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“The highest activity a human being can attain is learning for under-

standing, because to understand is to be free.” -Spinoza
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ABSTRACT

Primordial black holes are black holes that may have formed from density

fluctuations in the early universe. It has been theorized that black holes slowly

evaporate. If primordial black holes of initial mass 1014g (or 10−20 times the

mass of the Sun) were formed, their evaporation would end in this epoch, in a

bright burst of very-high-energy gamma rays. A Cherenkov telescope experi-

ment like VERITAS can then look for these primordial black hole bursts in its

data, in the hopes of constraining the rate-density of their final evaporation.

This work describes the search for such black holes, using the VERITAS tele-

scopes, as well as developing new techniques in order to reach better limits.

The 99% C.L. upper limits obtained in this work are of 2.22× 104 pc−3 yr−1,

an improvement from previous VERITAS limits by a factor of 6, as well as

from limits measured by other experiments.
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RÉSUMÉ

Les trous noirs primordiaux sont un type de trous noirs qui pourraient

s’être formés par des fluctuations de densité durant les premiers instants de

l’univers. Il est aussi probable que les trous noirs, de façon général, s’évaporent

continuellement. Si des trous noirs primordiaux avec une masse initiale de

1014g (ou de 10−20 fois la masse du Soleil) se sont formés, leur évaporation se

terminerait à notre époque, dans une explosion de rayons gamma à très hautes

énergies. Des télescopes à rayonnement Cherenkov, tel que ceux utilisés par

l’expérience VERITAS, peuvent chercher ces explosions de trous noirs dans

leurs données, dans l’espoir de restreindre leur abondance. Le travail décrit

ici détaille cette recherche de trous noirs primordiaux, utilisant les données

des télescopes VERITAS, tout en développant de nouvelles techniques dans

l’espoir de pouvoir atteindre de meilleures limites que celles obtenues par les

mesures précédentes. Les limites supérieures obtenues dans ce travail, à un

niveau de confiance de 99%, sont de 2.22 × 104 pc−3 yr−1, une amélioration

par rapport aux dernières limites obtenues par VERITAS par facteur 6, ainsi

qu’à d’autres mesures de différentes expériences.
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CHAPTER 1
Introduction

Stephen Hawking has been at the forefront of studies on the behavior of

black holes, and his work is the main motivation for the search carried out

in this thesis. He first postulated the existence of black holes having been

formed in the early universe, now known as primordial black holes (PBHs) [2],

in 1971. A few years later, he postulated the possibility of black holes to be

evaporating [3], similar to the behavior of a blackbody.

This has launched a field of research from different experiments, in the

hopes of detecting this evaporation. One of the ways to detect these PBHs is

through their emission of very-high-energy (VHE) gamma rays. This partic-

ular field of astrophysics is relatively young, having detected its first source,

the Crab Nebula, in 1989 [4].

It is possible to use VHE gamma rays to look for the final evaporation of

PBHs. This thesis describes such a search methodology, using the VERITAS

(Very Energetic Radiation Imaging Telescope Array System) telescopes. The

main purpose of this work is to study the feasibility of this type of search,

using newly-developed analysis techniques and methodologies.

First, a quick description of the field of VHE gamma-ray astrophysics is

given, detailing the different production mechanisms in astrophysical objects

that lead to these emissions. The third chapter will then give a description of

the different types of black holes that can exist, from solar-mass to supermas-

sive ones, as well as intermediate-mass black holes. PBHs will be covered in

greater detail as this is the main topic of this thesis.

1



Chapter four goes into the details of black hole evaporation mechanisms,

and how this can be applied to PBHs. Understanding this mechanism is

important for developing a search methodology. An overview of the different

searches done in the past, by different experiments, in light of the information

on PBH evaporation, will be given.

The VERITAS experiment, used for the search for PBHs in this work, will

then be described, with a focus on its hardware and experimental technique.

This will then be followed by an overview of the standard VERITAS analysis,

as well as a discrimination method, boosted decision trees (BDTs), recently

developed by the collaboration. BDTs, a powerful tool to remove background

events, will be used extensively in the search for PBHs, as it offers a significant

improvement over the standard analysis used in the past by VERITAS.

The seventh chapter will detail the specifics of the analysis on the search

for PBHs, looking for bursts of gamma rays that may have come from such

black holes in their final stages of evaporation. This chapter will outline the

new tools used (such as BDTs, and a better understanding of the angular

resolution of the detector), as well as the methods to count the bursts found

in VERITAS data.

Finally, upper limits on the rate-density of the final evaporation of PBHs

will be calculated from the results of the analysis, showing the improvements

provided by the new analysis methods used in this work. Comparisons will be

given with the results of other experiments, as well as some implications on a

potential discovery of PBHs.

2



CHAPTER 2
Very-High-Energy Gamma-Ray Astrophysics

Very-High-Energy Gamma-Ray Astrophysics is a relatively new field of

astrophysics. It originated with the discovery of cosmic rays, charged particles

of high energy coming from the sky [5]. Since cosmic rays are charged, their

trajectories are deflected by the magnetic fields along their paths, so they

appear to be coming from random directions as seen from Earth. This means

that to determine the origin of cosmic rays, some other methods need to be

developed. This is why very-high-energy (VHE) gamma rays, in the GeV to

TeV regime, became an interesting avenue of research, as they point back to

their source, which is capable of producing high energy particles and therefore

cosmic rays.

This chapter will review the different production mechanisms of gamma

rays, from a particle physics point of view. Different astrophysical phenomena

can provide environments for these mechanisms to take place, but this thesis

will cover the production of one particular potential source of VHE gamma

rays: primordial black holes (PBHs).

The methods for detecting these gamma rays will be discussed, with a

quick overview of the techniques used to detect them.

2.1 Gamma-Ray Production Mechanisms

Gamma rays are the part of the electromagnetic spectrum (see Figure 2–

1) above about 0.1 MeV. VHE gamma rays are a sub-band in the gamma-ray

regime, in the energy range of approximately 100 GeV to 100 TeV.

1



2

Figure 2–1: The electromagnetic spectrum. Gamma
rays are the part of the spectrum starting at 0.1 MeV
and above, and VHE gamma rays are defined to be
between 100 GeV and 100 TeV. Figure from [6]

The question that came about when they were discovered was what pro-

cesses are involved in giving photons that much energy. To answer that, one

turns to particle physics to look for the typical production processes of gamma

rays.

2.1.1 Fermi Acceleration

Most of the gamma-ray production mechanisms come from charged parti-

cles of high energies; so a quick look at what is involved in particle acceleration

is warranted.

There are two types of charged particle acceleration in astrophysical sources.

One is through a strong electric field, like one can find on the magnetosphere
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of a pulsar. The second one is called Fermi acceleration, and comes in two

types: first- and second-order acceleration.

Ironically, the second-order process was the first one proposed, by Enrico

Fermi in 1949 [7]. He postulated that charged particles could collide stochasti-

cally with gas clouds in the interstellar medium. This process would diffuse the

particles and have them gain energy with each collision. The average energy

gain (∆E/E) is proportional to (v/c)2, with v being the gas cloud’s velocity

and c, the speed of light [8].

The first-order acceleration is a more efficient process, and was discovered

later [9]. In this situation, it is thought that a strong shock is propagating

through a diffuse medium. The charged particles in the medium go through

the shock, and each time gain energy (∆E/E) proportional to (v/c), where v

is the velocity of the shock wave. This results in a power-law spectrum, with

index close to 2 [8]. Such shock waves are present in supernova remnants or

active galactic nuclei, making this mechanism a very plausible explanation for

the acceleration of charged particles.

However, these processes do present a few problems. One of them is called

the “injection problem”, whereby it is necessary for the particles to initially

have energies larger than the thermal energies of the gases’ particles. In that

way, they will be able to cross the shocks and get accelerated [8]. The processes

involved for the particles to reach these initial energies remain a mystery.

Another problem is that this process can only accelerate the particles up to

1015 eV, whereas the measured cosmic ray spectrum extends all the way to

1020 eV [10]. Some other mechanisms are needed to explain how the particles

can gain such energies.
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2.1.2 Inverse Compton Scattering

One of the main VHE gamma ray production processes is Inverse Comp-

ton Scattering [11]. A low energy photon scatters off a high energy electron,

which loses its energy to the photon:

e + γlow energy → elow energy + γV HE (2.1)

The energy of the scattered photon typically becomes:

E ′
p ∼ γ2Ep (2.2)

where γ is the Lorentz factor from relativity (γ = 1/
√

1− v2/c2 = Ep/mec
2)

of the incident charged particle, and Ep is the initial photon energy [8]. In

the Thomson regime (where γhν ≪ mec
2 and γhν is the photon energy in

the center-of-mass reference frame), the resulting spectrum of the scattered

photons will follow a power-law of index (1 + α)/2, if the electron population

follows a power-law spectrum of index α [4].

Low-energy photons are prominent in the interstellar environment, either

from thermal emission from stars or through synchrotron emission of high-

energy electrons in magnetic fields. That, and the presence of astrophysical

objects where electrons are accelerated through the Fermi acceleration process

make this particle interaction a very common one for VHE emissions.

2.1.3 Synchrotron Radiation

Synchrotron radiation is a less important mechanism when considering

VHE astrophysics; it is dominant at the lower energy ranges. A high-energy

electron will emit synchrotron radiation when accelerating, in this case, when

forced to travel in a curved trajectory by a magnetic field. The electron will

lose some energy in the form of a gamma ray of energy Esyn [12]:
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Esyn = 3µB

(

E

mc2

)2

B sin θ (2.3)

where µB = e~/2mec is the Bohr magneton, E is the electron’s energy and B

is the magnetic field strength.

In order for an electron to emit a photon of 1 TeV by synchrotron radia-

tion in a relatively weak magnetic field (for example, the Crab Nebula has a

magnetic field of ∼ 0.1 mG [13]), it would need to be accelerated to the PeV

range, but synchrotron losses will prevent it from reaching those energies.

A plausible way of reaching VHE emissions with synchrotron radiation is

through synchrotron self-Compton interactions, where the electron will emit a

gamma ray through synchrotron radiation, and then the gamma ray will itself

scatter through inverse Compton scattering with another high-energy electron,

giving it more energy.

2.1.4 Neutral Pion Decay

Not only is neutral pion decay a common process in VHE astrophysics,

it is also the main contributor of gamma-ray emission from primordial black

holes (PBHs, see Section 4 for an explanation of the neutral pion decay contri-

bution to the PBHs’ gamma-ray emissions). Protons and other heavier nuclei

can be accelerated in astrophysical environments through Fermi acceleration,

and then interact with ambient nucleons or photons. These interactions pre-

dominantly produce charged and neutral pions [4]. In the case of PBHs, pions

are directly emitted by the black holes following the spectrum from Hawking

radiation (see Chapter 4.1), i.e. they naturally have high energies without

having to be accelerated. Charged pions will decay into muons and neutrinos

99.9% of the time, while neutral pions decay into two photons 98.8% of the

time, with a lifetime of 10−16 seconds [14]:
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p + nucleus → p′ . . .+ π± + π0 + . . . (2.4)

followed by:

π0 → 2γ; π → µνµ; µ → eνµνe (2.5)

Neutral pions can also decay into an electron-positron pair and a photon,

1.2% of the time. Heavier and rarer hadrons (like K mesons and hyperons)

would also be produced in similar reactions. However, these processes are not

as likely and tend to be neglected [4].

2.2 Detection Mechanisms

Detecting gamma rays presents an interesting challenge, as the atmo-

sphere will absorb them and they will not make it to the ground. Two options

remain, however. One is to go into space to catch them before they get ab-

sorbed by the atmosphere, and the other is to look for the result of the gamma

ray’s interaction with the atmosphere. Either way, particle physics interactions

are very important in describing the detection methods of gamma rays. The

following section will describe electron-positron pair production, interaction

used by the Fermi Gamma-Ray Space Telescope [15], followed by a descrip-

tion of bremsstrahlung. The formation of particle showers will be described,

which uses a combination of pair production and bremsstrahlung emissions.

Finally, the Cherenkov radiation emitted by the shower will be explained, as

it is the emission that VERITAS is looking for.

2.2.1 Pair Production

Pair production consists of the production of an electron-positron pair

from a gamma ray. In order to be able to produce the pair, the gamma ray
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needs to have enough energy, i.e. at least twice the rest mass of the electron,

for energy to be conserved. Also, to respect conservation of momentum, the

process needs to occur in the electric field of a nucleus, which will absorb some

of the excess momentum [4]. Pair production becomes the dominant gamma-

ray interaction process at ∼30 MeV, and is used by detectors like the Fermi

Gamma-Ray Space Telescope (see Section 4.4.2 for a short description). In

that detector, the gamma ray pair-produces and the electron-positron pair is

detected by tracking their paths in the detector and measuring their energies

with the use of a calorimeter [15]. The pair’s trajectories can be used to

reconstruct the trajectory of the original gamma ray, which points back to

its point of origin. Pair production is also an essential component of the

development of particle showers in the atmosphere, as explained in Section

2.2.3

2.2.2 Bremsstrahlung

German for “braking radiation”, bremsstrahlung is the emission of pho-

tons by an electron passing through the electric field of a nucleus, losing energy

in the process (for an electron of energy E, the emitted photon would have,

on average, an energy of E/3 [8]). In short, it decelerates the electron, hence

the name “braking radiation”. This interaction is also particularly important

in the development of a particle shower, discussed in the next section.

2.2.3 Particle Showers

As was discussed in the previous sections, both pair production and

bremsstrahlung require the presence of the electric field of a nucleus in or-

der for the respective interactions to take place. This becomes interesting

if one considers what happens when radiation (either cosmic rays or gamma

rays) reach the Earth’s atmosphere: they generate extensive air showers. Fig-

ure 2–2 shows a schematic of particle shower evolution, as well as a Monte
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Carlo simulation showing the difference in appearances between electromag-

netic and hadronic showers (in this case a photon and proton-initiated shower

respectively).

Figure 2–2: Schematic and Monte Carlo simulation of
the tracks of particles in photon and proton-initiated
air showers. The photon shower is more compact, with
small lateral development, while the proton shower
has more particles gaining transverse momentum, with
some of them ending up in electrons/positrons or
gamma rays creating their own electromagnetic shower.
Image from [4].

In the case of a gamma-ray shower (or, more generally, an electromag-

netic shower), the photon reaches the atmosphere and will pair produce into an
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electron and a positron. The two particles then undergo bremsstrahlung, each

emitting a gamma ray, which will each pair-produce into an electron/positron

pair. The newly-created electron/positron pairs will in turn bremsstrahlung

and keep the cycle going. This process will end when the electrons reach

an energy of Ec, the critical energy where the dominant energy loss process

is through ionisation and not bremsstrahlung. The resulting particles then

stop participating in the particle shower’s growth [8]. Since both the elec-

tron/positron pair production and bremsstrahlung are beamed forward, the

shower will be fairly narrow. Some lateral evolution will develop as the charged

particles scatter with atmospheric nuclei, and deflect due to the Earth’s mag-

netic field. Particle showers of gamma rays from 100 GeV to TeVs will reach

a development maximum at about 10 km of altitude, and can reach across to

a few kilometers in length [4].

In contrast, cosmic-ray showers from hadrons (primarily protons and he-

lium nuclei) will generate particles, like pions and kaons, with large transverse

momentum, which will themselves eventually decay into gamma rays or elec-

trons/positrons and each of those will generate its own electromagnetic shower

[4]. This will result in a much larger lateral propagation of the particle shower,

with many different electromagnetic showers propagating at different points

across that lateral distribution.

There is also the possibility of a cosmic electron or positron-generated

electromagnetic shower. This will be virtually identical to the gamma-ray-

induced shower, and consists of an irreducible background in the gamma ray

signal. However, hadronic showers are the most dominant background, and are

in principle distinguishable from electromagnetic showers. The electron back-

ground follows a power-law spectrum of index -3.3 between 10 GeV to 1 TeV
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[16], and will only dominate the background at very low energies, becoming

negligible in the order of a few GeVs.

Some experiments (like Milagro, or HAWC, both shortly described in

Section 4.4.8) use the particles in the showers to detect gamma rays. They

consist of large pools of water in which the resulting charged particles from

the showers interact and cause the medium to emit Cherenkov light (described

in the next section). Since most particles do not make it to the ground, those

detectors are built at high-altitude in an effort to catch them before they get

absorbed in the atmosphere (HAWC is built at an altitude of 4100 meters

while Milagro was at an altitude of 2630 meters).

2.2.4 Cherenkov Radiation

If a charged particle moves in a medium of refractive index n, at a velocity

that is faster than the speed of light in that medium (c/n), it will generate

an electromagnetic shockwave, forming a light cone propagating in the same

direction as the particle [8]. This shockwave is called Cherenkov radiation.

In the case of a particle shower, the generated electrons/positrons will

go faster than the speed of light in the atmosphere, and will each generate

Cherenkov light propagating to the ground. The angle θ of the light cone with

respect to the shower propagation direction is:

cos θ =
c

n(λ)v
(2.6)

where c is the speed of light, v is the velocity of the charged particle and n(λ)

is the index of refraction of air, for light of wavelength λ. The spectrum of

Cherenkov photons depends on the wavelength as 1/λ2. It increases with the

shorter wavelengths; however, at low wavelengths, photons get absorbed by

the atmosphere, which results in a peak in the Cherenkov spectrum around

330 nm, before falling down with lower wavelengths.
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Once the electrons and positrons no longer have enough energy and their

velocities reach the speed of light in the air, they will stop causing the emis-

sion of Cherenkov light. This happens at energies between 20 and 40 MeV,

depending on where the particles are in the atmosphere, as the air density

changes and affects the index of refraction, which in turn changes the speed

of light in the air. n varies with the density of air (proportionally to n − 1),

itself varying with the pressure, temperature and amount of water vapor in

the atmosphere [17]. The density diminishes with altitude, which lead to n

decreasing towards 1 as the altitude rises.

As mentioned in the previous section, Cherenkov radiation is used to

identify the particles from a particle shower with experiments like Milagro or

HAWC, where the medium is water. By contrast, experiments like VERITAS

(commonly referred as Imaging Array of Cherenkov Telescopes, IACTs) use

the Cherenkov emission from a particle shower in the atmosphere. The typical

altitude of the maximum of the shower development is about 10 km, and with

the telescopes being on the ground, the resulting light pool extends in a radius

of ∼ 100 m. Even though the particles in the shower do not make it to the

ground, the Cherenkov light they produce does, which allows the IACTs to

have a lower energy threshold than the particle shower experiments. The

VERITAS telescope array, as well as its detection technique, will be described

in Chapter 5.



CHAPTER 3
Black Holes

A black hole is one of the most dense astrophysical objects that can be

found in nature, resulting in a region in space-time where the gravitational

force is so strong that nothing, not even light, can escape it. From a theory

perspective, the idea of black holes has been explored as early as in 1795, by

Pierre-Simon de Laplace, who described the behavior from the perspective of

Newtonian gravity. Using Newton’s gravitational potential energy (GMm/r),

and equating it with the kinetic energy mv2/2 gives one the speed v which an

object of mass M, at a distance r, needs to have to escape the gravitational

potential :

1

2
mv2 =

GMm

r
(3.1)

If the speed is c, the speed of light, then there exists a radius Rg in which

an object at r < Rg will not be able to escape:

Rg =
2GM

c2
(3.2)

However the idea was not pursued, nor accepted by the scientific com-

munity at that time. After Einstein developed his general theory of relativity

[18], Karl Schwarzschild was able to derive a solution to the Einstein equations

on the behavior of the gravitational field around a central, spherical mass with

no charge or angular momentum [19]. He found the radius inside which, for

a given mass, light would not be able to escape. That radius is called the

Schwarzschild radius, and is:

12
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Rs =
2GM

c2
(3.3)

which is the same expression that was found using Newtonian gravity (Equa-

tion 3.2). From this equation, it can be inferred that if an object of mass M is

completely contained within a radius Rs, light will be unable to escape from

it.

It has been deduced that any black hole can only be described in terms of

its mass, electric charge and angular momentum [20]. This is called the “no-

hair theorem”; it has yet to be proven mathematically, but can be understood

through reasoning. Any matter inside the event horizon is unobservable, thus

cannot be used to tell the black holes apart, and all that is observable is

the mass, electric charge and angular momentum. It then becomes a simple

matter of classifying the different types of black holes based on their electric

charge and angular momentum, as shown in Table 3–1. Each of those types

corresponds to a solution to the Einstein equations, resulting in different, if

similar, Schwarzschild radii.

Black Hole Angular Momentum (J) Electric Charge (Q)
Schwarzschild J = 0 Q = 0

Reissner-Nordström J = 0 Q 6= 0
Kerr J 6= 0 Q = 0

Kerr-Newman J 6= 0 Q 6= 0

Table 3–1: Types of black holes based on their electric charge
Q and angular momentum J.

With this theory having been developed, the question then remained

whether or not black holes existed, or could exist in the universe. Two types of

black holes have been discovered: stellar-mass and supermassive black holes.

Others have only been postulated, like primordial and intermediate-mass black

holes.
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3.1 Stellar-Mass Black Holes

What sort of natural process could create a black hole? Even though

the description of space-time using Schwarzschild’s solution to the Einstein

equations is mathematically consistent, it does not necessarily mean that there

would be a physical way for black holes to appear, or exist in the universe.

In 1939, Robert Oppenheimer found that a collapsed star, with a large

enough mass, could be dense enough to form a black hole [21]. In essence,

it opened up the idea that a star can eventually collapse on itself due to its

gravitational attraction, to a point where the density is high enough that light

cannot escape it.

Basically, a star is stable because of the balance between its own gravi-

tational attraction leading towards collapse, and the nuclear reactions taking

place inside the star, creating an outward pressure tending to break it apart.

The nuclear reactions in the star are possible due to the presence of a fuel

(usually hydrogen, though if massive enough, the star will start burning other

elements). The amount of the burning element slowly diminishes, to a point

where there is not enough to sustain the nuclear reactions at a level where they

offset the gravitational pull. The star will collapse onto itself, raising pressure,

which in turn will raise temperature to a level where the star will start nuclear

reactions with a new fuel (hydrogen converts to helium, and the increasing

temperature during the star’s collapse will eventually ignite the helium, which

becomes the new, main, fuel source). If the star is not massive enough (i.e. less

than 0.1 M⊙), it will simply collapse into a white dwarf, where the outward

pressure balancing out gravity comes from the electron degeneracy pressure

inside the star. More massive stars will reignite during collapse with a new

fuel source, and the same will happen: either it will turn into a white dwarf
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if there is not enough mass to go to the next stage, or collapse until the pres-

sure is large enough to trigger a nuclear reaction using the new fuel source.

This continues until iron becomes the dominant fuel source. Nuclear fusion

with iron actually consumes more energy than it generates, so a core-collapse

becomes inevitable.

In the end, if a star has less than ∼10 M⊙, it will eventually end its

life as a white dwarf. Through their lifetime, these stars will shed their mass

through solar winds, enough to have less than 1.4M⊙, resulting in a white

dwarf. The 1.4M⊙ limit is called the Chandrasekhar limit [22]. If the mass is

above 1.4M⊙, the electron degeneracy pressure will not be enough to overcome

the gravitational pull, and the star will undergo core-collapse through electron

capture on protons to create neutrons. The collapse will result in a supernova

explosion, leaving behind a neutron star, where the gravity is balanced by

short-range repulsive neutron-neutron interactions (from the nuclear force,

also known as the residual strong force, which becomes repulsive when the

nucleons are closer than 7× 10−16 m) and neutron degeneracy pressure. If the

mass of the core after its collapse and the supernova explosion is above the

Tolman-Oppenheimer-Volkoff limit (1.5 to 3 M⊙)[23], then the core will keep

collapsing and form a black hole1 .

3.1.1 Experimental Evidence of Stellar-Mass Black Holes

This development in stellar evolution theory made it possible for black

holes to exist, and the particular ones described here are called stellar-mass

1 It is possible that there is one further stage between the neutron star and
the black hole, the resulting stage being of a star where collapse is prevented
by quark degeneracy pressure, or quark-star [24]. However this is still hypo-
thetical and in the absence of evidence to the contrary, it is assumed that if
the mass is above the Tolman-Oppenheimer-Volkoff limit, the end result is a
black hole.
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black holes. The next question is whether or not the theory is correct, and if

there are such black holes out there.

Due to the fact that no light can escape a black hole, finding one turns

out to be quite a challenge. As a matter of fact, no black holes have as of yet

been definitely discovered. The best that can be done is to infer the presence

of a black hole through its interaction with neighboring objects, like another

star. This section will briefly explain the studies done on a historically relevant

black hole candidate, Cygnus X-1.

Cygnus X-1 was one of the first x-ray sources to be identified, during a

rocket flight in 1965 [25]. With subsequent observations, it was found that

x-ray emissions varied, and the source position became better known. It was

eventually associated with the star HDE 226868. Optical studies of the star

found that it was orbiting a very massive object. It was so close to it, in fact,

that it was found that the star’s outer atmosphere is being ripped away by

the companion’s mass, having it spiralling towards the object, compressed by

the gravitational attraction, and emitting x-rays [26]. Further observations

have put the mass of the companion at 14.8 ± 0.1 M⊙(corresponding to a

Schwarzschild radius of ∼ 44 km). Furthermore, it was found that the x-ray

emissions would sometimes burst for a duration on the order of a millisecond,

which would indicate that the emitting region would be less than 102 km. This

implied mass and size serves to reinforce the notion that the companion could

only be a black hole [27].

No direct observations of the black hole have ever been made; in fact

it would be impossible. Because of that, it cannot be said with certainty

that the companion is a black hole, and over the years other models have

come up trying to explain the observations [28, 29]. However, none of them

has been convincing enough to put down the black hole hypothesis [30]. It
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remains possible that in the future, a new explanation will arise that will fit

the observations better, but it is becoming more and more difficult2 .

Other stellar-mass black hole candidates have since been found, like V404

Cygni [31], GX 339-4 [32] and V616 Mon [33], all exhibiting similar behavior

to Cygnus X-1.

More recently, the LIGO collaboration has discovered the gravitational

wave signature of black hole mergers. The first one involved stellar-mass black

holes (both around 30 M⊙)[34], and the second involving black holes of 14.2

and 7.5 M⊙ [35].

3.2 Supermassive Black Holes

Supermassive black holes, which are black holes in the mass range of

hundreds of thousands to billions of M⊙, were originally postulated in the

1960s, with the observations of quasars, and more generally with objects called

Active Galactic Nuclei (AGN)[36]. These objects are typically high-redshift

galaxies, implying that they were formed in the early universe, with powerful

emissions from their central cores. The inferred luminosities of these cores

are ∼ 1012 times the luminosity of the Sun, produced in a small region, less

than a light-year across (A Schwarzschild radius of one light-year corresponds

to a black hole mass of ∼ 3 × 1012M⊙) . Also, the radiation in the x-ray

band is highly variable on the timescale of an hour, and, remembering from

2 In fact, Stephen Hawking, who spent quite a bit of time studying black
holes, took a bet with Kip Thorne that Cygnus X-1 is not a black hole, despite
the fact he believed the contrary. He said that winning the bet would be his
consolation prize if it turned out that black holes did not exist. However, he
eventually conceded the bet as the mounting evidence pointed more and more
towards Cygnus X-1 being a black hole.
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the similar behavior exhibited by Cygnus X-1, implies that the attributed size

of the emission sites is even smaller. Only an extremely massive object (on

the order of millions of solar masses) could explain this behavior, as it would

cause thermal emissions due to the neighboring matter accreting into it. This

would also explain the presence of collimated structures, or jets, of accelerated

particles following preferred directions, consistent with jets created by black

holes. Figure 3–1 shows such a jet emitted from galaxy M87, with a black

hole of mass of about 3.5 × 109 M⊙ (corresponding Schwarzschild radius of

∼ 1010 km) [37].

Figure 3–1: Optical image of M87, from the Hubble
Space Telescope. The jet of matter ejected from the
galactic center is clearly visible.

However, the most convincing argument that supermassive black holes do

exist comes from observations of the movement of the stars around the center

of our own galaxy (the Milky Way), in the location of the object Sagittarius

A* (Sgr A*) (see Figure 3–2 for the description of the stars’ orbits).

These movements suggest an object of 3.61 × 106 M⊙ (corresponding

Schwarzschild radius of 1.1 × 107 km). The size of the object can also be
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Figure 3–2: Orbits determined for 6 stars around the
supermassive black hole at the galactic center, Sgr A*.
From analysis of the orbits, the mass of the central
object was found to be 3.61× 106 M⊙. [38]

deduced to be less than 6.25 light-hours [38]. The only hypothesized astro-

physical object that can have such a density is a black hole.

The origin of such black holes remains a mystery and is still being re-

searched. An obvious hypothesis is that a stellar-mass black hole was able to

accrete matter over cosmological timescales, or merge with other black holes.

This would require an unusually high density of matter nearby it, and stands

in seeming contradiction with the black holes from quasars at high redshift,

i.e. quasars that already existed in the early universe [39]. Those imply the

formation of supermassive black holes over much shorter timescales. Other po-

tential models involve large gas clouds collapsing prior to star formation and

eventually forming a supermassive black hole [40], or by local over-densities in

the early universe (see Section 3.4).
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3.3 Intermediate-Mass Black Holes

Intermediate-mass black holes (IMBH) are black holes in the range of 100

to 1 million M⊙. The existence of such black holes remains hypothetical. As

a matter of fact, no mechanism is yet known to be able to produce these black

holes, as stars are not able to reach these masses. Some possibilities could be

the merger of stellar-mass black holes, which could be detected by LIGO3 , or

the collision of massive stars resulting in a collapse into an IMBH [41].

The search for IMBH is focused on a few types of objects. Low-luminosity

active galactic nuclei would have central black holes whose mass can be esti-

mated around the range of IMBH [42]. Ultra-luminous x-ray sources in nearby

galaxies, within star-forming regions, could be harboring IMBH [43]. Finally,

the centers of globular clusters, based on the velocity measurements of their

stars, could also contain them. However, other explanations can also fit with

the observations, like with the G1 cluster (as seen in Figure 3–3), where the

stars’ velocities can fit just as well with the presence of a central massive object

with lower densities than a black hole [44].

3.4 Primordial Black Holes

There is one other type of black hole that is left to be described, and is

the main focus of this work. Primordial black holes (PBH) were originally

hypothesized by Stephen Hawking in 1971 [2], and are still being searched

for today (see Chapter 4 for the methods used to look for them, as well as a

3 Note that the result of the 2 mergers seen by LIGO result in black hole
masses of 62 M⊙ [34] and 21 M odot [35], leaving them in the stellar-mass
black hole range
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Figure 3–3: The G1 globular cluster, from the Hubble
Space Telescope. At its center lies a potential candi-
date for an intermediate-mass black hole.

summary of what has been done thus far). They would have formed during

the early universe through localized over-densities.

3.4.1 Production Mechanisms

There are three ways for these early density fluctuations to have happened:

large density fluctuations, cosmic string loops and bubble collisions. The focus

here will be on the large density fluctuations (see Section 3.4.3 for a description

of the other models).

The first case is the one described by Carr and Hawking [45], where during

the period of radiation domination (up to ∼47000 years after the Big Bang),

expected density fluctuations could generate areas with a large over-density,

which would collapse under the gravitational force into a PBH.
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In order for that to happen, there needs to be a region where the local

energy density is larger than the average density. That local density is mea-

sured with the density contrast δ(~x). This can be expressed through a Fourier

Transform:

δ̃(~k) = V −1

∫

V

δ(~x) exp(i~k · ~x)d3x (3.4)

where V is the local volume of the considered region. In the standard model

of cosmology, the spectrum of fluctuations is expressed in terms of δ̃(~k) as:

P (k) ∝ k2|δ̃(~k)|2 ∝ kn (3.5)

where P (k) is the power spectrum of the fluctuations and is isotropic with

k = |~k|, and n is the power index.

This is where Carr and Hawking found the values that δ should take, in

order for a local overdensity to collapse into a black hole:

1/3 ≤ δ ≤ 1 (3.6)

The lower limit comes from the need for the overdensity of a region to be

large enough for gravity to stop it from increasing due to the expansion of

the universe. This means that the size of the region Rc has to be larger than

Jeans’ length4 . RJ =
√
w×RH , where w is the equation of state parameter

in p = wρ with value 1/3 and RH is the cosmic horizon radius. For the upper

limit, if δ is larger than 1, it would mean that the overdensity region would

collapse and form a separate closed universe. From this, it follows that the

4 Jeans’ length is the critical radius of a cloud where gravity stops its ex-
pansion
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mass of the newly-formed PBH (MPBH) would be on the order of the horizon

mass MH , or the mass contained within the horizon radius RH :

MPBH = w3/2MH (3.7)

where MH is the horizon mass at the time when the density fluctuations de-

velop.

If the fluctuations turn out to be scale invariant, it would mean that PBH

can form at any scale, i.e. at any point in the early universe, and therefore

have a mass distribution that follows:

dn

dMPBH

∝ M
−5/2
PBH (3.8)

Numerical simulations suggested that the above work was not complete.

Niemeyer and Jedamzik [46] realised that, because of the near-critical gravi-

tational collapse, the PBH mass depends on the size of the fluctuation from

which it formed, at the time of its creation :

MPBH = κMH(δ − δc)
γ (3.9)

where γ and κ are constants of order unity. γ is the order parameter of the

phase transition, and κ is a constant which depends on the spectral density

fluctuation. δc is the critical density corresponding to the threshold for the

formation of the black hole. Different calculations were made to find a value

for δc, going from 0.3 to 0.5 [47].

3.4.2 Physics Probed by the Search for Primordial Black Holes

Primordial black holes have not yet been detected. While there is some

discussion that intermediate-mass and supermassive black holes could have

originated from those, it has not yet been proven. This work will describe the
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search for low-mass primordial black holes (∼ 1014g, Schwarzschild radius of

10−16 m). In any case, whether or not PBHs are found, the result will give

valuable information about the early universe.

An obvious result of a search would be on the measure of the relic density

of PBHs. As will be explained in the next chapter, a PBH of initial mass of

about 1014g will finish its evaporation about today. Since the initial mass is

proportional to the horizon mass at the time of the formation, which is itself

proportional to its formation time, today’s PBH evaporation rate is a probe

of the relic density of PBHs in the early universe.

Taking FPBH to be the fraction of regions in the early universe of mass

M that collapse into PBHs, it follows that the root-mean-square amplitude of

the density perturbations entering the horizon at that mass, ǫ(M), is related

[48]:

FPBH(M) ∼ ǫ(M) exp

[

− w2

2ǫ(M)2

]

(3.10)

with w being the same as before, namely the equation of state parameter of the

universe. Assuming the masses of PBHs extend over a wide mass range, and

that radiation density scales as (1+z)4 while matter density scales as (1+z)3,

the relic density of PBHs can be found using the present day’s density:

ΩPBH = FPBHΩR(1 + z) ≈ 1018FPBHt
−1/2 (3.11)

where t is the formation time of the PBH in seconds, z is the redshift, and ΩR

is the cosmic microwave background density, taken to be ≈ 10−4.

PBHs can also be used to study the power spectrum of the primordial

density fluctuations, giving clues to the spectral index n described in Equation

3.5. Kim, Lee and MacGibbon [49] were able to constrain the index using an
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initial mass function from the Carr-Hawking model (Equation 3.8), giving

n ≤ 1.23− 1.25.

PBH constraints on the power spectrum are fairly weak, but can reach

perturbation scales much smaller than that of the cosmic microwave back-

ground [50]. Furthermore, it is possible that the power spectrum k is not

independent of the spectral index n, so the constraints can be much more

sensitive over a wide range of scales.

Other effects of PBHs would come from their evaporation, with the par-

ticles that are emitted. PBH evaporations during the early universe could

have interacted with the matter and radiation present back then, potentially

modifying the cosmic microwave background [51], or having an influence in

the creation of entropy [52], of baryogenesis [53] or of nucleosynthesis [54].

It could even have an impact on the Newton’s gravitational constant G over

cosmological timescales, according to more exotic theories [48].

It should also be mentioned that PBHs of a mass > 1015g can serve as

a potential component of dark matter in the form of cold non-baryonic dark

matter (CDM). PBHs having formed before baryogenesis are therefore non-

baryonic, so they would be suitable candidates [55].

However, observations of gravitational lensing and dynamical constraints

rule out PBH masses of less than 1020g, as a significant source of dark mat-

ter (not forgetting that below 1014g, PBHs would have already evaporated).

Masses greater than 1025g have been constrained as well by experiments like

the MACHO collaboration [56] andWMAP [57]. This leaves the range between

1020 and 1025g to consider. A recent study has shown that that remaining win-

dow has been ruled out, based on the existence of old neutron stars in regions

where the dark matter density is particularly high [58]. In [58], the authors

assume that if PBHs of these masses were interacting with these neutron stars,
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the PBHs would fall into the neutron star’s core and eventually disrupt them

by rapid accretion. The continued presence of neutron stars in such regions

puts sufficient constraints on PBHs of these masses to rule them out as the

main component of dark matter.

3.4.3 Other Exotic Phenomena from the Early Universe

In section 3.4.1, the focus for the explanation of the PBH formation mech-

anism was on the large scale density fluctuations. Other methods were men-

tioned, namely formation through cosmic strings or bubble collisions, which

will be briefly discussed here.

Cosmic string loops are a concept stemming from quantum field theory

when describing the early universe. The cosmic strings themselves are topo-

logical defects that might have been formed during phase transitions5 in those

times. A number of strings may evolve, form a network, become long and in-

tersect with each other, forming loops. It is possible that an oscillating cosmic

string loop will oscillate and fall into a configuration where all its dimensions

are less than its Schwarzschild radius, causing it to collapse into a PBH, with

masses similar to the horizon mass [59], like in the case of large-scale density

fluctuations. The mass per unit length of the string would determine how

many PBHs formed, and since cosmic string loops can collapse at any point

in the radiation-dominated era of the universe, it will also have an extended

mass function dn/dMPBH ∝ M
−5/2
PBH .

For the bubble collisions, this is done through the first-order phase tran-

sition in the early universe. First-order phase transitions happen with the

formation of bubbles, expanding and colliding until the old phase disappears

5 Phase transitions in the early universe are periods of symmetry-breaking
where the different fundamental forces begin to differentiate themselves
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completely. In the early universe, these bubbles form as well, and wall col-

lisions between bubbles can sometimes lead to the formation of PBHs with

masses of the order of the horizon mass. The wall collisions will concentrate

the kinetic energy within the gravitational radius, causing collapse [60]. How-

ever, very special conditions on the rate of bubble formation need to be met,

in order to get enough bubble collisions to create a cosmologically interesting

abundance of PBHs, without the phase transition occurring instantaneously.

3.5 Conclusion

It is now clear that black holes can exist in different types. PBHs are one

of the types, and thus far have remained undetected. The topic of this thesis

is on the search for such PBHs, and understanding where they come from and

what they may look like now is important to achieve that goal. With this in

mind, the physical behavior of PBHs needs to be understood in order to have

a way to look for them.



CHAPTER 4
Search for Primordial Black Holes

Primordial black holes (PBHs) have, at this point, a strong theoretical

foundation. The next step is to experimentally determine their existence.

Different methodologies exist for finding them, used by various experiments

across the years. An explanation of the expected behavior of PBHs will be

included here, from the work done by Stephen Hawking up to the emission

model describing the expected gamma-ray spectrum, followed by the experi-

ments that have used these predictions to look for them. None of them have

had any success thus far.

4.1 Hawking Radiation

As mentioned in the previous chapter, black holes have such strong gravity

that not even light can escape them. So, presumably, one would not expect to

be able to see emissions from a black hole. However, Hawking, while working

on the thermodynamics of black holes, discovered that they could indeed emit

particles [3]. In 1970, Jacob D. Beckenstein found a formula that described

how the mass change dM is related to the change of the horizon surface dA,

its angular momentum dJ and charge dQ [61]:

dM =
κ

8π
dA + ΩdJ + ΦdQ (4.1)

where κ is the surface gravity of the black hole, Ω is its angular velocity, and

Φ, its electrostatic potential. Following this, in 1971, Hawking showed that

28
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the sum of the areas of a black hole horizon can only increase or stay constant

[2]:

δA ≥ 0 (4.2)

This looks a lot like the second law of thermodynamics, stipulating that

the entropy of a system can only increase or stay constant (δS ≥ 0). Link-

ing those two together, one can associate Equation 4.1 with the first law of

thermodynamics:

dE = TdS − pdV (4.3)

where ΩdJ and ΦdQ represent the work portion of the equation, and the

change of energy dE corresponds to the change of mass dM in Equation 4.1.

This then implies that black holes have entropy, and a temperature, which

allows them to radiate as a blackbody. Hawking showed that a black hole

would emit particles of spin s following the spectrum [62]:

d2N

dEdt
=

Γs(ME)

2π~

[

exp

(

E − n~Ω −QΦ

kBTBH

)

− (−1)2s
]−1

(4.4)

where E is the emitted particle’s energy, and where:

kBTBH =
~c3

8πGM
= 1.06

(

M

1013g

)−1

GeV (4.5)

with TB being the black hole temperature, which depends on the gravitational

constant G, the reduced Planck constant ~, the speed of light c and is inversely

proportional to the mass M . It is multiplied by the Boltzmann constant kB

to get an energy. Since the initial black hole rotation and its electric field are

radiated away faster than the mass (the emitted particles take away angular
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momentum and electric charge from the PBH), one can assume Ω and Φ to

be zero and get [62]:

d2N

dtdE
=

Γs(ME)

2π~

[

exp

(

E

kBTBH

)

− (−1)2s
]−1

(4.6)

where Γs is the coefficient of absorption of the incident particles emitted by

the black hole that would fall back in and is:

Γs(MBH , E) = 27
( x

8π

)2

γs(x) (4.7)

with x = 8πGMBHE/~c3 and γs(x) tends to 1 for large x. Figure 4–1 shows

the behavior of γs for different spin particles.

For E ≫ mc2, Γs can be approximated as [62]:

Γs(MBH , E) =
27G2M2E2

~2c6
(4.8)

or, when E → 0, as [62]:

Γ1/2 =
2G2M2E2

~2c6
(4.9)

Γ1 =
64G4M4E4

3~4c12
(4.10)

It is interesting to note that if a black hole evaporates, it means that

the area A is in fact decreasing, seemingly contradicting the earlier statement

linking the area with entropy. However, considering the entire entropy Stot =

SBH + Sext of the whole system of the black hole and its environment solves

that problem, as the whole system’s entropy increases even if the black hole’s

decreases.

The remaining lifetime of the black hole can be found using the following

equation:
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Figure 4–1: Function γs for spin-0, spin-1/2 and spin-1 particles. x is
in units of 8πGMBHE/~c3. Figure from [63]

dMBHc
2

dt
= −

∑

i

∫ ∞

0

d2Ni

dEdt
EdE (4.11)

where the summation over i is over all fundamental particle species, and Ni

is the number of particles of species i. We can then rewrite Equation 4.11 as

[63]:
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dMBHc
2

dt
= −

∫ ∞

0

d0(E)
d2N

dEdt
× EdE −

∫ ∞

0

d1/2(E)
d2N

dEdt
× EdE

−
∫ ∞

0

d1(E)
d2N

dEdt
× EdE

= −α(M)

M2
gs−1for constant ds(E ∝ M−1)above a certain energy

(4.12)

where the summation has been developed, showing the particle species con-

firmed from the Standard Model, with ds representing the number of degrees

of freedom available to emitted particles of spin s at energy E. Degrees of

freedom, in general, are the possible value of the quantum numbers of a given

particle. In other words, they are the properties that distinguish one particle

from another. For leptons, for example, the degrees of freedom come from the

spin states as well as their antiparticles. For quarks, they are the spins, the

colors and their antiparticles. Here, ds(E ∝ M−1) is assumed constant above

a certain energy. Each emitted particle reduces the mass of the black hole

by an amount equivalent to E/c2. Here, we only consider fermions of spin

1/2, and bosons of spin 1 and 0 (for the newly-discovered Higgs boson). The

expression α(M) is given by [64] :

α(M) = 5.34× 1025(0.267d0 + 0.147dq=±e
1/2 + 0.142dq=0

1/2 + 0.060d1)g
3s−1

(4.13)

Figure 4–2 shows the evolution of α(M) with the mass of the black hole. It

increases in value as degrees of freedom become available with the diminishing

mass and increasing temperature of the black hole during its evaporation.

In the case of the search for PBHs done here, when looking at the very end

of the black hole evaporation, the mass will be low enough (or the temperature
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Figure 4–2: Evolution of α(M) with the mass of the PBH as it evap-
orates. As the black hole’s mass diminishes, its temperature increases
and new degrees of freedom become available and α(M) increases.
Note that the term 525 has been taken out on the y-axis, explaining
the difference in the values with that of Equation 4.13. Figure from
[65].

high enough) to include all known Standard Model particles. The considered

particle degrees of freedom are from the three charged leptons (6 when includ-

ing antileptons × 2 spins states gives d1/2 = 12), the 3 neutrinos (6 × 2 spin

gives d1/2 = 12), the six quark flavors (12 × 2 spin × 3 colors d1/2 = 72),

the photon (spin 1, d1 = 2), the gluons (8 gluons of spin 1, d1 = 16), the

W± and Z0 (3 particles of spin 1, so d1 = 9) and the Higgs boson (spin 0,

d0 = 1). This gives a total of d1/2 = 96, d1 = 27 and d0 = 1, resulting in

α(M) ≈ 8.5× 1026g3s−1, towards the last few moments of a PBH’s lifetime.

Integrating Equation 4.12, the leftover mass of a black hole after a time

t is:
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M(t) = (M3
i − 3αt)1/3 (4.14)

with Mi being the initial mass of the black hole. The lifetime τ of a black hole

is then expressed as:

τ =
M3

i

3α
(4.15)

Calculations from MacGibbon in [64] give:

τ ≈ 0.33M3
i α(Mi)

−1s (4.16)

where α(Mi) is the average value of α(M) over the lifetime of a PBH of initial

mass Mi.

This gives interesting information about the remaining lifetime of a black

hole. For instance, for a solar-mass black hole (1M⊙ = 2 × 1033g), it will

take about 1066 years to evaporate, much longer than the age of the universe

(13.8× 109 years); a black hole of 4× 1011g will take about a year, whereas a

PBH of ∼ 5×1014g will take about the current age of the universe to evaporate.

4.2 Evaporation and Phenomenology

As mentioned previously, emission of particles from an evaporating black

hole follows Hawking radiation as described by Equation 4.4. This equation

describes the spectrum of any of the particles emitted by the black hole. For

what concerns us here, we want to take into account emissions that result in

gamma rays. This will occur through two products, one being from direct pho-

ton emission, and the other through fragmentation products of other particles

(here the contribution from the Higgs boson will be ignored, as its contribution

will be negligible to the resulting spectrum [63]). This section will explain the
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dominant emission model from the Standard Model of particles, which will

give the expected spectrum from evaporating PBHs, itself necessary when cal-

culating limits on the local rate-density of their evaporation. Another, more

extreme and largely disfavored model will also be explained.

4.2.1 Standard Model

In order to get the photon emission spectrum, the first step is to integrate

the Hawking radiation spectrum from Equation 4.6 with respect to the time

of evaporation ∆t left:

dN

dE
=

∫ 0

∆t

d2N

dtdE
dt

=
1

2π~α
E−3

∫ M(∆t)E

0

dx fs(x)

(4.17)

where α is the expression α(M) from Equation 4.12 and given in Equation

4.13. fs(x) is a rewriting of Hawking radiation from Equation 4.6, taking

the dimensionless quantity x = E/8πkBTBH = GMBHE/~c3 for integration

purposes, and is expressed as:

fs(x) = x2Γs(x)
[

exp(8πx)− (−1)2s
]−1

(4.18)

and s is the spin of the emitted particles. That function is shown in Figure

4–3 for particles of spin 1 and 1/2 (recall from Equation 4.7 and Figure 4–1

that the behavior is spin-dependent).

To solve Equation 4.17 analytically, fs(x) is approximated as a delta func-

tion :

fs(x) ≈ δ(x− xmax,s) (4.19)
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Figure 4–3: Function fs(x), from Equation 4.17. The behavior
of particles of spin 1 and 1/2 are shown. x is expressed in units
of 8πGMBHE/~c3. Figure from [65]

where xmax,s is where fs(x) is maximal; xmax,1/2 = 0.195 and xmax,1 = 0.252.

This corresponds to an energy of:

Qs =
xmax,s

(3α∆t)1/3
(4.20)

where ∆t is the time left before the complete evaporation, in seconds.

From this point on, we will use Qs = Q1/2 = Q for particles of both spins

1/2 and 1, and will be approximated as Q ≈ 4× 104(∆t)−1/3 GeV. Using this

approximation for integrating Equation 4.17, one gets:

dN

dE
=

Cs

2π~α
E−3Θ(E −Q) (4.21)
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where Θ(x) is the Heaviside “step” function and Cs is a normalization constant

equal to the integral of fs(x) without approximation:

Cs =

∫ ∞

0

fs(x) dx (4.22)

It depends on the absorption coefficient Γs(x) and has been numerically eval-

uated in [62] to give C1/2 = 4.9× 10−5 and C1 = 2.6× 10−5.

The photon spectrum from PBH emissions then follows Hawking radia-

tion. However, it will not just emit photons directly, but quarks and gluons

as well. The quarks and gluons will then fragment into hadrons. For the pho-

ton emissions, we only care about the hadrons that decay into photons, and

as discussed in Section 2.1.4, this decay generally comes from neutral pions

(other hadrons, such as kaons, are much rarer products and are negligible).

The resulting spectrum will then include the emissions from those decaying

neutral pions as well as the direct photon emissions.

The direct photon contribution to the spectrum is simply given by Equa-

tion 4.21, multiplied by 2 for the different helicity states of the photon. The

indirect contribution is a little more challenging, but it can be done in two

steps.

First, we use Equation 4.21 to get the spectrum of emitted quarks and

gluons (dNqg/dEqg), without forgetting to take into account the degrees of

freedom of each. For the quarks, there are 72 degrees of freedom (6 flavor of

quarks, times 2 spin states, times 3 colors, times 2 for the antiquarks) and 16

for the gluons (8 gluons times 2 spin states):

dNqg

dEqg

=
72C1/2 + 16C1

2π~α
E−3Θ(E −Q) (4.23)

Those quarks and gluons will hadronize into pions which will then decay

into photons. The fragmentation function this follows has been determined
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empirically in [66] in 1983, using results from the PETRA particle accelerator

at DESY, and is:

dNπ

dz
=

15

16
z−3/2(1− z)2 (4.24)

where z = Eπ/Ejet is the fraction of the energy taken by the pion (Eπ) from

the jet energy (Ejet), a jet being a cone of hadrons from the hadronization of

quarks and gluons. It is used to give the resulting pion spectrum from the

emitted quarks and gluons. So, the new integral becomes:

dNπ

dEπ

=
72C1/2 + 16C1

2π~α

15

16
E−3/2

π

×















∫∞

Q
E

−5/2
jet

(

1− Eπ

Ejet

)2

dEjet for Eπ < Q

∫∞

Eπ
E

−5/2
jet

(

1− Eπ

Ejet

)2

dEjet for Eπ ≥ Q

(4.25)

Since this equation is time-integrated, it means that this is the total

spectrum over the remaining lifetime of the PBH. From a single quark or

gluon, the pion energy Eπ will always be less than the jet energy Ejet, but

Ejet can only have a minimum energy of Q. This leads to the first part of

the equation, with the lower integral bound of Q. If Eπ is above Q, then the

minimum Ejet will be Eπ > Q, leading to the second term in Equation 4.25.

The next step is to get the photon spectrum from the resulting pions.

This is expressed as:

dNγ

dEγ

=
2

3































∫ Q

Eγ

1
Eπ

dNπ

dEπ
dEπ for Eγ < Q and Eπ > Q

∫∞

Q
1
Eπ

dNπ

dEπ
dEπ for Eγ < Q and Eπ < Q

∫∞

Eγ

1
Eπ

dNπ

dEπ
dEπ for Eγ > Q

(4.26)
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where Eγ is the energy of the gamma ray, and dNπ/dEπ comes from Equation

4.25. The 2/3 factor comes from the need to multiply by 2 for the 2 photons

that come from the pion decay (π → 2γ), and divide by 3 since only one of

the 3 pions is a π0 and only the neutral pion decays to gamma rays.

The different parts of the equation are defined by the energy of the pion

Eπ. The photons will be generated by pions with a minimum energy at Eγ.

For photons with energy larger than Q, any pions with energies from Eγ will

be used, hence the integral starts at Eγ. For a photon energy of less than

Q, both the pion contribution below and above Q contribute, and need to be

summed together. This leads to (shown in Figure 4–4):

dNγ

dEγ

= 2.4× 1037
(

GeV

Q

)3

×















[

5
12

(

Eγ

Q

)−3/2

− 3
2

(

Eγ

Q

)−1/2

− 15
28

(

Eγ

Q

)1/2

+ 5
3

]

GeV−1 forEγ < Q

(

Q
E

)3 [ 1
21

]

GeV−1 forEγ ≥ Q

(4.27)

Integrating one step further over dEγ starting from a threshold energy

Eth, one gets (see Figure 4–5):

Nγ(≥ Eth) = 2.4× 1037
(

GeV

Q

)2

×















[

5
14

(

Eth

Q

)3/2
+ 3

(

Eth

Q

)1/2
+ 5

6

(

Eth

Q

)−1/2
− 5

3

(

Eth

Q

)

− 5
2

]

for Eth < Q

(

Q
Eth

)2
[

1
42

]

for Eth ≥ Q

(4.28)

The one last step is to include the direct photon contribution to the spectrum,

which results in (also plotted in 4–4):
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Figure 4–4: Gamma-ray spectrum of PBH from jet fragmenta-
tion and subsequent pion decay (red line), and spectrum with
the direct photon emission added (blue dashed line). The spec-
trum shown is for PBHs with less than 30 seconds before their
evaporation ends.
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Figure 4–5: Number of gamma rays above an energy threshold
Eth from jet fragmentation and subsequent pion decay (red
line), as well as the curve with the direct photon emission
added (blue dashed line). The curves shown are for PBHs
with less than 30 seconds before their evaporation ends.
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dNγ
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(4.29)

which is simply the last term in the Eγ ≥ Q range. The photon contribution is

calculated directly from Equation 4.21. Recall that Q comes from Equation 4.20,

and depends on the spin of the particle. The approximation made here is that Q is

the same for spin 1/2 and spin 1 particles, hence, for the purposes of this work, the

direct photon emission is assumed to start at the same time and follow the same

spectrum as the quark emissions. This means that the direct photons will only

contribute to the spectrum at an energy above Q, as shown in Equation 4.29, and

illustrated in Figure 4–4 with the step at energy Q.

The total number will be (see Figure 4–5):
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(4.30)

This is the result that was used in the past by [65] and [67]1 .

Even with the approximation that the scaled energy distribution of quark flux

fs(x) in Equation 4.18 is described by a delta function, the analytical solution

1 After correction of typographical errors, in the Eth ≥ Q conditions, con-
firmed by [65] and the author of this work.
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derived here is reasonably accurate at low energies, as noted in [63]. However, the

authors of [63] have also noted that, when Eγ > 0.1Q, errors of up to 30% appear,

and the power-law fall-off at the highest energy is strongly overestimated.

Still in [63], the authors note that [68] was able to get its parameterization

using a HERWIG-based2 Monte Carlo simulations of the photon flux from 1 GeV

≤ TBH ≤ 100 GeV black holes and gives:

dNγ

dEγ
≈ 9× 1035

×















(

1GeV
Tτ

)3/2 (
1GeV
Eγ

)3/2
GeV−1 for Eγ < kTτ

(

1GeV
Eγ

)3
GeV−1 for Eγ ≥ kTτ

(4.31)

where Tτ is the temperature of the black hole at the beginning of the final burst

time interval, Tτ = TBH(τ):

kTBH(τ) = 7.8
( τ

1s

)−1/3
TeV (4.32)

Figure 4–6 shows the behavior of that spectrum. This can be compared with Figure

4–7 which shows the result from the direct calculation. The authors of [63] note

that this equation agrees well with their own direct calculations, and is good to use

for comparing the different search methods from different gamma-ray observatories.

This is the equation that was used by Milagro in their own searches, as well as when

estimating the HAWC sensitivities [70] (more on that in section 4.4.8). The work in

this thesis will use Equation 4.31 for computing the upper limits on the rate-density

of PBH evaporation.

2 HERWIG (Hadron Emission Reactions With Interfering Gluons) is a
Monte Carlo event generator used in high-energy physics to simulate parti-
cle physics interactions [69].
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Figure 4–6: The photon spectrum, integrated over the final
evaporation lifetime interval τ = 100, 10, 1, 0.1 and 0.01s, from
Equation 4.31. This can be compared with Figure 4–7, from
the direct calculation in [63]. Note that the two plots show
almost the same behavior, indicating agreement between Mi-
lagro’s simulated spectrum and the calculated one.

It is interesting to note that, in general, the final stage of PBH evaporation is

typically called a burst, because of the time evolution of the evaporation. One can

calculate the PBH burst light curve:

[

dNγ

dt

]

=

∫ Emax

Emin

d2Nγ

dEγdt
dEγ (4.33)

with Emin and Emax set by the energy range of the detector. Figure 4–8 shows the

PBH burst time profile above an energy threshold of 100 GeV. One can see a rapid

increase when the remaining PBH lifetime comes close to zero, indicative of a burst

behavior. Note also that once the PBH has fully evaporated, no more emissions are

expected, so the drop-off after the peak should be instantaneous.

4.2.2 Alternate Model

Another model that has been hypothesized for the behavior of the evaporation

of primordial black holes, and used in some searches, is the Hagedorn Model [71, 72].
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Figure 4–7: The photon spectrum from the parameterization
done on the direct calculation from [63], shown for final evap-
oration lifetime interval τ = 100, 10, 1, 0.1 and 0.01s.

The model predicts that the degrees of freedom will increase exponentially with

energy:

d(E) ∝ E−5/2 exp

(

E

Λ

)

(4.34)

where Λ is the energy scale. It was unknown at the time what the energy scale

should be, the assumption being that it was above what the experiments at the

time could measure. It was originally taken to be 160 MeV [67], however nowadays

the value used would be the QCD confinement scale (∼250 MeV). This means

that the number of degrees of freedom will increase much faster than that of the

standard model, resulting in much higher primordial black hole luminosity once the

energy reaches ∼ 2.5Λ. This will result in much stronger emissions during the final

burst, confined to lower photon energies (. 1 GeV) and a much shorter timescale

(∼ 10−7s).
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Figure 4–8: PBH burst light curve dN/dt. The rapid increase
as the remaining PBH lifetime comes to zero is indicative of
the burst. The inset shows the same light curve in a log-log
plot. The shape is well-described by a power law with index
≈-0.5. Figure from [63].

This model was developed in the 1960’s to explain strong interactions in particle

physics, before accelerator collisions were able to produce data on that topic. It was

based on thermodynamics, where Hagedorn noted that as the energy of a system

increased, it would create new particles and increase the entropy of the system, as

opposed to the temperature (as used in the standard model).

This model has been largely disfavored with the discovery of quark and gluon

jets in accelerator collisions above the QCD scale ΛQCD, which disproved the asser-

tions from the Hagedorn model compared with the standard model.
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4.3 Differentiating gamma-ray and primordial black hole

bursts

The behavior of the final burst of PBH evaporation is essentially a burst of

gamma rays over a short period of time. When searching for them, one has to

wonder if they have not already been found when considering GRBs, which are

commonly detected. A number of characteristics differentiating between the two

types have been found, and are summarized in Table 4–1 and found in [63]. The

main points are that a GRB typically shows an afterglow in the optical waveband,

which is not expected from a PBH. GRBs have a cutoff in their spectra due to

the interaction of gamma rays with the extragalactic background light (EBL), since

GRBs are cosmological. Gamma rays interact with the EBL via pair production,

leading to an attenuation of the gamma ray emissions at cosmological scales [73].

Since a PBH’s spectrum extends well above 1 TeV, that component would not have

been absorbed since the measured evaporation would likely be local. Finally, the

spectra of GRBs show a hard-to-soft evolution whereas a PBH should show a soft-

to-hard evolution.

In any case, the favored models explaining GRBs involve either supernovae

or hypernovae3 (for the long bursts), and compact object mergers, i.e. between

neutron stars or black holes (for the short bursts) [74].

4.4 Previous Searches

The searches done thus far have not found any PBHs, setting upper limits

on the rate-density of their final bursts. The different experiments have interpreted

their data within the framework of the two models discussed in the previous section,

3 Hypernovae are similar to supernovae, but with substantially higher en-
ergy. They are also known as superluminous supernovae.
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Gamma-ray Bursts (GRB) Primordial Black Hole Bursts

Detected at cosmological distances
Unlikely to be detected
outside our Galaxy

Time duration can range from
fraction of seconds to few hours

Time duration is most likely
less than few seconds

May have multi-peak time profiles Single-peak time profile
Typically a single peak shows Fast
RiseExponential Decay (FRED)
time profile

Power-law Rise Fast Fall
(PRFF) time profile expected

X-ray, optical, radio afterglows
are expected

No multi-wavelength afterglow
is expected

Most GRBs show hard-to-soft
evolution

Soft-to-hard evolution is expected
from PBH bursts

Cosmic-rays are not expected to
arrive from GRBs

Cosmic-ray bursts are expected from
nearby PBH bursts

Gravitational wave signal is expected No gravitational wave signal is expected

Neutrino burst may be seen
Simultaneous neutrino burst may be
seen from nearby PBH

TeV radiation may be cut off either
at the source or by the intergalactic
medium

TeV signal is expected during the last
seconds of the burst

Table 4–1: Main differences between signals from standard
cosmological GRBs and primordial black hole bursts.
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i.e. the standard and the Hagedorn model. A brief summary of the different searches

will be given here.

4.4.1 SWIFT

Swift is a space telescope dedicated to mutli-wavelength studies of gamma-ray

bursts, in gamma-ray, x-ray, ultraviolet and optical wavebands [75].

Swift was not built to search specifically for PBH evaporation, but it con-

tributed to the discovery, along with other telescopes (such as BATSE, the Burst

and Transient Source Experiment that was installed on the Compton Gamma Ray

Observatory (CGRO)), of a new class of GRBs, called very short gamma-ray bursts

(VSGRB) [76]. GRBs (detailed in section 4.3) typically come in 2 types: short (less

than 2 seconds) and long (more than 2 seconds). VSGRBs are the new type that is

proposed in [76], for GRBs of less than 100 ms. Isolating these VSGRBs has shown

some behavior that fits with what is expected from PBH bursts. The authors of [76]

find an anisotropy in the distribution of VSGRB, in opposition with regular GRBs.

This anisotropy is clustered close to the Galactic anti-center region, suggesting that

VSGRBs have a local origin.

The spectra of VSGRBs are harder than that of GRBs, suggesting again a

difference in the population, and harder spectra are expected from PBH bursts.

Finally, GRBs typically have an afterglow, but only 25% of the observed VSGRBs

show any, which is a behavior expected from PBHs, that are not expected to show

any afterglow. The one problem, however, as mentioned in [74], is the time profile of

the gamma-ray burst. The PBH evaporation models do not predict variation in the

time profile of the PBH emission from one PBH to the next. The VSGRB sample

shows a variety of shapes, which would rule out the possibility of those to be from

PBHs. The favored explanation for VSGRBs is the mergers of two neutron stars

with low total mass.
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4.4.2 Fermi

The Fermi Gamma-Ray Space Telescope [15] was placed in orbit in June 2008.

It has two instruments aboard, the Large Area Telescope (LAT) and the Gamma-

Ray Burst Monitor (GBM). The LAT is what was used by Fermi to look for PBHs

[77]. The LAT covers an energy range from 20 MeV to 300 GeV, and is a successor

to EGRET (Energetic Gamma Ray Experiment Telescope), which was in operation

from 1991 to 2000 and was also used to look for PBHs, with less sensitivity. The LAT

detects the gamma rays through pair production, where the gamma ray converts to

an electron/positron pair, maintaining the ability to reconstruct the gamma-ray’s

energy as well as its arrival direction.

Figure 4–9: The Fermi-LAT Space Telescope showing a gamma
ray coming through the conversion foils, forming an electron-
positron pair, then going through the silicon strip detectors,
to track the particles, and finally stopped in the cesium iodide
calorimeter, to measure the final energy. Figure from [15].
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One of the methods used to look for PBHs with Fermi was to look for short

bursts. In the analysis, the sky was divided into 12288 pixels (any higher would

have had pixels smaller than the detector’s resolution, 3.5◦ for 100 MeV photons),

and for each pixel, the time separation between each event was computed, and a

distribution was drawn. The distribution for each pixel should follow:

D(t) = noe
−t/t0 (4.35)

if the background photon events are Poisson-distributed. Here, D(t) denotes the

distribution function, no is a constant, t is the time and t0 is the mean time between

events. If a burst were to be found, one would then expect the time-difference

distribution to be significantly different from that distribution (with an emphasis

on the lower time-difference values when looking for bursts from PBH explosions).

The Fermi group used a log-likelihood method to find pixels that deviated from the

expected background distribution.

Most pixels that presented a significantly different distribution were clustered

around the Galactic plane or were at the location of known sources; they were

ignored. In the end, no interesting bursts were found with this search. This results

in a 99%-confidence level rate-density upper limit of 7.8 × 10−8 pc−3yr−1. This

limit is much better than any done by Cherenkov telescope experiments, however,

the model used in this analysis assumed that the total emission from the PBH

increases exponentially following the Hagedorn model. This would bring the limit

down by orders of magnitude compared to the now-standard model, and the results

from IACT experiments.

4.4.3 EGRET

Another search method is to calculate the amount of emission from PBHs in the

Galactic gamma-ray background. EGRET did such a search [78]. EGRET was one

of four instruments on NASA’s Compton Gamma Ray Observatory (CGRO). It also

used pair production to detect gamma rays, from 30 MeV to 30 GeV. Its angular
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resolution was worse than Fermi’s (5.5◦ at 100 MeV as opposed to Fermi’s 3◦).

EGRET used a different technology, a spark chamber for the direction measurement,

as well as an NaI calorimeter to measure the energy.

The EGRET search focused on the emisson from PBHs which would be broadly

distributed like the dark matter in our Galaxy, assuming that some, if not all, of the

dark matter would be made of PBHs. They looked for emission from black holes of

temperature of 20 MeV, with peak gamma-ray energies of 100 MeV, and with about

20 years left before full evaporation. They tested for diffuse emission from PBHs

which would be dispersed in the Galaxy based on dark matter density profiles.

The analysis was done by taking all the data from the whole sky and testing two

models, one with all known sources of emission as well as dark matter without PBH

emission, and one including PBH emission following dark matter distribution, and

tested if the two models were statistically different. No evidence of PBH evaporation

was claimed to have been found.

With this result, they were able to draw limits for the different dark matter

profiles, on the fraction of dark matter that is composed of PBHs, their cosmological

density and the fraction of regions of the early universe that underwent collapse and

formed them.

4.4.4 Whipple 10-meter

The Whipple 10-meter telescope Collaboration looked for PBHs under the as-

sumption of the standard model of PBH evaporation discussed in the previous sec-

tion. The analysis technique they developed is very similar to what is used in this

work, and will be explained in Chapter 6.

The 10-meter Whipple telescope was built in 1968 and was the first major

instrument purpose-built as an atmospheric Cherenkov telescope for gamma-ray

astronomy[79]. The VERITAS telescopes follow a similar design and their function-

ing will be expanded upon in Chapter 5. The telescope had a 10-meter diameter

reflector that reflected the Cherenkov light to its central camera placed at the focus.
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The camera comprised an array of phototubes, the number of which has varied over

the years.

In total, the Whipple Collaboration looked at 2191 hours of data to get their

result. They looked for bursts of gamma rays, falling into a time window (1, 3 or

5 seconds), and within 0.13◦ of each other, a number motivated by the gamma-ray

angular resolution of the telescope. They compared the number of bursts in the data

with an estimated background, which they got by scrambling the arrival time of the

gamma rays in the data, but keeping the arrival direction the same. In this way, they

could get a random distribution of bursts while simultaneously taking into account

the effects of the varying sensitivities across the camera. Figure 4–10 compares the

number of bursts they found in the data with the estimated background.

Figure 4–10: Number of bursts versus burst size (number of
gamma rays in the burst) for the measured and background
data. These data are from the third camera configuration of
the Whipple telescope, from the fall of 2000 to spring of 2003,
with only data from a zenith angle of less than 20◦ and using
a time window of 5 seconds. Figure from [80].

No burst signal was found, and they were able to compute an upper limit on

the rate-density of primordial black hole evaporation for the three different time
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windows, as shown in Figure 4–13. The three grey stars at 1, 3 and 5 seconds,

corresponding to limits of 1.72×106, 1.59×106 and 1.08×106 pc−3 yr−1, respectively,

at a 99% CL.

4.4.5 SGARFACE

SGARFACE (for Short GAmma-Ray Front Air-Cherenkov Experiment) used

the Whipple 10-m telescope to search for gamma-ray bursts in durations of a few

ns to ∼20 µs, with gamma-ray energies above 100 MeV [81].

With the standard model of PBH evaporation, the final evaporation would

burst in the last few seconds, with most of the energy emitted above 400 GeV; only

22% of the total energy would be emitted in gamma rays, with the spectrum peaking

at 100 MeV and falling off as described in Equation 4.31.

In contrast, the Hagedorn model, discussed in Section 4.2.2, predicts a final

burst lasting around 100 ns, with 10-30% of the black hole’s mass resulting in pho-

tons with energies between 100 MeV and 1 GeV. SGARFACE then was particularly

able to test the Hagedorn model of PBH evaporation.

To do this search, they implemented a system that was parasitic to the standard

data acquisition of the Whipple 10-m telescope, by splitting the signal coming from

the PMTs. One part went to the standard back-end, while the other went to the

SGARFACE system.

The idea was to catch the Cherenkov showers from low-energy gamma rays.

In the hundreds of MeV range, the Cherenkov light from one gamma ray is not

detectable by typical Cherenkov telescopes, but the Cherenkov light from a mul-

titude (or a wavefront) of near-simultaneous sub-GeV gamma rays will produce a

detectable signal.

SGARFACE had a purpose-built trigger. Its first level was a multi-timescale

discriminator, i.e. it looked for a threshold over 6 different timescales : 60, 180, 540,

1620, 4860 and 14580 ns.

The next level of trigger was a pattern-sensitive coincidence unit, designed to

check if a sufficient number (in this case, seven, optimized to reduce accidental
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triggers from night-sky background fluctuations, while still being sensitive to the

searched-for signal) of nearest-neighbor channels have been triggered by the multi-

timescale discriminator. If that trigger was satisfied, the data were recorded.

No other events than background were found, so no detection of PBH evapo-

ration were claimed. This resulted in a 99% confidence level upper limit shown in

Figure 4–11.

Figure 4–11: 99% upper limits on the rate-density of PBH ex-
plosions from SGARFACE. Due to the presence of background,
the thick line represents the limits, and the thick dashed lines
are what they would have reached if background-free. The thin
full line is the estimate of the expected limits after 2 years of ob-
servations with GLAST (now known as the Fermi Gamma-Ray
Space Telescope), which was launched after the SGARFACE
results were published. Also visible on the plots are results
from EGRET (Fichtel, 1994) [82], from Cherenkov experiments
(Porter, 1978) [83] and from gamma-ray bursts observations
(Cline, 1997)[84]. The dash-dotted and dash-double-dotted
lines give limits from cosmic ray measurements [85, 86] while
the dotted line comes from measurements of anisotropies in
the galactic halo emissions [87]. Figure from [81]



55

4.4.6 VERITAS

VERITAS also did a search for PBHs prior to this work [88]. The analysis

was very similar to the one done by the Whipple 10-m from Section 4.4.4, with

the difference that this time, it was done using an array of 4 12-meter telescopes.

The angular resolution of VERITAS being 0.1◦ (the 68% containment radius at 1

TeV), this was the new maximum separation between events used in this analysis.

The time window was fixed at 1 second. The data used was from January 2008 to

December 2009, for a total of 700 hours. A maximum-likelihood method was used to

determine the upper limit, and Figure 4–12 shows its behavior for the different zenith

angle bins, as well as for all of the data runs combined. The 99% confidence level

upper limits on the rate-density of PBH evaporation with the maximum-likelihood

method is found when ∆(−2 lnL) is 6.63, which here is 1.29× 105 pc−3yr−1. This

is the result reported by VERITAS, which is also shown in Figure 4–13 as the blue

square. Scaling the limit for the total available data at the time (∼ 2200h), the

result would have been 6× 104 pc−3yr−1.

4.4.7 HESS

The H.E.S.S. (the High Energy Stereoscopic System) experiment [89], an array

of 4 12-m Cherenkov telescopes based in Namibia, also looked for PBHs. Their

cameras each have a field of view of 5◦, comprising of 960 PMTs. A search for

PBHs was done in 2009 [65]. The search method was essentially the same as was

used by VERITAS. They used 2794 hours of data, and quoted results for the 1

second time window. The resulting limit is 7.1× 104 pc−3yr−1 at the 99% CL.

More recently, however, H.E.S.S. released new limits, with a variation on the

analysis [90]. They used 2600 hours of data, and did the analysis with different

time windows (1, 5, 10, 30, 45, 60 and 120 seconds). This allowed them to test at

which time window they were the most sensitive. With a narrower time window,

less signal can be seen in the data, whereas with a wider time window, the data

are dominated by background. Looking at different time windows allows one to
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Figure 4–12: Maximum-Likelihood method to compute the
99% confidence level upper limit with VERITAS. The curves
shown here correspond to the different zenith angle bins of the
data, as well as with all the data runs combined. The upper
limits are found when ∆(−2 lnL) is 6.63. Figure from [88].

optimize the balance between the two. H.E.S.S. found a broad minimum in the

sensitivity limit at a time window of 30 seconds.

When doing gamma-hadron separation in the analysis, instead of using a set

of fixed cuts (so-called“box cuts”, see Section 6.5.1), they used what they called

the ‘model’ technique, Model++ [91]. This technique consists of comparing the raw

Cherenkov camera images with predictions from a semi-analytical model, using a

log-likelihood minimisation. This method allows one to get a more precise direc-

tion and energy reconstruction of the photon-induced shower compared to the box

cuts, as well as a better gamma efficiency and improved background rejection. All

together, this gives them a factor of ∼2 better sensitivity compared to the standard

reconstruction techniques.

Using that, they got upper limits at the 95% confidence level of 4.9 × 104

pc−3yr−1 for the 1-second time window, and 1.4 × 104 pc−3yr−1 for the 30-second
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time window. These results are shown in Figure 4–13 (the green diamonds), where

the rate-density was rescaled to a 99% confidence level in [70] to better compare

with other experiments.

4.4.8 Milagro

Milagro was an air shower detection experiment, sensitive to gamma rays of

10 to 100 TeV. It was located near Los Alamos, New Mexico at an altitude of

2630 m, and was used from 2000 to 2008. It consisted of a large covered reservoir

of water (60 by 80 by 8 meters) with two layers of PMTs designed to detect the

Cherenkov light from the charged particles from the particle shower interacting

in the water. 175 smaller outrigger tanks were spread around the reservoir, each

mounted with a single PMT at the top of the tank, observing downward into the

water. The outrigger tanks served to increase the detector’s angular resolution and

background-rejection capabilities [92].

The Milagro collaboration looked for bursts over a range of time windows, from

250 µs to 6 minutes [70]. They created skymaps for overlapping time intervals, each

offset by 10% of the desired burst duration (i.e. for each time window). For each

time interval, they searched the skymap for an excess of signal over background,

and found no significant excess. They then calculated their upper limits, using the

equation:

µ(r, θ, τ) =
1− f

4πr2

∫ E2

E1

dNτ

dE
A(E, θ)dE (4.36)

where f is the dead time fraction of the detector, and dNτ/dE is the black hole

gamma-ray spectrum integrated from times τ to 0 from Equation 4.31. E1 and E2

represent the lower and upper bounds of the energy range searched, and A(E, θ) is

the effective area of the detector as a function of energy and zenith angle.

The results can be seen in Figure 4–13, with the red circles. Their limits are

most sensitive with a time window of 1 second, giving an upper limit of 3.6 × 104

pc−3 yr−1.
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4.4.9 HAWC

HAWC is a successor to Milagro, located at an altitude of 4100 m, on the

Sierra Negra volcano, near Puebla, Mexico. It looks at the resulting particles from

a shower using the same method as Milagro. It consists of an array of 300 water

Cherenkov detectors, covering an area of 22000 m3 [93]. This gives HAWC an order

of magnitude more in sensitivity over Milagro. It was formally inaugurated on

March 20, 2015.

Using simulations to estimate the expected background rate of HAWC, the

collaboration was able to estimate its sensitivity to PBH evaporation over certain

lifetimes [70], as is shown in Figure 4–13 using the same analysis technique as

Milagro’s analysis. This resulted in an expected upper limit, at the 99% confidence

level, after 5 years of observation, of 4059 pc−3yr−1 with a 10-second time window,

their most sensitive.

4.5 Conclusion

PBHs physical behavior is now understood thanks to the standard model de-

tailed in this chapter. Using this information, different experiments have looked for

them, and their results have been summarized. This information will also be used

in the work of this thesis, using the VERITAS telescopes. Before getting to that,

however, details of the VERITAS experiment need to be explored, which is done in

the next chapter.
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Figure 4–13: 99% CL Upper limits on the rate-density of PBH
evaporation of different experiments. Of note are the results
from the Whipple 10-meter in 2006 (see Section 4.4.4), the
latest VERITAS and HESS limits (Section 4.4.6), the Milagro
and expected HAWC limits (Section 4.4.8). Figure from [63].



CHAPTER 5
VERITAS Experiment

The search for Primordial Black Holes (PBHs) done in this thesis uses

the VERITAS Telescopes. Hence, this chapter will outline the experimental

design of the VERITAS telescopes.

As explained in Chapter 2, Very-High-Energy (VHE) gamma rays gener-

ate particle showers that in turn produce Cherenkov light. It is this Cherenkov

light that is detected by the telescopes, and used to reconstruct the original

gamma ray’s properties (more on that in Chapter 6).

The VERITAS array consists of four Cherenkov telescopes, located at

the Fred Lawrence Whipple Observatory (FLWO) in southern Arizona, USA

(approximately one hour south of Tucson), at an altitude of 1300 m. The first

telescope was completed in February 2005, with the full array completed in

April 2007. Due to political difficulties with regards to the original VERITAS

site, the configuration used was not optimal. Over the summer of 2009, one of

the telescopes was moved to provide a more symmetrical array, with improved

sensitivity. Figure 5–1 shows the most recent VERITAS array configuration,

and Figure 5–2 shows a schematic of the array layout.

5.1 Telescope Design and Optics

The VERITAS telescopes are based on 12 m diameter f-1.0 Davies-Cotton

reflectors [94], composed of 345 spherical mirror facets, with radius of curvature

of 24 m, installed on a spherical optical support structure (OSS) with radius

of curvature of 12 m.
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Figure 5–1: Picture of the current VERITAS array. The VER-
ITAS control building can be seen in between the telescopes
(with the white roof), next to the administration building of
the FLWO, also housing support technicians for the experi-
ment. Image credit: Larry Ciupik.

It is easier and cheaper to manufacture many individual smaller facets

than one large one. The facets are all identical to one another, so they can be

used in any part of the dish, as opposed to a parabolic reflector, which requires

its mirror facets to correspond to the part of the parabolic structure they will

be mounted on. On-axis and off-axis aberrations are also much smaller than in

the parabolic counterpart. The main disadvantage of the Davies-Cotton design

is that the surface is not isochronous, introducing a spread of approximately

4 ns to the incoming Cherenkov front [95]. Each facet is attached to the

OSS using a 3-point mount (Figure 5–4), each screw being used to adjust its

orientation.

Each mirror facet is made of slumped, polished glass, aluminized and

anodised at an on-site optical coating laboratory. This laboratory contains
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Figure 5–2: Schematic of the current VERITAS array. Image
credit: Roxanne Guenette.

120 spare facets that are used to replace groups of mirrors on the telescopes

on a rotating basis. The mirrors degrade with time as they are exposed to

dust, so they need to be realuminized on a regular basis.

The OSS is mounted on an altitude-azimuth positioner, which can slew at

a speed of 1◦/s, with pointing accuracy of approximately 50-100 arcseconds.

Four quad arms connect the OSS with the camera, and the reflector and

camera are balanced by a set of counter weights. An electronics building, where

the electronics for the camera readout and monitoring systems are housed,

is located next to the positioner. Figure 5–5 shows a detailed picture of a

VERITAS telescope.
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Figure 5–3: Diagram of the Davies-Cotton reflector design.
Figure from [79]

5.2 Camera

The VERITAS cameras are located at the focal points of the telescopes

(12 m away from the dish). Each camera is pixelated, being composed of a

total of 499 photomultiplier tubes (PMTs). Figure 5–6 shows one such camera,

with the PMTs installed.

The PMTs were changed in the summer of 2012 as part of a detector

upgrade. The first ones were Photonis XP 2970/02, and were replaced with

Hammamatsu R.10560-100-20MOD. The Photonis PMTs have a peak quan-

tum efficiency (PQE) of ∼25% at 320 nm, while the new PMTs have PQE

of ∼35% at 350 nm. This upgrade was done so that the telescopes will be

more sensitive to a lower amount of Cherenkov light, thereby reducing the

energy threshold of the experiment. This is useful in the search for pulsed

emissions from pulsars, or in the search for lower-mass dark matter particles,

or in reaching down to the higher energy range of the Fermi Gamma Ray

Space Telescope.
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Figure 5–4: A VERITAS mirror mount. Each of the three
points of the mount is a combination of a mounting bolt, a fine-
alignment screw and a gimbal so that the facet’s orientation
can be adjusted. Image credit: Andrew McCann

Both models of PMTs are operated at a gain G = 2 × 105, at a typical

voltage of ∼ 850 V, so a photoelectron will generate approximately 2×105×qe

C ≈ 0.03 pC of charge at the anode of the PMT. Preamplifiers are connected

to the PMTs to provide an amplification factor of 6.6. This is used to increase

the size of the signal before it travels down the 45 m of signal cable from

the camera to the electronics building, thus minimizing the effects of ambient

electronics noise.
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Figure 5–5: View of one of the VERITAS Telescopes, called
T1. The different components of the telescopes are named here
(see text for a description). Image credit: Sean Griffin

A light cone plate is placed in front of the camera, made of 499 modified

Winston cones [96] (see Figure 5–7). It is used to reject stray light not coming

from the dish, and to reduce the dead space between the PMTs. The light

cone plate increases the light collection by ∼ 65%. The VERITAS cones have a

hexagonal entry aperture, and eventually morph into the standard cylindrical

shape, as opposed to being cylindrically symmetric throughout, like in the

case of “true” Winston cones. The front of the light cone plate is located at

the focal plane of the telescope.

The distance of adjacent PMTs, from center to center, is 31.4 mm, and

the optical plate scale (the relation between the physical distance in the focal

plane and angular size on the sky) of the VERITAS telescopes is 0.148◦/PMT,

for a field of view diameter of 3.5◦ for the camera.
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Figure 5–6: A VERITAS camera, with the 499 PMTs installed.
Image credit: Luis Valcarcel

5.3 Data Acquisition

The PMTs receive the Cherenkov emission from a particle shower that

needs to be recorded. The resultant electrical signals are sent directly to

custom-built 8-bit, 500 MSamples/s flash analog-to-digital converters (FADCs),

installed in the electronics building at the base of their respective telescopes.

Each FADC continuously digitizes the signal from each PMT and stores the

information in a 65 µs buffer. A copy of each signal is sent to the trigger

system, to determine if it is likely to be from a particle shower, as opposed

to sources of background noise, like starlight, moonlight, terrestrial lights, or

other sources of night sky background (NSB). If the signals result in a trigger,

they are all recorded as an event. The trigger system is split into three levels,

explained in the next subsection.
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Figure 5–7: A group of light cones installed on top of the PMTs
on a VERITAS camera. Image credit: S. Griffin.

5.3.1 Triggers

Pixel: L1 Trigger

This trigger works at the pixel level. In simple terms, it looks at how

high the pulse is, and if it reaches a certain threshold (in voltage), will send

a signal for the next trigger level (the L2). This is achieved using a charge

fraction discriminator (CFD).

The CFD fires if the pulse goes over a threshold, and sends out a pulse

with timing information independent of the pulse size. This ensures that the
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timing information matches for all pulses, useful for the tight coincidences

involved. The CFD output pulses are used at the next trigger level.

Telescope: L2 Trigger

The L2 trigger is at the telescope level, and looks for a pattern in the L1

triggers. Since a particle shower’s Cherenkov light is expected to hit multiple

neighboring PMTs, it looks for a coincidence of L1 triggers between three

neighboring pixels within a 5 ns window. This ensures the minimization of

the amount of triggers from random fluctuations in the NSB, which would

appear on random pixels anywhere in the camera. This is done using field

programmable gate array (FPGA) technology [97], with the main advantage of

having the ability to program the length of the coincidence window, installed

on VERITAS in 2010. Before that system, the pattern trigger was based

on hard-wired combinations. This system worked appropriately enough for

the purposes of the experiment, but was not programmable, and had a fixed

coincidence window of 8 ns.

Array: L3 Trigger

The L3 trigger is at the array level, and looks for a coincidence of L2 trig-

gers from a minimum of two telescopes, within 50 ns of each other. Cherenkov

light generated by muons, from hadronic showers, passing close to a telescope

will often produce a very similar pattern to gamma-ray-induced showers, with

the difference that the muons will only be seen by one telescope at a time.

These events are mostly filtered out by requiring a minimum of two telescopes

to see a shower image at the same time.

The L2 triggers need to be delayed based on the amount of cable length

the signal has to be sent through as well as on the different arrival times

of the Cherenkov light at each telescope. The first delay is fixed and easily

calculated, while the second one depends on the telescope’s pointing direction
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and is provided by programmable delay modules. More details on the L3

system can be found in [98].

5.3.2 Readout

Once the L3 trigger is satisfied, the event’s information is saved. The

L3 computer (located in the VERITAS control building) tells the telescope

computers to store the events on disk. Each telescope uses an Event Builder

software to save the data that produced the trigger, i.e. the FADC traces of

each pixel, as well as the timing information. Then, the individual telescopes’

data products are sent to the Harvester computer, that combines it into a

final data product. The product is then compressed into a custom file format,

the compressed VERITAS bank format (cvbf) file. This file is sent to the

data archive and is made available for download and use by collaborators for

analysis purposes.

5.4 Telescope Calibration

Calibration measurements are necessary to maintain the telescopes’ per-

formance. The main calibration runs regularly carried out by VERITAS use

LED flashers, to measure the relative gain, absolute gain and relative timing

of each PMT.

The flashers are systems of Light-Emitting-Diodes (LEDs) attached to

the telescopes’ quad arms, 6 m away from the camera, facing the PMTs [99].

Seven UV LEDs are installed inside a flasher unit, peaking at a wavelength

of 375 nm. They flash in an eight-step cycle, the first using no LEDs, then

one LED, two, three, and so on. A 50 mm opal diffuser is placed in front, to

diffuse the light from the LEDs so that it shines uniformly on the PMTs. A

picture of a flasher and its LEDs is shown on Figure 5–8.
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Figure 5–8: Left: An LED flasher. Each telescope has one such
device installed. Right: The seven LEDs inside the flasher.
The diffuser normally sits in front of the LEDs, but is removed
here. Image from [99].

The flashers are used for measuring the gains of the PMTs. To measure

the absolute gain on a monthly basis, the PMT camera is covered with a

neutral density filter that will let in a tiny fraction of photons from the flashers.

The absolute gain is then determined by measuring the peak of the resulting

single photoelectron (spe) distribution.

PMT gains are also measured nightly by dedicated “flasher runs”. The

eight different LED light levels sent by the flashers each produce different

distributions, each with its own average µ and spread σ. Relating the average

of each distribution with their spread, one can find the gain G:

σ2 = σ2
0 +Gµ (5.1)

where σ0 is the light-independent noise (e.g. from electronics) and G is the

gain of the PMT. This assumes that all fluctuations in the anode pulse are

due to photostatistics at the first dynode, so that:
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µ = GNpe (5.2)

and

σ = G
√

Npe (5.3)

where Npe is the average number of photoelectrons at a given light level.

5.5 Conclusion

The VERITAS array has been completed since 2007, and has been working

successfully since then. It underwent two major upgrades, making the array

reach higher sensitivities. The hardware of the experiment has been described,

outlining the way it detects the gamma rays. Next is a description of the

analysis step, to make sense of the large amount of data being produced by

VERITAS.



CHAPTER 6
Analysis Technique

The VERITAS experiment has been described in the previous chapter.

In this chapter, the focus will be on the analysis chain of VERITAS data,

following these steps:

1. Calibrate the data from the PMTs, taking into account their gains and

pedestal values.

2. Clean the images, keeping only the pixels that are relevant for the pur-

poses of finding gamma rays.

3. Parameterize the shower images, which are then used to reconstruct the

point of origin of the particle that induced the shower, as well as its

energy.

4. Use these reconstructed parameters to discriminate between the gamma-

ray and cosmic-ray showers.

Traditionally, a simple method called “box cuts” has been used by VERI-

TAS to do step four, but the analysis described in this work applies a method

developed recently by members of the collaboration: boosted decision trees.

The differences between the two methods, as well as their performances, will

be shown here. One last step, required in the standard VERITAS analysis but

not done in the case of the Primordial Black Hole (PBH) analysis, is to com-

pare the event-rate in a given potential signal region with a number of selected

background regions, to look for a possible excess in the signal region. A null

hypothesis test can be performed to determine the significance of that excess.

An equivalent analysis is used in the case of PBHs, which will be explained

further in Chapter 8.

72
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6.1 Data Calibration

The data recorded by VERITAS consist mostly of FADC traces, digitized

traces of the photomultiplier tubes’ (PMTs) pulses, as well as the timestamps

of the events and L2 trigger information (see Section 5.3.1 for an explanation

of the triggers).

The integrated traces are a measure of the Cherenkov light received by

the PMTs.

Figure 6–1: Example of a PMT trace. The traces are 16 sam-
ples in length (2 ns per sample), with the dashed vertical line
indicating the Tzero. The shaded region is the integration win-
dow used, The dashed horizontal line indicates the pedestal
value, and the dashed curve is the fit of the trace. See text for
more details. Image Credit : Sean Griffin.

Pedestal events are recorded every second by the telescopes. These events

provide a baseline for the traces when no Cherenkov light is measured. In the
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analysis, for each channel, the pedestal events are grouped in 3-minute time

slices. The average traces of each event in the time slices are used to find the

pedestal value, as well as its standard deviation, which gives a measure of the

amount of background light in the sky. Since the amount of background light

from the NSB can vary with time and the pointing direction during a data-

taking run, this technique is used for every three-minute time slice. Each trace

in the run will then be pedestal-subtracted, using the pedestal determined from

the 3-minute time slice the event is in.

The next step of the data reconstruction process is to look at the event

traces themselves. For this, a double-pass method is used. The first pass

consists of summing the pedestal-subtracted trace, to get the charge for each

pixel for each event, over a wide summation window (16 samples), as well as

calculating the Tzero point of the event, where the trace reaches half of its

maximum value. This gives a measurement of the beginning of the signal, and

is useful for getting the time gradient across the camera; the arrival time of

the Cherenkov pulse will vary systematically from one pixel to another due

to geometric effects. The second pass uses a smaller summation window of

seven samples, placed using the calculated Tzero so as to capture the rising

pulse, and maximize the signal-to-noise ratio by removing contamination from

background samples outside the main pulse region. Figure 6–1 shows a PMT

trace, with the pedestal, and the integration window as described here.

Nightly flasher runs (see Section 5.4) are taken to measure the relative

gain of each PMT, as well as its timing parameters. Since the light sent by

the flasher is identical for each PMT, the relative responses that are measured

are used to adjust the data traces, ensuring equal response of the PMTs to

the light source. Due to differences in cable length and electronic delays, it
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is important to correct any timing differences, so that all channels have the

same relative timing.

6.2 Image Cleaning

Once all the information in each pixel has been processed, one needs

to determine which of them have relevant information about the Cherenkov

emission from a particle shower. An individual pixel-of-interest is identified

by the signal-to-noise ratio (S/N) of that channel:

(S/N)k =
Qk

σk

(6.1)

where Qk is the charge of that channel and σk is the RMS of the pedestal

for that channel at that time. A pixel is considered interesting when (S/N)

is greater than 5; it then becomes an “image” pixel. If a pixel next to an

image pixel has (S/N) greater than 2.5, it is considered a “border” pixel. This

ensures that the strict criteria for the image pixels does not remove relevant

information from weaker signals in the camera.

6.3 Hillas Parametrisation

The comparison of the propagation of gamma-ray and cosmic-ray showers

was shown in Figure 2–2. The resulting image on the camera will also be

different between the two; the gamma-ray image will be elliptical, whereas the

cosmic-ray one will be broader and less uniform (see Figure 6–2).

By parameterizing these images, it becomes possible to discriminate be-

tween the two. In 1985, A.M. Hillas used Monte Carlo simulations of such

electromagnetic showers and developed quantities derived from image prop-

erties to parametrize them based on elliptical parameters [100]. These are
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Figure 6–2: Difference in appearances between a gamma-ray
and a cosmic-ray-induced (from a proton) shower in the cam-
era. The gamma-ray one is elliptical whereas the cosmic-ray
one is more chaotic. Image credit: Roxanne Guenette

historically known as Hillas parameters (see Figure 6–3), and are defined as

follows:

• WIDTH: The RMS spread of light along the image’s semi-minor axis, to

measure the shape of the image

• LENGTH: The RMS spread of light along the image’s semi-major axis,

to measure the shape of the image

• DISTANCE: The distance between the image centroid and the center of

the field-of-view, to measure the impact parameter of the particle shower
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• AZWIDTH: The RMS spread of light along a line perpendicular to the

line connecting the image centroid to the center of the field-of-view, to

measure the shape and orientation of the image

• MISS: The perpendicular distance between the major axis of the image

and the center of the field-of-view, to measure the orientation of the

image

• FRAC2: The fraction of the total charge contained in the 2 brightest

PMTs, to measure the concentration of the image brightness

Figure 6–3: Schematic of the Hillas Parameters derived from
the image analysis. Image credit: Andrew McCann.

These quantities are all calculated from the moment analysis of the im-

ages. Over the years, new parameters were found to be useful and were added

to the standard analyses of IACT data:
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• SIZE: The integrated charge of all the relevant pixels surviving after the

image cleaning step, to measure the brightness of the image

• LOSS: The fraction of the size that is contained in the outermost pixels

in the camera, to measure the image containment

• ALPHA: The angle between the major axis of the image and a line

joining the centroid of the image and the center of the field-of-view, to

measure the orientation of the image

6.4 Event Reconstruction

Using these calculated parameters, the incident gamma ray’s properties

can now be determined. The desired properties are:

• The arrival direction of the gamma ray, to determine its emission source

• The energy of the gamma ray

• The core location, where the gamma ray would have hit the ground had

it not been absorbed by the atmosphere

6.4.1 Arrival Direction Reconstruction

To reconstruct the direction of the gamma ray, the images from all tele-

scopes are overlaid and the ellipses’ major axes are drawn (see Figure 6–4).

The weighted average of the intersection points between the major axes will

give the arrival direction of the photon.

The weight Wij, of a pair of telescopes i and j, is calculated so as to

minimize the perpendicular distances between each major axis. The weight is

calculated here:

Wij =

(

1

si
+

1

sj

)−1

×
(

wi

li
+

wj

lj

)−1

× sin θij (6.2)
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Figure 6–4: Schematic of the incident gamma ray’s arrival di-
rection reconstruction. The four camera images are overlaid,
and the intersection between the four major axes gives the
arrival direction. Image credit: Andrew McCann.

where i and j are two telescopes of a pair, θij is the angle between the images’

major axes, wi and wj are the width of the respective ellipses, li and lj are

their lengths, and si and sj are the image sizes, as defined in the previous

section. This means that if the size of one or both of the images are low,

the weight will be lower, giving that pair of telescopes less importance in the

direction reconstruction. The same idea is at work for the ratio of width

and length, where a large ratio indicates an elongated ellipse, for which the

direction reconstruction will be more accurate.
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Once the position is found in the camera, it is then a matter of convert-

ing the coordinates to standard astronomical coordinates (in general using

equatorial coordinates J2000, consisting of right ascension (RA) and declina-

tion (DEC)). J2000 refers to the epoch used as the reference point for the

coordinates, as they vary in time.

6.4.2 Shower Core Reconstruction

Another useful property to reconstruct is the position of the shower core,

i.e. where the gamma ray would have hit the ground had it not been absorbed

by the atmosphere. It will be used to help in determining the location of

the shower relative to the telescopes. The method to find it is similar to the

arrival direction reconstruction, only the analysis is done in spatial coordinates

as opposed to angular coordinates in the camera plane. The telescope images

are placed at the physical location of the telescopes, the image major axes are

drawn, and the weighted intersection point is used as the reconstructed shower

core. This can be seen in Figure 6–5. The core position reconstruction can be

used to derive the impact parameter r, the distance between a telescope and

the shower core in a plane perpendicular to the shower arrival direction.

This will be useful for the next calculated parameter: the height of the

shower maximum.

6.4.3 Height of the Shower Maximum

The shower maximum is the point where the most particles are produced

in the shower, above threshold for the medium to emit Cherenkov light, making

it the brightest part. The height of the shower maximum Hi for a telescope i

is given by this equation:

Hi =
ri

tan θi
(6.3)
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Figure 6–5: Schematic of the incident gamma ray’s shower
core reconstruction. The four camera images are placed at the
ground location of the telescopes, and each image’s major axis
is drawn and the weighted intersection point will be the shower
core position, where the primary gamma ray would have hit
the ground. Image credit: Andrew McCann.

where ri is the impact parameter calculated in the previous section, and θi is

the angle between the image centroid and the reconstructed arrival direction



82

for telescope i. This relation can be derived geometrically, from the schematic

in Figure 6–6.

As cosmic ray showers and single muons penetrate deeper into the atmo-

sphere than gamma ray showers, the reconstructed height of shower maximum

becomes a useful tool for background discrimination.

6.4.4 Energy Reconstruction

The last parameter that is reconstructed is the energy of the incident

gamma ray. A higher-energy gamma ray will result in more Cherenkov light,

which will then be detected by the PMTs. Hence, the image brightness is a

good proxy for the gamma ray’s energy. However, the amount of Cherenkov

light collected also depends on the distance to the shower core and on the

arrival angle of the shower. The effects of these parameters need to be under-

stood so that one can reconstruct a reliable energy estimate. To do this, the

use of Monte Carlo simulations to simulate gamma-ray showers is necessary,

so that the influence on the different parameters can be directly tested.

The simulations consist of generating millions of gamma-ray-induced show-

ers, and calculating the resulting parameters. These parameters are then

compiled into multidimensional reference tables (called look-up tables), cate-

gorized by pointing direction, shower size, and other useful information. When

reconstructing the energy of an actual gamma ray, these parameters are used

as “coordinates” in the table to find the corresponding energy. The recon-

structed energy is weighted as follows:

E =

∑NTel

i=1 Ei/σ
2
i

∑NTel

i=1 1/σ2
i

(6.4)

where Ei is the energy estimate of the specific telescope, and σi is the standard

deviation of the energy distribution, also found from a reference table. Figure

6–7 shows examples of such tables.
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Figure 6–6: Schematic of the projection of the shower into the
image plane. P is the core position, found in Section 6.4.2, S is
the source location, found in Section 6.4.1, Ti is the telescope’s
position on the ground, and Ci is the location of the image
centroid in the image plane, the focal plane of the telescopes.
The height of the shower maximum can be calculated using
these derived properties, resulting in Equation 6.3. Figure from
[101].
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Figure 6–7: Top: Example of a gamma ray energy reconstruc-
tion table. The x-axis is the image size for the telescope, with
the y-axis being the impact parameter. These are used to get
the median energy of the event, identified by the z-axis. Bot-

tom: Distribution of the standard deviations corresponding to
the distribution of energies from the top table. The z-axis, in
this case, represents twice the σ value of Equation 6.4.
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6.5 Gamma-Hadron Separation

At this point, all the pertinent information about the shower-inducing

particles have been found. Next, we need to determine which of the detected

showers were caused by gamma rays and which by cosmic rays. A few more

parameters, or discriminators, are used to do this, where the expected behavior

will be different between the two types of showers. Traditionally, the analysis

uses what are called “box cuts”, i.e. cutting on individual parameters, to

keep the gamma ray signal. However, a new, more advanced, analysis method

has been developed recently, using Boosted Decision Trees (BDTs) for a more

effective gamma-hadron separation.

6.5.1 Box Cuts

The discriminators used in this step are called mean scaled parameters

(MSP), and are used as a measure of how similar the shower’s image is to

a simulated one. The scaled parameters are usually the mean scaled width

(MSW) and the mean scaled length (MSL), and are computed in a similar

manner as the energy reconstruction, as follows:

MSP =
1

Ntel

Ntel
∑

i=1

pi
p̄sim(z, s, r)

(6.5)

where pi is the calculated parameter value, in this case the width or length

from Section 6.3, and p̄ is the mean value of the parameter for a simulated

gamma ray, observed at a zenith angle z, size s and impact parameter r.

A more robust calculation of the parameters that takes into consideration

outlier events is the mean reduced scaled parameter (MSCP, if using the width

parameter, MSCW, and MSCL if using the length), calculated as follows:
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MSCP =
1

Ntel

Ntel
∑

i=1

pi − p̃sim(z, s, r)

σp

(6.6)

where p̃ is the median value of the parameter p in the simulations, and σp is the

standard deviation of p. Figure 6–8 shows a plot of the mean reduced scaled

width distributions for a signal and several background regions, assuming that

the background region only contains cosmic rays.

Figure 6–8: Distribution of MSCW for data and simulation of
signal and background regions. The distribution of the gamma-
ray signal is tighter and with a generally lower value than for
the cosmic rays. The On-Off distribution is the background-
subtracted counts from Crab data. Image taken from [102].
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Cuts on MSCL and MSCW, combined with a cut on θ2 (explained in

Section 6.6) can reject up to approximately 99% of cosmic-ray events while

retaining approximately 85% of all the gamma-ray events [103].

6.5.2 Advanced Analysis Method: Boosted Decision Trees

Boosted decision trees (BDTs) is a machine learning method classifier,

using multivariate analysis for discriminating between different type of events.

A more complex relationship can be found between different discriminator

variables to improve event classification, as opposed to “boxing in” the desired

events using each variable at a time, independently of each other. The typical

way a VERITAS analysis is handled is using these “box cuts”, but a new

analysis has recently been developed, using BDTs. This section will explain

how BDTs work, and how they work as opposed to other machine learning

tools like artificial neural networks (ANN) and random forests (RFs). Their

use and performance with VERITAS will be explored in Section 6.8, and the

results from the analysis of the data with BDT will be used for the search for

primordial black holes, as described in Chapter 7.

BDT Example

Boosted Decision Trees start with the making of the first Decision Tree,

a two-dimensional structure, with nodes and branches. Figure 6–9 shows an

example of a decision tree, as a classifier whether or not any animals in a

group is a cat. It is structured as a flowchart, with a parent node; the one

that contains all the events, in the case of Figure 6–9, all the animals. The list

is then split in branches based on a question: is the animal four-legged? If it is

not, it is not likely to be a cat, and all the animals for which the answer is no

are then placed in a new list of animals, comprising a daughter node. Those

that are four-legged comprise another list of animals that could potentially be

cats. Since being four-legged is not enough to identify a cat, a new question
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is asked, for example whether or not the animal has a tail. The classification

is done again on subsequent daughter nodes, and more questions are asked to

further identify the animal.

Figure 6–9: Example of a Decision Tree. In this example it is
used to identify cats in a list of animals. The parent node is
the node containing all the events, in this example asking the
question: “is it four-legged?”. That question is the discrimi-
nant of the mother-node, which has two branches, yes or no.
The daughter nodes are the resultant from the answer to the
questions. The list created when answering No means that it
is not a cat, but the list, if the answer is Yes, leads to more
questions, to further assess the features of the animals.

Now, imagine that all the information that we have is the answer to those

questions; we do not know ahead of time if the animal is a cat. It is then

likely that some of the animals will be misidentified as cats when they are

not, or vice-versa. For instance, Manx cats do not have tails, and would be

misidentified according to the decision tree of Figure 6–9. Sphynx cats, who
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do not have fur, would also be misidentified. BDTs is a technique that can

help with making an improved classification.

For the purpose of the explanation, let us now imagine that the animals

could either be cats or dogs (to follow as an analogy with the VERITAS

analysis, where the information being sought is whether or not an event is a

gamma ray or a cosmic ray). All the information we have been given is a set

of answers to a few simple questions, like if it has fur, its size, the length of

its nose, the presence of a tail, what the sound it makes is like, etc... One

can then make a simple decision tree much like in figure 6–9 to classify each

animal. Much of it will be wrong, especially if limiting oneself to questions like

if it has fur, or the presence of a tail. This outlines the first step with BDTs.

It starts by making a first tree, and optimizing the classification of that tree.

This means figuring out which question is better at correctly identifying the

animals. For instance, the sound it makes is a much more powerful indicator.

The presence of a tail, or of fur, on the other hand, does not help too much.

Figure 6–10 shows what a first decision tree might look like, when using the

best discriminators first. Note that there might still be misidentified animals

at the end. More questions could be asked in the hopes of improving the

discrimination. In fact, when making BDTs, the questions are asked up to

the point when the discrimination doesn’t improve anymore. However, even

then, misidentification can happen, and BDTs use yet another step to improve

classification.

As seen in Figure 6–10, some animals have been misidentified. What is

done, then, is to give more weight to the misidentified events, and create a

new decision tree. This new decision tree will be optimized in much the same

way as for the first, but this time the best questions to ask may not be the

same. For the purposes of this example, let us claim that the misidentified
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Figure 6–10: Example of the first decision trees built for BDTs.
The parent node presents a list of animals, C for cats and D for
dogs. The questions are optimized to give the best discrimi-
nation to the daughter nodes. In this case, “what does the
sound the animal makes sound like?” is the best discriminant,
and is asked first. Not all the animals are correctly identified,
however, so the second best question is asked, relative to the
size of the animal. The final nodes show a list, most with some
misidentified animals, still.

cats and dogs will now each count as 2 animals. The left schematic of Figure

6–11 shows the results if the same decision tree was used. Note that the final

daughter nodes do not have as good a purity anymore, the bottom left one

consisting of 50% cats, as opposed to 1/3 in Figure 6–10. Hence the need to

find new, better questions to improve the discrimination. The right schematic

of Figure 6–11 shows what that tree would then look like.

The misidentified events of the new tree are again reweighted, and the

process is repeated multiple times. This is done until the discrimination cannot
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Figure 6–11: Example of the effect of reweighting misidentified
animals. Left: Using the same decision tree as in Figure 6–
10. Note that the purity has diminished in some daughter
nodes. Right: Optimizing the choice of questions to maximize
discrimination with the new weights. Note the improvement
compared with the left plot.

be improved further. In the end, one finds a forest of decision trees, which are

then used much like random forests, explained later in this section. To first

create the tree, an original list of animals, where you know beforehand whether

they are cats or dogs, would be used as a testing set. Once that first set has

been used to optimize the trees, one can use BDTs to identify other animals

not in the training set. With these new animals, one would then answer the

questions of each one of the decision trees, and its likelihood to be a cat or a

dog would be the average result of each tree.

VERITAS Application of BDTs

The same logic applies with VERITAS. In this instance, the goal of the

BDTs is to discriminate between hadronic and electromagnetic showers, and

provide a mathematical way of doing so. This will be described here, and

compared to the equivalent logic from the cats and dogs example above.

In that case, the parent node will contain a number of signal and back-

ground events, NS and NB respectively, taken from a training sample. Each

event has its set of parameters, and is also given a weight wi. In the first tree
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in the BDTs, each event is given the same weight wi, and is normalized to the

total number of events wi = 1/(NS +NB) (in the case of cats and dogs, they

each counted as one, for simplicity). Each event will be tested on a parameter,

the discriminating variable, leading to the next layer of daughter nodes. The

discriminating variable that will be used is the one that does the best discrim-

ination (“what does the sound the animal make sound most like?”), i.e. that

gives the best purity p in the daughter node. This is done by calculating the

Gini index:

Gini =

(

N
∑

i=1

wi

)

p(1− p) (6.7)

where p is defined as the fraction of weight of the daughter node due to signal

events, and wi is the weight of event i.

Maximizing the difference of Gini indices between the parent and the two

daughter nodes will determine the best splitting parameter:

max(C) = Giniparent −Ginirightnode −Ginileftnode (6.8)

Once the splitting is maximized, the same is done for the next node, and

again until there is no increase in event separation, and before overtraining sets

in (overtraining will be explained further in Section 6.8). The final daughter

nodes are labelled as signal nodes if more than 50% of the weights of the events

in it are signal (cat nodes if more than 50% of the animals in it are cats, and

vice-versa if they are dogs), and the others are the background leaves.

One decision tree will optimize the set of cuts for maximal signal purity,

however it is subject to statistical fluctuations in the training sample, and

some events that are “harder” to identify are misidentified as background (like

some dogs or cats having been misidentified). Boosting, or re-weighting of the

misidentified events, can help with both of those problems. As mentioned
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earlier, all the events have the same weight in the first tree, however, in the

end, some events will be misidentified. Those misidentified events will be

boosted with a higher weight for the next tree (the misidentified cats and dogs

count as 2 for the next tree).

To do this, one needs to define the following:

Yi =















+1 if events i is signal

−1 if background

(6.9)

and

Tm(xi) =















+1 if event i is classified as a signal event in tree m

−1 if event i is classified as a background event

(6.10)

A tree is optimal when Yi = Tm(xi). If that equality is not respected, this

means event i is misclassified, and its weight will be boosted by a factor α:

αm = β ln

(

1− ǫm
ǫm

)

(6.11)

with β being the learning rate, specified by the user, and ǫm is the fraction of

misclassified events in tree m:

ǫm =

∑

Yi 6=Tm(xi)

wi

N
∑

i=1

wi

(6.12)

This will all be used to redefine the weight of the misclassified events as

follows:
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wi = w′
i expαm (6.13)

where w′
i is the event’s weight from the previous tree. All the events’ weights

are then renormalized to ensure that
∑

i

wi = 1.

A second tree is generated in the same way as the first one, this time using

the new weights on each events when maximizing the Gini-index difference in

that new tree (choosing which questions are now best to get the decision tree

like the right schematic of Figure 6–11). Once the last signal and background

leaves are done, the same reweighting mechanism is done on the new tree

output, used for the subsequent tree, and so on until the increase in separation

is maximized, and before overtraining sets in. This results in a forest of m

trees, trained and optimized using a training sample. When using a testing

sample of data (or eventually real data), each event will be assigned a value

Tm(xi) for each tree m as defined in Equation 6.10. The final “score” of the

event will be determined as such:

T (xi) =

NTree
∑

m=1

αmTm(xi) (6.14)

where T (xi) will tend towards −1 if the event is background, and +1 if it is

signal (equivalently, in our example, +1 if a cat and −1 if a dog).

The BDT method used on VERITAS was developed using ROOT version

5.34.14, with the TMVA package version 4.2.0. It has been implemented in

the EventDisplay analysis package version 480, one of the 2 analysis packages

developed by VERITAS for data analysis. This version of EventDisplay is used

in the analysis for the work reported in this thesis, in the search for Primordial

Black Holes.

For the VERITAS BDT analysis, classifiers were chosen to maximize event

discrimination. The Hillas parameters are good discriminators, but a few
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others were found to be useful, all already computed by the EventDisplay

analysis package:

• Mean Reduced Scale Width (MSCW), see last Section

• Mean Reduced Scale Length (MSCL)

• χ2 value of the estimated energy against the reconstructed energy. The

χ2 is calculated using the estimated energy of each individual telescope

against the weighted average from the reconstruction.

• Height of the shower maximum

• χ2 value of the height of shower emission. The emission height is cal-

culated in pairs of 2 telescopes, and the χ2 is taken from the emission

height calculated with all possible pairs of telescopes. No χ2 is used if

only 2 telescopes can reconstruct the event.

• Amplitude of the second largest image

• Distance to the shower core, had it hit the ground.

The training sample was composed of simulated gamma-ray events. The

background events were taken from actual data, homogeneously distributed

across the field-of-view, at varying zenith angles and night-sky background

levels, with four telescopes and good weather conditions. It is important

for the gamma-ray simulation to follow the same characteristics, so that all

data-taking conditions are represented, and to minimize the amount of bias

when training the decision trees. The training is done in energy range and

zenith angle bins, to optimize performance across the different conditions.

The binning was chosen so as to allow high statistics, because a higher energy

range as well as a higher zenith angle will significantly reduce the number of

events. Figure 6–12 shows the parameters’ behavior for an example energy

and zenith angle bin.
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Figure 6–12: Distribution of the different parameters used in
the BDT analysis. The entries at a value of -10 for “Emission-
HeightChi2” come from events that were only reconstructed
using two telescopes (see text). Image credit: Elisa Pueschel.

A common problem in machine learning is the risk of overtraining. Over-

training occurs when the training was too insistent, and the decision trees

become too finely-tuned with the sample. Because of this, the newly-trained

BDTs are oversensitive to their own statistical fluctuations, and so becomes

less performant when presented with a different sample with a different set of

statistical fluctutations. This is avoided by using a test sample of data. If the

trees were trained successfully, the test samples should follow the same prob-

ability density function. A Kolmogorov-Smirnov test does that by comparing

the largest difference in the cumulative density function between the testing

and training samples. If that difference is larger than what would be expected

at a desired confidence level, then it is not considered as coming from the same

probability density function. In the VERITAS implementation, if the result of

the test gives a number between 0 and 1, it means that the two samples’ results

come from the same distribution. If the test gives 0, it indicates overtraining.

Figure 6–13 shows the difference between proper training and overtraining on
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VERITAS training and testing data sample. Overtraining can be mitigated by

using either more training events, or limiting the depth (the number of node

layers) a decision tree can have.

Figure 6–13: Example of proper training (left) and overtrain-
ing (right) of BDTs. In the right plot, the testing sample shows
some points that do not agree as well as on the left plot. with
the training sample’s distribution, indicating overtraining. Im-
age credit: Elisa Pueschel.

Alternate Machine Learning Methods

Other machine learning methods that could be used are Artificial Neural

Networks (ANNs) and Random Forests (RFs). RFs are very similar to BDTs.

They also consist of a forest of Decision Trees. In this case, a large number

of Decision Trees are generated, each with a random sample of the training

data and a random sample of discriminating parameters. Each tree is subject

to random fluctuations, which should be cancelled by the fluctuations of other

trees. In the end, the event identification is the average of its classifications

by all the trees. The major differences between RFs and BDTs is that the

former uses a parallel set of decision trees with random sets of the sample and

random sets of parameters for each tree while keeping the events weights the

same. The latter uses a set of serialized decision trees with the same set of

parameters on all the events, but each subsequent tree gives more weight to
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misclassified events in an effort to recuperate them. RFs are less subject to

overtraining than BDTs, however well-tuned BDTs can potentially outperform

RFs. BDTs tend to require less trees and each tree to be less deep, making

them faster to train and use as well.

ANNs, on the other hand, study the relationship between the parameters

and the output. The input nodes are composed of parameters, whereas the

output nodes classify the event. In between, hidden layers of nodes would

be used to determine the relationships between the parameters. One of those

hidden nodes would receive a weighted average between different parameters,

and then send that to a node in the next hidden layer (see Figure 6–14 for a

schematic using the cat example). The training here is in the weights between

nodes of neighboring layers. This is powerful when one doesn’t know what

the influence of different parameters is on the classification. However, trained

ANNs eventually become black boxes, since the weights are known but become

difficult to interpret, and the training and use takes significantly longer than

either RFs or BDTs.

6.6 Signal, Background and Significance

6.6.1 Signal and Background Regions

As good as the gamma-hadron separation can get, there will always be

some irreducible background left, either from electron or positron-induced

showers, or from hadronic showers that happen to look like gamma-ray ones,

e.g. from production of a π0 early in the shower process. A background-

subtraction technique is then necessary to extract a purer signal.

One of the easiest ways to do this analysis is to select a region of interest,

usually a region with a known or potential gamma-ray source (ON region), and

compare the number of events that pass the cuts with those of another region
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Figure 6–14: Schematic of ANNs decision scheme. Following
on the example of identifying a cat, the input nodes are a set
of parameters used for identification for a given object, going
through hidden layers meant to test the relationships between
the parameters and the output. The output nodes will classify
each object as a cat or not.

assumed to be signal-free (OFF region). The size of the ON region is defined

by θ, the angle between the candidate source direction and the reconstructed

direction of the gamma-ray-like events. This is the same θ used in the θ2 cut

mentioned in the last Section. A typical θ2 plot is shown in Figure 6–15. A

cut on the square root of θ2 defines the size of the ON regions, its radius is the

square root of its value. The definition of the OFF region is more complicated

and will be discussed next.
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Figure 6–15: Distribution of θ2 for data taken on the Crab
Nebula. Left: θ2-distribution where the black curve is the
count from the ON region (the position of the Crab Nebula),
and the grey-shaded region comes from the OFF regions (the
positions used as background). Right: Residuals of the plot on
the left, after background-subtraction. The peak below 0.03◦

is the excess due to the Crab Nebula.

Note that θ2 can also be used to determine the angular resolution of the

telescopes, or the gamma-ray point spread function (PSF). The behavior of

the PSF as a function of the gamma ray’s energy and incoming zenith angle

is an important quantity to understand in the analysis involved in the search

for primordial black hole evaporation. This will be explored further in Section

7.3.

There are two main ways of selecting the OFF regions for the analysis.

The simplest one is simply to point the telescope directly at the source and use

the center of the field-of-view as the ON region, and then point to a background

region right next to it (for example at 30 minutes away in right ascension for

30 minute runs) for the OFF region. While this method works well, it has the

main problem of having to spend 50% of observing time on background.

The other method provides a solution to this problem. By pointing the

telescope with a slight offset from the ON region (typically 0.5◦), the ON and

OFF regions are taken simultaneously. This method is called wobble-mode
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observation. Typically, the wobble offsets are taken in four directions (north,

south, east and west), so that the background can be sampled around the

source and averaged. This reduces systematic errors.

Two analysis methods are used in wobble-mode to estimate the back-

ground. One is called the ring background method [104], where a ring around

the source region is used. The other one is called the reflected region method

[104], using a series of OFF regions of identical shapes (and sizes, as defined

by the θ2 cut used in the analysis) to the ON region. For this last method,

the OFF regions have to be in the same offset from the pointing direction as

the ON regions.

6.6.2 Excess and Significance

Using the ON and OFF regions determined in the last section, one can

derive the number of excess events in the source region, compared to the

number of events in the background regions:

NEXCESS = NON − αNOFF (6.15)

where NON and NOFF are the number of events in the ON and OFF regions

respectively, and α is a normalisation parameter.

In the case of the method with different pointings for ON and OFF meth-

ods, α will simply be the ratio of time spent on the ON region to the time

spent on the OFF region. For the ring background method, it will be the ratio

of the solid angles subtended by the ON and OFF regions. In the case of the

reflected region method, it will be the inverse of the number of OFF regions

used (another way of looking at it is that it is the ratio between the number

of ON regions (in this case, one) and the number of OFF regions).

The uncertainty on NEXCESS can be derived through error propagation:
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∆NEXCESS =
√

∆N2
ON + α2∆N2

OFF (6.16)

where ∆NON and ∆NOFF are the errors on the number of counts on the ON

and OFF regions respectively.

Assuming that the counts follow Poisson fluctuations, then the error on

the excess can be rewritten as:

∆NEXCESS =
√

NON + α2NOFF (6.17)

The significance S on the excess counts then becomes:

S =
NEXCESS

∆NEXCESS

=
NON − αNOFF√
NON + α2NOFF

(6.18)

It has been shown that the above formula is an approximation of the

significance, and does not properly account for the uncertainty in the number

of background counts [105]. An alternative was proposed following a log-

likelihood test of a null hypothesis, where all the counts are assumed to be

background:

σ =
√
2

[

NON ln

(

1 + α

α

NON

NON +NOFF

)

+NOFF ln

(

(1 + α)
NOFF

NON +NOFF

)]1/2

(6.19)

Typically, the excess is considered significant for a new detection ifNEXCESS

is large enough to lead to a Significance ≥ 5σ as determined by Equation 6.19.

6.7 Instrument Response Functions

One last bit of information that is needed for an analysis are instrument

response functions (IRFs). This is generally needed for calculation of a source’s
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spectrum, and to determine its flux. These functions are also needed in the

analysis for the search for PBHs, when it comes time to calculate the upper

limit on the rate-density of PBHs (more on that in Chapter 8).

IRFs are needed to convert results from an experiment to physical units.

There are three that are necessary in the VERITAS analysis:

• Lookup Tables: Mentioned in Section 6.4.4. These tables convert the

shower image’s parameters (noise, impact distance, pointing direction,

height of shower maximum) into an energy. See Figure 6–7

• Effective Areas: Mentioned in Section 6.5.2. They are used to convert

a number of gamma-ray counts into a physical flux. They are a mea-

sure of the effective collection areas of the telescopes as a function of the

energy.They can be thought of as a measure of the efficiency of recon-

structing a gamma ray of a given energy, as well as the different types

of cuts used in the analysis, the gamma ray’s arrival zenith angle, as

well as the wobble direction and offset, and the optical efficiency. This

is calculated via simulations, from how many simulated gamma rays are

properly reconstructed at a given energy. See Figure 6–16

• Radial Acceptance: Mentioned in Section 6.6, they are used to adjust

the number of gamma rays seen as a function of the camera position.

The reconstruction of a gamma ray is more likely at the center of the

camera than at the edges. See Figure 6–17

6.8 Performance of Boosted Decision Trees

The information calculated in the last section can be done using results

from the gamma-hadron separation from either box cuts or BDTs. Both of

these work as long as the behavior of the two remains similar with regards

to the calibration or when reconstructing a standard source spectrum. The



104

 energy [TeV]
10

log
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

]
2

ef
fe

ct
iv

e 
ar

ea
 [m

1

10

210

310

410

510

610

710
0 Deg Zenith

20 Deg Zenith

50 Deg Zenith

Figure 6–16: Example of effective area curves. The effective
areas when pointing at a zenith angle of 0, 20 and 50◦ are
shown. The larger the zenith angle, the higher the energy
threshold, but also the higher the sensitivity at high energies.

ultimate goal is to obtain a better significance using BDTs compared to Box

Cuts for an identical dataset.

The first test is a measure of the efficiency of the cuts, as shown in Figure

6–18. The idea is to use a cut that maximizes how much signal is seen over

the background, and how it affects the overall detection significance.

This is useful for the selection of the cuts. Typically, box cuts are sepa-

rated into three “classes”: soft, moderate and hard. They are defined accord-

ing to the spectrum of the source being looked at, and have different energy
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Figure 6–17: Example of a radial acceptance curve. The points
come from data, and the line is a fit, using a 5th order polyno-
mial, used in the VERITAS analysis. This indicates that the
probability of reconstructing an image is higher if it is closer
to the center of the camera.

thresholds. In general, soft cuts are used for sources with a soft spectral index

(a power-law of index -3), moderate cuts are used for Crab-like spectra (index

of -2.5) and hard cuts are used for sources with harder spectra. This does

have an effect on the energy threshold of the analysis, soft cuts having a lower

one, at 150 GeV, as opposed to hard cuts having an energy threshold of ∼500

GeV, whereas moderate cuts have a threshold in between, at ∼250 GeV. The
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Figure 6–18: Left: Efficiencies of signal (blue) and background
(red) as a function of the BDT cut value (MVA value T, where
MVA stands for multivariate analysis). Right: Significance (in
units of standard deviation) calculated from the left plot, as a
function of the cut value T. The dashed line shows the maxi-
mum of significance (determined for a Crab-strength source),
and is shown on the plot on the left as well. Image credit:
Elisa Pueschel.

cut optimization done with BDT was chosen to match the behavior of the box

cuts as close as possible, with respect to the source spectrum.

In the analysis presented in this work, BDTmoderate cuts were used since,

as seen in Chapter 4 with Equation 4.31, the spectrum behaves as a power-law

of index -1.5 up until ∼5-10 TeV (depending on how much evaporation time is

left for the primordial black hole), where it switches to an index of -3. Given

that the spectrum will be hard from the moderate cuts’ energy threshold up

until 5-10 TeV, and then soft, BDT moderate cuts are a good compromise (as

well as friendlier to the CPU during the final analysis). The performance of

BDT moderate cuts will be compared here with the equivalent box cuts.

One of the tests to compare the performance between the two cutting

methods, is to compare the effective areas (discussed in Section 6.7). Effective
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areas are a measure of the efficiency of the event reconstruction, and are defined

as such:

EffA(E) =

(

Nrec(E)

Nthrow(E)

)

× A (6.20)

where EffA(E) is the effective area at energy E, Nrec(E) is the number of

events having been reconstructed at energy E, Nthrow(E) is the number of

simulated events at energy E, and A is the area over which the gamma rays

were simulated.

In essence, it is a representation of how efficient the set of cuts really is, as

box cuts will reconstruct less of the simulated gamma rays than BDTs. This is

visible in Figure 6–19, that shows the comparison of the effective areas between

the two. BDTs have better reconstruction efficiency at higher energies (about

10% at 5 TeV), while losing ∼ 10% below 200 GeV.
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Figure 6–19: Comparison of Effective Areas between box cuts
(black circles) and Boosted Decision Trees (red squares). Left:
The 2 effective areas plotted on top of each other. Right: The
ratio of the effective area of box cuts to BDT cuts.

BDTs were also tested on their performance when analyzing actual data.

In VHE astrophysics, the Crab Nebula is considered to be a “standard candle”,
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as it is a very strong and steady source of gamma rays in this energy range

[106]. For that reason, it has been used for the performance analysis.

To show that BDTs work as they should, the analysis that uses it should

then be able to reproduce the Crab spectrum. Figure 6–20 shows such a

comparison. The spectrum is in very good agreement between BDTs and the

box cuts.

Sensitivities can also be compared. Table 6–1 shows the difference in total

significance between the two sets of cuts, showing an overall improvement.

Figure 6–21 shows how much time is needed to get a detection (significance of

5σ) for each source strength.

Property Box Cuts BDT Cuts

NON 613 607
NOFF 537 294
σ 45.9 49.8

γ-rate (1/min) 7.3 ± 0.3 7.4 ± 0.3
background rate (1/min) 0.36 0.2

Table 6–1: Comparison of results from the analysis of four Crab data runs (80
minutes). As can be seen, BDTs remove about 45% of the background, with
little effect on the signal. This results in a net increase in the significance from
the same data.

Finally, the performance can also be compared in terms of how many ON

and OFF events are found with each set of cuts. Table 6–1 shows a slight loss

of ON events of ∼ 1%, but cuts down ∼ 45% of the OFF events. This results

in a ∼ 8% increase in significance for the Crab Nebula.

6.9 Conclusion

The standard VERITAS analysis has been described here, as well as a

new analysis tool that has been recently developed by the Collaboration, using
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Figure 6–20: Comparing the spectrum of the Crab Nebula
using box cuts (blue points) and Boosted Decision Trees (red
squares). The minimum significance of a data point is set to
3σ. The arrows represent the 95% CL upper limit for that
energy bin.The two curves are the best fit of the spectrum.
Both fit agree very well, indicating that the BDT cuts work as
they should. The same four Crab runs were used to produce
both spectra.

boosted decision trees. This will output a list of events, recognized as gamma-

like or not. This list is going to be useful for the PBH analysis, described in

the next chapter.
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CHAPTER 7
Analysis for the Primordial Black Hole Search

The standard VERITAS analysis is an integral part of the search for

primordial black holes (PBHs), however it is not enough. It will output a list

of events that pass the boosted decision trees cut, meaning that they exhibit

the characteristics of gamma rays. Since there will always be a subset of cosmic

rays that look like gamma ray events, despite the best efforts of the analysis

software, those events can only be said to be “gamma-like”. This chapter will

describe the next step in the analysis that is needed, in order to detect bursts

of gamma rays coming from PBHs.

7.1 Construction of the Run List

The way to look for PBHs is in archival data, in the hopes that the tele-

scopes caught the final PBH evaporation at the right time and right direction,

by chance. Since there is no preferred or expected time and direction for the

final evaporation of a PBH, proceeding in this way incurs no penalty when

looking for PBHs, as opposed to targeted observations. Looking at the max-

imum number of data runs would then increase the probability of a chance

exposure.

However, not all of the data runs can be used. Bad weather, as well as

occasional hardware problems, can severely impact the quality of the data.

The VERITAS collaboration has developed an online tool for data quality

monitoring (DQM) that will process the data and look for any potential prob-

lems with the runs, within a few hours of the data-taking. This is used in the

111
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run selection, removing any runs with hardware problems, those exhibiting

pathological behavior caught by the DQM, and those where the weather was

unstable and the skies were not clear. Also, VERITAS’ sensitivity as well as

the event reconstruction efficiency is reduced when pointing at lower elevation

(closer to the horizon). Because of that, runs taken at an elevation lower than

50◦ will not be used in this analysis.

For the weather, far-infrared (FIR) cameras are used to measure the sky

temperature. They operate in a spectral band from 8 to 15 µm. This band

corresponds to a water vapor absorption line. If vapor is present in the at-

mosphere, like if there is a cloud in the field of view, the FIR will detect it,

reading it as a variation in temperature. The runs selected require the sky

temperature to be stable over their duration, within 0.3◦C. Figure 7–1 shows

the measured sky temperature for two runs, one where no clouds were present

(an accepted run), and one with clouds (a rejected one). Note that the good

one is not only more stable, it also presents an overall lower sky temperature.

As explained in Chapter 5, VERITAS has been operating with four tele-

scopes since April 27th 2007. The initial configuration is referred to as V4. In

the summer of 2009, one of the telescopes (T1) was moved towards a more op-

timal position to enhance the array’s sensitivity (V5). In the summer of 2012,

the PMTs were replaced with higher quantum-efficiency PMTs, enabling the

telescopes to reach yet higher sensitivity (V6). The data used in this work will

be from the V5 period. In future work, all the data should be used, but for the

scope of this work, using the V5 period allows for a more direct comparison

with prior results from VERITAS, in [88].
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Figure 7–1: Evolution of the measured FIR sky temperature
for two runs. The blue points show a stable FIR sky temper-
ature, indicating good weather conditions and hence a good,
usable run. The red points show a large variation of the FIR
sky temperature, indicating bad weather and a run that will
not be used in this analysis.

7.2 Effects of Varying Time Window

Previous searches for PBHs using imaging atmospheric Cherenkov tele-

scopes (IACTs) [80, 65] looked for bursts of gamma rays of a duration of one

second. While they were able to obtain interesting limits on the rate-density

of PBH evaporation, it does not mean that this is where the respective tele-

scopes were the most sensitive. More recently, H.E.S.S. looked into expanding

time windows [90] to find which one would be the most optimal. In order to

do that, they determined their optimal sensitivity limits using time windows

of 1, 2, 5, 10, 30, 45, 60 and 120 seconds. They found a broad minimum at 30

seconds, and so showed their new limits for both 1 and 30-second time win-

dows (limits of 4.9× 104 and 1.4× 104 pc−3 yr−1 respectively, at a 95% CL).
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The searches with Milagro also explored different time windows [107], in their

case, binning the sky in spatial coordinates and scanning each using different

time windows. They found they were the most sensitive at a time window of

1 second, with a limit of 3.6 × 104 pc−3 yr−1. The details of all the previous

searches have been described in Chapter 4.

The analysis in this work also looks at different time windows. This chap-

ter and the next will describe this search, computing the limits and showing

how they behave as a function of the time window. The aim is to find which

time window VERITAS is most sensitive to. With shorter time windows, the

limits would be less constraining due to low probability of getting a signal,

whereas with longer time windows, there will be more background events, so

the
√
N fluctuations will get larger and mask a small signal, which would also

serve to make the limits less constraining. This search aims to find which time

window balances those two effects optimally. Recall that Figure 4–8 showed

the time profile of PBH emissions towards the end of its lifetime. The increase

in emissions follows a power-law, leading to a steep rise the closer the PBH

gets to its end.

7.3 Angular Window Search

The basic technique in the search for PBH evaporation is to look for

bursts of gamma rays that come from the same part of the sky, in a given time

window. This section explains how the gamma rays are said to be coming

from the same point in the sky.

Since the PBHs being looked for by VERITAS would have a mass at

formation of ∼ 1014g, or ∼ 10−20M⊙, it follows that they had a Schwarzschild

radius of 10−15m. Gamma rays from a PBH evaporation would, from the point

of view of the telescopes, be coming from a point source. This would suggest
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that the gamma rays’ arrival directions would have to be identical. However,

due to the spread of a given gamma ray Cherenkov shower, and uncertainties

in the event position reconstruction, 2 gamma rays coming from the same

point source will always show some level of separation. This will result in a

point source appearing somewhat extended. The width of the resulting image

is called the gamma-ray Point Spread Function (PSF).

7.3.1 PSF Dependence in Energy and Elevation

VERITAS is often quoted, based on Monte Carlo simulations, to have a

gamma-ray PSF of less than 0.1◦ at 1 TeV at the 68% CL [108], so previous

searches with VERITAS simply asked for the events of a burst to all arrive

within 0.1◦ of each other in order to be likely to be coming from the same

point in the sky. H.E.S.S. used the same radius of 0.1◦, and Whipple used

0.13◦.

Since the sizes of gamma-ray Cherenkov showers vary with energy as well

as with elevation, it is to be expected that the PSF will also vary with those.

Monte Carlo simulations can be used to characterize the PSF as a function

of energy and elevation, but prove inadequate due to the effects of systematic

errors [109]. A more suitable option is to look at the distribution of the arrival

directions of the Crab Nebula’s very-high-energy (VHE) gamma rays.

The Crab Nebula, considered a standard candle in VHE astrophysics (as

explained in Section 6.8), is ideal for such a study. Since the Crab Nebula

is effectively a point source for VERITAS, all its gamma rays should come

from the same location in the sky. As Cherenkov showers have an inherent

spread, the resulting image of the Crab Nebula will look somewhat extended.

By analyzing Crab runs, one can get θ2 distributions (see Section 6.6.1) for

different zenith angle and energy bins, which can then be used to estimate the

PSF of the experiment under those conditions.
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Note that the PSF is taken to be constant as a function of the recon-

structed position in the camera. In other words, the error on the position

reconstruction will remain the same at any position in the camera. This could

be investigated, but requires dedicated calibration runs with the Crab being

positioned in various parts of the camera. This becomes difficult to do as

valuable observing time would be needed in order to gather the necessary

statistics. Another method to get this information would be through Monte

Carlo studies, taking into account the resulting uncertainties. For this work,

the assumption of a constant PSF is taken.

For this analysis, all the good-quality Crab runs during V5 are used,

determined from the same criteria that were used to select the run list for the

PBH search analysis. This corresponds to 314 runs, for a total time of 105

hours. The same cuts as in the PBH search analysis were used here, that is

Boosted Decision Trees (moderate cuts). Every reconstructed event is used,

and the angular difference θ between the event’s position and the position of

the Crab Nebula is used to make a θ2 distribution. The θ2 plot for all the Crab

runs, with all events from each energy and elevation (above 50◦), is shown in

Figure 7–2. A fit to the distribution is used, where the signal is modeled with

a modified hyperbolic secant distribution:

S(θ2, w) =
1.71N

2πw2
sech(

√
θ2/w) (7.1)

where w is the width of the distribution and N is the number of signal events.

This model was determined empirically and describes the signal distribution

well, taking into account the leptokurtic aspect of the distribution [109].

If looking only at events within 1◦ of the Crab Nebula position, the back-

ground is well described by a linear function. Using a linear combination of
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Equation 7.1 for the signal with a polynomial of degree one for the background

gives the resulting fit that can be seen in Figure 7–2.
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Figure 7–2: θ2-distribution of all the events from all the V5
Crab runs, from all zenith angles. The black line is the best fit
to the data, while the red dashed line is the signal component of
the fit, and the blue dotted line is the background component.

The parameter w is what is related to the PSF. In order to get its depen-

dence as a function of energy and elevation, the Crab data set is separated

in energy and elevation binning. Because the Crab spectrum is a power-law

of index ∼ −2.5, the amount of gamma rays at high energies are much lower

than at lower energies, so the binning has to be wider at high energies in order

to get enough statistics. The energy binning chosen is the same one as the one

used for the development of BDTs (see Section 6.5.2), i.e. 0.08 to 0.32 TeV,

0.32 to 0.5 TeV, 0.5 to 1 TeV and 1 to 50 TeV. The last bin is as big by de-

sign because of the low statistics at these energies. Similarly, the data will be

biased towards higher elevations, so the binning will have to be representative
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of that as well (50 to 70 degrees in elevation, 70 to 80 degrees, and 80 to 90

degrees).

Figure 7–3 shows the θ2-distribution for the different binnings. Already,

simply by eye, it can be seen that the width of the distribution is getting

smaller, the PSF becoming tighter. This is expected as a Cherenkov shower

is tighter at higher energies.
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Figure 7–3: θ2 distribution at different gamma-ray energies
(top left : 0.08-0.32 GeV, top right : 0.32-0.5 GeV, bottom left :
0.5-1.0 GeV, bottom right : 1.0-50.0 GeV), for the elevation
range 80-90 degrees.

Figure 7–4 shows the 68, 80 and 90% containment radii of the PSF from

the distributions in Figure 7–3, as a function of energy. The different plots

show this for different energies. The evolution in elevation is shown in each

plot, and the curve is a fit to the 90% containment radius points, using a linear

function. The PSF decreases with increasing elevation. At lower elevation, a
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shower has more atmosphere to go through, causing increased lateral expan-

sion, resulting in a wider shower when reaching the camera, explaining the

behavior seen here.
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Figure 7–4: Angular resolution as a function of energy and
elevation. Left : Energy from 8 to 32 GeV Right : Energy from
1 TeV to 50 TeV. Each plot shows the angular resolution as
a function of elevation. The dependence in elevation is small,
but the PSF does decrease with increasing elevation.

7.3.2 Likelihood Method for Angular Cut

Understanding the PSF as a function of energy and elevation is the first

step in a cut on localization. The basic idea is to find out what the likelihood

is that those events could be coming from the same point in the sky, given a

list of events arriving within a given time window, with their respective energy

and elevation known.

To do this, a likelihood maximization technique is used. Using Equation

7.1, the likelihood function would become:

L =
∏

i

1.71

πw2
i

sech(
√

(θi − µ)2/wi) (7.2)

where wi and θi are the angular resolution and direction of event i respectively,

the width being given from the event’s energy and elevation, determined from

the study in the previous section. Since the expression −2 ln(L) behaves like

a χ2 [14], minimizing that expression with respect to µ (which maximizes

Equation 7.2) will give the centroid position, expressed by µmin.
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This minimization technique is used to find the centroid of any group of

events. Figure 7–5 shows a group of 10 events taken randomly from a data

run. The centroid position from the likelihood minimization is shown as a blue

square.
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Figure 7–5: Centroid position of a group of random events.
The red points show the position of the events, and the circles
surrounding each of them correspond to the 68% error on their
position. The centroid position is shown as a blue square. The
large, black circle, represents the field of view of the array.

It is also important to know what a group of events that do come from

the same point in the sky looks like. Since such a behavior occurring in real

data is rare (but does happen, as will be shown in the next sections), it is

easier to simulate them.
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Using the centroid position calculated and shown in Figure 7–5, the 10

events can be repositioned across the field of view according to the hyperbolic

secant distribution of Equation 7.1 by scattering them according to their un-

certainties. For each event, its energy and arrival elevation are used to get the

width parameter of the hyperbolic secant distribution, and that distribution is

then used to generate a random radial position with respect to the centroid. A

uniform probability distribution is used for the azimuthal angle position with

respect to that same centroid. Those newly-distributed events are then used

to calculate a new centroid, and this gives a distribution of events as seen in

Figure 7–6. As can be seen, the event’s positions are much more consistent

with each other.

The likelihood-minimization method can then be used to determine what

set of events are likely to be coming from the same point in the sky. By look-

ing at random groups of events from data, a distribution of the minimized

likelihood (−2 ln(L)) is computed for each group. The same is done for the

simulated data as outlined previously. Comparing the two distributions shows

the differences between random scattering of events (heretofore called “back-

ground bursts”) and simulated data (“real”) bursts. Figure 7–7 shows the two

likelihood distributions for “bursts” of 2, 3, 5 and 10 events.

The distribution for the simulated bursts is systematically narrower than

for the background bursts, and stays around the same value regardless of

the number of events in the burst. This would be expected as the scatter

between the events is small by construction, whereas the background events

are much more spread out (as exemplified in Figure 7–5). This behavior gives

the information about where to set the cut value.

The background distribution is separated from the simulated bursts. The

average of the distribution stays constant with the number of events in the
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Figure 7–6: Centroid position of a group of events simulated to
be coming from the same point in the sky following the prob-
ability distribution of a hyperbolic secant (Equation 7.1). The
centroid is shown as the blue square. The events shown here
have the same energies and elevations as the events in Figure
7–5. The events’ new positions are much more consistent with
each other.

bursts, but its width decreases. This means that for a burst of two events,

more background will be accepted when applying the cut, but almost none for

larger burst sizes. However, limiting oneself to the larger bursts will limit the

sensitivity of the PBH measurement.

These distributions can be used to determine a proper cut value on the

likelihood to discriminate real bursts from background ones. A cut which
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Figure 7–7: Likelihood distribution of random scattering of
events (in blue) and of simulated bursts (in red). Top left :
Likelihood distributions for groups of 2 events. top right : for
groups of 3 events. bottom left : For groups of 5. bottom right :
For groups of 10.

keeps 90% of the real bursts is used, in order to maximize the amount of real

bursts seen and minimize the amount of background ones.

7.4 Burst-Finding Algorithm

The time window and the likelihood cut are integral parts in the search

for bursts, but now these need to be used in an algorithm in order to find

those bursts.

The following steps are done on individual runs, and the final limits will

be computed when putting all those runs together (which will be explained in

the next chapter). The individual runs are first analyzed using the standard
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VERITAS analysis. In this case, it uses the Boosted Decision Trees (moderate

cuts), to compile a list of events. This list is divided into 2 categories, the ones

that passed the cuts (gamma-like), and those that did not. This feature is not

strictly necessary, but will help when estimating the background, as will be

explained in the next section. The selected events are accompanied with the

information on their energy, arrival elevation and reconstructed position on

the sky. Some ancillary information about the run itself is necessary, like the

telescope pointing direction, the effective area curve for that run, and its radial

acceptance (the last two are explained in Section 6.7).

For this part of the analysis, only the gamma-like events are necessary.

For each event i arriving at a time ti, a list is compiled with any subsequent

event that happens within a window ∆t of the first one, i.e. any events between

times [ti, ti + ∆t], where ∆t is the time window being used for the analysis.

For each of these lists, any subgroup where the events are likely to come from

the same point in the sky are kept.

The algorithm first looks at all of the events in the time-burst. At first,

it removes events that are obviously alone, or singlets, i.e. that they have no

neighbors in a radius equals to 5 times their respective 68 % containment radii.

Once these are removed, the centroid of the remaining events is calculated,

along with the corresponding likelihood. If the likelihood value is less than

the cut value (determined in the previous section), then this is considered to

be a burst, and the algorithm moves on to the next time-burst. However, if

not, the algorithm, inspired by Chauvenet’s criterion [110], adapted to the

maximum-likelihood technique, will remove the furthest outlier from the list

and try again with the remaining events. The furthest outlier is the event that

has the maximum −2 lnL value of all the events in the group.
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The worst offender is the event that fits the least well with the centroid

position. This outlier is then removed, and the algorithm will do the likelihood

test with the remaining points.

This is done again with the subgroup, and each time an outlier is removed,

it is kept in memory with the previous ones. Then, if the algorithm determines

that one of the subgroup is a burst, or eliminates every event until there is

only one left, it will proceed to reexamine the outliers. This needs to be done

in case another subgroup formed a burst that was ignored in favor of a more

obvious one. Figure 7–8 shows an illustration of this algorithm, starting with

a time-burst, and eliminating events until a burst is found, and then moving

on to the eliminated events to do the same.

To avoid double-counting, each event is assigned the size of a burst (the

size of the burst being the number of events within it). Since an event may

be present in more than one burst, it is assigned the size of the largest burst.

Then, the number of bursts of size b, N(b), is determined by counting the

number of events of size b, Nev(b) and dividing by b:

N(b) =
Nev(b)

b
(7.3)

Table 7–1 shows a simple example of how the counting method works.

That example shows the situation with six events counted in three bursts (1

and 2 being a pair, 3 and 4 another one, and 4, 5 and 6 a triplet). Four is

found in two different bursts, and is therefore assigned a size of three, the

largest burst in which it is found. Since event four’s largest burst is of size

three, its pair companion in the smaller burst of size two, three, is left alone.

In that case, it becomes a single event, being no longer part of a burst. Table

7–2 gives the final count of bursts from Table 7–1.
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Figure 7–8: Illustration of the burst-finding algorithm. The
first plot is the time-burst, showing the event positions as well
as their uncertainties. The next one shows the events left af-
ter removing the isolated ones. The centroid position is also
shown with the red square. This is not accepted as a burst,
so the furthest outlier is removed, and the test is done again
on the next plot, and eventually reaches a point where a burst
is found. The final plot tests the other events that had been
discarded along the way, ignoring the singlets that have been
removed originally, to see if those could also be a burst.

7.5 Background Estimation Method

As is seen in Figure 7–10, bursts are indeed found in the data. However,

it cannot be assumed that they are bursts of gamma rays from PBHs. In fact,
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Burst Number Event Number Sizes Final Size
1 1 2 2
1 2 2 2
2 3 2 1
2,3 4 2,3 3
3 5 3 3
3 6 3 3

Table 7–1: Example of the burst-counting methods to avoid double-counting.
Imagine there are 6 events contained in multiple bursts. In this case, 1-2, 3-4,
and 4-5-6. The Sizes column gives the sizes of the bursts each event is involved
in. Event 4 is present in 2 bursts, one of 2 events, and one of 3. It is assigned
the maximum size, 3. Since burst 3 is now alone, it is no longer considered as
part of a burst.

Burst size Number of bursts
1 1
2 1
3 1

Table 7–2: Results of the burst count from the example of Table 7–1. Note
that a burst of size 1 is simply an isolated event (in this case, event 3 from
our example).

most of the gamma-like events in a run are not gamma rays but misidentified

cosmic rays. Statistical fluctuations on the background flux can and do lead

to fake bursts. It then becomes important to find a way to estimate what the

expected amount of background bursts will be.

One way to estimate the background is by scrambling the arrival time

of the events and redoing the analysis. Each event will then keep its arrival

direction, energy and other information, but its time of arrival will switch with

another random event. This has the effect of removing any fake bursts and

creating new ones, but also to break apart potential real bursts which will not

be compensated for in the background estimation and will therefore stand out.

This will work if using the original list of gamma-like events that survived

the cuts. It will find the same time-bursts, but not the same bursts in space.

However, if one wants to get randomized time-bursts as well, it is also possible
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to scramble the times of all events that were reconstructed before the cuts

were applied, and then select the gamma-like events. Figure 7–9 illustrates

the time-scrambling background estimation method.

Figure 7–9: Illustration of the time-scrambling background es-
timation method, in order to reconstruct the amount of bursts
due entirely to statistical fluctuations. From the leftmost col-
umn is the event number, followed by the flag that identifies
the event as gamma-like or not, its position, and its time. The
mixing results in the right table, where the times are scram-
bled, but everything else remains the same.

This method presents the advantage of already taking into account in-

strumental effects of the given run, like weather or instrumental situations

specific to the run. For example, if the field that the telescopes were pointing

at at the time had a bright star that required to shut down a given PMT

for the duration of the run in order to protect it, this effect will carry over

to the background estimation. Moreover, the anisotropies in the cosmic ray

background would affect the amount of bursts seen, which will be reflected in

both the data and the background. Finally, this method is also able to take

into account the presence of a stable source, as its rate of gamma rays will

also be seen in the background. For a given run, in the final analysis, this
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background estimation method is repeated 10 times and averaged. This is

then compared with the analyzed data, in order to find whether or not there

is a significant excess of bursts. Figure 7–10 shows an example for a given run,

using scrambled data. In this instance, the background has been computed 30

times and averaged.
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Figure 7–10: Distribution of gamma-like events’ bursts as a
function of burst size for a time window of 10 seconds. The
blue dashed lines are from scrambled data, and black lines
are the background from 30 other scrambles, averaged. The
residuals between the two is shown in the bottom plot. The
errors on the data come from Poisson statistics.



CHAPTER 8
Results and their Interpretation

Now that every step of the analysis has been explained in the previous

chapters, the results of the analysis need to be looked at. The analysis will give

a distribution of bursts as a function of the burst size (the number of events in

a given burst), but that in itself does not necessarily reveal anything beyond

an excess of bursts present in the data. However, is the burst coming from a

Primordial Black Hole (PBH) evaporation, or some other phenomenon? Since

this work concentrates on the search for PBHs, the results will be interpreted

according to the PBH model. In other words, the burst of gamma rays found

(or lack thereof) will be given a physical interpretation with regards to the

rate-density of PBH evaporation.

8.1 Comparing Data and Background

The previous chapter focused on explaining the analysis to get a distri-

bution of bursts. Since this analysis looked at different time windows, it is

important to get a sense of the burst-distribution behavior with an increasing

time window. In order to investigate this without incurring a trials factor

in the final limit, the search is done on a subset of the data used, all time-

scrambled. In that way, the real data is never looked at, and the analysis can

be fine-tuned. Final results, using the real data will be shown in Section 8.2.

Figures 8–1 and 8–2 show the distribution of bursts for time windows

of 10 and 100 seconds. The plots are much like what was shown in Fig-

ure 7–10, the blue dashed lines being the fake data, which is made using a

130
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random-scrambling of the data. The black lines represent an estimate of the

background, using 30 random scrambles of data, averaged. For these plots, 60

runs were used, for a total time of 18 hours. This analysis was also performed

for time windows of 1, 2, 5, 30, 45, 60 and 80 seconds.
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Figure 8–1: Burst distributions for random data using a time
window of 10 seconds. The residuals plot shows the difference
between the fake data count and the background.

It is interesting to note that as the time window is increased, the dis-

tributions evolve from an exponential behavior (as shown in Figure 8–1), to

introducing a certain curvature in the low burst-sizes (with the distribution

shown in Figure 8–2). This will be discussed further in Section 8.2.2.

8.2 Deriving Limits

8.2.1 Models of the Expected Number of Bursts

To get an upper limit on the rate-density of PBH evaporation, the ex-

pected number of gamma-ray bursts coming from PBHs’ final evaporation
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Figure 8–2: Burst distributions on random data for time win-
dows of 100 seconds. The residuals plot shows the difference
between the fake data count and the background.

must be calculated. This can be derived from the model used to predict the

emissions from a PBH’s final evaporation. This model was detailed in Section

4.2.1, with the resulting spectrum of VHE gamma ray expressed in Equation

4.31, shown again here for convenience:

dNγ

dEγ

≈ 9× 1035

×















(

1GeV
Tτ

)3/2 (
1GeV
Eγ

)3/2

GeV−1 for Eγ < kTτ

(

1GeV
Eγ

)3

GeV−1 for Eγ ≥ kTτ

(8.1)

where Tτ is the temperature of the black hole at the beginning of the final

burst interval, Tτ = TBH(τ):

kTBH(τ) = 7.8
( τ

1s

)−1/3

TeV (8.2)
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and τ is the remaining PBH lifetime. When the analysis is looking at bursts

in a time window of 10 seconds, it is compared to the expected spectrum of

Equation 8.1, using a remaining lifetime of 10 seconds. To get an idea of how

many bursts would be seen by VERITAS, the amount of photons that can be

detected from a PBH at a distance r from the telescopes is given by:

Nγ(r, α, δ,∆t) =
1

4πr2

∫ ∞

0

dN

dE
(Eγ,∆t)A(Eγ, θz, θw, µ, α, δ)dEγ (8.3)

where dN/dE(Eγ,∆t) is given by Equation 8.1, and A(Eγ, θz, θd, µ, α, δ) is

a combination of the Instrument Response Functions (IRFs) of VERITAS,

as a function of the gamma-ray energy Eγ, the observation zenith angle θz,

the wobble offset θw, the optical efficiency µ, and the event reconstruction

position in camera coordinates (α, δ). This expression can be split onto two

components, one depending only on the camera coordinates, and the other

depending on Eγ, θz, θw, and µ:

A(Eγ, α, δ) = g(α, δ)× a(Eγ, θz, θw, µ) (8.4)

g(α, δ) corresponds to the radial acceptance of the camera, while the

second term is the effective area of the telescopes. These IRFs are quickly

described in Section 6.7.

The convolution of the expected spectrum from PBH evaporation and the

IRFs gives the expected number of photons emitted by a PBH that should be

seen by the detector at a distance r from the PBH, Nγ.

Since this analysis is interested in bursts of gamma rays from PBH evap-

oration, Nγ should be used to get a probability of catching a burst of size b

given Nγ. This is expressed as a Poisson probability:
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P (b,Nγ(r, α, δ,∆t)) = exp(−Nγ)
N b

γ

b!
(8.5)

This expression can be used to determine an effective volume Veff , de-

scribing a volume to which VERITAS is sensitive to the evaporation of a PBH:

Veff (b,∆t) =

∫

∆Ω

dΩ

∫ ∞

0

drr2P (b,Nγ(r, α, δ,∆t)) (8.6)

where ∆Ω is the solid angle covered by the VERITAS telescopes. This integral

can be solved to give:

Veff (b,∆t) =
1

8
√
π

Γ(b− 3/2)

b!
I3/2

∫ 1

−1

(g(α, δ))3/2d cos θ (8.7)

where I is the convolution integral of Equation 8.3, with the radial acceptance

taken out and dealt with independently (the integral on g(α, δ)).

In a given data run, the expected number of bursts nexp of size b for a

time window ∆t can then be expressed as:

nexp(b,∆t) = ρ̇PBH × Tobs × Veff (b,∆t) (8.8)

where ρ̇PBH is the rate-density of PBH evaporation, and Tobs is the deadtime-

corrected duration of the run.

For the whole data set, the total expected number ntot
exp is expressed as

such:

ntot
exp(b,∆t) = ρ̇PBH ×

∑

j

Tobs,j × Veff,j(b,∆t) (8.9)

where j goes over each run used in the analysis. Figure 8–3 shows the effective

volume of an example run, as a function of burst size and time windows. As

would be expected, the volume decreases as a function of burst size. Distant
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PBHs will appear to be dimmer due to the 1/r2 fall-off, so requiring fewer

gamma rays in a burst means one can see PBHs that are further away.
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Figure 8–3: Evolution of the effective volume as a function of
burst size and time window. Shown here are time windows of
1, 10 and 100 seconds.

The total effective volume V tot
eff (b,∆t), when combining all runs, is ex-

pressed here:

V tot
eff (b,∆t) =

∑

j Tobs,j × Veff,j(b,∆t)
∑

j Tobs,j

(8.10)

Note that the volume is always less than 1 pc3, hence the rate-density of

PBH evaporation found in this work (or the limit) is considered to be local. In

essence, the measurement done here gives the rate-density of PBH evaporation

in a very local neighborhood. This may not be representative of the overall

average rate-density of PBHs across the universe, depending on how they may

have clustered through its evolution. This will be explored further in Section

8.5.
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8.2.2 Maximum Likelihood and Limits

With the information on the number of bursts seen in data and back-

ground, the method of maximum-likelihood can be used. The likelihood equa-

tion is expressed as such:

L(ρ̇PBH) =
∏

b

f(nb|ρ̇PBH) (8.11)

where f(nb|ρ̇PBH) is the likelihood function, or probability law with parameter

nb, the number of bursts seen in the data, given the rate-density of PBH

evaporation ρ̇PBH in Equation 8.8. The multiplication is done over each burst

size b. The assumption is that those laws follow Poisson statistics:

f(nb|ρ̇PBH) = exp [− (nbg + nexcess)]× (nbg + nexcess)
nb /nb! (8.12)

which is the probability of seeing nb bursts given a rate-density ρ̇PBH . In

this, nbg is the number of bursts seen in the background, nexcess is the excess

number of bursts between data and background, and nb is the number of bursts

seen in the data. Constraining nexcess across each burst size will constrain the

rate-density ρ̇PBH .

For each burst size b, the number nbg, nexcess and nb come from their

respective values for b. nexcess(b) is used to calculate ρ̇PBH from Equation 8.8.

In the maximum-likelihood technique, Equation 8.11 must first be maximized,

and the upper limit will be given when the ratio between a rate-density and

the maximum corresponds to the desired confidence level.

Since it is easier to use the logarithm of the likelihood equation (the

multiplication becomes a sum, and the exponentials are eliminated), the test

is done using the following equation:
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−2 lnL = − 2
∑

b

nb ln(nexcess + nbg)− nexcess (8.13)

where all the terms from Equation 8.12 that do not depend on nexcess can be

neglected, since they simply add a constant offset to the equation, that will

cancel out when using the maximum-likelihood technique.

Because of the change of signs, the maximum-likelihood technique requires

Equation 8.13 to be minimized in order to maximize Equation 8.11, and it is

the difference between the minimum and the value of a given rate-density of

PBH evaporation that will be used to set an upper limit:

−2∆ lnL ≤ 6.63 (8.14)

where ∆ lnL = lnL(nb|ρ̇PBH)−lnLmin, and the value of 6.63 is the condition

for a 99% CL [14].

As was discussed af the end of Section 8.1, the burst distributions are

exponential for small time windows (like in Figure 8–1) or large burst sizes (like

in Figure 8–2). For large time windows and small burst sizes, they deviate from

an exponential behavior and have a curvature at the low end (see Figure 8–2).

This is because small bursts get merged into bigger bursts, which are more

common due to the larger time windows since they let in more background.

This indicates that a cut on the minimum burst size is necessary. This is

determined so that the range of burst sizes used is in the exponential region.

The minimum burst size is then chosen so that for a given bin, the number

of bursts Nbin must be ≫ Nbin+1. Hence, the burst-size threshold is used to

determine a burst-size range where the number of bursts in the subsequent

bins are no more than 75% of the value at Nbin.

Figure 8–4 shows the limits on the rate-density of PBH evaporation from

the scrambled data sets for time windows of 1, 2, 5, 10, 30, 45, 60, 80 and 100
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∆t Burst-size Threshold
1 2
2 2
5 2
10 2
30 2
45 3
60 4
80 5
100 6

Table 8–1: Burst-size threshold determined for each time win-
dow, used for the example shown in Figure 8–4.

seconds (see Figures 8–1 and 8–2 for the burst-size distribution of the 10 and

100-seconds time windows). For this scrambled data, the burst-size threshold

were determined from the above criteria, and the values are shown in Table

8–1.

The purpose of the test described here is to get an idea of the uncertainties

on the limits, and of which time windows will be the most sensitive for the

final analysis. This is done by computing the limits multiple times, and looking

at the scatter. Since the data were scrambled 30 times, each limit calculation

used one of the scrambled data as data and 4 others, averaged, as a background

estimate. This is repeated 6 times, so that each random scrambling is used

once. The points in Figure 8–4 show the average limits and the RMS/
√
6 from

those measurements. In this way, the sensitivity of the measurement is shown,

as well as the potential variations

These results indicate what time windows are best to use for the PBH

search on the real data. Since the minimum limit is measured around a time

window of 30 seconds, the final analysis will look at time windows up to 45

seconds. This also saves precious computing time, as analyzing the burst

distributions of a run for a 30-second time window takes approximately 30
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Figure 8–4: Upper limits on the rate-density of PBH evapora-
tion, on the scrambled data set. A random scrambled data set
is used as data, and another 4 are used as a background esti-
mate. This is repeated 6 times. The uncertainties represent
the RMS/

√
6 of those measurements.

minutes to a couple of hours (depending on the number of gamma-like events),

while the 100-second time window can take up to one day to process. Also,

recalling Figure 4–8, it can be seen that expanding the time windows beyond

approximately 30 seconds does not give many more photons, beyond having

access to a larger effective volume, so the signal-to-background ratio decreases.

8.3 Final Limits

Now equipped with all this information from randomized data, the actual

data can finally be analyzed. Figures 8–5 and 8–6 shows the burst distribu-

tion for the 1 and 30-second time windows. The 1-second window is shown

here, despite not being the most sensitive window, as this is the window that

previous measurements from VERITAS, H.E.S.S. and Whipple used to report

their limits. The distribution from the 30-second window is also shown, as it
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obtains the most-constraining limits. The other time windows (2, 5, 10 and

45) have also been analyzed but are not shown here.
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Figure 8–5: Burst distributions for a time window of 1 second.

These are then used in the maximum-likelihood calculation of Equations

8.11 to Equation 8.14 to calculate the resulting limits, taking into account the

burst-size threshold of the longer time windows. Figure 8–7 shows examples

of the maximum-likelihood curves, with the line at 6.63 to indicate the 99%

CL, for time windows of 1, 10 and 30 seconds.

Figure 8–8 shows the final limits obtained for each time windows, com-

pared with the results of the previous searches that have been outlined in this

thesis, in Section 4.4.
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8.4 Comparison with Previous Results

These limits were obtained from a limited set of data. The ultimate goal

of this thesis is not necessarily to obtain the new best limits in the field, but to

provide a feasibility study for analysing the complete VERITAS data set using

new techniques. In order to improve limits, all of the VERITAS data should

be used, from each of the different telescope configurations (V4, V5, V6). The

behavior of the PSF under each configuration then needs to be understood,

and possibly at lower elevation angles to increase the data set even further.

The data set used here comprises 747 hours of data (after deadtime cor-

rection). The scatter between the different time windows is likely due to

statistical fluctuations in the data and the background. No statistical errors
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are shown here, as this is not customary when showing upper limits. Refer-

ring back to Figure 8–4 gives a sense of the amount of scatter involved in

calculating these limits. The uncertainties from Figure 8–4 were obtained by

taking the average of 10 scrambled background analyses. One can then expect

a smooth curve to be fit to the points, and take its minimum as a final fair

limit.

Figure 8–8 shows a second-order polynomial fit to the data, and gives

a minimum at 30 seconds, with a value of 2.22 × 104 pc−3 yr−1. With a 1-

second time window, the fit gets a limit of 3.42 × 104 pc−3 yr−1, a factor of

4 more constraining than the previous VERITAS analysis, which had a limit

of 1.29 × 105 pc−3 yr−1 in [88], using 700 hours of data. Since each time

window tests a different hypothesis (i.e. each time window tests a different

spectrum of PBH evaporation, corresponding to the time window in question),

no trials factor penalty is incurred when calculating these limits. The best

limit, however, is found at a time window of 30 seconds, and improve the

limits by another factor of 1.5, for a value of 2.22 × 104 pc−3 yr−1. Prior to

this work, the current best limits have been established by Milagro [70], with

a time window of 1 second at a rate-density of 3.6× 104 pc−3 yr−1. The limits

established by this work improve on that as well, by a factor of 1.5. Figure

8–8 shows the current results in relation to the different experiments. It is

expected that after five years of accumulating data, HAWC will be able to

reach a limit of 4.06 × 103 pc−3 yr−1 [70], improving on the measurement in

this work even further.

The limits reported here were obtained using only 747 hours of data.

Assuming that the background levels remain the same throughout the different

configurations, a rough estimate of the limits can be given by scaling to a

much larger data set (∼ 4000 hours). A simple method to do this is to use
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the burst distributions to get a rate for each burst size, and scaling it to the

new amount of time. One also needs to adjust the time in Equation 8.9. This

gives an estimate of around 7× 103 pc−3 yr−1.

8.5 Discussion

As was briefly explained in Section 3.4.2, the density of current PBHs

can constrain the relic density of PBHs, ΩPBH . However, the measurement

done here gives the rate-density of PBH evaporation. Therefore, this limit

must be converted into a measurement of the relic density. Since the current

measurement gives a local rate-density, another conversion needs to be done

to get the relic density, determined from the average density over the entire

universe. This conversion is possible, but a few assumptions have to be made.

The first assumption concerns the initial mass spectrum of PBHs. Since

PBHs finishing their evaporation today all had the same mass at formation,

the assumed mass spectrum could influence the number of PBHs at these

masses. However, observing a certain number of PBHs of a given mass gives

little information about the actual initial mass spectrum of PBHs. We can

then make an assumption about the mass spectrum, which will only weakly

affect the results on the rate-density measurement of PBHs [111]. Assuming

that the amplitude of primordial density fluctuations is independent of mass,

the mass spectrum would follow (see Section 3.4.1):

dn

dMf

= AM−ν (8.15)

where A is a proportionality constant and ν is determined by the equation of

state as follows:
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ν =
1 + 3w

1 + w
+ 1 (8.16)

where w = 1/3 for a radiation dominated universe, for PBHs formed in that

epoch, which gives ν=5/2.

Using this mass distribution, one can integrate over the number of PBHs

that will evaporate within a time ∆t at the present time, to get the rate-density

of PBH final evaporation:

R =
ξ

∆t

(

atf
at0

)3

A

∫ Mf (t0+∆t)

Mf (t0)

M−νdM (8.17)

where a(tf ) and a(t0) are the scale factor of the universe at the time when

the PBHs formed, and today, respectively. Mf (t) is the formation mass of a

PBH evaporating at time t. For a PBH evaporating at this epoch, Mf (t0) is

5×1014g. The parameter ξ is the ratio of the local PBH density to the average

one, necessary since, as mentioned previously, the measurement done here gives

a local limit. This parameter presents the greatest theoretical uncertainty; it

can be as low as 8 × 105 if PBHs cluster following dark matter distributions

[112], or as high as 1022 if PBHs were initially strongly clustered when formed

[113].

Since ∆t is much smaller than the total PBH lifetime, the final rate, to

first order, will be:

R = ξ

(

a(tf )

a(t0)

)3

A
αf

Mf (t0)ν+2
(8.18)

where αf is defined as α(Mf (t0)).

This can be compared to the calculation of the relic density of PBH,

ΩPBH . An assumption is made that the present mass of all PBHs that had an

initial mass greater than Mf (t0) to be the same as their initial mass. Since the
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PBH evaporation is roughly slow and constant through most of its lifetime,

and increases exponentially towards the very end, this can be justified. Using

the criticial density of the universe ρc:

ΩPBH =
1

ρc

(

a(tf )

a(t0)

)3 ∫ ∞

Mf (t0)

AM1−νdM (8.19)

the rate R can then be directly related to the relic density:

R =
(ν − 2)ρcαfξ

Mf (t0)4
ΩPBH (8.20)

Converting, for example, current results on the relic density of PBHs

ΩPBH < 10−9[114], the conversion can be anywhere between 10−2 pc−3 s−1 to

1014 pc−3 s−1. This is due to the uncertainty on ξ, which makes it difficult

to reasonably compare these limits. However, if a PBH search like the one

outlined in this work were to succeed in detecting PBH evaporation, this could

be combined with the relic density limits, to get a measurement of ξ, the ratio

of the local density of PBHs to the average density throughout the universe.

8.6 Conclusion

The results of the measurement have been outlined here. Using a maximum-

likelihood technique, the data and background were used to get a 99% CL up-

per limit on the rate-density evaporation of PBHs. The best limit was found

at a time window of 30 seconds, at a value of 2.22× 104 pc−3 yr−1. These are

the best current limits. VERITAS, using its whole data set, can potentially

reach limits a factor of 3 better, at 7× 103 pc−3 yr−1.
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The HAWC experiment claims to be able to reach limits improved by

a factor of 4 over the next 5 years [70]. These limits can be used to com-

pare with the limits on the relic density of PBH evaporation, in the hopes of

understanding the distribution and clustering of PBHs.



CHAPTER 9
Conclusion

New limits on the rate-density of primordial black hole (PBH) evaporation

have been derived in this work. The best limits found here use a time window

of 30 seconds, for a 99% CL rate-density of PBH evaporation upper limit

of 2.22 × 104 pc−3 yr−1. These are a factor 6 more constraining than the

previous limit established by VERITAS (1.29 × 105 pc−3 yr−1). The limits

obtained in this work used 747 hours of data, and the previous VERITAS

results used 700 hours. Considering the fact that the amount of data is similar,

this improvement is largely obtained thanks to the use of boosted decision trees

(BDTs) and the increased sensitivity from a larger time window.

This thesis is meant as a feasibility study of a search using the newly-

developed analysis technique from VERITAS. An obvious technique used in

this thesis is the boosted decision trees (BDTs), which indeed show a marked

improvement on the results, from a similar dataset. Other improvements in-

clude the exploration of other time windows, to maximize sensitivity. This

work obtained its best limits with a time window of 30 seconds. Using a 1-

second window, the limits are 3.42× 104 pc−3 yr−1, a factor of 4 improvement

over the previous VERITAS limits.

This work also explored a different treatment of the VERITAS angular

resolution, studying its dependence with the energy of the gamma ray, as well

as with the pointing direction of the telescope. This step does not necessarily

contribute to improve limits, but ensures to properly assess the likelihood of

events to be coming from the same point in the sky. Past IACT searches
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always assumed a fixed angular resolution, which is not the optimal search

method.

This work, then, concludes that the new analysis techniques and method-

ologies work well. As the VERITAS experiment is progressively winding down,

it is important to use and improve such analysis techniques to be able to get

the most out of its existing data. Using all of VERITAS’s data ( 4000 hours)

could potentially make VERITAS reach upper limits of ≈ 7× 103 pc−3 yr−1,

taking into account that the experiment is background-limited. In order to

reach this result, further work needs to be done. Using data from the different

detector configuration will be necessary. This implies studying the angular

resolution of VERITAS under each configuration and possibly large elevation

ranges.

The next generation of IACTs, the Cherenkov Telescope Array (CTA),

could help improve on those limits even further. It will be capable of detecting

VHE sources of 2% of the Crab Nebula flux in ≈ 30 minutes [115], as opposed

to the few hours it would take with VERITAS, which would lead to, roughly,

a factor of 3 improvement on the current limits if using a similar amount of

data from CTA.

The HAWC experiment, recently online, claims to be able to reach limits,

within the next five years, of 4.06× 103 pc−3 yr−1 [70].



Appendix A
Reflectivity Measurements

This appendix gives a summary of another project that I have worked on

extensively during my PhD studies, namely the measurement of the whole-

dish reflectivity of VERITAS.

As was explained in Chapter 6, the amount of Cherenkov light seen by

the PMTs is used to reconstruct the energy of the gamma ray that induced

the shower. It is therefore important to know how much light is lost when

being reflected by the mirrors. An apparatus was built to easily take a mea-

surement of the whole-dish reflectivity, an idea first pioneered by the MAGIC

collaboration [116] and reproduced with VERITAS. Another method to mea-

sure the individual mirror facets’ reflectivity is also being used by VERITAS

[117], however, it does not take into account the effects of shadowing from the

structure of the telescopes (like the quad arms or the PMT camera) on the

mirrors, or the difference in the measurement method; the individual mirror

facet’s measurement gives the specular reflectivity as opposed to the diffuse

component from the method described here.

The newly-developed method, described here, uses an astronomical cam-

era (SBIG (Santa Barbare Instrument Group) ST-402ME) with an integrated

filter wheel. The filters used are the CFW-402 RGBC from SBIG, comprising

3 bandpass filters (red, green and blue) and a simple transparent window. The

camera is installed inside a weatherproof PELCO camera box, along with a

motherboard-CPU combo (ASRock E350M1 AMD E-350 APU), a power sup-

ply (APEVIA ITX-AP250W) and a hard drive (ADATA SP900S3-64GB-C

64GB SSD) (see Figure A1).

This is mounted on the dish, in place of one of the mirror facets (Figure A2),
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Figure A1: Left: Weatherproof PELCO box used for the re-
flectivity measurement. Right: Components of the reflectivity
apparatus. From the front of the box (at the top of the im-
age) is the SBIG camera, with the motherboard, CPU and
hard drive installed behind it. The power supply sits below
the metal plate, inside the box as well.

so that it can take a picture of both a star in the sky, and its reflection at

the center of the PMT camera (Figure A3). Also visible in Figure A3 is a 20

cm-sided square target made from a fluoropolymer, called Spectralon (from

Labsphere Inc.), installed at the center of the PMT camera. This polymer

has a diffuse Lambertian reflectance greater than 99% over the wavelength of

interest.

The reflectivity is found by getting a background-subtracted and vignetting-

corrected sum of the pixel values of the CCD image of star (Pstar) and of its

reflection (Pref ) and calculating:

Rmirror =

(

Pref

Pstar

)

πd2/Amirror (A1)
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Figure A2: Image of the reflectivity apparatus installed on one
of the VERITAS Telescopes, in place of the mirror facet that
would otherwise be mounted there.

Figure A3: Example image taken by the reflectivity apparatus.
Visible are the target star (brightest star on the lower right of
the image) and the reflected image of that star (at the center of
the PMT camera). The reflection sits on top of the Spectralon
target, which reflects the light isotropically.

where d is the distance between the CCD camera and the Spectralon, and Am

is the area of the dish. The assumption is that the Spectralon’s reflectivity

is 100% and that the angle between the CCD camera and the star and its
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reflection are approximately zero.

Figure A4 shows the result from one set of pictures taken over 5 stars, for

one telescope (T1). Each plot shows the results from a specific filter, as well

as for the clear aperture. The reflectivity values are larger with the blue-filter

data and smaller with the red-filter, as would be expected from the reflection

spectrum of aluminium (recall that this is the material used to coat the mir-

rors). Note that the clear-aperture pictures’ reflectivities have a larger spread

than the filters’, as the different stars have different spectra.

Figure A4: Example reflectivity results from telescope T1. The
measured reflectivity is plotted against different stars (repre-
sented by the numbers on the x-axis) and the lines represent
the average value. Statistical uncertainties are smaller than
the symbol size. Each plot represents a different filter

These measurements are taken twice per observing periods (or dark runs),

the period where data is being taken, between two Full Moons. The results are

used to track the reflectivity of the mirrors. Figure A5 shows the long-term

trend of these measurements for each telescope, using the blue filter, from

January 1st 2014, when the system was installed and stable, to today.
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It is also an independent check of the value used in the simulations, re-

quired for the analysis of the data (as explained in the Chapter 6).
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Figure A5: Long-term reflectivity of the telescopes with the
blue filter. The gaps around days 200 and 600 are due to the
summer shutdown, hence no measurements were taken. The
mirror degradation over that time can be seen. Note that
around day 100 the reflectivity goes up on T4, due to the re-
placement of a third of the mirror facets with recoated mirrors.
The same effect can be seen around day 300 with T2.
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KEY TO ABBREVIATIONS

AGN: Active Galactic Nuclei

ANN: Artificial Neural Network

BATSE: Burst and Transient Source Experiment

BDT: Boosted Decision Tree

CAP: Canadian Association of Physicists

CCD: Charge-Coupled Device

CDM: Cold Dark Matter

CFD: Charge Fraction Discriminator

CGRO: Compton Gamma Ray Observatory

CL: Confidence Level

CRAQ: Centre de Recherche en Astrophysique du Québec

d.c.: digital counts

DEC: Declination

DQM: Data-Quality Monitoring

EBL: Extragalactic Background Light

EGRET: Energetic Gamma Ray Experiment Telescope

FADC: Flash Analog-to-Digital Converter

FIR: Far-Infrared

FLWO: Fred Lawrence Whipple Observatory

FPGA: Field Programmable Gate Array

GRB: Gamma-Ray Burst
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HAWC: High-Altitude Water Cherenkov Observatory

HERWIG: Hadron Emission Reactions With Interfering Gluons

H.E.S.S.: High Energy Stereoscopic System

IACT: Imaging Array of Cherenkov Telescope

ICRC: International Cosmic Ray Conference

IRF: Instrument Response Function

IMBH: Intermediate-Mass Black Hole

LAT: Large Area Telescope

LED: Light-Emitting Diode

MACHO: Massive Compact Halo Object

MAGIC: Major Atmospheric Gamma Imaging Cherenkov

MSCL: Mean Reduced Scaled Length

MSCP: Mean Reduced Scaled Parameter

MSCW: Mean Reduced Scaled Width

MSL: Mean Scaled Length

MSP: Mean Scaled Parameter

MSW: Mean Scaled Width

NASA: National Aeronautics and Space Administration

NSB: Night Sky Background

NSERC: National Scientific and Engineering Research Council

OSS: Optical Support Structure

PBH: Primordial Black Hole

PMT: PhotoMultiplier Tube

PQE: Peak Quantum Efficiency
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PSF: Point Spread Function

QCD: Quantum Chromodynamics

RMS: Root-Mean-Square

RA: Right Ascension

RF: Random Forest

SAO: Smithsonian Astrophysical Observatory

SBIG: Santa Barbara Instrument Group

SGARFACE: Short Gamma-Ray Front Air-Cherenkov Experiment

S/N: Signal-to-Noise

UV: Ultraviolet

VERITAS: Very Energetic Radiation Imaging Telescope Array System

VHE: Very High Energy

VSGRB: Very Short Gamma-Ray Burst

WMAP: Wilkinson Microwave Anisotropy Probe
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