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Abstract

Testing VLSI circuits is a complex task that requires enormous amounts of
resources To decrease testing costs. testing issues are considered earlier in the design
process. This is known as “design for testability” (DFT). Built-in Self Test (BIST)
is one proposed DFT approach. BIST generally consists of incorporating additional
circiitry on the chip to generate test patterns and compact the response of the circuit
under test (CUT) into a reference signature. Compaction implies an information loss,
introducing the possibility that a faulty circuit declares itself as good. Such errors are
known as aliasing errors. Several BIST schemes have been proposed, and each has a
particular performance in regard to aliasing. However. the schemes are often evaluated
and compared with ill <iefined measures for which the underlying assumptions are either
not stated or not understood clearly. lere. a novel classification for the measures of
aliasing is proposed. By providing clear definitions of different possible measures, the

proposed classification augments the understanding of the aliasing problem.

This dissertation focuses on the popular BIST scheme that consists of ap-
plying pseudorandom test patterns to a CUT and compacting the latter’s response by
a signature analysis register which is normally a linear feedback shif. register (LFSR).
Assessing the quality of such a scheme in regard to fault coverage is crucial. Fault cov-
erage can be established by full fault simulation. However, high costs may preclude this
approach. Other techniques, probabilistic in nature, have been proposed, bul a lack of
computationally feasible techniques for analyzing the aliasing problem under a reason-
able model has left them elusive. lere. new and computationally feasible techniques
are developed  More specifically, closed-form expressions for the probability of aliasing
are derived for a certain type of LFSRs. Upper bounds are derived for [LFSRs charac-
tetized by prinutive polynomials. An iterative technique is developed for computing the
exact probability of aliasing for LIFSRs characterized by any feedback polynomial. and
for any test sequence length. These new techniques enabie better assessments of the
quality of BIST schemes that use signature analysis for response compaction. In turn,

they are useful for making important design decisions. e.g., determining the number
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of test patterns that should be applied to a CUT to achieve a certain test conlidence;
alternalively, deciding how long the signature analvzer should be, and what type of

feedback it should possess to achieve a cerlain desired test confidence.

The techniques developed for computing the probability of aliasing in BIST
are also useful in the context of coding theory. The iterative tec hnigue developed fo
computing the probability of aliasing may be used as an efficient technique for computing

the probability of an undetected error for shortened versions of cyclic codes
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Résumé

7 1y

Le test des circuits intégrés & trés grande échelle. i.e.. circuits VLSI. est
un probleme complexe qui exige une quantité considérable de ressources informatiques
et humaines. 2 fin de réduire les coiits de test, il est nécessaire de considérer le {est.
aussitot que possible dans la phase de concéption d un circuit. i.e.. pratiquer du “design
for testability” (DFT). Le test intégré. ou BIST (Built-In Self-Test). est un exemple de
DIT Le BIST consiste a intégré avec le circuit original, un circuit gererateur de tests.
el un circuit qui sert & comprimer la réponse du circuit scus test. Cette compression
implique une perte d'information qui introduit la possibilité qu'un circuit défectueux
se déclare bon. soit une erreur de “aliasing” ou de “masking™. Dlusieurs types de
BIST ont été proposés Tous ont une différente performance par rapport au “aliasing™.
Différentes mesures de “aliasing™ sont aussi utilisées Malleureusement. ces mesures
sont souvent ambigues. et prétent a de mauvaises interprétations Cette dissertation
présente une nouvelle classification de ces mesures. En soi. cette classification augmente

la compréhension du probléme de “aliasing”™.

Le type de BIST qui consiste 1 appliquer des tests pseudo-aléatoires et de
comprimer la réponse du circuit avec un “signature anslysis register”™ ou “linear feed-
back shift register” (LFSR) constitue une approche trés populaire. Cette derniere est
Papproche traitée i¢i. 1l est essentiel d'établir la qualité d’un tel tyje de test. e.g..
par rapport & la proportion de pannes dé.ectées. Une technique bien connue qui sert
a cette fin est la simulation de panne. Cependant. pour les circuits VLSI. la simula-
tion de panne peut s'avérer tres couteuse, et méme impossible D autres techniques
d'analyse probabilistique ont déja été proposées. Malheureusement. jusqu'a ce jour, dii
au manque de techniques d'analvse du probléme de “alinsing” en BIST. la qualité de ces
techniques probabilistiques est demeurée faible. Ici. de nouvelles techniques d'analyse
du probléme de “aliasing” sont dévelopées. Plus spécifiquement, des expréssions {ermées
pour la probabilité de “aliasing” sont obtenues pour un certain type de LIFSR, et des
bornes supérieures de la probabilité de “aliaising” sont obtenues pour les “signature

analysis registers™ (LFSR) charactérisés par des polyndmes primitifs. Une technique
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d’analyse itérative a aussi été dévelopée. Cette derniére permet d’obtenir la probabhilite
de “aliasing” en fonction de la longueur de "1 séquence de test, pour tout type de LESR
Ces techniques permettent une meilleur estimation de la qualité du BIST utilisant “sip-
nature analysis” comme technique de compréssion Ainsi, ces techniques sont utiles
pour déterminer les parametres tels que la longueur de test, et le type de compressem

requis, afin d’obtenir la qualité de test desirée.

Les techniques d'analyse dévelopées i¢i sont aussi utiles dans le contexte de
la théorie du codage. La technique itérative dévelopée pour le calcul de la probabilite e
“aliasing” constlitue une technique efficace pour le calcul de la probabilité d'une errem

non detectée lorsque I'information est encodée par des codes cycliques.
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Claim of Originality

The author claimns originality for the following contributions of the disserta-

tion.

e In Chapter 2. the proposed classification of aliasing measures is novel. The principal

criterion Jor the classification is the previously defined notion of deception volume.

e In Chapter 3. a novel techinique is developed for analyzing the probabilistic behaviour
of LFSRs under the assumption of a binomial distribution of eiror sequences. The
technique is based on the delinition of single-stage state probability sequences. The

complete theory for obtaining such sequences for LFSRs characterized by any feedback

polvnomnials is given.

e Irom single-stage state probability sequences, closed-form expressions for the prob-
ability of aliasing for LI'SRs characterized by a certain class of feedback polynomials
(Ut 2™) are derived. Although such polynomials have been studied elsewhere. no closed-
form expressions for the probability of aliasing have previously been published. Also,
using this analysis. upper bounds on the probability of aliasing are derived for LFSRs

characterized by primitive polynomials

e In Chapter 4, a completely dilferent and also novel analysis technique is developed
for calculating the probability of aliasing for LFSRs characterized by any feedback
polynomial This technique is iterative. For a signature analysis register of length m,
the technique involves 2 —1 recursion equations. llowever, using the proposed notalion,
these 2'" — 1 equations are expressed with only two general equations, which renders
the implementation of the technique feasible. The technique is very general in that it
enables the calculation of the aliasing probability under essentially any distribution of

errors. For exanple. anv type of burst errors can be studied readily.

e [n Chapter 5, the techniques developed in the earlier chapters to compute the probabil-

ity of aliasing are used for calculating the predicted test quality assuming that random

Xiv
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patterns are applied to a circuit and the latter's response is compacted by a signatuie
analysis register (LFSR). Such calculations were not previously possible due to the lack
of feasible techniques for calculating the probability of aliasing under the binomial etror

model.

e The iterative technique developed in Chapter 4 for calculating the aliasing probahihts
is also useful in the context of coding theory. It may serve for efficiently calculating the
prolability of an undetected error for shortened cyclic codes generate 1 by any generatos
polynomial, under either the standard binary symmetric channel (BSC'} model. or more
general channel models. The technique may thus be useful for comparing the perfor-
mance, in regard to the probability of undetected errors, of various shortened cycli
codes. Furthermore, some of the features of the technique make it suitable for helping

in adopting certain codes instead of others.
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Chapter 1 Introduction

1.1 Perspective and Dissertation Outline

Since the inception of integrated circuits (ICs), over two decades ago. the
IC fabrication technologies have not ceased improving. Among other impacts. these
technology improvements have been synonymous with continuously increasing scales of
integration. IHence. in only two decades, the levels of integration have heen qualified
from small (SSI) to medium (MSI), large (LSI), very large (VLSI), and ultra large
(ULSI). The ever increasing scales of integration have resulted in the possibility of
fabricating chips. and [rom these systems, with an ever increasing number of devices. at
lower and lower costs. Of course, today’s possibility of fabricating extremely complex
circuils at low cost is very attractive for several reasons. Unfortunately, as in any
other engineering endeavor, trade-offs arise in the overall enterprise. Let alone the
ever increasing difficulty for designers to correctly design the intended circuits, the
problem of testing the fabricated circuits against fabrication defects grows much more
than linearly with the size (complexity) of the circuits fabricated [Goel 80]. It is now
common to hear from manufacturers that the testing cost of a product is more than one
third of its total cost. Hence, although many problems associated with testing appeared
eatly in the history of ICs, the recent soating of the complexily of svstetns fabricated
is forcing experts to address the testing problem with a new perspective. namely that
of recognizing that the testing problem plays a key role in the economical success of a

product.
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This recent recognition of testing's crucial role has spawned a numuer of
research efforts whose fruits have been various. probably the most impottant being the
proposition of new design techniques collectively known as design for testabiity (DIVT)
[Williamns 82]. An increasing number of manufacturers ate now adopting such techniques
and many research efforts are currently underway to itnprove DF'T techniques and then

integration with the classical IC design and [abrication steps.

The broad motivation for this dissertation is the problem of testing digital
circuits. with focus on a relatively recentiv proposed testing technique known as buddi i
self test (BIST) [Design & Test 85|. BIST is becoming increasingly popular since it
believed to have the potential of greatly simplifving the test procedure and hence de-
creasing the overall cost of testing a system. However. as in the case of more traditional
testing techniques. it is generallv necessary to estallish the quality of a BIST scherme in
regard to the fault coverage that it achieves [McCluskev 86]. It is generallv not stiaight
forward to make such an assessment. Naking such an assessment for a particular BIST
scheme constitutes the more specific motivation for the work presented in this ditser-
tation. The BIST scheme in question is one that is applicable to general unsteue tured
logic where the application of pseudorandom test sets is combined with the signature

analysis (LFSR- or polynomial division- based) compaction technique [Bardell 87|

Compaction implies a loss of information which results in the possibility of
erroneous verdicts concerning the proper functioning of circuits. Such errors are known
as aliasing errors. In general, the nature and measure of such aliasing errors needs to he
well understood to establish the fault coverage achieved by any BIS'T scheme  However,
in spite of IC manufacturers’ adoption of certain BIST schemes, the general understand-
ing of the associaled aliasing problem often remains very skimpy Due to the lack ol
suflicient understanding, as well as feasible analvtical tools to augment this understand-
ing, unjustified claims are frequently made. The major contribution of this dissertation
is the provision of analytical techniques that are useful for making better measureinents
(predictions) of aliasing. and consequently increase the understanding of the alinsing

problein associated with the popular signature analysis compaction technique.

The dissertation is briefly organized as follows. The remainder of this « hap
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ter presents further general preliminaries for the contents of the subsequent chapters.
The classical approaches to testing are briefly discussed. This is followed by a brief
introduction to DIFT and BIST In Chapter 2. the problems of aliasing and its measures
are formally discussed. A novel classification of aliasing measures is presented. Some
relationships between aliasing measures and faull coverage measures are also discussed.
In general, both deterministic and probabilistic measures of aliasing may be defined. For
large circuits however, it may be infeasible to compute deterministic measures. IHence.
probabilistic measures are frequentiy used. Probabilistic measures are those upon which
this dissertation focuses Unfortunately, probabilistic measures of aliasing are often mis-
understood, misused or misinterpreted. The reason for this is that the measures aje
often derived from an unrealistic assumption on the distribution of ertors at a faultv
CUT's output. This assumption. and its unrealism. is often forgotten or overlooked.
In particular, signature analysis is a widely-used compaction technique which is one for
which misleading claims. e.g.. in regard to [ault coverage. are [requently made based on
the assumption of a uniform distribution of error sequences. Chapters 3 and 4 propose
novel techniques for calculating probabilities of aliasing for signature analysis, under
more reall ‘¢ error distributions. Chapter 5 presents a [ramework for using these tech-
niques in establishing the (probabilistic) fault coverage. A generalization of the use of
the techniques for multi-output circuits is also presented in Chapter 5. The techniques
proposed for calculating the probability of aliasing for signature analysis have impor-
tant ramifications in coding theory, namely in calculating the probability of undetected
errors for shortened cyclic codes. These ramifications are briefly discussed in Chapter

5 Finally, Chapter 6 concludes the dissertation.

1.2 Testing of ICs

L.2.1 Classical Approaches

Testing of digital integrated circuits generally consists of three major steps,
the fitst being the generation of a sel of input patterns, the second heing the application

of these patterns to the circuit under consideration. and the third being the analysis
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of the collected output data with an expected response to finally declare the circuit
good or bad. The above test procedure may be applied at various labrication levels of a
product, e.g., chip. board. system levels [Mann 80] [Myers 83]. Generallv, it is believed
that the cost of testing increases by an order of magnitude from one level to the next,
and that the overall cost is miinimal when the defects are detected as early as possible
[Williams 82]. These observations have resulted in a major portion of the tecent reseatch
in testing to focus on the chip or board levels. The foliowing discussion assumes chip
level testing. However. most of the ideas and notions are equally applicable to the hoard

level.

Several different types of phvsical failures can allect the function and per.
formance of ICs. Thus. several tests to detect defects must be petformed at diflerent
stages of fabrication. The technology, as well as various [actors such as the scale of inte
gration, operating voltage and temperature. etc., together influence the types of failures
that may arise in ICs. Since it may be impossible to test circuits for all possible tvpes
of physical failures. several technical and economic factors govern the testing ol circuit.,
(e.g., time and budget available for testing. critical failures required to be tested, efc.)
Because of the irge number and the complex nature of all the possible physical failures,
testing usually consists of merely detecting the presence or absence of defects, buts does,

not generally require knowledge of the exact failure itsell, i.e., diagnosis.

One practical approach used to avoid dealing with the physical [ailure per se
consists of developing a fault model which describes the physical failures at, a higher level
of abstraction (e.g.. logic gate, register). A higher level model reduces the number of
entities that must be considered when deriving tests for the circuit. Once a fault. model
that accurately describes or captures the possible physical failures has heen developed,
it suflices to generate tests for detecting all the faults in the fault maodel instead of
deriving tests for all the possible physical failures  Despite recent questioning ol it
appropriateness. especially for CMOS circuits [Wadsack 78| |Galiay 80}, the most widely -
used fault model is the single stuck-at fault model. in which the lines of a circuit, if faults,

are assumed to he permanently stuck at the logic value 0 or 1.

Given a circuit under test (CUT), a fault in the CUT is said to be detected
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when a particular input pattern applied to the CUT produces an incorrect logic response
on one or more of its outputs. Such incorrect responses are called errors. and such input
pattern constitutes a test for that fault. A set of input patterns that detect a set of
faults is called a fest set, and a set of test patterns that detects all the testable modeled
faults is said to constitute a complete test set. If a test set is not complete. then the
most commonly used measure of the quality of the test set is the fault corerage measure
which is simply the ratio (usually expressed as a percentage) of the detected faults to
the total number of detectable fauits in the CUT. Hence. in the case of a complete test

set, the fault coverage of detectable faults is 100%%.

Several test pattern generation algorithms have been developed in the past
o generate test sets, e.g., [Roth 67] [Goel 81] [Fujiwara 83| [Rajski 87] [Schulz 88|
Although they are generally highly desirable. complete test sets are also generallv pro-
hibitively expensive to generate. even with the best available test pattern generation
algorithms. One process often used in combination with test pattern generation al-
gorithms is called fault sumulation [Chang 70| [Armstrong 72| [Levendel 81| [Bose 82
[Maamari 88] which consists of determining all the faults that a particular set of pat-
terns may detect. Fault simulation is usually combined with test pattern generation
since its computational complexity is less (both on the average and in the worst case)
than that of test pattern generation. Nevertheless, in spite of constant advances in the
algorithms for test pattern generation and fault simulation. in the case of large circuits
these processes may simply be too expensive to be feasible. When the situation is such,
alternative methods to classical test pattern generation and fault simulation must be

used Several of these have been proposed recently
1.2.2  Design for Testability
1.2.2.1 Scan Path Testing

The limitations of the classical approaches to testing have fostered the pio-
posal by 1C manufacturing and design communities of new approaches for testing com-

plex VLSI circuits. Such approaches are commonly known as design for testability

5
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(DFT) techniques [Williams 82|. Probably the most well-known example of such tech-
niques is an idea that arose from the particular difficuliy in testing sequential circuits
This idea is the notion of scan design [Eichelberger 78] [Stewart 77| [IFunatsu 75] which
essentially reduces the problem of testing a sequential circuit to that of testing a comlin
national circuit. This is accomplished by introducing twe modes of operation normal
and test. The reduction in the complexity of testing a sequential circuit is thus oh-
tained at the expense of extra hardware required to reconfigure the citcuit at test time
Another possible drawback of introducing a test mode is that certain tvpes faults may
be undetected since the circuit is being tested outside its notmal mode of operation
Allernatively, while a circuit could perform its normal function correctly. making a dec-
laration about the correctness of the circuit by observing it in test mode introduces
the possibility that the same circuit be declared faulty because ol a [ault in the extia

circuitry exercised only in test mode.

The concept underlying scan design remains the same in spite of the dil-
ferences that appear in the details of the various schemes proposed |[Eichelberger 78]
[Stewart 77| [Funatsu 75]. In scan design. the circuit’s latches are extended to have two
modes of operation. In nermal mode, the latches perform as ordinary Iatches In (est
mode, the normal feedback paths of the sequential circuit are broken and the latches
form a shift register. With the shift register configuration, a test vector can he secanned
in the register from one primary input of the circuit. Then, this test vector may he
applied to the circuit by returning the circuit to ts normal mode for one clock cycle
Once the response of the test vector is latched, the civcuit may be returned to test mode
to scan out this response through a primary output of the circnit. This response may
then be compared to that expected. Exploiting the scanning in and out capabilities
of such a scheme enables the combinational logic of the circuit to be Tully tested, i«
tested for the faults that the applied test set was constructed to detect. Since Lhey
form the path through which test patterns are applied. the latches are also tested in

this procedure.

In exchange for the reduced comnplexity in testing, scan design implies hard-

ware overhead. In the case of IBM’s Level Sensitive Scan Design (LSSD) [Eichelberger
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7R|. this overhead varies [rom 157 to 309 [Williams 82]. Also. scan design generally
requires a more complex clocking scheme than would normally be required. For exam-
ple. in IBM’s LSSD. the control of the citcuit requires two clocks (inaster and siave)
in both the test mode and in the normal mode of operation. The sharing ol one is
possible. hence a total of three clocks is required. Nevertheless. in LSSD. the normal

operating speed of the circuit is only slightly degraded by the additional functionality

of the latches

Thus. the most obvious advantage of scan design is the reduced complexity of
generaling test sets for a sequential circuit. This is accomplished by treating the latter
as a combinational circuit when it is being tested This reduction in compiexity is
generally oblained against little or no performance degradation for the normal function
of the circuit. The principal disadvanlages are the haidware overhead. arising from
extensions in the latches and the extra control circuitry, extra primarv inputs and

outputs (up to four in some cases), and the time required for scanning tests in and out

ol a circuit.

1.2.2.2 DBuilt-In Self-Test

Another design for testability approach scheme which can well be coupled
with scan design is the idea of buslt-in self test (BIST) [Design & Test 85| [Bardell 87].
BIST is usually understood as a scheme where all circuitry associated with testing a
chip is part of the chip itself. Thus, an input pin is required to select between normal
and self-test modes. In self-test mode. test patterns are generated on the chip, and the
responses are observed and analyzed on the chip. Finally a simple form of go/no go
or pass;{ail signal is delivered at one of the chip’'s output pins For sequential citcuits.
scan design is usually assutned Hence, in sell-test mode. the CUT is combinational.

and the latches form part of the test circuitry.

BIST requires an on-chip source of test patterns. The most popular scheme
for generating patterns is to configure certain latches into a linear feedback shift reg-

wister (LFSR) [Bardell 87). For combinational blocks with less than say 20 inputs. the

-1
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LFSR can be used to apply all possible input combinations to the CU'T" [Mc Clushes
&4]. For blocks with a larger number of inputs. the LFSR is usually used to apply a

pseudorandom source of input patterns [Bardell 87..

BIST usually implies a relatively large number of test patterns, and hence a
considerable response data. especially if the circuit has several outputs For example,
applying 0(220) combinations to a 10-output circuit vields O(l()7) output bits Thus, in
BIST, some form of data compaction is used to reduce this output data into a signature
of only a few bits long. e g.. 16 or 32 At the end of the test sequence the signature
is compared to a stored reference signature. which was determined at design time In
simulation or analytic means. If the signature of the CUT is different from the relerence
signature, the CUT declares itself faulty through an output pin  Obviously, several
variations of the aforementioned BIST ideas exist. For example. either or both the test
pattern source and the response compactor may reside outside the actual CUT The
analyses presented in subsequent chapters are in fact applicable to anv testing scheme
where the output response is compacted by a particular type of circuit. which mav he

residing either on or off chip.

There are several obvious advantages of BIST Since pseudorandom patterns
are applied, no potentiallv costly test generation is required Also, a BIST can he
applied at close to the normal operating speed of the CUT Thus more types of faults,
e.g., delay taults, may be detected which would not necessarily be detected using other
techniques. The extra test circuitry required is small. Only two extra pins are required
one for the mode of operation and one for the pass. fail signal Finally, BIST invroduces
the possibility of easy and inexpensive field testing This may be particularly attiactive
at the systemn level. where the BIST capabilities of individual chips mav also greatly

facilitate diagnosis.

Of course BIST also has its disadvantages and limitations. The most obviou.
disadvantage is the area overhead. which is highly design dependent. Also., as for scan
path testing, a fault in the extra test circuitry can result in a circuit being declared

faulty while the latter could perform its function normally. Various possible limitations
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also arise depending on the circuit and the particular BIST scheine adopted. For ex-
ample. if exhaustive testing is performed. circuits with a large numnber of inputs may
require an exceedingly large test set and associated test time [Bozorgui-Nesbat 80]. On
the other hand. if pseudorandom testing is performed. certain faults, known as radom
pattern resistent faults. may exhibit extreme reluctance to detection by the pseudoran-

dom patterns [Eichelberger 83]. Such undetected faults may result in an unsalisfiable

H

fault coverage.

One of the most serious difficulties with BiST is the information loss incurred
by the compaction stage. This loss introduces the possibility that a fault be masked.
or aliased [McCluskey 851 That is, the compaction introduces the possibility that a
faulty circuit produce the same signature ¢s that of the fault-free circuit. This problem
of aliasing makes the assessment of the fault coverage in BIST a very difficult problem

[Bhavsar 84| [Cox 88].

1.2.2.3 Compaction Schemes for BIST

Several compaction schemes lLave been proposed tur BIST, e.g., [Carter 82]
[Frohwerk 77| [ITassan 84| [Haves 76| [Huist 85] [Miller 84] [Muzio 83] [Savir 80] [Saxena
86| [Susskind 81| [Zorian 86]. The reader ic referred to these references jor details about
these schemes. In the following. only a few brief comments will be made concerning the

better-known schemes, from which several variations have been derived.

In syndrome testing [Savir 80|, the signature for a single-output circuit is the
number of ones that appear in the response data when all the possible input patterns
are applied to the circuit. To count the number of ones in the response when not all
input patterns are applied is of course also possible. just as it is possibie to constitute
the signature from other counts. such as the number of transitions [ITayes 76|. Spectral
coefficrent testing [Hurst 85) [Miller 84} [Muzio 83| [Susskind 81] is a generalization of
the syndrome concept. In general, the signature in spectral coefficient testing consists
ol several counts Each of the counts correspond to the number of ones in the exclusive-

OR of the citcuit output with a particular subset of inputs. Thus, in general, upectral

)
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testing extends the fault coverage of syndrome testing. However. this is at the expense
of a greater area overhead required for the exclusi. e-ORs. the additional counters, and
reference counts. This significant additional hardsware in return for not necessarily much
better fault coverage is the strongest deterrent against the practical use of spectral

testing.

The fault coverage achieved by either syndrome or spectral testing can be
assessed using different methods Tault simulation is one. while for the common single
stuck-at fault model, the coverage can in some cases be determined using anals tical

methods Such methods however. are generally quite impractical to handle,

For a single-output circuit. an LFSR can be used to compact the output
response of the CUT. This is the approach proposed by Hewlett Packard |[Frohwerk
77| for testing microprocessor boards, known as signature analysis  The mathematical
interpretation of compaction bv an LIFSR is rather straightforward. The process can be
interpreted as polynomial division over a Galois field [Golomb 82] [Peterson 72]. The
LFSR compactor can also easilv be extended to the multiple-output circuit. using a

multiple-input shaft register (MISR).

Compaction by an LFSR is very attractive in that it is very simple and
does not require much area overhead compared to other BIST schemes. In some cases,
the compaction circuit can be combined with the test pattern source [Koenemann 79|
Unfortunately, there is no easy way of precisely characterizing the effect of a particular
fault on the output bits of a CUT when pseudorandom test patterns are applied to the
latter. Therefore, establishing the fault coverage when an LFSR is used to compact
the response of a circuit is not straightforward. This will be explained fuither in later
sections of this dissertation since this problemn constitutes the underlying motivation for

the work presented herein.

A final comment is in order. This dissertation is neither directly concerned
with the justification of previously proposed BIST schemes nor the proposa! of a new
BIST scheme. The interested reader is referred to the literature for a thorough discussion

on BIST, e.g., see |Zorian 87| for an excellent bibliography on BIST, or the special issue

10
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[Design & Test 85]. This dissertation focuses on the problem of aliasing for BIST schemes

in which the signature analysis technique is used to compact the CUT's output.

11



Chapter 2 Aliasing and its Measures

2.1 Introduction

Recently. various built-in self test (BIST) schemes have received considerable
attention. There are several reasons for the interest in BIST but one of the principal
reasons is due to BIST's effectiveness for overcomning the problems now encountered
by conventional methods when dealing with large circuits. In general. as illustiated in
Fig. 2.1, BIST circuits consist. of the original circuit to which thiee major hlocks are
added: one for the test pattern generation. a second for the response compaction, and
a third for comparing the compacted output (signature) to a reference Concerning the
comparison circuitry, several schemes exist in which the latter is a trivial citcuit, or is
external to the CUT. Here the focus is on the compaction aspect of BIST. Response
compaction implies an information loss that translates itself in the possibility of wrong
diagnosis whereby a faulty circuit declares itself as good. Such incorrect. diagnosis i
caused by what is known as an aliasing or masking error |McCluskey 85 Variow,
compaction techniques (functions) have been proposed, e.g., [Carter 82| [Frohwerk 77|

[assan 84| [Hayes 76] [Miller 84| [Muzio 83} [Savir 80| [Saxena 86] [Susskind 81| [Zorian

86|. Bach of the different compaction schemes leads to particular infortmation losses
Hence, whenever adopted. each compaction function must be analyzed to establish the
impact that its associated loss of infortnation will have on the quality of the BIST

scheme.

Ideally, in the same way that fault coverage measures are generally used to
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Figure 2.1 General BIST scheme

assess the quality of a test set in conventional (external testing) situations. the use ¢°
the same measures would also be desirable in the context of BIST. Unfortunately. the
compaction stage in BIST complicates the matter. One reason for this complication
is the following. Without compaction. the fault coverage is 2 monotonically increasing
function of the number of test patterns. In the case where exact fault coverage cannot
be established, monotonicity enables lower bounds to be claimed. Ilowever. in general.

strict monotonicity disappears when compaction is performed.

For the sake of convenience, until a later section of this dissertation, the
circuit under test (CUT) is assumed to be single-output. Assuming that an input test
sequence of length n is applied to the CUT, the output response sequence is also of length
n. The sequence produced by a faulty CUT which contains erroneous bits is referred to
as an error sequence. In the context of testing without output response compaction, a
faulty CUT is correctly diagnosed as being faulty if the output sequence contains at least,
one ertoneous bit. However, in the case of testing with output response compaction. a
faulty CUT is correctly diagnosed as being faulty only if its output sequence contains
a least one erroneous bit and if the error sequence it produced is not mapped onto the

signature of the fault-free circuit.

The role of the compaction stage is to reduce a CUT’s output sequence to
a signature of only a few bits long, say m. where m < n. Let E be the set of all the
2™ — 1 possible binary error sequences of length n. Hence, |E| = 2" —1. Let S be the set

of all the possible signatures that a compaction function can yield. The cardinality of

11
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the set S depends on the specific compaction function. Without regard to a C'UT and
its potential faults and hence potential error sequences, a compaction function maps
each of the sequences contained in the set E onto one particular signature of the set S
Since only the final signature matters after a particular sequence is compacted, the set
of error sequences that map onto the same cignature forms an equivalence class with
respect to the specific compaction function. Let E, be the subset of E thal contains all
the elements of E that map onto the signature S, of the fault-free circuit, and define

the error domain deception volume DV, to be the cardinality of E,, t.e., DV, - |F.]

For most compaction functions. the mapping of the elements of I onto the et
of signatures S is well understood in that it is theoretically well characterized. Hence,
it is generally easy to characterize I/, and thus find DV% for most compaction fundtions
In the context of BIST. DV is a valuable measure since it gives the number of erron
sequences that would escape detection because they are mapped onto the signature 5,
of the fault-free circuit and consequently result in aliasing errors. Although not always
explicitly, DV, is traditionally used for establishing the quality of compaction functions

Examples are discussed later

Assessing the quality of compaction functions is one facet of the problem
However, in reality. one is usually interested in determining the overall quality of a
BIST scheme. i.e.. fault coverage obtained from a specilic set of test patterns applied
to a specific CUT in a specific order. Thus. the problem of establishing the quality of
compaction functions is complicated when a specific CUT and its faulls are considered
Assuming that the test set is fixed (types and order of patterns) if there are N possible
faults (single or multiple) in the circuit, then there are at most N diflerent possible

error sequences that can be produced by the specific CUT to which the specific test set.
I

is applied. Let F be the set of these possible error sequences. Typically, || -
In turn. let I, be the subset of I which contains all the elements of I~ that map onto
the signature S, of the fault-free circuit. Finally. let the fault doman deception volunie

DVy be defined as the cardinality of F,, i.e.. DV = [ F5,].

Similarly to DVe, DV; is a measure of the loss of information and hence

measure of aliasing caused by the compaction stage. Ilowever, unlike DV., DV i
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specific to a CUT and its faults, as well as specific to the test set and the order in which
it. is applied to the CUT Ience. because the relation hetween the potential faults of the
CUT and the elements of I is an invertible function (one-to-one and onto), DVy can
directly be combined with fault coverage measures [Cox 88] to yield a fault coverage
measure that takes into account the effects of compaction. However, it is not so when
F is not known and only F is available The relation between the elemnents of £ and
the potential faults of a CUT is not necessarily one-to-one and onto. This prevents DV,

fiom being directly used with the classical fault coverage measures.

Therefore, making claims on the fault coverage when compaction is per-
formed requires a precise knowledge of the error sequences that a CUT may produce
under the influence of its different faults. i.e.. requires the knowledge of F. Unfortu-
nately, finding all the elements of the set ' may be computationally prohibitive for large
circuits. Not knowing I, a minimal requirement is to have some characterizations, e.g .
statistics, of the set ' Unfortnnately, such characterizations have generally been miss-
ing until now. These two difliculties associated with F result in DV generally being

very difficult to find. On the other hand. finding DV, analytically remains generally

easy.

Nevertheless, in the past, because fault coverage is generally the quality
measure considered of prime interest, (as opposed to the mere assessment of the quality
of a compaction function independently from a specific CUT and its test set), in the
cases where compaction was performed but where I’ could not be obtained, various
assumptions on [ and hence DV have been made. Some of these assumptions have
led to claims that become somewhat paradoxical upon briel reflection. An example of
such cloim is derived assumning that I = E, and that DV; = DV,. Combined with the
unrealistic assumption that all the elements of F are equally likely to occur, i.e., uniform
distribution of error sequences, this leads to the 27" probability of aliasing associated
with signature analysis Although the result is correct under the stated assumptions,
these assumptions are often forgotten or overlooked. The result states that for signature
analysis, the probability of aliasing is 27™, irrespectively of the CUT, the effects its

faults may produce at its output, the number and order of test patterns applied to it,
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etc. That the aliasing probability can be independent of all these factors and be made
arbitrarily low simply by increasing the value of m is paradoxical. If this wete true,
signature analysis would constitute a sort of panacea. and hence no further reseatch
efforts should be aimed at studving this compaction function further, nor would efforis

be expended at finding and studyving other alternative compaction fundtions.

Thus. before the field is impregnated by too many misleading or misunder-
stood results. a critical regard on how the quality of compaction functions is measured
and reported is believed to be in order As mentioned above. the deception volume con-
stitutes a fundamental measure of the information loss in the context of testing Decep-
tion volume has thus been used in different ways. either implicitly or explicitly, to assess
the quality of compaction functions. However, as in the case of fault coverage measuies,
the different ways of computing the deception volume may yield misleading results {€'ox
88]. In the following, different methods for computing and interpreting measures basied
on decepiion volume are reviewed. and parallels between these methods and those dis
cussed in [Cox 88| for reporting fault coverage are established. Although the discussion
is applicable to different compaction functions, the focus is on signature analysis since i
is the most popular scheme, often supported by unjustified claims. Moreover, signature
analysis is the compaction technique on which the remaining chapters of this disserta-
tion focus. The underlying assumptions of the measures are discugsed, as well as thei
advantages and disadvantages. Two categories emerge: measures based on DV, and
measures based on DV,. Prior to discussing these measures. an example that illustrates

some of the concepls discussed above is given.

2.1.1 Example

Consider the circuit in Fig. 2.2. Assume that single stuck-at fanlts are
considered. and that an exhaustive test sequence is applied to the CUT in the given
order. i.e.. 000 to 111. In Table 2.1. the response of the fault-free (FF) circuit, aq
well as that of the circuit under the effects of ten different possible stuck-at faults is

reported. Therefore, |F| = 10 and |E| = 28 _ 1 = 255. Thus, for this example, the

16
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cardinalities of I’ and E differ significantly. In Table 2.1. A,'0 denotes the fault A stuck-
at 0. A 1 denotes the fault A stuck-at 1. etc. The signatures that result from three
different compaction schemes is also given in Table 2.1. These compaction schemes are:
signature analysis {Frohwerk 77|. syndrome [Savir 80], and transitions count [llayes 76].
In the case of signature analysis. the polynomial characterizing the register is 1 + z + 2.

Such a register is shown in Fig 2 3.
A — D
8 __:)—;D- :
C

Figure 2.2 Example circuit to illustrate deception volumes

Fault Effects & Signatures
Input Vector Faults
ABC FF|AO|A1|B/O|B/1|C/0{C/L|{D/O|D/1|E/O|E/1
000 0 0 0 0 0 0 1 0 | 1 0
001 1 1 1 1 1 0 1 1 0 1 0
010 0 0 1 0 0 0 1 0 1 1 0
011 1 1 0 1 1 0 1 1 0 1
100 0 0 0 0 1 0 1 0 1 1
101 1 1 1 1 0 0 1 1 0 1
110 1 0 1 0 1 1 0 0 1 1 0
111 0 1 ¢ 1 0 1 0 1 0 1 0
Compression Scheme Signature
signature analysis 1ty 10 | 01 10 | 00 | O1 | OO 10 | 11 [ 01 | 00
syndrome 4 4 4 4 2 4 4 8 0
transitions 6 T 4 7 7 7 0 0

Table 2.1 Fault Effects and Signatures for Example Circuit

In the case of signature analysis, only the fault D/1 yields the same signature
as that of the fault-free circuit. IHence. for this specific circuit and this specific test
sequence, the fault domain deception volume is one, i.e., DV = 1. However, the etror

domain deception volume is [Smith 81]: DV, = 28=2 _ | = 63. For syndrome, from

17
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Table 2.1, the fault domain deception volume is: DVf = 6. On the other hand. the et1ot
domain deception volume is: DV, = (i) — 1 = 69. Finally, for transitions count. {rom
Table 2.1 the fault domain deception volume is: DV = 1. The error domain deception

volume for transitions count is [Bardell 87}: DV, = 2\8;1) - 1= 13

7'

——)@——-—F—'—H—‘

S

H . . n . )
Figure 2.3 Signature analysis circuit with polynomal | + 7 + r=

Only single faults are considered here, however. multiple faults could easily

have been considered.

2.2 Measures based on DV;

Measures of DV require that F be known. Obtaining I" requires that the
CUT be simulated under the effect of each of its potential faults to obtain all the
possible error sequences The principal disadvantage of this approach is the prohibitive
cost of the fault simulation in the case of large circuits. For a circuit with V lines and
hence O(N) faults. the fault simulation of n patterns implies a computational effort of
O(nN?). llowever, the clear advantage of this approach is that DV can be directly

combined with fault coverage measures.
2.2.1 Combinatorial

Since F is known, one can define DVy comb to be the analog of combinatorial
fault coverage [Cox 88| where DV ., is simply the following ratio:

DVf,comh=DVf/|F" (21)

This measure is very straightforward to obtain given F and DVy. DVy 0 is 2 Lrae

measure of the proportion of a CUT’s possible error sequences that would alias.
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For the Example in Section 2.1.1. the following values for D17 . ¢ result:
stgnature analysis: DV .opp =1 10.
syndrome: DVy .omp = 6/10.

transiions count: DVy oy =1 10.
2.2.2 Spectral

An analog of spectral fauit coverage [Cox 88| in the case of DV can also be
defined. Let DVg be a vector such that DVy = (DVy 1. DV q,...,DVy ) where DV,
corresponds to the number of error sequences of weight : that are mapped onto the

signature of the fault-free circuit. In turn. the following ratios can be defined:
DVy /IR +=1, 2..... g. (2.2)

where [F,| is the number of elements of F that have weight i. It would be feasible to
compute such ratios in the given context because the extra work that would be required
to obtain the components D1, would be negligible compared to the efforts required

for obtaining I and DV in the first place.
2.2.3 Probabilistic

An analog to the probabilistic measure of fault coverage [Cox 88| can also
be defined for DVy. Let the set F, be composed of the elements (fy, fz,...,f;). By
definition, ¢ = DV. Let each [, have the probability p, of occurring over the entire set,

F. Then the following probabilistic measure of DV can be defined:

q9
D1 .f.prob = sz' (2.3)

1=1

As in the case of the probabilistic measure of fault coverage discussed in [Cox

88|, the clear difficulty with this measure lies in finding the probabilities p,.

19
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2.3 DMeasures based on DV,

In most cases, because of the prohibitive cost of fault simulation. I” is not
available. For such cases. the onlv reasonable alternative for determining the quality of
a compaction function is to consider E and hence DV,. The major disadvantage in not
knowing F is that the knowledge of DV, cannot be directly combined to classical fault
coverage measures. On the other hand. several measures of DV, can easily he obtained

analytically. This is illustrated next.

2.3.1 Combinatorial

Similarly to DV .,mis @ combinatorial measure DV, .. can be defined to
be the following ratio:

D“e,comb =DV€/|EI' (2 1)

The advantage of this measure is that it is very easily obtained because |F]| is by def-
inition trivial to obtain. and DV, can generally be easily obtained analvtically I'm
example. in the case of signature analysis, because of the well-established theory under-
lying the properties of linear feedback shift registers (LFSR), the precise number of er1on
sequences that are mapped onto the fault-free signature, i.e., DV, is easily determined
to be 2"~™ — 1 for a signature analyzer of size m [Smith 80| [Bardell 87|. Tn the case

of count-based compaction functions (ones count or transttions count) it is possible Lo

compute DV, using simple combinatorics |[Bardell 87).
For the Example in Section 2.2.1, the following values for DV, ..., result
stgnature analysis: DV, ... = 63/255 = 1/4,
syndrome: DV, . .4 = 69/255 =~ 1/4.5,
,

transitions count: DV, . . = 13/255 = 1/20.

For this particular example, for the three dilferent types of compaction, the
difference between DV, ., and DV, .,y is quite significant. Thus, assuming these

ralios to be similar is not reasonable in this case.

20
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2.3.2 Spectral

Similarly to the definition of a spectral measure of D"f, a spectral measure
of DV, can also be defined. For this. let DVe = (DV,;.DV...... EVe.q) where DV,
is defined as the number of error sequences of weight : that map onto the signature of

the fault-free circuit. Then. from the vector DV, the following ratios can be defined:
DV, JIE,|, i=1,2.....q. (2.5)
where |E,| is the total number of error sequences of weight 1.

In the situation where F' is known, the additional effort of finding the com-
ponents of DV would be justifiable. However, in this case where F is not known.
due to the possibly enormous size of E, finding all the components of DV¢ may be
infeasible. On the other hand. for signature analysis. the well-established mathemati-
cal theory (coding theory) that underlies the compaction function enables DV, ; to be
found analytically for several specific values of :. For example. the theory yields that
for all feedback configurations. DV, ; = 0 [Smith 80|. Certain feedback configurations
guarantee that DV, , = 0 for all odd ¢ [Bardell 87]. In fact. DV, , for all 2 can be de-
termined analytically in the cases where the weight distribution of the underlying code
(determined by the feedback configuration) is known [Lin 83]. For the cases where the
weight dist1ibution is not known, other techniques can be used to efficiently compute

DV, ., eg., [Fujiwara 85|,
2.3.3 Trobabilistic

Probabilistic measures derived from DV, are probably the most widely used,
and are generally better-known as probabilities of aliasing. Unfortunately, as mentioned
in the introductory discussion of this section, these are also the measures that can easily

be misinterpreted. especially when they are based on unreasonable assumnptions.

Probabilistic measures of DV, can be defined similarly to the probabilistic

measures of DV, Let E, = (ej,e2,...,e4), where ¢ = DV.. Let each ¢, have a
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probability of occurrence p,. Then the following probabilistic measure of DV, can be

defined:

q9
re.prob = Zpt' (2 6)

=1
Although it may ideally be a good mneasure, the major problems with this measure i

that the enumeration of all the error sequences (e,'s) that are mapped onto the fault-
free signature may typically require an enormous amount of computational effort, and

it may be impossible to determine a reasonable p, to assign to each of these sequences

Thus. other types of probabilistic measures that do not require an enumera-
tion of the set E,. nor the assigninent of a unique probability to each of the sequences,
are usually used. These assume a certain probability distribution for the set of eiror

sequences L.
Uniform Distribution of Error Sequences

The probability model most commonly used is to assume that all 2" - I ertor
sequences of length n have an equal likelihood of occurrence, i.e., a uniform distribution
Unfortunately. there is no indication that this assurnption is realistic for circuits in
general. A simple example to illustrate that this assumption is not reasonable is to
consider a CUT with a stuck-at fault on its one output. Assuming random test patterns
are applied to the CUT, il the latter was fault-free, “1”’s would be produced with a
certain probability p. If the output was stuck-at-0, then the probability that the outpnt
would be erroneous would be 1 — p. In general, p # 1/2, therefore | —p # 12
Therefore. to claim that such output fault is likely to generate any one of the 2" 1
possible error sequences with the same probability is clearly not a good assumption. A
more formal argument for the inadequacy of the equally likelihood assu.nption can bhe

found in [Carter 82].

A well-known example of a result that follows from such an assumption arises
in the case of signature analysis. Equal likelihood implies p, = 1/(2" — 1) for all 1. Fon

signature analysis, ¢ = DV, = 2"~ — 1 [Smith 80|. This yields:

2n m-—l Z—m (27)
eprr)b_zpz 1 _1 ‘ ’
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The above result states that for signature analysis. under the assumption of equally likely
error sequences, the probabilitv of aliasing is 27™. independently of the effect of the
fault on the output response of the CUT. the length and order of the test sequence, and
the feedback configuration of the signature register. If faith is placed in the assumption.
this result can be used to argue that the probability that a fault will be masked can be
made arbitrarily small simply by increasing m, and hence the expected fault coverage of
the BIST scheme made arbitrarily high. Hence. because assuming a uniform distribution
of error sequences is not a reasonable assumption. the use of the results based on this

assumption must be interpreted extremely carefully.

Binomial Distribution of Error Sequences

Another possible assumption on the distribution of error sequences is to as-
sume that the eflect of a fault in a CUT is the production of an error at the CUT’s
output with a certain probability e. This model of fault-effects. (for single faults) has
been successfully used in several schemes proposed for establishing the quality of a ran-
dom test set at the cost of a computational effort only linear in the size of the circuit.
e.g., |Brglez 81 |Seth 85]. Note that in practice, truly random test patterns are not
applied to a CUT. Pseudorandom test patterns generated from maximal-length LIFSRs
are usually applied. In that case, because of the “sampling without replacement” type
of process, i.e., non-repeatability of patterns, ¢ does not actually remain constant. How-
ever, {or test sequence lengths that are relatively small compared to the total number
of possible patterns that may be generated by the LFSR. i.e.. the LFSR’s cycle length.
treating ¢ for a particular fault as a constant does not incur a substantial error in the
analvsis |Wagner 87| [McCluskey 87]. Once the effect of a fault d, is assumed to be
characterized by a certain probability €, that any given bit of the output response is
in error, this implies that the distribution of error sequences for that particular fault, is
binomial with probability of success (or failure) ¢,. That is. any error sequence with j
erroneous bits have a probability of occurrence ef(l —¢)" 7. Since there are (3’) such
sequences, the probability that an error sequence has j erroneous bits is (’J’)(Z (L—¢)" 7.
Assuming that the distribution of error sequences resulling from a particular fault is

binomial, the problem is then to determine what is the probability of an aliasing error
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for a particular fault d, characterized by a certain probability of error .

In [David 78], some results on aliasing assuming a binomial distribution ol
error sequences were derived for a very specific type of signature analvsis tegisters More
recently, more general results on aliasing for signature analvsis under this model of fault
effects were obtained by Williams et al. [Williams 86}, who derived the important result
that as the test sequence length tends to infinity, the probability of aliasing appiroaches
2™ for all [eedback configurations and all probabilities of error ¢ Thev also obtained
the qualitative results that signature registers characterized by primitive polvnomials

2—"771

approach this asyniptote more rapidly (shorter test lengths) than do register
characterized by non-primitive polynomials. However, for obtaining non-asyvmptotic
results, the method of analvsis used is not computationally feasible for 1egisters of lengih
of interest in practice, say m > 4. Williams et al. themselves resotted to simulation

methods to analyze longer registers

In Chapter 3, an allernative analysis technique is proposed which enables
some non-asymptotic results t¢ be obtained under the binomial distiibution of erron
sequences. In Chapter 4. a completely general. hence more powetlul, technique for
calculating the exact probability of aliasing, given any feedback conliguration and any
probability of error €, is given. The calculation technique described in Chapter 4 also
enables an extended model of fault-effect to be analyzed easily. Thal is. it is possible
to analyze aliasing for signature analysis assuming distributions other than binoinial
distributions of error sequences Miore specifically, the technique permits the probability
of aliasing to be calculated in the situation where the probability of an error may dilter
for every bit. That is, the technique may yield the probability of aliasing for a sequence
characterized by the probabilities of error €y, €, ..., €n. Each probability heing dilferent
may be an unlikely extreme situation. but the situation where the probability of erron
changes over the test sequence does arise in the case of biased random testing |Lisanke

86| |Wunderlich 87| |Waicukauski 88). a scheme shown to be very eflicient for reducing

the required test length for achieving extremely good fault coverage resuits.

Ilere, the calculation of DVN,,.O(, under the assumption of a binomial dis-

tribution of error sequences is discussed only for signature analysis In [Aitken 88|,
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this measure is discussed for ones count compaction. It is important to analvze com-
paction functions under this error model because the binomial distrnibution constitutes
a more reasonable characterization of E under which il is more acceptable to assume
that £ = F since the binomial distribution weighs the elements of E more reasonably
compared to the uniform distribution which assigns equal weight tc all the elements
of E. The binomial distribution assumnptions enables measures based on DV, to be

used in the same way that DV would be used with classical fault coverage measures to

establish the quality of a test set.

2.4 Summary

The principal measures of information loss entailed by compaction functions
for BIST have been categorized into two broad categories: those based on D17 and those
based on DV.. When F is available. the measures based on DV are the most precise,
and hence most desirable lowever, in most cases. it is infeasible to find F. In thal case.
measures based on DV, must be used. The problem with measures based on DV’ is
that thev may not generally be ditectly combined with classical [ault coverage measures
to caim a fault coverage afler compaction. However, assuming a binomial distribution
of error sequences constitutes a reasonable assumption on E that render the resulting
measures based on DV, more justifiably usable directly with the classical fault coverage
measures. Unfortunately, few BIST compaction techniques have been analyzed under
the binowmial distribution of error sequences. Most have been only analyzed for the
uniform distribution of error sequences. the major reason for this being the lack of
good analysis tools to handle the binomial distribution. The next two chapters present
analysis tools that enable the signature analysis compaction scheme to be analyzed

under the binomial distribution of error sequences.
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Single- and Mulii-Stage Probabilistic
Chapter 3
Analysis of LFSRs

3.1 Introduction

In the preceding chapter. it was briefly mentioned that both [David 78] and
[Williams 86| reported the performance (in regard to aliasing) of signature analysis reg
isters or linear feedback shift registers (LFSRs) under the binomial distribution of erron
sequences. David only studied a particular class of signature analysis registers, namely
the configurations where only the last stage feeds back to the input stage. Williams
et al. generalized the study to all types of feedback configurations. Unfortunately, de-
spite the originality of their analysis. the latter is severely hindered by the exponential
size of the problem. In their analysis, Williams et al. model the LFSR by a Markov
chain |Trivedi 82|. By demonstrating some of the stochastic properties of the system.
Williams et al. derived the important asymptotic result that the probability of aliasing
tends to 27" for a register of size m when the test sequence length tends to infinity,
irrespectively of the feedback configuration and the probability of error. For the non-
asymptotic or dynamic behaviour of the system, Williams et al. proposed the use of
the z-transform technique. The major problem with this proposal is that obtaining the
inverse z-transform involves a computational time complexity of ()(2"’”), where m i
the number of stages of the LFSR. This complexity atises from the fact that the Markov
chain contains 2™ states. and that the z-transform inversion requires the inversion of

a matrix of size 2™ x 2™, Assuming a standard matrix inversion algorithm implies
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0(2%™) complexity. Such complexity renders the calculation of the analviic solution
for LFSRs of sizes of interest in practice generally infeasible. Due fo the overwhelming
complexity of the solution technique, the plots for the dynamic behaviour of different
signature analysis registers that appear in [Williams 86| were not obtained using the z-
transform technique. Instead. a forin of simulation was used |Williams &6|, for which no
details were given. Due to the limitations of their techniques for obtaining the dynamic
solution of interesting LFSRs. Williams et al. subsequently proposed upper bounds for
the probability of aliasing [Willlams 87]. which they claimed to be valid for all ranges

of test sequence lengths.

In this chapter. an alternative analysis technique for obtaining both the
asvmptotic and dynamic behaviour of a signature analysis register (LI'SR}), under the
binomial error model, is described Other than providing new insight into the dynamic
behaviour of LI'SRs, the principal advantage of this new analysis technique is that it
is computationally inexpensive. However. in general. the problem at hand possesses an
inherent exponential complexity (see Chapter 4) (though whether a lower bound on the
complexily of the problem has formally been proven remains unknown to the author)
Therefore, not surprisingly. the technique presented in this chapter does not yield an
inexpensive solulion in all cases, i.e.. for all types of [eedback configurations. Never-
theless, for the cases where the computational complexity of an exact solution becomes
intolerable, the technique presented here still yields useful heuristic (approximate) in-

formation.

The essence of the technique presented in this chapter is to decompose an
original problem of size 2™ into m smaller interrelated problems. The “work-horse” of
the technique presented in detail in subsequent sections of this chapter is the single-
stage state probability sequence of an LFSR. Such sequences were studied in |[David
78]. In the latter however, the sequences were only studied for a particular type of
feedback configuration, whereas here the completely general theory, i.e., one applicable
to any feedback configuration is presented. The single-stage state probability sequence
for a particalar LFSR may be oblained very easily. and may be used as a monitoring

heuristic to detect “reasonable™ proximity to the asymptolic behaviour of the LI'SR. The
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3.2 Computation of Single-Stage State Probability Sequences

theory developed for obtaining the single-stage state probabilities is later generalized to
obtain exact or approximate m-stage state probability scquences. Exact m-stage state
probability equations for a certain type of feedback configuration are derived, while
bounds are derived for other commonly used confligurations. In turn, this generalization
to m stages yields exact values for the probability of aliasing for the former case, while

it yields useful bounds for the latter case.

3.2 Computation of Single-Stage State Probability Sequences

3.2.1 Notation and Preliminaries

The feedback connections of a LFSR can be represented by polvnomials in
z with coeflicients in the Galois fleld GF(2) [Go'cmb 82| [Peterson 72|. For example.
for the general LFSR depicted in Fig. 3.1, the characteristic polynomial f(.r) of the

structure is:

f(@) =27 @by 2™ @ 2™ @@, (3 1)

where h, = 1 if there is a feedback connection from stage ', and h, = 0 otherwise

Nole that in this dissertation, only the ezternal type of LFSR is stricth
considered. The internal type of LFSR, i.e., the one where the output of the last stage
is fed back to several of the earlier stages, is not formally considered. The reason is
that because of the isomorphic relation that exists between the two types of structures
[lllawiczka 86|, the analyses presented here can be shown to be applicable to either

ty pes.

F(n) | " -

A

c £ M(n) hy h2 hy |bm-y
cuT (ﬂ)=m (n) ={“5 (n g x’ I —-P{sz— )(J _ N
TFF(n)

Figure 3.1 BIST sdieme with a general signature analysis register
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3.2 Computation of Gingle-Stage State Probability Sequences

For analysis purposes. it has been shown in [David 78] that it is possible
to consider the binary error sequence E(n) only, where F(n) = C(n) & FI'(n); C(n)
heing the binary sequence produced by the CUT and FI'(n) the corresponding expected
binary sequence of a fault-free circuit. Notice that in general. E(n) is not explicitly
produced in any BIST implementation. Also. in the error domnain analysis, the signature

register is always assumed to be initially in the “all-zero” state.

As shown in Fig. 3.1. let E(n) = {Ey,E;, ... ,LEyn} denote the incoming
error sequence, IF(n) = {Fy,F2. ... .F,} denote the feedback sequence, and AM(n) =

{M, My, ... ,M,} denote the modulo-2 sum sequence of E(n) and I'(n), i.e., M(n) =
E(n) 4 F(n). Assuming the “all-zero” state to be the initial condition of the LFSR,
with F,. F,, and A, denoting the 1th element of the respective sequences, M, can be
expressed as

Afl‘:El@F;

m n
=L @ Z hyM,_y: hy=0.1; hm=1 Mo...M_my1=0; >0 (3-2)

J=1
where the summation is modulo-2 addition. From here on in this dissertation, the

expression “al tirme 7 will denote the situation after the bit E, has been shilted in the

LEFSR.

In the present context. the assumption is that the exact (deterministic)
knowledge of the binary sequences E(n), Af(n), and F(n), is not available because
such sequences can only be obtained through exact fault simulation. However, the bits
. of the error sequence are assumed to have a constant probability of being equal to
one called the probability of error €. i.e.. pr(E, = 1) = €. In the same way that € is a
statistical descriptor for the sequence E(n), ¢ can also become a descriptor for A ({n)
since E'(n) and M (n) are related through a feedback equation. The key {or achieving the
probabilistic description of M(n) is to consider the E,'s of E(n) as boolean variables
and then use the concept of the probability of a boolean expiession being true {rom
[Parker 75|, where proofs for the relationship between boolean operations and algebiaic
operations upon probabilities are provided. Based on this concept, a sequence of prob-

abilities g(n) = {py,p2,...,un} such that g, = pr(M, = 1), is defined, and called the
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3.2 Computation of Single-Stage State Prohability Sequences

E(n)AM(n){’l IZI———’{J
. O

Figure 3.2 Simple LFSR with characteristic polynomial f(z) = 1 + 2 { +7

single-stage state probabilily sequence of the LFSR.

For example. consider the LFSR depicted in Fig. 3.2. For that register,
assuming an “all-zero” state initial condition. the equations for the first six terms of the

binary sequence M (n) would be (see Section 3.2.2 for more details):
My = Eq,
My = Ey,
M; =E3@ My = E;8 E,.
My=FEs@ M@ My =EydEy@ Ey,
Ms=E5® M3 My =E5D(Eqd E|) D E,,

Mg = Eg@My®B Mz = Eg@(EaD Ly E )R (E3d ) = Enp Iyt oy 1),

Assuming that the binary sequence M(n) is not known. the requirement is to generate
the corresponding state probability sequence p(n) for which the equations for the firat

six terms for the same example would be:
py = pr{My = 1) = ¢,
pr =pr(My =1) = ¢,
p3 = pr(Ms = 1) = 2e — 262,
g = pr(My = 1) = 3e — 6e? + 4¢3,
ps = pr(Ms = 1) = 4¢ — 12¢% + 1663 — 8¢4,

pg = pr(Ms = 1) = 4e — 12¢* + 166> — 8¢4,
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The “delay” property of binary sequences whereby the sequence that appears
at the input of a particular stage appears at the input of the succeeding stage one time
unit later also holds for the probability sequences Therefore. in the way it was defined.
1(n) denotes the sequence that appears at the input of the stage corresponding to =l in
the polynomial representation of the LFSR in Fig. 3.1. Because of the shifting property
of LFFSRs. clearly, the sequence of probabilities at the input of any succeeding stage 7
is simply the same sequence u(n) shifted by 7 units in time. i.e.. the sequence at the

input of stage =7 is u(n - 7).

Readers familiar with the work presented in [David 78 might hurriedly con-
clude that the same ideas are being repeated here. However. this is not the case. Those
familiar with the ideas presented in [David 78] will recall that the latter discussed the
notion of a single-stage state probability sequence only for the polynomials 1 + ™.
Here. the theory for single-stage state probability sequences for any linear polynomials.

i.e., LI'SRs characterized by any feedback configuration. is defined and established.
3.2.2 Calculation of u(n)

Since an LI'SR is constituted of memory elements and modulo-2 adders (XOR
gates), the calculation of the single-stage state probabilily sequence rests principally on
the calculation of the signal probability [Parker 75] of the output of an XOR gate
function given the signal probabilities of the inputs. Assuming signal independence at.
the inputs, if the input signal probabilities of a two-input XOR gate are a and b, then

the signal probability of the output ¢ is |Parker 75|:

[
[N}
~—

c=a+b—2ab (3.

From the associative property of modulo-2 sums, for functions of more than two input

variables, the above equation can be used iteratively.

To find p(n) for a given LFSR. recall that the assumption is that each er-
ror sequence bit E, is an independent event with possible outcome space 0 or 1, and

probability ¢ that F, = 1. By expressing each element M, of the sequence M(n) as
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3.2 Computation of Single-Stage State Probahility Sequences

a modulo-2 sum of the independent error bits £y . . E,, then ecach element s, ol the
- probability sequence pi(n) can be generated using the equation for the two-input func-
tion (eq. (3.3)). Note that the expression for M, must be minimal (trtedundant), ie,
not contain more than one appearance of any error bit E,. Subsequently, the munimal
modulo-2 sum expression of M, in terms of the independent bits Ey . I is relered

to as a canonical expression for Af,.

Recursively generating the canonical expressions for the elements of AM{n)
is simple. Given the LFSR's feedback equation and the canonical expressions log
M, ... M,_,4+1. the canonical expression for the next sequence element, M, |, can be
obtained by performing XOR operations. according to the feedback equation, between
the m expressions corresponding to the previous sequence bits. Thus, to obtain the
single-stage state probability sequence of length n recursively, il is requited to gener-

ate linear expressions of up to n variables and to keep at least m of these expressions

stored at all times to enable the generation of the subsequent expression. This implies
. 2 . - . . a4

a complexity of O(mn-) logical XOR operations and O(mn) bits of storage Finally,

given the canonical expressions for the elements of M(n), the recursive generation of

the n elements of u(n) requires a total of O(n) floating point. operations.

Despite the above. the space and time complexity for generating the canonical
expressions [or the elements of M (1) can be proven to be less than what is claimed above

This is shown next.

The requirement is to generate canonical expressions of the type

n
M, = ZCUE]; t=1. ..., n; ¢;=0,1 (:
1=1

~——

Letting the elements of the binary sequences Af(n) and E(n) forin n-element, vector
le.. M =M, M,. .... My|and E = [E}, E,. ..., Ey,|. and defining an n - n matriz ol

binary coeflicients C. then the two vectors can bhe related through the matrix equation

P
1
~—

M = CE. (:
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which in expanded formn yields:

L
Al €11 €12 ... Cin 108
M3 €21 €22 ... C2n Ey
. = . .. . . . (3.6)
. I‘In .Cnl Cn2 ... Cnn En

The matrix of binary coeflicients C is hence what is required to generate all the canonical
expressions for the elements of the sequence M (n). Given this matrix representation of

the canonical expressions for the elements of AM{(n), the following lemma can be proven.

Lemma 3.1: For the matrix C corresponding to any LFSR, if the first column of co-
eflicients ¢y1,¢91. ..., ¢ny, is interpreted as a binary sequence, the latter corresponds
to the sequence A (n) obtained by initializing the LFSR to the “all-zero™ state and to
shilt the error sequence F(n) = {1.0.0. ..., 0} in the LFSR. Also. for any matrix C.

¢, =1for1=j,¢,=0for) <1, and ¢,y ;41 = ¢, for j > 1.

Proof: Since the first column of coeflicients mnmultiplies only the error bit . the coel-
ficient ¢, ;. determines whether bit E| is present or not in the canonical expression for
Af,. The bit Fy is shilted in the LFSR at time 1+ = 1. Subsequently, i.e., for ¢+ > 1. the
presence or absence of I, in the canonical expression for M, depends on whether L,

“cancels” itself out, i.e., has odd or even parity. To determine this parity, consider the

two possible cases:

1) E{ = 0: The coeflicients have no importance since ¢,;£1 = 0. Therefore anv

sequence, for ¢y, ..., cny is valid;

2) E| = 1: It is clear that the parity of E,, as a function of time 7, corresponds
exactly to M (n) that results when the error sequence E(n) = {1,0,0, .... 0}

is shifted in the LFSR.

From eq. (3.2), M, = E, & F,, where F, is a function of the previous bits Ey ... E, _,
only, i.e., I} is not a function of bits £, j > :. Therefore, clearly ¢; =0 for j <t and

¢,, = 1 for i = j. By superposition, the scenario for bit E; also holds independently

1)
for the other error bits E,, ..., E,. Therefore, for j > ¢, the columns 2 ... n of

13
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C follow from the first. That is. the sequence corresponding to the second column of
coefficients is that of the first column shifted down one position (delayed by one time
unit), with a 0shifted in the vacant position {cj2) and truncated by one element (e} at
the bottom. The sequence for the third column is a shifted and truncated version of the

second column. and similarly for the other columns Ilence. in genetal. ;. y, (- ¢,

Shifting the error sequence E(n) = {E{.E». ..., 0} = {1.0.0, . . 0} in
the LFFSR is equivalent to initializing the LFSR to the “100...000" stale, i.e.. initializing
the stages associated with the different powersof ztoz! = 1,2 =23 =. . — ™ . 0,
followed by cycling the LFSR for n — 1 cycles in the autonomous mode (with no external
inputs). LFSRs cycled in the autonomous mode yield periodic sequences [Golomb 82]

Letting p be the period of the autonomous-mode sequence that results when the LIFSR

is initialized to the “100...000 state. the following theorem can bhe proven.

Theorem 3.2: The total time and space complexity required for generating the canonical

expressions for all the elements of the sequence A (n) is O(rman(n,p)).

Proof: From Lemma 3.1. the matrix of coefficients C is characteristic of the LIFSR
only. All the information about C is contained in the first column, and by symmetry,
in the last row as well. Moreover, as a result of the periodicity of the row and column
sequences, it {ollows that all that is required for generating C and hence the canonical
expressions for the elements of M(n), is the simulation of the LFSR for mun(n, p) cycles
where p is the period of the autonomous-mode sequence that results when the LI'SR
is initialized to the state “100...000”. It follows that the space requirements to store

the entire information contained in the required matrix C is O(mn(n.p}) as well

As an example. consider the following. If the particular LFSR depicted
Fig. 3.2 is initialized to the state “1007, then in autonomous mode, the following

sequence of states results (p = 7):

100.010,101.110.111.011,001. 100, ... . (3.7)
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Taking the leftmost bits of the sequence of states yields the sequence 10111001... . From

this sequence. the following matrix of coellicients results for n = 7:

1 000 00 0)
010000 0
1 010000

C={1 101000 (3.8)
1 110100
01 1101 0
001110 1)

Hence. in this example. the generation of the coeflicient matrix requires only the simu-
lation of one period of the sequence of stales that results when the LFSR is initialized to
the “100” state. Furthermore. in this case. since the sequence 1011100 is a maximum-
length sequence. for n > 7 one can augment the matrix C by simply concatenating
this maximum-length sequence in the coluinns and rows of the matrix. Simple con-
catenation would also apply to non maximum-length sequences. However, it should
be stressed that although the matrix C must impiicitly be augmented to the dimen-
sions n < n for sequences of length n, the matrix C of such dimensions never has to be

explicitly generated due to its forementioned properties.

3.3 Examples and Heuristic Applications of Single-Stage
State Probability Sequences

From the previous section. the single-stage state probability sequence of an
LFSR is easy to generate. Figs. 3.3 - 3.8 contain plots of the sequences p(n) obtained
for different polynomials and different values of «. The polvnomial associated with
Fig. 3.3 is non-primitive while those associated with Figs. 3.4 -3.8 are primitive. The
polvnomials associated with Figs. 3.5 and 3.6 are reciprocals of each other, where the

reciprocal ¢g(z) of f(r) is defined as |Peterson 72|:
g(z) =z f(z71). (3.9)

35




3.3 Examples and Hewistic Applications of Single-Stage State P'robability Sequences

Single-Stage State Probability Sequence
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Figure 3.3 p(n) for the polynomial f(z) = 1 + z!9

There are several possible heuristic applications of single-stage state probh-
ability sequences. Given their easy generation, they inay be particularly helpful for
making some importani design decisions The dynamic behaviour of the single-stage
state probability sequence can be interpreted as a first. degree approximation to that
of the m stages of the LFSR. As a result of its close approximation of the behaviour
of the mn stages of an LI'SR, the single-stage s‘ate probability sequence can he nsed
as a heuristic to determine a lower bound on the tesi sequence length necessary to

“safely” assume the probability ol aliasing to be close to 27,

For example, compare
the single-stage state probability sequence plotted in Fig 3.8 with the exact probainl-
ity of aliasing obtained for the polynomial 1 + 7 + z!9 plotted in Fig 43 Also, the
single-stage state probability sequences can be used Lo compare the convergence rate of
different polynomials. Hence. single-stage state probability sequences may be useful lor

choosing between different possible feedback confignrations. More specifically, for the

single-stage siaie probability sequences reported in Figs 3.3 -3.7, clearly, m all cases.
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Single-Stage State Probability Sequence
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Figure 3.4 u(n) for the polynomial f(z) = 1+z + 2" + 210 4 516

a test length of 500 is insufficient to reach close “proximily” to the asymplotic value
of 1/2 when ¢ = .001. llowever, for € = .50 or ¢ = .010, 500 patterns is sufficient to
approach the asymptote quite closely in all cases except possibly for the polynomial
I + z-% This is in agreement with Williams et al.’s claim [Williams 86| that primi-
tive polynomials have a faster convergence rate to steady-state than do non-primitive
polynomials. Another interesting behaviour to notice from the plots is that the two
primitive polvnomials that are reciprocals of each other do not converge to steady-state
al the same rate. The polynomial in Fig. 3.6 converges faster than the one in Fig. 3.5.
Furthermore. the plots reveal that the degree of the polvnomials is not necessarily a
predominant factor in the rate of convergence to steady-state; e g., the polynomial of
degree 50 converges at approximately the same rate as does the polynomials of degree
32 or I6. The type of feedback polynomial, e.g.. primitive vs. non-primitive polynomial,

is apparently more significant than the degree of the polynomial.

B L.
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Single-Stage State Probability Sequence
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Figure 3.5 p(r) for the polynomial f{z) =1 + 2104 £30 4 ;31 4 ;32

3.4 Multi-Stage State Probability Sequences

As shown in the previous section. single-stage state probability sequences
have useful heuristic value. llowever, to claim stronger results, e.g , to derive Lhe axact,
probability of aliasing or non-trivial bounds on the latter, not only one but all the stages
of the register have to be considered jotntly. Thus, in the framework developed here, Lo
derive results that are quantitatively stronger than those provided by singlo-stage state
probability sequences, multi-stage state probability sequences need Lo bhe stadied  In
particular. assuming registers with m stages. m-stage stale probability sequences need

to be studied.

3.4.1 Formulation as a Sigunal Probability Problem

Since a register of m stages has 2" different possible states. a probability

1
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l—- Single-Stage State Probability Sequence
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Figure 3.6  u(n) for the polynomial f(z) = 1 +z + z? + 722 4 ;32

sequence for each of these states can be defined. In the remainder of this section, the
state of particular interest is the “all-zero™ state. The reason for this emphasis is due
to the importance (explained further in the next subsection) of this state when calcu-
lating the probability of aliasing. Let Z(n) be the m-stage “all-zero” state probability
scequence. Therefore, Z,, is the probability that the LFSR is in the “all-zero” state at

time n, i.e., after n error bits have been shifted in the LFSR

The canonical equations for the elements of the binary sequence Af(n) con-
stitute the basis from which the single-stage state probability sequence yi(n) is derived.
These equations for M(n) can also form the basis for jointly analyzing more than one
stage DBecause of the shifting property of the LIFSR. jointly analyzing several stages is
equivalent to jointly analyzing several consequent values of a single stage. That is, ex-
amining the m canonical equations for the m stages at time n is equivalent to examining

the equations for Af(n) at times n — m+ 1 to n, i.e., My g, My gy - My
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Single-Stage State Probability Sequence
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Figure 3.7 u(n) for the polynomial f(z) = 1 + 24 23 gty 50

In general, the m canonical equations Af,_,,+1...M, do not lorm decou-
pled equations. That is. the same error bit E, may appear more than once in the m
canonical equations. Therefore. in general, since the stage equations are not. decoupled.
the probability of the event of a stage being in either state 0 o1 1 is nol independent

fromn the probability of the same event for the other stages. Therefore, for 2,

m
Zn # Hpr(stage 1 = 0) (3.10)
=1
or
Zn #(l—ﬂn—nu-l) (l”ﬂn—-l)(l ~ fin}. (3 11)

In general. given the canonical modulo-2 sum equations for the m stage, a1
one instance in time, say n, and given the probability for individual input (error) bty
to be one. i.e.. given ¢, solving for the probability of a particular state of the LFSR,

e.g., “all-zero” state, at that instance in time can be considered as an instance of the

10
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Figure 3.8 (n) for the polynonual f(z) = 1 + PUL

standard problem of calculating a signal probability for a combinational circuit [Parker
75). For example. solving for the probability of the “all-zero” state of the LFSR is
equivalent to solving for the probability that the output G in the circuit depicted in
Fig. 3.9 be 0, with the number of inputs to the circuit corresponding to the sequence
length. Solving for the all-ones state would correspond to solving for the prokability

that the output G be one, with the OR gate of Fig. 3.9 replaced by an AND gate

Much work has been done in developing exact and approximate algorithms
for estimmating signal probabilities given boolean equations or gate-level descriptions of
combinational circuits, e.g.. [Parker 75| [Brglez 84] [Jain 85| [Seth 85]. For general nel-
wotks, the problem of calculating the probability of a 1 or 0 at the circuit’s output is part.
of a class of #P-complete problems |Valiant 79| [Krishnamuithy 86]. The complexity
ol #P-complete problems is conjectured to be worse than that of the well-known NP-

complete problems, for which no polynomial-time algorithm is known to exist [Garev
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4 XOR;

T XORyb—=——o! OR |—o
E(n) _[

> XOR,

Figure 3.9 Example of the formulation of a state probability problem as a4 signal
probability problem

78]. llence. the #P-completeness of the signal probability problem for a combinational
circuit implies that the best algorithms known for solving it.require a time complexity

at least exponential in the number of inputs to the circuit.

When formulated as a signal probability problem. solving for an element of
the probability sequence Z(n) requires finding the probability of a I or a 0 for a boolean
formula expressed as a disjunction of m parity equations. The boolean satisfiability
problem for general disjunctive formulae is solvable in polynomial time. Nevertheless,
solving for the probability of a 1 or 0 for such formulae remains a #P-complete problem
[Valiant 79| [Krishnamurthy 8&6]. t These observations could lead to conjecture that
computing an element of Z(n) is also #P-complete. and indeed, for the general case,
the analysis technique presented in this chapter leads to solutions thal are exponential
in the sequence length. However. the solution described in the subsequent. chapter

of this dissertation proves that tlie problem can be solved with complexity less than

' Ae an alternative to the signal probability problem formulation of the prablem of compuning
an element of Z{n}, given the modulo-2 anms expreasiona corresponding to each of the
st ages for a sequence of length n, one straightforward <olution approache mply to evpand
the dizjunction of these m expressions of O(n) vartables mto a numal cum of aynterme
Since the minterms form mutually exclusive events, the probability that the diepnnetion of
the m modulo-2 expressions will be 1 ia simply the sum of the probabilities of the mdivilual
minterms. However, 1n general, the number of minterms required to expresa the dimgune tion
is O(2") Thus, this solution approach implies an O(27) complexaty
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exponential in the number of input variables, i.e., the sequence length (The solution
described in Chapter 4 is exponential in the number of register stages and linear in the
sequence lengih.) Thus, the solution presented in the subsequent chapter proves that

the problem of computing an element of Z(n) is not #P-complete.

Thus. a general and computationally feasible algorithm for the in-stage state
probability sequences is described in Chapter 4. However. the solution in Chapter - does
not follow directly from an extension of single-stage state probability sequences. I'rior
to describing this alternative analysis technique, in the subsequent subsections of this
chapter. solutions for m-stage sequences (in particular Z(n)) that follow directly from
extensions of single-stage state sequences are presented. These solutions are presented

for two classes of polynomials: polynomials 1 + ™. and primitive polynomials.

3.4.2 Polynomials 1 + ™

LFSRs characterized by polynomials of the type 1 + z* form an important
class. Such LFSRs form the basis for a very interesting BIST scheme reported in
[IXrasniewski 87]. Such LIFSRs turn out to be easy to analyze because of the simple
structure that arises in the canonical equations for the m stages. The useful structure
is the decoupling (independence) of the equations. In the gate-level signal probability
formulation of the problem (Fig. 3.9), the decoupling of the equations corresponds to

the inputs to the equivalent circuit not fanning out to several XOR gates.

A study of the use of LF'SRs with characteristic polynomial 1+ ™ is reported
in [David 78]. In the latter. one can find general expressions for the decoupled stage
equations that arise for polynowmials 1 + ™. llere, the form of the stage equalions is
illustrated through the matrix of coeflicients C. For example, for the polynomial 1 + r?,

assuming n = 10, C is:
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1 0 00 00 0 O0O0 O
01 00 00 0 0 00
0O 010 00 O 0O0O0
1 6 01 00 0 0 0O
SR

0 0
1 0 01 00 1 0 00
0O 1 00 1 0 0 1 0 O
O 010 01 0010
1 0061 0 0 1 0 0 1

From the above matrix. the following three equations are those required to analvze the

3-stage register after an error sequence of length n = 10 has been shifted in it:
Mg = Ey & Es  Ej,
Mg =F38 Eg 9 Ey,

Mo=E,@Ls® E7 @ En.

As mentioned earlier, consideration of the equations for the m stages af
time n is equivalent to considering the equations for M, _,, 1 - . M, This.in twin,
is equivalent to considering the m adjacent rows n ... n — m + 1 in the matrix C
Examination of any m adjacent rows of the matrix C for the polynomials 1 { r'',
reveals thai there is only one “1” per sub-column of size m. Therefore, at any tine,
each bit E, appears in the equation of only one of the m stages It follows that for
LFSRs characterized by polynomials 1 + ™, the joint probability of anv state of the
LFSR is sitnply the product of the state probabilities of the individual stages Noreover,
since the variables (error bits) are distributed evenly among the m stages. the number
of variables in the equation for one stage may differ from that of another by at mosi
one. More precisely, assuming n to be the length of the ertor sequence. the eguation

for m —»n mod m stages is a modulo-2 sum of exactly |n/m] error bits. while that o

n mod m stages is the sum of |n/m] + 1 = [n/m] bits, where || and || denote the

mathematical floor and ceiling [unctions, respectively.

Assume the interest to be in calculating the probability of the “all-zero™ state

after a sequence of length n is shifted in the LIFSR, i.e, the last term Z,, of the sequence

R
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Z(n) Given the number of error bits that appear in each stage’s equation and given
the probability € that each of these bits is a 1. the next step to obtain an element of
the sequence Z(n) is to solve for the probability for one stage to be in the zero state.
Because of the associative property of XOR functions. the probability that the logic
value at the output @ of a q-input XOR gate be zero. given that the probability of any
input being one is €. can be solved recursively from the equation for a two-input case.
Solving the recursion yields the following closed form expression:

14+ (1 - 2¢)7

pr(Q =0) 5

From the above expression and the independence property of the stage equa-
tions. it follows that for anv polynomial 1 + 2™, the general expression for the term Z,

is*

=

m
Zn = H pr(stage 1 = 0)
1=1 (3.14)
= H pr(stage j == 0) Hpr(stage k = 0),
7 k

where the product over ; is over the m — n mod m stages that have |n/m] inputs, and
the product over k is over the n mod m stages that have [n/m] inputs. Therelore,

substituting eq. (3.13) into eq. (3.14),

L+ (1= 26)[71/171] m-n mod m (11 (1 = 2¢) [n/ml n mod m
297 L2
=27+ (1 - 26)[n/mJ]m—n mod m [1+(1- 26)[n/m]ln mod m

Zn = | (3.15)

Here emphasis was placed on the computation of the probability of the “all-
zero” state. However, because of the independence of the stage equations for polynomi-
als 1 + '™, expressions for the probability of any of the 2™ possible states of the LFSR

can easily be obtained.
3.4.3 Primitive Polynomials

LFSRs characterized by primitive polynomials [Peterson 72| form another

interesting class. that are much used in BIST schemes both for test pattern generation
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and cempaction [Bardell 87] The structure that arises in the canonical equations for the
eletnents of A (n) when the latter are generated from primitive polynomials permits the
derivation of useful results. Primitive polynomials generate maximum-length sequences
[Golomb 82]. Therefore. when initialized to the “I00. 000" state and eycled in the
autonomous mode, the resulting sequence for all primitive poly nomials of degree m ha.
a period of length 2" — 1. Ilence. the matiix of coefficients C of all primitive poly nomial
have a commnocn property. tantamount to a considerable order in the canonical equation

generated from primitive polynomials.

Assuming the length of an error sequence to be that of the maximum-lengh
sequence of the LFSR. i.e., n = 2" - 1. and assuming that the matrix C for this LFSR
and for this n is generated. then. examination of the 2™ — 1 sub-colimns of length m
that result from the m last rows of the matrix reveals that all these sub-columns are
different. Examination of the corresponding scenario in the gate-level signal probalalins
problem representation reveals that each of the 2™ - input bits I, of the error sequence
fans-out in a unique fashion. For example, consider the matrix C for the polvnomial
f(z) = 14 22 + 2%, with n = 7. i.e,, eq. (3.8). This polynomial is primitive and thu
has a maximum-length period of 7. The sub-matrix constituted by the rows 5, 6, and 7

of C is reproduced below:

1 11 0100
o111 010 (3163
0O 01 1101

The seven columns of the above sub-matrix are all different. For this particular ev.
ample, the corresponding gate-level signal probability renresentation of the canomeal
equations is shown in Fig. 3.10. Ilence, as illustrated by this example, for primitive
polynomials there exists a considerable order in the stage equations at times that ae
integral multiples of 2™ — 1. This order is the basis for important results known i the
context of coding theory; one such result being an important bound for the probabilit,
of undetected errors for cyclic HHamming codes [Lin 83| (see Section 5 3 of this disserta-
tion for more discassion on coding theory). This Lound for Hamiming codes is used

[Gupta 88] to claim a result on the probability of aliasing in BIST for the cases where
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the test sequence length corresponds to the natural length of the Hamming code. In
the present context. this order enables an important upper bound on Z, to be proven
for any n. This bound is in turn useful for deriving an upper bound on the probability
of aliasing for pritnitive polvnomials. The bound on Z, is expressed in the {ollowing

theorem.

Eq XOR1
Ep
E3
Eq ><OR2 OR ——g¢
Es —— | [ [
E6——J
£y — XOR3

Figure 3.10 Gate-level 1ep1esentation for the polynomial 1 + 22+z3 n=1

Theorem 3.3: Assuming a primitive feedback polynomial and an error sequence of length

n. an upper bound for Z, = pr(“all-zero™ state at time n) is:

Zy, <

(3.17)

(1 +1 —2e|l"/m1>m
- :

where | | denotes the “absolute value of”. (For n/m > 1 this bound is essentially the

envelope of eq. (3.15)).
Proof: See Appendix A. n

A useful application of this bound is discussed in the following subsection.

Other applications are discussed in Chapter 5.
3.5 Probability of Aliasing

Aliasing occurs whenever the final signature of a faulty circuit, is the same as

that of the fault-free circuit. It can be shown that for this to occur, the final signature
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of the faulty circuit must be the “all-zero™ state when only the output error sequence of
a CUT is considered [David 78]. Williamns et al. used this observation in |Williams 86;
to define the probability of aliasing at time n. P.AL,. as the probability of the signature
analysis register starting in the “all-zero” state. leaving this state, and rcturning to
it after an error sequence of length n is shifted in the signature register Given the
probability of the “all-zero™ state, aliasing requires the exclusion of the case where the
register never leaves this state [Williams 86], i.e.. aliasing is not considered to occur i
no errors occur in the output sequence. The probability of this occurring is (1 )"

Therefore,

PALy = pr(“all-zero” state — “all-zero”'state) - (1 - ¢)" :
3.18)

= n-—(].*-&)n.

The expression for Z, derived for registers characterized by polynommals 1
z'™ (eq. (3.15)), was derived assutning that the register is initially in the “all-zeto™ state,
i.e.. pr(Zg = 0) = 1. Therefore, the equation (3.15) can be ditectly used lor Z, in eq
(3.18). Hence. the f{ollowing exact equation for the aliasing probability for polynomials

1+ £ results:
PAL, = 2—m[1 +(1- 26)[n/mJ]m—n mod m {1 +(1 - ZC)[n/mlln mod m

- (1-¢€)".

(3.19)

Several plots of eq. (3.19) for different values of m and different values of
¢ were obtained. Fig. 3.11 contains plots for the polynomial 1 + z?, and Fig. 3.12
contains those for the polynomial 1 + z®. Such curves were reported in [Williame
86| and [Williams 87]. However, whereas the curves in [Williams 86| and |[William:,
87| were obtained through simulations. given the closed-form analytic expressions. the
generation of the curves reported here only required a computational effort linear in the

test sequence length.

Regarding signature analysis registers characterized by primitive polynonn

als, from Theorem 3.3 and eq. (3.18), an upper hound for aliasing is-

PALn < 27™[1 + |1 = 2¢/lmlim (1 — )7 (2 20)

|1
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Figure 3.11 Probability of aliasing for polynomial 1 + z3.

In [Williams 87|, the following bound for primitive polynomials is stated:
PALy < 127 + (2™ = 1)(1 — 2¢)"(1-1/(27=1)), (3.21)

Examples of Williams el al.’s bound (eq. (3.21)) and the one derived here (eq. (3.20))
were plotted. Bounds for primitive polynomials of degree 8 are shown in Fig. 3.13,
and those for primitive polynomials of degree 16 and 15 appear in Figs. 3.14 and
3.15 respectively In Fig. 3.15. for purposes of comparison. the exact values for the
probability of aliasing were plotted for the polynomial 1 +z +z!°, along with the bounds
although the technique used for obtaining the exact values is oniy described in the next
chapter. Notice that in Fig 3.15. the logarithm to the base 10 of the probability of
aliasing is given. In general, the bound derived here is tighter than Williams et al.’s
bound for shorter test lengths, but is generaily not as tight for longer test lengths.
Fquating eq. (3.21) with eq. (3.20), for m >> 1 and ¢ << 1, the intersection point

can be shown to be n = 6m/10¢, and for ¢ approaching 1, the intersection point is
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Figure 3.12 Probability of aliasing for polynomial 1 +r

n = 6m/10(1 — €).

3.6 Summary

In this chapter. an analysis technigque for studying the dynamic hehaviour
of LFSRs was proposed. The basis for the analysis is the single-stage state probabil-
ity sequence of an LIFSR. The computation of such sequences was shown Lo require a
computational effort which is only linear in the sequence lengtli. Though not presented
here, it should be clear that because of the linearity of the operations perlormesd hy
LFSRs, the simple superposition principle can be used to compnte single-stage state
probability sequences for multi-input LESRs (MISRs) (See Section 5.2 [or more detaily

on multi-input LFSRs.)

Single-stage state probability sequences can serve as a first degree approxi-
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i Bounds on Aliasing Probability, m = 8
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Figure 3.13  Bounds on the piobability of aliasing for prunitive polynomials of
degiee 8 “—=" cortesponds to eq (3.20) and 7 cotresponds to eq. (3 21).

madtion for the behaviour of all m stages of an LFSR. Lence, single-stage state sequences
may he useful in guiding several important BIST design decisions. The notion of single-
stage state probability sequences was generalized to multi-stage state probability se-
quences. [rom this generalization, for LFSRs characterized by polynomials 1 + 2™,
exact closed-form expressions for the probability of aliasing were derived. In the case

of LFSRs characterized by primitive polvnomials. upper bounds were derived.

'Qﬁ"\
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t 1 Introductum

Iterative Technique for Calculating State

Chapter 4
Probabilities of LI'SR=s

4.1 Introduction

For LFSRs in general. the analytical technique developed m the preceding
chapter has serious limitations. These are mostly due to the exponential (in sequenre
length) complexity that arises in the multi-stage analysis. In this chapter. a less com
plex technique for calculating the single- and multi-stage state probability sequences of
LFSRs is presented. In essence. the technique is based on a recurrence fer the probabnl
ity of the “all-zero™ state of an LFSR. From this recurrence, it is shoswn that the aliasing
probability after a test sequence of length n is shifted in the LFSK can be calculated by
exploiting the knowledge of the aliasing probability at length n -1 More preaisely, the
technique is based on a set of 2" — 1 double recurrences. The recurrence equations are
double in that they express a recurrence in both the time and space dimensions, where
the time dimension is already understood from the previous chapter, while the space
dimension refers to the number of stages involved in the recurrence  Thus thiough
these recurrence equations. it is shown that the probability that anv set of up to m
stages be simultaneously in the zero state at a given time step 1 can he calculated from
the corresponding probability at the preceding time step @ = 1. and from that of vsuboet
of the given set of stages at the same time step 1. A compact notation is defined windh

enables each of these 2™ — | recurrence equations to he expressed through onlv two

R
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general equations. No closed-torm solutions to these recurrences are given. Instead. the

technique proceeds by performing exact numerical iterations from the set of recurrences.

For a register of size m, the technique requires O(2™) space and O(n 2")
time to yvield all the 2" — 1 possible multi-stage state probability sequences. [Fromn these,
the computation of the probability of aliasing for all values of test length [rom 1 to n
follows directly Thus. the technique in fact yields 2™ — 1 solutions out of which only
one (the “all-zero” state) is of particular interest in regard to the probability ol aliasing
Hence, this technique provides a solution to the aliasing problemn which is exponential in
the number of stages. i.e.. degree of the feedback polvnomial. and linear in the sequence
length. instead of being exponential in the sequence length. This is a very significant
reduction in complexity compared to that of the technique developed in the preceding
chapter which is exponential in the sequence length. The fact the the solution still
requires a complexity exponential in the sequence length may appear to be a strong
deterrent of its usefulness. This may be true, however. the computations required at
each iteration step are simple enough to enable registers of sizes of interest in practicc

(e g . 16) to be readily analyzed using today's computers. e.g.. DEC’s MicroVax.

Apart from its comput~tional feasibility, another advantage of the solution
presented in this chapter is that it is applicable to a very general error model. That is,
the technique described in this chapter can handle distributions of error sequences other
than the binomial or uniform distributions. More specifically. the iterative technique
is applicable to the completely general error model wherein the probability of error on
each of a CUT's output bit may vary. This enables the study of thie performance of
aliasing of signature analysis with respect to several interesting classes of errors, e.g.
burst errors and dependent errors [Smith 80]. This facet of the technique also enables
the studv of several interesting BIST schemes. One example is the scheme where the
probability of error changes as a result of changing the distribution of primary inpul
probabilities of the randomn test pattern generator. Such a scheme has been shown to be
very effective in reducing the test length required to achieve very high lault coverages

[Lisanke 86| [Wunderlich 87) |Waicukauski 88|.

This chapter describes the iterative technique in detail. and results obtained

I
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using the technique are presented.

4.2 Preliminaries

The same notation as the one used in the preceding chapter is used in thy
chapter as weli. For the sake of completeness of this chapter, the essentials of his
notation are briefly repeated here. along with the introduction of further notation and

preliminaries.

The feedback connections of an LF'SR can be represented by polvnomials m
r with coefficients in the Galois field GF(2) [Golomb ]2] [Peterson 721 For example,
for the general LFSR depicted in Fig 3.1, the charactertstic polynomial f(r) ol the
structure is:

f(2) = 2™ @ hy 2™ B ™ L (1)

!

where h, = 1 if there is a [eedback connection from stage r', and i, = 0 otherwise

For analysis purposes. only the ertor sequence [(n) is treated exphaith A«
shown in Fig. 3.1, let E(n) = {Ey,E,, ... ,L,} denote the incoming error sequence,
F(n) = {F{.F3. ... ,F,} denote the feedback sequence, and M (n) = { M M),

M,} denote the modulo-2 sum sequence of E(n) and F{n).i.e, M{n)  L(n) i I(n)
Assuming the “all-zero™ state to be the initial condition of the LFSR. with [, [, . and
M, denoting the 1th element of the respective sequences. M, can he exprossed as

M =FE &F,

m (|'))

= E,@Zhj.’\[l_J; hy =0.1; hy=1; My...M_jyy= 07 ¢ O

1=1

where the summation is modulo-2 addition

Iere the assumption is that the exact (deterministic ) knowledge of the binary
sequences £(n), M(n), and F(n). is not available because such sequences can only be
obtained through exact fault simulation. Instead. the assumption is that the bits ol

/

the error sequence each have a probability ¢, of being equal toone,ie, pr{li, - 1)



4.2 Dreluninar jes

Recall that in Chapter 3. each error bit E, was assumed to have the same probability
of error, i.e., ¢ was assumed to be constant throughout the entire test sequence. Now

however, each error bit is assumed to be characterized by a specilic probability e,.

The following is new notation introduced because it facilitates the description
of the iterative techinique that will be described next.
S, is defined as a vector representing the state of the LFSR at time 1:
s, =[52.8),....sm 2 sl (13)
where "IJ = M, 4, _{m-1)- Therefore.

S, =[5} o ST = Myt My mge s AL (4 4)

By the shifting propertv of the LFSR,for 0 < j; < m - 1.

) _ il -
Sl =S (1.5)
and for j = m -1 (using eq.(4.2)),
mn
~1
S,nll =M= E @ Z h]“[H-l—]
1=1
m (11'6)
=E 12 hS"?
=1

I'tior to formally introducing the problem of aliasing and the iterative tech-
nigue using the newly intrecduced notation, the following two lemmas are stated since

they are used in the demonstration of the technique presented in Section 4.3.

Lemuna 4.1: Let 4 and B be two boolean expressions. and let it denote the boolean ORR

operator T and @ denote modulo-2 addition, then

(A®B)UA =AU B.

b The reason for uging the symbol U to denote the boolean OR opetator ig to save the symbol
+ to denote regular arithmetic addition, thereby avoiding confusion in the forthcoming
equations where both boolean and arithmetic operations are expressed simultaneously
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Proof: From the definition of boolean connectives. =

Lemma 4.2: Let A and B be two boolean expressions. and let A denote the boolean

complementation of A. then.

priAu B=1)=1-pr(AUDB=1) +pr(B =1)

Proof: Follows from the corresponding Venn diagrams. n

4.3 Computing State Probability Sequences of LFSRs

4.3.1 Motivation and Basis for the Technique

Here the primary motivation for computing the state probabilities of LI SR
is Lo determine the probability of aliasing for a given test sequence length and a gien
LFSR. The problem of aliasing has already been discussed in preceding chapters From
before. the probability of aliasing PALy, is defined as the probability of the signature
register starting in the “all-zero” state, leaving this state, and returning to it after having
shifted in the LFSR an error sequence of length n. With the new notation introduced
in Section 4.2, starting in the state Sy = 0 is synonymous with starting in the “all-zer0
state”. Similarly. returning to this state at time n is expressed by §,, = 0 Assunung
that the probability of error ¢ is constant, excluding the case where the register never

leaves the initial “all-zero™ state, then,

P/anzpr(Sn’:O)—(l '—()n. (‘7)

Let S(n) denote the sequence of states of the LFSR. That is. let the ph
element of S{n), i.e.. S, denote the state that the LFSR is in after ¢ erior bits have
been shifted in the LFSR. To find P.AL,, the interest is in the “all-zero™ state Tlhat
is. the requirement is to find pr(S, = 0). To simplify notation, Z, is defined such that

Z, = pr(S, = 0) and Z: =1~ Z, Then, expressing S, = 0 through its components yield.,

Zy=pr(M, UM, UM g0 UMy =0) (1%)

(87
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From the preceding chapter. finding pr(Af, = 0) corresponds to the single-stage analysis
and is hence easy for all feedback polynomials. Also from the previous chapter, finding
pr(S, = 0), which corresponds to an m-stage analysis, is straightforward for polyno-
mials 1 + z™. However. finding pr(S, = 0) for any polynomial. in particular primitive
polynomials. is not straightforward due to the dependencies that exist between the se-
quence elements M, M, _y, ..., M,_,,,. 1. Hlowever, in this chapter. it is shown how the
multi-stage probability sequence pr(S; = 0),pr(Sy = 0)....,pr(S» = 0) can be obtained
iteratively. for any polynomial. Before describing this technique in detail. a theorem

which constitutes the basis for it is proven.

Theoremn 4.3:

Zy=6+2Z,_1(1 —2¢)—e,pr(My_y UM, o U UM, _.1 = 1).

Proof: Using the definitions for the probability of boolean expressions from [Parker 75/,

Zy=pr(M, UM, _ - UM,y =0)

(1.9)
=1 = pr(M, UM, UM,y =1).
By definition, Z, = 1 — Zl'. therefore.
Z = pr(M,UM,_U---UM,_, .y =1) (4.10)
Substituting eq. (1 2) into eq. (4.10) yields
m
7' = pr((El @ kM, JUM, {UM,_3U- UM, _pyy=1) (4.11)

J=1
where the summation is modilo-2. Using Lemma 4.1 repeatedly, i.e., as many times as

there are non-zero h,'s in the characteristic polynomial of the LFSR, yields f

Zl = pr((E, @ My_p) UM, 10 0 M,y = 1). (4.12)

F Recently, an abeervation was made to the effect that e (4 12) could he oblained fiom
first principles [[ishnamurthy 88] The argument is the following. If any of the bits
M,_y M, _,.11 is a one after the 1 bit is shufted in, then S, will be one. Otherwise,

e all My . M,_,,, 1 ae zero, S, will be one if (E, M, _,,) iz a one.
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Given a boolean function f of n variables ry,z;,....rn. Shannon's expansion theo-
rem [Kohavi 70| states that f(zrj.r3.....75) can be expressed as a boolean sum (hete

denoted by the symbol ') of two terms:

flzi,x20vxn) =T, f(x).. ... kSO In)!rl=()','1«'zf(l‘l ..... I, ...I,,Hr,_l (1)
=%, f(zy..... 0..... In) U.Ilf(.l,'l,. N RN ry)
Therefore, performing such an expansion for the expression {function)
((Ez e -\I:—m) u "‘[z—l Uee f\lz—m+l = l) ( R
yields the following for eq. (4.14):
Ft <(E‘L D ‘\[l_'") 1 ‘\[z—i i ‘\[l-—-Z b ...t 1\1’1,_,,,_.,1 ) !El:”
U (115)
E, ((El EM_m) UM, QUM _ U UMy, 1 ) Ili'lzl
The expression in eq. (4.15) can be rewritten as
Ez ((O P ‘\Iz—m) L I\Iz—l UM gttt - tv M )
u (116)

E, ((1 BM_ ) UM _ UM, UM ,)

Since the two terms of eq. (1.16) constitute mutually exclusive events, their probabilities

may be summed. Therefore. from eq. (4.12) and the above,

7' = pr [E,((oea M) UM,y UM,y U UM,y ) = 1]
(4 17)
+ pr [Ez ((l D A[z—m) L “[t—l U “11—2 L. 1”1—m+]) = ]]

Furthermore, since E, is independent of M,_...M,_,,, eq. (1.17) can be rewritten as

Z = pr(E, = 0) pr [(0 FM_ ) DM UMy UM ey = ll s

+ pr(E, = 1) pr[(l BM ) M UM g M ey = l] )
Since pr(E, = 1) =¢, and pr(E, =0) =1 — ¢,

Zl=(1-¢)pr(My_y UM,_yu-- UM, =1) (1 19)

+ 6 pr(‘\ll—l Mool “/[z—m‘#-l 'J -‘Tiz——m =1).
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Using Lemuna 4.2 and eq. (4.10),

le = (l it El)le—l
ceft =2 4 pr(M_ U UM,y = 1)] (4.20)

=e+Z_(1-2¢) +epr(M_y - UM_p g =1).

Substituting Zl’ =1 - Z, in the above yields:

2, =6+ 2, (1 =2¢)—epr(M,_1 VM, o0 JM, _yg = 1) (1.21)

Theorem 4.3 expresses a recursion in two dimensions: in time and in space.
where time refers to the sequence length while the space dimnension refers to the number
of stages involved. Theorem 4 3 states that it is possible to calculate Z, from ¢,. 7,_,
and pr(M,_y)-+ UM, _,.,1 = 1) Expressing Z, from Z,_; constitutes the recursion in
the time dimension. while expressing Z, (which involves the m stages) from pr(Af,_, "
<--1'M, 4 1 = 1) constitutes the recursion in the space dimension since pr(M, _ji'---'
M, _ 41 = 1) is asubproblem of the original problem. i.e., pr(Af,_y10-- 1M, _ = 1)
is the probability that only m — 1 instead of m stages not be simultaneously zero at
time t. Just as Theorem 4.3 expresses Z, in terms of itself at time : — 1. and the
probability of a disjunction of a fewer nutnber of stages at time 1, it is possible to express
priM,_qU---UM_4+1 = 1) in terms of itself at time 1 — 1 and the probabilities of
different, disjunctions at time : — 1, and similarly for the other possible disjunctions of i
stages Thus, if the probabilities of all the possible disjunctions that can be formed [rom
the set of the m states of the corresponding m stages of an LFSR are known at tinte
t — 1, then it is possible to compute the corresponding probabilities [or the subsequent

time 1 This is shown formally in the next subsection.
4.3.2 Calculating Probability Sequences of Disjunctions of States of LFSR Stages

In this subsection a general iterative technique for calculating the probability

sequences of all the possible disjunctions of the states of the m stages of an LF'SR for all

6]
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sequence lengths is presented. Using Theorem 4.3 and eq. (4.7). this technique enables

the exact probability of aliasing to be calculated for all test sequence lengths

If each component 5;7 of the state vector S, of an LFSR of length m is
considered as a boolean variable. then there are 2™ -1 possible non-null disjunc tions that
can be formed with these variables. To distinguish the different possible disjundtions
using a compact notation. let U'f. 1 < a < 2™ — 1 denote the 2™ - 1 particulas

disjunctions. where U" is defined as follows:

U:':UQJS;’. d~j<m-1 (122

where a, = 0.1 depending on whether the particular variabie S;’ is part of the dis-
junction or not, and the space index (superscript) a of U is formed according to the

following:
m—1
a= ) a2, (1 2:2)
1=0

where the summation and exponentiation of 2 are the regular operations over the lield
of real nurnbers. Therefore.

U, =5;

Uvl=15/;

U} =sPusk

Ul =% (121)
Ul =52 u Sk

13

u2T-l o0yt sy, 1y smel
1 1 3 t 1

This assignment of space indices (superscripts) enables efficient hitwise logic

operations to be performed on their binary representations. For example,

vroud =(s"ushu(stust)y=5"us) st (125)

f

Letting 0011 and 0101 be the binary representations of the space indices of l/l’ and 1

1 hd

respectively, and letting v denote the bitwise OR operation, then the index of N,’ t I",r'

(2
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is simply 0011 70101 = 0111 which is the binary representation of 7. Therefore,

vioul = Ul (1.26)

Similarly to 1", X" is defined as the modulo-2 sums of the same variables.

The 2™ — 1 possible such surns are denoted in the following way:
X;lzz%Sz), 0<)3<m-1; (4.27)

where the summation is modulo-2 and where a, = 0.1 depending on whether the
particular variable Sl] is part of the modulo-2 sum or not, and the space index a is
formed according to eq. {4.23). Therefore,
-1 _ 0.
X, =5
X7 =55
N 1.
XN =5 @5,
4 o2, qe
xt=s? (1.28)
5 _ b 2,
X) =555

XMl sle ste--e s

Clearly, there is one .X* which corresponds to the characteristic equation of the LI'SR
(see eqs. (4.2) and (4.6)). Let that particular X7 be labeled Xl(". Therefore, eq. {4.6)
can be rewritten as:

smMl=F, 9x°. (1.29)

The particular values that are desired are the probabilities I’ defined as

follows.
Pl =pr(l}=1); 1<e<2™-1 (4.30)
More specifically, it is desired to compute the P;ﬂrl’s from the P"s. The (ollowing two
theorems describe how this can be done.
Theorem 4.4: For 1 < a « 2™~ 1,
il 2a
+1 = Pz ’

(i)
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where 2a implies regular multiplication over the field of real numbers. For 21 4
2m —~ 1.
Pl =€ (1+P") 4 (1= 264y pr(X7 0T = 1),

2

where u = 2a—2™, and z = G \v/, where A denotes the bitwise boolean AND operation,

and / denotes ones complementation.

Proof: The case where 1 < a < 2™ ! implies that S!":ll is not part of U7~ By the

shifting property of the LFSR. for 0 < j <k — 1 (eq. (4.5).

] _ gltl "
SH-l_Sz : (131)

Therefore, an increment in titme from ¢ to ¢ + 1 implies a decremnent in the space index

of S from j + 1 to ;. In turn. from the definition of a. a decrement of one for each of the

values of the space indices j implies the division of @ by 2. Hence . for 1 _a 2™ !

a  _ pla
Pz+1 - Pz ’
where 2a imrplies regular multiplication over the field of real numbers.

For 2m1 < q < 2 —1.since SlkJ:ll is part of U? | the lalter can he rewritten

v+
as:
k-1
a _ ck-1 1—-2 e
Uz+l - Sz+l . U:—H : (I.JZ)
Therefore,
1 m—1 a—zm=1 __ n
Phy=pr(Ufy = 1) = pr(STT U U =), (113)
From this theorem for 1 < a < 2™m~1,
' om—1,, pr2a-2" _ -
Pz:-l =pr(.51+1 L Ul =1) (4734
Using eq. (1.29),
vy 9,4t -
Py = pr((Bugy ® X7) 0 URT2T = 1), (4 3%)

Using Lemnma 4.1,

Py = I"((Ez+1 D XT)UU" = 1). (-4 36)
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where u = 2a - 2. and £ = G * u'. Therefore.

PLy=pr((Eg @ X7 = 1)

* i (4.37)

=1- pr((El_Ll 2 XUl = o).

The boolean expression ((E,_; = X7) 1 U* = O) can be expanded into a product of
maxterms:

(E, D XFUUMNWE, UX, uUY. (4.38)

Since the two maxterms cannot both be satisfied simultaneously, they constitute mutu-

ally exclusive events. Therefore.

P =1—[pr(Eq v XT0OUS=0)

! . . (4.39)
+ pr{E, VX, U U =0)].
In turn, since X7 and {7 are independent of E, ;.
PLi=1-{(1-¢qu)pr(XJUl=0)
+ 64y pr(Xy 20 = 0)]
4.40
=1- [(1 - €41) (1 —pr(XJUlU} = 1)) (1-10)
+ €41 (1 —pr(X;UUY = 1))]
Using Lemma 4.2. the above easily simplifies to:
Ply=6 (1 + P+ (1 =2¢4y) pr(XFUU) =1). (4.41)
|

The equation for P, for 2m-1 < g < 2™ _ 1 in Theorem 4.4 contains the

term pr(XT 7% = 1). The next theorem may be used to resolve this term into P/’s.

Theorem 4.5:

pr(X7 Ut =1) = ((j2] + 1) mod 2)P;‘

|<|

H=)F Y -2t 3,
t

s=1

G5
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where |r| denotes the nuraber of ones in the binary representation of the index r. and

where the indices ¢ correspond to all the possible bitwise logical OR of the index u with

the indices of s other components of X7

Proof: See Appendix B.

Examples of equations described by Theorem 4.5 follow.

lzj=1:
pr(STul'=1)= pr(Uluvq =1) = Pluvq.
lz] =2:
pr((S7@ S )uUr =1)= P~ P* - pvT paptir,
|z} =

pr((S!@ S/ @ S)UUY =1) = P9 4 pHVr 4 prVe
uVvgvr uvgva
- 2(P + P

+ PluVrVS) + 4Ptu\/quv3'

(4 43)

(1.44)

Sumimarizing what has been proven in Theorems 4.3, 4.4, and 4.5 is that it

is possible to calculate the probability that any combination of up to m stages not be

simultaneously in the zero state at titne : from the correspending set of probabilities a

time ¢ — 1. Hence, the implernentation of these theorems constitutes an algorithim that

can be thought of as a dynainic programming solution approach to the problem [Aho

83]. At every time step. the 2™ — 1 entries (probabilities) of a table are computed from

the entries of the corresponding table at the previous time step. From this iterative

procedure, it is poussible to calculate the exact probability of aliasing for any length n

and for any constant or varying value of € in time O{n 2™). A detailed analysis of the

time and space complexities of this algorithm follows in the next subsection.

(461



43 Computing State Probability Sequences of LFSRs

4.3.3 Detailed Space and Time Complexity Analysis of the Iterative Algoritiun

In the following. the 2™ — 1 probabilities that are calculated at each time

step of the algorithm describesd above constitute the entries of a table denoted by T

Theorem 4.6: For an LIS of size m. the space complexity of the iterative algorithin

is ()(2”2).

Proof: For a 1egister of size m. atl every time step. the iterative algorithin described
above compules 2 —1 new probabilities from those from the previous time step. Hence.

the space complexity of the algorithm is O(2™). n

In regard to the time complexity of the iterative algorithm. the following
three theorems state upper bounds on the time complexity. The second theorem is a
refinement of the first, and the third a refinement of the second. These are reflinements

in that they consider the number of feedback taps as a variable.

Theorem 4.7: For a register of size m and a sequence of length n. if the number of
feedback taps, ie.. |3, of the LFSR is considered a constant, then the time complexity

ol the iterative algorithm is O(n 2™).

Proof: At each time step. the iterative algorithin computes 2™ — 1 new probabilities.
If cach of these 2" — 1 computations is assumed Lo require a constant amount of time.

then for a sequence of length n, the algorithm requires O(n (2" - 1)) = O(n 2'") time.

From Theorem 4.5, il is clear that the time complexity is not the same for
all the 2" — 1 probabilities computed ai every time step. A worsl-case analysis yields

the upper bound stated in the lollowing theorem.

Theorem 4.8: For an LFSR of size m with ¢ = |G| feedback taps, and a sequence
ol length n, the time complexity of the iterative algorithm is upper bounded by

Ofng 2ty
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Proof: From Theorems 4.4 and 4.5. the computation of the 2’ - 1 new probabilities is
dominated by the computation of the term priX] U = 1). Notice that in actuality
the computation of this term only arises for 2! entiies of T. From Theorem 1
the remaining entries of T do not require floating peint calculations. but only shilts of
indices. However, for the derivation of an upper bound. one can assume that the (erm
pr(X7 = U" = 1) is computed for all 2" — 1 entries of T. Hence. O(2™) computations

of the term pr(X* U U = 1) are required.

From Theorem 4.5. the number of terms in the expression for «omputmng
pr(X;uCr =1)is 22l or 221 — 1. In turn. the indices for the individual terms of the
expressions have to be computed as well. The latter computation is upper bounded by

O(]zi) time since up to |z| + 1 indices have to be ORed together to vield a new indes

Hence. the evaluation of a term pr(X] 1 U = 1), requires O(|r| 271y time  From
Theorem 4.4.
lzi = G o
(1 15)
<|Gl=g¢

Therefore. from Theorem 4.5 and the above. for a polvnomal with ¢ = ;] leedhack
taps. the computation of pr(X7 ' U = 1) is upper bounded by O(f 2Y) computation
steps. Since there are G{2™) such computations required, an upper bonnd on the time

complexity of the algorithm is O(ng 2™%9) for a sequence of length n. n

As mentioned in the proof of the preceding theorem. from Theorems 4
and 4.5. the computation of the 2™ — 1 new probabilities of T is dominated by the
computation of the term pr(.X{TUlUY = 1) In actuality, the computation of such terms
only arises for 2™~ 1 entries. From Theorem 4.4, the remaining entries do not requie
floating point calculations. but only shiflts of indices For establishing the complexity
of the computation involved. a refinement to the upper bound derived in the preceding
theorem is not to assume that all the 2™ — 1 entries involve a computation effort of

O(g 2Y). Such assumption yields the following upper bound on the time complexity

Theorem 4.9: For an LFSR of size m with g = |G| feedback taps. the time com

plexity of the iterative algorithm. for a sequence of length n. is upper bounded by

O(ng 2”‘(3/2)5’) = O(nng""‘” 585:]).

(3



4.4 Experimenral Results
Proof: See Appendix C. |

(‘onsequently, the worst-case complexity for the iterative algorithin is
O(ng2' 5™ which arises when all the stages are fed back to the first stage. i.e.. when
q = m In practice however. the configurations with few feedback taps are preferred
since they result in less area overhead |Bardell 87] Moreover. generally. the primitive
feedback polvnomials are the preferred ones. and [o1 most degrees. there exist primitive

feedback configurations such that g = 2 [Bardell 87).

4.4 Experimental Results

The iterative technique for computing exact probabilities of aliasing based
on the equations given in Section 4 3 was implemented. In Fig. 4.1 and 4.2. the
exact probabilities of aliasing for the non-primitive polynomial f(z) =1 + 2% + ! are
shown for different values of error probability and different test sequence lengths. In
Figs 4.3 and 4 1. the probabilities of aliasing are plotted for the primitive polynomial
2]

{ +r7 4 5! For all the values of probability of error e for which the probability of

aliasing is plotted. the latter approaches its steady-state value 27" faster. i.e . at shorter

10 compared to the

sequence lengths. in the case of the primitive polynomial 1 + 4z
non-primitive polynomial 1+ 8 + z1Y. Figs. 4.5 and 4.6 are plots of the logarithm (base
10) of the probability of aliasing for a register characterized by the primitive polynomial
f(r) =1 +z+ zP In this case, the bounds from |Williams 87] and those fromn the
previous chapter have been plotted as well. These plots show that for relatively short
sequence lengths. the bound proposed in [Williams 87| is overly pessimistic, whereas
the one from Chapter 3 of vhis dissertation is much more informative. Finally, in Fig
4.7, the probability of aliasing is plotted for the polynomial 1 + 27 + ! for the case
where the value of € is 0.01 for the first 250 bits and is then 0.90 for the remainder of
the test sequence In practice, such change in the value of € could occur when changing

the distribution of test patterns, which is done in biased random testing |[Lisanke R6]

[Wunderlich 87] [Waicukauski 88|.

The principal purpose for including these curves here is to demonstrate the
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feasibility of the technique. To date. obtaining such probabilities for a register of length.
say 8. appeared virtually impossible [Williams 87]. lowever. using the technique de
scribed here, generating the values for a sequence length of 1000 for a polvnomial ol

degree 10 takes less than two minutes of CPU time on a MicroVax

Probabiiity of Aliasing., Polynomial 1 + £8 + 10

0.0025 [ : ' ;
: "‘ '.' ¢« = .00 ——
:' “ .I'
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c.001 [} !
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Figure 4.1 Probability of alasing, f(r) =1+ 2% 4 r

4.5 Summary

This chapter described a completely new approach for calculating the proh
ability of aliasing for LFSRs characterized by any feedback polynomials. A donble
recursion equation for the probability of the “all-zero™ state of an LI"SR is given ‘T'he
recursion is double in that the probability of the “all-zero™ state at time 1 is expressed m
terms of the corresponding probabhility at tirme 1 — 1 and in terms of the state probability

of a disjunction of fewer stages at time 1. This recursion equation forms the basis of an

i
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Figure 4.2  Piobalnlity of aliasing, f(r) =1+ 28 + 710

iterative technigue for computling the probability of aliasing for LFSRs characterized
by anv feedback polynomial and for any test sequence length. The complete algorithm
involves 2'" — 1 equations. however, two theorems are proven that show how to express
these 2" — 1 equations through only two general equations. Results using the technique

are presented and the complexity of the algoritlun is analyzed in detail.
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5.1 Detection Confidence and Test Length Calculatinns

Chapter 5 Applications and Extensions

5.1 Detection Confidence and Test Length Calculations

Several recent research efforts have been aimed at the analvsis of random
cr pseudorindom testing in view of establishing the required test length to obtain a
certain test quality, e.g.. a given fault coverage with a certain deyree of confidence. An
excellent reference that summarizes the results to date is [\Wagner 87|. HHowever, none of
the reported analyses are truly aimed at built-in self-testable circuits since they do not
assume a compaction stage at the output of the CUT. Probably the principal reason
for this lack of analyses that include the effects of compaction is the lack of efficient
analysis tools that enable the effects of compaction to be studied under reasonable error
models, i.e., models other than the uniforin distribution of error sequences. Using the
techniques for calculating the probability of aliasing for signature analyzers developed
in Chapters 3 and 4 of this dissertation, the previous work on test confidence and test
length calculations for random testing can be extended. i.e.. new expressions for test
confidence and test length that take into account compaction can be derived. This is

done in subsequent subsections

The assumptions under which the results are obtained are the following. The
C'UT is assumed to be a single-output circuit. In regard to the types ol test patterns
that are applied to the CUT, these are assumed to be random. i.e., to come {rom a
source where the sampling is done with replacement, as opposed to pseudorandom pat-

terns, i.e., coming fromn a source where the sampling is done without replacement. The
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51 Detection Confidence and Test Length Calculations

assumption of true random patterns enables the fault detectability ¢ value to be consid-
ered constant for the entire test sequence Normally. pseudorandom testing |Wagner 87]
is the applicable model when the test patterns applied to a circuit are generated from
a maximnai-length LFSR. However. in the usual case where the number of test patterns
applied to the CUT is relatively small compated to the period of the LFSR, then the
assumption of random testing is a good approximation |McCluskey 88|, In regard to the
single-output assumption. a generalization to multi-output circuits is discussed brielly

in a later subsection.

5.1.1 Detection confidence before compaction

There exist different probabilistic measures of random or psendorandom test
quality (see |\Wagner 87]). Some are based on sets of faults while others are based on
only stngle (often “worst-case™) faults. To avoid any loss of generality, here the focus
of the analysis is on a single fault. The results for single faults can he extended 1o

measures that consider sets of faults.

Since the assumption is that random patterns are applied to the CUT, in
the presence of a particular fault the probability of an error at the output of the CUT
when applying one pattern is equal to the probability of detection of that fault. Let
this probability of error be ¢. Given a fault’s probability of detection, and assuming
no compaction at the output, the required test length n for detecting the fault with a
certain confidence is easily calculated. Let the detection confidence € be the probability
of detecting the fault when applying n test patterns. Let €' = 1 = ¢, then ¢ is the
probability of not detecting tlie fault when applying the n test patterns and is called
the escape probability [Savir 84]. Therefore. assuming n to be the number of test patterns
applied to the CUT and € to be the fault’s single pattern detection probability, then
e = (1 — ¢)". Solving for n yields the following lower bound to obtain the desired

detection confidence:

ne (5 1)

Since the next assumption is that compaction of the CUT’s output response
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5.1 Detection Confidence and Test Length Calculaticns

is done. let the above detection confidence C, the escape probability e, and the calculated
test length n, be subscripted by “bc* to denote “before compaction”. Therefore. ¢, is
the specified escape probability before compaction and ny, is the calculated required

test length for achieving the specified escape probability before compaction.

5.1.2 Detection confidence and test length after compaction

In the previous subsection, an expression for the required test length to
achieve a certain detection confidence assuming no compaction. is given. Now assume
that the output sequence of the CUT is fed to a signature analysis register that compacts

the output. It is desired to estimnate the effect of compaction on the detection confidence

and the test length.

Let C, and e,. denote the detection confidence and the escape probability
after compaction, respectively. Given that the circuit is faulty. Cy. is the probability
that a faulty signature results. and e, is the probability that the resultant signature
is that of the fault-free circuit. Because of the possibility of zliasing, for a fixed test
sequence length, Cye < Cp.. Alternatively, e e > ep.. If the CUT's output sequence
is error-[ree, then, assuming a correctly functioning compaction network. the resulting
signature will be that of the fault-free circuit. Hence, for a fault to be detected after

compaction, i.e., for a faulty signature to result, the fault must first be detected before

compaction.

In addition to being detected before compaction, for a fault to be detected
after compaction, no aliasing can occur. From the definition of the probability ol aliasing
given in Chapters 3 and 4, the case whete the LFSR starts in the “all-zero” state and
returns to this state after a test sequence ol length n has been applied to the CUT is
precisely the situation where a fault would not be detected after compaction. Hence,

e (3.18) can be rewritten as:
PAL = eqc — e, (5.2)

or,

eac = ey, + P AL. (5.3)
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5.1 Detection Confidence and Test Length Caleulations

Alternatively. using the relationship C =1 - e.

Cac = C\"C -— P."lL. (ﬁ. ‘)

Subsequently, two different valu=s for e, are distinguished depending on

n

whether the aliasing probability is assumed to be the 27 asymptotic value o1 a more

precise non-asvmptotic value. Since the asymptotic 27" aliasing probalilityv is the alias-
ing probability in the limit as the sequence length tends to infinity. let ¢35 cotrespond to
the case where the asymptotic value is assumed. and e,. correspond to the mote precise

case.

n

Assuming the 27™ asymptotic probability of aliasing yields the lollowing

expression for the escape probability after compaction:

= epe + 2-m, (1

<1
-l
—

o
ellC

Instead of assuming the asymptotic value for the probabilitv ol aliasing. il
the signature register is assumed to have a characteristic polynomial 1 + z™, then oq
(3.19) can be used for PAL in eq. (5.3) to obtain an exact expression for e,.. FFrom eq.

(3.19), and eq. (5.3},
- in/ - d o [n/m|in mod i .o
eae = 271 4 (1 = 2e)t/mlym=nmod m oy 4 (3 _ 9 ] . (5 6)

Moreover, assuming that n/m > 1, eq. (5.6) simplifies to:

—
-1
~1

~—

€. = 2—171[1 + (1 __ zt)n/mlm'

Somne numerical results obtained from the above derivations are reported in
Table 5.1. Assuming two dilferent values of ¢ (0.01 and 0.001), using eq (5.1}, values
for ny,. were calculated for different chosen values of e,.. From these,in turn, nsing eq.

(5.5) and (5.6), values for €52 and e, were obtained for different vahues of m What

is most significant in the presented results is that in some cases there is an order of

0

2 and e, e.g.. when m = 16 and ¢ = .001.

magnitude difference between e
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Escape Probability and Test Length

Polynomials: 1 + 2™

00
m €h, M h €ac Car Noe

e = .01
161071 230 | 1.00~1071] 117 107t 219
1072 459 | 1.00<1072| 1.90«<107°| 551
1074 o917 | 115 v 10~ 12,15 < 1074 | 1648
1079 1375 | 16.32 < 1079 | 205.49 < 1079 | -

321107t 230 100-107t] 1.08 10 ‘| 23R
1072 459 | 1.00 <1072} 1.37-107%| 496
1074 917 | 1.00x10~*| 3.58 <107*| 1100
107°} 1375 | 1.00x 1078 | (7.36 v 10" | 1915
¢ = .001
16 1071 2302 1.00-107"] .18 <1071 2405
1072 4603| 1.00 v 10~2{ 1.92+107%| 5541
1074 9206 1.15x 1074 | 12.36 « 10~ | 16640
107} 13809 16.26 « 1079 | 208.95 - 107" | -

321 107!| 2302 1.00~10-1} 1.09 -10°1| 2301
1072 4603 1.00 x 1072 | 1.39 x 1072 | 49R9
1074] 9206 1.00 x 16~*| 3.69 <1074 | 11087
10~% 13809 | 1.00%107°%| 17.99 v 1079 | 19311

-

~<

[ )

>~

<

Table 5.1 Escape Probability and Test Length- Polynomials 1 + 2™

The results indicate that for LFSRs with characteristic polynomial 1 { 7™,
compaction may in some cases significantly decrease the confidence of detecting a fault
Hence, one natural question to ask is what happens to the escape probability e, after
compaction if the test length is increased. Solving for » in eq. (5 7) yields

m 177(2(:,1,,_/.'" - 1)

22 . H.e
" In(1 — 20) (5:4)

Therefore, similarly to eq. (5.1) which relates test length and escape probability assum-
ing no compaction, eq. (5.8) relates the same quantities assuming compaction by an
LFSR with characteristic polynomial 1 +z™. In Table 5 1, the column n,, is the value

{3 "

of test length obtained using eq (5.8) taking euc = ep,. The entries marked by 2
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indicate that the confidence is not achievable. i.e., even if n is increased without bound.

€ac < €p,-

In the case of LFSRs characterized by polynomials other than 1+ z', no
closed-form expressions can readily be obtained for the probatility of aliasing. IHence.
no closed-forin expressions can readily be obtained flor ;.. However. [or primitlive poly-
nomials, closed-form expressions for bounds on eq, can be derived using the expressions
for the upper bounds on aliasing obtained for primitive polynomials (Section 3.5j. In
general however, i.e., for any tvpe of feedback polynomials. the iterative technique de-
scribed in the previous chapter can be used to calculate e, directly, since the basis
for the technique is precisely the calculation of pr(“all-zero“ state — “all-zero” state)

which is also precisely e,c.

Some values for e, and ny. were calculated assuming that the LFSR was
characterized by the primitive polynomial f(z) = 1+ " + 2% + 212 4 19 adopted by
Hewlett Packard for its signature analysis schemes [Frohwerk 77]. Results are presented
in Table 52. Clearly, in regard to test confidence and test length, the use of such
primitive polynomial yields much more desirable effects compared to that of polynomials
1 +r1%. The values calculated for e using exact techniques are very near those obtained

assuming the asymptotic probability of aliasing
5.1.3 Summary

Much work has already been aimed at deriving expressions that can be used
to estiimate the number of test patterns that should be applied to a CUT to achieve
a certain degree of confidence. Most of these techniques are based on the detection
probabilities of the different faults of a particular CUT. However, until now, none of
these expressions had been derived taking into account the effect of compaction. From,
the techniques developed in the preceding chapters for calculating the probability of
aliasing, test length and test confidence calculations that specifically take into account
compaction by a signature analysis register can now be performed. This was brieflv

illustrated in the above subsection. In turn, based on the analysis for single faults, using
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Escape Probability and Test Length

Polynomial: 1 + 2" + 1% + % 4 516

o
n €he Mhe €ac Cac Nae

e = 01
161071 230 | too 10! 1L.00 ~ 10 230
10~2| 459 | 1.00 <1072 | 1.00 « 1072 459
1074 917 | 115 <1074 | 115~ 1071 | 933
0%} 1375 L1632 <107% | 1736 « 10 © -

e = .001
16110-1} 2302) 1.00 <1071 | 100 . 1071 2302
1072 4603 100 <1072 | 1.00 ~ 10°%] 4605
1074 9206 1.15 <1074 116 . 10 4| 9371
107% 4 13809 | 16.26 < 107% ) 16.26 - 1079 | -

Table 5.2 Escape Probability and Test Length HP Polynomial 1 + AL
12 216

the measures discussed in Chapter 2. different probabilistic fault coverage measures can
be calculated. Nonetheless. mostly due to the difference between [ault domain and
error domain deception volumes, the quality of the derived probabilistic fault coverage
measures remains an open issue. Finally, an inunediate apparent drawback of the above
analysis is its limitation to single-output circuits. The following subsection discusses an

extension to multi-output ciicuits.

5.2 Extensions to Multi-Output Circuits

Most applications of BIST would normally be intended for multi-output cir-
cuits. Several different schemes have been proposed for the compaction of the response
of multi-output circuits. Readers interested in the various propositions made in the past

are referred to |Zorian 87| or [Bardell 87| for discussions and numeronus references

In the case of signature analysis. one straightforward option is to have a
register compacting each one of a circuit’s outputs. In {David 84], such a scheme as well

as some variations of it are studied for the case where the signature analysis registers

R




F

5.2 Extensions to Multi-Output Circuits

are characterized by polynomials 1 + ™. Of course, the overhead of such schemes is
high. Another alternative is to muftiplex a single-input signature analyzer to the CUT’s

various outputs, one at a timme. and to repeat the test sequence for each output.

An interesting alternative to multiplexing is possible in vhe case of bound-
ary scan designs [Maunder 87| [Lagemaat 87]. In such designs, in test mode. each of
a circuit’s inputs and outputs may be connected to form a shift register. For a chip
with boundary scan, a BISTT scheme such as the one shown in Fig 5 1 is a possibil-
ity. In that scheme, a test consists of loading the scan register with a pseudo-random
test pattern. applying the pattern to the CUT, collecting the CUT’s output response
in the scan register, and finally shifting out the response in a signature analysis reg-
ister llence. for such a scheme. the analysis techniques developed in Chapters 3 and
4 for sin~l=-input signature registers can be used for multi-output circuits The iter-
ative technique of Chapter 4 is particularly suited since it can handle variable values
of €. Such would be the case here since the sequence fed to the signature analyzer
would originate from several different outputs of a CUT The techniques developed to
estimate fault detectabilities [Brglez 84| [Jain 85] [Seth 85|, i.e., €. can generally be
used with multi-output circuits as well Iowever. for the multi-output circuits. these
algorithins calculate multiple single-output probabiiities of fault detection. but do not
calculate truly multiple-output (joint) fault detection probabilities. Hence, given this
drawback. the simplest assumption to make is to assume that the errors appearing on
any given oulput are independent from those appearing on any other cutput. hence
are uncorrelated. Thus, assumning of independence or errors at a CUT’s outputs, and
assuming that a particular fault produces an error at output 1 with probability ¢;. at
output 2 with probability €2, .., at output m with probability €,,, the sequence of
error probabilities corresponding to the error sequence shifted in the signature analvzer

would periodic of the form:
fl, (2, [ I El, 62,.- . ,Gyn,fl, 62, RN I R (5.9)

Such a type of sequence of values of ¢ is readily handled by the ilerative technique of
Chapter {. If the independence assumption were not considered reasonable, other types

of multi-output error models could also be studied with the iterative technique since it
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can handle any value of ¢ on any bit of a sequence.

CHAIN  —» SA reg. (LFSR)

REEN

cuT

SCAN

[ 1]

TPG |—»

Figure 5.1 Multi-output circuit with a scan chain and an LFSR for SA

Anotlier BIST scheme for multi-output circuits that uses signature analyeis
for compaction is one where the outputs of the circuit are fed directly 1o a parallel
input signature register or multi-input shift reqister (MISR), as shown in Fig 52 o
such cases. the analysis techniques developed in the preceding chapters for single-input
signature analyzers can also be used since it has been shown by several researchers
[Sridhar 82] [Ilassan 83} [Bardell 87] that the parallel compaction of the response of a
multi-output CUT by a MISR can be reduced to the compaction of an equivalent serial
sequence fed to a single-input LFSR characterized by the same feedback conligiuration as
that of the MISR. In each of the cited references, the reduction is shown for the internal
type of MISR (and hence LFSR), i.e., the type where the last stage of the LFSR feeds
back to several EXOR gates that lie between the stages. The interual type of MISR
is the most attractive in regard to area overhead. However, the analysis technigues
developed in Chapters 3 and 4 apply to the external types of feedback confligniations
[lowever, as mentioned in Chapter 3. isomoirphic transformations hetween the two types
have been demonstrated [[llawiczka 86| Ilence, using the two tvpes of transformations,
the process of parallel compaction by an internal type of MISR can be reduced 1o the

serial compaction by an external type of LFSR

The aforementioned formnal reductions are not presented here  However,

an example is given to illustrate the nature of the transformation that reduces the
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TPG

CuT

MISR

Figure 5.2 Multi-ontput circnt with a MISR for SA.

parallel compaction process by an internal MISI to the compaction of an equivalent
serial sequence by a single input LFSR with the same feedback configuration as that
of the MISR. Fig 5.3a illustrates the compaction of six 5-bit vectors bv a 5-bit NMISR
with a feedback polynomial f(x), while Fig. 5.3b illustrates the functionally equivalent
compaction of a serial bit sequence, derived trom the six vectors, by a single-input LF'SR
characterized by the same feedback polynomial f(z). The equivalent serial sequence
is simply a bit-wise modulo-2 suin of shifted versions of the output vectors from the
CUT. Hence, assuming that each output bit from a given output 2 of the CUT has a
constant. probability of error ¢,, and is independent of every other output bit. then the
probability of error of each of the bits in the equivalent sequence can be calculated using
eq (3 3) recursively Given the equivalent probability of error, ¢, for the equivalent ser;al
sequence. the techniques developed in the preceding chapters can be used to analyze

the effect of compaction with multi-ontput circuits.

Hence. the generalization of the analysis of compaction of the response of
multi-output circuits by LFSRs or MISRs can be considered rather straightforward
since the analysis techniques developed for analyzing single-input signature registers
can be applied to the multi-output cases. Based on the assumption of the independence
ol errors at the outpuls of multi-output CUTs, techniques to find equivalent € values
have been suggested above. The problem that remains open is determining whether

such assumptions are reasonable.
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Figure 5.3 (a) A MISR, and (b) its equivalent single-input LFSR [Stidhar 82|

5.3 Coding Theory Applications

5.3.1 Introduc:ion

The aliasing problem in the context of BIST is closely related to the problem
of an undetected error in coding theory Though testing experts have often exploited
the results fromn coding theory for making claims in tegard to their testing problems,
few have explicitly stated this relationship, and consequently, equivalent results have
occasionally been derived independently For example, the result by Williams et al

7 as the sequence

[Williains 86| stating that the probability of aliasing tends to 27’
length tends to infinity, for all LFSR configurations, and for all values ol the erro
probability, had previously been derived in the context of coding theory, i.e., in  Witzke
85]. Recently, in [Gupta 88|, Gupta and Pradhan explicitly stated the refationship
between the testing and coding theory problems. Gupta and Pradhan used a well-
known expression for the probability of an undetected error for «vclic Hamming codes,
and derived from it an expression for the probability of aliasing in BIST However thei
result applies only to the aliasing probability of test sequences whose lengths correspond
to natural lengths of Hamming codes In the [ollowing, after describing the relationship
between the probability of aliasing in testing and the probability of an undetected error

in coding theory, the iterative technique developed for computing the probability of
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aliasing is shown to be uselul for computing the probability of undetected errors for anv

cyclic code and any shortened version of the latter.
5.3.2 DProbability of an Undetected Error

Cyelic codes. as well as shortened cyclic codes, also known as polynomal
codles or cyclie redundancy check (CRC) codes [Lin 83]. are widely used for error detec-
tion in data communication svstems. The particular appeal of shortened cyclic codes is
that their encoding and decoding may be performed using the same simple circuits as
the ones emproved for the original code. A number of cyclic codes have been adopted

as standards. e.g.. the CRC-12. CRC-ANSI. and CRC-CCITT codes |[Tanenbaumn 81].

An (n.k) binary cyclic code C' is a set of 2 code words of n bits defined as
a subspace of a vector space over GF(2). For all code words ceC', the corresponding
code polynomial ¢(r) is divisible by a polynomial ¢g(r) of degree m = n — k. called the
generator polynomial of C. Supposing that a code word is ‘ransmitted, let r(z) denote
the code polynomial of the received word. Because of the channel noise, the r1eceived
code polvnomial may be different from the transmitted code polynomial. In the decoding
of a linear code, the first step is to compute the syndrome. The syndrome computation
can be performed by dividing r(z) by the generator polynomial g(z). llence, an LFSR
whose divisor polynomial corresponds to the code generator polynomial ¢(.) can be
used to compute the syndrome If the syndrome is zero. r(z) is a code polynomial and
the decoder accepts r{r) as the transmitted code polynomial. If the syndrome is not

zero, then r(r) is not a code polynomial. and the presence of error is detected.

However, in the case where the syndrome is zero, there is a possibility that
the presence of errors is undetected. This occurs when Lhe error polynomial e(x) cor-
responds Lo a code word of . That is. if the error polynomial is also divisible by the
code generator polynomial g(z). then the computed syndrome will be zero despite the
presenice of errois in the received word. Usually, the possibility for such undetected
errors is analyzed for the binary symmetric channel (BSC), and is characterized by a

probability. denoted here by P,,.
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The probability of an undetected error can be computed if the weight distri-
bution of the code is known. Theoretically. the weight distribution f an (n_k) linea
code can be computed by examining its 2% code words or by examining the 2" % code
words of its dual and then applying the MacWilliams identity [Lin 83]  However as
stated in [l.in 83}, except for some short linear codes and a few classes of linear codes
the weight distributions for many known linear codes are still unknown because find

ing such distributions is compultationally infeasible. Consequently, it is generallv very

difficult. if not impossible, to compute P, for many known codes

Nevertheless. the undetected error probability for various (n. k) linear codex

used soleiy for error detection on a BSC channel with bit error rate (or transition

probability) €. ¢ < 172, has been discussed in numerous recent papers [Lenng-Yan-
Cheong 76| |Leung-Yan-Cheong 79| [Woll 82] [Kasami 83] [Witzke 85} [Fujiwara 87,
[Miller 85] [Fujiwara 86]. Larlier, Korznil. [Korznik 63 proved that there exists (1. 4)
linear codes whose probability P, of an undetected error satisfies the {ollowmg upper
bound:

P, <27k — (1= ¢)F), (5 10)

for all n,k. and € such that 0 < e < 1/2. Korznik's proof is an existence prool Since
then no general method has been found for generating codes that satisty eq. (5 10)
However, a few classes of known codes have been shown to satisfy a weaker hound on
Py, namely:

p, - 2-(n—k) (5 11)

Examples of such codes are {amming single-error correcting codes, perfect binary codes,
and double-error-correcting primitive BCII codes of natural length [Leung-Yan-Cheony,

76| [Leung-Yan-Cheong 79).

Ilence, Hamming codes of natural length do satisfy the upper bound I,

n k) How-

2~ (n—k) Moreover, for small values of ¢, I, is much smaller than 2 {
ever, shortened IHamming codes do not necessarily obey this hound  As mentioned
in [Fujiwara 85|, the reason for the interest in the performance, measured thiongh

Py, of shortened codes (not necessarily HHamming codes) is that the natural length of
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some of the standard codes may be quite long. e.g.. the length of the CCITT code is
n =251 =32 767. However. in practice. the length of a data packet is often no more
than a few thousand bits. which may be much shorter than the natural length of the
adopted code Consequently, shortened versions of a code must often be used [Fujiwara
R5) Since the lengrh of a data packet also often varies [rom say a few hundred to a few
thousands bits codes must also be shortened by various degrees. Alreadyv in |[Leung-
Yan-Cheong 761, shortening has been proven to affect the performance of a cyclic code
with respect to the probabilitv of an undetected error. This performance is preciselv
the focus of numerous recent papers. e.g.. [Fujiwara 85| [Witzke 85|, and presentation

abstracts. e g . [Miller 83 [Fujiwara 86;.

In [Fujiwara 85}, P, as a function of ¢ for shortened versions of the CCITT
codes obtained from two different polynomials is discussed, while in [Witzke 85|, the
shottened versions of the CRC-12, CRC-ANSI and the CCITT codes are examined.
In both cases. the results are obtained by co nputing the weight distribution of the
dual code and then making use of the MazWilliams identity In [Witzke 85, so-called
“direct”™ methods were used lo compute the weight distributions of interest. Only eight

dilferent shortened versions (k = 5, 10. 20. 50. 100. 200, 500, 1000) of the codes were

studied for different values of €.

In [Fujiwara 85|, two iterative methods that are generally more eflicient than
the direct method are proposed for computing the weight distribution of shortened
Hamming codes. One of the major strengths of these iterative methods is that their
iterative nature does not require the lengths of the shortened codes of interest to be
fixed beforehand. i.e.. the methods enable the weight distributions for the ¢ codes of
lengths 1 for all 1 < n < q to be obtained. However, once the weight distributions for
1 < n < q have been obtained. the MacWilliams identity then has to be used to compute
the desired probability P,, Using their iterative methods, the authors reported curves
for I, as a [unction of € for a dozen dilferent lengths from n =24 to n = 32 767. They
also reported the peak values of P, for different values of n and dilferent values of e.
Using their iterative technique, the order of the computation time to compute P, for g

different code lengths. for a generator polynomial of degree m, is O(q 2'") (considering
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the number, p, of non-zero coeflicients of the generator polvnomial to be a constant.
otherwise, the complexity is lineai in p). llowever. the iterative techniques described
[Fujiwara 85] relv on properties of maximal-length sequences. i.e . on specific propertios
of sequences generated by primitive polynomials. Hence. the techniques do not apply

to any code generator polynomials.

In the context of coding theory, for an undetected error to occur, the cawe
where no errors occur must be excluded t, and the polynomial divider (LI"SR) mueq
have started in tne “all-zero™ state and returned to this state after the n bits of the code
word have been shifted in the LEFSR. This condition for an undetected error correspond,
exactly to the definition of aliasing (eq. (1.7)). hence. P, = PAL. Therelore, the
novel iterative technique described in the preceding chapter for computing the aliasing
probability PAL can also be used for computing Py, for ¢y clic codes of anv lengths and
generated by any polvnomial. If the iterative technique described in Chapter tis used to
compute Py, the time complexity of the algorithm will be O(q 2™") for computing I, for
q different ccde lengths from 1 to q (see Section 4.3 3 for more details on the alporithm «
complexity). Using the iterative technique of Chapter { to compute I, for vanous codes
(polynomials) and various code lengths constitutes a fundamentally different approach
from all the known previous attempts in that this iterative technique does not mply an
explicit computation of the weight distribution of the codes. nor that of the dual codes
Moreover, the iterative technique from Chapter 4 enables the computation of I, for
channels other than the BSC. e.g.. channels for which the probability of error ¢ may be

different for every transmilted bit.

5.3.3 P, for Various Code Generator Pelynomials

The plots of aliasing probabilities as a function of test sequence length, 1e-
ported in the previous chapter for different feedback polynomials. can he interpreted 4
plots of Py as a [unction of code length for the codes generated by the corresponding

generator polynomials.

- . - n
t The probability of no errore occurring for a code word of n bita i« (1 - /)

1
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In {Witzke 831 and [Fujiwara 85.. the curves for the probability of an unde-
tected error for various shortened versions of standard cyclic codes are reported as a
function of the bit error probability €. with the code length as a parameter. It would
have been possible to do similatly here. but to illustrate an alternative way of reporting
the performance of a shortened code. instead. the probability of an undetected error
for shottened versions of the CCITT code as a function of the code length, with € as a
parameler, is reported. These curves for I, for the shortened versions of the CCITT
codes generated by the polynomial 1 + z° + r'% + 719 appear in Figs. 5.4 and 5.5. for

various values of ¢

In [Fujiwara 85!, the values of € which maximize P, for a given code length
are reported. llere, the length for which Py is a maximum. for a given ¢, can be fouand

directly from the curves.

Probability of an Undetected Error

0.0002 [
€ = l25 h—
€ = -10 bl

0.00015 - € = .05 -

P,

0.0001 [
Se-0S [
0 g 100 150 200 250 300

sequence length

Figure 5.4 Probability of an undetected error; CCITT code, g(z) = 1 + z° +
12 16
T +r
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Probability of an Undetected Error
2e-05 T
t= 0100 —-
€ =,0010
1.%e-05 F
y
le-05 T
Se~-06
0o 1000 2000 3000 4000 S0
sequence length

Figure 5.5 DProbability of an undetected error, CCITT code, g(z) = 1 + P
3:12 + :1:16.

These plots of P, are all curves of the dynamic behaviour of m parity check
equations. That is, for the CCITT generator polynomial, P, is plotted assuming that
16 parity check bits are appended to the original information bits. HHowever, one could
also be interested in finding, also for various code lengths, the value of 7, that results
if different numbers and combinations of parity check bits are appended to the original
information bits. while keeping the same code generator polynomial. For example, in
the case of CCITT, if only say R parity check bits were to he appended to the origimnal
information bits. one could be interested in generating those bits using the same CCI'TT
polynomial instead of generating them using a polynomial ol degiee 8 In thatl cane,
without any additional computational eflorts, the iterative technique propoged here
enables the analysis of all ('86) ways of choosing 8 parity equations out of the 16 that arise
with the given generator polynomial. That is, in the case of a CCITT code generator

polynomial. in time complexity Ofg 21”), for each code length from 1 to g, the iterative
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technique proposed here yields 218 _ 1 values of P, where each value corresponds to one
one of the possibie non-trivial combinations of the 16 parity equations that the given
code polynomial generates. Given all the possible choices, the combination yielding the

minimum 7, could be adopted.

5.3.4 Summary

Shortened cyclic codes are much used in communication systems. Unfortu-
natelv. because of their variable lengths. shortened codes are part of a class of codes
for which the code distribution cannot be known in general. However. from the recent
literature, there is a need and thus interest in computing the probability of undetected
error for various shortened cyclic codes. In fact, such probability is used as a measure of
the performance of a particular code. However. to date. no particularly effective method
for computing such probabilities had been proposed. This thesis contributes an efficient

technique for computing the probability of an undetected error for any shortened version

of a cyclic code.

The fundamental difference between the technique proposed here and every
other known approach for achieving the same end is that the technique proposed here is
not based on an explicit calculation of the weight distribution of the code for calculating
the probability of an undetected error. On the other hand. if one is indeed interested
in finding the weight distribution of a code for a given length. it can be done from the
calculated values of P, for different values of ¢. That is, given the values of Py for
a given code length for [ different values of ¢, a system of [ linear equations can be
set. up and solved to find the weight distribution of the code for that length. Other
than its simplicity and efficiency, the technique proposed here is also attractive for its
capability of handling channels more complex than BSC, i.e.. channels with varying
probabilities of error may be handled at nc extra analysis cost. Moreover, this control
on the probability of error € of individual bits enables different code polynomials to be

very easily evaluated for their performance in regaid to the detection of burst errors

Finally, the proposed iterative technique possesses another important facet

(mentioned only briefly). Given a code generator polynomial, this important facet is
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- that the technique does not only vield the full dynamic behaviour of P, tesulting ftom
increasing the code length in the case where the number ol parity check bits is kept
constant, i.e., equal to the degree ol the generator polynomial. Given the code generator
polynomial. the proposed iterative technique yields the complete dynamic behaviour ol
Py resulting from increasing the code length for the situations where dilterent numbers
of parity check bits are appended to the original information bits. Hence, for a given
code generator polynomial. the technique enables two dimensions to be readily analvzed.
the code length n itself. and the nuinber and choice of parity check bits This lacel ol
the technique seems very promising for its potential usefulness in designing good codes,

and hence deserves to be explored further.
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Chapter 6 Conclusion

Several different design for testability (DFT) techniques aimed at reducing
the soaring costs associated with testing large and complex logic circuits have recently
been proposed. Built-in self test (BIST) is one particular DFT approach that is gaining
increasing support from the design, test, and manufacturing communities. In turn.
several differeni BIST schemes have been provosed. One popular BIST scheme for
unstructured combinational logic is one where pseudorandom test patterns generated
by a maximal-length linear feedback shift register (LFSR) are applied to the circuit
under test (CUT), and where the latter’s response is compacted also using an LFSR.
LISR-based compaction is well-known under the name of “signature analysis”. This
dissertation focused on such BIST schemes. More specifically, the assessment of the
quality of BIST schemes that use signature analysis constituted the global motivation

for the work presented in this dissertation.

Depending on the test strategy adopted and the analytical and/or simulation
tools available. different measures of the quality of a test strategy are possible. One
frequently used measure of quality is the fault coverage. IHence, as for any other test
strategy, the establishment of the fault coverage achieved by a given BIST scheme is
crucial. For BIST circuits, it is desirable to report the test quality using the same [anlt
coverage measures as those used in more conventional testing strategies. Unfortunately,
the compaction stage in BIST complicates the matter. In somne cases il prevenis the

usual fault coverage measures from being used as they would be in non-BiST cases.

The reasons why the usual fault coverage measures cannot always be used
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was explained in Chapter 2. The possible aliasing in BIST is the source of the problem
The amount of aliasing must be measured belore any claim on fault coverage may he
made. In the same way that several definitions of fault coverage exist, several measures
of aliasing also exist. In the past however. these measures of aliasing have oflten heen
misunderstood and hence misused. The intention in Chapter 2 was to provide leat
definitions of aliasing measures Two broad classes of measures were defined; 1howe
based on the [ault domain deception volume, and those based on the error domain

deceplion volume.

The measures of aliasing based on the fault domain deception volume are
those that may be directly used with usual fault coverage measures. However, measur-
ing the fault domnain deceptvion volume generally requires the use of full fault simulation
The high cost of the fault simulation of large circuils may in some cases preclude this
approach entirely. Proposed allernative techniques to fault simulation are probabilistic
in nature. In the case of BIST. probabilistic fault coverage measures imply measuses
of aliasing based on the error domain deception volume. Typically, & particular type ol
statistical assumption was made on the error domain deception volume, and from 1his
assumption, claims on the fault coverage [ollowed. Unfortunately, this assutption, i e .
the assurning of a uniform distribution of error sequences. is generally not justifiable
More justifiable is the assumption of a binomial distribution of error sequences. Such
an assumption had already been used for calculating the probabilistic fault coverage
in testing strategies that do not include circuit response compaction. However, at the
time of the initiation of the research reported in this dissertation, only very few research
attempts had been aimed at analyzing the problem of aliasing under the binomial die-
tribution of error sequences. For signature analysis. an asymptolic result had recently
been proven, along with other qualitative results. llowever. no computalionally feasible
technique existed to measure the aliasing of signature analysis schemes under the ag
sumption of a binomial distribution of error sequences. Such techniques form the core

of this dissertation.

Two basic techniques for calculating the probability of aliasing of signature

analysis registers were developed. In Chapter 3, the first one was presented. The tech-
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nique essentially consists of capturing the behaviour of the signature analysis register
through a boolean equation for each of its stages. Such equations can be obtained in
linear time and space complexity The equations for a single stage were shown to con-
stitute good first-degree approximations to the joint behaviour of the multiple stages
of the signature register. Therefore. the analysis of the behaviour of sirgle stages of
a signature register provides heuristics that are useful for making important design
decisions. e.g., the type of feedback that should be adopted. or what number of test

patterns should be applied to the CUT for the signature analysis register to approach

its asvmptotic behaviour.

For making quantitatively more accurate and stronger claimns on the aliasing
problem. the analysis of only one stage is insufficient. To make such claims. the joint
behaviour of all the stages of a signature analysis register must be studied. Given the
boolean equations for the individual stages of a signature analvzer. solving for the proba-
bility of aliasing was shown to be transformable to a standard signal probability problem
for a combinational circuit where the number of inputs to the circuit corresponds to
the sequence length. For the general case, ie.. for signature registers characterized by
any feedback polynomials. solutions to this problem require a computational complexity
that is exponential in the sequence lengih. Howesor. for feedback configurations charac-
terized by polynomials 1+2", where m is the number of stages of the signature register.
closed-form expressions were obtained for the probability of aliasing, as a function of
three parameters: the sequence length, the number of stages of the signature register.
and the probability of error. In the case of registers characterized by primitive polyno-
mials, expressions for upper bounds on the probability of aliasing, also as a function of

the sequence length. the number of stages, and the probability of error, were derived.

In Chapter 4, a completely different approach for the computation of the
probability of aliasing was proposed. This approach is iterative in nature. It is based
on recursion equations in two dimensions; one dimension being the sequence length
(time), and the second being the number of stages of the register involved (space).
The complete technique proposed for iteratively computing the probability of aliasing

involves 2™ — 1| recursion equations, {or a register with m stages. Iowever, using
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the proposed notation. this exponential number of equations was reduced to only two
relatively simple general equations. valid for any feedback polynomial. These general
equations make the software implementation of the technique particularly easv Because
of its iterative nature and the exponential number of recursion equations involved. the
technique yields a solution for the aliasing prebability linear in the sequence length,
and exponential in the signature register’s nuinber of stages. O1 course. the esponential
complexity prevents signalure registers of any size from being analvzed Nonetheleas
the relative simplicity of the calculations involved enables registers of sizes of interedt

in practice to be analyzed readily. Examples were given in Chapter 1

In regard to their respective computational complexities, an interesting par-
allel can be drawn between the techniques developed in Chapters 3 and t and the
MacWilliams identity, a well-known identity for code weight distrivutions {Lin 83) A
seen in Chapter 5, the problem of aliasing in the context of BIST parallels the pioh-
ability of an undetected error in the context of coding theory. The usual methods for
determining the probability of an undetected error require the determination of the
weight distribution of the code determined by the feedback configuration of the LFSR
Interestingly. while the technique in Chapter 3 requires a complexity that is exponential
in the sequence length i.e.. O(2"). that of the technique in Chapter 4 is exponential in
the size of the signature register. i.e.. O(2™) The MacWilliams identity permits the
same sort of reduction for determining the weight distribution of codes That is, while
the direct approach for determining the weight distribution of an (n.k) code, where
m = n — k. is to analyze the 2F code words, the alternative is to analyze the 27 =% = 2m
code words of the dual code and then use the MacWilliams identity. Therelore, Lhe

MacWilliams identity permits a reduction in complexity of the same order that the

iterative technique procures

Other than its computational feasibility when compared to anv other known
approach. the advantage of the iterative technique developed in Chapter 4 is that it
enables distributions of error sequences other than the bimomial distribution to he an-
alyzed at no extra computational cost That is, the iterative nature of the technigne

permits every bit of an error sequence to be characterized by its own particular proba-
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bility of error. This enables several types of errors or distributions to be analyzed. e.g..
dilferent dependent errors. or burst errors. This variability also enables the study of

aliasing in biased random testing applications.

Applications of the analvsis techniques in regard to test length calculations
and test confidence were discussed in Chapter 5. The lack of efficient analysis tech-
niques for calculating the probability of aliasing under error sequence distributions.
other than the unreasonable uniform distribution, previously prevented the effects of
LFSR-based compaction from being justifiably taken into account. Thus. this disscrta-
tion contributes analysis tools that are essential [or establishing the fault coverage using

probabilistic approaches. i.e.. when deterministic methods such as full fault simulation

are not possible or feasible.

The analysis techniques developed in Chapters 3 and 4 were essentially for
single-input signature registers. and hence apparently more particularly suited for single-
output circuits. However. extensions of the proposed analysis techniques to multi-output

circuits were discussed in Chapter 5.

Finally. the techniques developed for computing the probability of aliasing in
the context of BIST have important ramifications in the context of coding theory. That
is. the iterative technique for computing the probability of aliasing may be used as an
efficient, technique for computing the probability of an undetected error for shortened
cyclic codes. The technique enables the computation of the probability of an undetected
error for the standard binary symmetric channel, as well as for more general channel
models if need be. Finding efficient algorithms for computing the probability of unde-
tected errors of shortened codes continues to attract several researchers’ attentivn. In
this respect. this dissertation makes an important contribution. Other coding theory

applications of the technique remain to be explored.

In regard to other suggestions for further work. it may be possible to {ind
ways of reducing the complexity of the iterative technique for all or only certain types
of feedback configurations. Also, finding different types of approximations that would

reduce the complexity of the iterative technique from exponential to polynomial may
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be possible. For BIST applications. much interest has recently been expiressed lor non-
linear compaction structures like cellular automata [Hortensius 87|, or the compaction
structure that arises in the circular self test scheme [Krasniewski 87| Thus. detenmin-
ing if and how the iterative technique of Chapter 4 could be generalized for handling
non-linear compaction structures would also constitute an interesting pursuit of the
work presented here. With respect to more global but perhaps also more nseful sues
more empirical work should be performed to establish the validity of the assumption
of the binomial distribution of error sequences Such empirical results, combined with
analytical work of the type presented in this dissertation should perfect probabilictic
fault coverage analysis tools, and consequently make them trustworthy alternatives to

costly deterministic approaches such as those based on fault simulation
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A.  Diool of Theorem 3 3

Appendix A. Proof of Theorem 3.3

Prior to proving Theorem 3.3. two lemmas are proven. The statement and

proof of these first requires a few preliminaries.

Assuming a particular LFSR characterized by a primitive polynomial of
degree ri. and assuming a test sequence of length n, the n x n matrix of coeffi-
cients C defined in Chapier 3 can easily be found. For example. for the polynomial

flz) =1+ 2 + 3. with n = 6. C is:

— o e O = O

0
0
1
0
1
1

L e o B e B o]
QO = O O OO
- 0000

Given C. for n > m, consider only the m « n submatrix of C formed by
taking the last m rows of C. i.e..tows n,n —1....,n — m+1. Let this resultant malrix
of m rows and n columns be denoted by C,,p,. For n < m, C,,,;, is not defined. For C

given in eq. (A.1), Cpp is:

Con = (A.2)

C -t et
[ e T )
—m O
— QO
QO = O
- Qo O

Define a two dimensional window W to be any m1 x m submaltrix of Cyn
formed by taking anv m consecutive columns of Cpn. For a matrix Cp,, there is a
total of n — m + 1 possible windows. Of these n — m + 1 windows, only |n/m]| non-
overlapping (that have no common columns) windows can be found. For C,,,, given in
eq. (A.2), there are 6 — 3 + 1 = 4 possible windows. These are:

1 1 0)
Wl = 1 1 1 (1\.3)
0 11

1o




A Proof of Theorem 3 3

1 1

Wa=[1 10 (A1)
111
01 0

Wi=|1 01 (A.5)
11
1 00

Wy=[0 1 0 (A 6)
1 01

Among W;. Wy, W3, Wy, only [6/3] = 2 non-overlapping windows can be found, i e,
W, and W,. For the polynomial of this particular example, the sequence of states
(of periodicity 7) that the LFSR goes through when initialized to the “100” state and
cycled in the autonomous mode is:

100, 010, 101. 110, 111, O11, 001, 100, ...

Notice that from the properties of C that follow from its delinition given in Chapter 3,
the m rows of any window W of C,,,, obtained from a primitive polynomial correspond
to m consecutive states of the LFSR when the latter is cycled in the autonomous mode
Moreover. for primitive polynomials, these m states are distinct because the period of
the sequence generated by a primitive polynomial is 2™ — 1. Hence, no state can repeal,

within only m shifts.

Consider each row of a windew W to be an m-tuple over a field . Since
every window W is made up of m rows. every window W of C,,,, is constituted by a set,

of m m-tuples. Now the {ollowing lemma can be proven.

Lemma A.1: The set of m m-tuples that constitute every window W of anv C,,,,, olitained
from a primitive polynomial forms a basis for an m-dimensional vector space over a field

F.

Proof: Consider the first m states that any LFSR characterized by a primitive polyno-

mial goes through when the latter is initialized to the “1000...00” state. Because of the

11



A. Proof of Theorem 13

shifting property of the LFSR. the latter sequence of states s;,89.83,....8,, in matrix

form, will be:

§1 1 0 0
82 X 1 0 ... 0
s3 |=1X X 1 ... 0], (A7)

X X X ... 1

Sm

where X denotes 0 or 1. Clearly, because of the ones in the main diagnonal, the m

m-tuples form a basis for an m-dimensional vector space

In the autonomous mode. at every shift, the current state of the LFSR is
mapped onto a unique successor state. This one-to-one and onto mapping from an
clement in a space onto another element in the same space is a linear transformation
that may be described by an m x m matrix. where m is the number of stages of the
LFSR [Golomb 82]. Letting that matrix be A. if the state of the LFSR at time z is s,.

then the state at time ¢ + 1 is s, 1 = 8,A.

If the linear transforination described by the matrix A is applied j times
to each of the stales sy,89,...,8m, the set of m consecutive states that results is:
(s1A,82A7 ,53A7,. .. s,uA7), where AJ denotes the ]th power of A. In gencral.
any window W of C,,, is constituted by such m consecutive states, i.e., for each
window, there exists a j such that the m rows of W correspond to the states:
(s1A7,82A7,83A7,...,8,,A7). From linear algebra [Bloom 79|, applying a one-to-one
linear transformation to each of the m elements that form a basis for an m-dimensional
vector space yields a set of m unique elements that also form a basis for an in-dimensional
vector space. Therefore. since the set of states 81,82,...,8, form a basis for an m-
dimensional vector space, so does the set of states (s;A7.syA7,33A7,...,8,,A'). Hence.
the m m-tuples from every window W of C,,, obtained from a primitive polynomial

constitute a basis for an m-dimensional vector space. "

Define a cover for a particular window W to be a set of elements w,, of W

such that w,, = 1 and ezactly one element from each column of W is selected. For

12

™y



A Proof of Theotem 1.1

example, for W, above. the elements wy;. w22 and wyy constitute a cover. Now define
a perfect cover as a cover that contains eractly one element from each row of W oy
the window Wy above. wyj. 1y and w3 does not constitute a perfect cover hecanse
no elements come from the third row. while two come from the first 10w However, the

set of elements wyy, 'y and naq does constitute a perfect cover for W, |

Lemma A.2: For all n and m such that n > m. for the submatrix C,un formed by taking
the last m rows, i.e.., rowsn.n—1.n —2.....n - m+ 1, from the matiix ol coeflicients
C generated from a primitive polynomial. a perfect cover is guaranteed to exist for each

of the n — m 4 1 possible windows W of C,,,,.

Proof: For the lemma to hold. n must be greater or equal to m since the definition ol
the matrix C,,,, and hence also the definition of a window W, requires this condition to
be true. From Lemma A.1l every window W contains a set of m-tuples that constitute,
a basis for an m-dimensional vector space. By the definition of a basis for a vedtor
space. it follows that at least one perfect cover for every window is guaranteed to
exist [Bloom 79]. For example. by performing elementary row operations, i.c, simply
interchanging rows of W. the main diagonal of W can be made to bhe all ones, i.o.,
wig = we2 = -+ = Wmm = 1. The elements of this diago.al constitute a perfect, cover

for W. "

Theorem 3.3: Assuming a primitive feedback polynomial and an error sequence of length

n, an upper bound for Z, = pr(all-zero state at time n) is:

(A R)

1+ |1—2e|l"/"‘l)m

Z"§< 2

where | | denotes “absolute value of.” (For n/m > 1 this bound is essentially the

envelope of eq. (3.15}).

The proofl relies on the Full Range Cutting Algorithm [Savii R3], Once the

all-zero state probability problem is formulated as a signal probability problem, the

t Finding a perfect cover i« equivalent to the problem of finding a aet of distind f representatine:
from a collection of subsets, or finding a mazimal matching in a bipartite graph [Turker RO

I
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objective is to find an upper bound on the probability of a zero at the output G of
the circuit in Fig. 3.9. For primitive polynomials. the circuit in Fig. 3.9 contains
reconvergent fanout lines. For such circuits. the Cutting Algorithm yields bounds for
the circuit’s output signal probabilities. The procedure of the Cutting Algorithm is
to leave uncut only one of the branches from a stem line and to cut all the remaining
ones. The uncut branch lines retain the signal probability of the stem, and the cut
branches are assigned the full range probability interval [0.1]. Once a circuit is cut
it becomes a tree. Hence. from t...n on, the signal probability bound calculations are

straightforward. The rules for basic gates are given in [Savir 83].

Concentrating on only one of the m stages. assume the scenario shown in Fig.
A.1 where the XOR gate has as its inputs ¢ uncut lines and r cut lines. The ¢ uncut
lines each carry a l-probability of ¢, and the r cut lines carry the signal probability
intervals [0, 1]. From the associative property of the XOR gate, this (g + r)-input gate is
equivalent to a two-input XOR gate where one of the two inputs has the 0-probability
pr(0) = M (from eq. (3.13)), and the other input has the O-probability interval
0, 1].

g uncut lines

[e.€]
XOR

r cut lines

[0,1]

Figure A.1 XOR gate with ¢ uncut lines and r cut. lines.

From [Savir 83|, one can calculate the following O-probability interval at the output of the
1+(1 -2¢)7 1-(1=2¢)7
T |

. . —2¢)1 —2)1
two-input equivalent gate: pr(0) = [l+(l.2 Z) 1 - I+U)_ Ze) | =

Assuning that all m stages have such 0-probability intervals and that they feed into an

[RR
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A Prool of Themem 13

OR gate (as in Fig. 3.9). the latter has the following 0-probability bounds at its output

(1=26)7 . m 1= (1= 2)7\m
(1" =)

(A 9)

Assuming the length of the input error sequence to be n, then according to
the Cutting Algorithm, n lines (branches) can remain uncut and thus assume their tine
signal probability. For a sequence of length . il the matiix C,y is foted, then the
positions of the ones in anv row j of C,,y correspond to the [,'s that feed into stape
7. Alternatively, the position of the ones in the column i of C,,;,, corresponds to the

fanout pattern for each error bit I, Consider for example C,,p given in eq (A.2)

(A 10

Cmn =

S o
=
— = O
— O
S =~ O
—~ O D

Letting the last row of C,un correspond to the first (leftinost) stage of the LFSR, the
second row of Cpn correspond to the second stage of the LFSR, and the first. row of
Cmn correspond to the third (rightmost) stage of the LFSR, then this particular C,,,
reveals that for the test sequence length n = 6, the error bit £ is an input to stages 2
and 3. Ey an input to stages 1. 2. and 3. E3 an input to stages | and 2. £y an inpul to

stages 1 and 3, E5 an input to stages 2. and Eg an input to stage 1 only

Each window W of C,,, corresponds to a subset of m E,’s that fanout to
the n stages of the LI'SR. The Cutting Algorithm states that m lines (branches) can
remain uncut. From earlier, a cover corresponds to choosing exactly one element for
each column of a window W. Therefore. a cover for W is equivalent to selecting which
branch of E, not to cut. Then finding a perfect cover for W corresponeds to finding »
cutting pattern such that eacl of the m stages gets ezactly one uncut line 5, A total
of |n/m] windows over the matrix Cmn can be formed. From Lemna A 2, a perfect,
cover can be found for each of these windows when C,,, is generated by a primitive
polynomial. Therefore, n uncut lines can be distributed among the m stages such that

each stage receives at least, |[n/m| uncut lines.

110



A. Proof of Theorem 3 3

As an example. consider the circuit in Fig. 3.10. In the latter, inputs E}.
Ly and E+ do not fanout and hence do not have to be cut. This yields one uncut line
for each stage. Then. for example. the input branch stemming from E, of gate XO I,
could remain uncut. and similaily lor 3 for XOR,, and Ey for XOR4. Uence, in this
case, cach XO/? gate can have at least [7/3| = 2 uncut lines as inputs. This example
ilustrates the maximal length case. i.e.. n = 2™ — 1. However, for non-maximal lengths,
Lemma \.1 gnarantees that al least [n/m| lines per stage can retain their specific signal

probabilities. i.e.. remain uncut.

Consequently. if each stage receives |n/m| uncut lines. from the equations
for a two-input XOR gate [Savir 83], the O-probability interval for the output of the

circuit (output of OR gate) is:

[(1 + (1 —226)l"”"J)m, (1 - (1 —zzf)ln/mj)m}. (A.11)

Hence. an upper bound for the probability of the “all-zero™ state for pritmitive polyno-

mials is:

L (o2l 1o agt e

2 < mas
,l§max( 5 2

The above can be simplified to:

1+ 1 —2e|l"/"‘1)m

3 (A.13)

Zn <
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Appendix B. Proof of Theorem 4.5

Prior to giving the statement of Theorem 4.5 and providing a proof for 1t.

three lemmas are proven.

Lemina B.1: Let A and B be two boolean variables. and let & denote the modulo.?

addition and U denote the boolean OR operator, then

pr(A@B=1)=2pr(AUuB =1)—pr(A=1)-pr(B=1).

Proof: From the definitions in [Parker 75},
pr(d@B=1)=1-pr(Ade B =0). (B.1)
The function A & B = 0 can be expressed as a product of boolean sums:
(A2B=0)=(AUB=0)(AUB =0). (3.2)

Since the two terms are mutually exclusive events, i.e.. both cannot be satisflied simul-

taneously,
pr(A@B=0)=pr(AUB =0) +pr(AUB = 0). (B3.3)
Also,
pr(AUB =0)=1-pr(AUB = 1), (B 1)
and
pr(AUB =0)=1-pr(AUB =1). (B5)

Using Lemma 4.2,
pr(AuB=1)=1-pr(AuB=1)+pr(B=1). (13 6)
Since pr(B = 1) =1 - pr(B = 1), eq. (B.8) can be rewritten as:
pr(AuB=1)=2-pr(B=1) - pr(AB = 1). (B 7)

Using Lemma 4.2 again for the term pr(A U B = 1) yields:

pr({AUB=1)=2-pr(B=1)-[l-—pr(AUDB =1)+pr(A =1}
=1-pr(B=1)-pr(A=1)+pr(AUB =1).
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Hence. using eqgs. (B.1)-{B.8).
pr(d@B=1)=1-pr(4de2 B =0)
=1-|pr(AUB =0) +pr(AUB = 0)]
=1-|l-pr(duB=1)]-[l-pr(AUB = 1))

(B.9)
=1l-[l-pr(duB=1)]-[1-(1~pr(B=1)
—pr(d =1) +pr(AU B =1))]
=2pr(dB=1) —pr(A=1)-pr(B =1).
"

Let 51,52, ... ™ and be a set of boolean variables, with 0 < pr(S'=1) < L.
Also let U7 be a boolean variable with 0 < pr(U' =1) < 1. To simplify the notation. let
pr(S' = 1) simply be denoted by pr(S'), and let ) represent modulo-2 addition. Then

the following lemmas can be proven.

Lemma B.2:

n pr(ZLI(S’ U U)) for odd n:
pr [(; Sl) N U] - pr([/')t"l- pr(z:;l(S‘ U U)) for even n.

Proof: Assume U = 0. Clearly. the function } > ;S = 0 can be written as a product

of 2"~1 boolean sums (maxterms) of n variables, i.e.,

n
[Z S* =0] = [x\fgx\fl---Afzn_l_l=0], (B.10)

=1

where Af, denotes a maxterm. If U # 0. the expansion for [(}_1.;S')U U] = 0in

terms of a set of different maxterms M:’ or in terms of the original maxterms M, simply

becomes

n
[(Ss)ve]=of =pga-ay, = o0

1=1

(B.11)
=[(MpUU)(MyUU)--- (1"[2n~1_1 ul) =0

118



B Proof of Theotem 5

By definition. the maxterms in eq. (B.11) form mutually exclusive events. Therefore,

p"[(‘_.z— 51) ul = 1] can be written as:

pr[(g s)uv]=1- pr[(g_‘l st) U =0

en—l_y

=1- Y pr(M=0) (13 12)

1=0
n—1_1

=1- Y prl(a, o) =0).

1=0
When n is odd, the product of sums expansion for (37 ") U L7 = 0, does not contam
the term (U7 U stuTiu..u 5™). That is. for n odd. all the maxterms that are
part of the expansion have at least one uncomplemented variable. [Hence. since all
the terms contain at least one uncomplemented variable. a new variable 57 — 8" 117
can replace one or any number of the original variables S', and the expressions for
pr(M! =0) = pr[(M, U U) = 0], in terms of the variables §' remain the same as those
for pr(M, = 0). Note that changing only one variable is equivalent to changing all ol
them because of the associative property of the sum operation (). For example, in
the case of two variables S* and S7, transformning only S* is equivalent to transforming

both §' and S7 because
StusSt =(Uust)yus’
(Uus)yu(Uus/) (B 13)

=S'usS’.
Therefore, the final expression for pr{(3_; S*) U U] in the case where n is odd is:

rl(Ss)uu] = (35

=1 1=

[

- (13 11)
=pr(J_(s5'00)).
1=1
For n even, the product of sums expansion for [(3_;,S') U U| = 0, contains the

term A = (U U tustu.u 5™). All other maxterms. M/, contain at least, one

(W)



B. Proof of Theorem 4.5

uncomplemented variable other than T°. Hence. as in the case where n is odd, the
expressions for pr(AM] = 0) for ¢ = 0. in terms of the variables §' = §'U U. -emain the
same as those for pr(M, = 0) in terins of the original variables S*. However, for the
term Ay = (L7 SlusTy S7), which. apart from U/, contains only complemented
variables. the expression for pr(,\16 = O) in terms of the transformed variables S’ is
the same as that for pr(My = 0) in terms of the original variables S’ except for an
additional term. Let A = T uUT . + 5", Therefore, Mtl) = U 14, and

pr(Mfy =0) = pr[(U U A) = 0] Using Lemma 4.2,
priluA=0)=1-[1-pr(UVA=1)+pr(U=1)]. (B.15)

Therefore,
priUUA=0)=pr(UCVA=1)-pr(U =1).

Hence. the expression for pr(M,f, = 0} in terms of the variables S* is the same as that
for pr(Aly = 0) in terms of the variables S*. except for the additional term pr(U7 = 1).

Consequently, for n even, the final expression for pr{(}_7_; S*)U U] is:

pr[(zn: S’) ) U] = pr(U’) +pr(i§_’)
1=]

=1
: - (B.16)
= pr(U) + pr(Z(s’ u U)).
=1
n
Lemma B.3:
n
pr(z S') = 2""1pr(5l uS2y...U S™)
1=1
n
o +4(_1)""3 Z pr(S'u s/ USk)
1,7,k=1
1< )<k
n
+2(-1)""2 Y pr(Stus’)
=1
1<)
n
+(=1)""1 Y pr(S?).

1=1
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Proof: The proof is by induction. Clearly, the theorem holds for n = 2, i.e., it resulis

e in Lemma B.1. Assume that the theorem is true for n = [: it will be shown that it is
also true for n =1 + 1.
It is assumed that
l
pr(z s‘) =2 Lpr(stusty...ush
1=1
l
+oetd(=1)3 YT pr(stustush
1,,k=1
k
| P (13 17)
+ 2(—1)1-2 Z pr(S'u S7)
1,7=1
1<
l
+ (-1)'71Ypr(8")
1=1
is true, and the objective is to show that
l+1
pr(z S‘) = 2lpr(.‘5'1 us?u...u SH'I)
1=1
+1
+o+ 4= Y pr(stust ush
! 7'1]1k=l
1< )<k
13.18
+1 ( )
+2(-1)t Z pr(5* U S7)
n=1
1<]
+1
+(-1)! Y pr(sh).
1=1
Using Lemma B.1. the following can be written:
+1 {
pr(z S') = pr[(z S') P 51+1]
=1 ’=; z (13 19)
- =2pr[(ZS!)L' Sl+l] __pr(z SZ) __pr(s'l+l)‘
Al t::l 1.=l

121




iy

B Proof of Theorem 4.5

From Lemma B.2. eq. (B.19) can be rewritten as:

(Ii 5) C2pr[ Tl (ST U S = pr(Sil §) - pr(StHY) odd I:

r = K

] ! Z(P"(SHI) + P"{Z:—_-l(-s' - 5'_1)]) - P"(Zf:l St) - PT‘(SH'I) even /.
(B.20)

Since only the sign of the term pr(S“’l) differs for the two cases, eq. (B.20) can be

rewritten as:
l
pr( S‘) = 2pr<Z(S‘ USH'I)) - pr(z S‘) +(=1)'pr(stth. (B.21)

Substituting eq. (B.17) for pr(Zi=1 S*) into eq. (B.21) vields

pr (Hzl Sl) = 2pr [zl:(S' U SH"I)]
1=1 =1

t
—[‘zl"]pr(s1 USZU---USI)
l
+...+4(_1)l_3 Z pr(S’USJUSk‘)

1,,k=1
<<k (B.22)

l
+2(-1)172 Y pr(stu sY)

=1
1<)

{
+ (=171 Y pr(s)
=1

+ (=1)!pr(st*+1y.
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pr[Z(Sl U Sl+1)] — 2"1pr((51 usH*)u(s2ustyu...u(stu s |))

1=1

4o
l
+4(-1)13 Y. pr((Sz usHlyy (57 u s L gk o g l))
7'1]1"’:1
1<y<k
l
+ 2(_1)1—2 Z pr((st U SH—I) U (S] U Sl+l))
t,)=1
1<
|
+ (=) Y pr((stustY).

1=1

(13.23)
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and eq. (B.22) becowes

l+1
pr(z s’) = 2[2’-1pr((51 usthu(stustlu...u(stustty)
1=1

+ e+
l
+4(_1)l—3 Z pr<(Sl 1 SH—I) L (S] U Sl+l) 1 (Sl\‘ X 514—1))
t,2,k=1
1<y<k
l
+2(-1)72 3 pr((S‘ usithyu(stu st
t1=1
1<)
l

+ (_1)1—1 ZPT((SI U SH—I))]

1=1
- [2’*1pr(51 ustu...ush

l
4t 4(_1)1—3 Z pr(StuSiu Sk)
7”1.7)k=1
1<y<k
l
+2(—1)t-2 L pr(S'u S7)
11=1
1<

)
+ (=) Y pr(sY)]
1=1
+ (=1)'pr(stY). B4

<L
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Eq. (B.24) can be rewritten as:

I+1
pr(z Sl> = "lpr(Sl usZu...usio st

=1 ’
{

+oe+8(=1)F N7 pr(stust o st sty
1.7.k=1
1< <k

l
+ 4(_1)1—2 Z pr(sl l 5_1 " Sl+l)

1,7=1
1<)

l
+2(-nt-t Z pr(S* L sHY

1=1
+ (—1)lpr(s™Y)
— 2l (st us? .. ush
{
+o 4172 D pr(st st u sk
1,7,k=1
1<y<k
l
+2(-1)"1 Y pr(stus)
t,7=1
1<)
i
+(=1)'Y pr(sY).
1=1

B.

Proof of Theotem 4 &

(13.25)
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or

l+1
pr(Z s') =2pr(stustu...ustust*l
1=
I+1
+oed(=1)E YT pr(stus? ush)
‘L,],k:lz.
<)< )
1 (B.26)
+2(-1)1 Y pr(s'us?)
t,y=1
1<y
+1
+ (=)' ) pr(5Y).
1=1
Clearly, eq. (B.26) is equal to eq. (B.18), which proves the lemma. ]
Given Lemmas B.2. and B.3, the proof of Theorem 4.5 is rather straightfor-
ward.

Theorem 4.5:
priXFul!=1)= ((|:r:| + 1) mod Z)qu

|=|

+ (__1)|z|—1 Z(_z)s—l ZPzt7
s=1 t

where |z| denotes the number of ones in the binary representation of the index z, and
where the indices t correspond to all the possible bitwise logical OR of the index u with
the indices of s other components of X7*.

Proof: The desired pr(XZ UU! = 1) is a term which is essentially identical to the one
in the statement of Lemma B.2. i.e., the probability of a union of a modulo-2 sum with
an additional set or function. Here, the variable U in Lemma B.2 is replaced by 7",
and the more compact term X7 replaces the term 3 ", S" in Lemma B 2. Lemma B.2
states that the expression for this probability is the same as that of only the probability
of the modulo-2 sum with a new set of variables. That is. here the same expression
results when replacing all the original variables Sl] by the variables SlJ uU". The only
difference in the expression arises when |z]| (n in Lemma B.2) is even. For |z| even,

the additional term pr(I7* = 1) = P! must be added to the original expression. In the
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statemnent of Theorem 4.5, the factor ((lzl + 1) mod 2) takes care of the appearance of
this additional term when |z| is even, and its disappearance when |r{ is odd. The other

term, i.e..

l=|
(-)l=1 Y (o A
a=1 t

in the statement of Theorem 4.5, is just another way of writing the statement of Lemma
B.3. ]



C Proof of Theorem 4.9

Appendix C. Proofof Theorem 4.9

Theorem 4.9: For an LFSR of size m with g = |G| feedback taps. the time com-
plexitv of the iterative algorithm. for a sequence of length n. is upper bounded by

()(ng 2’"(3 2)']) = O(ngZ'n"" 5851})_

Proof: The complexity of the algorithm is dominated by the computation of the term
pr(X7 U = 1) where z = G » . for 2™l < a < 2™ 1, u = 2a — 2™, and
r = Gu. Izl = k. from Theorem 4.5. an upper bound on the computation of
the term pr(X7 U U = 1) is O(k 2%). This is because there are 2¥ indices to be
computed and the same number of terms to Le sumimed. and an upper bound on the
time complexity for computing each of the 2% indices is O(k). Let Cy denote the time

to compute the term pr(X7 U U" = 1) when |z| = k. Therefore,

Cp < O(k 2F). (C.1)

Thus. the complexity of the computation of the term pr(XZ U U =1)is a
function of |zl. Consequently, to establish the complexity of the algorithm. it is required
to find the distribution of |z| for a fixed G (i.e., number of cases where |z|] = 1, 2. 3.

etc.), with a varying from 21 10 2™ — 1.

Consider the binary representations of the indices u for 27~ 1 < g < 2m - 1.
These are all the following combinations:
000...0000010
000...0000100

111...1111110
Hence. the binary representations of u’ are:

111...111101
111...111011

000...000001
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Therefore, u’ takes on all the odd values less than 2™ — 1. Throughout this
dissertation. it is assumed that the last stage of the LFSR always {eeds back to the fist
stage. Hence. the binary representation of G always has a one in the position of the least
significant bit. i.e.. the binary representation of all the possible feedback configurations

is XXX... XYYX1. where X can be ejther one or zero.

From the above observations. for a given G, the distribution of |r| as a
function of g (and hence G) can easily be determined. Assume g = 1. which implies that
G = 000...01. Then,forall asuchthat 2™ ! <a<2M~1,z = Gau' =000  O1 ¢/

Therelore |z| = 1 in all cases. Consequently, for ¢ = 1, the complexity ol the algomithm

is O(2™~1Cy) for which an upper bound is: O(2™~ 1) = 0(2")

Assume g = 2, which implies that G has a one as its least significant bit
and a one in one other bit position. In turn. this implies that for the range of possible
u”’s. the value of |z| can be either 1 or 2. Without loss of generality. assume that
G = 000...011. Then. from the possible values of u/, [z| = 2 arises for all cases where
v = XXX ...XIl. Since therc are 272 such cases. in the given range of a. |r] 2
in 2™~2 occasions. The cases where |z| = 1 arise when ' = X XX. . X0l Since there
2m-2,

are also 2™~ 2 such cases. the number of times that [z] = 1 is also Henee, for

g = 2. the complexity of the algorithm is O(2™~}(C} + C3)).

Assume g = 3. Without loss of generality, assume that G = 000 ..0111, In
this case. |r| = 3 arises in 2™ situations |z = 2 arises when v’ = XXX ... X011 or
v/ = XXX ...X101. There are therefore (f) » 273 cases where || = 2 The cases
where |z] = 1 arise when ¢/ = XXX ... X001, for which there are 2= hossibilities

o

Hence. the complexity of the algorithm when ¢ = 3 is O(2™ ¢y | ('f)'l"' (I

2'"’7(]1).

Let T, denote the time complexity of the algorithm as a function of 4 1
induction. the general expression for T, can be shown to be:

g"l.m— g-—1 o= g'z,m—q«
T, = 2Mm-9C, +< )2 9Co_1 + 2 o,
«g—1> RV ES! =1 \g -3 v-2

~1
I <90 )2"‘_901

(¢ 2)
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which is can be rewritten as

Substituting the upper bounds for C, (eq. (C.1)) in eq. (C.3) yields

T, < o(gi1 (g i’l‘ i i)Zm—th‘) . (CA)

1=0 ’

In turn. an upper bound on the above expression is:

-1
T, < O(g2™™9 it (g 9_; i i) 2t (C.5)
1=0
Eq. (C.5) can be rewritten as:
g—1
T, < O(gz’"‘gzg" > (g i; i i)(l/z)g"“"l). (C.6)
1=0

which simplifies to the following by letting 7 =g — 1 — 1

g-1
T, < O(gz"'-gzg—l Y (9 ; 1)(1,’2)1).

1=0

—
Cd
~1

~—

By the binomial theorem, for |z]| < 1,

(L+1)7 = i (?)zq. (C.8)

1=0

Substituting eq. (C.8) into eq. (C.7) yields
T, < O(g2m"929"1(1 + 1/2)9‘1) (C.9)
which can easily be simplified to
Ty < O(ng2™(3/2)7)- (C.10)
Since 3 = 21°% eq. (C.10) can be rewritten as:

Ty < O(ng2™+-5859) (C.11)




