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Abstract 

During a forensic interview, high-stakes deception is very prevalent 

notwithstanding the heavy consequences that may result. Studies have shown that 

most untrained people cannot perform well in discerning liars and truth-tellers. 

Thus it has become common to adopt various technical aids to compensate for this 

poor judgment. Examples are polygraphs, functional Magnetic Resonance 

Imaging (fMRI) and linguistic analysis. However, the deception indicators used in 

these cases are not reliable. 

In the popular TV program Lie to Me, micro-expressions have been used for 

detecting deceit during the investigation of some criminal cases. A micro-

expression is considered to be a rapid and involuntary facial expression which 

could reveal the concealed emotion. Additionally, some psychological studies 

have stated that certain facial actions are more difficult to inhibit if the associated 

facial expressions are genuine. Similarly, these facial expressions are equally 

difficult to fake. This has cast light on the possibility that deception could be 

detected by analyzing these facial actions. However, to the best knowledge of the 

author, there is no computer vision research that has attempted to discriminate 

high-stakes deception from truth using facial expressions. Therefore, this thesis 

aims to test the validity of facial clues to deception detection in high-stakes 

situations using computer vision approaches.  

We note that only a limited number of the existing databases have been collected 

specifically for deception detection studies and none of them were obtained from 

real-world situations. In this thesis we present a video database of actual high-

stakes situations, which we have created using YouTube. 

We have adopted 2D appearance-based methods as the methodology to 

characterize the 3D facial features. Instead of building a 3D head model as is the 

current trend, we have extracted invariant 2D features that are related to the 3D 

characteristic. 
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In order to discern deception and honesty, we have identified the following 

deceptive cues from nine separate facial regions through dynamic facial analysis: 

eye blink, eyebrow motion, wrinkle occurrence and mouth motion. Then these 

cues were integrated to form a facial behavior pattern vector. A Random Forest 

was trained using the collected database and applied to classify the facial patterns 

into deceptive and truthful categories.  

Despite the many uncontrolled factors (illumination, head pose and facial 

occlusion) in the videos in our database, we have achieved an accuracy of 76.92% 

when discriminating liars from truth-tellers using both micro-expressions and 

“normal” facial expressions. The results have shown that using facial clues for 

automated lie detection is very promising from the point of view of practice. In 

addition, we also challenge the belief expounded in Lie to Me that micro-

expressions alone are sufficient for detecting lies.  
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Abrége 

Une des plus grande faiblesse des entrevues d’enquête provient de la déception de 

l’accusé, malgré les conséquences majeures. Des études indiquent que la majorité 

de personnes non formés ne peuvent discerner entre les menteurs et les diseurs de 

vérité. D’où la nécessité d’utiliser des aides technologiques pour atténuer ce 

mauvais jugement. Par exemple, les investigateurs peuvent se servir de détecteurs 

de mensonges, de l’imagerie par résonnance magnétique fonctionnel, et de 

l’analyse linguistique. Malgré leur utilisation, ces techniques manquent souvent 

de fiabilité pour indiquer les déceptions. 

Dans l’émission de télévision américaine Lie to Me, des mico-expressions sont 

utilisés pour détecter la déception pendant certains investigations criminels. Une 

micro-expression se définit comme une mimique rapide et non volontaire qui peut 

révéler une émotion cachée. De plus, des études psychologiques indiquent que 

certaines actions du visage sont plus difficiles à inhiber si les expressions 

correspondantes sont sincères. De la même façon, ces expressions sont également 

difficiles à feindre. Ces principes indiquent la possibilité de détecter la déception 

en analysant les actions du visage. Par contre,  à la connaissance de cet auteur, il 

n’existe aucune recherche dans le domaine de l’imagerie informatique pour 

discerner entre une grave déception et la vérité en analysant les mimiques. En 

conséquence, l’objectif de cette thèse est de tester la validité des mimiques pour 

détecter la déception dans les situations conséquentes en utilisant des techniques 

d‘analyse des images informatiques. 

Il existe peu bases de données conçues spécifiquement pour des études avec 

l’objectif de détecter la déception, qui présentent tous des scenarios fabriquées. 

Cette thèse est unique puisqu’elle introduit une base de données de vidéos 

présentant des situations réelles et conséquentes provenant de YouTube.   

Nous avons adopté des méthodes basées sur l'apparence 2D comme méthodologie 

pour caractériser les traits du visage en 3D. Au lieu de construire un modèle de 
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tête 3D comme il en est la tendance actuelle, nous avons extrait des 

fonctionnalités 2D invariantes qui sont liées à la caractéristique 3D. 

Pour discerner entre la déception et vérité, nous avons identifier des indices de 

déception par une analyse dynamique de neufs régions sur le visage: les clins 

d’œil, les mouvements de sourcils, l’apparition des rides, et les mouvements de la 

bouche. Ces indices ont été intégrés pour former un vecteur représentant le 

modèle de comportement du visage. Une forêt fortuite (Random Forest) a été 

formée en utilisant la base de données construite pour classifier les 

comportements du visage en deux catégories, la déception et la vérité.     

Malgré la nature chaotique des vidéos (illumination et orientation variable de la 

tête, et l’occlusion du visage), nous avons atteints une précision de 76.92% pour 

détecter les menteurs en analysant leurs micro-expressions et expressions 

« normales ». Nos résultats démontrent que les indices provenant du visage 

peuvent être appliquées pour détecter des mensonges en pratique. De plus, nous 

défions l’idée semée par l’émission Lie to Me que les micro-expressions seuls 

suffisent pour détecter les mensonges. 
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Chapter 1. Introduction 

1.1. Overview 

Do we have the capacity of “tearing off” the mask of a liar’s face and revealing 

the truth behind it? Obviously Neville Chamberlain did not. Otherwise he would 

not have trusted Hitler with his oath that he would not invade Czechoslovakia, 

which has turned out to be one of the most shocking lies ever [1].  

Speaking of deception detection is reminiscent of a TV show called Lie to Me, 

which has enjoyed a large popularity in the past few years. In this TV series, Dr. 

Lightman and his team used their “talent” to assist the police with the 

investigation of some criminal cases. Their “talent” is that they could visually 

determine if a suspect was lying by interpreting his micro-expressions
1
 during the 

interrogation.  

The deception of concern by Lie to Me is termed high-stakes deception, because 

interrogation on a criminal case yields a high-stakes scenario. Different from the 

lies told in our daily lives, deceptions in high-stakes situations are more likely to 

result in heavy consequences. Therefore a liar in such a situation might experience 

heavy cognitive load, being aware of the severe penalty he will receive if his lie 

were caught. Considering the risk of releasing a guilty suspect or mistaking an 

innocent person, the detection of high-stakes deception is a necessity for a 

democratic society.  

Do humans have the ability to detect high-stakes lies, just like Dr. Lightman and 

his colleagues did? As will be seen in this thesis, most untrained people are no 

better than chance at detecting lies [2], and the subjective decision-making 

process of humans may thereby bias their decisions [3]. Also, even though the 

viewers of Lie to Me attempted to learn how to detect lies from this TV show, 

                                                 
1 A micro-expression is a rapid and involuntary facial expression which can seemingly reveal a 

person’s genuine emotion. It will be discussed in Chapter 4. 



2 

 

there is evidence showing that they were more likely to misidentify innocent 

people as liars [4].  

However, regardless of the fact that ordinary people are deficient at deceit 

detection, is the fundamental theory of detecting lies in Lie to Me plausible or not? 

In other words, is a micro-expression reliable as a clue to deception? This thesis 

aims to investigate on this question, validating if facial clues could be adopted as 

indicators of deception in high-stakes situations. 

The proposed method consists of three stages: pre-processing, dynamic feature 

analysis and classification, as shown in Figure 1. In the pre-processing stage, face 

detection and facial landmark localization are firstly applied to register the face
2
. 

Then an anthropometric model is used to decompose the face into several facial 

regions. In the dynamic feature analysis stage, the indicators of deception, which 

are actually facial expressions, are detected in each facial region and collected 

into a facial behavior description vector. Finally in the classification stage, a 

binary Random Forest classifier is trained to discriminate deception and honesty. 

 

Figure 1. Three stages of the proposed method 

 

                                                 
2 A commercial software (PittPatt [90]) was used to locate three major landmarks on the face: left 

eye, right eye and nose base. 

Pre-processing: 

Face detection 

Facial landmark localization 

Facial region decomposition 

Dynamic Feature Analysis: 

Facial deceptive clue detection 

Feature integration 

Classification: 

Deception-honesty discrimination 
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1.2. Thesis Contributions 

This thesis has several contributions, as discussed as follows. 

1) This thesis has set a precedent for future research on high-stakes deception 

detection using facial clues. To the best knowledge of the authors, there is no 

computer vision research that has testified the validity of facial expressions as 

indicators of high-stakes deception. As will be seen in Chapter 6, our results are 

very promising, implying the research potential of this topic in the future. 

2) A database consisting of high-stakes deception videos of real-world 

situations has been collected from YouTube. In our database, the suspects are 

either pleading for the safe return of their missing relatives or denying their 

involvement with the disappearance or death of the victims. All of the criminal 

cases are real, and approximately half of the suspects were convicted as guilty by 

overwhelming evidence. As will be seen in Chapter 3, only a limited amount of 

the existing databases has been collected for deception detection studies, and none 

of them were obtained from real-world situations.  

3) The proposed method is at the forefront of analyzing facial expressions in 

unconstrained environments. Since the videos in our database were collected from 

YouTube, certain uncontrollable factors add to the difficulty of their analysis. 

These totally unconstrained and spontaneous videos are subject to temporal 

variations in illumination, head pose and facial occlusion. However, in the current 

literature, little research has been conducted to address these issues with regard to 

facial expression analysis. Instead of seeking a solution to solve them, almost all 

of the studies to date have excluded certain data that were not ideal for the 

purpose of analysis. In comparison, the proposed method seeks to address the 

deception detection problem, but in the presence of exactly these factors. 

1.3. Chapter Contents 

The rest of the thesis is organized as follows.  

Chapter 2 is a literature review of the background of the presented research, 

including an introduction to high-stakes deception, people’s performance at 
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discriminating liars and truth-tellers, current measures and automated methods for 

detecting lies. In Chapter 3, a review of the current databases for deceit detection 

studies is presented. Since the proposed method focuses on facial expression 

analysis, current facial expression databases are also reviewed. Then the database 

collected by the author is introduced. Chapter 4 presents the theoretical 

foundation of our deception detection method, and proposes the dynamic feature 

analysis methods based on these theories. After feature extraction, Chapter 5 

explains the experimental procedure of training and testing a binary classifier for 

discriminating deception and honesty. The results are discussed in Chapter 6. 

Finally the conclusion and future work are presented in Chapter 7. 
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Chapter 2. Literature Review 

In this chapter, we present a literature review of deception detection in four 

sections. In the first section, we will introduce the definition of high-stakes 

deception and emphasize the necessity that they be detected. Secondly, we will 

review the performance of humans at discriminating liars and truth-tellers both 

before and after training. In the third section, several current measures for 

detecting lies will be presented, and the pros and cons of each measure will be 

discussed. Finally, the limited amount of research in the computer vision area 

related to deception detection is reviewed. 

2.1. High-stakes Deception 

People lie twice a day on average [5, 6]. In fact, deception is facilitated by 

technology, resulting in ubiquitous lies in every kind of interpersonal 

communications: face-to-face, phone calls and emails [7]. People lie so 

frequently, because their self-esteem encourages them to hide information that 

could be harmful to their pride or relationships. Nonetheless, not all lies are bad. 

An appropriate lie or white lie could sometimes save a relationship crisis, win a 

business negotiation, or encourage a dying person to live better. 

However, despite that deception is ubiquitous in our daily lives, there are certain 

circumstances where lies are more likely to give rise to heavy consequences to 

both individual and society [8]. These circumstances are termed high-stakes 

situations, for example, being interrogated by a police officer, defending oneself 

in the courtroom, or appealing for a parole to a judge.  

To detect deceit in such high-stakes scenarios is even more demanding than in 

daily life, because either failing to catch a liar or wrongly discriminating an 

innocent person as a liar could lead to disaster. Unfortunately in the latter 

scenario, even if the truth were uncovered years later, the damage that would be 

brought to the misjudged innocent person and his family might be invertible and 

may last forever. As said by Rebecca Sophonow, whose husband was falsely 
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convicted of murdering a girl in 1981 but later released and compensated $2.6 

billion dollars [9], “Compensation doesn’t make you move on with your life and 

forget” [10]. On the other hand, it is even more dangerous to release a guilty 

murderer into the society, allowing him to have the opportunity to commit crimes 

again. Thus, miscarriage of justice is a terrible consequence of failing to detect 

deceit in high-stakes situations, which not only brings lifelong agony to 

individuals, but also propagates potential dangers into the society. In light of this, 

successfully spotting a lying suspect or clarifying an innocent person in a high-

stakes situation is of high necessity and importance. 

2.2. People’s Performance at Lie Detection 

People rarely have the capacity of being able to see the truth behind lies, 

regardless of the fact that lies are occurring on a regular basis. 

This fatal problem with human judgment often involves their inability to be 

objective. Unlike machines, humans are inevitably biased by a myriad of factors, 

resulting in their “tunnel vision” when they assess the credibility of suspicious 

people. The first factor is their dreadful self-confidence. People often 

underestimate the effort they should take to spot liars, but have too much 

confidence on their judgment [11]. Secondly, people’s judgment largely relies on 

their naïve intuition. They often believe in emotion-based rather than empirically 

based clues to deception, such as gaze aversion and fidgeting, which is 

detrimental to their judgment [12]. The third factor involves their emotions. 

Interestingly enough, studies have shown that emotionally intelligent people 

perform worse at deception detection. This is due to their greater sympathetic 

feelings to others [13]. Fourth, motivation also has a negative influence on 

deception detection accuracy, which is termed motivational impairment [14, 15]. 

Finally, people’s subjectivism often leads them to be more skeptical towards 

exonerating witnesses than incriminating ones [14], consequently degrading their 

performance at lie detection.  



7 

 

Considering the fact that the judgment of people is easily biased, it is not 

surprising that their lie detection accuracy is slightly above chance. In [16], Bond 

et al. synthesized research results from more than 200 documents and found that 

people could discriminate lie and truth with an accuracy of 54%, with a lie 

detection rate of 47% and truth detection rate of 61%. Similarly in [17], 192 

undergraduate students watched videotaped interviews of mock suspects denying 

stealing a wallet and obtained an overall accuracy of 55.2%. The detection rate of 

guilty suspects was 61.5%, which is better than chance; for innocent suspects the 

percentage is only 49%. Ekman and O’Sullivan have also stated that most 

ordinary people could only achieve around 50% precision in detecting deceit, 

while professionals from the Secret Service outperformed them with an accuracy 

of 70% [18]. Vrij et al. have reported an average accuracy of 72% by thirty-seven 

police officers after watching videos of high-stakes police interviews, with a lie 

detection accuracy of 73% and a truth detection accuracy of 70% [19]. Warren et 

al. [20] have also reported that college students achieved an accuracy of only 

50%. Ekman has claimed that the existence of so-called “wizards”, who have 

extraordinary deception detection skills, could achieve higher accuracy than 

ordinary people [18]. But this discovery has been challenged by Bond [16], giving 

rise to a long debate between them [21]. To date, there is no definitive conclusion 

whether individual differences in the capacity of detecting lies actually exist, i.e., 

whether “wizards” exist. Table 1 is a summary of the reported performance on 

deceit detection by human observers. 

However, no matter whether “wizards” exist or not, psychological studies have 

shown that people’s performance at lie detection could be improved by 

professional training. 32 Canadian federal parole officers performed below 

chance, but achieved 76.7% accuracy after participating in an empirically 

validated training program for two days [22]. In another study, the accuracy of 

detecting deceit in videotaped narratives increased from 46% to 58% after a two-

day abbreviate training program by 26 healthcare professionals [23]. The best 

precision 80.9% has been achieved in [18], in which 42 legal and mental 
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professionals were trained in a comprehensive and empirically based training 

workshop. 

 

Table 1. Performance on deceit detection by human observers. The best 

performance reported to date is indicated in bold. Note that the number of test 

samples (where reported) is relatively low. 

Reference Lie Catchers Number 

of Lie 

Catchers 

Overall 

Accuracy 

Liar 

Spotting 

Accuracy 

Truth-

teller 

Spotting 

Accuracy 

[16] Diverse (206 

documents 

synthesized) 

N/A 54% 47% 61% 

[17] Undergraduate 

students 

192 55.2% 61.5% 49% 

[18] Police officers, 

CIA and FBI 

agents, lawyers, 

college students, 

therapists, judges, 

etc. 

N/A 50% N/A N/A 

[18] Secret Service 

agents 

N/A 70% N/A N/A 

[19] Police officer 37 72% 73% 70% 

[20] College students 20 50% N/A N/A 

 

In conclusion, appropriate training programs have effectively improved the 

performance of humans at lie detection. This has been attributed mainly to the fact 

that during the learning process, the measure of lying has gradually changed from 

naïve stereotype to appropriate empirical evidence. From this we observe that, a 

proper measure of deception is of the highest significance in deceit detection. 

Therefore in the next section, some of the most important deception detection 

measures employed in the recent decades will be discussed in detail. 
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2.3. Current Deception Detection Measures 

How do people detect lies? Since no one has an extensible nose as Pinocchio does, 

certain evidence-based measures are obviously required to discriminate liars and 

truth-tellers. Currently, a variety of measures have been applied to real world 

applications, including physiological, neuroscience, and psychological linguistic 

measures. 

2.3.1. Physiological Measures 

A physiological measure is a very straightforward way of distinguishing between 

guilty and innocent suspects in criminal cases, and has a long history. Centuries 

ago, people in Arabia used to put hot iron bars on the tongue of a suspect’s. If he 

were burnt, he would be considered as guilty. Similarly in China and England, 

rice and bread were used, respectively. All of these ancient methods were based 

on the same obviously naïve theory: guilty suspects secrete less saliva due to their 

nervousness and anxiety, and will consequently get burnt by the iron bar or choke 

on the bread. 

Later, the physiological measurements have been extended to be more scientific 

and potentially reliable. For instance, thermal body imaging [24] detects blood 

flow via special cameras, while voice stress analysis [25] measures the voice 

signature. A more famous and dominant physiological measurement in the past 

century is the polygraph [26, 27], which measures multiple physiological signals 

simultaneously. It is usually combined with a psychological questioning strategy, 

termed the “Comparison Question Test” [27], resulting in what may be termed as 

a “psychophysiological technique”. 

However, the drawback of these physiological approaches is that they only focus 

on measures emanating from the peripheral rather than central nervous system 

[27]. In this case, the interpretation of the measurements is not directly related to 

the emotional states of humans, which are controlled by the central nervous 

system. The other disadvantage is that they are easily degraded by certain 
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countermeasures, such as tranquillizers or repeated practice, to control 

physiological arousal. 

Consequently, physiological measures lack reliability for detecting lies, not only 

because they are based on an untenable hypothesis that physiological symptoms 

can provide solid indications of deception, but the measurement results might be 

inaccurate due to countermeasures. 

2.3.2. Neuroscience Measures 

As an alternative method of lie detection, functional Magnetic Resonance Imaging 

(fMRI) is an objective measurement of mental state [28]. It is typically conducted 

using an MRI scanner over the head or body. Actually, it has only recently made 

its debut in the forensic sphere in 2010. When Brian Dugan, serving a pair of life 

sentences for his murders in 1980s, was charged of another murder, his lawyer 

proved him to be a psychopath and tried to help him avoid more punishment [28]. 

On the theoretical side, fMRI is superior to the polygraph since it measures brain 

activity in the central rather than peripheral nervous system. Studies have shown 

that deception is associated with the activity in prefrontal brain regions [29], and 

brain activity seems to be uncontrollable by humans. In this case, it seems that the 

fMRI approach should be reliable in lie detection tasks. 

However, fMRI also has several shortcomings [28, 30-33]. First, most of the 

fMRI studies have been small and rarely replicated, thereby lacking validity 

through scientific scrutiny. Second, brain activity varies considerably for each 

individual, making it unreliable to simply use the average brain activity of a group 

of healthy and normal people to evaluate the truthfulness of individual high-stakes 

cases. Third, the theoretical findings of many studies are not consistent with each 

other, due to the difference in experimental settings and paradigms. Fourth, the 

accuracy of deception detection of fMRI is vulnerable to covert countermeasures. 

In addition, both polygraph and fMRI require expensive equipment as well as the 

cooperation of the suspects.  
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2.3.3. Psychological Linguistic Measures 

Psychological linguistic, or verbal measures, is another deceit detection approach 

which has been widely studied by psychologists in the past few decades.  

Response latency has been used as the main verbal indicator of deception in many 

psychological studies [34]. It is based on the argument that lying seems to require 

more time for cognitive processing than truth telling. However, frequent lying will 

make it easier to lie, whereas frequent truth telling will make it more difficult 

[34]. This finding casts new light on the interrogation strategy. Asking more 

questions about irrelevant events that are assumed to yield more truthful responses 

by suspects may actually increase his lying latencies. If the lies are spontaneous, 

the response should take a longer time than average. If the lies are prepared, the 

response may take a shorter time than expected [35-37]. Besides asking 

anticipated and unanticipated question pairs, other questioning strategies have 

also been proposed and have proved to be effective. Examples are: imposing a 

cognitive load to elicit more cues to deceit [38-40], adopting drawing or 

describing spatial contexts as a complementary way of interrogating events in 

chronological order [41-43], and adding a second supportive interviewer who 

keeps nodding his head and smiling [37]. In spite of the commonly accepted 

relationship between response latency and lying, the authors of [44] proposed that 

the context of a conversation should be taken into consideration rather than 

blindly defining their correspondence.  

In addition to response latency, many other verbal characteristics have also been 

recorded and examined in many psychological experiments. Speech rate is 

considered to be one of the effective verbal clues to deception, when it is either 

faster or slower than the normal rate [35]. Moreover, Porter has argued that some 

verbal cues, such as word frequency, grammar usage, tentative word frequency, 

and qualitative details have been widely used and have achieved high accuracy 

[3]. Also, the statement of guilty suspects will be less consistent with the evidence 

in comparison with that of innocent suspects [17].  
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Although verbal cues have been very popular among psychologists, great caution 

is required when applying them to high-stakes situations because verbal 

countermeasures are easier to adopt than non-verbal ones [45]. Also, an effective 

interrogation strategy is a prerequisite for eliciting useful verbal clues.                                                                                                                                                                                                                                                               

2.4. Current Computer Vision Research on Deception Detection 

Very little research has been done on deception detection using automated 

computer vision approaches. Rather, the focus has been on three types of 

indicators: body language, gaze aversion, and facial expression. 

2.4.1. Body Language as a Cue to Deception 

There are some research trying to relate deception with agitated and over-

controlled behavioral states. The authors of [46-48] were aimed to prove the 

theory that behavioral states are related to deception discrimination. They have 

analyzed the position and velocity of face and hand blobs, classifying the suspects 

into over-controlled, agitated and relaxed states. However, their work was not 

very persuading, since their experiments were merely based on a very small set of 

data (18 subjects). The data they used came from the Mock Theft Experiment [49, 

50], which was initially collected to analyze the linguistic features [50]. The 

Mock Theft Experiment simulated a high-stakes situation but the stakes were 

relatively low.  

However, body language as a cue to deception has weak theoretical support. 

Darwin proposed a theory termed face>body hypothesis, which demonstrated that 

body movements should be easier to conceal than facial expressions. But Ekman 

has also argued that most people will pay more attention to managing their facial 

expressions when they are lying and thus will have less control over their body 

language [51]. Interestingly, although Porter has attempted to relate the departure 

from the baseline
3
 of body movements to deception [3, 52], he has found that 

most body cues occurred too rarely for statistical analysis [52].  

                                                 
3 
Baseline is considered as the normal behaviors of an individual. 
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2.4.2. Gaze Aversion as a Cue to Deception 

Some computer vision studies have used gaze aversion as a clue to deception.  

In [53, 54], the researchers have investigated the issue of detecting deceit under 

simulated high-stakes situations. They have trained a dynamic Bayesian model of 

eye movements during the baseline session, where the suspect behaved normally 

before the actual interrogation. Then, if the eye behaviors (gaze direction and 

blink rate) during the interrogation deviated from the baseline, they would be 

categorized as deceptive. They have achieved an accuracy of 82.5%. However, 

this method requires a baseline for every suspect, which is hard to achieve in 

reality if the suspect intentionally behaved abnormally before the interrogation 

starts.  

Nevertheless, according to DePaulo et al. [55], gaze aversion and fidgeting might 

have nothing to do with deception. Mann et al. also found that eye contact 

maintenance has no significant relationship with deception [56, 57]. To date, no 

authoritative study has made it clear whether gaze aversion is indeed a reliable 

indicator of deception.  

2.4.3. Facial Expression as a Cue to Deception  

In [58], the authors discriminated genuine with deceptive facial expressions. In 

their work, genuine expressions are natural or spontaneous, while deceptive 

expressions are posed or acted. Their approach was based on the theory that 

genuine expression differs from deceptive one according to the present or absence 

of one or more Action Units (AUs)
4
. The veracity decision was based merely on 

simple threshold. Later authors of [59] extended the research in [58] by adopting 

machine learning methods in the decision-making process. They used CUBRC-

CUBS dataset [58] in their experiments. This dataset was a collection of natural 

(genuine) and posed (deceptive) facial expressions, but has not been made 

publicly available. Therefore, it is unknown that whether the images in the dataset 

                                                 
4 Details regarding AUs will be presented in Chapter 4. 
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were obtained in lab-environment or uncontrolled wild, and how they manually 

categorized the data into verity and deceit groups. Moreover, their methods were 

not completely automatic, since the facial points were manually labeled on every 

image.  

2.4.4. Multiple Cues to Deception 

Some researchers have combined body language and facial micro-expressions to 

generate more convincing cues to deception [60]. For body language, head and 

hand movements were measured. For facial analysis, an Active Shape Model 

(ASM) was used to track the mouth and eyebrow movements. Then, each motion 

feature was represented by a 5-bin histogram, and fed into the Nearest Neighbor 

classifier. They have achieved a high accuracy of 81.6%. However, their 

experimental data were collected in a very low-stakes situation, where each 

participant told a deceptive opinion and a truthful opinion. 

The Silent Talker presented in [61] has used Artificial Neutral Network (ANN) to 

discriminate deception and honesty based on four cues to deception: eye gaze, eye 

closure, head movement and blushing/blanching. A classifier was learnt from 

labeled training data to categorize each cue into one of the defined discrete states. 

Then ANN was used to integrate different cues to predict the emotional state: 

deceptive or truthful. They have achieved a classification accuracy of 79% based 

on their database, which was collected in a low-stakes scenario similar to the 

Mock Theft Experiment mentioned above.  

2.5. Conclusion  

In summary, high-stakes deception yields high necessity to be detected, but 

humans have a deficiency in accomplishing this task and the aforementioned 

psychological, neuroscience, and linguistic measures are all unreliable. 

Furthermore, the most prominent issue shared by past psychological and computer 

vision studies is that researchers rarely employed data obtained in real forensic 

circumstances. To date, only one study has actually employed fMRI scans of the 

brain of a woman who was convicted of poisoning a child [62]. Other experiments 
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have all been based on virtual forensic environments, which obviously did not 

provide real high-stakes situations. In addition, these data were not spontaneous, 

since most of them were created particularly for experimental studies, thereby 

creating doubt about their authenticity. We propose an automatic deception 

detection system capable of providing valid predictions of lying in uncontrollable 

situations, and base the decision classifier on experimental data captured in high-

stakes situations. In the following chapters, the database and the automated 

methods will be presented. 
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Chapter 3. Database for Training Decision Classifiers 

A database is a collection of data which provides a platform to test the validity of 

a theory as well as the robustness of the algorithms for validating it. An ideal 

database should consist of data collected from the environment where the 

developed application would be applied. As stated in Chapter 2, we aim to verify 

the soundness of the theoretical argument that facial clues could be adopted as 

reliable evidence for detecting high-stakes deception. Therefore, an interrogation 

interview is our target application context, where a suspect in a forensic case is 

being questioned by an investigator. The video of the suspect’s face captured 

during the interrogation is our target data. Ideally, the environmental setting for 

capturing this video should satisfy the following requirements: 

Illumination: The lighting in the interrogation room should be of constant and 

moderate brightness, and uniformly illuminated on the suspect’s face.  

Camera setup: The camera should be set at a fixed distance from the suspect, 

capturing a frontal face without any change in the shooting angle or distance. 

Furthermore, the suspect’s face should be the only face that appears in the camera 

view. 

Background: The background of the suspect should be as constant as possible. 

Normally a wall or a curtain of a solid color is the best choice.  

Suspect: The suspect is asked to face the camera, without moving dramatically 

one’s head or body so that the camera will neither lose track of the face nor 

violate the frontal-face assumption. Also, the suspect should be asked to remove 

any accessories that would occlude the face, including glasses, hat, facial hair and 

heavy make-up. 

To sum up, our ideal database should be a collection of natural facial expressions 

and micro-expressions on frontal faces without any facial occlusion in a well-

illuminated and constant background high-stakes interrogation. 
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Clearly, in general many of these requirements cannot be attained in a normal 

situation. Therefore, in this thesis we require that the deception detector be 

capable of working in much more complex circumstances. In fact, as will be seen, 

we both train and test our algorithm using video clips obtained from the Internet, 

mostly using YouTube. This provides us with very natural and complicated 

setting, perhaps more intricate that a normal environment encountered in police 

investigations. 

Perhaps the most important factor is that the exhibited facial expressions or 

micro-expressions should be naturally elicited by the suspect’s internal emotions, 

rather than artificially acted upon by instructions. This is the role of the 

interrogator. 

In this chapter, we first review the current databases related to deception as well 

as current databases used for general facial expression analysis. In section 3.3 and 

3.4, we will introduce the database that we have collected and explain how we 

have edited the dataset for later automated analysis. 

3.1. Review of Current Deceptive Facial Expression Databases 

To the best of our knowledge, there is no publicly available database that 

specifically includes facial expressions of people telling lies in high-stakes 

situations. In fact, there are only a few datasets that have been used in current 

deception detection research, but none of these have been made available to the 

public. Table 2 is a summary of the sample size and emotions collected by these 

databases, and Table 3 summarizes the confounding factors of them. 

Table 2. Sample size and emotions in databases used in deception detection 

studies 

Databases 
Number of 

Subjects 
Emotions 

Natural/Posed 

Expressions 

Media 

Type 

Year 

Published 

Mock Theft 

[49, 50] 
41 Unknown Natural Videos 2003 

RU-FACS 

[63] 
100 

Unconstrained emotions 

and speech-related mouth 

movements 

Natural Videos 2004 
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Anonymous 

[61] 
39 

Unconstrained emotions 

and speech-related mouth 

movements 

Natural Videos 2006 

CUBRC-

CUBS [58] 
Unknown 

Anger, happiness, sadness, 

fear 
Natural/Posed Images 2007 

Anonymous 

[64] 
41 

Disgust, happiness, 

sadness, fear, neutral 
Natural/Posed Videos 2008 

Anonymous 

[65] 

27 offenders, 

38 students 
Unknown Natural/Posed Videos 2008 

YorkDDT 

[20] 
20 Unknown Natural/Posed Videos 2009 

Anonymous 

[60] 
220 

Mouth and eyebrow 

movement 
Natural Videos 2010 

Anonymous 

[53] 
132 Unknown Natural Videos 2011 

Anonymous 

[66] 
100 

Anger, happiness, sadness, 

disgust, neutral 
Natural/Posed Videos 2011 

Anonymous 

[67] 
60 Unknown Natural/Posed Videos 2011 

Anonymous 

[52] 
78 Unknown Natural/Posed Videos 2011 

Anonymous 

[2] 
59 

Sadness, disgust, fear, 

happiness, neutral 
Natural/Posed Videos 2012 

Anonymous 

[68] 
52 Unknown Natural/Posed Videos 2012 

 

Table 3. Confounding factors of databases in deception detection studies 

Databases Illumination Background Accessories* Head Pose 

Mock Theft [49, 50] Constant Constant Unknown Unknown 

RU-FACS [63] Constant Constant Unconstrained Unconstrained 

Anonymous [61] Unconstrained Unknown Unconstrained Unconstrained 

CUBRC-CUBS [58] Unconstrained Unconstrained Unknown Unconstrained 

Anonymous [64] Constant Unknown Unknown Near-frontal pose 

Anonymous [65] Constant Unknown Unknown Near-frontal pose 

YorkDDT [20] Constant Unknown Unknown Frontal pose 

Anonymous [60] Constant Constant Unknown Near-frontal pose 

Anonymous [53] Unconstrained Unknown Glasses Unconstrained 

Anonymous [66] Constant Unknown Unknown Near-frontal pose 

Anonymous [67] Constant Unknown Unknown Near-frontal pose 

Anonymous [52] Unconstrained Unconstrained Unconstrained Unconstrained 

Anonymous [2] Constant Unknown Unknown Near-frontal pose 

Anonymous [68] Unconstrained Unconstrained Unconstrained Unconstrained 

* Accessories include such items as glasses, hats, makeup, facial hair, etc. 

In the tables above, RU-FACS [63] is a database specifically collected for 

deceptive behavior analysis. Participants were told to either lie or tell the truth 

about their opinion regarding a political or social issue, during an interrogation by 

retired FBI agents, police, or a county sheriff. The liars were told that they would 

receive cash rewards if they succeeded in fooling the interrogators. Otherwise 
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they would have to fill out a boring questionnaire as punishment. The experiment 

was designed in this way to mimic a high-stakes situation for the participants to lie 

under pressure. Despite this, the stakes in this experiment were relatively low 

compared to an actual forensic situation. This database was the closest we could 

find that met our criteria for an ideal database. The emotions elicited in this 

experiment covered a wide range [69]. The mouth movements caused by 

utterances were also captured, which is common in an actual interrogation but is 

ordinarily absent from most existing facial expression datasets. Unfortunately, the 

RU-FACS database has not been made publicly available, and has been used in 

only a few research papers [63, 70]. 

In [60], a similar laboratory experiment was conducted in which 220 participants 

were questioned by trained interviewers and told to answer questions truthfully or 

deceptively. This paper did not mention if any reward or punishment was 

involved in order to raise the stakes for lying. 

The so-called Mock Theft Experiment [49, 50] was originally designed to analyze 

the linguistic features of the audios recorded in a simulated high-stakes scenario. 

In this experiment, students were told to “steal” a wallet and lie about it during the 

interrogation in order to obtain money rewards. Similarly in [67], participants 

were told to steal movie tickets. Compared to [63], these experiments have raised 

the stakes since it simulated a forensic scenario. But the stakes were still relatively 

low, because failing to sell one’s lie in this case was not at all life-threatening. 

The databases employed in [53, 61] are similar to the Mock Theft Experiment 

described in [49, 50, 67].  

In [65], an experiment was conducted to analyze verbal and non-verbal deceptive 

patterns. In this study, both offenders and students were videotaped when telling 

real and fabricated autobiographical stories. This database has a small sample size 

and was collected in low-stakes situations. 

CUBRC-CUBS [58] is a database consisting of genuine and deceptive facial 

expressions in static images. The premise behind it is if a facial expression 
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occurred spontaneously or naturally, it was considered to be genuine; otherwise it 

was taken as a deceptive expression. However, this database is not documented, 

and is not publicly available. Thus, it is unclear how the images were collected 

and genuine and deceptive expressions were discerned. 

In [2, 64, 66], the authors also collected genuine and deceptive expressions. 

Different from [58], the expressions were captured in dynamic videos.  

Furthermore, the deceptive expressions are categorized into three types: simulated 

(express an emotion when feeling no emotion), masked (express an opposite 

emotion to cover the felt emotion), and neutralized (express no emotion when an 

emotion is felt) expression. However, the stakes in this experiment were very low. 

The YorkDDT dataset [20] recorded two kinds of lies: emotional and unemotional. 

An emotional lie was obtained when a participant described an unemotional scene 

while watching an emotional video clip; an unemotional lie was the opposite. This 

dataset is very small (20 participants) and the lies were also not high-stakes. 

The database collected and analyzed in [52, 68] consists of suspects in real 

forensic cases. The emotions presented by the suspects were various and were 

captured in high-stakes situations. Partial of this database will be employed in this 

thesis, and detailed information regarding this will be presented in section 3.3. 

In summary, current databases in deception detection studies are very rare, not 

publicly available, and few of them was obtained in a high-stakes situation. In 

light of the fact that our method for detection of deception is based on 

determining expressions, we will also briefly review in the next section the 

current publicly available datasets specifically created for facial expression 

analysis. 

3.2. Review of Current Facial Expression Databases 

To date, many databases have been created specifically for facial expression 

studies and widely used by researchers. A summary and comparison of some 
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commonly used facial expression databases could be found in Table 4, and Table 

5 summarizes the confounding factors of them. 

Table 4. Emotions in current facial expression databases 

Databases Emotions 
Natural/Posed 

Expressions 

Media 

Type 

Year 

Published 

KDEF [71] Basic six* + neutral Posed Images 1998 

JAFFE [72] Basic six + neutral Posed Images 1998 

Multi-PIE 

[73] 

Neutral, smiling, squinting, surprised, 

disgusted and screaming 
Posed Images 2002 

DMFP [74] 
Basic six + puzzlement, laughter, 

boredom, disbelief 
Posed 

Images & 

Videos 
2005 

MMI [75, 

76] 
Basic six + neutral 

Posed and natural 

disgust, surprise, 

happiness 

Images & 

Videos 
2005 

FEED [77] Basic six + neutral Natural Videos 2006 

PICS-pain 

[78] 
Basic six + neutral + painful Posed Images 2008 

CAS-PEAL 

[79] 

Neutral, smiling, frowning, surprised, 

eye closed, mouth open 
Posed Images 2008 

CK+ [80] Basic six + contempt Posed + Natural smile Videos 2010 

SEMAINE 

[81] 

Anger, disgust, amusement, 

happiness, sadness, contempt 
Natural Videos 2010 

RaFD [82] Basic six + neutral + contempt Posed Images 2010 

SFEW [83] Basic six + neutral Posed Images 2011 

AFEW [84] Basic six + neutral Posed Videos 2011 

SMIC [85] 
Micro-expressions: happy, sad, 

surprise, angry, disgust 
Natural Videos 2011 

USF-HD 

[86] 

Smile, surprise, anger, sadness, and 

micro-expressions 
Posed Videos 2011 

CASME 

[87] 

Micro-expressions: Amusement, 

sadness, disgust, surprise, contempt, 

fear, repression, tense 

Natural Videos 2013 

* Basic six: the basic six facial expressions [88]: anger, happiness, sadness, fear, surprise, and 

disgust.  

Table 5. Confounding factors of current facial expression databases 

Databases Illumination Background Accessories* Head Pose 

KDEF [71] Constant Constant None Five yaw angles 

JAFFE [72] Constant Constant None Frontal pose 

Multi-PIE 

[73] 43 different 

illuminations 

Unconstrained 

laboratory 

background 

None 

9 yaw angles, 3 pitch 

angles, and two arbitrary 

angles 

DMFP [74] Constant Constant None Nine yaw angles 

MMI [75, 

76] 
Natural vs. 

controlled 

Cluttered vs. solid 

color 

Glasses vs. no 

glasses 
Frontal pose vs. profile 

FEED [77] Constant Constant None Frontal pose 

PICS-pain 

[78] 
Constant Constant None Frontal pose 

CAS-PEAL 

[79] 
135 different 

illuminations 

Five different 

unicolor backgrounds 
Glasses, hats 

Nine yaw angles, three 

pitch angles 

CK+ [80] 
Constant Constant None 

Frontal and 30° deviation 

from the facial midline 

SEMAINE 

[81] Constant Constant None Frontal pose 

RaFD [82] Constant Constant None Five yaw angles 
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SFEW [83] Unconstrained Unconstrained Unconstrained Unconstrained 

AFEW [84] Unconstrained Unconstrained Unconstrained Unconstrained 

SMIC [85] Constant Constant Glasses Frontal pose 

USF-HD 

[86] Constant Constant Unknown Frontal pose 

CASME 

[87] 
Constant Constant Glasses Frontal pose 

* Accessories include such items as glasses, hats, makeup, facial hair, etc. 

 

Table 6. Comparison of current facial expression databases 

 Posed 
Posed & 

Natural 
Natural 

Basic emotions 
SFEW, AFEW, KDEF, 

JAFFE 
MMI FEED 

Basic & beyond basic 

emotions 

DMFP, RaFD, PICS-

pain 
CK+ SEMAINE 

Beyond basic emotions 
USF-HD, Multi-PIE, 

CAS-PEAL 
none 

CAMSE, 

SMIC 

 

All of these datasets are publicly available, but the major problem regarding most 

of them is that the collected facial expressions are not natural. A comparison of 

the existing databases is shown in Table 6. In this table, the databases are 

categorized according to the degree of naturalness of the expressions as well as 

the number of emotions included. Basic emotions involve the six basic emotions 

defined by Ekman [88], while beyond basic emotions involve more complex 

expressions and micro-expressions. Posed facial expressions were collected by 

asking the participants to act out certain expressions upon request. However, not 

everyone is an accomplished actor! Also, as argued in Chapter 2, not all facial 

muscles can be intentionally contracted by humans. Thus a simulated facial 

expression might be different from the genuine one.  

In order to improve upon these databases, the new trend is to collect videos of 

natural expressions which are elicited by emotional content. For instance, FEED 

[77], CASME [87] and SMIC [85] all collected expressions while the participants 

watched pre-recorded emotion-inducing sequences. The FEED was restricted to 

the six basic facial expressions, while CASME and SMIC focused on spontaneous 
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micro-expressions. Even though cash rewards and simple punishments were used 

when creating the SMIC dataset, the stakes were still too low to be included in our 

study. 

Considering that there is no existing dataset that is ideal for our research, we have 

collected our own database, which is introduced in the next section. 

3.3. Introduction to Our Raw Database 

Our raw database consists of videos we obtained directly from the Internet. 

Courtesy of Professor Stephen Porter from the University of British Columbia-

Okanagan in Kelowna, Canada, we have obtained a list
5
 of emotional pleaders 

who were asking for help to find their missing relatives or the murderers that 

killed or dismembered them. Approximately half of the pleaders were later 

convicted of murdering the missing or dead person, based on conclusive evidence, 

including blood or DNA matching, security videos, witness testimony, confession, 

etc. [52].  

After an exhaustive search on the Internet, we were able to find about half of the 

videos involving the forensic cases listed by Porter. These might not be exactly 

the same as those originally collected by Porter, but the contents were most likely 

similar.  

In addition, we gathered some videos absent from Porter’s list, but containing 

circumstances that were similarly high-stakes. We further validated the guilt or 

innocence of the suspects, ensuring that all of the criminal cases in our database 

were closed. In other words, we did not include pending litigations. The criminal 

cases we have included in our database are listed in Appendix I.  

In summary, we have collected Internet videos of a total length of 3.2 hours of 69 

suspects. In most of these videos, the suspect is at a press conference appealing to 

the media for help to find either the missing person or the murderer. Sometimes, 

                                                 
5 Professor Porter was unable to legally provide these videos but consented to send us a list of so-

called pleaders. 
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the pleader is denying his involvement in the disappearance or death of the victim 

during a television interview. These situations yield high-stakes circumstances if 

the suspects attempted to lie, and obviously the guilty ones were all liars. 

Consequently the deception involved in these situations is what we are interested 

in. Detailed statistics considering our dataset is shown in Figure 2. 

 

Figure 2. Distribution of data in our raw database (each bin is in percentage of 

suspects) 

 

Different from most of the existing databases, our database is completely 

uncontrived. 

First, the illumination conditions are extremely variable, depending on the video 

capture environment. Most of the videos were taken indoors, from arbitrary 

lighting directions and luminance levels, while some of them were taken outdoors 

under strong sunlight. Consequently, the shading on a face is not necessarily 

always uniform, and shadows might be formed on some parts of the face.  

Second, the head pose is uncontrolled. During the plea or the interview, some of 

the suspects look down while making the plea. Some of them move their head 

arbitrarily when engaged in conversation with the interviewer. Thus the head pose 
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is not fixed at the frontal face position for each individual, resulting in large 

variations in all the three degrees of freedom
6
.  

Third, there is no constraint on the appearance of the suspects. There are several 

circumstances where the suspect is wearing a hat or glasses, or has a mustache or 

hair covering the forehead.  

Fourth, the video quality varies greatly. The resolution could be as low as 

320*240 and as high as 1280*720, and the video format is also diverse.  

Fifth, the facial expressions are uncontrived. Because of the high-stakes situations 

the suspects are placed in, most of them speak emotionally. Their emotions are 

completely natural, rather than act on the basis of instructions. Moreover, most of 

the expressions occur while speaking, thus the expressions are affected by the 

mouth movements caused by utterance. In addition, there is no ground truth 

specifying when and where the expression related to deception occurs. In Porter’s 

work [52, 68], a trained coder examined the videos, frame by frame, and labeled 

the movement of the Facial Action Units (AUs)
7
 on a suspect’s face. After that a 

second trained coder examined some of the videos to assess the veracity. 

Unfortunately, we do not have their annotations for any videos. Therefore, for our 

database, the only ground truth is whether a suspect is guilty or innocent, that is, 

lying or not. This limitation will probably introduce noise into our decision 

classifier, but it is an inevitable problem for us. The details of training a decision 

classifier will be elaborated in Chapter 5. 

Some sample frames from the videos in our database are shown in Figure 3, from 

where we can see the confounding factors in our database. 

Considering the many uncontrolled factors, our database is far from being the 

ideal interrogation dataset we specified in section 3.1. Nevertheless, to the best of 

our knowledge, it is the only one that contains completely natural expressions in 

                                                 
6 The degrees of freedom of human head will be discussed in the next chapter. 

7 This will be discussed in detail later in the thesis. At this point, the reader can assume that this 

refers to the action of the facial muscles while emoting. 
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high-stakes situations. Therefore, our database is currently the most suitable 

dataset for studying and searching for a solution to real high-stakes deception 

detection problem. We also note that these uncontrolled factors have rarely been 

dealt with in the existing literature involving facial expression analysis. 

Traditional methods proposed for emotion detection have been mostly based on 

the prerequisite that all of the environmental factors discussed above can be 

controlled. Obviously, our database is significantly more difficult. 

In the next chapter, we will present certain compensation methods that 

significantly eliminated the negative influence of the factors discussed above. 

Clearly, the feature descriptors of the face were also selected to be independent of 

these factors as much as possible. But before analyzing the videos, it is necessary 

to edit them to be more in accordance with our ideal situations. 

3.4. Database Editing 

Our system is intended to be used in the context of an interrogation, where the 

suspect is being questioned by an investigator. We assume that for this scenario, 

the suspect is being recorded by a fixed camera in a single session. Specifically, 

the suspect should be the only person appearing in view of the camera at a fixed 

distance from the suspect and at a camera angle in a near-frontal view. In addition, 

the interrogation environment should be unchanging and well illuminated. Also, 

the video should be shot at one time without intermissions, in order to avoid 

inconsistencies between the last frame in the previous shot and the first frame in 

the next shot.  
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Figure 3. Sample frames from our database. 

 

Note that all the videos in our database are obtained directly from the Internet and 

therefore did not satisfy the previous conditions. The video could be a news clip 

on TV, a short interview, or a press conference. The primary content of the video 

should be a person making an emotional plea to the public appealing for the safe 
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return of his missing relative or asking for help to find the murderer who cruelly 

killed or dismembered his dead family member. Often the person denies 

involvement in the disappearance or death of the victim in an interview. These 

principal speakers in the videos are all considered as “suspects”, and they are 

either telling the truth or lying to conceal it. In addition, all the tragedies discussed 

are closely related to murder, disappearance, or sexual assault, yielding high-

stakes situations for the suspects if they attempt to lie.  

Most of the videos in our database contain multiple persons: the suspect, the 

interviewer, missing or dead relatives, the news anchors, etc. A person can appear 

individually in the camera scene, whereas in most cases, multiple people appear 

simultaneously. In light of our assumptions regarding the actual application being 

dealt with in this thesis, it is obvious that the videos need to be edited to mimic 

the real world situation. Figure 4 illustrates the typical simulated
8
 video content in 

our database and the consequent elimination of the redundant data. 

The video editing process is illustrated in Figure 4 and Figure 5, and the strategy 

is described as follows:  

1) First, in order to eliminate the temporal diversity of different videos from 

different sources, they are temporally normalized to the same frame rate. Before 

temporal normalization, the original frame rate ranged from 16 frames per second 

(fps) to 60 fps; this becomes 30fps after normalization. When interpolating a 

lower frame rate video to the standard frame rate (30fps), intermediate motion 

between two frames is estimated and interpolated, instead of simply replicating 

the succeeding frames [89]. 

 

                                                 
8 In the sense that the “video” shown is constructed from several video clips. 
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Figure 4. A sample edited video and the editing process. Note that this is for 

demonstration purposes only and the frames were not actually taken from one 

video. 

 

 

 

Figure 5. Video editing process 
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2) Select the frames that contain the suspect’s face and locate it in each frame. 

This step was done using face tracking and recognition provided by PittPatt 

commercial software [90]
9
. PittPatt tracks all faces in a video and then clusters the 

tracks into groups containing data from a single person. After that, we manually 

selected the face cluster belonging to the suspect we are interested in. 

3) Despite the fact that the face of the suspect has been located, the video 

may consist of separate different clips. We define the latter as a single shot 

obtained by the same camera at the same fixed distance and angle. Therefore 

concatenating different clips into one video might result in inconsistencies of head 

position, head pose, and facial expressions. Considering this, it is necessary to 

separate the different clips manually by finding the start and end frame of each 

clip. However, many videos have additional transitional effects between two clips, 

which are added during the post-production process before presentation on TV or 

the Internet. The most common transitional effect is “fade in/out”, which occurs 

when the video frame gradually turns into black or when a frame gradually 

appears from a black screen. Figure 4 gives an example of this transition effect 

between clip 3 and clip 4. In this case, the transition frames are usually darker and 

less reliable for facial expression detection. Therefore, if a clip fades out, the 

fading frames at the end of the clip need to be discarded. Similarly, for clip fade 

in. 

To sum up, the final video is created by discarding the frames where the suspect 

does not appear and those affected by transition effects. The result after editing is 

a set of several independent clips from a video, as shown in Figure 4. Each clip is 

a sequence of the suspect in a relatively constant environment, which we used to 

compute the spatial-temporal features to be discussed later. After database editing, 

we obtained 324 video clips: 51.23% of the clips contain guilty suspects, while 

48.77% are innocent. The average length of the video clips is 20 seconds. 

The reader should be aware that we have used video clips instead of subjects for 

training and testing. In other words, if one suspect is guilty (deceptive), the clips 

                                                 
9 This software is no longer available. The company has been bought out by Google. 
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belong to this person are all labeled as guilty (deceptive). It is similar for innocent 

(honest) suspects. Then all the video clips of the same suspect will be treated 

independently from each other. The experimental procedure will be presented in 

Chapter 5. In the next chapter, the dynamic features that are used for 

distinguishing deception and honesty are presented. 
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Chapter 4. Dynamic Feature Analysis 

Different from the deceit detection methods discussed in Chapter 2, in this thesis 

we present an automated method for detecting deception in high-stakes situations 

based on facial expressions. It will be seen in section 4.1 that honest and dishonest 

suspects present different facial expressions which are uncontrollable no matter 

what a person’s intentions are. This is supported by several psychological theories 

that will be reviewed in section 4.1. From these theories we are able to determine 

the specific facial expressions used for distinguishing truth-tellers and liars, and 

consequently deduce the features for detecting them. Appearance-based methods 

are used to extract invariant 2D features that are related to the 3D characteristics.  

In the rest of this chapter, we will present the dynamic feature analysis of a single 

video clip. In section 4.2, facial alignment is introduced. The following two 

sections will discuss facial region localization and feature extraction, respectively.  

Finally, we will illustrate how the dynamic features in different facial regions are 

organized and integrated into a concrete representation of a video clip. 

4.1. Psychological Theories 

Since none of the aforementioned measures provide a reliable solution for deceit 

detection, this thesis aims to test and verify if facial expressions can be used to 

reliably measure deceit in high-stakes settings. In fact, there have been several 

psychological theories published in the support of facial expressions being used as 

a reliable clue to deception detection. In this section, some of these will be 

reviewed in chronological order. We will then emphasize specific facial 

expressions that are potential indicators for discriminating deception and honesty 

in high-stakes situations. 

Back in 1862, French neurologist Duchenne, first discovered the difference 

between a genuine (Duchenne smile) and a fake smile (non-Duchenne smile) [91]. 

He conducted this experiment using electrical stimulation of the zygomatic major 

muscle, whose contraction pulls the mouth corners up and forms a smile. 
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However, when Duchenne’s experimental subject was amused by a joke, his 

orbicularis oculi muscle contracted simultaneously, thereby pulling up his cheeks 

and creating “crow’s feet” around his eyes, as shown in Figure 6. 

 

Figure 6. Duchenne’s experiment on smiles. (a) non-Duchenne smile (fake smile). 

The zygomatic major muscle was stimulated electrically. (b) Duchenne smile 

(genuine smile). [91] 

 

Later Darwin included Duchenne’s experiment in his book, The Expression of 

Emotions in Man and Animals, and proposed the inhibition hypothesis. He argued 

that some facial actions that are the most difficult to create voluntarily are also the 

hardest to be inhibited [88]. Yet this theory had not been empirically tested until 

recently when Stephen Porter and his team conducted several related experiments 

[2, 52, 64, 66, 68, 92, 93]. This breakthrough work testified to the validity of 

Darwin’s theory, as well as the possibility that the concealed emotions could be 

distinguished from the inconsistencies among normal facial expressions. The 

presence of concealed emotions is referred to as emotional leakage. 

As early as 1966, Haggard and Isaacs claimed that they had observed some 

“micro-momentary” expressions when scanning some psychotherapy films [94]. 

Later Ekman also reported the existence of what he called “micro-expressions”, 

which lasted between 1/25th to 1/5th of a second [1, 95]. Although Porter and ten 

Brinke [52, 64] have validated the existence of such micro-expressions, they also 

noted that they occurred very rarely, and only a partial face was involved. In [2, 

52, 64, 66, 68, 92], Porter and his team indicated that the emotional leakage they 
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observed lasted too long to be classified as micro-expressions, but were so 

ubiquitous that they could possibly be utilized to detect concealed emotions. 

Recently, Hurley and Frank [67] have also shown that emotional leakage happens 

everywhere on the face and that facial countermeasures are very rare.  

What about normal facial expressions? During the 70’s, Ekman et al. [96] 

proposed the Facial Action Coding System (FACS) to describe facial movements 

during these expressions. FACS uses Action Units (AUs) to describe the 

contraction of certain muscles on human faces. For example, Table 7 gives the so-

called seven universal facial expressions and their corresponding AUs. In 1980, 

Ekman et al. [97] reported a list of AUs which were the most difficult to produce 

deliberately. Based on Darwin’s inhibition hypothesis, these AUs should be the 

hardest to inhibit. Therefore, their detection would indicate facial locations where 

emotional leakage would most likely happen. For example, according to this list 

[97], sadness should be hard to fake in the sense that AU1+4 is difficult to be 

produced intentionally. Therefore to conceal genuine sadness is equally difficult 

as presenting fake sadness. 

Table 7. Universal expressions coded by Action Units [98] 

Emotion Action Units 

Happiness AU 6+12 

Sadness AU 1+4+15 

Surprise AU 1+2+5B+26 

Fear AU 1+2+4+5+20+26 

Anger AU 4+5+7+23 

Disgust AU 9+15+16 

Contempt AU R12A+R14A 

 

In fact, this has been supported by recent studies. Porter et al. [2, 66, 68] have 

implied that guilty suspects would produce fake sadness. Since AU1+4 is hard to 

produce deliberately, the fake sadness would appear like surprise (AU1+2). 

Moreover, guilty suspects show involuntary leakage of genuine happiness 

(AU6+12) or smirks (AU12) to cover their embarrassment when telling lies. In 

contrast, innocent suspects would express genuine sadness (AU1+4, AU15), 
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which is hard to inhibit if they were feeling sad. Since happiness only occurs on 

the face of a guilty suspect, we will exclude AU6 in our feature analysis since we 

are not distinguishing genuine from fake happiness. The AUs associated with 

innocent and guilty suspects are summarized in Table 8. 

 Table 8. AUs of innocent and guilty suspects 

Emotion Innocent Suspects Guilty Suspects 

Sadness AU1+4, AU15 (Genuine) AU1 or AU2 or AU1+2 (Fake) 

Happiness NA 
AU6+12 (Genuine) 

AU12 (Fake) 

 

In addition to the emotional leakage mentioned above, blinking could also be 

considered as a clue to deception. Mann et al. [57] have stated that the suspects 

will blink less frequently when telling lies in high-stakes situations. Leal and Vrij 

[99, 100] have found that the blinking pattern of liars and truth-tellers differ: liars 

show a decreased number of eye blinks when they are lying, followed by an 

increase. In [52], ten Brinke and Porter have also reported a higher blink rate 

observed in deceptive suspects. Therefore, it appears that blinking activity 

(AU45) could also be added as a cue to discern deception and honesty. 

To sum up, the following AUs are potential indicators for distinguishing liars 

from truth-tellers in high-stakes situations: AU1, AU2, AU4, AU12, AU15 and 

AU45. Each AU is related to the movement of a single facial muscle and can 

result in motion of a facial part or appearance changes in a facial region. Also, 

multiple AUs can occur simultaneously.  

Table 9 summarizes these potential deception indicators (AUs), their associated 

facial movements and corresponding facial regions. 
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Table 9. Potential indicators of deception 

Action 

Unit 

FACS 

Name 
Facial Movement Facial Region 

AU1 
Inner Brow 

Raiser 

Horizontal wrinkles occur in the center 

of the forehead; inner eyebrows move 

up, forming an oblique shape 

Center of 

forehead; 

eyebrows 

AU2 
Outer Brow 

Raiser 

Short horizontal wrinkles occur above 

the lateral portions of the eyebrows; 

outer eyebrows move up, forming an 

arched shape 

Left and right 

forehead; 

eyebrows 

AU4 
Brow 

Lowerer 

Vertical wrinkles occur between the 

eyebrows; distance between the 

eyebrows decreases; partial or entire 

eyebrows are lowered 

Glabella 

area
10

; 

eyebrows 

AU12 
Lip Corner 

Puller 

Lip corners move up obliquely; may 

create or deepen nasolabial furrows 
Mouth 

AU15 
Lip Corner 

Depressor 

Lip corners move down obliquely; 

may create or deepen nasolabial 

furrows 

Mouth 

AU45 Blink Eyelids close and open rapidly Eyes 

 

Therefore, based on the psychological theories presented above, the proposed 

method aims to detect the AUs listed in Table 9 and use them to discern deceptive 

and honest suspects in high-stakes situations. In order to detect and analyze the 

AUs, the face should be decomposed into several associated physical areas, as 

listed in Table 9. Before localizing facial regions, it is necessary to first align all 

faces of the same person in a video clip. This topic is presented in the next section. 

4.2. Facial Alignment 

4.2.1. Image Enhancement 

Illumination conditions in the video clips we use in this study vary significantly 

since they were collected from the internet (examples can be seen in Figure 8(a)). 

However, we note that under realistic scenarios, interrogations would take place 

                                                 
10 The glabellar area is the region between the two eyebrows. 
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indoors, under constant and uniform illumination on the suspect’s face. For this 

reason, as well as to be able to deal with the analysis of a large range of image 

illuminations, it is necessary to compensate for the unconstrained lighting. 

A plethora of illumination compensation methods have been published as a 

preprocessing step before image or video analysis, especially for face detection or 

recognition [101, 102]. One of the most conventional and effective methods of 

illumination compensation is histogram equalization (HE), which adjusts the 

overall distribution of the image intensity to achieve a higher contrast image. 

Similarly, adaptive histogram equalization (AHE) [103] adjusts the intensity 

distribution in each local contextual region, in order to further enhance image 

details. However, AHE has a disadvantage of excessively amplifying noise in 

relatively homogeneous areas of an image. Thus, we have adopted Contrast 

Limited Adaptive Histogram Equalization (CLAHE) [104] to avoid this issue. 

CLAHE modifies the intensity histogram by setting a clipping limit and uniformly  

redistributing the exceeded parts into histogram bins (shown in Figure 7). In this 

way, the hidden details in the image could be brought out, without amplifying too 

much noise. Figure 8(b) shows some example images after applying CLAHE. 

 

 

Figure 7. CLAHE method: the part of the histogram which exceeds the clip limit 

is redistributed uniformly into the histogram bins [104]. 
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Figure 8. Image enhancement (a) Raw frames taken from videos in our database 

(b) Illumination compensated images by applying the CLAHE method to the 

images in (a). 

 

4.2.2. Facial Landmark Detection 

The human head has three degrees of freedom (DOFs): pitch, yaw, and roll, as 

shown in Figure 9. PittPatt
11

 [90] locates different numbers of landmarks on a 

face according to its yaw angle. When the yaw angle is within the range of 

[        ], PittPatt detects at most three landmarks: left eye, right eye, and nose 

base. Otherwise, it detects at most five landmarks: left/right eye, nose base, eye 

nose, left/right lower cheek, left/right upper cheek. The definitions of these 

landmarks and example images in both cases are shown in Figure 10. We 

considered only faces whose yaw angles fell within [        ], thereby ensuring 

the visibility of both eyes. 

                                                 
11 PittPatt developed software (which we licensed) for detecting and tracking faces in videos. It 

was later bought out by Google and the software is no longer available.  

(a) 

(b) 
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Figure 9. Three DOFs of human head: pitch, yaw, and roll. [90] 

 

 

Figure 10. Facial landmarks detected by PittPatt at different yaw angles. (a) yaw 

angle  [        ], PittPatt detects at most three landmarks: left eye, right eye, 

and nose base. (b) yaw angle  [                    ]; PittPatt detects at 

most five landmarks: left/right eye, nose base, eye nose, left/right lower cheek, 

left/right upper cheek. [90] 

 

Right Eye: midpoint between the eye corners 

Left Eye: midpoint between the eye corners 

Nose Base: lowest point along the vertical axis 

of the nose 

Nose Bridge: midpoint between the nose base 

and the center of the eye cavity 

Left Eye: midpoint between the eye corners 

Eye Nose: midpoint between the nose base 

and the center of the eye cavity 

Left Lower Cheek 

Left Upper Cheek 

(a) 

(b) 
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4.2.3. Nose Landmark Correction 

Although the facial landmark detection using PittPatt is relatively fast and 

accurate, it locates landmarks frame by frame and does not adopt any tracking 

techniques. Consequently, the obtained landmarks have not been smoothed 

temporally, resulting in noisy landmark trajectories, which will later degrade the 

face registration results. To smooth the landmark trajectories, nose base landmark 

correction, followed by Kalman filtering, is applied. 

The nose base is defined by PittPatt [90] as the lowest point along the vertical axis 

of the nose. Compared to eyes which are rather deformable regarding to their 

appearance, the area surrounding the nose base has relatively less appearance 

variations, allowing us to adopt a simple algorithm to correct its location, as 

described below.  

As illustrated in Figure 11 for frame   at time  , its previous frame   at time 

    is used as a reference frame for nose landmark correction. A small patch 

surrounding the nose base landmark in frame   is the “reference patch” for 

locating the best “matching patch” in frame  . In frame  , we search for the 

“matching patch” in a larger search area surrounding its original nose base 

landmark by minimizing the sum-squared-difference (SSD) between the two 

patches. To speed up the computation, we employ the Fast Fourier Transform for 

calculating the SSD metric [105]. Starting from the first frame of a video clip, the 

nose landmark correction process is applied iteratively. The SSD correction result 

will be shown in Figure 12.  
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Figure 11. SSD correction of nose base landmark 

 

4.2.4. Landmark Trajectory Smoothing 

In addition, a Kalman filter [106, 107] is employed to further smooth the 

landmark trajectories. The Kalman filter is a recursive method for estimating the 

true state of an object, based on noisy measurements observed at the previous 

time. In our case, the objective is to track eye/nose motion on the basis of noisy 

measurements. After applying the Kalman filter, the eye/nose landmark trajectory 

will be smoother. 

For the nose landmark, it is firstly corrected by SSD, and then further smoothed 

by the Kalman filter, resulting in a smoother trajectory. An example of the 

trajectory smoothing process of the nose landmark is shown in Figure 12. For the 

eye landmarks, they are merely smoothed by the Kalman filter. 

The smoothness of landmark trajectories is essential to the feature extraction 

algorithms to be described in section 4.4. 
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Figure 12. Example of nose landmark trajectory smoothing. The upper and bottom 

figures are the traces of x, y coordinates of nose landmark as time changes, 

respectively. In both figures, the red curve is the original trajectory detected by 

PittPatt. The blue curve is the trajectory after SSD correction. Magenta curve 

results from the blue curve further smoothed by the Kalman filter. 

 

4.3. Facial Region Localization 

Considering that only three major facial landmarks are obtained so far using 

PittPatt. However, our facial analysis ranges across the whole face from forehead 

to mouth, making it necessary to locate more facial points. 

Active Shape Model (ASM) [108] is a popular statistical model which fits a new 

face to the learned model by iteratively searching for the best positions of a set of 

pre-defined markers. Active Appearance Model (AAM) [109] resembles ASM a 

lot, except that AAM utilizes texture information in addition to shape constraints. 

One of the disadvantages of ASM and AAM is that they both need a well-trained 

model to fit a new face, which needs to be learned from a large diversity of 

annotated images to ensure generalizability. Another disadvantage is that the 

performance of the model fitting process is also sensitive to the number of 

iterations.  
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Another popular approach is training a cascaded classifier. Usually, AdaBoost or 

GentleBoost is employed to learn the classifiers using such features as Haar 

templates, Gabor filter responses, or other local texture features. These have all 

proved to be fast and effective [102, 110, 111]. However, this method is also 

based on training, thus the detection performance largely relies on the diversity of 

the training samples.  

As opposed to appearance- or shape-based methods, geometry-based facial 

landmark localization approaches do not require a training phase. They rely on 

knowledge of the anthropometric structure of the face. Studies have shown that, 

despite the variety of facial structures resulting from racial and individual 

differences, the human face is self-constrained. In other words, the distances 

between each pair of facial landmarks have inherent geometric relationships with 

each other, which provides the possibility of building a face model statistically. In 

[112], hundreds of frontal face images acquired from 150 people from various 

geographical locations have been carefully measured, and a face model was built.  

The anthropometric face model presented in [112] is represented by seven 

landmarks       and the anthropometric measurements      , as illustrated in 

Figure 13. The distance    between the left and right eye is used as the principal 

measurement, and other distances       are proportional to    (Table 10). 

According to the anthropometric face model, once the eye landmarks       and 

the distance    between them have been obtained, five other landmarks (left 

eyebrow center, right eyebrow center, midpoint of eyes, nose tip, mouth center) 

could be geometrically located by calculating       according to Table 10.  

However, this model is limited to frontal face images, in which the head has no 

in-plane or out-plane rotation. As stated in section 3.2, faces in our database are 

subject to rotation variation. Therefore, head rotation along three orthogonal axes 

(pitch, yaw and roll) will need to be compensated for if a frontal face model were 

to be used.  
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Figure 13. Anthropometric face model. (a) The landmarks in the face model. (b) 

The distances measured by the anthropometric model. [112] 

 

Table 10. The proportion of the distances (D2, D3, D4, and D5) to D1 measured 

from subjects coming from different geographical locations. [112] 

Proportion  Description  Constant  

D2/ D1 
Proportion of the distance between right eye center and 

right eyebrow center to the distance between eye centers  
≈ 0.33  

D3/ D1 
Proportion of the distance between left eye center and 

left eyebrow center to the distance between eye centers  
≈ 0.33  

D4/ D1 
Proportion of the distance between midpoint of eye 

centers and nose tip to the distance between eye centers  
≈ 0.60  

D5/ D1 
Proportion of the distance between midpoint of eye 

centers and mouth center to the distance between eye 

centers  

≈ 1.10  

 

Suppose that the three landmarks in the original frame are denoted as follows:   
  

(right eye),   
  (left eye),   

  (nose base), as shown in Figure 14(a), and the 

Euclidean distances are defined as: 

   
             

    
   (1)  

   
             

    
   

 ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑    (2)  
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Note that the nose tip landmark is included in the anthropometric face model, but 

there is no particular landmark for the nose base. Here we use the detected nose 

base landmark as a substitute for the nose tip landmark in the anthropometric 

model. They are very close in the frontal face and our landmark localization only 

serves as a preliminary step to roughly locate the different facial regions. 

We will first compensate for head rotation, and then locate more facial landmarks 

and facial regions according to the anthropometric model. 

In-plane rotation only involves the roll angle   as determined by 

        (
       

       
) (3)  

Intuitively, it is straightforward to compensate for it by rotating the image by – . 

Out-of-plane rotation is more complicated than in-plane rotation, because it is 

related to 3D and not just 2D. We note that rotation about the yaw axis only 

affects horizontal distances (  ) in the frontal face model, while rotation along the 

pitch axis only affects vertical distances (     ). The simplest approach for 

compensation for 3D rotation is to stretch   
  to    and   

  to     in the image, 

such that    and    satisfy the proportionality factors in Table 10: 

 
       

          
      

  

  
        (4)  

Therefore, the image was resized in the horizontal and vertical directions 

according to the factors        , respectively. In our case, we set        and 

     . Finally the face (375 250) is cropped according to Figure 14(b).  
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Figure 14. Spatial alignment. (a) Original frame, with three landmarks located. 

The original distance between the two eyes is    , and the distance between the 

nose base to the line connecting two eyes is    . The roll angle of the head is  . 

(b) Aligned face, with the line connecting two eyes horizontal, and the horizontal 

distance between two eyes 125, the vertical distance between eye and nose 75. 

The cropped face has a dimension of 375 250, and the right eye is located at (62, 

150). 

 

After facial alignment, the frontal face model can be employed to locate other 

facial landmarks related to the left eye and right eye locations by computing 

     , as shown in Figure 15(a). From these landmarks, nine facial regions can 

be located: left eye, right eye, left eyebrow, right eyebrow, glabella area, left 

forehead, right forehead, middle forehead and mouth. (shown in Figure 15(b)) 
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Figure 15. Facial landmark and region localization. (a) Green landmarks are the 

three primary landmarks located by PittPatt. Red landmarks are additional ones 

based on the anthropometric model. (b) Nine facial regions are located based on 

the landmarks in (a). 
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These facial regions are all regions of interest (ROI). On the basis of Table 8 

discussed in section 4.1, each facial region is associated with one or more AUs. 

Each AU is related to a facial feature, which is called an “event”. These events 

related to deception in the corresponding facial ROI in Figure 15(b) are 

summarized below in Table 11. The algorithm for detecting each event is 

presented in section 4.4. 

Table 11. Events related to deception in each facial region 

Facial Regions Events Related to Deception 

      Blink 

      Eyebrow moving upwards or downwards 

            Wrinkle 

   Mouth corners moving upwards or downwards 

 

4.4. Feature Extraction 

In this section, feature analysis is conducted in each facial region. As stated in the 

previous section, four kinds of facial events that are related to deception need to 

be detected. These facial events are also considered as facial actions, and many 

algorithms have been proposed for solving the local facial action detection 

problem in the literature.  

A general process of facial action detection involves local feature extraction and 

facial action discrimination. The common approaches used in the current research 

in feature extraction and decision making will be reviewed in below. 

Geometric- and texture-based features for describing facial regions have both 

been very popular. Geometric-based feature involves distance, velocity, and 

displacement of a facial part. This kind of descriptor is more suitable for 

describing eyebrow or mouth movements [113-116]. For texture-based feature, 

the Gabor filter is commonly used to describe spatial compositions of eyebrow or 

transient wrinkles [113, 115]. Besides, other descriptors like Motion History 

Image (MHI) and free-form deformation (FFD) have also been applied to describe 
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the temporal changes in a video [115, 117]. However, there are some common 

prerequisites for these methods in the current literature, as discussed below. 

Neutral frame assumption: It is assumed that there is at least one frame in the 

video clip in which the subject is neutral or expressionless [114, 115, 117, 118]. 

Normally the first frame or few frames at the beginning of a video were used to 

define a “baseline”. Later the facial action analysis compared the target face with 

this neutral face. This assumption is reasonable since it eliminates the individual 

differences by measuring each person’s facial action based on one’s own baseline. 

Accurate facial landmark assumption: A common technique for describing facial 

movements is to use facial landmarks. In this case, the facial movement within a 

facial region is considered to be represented by the movement of a few landmarks 

in it. In order to achieve high accuracy at facial action detection, facial landmarks 

should be located as accurate and many as possible. Active Shape Model (ASM) 

has been employed in locating 159 and 53 facial points respectively in [115, 119]. 

Another popular method to detect landmarks is to train boosted classifiers for 

each facial region, as used in [117, 120, 121]. There are other non-mainstream 

landmark localization approaches, such as manually locating facial points in the 

first frame [114] or employing landmark detection software [116]. If this 

assumption was satisfied, face registration and facial action description would be 

both easy and straightforward. However, it is very hard to train an ASM or 

boosted classifier that could be generalized to unconstrained situations with 

varying illumination, rapid head movement and uncontrolled facial occlusions. 

Therefore, this assumption is very hard to satisfy in terms of our dataset. 

Head pose assumption: For accurate facial action detection, some papers have 

restricted the head pose of the subjects to be exactly or nearly frontal view [120, 

122]. Although others did not have this restriction, the head pose in their case did 

not suffer from large or rapid variations and could be easily registered to 

compensate for head motions [115, 117]. However, the head rotation in our 

database is completely uncontrolled, making it impossible to meet this 

prerequisite. 
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For the decision-making part, many machine learning techniques have been 

employed to classify facial actions. Examples are: Gentle Boost in [115, 117], 

Support Vector Machine (SVM) in [118, 119], Bayes Classifier in [113], 

combination of Gentle Boost and SVM in [114] and a Hidden Markov Model 

(HMM) in [116]. The major difficulty of training a classifier is the selection of the 

training data. The best classification performance would be achieved if the 

training data had enough variations across all conditions. In our case, a good 

classifier should not be sensitive to human races, lighting changes, head pose 

changes and facial occlusions. It is already very hard to collect enough annotated 

data to train a facial action classifier, not to say training a classifier for each of the 

facial actions. 

In summary, the traditional approaches for facial action detection all depend on 

certain assumptions, which are obviously not suitable for being employed in our 

study. Therefore, in the following subsections, we will introduce our methods for 

detecting the events listed in Table 11. 

4.4.1. Eye Blink Detection 

Eye blink is a dynamic process with the eyelid closing and opening rapidly. 

Researchers have extensively studied the blink detection problem, due to its 

various applications in human-computer interaction [123-125], driver fatigue 

monitoring [126-128] and liveliness detection [129]. Existing methods have either 

treated blink detection as an open-closed eye classification problem or put 

emphasis on the change of temporal patterns when blink occurs. Methods used in 

the literature include matching an open or closed eye template [123, 124, 130], 

measuring the vertical motion using optical flow [128, 131-133], computing the 

eye openness by miscellaneous methods [125, 126, 134-137], classifying the eye 

state using statistical approaches [138-141], and other methods [127, 129, 142]. 

These methods were proposed specifically for blink detection, based on empirical 

observations of the blink event. 



51 

 

The blink detection method used in this thesis differs from the traditional methods 

mentioned above. Instead of focusing on the blink event itself, we treat it as an 

anomaly which occurs within a period of time, while non-blinking is the normal 

behavior. The blink event involves the continuous process of eye closure, closed 

eye, and eye opening. 

The anomaly detection method proposed in [143] has been adopted in this thesis. 

This method is an on-line real-time approach which detects suspicious behaviors 

(anomalies) occuring with a low probability in a video. The video is firstly 

represented by spatio-temporal volumes using dense sampling. Then the volumes 

are coded by temporal derivative descriptors and a codebook is constructed. Each 

volume in the video is assigned to all codewords with a degree of similarity. Then, 

the descriptors and arrangement of multiple volumes inside a larger contextual 

ensemble are modeled statistically to describe the spatio-temporal composition 

inside this ensemble. Finally according to the statistical model, the compositions 

that have lower likelihood of being normal are determined as anomalies. The 

algorithm is briefly summarized below: 

Algorithm for detecting anomalies: 

1) Construct spatio-temporal volumes                    from the video 

by dense sampling. 

2) Compute spatio-temporal derivatives in each volume as descriptors. 

3) Construct a codebook consisting of   codewords:                 from 

the volume descriptors. Each volume      is assigned to all codeword     

with a degree of similarity     . 

4) Construct ensembles containing multiple spatio-temporal volumes. Each 

ensemble is represented by the volume descriptors and the relative 

arrangement of the volumes. 

5) For each ensemble, compute its likelihood of being normal by measuring 

its similarity to the compositions learnt from the previously seen 

ensembles, yielding a likelihood map for each frame. 

6) Threshold the likelihood maps, obtaining binary maps with the anomalous 

area detected. 

 

In summary, the anomaly detection method detects the anomalous regions in a 

video based on its probability of occurrence.  
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For describing each spatio-temporal volume, we have utilized the Histogram of 

Oriented Gradients [144] based on a Sobel gradient operator kernel to emphasize 

on both spatial and temporal changes.  

By applying the anomaly detection to the eye region in a video, we are able to 

obtain a likelihood map for each frame, as shown in Figure 16(b). Higher 

probability of being an anomaly corresponds to a blink event in our case. 

 

Figure 16. Blink detection. (a) A sequence of the eye ROI where blink occurs. (b)  

A sequence of the corresponding likelihood maps obtained from the anomaly 

detection algorithm. (c) A binary sequence where ones are the frames involving a 

blink event and zeros are ‘non-blink’ frames. Each red dot on the curve 

corresponds to a frame in (b). (d) A binary blink event sequence in a 17-second 

video with four blink events detected. The first blink event (circled in red) from 

1.3s to 1.77s is blew up in (c). 
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Since the threshold for binarizing the likelihood maps was chosen experimentally 

for each dataset in [143], the thresholds used in [143] would not be suitable for 

our case since we are not using the same dataset. Therefore, we have adopted an 

automatic unimodal thresholding method based on the histogram of the 

likelihoods to determine a data-dependent threshold for each video clip.  

Considering that anomalies occur less frequently than normal behaviors, the 

pixels that belong to an anomaly should only form a minority of all the pixels in a 

video. Moreover, these pixels should have lower likelihood of being normal. 

Consider the plot of the histogram of likelihood values for all of the likelihood 

maps in a sample video, shown as the blue curve in Figure 17. The dominant peak 

of the blue curve is formed by the pixels belonging to normal regions, while the 

smaller peak to the left of the dominant one is formed by the pixels belonging to 

anomalous regions. Sometimes the smaller peak is implicitly located under the 

side lobe of the dominant one. Therefore, we have employed the valley-emphasis 

thresholding method [145] to find an appropriate threshold between the two peaks. 

For example, the magenta line in Figure 17 is the threshold determined from the 

blue curve. 

To determine if a frame is a ‘blink’ frame, the histogram of its likelihood map is 

used. If the corresponding likelihood value of its dominant peak is below the 

threshold found above, this frame is classified as a ‘blink’ frame; otherwise it is 

taken as a ‘non-blink’ frame. Figure 17 gives an example of the determination of a 

‘blink’ and a ‘non-blink’ frame. 

Based on this approach, a binary sequence is obtained from the likelihood 

sequence in Figure 16(b). The blink event is plotted as an on-off curve, as shown 

in Figure 16(c). Note that since the average length of blinking is between 0.1s and 

0.4s [146], the events detected longer than 12 frames or shorter than 3 frames are 

eliminated. 

As a result, each sequence of eye region is represented by a binary sequence, 

indicating the blink events detected. This binary sequence is the feature descriptor 
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of the eye region in a video, and will be combined with other features from other 

facial regions, and contribute to the final decision. This will be demonstrated in 

detail in section 4.5. 

 

Figure 17. Demonstration of the determination of a ‘blink’ frame and a ‘non-blink’ 

frame. The blue curve is the histogram of the likelihood values in all likelihood 

maps of a video. The vertical magenta line is the threshold determined by the 

valley-emphasis thresholding method. The green curve is the histogram of the 

likelihood values in a frame. This frame is determined as a ‘non-blink’ frame 

because the corresponding likelihood value of the dominant peak of its histogram 

is larger than the threshold. Similarly, the associated frame of the red curve is 

determined as a ‘blink’ frame. 

 

4.4.2. Detecting Eyebrow Motion  

Eyebrow motion is closely related to different facial expressions. As argued in 

chapter 2, eyebrow movements are involved in both sadness and surprise 

expressions. People will pull inner eyebrows up when they feel sad. A surprise 

expression involves upward movement of the entire eyebrows, and this is also an 

expression of fake sadness. In the literature, eyebrow motion detection has been 

mostly used for emotional state estimation [60, 113, 114, 120] and avatar 
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animation [122]. Since the eyebrow movement involves motion instead of 

appearance change, geometric features are commonly used for characterizing the 

eyebrow displacement [60, 113, 114, 120]. 

Due to the various head poses in our database, the outer corners of the eyebrows 

are often missing from the videos. Therefore we merely focus on the upward and 

downward motion of the whole eyebrow, instead of treating the inner corner and 

outer corner separately. 

Our eyebrow motion analysis algorithm involves two steps: eyebrow 

segmentation and eyebrow motion detection. In the first step, the eyebrow is 

segmented from the eyebrow ROI through the algorithm described below. 

Algorithm for eyebrow segmentation: 

1) Smooth the eyebrow ROI (Figure 18(a)) using a Gaussian filter (Figure 

18(b)).  

2) Transform the eyebrow ROI from RGB color space to        color space. 

The   component is shown in Figure 18(c). 

3) Threshold the   component using Otsu’s method [147] to obtain a 

binarized eyebrow image. (Figure 18(d)) 

4) Select the blob in the binary image which has the maximum number of 

pixels along the central vertical line as the eyebrow blob. (Figure 18(e,f)) 

5) Obtain the convex hull of the eyebrow blob (Figure 18(g)) to achieve 

smoother outline of the eyebrow. 

6) The upper contour of the blob in the previous step is taken as the upper 

contour of the eyebrow (Figure 18(h)). Also, the midpoint of the upper 

contour is located as the intersection point of the upper contour and the 

middle vertical line of the eyebrow ROI (Figure 18(h)).  

 

Then in the second step, the eyebrow motion is detected by tracking the vertical 

motion of the midpoint of the eyebrow upper contour, as described in the 

algorithm below. 
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Figure 18. Eyebrow segmentation process. (a) Eyebrow region cropped from the 

anthropometric model. (b) Eyebrow ROI smoothed by a Gaussian filter. (c) L 

component in        color space. (d) Binary eyebrow image after thresholding (c). 

(e) Blobs in (d) are labeled with different colors. (f) Selected eyebrow blob. (g) 

The convex hull of the blob in (f). (h) Eyebrow upper contour and its midpoint 

(red dot). 

 

Algorithm for detecting eyebrow motion: 

1) Measure the displacement of the midpoint of the upper contour from the 

horizontal middle line as the eyebrow displacement value. (Figure 19) 

2) Track the displacement along time, obtaining a displacement curve, shown 

in Figure 20(a). 

3) Apply a median filter to the displacement curve to eliminate outliers. 

(Figure 20(b) blue curve) 

4) Apply a moving average filter to the curved obtained in the previous step 

to get a relative baseline of the eyebrow. (Figure 20(b) magenta curve) 

5) Compute the difference between the curves obtained from step 3) and 4) to 

get the relative displacement of the eyebrow. (Figure 20(c)) 

6) From the curve obtained in the previous step, an eyebrow raise event is 

located if the height of the peak is higher than a threshold         . 

Similarly, an eyebrow lower event is located if the valley is lower than 

         . (Figure 20(d)) 
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Figure 19. Eyebrow displacement 

 

Figure 20. Eyebrow motion detection. (a) Eyebrow displacement varies along 

time in a video. (b) The blue curve is the median filtered curve of (a) and the 

magenta one is the moving averaged curve of the blue one. (c) Relative 

displacement curve. Red arrows are the peaks higher than the threshold, while 

green arrows are the valleys below it. (d) Eyebrow event curve. 1s indicate where 

the eyebrow raises, while -1s indicate where it lowers. 

 

In summary, two kinds of events are detected in the eyebrow ROI: eyebrow raise 

event and eyebrow lower event. Both of the two events are obtained by 

thresholding the relative displacement curve mentioned above. The threshold 

         is chosen experimentally during the training process, as will be 
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discussed in the next chapter. The detected eyebrow motion events will be 

integrated with other facial events in section 4.5, forming a comprehensive 

representation of the facial movements. 

4.4.3. Detecting Wrinkles 

Since facial wrinkles are generated by muscular movements, their direction is 

approximately perpendicular to the direction of motion of the corresponding 

muscles. Wrinkles can either be transient or permanent, both capable of yielding a 

reliable indicator for facial expression analysis [148, 149] and human age 

estimation [150-157]. In the literature, various automated features have been 

applied to represent the appearance of wrinkles, such as Gabor filter [149, 150, 

158], Sobel filter [152-154], Hough transform [155], Active Contour [156] and 

Canny operator [148]. Also, there are other methods for detecting wrinkle 

segments using a watershed algorithm [151], Markov Chain Monte Carlo 

sampling [159], line sieving and morphological region growing [157]. 

 

Figure 21. Facial wrinkles on a human face [160]. The horizontal forehead lines 

and glabellar frown lines in the red rectangles need to be detected. 

 

Figure 21 indicates several primary facial wrinkles. Based on our anthropometric 

model, we focus on horizontal forehead lines in three ROIs (       9 ) and 

vertical glabellar frown lines in   . The forehead lines in    and  9 are produced 
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by AU2 (outer eyebrow raiser), while those in    are produced by AU1 (inner 

eyebrow raiser). The vertical glabella frown lines are generated by AU4 (brow 

lowerer). 

Combinations of AUs can also produce wrinkles. The combination of AU1+2 will 

result in horizontal lines across the entire forehead (       9). The simultaneous 

appearance of wrinkles in    and    is an indicator of AU1+4. 

Table 12 is a summary of the above mentioned wrinkles in different facial regions 

and their associated Action Unit. 

Table 12. Wrinkle ROI and its associated wrinkle direction and Action Unit 

Facial region Wrinkle direction Associated Action Unit 

    horizontal AU2 

    horizontal AU1 

    horizontal AU2 

       vertical, horizontal AU1+4 

          horizontal AU1+2 

 

Since wrinkles in a predominant direction (either horizontal or vertical) need to be 

detected, oriented Gabor filters will be sufficient to characterize the directional 

texture.  

The Gabor filter is defined by equation: 

 
            

 
         

      
  
 

  
 

 

(5)  

in which                                [161]. 

Eight orientations of the Gabor filter are often used for detecting edges in 

different orientations, as shown below in Figure 22. 
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Figure 22. Oriented Gabor filters in eight different orientations by varying  . 

 

Though the face orientation has been spatially aligned, the wrinkles might not be 

exactly horizontal or vertical. Thus each ROI is convolved with a set of Gabor 

filters in more than one direction, and the combined response is used for detecting 

wrinkles. For horizontal forehead lines, three orientations were selected:    

{
3

 
   

 

 
   

 

 
  } . For the vertical glabellar lines, three orientations were also 

selected:    {  
 

 
   

 

 
  }. Three frequencies              were computed in 

each direction, forming horizontal and vertical Gabor filter banks. Each 

directional bank contains 9 filters. 

Suppose the Gabor response in a certain direction and scale is denoted as 

            . Then the total response of   directions and   scales is defined as: 
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(6)  

Figure 23 (a) shows the horizontal Gabor filter bank, and (b) is a sample glabella 

ROI with vertical frown lines. (c) is the associated Gabor responses by convolving 

(b) with each filter in (a), and (d) is the total response. Similarly, Figure 24 shows 

the vertical Gabor filter bank, a sample forehead ROI with horizontal wrinkle 

lines and its associated Gabor responses. From these two examples we could see 

that the directional textures are well captured by the oriented Gabor filters. 
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After computing the Gabor response, each ROI is represented by a Gabor-filtered 

response image. This image is transformed into an entropy value indicating the 

overall strength of the edges: 

        

  
∑                               

                                            
 

(7)  

Then we consider a sequence of ROIs in a video with each frame having been 

characterized by a single entropy value. The wrinkle event could be detected by 

the algorithm described below. 

 

 

Figure 23. Horizontal Gabor filter bank and responses. (a) Horizontal Gabor filter 

bank consists of Gabor filters in three directions and three scales. (b) A sample 

image of forehead ROI with horizontal wrinkle lines. (c) Horizontal filter bank 

responses obtained by convolving (a) and (b). (d) Total Gabor responses. 
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Figure 24. Vertical Gabor filter bank and responses. (a) Vertical Gabor filter bank 

consists of Gabor filters in three directions and three scales. (b) A sample image 

of glabella ROI with vertical frown lines. (c) Vertical filter bank responses 

obtained by convolving (a) and (b). (d) Total Gabor responses. 

Algorithm for detecting wrinkles: 

1) A sequence of wrinkle ROI (Figure 25(a)) is filtered by a horizontal or 

vertical Gabor filter bank, resulting a sequence of Gabor responses (Figure 

25(b)).  

2) The Gabor responses obtained in the previous step are transformed into 

entropy values, resulting in an entropy curve, shown in Figure 25(c). 

3) The entropy curve is filtered by a median filter to remove outliers, shown 

in Figure 25(d). 

4) The filtered entropy curve is thresholded by         , resulting in a binary 

sequence in Figure 25(e). The 1s indicate where the wrinkles occur, while 

0s indicate where there are no wrinkles. A sequence of 1s is called a 

wrinkle event, representing that the wrinkles are occurring at one time and 

last for a period of time. 

 

Therefore, for a video clip, wrinkle ROI               9  will have a binary 

sequence indicating where wrinkle events have occurred. Similar to the eyebrow 

raise/lower event, the wrinkle event will be integrated with other events from 

other facial regions in section 4.5 to achieve a compact representation of the facial 

movement. 
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Note that we were unable to arrange for automatically selecting an appropriate 

threshold          for detecting a wrinkle event. Therefore the threshold was 

chosen during our video training process in which cross-validation was used to 

choose the best threshold. This will be discussed in detail in section 5.2. 

 

 

Figure 25. Wrinkle detection. (a) A sequence of wrinkle ROI taken from a video. 

(b) The corresponding Gabor responses. (c) Entropy curve of the frames in (b). (d) 

Entropy curve filtered by a median filter. (e) Binary sequence indicating where 

the wrinkle event occurs by thresholding the entropy curve in (d). (f) Two wrinkle 

events are detected in a video of 41 seconds. The first event (circled in red) was 

blown up in (e). 
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4.4.4. Detecting Mouth Motion  

Amongst all the facial parts, the mouth is the most deformable one and has 

attracted considerable research interest. Research on automatically detecting the 

motion of the mouth can be categorized into three levels, depending on the degree 

of fineness. At the coarsest level, the mouth position is used for facilitating face 

detection task. When several face candidates are detected in an image, the mouth 

is located to verify which face candidate is a real face [162]. At the middle level, 

the mouth is classified into a few discrete states: open or closed [163, 164], lip 

corner pulled up or down [116], smile or not [165, 166]. At the finest level, the 

mouth is accurately tracked and characterized for visual speech recognition [167-

169]. 

In our case, mouth is used for detecting happiness and sadness. This problem has 

been addressed in classical facial expression analysis. The process usually 

involves detecting features (local, global, or both) and then training a facial 

expression classifier [165]. Due to the variations in head pose and utterances, 

traditional methods involving training a classifier on static images will not 

perform very well. For example, the authors of [165] have argued that to develop 

a smile detector for practical application requires an enormous number of training 

samples with enough variations in head pose and illumination.  

Instead we base our detector on a simple model of the expression behavior.  A 

smile is indicated by the mouth corners pulling obliquely upwards (AU12), while 

sadness involves corners pulling obliquely downwards (AU15). As shown in 

Figure 26, a smile (AU12) is associated with an increase in the mouth angle  , 

whereas for sadness (AU15) it is the opposite. For both AU12 and AU15, there is 

an increase in the width of the mouth. Therefore, we measure the change of angle 

  as well as the width   simultaneously to determine AU12/AU15.  
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Figure 26. Change of mouth angle and width due to mouth movement. (a) AU12 

is associated with an increase in both angle and width. (b) AU15 is associated 

with an increase in width and a decrease in angle.  

 

Our algorithm for detecting the mouth motion involves two steps: mouth 

segmentation and mouth motion detection. 

In the first step, the mouth is segmented from the mouth ROI by thresholding the 

“pseudo-hue” [170] of the image, and the feature points characterizing the mouth 

shape are located. The mouth segmentation algorithm is described as follows. 

Algorithm for mouth segmentation: 

1) The mouth ROI (Figure 27(a)) is smoothed by a Gaussian filter. (Figure 

27(b)) 

2) The so-called  “pseudo-hue” [170] of the mouth ROI is computed as 

 
          

 

   
 (8)  

shown in Figure 27(c). 

3) A binary image is obtained by thresholding the pseudo-hue image, shown 

in Figure 27(d). The threshold is chosen using the Otsu’s method [147]. 

4) Among all the mouth candidate blobs (Figure 27(e)), we select the largest 

one. (Figure 27(f)) 
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5) The convex hull of the selected blob is computed and taken as the final 

mouth blob. (Figure 27(g)) 

6) Locate the left and right extreme points of the mouth blob as the left and 

right mouth corners    and   .  (Figure 27(h)) 

7) Note that the nose base point has been located by PittPatt. Therefore a 

vertical line could be drawn from the nose base point to the mouth blob. 

The highest and lowest intersection points of this line and the mouth blob 

are denoted as    and   . They are taken as the upper and lower lip feature 

points. (Figure 27(h)) 

8) Compute the mouth angle   which is the sum of angle      
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑     

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑    

and      
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑     

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   , as shown in Figure 27(h). Width   is measured as 

the horizontal distance between    and   .  

 

Figure 27. Mouth segmentation process. (a) The original mouth ROI. (b) 

Gaussian-smoothed mouth ROI. (c) Pseudo-hue image. (d) Binary image after 

thresholding the pseudo-hue image in (c). (e) Mouth blob candidates labeled in 

different colors. (f) Selected mouth blob. (g) The convex hull of the mouth blob. 

(h) Segmented mouth with mouth feature points located and measurements 

computed. 

 

After segmenting the mouth and computing its angle   and width  , the mouth 

motion could be detected by tracking the change of   and  . A smile is taken as 

a happiness event         , and it is detected if both the angle and width 

increased significantly. Similarly, a sadness event          is detected if the 

angle decreased while the width increased.  

(a) (b) (c) (d) 

(e) (f) (g) 
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The algorithm for detecting the happiness events in a video is described as follows. 

Algorithm for detecting happiness events in a video: 

1) Compute the angle   and width   of the mouth for each frame in a video, 

resulting in an angle curve      characterizing the change of the mouth 

angle as time   varies (Figure 28(a)) and a width curve      representing 

the change of the width (Figure 28(b)). 

2) Since a happiness event involves an increase in width,      is thresholded 

into a binary sequence               (Figure 28(c)). The 1s in 

this sequence are the candidates for happiness events. 

3) Since a happiness event also involves an increase in angle,      is 

thresholded into a binary sequence              . Also, the 1s in 

this sequence are the candidates for happiness events.  

4) The happiness events could be determined by synthesizing the candidates 

in the previous two steps:                 . 

 

Figure 28. Happiness event detection in a video. (a) Mouth angle curve     . (b) 

Mouth width curve     . (c) Happiness event candidates     are detected where 

the width is larger than     . (d) Happiness event candidates     are detected 

where the angle is larger than     . (e) Happiness event          is determined 

by synthesizing     and    . 
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Similarly, the sadness event could be determined by                 , 

where               and              . 

Considering the individual differences in mouth shape and the influence of 

utterance and head pose on mouth scale and appearance, the thresholds 

                    cannot be chosen as absolute values. Therefore a 

baseline for each individual is estimated as the average value of the measurements 

over the whole video. We compute these thresholds as functions of a weighting 

factor  : 

 

{
 
 

 
 

                           

                           

         (    )       (    )

         (    )             

 (9)  

By choosing different  , the thresholds are changed accordingly, representing 

how much the angle and width deviate from the individual baseline. Denote 

        , and this threshold could not be determined universally or by 

algorithmic steps. Therefore, it is also selected based on experimentation with the 

training set, as will be discussed in section 5.2. 

Just like the other events obtained from other facial regions, the happiness and 

sadness events will be integrated with others and contribute together to the final 

decision. The integration strategy is presented in section 4.5. 

4.4.5. Feature Extraction Summary 

In summary, there are four kinds of features extracted from the face: eye blink, 

eyebrow motion, wrinkle occurrence, and mouth motion. Except for the eye blink 

feature, each of the other features is a function of a threshold 

   [             ]  where                          . The continuous 

interval [             ]  is discretized into    discrete values as the threshold 

candidates. Therefore, the threshold set   [                        ]  has 

                         possible candidate values. The best threshold set 
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      was determined by experimentation using the training data. This process 

will be elaborated in the next chapter. In the following section, the integration 

strategy of all the detected events is presented. 

4.5. Feature Integration 

4.5.1. Primary and Secondary Features 

As stated in Chapter 3, our database consists of 324 video clips. The database is 

denoted as                in which     4. Each video clip    is further 

decomposed into nine sequences of specific regions on the face,    

                9 . For each region     , one or two binary feature vectors 

(events) are computed using the methods discussed in previous sections in this 

chapter. In total, 12 feature vectors have been computed from the nine facial 

regions. Each feature corresponds to a facial Action Unit. Since the 12 feature 

vectors are computed directly from the facial regions and each involves only one 

region, we refer to them as primary features. The primary feature set of video clip 

   is denoted as                       . If the number of frames in clip    is 

  , each primary feature vector      is of dimension      . 

The 12 primary features and their corresponding facial regions, Action Units and 

feature vectors are listed in Table 13. 

Table 13. Primary features for video clip    

Action 

Unit 
AU45 AU45 AU1/2 AU1/2 AU4 AU4 

Event 
right eye 

blinking 

left eye 

blinking 

right 

eyebrow 

raising 

left eyebrow 

raising 

right 

eyebrow 

lowering 

left eyebrow 

lowering 

Facial 

Region 
             3         3      

Feature 

Vector 
             3              6 

 

Action 

Unit 
AU12 AU15 AU4 AU2 AU1 AU2 
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Event 

mouth 

corners 

moving up 

mouth corners 

moving down 

wrinkle in 

glabella area 

wrinkle in 

right 

forehead 

wrinkle in 

mid-forehead 

wrinkle in 

left forehead 

Facial 

Region 
   6    6                   9 

Feature 

Vector 
             9                   

 

Considering the fact that some Action Units involve more than one facial region 

and multiple Action Units are likely to occur simultaneously, secondary features 

are also computed. For example, the left eyebrow raise involves both upward 

motion in the left eyebrow region (   3 ) and appearance changes in the left 

forehead region (     ). Therefore a secondary feature indicating the congruence 

of these two events can be generated by computing the logical conjunction of    3 

and      . In total, nine secondary features are computed, resulting in a secondary 

feature set                    9 , as shown in Table 14. 

Table 14. Secondary features for video clip    

Action Unit AU45 AU1/2 AU4 AU1+2 AU1+2 

Event eyes blink 
eyebrows 

raising 

eyebrows 

lowering 

right eyebrow 

raising + 

wrinkle in right 

forehead 

left eyebrow 

raising + 

wrinkle in left 

forehead 

Facial Region     +        3+        3+        3+         +   9 

Feature 

Vector 

    

           

    

    3       

   3

         6 

    

    3       

    

            

 

Action Unit AU1+4 AU1+4 AU4 AU4 

Event 
left eyebrow raising + 

wrinkle in mid-forehead 

right eyebrow 

raising + wrinkle 

in mid-forehead 

right eyebrow 

lowering + wrinkle 

in glabella area 

left eyebrow 

lowering + wrinkle 

in glabella area 

Facial Region    3+         +        3+         +     

Feature 

Vector 
   6     3     9              9         3          9            
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After concatenating the 12 primary features and 9 secondary features, video clip 

   will be described by a feature matrix denoted by: 

    [                                 9] (10)  

which has a dimension of      . In this matrix, each column defines a feature 

vector for a specific event as time progresses and each row is a      feature 

vector for a single video frame. 

4.5.2. Feature Temporal Volumes 

In order to create a compact representation for each frame, its temporal context,  

including the preceding and succeeding frames, should also be taken into 

consideration. As noted at the end of the previous section, each frame is 

represented by a      binary feature vector. Considering a context of   

consecutive frames centered at frame  , a Feature Temporal Volume (denoted as 

      ) can be obtained by summing up the   feature vectors (Figure 29). 

 

Figure 29. Construction of a feature temporal volume        

Therefore, video clip    can be represented by a “bag of FTVs” (BOF). Each FTV 

in the bag is a      vector, and there are    FTVs in the bag, where    

      .  

In the next chapter, we will explain how the FTVs are used to train the classifier 

as well as how a prediction is made through a voting process. 

  

𝑇 

[             ]     

[             ]     

[             ]     

⋮ 

[             ]     

𝐹𝑇𝑉𝛼 𝑡 
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Chapter 5. Methodology 

As stated in Chapter 3, our database consists of   video clips, forming a pool of 

clips               . Furthermore, each video clip    is represented by a 

“bag of FTVs” (BOF)                         
  using the feature analysis 

methods presented in Chapter 4. Figure 30 is a demonstration of the global 

structure of the database in terms of BOFs.  

 

Figure 30. Global database structure. Our database is a pool of video clips (left). 

Each video clip is described by a BOF (right). 

 

This chapter will focus on the decision-making step which relates the BOFs to the 

intrinsic nature of a video clip, that is, whether it contains deception or not. 

To determine whether a suspect is deceptive or honest is a binary classification 

problem. A binary classifier can be constructed through a supervised learning 

process. In this process, the data are divided into two parts, one for training the 

classifier and the other for testing. During training, the classifier is learnt based 

upon labeled training samples, while the testing session predicts the class labels of 

the unseen data. As discussed in the previous chapter, there are three 

undetermined feature thresholds                   and       . Since the features 

of the video clips depend on these thresholds, it is necessary to select the best 

values of the thresholds which maximize the classifier performance through a 

cross-validation [171] process using the training data.  
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As presented in Chapter 3, the guilty suspects in our training database are liars. 

Therefore their video clips are labeled as positive samples with a label of 1. 

Similarly, the clips of innocent suspects are labeled by 0. To discriminate them, 

Random Forests [172] have been adopted as the binary classifier. 

In this chapter, the theory of the Random Forests is briefly reviewed in section 5.1. 

Then the experimental procedure and the details of the training and testing 

processes are elaborated in section 5.2.  

5.1. Random Forests 

In this thesis, the binary classifier used for discriminating guilty and innocent 

suspects is the Random Forest [172]. A Random Forest (RF) is an ensemble 

algorithm designed for bagging decision trees. Due to its computational efficiency 

and simplicity of implementation, it has been used for classification, regression 

and clustering. The advantage of using an RF is that the variance is known to be 

reduced when bagging all decision trees and the generalization error will always 

converge, avoiding the occurrence of overfitting [172]. In this section, the 

methodology for constructing and using an RF for prediction is briefly reviewed. 

5.1.1. Introduction to the RF Structure 

A Random Forest is an ensemble of trees         
 
, as shown in Figure 31. Each 

tree in the forest consists of three kinds of nodes: root node (black circle in Figure 

31), internal node (red circle in Figure 31) and leaf node (green circle in Figure 

31). The root node and each internal node are associated with a nodal rule   in the 

form of an inequality. For an instance, given   features      
 , the inequality 

usually involves comparing the      feature    to a value  , that is,     . For 

example, in Figure 31, the root node has a nodal rule of        which is 

equivalent to the question “Is the value of the second feature (  ) of the instance 

no greater than 0.5?” Different answers lead to different paths to the next node. 

Any path from the root to the leaf represents a classification rule, and the class 

label at the leaf node is the classification result. 
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The construction of a tree involves designing the tree structure and creating the 

nodal rules. To predict the class of a new instance using a tree involves finding a 

path from the root to the leaf following the nodal rules. The class label at the leaf 

node is the predicted label of the instance. Detailed algorithms regarding 

construction and prediction will be presented in the next two sections. 

 

Figure 31. A sample Random Forest. The Random Forest is an ensemble of trees. 

Each tree has internal nodes (in red) and leaf nodes (in green). In      , sample 

nodal rules at the internal nodes are presented.    represents the      feature of 

an instance. 

 

5.1.2. Algorithms for Constructing an RF 

Constructing an RF involves growing   trees using a training dataset  . A 

bootstrap replicate    for constructing       is created by randomly selecting   

samples with replacement from  . Then       is grown from the root node and 

recursively split into two sub-nodes. At each node, the best splitting rule    is 

chosen as the one that maximizes the “goodness-of-split” function        . The 

“goodness-of-split” function reflects the decrease of the “impurity” [173] of the 

data at the leaf nodes when a split is performed.         has different forms 

based on different splitting criteria, and the Gini criterion [173] is used in this 

thesis.           

The algorithm for constructing an RF is described as follows. The detailed 

pseudo-code can be found in Appendix II. 
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Algorithm of constructing a Random Forest: 

1) For every            , do the following:  

(a) Randomly select dataset    of size   from   with replacement. 

(b) Grow       using    by conducting the following steps recursively, 

until the number of instances at each leaf node of the tree is smaller than 

    . 

(i) Randomly select   features              without replacement 

from the   features. 

 (ii) Pick the best splitting rule    which maximizes        . 

(iii) Partition    according to rule    into two subsets, and create a 

new node for each of them. 

2) The ensemble of trees         
  is the constructed Random Forest. 

 

5.1.3. Algorithm for Using an RF for Prediction 

To predict the class of a new instance  , all the trees in the RF are independently 

applied to predict its class. As stated in section 5.1.1, the prediction process of 

each tree involves finding a path from the root to the leaf following the nodal 

rules. Then the class label           at the leaf node is taken as the prediction by 

     . Finally, the class that has the most votes from all of the trees is taken as the 

final prediction from the RF. The algorithm is described as follows. 

Algorithm for using the Random Forest to predict the class of a new instance  : 

1) For every            , predict the class of  using      . Denote the 

resultant prediction as          . 

2) The predicted class           is the majority class of             
 . 

5.2. Experimental Training Procedure 

In this section, the experimental procedure for training the RF and using it for 

prediction is elaborated. Also, the strategy of choosing the best thresholds through 

cross-validation is also presented. 
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Suppose there are   video clips in total in our database (Figure 32(a)). The   

video clips are randomly partitioned into two sets: a training set of        clips 

and a test set of       clips, where        
  

 
 and       

 

 
 (Figure 32(b)). The 

training set is used for training the RF classifier and the test set is used for testing 

the performance of the RF.  

 

Figure 32. The general experimental procedure. (a) The whole dataset. (b) The 

whole dataset is partitioned into a training set and a test set. (c) K-fold cross-

validation is performed on the training set to choose the best values for the three 

thresholds which maximizes the performance of the classifier. 

 

As mentioned in the previous chapter, there are three undetermined thresholds for 

the eyebrow motion, wrinkle detection and mouth motion features. This gives a 

threshold set   [                        ], which has                   

       possible candidate values. Therefore the training set is firstly used for 

selecting the best threshold set       which maximizes the classifier performance 

using K-fold cross-validation (Figure 32(c)). After the best threshold set       has 

been chosen, its corresponding features are considered as the finalized features. 

Then the whole training set with the finalized features is used for training the final 

classifier. The cross-validation process is discussed in section 5.2.1. 

5.2.1. K-fold Cross-validation 

K-fold cross-validation is applied to the training set to pick the best thresholds. 

During the cross-validation, training set is both used for training and testing (self-

validating). Specifically, for each threshold set  , the training set of        
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samples are randomly partitioned into   subsets. The RF classifier is trained   

times, each time leaving out one subset for testing and using the complementary 

    subsets for training. Then the test results of the   experiments are averaged. 

After all the                          possible threshold sets have been 

cross-validated, the threshold set       which maximizes the performance of the 

classifier
12

 is chosen.  

However, the choice of   is still an open problem. Larger   reduces the 

estimation bias by using more training data, but results in a smaller test set which 

may not give precise test results. Generally, a   as small as 3 will be adequate for 

large datasets, while small datasets often require a larger  . Also, the 

computational time is often taken into consideration when choosing   because it 

increases linearly as   grows [174]. In this thesis we chose     as a 

compromise.  

After the best threshold set       has been chosen, the features of the training data 

are frozen as indicated in Chapter 4. This provides us with the final RF classifier
13

. 

Finally the RF is tested on the       video clips, which have not been used during 

training. The test results will be reported in the next chapter. 

5.2.2. Details of Training and Testing  

The previous section has introduced the experimental procedure in a general 

manner. In this section we will discuss the training and testing processes in detail.  

When we refer to training, this implies performing training to learn a classifier. It 

involves both the training within the cross-validation and the training for learning 

the final classifier after the best thresholds have been chosen. When we say 

testing here, we mean every time the classifier is used to predict the label of a new 

sample. It involves both the validation step within the cross-validation and the 

testing after the final classifier has been trained. 

                                                 
12 The criterion for evaluating the classifier performance will be presented in section 5.2.3. 
13 Referred to as a forest. 
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The details of training and testing are discussed below, respectively. 

Training: Suppose there are   video clips that are used for training. Each clip    

has a class label (either 1 or 0) and an associated bag of FTVs (BOF) 

                        
 . Each FTV is assigned the same class label as the 

clip and treated independently from the others. All of these FTVs are assembled 

to form a single training set, called the Big BOF, which has ∑    
 
    FTV 

samples. For each case, the FTVs are assumed to be independently and identically 

distributed in the Big BOF, regardless of their originating video clips. Then each 

tree of the RF is trained by randomly sampling a subset of the FTVs inside the 

Big BOF. This process is demonstrated in Figure 33. 

 

Figure 33. Details of the training process. The training set has   video clips, each 

one associated with a BOF (left). Nevertheless, the FTVs are treated 

independently from each other as training samples and form a Big BOF (middle). 

Then the RF is constructed using the Big BOF by randomly sampling the FTVs 

and constructing the decision trees (right). 

 

Testing: The goal of the testing process is to predict the class labels of the test 

video clips. Each clip    has    FTVs, and all the FTVs are supplied to the RF. 

Each FTV has a class label predicted by the RF, forming a bag of candidate class 

labels for this clip.  

If the number of positive labels (1s) among the candidate labels is    , the label of 

the clip is voted by the    candidate labels according to a voting rule: 
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          {

            

                          
 (11)  

where   [   ] indicates the percentage of FTVs who have voted for 1. The 

parameter   is added to the threshold set   and chosen experimentally during the 

cross-validation process, by searching for a combination of   and   that could 

give the best validation result. The testing process is demonstrated in Figure 34. 

 

Figure 34. Details of the testing process. A test video clip can be represented by a 

BOF (left). Each FTV belonging to this clip is input into the RF (“the forest”), 

thereby producing a predicted class label. These labels are placed into a bag of 

candidate labels (middle). All candidate labels then vote for the final label of the 

clip (right). 

 

5.2.3. Criterion for Evaluating the Classifier Performance 

In the previous sections, we have mentioned that the best thresholds are chosen 

when the best performance of the classifier is achieved during the cross-validation 

process. We have adopted two criteria for defining the best performance. These 

two are applied independently and the results of both will be discussed in the next 

chapter. 

Among the       video clips in the test set,    of them are clips containing 

deception (label is 1). For clips without deception, the number is    (label is 0). 

After the prediction and voting step, each clip has a predicted label. As shown in 
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Figure 35,     of the    clips are correctly predicted as 1 (true positive) while     

of them are falsely predicted as 0 (false negative). Similarly,     is the number of 

clips correctly predicted as 0 (true negative) and     is for falsely classifying 0 as 

1 (false positive).  

 

Figure 35. The test samples are categorized into true positive, false positive, true 

negative and false negative based on their actual and predicted labels. The number 

of samples belonging to each category is shown in the figure. 

 

Thus the two criteria can be defined as follows. 

The first criterion is the accuracy of spotting liar or truth-teller. It is defined as: 

 
         

        

     
 (12)  

This measure indicates the percentage of clips whose class labels are correctly 

predicted. When using this criterion, the best threshold set,      , is chosen as the 

one that gives the highest accuracy. 

The second criterion is the area under the receiver operating characteristic (ROC) 

curve, termed AUC. The ROC curve captures the effect on the true positive rate 

(TPR) and the false positive rate (FPR) when the parameters vary. The TPR and 

FPR are computed as follows: 

     
   

  
     

   

  
 

(13)  
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A sample ROC curve is shown in Figure 36. The area of the shaded part under the 

ROC curve is computed as the AUC. Based on this criterion, the best classifier 

performance is achieved when the AUC value is the largest. 

In our case, the ROC curve is obtained by varying   from 0 to 1 when the 

thresholds are fixed. During the cross-validation process, an AUC value could be 

computed for each threshold set  , and       is chosen as whichever gives the 

largest AUC value. 

 

Figure 36. A sample ROC curve. The area of the shaded part is the AUC. 

The results produced by the two criteria are both reported in the next chapter. 

Both of them could be used in actual applications, based on different requirements 

of the system. The accuracy criterion emphasizes more the precision of spotting 

liars and truth-tellers, while the AUC criterion gives an overall evaluation of the 

system. The ROC curve permits the user to be aware of the tradeoff between 

detecting a liar and detecting a truth-teller.  

Specifically, if the risk of mis-detecting a liar is considered to be higher than that 

of mis-detecting a truth-teller, the user might need a higher TPR. In this case the 

ROC curve is a good reference to search for a balance between a high TPR and a 

tolerable FPR. 

The next chapter will discuss the test results based on the two criteria.   
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Chapter 6. Results and Discussion 

In this chapter, the experimental results are discussed. Specifically, in section 6.1, 

the main test results are discussed. As introduced in Chapter 3, our database has 

various challenges: uncontrolled illumination, various head poses and facial 

occlusion. Although the first two have been largely compensated for during the 

feature analysis process in Chapter 4, the last one remains an unsolved problem in 

our deception detection task. Therefore in section 6.2, the effect of different facial 

occlusions on the test result is investigated. Finally, in section 6.3 we discuss 

whether micro-expressions are reliable evidence for spotting liars as the TV series 

Lie to Me implies, as opposed to what are normally called just expressions. 

6.1. Main Results 

As mentioned in the previous chapter, there are two criteria for evaluating the 

performance of the classifier: accuracy and AUC. The test results based on both 

criteria will be discussed here. But before that, the sensitivity of the test results to 

the FTV size is discussed. Then the best results will be presented at the end of this 

section. 

In Chapter 4, we introduced the Feature Temporal Volumes (FTVs) as the 

elemental descriptor of a video clip. An FTV is computed from   frames, as 

shown in Figure 29. When computing an FTV, the temporal context around each 

frame is taken into consideration in order to achieve the most compact and 

superior representation of the facial movements. The temporal size   of an FTV 

implies the number of frames that should be considered as the duration of a 

“compact” expression.  

In the next two subsections, the effect of   on the test results is investigated based 

on the two criteria mentioned above. 
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6.1.1. Test Results Based on Accuracy  

As presented in Chapter 5, the accuracy of the test results reflects the percentage 

of video clips that are correctly classified into deceptive and honest categories. 

Besides the accuracy, we have also computed the true positive rate (TPR) and true 

negative rate (TNR). Since the liars are considered as positive samples, the TPR 

reflects the precision of spotting them whereas the TNR reflects the precision of 

spotting truth-tellers. 

Figure 37 shows the variations in accuracy as well as the TPR and the TNR as 

functions of  . (Detailed results are listed in the table in Appendix III) 

 

Figure 37. The change of accuracy, TPR and TNR as the FTV size varies. The 

results inside the dashed rectangle are the best results: accuracy=76.92%. 

 

Several conclusions could be drawn from this figure: 

1) The accuracy has a mean of 74.52% with a variance of 0.04%, implying 

that the FTV size does not significantly influence the test accuracy.  

2) The best accuracy 76.92% is achieved when    4   . Note that the 

frame rate of our videos is 30 frames per second. Therefore the ideal   is 

approximately half a second, which implies a reasonable duration of a 
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compact facial expression. We can infer that most of the discriminating 

facial cues to deception are within half a second. 

3) In general, the TNR is higher than the TPR, which means our system does 

a better job of spotting truth-tellers than catching liars. This phenomenon 

might be attributed to the process for assigning ground truth labels to each 

video clip. In Chapter 5, when a suspect has multiple video clips, every 

clip was assigned to the same label as the suspect. In other words, every 

clip of a guilty suspect was labeled as 1 while that of an innocent suspect 

was labeled as 0. Indeed, if a suspect is honest, all of his clips are 

definitely deception-free. But this is not true for deceptive suspects. If one 

suspect is deceptive, we could only say that at least one clip belonging to 

him is deceptive. It is very likely that some of his clips might not contain 

deception. Therefore there might be some deception-free samples, which 

are mislabeled as deception samples, resulting in a lower TPR. 

It might seem that we could determine the frame-by-frame facial action codes of 

all the video clips to obtain the ground truth of when a deceptive expression has 

occurred. However, this would be contrary to the model we have used for 

classifying the facial expressions, are based on time intervals (using the FTVs) . 

6.1.2. Test Results Based on AUC  

The test AUC value is also a function of  , as shown in Figure 38. 

 

Figure 38. The change of AUC as the FTV size varies. The AUC values in the 

dashed rectangle are the best AUC values: 0.7562. 
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Similar conclusions as in section 6.1.1 could be drawn from the figure: 

1) The mean AUC value is 0.73, and the variance is         . The 

conclusion is similar to the first conclusion in the previous section; the 

AUC value is not very sensitive to the change of  .  

2) The best AUC=0.7562 is obtained when        , which is also 

approximately half a second. This reconfirms that 
 

 
  is a reasonable 

duration of a compact facial expression. 

6.1.3. Discussion of the Best Results 

From section 6.1.1 we can see that the best accuracy is 76.92%. This outperforms 

all of the results obtained by human observers, as discussed in section 2.2. The 

only exception that has been stated in the literature was obtained by mental 

professionals after a comprehensive training workshop [18]. This study reported 

an accuracy of 80.9%. Nonetheless, we note that since our test result was obtained 

under very challenging conditions, it is reasonable to believe that our system 

would perform better in an actual interrogation situation in a more controlled 

environmental setting.  

However, it is feasible for a user of the system reported in this thesis to customize 

the tradeoff between the precision of spotting a truth-teller and that of catching a 

liar by using the ROC curve in section 6.1.2. In section 6.1.2, the highest AUC 

value is 0.7562, and the corresponding ROC curve is shown in Figure 39. The 

ROC curve could be used for searching for a balance between the TPR and the 

FPR. For example, if the user of the system demands an 80% liar-spotting 

precision, the risk of wrongly classifying an honest suspect into a deceptive one is 

also as high as 60%. Therefore, if the user wants to achieve a desirable deception 

detection performance, he can integrate the result of our system with that of other 

lie detectors. 
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Figure 39. ROC curve when highest AUC=0.7562 is achieved in the previous 

section. Note that the points at (0,0) and (1,1) on the curve were not obtained from 

the experiment. They were added in order to complete the ROC and compute the 

AUC value.  

 

6.2. Effect of Facial Occlusions on Deception Detection Results 

As discussed in Chapter 3, most of the existing facial expression databases have 

excluded facial occlusions during the data collection process, in order to provide a 

relatively easy scenario for automated expression analysis. Therefore in the 

current literature, there is only a limited amount of research that has discussed the 

effect of facial occlusions on facial expression analysis. In [175], the researchers 

have investigated on how the facial expression classification was affected by 

partial occlusions on different facial regions. In [176], the authors have shown 

that their facial expression recognition methods were robust to facial occlusions. 

Figure 3 has shown that facial occlusion is very common in our database. In fact, 

facial occlusion should be considered an inevitable factor in an actual 

interrogation scenario. The interviewee might feel uncomfortable or irritated 

when instructed to remove any facial occlusions, leading to unnatural facial 

expressions. Therefore, the effect of facial occlusions on the deception detection 

task will be examined in this section. 
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The major facial occlusions in our database are: glasses, mustache and facial hair. 

In this thesis, facial hair is considered to be the fringe covering the forehead. 

Examples with respect to these three facial occlusions can be found in Figure 40. 

To investigate the effect of facial occlusions on our algorithms, we have designed 

five scenarios shown in Table 15. These are all based on the same experimental 

procedure described in Chapter 4, but used different data in the database.  

 

Figure 40. Sample frames that have facial occlusions in our database. (a) Glasses 

(b) Mustache (c) Facial hair  

 

Table 15. Five facial occlusion scenarios 

 Scenario  Experimental data in the scenario 

1 All data Whole database including all kinds of facial occlusions 

2 No glasses Database after removing suspects that wear glasses 

3 No mustache Database after removing suspects that have a mustache 

4 No facial hair Database after removing suspects that have facial hair 

5 No occlusion 

Database after removing suspects that have at least one of the 

three following facial occlusions: glasses, mustache, facial 

hair 

 

The test results of the five scenarios are shown in Table 16. 

(a) 

(b) 

(c) 
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Table 16. Test results of five facial occlusion scenarios 

 Scenario Accuracy TPR  TNR 

1 All data 76.92% 72.41% 80.56% 

2 No glasses 75.44% 82.14% 68.97% 

3 No mustache 73.08% 76.67% 68.18% 

4 No facial hair 87.04% 93.55% 78.26% 

5 No occlusion 75.00% 78.26% 70.59% 

 

Several conclusions can be drawn from this table: 

1) From this table we observe that removing data with facial hair occlusion 

has increased the test accuracy from 76.92% to 87.04%, indicating that 

facial hair is the major obstacle to detecting deception using the proposed 

method. Also, the increase in accuracy largely attributed to the increase in 

the TPR. 

In our database, facial hair can occlude the forehead and sometimes even 

the eyebrows, which could affect as many as six facial regions: 

 3             and  9 , as shown in Figure 41. Based on the feature 

integration strategy discussed in section 4.5.1, these six facial regions are 

unfortunately related to 16 out of the 21 features. Moreover, the feature 

extraction methods applied to eyebrow motion and wrinkle detection, 

respectively rely on the assumption that the eyebrows and forehead are 

visible. Since liars are more likely to express surprise as discussed in 

Chapter 4, they will exhibit more appearance changes on the forehead due 

to the raise of the eyebrows. Therefore it is very likely that the facial hair 

occlusion has impeded the detection of clues to deception across the 

forehead of a liar, resulting in a lower TPR.  
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Figure 41. The influence of facial hair on facial regions. (a) A sample frame of a 

woman who has hair covering her forehead and eyebrows. (b) The six facial 

regions that are influenced by the hair occlusion. 

 

2) The test results when excluding glasses or mustaches is very close to that 

of all the data, implying that eye blink and mouth motion detection 

(introduced in section 4.4.1) are not sensitive to facial occlusions. 

In summary, facial hair occlusion needs to be considered when our system is 

applied to actual interrogation scenarios. Since it might be inappropriate to ask all 

the interviewees to expose their foreheads, other techniques with respect to 

solving this problem should be investigated in the future. 

6.3. Micro-expression vs. Macro-expression as a Facial Clue to 

Deception 

Micro-expressions, a rapid and involuntary facial expression which lasts only 

1/25th to 1/5th of a second [95], has been introduced in section 4.1. Macro-

expressions usually last longer than micro-expressions. In the TV series Lie to Me, 

micro-expressions play an important role in revealing deception during an 

interrogation. However, Porter has claimed that most of the observed so-called 

emotional leakages last too long to be classified as micro-expressions [52].   

 
 
  

 
𝑅3 𝑅  

𝑅  

𝑅  

𝑅  

𝑅9 

(a) (b) 
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The existing computer vision literature has rarely reported on research on micro-

expression detection or classification. Both [85] and [177] have addressed the 

problem of discriminating micro-expressions from emotionless samples. In [85], 

micro-expressions were further classified into positive (happiness) and negative 

(disgust, fear, surprise and sadness) ones. In [86], both macro- and micro-

expressions in video sequences were detected. However, to the best knowledge of 

the author, no computer vision research has been conducted to study the 

difference between macro- and micro-expressions as indicators of deception. 

Therefore, this section is focused on investigating whether macro- or micro-

expressions can be relied upon for a deception detection task. 

In section 4.2, we describe different facial expressions as events that are detected 

in nine facial regions. Each event has a duration, which implies how long a facial 

expression lasts. If the duration of an event is shorter than 1/5th of a second, we 

classify it as a micro-expression; otherwise it is a macro-expression.  

In this section, three scenarios are considered based on the facial expressions that 

are included in training and testing, shown in Table 17. Specifically, in the micro 

scenario, only the detected facial events which are shorter than 
 

 
  are used for 

computing the FTVs. Then the classifier is trained and tested on the resulting 

FTVs. Similarly, in the macro scenario, only the facial events which are longer 

than 
 

 
  are retained for computing the FTVs. In the all expressions scenario, all 

the events have been retained. The test results for the three scenarios are shown in 

Table 18. 

Table 17. Three facial expression scenarios 

 Scenario  Facial expressions included in the scenario 

1 All expressions Both macro and micro-expressions are included 

2 Macro Only macro-expressions are included 

3 Micro Only micro-expressions are included 
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Table 18. Test results of three facial expression scenarios 

 Scenario  Accuracy TPR TNR 

1 All expressions 76.92% 68.97% 83.33% 

2 Macro 73.85% 62.07% 83.33% 

3 Micro 56.92% 51.72% 61.11% 

 

We observe the followings from Table 18: 

1) Neither using macro-expressions nor micro-expressions alone 

outperformed the results when both of them were used. This implies that 

the combination of the two improves the ability to discriminate liars and 

truth-tellers. 

2) The accuracy based on macro-expressions alone is very close to that of all 

expressions, and the TNR is the same as that of all expressions. However, 

the test accuracies, TPR and TNR are all very low when using micro-

expressions alone. This implies that macro-expressions are more reliable 

than micro-expressions when used as cues of deception. This conclusion is 

consistent with Porter’s observation that most of the emotional leakages 

that are indicators of deception last longer than a micro-expression [52]. 

In summary, accurate deception detection tasks require both micro- and macro-

expressions, and the detection accuracy of using micro-expressions alone is only 

slightly better than chance. This conclusion is consistent with Porter’s argument 

in [52], but contradicts the popular belief presented by the TV series Lie to Me. 

Nonetheless, the essential idea of Lie to Me and the psychological basis of this 

thesis are the same: deception can be detected through involuntary facial 

movements. Therefore, does Lie to Me lie to you? To some degree it does not, as 

it has advocated for using facial clues for catching liars. But does it lie about 

micro-expressions alone being adequate for accomplishing the lie detection task? 

Our experiments imply that it does!  
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Chapter 7. Conclusion 

As a first attempt in the literature at proving the validity of facial clues to 

deception detection in unconstrained environments, the results in this thesis are 

very promising. We achieved a 76.92% accuracy for spotting liars and truth-

tellers in high-stakes situations. Considering that the database we used is rather 

challenging, it is possible that better results might be obtained from data collected 

in an actual criminal interrogation scenario, where the environmental setting is 

much more controlled. Thus, we have successfully proved the fundamental theory 

behind Lie to Me, that is, facial clues are reliable deception indicators in high-

stakes situations.  

Additionally, we note that the 76.92% accuracy was obtained by detecting both 

“normal” facial expressions plus micro-expressions. With regard to solely the 

latter, our results have also challenged the popular belief expounded in the TV 

show Lie to Me, that micro-expressions alone are sufficient for lie detection. Our 

results have shown that the accuracy of using micro-expressions alone for 

deception detection is only slightly better than chance. The deceit detection 

system performs best when both micro- and macro-expressions are used.  

The investigation of the effect of facial occlusions on the system performance has 

shown that facial hair is the major obstacle. However, is it possible to ask all 

suspects to expose their entire forehead? This problem has to be further studied 

and paid more attention to in the future study. Also, the head pose compensation 

method used in the thesis is preliminary. Precise face registration technique might 

be beneficial to more accurate facial behavioral recognition. Furthermore, the size 

of our database is relatively small. In order to build a more convincing system, 

more similar criminal cases should be added to our database.  

Finally, as suggested by many psychologists [51, 92, 178], there are some pitfalls 

when designing a deception detection system. First, only the external facial 

expressions can be detected; we can never know the actual internal emotion that 

triggers the expression. Second, the fact that concealed emotions are not always 
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associated with the presence of deception highlights the necessity of taking the 

context into consideration. Third, the absence of emotional leakage does not mean 

the suspect is innocent; further questioning needs to be conducted. Finally, Porter 

also suggested integrating verbal, non-verbal, and facial cues to achieve higher 

accuracy [3]. These pitfalls and suggestions should always be taken into 

consideration when designing a deception detection system in the future. 
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Appendix I. List of Forensic Cases in Our Database 

On Porter’s list 

Name of 

Suspect 

Name of Missing 

Person 

Relationship to Missing 

Person 

Guilt/ 

Innocence 

Audrey 

Hingston 

Eric Hingston spouse/partner guilty 

Darren 

Vickers 

Jamie Lavis acquaintence guilty 

Derek 

Fleming 

Linda Flemming father guilty 

Fadi Nasri Nisha Patel-Nasri spouse/partner guilty 

Gordon 

Wardell 

Carol Wardell spouse/partner guilty 

Graham 

Alderton 

Three Children father guilty 

Ian Huntley Holly Wells & Jessica 

Chapman 

acquaintence guilty 

Jean Daddow Terence Daddow spouse/partner guilty 

John Tanner Rachel McLean spouse/partner guilty 

Karen 

Matthews 

Shannon Matthews mother guilty 

Maxene Carr Holly Wells & Jessica 

Chapman 

acquaintence guilty 

Mike Gifford-

Hull 

Kirsi Gifford-Hull spouse/partner guilty 

Miles Evans Zoe Evans step-father guilty 

Mitchell Quy Lindsay Quy spouse/partner guilty 

Mukhtiar 

Panghali  

Mangit Panghali spouse/partner guilty 

Nick Kay Rhonda Kay spouse/partner guilty 

Paul Dyson Joanne Nelson spouse/partner guilty 

Penny 

Boudreau 

Karissa Boudreau mother guilty 

Sion Jenkins Billy Joe father guilty 

Susan Smith Michael & Alex Smith mother guilty 

Vincent 

Shilton 

Lisa Blunt spouse/partner guilty 

Agnes Gaylor Diana Garbott mother innocent 

Alan Symes Aisling Symes father innocent 

Angela Symes Aisling Symes mother innocent 

Ed Smart Elizabeth Smart father innocent 
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Harry Clinch Sharon Malone father innocent 

Jean Nelson Joanne Nelson mother innocent 

Joanne 

Coombs 

Natasha Coombs mother innocent 

Katen Patel Nisha Patel-Nasri brother innocent 

Keith Lunnon Charlene Lunnon father innocent 

Paula Evans Zoe Evans mother innocent 

Rodney 

Stafford 

Victoria Stafford father innocent 

Sara Payne Sarah Payne mother innocent 

 

Collected by the authors 

Name of 

Pleader 

Name of Missing 

Person 

Relationship to 

Missing Person 

Guilt/ 

Innocence 

Biurny 

Peguero  
William McCaffrey accuser guilty 

Carlos Perez-

Olivo 
Peggy Perez-Olivo husband guilty 

Dave Hawk Debbie Hawk ex-husband guilty 

Diane Downs Stephen Daniel mother guilty 

Jerry Sandusky 52 children acquaintence guilty 

Mark Hacking Lori Hacking husband guilty 

Matt Baker Kari Baker husband guilty 

Melanie 

McGuire 
Bill McGuire wife guilty 

Phil Spector  Lana Clarkson husband guilty 

Robert Smith  Keisha Abrahams stepfather guilty 

Sam Parker Theresa Parker husband guilty 

Scott Peterson Laci Peterson husband guilty 

Tracie 

Andrews 
Lee Harvey wife guilty 

Travis Forbes Kenia Monge stranger guilty 

William Walsh Leah Walsh husband guilty 

Aaron Young Zahra Baker 
stepmother's ex-

husband 
innocent 

Adam Baker Zahra Baker father innocent 

Amanat Khan Aisha Khan father innocent 

Avtar Kolar 
Avtar Kolar and 

Carole Kolar 
father innocent 
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Bob Dowler Milly Dowler father innocent 

Damon Van 

Dam 
Danielle Van Dam father innocent 

David Yeates  Joanna Yeates father innocent 

Deborah Irwin  Lisa Irwin mother innocent 

Diena 

Thompson 
Somer Thompson mother innocent 

Erin Runnion Samantha Runnion mother innocent 

Gary Coombs Natasha Coombs father innocent 

George 

Anthony 
Caylee Anthony grandfather innocent 

Gerry McCann Madeleine McCann father innocent 

Jeremy Irwin Lisa Irwin father innocent 

Kate McCann Madeleine McCann mother innocent 

Kirk Turner Jennifer Turner husband innocent 

Michelle 

Kirwan 

Avtar Kolar and 

Carole Kolar 
mother innocent 

Sally Dowler Milly Dowler mother innocent 

Sarah Smith  Elizabeth Brown daughter innocent 

Teresa Scott  Carmen Thomas mother innocent 

Tonya Craft children teacher Innocent 

 

 

Appendix II. Pseudo-code of Constructing a Random 

Forest 

Below is the pseudo-code of constructing an RF containing   decision trees using 

dataset  , and each instance in   has   features. Denote the number of classes by 

 . 

CONSTRUCT_RANDOM_FOREST( ,  ) 

FOR     TO   DO 

Randomly select   samples from   with replacement, forming the 

training data    for constructing       

Create root node    containing data    
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SPLIT_NODE     

END 

 

SPLIT_NODE    

IF all data at node   belong to the same class THEN 

Return 

ELSE 

Randomly select           features without replacement, forming 

candidate features for splitting the node                

Compute the best splitting rule     BEST_SPLIT      

Split dataset   at node   into two subsets    and    according to splitting 

rule    

Creating two child nodes    and    for    and   , respectively 

SPLIT_NODE     

SPLIT_NODE     

END 

 

BEST_SPLIT      

Initialize the “goodness-of-split” function     

Compute data portions at node  :               , where 

   
                                             

                           
 

FOR     TO   DO 
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 Denote feature       
    

      
   

 FOR     TO   DO 

  Create a split rule   
       

   

Partition data   at node   into two subsets    and    according to 

  
  

Compute data portions in each subset:  

   
                       

                      
,         

   (                ), 

     
                                         

                       
,  

   (                ), 

     
                                         

                       
 

Compute impurity function: 

      ∑             
 

   
 

      ∑             
 

   
 

Compute “goodness-of-split” of splitting rule   
 : 

 (  
   )                       

IF  (  
   )    THEN 

    (  
   )         

  

END 
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END 

END 

Return     

  

 

Appendix III. Test Accuracy, TPR and TNR as FTV Size 

Changes 

The highest accuracy is in bold. 

FTV size test accuracy test TPR test TNR 

5 75.38% 65.52% 83.33% 

6 75.38% 65.52% 83.33% 

7 73.85% 65.52% 80.56% 

8 75.38% 65.52% 83.33% 

9 73.85% 65.52% 80.56% 

10 76.92% 68.97% 83.33% 

11 70.77% 58.62% 80.56% 

12 73.85% 65.52% 80.56% 

13 70.77% 65.52% 75.00% 

14 76.92% 72.41% 80.56% 

15 76.92% 68.97% 83.33% 

16 76.92% 72.41% 80.56% 
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17 76.92% 65.52% 86.11% 

18 73.85% 72.41% 75.00% 

19 72.31% 72.41% 72.22% 

20 72.31% 62.07% 80.56% 

 


