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Résumé:

Nous tentons de généraliser la description du lieu supersingulier de l'espace de modu­

les des surfaces abéliennes polarisées à multiplications réelles par 0 L ([1]) dans le cas où p

est inerte dans 0 L. Nous présentons des faits probants pour étayer une formule de masse

conjecturale pour les points superspéciaux, ainsi (par conséquent) qu'une fonnule pour

le nombre de ces points, généralisant directement un résultat classique de Deuring pour

le cas des courbes elliptiques supersingulières. Ce résultat fournirait une interprétation

géométrique d'un cas particulier de la correspondance de Jacquet·Langlands. Le reste

de la thèse constitue un travail préparatoire aux applications arithmétiques du lieu su­

persingulier des surfaces modulaires de Hilbert modulo p (p inerte) : formes modulaires

de Hilbert, fonnes modulaires mod p, etc.
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Abstract:

We try generalizing the description of the supersinguJar locus of the moduli space of

polarized abelian surfaces with real multiplication by OL (see [ID in the case where pis

inert in OL. We present evidence ta support a conjectural mass formula for superspecial

points and a counting formula for sucb points, generallzing a classical result of Deuring

on supersinguJar elliptic curves. This result would provide a geometric interpretation

of a special case of the Jacquet-Langlands correspondence. The remaining portion

of the thesis is preliminary work with a view toward arithmetical applications of the

supersinguJar locus of Hilbert modular surfaces mod p: Hilbert modular forms, modular

forms mod p, etc.
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Introduction

The purpose of this thesis is ta review what is known about the supersinguJar locus

of modular curves and Hilbert modular surfaces, with an eye ta arithmetical applica­

tions. The first chapter covers supersingular elliptic curves, the arithmetic of quaternion

algebras and the application ta modular forros of weight two for r 0 (P). Chapter two

studies the moduIi spaces of polarized abelian surfaces with real multiplication and level

structure, aoalyzes the supersingular locus of the moduli space mod p and gives a geo­

metric view on Hecke operators, introducing higher-dimensional analogues of Brandt

matrices. Chapter three explores evidence towards a class number formula for the nUID­

ber of superspecial points on Hilbert modular varieties mod p and proves various results

on components of moduli spaces. Chapter four introduces a technical device (tensor

construction) with the goal of systematizing the geometric applications of cIass number

fonnulae of orders in quaternion algebras over (totally real) number fields to the moduli

spaces of abelian varieties with additional structure. We use the conclusion, which is

really an introït to greater endeavours, to draw an esquisse of various possible direc­

tions for further research; this thesis should therefore be considered as a step in work

in progress.

T
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CBAPTER 1

Supersingular Elliptic Curves

The purpose oC tbis chapter is ta review succinctly supersinguJarity of elliptic curves

and its connection to the arithmetic of quaternion algebras.

1. Elliptie eurves

Our main reference in this section will be [39]. The symbol E will always denote

an elJiptic curve, and we will use the letter p to denote a prime (i.e. a finite place).

1.1. Basic properties. Let us begin witb a

DEFINITION 1.1. Let S be scheme. An elliptic curve E over Sis a proper, smooth,

commutative group scheme of relative dimension one

EL,S,

with geometrically connected fibers aU of genus one. Let s : S --+ E denote the identity

section.

Locally in the Zariski topology, we obtain a generalized Weierstrass equation :

(1.1) y:Z +a1XY +a3Y = X 3 +a2X2 +a4X +ae.

See [39, Section 2.2].

Let us consider the ring ofendomorphisms End(E) = Born(E, E) of an elliptic curve

defined over an algebraically cJosed field. It is equipped a positive quadratic degree map

and the Rosati involution :

End(E) --+ End(E),

't-+ ,- := ~-l,V~,

where ..\ : P H [Pl - [0] is the canonicaJ principal polarization on E. In charaeteristic

zero, End(E) is either Z or an order in an imaginary quadratie field ([Tl, Theorem

9
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9.3, p.lOO}). We say that the curve E has complu multiplication if End(E) :F Z. In

charaeteristic p, we have the foUowing

THEOREM 1.2. (Deuring) [17] An elliptic cunte E over a field of characteristic p

has complu multiplication if and onl1l if it is defined over a finite field IFp" •

ln this case, there are two possibilities for the endomorphism ring: either End(E) is

an arder of conductor prime to p in an imaginary quadratic extension of Q; or End(E)

is a maximal order in the rational definite quaternion algebra Bp,oo ramified at p ([17]).

1.2. SuperaiDguiarity. Let E be defined over an algebraically closed field k of

characteristic p.

DEFINITION 1.3. An elliptic curve E is called orrlinary if E(k) has non·trivial points

of order p, supersingular if not.

The curve E is supersinguJar precisely when the endomorphism ring End(E) is a

maximal order in a quaternion algebra ([17]).

EXAMPLE 1.4. The supersingular elliptic curve over F2 ({29, p. 145]) .

The elliptic curve E over F2 with equation

(1.2) y2 + Y = X 3 ,

is the unique supersingular curve over F2 • Its endomorphism ring has Z-basis

{

- - L l+i+ i +k}J,},,., 2 '

which is a maximal order in the quaternion algebra B2 ,rxH that is, the Hamilton quater·

Bion algebra : Q + C) + Qi + Qk, with

i 2 =-1,j2 = -1, ii =k =-ji.

The group Aut(E) has arder 24 and is given by { ±1, ±i, ±j ± k, ±H:iii±1t } •

In the foUowing, we will restrict our study to curves defined over finite fields. Recall that

supersingular eUiptic curves have models defined over Fr, hence there is ooly a 6nite

oumber of isomorphism classes of supersingular elliptic curves for each p; we shall give
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a precise number later on in the moduli context. It is well-known that the supersingular

elliptie curves form a unique isogeny class (this Collows from Honda-Tate theorem).

DEFINITION 1.5. An abelian scheme .4 over a scheme 5 is a group scheme

1r:.4~S

such that 1r is smooth and proper, and the geometric fibers are connected.

Let .-l he an abelian variety over a field k oC charaeteristic p. We denote the

Frobenius map by Fr : .4~ A(p). The dual morphism is the Verschiebung denoted

Ver: .-l(p) ~ .4. See [39, Chapter 12] . Tbose homomorphisms are "~elementaryn

isogenies, that is :

(1.3) Ver 0 Fr = [PIA, Fr 0 Ver =[PL'IP)'

•

•

and their kemels are group schemes of order yiim(A) •

There exists a canonical modular form in characteristic p of weight p - 1 called the Hasse

invariant. The vanishing of the Hasse invariant is a criterion Cor supersingularity. See

[39, Section 12.4].

THEOREM 1.6. (Igusa) [39, Theorem 12.4.3, p.355) The Hasse invariant has simple

zeroes.

Let us now scrutinize the ~torsiongroup scheme of elliptie curves. Let k he algebraically

closed (of characteristie p).

The multiplication-by-n map [n) : E~ Eisa proper, fiat morphism and its kemel

E[n] is an affine group scheme of order n2 • The Weil pairing

E[n) x E[n)~ Pn,

shows that E[n] is a self-dual group scheme; in particu1ar, the largest étale quotient of

E(P) is of order ~ p. The ooly simple 6nite group schemes of arder p that cao occur in

a decompositioD series are :

• op = Spec(k[Tl!(TI')); op is the kernel of the Frobenius map Fr : Ge. --. Gca •

It is a connected self-dual (local-local) group scheme.
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• IJp =Spec(k[T]/{TP-1») ; IJ, is the kemel of the Frobenius map Fr: Gm ~ Gm •

It is a local-étale group scheme.

• Z/pZ = Spec(k[TlI(TP - T»)i Z/pZ is the constant (étale-Iocal) group scheme

dual ta IJp.

Sînce k = k, there are only two possibilities for E[P] :

• Suppose the étale part is of arder p: this is the ordinary case. By self-duality

(1.4)

Frobenius aets as zero on IJp, and identity on Z/pZi the Verschiebung acts as

zero on Z/pZ, and identity on IJp' Henee, the kemel of Frobenius is IJp, and the

kemel of Verschiebung is Z/pZ.

• Suppose now the étale part is trivial : this is the supersingular case. Sînee the

kemel of Frobenius and Verschiebung is of order p and both aet as 0 on ct" the

• exact sequence:

(1.5) 0 ---. ctp ---+ E(P} --+ ct, ~ o.

is non-split.

It foUows that the ~divisiblegroup of an ordinary elliptie curve over an algebraieally

closed field is

(1.6)

•

In the case of a supersingular elliptie curve, this ~divisiblegroup is isomorphie to

the unique l-parameter formal Lie group of height 2. See [38, Theorem 2.9.3, p.93] and

[8S].

1.3. Moduli .pace.. In this subsection, we consider the moduli spaces constructed

when considering elliptie curves with level structure. The level structures are thrown

in to rigidify the problem (i.e. eliminate automorphisms of the curves); in this thesis,

we work with schemes rather than algebraic stacks and spaces, under the usual minor

technical restriction on the level structure (i.e. N ~ 3).
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We consider two kinds of level structures for elliptic curves E over a ring R: fo(N)

and fl(N). In the latter case, we shall always assume that N is invertible in R. The

general case is treated in [39].

DEFINITION 1.7. • A fo(N)-level structure is a choice of subgroup scheme

H C E[N} of arder and exponent N de6ned over R.

• A fi (N)-Ievel structure is a cboice of a point P E E[N] of exact order N defined

over R.

The moduli problem consists in parametrizing elliptic curves with f 0 (N)-Ievel struc­

ture (resp. fl(N)-level structure). One may prove that there exist coarse moduli

schemes for these moduli problems, whicb are fiat, regular curves over Z (resp. Z[k)) :

1'O(N) (resp. Y1(N». The terminology stems from the fact that }Q(N)(C) ~ ro(N)\1l,

(resp. Y1(N)(C) ~ r1(N)\1l). U N ~ 4, Y1(N) is a fine moduU scbeme. We obtain

proper morphisms over Z (resp. Z[kl> by adding the cusps, and to keep the moduli the­

oretic framework, we use the device of generalized elliptie curves (which are essentially

cycles of projective lines with adjusted level structure). We then get a regular integral

scheme Xo(N) (resp. X1(N» that is fiat and proper over Z (resp. Z[k)), and this

construction is still a "continuation" of the complex case (i.e. Xo(N)(C) S!! ro(N)\1l-,

resp. X 1(N)(C) ~ r1(N)\1l-). See [14] for details, sucb as a discussion of generalized

elliptic curves ("N-gons" ).

Having good models over Z (resp. Spec(Z[k]» allows us to consider the reduction

mod p of the moduli schemes for any p (resp. p prime to N). The geometric picture is as

foUows: the reduction of Xo(P) consists of two rational projective curves that intersect

precisely at the supersinguJar points; the nwnber of supersingular elliptic curves h is

simply the genus of the intersection graph plus one:

(1.7) h = 9 + 1.

We bave the following formula for the genus of XoCP) : if p = 2, 9 = 0 (since there

is a unique supersingular eUiptic curve in cbaracteristic two), and otherwise

p + 1 1 + (";1 ) 1 + ( -;.3 )
(1.8) 9 = 12- 4 3
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See [32].

1. SUPERSINGULAR ELLIPTIC CURVES

THEOREM 1.8. {{39, CoroUary 12.4.6, p. 358}} We have the lonnula :

(1.9) P-l=L 1 .
24 [E] 1·4ut(E} 1

•

•

where summation is over isomorphism classes 01 supersingular elliptic cunles.

EXAMPLE 1.9. Supersingular elliptic CUnles over Fu.

There are two supersingular elliptic curves over Fll, and representatives are given

by:

(l.IO)

We check that

Z[i] C End(Ez), Z[w] C End(Ed,

where w is a primitive cube root of unity: w2 + w + 1 =O. The automorphism group of

Ez : y2 = z3 + oZ thus contains Z[i]X = {±l, ±i}j likewise, Z[w]X = {±1, ±w,±w2} C

Aut(Ed. The mass fonnula indicates we don't have to look any further, since t; = i+k.
N.B. We find in [57] algorithms to compute the orders of endomorphisms associated

to supersingular elliptie curves, representatives of the lef't ideal classes, associated norm

fonns, etc.

In fact, this is a feature of this connection between supersingular elliptic curves

and quaternion algebras: the computational aspect of the latter is sometimes more

manageable. Note though, that in [44], supersingular curves are used ta compute ideal

classes in quaternion algebras.

For example, the maximal order 0 associated ta Ez is given by the Z-basis :

{~(l + j), ~(i + k),j, k} t

in the quaternion algebra B u .oo over Q given by the relations :

i2 = _1,j2 = -ll,ij =k = -Ji.

One checks that the only UDÎts in this arder are ±1 and ±i, as expected.
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2. Theta series and modular Corma of weight two

2.1. Quaternion algebru. We recaU the main ingredients of the theory of quater­

nion a1gebras and their orders, tbat we apply saon after to Eichler's tbeorem on the space

of weigbt two modular fonDS, and later on (in Cbapter [II) to totally ramified quaternion

algebras.

DEFINITION 2.1. A quaternion algebro H is a central simple a1gebra of dimension

(our over a field K. If char K ~ 2, we cao pick (a, b) e K2 nonzero such that H is

isomorphic to

KœKiœKjœKij,

with relations

i2 =a, j2 =b, ij = -ji.

We usually denote ij by k .

A quaternion a1gebra is equipped with a conjugation x ~ X, a (reduced) trace Tr

and a (reduced) NOrDI with the usual properties :

For char k :F 2, an element u in a quaternion algebra H can be expressed as

u = x + yi + zj + wk.

Then

• ii=x-yi-zj-wk, x,y,z,weK;

• Tr{u) = 2x;

• Norm{u) = x2 - ay2 - bz2 + abw2 •

Note that the (reduced) nonn is a quadratic farm on H viewed as a K-vector space.

EXAMPLE 2.2. If u is an element of the maximal order correspooding to the ring

of endomorphisms of the supersingular elliptic curve, note that its norm is equal ta its

degree as an eodomorphism, because the norm coïncides with the degree map.

• p =2. Let u =x + yi + zj + wk he an element. Theo its norm is

Nonn(u) =x 2 +,i +z2 +w2,
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and we check that the elements in Example 1.4 are automorphisms of the super­

singular elliptic curve over F2.

• P = 11. The nonn is :

Norm(u) =%2 + y2 + l1z2 + llw2 ;

and the elements ±l, ±i are the UDits in the order 0 of Example 1.9.

A place v of a global field K is said to he romified if

•

•

is a division algebra. Let S be the set of ramified places. For v t S, we have

by Werlderburn's theorem.

We have the following classification:

THEOREM 2.3. (Classification) [16, Théorème 3.1}

• The number of romified places of a quaternion algebrn Haver K is finite and

even.

• For every finite set S of places of K of even arder, there exista a quaternion

algebrn Haver K, unique up to isomorphism, such that H is romified at precisely

the places in S.

EXAMPLE 2.4. Take S = {P, oc}. The corresponding quaternion algebra ramified

at p and oc will be denoted Bp,oo. Explicitly, Bp,oo 18lQ" and Bp,oo I8llll :! !HI are (central)

division a1gebras, and

THEOREM 2.5. ([16, Chapitre m, Théorème 3.8])

A quadmtic extension L of K can be embedded in a quaternion algebrn H over K

if and only if Lp := L ~ K p u a field for all p ramified in H (i.e. there is no prime

mmified in H that is split in LJ.
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THEOREM 2.6. Let H he a quaternion algebra over Q, let (Xl '1: p he a rational

prime, and let ep be the rumijication indu ofp in H (ep = 1 if p is split, and ep = 2 if

P is rumified).

1. Il Hp is a division algebra over Qp, there there is a unique maximal order

Op = {Q e Hp: Norm(a) e Zp}.

2. Il Hp is isomorphic to i\12 (Qp), then all maximal orders are conjugate to k12 (Zp)

under this isomorphism.

3. A maximal arder Op of Hp has a unique maximal two-sided ideal ~. Every

two-sided ideal 01 Op is 01 the lonn ~m for an integer m, and ~~p = (P).

See [82, Theorem 12.8] for item 1, and [82, Tbeorem 17.3) for items 2 and 3.

We will use the following classical theorem a few times. Recall that the inner automor­

phisms oC a quaternion algebra H are given by :

k ...... hkh-1, k E H,

THEOREM 2.7. (Skolem-Noether) [33] Let H/ K be a quaternion algebra. Let L, L'

be two (commutative) K -algebras contained in H. Ali K -isomorphisms /rom L to L'

can be continued to an inner automorphism of H, and all K -automorphisms of H are

inner.

2.2. Lattices and ordel'B. Let K be the quotient field of a Dedekind domain

R. Let H be a quaternion algebra over K. A 'altice is a finitely generated R-module

contained in H. We can define the localization of a lattice .c of K at a place v as

An ideall of H is a complete lattice, i.e. K ~R 1 ~ H. An ideal 0 is called an arder

if it is a ring (with identity). By a standard application of Zorn's lemma, tbere exist

maximal orders.

Let 0 be a fixed maximal order of a quaternion algebra H. A left ideal of 0 is

a lattice in H which is stable under left multiplication by o. Ta any idea1 1 we can
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associate its le/t order
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•

0, := {h EH: hl C I} i

similarly for a right order Or- We define the inverse 1-1 of an ideal 1 to he :

1- 1 = {h EH: IhI C I} .

It is a right ideal for 0 whose left arder is the right order of 1_

RecalJ that the nonn of an ideal is the fractional ideal of R generated by the (re­

duced) Dorms of its elements. As in the algebraic tbeory of Dedekind domains, the

different of an order 0 is the ideal inverse of the dual lattice of 0 with respect to the

bilinear fonn induced by the (reduced) trace.

DEFINITION 2.8. The (reduced) discriminant d(O) of 0 is the Dorm of the different.

We have a praetical criterion to check maximality of orders :

PROPOSITION 2.9. • Let 0 and 0' be two orders such that 0 ç 0'. Then

d(O') divides d(O) and d(O) = d(O'} <==:> 0 = 0' .

• An order is mGZimal iD d(O) is equal to the product of the finite, ramified places

alK.

• 110 = E:=l Rzi , then

d(O)2 =R· det(Tr(zizj)h~i.j~4'

See [51, Proposition 1.1], [18, Corollaire 5.4} and [16, Lemme 4.7, p. 24].

EXAMPLE 2.10. One can easily calculate the discriminants of the maximal orders

associated to the supersingular elliptic curves when p =2 and p = Il, to obtain that

d(02) =2 and d(Ou) =11.

We collect a few facts about projective left ideals of maximal orders.

PROPOSITION 2.11. ({82, Theorem 17.3]) Let 0 be a ma:nmal arder. Then every

le/t ideal of Ov ù principal al all jinite placu v. A kit ideall of 0 ù projective il and

onl. il it ù locall. /ru at all finite plat:u v.



• 2. THETA SERIES AND MODULAR FORMS OF WEIGHT TWO 19

PROPOSITION 2.12. ({42, Proposition 40J) Let 1 be a projective left ideal for a maz­

imal arder o. Then the right arder 0' 011 is also mazimal. Moreover, the left order of

1 (as an ideal of 0') is o.

DEFINITION 2.13. An Eichler order is the intersection of two maximal orders.

Fix a prime numher p. Let M and r to he integers, with (M,p) = l, and put

N := yr+ lM. Let l he the unique unramified quadratic field extension of Qp, and 0 L

be the ring of integers of Ï.. We denote the conjugation of L/Q" by (T.

An arder 0 of Bp •OIJ is said to he of level N if, for every q prime, we have

The maximal orders form a tree : Let 0 1, O2 he two maximal orders. Define

the distance dist(Ol, O2 ) to be the level of the Eichler arder 0 1 n O2 , H we put the

Eichler orders as vertices, and we connect with an edge vertices 0 1, O2 sucb that

dist(O., O2 ) =l, we obtain a tree. See [78, Corollaire 2.6].

We will need the following proposition in Chapter m.

•
1f

Zq Zq) if ~.. NZ Z q .,..p;
Oq := 0 ~z Zq = as conJugate to (qa q p"f3 ) }

r+1 Qer er IQ, P E 0lP 1J a
if q = p.

•

PROPOSITION 2.14. (Hijikata) Let K be a local field with uni/ormizer 11" and ring 01

integers R. Let 0 he an arder 0/ M2 (K). The lollowing are equivalent :

• The arder 0 is Eichler;

• There mats a unique pair 0/ mazimal orders O., O2 8uch that 0 =O. n 02 ;

• There mats an unique integer n E N 8uch that 0 is conjugate ta (~ ~) ;

• The arder 0 contains a 8ubring conjugate to (~ ~) .

We will DOW introduce the class and type numbers.

Two left O-ideals 1 and J are in the same class if there exists an e1ement h E H x

sucb that 1 =Jh.
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•

PROPOSITION 2.15. The number of classes 0/ H is finite. For any ma:nmal order

0, the number 0/ classes 0/ left ideals ù equal to the number of classes of right ideals

and is independent 0/ the maximal arder 0/ H.

PROPOSITION 2.16. ([78]) The class number /onnula for B p•oo

(2.1) h = P - 1+ ! (1 _(-3») + ! (1 _(-1 ») when p > 2,
12 3 p 4 p

where (i) ù the Legendre symbol, and is 1 for p = 2.

One will immediately note the equality between this class number and the number

of supersingular eUiptic curves in characteristic p! We will come back to this and give

an expücit bijection in section 2.3.

There exist a class numher formula generalizing Equation (2.1) Cor any arder of

level p2r+l N, (N,p) = 1; in particular, it depends ooly on the level, and Dot the specific

order. See [57, Theorem 1.12, p. 346] .

The Formula is as follows :

~(1 - (-;4» ntlN(l + (toi»
ootherwise

k(l- (-;3» nllN(1 + (=f»
o otherwise

if4lN

if91N

•

Moreover, (see [59]) there are similar formulae for orders of level p2N :

2 yN 1 II 1 { 0 if p ~ 5
H(p N) =12(1- pz) IIN(l + i) + ~ ntlN(l + (~» ifp=3

See [4], [5] for recent developments.

Let {Il'" . III } he a set of left ideals representing the distinct ideal classes, with Il =0;

and let {Ol,'" Oll} he the set of right orders of the Ii 's. Then each conjugacy class of

maximal orders in H is represented (at least once, maybe twice) in this set. We caIl
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•

the number oC distinct conjugacy classes the type number t. See [42, Proposition 38,

Corollary 39].

COROLLARY 2.17. The type number t is finite.

For a more precise statement, see [42, Theorem 44].

The following proposition is useful to reduce calculations to local considerations. For

example, the Collowing properties cao be checked locally : being an order, an Eich1er

order, a maximal order, an ideal, etc.

PROPOSITION 2.18. Let X he a laUice in H. Let S he the set of infinite places.

There is a bijection hetween the H -laUias Y and the set oflattices

{(Yp), YI' a lattice in Hp, YI' =XI' almost everywhere },

given b1/ the invertible maps :

y ...... (Yp)pf!S,

(Yp)Pf!S ~ Y = {x E H,x E Yp , Vp rj S}.

See [76, Proposition 5.1, p. 83] .

2.3. Geometrie interlude. Warning: in tbis subsection, we use R to denote any

ring.

We explain in detail the construction oC a bijection between the set of supersingular

elliptic curves {El!.'" Eh} and the class group oC 0 = End(Ed, a maximal arder in

the quaternion algebra Bp,OCJ' Let E =El'

The original idea we will use to prove tbis is due to Serre ([88», with refinements

due to Waterhouse ([78]).

We give the original results, due to Deuring ([17]) and Eichler ([19]) (see also [24]):

• Let ~ be a left ideal of 0 c Bp•OCJ , and consider the finite group scheme

H(~) := n ker(a) c E,

where a runs through~. The quotient E(~) =ElH(~) is a supersingular elliptic

curve and ~ ~ E(~) defines a bijection betweeD the set of left ideal classes of

o and the set S of isomorphism classes of supersingular elliptic curves over Fp •
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• The right arder Or(~) is isomorphic ta End(E(~».

• The orders Or(~) and Or(~') are isoIDOrphic iff E(~) and E(~') denote classes

in S that are conjugate under the Galois group Gal(Fp lFp ).

• As a corollary of Skolem-Noether tbeorem, isomorpbic orders are conjugate in

Bp,OQ' Moreover, elements of S are defined over Fr, hence the types of Bp.OQ

correspond to orbits in S under the Galois action of Gal(Fp3 /lFp ).

•

THEOREM 2.19. Let S he the category of supersingular elliptic cUnJes ot/er Fp (with

isogenies) and let E he an object in S. Let T he the category of localill free mnk one left

modules ot/er 0 = End(E) ( with O-homomorphisms). Then the functor:

F : ~ .-+ ElH(~),

from the category of localill free runk one left modules Dt/er 0 = End(E) (with 0­

homomorphisms) is an (anti-)equit/alence of categories. More preciselll, it J/Ïelds:

Romo(~,~) S!! Roms(EIH(~),ElH(~» =~-l~.

DEFINITION 2.20. Let J he a set of isogenies of E. We define H[J] ta he the (scheme

theoretic) intersection of the kemels of all Q in J. A left O-idea1 ~ is called a /cemel

ideal if~ ={a E OIQ(H[~]) =O}.

THEOREM 2.21. Et/ery left O-ideal is a /cemel ideal, and et/ery finite subgroup of E

is of the form H[~l for some left O-ideal ~.

P ROOF. See [78, Theorem 3.15, p. 35). o

•

LEMMA 2.22. ({42, Lemma 47, p. 68]) Let ,p : E --. E' and VJ : E --. E" he

isogenies and suppose that 1/J ker(,p) = 0 E". Then there e%ists an isogeny À : E" --. E'

such that 1jJ = À';.

LEMMA 2.23. ({42, Proposition 48]) Let 1 c Rom(E', E) be li kit module ot/er

0= End(E). Then there e:rùts an elliptic cune E" and an isogeny p : E" -+ E such

that 1 = Rom(E", E)p.



• 2. THETA SERIES AND MODULAR FORMS OF WEIGHT TWO 23

PROOF. Taking an isogeny tjI : E --+ E', we embed / and Hom(E',E) in 0 as

integral ideals such that :

/tjI C Rom(E', E)q, cO.

Let E" = EIH[/,p] for sorne t/J and let 1/J : E --+ E" he the isogeny with kernel H[/p].

By Theorem 2.21 and Lemma 2.22, /tjI = {a E 0: a(H[/,p]) = DE} = Rom(E", E tV ),

so / = Hom(E", E)p. 0

We now proceed : we need to demontrate that F is full, faithfull and generically

surjective.

PROOF. • Faithful. First, let us quote a lemma:

•

•

LEMMA 2.24. ([T9, Theorem 3.111) Let ~ and œbe /cernel ideals. Then

EIH('A) ';!! EIH('B) <=> [~] = [œ],

i.e. 'A =Il'B for sorne invertible Il E O.

Since every left O-ideal is a kemel ideal, it fol1ows !rom the lemma tbat F

is faithful.

• Generically surjective. Since we know tbat bath sides have the same cardi­

nality of isomorphism classes, and tbat the funetor F is faithful, it fol1ows at

once that F is generica11y surjective.

• Full. We know that any supersingular elliptie curve can he mtten in the form

ElH(~) for some representative 'A of a left ideal class. In Lemma 2.23, take 1 :=

Homs(EIH('A),E),E' := EIH(~). From the praof of the lemma, we see that

E" = ElH[1tP], and thus 1 ~ Hom(ElH[1], E), and by faithfulness, letting ~

vary yields allieft ideal classes. Similarly, we show that J-l ~ Rom(E, ElH[J]).

It foUows that

Let us compute explicitly the left and right orders of the left O-ideal

a. ~ Roms(E!H('At) , E),

for {'At} a set of representatives of left ideal classes of (J.
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We have

O,(~) = {x E 8 p,001 Z~i ç ~i}

= {x E 8 p ,001 Z 0 q, E ~i, Vt/> E ~ïl

:!! {x E Iso(E, Eli z : E --. E, x homomorphism}

= End(E)

=0

Similarly, we show that Or(~i) :!! End(E/H(~»).

o

•

•

ln his Ph.D. thesis ([42», Kohel gives a version of the above correspondence valid

over finite fields.

Let IFq be a finite field of q e1ements in charaeteristic p, and let 0 :!! End(Eo)

be a maximal order in 8 p,00 containing an e1ement of reduced nonn q, for Ba a fixed

supersingular elliptic curve defined over Fq •

• Let SF. be the category of supersingular elliptic curves over F,. The abjects of

SF. are defined ta be pairs (E,1r), wbere Eisa supersingular elliptic curve over

F, and 1r is the Frobenius endomorphism relative to F,. A morphism of objects

(Eh 1rd to (~, 1r~) is defined to be a homomorphism t/J : El --. ~ such that

DEFINITION 2.25. Reduced nonn

Let 4J : 1 --. J be a homomorphism of right modules, l, J projective over 0

of rank one.

Since l, J are locally &ee, for each prime l there exists Xt E lt and 111 e Jt

such tbat lt = XtOt and Jt = YtOt. The image of Xl onder t/> l8l1zt is 1JtQ t for

sorne QI E Ot. We define the reduced nonn of t/> to he the product :

N(t/» =II IZt/Norm(ot)Ztl·
t

• Let Mo" he the category of projective right modules of rank one over O. The

abjects of MO'9 are defined ta he pairs (l, t/» such that 1 is a projective right
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•

•

module of rank one over 0 and ,p is an endomorphism of 1 of reduced norm q.

A morphism of objects (Il!,pd and (/2 , t/J2) is defined ta be a homomorphism

t/J : Il --+ 12 such that 1/J 0 tPl =t/J2 o1/J.

• The functor 1 : SF" --+ Mo.q is defined as follows :

I:SF" ~Mo.q

(E,7r) ..... (I(E), 1(1r»

where I(E) = Hom(Eo, E) and 1(1r) = Tfr is the homomorphïsmofHom(Eo, E)

to itself given by left composition by 1r. For any morphism t/J of objects (El, 1rl) to

(Ez, 1r2) there is a well-defined morphism I(t/J) =T", which is the right O-module

homomorphism :

r", : Hom(EQ, Et> --+ Hom(Eo, Ez)

given by left composition by t/J, which satisfies the condition that

THEOREM 2.26. ({42, Theorem 45, p.67]) The functor 1 is an equivalence 01 cate­

gories.

2.4. Brandt matrices. The Brandt matrices give a representation of the Hecke

algebra in a space of theta series coming from a quaternion algebra; in fact, Brandt

matrices and Hecke operators generate isomorphic semi-simple rings with the same

traces. The comparison of the corresponding trace fonnulae is the main taol to solve

the basis problem, that is finding an arithmetically significant generating set for the

space of ail modular forms of weight k with respect to the group ro(N) for some N.

We will define Brandt matrices ooly for N =p a prime number, and aJlply tbis to the

weight 2 case.

Let El, ... E" he representatives for the isomorphism classes of supersingular elliptic

curves in charaeteristic p. Thus End(E,) ~ lit is a maximal order in B",oc.

DEFINITION 2.21. Let 0 = RI and let I l , ••• ,1,, he representatives of classes of

left ideals, sa that the right order of l, is Ra (and End(Ei ) ~ Rt); put ei = IR; 1. The
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•

•

product I j-
Lli is a left ideal of Rj. Consider its norm Norm(Ij-

1 li); there exists a unique

positive rational number c sucb that (c) = Norm(li l li) as &actional ideals. Note that

this number is such that No,:(b), where b E li Lli, are all integers with no common

factor. We define the (i, j)-entry of the Brandt matrix B(m) to be :

I{b 1-1/'1 Norm(6) - li_ E j 1 Norm(/,-i Id - m
Bij(m) - .

ej

Let kIl' be the free abelian group on the set S = {El'." Ela} of supersingular points

of Xo{l) in characteristic p, denoted Z[S).

DEFINITION 2.28. Hecke operotors. Let mEN such that {m,pl =1.

The Hecke operator Tm is the Iinear map Tm : ftll' ---. MI' determined uniquely by

where C ranges over all subgroups E of arder m.

For m = ni p~, we have the decomposition :

PROPOSITION 2.29. For 1 relatively prime ta the charocteristic 01 k, the lollowing

relation holds :

Tt2 + l =Tl.

PROOF. RecalI that for l ~ p, E[l] ~ (ZI'Z)2. Consider first the modified Hecke

operator

T;/C := L EIC, ICI = l2 ,C cyclic .
c

Uoder these conditions, C :!! Z1(JZ, and this fits uniquely iota the exact sequence :

0---. Z/lZ~ Z/t2Z ---. zIa -+ O.



• 2. THETA SERIES AND MODULAR FORMS OF WEIGHT TWO 27

•

•

Thus, abusing a bit the terminology, the support of T;lc is the same as the support

of (Tl) C1Jc. What about non-cyelie subgroups ? Let

TpC := E E /C, ICI =[2, C non eyelic ;
c

of eourse, Tpc =id. For Hl < E of order l, we want to ealeulate how many H2 < E/H1

there are such tbat :

E ---. E/H1 ---. (E/Ha)/H2 ~ E/E[l].

By eardinality, there is only one such H2 , that is : H2 =E[l]fHl. Let us ealculate the

number of embeddings : Z/lZ~ Z/lZe Z/lZ.

This is geometrically the number of points in P~t' that is : (P + 1)/(l-l) = l + 1.

Thus, there is only one element in the support of Tpc, and it appears with multiplicity

l + 1; this implies that :

Trivially,

T cvr: ".nc _ "..
P +J.p -~p,

hence

Gathering all Cormulae, we obtain :

Tl =Tp +l.

o

l\'[ore geoera11y, we have :

PROPOSITION 2.30. For il:- p, we have :

PROPOSITION 2.31. The en"., Bij(m) is equal ta the numier 0/ nbgroup ~chemu

C 0/ arder m in Ei ~uch that Ei/C ~ Ei .
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PROOF. We have an isomorphism

•

as a left Rï and right RrmoduJe. The degree of an isogeny tP6 corresponding to a

non-zero element b E Ij11i is given by degtP6 = Norm(b) . :::::(:; . Sa Bij(m) is the

number of equivalence classes of isogenies tP : E i -+ Ej of order m, identifying isogenies

differing by an an automorphism 1/1 E .4ut(Ej ) = Rj, sa that two isogenies with the

same kemel are identified, hence the result. 0

COROLLARY 2.32. The curves Ei and Ej are conjugate 611 an automorphism ofFp

i11 i = j or Bij(P) = 1.

Consider the order 0 of (reduced) discriminant d and rank 2 over Z. Let h(d) he the

order of the class group, and u(d) the order of the finite group O· / {±1}. If d > 0, let

h(d} be the c1ass number of binary quadratic fonns of discriminant d, and let u(d} =1

unless d = -3, -4 when u(d) = 3,2 (respectively). For D > 0, we define, foUowing

Hurwitz and Gross :

R(D) = L h(d).
d/2=-D u(d)

We modify Hurwitz' c1ass number H(D) as follows :

{

0
H{D}

H,,(D) = !H(D)
2 D
Hp(-r}

if p splits in 0;
if p is inert in 0;

if P is ramified in {}, but does not divide the conduetor of 0;
if p divides the conduetor of O.

•

Furthermore, we define H,,(O) = ~.

REMARK 2.33. • The trace of B(O) is by definition Li t .
• The trace of B(l) is simply the class number of B".oo.

THEOREM 2.34. (Eichler's trace formula [29, Proposition 1.9, p.120) )

Forall m ~ 0,

TrB(m) = L H,,(4m - .,2)•
.eZt.2~"m
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COROLLARY 2.35. • Put m = O. Then

p-l
TrB{O) = 24'

•

•

the mass formula.

• Put m = 1 : we get the elass number jormula jor Bp,og or, as we ruall, the

number of supersingular elliptie CUn1e.t in ehararacterittic p :

p - 1 1 -3 1 -1
TrB{I) = - + -(1 - (-» + -(1 - (-».

12 3 p 4 p

We go ahead and list further properties of the Brandt matrices .

PROPOSITION 2.36. [29, Proposition 3.2, p.127] Let m ~ 1.

• The row sums Ei Bij(m) are independent of i and equal to

a{m)p := E d.
dlm.Cd,p)=1

• If (m, m') = l, then B{m)B{m') =B{mm').

• B{P) is a permutation matriz of order dividing 2 and jor k ~ l,

• If q f:. p is prime and k ~ 2,

• Hecke-Petersson. The matrices B(m) jor m ~ 1 generote a commutative .tubring

l' of Mn{Z), which can be identified with the Het:ke ring generated bPI Het:ke

operotors.

• Recall that ej = IR; 1. Then

• The commutative algebro T ® Q is .terni-simple, and isomorphic to the prolluct of

totally real number fields.

Furthermore, we have a divisibility result, due to the fact that the action ofAut(Ej ) 1{±l}

on the set of subgroups H of E. of arder l sum that BilH ~ Ej is &ee, for i f:. j:
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•

PROPOSITION 2.37. [63, Remark 3.13, p. 450] For a prime i ~ p the entries of the

i-th mw of the Brandt matrix for a prime i, B(t)ii are divisible by eïl2 unless i = j.

We will ooly consider elliptie modular forms with respect to the group r 0 (N).

DEFINITION 2.38. A modulor fOfTTI / of weight le (le E Z, le ~ 0) on fo(N) is a

complex-valued funetion on the complex upper-half plane such that :

• / is holomorphie everywhere;

• / is holomorphie at every eusp of f 0 (N) t Le. on Q and at infinity;

•
f (:;::) = (CT + d)1c /(1"),

for all (: :) E fo(N).

The complex vector space of all modular forms of weigbt le on fo(N) is denoted by

MIc(N). Note that the map f ...... d/ identifies the modular forms of weight 2 on ro(N)

with meromorphic diff'erentials on Xo(N) with at Most simple poles at the cusps. Bence

dim(S:z(fo(N») =genus(Xo(N».

EXAMPLE 2.39. We list here the characteristic polynomiais of sorne Hecke operators

We cao DOW state another property of our Brandt matrices, pertaining to their

eigenvalues :

Let us DOW introduce theta series: let r E 2N, aod let A = (aU) he a r-by-r symmetric,

positive definite matrix of integers (aij E Z) whose diagonal elements aii are even:

is a positive definite integral quadratic form, for z E 1l". The least positive integer n

such that nA-1 is an integral matrix with diagonal entries is called the level or St./e of
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-.

the quadratic fonn. The quadratic fonn Q*(x) = !xt NA-lX is the adjoint form. The

discriminant of Q is (_1)r/ 2 • det(.4).

DEFINITION 2.40. The theta series associated to Q is defined as :

9Q(T) = L e2"'i.Q(U)T

liEZ"

oc

=L aQ(n)qn, q = e21fiT
,

,,=0

and aq(n) is the number of integral solutions of Q(x) =n.

See [53, Chapter VI] for details.

THEOREM 2.41. The theta ,mu 9Q(T) are modular fofTRS for ro(N) 01 weight r/2

and trivial character.

See [ST, Theorem 2.14}.

Define the theta series BU by :

Bij(T) = L Bij(m)qm, q =e2"'iT.
m~O

COROLLARY 2.42. The Bij are modular lorms 01 weight 2 on ro(P).

PROOF. The entries of the Brandt matrices are theta series by construction, and it

follows !rom [53, Theorem 20, p. VI-22) that they are modular fonns of weigbt 2. We

only ought to show that the level is p and the character is trivial.

deg : Hom{El , Ez) ---. z

is a positive definite integral quadratic fonn in four variables of level p and discriminant

pz (an alternative description is given in [ST, Proposition 2.11);

Let 0 he a maximal order of level p. Consider the left O-ideal 1-1J, for l, J left

O-ideals, and Or{/) = O.

Theo the quadratic fonn :

Norm{z)
z t-+ Norm(I-lJ) '
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is a positive definite quadratic fonn ofStufe p and discriminant,il (note that it coincides

with the degree map :

For completeoess, we reproduce the argu.~ent in [51, Proposition 2.11]. The qua­

dratic Conn Q(x) = N:r:r;Lzt)J) is positive definite since the quaternion algebra is def­

inite, hence 8",00 ® IR is IHI, and the Donn Conn there is positive definite. Sïnce by

definition Norm(I-1J)INonn(x),x E [-lJ, Q is integral. We first show that the level

is p. Since the level is a positive integer, we need ooly determine the level locally at

all prime of q < 00. First consider the case q #= p. Theo (1-1 J)q = Oq~ Cor some

~ E 8;,00., = GL2 (Q,). It Collows from the definition of the level that :

O ( Zq Zq) -1
q =0 Z Z 0 1

P q q

for some a E GL2 (Q,).

Let el = (~ ~), e2 = (~ ~), e3 =(~ ~), e4 = (~ ~).

Then ae&o-l{:J,i = 1, ... ,4 gives a Zq-basis for OqfJ. Further Nonn(I-1J) =

Nonn(,8) mod Uq • Theo the matrix .4 is of the form .4 = utBU where U E GL2 (Zq)

and:

(

0 0 01)= 0 0 -p 0
o -p 0 0
1 000

which has level p in Zq. Since the Stufe of A is equal ta the Stufe of ut..:lU for 30y matrix

U E GLr(Z), A has level p mod Uq in Zq. For the case q =p, we have (/- 1J), =0,,8

for some {3 E B:'oop ' Sînce 0 bas level p, it foUows &om the definitioo that 0, is
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Thus, using the fact that R = Z" œZpu!, where u E Z, u a quadratïc nonresidue

mod p if p #; 2, and R =Z2 Et) Z2( 1+:; ) if p =2, a similar calculation to what we did

above shows that .4 has level p mod Up in Z" aIso. Thus the level must he p. The

discriminant can be calculated in the same local way as the level, and it is pz. It follows

Crom this discussion that the level of (Jij is p, since the level of Q is p. The character E

associated to (Jij is trivial since the discriminant of Q is pz and

o

More importantly,

THEOREM 2.43. The theta series (Jij of weight 2 on fo(P) span the space of modular

forma AJ2 (fo(P».

See [29, Section 5].

EXAMPLE 2.44. Take p = 2. Let 0 = Z + Zi + Zj + Z"'i, "'i = l+i~j+k. The arder

o is a rigbt principal ideal ring, thus 30y right ideal 1 is isomorphic ta 0, and the ring

of Endo(l) :!! 0, acting by left multiplication. The norm form is

N(z + iy + jz +"'i' w) =z2 + y2 + z2 + (z +y + z + w)w,

and its matrix fonn is :

[

2001]1 t 1 0201 t
N(z,y,z,w) = 2XMX = i K 0 0 2 1 X,

1 1 1 2

with X = (z, y, z, w). The theta series

L ~(tI» = E q'V(Z.II.=.UI)

tl>EO Z.II.=,UI
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generates kI2 (ro(2» and is given by the CollowiDg q-expansion :

The Brandt matrices are 1-by-1 arrays, and the list begins as Collows :

1
B(O) = 24' B(l) = 1,8(2) = l, B(3) = 4, ...

EXAMPLE 2.45. Take p = Il. In this case, the class number is 2. The curve Xo(ll)

is an elliptic curve with equation:

y2 + Y = X 3
- X 2

- 10X - 20,

and since the genus oC ..\'o(P) is equal to the dimension oC the space of cusp Corms

S2(rO(p», we have a unique normalized cusp Corm :

FI =q II (1 - qm)(l _ qllm)2
rn~1

and the Eisenstein series :

F2 = :2 + ~ O'l1{m)qm
m~1

_ 5 3q2 4 3 ~.. 6qs- 12 + q + + q + ,q + + ... ,

i.e. the dimension oC M2(ro{11)) is two. Tbere are Cour theta series /11,112, /21 and

122; by Theorem 2.43, they generate the space M2(fo(l1».

The precise linear relations between them are as follows :

and

F2 = /11 - /21 =122 - 112 = 3/'l2 - 2/11'

Sc we can easily compute a11 the Brandt matrices B(m) for m arbitrary bigh, using a

symbolic calcuIator :
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B(3) = (~ i);B(4) =(~ ~); B(5) = (~ ~)""

35
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REMARK 2.46. Let D(P) he the Hecke module spanned by supersinguJar j-invariants

in characteristic p. The subspace or elements or degree 0 is isomorphic to the space or

cusp forms of weight 2 Cor ro(p) .
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CHAPTER 2

Hilbert Modular Surfaces

1. Abelian Sc:bemes

Recall that an abelian scheme .4. over a scheme S is a group scheme

1r:.4~ S,

sucb that 1r is smooth and proper, and the geometric fibers are connected. The abelian

scheme X is a commutative group scheme ([49, Corollary 6.5». If A is projective over

S, there exists a dual abelian scheme .-lt := Pic~(.4) C Pics(.4), where Pics(.4) classifies

invertible sheaves trivialized along the section c . .4t is a projective abelian scheme ([49,

CoroUary 6.8]). Put NS(.4) =Pic(A)/Pic°(.4).

THEOREM 1.1. f150, Theorem 1, Section 15, Chapter li, p. 143})

Let

o ---+ H ---+ .4~ B ---+ 0

be an exact sequence with .4, B are abelian schemes, f an isogeny and H a finite, flat

group scheme. Then the dual sequence ù ezact

o ---+ H V ---+ Bt~ At ---+ 0

i. e. Ker(jC) := Ht = H V
, the Cartier dual of H.

DEFINITION 1.2. [49, Definition 6.3} A polarization of A ~ S is a homomorphism

À : .4~ .-lt such that for each geometric point s of S, À. = À(e.) for some ample

invertible sheaC t.. of A•.

A polarization is finite and faithfully 8at, i.e. it is an isogeny. The polarization is calle<!

principal if it is an isomorphism.

31
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EXAMPLE 1.3. [50, Chapter 3, p. 91] Let (, be an invertible sheaf on A. It defines

a group homomorphism:

.\L: : A. --+ .4t ,

a ..... T;({') ® {,-l ® a·(l)-l ® e-{"

where T: is translation-by-a.

FACT 1.4. (1) fi f is a polarization, then f = P (under (.4t )t ~ .4). Hence, the

kemel of a polarization is self-dual group scheme. (2) The group scheme .4[n] is dual to

.4t [n] and one obtains the Weil pairing:

.4[n] x A[nJv --. Gm •

Let .4 be defined over a field k of characteristic p. If.\ is a polarization, we get a

bilinear, antisymmetric, Galois invariant pairing (under GaI(k/k»:

( , ).\ : A[n] x A[n] --+ Gm ,

(x, yh =(x, .\(y)) .

It is perfect iff (deg.\, n) = 1. One cao prove that .4[n] is an affine group scheme of

arder n29 (where 9 =dim .4). fi char(k) = 0, then (char(k), n) = 1, and .4[n] is étale,

Le. .4[n] ®k kUP ~ (Z/nZ)2 IJ • fi char(k) =p and n =p, then IA[P](k)l s pli.

DEFINITION 1.5. An abelian variety .4 over Ii is orrlinary if

For an abelian variety A defined over a field k of charaeteristic p, we cao define the

a-number as :

1.1. Abelian schemea witb real multiplication.

DEFINITION 1.6. An abelian scheme AIS with real multiplication (abbreviated RM)

by 0 L is an abelian scheme of relative dimension 9 over S together with a given bom~

morphism of the ring of integers of a totally real field L

1, : OL --. End(A),
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sucb that tA is a locally (on S) Cree OL ® Os-module of rank 1.

39

Note that we cao define Lie(A/S) as the S-dual of ~(A./S), the sheaf of invariant

I-forms on .-\ (itself defined as ee(OA/S), e: S -+ .4 being the identity section).

EXAMPLE 1.7. 1. For any elliptic curve E, consider:

•

•

E ®z OL :! E9 with a canonical OL-action (multiplication),

the isomorphism being obtained by choosing a Z-basis to 0 L. We get an abelian

variety over C by taking

We shall discuss this example explicitly in the case 9 = 2 in Chapter m.
2. If an abelian scheme A./5 has RM by OL, 50 does the dual abelian scheme .olt ,

under Lt (m) := L(m)t.

A homomorphism between abelian schemes with real multiplication is a usual ho­

momorphism respecting the OL-action.

DEFINITION 1.8. An ùogeny of abelian schemes with real multiplication is a finite

homomorphism.

REMARK 1.9. For a separable isogeny 1 commuting with OL-action Kerf is a finite

OL-module, and we define :

degoL f =F(Kerf),

the Fitting ideal in 0 L.

According to Deninger ([18]),

degoL f = L~~f (ftHl(A.t»)' Cor any i,

where H1(A, i) is the first i-adie (resp. crystalline) cohomology group of A with coeffi­

cients in Qt =QI if l ~ char(k) (resp. Qi = W(k) ® Q if t =chark), hence the ideal

degoL is always principal .
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THEOREM 1.10. ({22, Proposition 1.2.4]) Il 1 : .4~ B i8 an isogeny 01 abelian

schemes with RM, then f is faithfully fiat, and induces an exact sequence:

O~ kerf~.4~B~O.

DEFINITION 1.11. Let (.4, L) he an abelian scheme with ~l by OL. Let

,,\.1A:= {À:.4~ .4t : À=Àt,À a OL-linear homomorphism},

(a polarization is OL-linear if it(r) 0 À =À0 L(r), "Ir E Oc.)

"I\.1~ := {À E ,,\.1A : À is a polarization }.

Of course, ,,\.1~ ç MA'

REMARK 1.12. The set M~ is a positive cane.

FACT 1.13. ( [81, Proposition 1.17]) ,,\.1A is an OL-module, projective of rank 1 (i.e.

isomorphic ta an ideal) Le.

1E OL,À e "I\.1A ~ Àol e MA'

DEFINITION 1.14. A projective rank 1 OL-module with a notion of positivity is a

projective rank 1 OL-module M such that for all tri an arder <i is chosen on

M ®OL III (~Ill non canonically),

where the OL-module structure of III is given by the embedding (Ti.

DEFINITION 1.15. Let B he a semi-simple algebra with center containing Q. An

anti-involution z ~ z· on B is po.itil1e definite if( TrQ(xx·) > 0 "Ix ~ O.

DEFINITION 1.16. Let Àbe a polarization on an abelian scheme.4, and put Endo(A) =

End(.4) ® Q. The Ro.ati involution associated to À is the map

Endo(.4) --+ Endo(A)

f t-+ À-1 ft À = f·

FACT 1.17. The Rosati involution is positive definite 00 Eodo(A) ([SO, Cbapter IV,

Section 21D.
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2. ABELIAN VARIETIES OVER A FINITE FIELD

Define a map

NSO{A) '-+ EndO(A),

q,>. : c.(H.~) t-+ l\-lq,t.

The set q,>.(NSO(.4») is composed of the symmetric elements of Endo(A) (under the

Rosati involution). In particuJar, (J\1A,M~) is naturally an Ot-module with a notion

of positivity, since J\.1~ maps to totally positive symmetric elements in Endo(A»

2. Abelian varieties over a flnite field

Let .4 be an abelian variety of dimension 9 defined over a perfect field k of charac­

teristic p.

Consider the multiplication-by-l map [i"'] : A -. .4. Put .4[tm] := Ker([i"']). It is

a finite group scheme of order (l"')29.

If t = p, then .4[pm] is not étale, hence cannot he described by the points in .4{k).

Let .4(p} be the Barsotti-Tate group (or p-ditMible group, see [65]) of height 29 associ­

ated ta the direct system {.4.[pm]}. Since k is assumed to be perfect and characteristic p,

we cao use covariant Dieudonné module theory which allows a classification of Barsotti­

Tate groups (see [1] for a generalization).

We denote by fT the isomorphism fT : W(k) ~ W(k) OD the ring of (infinite) Witt

vectors, induced by the Frobenius map z t-+ zP on k. We denote by W(k)[F, V] the

(non-commutative) ring with variables F, and V, coefficients in W(k) and relations:

FV =p =V F, Fa =a" F and aV =Va/7, for a E W (k).

Note that W(k)[F, V] is commutative iff k = Fp •

THEOREM 2.1. There Î8 an equivGlence of œtegone& between, on one ~ide, men­

&iom of 8arsotti- Tate groups G 6y jinite commutative grouP& with p-power order over k,

and on the other side, left W(k)[F, VI-modules M of jinite type. Under this equivalence,

Bar&otti-Tate groups coJTespond to free modules,

dimM/FM = dîmG, dimM/VM = dim(Gt
), dimM/pM = height(G),

M(Gt ) ::! M(G)V := HomwCA:) (M(G), W(k» .
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By Dieudonné theorem, we associate to the p-divisible group A(P) the Dieudonné

module V(.4(p». We denote by V(A(P)) the contravariant Dieudonné module oC A(P)

and by ID(A(p» the covariant Dieudonné module.One can check easily that it is the in­

verse limit of the Dieudonné modules corresponding to .4[pm]. We cao recover .4[pm] by

taking the finite group scheme corresponding ta the Dieudonné module D( .4(p» / pmD{.4(p) ).

THEOREM 2.2. (Tate)

Il k is a finlte field, then

Homt(.4, B) ~ Zp ~ Hom('D(B{p», V{A{P))) ,

where the r.h.s. denote homomorphunv 01 W(k)[F, VI-modules.

If l 1: p, then At"' is étale (i.e. becomes a constant group scheme after base change),

hence it is detennined by .4t... (k) and the action of the Galois group GaI(k/k) on it.

Taking the inverse limit of ail At... (k), we obtain the Tate module Tt(A), which is a Cree

Zrmodule ofrank 2g on which GaI(k/k} aets by Zrlinear maps. Again, .-lt... (k) can be

recovered from the module since it is isomorphic to Tt(A)/f"lTt(A) as Galois modules.

THEOREM 2.3. (Tate) Il k ia a finlte field, then

Hom(.4, B} O":!) Zt:!! Homz,[GaI(i/i:» (Tt A ,TtB).

Going back to Barsotti-Tate groups oC abelian varieties, we have the classification

up to isogeny :

THEOREM 2.4. (Dieudonné) The catego'1l 01 Barsotti-Tate groups up to iaogen1l

over an algebraictJll1l closed field 0/ characterïstic p u semi-simple. The simple objects

are precisely the p-divisible groups am.ra lor m, n E N, (m, n) = 1 or (m, n) = (1,0).

The group am,n has dimension m and ia determined 6,1 iu W(k)[F, VI-module Cm•ra =
Cp(am.n), whe.re

Cm •ra =W(k)[F, VI/(F'" - vn) .

We complete the picture by putting aO.1 := Qp/Zr
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DEFINITION 2.5. We say that gm.n has slope m~n of length m + n, which is the

height of Cm •n • By convention, we give slope 1 and height 1 ta gO.l.

Granted the Dieudonn~Maninclassification, any ~divisiblegroup gaver k ofdimension

d and height h can he decomposed, up ta isogeny :

with E mi = d, E(mi + ni} = h.

We associate to each gmi.ni a segment of slope m:+ni of length mi + ni. The

Newton polygon is the unique lower convex polygon starting at (0,0) and ending at

(heigth(g), dim(g» having increasing slopes and constructed from the building blacks

associated to gmi .ni . AU sucb Newton polygons are symmetric. Note that all the

hreaking points have integer coordinates.

EXAMPLE 2.6. g = 1 An elliptie curve is either ordinary or supersingular. Henee

the group gl.O is isomorphie to the formal group of an ordinary elliptie curve over k,

and gl.l is isomorphie to the fonnal group of a supersingular eUiptic curve over k.

The Newton polygon corresponding to an ordinary elllptie curve is a hroken line : a

segment of slope 0 and a segment of slope l, and the Newton polygon corresponding to

a supersingular elllptie curve is a line of slope 1/2.

2.1. Serre-Tate theorem. Let k he a field of charaeteristie p. Let A =Wp(k) (the

infinite Witt vectors). Let Cie he the category of local artinian rings A-algebras (R, mR)

together with a given isomorphism R/mR ~ k. Morphisms are local isomorphisms of

rings indueing the identity on k.

Let .4 he an abelian variety over k.

THEOREM 2.7. Serre-Tate

For every ring in Cie, the functor :

A 1-+ A(p)

inducu an equivalence of categories between the categof1l A of A over R with morphufIU

of abelian schemes ouer R, to the categOf1l of deformations ofA(P) into p-divUible groups
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ouer R with the morphisms heing morphisms 01 p-divisible groups whose restriction to

A(P) cames /rom an endomorphism 01.4/1r..

3. SupeniDguIar and supenpecial points

Let k be an algebraically closed 6eld of cbaraeteristic p. We present in this section a

number of finiteness results. We begin by DeUgne's theorem, whicb forbids cancellation

for produets of elliptic curves.

THEOREM 3.1. (Deligne [TO, p. 580» Let 9 2: 2. Let El,"" Eg , Eg+ lt ... , E2g he

arbitrary supersingular elliptic curt/es. Then

El x ... x Eg ~ E,+l X ••• x E;zg.

An abelian variety is supersingular if it is isogenous ta a product of supersingular elliptic

curves. If it is isomorphic to a product of supersingular elliptic curves, we say it is

superspeciaL Deligne's theorem allows us to restrict ourselves ta Eg, for E a fixed

supersingular elliptie curve. Furthermore, we may pick a supersingular elliptic curve

defined over Fp sucb that its (relative) Frobenius F : E --+ E satis6es pz + P = 0 (see

[T9, Theorem 4.1.5]).

THEOREM 3.2. (Oort, [55, Theorem 2]) Let.4 he defined ouer an algebraically

c10sed field, then

.4 ~ El x ... x E, ~ a(.4) = g.

Note that if this is the case, A cao he defined over a finite 6eld (sec [54, Lemma

4.5]). It is known ([31]) that superspecial abelian surfaces with RM are in fact defined

over Fr'

In aU the moduli varieties under consideration in this thesis, the number of super­

special points is finite. The crucial ingredients to show that are Deügne's theorem and

the following finiteness result about polarizations :

THEOREM 3.3. ([51)) Let d he a positive integer. An a6eliGn lIariet" A defined over

an algebrnicall" closed field Ir. has oral" finiteJy mGR" po.aJble poltJrizations 01 degree dl,

up to isomorphum.
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We will use the following :
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COROLLARY 3.4. [55, CoroUary 7] Let A he a supersingulor ahelion surface over k,

with a(A) = 1; then .4 is on Qp-covering of a product of two elliptic curves, i.e. A/al'

is isomorphic with a product of two elliptic curves.

COROLLARY 3.5. ([36]) Let E he a supersingular clliptic cunre. Any supersingulor

abelion surface .4 is isomorphic to (E x E)/t(ap ). for a suitoble immersion L : al' '-+

ExE.

PROOF. We show that the two last corollaries are indeed equivalent. If a(A) = 2,

we cao take Fr : E ~ E(p) and

E x (E/ap) S!! E x E(p) :!! .4.

Consider a supersingular abelian variety with a-number 1. Suppose Corollary 3.4 is

true. Consider the composition:

A~ .4/Qp~ A/Ker[Fr].

We have

QI' ç Ker[Fr] c .4,

H := KerFr/ap C El x ~ ~ A/al"

and H ~ al" since it is local-local of rank p, and

But

(A(p))(;) ~A,

k being algebraica1ly closed, hence perfect, hence

(El x Ez/H)I/p ~ (Ed l /p x (Ez)I/p /ap ~ A.

Bence the resu1t foUows.

Now, suppose CoroUary 3.5 is true. Theo

A. =E xE/aI"
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Sioce H := Op ~ (E X E)[Fr]/ltp , we have

X/H ~ (E x E)(p) =E(p) x E(p).

o

COROLLARY 3.6. ([38, Lemma lA]) Let .4 = El X ~ be an abelian surface with

supersingular elliptic curves El and~. Let L : op <-+ .4 be an immersion such that

B =.4/L(op) is oot isomorphic ta a product of two elliptic curves. Theo, the subgroup

scheme which is isomorphic ta op is unique in B.

PROOF. Clear. o

•

•

3.1. Siegel modular varieties. Let A,.n the coarse moduli space oftriples (A, À, 11),

where .4 is an abelian variety with a principal polarizatioo À and full level n-structure

Q. For n ~ 3, it a fine moduli scheme, quasi-projective over Spec(Z), and smooth over

Spec(Z[~D (see [49, Theorem 7.9, p.139]).

We denote by A,~ Spec(Z) the coarse moduli space of principally polarized

abelian varieties of dimension g. We have:

where 1l, is the Siegel upper half plane and where the symplectic group acts 00 11., by:

(~ g) Z = (AZ + B)(CZ + D)-l.

Fix a prime p. Since there are oo1y finitely Many possibilities for the level n struc­

ture, and similarly for polarizations (Theorem 3.3), there are ooly finitely Many super­

special points in the supersingular locus.

PROPOSITION 3.7. ({43, Section 4.9,p.26]) The dimen.tion of the auperaingWar loew

S, in .4, x Fp is: [~], where [.] denotea the integral part.

Let B = Bp,oc he the definite quaternion algebra ramified at 00, and x .... z its

canonical involution. Let Bn he a left B-module of dimension n. The (non-degenerate)

definite quaternion hermitian Corm <, > on BB is unique up to change of basis over B
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([88, Lemma 4.4, p.53]) and may he written in the (onn E~=l ziJh for z, y e Bn. Let

o be a maximal order of B.

DEFINITION 3.8. A Z-module A-/ in Bn is called a left O-lattiee if ~/ is a left 0­

module and a lattice in Bn.

Two O-lattices Ml and M 2 are said to he equiva1ent globally (resp. locally at a rational

prime q) if ~/l . 9 = M 2 (resp. (kIL 181 Zq) . gp = M 2 ® Zq)) = for 9 (resp. gq) in the

corresponding group of similitudes of <, > (see [30, Section 2.1, p.139)).

DEFINITION 3.9. A genus of O-lattices is a set consisting of ail (global) O-Iattices

in BR which are equivalent locally for every prime q.

The set containing on is calle<! the principal genus. The set of left O-lattices in BR

which are locally equivalent to O~ except for q = p (there is a unique otber possibility)

is calle<! the non-principal genus. We denote by Hg(p, 1) (resp. Hg(l,p)) the number of

global equivalence classes in the corresponding genera.

PROPOSITION 3.10. ([88, Section 4.4, p.53]) The clus numbers Hg(p, 1) and H,(l,p)

are finite.

We covered the case h =H1(p, 1) in the first chapter. The cases n ~ 2 contrast by

their unifonnity and simplicity :

THEOREM 3.11. ([30]) The clais number of Mn(B) U equal to one for n ~ 2.

THEOREM 3.12. trao, Theorem 2.10, p.l44]) Let 9 ~ 2. The num6er ofsuperspecial

points in Ag U equal to the elus number Hg(p, 1) of the principal gen.. of the quaternion

hennitian spoce Bn.

THEOREM 3.13. ([43, Section 4.9, p.26]) The namber of iJTeducible componmts 0/

Sg u given 6J1: H.Cp,l), if 9 odd, and 6J1 H.(l,p), if 9 evm. Moreover, for eacJa

ifTellucible companent 0/ S',1 t the a-num6er 0/ the genme point u one.
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EXAMPLE 3.14. A general formula bas been given in [1] and [1], sinee it is a bit

lenghty, we just quote some values of H 2(p, 1) and H 2 (I,p} for 9 = 2 :

p 2 3 5 7 11 13 17 19 23 29 31 37
H2(P,I) 1 1 2 2 5 4 8 10 16 24 26 37
H2(l,p) 1 1 1 1 1 2 2 2 2 3 3 5

We DOW eoncentrate on the case 9 = 2. As follows from Theorem 3.7, the super­

singular locus SJ has dimension 1. Moreover, ail irreducible components are given by

rational Hnes. We shall ooly sketch brie8y the construction of those compoDents, sinee

we will come back to this in chapter 3.

Consider a superspecial abeUan variety .-l ~ El x &. Let tA be the tangent space

at the origin, and put pl = petA) he the projective Une. Set

Let H be the subgroup scheme H of Kpl defined by the equation Ya - Xp = 0,

where (X, Y) e Pl. Put X =.-lpllH.

We have the exact sequence :

o~ H ~ Apl ~ X --+ 0,

with canonical projections 1r1 : Apl ~ A, 11'2 : Apl --+ pl, and the indueed map q :

X ~ pl.

The crucial point is the existence of a symmetrie invertible sheaf C on .4 ([41, p. 139­

140]) such that:

(3.1)

•

where K(C) is the kernel of the polarization tPc. : A --+ At defined by C.

Every subgroup of order p of K:(.c) is isotropie, henee H is 6ber-by·fiber isotropie,

hence an isotropie subgroup of Kpl. By Mumford's theory, the polarization defined by

C on Ap l descends ta a principal polarization on the abelian scheme

q: X --+ pl.
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Consider the subscheme X[n] = Ker[n)x over Pl. Since (n,p) = 1, X[n] --. pl is

étale, and this allows us to put level n-structure on q : X .--. pl, and we get morphisms

where A2•n --. Spec(Z[-kD is the moduli scheme ofprincipally polarized abelian surfaces

with full level n structure. Since q : X .--. pl is non isotrivial ([47, p.131]), the image

of this morphism is a component of ~.n (resp. ~.1)' Conversely, one knows that any

companent of ~.,,, n ~ 2, (n,p) = 1 is a Moret-Bailly family, induced by a divisar

satisfying condition 3.1.

We will present fannulae for the number of components and the number of super­

special points that occur when we fut the level structure.

For the foUowing, assume p ~ 3.

The Galois covering :

for (n,p) = 1 has Galois group isomorphic to PSp(4,Z/nZ) = Sp(4, Z/nZ)/(±I).

PROPOSITION 3.15. Number of irreducible components in ~.q Let q :F p, q odd.

The num6er of i~uci6le components in ~.q is :

IPSp(4, Z/qZ)I<Y - 1)
2880

where IPSp(4, Z/qZ}1= q4(,4_~)(q'_l), IPSp(4, Z/2Z)1 =720.

PROPOSITION 3.16. Number of supersingular points in ~.q' Let q -# p, q odll. The

num6er of auperaingular points in ~.q is :

We have a mass formula:

PROPOSITION 3.17.

8.(p.1) 1 CP - 1}(p2 + 1)

~ Aut(A, Ài ) = 2880
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where the .tum MlfIS otler luperspecial points on Ag.

3.2. Hilbert modular surfaces. We give a description of the worles of [72], [131,

[1].

Let L he a fixed totally real field of degree 2 =[L : QI. Let p > 2 be an inert prime

in L, and let (n, p) = 1. Denote by 1)L the different idea1 of Lover Q, and let dL denote

the discriminant of L.

Let J\ff n he the moduli space parameterizïng abeüan surfaces {A, L, (!Dl", ~),Q) in

characteristic p, where (9'.nA,~) is a polarization module, together with a symplectic

level n ~ 3 structure Q and an embedding of rings L : OL ~ End(A).

A few explanations are in arder. Let CI(L) (resp. (CI(L)+» denote the (resp. narrow)

c1ass group of L, and let hL (resp. hi) denote its arder. The group CI(L)+ consists of

classes of projective, rank one OL-module mt, endowed with a notion of positivity. Let

rot+ he the positive cane.

DEFINITION 3.18. Polarization module. Let (.4, L) he an abelian variety with RM

by OL. Let 9nA denote the module of OL-linear, symmetric homomorphisms from A to

.4t, and let~ denote its natural positive cane, a submodule consisting of polarizations.

The positive cone 9'.n~ is not empty, and ;\ E 9'.n~ yields an embedding:

!DtA ~ CeDtEnd{A)~Q(L)A.

This embedding identifies ml" with a fraetional ideal ~ of L, and identifies~ with

~+. By a symplectic level n structure, we mean an isomorphism : (OL/nOL)2 e! A[n]

with the standard symplectic pairing on the left band side corresponding to the Weil

pairing on .4[n} coming from an OL-linear polarization of degree prime to p.

The Mn are fine moduli schemes over Spec(Z[(,., ~D . They are regular 2-dimensional

varieties. The coarse moduli space for abelian surfaces with RM is a scheme M over

Spec(Z); it cao be decomposed in a disjoint union of components :

M =UCI(L)+M(~) .

Over C, we have M(~) e! PGL2 (OL œ~)+\,H'.
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DEFINITION 3.19. 1. The group GL(~œ~)+ consists of matrices :

{(: :) :a,dEOLlbE~-I'B'CE~'B-l,ad-bcE(OL)+}'

2. The group SL(~e!J) is the subgroup of GL(~œ'B) composed of matrices of

determinant one.

THEOREM 3.20.

an isomorphism :

1. The isomorphism classes 0/ (A, L)/C) such that there emts

•

•

(~,~)"'::" «(,~),( = (VL~'B)-l,

are parometerized 611 GL(~ e 'B)+\1lg •

2. The isomorphism classes of (A, L)/C together with a given isomorphùm :

are parometerized 611

Consider a triple (.-1, L, (JW""M1) ~ (~, ~+». We cao change the isomorphism

giving the polarization module by an automorphism of the module with a notion of

positivity : AutoL (~, ~+) =0L+' It is also true that for every l' E (OL+)2, (.4, L,'\ :

(MA,J\,1~) ~ (~,~+» ~ (A,L,'\ '1'). Summing up, the map:

(A,L,.\) ---. (A,L,(M""M~»

has degree

[(OL)+ : (OL)2] =(pGL(~e 'B)+ : PSL{~œ !J»).

We define S = Sn to he the supersingular locus on Mn ~ Fp • We can embed the ring

of integers OL only in finitely many ways in the eodomorphism algebra End{A) of a

superspecial ahelian variety, up to conjugation by End(A) X , hence there are ooly finitely

many superspecial points.

DEFINITION 3.21. ([72]) A ro(p)-lel1el .ttructure on ML(~) Ù a pair 0/ abeliaft

schemes (A,L,(9X",,~»,(A',L',(mr",,9X'~»on ML(~) , and an S-ùogenJl

/ : (A, L, (!IR",,~» --. (A', L', (!Ut'A' !17l'1»
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•
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such thot the following diogram commutes :

(9nA'~') ~(~,~+)

,.! !..
(9nA,~) ~(~,~+)

This definition ean he equivalently put in (familiar) tenns of the kemel group

scheme. We have three possibilities (or such a subgroup scheme (see [72]) :

• (ZjpZ)9;

• A unipotent group of order p!1.

We explain the equivalenee : For an isogeny l, Ker(/) is an OL-invariant, isotropie

subgroup of .-l[p) of order p9 • In fact, it is totally isotropie: (or we may find an OL­

linear polarization À of degree prime to p on A (see (81». By assumption p' ..\ deseends

to .-ljKer(/). Henee Ker{/) is an isotropie subgroup with respect to the Mumford

pairing induced by p . ..\ on Ker(p·..\). Since..\ is of degree prime ta p, it induces a perfect

pairingon A[P], and Ker(/) is thus isotropie with respect to every OL-linear polarization.

Conversely, let H he an 0 L-invariant isotropie subgroup of arder pi of Afp) with respect

to every OL-linear polarization. There exists a unique OL-structure L'on .-l' = AjH

such that 1r: (A,L) --+ (A', L') is OL-equivariant. Suppose that I-(MA') = pMA'

Then the isomorphism (MAJ,M~,) --+ (~,~+) makes 1 into a fo(P)-level structure.

We denote by Mg(p) the corresponding moduli space.

DEFINITION 3.22. (Deligne-PopptJ6) Let 5 he a scheme. An abelian scheme with

real multiplication by 0 L (witb RM) is an abelian scheme A over 5 together witb an

embedding of rings

L: OL ~ Ends(A),

such that the foUowing condition holds :

where MA = {À : A --+ AV :..\ 0 L(r) = L(r)V 0 À, "Ir e OL}'
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Recall that the module MA is a projective OL-module of rank one endowed with a

natural notion of positivity detennined by the cone of polarizations in MA,

tAlA: is a free OL ~z Qs-module of rank l, (R)

and MA is a projective OL-module of rank l,

One can show that under the assumption "p is unramified", the conditions (DP) and

(R) are equivalent.

3.3. Components of the supeningular locus. Recall that we assume p is inert.

ln this case, the non-ordinary locus V is the supersingular locus S. The components of

S are projective lines, coming from Moret-Bailly familles, that is, we consider an abelian

surface X with real multiplication such that Rapoport's condition (R) fails; using the

embedded group op e ctp ~ X as a pivot to map a family of ctp parameterized by pl, we

construct a non (iso)-trivial abelian scheme X over pl such that Rapoport's condition

holds.

The method used to count the number of components is based on (36). The basic

idea is the similar1 with the extra twist of taking account of the endomorphism structure.

The number of components is equal to the number of isomorphism classes of abelian

schemes over pl, with relative polarization, endomorphism and level structure.

THEOREM 3.23. ([1]) Let SIIL.n 6e the ~uperaingrJar locu on the companent COrTe­

sponding ta Uae polarization module 'DL 1. The num6er of components of SdL.n, n ~ 3

is

We have a corresponding maas formula (see [1, p.493]).

3.4. Local structure. We describe briefly the type stratification as presented in

[28]. Let:i be a point on a Hilbert modular surface Mn. Let F he a 6nite field obtained

from Fr to which we adjoin a primitive n-root of unity (n is the level of the sympleetic

structure). We denote the embeddings of OL/P into F by {Ul,U2}, ordered such tbat
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17 0 ai =aHI. The kernel of Verschiebung :

is a k-vector space and an OL-module on which OL acts by a set of characters t, each

with multiplicity one.

DEFINITION 3.24. The set of characters teLl) is the type of .4.

The stratification follows from the type : for every t ç {t71 t t72} of characters, there

exists a closed subscheme Wt of Mn, which is universal with respect to the property:

t ç t(4). We quote, for p inert :

THEOREM 3.25. ([1, Theorem 6.1}) (Su [261 for the case 9 > 2) The set of singular

points of S is exactl1l the set of superspecial points. Every singularit1l Ù ordinary with

two bronches and conuponds to the intersection of different components. The singular

points are precisel1l the superspecial points. To every component one caR assign its type

in {1,2} such that the intersection grsph of S ù bipartite. Each compoRent has exactl1l

y + 1 intersection points with other compoRents.

COROLLARY 3.26. ([1, Corollary 6.4» Let n ~ 3, p inert in L. The number of

superspecial points of Stll..n Ù

4. Geometrie: view on Hecke operaton and Brandt matrices

We shall introduce the Hecke operators from a geometric point of view, using Hecke

correspondences.

Let Œl t ••• t ŒIl+ he ideal representatives in the narrow class group. Let M he the

moduli space oC triples : A := (A,L, (MA,M~», where (MA,M~) :!! ('t~t) for seme

i.

We decompose M according to the narrow ideal classes :
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REMARK 4.1. (See [75]) Over C, these components correspond to the groups GL2(Chffi

~)+ :

Let r be a finite OL-module of cardinality not divisible by p. Consider the coarse

moduli space M(r) of pairs (.01, H), where H is a OL-invariant, constant, finite subgroup

scheme of A. isomorphic ta f as an OL-module.

Consider the diagram :

(4.1) M(f)

;/~
M M

•

•

where 1r : .-l~ .-llH is the natural projection, and the projections Pl, 1'2 are finite fiat.

The quotient of an abelian scheme with real multiplication by a 6nite 0 L-subgroup

is again an abelian scheme with real multiplication: First, it is an abelian scheme with

OL-action by standard faets (see [50, Section 12, Quotient by fini te group schemes}).

Second, the tangent space te is locally Cree, because any isogeny of degree prime to p

induces an isomorphism of tangent spaces.

Note that a f 0 (N)-level structure for an abelian surface (.4, l.) with real multiplica­

tion by Ol., is a point in M(r), for f = OL/(N).

The Hecke correspondence associated to f is P2. 0 pi, that is an element of M (on

the left) is sent to the images in M (on the right) of its preimages in M (f).

We now restrict to L real quadratic.

Recall that

We define Hecke operators as devices reftecting the combinatorics of embeddings of finite

oL -modules ioto an abelian variety with RM.

Let

9.R = ffiiOL/ei

be a finite Oc.-module that can be embedded ioto (Oc./mOc.)2 for some m.
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We can rewrite !Dt in the Corm :

•

•

for suitable prime ideal Pi.

By the Chinese remainder theorem, we may write !Dt using two summands ooly :

with val." (~) ~ val" (~).

To eliminate redundancy, we will assume henceforth that alI finite 0 L -modules

under consideration are given in this canonical forme

DEFINITION 4.2. (Hecke operntors Tt3,tB) For ideals~,~ ç OL, relatively prime to

p, we define the Hecke operator Tt3,'B by the Cormula :

T~,'B(.ol) := Le.ol/H), H ~ OL/'J. €a OL/93,
H

that is, T~,'l' is the operator defined by diagram (4.1) for r = OL/'A €a OL/fB.

We put Tl =1.

By abuse oC notation, we will denote T~,l simply by T~.

We will cali a Hecke operator T~,'B primitive if OL/~e OL/'B ~ A[i], where l is

a prime.

PROPOSITION 4.3. The Hecke algebnJ i.t generutetl 6" primitive OL -modul~:

or = Z[T~.'B) = Z[T~.'B : T~,,, primitive)

REMARK 4.4. We can be more precise and give a minimal set of generators, com-

prised of the foUowing :

• For l inen, 11,1,

• For p. ii =1split, T"l, T"" T'.lt T,.,.
• For p2 = l ramified, T,.l' T", .

Before proving Proposition 4.3, we give some prelimjnary Jemmas.
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LEMMA 4.5. We have the following identities :

Tm.m = id for anll m !Juch that (m, p) = 1.

57
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PROOF. The first identity follows from the unicity of the presentation in the fol­

lowing (non-split) exact sequence:

or

respectively.

For the second, we need to prove that .4 and ..4/A[m) are isomorphic as abelian

schemes with RM. Let (m,p) = 1. The map [ml: ..4 --. .4, is an étale, surjective mor­

phism, hence A =:!! ..4/.4[m] as abelian schemes. The natural projection 1r ; .4 ---. A./A[ml

induces a map between abelian schemes with RM :

(.4, L) ~ (A/..4[ml,j), j =7re i,

such that for r E OLI

j(r)(y) =7rL(r)1r-1(y) = r{y) + A[m).

The isomorphism is given as Collows :

f/J : (A/A[m) , 7re i) =:!! (A, t), f/J(y + A[m)) =m· y.

The 0 L -actions are c1early conjugate, since for z E ..4,

t(r)(x) = tj)j(r)t/J-l (x)Vr E OL.

•
As we mentioned earlier, since (m,p) =1, there is an induced isomorphism :

le ~ le
A - A/A[m] ,

and we are done. o
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LEMMA 4.6. Let ~ =np~i, ~ =TI p~'. Then

T~,'B = II Tp~i.p:;.
i

PROOF. Put ~ =~'p~l, ~ =~'p~l. Again, this sits uniquely in an exact sequence:

hence

and we get the lemma by induction.

LEMMA 4.7. For a prime p, we have :

o

•

•

Tp 0 Tpa =T,a+l + (Nonn(p) + 1) . T"p 0 Tpa-L,

PROOF. The two sommands 00 the rigbt correspond to the decompositioo ofT, oTpa

in '4cyclic" and non-cyclic parts. By unicity of the exact sequence :

the multiplicity of Tpa+l is one. Consider Tp 0 Tpa - Tpa+L; there is only one non-cyclic

possibility is Tpa ,l" and it appears with a certain multiplicity we thus calcu1ate . Since

Tpa.JI = Tp,p 0 Tpa-l, this amounts to calculate the number of embeddings:

This is the number of points in IPhL!" that is :

Norm(p)2 + 1
Norm(p) _ 1 =Nonn(p} + 1.

o

We now give the praof of Proposition 4.3 :

PaOOF. We see immediately from Lemmas 4.6 aod 4.7 that T, and T", generate

the primitive Hecke operators.

We will simply show that any Hecke operator T~." cao he written as a polynomial

in thœe terms :
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According to Lemma 4.7, we may reduce to Hecke operators of the form Tpo .P" .

Using Lemma 4.6, we get a product of the (orm :

An easy induction shows that Tpo-lt is generated by primitive elements, and we are

•

•

done.

COROLLARY 4.8. For a prime p, we have :

inf(o 1 -81 .02 -132)

TpOl.p.:'l 0 Tp02.P~2 = L (Norm(p) + l)i . T;~dl+d2T,ol+o2_al_"2_2"
i=O

PROOf. The composition is ;

and since

(same praof as Lemma 4.7), an easy induction yields

in((01-8.,02-d2)

Tpol-"l 0 T,02-1f2 = L (Norm(p) + l)i . r:.,Tpo l +a2-"I-d2-2i ,

i=O

and thus :

inf(01-Ol,02-d,)

T,Ol,plfl 0 T po 2 ,p8' = L (Norm(p) + l)i . T::t;dt+d'Tp01+02-1f1-",-2•.

ï=0

COROLLARY 4.9. For Hecke operators T'A.~, T'A' ,"', we have:

(4.2)
T'A.~ 0 T'A' ,~. =

where ~ is allowed to be the non-proper ideal 0 L = (1).

o

o
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PROOF. We decompose the left hand side with respect to the prime decomposition

of ~ and ~' (Lemma 4.6) and we take the product over the primes as in Corollary 4.8.

Rearranging with respect to the tenn T '1'1,,.-1,.'-1 yields the above formula. 0
~2

Consider the recursion formula :

with 10 = l, ft = x.

LEMMA 4.10. (Generating series) The ln are given as coefficients of the lollowing

generating series :

00 1
~ In tn = .
~ at2 - t· x + 1
n=O

PROOF. This is straightforward generatingfunctionology ([80]); the recurrence for­

mula:

a . In-l(x) - ln (x) . x + 1· /n+l(X),

yields the denominator :

at2
- tx + 1,

and the numerator of the fonn a+bt is determined by the two first terms (the recurrence

being of order three). We thus easily get a = 1, b = 0, and we are done.

It is a corollary of the proof of Proposition 4.3 that the following holds :

00 1
~Tp .. tn = .
~ (Norm(p) + l)t2 - t . T, + 1

o

•

We note that the degree map on Hecke operators deg : 1" --+ Z is a homomorphism. It

fol1ows that the degrees satisfy the same relations than the Hecke operators. The first

Cew terms given by the generating series are as foUow :

T, =T,

T,a =T; - (Norm(p) + I)T,.,

T,3 = T, 0 T,a - (Norm(p) + l)T,.• 0 T,
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Note that the degree of T, is Norm(p) + 1, aod the degree of T"p is 1. The first few

terms are thus :

deg(Tp ) =Norm(p) + 1

deg(Tp2) =(Norm(p»(Norm(p) + 1)

deg(Tp3) =(Norm(p) - l)(Norm(p) + 1)2

PROPOSITION 4.11. The operator T~,l.8 preserve the twe. Thu, it maps the super·

singular locus to itself, and likewise the superspecial lOCWJ to itself.

PROOF. The main idea is as follows: by construction, the ideals 21,~ are prime-to­

p, hence the Hecke operators do not modify the ~torsion, that is, a pair .41, .012 joined

by a Hecke correspondence has isomorphic ~torsion : .o1dp)2! A2 [P] as polarized group

schemes with RM, and by properties of the type, this is equivalent ta t(Ad =t(.42 ).

Observe that the above loci cao be described by the a-number, whicb is a ~torsion

invariant, of course. More precisely, the locus where the a-number is greater than 0

is the supersingular locus, and the locus where the a-number is greater than 1 is the

superspecial locus. 0

The reader will have noticed by now that we didn't construct Hecke operators in

complete generality, but with a restriction with respect to p. The reason is that the

Hecke correspondence Tp is quasi-finite if( p is split. See [1).

4.1. Geometrie Brandt Matrices. We define in tms section analogues of the

classical Brandt (or Brandt-Eichler) matrices. The entries of the Brandt matrices give

information on supersingular elliptic curves : the (i,j)-entry is equal ta the number of

subgroup schemes C of order m in Ei such that the quotient is Ej ; two elliptic curves

Ei and Ej are conjugate by an automorphism of k iff i =j or Bij (P) = 1. We will try to

sketch a similar picture, replacing supersingular elliptic curves by superspecial abelian

surfaces with RM.

Let 21,~ be relatively prime ta p. We define the geometric Brandt matrices with

respect to the Heclœ operators T~".
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DEFINITION 4.12. (Brundt matriz)

Let .4., Ai E S. The entry ~ij(TlA.~) is equal to the number of OL-invariant

subgroup schemes C isomorphic to OL/fA EB OL/~ (that is, the degree of TlA.!J) in A.

such that .4dC S!! .4i . The Brandt matrix associated to TC3.!J is thus a ISI-by-ISI matrix:

B(TlA.!l)ij 1 $ i,j $ ISI.

Since we do not have a nice Hecke correspondance for fA, ~ not prime to p, we

need to give a ad hoc construction. We define ~(P) using Frobenius: Fr : (.4,1.) ......

(.4(P),L(P}) = (A,t.(p).

DEFINITION 4.13. Put ~ij(P) = 1 if (.-l,Li) and (.4,L~P) are isomorphic, Le. iff ,(pl

and 1. are conjugate, and Ootherwise.

The trace of ~(P) is then equal to the number of superspecial abelian surfaces

which lie in the prime field. Recall that every superspecial ahelian surface with RM has

a model over Fp2 (p.42). The matrix ~(P) is therefore a permutation matrix of order

2. To complete the picture, we put: ~urt) = ~(P)*. In line with the elliptic case, we

suggest:

CONJECTURE 4.14. The type number of Eiclalers onlers of the quaternion calgebra

Bp.L is equal to:

Properties of the Brandt matrices:

1. • For ~ =llpa, 93 =nif', we have:

!tij(TlA.!l) =II !tij(Tp...p~)'

• Moreover,

and

!lij(Tm.m) = Id.
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PaOOF. This is the content of Lemmas 4.6 and 4.1.

2. The row sums of ~ij(T~,,,) are independent oC i and equal ta

L ~ij(T~.~) =II(degT,ca-"),
j p

for T~,tB = nT,a,,'"

Moreover, Ej œij(T~.tB) depends only on ~~-l.

PROOF. We notice<! earlier that degT"p =1.

3. If p #; q is a prime in 0 L and k ~ 2, then

More generally,

(4.3)
~(Tpcal,p"l) . ~(Tp<l:l,p"2) =

inC(Ql-Pl,Q2 -&3,)

L (Norm(p) + l)i. œ(T",p)i+Pl+&3,'B(T,al+<l2-"1-"2-2a ),

i=O

and even :
(4.4)

~(T~,,,) . ~(T~,,~') =

where ~ is allowed to he the non-proper ideal 0 L = (1).
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PaOOF. The same relations holds for the corresponding Hecke operators. 0

4. The matrices ~ (m) for m ~ 1 generate a commutative subring 'r of a matrix

algebra.

5. The abelian surfaces .4i and A j are conjugate by an automorphism oC k ur i = j

or 'Bij(P) = 1.

PaOOF. This is immediate &am the de6nition of the Brandt matrix ~(P).

o
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6. Trace formula for Brandt matrices. Elliptic case :

PROPOSITION 4.15. (See [58, Proposition 4.9]) The trace of a Brandt matrix

B(m) associated ta an arder ollevel N =pkl or p'l M is given by :

TrB(m) =L a(s) L b(s, /) IIc(8,/,l) + cS(vm)Moss(O),
• 1 tiN

where

and

cS( v'ffi) = { ~ il misa perfeet square
othenDise

•

•

piAtl 1 II 1
Mass(O) = 12(1 - ""1) (1 + i)'

P tlM

lor 0 ollevel pi. M.

We uplain the meaning 01 the other tenns :

Let s run over ail integers such that ,2 - 4m is negative. Hence with some

positive integer t and squarefree integer r, 82 - 4m has one of the following forms:

2 4 {t2r 0 > T == 1 mod 4s - m=
t24r 0 > r == 2,3 mod 4

Put o(s) = !. For each fized 8 let / run over all positive dimors of t.

where h(d) (resp. (w(d») denotes the class number oflocall, principal Ideals

(resp. half the cardinality 01 the unit group) 01 the arder Od of Q( .j(d) of

discriminant d. Finally, c(s,/,l) is the number of inequivalent mod U(O,)

optimal embetldings of Of into 0, where d = (82 - 4m)/ /2. The split arder 0,

is congrnent to (l~~t ~:), where Il = ordt(M).

One if left to develop a trace formula for geometric Brandt matrices.

REMARK 4.16. An explicit formula for the trace formula for Hecke operators follows

from the work of Shimizu (and Selberg). See [45] and [13].
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To develop a trace Cormula Cor generalized Brandt matrices, we need to develop a

generalized trace Cormula whose residual term is the class number Cormula of an order

oC certain level (related ta the congruence subgroup under consideration (rD(pkN»,

the main term of the trace formulae coming from the optimal embedding theory. Ta

pursue this avenue further, one needs a good knowledge of the Jacquet-Langlands cor­

respondence, which for our purposes, links c1ass numbers ta spaces of cusps forms. In

particular, it Collows from Eichler-Shimizu-Jacquet-Langlands that

H(P) =1 + dim~(p),

and one can ask a sunilar question for higher dimensional Hilbert modular varieties.

The explicit approach (using theta series) does not transpose directly, since the degree

map stemming from geometric Brandt matrices is a quartic form, not quadratic.
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CHAPTER 3

Structure and numerology of the supersingular locus

1. On certain quaternion algebras over Q!(VD)

1.1. A caae study.

LEMMA 1.1. [6, Lemma 6, p. 464] Let L be a totally reol field. Let (..4, L) be an

abelian vanety of dimension 9 = [F : Q) with multiplication by 0 Lover an algebraicallll

closed field k. Then.o1 is isogenous to BR for some simple abelian variety B over k.

Let D = End~(B) 09z Q, so End.(.o1) ®z Q :!! Mn(D). Consider the case when Disa

totally definite quaternion division algebro over Q dim(B) = land k has charocteristic

p. Then the algebra Bp,oo is the quaternion division algebra over Q ramified at p and 00,

and Bisa supersingular elliptic curve over k. The centralizer of L in End.(A) 09z Q,

CentEndlt0Q(L), is the quaternion division algebro over L which is romified at all infinite

places of Land all places v of L above p such that [Fu: Qp] is odd, and is unramified

at ail other finite places. We denote it by Bp,L.

Put L = Q("J15). Decompose its ring of integers :

Oc. = ZeZ·6,

with «5 = !ifll if D == 1 mod 4, «5 = ,flj if D == 2,3 mod 4. Let E he a supersingular

elliptic curve defined over Fp • Its endomorphism ring End(E) is a maximal order in

8 p ,oo. Consider the abelian surface E 09z Oc., defined canonically by the rule :

(E 09z OL)(R) =E(R) ®z Oc., RE Fp - algebra.

The i50morphism

E ®z Oc. :!! E x E

6T
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allows to write an explicit 0 L -action :

~ (0 -NOnn(6»)
a t-+ 1 TreS .

In short, we have:

PROPOSITION 1.2.

2.

3.

1. E @z 0 Lisa superspecial abelian surface.

PROOF. Qnly the last item requires prooC: The isomorphism Collows from Lemma

1.1. The equality Collows from the classification oC quaternion algebras over global fields• (Theorem 2.3, Chapter II).

We compute the order :

PROPOSITION 1.3.

o

PROOF. Let (~: ~~) E M2 (End(E» and (: -:~o~~») E OL c M2 (End(E».

Let (~: ~~) E CeotM2(End(E))(OL), i.e.

( ~ll (3l) (a -bNOrm(6») _ ( a
u Al b a + bTr6 - b

-bNorm(6)
a+bTr6

•
Equating both sides, we obtain the Collowing equatioDS :
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-Ml Nonn(6) + À(a + bTr6) =bPl + Al (a + bTr6) ,

and tbese reduce to

bence

69

Le.

Tbus, we oeed to describe 0 L CE/) End(E). It will depend on the ramification of p in

oL. First, we describe the quaternion algebra in which they embedd.•
and the converse is clear. o

•

LEMMA 1.4. ([78, Théorème 1.3]) Let K be a (non-archimedean) local field. Let H

be the unique quaternion division algebra over k, up to isomorphism. A finite extension

F / K splits H iff its degree [F : K] is even.

PROPOSITION 1.5. The quaternion algebru Bp,L is :

• the totall" definite quaternion algebru B oo ,,002 ramified at bath placu at infinity

if p is inm or ramified. 118 ducriminant U 1.

• the totall" definite quaternion algebra Bs. S = {P,P,OOl,OO2} rumified at bath

placu at infinity and at bath primes over p if P = P . p. Ils ducriminant is

p.p=p.

PROOF. Let S = {P,oo}, and consider the ramification S' of this set S in OL.

Clearly, Ram(Bp,L) C S'. By Lemma 1.1, Bp.L is totally definite.

1. fi p is inert or ramified, there is oo1y one prime in 0 L over p. Rence, by parity,

Bp.L is split over p.
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2. If pis split, P = p. p. But for P:F 2, (d,p) = 1

(~) = 1 ~ pis split in Q(v'd) ~ [Qq(V"d) : Q"l is odd ,q over p

([52, Proposition 8.5]) hence p and p are in Ram(Bp.L' Similarly, if p = 2,

[Qq (v'd : QJ1is odd <==:> 2 is split in Q(,;d), q over 2.

o

PROPOSITION 1.6. 1. The discriminant of D =OL ® End(E) is p.

2. • D is an Eichler order if p is inert.

• 0 is maximal if p is split.

• 0 is none of the aoove if p is ramified..

•
PROOF. 1. The discriminant of 0 = OL ® End(E) is p :

disc(OL ®z End(E» =disc(End(E»)(OL)

= pOL

•

since 'IrBp .... (x) ='IrB... .r. (x),x e OL ® End(E).

2. • p inert.

Using Proposition 2.18, Chapter l, Proposition 2.14, Chapter 1 and the Coct

that the maximal orders Corm a tree, it follows that any order in BOO1 ,OCl:l

of discriminant pisan Eichler order.

• p split. The discriminant of D is equal ta the discriminant of the quaternion

algebra, hence D is maximal (Proposition 2.9, Chapter 1).

• p ramified.

Lacking a more precise description, we may only say that local consider-

ations indicates this order is not Eichler (and fortiori, not maximal, and

this is clear from the discriminant).

o

1.2. C.... number formula for Eic:hler orden.
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PROPOSITION 1.7. [77, Théorème 3.1]

Let 0 he an Eichler order of level p.

Then the clus numher of 0 over Q(v'd> is given b, the formula :

H(d) = h(d) (L(;I) (p2 + 1) + a(d) h( ;d) + b{d) h{~~ + c{d) h{n):(n') ,

Tl

•

•

where a(d), b(d), c(d) an integers. If c(cl) #; 0, the norm of the fundamental unit f of

Q<v'd) is one and n =2 - Tr(f) (modulo squares) and nn' =disc(Q(Vd».

PROPOSITION 1.8. 1178, p.209]) Mas8 formula Let HIL he the totall, definite quater.

nion division algebm, and 0 an Eichler arder of L of level p. Let {h} he representative8

of left ideal classes of O. If Oi is the right order of Ii, put Wi = [Or: R)(). We have

the formula:

L I zr+ 1
- = hL--(L(-I).
Wi 2

REMARK 1.9. The situation is similar to the elliptic case : the leading term of the

class number formula is the mass Cormula, and the remainder should account Cor the

ramification.

Compare the leading term of the class number formuJa with Corollary 3.26, Chapter

II:

y+l y+l
-2-[Mn : Mil(L(-I) versus -2-h(L(-I),

This suggests that the class oumber formula for Eichler orders over real quadratic fields

aetually counts (with muJtipliclties) superspecial points 00 a Hilbert modular surface.

Furthermore, the weighted sum over the superspecial points would also coincide with

the leading term of the class owuber formula, that is :

~ 1 #+1
~ IAut(A,L)1 =(L(-1)hL - 2-,

where the som is over superspecial points.
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•

•

REMARK 1.10. One would aIso expect that for p ramified, the same situation holds

with the corresponding (onnuJae :

and

where the sum is over superspecial points.

2. (L(-l) as a volume oC moduli spaee

We denote the Hilbert moduJar group SL2 (OL) by rL.

THEOREM 2.1. (Siegel) The volume of rL \11.9 is given 611 the formula:

If r c PGI4" (11)9 is commensurable with the Hilbert modular group rL, one has

the following (ormula for the volume of r\1I.R
:

where the index [rL : r] E Q is defined as

[rL : rn l'L]
[r : rL n r] .

The Hilbert moduli space is naturally decomposed in h+ components, parametrized by

the groups SL2 (OL œ~), for OL,.'.' ~,.+ representatives of the narrow class groups

Cl(L)+. Siegel'5 theorem states that the volume of the component associated to SL2(0Lœ

oL) is 2(L (-1). The next proposition shows that ail components have the same volume.

Note that this requiresjustification, because the groups SL2 (OL œ~û and SL2 (OL œ~j)

will he conjugate iff [~) = [~i] in the genus group ( (CI{L)+ /CI(L)+2) (see [75, p.12]),

and the volume is of course the saane for conjugate groups; the point is tbat the volume

doesn't depend on this data.
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PROPOSITION 2.2. Volume computation

13

PROOF. The idea is to combine [75, Chapter V, Theorem 5.1} and [75, Appendix

ta chapter V] in a straightforward way. Given r = f(~), the Theorem S.l stipulated

that a certain generating series:

:ivol(f\1l2) + Ë anqn,
'1=1

with constant coefficient tvol(f\1l2 ) is in fact equal to the Eisenstein series of weight

two in AtJi(fo(D), XD) with .., the genus of~, OL = Q(VD). The calculation of the

Appendix in question yields that the associated Eisenstein series has q-expansion :

• Equalling the constant terms yields the result. o

•

REMARK 2.3. The volume associated to the Hilbert modular group f L satisfies the

properties of a '"generalized" Euler characteristic, Le. it is real-valued, and for any

subgroup f < fL of finite index, vol(f) = [fL : f}·vol(fL). As we noticed earlier, since

vol(fL) > 0, two conjugate subgroups of finite index have aetually the same index.

REMARK 2.4. Other proo'" of Proposition 2.2 The mast elementary is to ca1­

culate directly the number [rL : f}, and check that it is indeed equal to one. One can

also use the ract that the Tamagawa number of S~(OL e~) is equal to 1. A third

praof uses the fact that for any f a discrete subgroup commensurable with the Hilbert

modular group, the Euler number orf\1l'l is constant and equal ta the volume (see [15,

Chapter IV, Theorem 1.2, p.60-61]).

REMARK 2.S. Pure group theof"J/. One can see [rL : f}· 2(L (-1) is the Euler nomber

of f also in the sense of (rational) cohomology theory of groups.
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3. Intersection theory

•

•

Let MI' he the Hilbert moduJar surface of principally polarized abelian surfaces

with RM by 0 L, L quadratic over Q, in characteristic p. We assume p inert as usual.

We present a different method to count the components of the supersingular locus.

We follow the exposition of [28) . Let Cl, C2 be the Chem classes of n~· = lM, the

tangent sheaf of ,1\1. Note that Cl is a canoDical divisor. By the theorem of Siegel

(Proposition 2.2), using the smoothness of the moduli scheme over Zp whose special

fibre is M p , we have ([T5)) :

By the Kodaira-Spencer isomorphism, we have:

nl ~ '.1~2HM -~ ,

as OL0~p -modules, where ~ is the relative cotangent bunclle of the universal abelian

scheme

Let h denote the (total) Hasse invariant. Thus h is a section of (det ~~P-l ). Rence,

3.0.1. Number of components. If we put aside for a moment problems arising from

non-rigid level structure, we have on the one hand :

(p - 1)~ = 4(p - 1KL (-1).

On the other hand,

p-l
(p -1)~ = (-2cd' (--2-cd = -2Cl . (h).

By [47, p. 137], using the Kodaira-Spencer isomorphism, one gets :

Cl i component of (A) = 2· (P -1).
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3. INTERSECTION THEORY

(p - I)C1
2 = 4· (~Cli component of (h»' #( components ),

75

•

•

hence the number of components is given by (L( -1).

3.0.2. Number of superspecial points. Under the hypotheses that there exists p'J + 1

superspecial points on every component and that all have a fixed number b of branches,

we use the adjunetion formula to calculate b. We will clear those hypotheses in the next

section.

We have:

On the other hand, if we write (h) = Uf;~-l) Di (the diviser is reduced by [27, Section

1.2]), then

(h)2 =L Di' Dj + L Di . Di.
i~j i

By the adjunction formula,

Dr =2g(Di ) - 2 - Cl • Di = -2 - 2(p - 1) = -2p.

Also,

L Di' D j =# components . # singular points on a components . (b - 1)
i~j

=(p2 + l)<L(-I)' (b -1).

Thus,

hence b =2.

Summing up, we can count the number of superspecial points on the whole moduli

space this way : we have <L (-1) components, with r + 1 points on every component,

and there are two branches ClOSSing at each superspecial points. Furthermore, there are

h! components, hence in the S~·case, the total number of superspecial points is :
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4. Moret-Bailly ramilles with RM

•

•

We try doing the study of the supersingular locus for arbitrary polarized abelian

varieties with RM and for arbitrary characteristic (Le. for p = 2 as weil). In fact

the latter is merely a remark. The argument uses the foUowing implication . For X a

polarized superspecial abelian surface, {, such that K({') = Ker(4)c : X~ X t ) = X[P],

if H C K(J:.) is of order p, then H is isotropie for eC : K({') x K(J:.) ~ Gm (Le.

eC{H t H) = 1), hence the polarization 4>c descends to X/H. The argument for p > 2 is

there are no nontrivial skew-symmetric bihomomorphisms:

e: K({') x K(C) -+ Gmt

sc eC : H x H -+ Gm is necessarily trivial. But this argument is /alse when H = Q2!

There exists non-trivial maps :

See [3} for the interesting consequences of this raet .
To explain our point with precision, we need to introduce the following definition :

DEFINITION 4.1. [50, Section 23) A Heisenberg group is a system of group schemes

and homomorphisms :

o-+ Gm ~ G ..!.+ K -+ 0,

such that

• K is commutative (but G nee<! not bel;

• there exists an open covering lUi} of K and sections ai of 7r ;

• i is a c10sed immersion, making Gm ioto the kemel of 1r ;

• Gm C the center of G.

We cite another theorem io [SOl to explain how theta-groups arise :

THEOREM 4.2. ([50, Tbeorem 1, p.225J) Let J:. 6e a line 6undle on an a6elian varietll

X/Ir.. For anll scheme S, let Aut({,/X)(S) 6e the group of automorphitms 0/ S Xi {,

covering a trunslation map 0/S XiX. Aut(€./X) is a contruvariant group-valued functor
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on the category of schemes. Thue uists a group scheme (j(C) and an uomorphism of

group functors:

Aut(C/X) ~ (j(C).

Furthermore, for any scheme S, the natural homomorphisms of groups :

o --+ BO(S, Os) -+ Aut(C/X)(S) -+ K:(C) -+ 0,

where

K:(C) = {S - valued points 1 : S -+ X such tbat Ti(S x C) ~ S x C},

induces homomorphisms of group schemes:

°-+ Gm ...!.,. G(C) -4 K(C) -+ 0,

making (j(C) into a Heisenberg group.

REMARK 4.3. We may view G(C) altematively either as the group {tPl4> : C -+ Cl,

such that tP is an isomorphism of C that covers a translation map on the base and

induces a linear map on fibers, or equivalently as the set of pairs (1/1, a) where a E .4

and l/J : C --+ T: C is an isomorphism. With respect to this definition, the group K(C)

is defined as {a: T: C ~ Cl.

FACT 4.4. deg(C) = dim. r(A, Cl, and IK(C)I = (deg(C»2.

Now, since Gm is in the center of (j(C), we may define an altemating bilinear pairing,

the Mumford pairing :

eL. : K(C) x K(C) -+ Gm

as the bihomomorphism associated to the commutator in the Heisenberg group Ç(C),

that is :

eL.(z, Il) = [,i, y},

where x, fi are lifts of z and Il (resp.) to G(C), and [a, b] =aba-1b-1.

Another argument, including the case p = 2, goes as foUows : according to [50,

Lemma l}, ifK(C) is finite of prime order, then Gis commutative, bence its commutator,

being eL. is necessarily trivial.



• 78 3. STRUCTURE AND NUMEROLOGY OF THE SUPERSINGULAR LOCUS

•

•

Consider the natural projection X ~ X/Ho Since H c K(l) and et:IHxH = 1,

it foUows from [50, Theorem 2], saYt that there exists a line bundle M on Y such that

1r
e M ~ Ct hence the polarization tPt: descends to a polarization tPt:H on X/H, and we

are finished proving the proposition :

PROPOSITION 4.5. Let (X, p) be a polarized abelian variety over an algebruicoll1l

closed field of charocteristic Pt such that Ker(IJ) contains a subgroup scheme H %rder

p. Then the polarization descends to a polarization on X / H .

We described earlier the ro(P)-level structure for abelian schemes with real multi­

plication. We want to expose the details of the construction of Moret-Bailly in more

general contexts. We consider certains abelian varieties with RM by 0 L, and a subgroup

scheme H of .4 which is OL-invariant, of order pl, killed by p and totally isotropie (i.e.

isotropie with respect to any 0 L -linear pairing). Moduli theoreticallYt this is a point on

the fibre of the morphism :

Mô(P) --+ Mi

over the moduli point of .-t. For a suitable choice of A and H t one obtains an abelian

scheme with RM by OL :

X --+ pl.

We now give the details of this construction. Let p be inerte This restriction implies

that the non-ordinary locus coincides with the supersingular locus S, whicb is given by

the vanishing of the determinant of the Hasse-Witt matrix (one equation), hence it is

a divisar (see [30]). As we have seen earlier, there are ooly finitely many superspecial

points in S. Thus, generically, the a-number is 1 in the non-ordinary locus. Let

.4 = (Az,Lz ,..\: (œtA,~) ~ (~,~+» with a-number equall. We want to prove that

.4 lies in a suitable Moret-Bailly famUy.

REMARK 4.6. It is sufficient to prove that the Frobenius transform A(p) of A lies

on a projective line.

DEFINITION 4.7. The group:

o(A) = Ker(Ver : A~ A(*» n Ker(h : .4 -+ A(p»,
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is called the alpha group of A.

79
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Let a(.4z ) he the alpha group of Az . Since the a-number of A is 1, the alpha

group is isomorphic to ap. It is a characteristic subgroup, and therefore the action

of 0 L descends ta an abelian variety with RM A' = Az / a: since the alpha group is

contained in the kemel of Ver and Fr. Thus, we can consider the polarized abelian

variety .4' = (.4z /a(Az ), ..\0).

We note the foUowing points

1. The abelian variety At has RM, but the cotangent space tA is not a &ee OL­

module (Rapoport's condition rails), which implies tbat every subspace of HO(A, n~)

is 0 L-invariant. Consider the exact sequence :

These modules are a1ways Dieudonné modules of group schemes, and we cao

write:

o~ ID(Ker(Fr)) --+ D(A[p]) ~ ID(Ker(Ver)) --+ 0,

where II) denotes the (covariant) Dieudonné functor. The cotangent space lA is

the zeroth cohomology group HO(.4, n~), and p acts as 0 on it. The finite OL­

module Oe,/p = Fr acts in two ways (XltX2) = (Xl,C70xd «(7 is the Frobenius)

on the cotangent space. To show that Rapoport's condition fails, we describe

(.4fo(.4»[Fr]. Let B = .4/a(A), and let

V =D(o(B» := D( (Fr-1(o(A» n Ver-1(o(A}»/o(A»).

It follows &om [13, p.68] that Hk(A} :!! D(Afp]) is a &ee OL ~ k-module of rank

2. We therefore get a decomposition:

wbere W i is a 2-dimensional k-vector space, with the OL-action given by the

character Xi (see [25, Section 2.6, p.291] for more details). The behaviour of Fr

and Ver with respect to this decomposition is :

F(Wi ) ç Wi+1 , Ver(Wi ) ç Wi+1 •
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This Collows from the u-linearity oC Frobenius and u- 1-linearity oC Verschiebung.

For example, Cor r E OL, VI E WI , we have:

rFr(vd =Frr(vd =Fr(xdr)vd =xdr)PFr{vd =X2(r)Fr(vd E W2 •

It is true in general that Cor any abelian variety A,

lmVer =KerFr, ImFr =KerVer on D(A[PD.

Without 1088 of generality, we can assume that KerFrnKerVer = lD(a(A)) ç W2.

We daim that

Fr(W.) = Ver(W.) =lD(a(A».

Since Im(Fr) = Ker(Ver), Fr(Wd ç KerVer n W2 = D(Q(A)). The kemel

of Frobenius is a l-dimensional vector space, hence non zero, and by dimension

considerations, Fr(W.) =ID(Q(A)), similarly Ver(Wd = D(Q(A».

Recall that the dimension of ID(Afp]) is 4, and the dimension of the kemel

of Frobenius is 2, hence Equation 4.1 inlplies that the rank of Fr- 1(ID(Q(A»

is at most 3. because ID(Q(A) is one-dimensional. But since it visibly contains

"""1 œlD(a(A» and this is already of dimension 3, we have:

Similarly,

We then conclude that

v =ID(Q(B»

= D(Fr-1(ID(Q(A») n Ver-1(D(a(A»)/Q(A»)

~ lD(Fr- I {lD(o(...l»» n lD(Ver- I {lD(Q(.-l))))/D(Q(..4))

~ W1 e lD(o(A»/D(a(.4»

Note that Frobenius and Verschiebung both &Ct as 0 on WI , and the 0 L -action

is given by Xl' Moreover, V = ID(B[Fr]). This argument a1so shows that the

a-number of A' is equal to the dimension of W1 , that is, two.
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2. We just proved that the a-number of A' is equal to 2, that is, the abelian variety

is superspecial. The morphism Ver is identically zero on HO(.4, n~), and every

subspace of HO(A, {}~) is Ver, Fr, and OL-stable, hence every embedded op in A'

is 0 L -invariant. The various subgroup schemes isomorphic to op in a superspecial

abelian variety are parametrized by ,1, so we consider the family (see page 48) :

(.4' x r l
)/ {Ot}tEPl.

Note that since any op is 0 L -stable, the action of 0 L descends to the quo­

tient. We get an abelian scheme X ~ ri which satisfy Rapoport's condition,

and we daim tbat one fibre of 7r is A(p). We first check locally that Rapoport's

condition holds. The argument uses the same idea as in point 1.

Let H S!! op. We want to show that Rapoport's condition holds for B / H.

Let us write D(B[p» = W L €a W2 • We saw above that D(o(B» = WL, and

Fr(Wd = Ver(Wd = O. Since the rank of the homomorphisms Fr and Ver is ,il,

on the level of Dieudonné module their kemel is of dimension two. Hence

WL =KerFr =KerVer,

and

Fr : W:z ~ W I , Ver: W2 ~ W 1 •

Put Zl =H S!! op and Z2 the image of ZI (under Frobenius or Verschiebung)

in W:z. Then by dimension COllOt,

O«B/H)[Fr]) = rr-1{D(H»/D{H)

= (Rtl ffJ Z2)/ZI

S!! Wt/ZI e Z2'

with OL acting on Wt/Zl via Xl and OL acting on Z2 via X2, and we are done.

Now, there is a unique way to embed o(A) ç Ker(FrA) C A, and we daim that

(:J C KerFrA/o(A) ~ op ç A'. This isomorphism foUows since for any base field,

any local-local group scheme of raok p is isomorphic to op (recall that local-local

means that Fr and Ver acts nilpotently, and for aoy supersingular abelian variety,

Ker(Fr) is annibilated by some power of Ver).
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We get that

A' /fJ ~ A/Ker(Fr) = A(p).

ln fact, .-!'/fJ with its OL-strueture is (A(p),t(p)). It follows that we may take

A(p) and get (.-!(p) , t(p), A(p)) on the Moret-Bailly family X --. Pl.

Summarizing, we have the foUowing theorem :

•

•

THEOREM 4.8. Let P be inert. EfJery component 0/ the supersingular locus 0/ the

moduli space of {non-necessaril1l principall1lJ polarized abelian surfaces with level n ~ 3

strocture u a Moret-Bailly /amily, that u alamil" of supersingular varieties parometrized

61/ the projective line Pl.

4.1. Local picture. It fol1ows from the Serre-Tate theorem (2.7, Chapter il) that

there is an equivalence of categories between the isomorphism classes oC deCormatioDS

of points(A, À, a) on the Siegel moduli scheme to R and the corresponding isomorphism

classes of deCormatioDs of the principally polarized p--divisible groups to R. Similarly,

there is an equivalence of categories between the isomorphism classes of deformatioDS

of points (A, t, 0) on the Hilbert moduli scheme and the corresponding isomorphism

classes of deCormations oC the p--divisible groups with real multiplication to R.

Since the equivalence oC categories (following Serre-Tate) is insensitive to the po­

larization module, it follows that the local pieture is the same as in the principally

polarized case.

4.2. Counting pointa and componenta. Let us recapitulate the situation when

the polarization is not necessarily principal :

1. the local pieture is the same as in the principally polarized case. Namely, there

are [MdL.n : MdL)(L(-l) components, the intersection points are equal the

superspecial points and there are pz + l oC them. Eacb intersection is transversal

with two branches. See Section 3, Chapter m.
2. Every component of S is parametrized by a projective line.

Indeed, the local picture is the saBle as in the principally polarized case, and this

validates the appearance of the cJass Dumber hL in the Cormula countmg the number of
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superspecial points, since the map

has degree

83
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[(O~)+ : (OL )2] = [pGL(~ e 'B)+ : PSL(~ e 'Il)) = :~ .

Sa the fonnulae for non-necessarily principally polarized case (GL2 ) are the same

as in the principally polarized (SL2 ) case, replacing ht by hL .
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CHAPTER 4

Tensor constructions

1. Axiomatics or tensor construction

The matching between the number of superspecial points on the Hilbert modular

surface in characteristic p (p inert) given in Section 1, Chapter IV, and the c1ass number

formula for ideal of the non-maximal arder of Bp.L appearing as CentE00 Co (0L) given in

Section II, Chapter IV, suggest that a direct equivalence of category between ideals and

superspecial points should exist, as in the case ofelliptic curves. We study in the section

constructions involving tensoring an abelian variety by a finitely generated projective

(left) module (under a ring action), in order to try systematizing (algebraically) the link

between c1ass numbers and isomorphism classes of superspecial abelian varieties.

DEFINITION 1.1. A ring is left hereditary if every left ideal is projective.

Let 0 be a left noetherian, left hereditary ring acting on A (i.e. we are provided

with an injection in the endomorphism ring). In pratice, we are more precisely interested

in Eichler orders of totally de6nite quaternion algebras.

DEFINITION 1.2. Let M be a finitely generated left ideal of O. The teosor con­

struction in question is a group functor A 1810 kl , with A an abelian variety with RM

by OL. We de6ne it with the formula:

(1.1) (.41810 M)(S) =.4(5) 1810 M,

where S is a scheme over O.

We construct .4 1810 ~ as fol1ows (see [74]) :

Let ~ be of 6nite index in a &ee O-module. For free O-module ~ ~ 0", we pick a

basis el, ... ,en and we de6ne

85
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If b COis a fractional ideal, there is a canonical isomorphism :

(A ®o ~)[b] ~ A[b] ~o ~.

In general, if b~' C ~ C ~', ~' &ee and b a non-zero ideal of 0, then:

.4 ~o ~ := (A ®o bg')/(A[b] ®o ~/b~'),

independently of the choice of the superideal ~ C ~'. We get the same canonical

isomorphism :

.4 ®o ~[b] ~ A[b) ~o ~.

If ~ has an action of 0 ~ K, then ..4 ®o K canonically inherits this action.

fi l : ..1 -+ ..4f is a polarization, and / : ~ -+ ~v is a O-lïnear map then l ® / :

.4 ®o ~ -+ At ~o ~v is a polarization.

REMARK 1.3. We also have a canonical isomorphism of l-adic Tate modules :

T.\(A ®o~) ~ (T.\.4) ~o~·

When kf is a projective rank 1 O-module and ,1 has RM, the functor .4 ®o kf is

represented by an abelian variety with RM of the same dimension as A.

For the convenience of the reader, we reproduce the exposition found in [22, Prop"

sition 1.2.7].

1.:

This is similar ta the previous construction :

We write down a free resolution of ~ :

... ~ œmo~ eno-+~~o.

Sioce ~ is projective, œnO splits ioto ~ e p, where p is a projective O-module.

The map:

emo~p,

gives a splitting emO as p œq. Thus, we have an exact sequence:

... +- €l'mO ~ enO ~ ~ ~ 0,

where i and f/J are the maps obtained from the above splittings.
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(where T is an R-scheme, and Ai denotes A I8IR • ~. I8IR A) make .-l 1810 tP into a,
Datura! transformation oC functors, whence a morphism from .-ln to .-lm, which

we cali also,p. Define the scheme B as the 6ber product :

.-ln~.4m
~

where em is the identity section oC X m • Then, iC T is an R-scheme,

B(T) =ker(id @o ,p),

which t by the splitting oC EBnO, is just .4(T) \8Io~. Sa the functor .4 \810 ~ is

represented by B. It remains to show that B satisfy the definition of an abelian

scheme \\ith real multiplication.

2. : Bisa group scheme which is proper and locally 0/ finite presentation over S

Clearly, Bisa group scheme. Since .4n and Am are proper over R, .4n is

proper over Am, and, alter base change, B is proper over R. Likewise,.4n is

locally of finite presentation over R (because it is smooth) and Am is locallyof

finite type over R (because it is proper). 50 .4n is locally of finite presentation

over ..4m, and, alter base change, B is locally of finite presentation over R.

3. :

B is smooth. If X / R is an affine scheme endowed with a map .4~ S, I is a

quasi-coherent sheaf of ideals on X with LJ = 0, and Xo is the closed subscheme

of X detennined by I, the map :

A(X)~ A(Xo)
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is surjective, because A is smooth. Thus

A(X) ®o ~ ~ A(Xo) ®o ~

is al50 surjective, and because B is locally of finite presentation over S, it is

smooth over S. (See [2] for a discussion of smoothness).

4. ; B has connected geometric fibers of dimension g. Let k be a geometric point

of S. Then we have maps on fibers ;

XE ++ Y,

whose composition is the identity on Y,. Since XE is connected, 50 is Y,. Sioce

XE has RM by OL, there is an exact sequence of OL-modules :

o~ k ®z OL ~ .-l(k[E]J(E2»~ .-t(k) ~ 0,

by the condition on Lie(A) (see aI50 [38]). Since ~ is a fiat O-module, the

sequence;

is exact as weIl; (k ®z Od ®o ~ bas dimension 9 over k, 50 Bi bas dimension g.

5. : Lie(B/R) Î3 a localill free (on R) rank-l OL ®z R-module

We have an exact sequence of sbeaves 00 An:

Let en, ey denote identity sections; pulling back by en yields :

Now i : B ~ .-ln is just the base change of em by r/J, 50

Replcaing e~nA"/A'" by eY{}Y/R and dualizing, we get an exact sequence of

sheaves on R :

0--+ Lie(B/R)~ Lie(An/R)~ Lie(Am/R)

from which Lie(B/R) = Lie(A/R) ®o m, which is, locallyon R, a &ee rank-l

OL ® R-module (since Lie(A/R) is 80.)
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PROPOSITION 1.4. For anll a E~, the map :

t(a} : A. --+ .4 ~o ~,

given b1l

.4(5) --+ A(S) ~o ~

8 ..... 8~at

is an isogen1l.
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PROOF. First, t(a) is a morphism of proper S-schemes, 50 it is proper. Now choose

d E ~-1 such that ad = nEZ. Then, by composing t(d)f(a) with the natural ~

morphism (A ~O,(~) ~) ~O,(~-l) ~-1 ~ A, we see that t(a) factors through ln]. Sa

ker(f(a» C ker[n] is finite over S. Now by [50, Proposition S.lc], t(a) has finite fibers.

so t:(a) is finite. 0

REMARK 1.5.

kert:(a) = n{oeQt(o)l~o~C~} ker[o].

One inclusion is clear, and kert:(a) C ker[Q] follows as in the proof of Proposition 1.4.

This proposition enables us to show that the tensor construction satisfies Rapoport's

condition more easily : just pick an element in ~ such that the degree of the kemel of

the i50geny is prime to p. Then the familiar argument shows that the tangent spaces

are i5Omorphic :

This tensor construction is therefore the direct generalization of the kemel ideal ap­

proach. It is easy to prove that the a-number and the f-number are stable under the

tensor construction.

REMARK 1.6. A projective ideal is fiat ([84, Corollary 3.46]). Since 0 is assumed

to be left noetherian, any fiat ideal is finite1y presented, hence projective ([84, Theorem

3.61». Sa fiat is equivalent to projective in this context, and we cao consider eïther the

tensor construction - ~o ~ or Hom(~t-) equivalently.
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2. Application to Bupenpecial poiuts

•

In this section, we try describing a higher dimensional analogue of the equivalence

between supersingular elliptic curves and left ideal classes oC a maximal order in Bp,oo.

CONJECTURE 2.1. (Bare conjecture)

Let S he the category of superspecial ahelian varieties tuith real multiplication b"

OL and ùogenies, and let .40 he an object in S. Then the functor Homs(A, -) to

the category of lelt ideals of 0 =EndAo ù an equivalence of categories, with inverse

provided b" .4 ~o -.

A list of consequences of this conjecture :

COROLLARY 2.2. (Mass fOm&ula for superspecial a6elian varieties with RM)

~ 1 (L(-l) 2
L- IAut(.4,1.)I = 2 hdp + 1),

where the sum ù over superspecial points.

COROLLARY 2.3. For finite extensions of Fp , the functor:

B t-+ (Hom(A, B), n'.),

where 1r Ù the froheniw morphism, gives an equivalence of superspecial abelian surfaces

tuith RM with the suitable category of pairs.

COROLLARY 2.4. For ~ a projective mnk one O-module, we have

.4. ®o ~ superspecial ~ .4 superspecial ,

where 0 c Boo 1,00'2 •

PROOF. This can be proven independently using Proposition 1.4. o

COROLLARY 2.5. 1. Under the equivalence, ùogenies of superspecial a6elian

•
sur/aeu cofTeSPOnd to nonzero O-module homomorphism.s.

2. The finite set of uomorphÙfR clases in each categOf'J/ are in bijective co~pon­

dence. The carrlinality of the set of superspecial point on the bore moduli space

is given bJl the clas namber formula for Eichler order oflevel p.
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COROLLARY 2.6. Every locally free rank one right module over 0 is isomorphic to

one of the foma Hom(.4, B) for.4, Be S, and all of ib embeddings in 0 are detennined

this way.

REMARK 2.7. We can define the degree of a morphism f/J : 1 --+ J oC right 0­

modules and various properties in the quaternion category in parallel with the geometric

category.

DEFINITION 2.8. Let ~ be a set of isogenies of A. We define .4[~] to be the scheme

theoretic intersection of the kemel of ail il e ~, Le.

•4[~] =ker(f(l) : .4 --+ .4 ~ ~).

A left O-ideal ~ is caUed a kernel ideal if ~ = (a E 0lo(.4[Œ]) = O}.

PROOF. Strategy or the proor of the bare co~ecture Since the tensor con­

struction is essentiaUy the same idea as the construction using kemel ideas, we could

try using the same praof. Recall the

LEMMA 2.9. ((79, Theorem 3.11}) Let ~ and ~ be kernel ideaLt. Then

.4 ~o ~ e! A ®o ~ <===> [Œ] = [~l,

i.e. Œ= v~ for some invertible v E O.

Thus, the result would follow if the equivalent of Theorem 2.21 is true, that is every

left O-ideal is a kemel ideal, Cor 0 an Eich1er order of discriminant p in B001 •oo2 • 1

beUeve that this Collows from a modification of the praof of [79, Theorem 3.15] (since

B001 •oo';l is a simple algebra) and the rest of the proof would Collow on the same ÜDes as

in the elliptic case. 0
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CHAPTER 5

Conclusion

We will digress briefty on a number of possibles avenues of research following the

lines of this thesis.

Serre [87] developped an approach to the tbeory of modular fonns mod p base<!

on quaternion algebras; at the heart of the application of quaternion algebra is the

connection between supersingular elliptic curves and class number of Bp•oo • Cao the

connection between superspecial abelian surfaces and certain ideal class numbers im­

prove our understanding of Hilbert modular forms mod p? A similar theory vaUd for

Hilbert modular varieties would already be extremely satisfying (keeping in mind the

conjectural importance of sucb abjects as cohomological motivic "building blocks" ),

but various ingredients used to develop mod p modular forms (sucb as the Ekedahl­

Oort stratification) are being developpOO for general Shimura varieties. Of course, one

wouldn't stop at studying the modular forms mod p, but also the p-adic theory ~ p-adic

modular forms for Shimura varieties, including p--adic Hilbert modular forms. Bacle: to

the classical theory, since the trace fonnula for Hilbert modular fonns has already been

developped, one could try solving the basis problem by establisbing a trace fonnula for

the geometric Brandt matrices associatOO to totally definite quaternion algebras over

totally real fields, and comparing the results, following the original strategy (pending a

clarification of the connection between geometric Brandt matrices and Hilbert modular

forms which, as we have ootOO earlier, does not follow the same lines as the elliptic

case). In comparison with the c1assical case (with the motivation of understanding re~

resentatioDS of Gal(Q/Q), it seems that little has been done with regard ta arithmetical

applications of quaternion algebras definOO over number fields different than Q; likewise

for vector-valued theta series and modular forms : this dearly indicates the pertinence
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of considering the "fibred product", considering vector-valued theta series and moduJar

forms for more general congruence subgroups.

A perpendicular direction is ta replace, following Gekeler, abelian varieties of di­

mension 9 by Drinfel'd modules of rank r.

Even though we take a geometric point of view to the arithmetic of quaternion

algebra, one could pursue similar themes in the study of the arithmetic of octonion

algebra (21) : compute the number of optimal embeddings of orders with application ta

moduJar forms, for example ( the cardinalities being viewed as q-expansion coeffients).

Always in the theme of arithmetical applications, one might investigate the relation

with the ~adic uniformization of related Shimura curves and applications ta p-adic

L-functions, Heegner points, etc.

Most concretely, classical Brandt matrices have been used by pizer to construct

Ramanujan graphs. Can we exploit the fact that certain of our geometric Brandt ma­

trices are adjacency matrices and give application in extrema! graph theory, say. In

order to make computations easier and faster, can we build the Hecke theory wholly

on quaternion algebras (considering Hecke modules as &ee ahelian groups on left Ideal

classes of an order in a quaternion algebra, and Hecke operators as

Tn([I]) =~[J] =E an(I, J)[J],
tP JES

where the sum runs over cyclic R-moduJes homomorphisms tP : 1 ---+ J of degree R,

(n,p) =1.) : etc.), so to he able to choose the less time consuming side of the pieture?

Note aIso that Hilbert modular forms arising from geometric Brandt matrices wouJd

he a good source of computable examples, and establishing this link satisfactorily shall

constitue the evident next step for further research, provided a praof of the hare conjec­

ture (at the time of writing, the author is optimistically working on a proof of a suitably

formulated bare conjecture for Hilbert modular varietiu).

On moduJar curves, the supersingular divisar group cao he seen as the monodromy

group at p (see [41]); can we pursue the monodromy point of view in the higber-

dimensional case ?
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One could study theta series coming from exotic lattices: Es, Leech, Elkies­

Borcberds, Thompson-Smith, Bames-Wall, etc. and develop furtber sphere-packing

properties of modular forms, or explore various theta series congruences (see [18]) .
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