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ABSTRACT

The relative merits of different statistics available
for the classical Behrens-~Fisher problem are considered in
this thesis, The two means problem is treated from signi=-
ficance test and confidence interval aspects, Looking at
the problem from significance test approach, various methods
are applied to approximate the true unknown distribution of
Behrens~Fisher statistic, The general case of testing
several population mean values 1s taken into account and an
approximate test, based on F=distribution, is constructed
which has more practical usefulness,

Confidence intervals, for the difference in population
means, are set up in terms of the sample values and their
optimality, under certain conditions, is shown,

Bayes'! solution of the problem is also considered under
the provision of a priori knowledge for population variances,
An approximation, based on the existing Student t-tables, is

given which seems to be adequate for the routine tests for

practical research workers,
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PREFACE

The historical well known Behrens~Fisher problem is
simple to put but difficult to answer, The available
immense literature shows that it has often been discussed,

I have gone through the different research papers dis-
cussing its various aspects, This study reflects the way
I have looked into the problem, This work is of expository
nature, I have classified the problem and considered it
from various approaches,

From significance tests view point, some methods,
already used by various authors, are applied to approximate
the unknown distribution of Behrens=Fisher statistic, Their
theoretical limitations and practical utility have been pointed
out, Comparisons of some test procedures, under the given
conditions, are made in Chapter 2, to know . the advantages of
one test procedure over that of the other,

The confidence intervals, for the difference between the
population means, have been set up by numerous authors, These
are discussed in chapter 3, Two tests, given in chapter 3,
are compared on the basis of their expected lengths of con-
fidence intervals to arrive at a criterion, from which it may
be possible to study the approximate relative test efficiency,

Fiducial approach to solve the problem is considered

within the frame-work of group transformation model, The



frequency interpretation of fiducial probability is made
in chater 4, An approximate test for practising biometriciansa
is considered which can be useful for drawing the scientific

inferences,
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CHAPTER O
SUMMARY

This thesis treats the Behrens-Fisher problem from the
stand=point of tests of significance and confidence intervals,
It is assumed that the simple random samples of different sizes
are drawn from independent normal populations, All parameters,
involved, are supposed to be unknown, The question is poseds
Are the data consistent with the hypothesis that population
means are equal or differ by a given constant?

The answer to this is put forward by Behrens (1929) and
latter Fisher (1935) gave a test based on the fiducial dis-
tribution, The justification of the use of this test is
considered under the ffamework of group transformation, within
which, the fiducial probability has a frequency interpretation,

In the situation when variance ratio is unknown, the
usual procedure is to approximate with the standard normal
distribution when the samples are 1arge, but for the small
sample sizes this approximation fails, The approximate dis-
tribution of two statistics, given in§1. s 1s obtained in
chapter 1, from which it is possible to study how far a .
Student t - test is valid when sample sizes are unequal and
small, For the case when sample sizes are odd an exact dis-
tribution is obtained in §1. 2, Finally, an approximation

procedure to solve the problem of comparing several mean values



is considered,

In chapter 2, two types of statistics are taken into
acocount, One called unilateral, which controls the type I
error, if it is known a priori that the variance of one
specified population is greater than that of the other, The
other is called bilateral, which controls the size of the
test when there is no a priori knowledge qf the population
variances, Some procedures are also considered in which a
preliminary test on the observed data 1s'§erformed to ascertain
whether the population variances may be regarded as equal or
not, On the basis of the outoome of the preliminary test,
one proceeds to test for the equality of population means,

Chapter 3 examines the problem of estimating the difference
between the population means from the confidence interval
point of view, The general case, when sample sizes are
small and unequal, is discussed, An approximate confidence
interval for a linear function of the population means (with
known coefficients) is constructed in terms of sample esti=-
mates, The power function of the test in §3.1 is compared with
the power function of the corresponding most powerful test in
which variance ratio is assumed to be known,

The logical requirements for the fiducial method of in=-
ference, are considered briefly in chapter 4, The justifica-
tion of Fisher (1935) test, based on fiducial distribution,
is discussed within the group transformation model, Bayes’

approach to solve the problem is also considered when somehow




a priori distribution of population variances oan be specified,



CHAPTER 1
DISTRIBUTIONS

Introduction:

be independent normal random variables

2
2 2
with means pp and Po and variances 61 and 62 respectively,

Let Xl and X

Samples of sizes nq and n,, drawn from the corresponding
populations, are denoted by xij(inl,zg j-l,2,...,ni).

The sample means and variances are

- 1 ny 2
- =i S x,.3 S =
& ng j=1 13 i E/(l'l:‘.--'l)
ny - 2
where § = Sj.l(xij-xi) » (221,23 3-1o2u...ni).

It is required to test the hypothesis Hos P1Poe

Under Ho’ two obvious cases are (i) 6% = 62 and
2 2
(11) 65 # 6, « In case (1) the most appropriate test

is made by identifying

z z
U = (§l-§ ) /[ a2 (et 4 .l.)]é
2 (ng+n,=2) n n2

with a Student t - distribution with f-(n1+n2-2) degrees



of freedom (d,f), In the second case, if Ra 6?/6: is

known, the statistioc

A/t 3

n1+n2-2

2 .2
Up = (55, /[ (R/ny + —:n;)] '

’ 2
can be used to test Ho' When Py =Poe UR is distributed

2

as tqtﬁfz s Where tn1+nz-2 is a Stuéfnt t -

distribution with (n1+n2-2) d,f,

one-
If, mowever R is.known, an alternative criterion

often employed is

(3,-%,)"
2 X=X
V = 1 2 .‘

E <
(FTeD) * TlasD)

The statistic V follows an approximate standard normal
distribution if sample sizes are large, But for small
samples, this test is not appropriate, When ng=n,»

% and V are identical, The validity, in the sense of
contrelling type I error satisfactorily, of U(when

o2 4 cg ) and referring V to a t = distribution with

f-(n1+n2-2) d.f is investigated,

It 1s obvious that U in general, is not distributed

as a t = distribution, The variance of difference of



" sample means is (Gf/n1 + Gglnz),and S2 is an unbiased

2 2 i* z%
when 6% - 62. where S = =wmees—, and

estimate of 62

6% = 6§ - 62 e The statistic V does not suffer from

this restiiotion but its distribution is also not in-

dependent of R,

Other criteria of the form ('x'l-:-:z)/ Ja Z,v¢ Z,,

where d and e are some positive constants, may be more
appropriate than V, For instance, if ny and n, are both

greater than 3, we might expect

z, z,
+

Z = (3~
“1mx)/ ny(n;3-3)  ny(ny-3)

to be such a criterion, The reason for these particular
values of d and e is that they give to 62 the same value
when R =5 0 or when R =y , which means that the pro-
bability of rejection, under Hh, departs from a preassigned
value, less for Z than for either of the criteria U and V,
Approximate Distributions of U and Vg

Under H,, we may write

2
2) /2 2

(x,-%
1

5 7.2
pry =% 3 /6y = &7
6§/n1+6§/n2

H %/62 = ’g:



where i?, xf and.!i are independently distributed as

%2 with 1, (nl-l) and (nz-l) degrees of freedom re=-
spectively, Both U and V can be expressed in the form
Y(a,b)= &/ﬁ » where W= a 'x% + b 'X'g and a, b are some
positive constants depending upon the sample sizes and
the two variances, W is always distributed independently
of 76. When asb er when either a or b is zero, W is dis=-
tributed as X? multiplied by some constant, In these
cases the distribution of Y(a,b) will be some constant
multiple of t, For other values of a and b the dis-
tribution of Y is obtained by approximating the distri-
bution of W by a Pearson Type III(~X2?) Curve, This
approximation can also be made by representing U(and V)
by a Pearson Type VII(=Student) curve after servsdting
£4s. $hcend and, fourth moments,

The probability law of W, as approximated by X? is
given by Welch(1936), His method of approximating the
distribution of Y(a,b) is as follows,

The probability function of a type III curve is
2
-:_:- : (w’(f/z) ;-2—8 Yo,
(2¢)2 [( L)

p(V) =

vwhere f and g are so chosen that the first two moments



of this cur&e and the true moments of W are the same,

First two moments of the curuwe are given by
mean i H A 2f
= g H pz‘zg.
The true moments of W are

mean = (afl-o-bfz) and pz-z(azfl-i-bzfz).

where ft.(ni-l)’ 1'1'2.

Equating the first two moments of the type III ocurve with

those of W, we get

2, .2 2
a®f, +b°f (af1+bf2)
2 2
afl + bf2 a f1+b fz

with these values of £ and g we see that L is appro-
' g

ximately distributed as u? with £ degrees of freedom,

Hence ﬁ/ /-JL- is approximately distribnted as
fg

t = distribution with f: degrees of freedon,
Therefore  Y(a,b) = C t;,
1

1/af1+bf2

as Student t = distribution with £ d,f, For U, it will

where C =

and tf is distributed approximately

be seen that



2 e
6% (n,+n 6.(n,+n )
a = 1 12 H b= 27172 (101)
(n1+n2-2)(n162 +n, 61) (n1+n 20(n162+n2 )

Considering g.f: C= -5—;. and the values ef a and b, as

et
in (1.,1), we have
Uses C tp,
where
. 2 2 2 2.2

(n,+n_=2}(n_o6_+n o) (£,67 + £,65)
Cuf 1 2 12721 } = 1 2 o f(1.2)

(n +n )(f 62 +f 6 (f16u + T 6 )

Similarly the values of a and b for V are

n Gf n 6:
a = 2 and D = 1 (1c3)
2 2 2 2
(n -1)(n1 2+n261) (nz-l)(n261+n1 62)
We can, therefore, write Vv = ctf N
2 2,2
(n_65 + n, 6 )
where f = 271 3 Ca=1 (1.%)
2 4 2
(nzfi + M1 S5 )

* £ is not necessarily an integer, but may be regarded as a

number of d, f for approximation,
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1.1 The Validity of U and V3
Suppose that the statistic # is to be used to test

Ho at some prescribed level o« , If it &% assumed that

o’f = 62 ¢ then for a t = distribution with (nl-l-nz-z) a,f

it is possible to choose uo. such that
Pr ( ﬂo Z u Z \io) 1 PY

Ir 6% +# o'g » and U is cho-sen as above, then the test
which rejects H, will be biasad, we have

u
o
Pr (U > ¥)) = Pr { it >—é-).
where C and f are given in (1.2).
The distribution function of t = distribution with £ 4,f

may be written as

to -3(f+1)
2P(6 )=l = et Lo (144%7,) dt,
° plf/2,1/2) o A& /e
By making transformation Z = ——f§ s We get
£+t
1 /-1 3 -1
zr(to)-1. ,fz (1-2) dz
Pp(£/2,1/2) z

L Iz (f/2. 1/2)0
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Hence F(t,)) = 1 -4 I (f/2, 1/2).

Thus the values of distribution function of Student
t - distribution méy be obtained from Incomplete Beta =-

funoction Tabltes, It is, therefore, possible to write

Pr (14} > 4)) = I,(f/2, 2/2), (1.5)

where
Z = £

2
(f + 4,/c2 )

Which shows that for given Sample sizes, ¢ and f depend
only on R and it is possible to obtain, for any value
of R, the probability of rejecting Hy when H, is true,
The level of significance o is preassigned, The value
of uo. appropriate to the preassigned o« , whsn Rxl, is
seen from a Studeht t = table corresponding to (n1+n2-2)
dife If np=ny=n, then ¢ will always be unity and

(R+1)? (n-1)
f u :

(R%41)

Pr( (W) » uo), for diffsrent values of R, can be
obtained by using Incomplete Beta=function Tables and
the relation (1,5), The extent of bias of statistic U

can be studied from the graph drawn between the probabilities
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of rejection and the different values of K, Similarly
the case when nifnz. {({¢c and £ will take values as given
in (1.2)), can also be studiad,

The values of C and £ for the relation V= C tg, are
given in (1,%), Therefore, validity of the test statistic
V, by identifying it with a t - distribution with
(n1+n2-2) d, f may be investigated in the same way,

If it is known that R=l, then certainly W 1is the
exact test statistic, When there exists a possibility
that Rsf 1 , then U will yield wrong conclusions, In
this case it 1s appropriate to use V.rather than U.‘ Sice
V controls type I error more ssatisfactorily than #, If
there is no information about R, the statistic Z controls
type I error more satisfactorily than both 4 and V, pro=-
vided sample sizes are greater than 3, Under Ho. the pro=-
bability of rejecting Ho deviates less from the preassigned
level of significance, for the statistic Z than for the
statistics U or V. |

1,11 Approximation by X « statistics:

An other method of approximating the distribution,

of the form y(a,b), is given by Gro-mow {(1951), He has
obtained the approximate moments of the distriﬁ%ionas

of U and V by Fisher?s Kestatistics, Both U and V are

bk, - l‘;'.!

expressed in the form s Where a, b are

(k2 + ak;)%
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some constants, The quantities k,, k;! and k,, k; are
the first and second cumulants of the samples, 7The values
of a and b, in general, will differ for # and V except

in the case, when ny = n, , where U will be identically
equal to V,

'
(k. - k_)
Let Z = 1 1 . Expanding z, by Tayler's

y ¥

)
(l:2 + ak,

. ' ' 1
Theorem about the point (ifl, _k'l, 1(2. l(z), where K,, K;

and Kz, Kz are the first and second cumulants of the two

poepulations being sampled, and taking expected value,
-2
we have, to the order (n-1)-"

1

| 2 3a2 K2
B{z)= _é, [1-!- J. K2 + 1 2, 1
T n-1 & nel b ™ \ny=1)“
3 , 2‘
5K 21 K 1 1°5aa‘§ﬁ2
R 2 ( -2 + 2) « ‘
> TO 16T2 (n,-1)(n-1) 1670
!  §
3 23 2la K
+ 1 5a Kz (-1 + 2 )J »
2
(n2-1)2 2 Tﬁ 16 T
{ ' t %
Here = Kl-K1 = P11P2 and T =» (K2+aK2 ) .
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Second, third and fourth moments of z can be
evaluated in the same way, Taking specific numerical
values, an appropriate Pearson Type Curve (with same
mean and variance) can be used to approximate the unknown
true distribution of U and V,

This method fails to approximate the moments of U
and V if the 1lst two cumulants,of the populatiens being

sampled, do not exist or they have the same value:,
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1,2 BExact Distribution of Vi
Consider the samples of odd sizes (2n;+1) and
(2n2+1). drawn from two independent normal populations

naving variances df and dg s respectively, Let

§1, 32, sf, sg ba the estimates of the parameters,

based on the sample values, If pywp, = §, then V ean

be written as

(3,-3,)- §

2n1+1 2n2+1

2 2

Sy 6, %

Dividing numeraftor and denominator by ( =me 4 |
2n1+l 2n_+1

2
we obtain V in the fom X s . (1.6)
7* ' 2 2
‘1 82
- - L3 l/
{{xy~x5)~ é) 4 o2 28141 20,41 .
where x= and y=w .
&2 PEAR 2 62
2ny+1  2n,41 | 20541 2n,41

Obviously, x follows a standard normal distribution

and y is distributed as a weighted sum of the QF

variates, with 2n and 2n, d,f, 1,0,

1

a zF + b z? 0
2n1 2n2
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2
61 (2n,+1)

where a = .
2n1[ (2n2+'1) 6:+(2n1+1) 6’:]

6§(Zn1+1)
and b - ]

an[ (2n2+1) 6f +(2n,+1) 62]

b= 1,

are constants with the cogndition 2n1a + 2n2

1,21 Distribution of y:
Box (1954) has given a theorem for the linear

combination of m? variables with even d,f, from which

the exact distribution of waighted sum of two a@ variates

can be obtained, Satterthwaite (1941) has also obtained

the distribution of weighted sum of two %2 variables,

The present solution, based on the Laplace Transform

(L.T), of the probability density function (p,d.f) of a

randem variable, :: is due to Ray and Pitman (1961),

They bbtained the probability funcition of y, as follows,
Let p(y) be the p.,d.f of y, where

y = a 7,2 + b "2 ’ 7.2 and a‘,z are independent 702

2nq 2n2 2n1 2n2

random variables based on 2n1 and 2n, 4d,f, The L, T

2
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of p.d.,f of a random variabley, distributed as 7:.2 with

even d,f is

2 2
Rl e 7
Sy e % Py -] -nl

L(p(,.'z )) = E(e ) ~ 4152-(14-28) P
2ny ° 2 1 \':'11

By definition, the L,T of ply), therefore, is

- ~ (x, bmz ) '
-s(a +
L(p(y))= fd x> Je 2n, plx? Wz ) ax?
2n 0 2n1 2n2 an
2
where p(7;2 . ;52 ) is the joint p,d,f of 5.2 and 7&2 .
2ﬂ1 2n2 2n1 2n2

1.2 and 1‘2 are independent, therefore, we may write
2y 2,

B! “Ra
L(p(y}) = (1+2as) (1+2bs) “ = P(s), say, (2.7)

We know

e+i sy
L (P{s)) n wam= J' P(s)e ds.
274 se

sy
This integral can be evalunated if P(s)e is a meromorphic
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function with known poles at s = Sk and infinity, by
the method of residues,

Therefore

sy
p(y) = S_Res (P(s)e ) . (1.8)

S=S
k

FProm (1,7), we may write

2),

-1 - . en, - en, o en, =1 -
L™ ((142a8) Y(1szbs) 2)alza) Hab) 2L ((Ras) LLys)
: L ' : . 2a 2b

and (s4=m) T (s+2?)_'2
2a 2b.

=1 ’ -1
has poles at s=(2a) of order s at s==(2b) of
order n,, and at infinity,

It is known that

nl-l

S 1 — (esy(s+ -}—)-?)
(22) (ng-1)1 gM™t ° - Y

R

and using Leibnitz#s theorem for the multi-order

differential of a product, we get
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1 1 )-(n1+n2-1) ~y/{2a)

R - S e e [-}

«1/{2a) 2b 2a
r
e et (gL oatnae2
. ST (-1} - I c.
re0 ri (Mg ~T=1
R can also be written by symmetry, Hence from
-1/ {2b)
(1.8), we obtain ply)= 2 = (h +R ).
B N2 " -1/(2a) =1/(2b)
(2a) (2b)
which on substituting the expressions for R 1 and
~1/{22
R s becomes
- =1/(2b)
-y/{2a) n,-1 -yitzb) n,=1
ply)=e S 1 ozq}'r-!-e T s 2 Pryr' 04 y¢oo 4 (1,9)
r=0 r=0
where

=T s r"
Ny =T 1( 1 1 )“n1+n2-r-2

(-1)
< o _Zb_ __ 22 ng-r-1

o ny n 'n1+n2-1
(2a) ~(2b) ?‘(;‘%—- 2. r

2a :
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and (-1)112-1‘-1 ( 1 _ 1 )r n1+n2-r-2
\P - 2a 2b Cn 2-r-1
r °
1

n n N, +N, =
2

(22) L(2b) Z(ademeia) 1 24

2a 2b *
1,22 The Distribution of V:

V is distributed as -i—; where x follows
y

standard normal distribution and the p,d.f of y is given
in (1,9)s x and y are independent random variables,
their joint p.,d.f, therefore, is given by

-+x2  -y/(2a) n, -1 r -y/(2b)sn2-1

1 T
f(x,y)m = o e S oy +e y
’ % '( r=0 T O‘Pr )'

-°04x<oo., 0( Y<Loo o

Making the transformation V= x*: e © = y, we obtain
y
1 V23 -ef2a m-1 . =-0/2b T R
p(V,0)e = o (e s < ase S % P9 )0,

2K =0 r=0

-0 ¢cVeoo , @)>0,
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Integrating with respest to 6, this becomes

P 4ev2 4 -9/2a n;-1 r =-9/(2b) n,-1

1
p('s’)-{;_-;— !e e (e Sr-oa"’o +e Sr-o B0 "Yae.
(1.10)

By the use Gamma - function, (1,10) reduces to

ay ~(r+3/2)
ptvin(em) T ( 21 < r+3/z)(u/za;+—-) e

r-

=(r+3/2)

+ gno r?r-rj/a)(-— + —-—) ). -004\¢ 00 .
(1.11)
Considering the r*B term of the series
-(r+3/2)
4,5; r‘r+3/2) (—— + —-) +3/ o and transforming
1
it to a new variable t = ((2r+2)a) V,
(2r+2)
we obtain
-3 L2
2 t -(¥r+3/2) 1
—  «[(r+3/2) (2 A
2 r / 2a i 2(2r+2)a ((2r+2)a)i’
r+l 2
t -(r+3/2
L. (2a)  [(r+3/2) (1s ________) (r+3/2) )

T ﬂ-%-;ffzr+z) (2r+2)
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It becomes
r+l o
(2e) o '(r+1) plt Yo (1.12)
(2r+2)

where p(t( ) is the p,d.f of Student t-distribution
2r+2) .

with (2r+@) d.f, Substituting the value of ¢, in (1,12),

we get
(n,=r-1) n (n.-f-l) -{n,+n_-r-1)
(1) * (2a) %(2b) ' (2a-2p) 1 2
. (ny+n_-r-2)
(2r+2) (ny-r-1)
The rth term of the second series in (1,11) may, similarly,

be written as

(n_ -r-1) (n_-r-1) -( -r=1)

(=1) 27" (2a) "2 (2b)n1(2b-2a)x N

' {n,4n =r=2)

p(t T . (1)

(2r+2) (nz-r-l)

where 3
t =({2r+2)b) V,
(2r+2)

The distribution of V, thus, is the weighted sum of

te=distributions,

The percentage points for V can be calculated from the

Ped.f of V by using the relation, Pr( [V[< ¥V )=l -« ,
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where « is preassigned significance level (0 ¢(x <« 1),
From (1,13), (1.14) and making use of the t=distribution,

we get

n1-1 N, =re=]1
(L=t)m §°  (=1)
r=0

ny=r-1 -(n1+n2-r-1)

Ra
(za) “(2b) (2a=2b)-

-re2)}
Pr{ (1 ¢ ((2r+2)a) V. ), 2 c
2r+2 (nl-r-l)

(n1+n

n, =1
+ 8 2 (=1)
r=0

nz-r-l nz-r-l n(n1+n2-r-1)

"
(2a) (2b) ~(2b=2a)-

(n1+n2-r-2) %
c e Pri{jti & ((2r+2)B) V), (1,15)
(nz-r-l) 2r+2

The expression (1.15) can be written in more compact

form by substituting

¥ = 2ang; 1-Y=2bn2, in it, we have, then
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(1-<)= snl'l(-n"l"r'l(-‘i-)"z(l—,',-’?-()nl-r-l ¥ __1-¥,=(nysmpmr-l)
2

re0 ny m 1

( ~r=2)
N c e Pr( 1t ¢ ((le )%-

L)
(ny=r-1) 2r+2 n;

npmi _Re-r-l (2T 1y Y o )"‘(“1*"2"""1)

S (=1) )

ral nl n2 n2 nl

(n+n_-r=2) (r+1) (1)

i M L Pr(itl € (— ). e
(nz-r-l) 2r+2 ny

By specifying o« , n., ng and 3’, we may determine ¢,
The only condition of normality is not sufficient for

the general solution, and the unrestricted distribution
of V, thus obtained, has infact no practical use in the

two means problem, since it inveolves R which is unknown,
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1,3 General Approachs

Let xiii-l.z. eses k) be stochastic variables
normally and independently distributed with means p,
and variances ’\i‘f respectively, with knoewn positive

constants . é} but 2y and df being unknown, Suppose

sf yield estimates of Cf which follow distribution
as x2 62 / £, , where £, is the duf of zZ . Th
3 %/t i ot 0L % . e

quantities sf (1=1,2,.00,k)s are supposed to be in-
dependently distributed, The aim is to test whether the
data are consistent with the hypothesis Ho P Py=Pe
A particular case is, when x4 are the means ii of
samples of sizes Ny drawn from k independent normal
populations having true means Pl and variances 6f .

Since variance of ii is df/ni y SO ‘1' 1%- .
i

The hypothesis is as follows: whether the k populations
being sampled may be considered to have the same mean
without imposing any condition on variances,

James (1951) has considered a statistic

k

k . X

s wi(xi-ﬁ)z » where w, = -"li- and z. S i
iml As il K w
ii Sia1 i

Under H,, this statistic, in LARGE samples, follows
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approximately ’2 distribution with (k-1) d.,f, It is

then possible to make a statement of the form

xR

S w, \x,=-x} > % ] = o .
[ 1wl 174 “

For small samples, in order to make this type of state=~

ment, he obtained a function h(wl,wz.;..,wk, < ), having
the property

k

PI‘( Sitl wi(xi-x) ) h(wl. wg.ooopwk < )) m & [}

and developed a method of arriving at successive appro=-

ximations to this function in terms of the orders -Jh-.

fy
The exact function of this nature was evaluated by
Student (1908) for a single mean problem, Later on Welch
(1947) gave i1terative methods of calculating it for
general case, The series given by Welch (1947) is only
asymptotic and suffers from convergence difficultiss,
James (1951), for instance, obtained results to the order

fi h(wl. wz'....wk. 06 )

2 3%2 +(k+1) “ . w
- ﬂ"‘ [ 1+ i ‘*‘(1 —"—) ]o ‘1017)

2(k2-1) f'l i
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For approximating this function involving higher orders
of e » he pointed out its 1imitéd practical utility,

fi - A
Welch (1951) has, to the order ;l- , obtained the same

i

result as given by James(1951) in (1.,17), by an alter-
native method, He developed an approximation which
involves the use of Variance Ratio Tables rather than z2 -
Tables and has more pratical utility, Welch(1951) method
of approximating the function h‘"l'"z""’"k"‘ ) by

the use of cumulant ~ generating function of the statistic

k
s v, (x.-2)? is as follows,
1' ™
i1
2
For k=2, the statistic s wi(x -%) reduces
jel i
to
2
(xq~x.,) 2
1 2 ® 1.6. S wi(xi"'i)zﬂvz.
1 1 151
Y1 ¥
(xl-xz)

where V =

2 2
J{s1+ é s,

This statistic seperates into a function of x, divided

by a function of sf, when k=2, But for k) 2, such
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separation is not possible, which shows that the appro-

ximation for distribution of k 2
s w,(x,-%)" is to
i=1 i

be made independent of s: e Assuming that the moment -

generating function of this statistic exists, we write

k
z e[u Si.lwi(xi-i)z]

M(U.):: El 2 0

where El’ E,_, denote averaging over the joint distribution

2

of x, and s: respectively, Recallipg wigf_TT.E.
151

1

and equating V& - —=s the moment - generating

301

function is

(k=-1) - -2
M(u)n(l-zu)-* [ 1+ (2u(1-2u) Le3u?(1-2u)")
k ' W
(si 1 ; T X iv )] *

=+ 7 si'_1 i

The corresponding cumulant - generating function, to the

order -i- s therefore is
£3
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1

- -2
K(u)=—t(k-1) log(1l-2u)+(2u(1-2u) +3u°(1-2u) )'

(sk — (1 —t) ) (1.,18)

1,31 Approximation by F-distributions
The F = distribution is more convenient to use
than t - distribution while comparing several mean values
when population variances are known to be equal, Con=-
sider the moment = generating function of the F ~ dis-
tribution, We have

%y 2
P a ( e £),
(==)/lzy/4,)

T

where z: and ¢§ are distributed independently as

%, with £, and f'z d.f respectively., Now

A A
e

E = - £ .
| (1 Zu/fl)

For given ﬂz » We have
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The moment - generating function, MF(u), is then

given by averaging it over z.: distribution, Writing,
to the order %’-, we get
2
2u -3f_  2u | 1 (342) w2
u - - -+ [ Y. A%
Mplula(lomm) [ lem(i-2u/fy) 4= wPli-zu/dy) ],
1 I £,

‘(1.19)

By substituting fl-(k-l) and G= [(k-l)*A/?z ] ®in
(1,19), we obtain

~3(k-1)_ A3a(k-1) -1--'
HG(u)-(l-Zu) _ [1+—-—5—-—- u{1-2u)

2

(k2-1)

A

T2

+ uz(l-zu)-z:l °

An equivalent expression corresponding to cumulant,-‘ '

generating function of S wi(xi-i)?,- therefore, is
i=l
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-1
KG(u)=-%(k-;).1oa(1-gu)+ -%;(A+;gk-1)) u(1-2u)

(12-1)

Ta

-2

+*

Comparing (1,18) and (1,20), 1t can be eésily seen that

A o+ 2(k-1) k 1 . ‘ 'N’. 2 -
- =28 ——(1- -—;i-‘;-
f2 ie=l fi AL .
<=
2
(k<=1) k 1, ¥ 2
and = = 3 s —(1- —'-‘—-) J
f2 i=1 fi ‘ 1$-rw1
A P W, 2 2(k-1)
£, - i ﬁ,i 2
- " v 2
N
2 (k%-1) f1 Aﬁ, i

2
(1.21), we have
2(k=-2) k W 2
A 1 o
- s (1= —tee)” | (1.23)
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K 2
Which means, to order L » the quantity Siﬂwi(xiné)
£
1

is distribqted as

”n

A
((x=1) + -;-) times F, ‘where — and f, are given by

Py

2 . Y]

(1s23) andl‘(l.za).-.'

1.32 Practicael Application:

Ve definé o - & X “)z-(_ )
. S,w; (x;=x) /(k-1
2(k=-2) k q - M 2
1+ S mim(le — ]
(k2-1) 4s1 o A

Let E  be the tabulatod value of ﬁhe Variance Ratio F -
Table, correspending to the significanoe o< with d,f

' At k. C u 2 =1
, fls(k-l) and f2=[.-2- S e (1— 3

. ) .
fi?1) - :tsl £ K ]
LA S 4

Under H_ , we ¢an"say,ép§xbxiﬁéte1yf(tbfdrder -%-). then
- ‘ ' i

Pr(vV3> 2, ) = <, (1424)

V2 involves the unknown V& and sample values w;, and

Vi also enter into fz. We, therefore, cannet use (1,24),
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However, as V& enter only into expressions of order -%-,
i

with the substitution of w, for W;, we can make appro-
ximate probability statement 1like (1,24),

The approximate test procedure, therefore, iss

k a2
S wylxy=x)"/ (1)

(1) Caloulate V2 i-1 ,
2(k-2) k w, 2
1s =—s S (1- =)
(£~1) 121 £5 sW
€=/ i

o A k w 2 =1
=1 1

(11) Refer V2 to ¥-Table with f. and f

1 2 defe
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CHAPTER 2
UNILATERAL & BILATERAL STATISTICS

Introductions

The statistics i, V¥ and Z , as given in §(1..),
are cmnsidered by Welch (1937, 1947)s Aspin (1948, 1949)
has extended the results and investigated the numerical
behaviour of the series developed by Welch (1947), Ura
(1955) has obtained the pdwer function of Welch(1947)
test, for the case when two population variances are
equal and compared it with that of Student t-test, In
Welch (1947) a function of sf(i-l,z). and of , with the
property

Pr«'il-'iz)- § ¢ h(sf. ot ))- <

is obtained, The corresponding critical points con-
sidered by him are not fixed and are the functions of
the sample variances, Wald (1955) gave a statistic for
equal sample sizes but has also used a random critical
point,

From §(1,;), a statistic of the general form

r12| +r2Zi

Y(rl, rz) = * (20'1)

may be obtained, where r1 and r, are positive constants,

2
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depending upon the sample sizes, This statistic might

be considered to control the size of a test for various
values of R, It is, therefore, possible to choose ry and
r, such that, the hypothesis HB, is rejected only when
Y(rl,rz) > 1,

The distribution of Y(rl, rz), under H , may be
given by

%

Y(r r.) = R
1* °2
2 é
ag. + b
fy

2
where fis(ni-l),(ial,z), is the d,f of ¢ﬁ- variate: and

62 r 6% r
a = 171 : boa 2 2

(& 2 (62 62 .
61/n, *+ S3/n, 63/ny *+ So/ny

All z? variables are independently distributed, Under

Hy piﬁpz s the distribution of Y(rl.rz), is given by

i

Y(rl, rz) =

2 2
a Xo +bX
1%,
The numerater is non~central «x2 with one d.,f and
non=centrality parameter h, is given by

_ .2
h = (B17p2) .

2 2
61/n1 + 62/112
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The class of statistics Y(rl, rz), as suggested by
Welch(1937), is considered by Gurland et al (1960), and
the size « of the test, is examined by them for a figed
point (unity)., They have treated two kinds of statistics
separately, 'The first kind, called unilateral, keeps
the size of the test less than or equal to a given fixed
value over the range R 1l, if itis known a priori that
the varlance of one population: is greater than the other,
The second is called bilateral, which keeps the size ofl
the test less than or equal to a preassigned value over
the whole range of R, if there is no apriori knowledge

of population variances, For the bilateral case, theyv
have shown that Student t - tables may be used to find
thaappropriate statistic for any pair of sample sizes.
Their method of finding the size of the test, for both

unilateral and bilateral cases may be described as below,
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2,1 Size of the statistic Y(rl, rz)s

In order to calculate the size of a test using the
statistic Y(r,, rz), it is required to evaluate the
probabilities of the form.

Pr(Y ( r,, rz) > 1 ]n ), (2, 2)

where R 1s an unknown constant, Under H,, and for the
specific values of n4, n, and Tys Too the statistic

Y(rl, rz) is distributed as

2 2
(a”fl + b¢f )

In two extreme cases the statistic X(r,, rz), takes

the following form,

2
*
> when 6: —_ 0, (2.3)
ng, T, ﬁfz
and xf
when 6> —0 . (2.%)
N T “2 2
1°1 fl

Various probabilities in (2,2) can be plotted against
the different values of R, The graph so obtained will

approach horizontal asymptctes as R—-30 and R—%



51

The probabilities in the extreme cases may be
calculated by the use of Incomplete Beta =~ function, due
to its relation with Student t - distribution, These

can alse be evaluated as follows,

Let
) 2 )
Gl’fl(c’ - Pr((ﬁx/,x%l > @) m o,
%2
Since —31 f, 15 distributed as t2 ~ distribution
’f
1

with fl"-d.f. obviously, then
2
o
C = (t (205)
fl ) /fl )

Here t‘;. is the two sided X % points of Student t -
1

distribution with £, d4d,f,

1
To compute probabilities in between the extreme cases of
the general form (2,2), the following theorem, obtained

from a theorem of the linear combination of "2 varlates,

due to Box (1954), is used, Thesrem: lLet Y be a random

variable with the form

2

%n

2 2
(a-%x5 + a,x< )
1%, 2%r,

where xz - variables are independent, the fjr'_ = 2gj are
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even integers, and aj are positive constants, Then

thp distribution function of Y is given by

P(y)e s oF P (s, y) (2.6)
yi= a., * °
¥ jul 5wl %5 n,2s 307 2

where Fn,m(x) =1 = Gn,m(x)' the constants « are

Js
given by
&1-S 8 8-S
‘i"s.(-l) 1 r'sg 1+82=8) 81 ay o.s N
Ez l?gl"'S-l-l) (al-az)gl-l-gz-s <y 5]
gz"'s gl
0(-{-1)82 s |T81+82"S) . _f.l ai (s"lszo..‘.‘,gz).
2s rg'l r(qu-s+1) (az_al)s]_—!-gz-s

2,11 Optimality of Unilateral and Bilateral Statisticss

The statisticZ , as given in §{1, '), can be useful,
if it is known that 6% , 62, Since for particular
values of ry and To the size for the statistic Z has
an asymptotic value £ , as R~» @ , and is only slightly
less than & for entire range 1 ¢ R<o0 , For instance,
in the case when populations might consist of measure-
ments made by two different techniques, a particular

one of which is ... : known to be more precise than the
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other, This lnformation is utilised by the statistic

Z, in keeping the size of the test practically constant
over the relevant range R > 1, Such a statistic may be
called unilateral statistic and can be looked upon as op-
timal within the class Y(ry r,), because no other sta-
tistic in this class keeps the size as nearly constant
and less than or equal to of , over the range R 3 1,

For all sample sizes, unilateral statistics can be

found from the following two conditions,:

Pr( Y (rl, r2) >1 anl) s o
Pr (Y (rq, r2)>1‘R.,co) ol o

The second condition, by (2.2) and (2,4), may be written

as

Pr((af/a§) » Tany) = % . (2.7)

The parameter r, from (2.5) and (2,7) is given by

2
[ 3 .
1 = “‘fl) fEynp .

The parameter r,= ‘f/(nzfzo » Where ¢ is tabulated
by Gurland et al (1960), for some particular values of
« and various sample sizes, by making use of the

relation (2,6).
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In case when it is not possible to assume that one
population variance is greater than the other, all values
of R must be accounted for in constructing a statistic
in order to control the type I error, Owing to practical
limitations the size of the test is kept 4« , It can
be seen that the statistic whose parameters are defined

by
Pr (Y(ry, rp5) > 1|R w$0) =t

and (2.8)

Pr (Y(ry, r,) > 1| R wpw) =

is the most optimal within the class of statistics con-
sidered, when R is unknpwn; Such a statistic may be
called bilateral statistic, |

From (2,8), we find r; and r, for all values of
ny and n, and for a preafs's:lgned value of o , by the use
of Student t = distribution as

o 2

and (2.9)

2
o
- (6 ) /ngty

Ta

It is obvious that if the information, R > 1, is
ignored it is possible to arrive at a different con=-

clusion than if this information is utilised,
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2,2 Proposed Proceduress

The problem of testing the difference in means of
two normal populations, without assuming the equality of
the variances involved, is treated from the point of
view of employing a preliminary test for the population
variances, The use of a preliminary test in testing a
statistical hypothesis has been considered by Bancraft
(194%) and Bozivich (1956) in various contexts, Chand
(1950) has studied the behaviour of type I error in
repeated sampling from populations with a fixed value
of unknown variancé ratio by utilising an approximate
knowledge about the unknown variance ratio, The pre-
liminary hypothesis, H , 6% = 62, is tested by
using a test statistic iy;:)’ « The effect of de=-
parture of R from unity on the size of some tests for
H,, has been investigated by Gurland et al (1962),
Their aim is that if the size of a test cannot be made
constant for all values of R, then it should be kept as
close to a constant value as possible and this should
not be accomplished on the expense of decreasing the
power of the test under consideration, Their method of

calculating the slze of some tests, proposed by them,

is as follows,
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2,21 Unilateral Caswes
In preliminary part, the hypothesis, H, 3 6%—65 ’
is tested by using ¥, If we denote the critical point by
a and the significance level of this preliminary test
by « , then

Pr(Y>a|R=1)= < . (2,10)

We make use of the statistic W2, asgiven in § (1, ),

for testing Ho s 1f Hoo is not rejected, But if

Hoo is rejected then the statistic would be some con=-

stant times uz. In case H,, is rejected, it will be

equivalent to retaining the statistic 42 but changing
the critical point, The description of this test pro-

cedure I (say), is as follows,

Procedure I:

If ¥ ¢ a, reject H, 1if \12> ¢ but accept H,
if 2 ¢ ey

If y) a, reject H if ll2> ¢ but accept H,

if #2¢ é,
The size of the test, using procedure I is given by
Pr(y¢a; 42> ¢) + Pr(¥)a; w2 > é).

This is obtained by the expression
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2 gz
Pr(R. 1 ¢ 83 1 > cq)
2 )
zf2 R z? + x?
1 2
2
"f ’f P
+ Pr( 1 ,a/R ; y c*d), (2,11)
2
'x'f R zz + 1,2
2 fq £y
n +n,
where d is a constant and is equal to 1 .

(f1+f2)(n2R+n1)

x? variates in (2,11) are independent random variables
with fy=n;-1,(i=1,2), d.f. The complete specification
of this procedure requires the values of the constants
c, ¢' and «£ to be given, The value of a can be

determined from (2,10),

Substituting rary/r, in (2.1),we get

Y(r)a __( F1-%))

T 5
rRtr 3

= To Y(rlo rz)o (2,12)

It is possible to test Ho by defining a test procedure
II (say), Using critical points ¢ and ¢! in con-
junction with #2 and Y(r) respectively, we can write

the statement for procedure II as follows,
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Prqcedure IIs

If Y & a, reject Ho if W2, ¢ but accep% H° if
uz £ Cf
If Y > a, reject Ho if Y(r) > ¢' but accept Ho

if Y(r) ¢ ¢t

The size for the test pro@eﬂﬁrq II is obtained : : from

: 2
x. X2 g2
Pr(__fzi < /Ry __L__ D) cd)"‘Pr'(__.._zl" s a/R; iz yclg),
*s R'xﬁ +x§ o ® Rrx% +¢§
® R R T 2 1 2
| o (2,13)
L . E . ‘.. . A . n -nz
where the constant gm e ,
I : '.‘1*3?‘2

The values of a, ¢ and 6';-used’1n procedure II, would
in general differ fromithp yalues used in the precedure I,
Second term of the expression (2,13), when r=1,

reduces to

2 2
%! x
Pr( f1 > a/R ; 1 , 8 ¢c'),
2 2 2
x. Rx. +x
P £y 1o

which is same as the second term 6f expression (2,11),
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2,22 Bilateral Case:
In considering this case all values of R(=Rj» 0)
can be used, The modified test, for testing H,,, will

invalve two c;-itical points, a, and PO such that

Pr{ ¥ ¢ al.lR =1) + Pr( ¥, a,/R = 1) = o . (2,14)
If equal tail areas for this fest anre considered, then

Pr( ¥ « al." R~= »1) =« Pr (%> aer = l) = e_:o .

This test procedure III(say), is analogous to the
procedure I, .The formal statement for - : procedure III

may be given as follows,

Procedure III:
If ¥ ¢ a,, reject Hy if U2 o} but accept H, if

u2\< c] .

2 but accept Ho if

It Y » ayy reject Hj if w2, o
42 §c ..

N.

If 23 LYE 2p reject Ho if ﬁz) ¢ but accept H
if U2 ¢ ¢,

Applying procedure III, the size of the test is obtained

by
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‘&2 1? L] 'ﬁz a ﬁF
]
Pr( f1 ¢ al/R; 1 5 © d)+Pr‘ fl) -——2; 1 c d)
= TR R o
x. Rx? +z§ ' ’Tz Rﬁr +z§
2 1 2 1 2
2 2 2 2
x a . x a x.
+Pr( f1< 2 H 1 >cd)-Pr( €l< 1 H 1 )cd).
2" R 5 o ‘ %2 R .2 2
x f Y
T2 e e, 2 ey e,
(2,15)
Complete specification of - : procedure III invelves the

. 4
constants <« , 01 » c; and ¢, The oritical points D)
a, are determined by therelation (2.,14),

223 Size of Tests:
In order to calculate the sizes of the tests for
different procedures considered, we require the evaluation

of the expressions,

2 2
' x
Pr{ %1 ( a/R , cd> (2.,16)
;? ¥ "R 2 2
f2 x?1+z?2
and ’f 7?
Pr(__t_‘_l > a/R; ) 0'8).’ (2.17)

2 .2
’éz Rr s *%e,
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1 .2 1,2 1 2

Let X-—z-xl, w--?xflandnn—z—'x,fz,

%

Applying, that the pedsf o0f === 1is
: n
' k
i k

%, (F)2 Tl e/

f(T)a g e v 8 > 0 ,

where g is distributed as Zz with k d,f, we can write

the Jjoint probabllity density function of X, W and M as

p(x,w,m)= - 4 (4)-1 (3£5)-1 -z-v-m

% [(35,) r(}fz)x ° » (xewym > 0).

The expressions (2,16) and (2,17), then, reduce to the
form Pr(RW-aM ¢ 0; cd RW + cdM ¢ X),
and

Pr(RW - aM > 0; RrogW + ogd ¢ X).
By making use of Pearson (1934) Incomplete Beta - function
tables, the computations can be simplified for the cases

when R —50o0r o and R = 1,
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CHAPTER 3

CONFIDENCE INTERVALS
3.0 Introduction:

The Behrens -~ Fisher problem is treated from cone-
fidence intervals poinf of view,  Neyman (1941) has made
a simplified but less general statement of the result,
obtained by unpublished solution of Bartlett, which is
als; briefly mentioned by Welch (1938), Neyman (1941)
result is based on successive differences of the two
sample observations and may be obtained in the following
waye

Let (xl.....xnl) and (yl,...,ynz) be the random

samples drawn from two independent normal populations with

mean values has } and Po and variances 6% and 6:, respectively,

Suppose ny ¢ n, and § =g =Poe Select randomly a subset
of n1 from n, variates of the second sample and calculate
n, differences, ‘{uyi-xi (1=1,2,4se9nq), neglecting
n,-ny observations of y. The standard error of 4{ is
(6f+6§)%. The differences ~{ will be normally and
independently distributed, The problem is then reduced
to that of estimating the mean of 'le

The confidence interval for which can be given by

/Z- st, « Fy Z + st , (3.1)

N
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nj 6 7 .2

where s « § ('{-[ ) /ny(n3-1), and t4 is to be
1=l

taken with (nl-l) d.f, WVhatever be the values of p's,

§ ad Gf . 62 , the proportion of cases in whioh the

statement of the form (3,1) to be true, will approximately
be equal to . .

The unsatisfactory aspect of this solution lies in
the fact that ny-ng observations of a sample are dis-
carded, Moreover it does not indicate whether it 1is
possible to construct intervals which would be, in some
sense, shorter than those of the fqrm (3.1)c The answer
to this question is given by Scheffe (1943), His solution
shares the obvious advant_ages of the solution mentioned
by Neyman (19%1), and is also free from the objection of
the case when n; # n,, Scheffe (1943) obtained his

results in the following way,

Solution in Simple Case:
Let dy (i-l,z,...,al), are independently and
normally distributed random variables with mean & and

variance 62. Define P and ¢ by

n n 2
P= S 1 -:—1 $1 0= S 1 (di"'P, °
i=l 1 is=1

Then (P - §)/6ffi, will follow a standard normal dis-
tribution and 0/6’2 will be - %2 distributed with
(nl-l) d.,f, bokh being independently distributed, the
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Ay (P = §)
quantity s Will then be distributed as a

N 0/(ny=1)

Student!st~ distribution with K = (nl-‘l) d,f,

Let Pr ( tk.“é b < tk") .

A set of confidence intervals for &§ with a confidence

t ’-—-!-—— e (3.2)
(nl-l),¢

n1 ( n1-1 )

coefficient «£ 1is

|Pp - 61

I~

If E(p) be the expected length of the confidence in-

terval (3.2), then

-3 3
E(p) = 2. t(nl-l) . (nyrny-1)) o B (¢/62)
= t « C . '—6‘—' ) (303)

A8/ M(x/2 + 1/2)
where C = o
nl-l Rk/z)

The symmetrical choice of « will minimise E(p),

Consider a linear function

n
din xi -8 2 C Y (1-1'29000.“1) » (30”’)

=1 41§
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then di will have a multivariato normal distributioen,
The necessary and sufficient conditions that all d, have

means & and variances 62 and covariance zero are,

s? ¢ 1, agd S2 c? §
ju 1377 A iy °
1 when ia=j
where 5 =
13 { o when 14j.

If a linear funciion d; , as defined in (3.4), is used
in finding the set of confidence intervals, then the

expected length of the confidence interval E(p), will

2

2 e In oxrder to

be given by (3,3) with 62 = Gf + 02 ¢
minimise E(p) we must find a matrix n; x n, -(C£ .

satisfying the necessary and sufficient conditions and
for which C2 is minimum, The minimum value of C2 is

nl/n2 .,

n, - 2
Writing PeX=yY, 0=S (zg-2) ,
1=1

3

where x, y are the means of two semples, z;=x; -(-;l) Yy o
' 2

n
and v = S 1 '
z 1 zi/n1 o

* For proof sve appendix
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The confidence interval, therefore, as in (3,2),1is

given by

- o
i_ - 6 £ ———————— ° ( Ps
2 -5 -6 b o [ni(nl-l)] 3.5)

The expected length of the confidence interval, when

n. = n_ and ny ¢ ny will be

1 2
. - (-%-)* E/z + 1/2) (5.6)
e my f(k/2) ' )

n
2_ g2, o2 2 _ 62, () 42
with 6 = 67 + 07 end ¢ 65 + ( nz) o, Tespectively,

3.11 General Caset
Let P be a linear and & be a quadratic form of the

variates (xj,X55eee9X,) and (710Y2OOiOQY#39 with
!

coefficients independent of the parameters, For some

constant £, independent of the parameters and some function
P=5)

will be dis-
R/f

R of the parameters, the quantity
tributed as a standard normal distribution and -25 will

R
follow a Zﬁ law with(k-1)d,f, Both are 1ndependept1y
distributed, therefore the quotient

£(P-§)/R

(3.7)
(o/(k-1) R2)%
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will be distributed as a Studont's t - distribution with
k-1 dJf, The sufficient cendition for (3.,7) to be a
symetric t - distribution with (k-1) d,f, is also dis-
cussed by Scheffe (1944), Obviously E(p) must be equal
te 6 and

RZ

The t = distribution of (3.,7) leads to the confidence

intervals

| P=3$ | < tk-l,w (0/(k-1»* /T . (3.9)

The expected length of (2,9} iz then given by

B(p) = ¢ R/f . z(k-l)-% B (O/Rz)*
k-l.t
] tk-l,c R/f . ck-l ) (3010)
whette C, - z(k-l)-% a(o/nz)* .
-1
n n
If ite, P a=sS? -s2 by ,
WO WY e 101 aixi 1l i'i
then E(p) st a s2 p (3.11)
Pl=f 5 %"k 5P ‘



61

From (3.8), B(p) =6 , and a, , b; are independent of

the parameters, therefore,

n1 n,
- a; = S bi = 1 (3.12)
inl i=1
Let xi = X =Py s Yi = Y3=Bo
then nl n2
Pebé=sS ay X, = S b, Y, (3.13)
i=1 i=1
and

n o 2
E(P-S)z = 62 S 1 az + ‘2 S b ° (3011’)
1 "3 3 2 41 1

From (3,8) and (3,14) we can write

M 2 2

n
R? . £2 af st e 4t 6: s 2 p2 (3.15)
1ml 1-1 1 :
- 6% 32 + 6: bz ’
n 2 n
where a% « f2 § 1 8y 9 b2 - fz S 2 bz are in-
1ul ju1 1

dependent of the parameters,

By (3.,15), the relation (3,10) may be written as

n L]
B(p) - tee1,e Ck-1 (af S af + 62 Sifl bf )e (3.16)
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312 Minimum Expected Lenjths:

Amqngst all confidence intervals of the form

JP=6letyy (0/(1:-1))%/1‘ with ken, , the

confidence intervals (3,5), have the minimum expected
length, The coefficients a; and by 1in (3.,16) are

subject to the restri&ion

ni n,

S ay = S bi -1, therefore

i=l 1=l

n . na

S 1 azi > —'1- ;) S bi Z e . (3.17)
i=1 nj i=l nz

From (3,17) and (3.16) we get,

(62 4 (k) 62}
BlbP) >%e1,e Cny-1 =
(o

or

B(p) » ¢ . (3.18)

c 2.
y=lee Ml

The relation (3,18) proves the assertion that -within all
the confidence intervals of the form (3,9}, the expected

length of the confidence intervals (3.5) is minimum,
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3,13 Asymptotic Shortness of the Sonfidence Intervals (3.5),

ny _.2 n, -2
Let 3, =S~ (xy=-x) , %, =5° (y;~y)
=l

1 i 2 i=1

Pux=~-y, and 612,- 61/n1+62/n2.

2 2
The quantities (P-S)/Sp . 81/61 and 82/62 are

mutually independent and are distributed as Nfo0,1) ,

2
-1 and 7&12_1) respectively, Therefore

(P=4) (ny+n,=-2)
t - s P 4
- ) Y,
P1tn2mA (62 (5y/67 + Z,/63)]"

(3.19)

The efficient and shortest confidence interval available,

is given by

2

[P=§ | < t;‘n]_ (n1+n2-2'? [(Gf/n1+6§/n2)7-n1+n2;2] ’

(3+20)
with the expected length

%

n
(65 +(R3) 62) .

E‘p) = t . %
(ny+n,=2),e @3 (ny+n,=2)

(3.21)
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2E( o)
where C - . xhltnz 2
(Nq+n,=2 .
172 ) q/nl-mz-z

The ratio L,of the expected lengths of the confidence

intervals (3,5) and (3.20), is then

L=(t¢ c ) [ (¢ c .
(nl-l).d (nl-l) (n1+n2-2),d (n1+n2-2)

(3.22)

The behaviour of L, for specific values of nrqgndcoloan
be studied from the relation (3,22), The percentage by
which the expected length of confidence interval (3,5) is
greater than the available optimum confidence interval
length (3,21), can also be calculated, It can .. .
safely be concluded from the fact, L =3 1 when nj —=»p« ,
that the confidence intervals (3.5) are at least asympto-
tically efficient,

Confidence Interval for a Linear Function of Population
Meanst

Banerjee (1960) obtained a confidence interval for
d - linear function of the population means based on the
sample estimates and the Student' - t -~ table values.Hs..

indicated the method for the case of two samples, asid:
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' 2 2 - - 2
For fixed s, and s, , the quantity 111+12 - p3-m,) is

65

extended his results in Banerjee (1961) s5'::i comparing
them with . - . existing Fisher (1935) and Welch (1947)
solutiong. Banerjee (1960,61) results are based on a

property of the conve#runotion and have been obtained as

follovws,
Two Samples Cases 2 2 2 2
Let (% 4% 2er i1, 2% t
ot !1+xzﬁP11P2 Y + n, ° an event,

and Pr (=t; ¢ t ¢ t5) = «, (i=1,2), where:t; and t, are

Student's ¢t - table values with (ny-1) d.f. and confi-
dence coefficlient «, If P is the probability of the

event considered, we can then write

- 2 tfs§+ t%sg
(xq44x, = pp-m,) n n
pro( 227072 o T2y,
Gf/nl + Gz/n2 61/nq + dz/n2
' ‘3623)

2

61/n1 + 65/n,
distributed as a x° with 1 d,f, The probability P is
given by,

2

0 o0
2 2 2 2 2 2
P = :’[Ofl(sl, 67» 1q) g(sl, sz) d s; fz(sz, 6

2* M2

(3.24)

)a 52

2
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2

2 2 2
where fl(sl v Sy s nl) . f‘z(sz ’ 62 . nz) are the

probability density functions of sf and s: s and

A 41 di?g
2 2 1 2 2
gls, s°) = [ (x°/2) o .
1 2 o 2[i/2)
2 2 2
S t si n_ .
Here A = iml i 1 , (1=1,2) .
2 2
s ¢ /n
je1 1 i

Since ? f(‘zz) d 22 is a convex function in A, therefore,
0

2 22 2
6. /n t,8,/6
171771 ¢(x2), ax?

A
2 2 2 .2 11
({ £(X°) ¢ X°= g(sl,sz) >

2 2
61/::1 + 62/112 0

2 22,2
6 /n t,s,/6
+ 2 2 jz 272 fx?) &P .
df/n:l + 62/nz 0
2 (3.25)

We have |
2
tzsi,/Gf 2 2
Pr_(-ti £ t {ty)mec = Jl £(x~) ax° , (1=1,2),

(3.26)
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Trom (3.,25) and (3,26) it follows

2
Gl/nl

3 o
of/n1 + Gz/n2 61/n1 + Cg/nz

Z £(x%) ax? »

A
oF g £(x%) ax®* » «. (3.27)

The relations (3,23), (3.25) and (3.27) =

2 ty s
21y 5y «. (3.28)

Pr((3,+3, = nym,)> ¢ S
2 1=1

If a, and a, are some known constants, (3.28) can then

2
be written as follows

2 2 2
2 2 tis1 2 2 2 ti’i
Pr(s 111- [ \ a’}]i 1 1 + S } d'
1«1 1-1 ny 1-1 1 1 i=l n

i

Assume a_=l, a_=t 1 , obviously (3,28) reduces to

1 2

N

t s

2 )?«e. (3.29)

2 2

n

The expressidn (3.29) is a confidence interval for the



68

difference in two population means in terms of their
sample estimates and Student's t - distributions,

3.22 General Solution:
Theoremg - If 3z be a standard normal variable

and xf
i

(1=1,2,0e0sR) be distributed as X? variates,
mutually independent and independent of z, with
vi(i-l.z,..'-.‘,n) d.f. and Vi(inl.z,.'..‘,R) be a set of

arbitrary weights with the condition

R .
S V., =1, ¥, » O,
j=1 1
then 2
2 R €y 2
Pr (z= ¢ s - X ) e,
i=l V3 Vi

where t; are the Student's t - table values with v, d.f,
following Pr (=t; ¢ t < t;) =« , (1=1,2,.44,R).
Proofs The probability of the event

" 2
2 ] t
z £ S -2 wi‘xz R
il v vy
i
is given as follows.
2
R t
Pr(z2¢ § =2 W, % )
1-1 vi i
o0 o0
R A
2 . 2 2 2
e ] o T R ) AR ieeena %2 ([ £(2?) ax?) ,
o "0 im ’x'i x'i x'& )

(3.30)
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R
where A = 81;1 (tf/vg LAY 'x.si and £(X%) is the

probability density function of x? variate with one d4,f,

A
Since f £(x2) a %2 is a convex function in A,
0
therefore,
A 2 2 R (ty/v) %
J £(x°) ax° > s v, | 1 2 ”
il 0 £f(X°) a x°,
(3.31)
we have
2 2
(ti/vy %
Pr(-ti £ ¢ £ ti)-,c = Ji 1 Vi f('xlz) sz ’ (1=1,2,..R),
0
(3.32)
From (3,31) and (3,32) we obtain
R
2 fx*) ax® »y s W, «.
i=1
or
R
78 Since S W, =1, (3,33)
jm1 1

The relation (3.30) and (3,33) =»

R

2 . 2 2
Pr( z= ¢ 51.1 (ti/vi) ¥ ‘X:vi) ) Lo . (3.34)



70

Theorem: Let X be a random variable following a

normal probability law with mean value § and varisnce

s WVhere

a, o b (Luly2y0009RY 213250009 )y

are some known positive constants, If sf are the

estimates of 6% » where visflcf are distributed as X°

with vy d,f, and are mutually independent and also in-
dependent of X and if Gf be known, then
2 R 2
Prix-§)" ¢ s t a, & aw 63 ) e
1wl 3=l J

where ti and d are the values of -. Student’s t -
distribution with v; dof, 2nd a standard normal deviate
with the confidence coefficient o, respectively,

Proofs Consider the probability of the event as given

below,
R 2
2 S tz aisf + S dzb 6
Pr (x - 517 ¢ i=1_ i d=1 3
R s £ 2. R 2 2
(s a6 +S b.6.) (s a6, +S b, o )
jel 11 55 I3 1=1 11 ju1 3 3

- fg 7 f(ogiz) a %, 3 £(x%) 4 %%, (3.35)
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where
R
S tf a sf + §I d2 b 62
A= 1;; i 4::_1 3 3 c
R 2 4 2 (3036)
(s a, 6, + S b o )
i=1 jm1 3

and f£(%%) is the probability density function (p.d.f.)
of %2 variable with one€ 4d.f,

The relation (3.,36) can also be written as follows.

R V4
A= S <tf/v9 v, mf +8° s W (3.37)
1=l i j=1 3
ay ‘:
where Wi - *
R 2 2
S a16 + S b6
11 * 1 a1 3
b 62
wj - I
R <
s a 62 + S b 62
a1 1% 4.1 33
R
and S W + S W, =1,
1e1 & ja1

A 2
Since f f(ﬂ?) dX is a convex funotion in A,
0 \

therefore we may write
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2 2

A R (¢2 d
fe(xPrax?y s w, | /v %, £(x?) dx? 4+ s v, fr(x?)a x2,
0 1=11 0 j=13 0
(3.38)
We have
&
(e ) X2 g
M1 1 2 2 J 2 2
£(X°) dX° = o = 3 £(x°) ax”, (3,39)
0 | B
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3.3 Comparison of the Power Funotions of Two Testss

Scheffe' . (1943) solution for Behrens = Fisher
problem, as discussed in ?(3,1), is based on a Student's
t « distribution and possessqcertain desirable properties,
In his solution the numerator is a difference of ' .-
means of the observations while the denominator is - ..
square root of the function of sample values having a
%% - distributien with (n;-1) d.f, Walsh (1949) has
compared the power function of Scheffe!: (1943) test
with the power function of a most powerful (when %gis
known) t - test, His comparisen is based on a modification
of the normal approximation to the power function of one
sided t -~ test,given by Johnson and Weich (1940),
Walsh (1949) obtained the power efficiency of one sided
t - tests, Since it is shown by Walsh (1949) that a
symmetrical t - test with significance level 2 ¢ has thov
same power eff{iciency as that of a one sided t - test
with significance level «3, The explicit formula obtained
by Walsh (1949), for calculating approximate power
oefficiency for some preassigned « and different values
of the sample sizes,is arrived at in the following way,

A power efficiency of 100 E% means that the given
test,based on n; and n, observations, has approximately
the same power function as that of the cerresponding

most powerful test based on the sample sizes En; and an.
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The problem then is to evaluate B such that,a most
powerful test (under same hypothesis and significanoce
level), based on Bnl and Enz observations, will have
approximately the same power function as that ef a
given t - test based on ng and n, observations,
The power efficiency of the given test will then be
equal to 100 EB%,: |

Scheffe (1943) one sided t ~ test,and corresponding
most powerful one sided t - test,have same power function

when B 1s so choosen that under H : mj=p, ,

x2 kZ/2
K‘ - 6 //E (1~ '9/2 )* L] K‘ - 6 (1 - """g{"" )*o (30“)
(nyB + n B-2) (ny-1)

The expression (3.,40) 1s obtained by using a modification

to the normal approximation given by Jochnson and Welch

(1940), The quantity 8§ 4is a function of Rysf ety pyr@ Re %'
The significance level of the tests is « and Kae is the
critical value corresponding to < of standard normal
distribution, The accuracy of the approximation involved,

in equality of power functions of two tests, increases

with the increase in ny.

From (3.,40) B can be evaluated as follows,

x%/2 x%/2
B ( l - > ) = ‘ 1 -~ ——— ’ ’ (30’4’1)
(n;B + n B ~2) :".(nl-l)
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x%/2
writing 1l = == = B, (3,41) becomes
: (31-1)
Ez(nl-mz) -EB (® + B(n1+n2) + 5925/2) + 2B =0 (3.82)

Solving (3,42) for E, we obtaln

2
) SR W ((2+B(n1+nz) + x@/z) +J(2+B(n1+n2)+KJ2) -8(n1+nz)B).»
~2(ngny) ’

Thus the approximate percentage efficiency of Scheffe' -
(1943) one sided t - test compared with the Student's

t - test, when R is known, therefore,is given by

—

50 .
(n_+n.) (2"8(“1"'“.‘.).)"’xé/2 "'J (2+B(n1+n2)+l(:/2)l- 8‘“1’*“2)B)$ .
1 2

(3&“3)

for appropriate values of - & ‘n,Ng £Ng o
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3,4 Comparison of the Expected Lengths of Confidence Intervals
of Two Tests: |

The expected length of the confidence interval of
Scheffe (1943) Solution for Behrons-Fisher problem is
gifon at (3.,6)s An equivalent approximate (because of
asymptotic series) expression for Welch(1l947) solution
has been obtained by James (1966), On the basis of
these two expected lengths a oriterion is developed by
him ftom which it is possible to decide which of the two
solutions is more appropriate in the prevailing situation,
James (1966) procedure of measuring the relative test
efficiency is based on the solution of expected value of
the linear function of‘x? variates by hypergeometric
function, James (1966) obtained the criterion for
measuring the approximate relative test efficiency in
the following way,

The relation (3.5) glves the confidence interval
for Scheffe (1943) solution; The expected length of the

confidence interval (3,5), when n; < ngy may be written

as
t s (5,-3) 3
B(p)e ——dif (2= AT 3 o (3

n; (ny-1) ¢
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2 2 o) 2 Kz -')u
vhere 6° = o7 + (nllnz) 628( "

42 M(n_=2)/2 + 1/2)
Applying the relation E(X _;)= 1 ’
1

My -1)/2)

the expression (3.4%) reduces to,

n p n
2 1
242 ¢ < 51 ,/1+(—512'—) ¥? (it

E(p) = X 2 o (3.45)
rZ(nl-l)/?.) /Jnl(nl-l)
2
6
where ya - -%- - --;é-
b §
Velch (1947) obtained a quantity h(s:, s:, <), in a

similar way a9 Gosset (Student (1908), who derived for a
- s

single sample,the expression Pr((x-p) ¢ t, F). The
n

s ©) 15 a function of s2, 52 and < .

2 2
quantity h(sl, s 1* 5,

2
but independent of X with the property,
- - 2 2
Pr(E-2 ) )=(pypy) ¢ Blspy s @) = s

Welch (1947) asymptotic series for calculating h does

not converge, His results yield,
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2 (fafh  sa/ed
> > (1+q7) s + =% )
8 s 1 2
- i) (1 —
=R ny * n, )(’ * Q(sflnl + 82 nzf
, 2 4, 2
(Lap?) (A2 s-r,_al—%

; a2 L), (3.6)

2 2
2(s3/ny + s,/n,)
where Q is a standard normal deviate such that
Pr (N(o,l) ¢ n ) = & 8 fz(m-1),ds02

Substituting s = s2/n; + so/n, 1in (3.46), ¥b get -

-1.2 - -1 2
N [ (1+q2) (s-zszfll) C (s 252921)
=ps |14+ ( )
4 (ny=1) (ny=1)

2 2
(1+q2) (nils:s-z (ngls'zs: ]
- S —— + .‘._. [ ]

2 (ny=1) (ny-1)"

The expected length of the confidence interval for

Welch (1947) procedure is then given by

- %
2B(h)= 2 [)I E(s) +(1‘/’9(1+k\2) ( B '3':'1"""‘ + E(‘T;L—))
nlsB(nl-l) nys (nz-l)

PR .']. (3.47)
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3.41 Procedure for Evaluating Alz

. A
The substitution £ = (s% n, + sglnz), is of

the form (le + sz)g Let x and y be independent
%2 - distributed variates with (ny=1) and (n,-1) df

and K,, Kz be two positive constants,

The expected value of (K;x + sz)% is given by

1

¥ - .
E(K;x+K,y) = (ny+n,=2)/20 1 M=l
2 1 %lez-) (225—-)

® PO Ml Y Mol WP e
{ g.(K11+K2y) x 2 y 2 e 2 dx dy . (3+50)

Transforming z=x, t= X and applying Gamma-funotion
(x+y)

the expression (3,50) reduces to

JEEi [?}n1+n2-1)/2)

B(K;x+K,y) = - -
e sy el
o 2
- =3)/2 K tK
? t(n1 3)/2(1_t’5“2 3)/ (t + =2= = -2-)% dt,
3 = T Y

(3.51)
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From the ratio of (3,47) and (3,45), a measure of the

relative efficiency C , can then be obtained as

¢ . 2B(n)

E(p) (3.48)

The smaller value of € indicates that Welch (1947) pro-
cedure is better, but a larger value favours Scheffe

(1943) solution,

Writing
B(s'/s>) 3(52/53)
E(s) - Al ’ 1 - AZ ’ = AB ’
. 2 2
1 nl(n1-1)61 | nz(nz-l)o’l

and neglecting the higher order terms in (3,47), the
relative efficiency € may then be written in the following

form,

¢ K 1/2(n1-1 ) nl(nl-l) ["{/u(l-n‘tz) (A2+A3)+QA1] .

V2 ¢ 1+(-1-1) ¥ I—('-‘-‘35)
(n-1)yef B2 2 (3.49)
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The hypergeometric function by definition is

od n .
S (b

F(ajbsosz)= _gr-o(a)n I s Where 1zl ¢ 1, (3,52)
(c), n !

with the notations
(a),= ala+l)(a+2),s0sy (a+n=1), n 3 1, and («) =1, 540 o

The special case of (3.52), when amc, b=l yields a

o0 n
geometric series, Sn 0 Z .

By the property of hypergeometric function we know
(Rainville, P345) that, if |z| £ 1 and ¢ > b > 0 , then
(3.52) may be written as

b-]. c=b=l1 a

CI = |
Fla,bjcsz)= £t (1-%) (1-tz) at . (3.53)
Mlo-b» 0

Making trausformation r = (1-t) in (3,51), we obtain,

1 (n,-3)/2 (n,-3)/2
g r 2 / (1-r) 1 / [1-r(1-K2/K1)j* dar, (3.54)

We assume first Ka < 21(1, then since Kl’ Kz > 0,

K

< 2K1 - ll- - l ¢ 1l, so after comparing

0 (K
2 »
K

(3. 53) w:lth (3.54), we can write

(a,bsc) = (=4, (ny=1)/2; (n;+n,=2)/2), (3+55)
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The expression (3,51) can also be written as follows:

1 - (n,- K
(xz/xl)* J t(nl 3’/2(1-1:) "2 3)/2(1-\&(1- —l))* dte
0 K,

‘3656)
X
Assume now 3K1 £ K2 — ,1 - e——— , < 1 , comparing again
K

(3¢53) with (3,56) we get,

(a,bse) = (=3, (n;-1)/2; (n1+n2-2)/2) o (3.57)

[/ 5(nyenp=1)) 42

By defining § » the expected value

r'(l/z(nl-mz-z) )

of (le + sz) may then be written in the following form,

(nz-l) (ny+n,-2) K,
- 6%, P(-3, st it (1- —l-‘;)).
K ’
3“1!“‘2!)%- | when K, < 3K,
(n;~1) (n,+n_=~2) KX
L 8, 7(~4, : § 22 s (1- —Ki)).
vhen 2K, ¢ Kz o
2 2
- Let Kl = 61 Kz - -—-22-' o
nl(nl-l) nz(nz-l)

4
Ve have ¢, A m B(8), which is given by B(K1x+K2y) .
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Similarly A, and AS are calculated with the censtants

v 5 . A2 M(n +ny-1)1/2) r(-'-;;(p1+3))

1
(n,+n_+2)
nl(nl-l)zﬁ%_(nl-l)) - 22 )
and
1 1 .
82 - ey b’r(-‘-z-(nl-mz-l)) F—z—(nz-l-B)) e

2 1
n, (nz-l) r(-‘-g-(nz-l)) F-?(nl-i-nzq-z))
The values of Az and A3 are given by the expressions

(n_+n_+2) K, =K

(Sl(n,‘@l-:))% 1(3/2, (n,-1)/2; —dmfer; -lgf) '

when Kz £ 2K1 '

Az‘- -3-
3 81(“2("2'1))2 3 N3+3  ngennt2 Kl
-— F(-E’ ; : (1- _-) »
nl(n]_-l) 3 2 2 K2

when 2!(1 P4 Kz ’
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and 3
§,(n_(n -1))_2-)‘3 n,+3 n+n_+2 K.-K
2. 1.1 F(3/2, Z gt 22 3 IK 2.),
nz(nz-l) 1
) when K, < 2K,,
AB-
n1+n2+2 xz-x

- tnytnys)? B2, (n-1)/z Bmy B,
2

when 2Klé K,e
The relative efficiency € can now be computed by assig-
ning the specific values to nl,nz.k‘ and at some preassigmed
levels of significance of the tests,
For instance if = ©-95, then 1 = 1,64, and

t is the 0,95 point of one sided t = distribu~

(nl-l),ce
tion with (n1-1) d,f, By fixing them and taking some
values of ny & n, and appropriately choosing Y:, a com=
parative study of the two test considered, can be made,
It will be possible, then, to ascertain which test would
control type I error more efficiently than the other,

under prevailing conditions,
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CHAPTER 4

FIDUCIAL APPROACH

4,0 Introductions

The concept of fiduocial probability distribution
(a distribution of "trust") was introduced by R, A,
Fisher (1930), In his original paper entitled "Inverse
psobability" he discussed the importance of maximum
likelihood method and then produced a fiducial dis-
tribution for a parameter, Fraser (196la) has reviewed
some problems analfsised by fiducial method and obtained
the results for them after putting forward a mathematicai
framo-work within which fiducial probability has a fre=-
quency interpretation, In his paper, Fraser (1961b) has
examined the logical requirements of fiducial distribu-
tions by setting up a tfansformation model which generates
fiducial distributions, The initial development and
discussion of fiducial analysis from transformation
model does not appear in Fisher's own writings, but can
be found in Fraser (196la,b) who stresses (Fraser (1963))
that there is a method of inference underlying the
fiducial writings of Fisher which was only partially
realised and this method can be derived from Fisher's

writings for the purpose of scientific infsrence,
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ksl Transformation Models

The requirements put forward by Fraser (1961b)

may briefly be given in the following way,

Consider a basic sample space on which there are pro-
bablility distributions with a parameter @ which takes
values in a parameter space Y, Let the sufficient sta~
tistic exist and take values in the derived sample space
X, Let now there be a group G of transformations on the
sample space, A class G of transformations is a group if

(1) g8, h€¢€ Gwhoge¢G, where hog is a
composite transformation,

(11) g € G u8311§€ G
Also suppose the following properties hold for this
class of transformations,

(1) The transformations on the basic sample space
induce transformations on the values of sufficient
statisfio i», these transformations can be conceived as
applying to the spacé X

(11) There is a unique transformation which takes
any x € X into another point x' € X,

(111) A transformation g o¢arries a variable x
with a distribution @ into a varliable gx having a dis-
tribution g* @ 6 Y,; There exists an unique transformation
vhich takes any point @ € Y into another point o' € Y,

As an example let (x3 .. xn) be a sample from a normal
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population with mean p  and standa:d deviation ¢ ,
both are unrestricted, The parameter pointifo = (p, o)
with parameter space Y = (=0, ) x (0,00 )e The sample
mean x and standard deviation s are Jointly sufficient
for ( p, o) and x 1is equal to (x, s) and 1lies in the
sample space. X which is also upper half plane, The

spaces X & Y are identical,

Let ([a,b] be a linear transformation which moves the
origin by a and changes the scale by positive unit b,
When this transfomation is applj.ed to a basic sample
space, 1t takes the form as

(a, b) (11. ng sdeey xn) = (a + bxlo sesy & + bxn)o

‘1‘1‘19 corresponding induced transformation on sufficient
statistic space will be

{a, b] (T, s) =(a + bx, bs),
The class G of such transformations is equal to {fa, b] 3
- P acHO , o0& b<oa} . aq& will be a group because
it is clesed under the products and :I.nveréos with the

following formulae,

[es d] (2 ] = [0 + da, ab] ,

(s b]  [2,3] (%.1)

' Under a linear transformation [a, b] , a sample from

a nesrmal distribution ( p, &) is carried into a sample
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from normal distribution (a + bp, bo), A class of
distributions having satisfied these properties has the
advantage that the samﬁle and parameter points have a
position relative to the other sample and parameter

points,

4,11 Pivotal Quantity:

A pivotal quantity is a function of sufficient sta=-
tistic and parameter and has a fimed distribution which
is independent of the parameter value, Usually the
fiducial distributions are derived by means of a pivotal
quantity, A pivotal quantity may pot be unique and
different pivotal quantities may yield different fiducial
distributions for the parameter,

Let x4, 0, be arbitrary but fi&ed reference points
in X and Y, Let g 2 and hg be the unique elements of G
which transform x5, & 0, into general sample and parameter
points x & @ respectively.

A transformation hg on Y carries @, into 6,
Therefore, as a transformation on X, hg must carry a
variable with a 8, distribution into a variable with a
@ distribution, The inverse hsl transforms a variable
with distribution @ into a variable with a distribution

@, Let x = 8x X, be a variable with a distribution 0,

Applying the transformation h;1 produces a variable hslgxxo
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with @, distribution, This variable has a fixzed dis-
tr1b§ti;n and is ihdependent of the value of parameter,

It is generated by the random variable h;l - treated as.
a random transformatipn and applied to the fixsd reference
point x,, Thus g = hal g, takes values in G and has a
fixéd distribution when x is treated as a variable with

a & distribution; it is 1nfac# a pivotal quantity, As a
function of x and @ it is invariant under transformation
in G,

In order to prove the uniqueness of g (in the sense
that any other pivotal quantity which is invariant under
group transformation will be the function of g), let us
assume P(x, ) be invariant w,r, to G then,

P(fx; fo) » P(x, 6) for .,'.:,:' £ 686G,

P(x; 0) = P(gy x,3 hg 8,)

- PGt ey x, 5 B3l g @)

- P(h;l 8y X, 3 90) -)
P(x, ©) is expressed as a function of h;1 €5+ Hence the
pivotal quantity hal 8y is unique,

Considering the example from normal distribution
and using (o, 1) as the reference point in both the sample
and parameter spaces, produces

&x = [x 51, hg= [mo]s
The pivotal quantity then has the form



92 -

which i1s the unique invariant pivotal quantity, Its

distribution can be expressed by the pivotal quantity,

[ : x ] (k. 2)
= ? 02
8 An ’ n=1

where Z&-N(0,1) and‘X? is an indepondont‘x? distribu-~

tion with n-1 d,f,

It is obvious now that the frequency distribution
for x produced a fixed frequenoy distribution for the
pivotal variable g and when this fixed distribution of
pivotal vatiable is used along with the'pivotal equation
g = h;1 g, completely describes the problem, The

equation -1
gsho gx’

can be written as

X= g, X, = ho’g xo,
which indicates that the frequency distribution for x

is obtained by transformation hO which is applied to g x,
where g x, is a variable in the sample space X obtained
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by applying transformation g fo the reference point x,.

Fiduocial Distribution:

The method of obtaining a fiducial distribution is
that the observed value of the sufficient statistic is
substituted into the pivotal equation, the pivotal
variable has its own frequency distribution, the paramoter
in the pivotal equation is treated as a free variable and
the distribution of the pivotal variable is transferred
to it by the pivotal equation,

Consider the pivotal equation

-]
ho'gxg ]

-10

6 = g 8-1 e . (uOB)

where g is the pivotal variable with a fiXed pivotal
distribution, x be the observed value of the sufficient
statistic and § be a variable representing possible
values for the parameter in the form of frequency in-
formation, The equation § = gy g'l @,s gives the fiducial
distribution for 8 as obtained from the fixed frequency
distribution of the pivotal variable,

In practical situations,®6 has a particular but un-
known value, This value of © determines the distribution

of sufficient statistic which has observed value x, In
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- this case one should not infer that “a: probability
statement cannét be made regarding 0.

In terms of repeated bampling from the fixed dis-
tribution of pivotal variable g, there is generated a.
frequency distribution é of possible parameter values
corresponding to the observed x which is the fiducial
distribution and has the frequency interpretation:, This
interpretation can be elaborated by the following example,

The pivotal variable as obtained in § 4,11 is

g_[z.‘x].

An AR

By applying a transformation to the reference point
(6,1) a frequency distribution is generated and the
frequency funoction of the observable variable is then
obtained by a transformation on the sample space where
the transformation is determined by the parameter, By
formula (4,3) and applying (4.1) the fiducial distribu-

tion is produced as below,

-]
-1 (g, 1) = [2 , =27 (o, 1
g ) [ﬁ (0, 1)

A/m=1 °
Z

#/n=1
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(A, &) - g & (0,1) a3, 5] & (0,1)

Z
.[’x’.s](-ﬁp ezl )

X %
A/n-1
B‘-x-" Z . 2 » “2.]'_.3).
X AR %
=1
Hence 6 = ?;1 s
RS SR RSP 4
X a/n
4/n-1
.;-td-;-_-, (%.4)

where the t variable implicitly - defined is statistiocally
dependent én the 7(.2 variable, The fiducial variables

i, & are obtained from the observed values of X, S.
More-over the fiducial distribution of ﬁ is centered

at x and is scaled by ,/-%_- and has the form of Student,

t - distribution with (n-1) 4 - f,

Let a particular sample from a normal distribution
give. the values X,s, Now imagine the possible ex=~
periments inveolving samples of size n from normal dis-
tributions, To make these samples comparable to the

sample already avalilable, transformation is applied on
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each sample to relocate and rescale so that the mean
and standard deviation move to the values of X & s
respectively., The transformation is conceptually
applied to the mean of the distribution. to yleld a
value which is appropriafe for the c;mparison with the
values ;, s, The class of these transformed means
generates a frequency distribution which is the fiducial
t = distribution, From this point of view the fiducial
distribution is a frequency distribution of possible
values for the parameter relevant to the specific ob=-
served ;, s, It is then in this form tha) the distribu-
tion 1is used to make probability statementsin which p, ¢

appear as variables,

Two Means Problem:

Let ;a, ;2, si, sg be the means and variances of
the two samples having sizes n; and{nz, drawn from two
independent normal populations with the unknown para-
meters pj, Po, cf and ag e The problem is to make the
test of sighificance or estimate the parameter difference
Py = By o PFor the 1st system,(x; , s;) is the sufficient
statistio for (p3 , 63) and for second system, (xp , &, )is
for (ny, , 0,). The relation (4.,4) shows that the in-

formation concerning p; and p, 1is 1a.4dm © the varie
ables described by
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where t; and t, are Student’, t - distributions with

2
(n=1) = V; and V, = (n2 -1) d.f, These distributions
together provide a distribution for (p; = p,) and are
appropriate to the values il' Sy iz & Sye The

frequency distribution for n, = p, is given by

(z ) (¢ S . 52’
X - X - — - ——— ’

which may also be written as
(;1 -';2) -r(Sin @ , t; = Cos 0, t,), (%.5)

The constants r and 6 are evaluated from observed

values sl,"s2 by the relations
2 2
s s
r-/l-l- 2 »
ny n2

Sin @ = -:& / r 3 Cos O = =2 / e
/fﬁ-]. ’ /7’5-2

The distribution of p; - p, is obtained from the dis-

tribution of the linear combination
©=t; Sin 0 - t, Cos © , (4,6)

of two independent Studentl, t variablesy, It is only
for convenience that, r and ¢ are imtreduced in place of
84 and Soe Percentage points for (4,6) have been

tabulated py Sukhatme (1938), For instance 99% fiducial
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interval is given by
xl-xzirelt'

where the interval 4+ °14 contains 99% of the probability

according to Sukhatme's table,

The Effect of Restriction on Statistic d:
Fisher (1939) obtained the unrestricted significance
level of

a - _(By=%p)- (o)

81+82
n n

2
are the estimates of standard errors

1l
’ 2
8 -]
where —l ’ ﬁ
ny ¥Rz

of two means, by computing first the probability that d

would exceed a specified value on the assumption that

2 2
8 o
1 1 ‘ o
K= -;2- and R = 6'2 are known, The cayeraqe - value
2 2

of the probability so obtained is then calculated over
the range 0 (R<o® by assigning to R/K its approriate
fiducial distribution for a known K, The fiducial dis-
tribution in this case is the F = di#tribution with
v, &V, df,

The probability distribution of d, when K and R

are known, 1s given as follows,
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The quantity

b4
v 81 + v 82 &
1 62 2 62
1 2
Vl + Vz

is distributed as a Student's t - distribution with
(V3 + V) d.f, which on substituting the values of d, R

and K reduces to

] d"l(-%l+-%i(v1+v2)
) )]
2

(V44V,)

[ (V2 + V1 = By + n
From (4,7) the probability that d 1s greater than a
specified value, when K and R being knm‘m. can be obtained
from Student's t - table corresponding to (V44V,) d.f,
The prebability obtained from (4.,7) is then averaged
over the fiducial distribution of R/K from 0 toco

Let o"f*and o‘%'-be the variances of two populations
in which (321'-/ 3‘2)’ > 1 4is assimed to be true, If
K« 31-*/32" be the estimated variance ratio based on
V, and V, d,f, then K' will be known from the data,
Assume also o‘i = a 3‘% and o'g = b 3"2, where o‘f and
o'g are the variances in-volved in Behrens - Fisher

problem and a, b are some known constants, The restriction
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(3’%' / 3’2) > 1 ocan then be written as

R . 1
LI

2 2 a 2
where K"l/sz"TK .

Under R 5 =1_ » the modification of the test (4,7),
A

K X
as given by Cochran (1963), would be to awsrage the

probability over the values of R/K) > -}r—‘-

Writing V= R/K (=1 ) o the Pr (d > d,) in the
Va¥1 °

region V) -;—:- is given in the following way,

The quantity, Pr ( |t >y d g(V)} s 1s the
(V34V,) %
two sided probability that Student'’s t - variable with
' be
(V14V3) d.f. is greater than d,(g(V)),masy.given by (4,7),
where

(1/n, +K/ny ) (V3 + V,) V ]1/2

(VV, + V)(1 + K V)
nz nl

g(v) = [

The average value of this probability over the fiducial

distribution in the region V > -1 is then

K"
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v
oo v-zz -1

Vi+Vs [ &yl 4 eM ) av
f'(vﬁvz v) __L‘z;_g Fr ( v 4y Ge el ))
e . —_— . (4,8)

00 v -1
vz)/2

a Vv

u1"‘52
g, Tl V7T

From the expression (4,8), it is possibls to calculate
the actual probability with which d exceeds the tabulated
Behrens = Fisher significance levels in fhe restricted
region, for some cho-sen values of Vl and_v2 and taking
f{ at 1ts certain lévela of significance, The direction
of the distutbance to the significance levels of d can

then be examined,

Fiduocial Arguments and Bayels Solutions

The problem of testing the difference in means of
two normal populatiohs, as discussed by Behrens (196%),
can also be considered from the concept of reference
"sets on one hand and the concept of random variable on
the otheqhand. The former requires the dgfinition of a
chance event with roferencq to a particular experiment
ie. the experiment and the reference set to which the

Probability relates are required to be stated, The
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problem is to find the probability P, such that
2 2
I-x )¢t "1, 229 (u,9)
r| (x3-x3) = (Hy=p2) € t15 ( ng T gt

for a given t12 .

In its general solution n; , n, and t12 are fimed, The
values fi7 ,fi5, 67, 6&,';1, ;2 ;) Sq and s, are assocliated
‘witha reference set, which for fimed n; and n,,constitute
all possible normal distributions, which changes from
experiment to experiment, Looking at the problem from
the latter aspect, we are interesfed in_the probability
function f(tlz) of a random variable ty, « In fiduoial
solution, the_prediction about the values of parameters
is not made on the basis of the previous experiments as
the experiments are set up under fresh conditions, The
reference set for?%t: probability statement

Pr ((x=-p) ¢ ;%— t ) . holdsls that of the values -
jre X and s corresponding to the same sample, for all
samples of a given size of all normal pqpnlations. The
choice of jointly sufficient statistics -~ X and 8,
and absence of a priorj knowledge about u & ¢, excludes
the possibility of any subset within a general set for
which a different value of the probability should hold,
'In the case of Baye#': solution, experiments are not

conducted under different conditions and the experience
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gained in the previous experiments can be utilised for
the new one, In other words we deal with a priori known

reference set and distribution of 6,

Let
t15; -
£t )dty= Pr( ¢ X3Py < (ty4dty) 4" —==), (410)
n, ny
and
t 5, s
f(tz)dtzn Pr(_L-/frTg <X oy ¢ (t +dt2) 4’—-'_‘&-2 )o (4,11)
s */;1
Writing p = =& and using (4,11), the relation (4.9)
S1¥R2

reduces to

" s
Pr((:-:l-}xl) P4 (t124'(1+p‘-‘) + t5p) ;r.-;'.]'-)
1

= P(ty, /1+p] + t,0), (4.12)

where t4.,, t2 and p are held constant,

We have ,/r-l—z 4/nq t a8y .
P = and = X, = Y
5 o1 Ta, 2"/l

Therefore the conditional probability (given p) may be

written from (4,12) as

Pr((il-Pl - (x "Pz) < t12 1+P l P)o (4.,13)
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which becomes
-4
(206,076, ,14p% + 6,0) db, = Fy(b1,,0)e (%,14)
-00 .

The equality of (4.,13) and (4.,1%) is valid if fiducial
arguments are accepted and leads to Behrens-Fisher test,
l‘l(tlz.p) can also be regarded as the conditional

distribution function of random variable ti‘z 'given Pe'

Let uw= and V= =2= be two independent random
6/4n c S
variables following a standard normal law andb 2.9 (n-1)

4/(n=-1

distribution respectively, The conditional':probab:llity

f(u, v |{6), given 6, may be written as

2 PSR v?2
1 -u“/2 =2 -(n-l)-z-
flu,v | 6)dudvs= F ° duC v e dv,
2K
(u’o‘15)
nel
where -
(n=1) ~
G, = — .
(=)
2 n-3
2 ( > )L

Transforming u--%_s— and Vv = -:-_— we get

2
1 -§§2(t2+n-1) gn=1
£{t,s |6) dsdta=C e pr dsd ty
27

(1".‘16)
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| Bayels approach assumes that O belongs to a specifio
reference set with certain known prior distribution

gl 0 )¢ The joint probability f(t.s)g,:lis then given by

2
c * et (£24n=-1) _n-1
f(tys) d t d. s = -2 dtds ,[° 202 " 22- glo) d o &
: 2K o ol

{4eo17)

The marginal probabilities of the events

Z-p
§ wm— C(t + dt) (4s18)
Sl/n
and
n (xi-';)

i=]l (n=-1)

mey be obtained from (4,17), and are given by

o0

£1(t) at = at { £(t,s) ds (4,20)
and °

£f,(s) ds = ds [ f(t,s) at, (4y21)
respectively,

The conditional probability f£(t[s) dt, of the event

(4,18) can be given by

, £ (t,s) at .
£f(t|s) dt = :

T (o) o (4, 22)
2 S

Infact fl(t) is the Student's probability density
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function f(tl), based on a random san,:lo of sizei.n,
With Bayels approach the comparison of the means

can be made by the use of conditional density function

£(t|s) and conditional distribution funotion Q(%[s) ="

t .
§ £(t|s)at, instead of the Student's density and its

-od

distribution funoctions, The conditional probability,

given s1 and 8o/18 obtained by

) 8"
Pr[ ((Z)-ry) = (Zpmp)) ¢ 612 =2+ =B [ 5, Sz]

S
n np

o0

- jf(tz[sz) dty H(typ ¢ /142 + t,p | 84} (4.23)

X3P,

82/,

where f(t2|sy)i= Pr (t2$ < (ta¥dty) | 32) ’

and

) s
H(tlz SL4p? +top rsl) = Pr [(;1"}11) (12 (l-l-pz)/{'l-tgp)d_-—l I'ps
n
: 1

Approximation :s
The test oriterion.suggested by Fisher (1935), is
given by

d = (;1";2’ = (p3-p,)
2 1

L VIR N
-

]
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He identified his solution of the two means problem with
the solution given by Behrens in (1929), The computation
of all percentage points is difficult by the direct
application of the formula, Some approximations to the
test have been suggested by Fisher (1941) and Rubin (1960)
for the use of practical workers, Cochran (1964) pro=-
duced an empirical approximation based on Student t-
table values in the 'following wayse

Let o 4 be the critical points of Student
t-distribution with V;=(n;=-1) and Vy=(n,=1) d.f at some
preassigned significance level «£ , The approximate
critical po:!.nt for d is then given by the welighted
mean of < and « with the weights sjz_/nl and si/n2

respéo tively, 1.0,

-
e I S

d =
o
2
sy/ny + sg/n2

Al

d'( reduces to a Student t=value with V d,f when

V1-'V2=V, say, If v,fvz, it is often apparent, by ~
observing a{ and og_ s that é.; will exceed both of
them or not, Its advantage lles in simplicity and fair
accuracy, Cochran (196%4) has measured its accuraocy by
calculating the actual prébab:l.iity & that Behrens=
Fisher d exceeds the approximate é; with some
preassigned « , by making use of asymptotic formula due
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to Fisher (1941), and concluded that the approximation
(4,2%) is adequate for routine tests between 1% and 10%

levels of significance, but not for accurate calculationss
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Appendixs

For a n; x n, matrix C -(013) satisfying the mesessary

and sufficient conditions that all di have means & and
variances 62 are

2 2
S 013 = C

S3 cijckj = 0 when i¥k ,

has minimum value of 0> = nl/nze

Proof: Writing these conditions in vector form we get

]

' c2 when 4 =k
Aaby = {O when 1 4 k, (3.58)
where A; is the 18 row vector of matrix (°13) and U is
the 1 x n, matrix (1,1,ses91)s Prime denotes the
transpose of a matrix, |

If ny veotors A; satisfy (3.58), we can adjoin (nz-nl)
vectors, satisfying the second condition of (3.58), so
that the resultant set forms a basis for an n, = space,
The matrix U can be expressed as a linear combination of

n, A ~ vectors,
n

2
U = s [ o
oy B A (3.59)

where 8x are scalars,
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Using (3.58) and (3.,59), we obtain

t n2 t A $ 2
].-AiU -Ais gkAknsgk 1Ak-g‘°.-

kal
1 ‘ ;
Hence gi = "-o-é o 1 = 1,2, 400 nl.
U is a unit row vector therefore,
t Ry n, '
n, = U0 = (S g A)(s A),
2 kel kK gay KK
which by applying (3.58) becomss
n '
2 2
n, =S A A
2" %1 % Tk Tk
n n .
-c?(sl 452 ) gz o (3.61)

k=l k-n1+1
By making use of (3,60), we obtain from (3y61)

2, , 4 na 2
n, = ¢ (n,/e* + s g
2 = o (ny L &

k=n1+
n . n
oy n2

The equality sign holds whenever 8, = 0 for k= n1+1.;.é.n

2



