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The relative merits oC diCCerent statistics available 

Cor the classical Behrens-Fisher problem are considered in 

this thesis. The two means problem is treated Crom signi­

Cicance test and conCidence interval aspects. Looking at 

the problem Crom signiCicance test approach, various methods 

are applied to approximate the true unknown distribution oC 

Behrens-Fisher statistic. The general case oC testing 

several population Mean values istaken into account and an 

approximate test, based on F-distribution, is constructed 

which has more practical useCulness. 

ConCidence intervals, Cor the diCCerence in population 

means, are set up in terms oC the sample values and their 

optimality, under certain conditions, is shown. 

Bayes' solution oC the problem is also considered under 

the provision oC a priori knowledge Cor population variances. 

An approximation, based on the existing Student t-tables, is 

given which seems to be adequate Cor the routine tests Cor 

practical research workers. 
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PREFACB 

The historical well known Behrens-Fisher problem is 

simple to put but difficult to answer. The available 

~ense literature shows that it has often been discussed. 

l have gone through the different research papers dis­

cussing its various aspects. This study reflects the way 

l have looked into the problem. This work is of expository 

nature. l have classified the problem and considered it 

from various approaches. 

From significance tests view point, some methods, 

already used by various authors, are applied to approximate 

the unknown distribution of Behrens-Fisher statistic. Their 

theoretical limitations and practical utility have been pointed 

out. Comparisons of some test procedures, under the given 

conditions, are made in Chapter 2, to know-the advantages of 

one test procedure over that of the other. 

The confidence intervals, for the difference between the 

population means, have been set up by numerous authors. These 

are discussed in chapter 3. TVo tests, given in chapter 3, 

are compared on the basis of their expected lengths of con­

fidence intervals to arrive at a criterion, from which it may 

be possible to study the approximate relative test efficiency. 

Fiducial approach to solve the problem is considered 

within the frame-work of group transfo~ation Modele The 



frequency interpretation of fiducial probability is made 

in cha ter 4. An approximate test for practising biometriciana 

is considered which can be useful for drawing the scientific 

inferences. 
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CHAPmR 0 

SUMMARYa 

This thesis treats the Behrens-Fisher prob1em Crom the 

stand-point oC tests oC signiCicance and conCide~ce interva1s. 

It is assumed that the simple random samp1es oC diCCerent sizes 

are drawn Crom independent no~a1 populations. A11 parameters, 

invo1ved, are supposed to be unknown. The question is poseda 

Are the data consistent with the hypothesis that population 

means are equa1 or diCCer by a given constant? 

The answer to this is put Corward by Behrens (1929) and 

latter Fisher (1935) gave a test based on the Ciducia1 dis­

tribution. The justiCication oC the use oC this test is 

considered under the Cramework oC group transCo~ation, within 

which, the Ciducia1 probabi1ity has a Crequency interpretation. 

In the si~~ation when variance ratio is unknown, the 

usua1 procedure is to approximate with the standard no~a1 

distribution when the samp1es are large, but for the smal1 

samp1e sizes this approximation Cai1s. The approximate dis­

tribution oC two statistics, given in § 1. , is obtained in 

chapter 1, Crom which it is possible to study how far a 

Student t - test is va1id when samp1e sizes are unequa1 and 

sma11. For the case when sample sizes are odd an exact dis­

tribution is obtained in 91.2. Fina11Yt an approximation 

proceœ1 re to solve the problem oC comparing severa1 Mean values 
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is considered. 

In chapter 2, two types of statistics are taken into 

account. One called unilateral, which controls the type I 

error, if it is known a priori that the variance of one 

specified population is greater than that of the other. Tbe 

other is called bilateral, which controls the size of the 

test when there is no a priori knovledge of the population 

variances. Some procedures are also considered in which a 
. . 

preliminary test on the observed data is performed to ascertain 

whether the population variances May be regarded as equal or 

note On the basis of the outoome of the preliminary test, 

one proceeds to test for the equality of population means. 

Chapter 3 examines the problem of estimating the difference 

between the population means from the confidence interval 

point of view. The general case, when sample sizes are 

small and unequal, is discu~sed. An approximate confidence 

interval for a linear function of the population means (vith 

known coefficients) is constructed in terms of sample esti­

mates. The power function of the test in 93.1 is compared with 

the power function of the corresponding Most powerful test in 

which variance ratio is assumed to be known. 

The logical requirements for the fiduoial method of in­

ference, are considered briefly in chapter 4. Tbe justifioa­

tion of Fisher (1935) test, based on fiducial distribution, 

is disoussed within the group transformation model. Bayes' 

approach to solve the problem is also considered when somehow 



a priori distribution of population variances oan be specified. 
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CHAPTBR 1 

DISTRIBOTIONS 

1.:. Introductiona 

Let X1 and X2 be independent normal random variables 

vith means Pl and ~2 and variances 6f and 6~ respective1y. 

Samp1es of sizes n1 and n2' drawn from the corresponding 

populations, arê denoted by xtj(i-l,2; j-1,2 •••• ,n1 ). 

The samp1e means and variances are 

, 

where 

It is required to test the hypothesis Hoa f1-~2. 

Under Ho' two obvious cases are (i) 6i. ~ and 

(ii) 6~ ~ 6~. In ca~e (i) the most appropriate test 

is made by identify1ng 

vith a Student t - distribution vith f.(n1+D2-2) degrees 



ot treedom (d.t) •. In the seoond case, it R. 6~/6: i8 

knovn, the statistio 

, 

oan be used to test Ho. When ~-P2' U: is distributed 

as 
2 

tD;tI2-2 , wher. 

..".,. 

If, ~wever R iSAknown, an alternativw oriterion 

otten employed is 

2 
V -

The statistio V tollows an approximate standard normal 

distribution it sample sizes are large. But tor small 

samples, this test is not appropriate. When nl-n2, 

U and V are identical. !he validity, in the sense ot 

oontrolling type l error satistaotorily, ot U(when 

of {a G'~ ) and retc·Tring V to a t - distribution vith 

t_(nl+n2-2) d.t is investigated. 

It is obvious that U in general, is not distributed 

as a t - distribution. !he varianoe ot ditterenoe ot 
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' .. sample means is (cff/nI + cr~/n2)' and S2 is an unbi.sed 

\+ \ S2 • • and 

222 crI - ~2 • cr • The statistic V does not suCCer Crom 

this resttiction but its distribution is also not in-

dependent oC R. 
Ir 

Other criteria of the Co~ (%1-%2)/ jd ~l+e :E.2 ' 

whera d and e are some positive constants, may be more 

appropria te .han V. ~or i~stance. if nI and n2 are both 

greater"than J, ve might expact 

to be such a criterion. The reason for these particular 

values oC d and e is that they give to ~ the same value 

"hen R ...., 0 or when R~.o , wh1ch means that the pro­

bability oC rejection, under Ho' departs Crom a preassigned 

value, less for Z than for either of the criteria U and V. 

l.~ Approximate Distributions of U and V, 

Under Ho' ve may vrite 
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'2 2 2 where ~ , Zi and ~2 are-independently distributed as 

~2 vith l, (n1-l) and (n2-1) degrees o~ €reedom re­

speotively. Both U and V can be expressed in the €orm 

T(a,b). ~/Ji , where w. a ~ + b ~~ and a, b are some 

positive constants depending upon the sample sizes and 

the two variances, W is always distributed independently 
1 

0~?Ge Wheli a-b or when ei ther a or b is zero, W is dis-
2 . 

tributed as" multiplied by some oonstant. In these 

cases the distributr~ o~ T(a,b) will be some constant 

multiple o€ t. For othervalues o€ a and b the dis-

tribution o€ Y is obtained by approximating the distri­

bution o€ W by a Pearson Type III(J.X2) Curve. This 

approximation can also be made by representing U(and V) 

by a Pearson Type VII(.Student) ourve a~ter 8o~»adtlD8 

i:.S~··S8c.Dd'·and .. :fourth moments. 

~e probability law o€ W, as approximated by ~2 is 

given by Weloh(1936). His method o€ approximating the 

distribution o€ Y(a,b) is as €ollows. 

~e probability lUnction o€ a type III curve is 

W 

p(W) • 1 --e 2g , W ) 0 , 

where 't and gare so chosen that the €irst_ wo moments 
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of this curve and the true moments of W are the sam •• 

ftrst two moments of' the cunte are given b7 

mean • gf' • , 2 
}l2 - 2 g l'. 

'lhe true moments ol' W are 

Bquating the first two moments of the type III curve vith 

those of' W •• e get 

• 

vith these values ol' l'and g ve see that W - is appro-
g 

ximate17 distributed as _2 vith l' degrees ol' freedom. 

Hence "1 )_w* ~I is approximate17 distributed as 
Cg 

t - distribution vith l'; degrees of l'reedom. 

1b.ereCore Y(a.b) 

1 
where C. and tc is distributed approximately 

as Student t - distribution with l' d.C. For U. it will 

be seen that 
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cJ~ (n1+n2 ) a • ____________________ __ 

Cons1der1ng • 1 g, t:, C. - 1 and the va1u.1I of a and b, as 
@ 

in (1.1), we have 

where 

(nl+~2-2)(n16~+n26~) 2 2 2 

1 t:. 
(1'161 + t:26'2) 

(1.2) • 

(n1+~2)(t:1~ +f26'~) -- 4 
(f

1
eS

1 
+ 

4 
t: 2(f2) 

Simi1arly the values of a and b for V are 

n 62 
and b R _______ 1 ___ 2 ____ __ 

(n2-1)(n26~+n1 6~) 

We can, theret"ore, wr1te V ~ Ct
t , 

2 n 6"2)2 (n26"1 + 
where f • 1 2 ; C • 1 (1.4) 

2 4 2 li 
( n2 :f1 + n1 ~2 ) 

f 1 f 2 

• f is not necessari1y an integer, but may be regarded as a 

number of d. f for approximation. 
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1.1 'lhe Va1idity of U and VI 

Suppose that the statistic U is to be used to test 

H at soma prescribed leve1 ~ • If it .a assumed that 
o 

it is possible to choose U • such that 
o 

Pr (- U " o 
tl {, \l).1-t:L 

o .' 
2.J. 2 If 61 ~ 62 ' and Ùo ls cho.sen as above, then the test 

~ch rej$cts Bo will be biased. ve have 

Pr ( 

whera C and f are givan in (1.2). 

Tbe distribution function of t - distribution vith f d.f 

may be written as 

t 
2 -t(f+1) 

2J'(to )-1 .. 
2 JO .L (l+t / f) dt. 

13(1/2,1/2) o n 
f 

By making transformation Z la - • ve get 
:f+t2 

lS (f/V - 1 + -1 
Z (l-Z) dZ 

z 
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T.hus the values o~ distribution ~unction o~ Student 

t - distribution may be obtained ~rom Incomplete Beta -

~unction Tablfs. It i5, there~ore, possible to vrite 

where 
z • ----2--

(~ + Uo/c 2 ) 

f 
• 

~hioh shows tbat ~or giTen Sample sizes, G and ~ depend 

only on Rand it is possible to obtain, ~or any value 

o~ R, the probabi1ity o~ rejecting Be whe" Ho is true. 

~e level o~ signi~1oanoe ~1s·preassigned. the value 

o~ Uo ' appropriate to the preass1sned oe , wh.n R-l, is 

seen ~rom a Student t - table o~~responding to (nl +n2-2) 

d.l~. I~ n1-n2-n, ~hen c; will always be unit y and 

~ . 
----------------- • 

Pr( lU' > Uo ), ~or di~1'.rent values 01' R, oan be 

obtained by using Inoomplete Beta-1'unotion ~bles and 

the relation (1. ,).- ~e extent 01' bias 01' stat1stic U 

oan be studied 1'rom the graph drawn between the probabi1ities 
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o€ rejeètion and the di€€erent values o€ R. Simi1ar1y 

the case when n1~n2' (0 and € will take values as given 

in {1.2», can a1so be studi.d. 

~e values o€ C and € €or the relation V$ C t€, are 

given in (1.4). 'Ihere€ore. validity o€ the test statistic 

V, by ident1€y1ng it vith a t - distribution vith 

(n1+n2-2) d.;' € may be investigated in the same 'lray. 

If' i t 1s known that &.1, then certainl)" tl is the 

exact test statistic.' When there exista a PQss1bi1ity 

that R+ l , then U will y~e1d vrong conolus10ns. in 

tbis case it 1s appropria te to use V rather than U. Sice 

V controls type 1 error more s*tis€actori1y tban U.' I€ 

there i8 no 1n€ormation about R, the statistic Z contro1s 

type X error more satisfaotorily tban both U and V, pro-

vided samp1. sizes are greater tban 3.i Under Ho' the pro­

babi1ity o€ rej.ct1ng Bo deviates 1ess t~OM the preassigned 

1eve1 o€ signi€icanee, €or the statistic Z than €or the 

statistic:r U gr V. 

1.11 A.pproximation by K - statisticsl 

An other method o'l approxiDIating the distribution, 

o€ the €orm y(a, b), is given by GrC)" .. 'llow (1951). He has 
u 

obtained the approxtmate moments c€ the d1stribtion.s 

o~ U and V by Fishert-s K-statistics. , 
expressed in the €orm b(k1 - k1 ) 

( ale ')1-
k 2 + 2 

Both U and V are 

• Y.nere a, b are 



1.3 

soma oonstants. "lhe quantities k l , k~ and k 2, k~ are 

the f1rst and secondcamulants of the samples. The values 

of a and b, in ganeral.vill difter for U and V exoapt 

in the case, when' nl '. n2 • mere U will be ident1:cally 

equal to V.: 

Let • Bxpanding z. by Taylor's 

• and K2• K2 are the first and second cumulants ot the t.o 

populations being samp1ed. and taking expected value, 
.'1 

ve have, to the order (n-1)· .. '; 

1 

B(z) • ..! [1+ .2:..-
2 ,3&2 i 2 

)JC 2 
+ 1 2 + 1 • 

T n1-1 4 T
4 - 41'4 (nl-1 )2 n -1 2 

5 Jt:3 
21 1:2 ) 1 lO5a2X~~ .' 2 ( -1 + + " • 

2 T
6 l6T2 (nl -l) (n2-l) 16T8 

, 

+ 1 'ai f3 
2 (-1 + --_ ..... _- • 2la K2 -->]. 

2 T
6 

16 T
2 

, 
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Second, third and fourth momènts o€ z can be 

e?aluated in tine same vay_ Taking spec1€io namerioa1 

values, an appropria te Pearson Type CurV-e (wi~ same 

mean and variance) can be used to approximate the unknown 

true distribution o€ U and V. 

'lhis method €ails to approD.mate the moments o€ U 

and V if the lst tvo oumulanta~o€ the populations being 

sampied, do not e:d.st or they have the same value ' .• 



15 

1.2 Bxact Distribution of Va 

Consider the s~ples ~f odd SiZ6S (201+1) and 

( 202+1). drawn from two independftn t normal populations 

having variances 6i and 6:, respective1y. Let 

based on the sample values. If ~1~P2 - (, then Y oan 

be written as 

Dividing numerator and denominator by ( 

va obta1n V 1n the fol'm X 
(1~6) ;r • 

,2 2 
s 

( <i1":X2)- 'J 
l -+ 2 

and ,J .. - -
[ 2111,,"1 202+1 

whel'e x-
4,(2 6 2 t -6

2 6 2 
( 1 + 2 ) ... ~ 2 

201+1 2112+1 + 
.2111+1 202+1 

Obvious1y, x fo11ows a standard normal distribution 

and y is distributed as a weighted sum of thè ",,2 

a 'J{J2 
201 

• 

~2. 

] . 



16 

tri (202+1) 

where a. ---------------------------
2111 [ (2112+1) 6~+(2n1+1) ~ ] 

and • 

a.re oonstants w1 th tJte eond.1 tion 2111 a + 2n2,b - 1. 

1.21 Distribution of yI 

Box (19$4) has gi'Ven a theorem for the 1inear 

combination oC ~2 variables vith ev en d.f. from whioh 

the exaot distribution of welghted sua of two ~2 var1ates 

oan be obtaine4. Satterthwa1te (1941) has a1so obtained 

the distribution of weighted sum of two ~2 variables. 

Tone present solut1on,based on the Laplace Transform 

(L.T). o~ the. probabi11ty dens1ty lunetion (p.d.f) of a 

random variable ,: :! ts due to Ray and Pi tman (1961). 

T.hey bbtained the probabi11ty funct10n of Y. as fo11ows. 

Let pey) b~ the p.d.t of Y. where 

y • a ~2 
2n1 

+ b ~2 
202 

• 
2 and ~ 
20

2 

2 are 1ndependen t ~ 

random variables based on 201 and 202 d.f. T.he L. T 
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o~ p.d.~ o~ a random variable. d1str1buted as ~2 with 

even d.~ is 

By de~1nition. thé L.T o~ p(y), there~ore. 18 

~ ~ 2 2 

f 2 f -s(a~ +~ ) 
L(p(y». d " e 201 202 o 20,. 0 

where p(~ • ~2 ) 1s the joint p.d. 1" o~ ')L2 
201 2112 2111 

%2 and ~ are 1ndependent. there~ore, we May write 
2111 211

2 

-nl -n 
L(p(y» • (l+28S) (1+2bs) 2. P(s). say. 

We know 

-1 l 
L (p(s».----

27r1 

c+1cO s1' J pesle dSi 
c-ioo 

sy 
This integral can be evaluated if P(s)e 1s a meromorphic 
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function ~th known poles at S • Bk and infinity. by 

the method of residues. 

'1b.erefore 

pey) -

~~om (1.7). we May wr1te 

and 
1 -n -n 

(S+-) l (s+.!.) ·2 
2a 2b 

-1 -1 
has po1es at s.(2a) of order n

l
• at s--(2b) of 

order n 2t and at infinity. 

Xt 1s known that 

nl -1 
ds 

and using Leibn1tz.s theorem for the mult1-order 

different1al of a produot. we get 
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1 1 -(n1 +n2-1) -y/(2a) 
• (---) e 

2b 2a 

R ean a1so be wrltten by symmetry. Renee trom 
-1/(2b) 

(1.:8) t we obta1n pey). 1 ft. 

(2&) S: 

which on substituting the expressions for ft and 

ft t beeomes 
-1/(2b) 

-y/(2a) 
p(y) •• 

where 

-1/(2a) 
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and n 2-r-1 1 r 
() ( 1 ) nl+n2-r-2 
-1 -------~r. __________ 2_a __ 2_b _________ On~~_-r_-_l_ 

1.22 1he Distribution of V: 

V is distributed as X T' where 
y 

x fo11ows 

• 

standard normal distribution and the p.d.f of y i8 given 

in (1.9). x and y are independent random variables, 

their joint p.d.'f. therefore. is given by 

, 0,(. y<~ • 

Making the transformation x v. - • ytz e a Y. we obta1n 

• 8 > 0 • 
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Integrat1ng vith respect to 8, tbis becoMes 

1 p(V). --Iv. 

By ~e use Gamma - funct1on, (1.10) reduces to 

+ 

Cons1der1ng the r th term of the series 

1 . V2 -(r+:3/2) 
oC ITr+:3/2) (- + -) • 
r 2a 2 

and transform1ng 

it to a new variable 

ve obtain 

-t 
2 -

• 

• 
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:tt becomes 

where pet ) is the p.d.f of Student t-distribution 
(2r+2) . 

wi th (2r+~) d.1'. Substi tuting the value 01' ~ in (1.12). 

we get 

(n1+n2-r-2) 
C 

(n1-r -1) 
• 

The r th term 01' the second series in (1.11) mare simi1arly, 

be written as 

where 

The distribution 01' V, thus, is the weighted sum 01' 

t-distributions. 

The percentage points 1'or V can be ca1culated 1'rom ~e 

P. d.1' 01' V by using the rala tion, Pr ( 1 VI < Yc) =1 - 0( • 
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where '" 1s preass1gned s1gn1f1canc9 11llve1 (0 {c( ~ 1). 

From (1.1), (1.14) and œaking use of the t-distribution, 

we get 

n1-1 n1-r-1 ft2 n1-r-l -(n1+B2-r-1) 
(l-CIl). 5 (-1) (2a) (2b) . (2a-2b)1' 

r ... O 

Fr( t t l , 
2r+2 

n2~1 n 2-r-1 n 2-r-1 n1 -(~+n2-r-1) 
+ 5 (-1) (2a) (2b) (2b-2a)JI 

r ... O 

(n1 +n2-r-2) t 
o • Pr ( i t f ~ « 2r+ 2) b ) 't ). ( 1.15) 

(n2-r-l) 2r+2 

The expression (1.15) can be written in more compact 

form by subst1tuting 



24 

(n1 +n2-r-2) 
C • Pre 1 t 1 ~ 

(n1-r-1) 2r+2 

(n +n -r-2) 
1 2 C • Pr ( 1 t 1 ~ 

(n2-r-1) 2r+2 

By specifying 01, • n1 , n 2 and Y , we may de termine lt: • 
The on1y condition of norma1ity is not sufficient for 

the general solution, and the unrestricted distribution 

of V. thus obtained. has intact no practica1 use in the 

two means prob1em, since it invo1ves R which is unknown. 
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1.3 General Approach: 

Let %1'1-1.2 ••••• k) be stochast1c variables 

normally and independently distributed w1th means ~i 

and variances At d'i respectively. vith known positive 

constants. l' but Pi and ~ being unknown. Suppose 

s: 718.1d, estima tes of cr: which f'ollow distribution 

as 2 
~i • The 

quantities s: (i.l.2 ••••• k), are supposed to be in­

dependently distributed. The aim is to test whether the 

data are consistent vi th the hypothesis Ho: )li ""}le 

A particular oase i5. when Xi are the rneans of' 

samples of' sizes ni' drawn from k independent normal 

populations having true means ~i and varianoes 

Sinoe variance of' xi is 6 i
2/ Di • so A .. ...1... 

i ni 

The hypothesis is as fol1ows: whether the k populations 

b~iDg samp1ed may be considered to have the same Mean 

without 1mposing any condition on variances. 

k 
S 
i.1 

James (19.51) bas oonsidered a statistic 

1 and 

Under Ho' this statistic. in LARGB samples. fo11ows 

• 



approximately _2 distribution vith (k-l) d.f. It is 

then possible to make a statement of the fOnD 

Pr - • 

For small samples, in order to make tbis type of state­

ment, he obtained a function h(w1 'w
2 
.... ,wk ' tIC ). havlng 

the property 

pr( 

and developed a method of arriving at successive appro­

ximations to tinis function in ter.ms of the orders ~. 
. fi 

The exact function of this nature vas evaluated by 

Student (1908) for a single Mean problem. Later on Welch 

(1947) gave iterative methods of ca1cu1at1ng it for 

genera1 case. the series given by We1ch (1947) is on1y 

asymptotic and suffers from convergence difficu1ties. 

Jamos (1951), for instance. obtained results to the Qrder 

.l... as 
fi h(wl' w2' •••• wk • ~ ) 

• ~2 [1+ s~ !(1-
-------------. ia'~ 

• 
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For approximating this function involving higher orders 

of .J... , he poin ted . ou t i ts limi ted prac tical u tili ty. 
:ri 

Welch (1951) has, to the order -1- , obtained the same 
fi 

result as giTen by James(19S1) in (1.17). by an alter-

native Methode He developed an approximation which 

involves the use of Variance Ratio Tables rather tnan ~2 -

Tables and has more pratical utility. Welch(19S1) method 

of appro:dmating the function h(wl ,w2 , ••• ,wk ' ~) by 

the use of oumulant - generating fUnction of the statistic 

k 
S wi (xi -i)2 is as follows. 
i-l 

For k-2, ·the statistic 

to 2 
(xl-x2' 
(..!...+...!..) 

w1 w2 

where V_ 
(~-X2) 

/is~+ ~ s~ 
• 

2 2 
5 Wi(Xi-X) reduces 
i=l 

this statistic se~erat6s 1nto a function of xi divided 

by a function of s:' when k-2. But for k> 2, such 
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separation is not possible, vhioh shows tbat the appro-

xtmation ~or distribution o~ k 2 
5 Wi(xi-~) is to 
i.l 

be made independent o~ s:. Assuming tbat the moment -

generating ~unotion o~ this statistlc exists, ve write 

, 

where El' E
2 

denote averaging ov.er the joint distribution 

o~ 
2 si respectively. 

and equating ~i. 

~unction is 

1 
~.oC"2 
iUi 

, 

l 

tne1Doment - generating 

• 

The corresponding oumulant - generating €unction, to the 

1 
order --- , there~ore is 

Ci 



k 

( 5
i

•
1 

1 
- (1-
t'i 
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1.31 Approximation by J'-distributions 

The F - distribution is more convenient to use 

than t - distribution vhi1e comparing severa1 mean values 

when population variances are known to be equa1. Oon-

sider the moment - generating t'unction ot' the J' - dis­

tribution. Ve have 

~ 

... • ( : )/(~~/i2)' 
t'1 

where 2 
and ~2 are distributed independent1y as 

E 

d.t' respective1y. 

-i f 1 
• (1 - 211ft- ) 

1 

For given %~. we have 

Nov 

• 



30 

uF 
e - (1 -

The moment - generating function, HF(u), is then 

given by averaging it over ~~ distribution. Writlng, 

to the order ve get 

(1.19), ve obtain 

An equiva1ent expression corresponding to oumu1ant-

k . 
generating €unction o€ S. w1 (x

i
-i)2,. there~ore,1s 

1-1 
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-1 
Ka(u).-i(k-1) log(l-2u)+ -t:(A+~(k-1» u(l-2U) 

. . ·2· 

+ 
(k2_1) -2 
_II~_ u 2 (1_2U) • 

:f2 

Comparing (1.18) and (1.20). 1 t can be eas11y seen tba t 

A + 2(k-l) k 
.1;..(1 

'tI. 2 
= 2 S - -!..) ,. 

{Yi :f2 i ... 1 f. 
]. 

) 

(k2_1) k 'tI 2 
and = :3 S .J:...(l- ..1:..) 

A le 
f 2 i=l :fi S\I. 

2./ 3. 

(1.21 ) 

A:fter substituting tne volue ~f 

(1.21), we have 



..;1:.,_ 

~ch means, to order 

15 distributed as 

1.:32 Practioal Appllcati.ont 

We derine 

.J;.. • the quan ti ty 
f 1 

Let t be the tabulat8~ v~lu~ of ~he Yariance Ratl0 F -

Table. correspending ·to the' significanoe ~ v1 th d. f 

-1 

.] • 

Under Ho' we cansay~ppr~"mate:ty '(to' orcier ~1 1. then 

pr(V2 > J'a( ) 1:1 cC • (1.24) 

V2 invo1ves the unknown "i and samp1e values 1fi' and 

\Ii 
,. 

a1so enter into f 2• We, therefore, cannot use (1.24). 



Hoveve~as Vi enter on1y into expressions o~ order 
1 -. ~i 

vith the substitution o~ vi ~or Wit v. can make appro­

ximate probabi1:t.ty statement like (1.24). 

The approximate test procedur9. therefore. iSI 

(i ) Calcula te 

k 
wi (xi -i)2/(k_l) S 

V2• i-1 
• 2(k-2) k 1 vi 2 

1+ 
(k2_l) 

S -(1-
Ic 

) 
i-l ~i SW 

C;'I i 

-1 
where ] . 

(ii) .e~er V2 ,. A 

to l'-Table vith ~l and f 2 d.~. 
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CHAPTER 2 

UNlLAT.BRA.L " BILATERAL STATlSTICS 

2.0 Introduction& 

~e statistics U,' V and Z , as given in §(1 •. ), 

are cansidered by We1ch (19'37, 1947).' Aspin (1948, 1949) 

has extended the results and investigated the numerical 

behaviour o~ the series developed by Welch (1947). Ura 

(1955) has obtained the power fUnction o~ Weloh(1947) 

test, ~or the case when two popu1a~ion variances are 

equal and compared it with tbat o~ Student t-test. In 

Welch (1947) a function of Sr(i-l, 2), and cC , wi th the 

property 

is obtained. The corresponding critical points con­

sidered by him are not ~ixed and are the fUnctions o~ 

the samp1e variances. Wald (1955) gave a statistio ~or 

equa1 lample sizes but has a1so used a random critioal 

point. 

From 9(1 •. ), a statistio of the ganeral form 

2 
(%1-%2) , (2.1) 

may be obtained. where r
1 

and r 2 are positive constants, 



depending upon the samp1e si~es. This statistic might 

be considered to control the size of a test fDr various 

values of Ra It ls, therefore, possible to ohoose r 1 and 

r 2 suoh that. the hypothesis Ho. ia rejected on1y when 

Y(r1 .r2 ) > 1. 

~e distribution of Y(r1 , r 2 ), under Ho' may be 

given by 

, 

where f i -(ni -l).(i-1,2). is the d.'f of ~2_ variate:: and 

6 2 r 1 62 r
2 

a -
1 • b • 2 

t 

2 • 
+ 6~n2 2 2 

(cSi/nl (61/ n1 + 6;/nZ 

Ali ~2 variables are independent1y distributed. Under 

Hl 1 ~1~~2 • the distribution of Y(rl ,r2 ). i8 given by 

~ . 
• -~ 'h' 

• 

'!he numerater 1s non-central ~2 wi th one d.:f and 

non-céntrality parameter h. ia given by 

2 
h • __ (P. .... 1-..-.... 'P,.;;;;2 ... )_ • 
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The c1ass o~ statistics Y(r1' r 2 ), as suggested by 

We1ch(1937), is considered by Gur1and et al (1960), and 

the size ot o~ the test, is examined by them ~or a ~i.ed 

point (unit y). 'Dl.ey have treated two kinds o~ statistics 

separate1y •. '!he ~irst kind, ée.11ed unilateral, keeps 

the size of the test 1ess than or equa1 to a given fixed 

value over the range R ~ l, if i tis known a priori tha t 

the variance of one population.: is greater than the other. 

The second is ca11ed bi1atera1, which keeps the size of 

the test 1ess than or equa1 to a preassigned value over 

the who1e range o~ R, i~ there is no apriori know1edge 

of population variances. For the bi1atera1 oase, they 

have shown that Student t - tables may be used to ~ind 

tha-:;appropriate statistic for any pair of sample sizes. 

Their method of ~ind1ng the size of the test, ~or both 

unilateral and bilateral cases may be described as below. 
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In order to calculate the size o~ a test using the 

statistic Y(rl' r 2 ', it is required to evaluate the 

probabili ties of' the ~orm~ 

where R ls an unknown constant.' Under Ho. and for the 

specifie values of' nl' n2 and r 1 • r 2, the statistic 

'J,.2 
1 

+ ~2 ) 
t 

2 

• 

In two extreme cases the stat1stic -(r1' r 2 ), takes 

the ~ollowing fo~. 

2 
"'1 

6
2 

2 when -1' 0 • 
n 2 r 2 'Itt 

1 
2 

(2.3) 

and 

~ when 6
2 

---+ 0 2 2 • 
n1 r 1 ~~ 

1 

(2.4) 

Various probabilities in (2.2) can be plotted against 

the ditterent values ot: R. '!he graph so obtained will 

approach horizontal asympt(;ltes as R~ 0 and R~oo. 
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The probabilities in the extreme cases may be 

oaloulated by the use ot Incomplete Beta - €unotion, due 

to its relation vith Student t - distribution.' These 

oan a180 be evaluated as f'ollows,: 

Let 

Sinoe 

Rer. 

G1 , € 1 (0) • Pr ( (~I ~i > c) QI oC • 

~2 
~l €l ls distrlbuted as t 2 - distribution 

1 

o • (2.5) 

t.t. is the two sided '" ~ points of' Student t -
€l 

distribution ~th €l d.€. 

To oompute probabilitles in between the extreme oases o€ 

the general form (2.'2), the €ollov1ng theoram, obta1ned 

€rom a theorem of' the linear combinatlon of ~2 var1ates, 

due to Box (1954), 15 used. The.rema Lèt Y be a random 

variable vith the torm 

~ 
y • ---------------

, 

where %2 _ variables are independent, the f~ • 2~ are 
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even integers~ and ai are positive constants. Then 

the distribution ~unction of Y is given by 

(2.6) 

where Fn,mCx). 1 - Gn,m(X)' the constants Dl are 
js 

given by 

• 

• 

2.11 Opttma1ity of Unilateral and Bilateral Statisticsa 

'lh~ ste.tisticZ, as giv~n inq{l. '), can be usefu1, 

if it is knOlm that Sinoe Cor particu1ar 

values of rl and r 2, the size for the statistic Z has 

an asymptotic value oC , as R-+ 0(1 , and is only slightly 

1ess than 0( ~or ilntire range 1 <. R (00 • For instance, 

in the case when populations might consiat o~ measure-

ments made by tw~ dif~erent techniques, a particular 

one o~ which 1s ..... ; known to be more precise than the 



~ther. 1his information 1s uti11sed by the stat1stic 

Zl ln keeping thesizé of the test practically oonstant 

over the relevant range R > 1. Such a statistic May be 

oalled unilateral statistic and can be looked upon as op­

timal within the class Y(rl ,r2 ), beoause no other sta­

tistic in thiso1ass keeps the size as nearly constant 

and ~ess than or equa1 to ~ , over the range R) 1. 

For a11 sample sizes, unilateral statistics can be 

found from the folloving two conditions.' 

and 

Pr ( y ( rl' r 2) > 1 1 R-too) • oC • 

'1l1.e second condition, by (2.2) and (2.4), May be written 

as 

(2.7) 

'1l1.e parameter rl t'rom (2.5) and (2.7) ls given by 

'!he parameter r 2", + An2f Z ,where '" is tabulated 

by Gurland et al (1960), for some particular values of 

CI( and various sample sizes, by making use of the 

rela tion (2.-6). 
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In case when it is not possible to assume that one 

population variance is greater than the other, a11 values 

o~ R must be accounted ~or in constructing a statistic 

in order to control the type l error.. Oving to practica1 

limitations the size o~ the test is kept~.t • It can 

be seen that the statistic whose parameters are de~ined 

by 
, 

and (2.8) 

is the Most optimal within the c1ass o~ statistics con-

sidered, when R is unknown. Such a statistic may be 

ca11ed bi1atera1statistic~ 

J'rom (2.8) • we· find r1 and r 2 ~or a11 values o~ 

n1 and n 2 and ~or a preassigned value o~ Dl , by the use 

o~ Student t - distribution as 

and (2.9) 

It is obvious that i~ the in~ormation, R) l, is 

ignored it is possible to arrive at a di~~erent con-

c1usion than i~ this in:formation is uti1ised.' 



2.2 Proposed Proceduresl 

The prob1em of testing the difference in means of 

two normal populations, without assuming the equa1ity of 

the variances invo1ved, is treated from the point of 

view of emp10ying a pre1iminary test for the population 

variances. The use of a pre1iminary test in testing a 

statistical hypothesis has been considered by Bancraft 

(1944) and Bozivich (19,6) in various contests. Chand 

(19'0) has studied the behaviour of type l error in 

repeated samp1ing from populations with a fixed value 

of unknown variance ratio by uti1ising an approximate 

know1edge about the unknown variance ratio. The pre-

1iminary hypothesis, 

using a test statistlc 

2 6 2, is tested by 

The effect of de-

parture of R from unit y on the size of some tests for 

Ho' has been investigated by Gur1and et al (1962). 

Their atm is that if the size of a test cannot be made 

constant for a11 values of R, then it shou1d be kept as 

close to a constant v~lue as possible and this shou1d 

not be accomp1ished on the expense of decreasing the 

power of the test under consideration. Their method of 

ca1cu1ating the size of some tests, proposed by them. 

ls as fo11ows. 
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2.21 Unilateral Cas., 

In pre11minary part, the hypothesis, 

is tested by using ~. If vè denote the cri tica1 point by 

a and the significance 1eve1 of this pre1iminary test 

by 'i , then 

Pr ( y > aiR. 1) = ,,( . 
o 

We make use of the statistic \12, at given in § (1. ), 

for testing Ho ,if H is not rej$cted. But if 00 

Hoo is rejected then the statistic wou1d be some con-

stant ti~es U2• In case Hoo is rejected, it will he 

equiva1ent to retaining the statistic U2 but changing 

the critical point. The description of this test pro­

cedure 1 (say), is as fo110ws. 

Procedure Il 

If Y ~ a, reject Ho if \12) c but accept Ho 

if U
2

" c.' 

I:f y> a, reject Ho 1:f 
/ 
C but accept 

The size of the test, using procedure 1 is given by 

This is obtained by the expression 



pr(R. 1. a ; .. 

+ Pre 
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~2 
1 > cci) 

) aIR; 

R 2 2 
%:f + "':f 

1 2 

vhere d is a constant and is equa1 to 

2 
~ varia tes in (2.,11) are independent random variables 

with :fiani-1,(ial.2), d.:f. The complete speci:fication 

o:f this procedure requires the values o:f the constants 

c, cr and 'i to be given. 'lbe vCllue o:f a can be 

determined :from (2.10). 

Substituting r-r1/r2 in (2.1) ,:we get 

It is possible to test Ho by de:fining a test procedure 

II (say). Using critica1 points c and cr in con­

junction vith ü 2 and Y(r) respective1y, ve can vrite 

the statement :for procedure II as :fo1lovs. 

• 



Procedure 

If' 

\12 ~ c.' 

If' 

if' Y(r) 

The size 
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lIa 

't~ a, reject Ho if'U2 )c but accept Ho 

'1 ') a, reject H if' Y(r) > c' but accept 
0 

(. 1 ... C • 

f'or the test procedure 

';f,2 
. 1. 

2 2 
R ."4' +~4' . 

'&'1· '&'2· 

II is obtained 

) aIR; 

if' 

H 
0 

f'rom 

(2.1) 

where the constant g= 

The values of' a, c and Cl, used in procedure II, wou1d 

in genera1 dif'f'er f'rom.· the values used in the procedure I. 

Second term of' the expression (2.1), when r-1, 

reduces to 
~2 

Pre ~ ) aIR; 
2 

%f' 
2 

~2 
1 

which is same as the second ter.m .f' expression (2.11). 
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2.22 Bilateral Case: 

In oonsidering this case all values o~ RC.R) 0) 

can be used. The modified test. ~or testing Hoo' will 

invalv.e two critical points, al and a 2, such that 

• (2.14) 

I~ equal tail areas ~or this test 0A;e considered, then 

• Pr ( "if > a2 fa • 1) • • 

This test procedure III(say), i8 analogous to the 

procedure I.the ~ormal statement ~or procedure III 

may be given as follows. 

Procedure III: 

I~ "( ~ al' reject Ho 1~ U2 > cl bt-'t ace.pt Ho i~ 
112./ • 
U ~ Cl • 

I~ '( > a 2 , reject Ho 1~ U2 > o~ but accept Ho 1~ 

ü 2 , c~ • 

I~ al <. 't" a 2, reject Ho if' \12> c but accept Ho 

i~ U2 ~ c. 

Applylng procedure III, the slze o~ the test ls obtalned 

by 



.so 

~2 a ": +Pr ( l' 1 2. > cd) _ 
-~-'----%2 R 2 2 

l' ~ ... +"'1' 
2 "'1 2 

2 2 
,r, a ?t: 

Pre 1'1 1, 1 ) \_~_. ____ >Cd • 
2 

%1' R D .. 2 2 
~ +,c. 

2 1'1 1'2 

Complete specification of .. ' procedure III inva1ves the 

• • constants i ' 0 1 ' c 2 and c. The oritioa1 points al' 

a2 are determined by thetT'41 a tion (2.14).' 

2.23 Size of Testsl 

In order to ca1cu1ate the sizes of the tests for 

diff'erent procedures oonsidered, we require the eva1uation 

of the expressions, 

2 ~ , ~ 

> cet) pr( 1'1 "IR ; -.(. , 

.,..2 2 2 
1'2 R,r,f +,r,f 

1 2 

( 2.'16) 

2 2 and %. ~ c' g) .! pr\21 > aiR; > e ,f2 
2 2 

Rr JIIt +"1' 1 2 

(2.,17 ) 
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1 2 
Let X. 2'" ~ ; 1 2 1 2 

W • - "'t and M a -?Co: • 
2 1 2 t 2 

~ -ot is App1ying, that the p.d.t 
n 

k 
--1 

2 -ng/2 
g e • g .., o , 

where gis di s tri bu ted as 'X,2 vi th k d. t, we can wri te 

the joint probabi1ity density tunction of' X, W and M as 

-x-w-m 
e ,(x.w,m>O). 

'lhe expressions (2.16) and (2.17), then, reduce to the 

f'orm Pr(RW-aM ~ 0; cd RW+ cdM < X), 

and 
Pr(RW - &JI > 0; RrJgw + égM i. X). 

By making use of' Pearson (1934) Incomplete Beta - f'unction 

tables, the computations can be simp1if'ied tor the cases 

when R -+ 0 or DO and R • 1. 
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CHAPTBR 3 

CON~IDBNCB INTBRVALS 

3.0 Introductions 

The Behrens - Fisher problem ls treated from con­

fidence interva1s point of view •.. ' Neyman (1941) has made 

a simplified but 1ess genera1 statement of tne resu1t. 

obtained by unpub1ished solution of Bart1ett. which is 

a180 brief1y mentioned by Ve1ch (1938). Heyman (1941) 

resu1t is based on successive 41fferences of the two 

samp1e observations and May be obtained in the fo110wing 

vay. 

Let (~' ••• 'Xnl) and (yl ••••• yn
2

) be the random 

samples drawn from two independen t normal popula tions wi th 

Mean values P1 and P2 and variances 6~ and o~. respectively. 

Suppose nl ~ n 2 and 0 -Pl. -P2ti Select random1y a subset 

of n
l 

from n2 varia tes of the second samp1e and calcula te 

nl 41fferences. .l i -Yi -x1 (i ... 1. 2. _i.: •• nl). neglecting 

'!he standard error of .{ is 

{ will be normally and 

independently 41stributed. '!he problem is tnen reduced 

to tIlat of estimating th_ Mean of 1-' 
The confidence interval for which can be given by 

1- + st • 
fIC 

(3.1) 
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where s2_ 

taten with (n1-1) d.f. Whatever be the values of p'S. 

6 ad Cf~, Cf~ , the proportion of cases in vhich th. 

stat .. ent of the for. (,.1) to be tru •• will approximate17 

b. equal to ~. 

~e unsatisfactory aspect of this solution lies in 

the fact that n2-nl obs.rvations ofa sampl. are dis­

carded. Koreov.r it does not indicate vh.th.r it is 

possible to construct intervals which would be, in som. 

s.nse. shorter tban those of the fo~ (,.1). T.be ansver 

to this question is given by Sch.ffe (194,). His solution 

shar.s th. obT1~us advantag.s of th. solution m.ntion.d 

by H.yman (1941). and is a1so fr •• from the obj.ction of 

th. case wh.n n1 ~ n2. Scheffe (194,) obtain.d his 

resu1ts in the fol10ving vay. 

'.1 Solution in Simple Oas •• 

Let ~ (i-l.2 ••••• nl ),ar. ind.pendent1y and 

no~ally distributed random variables vith •• an , and 

variClnc. CS2• D.fine P atùl. by 

p - . - 2 
(~-p) • 

~.n (p - 6)/6Anl will fo110v a standard normal dis­

tribution and ./~2 will b. . ~2 distribut.d with 

(n1-l) d.f, bO.th b.ing ind.pendent1y distribut.d. th. 



'7 
ml (p - &) 

quantity •• i11 then be d1stri~ted as a 
'/8/(n1-1) 

Student'st- distribution vith E. (n1~1) d.~. 

A set o~ confidence interya1s ~or 6 with a con~ldenee 

coe~ficient • ls 

1 p - cS 1 • 

If B(p) be the ezpeeted 1ength of the cOD~idence in­

terya1 (3.2). then 

where • 

• 

Jiik) [(k/2 + 1/2) 

f(k/2) 
• 

lhe symmetriea1 choiee o~ « will minimise B(p). 

Conslder a 11near function 



.s8 

then ~ vi11 bave a mu1tivariate no~a1 distribution. 

'lbe necessary and .fu:tfioienOt oondi tions tha t a11 di have 

.eans 6 and varianoes ~2 and oovariance zero are, 

add , 

wh.n i-j 

where 

I:f a 1inear :func:tion dt, as de:tlned in ('.4), ia used 

in :finding the set o:f con:fidence interva1s, then the 

expected 1ength o:f the con:fidence int.rYa1 B(p), will 

be given by (, .. 3) vith ,,2 _ 6f + c2 ":. In order to 

satis:fying the necessary and suf:ficient conditions and 

:for wlU.oh 02 is .in1llium. '!he minimWll value o:f 02 i8 

n1/n2 •• 

Writing 

- - n1 t 
where %0 y are the .eans of two samp1es, zi-x,. -Cïï) Yi 

2 

n 
and - S 1 zi/n1 .. z • 

i-l 

* J'or proof s~e append1x 

, 
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The oonCldenoe lnterYal, thereCore, as ln (3.2),1s 

given by 

• (3.$) 

the expeoted 1ength oC the oonCldenoe lnterYa1, when 

n1 - n2 and n1 ' n2 will be 

vith 

3.11 General Casel 

({-)t fik/2 + 1/2) 

J(k/2) 

and 

'. 

, 

reapeotlve1y. 

Let P be a 1inear and • be a quadratl0 Co~ oC ~e 

Tarla tes (%1' %2' • • • 'Zn" and (1'1'1'2' ••• ,y nl. vi th 

coeCC1clents independent oC the parameters. ~or some 

oonstant t. lndependent ot the parameters and some tunotlon 

R oC the parameters. the quantlty '=i!) will be dis-

, , 
trlbuted as a standard normal distrlbutlon and ~ vi11 

R 

Co110. a ~2 1av v1thek-1)d.t. Both are lndependent1y 

distributed. theretore the quotlent 

t(P-&)/R 
• 
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~11 be distributed as a Stud.nt's t - distribution ~tb 

k-1 di~.; 7he su~~lc1ent cendition ~or (3.7) te be a 

sJlllllletric t - di s tribu tlon vl th (k-1) d.-,~.r ls a1so dis­

cussed by Sohe~~e (1944). ObTious1y B(p) must be equa1 

to 6 and 

....... ÏB-...C&;;p ... _..,;;, ... )_2__ • 1 .' 

R
2 

'lbe t - distributlon o~ (3.'7) 1ea.d.s to the con~ld.noe 

lnt.rTa1s 

The expected 1ength o~ C3.9) 1a then giTen by 

(3.10) 

whelle 

I~ lie vrlte. P • 
Dl n2 b. v. S ai%i - S • i.1 1.1 1·1 

then B(p) • Pl 
Dl n2 C3.11) S al - "2 S bi • 
1.1 i.1 



:fr •• (3.8). B(p).'. and ai' bi are independent of 

the par~eter~ therefore, 

then 

and 

• (3.14) 

J'rom (3.18) and. (3.14) we can wri te 

where are ln-

dependent of the parame tersé 

B)" (3.'15). the relation (3.:10) ma)" be written as 



)~12 Hinimum B~eoted Len.thl 

Amongst a11 oonCidenoe int.rYa1s ot tDe form 

oonfidenoe interva1s ().,),bave the mintmum expeoted 

1ength. 'lbe ooef1'ioien ts ai and b i in (:3.16) are 
c 

subjeot to the restri~ion 

there1'ore 

1 1 - ) - • 

'-rom (3.17) and (3.16) we get, 

(62 + (~) 6 2 )1 
1 n 2 2 

or 

B(p) • 

'lb.e relation (3.18) proves the assertion tha t ... -.1 tllltn a11 

the oonfidenoe intervals 01' the torm (3.9),the e~ected 

length ot the oon1'idenoe intervals (3.5) is minimum. 



3.13 AS)'IDptotic Shortness ot the lontidence Interva1s (3.'). 

mutua11y 1ndependent and are distributed as Nlo,l) , 

X2 1 and ~ 1 respective1y. Theretore 
(n1 - ) ( 2- ) 

The efficient and shortest confidence interva1 avai1ab1e, 

18 given by 

~ (2 2 2 t IP-61 ~ t:tn1
+n2-2).dL! (n1+n2-2 ) (61/n1+621n2)~n1+n2~2]' 

vi th the expected 1ength 

B(p) • t 
(n1 +n2-2) ,ce 

• (n~ 
1 

(;.'20) 
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w'here 
• 

7h. ratl0 L,o€ the expeeted lengths o€ the eon€ldenee 

lnterYals (,.,) and ('.20),ls th.n 

The behavlour o€ L. €or speci€le values o€ nt,and~ ean 

be studiecl :trom the relatlon (, .. 22). 'lbe pereentage b;y 

vhich the expeeted length o€ eon€ldence interval ('.5) i5 

greater than the available optimum con€idence lnterval 

1ength ('.21), cao a1so be calcu1ated.' It can .. \ 

sa€e1y be conc1uded €rom the €act, L ~ 1 when n1 ~oo • 

that t~e confldence int.rvals ('.5) are at least asympto­

tlcal1y e€€lcient. 

'.2 Con€idence Interval €or a Linear Junction o€ Population 

Meansl 

Banerjee (1960) obtalned a con€ldence lnterva1 €or 

Il; . 11near €unctlon of the population means based on the 

sample estlmates and the Stadent' . t - table values. U& • . ;. 

lndicated the method €or the case o€ two samp1es, a..,;ét; 



extended his results ln Banerjee (1961) ri::~ compart.,. 

them vith ~ .. :.,.:' exlstlng Flsher (193') and Velch (1947) 

solut1o~ Banerjee (196°,61) results are based on a 

property o€ the conve~unctlon and have been obtalned as 

€ollovs. 

be an event, 

Student's t - table values vlth (nl-1) d.f~ and con€l­

dence coe€flclent~. I€ P ls the probabl11ty of the 

event consldered, ve can ~en vrlte 

Pr ( 

_ 2 

(~+x2 - }ll-P 2) 

6f/n1 + 6~n2 
) • P • 

2 d1~trlbuted as a ~ vith 1 d.~. the prcbabil1ty P ls 

given by, 

P • 

ls 
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"here 

probabi1ity den8ity ~unotion8 ot s~ and 8
2 • and. 
2 

g(s~ • s~) -
AS 1 2 t-1 -1/2 2 

fti (~ 12) e ~. 
o 2 ( /2) 

Ber. .A _ 

Sinee j 2 2 
t(~ ) cl S :18 a oon"'.% tunotion in A, th.r.~or., 

o 

t
2

s
2
/6

2 

J1 1 1 ~(X2).G,2 

o 

6
2
/n 

222 
t 2S 2/62 t(x,2) fJX2. + 2 2 J 2 2. 

61/nl + 62/n2 0 
(3.2,) 

We ha.,.. 222 

Pr(-ti ~ t , t i ). /fIC .. 
j'tSi/6i 2 fJ$2 , (i_1., 2). t(~ ) 
0 

(3.26) 
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~ro. ().2S) and (3.26) it Co110ws 

or 
lit • 

lC al and a 2 are som. knOVD constants, ().28) can th.n 

be vritten as Co11ows 

Pr 

~. expressi4n ().29) is a confidence interva1 Cor the 
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41fference in tvo population .eans in terms of their 

sample esttmates and Studentls t - distributions. 

3.22 General Solutiona 

Theoreml - If z be a standard normal variable 

and be 41stributed as 'Xl- Tariates, 

mutually independent and independent of z, vith 

Vi (i-l,2, .... ,R) d.1', and Vi (i.l.2 ••••• R) be a set of 

arbi trary weights vi th the condition 

R 
S Vi - 1. Vi ~ O. 
1.1 

then 
t

2 
R 

li tg,2 Pr (z2 ~ S 1 ) ~ - .t! • 
i.l Vi 1 v1 

where t 1 are the Stadentls t - table values vith v1 d.f. 

folloving Pr (-t1 " t " t 1 ) • tIC , (1.1.2 ••••• R). 

Proofa The probablllty of the event 

2 
~ t 1 2 2 t. z _ S - V1 ~ • 

1s g1ven 

- j 
o 

1_1 v
1 

Vi 

as follows. 

w ~ ) 
1 1 

6#1 R 

•••• J lr 
o 1.1 



vhere 
R 2 2 

5 (ti/v';' Vi?Ç and f(-x,2) ia the 
i.1 i 

A • 

probabi1ity denaity fUnotion of ~2 variate vith one d.f. 

5inoe 

therefore, 

ve have 

A 
J f(~2) d ~2 is a oonvex funotion in A, 
o 

l'rom (:3.31) and (3.32) we ob tain 

or 

.sinoe 

The relation (3.30) and (3.33) -~ 

R 

R 
5 W. 1. 
i.1 i 

Pr ( z2 '5 t 2/...,.2 ) ~ C i v ~ i N Vi "tI:.. 
i.1 
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theor"l Let X be a random variable fo110wing a 

normal probability law vith mean value 6 and varianee 

, wh.re 

are some known positive constants. If' s: are the 

2 2, 2 2 estimates of' 6~, where visi ~i are distributed as X 

vith vi d.1', and are mutual1y independent and a1so in-

dependent of' X and if' 6
2 be known,then , . .t 

pr~x-cS) 2 , 
R 

t 2 2 1 d2 b tr: ) S ai si + » IC, 
i.l i i·1 j 

where t
i 

and d are the values of' '. Stad.nt' s t -

distribution vith vi d.1', and a standard normal deviate 

with the conf'idence coe1'1'ioient ~,respectively. 

Proo1'l Consider the probabi1ity of' the event as given 

be10w, 

Pr 
[ 

eX -
R 2 

(S a
i

6
i 

+ 
i.1 

• (3.3" 
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w11er. 

a 2 2 J 
d2 b G'2 S t l a 81 + S 

A • 1 ~.1 j j 1.1 f 
a 2 1 2 <:3.)6) 

( S al CSl + S b
j CS ) 

1.1 j.l j 

and f(~2) la th. probabl11ty denalty tunctlon (p.d.f.) 

of ",2 Tarlab1e w1 th one. d. f. 

Tne re1atlon ().)6) can a180 be wrltten as fo1101ls. 

A • 
a 2 2 2 

S (tl /T",) V
l 

-x: + cl 
1.1 .a; Tl 

where t 

b cs2 
V • j j 

j a 2 L 
b cs 2 S a

1
61 + S 

: .~1 j.1 j j 

a 1 
and S V

l 
+ S Wj • 1~ 

1.1 j.l 

A 2 
Slnce b f(~2) d X ls a conTex function in At 

therefore we may wrlt. 
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We have 

2 2 
t(" ) d ~ D oC. 

Pr«x_&)2~ R 2 2 , d
2 

b 62 )~,,(' ~ 5 t 1 a1 s1 + 5 j ~. 
1.1 j-1 ~ 

• 
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3.3 Co.parlso~ o~ the Power ~notlons o~ Two Testsl 

Sohe~~el , \1943) solutlon ~or Behrens - ~isher 

problem, as disoussed ln f(3.1), 15 based on a Stadentls 

t - distrlbutlon and possess~eertaln deslrabl. propertles. 

In Ms solutlon the nuaerator ls a cl1~1'eX'ence o€ J;',' 

means o€ the observatlons wh11e the deno.lnator ls .~,<, 

square root o~ the 1'unctlon 01' samp1e values havlng a 

X2 - distrlbutlen vith (n1-1) d o €. Walsh (1949) has 

eoapared the power 1'unetlon o€ Sehe€1'el~ (1943) test 

ri th the power 1'unotlon 01' a DlOst pover1'ul (when t ls 

known) t - test. Hls cODiparlson ls based on a Dlodi1'leation 

01' the normal approximatlon to the power 1'unctlon 01' one 

slded t - test,glven by Johnson and We~eh (1940). 

Walsh (1949) obt&lned the power e1'1'lcleney 01' one slded 

t - tests; Slnce lt 18 shovn by Walsh (1949) that a 

symmetrleal t - test vi th slgnl€leanee 1evel 2 cC has the 

same power etticlency as that 01' a one slded t - test 

vlth slgnl€ioanee 1eve14. 1be e~~o1t 1'ormu1a obtalned 

by Walsh (1949),1'or ca1cu1atlng approx1mate power 

e1'~lelency 1'or sODie preasslgned ~ and di€1'erent values 

o~ the sample slzes,ls arrlved at ln the 1'ollowlng way. 

A power e1'1'leleney of 100 B~ Dleans that the glven 

test,based on ni and n2 obserTatlons~has, approx1mate1y 

the same power 1'unctlon as tha t 01' the eorresponding 

DlOSt pow.r1'u1 test ba8ed on the sampl. slzes Bn1 and Bn2 -
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The prob1 .. then is to eva1uate B suoh tbat,a aost 

poverfU1 test (under same hypothesis and signi~ioanoe 

1eve1), based on Bn1 and Bn2 observations,w111 have 

approximate1y the same power tunction as that of a 

given t - test based on n1 and n 2 observations. 

the pover e~tioienoy ot the given test vi11 then be 

equa1 to 100 •• ' 

Sehe~te (1943) one sided t - test,and eorresponding 

most poverfU1 one sided t - test,have same pover fonotion 

when B i8 so ehoosen that under Ho, 1 ,u1-P2 ' 

Je -iJ1: 

~e e~ression (3.40) is obtained by using a modifioation 

to the no~l approximation given by Johnson and Ve10h 

(1940). 1he quantity & is a funotion ot nl,n2,Pl,}l2+& R.;:~. 
the signifieanoe 1eve1 of the tests is ~ and K~ is the 

eritica1 value oorrespending to ~ of standard normal 

distribution. the aeeuracy of the approximation 1nvo1ved, 

in equa1ity ot power tunotions ot two tests, inereases 

vith the inorease in n1. 

l'rom (3.40) B oan be eva1uated as tol10vs, 

B ( 1 -
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Jt~/2 'r5t vritlng 1 - ---- • B. (3.41) beoomes 
(111-1) 

1'hus the appro'x1mate peroentage e1'1'iol_noy 01' Sohetter,~ 

(194) one slded t - test oompare~ vith the Student's 

t - test, when R is known,there1'oreJ is giv_n by 

50 

tor appropria. te values 01' etC: \~l"'I\, Dl 1: n2 • 
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3.-4 Comparison of the Bxpected Lengths of Confidence Interva1s 

of Two Tests 1 

The expected 1ength of the confidence interva1 of 

Soheffe (1943) Solution for Behrens-Fisher prob1em is 

given at (3.,6).. An equiva1ent approximate (because of 

asymptotl0 series) expression for We1oh(1947) solution 

has been obtained by James (1966). On th8 basis of 

these two expeoted 1engths a oriterion 18 deve10ped by 

him t~om which it is possible to deoide whioh ot the two 

solutions is more appropria te in the prevai11ng situation. 

James (1966) procedure o'f measuring the relative test 

efficienoy is based on the solution of expeoted value of 

the 1inear funotion of ?t2 varia tes by hypergeometric 

funotion. James (1966) obtained the criteriGn for 

measuring the approximate relative test 6ffi~ienoy in 

the fo110wing vay. 

The relation (,.,) gives theconfidenoe interva1 

for Soheffe (1943) solution., '1hë expeoted 1ength of the 

confidence interva1 (3.") 1 when n1 < n21 may be written 

as 

B(p)= 1 
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h r«n1-1:)/2 + 1/2) 
Appl71ng the relation B(~ -1)- __________________ _ 

1 

the expression (3.44) reduoes to, 

B(p) _ 

mere 

2";; ~ ... <SI J+(~) y; n-?-) 
~(n1-1)/2) Jn1 (n1-1) 

2 
Y -lï-

1 
2 

cr2 
,,2 

1 

, 

2 2 
Ve10h (1947) obtained a quantity h(sl' s2' 110), in a 

s~i1ar vay ~~ Gosset (Student(190&), who derived for a 

single samp1e,the expression Pr«i-~) i t -!-). The 
t/:.fai 

2 2 2 2 
quantity h(sl' s2' ~) is a function of 51' s2 and~ • 

but independent of .'t vith the property, 

Ve1ch (1947) asymptotic series for oa1ou1ating h does 

not .converge. His resu1ts yie1d, 

, 
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where , is a standard normal deTiate such that 

2 . 2/ 2, (46)" Substituting s • sl nl + s2' n 2 in:J.. • 'j. get 

-

The expected length of tiBe confi4ence tnterTal for 

Welch (1947) procedure i8 then giTen by 

+ .'.'. ·1. 

. .... ] . 
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:3.,41 Procedure Cor Bva1ua ting Al' 

222 
The substitution ..s - (sl/nl + s2/n2 ) , is oC 

the Corm (K1 % + K2y)., Let % and y be independent 

~2 _ distributed variates vith (nl -1) and (n2-l) d.C 

and Kl' K2 be two posi tive constants.' 

(:3.50 ) 

TransCorming z-x, t- % and app1ying Gamma-Cunction t 
(x+y) 

the expression (:3.50) reduces to 

,.foi1 lT(nl +n2-1)/2) 

n nJr -1) I1n2-1 ) 

2 2 
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~ro. the ratio oC (3.47) and (3.45), a .easure oC the 

re1atiTe etCioienoy f , oan then be obtained as 

1he sma11er Ta1ue ot 't indioates that Ve10h (1947) pro-

oedure is better, but a 1arger Ta1ue faTours SohetCe 

(1943) solution. 

Writing 

, , 

and neg1eoting the bigher order terms in (3.47), the 

re1atiTe etCioieney t may then be vritten in the C0110ving 
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~e hypergeometrio function by definition is 

~ n 
Sn_o(a)n(b)nZ 

(O)n n ! 

vith the notations 

, vhere Iz' 1.. l, 

The speoia1 case of (3.52), when a.o, b.1 yie1ds a 

geometrio series, 

By the property of hypergeometrio function ve know 

(Rainville, Pa4,) that, if Izi ~ 1 and 0 > b > 0 , then 

(3.,,2) may be written as 

Haking tra~sformation r - (l-t) in (3.51), ve ob tain. 

Ve assume first 1t2 <. 2It1 , then sinoe 1t1 , It2 > 0, 

It 
11- ~ l ,,1, so after comparing 

1 
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The expression (3.51) ean a180 be vritten as .fo11ows. 

1:1 1 I l - - <: 1 • oomparing again 
1:2 

By defining 
rtl /2(n1 +n2-1» t{i o • • the expee ted value 

1 r( / 2(n1+n2-2» 

of (1:1% + 1:2y) may then be wrltten in the fo11owing forme 



8) 

S1milar17 A2 and A~ are calculated ~th the oenstants 

and 

, 

'2 • ,rz rlè+1nl+n2-1l) 1ï+""2+:)) _;-'. 

n 2 (n2-1) 2 f(.: t (n2-1») rc:! (nl +n2+2») 

The values ef A2 and A~ are given by the expressions 

men It2 < 2ltl ' 

nl+~ nl +n 2+ 2 Kl 
...... _; ; (1- -), 

2 2 1C2 

wen 2Kl ~ 1C2 ' 
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and 

~e relative e€~ioiencyf oan now be computed by assig­

ning the speci€ic values to n1,n2'~ and at some preassigaed 

1eve1s o€ signi€icance o€ the tests. 

For instance i€ ~. 0-95 , then \. 1.64, and 

t is the 0.95 point o€ one sided t - distribu-
(n

1
-1),. 

tion vi th (n1-1) d.€. By €i:d.ng them and taking some 

values o€ n1 & n2 and appropriate1y choosing Y, a com­

parative study o€ the wo test. considered, can be made.: 

It will be possib1e,then,to ascertain which test wou1d 

control type l error more e€€icient1y than the other, 

under prevailing conditions. 
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CBAPTBR 4 

l':mt1CIAL APPROACH 

4.0 Introductions 

The concept o~ ~idueial probabilit.Y distribution 

(a elistribution o~ "trust") vas introdueeel by R. A..' 

l'isher (1930). In his original paper entitleel "Inverse 

peobabili ty" he cliscusseel the importance of maximUill 

likelihooel methoel and then produeeel a fiducial dis­

tribution for a parameter. l'raser (1961a) has revieved 

some problems analysiseel by fidueial method anel obtained 

the results ~or them after patting forvard a mathematieal 

frame-WDrk w1thin whioh fiduoial probability bas a fre­

queney interpretationJ In bis paper. l'raser (1961b) has 

examined the 10gieal requirements of ~iduoial elistribu­

tions by setting up a transformation moelel Vhich generates 

fidueial clistributions., 'lbe initial elevelopment and 

eliscussion of fielucial analysis from transfo~ation 

moelel cioes not appear ln 1'1sher's ovn vrltings. but can 

be founel ln l'raser (1961a.b) who stresses (Fraser (1963» 

that there ls a methoel of lnference underl"tng the 

~iducial writings of 1'1sher whioh vas only partially 

realised anel this methoel can be derived trom 1'1sher's 

wrltlngs for the purpose of seientifle lnf.rence. 
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4~1 Transto~ation Mode11 

the requirements put torward by ~raser (1961b) 

may briet17 be gi'Yen in the to110vi08 vay .. 

Oonsider a basic samp1e space on which there are pro­

babi1ity di.stributions vith a par8lleter e vhich takes 

values in a parame ter space Y. Let the sutticient sta­

tistic exist and take values in the derived samp1e space 

Xe' Let nov there be a group G 01' transto~tions on the 

samp1e space. A c1ass G ot transto~tions is a group it 

(i) g. h ~ G l1li) h 0 g E-! G. where h 0 g is a 

composite transfo~ation. 

(ii) g f G wt>3g-;lf~ G. 

Aiso suppose the fol10.ing properties ho1d tor this 

c1ass ot transto~tions. 

(i) the transformations on the basic samp1e space 

induce transformations on the values ot sutficient 

statistic iAthese transfo~ations can be concei'Yed as 

applying to the space X. 

(1i) ~ere is a unique transto~ation wbich takes 

Any x ~ X into another point x, e Xe' 

(lii) A transto~ation g carries a variable x 

vith a distribution e into a variable gx having a dis­

tribution g* e 8 Y. There exists an unique transfo~ation 

which takes Any point e 8 y into another point e' 8 Y. 

As an example let (xl ••• Xo) be a sample trom a normal 



89 

population vith mean ~ and standard deviation ~, 

both are unrestricted. 
is 'lbe parame ter point .. e • (po, .-), 

vith parameter space Y • (_.0 ,00) % (0,00). 'lbe s8.lllple 

mean i and standard deTiat10n sare joint1y su~~ic1ent 

~or ( p, ~) and x is equa1 to (i, s) and lies in the 

samp1e space X which is a180 upper ha1f plane. the 

spaces X & Y are identica1~ 

Let· Ca,b) be a 1inear transformat10n which moves th« 

origin by a and changes the sca1e by posi ti Te uni t b.: 

When this transfo~ation i8 app1ied to a basic samp1e 

space, it takes the ~orm a8 

(a, bJ (%1' %2' ••• , :In) • (a + b%l' .'.e, a + bXn). 

T.he corresponding induced transformation on sufticient 

statistic space will be 

[a, bJ (i, s) .(a + bi, bs).: 

~e c1ass G of such trans~ormations is equal to{~, bl 1 

- el» ~ a' dO ,,,<. b (..0 1, a~d will be a group because 

it is c1ased under the products and inverses vith the 

to110wing ~ormu1ae. 

[c, d J (a, bJ • (c + da, db J , 
_1 

[a, b] • [ -a 1 ] 
b'1) 

Under a 1inear transformation Ca, b] , a samp1e frOID 

a n~a1 distribution ( ~, ~) is carried into a samp1e 
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from normal distribution (a + bPI b~). A e1ass of 

distributions having satisfied these properties has the 

advantage that the samp1e and parame ter points have a 

position relative to the other samp1e and parameter 

points.' 

4.11 Pivota1 Quantitya 

A pivota1 quantity is a funetion of suffieient sta­

tistie and parameter and bas a fimed distribution which 

is independent of the parameter value. Usua11y the 

fidueia1 distributions are derived by means of a pivota1 

quantity. A pivota1 quantity may not be unique and 

different pivota1 quantities may yie1d different fidueia1 

distributions for the parameter. 

Let Xe. 80 be arbitrary but fimed reference points 

in X and Y. Let B.e and he be the unique e1ements of G 

vhieh transform xo & 80 into genera1 samp1e and paramete~ 

points x & 8 respeetive1y~ 

A transformation he on Y carries 80 into 8. 

Therefore. as a transformation on X. ho must oarry a 

variable vith a 8
0 

distribution into a variable vith a 

e distribution. The inverse hë1 transforms a variable 

vith distribution 8 into a variable vith a distribution 

~. Let x - gx Xo be a variable vith a distribution 8. 

App1ying the transformation h;l produces a variable h;lgxXo 
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vith .0 distribution. T.b1s variable has a fi.ed dis­

tribution and is independent of the value of parame ter. 
,. . 

It is gen.rated by the random variable hi1 gx treated as. 

a random transform~tion and app1ied to the fi~dd reference 

point xo. Thüs g • h;l gx takes values in Gand has a 

fized distribution when x is treated as a variable vith 

a • distribution; it is infact a pivota1quantity. As a 

function of x and 8 it is invariant under transformation 

in G. 

In order to prove the uniqueness of g (in the sense 

that any other pivotal quantity which is invariant under 

group transformation will be the function of g), let us 

assume p(x,.) be invariant v.r. to G then, 

P(fx; f.) • p(x, .) for ;.~ .:' r " G. 

P(XI .) • p(gx Xol h. ·0) 

• P(h;l gx x • h-l h ·0' 0 • • • 
• P(hë1 gx %0 ; ·0) ~ 

p(x, .) is expressed as a function of b$1 gx. Bence the 

pivota1 quanti ty hi1 gx is uniqu ... · 

Considering the examp1e from normal distribution 

and using (0, 1) as the reference point in both the sample 

and parameter spaces, produces 

gx. [i, s] , 

The pivotal quantity then has the form 



-1 
g- h 

e 
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-1 
g • [P. 6 J 

x 

.. [- L. ~] r i. s J 
6 6 

. [ (X-P.) 

6 
. ; J. 

which is the unique invariant pivota1 quantity.' Its 

distribution can be expressed by the pivota1 quantity, 

g .. [~ 
'X,2 -J . n-1 

(4.2) • 

where ZEo--N(O.l) and 'X2 is an independent 'K,2 distribu-

tion wi th n-l d.·f. 

It is obvious now that the frequency distribution 

for x produced a fixed frequenoy distribution for the 

pivota1 variable g and when this fixed distribution of 

pivota1 va~iab1e is used a10ng vith the pivota1 ~quation 
-1 

g .. he g. comp1ete1y describes the problem. The 

equation -1 
g .. he gx. 

oan be written as 

wbioh indicates that the frequency distribution for x 

is obtained by transformation he whioh is app1ied to g xo' 

where g Xo is a variable in the samp1e spaoe X obtained 
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by applying transtoraation g to the reterenoe point Zo. 

4.12 ~iduoial Distributions 

The method ot obt&ining a tiduoial distribution is 

that the observed value ot the suttioient statistio is 

substituted into the pivotal equation, the pivotal 

variable bas its own trequenoy distribution, the parame ter 

in the pivotal equation is treated as a tree variable and 

the distribution ot the pivotal variable is transterred 

to it by the pivotal equation. 

Consider the pivotal equation 

he • 
-1 

gx g , 

he 8
0 

• gx g -1 e o 

a • g x 
g-l 8 

o • 
(4.3) 

vhere g is the pivotal variable vith a ti~ed pivotal 

distribution, x be the observed value ot the sutticient 

statistic and Î be a variable representing possible 

values tor the parame ter in the torm ot trequency in-

~ -1 tormation. The equation w • gx g 80 , gives the tiducial 

distribution tor 4 as obt&ined trom the ttmed trequenoy 

distribution ot the pivotal variable. 

In practioal situatio~e has a particular but un­

knovn value. ~s value ot 8 determines the distribution 

ot sutticient statistio vhich bas observed value x. In 
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th1s oase one shou1d not infer that "CI' probabi1i ty 

st&tement oannit be made regarding •• 

In terms of repeated samp1ing from the fiœed dis-

tribution of piTota1 Tariab1e g, there is generated a, 

frequenoy distribution a of possible parameter Ta1ues 

oarresponding to the observed x vh10h is the fiducia1 

distribution and has the frequeney interpretation". T.h1s 

interpretation ean be e1aborated by the fo110v1ng examp1e. 

the pivota1 variable as obtained in § 4.11 is 

81' app1ying a transformation to the rererence point 

(.,1) a frequeney distribution is generated and the 

rrequeney funetion of the observable variable i8 then 

obt&ined by a transformation on the samp1e space where 

the transformation is determined by the parameter. 81' 

formula (4.) and app1ying (4.1) the fidueia1 distribu-

tion i8 produeed as be10v, 

z 
- iiri 

.( " -
~n-1 

-1 

(e, 1) 



9S 

• [i • s J ( -

(i -
Z Il El Il) a • - • • • 

'Je, 4ft 'Xr -~1 
Hence " 1itl er. s • 'X 

Z 
,. 

/1 - S - z..!:.. p. • X - - • X -
~ Jt'ii rn -.vn-1 

- t ..!.. (4.4) • X - • ND 

where the t variable imp1ici t1y '" cl.t'in.cl ia atattatio&117 

dependent on the 7L2 variable. The ~iducia1 variables 
A " _ 
~, ~ are obtained from the observed values o~ x, s • 

.1\ 
More-oTer the fiducial distribution o~ ~ is centered 

-at X and is IIca1ed by -!- and has the form of ltudent~. 
Nn 

t - distribution vith (n-1) d '. f. 

Let a particu1ar sample from a normal distribution 

give, the values -x,s. Nov imagine the possible ex-

periments involving samp1es of size n from normal dis-

tributions. To make these samp1es comparable to the 

sample already availab1e, transformation is app11ed on 
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eaoh samp1e to re10cate and resca1e so that the mean 

and standard deviation move to the values o~ i A s 

respeotive1y. The trans~ormation is conceptua11y 

app1ied to the mean o~ the distribution. to yie1d a 

value vhich is appropriate ~or the oomparison vith the 

-values x. s. The olass o~ these trans~ormed .eans 

generates a frequency distribution vhich is the ~iduoia1 

t - distribution. rrom this point o~ vie. the ~iducia1 

distribution is a frequency distribution of possible 

values for the parameter relevant to the specifie ob-

-served x. s. It is then in this form ttao.r the distribu-

tion is used to make probabi1ity statementf in which P. (f 

appear as variables. 

4.13 Tvo Xeans Prob1ema 

Let 2 2 
xl. x2' sl' s2 be the means and variances o~ 

the wo samp1es having sizes n1 and .n2• drawn from wo 

independent normal populations vith the unknoYD para­

meters JJ.1' Jl'2' cr~ and ~. 'lbe prob1em is to make the 

test of sigiificance or estimate the parame ter di~~.rence 

~1 - P.2. ror the lst system, (Xl' sl) is the su~ficient 

statistic ~or (Jl1 • CJ"1) and for second system, ('~I • -a)-i.5 

for (P2 • ~2). 'lbe relation (4.4) shows that the in­

formation concerning J11 and Jl'2 is .:"1. ... ~ .' the vari­

ables described by 
sl 

xl - t 1 - and 
N'iii • 
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mere t 1 and t 2 are atudent's, t - distr1butions vith 

(nï1 ) • V1 and V2 • (n2 -1) d.€. these distributions 

together provide a distribution €or, (~ - P2) and are 

appropria te to the values xl' sl' %2 & s2. the 

€requency distribution €or Pl - ~2 18 given by 

sl s2 
(%1 - %2 ) - (t1 --- - t 2 ---) , 

Nii1 Nn2 

whieh m&y a1so be written as 

(4 • .5) 

the constants rand e are eva1uated €rom observed 

values sl' s2 by the relations 

.j:~ + 

s2 
2 r - , 

n2 ... 
sl 

Sin e • --- / r 
Ani 

; r • 

'lbe distribution o€ J.l1 - 1'2 i8 obtained €rom the dis­

tribution o€ the 1inear combination 

o€ two independent 8tudentl;, t variab1es,l It is on1y 

€or convenienee that, rand 8 are ~ueed in place o€ 

sl and s2. Pereentage points €or (4.6) have been 

tabu1nted ~y lukhatme (1938). ~or instance 99~ €iduc1a1 
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1nterva1 1s g1ven by 

vh.re the 1nterva1 i e1~ conta1ns 99~ o~ the probab111ty 

according to Sukbatme's table. 

4.2 The B~~ect o~ Restrict10n on Stat1stic dl 

F1sher (1939) obta1ned the unrestr1cted sign1~1cance 

1eve1 o~ 

• 

where are the estimates o~ standard errors 

o~ tvo means. by comput1ng ~1rst the probab111ty that d 

vou1d exceed a spec1~1ed value on the assumpt10n tbat 

lt • and R • 
0- 2 

1 

0- 2 
2 

are knovn. 'lbe ()~.~. value 

o~ the probabi11ty so obta1ned 1s then ca1cu1ated over 

the range 0 < R c: e>/) by ass1gning to R/lt 1ts approriate 

~iduc1a1 distribution ~or a knownlt. ~e f1ducia1 d1s-

tr1bution 1n this case 1s the F - distr1bution vith 

V1 & V2 d.~. 

'lbe probabi1ity distribution of d. when lt and R 

are known. 18 giyen as ~ollows. 
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• 

is distributed as a ltudent's t - distribution vith 

(Vl + V2 ) d.f, vhich on substitutlng the vAlues of d. R 

and It reduces to 

From (4.7) the probabillty that d is greater tban a 

specifled value, when It and R being knovn, oan be obtained 

from Student's t - table corresponding to (V1+V2 ) d.f. 

'lhe probability obtained from (4.7) is then averaged 

over the flducial distribution of R/it from 0 tooo • 
Let i ~ "and ct~, "be 

~. 
the varianoes of wo populations 

in which <a2i'l ~l > 1 is assùmed to be true. If 
A 

s~"la~, Je .. la b. the estimated varianoe ratio based on 
A 

V1 and V2 d.:f. then It" will be known from the da ta. 

Assume also 6~:" and ~ • b Gi:·, where ~ and 

~ are the variances in-volved in Behrens - Fisher 

problem and a, b are some known oonstants. Tibe restriction 
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can then be vritten as 

l " ~ 1: 

s~ 1 s~ • 

, 

a 1\ 

-E 
b • 

Under -B-) ~ , the modification of the test (4.7), 
E J( 

as given by Cochran (1963), wou1d be to a7Wrage the 

probabi1i ty over the values of cRIE)' ~:. 

Vriting V. RIE (= "V2'11 r , the Pr (d ) de) in the 

region V')..!.. is given in the fo11olling vay. r 

'lhe quantity, , i5 the 

tvo sided probability that Student's t - variable vith 
1.. 

(Vl+V2) d.f~ is greater than cl-,(g(V));may .. given.\,y (4.7), 

mere 

g(V) 
• [(1/n2 +E/n1 ) (V1 + V 2) V Jl/2 

(V V2 + V1 ) Cl.. + .!. V) 
n 2 n l 

• 

~e average value of this probability over the fiducia1 

distribution in the region V, ~ i8 then 
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dO ..;.z -1 

J v 
Pr ( (tv' VJ > dco g(V) ) dV 

';L+'2 . (V1+V2 V) ( 1+ 2 
2 

".. 

lIE:: .(4.8) 

00 iV~/2 - 1 

S dV 
'1+'2 

A (V1+V 2 V) 2 
lIre· .. 

J'rom the expressi·on (4.8), it is possible to calculate 

the aotual probability vith vhich d exceeds the tabula te. 

Behrens - J'isher signi~icance levels in the restricted 

region, ~or some cho~sen values ot Vl and V2 and taking 
,. 

le at its certain 1evel.: o~ signiticance. '!he direction 

o~ the distlr:tbance to the signi~~,cance levels o~ d can 

then be examined. 

4.'3 J'iducial Arguments and Bay.Ls Solution, 

'!he problam ot testing the di~~erence in means o~ 

tvo normal populations, as discussed by Behrens (196~), 

can also be considered ~rom the concept o~ re~erence 

sets on one band and the concept o~ random variable on 

the othe~hand. The ~ormer requires the de~inition o~ a 

chance event vith re~erence to a particular experiment 

i •• the experiment and the re~erence set to vhlch the 

probability relates are required to be stated. Tbe 
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problem is to tind the probabilit,y P, such tbat 

tor a given t 12 • 

In its general solution nl' n2 and t 12 are tized. 7he 

-values Pl ,J!2' 61' 6'"2' %1' %2 , sl and s2 are associated 

:~wl:t"a reterence set, which tor tiŒed nl .and n2 ,constitute 

all possible no~al distributions, which changes trom 

experiment to experiment. Looking at the problem trom 

the latter aspect, we are interested in the probability 

tunction t(t12) ot a random variable t12 • In tiducial 

solution, the prediction about the values ot parameters 

is not made on the basis ot the previous experiments as 

the experiments are set up under tresh conditions. 7he 
",,"ic" 

reterence set tornthe probability statement 

Pr «(i - Il) ~ - t ) hold~is tba t ot the values 0, 

~ 
~, i and s corresponding to the same sample, tor all 

samples ot a given size ot all normal populations. 7he 

-choice ot jointly sutticient statistics % and s, 

and absence of a priori knowledge about p. & tT, e%cludes 

the possibility ot any subset within a general set tor 

which a ditterent value ot the probability should hold. 

In the case of Baye"~ solution, experiments are not 

conducted under ditterent conditions and the experience 
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gained in the previous exper~ents oan be utilised for 

the new one.! In 0 ther words ve deal vi th a priori known 

ref'erence set and distribution of' 6 .. 

Let 

and 

Writing p • 

reduces to 

where t 12• t 2 and pare held constant. 

We have ~ 
a- and 

Theref'ore the conditional probability (given p) may be 

written f'rom (4.\12) as 
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which becomes 

t:If1 

5 f'( t 2 )F( t 12/1+p2 + t 2P) dt2 • 1'1 (t12.P).' (4.14) 
-CIO 

'!he equa1i ty of (4.\13) and (4.'14) i s va1id if' f'iducial 

arguments are accepted and leads to Behrens-Fisher test. 

F1 (t12.P) can also be regarded as the conditiona1 

distributian f'unction of random variable t 12 given p.1 

-x-p. 
Let u.---

o/ID 
and v....!.. be two independen t ·random 

6 . 

variables f'ollowing a standard normal law and ~ (n-1) 

4ën.:ï.) 
distribution respective1y~ The conditiona1 probability 

feu. v i 6). given 6. May be written as 

where 

c • 
n 

Transforming 

n-l 

(n-1) "2'" 
• 

ts s u----- and v. --- we get o tr 

s2 2 
-~(t +n-l) 

f'(t.s 16) d s d t .-!-Cn e 26 
~ 

n-l s Cl s d t. 
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Bayels approach assumes that ~ belongs to a sp.ci~ic 

re~erence set vith certain Imovn prior distribution 

g( fr ).' 'lbe joint probability ~(t,s)aL~ts then given by 

8
2 

J
.o -~ ( t 2+n-l ) sn-l 
e - S(cr) d fi • 

(J 0" 

Cn ~(t,s) 4 t 4·s - --- 4 t 4 s 
Ge 

~e marginal probabilities o~ the events 

t " 
< (t + 4t) 

and 

• <: (s +da), 

May be obta1ne4 ~rom (4.17), and are given by 

eO 

:f1 (t) dt - dt f ~(t,s) ds (4.20 ) 
0 

and 
-0 

~2(s) ds - da J ~(t,s) dt, (4.'21) 
D 

respecti vely. 

'lbe conditional probab11ity ~(t(s) 4t, o~ the event 

(4.:18) can· be g1 ven by 

~(t.rs) 4t -
~: (t,s) dt 

... 

In~act ~l(t) ls the Student'a probab111ty denaity 
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~ 1'unction 1'(~). based on a random s~le 01' siz.j,ll. 

Vith Bayels approaoh the comparison o~ th. means 

oan be made by the use 01' oonditiona1 density ~unotion 

1'(tf s) and oonditional distribution tunction Q(t,ls).· 

t 
S"1'(t.lS)dt. inst.ad 01' the Student'·s densi'ty andits 
-.0 

distribution funotions. the conditiona1 probabilit~ 

given sl and s2/is obtained by 

coO 

• J1'(t~dS2) dt2 H(t12· .,tï.;2 + t 2p r sl) (4.23) 
_eO 

wher. 

and 

4.4 Approximation:1 
tU 

7he test oriterionAsuggested by ~isher (1935). is 

given by 
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He identified Ms solution of the two means prob1em ri th 

the solution given by Behrens in (1929). '!he oomputation 

of a11 percentage points is diffioult by the direct 

application of the formula. Some approximations to the 

test have been suggested by ~isher (1941) and Rubin (1960) 

for the use of practica1 yorkers.' Cochran (1964) pro­

duoed an ampirioa1 approximation based on Student t-

table values in the fo110w:l.ng vaYé' 

Let ct" "\ be the or1 t:l.ca1 points of Student 

t-d:l.stribution ri th V1 - (n1-1) and V 2- (n2-1) d.;f a t some 

preassigned sign1fioance 1eve1 oC .~ '!he approxima te 

critioa1 point for d is then given by the weighted 

mean of ~ and 

respeot:l.ve1y, 1.'e. 

1\ (sf/n1 ) i.+(s~/n2) 1 
d _ .' ci. 

,. 
d,,( reduoes to a Student t-va1ue with V d.'f when 

V
1

-V2=V, say.t If V1/aV2, it is often apparent, by 
,. 

observ:l.ng of and ~ , that dj!{ will exceed both of 

them or not~ Its advantage lies in s:l.mp1ic1ty and fair 

accuracy.' Coohran (1964) has measured its aocuraoy by 

ca1ou1ating the actua1 probabi1ity 
/.. 

lit that Behrens-

Fisher d exoeeds the approx:l.mate w:l.th some 

preassigned 0( , by mak1ng use of asymptotic formula due 
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to Fisher (1941), and oonoluded that the approximation 

(4~24) is adequate tor routine tests between l~ and lO~ 

1evels ot signitioanoe. but not tor aoourate oaloulations.' 
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Appendi%1 

ror a nl % n 2 matri% C .(cij ) satis€y1ng tbe •••• ssary 

and sufficlent conditions that a11 di bave means & and 

variances 62 are 

vhen 1?k. 

Proofl Writing these conditions in Tector fo~ we get 

• AiU • 1 

• c2 vhen i • k 
Ai~ • fo vhen i~ k, ().5S) 

where Ai is the i~ rov vector of matri% (cij ) and U ls 

the 1 % n2 matrix (1.1 •• ' ••• 1).: Prime denotes the 

transpose of a matrix. 

xr nl vectors Ai satisfy ().5S). ve can adjoin (n
2
-n1 ) 

vectors, satisfy1ng the second condition of (3.5S), so 

that the resultant set forms a basis for an n2 - space .. 

The matrix U can be .xpressed as a linear combination of 

n2 A - vectors, 

vhere gk are scalars. 
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Usiog (:3.'58) and (:3.59), we obtain 

Hence 
1 

gi - --- , i - 1,2, 
c 2 

U is a unit row vector there~ore, 

which by app1ying (3;i58) beeolDes 

By making use o~ (3.60), we ob tain ~rolD (3;61) 

'lbe equa1ity sign ho1ds whenever ~. 0 ~or k- n1+1, ...... 0 2 • 


