is logical since the· most sigl,1ificant

changes in the dynamics of the aircraft in this region of the flight envelope relate to the airframe ­

specifically the control effectiveness of the aerodynamic control surfaces. Thus, the proposed

scheduling scheme consists of blending, only, the output control signaIs of the Ka blocks of the

partitioned controllers at 50, 80, and 12Qkn flight operating points. The blending/interpolating

technique in [Aouf2000c] was proposed to interpolate the outputs of adjacent controller designs. For

our airframe controller, as shown in Figure5.47, we interpolate the output of Ka at 50kn and 80kn for

the flight envelope between 50 and 80kn. We do the same with the airframe controller outputs of Ka

at 80 and 120 knwhen the aircraft operates between 80 and 120 kn.

Our proposed technique has the advantage of schedulingonly the airframe controller rather than

schedulingall sub-controllers of the IFPC partitioned controller. This leads to less complexity in the
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controller scheme and less time consuming Implementation. Notice that by this scheduling method, we

deal with an airframe controller of an order smaller than the order of the centralized IFPC controller­

scheduling.scheme implemented in [Bate99].
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Figure5.47: Blending/interpolating partitioned controller

5.9.4 Nonlinear simulation

The IFPC system designedat the 50 kn operating point could be applied over the full flight envelope

considered from 50kn to 120kn velocity- Figures 5.48, 5.49, 5.50, 5.51 present the results of the

nonlinear simulationusing the partitioned 50 kn controller. However, the performance obtained in

terms of decoupling of velocity demands from the flight path angle does not meet the specifications,

and in addition, the front nozzle angle is abnormally increasing as the aircraft. accelerates from 100

knots to 120 kn. The results of our scheduling technique are given in Figures 5.52, 5.53, 5.54, 5.55.

The responses show an improvement in thedecoupling offlight path angle, which achieves the limit of

±0.3 degrees required for the portion of the flightenvelope considered. Furthermore, aIl actuator

movements now conform to the responses expected.
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Chapter 6

Advanced scheduling techniques for a fiexibleaircraft

6.1 Introduction

The multivariable. schedulingproblem is more difficult to deal with than the single-variable case, for

which the zeros andpoles of the controllers can easily be interpolated. Switching techniques, based on

bumpless swi~ching, interpolation techniques [Han8?], [AouTurn2000], [Hyd91], and on linear

interpolation of the parameters of the observer-form controller [Aouf2000d], have been presented.

Methods basedon the recent results on linear parameter varying (LPV) designs [Pack96], [Wu95a] are

computationally demanding and the solution to get an LPV controller is not guaranteed. Sorne

criticism regarding the lack of stability guarantees have been directed at methods based on the

interpolating techniques. On the other hand, a judicious choice ofthe frozen operating design points

with respect toanacceptable range of parameter variation should preserve the stability of the closed­

loop system. However, the ease of real-time implementation of those techniques is their major

advantage. In this chapter, wepresent a brief review of the LPV and gain scheduled Linear Fractional

transformation (LFT) designs. In addition, we adapt a form of interpolation technique to a BI flexible

aircrafi model and wegive sorne new results on a redesign technique and robust performance· gain­

sCllcquled interpolated controllers.

6.2 LPV gain-scheduled control theOl'Y

Extensive research on LPV gain-scheduled control has been done in the last decades and presented in

manypapersas in [Wu95a], [Wu95b], [Apk95]. Noting that details and proofs are available in the

papers listed above, we present, in the following, the principal ideas of an LPV control1er design. A

state..;space representation of a linear parametricaUy varying system is given as:
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[
*(1)]. =[A (p(t), p(I)} B(p(I), />(1)l][X(t)]
e(t) C (p(t), pet)) D (p(t), p(t)) d(t)

(6.1)

where the vectorofparametersp(t) is piecewise continuous and lies in a known compact set P

[Kar84]. The LPV gain-scheduled controller will depend explicitly on the parameters At) and

guarantee that stability and performance requirements are met for aIl allowable trajectories ofAt) in

sorne known, bounded set. The performance is measured using the L2 -induced norm as:

The output feedback case for rate-bounded LPV systems requires the closed-loop system to satisfy the

following exponential stability Lemma [Wu95b].

Lemma6.1

Given the state-space parameter-dependent system in (6.1), and nonnegative numbers Vi, ifthere

exists a continuously differentiable function W: P~ iR+, such that for aIl pEP, W(p) > 0,

, oW
X (p,fl)W(p)+W(p)A(p,fl)+Lfl;-.

i=1 aPi

W(p)BT (p,fl)

c(p,fl)

where fl =[fll" .p.. ] .

W(p)B(p,fl)

....1nu

D(p,fl)

CT (P,fl)!

b' (p,fI) < 0

-J 1
n, J

(6.2)

andlpil:s Vi ' i=1,2, ... ,s, where s representsthe number ofvarying parameters, then there exists a

scalar Cl < 1 such that for any pEP, the LPV system of Equation (6.1) is exponentially stable, and if

d E L2 and x(O) = 0, then IIel12 :S alldl12.

The generalized open-Ioop interconnection usedfor robustcontrol design takes on the standard

structure, with sorne regularity assumptions and resulting in matrices depending on only the vector of

parameters pCt).
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[i(t)lrA(Atl)
BIJ (pet)) Bl2 (p(t)) B2 (pet»)

[ x(t)1~ (t)=C" (p(t)) 0 ° ° d,Ct)
e

2
{t) Ci2 (p(t)) ° 0 l d2 (t) (6.3)

n"

y(t) lC2 (p(t») ° In 0 u(t)
y

where pEP, Ipl:s; v , the variables to control and the exogenous inputs are [el ezr and

[dl dzrrespectively.

A state-space representation of the LPV controUer, depending on the parameter p, is given as:

[
Xk(t)] =[.AK(p(t), p{t)l BK (pet), pet)lJ..[Xk(t)]
u(t) CK (p(t), pet)) DK (p(t), p(t)) y(t)

and the closed-Ioop system can be written as:

[i;(~)] =[~: ~;~:;: ~:;j ~;i;~:~:~~:;j][;~:~]
where: XciI' = [ ~ ] and

A ( 0):= [.A(P)+B2 (P)DK (P'P)C2 (P) B2 (P)CK (P,P»).
cil' p,p B ( ·)C() A ( .)

K p,p 2 P K P,P

B ( .) :=[BlI (p) Bl2 (p) +B2 (p)DK (p, P))
cil' p,Po B ( . )

K p,p

CciI' (p,p):=[C ) CDlI«P) O)C( ) C (0 0»)
. 12 (p + K p, P 2 P K p, p

[
0 0 l

Dell' (p,p):= 0 DK(P,P)J

(6.4)

(6.5)

By applying Lemma 6.1 for the closed-Ioop system representation introduced above, we deduce the

solution, in the foUowing theorem, of the LPV control synthesis.

Theorem 6.1 [Wu95a]

The LPV Synthesis "y-Performance objective/v-Variation on the varying parameter p" is solvable if

and only if there exist continuously differentiable real matrix functions X and Y such that for. aU pEP,

X(p)>0, Y(p) > 0, and
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-Y(p)ÂT (p)+Â(p)Y(p)+ ~±(V;:; )-YB2(P)Bi(p)

Cll (p)Y(p)

BI (p)

-yI
. nel

o
(6.6)

and

r;.v(p)X(p)+X(p)A(p)+ ~±(Vi :~)-YCi(P)C2(P)
B{i(p)x(p)

C1(p)

X(p)Bll (p) Cr (p)

-y1
11d1

0 <0

0 -yIn,

(6.7)

(6.8)

(6.9)

[
X(P) In ]>0

In Y(p)-

Â(p):=A(p)-B2(p)CjzCp), B1(p) =(B11(p) B12 (P)]
where: -( ) l' [1' T J and ±Vi means that we take into account

A(p):=A p -BI2 (P)C2(p), CJ (p)= C11(P) C12 (P)

both rate limits inthe inequalities.

If the conditions of Theorem 6.1 are satisfied, then by continuity and compactness, perturb X such that

the LMIs of Theorem 6.1 stillhold and (x _y-I» 0 uniformly on P. Then an n-dimensional strictly

proper controller that solves the feedback problem is defined as [Wu95a], [Pack96]:

AK(p,p):= A + y-l [Q-l(p)X(p)L(p)B~(p)+Bl(p)B1
T (p)Jy-l(p)

+ B2(p)F(p) + Q~I (p)X(p)L(p)C2(p)- Q-I (p)H(p, p)
BK (p):= _Q-l (p)X(p)L(p)

CK(p):= F(p)

where:

Q(p):= X(p)- y-l(p), F(p):= -[yBi (p)y-l(p) +C12 (p)], L(p):= -[yX~j(p)C[(p) +BI2 (P)]

H (p, p) := - [Ai(p)r' (p)+y-' (p)A, (p) +~(p, aa:' )+ r" c;(p)Ç,(p)+r -,y-' (p)B,(p)B,' (p)Y '(p)J

[
Cil (p) ]and AF (p):=A(p)+B2 (p)F(p), CF(p):= •. T

CI2 (p)+F (p)
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6.3 Gain-scheduled LFT controlthem'Y

The LFT representation is very useful for control design theory, which incites us to present a gain

scheduling technique based on LFT. The LFT is also convenientto model plant uncertainty, which is

included in our new gain scheduling controller design technique.

Gain-scheduled LFT control assumes that a plant can often be representedas a linear fractional

transformation of a nominal plant with physical parameters that vary within a known range. The

controller to be scheduled uses.these parameters, measured in real time.

Figure 6.1 presents a parameter-dependent plant modeled as an LFT of a time-varying block diagonal

matrix Ô(t) , which is assumed measured in real timeand takes values in a known set.

p
e

u .... K ~...
....... ------

~(t)

Figure6.1: Parameter-dependent plant Figure 6.2: Parameter-dependent
controller

By interconnecting the parameter dependent plant and controller, the closed-Ioop system will appear as

an uncertain system subject to a time-varying uncertainty ô(t) .

The parameter~dependentsystem is written in LFT form as:

f
PM PAl

with P deJined as: P = P,~ P"
Pzt, Pzl

[;] = F. (P, Ô(t))[~]

~:1·,Ilô(t)IL := sup Ilô(t)11 < 1 and PLFT := [~1
p tE[a,OO[ P21

22

(6.1 0)

The objective is to obtain an LFT controller u =F; (KIR' ô(t)) y, KLFT =[~11 ~15]51 05

such that the closed-Ioop system T:= F;( Fu (PLFP Ô(t)),F;(KLFP ô(t))) is intemally stable for an

parameter trajectories withllAl1 < 1, _max max III]',''d'1'12 < 1.
00 cr(d(t))<1 dE&, d 2
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where T is the transfer matrix linking the disturbances d to the errors e.

The closed-Ioop interconnection structure can be rearranged into the diagram shown in Figure 6.3

e

r~t) ~t)l
ZA.

fvc" ....

Z C,1

W
L, ~ 1---

d~ PR
...... ..

• y
u

Zc,

....
K LFT

....

'--- ....
Wc,

Figure 6.3: Gain scheduled LFT control
setup

KLFT is the central part of the gain-scheduled controIler. The structure presented in Figure 6.3 is weIl

adapted to use the small-gain theorem introduced in Chapter 2. However, the conservatism due to the

time-varying nature of the uncertainties spurred theresearch in [Pack93] to propose a type-scaling

matrix to reduce this conservatism.

With thescalirig matrices JE J (J as defined in [Pack93]), the LFT control synthesis problem is

formulated as:

Search for J E Y and a stabilizing controIler KLFT such that:

(6.11)

This optimization problem is expressed as the feasibility of a finite-dimensional affine matrix

inequality [Boy94] (AMI), which rendersthe problem nurnerically tractable because of the convexity

ofthese AMIs.
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6.4 Riccati solutions interpolation technique

6.4.1 Introduction

A technique, based on the interpolation of the solutions of the Riccati equations of frozen H 00 designs,

is used for gain scheduling ofthe full flight envelope .of a flexible aircraft. The aircraft model consists

of a linear parameter-varying model of a flexible BI bomber that varies with the Mach number from

0.2 to O.8Mach. The performance objectives are to track the pitch demand and to alleviate the loads

due to wind gusts acting on the aircraft. The flexibility ofthe aircraft is taken into account through four

flexible modes. The method presented is shown to provide good results overthe full flight envelope,

whi1e allowing for a simple implementation structure.

Modeling the structural flexibility existing in largeaircraft is sensible, andmakes the control system

design cliallengïng for gust load alleviationobjectïves. In fact, it can be argued that the detrimental

effect of. turbulence (gusts) acting on the aircraft is increased through the bending modes of the

aircraft.

At frozen linear modds covering the flight envelope, controllers based on the mixed-sensitivity Hoo

technique were designed. The same weighting functions for performance were used for the different

controller •designs. This allowed us to automate tlie design and to unify the performance objectives

along the Mach number variation. The scheduling technique used to coyer the full flightenvelope

while preserving performance is based on a linear interpolation of the solutions of the two Riccati

equations used in the .H oo controller design. A version of this method was first întroduced and

successfully implemented for a small missile model in [Rei92]. Our approach is different from the

versionpresented in that paper in the sense that the controlter at the intermediate design points is a

function. of only the interpolated Riccati solutions variables. In [Rei92], the controller depends on the

interpolated solution of the Riccati equation andother parameters viewed as exogenous inputs upon

whichthe nonlinear dynamics are dependent. Another advantage to be noticed, in this approach, is the

use of a linear .parameter-varying modeL In fact, in [Rei92], a nonlinear model is linearizedat each

point of the. flightenvelope to be used in the construction of the controller. This will certainly

complicate theirn.plementation of thecontroller over the flight envelope. We believe that the mixture

of the LPV IIlodels and the interpolating techniques.solving the control·design problem offerseasier

implementation and good results. We propose this approach since the classical LPV control design is
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(6.12)

time-consuming and suffers, as presented earlier, from the difficulty of solving an LMI problem for

high-order systems.

6.4.2 Problem setup

6.4.2.1 Aircraft model

A B-l bomber is the aircraftunder study, and a mode! ofit [Was88], [Van99] taking into account the

structural flexibility isused. The aircraft's dynamics are assumed typical for a high-speed transport

aircraft, but it includes a ride quality control system (RQCS) that was installed to diminish the

unacceptable vibration due to the. turbulence that was apparent in the previous version of that aÏrcraft.

Thelongitudinal, linear parameter~varying,B-l model can be represented as:

{::~i:::~~):
where: x =[aq17! 172 173 174 rlJ rh rh iJ4r is the state vector which containg the

angle of attack, the pitch rate, and the coordinates of the four flexible modes.

u =[w;" W;' 5~e 5:~]are the gust vector, the elevator, and the canard actuators respectively.

y =[Yq Yacc Jare the pitch rate and the acceleration of the. aircraft measured by the rate gyro and the

accelerometer, respectively. p =Machnumber: is the parameter varying between O.2Mach· and

O.8Mach.

The following modelgives the dynamics of the actuators:

where . [ô cmd
• cie

T5;;dJ are the actuator commands, and

(6.13)

(6.14)

The transfer function represel1ting the turbulence acting on the aircraft is givenas:
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[ 2V/L 1] [ h3(V IL )0.5 ] [ 1 0] [ 0 ]where: _ - . 0 wg _ crwg "\j -' 01 wg _ _

Awg - -(VIL )2 0 ,Bwg -(V/L.)15 ,CWg - -2(V/L ) 1 ,Dwg -cr -/3(V/L )0.5
o wg... Œ wg . o wg. .0 .wg wg .0 wg ..

0"wg' L wg , dg : are the intensity, the turbulence scale length and a gaussian white noise, respectively.

The four flexible .modes are characterized by their damping ratios ;1 =;2 =;3 =;4 = 0.02 and their

modal frequencies co] =12.57,(i)2 = 14.07,(i)3 =21.17,co4 = 22.05rd/s. The flexible modes have an

effect at high frequencies and thus can be separated from the rigid-body modes. To be as realistic as

possible, vve preferred to use aU the flexible modes in the design rather than using conventional

techniques such as notch filters to cope with the reduction of flexible modes.

The high level of flexibility in the B-l bomber mode! acts negatively on the aircraft and exhibits high­

frequency transient motions for thepitch rate open-Ioop response. Thus, a feedback controUer design is

needed to improve the pitch rate response and todecrease the acceleration of .the aircraft due to

turbulence effects.

6.4.2.2 Controller design

Linear parameter-varying mode! is used to generate frozen linear models corresponding to a set A of

chosen Mach numbers (operating points). Theflight envelope covers the variation of the Mach number

fromO.2to 0.8 for a given altitude. Hence, our choice ofthe frozen operating points corresponds to the

set A = {O.2,O.25,OJ,OJ5,OA,0.45,O.50,0.55,O.6,O.65,O.7,0.75,O.8}. The general setup ofthe frozen

controller designs is given by the figure below:

dg

wn

Wnoise r--D
E
M
U
X

Linear
u

Figure6A: Optimal control setup

........... .......IIllol Linear controllersl-,---1~
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Our control objectives are to track the pilotis pitch demand and to alleviate the gust load by reducing

the acceleration ofthe aircrafi due to the effect of the turbulence. For the tracking objective we used a

16filter F(s) = 2 to shape the response imposed to the closed-Iooppitch response.
s +5.2s+16

[

800 0 •.1w =: s+l
s 10

o -­
s+15

specifies levels of performance desired from both design objectives.

o .] is used to constrain the effort of the actuators to reasonable and realistic
180 (s+ 15)

15Jr (8+0.01)

(6.16)

limits whiChare 15° for the elevator and 15° with zero deflection at the steady..state for the control

[3X 10-4 0]vane actuator. W ' =: represents sensor noise and is used to ensure weU-posedness of
nOIse 0 0.01

the H00. control design.

Note that the performance objectives were unified for aU Pi E A, by having the same weighting

functions for the augmented plant along the flightenvelope. The controller designs in Figure6.4 can be

recast into the general Hoo controller design framework [Doy89], where the augmented frozen linear

modelscan be represented in the state-space form as:

{;:~:~ly:: ~d~;~
where: Pi E A

With sorne silllplifying assumptions, [Doy89], we consider the state-space representation of the

augmented system as:

(6.17)

A suboptimal Hoo controller [Doy89], for the auglllented plant, can be written in its state-space form

as:
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(6.18)

The assumption that the terms Dall , Da22 are equal to zero is not verified in general, and in our case

study in particular. In this case, we use results from 1t", control theory [Doy89] thatpermit to resolve

the general problem posed. These results are:

a- The controller in the case of D a22 ::f:. 0 is K.mb(I + Da22 K sub rI ,ifwe suppose K'"b is the sub-optimal

controller of Ga with the asssumption that Da22 =o.

b- If Dail ::f:. 0 and without loss of generality, by normalizing D a12 and Da21 ,we shall assume that the

augrnented plant can be written as:

Ga, (s):= Cal(pJ [.Dallu(Pi) Dalll2CPJ]
Dall2l (pJ DaI 122 (p;)

Ca2 (p;) 1 [0 1]

such that: 1512 = [~], D2l == [0 Il·

[~]
o

(6.19)

If we normalize r == 1, then there exists a controller K that intemally stabilizes Ga and

11-0~ (Ga,K)t ~J if and only ifthere is K that stabilizes M and IIJ=;,CM,K)II", ~l. where:

[

.,4 B J)-l.il C BR-1I2
+ I~'l U 1 1 1

~ .[Duu DUI2 ] D - D D (1 D*D )-ID* DDu := , 00 - - 1122 - 1121 - 1111 1111 1111 1112
D II21 D U22 + D '"
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Thus, an H oo controller can be calculated for our particular models where Dall * 0 and Da22* 0 .

Algorithms for this general H oo control problem can be found in [Ba195].

6.4.3 ScheduJing technique:

TheHoo Gontrollers designed for the frozen design points Pi E A depend essentially on the solutions

of the two Riccati equations needed in each H 00 control design.

Define:

Ki f (~i' Xi ,1';) as the ith H 00 controller for the ith design, where:

0, ~ [~:~~ f:~~ ~i:;~~] (6.20)

is the state space representation of the ith augmented plant.

X" 1'; : are the ith solutions of the ith Riccati equations pair used in the ith frozen design.

The advantage of our method is the on-line availability of a. faithfullinear model at anypoint of the

flight envelope, using the LPV model available. This model facilitates considerably the

implementation in contrast to the procedure of 1Ïnearization, which was used at each point ofthe f1ight

envelope in [Rei92]. The model ~j can be evaluated for each jth parameter Pi E [0.2,0.8]. If we

suppose that pjE [Pi' Pi+l] we use the ith and the (i+1)th controllers designed, Ki and

K i+1 respectively, to calculate the controller K j • The solutions. of the. two Riccati equations at any jth

design point are linearly interpolated from the solutions (Xi' 1';) and (Xi+l , 1';+1) as follows:

(6.21)

and similarly for· r;. Once the jth solutions of the Riccati equations are evaluated and using the state

matrices of 3 j ,the H oo controller at jth point of the flight envelopeis calculated as shown in the

previoussectionas: K j =f(~j,Xj'Yi)'

The use ofthis technique of controller scheduling has the advantage that it does not require any special

structure for the frozen controllers. It can be anlf2 controller, an Hoocontroller oran H oo loopshaping

184



controUer. These modem .• controUers have the common specification to be calculated based on

solutions of Riccati equations.

6.4.4 Resultsand nonlinear simulation

The frozen designs made are based on a mixed-sensitivity H~ setup. The performance objectives were

unified for aH frozen designpQints. The performance indices y obtained are given in the foHowing

table.

Table 6.1 : Operating points and performance indices

r 1.1 1.09 1 0.93 0.86 0.80 0.74 0.76 0.80 0.84 0.88 0.93 0.98

P 0.2 0.25 03 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Thus,the perfonnance specifications, conceming the pitch demand trackil1g, the gust load alleviation

and the controller outputconstraints, were basically satisfied for aIl the frozen designs. Figure 6.5

shows closed-loop. responses and actuator deflections for 0.55Mach. It confirms the gOOd pitch

tracking obtainedfor pilot pitch demand pc =31Z' 1180 rd and the reduction of the acceleration with the

1t~ design [Aou2000b] using reasonable actuator deflections. The full flight envelopecontroller

outputs· usingthe technique presented in this \Vork is shown by Figure 6.6. Notice the good

performance level for the pitch-tracking objective. Conceming the. gust loadalleviation objective, we

obtained adegradation of performance compared to the frozen design results.

However,. theworstlevel of acceleration obtained is equal to -1.5m/82 =-0.15g which isstill

reasonable, taking intQ account that we are operating over the full flight envelope. We have to

cQnunentthat thegust loadalleviation problem. is in general not easy to deal with for just one

operating point. TQ our knowledge, our approach to deal with this problem over a full flight envelope

is presented in this.thesis for the first time, with good performance results. The actuator responses are

still in the acceptable range of ±lY for both the elevator and the control vane actuator.We notice that

certain bumps essentially for control vane actuators. These bumps are due essentially to the high

degree of change in the dynamics of the aircraft. This change is noticed even between two adjacent

operating points. Although these are undesirable effects. on the deflection actuator responses, these

bumps can be handled by the actuators, whichare boundedin magnitude and variation rate. We went
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further in our research, trying to avoid those undesirable bumps for the actu~tor response. We used a

safety technique that consists in constraining the actuator deflections to safe ranges of deflection.

Figure 6.7 shows, respectively, the closed-loop pitch response, the acceleration oftheaircraft and the

constrained actuator deflections. We were able to reduce the actuator bumps in magnitude and

variation rate into more homogenous deflections without significantly affecting the performance

obtained in the unconstrained actuator case.
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Figure 6.5: Frozen controUer results (pitch tracking and actuator responses)
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Figure 6.7: Constrained gain scheduled controller results (pitch tracking and actuator responses)

6.5 Concept of online redesign of controller

In the following, we limitedour application example to the pitch angle-tracking problem. Our aircraft

model is a two-input (actuators), one-output (pitchangle) system. We believe that with the progress of

computer capabilities these days, allapproach based on an online controllerdesign can make sense.

Figure 6.8 proposes the concept ofonline controller redesign adopted for the simplified BI flexible

ll1odel.
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Actuatof '--_..-...... -'
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-
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Hold

Linear
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Design
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i Dynamics change? r--

,..------....,...,Pi
Generation of
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usingLPV
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Figure 6.8: Controller redesign setup

187



The nonlinear model in this case has an accurate approximation consisting in the LPV model. The

inputs of the nonlinear model are the references (pilot demands), in this case the Mach number (the

velocityof the aircraft), and the actuators efforts. As outputs we obtain the measured Mach number,

which is .used .to generate the corresponding linearmodel from the LPV mode! representation if a

change in dynamics is noticed. At each corresponding change in dynamics a design of a linear

controUer achieving the performance objectives could be used to compute the control signaIs to

actuators for thenonlinear model.

A êontroller redesign can be efficient and easy to implement ifthe foUowing conditions are satisfied:

I-The controUer design algorithmhas to be systematic and robust for any linear model corresponding

to a trimpoint of the flightcondition.

2-The performance objectives specifiedby performance weighting functions have to beunified for aIlI

linear designs or varying with the parameter of the flight condition.

3-The blockDelay/Hold can overcome differences in timing between a change in dynamicsand

the controUerredesign time.

The second condition is, obviously, needed to makethe approach systematic online. However, thefirst

condition is obligatory since it minimizes the time taken for redesign and aUows. the approach to be

implemented. Since we based thecontroUer design approach earlier on a mixed-sensitivity H 00 design,

which is based on an iterativeHoo optimization,àn online redesign controUer would appear difficult.

Thus, we propose in our approach to use weighted H2 optimization [Aou2000a] or an Hoo loopshaping

controItechnique, which are both computable through a single pair ofRiccatiequations. The objective

in our application example consists oftracking the pitch angle with reasonable actuators efforts. The

7-tloopshaping technique [Mcf90] is used for •the controUer design. ·This technique, as presented in

Chapter proposes to sh,:,-pe the plant model byappropriate input and output weighting functions

resulting in theshaped plant 9, =W;GW2 , and a robust stabilization procedure is used for the shaped

plant Gs to obtain an Hooloopshaping controUer K oo implemented as WzKooW;. A static gain used to

adjust the steady-state gain is also computed. The weighting functions W; and W2 used in our design

are· the same over the entire flight envelope. Note that the portion of. the global flight envelope

considered here is from O.2Mach to O.5Mach. Figure 6.9 presents the design index r for the controUer

redesign along the flight envelope considered.
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The inverse of the performance index represents the stability margin obtained through the robust

stabilizationprocedure. Figure 6.9 shows that the interval of stability margin along theflight envelope

is kept closeto the level of 36% stability margin.

r

5 10 20 25

Figure 6.9: Robustness measures

Figure 6.10 gives the pitch angle tracking results for the BI flexible model through the nonlinear

simulation framework proposed in Figure 6.8.
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Figure6.10: pitch angle trackil1g for redesignedcontroller

Agood pitch angle trackingresponse is obtained, quick in reaching steady-state, and reasonable

actuators effort, under the physicallimitsrequired as shown in Figure 6.11.
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6.6 Robustgain scheduling controHer design

6.6.1 Introd,uction

Intensive research in control over the last twodecades led to weIl developeddesign techniques

[Doy89],[BaI95],[Ske88]. These techniques sometimes, known as modem approaches, introduced and

improved important closed-loop properties such as robust stability androbust performance. These

techniques, usuaUy· .sub-optilllal, arebased on linear design methodologies.. This means that the

performance obtained, as for alllinear techniques, is guaranteed only around specifie operating points.

Aerospace a.pplications need control laws that maintain acceptable performance ·levels over the .entire

flight envelope considered for aerospace vehicles, which implies nonlineardynamics.For this reason,

research efforts turned to develop gain schedulillg methods such as interpolation of frozen controllers,

and to study their real-time on-board Implementation [Hyd91]. Other techniques ar.ebased. on lin.ear

parameter varying (LPV) models and lead to LPV controUers designed via LMI's (Linearrnatrix

inequalities). The main advantage of interpolation techniques, comparedto othergain scheduling

methods such as LPV methods, is their simple Implementation, which is a major issue in the aerospace

industry.

A new interpolation based approach; called blending/interpolating technique. [Aouf2000c] isproposed

in this section. Thisapproach has the virtue to avoid restrictions on the type, structure and order of the

illterpolated controllers as opposed to the observer-based interpolation technique in [Hyd91]. As

mentioned earlier, the main criticism regarding interpolation techniques is. the lack of guarantees on



[
~l

The objective is ,taled as: Assutniflg a mode! P(s)~.P"

~l

stability of the closed-loop system. These "ad-hoc" techniques, with a judicious choice of operating

points covering the flight envelope for the frozen designs, may often give satisfactory stability

margins. However, stability guarantees are needed· to reassure aerospace engineers whom may be

tempted to. try this type of technique. In this section, we present a robust control1er design, based on a

blending/interpolating method, that guarantees stability and performance over the entire flight

enve10pe of aerospace vemcles. This methodology is successfully applied to a B1 flexible aircraft

model. The extension of tms methodology to anygain scheduling problem is straightforward. The

variation along the flight enve10pe is captured by atime-varying uncertainty representation, which is

treated in a p - synthesis framework.

6.6.2 Uncerta,in model representation

Aerospace vehicles operating over a large flight enve10pe are represented by nonlinear models

depending on operating conditions. Obviously, to use linear controller design we need linear models

around chosen operating points. This .can be obtainedby classicallinearization procedures for chosen

operating points. Nonlinear models can also be formulated as linear parameter-varying models for use

in an LPV controller design framework. In this section, we represent nonlinear dynamics of the aircraft

models by uncertain systems in linear fractional transformation (LFT) representation used for a

p ~ setup. The general p- setup is given in Figure 6.12.

K

Figure6.12: Standard robust controller setup

~2~3]
Pli p,,&Jlbject to an uncertainty mode!

~2 ~3

fl.s(S) E 'ifiHoo : IIfl.slloo =:; l, design acontroller K(s) stlch that: 11Fu{~(p,K),~JIIoo =:; 1and 11~111,", =:; 1.
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(6.22)

In the literature, methods where proposed [FiaI97],[Hyd91] to construct an LFT model that approaches

the behavior of the nonlinear mode! along the flight envelope portion considered.

Let us consider A ={p l' ..., P n} a set of operating design points, where p; represents a vector of flight

parameter conditions, e.g., as aircraft velocity, for the ithchosen operatingpoint. The nonlinear model

is linearized on those chosen operating design points leading to linear state-space representation:

{
X=A;x+B;u

y =Cix+D;u

for each Pi E A .

Where: A. E 9{nxn, B. E 9{nx p , C. E 9{mxn, D. E 9{mx p •
1·· J 1·· . 1

For simplification, we assumeC; =C,Di =0 \fi =1, ..,n, which means that changes ov~r the entire

flight envelope are restricted to matrices A and B .We further assume that a single parameter P of the

aircraft is varying; caU z its scaled version.

Assume that matrices {4 r=l and {Bd ~=l are interpolated by polynomials of order t with matrix

coefficients:

That is, at the points {Zj }~~I' we have:

t

PA(z):;=; I..4zi, ZE[-l,l)
;=1

t

PRez):;=; IE;z\ ZE[-l,l)
;=j

PAz);=;Aj

PB(z);=; Bj

j;=;I, ...,n

(6.23)

(6.24)

Note that the interpolation is assumed to be performed entry by entry of the matrices to fit. In other

words, each scalar polynomial entry of. PA(z) and PB(Z) interpolates the same entry in matrices

{A} and {Bi} respectively.

Define the matrix M including the system dynamics and the matrices ..4, B; as
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0 0 1 0 0 0 0 0

0 0 0 / 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 / 0 0
(6.25)M=

0 0 0 0 0 0 1 0

ll.

0 0 0 0 0 0 J

0 0 0 0 0 D C

A, ~ A, Ba .,{

then an uncertain system, in an LFT form as in Figure 6.12, [Hyd91], covering the flight envelope

considered, could be retrieved as: F'.,(P,f).s) where P =F,(M,s-lI) and f).s =8Jr .(5 is an uncertain

repeated parameter, -1 < <5 < 1, that depends on the vector of the flight condition parameters. Note that

o i8 variable z in the matrix polynomials PA(z) and PB(z). By varying <5 from -1 to l, we are varying

the flightcondition parameter to cover the flight envelope considered. In the example below,

odepends on the Mach number. Thus varying the parameter 0 means a variation in the Mach nurnber

that the nonlinear model depends on.

6.6.3Parameterization of stabilizing controHers

The parameterization of stabilizing controllers is important for the development of the method

proposedin tbis section since it provides a sub-optimalcontroller with a free-parameter thatcan be

tuned for performance objectives. Let us consider the nominal system of Figure 6.13 relating the

inputs[wuTJto outputs[zl' il

[

P22p=
n P

n
(6.26)

[
A + B2F + LC2 + LD22 F

controller K(s)can be obtained as: K(s) = •• F

which its realization is assurned detectable and stabilizable. An intemally-stabilizing, observer-based

-L]o whose F and L are astate

feedback and observer gain such that A + B2 F and A + LC2 are stable.

It has been shown in the literature [Doy89] thatall stabilizingcontrollers for a system Pn can be

parameterized as a centralcontroller witha free parameter called "Ypula parameter" as in Figure 6.13:
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Figure 6.13: Parameterization of stabilizing controller

The family of aIl stabilizing controllers is given as follows:

K = {F;(J,.Q): Q E ")tH", and 1 + D22Q(OO) non.singular}

[

4+ B,F +LC2 +LD12F

J= F

-(C2 + D22F) J

-: B, +:Dn]
-D22

(6.27)

The closed loop system ~ dependson the free Youla parameter Q(s) as:

:5 = F;(T,Q) ={TIl +Tl2Q0.I:Q E ")tH",,! +D22Q(oo)invertible}

[ T.ll • T.1•2 ]T - -..- ... -
T'z, T22

A+B2F -B2F

o A+LC2

CI +D12F -D12F

o C2

BI B2

Bj +LD21 0

Dll D12

D21 0

(6.28)

Hoo controllers can also be parameterized as a central controller with a free Youla parameter:

K ={F;(J,Q):QE")tH",and IIQII<r}

194

(6.29)



-2 '
Ace =:: A +r B,B,X"" +B2Foo + Z""LooC2

Foo =:: -B;Xoo

Loo =:: -Y.,C;
Z =(1 - -2y X )-1

00 r 00"

x 00' Yoo and r are solutions of the standard Riccati equations used for the H 00 design for the

(6.30)

augmented sYstems state-spacerepresentl1tiQn:[r~]
le2

6.6.4 Robust performance gain scheduling approach

The proposed approach in this section is based on the blending/interpolating technique, [Aouf2000c],

that assumes controllers achieving local performance for chosen operating points have been designed.

Suppose, as earlier, that A is the set of chosen operating points for linear design and define

u;Cp) j =:: 1, .. , n as the controller output for the jth design point then the blending/interpolating

technique proposes a linearly blended signal to be used for the actuators as:

u(p) =(1- Â(P))U;_1 (p) +Â(p)uj(p), P E [Pi -" pA, j =1, ...,n (6.31)

where: O.~ Â(p) ~ 1isa function of the aireraft parameter p. Pi-, and Pi are the velocity

corresponding to the (j-l)st and jth design operating point, respectively.

In the following, the. blendinglinterpolating strategy outlined above is shown to yield a robust stability

and performance over the entire flight envelope of the aireraft. Suppose we have two adjacent

operating pointsj-l and} where controllers are designedusing (6.27) or (6.29) and shown as in Figure

6.13 and suppose the nonlinear model isrepresented by anuncertain linearparameter-varying system

in LFT form as presented in (6.25). Then an ill1plementationof blendinglinterpolating control at

operating point Pi E [Pi_l'PiJisgiven as in Figure 6.14:
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Figure 6.14: Blending/interpolating parameterized
controUers

Figure 6.15: Augmented system into robust
controUer setup

The controHer signal vector u(p) depends on Â(p) which is a function of the operating parameter p.

This parameter p is in turn proportional to theuncertain parameter 8 used in the uncertainty block

,1",. as previously mentioned.Figure 6.14 can be recast into a jl- framework as in Figure 6.15:

Where the plant P is augmented into: ~ = f(P,Jp J 2 ,h), the uncertainty block isaugmented into

(6.32)

and h is a scaling function It = h(8) , Z =[z~

performance uncertainty.

The foUowing theoremgives the necessary and sufficient condition under a p- framework that

guarantees that a blended/interpolated controUer, based on a stabilizing controUer parameterization,

will achieve. robust perfonnance over the<entire flight envelope considered.
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Theorem6.2:

For a slowly-varying operating point which leads to a slowly-varying system, and for constant D-

scaling matrices DE lfP=. {D E mn")(n,, : DT D =In" and D!1 =W} then:

The closed-Ioop parameteroovarying system of Figure 6.15· is stable and achieves the desired

performance objectives if and only if3D E}lfl such thatllDTD-IIL :s; 1 where T =F;(Pu ,diag{Ql'Q2}).

Proof:

The use of real constant D-scalings to take into account the time-varying uncertainties is proven in

[Sham94]. Referring to Figure 6.15 and using the results of robust performance fl- controller design,

the rest of the proof is straightforward.

6.6.S·0ptimization based control

The objective is to obtain a cOIltrollet.parameter Q"" (s) ~ [Q.~s)

that:

min max inf a(DT(jw)D-1
)

Ql,Q2 (j) D
(6.33)

where (j is the maximum singular value.

This problem cannot be treated efficiently as a Ji -controller design [BaI95], because of the stability

constrainton the controller-parameter QOPI' which is not guaranteed under Ji - framework and also

because ofthedimensionalityqfthe resulting LFT representation in (6.21). Therefore, an optimization

technique for parameters of a fixed structure controller-parameter QOPI is proposed. Since stability and

performance are guaranteed for two design points,our objective is to obtain a "controller-parameter"

QOPI that guarantees performance with stability between thé two extremities of the operating point

trajectory. We propose a simple structure of controller-parameter Qopt to facilitate the design. The

. . [Q(S) 0] . 1 +proposed structure Of Q", IS ll1ven as: Q,i"(s) ~ .•. • where Q(s) ~--12 pm ' a E m.
. Q(s) s+a

Although the choice of the structure of the controller QOPI may be different from the structure proposed

here, we highly recommend a simple structure of controller.
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Different optimization techniques can be formulated for the optimization problem (6.33) posed above,

from nonlinear programming techniques, to least-square minimization. Two of the simplest methods

using gradient descent of the function a(DT(jOJ)D-1), which is welladapted to our fixed controUer

structure design, are presented. In [Mora89], an optimization procedure for the free parameter Q(s) of

an InternaI Model Control (IMC) structure has been proposed. An analytic expression of the gradient

of the upper bound on J1 given in [Mora89], can be derived as:

min maxinfCf(DT(jOJ)D-1)<::>minmaxinfa(DT(jOJ)D-1) where: ois the frequency interval
Q, ,Q2 E91Hoo "'En DEZJ aE91+ OJEn. DEZJ

considered and lJ = {d x 1n,n, : d E 9'!} . If we define<1>(a);:=: max inf a(DTD-1
),

men DEZJ
then

_8<1>_= 8al(DopT(j0J"p)D{~) where the max(.)is attained at
8a 8a OJ

the inf a(DT(jOJ )D-1
) IS

D op

obtained at D =Dop and D"pT(jOJop)D~.

Considerthe closed-Ioop systemT =F;(Pa,Q"pt) to be normalized at its performance inputs/outputs

(6.34)

1S needed;

Considering W; =1, an analytic expression of the gradient of <1>(a) is given as [Mora89]:

8<1> [T (H13 J.(.. . )-1 8Qopt (jOJop) ( .)-1 ( ) -1 ] )8a =Re u1 D"p W
p
H

23
. 1- KopH 33 8a 1 - H33 QOPI H 3J H 32 Dop VI (6.35

A procedureto obtain a satisfactory solution of the minimization in (6.33) can be proposed as follows:

l-Choose an initial value of the parameter a.

2-0btain OJ"p from the frequency interval considered and obtain the D-scaling matrix D"p.

3-Do the SVD decomposition in (6.30).

4-Calculate the gradient 8<1>
Ba

5-Readjust the value of the parameter a as a =a - 8 8<1> 0<8 <1.
Ba
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(6.36)

The optimization proposed based on an analytic expreSSIOn of the gradient can sometimes be

inefficient since the gradient depends on the results OJop and Dop that are difficult to estimate.

Therefore we propose another helpful way to optimize (6.33) numerically. It is actuaUy a simple

gradient~based method where the gradient function a<I> for the ith iteration search is evaluated as;
aa(i)

a<I> <I>(a(i)) -<I>(a(i -1))
--=
aa(i) a(i) - a(i -1)

where <I>(a(i -1)) is the result ofthepreviousiteration. <I>(a(i)) is evaluated, using the "mu" command

in Matlab [Bal95] , as the minimum value obtained for a constant D-scaling. The parameter a is then

readjusted in step5.

6.6.6 Robust performance analysis technique

A lack of tools for stability assessment of gain scheduling controUers based on interpolation technique

led us to extend the design proposed earlier for stability and performance·analysis over the entire flight

envelope. The accutate uncertainty description of the nonlinear system, introduced above in (6.25), is

adopted in the CUITent section.

We assumethat two stabilizing conttoUers K1'K2 are designed for the extremities of the portion of the

flight envelope considered. These control1ers can be designed using any type of linear control

technique. The blending/interpolating controUer implementation In Figure 6.14, where

F; (JI'Ql) and F;(J2,Q2) aresubstituted for KJand K2 respective1y, is used.

Thus an S -/1 block structure as given in Figure 6.16 is obtained using the uncertainty block

augmentation as in (6.32) and where:

w s
z

Figure6.16; S -/1 structure
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can be used to analyze the performance and robust stability objectives through standard j.i- analysis

[Bal95].

We propose to analyze the blending/interpolating controller to gain confidence in the safety of a real­

time Implementation of this controller over the entire flight envelope considered. The following

lemma, adapted from [Sham94],. gives the main result of stability and performance analysis of the

blending/interpolating controller.

Lemma6.2

Stability over the entire flight envelope considered is guaranteed if and only if for

where

S =[Sil S12] and As/ab =[°12
1' 0 ].Furthermore a specified leve1 of performance r is preserved if and

S21 822 0 As

6.6.7 Application example:

The example showing the applicability of the results and design methodologies ofthe previous section

consists of asimplified version of the Blflexible model [Aouf2002]. In this application, we are

interested in a pitch angle-tracking problem. Mixed-sensitivity H 00 approach is used to design

H oo controllers for the two extremities (O.2Mach and 0.3Mach) of the flight envelope portion

considered. Thetracking results and actuator efforts for O.2Mach and 0.3Mach are comparable to the

results shown in Figure 6.10, 611 fOL the redesign approach proposed earlier. The robust analysis

lllethod, given ill Lemma6.1 is app~ied for theblending/interpolating H00 controller based on the frozen

0.2Mach and O.3Mach H oo controllerdesigns. The specified level of performance required in this H oo

controller design is given by W. = 800. as in theonline control design concept. Figure 6.16 presents the
.• s+l

robust performance f.J - bound of the worst-case blending/interpolating controller over the flight

envelope [0.2Mach,0.3Mach].
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Figure 6.17: f-l- bounds for robust
performance
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Freq(rd/s)

Figure 6.18: f-l- bounds for robust
stability

Since a robust stability analysis of this worst caseblending/interpolating controUer shows, in Figure

6.17, that robust stability is maintained over the flight envelope, we decided to decrease the specified

level of performance to be able to meet the robust performance criterion.. Choosing the performance

weighting function as:~, we obtained a reasonable upper bound of p for the worst-case blending
s+1

/interpolating controUer over the flight envelope as shown in Figure 6.18.

Figure 6.19: p- bounds with relaxed performance
specification
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In the following, we propose to design a robust performance eontroller design for the flight envelope

of the BI flexible model based on the methodology proposed in thispart of the CUITent chapter. We

kept the weighting function of performance to 40 .' The varying-parameter in this case study is the
s+1

Mach number, Le., the velocity of the aireraft. A good perturbed model, as in (6.25), is obtained for the

nonlinear dynamics of the aircraft model. over the flight envelope considered. The designs of frozen

controllers at the extremities of the flight envelope were done usingweighted H 2 control. We preferred

this design technique over classical H", for its simplicity, and to show thatfor the method proposed

optimality is not required in the frozen designs step. In fact, the optimization over the best sub­

controller QoP/(s) compensates in a way to find a good sub-optimal blendinglinterpolating controller.

Figures 6.19, 6.20 present the pitch angle tracking and the actuator responses for the weighted

H2 controller designed at 0.3 Mach.

0.04
pitch(rd/s)

0.02

o

2 4 6 8 10
Time(s)

Figure 6.20:pitch tracking for weighted
H 2 controi

Actuator 0 i---< ,_ -.-.~ .._ ~ ·· · ..--i

responses
(rd) -0.05

-0.1

-0.15

6 10

Figure 6.21: actuator responses for weighted
H 2 control

The objective, as presented iri (6.33), is to obtain the best sub-controller Qop,(s) , thus the best parameter

'.a' ,that assures the robust performance eriterion of the closed-Ioop parameter-varying system

presented in Figure 6.15.

A gradient-based optimization method, as presented earlier, is used to search for positive parameter a.

The best values for the parameter a and the D-scaling are obtained equal to 0.14, 0.809, respeetively.
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The p- value of the closed loop system with the corresponded sub-controller controller

0] is shownto be reasonable oh Figure 6.22,

s~a lM

0.2

0.1

Freq(rd/s)

Figure 6.22: p-bounds for robust
performance

To test the blendinglinterpolating controller, we proposed to do nonlinear simulation over the entire

flight envelope considered. Figure6.22 shows the pitch angle tracking result and figure6.23 presents

the. a.ctuator outputs over[0.2Mach,0.3Mach]. The results obtained fromthis non-linear

implementation shows a good pitch angle tracking withacceptable range of controller outputs.
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Chapter 7

Summary and Conclusion

In Chapter l, we presented different robust flight control objectives treated in this thesis, In addition to

this, we introduced the modeling aspect for an aireraft Furthermore, .we gave details on flexible

aireraft modeling. These flexible aircraft models are one of the main applications interest in this thesis

since they are realistic and their sensitivity to turbulence effects has been of great interest in recent

flight control research. Formai models of gust gene~ation are also presented in Chapter 1.

In Chapter 2, details of optimal Hz and Hoo control theory are given along with a description ofrecent

advances in their respective controller design under the LMI framework. We described the usual

uncertainty modeling that is used for robust control design such as p- synthesis, The classieal

/1- design via the D-K iteration algorithm [BaI95] presents conservatism when dealing with high­

order uneertain system, as is the case forflexible aircraft. Thus, we presented /1- synthesis based on

iterative Hz designs, which showed better results in many cases. In addition to these techniques,

details on the Hoo loopshaping procedure are given sincewe use this design technique in Chapter 5,

The adaptation of robust control techniques sueh as weighted Hz, H oo and /1- synthesis to gust load

alleviation problem is also given in Chapter 2. Interest in this research problem grew in the eighties,

where progress in modern control techniques, such as LQR and LQG, is noticed, In this chapter,

motivation for using optimal H oo control techniques is provided. H oo controllaws developed for formai

gust generation models show their efficiency in reducing undesirable accelerations of the flexible

aircraft due to severe gust effects, A hugedifference in terms of gust load alleviation is noticed

between modern control techniques androbust control techniques, the latter proving superior in a

comparisonmade in Chapter 2. In addition, we extended favorably the H 00 control design to a

/1- design when uncertainties· in the aircraft dynamics are taken into account.

Working with flexible aircraft models means that we deal with high-order systems that complicate the

robustcontrol design and render it conservative when uncertainty is taken into account. Thus, in

Chapter 3 weinvestigated model orderreduction techniques, to be able to use reduce-order flexible

models that facilitate the robust control design,

We presented an overview of different open-Ioop model order reduction methods and recent

techniques. using closed-Ioop specifications, In this chapter, we introduceda new order reduction
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technique, adapted for flexible aircraft and respecting the physical interpretation of the flexibility in

the aircraft that provides a reduced, compatible model/controller pair while preserving robust

performance specifications. Under a robust performance p- setup, we propose a two-step procedure:

L By a robust performance full-order controller design and p-analysis, we deduce the best flexible

mode combination to truncate for a given number of flexible modes to truncate.

2. Then, we present in Theorem 3.1 a sufficient condition under which, starting from the full-order

controller of the best flexible mode combination, and under certain conditions areduced-order

controUer preserving the robust performance specifications obtained by the full-order controller

can be obtained.

The method is extended with p- sensitivity theory, used in the first step of our technique, in order to

save time and render the whole procedure more systematic.

In addition to this important result, we develop a new uncertainty model that we call "inverse

uncertainty". This model proposes a lower uncertainty bound than bounds usually generated by

common additive and multiplicative uncertainty models. The inverse uncertainty is adapted to robust

control design techniques and shows good results when used for order reduction purposes in a closed­

loop framework.

The order reduction techniques presented in Chapter 3 fill the void of methods adapted for flexible

models. They offer order reduction tools that are indeed needed by aerospace engineers.

In Chapter 4, we propose uncertainty models able to represent tightly the uncertainty in the flexible

aircraft model dynamics through the flexible mode parameter variations. The two models presented in

this chapter are based on thecoprime factorization representation and the modal coordinates

representation. The efficiency of these models is tested on flexible systems and they present favorably

good results in tightly bounding the flexible mode parameter variations and also in the robust

performance levels obtained. Note that with the modal coordinates model, we are led to a new

complex-rational controller design rnethodology that shows its efficiency under a robust control

framework. For the implementation issue, we can recover a real-rational controller that preserves the

robust performance obtained by the. complex-rational controller.

In Chapter Sand Chapter 6 we treat research problems related to gain scheduling. We introduce the

IFPCdesign for the STOVL Harrier aircraft. This methodology is needed to take into account the

propulsion system (engines) and its interaction with the airframe system. For this complex aircraft

model, we haveto provide gain-scheduling techniques to cover the entire flightenvelope. First, we

adopt an.observer-form controller interpolation strategy, which results in goodperformance from

hover to 120kn.We extend, by means of an observer form antiwindup technique, the flight envelope to

15ûkn ofvêlocity.Because of the controUer order reduction limits ofthis approach, we propose a new
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approach consisting ofa blendinglinterpolating approach that shows good results in nonlinear

simulations. In addition, we propose an optimal multi~switching methodology, which is successfuHy

implemented on. a nonlinear model of the Harrier aireraft. The cornplexity of this model induces

complexity in the H oo loopshaping frozen controllers designed and used to coyer the entire flight

envelope. Thus, a partitioning technique is used to obtain decentralized controllers which is easy to

implement, and for which we develop and sucCessfuHy implement a new scheduling~partitioning

scheme.

In Chapter 6, after a briefpresentation ofLPV and LFT gain scheduled control theory, a Riccati based

interpolation method, .and a redesign control technique havebeen developed for a BI·flexible aircraft.

Simulation results for both methods and for pitch tracking and gust load alleviation objectives are

shown to be satisfactory. In.addition, with the robust performance gain scheduling controUer approach

proposed, based on the blending/interpolating technique of Chapter 5, we enhanced the so-caUed ad

hoc methods withguarantees on robust stability and performance of the closed-Ioop system. The gain­

scheduledcontroller is obtained through an optimizationbased control approach, for Ji specifications.

Under a robust performance Ji - setup, and by using Theorem 6.1 (Lemma 6.1 is for robust

performance analysis) that proves the robust performance of the gain scheduled controller, we are able

to use the blending/interpolating technique safely. The positive results with this proposed method

obtained for the BI flexible model will certainly be useful to the aerospace researchersusually adept at

methods based on interpolation techniques.

7.1 Future research

7.1.1 Order reduction

Using Ji - sensitivity for closed-Ioop order reduction for flexible aircraft preserving robust

performanceis a promising research direction that can be extended for Iterative mode] order reduction.

Infact, proving an additive property ofthe Ji - sensitivity, as is the case with H 00 norm, we can predict

the (i+l)th flexible mode to truncate such that i =1, ...,n and n represents the global number.. of the

flexible modes to truncate.

Flexible modes reduction technique over a flight envelope will give the .• possibility of using frozen

modeLorder reduction over theflight envelope. Thentheresultihg reduced model could he used,under

linear parameter varying representation, to detive a reduced-order scheduled controUer. Research ideas

related to that topic could be of a practical interest to the aerospace industry.
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7.1.2 Dncertainty and gain scbeduling:

Accurate uncertainty rnodels presented in this thesis can be used with flight test data to give tight

bounds on the variations in aeroelastie pararneters of the aireraft. A joint projeet related to this

research is being explored with NASA Dryden research center.

For the gain scheduling problem, the research reported in this thesis in tenus of the gain-scheduled

controller based on blending/interpolating technique and guaranteeing robust stability and

performance opens new horizons for the ad hoc techniques. In fact, we think it is possible to extend

this rnethodology to the parameterrate variation, which will be useful in analyzing the perrnissible

region of acceleration of the aircraft without missing any important specification such as aircraft

stability.
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