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Abstract

This thesis investigates the properties of a hierarchical ring architecture, which is
composed of several unidirectional rings arranged to form a hierarchy. The proposed
hierarchical ring topology exhibits several characteristics that make it well suited for on-
chip use as a system-on-chip (SoC) interconnect. First, unidirectional rings reduce routing
complexity thereby lowering buffer, area and energy requirements. Second, the simplicity
of the routing logic results in low latencies and high clock rates. Finally, the hierarchical
ring structure can be partitioned into multiple clock domains enabling the clock rates of
individual rings to be tuned to save power while meeting design constraints. The hier-
archical ring architecture has been evaluated using high-level behavioral models as well
as a low-level register transfer-level (RTL) implementation. Furthermore, the hierarchical
rings are combined with the popular two-dimensional mesh architecture to form several
composite architectures in order to improve network performance. The mesh architec-
ture exhibits increased latencies, hop-counts, and congestion with increasing network
size. To combat these scalability issues, the hierarchical rings are used in the composite
architectures to relieve congestion in the center of the mesh and to reduce hop-counts
and latencies for long-distance communication, thereby achieving an overall improve-
ment in performance. Simulation results show that the composite architectures decrease
the latencies and hop-counts incurred by global traffic, thereby validating the claim that
the use of hierarchical rings for global routing can in fact increase the scalability of the
normal mesh network used for network-on-chip (NoC) implementations. Finally, worm-
hole routed mesh networks can suffer from blocking due to contention when multiple
packets are routed along the same path. A novel task-assignment strategy that accounts
for blocking is presented. The strategy assigns tasks to nodes in a way that tries to min-
imize contention, reduce latencies, and more evenly distribute traffic. Results show that
the methodology is effective at reducing blocking costs and latencies when compared to
minimizing communication distances only.
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Abrégé

Cette thèse étudie les propriétés d’une interconnexion hiérarchique composée d’ann-
eaux unidirectionnels. La topologie d’anneaux hiérarchique possède plusieurs caractéris-
tiques souhaitables pour être utilisée comme interconnexion pour réseau-sur-puce (NoC).
En premier lieu, la structure unidirectionnelle des anneaux sert à réduire la complexité de
routage, ce qui implique une diminution de l’importance des mémoires tampon requises
et économise l’énergie consommée par l’interconnexion. En second lieu, les faibles temps
de latences et d’horloge système élevé résultent de la simplicité logique de chaque rou-
teur. Finalement, la structure de l’interconnexion facilite une partition où chaque anneau
appartient à son propre domaine contrôlé par une horloge individuelle, ce qui rend possi-
ble l’application de stratégies dynamiques permettant l’économie d’énergie. L’architecture
proposée a été évaluée grâce à des simulations de modèles de hauts niveaux et par une
implémentation logique résistance-transistor (RTL). De plus, les anneaux hiérarchiques
sont combinés avec l’architecture de maille (« mesh ») bidimensionnelle pour former
plusieurs architectures hybrides afin d’améliorer la performance du réseau. La topologie
de maille démontre l’augmentation de latences, du nombre de sauts, et de la conges-
tion avec l’agrandissement du réseau. Cependant, les architectures hybrides utilisent les
anneaux hiérarchiques pour réduire la congestion au centre du réseau et diminuer le
nombre de sauts et les temps de latences associés avec les communications à longue
distance. Il en résulte donc une amélioration globale de la performance du système. Les
résultats des simulations démontrent que les architectures hybrides servent à diminuer
les temps de latences et le nombre de sauts encourus par les paquets qui traversent de
longues distances. Ceci démontre que l’addition des anneaux hiérarchiques au réseau
de maille améliore son extensibilité. Finalement, les réseaux maillés à commutation de
paquets peuvent souffrir d’une baisse de performance causée par la contention lorsque
plusieurs paquets doivent passer par le même port d’accès d’un routeur. Une nouvelle
stratégie d’allocation de tâches aide à minimiser la contention afin de réduire les latences
et de mieux repartir le trafic sur le réseau. Les résultats démontrent que la méthode
parvient à réduire les latences causées par la contention lorsque celle-ci est comparée à
une stratégie d’allocation qui minimise uniquement les distances de communication.
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Chapter 1

Introduction

In 1965, a trend was perceived in semiconductor technology whereby the number

of transistors that could fit in an integrated circuit (IC) was increasing exponen-

tially — doubling every two years [1]. This observation, dubbed Moore’s Law,

would herald the technological revolution that started decades ago and has con-

tinued through to the present day. The increasing chip densities, made possible

by improving fabrication technologies, have exposed the limited scalability of tra-

ditional design methodologies such that they will become unsuitable in the near

future. It is therefore necessary to transition to more scalable design method-

ologies that will enable the implementation of large systems using current and

future fabrication technologies.

An embedded system is a specialized computer system that is designed to per-

form a limited number of dedicated functions. The hardware components of an

embedded system are often optimized for cost, performance, power consumption

and reliability. These specialized systems have become widespread and can be

found in consumer electronics such as mobile phones and televisions, as well as

in military, medical, and aerospace applications. Early embedded systems were

comprised of several individual components integrated onto a circuit board. As

fabrication technologies progressed according to Moore’s law, increasing chip

densities enabled more components to be crammed [1] onto a single chip. Instead

of requiring several chips to implement a given function, the same functional-
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ity could now be achieved by combining several components onto a single chip,

hence the era of the system-on-chip (SoC) has emerged.

The SoC design methodology offers the potential to integrate processing, stor-

age, and other functionality into a single package in order to achieve improve-

ments in performance, reductions in energy consumption, and savings in overall

system cost. Unlike conventional application specific integrated circuit (ASIC) de-

sign, there is a greater reliance on the reuse of predefined intellectual property

(IP) cores, which reduces time-to-market and time-to-profit [2, 3]. Early SoC de-

signs were comprised of a handful of components, thus interconnecting them

was a relatively simple task. Since designers were already familiar with board

level bus-style interconnects, the same concepts were adapted for on-chip use.

The continuation of Moore’s law eventually enabled chip designers to move from

relatively small systems consisting of a few specialized IP cores, to integrating

multiple processors to form single-chip parallel computing systems, or chip multi-

-processor (CMP). The advantages of SoC multiprocessors include the provision of

throughput that is equivalent to a single large processor, but with reduced energy

consumption from using lower voltages and clock frequencies for the individual

SoC processors [2]. Another advantage of integrating multiple processors is im-

provement in manufacturing yield because a defect on one processor need not

render an entire chip useless. Commercially available multi-core SoCs include

the Sony Emotion Engine [4], the IBM Cell processor [5, 6], the AMD Turion X2

and the Intel Core2 Duo — all examples of early SoC systems consisting of a

relatively small number of cores.

When only a few cores are integrated on a chip, the system performance is

limited by the processing elements (PEs). Therefore, designers concentrate their

efforts on optimizing the PEs, trying to squeeze every drop of performance out

of them. As more components are integrated, the interconnect begins to affect

system performance, until the bottleneck becomes the interconnect and not the

processing elements. With increasing clock speeds and chip densities, the on-chip

interconnect will become a limiting factor for performance and energy consump-

tion [7, 8, 9]. In fact, it can account for a significant fraction of the total system

energy; some sources [9] report figures of over 50%. SoC designs with multiple

processors have often relied on simpler bus-based architectures or other ad-hoc
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interconnection schemes that do not scale well [10]. If the interconnect cannot

meet the communication requirements of the system, the PEs will be underuti-

lized as they sit idle waiting for data. Therefore, the focus must eventually shift

to a scalable communication centric design approach.

The limits of bus-based architectures are already starting to be realized, and

current trends in technology scaling are expected to continue according to Moore’s

law for the foreseeable future [2]. It is therefore crucial to explore alternatives to

bus-based approaches for SoC interconnects because they will be required in the

near future. The natural evolution of the on-chip interconnect is to move from

a shared-medium approach to a network based architecture — or network-on-chip

(NoC) [10], which borrows concepts from the domain of computer networking.

1.1 Problem Description

The complexity of current and future SoC designs can be compared to that of

an aircraft carrier [11]. In the past, the system complexity was dominated by

individual elements where a single component such as a processor represented

a significant design effort. For large systems consisting of tens or hundreds of

components, the complexity lies in providing an efficient communication mechanism.

The components that were previously thought of as complex have now become

sub-components of much larger systems, and are simply viewed as blocks to

be instantiated as needed. The following analogy between the complexity of a

building and a city can be made: where the blueprints of a building are complex,

the building itself is still just a small part of the larger city to which it belongs.

A shared medium is one of the simplest interconnection structures, where the

communication medium, called a bus, is shared by all communication devices.

Only one component, called a master, can be granted access to the network at a

time. Once granted access, the master can transfer data to one or more slaves.

Access to the bus is usually centrally controlled by an arbiter. As the number of

components connected to the bus grows, so do contention and arbitration times.

Therefore, the bandwidth available to each component is inversely proportional to

the number of connected components. In addition to the problem of contention,
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the capacitance of the bus is the sum of the input capacitances of each connected

component, so the current required to drive the bus increases with the number of

components. It is therefore unavoidable that the power dissipation and scalability

restrictions of the shared medium approach will require a shift to alternative

methods for on-chip communication.

An alternative to using a shared medium is to construct an on-chip com-

munication network — a network-on-chip (NoC). In a NoC based approach, a

network is constructed by connecting routers together to form a topology using

point-to-point links, which require less energy to drive, and less time for signals

to propagate from sender to receiver. In such a networked architecture, com-

munication between components can be initiated in parallel, thus avoiding the

bottleneck of the shared medium approach. A NoC architecture is also more

scalable because adding more nodes increases the total available bandwidth with-

out adding complexity or increasing contention. A significant advantage over the

shared medium approach is that no centralized control and complex arbitration

schemes are necessary.

The NoC design methodology was proposed relatively recently [10, 12, 13],

and is still a developing research area with many open problems1. At first, NoC

research focused on trying to port ideas from the fields of networking and parallel

computing to the realm of VLSI. It became apparent that this approach was infea-

sible because NoCs and traditional networks exist in two different environments

with conflicting requirements. SoCs differ from traditional networks because of

local proximity and because they exhibit much less non-determinism [11]. For

example, the transmission control protocol (TCP) suite was developed to provide

reliable communication over the internet, a world-wide distributed network, over

which the sender has no control. The goal of TCP is to provide reliable commu-

nication over an unreliable network; as such, the protocol itself is quite complex.

On the other hand, an on-chip network exists in a much more stable environment,

and the major requirement is for fast, low latency communication2.

Early papers [10, 13] about NoCs proposed implementing protocol stacks sim-

1In fact, the first International Symposium on Networks-on-Chip (NOCS) was recently held
in Princeton, New Jersey, in May 2007.

2Reliable communication is also a requirement, but less of an issue as compared to the internet.
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ilar to the 7-layer OSI reference model [14]. These approaches would yield net-

work implementations that would require excessive resources (e.g., area, energy)

and be too slow for on-chip communication. To provide fast communication,

the approach must be to simplify the network implementation as much as possi-

ble [11, 15] — the simpler the network, the fewer resources it requires. Minimiz-

ing the resource requirements of the SoC interconnect network is of paramount

importance because the network is a means to an end; the real work is being

done by the processing elements. As such, a simpler network implementation

allows for more resources to be allocated to the processing elements.

The NoC paradigm requires the collaboration of researchers from a range of

specialties because there are issues at several levels of abstraction [11]:

• Software Layer: Future SoCs are expected to be highly programmable due

to the inclusion of general purpose processors. Software written for these

systems will have to be highly parallelized and optimized to take advantage

of specialized hardware. The full potential of the on-chip network will

only be realized if software is properly written to take advantage of the

underlying hardware.

• Network and Transport Layers: Below the software layer, the network and

transport layer are responsible for routing data from source to destination,

as well as decomposing and reassembling large messages into packets. The

implementation choices made here greatly affect the performance and re-

source requirements of the network.

• Physical Layer: As feature sizes continue to decrease, the wires connecting

components are starting to become unreliable. It is therefore necessary to

consider communication links as lossy. Former design styles utilized strict

design rules in order to ensure deterministic circuit behavior. In the future,

circuits will be allowed to produce errors, which will be contained, detected,

and possibly corrected (e.g. using error correcting codes (ECCs)). This will

be made possible in NoCs because of the layered design approach that will

consider the underlying communication medium as unreliable.

In addition to the aforementioned issues, current electronic design automation (EDA)
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software enables engineers to automate certain aspects of the design flow, but

implementing the system interconnect is still a task left largely to the designer.

To realize the potential benefits offered by the NoC paradigm, it is important to

transition from ad-hoc design methodologies towards automated design flows

that will facilitate the instantiation of IP cores and the automatic generation of

the system interconnect. A further discussion of open research areas for NoC

will be presented in Section 2.1.

1.2 Topology Selection, Modeling, and

Implementation

The topology plays a major role in the performance and resource requirements of

the network. Currently, only a limited number of topologies have been studied.

The development of a library of topologies is needed so that the most suitable

candidate can be selected to meet a given set of constraints. The first topology

proposed for NoC was a two-dimensional mesh, which consists of tiles placed in

a grid. The mesh topology is often used for on-chip implementation because of

its planar structure and scalability; the network can be easily enlarged by adding

rows and columns. However, the problem with the mesh topology is that it is

not suitable for all situations, and the vast NoC design space requires that other

topologies be investigated. The topic of this thesis is primarily concerned with

investigating the suitability of adapting a hierarchical ring interconnect for on-

chip implementation. In addition, several ring-enhanced topologies that attempt

to deal with the limitations of the mesh architecture are proposed.

The development of SoC multiprocessors critically relies on system model-

ing that can quickly and inexpensively verify the behavior of the hardware and

software. The software model should facilitate the architectural exploration in

a timely fashion, allowing the designers to fine-tune the design at early stages

of the project and avoid expensive modifications at later design stages. As SoC

complexity increases, it will become more difficult to capture their functional-

ity with deterministic models. Standardized test benches for NoC simulations

are critically lacking at this time; the only alternative is to use synthetic (and
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stochastic) models to generate traffic on the network. The network topologies

explored in this thesis have been studied by using original simulation models.

Traffic generation was achieved through the use of stochastic techniques and a

task-assignment application written especially for the purpose of generating task

graphs for the network simulators.

Many researchers work with abstract high-level models because of the large

effort required to construct low-level implementations. To build a full SoC, in

addition to implementing the network routers, PEs must be connected to the

network, and the actual application code that will run on the platform must be

written. Furthermore, writing a scalable parallel software for NoC requires a

substantial time investment, while the development of the enabling technologies

(e.g., compilers, APIs) is still an open research problem. Also, the resource re-

quirements of these large systems are such that prototyping them on even the

largest FPGAs available today is not possible3. Due to the aforementioned dif-

ficulties, only a limited number of NoCs have been fully realized. As a part of

the evaluation of the hierarchical ring interconnect, a RTL level model has been

implemented and compared to other implementations in the literature.

1.3 Statement of Original Contribution

The work presented in this thesis deals primarily with investigating issues relating

to network topologies for NoCs. The contributions of this thesis are threefold:

1. To show through simulation and RTL implementation that the hierarchi-

cal ring topology is suitable for on-chip implementation due to its energy

efficiency, planar layout, simplicity of construction, and speed of commu-

nication. Furthermore, the structure of the hierarchical rings lends itself to

the application of dynamic energy optimization that can significantly reduce

the energy required by the interconnect.

2. Several hybrid network topologies for large scale NoCs that combine hi-

erarchical rings with the mesh network are presented. The new topolo-

3Limited prototypes are possible, but large systems consisting of many processing elements
will not fit on current FPGAs.
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gies leverage the advantages of each case against their limitations, yielding

an alternative to the popular mesh topology. The effectiveness of the hy-

brid topologies at reducing average hop counts and latencies is confirmed

through the use of behavioral models.

3. The mesh network suffers from congestion at the center, which gets worse

as the network size increases. The reason for the congestion is that the

most common task-assignment strategy is to minimize communication dis-

tances between nodes. A new approach that takes contention into account

when performing task assignment is presented. This blocking aware task as-

signment algorithm shows that latencies can be reduced while more evenly

distributing traffic on the network.

1.4 Self-Citations

The following publications have contributed to the material presented in this

thesis:

• Modeling and evaluation of an energy-efficient hierarchical ring interconnect [16]:

An energy model was used to explore the effects of tuning design param-

eters on energy consumption and application performance. Furthermore,

dynamic clock throttling was efficiently used to reduce the energy consump-

tion of the interconnect without adversely affecting performance.

• A RTL analysis of a hierarchical ring interconnect for network-on-chip multi-

processors [17]: The hierarchical ring interconnect that was previously mod-

elled [16] in SystemC was implemented in VHDL. Synthesis results of the

implementation were shown to be competitive or superior (area and speed

wise) to other NoC implementations reported in the literature.

• Hybrid ring/mesh architecture [18]: The delays incurred by long-distance com-

munications grows linearly with network size for the mesh topology. A

hybrid network whereby a large mesh is split into smaller sub-meshes that
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are connected by a hierarchical ring can help reduce the time needed to tra-

verse long distance in the network. The concept can be compared to adding

a highway for long-distance traffic, so that the delays associated with global

traffic can be reduced.

• Augmented ring/mesh architecture [19]: The hybrid [18] topology can suffer

from congestion for certain traffic patterns. A mesh network that is left intact

is augmented by a hierarchical ring interconnect used for global routing [19].

In the augmented architecture, multiple paths exist between any two nodes,

which enable the introduction of adaptive routing strategies to improve

performance.

• Blocking-aware task assignment [20]: The problem of task-assignment in a

NoC environment is non-trivial due to the many variables that affect per-

formance. Mesh networks often suffer from congestion in the center similar

to the way large cities experience traffic in central downtown areas. This

problem can be exacerbated by task assignments that try to minimize the

distance between communicating nodes without taking into consideration

the network architecture. In an effort to spread traffic more evenly over a

wormhole-routed mesh network, a new task assignment methodology that

aims to reduce congestion was developed [20].

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents an

overview of the network-on-chip paradigm, followed by a brief introduction to

networking basics and topologies. Chapters 3 and 4 present a description of the

different architectures, and Chapters 5 and 6 deal with their simulation using

high-level behavioral models. Following the high-level simulation results, Chap-

ter 7 presents an investigation into the energy consumption of the hierarchical ring

interconnect as well as the effect of the application of dynamic frequency scaling.

Chapter 8 presents simulation and synthesis results of the RTL implementation of
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the hierarchical rings. Finally, Chapter 9 summarizes the experimental findings

and outlines possible future research directions.

The organization can be loosely partitioned into two parts. First, chapters

3–6 deal with high-level modeling of the presented architectures using a custom

simulation platform. Second, 7 and 8 investigate the physical properties of the

interconnect using energy models and RTL synthesis.

In addition, some preliminary work on future research directions is presented

in two appendices. First, a comparison of simulation and synthesis results of an

improved hierarchical ring architecture, called a hyper ring, is presented in Ap-

pendix A. Second, wormhole routed versions of both the hierarchical and hyper

ring architectures that support virtual channels are presented in Appendix B.

10



Chapter 2

Background and Related Work

This chapter will first present an overview of the emerging paradigm for on-chip

communication, network-on-chip (NoC) [10, 12, 13, 21], including the reasons for

which they are projected to become the preferred method for intra-chip commu-

nication. Second, since the topic of this thesis relates to on-chip interconnection

networks for system-on-chip (SoC) applications, an introduction to basic net-

working concepts and terminology will be presented. Lastly, related works will

be discussed.

2.1 Network-on-Chip

The complexity of designing efficient and scalable on-chip communication in-

terconnects will continue to grow as increasing numbers of cores are integrated

onto a single chip. A major challenge in chip design will be to provide a scal-

able, functionally correct, and a reliable communication mechanism that will

ensure correct system behavior [10]. Trends in technology scaling [2] will render

synchronizing components using a global clock infeasible [22, 23, 24]. Thus, a

new synchronization method that does not depend on a single timing reference

will need to be employed for future designs, namely the globally asynchronous,

locally synchronous (GALS) [25] design methodology. In a system employing the

GALS design methodology, it is impossible to exercise control of global traffic be-

11
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cause of the lack of global synchronization [10, 13, 24]. Therefore, a distributed

communication mechanism that enables components to initiate data transfers au-

tonomously without the need for global synchronization is needed — enter the

network-on-chip (NoC) [10, 12, 13] paradigm for on-chip interconnects.

2.1.1 Paradigm Shift

The rapid advances in microelectronics fabrication technology are enabling in-

creasingly complex components to be integrated onto a single chip. Originally,

small scale integration (SSI) and large scale integration (LSI) technologies enabled

chips with gate counts numbering in the tens of thousands [26]. As feature sizes

continued to get smaller, very large scale integration (VLSI)1 produced chips with

gate counts numbering in the hundreds of thousands [26]. While VLSI tech-

nology enabled the design and manufacture of increasingly complex chips, the

number of cores that would fit on a single chip was still relatively small, such that

complex systems were constructed by connecting several VLSI chips together on

a circuit board. Approximately 5 to 7 years ago, what would have previously re-

quired multiple VLSI chips could be now be implemented on a single chip, hence

the term system-on-a-chip (SoC) [27]. Early SoC architectures consisted of multiple

cores interconnected in an ad-hoc point-to-point manner, which eventually gave

way to bus-based architectures [28, 29, 30, 31].

The integration of an increasing number of components has made the limita-

tions of bus-based architectures apparent [9, 32, 33, 34]. Increasing the number

of cores connected to a bus results in an increase in parasitic capacitance, propa-

gations delays, power consumption and arbitration times. Furthermore, as all the

cores must share the bandwidth of the bus, the fraction of bandwidth available

to a single core decreases as the total number of connected cores increases. This

is due to the fact that only one device can send data over the bus at any one

time. Any other device that wishes to send at the same time must wait. For sys-

tems consisting of more than 20 cores [35], a bus interconnect quickly becomes

the system bottleneck, to the point where performance degrades such that it is

1The term ultra large scale integration (ULSI) is sometimes used to describe VLSI circuits with
more than 1 million gates [26].

12
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Figure 2.1: Three interconnect styles. (a) Point-to-point connectivity. (b) Bus-
based interconnect. (c) A simple network interconnection.

no longer a feasible solution to the communication problem. In addition to con-

sidering issues governing performance, energy consumption is also an important

factor that limits the scalability of buses. Since the capacitance increases with bus

size, so does the energy required to drive the bus. Furthermore, many embedded

systems are powered by batteries, and excessive energy drainage can reduce the

effective operating time. Even without such limitations, heat generation can pre-

vent proper operation of a device. Hence, the reduction of power consumption

is of critical importance in SoC implementations when tens or hundreds of cores

are integrated onto a single chip. It is therefore necessary to consider alternatives

to bus-based approaches for future systems consisting of many interconnected

cores.

The key problem with point-to-point and bus-based approaches are their lim-

ited scalability and flexibility. When it became apparent that new methods of

on-chip communication would be needed for the future, the research community

started borrowing ideas from the world of networking and parallel processing,

which have been dealing with interconnecting a large number of components for

decades. The realization that networking concepts could be adapted for on-chip

use lead to the introduction of the network-on-chip (NoC) [10, 12, 13] for large scale

SoC implementations. Examples of 5 cores connected in a point-to-point manner,

by a bus, and using an on-chip network are shown in Figure 2.1.

2.1.2 Impact of Technology Scaling

In the early days of electronics, computation was expensive and communication

cheap [35]. That is to say that the processing elements on a chip had the largest
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Figure 2.2: Delay for Metal 1 and Global Wiring versus Feature Size [2].

impact on performance, while the method of communication was treated as a

secondary concern. Shrinking feature sizes have reduced the wire lengths at the

local level, but the length of global wires remains constant [22, 35]. Furthermore,

as clock speeds continue to increase, the time spent on global communication rel-

ative to the time spent on local processing has increased [35]. Figure 2.2 shows

the projected delay for global wires, local wires and logic gates for future technol-

ogy nodes, where it can be seen that delays due to wiring dominate gate delays.

The implications of Figure 2.2 to chip designers are profound; the performance

of the interconnect will greatly impact system performances [7, 8, 9, 23, 36]. The

method of communication cannot be treated as an afterthought, it must be con-

sidered early in the design process and treated as a primary design criteria.

As discussed in Section 2.1.1, energy consumption in SoCs is a major concern.

Whereas technology scaling has benefited computational cores and memories,

the energy consumption of global communication has not [22, 23]. In fact, the

energy consumption of the interconnect is projected to take up a large proportion

of the total energy consumption of the system [9, 34], and the energy required

by global wires will actually increase [22, 23]. Hence, it is necessary to design the

interconnect to be energy efficient, so that as much of the total energy budget

as possible can be allocated to computational resources. As the number of cores

that must be interconnected on a chip increases to dozens, and even hundreds,

designing efficient interconnects will become of paramount importance.

14
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Figure 2.3: Example of a 3× 3 NoC where the cores have been arranged in a
two-dimensional grid.

2.1.3 Basic Network-on-Chip

The most popular NoC architecture is the two-dimensional mesh network. A

mesh consisting of 9 tiles arranged in a 3 × 3 grid is shown in Figure 2.3. Each

tile consists of an intellectual property (IP) core, a network interface (NI)2, and a

switch. The switches are interconnected by physical links. The network interface

component decouples the core from the network. The switch implements the

routing strategy needed to transmit data from one core to another. A common

simplification is to combine all three components and to refer to them simply as

a node (or tile) on the NoC.

Generally, NoC implementations are either homogeneous or heterogeneous. A

homogeneous NoC is when each node consists of the same kind of processing

element (PE), as in Figure 2.3. If each PE is a processor capable of performing

general purpose computations, the system is commonly referred to as a chip

multi-processor (CMP) [37, 38, 39]. Conversely, a heterogeneous NoC is usually

application–specific, consisting of disparate PEs that can provide a wide range of

functionality. It is important to realize that the traffic generated by both types of

systems have different characteristics, which need to be properly accounted for

when selecting a NoC design. For example, homogeneous CMP systems usually

exhibit regular traffic patterns [35]. Conversely, heterogeneous systems exhibit

diverse traffic patterns because some nodes on the network are highly solicited,

2Sometimes referred to as a network adapter (NA).
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making them system bottlenecks. Examples of these so-called hot-modules [40]

are memory controllers, floating point units, on-chip caches, or special purpose

processors.

2.1.4 Layered Approach

In the past, the bus was the interconnect most often used for systems consisting

of a small number of cores. Even though the bus has all the limitations dis-

cussed previously in Section 2.1.1, it does have the advantage of being a well

known architecture that has a proven track record. The AMBA [41] bus standard

was developed in order to provide a higher level of abstraction so that system

designers need not worry about low-level implementation details of the bus. Ad-

vantages to using a unified bus standard such as AMBA include [41]:

• Design portability and reusability: Components that conform to the standard

can be easily reused in new designs.

• Design productivity: Reusing a proven communication medium decreases

time-to-market.

• Reliability: Implementation and testing of a custom communication medium

is costly and difficult.

• Software portability: Communication primitives remain constant across all

AMBA based systems, so embedded software can easily be ported to new

platforms.

Similarly, the NoC research community has adopted a layered approach akin to the

7–layer OSI reference model [14, 42], which is used in macronetworks. A layered

approach provides different levels of abstraction, from the low level physical im-

plementation of wires, to higher level communication primitives such as streams

and packets [43]. In general, NoC researchers view the system as having four

layers of abstraction [35]:

1. System: The system level corresponds to the highest levels of the OSI model,

and encompasses applications and the network architecture. At this level,
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network implementation details are hidden and high-level communication

primitives are used.

2. Network Interface: The NI decouples the core from the network and handles

end-to-end flow control. The NI is responsible for transparently handling

messages (or transactions) originating from the cores. The NI breaks these

messages into packets that will be handled by the network.

3. Network: The network consists of switches interconnected by links, that

together form the topology. At this level, node-to-node flow control is im-

plemented.

4. Link: The link level deals with the physical connections between switches.

At this level, packets are broken into flits (flow control units). A flit can be

one or several words long, and can take several clock cycles to send over the

link. A flit can be further decomposed into phits (physical units). A phit is

smallest unit of data that can be transmitted in one clock cycle over a link.

Typically, a phit and flit are equivalent unless serialized links are used.

For NoC application, the layers described above are more closely related than in

macro-networks since the entire network will be integrated onto a single chip.

Unlike macro-networks, the network architecture is fixed and known, meaning

that the design of the protocol stack need not be as general as the OSI layers.

2.1.5 Open Problems

NoC is currently considered to be an emerging technology, and as such, there are

still several problems that need to be addressed before it is ready for mainstream

use. The biggest challenge associated with the NoC paradigm is bridging the

gap between numerous domains such as networking, graph theory, optimization

algorithms, real-time systems, synthesis, design automation, and others, such

that a unified design methodology can be developed and successfully deployed.

As discussed in Section 2.1.4, NoC design involves working at varying levels of

abstraction, from the system level, down to the physical level. The design of a
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NoC involves, but is not limited to, selecting a topology, routing strategy, and

application mapping [44].

Early NoC designs focused on using the mesh topology because of its sim-

plicity and planarity. The problem is that the application should not be made to

conform to the interconnect. Rather, the interconnect should be tailored to match

the needs of application. Instead of selecting a fixed topology beforehand, cus-

tom topologies can be generated to match the bandwidth and latency demands

of the application [45, 46, 47, 48, 49]. Topology selection is a difficult problem

to solve because the communication requirements of different cores can vary

widely. For example, designing the network to meet the requirements of highly

communicating cores can result in underutilization of portions of the network.

Conversely, designing to meet the average bandwidth requirements can result in

severe bottlenecks that can negatively impact performance [44]. Although syn-

thesizing custom topologies can improve performance, there can be significant

implementation issues due to the irregularity of the custom topology [44].

Proper topology selection requires a method by which to compare differ-

ent candidate solutions. Classic benchmarks for multiprocessor systems are

application–oriented and cannot be used directly for communication centric ar-

chitectures [50]. Furthermore, in contrast to multiprocessor systems that are ho-

mogeneous, most NoC systems are projected to be heterogeneous, which means

that a suite of benchmarks designed strictly for NoCs is needed [50, 51]. Ideally,

real application traffic would be used to evaluate the performance of an intercon-

nect. The problem is that running a real application on a NoC requires that all of

the components, hardware and software, be fully implemented and integrated.

This is often not feasible for individual researchers concentrating on some specific

aspect of NoC design. In addition, real application traces are often considered

trade secrets due to the high cost associated with producing them, consequently,

companies are unwilling to donate their traces to the public domain [50]. The

NoC research community has thus been mostly limited to using pseudo-random

graphs [52], or stochastic traffic generation [50, 51], making it difficult for other

researchers to reproduce the results.

The routing algorithm also plays an important role in the performance and

cost of the interconnect. More complicated routing algorithms can improve per-
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formance, but at the cost of area and power. Hence, designers need to also

evaluate the trade-offs associated with algorithm selection [50]. Closely related

to routing is the switching technique used by the network. Higher performance

can be achieved by using virtual channels and complicated arbitration schemes,

but again, there is a trade-off between complexity and performance versus cost.

The switching technique can also be constrained by the application requirements.

For example, an application under quality of service (QoS) constraints [53] may re-

quire circuit switching be used even though wormhole routing has better average

latency characteristics.

Thus far, relatively low-level implementation details have been discussed.

Once the hardware has been implemented, the application mapping and core

placement still needs to be addressed. Much work regarding task scheduling

has been done in the field of real-time systems (RTS), however, much of the work

assumes deterministic communication patterns. Recall from previous discussion

that shared-medium (bus) interconnects have been commonly used in embedded

systems. A bus has a more predictable behavior than a network. Where the

communication latencies of a bus can be statically calculated, the communication

delays over a network are more dynamic and depend on numerous variables.

Therefore, the scheduling problem remains an important problem for NoC de-

sign [44].

Related to application mapping, IP core placement is also an issue that requires

addressing. To optimally use the available network resources, the IP placement

should be performed in conjunction with the application mapping. This is a com-

plex problem because each can affect the other, and hence some form of feedback

should be used such that the combined process can be performed iteratively [44].

2.1.6 NoC Modeling

The widespread adoption of high-level description languages (HDLs) such as VHDL

and Verilog have enabled a large increase in productivity. The HDLs allowed de-

signers to specify complex functionality at the behavioral and register transfer level

(RTL) instead of manually having to perform schematic and hand-layout as was

previously the norm [54]. The emergence of the SoC and NoC paradigms have
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exposed the limitation of HDLs for modeling large and complex systems. The

problem with HDLs is that designers are forced to deal with low-level details, and

sophisticated data abstraction capabilities such as those provided by high-level

programming languages are not available [54]. Additionally, creating test-bench

code for anything more than simple module level testing is time-consuming and

inefficient. Since system level test-bench code is likely to be more complex, and

must detect and report errors, the expressiveness and flexibility provided by

high-level languages such as C++ is better suited to the task. The SystemC [55]

modeling language is a C++ library and simulation kernel that enables hardware

constructs such that simulation models can be written in C++. SystemC supports

modeling at the system, behavioral, and RTL levels, which can be used simulta-

neously within the same design. It provides the ability to use any C++ library

to provide added functionality not available in HDLs for the purposes of rapid

prototyping, for example:

• Random number libraries [56] can be used to generate random traffic.

• Logging frameworks [57] can provide sophisticated debugging and trace

capabilities.

• Command line parser libraries enable input parameters to be easily added.

• Container classes such as the STL Vector can provide added flexibility

and ease of use, since managing dynamically created objects is easier than

having to deal with raw pointers.

The simulation times are just as important as the flexibility provided by the

modeling language. When HDLs were first introduced, hardware modules were

designed and implemented independently from the software. Currently, and in

the future, large scale SoCs will undoubtedly include processor cores and em-

bedded software, necessitating time consuming co-simulation of hardware and

software. A faster, more efficient method for simulating hardware and software

components in the same environment is needed [54]. For this reason, SystemC

has become popular in NoC research for modeling and simulating large and com-

plex systems. Figure 2.4a shows how the SystemC libraries and C++ compiler

20



2.1 Network-on-Chip

��������	
���
�����������	��
��
���	
�������	��
�����

��������

����������

�����
������
�����

��������
�������

���������
�����

���������

�����������
�������
�

����  ��
���!� �
 �"����

#�$�%
��

�����

(a)

���������	

��
�����

��������	

����
��
�����

����
����	�����	

�������
��������	�����	
�����

���������	�����	

��
	��


(b)

Figure 2.4: (a) SystemC simulation is performed by compiling the models and
testbenches into executable binaries. (b) SystemC can be used to describe
models at the system, behavioral and RTL levels of abstraction.

are used to create an executable specification that can be debugged using a stan-

dard debugger. A major advantage of SystemC that has spurred its widespread

adoption by industry and university researchers is the fact that the libraries are

open source, and no third party EDA software is needed for simulation — the user

can run the binary executable from the command line. Figure 2.4b shows how

SystemC can be used to model a system at different abstraction levels. When Sys-

temC was first introduced, it was mainly used to perform high-level modeling,

and synthesis was not possible. Recently, EDA tools that can synthesis a subset of

SystemC have emerged, but they are currently not as advanced as VHDL/Verilog

synthesis tools.
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Figure 2.5: System modeling graph [58].

2.1.7 Transaction-level Modeling

The transaction-level model (TLM) shown in Figure 2.4b has garnered much in-

terest because low level implementation details are omitted, and communication

between components is achieved through atomic transactions. Communicating

components are connected by channels, over which transactions can be initiated

by calling interface functions of the channel interface. This approach permits the

designer to experiment with different architectures by replacing the communica-

tion model with another. Note that this pluggable characteristic of TLM models is

only possible if each model respects a common interface.

The TLM level of abstraction shown in Figure 2.4b is depicted as a distinct

level, different from the functional and behavioral levels. In fact, the demarcation

between levels is blurred and TLM level models can themselves vary in abstrac-

tion level. In [58], the authors present a system modeling graph as shown in

Figure 2.5, which describes the different abstraction levels available for transac-

tion level models. The x-axis represents computation and the y-axis represents

communication. Each axis has three degrees of time accuracy [58]:

1. Untimed models represent only the functionality of the system without any

timing or architectural information. This is the highest level of abstraction

that can be used to quickly prototype systems.
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2. Approximate-timed models include some basic architectural and timing infor-

mation. Simulations are performed without the aid of RTL or instruction

set simulators (ISS).

3. Cycle-timed models contain implementation details that enable cycle-accurate

simulation using RTL/ISS simulators. These type of models can require a

large amount of time to simulate.

A completely untimed model corresponds to node A in Figure 2.5, termed a spec-

ification model [58]. Such models often pass data between processes using shared

variables, and so the architecture of the communication medium is completely

absent. This lack of communication specification limits the usefulness of specifi-

cation models for NoC modeling, which is primarily concerned with interconnect

details. Node F corresponds to a cycle-accurate model, called the implementation

model [58]. As the name suggests, the cycle-timed model requires low-level im-

plementation details to be implemented so that RTL and/or ISS simulations can

be performed. Since RTL level implementation takes the longest to simulate,

it is not appropriate for design space exploration of NoC interconnects either.

Furthermore, because a RTL model is a low-level implementation, many design

decisions must be made before simulation is even possible. For modeling NoC

interconnects, the accuracy of the computational cores is less important than that

of the communication medium. Therefore, nodes C and D are the most useful

for evaluating design trade-offs relating to the interconnect. The bus-arbitration

model [58] models the architecture of the interconnect, but data is passed using

message passing, where approximate timing information may be included. TLM

models are often implemented at the bus-arbitration level because the low-level

protocols used by the interconnect are not needed, and the system prototypes

can be quickly implemented and simulated. The bus-functional model contains

cycle-accurate communication, and represents a detailed implementation of the

communication mechanisms such as flow-control, buffer sizes, routing, etc. Note

that the models presented in [58] use buses as the communication medium be-

tween processing elements, but the concepts are equally applicable to modeling

on-chip networks.
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2.2 Networking Basics

The basic principles of interconnection networks are relatively simple [59], the

difficulty lies in tuning the many design parameters such that the final imple-

mentation meets the requirements of the target application. To meet performance

requirements, network designers need to select the proper topology, routing strat-

egy, and flow control:

• The topology relates to the physical structure of the network.

• The routing strategy is the method by which traffic is directed through the

network.

• Flow control provides a mechanism whereby access to shared resources is

controlled.

Each of the aforementioned design criteria have a large impact on the performance

and cost of the final implementation of the system, and so careful consideration

of each is warranted. Also, the criteria are not strictly independent of each other.

For example, the choice of topology can restrict the choice of available routing

strategies.

The remainder of this chapter will present the basic networking concepts

needed to understand the work presented in later chapters.

2.2.1 Network Terminology

Much of the terminology used to describe networks borrows from graph theory.

This section will introduce the basic notation and terminology used to describe

networks as presented in [59].

The topology of a network is described by a set of vertices, or nodes V con-

nected by a set of edges, or channels. The set of edges E, where an edge

ex,y = (x, y) ∈ E | x, y ∈ V , (2.1)

connects a source node x to a destination node y. A network topology can
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Figure 2.6: Unidirectional and bidirectional channels. (a) A unidirectional
channel. (b) Two unidirectional channels. (c) A bidirectional channel is equiv-
alent to two unidirectional channels.

therefore be represented by the graph

G = (V, E) . (2.2)

A communication channel ex,y, as shown in Figure 2.6a, is characterized by:

• The width we, is the number of bits or parallel signals that constitute the

channel.

• The frequency fe, is the rate at which bits are transported over the channel.

• The latency te, is the time required for a bit to travel from x to y.

The two unidirectional channels between nodes x and y, shown in Figure 2.6b,

are equivalent to the single bidirectional channel shown in Figure 2.6c. Unless

specified otherwise, an undirected link between two nodes denotes a bidirectional

channel.

The latency is a function of the channel length le, and can be described by

te = v · le , (2.3)

where v is the propagation velocity of the electrical signal over the wire. Lastly,

the bandwidth of a channel is described by

be = we · fe . (2.4)

Representing network topologies as graphs does not take into account physical

implementation issues3, but it does allow interesting properties to be studied such

as [60]:
3The complexity of a graph can give insight into the area and wiring requirement of a topol-

ogy.
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(a) (b)

Figure 2.7: Network topologies can be represented graphically using graphs.
(a) An example of an irregular topology. (b) A regular network that is also fully
connected.

• Node degree: The number of channels that connect a node to its neighbors.

• Diameter: The maximum distance between two nodes in the network.

• Regularity: A network is regular when all the nodes have the same node

degree.

• Symmetry: A network is symmetric when it looks alike from every node.

Figure 2.7a shows an example of an irregular network topology, while Figure 2.7b

shows an example of a regular as well as symmetric topology.

To evaluate the degree of a node, one has to count the number of incoming

and outgoing edges. The edge set Ex for a node x is given by

Ex = Ex ,in ∪ Ex ,out , (2.5)

where Ex,in is the input channel set and Ex,out is the output channel set. The

degree of the node x can then be expressed as the sum of the number of input

and output channels

dx = |Ex| = |Ex,in| + |Ex,out| . (2.6)

The node degree is an important metric for on-chip implementation as it affects

the planarity of the topology as well as the complexity of the switch implemen-

tation.
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Another important property of a network is its bisection bandwidth, which can

be described as the bandwidth of the links that must be cut in order to partition

the network into two equal parts having roughly the same number of nodes.

It is a metric that is often used to compare two network topologies such that

a topology with a greater bisection bandwidth will most likely perform better

under uniform traffic conditions. More formally, a cutset is the minimal set of

edges whose removal from a graph results in two disconnected graphs. If the

vertices belonging to a graph G are partitioned into two sets X and Y, then the

cutset

C = ∀ex,y ∈ E | x ∈ X, y ∈ Y . (2.7)

The bisection bandwidth B can then be expressed as

B =
∑

c∈C

bc . (2.8)

Note that a uniform traffic distribution may represent a sub-optimal application

mapping. An intelligent mapping that takes advantage of the network archi-

tecture can result in significant performance gains. While useful as a metric to

quickly compare architectures, the bisection bandwidth does not tell the whole

story as there are many other factors that can affect performance.

In multi-node networks such as those shown in Figure 2.7, communication

between any two nodes will involve traversing one or more edges. The ordered

set of edges

Ps,d = {e1, e2, e3, . . . , en} , (2.9)

denotes the path taken through the network for some communication between a

source node vs and a destination node vd. The number of edges in Ps,d is called

the hop count, and is used to evaluate different routing strategies. Intuitively, the

lower the hop count, the lower the latency will be. If more than one path exists

between two nodes vs and vd, the minimal path is the one with the lowest hop

count. Lastly, the diameter of a network is the largest minimal path for all pairs

of nodes in the network. The diameter can also be used to compare two network

topologies as it gives an idea of how the hop counts and latencies will compare.
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2.2.2 Network Topologies

The network architecture, or topology, describes the physical organization of the

interconnections network. A network topology can be classified as being either

direct or indirect. A node in a network can be a terminal node, which acts as a

source and sink for data, a switch that routes data, or both. In a direct network,

every node acts as a terminal node. In an indirect network, a node is either a

terminal or a switch node. The networks shown in Figure 2.7 are direct networks.

A direct network can be redrawn as indirect by redrawing each node as two nodes

and showing the switch and terminal nodes separately.

Designers of large-scale SoCs must be aware of the advantages and disadvan-

tages of each architecture in order to select an appropriate candidate for their

implementations. The metrics that are of interest can be broadly categorized

as [61]:

• performance (latency, throughput, cross-section bandwidth),

• energy consumption,

• reliability (error detection and/or correction),

• scalability,

• implementation cost (area).

As discussed in Section 2.1.2, technology scaling is causing the energy consump-

tion of the on-chip network to become an increasingly important design criteria.

The goal of macronetworks is to maximize performance without regard for energy

consumption, especially for large scale parallel computers where throughput and

latency are of primary importance. It therefore stands to reason that a straight-

forward adaptation of macronetwork implementations for network-on-chip is not

appropriate. The problem faced by chip designers is that the design criteria run

contrary to one another:

• Minimizing the energy consumption and maximizing performance are usu-

ally conflicting goals.
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• Increased reliability usually means higher complexity, which results in larger

area, degraded performance, and higher energy consumption.

Therefore, designing a NoC interconnect requires searching through a vast mul-

tidimensional design space. There are many design parameters that can affect

system performance and cost, but the design decision that has the largest impact

is the choice of topology. The remainder of this section will briefly discuss the

basic network topologies that other topologies are derived from.

2.2.2.1 Mesh and Torus Topologies

A torus is described as a k-ary n-cube, where n is the number of dimensions of

the torus, k is the number of nodes in each dimension, and the total number of

nodes is N = kn. The simplest torus topology is a single ring, or k-ary 1-cube, as

shown in Figure 2.8a. The most well known example of a ring-based network

topology is the token ring [62], which was developed in the late 1970s. Ring

networks possess several characteristics that make them well suited for on-chip

implementation [59]:

• They have regular physical arrangements that make them well suited for

on-chip layout.

• At low dimensions, the physical wires between neighbouring switches is

short, allowing high speed operation and low energy usage.

• For local communication patterns, they exhibit low latency and high through-

put.

• Depending on the architecture, tori have high path diversity4.

A direct physical mapping of the torus shown in Figure 2.8a would result in

asymmetric channel lengths. As can be seen from the figure, a wraparound link

is needed to connect the first and last nodes. The wraparound link must be long

enough to span the length of all k nodes, such that

lk−1,0 = k · li,i+1 | i ∈ {0, 1, · · · , k − 2} , (2.10)

4High dimension tori have higher path diversity.
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(a) (b)

Figure 2.8: Two configurations of a single ring (torus). (a) A straightforward
arrangement will require more area and longer wires. (b) A folded torus is
more tightly packed and will yield a better physical implementation.

where lk−1,0 is the length of the wraparound link, and li,i+1 is the length a normal

link between adjacent nodes. The long wraparound channel can negatively im-

pact latencies because of the increased propagation delay over the longer channel.

Also, depending on the implementation, the operating frequency of all links may

be set to satisfy the physical requirements of the longest link to ensure that the

hop delays are constant throughout the network5, thereby requiring that the net-

work operate at sub-maximal speeds. This problem can be avoided by folding the

torus as shown in Figure 2.8b. Folding eliminates the long wraparound channel,

allowing all channels to be of equal length.

A mesh network is constructed the same way as a torus, except that the

wraparound links lk−1,0 are omitted. Similar to the torus, a mesh can be de-

scribed as a k-ary n-mesh. Figure 2.9a shows a 3-ary 2-mesh, which is 32 nodes

arranged in a two-dimensional grid, and Figure 2.9b shows the equivalent torus

network. Note that in the case of the torus, the wraparound links are present for

both dimensions. For higher dimensions, the wiring complexity of the torus is

higher than that of the mesh, which is why the mesh network is generally pre-

ferred over the torus for larger size interconnects. As with the single ring shown

in Figure 2.8, the two-dimensional torus can also be folded.

Arbitrary dimensions of the torus and mesh can be constructed by iteratively

adding dimensions. The two-dimensional mesh shown in Figure 2.9a can be

constructed by connecting three 3-ary 1-meshes. Going one step further, a three-

dimensional mesh network, or cube, can be constructed by connecting three 3-ary

2-meshes, as shown in Figure 2.10. While it is tempting to use the three dimen-

sional cube (and perhaps higher dimensioned tori/meshes) because of the high

bisection bandwidth and increased path-diversity, one needs to consider some of

5Similar to the maximum clock rate of a digital design being restricted to the critical path of
a circuit.
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(a) (b)

Figure 2.9: Example of two-dimensional mesh and torus networks. (a) A 3-ary
2-mesh. (b) A 3-ary 2-cube.

Figure 2.10: A 3-ary 3-mesh, or cube network, consisting of a total of 33 nodes.

the costs associated with such a topology. The higher degree switches will be

larger due to an increased number of buffers and complexity, thus requiring more

area and power. Furthermore, three-dimensional topologies must be mapped

onto a two-dimensional surface for chip fabrication, and so the wiring complex-

ity may result in longer wires and larger area requirements. For these reasons,

lower dimensioned topologies that can be easily mapped to a two-dimensional

space are largely preferred by the NoC research community.

2.2.2.2 Tree Networks

A tree network is a hierarchical arrangement of nodes that resembles an inverted

tree when drawn as a graph. One of the simplest tree networks is the binary

tree, as shown in Figure 2.11a, which has the property that each node in the tree

has 2 children. A tree consists of a single root node at the top-most level of the

hierarchy that is connected to the nodes that belong to the level immediately

beneath that of the root. A tree can be recursively constructed by connecting
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(a) (b) (c)

Figure 2.11: Examples of tree networks. (a) A binary tree. (b) A binary fat-tree.
(c) A fat-tree with 2 roots.

each node to several children nodes, until the desired depth is reached. The

nodes at the bottom of the hierarchy are called leaf nodes because they have no

descendants; it is these nodes that are the endpoints in the network. Each node

in a tree has exactly one parent node, and thus a tree network is acyclic.

The main drawback of tree networks is that the nodes at the highest6 levels can

become system bottlenecks. This problem can be alleviated by allocating more

bandwidth to the links closest to the root node, thus making some links fatter

than others; this kind of tree is called a fat-tree [63, 64], as shown in Figure 2.11b.

A tree network need not consist of a single root node. A generalized method

for recursively constructing trees with arbitrary numbers of roots is given in [65,

66]. Figure 2.11c shows a fat-tree with 2 root nodes — note that multi-root trees

are also referred to as fat-trees.

2.2.2.3 Other Topologies

The bisection bandwidth and path diversity of higher dimensioned topologies,

such as the 3-ary 3-mesh shown in Figure 2.10, makes them ideal for intercon-

necting a large number of cores. However, the high node degree and wiring

complexity makes them expensive in terms of area and power for on-chip imple-

mentation. The problem has to do with mapping a three (and higher) dimensional

structure to a two-dimensional surface.

The cube-connected cycles (CCC) [67] topology is a substitute for the n–mesh

network that uses interconnected rings to reproduce the structure of a higher

dimensioned mesh while using switches of fixed node degree. Figure 2.12 shows

an example of the CCC topology where multiple rings are connected such that

6The root node and the nodes closest to it.
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Figure 2.12: Cube-connected cycles.

a k-ary 3-mesh topology is reproduced. The CCC topology has the following

properties [67]:

• The node degree of all switches is 3.

• Processing time is not significantly increased with respect to that achievable

by the k-ary 3-mesh (3-dimensional hypercube).

• The structure is more easily mapped to a two-dimensional surface for on-

chip implementation.

A directed cube-connected cycles DCCC topology [68] that uses unidirectional links

has been shown to be even more layout efficient than the normal CCC topology.

An express cube is a k-ary n-cube network augmented by express channels that

reduce the path lengths for non-local messages [69]. The express channels can be

inserted into an existing network without changing the implementation of the

switches. Figure 2.13 shows a network that has been augmented by two levels of

express channels, where the highest level bypasses the largest number of nodes.

A hierarchical express cube has the locality of a torus and a diameter approaching

that of a fully connected network [59]. The drawback of express channels is that

the required number of channels increases with the dimension, leading to a larger

area overhead associated with the extra routers and links.

A chordal ring is a ring network in which some/all nodes have an additional

link, called a chord, to some other node across the network [70]. The chords

provide shortcuts that skip over parts of the ring, thus reducing hop counts for

long distance traffic. A chordal ring is characterized by the number of nodes
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Figure 2.13: Two-level hierarchical express channels.

n, and the chord length w. The chord length w is the number of hops that are

bypassed by a chord. Figure 2.14a shows an example of a chordal ring with 8

nodes and a chord length of 3. In [70], the chordal ring is described as being

symmetric, where each node has a chordal link and has a degree of 3. It is not

necessary to construct a symmetric chordal ring; mixing nodes of degree 2 and 3 is

permitted [71]. Figure 2.14b shows a multi-ring network, which is constructed by

appending rings in an edgewise manner to form a single level topology [71, 72].

Traffic is routed between rings via interface components that connect two rings

together. For large multi-rings, long distance traffic can be routed through several

rings, which can result in congestion in heavily traversed rings. The disadvantage

is that traffic local to a ring can suffer large latency penalties caused by global

traffic that is only passing through. An alternative is to use a hierarchical ring

configuration, as shown in Figure 2.14c, which is constructed by appending at

most one subsidiary ring to each node of a ring, and recursively to each node

of each subsidiary ring [71]. A hierarchical ring forms a “tree of rings”, where

terminal nodes are placed on the rings at the lowest level of the hierarchy. Similar

to tree networks, global traffic is routed upwards through the hierarchy.

A butterfly network is described as a k-ary n-fly, where the network is con-

structed by connecting n stages of degree k switches. The network consists of kn

source terminals and kn destination terminals. Figure 2.15a shows an example

of a 2-ary 3-fly network, where the source terminals are located on the left side

of the network, and the destination nodes are on the right. The channels in the

butterfly network are unidirectional, and flow from left to right.

A variation of a tree network, called the butterfly fat-tree [73, 74] is shown in

Figure 2.15b. Each switch in the network has four children and two parents. The

number of levels required depends on the total number of processing elements

and increases logarithmically. The number of switches needed for a network size
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(a) (b) (c)

Figure 2.14: (a) Chordal ring with n = 8 and w = 3. (b) A multi-ring network
consisting of 3 interconnected rings. (c) A hierarchical ring of depth 3.

(a) (b)

Figure 2.15: (a) A 2–ary 3–fly butterfly network. (b) A butterfly fat-tree (BFT)
network.
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N converges to N
2

as N grows arbitrarily large [74].

2.2.3 Switching, Routing, and Flow-Control

Switching, routing, and flow-control are all network characteristics that affect

performance and resource requirements. The following subsections will briefly

describe each.

2.2.3.1 Switching

The switching technique determines how data flows through a router, from its

input port to its output ports. There are three switching techniques, circuit,

packet, and wormhole switching.

In circuit switching, a physical path consisting of a series of links and routers

is reserved from the sending node to the destination node. The setup time refers

to the time required to reserve the resources, and the tear-down time refers to

the time required to release them. Circuit switching has a high initial latency

due to the setup time, but it exhibits high throughput because the bandwidth

is guaranteed due to the reserved resources. The disadvantage is that during

the setup and tear-down times, when data is not being transmitted, the network

resources are underutilized.

In packet switching, large messages are broken up into smaller pieces called

packets. Each packets flows through the network independently, possibly along

different routes, from sender to receiver. Each packet must be stored in its entirety

before being forwarded to the next node on the network, called store-and-forward,

which can result in large buffer requirements. Since no resources are explicitly

reserved, there is the possibility that two or more packets may wish to use the

same resources at the same time, called contention. When contention occurs, one

packet is granted the resource, and all others must wait. The delays caused

by contention are variable, and depend largely on the amount of traffic on the

network.

Wormhole switching attempts to combine the advantages of circuit and packet

switching. In wormhole switching, a packet, also called a worm is composed of

a series of flits. An example of a worm is shown in Figure 2.16, where
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Figure 2.16: Packet, or worm, format for a wormhole routed network.
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Figure 2.17: Routing two packets from P → Q over a wormhole routed mesh.
A worm can span several switches.

• the header flit contains routing information and reserves routing channels

of each switch,

• the body flits contain data and follow the reserved channel,

• the tail flit will release the channel reservation as it passes through a switch.

The major advantage of wormhole switching is that it does not require the

complete packet to be stored in the switch before being forwarded to the next

node [59]. As soon as the header flit reserves an outgoing channel it can be

forwarded, and the rest of the flits will eventually catch up. Therefore, wormhole

switching reduces the delays and buffer requirements associated with packet

switching. Figure 2.17 shows an example of several worms traveling through a

mesh network. The resources reserved by a worm can span several nodes in the

network, which can result in problems such as deadlock and livelock in certain

situations.
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2.2.3.2 Routing

Routing involves the selection of a path from a source node to a destination

node. Routing is dependent on the topology, where a routing algorithm must

choose between alternate paths in the network. The topology dictates the ideal

performance of the network, and the routing algorithm determines how close to

ideal the performance will be [59]. An effective routing algorithm will balance

the load across the network channels, and the more balanced the distribution, the

closer to ideal the performance of the network will be [59]. Routing algorithms

can be classified as:

• Deterministic routing always selects the same path between two nodes, even

if there are multiple paths.

• Oblivious routing does not consider the state of the network when making

decisions7.

• Adaptive routing uses information about the state of the network to make

routing decisions. These algorithms attempt to circumvent congestion points

in the network in an effort to more evenly distribute traffic.

The most commonly used routing algorithms in NoCs are deterministic be-

cause they are easy to implement, thus requiring less resources than complex

algorithms. Furthermore, deterministic algorithms are easy to make deadlock-

free [59]; a necessary and sufficient condition for deadlock-free routing is the

absence of cycles in a channel dependency graph [75]. Figure 2.18 shows graph-

ically an example of deadlock caused by a cycle; a properly designed routing

algorithm will avoid such a situation. In fact, the turn model [76] describes how

to avoid cycles by restricting the turns a routing algorithm can take, resulting in

a provably deadlock free routing algorithm.

A popular deterministic routing algorithm for NoC is dimension-order routing,

where data is routed in each successive dimension until the destination is reached.

For example, for the mesh topology, dimension-ordered routing is called xy-

routing, where packets are routed in the x dimension first, and then in the y

7Deterministic routing is a subset of oblivious routing [59].
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Figure 2.18: Example of cycle causing deadlock in a wormhole-routed mesh
network.

dimension8. Dimension routing is deadlock free because cycles as shown in

Figure 2.18 cannot occur.

2.2.3.3 Flow Control

Flow control determines how the resources in the network are allocated to packets

travelling through the network [59]. The goal of flow control is to maximize

performance, which is not a simple task. For example if the flow control algorithm

is too aggressive, resources may be left unnecessarily idle, which results in wasted

bandwidth. Flow control algorithms can be classified as lossy, where packets

can be dropped when congestion occurs, and lossless, where packets are never

dropped.

The main task of the flow control algorithm is to manage buffer allocation at a

receiving node. The receiving signals the sending nodes via a backpressure signal

when its buffers reach capacity. Upon reception of the backpressure signal, the

sending nodes will stop transmitting data until the signal is de-asserted. There

are three types of low-level flow control [59]:

1. Credit-based: The sending node maintains a count of available downstream

buffers. Each time a node sends a packet, the count is decremented until it

reaches zero, at which time the sender cannot send anymore. When the re-

ceiver receives a packet, it will send a credit back to the sender, incrementing

8The xy-routing algorithm is also minimal, because the deterministic path taken to reach a
destination is also the shortest.
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the count and allowing it to resume sending packets.

2. On/Off : The receiver signals the sending node using a single bit that controls

whether it is allowed to send (on) or not (off). The signal changes state

depending on the buffer occupancies of the receiver.

3. Ack/Nack: The sender node optimistically sends flits over the network. When

the receiver accepts a flit, it sends an acknowledgement (ack) back to the

sender. If there are no buffers available, the receiver will drop the flit and

send back a negative acknowledgement (nack). The sender will not discard

sent flits until it receives an ack, and if it receives a nack, it retransmits the

flit in question. The sliding window and go-back-n protocols are examples of

ack/nack flow control.

Since on/off flow control is the simplest of the three techniques, it requires less

resources, and is thus often used for NoC implementations.

2.3 Related Research Developments

The topologies proposed for use in NoCs can be classified as either flat or hier-

archical [77, 78]. The two-dimensional mesh is the most popular, with torus and

folded torus being derived by connecting the edge elements to the opposite side

to form rings. The torus interconnect has a higher bisection bandwidth than the

mesh, but also exhibits higher energy consumption [13]. The Intel Teraflops [79]

research chip consists of 80 cores connected using the two-dimensional mesh

topology.

An example of a hierarchical topology is the fat tree presented in [12], which

can provide low latencies and high bandwidths, but has higher wiring complex-

ities and larger switches (depending on the fan-in/out) as compared to other

topologies. Another example of a hierarchical topology is the butterfly fat-tree

(BFT) [80], where the number of switches converges to a constant depending on

the number of levels. Unlike the mesh architecture proposed in [13, 81], where

each cell is composed of a PE and a switch, the fat-tree and butterfly fat-tree
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place their processing elements at the leaves and the switches at the vertices of

the tree [12, 80].

The Proteo [82] NoC is a hierarchical network topology that uses a global bidi-

rectional ring to connect several subnets together. The topology of each subnet

is chosen to suit local traffic requirements. The architecture presented in [82] has

been built using the Scalable Coherent Interface (SCI) standardized by IEEE [83].

This standard has garnered some industrial acceptance as a ring-based network

topology with its own distributed directory cache coherency protocol, which be-

ing cache-based, requires a linked list of cache locations to be maintained to keep

the shared memory data coherent. Practical problems with SCI in the past arose

exactly because of the need to traverse the network following the linked list for

each coherence operation.

Similarly, the Ring Road [84] topology was proposed with the idea of using

ring switching elements in a manner that provides more bisection bandwidth

and eliminates hotspots in the center. There are two types of ring interfaces:

those that are on local rings, and those that are on the intersection of a pair of

rings. The motivation for this kind of interconnect is avoiding congestion in the

center of the area, similar to the rings of roads outside large cities. The Ring

Road topology is not hierarchical, and it is not strictly a ring-based architecture;

it uses a polar-like mapping of the xy coordinate space. Routing is achieved by

evaluating the radial distance to the destination node.

In [85], a reconfigurable system was proposed based on a hierarchical mesh

interconnection network consisting of nearest neighbor connectivity at the lowest

hierarchy level, together with horizontal and vertical buses for global connectiv-

ity. The architecture presented in [86] takes the opposite approach and uses a

hierarchical interconnect to link together multiple bus-based SoCs together.

A parameterizable library of components called xPipes which can be used to

generate domain-specific heterogeneous architectures is described in [47]. The

architectures discussed in [47] are not hierarchical in nature and the problems of

growing hop-counts and latencies associated with increasing network size are not

addressed, however the authors state that arbitrary topologies can be achieved by

their tool. Similarly, ParIS [87] is a parameterizable soft-core router that support

the automatic synthesis of NoCs with different sizes and cost/performance cri-
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teria. Ongoing work includes modeling the ParIS library at the transaction level

to enable rapid performance evaluation [87].

In [69], the problem of large hop counts associated with routing packets over

long distances in 2D-meshes is addressed through the use of express channels that

span multiple hops. The drawback of using express channels is that they require

long wires in each dimension and they also increase the router complexity. The

express channel approach was originally proposed for interconnection networks

with the aim of reducing hop-counts, as such, the area and complexity penalties

were of secondary concern. Similarly, express virtual channels [88] were proposed

as an attempt to adapt express channel for on-chip networks, where packets can

bypass nodes virtually by using specially designed virtual channels. The advan-

tage of virtual channels is that the approach does not require the addition of

extra dedicated wires. In a similar attempt to deal with the scalability issues

of mesh networks, a hierarchical graph network structure that consists of several

planar graphs interconnected to form a hierarchy is proposed [89]. The hierar-

chical graph network was shown to outperform the mesh network for several

benchmarks despite having a lower bisection bandwidth [89].

The NUMAchine [90] multiprocessor, which uses a hierarchical ring intercon-

nect, was designed at the University of Toronto. Good speedups were observed

for virtually all multiprocessor benchmarks, in spite of the apparent bisection

bandwidth limitation of the rings [90]. The architecture was shown amenable

to efficient implementations, and the cache coherence protocol incorporated in

NUMAchine exploited well the given topology resulting in a feasible and correct

implementation. In addition, the hierarchical rings architecture was shown to

compare favorably to the mesh network for certain benchmarks [91]. In [92], the

authors explored the performance of several variations of the hierarchical rings,

and it was shown that as more hierarchies are added to the system, the constant

bisection bandwidth of network begins to affect performance, as is common to

all tree-like networks. The suggested solution is to increase the bandwidth of the

global ring, or to use a wide and shallow configuration instead of a narrow and

deep one.

In [93], the authors present a VHDL implementation of a hierarchical ring

network targeted towards a shared-memory architecture whereas in the imple-
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mentation presented in [17], components communicate via explicit messaging.

Furthermore, in [93], the interface between processing elements (PE) and the in-

terconnect requires that a special instruction be added to the processor in order to

allow communication at the software level. The implementation presented in [17]

uses memory mapped IO to communicate with the interconnect thus making the

implementation more general.

In [94], the impact of process technologies on network energy consumption

was evaluated for a range of topologies. The authors characterized the energy

consumption of each network, which enabled predictions to be made based on the

results obtained by using application traces generated by a actual case study [94].

Polaris [95] is a system-level roadmap for on-chip interconnection networks

that aims to guide designers towards a suitable network topology that meets

performance and resource requirements; the roadmap is reported to incorporate

7872 NoC design points. An automated toolchain iterates over the available ar-

chitectures and selects suitable candidates in an automated fashion that can take

over 100 hours to run on a typical desktop machine [95, 96]. A more formal ap-

proach to finding an optimal solution is to use a linear programming (LP) based

technique for synthesis of custom NoC architectures [97]. The technique consists

of two stages. First, a floorplan is developed that determines the locations of

the routers and cores based on design constraints that can be specified on a per-

problem basis [97]. Second, the floorplan from the first stage is used to generate

the NoC topology such that the bandwidth requirements of the applications are

met [97].

The decision to study hierarchical rings has been further validated by recent

commercial products; the IBM Cell processor makes use of a ring-based intercon-

nect and achieves high throughput while still maintaining relatively low energy

requirements [5, 6]. Furthermore, the ATI Radeon X1800 series of graphics cards

use a ring-based network to achieve high bandwidth memory access. Similarly,

the latest sound processor engine from Creative Labs, the X-Fi, uses a ring inter-

connect for the processing units to exchange data.

43





Chapter 3

Hierarchical Rings Architecture

In the early days of network topology research, ring-based topologies attracted

a lot of interest [98] because of their structural simplicity and low resource re-

quirements. In the early nineteen-eighties, the token ring [62] and Ethernet [99]

networks were competing for dominance in the local area network (LAN) space.

The simplicity of the ethernet protocol eventually won out, but interest in the

ring network persisted, especially for shared memory multiprocessors.

The topology of unidirectional rings connected in a hierarchical manner ex-

hibits characteristics that are of importance to NoC implementations. The sim-

plicity of the rings reduces the complexity at each node, which in general results

in reduced buffer, area and energy requirements. Furthermore, the topology dis-

cussed in this thesis has no global routing so place-and-route will also be more

efficient than using global channels as was shown in [17]. The unidirectional

nature of the rings reduces the overhead associated with routing and thus results

in low latencies and high throughput.

Also of interest is the fact that the hierarchical ring interconnect can be eas-

ily partitioned into multiple clock domains, giving designers increased flexibility

when tuning design parameters for individual applications. As discussed in [16],

distinct clock domains enable the application of dynamic frequency and/or volt-

age scaling (DVS) techniques for energy optimization. Taking the ideas from [16]

one step further, clock throttling can also be applied to an entire sub-mesh, which
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can be easily achieved since each mesh can exist in a separate clock domain. In

the case of a heterogeneous architecture where certain types of computational

units are assigned to a specific mesh, the energy savings can be significant if

entire sub-meshes could be powered down during idle periods.

3.1 Hierarchical Ring Topology

The unidirectional ring is the simplest form of point-to-point interconnection,

which results in a minimum number of links per node and simpler interface

hardware [100]. The simplicity of the rings requires a straightforward routing

mechanism such that the only decision needed to be made is whether to remove

a flit from the ring or to forward it to the next node. Hence, the buffer require-

ments of each switch are reduced, the maximum speed at which each switch can

operate is increased, latencies are reduced, and the point-to-point links between

nodes are better utilized. Furthermore, point-to-point connections are so fast that

the transmission delays are dominated by the latency of the switches, therefore

making fast and efficient routing critical [100, 101].

The hierarchical ring architecture under consideration is an adaptation of the

NUMAchine [90] shared memory multiprocessor. The generalized architecture of

the hierarchical rings can be described as having k number of local rings connected

by a central, or global ring. Each local ring can consist of l stations (or nodes).

While there are many possible configurations, the one shown in Figure 3.1, which

consists of four local rings connected to a global ring, each local ring having four

stations, was chosen for study1. The reason being its symmetry, and the ease

with which it can be combined with the traditional mesh architecture to form

hybrid architectures, which will be discussed in Chapter 4.

The hierarchical rings architecture is a combination of a k-ary n-tree and k-ary n-

cube network topologies. The local rings can be treated as the leaf nodes in a 4-ary

1-tree, while the global ring is a single switch, which is an interpretation that bears

significance in the development of efficient cache coherence schemes implemented

in the NUMAchine multiprocessor [90]. The local rings are themselves 4-ary 1-

1This configuration was also used by NUMAchine [90, 102].
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Figure 3.1: An example of a hierarchical ring interconnect with 4 local rings, 1
global ring. Each local ring has 4 ring interfaces.

cube structures. Similar to the other hierarchical structures such as trees, the

depth of the network grows logarithmically as a function of the cardinality of the

local rings and the total number of processing nodes.

To keep buffering and latencies to a minimum, the rings are slotted [100, 101];

fixed size frames, or slots, are circulated around the ring. Each slot has a full or

empty bit that denotes whether or not it contains data. When a node wishes to

transmit data, it waits until an empty slot arrives, at which point it writes its data

and marks the slot as full. Many slotted ring implementations [90, 91, 100, 101]

have multi-word slots that can require multiple cycles to transmit between nodes.

In the presented architecture, each flit2 is equal to a phit3, which can be forwarded

in a single clock cycle. Most NoC implementations follow the convention of

having a flit equal to a phit in order to simplify the implementation of the routers

and link interface hardware. For example, if a flit were to consist of several phits,

then serialization and de-serialization hardware would be required to send a

single flit between nodes on the network.

2A flit is the unit of information at the link layer, one or more words long. A flit can take
multiple cycles to transmit between nodes.

3A phit is the smallest physical unit of information at the physical layer that can be transferred
in one clock cycle.
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In the architecture shown in Figure 3.1, flits are routed onto a local ring via a

ring interface (RI). Once on the local ring, a flit can be forwarded to another RI on

the same local ring or it can be routed upwards to the global ring via the inter-ring

interface (IRI). It is important to note that the architecture presented here is not a

token ring [62] network. There is no special token frame that circulates on the ring

that regulates access to the network. Furthermore, only one node can transmit

data at a time on a token ring network; the hierarchical ring architecture presented

here allows multiple nodes on each ring to inject flits simultaneously due to the

slotted implementation of the rings. Therefore, the architecture presented here

can support many simultaneous parallel communications.

Referring to Figure 3.1, a labeling can be developed such that each ring inter-

face component can be represented by a tuple (s, t),

ST = S × T

S × T = {(s, t) | s ∈ S, t ∈ T}

S = {0, 1, . . . , nlr − 1}

T = {0, 1, . . . , nri − 1}

(3.1)

where nlr is the number of local rings, and nri is the number of RI components

per local ring. The total number of RI components is nri×nlr. The number of IRI

components that constitute each global ring is equal to the number of local rings

nlr. In Figure 3.1, nri = 4 and nlr = 4, resulting in a total of 16 RI components.

Similarly, each inter-ring interface component can be labeled as a tuple (u, t),

UT = U × T

U × T = {(u, t) | u ∈ U, t ∈ T}

U = {0, 1, . . . , ngr − 1}

(3.2)

where ngr is the number of global rings. In the case of Figure 3.1, the number of

global rings is 1, so the labelling of each inter-ring interface would be (0, ti).

The hierarchical ring interconnect can be partitioned into separate clock do-

mains [16, 17]. The fact that the clock rate of the different rings can be inde-

pendent allows for increased flexibility when tuning the interconnect for specific
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applications. For example, the clock rate of the global ring can be greater than

that of the local rings so as to increase the bandwidth of the global ring [91]. The

use of separate clock domains means that the design can be termed globally asyn-

chronous, locally synchronous (GALS) [25]. A GALS system connects synchronous

cores that operate at their own speeds and are connected together, which allows

proven synchronous design methodologies to be used. The interface between

each clock domain must be made clock-independent, either through the use of

asynchronous logic or special synchronizer circuitry. The greatest advantages to

using GALS systems are [103]:

• The possibility to reuse existing synchronous IP cores.

• Standard synchronous electronic design automation (EDA) tools to design

and verify new IP cores.

• The ability to run SoC components at different frequencies, which con-

tributes to power savings.

Basically, the GALS approach has been shown to increase flexibility with regards

to clock distribution, yield better performance, and reduced power consump-

tion [104, 105, 106]. The partitioning of each ring into separate clock domains

provides the facility for the eventual introduction of dynamic clock throttling [16],

which can allow rings to be slowed down or sped up to accommodate chang-

ing bandwidth requirements while reducing energy consumption. Other NoC

topologies such as the mesh cannot be so easily partitioned because many links

would need to cross the clock boundaries. In contrast, the structure of the hierar-

chical rings lends itself well to partitioning because of the relatively few number

of components that cross clock boundaries. In fact, two asynchronous on-chip

network architectures have been presented in [107]: a GALS bus, and a ring

structure. In [107], the authors state that the ring structure will lead to lower

interconnect lengths between modules as well as lower power consumption than

that of a bus.
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3.2 Switch Implementations

Data is routed through the interconnect via the inter-ring and ring interface com-

ponents (shown in Figure 3.2), which can be connected to form a 2-D hierarchical

ring structure. The GALS implementation of the architecture requires that the

problem of synchronization and metastability4 be addressed, otherwise the physical

implementation may not work properly, or even fail outright. Thus, transferring

data between mutually asynchronous clock domains requires safe synchroniza-

tion [109, 110]. Normally, synchronization can be achieved by using a simple

arrangement of several registers connected in series [103, 109], but for NoC im-

plementations, bi-synchronous FIFOs, which are driven by both clock signals are a

better solution because they provide higher throughput. A bi-synchronous FIFO

can be written to from one clock domain, and read from the other. The more

common implementation of a bi-synchronous FIFO is the Gray FIFO, which uses

gray codes [111] to encode/transfer/decode read and write pointers between

clock boundaries5. An alternative to using bi-synchronous FIFOs is to use asyn-

chronous channels to cross clock boundaries [103, 110], but these approaches are

not readily integrated with current EDA design flows.

Current NoC research anticipates a large number of cores being integrated

onto a single chip, in addition, deep sub-micron effects will only exacerbate the

problems associated with clock distribution [2], resulting in NoC architectures

moving towards GALS architectures [113]. The importance of efficient imple-

mentations of bi-synchronous FIFOs for GALS NoCs has motivated the search

for alternatives to the Gray FIFO [114, 115].

As previously discussed, each ring in the architecture can belong to a different

clock domain. Figure 3.2 shows the implementation of the ring and inter-ring in-

terfaces, where the clock boundary is denoted by dotted lines. The ring interface

is shown in Figure 3.2a, where the input and output FIFOs cross the clock bound-

ary, thereby necessitating the use of two bi-synchronous buffers. Under strict

4When the timing requirements of a register (e.g. setup and hold times) are violated, the
output can hover in an undefined, or metastable, state (i.e. between the values of 0 and 1) [108].

5Grey code is a method of encoding binary numbers such that successive values differ only
in 1 digit; a property enables the safe transfer of multi-bit values between clock domains [112].
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area constraints, the local ring FIFO shown in Figure 3.2b can be replaced by a

single register. However, the performance of the network is better when FIFOs

are used due to the way in which the flow-control is implemented, which will

be discussed in Section 3.3. Figure 3.2b, requires that the north and south FIFOs

be bi-synchronous since the global and local rings belong to different clock do-

mains. Since bi-synchronous FIFOs are more complex than normal synchronous

FIFOs, they have a larger area requirement. However, the overhead is acceptable

given the flexibility that they afford in terms of enabling the use of a GALS style

architecture, running the rings at different speeds, and clock throttling to save

energy.

3.3 Routing and Flow Control

The hierarchical rings provide lossless communication through the use of a back-

pressure mechanism for handling network congestion, which prevents flits from

being dropped. At each hierarchy level, a backpressure signal is propagated to

prevent injection of new flits until the backpressure signal is de-asserted. While

no new flits can be injected when backpressure has been asserted, flits that are

already circulating on the rings are allowed to continue propagating. The larger

the local ring FIFO (shown in Figure 3.2a), the greater the number of possibly

outstanding flits. The result is that while no new flits can be injected into the

network while backpressure is asserted, there can be many flits that can continue

being delivered. If the FIFOs are large enough, it is entirely possible that the

backpressure signal can be de-asserted before all outstanding flits are delivered.

This situation would result in a relatively even network utilization because the

interconnect would not likely become completely idle when backpressure is in

effect. Conversely, if a single register were used instead of a local ring FIFO, the

number of outstanding flits would be small. Therefore, all outstanding flits could

potentially be delivered while the backpressure signal is still asserted, meaning

that the interconnect would be idle until the backpressure signal is de-asserted.

The net result is that if the local ring FIFOs are too small, the network may be

underutilized if backpressure is asserted often enough.
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(a) Ring Interface (RI)
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(b) Inter-Ring Interface (IRI)

Figure 3.2: Architecture of the ring interfaces showing FIFOs and clock do-
mains. FIFOs that are intersected by the dotted line, that indicates the clock
boundary, are required to be bi-synchronous.
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Figure 3.3: The format of a flit in the hierarchical rings. The header is made
up of four fields, two of which encode the address of the sender and the
remaining two encode the address of the receiver.

The hierarchical ring interconnect was originally designed to be realistically

used on an FPGA [17]. The interconnect had to be area-efficient, yet needed

to support point-to-point addressing, multi-casting and broadcasting. This was

solved by virtue of the hierarchical configuration of the rings coupled with a one-

hot encoding of the addresses [17, 90]. The aforementioned one-hot encoding of

the addresses results in simple switching logic as routing decisions can be made

by simply applying bit-masks to the headers of each flit. A flit destined to a single

receiver would have a destination field with only a single bit set, whereas a multi-

cast/broadcast flit would have multiple bits set. Routing of multicast/broadcast

flits does not require any additional hardware as the bit-masks are applied at

each switching node regardless of whether or not a flit is a multicast one.

The use of one-hot encoding simplifies the steps needed to route flits through-

out the interconnect. One can infer that the interconnect can process flits quickly

and that the switching logic will be small; this is supported by synthesis results

shown in Section 8.3.

3.3.1 Flit Format

Each flit consists of a header which is used by the switches for routing, and the

payload, which contains the actual data being sent. The actual header consists of

four separate fields as shown in Figure 3.3. Using (3.1), each node on the network

can be addressed by the local ring to which it belongs coupled with its location

on that ring. Since addresses are one-hot encoded, one bit per ring is needed for

the ring source/destination field and one bit per source/destination node. The
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Table 3.1: The number of bits needed to construct a flit for a hierarchical rings
configuration which has nlr local rings and nri ring interfaces per local ring.

Field Sub-field bits

source
ring nlr

node nri

destination
ring nlr

node nri

payload n.a. npayload

number of bits for each field required for the configuration shown in Figure 3.1 is

shown in Table 3.1, where npayload is the number of bits required by the payload

data.

A disadvantage of one-hot encoding is that it has limited scalability since

it requires 1 bit for every destination node/ring. For example, to address the

16 nodes in the hierarchical rings using the described one-hot encoding, 8 bits

are required. On the other hand, encoding the addresses using integers instead

requires 4 bits. While integer encoding is more scalable, it does not support mul-

ticast/broadcast as well as the one-hot encoding does. In the case were multicast

capabilities are not needed, it may be preferable to use integer encoding to save

area.

3.3.2 Routing Flits

The logic needed to route data through the hierarchical ring interconnect is simple

and can be performed quickly, thereby resulting in high achievable clock rates

and low latencies. The ring-interface component shown in Figure 3.2a makes

routing decisions by performing the following steps:

1. The first step is to check whether the incoming flit contains data6.

2. If the incoming flit does not contain data, then an outgoing flit is read from

the output FIFO and placed on the ring via the ring FIFO.

6Recall from Section 3.1 that a slot or frame is equal to a flit in the architecture studied here.
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3. If the incoming flit contains data, then it is processed by the ring interface,

which will either remove the flit from the ring, or forward it. If the flit is

to be removed from the ring, the ring-interface needs to determine whether

or not it is a multicast flit:

• If multicast: forward flit to next node on the ring.

• If not multicast: read a flit from the output FIFO and place it on the

ring.

The inter-ring interface (Figure 3.2b) has two input ports. Flits that enter from

the local ring are routed in the following manner:

1. A determination of whether or not the incoming flit contains data is made.

2. If the incoming flit contains data, then the flit is handled differently de-

pending on whether or not it is a multicast:

• multicast: it is forwarded to the local ring output port, as well as

written to the north FIFO.

• unicast: it is forwarded to the local ring output port.

3. If the incoming flit does not contain data, then a flit is read from the south

FIFO and forwarded to the local ring output port.

The routing of flits from the global ring is performed in the same manner, except

that flits are written to the south and read from the north FIFOs.

There is a special case of multicast flit which was omitted for simplicity in

the description of the steps taken by the inter-ring interface when routing a flit.

Consider a multicast flit that enters from the local ring input port, and needs to

be routed upwards to the global ring without being forwarded to the local ring

output. In this situation, the local ring output port would not be written to,

resulting in the output port being unused for that clock-cycle. The RTL imple-

mentation described in Chapter 8 has been improved so that the output ports of

the switches are not idle if there are flits waiting to be routed in the buffers.

The use of one-hot encoding for the addresses means that routing decisions

can be made simply by applying routing masks to the header fields. Table 3.2
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Table 3.2: Example of unicast, multicast and broadcast flits for the hierarchical
rings shown in Figure 3.1 (payload not shown).

type Source Destination

ring node ring node

unicast 0001 0001 1000 0100
multicast 0001 0001 1000 1111
broadcast 0001 0001 1111 1111

shows examples of flits for the hierarchical rings configuration shown in Fig-

ure 3.1, which has 4 local rings and 4 nodes per local ring. The routing decision

at each node is made by applying a mask which corresponds to the one-hot

encoded value of the node address. The routing mask for each ring interface

component is described by

ms,t = {H(s), H(t)} (3.3)

where H(x) is a function which returns the one-hot encoded value of x. The

routing decision at each node is made by first evaluating whether or not the flit

is addressed to the current node, then determining whether or not the flit is a

multicast. The steps required to process a flit are described in Listing 3.1.

To perform routing decisions, a local routing function is first defined,

RL(ms,t, fi) = ms,t ∧ fi,dst







6= 0 : match

= 0 : forward
, (3.4)

where fi is the flit being routed. If the result of the routing function is non-zero,

the flit has arrived at its destination, whereas a zero result means that the flit

needs to be forwarded to the next node. The routing function defined in (3.4) is

simply a boolean and operation, where the bit corresponding to the current node

is tested to see if it is set or not.

In (3.4), the bits corresponding to other nodes are ignored. For the case of

multicast flits, the bits that were ignored by (3.4) due to the routing mask need
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to be considered. The routing function RM for multicast flits is given by

RM(¬ms,t, fi) = ¬ms,t ∧ fi,dst







6= 0 : forward

= 0 : do nothing
(3.5)

where ¬ms,t is the complement of the routing mask. For the case of multicast

and broadcast flits (as shown in Table 3.2), RM tests the bits corresponding to

addresses other than the current node, hence the use of the complement. If RM

yields a non-zero result, the flit is a multicast flit and must be forwarded to the

next node. When forwarding a multicast flit, the bit corresponding to the current

node needs to be zeroed as shown on Line 12 of Listing 3.1 so that the flit does

not circle around the ring and come back.

The inter-ring interface uses similar routing functions as (3.4) and (3.5), except

that it only considers the destination ring field (i.e. the destination node is not

needed). When an inter-ring interface injects a flit into either the local or global

ring, it performs a zeroing the bit corresponding to its address in the destination

ring address field shown in Figure 3.3. The zeroing of the address bit prevents

flits from circulating around the local and global ring infinitely.

It should be noted that the multicast capability of the architecture is limited

such that sending to differently numbered nodes on different rings is not possible.

For example, sending to nodes 3 and 4 on rings 0 and 1 (i.e. sending to (0,3) and

(1, 4)), will not work with the one-hot encoding scheme. The solution for this

example is to send the same message twice, once for each destination.

3.3.3 Flow Control

As previously mentioned, the hierarchical rings provide lossless transmission of

data. Flow control is achieved by means of backpressure signals which prevent

injection of new flits until a sufficient number of outstanding flits have been

drained from the interconnect so as to relieve congestion. The lossless nature of

the interconnect obviates the need to the network layer to implement a higher

level flow control mechanisms such as a sliding window protocol in order to handle

lost flits. The network architecture of the hierarchical rings guarantees in-order
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Listing 3.1: Pseudocode showing how a flit is processed at each ring interface
(RI) component.

1 // check to see if flit has
2 // reached its destination
3 if(RL(ms,t, fi) 6= 0 )
4 {
5 // deliver flit to processing element.
6 fifoIn.write(fi);
7

8 // check for multicast flit.
9 if(RM (¬ms,t, fi))

10 {
11 // unset bit corresponding to current node.
12 fi = fi ∧ H(ti)
13 // forward flit to next node on the ring.
14 ringFifo.write(fi);
15 }
16 }
17 else
18 {
19 // forward flit to next node on the ring.
20 ringFifo.write(fi);
21 }

delivery of flits, again removing the need for complicated protocols at the net-

work layer. The net result is that sending and receiving of data over the rings

requires a minimal amount of processing and buffer space as packet reassembly

is simple compared to interconnects which allow packets to be dropped when

congestion occurs. The lossless nature means that the interconnect is well suited

for shared-memory multiprocessor systems which need to efficiently implement

cache coherency primitives [90, 102]. Furthermore, since no control packets are

needed to be transmitted back to the sender by the receiver, as is common for

more complex protocols7, the bandwidth that would have been used is available

for normal data packets instead.

The hierarchy of rings shown in Figure 3.1 necessitates backpressure signals

for each level. The case of congestion occurring at the local ring level is first

considered, followed by a description of how backpressure works at the global

ring level.

7Credit based flow control or stop-and-wait are examples of more complex flow control.
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Figure 3.4: Local-ring backpressure mechanism.

3.3.3.1 Local Ring Flow Control

When the input FIFO of the ring interface (shown in Figure 3.2a) is almost full,

new flits must be prevented from being injected onto the ring because of the

possibility that they cause the FIFO to overflow. To avoid this situation, a back-

pressure signal is asserted by the ring interface component which is in danger of

overflowing its input FIFO as shown in Figure 3.4. The signal is propagated back-

wards through the local-ring, preventing upstream nodes from injecting new flits

onto the interconnect. It is important to note that flits that are already present on

the ring8 are allowed to continue circulating as shown in Figure 3.4, otherwise

deadlock9 could arise if the ring were allowed to stall. It should be noted that the

backpressure signal is asserted after some threshold has been exceeded; this will

be more fully discussed in Section 3.4.

3.3.3.2 Global Ring Flow Control

It can be observed from Figure 3.1 that the system bottleneck is the global ring,

thus it is susceptible to congestion when too many nodes send global traffic si-

multaneously. When the north FIFO (shown in Figure 3.2b) is almost full, a

backpressure signal is propagated downward to the local ring level to stop injec-

8These are flits which are already in the local ring FIFOs of each ring interface component
shown in Figure 3.2a.

9The hierarchical rings are claimed to be deadlock-free in a specific multiprocessor use [90,
102].
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tion of new flits. There are three situations that can cause the north FIFO of a

inter-ring interface component to fill up:

1. Multiple nodes on the local ring send global traffic simultaneously at a faster

rate than the global ring can process them.

2. A backpressure signal that was first asserted on another local ring is even-

tually propagated upward through the global ring and then back down to

the other local rings, as shown in Figure 3.5a.

3. A backpressure signal is asserted by a downstream inter-ring interface due

to the south FIFO being almost full, as shown in Figure 3.5b. While the

signal is asserted, flits are prevented from being injected into the global

ring, causing the north FIFOs to eventually fill up.

As with the local ring flow control, flits are allowed to continue propagating

through the interconnect so as to avoid deadlock and allow the FIFOs which

caused the backpressure signal to be drained. In the case of a global backpressure

signal, the south FIFO is allowed to continue injecting flits into the local ring,

thereby relieving congestion on the local ring.

To summarize, packet loss is avoided through the use of backpressure signals

which are asserted when the capacity of certain FIFOs in the ring interface (Fig-

ure 3.2a) and inter-ring interface (Figure 3.2b) components reach a pre-determined

level. Deadlock is avoided by allowing flits that have already been injected to

drain. This is an important point because traffic is never halted due to blocking

as can happen in other network topologies such as the mesh.

3.3.3.3 Backpressure Implementation Choices

The backpressure signals used for flow control in the hierarchical rings can be

implemented in two ways. The first way is to use a single shared signal for

each ring, such that when one node triggers backpressure, all stations must stop

sending. While simple, this approach may result in sub-optimal performance

because the other nodes on the ring may not be congested. A second approach

is to have 1 backpressure signal for each destination on the ring. While slightly
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Figure 3.5: Propagation of backpressure signal through the global ring. When
asserted, the backpressure signal causes the inter-ring interface components
to stop injecting flits onto the global ring. Flits that are already present in the
south FIFO are allowed to drain onto the local rings. (a) A backpressure signal
is first asserted on a local ring. The signal is then propagated backwards to
the global ring. (b) A backpressure signal is caused by the south FIFO in the
inter-ring interface reaching capacity. The signal is propagated backwards to
all inter-ring interfaces connected to the global ring.
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more costly in terms of area (i.e. increased number of control signals between

nodes), the increased flexibility makes the tradeoff interesting. For example, when

a node asserts backpressure, all other nodes on the ring can continue injecting

new flits as long as they are not destined to the congested node, thus achieving

better network utilization.

3.4 Buffer Sizes

The flow control mechanism described in Section 3.3.3 causes backpressure sig-

nals to be asserted when the occupancy of certain FIFOs reaches a pre-determined

threshold. When the backpressure mechanism has been triggered, the flits that

are already inside the network are allowed to propagate. This has implications

on the FIFO sizes and thresholds such that they must satisfy certain conditions

in order to avoid packet loss. The case of a single local ring will be discussed,

followed by a discussion of how the global ring affects the FIFO requirements of

the local rings.

3.4.1 Local Ring Buffer Requirements

At the local ring level, the input FIFO of each ring interface is required to be

large enough to accept outstanding flits on the ring after a backpressure signal

has been asserted. In the worst-case, all of the outstanding flits would be destined

to the station which cause the backpressure signal. The following describes the

worst-case scenario on the local ring:

• All the stations on the ring send data to a single receiver station.

• The input FIFO of the receiver station reaches its full threshold, triggering

the backpressure signal which prevents the other nodes from injecting more

flits.

• The backpressure signal takes some time to propagate to all the nodes,

during which time each node can inject one flit for every clock cycle of

delay.
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• The flits which were already on the ring, and were injected due to the prop-

agation delay of the backpressure signal, will continue to circulate towards

the receiver node.

From the aforementioned scenario, it is clear that once the backpressure signal

is asserted, the input FIFO of the ring interface must have enough space left to

store all outstanding flits which may arrive while the backpressure signal is high.

The size of the input FIFO |Fin| of the ring interface can therefore be given as

|Fin| ≥ ((nri − 1) · |Fring|) + Fin,full + σlocal , (3.6)

where |Fring| and |Fin,full | are the sizes of the ring and input FIFOs; Fin,full is the full

threshold of Fin, and nri is the number of ring interfaces per local ring from (3.1).

In (3.6), the last term σlocal represents the number of extra flits injected due to

the propagation delay of the local backpressure signal, which will be discussed

further in Section 3.4.3. Note that in (3.6), 1 is subtracted from nri because the

ring interface that generated the backpressure signal is not counted.

3.4.2 Global Ring Buffer Requirements

In Section 3.4.1, the presence of a global ring, and hence a inter-ring interface on

the local ring was neglected. In the case of global backpressure, the sizes of the

south and north buffers of the inter-ring interface must be carefully adjusted so as

to avoid flits from being dropped.

When a backpressure signal is propagated downwards onto a local ring by

a inter-ring interface, the ring interfaces are prevented from injecting new flits

into the ring. In this situation, the worst case would be when all outstanding

flits are global flits and must travel through the inter-ring interface. Therefore,

its north FIFO must have sufficient room left to accommodate receiving all of the

outstanding flits that are stored in the ring FIFOs of each ring interface on the

local ring, as well as the flits that are already in the FIFO. The size of the north

buffer is given by

|Fnorth| ≥ (nri · |Fring|) + Fnorth,full + σlocal , (3.7)
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which is similar to (3.6), except that all of the ring interface components have

been accounted for.

The size of the south FIFO of the inter-ring interface is minimally constrained

to be large enough to hold all flits that are circulating on the global ring. From

the architecture of the ring interface shown in Figure 3.2b, the only buffering that

occurs on the global ring occurs at the output register of each switch, so there

can therefore be a maximum of niri flits on the global ring. Simply stated, the

size of the south FIFO is given by

|Fsouth| ≥ niri + σglobal + δ , (3.8)

where δ represents the number of flits propagated onto the global ring before

the backpressure signal arriving from a local ring crosses the clock boundary

between the local and global rings. The value of δ is implementation dependent.

3.4.3 Pipelined Flow Control

In Section 3.3.3, the backpressure signal is a globally shared signal which can be

implemented in combinational logic10. Note that each ring has it’s own global

backpressure signal. As discussed earlier, propagation of the backpressure signal

requires synchronization circuitry when crossing clock boundaries (i.e. between

rings). Since this signal is globally shared by all nodes on a ring, the wire length

will be longer than the point-to-point connections between each node. Basically,

each backpressure signal must span the breadth of a ring. A drawback to this

approach is that long wires require more energy to drive and can also introduce a

critical path into the circuit, which can negatively impact its maximum operating

frequency. Fortunately, the architecture of the hierarchical rings mitigates the

length of the backpressure signals because each ring has its own signal which is

locally global. Since the signals are registered when crossing clock boundaries,

the wire length of any backpressure signal will not exceed the length required to

span a single ring.

For the implementation of the global backpressure signal, the number of flits

10The signal can be implemented using an or gate.
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Figure 3.6: Delay of the pipelined backpressure signal when propagated syn-
chronously through a local ring, where t0 is the time the backpressure signal is
asserted. The signal takes ∆t4,0 = (t4− t0) time to propagate from the inter-ring
interface to the first ring interface.

injected due to the propagation delay through the rings is given by

σlocal = nri ·
∆tbp,l

Tl

, (3.9)

σglobal = niri ·
∆tbp,g

Tg

, (3.10)

where ∆tbp is the time is takes for the backpressure signal to be read by the ring

and ring-interface components.

An alternative to using global signals in each ring is to pipeline the signals

by routing them through point-to-point connections using synchronous logic.

Thus, the maximum length of the wires needed to physically route the signals

becomes bounded by the maximum distance between consecutive ring interface

components on a ring. A pipelined implementation results in a delay of several

clock cycles for the backpressure signal to travel all the way around the ring as

shown in Figure 3.6. Since each switch on a ring will receive the signal at different

times, the number of flits that an individual switch will inject is a function of its

distance to the node from which the backpressure signal originated. The total

number of flits injected due to the propagation delay is thus the sum of the

packets injected by each switch, and can be expressed as a more general form
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Table 3.3: The maximum number of flits injected by each node ni on the ring
due to the propagation delay of the pipelined backpressure signal.

i σi

1 4
2 3
3 2
4 1

of (3.10) as

σ =
n−1
∑

i=0

(

ti+1 − t0

T

)

, (3.11)

where n is the total number of ring-interface components or inter-ring interface

components on the ring, depending on whether or not the ring is local or global.

For example, the number of flits injected due to the propagation delay of the

pipelined backpressure signal shown in Figure 3.6 can be calculated using (3.11).

Table 3.3 shows the maximum number of flits injected by each node on the

ring, giving a total of σ = 10. Therefore, if a pipelined implementation of the

backpressure signal is desired, the input buffers of the ring-interfaces or the north

FIFO of the inter-ring interface must be able to account for the 10 extra flits which

may be injected after the backpressure signal is asserted.

3.5 Planarity of Hierarchical Rings

A compelling reason for using hierarchical rings for on-chip interconnections is

their planarity. Simply put, a graph is said to be planar if it can be drawn on

a plane with no intersecting edges. The hierarchical ring configuration shown

in Figure 3.1 has no intersecting edges, and is thus planar. The implication is

that planar structures can be tightly packed onto two-dimensional surfaces [71].

The planarity of the hierarchical rings will therefore result in area efficient layout

when mapping to hardware.

In general, higher node degrees will result in non-planar topologies for large
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enough networks11. Node degrees greater than 3 will result in higher dimen-

sioned topologies, such as the 3D-mesh discussed in Section 2.2.2.3, which will

not be planar.

The PIGALE [116] graph editor is a freely available program that is primarily

concerned with planar graphs. The planarity of the hierarchical rings was con-

firmed using several algorithms [117, 118, 119] that are implemented by PIGALE.

In addition, the 3-ary 3-mesh shown in Figure 2.10, was shown to be non-planar

by PIGALE.

3.6 Improving the Hierarchical Rings

The two-level hierarchical rings architecture shown in Figure 3.1 has the character-

istic that the global ring is the system bottleneck. It has been shown quantitatively

in [120] that the global ring saturates before the local rings when traffic patterns

exhibit low locality. It was further shown in [120] that the configuration of the

hierarchical rings can greatly affect system performance, and speeding up the

global ring by a factor of two [91] can yield a significant reduction in latencies for

global traffic12. While increasing the bandwidth of the global ring does improve

system performance, the architecture of the network remains the same.

The torus ring [121] architecture is presented as an alternative configuration of

the hierarchical rings such that each local ring is connected to two neighboring

rings via inter-ring interface components. Global communication is achieved by

routing traffic through consecutively connected local rings until the destination is

reached. In [121], the authors state that a 5% reduction in latency was achieved

for communication patterns exhibiting high locality. The disadvantage of the

torus ring configuration is that the hop count for global traffic is increased, and

more significantly, global traffic must travel through local rings. In the hierar-

chical ring architecture, global traffic is routed upwards through the global ring,

thereby freeing up bandwidth in the local ring which can be used for local com-

munication. In the torus rings architecture, since global traffic travels through

11A network consisting of very few high-degree nodes may be planar.
12The bandwidth of the global ring can be increased two ways: either speed up, or increase

the width of the ring.
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local rings, less bandwidth is available for local traffic. Furthermore, global traf-

fic that travels through several local rings will impact the available bandwidth of

each local ring it passes through. In the hierarchical rings architecture, only the

sending ring and receiving ring see global traffic. In contrast, each local ring that

is along the path of a global communication will be impacted in the torus ring.

A possible improvement to both architectures would be to combine the hierar-

chical rings configuration with the torus rings architecture, thereby harnessing

the desirable properties of each.

With a view to improving performance, two alternative configurations of the

hierarchical rings are presented in the following subsections.

3.6.1 Enhanced Hierarchical Rings

While trying to optimize the performance of the RTL13 implementation of the

hierarchical rings, it was realized that the backpressure mechanism can result

in unnecessary delays for local and global traffic. Recall from the discussion

of the backpressure mechanism in Section 3.3.3, when the occupancy of certain

FIFOs in the ring and inter-ring interface components reach a certain threshold,

new flits are prevented from being injected until enough flits have been drained

from the network. Furthermore, recall from Section 3.4 that the worst case buffer

requirement is calculated based on the assumption that when a backpressure

signal occurs, all outstanding flits that are circulating on a local ring can be

destined for a single destination node. Hence, the worst case FIFO sizes are as

defined in (3.6), (3.8), and (3.7).

It was observed during RTL simulations that ring utilization could be in-

creased by taking advantage of the properties of local and global traffic, namely:

• Local traffic travels around a ring until it reaches its destination node, which

is on the same ring.

• Global traffic gets routed onto the global ring by the inter-ring interface.

Once on the global ring, the data is routed downwards onto a different local

ring.

13The hierarchical rings were implemented in VHDL.
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The important distinction between local and global traffic is that for local traffic,

only a single local ring in involved, whereas for global traffic, the global ring and

two local rings are involved. This distinction is key to improving the performance

of the interconnect. Careful inspection of the backpressure mechanism reveals

that global and local traffics can be treated differently depending on the source

of a backpressure signal. The following definitions will be used to differentiate

between sources of backpressure:

• Local backpressure occurs when a backpressure signal is asserted by a ring-

interface component as described in Section 3.3.3.1.

• Global backpressure occurs then a backpressure signal is asserted by a inter-

ring interface due to congestion on the global ring, as discussed in Sec-

tion 3.3.3.2.

Consider the following two examples which illustrate the two types of backpres-

sure mechanisms:

1. Local: A ring interface component asserts the backpressure signal because

its input FIFO is full, thereby preventing all other nodes on the ring from

injecting new traffic.

2. Global: An inter-ring interface component asserts a backpressure signal be-

cause its north-fifo is nearing capacity (see Figure 3.2b and Figure 3.5), and

thus prevents all nodes on its local ring from injecting traffic on the local

ring.

In the case of local backpressure, nodes on the same local ring are prevented

from injecting new traffic; if they are sending to the congested node, there is

a possibility of buffer overflow (dropped packets). Since it is known that the

occupancy of the north FIFO belonging to the inter-ring interface is unaffected

by local traffic, there is no danger of buffer overflow if the nodes on the ring were

allowed to send global traffic while the local backpressure signal is asserted. The

key point here is that sending global traffic to another ring can never cause the

input FIFO of a ring interface on the same ring to overflow. Alternately, when

global backpressure occurs, nodes on the local ring are prevented from injecting
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Figure 3.7: The figure shows 1 local ring which has been enhanced by the
addition of a second inner ring for local traffic.

new traffic because of the possibility of causing the north FIFO of the inter-ring

interface to overflow. Since it is known that local traffic does not impact the

occupancy of the north FIFO, local traffic can be allowed to be injected without

fear of a buffer overflow occurring at any of the ring interfaces on the same ring.

In short, when global backpressure has been asserted, nodes on each ring can be

permitted to send locally without risking packet loss due to buffer overflow.

The enhanced backpressure mechanism can be implemented thusly:

• When local backpressure occurs, global traffic can be permitted to be in-

jected.

• When global backpressure occurs, local traffic can be permitted to be injected.

The two cases of backpressure can be thought of as providing two channels of

communication, one for local, and one for global traffic. Figure 3.7 shows how

a local ring can be enhanced by adding an inner ring for routing global traffic.

A straightforward implementation would be to simply instantiate four extra ring

interfaces and connect them to form a ring which bypasses the inter-ring interface.

Global traffic can then be routed using the outer ring.

The straightforward implementation of the enhanced architecture by adding

an extra ring, has the advantage of doubling the local bandwidth. However, the
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Figure 3.8: The ring interface shown in Figure 3.2a has been enhanced with an
extra output FIFO so that global and local traffic can be sent independently
of each other.

resource requirements are also doubled. Furthermore, the actual utilization of

each ring will depend on the ratio of local to global traffic. For instance, it is

possible that the outer ring used for global traffic can be underutilized if there

is not much global traffic. As an alternative to instantiating extra components

to form the inner ring, a virtual inner ring can be formed by adding a single

extra FIFO to the ring interface component. Figure 3.8 shows the ring interface

component from Figure 3.2a that has had an extra output buffer added to it.

When flits arrive from the processing element, they are categorized as global or

local, and stored in the appropriate buffer (inner for local, outer for global). Under

normal operation, a round-robin scheduling can be used to share the available

network bandwidth evenly between global and local traffic. Alternatively, priority

can be given to one type of traffic by using weighted round-robin scheduling.

When a global backpressure signal is asserted, flits can continue to be read from

the global output FIFO and place on the ring via the ring FIFO. Similarly, when

a local backpressure signal is asserted, flits continue to be read from the outer

ring FIFO and written to the ring FIFO. Thus, the decoupling of the local and

global backpressure signals can be achieved at the cost of one extra FIFO per ring

interface (Figure 3.8).
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Figure 3.9: Hyper-ring configuration of the hierarchical rings. Since there are
two global rings, half the RIs send over the inner global ring, and the other half
send over the outer global ring.

3.6.2 Hyper-Ring Configuration

Similar to the hierarchical rings topology, the hyper-ring [122, 123, 124, 125] topol-

ogy consists of multiple rings connected together to form a hierarchy. However,

unlike the hierarchical rings, the hyper-ring is not constructed in a tree-like man-

ner where the root of the tree is a global ring. Instead, the hyper-ring can be

constructed recursively by adding rings in each dimension. Higher dimensioned

hyper-rings will not be planar, and thus will be difficult to map to hardware

efficiently. As such, it is best to restrict the hyper-rings to a few dimensions. In-

terestingly, the two-dimensional hyper ring shown in Figure 3.9 is similar to the

hierarchical rings, except that is has one added global ring. The second global

ring serves to increase the bisection bandwidth of the hierarchical rings, as well

as adding path diversity. Therefore, the hyper-ring architecture is an attractive

alternative to the hierarchical rings for applications that require more bandwidth.

The hyper ring architecture is discussed further in the appendices at the end

of this thesis. First, a comparison of SystemC simulation and ASIC synthesis re-

sults of the hierarchical and hyper ring architectures is presented in Appendix A.

Second, wormhole routed versions of both the hierarchical and hyper ring archi-

tectures that support virtual channels are presented in and Appendix B. Results
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show that the hyper rings outperform the hierarchical rings while incurring a

reasonable area penalty of approximately 17%.
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Chapter 4

Composite Ring/Mesh Architectures

In a mesh network, express channels can help reduce the latencies associated

with routing global packets [69]. The major disadvantage of this approach is

that express channels are needed in both the x and y directions. Therefore,

the routing complexity of this topology increases with the number of express

channels; a problem which is further exacerbated as the mesh size gets larger,

and longer express channels are needed. In order to simplify global routing,

the use of rings for routing global traffic is proposed. Instead of modifying the

existing mesh interconnect to support the rings, bridge (or gateway) components

are used to connect the different architectures together, thus obviating the need

to increase the complexity of the mesh interconnect. The circular structure of

the rings implies that traffic can traverse the x and y directions simultaneously,

hence global traffic need not come back down to the lowest level in the hierarchy

in order to be routed in a different dimension. Also, the mesh and hierarchical

ring architectures lend themselves well to planar layout, and the combination of

the two does not require the third dimension routing resources as required by a

3D mesh (cube).

In Section 2.3, several tree-like hierarchies were briefly discussed. When com-

paring hierarchical architectures to a 2D-mesh architecture, it can be seen that the

hop count for global packets is smaller on average, but that the aggregate band-

width also becomes reduced because of the bottlenecks associated with routing
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global packets through a small number of switches.

In [18], a hybrid ring/mesh architecture was proposed, where a large mesh

was divided into several smaller meshes that were connected using a hierarchical

ring interconnect. As the hybrid architecture has a smaller bisection bandwidth

than a normal mesh, it can still potentially suffer from congestion under heavy

load, especially if the application mapping does not exploit locality. The aug-

mented architecture [19] addresses this issue by keeping the mesh intact while

augmenting it with the hierarchical ring interconnect to reduce the latency in-

curred by global traffic, while still maintaining the high throughput that meshes

exhibit for local traffic. Also, instead of using a hierarchical ring interconnect, the

effect of adding individual rings to a mesh that is kept intact is explored.

The various proposed architectures that combine the rings with the mesh

network are globally referred to here as composite architectures. The composite

architectures consist of two and three-level hierarchies, where the lowest level

uses wormhole-routed mesh(es) for local routing and either a two-level hierar-

chical ring interconnect or unidirectional ring(s) for global routing. In contrast

to other approaches that introduce global wiring [12, 69], an approach that adds

its own complexities not unlike the FPGA routing, the mesh architecture is left

unmodified. Processing elements in certain cells are replaced by bridge compo-

nents that link the two interconnects together. One limitation of the NUMAchine

architecture is that the total number of nodes will be kept modest for a fixed

number of hierarchy levels, since buses are used at the lowest level of the hi-

erarchy in [90]. By replacing local buses with meshes, more processors can be

accommodated for the same hierarchical ring.

The following subsections describe in more detail the individual components

which make up the composite architectures. It should be noted that the config-

uration being used here is one of several possible architectural variations. For

example, for smaller mesh sizes, a simple unidirectional ring can be used for the

global interconnect, or even several unidirectional rings can be used, similar to

what was done in the IBM Cell processor.
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4.1 Wormhole Routed Mesh

A mesh network consists of a number of tiles arranged in a two-dimensional grid,

where each tile can be labeled as a tuple (x, y) such that

XY = X × Y

X × Y = {(x, y) | x ∈ X, y ∈ Y}

X = {0, 1, . . . ,M − 1}

Y = {0, 1, . . . , N − 1}

, (4.1)

where M and N represent the width and height of the mesh, respectively. The

length of the path pi between two nodes P : (xp, yp) and Q : (xq, yq) can be

described by

fhops(pi) = |xp − xq| + |yp − yq| . (4.2)

The maximum number of hops that a packet will travel is when a packet is

sent from a corner node to its diagonal opposite. For example, if node P : (0, 0)

sends a packet to node Q : (M − 1, N − 1), then the worst-case hop count can be

expressed using (4.2) as

Hworst = fhops(P → Q) = [(M − 1) − 0] + [(N − 1) − 0] , (4.3)

or 2(N −1) for when M = N . As the size of the mesh increases, Hworst may result

in latencies that are unacceptably large with regards to application requirements.

The switch used in the mesh portion of the NoC simulation model has five

input ports, all of which have input FIFOs to store incoming packets. The out-

put ports are unbuffered and are connected directly to their neighbors. Flow

control between nodes on the mesh is achieved through the use of “on-off” flow

control [113]1. The hybrid architecture in [18] was designed to route flits indepen-

dently in order to interface easily with the hierarchical ring interconnect. While

simple, the hybrid architecture is not easily scalable as the overhead required

for addressing information becomes large with increasing mesh sizes. The aug-

1When an incoming buffer is full, the flow control signal is asserted (turned on), and the
downstream neighbour stops sending until the signal is de-asserted (turned off).
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Figure 4.1: A single express ring has been added to a normal mesh. The
number of hops for the communication P → Q can be reduced by travelling
through the ring instead of only through the mesh.

mented architecture presented here makes use of a wormhole routed mesh, where

a package of data travelling through the mesh is called a worm.

A worm is a collection of flits whereby the first flit, called the header flit,

contains the addressing information of the packet. As the header flit passes

through a switch, it obtains a lock on the output port through which it is being

routed so as to prevent interleaving with other worms. The next flit(s) after the

header is termed body flit(s), which contain the actual data being transmitted.

The last flit in a worm is called a tail flit, which releases the port that was locked

by the header flit after it gets routed through it.

4.2 Express Rings

In [69], express channels in each dimension were used to bypass sections of the

mesh and reduce the hop counts for long distance traffic. The original idea

has been adapted here such that unidirectional rings, or express rings, are used

to accomplish the same goal. In contrast to express channels [69], the circular

nature of rings does not require special routing in each dimension.

The most straightforward implementation of an express ring is shown in Fig-

ure 4.1, where a single ring has been added to a normal mesh. As can be seen

from the figure, the number of hops required for global traffic can be reduced by

routing through the global ring. For larger mesh sizes, the architecture shown in

Figure 4.1 can be scaled in three ways using single one-dimensional rings. The

first, and most straight-forward way to scale, would be to simply enlarge the sin-
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Figure 4.2: The tiled architecture where the mesh from Figure 4.1 has been
copied four times in order to produce a large mesh with four express rings.

gle ring as mesh size grows. While simple, this approach may lead to a ring with

large hop counts. Also, as nodes are added to the ring, the bisection bandwidth

of the single ring may limit performance under heavy load. Alternatively, second

method is to tile the mesh shown in Figure 4.1 to produce the larger mesh shown

in Figure 4.2. The advantage of the tiling strategy is that it mirrors the natural

way in which the mesh architecture scales, and does not require any additional

modifications to the architecture. The disadvantage of this approach is that there

may still be a large amount of congestion in the center of the mesh, especially

since there may be a lot traffic between the rings. To address this issue, a third

option shown in Figure 4.3, is to add concentric rings to the architecture as the

size of the mesh increases. The concentric approach will more evenly spread

traffic throughout the mesh network and will not be prone to a hot-spot in the

center of the mesh like the tiled approach. Furthermore, the addition of more

rings will spread the bandwidth demands over several rings, resulting in a more

scalable alternative to using a single ring.

4.3 Hierarchical Ring Augmented Mesh

Figure 4.4 shows the augmented wormhole mesh where a hierarchical ring is used

to route global traffic. The hierarchical ring depicted in Figure 4.4 consists of

four local rings, each having four bridge components. In this case, the number
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Figure 4.3: The concentric architecture is an alternate method of scaling up
the single express ring from Figure 4.1 by adding a larger concentric ring.

of nodes npe available for processing elements on the mesh is described by

npe = (M × N) − khr , (4.4)

where khr is the number of nodes required by the hierarchical rings to connect

to the mesh (khr = 16 in Figure 4.4). Note that the value of khr is dependent

on the configuration of the hierarchical rings, and not on the size of the mesh.

Sacrificing PEs for bridge components is an acceptable trade-off in light of the

latency reductions that will be achieved. Furthermore, for large enough values

of N , the removal of at most khr PEs will result in a small reduction of the total

available computing nodes.

The augmented architecture routes global traffic through the hierarchical ring.

In a mesh, the hop count for the communication shown between nodes P and Q

in Figure 4.4 would be 2(N − 1). In the augmented architecture, the hop count

for the path P → Q is described by:

ghops(P → Q) = fhops(P → Bp)

+ fhops(Bq → Q) + hhops(Bp → Bq)
(4.5)

where Bp is the bridge component nearest P , Bq is the bridge component Q and

hhops is the number of hops through the hierarchical rings. For the communication

P → Q, the number of hops through the ring hierarchy is 7, while the worst case

hop count for the hierarchical rings is 11. The worst case hop count for the
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Figure 4.4: Augmented mesh architecture where a hierarchical ring intercon-
nect is used to route global traffic. Long distance traffic travels through the
rings as can be seen by the communication between P → Q and R → S.
Short distance traffic travels at the lowest level of the hierarchy through the
mesh as can be seen by the communication between T → U .

augmented architecture grows as a logarithmic function, rather than a square

root function of the size [18]. Note that (4.5) can be applied to the express ring

architectures as well.

4.4 Hybrid Ring/Mesh Interconnect

Figure 4.5 shows the hybrid-mesh architecture where a large mesh has been split

into several smaller meshes that are globally connected using a two-level hierar-

chical ring interconnect. A sub-mesh is defined as the smallest mesh in the system,

and a local mesh is the mesh obtained by combining the sub-meshes of a local

ring together. From Figure 4.5, if the mesh being partitioned is of width N , then

the width of a sub-mesh (Wsub) and the width of a local mesh (Wlocal) are

Wsub =
M

4
,Wlocal =

M

2
. (4.6)

Routing traffic through the hybrid interconnect requires a labeling that relates
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Figure 4.5: Hybrid mesh architecture using hierarchical rings for global inter-
connect. A sub-mesh is the smallest mesh in the system. A local mesh is the
theoretical mesh obtained when combining all the sub-meshes belonging to
the same local ring.

the xy-cordinates of a tile in the mesh to the appropriate ring addresses in the

hierarchical rings. The following mapping function can be used:

f : XY → X̃Y , (4.7)

where each tile in a sub-mesh is labeled (x̃, ỹ) such that

X̃Y =
{

(x̃, ỹ) | x̃ ∈ X̃, ỹ ∈ Ỹ, X̃ ⊂ X, Ỹ ⊂ Y

}

X̃ =

{

0, 1, . . . ,
M

4
− 1

}

Ỹ =

{

0, 1, . . . ,
N

4
− 1

}

. (4.8)

Using (3.1) and (4.8) together, a labelling for the hybrid interconnect is defined,

where each tile can be represented by a tuple (x̃, ỹ, s, t) such that:

X̃Y × ST =
{

(x̃, ỹ, s, t) | x̃ ∈ X̃, ỹ ∈ Ỹ, s ∈ S, t ∈ T

}

(4.9)
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where S and T are the same as defined in (3.1). For example, the bottom-left

tile of each sub-mesh, using (4.8), has the label (0, 0). There are 16 sub-meshes

in total shown in Figure 4.5. For the bottom-left tile of each sub-mesh to have a

unique label, (4.9) can be used to label each one as (0, 0, si, tj), for the ith (local)

ring and jth ring-interface.

The worst case hop count for the unmodified mesh network is expressed

by (4.3), and for a large enough value of N , the latencies incurred by the network

will be too large for application software to support. The worst-case hop count

for the hybrid interconnect depends on which tile in the mesh is used to connect

to the hierarchical ring interconnect. If a corner tile is used, the worst case hop

count can be described by (4.10) whereas if a tile in the middle of the sub-mesh

is used, the worst case hop count can be described by (4.11), where Hrings is the

number of hops through the ring interconnect.

Hworst = 2

[

M + N − 2

k

]

+ Hrings (4.10)

Hbest = 2

[

M + N − 2

2k

]

+ Hrings (4.11)

Figure 4.6 shows how the hop counts increase as N increases for the mesh

and hybrid architecture, but it does not necessarily imply that the latencies will

increase proportionately. There are many parameters that can affect the latency,

resulting in a large design space. A property of the hybrid interconnect that has

been modeled is that the xy-routing algorithm tends to route global traffic away

from the center of a sub-mesh towards the edges when the bridge tile is located

in a corner. As will be seen in Section 6.2, the overall effect is that the resources

in the center of the mesh end up processing less global traffic and local traffic is

handled more efficiently.

When global traffic is routed through a bridge component, that component

can quickly become flooded, causing the flow control mechanisms to activate,

which can have a negative impact on latency. Increasing the input buffer sizes of

the bridge tile solves the problem and enables traffic to flow much more smoothly.

The required buffer size is very sensitive to the ratio of global to local traffic, as

well as the size of the sub-mesh, since in the worst case, the amount of traffic can

83



4 Composite Ring/Mesh Architectures

0 20 40 60 80 100

Mesh size N

0

50

100

150

200

H
o

p
s

Mesh
Hybrid Mesh (Corner)

Hybrid Mesh (Center)

Figure 4.6: Worst case hop counts for the mesh and hybrid-mesh topologies.
The worst case hop count for the hybrid topology depends on the placement
of the bridge component.

increase quadratically with N .

4.4.0.1 Enhanced Hybrid Interconnect

The hierarchical ring interconnect described in [16, 17] is prone to congestion

when back-pressure signals are asserted, resulting in the network being under-

utilized. The hierarchical nature of the interconnect and its back-pressure signals

can however be exploited to boost performance. It can be seen from Figure 3.1

that the potential for a system bottleneck is largest in the global ring. If the

global ring asserts a back-pressure signal, all 4 local rings must stop sending

data, which can result in the local rings being under-utilized. In the work pre-

sented in [16, 17], the hierarchical ring interconnect was used to connect PEs to-

gether, so the situation was acceptable, especially considering that the resources

usage of the interconnect is efficient [17]. In the case of the hybrid topologies,

that same structure is used to connect multiple NoCs together instead of PEs, so

the bandwidth requirement on the hierarchical ring interconnect will be much

greater.

Traffic on the hierarchical ring interconnect can be classified as local and global.

Local traffic does not need to travel to the global ring, which is a fact that can

be exploited to enable the implementation of an enhanced version of the hybrid

interconnect. The stop up and stop down signals described in Section 3.3 can be
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Figure 4.7: Enhanced architecture which uses two tiles to send data through
the hierarchical ring interconnect. Since local and global ring traffic are unre-
lated, an increase in performance can be obtained by using two rings at the
local level to route each type of traffic.

used to determine if data can still be injected into the interconnect. If the global

ring asserts a stop down signal because of congestion, this does not necessarily

mean that the local ring is also congested. The routing of global and local data

can thus be performed independently, reducing the overall latencies of traffic in

the hybrid architecture.

By modifying the implementation of the ring-interface component of the hi-

erarchical rings, logical channels similar to virtual channels can be achieved. The

advantage of this approach is that the logical channels can share hardware. For

every local ring:

• The inner channel is used for sending data locally on a ring.

• The outer channel is used for sending global data through the global ring.

The splitting of the network into two logical channels has it costs, such as the

need to sacrifice a second tile on the mesh to avoid multiplexing the data at the

level of the mesh. Figure 4.7 shows how the enhanced architecture uses two

tiles to connect the mesh and hierarchical rings together. Since a corner tile has

only two input and output ports, it is preferable to route traffic to the inner ring

through an interface that is not on an edge.
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4.5 Ring/Mesh Bridge Component

To evaluate the proposed architectures, the hardware implications (area, latency,

energy consumption) of the dedicate bridge component requires consideration.

The bridge component is a unit that enables data transfer to/from the mesh and

hierarchical ring interconnect. The major hurdle faced when implementing the

bridge component is that it interfaces two fundamentally different network archi-

tectures. As already discussed in Section 4.1, the mesh network is a wormhole

routed-network, where a collection of flits are logically related to form a packet.

In contrast, the hierarchical ring interconnect considers all routed flits as unrelated.

The bridge component must maintain the ordering of flits at egress points, and

also must ensure to not interleave flits belonging to different worms. There are

two ways to handle the problem of interfacing these two dichotomous networks

that involve different bridge architectures; they will be described in the following

subsections.

4.5.1 Narrow Bridge Implementation

At first glance, the most straightforward approach to bridging the mesh and

ring networks is to simply tunnel the flits coming from the mesh through the

hierarchical rings as was done in [18, 19]. This approach is termed “narrow”

because each flit is routed individually, and so the data width of the ring network

is equal to the width of a flit from the mesh network plus the header width of

the ring network. Figure 4.8 shows the narrow implementation of the bridge

component connecting a mesh switch and ring interface. The left side of Figure 4.8

shows how flits are moved upwards from the mesh to the ring interconnect by

tunneling mesh flits individually through the ring.

Since the ring interconnect considers flits to be independent, flits from dif-

ferent ring interfaces can be interleaved as the travel through the interconnect.

When a flit arrives at an egress point, the bridge component must reassemble the

original mesh packet so that it can be injected properly back into the mesh net-

work. It is critical that flits from different packets not be interleaved by the bridge

components — the behavior of the mesh network will be non-deterministic.
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Figure 4.8: The narrow implementation of the bridge component injects flits
into the ring network as they arrive from the mesh. The bridge must reassemble
packets at the egress point, which requires nri−1 buffers large enough to store
a complete mesh packet. Only once the entire packet has been received
at the egress point can the bridge component inject a packet into the mesh
network.
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To guard against interleaving packets, the bridge component can reconstruct

the original flit at the egress point. For every bridge component connected to

the hierarchical rings, there can be at most nri − 1 different worms arriving si-

multaneously from the ring interconnect. The reason this holds true is because a

packet is known to leave the mesh network intact due to the nature of wormhole

routing.

To solve the problem of interleaving, every bridge component stores flits until

a tail flit arrives to complete a worm. Only when a full worm has arrived will

a bridge component start to transfer it to the mesh. To reconstruct packets, the

bridge component requires enough storage to hold nri −1 worms. The size of the

buffers required is directly related to the maximum packet/worm size allowed on

the mesh. If the packet size is large, the buffer requirements for the bridge will

be larger. Additionally, large packet sizes will result in a latency penalty while

packets are forced to wait to be reassembled at the bridge component before

being forwarded to the mesh. The right side of Figure 4.8 shows how the bridge

component stores flits from individual worms in Wcount FIFOs.

A drawback of the narrow implementation is that the latency incurred by

each flit due to the reassembly process at the egress point is non-deterministic

and depends on the congestion in the ring interconnect. As long as there is 1

outstanding flit remaining, the other flits belonging to the same packet cannot

be injected into the mesh. This situation can also have the negative effect on

increasing the inter-flit jitter of a packet to an unacceptable degree (depending

on the application).

4.5.2 Wide Bridge Implementation

A second approach used here is to interface the two networks by widening the

hierarchical rings such that a full worm can be carried by a single ring-flit —

termed the “wide” bridge implementation. While this creates a larger bandwidth,

the drawback of this approach is that it will require more resources. This trade-

off can be justified since the goal of using the hierarchical rings is to reduce

latencies and hop-counts for global traffic. A real world example of using a

wide bus-width for a ring-based interconnect is the IBM Cell processor, which
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uses four unidirectional rings that are each sixteen bytes wide. Since an entire

packet (or worm) will arrive intact at the egress bridge, less buffering is needed to

store outgoing flits. Recall that for the straightforward or narrow approach, each

bridge component must be able to store nri − 1 complete packets. For the wide

or fat approach, only a single packet needs to be buffered because packets are

processed as they arrive from the ring interconnect. The wide approach differs

from the narrow approach further in the way incoming flits are processed. In

the narrow approach, flits are simply forwarded onto the rings as they arrive,

which necessitates packet reassembly and extra buffers at the egress bridge. The

wide approach, on the other hand, needs to buffer flits until the entire packet has

arrived, at which time it can be forwarded intact to the rings. Figure 4.9 shows

an example of the wide bridge implementation, which requires only 2 registers

wide enough to store a ring flit. The figure shows how a ring flit is assembled

over a period of several clock cycles at the ingress port, and how the flits are

subsequently injected back into the mesh. Unlike the narrow approach, latency

incurred at the ingress and egress bridges is deterministic. Another advantage

to using wide hierarchical rings is that since it takes multiple clock cycles to

assemble a packet at the ingress point, a single bridge component will only be

able to inject a flit into the ring interconnect every nf clock cycles (where nf is the

number of flits per packet). This forces a fair sharing of the bandwidth available

on each local ring between each bridge component belonging to that ring. The

result is that the possibility of starvation is removed and the overall performance

of the system is improved2.

4.6 Resource Requirements

Extending a mesh network by adding hierarchical rings improves performance at

the cost of the extra resources required by the rings. In this section, a character-

ization of the resource overhead for each architecture is presented.

The resource requirement of a FIFO is a function of its width w and depth d,

2The simplest implementation of a ring is prone to starvation unless extra logic is added to
provide fair sharing of bandwidth.
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Figure 4.9: Wide implementation of the bridge component. Flits arriving from
the mesh network are stored in a register until the entire packet has been
received. Once the tail flit arrives, the entire packet can be forwarded through
the hierarchical rings as a single ring-flit. At the egress bridge, the packet is
injected one flit at a time back into the mesh network.
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expressed as

F (w, d) = w · d . (4.12)

The resource requirement of a mesh router can therefore be expressed as

Rmesh(w, d) = 6 · F (w, d) + Lmesh(w, d) , (4.13)

where Lmesh represents the resource usage due to combinational and sequential

logic (note that a mesh router has 6 FIFOs). Similarly, the resource usage of the

ring-interface and inter-ring interface components can be expressed as

Rri(w, d) = 3 · F (w, d) + Lri(w, d) ,

Riri(w, d) = 2 · F (w, d) + Liri(w, d) .
(4.14)

since the number of FIFOs in the ring and inter-ring interfaces are 3 and 2 respec-

tively. Making a simplifying assumption that L is approximately the same for all

components, then (4.13) and (4.14) are reduced to being functions of F only.

For the wide implementation of the hierarchical rings, the F term is multiplied

by nf (number of flits per worm), so (4.14) can be written in terms of Rmesh as

Rri = nf ·
3

6
· Rmesh ,

Riri = nf ·
2

6
· Rmesh .

(4.15)

Therefore, the extra resources required by the hierarchical rings can be expressed

in terms of Rmesh as

Rhrings = nri · Rri + niri · Riri , (4.16)

which evaluates to approximately 7nf · Rmesh extra resources required for the

hierarchical ring architecture. It should be noted that the assumptions are based

on a simple implementation of the mesh router; more complex routers that use

virtual channels would have a higher buffer requirement.

For the hybrid architecture, resources are actually saved by splitting a large

mesh into sub-meshes since edge and corner tiles require less resources. When

a mesh is split into smaller meshes, all the links that are cut result in resource
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savings because the associated FIFOs are no longer needed. A normal mesh

router has 6 FIFOs, whereas an edge tile has 4, and a corner tile has 3. The

difference in required buffers between the normal mesh and hybrid architectures

is related to the number of tiles that are converted to edge and corner tiles and

can be expressed as

∆Rhybrid = ∆Redge + ∆Rcorner , (4.17)

where ∆Redge is the difference in resources required by edge tiles, and ∆Rcorner

is the difference in resources required by corner tiles.

For a normal mesh, the number of corner tiles ncorner is 4, and the number of

corner tiles in the hybrid architectures is 16ncorner . Therefore, the difference in

resource requirement due to an increased number of corner tiles can be expressed

using (4.15) as

∆Rcorner = (16ncorner − ncorner)
2

6
· Rmesh . (4.18)

Similarly, the number of edge tiles in a mesh is given by

nedge(N,M) = 2(N − 1) + 2(M − 1) − ncorner , (4.19)

or

nedge(N) = 4(N − 1) − ncorner (4.20)

when M = N . For the hybrid interconnect, each sub-mesh is of size Nsub = N
4

,

for which (4.20) evaluates to

nedge

(

N

4

)

= N − 8 . (4.21)

Since there are 16 sub-meshes, the total number of edge tiles in the hybrid

interconnect can be expressed as

nedge,hybrid = 16 · nedge

(

N

4

)

. (4.22)

Therefore, the difference in resource requirement due to an increase in the number
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of edge tiles in the hybrid architecture can be expressed as

∆Redge = (nedge,hybrid − nedge) ·
1

6
· Rmesh . (4.23)

For example, using a mesh size of N = 16, (4.17) evaluates to

∆Rhybrid = 74 ·
1

6
· Rmesh + 60 ·

2

6
· Rmesh

= 32 · Rmesh

. (4.24)

Therefore, when a mesh of width 16 is converted to the hybrid architecture,

the resources saved by splitting the large mesh into 16 smaller sub-meshes is

roughly equivalent to 32 normal routers. A mesh of size 16 contains 256 tiles,

so a savings of 32 routers represents an approximate reduction of 12.5%, Thus,

a good alternative to having a single large mesh is to use several smaller meshes

that are interconnected by a global interconnect as is the case for the hybrid

interconnect. The estimate can be seen as being conservative because the cost

(i.e. area) of each router is linearly dependent on the number of input FIFOs.

However, the area of the routers usually grows quadratically with the number

of inputs due to the poor scalability of the crossbar switches commonly used in

NoC implementations.

93





Chapter 5

NoCsim Simulation Platform and Soft-

ware

Certain properties such as resource requirements, maximum operating frequency,

energy usage, and routing complexity can only be extracted from RTL level imple-

mentations. However, hardware description languages are not as flexible as high-

level programming languages for quickly prototyping new architectures. Further-

more, creating complex test-benches using HDLs is time consuming and difficult

because the designer is ultimately limited by the expressiveness of the language

being used. The architectures presented in Chapter 4 would have proven time

consuming to implement at the RTL level; architectural modeling was performed

using behavioral SystemC models instead. In order to model and simulate the

various hybrid architectures, the following application/libraries were created:

• NoCsim: A custom library of SystemC components that are used to model

the different architectures. The entire source tree totals approximately 18k

lines of code (LOC).

• Gengraph: A custom class C++ library and application that provides data

structures for manipulating and generating graphs (3k LOC).

• SAgraph: Implementation of the simulated annealing algorithm that makes

use of the Gengraph library to generate optimized task assignments for the

mesh and hybrid topologies (1k LOC).
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Figure 5.1: Custom Network-on-Chip simulation platform tool flow.

Figure 5.1 shows how each tool fits within the simulation tool flow used to gener-

ate the simulation results presented in Chapter 6. First, the Gengraph program is

used to generate a task graph which is written to a configuration file. On startup,

the NoC simulator configures each node on the network based on the generated

task graph configuration file. Once a simulation run completes, the log files are

processed by custom Python scripts that generate plots using either Matplotlib

or Gnuplot.

The following sections will describe how each component of the simulation

environment works.

5.1 NoC Simulation Platform and Library

The NoC simulation platform (NoCsim) consists of a library of components that

were designed to leverage the expressiveness of C++. Specifically, object oriented

(OO) design concepts were used so that the components could be easily com-

bined in a “plug-and-play” manner to facilitate architectural exploration. Fig-

ure 5.2 shows the unified modeling language (UML) Class Diagram of the NoCsim
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nocsim

topology

augmented

express hrings

hybrid

mesh

sim

utils

bin

Figure 5.2: UML class diagram of NoC simulation platform architecture.

platform. The topology package1 contains sub-packages that in turn contain the

components specific to each topology being modeled. For example, the mesh

package contains all classes related to modeling a mesh architecture.

One of the main features that makes constructing a network topology relatively

easy is the way that components are connected using OO concepts. For example,

ports are grouped together using special utility classes, and components can be

connected together using specially designed methods. To illustrate the mecha-

nisms used to connect components together, the hrings package, which is used

to model the hierarchical rings, is explained in the next subsection.

5.1.1 The hrings package

The class diagram of the hrings package is shown in Figure 5.3, where the

classes can be categorized as:

• Container classes represent high-level abstractions and are composed of sev-

eral component classes:

1A package is the UML term for a module or library.
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Figure 5.3: Hierarchical rings package class diagram.

– HierarchialRings is the top-most class that when instantiated, rep-

resents the entire hierarchical ring interconnect.

– LocalRing and GlobalRing represent instances of a local or global

ring, repectively.

• Components are classes that model hardware components such as routers:

– RingInterface and InterRingInterface model the IR and IRI

components discussed in Chapter 3.

– RingStation models a terminal node that sends and receives data

over the interconnect.

• Port/signal classes are used to group logically related ports and signals to-

gether similar to VHDL records2.

– Any class name ending in Ports or Signals.

2A VHDL record is loosely equivalent to a struct in C.
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The straightforward method of connecting components together in SystemC

is to define individual input and output ports that will need to be connected one-

by-one. In SystemC, a signal represents a medium over which two components

can communicate. Therefore, connecting two components requires that a signal

be connected to an output port of the first component, and then to the input

port of the second component. Connecting ports individually can lead to errors

when dealing with complex components that have many ports, and detecting a

wrongly connected port can be difficult and time consuming. A better approach,

which is employed by NoCsim, is to use OO design techniques to group port

objects into classes.

Before going into the SystemC/C++ implementation details, it is instructive

to first consider the block diagram in Figure 5.4, which shows how components

can be connected by using ports and signals graphically. For example, since each

RI needs to connect to a processing element (in this case, the RingStation) and

other RIs, it needs to have 3 ports:

1. An input port that connects to the previous ring-interface on the ring.

2. An output port that connects to the next ring-interface on the ring.

3. A bi-directional port that connects to the processing element3.

Since a port is nothing more than a C++ object, multiple port objects can be

grouped together within specialized Port classes. As shown in Figure 5.3, there

are several port-type classes used by the hierarchical rings model. Listing 5.1

shows a code snippet taken from the RingInterfacePorts class, which itself

has internal classes for input and ouput ports. For example, the OutToRing class

shown in Listing 5.1, groups all output ports that communicate with the ring. All

output ports that communicate with the RingStation are grouped together in

the OutToStation class (not shown). Furthermore, OutPorts groups all output

ports that belong to the RingInterface together in a single class. Lastly, the

input and output port classes can be instantiated by the RingInterface class,

and all of the ports can be accessed through the in and out objects.

3Note that a bi-directional port is implemented as two unidirectional ports.

99



5 NoCsim Simulation Platform and Software

���������	
��

������
��
�

���������	
��

��
��
��
���

���������	
���
���

����
��

Figure 5.4: Block diagram showing how components are connected using
ports and signals. Each component has 1 or more ports that can be used to
connect to other components.

The classes shown in Listing 5.1 enable the port-to-port connections shown in

Figure 5.4 to be made. What is missing is an efficient way to connect the ports

that is less error prone than performing the connections manually. The reason

the “one-by-one” approach is error prone is because the connections must be

done manually by the programmer, who must be aware of how all the ports and

signals connect to each other. The approach taken when designing the NoCsim

libraries was to centralize the port connection code by using connect methods.

Listing 5.2 shows an example of the connect method for the ring interface. Note

the method signature, which provides an added layer of security; if the person

calling the function passes an incorrect object type, the compiler will catch the

error. Manually connecting the ports and signals would require the code in the

connect method to be repeated often, which can result in errors due to typos,

copy/paste errors, or programmer error. Conversely, centralizing the connection

by putting it in a function makes instantiating components easier and less prone

to errors.

Once all the port, signal, and connect methods have been defined, a network

topology can be easily constructed by the programmer. Listing 5.3 shows how a

for loop can be used to connect several ring-stations to the appropriate station
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Listing 5.1: Partial code listing showing how the output ports of the RingIn-

terface are grouped together using separate classes. Also shown is how the
input and output ports are instantiated by the RingInterface class.

1 template<class DataT, int ADDR_BITS = 4>
2 class OutToRing
3 {
4 public:
5
6 sc_out<bool> stopUp;
7 sc_out< std::bitset<ADDR_BITS> > stopDown;
8 sc_out<DataT> data;
9

10 OutToRing() : stopUp("stopUp"), stopDown("stopDown"), data("data") { };
11 };
12
13 template<class DataT, int ADDR_BITS = 4>
14 class OutPorts
15 {
16 public:
17
18 OutToRing<DataT, ADDR_BITS> ring;
19
20 OutToStation<DataT> station;
21 };
22
23
24 template<class RingFlitT, int ADDR_BITS>
25 class RingInterface : public sc_module
26 {
27 public:
28
29 InPorts<RingFlitT, ADDR_BITS> in;
30
31 OutPorts<RingFlitT, ADDR_BITS> out;
32
33 // ...
34 };

objects using repeated calls to a single function. The effect is to hide (or abstract)

from the programmer the underlying code needed to connect all the ports and

signals together.

The major advantage achieved by abstracting away the details of connecting

components is to promote reuse, where connecting components together to form

new topologies can be done relatively easily, as long as each component respects

the port/signal/connect paradigm. The hybrid interconnects described in Sec-

tion 4, where the hierarchical rings and mesh topologies were combined, were

constructed in this manner.

5.2 Traffic Generation

This section describes the applications used to generate traffic on the intercon-

nect by creating task-graphs using a custom written application. Furthermore, a

second application can be used to optimize the task distribution of the randomly
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Listing 5.2: The signatures for the connect method of the ring interface

1 /∗∗
2 ∗ Connect two ring interfaces together.
3 ∗/
4 static void connect(RingInterfaceT ∗left, RingInterfaceT ∗right, RingSignalsT ∗sigs){
5 // connect backpressure signals.
6 left.in.ring.stopUp(sigs.stopUp);
7 left.in.ring.stopDown(sigs.stopDown);
8
9 right.out.ring.stopUp(sigs.stopUp);

10 right.out.ring.stopDown(sigs.stopDown);
11
12 // connect data channel
13 left.out.ring.data(sigs.data);
14 right.in.ring.data(sigs.data);
15 };
16
17 /∗∗
18 ∗ Connect a station to a ring interface.
19 ∗/
20 static void connect(AbstractRingStationT ∗station, RingInterfaceT ∗ri,
21 StationSignalsT ∗sigs){
22 // ...
23 };

Listing 5.3: Using the connect method of the ring-interface in a loop to con-
nect the ports of RingStation to RingInterface objects.

1 // Connect Station objects to RingInterface objects.
2 for(int i = 0; i < nodes; i++)
3 {
4 RingInterfaceT::connect(
5 stations[i],
6 riArray[i],
7 &ri_signals[i]−>station);
8 };

generated task graphs in order to improve the locality of the generated traffic.

Also, in order to compare the performance of each architecture, a category par-

titioning of traffic types based on the distances traveled in the interconnect is

made.

5.2.1 Graph Generation

A standalone utility called Gengraph was implemented in C++ to generate pseudo-

random and biased pseudo-random task graphs and map them onto the inter-

connect under study. Each vertex in the graph corresponds to a task, and each

directed edge between two vertices indicates that the source vertex will send data

to the sink vertex during simulation. The complexity of the task graph is con-

trolled by several input parameters. The process of generating a task graph and

mapping consists of the following steps:
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Figure 5.5: Example of two possible mappings of a graph for a mesh size of
3 × 3.

1. A task graph is generated based on input parameters.

2. The task graph is mapped to a mesh.

3. The final mapping is written to a configuration file.

4. The configuration file is read by the simulator.

In order to generate application-like traffic on the interconnect using the task-

graph generation program, some simplifying assumptions have been made in the

simulation models:

• Only a single task is mapped to a node on the interconnect.

• Each task can send to (out-degree) and receive from (in-degree) zero or more

tasks.

• The maximum in/out-degrees of a task can be constrained.

Since we are interested in generating traffic on the network, mapping a single task

is sufficient. However, the approach can be expanded to handle more complex

task graphs (i.e. tasks can be annotated with priorities, execution times, resource

type, etc).

The simulator constructs a send schedule for each node based on the out-degree

of the task that has been mapped to it. A simple example of a task graph and

subsequent mapping is shown in Figure 5.5. When the configuration file is read

by the simulator, the node that has been assigned task A will construct a send

schedule consisting of two entries, namely B and D. During the simulation, task

A will send data to both tasks at randomly spaced intervals.
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5.2.2 Classification of Traffic

Since the composite architectures are comprised of several levels arranged in

a hierarchy, it is necessary to categorize traffic according to the levels in the

hierarchy that it traverses. Therefore, a classification of traffic is made as follows:

• C0 traffic is termed local because the distances travelled are short. Fur-

thermore, this type of traffic does not require routing through the ring

interconnect in the composite architectures.

• C1 traffic must travel an intermediate distance and may be routed through

the global interconnect.

• C2 traffic must travel long distances and will always4 traverse the global

interconnect.

The partitioning of traffic into the three categories enables the unmodified

mesh network and the composite architectures to be compared. Due to the ar-

chitectural differences of each architecture, the category partitions must be per-

formed differently for each. The following subsections describe how the different

traffic types are categorized for each architecture.

5.2.2.1 Wormhole-Routed Mesh

For the unmodified mesh network, the category partitioning of traffic corresponds

to the distances between any pair of sender and receiver nodes on the network.

The categories are described by

fcat(pi) =











C0 : 0 < fhops(pi) <= M+N−2
4

C1 : M+N−2
4

< fhops(pi) <= M+N−2
2

C2 : M+N−2
2

< fhops(pi) <= M + N

. (5.1)

In (5.1), pi corresponds to a path between two tiles on the mesh. By classifying

traffic using (5.1), data can be collected on local and global traffic for the purpose

4If adaptive routing is being used, C2 traffic may be routed differently without traversing the
global interconnect.
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of comparing the performance of the normal mesh topology to the composite

architectures.

5.2.2.2 Augmented and Express Architectures

Since the augmented and express architectures consist of a normal wormhole

mesh with either a hierarchical or normal ring network added, the traffic clas-

sifications for the new architectures can be made using (5.1). In the augmented

architecture, C0 traffic will travel only through the mesh network at the lowest

level of the hierarchy because the distances are short. The intermediate distances

of C1 traffic requires that it be routed up to the second hierarchical level and

through a local ring of the hierarchical ring network. Lastly, C2 traffic, which

must travel the longest distances, will be routed up to the third hierarchical level

through the global ring of the hierarchical ring network.

The three traffic categories are represented graphically in Figure 4.4. Short

paths between two sender nodes such as T → U are of type C0 traffic. The paths

P → Q and R → S shown in Figure 4.4 are of types C2 and C1, respectively.

Since the goal of the augmented and express architectures is to reduce the latency

incurred by global traffic, traffic types C1 and C2 are of primary interest because

they are the types most likely to traverse the hierarchical ring interconnect.

5.2.2.3 Hybrid Architecture

The classification of traffic types for the hybrid topology cannot be made us-

ing (5.1) because two nodes that are logically close to each other using (4.1) may

actually belong to different sub-meshes, requiring that the packet travel through

the hierarchical ring interconnect. For the hybrid topology, the traffic types cor-

respond to the layers in the hierarchy shown in Figure 3.1. Using (4.9), traffic can

be categorized using

fcat(P → Q) =



















C0 : sp = sq, tp = tq

C1 : sp 6= wq, tp = tq

C2 : sp 6= wq, tp 6= tq

. (5.2)
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The classifications given by (4.9) can be explained in plain language as:

• C0 traffic corresponds to traffic that is sent between tiles at the lowest level

of the hierarchy, namely between stations belonging to the same sub-mesh.

• C1 traffic travels through a single local ring to reach a tile on another sub-

mesh which is part of the same local mesh.

• C2 corresponds to traffic that travels between tiles belonging to different

local meshes and thus must go through the global ring.

5.2.3 Optimized Task Assignment

A companion application called SAgraph that uses the Gengraph data structures

was implemented to performs optimized task assignment using simulated anneal-

ing [126]. The motivation for performing optimized task assignment is because

randomly assigning tasks to nodes on the composite architectures will not make

the best use of available resources because non-optimal assignment will generate

a large amount of traffic which will be routed through the global interconnect.

In [20], simulated annealing was used to perform optimized task assignments.

The algorithm analyzes a task graph and assigns tasks to nodes to minimize path

lengths between communicating nodes.

Simulated annealing is a heuristic algorithm that can be used to find a good

approximation of the global optimum in a reasonably small number of iterations

(e.g. 106). The algorithm starts at a random initial state that has an initial energy

(cost). A neighboring state is chosen at random and its energy is calculated using

the cost function. The current energy is compared to the energy of the neighbor-

ing state, and a decision is made to stay at the current state, or to transition to the

neighboring state. The goal of the algorithm is to iteratively move from a high

energy state to a low energy state, which corresponds to a local minimum. The

algorithm terminates when the maximum number of iterations has been reached.

The selection of a neighboring state is performed in an application specific way.

For the task-assignment problem described here, the neighboring state is chosen

by randomly exchanging the assignment of a pair of tasks. Ideally, transitions

would only be made to states with a lower energy/cost (downhill move), but
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Figure 5.6: The progression of the simulated annealing algorithm over 106 itera-
tions for a task-graph consisting of 202 vertices and 102 edges being mapped
onto a 202 mesh. The space between the two lines shows how the tolerance
for uphill moves decreases with time.

restricting the algorithm to downhill only moves may prevent the algorithm from

finding a good solution because it converges quickly to find a local minimum.

To enable the algorithm to search a larger portion of the solution space, uphill

moves (transitions to states with higher energy) are allowed based on a proba-

bilistic function. The probability that a uphill move is allowed decreases with

time, as does the size of the allowed move. Figure 5.6 shows the progression of

the simulated annealing algorithm for a task-graph consisting of 202 vertices and

102 edges being mapped onto a 202 mesh over 106 iterations. For clarity, the 106

data points have been separated into 103 blocks, and the maximum and minimum

values of each block have been plotted. The area between the two lines shows

the range of values of the evaluated cost function. At the start of execution, when

the probability of uphill moves is greatest, it can be seen that the different be-

tween the “High” and “Low” lines in Figure 5.6 is greatest. Hence, the algorithm

is allowed to search through a larger numbering of neighboring states. As the

number of iterations increases, less uphill moves are allowed. As the probability

of an uphill move is decreased, the algorithm is restricted to neighboring states

with lower cost, thereby resulting in a narrowing in the gap between the two

plots in Figure 5.6.
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For the normal mesh architecture, the sum of the distance given by (4.2) can

be minimized to find a near-optimal solution. However, a different approach

must be taken for the composite architectures because traffic that must travel up

through the global interconnect has a higher associated cost than traffic that does

not. For the composite architecture, (4.2) can be rewritten as

˜fhops(pi) = αfhops(pi) , (5.3)

where

α =



















1 : fcat(pi) = C0

2 : fcat(pi) = C1

6 : fcat(pi) = C2

. (5.4)

The multiplier α in (5.4) is used to increase the penalty associated with a task

assignment that requires traffic to go through the hierarchical rings. The value of

α is greatest for traffic that would have to travel through the system bottleneck,

namely the global ring.

5.3 Blocking Aware Task Assignment

The two-dimensional mesh network is a popular topology used for NoC intercon-

nects. It consists of multi-port switches arranged in a rectilinear grid, where each

switch is connected to its associated core and bi-directionally to its top, bottom,

left and right neighbors. Each core-switch unit is called a node. The most popular

routing method used in on-chip mesh networks is deterministic xy (dimension)

routing because it is simple and guarantees minimum path length. However,

blocking (contention) can occur when multiple packets are routed along inter-

secting paths. In fact, wormhole networks have poor link utilization under heavy

loads because they saturate from contention [127] well before the available band-

width has been exhausted. In an attempt to reduce the latency penalties associ-

ated with blocking, various adaptive routing schemes (which are non-deterministic)

have been suggested as improvements over xy routing, but it has been shown that

deterministic routing often yields superior performance [128].
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In this section, a methodology for assigning tasks to nodes in a wormhole-

routed mesh that takes contention into account is presented, such that the overall

performance is optimized. The algorithm accepts a task graph where vertices and

edges represent respectively the tasks and the communications between them.

The algorithm analyzes the task graph and assigns tasks to nodes to minimize

path lengths and the amount of potential blocking during concurrent communi-

cations.

As stated in [129], only a few approaches from real-time systems have been

applied to SoC design. Much of the work done in real-time scheduling (RTS) treats

the communication medium as a resource that can be locked by only one process

at a time. This treatment does not apply well to a wormhole routed mesh, because

no single task can explicitly lock the communication path between any two nodes

on the network. To meet quality-of-service (QoS) constraints such as those imposed

by real-time systems, resources must be dedicated to high-priority traffic on the

network as discussed in [53]. The work presented here aims to reduce latencies

for a normal mesh network by avoiding contention and making more efficient

use of available resources without explicitly reserving resources for high priority

traffic. This approach is acceptable for systems which do not have stringent timing

constraints such as soft real-time systems or general purpose chip-multiprocessors

(CMPs).

5.3.1 Communication Costs

In xy routing, a deterministic communication path is established between two

cores on the mesh. The path begins at the core that initiates the communication

and always starts by traversing along the mesh horizontally. As it reaches the

core that is on the same column as the targeted core, the path turns vertically

until the destination is reached. The total communication cost of communication

channel co in the mesh can be represented by the length of its path and the

potential blockage it may cause when it occupies a number of routing channels

fcomm(co) = αflat(co) + βfblk(co) , (5.5)
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Figure 5.7: Contention for communication paths in a mesh. Communica-
tion between P → Q can potentially block communication between A →
{B,C,D,E} Communication between R → S has less probability of causing
blocking than P → Q.

where α and β are the normalization factors of latency and blockage costs re-

spectively. The magnitudes of each term in (5.5) may be different by orders of

magnitude. The normalization factors are needed in order to control the weight

that flat(co) and fblk(co) have on the overall cost calculation.

Blocking occurs when multiple packets are routed along the same path and

contention occurs at an output port of a switch. Figure 5.7, shows example

wormhole routes which are blocked by the communication route between nodes

P and Q.

5.3.2 Latency Cost Function

One of the major reasons for using NoCs is to minimize communication latencies

between communicating cores. It is thus important to minimize the latency cost

of a wormhole communication co from node locations (xp, yp) to (xq, yq). Using

xy routing, the path taken is deterministic and provably shortest, given by (5.6)

and is thus an important metric to be minimized.

flat(co) = |xp − xq| + |yp − yq|. (5.6)
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Figure 5.8: Possible communication channels and blockage patterns on a
mesh. (a) Possible communication channels from node P to Q on the mesh.
(b) 6 zones correspond to different blockage patterns due to given communi-
cation channel co : P → Q.

5.3.3 Blockage Cost Function

The communication costs due to the network congestion (blocking), among dif-

ferent paths must be accounted for. To quantify the potential amount of network

congestion on the mesh due to a given wormhole communication co, the ratio

of communications among cores elsewhere on the mesh that are blocked by the

given communication to those that are not is considered. Hence, the blocking cost

for co on the entire H × L mesh is

fblk(co) =
∑

all nodes

Nblocked

Npass

, (5.7)

where Nblocked and Npass are respectively the number of blocked and permissible

destination cores initiated by the ith core on the mesh. Figure 5.8a shows that

blocking depends on the relative locations of the given communication route

co : (P,Q) and the initiation location R. co could either be East- or West-going,

North- or South-going. To evaluate (5.7), the mesh is divided into 6 zones denoting

the possible locations of R relative to co, as shown in Figure 5.8b. The number of

nodes, either reachable and unreachable (as blocked by co) from R in each of the

zones are determined. Thus (5.7) can be restated as (5.8) and (5.9), where Nzone(i)

and Nmesh are the number of cores belonging to zone i and the total number of
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Table 5.1: Nzone and Nblocked values for zones 1 to 3 for P : (xp, yp) → Q : (xq, yq)

i Nzone(i) Nblocked(i)

1
E: xp E: (L − xp)H
W: L − xp + 1 W: (xp − 1)H

2
N: (yp − 1)L N: H − yp

S: (H − yp)L S: yp − 1

3
E: L − xq + 1 N: H − yp

W: xq S: yp − 1

cores on the mesh respectively.

fblk(co) =
6

∑

i=1

fblk(co, i) (5.8)

fblk(co, i) =
Nblocked(i)

Npass(i)
Nzone(i) =

Nblocked(i)Nzone(i)

Nmesh − Nblocked(i)
(5.9)

Let the origin of a H × L mesh be at the lower-left, denoted (1, 1). Suppose a

channel co established from origin core P : (xp, yp) to destination core Q : (xq, yq) is

active, we define:

• co is East-going if xq ≥ xp; West-going if xp > xq.

• co is North-going if yq ≥ yp; South-going if yp > yq.

The following subsections consider the blockage of xy routing in each zone for

all relative locations of P and Q.

If co is East-going, and if core R in the xth
p row would like to establish a new

communication channel to cores elsewhere on the mesh, then only cores located

in columns left of P are reachable. Figure 5.9 illustrates the reachable and blocked

regions on the mesh. In general, values of Nzone and Nblocked for R in zone 1 to

3 are listed in Table 5.1, according to the orientation of co. Thus, fblk(co, i) for

i = 1, 2, 3 can be determined.

If R is in zone 4, and co is North-going, then all cores except those in column

xq above the row of R are reachable. Figure 5.9d reveals that the blockage pattern
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Figure 5.9: Channels initiated from various zones to shaded regions being
blocked by channel in use.

is dependent on the row location of R. In general,

fblk(co, 4) =

{

∑yq−1
j=yp+1

(H−j−1)L
HL−(H−j−1)

, co North-going
∑yp−1

j=yq+1
(j−1)L

HL−(j−1)
, co South-going

(5.10)

Since co does not block any new channel from zone 5, Nblocked(5) = 0 and thus,

fblk(co, 5) = 0. In zone 6 (Figure 5.9f), if co is East-going, all nodes to the right of

R are unreachable. In general,

fblk(co, 6) =

{

∑xq−1
j=xp+1

L−j−1
j+1

, co East-going
∑xp−1

j=xq+1
j−1

L−j+1
, co West-going

(5.11)

5.3.4 NoC Communication Optimization

Using the heuristic optimization algorithm called simulated annealing (SA) [126],

the task assignment on homogeneous meshes using deterministic wormhole rout-

ing is optimized. The goal of the optimization is to minimize the blocking cost

associated with a solution (task assignment). Let pi be the ith trial task assign-
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ment; its associated cost fcomm is given by

fsch(pi) =
N

∑

n=1

1

σ(cn)
fcomm(cn) , (5.12)

where cn, n = 1, ..., N are communication links in pi, and σ is its priority.

The SA algorithm iteratively solves (5.12), searching the solution space for

a task assignment with minimal cost. The simulated annealing implementation

described in Section 5.2.3 has been modified to include the cost associated with

contention when performing task-assignment optimization.
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Chapter 6

NoCsim Simulation Study

The architectures presented in Chapter 4 were simulated using the NoCsim sim-

ulation platform and companion tools discussed in Chapter 5. The simulation

platform was used to perform architectural exploration and to compare the per-

formance of the different architectures relative to each other. The traffic distribu-

tions, latencies, and hop counts were compared, as well as the effects of bridge

placement and adaptive routing (for the augmented architecture). Also, the effect

of blocking aware task assignment on the normal mesh architecture is presented.

The simulation results obtained are presented in the following sections.

6.1 Express Rings

As previously mentioned, the tiled architecture shown in Figure 4.2 consists of

several instances of a mesh which has had a single ring added to it (Figure 4.1).

Before presenting simulation results for the more complex architectures, the re-

sults obtained when simulating the simpler architecture of Figure 4.1 are first

discussed. A mesh size of N = 10 was simulated using a randomly generated

task graph to generate traffic on the network. The resulting traffic patterns for

the normal mesh and a mesh with a single ring consisting of 4 bridge compo-

nents are shown in Figure 6.1a and Figure 6.1b, respectively. Interestingly, while

the mesh exhibits congestion in the center, the center region of the express-ring
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Figure 6.1: Distribution of traffic for a network size of N = 10. (a)The mesh archi-
tecture exhibits congestion in the center. (b) The single express ring topology
exhibits spikes that correspond to bridge components which route traffic up-
wards onto the ring.
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Figure 6.2: Simulation results showing latencies (normalized) and hop-counts
for the normal mesh, tiled express rings, and concentric express rings archi-
tectures for N = 36. The concentric architecture performs best, and the tiled
architecture has longer average hop-counts which can be attributed to diffi-
culty finding an optimal routing strategy.
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Figure 6.3: Traffic distribution for the mesh, tiled, and concentric architectures
for N = 36. (a) The mesh architecture exhibits congestion in the center. (b)
The tiled architecture has a high level of congestion at bridge locations in
the center of the mesh. (c) The concentric architecture shows congestion
points evenly distributed through the mesh, and the resources in the mesh are
relatively uncongested.
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architecture is relatively free of congestion. Since the mesh size used was rela-

tively small, the hop-counts and latencies for both architectures were similar, but

the traffic patterns are quite different. As the mesh size is scaled up, one would

expect that the performance would follow the trends shown in Figure 4.6.

Figure 6.2 shows the hop counts and latencies for the mesh, tiled and concen-

tric architectures for N = 36. The tiled architecture has a slightly higher latency

for C1 and C2 traffic while exhibiting lower hop counts. This can be attributed to

delays due to congestion in the center of the mesh. Figure 6.3b shows that there

is a large amount of traffic which passes through the center of the mesh. This can

be attributed to the fact that when global traffic travels between rings, the tiles in

the center of the mesh must route traffic between bridge components belonging

to different rings. Traffic from the outer portions of the mesh is quickly routed

through the individual rings to the center of the mesh, effectively concentrating

traffic in the center of the mesh. On the other hand, Figure 6.3c shows congestion

points evenly distributed through the mesh, and the resources in the mesh are

relatively uncongested. This results in lower hop-counts and latencies when com-

pared to the normal mesh architecture because localized traffic (short distance)

traffic encounters relatively little congestion. The increased performance of the

concentric architecture can be attributed to the fact that global traffic does not

tend to accumulate in one area, as with the tiled architecture.

6.2 Comparison of the Hybrid, Augmented, and

Mesh Architectures

To investigate the suitability of the hierarchical ring interconnect for global rout-

ing, simulations were performed for increasing sizes of N , and the results for all

three architectures were collected. Figure 6.4 shows that as the size of the mesh

increases, the latencies and hop-counts of all the architectures also increase. An

interesting point in the figure is that when N = 44, the average latency of the

hybrid interconnect becomes larger than for the mesh or augmented mesh ar-

chitectures. This can be attributed to the fact that the amount of traffic passing

through the ring interconnect increases quadratically with N , and at some point,
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Table 6.1: Latencies (normalized to 100) for the Hybrid, Augmented, and Mesh
architectures for different values of N .

Hybrid Augmented Mesh

N C0 C1 C2 C0 C1 C2 C0 C1 C2

20 10 22 23 17 23 23 16 31 47
28 10 27 29 20 28 29 20 41 66
36 15 36 37 25 34 35 24 52 82
44 20 78 79 33 49 51 29 62 100

the hierarchical rings will reach a saturation point where offered throughput will

degrade due to congesting at the ingress and egress points (bridge components).

As N becomes larger, the hierarchical rings can be scaled up in several ways.

First, the cardinality k can be increased, which will have the effect of reducing

the sub-mesh size. A second approach is to simply add more local rings or to

even add a second hierarchical ring interconnect, for large N .

Table 6.1 shows how the latencies varied for both architectures. Contrary to

expectation, the latencies for local traffic (type C0) passing through the hybrid

interconnect is actually less than that observed in the normal mesh topology.

This phenomenon can be explained by the fact that routing global traffic upwards

through the hierarchical rings frees up resources at the lowest level of the network

hierarchy. Conversely, the augmented architecture exhibits similar latencies for

C0 traffic as compared to the mesh because less traffic is routed upwards as

compared to the hybrid topology, since there always exists two paths between

a sender-receiver pair in the augmented architecture. Even though the hybrid

topology outperforms the augmented architecture for C0 traffic, it can be seen

from Figure 6.4 that the augmented architecture actually scales better than the

hybrid. This is due to the fact that there is less congestion on the global rings

because less traffic needs to be routed upwards as can be seen in Figure 6.5, where

the percentage of C2 traffic is much higher for the hybrid than for the other two

topologies. This can be attributed to a sub-optimal mapping of the task-graph,

which will be discussed further in Section 6.6.
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Figure 6.4: Average latencies (normalized) and hop counts for increasing val-
ues of N . The performance of the hybrid architecture decreases dramatically
for N = 44 due to the quadratic increase in traffic being sent over the global
interconnect.
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Figure 6.5: Latencies and hop counts for each traffic type for a mesh size of
N = 36. The bottom graph shows the percentage of the total traffic for each
category.
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Figure 6.6: Distribution of traffic for a network size of N = 36 (a) The mesh
architecture exhibits congestion in the center. (b) The hybrid architecture ex-
hibits spikes that correspond to bridge components which route traffic upwards
onto the hierarchical ring network. The augmented architecture (not shown),
exhibits a similar traffic pattern to that of the hybrid.

Table 6.2: Hop counts for the Hybrid, Augmented and Mesh architectures for
different values of N

Hybrid Augmented Mesh

N C0 C1 C2 C0 C1 C2 C0 C1 C2

20 3 7 12 7 11 12 6 15 24
28 3 9 14 8 13 14 9 20 34
38 6 11 15 10 15 16 11 26 43
44 7 13 17 13 17 18 14 32 53
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Figure 6.7: Traffic patterns for a sub-mesh of size Nsub = 8 and for a mesh size of
N = 36 where the bridge component is located on a corner tile. Congestion
is highest at the corner where the bridge component has been placed.

6.3 Bridge Placement in the Hybrid Topology

The placement of the bridge component relative to the edges of a sub-mesh can

have a significant impact on performance. When the placement is made at a

corner tile, the number of input ports from the mesh is limited to two. Moving

the location of the bridge component away from the edge increases the number

of available input ports to four, thereby decreasing congestion at the ingress and

egress points of the global interconnect. In [18], it was observed that when

the bridge was placed in a location away from the edge but still in the relative

corner of the sub-mesh, the xy-routing algorithm caused global traffic (types C1

and C2) to be routed away from the center of the sub-mesh and towards the

edges. This resulted in less congestion in the center of the sub-mesh thereby

resulting in lower latencies for local traffic. Figure 6.7 shows how the majority

of traffic is routed along towards the edges and the corner where the bridge

component is located. The figure shows that most of the traffic is concentrated

in the corner of the sub-mesh, leaving the center of the mesh relatively free from

congestion. The drawback is that the few corner tiles near the bridge component

see a disproportionate amount of traffic. Moving the bridge away from the corner

will yield better results as shown in Figure 6.8, where the latencies and hop-counts

have been reduced.
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Figure 6.8: Effect of bridge placement on hop-counts and latencies for a mesh
size of N = 36. Moving the bridge away from the corner reduces latencies and
hop counts.

6.4 Enhanced Hybrid Architecture

Using the SystemC library of components, the enhanced architecture described

in Section 4.4.0.1 was implemented. It is possible to implement the hybrid in-

terconnect by making some modifications to the architecture from [17], but for

simulation purposes, it was simpler to instantiate an extra ring-interface compo-

nent for every sub-mesh and to connect them together to form the inner ring as

shown in Figure 4.7.

Simulations for a mesh size of 32 were performed, and the results obtained

are shown in Figure 6.9. It can be seen that the latency for the hybrid interconnect

has improved for types C1 and C2 traffic. What is interesting is that the enhanced

hybrid interconnect shows a significant latency reduction for type C2 traffic. Since

traffic types C1 and C2 are unaffected by each other’s stop signals, an overall

decrease in both their latencies is observed.
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Figure 6.9: Performance improvement of the enhanced hybrid over the normal
hybrid architecture for N = 32. A reduction in the latencies for both C1 and C2

are observed for the enhanced hybrid architecture.

6.5 Applying Adaptive Routing to the Augmented

Architecture

In addition to comparing the effects that the hierarchical ring interconnect has

on the latency for global traffic, the impact of different routing algorithms are

investigated. The simulation platform described in [18] used xy-routing to route

traffic. Several routing alternatives have been added to the architecture in order

to further increase performance.

The wormhole-routed mesh uses xy routing to route data. Its advantage is

that it is deterministic and optimal in that packets always take the shortest path.

More complex adaptive routing methods have been shown to not perform as well

as xy routing [128], which is counter-intuitive because they try to route traffic

around congestion and reduce latencies. It was shown in [128] that this can have

the opposite effect.

When the hierarchical rings are combined with the wormhole routed mesh, a

modification of the xy routing strategy is needed such that the global traffic can be

routed to a bridge component and through the hierarchical ring interconnect. A

deterministic shortest path algorithm is used, where packets are routed towards
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the nearest bridge component if the packet is classified as a global packet. The

modified xy routing strategy is termed xyb routing.

The augmented architecture can suffer from congestion at the bridge com-

ponents if there are too many packets arriving at once. This is a phenomenon

common to all hierarchical architectures, but unlike a tree-like structure, the aug-

mented architecture is not limited to a single path between nodes. Figure 4.4

shows that there are two possible paths between any two nodes on the mesh:

1. Packet routed through the mesh normally

2. Packet routed through the hierarchical ring interconnect.

In an effort to reduce the latencies due to blocking at the bridge components, a

routing scheme has been implemented, termed adaptive-xyb routing (which is a

form of deflection routing). If a packet is blocked at a bridge due to congestion,

the bridge component will forward the packet through the mesh normally instead

of letting it wait. By using a flag bit in the header flit, the next switch to route

the packet will be informed to forward it normally instead of sending it back to

the bridge station that it came from.

To improve the latencies incurred by global traffic, simulations comparing the

xyb and adaptive-xyb routing were performed. The goal of applying the adaptive

routing is to relieve congestion at the bridge nodes by forwarding global packets

through the mesh normally. The decision to change the routing strategy is made

locally by the bridge component. When a packet is waiting in a buffer, the bridge

component keeps track of how long the packet has been blocked. After some

threshold value has been exceeded, the bridge component marks the packet and

forwards it locally instead of up through the hierarchical rings. The threshold

value will have a large impact on the system performance:

• As the threshold value increases, the performance will converge towards

that of the normal xyb algorithm.

• As the threshold value decreases, the performance will converge towards

that of the normal xy routing used by the mesh as very many packets get

adaptively routed.
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The value of the threshold is related to the aggressiveness; the lower the threshold

value, the more aggressive the algorithm. Figure 6.10 shows the results obtained

when comparing the xyb and adaptive-xyb routing strategies. Figure 6.10a shows

that when using a less aggressive adaptive routing approach, there is a reduction

in latencies for C1 and C2 traffic, while their associated hop counts are marginally

increased. Conversely, Figure 6.10b shows that using the adaptive routing strat-

egy more aggressively results in a larger improvement in latency at the expense

of a marked increase in hop counts, which can be attributed to a large amount of

traffic being routed through the hierarchical rings to avoid congestion. Although

the adaptive-xyb algorithm has resulted in an increase in hop counts, they are still

smaller than the counts obtained for the normal mesh architecture in Section 6.2.

The results in Figure 6.10 show that the adaptive-xyb algorithm can achieve a

compromise between hop count and latency by tuning its aggressiveness.

As previously mentioned, the application of adaptive routing does not always

lead to a performance increase [128]. As is evident from the simulation results

presented, the aggressiveness of the algorithm must be tuned on a per-application

basis because each application will exhibit a different traffic pattern. Since de-

terministic routing is more general, and usually performs well enough, it is the

most often used routing strategy in the NoC literature. However, the extra effort

required to tune an adaptive routing strategy may be practical if a reasonably

large performance gain can be achieved as shown in Figure 6.10.

6.6 Improved Task Assignment

As previously discussed in Section 6.2, a non-optimal mapping of a task graph can

lead to a large proportion of the total traffic being routed through the hierarchical

rings. As can be seen in Figure 6.4, the system performance will degrade at

some large enough value of N because of congestion at the ingress and egress

points of the ring network. Using an adapted version of the simulated annealing

in [20] where (5.3) was minimized, a more efficient mapping of a task graph was

made for a mesh size of N = 44. Figure 6.11 shows how the latencies and hop

counts are affected for each architecture. The mesh architecture experienced the
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Figure 6.10: Comparison of the xyb and adaptive-xyb routing for the aug-
mented architecture (N = 28). (a) Less aggressive adaptive routing, (b) More
aggressive approach.
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Figure 6.11: Performance improvement of all three architectures when a more
efficient task assignment is used. The average latencies and hop counts have
been decreased for each architecture.

largest decrease in average hop counts, but most significant is the 67% reduction

in latency achieved by the hybrid interconnect. From Figure 6.4, we saw that

for N = 44, the performance of the hybrid architecture was degrading because

of the quadratic increase in traffic being sent over the interconnect. The efficient

mapping achieved by the simulated annealing algorithm has yielded performance

characteristics comparable to the mesh and augmented mesh. It can therefore be

concluded that the scalability of the hybrid interconnect can be increased by

intelligent task assignment.

6.7 Blocking Aware Task Assignment

Experimental results were obtained by running the simulated annealing algo-

rithm for one million iterations for a task graph consisting of 80 tasks and com-

munication events respectively. The task graph was mapped onto a 10×10 mesh.

The communication events between tasks were randomly generated such that

each task was constrained to initiating one communication but could itself be the

target of multiple communications. The results summarized in Figure 6.12 shows

that the lowest combined communication cost (i.e. the sum of the latency and

128



6.7 Blocking Aware Task Assignment

Latency Blocking
0

100

200

300

400

500

C
o
s
t

α = 0, β = 1

α = 1, β = 0

α = 1, β = 1

Figure 6.12: Latency and blocking costs for optimization results after 106 itera-
tions of applying simulated annealing to (5.5) for blocking only (α, β) = (0, 1),
latency only (α, β) = (1, 0), and both (α, β) = (1, 1) for a 10 × 10 mesh.

blocking costs) is obtained when both latency and blocking are minimized, that

is α = 1 and β = 1 in (5.5).

6.7.1 Effect on Latency

A task graph consisting of 36 vertices and 144 edges was generated using the

Gengraph utility described in Chapter 5. The graph was mapped onto a 6 × 6

mesh which was then processed by the simulated annealing application for

(α, β) = {(1, 0) , (1, 1)}. As discussed in Section 5.3.1, setting the normalization

factor β to zero means that the optimization performed by the simulated anneal-

ing application minimizes only the length of communication while disregarding

blocking. When (α, β) = (1, 1), the optimization considers both criteria and at-

tempts to find a compromise between minimizing communication distances while

also reducing blocking.

The results of the experiments are shown in Figure 6.13, where Figure 6.13a

shows the magnitude of the cost function for each term in (5.5) for the optimized

solution. The figure also shows the percent improvement of the solution over the

cost of the initial random mapping of the task graph onto the mesh.

Figure 6.13b shows that the average latency for type T1 traffic is reduced at

the expense of an increase in the latency of T2 traffic when (α, β) = (1, 1). While

the increase in the average latency for T2 is large, the effect on the total average

latency is negligible because the total amount of type T2 is small compared to the

other types. Conversely, the latency reduction for both T0 and T1 traffic results

in a 5% decrease in the total average latency because they represent a larger
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percentage of the total traffic, as can be seen in the bottom part of Figure 6.13b.

6.7.2 Network Utilization

A well known problem with mesh networks is that similar to large cities, con-

gestion develops in the center while the edges are under-utilized. The effect of

minimizing (5.5) with respect to communication distance and blocking cost results

in some traffic being routed along less used paths in the network.

A task graph consisting of 144 vertices and 600 edges was mapped onto a

12 × 12 mesh for values of (α, β) = {(1, 0) , (1, 1)}. The number of flits appearing

at the input ports of each switch were counted and the totals are shown in Fig-

ure 6.14, where the x and y directions correspond to the location of a switch on

the mesh, and the z direction corresponds to the number of flits normalized to

1. When only communication distance was minimized, Figure 6.14a shows that

traffic was concentrated in the center of the mesh, leaving the switches along the

edges under-utilized. When blocking was taken into consideration, Figure 6.14b

shows that the network utilization was more evenly spread over the entire mesh,

including the edges.

As (5.7) does not take the communication distance between tasks into ac-

count, minimizing blocking alone can result in increased latencies due to larger

communication distances. The trade-off is that congestion in high-traffic areas

is relieved and otherwise under-utilized resources can be better utilized. The

challenge lies in selecting proper values for the normalization constants α and

β in (5.5) such that the solution achieves the desired balance while maintaining

acceptable performance metrics.

6.8 Chapter Summary

Simulation results for several topologies that use rings for global routing to ad-

dress the scalability issues of mesh networks were presented. Simulation results

for the express ring topologies, which use one or more unidirectional rings for

global traffic were also presented. It was observed that the tiled approach re-

sulted in congestion in the center of the mesh when global traffic gets routed
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Figure 6.13: Results obtained for a task graph consisting of 36 vertices and
144 edges mapped onto a 6 × 6 mesh. (a) Cost and percent improvement
of (5.12) obtained via simulated annealing over the cost of the initial random
mapping. (b) Average latencies for each traffic type {T0, T1, T2} obtained by
SystemC simulation.
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Figure 6.14: Traffic characteristics obtained for a task graph consisting of 144
vertices and 600 edges mapped onto a 12 × 12 mesh. (a) When (α, β) =
(1, 0), switches in the center of the mesh are more heavily utilized than edge
switches. (b) When (α, β) = (1, 1), the network utilization is more evenly spread
out.
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across the central tiles. The concentric rings topology performed better, exhibiting

an even distribution of congestion points, and also showed reduced congestion

in the center of the mesh.

Simulation results for the augmented and hybrid network topologies, which use

hierarchical rings for global routing, were presented. Combining the hierarchical

rings with the mesh topology leverages the strengths of each topology, where the

mesh exhibits low latencies for local traffic, and the hierarchical rings exhibited

lower hop counts for global traffic. The results showed that the use of hierarchical

rings for routing global traffic can have a positive impact on the performance of

the interconnect, whereby average latencies and hop-counts are reduced.

For the hybrid architecture, the partitioning of a large mesh into smaller sub-

meshes leads to some interesting results. A well known problem with the mesh

topology is the fact that traffic hotspots develop in the center of the mesh. In the

hybrid topology, the global traffic is routed towards the edges of the sub-mesh

thereby reducing the congestion in the center of the mesh, resulting in reduced

latencies for local traffic. By placing resources which need to send global traffic

closer to the bridge station and taking advantage of locality, latencies and hop

counts can be decreased. Furthermore, it was shown that placing the bridge loca-

tion away from the absolute corner of a sub-mesh, a further gain in performance

could be achieved for global traffic without negatively affecting the latencies of

local traffic. Lastly, an enhanced version of the hybrid architecture can decrease

latencies by providing separate virtual paths through the hierarchical-ring inter-

connect. As the size of the mesh is increased, the sub-meshes also get larger,

which may results in a quadratic increase in traffic that can go through the hi-

erarchical ring interconnect. It can therefore be concluded that there is some

optimal size for the sub-meshes before performance will degrade to unaccept-

able levels due to congestion. The problem could be alleviated by simply scaling

up the hierarchical rings, but since a mesh size of approximately 36 resulted in

similar performance characteristics for both the mesh and hybrid networks, it is

preferable to keep the sub-mesh sizes fixed while increasing the size of the hi-

erarchical rings by adding either an extra level to the hierarchy or more bridge

components per local ring. Furthermore, by minimizing the amount of traffic

that travels through the ring interconnect, a significant reduction in latency was
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achieved. Specifically, the performance of a N = 44 hybrid mesh was increased

significantly by using simulated annealing to find a more optimal task assign-

ment.

Unlike the hybrid topology, the augmented topology has the property that

two paths exist between any two nodes on the network when using deterministic

xy routing. This property presents the opportunity to consider the application

of adaptive routing algorithms in an effort to further improve performance. The

application of adaptive routing was shown to yield a more efficient use of network

resources by lowering the average latencies by keeping the hop counts lower

than the mesh alone. It was shown that the performance of the adaptive routing

algorithm is affected by the aggressiveness with which it is applied and that the

trade-off between latency and hop-counts can be tuned.

The simulated annealing application was used to obtain task-graph mappings

that minimize the amount of contention (blocking) on a wormhole routed mesh

network. Simulations comparing shortest path mappings to ones that take block-

ing into consideration were performed. The results showed that minimizing both

metrics can yield improved results over minimizing for lowest latencies (shortest

path) only. Furthermore, the simulation results showed that the blocking-aware

task assignment approach results in a more even network utilization as com-

pared to a shortest path only mapping, which is characterized by high network

utilization in the center of the mesh.
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Chapter 7

Energy Modeling and Optimization

of the Hierarchical Rings

The energy consumption of the system interconnect is becoming increasingly im-

portant. As such, an evaluation of the energy consumption of the hierarchical

rings has been included for study, and is presented in this chapter. Previous to

the NoCsim platform, a high level transactional model [130] was implemented

using the StepNP [131] platform. To evaluate the effect of dynamic frequency

scaling on the hierarchical ring interconnect, an energy model was integrated

into the interconnect model [16]. The energy model adds the capability to mon-

itor the simulated energy usage of the interconnect network for the execution

of a particular application program. The practical energy models are in general

not intended to provide an exact representation of energy consumption; instead,

they are intended to provide a mechanism whereby the effect of varying design

parameters on energy consumption can be compared. Hence, the requirement

for the energy consumption model is that the various alternatives are considered

relative to each other.

7.1 Energy Model

For modeling energy consumption in the hierarchical ring, the main contributors

are the ring interfaces with their buffering and more complex logic, and the wire

connections between points on all rings. The energy characteristics for the ring
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interfaces were obtained by first synthesizing a representative Verilog model of

the interface using Synopsys Design/Power Compiler to extract an energy estimate

for the sequential logic of the interface that is denoted by Eif. Note that we

assume the energy consumption of a ring-interface and an inter-ring interface

are approximately the same. The energy consumption (per clock cycle) of the

point-to-point connections of parallel wires between adjacent interfaces is:

Ep2p =
1

2
CLV 2N(0→1,1→0) (7.1)

where CL is the sum of wire capacitance Cw and input capacitance Cin of a

ring interface, and N is the total number of wires experiencing 0 → 1 and 1 → 0

transitions. The total energy per clock cycle of the entire interconnect is therefore a

function of the switching activity caused by network traffic. The energy consumed

per cycle by all 20 ring and inter-ring interfaces in the architecture shown in

Figure 3.1 is

Esum =
∑

1≤i≤20

(Eif ,i + Ep2p,i) . (7.2)

The utility of the energy model is for approximating the energy consumption

of the interconnect with a fair degree of accuracy in order to understand how

much energy the interconnect consumes with respect to the entire system, and

to evaluate the effectiveness of optimization schemes.

It was decided to use frequency scaling without voltage scaling in the model

because it was felt that using an arbitrary quadratic equation would make the

results look more impressive than actually possible. Unless a full low-level sim-

ulation of the circuit is performed using HSpice, it cannot be known for certain

how the circuit will react to varying voltage levels. A high-level model that uses

voltage scaling could very well assume voltage values that would cause the cir-

cuit to fail. For these reasons, it was felt that keeping voltages constant while

varying the frequency of operation is a more realistic and conservative approach.
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Listing 7.1: Optimization pseudocode showing how the ring speed is governed
by the FIFO occupancies.

1 MAXFREQ = GLOBAL_CLOCK_FREQUENCY
2 OCCUPANCY = occupancy of fullest FIFO on the ring
3 if(OCCUPANCY > MAX_THRESHOLD) {
4 set ring speed to MAXFREQ
5 } else if(OCCUPANCY > MED_THRESHOLD){
6 set ring speed to MAXFREQ/2
7 } else if(OCCUPANCY > MIN_THRESHOLD){
8 set ring speed to MAXFREQ/3
9 } else {

10 the traffic on the ring is very low
11 set ring speed to MAXFREQ/4
12 }

7.2 Energy Optimization

The energy optimization scheme varies the ring speeds according to buffer oc-

cupancies. If the majority of buffer space is unused, the interconnect clock rate

can be reduced to conserve energy. As the buffers begin to fill, the clock rate is

increased in order for the rings to consume buffered packets more rapidly and

reduce the buffer occupancy. The FIFOs of all the interfaces on a ring are exam-

ined and the occupancy level of a ring is taken to be the maximum occupancy

of any single FIFO on the ring. The pseudo-code for the optimization algorithm

is shown in Listing 7.1 (note that each ring is controlled independently). The

threshold constants need to be fine-tuned in order to avoid being over-aggressive

which will cause many backpressure signals and will ultimately impact execution

times negatively.

The parameters that relate the ring speeds to the global clock are the local

divisor and central divisor parameters, which are the factors by which the respective

clocks are slowed down. The energy consumption of an interface is linearly

dependent on the frequency f , and is given by

Ẽif =
Eif

kf

, (7.3)

where kf is the central or local divisor used to lengthen or shorten the clock

period of the rings. For example, multiplying the period by kf = 2 will lead to
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7 Energy Modeling and Optimization of the Hierarchical Rings

a reduction of 50% in the energy consumption of a ring interface. (7.2) can now

be expressed as

Ẽsum =
∑

1≤i≤20

(Ẽif ,i + Ep2p,i). (7.4)

It is important to realize that slowing the rings down by some divisor constant

k does not simply result in the simulation time being lengthened by the same

constant, which would result in the same overall energy consumption. When no

data is being sent through the rings, energy is still being consumed by the ring

interfaces, so scaling down the clock signals will result is energy savings. The

optimization scheme being used is meant to take advantage of the communication

characteristics of many parallel applications which often start with a period of

intense communication between nodes where data is being sent for processing.

Once all the nodes have sent/received their data, there will be a period of time

where the traffic on the interconnect is low while the nodes process their data.

The addition of the energy model to the StepNP model provides a facility to

study the energy consumption of the system over time and the effect of different

optimization algorithms with respect to energy consumption and average power.

7.3 Simulation Results

The StepNP model provides an ARM processor core instruction set simulator (ISS)1,

which is used as the PE connected to each ring-interface. Application code written

in C can thus be executed on the ARM cores after compilation using a cross-

compiler. A memory mapped direct memory access (DMA) facility enables data to

be sent and received over the interconnect. For the interconnect, all FIFO depths

were configured to be 16 flits deep unless specified otherwise.

To generate traffic on the interconnect, three synthetic test-benches and a par-

allel matrix transposition application were used. The three synthetic test-benches

are:

• Synthetic Low: each station transmits a stream of data to one corresponding

station in the farthest ring.

1The provided ISS is not cycle accurate.
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Figure 7.1: Execution time (normalized) for different burst length (words) val-
ues. Increasing has a large impact on the execution time, but the reduction
diminishes as the length is increased.

• Synthetic Mid: each station multi-casts a stream of data to all stations in the

farthest ring.

• Synthetic High: broadcasts a stream of data to all stations in the system.

7.3.1 Data Burst Length and FIFO Depths

The burst length is the number of words a station could transmit at one time

with each DMA send operation. A small burst length can cause sub-optimal net-

work utilization whereas a large burst length can potentially flood the network

and cause the assertion of many backpressure signals. Because each transmit

operation is matched with a receive operation in message-passing systems, data

burst length also affects the amount of memory that must be allocated to stage

data for transmission or to store the received data. Selecting a large burst length

would mean that a large amount of memory may be reserved unnecessarily.

Figure 7.1 illustrates the effect of different data burst lengths for the three syn-

thetic test-benches. It can be observed that increasing the burst length can have

a large impact on the execution time, but the reduction diminishes as the length
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7 Energy Modeling and Optimization of the Hierarchical Rings

is increased. For the three test-benches, the reduction in execution times be-

comes relatively constant for burst sizes larger than 16. Further increases in burst

length have negligible effect on performance, but they introduce higher memory

requirements for staging the data before transmission and for storing the received

data. Interestingly, the optimal burst length corresponds roughly to the size of

the FIFOs in the ring-interfaces (16).

The depth of FIFOs located on the switches can affect both the performance

and the design area of the system. Table 7.1 summarizes the effect of the FIFO

depth on the communication performance for the synthetic testbenches, as well as

the matrix transpose program. The performance improvement achieved through

increasing FIFO depth is limited for most of the testbenches. The simulation

results have indicated that the FIFO depth does not have a significant impact on

communication performance in the two-level hierarchical ring network for the

matrix transposition application. This phenomenon can be explained by noting

that the total execution time is dominated by the time it takes to process the

data at each node rather than the communication latencies over the interconnect.

Based on the simulation results, good performance can be achieved using the

relatively small FIFO size of approximately 16 words.

7.3.2 Energy Optimization

The matrix transpose program was used to obtain the execution time and the

energy consumption of the interconnect network. The first part of the experi-

ment finds the optimal burst length for best performance. The second part of

the experiment finds the best configuration for the clocking scheme to provide

optimal energy characteristics for the architecture.

The results of simulations performed with different data burst lengths for a

128x128 matrix transpose are shown in Table 7.2. Results indicate that short data

burst lengths have longer execution times. The execution time is minimized with

a burst length of 16 words. Increasing the burst above 16 increases execution

time from congestion caused by higher utilization of the interconnect network.

Simulations were performed with a burst size of 16, which was previously estab-

lished to give the best performance. The results of simulations with varying ring
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Table 7.1: Effect of FIFO depth on performance using a burst length of 16.

FIFO Depth Execution Time (ns)

(words) High Mid Low Trans

12 644670 466860 412530 740610
16 646290 463500 414420 740970
20 647760 469170 413790 741150
24 647610 466860 409860 740970
28 647550 462180 411690 740970
32 645450 467280 405240 746370
36 645510 472690 410910 746190
40 644670 442290 407760 746190
44 645660 442290 406290 746190
48 645240 442290 406290 746190

Max 647760 496860 414420 746370
Min 644670 442290 405240 740610

% difference 0.47 6.87 2.27 0.78

Table 7.2: Interconnect performance of the 128×128 matrix transpose program
for different burst lengths using a FIFO size of 16.

Burst Length Execution Time Energy Power
(words) (ms) (uJ) (mW )

1 20.72 884.25 42.67
2 15.17 647.70 42.67
4 12.49 533.39 42.68
8 11.26 481.05 42.69
16 10.96 467.85 42.68
32 11.31 483.06 42.68
64 12.60 537.76 42.67
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speeds are listed in Table 7.3. It can be observed that the ring speeds have less

impact on the execution time, but can achieve substantial energy savings with

slower operating frequencies. The overall execution time can be longer because

the latency increases with lower ring operating frequencies. The execution time,

however, is not affected significantly by the ring operating frequencies due to

the fact that the interconnect network is still able to transmit data with good

throughput.

We observe a large reduction in energy usage by simply slowing down the

local rings. The energy savings from reducing the local ring clock rate dimin-

ishes with a higher local divisor because the static energy consumption becomes

dominant. From results listed in Table 7.3, we believe that a local divisor of 2

and a central divisor of 1 is the optimal clocking scheme for the hierarchical-ring

multiprocessor system. This result makes sense, as one would expect the system

bottleneck to be the central ring.

7.3.3 Dynamic Power Optimization

Simulation results obtained with dynamic power optimization enabled are shown

in Table 7.3. Optimization “off” means that dynamic frequency scaling is dis-

abled. Similarly, optimization “on” means that dynamic frequency scaling is

enabled. The local/central divisor values set the base (maximum) interconnect

speed for dynamic optimization. The optimization algorithm increases the cycle

time multiplication factor kf by integer multiples in order to reduce the inter-

connect speed when the traffic intensity is low. The optimization scheme takes

advantage of the bursty communication characteristics of the matrix transposi-

tion program. When the program is performing calculations, the ring clock rate

is reduced to conserve energy while traffic is low. When traffic begins to fill

the buffers, the ring clock rate gradually increases to accommodate the require-

ments of the sending nodes. For the matrix transposition program, the dynamic

optimization algorithm reduces power consumption by 30–70% over the unopti-

mized case where the speed remains constant for the same local/central divisor

value settings. The largest improvement, not surprisingly, is when the base clock

rate for the interconnect is the same as the processor clock rate, i.e., when both
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Table 7.3: Effect of varying ring speeds and dynamic optimization for burst
length and FIFO size of 16 words. Optimization “on” and “off” means that
dynamic optimization is enabled and disabled, respectively.

Optimization Off Optimization On

Local Central Exec Time Power Exec Time Power
Divisor Divisor (ms) (mW ) (ns) (mW )

1 1 10.96 42.68 11.03 11.30

2 1 10.97 23.57 11.07 9.27
2 2 11.05 21.47 11.12 9.07
2 3 11.13 20.80 11.20 8.96
2 4 11.15 20.44 11.29 8.90

3 1 10.99 17.21 11.11 7.94
3 2 11.06 15.09 11.15 7.72
3 3 11.17 14.39 11.23 7.59
3 4 11.15 14.07 11.32 7.52

4 1 11.04 14.03 11.15 6.98
4 2 11.10 11.91 11.20 6.76
4 3 11.19 11.21 11.23 6.62
4 4 11.29 10.86 11.28 6.53

5 1 11.07 12.12 11.20 6.26
5 2 11.12 10.00 11.23 6.06
5 3 11.20 9.29 11.29 5.91
5 4 11.25 8.95 11.29 5.81
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divisors are one. The improvement is diminished as the base clock rate is set

lower with divisors that are larger than one, although the reduction in energy

consumption is still significant.

7.4 Chapter Summary

This chapter has outlined techniques in the modeling and evaluation of a hierar-

chical ring interconnect for SoC multiprocessor systems using a high-level trans-

actional SystemC and StepNP [131] model. The model has enabled energy/per-

formance tradeoffs of different design parameters to be evaluated, thus guiding

design decisions for the low-level RTL implementation discussed in Chapter 8.

Specifically, a simulation model has been used to explore how the FIFO sizes

affect system performance. It was shown that increasing FIFO sizes does not

necessarily increase performance, and that the sizes can be kept relatively small

while still achieving a good network performance. For the chosen architecture

and applications, a FIFO size of 16 was determined to yield a good trade-off

between size and performance. Furthermore, results also show that dynamically

adjusting the speeds of the rings based on buffer occupancies yields significant

energy savings without adversely affecting performance, thus validating the ef-

fectiveness of the approach.
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Chapter 8

RTL Implementation of the Hierarchi-

cal Ring Interconnect

Chapter 6 presented simulation results obtained using high-level models writ-

ten in SystemC. While high-level modeling facilitates architectural exploration,

the results obtainable from such abstract representations are limited. On the

other hand, a low-level RTL implementation enables designers to study the phys-

ical properties of a design such as resource requirements and speed. The effort

required to create a RTL implementation is much greater than a high-level Sys-

temC model, but without performing synthesis and place-and-route, it is difficult

to verify that the design meets performance and resource requirements, or even

if the design is actually feasible. In order to ascertain the suitability for on-

chip implementation, the hierarchical rings have been implemented at the register

transfer level (RTL) level. The implementation consists of approximately 8.5k lines

of VHDL code, and required greater effort to implement than the behavioral

SystemC models presented earlier.

This chapter presents the RTL implementation details, simulation, synthesis,

and place-and-route results. The results will confirm that the architecture is

indeed suitable for on-chip implementation. Section 8.3 will show that the RTL

implementation of a modestly sized Leon3 based NoC can fit on current FPGAs,

and simulation results confirm that relatively small storage buffers still achieve

high throughput.
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8.1 On-Chip Suitability of a Hierarchical Ring

Interconnect

As discussed in Chapter 3 and Section 2.2.2, ring networks have relatively simple

routers and require less resources than other, more complex, architectures. Fur-

thermore, the point-to-point connectivity between low-degree nodes results in

an implementation devoid of global routing; as will be shown, place-and-route

will be more efficient than mesh topologies when targeting field programmable gate

array (FPGA) implementations. The unidirectional nature of the rings reduces

the overhead associated with routing, which results in low latencies and high

throughput. Furthermore, the structure of the rings is suitable for multimedia

applications where a pipelined approach is often used in the processing of data

streams.

Another property that makes rings attractive from an implementation stand-

point is the fact that they can be easily partitioned. In the early days of net-

working, when fabrication technologies were more limited, rings were attractive

because the switches had low pin-counts (lower packaging cost) when compared

to more complex architectures. The same property can be exploited to efficiently

partition and distribute a large design over several FPGAs. This is important

because current FPGAs cannot accommodate a SoC consisting of 16 processors

connected by the hierarchical rings, let alone a SoC consisting of tens of cores.

Section 8.3 will show that even though the RTL implementation is area efficient,

the system size that will fit on a relatively large FPGA (Xilinx Virtex II family) is

still limited. It is therefore necessary to look at alternative architectures that use

several interconnected FPGAs1.

Partitioning an interconnect requires cutting links, and for each link cut, re-

sources are required to route the signals off-chip. There is therefore a direct

correlation with the overhead required to partition a topology and the number

of links that must be cut. Partitioning unidirectional rings requires cutting only

2 links, which will require a relatively small overhead. On the other hand, parti-

tioning a large mesh is difficult because of the number of links that must be cut.

1A planned multi-FPGA implementation will be discussed in Section 9.1.
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If a mesh of width N is cut in half, the number of unidirectional links cut would

be 2N . It can therefore be concluded that the mesh topology is more difficult

to partition than a ring topology. In the case of a large mesh network that will

not fit on a single chip, the hierarchical rings present an interesting alternative.

Instead of using a large mesh, the hybrid topology presented in Section 4.4 can

instead be used, such that the partitions are made by cutting the links of the

hierarchical rings, while the sub-meshes can be distributed over a number of FP-

GAs. The hierarchical rings would thus provide the inter-chip (long distance)

communication, while still using the mesh for local communication.

As previously discussed, the on-chip interconnection network will be a limit-

ing factor for performance and energy consumption, and in some cases accounting

for over 50% of the total energy requirement [9]. Buffers account for a large part

of the area and energy requirement of an interconnect, so minimizing the size

and number of buffers is an important part of the design process. There is an

obvious correlation between the complexity of the interconnect and the resource

requirements. It can therefore be concluded that the interconnect architecture

should be as simple as possible while still meeting performance requirements.

The hierarchical ring implementation discussed here requires less buffers when

compared to a four-way mesh router. Furthermore, since the switching logic is

simple, the clock rate of the interconnect can be higher when compared to other

implementations as will be shown in Section 8.3.

For a SoC implementation using the hierarchical rings for the system inter-

connect, the critical path will be in the processing elements (PEs) and not the

switches that constitute the network. This is attributable to the very few levels of

logic used in processing data in the interconnect implementation. Since the com-

plete interconnect resides on the same die and never has to exit the chip, the clock

rate supported by the interconnect will be on par with L1 cache. Furthermore,

a full clock cycle is allocated in the timing budget for the interconnect routing

delays by registering all the input signals and having no shared asynchronous

signals that could create a critical path in the interconnect.

As previously discussed, hierarchical rings are well suited to the application

of DVS techniques. In [16], it was shown that applying dynamic frequency scaling

can result in a significant reduction (30–70%) in power consumption with negli-
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gible impact on the execution time for the benchmark presented. Furthermore,

supporting a higher clock rate is desirable for the application of DVS techniques

because a larger range transfer rates can be used, which will yield better perfor-

mance characteristics.

The unidirectional point-to-point connectivity of the interconnect has certain

desirable characteristics for real-time embedded applications. Most important is

the fact that packets are guaranteed to be delivered (i.e. no dropped packets)

and they will arrive at the destination in the same order as they were sent. This

property reduces the buffering needed as data does not need to be re-ordered by

the destination (a CPU and Memory intensive operation). In addition, as will be

described in Section 8.2, a simple but effective flow control mechanism guarantees

that packets will not be dropped, eliminating the need for acknowledgement

packets and associated protocol overhead.

A hierarchical ring structure is also efficient at routing multicast/broadcast

packets [91]. Sending broadcast packets in a mesh topology is difficult because

there exists many paths to any single destination. Care must be taken so that

packets are not needlessly duplicated. In contrast, hierarchical rings can easily

handle broadcast packets without wasting resources due to the way in which

packets are forwarded, making them efficient for implementing cache-coherency

protocols.

In [91], the authors compare mesh to hierarchical rings and showed that for

shared memory applications they outperformed by 20–40% for certain applica-

tions. They also demonstrated that increasing the bandwidth of the global-ring

(i.e. increasing the clock rate) has a significant impact on performance. In short,

the hierarchical rings provide a flexible interconnection strategy that can be tuned

depending on the application requirements to meet energy, area, and performance

constraints.

8.2 Architecture

The system architecture is shown in Figure 8.1, where each processing element

connected to a ring-interface consists of a Leon3 processors, a AMBA bus and ar-
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Figure 8.1: System architecture of the RTL implementation. Each processing
element consists of a Leon3 processor, AMBA bus and arbiter, memory, and a
station-ring interface.

biter, memory and controller, plus a station-ring interface component that enables

the AMBA bus to interface with the rings.

8.2.1 Interconnect

The architecture is based on the design presented in [91], which was used in

a shared memory multiprocessor system. The implementation of the two-level

hierarchy, as shown in Figure 3.1, consists of 4 local rings connected to a single

global ring.

In order to keep buffering and latencies to a minimum, each packet is actually

a flit/phit and can be forwarded in 1 clock cycle. As shown in Figure 8.1, a local

ring is connected to the central ring by an inter-ring interface (IRI) and each

station is connected to a local ring by a station-ring interface (SRI).

Flits are routed through the interconnect via the (I)RIs shown in Figure 3.2,

which are connected to form the 2D hierarchical ring structure. Each (I)RI con-

tains bi-synchronous2 FIFOs that buffer incoming and outgoing packets. The bi-

synchronous FIFOs enables the partitioning of the rings into separate clock do-

2A bi-synchronous FIFO is commonly referred to as asynchronous, which is technically in-
correct, but semantically correct because the FIFO in question has two clock inputs. A strictly
asynchronous implementation has no clock.
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mains. The links connecting the interfaces together to form the rings are bit-

parallel signals that represent one packet of data or flit.

The fact that the clock rate of the different rings can be independent allows

for increased flexibility when tuning the interconnect for specific applications.

For example, the clock rate of the global ring can be higher than that of the local

rings in order to reduce the latency of global traffic [91]. Furthermore, multiple

clock domains provide the facility for the eventual introduction of dynamic clock

throttling [16] which can allow rings to be slowed down or sped up as needed

to accommodate changing bandwidth requirements while reducing energy con-

sumption.

8.2.1.1 Routing and Flow Control

As discussed in Section 3.3.3, the interconnect implements lossless communica-

tion that uses a relatively simple backpressure mechanism for handling network

congestion to prevent packets from being dropped. At each hierarchical level, a

backpressure signal can be propagated to prevent injection of new packets. When

enough outstanding packets have been removed from the interconnect, freeing

resources, the backpressure signal is de-asserted. The implementation is deadlock

free because outstanding traffic is always allowed to drain, therefore guaranteeing

that the network never stops due to congestion.

The NoC interconnect was designed to be realistically used on a FPGA to

link together CPU and DSP cores. The interconnect had to be area efficient

yet support both point-to-point addressing, multicast and broadcast. This was

solved by virtue of the hierarchical configuration of the rings coupled with a

one-hot encoding of the addresses as described in Section 3.3.2. The use of

one-hot encoding simplifies the steps needed to route packets throughout the

interconnect. One can infer that the interconnect can process packets quickly

and that the switching logic will be small; this is supported by synthesis results

shown in Section 8.3.
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Figure 8.2: (a) Due to the pipelined read delay of the FIFO, flit B will collide
with flit D. (b) The addition of 2 input registers delays flit D by one clock cycle,
thus enabling flit B to be routed to the output without a collision occurring.

8.2.1.2 Improved Inter-Ring Interface Implementation

The simplicity of the hierarchical rings leads to area-efficient hardware implemen-

tation and simple routing logic. However, the very same simplicity can lead to

sub-optimal network utilization under certain circumstances. Specifically, when

there are several flits in the north or south FIFOs of the inter-ring interface, the

current architecture does not allow them to be read in consecutive clock cycles.

Instead, the architecture is limited to reading 1 flit every 2 cycles from the FI-

FOs. This section will present a modification of the IRI such that the network

utilization is improved and average latencies are reduced.

When performing pipelined read operations3 from the north and south FIFOs,

the last flit read may collide with an incoming flit. The situation is illustrated in

Figure 8.2a:

1. During the first clock cycle, flit A is read from the FIFO and placed at the

output port, while the empty flit C is discarded (the “read enable” signal is

kept high).

2. When flit D is detected at the output port, the read operation is terminated

(the “read enable” signal is unset) and flit D will be forwarded to the output

port.

3. When the “read enable” signal is de-asserted, the pipeline delay will require

3A pipelined read from a FIFO is when the “read” signal is kept high for consecutive clock
cycles, enabling 1 flit to be read per clock cycle.

151



8 RTL Implementation of the Hierarchical Ring Interconnect

an extra clock cycle to complete, thereby resulting in an extra flit, flit B, being

read. Since IRI will forward flit D during this cycle, the extra flit read from

the FIFO due to the pipeline delay will be dropped.

Therefore, the architecture shown in Figure 3.2b cannot perform pipelined read

operations due to the possibility of flits being dropped. Consequently, flits stored

in the FIFO may be delayed unnecessarily when there is no data circulating on

the local ring4.

In order to support pipelined read operations, the architecture of the inter-ring

interface shown in Figure 3.2b can be improved by adding two extra registers, or

delay stages, at the inputs in order to provide a 2 cycle delay. The delay afforded

by the added registers provides the IRI with the extra time needed to turn off the

pipelined read operation, and to handle the extra flit that is read from the FIFO

due to the pipeline delay. The modified architecture is shown in Figure 8.2b,

where flits C and D must pass through two registers before being forwarded to

the output port. When the IRI detects a valid flit at the input, flit D in this case,

it will disable the “read enable” signal of the FIFO. The pipeline delay will result

in flit B being read from the FIFO and forwarded to the output port. Instead of

a collision, flit D will be stored in the second register (flit C will be discarded),

resulting in no lost flits.

Simulation results comparing the improved and normal architectures will be

presented in Section 8.3.2.1. The results obtained show a reduction in average

latency due to the better network utilization afforded by the pipelined read ca-

pability.

8.2.2 Processing Element

As shown in Figure 8.1, a processing element consists of a Leon3 processor, a

memory controller and a station-ring interface (SRI), which are all connected to

an AMBA bus. The SRI acts as an AMBA slave which can be accessed from the

Leon3 through memory mapped IO.

In order to enable more efficient use of the interconnect, the SRI was modified

to be an AMBA master as well as a slave so that it could initiate direct memory
4The case where there is no data circulating on the local ring is the worst-cast.
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access (DMA) and transfer incoming flits from the interconnect to memory with-

out needing processor intervention. A program running on the processor can

write data to memory and then configure the SRI by writing to configuration

registers. When the SRI has been triggered to start sending data in DMA mode,

it will request the AMBA bus and wait until the arbiter grants the bus. Once the

bus has been granted, the SRI will start reading data from memory in incremen-

tal Hburst [41] mode, which will enable the SRI to send 1 word/cycle over the

interconnect. By efficiently removing incoming data from the interconnect, the

DMA mechanism results in better interconnect utilization due to the flow control

mechanisms being triggered less often.

8.2.3 Applications

Multimedia applications often involve a series of processing steps where data is

passed from one station to another in a pipelined fashion. As can be seen in

Figure 3.1, PEs on the local ring are connected in a unidirectional manner. The

implementation of sequential data processing is efficient because multiple simul-

taneous transfers can occur between pairs of stations. Furthermore, it is often the

case in parallel applications that a node is designated as head-node and controls

the operation of the other nodes in the network by broadcasting/multicasting

messages and/or data to them. As discussed, the hierarchical ring architecture is

efficient at sending multicast packets and will thus be efficient for applications ex-

hibiting these kinds of communication characteristics. Furthermore, applications

that generate less global traffic exhibit better performance characteristics than

mesh networks [91] . In mesh-architectures, complex routing and flow-control

mechanisms are needed in order to ensure these properties. This overhead can

negatively affect the performance of the interconnect. For real-time applications,

and especially multimedia applications, low latencies, guaranteed delivery and

in-order arrival are critical for correct operation that meets quality-of-service con-

straints. The hierarchical ring interconnect implementation exhibits these charac-

teristics while still maintaining low-latencies and high speeds.
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8.3 Results

The hierarchical ring interconnect was initially chosen for a multi-processor SoC

implementation on FPGA targeting multimedia applications. It is difficult to

properly analyze a high level transactional model because they are not constrained

by real world considerations such as energy consumption or implementation area.

Although high level models are useful in early stages of development and can be

used to guide design decisions as was done in [16], the only way to accurately

analyze the performance characteristics is by studying an actual RTL level de-

scription. With that in mind, the following subsections present some RTL level

simulation results as well as the synthesis and place-and-route results generated

by EDA software.

8.3.1 Experimental Setup

Traffic generation was accomplished through the implementation of stochastic

processes that inject packets into the interconnect based on several random vari-

ables:

• local traffic probability (LTP),

• burst length,

• read and write delay.

The manner in which the aforementioned variables affect the traffic patterns is

described in the following subsections.

8.3.1.1 Local Traffic Probability

The architectural characteristics of the hierarchical ring interconnect should be

exploited by the application. Specifically, the application should be designed so

that it takes advantage of the high node-to-node bandwidth characteristics of

the local rings. Furthermore, since the system bottleneck is the global ring, the

amount of traffic sent over it should be minimized.
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The local traffic probability (LTP) of the sender stations is used to control the

ratio of global to local traffic being sent by each station. For example, when the

local traffic probability is 0.6, there is a 60% chance that the sender will send

traffic to a station on its local ring5. The LTP can therefore be used to study

the performance of the interconnect for several LTP values, simulating ideal and

non-ideal traffic loads.

8.3.1.2 Burst Length

A burst operation is when a station sends multiple flits in consecutive clock cy-

cles, without any pauses/delays between individual flits. When the destination

address for the current send operation has been selected as described in Sec-

tion 8.3.1.1, the number of packets (in this case flits) to be sent in 1 burst operation

is determined by a random variable that can range from 1–166. Since the RTL

implementation of the processing element support DMA transfer (specifically the

SRI), it was deemed necessary to model burst transfers.

8.3.1.3 Read and Write Delay

In general, an application will access the interconnect and then do something else

before the next access. Two random variables are used to model this behavior,

namely the read and write delays. The read delay is the amount of time the receiver

station will wait before emptying data from the incoming FIFO. This delay models

the fact that SRI may have to wait before being able to offload the flits stored in

the incoming FIFO to memory. Similarly, the write delay is the amount of time

a sender will wait before sending again. The write delay attempts to model the

time between successive send operations initiated by the PE.

8.3.2 Simulation Results

Figure 8.3 shows the FIFO usage of a high load simulation. The simulation case

is one example where all stations send words to all other stations. The simulation

5Note that the destination address is also a random variable.
6The FIFO sizes of the RI components have been set to 16, so sending more will simply result

in a backpressure signal from the RI when its outgoing FIFO is full.
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Table 8.1: Effect of local traffic probability (LTP) on latency.

LTP Global Traffic Local Traffic
(cycles) (cycles)

Min Max Avg Min Max Avg

0.4 27 413 118 16 261 81
0.5 25 366 115 16 346 78
0.6 26 342 103 16 359 74
0.7 25 404 109 16 347 73
0.8 28 265 90 16 258 75

setup is comprised of four local rings connected by a global ring. The IRI FIFOs

(two traces at the bottom of each Global Ring block) are saturating due to the

high amount of inter-ring (global) traffic generated. The simulation comprised of

approximately 5000 packets (each station sending and receiving approximately

300 packets).

Depending on the value used for the LTP variable, the traffic going through

the global ring causes the buffers in the IRIs to remain relatively full during most

of the simulation. Table 8.1 shows the effect of the LTP variable on latencies.

It can be seen that the latencies experienced by local traffic is not as affected as

the global traffic latencies. This phenomenon can be attributed to the fact that

the global ring becomes a bottleneck when the amount of global traffic is high

(ie. the LTP is lower). For applications which have higher probabilities of local

traffic, a LTP > 0.6 shows good performance results for the high-load testbench.

One would expect the average latency to be lower when there is less traffic on

the interconnect.

What is interesting is that the global ring flow-control signals are not triggered

very often. It can therefore be concluded that using buffer sizes of 32 for the IRIs,

the global ring is able to keep up with the demands made on it by the local rings.

The right edge of Figure 8.3 shows that the buffer occupancies decrease while the

backpressure signals are asserted. This shows that the flow control mechanisms

are working, where outstanding flits are drained from the interconnect without

packet loss. Furthermore, the behavior of the system respects the criteria of

guaranteed and in-order delivery.
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8.3 Results

Figure 8.3: ModelSim trace of the FIFO count in a highly loaded interconnect
simulation.

Interestingly, the authors of [132] report that the overhead imposed by network

routing severely limits the throughput of the system. In fact, they report that

when many stations send data simultaneously, the throughput of the system

can drop by as much as 80%, supporting the previous claim that routing and

protocol overhead can severely hamper interconnect performance. As can be seen

in Figure 8.3, the RTL implementation of the hierarchical rings implementation

does not suffer as much under high loads.

8.3.2.1 Improved Inter-Ring Interface

The improved implementation of the inter-ring interface described previously in

Section 8.2.1.2 was implemented in VHDL, and simulations that compare the per-

formance of the unmodified versus the improved architecture were performed.

The LTP used for the experiment was 0.6, and approximately 105 total flits were

injected into the interconnect for the simulation run. Figure 8.4 shows the latency

reduction achieved when the pipelined read is used; the plot shows the average
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Local Avg. Global Avg, Total Avg.
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

L
a
te

n
c
y

(n
o
rm

a
liz

e
d
)

Pipelining Off

Pipelining On

Figure 8.4: Simulation results comparing the performance of the normal and
pipelined architectures of the IRI. Results show that the average latency for all
traffic has be reduced by approximately 11% due to the addition of the delay
stages at the input of the IRI.

latencies for local and global traffic, as well as the average of all traffic. The la-

tency reductions for local and global traffics were 8.7% and 12.1% respectively,

yielding a average latency reduction for all traffic of 11.3%. Furthermore, 2.3%

more flits were injected due to better network utilization when pipelined reads

were enabled. Therefore, the addition of 2 delay stages to the input of the IRI

has yielded a performance improvement of approximately 10%, which is a good

improvement considering the relatively small cost of the extra hardware. Further-

more, the overhead associated with the delay stages can be mitigated by reducing

the size of the FIFOs slightly to compensate, which would result in little-to-no

overhead associated with the improved architecture.

8.3.3 Synthesis and Timing Analysis Results

To substantiate the claims of high performance in FPGAs, the performance of

each module in the NoC interconnect was analyzed after performing place and

route in a xc2v4000-bf957-5 Xilinx FPGA using the ISE 8.1i FPGA software. The

routing delay in large FPGA has a significant impact on the final timing. This

aspect is often overlooked in the design of NoC interconnects. It is also impossible

to account for these effects in high-level simulation models.

The design and implementation of the rings is relatively insensitive to the

routing due to two factors, namely the locality of routing signals and the pipelined

structure adopted in the design of the modules. Since no global connection

strategies (i.e. links that span multiple hops) are used, as sometimes proposed
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Table 8.2: Synthesis results targeting Xilinx Virtex2 FPGA.

Component Area (LUT) Clock Rate (MHz)
Virtex 2 Virtex 2

Ring Interface 708 250 Ring / 200 CPU
Inter-Ring Interface 336 + 4 Block RAM 214
Station-Ring Interface 171 169

Complete Interconnect 14153 200

in torus and mesh based networks [94], the resulting implementation is efficient

in terms of routing, area, and performance.

The results obtained from synthesis shown in 8.2 compare quite favorably to

other interconnect implementations targeting the same technology. For example,

the switch used to implement a mesh network in [133] requires 631 lookup tables

(LUTs) and can run at 25Mhz with a bus width of 10 bits (8 data and 2 control).

The switch implementation in [132] uses approximately 900 LUTs and can run at

40Mhz with a bus width of 19 bits (16 data and 3 control). The results shown in

Table 8.2 shows that the RTL implementation of the hierarchical rings requires a

comparable number of LUTs for a much larger bus width of 48 bits (32 for data

and 16 for addressing since each flit carries both source and address masks). The

simple routing logic results in relatively small area requirements, especially for

the inter-ring interface which requires 336 LUTs.

The hypothesis that the simple routing logic would result in a fast intercon-

nect also holds true. The synthesis results for a complete 2 level hierarchical

interconnect with 4 stations per local ring and 4 local rings connected to a global

ring are shown in the last row of Table 8.2. The entire interconnect requires

14153 LUTs and can run at 200Mhz, yielding a peak sustainable transfer rate of

6.4Gbps between adjacent nodes. The transfer rates reported by [133] and [132]

are 320Mbps and 500Mbps respectively.

8.3.4 Routing Structure

The interconnect generates a very clean routing structure as shown in Figure 8.5.

The figure highlights Local Ring 1 (upper left corner) and Local Ring 2 (upper
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8 RTL Implementation of the Hierarchical Ring Interconnect

Figure 8.5: Routing Efficiency of the NoC Implementation for 16 stations.

right corner) showing the ring data buses localized in their respective areas. The

central ring data bus is highlighted in the center of the figure and also shows the

use of short and local routing resources. This contributes to a large extent to the

good performance of the NoC interconnect meeting a 200 MHz performance goal

on all of the clock domains (16 CPU domains, 4 local rings and 1 global ring).

8.4 Chapter Summary

An investigation into the properties of a hierarchical ring interconnect for a multi-

processor NoC implementation using Leon3 processors has been presented. The

motivation behind this work was to demonstrate the suitability of the hierarchi-

cal ring interconnect for FPGA implementations. The results obtained during

simulation and synthesis clearly demonstrate that the properties of the intercon-

nect compare favorably to other RTL NoC implementations. In fact, synthesis
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results show that for a larger bus width of 48, compared to 10 and 19, the area

requirements are comparable and the clock speeds are much higher. The results

of place-and-route show that the point-to-point connectivity of the architecture

yields an area-efficient layout with minimal global routing. Workload simulations

also showed that the hierarchical ring implementation can handle high levels of

traffic without a significant degradation in performance due to the fact that the

routing logic does not require any additional protocol overhead. Furthermore,

a low overhead (in terms of hardware) improvement of the inter-ring interface,

which enables pipelined read operations, resulted in a better network utilization

and an 11% reduction of the average latency.

Lastly, the RTL implementation makes use of several clock domains which

will enable the tuning of the clock speeds of each ring to adapt to the data

requirements of individual algorithms. The presence of multiple clock domains

also lends itself to energy efficiency by eventually integrating dynamic power

optimization techniques.
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Chapter 9

Conclusions and Future Work

The role of the system interconnect is gaining in importance as increasing num-

bers of cores are being integrated onto a single chip. Due to the performance,

area, and energy constraints, it is necessary to explore alternative interconnec-

tion methodologies for large SoC designs. The most promising alternative is the

network-on-chip (NoC) approach, which uses an on-chip network to connect a

large number of cores. The NoCs are more scalable than shared-medium (bus) ar-

chitectures, and also provide the ability to use a layered design approach, similar

to the OSI protocol stack.

The topology most studied in NoC research is the two-dimensional mesh,

which exhibits good performance for localized traffic. However, it suffers from

increased latencies and hop counts for long distance traffic as the network size in-

creases. Furthermore, the mesh network routers are relatively large and complex

because of the number of input ports and buffers. For on-chip implementation,

where energy and area are important metrics to be minimized, it is necessary

to explore alternative architectures to the mesh network. This thesis explored

the viability of a hierarchical ring network for on-chip implementation through

the use of behavioral simulation models and a low-level RTL implementation.

In addition, to overcome the scalability limitations of the mesh topology, several

composite architectures that use rings for routing global traffic were proposed

and simulated using an original simulation platform.
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The hierarchical rings were chosen for study because of their simplicity, which

results in routers that support a high clock rate, and are area- and energy-efficient.

Furthermore, the planarity of the hierarchical rings results in a low wiring com-

plexity — a desirable characteristic for ASIC and FPGA implementation. The

RTL synthesis results presented in Chapter 8 shows that the area and speed of

the rings compared favorably to other RTL implementations in the literature. In

fact, the RTL implementation of the hierarchical rings require a comparable area

for a much larger bus width of 48 bits. In addition, the clock rate of 200 MHz

reported after performing timing analysis was much higher than those reported

by other NoC RTL implementations (e.g. 25 MHz). When compared to other

implementations in the literature, it can be concluded that the hierarchical rings

are in fact well suited for on-chip implementation.

An interesting property of the hierarchical rings is that their structure permits

each ring to be partitioned into its own clock domain, which enables the appli-

cation of dynamic frequency scaling. In Chapter 7, an energy model was used

to evaluate the performance of the rings. It was shown that a significant energy

savings of approximately 30–70% could be achieved by varying the operating

frequencies of individual rings based on their buffer occupancies without ad-

versely affecting performance. Thus, in addition to the promising RTL synthesis

results, the architecture is amenable to the application of frequency scaling that

can reduce the energy consumption of the already resource efficient interconnect.

Chapter 4 presented several composite ring/mesh topologies that use rings

for global routing to help mitigate the scalability issues associated with mesh

interconnects, namely large hop-counts and latencies for long distance communi-

cations. The simulation results presented in Chapter 6 show that the hierarchical

rings can be successfully employed to improve the performance of the mesh net-

work for long-distance traffic. The addition of the rings to the mesh interconnect

resulted in reduced latencies and hop counts for global traffic.

The mesh topology also suffers from congestion in the center portion of the

network. It was shown that the addition of the hierarchical rings as a global

interconnect alleviates congestion by routing traffic up through the rings, thereby

freeing resources in the mesh. In addition to architectural considerations, the

routing strategy employed can also affect the performance of the network. An
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adaptive routing strategy was employed in Section 6.5 to alleviate congestion

at the bridge components in the augmented architectures. Simulation results

showed that the application of adaptive routing can improve performance, and

that tuning the aggressiveness with which the strategy is applied impacts the

performance improvement achieved by the algorithm.

Task assignment is when an application, usually represented as a task-graph,

is physically mapped onto the interconnect. The task assignment has a large

impact on performance because it determines how far or near communicating

tasks will be relative to each other. For example, a non-optimal mapping will

require many long distance communications, which will degrade performance

due to large hop counts and congestion. The most often used task-assignment

method is to minimize the distances between communicating pairs of nodes.

This method usually results in an uneven distribution where traffic concentrates

in the center of the mesh causing delays. To achieve a more even traffic distribu-

tion, a novel blocking-aware task assignment scheme is presented in Section 5.3.

The methodology is suitable for reducing the amount of blocking/contention as

well as the average latency experienced by traffic in a wormhole routed mesh.

To accomplish this task, metrics that help to gauge the effects of blocking in

communication infrastructure on a SoC were developed. The simulation results

presented in Section 6.6 showed that the network utilization can be more evenly

spread out while achieving similar performance in terms of latencies and hop

counts when compared to the minimal-path task assignment. The methodology

presented in Section 5.3 can be adapted to the composite architectures by mod-

ifying the blockage cost function to take into account contention for the bridge

components.

To summarize, the work presented in this thesis shows the hierarchical rings

to be a viable alternative to the popular mesh topology for NoC implementa-

tion. The simplicity of the unidirectional rings results in good performance and

resource efficiency. Lastly, the scalability issues of the mesh network can be at-

tenuated by the addition of the rings for routing global traffic to reduce average

latencies and hop counts.

165



9 Conclusions and Future Work

9.1 Future Work

As discussed in Section 2.1, the network-on-chip (NoC) paradigm has been pro-

posed relatively recently, and there are still many open problems that require

investigation. One of the most challenging problems will be to write application

code that will exploit the bandwidth afforded by the on-chip network. To ac-

complish this task, the necessary application programming interfaces (APIs) and

device drivers will need to be developed.

The RTL implementation of the hierarchical rings in VHDL was the first step

in implementing a full FPGA SoC. The next step will consist of integrating 16

processing elements with the hierarchical rings, where each node will run the

Linux operating system. To enable software development, custom Linux device

drivers will need to be implemented, which will enable applications to interface

with the interconnect. Layered on top of the device drivers, an API that provides

a high-level interface for sending and receiving messages will be written, thus

facilitating the development of distributed application software.

A drawback of the hierarchical ring interconnect is the bisection bandwidth

of the global ring, which can saturate under non-ideal traffic loads. To increase

the bandwidth, bi-directional rings can be used instead of unidirectional ones

(see Appendix B). The use of counter-rotating rings would result in multiple

paths between any two nodes on the network, thereby introducing the possibility

of using adaptive routing strategies to improve performance. In addition, the

hyper ring configuration, which has more than a single global ring, can be used

to increase the bisection bandwidth of the interconnect (see Appendices A and

B). Another possibility is to explore a combination of the hyper and multi ring

topologies to form as yet unexplored topologies that would exhibit increased bi-

section bandwidth and path-diversity. Lastly, more complex switch architectures

can be considered in an effort to boost performance. For example, multi-flit pack-

ets similar to those used in wormhole-routed mesh networks can be used; or the

effect of adding virtual-circuits to the rings can be evaluated. Each approach

would require a certain amount of overhead, but depending on the application

requirements, the extra cost may be justified.
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The composite architectures presented in Chapter 4 were shown to improve

the scalability of mesh networks. The interface between the mesh and hierar-

chical ring interconnect can affect the performance of the interconnect since the

bridge component can become a bottleneck. A thorough exploration of different

bridging strategies would be a worthwhile exercise, as the potential performance

improvement can be significant. In Section 4.5, so-called “narrow” and “wide”

bridge implementation were presented. A third option, which would increase the

bandwidth of the bridge component, would be to provide 4 output ports to the

hierarchical ring interconnect. This architecture would enable the bridge compo-

nent to read packets from all 4 input ports of the mesh router simultaneously (i.e.

north, south, east, and west), which would reduce the latencies due to contention

for the input port of the bridge.

Further, the importance of the task assignment cannot be overstated as it can

greatly affect performance and energy usage. The presented blocking-aware task

assignment strategy is designed to reduce contention and to distribute traffic

more evenly. The current implementation does not afford fine-grained control

over the task distribution. For example, a designer may wish to constrain certain

low priority tasks to be assigned to edge tiles, or high priority ones to central

tiles, etc. This strategy can be extended to consider task priorities, as well as

custom-defined zones such that a more fine-grained control of the optimization

can achieved, ultimately yielding better performance.

In addition to the open research problems discussed in Section 2.1.5, a signif-

icantly more comprehensive effort will be needed that accounts for difficulty in

designing and manufacturing correct large scale SoCs. As large SoC systems are

becoming increasingly complex, the task of verifying correct system behavior is

becoming difficult. The integration of online debugging mechanisms [134] that

enable the system operation to be monitored in real-time are of great importance.

In that work, the debug interfaces and protocols were devised that facilitate the

instrumentation of a SoC by assertion checkers using modern assertion languages

such as PSL. The communication of checker results, together with the necessary

time-stamping and synchronization information, is achieved through the NoC.

As well as increased complexity, designers will have to cope with manufactur-

ing errors that will be unavoidable in future manufacturing processes [11]. It is
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therefore necessary to incorporate the test access and the debugging mechanisms

within future designs that will enable errors to be detected and bypassed. Rudi-

mentary debugging mechanisms have already been incorporated into the RTL

implementation of the hierarchical rings [134]. The aforementioned FPGA SoC

implementation will incorporate more complex debugging mechanisms, which

will aid in the development effort by enabling real-time monitoring and data

collection to be performed during system operation.
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Appendix A

The Hyper-Ring Architecture

This chapter presents a comparative analysis of hierarchical ring and hyper ring

interconnects for network-on-chip (NoC). The two-level hierarchical ring architec-

ture has been shown to be resource efficient [17]. However, the hierarchical ring

topology has a constant bisection bandwidth that does not scale with network

size. To address this issue, an alternate architecture called a two-dimensional

hyper ring [123] is considered. The hyper ring topology is presented as an im-

provement over the hierarchical ring topology, whereby an additional global ring

is used to double the bisection bandwidth. A comparison of the simulation and

synthesis results of the architectures is presented, which show that the cost (in

terms of area and power) associated with the performance increase achieved by

the addition of the second ring is acceptable. Finally, the second global ring

also improves the path diversity of the topology, enabling the addition of debug

capabilities for detecting and diagnosing error conditions.

A.1 Architectures

While the simplicity of the unidirectional rings makes it an attractive architecture,

it has the drawback of limited scalability. That is, the diameter of the network

grows linearly with network size, hence hop-counts and latencies can become

unacceptably large. To attenuate the scalability issues of the single ring, it is
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(a) (b)

Figure A.1: (a) Two-level hierarchical ring architecture consisting of a single
global ring and four local rings. Each local ring has four terminal nodes. (b) A
hyper ring architecture consisting of two global rings and four local rings.

therefore appropriate to consider a hierarchical topology of rings, which results

in greater scalability and smaller network diameters. In fact, the diameter of a

hierarchical ring topology grows logarithmically with the number of nodes.

An example of a hierarchical ring topology is shown in Figure A.1a, which is

a two-level architecture consisting of 4 local rings and 1 global ring for routing

traffic between local rings. The topology of unidirectional rings connected in a

hierarchical manner share the same characteristics of the single unidirectional ring

that are of importance for NoC implementations. Importantly, the low degree of

the switches results in simple, fast, and area efficient routers. For example, the

degree of the terminal nodes shown in Figure A.1a is 3 (the local connection to

the PE is not shown), and the degree of the inter-ring routers is 4. The low degree

of the routers used in the hierarchical rings results in a planar topology, which

is well suited for efficient 2D layout. The topologies discussed in this chapter
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Figure A.2: The pipelined implementation of the inter-ring interface (IRI) routes
data between local and global rings. FIFOs that are intersected by the dotted
line, that indicates the clock boundary, are required to be bi-synchronous.

have no global routing, consequently, place-and-route will be efficient [17]. The

unidirectional nature of the rings reduces the overhead associated with routing

and thus results in low latencies and high throughput.

A.1.1 Switch Implementation

Data is routed through the interconnect via the inter-ring and ring interface com-

ponents previously discussed in Chapter 3. Figure A.2 shows the pipelined imple-

mentation of the inter-ring interface (IRI), which differs from the implementation

shown in Figure 3.2b. When flits are read from one of the IRI FIFOs in consecu-

tive clock cycles (pipelined read operation), care must be taken to avoid collisions

when a new flit arrives at the input because of the 1 cycle delay associated with

halting a read operation. To avoid collisions, a two stage input pipeline has been

added to the IRI. When a new flit arrives at the input, an active pipeline read

operation is halted. On the next clock cycle, the received flit will advance to

the 2 stage of the input pipeline, while the last flit of the read operation is read

from the FIFO and written to the output. On the next clock cycle, the flit is read

from the second stage register and written to the output, thus having avoided a

collision.
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A.1.2 Diagnostic and Monitoring

A further motivation for moving from the hierarchical rings to the 2D hyper

ring is that it provides a more suitable platform for debugging and monitor-

ing. The higher complexity brought forward by NoC implementations requires

an integrated approach to the debugging and monitoring of the NoC while in

operation. A debug methodology was proposed [134] to extend the network

such that it could carry maintenance, status and detected faults information on

a hierarchical ring implementation.

A limitation of the hierarchical rings is that only one path exists between any

two nodes on the network. Therefore, the time-sensitive monitoring and debug-

ging information can be delayed if there is congestion on the network. On the

other hand, the hyper rings have higher path diversity due to the second global

ring (i.e. more than one path exists between any two nodes on the network). The

hyper rings extends the debug architecture by allowing the debug information

to follow a different routing path than the regular traffic. The routing tables can

be modified such that the debugging and monitoring information temporarily

have exclusive use of one of the global rings for their tasks. While one global

ring is reserved for debug traffic, the NoC can still be in an operational state,

albeit at a reduced global traffic carrying capacity. In the described scenario, the

time-sensitive debugging information is provided with a low latency path from

sender to receiver, enabling the system to be more easily monitored and error

conditions diagnosed.

A.2 Simulation Results

A cycle accurate SystemC model of the hierarchical and hyper rings was used

to compare the performance of the two architectures. The reason SystemC was

used was because of the much faster simulation times. However, it should be

noted that the accuracy of the SystemC model has been verified by comparing it

with RTL simulation results.

At each input node (ring interface), an input terminal has a probability PI of

generating a flit. The variable PI denotes the injection rate per clock cycle. For
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Figure A.3: (a) Simulation results for the hierarchical ring architecture. (b) Sim-
ulation results for the hyper ring architecture.
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Figure A.4: Execution times for the hierarchical and hyper rings architectures.
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example, and injection rate of 0.1 means that each input node has a 10% chance

of generating a new flit, which averages out to 1 flit every 10 clock cycles. When

an input node generates a new flit, it is stored in an infinite input queue [59],

and the latency of the flit is calculated as the time from when a flit is created,

to when a flit is ejected from the network. The use of the infinite input queue

is important because the time a flit spends in the input queue correctly accounts

for delays in the network due to congestion.

The system bottleneck of the hierarchical rings is the global ring. If too much

traffic is sent over the global ring, the network will saturate due to congestion.

The bisection bandwidth of the interconnect is defined as the bandwidth of the

minimum number of links that must be cut in order to separate the network into

two equal parts. In the case of the hierarchical ring architecture, the number

of bisection links is 2. As there are 16 nodes in the architectures, the expected

saturation point of the topology is when the injection rate is approximately 10–

20% under uniform traffic distribution. The goal of the hyper rings architecture is

to improve upon this number; in fact, the added global ring doubles the expected

bisection bandwidth.

When two nodes on the same local ring communicate with each other, the

traffic being exchanged is said to be local. Similarly, if the two nodes belong to

different local rings, the traffic must travel through the global ring, and the traffic

is said to be global. As the two architectures being studied are hierarchical in

nature, a variable PL has been introduced that denotes the probability of a gener-

ated flit being local. Using PL, the ratio of local to global traffic being generated

by the simulator can be controlled. As previously discussed, the hierarchical na-

ture of the topology makes it sensitive to the amount of global traffic being sent

over the global ring. To maximize performance, communicating tasks should be

assigned to nodes on the same local ring if possible, thus maximizing locality of

communication and improving performance.

To model sub-optimal and optimal application mappings, three values of PL

were used during simulation: 0.25 models a poor mapping where 75% of traffic is

global. A PL value of 0.50 also models a sub-optimal mapping for a hierarchical

topology because it implies that half of all traffic will travel through the bisection

links. Finally, a PL value of 0.75 represents a good mapping that exploits the
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architecture well. Figure A.3 shows the results obtained for both architectures

while varying the injection rate from 0.1 to 1.0, where each node was configured

to send 5000 flits. The normalized latencies show that as expected, hierarchical

rings saturate at a lower injection rate than the hyper rings. Furthermore, the

flits travelling through the hyper rings experience a marked reduction in average

latencies, ranging from approximately 60% for PL = 0.25, to approximately 10%

for PL = 0.75. The difference in average latency for PL = 0.75 is less than for

other values because the generated traffic maps well onto both architectures. We

can conclude from Figure A.3 that latency reduction experienced by the hyper

rings over the hierarchical rings is greater as the amount of global compared to

local traffic increases. However, the hyper rings still outperforms the hierarchical

rings in all cases.

Figure A.4 shows the completion times for each simulation run. The comple-

tion time is defined as the time it takes for the last flit to reach its destination

and be ejected from the network. It can be seen that the completion times for the

hyper rings are significantly lower on average.

A.3 Synthesis Results

The synthesis of the hardware modules was performed using Synopsys DC Ultra

(Version X-2005.09) to highlight the performance of the hyper ring in a CMOS

ASIC. The technology target was TSMC 0.18µm using the Artisan standard-cell

library [135] and operating at 1.8V.

The synthesis was performed for typical operating conditions (1.8V operation,

room temperature, normal process). The wireload model was selected to be

relatively small (average wire length 66.7 µm). This is a reasonable assumption

since the PE interface logic and the ring interface logic are very localized. Their

logic cone depend only on internally registered values. The module architectures

are registered at the output and input, so the full clock cycle is available for signal

propagation between nodes. This adds a slight area penalty due to the flip-flops

and additional buffering for the flow control, but will ensure that the layout is

unaffected by the interconnect delay.
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Table A.1: Area estimates details for the NoC building blocks

Operating Comb. Area Non Comb. Area
Frequency (k µm2) (k µm2)

Interface to the processing element

625 MHz 95.4 176.6
500 MHz 85.8 176.3
250 MHz 79.5 175.4
100 MHz 78.4 175.2

Interface between rings

625 MHz 74.1 157.5
500 MHz 66.7 157.1
250 MHz 61.6 156.4
100 MHz 61.1 156.2

Table A.2: Power estimates details for the NoC building blocks

Operating Cell Power Switching Power Cell Leakage
Frequency (mW) (mW) (nW)

Interface to the processing element

625 MHz 120 26.7 1308
500 MHz 93.2 22.8 1030
250 MHz 46.1 10.8 919
100 MHz 18.6 4.3 912

Interface between rings

625 MHz 105 23.4 1070
500 MHz 81.8 19.1 935
250 MHz 40.1 9.2 801
100 MHz 16.1 3.5 817
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Table A.3: Area and power estimates for the two architectures synthesized for
different frequency of operation

Operating Total Cell Area Total Power Cell Leakage
Frequency (mm2) (W) mW

hierarchical ring

625 MHz 5.28 2.85 25.2
500 MHz 5.10 2.26 20.2
250 MHz 4.95 1.11 17.9
100 MHz 4.93 0.45 17.9

hyper ring

625 MHz 6.20 3.37 29.5
500 MHz 5.98 2.66 23.9
250 MHz 5.82 1.31 21.1
100 MHz 5.80 0.52 21.1

The synthesis was performed for four different target frequencies, namely

625 MHz, 500 MHz, 250 MHz and 100 MHz. Table A.1 shows the maximum

frequency of operation at 625 MHz. The performance limitation comes from

the internal memory buffers; the critical path is the FIFO Full signal in the bi-

synchronous FIFO that passes data across rings.

At full speed, the NoC interconnect does consume a fair amount of power (up

to 3.37 W, see Table A.3), but dynamic clock scaling is inherently supported by

the design so less-loaded rings could run at a reduced clock speed and save a

considerable amount of power. The processing elements in the NoC are expected

to consume a more significant amount of power.

One element that is interesting to note is that 93.5% and 92.2% of the cell area

of the NoC interconnect is occupied by the various buffers in the hierarchical-ring

and hyper ring respectively. In this design, FIFOs were implemented using arrays

of flip-flops, which are less efficient than using an optimized RAM cell. The size

of the FIFO memories are all between 640 and 768 bits which could benefit from

the generation of RAM cells to reduce their area overhead.

For a similar target frequency of 500 MHz, the hyper rings use 17.7% more

power and occupy 17.2% more area. Those results are quite positive, since the

hyper ring offers new beneficial architectural properties such as path redundancy
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and higher bisection bandwidth that the hierarchical-ring topology was lacking.

The localized clock domains allow the two rings to be clocked at different fre-

quencies of operation. A chip floorplan mirroring a topology like the one shown

in Figure 3.1 would benefit from a higher frequency of operation in the center

ring due to the smaller parasitic capacitance of its interconnect. The effect of

increasing the speed of the global ring would be to increase the bisection band-

width, thereby increasing the saturation point. It is therefore possible to tune the

architecture bandwidth depending on performance requirements. The outer ring

can use a lower frequency of operation and carry some of the excess traffic that

would create congestion in the inner ring or it can be used as a lower-bandwidth

debug or synchronization channel. Latency-sensitive traffic will benefit from the

shorter latencies offered by the faster ring.

A.4 Chapter Summary

A comparative analysis of the hierarchical and hyper rings topology has been

presented. The advantages of the hyper rings over the hierarchical rings include

increased bisection bandwidth and path diversity, and improved debugging and

monitoring capabilities. Simulation results have shown that the hyper rings per-

form better for all types of traffic distributions, as shown by the higher saturation

points, particularly for more uniform traffic distributions. Moreover, the through-

put of the architecture is increased, as shown by the faster completion times of

the simulation runs.

While the performance improvements of the hyper rings is interesting, it

comes at the cost of the higher energy and area requirements. The performance/-

cost trade-off has been evaluated by comparing synthesis results for both architec-

tures. The hardware synthesis has shown the hyper ring to be an advantageous

proposition as the extra hardware cost is within acceptable parameters (approx-

imately 17%). The low additional area and power cost would be offset in many

applications by the increased performance, flexibility, reliability and overall qual-

ity of the resulting topology.
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Appendix B

Fat Hierarchical and Hyper Ring Ar-

chitectures

This chapter presents two “fat” wormhole routed multistage ring architectures

that use bidirectional global rings to increase the bisection bandwidth of the origi-

nal architectures, which are composed of unidirectional rings. First, a hierarchical

ring topology which has a single global ring is considered. Second, a hyper ring

topology is presented as an improvement over the hierarchical ring topology,

whereby an additional global ring is used to double the bisection bandwidth.

Furthermore, the bisection bandwidth of both architectures can be doubled by

using bidirectional instead of unidirectional global rings, an approach similar the

one used by the “fat tree” [63] architecture. Behavioral level SystemC models are

used to compare the performance of the hierarchical and hyper ring architectures,

as well as the relative improvement gained by making the architectures fat. The

architectures use wormhole routing, and virtual channels are used to increase

link utilization and to avoid deadlock. Results will show that the added global

bandwidth improves performance and increases the scalability of the architec-

tures under study.

B.1 Architectures

The hierarchical and hyper ring architectures used here are the same as shown

in Figure A.1. However, their implementations differ from the ones used in Sec-
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tion A.1 in that they use wormhole routing and also support virtual channels.

While providing more flexibility, the wormhole implementation is more com-

plex and will require more area than the slotted implementation described in

Chapter 3. However, if greater performance is needed, the wormhole routed

implementation is a suitable alternative.

B.1.1 Router Architecture

Wormhole routing is often used for NoC implementations because it requires less

buffers than store-and-forward approaches, and it exhibits shorter latencies than

virtual circuit switching. Also, the use of virtual channels [136] can improve link

utilization, and be used to avoid deadlock in ring networks [60].

The router architecture used to construct the hierarchical and hyper ring

topologies is the generic input queued virtual channel router [59, 136]. Our im-

plementation does not have output queues, and the output ports are registered.

Each input port has an input unit consisting of FIFOs for each virtual channel, and

state information used for routing. Packets are assigned output ports by a shared

router component, and a virtual channel by a shared virtual channel allocator.

As full crossbars do not scale well, a multiplexed crossbar switch [136] is used to

connect input queues to the output ports. Since the routing function used in the

architecture is simple, and the virtual channel allocation policies are fixed, the

route computation and virtual channel allocation is assumed to require a penalty

of 1 clock cycle. Hence, the switch traversal time for a header flit encountering

no contention is 3 cycles (body flits take 2 cycles).

B.1.1.1 Virtual Channel Allocation

In wormhole routed ring networks, care must be taken to avoid deadlock due

to the possibility of cyclic channel dependencies. A minimum of two virtual

channels is needed to avoid deadlock in a ring network [60], however, in the hyper

ring network, 3 virtual channels are needed because of the added possibility of

cycles forming due to the 2 global rings. The virtual channel allocation scheme

used is as follows: If the current node is denoted by ni, and the destination node

by nj , if i < j virtual channel 0 is used, and if i > j, virtual channel 1 or 2 is
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Figure B.1: SystemC simulation results for the hierarchical and hyper ring archi-
tectures using uniform random traffic (PL = 0.5).

used depending on whether or not the destination node resides on the same ring.

Specifically, if the packet is destined to the same ring, virtual channel 1 is used,

otherwise channel 2 is used to break any cycles that can form through the global

rings.

B.2 Simulation Results

Behavioral level SystemC models were used to compare the performance of the

different architectures. At each input node (ring interface), an input terminal has
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Figure B.2: SystemC simulation results for the hierarchical and hyper ring archi-
tectures using skewed random traffic (PL = 0.7).
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a probability PI of generating a flit. As in Section A.2 the variable PI denotes

the injection rate per clock cycle. When an input node generates a new flit, it is

stored in an infinite input queue [59], and the latency of the flit is calculated as

the time from when a flit is created, to when a flit is ejected from the network.

The use of the infinite input queue is important because the time a flit spends in

the input queue correctly accounts for delays in the network due to congestion.

Reiterating previous discussions about the hierarchical rings, the global ring is

the system bottleneck. If too much traffic is sent over the global ring, the network

will saturate due to congestion. In the case of the hierarchical ring architecture,

the number of bisection links is 2. As there are 16 nodes in the architectures,

the expected saturation point of the topology is when the injection rate is ap-

proximately 10–20% under uniform traffic distribution. The goal of the hyper

rings architecture is to improve upon this number; in fact, the added global ring

doubles the expected bisection bandwidth. In addition, making the architectures

fat further increases the bisection bandwidth and the expected saturation point.

As in Section A.2, the variables PL is used to denote the probability of sending

local traffic. To model optimal application mappings, two values of PL were used

during simulation: 0.5 models a poor mapping for a hierarchical topology be-

cause half of all traffic will travel through the bisection links. Second, a PL value

of 0.7 represents a good mapping that exploits the architecture well. Figure A.3

shows the results obtained for both architectures while varying the injection rate

from 0.1 to 1.0, where each node was configured to send 5000 flits. The normal-

ized latencies show that as expected, the hierarchical rings saturate at a lower

injection rate than the hyper rings. Furthermore, the flits travelling through the

hyper rings experience a marked reduction in average latencies. Lastly, the fat

architectures show that the average latencies are reduced for both architectures.

Interestingly, the performance improvement of the fat architectures is greatest for

PL = 0.5 (Figure B.1), showing that the added global bandwidth afforded by the

bidirectional rings considerably improves the performance of the architectures

under sub-optimal application mappings. The simulation results confirm that

the use of bidirectional rings does indeed improve the performance of the two

architectures, making them less sensitive to sub-optimal application mappings.
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B.3 Chapter Summary

The hierarchical ring network, having a single global ring, can suffer from con-

gestion at the global ring under non-ideal traffic loads. To address this, the

two-dimensional hyper ring, which has an additional global ring, can be consid-

ered. The bisection bandwidth of both the hierarchical and hyper ring topologies

can be improved by using bidirectional global rings to create so-called “fat” ar-

chitectures. While the fat topologies require extra resources for the more complex

routers of the global ring, the node degree of the routers is still less than that of

the typical mesh router. Furthermore, the resource efficient unidirectional rings

are still used at the lowest level of the hierarchy for local traffic.

The performance of all 4 topology variations have been compared using be-

havioral level SystemC models. Simulation results have shown that the hyper

rings perform better than the hierarchical rings, and the fat hyper ring architec-

ture performed the best. The use bidirectional global rings serves to improve the

performance of both architectures, making them less sensitive to traffic patterns

exhibiting a high proportion of global traffic. In conclusion, depending on the ap-

plication characteristics and resource constraints, one of the presented multistage

ring topologies can be considered for NoC implementation due to the relatively

low resource requirements (i.e. simplicity of the routers) when compared to the

mesh architecture.
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AMBA

advanced microcontroller bus architecture. 16

ASIC

application specific integrated circuit. 2

CMP

Chip Multi-Processor. 2

DMA

direct memory access. 138

ECC

error correcting codes. 5

EDA

electronic design automation. 5

FPGA

field programmable gate array. 146

GALS

globally asynchronous, locally synchronous. 11

HDL

high-level description language. 19

IP

intellectual property. 2

IRI

inter-ring interface. 48

199



Glossary

ISS

instruction set simulator. 138

LOC

lines of code. 95

LSI

large scale integration. 12

LTP

local traffic probability. 154

NA

network adapter. 15

NI

network interface. 15

NoC

Network-on-Chip. 3

OO

object oriented. 96

PE

proccessing element. 2

PSL

property specification language. 167

QoS

quality of service. 19

RI

ring interface. 48

RTL

register transfer level. 145

RTS

real-time system. 19

SA

simulated annealing. 113
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Glossary

SoC

System-on-a-Chip. 2

SRI

station-ring interface. 152

SSI

small scale integration. 12

TCP

transmission control protocol. 4

TLM

transaction-level model. 22

ULSI

ultra large scale integration. 12

UML

unified modeling language. 96

VLSI

very large scale integration. 12
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