
INFERRING ENVIRONMENTAL REPRESENTATIONS

THROUGH LIMITED SENSORY DATA WITH

APPLICATIONS TO SENSOR NETWORK

SELF-CALIBRATION

Dimitrios Paul Marinakis

School of Computer Science

McGill University, Montréal

November 2008

A Thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

c© Dimitrios Paul Marinakis, 2008

ABSTRACT

This thesis addresses the problem of using distributed sensing for automatically inferring

a representation of the environment, i.e. a map, that can be useful for the self-calibration

of intelligence systems, such as sensor networks. The information recovered by such a

process allows typical applications such as data collection and navigation to proceed without

labour intensive input from a human technician. Simplifying the deployment of large scale

sensor networks and other intelligent systems will effectively reduce their cost and improve

their widespread availability and hence aid their practical application to tasks such as the

monitoring of carbon emissions and greenhouse gases.

In our research we focus on algorithms and techniques for recovering two types of in-

formation from the immediate environment: topology information that indicates physical

connectivity between regions of interest from the point of view of a navigating agent; and a

probability distribution function (PDF) describing the position of components of the intelli-

gent system. We consider situations where data is collected from systems that comprise of:

a number of stationary network components; stationary network components augmented

with a mobile robot; or a mobile robot only. Our approaches are, for the most part, based

on statistical methods that employ stochastic sampling techniques to provide approximate

solutions to problems for which computing the optimal or exact solution is intractable. Nu-

merical simulations and experiments conducted on hardware suggest that this research has

promising real world applications in the area of sensor network self-configuration.

RÉSUMÉ

Ce thèse s’adresse au problème de l’emploi de la détection dispersée pour déduire automa-

tiquement une représentation de l’environnement, c’est-à-dire une carte, qui peut servir dans

l’autocalibrage des systèmes intelligents tels que les réseaux des capteurs. L’information

récupérée par un tel processus permet aux applications typiques telle que la collecte des

données et la navigation de continuer sans une contribution de main d’oeuvre de la part d’un

technicien humain. Simplifier la répartition en grand des réseaux de capteurs et d’autres

systèmes intelligents réduira effectivement leur coût et améliora leur disponibilité répandue,

donc il facilitera leur application pratique aux tâches comme le contrôle des émissions de

carbone et les gaz à effet de serre.

Dans nos recherches nous nous concentrons sur les algorithmes et les techniques pour

récupérer deux types d’information de l’environnement immédiat : l’information topologique

qui indique la connectivité physique entre les régions d’intérêt du point de vue d’un agent

navigateur; et une fonction de dispersion de probabilité (PDF) qui décrit la position des

élément du système intelligent. Nous considérons les situation où les données se recueil-

lent des systèmes composés de: plusieurs éléments fixes du réseau; des éléments fixes du

réseau augmentés d’un robot mobile; un robot mobile seulement. Nos approches sont, pour

la plupart, fondées sur des méthodes statistiques qui emploient des techniques stochas-

tiques d’échantillonnage pour fournir des solutions approximatives aux problèmes dont le

calcul d’une solution exacte ou optimale reste réfractaire. Les simulations numériques et les

expériences exécutées au matériel suggèrent que ces recherches promettent des applications

actuelles et pratiques dans le domaine d’autocalibrage des réseaux de capteurs.

ACKNOWLEDGEMENTS

There are many people who helped and supported me during my graduate work towards

this thesis. First, I must thank my supervisor Professor Gregory Dudek for his insights,

ideas, optimism and perhaps most importantly for his infectious enthusiasm. Additionally,

I would like to thank my committee members Doina Precup and Joelle Pineau for their

ideas, help and guidance.

I must also thank several colleagues who, in addition to my supervisor and committee

members, have made intellectual contributions to the research presented in this thesis.

David Fleet is one of the participants of the research that led ultimately to the topology

inference work presented in Chapter 3. Philippe Giguère made significant contributions to

the work presented in Chapter 4 and Ketan Dalal should also be acknowledged for his help

on this Chapter. David Meger and Ioannis Rekleitis have also contributed significantly to

the work presented in Chapter 7.

Also deserving of thanks are Matt Garden, Eric Bourque, Junaed Sattar, Saul Simhon,

Paul Di Marco, Luz Abril Torres-Méndez, Dan Burfoot, and others of the Mobile Robotics

lab, along with Cynthia Davison, Jan Binder, Marlene Gray and others of the CIM admin-

istration and SOCS system staff. These people all made various contributions of technical

help, administrative help, equipment loans, proof-reading, experimental assistance, trajec-

tory data, ideas, and good company. I should also acknowledge my primary funding source,

the Natural Sciences and Engineering Research Council of Canada.

Finally, I would like thank my family for their continual support and confidence, and

especially Michelle for the photos, proof reading, valuable assistance with experiments,

patience, and encouragement.

TABLE OF CONTENTS

ABSTRACT . i

RÉSUMÉ . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xx

CHAPTER 1. Introduction . 1

1. Inferring an Environmental Representation through Limited Sensory Data . . 1

2. Sensor Network Self-Calibration . 2

3. Overview of Approach . 5

3.1. The Topology Inference Problem . 5

3.2. The Probabilistic Sensor Localization Problem 7

3.3. Final Outcome . 7

4. Motivation . 7

5. Contributions . 9

6. Statement of Originality . 10

7. Outline . 10

CHAPTER 2. Background . 12

1. Related Work . 12

1.1. Network Self-Configuration . 12

1.2. Network Self-Localization . 13

TABLE OF CONTENTS

1.3. Techniques Exploiting Motion in the Environment 15

1.4. Network Topology Calibration . 16

1.5. Multi-Target Tracking . 18

1.6. Topology Inference . 19

1.7. Simultaneous Localization and Mapping (SLAM) 21

2. Background on Statistical Techniques Employed 23

2.1. Expectation Maximization (EM) . 23

2.2. Monte Carlo Expectation Maximization (MCEM) 24

2.3. Markov Chain Monte Carlo (MCMC) . 25

2.4. Metropolis-Hastings Algorithm . 26

CHAPTER 3. Learning Sensor Network Topology 28

1. Problem Description . 29

2. The First Level: Topology Inference through Expectation Maximization . . . 30

2.1. Expectation Maximization . 31

2.2. Trajectory Sampling . 33

2.3. The Delay Model . 36

3. Level Two: Network Parameter Evaluation . 38

4. Simulation Results . 41

4.1. The Simulator . 41

4.2. Performance under Noise Free Conditions 43

4.3. Effects of Observational Noise . 51

4.4. Automatic Parameter Selection (Level Two) 53

5. Experiments Conducted on a Heterogeneous Sensor Network 58

5.1. System Description . 59

5.2. Experiment with a Six Node Vision-Based Sensor Network 64

5.3. Results from a Nine Sensor Heterogeneous Network 68

6. Discussion . 73

7. Future Work . 75

CHAPTER 4. Learning Network Topology from Simple Sensor Data 78

1. Problem Definition . 79

v

TABLE OF CONTENTS

2. Algorithm Formulation . 79

2.1. Smallest Graph is Correct Answer . 79

3. The Sliding Window Approach . 84

3.1. A Greedy Approach . 86

3.2. A Statistical Approach . 86

4. Performance Evaluation . 87

4.1. Simulator . 87

4.2. Assessment of Results . 88

5. Discussion . 90

CHAPTER 5. Topological Mapping with Weak Sensory Data 92

1. Background on Graph Exploration . 93

2. Problem Specification . 95

3. Exploration Strategies . 96

3.1. Breath-First Traversal (BFT) . 96

3.2. Breadth-First Ears Traversal (BFET) . 97

3.3. Loop-Based Exploration (LBE) . 98

4. Heuristic Weighted Search . 99

5. Discussion of Results . 102

6. Discussion . 108

CHAPTER 6. Probabilistic Self-Localization for Sensor Networks 110

1. Problem Description . 111

2. MCMC Sampling . 112

2.1. MCMC Sampling . 112

2.2. Iterative MCMC . 114

3. Results from Simulation . 116

3.1. Assessment of Algorithm Performance . 118

4. Discussion . 122

CHAPTER 7. Network Localization using a Mobile Robot 123

1. Introduction . 123

2. Problem Definition . 124

vi

TABLE OF CONTENTS

3. Probabilistic Sensor Network Self-Localization using MCMC 126

3.1. Odometry-Specific Proposal Scheme . 127

3.2. Rao-Blackwellization . 129

3.3. Automatic Tuning . 130

3.4. Stopping Mechanism . 131

4. MCMC corrected Filter-based Localization . 132

5. Results from Simulations . 133

5.1. Simulation Details . 133

5.2. Performance Analysis . 135

5.3. Convergence Issues . 145

5.4. Analysis of EKF-mean Correction . 147

6. Experimental Data . 148

7. Discussion . 151

CHAPTER 8. Conclusion and Future Work . 153

1. Summary . 153

2. Future Work . 154

3. Final Thoughts . 156

REFERENCES . 157

vii

LIST OF FIGURES

1.1 Example of a sensor network layout (a) and corresponding topology (b)

where the labels A through D denote sensing nodes. 3

1.2 Examples where communication signal strength is misleading: a) thin

interior wall prevents passage but signal is strong b) blocking exterior

wall prevents signal but nodes are topologically adjacent 4

1.3 An example of a sensor network which we wish to calibrate. a) The

original ad-hoc deployment. The lettered positions on the map indicate

the placement of the nodes. b) An example of agent motion observed and

exploited by the calibration process. c) The desired map of the network

where edges denote traversability but not necessarily a straight-line

path. 6

3.1 A block diagram of Level One of the Two-Level Approach where the

blocks indicate algorithmic components and the arrows indicate the

transfer of data. 31

3.2 An example of a proposed Markov Chain transition resulting from

the application of an Observation Exchange Proposal. The ownership

assigned to oc has been shifted from agent y to agent x. To evaluate

this transition, the probability of the edge traversals wac, wce, wbd must

be compared to the original traversals wae, wbc, wcd. 33

3.3 Graphical description of the algorithm delay model. 36

3.4 Graphical description of the Source Sink Likelihood (SSL) Parameter. 38

LIST OF FIGURES

3.5 A block diagram of Level Two of the Two-Level Approach where the

blocks indicate algorithmic components and the arrows indicate the

transfer of data. 39

3.6 Example relationship between Rdata and Radj with γ = 0.9 and τ = 0.1. 40

3.7 Examples of randomly created 20 node, 80 directed edge graphs. . . 42

3.8 A histogram of Hamming error per edge using the simulator with 8000

observations on 100 randomly produced graphs for: a) 12 nodes and 4

agents, b) 12 nodes and 10 agents, c) 20 nodes and 4 agents, and d) 20

nodes and 10 agents. A directed edge to vertex ratio of 4 : 1 was selected

for the random graphs used in these experiments. 44

3.9 Incremental belief of the topology of a 12 node, 48 (directed) edge graph

using 4 simulated agents on 8000 observations: a) initially b) after 1

iteration, c) after 2 iterations, d) after 3 iterations (the true graph).

Dotted lines indicate incorrect transitions. 45

3.10 Incremental belief of the topology of a 20 node, 80 (directed) edge graph

using 4 simulated agents on 8000 observations: a) initially b) after 1

iteration, c) after 2 iterations, d) after 3 iterations e) after 4 iterations

f) after 5 iterations (the true graph). 45

3.11 The log likelihood of samples of the ownership vector for an example run

of the algorithm using 4 simulated agents on a 12 node, 48 edge random

graph with 4000 observations, (same graph as for Figure 3.12). The

horizontal axis gives the sample number (across all iterations). For each

iteration, only the samples shown between the circle and the triangle

are used for updating network parameters (the M Step). 46

3.12 The log likelihood of samples of the ownership vector for each iteration

of the algorithm: a) initially, b) after 1 iteration, c) after 2 iterations,

d) after 3 iterations, e) after 4 iterations, f) after 5 iterations. The

results were produced using 4 simulated agents on a 12 node, 48 edge

random graph with 4000 observations (K = 20). The horizontal axis

indicates the sample number for each iteration. The dotted horizontal

ix

LIST OF FIGURES

line indicates the heuristic-estimated burn-in position (see Section 2.1).

Samples taken after this point in each iteration are used in parameter

updates. 47

3.13 A comparison of algorithm performance per iteration as a function of

K. Results were obtained using the simulator on a 12 node, 48 edge

random graph with 4000 observations with: a) and b) 4 agents; c) and

d) 10 agents. 48

3.14 Histograms of Hamming error per edge using both the threshold method

described by Ellis et al. [37] and our MCEM method. The techniques

were tested using 10 simulated agents with 8000 observations on 100

randomly produced graphs of size: a) 12 nodes, 48 edges; and b) 20

nodes, 80 edges. 50

3.15 Hamming error per edge as a function of the ratio of observations to

true (directed) edges using 4 simulated agents. 50

3.16 Hamming and delay error as a function of observational noise. The

results are averaged over 10 graphs using 4 simulated agents on 12

node, 48 edge graphs with 4000 observations. The horizontal axis

indicates proportions of: a,b) systematic noise; c,d) white noise; e,f)

both systematic and white noise. 52

3.17 A plot of the proportion of delay data rejected as a function of observational

noise. The results were averaged over 10 graphs using 4 simulated agents

on 12 node, 48 edge graphs with 4000 observations. The horizontal axis

indicates proportions of: a) systematic noise; b) white noise; c) both

systematic and white noise. 54

3.18 The effect of varying assumed numbers of agents and the value of the

SSL parameter on performance and the simplicity quotient. Results are

averaged over 20 graphs using 4 simulated agents on 12 node, 48 edge

graphs with 4000 observations; error bars show one standard deviation. 56

3.19 The mean error in the inferred transition matrix elements plotted against

Qsimp for data obtained from the simulator with 4 true agents. Input

x

LIST OF FIGURES

parameters to the algorithm were varied: assumed number of agents

from 2 to 7; and ln(SSL) from -2 to -7. The results are obtained using

the simulator on: a) 4 random graphs of 6 nodes, 14 edges with 2000

noise-free observations (144 trials); b) 4 random graphs of 6 nodes, 14

edges with 2000 observations containing 5 per cent white and systematic

noise (144 trials); c) 4 random graphs of 12 nodes, 48 edges with 4000

noise-free observations (144 trials); d) 4 random graphs of 12 nodes, 48

edges with 4000 observations containing 5 per cent white and systematic

noise (144 trials). Observe that the solutions obtaining high simplicity

quotient values are consistently among those with the lowest transition

matrix error. 58

3.20 Laptop used as the central server and an example of a vision-based

sensor node. 59

3.21 An example of images captured from a vision sensor: a) the background

image; b) a frame triggering an event detection. 61

3.22 a) Complete setup and, b) close up of a deployed photocell-based sensor

constructed out of a flashlight and a Crossbow wireless sensor. (Plastic

containers were used as protective covering during experiments.) . . 61

3.23 Crossbow hardware used in the experiments: a) MICA2 Processor/Radio

module (image from http://www.xbow.com); b) MICA2 Multi-Senor

Module (image from http://www.xbow.com); a) MICA2 motes with

plastic containers used as a protective casing; b) base-station used to

communicate to the central server over a serial port. 62

3.24 An example of motion triggering a detection event by the photocell-based

sensor. 63

3.25 The layout of the six camera sensor network used for experiment.

Labeled triangles represent sensor positions, and the circle represents

the location of the central server. 64

3.26 A plot of the Qsimp metric as a function of input parameters. 65

xi

LIST OF FIGURES

3.27 Topological maps of the environment that were: a) analytically determined

based on the layout; b) inferred by the algorithm; c) inferred by the

algorithm including the source/sink node. 67

3.28 Two examples of delay distributions inferred for: a) sensor A to sensor

B; b) sensor D to sensor F. 68

3.29 The layout of the nine senor (heterogeneous) network used for the

experiment. Labeled triangles represent vision-based sensor positions

(A-F) and labeled rectangles represent low-powered photo-based sensors

(G-I). The circle represents the location of the central server. 69

3.30 A plot of the Qsimp metric as a function of input parameters. 70

3.31 Topological maps of the environment that were: a) analytically determined

based on the layout; b) inferred by the algorithm; c) inferred by the

algorithm including the source/sink node. 71

3.32 Examples of delay distributions inferred for: a) sensor D to sensor H; b)

sensor F to sensor D; c) sensor H to sensor I; d) sensor A to sensor B

(an erroneously inferred edge). 73

4.1 Example of removing edge AB from graph Gc, (shown partially on top),

to create graph G′

c, (shown partially below). 80

4.2 a) The correct graph Gc b) an incorrect graph 83

4.3 Example of generating candidate edges for each sliding window position.

The window is moved to the right from a) to d). 85

4.4 Mean Hamming distance obtained from the two techniques for various

numbers of observations averaged over 50 randomly produced graphs.

(Error bars show one standard deviation in the Hamming distance.)

Results obtained from 4 agents and 10 node graphs with: a) 12 edges b)

20 edges . 87

4.5 Results obtained by differing the assumed number of agents for graphs

of size 10 nodes and 12 edges. a.) Hamming distance as a function of the

assumed number of agents for the greedy algorithm. Results obtained

xii

LIST OF FIGURES

with 10000 observations generated from 4 agents and averaged over 10

graphs. (Error bars show one standard deviation). b.) Mean Hamming

distance as a function of observations for an accurate assumption of

4 agents and an over-estimate of 5 agents. Results averaged over 50

graphs. 88

4.6 Performance of algorithm as a function of the true number of agents for

the greedy algorithm where the assumed number of agents is set to the

correct number. Results averaged over 10 graphs of size 10 nodes and 12

edges; (error bars show one standard deviation). a.) Hamming distance

obtained with 10000 observations. b.) Number of observations required

to obtain a result with a Hamming distance of 2 or less. 89

5.1 Diagram showing relationship of visited vertices in the context of the

transition fuction δ. 95

5.2 Example of a) counter-clockwise and b) clockwise ear starting from e1

of vertex A. 97

5.3 Diagram showing pictorial example of how the LBE algorithm selects the

next edge to traverse with respect to the reference edge when entering a

vertex. 99

5.4 Consider a robot following an exploration strategy that requires it to

take an edge other than the reference edge for each tranversal and which

visits only nodes with the signature (degree) 2. This figure shows the full

exploration tree with all models maintained for the first five observations.

The models are ranked left to right for each level based on the heuristic

discussed in Section 4. Up to Level 3 of the exploration tree, the model

shown at each step is the only consistent world hypothesis which can

explain the observations. During steps four and five of the exploration

process, which correspond to Level 4 and Level 5 of the exploration tree,

there are multiple models that are consistent with the data. During

the fourth step, for example, we can either assume that the robot has

revisited the first vertex it started from, or has discovered a new vertex.

xiii

LIST OF FIGURES

The first possibility corresponds to the higher ranking model since it

only requires 3 vertices and suggests that we have fully explored the

world. The second possibility corresponds to a model with a lower

ranking since it requires 4 vertices and also contains edges leading to

unexplored areas (dangling edges). (We assume that the world can not

be a multi-graph in this example.) 100

5.5 Examples of closed graphs which could explain an endless sequence of

observations recording the visiting of alternate vertices of degree 2 and

3. 101

5.6 Example of the top three ranking world models, from a.) through c.),

inferred by the algorithm with memory usage set to 20 models (N = 20)

after running the BFET exploration strategy for 1000 steps on a 10 node

graph with an edge to node ratio of 1.6. (Actual coverage was achieved

at step 284.) The first ranked model is the correct one. Incorrect edges

shown in dotted red. 103

5.7 Fraction of graphs for which the true solution was retained in the

hypothesis space after the exploration strategy under consideration

reached edge coverage of the graph. Results were obtained from 100

trials at each edge density for graphs of size: a.) 10 nodes; and b.)

30 nodes. In this experiment 100 hypotheses were maintained by the

mapping algorithm (N = 100). For LBE, the parameter p was assigned

a value of 0.99. (BFET results were unobtainable for the larger graphs

because of its poor cover time.) . 104

5.8 Examples of graphs solved previously in a.) [34] and b.) [33]. Each of

these graphs were solved by our approach using LBE (p = 0.99) in less

than half a second with N = 1; i.e. only one model was maintained

throughout the exploration process (which was the correct one). . . 104

5.9 Fraction of graphs solved for different numbers of hypotheses maintained

by the algorithm (value of N). Results obtained from 100 trials of

10 node graphs with an edge to node ratio of 1.6. For LBE, the

xiv

LIST OF FIGURES

parameter p was assigned a value of 0.99. The exploration strategy

under consideration was run until edge coverage of the graph. 105

5.10 Example of a 50 node graph with an edge to node ratio of 1.2 that was

solved by our approach in less than an hour. the correct graph was

maintained by the algorithm (with n = 1000) as the first ranking model

from the point of coverage onwards. LBE was used as the exploration

strategy (p = 0.99) and achieved coverage at step 3918. 105

5.11 Distribution of the first 1000 hypotheses generated for a.) the BFT

exploration strategy and b.) the BFET exploration strategy. The result

was obtained from a typical run of the algorithm on a 10 node graph

with an edge to node density of 1.6. BFT covered 7 of the 10 nodes in

this time, while BFET covered only 5. 106

5.12 Average number of steps required for edge coverage of the graph for the

different exploration strategies. Note the log scale for the vertical axis.

Average was taken over 100 trials using an edge density of 1.6. For LBE,

the parameter p was assigned a value of 0.99. 107

6.1 Example of localization results from a network of 40 sensors using 4

beacons and 50 particles. The stars indicate the beacon nodes and the

crosses mark the true location of the sensors. a) The initial localization

estimates using beacon data only. b) and c) Intermediate results

incorporating data from the circled sensors. d) The final estimates

incorporating the data from all the sensors. 117

6.2 Plot of error as a function of Markov chain proposals averaged over 20

trials on networks of 4 beacons and 40 randomly distributed sensors.

Error bars show one standard deviation. A sensing range of 30 units

was used in this comparison. The Random Order MCMC algorithm is

the same as the Iterative MCMC algorithm, but includes sensor data in

random order. 118

6.3 Results from 200 trials of the algorithm on networks of 4 beacons and

40 randomly distributed sensors using an unlimited sensing range. a)

xv

LIST OF FIGURES

Plot of final error output from the algorithm after including all sensor

data as a function of the initial error calculated based on beacon data

alone. b) Histogram of final sensor error across all networks (8000

sensors represented). c) Histogram comparing the error for the most

poorly localized sensor in each network for the initial estimate using

only beacon data and the final result. Vertical and horizontal axis for a)

and the horizontal axis for b), and c) displays error in terms of distance

units (simulation grid is of size 100x100). 119

6.4 Average network error over 20 trials for different sized networks (confined

to a 100x100 grid) with 4 beacon nodes. Error is displayed in terms of

distance units and error bars show one standard deviation. 120

6.5 Final average sensor error averaged over 20 networks as a function of

the total number of MCMC proposals divided by the number of sensors

in the network. 121

7.1 The mapping scenario described in this chapter. The robot moves

through the environment gathering pose estimates to sensors and

localizing its self as well as each of the encountered sensor in a common

coordinate frame. 125

7.2 The quantities of interest in the Sensor Network localization problem

can be modeled as a Bayesian Network in order to exploit conditional

independencies. The robot poses and map (highlighted in grey) must be

inferred, given observed data. 125

7.3 Flow chart depicting an example hybrid approach to network localization

in which the global MCMC algorithm is run periodically to correct the

mean of the EKF. 133

7.4 Results obtained on data obtained from the simulator with low noise for

a robot path of 4 steps through a 3 sensor network for the algorithms:

a.) MCMC b.) RBPF (K = 5000), and c.) EKF. The crosses indicate

the ground truth sensor positions. For the EKF, the samples are drawn

xvi

LIST OF FIGURES

from the mean and covariance obtained for the position of the sensors;

a three standard deviation uncertainty ellipse is overlaid. 136

7.5 Results obtained on data obtained from the simulator with moderate

noise for a robot path of 4 steps through a 3 sensor network for the

algorithms: a.) MCMC b.) RBPF (K = 5000), and c.) EKF. The

crosses indicate the ground truth sensor positions. For the EKF, the

samples are drawn from the mean and covariance obtained for the

position of the sensors; a three standard deviation uncertainty ellipse is

overlaid. 137

7.6 Results obtained on data obtained from the simulator with high noise

for a robot path of 4 steps through a 3 sensor network for the algorithms:

a.) MCMC b.) RBPF (K = 5000), and c.) EKF. The crosses indicate

the ground truth sensor positions. For the EKF, the samples are drawn

from the mean and covariance obtained for the position of the sensors;

a three standard deviation uncertainty ellipse is overlaid. 138

7.7 Example simulated sensor network environment. The red crossed

indicate sensor positions, the blue circles indicate regions near each

of the sensors which may be visited by the mobile robot, and the dotted

lines indicate potential pathways . 140

7.8 Results obtained on data obtained from the simulated environment

shown in figure 7.7 with moderate noise after the robot visited sensor

regions: (1, 2, 4, 1, 3), for the algorithms: a.) MCMC b.) RBPF

(k = 20000) (not all particles shown), and c.) EKF. the crosses indicate

the ground truth sensor positions. for the EKF, the samples are drawn

from the mean and covariance obtained for the position of the sensors;

a three standard deviation uncertainty ellipse is overlaid. 141

7.9 Results obtained on data obtained from the simulated environment

shown in Figure 7.7 with moderate noise after the robot visited sensor

regions: (1, 2, 4, 1, 3, 2, 4, 2, 1), for the algorithms: a.) MCMC b.)

RBPF (K = 20000) (not all particles shown), and c.) EKF. The crosses

xvii

LIST OF FIGURES

indicate the ground truth sensor positions. For the EKF, the samples

are drawn from the mean and covariance obtained for the position of

the sensors; a three standard deviation uncertainty ellipse is overlaid. 142

7.10 Results obtained on data obtained from the simulated environment

shown in Figure 7.7 with moderate noise after the robot visited sensor

regions: (1, 2, 4, 1, 3, 2, 4, 2, 1, 4, 1, 3, 1), for the algorithms: a.)

MCMC b.) RBPF (K = 20000) (not all particles shown), and c.) EKF.

The crosses indicate the ground truth sensor positions. For the EKF,

the samples are drawn from the mean and covariance obtained for the

position of the sensors; a three standard deviation uncertainty ellipse is

overlaid. 143

7.11 Results for data obtained from the simulator with moderate noise for a

robot path of 50 steps through a 6 sensor network for the algorithms:

a.) MCMC b.) RBPF (K = 20000), (black particles) and EKF

(blue uncertainty ellipses). The red crosses indicate the actual sensor

positions. 144

7.12 Histogram comparing the relative log likelihoods of the final configuration

samples obtained from the MCMC and RBPF (k = 20000) techniques

for the simulation result shown in Figure 7.11. The likelihoods were

normalized such that ground truth had a log likelihood of zero. . . . 145

7.13 Squared error of MLE of sensor positions as a function of robot path

length through a 6 senor network; (the same simulation presented in

Figure 7.11). The result obtained from the mean of the RBPF samples

was similar, but poorer, than the RBPF maximum likelihood sample in

this experiment and not presented for improved clarity. 146

7.14 Example of PSRF as a function of computational effort for different

variants of the MCMC global inference algorithm. Data are presented

based on simulation data gathered from a 4 sensor, 12 path length

scenario. The PSRF is calculated given 4 restarts of each algorithm. 146

xviii

LIST OF FIGURES

7.15 Percentage improvement in the squared error of the EKF mean using

MCMC correction for different noise levels. The results obtained from

100 trials on 4 node sensor networks. 148

7.16 Mean error in estimation of final sensor positions for EKF estimation

alone and the hybrid EKF-MCMC approach. The results obtained from

100 trials on 10 node sensor networks with moderate levels of noise. . 148

7.17 Pictures of the components of the camera sensor network used in the

experimental results of this chapter. 149

7.18 (a) Approximate floor plan showing sensor locations during the experiment.

(b) The estimated robot path (based on a MLE estimate) and distributions

of the sensor positions resulting from our approach. 150

xix

LIST OF TABLES

3.1 Comparison of performance and computational effort until convergence

as a function of K averaged over 10 graphs of 12 nodes, 24 edges. . 49

3.2 Table of values used to shape the simplicity quotient Qsimp. (See Section

3 for the definitions of these parameters.) 55

3.3 The transition matrix inferred from the experimental data. SS refers

to the source/sink node introduced by the algorithm. Bold values over

the threshold θ = 0.1 are interpreted as one way edges. The underlined

values were not directly predicted by the ground truth analysis. . . 66

3.4 A comparison of timed and inferred delay times (both ways) between

sensors. All values are rounded to the nearest second. 66

3.5 The transition matrix inferred from the experimental data. SS refers

to the source/sink node introduced by the algorithm. Bold values over

the threshold θ = 0.1 are interpreted as directed edges. The underlined

values were not directly predicted by the ground truth analysis. . . 70

3.6 A comparison of timed and inferred delay times (both ways) between

sensors. All values are rounded to the nearest second. 72

5.1 Result of pruning all models using the DST with γ = 1.05, and C = 2

as suggested by Dudek et al. in [33]. Results obtained from 100 trials

on random 10 node graphs for three different edge to node densities

using the BFT exploration strategy until edge coverage. Memory usage

refers to maximum number of models maintained at any one level of the

exploration tree. A graph was considered solved if the true solution was

LIST OF TABLES

retained in the hypothesis space after the exploration was complete. For

each trial, the pruning method was applied first and the memory usage

measured. The weighted search method was then run with the maximum

memory usage (N) set to the value used by the pruning method on the

same trial. Results from graphs of densities exceeding 1.6 could not be

practically obtained using the pruning algorithm because of the memory

usage required. 102

5.2 Mean and standard deviation for coverage and model size normalized

by coverage for the first 1000 hypotheses generated by the different

exploration strategies. Results obtained from 100 trials on random 10

node graphs with an edge to node density of 1.6. 107

5.3 Relative CPU time used by the BFT and LBE algorithms for different

edge densities of 10 node graphs, averaged over 20 trials. Each exploration

strategy was run until edge coverage of the graph under test was achieved.

For both of the algorithms, iteratively larger values of N , starting with

N = 1, were used on each graph until the graph was solved. After a failed

attempt the value assigned to N was doubled. Attempts continued until

success was obtained or the memory use exceeded 10000 hypotheses.

Mean computational effort for each algorithm is reported as the average

of the memory use N multiplied by cover time |O| for each of the trials

in which the graph was solved by both BFT and LBE. 108

7.1 Table of different noise levels used in simulations. Values given in

standard deviations. In these experiments the motion model noise is

dependent on the amplitude of the motion, while the noise added to a

sensor measurement is independent of the actual distance from which it

was taken. 134

7.2 Comparison of the results obtained from the different algorithms using

the Hausdorff distance metric on data obtained from the simulator for a

robot path of 4 steps through a 3 sensor network with moderate noise. 139

xxi

CHAPTER 1

Introduction

1. Inferring an Environmental Representation through Limited Sensory

Data

This thesis presents methods of inferring a representation of the environment given

limited sensory data. That is, it addresses the issue of forming a map given observations

collected from an intelligent system made up of one or more spatially distributed sensing

components. Understanding the spatial relationships or correspondences between either

the individual components of such a system or key landmarks in the environment allows

typical applications such as data collection or navigation. Indeed almost any application

of an intelligent system made up of physical components, sensors and actuators requires

at least some rudimentary notion of its own embedding in order to serve its purpose. For

example, consider trying to usefully apply temperature and humidity observations collected

from a sensor network deployed in a grape field without knowing anything regarding the

locations of the individual components from which the measurements were collected. We are

interested in automating all or portions of the process of constructing this requisite spatial

information, and we are interested in doing so with observational data of the quality that

could be affordably obtained from a typical low-powered, resource-poor, sensor platform.

Ideally, we are able to utilize data opportunistically collected by the sensors already provided

for the purpose of the final application.

The primary focus of this research is on the topic of sensor network self-calibration.

We use the term sensor network self-calibration to refer to the process of automatically

1.2 SENSOR NETWORK SELF-CALIBRATION

obtaining spatial information regarding the network and its environment necessary for the

system to carry out its assigned tasks. During our investigations, we have considered the

self-calibration problem for systems made up only of stationary network components, and

also for systems in which additional information is gathered by a mobile robot. Additionally,

one chapter considers the system calibration problem for a single mobile robot; albeit with

extremely limited sensory capabilities.

We begin this introductory chapter by describing the issue of sensor network calibra-

tion which is the primary motivator for our research. We then we describe some specifics

regarding the problem we are interested in solving and provide a high level overview of our

approach. This is followed by a discussion of some motivation for the work. Finally, we end

the chapter with some comments on originality and provide an outline for the entire thesis.

2. Sensor Network Self-Calibration

Advances in computing hardware are making the deployment of networks of sensing

and computing devices practical for a variety of control and information gathering purposes.

This recent technology, termed sensor networks, becomes increasingly relevant as continuous

improvements are made to the processing power, sensing ability, and wireless communication

range and bandwidth available on various computing platforms. The components of such

networks can include emplaced motion sensors, emplaced cameras, robots, or even cell

phones.

As stated earlier, we define sensor network self-calibration as the process of automati-

cally obtaining the spatial information necessary for the network to carry out its assigned

task. Our definition of this term is slightly broader than the phrase sensor network self-

localization which is commonly used in the literature to refer to the process of determining

the location and orientation of each sensor after deployment and does not encompass topo-

logical correspondences between the sensors. An even broader term in common use which

we will employ later in this thesis is sensor network self-configuration which includes other

automated network tasks such as setting up and maintaining communications.

For many sensor network applications, the self-calibration problem as we have defined

it is seen as a critical issue. For example, research by Correal and Patwari [21] identify

position location as a key application enabler for sensor networks. Similar claims have been

2

1.2 SENSOR NETWORK SELF-CALIBRATION

DA

B

C

(a)

B

D

C

A

(b)

Figure 1.1. Example of a sensor network layout (a) and corresponding topology
(b) where the labels A through D denote sensing nodes.

put forth by a number of other sensor network researchers including Akyildiz et al. [1],

Bulusu et al. [13], and Teller et al. [125].

Once calibrated, the network should also have the capability of adjusting for dynamic

changes both in the environment and in the network. The ability to self-calibrate becomes

especially relevant if the network is large and sensors are to be deployed in an ad-hoc

manner; i.e. distributed through some technique that does not return the exact locations

of the sensors.

In our research we address several aspects of this problem of self-calibrating a sensor

network. The ultimate goal of this portion of the work is to infer a representation of

the sensor network and its relationship with the surrounding environment. Specifically,

we consider methods of recovering the relative metric locations of the sensor nodes in a

network and their physical connectivity from the point of view of an agent navigating the

environment; i.e. a map of the network embedded region that contains both metric spatial

information and topological connectivity information.

Recovering the relative positions of the components of a network has been well explored

in sensor network research, however, there has been little work done in augmenting this

metric spatial representation with a topological description. The problem of inferring the

topology of a sensor network is closely related to that of metric self-localization. In self-

localization, the goal is to recover the relative locations of the nodes independent of the

layout of the space in which the network is embedded. Topology inference as we define

it, however, must take into account the spatial constraints of the environment since these

constraints determine the inter-node connectivity parameters (Figure 1.1). These two tasks

can complement one other.

3

1.2 SENSOR NETWORK SELF-CALIBRATION

(a) (b)

Figure 1.2. Examples where communication signal strength is misleading: a) thin
interior wall prevents passage but signal is strong b) blocking exterior wall prevents
signal but nodes are topologically adjacent

Information regarding the spatial locations of the nodes as well as their communication

connectivity can make it easier to determine topologically adjacent nodes and vice versa,

although, in many cases, the information can be misleading. Spatial proximity does not

necessarily imply a topological connection in some other medium such as navigation. Like-

wise, two nodes that are topologically adjacent do not have to be physically close to each

other. For example, consider Figure 1.2, which depicts two scenarios in which received

signal strength, a rough indicator of distance, gives misleading information. In the first sce-

nario, two nodes are proximal, but are separated by a thin wall that blocks direct navigation

between the two nodes. In the second scenario, the nodes can be considered topological

neighbours since there exists a navigable path between them, but the signal strength is

reduced due to a significant line-of-sight obstruction.

Topological information can improve on a solely metric representation which identifies

the relative locations of the sensors but does not provide information about the layout of the

region. By considering both the metric data and topology of the surrounding environment,

information regarding obstructions and motion corridors can be inferred. For example, two

spatially proximal nodes that are not topologically adjacent suggests a barrier at a particular

location, perhaps an interior wall or a river (in an outdoor deployment). Recovering a useful

representation of the surrounding environment can be considered an important step in the

overall goal of developing self-adapting and self-configuring networks.

Our mapping approach requires only poor quality sensor and range data and employs

statistical and probabilistic techniques to extract meaningful information. We assume that

we have no prior knowledge of the relative locations of the sensors and that we have only a

limited knowledge of the type of activity present in the environment. To infer the topological

4

1.3 OVERVIEW OF APPROACH

data, we use observational data returned from our sensors to build up an understanding of

motion patterns present in the environment. In the case of the metric data, we utilize low

quality range estimates to build up a representation of a probability distribution function

(PDF) for the pose of the network; i.e. the configurations of all the nodes. In the next

section we will provide some more details describing this approach.

3. Overview of Approach

We will begin this section by employing a simplified abstraction that illustrates a typi-

cal problem we are interested in solving. Figure 1.3(a) depicts a sensor network distributed

within an indoor environment. Let us assume that this network has been deployed for some

purpose such as surveillance and requires knowledge of both the relative spatial position-

ing of its network components and also the topological relationship between the network

components. During some initial calibration period the network collects observations of

agents passing by each sensor (Figure 1.3(b)) and additionally estimates inter-sensor ranges

through the use of received communication signal strength. The problem we are trying to

solve is how to use these collected observations to construct a representation of the environ-

ment that contains both a topological and metric description of the relationships between

the network components (Figure 1.3(c)). This type of network might arise, for example, if

wireless cameras were deployed in a workplace environment.

3.1. The Topology Inference Problem. Our approach to inferring a topological

representation of the network is based on exploiting existing motion in the environment.

We use observational data returned from our sensors to understand traffic dynamics formed

by sources of motion present in the environment. By inferring underlying patterns in these

motions we can then recover the relationships between the sensors of our network. The

algorithm we employ is formulated using Monte Carlo Expectation Maximization (MCEM),

but also depends on selecting the simplest explanation that described the majority of the

data collected (the principle of Occam’s Razor 1). Essentially, our approach attempts

to infer likely sets of trajectories taken by sources of motion (agents) in the environment.

These agents might be people in a building or packets in a data network. Understanding

the relative order in which sensors are visited in trajectories taken by these agents gives us

1Occam’s Razor is the principle enunciated by William of Occam that the simplest explanation is the best.

5

1.3 OVERVIEW OF APPROACH

S1 S2

S3 S4 6S

S5

(a)

S1 S2

S3 S4 6S

S5

(b)

S1

S3

S5

S4 S6

S2

(c)

Figure 1.3. An example of a sensor network which we wish to calibrate. a) The
original ad-hoc deployment. The lettered positions on the map indicate the place-
ment of the nodes. b) An example of agent motion observed and exploited by
the calibration process. c) The desired map of the network where edges denote
traversability but not necessarily a straight-line path.

clues regarding the topology of the environment. The final result is a probabilistic model

of the sensor network connectivity graph and other information describing the underlying

traffic trends.

6

1.4 MOTIVATION

3.2. The Probabilistic Sensor Localization Problem. To infer the relative

metric relationships between the sensors, our approach distinguishes itself from existing

techniques by attempting to recover not only a maximum likelihood estimate (MLE) for

the pose of the network, but also a probability distribution function (PDF) for each node.

This probabilistic representation allows the information to be presented in the same frame-

work as the topological data. We define the problem of obtaining and representing arbi-

trary distributions for the sensor locations as the Probabilistic Sensor Localization Problem

(PSLP).

Computing an arbitrary PDF entails more computational cost than obtaining the MLE,

and for the most part has been overlooked by previous authors. Providing simplistic para-

metric uncertainty estimates is fairly common in the literature, however, the characteriza-

tion of more complex uncertainty functions appears rare and to the best of our knowledge

has only been previously addressed to some degree by Ihler et al. with a mixture of Gaus-

sians [53] and by Peng and Sichitiu with an occupancy grid [97]. Ours is the first work

that we are aware of that attempts to directly obtain the underlying PDF for the sensor

locations and is capable of accurately representing completely arbitrary distributions. Like

the topological inference problem, we apply computationally sophisticated statistical tech-

niques such as Markov Chain Monte Carlo (MCMC) to solve the constraints and provide

estimates of their uncertainty inherent in the final results.

3.3. Final Outcome. Our intention is to create a probabilistic representation of

the environment containing both metric and topological data that is of a form suitable for

higher level inference tasks. These higher level tasks, such as navigation and planning, are

themselves presumably based, at least partially, on probabilistic reasoning and therefore

are able to exploit the uncertainty estimates present in our map.

4. Motivation

As sensor networks are established in more locations for monitoring and surveillance

purposes, there will be a demand for algorithms and software approaches that can make in-

ferences about the environment based on large quantities of highly distributed and possibly

low quality sensing information. This is especially true in areas where we are unable to ven-

ture ourselves, or unwilling to venture for fear of influencing the data we are collecting. One

7

1.4 MOTIVATION

example of this type of network is the proposed underwater observing system NEPTUNE

[5], which plans to wire the entire Juan de Fuca tectonic plate off the coast of the North-

West Pacific ocean. The network will generate a vast amount of observational data from

a variety of distributed sensors. These data could be used to infer additional information

about the ocean environment that would be difficult to collect directly for logistical and

financial reasons. The project will doubtlessly lead to a number of research efforts based

on various interpretations of the sensor data. Another large and current network is used

to monitor bird activities on Great Duck Island, Maine [67, 18]. Here the use of a sensor

network allows a great deal of environmental information regarding the nesting sites of the

animals to be collected without causing distress or disturbance through human presence.

Our work addresses specific aspects of the more general problem of inferring informa-

tion about the environment given distributed and potentially poor quality observational

data. We can envision applications utilizing the spatial data inferred by our approach both

for self-configuration purposes and also as an end product on its own right. For example,

a typical data collection application requires the localization of its sensors for calibration

purposes, while a vehicle monitoring network might be deployed specifically for the pur-

pose of obtaining connectivity information between key intersections. Similarly, consider

sensors distributed at key points throughout a national park. The system, after localizing

its components, could recover connectivity patterns giving researchers clues about wildlife

behaviours.

One potential application of our work is in the construction of a smart house in which

actuators and sensors respond to the behaviour of the resident in order to help them with

their daily activities [11]. Such a technology could allow aging seniors more independence

and therefore a better quality of life. Furthermore, it could allow them to stay longer in their

own residence than might otherwise be possible, alleviating pressure on public institutions.

A mobile robot combined with a sensor network in such a system could aid the resident

in many tasks, but must deal with navigation and localization. Furthermore, many of the

sensors distributed throughout the house might require localization and information about

the topology of the region in order to carry out their assigned task. Our approach could help

decrease the complexity of the installation process, and therefore help realize the practical

deployment of such a system.

8

1.5 CONTRIBUTIONS

Another potential application for our research is in the calibration of sensor networks

deployed for the purpose of monitoring carbon and other greenhouse gas (GHG) emis-

sions. There is consensus in the scientific community that atmospheric concentrations of

GHGs have caused changes in global climate patterns as a result of human activity [120].

International and local efforts to manage GHG emissions will require methods of measur-

ing and detecting these substances and sensor networks are a suitable technology for this

task. Simplifying the processes involved in the deployment and installations of detection

and monitoring networks should effectively reduce their cost and improve their widespread

availablity and practical application.

5. Contributions

In this section we identify the key intellectual contributions made in this thesis. They

focus on the development and validation of techniques for the self-calibration of intelligent

systems. Listed in point form, the major contributions are:

• The general formulation of a statistical approach for accurately inferring the

topology of a network using signature free observations from the distributed

nodes. This approach has been shown superior to previous related techniques.

• The application of the above approach to a sensor network self-calibration prob-

lem. A complete system is described which includes event detection and collection

from a heterogeneous sensor network.

• The first formalization of the Probabilistic Sensor Localization Problem (PSLP).

• The presentation and experimental validation via simulations and hardware of

two MCMC-based algorithms for solving variants of the PSLP problem.

Additional secondary contributions include:

• The first theoretical analysis of the topology inference problem with signature

free observations for the special case in which the observations are ordered, but

time-stamp free.

• The presentation and simulation-based validation of an algorithm for solving the

marker-less graph exploration problem in robotics. This algorithm out performs

previous work in this area.

9

1.7 OUTLINE

6. Statement of Originality

Various portions of the research presented in this thesis have been previously published

[76] [79] [78] [36] [75] [74] [72] [73] [70] [77] [71] or are in the process of being submitted

for publication. There are a number of colleagues who, in addition to my supervisor and

committee members, have made key intellectual contributions to the research presented in

this thesis. David Fleet is one of the participants of the research, in collaboration with

my supervisor and myself, that led ultimately to the topology inference work presented

in Chapter 3. Philippe Giguère made significant contributions to the work presented in

Chapter 4 and Ketan Dalal should also be acknowledged for his help on this Chapter.

David Meger and Ioannis Rekleitis have also contributed significantly to the work presented

in Chapter 7.

7. Outline

In this thesis, we present and validate algorithms related to inferring environmental

representations through the exploitation of limited sensory data. These efforts are focused,

for the most part, on sensor network self-calibration. In this introductory chapter, we have

attempted to give a general description and motivation for the types of problems we are

interested in solving. In the chapter that follows, we will discuss related work that has

addressed similar types of problems, and additionally, provide some background material

on some of the techniques utilized by our approach.

In Chapters 3, 4 and 5 we will present algorithms based on recovering a topological map

of the environment based on limited sensory data. Chapter 3 will consider inferring this

topological data based solely on motion detections observed from distributed sensors. This

chapter includes results from both simulations and experiments and therefore includes some

systems building notes related to the implementation of the network used for collecting the

experimental data. Chapter 4 provides an analysis of a version of the sensor network topo-

logical mapping problem in which only ordering information, and not timing information,

is available from the observations. Chapter 5 considers the topological mapping problem

from the perspective of a single mobile robot with extremely limited sensory abilities. In

both Chapters 4 and 5 only simulation results are presented.

10

1.7 OUTLINE

In Chapters 6 and 7 we consider the problem of obtaining a metric map of the envi-

ronment including accurate uncertainties; i.e. the probabilistic sensor localization problem

(PSLP). Like the body of work considered in Chapters 3 through 5 we again assume that

we have only limited sensory data. First in Chapter 6, we consider and assess with simu-

lations the case of localizing a network of stationary components in which only range data

is available. Then in Chapter 7, we consider the case that the network is augmented with

a mobile robot. Here we consider the problem of localizing the network based only on the

odometry information collected by the robot. Both simulation and experimental results

are presented for this portion of the work. Finally, in Chapter 8 we wrap up with some

concluding remarks and consider directions for future work.

11

CHAPTER 2

Background

In this chapter, we describe related work and give some background on the techniques

employed by our approach. First, we review work on sensor network self-configuration and

network calibration in general. Then, we focus in on calibrating network topology based

on the exploitation of motion in the environment and existing techniques for topology

calibration in sensor networks. This is followed by a review of some related work in the field

of multi-target tracking, since our approach shares some methods employed in this research

area. We then turn to the closely related field of robotics and give some background

on topological mapping and simultaneous localization and mapping (SLAM) in this area.

Finally, we provide some background information on Expectation Maximization, Markov

Chain Monte Carlo, and other statistical techniques used in our work.

1. Related Work

1.1. Network Self-Configuration. It is recognized that self-calibration and other

more general self-configuration algorithms are important for sensor networks [21, 125]. The

ability of a network to automatically adapt to varying conditions is essential if large numbers

of sensors are to be rapidly deployed in an ad-hoc manner [13]. Since it is not practical for

a technician to tune individual parameters on each network component, the system should

be able to operate as autonomously as possible even in a dynamic environment. Ideally, the

network should be capable of re-organizing itself to handle changes such as individual node

failures, changes in the layout of the network components, and shifting communication

2.1 RELATED WORK

ranges. Additionally it should be able to track and respond to relevant changes in the

surrounding environment.

Much of the research conducted on self-configuration efforts is based on developing

distributed, computationally efficient algorithms appropriate for low-power sensor network

platforms. Work by Estrin et al., for example, has focused on developing a distributed,

query-based algorithm model for information dissemination [38, 54]. Called directed diffu-

sion, it has been an influential concept in self-configuration research.

Other research on self-configuration has looked at self-organizing for routing and net-

working efficiency purposes [1, 132, 60, 3, 22]. For example, Arici and Altunbasak [3]

have looked at the issue of reducing overall resource usage by only activating a subset of

the available nodes for some task while Couture et al. [22] have considered the issue of

finding a subset of nodes in the network that can be used for effective communication. This

area of wireless sensor research generally focuses on communication related issues among

the network components and uses simpler and less complete spatial models than our work.

As sensor network research has matured, there has been a shift towards more complex

approaches incorporating advanced probabilistic techniques and graphical models [53, 94].

For example, work by Paskin et al. [94] considers the problem of constucting a data struc-

ture called a junction tree in a sensor network in order to solve inference problems via

message passing. In work by Dantu and Sukhatme [23] it is argued that for some appli-

cations tiered network architectures that incorporate components of some computational

sophistication are more appropriate than traditional systems of impoverished, homogenous

nodes. While practical implementation is a concern, many sensor network researchers now

consider using computationally sophisticated techniques in the processing of distributed

observations. This is especially true for sensor networks made up of vision-based sensors,

e.g. the work of Rahimi et al. [100] or the work of Javed et al. [55].

1.2. Network Self-Localization. A key self-configuration requirement for many

network applications is the ability to self-localize [1]; i.e. recover the relative metric po-

sitions of the individual sensors in the network. The majority of self-localization efforts

to date have focused on recovering the relative locations of the sensors in situations where

satellite-based Global Positioning System locators are too expensive, not available, or other-

wise impractical [16] [112]. Localization efforts are usually based on methods for estimating

13

2.1 RELATED WORK

the distances between sensors and then integrating these measurements across the network.

Common techniques include the use of received communication signal strength in radio net-

works, e.g. the work of Bulusu et al. [14], or time-of-arrival ranging using ultrasound, e.g.

the work of Niculescu and Nath [92]. Many approaches assume that several of the sensors in

the network have a known location and act as beacons or anchor nodes for their neighbors;

the work of Patwari et al. [96] is an example where this common idea is applied. Range

estimation techniques typically have limited accuracy and localization algorithms must be

able to handle some degree of noise in the range data. For example, the work of Moore

et al. [89] considers a localization algorithm based on quadrilateral formations of nodes

that are robust to ambiguities common when there is significant noise in range estimations.

In additional related work, Boukerche et al. [9] consider the vulnerability of localization

approaches to attack or disruption.

When addressing sensor network self-localization, most authors consider only the prob-

lem of estimating the maximum likelihood network configuration and do not consider the

problem of accurately characterizing the uncertainty in the estimates. Even in the case

that uncertainties are considered, the models employed are usually not expressive enough

to represent arbitrary or multi-modal distributions. Two exceptions that we are aware of

are the work of Ihler et al. [53] and the work of Peng and Sichitiu [97]. In both cases, the

researchers involved have considered self-localization approaches that result in an expressive

representation of uncertainties.

The sensor network self-localization method described by Ihler et al. [53] models the

conditional independence of the various range estimates as a graphical model and then

solves the graphical model using nonparametric belief propagation. Each node in the graph

corresponds to a single network component, and maintains an estimate of the posterior

marginal distribution for the location of that component. This estimate, or ‘belief’, is then

communicated to all of its neighbours in the graphical model during one iteration of the

belief propagation process. Each component updates its belief based on the information

received from its neighbours and the process continues. Internal to each node, the beliefs

are represented by a number of samples, but when the estimates are communicated they

are converted to a mixture of Gaussians, or in some cases, an analytic function. One of

the strengths of this approach is the manner in which the algorithm can be distributed

14

2.1 RELATED WORK

among the various network components, however, the uncertainties represented suffer from

the approximations made during the message passing portion of the belief propagation,

and there are no guarantees of correctness. Additionally, the computational responsibility

of each individual sensor is significant and could be challenging to implement without a

floating point processor and only limited amounts of RAM. Experimental results presented

are from simulations only and it is unclear whether this technique is practical for certain

sensor networks, such as those containing low-powered, resource-limited devices.

Peng and Sichitiu [97] consider the localization of a sensor network for outdoor envi-

ronments where received signal strength (RRS) can be used to provide an model of range

between sensors. Beacon nodes broadcast position estimates which are propagated through-

out the network along with the RRS values recorded by intermediate sensor nodes. Each

sensor maintains its own position estimate internally in the form of an occupancy grid that

encompasses the local environment. When a node receives a new message it uses the infor-

mation gained to update its own location estimate and then broadcasts the updated position

estimate to its neighbours. A number of communication and processing optimizations are

discussed, but like the work of Ihler et al., experiments are restricted to simulations and

it appears the approach could have difficulties if implemented on typical resource-limited

devices.

Both the sensor network self-localization work of Ihler et al. and Peng and Sichitiu do

not claim to accurately obtain the underlying PDF for the pose of the network. Instead, their

work focuses on a mechanism for the efficient estimation of the locations and uncertainties

of the sensors in a manner suitable for distributed processing. In our work, we assume the

existence of a powerful processing unit on which centralized processing can take place and

focus on accurately representing the underlying PDF in a principled manner.

1.3. Techniques Exploiting Motion in the Environment. Some recent work

has looked at the self-configuration of multi-sensors networks by exploiting motion in the

environment [122, 39, 121, 100]. These efforts generally assume vision-based sensors and

place less emphasis on the traditional sensor network concerns of efficiency and distributed

processing. Instead, they focus on research issues regarding the processing of observations

collected from distributed sensors.

15

2.1 RELATED WORK

Stein [122] considered the problem of self-calibrating multiple cameras which were

far apart but had some overlap in their field of view. The method used moving objects

observed in pairs of cameras to determine a rough alignment of the ground plane. An

error minimization technique was used to select a homography matrix computed from a set

of matching motion features in the two sequences. The matrix uniquely maps a point in

one image to a point in the second. The homography estimate was then improved using

static objects in the two overlapping scenes. Using internal camera parameters, the relative

location of the cameras could then be recovered by decomposing the homography matrix

defined by the planar alignment.

Also relying on overlapping fields of view between cameras placed at adjacent sensing

locations, Stauffer and Tieu [121] described a method for building a tracking correspondence

model based solely on observational data. Their work focused on determining which tracking

data resulted from observations of the same objects in sensors with overlapping views. Their

approach was based on probabilistically determining correspondences between cameras and

ultimately using this information to calibrate a camera network to better track objects

between fields of view. They verified their method with experiments conducted on a five

camera network.

Fisher [39] explored a self-localization approach for networks of cameras without over-

lapping fields of view. This method exploited the motion of distant moving objects such

as stars. The objects were assumed to have well-behaved linear or parabolic trajectories,

and it was necessary that the observed objects could be uniquely identified across separate

cameras.

In a more recent effort, Rahimi et al. [100] described a simultaneous calibration and

tracking algorithm that uses a velocity extrapolation technique to self-localize a network of

non-overlapping cameras based on the motion of a single target. Their work avoided the

difficult problem of associating observations with different targets by assuming only one

source of motion with a long trajectory.

1.4. Network Topology Calibration. Some previous work has considered the

problem of inferring topology or connectivity information in networks of sensors. In contrast

to our approach, these efforts either address a slightly different problem [55, 99] or they

employ considerably different methods [68, 37].

16

2.1 RELATED WORK

To track multiple agents across disjoint fields of view, Javed et al. [55] first calibrated

the connectivity information of their surveillance system using observational data. To learn

the probability of correspondence (transition probabilities) and inter-camera travel times

(delay distributions), they assumed a training period in which the data association between

observations and agents was known. Given this observation ownership information, they

employed a Parzen window based technique that looks for correspondences in agent velocity,

inter-camera travel time, and the location of agent exit and entry in the fields of view of

the camera.

The complete system that they developed is a multi-target tracking application that

incorporates object signatures and the learned network connectivity parameters into a

Bayesian framework. Their method was successfully verified on small networks of two

and three cameras. However, by assuming the data association problem to be solved, Javed

et al. addressed a different version of the network topology problem than the one we are

interested in.

Focusing on camera network calibration, Ellis et al. [68, 37], presented a technique

for topology recovery based on event detection only. They outlined an approach in which

they first identified entrance and exit points in camera fields of view and then attempted

to find correspondences between these entrance and exit based on video data. The method

could then automatically determine the topology of the camera network by assuming links

between cameras with corresponding entrance and exit zones.

Their approach relies on exploiting temporal correlation in observations of agent move-

ments as they enter and leave the field of view of different cameras. They do not rely on

object correlation across specific cameras. Instead, they consider whether there is a strong

temporal correlation in delay times between each pair of entrance and exit zones. To deter-

mine if a correlation exists between a particular entrance and exit, all entrance appearances

occurring within a time window from the exit event are collected in a discrete-time buffer;

i.e. a histogram of delay times is constructed. This histogram corresponds to a transition

time probability distribution function for the entrance-exit pair. The detection of a peak in

this temporal distribution of travel times between the pair suggests that a correspondence

or topological link exists. Two methods were considered for detecting a peak in the distri-

bution of delay times: a threshold-based heuristic and a technique based on a mixture of k

17

2.1 RELATED WORK

Gaussians. The heuristic approach proved more accurate. It looked for peaks in the distri-

bution of delay times between pairs of entrance and exit zones by setting a threshold based

on a weighted sum of the mean and standard deviation of the transition time probability

distribution function.

The technique gave promising results on experiments carried out on a six camera net-

work. Although it requires a large number of observations, the method does not rely on

object correlation across specific cameras. Thus, the approach can be used to efficiently

produce an approximate network connectivity graph. However, in contrast to our more

computationally sophisticated algorithm, when the network dynamics are complex or the

traffic distribution exhibits substantial variation the accuracy of the technique suffers.

1.5. Multi-Target Tracking. Much of the work on network calibration through

the exploitation of motion is motivated by or incorporated into research conducted on multi-

target tracking. The work of Javed et al. [55] and that of Stauffer and Tieu[121] for example,

is directly related to the development of multi-target tracking systems. Similarly, one of the

stated goals of Ellis et al. [68, 37] is to enhance the tracking performance of surveillance

systems. Since our approach relies on recovering plausible trajectories of individual agent

motion, we address some of the same problems faced in this area of research.

Multi-target tracking is a well established research area in sensor networks [4, 65] and

multi-robot systems [109]. One of the key difficulties faced is that of maintaining target

identities during periods when two or more targets move close together or are unobserved

for a period of time. Probabilistic techniques such as Identity Mass Flow as described by

Shin et al. [116] have been devised to handle this situation. Other work poses the target

identity problem as a data association problem; e.g. work by Rasmussen and Hager [104],

and work by Huang and Russell [51, 52]. The core idea is to account for the net mass (or

number of agents) in the system and postulate models for how to account for it when there

are insufficient observations (e.g. by assuming one agent hides another).

Pasula et al. [95] successfully approached a traffic monitoring problem from the data

association perspective through a stochastic sampling technique, although only in very sim-

ple networks. Given known sensor positions and topology, the goal of the work was to track

multiple objects passing through the network and recover their long-range origin/destination

information. An iterative Expectation Maximization algorithm was employed that assigned

18

2.1 RELATED WORK

probable trajectories to each vehicle. These samples were then used to update model pa-

rameters such as link-travel time and vehicle characteristics. New trajectory samples were

generated from existing samples by swapping vehicle assignments between pairs of adjacent

sensors. A new sample was accepted based on its relative probability to the existing sample.

The approach was verified using a freeway simulator that modeled one-hundred cars of

different colors passing through a network of nine cameras. The algorithm remained robust

when the color discrimination capability of the cameras was reduced, however, no results

are presented for spurious or missing observational data.

Our method of generating trajectory samples in our topology inference algorithm is

close in spirit to that used by Pasula et al. [95]. Our implementation differs, however,

due to the specifics of the problem. Additionally, we use the trajectory samples for a

very different purpose. While they inferred motion parameters given a known network, we

address the opposite problem: inferring information about the network given motion in the

environment.

Statistical tracking based on network tomography has also been used to recover en-

vironmental information based on large amounts of sparse data. Vardi [128] introduced

a statistical method for estimating node-to-node (source-destination) traffic flow based on

traffic counts at inter-node links. The technique, which was applied to strongly connected

networks of known topology, assumes that network traffic can be modeled through a Poisson

distribution. The Poisson assumption results in a set of linear equations that can be solved

through the method of moments. This technique has been evaluated on traffic surveillance

video data [10] and the results were comparable to conventional tracking algorithms.

1.6. Topology Inference. Although investigations into topological mapping have

been relatively recent in the area of sensor networks, the area has been well explored in

the mobile robotics community. There are similarities in the type of data that must be

processed and hence the techniques employed. In the context of robotics, a topological

map provides: first, a useful representation of the environment that allows robot navigation

without necessarily requiring the maintenance of the robot’s pose in a global reference frame;

and second, an abstraction provided by the topology information that can aid higher level

planning and inference tasks. The first is true of any sensor network or other intelligent

system that incorporates one or more mobile components, and the second is true regardless.

19

2.1 RELATED WORK

Early work in this area by Kuipers and Byun [62] constructed a topological network

description of the environment by identifying and then linking distinctive places and paths

based on the sensory input and control strategies of the robot. Later work by Dudek,

[32] describes an approach for building a hierarchy of representations of an unknown envi-

ronment. At the lowest level, the hierarchy begin with geometric data obtained from the

processing of sensory data gathered by the robot. The final abstraction is a topological

map with attached semantic labels that could be used for higher level tasks. This concept

is refined in later work by Simhon and Dudek [117] with the idea of islands of reliabil-

ity which link locally understood metric maps in a larger topological representation of the

global environment.

Work such as [115] by Shatkay and Kaelbling addressed the topological mapping prob-

lem with statistical formulations and techniques. They model the robot’s interaction with

the world as a Hidden Markov Model and employ an extended Baum-Welch algorithm to

recover its parameters. Their approach incorporates odometry data and abstracted sensory

information collected by the robot. The outcome of these approaches is generally a graph

where vertices represent distinct locations or landmarks in the region and edges indicate

navigability.

Practical applications of topological mapping must provide a method for the robot to

reliably identify a topological node, (or landmark) in the world being explored. For example,

in [19] Choset and Nagatani use sonar data to identify and position the robot on a Voronoi

graph of the environment. The vertices of the graph are then used as symbols which are

combined with odometry data to create a topological map that is used for localization. In

work by Kuipers and Beeson [61], place recognition is achieved through a multi-process

bootstrapping technique that includes sensory clustering and probabilistic inference. Other

approaches consider the extraction of features from vision or other sensory data (e.g. [114]

[110] [44]).

A more recent approach in topological mapping by Ranganthan and Dellaert [101]

[103] [102] relies almost exclusively on odometry data. In addition to collecting imper-

fect odometry data, their approach requires only that the robot have the ability to detect

signature-free landmarks; i.e the robot can detect a proximal landmark, but can not differ-

entiate between the different landmarks it encounters. The final outcome is a probabilistic

20

2.1 RELATED WORK

distribution over potential topologies that describe the obtained observations. The authors

refer to this result as a Probabilistic Topological Map (PTM) and explore various inference

techniques for generating the PTMs including Markov Chain Monte Carlo (MCMC) [101]

[102] and a Rao-Blackwellized particle filter [103]. One aspect of our work in this thesis

considers the problem of inferring the topology of the environment in the case that our

’sensor network’ consists of a single mobile robot. In this area our approach is similar in

concept to this work by Ranganathan and Dellaert [101] [103]. The weighted partial world

models we maintain as part of the inference technique we apply to this problem have some

similarity to the concept of a PTM as defined by these authors. In both our technique

and theirs, a multi-hypothesis, topological representation is maintained. The distinguish-

ing difference is that, while we only apply a ranking heuristic function, they use odometry

measurements to assign relative probabilities to each of the potential world models.

In topological mapping, and in mapping in general, one of the issues of applying the

observations collected from the world in the map making process is identifying where the

observations were collected. Of course, without a map or prior knowledge, localizing the

sensor can be difficult. This issue has been considered extensively in mobile robotics where

it is known as the simultaneous localization and mapping problem (SLAM). We will briefly

discuss this related area in the next section.

1.7. Simultaneous Localization and Mapping (SLAM). Inferring a represen-

tation of the environment from sensors without prior knowledge of how the sensors are

distributed has some relation to the simultaneous localization and mapping (SLAM) prob-

lem in mobile robotics. In traditional SLAM, a robot of uncertain pose uses observations

collected over time to determine both its own location and a map of the environment.

Generally, the solutions for SLAM and related problems employ a complex probabilistic

framework and use sophisticated inference techniques that are computationally intensive in

comparison to approaches designed to run on a typical sensor network platform. There are

a number of techniques we can borrow from this research, especially in the case that our

sensor network includes mobile components.

The extended Kalman filter, as was pioneered by Smith et al. [119] [118], and modern

variants of this original technique are widely employed in approaches to SLAM; (e.g. in

work by Wolf and Sukhatme [131]). The use of the Expectation Maximization algorithm is

21

2.1 RELATED WORK

also often employed; for example by Shatkay and Kaelbling [115] and by Thrun et al. [126].

Efficient recent methods such as the FastSLAM algorithms of Montemerlo et al. [86] [88]

employ a combination of filtering and sampling-based statistical techniques.

Instead of filtering, or in combination with filtering, global approaches are sometimes

applied in which the entire set of maintained poses is considered, this global approach is also

referred to as smoothing. Early work in this area by Lu and Milios [66] considered an en-

ergy minimization approach for comparing sets of range scan measurements and obtaining a

globally consist map of the environment. A number of researchers have considered enhance-

ments to the Lu and Milios style of approach; e.g. the work of Gutmann and Konolige [46]

which considers techniques for dealing with cyclical structures in the environment. A recent

example of smoothing is the work of Dellaert and Kaess [24] who use sparse linear algebra

techniques based on matrix square roots to efficiently incorporate the entire trajectory of

the robot into the map making process.

These later global methods are similar in concept to our approach to metric self-

localization for sensor networks, however, they do not return a full representation of the

underlying distribution. Furthermore they are targeted at robotic mapping, whereas our

work targets the more sparse observations obtained when mapping a sensor network. Ad-

ditional examples of sensor network applications involving mobile components employing

SLAM-like techniques include the work of Reklietis et. al [105] in their use of an extended

Kalman filter for the self-calibration of a hybrid robot/camera-network system, Coates [20],

who employs a particle filter for distributed state estimation and Djugash et. al [30] who

consider the localization problem in the case where only range data to sensor nodes is

available.

Although some aspects of our network localization problem in which we incorporate

mobile components can be viewed in the context of SLAM, there are significant differences.

First, our landmarks are actually deployed sensors and can be considered uniquely identifi-

able, so there is no correspondence issue. Second, we assume that in our system, any mobile

component (robot) will operate for the most part within the confines of sensor-network de-

ployed region and will ultimately visit the local area of each stationary network component

many times. Given such behaviour, it will be desirable to know not only the most likely

location for each stationary sensor, but with what confidence or certainty such a location is

22

2.2 BACKGROUND ON STATISTICAL TECHNIQUES EMPLOYED

known. Finally, in the scenario we consider, we assume that mobile robots in our deployed

network are only able to detect or be detected by the stationary sensors. We also assume

that these robots do not have sensing capabilities that could be used to identify, and localize

additional landmarks in the environment.

2. Background on Statistical Techniques Employed

This section will provide some brief background information on some of the main sta-

tistical techniques employed by our approach. See Tanner [124] or Gilks [45] for more

detailed explanations.

2.1. Expectation Maximization (EM). Expectation Maximization (EM) ad-

dresses the problem of fitting a model to data in cases where the solution can not be

determined analytically. The technique augments the existing data with additional hidden

data which can then be used to incrementally improve the model estimate. The hidden

data gives values to the unobserved, latent variables required by the model. This approach

is commonly used for parameter estimation in problems like ours in which there are only

incomplete data models. EM has been shown to converge to a set of model parameters that

locally maximize the likelihood [27].

EM iterates over two steps: the E Step and the M Step. In the E Step, an expression

for the expected likelihood of the complete data is calculated given the current estimate of

the model parameters θ. The complete data is made up of both the observed data y and a

probability distribution function over possible values for the hidden data z. The hidden data

allows the latent variables to be treated as if they were observed. In the second M Step the

set of parameters determining the model estimate are updated to maximize the expected

likelihood calculated in the first step. It should be noted that in many EM applications

these two ‘steps’ do not lead to two separate processes that one would follow as in an

algorithm. For example, when both of the equations resulting from the two steps have an

easily calculated closed form there can be just one update step per iteration. Conceptually,

however, the E Step and the M Step are repeated in turn until the process converges, as

measured by the size of successive changes in the model parameters:

23

2.2 BACKGROUND ON STATISTICAL TECHNIQUES EMPLOYED

(i) The E-Step:

Q
(

θ, θ(i−1)
)

= E
[

log p(z, y|θ)|y, θ(i−1)
]

(ii) The M-Step:

θ(i) = argmax
θ

Q
(

θ, θ(i−1)
)

where θi−1 is the parameter estimation obtained during the last iteration and p gives the

likelihood of the data given the model.

The term EM was coined by Dempster et al. in a 1977 paper [27] in which they

formalized the algorithm and provided a proof of convergence. However, the technique had

been applied earlier in specific problem domains. For example, the Baum-Welch algorithm

[7] applies the EM principle to Hidden Markov Models, and has been used in the speech

recognition community since the 1960s1. EM is currently a well established and much used

statistical technique. It has been applied, for example, to mapping in robotics [15, 126,

115], and to problems in bio-informatics [127].

2.2. Monte Carlo Expectation Maximization (MCEM). One problem with

EM, however, is that the E Step can be difficult or impossible to calculate exactly. For

example, consider the case in which there is no closed form for the expected value and

there are arbitrary distributions over the potential values that could be assigned to the

latent variables. This situation could make integration intractable, leading to no exact

formulation of the expected value. However, stochastic versions of the EM algorithm expand

its applicability by executing the E Step through a Monte-Carlo estimation process. In

MCEM, the expected value of the hidden data is estimated using a number of samples of

potential values for the latent variables. A common approach for computing the estimate

is to use Markov Chain Monte Carlo (MCMC) sampling [130]. In this case, the E Step is

now calculated as follows:

Q
(

θ, θ(i−1)
)

=
1

M

M
∑

m=1

log p(z(m), y|θ)

where z(m) is drawn using MCMC sampling from the previously estimated θ(i−1).

1Lloyd Welch and Leonard Baum developed the solution circa 1962 but it was classified for many years.

24

2.2 BACKGROUND ON STATISTICAL TECHNIQUES EMPLOYED

The technique expands the scope of the basic EM algorithm to problems for which it is

impossible to obtain a closed form equation for the expected value of the hidden data, but for

which the distribution can be estimated through random sampling. In recent years, MCEM

has been successfully applied to a number of areas such as tracking [95] and structure from

motion [25].

2.3. Markov Chain Monte Carlo (MCMC). A precursor to many methods,

including MCEM is fair sampling. This, in itself, can be a difficult problem. The Markov

Chain Monte Carlo method provides a mechanism for drawing representative samples from

the probability distribution π of a very large (but finite) state space Ω. The technique was

first used computationally in the field of statistical physics, but since then its application

has grown to include combinatorial enumeration and optimization problems. For many of

these problems it is the only known method to provide a polynomial time approximation

to the desired probability distribution [56].

Many approaches to sampling depend on the ergodicity of the underlying process. Re-

call that a Markov Chain is a memory-less process defined by a state space Ω, a transition

matrix P , and initial probabilities. Ergodicity implies that there exists a unique stationary

distribution π over Ω such that π = πP , and that it will be reached from any initial state

in the limit:

lim
k→∞

pk
ij = πj ,∀i, j ∈ Ω

where pk
ij refers to the probability of transition from state j to state i after k time steps

and πj specifies the density of state j in the stationary distribution.

For a finite state Markov chain, ergodicity is implied by an irreducible and aperiodic

transition matrix P [40]. Irreducibility implies that any two states i, j ∈ Ω are in the same

communication class; i.e. sj can be reached from si. Aperiodicity implies that for at least

one state i ∈ Ω, there does not exist an integer ri > 1 for which pk
ii > 0 only when k is a

multiple of ri. In other words, a Markov chain is ergodic if the transition graph is connected

and the chain can not get trapped in cycles.

An additional attribute of an MCMC sampler that allows improved performance guar-

antees is reversibility or detailed balance. Informally, reversibility means that the average

density flowing between any two states is equal in both directions. For a Markov Chain,

25

2.2 BACKGROUND ON STATISTICAL TECHNIQUES EMPLOYED

reversibility is specified by the following detailed balance equation:

πipij = πjpji,∀i, j ∈ Ω (2.1)

For an ergodic Markov Chain, reversibility is a sufficient (but not necessary) condition for

ensuring that the unique stationary distribution (guaranteed to exist because of the ergodic

property) is specified by the target distribution [2]. Essentially, the relative probabilities of

the states, as controlled through the detailed balance equation, determines the final steady

state distribution π.

2.4. Metropolis-Hastings Algorithm. The Metropolis-Hastings (MH) algorithm

is an established MCMC sampling technique first proposed by Metropolis et al. [84] in

1953 and later generalized by Hastings [49]. The technique constructs a Markov Chain by

accepting proposed transitions R = {rij} from the current state si to a new state sj based

on a probability determined according to:

α = min(1,
πjrij
πirji

) (2.2)

The original algorithm described by Metropolis used a symmetric proposal function in

which rij = rji. This results in the acceptance test:

α = min(1,
πj

πi
) (2.3)

If one follows the Metropolis or Metropolis-Hastings algorithm for constructing a Markov

Chain, then it has been shown that: (1), the transition matrix P is reversible; and (2), if

the proposal matrix R is ergodic then so is P [40]. Therefore, ergodicity can be ensured

through a well chosen proposal method, and reversibility is inherently assured by the nature

of the Metropolis-Hastings method. Given ergodicity, and sufficient simulation time, the

resulting Markov Chain should yield samples representative of the distribution π.

Despite theoretical guarantees, determining a ‘sufficient simulation time’ can be chal-

lenging and is related to the mixing rate of the chain; i.e. how quickly the chain tours

the target distribution. However, there are a number of practices commonly followed when

using MH to construct a Markov chain which helps yield representative samples. The pro-

posal method r(.|s) should be crafted such that the acceptance rate of new proposals, as

26

2.2 BACKGROUND ON STATISTICAL TECHNIQUES EMPLOYED

determined by equation 2.2, is neither too high nor too low as both these extremes will lead

to a reduced mixing rate. As well, some inital number of samples drawn from the chain

should be discarded; this is refered to as a ‘burn-in’ time. Informally, the burn-in period

gives the chain a chance to ‘forget’ its starting position and reach a high probability state

representative of the target distribution. Additionally when assessing if enough samples

have been drawn in order to adequately characterize the target distribution, one looks for

statistical similarities between sets of samples drawn from different portions of the chain or

from seperate runs of the chain based on different starting positions. See Gilks et al. [45]

for more MCMC implementation details.

27

CHAPTER 3

Learning Sensor Network Topology

As discussed earlier, our goal is to allow a sensor network or intelligent system to self-

calibrate given limited observational data. In this chapter and the two that follow, we

will consider the problem of obtaining a topological map of the environment. First, in

this chapter we will consider the problem of automatically determining the topology and

connectivity information of a network of sensors based on a statistical analysis of observed

motion in the environment. The detection of activity proximal to a sensor can be a relatively

simple task, and should be possible with various degrees of accuracy and range using a

variety of sensors; e.g. an infrared detector, a microphone, or an accelerometer could

all be utilized for this task. We assume this detection can be achieved in some manner,

although there may be occasional errors in the detection process which can be modeled

probabilistically. The key factor that makes the this problem difficult is data association:

we do not know which source of motion in the environment induces a given measurement.

Our approach to solving this problem employs a two-level reasoning system. The first

level is made up of our fundamental topology inference algorithm that takes the sensor

observations and environmental assumptions as inputs and returns the network parameters

as an output. The algorithm is formulated using Monte Carlo Expectation Maximization

(MCEM), but it depends on fixed values for certain numerical parameters that represent a

priori knowledge regarding traffic patterns in the environment. The second level searches

over the input parameter space of the first level algorithm to find a global solution that

optimizes a more abstract objective function based on the principle of Occam’s Razor. This

portion of our work addresses sensor network self-calibration, but has techniques in common

3.1 PROBLEM DESCRIPTION

with multi-target tracking, SLAM, and other problem domains where data association is

an issue. The algorithm uses only detection events from the deployed sensors and is based

on reconstructing plausible trajectories for the agents through statistical techniques. We

require no prior knowledge of the relative locations of the sensors and only weak assumptions

regarding environmental conditions.

The final output of the two-level approach is a probabilistic model of the sensor network

connectivity graph and the underlying traffic trends. It is worth noting that the technique

recovers a much more complete description of network connectivity than just a topological

map of the environment. We infer information about the number of agents in the system,

inter-node delay distributions, inter-node transition likelihoods, and additional statistics

regarding motion activity.

In the remainder of the this chapter we will first give a formal definition of the problem

we are attempting to solve. We will then provide the details of our methodology followed

by an assessment of the method through results obtained from both simulations and exper-

iments.

1. Problem Description

We describe the problem of topology inference in terms of the inference of a weighted

directed graph which captures the spatial relationships between the positions of the sensor

nodes. The motion of multiple agents moving asynchronously through a sensor network

embedded region can be modeled as a semi-Markov process. The network of sensors is

described as a directed graph G = (V,E), where the vertices V = vi represent the locations

where sensors are deployed, and the edges E = ei,j represent the connectivity between them;

an edge ei,j denotes a path from the position of sensor vi to the position of sensor vj . The

motion of each of the N agents in this graph can be described in terms of their transition

probability across each of the edges An = {aij}, as well as a temporal distribution indicating

the duration of each transition Dn. The observations O = {ot} are a list of events detected

at arbitrary times from the various vertices of the graph, which indicate the likely presence

of one of the N agents at that position at that time.

The goal of our work is to estimate the parameters describing this semi-Markov process;

i.e. the transition probabilities A and associated temporal distributions D. From these, we

29

3.2 THE FIRST LEVEL: TOPOLOGY INFERENCE THROUGH EXPECTATION MAXIMIZATION

can infer the underlying topological map G of the environment. Our approach is based on

a number of assumptions. We assume that each observation was generated by exactly one

agent and furthermore that the behavior of all the agents in the system can be approximated

as being homogeneous; i.e. the motion of all agents are described by the same A and D.

In addition, we must make some assumptions about the distribution of the inter-vertex

transition times. Generally, we make the assumption that the delays fit some family of

distributions and are bounded within a fixed range. We will show later, however, that we

can relax this assumption in some situations.

In the approach we have outlined above, we are making some inherent assumptions

about the behavior and quality of our sensors. We assume that an individual sensor gener-

ates only a single observation for an agent despite the fact that the agent will spend some

finite amount of time within the detection range. This assumption can usually be guaran-

teed in practice through post processing of raw sensor measurements; a technique sometimes

referred to as ‘debouncing’. More difficult in practice is the assumption that, ideally, this

sensor can generate a second observation when a second agent enters its detection range,

even if the first agent is still detectable. A more easily satisfied assumption is that agents

do not travel close enough together for this duplicate detection situation to be encountered.

If this assumption is only occasionally violated, the system can model one of these events as

a missing observation (i.e a false-negative). As we will show in later sections, our technique

is robust to moderate levels of sensor error. As long as the assumptions we have outlined

above are approximately correct, i.e. are violated infrequently and in a non-systematic

manner, the inference process produces accurate results.

Given the observations O and the vertices V , the problem is to estimate the network

connectivity parameters A and D, subsequently referred to as θ.

2. The First Level: Topology Inference through Expectation Maximization

The algorithm that makes up the first level of our technique infers the connectivity

of a sensor network given non-discriminating observations. It assumes knowledge of the

number of agents in the environment and attempts to augment the given observations with

an additional data association that links each observation to an individual agent. The

approach is based on the statistical technique of Expectation Maximization (EM) [27].

30

3.2 THE FIRST LEVEL: TOPOLOGY INFERENCE THROUGH EXPECTATION MAXIMIZATION

Sensor Observations
Assumptions Regarding

Environmental Activity

Current Belief of

Network Parameters
Trajectory Samples

Iterate:

Network Parameters

Inferred

Figure 3.1. A block diagram of Level One of the Two-Level Approach where the
blocks indicate algorithmic components and the arrows indicate the transfer of data.

The algorithm iterates over constructing plausible trajectories of agent motions based on

current estimates of connectivity parameters (E Step), and then updating the parameters

to maximum likelihood estimates based on the sampled trajectories (M Step). Figure 3.1

shows a block diagram illustrating the control form of the inference algorithm.

2.1. Expectation Maximization. We use the Expectation Maximization (EM)

algorithm to solve the connectivity problem by simultaneously converging toward high like-

lihood observation data correspondences and network parameters values. For our problem

instance, the E Step and M Step which we iterate over take the following form:

(i) The E-Step: which calculates the expected log likelihood of the complete data

given the current parameter guess:

Q
(

θ, θ(i−1)
)

= E
[

log p(O,Z|θ)|O, θ(i−1)
]

where O is the vector of binary observations collected by each sensor, and Z

represents the hidden variable that determines the data correspondence between

the observations and agents moving throughout the system.

31

3.2 THE FIRST LEVEL: TOPOLOGY INFERENCE THROUGH EXPECTATION MAXIMIZATION

(ii) The M-Step: which then updates our current parameter guess with a value that

maximizes the expected log likelihood:

θ(i) = argmax
θ

Q
(

θ, θ(i−1)
)

We employ Monte Carlo Expectation Maximization [130] to calculate the E-Step be-

cause of the intractability of summing over the high dimensional data correspondences.

Note that there is one dimension for each element of the observation vector O. We approx-

imate Q
(

θ, θ(i−1)
)

by drawing M samples of an ownership vector L(m) = {lmi } (an instance

of Z) which uniquely assigns the agent i to the observation oi in sample m:

θ(i) = argmax
θ

[

1

M

M
∑

m=1

log p(L(m), O|θ)

]

where L(m) is drawn using the previously estimated θ(i−1) according to a Markov Chain

Monte Carlo (MCMC) sampling technique that will be explained in the next section.

In order to ensure an adequate burn-in time for the Markov Chain, a number of initial

samples of the ownership vector are discarded. A simple heuristic is employed in which

samples are discarded until their computed likelihood stops increasing.

At every iteration we obtain M samples of the ownership vector L, which are then

used to re-estimate the connectivity parameter θ (the M-Step). We continue to iterate

over the E-Step and the M-Step until we obtain a final estimate of θ. At every iteration

of the algorithm the likelihood of the ownership vector tends to increase, and the process

is terminated when subsequent iterations result in sufficiently small changes to θ. The

following pseudo code outlines the algorithm:

WHILE (θi − θi−1) > Threshold

Draw sample L until p(L,O|θ) stops increasing

Draw K samples L(k)

Update θi given {L(1) . . . L(K)}

END WHILE

In general, we make the assumption that the inter-vertex delays fit some family of

distributions and determine the maximum likelihood parameters for each of the inter-vertex

32

3.2 THE FIRST LEVEL: TOPOLOGY INFERENCE THROUGH EXPECTATION MAXIMIZATION

ob

oc

od

oe

oa

wae wbc

wcd

ob

od

oe

oc

wac

wbd

cew

t

L L’

Tx Ty xT’ yT’

= {... x y y y x ...} = {... x y x y x ...}

oa

Figure 3.2. An example of a proposed Markov Chain transition resulting from the
application of an Observation Exchange Proposal. The ownership assigned to oc has
been shifted from agent y to agent x. To evaluate this transition, the probability
of the edge traversals wac, wce, wbd must be compared to the original traversals
wae, wbc, wcd.

distributions. In a subsequent section, we will describe how we occasionally reject outlying

low likelihood delay data and omit it from the parameter update stage.

2.2. Trajectory Sampling. We use Markov Chain Monte Carlo sampling to assign

each of the observations to one of the agents, thereby breaking the multi-agent problem into

multiple versions of a single-agent problem. In the single agent case, the observations O

specify a single trajectory through the graph which can be used to obtain a maximum

likelihood estimate for θ. Therefore, we look for a data association that breaks O into

multiple single agent trajectories. We express this data association as an ownership vector

L that assigns each of the observations to a particular agent.

Given some guess of the connectivity parameter θ, we can obtain a likely data associ-

ation L using the Metropolis algorithm; an established method of MCMC sampling [124].

See Section 2.4 of Chapter 2 for additional background on the Metropolis algorithm. From

our current state in the Markov Chain specified by our current observation assignment L,

33

3.2 THE FIRST LEVEL: TOPOLOGY INFERENCE THROUGH EXPECTATION MAXIMIZATION

we propose a symmetric transition to a new state by reassigning a randomly selected obser-

vation to a new agent selected uniformly at random. We define this proposal scheme as an

Observation Exchange Proposal. This new data association L′ is then accepted or rejected

based on an acceptance probability which is defined by the relative probabilities of L and

L′ according to the Metropolis selection test:

α = min

(

1,
p(L′, O|θ)

p(L,O|θ)

)

(3.1)

from Equation 2.3.

2.2.1. Observation Exchange Proposal. The acceptance probability α shown in Equa-

tion 3.1 can be expressed in a simple form since the trajectories described by L′ differ from

those in L by only a few edge transitions. Consider L as a collection of ordered non-

intersecting sets containing the observations assigned to each agent L = (T1 ∪ T2 ∪ . . . ∪

TN), Tn = {wjk} where wjk refers to the edge traversal between vertices j and k. The

probability of a single agent trajectory is then the product of all of its edge transitions

probabilities:

p(T |θ) =
∏

w∈T

p(w|θ)

Therefore, a change in state suggested by the application of the Observation Exchange

Proposal that reassigns the observation on from agent y to agent x must remove an edge

traversal w from Ty and add it to Tx. Only the change in the trajectories of these two

agents need be considered, since all other transitions remain unchanged. In the example

shown in Figure 3.2:

α = min

(

1,
p(T ′

x, T
′

y|θ)

p(Tx, Ty|θ)

)

(3.2)

= min

(

1,
p(wac, wce, wbd|θ)

p(wae, wbc, wcd|θ)

)

In between each complete sample of the ownership vector L, each of the observations

are tested for a potential transition to an alternative agent assignment. This testing is ac-

complished in random order and should provide a large enough spacing between realizations

34

3.2 THE FIRST LEVEL: TOPOLOGY INFERENCE THROUGH EXPECTATION MAXIMIZATION

of the Markov Chain that we can assume some degree of independence in between samples.

Although our method of proposing transitions is simple and does not result in large jumps

through the state space, the acceptance test can be evaluated efficiently and we can thus

afford to test many proposals.

Theorem 1. Applying the Metropolis algorithm with the Observation Exchange Pro-

posal, which proposes reassigning the ownership of a single element in L, results in an er-

godic and reversible Markov chain. Therefore, given adequate simultation time, the method

is guaranteed to produce samples representative of the true probability distribution for the

ownership vector L.

2.2.2. Proof of Theorem 1. Ergodicity and reversibility in a Markov Chain are suffi-

cient conditions to ensure that there exists a unique and specified stationary distribution [2].

In our case, reversibility is guaranteed through our use of the Metropolis algorithm; i.e. ad-

hering to the Metropolis acceptance test (Equation 2.3) results in a reversible Markov chain

which satisfies the detailed balance equation (Equation 2.1).

Furthermore, if our chain is ergodic, then the detailed balance equation specifies the

stationary distribution π [40]. In our case, each state of our chain represents an instance

of the ownership vector. It has a stationary distribution specified by:

πj = lim
t→∞

pt
ij ,∀i, j ∈ Z

∝ p(L(j)|O, θ)

where Z represents the set of all possible realizations of the ownership vector L and pt
ij

gives the probability of reaching L(j) from L(i) in t steps. It remains, however, to show that

our Markov Chain is ergodic.

For a finite state Markov chain, ergodicity is implied by an irreducible and aperiodic

transition matrix P [40]. However, because we determine state transition probabilities

based on the Metropolis algorithm, we are ensured that if the proposal matrix R is ergodic

then so is P [40]. Therefore, showing that the proposal matrix R which results from our

application of the Observation Exchange Proposal is irreducible and aperiodic is a sufficient

condition for demonstrating the ergodicity of the resulting Markov Chain.

35

3.2 THE FIRST LEVEL: TOPOLOGY INFERENCE THROUGH EXPECTATION MAXIMIZATION

Si Sj

Source/Sink
Node

"Through Traffic"

High Probability Gaussian Fit Delay Data

Low Probabability Uniformly Fit Delay Data

Figure 3.3. Graphical description of the algorithm delay model.

That our proposal matrix R is ergodic can be demonstrated by considering both a

single step transition and a k step transition where k is the number of observations |O|. Our

proposal matrix R = {rij} gives the probability of a proposed transition from L(i) to L(j).

For a single step, rij > 0 if L(i) and L(j) are exactly the same or differ by only one ownership

assignment to a single observation. All other elements of the one step proposal matrix are

zero. In the worst case, L(i) and L(j) can differ from each other by k ownerships assignments

where k = |O|. In this case, the two states require k transitions to be communicable

since each transition is capable of swapping one of the ownership assignments. Therefore

(rij)
k > 0,∀i, j ∈ Z as long as k > |O|. Since (R)1 has non-zero diagonal elements, it

is aperiodic and since there exists a finite k such that (R)k has all positive entries, it is

irreducible �.

2.3. The Delay Model. To make the algorithm more robust to realistic traffic

patterns, we have introduced an inter-vertex delay model that allows for the possibility of

agent transitions to and from sources and sinks. This makes the algorithm more robust

both to shifting numbers of agents in the environment and to agents that pause or delay

their motion in between sensors. Additionally, assuming the existence of sources and sinks,

we can recover their connectivity to each of the sensors in our network.

In addition to maintaining a vertex that represents each sensor in our network, we in-

troduce an additional vertex that represents the greater environment outside the monitored

region and any phenomena that could remove or insert an agent: a source/sink node. If

we have M sensors in our network, then our model uses one vertex v1 . . . vM ∈ V for each

sensor and an additional vertex vM+1 ∈ V for the source/sink node. The corresponding

additions are also make to the transition matrix A and temporal distributions D in our

36

3.2 THE FIRST LEVEL: TOPOLOGY INFERENCE THROUGH EXPECTATION MAXIMIZATION

model. Essentially, we treat this source/sink node as a potential location in the physical

environment and attempt to infer associated traffic patterns for it as we do with each of

the real sensor locations.

To decide when a transition to the source/sink node has occurred we use a mixture

model during the E-Step of our iterative EM process in which we evaluate potential changes

to agent trajectories. An inter-vertex delay time is assumed to arise from some specified

family of distributions (e.g. a gamma distribution or a truncated normal) or else from a

uniform distribution of fixed likelihood (Figure 3.3). This model allows for low probability

jumps of almost arbitrary length. The data assigned to the inter-node delay distribution are

assumed to be generated by direct transitions between nodes and are used during the M-Step

to update our belief of the inter-node delay times and transition likelihoods. On the other

hand, the data fit to the uniform distribution are used to model transitions from the first

vertex into the sink/source node and then from the sink/source node to the second vertex.

Therefore they are not used for updating inter-vertex delay parameters of the two nodes,

but rather are considered outliers and are used only for updating the belief of transitions

to and from the source/sink node for the associated vertices.

Note that no parameters are used to characterize the distribution suggested by the

outlying data points; i.e we are not attempting to learn the delay distribution between

any particular node in the system and the sink/source node. Instead, we specify when a

data point should be considered an outlier given only our current belief of the parameters

for the associated delay distribution. This value can not be estimated explicitly without

attempting to parameterize a second distribution which would not be consistent with our

model.

While the data assigned to the inter-node delay distributions are expected to be within

a realistic temporal range for direct agent transitions, the delay data fit to the uniform

distribution are more loosely bounded. This gives the inference technique a mechanism for

temporarily removing agents from the system by assigning them to long transitions, or to

explain events that would otherwise seem extremely unlikely such as the disappearance of

an agent from one node and its almost immediate appearance at a second.

The delay model provides robustness to noise by discarding outliers in the delay data

assigned to each pair of vertices and explaining their existence as transitions to and from

37

3.3 LEVEL TWO: NETWORK PARAMETER EVALUATION

Delay Time

P
ro

b
ab

ili
ty

SSL

Accept Zone
Data not used for
Parameter Updates

Figure 3.4. Graphical description of the Source Sink Likelihood (SSL) Parameter.

a source/sink node. The key to this process is determining whether or not a delay value

should be considered an outlier. This is implemented through a tunable parameter, called

Source Sink Likelihood (SSL), that determines the threshold probability necessary for the

delay data to be incorporated into parameter updates (Figure 3.4). The probability for an

inter-vertex delay is first calculated given the current belief of the delay distribution. If this

probability is lower than the SSL then this motion is interpreted as a transition made via

the source/sink node. The delay is given a probability equal to the SSL, and the transition

is not used to update the network parameters associated with the origin and destination

vertices.

The value assigned to the SSL parameter determines how easily the algorithm discards

outliers and, hence, provides a compromise between robustness to observational noise and

a tendency to discard useful data.

3. Level Two: Network Parameter Evaluation

The first stage just described has a serious limitation: it takes the number of agents N

in the environment as a known input. The second level of our approach treats the topology

inference algorithm described in the previous section as a ‘black box’ and attempts to search

over its input parameter space to find reasonable solutions (Figure 3.5). We construct a

heuristic evaluation function that quantitatively assesses a potential solution based on the

principle of Occam’s Razor. The first level topology inference algorithm takes the following

inputs: the observations O; the assumed number of agents in the environment N ; and the

38

3.3 LEVEL TWO: NETWORK PARAMETER EVALUATION

Assumptions Regarding

Environmental Activity

Algorithm (Level One)

Topology Inference

Search:

Evaluation
Function

Network Parameters

Inferred

Sensor Observations

Best Solution

Figure 3.5. A block diagram of Level Two of the Two-Level Approach where the
blocks indicate algorithmic components and the arrows indicate the transfer of data.

SSL parameter. The outputs of the algorithm are the network parameters θ and the ratio

of data Rdata incorporated into the parameter updates:

(θ,Rdata)← alg(O,N, SSL)

Different input values result in different environmental assumptions and, hence, produce

different outputs.

We have created a metric that attempts to assess the validity of a solution by making

the assumption that a good solution both explains the majority of the data and is as simple

as possible. This principle, known as Occam’s razor, states, “if presented with a choice

between indifferent alternatives, then one ought to select the simplest one.” The concept

is a common theme in computer science and underlies a number of approaches in AI; e.g.

hypothesis selection in decision trees and Bayesian classifiers [85].

Our simplicity metric incorporates a measure of the simplicity of the transition matrix

and the amount of data explained by the solution. We measure the simplicity of a transition

matrix by rewarding it in inverse proportion to how close it is to a uniform belief of transition

39

3.3 LEVEL TWO: NETWORK PARAMETER EVALUATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Use Ratio

A
dj

us
te

d
D

at
a

U
se

 R
at

io

Adjusted Ratio
line y=x

Figure 3.6. Example relationship between Rdata and Radj with γ = 0.9 and τ =
0.1.

probabilities:

Asimp =
∑

ai∈A

(ai)
β

where β determines the degree of the reward. We measure the utility of a given data use

ratio by constructing an adjusted data ratio that attempts to reflect our belief in the solution

as a function of the data used. The adjusted data ratio should incorporate the fact that

some small portion of discarded data is actually optimal, but that our belief tails off rapidly

as the discarded portion grows:

Rdata =
|Explained Obs|

|Obs|

Radj = exp−
1

τ
(Rdata−γ)2

where γ and τ describe the shape of the belief curve (Figure 3.6). The final simplicity

metric incorporates a weighted combination of Asimp and Radj :

Qsimp = (Asimp)
κ ∗ (Radj)

λ

where κ and λ reflect the relative weights assigned to the two portions.

With the construction of the simplicity metric Qsimp, we have shifted our dependence

from specific a priori assumptions that must be made on a case to case basis. Instead, we

depend on more general assumptions regarding the attributes of a believable solution for

our problem domain.

40

3.4 SIMULATION RESULTS

Instead of the two level approach outlined in this and the previous section, an alternative

approach to recovering the network connectivity parameters would be to stay within the EM

framework of the fundamental algorithm. To do this, one could attempt to infer the MAP

solution for a particular problem using the Qsimp metric as a Bayesian prior for favoring

appropriate models. There would, however, be some difficulties with this approach. The

first disadvantage is that, although varying the number of agents at the MCMC proposal

level is possible and is related to the work of Oh et al. [93], one must invent a suitable

model capable of preventing the algorithm from improving configuration likelihoods through

over-fitting. For example, the almost certainly incorrect assumption that there is one agent

per measurement will yield a model with an extremely high likelihood without the use of

counter balancing priors. The specification of the priors could be sufficiently challenging to

make this approach difficult in practice. Additionally, incorporating an arbitrary prior into

the Q function of the M step of the EM loop prevents a closed form solution for maximizing

the parameter values, hence forcing the use of a numerical estimation method. A potential

danger here is that by attempting to infer the number of agents within the EM framework,

we risk destabilizing and substantially slowing the convergence of the algorithm, which is not

guaranteed under all conditions for stochastic variants; e.g. [26]. Instead, we have chosen to

clearly delineate between the inner, fundamental algorithm which, in our investigations, has

shown robust dependable behavior, and a second higher level component which attempts

to enforce the priors we desire.

4. Simulation Results

In this section, we examine the performance of our algorithm through a number of

experiments conducted in simulation. We begin with a description of our simulator. Then

we assess the operation and performance of the first level topology inference algorithm and

examine the effect of varying the input parameters. Finally, we discuss the ability of our

technique to correctly tune these input parameters in order to achieve a minimum error

solution and justify our tuning of the parameters shaping the Qsimp metric.

4.1. The Simulator. We have developed a tool that simulates agent traffic through

an environment represented as a planar graph. Our simulation tool takes as input the num-

ber of agents in the system and a weighted graph where the edge weights are proportional

41

3.4 SIMULATION RESULTS

(a) (b) (c) (d)

Figure 3.7. Examples of randomly created 20 node, 80 directed edge graphs.

to mean transit times between the nodes. All connections are considered bidirectional; i.e.

each connection is made up of two unidirectional edges. The output is a list of observations

generated by randomly walking the agents through the environment. When arriving at a

new vertex during its random walk, an agent selects its next edge to traverse uniformly at

random from those connected to that vertex. Inter-node transit times are determined based

on a truncated normal distribution with a standard deviation equal to the square root of

the mean transit time. (Negative transit times are rejected).

Two types of noise were modeled in order to assess performance using data that we

believe more closely reflects observations collected from realistic traffic patterns. First, a

‘white’ noise was generated by removing a percentage of correct observations and replacing

them with randomly generated spurious observations. Second, a more systematic noise was

generated by taking a percentage of inter-vertex transitions and increasing the Gaussian

distributed delay time between them by an additional delay value selected uniformly at

random. The range of this additional delay time was selected to be from 0 to 20 times the

average normal delay time. The hope is that small values of these types of noise simulate

the effects of both imperfect sensors and also the tendency for agents to stop occasionally

along their trajectories; e.g. to talk, use the water fountain, or enter an office for an period.

A number of experiments were run using the simulator on randomly generated planar,

connected graphs. The graphs were produced by selecting a connected sub-graph of the

Delaunay triangulation [98] of a set of randomly distributed points (Figure 3.7). In Delau-

nay triangulation, no edges cross and the minimum angle between edges is maximized; i.e.

‘sharp turns’ are minimized. A connected sub-graph of such a triangulation is suitable as a

generic topological map of an arbitrary environment. This technique has been used before

42

3.4 SIMULATION RESULTS

is the field of robotics to generate random planar graphs; (see Rekleitis et al. [107] for a

complete description).

For each experiment, the results were obtained by comparing the final estimated tran-

sition matrix A′ to the real transition matrix A. A graph of the inferred environment was

obtained by thresholding A′. The Hamming error was then calculated by measuring the

distance between the true and inferred graphs normalized by the number of directed edges

m in the true graph:

HamErrA =

(

1

m

)

∑

aij∈A,a′

ij∈A′

[

ψ(aij)− ψ(a′ij)
]2

where ψ(a) = ⌈aij − θ⌉.
1 Additionally, the squared error between the true and inferred

transition matrix was calculated:

ErrA =
∑

aij∈A,a′

ij∈A′

(aij − a
′

ij)
2

4.2. Performance under Noise Free Conditions. When operating with noise-

free data and knowledge of the correct number of agents in the environment, the results show

that problems involving a limited number of agents were easy to solve given an adequate

number of observations (Figure 3.8). For 95 per cent of the generated 12 node graphs the

topology was perfectly inferred with zero Hamming error for simulations with 4 agents. For

simulations with 4 agents and larger graphs of 20 nodes the topology was perfectly inferred

for over 50 per cent of the trials and for those trial in which there were errors, the resulting

graph was generally within one or two directed edges of the correct graph. The problem

became more difficult to solve when the number of agents in the simulation was increased

from 4 to 10. In all simulations with 10 agents, however, the majority of the structure of

each of the graphs considered was recovered. In the worst case, 15 per cent of the directed

edges differed between the recovered graph and the true graph; i.e. the fraction of Hamming

error to directed edges was at most 0.15.

1A threshold value of θ = 0.1 was selected for our experiments.

43

3.4 SIMULATION RESULTS

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

10

20

30

40

50

60

70

80

90

100

Hamming Error / Number Directed Edges

G
ra

ph
 C

ou
nt

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

10

20

30

40

50

60

70

80

90

100

Hamming Error / Number Directed Edges

G
ra

ph
 C

ou
nt

(b)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

10

20

30

40

50

60

70

80

90

100

Hamming Error / Number Directed Edges

G
ra

ph
 C

ou
nt

(c)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

10

20

30

40

50

60

70

80

90

100

Hamming Error / Number Directed Edges

G
ra

ph
 C

ou
nt

(d)

Figure 3.8. A histogram of Hamming error per edge using the simulator with 8000
observations on 100 randomly produced graphs for: a) 12 nodes and 4 agents, b)
12 nodes and 10 agents, c) 20 nodes and 4 agents, and d) 20 nodes and 10 agents.
A directed edge to vertex ratio of 4 : 1 was selected for the random graphs used in
these experiments.

4.2.1. Convergence and Implementation Assessment. Recall that at each iteration

of the algorithm, we gather a number of samples of the ownership vector using MCMC.

These samples are discarded until a burn-in period, and are then collected and used to rep-

resent plausible agent trajectories through the environment given the belief of the network

parameters computed during the last iteration. The network parameters are then updated

to maximize the likelihood these of trajectories and a new iteration begins. This process

continues until the updated parameters are similar enough to those found during the last

iteration. See Section 2.1 for more details.

In most cases, we found that the algorithm converged quickly, finding most of the coarse

structure of the graph in the first few iterations and making incrementally smaller changes

44

3.4 SIMULATION RESULTS

(a) (b) (c) (d)

Figure 3.9. Incremental belief of the topology of a 12 node, 48 (directed) edge
graph using 4 simulated agents on 8000 observations: a) initially b) after 1 iteration,
c) after 2 iterations, d) after 3 iterations (the true graph). Dotted lines indicate
incorrect transitions.

(a) (b) (c)

(d) (e) (f)

Figure 3.10. Incremental belief of the topology of a 20 node, 80 (directed) edge
graph using 4 simulated agents on 8000 observations: a) initially b) after 1 iteration,
c) after 2 iterations, d) after 3 iterations e) after 4 iterations f) after 5 iterations
(the true graph).

until convergence (Figures 3.9, 3.10). After every new iteration of the MCEM process, the

set of sampled ownership vectors generally increased in likelihood on average in comparison

with samples gathered during the last iteration. An example of the progression in sample

likelihood for a simulation can be seen in Figure 3.11. It can be noticed that most of the

45

3.4 SIMULATION RESULTS

0 20 40 60 80 100 120 140 160
−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4
x 10

4

Sample Number

LL
H

Figure 3.11. The log likelihood of samples of the ownership vector for an example
run of the algorithm using 4 simulated agents on a 12 node, 48 edge random graph
with 4000 observations, (same graph as for Figure 3.12). The horizontal axis gives
the sample number (across all iterations). For each iteration, only the samples
shown between the circle and the triangle are used for updating network parameters
(the M Step).

likelihood gain occurred in the first few steps of an iteration, which was typical in these

experiments. Figure 3.12 gives a closer look at how the sample likelihood progressed with

in each iteration for the same example. As the number of iterations increased, the change

in likelihood immediately after a parameter update decreased.

There appears to be a tradeoff between frequent parameter updates based on a small

number of trajectory samples and a smaller number of updates each based on a large

number of samples. In terms of the underlying EM algorithm, the number of samples (K)

taken before each parameter update (M Step), corresponds to how much effort is spent on

estimating the expected value of the log likelihood of the complete data (E Step). Modifying

the number of samples K of the ownership vector drawn during each iteration affected

the performance of the algorithm; (see Section 2.1). As the value of K was increased,

the convergence time increased and the error of the final solution decreased (Table 3.1,

Figure 3.13). For the easier problems, however, frequent parameter updates resulted in

the algorithm terminating quickly with zero Hamming error. For example, in the 4 agent

46

3.4 SIMULATION RESULTS

0 5 10 15 20 25 30
−3.4

−3.3

−3.2

−3.1

−3

−2.9

−2.8

−2.7

−2.6

−2.5
x 10

4

Sample Number

LL
H

 o
f S

am
pl

e

(a)

0 5 10 15 20 25
−2.16

−2.158

−2.156

−2.154

−2.152

−2.15

−2.148

−2.146

−2.144
x 10

4

Sample Number

LL
H

 o
f S

am
pl

e

(b)

0 5 10 15 20 25 30
−2.02

−2.01

−2

−1.99

−1.98

−1.97

−1.96
x 10

4

Sample Number

LL
H

 o
f S

am
pl

e

(c)

0 5 10 15 20 25 30
−1.88

−1.87

−1.86

−1.85

−1.84

−1.83

−1.82

−1.81

−1.8

−1.79
x 10

4

Sample Number

LL
H

 o
f S

am
pl

e

(d)

0 5 10 15 20 25 30
−1.72

−1.71

−1.7

−1.69

−1.68

−1.67

−1.66

−1.65
x 10

4

Sample Number

LL
H

 o
f S

am
pl

e

(e)

0 5 10 15 20 25 30
−1.61

−1.605

−1.6

−1.595

−1.59

−1.585

−1.58

−1.575
x 10

4

Sample Number

LL
H

 o
f S

am
pl

e

(f)

Figure 3.12. The log likelihood of samples of the ownership vector for each itera-
tion of the algorithm: a) initially, b) after 1 iteration, c) after 2 iterations, d) after
3 iterations, e) after 4 iterations, f) after 5 iterations. The results were produced
using 4 simulated agents on a 12 node, 48 edge random graph with 4000 observa-
tions (K = 20). The horizontal axis indicates the sample number for each iteration.
The dotted horizontal line indicates the heuristic-estimated burn-in position (see
Section 2.1). Samples taken after this point in each iteration are used in parameter
updates.

47

3.4 SIMULATION RESULTS

0 5 10 15 20 25
0

0.5

1

1.5

2

Iteration

S
qu

ar
ed

 E
rr

or
 o

f T
ra

ns
iti

on
 M

at
rix

K=3
K=20
K=40

(a)

0 5 10 15 20 25
0

5

10

15

20

25

30

Iteration

D
el

ay
 E

rr
or

K=3
K=20
K=40

(b)

0 5 10 15 20 25
0

0.5

1

1.5

2

Iteration

S
qu

ar
ed

 E
rr

or
 o

f T
ra

ns
iti

on
 M

at
rix

K=3
K=20
K=40

(c)

0 5 10 15 20 25
0

5

10

15

20

25

30

Iteration

D
el

ay
 E

rr
or

K=3
K=20
K=40

(d)

Figure 3.13. A comparison of algorithm performance per iteration as a function
of K. Results were obtained using the simulator on a 12 node, 48 edge random
graph with 4000 observations with: a) and b) 4 agents; c) and d) 10 agents.

case shown in Table 3.1, the algorithm terminated with less than one quarter of the samples

required whenK was assigned a value of 3 as opposed to 40 and the final squared error of the

transition matrix was less than 0.2 (resulting in a Hamming error of zero), regardless of the

K value used. Presumably, this result was because the Markov chain both quickly reached

the stationary distribution, and also because the distribution was easy to characterize with

only a few samples. It seemed that the more difficult problems, however, such as those

involving a large number of agents, required a greater effort during each iterative E Step in

order to produce accurate results (Figures 3.13(c), 3.13(d)).

Eventually, we will look at finding a method of automating the effort placed in each

iteration based on an analysis of the likelihood trends of the sampled ownership vectors.

48

3.4 SIMULATION RESULTS

4 agents 10 agents
K ErrA ErrD Total Samples ErrA ErrD Total Samples
3 0.187 0.592 70.5 0.555 3.470 221.4
20 0.141 0.593 179.1 0.399 2.747 424.8
40 0.121 0.454 314.3 0.381 3.011 630.4

Table 3.1. Comparison of performance and computational effort until convergence
as a function of K averaged over 10 graphs of 12 nodes, 24 edges.

However, for the moment, we currently set the number of samples K used in each iteration

to an experimentally determined intermediate value. For the remainder of this thesis, all

runs of the topology inference algorithm are conducted with K = 20.

4.2.2. Comparison to Existing Method. In a number of experiments, we compared

our algorithm for topology inference to an implementation of the threshold-based approach

presented by Ellis et al. in [37]. Figure 3.14 shows a histogram comparing the outcome

100 trials of the two approaches for two different problem types. In these experiments the

threshold-based method did not perform as well as the method described in this thesis.

For 100 trials on 20 node graphs with 10 agents, our algorithm achieved a mean Hamming

error per directed edge of more than four times lower than the threshold-based method.

A similar performance difference was seen for 100 trials on 12 node, 10 agent simulations.

Furthermore, for each individual trial conducted in this experiment, our algorithm achieved

an equal or lower error value than the threshold-based approach. Although shown to be

less accurate in our simulations, the heuristic threshold-based approach of Ellis et al. is

very fast and does not need to make an assumption regarding the number of agents in the

system.

4.2.3. Significance of Graph Size and the Number of Agents. A critical parameter is

the number of agents moving in the system relative to the number of vertices. Clearly, under

noise free conditions, if there is only one agent in the network the problem is straightforward

since its event sequence can simply be “traced out”. However, in the case of multiple agents,

the events generated by a given agent’s movements in the network risk being incorrectly

associated with those of any other agents’. It is the relative density of the correct pairings

relative to the incorrect ones that makes the problem more or less easy to solve.

49

3.4 SIMULATION RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

35

N
um

 G
ra

ph
s

Hamming Error / Number Directed Edges

MCEM Method
Threshold Method

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

35

N
um

 G
ra

ph
s

Hamming Error / Number Directed Edges

MCEM Method
Threshold Method

(b)

Figure 3.14. Histograms of Hamming error per edge using both the threshold
method described by Ellis et al. [37] and our MCEM method. The techniques were
tested using 10 simulated agents with 8000 observations on 100 randomly produced
graphs of size: a) 12 nodes, 48 edges; and b) 20 nodes, 80 edges.

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ratio of Observations to Directed Edges

H
am

m
in

g
E

rr
or

/ N
um

be
r

D
ire

ct
ed

 E
dg

es

Average over 10 graphs: 12 nodes, 48 edges
Average over 10 graphs: 20 nodes, 80 edges

Figure 3.15. Hamming error per edge as a function of the ratio of observations to
true (directed) edges using 4 simulated agents.

In our experiments, we found that increasing either the number of agents present in

the environment or the size of the graph made the problem more difficult to solve, albeit for

rather different reasons. While increasing the number of agents allowed a greater number

of probable trajectories, and was analogous to decreasing the signal to noise ratio in the

50

3.4 SIMULATION RESULTS

system, increasing the graph size while holding the number of observations steady reduced

the expected number of observations per edge in the graph. Experiments support the idea

that the accuracy of our approach increases for a particular number of agents when the

ratio of observations to edges is increased (Figure 3.15). In the extreme case, if there are

some edges that have no observations recorded along them at all, our approach will not

have enough information to infer the correct graph. At the minimum, an observed agent

must traverse each edge at least once.

4.3. Effects of Observational Noise. While the algorithm is robust to moderate

levels of ‘white’ observational noise, its sensitivity to systematic noise depends on the tuning

of the delay model. (See Section 4.1 for a description of the simulated noise.) The delay

model is controlled by the SSL parameter which determines the probability threshold for

including delay data in the update of the network connectivity parameters; (see Section 2.3).

For purposes of brevity, the value assigned to the SSL parameter is reported in natural

logarithm form in the results we present here.2 Figure 3.16 shows the result of varying the

value assigned to the SSL parameter for different types of noise. Figure 3.17 shows the

ability of the delay model to successfully identify and discard low probability transitions

and explain them as transitions to and from the source/sink node.

When assigned a high SSL value, the use of a mixture model for modeling delays was

successful at minimizing the effects of systematic noise. When 10 per cent of the transitions

were perturbed by large delay errors, the Hamming error of the inferred transition matrix

was near zero (Figure 3.16(a)). The reduction in error for inferred mean delay times was

especially dramatic in comparison to results obtained with a low SSL value (Figure 3.16(b)).

When the SSL parameter was assigned a value of zero, the algorithm had no method of

discarding spurious delay data and had to update its network parameters given all the

observations. Hence, it was heavily effected by biased delay times. The vast improvement

in estimates of mean delay times for simulations with a reasonably selected SSL parameter

values demonstrates the ability of the delay model to successfully identify and discard the

‘non-through-traffic’ data; i.e. data which was not apparently generated by agent motion

between nodes of the graph.

2For example, instead of SSL=0, we report ln(SSL)=-inf.)

51

3.4 SIMULATION RESULTS

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Noise Level

H
am

m
in

g
E

rr
or

 /
T

ru
e

N
um

be
r

of
 D

ire
ct

ed
 E

dg
es

ln(SSL) = −inf
ln(SSL) = −5
ln(SSL) = −25

(a)

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

14

16

18

20

Noise Level

D
el

ay
 E

rr
or

ln(SSL) = −inf
ln(SSL)=−5
ln(SSL)=−25

(b)

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Noise Level

H
am

m
in

g
E

rr
or

 /
T

ru
e

N
um

be
r

of
 D

ire
ct

ed
 E

dg
es

ln(SSL) = −inf
ln(SSL) = −5
ln(SSL) = −25

(c)

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

14

16

18

20

Noise Level

D
el

ay
 E

rr
or

ln(SSL) = −inf
ln(SSL)=−5
ln(SSL)=−25

(d)

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Noise Level

H
am

m
in

g
E

rr
or

 /
T

ru
e

N
um

be
r

of
 D

ire
ct

ed
 E

dg
es

ln(SSL) = −inf
ln(SSL) = −5
ln(SSL) = −25

(e)

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

14

16

18

20

Noise Level

D
el

ay
 E

rr
or

ln(SSL) = −inf
ln(SSL)=−5
ln(SSL)=−25

(f)

Figure 3.16. Hamming and delay error as a function of observational noise. The
results are averaged over 10 graphs using 4 simulated agents on 12 node, 48 edge
graphs with 4000 observations. The horizontal axis indicates proportions of: a,b)
systematic noise; c,d) white noise; e,f) both systematic and white noise. 52

3.4 SIMULATION RESULTS

It seemed that moderate amounts of ‘white’, un-biased observational noise can be

handled by the algorithm regardless of the tuning of the delay distribution mixture. (Figures

3.16(d), 3.16(c)). It was the inferred transition belief and not the mean delay times that were

most effected by large amounts of this type of noise. This is because the effect of randomly

inserting and deleting observations is to skew the distribution of likely sampled trajectories.

Hence, the inference technique develops an incorrect belief of the underlying network and its

inter-sensor transition probabilities. Since determining the correlation between the various

sensor observations is key to our approach, it is unsurprising that after about 10 per cent of

both missing and spurious observations the performance of the algorithm drops significantly.

When moderate levels of both types of noise were present, the delay model was still

able to reduce the effects of the biased delay data (Figures 3.16(f), 3.16(e)). However, this

ability seems to decrease as the noise level is increased. This effect can be seen in Figure

3.16(e) where at extreme levels of noise, i.e. 25 per cent of both white and systematic

noise, the best performance was actually obtained with a SSL value of zero. As the white

noise was increased along with the systematic noise it became harder for the algorithm to

distinguish between the two types of noise. The distribution of delay times flattened out

and hence a larger proportion of the data was better fit to the uniform distribution than

to the inter-vertex distribution of the delay mixture model.3 Under these conditions, the

algorithm had difficulty identifying peaks or correlations in the delay data and incorrectly

assumed additional transitions to and from sources and sinks; (compare Figures 3.17(c) and

3.17(a)). Hence, the method had less data with which to determine the relative strengths

of the inter-sensor transitions.

The robust behavior of the algorithm under noisy conditions demonstrates both the

general stability of the sampling-based approach and the success of the delay model. With

an appropriately selected value assigned to the SSL parameter, the technique can infer

highly accurate connectivity information even with moderate levels of both systematic and

white noise.

4.4. Automatic Parameter Selection (Level Two). In this section, we attempt

to validate our general approach for selecting nearly optimal input parameters for the first

level topology inference algorithm by assessing the quality of the solution it produces.

3A Guassian distribution was employed for these experiments.

53

3.4 SIMULATION RESULTS

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

D
at

a
E

xp
la

in
ed

 b
y

S
ou

rc
e/

S
in

k
N

od
e

Noise Level

True SS Ratio
ln(SSL)=−5
ln(SSL)=−25

(a)

0 0.05 0.1 0.15 0.2 0.25
−5

0

5

10
x 10

−3

D
at

a
E

xp
la

in
ed

 b
y

S
ou

rc
e/

S
in

k
N

od
e

Noise Level

True SS Ratio
ln(SSL)=−5
ln(SSL)=−25

(b)

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

D
at

a
E

xp
la

in
ed

 b
y

S
ou

rc
e/

S
in

k
N

od
e

Noise Level

True SS Ratio
ln(SSL)=−5
ln(SSL)=−25

(c)

Figure 3.17. A plot of the proportion of delay data rejected as a function of
observational noise. The results were averaged over 10 graphs using 4 simulated
agents on 12 node, 48 edge graphs with 4000 observations. The horizontal axis
indicates proportions of: a) systematic noise; b) white noise; c) both systematic
and white noise.

54

3.4 SIMULATION RESULTS

β γ τ κ λ
2 0.9 0.2 2 1

Table 3.2. Table of values used to shape the simplicity quotient Qsimp. (See
Section 3 for the definitions of these parameters.)

We select parameters defining the Qsimp metric based both on domain knowledge and

experimental methods (Table 3.2). In order to determine these parameter values and to

assess the effectiveness of this approach, we conducted a number of simulations in which we

varied the input parameters and looked for a correlation between the performance of the

algorithm and the simplicity metric.

4.4.1. The Effect of Input Parameters. Input parameters that resulted in good al-

gorithm performance also resulted in solutions that generated high Qsimp quotient values.

Figure 3.18 shows the mean error and corresponding Qsimp value obtained as a result of

running the fundamental topology inference algorithm with different inputs. In can be seen

in this experiment that the lowest error was obtained when the assumed number of agents

in the system was set to the value of four (Figure 3.18(a) and Figure 3.18(c)). Likewise,

a value of four for the assumed number of agents in the system resulted in the highest

calculated value for the Qsimp quotient (Figure 3.18(e)). A similar relationship can be seen

between the value selected for the SSL parameter, (Figure 3.18(b) and Figure 3.18(d)),

and the corresponding Qsimp quotient (Figure 3.18(f)). In general, we observed that under

noise free operation, the most accurate solutions also generated the highest Qsimp values.

This result gives support for our adoption of Occam’s Razor as a mechanism for selecting

input parameters.

The accuracy of the solution we obtain depends heavily on the assumed number of

agents in the environment. The lowest error was consistently observed when the assumed

number of agents was set to the actual value, and generally, the closer to the correct value

this parameter was set, the better the results. Over-estimating the assumed number of

agents greatly impacted the accuracy of the estimated mean delay, but had less effect on

the accuracy of the inferred transition matrix. The opposite effect occurred when the value

for this parameter was underestimated.

55

3.4 SIMULATION RESULTS

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Assumed Number of Agents

S
qu

ar
ed

 E
rr

or
 o

f T
ra

ns
iti

on
 M

at
rix

correct

(a)

−25 −20 −15 −10 −5 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ln(SSL) Parameter Setting

S
qu

ar
ed

 E
rr

or
 o

f T
ra

ns
iti

on
 M

at
rix

(b)

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

Assumed Number of Agents

D
el

ay
 E

rr
or

correct

(c)

−25 −20 −15 −10 −5 0
0

0.5

1

1.5

2

2.5

3

ln(SSL) Parameter Setting

D
el

ay
 E

rr
or

(d)

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Assumed Number of Agents

S
im

pl
ic

ity
 Q

uo
tie

nt

correct

(e)

−25 −20 −15 −10 −5 0
0.4

0.45

0.5

0.55

0.6

0.65

ln(SSL) Parameter Setting

S
im

pl
ic

ity
 Q

uo
tie

nt

(f)

Figure 3.18. The effect of varying assumed numbers of agents and the value of the
SSL parameter on performance and the simplicity quotient. Results are averaged
over 20 graphs using 4 simulated agents on 12 node, 48 edge graphs with 4000
observations; error bars show one standard deviation.

56

3.4 SIMULATION RESULTS

A correctly tuned SSL parameter was also important to the accuracy of the final

solution. As the value for this parameter was increased, there appeared to be a “phase

transition” in the accuracy of the results. Past a certain threshold, the error suddenly

increased dramatically. Interestingly, the best results for both the inferred mean delay

times and transition likelihoods seems to be obtained just before this sudden degradation

in performance; e.g. see Figure 3.18(b) and Figure 3.18(d).

4.4.2. Direct Correlation between Performance and the Simplicity Quotient. When

the error in the inferred transition matrix was plotted against the value obtained for the

simplicity quotient Qsimp for a number of simulations, there was evidence of a definite

correspondence (Figure 3.19). The effect appeared robust to moderate levels of observa-

tional noise and different sizes of graphs. While, the shaping of the Qsimp metric is ongoing

work, the current parameter values are adequate to demonstrate the correlation between

the correctness and simplicity of the inferred transition matrix. In our experimental work,

described in the next section, we took advantage of this correlation to select appropriate

input parameters since the ‘correct’ values were unknown.

57

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simplicity Metric

S
qu

ar
ed

 E
rr

or
 o

f T
ra

ns
iti

on
 M

at
rix

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simplicity Metric

S
qu

ar
ed

 E
rr

or
 o

f T
ra

ns
iti

on
 M

at
rix

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Simplicty Quotient

S
qu

ar
ed

 E
rr

or
 in

 T
ra

ns
iti

on
 M

at
rix

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Simplicty Quotient

S
qu

ar
ed

 E
rr

or
 in

 T
ra

ns
iti

on
 M

at
rix

(d)

Figure 3.19. The mean error in the inferred transition matrix elements plotted
against Qsimp for data obtained from the simulator with 4 true agents. Input
parameters to the algorithm were varied: assumed number of agents from 2 to 7;
and ln(SSL) from -2 to -7. The results are obtained using the simulator on: a) 4
random graphs of 6 nodes, 14 edges with 2000 noise-free observations (144 trials);
b) 4 random graphs of 6 nodes, 14 edges with 2000 observations containing 5 per
cent white and systematic noise (144 trials); c) 4 random graphs of 12 nodes, 48
edges with 4000 noise-free observations (144 trials); d) 4 random graphs of 12 nodes,
48 edges with 4000 observations containing 5 per cent white and systematic noise
(144 trials). Observe that the solutions obtaining high simplicity quotient values
are consistently among those with the lowest transition matrix error.

5. Experiments Conducted on a Heterogeneous Sensor Network

To assess the performance of our technique under real-world conditions, we conducted

experiments using a sensor network deployed in an office building. In this section we first

58

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

(a) (b)

Figure 3.20. Laptop used as the central server and an example of a vision-based
sensor node.

describe some system and implementation details and then present results from two exper-

iments. As part of this project we discuss custom data acquisition and analysis software for

a Linux network and as firmware for embedded systems.

5.1. System Description. The sensor network was made up of two types of de-

vices: vision-based sensors running on PC hardware; and photocell-based sensors running

on low-powered commercial devices. Both types of sensors were programmed to act as sim-

ple motion detectors sending event messages to a central server, which logged the origin

and time of the activity (Figure 3.20).

The vision based sensor nodes were constructed of inexpensive PC hardware networked

together over Ethernet using custom software. A single node consisted of a 352x292 pixel

resolution Labtech USB webcam connected to a Flexstar PEGASUS single board computer.

The operating system used was Redhat Linux based on kernel 2.4 (Figure 3.20). The sensor

nodes contained an Intel Celeron 500Hhz CPU and 128 MB of RAM. They were disk-less

and had to netboot from a central server which they were connected to either via a wireless

bridge or a standard Ethernet cable.

A standard client/server architecture was implemented over TCP/IP using linux sockets

in the C language. Each sensor runs an identical copy of the client program while a single

copy of the server application runs on a central computer.

The client software functions as a motion detector based on the Labtech webcam.

During an initial period, a background image is captured from the camera and the method

for triggering an event detection is calibrated. An intensity threshold is calibrated for

59

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

each colour channel by calculating the standard deviation from the background based on a

number of captured frames:

θc = C ∗ std{f0 − Γ, . . . , fn − Γ}

where f is a captured frame, Γ is the background frame and C is a constant determining the

sensitivity of the system. The sensor then enters an armed state in which captured frames

are compared to the background image, and any difference exceeding the threshold triggers

a detection event (Figure 3.21). A frame rate of approximately 10Hz is obtained. Once

triggered, the sensor re-arms itself after a couple of seconds of inactivity. The background

is slowly updated to account for gradual changes in the scene; e.g. changes in lighting or a

re-positioned object such as a door:

Γ′ = α ∗ f + (1− α) ∗ Γ

where α is a constant determining how quickly the background is updated.

Events are transmitted over TCP/IP to a central server where they are time-stamped

and logged for offline analysis. The server is multi-threaded and allows control of the system

through a command line interface. In addition to detection events, the application allows

either a full resolution capture or a low-resolution streaming of images from any sensor to

the server.

Offline experimentation suggested that while a correctly calibrated vision-based sen-

sors rarely missed events, it occasionally generated false positives. Changes in brightness

sometimes triggered subsequent events following a real event.

Additionally, lighting and contrast conditions during the calibration of the pixel inten-

sity thresholds were important factors. A very uniform background scene could result in a

threshold value that was too high to detect subtle activities. However, the sensors generally

calibrated effectively, and hence performed well when they were given a background image

containing varied colors.

5.1.1. Low-powered Photo-cell Based Sensors.

60

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

(a) (b)

Figure 3.21. An example of images captured from a vision sensor: a) the back-
ground image; b) a frame triggering an event detection.

(a) (b)

Figure 3.22. a) Complete setup and, b) close up of a deployed photocell-based
sensor constructed out of a flashlight and a Crossbow wireless sensor. (Plastic
containers were used as protective covering during experiments.)

The second type of motion sensor consisted of of a flashlight and a photocell equipped

low-powered device (Figure 3.22). The flashlight beam was focused on the photocell. Any

decrease in the intensity of the light was detected by custom firmware which sent an event

message to a central server (Figure 3.24).

The low-power devices used were MICA2 Crossbow wireless sensors with MTS310CA

sensor boards (Figure 3.23). The CPU on this model was an 8 bit Atmel ATmega128L

with 4K of RAM and 128K of flash memory. The devices were equipped for low-data rate

(19.2K baud) RF communication on the 916 MHz band. A single MICA2 mote connected

to a MIB510 Serial Interface Board was used as a base-station to communicate events back

61

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

(a) (b)

(c) (d)

Figure 3.23. Crossbow hardware used in the experiments: a) MICA2 Proces-
sor/Radio module (image from http://www.xbow.com); b) MICA2 Multi-Senor
Module (image from http://www.xbow.com); a) MICA2 motes with plastic con-
tainers used as a protective casing; b) base-station used to communicate to the
central server over a serial port.

to the central server (Figure 3.23(d)). The photocell was one of several sensors provided

which could be sampled by an 8 channel 10 bit Analog-to-Digital converter.

The MICA2 Crossbow motes come with a software development package that includes a

RTOS called TinyOS [63, 41] written in necC [42]. TinyOS and the nesC language provide

a component-based event driven framework for developing networked embedded wireless

applications. They were both originated at the University of California at Berkeley [50],

and the source code and software are publicly available online.4

TinyOS is a small, energy efficient, soft real-time operating system. The kernel im-

plements a two-level priority scheme. A round robin scheduler is provided for low priority

tasks which are interrupted by higher priority asynchronous events whenever they occur.

Idle CPU cycles are automatically spent in a sleep mode leading to efficient power usage.

TinyOS includes a multi-hop communication protocol and other components specifically

designed for sensor network projects.

4http://www.tinyos.net/

62

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

Figure 3.24. An example of motion triggering a detection event by the photocell-
based sensor.

The language necC is a modified version of C which formalizes an event driven and

component-based approach to firmware development. TinyOS, although originally written

in C, was constructed in this component-based fashion and was later re-written in necC.

Programs written in necC are constructed of components which are wired together through

interfaces. The components contain the actual functional code, while the interfaces define

a two way flow of control and data between the components. Interfaces specify commands

and events which, in C, are similar to standard function calls and call-back routines assigned

through function pointers. For one component to be wired to another, they must share a

common interface. Development using necC can be relatively fast since it is easy to wire

together a new application using existing components.

MICA2 Crossbow sensors running TinyOS are commonly employed in sensor network

research. They have been used in work ranging from monitoring applications [67] to robot

navigation [6] and information propagation investigations [64].

The firmware used on the MICA2 devices was developed for this project and implements

a motion detector using the photocell. During sensing operation, the photocell is sampled

at roughly 800 Hz. Any significant reduction in light intensity compared to a previously

calibrated background level triggers an event. Events are sent to the central server via the

TinyOS multi-hop communication protocol where they are time-stamped and logged for

offline analysis. The multi-hop routing for the nodes is established before the experiment

begins.

Experimentation suggests that the photocell-based sensors are extremely reliable at

detecting events, but have several weaknesses. It is possible for an event to occur during

the moment that the device is re-calibrating the photocell. This will disrupt the calibration

63

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

F

A

C

B

E

D

Figure 3.25. The layout of the six camera sensor network used for experiment.
Labeled triangles represent sensor positions, and the circle represents the location
of the central server.

process and could result in an inability to sense events until the next calibration, a period

of roughly one minute.

A more serious limitation is the poor communication range. At distances beyond about

8 or 9 metres transmission reliability decreases significantly and often results in lost packets,

and therefore, missed event detections. It is likely that the level of interference is much

higher than normal in the research building where the experiments were conducted due to

the large amount of wiring, wireless subnets, and electronic equipment.

5.2. Experiment with a Six Node Vision-Based Sensor Network. As the

first test of our technique under real-world conditions, we setup an experiment using a

medium sized network of vision-based sensors.

5.2.1. Data Collection. The experiment was conducted in the hallways of one wing

of an office building (Figure 3.25). The data were collected during a typical weekday for a

period of five hours from 10:00am to 2:30 pm. In addition to the normal traffic one or two

subjects were encouraged to stroll about the region from time to time during the collection

period in order to increase the density of observations. A total of approximately 1800 events

were collected.

5.2.2. Ground Truth. Ground truth values were calculated in order to assess the

results inferred by the approach. A topological map of the environment (Figure 3.27(a))

was determined based on an analysis of the sensor network layout shown in Figure 3.25.

(Note that we have not attempted to analytically determine reasonable connections to

64

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

−7
−6

−5
−4

−3

2

3

4

5

6

0.4

0.5

0.6

0.7

0.8

0.9

1

SSL ParameterAssumed Number of People

S
im

pl
ic

ity
 M

et
ric

Figure 3.26. A plot of the Qsimp metric as a function of input parameters.

sources or sinks in the environment.) Additionally, inter-vertex transition times for the

connected sensors were recorded with a stopwatch for a typical subject walking at a normal

speed (Table 3.4).

5.2.3. Selection of Input Parameters. In order to determine appropriate input pa-

rameters for our inference algorithm we conducted an exhaustive search over a range of

possible values (layer two of the two-layer approach described in Section 3). We ran the

first level topology inference algorithm on the experimentally collected data for inputs vary-

ing from N = 2, .., 6 and ln(SSL) = −7, ..,−3 (Figure 3.26). We then selected the output

values that maximized our Qsimp metric; i.e. producing the simplest model. (We used the

same shaping parameters for the Qsimp metric that were verified through simulations; see

Section 4.4.) The parameters that provided this optimum were: N = 4 and ln(SSL) = −5.

5.2.4. Assessment of Results. The network parameters inferred by our topology in-

ference algorithm closely corresponded to the ground truth values. Table 3.3 shows the

transition matrix output by the algorithm, and Figure 3.27 compares the analytically de-

termined and inferred topological maps. Disregarding reflexive links, the difference between

the inferred and determined matrices amounts to a Hamming error of 1. The inferred con-

nection from D to B was not given a transition probability large enough to be detected

65

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

A B C D E F SS
A 0.05 0.16 0.28 0.32 0.02 0.09 0.08
B 0.28 0.08 0.01 0.12 0.41 0.04 0.06
C 0.40 0.05 0.05 0.05 0.32 0.05 0.08
D 0.22 0.08 0.05 0.07 0.01 0.43 0.13
E 0.04 0.39 0.40 0.04 0.04 0.03 0.06
F 0.06 0.03 0.08 0.34 0.00 0.28 0.22
SS 0.08 0.07 0.09 0.25 0.03 0.49 0.00

Table 3.3. The transition matrix inferred from the experimental data. SS refers to
the source/sink node introduced by the algorithm. Bold values over the threshold
θ = 0.1 are interpreted as one way edges. The underlined values were not directly
predicted by the ground truth analysis.

Connection Timed Inferred
A,B 16 15 / 16
A,C 3 3 / 3
A,D 4 3 / 3
B,D 15 16 / 17
B,E 16 15 / 15
C,E 14 15 / 14
D,F 5 5 / 3

Table 3.4. A comparison of timed and inferred delay times (both ways) between
sensors. All values are rounded to the nearest second.

based on our thresholding technique. However, the opposite edge from B to D was correctly

inferred. Of course, it would be easy to build into the algorithm the assumption that all

edges must be two ways. A strong belief in an edge in one direction would dictate that the

opposite edge must also exist.

The mean transition times produced by the algorithm were also consistent to those

determined by stopwatch (Table 3.4). Some examples of inferred delay distributions are

shown in Figure 3.28.

Sensor F marks the only heavily used entrance and exit to the region monitored by

the network. The self-connection inferred to this node is due to a detected correlation in

the delay between exit times and subsequent re-entry times for agent motion. In fact, this

correlation is due to the tendency of subjects to re-enter the system after roughly the same

66

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

A

B

EC

DF
(a)

B

EC

DF

A

(b)

B

EC

DF

SS A

(c)

Figure 3.27. Topological maps of the environment that were: a) analytically de-
termined based on the layout; b) inferred by the algorithm; c) inferred by the
algorithm including the source/sink node.

time period (e.g. to use the washroom or photocopier). Therefore, the detection of this

connection was actually a correct inference on the part of the algorithm.

It is interesting to note that two-way connections were inferred to the source/sink node

from both sensors D and F (Figure 3.27(c)). It was possible for subjects to pass by either

67

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

Delay in Seconds

C
ou

nt

(a)

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

1800

Delay in Seconds

C
ou

nt

(b)

Figure 3.28. Two examples of delay distributions inferred for: a) sensor A to
sensor B; b) sensor D to sensor F.

of these sensors on their way into or out of the monitored region. (The exit to the far

right of the area, shown in Figure 3.25, was little used.) This demonstrates the function

of the source/sink node as a method for the algorithm to explain sudden appearances and

disappearance of agents in the system.

5.3. Results from a Nine Sensor Heterogeneous Network. In our second

experiment, we tested the performance of our technique on a larger sensor network that

contained both vision-based sensors and the smaller photocell-based sensors.

5.3.1. Data Collection. In a manner similar to the first experiment, a sensor network

was set up in the hallways of one wing of an office building (Figure 3.29). The data were

collected during a six and a half hour period from 10:00am to 4:30 pm on a weekday.

Like the first experiment, subjects were encouraged to stroll about the region from time to

time during the collection period in order to increase the density of observations. In total,

approximately 4700 time stamped events were collected.

The three low-powered sensors were placed close to the central server to accommodate

their shorter communication range. Despite this layout, the furthest low-powered sensor, I,

was only able to communicate to the central server via intermediate sensor, H, using the

multi-hop protocol.

5.3.2. Ground Truth. Like the previous experiment, ground truth values were cal-

culated in order to assess the results inferred by the approach. A topological map of the

environment was determined (Figure 3.31(a)) based on an analysis of the sensor network

68

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

A

G

C

B

D

H I

F

E

Figure 3.29. The layout of the nine senor (heterogeneous) network used for the
experiment. Labeled triangles represent vision-based sensor positions (A-F) and
labeled rectangles represent low-powered photo-based sensors (G-I). The circle rep-
resents the location of the central server.

layout. Inter-vertex transition times for the connected sensors were recorded with a stop-

watch for a typical subject walking at a normal speed (Table 3.6).

5.3.3. Selection of Input Parameters. To determine appropriate input parameters

for our inference algorithm we conducted an exhaustive search over the range of N = 2, .., 6

and ln(SSL) = −7, ..,−3 (Figure 3.30). The values N = 5 and ln(SSL) = −5 gave a

slightly higher Qsimp value than the surrounding parameter space.5 Therefore, we selected

the solution generated by these parameter values as our inferred network.

5.3.4. Assessment of Results. The network parameters inferred by our topology

inference algorithm closely corresponded to the ground truth values. Disregarding reflexive

links, the difference between the inferred and ‘ground truth’ results amounted to a Hamming

error of 2. Table 3.5 shows the transition matrix output by the algorithm and Figure 3.31

compares the analytically determined and inferred topological maps. The two significant

errors are: an extra edge found between sensors A and B; and a missing one-way edge from

sensor D to I.

The missing edge fromD to I is likely due to the tendency of people to go straight rather

than turn right when navigating the corridor on the bottom right of the region (heading

left) as shown in Figure 3.29. The inferred transition probability of 0.06 seems low (Table

5We used the same simulation verified shaping parameters for the Qsimp metric as the previous experiment.

69

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

−7

−6

−5

−4

−3

2

3

4

5

6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SSL ParameterAssumed Number of People

S
im

pl
ic

ity
 M

et
ric

Figure 3.30. A plot of the Qsimp metric as a function of input parameters.

A B C D E F G H I SS
A 0.19 0.11 0.29 0.00 0.00 0.02 0.13 0.03 0.05 0.19
B 0.07 0.63 0.11 0.02 0.01 0.01 0.04 0.04 0.01 0.07
C 0.20 0.12 0.08 0.03 0.01 0.00 0.17 0.26 0.03 0.10
D 0.05 0.04 0.07 0.10 0.02 0.27 0.02 0.31 0.06 0.05
E 0.02 0.02 0.02 0.02 0.08 0.39 0.01 0.04 0.35 0.05
F 0.01 0.03 0.03 0.43 0.37 0.05 0.01 0.00 0.03 0.03
G 0.31 0.03 0.34 0.03 0.01 0.00 0.12 0.04 0.01 0.11
H 0.04 0.05 0.35 0.15 0.02 0.00 0.02 0.04 0.25 0.07
I 0.04 0.02 0.05 0.11 0.32 0.02 0.02 0.33 0.02 0.07

SS 0.28 0.17 0.23 0.05 0.02 0.01 0.13 0.08 0.04 0.00

Table 3.5. The transition matrix inferred from the experimental data. SS refers to
the source/sink node introduced by the algorithm. Bold values over the threshold
θ = 0.1 are interpreted as directed edges. The underlined values were not directly
predicted by the ground truth analysis.

3.5), but might actually reflect reality; i.e. only about 6 per cent of trajectories turn right

at the intersection between sensors H and I. This missing inferred connection demonstrates

a limitation in the approach of exploiting motion in the environment. Our technique can

only learn traffic patterns common enough to be easily recognized and distinguished.

70

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

A

G

C

B D

E

F

H I

(a)

A

G

C

B D

E

F

H I

(b)

A

G

C

B D

E

F

H I

SS

(c)

Figure 3.31. Topological maps of the environment that were: a) analytically de-
termined based on the layout; b) inferred by the algorithm; c) inferred by the
algorithm including the source/sink node.

The extra edge found leading from sensor A to sensor B is likely due to a correlation

in the detection intervals between these two nodes. Since both sensors are in boundary

locations, they are likely to receive events caused by people that then leave the monitored

region for some time. Both of these areas see significant traffic, much of which does not

directly lead to another monitored area. Figure 3.32(d) shows the inferred delay distribution

71

3.5 EXPERIMENTS CONDUCTED ON A HETEROGENEOUS SENSOR NETWORK

Connection Timed Inferred
A,G 6 8 / 11
A,C 9 12 / 10
B,C 5 6 / 8
C,G 5 5 / 5
C,H 5 6 / 6
D,F 14 15 / 17
D,H 5 5 / 6
D,I 6 7 / 7
E,F 13 13 / 13
E,I 13 15 / 14
H,I 4 4 / 4

Table 3.6. A comparison of timed and inferred delay times (both ways) between
sensors. All values are rounded to the nearest second.

between these two nodes; the distribution is far from what would be expected from ‘through-

traffic’. It is possible that erroneous edges of this type could be eliminated based on the

shape of their associated delay distribution. This could be done probabilistically using a

prior, or as a post processing step.

It should be noted that in this work a truncated normal was employed to model the delay

distributions, however, results were also obtained using a gamma distribution. Interestingly,

better results were obtained using the truncated normal. It is possible that when using

this distribution family, the algorithm is better at symmetrically rejecting outliers on both

sides of the mean, and as a consequence finds parameters that form tighter more decisive

inter-vertex distributions. Presumably this has the effect of improving the accuracy of the

inference process.

The mean transition times produced by the algorithm were consistent to those deter-

mined manually (Table 3.6, Figure 3.32). In general, however, the inferred delay value were

on average longer than the measured values. This is probably due to the fact that it is much

easier to lengthen a delay time than shorten it; i.e. a person can, in practice, be arbitrarily

slow. For example, people stop and exchange a few short words with someone as they pass

on route to their destination more often than they break into a jog. Figure 3.32(b) shows

a distribution that might be explained by this effect.

The connections to the source/sink node occur only for boundary nodes (Figure 3.31(c)

) and are therefore consistent with an analytical assessment of the traffic patterns. Since

72

3.6 DISCUSSION

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

Delay in Seconds

C
ou

nt

(a)

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

Delay in Seconds

C
ou

nt

(b)

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

Delay in Seconds

C
ou

nt

(c)

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

Delay in Seconds

C
ou

nt

(d)

Figure 3.32. Examples of delay distributions inferred for: a) sensor D to sensor
H; b) sensor F to sensor D; c) sensor H to sensor I; d) sensor A to sensor B (an
erroneously inferred edge).

traffic commonly enters and exits the monitored region via one of the boundary nodes, the

inference algorithm should commonly employ the source/sink node in order bring the agent

back into the system.

6. Discussion

In this chapter we presented a method for inferring the topology of a sensor network

given non-discriminating observations of activity in the monitored region. Our technique

recovers the network connectivity information opportunistically through the exploitation

of existing motion. This task is accomplished based on no prior knowledge of the relative

locations of the sensors and only a limited knowledge of the type of activity present in the

environment.

73

3.6 DISCUSSION

We described a formulation of the problem such that it could be iteratively solved

with a stochastic Expectation Maximization algorithm. The method uses the observational

data and Markov Chain Monte Carlo sampling to construct likely trajectories describing

the motion of agents present in the environment. By inferring underlying patterns in their

motions, the technique recovers the connectivity relationships between the sensors and

constructs a Markov model describing their behavior. From this information, a topological

description of the network can be constructed.

Results from numerical simulations verified the feasibility our approach. A simulator

modeling the problem was constructed, and the technique was tested on a number of random

networks of different sizes and under a number of different conditions. The technique

demonstrated a high degree of accuracy and was both robust to noise and to complex

traffic patterns. It appeared that the results obtained by our method compared favorably to

related work by Ellis et al. [68, 37], although their approach was much less computationally

intensive.

Our approach was then further examined with experiments carried out using a heteroge-

neous sensor network. The network was constructed using two types of sensors: vision-based

sensors using PC hardware and webcams, and photocell-based sensors using low-powered

MICA2 devices. Some implementation details were non-trivial due to the limitations of the

low-powered platforms.

Data collected under these real world conditions varied considerably from data gen-

erated by the simulator. The imperfect, hardware implemented, sensors were occasionally

subject to both missing and spurious observations. These errors often occurred in an un-

predictable manner. Additionally, the patterns of motion through the environment were

complex and did not consist of only ‘through traffic’.

The performance of our technique on the experimental data was satisfying. The inferred

results closely matched analytically determined ‘ground truth’ values and were consistent

with empirical assessments. However, the results were poorer than what would be expected

on data produced from similar graphs with the simulator. Since the inference algorithm

was primarily developed and tested under simulated conditions, the drop in performance

under real world conditions presumably indicates both shortcomings in our algorithm when

74

3.7 FUTURE WORK

processing real data, and also some significant differences between the data produced by

our simulator and the real world.

Although efforts were taken to model real world effects such as spurious and missing

observations, and biased delay times, realistic traffic patterns are considerably more complex

than the ones we were capable of generating in our simulator or capturing in the model used

by our algorithm. Some of the more critical attributes present in the real world that are

missing in our simulated environment and could be better handled by our model are the

following:

(i) real traffic tends to be ‘bursty’ with either many or very few people in the region

at any one time;

(ii) there is no upper bound on the number of people in the region;

(iii) real people walk at different speeds, and the same person will walk at different

speeds at different times;

(iv) there are significant differences in traffic flow among different areas in a region;

Closing some of the gaps between the real world and the simulated environment could

be a step toward eventually improving the performance of the algorithm under real-world

conditions. Although realistic traffic patterns are complex, they can also give additional

clues about the environment. For example, prior belief could be placed on the assumption

that heavily used areas are adjacent to other heavily used areas. Another possibility could

be to exploit the velocity of a particular agent as a probabilistic method of identifying them

throughout the system.

Results from both simulations and experiments have shown the ability of the algorithm

presented in this chapter to generate accurate results under conditions of sensor noise and

complex traffic patterns. The technique compares favorably to related approaches and could

have promising real world applications in the area of sensor network calibration and self-

configuration. We will explore potential future directions for the work in the next section.

7. Future Work

The work presented in this chapter suggests some open problems. We assume that

agents in the system tend to transit the sensors separately. While we can tolerate some

75

3.7 FUTURE WORK

violation of this assumption, an explicit model might be required to deal with an environ-

ment in which this happens with high frequency. We also assume that the behavior of the

agents in the environment are statistically independent. Dealing explicitly with correlated

behavior is an interesting problem and is related to the work of Haigh [47].

A somewhat related issue that potentially effects the accuracy of our technique is the

fact that traffic patterns change over larger scales of time. A potential improvement to

the technique could be made by attempting to model these changes to some degree. The

technique could then take advantage of the information rich times in which only a few agents

are in the region. Our current approach models fluctuations in the number of agents through

the use of the source/sink node. An alternative technique could segment the observations

into time-windows and then choose traffic assumptions appropriate for each window based

on the nature of the data and the current belief of the network parameters. For example, the

number of agents present during a time-window could be estimated based on the density of

observations in that window given current network parameters. The algorithm could then

further refine its estimate by generating trajectory samples based on these temporally local

estimates of the number of agents.

Another interesting area of future investigation would be the incorporation of more

detailed sensor information into our algorithm. This should result in faster convergence

and higher accuracy with fewer observations. In this chapter, we restricted the sensor

observations to be non-discriminating in order to demonstrate our technique under worst-

case possibilities. However, even poor quality, noisy features extracted from the observations

should improve the accuracy of the system as long as they are incorporated in a probabilistic

manner.

The easiest way to include these additional event signatures into our probabilistic frame-

work would be to calibrate the sensors prior to deployment. The goal of the calibration

would be to have the same agent generate similar event signatures at each of the sensors

that employ the same sensing modality. However, this prior calibration step is somewhat

against the spirit of sensor network self-configuration.

A more interesting way to incorporate event signatures into our approach would be

to learn the correspondences between observation features and individual agents at each

sensor. This information would become part of the learned network parameters and would

76

3.7 FUTURE WORK

influence the trajectory samples obtained at each iteration. For example, the system might

learn to associate a particular agent with the colour red at sensor one, and low frequency

audio at sensor two.

In the next chapter we consider a variant of the problem we have investigated in this

chapter in which even less observational data is available for inference purposes.

77

CHAPTER 4

Learning Network Topology from Simple Sensor

Data

In this chapter, we consider an approach for recovering a topological map of the environment

using detection events from a deployed sensor network for the case in which the observational

data is time-stamp free. The probabilistic inference process discussed in the last chapter

relies on the timing information in the observations to build up a delay model which aids

the convergence and final accuracy of the approach. The removal of the timing information

makes this problem different, and much harder than the one we considered in the previous

chapter.

In the time-stamp free version of the sensor network topology inference problem, we

assume not only that the agents moving though the environment are indistinguishable, but

that there are no temporal clues that can be used to aid the inference process. In other

words, the detection events are correctly ordered but are not time-stamped with a syn-

chronized time value that temporally relates the time an observation was collected with

those collected by other sensors. However, by employing a sliding window over the ob-

servations, we will show that the problem can be re-formulated as a version of the well

understood set-covering problem and accurate results can be obtained without timing in-

formation. Therefore, when the inference algorithm presented in this chapter is employed,

the time-stamp data can be discarded or simply not collected in the first place.

In order to exploit timing information in the observational sequence some model of agent

motion in the environment needs to be either constructed based on prior assumptions, or

4.2 ALGORITHM FORMULATION

learned from the data. The technique we present in this chapter, however, allows the correct

edges in the graph to be inferred while avoiding the prior domain knowledge or algorithmic

complications involved in constructing an adequately accurate motion model.

In the remainder of this chapter we first formally define this version of the problem, and

then give a theoretical analysis of the timestamp free version of the sensor network topology

inference problem. Then, we present two heuristics based on the set-covering formulation

of the problem and finally evaluate them with numerical simulations.

1. Problem Definition

We formulate the problem of learning the topology of the network as the inference of a

directed graph G = (V,E), where the vertices V = {vi} correspond to deployed sensors and

the edges E = {ei,j} correspond to connectivity between them; i.e. an edge ei,j denotes a

path from the position of sensor vi to the position of sensor vj . The sources of motion with

in the sensor network are modeled as some number of agents N moving asynchronously

through the graph. Each agent generates an observation every time it visits a vertex. This

corresponds to an agent passing near a particular sensor which then detects the presence of

motion in its region.

The input to the problem is the number |V | of sensors deployed and an ordered list of

observations O = {ot} where t is an index which, for convenience, we define as an integer

from 1 to |O|. Each of the observations ot is identifiably generated by one of the sensors;

i.e. each ot ∈ [1, |V |]. The goal is to find the correct underlying graph G explaining this

observational sequence.

2. Algorithm Formulation

2.1. Smallest Graph is Correct Answer. The key idea behind our approach is

to find the smallest1 graph that successfully explains, or is consistent with, the observed

data. Leaving aside for the moment the implementation details, let us consider this idea in

more depth by proposing the existence of an algorithm A that takes as an input the assumed

number of agents N in the environment and the observational sequence and returns as an

output the smallest graph consistent with the observations O.

1The graph with the smallest number of edges.

79

4.2 ALGORITHM FORMULATION

Figure 4.1. Example of removing edge AB from graph Gc, (shown partially on
top), to create graph G′

c, (shown partially below).

Our algorithm A considers each of the possible trajectories that could be taken by these

N agents given the observational sequence O and then selects the trajectory set that requires

the smallest number of inter-vertex traversals which are consistent with the observations.

The algorithm then returns the graph populated only with edges that correspond to the

inter-vertex traversals required by this chosen trajectory set; i.e. G = A(O,N).

The concept that the simplest solution explaining the data is probably the correct

solution was used successfully in the version of the topology inference problem considered

in the last chapter. This can be viewed as a specific instance of the general principle known

as Occam’s razor. We will show in the next section that under certain assumptions, we

can prove that an algorithm that finds the smallest consistent graph will return the correct

answer.

Theorem 2. A graph G that is consistent with the observations O and any bounded

value for the assumed number of agents N must have the correct solution Gc as a subgraph

given the following assumptions:

(i) There are an infinite number of observations, O.

(ii) The transit time between nodes may be longer than the time between the first and

last observation in the sequence O.

(iii) The motion of each of the agents is random.

(iv) the true number of agents Nc in the system is bounded.

(v) There are no self-referential connections in the true graph Gc; i.e. no agent may

trigger two observations by one passage through the region of a single sensor.

Proof:

80

4.2 ALGORITHM FORMULATION

We will show that it is possible to have sequences generated by the true graph Gc that

cannot be explained by a smaller graph G′

c. Let us consider a graph G′

c created by removing

a single edge from Gc, as illustrated in Figure 4.1. In this case, we remove the edge AB from

graph Gc. Let us now create a valid observational sub-sequence K = ABABABAB...AB

which was created in truth by a single agent traversing back and forth on the edge AB. Note

that this sequence generated by a single agent can be arbitrarily long given the assumption

of unbounded transit times. The only way agents in a graph G′

c could generate exactly

this observational sequence would be if some number of them were ‘stationed’ at node X,

and some number ‘stationed’ at node Z, and alternatively one agent from X traversed the

edge to A, and then one from Z traversed the edge to B. However, if the length, |K| of

the observational sub-sequence is larger than the maximum number of assumed agents N ,

then there will not be enough agents in G′

c to generate K. Therefore, the edge AB must

be present in any consistent solution. Applying this to all the edges in Gc, we see that any

consistent solution that can explain all the transitions implied by the observations must

have Gc as a subgraph �.

Note that this analysis requires that there be both an infinite number of observations

and random motion on the part of the agents in order to allow such very rare observational

sequences to exist. However, this concept holds probabilistically with bounded sequences

of observations. As the number of observations grows, it becomes increasingly unlikely that

a consistent solution can be found that is missing portions of the real graph. This concept

is defined in the following corollary:

Corollary 1. A graph G that is consistent with the observations O and any bounded

value for the assumed number of agents N will have as a subgraph the correct solution Gc

with a probability that approaches one as the number of observations |O| approaches infinity

given the following assumptions:

(i) The transit time between nodes may be longer than the time between the first and

last observation in the sequence O.

(ii) The motion of each of the agents is random.

(iii) the true number of agents Nc in the system is bounded.

81

4.2 ALGORITHM FORMULATION

(iv) There are no self-referential connections in the true graph Gc; i.e. no agent may

trigger two observations by one passage through the region of a single sensor.

From Theorem 2 and our definition of A we can construct some simple lemmas:

Lemma 1. Gc will be a subgraph of A(O,N) ∀ finite values of N

Proof:

By definition, G = A(O,N) is a consistent graph for any bounded value of N which,

by Theorem 2 can not be smaller than Gc �.

Lemma 2. A(O,Nc) = Gc

Proof:

By definition, A(O,Nc) returns the smallest consistent graph for Nc and O. Gc, must

be consistent with O and Nc by virtue of being the true graph. Since from Theorem 2,

there can not be a consistent graph smaller than Gc, the smallest consistent graph found

by A(O,Nc) is the correct graph Gc �.

Theorem 3. For G1 = A(O,N1) and G2 = A(O,N2), if N2 > N1 then G2 will be a

subgraph of G1.

Proof:

To show that for N2 > N1, the smallest consistent graph returned by G2 = A(O,N2)

is no larger than for G1 = A(O,N1), we will demonstrate that a path generated by a single

agent can be spliced between two agents using a ‘tag team’ method, and yet will still yield

the same set of edges. Consider a sequence of vertex traversals S generated by a single

agent on the graph G1. First, without loss of generality, select any vertex vsplice ∈ S. We

can now pair any two agents together to jointly generate this traversal sequence S in the

following way. Let one of the agents be initially stationed at vsplice. When the other agent

enters this vertex it will exchange its role with the first agent, as in a game of tag team

wrestling. The other agent will now leave the vertex vsplice, generating a sub-sequence of S

82

4.2 ALGORITHM FORMULATION

Figure 4.2. a) The correct graph Gc b) an incorrect graph

until it re-enters vsplice, where again they will switch roles. In this manner, all superfluous

agents used in the algorithm can be ‘hidden’ by splicing a valid path repeatedly �.

It directly follows from Lemma 2 and Theorem 3 that we can assume the existence of

more agents than the actual number that generated an observational stream and still pro-

duce paths that are consistent with the correct graph. This applies even for non-stationary

agents. For example, let us consider the vertex sequence S = ABCDADCDABCBA gen-

erated by an agent in Gc of Figure 4.2(a.). We choose vsplice = C. Now the vertex sequence

S assumed to come from a single agent looks like the following: ABcdadCDABcba where

capital letters are used for the path P1 of agent one, and small bold letters are used for the

path P2 of agent two. The individual sequences P1 = ABCDAB and P2 = cdadcba are

both valid sequences in the graph Gc.

On the other hand, some sequences in O can only be consistently explained by assuming

that the number of agents in the system is at least Nc. Let us consider again the graph

depicted in figure 4.2(a.) and let us assume an observation sequence generated on this

graph by the motion of two agents. Agent one follows a clockwise trajectory: ABCD . . .,

and agent two follows a counter clockwise trajectory ADCB. . . . By combining the two

paths, it is possible at some point to get the subsequence: K=ABDC. If we assumed the

existence of only one agent, then we would be forced to assume the existence of an extra

edge between B and D as shown in figure 4.2(b.).

The analysis in this section suggests that an algorithm A that returns the consistent

graph with the smallest number of edges given the observations O and assumed number

of agents N could be a powerful tool for finding the correct underlying graph even if the

number of agents generating the observations were unknown. For example, one could run

83

4.3 THE SLIDING WINDOW APPROACH

the algorithm for larger and larger values of N until the graph that is computed stops

decreasing in size. Of course, some of the assumptions made in this analysis, such as an

infinite number of observations, will not hold in practice.

In the next section, we draw on the theoretical analysis of this section to motivate

a pragmatic approach for topology inference. In particular, we will consider methods for

estimating the smallest consistent graph given an observation sequence.

3. The Sliding Window Approach

We now present an algorithm for estimating the smallest possible graph G given an

observation sequence O and the number of agents in the system N . Our approach is based

on the following lemma:

Lemma 3. In any given continuous sequence of |O| > N observations generated by N

agents in the graph G, at least (|O| − N) transitions between observed vertices correspond

to edges in the graph G.

For example, let |O| = 4 andN = 3 and the recorded observational sequence be ABCD.

Since there is one more observation than there are agents in this example, at least two of

the observations must have been generated by the same agent. Therefore, at least one of

the following transitions between nodes must have occurred: AB, AC, AD, BC, BD or

CD. In general, the number of potential transitions generated with a sequence of |O| > N

observations is:

Q =
(|O| − 1)|O|

2
(4.1)

Our approach is to consider in turn small contiguous subsequences of the entire obser-

vation sequence O. We refer to these successive sets as a ‘sliding window’. We use a sliding

window of size W = N + 1 so that each of the subsequences that we consider gives rise to

a list of candidate edges Li, one of which must be present in the graph G. From Equation

84

4.3 THE SLIDING WINDOW APPROACH

Figure 4.3. Example of generating candidate edges for each sliding window posi-
tion. The window is moved to the right from a) to d).

4.1, in can be seen that the number of candidate edges will be:

Q =
(W − 1)W

2

=
(N + 1− 1)N + 1

2

= (N2 +N)/2

Once the window has moved over the complete observation sequence O, there will be K =

|O| −W lists generated. Figure 4.3 shows an example of generating candidate edges using

85

4.3 THE SLIDING WINDOW APPROACH

the sliding window approach. Our approach is to find the smallest graph that can explain

at least one edge in each of these candidate lists: L1, L2, ...LK .

This problem of selecting the smallest number of edges which contain at least one

member of each candidate list is equivalent to the well known set-covering problem. In

the set covering problem, the input is a number of sets, each of which might have some

elements in common. The desired output is the minimum number of sets required such that

each element is represented; i.e. the union of the sets selected is the same as the union of

all the input sets. To formulate our problem as a set covering problem, one can consider

there to be one set for each edge that is in at least one candidate list. Each set contains

each of the candidate lists which have this edge as an element. The input to our problem

is now a number of sets, each corresponding to a potential edge, and the desired output is

the minimum number of sets which contain in their union each of the candidate lists. The

set covering problem is NP-complete [58], however, several heuristics can be employed to

provide a good solution. We will consider two heuristic approaches in the next sections.

3.1. A Greedy Approach. One method of obtaining a solution to the sliding

window problem posed above, is to adopt a greedy algorithm. This is a standard, locally

optimal heuristic often used with good results for set-covering problems. In our domain,

the greedy algorithm would work as follows:

(i) Begin by marking all candidate lists L1, L2, ...LK unexplained and initialize a list

of edges E to be empty.

(ii) Find the edge e that is present in the greatest number of currently unexplained

candidate lists.

(iii) Remove from consideration those candidate lists which contain edge e by marking

them explained, and add e to E.

(iv) Repeat steps 2 to 3 until all lists are marked explained. Return the graph corre-

sponding to our list of edges E as the final solution.

3.2. A Statistical Approach. A statistical approach could also be used to de-

termine the correct edges in Gc. The number of times a given edge has been seen in any

candidate list could be tallied up. Those edges that occur with a frequency greater than

some threshold T could then be selected.

86

4.4 PERFORMANCE EVALUATION

0 500 1000 1500 2000
0

2

4

6

8

10

12

Number of Observations / Number of Edges

A
ve

ra
ge

 H
am

m
in

g
D

is
ta

nc
e

Greedy Technique
Threshold Technique

(a)

0 500 1000 1500 2000
0

2

4

6

8

10

12

Number of Observations / Number of Edges

A
ve

ra
ge

 H
am

m
in

g
D

is
ta

nc
e

Greedy Technique
Threshold Technique

(b)

Figure 4.4. Mean Hamming distance obtained from the two techniques for various
numbers of observations averaged over 50 randomly produced graphs. (Error bars
show one standard deviation in the Hamming distance.) Results obtained from 4
agents and 10 node graphs with: a) 12 edges b) 20 edges

Let us consider a suitable value for the threshold T . If Gc corresponded to a fully

connected undirected graph, the average tally of each edge would be:

µ =
KQ

|E|

where Q is the number of candidate edges generated per window, K is the number of

candidate lists (windows), and |E| is the number of potential edges in the graph. Replacing

K with |O| −W , Q with (N2 +N)/2, and |E| with V (V − 1), we arrive at:

µ =
(|O| −W)(W − 1)W

V (V − 1)

Since we expect Gc to contain less edges than its fully connected counterpart, T = µ

can be expected to be a suitable threshold.

Both the threshold method and the greedy algorithm often seem to produce acceptable

solutions. In the next section, we evaluate their performance rigorously.

4. Performance Evaluation

4.1. Simulator. We have examined the sliding window approach with a number

of experiments conducted in simulation. We have constructed a simulation tool that takes

87

4.4 PERFORMANCE EVALUATION

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

Assumed Number of Agents

A
ve

ra
ge

 H
am

m
in

g
D

is
ta

nc
e

True Number
 of Agents

(a)

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

Number of Observations / Number of Edges

A
ve

ra
ge

 H
am

m
in

g
D

is
ta

nc
e

Accurate Assumption
Over−estimate

(b)

Figure 4.5. Results obtained by differing the assumed number of agents for graphs
of size 10 nodes and 12 edges. a.) Hamming distance as a function of the assumed
number of agents for the greedy algorithm. Results obtained with 10000 observa-
tions generated from 4 agents and averaged over 10 graphs. (Error bars show one
standard deviation). b.) Mean Hamming distance as a function of observations
for an accurate assumption of 4 agents and an over-estimate of 5 agents. Results
averaged over 50 graphs.

as input a graph and the number of agents in the environment and outputs a list of obser-

vations generated by randomly walking the agents through the environment. A number of

experiments were run using this simulator on randomly generated planar connected graphs.

The graphs were produced by selecting a connected sub-graph of the Delaunay triangulation

of a set of randomly distributed points. (Examples of graphs produced by this technique

were shown in the last chapter; Figure 3.7.) For each experiment, a performance metric

was computed using the Hamming distance between the true and inferred graph as was

described in Section 4.1 of Chapter 3.

4.2. Assessment of Results. The greedy approach was capable of producing ac-

curate results for moderately sized graphs. For example, when given an adequate number

of observations, graphs with 10 nodes and 4 agents were consistently solved by the greedy

approach with an average Hamming distance of less than one for sparse graphs and less than

three for dense graphs. Although not as accurate on average as the greedy approach, the

threshold-based approach was also capable of producing a solution near the true answer.

Figure 4.4 compares the accuracy of theses two approaches over 50 randomly produced

88

4.4 PERFORMANCE EVALUATION

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

True Number of Agents

A
ve

ra
ge

 H
am

m
in

g
D

is
ta

nc
e

(a)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

200

400

600

800

1000

1200

1400

1600

1800

O
bs

er
va

tio
ns

 /
E

dg
es

 N
ee

de
d

True Number of Agents

(b)

Figure 4.6. Performance of algorithm as a function of the true number of agents
for the greedy algorithm where the assumed number of agents is set to the correct
number. Results averaged over 10 graphs of size 10 nodes and 12 edges; (error bars
show one standard deviation). a.) Hamming distance obtained with 10000 obser-
vations. b.) Number of observations required to obtain a result with a Hamming
distance of 2 or less.

graphs of 10 nodes and two different edge densities. Note that the accuracy of both ap-

proaches tended to increase as the number of observations increased. It also appeared that

denser graphs required larger numbers of observations to obtain the same accuracy level

than that obtained in sparser graphs. Additionally, it was observed that the greedy ap-

proach obtained a lower Hamming distance on average for less dense graphs. However,

when the proportion of the true graph structure recovered was considered, this effect was

lessened. For example, for the experiment shown in figure 4.4, the Hamming distance di-

vided by the true number of edges in the graph was approximately double for denser graph,

while the Hamming distance alone was approximately triple.

Unsurprisingly, the accuracy of the threshold-based approach was very sensitive to the

value of the threshold selected. Experiments not shown here verified that the value for

T selected above was generally suitable for graphs of various densities and sizes, although

often better results could be obtained for any specific graph type through careful tuning.

This approach requires relatively little computational effort and might have value as a

bootstrapping technique for more complex approaches such as the one presented in the

previous chapter.

89

4.5 DISCUSSION

As predicted by Theorem 3, the error induced by over-estimating the number of agents

in the environment was less severe than that of under-estimating the number of agents.

Figure 4.5 shows the result of assuming various numbers of agents in one situation for

the greedy approach. As the over-estimation increases, the required number of observations

needed to solve the problem also increases. The problem of topology inference becomes more

difficult as more agents are added to the system. Figure 4.6 shows the correspondingly

poorer performance obtained with the greedy approach on the same set of graphs with

observations generated from larger numbers of agents. Even if the correct number of agents

is known, we conjecture that less information is available as the number of agents increases.

As the size of the sliding window increases, so does the number of candidate edges generated

by each sliding window. Therefore, the ratio of known correct to incorrect edges decreases,

and hence, more observations are needed to obtain the same level of error. A similar effect

was noticed and discussed in the last chapter, in Section 4.2.3.

5. Discussion

In this chapter, we have described a technique for learning the topology of a sensor

network, using only event ordering information. We presented a theoretical analysis of the

problem, and re-formulated it as a set-covering problem. Two methods were presented to

solve this problem, one based on a statistical measure, and one based on a sliding window

technique. The work has raised some open problems. Although it seems clear that increasing

only the number of agents in an instant of the problem tends to dilute the information gained

per each observation, it is not obvious whether it is possible to derive a formal relationship

for the information gained in the context of the sliding window approach. Additionally, it

would be of interest to find an analytical relationship between the number of observations

needed to solve a problem and the corresponding density of agents in the system; i.e. the

ratio of agents to edges in the true graph.

The method we have presented in this chapter could potentially be useful in a data

collection system in which ordering information is available, but accurately time stamped

information is not. For example, one could envision a network in which neighbouring nodes

exchange localized communications for ordering purposes when observations are recorded,

but do not undergo the effort of maintaining network wide synchronized clocks. This could

90

4.5 DISCUSSION

be the case, for example, in a large scale wildlife monitoring network distributed in a park.

Individual sensor nodes might only communicate briefly with immediate neighbours when

an observation occurs in order to obtain a correct local ordering and otherwise remain

radio silent for power conservation purposes. The distributed data could be periodically

sent to a gateway and a global observation ordering could be reconstructed centrally before

processing.

The analysis of the problem is also useful in its own right from a theoretical point of

view and suggests approaches that could be incorporated into more general techniques for

topology inference such as the one considered in the last chapter. In the next chapter we

again consider topology inference, but this time from the point of view of a mobile agent.

Unlike this chapter and the last, in which stationary components exploit mobile entities for

inference purposes, we next consider a mobile entity exploiting stationary features in the

environment for inference purposes.

91

CHAPTER 5

Topological Mapping with Weak Sensory Data

In this chapter, we consider the topological inference problem from the perspective of a

single mobile sensor. This is as opposed to a network of many stationary sensors as has

been considered in the last two chapters. Like our investigations up to now, however,

we will assume that the mobile sensor, or robot, has minimal sensing abilities and, as in

the last two inference techniques, we will rely on the principle of Occam’s razor to help

select from among the potential topological explanations for the environment that match

our observational data. We represent the world as an undirected graph in which vertices

represent discrete places and edges navigable paths between them. We assume that the

robot can consistently assign a cyclic ordering to the edges leaving a vertex with reference

to the edge it arrived from, however, it is unable to associate a unique label with any

place or edge. Given this limited sensing capability, and without the use of any markers

or additional information, we will show that the construction of a topological map is still

feasible.

The work we present in this chapter addresses a fundamental problem in mobile robot-

ics: the mapping of an unknown environment. As the wealth of literature addressing the

simultaneous localization and mapping (SLAM) problem in mobile robotics suggests, this

problem of mapping a previously unknown environment in the face of imperfect sensory

data has proved to be a challenging task. Some important research in this area that has

emerged in the first decade of this century includes the FastSLAM work of Montemerlo et

al. [87] [88], work by Wolf and Sukhatme [131], and work by Dellaert and Kaess [24].

5.1 BACKGROUND ON GRAPH EXPLORATION

One of the key problems in SLAM is that of closing the loop or determining whether

a currently observed landmark or region corresponds to a previously visited location or a

new portion of the world being explored; (e.g. work by Newman and Ho [91] or the work

of Martinelli et. al [80]). The question we consider in this chapter can be considered an

extreme case of the loop closing problem in SLAM in which the robot has almost no ability

to characterize its surroundings or obtain meaningful odometry measurements. While most

SLAM techniques are based on local, incremental localization, loop closing depends on

global localization that takes into account the full history of the robot’s motion.

In the remainder of this chapter we first provide some background on this class of

problems, and then give a definition of the specific topological mapping problem we are

interested in. We then introduce our methodologies and present an evaluation of their

performance through simulations. Finally, we give some discussion of the results.

1. Background on Graph Exploration

The study of a robot equipped only with the sensing ability to assign a consistent cyclic

ordering to edges in a graph-like world has been examined previously in [34] and [33] by

Dudek and colleagues. In this work, a mapping strategy is presented in which the robot

constructs an exploration tree that enumerates consistent world hypotheses at each step

of an exploration process. The authors classified the potential correspondence errors that

could be made during the construction of this tree into three classes. One, errors of type

OLD-LOOKS-NEW, in which the current location is assumed to be newly explored, but

was actually visited earlier; two, errors of type MIS-CORRESPONDENCE in which the

current location is thought to be a certain previously visited area, but is actually a different

previously visited area; and three, errors of type NEW-LOOKS-OLD, in which a location

is assumed to have been previously visited, but is actually new.

The authors discussed the fact that in a complete hypothesis tree, there will always

exist a model which assumes that each place visited is a new location; i.e multiple errors of

the type OLD-LOOKS-NEW. Among the three types, this class of errors is unique since the

models they generate can never be shown inconsistent given the local sensing capabilities

considered. The work concludes by suggesting a heuristic to be used during the exploration

93

5.1 BACKGROUND ON GRAPH EXPLORATION

process that prunes all models of size greater than:

T = γs+ C (5.1)

where s is the number of nodes in the current smallest incomplete model, and γ and C

are constants. We will refer to this threshold as the Dudek size threshold (DST) in the

remainder of this chapter.

Later work such as that conducted by Dudek et al. [35], by Rekleitis et al. [108], and by

Deng et al. [29], [28] considered a version of the problem in which the robot with the same

limited perceptual abilities was capable of placing and recognizing one or more markers.

Unlike the marker-less version, it was shown that by using the supplementary global infor-

mation, one can resolve potentially incorrect correspondences and therefore unambiguously

map a finite world (given adequate exploration).

In this chapter, we re-visit the marker-less problem. We present new exploration strate-

gies that help reduce correspondence errors where possible and introduce an inference tech-

nique based on a beam-style search through consistent models in the exploration tree.

Our approach is similar in concept to work by Ranganathan and Dellaert [101] [103]

[102]. The set of weighted partial world models we maintain in our inference technique has

some similarity to the concept of a probabilistic topological map, as defined by these authors.

In both our technique and theirs, a multi-hypothesis, topological space is maintained. The

distinguishing difference is that, while we only apply a ranking heuristic function, they

use odometry measurements to assign relative probabilities to each of the potential world

models. In our work, we do not presuppose the availability of odometry data. Our work

is also related to the research of Savelli and Kuipers [111] who address the loop closing

problem by employing planarity constraints to select among potential topological maps.

It should be noted that practical applications of topological mapping must provide a

method for the robot to reliably identify a topological node (or landmark), in the world

being explored. In work by Choset and Nagatani [19], sonar data is used to identify and

position the robot on the Voronoi graph, the vertices of which correspond to topological

nodes. In work by Kuipers and Beeson [61] place recognition is achieved through a multi-

process bootstrapping technique that includes sensory clustering and probabilistic inference.

Other approaches consider the extraction of features from vision or other sensory data; e.g.

94

5.2 PROBLEM SPECIFICATION

r s

el,i

-s

ej,k ei,j
Vk Vi Vl Vj

Figure 5.1. Diagram showing relationship of visited vertices in the context of the
transition fuction δ.

work by Se et al. [114], work by Sala et al. [110], and work by Giguere et al. [44]. In this

work, we leave for the moment this problem of identifying when the robot has reached a

vertex, and focus on the topological mapping problem.

2. Problem Specification

We describe the problem of topological mapping in terms of the inference of an undi-

rected, un-weighted graph in which the edges leading from a vertex can be assigned a local

ordering and each vertex is given a non-unique signature. In particular, we consider the

case where this signature is the degree of the node. The vertices of the graph correspond

to distinguishable places in the world and the edges correspond to connecting bidirectional

paths. As the graph is traversed by the robot, it is able to sense the label of its current

vertex and apply a consistent local edge ordering. In other words, the robot is able to

enumerate the edges of the place in a systematic way, (e.g. clockwise), relative to the edge

by which it entered.

We refer to the edge by which the robot enters a place as a reference edge. The edge

selected for the next move can be specified in relation to this reference edge. We define the

transition (or motion) function δ as follows: δ(vi, ei,j , r) = vj which means leave vertex vi

by the edge that is r edges (e.g. clockwise) after the reference edge ei,j , and this takes us to

vertex vj . By recording its motions the robot is capable of retracing any previously taken

trajectory since: if δ(vi, el,i, r) = vj and δ(vj , ei,j , s) = vk then δ(vj , ej,k,−s) = vi (Figure

5.1).

During each step of the exploration process, the robot records the label (degree) of

its current topological node. As this exploration process continues an exploration tree

is constructed, the full version of which contains a single world model for every consistent

95

5.3 EXPLORATION STRATEGIES

correspondence among all previously visited topological nodes. Each level of this exploration

tree will be based on the information obtained from the traversal of a potentially unexplored

edge. At any step t, each of the maintained hypotheses in the tree are consistent with the

observational data collected up to that point. As discussed in [33] by Dudek et al. the

number of models consistent with the observations depends on the type of graph explored,

but can experience explosive growth. This is especially true during the early part of the

exploration in which not enough observations have been gathered to prove some models

inconsistent. For the graphs we considered, we found that the size of the complete tree

quickly becomes intractable for all but trivially small observation sequences. The goal of

this work is to manage the growth of the exploration tree so that only those world models

that appear of relatively high likelihood are retained.

3. Exploration Strategies

3.1. Breath-First Traversal (BFT). Here, for completeness, we briefly describe

the original exploration strategy considered by Dudek et al. [33]. The strategy processes

new edges in a first in first out manner, based on a breadth-first traversal of the world as

observed by the robot. For example, when beginning in a vertex with two edges, the robot

will traverse the first edge, return to the original vertex, traverse the second edge, and then

return again to the original vertex. It has now explored its world up to a radius of one

edge traversal. Let us call this a ‘level one’ exploration. In the next step of the BFT the

robot will explore its world up to a radius of two edge traversals. Starting from the original

vertex, it will traverse the first edge again, and then recursively do a ‘level one’ exploration

starting with this new vertex. When complete, it will return to the original vertex, traverse

edge two and do the same process again. Finally it will return to the original vertex having

completed the second level of exploration.

At each level of exploration, the BFT strategy will reach each of the ith neighbors of

the vertex vs where the robot starts the exploration. We define the ith neighbors of a vertex

v as all vertices terminating distinct paths of length i which originate from v. Note that a

single vertex u may be present many times as an ith neighbour 1 of v provided (i > 1). If

d is the diameter of a finite graph, then the BFT algorithm is guaranteed to visit all the

1In the case of i = 1, this is only possible if multiple edges are allowed between the same vertices; i.e. we
are exploring a multigraph.

96

5.3 EXPLORATION STRATEGIES

A C B

D E

e1

e2

(a)

A C B

D E

e1

e2

(b)

Figure 5.2. Example of a) counter-clockwise and b) clockwise ear starting from
e1 of vertex A.

vertices after concluding a level d exploration. A limiting factor when applying the BFT

exploration strategy is the size of the exploration tree. In the next sections we will consider

new exploration strategies which are designed to help slow the growth of the exploration

tree.

3.2. Breadth-First Ears Traversal (BFET). For our purposes, a good explo-

ration strategy will limit, as much as possible, the number of world hypotheses that need to

be considered. Of the three types of errors originally identified by Dudek et al., it may be

possible to show inconsistent the second and third varieties: MIS-CORRESPONDENCE

and NEW-LOOKS-OLD. Errors of the first type, OLD-LOOKS-NEW, in which the current

location is assumed to be a new node, can only be diagnosed by considering the implausi-

bility of the world model suggested. We can do no better than this since there is no method

of detection for errors of type OLD-LOOKS-NEW. The strength of the original BFT ex-

ploration strategy is its guarantee of eventual coverage given a finite world, however, it

appears that strategies employing more passes through the potentially previously explored

areas can help reveal correspondence errors of the second and third type better than BFT.

We present a deterministic exploration strategy called breadth-first ears traversal (BFET)

that, like BFT, is guaranteed of eventually visiting all vertices (and edges) of a finite world.

In the next section we will describe a simple stochastic variant.

BFET incorporates within the original BFT algorithm a sub-exploration strategy that

attempts to traverse each ear leading from the current vertex v. In graph theory, any

undirected, 2-edge connected graph can be decomposed into a set of simple paths which are

called ears [69]. In our work, however, we use the term ‘ear’ in a slightly different manner

97

5.3 EXPLORATION STRATEGIES

which reflects the fact that the edges leading from any vertex in our graph can be assigned

a relative ordering. We define an ear as the closed cycle one obtains by leaving a vertex on

a specific edge and selecting for traversal from the following vertex the edge that is next

to the reference edge in a consistent orientation, (clockwise or counter-clockwise), until one

returns to the original vertex. In other words, we consistently select r = 1 or r = −1 in the

transition function δ when tracing out an ear. For example, leaving an edge and making

only ‘right turns’ until one returns to the original vertex will trace out a counter-clockwise

ear. See Figure 5.2 for more examples of this concept. The same definition of ear has been

used before by Rekleitis et al. [107].

The BFET sub-exploration strategy works as follows. For each edge leading from the

vertex being currently explored in the BFT strategy, take the following steps:

(i) For an edge, e1 leading from the vertex v, the robot explores the path p1 beginning

with e1 in one direction (e.g. clockwise) for some number of steps (until, for

example, a node with the same degree as v is encountered).

(ii) The robot then backtracks to vertex v and explores the path p2 in the opposite

direction (e.g. counter-clockwise) for the same number of steps beginning with

the edge e2 that is appropriately located with reference to e1.

(iii) Steps 1 and 2 are repeated with larger and larger sets of steps taken in both

directions until the degree trace for the path taken in two directions matches up;

i.e. path p1 visits its vertices in the reverse order of those in p2.

This process is guaranteed to terminate given a finite graph since there is a bound on both

the longest ear in the graph and also the number of ears that any nodes can belong to.

Upon completing the sub-exploration strategy, there is at least the potential that the

robot actually visited the same set of same vertices twice in opposite order. Therefore, in

the exploration tree, there must now exist a model of the world which reflects the fact that

we have found a cycle leading from and back to the node we are currently investigating.

3.3. Loop-Based Exploration (LBE). We will now consider a non-deterministic

exploration algorithm based on the BFET algorithm. Essentially BFET works by eliminat-

ing inconsistent models through the re-visiting of previously explored vertices in a cyclic

manner. Our loop-based exploration strategy (LBE) attempts to capture the spirit of this

approach.

98

5.4 HEURISTIC WEIGHTED SEARCH

Ref.

r = 2 : prob(1-p)

r = 1 : prob(p)

Figure 5.3. Diagram showing pictorial example of how the LBE algorithm selects
the next edge to traverse with respect to the reference edge when entering a vertex.

LBE works as follows. If the robot is currently visiting a vertex of degree three or higher,

then it selects with a probability p the first edge, r = 1, from the incoming reference edge

for its next traversal (e.g. the first counter-clockwise). Otherwise, it takes with probability

(1− p), the second edge, r = 2, from the incoming reference edge (e.g. the second counter-

clockwise). See Figure 5.3 for an example of the edge selection process. If the current vertex

is of degree two, then it selects the edge that is not the reference edge, and if the edge is of

degree one, then it backtracks.

If a relatively large value of p is selected, this algorithm has the effect of visiting cycles

in the graph one at a time, and having much the same effect on the exploration tree as the

BFET algorithm for each cycle examined. The larger the value of p, the better, on average

we explore a particular cycle, but this comes at the cost of the average coverage time for

the graph. Although LBE can not guarantee coverage of a finite graph, we will show that

given a good choice for p, in practice this strategy performs as well or better than the more

complex BFET strategy. Determining bounds for the expected cover time as a function of

p should be possible for a class of graphs, such as those that are planar. This would be

related to the work of Jonasson and Schramn [57] on cover times for planar graphs and also

the work of Koucky [59] on universal tranversal sequences.

4. Heuristic Weighted Search

In this section we describe a search algorithm which bounds the number of hypotheses

maintained at each step of the exploration process based on heuristic evaluation function.

We assume that the simplest models capable of explaining the observed data are the best

99

5.4 HEURISTIC WEIGHTED SEARCH

Level 3
O = (2,2,2)

Level 4
O = (2,2,2,2)

Level 5
O = (2,2,2,2,2)

Level 2
O = (2,2)

Level 1
O = (2)

Figure 5.4. Consider a robot following an exploration strategy that requires it to
take an edge other than the reference edge for each tranversal and which visits only
nodes with the signature (degree) 2. This figure shows the full exploration tree with
all models maintained for the first five observations. The models are ranked left to
right for each level based on the heuristic discussed in Section 4. Up to Level 3
of the exploration tree, the model shown at each step is the only consistent world
hypothesis which can explain the observations. During steps four and five of the
exploration process, which correspond to Level 4 and Level 5 of the exploration
tree, there are multiple models that are consistent with the data. During the fourth
step, for example, we can either assume that the robot has revisited the first vertex
it started from, or has discovered a new vertex. The first possibility corresponds to
the higher ranking model since it only requires 3 vertices and suggests that we have
fully explored the world. The second possibility corresponds to a model with a lower
ranking since it requires 4 vertices and also contains edges leading to unexplored
areas (dangling edges). (We assume that the world can not be a multi-graph in this
example.)

ones and rank them accordingly. This principle, known as Occam’s razor, is used throughout

this thesis.

We define a simple hypothesis as one with as few vertices as possible and, for tie

breaking purposes, one with as few singly-connected or dangling edges as possible; i.e

minimal number of edges leading to areas that must still be unexplored according to the

hypothesis. We define a hypothesis or graph with no edges leading to unexplored areas as

100

5.4 HEURISTIC WEIGHTED SEARCH

(a) (b)

Figure 5.5. Examples of closed graphs which could explain an endless sequence of
observations recording the visiting of alternate vertices of degree 2 and 3.

one that is closed. We reward models that are approaching a closed state since we assume it

is likely that ultimately the entire region will been explored. Figure 5.4 gives an example of

a simple exploration tree and how the maintained world models would be ranked according

to the heuristic we have specified above.

Consider another situation in which the robot has observed the node signatures (given

by node degrees): (2, 3, 2, 3, 2, 3, 2, 3, . . .) while following an arbitrary exploration strategy.

We must surmise that the robot is in a cycle of some multiple of length two, or that

our world contains a large component in which each adjacent topological node alternates

between degree two and three. If we have done enough exploration to suggest that we

should have covered the entire environment, then we might suspect a world that looks

like one of the ones depicted in Figure 5.5. In most applications, there is probably some

prior knowledge that can be exploited to give a rough idea of the size of the region being

explored, and therefore, some guess of the probability of having achieved coverage of the

area in question when using a given exploration strategy.

At each traversal of an edge during the exploration process, we first enumerate the new

models that can be generated from each of the currently maintained world hypotheses, and

we then rank them using our heuristic function. The top N of these models are then selected

for maintenance and the rest are discarded. This approach allows online exploration, but

risks throwing away the correct solution. Off-line variants could run the same algorithm

repeatedly on the same observational sequence but employing an iteratively larger value for

N until a suitable solution was obtained.

Our approach to hypothesis management is similar in spirit to the pruning heuristic

based on the DST presented previously by Dudek et al. [33] (Equation 5.1). The authors

101

5.5 DISCUSSION OF RESULTS

Edge to Average Trials Solved Trials Solved
Node Ratio Memory Usage using DST using Weighted Search

1.2 30.4 81 96
1.4 157.9 77 90
1.6 1564.5 82 87

Table 5.1. Result of pruning all models using the DST with γ = 1.05, and C = 2
as suggested by Dudek et al. in [33]. Results obtained from 100 trials on random
10 node graphs for three different edge to node densities using the BFT exploration
strategy until edge coverage. Memory usage refers to maximum number of models
maintained at any one level of the exploration tree. A graph was considered solved
if the true solution was retained in the hypothesis space after the exploration was
complete. For each trial, the pruning method was applied first and the memory
usage measured. The weighted search method was then run with the maximum
memory usage (N) set to the value used by the pruning method on the same trial.
Results from graphs of densities exceeding 1.6 could not be practically obtained
using the pruning algorithm because of the memory usage required.

suggest limiting the growth of the exploration tree by pruning all models with more nodes

than a threshold that is set based on the number of nodes in the current smallest incomplete

model. Both the original pruning approach and the method we present here attempt to

maintain simple solutions and discard more complex ones. The main difference is that while

the original approach slows the growth of the exploration tree, the new approach places a

bound on how many world models are maintained.

5. Discussion of Results

We examined our approach to topological mapping in this problem domain through a

number of experiments. Our simulation tool takes as input: an undirected graph represent-

ing the world to explore; the exploration strategy employed by the robot; the number of

observations to gather; and the number of world hypotheses N to maintain. The simulator

then determines if the robot, after its exploration, maintains in its world hypothesis space

a graph that is isomorphically equivalent to the input graph (and its ranking in our hy-

pothesis space). The graphs considered were randomly generated planar graphs produced

by selecting a connected sub-graph of the Delaunay triangulation of a set of random points.

For medium sized, sparse graphs, our heuristic approach to managing the size of the

exploration tree was generally successful at retaining the correct solution by the time cover-

age of the graph was achieved provided an adequate number of hypotheses was maintained.

This was true regardless of the exploration strategy used. Figure 5.6 shows an example of

102

5.5 DISCUSSION OF RESULTS

(a) (b)

(c)

Figure 5.6. Example of the top three ranking world models, from a.) through
c.), inferred by the algorithm with memory usage set to 20 models (N = 20) after
running the BFET exploration strategy for 1000 steps on a 10 node graph with an
edge to node ratio of 1.6. (Actual coverage was achieved at step 284.) The first
ranked model is the correct one. Incorrect edges shown in dotted red.

a successful outcome on a ten-node graph. For each of the exploration strategies presented,

the correct solution was found over 97 per cent of the time in 100 trials of ten-node graphs

with node to edge ratios of 1.2 with 100 maintained hypothesis (Figure 5.7). For edge to

node densities of 1.4, the correct solution was found over 92 per cent of the time in 100

trials of ten-node graphs and 100 maintained hypothesis (Figure 5.7).

Our weighted search algorithm performs well in comparison to the original pruning

strategy presented in Dudek et al. [33]. Although effective at limiting the size of the explo-

ration tree for simple graphs, the original approach occasionally prunes the correct solution

103

5.5 DISCUSSION OF RESULTS

1 1.2 1.4 1.6 1.8 2 2.2

0

0.2

0.4

0.6

0.8

1

Edge to Node Ratio

F
ra

ct
io

n
of

 G
ra

ph
s

S
ol

ve
d

LBE
BFET
BFT

(a)

1 1.2 1.4 1.6 1.8 2 2.2

0

0.2

0.4

0.6

0.8

1

Edge to Node Ratio

F
ra

ct
io

n
of

 G
ra

ph
s

S
ol

ve
d

LBE
BFT

(b)

Figure 5.7. Fraction of graphs for which the true solution was retained in the
hypothesis space after the exploration strategy under consideration reached edge
coverage of the graph. Results were obtained from 100 trials at each edge density
for graphs of size: a.) 10 nodes; and b.) 30 nodes. In this experiment 100 hypotheses
were maintained by the mapping algorithm (N = 100). For LBE, the parameter p
was assigned a value of 0.99. (BFET results were unobtainable for the larger graphs
because of its poor cover time.)

(a) (b)

Figure 5.8. Examples of graphs solved previously in a.) [34] and b.) [33]. Each of
these graphs were solved by our approach using LBE (p = 0.99) in less than half a
second with N = 1; i.e. only one model was maintained throughout the exploration
process (which was the correct one).

and potentially requires an unlimited amount of memory. We found that our current hy-

pothesis selection algorithm was more accurate on average than the DST approach, when

allowed the same memory usage (Table 5.1).

Figure 5.8 illustrates our approach on graphs considered in previous work. By using

the LBE exploration strategy and the weighted search method, we were able to solve each

104

5.5 DISCUSSION OF RESULTS

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hypothesis Retained

F
ra

ct
io

n
of

 G
ra

ph
s

S
ol

ve
d

LBE
BFET
BFT

Figure 5.9. Fraction of graphs solved for different numbers of hypotheses main-
tained by the algorithm (value of N). Results obtained from 100 trials of 10 node
graphs with an edge to node ratio of 1.6. For LBE, the parameter p was assigned
a value of 0.99. The exploration strategy under consideration was run until edge
coverage of the graph.

Figure 5.10. Example of a 50 node graph with an edge to node ratio of 1.2 that was
solved by our approach in less than an hour. the correct graph was maintained by
the algorithm (with n = 1000) as the first ranking model from the point of coverage
onwards. LBE was used as the exploration strategy (p = 0.99) and achieved coverage
at step 3918.

of these previously considered graphs while maintaining only one hypothesis for each step

of the exploration process.

105

5.5 DISCUSSION OF RESULTS

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

50

100

150

200

250

300

350

400

450
N

um
be

r
of

 H
yp

ot
he

si
s

Size of Hypothesis / True Node Coverage
(a)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

50

100

150

200

250

300

350

400

450

N
um

be
r

of
 H

yp
ot

he
si

s

Size of Hypothesis / True Node Coverage
(b)

Figure 5.11. Distribution of the first 1000 hypotheses generated for a.) the BFT
exploration strategy and b.) the BFET exploration strategy. The result was ob-
tained from a typical run of the algorithm on a 10 node graph with an edge to node
density of 1.6. BFT covered 7 of the 10 nodes in this time, while BFET covered
only 5.

The difficulty of the topology inference problem increases with the density and size of

the graph and the better performance of the new exploration strategies was apparent under

the more difficult circumstances. Figure 5.7 shows a comparison of the different exploration

strategies over ten-node and thirty-node graphs of various densities. Although the ranking

results are not shown in these experiments, generally the correct graph was the first ranked

model among those retained once coverage was achieved. Interestingly, the stochastic LBE

exploration with a large enough value assigned to p, performed as good or better than the

BFET strategy.

One parameter of interest when using the heuristic search algorithm is the number

of models maintained. If not enough models are maintained throughout the exploration

process, (the value assigned to N), then the chance of discarding the true solution is in-

creased (Figure 5.9). However, for small graphs, good results can be obtained using LBE

and BFET with just an arbitrarily small number of models. By increasing the number of

models maintained, it is possible to correctly infer quite large graphs (Figure 5.10).

The distribution of the size of the hypotheses generated by the various exploration al-

gorithms reveals that the newer strategies are better at discriminating among the smaller

sized models, presumably by showing inconsistent errors of the MIS-CORRESPONDENCE

and NEW-LOOKS-OLD types. For example, BFET quickly generates many hypotheses,

a few of which are small and have stayed consistent through much exploration, and many

106

5.5 DISCUSSION OF RESULTS

Strategy Mean Node Coverage Normalized
Model Size

BFT 8.48 +/-(1.11) 1.22 +/-(0.19)
BFET 6.86 +/-(1.78) 1.67 +/-(0.30)

LBE (p = 0.95) 5.57 +/-(2.46) 2.15 +/-(0.57)
LBE (p = 0.99) 4.33 +/-(1.86) 2.56 +/-(0.79)

Table 5.2. Mean and standard deviation for coverage and model size normalized
by coverage for the first 1000 hypotheses generated by the different exploration
strategies. Results obtained from 100 trials on random 10 node graphs with an
edge to node density of 1.6.

10 15 20 25 30 35 40
10

2

10
3

10
4

10
5

10
6

Vertices in Graph

M
ea

n
C

ov
er

ag
e

S
te

ps
 N

ee
de

d

LBE
BFET
BFT

Figure 5.12. Average number of steps required for edge coverage of the graph for
the different exploration strategies. Note the log scale for the vertical axis. Average
was taken over 100 trials using an edge density of 1.6. For LBE, the parameter p
was assigned a value of 0.99.

which are in relation quite large and therefore less believable (Figure 5.11). In one experi-

ment, we allowed each exploration strategy to run until its corresponding hypothesis tree,

(un-pruned), grew to 1000 models. Table 5.2 reveals the differences in the mean hypothesis

size, (normalized by coverage), obtained over a number of trials for the different exploration

strategies.

Although the BFET algorithm is guaranteed to cover a finite region, its cover time in

practice was relatively poor (Figure 5.12). Unfortunately, this makes its use difficult for

environments which are suspected to be large, since the probability of coverage would be

low even after considerable exploration. In the environments we consider here, the LBE

strategy does much better in practice, even with an aggressive value of p.

107

5.6 DISCUSSION

Edge to Trials Solved Mean Computational Effort
Node Ratio BFT LBE BFT LBE

1.2 20 20 1.08 ∗ 103 1.11 ∗ 103

1.4 20 20 5.98 ∗ 103 6.86 ∗ 103

1.6 20 20 3.02 ∗ 104 2.2 ∗ 104

1.8 17 20 2.76 ∗ 105 5.95 ∗ 104

2.0 14 20 4.31 ∗ 105 8.93 ∗ 104

Table 5.3. Relative CPU time used by the BFT and LBE algorithms for different
edge densities of 10 node graphs, averaged over 20 trials. Each exploration strategy
was run until edge coverage of the graph under test was achieved. For both of
the algorithms, iteratively larger values of N , starting with N = 1, were used on
each graph until the graph was solved. After a failed attempt the value assigned
to N was doubled. Attempts continued until success was obtained or the memory
use exceeded 10000 hypotheses. Mean computational effort for each algorithm is
reported as the average of the memory use N multiplied by cover time |O| for each
of the trials in which the graph was solved by both BFT and LBE.

For these experiments, a typical graph was usually solved (or not) in the order of a few

minutes on a computer with a 2.2 GHz Intel Pentium 4 CPU and 1.00 GB of RAM using

un-optimized Matlab code. The computational time required to run the topology inference

algorithm was generally proportional to the number of hypotheses maintained (N) and the

number of observations processed |O|. Since in these experiments the exploration strategy

was followed until edge coverage of the graph was achieved, the relative processing required

for each exploration strategy was proportional to its cover time (Figure 5.12) given equal

memory requirements (the value assigned to N). The LBE strategy generally required less

memory on average for a particular graph (Figure 5.9), however, and therefore was able to

solve difficult problem instances faster than the other strategies. Table 5.3 compares the

mean CPU time required to solve ten-node graphs of various densities for the LBE and

BFT exploration strategies when a simple algorithm is used to adapt the N parameter to

each graph. The LBE algorithm achieves better performance at the higher edge densities

despite the larger number of steps required on average to cover the graph.

6. Discussion

In this chapter we have considered the topological mapping problem given a single

mobile robot with extremely limited sensory capabilities. We have shown that even in the

case of highly ambiguous, non-unique topological ‘signatures’ it possible for such a robot

to infer a set of hypotheses for its environment that likely includes the true model. Our

108

5.6 DISCUSSION

approach combines an exploration strategy that attempts to eliminate inconsistent models

with a beam style search that bounds the number of models maintained at each step based

on the principle of Occam’s razor.

Future work could consider the issue of handling more realistic sensory data. For

example, incorporating additional, but still relatively poor, sensory data such as range only

odometry into the inference process should greatly improve the accuracy of the approach.

Additionally, it would be of interest to consider the effect of sensor errors; i.e missing or

spurious observations. It is possible that these aims could by accomplished by shifting our

heuristic based evaluation method to a probabilistic one. Such an approach could weigh

the relative likelihood of the maintained models at any time based on previously calibrated

measurement models and some prior over potential environments.

In the next two chapters, we will focus our attention on metric representations of the

environment instead of topological representations. In the chapter that follows we will

consider again a network of stationary sensing components, and afterwards, in the last

portion of our investigations we will revisit mobile components, but in conjunction with

stationary sensors.

109

CHAPTER 6

Probabilistic Self-Localization for Sensor Networks

In this chapter and the one that follows we consider the problem of recovering metric po-

sitional information from the environment. This is as opposed to topological positional

information as has been presented up to now in this thesis. As discussed earlier, both topo-

logical and metric information play important roles in navigation and planning tasks. The

inference of the relative metric positions of the components of a sensor network is commonly

known as self-localization. In this chapter we consider the self-localization problem based

on poor quality inter-sensor range data for a network of stationary components. In the next

chapter we consider the localization problem with a network that has been augmented with

a mobile robot, and utilizes its odometry measurements as a means of obtaining inter-sensor

poses.

In these next two chapters we are interested in inferring a probabilistic representation

of a sensor network pose in the form of a probability distribution function (PDF). We define

this problem of obtaining and representing arbitrary distributions for the sensor locations

as the Probabilistic Sensor Localization Problem (PSLP). Our efforts in this area stand

in contrast to previous self-localization work, most of which returns a single maximum

likelihood estimate for the location of each sensor and fits a mathematically convenient

distribution that can be expressed analytically to any uncertainty values.

By determining the PDF, the degree of certainty by which each sensor has been lo-

calized can be accurately indicated. This can be especially useful when dealing with the

non-Gaussian and multi-modal distributions that can arise, for example, when only range

data are available. The estimate of localization certainty can be used by a self-configuring

6.1 PROBLEM DESCRIPTION

system to determine how additional resources should be used in order to improve local-

ization accuracy; i.e. through the use of actuators, mobile components, or the additional

deployment of sensors. Even if adaptation is not the goal, the certainty information can aid

higher level applications relying on the metric localization data.

The self-localization method we present in this chapter uses an iterative Markov Chain

Monte Carlo (MCMC) based algorithm to estimate a probability distribution function

(PDF) for the network pose based on a measurement model for the collected range data. At

each iteration, range data from those sensors best localized are incorporated into the algo-

rithm. The final result of our algorithm is a particle representation of the PDF describing

the position of each sensor.

In the research presented in this chapter, and to some extent in the thesis as a whole,

we focus on computation and algorithmic complexity constraints and not on distributed

computing. We assume that the sensor network has, or has assess to, the resources neces-

sary for running computationally sophisticated algorithms. Note that the assumption of a

hierarchical arrangement of network components based on computational power holds true

for several real world sensor networks, especially in control and data collection systems [123]

[67] [129]. For example, a typical network might contain a number of resource-limited sen-

sors that pass messages using a wireless multi-hop protocol to a more powerful single-board

‘gateway’ computer which communicates to the outside world using a wireless Ethernet con-

nection. In such an example, the gateway computer could periodically collect inter-sensor

range data and update its network pose estimate using a version of the algorithm presented

here.

In the remainder of this chapter we first provide a formal definition of the self-localization

problem we are interested in and then we describe our MCMC-based approach to metric

inference. Finally, we present an evaluation of our technique through simulations and give

some discussion of the results.

1. Problem Description

The probabilistic sensor localization problem we are trying to solve in this chapter is to

determine a PDF for the location of each sensor i in a network, given N sensors (including

a number of beacons of known position), inter-sensor range data R, and a measurement

111

6.2 MCMC SAMPLING

model L which characterizes the error in the distance estimates. The range data R consists

of a (possibly incomplete) matrix R = {rij} where each element rij represents a distance

estimate between node i and j as measured by node i. In the case that each sensor has a

range estimate to each other sensor, it is possible to obtain an estimate of the relative net-

work pose using established multi-dimensional scaling (MDS) techniques [8], however, the

problem is more difficult when some measurements between some sensors are unavailable.

Using the measurement model and the available inter-sensor range data, we can con-

struct a model that returns the likelihood p(dij |R,L) for any distance dij between sensors

i and j as determined by sensor i. In the case of a range data estimate taken by sensor i,

this is simply p(dij |rij , L). In the case of missing measurements due to limited communica-

tion range, obstacles in the environment, or various other problems, the likelihood can be

replaced with a distribution based on prior assumptions. For example, if communication

signal strength is used for range estimates, the absence of a signal suggests a distance greater

than some minimum value. In this case, a uniform distribution over a range of distance

values might be appropriate.

The challenge is to provide a usable estimate of the PDF over all possible poses X.

In traditional sensor-network self-localization, algorithms generally return an estimate of

the maximum likelihood pose of each sensor. However, noise in the distance measurements

dictates that any specific location estimate is actually a sample of a PDF, and the certainty

of the measurement differs from node to node.

2. MCMC Sampling

To build a PDF for the pose of a network, our approach is to search over the space of

possible network poses X, and sample configuration from areas of relatively high density

using Markov Chain Monte Carlo (MCMC). These samples are then combined to form a

particle representation of the PDF for the network pose. See Section 2.3 of Chapter 2 for a

brief background on the technique of MCMC.

2.1. MCMC Sampling. We will first present a straight forward application of

MCMC sampling to the problem presented in Section 1. In order to draw representative

samples of the sensor locations, we construct the Markov chain using the Metropolis algo-

rithm, an effective method of MCMC sampling [124]. Applying the Metropolis algorithm

112

6.2 MCMC SAMPLING

to our problem requires that we can measure the relative densities of various network config-

urations and that we have a mechanism for proposing new configurations. The Metropolis

algorithm constructs a Markov chain by accepting proposed transitions from the current

state xi to a new state xj based on a probability determined according to:

α = min(1,
πj

πi
)

where πi and πj are proportional to the density of the states xi and xj respectively. The

proposal function should be crafted so that it has certain properties, i.e. it is possible

to visit all states and the algorithm can not get caught in cycles (the resulting chain is

ergodic). Given such a proposal mechanism, then after the initial configuration has been

‘forgotten’, (the chain has burned-in), the samples obtained from this technique should be

representative of the underlying distribution. See Section 2.4 of Chapter 2 for additional

background on the Metropolis algorithm.

For our problem instance, given the current state in the Markov chain X, specified by

the combined location of each sensor in our network, we propose a symmetric transition

to a new state X ′ by choosing a single sensor uniformly at random and altering its pose

by adding a small amount of zero-mean, normally distributed noise. The new pose X ′ is a

stochastic function based on the current pose X and is then accepted or rejected based on

the acceptance probability:

α = min

(

1,
p(X ′|R,L)

p(X|R,L)

)

(6.1)

where R is the observed range data and L is the measurement model. This proposal function

can eventually allow the visiting of all potential states and will not get caught in cycles.

In order to apply Equation 6.1, we must be able to estimate the density of an arbitrary

pose based on our measurement model L, and the measured range data R. The exact

likelihood of a configuration X, where xi gives the position of sensor i, can be evaluated

according to Bayes Law:

p(X|R,L) =
p(R,L|X)p(X)

p(R,L)

If we assume a uniform prior over network configurations X, our data R, and the measure-

ment model L, then this equation simplifies to:

p(X|R,L) ∝ p(R,L|X)

113

6.2 MCMC SAMPLING

and if we further assume that the range data collected are independent of each other, then

we arrive at the following equation for estimating the relative density of a specific network

pose:

p(X|R,L) ∝
N
∏

i=1

N
∏

j=1

p(dij |R,L) (6.2)

where dij is the Euclidean distance between sensors i and j as determined by their locations

xi and xj .

Theoretically, if we constuct a Markov chain as described in this section using Equa-

tions 6.2 and and run it long enough, then the samples drawn from the chain should be

representative of the actual PDF for the pose of the network, however, in practice this is

difficult. In was our finding that the chain as constructed above mixed relatively slowly

and was ineffective at providing un-biased pose samples for all but the smallest of networks.

In the case of exactly accurate range data, the problem of finding the maximum likelihood

configuration for Equation 6.2 becomes that of embedding a weighted graph, which has

been shown to be NP-hard [113]. There can be multiple (or infinite) number of realizations

explaining a specific set of edge lengths. In the version of the problem with non-accurate

edge data, these realizations correspond to different arrangements of the nodes that ade-

quately explain the measurement data but result in substantially different pose estimates.

Given perfect sensor fusion these cases should occur less often if there are large quantities

of range data collected from a single region. In practice, however, alternate realizations of

local groupings of sensors complicate the problem and lead to local minima.

2.2. Iterative MCMC. In this section we present an iterative, multi-chain sam-

pling algorithm that attempts overcome some of the challenges involved in obtaining fair

samples in this problem domain. We run parallel instances of a Markov chain, each instance,

or macro particle, representing a single network pose estimate. We ultimately combine the

samples obtained from each instance of the Markov chain in a description of a PDF for the

pose of the network. We use an incremental approach of incorporating sensor information

in order to avoid local minima as best as possible. The algorithm begins by sampling from

a relatively simple underlying probability landscape and ends up drawing samples from the

final distribution obtained by incorporating all the available range constraints.

114

6.2 MCMC SAMPLING

The algorithm maintains a sub-group of nodes whose range data are used for localiza-

tion. Sensors are incrementally added to the localizing sub-group based on the variance of

their position estimates as maintained by each particle or instance of the Markov chain.

For ease of implementation, we assume the existence of a number of beacon nodes at

known locations. However, it is possible to compute the relative sensor positions using our

technique without the use of beacon nodes by specifying a preferred reference frame. For

example, without loss of generality, one sensor can be forced to the origin, another to the

horizontal axis, and a third to the positive vertical direction.

The full description of the algorithm is as follows:

(i) Initialize Algorithm: Initialize a localizing nodes sub-group LocNodes to contain

the beacon nodes of known position. Initialize a non-localizing nodes sub-group

NonLocNodes to include all the non-beacon nodes. Initialize M particles each

maintaining a single estimateXm = {xm1 . . . xmN} for each sensor in the network.

(ii) Update Particles Using Localized Sensors: For each particle’s estimate of the

network pose Xm update the position estimate using MCMC as described in

Section 2.1 with only the range data collected from those sensors in LocNodes.

Each particle initializes the Markov chain with its previous belief of the network

pose.

(iii) Add to Localizing Sensors: For each sensor i, compute the variance Vi of its

position estimates {x1i . . . xMi} as maintained by each particle. Add the k sensors

with the lowest V values to LocNodes

(iv) Iterate Until Done: Iterate over steps 2 to 3 until all sensors have been inserted

into LocNodes. The resulting M network position samples are now used to

represent a PDF describing the positions of the sensors.

At each iteration the algorithm maintains a reasonable representation of the PDF given

the sensor information incorporated up to that point. The algorithm depends on the manner

of drawing representative pose samples, and on the manner of analyzing the variance of those

samples in order to assess their accuracy.

In order to draw representative samples of the sensor locations, we maintain a separate

Markov chain for each particle. The number of particles used during the algorithm affects

115

6.3 RESULTS FROM SIMULATION

its ability to maintain a sufficient representation of the spatial probability distribution

function for each sensor. Additional samples of the PDF can be drawn from the Markov

chain maintained by any single particle, however, we suggest that these samples could share

a common bias due to the slow mixing rate of the chain. Multiple particles, each randomly

initialized, help to ensure a complete representation of the more complex distributions.

Although technically a new Markov chain is employed during each iteration of the

algorithm, the burn-in time is minimal since each particle maintains its position estimate

from the last iteration and uses it to initialize the chain. The additional range data added

during each iteration re-shapes the target distribution; in most cases this extra information

should help to further concentrate the PDF. The old localization estimate should be close

enough to the new peak or peaks in the probability landscape that the MCMC should quickly

approach the new steady-state distribution and afterwards provide meaningful localization

samples. We run the Markov-Chain for a fixed number of proposals during each iteration

of the algorithm which, for the moment, is hand-selected based on the scale of the problem.

The number should be chosen such that the new configuration is given adequate mixing

time in order to burn-in and reach a stable likelihood. We leave for future work the problem

of adaptively optimizing the number of proposals per iteration.

A variance metric is used to quantify the certainty of a sensor’s position based on

the variance of the M position samples provided by each of the particles. The average

Euclidean distance of each position estimate from the mean of the distance estimates is used

as a metric. In the next section we will compare our iterative approach to the standard

application of a MCMC sampler and further investigate the performance of the algorithm.

3. Results from Simulation

To evaluate the algorithm, a simulation was constructed based on a 2-D grid model of

the environment. Sensors and beacons were distributed on a 100x100 grid. Four beacon

nodes were placed near the centre of the grid, one in each quadrant, and the remaining

sensors were distributed randomly within the area. Each sensor collected distance estimates

to all neighboring sensors within some finite sensing range. Inter-sensor range data were

116

6.3 RESULTS FROM SIMULATION

(a) (b)

(c) (d)

Figure 6.1. Example of localization results from a network of 40 sensors using
4 beacons and 50 particles. The stars indicate the beacon nodes and the crosses
mark the true location of the sensors. a) The initial localization estimates using
beacon data only. b) and c) Intermediate results incorporating data from the circled
sensors. d) The final estimates incorporating the data from all the sensors.

117

6.3 RESULTS FROM SIMULATION

0 1 2 3 4 5 6 7 8

x 10
5

5

10

15

20

25

30

35

40

45

50

55

Number of MCMC Proposals

A
ve

ra
ge

 S
en

so
r

E
rr

or
 p

er
 N

et
w

or
k

Standard MCMC
Iterative MCMC
Random Order MCMC

Figure 6.2. Plot of error as a function of Markov chain proposals averaged over
20 trials on networks of 4 beacons and 40 randomly distributed sensors. Error
bars show one standard deviation. A sensing range of 30 units was used in this
comparison. The Random Order MCMC algorithm is the same as the Iterative
MCMC algorithm, but includes sensor data in random order.

drawn from a normal distribution with a mean equal to the true distance and a standard

deviation equal to the square-root of the true distance.1

The algorithm was provided with the beacon locations, the beacon range data, the

un-localized sensor range data, and an accurate measurement module. The resulting sensor

localization estimates were assessed based on the mean Euclidean distance between the

particle estimates and the true sensor location:

Ei =

∑M
m=1 d(xmi, x

′

i)

M
(6.3)

where x′i is the true location of the sensor and d(a, b) returns the Euclidean distance between

a and b. Figure 6.1 shows an example of the localization algorithm on a 40 sensor network.

3.1. Assessment of Algorithm Performance. Our Iterative MCMC algorithm

compares favorably to other sampling based approaches. In our experiments it both con-

verges faster than our implementation of a standard MCMC sampler and returns a more

accurate result. Figure 6.2 shows a comparison of the standard MCMC approach, our it-

erative approach, and a variant of the iterative approach on a difficult problem where the

sensing range of each sensor is restricted to 30 units on a 100x100 unit grid. With this

range, each sensor has a distance measurement to about ten other sensors on average. It

1Negative range estimates generated by this approach were truncated to zero.

118

6.3 RESULTS FROM SIMULATION

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Initial Network Error (Beacon Data Only)
F

in
al

 N
et

w
or

k
E

rr
or

 (
A

ll
S

en
so

r
D

at
a)

(a)

0 5 10 15
0

500

1000

1500

C
ou

nt
 o

f S
en

so
rs

Sensor Error
(b)

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

Largest Sensor Error in Network

C
ou

nt
 o

f N
et

w
or

ks

Final Result
Initially (Only Beacon Data)

(c)

Figure 6.3. Results from 200 trials of the algorithm on networks of 4 beacons and
40 randomly distributed sensors using an unlimited sensing range. a) Plot of final
error output from the algorithm after including all sensor data as a function of the
initial error calculated based on beacon data alone. b) Histogram of final sensor
error across all networks (8000 sensors represented). c) Histogram comparing the
error for the most poorly localized sensor in each network for the initial estimate
using only beacon data and the final result. Vertical and horizontal axis for a) and
the horizontal axis for b), and c) displays error in terms of distance units (simulation
grid is of size 100x100).

119

6.3 RESULTS FROM SIMULATION

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Number of Sensors

A
ve

ra
ge

 S
en

so
r

E
rr

or
 p

er
 N

et
w

or
k

Figure 6.4. Average network error over 20 trials for different sized networks (con-
fined to a 100x100 grid) with 4 beacon nodes. Error is displayed in terms of distance
units and error bars show one standard deviation.

can be seen that the Iterative MCMC algorithm achieved a lower average per sensor error

per network, as calculated by Equation 6.3, than the other approaches on twenty different

trials of this problem type.

The effective performance of the algorithm depends on incorporating the sensor data

in a manner that bootstraps each new Markov chain with likely pose values. For example,

consider the extreme case of including the data of an isolated sensor for which there exists no

connecting range estimate to any member of the localizing group. Clearly this information is

not useful in refining the position of this node relative to the localizing group. Additionally,

this type of sensor data can cause the algorithm to converge to a local minimum since

isolated groups of network components can develop that have settled into a high likelihood

arrangement of arbitrary orientation and offset. Ultimately, it can be difficult for the

algorithm to reconcile such a group with the absolute positions of other sensors as dictated

by the beacon nodes.

With a large sensing range, the algorithm was consistently able to use the noisy range

data collected from the un-localized sensors to improve the final network pose estimate over

that of the initial estimate using beacon data alone (Figure 6.3(a)). For example, in 200

trials of the algorithm on networks of 4 beacons and 40 randomly distributed beacons, the

final average Euclidean sensor error, as calculated by Equation 6.3, was reduced to a 0.31

proportion of the initial result obtained by using beacon data only. The final average sensor

error was 2.34 and the average particle variance was 2.83. Additionally, there was a high

120

6.3 RESULTS FROM SIMULATION

500 1000 1500 2000
0

1

2

3

4

5

6

MCMC Proposals / Number of Sensors

A
ve

ra
ge

 S
en

so
r

E
rr

or
 p

er
 N

et
w

or
k

20 Sensors
40 Sensors
80 Sensors

Figure 6.5. Final average sensor error averaged over 20 networks as a function
of the total number of MCMC proposals divided by the number of sensors in the
network.

level of consistency in the performance of the algorithm (Figure 6.3(b)). The final Euclidean

error of the most poorly located sensor in each network was less than 5 units on a 100x100

grid for 98 per cent of the networks (Figure 6.3(c)). Furthermore, since a separate location

estimate is provided for each particle used, poorly localized sensors should be identifiable

based on the variance of their position estimates.

The performance of the algorithm improves as the density of sensors in the region

increases (Figure 6.4). The higher sensor density results in multiple range estimates to any

one sensor which are combined to reduce bias. Additionally, in our model, range estimates

are of higher quality at shorter range.

Performance appeared to level off when the total number of proposals used in the

MCMC increased beyond a certain threshold. This threshold appears to be proportional to

the number of sensors in the network in the trials we have evaluated (Figure 6.5). In other

words, each sensor appeared to require approximately the same number of proposals in order

to converge to a final location distribution regardless of the size of the network the sensor

belonged to. If this empirical observation holds under broader circumstances, then the rate

of change in the variance between the macro-particles could be used as the terminating

condition of the algorithm, and the computational time required to solve a network would

be T ∈ O(Nf(N)) where N is the number of sensors and f(N) is the computing power

necessary to evaluate a single MCMC proposal as a function of the size of the network.

In the worst case, in which each sensor has a valid range estimate to every other

sensor, f(N) ∈ O(N) and therefore T ∈ O(N2). However, under realistic conditions, each

121

6.4 DISCUSSION

sensor will have some range beyond which distance estimates to other sensors are impossible

or meaningless. Therefore, under ranged conditions a single MCMC proposal evaluation

could be proportional to some range constant based on the ranging method employed, the

environment, and the density of sensors.2 Under these conditions f(N) ∈ O(1) and therefore

T ∈ O(N).

4. Discussion

In this chapter we have presented and verified, through numerical simulations, an al-

gorithm for the self-localization of a sensor network based on noisy inter-sensor range data.

Unlike most previous related work, our method returns a representation of the PDF de-

scribing the position of each sensor in the network.

There are a number of open issues regarding improving the practicality of the algorithm.

It would be interesting to explore run time optimization techniques, such as dividing larger

networks into multiple regions, evaluating each region separately and then merging the final

result. Also of interest is determining when a network has been localized to some degree

based on an analysis of the final pose samples returned by the algorithm. This could allow

the algorithm to terminate when a network has been adequately localized, or could be used

to flag localization problems.

In the next chapter we consider the self-localization problem for a network that has been

augmented with a mobile robot. Instead of utilizing inter-sensor range data, we consider

using the odometry measurements of the robot to obtain relative pose estimates between

the sensors.

2This would require discarding some additional ‘negative’ information which could be exploited regarding
which sensors are not in range.

122

CHAPTER 7

Network Localization using a Mobile Robot

In this chapter we continue to look at the Probabilistic Sensor Localization Problem (PSLP)

of inferring a probabilistic representation of a sensor network pose in the form of a probability

distribution function (PDF). Unlike the last chapter, however, we assume that our network

is augmented with a mobile sensor (or robot) which is capable of providing inter-sensor

pose estimates through odometery measurements. The addition of a mobile robot gives the

problem some similarity to the well studied SLAM problem in mobile robotics, and hence

we are able to borrow and compare to techniques in that field.

1. Introduction

In the network localization scenario we consider in this chapter, the robot’s motion

through the network facilitates localization by explicitly transferring positional information

between sensor locations. By maintaining an ongoing estimate of the robot’s location, the

position of any sensor it interacts with can be probabilistically estimated, (and updated),

given the appropriate motion and measurement models.

Our approach is to employ a Markov Chain Monte Carlo (MCMC) based algorithm

that allows us to sample from the probability distribution function (PDF) for the pose of a

sensor network. We overcome the often-prohibitive computational effort required by MCMC

approaches by employing the following techniques: 1) we employ a unique, odometry-specific

proposal distribution that exploits the conditional dependencies present in our problem

domain; 2) we apply Rao-Blackwellization to effectively reduce the dimensionality of our

sample space; 3) we automatically tune the parameters of our proposal technique to achieve

7.2 PROBLEM DEFINITION

desired acceptance rates; and 4) we employ convergence analysis based on the Gelman-

Rubin statistic [43] as a stopping mechanism that informs us when the samples we have

gathered closely represent the underlying pose distribution.

Our approach is capable of providing a full representation of the probability distribution

function of the network pose. Information regarding the distribution enables later decisions

to be made conditional on the confidence of the various pose estimates, and facilitates

adaptive exploration processes and higher level task planning. We also consider a hybrid

approach that uses our computationally expensive, but highly accurate, global inference

technique as a corrective mechanism for a fast, online, established filtering method. In

this manner we attempt to achieve a balance between the often conflicting goals of near

real-time position estimation, and accurate, global inference.

The problem we consider in this work is similar to the simultaneous localization and

mapping (SLAM) issue in traditional mobile robot research, but there are some key differ-

ences. Our sensors, which correspond to landmarks in the SLAM problem, are uniquely

identifiable, so there is no correspondence ambiguity. Additionally, we can assume that

the mobile robot will operate, for the most part, within the confines of a sensor-network

deployed region and will ultimately visit the local area of each network component many

times. Most importantly, in sensor network self-localization, the initial mapping effort is

a one-time task, the results of which will likely be used for the lifetime of the network.

Therefore the use of computationally sophisticated techniques is appropriate.

In the remainder of this chapter, we first provide some background on related work

and then give a formal definition of the problem we are interested in. We then discuss the

details of our approach to sensor network localization and assess its performance against

those of established methods via simulations and real world experiments.

2. Problem Definition

The PSLP we consider in this chapter involves inferring the positions of each sensor node

mi, which is part of the map of the sensors mn = [m1m2...mn], based on measurements

obtained by a robot (see Figure 7.1). These positions can only be measured relative to

the position of the robot at a given time, st, which is the most recent component of the

robot’s path st = [s1s2...st] and so both quantities must be estimated simultaneously. The

124

7.2 PROBLEM DEFINITION

Robot Trajectory

Camera Position

m

m

m4

3

21

s s s s

s

sss

41 2 3

8 7

5

6

m

s 9

Figure 7.1. The mapping scenario described in this chapter. The robot moves
through the environment gathering pose estimates to sensors and localizing its self
as well as each of the encountered sensor in a common coordinate frame.

s0 s1 s2 st

z1 z2 zt

m1

u1 u2 ut

....

....

....

mn....

....

m2

Figure 7.2. The quantities of interest in the Sensor Network localization problem
can be modeled as a Bayesian Network in order to exploit conditional indepen-
dencies. The robot poses and map (highlighted in grey) must be inferred, given
observed data.

measurements available are the position of a sensor relative to the robot at time t, denoted

zt and the position of the robot at time t relative to its position at time t− 1, denoted ut.

This problem can be modeled as the probabilistic inference of the map and the robot

poses conditioned on the observations, as represented by the underlying directed graphical

model shown in Figure 7.2. The posterior distribution, p(mn, st|zt, ut), can be factored into

125

7.3 PROBABILISTIC SENSOR NETWORK SELF-LOCALIZATION USING MCMC

the product of many local conditional distributions, by exploiting the conditional indepen-

dencies as is common practice for probabilistic graphical models.

For the sensor network localization problem involving a mobile agent, there are two

classes of local conditional likelihoods: p(st|ut, st−1) which is known as the motion, or

odometry model of the robot; and p(zt|st,mi), the measurement model which relates the

poses of the sensor nodes to that of the robot. These two distributions can be determined

empirically or by physical modeling for a particular instantiation. In the remainder of the

chapter we will present a MCMC global inference technique that attempts to directly sample

from the posterior distribution, p(mn, st|zt, ut), based on models of these two distributions.

3. Probabilistic Sensor Network Self-Localization using MCMC

Our global inference approach uses MCMC to generate a number of samples of the

pose of the network according to our probability model. These are then used as a particle-

based representation of the underlying probability distribution function. We form a graph

< V,E >, where V is the set of vertices and E the set of connecting edges. The vertices

of this graph are the robot positions over time st and the sensor locations mn. The edges,

or constraints, are the odometry measurements ut connecting consecutive robot positions

and the measured relative positions zt between the robot poses and network components.

Using a model characterizing the error in the measurements, we can calculate the density

of any particular configuration x = (mn, st) through the application of Bayes law:

p(x|zt, ut) =
p(zt, ut|x)p(mn, st)

p(zt, ut)

p(x|zt, ut) ∝ p(zt, ut|x)p(mn, st)

We assume that the prior, p(mn, st), is constant, so the relative likelihood of a particular

configuration can be evaluated by factoring p(zt, ut|x), into the product of the likelihoods

of all constraints (edges) given our motion and measurement models. In this manner we

126

7.3 PROBABILISTIC SENSOR NETWORK SELF-LOCALIZATION USING MCMC

can evaluate the relative density of our target distribution given a configuration:

π(x) = p(zt, ut|x) (7.1)

=
∏

k

p(zk|x)
∏

k

p(uk|x)

=
∏

k

p(zk|sk, θk)
∏

k

p(uk|sk, sk−1)

where θk indicates the sensor node mi, i ∈ {1 : n} observed by (or observing) the robot at

time step k.

Given this ability to calculate the relative density of our target distribution at a specific

point, we can employ the Metropolis-Hastings (MH) algorithm [124] to generate represen-

tative samples. MH constructs a Markov chain by accepting proposed transitions from the

current state xi to a new state xj based on their relative likelihoods and that of the proposal

function. In theory this approach can be used to characterize any distribution given only

the ability to calculate the target density and a reasonable proposal scheme. See Section

2.4 of Chapter 2 for additional background on the MH algorithm.

In our application of the MH algorithm to sensor network localization, we use a proposal

function Q(x′|x), which we will define below, that generates a new state x′ given the current

state x. The proposal x′ is then either accepted or rejected with probability α, where α is

calculated as:

α = min

(

1,
π(x′)Q(x|x′)

π(x)Q(x′|x)

)

(7.2)

3.1. Odometry-Specific Proposal Scheme. In order to improve mixing, we

employ a proposal scheme which exploits domain knowledge regarding the sequential nature

of our odometry measurements. We use the information that a change in position early in

the odometry path of the robot effects its position from that point forward in time. To

model this behaviour, the current state x = (st,mn) in the chain is altered to produce a

new proposed state x′ through the following procedure:

(i) A pose sj is selected (as described shortly).

(ii) The initial j − 1 robot poses, [s1, . . . , sj−1], are kept the same as in x.

127

7.3 PROBABILISTIC SENSOR NETWORK SELF-LOCALIZATION USING MCMC

(iii) The position of robot pose sj is altered by the addition of zero-mean, normally

distributed noise with a covariance Σj .

(iv) The effect of the change in sj is propagated forward to change the locations of all

following robot poses, [sj+1, . . . , st]. That is, the successive odometry constraints

are kept rigid.

The above steps are repeated as new samples are required. In order to obtain a balanced

sampling, iterated rounds of random selection without replacement are performed to select

poses. Step 4 in this procedure temporarily blocks correlated components of the state space

together during proposals in order to facilitate more rapid mixing. Blocking is not an

uncommon technique when correlation is present among features in the target distribution

and has been shown effective in the past; e.g. see [48]. If step 4 was skipped, the resulting

method could be considered a variant of single-component Metropolis-Hastings, a common

technique for constructing a Markov chain in high dimensional state spaces [45].

While this proposal method applies to the odometry portion of our state space, there

remains the component made up of the sensor positions. In the next section, we will describe

the Rao-Blackwellization (RB) process that approximately marginalizes out this factor of

the joint distribution allowing for a further improvement in mixing. Instead of using RB,

however, one may alternate the proposal scheme described above for the robot poses st

with one that proposes alterations individually to each of the sensor positions m1, . . . ,mn

in turn. Here the ordering in which the proposals to the sensors are made will not effect

the outcome since the processes are independent. In the next paragraph, we will briefly

describe such a proposal scheme for the sensors mn as it will aid the description of the RB

step.

For sensor node mi, we generate a proposal distribution Qi(x
′|x) that is based on

constraints existing between sensor mi and any of the robot poses. Specifically, let θk

indicate the sensor node mi, i ∈ {1 : n} observed by (or observing) the robot at time step

k , as defined earlier. Now let Si represent the set of those poses such that if sk ∈ Si

then θk = mi. Now let Zi represent the corresponding set of constraints (or measurements)

providing pose estimates between sensor mi and each of the robot poses s ∈ Si. A linear

approximation is then applied to the measurement model, yielding a separate Gaussian

distribution for mi given each pose s ∈ Si and its corresponding measurement z ∈ Zi. The

128

7.3 PROBABILISTIC SENSOR NETWORK SELF-LOCALIZATION USING MCMC

product of these separate distributions is calculated and used as the proposal distribution

Qi for the location of mi. A sample is then drawn: (x′, y′, θ′) ∼ Qi as a potential new

location for mi and is accepted or not based on the equation (from Equation 7.2):

α = min

(

1,
π(x′)Q(x|x′)

π(x)Q(x′|x)

)

(7.3)

S = min

(

1,
p(m′

i|Si, Zi)Qi(mi|Si, Zi)

p(mi|Si, Zi)Qi(m′

i|Si, Zi)

)

where m′

i represents the newly proposed location for mi. This proposal scheme takes ad-

vantage of our current belief of where the robot poses are situated in order to explore high

probability regions in which the sensors could be located. Note that in the case that no

approximation is necessary in this step, for example if the measurement model is already

Gaussian, then the acceptance ratio is always one and this mixing approach is equivalent

to a Gibbs-style proposal.

3.2. Rao-Blackwellization. Through a relatively benign approximation that has

been used by techniques in related domains we can greatly accelerate the mixing rate of our

chain. Although our method is only guaranteed to produce exactly representative samples

for certain classes of models, a good approximation to the real distribution is obtained in

most circumstances, and the results considerably exceed the efforts achieved by standard

filtering techniques under the same circumstances.

Instead of sampling from p(st,mn|zt, ut) directly, we sample from the factor p(st|zt, ut).

This is accomplished by approximating p(mn|st, zt, ut) with a closed form and marginalizing

this factor out. We use a product of Gaussians similar to the proposal function Q described

in the previous section which is obtained by linearizing the measurement model, yielding

separate distributions for mi given each pose s ∈ Si and its corresponding measurement

z ∈ Zi. We then take the product of these separate distributions, qi(mi|s
t, zt, ut), as an

129

7.3 PROBABILISTIC SENSOR NETWORK SELF-LOCALIZATION USING MCMC

approximation to p(mi|s
t, zt, ut). We can now approximate p(st|zt, ut) as follows:

p(st|ut, zt) =

∫

p(st|ut)p(mn|st, ut, zt)dmn (7.4)

= p(st|ut)
n
∏

i=1

∫

p(mi|s
t, ut, zt)dmi

= p(st|ut)
n
∏

i=1

∫

p(mi|Si, Zi)dmi

≈ p(st|ut)
n
∏

i=1

∫

qi(mi|Si, Zi)dmi

≈ p(st|ut)
n
∏

i=1

E[qi(mi|Si, Zi)]

where Si and Zi are as defined in the previous section. Given samples drawn from the

approximation of p(st, |zt, ut), we can characterize the target distribution p(st,mn|zt, ut)

using either the approximation to p(mn|st, zt, ut), or the real distribution; the second re-

quiring the use of a technique such as importance sampling. The process we describe in this

section, in which the accuracy of an estimator is improved by marginalizing out variables,

is a technique referred to as Rao-Blackwellization [17].

3.3. Automatic Tuning. To ensure adequate mixing, the chain is run for an initial

tuning period during which the proposal parameter values for each component of the state

space, (specifically, each robot pose st), are automatically adjusted to approach a desired

mixing ratio, L. This tuning period is divided into a number of smaller time windows

[t1, t2 . . .] in which the chain is run for some fixed number of proposals. The proportion of

proposals accepted for each component, j, is then calculated for the current time window t,

and this value is compared to the target mixing ratio L and adjusted accordingly using an

exponential averaging scheme for use in the next time window. After time window t, The

Σ value for each component is adjusted as follows:

Σt+1
j =



















Σt
j(1− α)− CIα, M t

j < L− δ

Σt
j(1− α) + CIα, M t

j > L+ δ

Σt
j , L− δ <= M t

j <= L+ δ

130

7.3 PROBABILISTIC SENSOR NETWORK SELF-LOCALIZATION USING MCMC

where M t
j is the mixing rate of component j during time window t, I is the identity matrix,

and α, δ and C are selected for appropriate learning. After the initial tuning period the Σ

values are fixed.

3.4. Stopping Mechanism. One of the key issues when employing MCMC is

determining how long it takes for a set of samples drawn from the chain to approach the

target distribution. In practice, the initial portion of the chain is discarded to reduce the

correlation of subsequent samples with the starting point and to allow the chain to move

into high likelihood, representative configurations; i.e. the burn-in period. Typically, after

the burn-in period, samples are drawn periodically from the chain, with some fixed number

of proposals in-between each sample. Given adequate mixing, these samples are then taken

as representative of the target distribution.

As an indicator of convergence our approach employs the Gelman-Rubin statistic [43],

which is based on a variance analysis of instances of the chain restarted from different ini-

tial positions, (which should be over-dispersed with respect to the target distribution). The

resulting value, calculated for a single feature, is referred to as a potential scale reduction

factor (PSRF) and suggests how the estimated variance for the feature under consideration

could be improved by additional simulations. The key idea is that if the system has con-

verged, then the samples should exhibit a large degree of agreement regarding the statistics

of the problem. Essentially, a PSRF value near one suggests suggests that each of the

restarts obtained samples that share similar characteristics and therefore are presumably

close to the target distribution. On the other hand, a PSRF value far from one suggests

that a full tour of the target distribution has not yet been obtained. A PSRF < 1.2 is

sometimes used as a guideline for “approximate convergence” [12].

When attempting to obtain a particle representation for the PDF of the network pose,

our technique employs a number of instances of the algorithm described above running

in parallel. Each separate instance starts from a different initial configuration and runs

independently. After each instance has run for some set number of proposals, we calculate

the Gelman-Rubin statistic for a number of indicator features, namely the X and Y co-

ordinates of the sensor positions. We employ the maximum PSRF value obtained from

these indicator features as a metric to assess convergence. Under normal operation of our

algorithm, if the calculated value of this metric falls below a threshold value, (e.g. 1.2), then

131

7.4 MCMC CORRECTED FILTER-BASED LOCALIZATION

simulations are halted, and the samples from each of the parallel chains are combined as

the output. Otherwise we resume the simulation, and continue to obtain samples until our

metric suggests that we are near convergence. For the sake of convenience and brevity, in

the remainder of this paper we will refer to the parallel instances of the algorithm, described

above, as restarts and our calculated convergence metric as the PSRF obtained.

4. MCMC corrected Filter-based Localization

One possible application for the MCMC localization algorithm described above is to

use it as a complement to faster, filter-based localization techniques such as an extended

Kalman filter (EKF) or a Rao-Blackwellized particle filter (RBPF). By incorporating all

the information gathered by the robot and the stationary sensors, the MCMC algorithm

can generate an accurate estimate of the PDF for the network pose. Although we employ

both Rao-Blackwellization and a proposal scheme which exploits the sequential nature of

odometry measurements in order to improve the efficiency of the approach, the global

MCMC algorithm is relatively computationally sophisticated in comparison to filter-based

localization approaches.

In a hybrid sensor network localization approach, we assume available a fast filter-

based localization technique that can be used when there has not been the opportunity

to run the MCMC localization technique. This can be useful for the initial exploration,

and also when quick adjustments are required such as when a new network component is

added, or an existing component fails. Additionally, the filter can be employed for everyday

navigation tasks once the relative position of the network components has been determined

to satisfaction. The MCMC algorithm could be run, periodically, after some amount of

exploration, or perhaps continuously as a background process. The results could then be

used to improve the localization estimates obtained from the filter-based approach.

To investigate this concept we consider a hybrid approach composed of an EKF algo-

rithm and our MCMC algorithm. In this localization scenario, the MCMC is run period-

ically, and used to correct the mean of the EKF. When employed, the MCMC algorithm

is bootstrapped with the EKF mean and only run until shortly after the probability of the

samples obtained levels off. The final sample obtained is then used to replace the current

EKF mean (see Figure 7.3). In this situation, the MCMC algorithm is employed as an

132

7.5 RESULTS FROM SIMULATIONS

EKF Algorithm MCMC Algorithm

Observations

Pose Estimate

Current µ

Corrected µ

(µ,Σ)

All Data

Most Recent
Observation

Figure 7.3. Flow chart depicting an example hybrid approach to network localiza-
tion in which the global MCMC algorithm is run periodically to correct the mean
of the EKF.

optimizer to improve the probability of an existing configuration, as opposed to a sampler.

Starting with the EKF mean increases the effectiveness of the MCMC process by allowing

the chain to begin with a relatively high likelihood sample. Generally, this reduces the time

required by the chain to find a configuration near a local maximum (which is hopefully the

global maximum). Correction from the MCMC approach should increase the effectiveness

of the EKF by reducing the build-up of error which occurs after repeated linearization.

Ideally, this allows the hybrid estimation method to remain accurate over longer periods

and in the face of larger measurement noise.

5. Results from Simulations

We investigated the performance of our localization algorithms on data obtained from

a realistic simulator. Using this simulator we found evidence demonstrating the superior

ability of our MCMC-based localization algorithm to accurately represent network pose

distributions in comparison to two filtering techniques commonly used in similar domains:

the Rao-Blackwellized particle filter (RBPF), and the extended Kalman filter (EKF).

5.1. Simulation Details. Our simulator places N sensor nodes uniformly at ran-

dom on a two-dimensional plane. These nodes are connected via potential pathways by

selecting a sub-graph of the Delaunay triangulation. (A random graph synthesis technique

employed throughout this thesis.) The motion of a robot is then simulated through this

environment as T distinct steps made from the region of one sensor to another (see Figure

133

7.5 RESULTS FROM SIMULATIONS

Noise Level Measurement Model Motion Model
Positional Angular Positional Angular
Noise (cm) Noise (rad) Noise (%) Noise (%)

Low 5 0.0125 2.5 2.5
Moderate 10 0.025 5 5

High 20 0.05 10 10

Table 7.1. Table of different noise levels used in simulations. Values given in
standard deviations. In these experiments the motion model noise is dependent
on the amplitude of the motion, while the noise added to a sensor measurement is
independent of the actual distance from which it was taken.

7.7). To choose a destination sensor, a quasi-random walk strategy is employed. That is,

the robot first selects uniformly at random from the un-visited neighbours of its current

sensor. If there are no un-visited neighbours, a neighbor is re-visited at random.

At each step t, the robot first executes a rotation, changing only its orientation, and

then performs a translation in the new direction. These two motions are captured as the

odometry measurement ut. At the end of the translation, a new measurement zt is obtained

from the sensor located nearest the region occupied by the robot. For these experiments,

zero-mean, normally distributed noise is added to the odometry measurements for each

of the rotation and translation motions, and also for the measurement. We assume that

the motion and measurement model utilized by our localization algorithms are accurate;

that is, we know the mean µ and covariance Σ for each of the noise signals added to our

measurements. Table 7.1 shows noise parameters used for different levels of noise in our

experiments.

In order to provide benchmarks with which to compare the performance of our local-

ization algorithm, we implemented for comparison purposes, two popular Bayesian filtering

approaches: a Rao-Blackwellized particle filter (RBPF), see [31] [90], and also an Extended

Kalman Filter (EKF), see [81]. The EKF approach was based on the methodology described

in [106].

In the case of the RBPF, we considered both a ‘basic’ variant that uses the true motion

model as the proposal distribution and also a variant that applies a linearization to the

two-step motion (rotation and translation) and incorporates the most recent evidence (also

through linearization) into a closed form proposal. For both versions, the sensor node distri-

butions were maintained internal to each particle as Gaussians. Although a full discussion

134

7.5 RESULTS FROM SIMULATIONS

of the comparative performance of these two variants would detract from the focus of this

chapter, briefly we can report that when the noise parameters used in the motion and mea-

surement models of our simulation were sufficiently increased, the ‘basic’ variant generally

performed as well or better as the second variant given the same computational effort. We

suggest that this was because the proposal distribution of the second variant became less

accurate under noisy conditions due to its reliance on linearization assumptions. Where

RBPF results are reported, we present data from the variant with the best performance.

5.2. Performance Analysis. The simulation results presented in this chapter sug-

gest that our technique out-performs both the EKF and the RBPF at the task of inferring

a network pose distribution. Figures 7.4, 7.5, and 7.6 show the results obtained from the

different inference algorithms on the same simulation data for a small scale version of the

localization problem under different noise conditions; see Table 7.1 for a description of the

noise parameters. For the MCMC approach, each restart is initialized with values obtained

by running the RBPF with only enough particles to maintain a non-zero probability con-

figuration. As described in Section 3, in this experiment, all of the MCMC restarts are run

until the set of samples produced by each instance has similar statistical characteristics.

Although it provides no guarantees, this analysis gives strong evidence for the convergence

of the employed chain in the problems considered in these experiments and suggests that

the results obtained should closely reflect the actual distribution suggested by the data and

models used by our simulator.

Figures 7.4, 7.5, and 7.6 illustrate the output of the different algorithms for a small

scale localization scenario. It can be observed that the RBPF when used with K = 5000

particles produces a similar distribution to the MCMC algorithm, although the samples are

not as homogeneously distributed.1 Linearization approximations made by the EKF along

with its limited expressiveness reduce its accuracy and hence its output is the most different

from the MCMC result. This difference is most apparent under high noise conditions.

1As a final step, in both our RBPF implementation and the MCMC algorithm, the sensor locations are
sampled from the closed form approximation to their distribution given the robot poses. This is done for
each sample/particle obtained.

135

7.5 RESULTS FROM SIMULATIONS

−200 0 200 400 600

−200

−100

0

100

200

300

400

500

600

cm

cm

(a)

−200 0 200 400 600

−200

−100

0

100

200

300

400

500

600

cm

cm

(b)

−200 0 200 400 600

−200

−100

0

100

200

300

400

500

600

cm

cm

(c)

Figure 7.4. Results obtained on data obtained from the simulator with low noise
for a robot path of 4 steps through a 3 sensor network for the algorithms: a.) MCMC
b.) RBPF (K = 5000), and c.) EKF. The crosses indicate the ground truth sensor
positions. For the EKF, the samples are drawn from the mean and covariance
obtained for the position of the sensors; a three standard deviation uncertainty
ellipse is overlaid.

136

7.5 RESULTS FROM SIMULATIONS

−200 0 200 400 600

−200

−100

0

100

200

300

400

500

600

cm

cm

(a)

−200 0 200 400 600

−200

−100

0

100

200

300

400

500

600

cm

cm

(b)

−200 0 200 400 600

−200

−100

0

100

200

300

400

500

600

cm

cm

(c)

Figure 7.5. Results obtained on data obtained from the simulator with moderate
noise for a robot path of 4 steps through a 3 sensor network for the algorithms: a.)
MCMC b.) RBPF (K = 5000), and c.) EKF. The crosses indicate the ground truth
sensor positions. For the EKF, the samples are drawn from the mean and covariance
obtained for the position of the sensors; a three standard deviation uncertainty
ellipse is overlaid.

137

7.5 RESULTS FROM SIMULATIONS

−200 0 200 400 600

−200

−100

0

100

200

300

400

500

600

cm

cm

(a)

−200 0 200 400 600

−200

−100

0

100

200

300

400

500

600

cm

cm

(b)

−200 0 200 400 600

−200

−100

0

100

200

300

400

500

600

cm

cm

(c)

Figure 7.6. Results obtained on data obtained from the simulator with high noise
for a robot path of 4 steps through a 3 sensor network for the algorithms: a.) MCMC
b.) RBPF (K = 5000), and c.) EKF. The crosses indicate the ground truth sensor
positions. For the EKF, the samples are drawn from the mean and covariance
obtained for the position of the sensors; a three standard deviation uncertainty
ellipse is overlaid.

138

7.5 RESULTS FROM SIMULATIONS

MCMC Within-Cloud µ = 15.21
M = 5, N = 480 (10 Comparisons) σ = 0.68

Algorithm Dh |Dh − µ|/σ
RBPF (K = 20000) 15.50 1.85
RBPF (K = 10000) 18.69 6.55
RBPF (K = 5000) 22.92 12.74
RBPF (K = 1000) 43.75 43.22

EKF 73.05 86.07

Table 7.2. Comparison of the results obtained from the different algorithms using
the Hausdorff distance metric on data obtained from the simulator for a robot path
of 4 steps through a 3 sensor network with moderate noise.

In order to quantitatively compare the distributions obtained from the different ap-

proaches, we employed the generalized Hausdorff distance:

Dh = kth sup
a∈A

inf
b∈B

(||a− b||)

where ||a− b|| is calculated using a L2-norm and k is set to to the 95th quantile. In order

to correctly interpret a value obtained from this metric we divide the control particle cloud

into M disjoint sets of samples, each of size N . We then calculate the mean and standard

deviation of the Dh value found between each pair of sample sets. When interpreting a

distance value found between the control set and a comparison set, each of size N , we can

measure the number of standard deviations between the new distance and the previously

computed control value. One would expect similar particle clouds to yield values within

three standard deviations or so, while clouds with significant differences should obtain larger

values.

Table 7.2 shows the distance metric values obtained under moderate noise conditions

when the particle clouds from the different algorithms are compared to the MCMC result;

the same experiment presented in Figure 7.5. It can be seen that while the PDF suggested

by the EKF is significantly different from the MCMC result, the performance of the RBPF

improves as a function of the number of particles used. For this size of a problem, the data

obtained from the RBPF with 20,000 particles is not significantly different from that of the

MCMC technique. We observed a similar result for the RBPF across the three different

noise levels we considered in this problem. The EKF, however, performed better under

lower noise conditions.

139

7.5 RESULTS FROM SIMULATIONS

−800 −600 −400 −200 0 200 400 600 800

−400

−200

0

200

400

600

800

cm

cm

1

2

3

4

Figure 7.7. Example simulated sensor network environment. The red crossed
indicate sensor positions, the blue circles indicate regions near each of the sensors
which may be visited by the mobile robot, and the dotted lines indicate potential

pathways

As the scale of the problem increases, however, it becomes increasingly difficult for the

filtering techniques to accurately characterize the distribution. For example, figures 7.7, 7.8,

7.9 and 7.10 show the results obtained from the different algorithms on the same network

with moderate noise as the path length of the robot increases. From the MCMC result, it can

be seen that the uncertainty of the distribution suggested by the MCMC result decreases

as more information is incorporated into the estimate in the form of additional sensor

measurements. When the path length is short, the filtering approaches depict approximately

the same PDF as the MCMC result. As path length taken by the robot increases, however,

the support of the distributions suggested by the filtering approaches rapidly decreases

compared to the MCMC result. For example, the PDF suggested by the RBPF collapses to

a single small region after only 9 steps by the robot, even with 20000 particles. Although

not as extreme, the distribution suggested by the EKF also shrinks considerably at this

point. At the end of this simulation the distributions suggested by both the RBPF and the

EKF do not contain the ground truth position of any of the sensors.

Figure 7.11 shows an example of results obtained from the different inference algorithms

on a moderately sized problem in which the robot visits each of the sensors a number of

times. In this problem instance, while both the EKF and the RBPF provide good estimates

140

7.5 RESULTS FROM SIMULATIONS

−1000 −800 −600 −400 −200 0 200 400 600 800

−400

−200

0

200

400

600

800

cm

cm

(a)

−1000 −800 −600 −400 −200 0 200 400 600 800

−400

−200

0

200

400

600

800

cm

cm

(b)

−1000 −800 −600 −400 −200 0 200 400 600 800

−400

−200

0

200

400

600

800

cm

cm

(c)

Figure 7.8. Results obtained on data obtained from the simulated environment
shown in figure 7.7 with moderate noise after the robot visited sensor regions: (1,
2, 4, 1, 3), for the algorithms: a.) MCMC b.) RBPF (k = 20000) (not all particles
shown), and c.) EKF. the crosses indicate the ground truth sensor positions. for
the EKF, the samples are drawn from the mean and covariance obtained for the
position of the sensors; a three standard deviation uncertainty ellipse is overlaid.

141

7.5 RESULTS FROM SIMULATIONS

−1000 −800 −600 −400 −200 0 200 400 600 800

−400

−200

0

200

400

600

800

cm

cm

(a)

−800 −600 −400 −200 0 200 400 600 800

−400

−200

0

200

400

600

800

cm

cm

(b)

−800 −600 −400 −200 0 200 400 600 800

−400

−200

0

200

400

600

800

cm

cm

(c)

Figure 7.9. Results obtained on data obtained from the simulated environment
shown in Figure 7.7 with moderate noise after the robot visited sensor regions: (1,
2, 4, 1, 3, 2, 4, 2, 1), for the algorithms: a.) MCMC b.) RBPF (K = 20000) (not
all particles shown), and c.) EKF. The crosses indicate the ground truth sensor
positions. For the EKF, the samples are drawn from the mean and covariance
obtained for the position of the sensors; a three standard deviation uncertainty
ellipse is overlaid. 142

7.5 RESULTS FROM SIMULATIONS

−1000 −800 −600 −400 −200 0 200 400 600 800

−400

−200

0

200

400

600

800

cm

cm

(a)

−800 −600 −400 −200 0 200 400 600 800

−400

−200

0

200

400

600

800

cm

cm

(b)

−800 −600 −400 −200 0 200 400 600 800

−400

−200

0

200

400

600

800

cm

cm

(c)

Figure 7.10. Results obtained on data obtained from the simulated environment
shown in Figure 7.7 with moderate noise after the robot visited sensor regions:
(1, 2, 4, 1, 3, 2, 4, 2, 1, 4, 1, 3, 1), for the algorithms: a.) MCMC b.) RBPF
(K = 20000) (not all particles shown), and c.) EKF. The crosses indicate the
ground truth sensor positions. For the EKF, the samples are drawn from the mean
and covariance obtained for the position of the sensors; a three standard deviation
uncertainty ellipse is overlaid. 143

7.5 RESULTS FROM SIMULATIONS

−1000 −500 0 500 1000 1500

−1000

−500

0

500

1000

cm

cm

(a)

−1000 −500 0 500 1000 1500

−1000

−500

0

500

1000

cm

cm

(b)

Figure 7.11. Results for data obtained from the simulator with moderate noise for
a robot path of 50 steps through a 6 sensor network for the algorithms: a.) MCMC
b.) RBPF (K = 20000), (black particles) and EKF (blue uncertainty ellipses). The
red crosses indicate the actual sensor positions.

of the maximum likelihood location for the sensors, their uncertainty estimates are extremely

poor in comparison to the MCMC approach which, we argue, is portraying the underlying

distribution with reasonable accuracy. The EKF is over-confident and the RBPF suffers

severely from the particle-depletion problem and shows a lack of diversity. In general,

in our simulations, we observed that both the EKF and the RBPF suggest distributions

that diverge from that suggested by the MCMC algorithm as the path length of the robot

increases and this divergence is usually towards over-confidence. Further insight can be

gained by considering the likelihood of the final configurations obtained in this example.

Given an adequate burn-in time, the log likelihoods of the final configurations obtained by

144

7.5 RESULTS FROM SIMULATIONS

−140 −120 −100 −80 −60 −40 −20 0 20
0

200

400

600

800

1000

1200

1400

Normalized LLH

N
um

be
r

of
 S

am
pl

es

RBPF
MCMC

Figure 7.12. Histogram comparing the relative log likelihoods of the final config-
uration samples obtained from the MCMC and RBPF (k = 20000) techniques for
the simulation result shown in Figure 7.11. The likelihoods were normalized such
that ground truth had a log likelihood of zero.

MCMC approach the same order of magnitude as ground truth, and typically are much

higher in likelihood than results obtained from the RBPF, even with a large number of

particles; e.g. see Figure 7.12.

To use the MCMC technique to provide a maximum likelihood estimate (MLE) for

the sensor positions, one can consider the sample with maximum likelihood (ML) or the

mean of the samples obtained. In our simulations, we observed that the mean of the cloud

consistently gave good results, although an estimate obtained from the RBPF on the same

problem instance generally had similar accuracy; e.g. see Figure 7.13. The performance

of the maximum likelihood MCMC sample had a much higher variance, and while it was

occasionally extremely accurate as an estimator, it was overall less consistent.

5.3. Convergence Issues. Figure 7.14 demonstrates the improved convergence

properties of the odometry-based proposal scheme used in conjunction with RB over single-

component Metropolis-Hastings. Presumably the application of RB removes some of the

correlation between individual components of the state space and allows much larger jumps

than would otherwise be possible. Supporting this idea is the observation that the auto-

matically tuned sigma values for individual components, (i.e. the robot poses st), are in

general larger when RB is employed than when it is not for the same measurement data.

145

7.5 RESULTS FROM SIMULATIONS

20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8
x 10

4

S
qu

ar
ed

 E
rr

or

Path Length of Robot

MCMC sample mean
EFK mean
RBPF Max LH sample

Figure 7.13. Squared error of MLE of sensor positions as a function of robot path
length through a 6 senor network; (the same simulation presented in Figure 7.11).
The result obtained from the mean of the RBPF samples was similar, but poorer,
than the RBPF maximum likelihood sample in this experiment and not presented
for improved clarity.

0 2 4 6 8 10

x 10
5

1

2

3

4

5

6

7

8

9

10

Number of Proposals

P
S

R
F

Single−Component MH
Odometry−Based Proposal
Odometry−Based Proposal and RB
PSRF = 1.2

Figure 7.14. Example of PSRF as a function of computational effort for different
variants of the MCMC global inference algorithm. Data are presented based on
simulation data gathered from a 4 sensor, 12 path length scenario. The PSRF is
calculated given 4 restarts of each algorithm.

146

7.5 RESULTS FROM SIMULATIONS

5.4. Analysis of EKF-mean Correction. In addition to using the MCMC ap-

proach for stand-alone probabilistic self-localization, we also assessed its use as a comple-

ment to the faster EKF approach as described in Section 4. We found that under moderate

and high noise conditions, on average, the application of EKF-mean correction via the

MCMC algorithm improved the squared error of the EKF mean. For example, Figure 7.15

shows the results of the hybrid MCMC/EFK approach on small networks under different

noise conditions. For these small path lengths, the application of EKF-mean correction did

not make a large difference under low noise conditions. Considerable reductions in error

were observed, however, for moderate and high noise conditions.

Figure 7.16 demonstrates the ability of the hybrid EKF-MCMC approach to reduce

the error inherent in the linear filtering approach in larger scenarios. For the long path

lengths, and the moderate noise conditions considered in this experiment, the EKF estimate

eventually accumulates large errors due to linearization. However, the EKF is able to

maintain a more accurate estimate of the sensor positions by applying the MCMC algorithm

at regular intervals (every 10 steps) in the robot’s path. As shown in the figure, the

estimation error grows much more slowly when this type of correction is applied.

In general, we observed that if the EKF is performing well, then the configuration it

suggests is often already in a high likelihood location. In this case the MCMC algorithm

does not necessarily move it towards the ground truth position, but just alters it slightly

in order to locally improve its probability. Where the correction provided the most help is

when the EKF was performing poorly; i.e. the correction prevents the EKF from diverging.

147

7.6 EXPERIMENTAL DATA

0 2 4 6 8 10 12 14 16
−10

0

10

20

30

40

50

60

70

Sensors Visited in Exploration Process

P
er

ce
nt

 R
ed

uc
tio

n
in

 S
qu

ar
ed

 E
rr

or

Low Noise
Moderate Noise
High Noise

Figure 7.15. Percentage improvement in the squared error of the EKF mean using
MCMC correction for different noise levels. The results obtained from 100 trials on
4 node sensor networks.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

S
qu

ar
ed

 E
rr

or

Sensors Visited in Exploration Process

EKF Mean

Corrected EKF Mean

Figure 7.16. Mean error in estimation of final sensor positions for EKF estimation
alone and the hybrid EKF-MCMC approach. The results obtained from 100 trials
on 10 node sensor networks with moderate levels of noise.

6. Experimental Data

We applied our MCMC approach to localization on mapping data gathered from a

deployed camera sensor network and a single mobile robot (see Figure 7.17). The target

sensor network is located in an office environment, and consists of seven networked cameras.

The robot traveled through a pair of loops connected by a long straight hallway with length

148

7.6 EXPERIMENTAL DATA

(a) (b)

Figure 7.17. Pictures of the components of the camera sensor network used in the
experimental results of this chapter.

approximately 50 m as shown in Figure 7.18(a). A Nomadics Scout robot mounted with

a target with six recognizable patterns was used to perform a calibration procedure and

obtain position measurements using a method described in Rekleitis et al. [105].

The system for conducting these experiments was implemented by Dave Meger while

conducting research towards his Master’s Thesis at McGill University under the combined

supervision of Dr. Gregory Dudek and Dr. Ioannis Rekleitis (see [82] for futher details).

Some of the infrastructure for the network was based on the experimental setup we describe

in this text in Section 5 of Chapter 3. The data was gathered by Meger and Rekleitis and has

been used in previously published results [83] [106]. Meger and Rekleitis have collaborated

with us in applying the techniques presented in this chapter to this same data set.

Due to the size of the environment, and lack of line-of-sight between sensor positions,

ground truth data could not be collected for this experiment, but there are several measures

which can be used for qualitative assessment of estimation accuracy on this data. First, care

was taken to return the robot to within a few centimetres of its initial position at the end

of the run, which implies the first and last robot positions should agree very closely in any

accurate estimate. Also, sensor location accuracy can be estimated visually, by comparing

to the sensor locations recorded on Figure 7.18(a).

When applied to the data gathered during these experiments our algorithm converged

in under two hours2 on a P4, 3.2 GHz machine with 1 GB of RAM. Figure 7.18 shows the

2This duration was calculated per restart of the algorithm. In this problem instance four restarts were
employed for the purpose of applying the convergence analysis.

149

7.6 EXPERIMENTAL DATA

(a)

−1000 −500 0 500 1000 1500 2000 2500

−1500

−1000

−500

0

500

1000

1500

X (cm)

Y
 (

cm
)

MCMC Result

(b)

Figure 7.18. (a) Approximate floor plan showing sensor locations during the ex-
periment. (b) The estimated robot path (based on a MLE estimate) and distribu-
tions of the sensor positions resulting from our approach.

150

7.7 DISCUSSION

results obtained. This figure includes an approximation to the robot path as a sequence of

linear motions based on the ML configuration obtained. Although this MCMC approach is

relatively computationally expensive, sensor network calibration can be considered a one-

time expense and accurate location and uncertainty results can be utilized for higher level

planning and reasoning purposes throughout the lifetime of the system. The final robot

positions can be observed to lie within a meter from the initial position, which is a strong

indicator of map accuracy, as the path length is over 200 m in total.

7. Discussion

This chapter presents an approach to the Probabilistic Sensor Localization Problem

that exploits a combination of emplaced sensing nodes and a moving robot. Our approach

is capable of providing a representation of the underlying PDF with much greater efficiency

and accuracy than other currently available options, and furthermore, provides a principled

stopping mechanism for determining when enough computational effort has been expended.

This work also demonstrates the limitations of current filtering-based techniques at accu-

rately representing uncertainty in sensor network localization.

Although aimed at the sensor network domain, this technique can also be employed in

any SLAM scenario involving a robot and landmarks with known correspondences. Even

for larger scale problems in which the computation required becomes an issue for ‘on-

platform’ implementation, this approach can be run as an off-line batch process or as a

corrective mechanism for faster techniques. One value might be to provide a measuring-

stick for tuning the performance of faster algorithms, particularly where their uncertainty

measurements are concerned. Additionally, the nature of the MCMC algorithm makes it

suitable for extensions to a multi-robot scenario where multiple mobile robots explore the

same sensor network collecting information from their interaction with the sensor nodes and

with each other.

The work also entails some open problems. One open issue is how the quantity of data

collected affects the accuracy with which the PDF can be represented. It appears that one

possible optimization step could be to omit some of the constraints in order to quickly arrive

at a distribution. Data could then be incrementally included to improve accuracy. This

151

7.7 DISCUSSION

could yield an ‘anytime’-style algorithm that could quickly produce usable results which

become more refined with additional computation.

Other issues relate to the use of the MCMC algorithm as a corrective technique for

faster approaches. In this chapter, we have only considered correcting the mean of the

EKF. In principle, however, the uncertainty represented by the EKF covariance could also

be corrected. Running the MCMC technique to convergence at some point in the robot’s

path would make correcting the EKF covariance at that time-step trivial, but would both

make the EKF redundant and defeat the speed advantage of incorporating the technique. A

more interesting approach would be to correct the EKF covariance based only on the final

high probability samples obtained by the MCMC as in burns in. For example, a simple

approach might be to increase, if necessary, the appropriate diagonal components of the EKF

covariance until the likelihood of the final MCMC obtained sample is within some threshold.

A related direction would be to alter a standard RBPF such as the one implemented in this

work to include a global correction step utilizing our MCMC approach. Incorporating

an MCMC step in a RPBF has been considered before [31] and should improve particle

diversity and ultimately bring the distribution suggested closer to the target distribution.

It would be interesting to see how much computation would be needed to obtain results

with reasonable uncertainty estimates.

152

CHAPTER 8

Conclusion and Future Work

1. Summary

In this thesis we have considered the problem of inferring a representation of the envi-

ronment given limited sensory data. We presented two main sub-problems: one interested

in inferring the topology of the environment; and one interested in inferring metric relation-

ships in the environment. In this research, we have considered these two issues as separate

problems, however, topological and metric information are highly complementary and can

allow an intelligent system to build up a functional representation of its surroundings which

can be used as input to higher level processing tasks. In our research into these two top-

ics, we have considered different aspects of the respective problems and investigated them

through simulations and experiments. For the most part we consider statistical methods

that employ stochastic sampling techniques to provide approximate solutions to problems

for which computing the optimal or exact solution is intractable.

The first sub-problem is made up of Chapters 3, 4 and 5. In Chapter 3 we presented

the bulk of our work on topology inference and assessed the approach with experiments,

while in Chapters 4 and 5 we presented some interesting related investigations but relied

solely on simulations for verification purposes. The second sub-problem is made up of

Chapters 6 and 7. Here the bulk of the work on metric inference along with experimental

validation is presented in Chapter 7. In the preceding Chapter 6 we introduce the concept

of self-localization and present some closely related work based on numerical simulations. A

number of different statistical and inference techniques and technologies have been explored

8.2 FUTURE WORK

in the process of our investigations in both sub-problems. The focus has been mainly

on issues related to sensor networks, but mobile robots have been incorporated into our

investigations in Chapters 5 and 7.

We have shown that with various degrees of success, depending on the quality of the

sensing information available, an intelligent system can infer a great deal of information

regarding its placement in the environment and potentially its uncertainty regarding this

placement. Our research could potentially allow a system to recover complementary metric

and topological information regarding the immediate environment. In Chapters 3 and 4 we

have shown that non-discriminating observations of activity in the monitored region can

be sufficient to infer network connectivity information while in Chapter 5 we show that a

topological map of a region can be inferred by a mobile robot with only rudimentary sensing

abilities. Chapters 6 and 7 demonstrate the ability of a sensor network to infer the relative

positions of its components through noisy inter-sensor pose estimates. In all these cases

we have worked with observational data of the quality that could be obtained from typical

low-cost sensors.

The work addressed in this thesis demonstrates the potential for the self-calibration

of sensor networks and other intelligent systems. We have presented an investigation into

several research areas related to various aspects of this self-calibration problem. Simula-

tions and experimental results suggest that our techniques compare favorably to related

approaches and show real world potential.

2. Future Work

The potential for future work on various portions of this thesis bas been considered

throughout the text, and the reader is directed towards the individual chapters for these

discussions. In this section, we collect together broader future directions suggested by the

research.

Our current work in sensor network self-calibration attempts to address several as-

pects of inferring environmental parameters given imperfect observational data, however,

in order to make these approaches practical we need to address performance and scalabil-

ity. Some of the algorithms discussed in this paper employ heavy probabilistic techniques

which limit their application to networks of less than a hundred nodes; a number far less

154

8.2 FUTURE WORK

than that envisioned in future ad-hoc deployments. Therefore, improvements in terms of

performance or scalability to either topological or metric inference are obvious possibilities

for future research. For example, the computationally sophisticated MCEM approach to

topology inference presented in Chapter 3 could initialized with one of the faster heuristic

techniques for topology inference presented in Chapters 4 or 5. Both of these heuristic

based techniques are less robust to realistic levels of error, but could potentially initialize

the probabilistic approach with a relatively high likelihood configuration which could lead

to faster convergence. In the self-localization work presented in Chapter 6 and in Chapter

7, obtaining an accurate PDF of the pose of the network requires running the MCMC chain

to convergence which becomes impractical with larger networks. It is possible that one

could achieve improvement in run time by partitioning the underlying constraint graph into

multiple regions of high edge density, solve each region separately and then combine the

results in a principled manner.

The thesis has focused on two classes of techniques which can be used to recover a rep-

resentation of the surrounding environment. The information each inference approach can

learn regarding the environment is complementary to the other. Each approach, however,

requires a different set of inputs and functions independently of the other approach. An

intriguing possibility is incorporating the two types of inference together in some manner

that is capable of exploiting the relationship between a topological and metric viewpoint.

Such a hybrid approach could potentially function more efficiently in some situations than

running two separate algorithms independently. It seems clear that knowledge regarding

the metric distances between sensors could be exploited to improve the topology inference

algorithm and visa versa. For example, assumptions about maximum agent velocities could

help restrict or make less likely certain trajectory samples. These clues should speed up

convergence of the topology algorithm and improve its accuracy by avoiding inconsistent

network configurations. Likewise, the connectivity information could help suggest sensors

that are closely or distantly located based on delay times. It would be interesting to simul-

taneously solve for the topology and relative metric locations of a sensor network based on

both observational data and inter-sensor distance estimates.

A potentially interesting and closely related research direction would be to slightly al-

ter our problem formulation and allow our sensors to move. Instead of exploiting existing

155

8.3 FINAL THOUGHTS

motion in the environment the network of sensors could exploit observations based on their

own motion in order to gain an understanding of the world. For example, one problem

formulation could allow the network of sensors, which can now be considered a fleet of mo-

bile robots, to observe each other only when they pass by in close proximity. Additionally,

they could observe some relatively uninformative information regarding landmarks in the

environment; e.g. a non-unique signature. If we assume the odometry error of a single

robot is limited to range information only and its motion through the environment is essen-

tially random, then many of the approaches applied in the two self-configuration techniques

previously described can be leveraged to some degree.

3. Final Thoughts

In this thesis we have presented a number of methods for inferring a representation of

the environment given limited sensory data. A key application of this type of research is

in the area of sensor network self-calibration. There is a need for some level of automation

in the calibration process of systems which are made up of large numbers of sensors. The

realization of practical and economic deployments of sensor networks for purposes such as

climate and emission monitoring will be hampered by complex installation processes that

involve many laborious manual steps. Our research is ultimately aimed at alleviating some

of the configuration complexities involved in deploying large, multi-component systems.

This type of problem will almost certainly grow in importance both for its theoretical and

practical value as distributed sensing becomes more prevalent.

156

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. A. Cayirci, A survey on

sensor networks, IEEE Communications Magazine 40 (2002), no. 8, 102–114.

[2] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan, An introduction to MCMC

for machine learning, Machine Learning 50 (2003), 5–43.

[3] T. Arici and Y. Altunbasak, Adaptive sensing for environment monitoring using

wireless sensor networks, in Proc. IEEE Wireless Communications and Networking

Conference (WCNC) (Atlanta, GA), March 2004.

[4] Y. Bar-Shalom (ed.), Multitarget multisensor tracking: advanced applications,

vol. II, Artech House, 1992.

[5] C. R. Barnes, J. R. Delaney, B. M. Howe, and N. Penrose, Neptune: A regional

cabled observatory in the northeast pacific, White paper for Ocean Research Inter-

active Observatory Networks (ORION) meeting, January 2004.

[6] M.A. Batalin, G.S. Sukhatme, and M. Hattig, Mobile robot navigation using a

sensor network, IEEE International Conference on Robotics and Automation (New

Orleans, Louisiana), vol. 1, April 26-May 1 2004, pp. 636 – 641.

[7] L. E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite

state markov chains, Annals of Mathematical Statistics 37 (1966), 1554–1563.

[8] I. Borg and P. Groenen, Modern multidimensional scaling: theory and applications,

Springer, New York, 1997.

[9] A. Boukerche, H.A.B.F. Oliveira, E. F. Nakamura, and A.A.F. Loureiro, Secure

localization algorithms for wireless sensor networks, 46 (2008), no. 4, 96–101.

REFERENCES

[10] J. E. Boyd and J. Meloche, Evaluation of statistical and multiple-hypothesis tracking

for video traffic surveillance, Machine Vision and Applications 13 (2003), 344–351.

[11] M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H. Schwabach, Distributed

embedded smart cameras for surveillance applications, Computer 39 (2006), no. 2,

68–75.

[12] S. P. Brooks and A. Gelman, General methods for monitoring convergence of it-

erative simulations, Journal of Computational and Graphical Statistics 7 (1998),

434–455.

[13] N. Bulusu, D. Estrin, L. Girod, and J. Heidemann, Scalable coordination for wireless

sensor networks: self-configuring localization systems, Sixth International Sympo-

sium on Communication Theory and Applications (ISCTA-01) (Ambleside, Lake

District, UK), July 2001, pp. 1–6.

[14] N. Bulusu, J. Heidemann, and D. Estrin, Gps-less low cost outdoor localization

for very small devices, IEEE Personal Communications Magazine 7 (2000), no. 5,

28–34.

[15] W. Burgard, D. Fox, H. Jans, C. Matenar, and S. Thrun, Sonar-based mapping

with mobile robots using EM, Proc. 16th International Conf. on Machine Learning,

Morgan Kaufmann, San Francisco, CA, 1999, pp. 67–76.

[16] S. Capkun, M. Hamdi, and J. Hubaux, GPS-free positioning in mobile ad-hoc net-

works, Proc. 34th Annual Hawaii International Conference on System Sciences, Jan.

2001, pp. 10–.

[17] G. Casella and C. P. Robert, Rao-blackwellisation of sampling schemes, Biometrika

83 (1996), no. 1, 81–94.

[18] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao, Habitat moni-

toring: Application driver for wireless communications technology, 2001 ACM SIG-

COMM Workshop on Data Communications in Latin America and the Caribbean,

April 2001.

158

REFERENCES

[19] H. Choset and K. Nagatani, Topological simultaneous localization and mapping

(SLAM): toward exact localization without explicit localization, IEEE Transactions

on Robotics and Automation 17 (2001), no. 2, 125 – 137.

[20] M. J. Coates, Distributed particle filtering for sensor networks, Int. Symp. Informa-

tion Processing in Sensor Networks (Berkeley, California), April 2004.

[21] N. Correal and N. Patwari, Wireless sensor networks: Challenges and opportunities,

MPRG/Virgina Tech Wireless Symposium, 2001.

[22] M. Couture, M. Barbeau, P. Bose, and E. Kranakis, Incremental construction of

k-dominating sets in wireless sensor networks, (2008).

[23] K. Dantu and G. S. Sukhatme, Rethinking data-fusion based services in tiered sensor

networks, The Third IEEE Workshop on Embedded Networked Sensors, 2006.

[24] F. Dellaert and M. Kaess, Square Root SAM: Simultaneous location and mapping

via square root information smoothing, International Journal of Robotics Research

25 (2006), no. 12, 1181–1203.

[25] F. Dellaert, S. Seitz, C. Thorpe, and S. Thrun, EM, MCMC, and chain flipping

for structure from motion with unknown correspondence, Machine Learning, special

issue on Markov chain Monte Carlo method 5 (2003), 45–71.

[26] B. Delyon, M. Lavielle, and E. Moulines, Convergence of a stochastic approximation

version of the em algorithm, Annals of Statistics (1999), no. 27, 94–128.

[27] A. Dempster, N. Laird, and D. Rubin, Maximum likelihood from incomplete data

via the EM algorithm, Journal of the Royal Statistical Society 39 (1977), 1–38.

[28] X. Deng, E. Milios, and A. Mirzaian, Robot map verification of a graph world,

Journal of Combinatorial Optimization 5 (2001), no. 4, 383–395.

[29] X. Deng and A. Mirzaian, Competitive robot mapping with homogeneous markers,

IEEE transactions on Robotics and Automation 12 (1996), no. 4, 532–542.

[30] J. Djugash, S. Singh, G. Kantor, and W. Zhang, Range-only SLAM for robots

operating cooperatively with sensor networks, Proc. of the International Conference

on Robotics and Automation, May 2006, pp. 2078–2084.

159

REFERENCES

[31] A. Doucet, N. de Freitas, K. Murphy, and S. Russell, Rao-blackwellised particle

filtering for dynamic bayesian networks, In Proceedings of the Sixteenth Conference

on Uncertainty in Artificial Intelligence (Stanford, California), Morgan Kaufmann,

2000.

[32] G. Dudek, Environmental representation using multiple abstraction levels, Proceed-

ings of the IEEE 84 (1996), no. 11, 1684–1704.

[33] G. Dudek, P. Freedman, and S. Hadjres, Mapping in unknown graph-like worlds,

Journal of Robotic Systems 13 (1996), no. 8, 539–559.

[34] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, Using local information in a non-

local way for mapping graph-like worlds, International Joint Conference on Artificial

Intelligence (Chambery, France), August 1993.

[35] , Map validation and robot self-location in a graph-like world, Robotics and

Autonomous Systems 22 (1997), no. 2, 159–178.

[36] G. Dudek and D. Marinakis, Topological mapping with weak sensory data, AAAI

National Conference on Artificial Intelligence (Vancouver, Canada), July 2007,

pp. 1083–1088.

[37] T.J. Ellis, D. Makris, and J. Black, Learning a multicamera topology, Joint IEEE In-

ternational Workshop on Visual Surveillance and Performance Evaluation of Track-

ing and Surveillance (Nice, France), October 2003, pp. 165–171.

[38] D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar, Next century challenges:

Scalable coordination in sensor networks, Mobile Computing and Networking, 1999,

pp. 263–270.

[39] R. B. Fisher, Self-organization of randomly placed sensors, Eur. Conf. on Computer

Vision (Copenhagen), May 2002, pp. 146–160.

[40] G. S. Fishman, Monte carlo concepts, algorithms, and applications, Springer-Verlag,

New York, 1996.

[41] D. Gay, P. Levis, and D. Culler, Software design patterns for tinyos, Proc. ACM

SIGPLAN/SIGBED 2005 Conference on Languages, Complilers, and Tools for Em-

bedded Systems (LCTES’05) (Chicago), June 2005, pp. 40–49.

160

REFERENCES

[42] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, The nesc

language: A holistic approach to networked embedded systems, ACM SIGPLAN

Conference on Programming Language Design and Implementation (San Diego,

CA.), June 2003, pp. 1–11.

[43] A. Gelman and D. B. Rubin, Inference from iterative simulation using multiple

sequences (with discussion), Statistical Science 7 (1992), 457–511.

[44] P. Giguere, G. Dudek, C. Prahacs, and S. Saunderson, Environment identifica-

tion for a running robot using inerial and actuator cues, Proceedings of Robotics:

Science and Systems (Philadelphia, USA), August 2006.

[45] W. Gilks, S. Richardson, and D.J. Spiegelhalter, Markov chain monte carlo in

practice, Chapman and Hall, 1996.

[46] J.-S. Gutmann and K. Konolige, Incremental mapping of large cyclic environments,

International Symposium on Computational Intelligence in Robotics and Automa-

tion (CIRA’99), (Monterey, CA), November 1999.

[47] K. Z. Haigh, W. Foslien, and V. Guralnik, Visual query language: Finding patterns

in and relationships among time series data, Seventh Workshop on Mining Scientific

and Engineering Datasets (Lake Buena Vista, FL), April 2004.

[48] F. Hamze and N. de Freitas, From fields to trees: On blocked and collapsed mcmc

algorithms for undirected probabilistic graphical models, Proc. Uncertainty in Arti-

ficial Intelligence, 2004.

[49] W. Hastings, Monte carlo sampling methods using markov chains and their appli-

cations, Biometrika 57 (1970), 97–109.

[50] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister, System ar-

chitecture directions for networked sensors, Architectural Support for Programming

Languages and Operating Systems, 2000, pp. 93–104.

[51] T. Huang and S. J. Russell, Object identification in a bayesian context, IJCAI, 1997,

pp. 1276–1283.

[52] , Object identification: A bayesian analysis with application to traffic surveil-

lance, Artificial Intelligence 103 (1998), no. 1-2, 77–93.

161

REFERENCES

[53] A. T. Ihler, J. W. Fisher III, R. L. Moses, and A. S. Willsky, Nonparametric belief

propagation for self-calibration in sensor networks, IEEE Journal of Selected Areas

in Communication 23 (2005), no. 4, 809–819.

[54] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, Directed

diffusion for wireless sensor networking, IEEE/ACM Transactions on Networking,

vol. 11, 2003, pp. 2–16.

[55] O. Javed, Z. Rasheed, K. Shafique, and M. Shan, Tracking across multiple cameras

with disjoint views, The Ninth IEEE International Conference on Computer Vision

(Nice, France), vol. 2, Oct. 2003, pp. 952–957.

[56] M. Jerrum and A. Sinclair, Markov chain monte carlo method: an approach to ap-

proximate counting and integration, Approximation Algorithms for NP-hard Prob-

lems (D.S.Hochbaum, ed.), PWS Publishing, Boston, 1996.

[57] J. Jonasson and O. Schramn, On the cover time of planar graphs, Electronic Com-

munications in Probability, 2000, pp. 85–90.

[58] R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer

Computations (R. E. Miller and J. W. Thatcher, eds.), New York:Plenum, 1972,

pp. 85–103.

[59] M. Koucky, Universal traversal sequences with backtracking, In Proc. of 16th Annual

IEEE Conference on Computational Complexity, 2001, pp. 21–27.

[60] F. Kuhn, T. Moscibroda, and R. Wattenhofer, Initializing newly deployed ad hoc

and sensor networks, in Proceedings of 10th Annual International Conference on

Mobile Computing and Networking (MOBICOM), 2004, pp. 260–274.

[61] B. Kuipers and P. Beeson, Bootstrap learning for place recognition, AAAI National

Conference on Artificial Intelligence (Edmonton, Canada), 2002.

[62] B. Kuipers and Y. T. Byun, A robot exploration and mapping strategy based on a

semantic hierarchy of spatial representations, Journal of Robotics and Autonomous

Systems 8 (1991), 47–63.

[63] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer, and

D. Culler, The emergence of networking abstractions and techniques in tinyos, the

162

REFERENCES

First USENIX/ACM Symposium on Networked Systems Design and Implementa-

tion (NSDI 2004), 2004, pp. 1–14.

[64] P. Levis, N. Patel, D. Culler, and S. Shenker, Trickle: A self-regulating algorithm

for code propagation and maintenance in wireless sensor networks, USENIX/ACM

Symposium on Network Systems Design and Implementation(NSDI 2004), 2004.

[65] J.J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao, Distributed group management

for track initiation and maintenance in target localization applications, Proceed-

ings of 2nd International Workshop on Information Processing in Sensor Networks

(IPSN) (Palo Alto, CA.), April 2003, pp. 113–128.

[66] F. Lu and E. Milios, Globally consistent range scan alignment for environment

mapping, Autonomous Robots 4 (1997), 333–349.

[67] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, Wireless

sensor networks for habitat monitoring, ACM International Workshop on Wireless

Sensor Networks and Applications (WSNA’02) (Atlanta, GA), September 2002.

[68] D. Makris, T.J. Ellis, and J. Black, Bridging the gaps between cameras, IEEE Con-

ference on Computer Vision and Pattern Recognition CVPR 2004 (Washington

DC), vol. 2, June 2004, pp. 205–210.

[69] Y. Maon, B. Schieber, and U. Vishkin, Parallel ear decomposition search (EDS)

and st-numbering in graphs, (1986), 277–298.

[70] D. Marinakis and G. Dudek, Sensor network topology inference, Neural Informa-

tion Processing Systems Workshop: Intelligence Beyond the Desktop (Whistler,

Canada), Dec 2005.

[71] , Topology inference for a vision-based sensor network, In Proc. of Canadian

Conference on Computer and Robot Vision (Victoria, Canada), May 2005, pp. 121–

128.

[72] , A practical algorithm for network topology inference, IEEE Intl. Conf. on

Robotics and Automation (Orlando, Florida), May 2006, pp. 3108–3115.

[73] , Probabilistic self-localization for sensor networks, AAAI National Confer-

ence on Artificial Intelligence (Boston, Massachusetts), July 2006, pp. 976–981.

163

REFERENCES

[74] , Self-calibration of a vision-based sensor network, Image and Vision Com-

puting (In Press) (2006).

[75] , Topological mapping through distributed, passive sensors, International

Joint Conference on Artificial Intelligence (Hyderabad, India), Jan. 2007, pp. 2147–

2152.

[76] , Occam’s razor applied to network topology inference, IEEE Transactions

on Robotics 24 (2008), no. 2, 293 – 306.

[77] D. Marinakis, G. Dudek, and D. Fleet, Learning sensor network topology through

monte carlo expectation maximization, IEEE Intl. Conf. on Robotics and Automa-

tion (Barcelona, Spain), April 2005, pp. 4581–4587.

[78] D. Marinakis, P. Giguere, and G. Dudek, Learning network topology from simple

sensor data, In Proceedings of the Canadian Conference on Artificial Intelligence

(Montreal, Canada), May 2007, pp. 417–428.

[79] D. Marinakis, D. Meger, I. Rekleitis, and G. Dudek, Hybrid inference for sensor

network localization using a mobile robot, AAAI National Conference on Artificial

Intelligence (Vancouver, Canada), July 2007, pp. 1089–1094.

[80] A. Martinelli, N. Tomatis, and R. Siegwart, Some results on SLAM and the closing

the loop problem, IEEE/RSJ Intenational Conference on Intelligent Robots and

Systems (Edmonton, Canada), 2005.

[81] P. Maybeck, Stochastic models, estimation ond control, vol. 1, Academic, New York,

1979.

[82] D. Meger, Planning, localization, and mapping for a mobile robot in a camera net-

work, Master’s thesis, McGill University, 2007.

[83] D. Meger, I. Rekleitis, and G. Dudek, Autonomous mobile robot mapping of a cam-

era sensor network, The 8th International Symposium on Distributed Autonomous

Robotic Systems (DARS) (Minneapolis, Minnesota), July 2006, pp. 155–164.

[84] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller,

Equation of state calculation by fast computing machines, Journal of Chemical

Physics 21 (1953), 1087–1092.

164

REFERENCES

[85] T. M. Michell, Machine learning, McGraw-Hill, Boston, 1997.

[86] M. Montemerlo and S. Thrun, Simultaneous localization and mapping with unknown

data association using fastslam, IEEE International Conference on Robotics and

Automation (Taipei, Taiwan), vol. 2, 14-19 Sept. 2003, pp. 1985 – 1991.

[87] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, FastSLAM: A factored

solution to the simultaneous localization and mapping problem, Proceedings of the

AAAI National Conference on Artificial Intelligence (Edmonton, Canada), AAAI,

2002.

[88] , FastSLAM 2.0: An improved particle filtering algorithm for simultaneous

localization and mapping that provably converges, Proceedings of the Sixteenth In-

ternational Joint Conference on Artificial Intelligence (IJCAI) (Acapulco, Mexico),

IJCAI, 2003.

[89] D. Moore, J. Leonard, D. Rus, and S. Teller, Robust distributed network localization

with noisy range measurements, Proc. of the Second ACM Conference on Embedded

Networked Sensor Systems (SenSys ’04) (Baltimore), November 2004.

[90] K. Murphy, Bayesian map learning in dynamic environments, In Proceedings of Ad-

vances in Neural Information Processing Systems (Denver, Colorado), MIT Press,

1999, pp. 1015–1021.

[91] Paul Newman and Kin Ho, SLAM-loop closing with visually salient features, IEEE

Intl. Conf. on Robotics and Automation (Barcelona, Spain), April 2005.

[92] D. Niculescu and B. Nath, Ad hoc positioning system (APS) using AoA, Proc. of

Twenty-Second Annual Joint Conference of the IEEE Computer and Communica-

tions Societies (San Francisco, CA.), vol. 3, 2003, pp. 1734–1743.

[93] S. Oh, S. Russell, and S. Sastry, Markov chain monte carlo data association for gen-

eral multiple-target tracking problems, Proc. of the 43rd IEEE International Confer-

ence on Decision and Control (CDC) (Paradise Island,Bahamas), vol. 1, Dec 2004,

pp. 735–742.

165

REFERENCES

[94] M. A. Paskin, C. E. Guestrin, and J. McFadden, A robust architecture for inference

in sensor networks, In Proc. of the Fourth International Symposium on Information

Processing in Sensor Networks 2005 (IPSN-05), April 2005, pp. 55–62.

[95] H. Pasula, S. Russell, M. Ostland, and Y. Ritov, Tracking many objects with many

sensors, IJCAI-99 (Stockholm), 1999, pp. 1160–1171.

[96] N. Patwari, A.O. Hero, M. Perkins, N.S. Correal, and R.J. O’Dea, Relative location

estimation in wireless sensor networks, IEEE Transactions on Signal Processing, 8,

vol. 51, Aug 2003, pp. 2137–2148.

[97] R. Peng and M. L. Sichitiu, Probabilistic localization for outdoor wireless sensor

networks, 11 (2007), no. 1, 53–64.

[98] F.P. Preparata and M.I. Shamos, Computational geometry: An introduction,

Springer-Verlag, New York, NY, 1985.

[99] M. G. Rabbat, M.A.T. Figueiredo, and R.D. Nowak, Network inference from co-

occurrences, IEEE Transactions on Information Theory 54 (2008), no. 9, 4053–4068.

[100] A. Rahimi, B. Dunagan, and T. Darrell, Simultaneous calibration and tracking with

a network of non-overlapping sensors, CVPR 2004, vol. 1, June 2004, pp. 187–194.

[101] A. Ranganathan and F. Dellaert, Inference in the space of topological maps: an

MCMC-based approach, Intenational Conference on Intelligent Robots and Systems

(Sendai, Japan), 2004, pp. 1518–1523.

[102] , Data driven MCMC for appearance-based topological mapping, Proceedings

of Robotics: Science and Systems (Cambridge, USA), June 2005.

[103] , A rao-blackwellized particle filter for topological mapping, Proc. of the In-

ternational Conference on Robotics and Automation (Orlando, USA), May 2006,

pp. 810–817.

[104] C. Rasmussen and G. Hager, Probabilistic data association methods for tracking

multiple and compound visual objects, IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 23, 2001, pp. 560–576.

166

REFERENCES

[105] I. Rekleitis, D. Meger, and G. Dudek, Simultaneous planning localization, and map-

ping in a camera sensor network, Robotics and Autonomous Systems (RAS) Jour-

nal, special issue on Planning and Uncertainty in Robotics 54 (2006), no. 11, 921–

932.

[106] , Simultaneous planning, localization, and mapping in a camera sensor net-

work, Robotics and Autonomous Systems (2006), (in print).

[107] I. M. Rekleitis, V. Dujmović, and G. Dudek, Efficient topological exploration, Pro-

ceedings of International Conference in Robotics and Automation (Detroit, USA),

May 1999, pp. 676–681.

[108] , Efficient topological exploration, Proceedings of International Conference

in Robotics and Automation (Detroit, USA), May 1999, pp. 676–681.

[109] M. Rosencrantz, G. Gordon, and S. Thrun, Locating moving entities in indoor

environments with teams of mobile robots, Second international joint conference on

Autonomous agents and multiagent systems (Melbourne, Australia), 2003, pp. 233–

240.

[110] P. L. Sala, R. Sim, A. Shokoufadeh, and S. J. Dickinson, Landmark selection for

vision-based navigation, IEEE Transactions on Robotics and Automation (2005).

[111] F. Savelli and B. Kuipers, Loop-closing and planarity in topological map-building,

In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems

(Sendai, Japan), vol. 2, Sept. 2004, pp. 1511 – 1517.

[112] A. Savvides, C.C. Han, and M.B. Strivastava, Dynamic fine-grained localization in

ad-hoc networks of sensors, 7th annual international conference on Mobile comput-

ing and networking (Rome, Italy), 2001, pp. 166–179.

[113] J. B. Saxe, Embeddability of weighted graphs in k-space is strongly np-hard, In Proc.

17th Alleron Conf. Commun. Control Comput., 1979, pp. 480–489.

[114] S. Se, D. Lowe, and J. Little, Vision-based mobile robot localization and map-

ping using scale-invariant features, IEEE Intl. Conf. on Robotics and Automation

(Seoul,Korea), May 2001.

167

REFERENCES

[115] H. Shatkay and L. P. Kaelbling, Learning topological maps with weak local odometric

information, International Joint Conference on Artificial Intelligence (San Mateo,

CA), 1997, pp. 920–929.

[116] J. Shin, L. J. Guibas, and F. Zhao, A distributed algorithm for managing multi-

target identities in wireless ad-hoc sensor networks, Information Processing in Sen-

sor Networks Second International Workshop, IPSN 2003 (Palo Alto, CA), April

2003, pp. 223–238.

[117] S. Simhon and G. Dudek, A global topological map formed by local metric

maps, IEEE Intenational Conference on Intelligent Robots and Systems (Victoria,

Canada), vol. 3, October 1998, pp. 1708–1714.

[118] R. Smith, M. Self, and P. Cheeseman, Estimating uncertain spatial relationships in

robotics, Autonomous Robot Vehicles (I.J. Cox and G. T. Wilfong, eds.), Springer-

Verlag, 1990, pp. 167–193.

[119] R. C. Smith and P. Cheeseman, On the representation and estimation of spatial

uncertainty, The International Journal of Robotics Research 5 (1986), no. 4, 56–68.

[120] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor,

and H.L. Miller (eds.), IPCC, 2007: Summary for policymakers. in: Climate change

2007: The physical science basis. contribution of working group I to the fourth

assessment report of the intergovernmental panel on climate change, Cambridge

University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.

[121] C. Stauffer and K. Tieu, Automated multi-camera planar tracking correspondence

modeling, Proceedings of the IEEE Computer Vision and Pattern Recognition,

vol. 1, July 2003, pp. 259–266.

[122] G. P. Stein, Tracking from multiple view points: Self-calibration of space and time,

Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Confer-

ence on., vol. 1, June 1999, pp. 521–527.

[123] E. N. Swanston, D. Gregory, D. B. Richardson, and H. Campbell, An overview

of the metropolitan toronto traffic control computer system, In Proc. of the 1983

International Electrical and Electronics Conference (Toronto, Ontario), March 1983,

pp. 202–208.

168

REFERENCES

[124] M. Tanner, Tools for statistical inference, 3 ed., Springer Verlag, New York, 1996.

[125] S. Teller, J. Chen, and H. Balakrishnan, Pervasive pose-aware applications and

infrastructure, IEEE Computer Graphics and Applications, July/August 2003,

pp. 14–18.

[126] S. Thrun, D. Fox, and W. Burgard, A probabilistic approach to concurrent mapping

and localization for mobile robots, Machine Learning and Autonomous Robots (joint

issue) (1998).

[127] D.A. Tregouet, S. Escolano, L. Tiret, A. Mallet, and J. L. Golmard, A new algo-

rithm for haplotype-based association analysis:the stochastic-EM algorithm, Annals

of Human Genetics 68 (2004), no. 165.

[128] Y. Vardi, Network tomography: estimating source-destination traffic intensities

from link data, Journal of the American Statistical Association 91 (1996), 365–

377.

[129] H. Wang, J. Elson, L. Girod, D. Estrin, and K. Yao, Target classification and

localization in a habitat monitoring application, In Proc. of the IEEE ICASSP,

2003.

[130] G.C.G. Wei and M.A. Tanner, A monte-carlo implementation of the EM algorithm

and the poor man’s data augmentation algorithms, Journal of the American Statis-

tical Association 85(411) (1990), 699–704.

[131] D. F. Wolf and G. S. Sukhatme, Mobile robot simultaneous localization and mapping

in dynamic environments, Autonomous Robots 19 (2005), no. 1, 53–65.

[132] Y. Xu, J. Heidemann, and D. Estrin, Geography-informed energy conservation for

ad hoc routing, ACM/IEEE International Conference on Mobile Computing and

Networking (Rome, Italy), USC/Information Sciences Institute, July 2001, pp. 70–

84.

169

Document Log:

Manuscript Version 0.9

Typeset by AMS-LATEX — 12 June 2009

Dimitrios Paul Marinakis

McGill University, 3480 University St., Montréal (Québec) H3A 2A7, Canada, Tel. : (514)

398-7071

E-mail address: dmarinak@@cim.mcgill.ca

Typeset by AMS-LATEX

