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ABSTRACT

The aim of data assimilation is to find the optimal estimate of the state of the

atmosphere at a given time using all the available observational data and the knowl-

edge of the physical and dynamical laws that govern the system’s motion. A variety

of methods are used for this purpose, and most of them are based on statistical

estimation theory, such as variational methods that are widely used in operational

numerical weather prediction applications. Two forms can be used to solve the varia-

tional assimilation problem: the primal (3D/4D-Var) defined in the model space and

the dual (3D/4D-PSAS) defined in the “observation” space. Both variants are theo-

retically equivalent at convergence and in the linear case, are expected to have similar

convergence properties. In this thesis, the equivalence is confirmed in an operational

setting for the three and four dimensional cases, and the convergence properties are

studied. While results at convergence confirm the theoretical equivalence, the con-

vergence of the dual method exhibits a spurious behaviour at the beginning of the

minimization which leads to less probable states than the background state, and it

takes a number of iterations to retrieve states of comparable probability to that of

the background state. This is worrisome since operational implementations can only

afford a limited number of iterations. Investigation of this problem showed that it

could be avoided by using a minimization scheme, such as the minimum residual

(Minres) algorithm, that monotonically decreases the norm of the gradient instead

of the functional itself. The iterates of a dual minimization with Minres lead to

increasingly probable states. A relationship is established showing that the primal

functional is related to the value of the dual functional and the norm of its gradient.

This holds for the incremental forms of both the three and four dimensional cases.
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The intercomparison of the primal and dual forms is also examined in a two dimen-

sional weak-constraint framework to account for model errors within the assimilation

system. A dual form of the weak-constraint 4D-Var is formulated and results showed

that both methods converge to the same solution and with similar convergence rates.

As in the three and four dimensional cases, the dual algorithm is still sensitive to the

choice of the minimization algorithm, and benefits from Minres properties to avoid

the non-physical increments in the first iterations.

Singular vectors of primal and dual Hessians are used to improve the precondition-

ing of the minimization and to establish a connection between the Hessians which is

key to cycling the dual Hessian to the next analysis window. This holds also in the

weak-constraint case and the significantly lower dimension of the control variable in

the dual case may be beneficial then. This is an attractive proposition as the length

of the assimilation window is extended.
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RÉSUMÉ

L’objectif de l’assimilation de données est de trouver une estimation optimale de

l’état de l’atmosphère à un moment donné en utilisant toute l’information disponible

à travers et les observations et les connaissances sur les lois dynamiques et physiques

qui gouvernent l’atmosphère. Différentes méthodes sont utilisées à cette fin, dont

la majorité sont basées sur les principes de l’estimation statistique. Les méthodes

variationnelles en sont un exemple et sont actuellement implémentées dans les grands

centres de prévision numérique du temps. Deux formes peuvent être utilisées pour

résoudre le problème d’assimilation variationnelle : la primale (3D/4D-Var) qui est

définie dans l’espace du modèle et la duale (3D/4D-PSAS) qui est définie dans

l’espace des observations. Les deux variantes sont en théorie équivalentes à la conver-

gence et dans le cas linéaire, et sont supposées avoir un comportement de convergence

similaire. Dans cette thèse, l’équivalence est confirmée dans un cadre opérationnel, et

les propriétés de la convergence étudiées pour les cas tri- et quadri -dimensionnels (3D

et 4D). Alors que les résultats à la convergence confirment l’équivalence théorique,

la convergence de la méthode duale présente un comportement étrange pendant les

premières itérations de la minimisation, ce qui produit des états moins probables

que l’ébauche. et cela prend quelques iterations avant de retrouver des états dont

la probabilité est comparable à celle de l’ébauche. Ce comportement est inquiétant

puisque les implémentations opérationnelles ne peuvent se permettre qu’un nombre

limité d’itérations. L’examen de ce problème a montré qu’il peut être évité en util-

isant des schemas de minimisations tels que les méthodes à résidu minimum (Minres)

qui réduisent monotoniquement la norme du gradient au lieu de la fonction objective

elle même. Ainsi, les itérés de la minimisation duale avec Minres conduisent à des

états de plus en plus probables. Une relation est formulées montrant que la fonction
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primale est liée à la valeur de la fonction duale ainsi que celle de la norme de son

gradient. Cela est valide pour les formes incrémentales dans les cas 3D et 4D.

Aussi, la comparaison entre les formes primale et duale a-t-elle été effectuée dans le

cadre d’un système bi-dimensionnel en contrainte faible pour tenir compte des er-

reurs modèle dans le processus d’assimilation. Une forme duale du 4D-Var contrainte

faible a été formulée et les résultats montrent que les deux méthodes convergent à la

même solution et avec un taux de convergence similaire. Comme dans les autres cas

précédents, l’algorithme dual est encore sensible au choix du minimiseur, et profite

des propriétés de Minres pour éviter de produire des incréments non physiques pen-

dant les premières itérations.

Les vecteurs singuliers des Hessiennes des méthodes primales et duales sont utilisés

pour améliorer le pré-conditionnement de la minimisation et pour établir un lien

entre les Hessiennes, ce qui s’avère être déterminant dans la solution de cyclage de

la Hessienne duale à la fenêtre d’assimilation suivante. Cette propriété reste aussi

valide dans le cas de la contrainte faible où la dimension réduite de la variable de

contrôle dans le cas dual peut être bénéfique. Cela est d’autant plus intéressant que

la fenêtre d’assimilation est appelée à s’élargir.
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This is an original thesis and is entirely my own work with contributions from
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nal submission, and to the best of my knowledge, it does not infringe upon anyone’s

copyright. Original realizations of the thesis include:

• Remapping of dual Hessian singular vectors permitted to carry information

about a current Hessian to the next analysis window. Before this thesis, cycling

the dual Hessian was an open question and one major limitation of the dual

method in view of its operational use.

• The extension of the theoretical equivalence of the primal and dual methods

to the nonlinear case using the incremental formulation properties.

• The use of Minres as a minimization algorithm : while this was found to be

a solution to the dual convergence problem, is it an original use of Minimum

Residual methods for variational data assimilation. Common methods in NWP

centers are the Quasi-Newton or the Conjugate Gradient. To my knowledge,

no NWP center uses Minres or any other minimization technique that controls

the gradient norm instead of the functional.

• The new convergence criterion for the dual minimization is key to understand-

ing the reality of minimizing two methods in two different spaces. With the

appropriate termination criterion, the dual method converges to the same ac-

curacy as the primal one with a comparable number of iterations.
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1 Introduction

Why have meteorologists such difficulties in predicting the weather
with any certainty? Why is it that showers and even storms seem
to come by chance, so that many people think it is quite natural
to pray for them, though they would consider it ridiculous to ask
for an eclipse by prayer? [...] a tenth of a degree more or less at
any given point, and the cyclone will burst here and not there, and
extend its ravages over districts that it would otherwise have spared.
If they had been aware of this tenth of a degree, they could have
known it beforehand, but the observations were neither sufficiently
comprehensive nor sufficiently precise, and that is the reason why
it all seems due to the intervention of chance.

H. Poincaré, Science et Méthode, Paris, 1908
(translated by Dover Publ., 1952)

The need for understanding the atmospheric system has long been motivated

by the human desire to predict the weather. The fundamental notions of numerical

weather prediction were first stated by Vilhelm Bjerknes as early as 1904, but it

was not until 1922 that Lewis F. Richardson formally proposed that weather could

be predicted by solving numerically the equations of the physical laws that gov-

ern the atmospheric motion. Unfortunately, his experiment aiming to produce a 6

hours forecast of surface pressure by approximating these equations using finite dif-

ferences failed (Lynch, 2006). After solving numerical instability issues encountered

by Richardson, it was feasible to perform a first successful numerical prediction of the

weather1 (Charney et al., 1950). Since then, and with the advent of electronic com-

puters, the accuracy of numerical weather prediction (NWP) models has improved

steadily as they became more complex and more comprehensive.

1 This was a one-day forecast using a barotropic (one-layer) model.
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However, as stated in Lewis et al. (2006), “the atmosphere with its governing

laws based on Newton’s dynamics and associated thermodynamic laws, is an unfor-

giving system, i.e., a system where the errors in the initial conditions grow with a

doubling time of 2-3 days depending on the scale of the phenomena”. This means that

having a numerical forecast model is certainly not sufficient to produce an accurate

prediction of the atmospheric future evolution. Estimating as accurately as possible

the initial conditions is then a critical step of the NWP process, for the uncertainty

in a short-term forecast is highly related to errors in the initial conditions. However,

part of the forecast error may be attributed to the model itself.

Information about the state of the atmosphere is based on some a priori estimate

given by climatology or a numerical weather forecast which includes implicitly the

basic laws governing the motion of the atmosphere. Observations on the other hand

are obtained from measurements by instruments which are sampling the atmosphere

irregularly. Moreover, the physics of the measurements and the instrument means

that observations are not perfect and have limited accuracy. The forecast and the

observations are two sources of information that can be combined to produce an

estimate of the atmospheric state that is consistent with the dynamical laws and

at the same time representative of the reality as observed. This process is what is

referred to as “data assimilation”.

Schematically, this can be seen as a feedback loop: forecast - observe - correct -

forecast. As explained by O’Neill et al. (2004), this is part of every day life:

“You use a kind of data assimilation scheme if you sneeze whilst driving

along the motorway. As your eyes close involuntarily, you retain in your

mind a picture of the road ahead and traffic nearby, as well as a mental

model of how the car will behave in the short time before you re-open

your eyes and make a course correction”.
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The objective observations come from several sources such as in-situ and satellite

measurements. With over 107 collected data a day, one would hope this is sufficient

to define a meaningful atmospheric state. However, the data are generally incom-

plete, redundant, geographically sparse, particularly for ground-based instruments,

and often only indirectly related to the model variables (as is the case for satellite

radiances). Furthermore, each data source has different error characteristics that

depend on the specifics of each instrument.

To obtain a complete state of the atmosphere, it is necessary to introduce some

background information provided by a short-term weather forecast. And certainly,

this prior estimate has imperfections too. Therefore, when combining all these

sources of data, it is important to take into account their respective errors and

characteristics. As early as the 18th century, Gauss proposed to “ weight the data by

the reciprocal of a measure of their error”. Taking into consideration all the relative

uncertainties in the system, an optimal combination would let the model bring the

necessary consistency to the observational data on the one hand, and on the other

hand, would allow the observations to correct the trajectory of the model, keeping it

on track. It follows that the major question that all data assimilation schemes aim

to answer is:

“how best can we use information from the model and the various avail-

able observational data, considering their respective errors, to produce an

optimal estimate of the atmospheric state that is better than model or

data alone?” (Lewis et al., 2006)

In meteorology, the main application of data assimilation is in NWP, where it

is used operationally to obtain a good estimate of the current atmospheric state to

initiate a forecast. Data assimilation is also useful for diagnostic studies of the at-

mosphere, in forecast verification, and for climate studies through reanalyses.
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Over the past few decades, great improvements have been achieved in NWP

performance and products (analyses and forecasts). This is mainly due to a better

understanding of the physics and the dynamics of the atmosphere which has led to

better forecast models. New generations of fast computers permit the integration of

sophisticated physics in the models at higher resolutions and advances in assimila-

tion methods (Rabier, 2005). The assimilation is now able to use more observations,

particularly from satellite instruments, to obtain a more complete observation cover-

age. Furthermore, assimilation methods have evolved towards a framework in which

observations over a period of time can be used to produce analyses that embeds the

dynamical constraints of the atmosphere. Therefore, the assimilation process estab-

lishes a bridge between modeling and observing the atmosphere.

A brief history of data assimilation methods

NWP being primarily an initial value problem, the determination of the initial

conditions for a forecast model is very important. A wide variety of assimilation

techniques has been developed over the last 50 years or so for this purpose (Daley,

1991), but most of them rely basically on the same statistical estimation principles

to take into account the relative accuracy of the observations and the background

state to weigh the contributions from these different sources to produce the analysis

(i.e. the initial conditions for the forecast model).

The earliest attempts by Richardson (1922) and Charney et al. (1950) used

hand interpolations of the available observations to grid points. Interest grew in

performing objective analysis through interpolation methods fitting data to grid

points (Charney, 1951). Panofsky (1949) is credited for pioneering the first objective

analysis based on two dimensional polynomial interpolation. It was followed by

Gilchrist and Cressman (1954) who put forward an interpolation scheme based on

minimizing mean square differences between observations and a quadratic polynomial
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representing the state field, within a radius of influence of the closest grid point. It

became quickly apparent that the available data are not enough to initialize the

models. The use of prior information (called background) to supplement rather

insufficient data was introduced by Bergthorsson and Döös (1955), Cressman (1959),

and later on by Gandin (1965). A climatological state was initially used (Gandin,

1963), but it is more common nowadays to use a previous short-range forecast as a

background.

The analysis state is basically produced by correcting the background term using

weighted observation increments :

[Analysis] = [Background] + weight× [Observation− background]

Early assimilation methods such as Cressman’s analysis (Cressman, 1959) and suc-

cessive corrections (Bergthorsson and Döös , 1955), introduced arbitrary weights at

each individual grid point. The statistical estimation theory, on the other hand,

provided the proper framework to establish what those weights should be. Hence,

the Statistical Interpolation (SI) method proposed by Gandin (1963) employs a mini-

mum variance estimation procedure that attempts to minimize the expected analysis

error variance. The optimal weights are determined from this minimization and to

make the problem tractable, a localized process of data selection is used that only

retains a few observations in the vicinity of each grid point. The analysis equation

is solved either grid point by grid point (e.g., Bergman 1979) or in small volumes

(Lorenc 1981). The data selection is invoked to reduce the quantity of observations

available locally to a number sufficiently small that the computational resources can

handle, and also to avoid the numerical issues associated with the inversion of large

matrices.

In order to avoid data selection and the local aspect of the SI, a global approach

was presented for NWP applications by Lorenc (1986), where the observations are

used globally. This is the variational form of the statistical estimation problem.
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While it is also a minimum variance technique, the variational approach defines a

cost function proportional to the square root of the distance between the analysis

and both the background and the observations (Sasaki, 1970). This function is then

minimized directly and globally, not grid point by grid point. The three dimensional

variational data assimilation (3D-Var) uses a set of observations at a single time to

look for the model state that best fits these observations, considering their relative

accuracy and that of the background state. Although 3D-Var can be equivalent to

the SI under some assumptions (Lorenc, 1981; 1986), it has a major advantage over

the SI in that it provides a more natural framework to use observations that are only

indirectly related to the atmospheric variables. In particular, satellite instruments

measure quantities like radiances at different wavelengths which could now be assim-

ilated in their raw form (Eyal, 1987; Derber and Wu, 1998).

In the earlier days of data assimilation, observations were available mainly at the

synoptic and sub-synoptic times (i.e. every 3, 6, or 12 hours). Performing the assim-

ilation at (or around) synoptic time made sense. However, as satellite observations

are available on a near-continuous basis, it became important that data assimilation

techniques should be able to extract information from observations distributed in

time. The Kalman Filter, proposed by Kalman (1960) for engineering applications,

is a sequential estimation method that can assimilate observations at any given time

while retaining information gained from past observations. However, when the di-

mension of the model state is large, its full implementation is beyond the capacity

of even the most powerful computers. Approximate forms have been proposed such

as the Ensemble Kalman filter (Evensen, 1994; Houtekamer and Mitchell, 1998), the

Reduced Rank Kalman Filter, RRKF, (Fisher, 1998) or the SEEK filter (Verron et

al., 1999). All these variants have the use of the underlying framework of Gaussian

probability distributions in common.
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Four-dimensional variational assimilation method (4D-Var) was suggested for

meteorological applications by Sasaki in his PhD thesis (1958), but it awaited the

introduction of adjoint methods to be feasible and practically affordable (Lewis and

Derber, 1985; LeDimet and Talagrand, 1986; Talagrand and Courtier, 1987). 4D-

Var is the temporal extension of 3D-Var for observations distributed over a period

of time called the assimilation window. Using the nonlinear dynamical model within

the assimilation process, the method seeks to obtain the model trajectory that best

fits the data over the entire assimilation window by minimization of a cost function

penalizing distances from the observations and from the background. The use of the

model permits capturing some of the flow dependent information in the observations

and in the error statistics (Fisher, 2001); the result being an analysis state that is

more consistent dynamically with the flow evolution. 4D-Var is now used opera-

tionally in major NWP centres, such as ECMWF (Rabier et al., 2000; Mahfouf and

Rabier, 2000, Klinker et et al., 2000), Météo-France (Janisková et al., 1999; Gauthier

and Thépaut, 2001; Desroziers et al., 2003), and recently, 4D-Var was implemented

at Environment Canada (Gauthier et al., 2007), the UK Met Office (Rawlins et al.,

2007) and the Japan Meteorological Agency (Honda et al., 2005).

The variational data assimilation problem can be cast in two forms : primal and

dual, both solving the same problem but in two different spaces; the model space

for the former and the observation space for the latter. The 3D and 4D-Var are

two primal variational schemes, whereas the dual schemes are usually referred to as

Physical-space Statistical Analysis System (3D/4D-PSAS), and were first introduced

for NWP applications by Cohn et al. (1998). Theoretical equivalence, at convergence

of the minimization and in the linear case, of these two formulations was shown in

Courtier (1997) who also showed that the equivalence holds when the temporal ex-

tension is introduced to obtain the 4D-Var and 4D-PSAS. The interest for the dual

form was first motivated by the reduced size of the problem, since the dimension of
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the dual space is commensurate with the number of observations whereas the model

space has the size of the number on degrees of freedom of the model which, for me-

teorological and oceanic applications is one to two orders of magnitude higher that

the number of observations. The dual method is also very close in its form to the

approach used in Statistical Interpolation but it uses the observations globally.

Due to the inherent limit of predictability of the atmosphere, changes in the ini-

tial conditions have a limited effect on the adjustment of the forecast to observations

present at later times. Moreover, deficiencies in the dynamical model are also respon-

sible in part for the misfit between the observations and the forecast. While errors

in the background and the observations are being accounted for in data assimilation,

the numerical model representing the evolution of the atmospheric/oceanic flow is

usually assumed perfect. This is the assumption used in operational implementations

of four dimensional variational data assimilation (4D-Var and 4D-PSAS). To account

for model errors, the constraint that the analysis is entirely determined from a model

integration is relaxed. This leads to the so-called weak-constraint 4D-Var, where the

analysis solution is required to satisfy the model equations only approximately, not

exactly (Sasaki, 1970; Derber, 1989, Trémolet 2006), which allows the assimilation

to adjust the trajectory and compensate for the part of the discrepancy to the truth

that is due to the model error.

Model errors in variational data assimilation

Being based on statistical estimation, assimilation products (analysis and fore-

cast) rely directly on our knowledge about errors affecting all information sources :

the observations and the background in the first instance. If the model is assumed to

be perfect, errors in the initial conditions could explain all the forecast error. This is

the perfect model assumption. However, the forecast error can also be attributed to
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errors in the NWP model itself, associated with approximate numerical representa-

tions of the atmosphere, they contain errors due to lack of resolution, approximations

in the representation of small-scale physics or boundary conditions, or inappropriate

external forcing terms, etc. These errors have long been assumed small enough com-

pared to the other errors and could be neglected. Nevertheless, many studies have

shown that these errors do affect the quality of the analysis and the forecast if they

are not properly accounted for in the assimilation process (Derber, 1989; Wergen,

1992; Zupanski, 1993; Bennett et al., 1993 and Zupanski,1997, Bennett, 2002).

It has been proposed that the perfect model assumption be relaxed, in that the

model can be considered as imperfect, which allows for a formulation of the assimi-

lation problem that takes into account the uncertainties in the model along with the

uncertainties both in the observations and in the background term. This is referred

to as the weak-constraint formulation of variational data assimilation (Sasaki, 1969,

1970; Derber, 1989). In this framework, the 4D-Var is extended to correct for an

additional term representing the model error and weighted by the model error co-

variances (Jazwinski, 1970; Derber, 1986). While in the strong-constraint 4D-Var,

the analysis trajectory (the best possible fit to the time-distributed observations) is

required to satisfy exactly the model equations that are imposed as a strong con-

straint, this trajectory is allowed, in the weak-constraint 4D-Var, to deviate from the

model trajectory by an amount representing the importance of the model error.

Although the basic ideas behind the weak-constraint formulation are well es-

tablished, accounting for model errors is still one of the challenges that the data

assimilation community is facing; for the weak-constraint formulation is computa-

tionally very demanding on the one hand (Dee, 1995), and also no general form of

the model error covariances is known yet. Furthermore, while model error includes

a bias component and an unbiased one, most data assimilation techniques use the
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underlying assumption of unbiased error. Therefore, one of the fundamental prob-

lems of the weak-constraint formulation is how to estimate and represent the model

error, for both its systematic part (bias) and its unbiased part.

In data assimilation, a good estimation of error statistics is crucial. In the case

of background errors, comparison to observations is used to test the consistency

of the error statistics and to perform a recalibration until consistency is achieved

(Hollingsworth and Lönnberg, 1986; Desrozier et al., 2005). Given the number of

degrees of freedom, not enough observations are available to characterize these error

statistics. Hence, modeling hypotheses are introduced to reduce significantly the

number of parameters to estimate. Model errors, on the other hand, are even more

complex and difficult to approach as time correlations are an additional issue that is

important and cannot be discarded.

Moreover, when accounting for model errors, the size of the control variable

increases by two orders of magnitude. With 107 degrees of freedom in current NWP

models, model error statistics as described by a covariance matrix Q would have of

the order of 109 × 109 elements that need to be estimated.

“This is more than the total number of observations of the atmosphere

taken since meteorological observations started in the 1940s. Since ap-

proximately 6×106 observations are available each day, it would take 250

million years to gather as many observations as there are parameters in

Q”. Trémolet (2006)

The size of the problem makes this formulation very expensive for any NWP center

to consider, even with the computer power now available. To make the problem

tractable requires that the representation of model error and its statistics be simpli-

fied as is the case for background errors.
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As discussed earlier, using the same principles, two approaches can be taken to

solve the variational assimilation problem. Courtier (1997) showed this to be true

for 3D and 3D-Var, both having their ”dual” equivalent. It is also shown that this

can be extended to the weak-constraint 4D-Var as well. Its dual form offers the

advantage of considerably reducing the dimension of the control variable. With the

numbers given by Trémolet (2006), the dual control variable would be ≈ 6 × 106

instead of 109. The dimension of the observation space is indeed unchanged whether

the assimilation is performed in the strong or weak-constraint framework.

Overview of the thesis

As stated earlier, the motivation for this thesis is accounting for model errors

in data assimilation through the weak-constraint formulation. The dual form of this

variational problem seems to be appropriate but few of its properties were prop-

erly documented since it was first proposed for operational applications (Cohn et

al., 1998). The first implementation of a 3D-PSAS scheme was adopted by NASA’s

Global Modeling Assimilation Office (GMAO) and the Naval Research Laboratory

(NRL) (Cohn et al., 1998; Daley, 2000), and was designed in an SI-based data assim-

ilation system to compare global vs. local data selection as performed in the SI. In

that sense, it employs a representation of error covariance statistics similar to that of

the SI system, and uses a global conjugate gradient solver, preconditioned by a series

of smaller SI-like problems (Cohn et al., 1998). In Courtier (1997), it was shown that

the 3D-PSAS and its four dimensional extension 4D-PSAS are theoretically equiva-

lent to the 3D-Var and 4D-Var respectively, under the following assumptions : the

linearity of the model and the observation operator2 , the use of the same covariance

2 The observation operator defines a model equivalent of the observational state
at the observation locations
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matrices, and more importantly, the equivalence is only valid at convergence of the

minimization of the objective functions. Furthermore, using their own respective

preconditioning as proposed by (Amodei, 1995), both 3D/4D-Var and 3D/4D-PSAS

should, in theory, converge at the same rate and with the same overall cost (Courtier,

1997). Some convergence properties of PSAS were also examined by Louvel (2001)

in a controlled context with an oceanic primitive equation model (synthetic observa-

tions and identity observation operator), and Auroux (2007) presented an extension

of the dual method to some nonlinear situations.

In this thesis, the dual method is studied in depth, first in an operational context

aiming to examine the extent to which the theoretical equivalence between 3D/4D-

Var and 3D/4D-PSAS formulations still hold in a realistic and complex framework.

The focus is on their convergence properties, their preconditioning and their formula-

tion in the nonlinear case. Then, in a simplified framework, the effect of the choice of

the minimization algorithm on the behavior of the dual approach is investigated, and

finally, the weak-constraint formulation is examined both in the primal and dual case.

This thesis is organized as follows. The second chapter presents the theoretical

framework of data assimilation methods. The presentation focuses on the schemes

discussed and studied in the following chapters. The primal and dual formulations

of variational data assimilation are presented in the three dimensional case, as well

as their four dimensional extensions, both in the strong and weak-constraint frame-

works.

In the third chapter, an intercomparison study is conducted between the primal

and dual methods in a practical and operational context. In Courtier (1997), it was

shown that with proper conditioning of the minimization problem, the two algorithms

should have similar convergence rates and computational performances. This chapter

examines this statement in the context of the variational data assimilation system of
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the Meteorological Service of Canada to show the equivalence between the 3D-Var

and the 3D-PSAS algorithms. The modularity of the operators is discussed and the

emphasis is on the convergence properties of the dual method. The study revealed a

particular discrepancy in the argument of Courtier (1997) that made the 3D-PSAS

converge more slowly. Speed-up of the convergence can be achieved by using the

approximate Hessian3 of the problem to precondition the next assimilation. In this

chapter, it is shown that this can easily be done in 3D-Var but that in 3D-PSAS,

the control variable’s morphology changes from one assimilation to the next. A

remapping method is shown to make it possible to reuse the Hessian to precondition

the next analysis. This is shown to be a practical and efficient preconditioning

method.

In El Akkraoui et al. (2008), both methods are shown to be equivalent at

convergence but the dual method exhibits a spurious behavior at the beginning of

the minimization which leads to less probable states than the background state. This

is a serious concern when using the dual method in operational implementations when

only a finite number of iterations can be afforded. In the fourth chapter, we focus

on this convergence problem. The 3D-Var minimizes a cost function that can be

related to the probability that a given state is the true state. As the minimization

reduces this cost function, each iterate has a higher probability of being the true

state than the previous one. This is not so for 3D-PSAS as shown in El Akkraoui et

al. (2008). In this chapter, it is shown that the 3D-PSAS will lead to an increasingly

more probable state in so far as the minimization reduces the norm of the gradient,

instead of the dual cost function itself. This can be achieved by using minimum

residual methods which ensure a monotonic decrease of the norm of the gradient.

This holds for the incremental forms of both the three and four dimensional cases. A

3 The second derivative of the cost function

13



new convergence criterion is introduced based on the error norm in model space to

make sure that, for the dual problem, the same accuracy is obtained in the analysis

when only a finite number of iterations are completed.

In the fifth chapter, we examine the weak-constraint formulation, both in the

primal and dual forms. Extending the equivalence of these forms to the case where

model errors are accounted for is presented, and some issues related to the precon-

ditioning of the minimization and the sensitivity to the linearity assumption of the

operators are discussed.

The concluding chapter summarizes the results and findings of this thesis along

with some perspectives on future work.
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2 Overview of data assimilation
methods

Data assimilation is a method whereby observations are combined with an a

priori estimate of the system (the background) obtained from forecasts by a numerical

model to produce an optimal estimate, the analysis, of the evolving state of the

system. Thus, in a data assimilation process, there are three key components: a set

of observations, a dynamical model that produces a forecast, taken as an a priori

estimate, and an analysis scheme.

Being based on the principles of statistical estimation, the concept of error,

error estimation and error modeling is central to the concept of data assimilation.

The observations have errors arising from various sources: e.g. instrumental noise,

environmental noise, sampling...etc. Dynamical models are imperfect too, with errors

arising from the approximate physics and parameterizations, the discretization of

continuum dynamics into a numerical model, as well as the inherent forecast errors

resulting from the uncertainties in the initial conditions. A good estimation of the

relative uncertainty of each source of data is a prerequisite to a good analysis, the

aim being that, in the assimilation process, the information content of more accurate

data should be given more weight.

This chapter is a brief introduction of how the data (observations and back-

ground) are melded in the data assimilation process, how the errors are accounted

for, how their statistics are estimated and how the analysis is produced. The reader

is introduced to some of the data assimilation techniques that will be used in the
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following chapters, along with basic concepts, terminology, and some mathematical

and statistical notations that will be used in this thesis.

2.1 The basic concepts of data assimilation

Data assimilation aims to find the optimal model representation of the atmo-

spheric system, using all available data, and considering what is known about their

errors. The word optimal refers to the statistical basis of this process. As discussed

in Lorenc (1988), and in Rodgers (2000), the statistical estimation problem of data

assimilation can be formulated using Bayesian theory.

2.1.1 Bayesian estimation

Let x be the unknown state of the atmosphere to be estimated, and y the vector

of all the observations that contains information about x. In the Bayesian framework,

the unknown x is treated as a random variable. It is also assumed that all the prior

information about this unknown is summarized in a known prior distribution p(x)

of x. As explained in Lewis et al. (2006) :

“It is assumed that nature picks a value of x from the distribution p(x)

but decides to tease us by not disclosing her choice, thereby defining a

game. In this game, we are only allowed to observe y whose conditional

distribution p(y|x) is known.”

The conditional probability distribution p(y|x) is the probability of the observed

state y being true, given x.

The Bayesian theory states that the probability distribution that the model

state x is the true value of the atmospheric state, given that y has been observed, is

expressed as :

p(x|y) =
p(y|x)p(x)

p(y)
(2.1)

where p(y) is the marginal distribution of y, that represents our a priori knowledge

about the true value of the observations. It is independent of x and therefore plays
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the role of a normalization constant. The conditional probability p(x|y) is known

as the a posteriori distribution of x given the observation y. Therefore, the most

probable state is obtained by finding the value of x that maximizes this probability

(Lewis et al., 2006). This is the state that we are interested in, and it corresponds

to the mode of p(x|y), or the maximum likelihood estimate of x. It is called the

analysis state, and denoted xa.

The objective is then to combine the information in these two approximately

known quantities (p(x) and p(y|x)) in order to obtain the optimal estimate of x. In

practice, these two probability distributions are not known, and are only estimated

based on what is known about the errors affecting each term. Although the Bayesian

framework allows arbitrary probability distributions, most data assimilation schemes

often assume Gaussian distributions; a debatable assumption whose validity has re-

ceived increasing interest over the past few years. Note that, as in most current

NWP implementations, the error distributions all through this thesis are assumed

Gaussian. In this context, the analysis state xa is then a minimum variance estimate.

a− The background state

In the context of atmospheric data assimilation, the prior knowledge of the state

of the atmosphere is called the background state, and denoted xb. It can be derived

from a climatology or a previous forecast. Ideally, the background should be the

best estimate of the state of the atmosphere prior to the use of current observational

data. Within the process of successive assimilation cycles, using a previous analysis

state as a background provides a good estimation of the prior information about the

atmosphere as depicted by the model and by past observations.

It follows that the probability p(x) in (2.1) represents our a priori knowledge of

the state of the atmosphere contained within the background state. In the absence of

any other information, the most probable state would have to be xb as p(x|y) ≡ p(x)
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in this case.

Let εb = x − xb denote the background error. It is assumed that the back-

ground state is unbiased; i.e. the mean of the error is E(εb) = 0, and the covariance

structure is given by the symmetric positive definite matrix B = E[εbε
T
b ], called the

background error covariance matrix. The properties of B will be discussed later

in this chapter.

Assuming Gaussian distributions of errors, one can write:

p(x) =
1

c1
exp

[
−1

2
(x− xb)

TB−1(x− xb)

]
(2.2)

where c1 is a normalization constant. The exponent can be seen as a measure of the

distance of x to the background xb, weighted by the inverse of the background error

covariances, B−1.

b− The observed state and the observation operator

The global observing system provides numerous, diversified and nearly real-time

collected data for NWP operational applications. However, the spatial data coverage

is very sparse and irregular. This means that not all observations are collected at

the predetermined model grid points. Besides, some observations are only indirectly

related to the variables of the dynamical model.

To compare the observed values and the model representation of the system,

some processing must be done to bring these two quantities to a common ground.

The observation operator, represented by a function H, generates from the model

state the equivalent of the observations. In practice H is a nonlinear collection of

interpolation operators from the model discretization (the model space) to the obser-

vation points (the observation space), and conversions from model variables to the

observed parameters (Lorenc 1986; Pailleux 1990). H can be as simple as a spatial
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interpolation of the model variable to the observation location, but in most cases,

more complex transformations are needed. For instance, observation of satellite radi-

ances implies that H will include a radiative transfer model to produce radiances in

different wave bands associated with a given atmospheric profile. Thus, H includes

the physics of the measurement and acts as the bridge that links the model variables

and the observations.

The observation error, εo, ( i.e. the departure to the true representation of the

system in the observation space) is defined as : εo = y−H(xt). It represents errors

in the observation process such as errors in the instruments, in the observation op-

erator, representativeness errors1 ...etc). As was the case for the background error,

the observation error is assumed unbiased, E(εo) = 0, and the covariances are repre-

sented by the observation error covariance matrix: R = E[εoε
T
o ]. Note that R

is by construction a symmetric positive definite matrix defined in observation space.

In practice, the observation error covariance matrix is obtained from instrument er-

ror estimates which, if independent means that R is often (but not always) taken as

diagonal.

Using these notations, the conditional probability (in 2.1) of the observed state

y being true, given the model state is x = xt can now be written as

p(y|x) =
1

c2
exp

[
−1

2
(y −H(x))TR−1(y −H(x))

]
(2.3)

where c2 is a normalization constant. As in the case of the background state, the

exponent can be seen as a measure of the distance, in observation space, of the state

1 Since observations are point located, they may not be representative of the actual
state of the atmosphere on the scale of the assimilation model (Swinbank et al., 2003).
Representativeness error is often associated with the subgrid scale variability.
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x to the observations y, weighted by the inverse of the observation error covariances,

R−1.

In the Gaussian case, and using (2.2) and (2.3), (2.1) can be re-written as

p(x|y) =
1

c′
exp

[
−1

2
(x− xb)

TB−1(x− xb)−
1

2
(y −H(x))TR−1(y −H(x))

]
(2.4)

where c′ = c1c2p(y) is independent of x.

The mode of p(x|y) is the model state x with the maximum probability. It can

be obtained by minimizing the objective functional defined by

J(x) = −ln(p(x|y)) (2.5)

Therefore, the maximum likelihood estimate of the state of the atmosphere is ob-

tained by minimizing the functional

J(x) =
1

2
(x− xb)

TB−1(x− xb) +
1

2
[y −H(x)]TR−1[y −H(x)] (2.6)

which can be seen as a measure of the combined distances of the model state to the

observations and to the background state, weighted by the inverse of their respective

error covariances. Through the minimization process, a fit of the model state to the

observations is realized: the more accurate the observation, the closer the fit to the

observations will be.

2.1.2 Modeling and estimation of the background error covariance ma-
trix

Statistical estimation relies on the error statistics defined by B and R. The

background error covariance matrix is a key element of any assimilation system as it

controls the way information is spread out to ensure that observations of one model

variable produce dynamically consistent corrections in the other model variables.
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Despite its importance, however, the way in which the background error covariance

matrix is modeled in NWP assimilation systems is dominated by the compromises

that must be made. This is due to the difficulties to estimate it fully as its size

exceeds the volume of available observations. The state vector of a typical analysis

system for NWP has a dimension around 107, with a total number of observations

of the order of 106. Consequently, the background error covariance matrix contains

roughly 1014 elements. There are simply too many unknown elements to estimate.

a- Modeling of B:

The error affecting a given term in the assimilation system (xb, say) is theoret-

ically defined as the departure from its true counterpart (xt) : (i.e εb = xt − xb).

In practice, the truth is unknown, and the error can only be estimated from a large

number of realizations, the statistics of which are expected to converge to values that

characterize the errors themselves.

As stated earlier, the background errors are the result of error growth in a short

term forecast associated with the initial uncertainty in the initial conditions. In

practice, given uncertainties of all inputs of the model, an ensemble of forecast at

a given lead time (∼ 6h) is obtained each having errors on the model variables.

Since the errors are assumed ergodic, each forecast difference can be interpreted as

a realization of the stochastic process. The background error is then defined as the

statistical mean of the second moments, assuming that the average error is removed.

< (x− x̄)(x− x̄)T >≈ B (2.7)

For instance, for a model state defined as x = (uT ,vT ,TT ), where u and v are

the components of the wind field and T is the temperature field, the background
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error covariance matrix is expressed as

B =

 < εuε
T
u > < εuε

T
v > < εuε

T
T >

< εvε
T
u > < εvε

T
v > < εvε

T
T >

< εTε
T
u > < εTε

T
v > < εTε

T
T >


where the brackets represent a statistical mean.

The diagonal elements of the matrix contain variances, for each variable of the

model, and the off-diagonal terms are the cross-covariances. This globally establishes

a connection between any field variable at any given location (grid point) to field vari-

ables at other locations. That is, the underlying dynamics create a coupling between

the error of model variables at different locations. These couplings are important as

they determine how information from observations is spread spatially in a consistent

way. For instance, observations of the wind field will provide information about the

mass field due to the geostrophic balance constraint, and vice versa (Parrish and

Derber, 1992; Derber and Bouttier, 1999). The background error covariance matrix

is thus a crucially important quantity in any data assimilation system.

The size of the matrix makes it necessary to simplify the parameterize of the

error statistics. A covariance model is used to reduce the number of degrees of free-

dom. Hollingsworth and Lönnberg (1986) assumed background error correlations to

be homogeneous and isotropic while variances varied in the vertical and with latitude.

Multivariate analysis assumed dynamical relationships between mass and winds and

the ”unbalanced” components are assumed to be totally uncorrelated (Parish and

Derber, 1992; Derber and Bouttier, 1999; Gauthier et al., 1998).

b- Estimation of the error statistics

Many methods have been proposed to estimate the background error statistics,

but the focus here is only on those describing the stationary statistics of the back-

ground error. The ”NMC” (now NCEP) method is based on differences between
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forecasts (xf ) of different lead times which verify at the same time (Parrish and

Derber, 1992; Rabier et al.,1998). Lagged forecasts are taken as representative of

forecast error caused by errors in the initial conditions. Typically, pairs of forecasts

whose lengths differ by 24 hours are used, since this minimizes the chance of aspects

of the model’s diurnal cycle being incorrectly interpreted as background errors. The

background error covariance matrix is then expressed as B ≈< εfε
T
f >, where εf

represents the forecast differences (e.g. εf = (xf(48h) − xf(24h))− (xf(48h) − xf(24h))).

This gives the structure of the background errors and the amplitude is rescaled with

respect to innovations to get proper representation of 6-h forecast error characteris-

tics.

Another method to estimate the background error statistics is described in

Houtekamer et al. (1996), and Fisher (2003a and 2003b), in which an ensemble

of forecasts obtained by perturbing the observations in the analysis system is used.

As explained in Fisher (2003b), the resulting analysis will be perturbed by an amount

drawn from the distribution of analysis error. Besides, the background state will also

be perturbed. By neglecting the effects of model error, the perturbation to the fore-

cast will have the statistical characteristics of the background error.

2.2 Variational Data Assimilation

In variational data assimilation, the state of the atmosphere at a given time is

estimated by minimizing an appropriate objective function (as is 2.6). In the Gaus-

sian case, its minimum can be seen as the maximum likelihood estimate of the state

of the atmosphere at the analysis time.

2.2.1 Three-dimensional variational assimilation: 3D-Var

The three dimensional variational assimilation scheme (3D-Var) solves the sta-

tistical estimation problem by minimizing the functional (2.6). The data assimilation

problem is then a minimization of the least square error in the background and the
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observations, all weighted by the inverse of the covariance matrices, over the assim-

ilation period. The weight is inversely proportional to the magnitude of the errors

affecting each term.

Figure 2–1: Schematic of the 3D assimilation. The analysis state is found by enriching
the background state with information from the observations assumed to be all taken at
the analysis time T.

The state vector can be written in terms of an increment (or a perturbation),

δx, representing the misfit to the background state : δx = x− xb. Using first order

Taylor series, the nonlinear observation operator H can be linearized in the vicinity

of the background state such that

H(x) ≈ H(xb) + Hδx

where H is the Jacobian of H. In 3D-Var, this has been found to be a relatively

good approximation in so far as the linearization is made around a current estimate
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of the state of the atmosphere, which ensures that the increment is small enough for

the approximation to hold.

By introducing the innovation vector (i.e. the misfit between the observation

state y and the background state at the observation locations), y′ = y − H(xb),

and re-arranging terms, the objective function of 3D-Var in (2.6) will now be defined

with respect to the increment δx as

J(δx) =
1

2
δxTB−1δx +

1

2
(Hδx− y′)TR−1(Hδx− y′). (2.8)

This is the incremental2 formulation of 3D-Var. The minimum of J is found by

setting the gradient to zero, and therefore,

∇δx
J =

(
∂J

δx

)T

= B−1δx + HTR−1(Hδx− y′)

= (B−1 + HTR−1H)δx−HTR−1y′

= 0

(2.9)

Two approaches can be used to solve ∇δx
J = 0. From (2.9), one can directly

formulate the analysis increment

δxa =
[
B−1 + HTR−1H

]−1
HTR−1y′

= Ky′
(2.10)

where K is the gain matrix and, in the linear and Gaussian case, can be written in

two forms
K =

[
B−1 + HTR−1H

]−1
HTR−1

= BHT
[
R + HBHT

]−1
(2.11)

2 The need for an incrementation formulation will be discussed when presenting the
4D-Var.
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Given the large dimensions of the matrices involved, and the difficulty to calcu-

late the inverse of a large matrix, K cannot be computed explicitly. In practice, find-

ing the zero of the gradient can be approached as solving a linear system Ax−b = 0,

where A in this case is the Hessian (i.e., the second derivative) of the objective func-

tional A = B−1 + HTR−1H, and b = HTR−1y′. Iterative minimization algorithms

(such as the Limited-Memory Quasi-Newton or the Conjugate Gradient) can then

be used to approach the minimum iteratively. The minimization can be stopped

by limiting arbitrarily the number of iterations, or by requiring that the norm of

the gradient decreases by a predefined amount during the minimization, which is an

intrinsic measure of how much the analysis is closer to the optimum than the initial

point of the minimization.

To speed up the convergence of the minimization, a change of variable v =

B− 1
2 δx is introduced (Lorenc, 1988; Gollub and Van Loan, 1996) as a preconditioner.

The cost function becomes

J(v) =
1

2
vTv +

1

2
(HB

1
2v − y′)TR−1(HB

1
2v − y′) (2.12)

whose gradient is obtained by differentiating J with respect to v

∇vJ = (In + B
1
2HTR−1HB

1
2 )v −B

1
2HTR−1y′ (2.13)

The second derivative of J is the Hessian

J′′ = In + B
1
2HTR−1HB

1
2 (2.14)

whose diagonal elements are largely dominated by the identity matrix term In (where

n is the size of the model space) when few observations are present (Fisher and

Andersson, 2001). With increasing number of observations, this preconditioning is

degrading its efficiency and approximate forms of the Hessian may be used to improve

it.

26



Once the approximate solution va has been found by the minimization algo-

rithm, the analysis increment and the analysis itself are obtained from

δxa = B
1
2va and xa = xb + δxa

Note that the preconditioning is an important step based on information avail-

able beforehand. A well conditioned problem will converge faster to the expected

solution. The properties of the Hessian are critical in this matter. The condition

number3 of this matrix will determine the rate of convergence; the closer to 1, the

faster the convergence. Thus, the preconditioning step aims to reduce the condition

number of the Hessian. This will be discussed further in the next chapter.

The Hessian J′′ can also be related to the analysis error covariance matrix (Pa =

E[εaε
T
a ]) in that it is its inverse

Pa = J′′
−1
. (2.15)

This can simply be found by noticing that, from (2.10), the general form of the anal-

ysis state, and the analysis error are respectively xa = Ky + (In−KH)xb, and εa =

Kεo + (In − KH)εb. Using the definition of the gain matrix K and substituting

terms, yields immediately Pa = (B−1 + HTR−1H)−1.

Equation (2.15) is only true in the present case where the observation operator

is linear and when error statistics are Gaussian, and under the assumption that back-

ground and observation errors are uncorrelated (Rabier and Courtier, 1992; Fisher

and Courtier, 1995). This property ensures that minimizing J is a way of reducing

the total analysis error variance and referring to (2.5) that the minimum is a more

3 The condition number of a symmetric positive definite matrix is the ratio of the
largest to the smallest eigenvalue of this matrix.
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probable state since the analysis error is smaller than both the background and ob-

servation error.

At convergence, the 3D-Var gives an analysis that is the most probable state,

according to all the information given by the observations, the background, and their

assumed error statistics. Moreover, the smoothing properties of B ensure that the

information in the analysis increments takes into account the balance properties of

the model variables, as introduced in the formulation of B.

However, the 3D-Var method presents some limitations. As shown in fig.2–1,

all the observations collected within the assimilation window (usually a time interval

of [−3h,+3h]) are assumed to be taken and valid at the analysis time. This can

be problematic, for instance, for rapidly evolving atmospheric situations, where an

early (late) observation may not be very representative of the atmospheric situation

three hours later (before). To circumvent this limitation, a slightly modified version

of the 3D-Var can be used, in which the innovations are obtained by comparing the

observations against the forecast valid at the observation time. This approach is

referred to as the First Guess at Appropriate Time (3D-FGAT) and can be seen as

a half-way scheme between using all the observations at one fixed time as in 3D-Var,

and properly accounting for the time dimension of the observations and of the dy-

namical reality as in 4D-Var. This will be discussed next.

2.2.2 Four-dimensional variational assimilation: 4D-Var

Unlike the 3D-Var, where no proper account is made of the observation time,

4D-Var is presented as a temporal extension of the 3D-Var for observations that

are distributed in time. The basic concept is the same as 3D-Var provided that a

nonlinear forecast model M is used as part of the observation operator.

As shown in Fig.2–2, time integrations of the model M are used to provide the

model state at the time of the observations. More precisely, at each time step ti, the
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Figure 2–2: Schematic of the 4D-Var assimilation. The model trajectory is corrected to
fit the time-distributed observations over the entire assimilation window.

model state xi is related to the initial conditions by

xi = Mi,0(x0) (2.16)

where Mi,0 is a forward integration of the model from time t0 to time ti. In the

standard formulation of 4D-Var (Lewis and Derber, 1985; Le Dimet and Talagrand,

1986), the solution sought is the ”trajectory” of the dynamical model that best fits a

series of time-distributed observations {yi, i = 0..q} over a time window (of 6h, 12h

or 24h). The objective function of 4D-Var does not vary much from that of 3D-Var

in (2.6):

J(x0) =
1

2
(x0−xb)

TB−1(x0−xb)+
1

2

q∑
i=0

(Hi(xi)−y0
i)
TRi

−1(Hi(xi)−y0
i) (2.17)
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where here the nonlinear observation operator as well as the observation error co-

variance matrix are defined for each time step ti as Hi and Ri respectively.

Substituting the dynamical constraint (2.16) into the objective function, the

control variable (the trajectory x(t)) is entirely defined by the initial conditions x0.

This is consistent with the “perfect” model assumption used in this context; that is,

the analysis state at the initial time can be integrated with the dynamical model to

find the optimal analysis “trajectory”. The minimization of the objective function

J(x0) =
1

2
(x0−xb)

TB−1(x0−xb)+
1

2

q∑
i=0

[
Hi(Mi,0(x0))− y0

i

]T
Ri

−1
[
Hi(Mi,0(x0))− y0

i

]
(2.18)

requires the computation of its gradient. From variational calculus, and using the

increment δx0 defined as previously (δx0 = x0 − xb), one can write

δJ(x0) = J(x0)− J(x0 − δx0)

≈ δxT0 ∇J(x0)
(2.19)

An expansion of J(x0 − δx0) in a Taylor series is then performed, and only the

leading terms are kept. For that, one needs to define a first-order approximation to

the evolution of perturbations to the nonlinear forecast trajectory. This is given by

the Tangent Linear Model (TLM) which is a linearized version of the nonlinear model

dynamics (Le Dimet and Talagrand, 1986; Talagrand and Courtier, 1987; Courtier

et al., 1994). The linearization is performed around the current background state,

so that the perturbations evolve as

xi = Mi,0(x0) ≈ Mi,0(xb) + Mi,0δx0 (2.20)

where Mi,0 is a linear operator that transports the initial conditions δx0 of the

perturbation to time ti, and is referred to as the propagator of the TLM. Mi,0 is such

that

Mi,0 = Mi,i−1 · · ·M2,1M1,0 (2.21)
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where Mi,i−1 describes the operator associated with the completion of a single time

step of the TLM. The adjoint, MT , of the TLM corresponds to the transpose of the

Mi,0, and has a very useful property; it can be used as a “combination” of linear

operators:

MT
i,0 = MT

1,0M
T
2,1 · · ·MT

i,i−1 (2.22)

where MT
i,i−1 can be seen as a backward integration in time, from ti to ti−1. It follows

that (2.19) can be written as

δJ(x0) = δxT0

[
B−1(x0 − xb) +

q∑
i=0

MT
i,0H

T
i Ri

−1
[
Hi(Mi,0(x0))− y0

i

]]
(2.23)

where as before, HT
i is the transpose of the Jacobian of the non linear observation

operator. Using (2.19) and (2.23), the gradient of the objective function in (2.18) is

then

∇x0J = B−1(x0 − xb) +

q∑
i=0

MT
i,0H

T
i Ri

−1
[
Hi(Mi,0(x0))− y0

i

]
. (2.24)

Therefore, one integration of the full nonlinear model and its adjoint are required for

each iteration of the minimization process. This is computationally expensive, since

the total cost of the minimization can be evaluated as the cost of an integration of

the nonlinear model for approximately 30 days. The incremental formulation intro-

duced earlier in the case of 3D-Var, takes all its meaning in the 4D-Var context, it

reduces the cost of the 4D-Var minimization since it uses linearized model integra-

tions (Courtier et al., 1994).

The incremental form of the objective functional and its gradient can then be

written as:

J(δx0) =
1

2
δx0

TB−1δx0 +
1

2

q∑
i=0

[HiMi,0δx0 − y′
i]
T
Ri

−1 [HiMi,0δx0 − y′
i] (2.25)
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∇δx0
= B−1δx0 +

q∑
i=0

MT
i,0H

T
i Ri

−1 [HiMi,0δx0 − y′
i] (2.26)

where the innovation vector is defined, at each time step ti, as y′
i = yi−Hi(Mi,0(xb)).

For the large-scale dynamics, 4D-Var adjusts the more energetic large-scale com-

ponents first (Thépaut and Courtier, 1991; Tanguay et al., 1995; Laroche and Gau-

thier, 1998), the Tangent Linear Model (TLM) and its adjoint can then be used at

a coarser resolution with simplified physical parameterizations instead of the fully

nonlinear model (Courtier et al., 1994). The simplifications need to provide a rea-

sonable approximation for the evolution of perturbations over a short period of time

when compared to what can be obtained with the full model.

Using the TLM and its adjoint in the incremental formulation instead of the non

linear model, the cost of one model integration is significantly reduced and the 4D-

Var problem became tractable and could be used for operational NWP applications.

However, another limitation arose: the accuracy of the analysis state is deteriorated

by the linearizations of H and M. As the TLM is a linearization around a model

trajectory, it has nonlinearities as the analysis increment δxa0 ≡ δx0 is of finite

size. As discussed in Courtier et al. (1994), outer iterations are introduced by

integrating the full nonlinear model with the initial conditions x
(1)
0 = xb+δx

(0)
0 . The

comparison to observations is reevaluated and the linearization M
(1)
i,0 is refreshed.

The minimization of the full nonlinear problem is then carried out through series of

linear approximations, which is akin to what is often done to solve nonlinear systems

of equations. Gauthier et al. (2007) describe how this was implemented in the

operational 4D-Var assimilation system at the Meteorological Service of Canada.

As mentioned before, B is the background error covariance matrix at the ini-

tial time t0. Fisher (2001) pointed out that in the 4D-Var case, the forecast error

covariance matrix is expressed at each time ti as Mi,0BMT
i,0 (see the discussion in

Appendix D of Fisher and Andersson, 2001). Thus, the covariance matrix is implic-

itly evolved in 4D-Var using the dynamics of the TLM. As a consequence, both the
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covariance matrix at the observation time and the analysis increments become flow

dependent. Note also that for observations at the initial time t0, the analysis incre-

ments are the same as for 3D-Var (M0,0 ≡ In). Therefore, at each assimilation cycle,

the initial covariance matrix is a static flow-independent matrix B. That is, the

flow-dependent covariances are not propagated to the next cycle (Fisher, 2001). The

cycling of 4D-Var can be done by using simplified forms of the Kalman filter such as

the Reduced Rank Kalman Filter (Fisher, 1998; Fisher and Andersson, 2001). More

recently, ensemble approaches have been used to provide flow-dependent background

error covariances to 4D-Var (Berre et al., 2009).

Following Courtier (1997), a compact form of (2.25) can be introduced as:

J(δx0) =
1

2
δxT0 B−1δx0 +

1

2
(Gδx0 − y′)TR−1(Gδx0 − y′) (2.27)

with y′ =

 y′
0

...
y′
q

 , the new form of the observation operator is G =



H0

H1M1,0
...

HiMi,0
...

HqMq,0


,

and R is the block diagonal matrix of the Ri. This compact form will be useful when

introducing the physical-space and the weak-constraint formulations in the following

sections.

The same preconditioning as in the 3D case can be used here, by introducing

the change of variable v = B− 1
2δx, and the functional then becomes

J(v) =
1

2
vTv +

1

2
(GB

1
2v − y′)TR−1(GB

1
2v − y′) (2.28)

However, the Hessian being J” = B−1 + GTR−1G, preconditioning with respect to

B alone may not be as efficient as the 3D case (Andersson et al., 2000).
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One can then see that the operator G embeds most of the differences between

the 4D-Var and 3D-Var objective functionals in (2.28) and (??). As explained ear-

lier, the 4D-Var scheme is a generalized form of the 3D-Var; the time dimension

and the flow dependencies being the major improvements to the three dimensional

method. The first operational implementation of a 4D-Var system was completed in

1997 at ECMWF (Rabier et al., 2000; Mahfouf and Rabier, 2000, Klinker et et al.,

2000). Another similar system was implemented at Météo-France in 2000 (Janisková

et al., 1999; Gauthier and Thépaut, 2001; Desroziers et al., 2003). Recently, 4D-Var

was also implemented at Environment Canada (Gauthier et al., 2007), the UK Met

Office (Rawlins et al., 2007) and the Japan meteorological Agency (Honda et al.,

2005). The impact of adopting 4D-Var was qualified as substantial, resulting in im-

provements in NWP quality and accuracy (Rabier, 2005), which was mainly due to

better consistency between the 4D-Var analyses and the dynamics of the atmosphere

(Talagrand, 2003).

2.3 Variational Data Assimilation techniques: the dual form

2.3.1 3D-PSAS

The dual method is introduced here following Da Silva et al.(1995) and Courtier

(1997). The minimum of the objective function of 3D-Var, J , corresponds to the

analysis increment δxa, which is written as

δxa = BHT (R + HBHT )−1y′ (2.29)

and can be found by minimizing (2.8) using descent algorithms. Another approach

is to use a two-step algorithm to solve (2.29). This is the so-called dual approach,

commonly called the PSAS (Physical-space Statistical Analysis System). Introducing

wa such that

wa = (R + HBHT )−1y′ (2.30)

34



(2.29) becomes

δxa = BHTwa. (2.31)

Moreover, to find wa, the auxiliary objective function

F (w) =
1

2
wT (R + HBHT )w −wTy′ (2.32)

is minimized. The advantage of this dual form is that the dimension of the control

variable, w, corresponds to the number of observations. It was designed to solve

the same data assimilation problem as the primal one, but in observation space (or

physical space) rather than in model space. Therefore, it takes advantage of the fact

that the number of observations used in atmospheric and oceanic data analysis is

usually one order of magnitude less than the degrees of freedom of most NWP models

to carry out the minimization in a smaller space than 3D-Var (Courtier, 1997).

The term wa can also be seen as the increment term in observation space, and

BHT as the representer term that maps the increments from physical to model space

(Bennett et al., 1993). Following Amodei (1995), a preconditioning with R− 1
2 can

be used by considering the change of variable u = R
1
2w. The objective function and

its gradient become:

F (u) =
1

2
uT (Im + R− 1

2HBHTR− 1
2 )u− uTR− 1

2y′ (2.33)

∇uF = (Im + R− 1
2HBHTR− 1

2 )u−R− 1
2y′ (2.34)

so that the Hessian can be written as

F”u = Im + R− 1
2HBHTR− 1

2 (2.35)
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The Physical-space Statistical Analysis System (PSAS) was developed and im-

plemented first at the NASA’s Data Assimilation Office (DAO)4 in the late 90’s, to

replace the Statistical Interpolation scheme (SI), operational at that time. That is,

the SI solves directly the linear system (2.30) by approximating the HBHT term in

the neighboring points of the observation locations (Daley, 1991). Thus, PSAS was

presented as an advantage to the SI since it solves globally what the SI solves locally

by using all available observations without any local data selection and by making

unnecessary many of the simplifying approximations required by the SI. (Lorenc

1986, Da Silva et al. 1995, Cohn et al. 1998).

On the other hand, the main difference with respect to the 3D-Var case is that,

as discussed earlier, the size of the control vector of the 3D-PSAS objective function

is determined by the number of observations instead of the dimension of the model

space. Solving the assimilation problem in a smaller space can be of interest for op-

erational centres as they are limited in the overall memory storage and computation

cost of analysis applications.

2.3.2 4D-PSAS

As 4D-Var is the temporal extension of 3D-Var, 4D-PSAS can also be seen as

the dual formulation taking into account observation time and the flow-dependent

properties of error covariances. Following the same process used to get the 3D-PSAS

formulation, and using ( 2.27), 4D-PSAS is introduced as follows:

F (w) =
1

2
wT (R + GBGT )w −wTy′ (2.36)

4 As of 2003, the DAO became the Global Modeling and Assimilation Office
(GMAO).
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where w is now a vector of the dimension of the total number of observations over

the entire assimilation window, and GBGTw stands for the vector of the increments

in observation space. As in the 3D case, both 4D-Var and 4D-PSAS can be pre-

conditioned respectively with B
1
2 and R− 1

2 , in which case they should have similar

convergence rates (Courtier, 1997). Moreover, although the degrees of freedom is

lower in the dual form, the preconditioning in the present case ensures that a similar

number of iterations should be necessary. Hence, the total cost would be the same

in the two cases.

It is also thought that 4D-PSAS can be, in some cases, a more interesting alter-

native to 4D-Var than 3D-PSAS would be for 3D-Var, while 3D-PSAS and 3D-Var

seem to differ only in the way the problem is solved. This will be explained in more

details in the next chapters.

2.3.3 Convergence properties

Courtier (1997) showed that, in the linear case, 3D/4D-PSAS are theoretically

equivalent to 3D/4D-Var at convergence of the minimization of their objective func-

tions. However, the incremental approach allows for the extension of the equivalence

to the nonlinear case. Both approaches solve the same problem and their Hessians

(2.14 and 2.35 ) have the same condition number (the ratio of largest to smallest

eigenvalue); the smallest eigenvalue being 1. That is, if using their own precon-

ditioning (B
1
2 and R− 1

2 ), both algorithms are expected to converge at the same

rate (Courtier, 1997), with a comparable number of iterations and produce exactly

the same analysis state. However, changing the preconditioning may alter this result.

2.4 The Weak-constraint formulation

2.4.1 The motivation

One of the main assumptions used in operational NWP implementations of vari-

ational schemes, is that the model equations “perfectly” describe the dynamics of the
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atmosphere. This is known as the perfect model assumption, where any discrepancy

between the model and the data is tacitly ascribed to errors in the background and

in the observational state. However, the forecast error can also be attributed to

imperfections in the NWP model itself. It is clear that model errors do affect the

quality of the analysis and the forecast if not taken into account (Derber, 1989; Wer-

gen, 1992; Zupanski, 1993; Bennett et al., 1993; and Zupanski,1997, Bennett, 2002,

Tsyrulnikov, 2005).

To address this issue, it has been proposed to relax the “perfect” model assump-

tion by considering the model as imperfect, and therefore allowing the analysis to

deviate from the exact model trajectory. Here, the analysis now refers to the model

trajectory x(t) over the whole assimilation interval. This is called the weak constraint

approach, as opposed to the strong constraint framework seen earlier. In the latter,

the analysis state was required to satisfy exactly the imposed model constraints as

the whole trajectory is the result of a model integration from given initial conditions.

In a weak-constraint formulation of the problem, the imposed constraints are satisfied

only approximately, not exactly, depending on what is known about the model error.

This approach was first introduced by Sasaki (Sasaki 1969, 1970), and explored for

NWP by Derber (1989) and is now being considered for operational implementation

(Trémolet, 2007).

Interest for the weak-constraint formulation lies beyond the correction for the

model error term in the assimilation system. The optimal length of the assimilation

time period (the assimilation window) is believed to be limited by the uncertainties

in the model (Trémolet, 2007). Currently, most NWP centres use assimilation win-

dows of the length of 6h, 12h or 24h at most. It has been argued (Pires et al., 1996)

that increasing this window gradually beyond the error doubling time of the system

(usually about 3 days) significantly improves the quality of the assimilation state

and of the forecast. Using a perfect model setting, Swanson et al. (1998) showed

38



that the state estimate saturates at an optimal assimilation period of Ta = 10 days,

and that the predictability time scale in this case extends about 5 days beyond the

case where the assimilation period is 1 day. In an attempt to mimic the behavior of

NWP models, results with an imperfect model (where model errors were introduced)

showed that the performance of the assimilation vary strongly with the growth rate

of the model error (Swanson et al., 1998). That is, for large, rapidly growing model

error, extension of assimilation periods beyond 1-2 days results in a degradation in

the quality of the assimilated state as well as in the forecast quality.

The weak-constraint formulation of variational assimilation is expected to allow

longer assimilation windows as it accounts for model errors. In other words, an as-

similation over a long window will rely on the model error term in a weak-constraint

formulation to provide the appropriate temporal retention of information at all spa-

tial scales: several days for synoptic scales, and a few hours for the smallest resolved

scales (Fisher et al., 2005).

2.4.2 Model error

NWP models only provide a discrete and reduced-complexity approximate rep-

resentation of the atmosphere, which departs from the truth due to the presence of

model error.

Model errors can be cast in the assimilation system in their systematic and/or

random form. According to Dee and Da Silva (1998), these two parts of the error

should be accounted for separately, otherwise the reduction of one may lead to an

increase in the other.

• Systematic errors : (or bias), for which the mean error is non zero (E [ε(t)] 6=

0), can be seen as an inherent, persistent deficiency in the model due to pa-

rameters not being adequately constrained by available observations or due to
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the structure of the model being incapable of representing some specific phe-

nomena. The effects of such errors often persist for a certain time, and can be

detected when specific aspects of the model climatology differ from the actual

climatology as derived from observations (Lewis et al. 2006).

• Random errors: in which case, E [ε(t)] = 0. These errors are assumed to

be stochastic variables that are unbiased (and usually uncorrelated in time),

which allows for the definition of a Gaussian distribution together with a rep-

resentation of error covariance matrix: Q = E[ε(t)ε(t)T ], at a given time.

Following Dee and Da Silva (1998), since the errors in data assimilation are assumed

unbiased, the procedure of taking into account model error is often a two-step process

through which the bias is estimated first, removed, and then the unbiased compo-

nent is estimated. However, this is difficult and relies on the availability of unbiased

observations.

2.4.3 Weak-constraint 4D-Var

To account for model errors in a data assimilation system, a correction term

is introduced (Jazwinski, 1970; Derber, 1989 and Cohn, 1997). The idea, is to add

to the control vector a residual error correction term, which is added to the model

forecast at every time step. Assuming the model is not perfect, (2.16) is modified to

include correction terms (ηi) at each time step ti, such that:

xi = Mi,i−1(xi−1) + ηi (2.37)

which, in the incremental form, can be approximated as

δxi = Mi,i−1(δxi−1) + ηi (2.38)

where the ηi’s represent the model error terms, assumed to be zero in the perfect-

model case. The objective function in (2.25) can then be extended in the absence of
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systematic errors as follows:

J(δx0, ...,ηi, ...) =
1

2
δxT0 B−1δx0+

1

2

q∑
i=0

(Hiδxi−y′
i)
TR−1

i (Hiδxi−y′
i)+

1

2

q∑
i=0

ηi
TQ−1

i ηi

(2.39)

where, as before, B is the background error covariance matrix, and Ri and Qi are the

observation and model error covariance matrices for each time ti, respectively. These

three types of errors are assumed to be uncorrelated. This assumption is commonly

used but debatable because the background state is usually taken as a previous run of

the same model and using the same type of data. The model error covariance matrix

is also assumed to be uncorrelated in time, which is not realistic (Daley, 1991).

Note that the control vector here (with respect to which the functional J is

minimized) is extended to include all the ηi terms. As well as the initial states,

the model errors at every time are the control parameters that are sought to be

determined. That is, over the assimilation time interval, it is the full trajectory x(t)

that is adjusted to fit the observations, and not only the initial state as in the strong-

constraint formulation (see Fig.2–3).

The variable ηi has the dimension of a three dimensional atmospheric state

and represents the instantaneous model error. The overall size of the problem is now

multiplied by the total number of time steps. In operational NWP systems, the size of

the control vector would be about 109 (compared to about 107 for current operational

applications of strong-constraint 4D-Var). Thus, Q would contain around 109 × 109

elements that are needed to be estimated. With only about 106 observations available

each day, there is not enough information to estimate Q.

Beside the high cost of the weak-constraint formulation, no general form of

model errors nor their statistics is known so far, and many of the ideas proposed

to overcome these limitations rely on important approximations and assumptions
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Figure 2–3: Schematic of the weak-constraint 4D-Var assimilation. The model trajectory
is adjusted to fit as best as possible the observations. Besides, at each time step, the
trajectory is corrected with an amount that compensates for the instantaneous model
error.

that aim to reduce the size of the control vector or to simplify the modelling and

representation of the model error covariance matrix (Daley, 1991).

Recent attempts have focused on reducing the size of the model error part of

the control vector, either by controlling the correction term only in certain privileged

directions (Vidard et al. 2001), or by using information provided by the analysis

residual vector (Vidard et al. 2003), or by controlling only the systematic and time

correlated part of the error (Griffith and Nichols, 2001).

Approximations have also been proposed for the estimation and modeling of the

model error covariance matrix Q. It can be assumed to have the same structure

as the background error covariance matrix, or it can be constructed using the same

statistical model used for B to tendencies instead of short term analysis increments.
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That is, perturbations of model tendencies can be interpreted as possible realizations

of the model error.

In a compact matrix form, (2.39) can be expressed as:

J(z) =
1

2
zTD−1z +

1

2
(Sz− y′)TR−1(Sz− y′) (2.40)

where z = (δx0, ...,ηi, ...) is the new control vector, D stands for the block diagonal

matrix consisting of B for the first block and the Qi for the others,

D =


B 0 · · · 0
0 Q1 · · · 0
...

...
. . .

...
0 0 · · · Qq


and S is the new generalized observation operator, such that

ST = [GT
0 , GT

1 , · · · , GT
n ]

and

Gj = [HjMj,0, HjMj,1, · · · , HjMj,j, 0, · · · , 0].

Note that D can also have off-diagonal terms in the case of time-correlated model

errors. Again, we notice the similitude of the functional J in (2.40) to those of the

strong-constraint 4D-Var (2.27), and the 3D-Var (2.6). The control vector, the obser-

vation operator and the background error covariance matrix have all been extended

to account for the time tendency information in the observations first (4D-Var), and

then to include the model error component into the assimilation system through the

weak-constraint formulation.

2.4.4 Weak-constraint 4D-PSAS

Following the same process that led to the formulation of the 3D-PSAS func-

tional, and using (2.40), it is easy to introduce the dual formulation in the four
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dimensional weak-constraint case as follows:

F (w) =
1

2
wT (R + SDST )w −wTy′. (2.41)

Note that, in this context, the control vector, w, is still defined in the observation

space, and that unlike the primal variational formulation, the model error covariance

matrix Q (in D) is present in the algorithm in its direct (not inverse) form, so that

the PSAS algorithm remains regular in the limit of vanishing model error.

As simple and concise this matrix form of the functional seems, the operators

involved are very complex, and their implementation needs careful attention. A

special care needs to be taken in testing the validity of the linearizations in the TLM

and the adjoint model. This is very important since the linearity of the operators

and the incremental formulation are the underlying assumptions that made this dual

weak-constraint formulation possible.

As discussed earlier, the full weak-constraint 4D-Var is challenging both in its

overall affordability, and in the estimation of its error statistics in Q. This is where

the dual formulation of variational assimilation comes into play, especially with re-

spect to the affordability. Recall that the dual method solves the variational problem

in the observation space; whose size does not change whether one uses the strong or

weak-constraint formulation. That is, the dual framework would allow for accounting

for model errors without any significant increase in computational efforts. Moreover,

it is expected to be a more suitable choice when extending the length of the assimi-

lation window.

When compared to the weak-constraint 4D-Var, the dual form uses the same

operators and matrices, but in a different sequence. Provided that these operators

are implemented in a modular way (i.e. they are independent of each other), it is

possible to easily build a dual algorithm from a pre-existing primal algorithm. The

modularity is key to the proper intercomparison of the primal and dual forms that
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will be described in the next chapters.

2.5 Summary

In this chapter, the variational form of the statistical estimation problem of

data assimilation was presented. In this framework, the variational problem can be

cast in different forms : 3D or 4D, primal or dual, strong or weak-constraint. Three

dimensional (3D) schemes are designed to provide an analysis state at a single time,

assuming that all observations are “collected” at that specific time. In contrast, four

dimensional (4D) schemes seek to benefit from the time tendency information in the

observations by fitting observations at their respective time with the trajectory of

the model. The primal form of the variational approach solves the problem in model

space (i.e. the functional is defined with respect to a model state vector), whereas the

dual form solves the same problem but in the observation space. Finally, the strong-

constraint formulation assumes that the dynamical model is “perfect”, whereas the

weak-constraint formulation allows for model errors to be accounted for. All these

methods are either equivalent (primal and dual) or are the extension of one another

to a more general case (3D to 4D, and strong to weak-constraint) (see Table2–1).

While the weak-constraint formulation of variational data assimilation is still an

active field of research, the strong-constraint methods are currently used for mete-

orological (primal form) or oceanic applications (dual form). As discussed earlier,

primal dual

3D 3D-Var 3D-PSAS
4D Strong-Constraint 4D-Var 4D-PSAS
4D Weak-Constraint weak-C 4D-Var weak-C 4D-PSAS.

Table 2–1: The primal and dual variational assimilation methods.

weak-constraint 4D-Var could benefit from the dual form because of the reduction

of the dimension of the assimilation problem. As a first step towards accounting for

45



model errors in primal and dual variational data assimilation (through the weak-

constraint formulation), it is foremost crucial to build solid foundations for the dual

method. The next chapter presents a thorough intercomparison of the 3D-Var and

3D-PSAS in an operational context to examine the extent to which the theoretical

equivalence between these two methods still holds in a complex assimilation system.

The convergence properties will be compared and the preconditioning will be exam-

ined. In chapter 4, the minimization algorithms are examined to assess their effect

on the dual approach in 3D and 4D, and finally, the weak-constraint formulation is

examined in chapter 5, both in the primal and dual case.
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3 Intercomparison of the primal
and dual formulations of
variational data assimilation

In this chapter, the primal and dual forms of variational data assimilation are

here investigated in an intercomparison study. With proper conditioning of the min-

imization problem, both algorithms are expected to have similar convergence rates

and computational performances. This statement is examined here in the context

of the variational data assimilation system of the Meteorological Service of Canada.

The objective being to confirm the equivalence of the primal and dual methods and

to examine their preconditioning and their convergence properties.

This Chapter is based on the following paper:

El Akkraoui A., P. Gauthier, S. Pellerin, and S. Buis, 2008 : Intercomparison of

the primal and dual formulations of variational data assimilation. Q.J.R. Met. Soc.,

134 : 1015-1025.

c©2008 Royal Meteorological Society
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El Akkraoui A.1, P. Gauthier12, S. Pellerin3, and S. Buis4

1 Department of Atmospheric and Oceanic Sciences, McGill University, Canada

2Department of Atmospheric and Earth Sciences, Université du Québec à Montréal,
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Abstract

Two approaches can be used to solve the variational data assimilation problem.

The primal form corresponds to the 3D/4D-Var used now in many operational NWP

centres. An alternative approach, called dual or 3D/4D-PSAS, consists in solving

the problem in the dual of observation space. Both forms use the same basic oper-

ators so that once one method is developed, it should be possible to obtain easily

the other provided these operators have a modular form. In Courtier (1997), it was

shown that with proper conditioning of the minimization problem, the two algo-

rithms should have similar convergence rates and computational performances. In

presence of nonlinearities, the incremental form of 3D/4D-Var extends the equiva-

lence to the so-called 3D/4D-PSAS. The first objective of this paper is to present

results obtained with the variational data assimilation of the Meteorological Ser-

vice of Canada to show the equivalence between the 3D-Var and the PSAS systems.

This exercise has forced us to have a close look at the modularity of the operational

3D/4D-Var which then makes it possible to obtain the 3D-PSAS scheme. This paper

then focuses on these two quadratic problems that show similar convergence rates.
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However, the minimization of 3D-PSAS is examined more thoroughly as some pa-

rameters are shown to be determining elements in the minimization process. At

last, preconditioning properties are studied and the Hessians of the two problems

are shown to be directly related to one another through their singular vectors, which

makes it possible to cycle the Hessian of the PSAS form.
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3.1 Introduction

In recent years, data assimilation methods of increasing complexity have been

developed to extract information from an ever increasing variety of instruments.

Most instruments provide information that is indirectly related to the atmospheric

variables like temperature, winds, pressure and humidity. Radiances coming from

satellite instruments is one good example. As satellite data are now making the most

important contribution to the global observation system, research in data assimila-

tion seeks to develop new methods and improve existing ones to extract as much

information as possible from this vast amount of data. Improving the efficiency of

those complex data assimilation systems is also a concern in view of their operational

use.

Compared to previous data assimilation methods like optimal interpolation (OI),

variational methods offer a more natural framework to assimilate remotely-sensed

measurements and can be extended to assimilate time-distributed data at their ap-

propriate observation time within four dimensional schemes. Variational methods

have now been implemented at several centres like the ECMWF (Rabier et al., 2000),

NCEP (Parish and Derber, 1992), UK Meteorological Office (Rawlins et al., 2007),

Météo-France (Gauthier and Thépaut, 2001) and Environment Canada (Gauthier et

al., 2007). The implementation can go in step by first implementing a 3D-Var which

can be extended to 4D-Var (Courtier, 1997; Gauthier et al., 2007). Referring to

Courtier (1997), two approaches can be taken and can be shown to be only different

algorithms to solve the same basic problem. The 3D/4D-Var, referred as the primal

approach, uses a control variable defined in model space while the dual form uses a

control variable defined in the dual of observation space. This approach was taken in

the development of the Physical-space Statistical Analysis System (PSAS) (Cohn et

al., 1998) and has been adopted by NASA’s Global Modeling Assimilation Office and

the Naval Research Laboratory (Barker and Daley, 2000). Courtier (1997) pointed
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out that the equivalence between the primal and dual approaches leads to two mini-

mization problems for which the Hessian of the quadratic functionals have the same

condition number. Using their own preconditioning as proposed by Amodei (1995)

and Courtier (1997), both algorithms should give the same results at convergence

and at approximately the same rate.

The objective of this paper is to investigate the equivalence of the two ap-

proaches in the framework of the operational variational data assimilation system of

Environment Canada. In the second section, the equivalence of the two approaches

will be cast in the context of the incremental approach, which then extends the

equivalence to the nonlinear problem. The dual or primal approach could then be

used indifferently to solve the quadratic problem associated with the inner loop. In

section 3, results will be presented to confirm the equivalence at convergence and

examine the convergence of the two algorithms. This will be shown in the context

of an incremental 3D-Var using its respective dual form. When cycling the assim-

ilation, it has been shown that using the Hessian approximation from the previous

assimilation can help to precondition the next assimilation. As the dual form uses a

control variable defined in the dual of observation space, it varies considerably from

one analysis to the next according to the observation coverage. In section 4, the

Hessian of the primal and dual forms are shown to have equivalent eigenvectors that

can be mapped onto one another. This property is then used to map the Hessian of

the dual problem to the next analysis and the impact on the convergence is examined

when preconditioning the next inner loop problem. Section 5 will present a summary

and conclusions with perspectives for applications.
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3.2 Theoretical background

3.2.1 3D-Var

Variational assimilation estimates the state of the atmosphere at a given time

by minimizing an appropriate objective function. As discussed in Lorenc (1988),

based on a Bayesian approach, the probability distribution that the model state x

(dimension n) is the true value of the atmospheric state given that y (the observa-

tion vector, dimension p) has been observed, can be expressed for Gaussian error

distributions as :

p(x|y) =
p(y|x)p(x)

p(y)

=
1

c1
exp(−1

2
(y −H(x))TR−1(y −H(x)))

× 1

c2
exp(−1

2
(x− xb)

TB−1(x− xb))

(3.1)

where B and R are the background and observation covariance matrices respectively,

xb is the background term (usually taken as a short-term forecast),H is the non linear

observation operator that maps the model variables into the dual of observation

space, and c1 and c2 are constants. The best linear unbiased estimate of the state of

the atmosphere at the analysis time is referred as the analysis, and is obtained by

minimizing the function :

J(x) = − ln(p(x|y))

=
1

2
(x− xb)

TB−1(x− xb)

+
1

2
(y −H(x))TR−1(y −H(x))

(3.2)

This property ensures that minimizing J is a way of minimizing the variance of the

analysis error and that the minimum is the most probable state.

In its incremental formulation (Courtier et al. 1994), the three dimensional vari-

ational scheme (3D-Var) operates a global minimization of its functional J with

respect to an increment δx = x−xb, representing the misfit between the background
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state xb and the current model state x. The incremental cost function is

J(δx) =
1

2
δxTB−1δx +

1

2
(Hδx− y′)TR−1(Hδx− y′) (3.3)

where H is the Jacobian (or the Tangent linear) of the non-linear observation operator

(H), and the new term y′ = y − H(xb) represents the ”innovation” vector or the

misfit between the observation state y and the background state in the physical

space. In practice, a solution is found through iterative minimization algorithms

(e.g., the Conjugate-Gradient or the Limited-Memory Quasi-Newton). In order to

speed up the convergence of the minimization, a change of variable v = B− 1
2 δx is

introduced (Lorenc, 1988) as a preconditioner. The functional and its gradient in

this case are :

J(v) =
1

2
vTv +

1

2
(HB

1
2v − y′)TR−1(HB

1
2v − y′) (3.4)

∇vJ = (In + B
1
2HTR−1HB

1
2 )v −B

1
2HTR−1y′. (3.5)

The second derivative of J , the Hessian, is

J′′ = In + B
1
2HTR−1HB

1
2 (3.6)

whose diagonal elements are largely dominated by the identity matrix in the model

space (In) when few observations are present (Fisher and Andersson, 2001). In vari-

ational analysis, the inverse of the Hessian (J′′) corresponds to the analysis error

covariance matrix A.

3.2.2 3D-PSAS

The physical-space or the dual formulation of variational methods was designed

to solve the same data assimilation problem as the variational one, but in the dual

of observation space rather than in the model space. The Physical-space Statistical

Analysis System (PSAS) was developed and implemented first at NASA’s Data As-

similation Office (DAO) in the late 90’s (Da Silva et al., 1995; Cohn et al., 1998),
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to replace the Optimal Interpolation scheme (OI), operational at that time. The

3D-PSAS formalism is introduced here following Da Silva et al.(1995) and Courtier

(1997).

The 3D-Var analysis increment is obtained by setting ∇δxaJ = 0 and can be

written, in the linear case, as

δxa = (B−1 + HTR−1H)−1HTR−1y′

= BHT (R + HBHT )−1y′

= BHTwa.

(3.7)

where wa has the same dimension (p) as the observation vector y and subscript a

refers to the analysis state. This shows that solving the 3D-Var problem is equivalent

to solving, for w, the linear system

(R + HBHT )w = y′. (3.8)

δxa then satisfies δxa = BHTwa, where wa is the solution of (3.8). δxa can be seen

as the analysis increment term in the dual of observation space, and BHT as the

representer matrix that maps the increments from observation to model space.

While the OI solves approximately the linear system (3.8) by selecting, for each

model variable, a subset of few observations representing the most relevant data

for determining the analysis increment, the dual approach proposes to solve (3.8)

through a global minimization of the quadratic functional :

F (w) =
1

2
wT (R + HBHT )w −wTy′. (3.9)

Following Amodei (1995), a preconditioning is used by considering the change of

variable u = R
1
2w. The objective function and its gradient become :

F (u) =
1

2
uT (Ip + R− 1

2HBHTR− 1
2 )u− uTR− 1

2y′ (3.10)

∇uF = (Ip + R− 1
2HBHTR− 1

2 )u−R− 1
2y′ (3.11)
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and the Hessian can be written as

Fu” = Ip + R− 1
2HBHTR− 1

2 (3.12)

where Ip is the identity matrix in the dual of observation space. The main difference

with respect to the 3D-Var case is that the size of the control vector of the 3D-PSAS

functional is determined by the number of observations (p) instead of the dimension

of the model space (n). Therefore, it takes advantage of the fact that the number

of observations used in atmospheric data analysis is usually one order of magnitude

less than the degrees of freedom of most NWP models to carry out the minimization

in a smaller space than 3D-Var. Moreover, PSAS was presented as an advantage

to the OI since it solves globally what the OI solves locally by using all available

observations without any local data selection and by making unnecessary many of

the simplifying approximations required by the OI (Lorenc, 1986). This result was

also confirmed in Gauthier et al. (1999), where the impact of data selection was

shown to be significant in a single analysis increment.

3.2.3 The four dimensional case

Unlike the 3D-Var, where no account is made for the observation time, 4D-Var

can be seen as the temporal extension of the 3D-Var for observations yi distributed

over a finite time interval (t0, tN). The basic concept is the same as 3D-Var provided

that a nonlinear forecast model M is used to perform integrations in time, which

implicitly leads to a flow-dependent background covariance matrix and analysis in-

crements (Thépaut and Courtier, 1991). At each observation time ti, the model state

xi is related to the initial state by xi = M(ti, t0)(x0). When the forecast model and

the observation operator are both linear, the previous theoretical reasoning in the

three dimensional case still holds, and a 4D- PSAS is easily formulated (Courtier,

1997). In the case of non-linearities, the incremental formulation uses the tangent

linear and adjoint to approximate the time evolution of increments δxi
(l) around a
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reference trajectory xi
(l), which needs to be updated regularly (Courtier et al., 1994).

The number of times that the trajectory is updated is called the number of outer

loops and referred here by the superscript l.

Following Gauthier et al. (2007), the propagator of the Tangent linear model

(TLM) is introduced δxi
(l) = M(l)(ti, to)δx0

(l), where M is the TLM of the nonlinear

model M, so that the incremental form of 4D-Var is a quadratic objective function

that can be written as:

Jl(δx0
(l)) =

1

2
[δx0

(l) − (x0
b − x0

(l))]TB−1

× [δx0
(l) − (x0

b − x0
(l))]

+
1

2

N∑
i=0

(Hi
(l)δxi

(l) − y′
i
(l)

)TRi
−1

× (Hi
(l)δxi

(l) − y′
i
(l)

)

(3.13)

where, the observation operator and the observation error covariance matrix are

Hi and Ri, and the innovation vector is y′
i
(l) = yi − Hi(M(ti, t0)(x

(l)
i)) for each

observation time. In practice, the analysis state is found by performing first a number

of inner iterations with a TLM and adjoint to minimize Jl followed by outer iterations,

in which the full nonlinear model is integrated from the updated initial conditions

(xi
(l+1) = M(ti, t0)(x0

(l) + δx0
(l))). This is meant to update the reference trajectory

that defines the linearized and adjoint model and also to refresh the innovation vector

consistently with the initial cost function to minimize. Let us now introduce the new

definitions : 
ξ0

(l) = B− 1
2 δx0

(l)

ξ̄l = B− 1
2 (x0

(l) − x0
b)

G(l) = (...,Hi
(l)M(ti, t0), ...)
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where the G operator is consistent with the one introduced by Courtier (1997). The

objective function can then be written as :

Jl(ξ0
(l)) =

1

2
(ξ0

(l) + ξ̄l)
T (ξ0

(l) + ξ̄l)

+
1

2
[G(l)B

1
2 ξ0

(l) − y′(l)]TR−1

×[G(l)B
1
2 ξ0

(l) − y′(l)]

(3.14)

where R is the blok diagonal matrix containing the Ri’s, y′(l) is the vector of the

y′(l)
i . Setting the gradient of (3.14) to zero, we get

(ξ0
(l))a = (In + B

1
2
TG(l)TR−1G(l)B

1
2 )−1

× (B
1
2
TG(l)TR−1y′(l) − ξ̄l)

= B
1
2
TG(l)TR− 1

2 (Ip + R− 1
2G(l)BG(l)TR− 1

2 )−1

× (R− 1
2y′(l) − (B

1
2
TG(l)TR− 1

2 )−1ξ̄l).

Let us now define the w
(l)
a vector in the dual of observation space,{

(ξ0
(l))a = B

1
2
TG(l)TR− 1

2w
(l)
a

ξ̄l = B
1
2
TG(l)TR− 1

2 w̄l,

so that

(Ip + R− 1
2G(l)BG(l)TR− 1

2 )w(l)
a = R− 1

2y′(l) − w̄l

It follows that the 4D-PSAS objective function can easily be defined within the

incremental context as :

F (w(l)) =
1

2
w(l)T (Ip + R− 1

2G(l)BG(l)TR− 1
2 )w(l)

−w(l)T (R− 1
2y′ − w̄l).

(3.15)

3.3 Equivalence

3.3.1 Modular implementation of data assimilation

Most data assimilation schemes rely basically on the same general concepts and

use almost the same operators and matrices (the observation operator, the covariance

error matrices, the tangent and adjoint linear models...etc); for instance, 3D-Var and
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3D-PSAS differ only in the sequence in which these operators are used in (3.3) and

(3.9). Therefore, it is important to proceed to a modularization of the assimilation

algorithm that ensures these operators to be independent of each other and that any

later change would only affect the specific operator under consideration regardless of

its sequence in the algorithm. In Lagarde et al. (2001), this concept is used to pro-

pose a new approach PALM (Projet d’Assimilation par Logiciel Multi-Méthodes),

where applications are created by first decomposing them into basic independent

components that can then be re-gathered according to their sequence in the appli-

cation algorithm. The PALM software is then in charge of controlling the data flow

exchange between units (Input/Output), performing algebraic calculations and man-

aging the parallelism if needed. The reader is referred to Buis et al. (2006) and the

PALM team publications for more details1 .

To conduct experiments on the intercomparison between the primal and dual

algorithms of the operational assimilation system of Environment Canada, the first

task was to ensure its modularity. This was first done in a feasibility study within the

PALM framework (El Akkraoui, 2004), which highlighted the importance of having

a modular decomposition in view of the implementation of the dual algorithm, and

encouraged the development of a new modular version of the variational code. The

use of this modularity is described in (Pellerin et al., 2006) when presenting the

coupling of the 3D-Var and the Global Environmental Multi-scale (GEM) model

to obtain an incremental 4D-Var (Tanguay and Laroche, 2002). More details on

the existing 3D/4D-Var configurations are presented in Gauthier et al. (2007) and

Laroche et al. (2007).

Based on this modular version of the existing 3D/4D-Var, a 3D/4D-PSAS

scheme was formulated using the same modular subroutines as described before.

1 http : //www.cerfacs.fr/∼palm/
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For sake of simplicity, the coupling of the independent components was done with-

out the PALM coupler. All results shown in this paper are produced in this context.

3.3.2 Duality

Courtier (1997) showed that 3D/4D-PSAS are theoretically equivalent to 3D/4D-

Var at convergence of the minimization of their objective functions in the linear case.

However, the incremental approach allows for the extension of the equivalence to the

nonlinear case. Both approaches solve the same problem and their Hessians (eq.3.6

and eq.3.12 ) have the same eigenvalue spectrum, possibly completed by some 1’s,

and the same condition number (the ratio of largest to smallest eigenvalue); 1 being

the smallest eigenvalue. That is, if using their own preconditioning, B− 1
2 for the

primal and R
1
2 for the dual formulation, both algorithms are expected to produce

the same analysis state, to converge at the same rate and with a comparable number

of iterations (Courtier, 1997). The objective of this section is to verify the equiv-

alence of the primal and dual approaches using the operational three dimensional

variational data assimilation system of Environment Canada. Experiments include

all observations used operationally at the time.

The minimization of the 3D-Var and 3D-PSAS objective functions (Fig.3–1-a)

shows that at the end of the minimization, solutions are such that J(va) = −F (ua)

confirming the theoretical result (See Appendix A). As expected, the analysis in-

crements at the end of the minimization (not shown) are the same. Louvel (2001)

found similar results when conducting experiments using an oceanic primitive equa-

tion model. In such a controlled context (synthetic observations, identity observation

operator and the number of degrees of freedom of the model is the same as the num-

ber of assimilated observations), numerical equivalence has been shown for both the

increments and the required number of iterations, although the decrease of the two

objective functions was not the same. However, in our operational experiments, 3D-

PSAS requires more iterations than 3D-VAR to converge for the same convergence
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criterion : a two orders of magnitude decrease of the gradient norm with respect to

its initial value.

What explains the additional number of iterations needed for the 3D-PSAS to

converge is not clear yet. The convergence criterion used was chosen, for convenience,

to be the same as that of 3D-Var. However, PSAS may need a more appropriate

one. Fig.3–1-b shows the ratio of the gradient norms to their initial values for 3D-Var

(solid line) and 3D-PSAS (dashed line), plotted in a logarithmic scale. As expected,

both methods converge at similar rates as shown by the slopes of the gradient norms.

However the norm of the 3D-PSAS first gradient increases surprisingly by a factor

of ten with respect to its initial value, and it takes about 60 iterations to recover its

initial value.

As mentioned earlier, the objective function of 3D/4D-Var is related to the

analysis error in that its Hessian is the inverse of the analysis error covariance matrix

(J ′′ = A−1), and considering the origin of this formulation (see Section 2), this

ensures that, by construction, the minimization of 3D-VAR guarantees the analysis

state to be more and more probable. However, this remark does not apply to the

dual case as its objective function has no direct physical interpretation, and its

minimization does only ensure the equivalence with 3D-VAR at convergence. In

order to have an image of the PSAS convergence in the model space, the equivalent

3D-Var to the 3D-PSAS objective function at each iterate uk, where k is the iteration

number, is calculated (Fig.3–2). That is, each iterate uk is returned to the model

space through the representer BHT and the 3D-VAR objective function is evaluated

for vk = B
1
2HTR− 1

2uk.

As shown in Fig.3–2, 3D-PSAS starts increasing the apriori probability (See

2.1) during the first iterations, before it decreases below its initial value (at the first

iteration) only after about 60 iterations where the iterates gradually improve the

analysis. One can also notice that 60 iterations are needed to obtain an iterate for

which the norm of the gradient is about the same as that of the starting point of
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(a)

(b)

Figure 3–1: Objective function (a) and gradient norm (b) of 3D-Var (solid line) and
3D-PSAS (dashed line) with number of iterations. The gradient norm is plotted in a
logarithmic scale.
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Figure 3–2: Objective function of 3D-Var (solid line), 3D-PSAS (dashed line) and the
equivalent 3D-Var at PSAS iterates (dotted line) along the minimization. At each PSAS
iteration k, the iterate uk is brought to the model space through the representer BHT and
the 3D-Var objective function is calculated for vk = B

1
2 HTR− 1

2 uk.

the minimization, as shown in fig.3–1-b. In the context where a finite number of

iterations is required, one may end up with a solution which could be worse than the

initial point. This is a real concern for the use of PSAS in an operational setting.

3.4 Preconditioning

Preconditioning intends to accelerate the convergence by reducing the condi-

tion number of the objective function’s Hessian. The optimal pre-conditioner for

the 3D-Var is the square root of the Hessian in (3.6) which enables the convergence

to occur in one iteration. Assuming that the Hessian is dominated by B due to

the background errors, the observation term (HTR−1H) can be neglected and an

approximate preconditioner (B
1
2 ) is used. However, in the presence of very dense or

particularly accurate observations for instance, this choice of preconditioning is not

as efficient as required (Andersson et al., 2000). For 3D-PSAS, the preconditioning
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proposed by Amodei (1995) with R− 1
2 may not be the best one either considering

the sparseness of its Hessian (3.12). Alternative preconditionings are investigated

here.

3.4.1 Preconditioning with an approximate Hessian

The Limited-Memory Quasi-Newton algorithm (LMQN) uses the BFGS to ap-

proximate the inverse Hessian that can be used to precondition the next analysis

cycle. This approximation is performed sequentially at each iteration (k) by a set

of m pairs of vectors (yk, sk), where sk = xk+1 − xk is the step and yk = gk+1 − gk

is the change in the gradient (Gilbert and Lemaréchal, 1989). The accuracy of the

resulting approximate Hessian depends on the number (m) of the pairs of vectors

which also determines the dimension of the approximate Hessian. Fig.3–3 shows the

impact of increasing (m) on the convergence when the Hessian is estimated during

the minimization and only the conventional preconditioning is used (B
1
2 for 3D-Var

and R− 1
2 for 3D-PSAS).

For both algorithms, the number of iterations needed for the convergence drops

by about 34% when increasing the number of pairs from 6 to 80 for the same stopping

criterion. Note though that this gain requires storing an increasing number of pairs,

which must be limited when the dimension of the control variable is large. Therefore,

only a reasonable number of pairs can be taken; which in this case, can be set to

m = 40 considering that most of the gain is already obtained.

In order to assess the accuracy of the resulting approximation, the approximate

Hessian is used as a preconditioner for the same assimilation cycle rather than for

the next one as it might be more realistic. The reason is that unlike the 3D-Var

Hessian that can easily be re-used to precondition the next analysis, the 3D-PSAS

Hessian is completely defined in the dual of observation space that depends on the

assimilation period, and therefore cannot be re-used. This problem will be examined
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(a)

(b)

Figure 3–3: Sensitivity of the 3D-PSAS (a) and 3D-VAR (b) convergence to the number
of pairs m used by the Quasi-Newton algorithm to approximate the Hessian (m is varying
from 6 to 80).
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later in this paper. The preconditioned objective functions of 3D-PSAS and 3D-Var

for different numbers of pairs are shown in Fig.3–4-a and 3–4-b respectively. As in

Fig.3–3, increasing the number of pairs is an efficient way to improve the convergence

rate. This is also indicative of the dimension needed to approximate the Hessian.

3.4.2 Preconditioning with singular vectors

Another way of preconditioning the data assimilation problem is to use an ap-

proximate representation of the Hessian by its leading singular vectors. Ehrendorfer

and Tribbia (1995) pointed out that the singular vectors of a covariance matrix pro-

vide the most efficient approximation in the sense that, for an approximation based

on a given number of singular vectors, they account for a maximum fraction of the

variance. For 3D-Var, this can easily be understood since the Hessian is the in-

verse of the analysis covariance matrix, whereas for 3D-PSAS, although its Hessian

is built from the same basic operators as 3D-Var (R, B and H), no immediate phys-

ical meaning can be directly related to the functional F (u). Still, duality properties

discussed earlier in section (3) indicate a close relationship between the Hessians.

We investigate here the conditioning of 3D-PSAS with its Hessian singular vectors.

Hessian can be represented exactly by a set of all its singular vectors as :

J” =
N∑
k=1

λkνkν
T
k

where (λk, νk) are eigenpairs of J” determined using a Lanczos algorithm (Lanczos,

1950). Depending on the shape of the eigenvalues spectrum, this representation can

be more or less computationally effective. Moreover, considering the large size of

the matrices involved, it is only possible to compute a limited number of eigenpairs

(K < N) which will be used to build the approximation :

J̃” ≈
K∑
k=1

λkνkν
T
k .
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Fisher and Andersson (2001) pointed out that since the leading eigenvectors are

large-scale patterns, they may be determined accurately at low horizontal resolu-

tion. Fisher and Courtier (1995) introduced the pre-conditioner P allowing for the

definition of a new Hessian Ĵ” = P−TJ”P−1 with a smaller condition number, where

P−1 = I +
K∑
k=1

(µ
1
2
k − 1)νkν

T
k

This leads to an implicit representation of this new Hessian as follows :

Ĵ” =
K∑
k=1

µkλkνkν
T
k +

N∑
k=K+1

λkνkν
T
k

where µk are, as in Fisher and Courtier (1995), some coefficients chosen such that

µkλk < λK+1; the condition number is reduced to κ(Ĵ”) = λK+1

λN
.

An experiment was conducted in which the leading singular vectors of 3D-PSAS

and 3D-Var Hessians were calculated using a Lanczos algorithm. Both methods were

preconditioned with a set of the first 25, 50 and 75 singular vectors for µk = 1/λk. In

Fig.3–5 and Fig.3–6, the convergence of the objective functions and the reduction of

their gradient norms show an important saving for both 3D-Var and 3D-PSAS since

the convergence rate is increased with the number of singular vectors. With a small

number of singular vectors (K = 25), the convergence is achieved with half of the

required iterations.

It is then important to notice that the overall time required for the analysis

does not reflect such a saving considering the additional cost of the computation of

Hessian eigenpairs; a reasonable compromise is yet to be defined. One can also use

a combined Lanczos-Conjugate-Gradient method that allows for the calculation of

Hessian singular vectors in the course of the minimization process since there is a

close connection between the gradient vectors of the CG and those generated by the

Lanczos algorithm (Paige and Saunders, 1975; Fisher and Courtier, 1995). Thus the
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number of iterations is comparable to the number of singular vectors, which makes

this approach very useful in the context of operational processes.

When comparing the convergences in Fig.3–4, Fig.3–5 and Fig.3–6 for 3D-PSAS

and 3D-Var, one can notice that both algorithms benefit from a refining of the

global representation of their Hessians, either by increasing the number of pairs of

the Quasi-Newton state vectors or by using their leading singular vectors.

3.4.3 Cycling the Hessian in PSAS

In sections 4.1 and 4.2, we examined the effect of approximating the Hessian in

preconditioning the assimilation problem within the same analysis. In the context

of an incremental variational assimilation, the approximation of the Hessian is also

useful to precondition the next analysis or the next minimization after an outer

loop. For 3D-Var, the Hessian and its singular vectors can easily be re-used due to

the regularity of the control variable in model space, whereas for PSAS, the control

variable, and consequently the Hessian, are completely defined in the dual space, and

they change at every assimilation period due to the differences in the observations

used. We introduce here, a way to overcome this limitation of PSAS by linking its

Hessian singular vectors to those of 3D-Var and by operating a remapping of the

approximate Hessian in the model space.

Relationship between model and the dual of observation space sin-
gular vectors

In section (3), we have seen the equivalence of 3D-PSAS and 3D-Var in terms

of their convergence rate and their condition number as pointed out by Courtier

(1997). It is possible to extend this equivalence to their Hessians singular vectors.

By defining the operator L = R− 1
2HB

1
2 , the Hessians of 3D-Var and 3D-PSAS in

(3.6) and (3.12) can easily be written respectively as:

J′′ = In + B
1
2HTR−1HB

1
2 = In + LTL (3.16)
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Figure 3–4: 3D-PSAS (a) and 3D-VAR (b) convergence with cycled Hessians for different
number of pairs
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F′′ = Ip + R− 1
2HBHTR− 1

2 = Ip + LLT . (3.17)

Now, let us consider (Xi, λi) a set of orthonormal eigenpairs of F′′, for i = 1, .., N .

One can show that

Yi =
1√
λi − 1

LTXi (3.18)

form a set of orthonormal eigenvectors of J′′ for the same set of eigenvalues λi. Also,

for each (Yi, λi) an eigenpair of J′′, there is a unique corresponding eigenpair (Xi, λi)

of F′′ that satisfies :

Xi =
1√
λi − 1

LYi. (3.19)

Relations (3.18) and (3.19) were confirmed by computing the first singular vectors

of 3D-Var and 3D-PSAS and by comparing them when mapped with these relations.

Linking Hessian singular vectors in both the model and the dual of observation

space is useful for giving a physical meaning to PSAS Hessian through that given

to 3D-Var singular vectors. Recall that the 3D-Var Hessian is closely related to

the analysis covariance error matrix (J′′ = A−1). Also, following Cardinali et al

(2004), this Hessian can be used to express the analysis sensitivity with respect

to the observations or information content extracted from the available data. The

sensitivity matrix is defined as follows: S = R−1HA−1HT . In the PSAS context,

this information can then be retrieved since its Hessian is related to that of 3D-Var.

S can be written as :

S = R−1H(B−1 + HTR−1H)−1HTR−1

= (R + HBHT )−1HBHT

which can be simplified by adding and subtracting an R in the second term:

S = (R + HBHT )−1(HBHT + R−R)

and finally we get :

S = I− (R + HBHT )−1R. (3.20)
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Following Cardinali et al. (2004), the term (I−S) represents the analysis sensitivity

with respect to the background in the dual of observation space. This allows us

to give a physical meaning to the inverse of PSAS Hessian. Moreover, considering

relations (3.18) and (3.19), the analysis sensitivity can be calculated with the leading

singular vectors of 3D-Var or equivalently those of 3D-PSAS.

Re-mapping of 3D-PSAS Hessian

To cycle the PSAS Hessian, relations (3.18) and (3.19) link 3D-PSAS Hessian

singular vectors to those of 3D-Var. It is now possible to calculate the singular

vectors of 3D-PSAS Hessian in order to precondition the current analysis as in Fig.3–

5 and Fig.3–6 (corresponding to time t1), and at the same time use them as an

approximation of those of the next cycle (time t2).

This process consists in a first step in mapping a current given eigenpair of

3D-PSAS (X, λ) into the model space through the operator L1
T (eq.3.18); the new

vector can easily be exported towards the next window in the same way as in 3D-

Var, and in a second step it consists in remapping this vector back into the dual of

observation space using an updated operator L2 = R
− 1

2
2 H2B

1
2 . H2 and R2 are the

new observation operator and covariance matrix valid at time t2. The approximate

eigenpair for the next window would then be:

X̃ =
1

λ− 1
L2L1

TX. (3.21)

In Fig.3–7, the convergence of 3D-PSAS objective function is plotted for the 19

January 2004 at 06h (solid curve), along with a preconditioned function with current

singular vectors as done in the previous section (dashed curve) and with singular

vectors generated from the previous cycle at 00h and remapped using (3.21) (dotted

curve). There is no significant difference in the two experiments, which states that

not only 3D-PSAS Hessian singular vectors can be re-mapped in both the model

and the dual of observation spaces, they also allow for cycling the Hessian from
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(a)

(b)

Figure 3–5: 3D-PSAS (a) and 3D-Var (b) objective functions convergence with precondi-
tioned Hessian with 25, 50 and 75 leading singular vectors.
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(a)

(b)

Figure 3–6: Gradient norms of 3D-PSAS (a) and 3D-Var (b) objective functions with
preconditioned Hessians with 25, 50 and 75 leading singular vectors (logarithmic scale).
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Figure 3–7: Cycling PSAS Hessian with previous assimilation window singular vectors for
January 19, 2004 at 06h.

one assimilation to the next for an incremental PSAS which was an important issue

when working in the dual space. This behavior was observed for several similar ex-

periments. However, further experiments have though to be carried out in order to

examine the sensitivity of eigenvectors to the observation network used.

3.5 Conclusion

Theoretical equivalence of 3D/4D-PSAS and 3D/4D-Var has been confirmed

through an intercomparison in an operational context. Both algorithms have been

shown to have the same convergence properties. However, the PSAS objective func-

tion has no physical meaning whereas that of 3D-Var can be related to the a pos-

teriori probability density function. Our results show that the first iterates of the

PSAS minimization lead to non-physical estimates and that it takes several iterates

to obtain a model state that is more accurate than the background state. This is a

cause of concern given that most operational implementations perform only a finite

number of iterations. Equivalence has also been extended to the singular vectors of

73



Hessians, which was shown to have interesting applications to establishing a connex-

ion between PSAS Hessian and the analysis sensitivities to the observations and/or

to the background. This also makes it possible to re-map singular vectors in the

model and the dual of observation space in order to precondition the PSAS problem

when cycling the assimilation. This work has also highlighted the importance of

preconditioning both dual and primal formulations well by choosing the appropriate

approximation of the Hessian taking into account the balance between the affordable

number of singular vectors or the number of pairs of the Limited-Memory Quasi

Newton vectors for instance and the subsequent gain.

As discussed earlier, PSAS can be seen as an alternative to the 3D/4D-Var for

solving the same analysis problem, with the same cost; and the equivalence between

these two methods is still relevant in the non-linear case when using the incremental

formulation. However, interest for PSAS lies beyond this equivalence since working

in a reduced space (the dual of observation space) is particularly promising when

accounting for model errors in a weak-constraint formulation, which is still unaf-

fordable for a real-size weak-constraint 4D-Var application. As discussed in Courtier

(1997), model errors can be accounted for in a PSAS context without any signifi-

cant increase in the size of the four dimensional problem, which is of great interest

provided model error covariances are specified. The dual approach can also be used

to compute sensitivities with respect to observations as proposed by Langland and

Baker (2004) and as mentioned in Pellerin et al (2006). This is currently examined

in an ongoing study.
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4 Convergence properties of the
primal and dual forms of
variational data assimilation

In the previous chapter, the minimization of the dual method was shown to

exhibit a spurious behavior at the beginning of the minimization which leads to less

probable states than the background state. Although the dual analysis result after

convergence is equivalent to the primal one, this is a serious concern when using the

dual method in operational implementations since only a finite number of iterations

can be afforded. This chapter examines this convergence problem by comparing

the sensitivity of the dual method to two minimization algorithms: the Conjugate

Gradient (CG) and the MINimum RESidual (Minres). For this purpose, we chose

to use a controlled frameword; a two dimensional turbulence model setting instead

of a full operational context. By reducing the complexity of our system, we aim to

monitor the origins of the dual problem more closely.

This Chapter is based on the following paper:

El Akkraoui A. and P. Gauthier, 2010 : Convergence properties of the primal

and dual forms of variational data assimilation. Q.J.R. Met. Soc., 136, Issue 646,

107-115.

c©2009 Royal Meteorological Society
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Abstract

The variational data assimilation problem can be solved in either its primal

(3D/4D-Var) or dual form (3D/4D-PSAS). Both methods are equivalent at conver-

gence but the dual method exhibits a spurious behaviour at the beginning of the

minimization which leads to less probable states than the background state. This

is a serious concern when using the dual method in operational implementations

when only a finite number of iterations can be afforded. Two classes of minimization

algorithms are examined in this paper: the Conjugate Gradient (CG) and the Min-

imum Residual (Minres) methods. While the conjugate gradient algorithms ensure

a monotonic reduction of the cost function, those based on the minimum residual

enforce instead a monotonic decrease of the norm of the gradient. In this paper, it

is shown that when applied to the minimization of the dual problem, the minimum

residual algorithms also lead to iterates for which their “image” in physical space

leads to a monotonic decrease of the primal cost function. A relationship is estab-

lished showing that the primal objective function is related to the value of the dual

cost function and the norm of its gradient. This holds for the incremental forms of

both the three and four dimensional cases. A new convergence criterion is introduced

based on the error norm in model space to make sure that, for the dual problem, the

same accuracy is obtained in the analysis when only a finite number of iterations is

completed.
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4.1 Introduction

Variational data assimilation methods have been widely used in meteorological

and oceanographic applications to estimate the analysis state of the atmosphere or

the ocean. Several NWP centres are currently using the four-dimensional variational

scheme (4D-Var), such as the European Centre for Medium-range Weather Forecast

(ECMWF; Rabier et al.,2000), the UK Met Office (Rawlins et al., 2007), Météo-

France (Gauthier and Thépaut, 2001) and Environment Canada (Gauthier et al.,

2007). The 4D-Var was made possible and practically affordable by using the adjoint

methods introduced by Lewis and Derber (1985), LeDimet and Talagrand (1986) and

Talagrand and Courtier (1987). When formulated in model-space, the variational

data assimilation problem (3D/4D-Var) corresponds to the primal form. Introduced

by da Silva et al. (1995) and Cohn et al. (1998), the Physical Space Assimilation

system (PSAS) formulates instead the variational problem in observation space: this

is often referred to as the 3D/4D-PSAS. Courtier (1997) showed the theoretical

equivalence between the two forms, which are two formulations of the same problem.

The PSAS is in fact the dual form of the primal variational problem. In El Akkraoui

et al. (2008), this equivalence was examined and a relationship between the Hessians

of the two problems was introduced. When the Hessian is represented by a finite

number of singular vectors, those can be mapped to the singular vectors of the

Hessian of the other problem.

In recent years, several studies were carried out to investigate ways to account

for model error in the assimilation. This requires also to be able to specify and

estimate model error covariances and to find effective ways to solve the resulting

weak constraint problem (Vidard et al., 2004; Griffith and Nichols, 2001; Trémolet,

2007). The interest for the weak constraint 4D-Var stems from the fact that model

error imposes a limitation on the length of the assimilation window (Trémolet, 2007).

Courtier (1997) showed that the weak constraint 4D-Var has also a dual form which,
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at convergence, is also equivalent under some conditions. The dual method is par-

ticularly interesting for the weak constraint 4D-Var. In the primal form, the size of

the control variable increases significantly in the weak constraint as it corresponds

to the model trajectory over the whole assimilation window. However, the dual form

is commensurate with the number of observations and the dimension of the problem

does not experience a significant increase. The issues raised by El Akkraoui et al.

(2008) regarding the convergence of the dual problem are then a source of concern

for the development of a weak constraint 4D-Var in its dual form.

In variational assimilation, iterative methods are used, which require adequate

preconditioning to speed up the convergence. Various preconditioning techniques

have been developed altogether with more efficient minimization algorithms. The

quasi-Newton (Gilbert and Lemaréchal, 1989) and the Conjugate Gradient (Hestenes

and Stiefel, 1952) are widely used in variational data assimilation applications in

NWP centers, although many other iterative methods for large sparse problems are

proposed in the literature. The Conjugate Gradient and quasi-Newton algorithms

(Navon and Legler, 1987) are based on a monotonic reduction of the functional.

Another approach is to impose that the norm of the gradient be monotonically de-

creased: this leads to the Minimum residual (MINRES) method (Paige and Saunders,

1975), that can be extended to the generalized minimum residual (GMRES) proposed

by Saad and Schultz (1986). All of these are basically Krylov subspace methods. The

choice of the appropriate method to use is usually dictated by the prior knowledge

of the problem to solve (i.e. sparseness, definite positiveness, spectrum distribution,

etc.) and by the overall cost of the algorithms. An overview of Krylov subspace

methods is given in Freund et al. (1992), Greenbaum (1997) and Saad (1996). The

reader is also referred to Zhou and Walker (1994), Cullum and Greenbaum (1996)

and Paige et al. (1995) for a comparison of two of these methods: the conjugate

gradient and the minimum residual.
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In El Akkraoui et al. (2008), the equivalence of the primal and dual forms

was established within the framework of an operational 3D-Var. Although the two

approaches lead to identical results at convergence, their results indicated that the

dual form may exhibit unphysical states at the beginning of the minimization, which

can add a significant number of iterations to reach convergence. This is a source of

concern for operational implementations that are constrained to a limited number of

iterations. The objective of this paper is to reexamine the minimization process in

the dual space and to better understand this convergence problem.

The paper is organized as follows. A review of the primal and dual formula-

tions of variational methods is presented in section 2, along with a description of the

behaviour of the dual problem in the course of the minimization. In section 3, the

Conjugate Gradient and the Minimum Residual methods are presented; convergence

criteria for the primal and dual methods are examined and a stopping criterion is

proposed based on the error norm in model space. The experiments and results are

presented in section 4, where performing the minimization with Minres is shown to

have a positive impact in the dual case, eliminating the convergence problem men-

tioned earlier for the first iterations in the 3D/4D-PSAS minimization. The new

convergence criterion is shown to be more appropriate for the dual case.

4.2 3D-Var and 3D-PSAS

In variational data assimilation, the best linear unbiased estimate (or maximum

likelihood) of the state of the atmosphere at the analysis time is obtained by mini-

mizing a functional representing the distance of a model state x to the background

state xb and to observations y, both weighted by their respective error covariances.

As presented in Lorenc(1986) and Rodgers (2000), this functional is

J(x) = −ln(p(x|y)),

79



where p(x|y) is the conditional probability that the state vector x is true knowing

that y has been observed. Higher values of J(x) then correspond to less probable

states.

When the background and observation error statistics are Gaussian, the incre-

mental 3D-Var scheme has to minimize the functional

J(δx) =
1

2
δxTB−1δx +

1

2
(Hδx− y′)TR−1(Hδx− y′) (4.1)

where B and R are the background and observation error covariance matrices respec-

tively, the increment δx = x−xb represents the misfit between the background state

xb and the model state x, H is the Jacobian (or Tangent linear) of the non-linear

observation operator (H) that maps the model variables into observation space, and

the term y′ = y − H(xb) represents the ”innovation” vector or the misfit between

the observation state y and the background state in physical space.

As shown by Courtier (1997) and discussed in El Akkraoui et al (2008), the

variational data assimilation can be expressed either in its primal or dual form, where

the latter solves the variational problem in the dual space instead of the model space

in which the primal formulation is cast. The dual objective function to be minimized

is :

F (w) =
1

2
wT (R + HBHT )w −wTy′. (4.2)

where its minimum (wa) satisfies δxa = BHTwa. This guarantees that both formu-

lations will give the same results at convergence. Courtier (1997) pointed out that

the equivalence between the primal and dual formulations leads to two minimization

problems for which the Hessians of the quadratic functionals have the same condition

number.

Preconditioned formulations for both forms, with their own preconditioning, are

obtained by introducing the changes of variable v = B− 1
2 δx for 3D-Var and u = R

1
2w
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for 3D-PSAS, to get the functionals and their gradients, which are respectively

J(v) =
1

2
vT (In + LTL)v − vTLT ỹ +

1

2
ỹT ỹ, (4.3)

∇v(J) = (In + LTL)v − LT ỹ, (4.4)

and

F (u) =
1

2
uT (Im + LLT )u− uT ỹ, (4.5)

∇u(F ) = (Im + LLT )u− ỹ, (4.6)

where ỹ = R− 1
2y′, and L = R− 1

2HB
1
2 . This shows that the Hessians are

J′′ = In + LTL, F′′ = Im + LLT

where In and Im are the identity matrices in model and observation space of order

n and m respectively.

Since the dual objective function has no immediate physical interpretation, the

a posteriori probability distribution, as measured by the primal functional J(v), can

be estimated by mapping each dual iterate uk to physical space (vk = LTuk) and

then evaluating J(vk). The result of this process is shown in Figure 4–1, from El

Akkraoui et al. (2008), where the iterates associated with the minimization of F (u)

were found to lead to less probable states than the background state at the beginning

of the minimization. This is not desirable if the minimization has to stop after a

finite number of iterations due to computational time constraints. The gradient of

the 3D-PSAS functional shows also an increase of its norm at the first iteration as

shown in Figure 4–2, from El Akkraoui et al. (2008), and it takes several iterations to

come back to its original level. These results were obtained with a Limited Memory

Quasi Newton (LMQN) for the minimization and a similar result (not shown) was

found using a Conjugate Gradient (CG) algorithm.
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Figure 4–1: Objective function of 3D-Var (solid line), 3D-PSAS (dashed line) and the
equivalent 3D-Var at PSAS iterates (dotted line) along the minimization. At each PSAS
iteration k, the iterate uk is brought to the model space through the operator LT =
B

1
2 HTR− 1

2 and the 3D-Var objective function is calculated for vk = LTuk. (From El
Akkraoui et al., 2008)

Figure 4–2: The ratio of the gradient norm at each iteration to the initial norm of 3D-Var
(solid line) and 3D-PSAS (dashed line) with number of iterations, plotted in a logarithmic
scale.(From El Akkraoui et al., 2008)
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It is shown in Appendix (B) that, using equations (4.3), (4.5), and when vk =

LTuk, the primal function is related to the iterates of the dual problem by

J(vk) =
1

2
‖∇F (uk)‖2 − F (uk). (4.7)

The norm used here is the Euclidean norm ‖v‖2 = vTv.

As discussed earlier, the functional J(x) corresponds to the a priori probability

distribution function and reducing J then implies increasing the probability of x

being the true value.

In view of (4.7), one can see that the behaviour shown in Figure 4–1 can be

explained by the dominance of the gradient norm term in the first iterations. Since

both the CG and the LMQN algorithms do not impose any constraint on the norm of

the gradient, it would be more appropriate to consider other minimization algorithms

that require the gradient norm to decrease monotonically. This leads to another class

of minimization algorithms used to solve linear systems. In the following section, the

Conjugate Gradient and the Minimum residual (Minres) methods are reviewed and

compared.

4.3 Minimization algorithms

Solving large linear systems of equations is often cast as a minimization problem

in which the gradient of a quadratic objective function will vanish when the solution

of

Ax = b (4.8)

is reached. In the primal and dual assimilation problems, the matrix A is symmetric

and positive definite and corresponds to the Hessians J” and F”, and b to the terms

LT ỹ and ỹ respectively.
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Different iterative methods for solving the linear system (4.8) are described in

the literature. They can be regrouped in two classes: the Conjugate Gradients (CG)

and the minimum residuals methods (MINRES). While the former is designed for

symmetric positive definite matrices A, the latter can be used for indefinite sym-

metric matrices as well. Some algorithmic and derivation aspects of both methods

are presented in Appendix C. The reader is referred to Greenbaum (1997) for more

details and for an overview of their convergence properties.

The following notations will be used hereafter. At each iteration k, the residual

is defined as rk = Axk − b, which also represents the gradient of the objective func-

tion associated with (4.8), and the error is ek = xk− x̂, where x̂ is the exact solution

of (4.8). Here, ‖.‖ and ‖.‖A will denote respectively the Euclidean 2-norm and the

A-norm, where ‖x‖2 = xTx and ‖x‖2
A = xTAx.

4.3.1 The Conjugate Gradient

A review of conjugate gradients and quasi-Newton methods for large-scale min-

imization in meteorology is presented in Navon and Legler (1987). At each it-

eration, the iterate is obtained by finding that point along the search direction

that minimizes the cost function. To make the minimization efficient, this class

of algorithms constructs its kth iterate xk as an element of the Krylov space x0 +

span{r0,Ar0, ...,A
k−1r0} such that the objective function is minimized (Golub and

Van Loan, 1996). This can also be viewed as an iterative reduction of the A-norm

of the error ‖xk − x̂‖A.

It can be shown that this norm is related to the residual by

‖xk − x̂‖A = ‖rk‖A−1 ,

where ‖rk‖2
A−1 = rTkA

−1rk. The stopping criterion of the CG algorithm is that the

norm of the residual (or the gradient) relative to the initial residual norm is below
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the convergence criterion specified by the parameter ε. In other words,

ξ2
k =

rTk rk
rT0 r0

≤ ε. (4.9)

It is important to remember that the actual criterion used to complete an it-

eration with those algorithms is not a reduction of the norm of the gradient but a

reduction in the cost function. Figure 4–2 shows that even near the end of the mini-

mization, significant increases in the norm of the gradient can be observed. Therefore,

in practice, the stopping criterion is often set to ensure that the convergence criterion

(4.9) is met for several consecutive iterations.

4.3.2 Minimum Residual algorithm : Minres

First introduced by Paige and Saunders (1975), Minres is a Lanczos-based it-

erative method for solving indefinite symmetric linear systems. Denoting Kk(A,b)

the kth Krylov subspace of A and b, Kk(A,b) := span{b,Ab, ...,Ak−1b}, the min-

imum residual method namely consists on finding xk ∈ Kk(A,b) such that ‖rk‖ is

reduced at each iteration, which amounts to imposing that the norm of the gradient

is monotonically decreasing during the minimization. The reader is referred to Paige

and Saunders (1975) and Choi (2006) for details on this algorithm.

It can be shown that the reduction of the residual norm is such that

‖rk‖ = Sk‖rk−1‖

where Sk is constructed such that 0 < Sk ≤ 1. The monotonicity of ‖rk‖ in Minres

would then prevent the occurrence of the large increases in the norm of the gradients

observed when minimizing the dual problem (4.5) as shown in Figure 4–2.

4.3.3 Convergence properties

Convergence behaviour of CG and Minres is completely determined by the spec-

trum of A. A classical approach for the CG is to consider the upper bound of the
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A-norm of the error based on the condition number of A (see Golub and Van Loan

(1996) and Kaniel (1966)). The convergence rate of MINRES on the other hand is

less straightforward to analyze. This is discussed in Kilmer and Stewart (1999).

Ideally, iterative processes should stop when the error norm falls below a thresh-

old defined by the user. However, since the error is not known, most stopping criteria

are built upon the estimation of the residual norm. In Barrett et al. (1994), a com-

pilation of commonly used criteria is presented. We focus here on the following

termination criterion (Dennis and Schnabel, 1983) :

R1 =
‖rk‖
‖ro‖

≤ ε, ro = b

which specifies the error bound : ‖ek‖ ≤ ε‖A−1‖‖b‖.

As discussed in Greenbaum (1997) and Zhou and Walker (1994), the norms of

the CG and Minres residuals, denoted rc and rm respectively, are connected at each

iteration k by :

‖rmk ‖2

‖rck‖2
= 1− ‖rmk ‖2

‖rmk−1‖2
(4.10)

From this formula, and since both algorithms start with x0 = 0, that is rm0 =

rc0 = b, one can see that

‖rmk ‖
‖rm0 ‖

≤ ‖rck‖
‖rc0‖

at each iteration k. This suggests that Minres would need slightly less iterations

than the CG to converge when using the criterion based on R1 to terminate the

minimization. However, relation (4.10) constrains the residual norms to not depart

much from each other. That is, when Minres convergence is fast, the right hand

side of (4.10) tends to 1 and ‖rmk ‖2 ≈ ‖rck‖2 and when Minres is close enough to

convergence (that is, the residual is very small, ‖rmk ‖2 ≈ 0), then the CG residual is

also small enough for the minimization to terminate.
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4.3.4 Primal and dual convergence

Given the relationship (4.7) that links the dual objective function F (uk) to the

primal function J(vk), we now establish a stopping criterion for the minimization

of the dual problem that will result in the same accuracy as that obtained when

minimizing the primal problem.

The Hessians of both formulations having the same spectrum (Courtier, 1997),

they have the same convergence rate as shown in Figure 2 (the same slope in the

gradient curves), which indicates that the two cases yield similar rates of reduction

in the norm of the gradients. However, since the minimizations are performed in

two different spaces, a proper termination criterion must be specified in each case to

ensure that a similar accuracy in the analysis is achieved.

The termination criterion R1 presented above can be interpreted in terms of the

error in the analysis. This criterion means that the minimization should be stopped

when the A2-norm of the error is such that

‖ek‖A2

‖e0‖A2

≤ ε

as it can easily be shown that ‖rk‖2 = ‖ek‖A2 .

For the primal form, this error is ek = v̂−vk, which corresponds to the departure

of the iterate vk from the truth v̂. In the same way, the error defined in the dual

space δk = û − uk will represent the departure of the iterates uk from some truth

in the dual space û, where v̂ = LT û. It follows that the error in the dual space is

related to the error in model space by the same operator LT , and we get

‖ek‖A2 = ‖LT δk‖A2 . (4.11)

Since both the primal and dual formulations solve the same variational problem, the

expected accuracy of the solution should be defined in the same reference space,

say the model space. The dual minimization should then terminate not when

the ‖δk‖A2 ≤ ε, but when the image of this error in the model space satisfies
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‖LT δk‖A2 ≤ ε. Thus, when comparing performances of the primal and dual al-

gorithms, we introduce an appropriate termination criterion (R2) in the dual space

such that :

• R1 : stop the primal minimization when ‖rk‖
‖r0‖ ≤ ε.

• R2 : stop the dual minimization when ‖LT rk‖
‖LT r0‖ ≤ ε.

Note that this new criterion implies that an additional integration of the adjoint

model in LT must be done just to test whether convergence has been reached. This

could add a significant computing cost to 4D-PSAS for instance. However, if time is

an issue, this may be done only at the end of the minimization to check how close

we are to convergence.

4.4 Results

4.4.1 Experimental setting

The experiments are set up on a periodic β plane as results to be presented

later will be extended to 4D-Var experiments. The model that will be used is the

same two dimensional barotropic non-divergent model used by Tanguay et al (1995),

and Laroche and Gauthier (1998), to solve the barotropic vorticity equation on the

β-plane :

∂ζ

∂t
+ J(Ψ, ζ) + βv = f −D(ζ),

where Ψ = −U0y + ψ is the full stream function, with U0 a large-scale East-West

flow representing the mean zonal wind, and ψ represents the stream function. The

vorticity is the Laplacian of the stream function, ζ = ∇2ψ, and the horizontal wind

components are u = −∂ψ
∂y

, and v = ∂ψ
∂x

, J being the Jacobian, f a forcing term, and

D, a linear dissipation operator. A detailed description of this model can be found

in Tanguay et al. (1995), and Laroche and Gauthier (1998).

The assimilation is performed with perfect observations of wind components at

each model grid point (and at every six time steps of the model for the 4D experi-

ments). The observation error is assumed to be uncorrelated, thus the observation
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error covariance matrix R is diagonal. The model state is the barotropic vorticity in

Fourier space so that the observation operator converts vorticity into wind compo-

nents, then performs an inverse Fourier transform. A background state is built from a

previous run of the model for which the initial state has slightly been perturbed, and

the background error covariance matrix is constructed such that B = ΣCΣ, where

Σ is the diagonal matrix of the standard deviation and C represents homogeneous

isotropic correlations (See Appendix B in Gauthier et al., 1993). The correlation

length is set to three grid points, which corresponds to approximately 300 km since

our domain size corresponds roughly to 7000 km (Tanguay et al., 1995). 3D/4D-var

and 3D/4D-PSAS assimilation experiments were conducted with minimizations per-

formed with both Minres and the Conjugate Gradient for comparison and stopped

using the termination criterion R1, for ε = 10−4.

4.4.2 Convergence Results

The objective functions of the three dimensional primal and dual methods

are plotted in Figure 4–3, where the minimization is performed with the CG and

then with Minres for comparison. Since the minima of the functionals must satisfy

J(δx∗) = −F (w∗) (See Appendix A), the dual functions in Figure 4–3 are plotted

in their absolute value. Note that this relationship can be used as an a posteriori

diagnostic of the minimization.

Objective functions curves plotted in Figure 4–3 indicate that for the primal

case, Minres and the CG behave the same way but, in the dual case, the CG seems

to perform better in the early stages of the minimization. By construction, the CG

minimizes the A-norm of the error, that is, the functional itself, whereas Minres

minimizes the 2-norm of the residual, that is, the gradient norm, the functional is

reduced monotonically, but this is not imposed in Minres.

Figure 4–4 shows the reduction of the norm of the residual to its initial value ‖rk‖
‖r0‖

at each iteration k, using the CG and Minres respectively. As expected, the gradient
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Figure 4–3: Objective function of 3D-Var performed with a CG (solid line) and Minres
(dotted line), and the inverse of 3D-PSAS functional with the CG (dashed line) and minres
(dash-dotted line).

norm is monotonically decreasing with Minres. Furthermore, for both primal and

dual minimizations, Minres needs less iterations to reach the convergence criterion

(‖rk‖
‖r0‖ ≤ ε) than the Conjugate Gradient, which is consistent with the remark made in

the previous section. As the stopping criterion is based on a reduction of the norm of

the residual, Minres ensures that further iterations will not be increasing the norm

of the gradient as it may happen when methods based on the conjugate gradient are

used.

One notices however, that 3D-PSAS still requires more iterations than the 3D-

Var in both minimization cases. As pointed out by Courtier (1997), both 3D-PSAS

and 3D-Var are equivalent in terms of the overall cost, since they are expected to

converge at the same rate and with a comparable number of iterations. As discussed

in the previous section, performing the minimizations in two different spaces makes

it necessary to adjust the stopping criterion for the dual case to be consistent with

that in the model space. One way to do that is to map the dual residuals in the

model space through the relation r̃k = LT rk; their norms are calculated in Figure

4–4 (the starred line).
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Figure 4–4: The CG and Minres residual norms of 3D-Var (solid and dotted lines), and
3D-PSAS (dashed and dash-dotted lines). The starred line represents the norm of the dual
residuals in the model space.

Note that the dual residuals are

rk = (Im + LLT )uk − ỹ,

and their equivalents in model space can be written as r̃k = (In + LTL)LTuk −

LT ỹ, which represents the expression of the primal residuals calculated for LTuk.

Comparing the curves of the norms of the equivalent dual residuals (starred line)

and the primal residuals (solid line) in Figure 4–4, one can see that both curves are

close suggesting that the image of the dual residual reduction in the model space is

comparable to the reduction of the primal residuals, and that for the same stopping

criterion in model space, when 3D-Var reaches convergence to the required tolerance,

3D-PSAS has technically also reached the same convergence in a comparable number

of iterations. This is consistent with the statement by Courtier (1997) and confirms

that considering the dual termination criterion proposed in the previous section is a

better stopping criterion for 3D-PSAS.

The same experiment as in Figure 4–1 was performed to assess the impact of

Minres on the equivalent of the dual minimization in the model space. Figure 4–

5 shows the primal functional estimated for the dual iterates using the results of
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eq. (4.7). In the CG case, this functional (dashed line) is clearly dominated by

the gradient term in the RHS of (4.7) (solid line), which fully explains the spurious

behaviour of the dual algorithm in the first iterations. This problem disappears when

using Minres since the monotonic decrease of the dual gradient norm (dashed-dotted

line) guaranties a similar decrease of the estimated primal functional (dotted-line

with the circle marker). Moreover, this functional is quasi-identical to the original

primal functional minimized with either Minres or the CG (solid line with the star

marker), suggesting that at each iteration k, J(vk) ≈ J(LTuk), even during the first

stage of the minimization. In Figure 4–6, the analysis increments of the assimilation

are plotted for 3D-PSAS and 3D-Var after the first 10 iterations only, using Minres

and the CG. As expected the Conjugate Gradient 3D-PSAS increments are degrading

the analysis, whereas Minres increments are consistent with those of the 3D-Var.
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CG : 1/2||∇(FCG)||2

Minres : Jm(LTu)

Minres : 1/2||∇(FM)||2

CG : JCG(v)

Figure 4–5: Three dimensional case : the primal functional estimated for the dual iterates
using the formula in (4.7) for the CG (dashed line) and Minres (dotted-line with the circle
marker). Also the term 1

2‖∇(F )‖2 is plotted for the CG (solid line), and Minres (dashed-
dotted line), and finally, the original primal function calculated with the CG (solid line
with the star marker) is plotted for comparison.

To extend the results of this work to the four dimensional case, a 4D-PSAS

algorithm was implemented and similar experiments to those described earlier were
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Figure 4–6: Vorticity increments after 10 iterations for a CG (top panels) and Minres
(bottom panels) of the primal and dual minimizations. Equidistant contours of 0.2 units,
with positive values in solid lines and negative values in dotted lines.
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conducted in which the same question was examined : Would Minres be a better

alternative to the CG in the dual case? The theoretical formulation of the 4D-

PSAS is presented in Courtier (1997) and El Akkraoui et al. (2008). Note that the

three dimensional formulations used for the 3D-Var/3D-PSAS can be extended to the

incremental 4D-Var/4D-PSAS by including the tangent linear model (TLM) (M) and

its adjoint (MT ) within the operators L = R− 1
2HMB

1
2 and LT = B

T
2 MTHTR− 1

2 .

Using the incremental formulation, these operators are linear and the same

formula in (4.7) still holds in 4D. This leads to the results presented in Figure 4–7

where minimizations within the inner loop of 4D-Var and 4D-PSAS were performed

with both the CG and Minres. The shape of the primal functional evaluated for the

dual iterates is similar to the three dimensional case (Figure 4–5). The jumps in the

dual gradient norm dominate when the CG is used, whereas the monotonic decrease

of the gradient norm in Minres leads to a better behaviour in the reduction of this

function.
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Figure 4–7: Four dimensional case : the primal functional estimated for the dual iterates
using the formula in (4.7) for the CG (dashed line) and Minres (dotted-line). Also the
term 1

2‖∇(F )‖2 is plotted for the CG (solid line), and Minres (dashed-dotted line).
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It follows then that Minres is more appropriate for the dual minimization; the

residual norms decrease monotonically, and the algorithm produces smoother correc-

tions to the background state in the course of the minimization. Minres provides a

nice response to the concern that needed to be resolved before considering the dual

formulation for any operational implementation.

4.5 Conclusion

Convergence of the primal and dual formulations of variational data assimilation

was investigated when two iterative minimization algorithms were used, the Conju-

gate Gradient and the Minimum Residual methods. The primary objective was to

examine the dual problem discussed in El Akkraoui et al. (2008), where the dual

minimization was shown to lead to less probable states than the background state at

the beginning of the minimization process. Because only a finite number of iterations

can usually be afforded in operational implementations, the spurious behaviour of

the dual algorithm needed to be understood and resolved before going ahead with

considering operational implementations of this method. In this paper, the use of the

Minimum Residual algorithm is shown to be beneficial for the dual method, in that

it guaranties a monotonic decrease of the gradient norm which appears to be the key

to solving the dual problem and ensuring a smooth refinement of the solution even

during the first iterations both in the three and four dimensional cases. Furthermore,

it was shown that a new stopping criterion, based on the error norm in model space,

should be used in the dual case to achieve the same accuracy in the analysis state

with a comparable number of iterations (Courtier, 1997).

This paper is part of an ongoing work towards a weak-constraint variational as-

similation, formulated in both the model space and the observation space. The dual

framework is particularly interesting in this case since it decreases significantly the

size of the variational problem. Many aspects of the weak-constraint formulation are

still under study. Before considering the dual form of the weak-constraint 4D-Var,
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it was important to address the convergence problem noted in El Akkraoui et al.

(2008). This was the objective of the paper: to show that the dual form can be used

with confidence in situations where the number of iterations is limited.
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5 The weak-constraint
formulation of variational data
assimilation: Intercomparison of
the primal and dual forms

In this chapter, the weak-constraint formulation both in the primal and dual

forms of variational data assimilation is examined. The extension of equivalence of

these forms to the case where model errors are accounted for is presented, and some

of the convergence and preconditioning properties are discussed. As in the previous

chapter, the controlled 2D framework is used for the same reasons.

This Chapter is based on the following paper:

El Akkraoui A. and P. Gauthier: The weak-constraint formulation of variational

data assimilation: Intercomparison of the primal and dual forms. In preparation. To

be submitted to Q.J.R. Met. Soc.
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5.1 Introduction

During the past few decades, many advances have been achieved in the field of

data assimilation, which resulted in a substantial improvement of NWP products:

the analyses and the forecasts. This is believed to be due to the synergy of efforts

to improve the modeling and observing of the atmospheric system, whose increased

complexity motivated the need to develop more advanced yet efficient data assimi-

lation techniques (Rabier, 2005). Variational methods for instance have permitted

the use of raw satellite radiance observations directly in the assimilation system

rather than using retrievals of temperature and humidity profiles obtained from the

data (Eyre, 1989; Thépaut, 2003). Furthermore, the proper inclusion of the time

dimension in four dimensional variational data assimilation (4D-Var) permitted the

treatment of the data at a near-optimal time. Consequently, the overall quality of

the analysis has increased drastically, yet, new challenges arise constantly, as some

sources of errors are still not accounted for.

Errors in NWP forecasts are mainly due to inaccurate initial conditions and to

deficiencies in the dynamical model itself. Lorenz (1963) showed that, for a chaotic

model, a small change in the initial conditions could lead to radically different so-

lutions. Since then, much of the attention has focused on improving the initial

conditions as the main source of error in weather forecasting. However, it has been

argued in Orrell et al. (2001) that in the short term, it is the model error that dom-

inates the forecast error, and that the effects of chaos lead to loss of predictability,

but only over long time scales. This is corroborated by other studies showing the

severe impact of the model deficiencies on the forecast quality (Boer, 1984; Dalcher

and Kalnay, 1987; Bloom and Shubert, 1990; and Zupanski, 1993; Bennett, 2002).

Numerical models are based on a discrete version of model equations and cannot

represent the atmospheric behavior exactly, for they only provide a discrete and

approximate representation of the system. Hence, model errors arise due to all
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the simplifications and approximations one makes to approach the complexity of the

atmospheric system (i.e. resolution, approximate physics parametrization, inaccurate

boundary conditions...etc). They can be random or systematic and lead to persistent

bias (e.g. errors due to unresolved scales). Although little is known so far about the

general form of the model error, techniques have been used to correct bias errors in

the forecast using sequential and four-dimensional variational assimilation schemes

(Dee and Da Silva, 1998; Derber, 1989), to estimate and take into account time-

correlated stochastic errors (Daley, 1992; Zupanski, 1997).

In current NWP implementations of variational methods, the assimilation only

accounts for the background and observation errors to find the optimal initial state

for the forecast model; which implicitly ascribes the error in the forecast to the ini-

tial conditions. It is referred to as the strong-constraint approach (Sasaki, 1970) in

which the dynamical model is assumed perfect and its equations describe exactly

the atmospheric evolution. Accounting for model errors requires relaxing the perfect

model assumption and the analysis is now required to satisfy the model equations

only approximately, not exactly. This is referred to as the weak-constraint formula-

tion, which leads to an assimilation process that corrects for the model error within

the assimilation window while fitting the model trajectory to the data.

However, accounting for model errors is not a straightforward task, for these

are unobserved quantities with unknown statistics. Moreover, the huge size of the

assimilation problem in the weak-constraint case makes this approach very expensive

for operational NWP applications, and simplifications must be made to tackle this

problem (Trémolet, 2003). Recent attempts were focused on reducing the size of the

model error part of the control vector, either by reducing the dimension of the sub-

space in which the model error is defined (Vidard et al. 2001), by using information

provided by the analysis residual vector (Vidard et al. 2003), or by controlling only

the systematic and time correlated part of the error (Griffith and Nichols, 2001).

Trémolet (2003) considered the effect of using a reduced control variable where the

99



model error correction term can be assumed to be constant either on the whole

assimilation window or on just a few sub-windows.

The cost of the weak-constraint formulation can be circumvented by carrying

the assimilation into a space of lower dimension; the dual space (or the observation

space), whose size is commensurate with the number of observations used in the

assimilation process. In meteorology and oceanography, the number of degrees of

freedom of the dynamical models (the size of the model space) is usually one to two

orders of magnitude higher than the number of available observations.

As pointed out in Courtier (1997), the variational data assimilation can take

two forms that are only different ways to solve the same problem. Those are referred

to as the primal and dual forms of variational data assimilation, the primal form

being the usual 3D/4D-Var as implemented at many NWP centres. The dual form

(3D/4D-PSAS) looks at the problem from the observation space. Both forms solve

the same assimilation problem, converge to the same solution, and with a compa-

rable overall cost. Both approaches are based on the same basic operations and El

Akkraoui et al. (2008) showed that it was indeed possible to ”reconfigure” an opera-

tional 3D-Var system to obtain its dual form. Doing so, they were able to confirm the

results announced in Courtier (1997): both algorithms converge to the same solution

and the convergence rate is similar. However, their results also showed that the dual

form exhibits a spurious behavior that augments the cost of the dual approach. El

Akkraoui and Gauthier (2010) managed to explain the source of the problem and

proposed a different approach to the minimization that resolved it. This could be

related to the fact that, contrary to the primal problem, the dual functional does not

have a direct relationship to the a posteriori probability distribution obtained from

Bayesian theory.

The objective of this paper is to investigate the weak-constraint 4D-Var in both

its primal and dual forms. This paper is organized as follows. In the second section,
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a review of the primal form of weak-constraint variational assimilation is presented.

Then , the formulation of the dual weak-constraint assimilation is examined in sec-

tion 3, along with some aspects of the duality. In section 4, some intercomparison

results are presented in which it is shown that the practical equivalence of the two

algorithms can be extended to the weak-constraint case, and that the convergence

properties of the dual method have the same characteristics as those observed for

the strong constraint case. Some discussions and conclusions are presented in the

last section of this paper.

5.2 Accounting for model errors in variational data assimilation

5.2.1 From strong to weak constraint formulation

Four dimensional variational data assimilation seeks to find the optimal model

trajectory, xa(t), that best fits the scattered representation of the atmospheric reality

as depicted by a series of observations {yi, i = 1..p}, where the vector yi represents

all observations at time ti, over the assimilation window. This is done by minimizing

a functional that comprises a measure of the distance between the observation and

their model equivalent on the one hand and, on the other, the distance between the a

priori estimate and the current model state, both terms being weighted according to

their respective accuracy. In the strong-constraint 4D-Var, the model equations are

assumed to be a perfect representation of the true dynamical system and the time

evolution x(t) of the dynamical system is described by the model discrete nonlinear

equations

xi = Mi,0(x0) (5.1)

where Mi,0 is a forward integration of the model from time t0 to time ti, and subscript

i refers to the time ti. This dynamical constraint, also referred to as the perfect model

assumption, implies that the complete trajectory is entirely defined by the initial

conditions x0. Therefore, instead of the whole trajectory, the objective function in
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this case is only derived with respect to this initial state

J(x0) =
1

2
(x0−xb)

TB−1(x0−xb)+
1

2

q∑
i=0

[Hi(Mi,0(x0))− yi]
T Ri

−1 [Hi(Mi,0(x0))− yi]

(5.2)

where B and Ri are respectively the background and observation error covariance

matrices, and Hi the nonlinear observation operator that maps the model variables

into the observation space.

To account for model errors, the perfect model assumption in (5.1) can be relaxed

to add a correction term ηi to the model equations at each time step ti

xi = Mi,i−1(xi−1) + ηi (5.3)

where each of the ηi vectors has the dimension of a three dimensional model state.

The objective function in (5.2) can then be extended as

J(x0,η) =
1

2
(x0 − xb)

TB−1(x0 − xb) +
1

2

q∑
i=0

[Hi(xi)− yi]
T Ri

−1 [Hi(xi))− yi]

+
1

2
ηTQ−1η

(5.4)

where Q is the model error covariance matrix, and ηT = (ηT1 ...η
T
q ) is the vector

of the model error terms. This is the weak-constraint formulation of 4D-Var. The

control vector here is extended to include all the ηi terms, so that the initial states,

together with the model errors form the control parameters that must be determined

by the assimilation. That is, over the assimilation window, it is the full trajectory

x(t) that is adjusted to fit the observations, and not only the initial conditions as in

the strong-constraint formulation.

To make the objective function quadratic, the incremental approach can be

applied as in the strong-constraint case by using a Tangent Linear Model (TLM),

M, and its adjoint, MT , both defined in the vicinity of the current background state.

Thus, only linear operators are involved, and the increments in this case evolve as
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δxi = Mi,i−1δxi−1+ηi, where δx0 = x0−xb(0), and Mi,i−1 represents the integration

of the TLM from time ti−1 to time ti. The objective function becomes

J(δx0,η) =
1

2
δx0

TB−1δx0 +
1

2

q∑
i=0

(Hiδxi−y′
i)
TR−1

i (Hiδxi−y′
i)+

1

2
ηTQ−1η (5.5)

where y′
i = yi −Hi(Mi,0(xb)) are the innovation vectors. Iterative algorithms are

then used to minimize the functional and obtain the analysis state, (δxa0,η
a). In the

linear case, the analysis increment at each time step can then be written as

δxai = Mi,0δx
a
0 +

i∑
j=1

Mi,jη
a
j (5.6)

where the rightmost term represents the part of the forecast error that is only due

to the model deficiencies accumulated from the initial time t0 to time ti. In matrix

form, (5.6) can simply be written as

δxa = Nδza (5.7)

or equivalently for each time step as δxai = Niδz
a, where

N =


N 0

N 1

N 2
...
N q

 =


In 0 0 · · · 0
M1,0 In 0 · · · 0
M2,0 M2,1 In 0
...

...
. . .

...
Mq,0 Mq,1 Mq,2 · · · In

 , and δz =


δx0

η1

η2
...
ηq

 .

where In is the identity matrix, and n the size of the three dimensional model state.

The operator N reconstructs the model trajectory from an initial state and an

estimate of the model error terms at each time step. Following Courtier (1997), and

using (5.6), the functional (5.5) and its gradient can be written in a compact form

respectively as

J(δz) =
1

2
δzTD−1δz +

1

2
(Sδz− y′)TR−1(Sδz− y′) (5.8)

∇δz
J =D−1δz + STR−1(Sδz− y′) (5.9)
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where D =

(
B 0
0 Q

)
is the matrix of the background and model error covariances

and S is an operator designed such that Si = HiN i, which can be seen as a gener-

alization of the observation operator since Siδz
a = Hiδx

a
i is the analysis increment

evaluated in the observation space.

At the minimum of the objective functional, the gradient vanishes, and the

analysis result is

δza =[D−1 + STR−1S]−1STR−1y′ (5.10)

The gain matrix here is K = [D−1 +STR−1S]−1STR−1, which can also be written as

K = DST [R + SDST ]−1. This compact form helps see that variational methods are

just an extension of one another to a more general case. In the strong-constraint 4D-

Var, no model error term is included so that the matrix D is simply the background

error covariance matrix (B) and S reduces to its first column, which performs forward

integrations of the model from initial time to the observation times (Mi,0), followed

by the application of the observation operator Hi. In 3D-Var, the dynamical model is

not involved in the assimilation process, thus S is simply the observation operator H.

5.2.2 The analysis error

The analysis error at each time step is defined as the departure of the analysis

state, xai , to the truth, xti, or equivalently as

εai = δxai + xbi − xti (5.11)

Since the truth is not known, one usually tries to write this error in terms of known

quantities in the assimilation: the background and observation error statistics. In the

strong-constraint formulation, it is common to assume that the evolution of the true

state is entirely described by the dynamical model equations, i.e. xti = Mi,0(x
t
0).

However, this assumption is not valid if the model is not considered perfect. Hence,
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in the weak-constraint formulation and in the linear case, one uses instead

xti ≈ Mi,0(x
t
0) +

i∑
j=1

Mi,jηj = N i

(
xt0
η

)

so that one can write xbi − xti = N i

(
xb0
0

)
−N i

(
xt0
η

)
= N i

(
εb

−η

)
, where εb

is the background error. On the other hand, the analysis increment is δxai = N iKy′

and the innovations can be written as y′ = y −H(xb(t)) = εobs − S

(
εb

−η

)
.

It follows that the analysis error can be expressed in this case as

εai = N i

[
Kεobs + (I−KS)

(
εb

−η

)]
(5.12)

Using both definitions of the gain matrix, and replacing terms, it is then possible to

show that the analysis error covariance matrix at each time step is expressed as

Pa
i = N i[D

−1 + STR−1S]−1N T
i . (5.13)

As mentioned earlier, the operators in the weak-constraint formulation are only ex-

tensions of those of the strong-constraint. Since N 0 reduces to the identity in the

latter case, one can easily verify that the strong-constraint analysis error can be cal-

culated directly from (5.13).

5.3 Dual formulation of variational data assimilation

For very large stochastic systems, such as the atmosphere or the ocean, an

operational implementation of the weak-constraint formulation of 4D-Var is very ex-

pensive due to the enormous size of the assimilation problem that is augmented by

the cost of estimating all the model errors. When accounting for model errors, the

size of a weak-constraint 4D-Var is q-times the size of a strong-constraint 4D-Var.

This is also expected to increase commensurately with the steady improvements in

the numerical models and the use of higher resolutions. By carrying the assimilation
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process into a smaller space (the observation space), it is possible to keep the weak-

constraint formulation to a manageable size. In 4D-PSAS, the dual form of 4D-Var,

the control vector is defined in observation space (Cohn et al., 1998), and its size

does not change, whether the model errors are accounted for or not.

The theoretical equivalence at convergence of the primal and dual forms is discussed

in Courtier (1997). They both solve the same variational problem but in two different

spaces; the model and observation space respectively. The equivalence is also subject

to the assumption on the linearity of the operators (Courtier, 1997). However, this

has recently been extended to the non linear case (Auroux, 2007; El Akkraoui et al.,

2008) and to the singular vectors of the Hessians.

5.3.1 Dual weak-constraint formulation

The step by step theoretical formulation of 3D and 4D-PSAS is presented in

Courtier (1997), El Akkraoui et al. (2008), and El Akkraoui and Gauthier (2010).

In the same way, the weak-constraint 4D-PSAS is derived directly from the primal

form (weak-constraint 4D-Var) by using the two forms of the Gain matrix in the

primal analysis state as

δza = DST
[
R + SDST

]−1
y′. (5.14)

and solving, in observation space, the linear system
[
R + SDST

]
w = y′, the so-

lution of which satisfies δza = DSTwa. The control vector here, w, has the size

of the number of observations, which is the same both in the strong- and weak-

constraint formulations.. It follows that the dual objective function and its gradient

are respectively

F (w) =
1

2
wT [R + SDST ]w −wTy′ (5.15)

and

∇wF = [R + SDST ]w − y′. (5.16)
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Note that, in the dual case, the error covariance matrices are present in their

direct form (not inverse) which implies that PSAS remains regular in the limit of

vanishing model error. Once the minimization of the functional F has been com-

pleted, and the analysis result in the dual space (wa) found, it is straightforward to

reconstruct the primal analysis increments using δxai = N iδz
a = N iDSTwa.

5.3.2 Duality and preconditioning

In El Akkraoui et al. (2008), it was shown that the equivalence of the primal and

dual methods can be extended to nonlinear cases of four dimensional applications,

and to their Hessian eigenvectors. The weak-constraint formulation is no exception.

Using the compact forms, the primal and dual preconditioning is introduced by the

change of variable ξ = D− 1
2δz and u = R

1
2w respectively. The Hessians can then

be written as

J” = In×q + D
T
2 STR−1SD

1
2 (5.17)

F” = Im + R− 1
2SDSTR− 1

2 (5.18)

where n, q, and m refer respectively to the size of a 3D model state, the number of

time steps in the assimilation period, and the number of assimilated observations.

In the same way as proposed in El Akkraoui et al. (2008), the operator L and its

adjoint LT are defined such that L = R− 1
2SD

1
2 and LT = D

T
2 STR− 1

2 . The Hessians

can then be written as:
J” = In×q + LTL

F” = Im + LLT
(5.19)

One can then easily see the duality between the two formulations. In Courtier (1997),

it was shown that the Hessians of both formulations have the same spectrum, possibly

completed by some 1’s. This statement is still valid in the weak-constraint context.

Furthermore, as in El Akkraoui et al. (2008), the expressions in (5.19) can be used

to show that the singular vector of the Hessians are also related. One should bear

in mind though that this equivalence is only valid under the assumption of linearity
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of the observation operator and subject to the validity of the TLM and its adjoint.

Depending on the modeling of the model error covariance matrix, the square root of

D may not be easy to construct. Therefore, the dual Hessian is expressed in a more

natural framework, for which the eigenvectors are easier to calculate. Although this

preconditioning is more effective (Ehrendorfer and Tribbia, 1995), the calculations

of the singular vectors in the weak-constraint case can be very expensive. One can

use a combined Lanczos-Conjugate-Gradient method that allows for the calculation

of Hessian singular vectors in the course of the minimization process since there is a

close connection between the gradient vectors of the CG and those generated by the

Lanczos algorithm (Paige and Saunders, 1975; Fisher and Courtier, 1995). Thus the

number of iterations is comparable to the number of singular vectors, which makes

this approach very useful in the context of operational processes.

5.4 Results

5.4.1 Experimental setting

The experiments are set up on a periodic β plane. The model used here is the

same two dimensional barotropic non-divergent model used by Tanguay et al (1995),

and Laroche and Gauthier (1998), to solve the barotropic vorticity equation on the

β-plane :

∂ζ

∂t
+ J(Ψ, ζ) + βv = f −D(ζ),

where Ψ = −U0y + ψ is the full stream function, with U0 a large-scale East-West

flow representing the mean zonal wind, and ψ represents the stream function. The

vorticity is the Laplacian of the stream function, ζ = ∇2ψ, and the horizontal wind

components are u = −∂ψ
∂y

, and v = ∂ψ
∂x

, J being the Jacobian, f a forcing term, and

D, a linear dissipation operator. A detailed description of this model can be found

in Tanguay et al. (1995), and Laroche and Gauthier (1998).

The assimilation is performed with perfect observations of wind components at

each model grid point and at every six time steps of the model. The observation
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error is assumed to be uncorrelated, thus the observation error covariance matrix

R is diagonal. The model state is the barotropic vorticity in Fourier space so that

the observation operator converts vorticity into wind components, then performs an

inverse Fourier transform. More details about this experimental setting is presented

in El Akkraoui and Gauthier (2010).

The model error was specified in the β term of the barotropic vorticity equation.

Twin experiments were conducted in which the ”truth” and the observations are pro-

duced with a version of the model where β = 0.4, and the experiments are conducted

with the ”erroneous” model where β = 0.5. The error in the β term is supposed to

mimic the effect of a random model error for which the assimilation seeks a correc-

tion estimate. Weak-constraint 4D-Var and 4D-PSAS assimilation experiments were

conducted with minimizations performed with both the Minimum Residual (Minres)

and the Conjugate Gradient (CG) methods for comparison (Hestenes and Stiefel,

1953; Paige and Saunders, 1975).

5.4.2 The model error covariance matrix

In this paper, the experiments are performed with a fixed model error covari-

ance matrix related to the background error covariance term such that Qi = αB, for

each time step i. For obvious reasons, this is a practical but very poor choice of the

covariances since the solution that should lie in the subspaces spanned respectively

by B and Q, is here only allowed to span the same subspace as the background error

term (Trémolet, 2007). That is, model error is restricted in the same directions as the

initial condition increment, and only their relative amplitudes differ depending on

the value of α (fixed here to α = 0.01). We acknowledge the importance of modeling

and estimating the model error covariances. Nonetheless, since the objective of this

paper regards the algorithmic aspects of the dual form, this particular form of Q is

sufficient for our purpose.
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5.4.3 Implementation

Based on the assimilation system described in El Akkraoui and Gauthier (2010),

the 4D-Var and 4D-PSAS were extended for the implementation of a weak-constraint

version of each algorithm. It is important to stress here that the modularity of the

operators being used is crucial to a smooth implementation of these methods. As

discussed earlier, the primal and dual forms use the same operators and matrices,

but in a different sequence. Once the basic operators extended from the strong to

the weak-constraint, it is then possible to easily build both the primal and dual

algorithms in the same setting. The primal method required the extension of the

control vector to include the model errors at each time step, and thus the size of the

working space was considerably increased. However, in the dual case, the working

space is unchanged, and all the variables and matrices have either the size of the

number of observations or the size of a three dimensional model state. Furthermore,

a few changes were required to adapt the TLM and its adjoint to the weak-constraint

case to construct the operators N and N T embedded in the generalized observation

operator and its adjoint, S and ST respectively. S is implemented as a matrix-vector

product, such that SX = X′, where XT = (xT0 ,x
T
1 , · · ·xTq ). That is X′

i = HiN iX =

Hi−1N i−1x0 + Hixi, and S0X = H0x0.

On the other hand, ST uses the integrations of the adjoint model that are now defined

with respect to the new primal and dual adjoint variables, expressed respectively as

δx∗i = MT
i+1,iδx

∗
i+1 + HT

i R
−1
i y′

i with δx∗q = HT
q R

−1
q y′

q

w∗
i = MT

i+1,iw
∗
i+1 + HT

i wi, with w∗
q = HT

q wq

The minimization of the objective functionals are then performed iteratively in

exactly the same way as in the strong-constraint case.

5.4.4 Convergence properties

In the context on a weak-constraint formulation, experiments are conducted

to assess first the equivalence of the primal and dual algorithms. In figure 5–1,
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the analysis increments are plotted for the weak-constraint 4D-Var (top panel) and

for the weak-constraint 4D-PSAS (bottom panel), and shows that both algorithms

have converged to the same analysis state. The minimization of the functionals is

Analysis increments (Weak−C 4D−Var)
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Figure 5–1: Analysis increments of the weak-constraint 4D-Var (top) and weak-constraint
4D-PSAS (bottom).

performed with Conjugate Gradient (CG) algorithms, and stopped when the ratio of

the gradient norm to its initial value falls below a threshold of 10−5. The reduction

of the gradient norms is presented in figure 5–2. The primal and the dual methods

111



have the same convergence rate as shown by the slope of their gradient norms (solid

and dashed lines respectively).
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Figure 5–2: Reduction of the ratio of the gradient norm to its initial value for the weak-
constraint 4D-Var, with the CG and Minres, and for the weak-constraint 4D-PSAS with
the CG and Minres.

The equivalence of results at convergence and in the linear case was announced

theoretically in Courtier (1997), and then confirmed in practice in the context of

an operational three and four dimensional variational assimilation in El Akkraoui et

al., 2008. However, the same experiments highlighted the importance of bearing in

mind the assumption used to formulate the dual algorithm. That is, the equivalence

is valid at convergence only. During the primal minimization, the iterates are, by

construction, gradually refining the analysis state; thus increasing the probability

of having an analysis that is more accurate than the initial state. This property

is intrinsic to the definition of the primal functional itself, J = −ln(p), where p is

the conditional probability of a model state being true knowing the observational
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state. However, in the dual case, the functional has no direct physical meaning,

which results in iterates for which their image in the primal space may degrade

the analysis during the first iterations, before it starts to adjust and recover the

same analysis as the primal algorithm. That is, the dual analysis is only reliable

when the minimization is close enough to convergence. Therefore, it is expected

that, in a weak-constraint framework, the first stage of the dual minimization can

be challenging; the contributions of the model error terms, estimated iteratively by

the minimization, may aggravate this behavior since they are directly included in the

integrations of the model and its adjoint. This behavior is illustrated, in our context,

in figure 5–3, which shows the curves of the minimization of the dual functional with

the CG (dashed line), together with the primal functional evaluated for the dual

iterates (i.e. the image of the dual minimization in the model space) using the CG

(dotted line). As expected, during the first 5 iterations, the dual method produces

iterates for which the image in the model space is unphysical, and are worse that the

initial state that the minimization started with.
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Figure 5–3: Minimization of the weak-constraint 4D-PSAS with the CG (dashed line) and
Minres(solid line), and the primal functional evaluated for the dual iterates with the CG
(dotted line) and Minres (dash-dotted line).
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In El Akkraoui and Gauthier (2010), the choice of the minimization algorithm

proved to be crucial in the dual case. It was shown that another algorithm can be

used to avoid the dual behavior described above. By construction, the MINimum

RESidual method (MINRES) minimizes the gradient norm (i.e. the residual of the

linear system defining the gradient), instead of the functional itself as it is the case

for the Conjugate Gradient method. Encouraging results were shown in El Akkraoui

and Gauthier (2010) in the case of 3D and 4D-PSAS. In the present context, figure

5–3 also shows the curves of the minimization with Minres of the dual functional

(solid line) and the primal functional evaluated for the dual iterates (dash-dotted

line). When using Minres, the dual iterates improve gradually the analysis state

even during the first iterations. The reason why the dual method finds its way from

completely unphysical states to a converged state, which is the same as the primal

method, can be explained by noticing that the formula found in El Akkraoui and

Gauthier (2010) still holds in the weak-constraint case. At each iteration k, one can

write

J(LTuk) =
1

2
‖∇F (uk)‖2 − F (uk) (5.20)

So that near convergence, the gradient norm is close to zero and J(LTuK) ≈

−F (uK), which is consistent with the theoretical formulation at convergence : J(va) =

−F (ua) (See Appendix in El Akkraoui et al., 2008). It follows that, like in the 3D

and 4D-PSAS case, the Minres method does solve the problem of the dual minimiza-

tion in a weak-constraint framework.

5.5 Conclusion

In this paper, the equivalence of the primal and dual forms of variational data

assimilation was examined in the case where model errors are accounted for within

the assimilation process. Unlike the primal form, the upgrade of a strong-constraint

4D-PSAS to a weak-constraint 4D-PSAS can easily be done, and the size of the

assimilation problem is still manageable. Results showed that while both methods
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converge to the same solution, with the same convergence rate, and with comparable

number of iterations, the dual method is still sensitive to minimization process. As in

the 3D- and 4D-PSAS case, using the minimum residual (MINRES) method instead

of the Conjugare Gradient provides a solution to the dual problem.

The interest for the weak-constraint formulation is motivated by the need for

extending the length of the assimilation window, which is believed to be limited by

the uncertainties in the model (Trémolet, 2007). The weak-constraint formulation of

variational assimilation is expected to allow for extending the assimilation window

which would result in a flow dependent background error covariances and would allow

for the use of all relevant observations to optimally estimate the atmospheric state

(Fisher et al., 2005).

Accounting for model errors requires the proper estimation of the model error

covariance matrix. In this paper, the choice of a fixed matrix proportional to the

background error covariance matrix is justified by our focus only on the algorithmic

aspects of the dual method. Other more realistic methods for estimating the Q

matrix have been proposed, by using, for instance, statistics on the model error

tendencies (Trémolet, 2007).
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6 Conclusions

Courtier (1997) pointed out that 3D-Var, 4D-Var and the weak-constraint 4D-

Var have similar forms, from which dual equivalent variants can be derived. This

holds in the purely quadratic case but can easily be extended to the nonlinear case

by using an incremental approach. In this thesis, the dual forms were shown to be

equivalent to their primal forms as they converge to the same solution with similar

convergence rates. However, the experiments also showed a spurious behaviour in

the dual problems at the beginning of the minimization. Further investigation high-

lighted the importance of using a minimization scheme that monotonically decreases

the norm of the gradient, instead of the dual functional itself. One important result

of this thesis is a relationship between the primal J(x) and the dual F (w) objective

functions, which is

J(x) =
1

2
‖∇F‖2 − F (w)

with x = BHTw. Conjugate Gradient algorithms do not ensure a reduction in the

gradient norm ‖∇F‖ which then can lead to an increase of the functional J . The

similarity of all variational problems ensures that this is the case of the dual forms

of 3D-Var, 4D-Var and that of the weak-constraint.

The control variable of the dual problems corresponds to that of the observation

space. Therefore, it changes in dimension and in nature, from one assimilation to the

next, according to the observations to be assimilated. Experience with operational

systems has shown that the approximate Hessian built during an analysis process
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can be used to precondition the next assimilation period. In 3D/4D-Var, this can

be implemented in a straightforward way because the control variable is the model

state and its form remains unchanged.

To circumvent this difficulty, it was shown in this thesis that the Hessian of the primal

and dual forms are related and in the dual case, it is possible to remap the Hessian

from an assimilation with the new variable associated with the observation set of the

next assimilation. Again, this holds for all the variational problems 3D/4D-var and

the weak-constraint.

Working in different settings and with different algorithms stressed the impor-

tance of the modularity in the assimilation algorithm. Since all variational methods

are only variants to solve the same problem, they can be built from the same basic

operators and covariance matrices. Modularity guaranties the Independence of these

building blocks from each other and from the algorithm used, and makes it easy to

implement a 4D-PSAS for instance using an existing 4D-Var setting and vice versa.

This is the key element that made it possible to adapt the same initial setting (3D-

Var) to build the variety of methods used for the purpose of this work.

The results presented in this thesis therefore show that the dual from can be used

with confidence in all cases. The objective though was to examine if the dual form of

the weak-constraint 4D-Var is possible. As mentioned earlier, this thesis is part of the

ongoing effort in the data assimilation community towards an affordable operational

application of the weak-constraint variational assimilation. Many aspects of this

formulation are still an active field of research. In the last part of this work, the dual

framework is proposed as an alternative to the primal form since it benefits form the

significantly lowed dimension of the observation space and permits the integration

of the model error term in the assimilation system while keeping the problem to a

manageable size.
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Being able to correct for the part of the forecast error that is due to the model

uncertainties is one of the reasons why the weak-constraint formulation is currently

receiving considerable attention. As discussed earlier, a more important reason is

the efforts to extend the length of the assimilation window, which would allow for

more past observations to contribute to a better adjustment of the model analysis

trajectory. With longer assimilation windows, the contribution of the model error

in the forecast error growth may dominate and the initial conditions may no longer

control the fit to the observations near the end of the window.

Accounting for model error requires the proper estimation of its statistics as

described in the model error covariance matrix, which is still a major difficulty. In

this thesis, the choice of a simple modeling of the statistics is only motivated by our

focus on the algorithmic aspects of the dual method. The model error covariance

matrix needs to be carefully estimated when assessing the improvements added by

the weak-constraint formulation. Trémolet (2007) used statistics on the model error

tendencies in a similar way as the lagged forecasts method used for the estimation

of the background error covariance matrix. This was further examined in a recent

study (Lindskog et al., 2008).

Throughout this thesis, the dual form of variational data assimilation was shown

to be adaptable to an operational implementation, in a strong or a weak-constraint

framework. The equivalence of the primal and dual results gives the opportunity to

choose the appropriate algorithm for each case scenario. As stated in Lewis et al.

(2006), when the number of observations is lower than the number of degrees of free-

dom of the model, the assimilation problem is underdetermined and the dual space

form is well-posed, while the primal form is ill-posed, and vice versa. In current NWP

applications, the observation space is still smaller, and the ever continuing increase

in the volume of available data is compensated by the use of higher model resolu-

tions, and more and more sophisticated physics. This is particularly interesting in a

118



weak-constraint framework. More future work on the dual method; its convergence

properties still need further investigations, and other minimization algorithms can

also be tested. The work on weak-constraint formulation on the other hand, must

focus primarily on the modeling and estimation of the model error covariance matrix.
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Appendix A: Relationship between the minimum of the functionals of
3D-PSAS and 3D-Var

The objective functions of PSAS and 3D-Var can be shown to have the same

minimum (with a different sign). Recall the gradient of PSAS functional:

∇wF = (R + HBHT )w − y′ (6.1)

At the minimum, the gradient vanishes and the analysis increment in the dual of

observation space is :

wa = (R + HBHT )−1y′ (6.2)

thus when replacing wa in (??), the minimum of the F is :

F (wa) = −1

2
wa

Ty′ (6.3)

We know that δxa = BHTwa is the representer mapping of the increments in the

model or the dual of observation space. The 3D-Var functional can then be written

in terms of wa as

J(δxa) =
1

2
δxa

TB−1δxa+

1

2
(Hδxa − y′)TR−1(Hδxa − y′)

(6.4)

J(wa) =
1

2
wa

THBHTwa+

1

2
[HBHTwa − y′]TR−1[HBHTwa − y′]

(6.5)

Using eq.6.2, one can show that HBHTwa = y′ −Rwa which gives the result

J(wa) =
1

2
wa

Ty′ ≡ −F (wa) (6.6)
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Appendix B: Evaluation of the primal functional associated with the
dual iterates

Referring to (??) and (??), the state vectors are formulated in the model (v)

and observation (u) space respectively. A given dual iterate uk can be mapped in

the model space through the operator LT to get ṽk = LTuk, and the primal function

is then expressed as

J(ṽ) =
1

2
uTL(In + LTL)LTuk − uTLLT ỹ +

1

2
ỹT ỹ

=
1

2
uT (Im + LLT )LLTuk − uTLLT ỹ +

1

2
ỹT ỹ

Adding and subtracting the functional F (uk) = 1
2
uT (Im + LLT )u − uT ỹ and rear-

ranging terms, this can be rewritten as

J(ṽ) =
1

2
((Im + LLT )u− ỹ)T ((Im + LLT )u− ỹ)

− 1

2
uT (Im + LLT )u + ỹTu

Using (??) and (??), this corresponds to

J(ṽ) =
1

2
‖∇u(F )‖2 − F (uk).
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Appendix C: The CG and MINRES algorithms

This is an outline of the derivation of the conjugate gradient and minimum

residual algorithms. The reader is referred to Choi (2006) and Barrett et al. (1994)

as well as to Hestenes and Stiefel (1952) and Paige and Saunders (1975) for more

details.

To solve the linear system Ax = b, many iterative methods work first on the matrix

A by applying some transformations, diagonalizations or decompositions. The Lanc-

zos algorithm transforms a symmetric matrix A to a symmetric tridiagonal matrix

with an additional row at the bottom

Tk =



α1 β2

β2 α2 β3

β3 α3
. . .

. . . . . . βk

βk αk

βk+1


The square symmetric matrix of the first k rows of Tk is denoted Tk. The Lanczos

algorithm iteratively builds a basis Vk = [v1 · · ·vk] of orthonormal vectors, so that :

AVk = Vk+1Tk

In exact arithmetic, the columns of Vk are orthonormal and the process stops when

βk+1 = 0, and we get :

AVk = VkTk

As explained by Choi (2006), each Lanczos step consists in finding xk in the Krylov

subspace Kk(A,b) such that xk = Vky, for some y ∈ Rk. It follows that rk =

b − Axk = Vk+1(β1e1 − Tky), and all Lanczos-based methods attempt to make
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β1e1 −Tky small. The CG focuses on the first k equations, attempting to solve for

Tky = β1e1 by applying the Cholesky decomposition of Tk, while Minres works to

minimize the 2-norm of β1e1 −Tky by applying the QR decomposition to Tk.

The algorithms of the CG and MINRES are displayed in detail in Choi (2006). As

discussed in Greenbaum (1997), for both algorithms, no explicit form of the matrix

A is needed, and only few vectors need to be stored.

The version of MINRES used in this paper is provided by SOL, Stanford University

under the terms of the OSI Common Public License (CPL) :

http://www.opensource.org/licenses/cpl1.0.php.
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