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ABSTRACT 

 

Solar energy is an intermittent supply source of energy. To efficiently utilize this free 

renewable energy source some form of thermal energy storage devices are necessary. 

Phase change materials (PCMs), because of their high energy density storage capacity 

and near isothermal phase change characteristics, have proven to be promising candidates 

for latent heat thermal energy storage (LHTES) devices.  Among the various LHTES 

devices for low temperature residential heating and cooling applications, the shell-and-

tube type heat exchanging devices are the most simple to operate and can be easily 

fabricated. This work numerically investigates the buoyancy driven heat transfer process 

during melting (charging) of a commercial paraffin wax as PCM filling the annulus of a 

horizontal double pipe heat exchanger.  The heated working fluid (water) is passing 

through the central tube of the annulus at a sufficiently high flow-rate and thereby 

maintaining an almost isothermal wall temperature at the inner pipe which is higher than 

the melting temperature of the PCM. The transient, two-dimensional coupled laminar 

momentum and energy equations for the model are suitably non-dimensionalized and are 

solved numerically using the enthalpy-porosity approach. Time-wise evolutions of the 

flow patterns and temperature distributions are presented through velocity vector fields 

and isotherm plots. In this study, two types of PCM filled annuli, a plain annulus and a 

strategically placed longitudinal finned annulus, are studied. The total energy stored, the 

total liquid fraction and the energy efficiency at different melting times are evaluated for 

three different operating conditions and the results are compared between the plain and 

finned annuli. The present study will provide guidelines for system thermal performance 

and design optimization of the shell-and-tube LHTES devices.    
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Résumé 

 

L'énergie solaire est une source d'alimentation d'énergie intermittente. Pour utiliser 

efficacement cette source gratuite d'énergie renouvelable, une certaine forme de 

dispositifs de stockage d'énergie thermique est nécessaire. Les matériaux à changement 

de phase (PCMs) en raison de leur capacité d'énergie à haute densité de stockage et les 

caractéristiques quasi isothermes de changement de phase se sont révélés être des 

candidats prometteurs pour les dispositifs de stockage de la chaleur latente de l'énergie 

thermique (LHTES). Parmi les différents dispositifs LHTES pour le chauffage résidentiel 

à basse température et les utilisations possibles comme refroidissant, les dispositifs 

d'échange de chaleur du type à tubes et calandre
1
 et les dispositifs de type à tubes sont les 

plus simples à faire fonctionner et peuvent être facilement fabriqués. Ce travail étudie 

numériquement le processus de flottabilité piloté par le transfert de chaleur lors de la 

fusion (stockage de la chaleur) d'une cire de paraffine commerciale utilisée comme PCM 

remplissant l'espace annulaire d'un échangeur de chaleur horizontal à double conduit. Le 

fluide chauffé (de l’eau) faisant action passe par le conduit central de l'espace annulaire à 

un débit suffisamment élevé et maintient ainsi une température quasi isotherme de la 

paroi du conduit intérieur qui est supérieure à la température de fusion du PCM. La 

dynamique laminaire couplée à deux dimensions et les équations énergétiques transitoires 

du modèle sont convenablement dédimensionnées et sont résolues numériquement en 

utilisant l'approche enthalpie-porosité. Les évolutions selon le facteur temps des modèles 

d’écoulement et des distributions de température sont présentées par des champs 

vectoriels de vitesse et des courbes isothermiques. Dans cette étude, deux types d’espaces 

annulaires remplis de PCM, un espace annulaire simple et un espace annulaire 

longitudinal à ailettes stratégiquement placé, sont étudiés. L'énergie totale stockée, la 

fraction totale de liquide et le rendement énergétique à des moments différents de fusion 

sont évalués pour trois différentes conditions de fonctionnement et les résultats sont 

comparés entre les espaces annulaires simples et ceux à ailettes. La présente étude 

fournira des lignes directrices pour la performance thermique du système et 

l’optimisation de la conception des dispositifs LHTES à tubes et calandre. 
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CHAPTER – ONE 

 

Introduction 

 

1.1 Introduction 

 

Latent Heat Thermal Energy Storage (LHTES) devices have attracted considerable 

attention worldwide because of their large potential for energy savings and their ability to 

provide or absorb relatively large amount of thermal energy particularly, when there is a 

mismatch in the supply and demand of the energy sources (Dincer and Rosen, 2002 ). Any 

LHTES system mainly has three basic components: (a) a phase change material (PCM), (b) a 

suitable container to hold the PCM and (c) a conductive heat transfer surface or surfaces for 

exchanging heat from the heat source to the PCM and from the latter to the heat sink (Lacroix, 

1993a, 1993b). One of the most popular heat exchanging devices for LHTES is a double-pipe 

heat exchanger. The latter stores/discharges thermal energy through the phase change process 

by melting (charge)/solidification (discharge) of a PCM embedded in the annulus gap of the 

double-pipe heat exchanger (Padmanahdan, 1986; Zang and Faghri, 1996; Sari and Kaygusuz, 

2001, 2002). The thermal storage technology based on the use of PCMs has recently attracted an 

important practical interest because of its capacity to store relatively large amount of thermal 

energy through the solid-liquid phase-change process (Regin et al., 2008). Intermittent energy 

generation sources, such as solar and waste heat from industrial processes can be stored and 

later conveniently used through the LHTES devices. Because of their high storage capacity, 

these devices are advantageous in reducing thermal energy storage volume, heat loss and 

insulation cost.  

A pure PCM with a high latent heat of fusion is capable of storing/releasing a large 

amount of energy during melting/solidification at a certain temperature. If the PCM is impure or 

is a reagent grade, it will melt and solidify over a temperature range. Thus, during the transient 

phase-change process there will be solid, liquid and mushy regions (mixture of solid and liquid) 
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in the LHTES systems. The main criterion of selection of a PCM for a particular application is 

the melting temperature or the phase change temperature range of the PCM. Some other 

important parameters must also be taken into consideration for an appropriate usage of LHTES 

systems. These are: latent heat, stability to thermal cycling, and thermal conductivity. An 

extensive overview of PCMs used in low thermal energy systems has been given by Abhat 

(1983), Zalba et al. (2003), Farid et al. (2004).  

With regard to latent heat applications with PCMs, the applications can be classified into 

two main areas: (a) protection or thermal inertia and (b) thermal energy storage. One main 

difference between these two areas is related to the PCM thermal conductivity. Low thermal 

conductivity is desirable for the thermal protection field. On the other hand, for thermal storage 

systems low thermal conductivity values of the PCMs are disadvantageous. In the latter 

applications if the thermal conductivity of a PCM is low then an adequate amount of energy 

may be available but the system may not be able to use it at the required rate. With regard to the 

low thermal conductivity problem of PCM, several ideas and systems have been proposed in the 

literature to enhance the heat transfer rate In this regard, several studies are available in the 

literature concerning the improvements of the thermal conductivity of the PCMs for thermal 

energy storage devices. Among the various ideas for heat transfer enhancement in LHTES 

systems, one of the ideas is to use tubes attached with fins and placed in embedded PCMs in 

different geometrical configurations (Sparrow et al., 1981; Smith and Koch, 1982; Eftekhar et 

al., 1984; Chow et al., 1996; Velraj et al., 1997, 1999; Ismail et al., 2001; Jegadheeswaran and 

Pokehar, 2009 ).  .    

Figure-1.1 presents heat storage capacity per kg for some sensible heat storage materials 

and a PCM where it is seen that the PCM is the one with the highest heat storage capacity 

compared to the sensible heat storage materials (such as water, stone, wood, and plastic). As it is 

mentioned before, due to the phase change a large amount of latent heat can be stored during 

solid-liquid phase transition of the PCM. A PCM, such as paraffin wax, offers four to five times 

higher heat capacity by volume or mass, than water at low operating temperature differences 

because of the latent heat transfer during phase transition (Farid et al., 2004). The saturated 

hydrocarbon series from C14H30 to C40H82 exhibits a suitable melting temperature range from 6
0
C 

to 80
0
C which is beneficial for domestic heating and cooling applications. The hydrocarbon 
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compounds with more than 15 carbon atoms per molecule are waxy solids at room temperature. 

These hydrocarbons, popularly known as paraffin wax, are suitable for LHTES systems due to 

the following desirable characteristics: 

 1.  High heat of fusion 

 2.  Low melting point temperature 

 3.  Show little volume changes on melting 

 4.  Have low vapor pressure 

 5.  It is safe, less expensive and non-corrosive 

 

 

Figure 1.1: Heat capacity (kJ/kg) for different materials at ∆T=15 K. 

Source:  

 

In selecting a paraffin wax its melting temperature has to be matched to the operating 

temperature of the solar energy storage system. A paraffin wax with a low melting point (within 

60
0
C) is of interest for solar energy storage system. Now, there is renewed interest in the usage 
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of solar energy due to the fact that the price of non-renewable energy sources has recently sky-

rocketed. Solar energy is one of the green types of energy for the following reasons: 

a) It causes no air pollution whatsoever. 

b) Energy from the sun is free. 

c) Solar energy systems are technologically safe and easy to operate. 

 

Solar energy is considered as an important renewable energy source globally. Recently the 

European parliament has passed a resolution recommending to all member countries to introduce 

legislation mandating the use of solar thermal systems in all new residential buildings (source: 

http://www.greensunrising.com/thermal.htm). There is a broad consensus among solar energy 

researchers that in future forty to fifty percent of the annual hot water needs of a house-hold 

could be met from solar energy.  

 

1.2    Proposed solar system for domestic hot water  

 

Figure 1.2 presents a proposed latent heat storage arrangement from solar energy which can 

be used for domestic hot water supply source. The system consists of the following main 

components: (a) a flat plate collector, (b) a double-pipe LHTES heat exchanger, and (c) an 

insulated storage tank. 

The flat plate collector can be placed on the top of a building or any other suitable structure 

which absorbs directly both the solar beam and the diffuse radiation. It can be used to absorb 

solar energy, convert it into heat and then to transfer that heat to the circulating cold water. The 

heated water (heat transfer fluid, HTF) passes through the inner pipe of the double-pipe heat 

exchanger to store the heat by melting a PCM placed in the annulus gap. During the charging 

phase, pump-1 and control valves 1, 3, 5 and 7 are open while pump-2 is inactive and valves 2, 4, 

6 and 8 are closed. This flow control loop, named as an inner loop, should only work when the 

solar energy is available. When the solar energy is not available pump-2 is active and will 
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circulate cold water from the insulated storage tank through the outer loop connecting the heat 

exchanger and the insulated storage tank. In this discharge period, while passing through the 

LHTES device, the circulating cold water in the outer loop will gain heat from the melted PCM 

by solidifying it. During this time, pump-1 is idle and control valves 1, 3, 5 and 7 are closed 

while pump-2 is active and valves 2, 4, 6 and 8 are opened. Here all the connecting pipes used 

between (a) collector and the heat exchanger and (b) the heat exchanger to the insulated storage 

tank are insulated and there is a minimum heat loss. Thus, there will be a minimum temperature 

drop for hot water flowing through the system. The inner loop and outer loop do not work 

simultaneously which should be controlled by an automatic control unit. In the insulated storage 

tank an electric heater can be placed as back up for low solar radiation or for overcast/rainy days 

or for night time. There could be a number of possible variations of the proposed solar energy 

storage and utilization facility. 

As one can see, one of the important units in the proposed system is the heat exchanger. So, 

designing an optimum double pipe heat exchanger is important for thermal energy efficiency of a 

solar energy storage unit. The mathematical modeling is a justifiable option for designing an 

optimum LHTES device without performing a number of experimental runs. Thus, such a 

modeling exercise can save both energy and cost.  
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Figure 1.2: Schematic view of solar energy storage system for domestic hot water. 

Melting of a PCM usually gives rise to natural convection and this significantly changes 

the flow patterns and affects the heat transfer process. The essential feature of melting of a pure 

PCM is the existence of a liquid-solid moving interface between liquid and solid phases which 

propagates with time (Hale and Viskanta, 1980; Reiger et al., 1982; Adetutu and Prasad, 1992). 

The convection influences the morphology of this liquid- solid interface. In 1831, Lame and 

Clapeyron (Viskanta, 1985) studied this problem. Later on, the author Stefan (Hu and 

Argyropoulos, 1996) mathematically analyzed these types of problems and hence after the 

phase-change moving boundary problems are known by the general name as “Stefan problem”. 

The problem of heat transfer with phase change can be formulated, considering either the 
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temperature or enthalpy as the dependent variable (Voller and Swaminathan, 1991). When 

temperature is considered as dependent variable, the energy equations are to be written 

independently for both phases but these equations are coupled because of the interface energy 

balanced condition. In fact this technique applies only for pure PCM and requires a priori 

knowledge about the interface position for the determination of temperature, which makes the 

solution method more complicated. The moving boundary heat transfer problems can be 

relatively easily solved by the enthalpy-porosity method originally proposed by Voller and co-

workers (Voller and Prakash, 1987; Brent et al., 1988; Swaminathan and Voller, 1993; 1997). 

For the heat transfer problems when the enthalpy is considered as the dependent variable, a 

priori knowledge about the interface position is not required and a single enthalpy equation for 

the whole domain suffices. Numerical solution of melting of a commercial PCM inside a fixed 

domain is a more complicated problem due to the existence of three phases such as solid, liquid 

and mushy regions. It is a challenge to adopt the enthalpy-porosity formulation to track the 

mushy region at every time instant particularly in the presence of natural convection. There 

seems to have no numerical work reported in the literature which has modeled the melting of a 

commercial PCM embedded inside a horizontal concentric annulus. Also, a thorough search of 

the pertinent literature did not reveal any work on a double-pipe LHTES system where the inner 

pipe is fitted with strategically placed high conductivity longitudinal fins. 

 

1.3 Objectives of the Present Work 

 

Fundamental understanding of phase change heat transfer processes that occur during the 

melting of a PCM is crucial in designing more practical and efficient thermal energy storage 

devices. The objective of this study is to develop a 2D mathematical model to study the melting 

and thermal energy storage characteristics of a reagent grade PCM in a horizontal double-pipe 

LHTES system. The purpose of using a commercial paraffin wax (reagent grade) in the model, 

as opposed to the pure paraffin wax (technical grade), is the fact that the former is relatively less 

expensive and is easily available compared to the latter one. The specific objectives of this 

research are the following: 
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1. Model the melting process of a commercial PCM placed in the annulus of a double-pipe 

LHTES exchanger.  

2.   Predict the velocity and temperature fields, as well as the melt fraction, the total energy 

stored and the energy storage efficiency of the LHTES system.  

3. Model the melting characteristics of a PCM in the LHTES with strategically placed 

longitudinal fins.     

4. Compare the energy storage capacity and thermal efficiency of the plain versus finned 

LHTES exchangers. 
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CHAPTER – TWO 

Literature survey 

2.1 Introduction 
 

In this section, a detailed review of the previous work which is related to the current 

research is presented. A large number of theoretical and numerical investigations exist in the 

literature concerning the heat transfer and melting characteristics of various PCMs in LHTES 

systems (Chung and Yoo, 1997; Devahastin and Mujumdar, 1998; Gong and Mujumdar, 1998; 

Mbaye and Bilgen, 2001; Liu and Mah, 2002). The majority of the previous numerical studies 

focused on melting of pure PCMs. But in reality wrought commercial PCMs are much less costly 

than pure PCMs and the former are easily available and convenient to use. The behavior of a 

commercial PCM during melting and solidification are totally different than from a pure PCM 

and this is primarily because of the existence of a mushy region. In this chapter, a critical review 

of the relevant published work is provided. A closure is also provided at the end of this chapter 

outlining the gap in the field and it also discusses about the attempt made in this thesis to fill this 

gap.  

2.2 Previous work 

 

Before reviewing the relevant literature, the critical problem of modeling the melting 

characteristics in an annulus should be explained first. Earlier studies on natural convection of a 

single phase fluid in a concentric horizontal cylindrical annulus reveal that the flow disturbances 

are generated by the hydrodynamic instability for small Prandtl number fluids, while by the 

thermal instability for large Prandtl number fluids (Rao et al., 1985; Fant et al., 1990; Vafai and 

Ettefagh, 1991; Cheddadi et al., 1992; Kim and Rao, 1994;). The flow disturbances cannot be 

observed when the Rayleigh number is very small. Two-cell or three-cell flow patterns at high 

Rayleigh numbers have been observed to form during the initial stage of melting. For a melting 

of a PCM in a confined geometry, the Rayleigh number can‟t be changed arbitrarily, since the 

Rayleigh number depends on the characteristic dimension of the geometry, the boundary 
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conditions imposed on the inner cylinder wall for two horizontal concentric cylinders and the 

melting temperature and thermo-physical properties of the PCM. To predict numerically the 

actual heat transfer phenomenon inside the annulus, a transient study must be undertaken where 

for a particular working fluid, one can estimate the Rayleigh number a priori. So, the critical 

problem is the thermal instability which can arise due to the use of a high Prandtl number PCM 

(Viskanta, 1985). 

Ho and Lin (1986) numerically investigated the two-dimensional melting process of a pure 

PCM (n-octadecane), contained in a horizontal cylindrical annulus for laminar flow. The inner 

surface of the annulus acted as the thermal energy source, while the outer surface of the annulus 

acted as a heat sink for the extraction of thermal energy, which means both outward melting in 

the presence of both natural convection in the liquid and sub0cooling effect in the un-melted 

solid had been considered in their simulations. The finite-difference analog of the governing 

equations were derived by using a forward time, central-space difference scheme for the partial 

derivatives in the governing equations except for the convective terms for which the hybrid 

central/upwind difference scheme was employed. The movement of the irregular liquid-solid 

interface was evaluated explicitly from the energy balance conditions across the interface. A grid 

distribution of 21 x 21 grids was employed for each of the solid and liquid phase region. The 

radius ratio of the annulus was varied from 1.6 to 3.0. The simulations were carried out for a 

fixed Prandlt number, Pr = 50 and for Ra = 0 to 2.4 x 10
5
 while Stefan number was varied from 

0.05 to 0.15. They found that the development of natural convective circulation in the melt zone 

was suppressed due to sub-cooling of the un-melted solid and consequently the melting rate was 

significantly reduced. The authors concluded that in the presence of sub-cooling in the solid 

region, the melting proceeds rather efficiently in a cylindrical annulus of high radius ratio. This 

is because with the decreasing of the radius ratio of the annulus, the melting process reaches 

steady state quicker while yielding a smaller final molten volume ratio. In their paper the authors 

did not mention the value of the time step used. The grid and time independency tests were also 

not reported. For a high Prandlt number PCM, in order to avoid the thermal instability during 

numerical solution, more grid points should be employed near the boundaries. The model 

equations were solved using the stream function-vorticity method instead of primitive variables 

such as u and v velocities. For accurate numerical predictions, it is suggested that for stream-

function and vorticity equations one should consider using more a denser grids near the 
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boundaries. Since no comparison was made of their numerical results with others, it is difficult to 

judge how good and accurate the predictions are for the pre-selected grid distributions. 

Fath (1991) experimentally investigated the transient behavior of a heat exchanger for 

thermal energy storage (TES) applications and also predicted the system's performance 

analytically. Pure paraffin wax was selected as a PCM to stored thermal energy. The heat storage 

container was a double pipe heat exchanger where the heat transfer fluid (hot water) flowed 

through the inner tube (made of copper of inner diameter = 14 mm and outer diameter = 15.4 

mm, and length = 260 cm), while the heat sink (embedded PCM) filled the annulus gap of the 

exchanger (inner diameter of the outer cylinder = 80 mm). To reduce the heat losses the heat 

exchanger's outer surface was insulated with a 3.0-cm thick glass wool. From the experiments 

the author found that by increasing the heat transfer fluid inlet temperature and the flow rate, as 

well as by increasing the length of the heat exchanger both the heat transfer rate and accumulated 

(stored) energy increased. The author later concluded that convection in the molten zone is an 

important parameter which affected the heat exchanger's performance. An analytical model was 

also developed by the author for the prediction of the heat transfer rate and stored energy. The 

predicted results were compared with his own experimental findings and a good agreement was 

found. The developed model was also used to investigate the effects of various parameters like, 

convection in the molten region, initial PCM sub-cooling, and heat exchanger dimensions on the 

heat transfer rate and accumulated energy. The author concluded from the experiments that a 

single (full length) heat exchanger is thermally more effective than two (half length and equal 

heat capacity) parallel heat exchangers. Finally, the author suggested that more experiments were 

needed to make a definite conclusion of the latter aspect of the study. 

Das and Dutta (1993) both experimentally and numerically investigated the melting 

characteristics of a pure paraffin wax encapsulated in the annulus of two concentric horizontal 

cylinders. Their experimental set-up consisted of a double-pipe heat exchanger with the inner 

pipe of ¾ inch diameter and the outer pipe of 3-inch diameter. By circulating hot water the inner 

pipe was kept isothermal while the outer pipe was kept insulated. A 2D transient conduction 

equation in r-θ coordinates was used as the model equation for the numerical simulations. They 

experimentally tracked the liquid-solid interface which developed between the molten and solid 

wax during the progression of melting. They compared their simulated results with the 
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experiments and showed that the nature of the cooling curve during freezing and the heating 

curve during melting were identical. They observed an initial time lag in the experimental curves 

compared to the numerical ones. They explained that the time lag in the heating and cooling 

curves occurred due to the assumptions which were imposed in developing the theoretical model.  

Finally, the authors suggested that the melting time will be lower if the Rayleigh number is 

higher. As can be seen from their numerical simulation results, only the conductive mode of heat 

transfer was considered in the analysis. By solving only the conduction equation it is not possible 

to precisely predict the actual phenomenon that occurs in the annulus gap during the complex 

melting process. It is almost impossible to get the same numerical results as experiments without 

considering the natural convection effect in the melt zone in the numerical model.  

Tong et al. (1996) numerically investigated the melting and freezing characteristics of 

ice/water system in a vertical annulus space which was homogeneously distributed with highly 

porous and permeable pure aluminum matrix. The inner wall was assumed isothermal and the 

other three boundaries were considered insulated. The flow in the melted region was considered 

as 2D laminar and unsteady. A grid system consisting of 27 x 27 grids were used for the 

calculations. The input parameters were Ra = 5 x 10
6
, Ste=0.1, Da = 4.17 x 10

-5
. Their numerical 

predictions show, compared to the plain vertical annulus, the heat transfer rate at the inner wall 

increased significantly when the metal matrix was inserted in the vertical annulus gap.  

                Chung et al. (1997) numerically studied the 2D unsteady laminar melting process 

inside an isothermally heated horizontal cylinder for a wide range of Rayleigh numbers (Ra was 

varied from 1.0 x 10
4
 to 3.0 x 10

7
). The cylinder wall temperature was above the melting 

temperature of the PCM. The enthalpy-porosity method was employed to handle the phase-

change of a pure PCM (n-octadecane, C18H38). A uniform grid system, consisting of 36 x 72 

grids, was used for low Ra and a non-uniform grid system consisting of 41 x 81 grids was used 

for high Ra. They predicted that at a low Ra, the flow in the liquid gap remained stable and only 

a single recirculation cell developed during the initial melting stage. At the intermediate Ra, the 

thermal buoyancy and the viscous forces were balanced in a neutrally stable state and a delicate 

interaction between the two flows determined the flow patterns. For a high Ra, the Bernard-type 

convection was found to develop within a narrow liquid gap between the un-melted solid surface 

and the cylinder bottom wall. The authors varied the Ra from 1.0 x 10
4
 to 3.0 x 10

7 
for a pure 
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PCM. It is to be realized that for the melting of a pure PCM, the Ra can't be arbitrarily varied 

since for a fixed wall temperature, Ra is also fixed. 

Ng et al. (1998a, 1998b) numerically solved the problem of melting in a horizontal 

double-pipe heat exchanger for a pure PCM (99% pure n-octadecane) embedded inside an 

annulus. A streamline upwind/Petrov Galerkin finite element method (Brooks and Hughes, 1982) 

in combination with primitive variables was employed to solve the convection dominated 

melting problem for unsteady laminar flow of the melt. The well known enthalpy-porosity model 

was employed to track the irregular liquid-solid interface by employing a fixed-grid net. At the 

inner cylinder wall, a constant temperature boundary condition was applied which was higher 

than the melting point of the pure PCM and the outer cylinder wall was insulated. Two Rayleigh 

numbers were selected for simulation study, namely, 2.844x10
5
 and 2.844x10

6
, to find the 

melting rate as well as the evolution of the flow patterns. The authors observed that with the 

increase of Ra, the heat transfer rate and the melting rate increased. Moreover, they found that 

the melting of PCM in the bottom part was very inefficient because most of the energy charged 

to the system was mainly transferred to the upper part of the annulus by the convective flow of 

the melt. Multiple cellular patterns were observed at the melting zone for a high Ra = 2.844x10
6 

during the dimensionless melting time from 0.043 to 0.389. In their paper, the authors neither 

mentioned the time step used nor the number of finite elements employed. Although the authors 

used a pure PCM and employed the enthalpy-porosity formulation, they did not clarify the way 

they implemented the latter scheme. There is no sensitivity analysis on the predicted results. 

Since without sensitivity analysis, it is difficult to rely on the predicted findings. 

 

Khillarkar et al. (2000) numerically studied melting of a pure PCM (n-octadecane) in a 

concentric horizontal annulus of arbitrary cross-section using a finite element method. 

Specifically, they modeled two geometrical arrangements, in one case they considered a square 

outer tube with a circular inner tube (called annulus type-A) and in the second case they 

considered a circular external tube with a square inside tube (called annulus type-B). The effects 

of Ra as well as the heating of either the inside wall or the outside wall and in some cases both 

the walls for a temperature above the melting point of the PCM on the melting characteristics 

were considered. The enthalpy-porosity formulation was employed on a fixed grid to solve the 

phase-change problems. A streamline upwind/Petrov Galerkin finite element method in 
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combination with the primitive variables was employed to solve the convection-dominated 

melting problems. For both the horizontal annuli of type-A and type-B, it was observed that the 

effects of heating both the walls was the same as the heating of the inside or the outside wall 

separately until there was an interaction between the two melted regions. It was observed that the 

melting rate was faster due to good mixing between the melt regions. This heating arrangement 

suppressed the thermal stratification attained in both type-A and type=B horizontal annuli. The 

thermal stratification occurred in the upper portion of the annulus due to the fact that the energy 

charged to the system was mainly carried in the upward direction by natural convection. In their 

paper the authors did not mention anything about grid and time independency tests. Also, neither 

the time step used nor it was specified the small temperature difference between the liquidus and 

solidus temperature which is required to implement the enthalpy-porosity method in modeling 

melting problems.  

 

Ismail et al. (2003) numerically studied the melting of a pure PCM (n-octadecane) 

around a horizontal cylinder in the presence of natural convection in the melt. A two dimensional 

transient mathematical model was formulated in terms of the primitive variables and a coordinate 

transformation method was used to fix the moving interface which was later tracked from the 

interface boundary conditions and the governing equations. The finite volume approach was used 

to discretize the transformed equations. They compared their predicted results with the numerical 

results from others and claimed to have obtained a satisfactory agreement. These authors 

provided some correlations for calculating the melt volume fraction in terms of Ra, Stefan 

number and cylinder wall temperature. It was mentioned that with the increase of Ra the total 

melt volume increased until about Ra = 24000. With the further increase of Ra, the melt volume 

reached almost a steady condition. They found similar effects for the increase of Stefan number 

and cylinder wall temperature. The authors did not mention the limit of the parameters such as, 

Ra, Ste, and cylinder wall temperature for which their correlations are applicable. Also, a time 

component should be there in the correlations since melting is a transient process. 

Hendra et al. (2005) developed physical and theoretical models to investigate the 

thermal behavior of the Mikro LHTES system during melting. Mikro is an Indonesia traditional 

substance, mixed from 60% Paraffin, 8% Damar (wood spices), 32% Kendal (animal fat) and 
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Vaseline with a latent heat of fusion of 1.14 x 10
5 
J/kg. Their experimental container consisted of 

staggered aluminum tubes with heat transfer fluid (water) flowing inside the tubes. The tubes 

remained immersed in Mikro used as a PCM. Inside diameter of the tube and the container were 

1.5 x 10
-2

 and 0.2625 m, respectively. Thermally controlled electrical heat source was embedded 

instead of the heat transfer fluid to heat-up the PCM. Their mathematical model is based on a 2D 

unsteady heat conduction equation. They found that the theoretical results matched fairly well 

with the experimental results. They concluded that the melting front moved from the top to the 

bottom in the axial direction in the PCM and it was mostly governed by convection heat transfer 

in the melted PCM. Although their experimental melting study was convection dominated but 

their model was based on 2D transient conduction equations. As a result, it is not clear how their 

experimental results matched the modeled results.  

Liu et al (2005) conducted experiments on the melting process in an annulus filled 

with a pure PCM (stearic acid). A 20-mm diameter electric heating rod was placed into a 46-mm 

diameter cylindrical tube. The length of the tube was selected as 550-mm. The heating rod and 

the tube were placed in concentric position so as to mimic a double-pipe heat exchanger. The 

outside of the tube was well insulated with a porous polythene insulator. The liquid-solid 

transition temperature of the pure stearic acid was taken as 67.7
0
C. By changing the supplied 

current to the heating rod, different heat flux conditions were created to determine the influence 

of heat flux on the melting process. In their experiments the authors designed and fixed a  new 

type of fin onto the electrical heating rod to investigate the thermal response of the pure PCM. 

Their experimental results showed that the fin enhanced both heat conduction and natural 

convection in the melt.    

Mesalhy et al. (2005) numerically investigated the melting process between two 

concentric cylinders considering that the annulus gap was filled with a high porosity high 

thermal conductivity metal matrix. The porous matrix was assumed to be fully saturated with 

low thermal conductivity but pure PCM. A two dimensional Brinkman, Forchiemer extended 

Darcy model was used for solving the PCM melting problem inside the porous matrix. A local 

non-equilibrium thermal condition was considered between the solid matrix and pure PCM. 

Compared to the plain annulus filled with a PCM, the presence of the porous matrix was found to 

have a great effect on the heat transfer and melting rate in term of energy storage. Their results 



16 
 

show that the melting rate increased with the decrease of porosity of the matrix although it 

dampened the convective motion because of the reduction of the volume of the voids spaces. 

These authors suggested that to enhance the response rate and energy storage capacity, the best 

technique would be to use a high porosity and high thermal conductivity solid matrix filled with 

a PCM in the annulus.    

Balikowski and Mollendort (2007) experimentally investigated the performance of two 

PCMs, namely, Climsel 28, and Thermasorb 83 in a horizontal double-pipe heat exchanger with 

smooth pipe and spined fins for various charging and discharging periods and flow rates. The 

phase change temperature range of C28 was 18-38
0
C and for TY83 was 27.2-29.4

0
C. The latent 

heat of C28 and TY83 was 126 kJ/kg and 186 kJ/kg, respectively while the thermal conductivity 

was 0.6 W/m/
0
C and 0.15 W/m/

0
C. The PCM was placed in the annular space of a double-pipe 

heat exchanger (inside cylinder diameter was about 0.49 in, and outside cylinder diameter was 

about 0.63 in) with hot water circulating through the inner pipe. For spined pipe, the curved fins 

were about 0.6 inches long, about 0.08 inches wide at the base, and about 0.032 inches thick. 

There were about 25 fins (spines) per spiral revolution and there were about 170 spiral 

revolutions on the copper tube used in the experiments. It was found that the presence of spined 

fins enhanced the rate of charging and discharging of thermal energy due to increased fin contact 

area with the outer layers of the PCM. Further it was found that TY83-PCM in the spined heat 

exchanger transferred more heat and at a faster rate compared to the C28-PCM embedded spined 

heat exchanger. Their experimental findings make a good argument with regard to the beneficial 

usage of fins in LHTES systems. 

Dutta et al. (2008) recently studied both experimentally and numerically the liquid-solid 

phase change heat transfer in a paraffin wax encapsulated in the annulus of two coaxial circular 

cylinders under variable heat fluxes. They verified their numerical model with their own 

experimental findings and they claimed to have obtained a good agreement between their 

predicted and experimental results. For their experimental work they considered a hollow 

adiabatic steel cylinder of diameter 10.16 cm, length 30.48 cm and an internal pipe of diameter 

1.905 cm which was placed coaxially and horizontally with the outer cylinder. T-type thermo-

couples were placed in the radial direction in the annulus to record the temperature at 5 sec 

interval. For the numerical work they selected the annulus gap which was formed by a 1-m 
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diameter inner cylinder and 5-m diameter outer cylinder. Their modeled annulus gap was much 

bigger than their experimental one. In their 2D unsteady state numerical model, the mesh 

consisted of 200 x 200 grids, the convergence criterion was taken as 10
-5

, and the total time 

simulated was about 30,000 sec. The melt flow was considered to be laminar. From their 

experimental results they found that a higher rate of melting occurred in the upper half of the 

annulus. To verify their experimental results with their numerical predictions they had chosen the 

time-temperature relationship profile inside the annulus for the inner cylinder wall temperature 

of 75
0
C as the verification criteria. Later, the authors numerically studied the effects of the 

eccentricity (varied from 0.0 to 0.50) as well as the angle of inclination of eccentricity (between -

π/2 to π/2) in an annulus on the energy transfer enhancements for Ra = 5.77 x 10
7 

 and Pr = 46.5. 

The authors observed from their simulated results that both eccentricity and the variation in the 

angle of inclination of the eccentricity has dominant effect on the net circulation of the molten 

PCM and the heat flux at the outer surface of the inner cylinder forming the annulus. They also 

found that for a given eccentricity, the magnitude of the net circulation approached the maximum 

value when its angle of inclination approached to -30
0
. Their analysis further showed that the 

heat flux along the inner cylinder wall for a fixed angle of inclination reached a maximum value 

for the highest eccentricity (ε=0.5) in the fourth quadrant and reached a minimum value when the 

eccentricity was the maximum in the first quadrant. Finally, the authors showed the heat flux on 

the inner cylinder surface enhanced in the eccentric annulus compared to the concentric annulus. 

This work is the most comprehensive thus far in the field. But in their work they used a pure 

PCM as mentioned in their Table-2. The enthalpy-porosity formulation method was used to 

indirectly handle the liquid-solid interface progression with time. The authors did not mention in 

their paper what arbitrary temperature difference between the solidus and liquidus temperatures 

they had considered in order to handle the mushy region required by the enthalpy-porosity 

formulation method for modeling a pure PCM. It is thus surprising that they got similar results 

for time-temperature relationship curves for experimental work which was a 3D problem with a 

diameter ratio of 10.16:1.905 as their numerical work which modeled a 2D problem with the 

diameter ratio of 5:1. The cylinder‟s length of the experimental set-up was only 30.48 cm, which 

obviously imposed end effects on the results. The time step used in the simulations was also not 

mentioned. One of the limitations of their work is that the geometrical dimensions of the 

numerical model do not match with the experimental dimensions as stated above. Since the 
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annulus gap is very large in the model, a melting around the inner pipe is essentially similar to 

the situation of outward melting of a heated horizontal cylinder embedded in an infinite extent of 

PCM.     

Recently, Medrano et al. (2009) experimentally investigated the heat transfer process 

during melting (charge) and solidification (discharge) of five small heat exchangers working as a 

LHTES systems. The three different types of heat exchangers were investigated, namely, a 

concentric tube heat exchanger, a compact tube-fin heat exchanger, and a plate heat exchanger. 

For the first type, three variations of heat storage arrangements were studied: (1) a simple double 

pipe copper tube heat exchanger with the PCM embedded in the annular space, (2) the same 

double pipe heat exchanger as in case (1) but with the PCM embedded in a graphite matrix to 

increase the heat transfer rate, and (3) a double pipe heat exchanger with 13 radial copper fins 

and with the same PCM in the annular space as in cases (1) and (2). The pure PCM (RT35 PCM) 

which has a melting point of 35
0
C was selected for these five different heat storage devices. In 

all cases, PCM was filled in one side of the heat exchanger and water was circulated as the heat 

transfer fluid through the other side. In the experiments the water flow rate and water inlet 

temperature were varied. Comparisons were made among the heat exchangers in terms of 

effectiveness of energy storage on the basis of average power per unit area and per average 

temperature gradient. Results showed that double pipe heat exchanger with the PCM embedded 

in a graphite matrix was the most favorable, registering heat transfer rates in the range of 700-

800 W/m
2
-K, which were an order of magnitude higher than the ones presented by the second 

best. The compact heat exchanger offered the highest average thermal power (above 1 kW), as it 

had the highest ratio of heat transfer area to external volume.   

 Very recently, Agyenim et al (2009) experimentally studied the melting and 

solidification characteristics of a PCM (Erythritol) in a double pipe heat exchanger where the 

PCM was embedded in the horizontal annulus gap. Three geometrical configurations of the heat 

transfer surface, namely a plain, a circular finned and a longitudinal finned annuli were 

investigated for both melting (charging) and solidification (discharging) cycles. For the circular 

and longitudinal finned cases, eight circular and eight longitudinal copper fins were braised onto 

the outer surface of the inner tube, In each of the finned experimental setup, 3 mm gap was left 

between the tip of the fin and the inner surface of the outer tube. The effect of the mass flow rate 
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of the HTF (hot oil for melting and cold water for solidification) on the thermal performance of 

the PCM was investigated. Their temperature measurements in the radial, circumferential and 

longitudinal directions revealed that in the latter direction the gradients were below 5% of the 

temperature gradients in the radial direction and the authors postulated that for the heat transfer 

analysis, it is not necessary to take into consideration the variations in temperatures in the flow 

direction of the HTF. Therefore, a 2D analysis considering buoyancy driven melting should be 

accurate enough for predicting the melting behavior of the PCM in the horizontal annulus. The 

authors further found that the longitudinal finned annulus provided the best thermal efficiency 

compared to the other two cases. 

 

2.3 Closure 

 

From the above literature review and discussion it is clear that no CFD modeling work 

exists concerning the problem of melting of a commercial PCM embedded inside the annulus of 

two horizontal concentric cylinders. During melting and solidification processes of a multi-

component material, a complicated structure named "mushy region" develops in the domain. The 

phase change problem with a mushy region in a complex geometry, like an annulus formed by 

concentric horizontal cylinders, is a difficult problem to solve numerically. In most of the 

numerical studies reviewed above nothing was mentioned concerning the time step used for the 

simulation runs. Also, if the grid size and time step independency were carried out or not were 

not reported in none of the reviewed works. Although, not mentioned in the papers reviewed, it 

appears that to model the melting problems many authors have used commercial codes, as a 

result they could not provide details about the numerical scheme and the associated factors which 

are necessary to execute the codes. It is also not clear how some authors numerically handled the 

arbitrary annulus geometries in their models.  As will be seen in chapters four and five, the 

present numerical model was able to provide converged results in every instant of time for both 

plain and finned annuli for a commercial PCM when the melt flow is laminar and two-

dimensional. The developed model offers the advantage by the fact that the entire domain can be 

treated as a single-region problem which is governed by one set of conservation equations. In 

other words, the same equation can be used for the melt, solid and mushy region as well as for 
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the fins. The results showed that a conduction dominated region developed at the lower part of 

the geometry. This suppressed the thermal stratification attained in the horizontal annulus. In the 

present study, in order to avoid any thermal storage penalty and to accelerate the melting rate, 

three longitudinal divergent fins were attached at the lower part of the geometry. It is expected 

that due to the fins the conduction-convection mode of heat transfer will be enhanced at the 

lower portion of the annulus. The employment of longitudinal fins at strategic locations of the 

annulus is new and has not been analyzed before.  
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CHAPTER – THREE 

 

Mathematical Formulation and Numerical Approach 

 

3.1.1 Introduction 
 

Mathematically, the problem of solid-liquid phase change is known as a “moving 

boundary problem”. If the temperature of the inner cylinder is higher than the melting 

temperature of the PCM then melting will initiate around the inner cylinder surface and for a 

commercial PCM a mushy region will move into the annulus. In this study, an emphasis has been 

placed on the analysis of the progression of melting. During melting of a PCM the density 

variations inside the liquid phase do occur due to temperature gradients. As a result, buoyancy-

driven convective flows develop in the melt which make the melting process quite complex, 

specially, for a horizontal cylindrical annulus. During solidification, freezing will start around 

the inner cylinder wall and the solid layer will grow outward into the melt. Unless a constant heat 

source is maintained, in the solidification process the effect of natural convection only prevails 

during the early part of solidification and most of the time there is conduction dominated heat 

transfer. As a result, the modeling of the solidification problem is drastically simplified.  

 It is noteworthy to point out that during the melting process in the annulus the effect of natural 

convection current at the top of the annulus is significantly prominent whereas the heat transfer 

mechanism at the bottom half is governed predominantly by the conduction heat transfer process. 

The “pure” buoyancy-driven convective effect i.e., natural convection induced by temperature 

gradient in the melt can be enhanced by introducing internal fins at the lower part of the annulus. 

A melting problem with fins attached to the specific locations of the inner cylinder seems not to 

have been investigated yet for an annulus. In the present analysis, a single-domain enthalpy 

formulation approach is utilized which is applicable for the whole domain.   

The development of the governing equations used to simulate the melting process of a 

commercial PCM in a horizontal concentric annulus with and without internally attached fins on 
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the outer surface of the inner cylinder is discussed in this chapter. The model equations are 

presented in Section 3.2 while Section 3.3 is devoted to their numerical solution procedure. 

Other associated numerical items such as, convergence criterion, under relaxation factors, code 

validation tests, grid and time independency tests results are presented sequentially in Sections 

3.4 to 3.8.    

3.2 Mathematical Formulation 

 

As depicted in Figure 3.1, the physical domain is selected to be two horizontal 

concentric cylinders in which the volume located between them is filled with a phase-change 

material. Here, r0, and ri are the radius of the outer and inner cylinders respectively. Due to 

symmetry in the θ-direction, the computation has been conducted on the right-half of the domain. 

Initially, the solid PCM  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:   Schematic view of the cross-section of the double-pipe heat exchanger with the 

blue part representing the computational domain. 
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is embedded in the plain cylindrical annulus is at a uniform temperature (Ti) that is either equal 

to or below the solidus temperature (TS) of the PCM. When the initial temperature is below the 

solidification temperature of the PCM, this thermal condition is designated as sub-cooled 

condition. For time t > 0, a constant temperature (TW) is imposed on the surface of the inner 

cylinder, which is greater than the liquidus temperature (TL) of the PCM, i.e., TW > TL. The outer 

wall of the annulus is maintained at the adiabatic condition throughout the whole melting 

process. A constant wall temperature (TW) is maintained at the outer surface of the inner 

cylinder. 

Figure 3.2 shows the identical physical model presented in Figure-3.1, the only 

exception here is three longitudinal divergent round tips fins are attached on  

 

 

 

 

 

 

 

 

 

 

Figure 3.2:   Schematic view of the cross-section of the finned annulus with the blue part 

representing the computational domain. 

the outer surface of the inner cylinder's wall. One fin is placed at the angle θ = 0
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expected that these high thermal conductivity aluminum fins will increase the natural convention 

intensity at the bottom portion of the annulus. 

 

3.2.1 Model Assumptions  

 

The following idealizations are made in developing the current mathematical model of the 

physical problem for the phase-change process with mushy region in the presence of the 

buoyancy driven convective flows: 

1. The melt behaves as an incompressible Newtonian fluid. 

2. The convective motion in the melt is laminar and two-dimensional. Compared to the 

radii of the two cylinders, the length of the cylinders are long such that there are no end 

effects on the selected cross-section along the longitudinal direction. 

3. No-slip conditions are applicable for the velocity components at the boundaries. 

4. Thermo-physical properties of the PCM are assumed to be constant in both solid and 

liquid phases except for the density variations in the melt are considered insofar as they 

contribute to the buoyancy forces. 

5. Buoyancy forces are incorporated in the momentum equations based on the Boussinesq 

approximations. 

6. The physical properties of the PCM are temperature independent within each phase and 

are evaluated at the liquidus temperature. 

7. No viscous dissipation occurred in the calculation domain. 

8. Variation of liquid fraction in the mushy region is assumed to be a linear function of 

temperature. 

9. The effects of volume change associated with the solid-liquid phase change are 

neglected.  

10. There is no heat loss or gain from the surroundings. 

With the above assumptions, the temperature distribution within the solid, liquid, and 

mushy regions and the fluid motion in the liquid and the mushy zones are governed by the 

standard Navier-Stokes and energy equations. 
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3.2.2 Governing Equations 
 

A general conservative form of dimensional governing equations such as mass, momentum and 

energy equations for plain and finned annulus in r- θ coordinates are given as follows: 

Continuity equation: 
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The continuity, momentum and energy equations in the r- θ coordinates for the phase-change 

problem in the finned annulus are the same as the plain annulus, which are written above. For the 

solid fins, one additional energy balance equation should be solved which can be written in the 

following form:  
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The variables are non-dimensionalized as follows: 
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The non-dimensionalized conservative form of the governing equations, applicable in the 

computational domain, can be written as follows:  
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Energy equation: 
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3.2.3 Boundary conditions  

 

Because of symmetry, the right-half of the annulus is chosen as the solution domain 

and the non-dimensional form of the boundary conditions corresponding to this problem are 

presented in Figure 3.3 for easy visualization. The dimensionless boundary conditions are:  

 

1. At time,  =0:   

 

At time,   > 0: 

 

2. On the inner cylinder surface, i.e.,  5.0iR ;  U=V=0 ;  

3. On the outer cylinder surface, i.e.,  3.1oR ;  U=V=0 ; 0  


 
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4. Lower plane of symmetry; i.e.,   0  ;  U=0 ;  0   
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Figure 3.3: Schematic illustrations of the configuration with the boundary conditions. 

The developed non-dimensionalized model for this complex annular geometry is used 

for a high Prandlt number commercial paraffin wax to generate the numerical simulation results 

of the melting process. The thermo-physical properties of wrought paraffin wax (Farid et al., 

2004) and diameters of the inner and outer cylinders are given in Table 3.1 

Table 3.1: Thermo-physical properties of PCM (Paraffin wax) and geometrical parameters 

Properties Value 

Thermal conductivity (liquid or solid) (k) 0.22 W / m K 

Density (liquid or solid) (  ) 790   kg/m
3
 

Specific heat (liquid or solid) (CP) 2.15 kJ/kg K 

Latent heat of melting ( ) 190  kJ/kg 

Liquidus temperature (TL) 59.9   °C 

Solidus temperature (TS) 51.2  °C 

Kinematic viscosity (µ) 5.2 x 10
-6

  m
2
/ s 

Liquid thermal expansion coefficient (β) 1.0E-03  1/
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Geometrical dimension 

Inner cylinder diameter  (di) 0.04 m 

Outer cylinder diameter (d0) 0.104 m 

 

 

3.3 Numerical Solution 

 

3.3.1 Solution Procedure  

 

All the two-dimensional equations presented above can be expressed in a general form of 

dimensional partial differential equation. The conservation equations in the general form can be 

written as follows: 
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where  

 
,
   ,and S

 
are the general dependent variable, the generalized diffusion term, and the 

source term, respectively. The values of 
 
corresponding to mass, momentum and energy 

equations are 1, U, and V, and h
*
. The associated variables  and S for all of the transport 

equations written earlier can be obtained by comparing the general conservative equation 

(equation 12) and equations 1-4. 

In order to achieve the numerical solution, all of the partial differential equations have to be set 

in an algebraic form, this is called discretization. The discretized equations are derived by 

integration of differential equations over each control volume of the calculation domain by using 

an implicit time-step method. Power-law difference scheme of Patankar (1980) is used to 

discretize the convection-diffusion terms. Here, the SIMPLE algorithm, which stands for Semi-

Implicit Method for Pressure-Linked Equations, has been employed for resolving the pressure-

velocity coupling in the momentum equations (Patankar,1980). In the following section the 

solution procedure is briefly explained.  
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Each of the above derived-discretized equations is incorporated in the following form: 

         baaaaa SSNNWWEEpp                                                               (13) 

where, Ea , Wa , Na , and Sa  are the coefficients of the four neighboring nodes of node P shown 

in a two-dimensional grid in Figure 3.4. b is the source term. The coefficients entail the 

diffusion and convection terms while the source term may involve various terms such as pressure 

gradient, buoyancy force, and Darcy terms. The developed computer program is an in-house 

code based on the control volume finite difference scheme and uses the power-law scheme for 

the discretization of the diffusion-convection terms. The whole domain is described by a 

displaced or staggered grid system. This algorithm is explained in detail by Patankar [1980]. 

 

 

 

 

 

 

 

 

 

 

 

The generalized formula for the neighbor point coefficients for each schemes are as follows: 

Ea  =   0 , F-  e ee eAD  

Figure 3.4:  Staggered grid 

Main control volume 

u-control volume 

v-control volume 

P,  T    

r 

P 

N 

S 

W E Uw Ue 

Vn 

Vs 



31 
 

   Wa  =   0 , F-  w ww eAD  

   Na  =   0 , F-  n nn eAD  

    Sa  =   0 , F-  s ss eAD  

Here, eD  is diffusion conductance at interface e between P and E, and wD  , nD  and sD  are 

similar values in w, n, and s interfaces, respectively. eF  denotes the strength of convection at 

interface e between P and E and wF  , nF  and sF  are similar values in w, n, and s interfaces, 

respectively. Pe is Peclet number defined by the ratio of strength of convection to diffusion 

conductance. The operator b ,  a  is equivalent to AMAX (A,B) in FORTRAN. 

For power-law difference scheme the formula for the function   eeA  is given by 

(Patanker,1980). The general form of linearized source term is:   SSS C      

where, CS  becomes the contributor to b and S  a contributor to a  in the discretized equation. 

An in-house CFD code developed over the years by Professor Hasan‟s group at McGill 

University was modified to solve the two problems presented in this thesis. 

 

3.3.2 Solidification Modeling 

 

For a phase change material having a melting range instead of a single melting point, the 

latent heat release would be a function of the fraction melted. The major barrier in analyzing 

phase change problems is the occurrence of an interface or interfaces whose location is (are) 

unknown a priori, and across which the latent heat is to be released. At the phase boundary, 

continuity of velocity and temperature is required. Also, at the phase boundary a jump in the heat 

flux occurs, which is proportional to the latent heat (Kim and Kaviany, 1992).  

Here, the single domain approach is followed in the present simulation since it does not 

require the tracking of the unknown interface (melting front). In the current work, the enthalpy 



32 
 

based method is implemented (Voller, 1990; Voller et al., 1990; Date, 1991; Savnarskil et al., 

1993). The technique is characterized by decomposing the enthalpy into sensible and nodal latent 

heat in the energy equation: 

                                                       H=h+H                                                    (14) 

 

where h is the sensible heat defined as:  

                                                     
T

T
p

h

h
ref

ref

dTcdh                                            (15) 

 

For constant cp, and taking href=0 at Tref, the above equation can be integrated to obtain the 

sensible heat as: 

h= cp (T-Tref)                                                 (16) 

 

 In order to establish the region of phase change, the latent heat contribution is specified as a 

function of temperature, i.e. H= f(T ). 

Since the energy equation is valid in the entire calculation domain including solid, liquid, 

and mushy regions, the nodal latent heat can be related to the liquid fraction. It becomes zero in 

the solid phase and equals the latent heat of fusion (  ) in the liquid phase. In the mushy region, 

the latent heat can be any function of liquid fraction. In the current model, it is assumed to be 

linear.  

H=  fl                                                                 (17) 

 

where fl is the liquid fraction, which is related to temperature as: 
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where TL and Ts are the liquidus and solidus temperatures, respectively. 

 

 

3.3.3 Modeling of fluid flow in the mushy region 

 

In the current model, the Darcy law for porous media is adopted to model the flow of 

PCM in the mushy region. The law is based on the empirical measurement of the permeability. 

Darcy‟s law for a porous media can be written as: 
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i

i g
x
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                                             (19) 

 

where K  is the permeability, which is a function of porosity, or in the case of a mushy region of 

a commercial material, a function of liquid fraction. In the model, the permeability decreases 

with decreasing liquid fraction and ultimately it forces all the velocities to become zero in the 

case of a stationary solid. The coefficient 
K


 decreases from a large value in the solid phase to 

zero in the liquid phase. Consequently, the Darcy source term vanishes as the liquid fraction 

becomes one. The Carman-Koseny equation is adopted for the relation between the permeability 

and the liquid fraction (Voller and Prakash, 1987). 

qf

fC

K l

l
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3

2)1(
              (20) 



34 
 

where q is a small positive number introduced to avoid division by zero in the numerical 

calculations. C is a constant that depends on the morphology of the porous media. The value of C 

has been estimated from the expression given by Minakawa et al. (1987) as: 

                                                      C=180/d
2                

                                           (21) 

where d is assumed to be constant and is equal to the secondary dendrite arm spacing. In this 

study, the value of d has been arbitrarily taken as 1x 10
-4

 m.  

 

3.3.4 Modeling of the Buoyancy term 

 

Natural convection effects are incorporated into the numerical code verification part of 

the current study through the use of Boussinesq approximation for a single phase fluid at steady 

state. In order to assess the role of buoyancy-driven convection during melting as per Boussinesq 

approximation, the density is assumed to be constant in all terms except the buoyancy term, 

which is given by: 

  refref  --1                                                         (22) 

where   is the thermal volumetric expansion coefficient defined as: 
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For the sake of simplicity, the u-momentum equation is written in the following short from as: 
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where the second term on the R.H.S. represents the body force term. The flow of the molten 

PCM is gravity driven. Therefore, the pressure gradient and buoyancy term can be written in the 

following form:  
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After substituting Equation (25)  into Equation (24), one obtains the following equation: 
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The above equation can be written in a dimensionless form using the non-dimensional 

parameters discussed in Section 3.3.2 in equation (6), as follows: 
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The above equation can be further simplified in the following form: 

    (28)   -----------------
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where Ra is the Rayleigh number, which is the ratio of buoyancy force to change of momentum 

flux,     
 



 3

iSOLIDUSWALL Dg
Ra


                                                      

Pr is the Prandlt number and is define by: 




r

Pr . 

Ste is the Stefane number and is define by: 
 


SOLIDUSWALLPC

Ste


 . 

The first term on the R.H.S. of Equation (28) represents the buoyancy term. This term is 

implemented in the model as a linear source term (S) in the U-momentum equation. This source 

term can be written in the following form: 

S = Sc + Sp Φp                                                                            (29) 

where Sc stands for the constant part of the source (S), while Sp is the coefficient of Φp (the 

dependent variable). Since in this case, the source term is not a function of the dependent 

variable (U), therefore it can be linearized in the following way:   
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sin)(
Pr   REFc hh

Ste
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  and                            Sp  =  0.                            

It is to be noted that 

REFhandh   represent the non-dimensional enthalpies of each scalar cell in 

the calculation domain (variable) and reference enthalpy, respectively. Unless a suitable adhoc 

method is used in the solution procedure of the momentum equations, the buoyancy term in the 

above discretized form can give rise to serious numerical instabilities in the solution process. In 

the present analysis, small under-relaxation factors were required to compute the buoyancy force 

terms.  

 

3.4      Convergence Criteria 

The discretized equations were solved iteratively using an implicit relaxation technique 

and by employing the well-known line-by-line Tri-Diagonal Matrix Algorithm (TDMA) solver 

until a converged solution was obtained for each time step. The termination of an iteration loop 

depended on the value of residuals for U, V, P and T at any instant of time. At every time step, 

the iterations were terminated when the relative change to maximum values of the absolute 

residuals at every grid points for each calculated variable ( R ) was less than 10
-5

. 

Mathematically, the convergence criterion described above can be defined as follows: 

 

k
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kk

R
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






1

                                              (31) 

where, k in the number of iterations. At each time step, the number of iterations needed to 

achieve convergence varied between 1000 and 500. The CPU time per iteration was about 1.5 s. 

The computations were performed on a personal computer having a speed of 1.83 GHz and fitted 

with a RAM of 2 Gigabytes. A block correction procedure (Patankar, 1980) was used to enhance 

the convergence of the solution procedure. 
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3.5   Under-relaxation factor 

 

The nonlinearity and inter-linkage of the governing equations may appreciably change 

the results from iteration to iteration for every time step. These rapid changes influence the 

magnitude of the coefficients of the tri-diagonal matrix which then generally yields to the 

divergence. To prevent the program from divergence under-relaxation parameters were 

introduced for velocities and temperature. Use of the implicit form of under-relaxation before 

solution of the algebraic equations, changes the coefficients of these equations as follows: 

  (32)         ---------------------------------- )-1( 
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where,   is the under relaxation factor for the general variable . The suitable values of the 

relaxation factor were found from earlier modeling experience since they depend upon a number 

of factors (grid resolution, Rayleigh number, etc.). In the present study, much effort has been 

paid to find the relevant under-relaxation factors. Various combinations of under-relaxation 

factors were examined and after numerous runs the following under-relaxation factors were 

selected for the production runs: 

u =0.3;           v  = 0.3;       and       T =0.3. 

 

   3.6    Code validation 

To validate the code, it is necessary to compare the present predicted results with the 

experimental or numerical results of the same phase-change problem during melting under 

identical operating conditions provided by other researchers. Unfortunately, in the literature there 

is no suitable study, either experimental or numerical, for the same phase-change problems 

modeled here. In the existing numerical studies in most of the cases the authors neither 

mentioned the time steps used nor did they provided the small difference of temperature between 

the liquidus and solidus temperatures which they used in order to handle the artificial mushy 
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zone necessary for the implementation of the enthalpy-porosity method for pure phase-change 

materials.  

In order to verify the present code, the accuracy of the present numerical results was 

investigated by computing the steady state natural convection heat transfer in a concentric 

horizontal annular for a single phase fluid for which both experimental and numerical results are 

available in the literature. Various authors have studied this configuration in detail and 

established to an extent that is used as a source of comparison for validating the CFD codes. In 

this section, the present numerical code is defaulted to steady state for a non-phase change 

natural convection problem and is extensively validated against the experimental and numerical 

results of Kuhen and Goldstien (1976, 1978) and numerical results of Hessami et al. (1984), 

Yang et al. (1988), Marie-Isabelle et al. (1997). In Table 3.2 the present numerical results are 

compared with the available experimental results of Kuhen and Goldstien (1976) and numerical 

results of others. In generating results using the present code, the exact numerical values of the 

dimensionless parameters were chosen as others so as to make a direct comparison with the 

available experimental and numerically predicted data. An equivalent thermal conductivity Keq 

on the outer surface of the inner cylinder and inner surface of the outer cylinder was used to 

compare the accuracy of the present computations. This dimensionless parameter is defined as 

the ratio of actual heat flux to the heat flux that would have occurred due to pure conduction 

without the convective motion of the working fluid.  

Many authors have used the value of Keq
 
on the inner and outer cylinders as a suitable 

criterion for testing the accuracy of their numerical procedures. This choice may yield an error in 

computing the actual heat transfer rate since various authors have used various expressions for 

calculating conductive heat transfer rates. The definition of circumferential average equivalent 

thermal conductivity (
innereqK



) and local equivalent thermal conductivity eqK  along the inner 

cylinder is given below: 

           
innereqK =

0

 

Nu

avgNu
    and   eqK =

0Nu

LNu
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avgNu  = circumferential average Nusselt number based on cylinder radius, is calculated as  
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0Nu = Nusselt number for conduction between the annuli. The subscript “o” indicates Nusselt 

number for conduction heat transfer in the annulus. This is obtained by solving the one-

dimensional conduction equation at steady state which is given by 

  0
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The Nusselt number for conduction is evaluated as 
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In this study, one-dimensional radial heat conduction equation was solved to compute the 

heat flux by neglecting the fluid motion in the annulus. In the literature, Nusselt number for 

conduction is evaluated by solving the steady state two-dimensional heat conduction equation by 

some of the authors. It can be seen from Table 3.2 that the present numerical results are in very 

good agreement with the experimental results of Kuhen and Goldstien (1976) for Ra = 5x10
4
, Pr 

= 0.7 and non-dimensional diameter ratio of 2.6. The percentage of error was calculated with 

respect to the experimental results reported by Kuehn & Goldstein. The difference between the 

available experimental and the present numerical results for Nusselt numbers is seen to be less 

than about 1.5% for the inner cylinder and about 2.2% for the outer cylinder. The errors in the 

numerical results may be due to the constant-property assumption or the finite number of nodes 

or the convergence criterion used, etc. The numerical modeling has the advantage of obtaining 

and observing the velocity field in the cylindrical annulus which is difficult to observe 

experimentally. In addition, an overall energy balance was made at steady state, i.e., the 
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integrated heat transfer rate through the inner cylinder must be equal to that of the outer cylinder. 

The discrepancy in the integrated total heat transfer at the inner and outer cylinders was found to 

be less than 3.6%. 

 Table 3.2: Comparison between numerical results for Ra=5.0X10
4
 and Pr=0.7 (air)  

 Kuehn & 

Goldstein       

exp. (1976) 

Kuehn & 

Goldstein 

num. (1976) 

Hessami      

et al        

num. (1984) 

Yang           

et al        

num. (1988) 

Marie          

et al        

num. (1997) 

Present  

numerical 

computation 

RaL 4.7X10
4
 5.0X10

4
 5.0X10

4
 4.7X10

4
 5.0X10

4
 5.0X10

4
 

Pr 0.706 0.7 0.7 0.7 0.7 0.7 

innereqK


on 

inner cylinder 

3.0 3.024 3.26 2.943 2.955 3.044 

Percent error 0.0% 0.8% 8.7% 1.9% 1.5% 1.5% 

outereqK


 on 

outer cylinder 

3.0 2.973 3.05 2.901 2.955 2.935 

Percent error 0.0% 0.9% 1.7% 3.3% 1.5% 2.2% 

 

In Figure 3.5 a comparison is made between the results obtained from the present 

code and Kuhen and Goldstien‟s (1976) numerically predicted local equivalent thermal 

conductivities along the inner and outer cylinders for Pr numbers 0.7, 1.0 and 5.0; L/Di=0.8; all 

for a fixed  Rayleigh number of 10
4
. The present results were obtained using the control volume 

finite difference scheme and by employing a uniform grid distribution system of 42 x 42 (r-) 

grids. It is observed from Fig. 3.5 that the present results are very similar to the ones presented 

by Kuhen and Goldstien. These authors also published results of averaged equivalent thermal 

conductivity for the same conditions and these results are compared in Table 3.3. There is an 

excellent agreement between the present results and the results reported by Kuhen and Goldstien; 

the average equivalent conductivities differ by less than 5% (1.99% for the inner cylinder and 

about 3.59% for the outer cylinder). This small difference may be due to the lower convergence 

criterion used by Kuhen and Goldstien which was 10
-3 

and in the present simulation study a 
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stricter convergence criterion (10
-4

) was used. Besides the above difference, Kuhen and 

Goldstien used an arbitrary set of non-uniform grids while in the present simulation a higher 

density but uniform grid system was used. 

 

Figure 3.5: Present numerical predictions versus numerically predicted data of Kuehn and 

Goldstein (1976) for Pr= 0.7, 1.0 and 5.0 at Ra=10
4
 and L/Di=0.8 

Table 3.3:  Comparison between numerical results of average equivalent thermal conductivity for 

annulus width to inner cylinder diameter ratio (L/Di) of 0.8 

 Kuehn & 

Goldstein 

num. 

(1976)) 

Present  

numerical 

computations 

Kuehn & 

Goldstein 

num. (1976) 

Present  

numerical 

computations 

Kuehn & 

Goldstein 

num. (1976) 

Present  

numerical 

computations 

RaL 10
4
 10

4
 10

4
 10

4
 10

4
 10

4
 

Pr 5.0 5.0 1.0 1.0 0.7 0.7 

innereqK


on 

inner cylinder 

2.069 2.119 2.038 2.089 2.010 2.05 
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Percent error 0.0% 2.42% 0.0% 2.50% 0.0% 1.99% 

outereqK


 on 

outer cylinder 

2.066 1.994 2.039 1.951 2.005 1.933 

Percent error 0.0% 3.48% 0.0% 4.32% 0.0% 3.59% 

 

3.7    Grid independency tests 

In order to determine an appropriate grid density distribution for the solution domain, the grid 

independency tests were performed. In this study, the grid distribution in the r- coordinates was 

uniform, except near the walls where non-uniformity was due to the employment of B-type 

staggered grids (Patankar, 1980). In order to tests the grid independency of the generated 

numerical solution for the convective phase-change melting problem, the total energy 

accumulated during the melting process in the domain for a total time of 41 minutes was used as 

a verification criterion. Four grid distributions were selected for the tests. These were 62 x 62, 82 

x 82, 102 x 102, 122 x 122 grids, where the first number represents the number of grids in the  r-

direction and the second number represents the number of grids in the  direction. All of the grid 

independency tests were carried out for a fixed inner cylinder wall temperature of 69.9 
0
C and 

the corresponding Rayleigh number, and Stefan number were 1.09x10
6
, and 0.2116, respectively. 

The non-dimensional time step was taken as 5 x 10
-4

, which corresponds to the dimensional time 

of 6.2 seconds. The initial temperature of the solid PCM was taken as 41.2
0
C which translated to 

a sub-cooling parameter (initial Stefan number), Stei = 0.113. As can be seen from the Table 3.4, 

less than 2% differences in the total energy stored were found with respect to the grid 

distributions of 122 x 122 during the melting process. To lend credibility in the results and for 

the sake of numerical accuracy, the highest grid system having 122x122 grids was chosen for all 

production runs. 

Table 3.4: Effect of grid points on total energy at time 41 min when the time step (∆  ) was 5x10
-4

 

Grid points 62x62 82x82 102x102 122x122 

Total stored 

energy (kJ) 

430.1034 426.6417 425.3563 421.6918 

Percent error 1.99% 1.17% 0.87% 0.0% 
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Figure 3.6: Sample grid arrangements for 122 x 122 grids in the calculation domain 

 

3.8   Time independency tests  

 

Before embarking on production runs, the time independency tests were also carried out. 

The aim of such an exercise is to obtain an optimum time step that will generate results which 

will not change the results significantly if the time step is further decreased. As mentioned 

earlier, an equally spaced B-type staggered grid meshes of 122x122 grids were used to discretize 

the governing equations for the phase-change melting problem. The parameters selected for the 

tests were Ra = 1.09 x 10
6
, and Ste = 0.2116 (which corresponds to inner cylinder wall 

temperature of 69.9
0
C for the commercial PCM, paraffin wax) and initial sub-cooling, Stei = 

0.113. Three different dimensionless time steps, namely, 1.25 x 10
-4

, 2.5 x 10
-4

, and 5 x 10
-4

 were 

R 




 

g 

Ri = 0.5 

R0-Ri=0.8 
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tested for the time step independency test. The total energy accumulation in the annulus for an 

elapsed dimensional time of 41 minutes was selected as a basis for the time-step independency 

tests. The tests results are shown in Table 3.5. Only about 3% variations in results were obtained 

for a non-dimensional time step of 2.5 x 10
-4

 compared to the dimensionless time step of 5 x 10
-4

. 

For the sake of the computational economy and costs, all simulation runs were carried out using 

the bigger dimensionless time step (∆  ) of 5 x 10
-4

. The latter dimensionless time step 

corresponds to the dimensional time (∆t) of 6.2 seconds. 

 

Table 3.5: Effect of time step on the total stored energy for 41 min of melting with 122x122 grids. 

 

Time step (∆  ) 1.25 x 10
-4

 

 

2.5 x 10
-4

 

 

5 x 10
-4

 

 

Total stored 

energy (kJ) 

425.326 409.4935 421.6918 

Percent error 0.86% 2.89% 0.0% 
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CHAPTER – FOUR 

 

Melting of a Commercial PCM in a Plain Horizontal Cylindrical Annulus  

 

4.1 Introduction 

 

In this section, the numerical simulation results have been presented for the buoyancy-

driven melting of a commercial PCM (paraffin wax) encapsulated between two concentric 

horizontal cylinders. The relevant thermo-physical properties of the PCM are taken from the 

literature and are given in the previous section in Table-3.1. The developed numerical model and 

the associated CFD code are able to track the transient progression of the melting process for any 

commercial PCM. The code is particularly able to handle the irregular movements of mushy 

zone due to natural convection and the interaction between the solid and liquid phases under 

laminar flow conditions. The mushy region is the region between the liquidus and solidus 

isotherms, where solid and liquid coexist in thermal equilibrium (Viskanta, 1988). During 

numerical simulation, it is quite difficult to track the mushy region at every instant of time. The 

present numerical code is written to solve the dimensionless form of the governing equations and 

hence the code is fairly general. The code can be used to investigate the melting phenomenon for 

multiple PCMs in the annulus. The model developed here takes into account both conduction in 

the three phases (unmelted solid, liquid, mushy zone) and induced natural convection in the two 

phases (melt and mushy region) where solid-liquid coexist.   

In this section, the melting results are explained in terms of temperature distributions, velocity 

vectors, the total stored energy, the total liquid fraction, and the thermal efficiency at different 

time spans for various operating conditions for a plain annulus. 

The total stored thermal energy equation can be derived by splitting the total energy 

stored in the melt into the sensible energy (MPCMCP∆T) component and the latent heat energy 

(MPCM ) component during the melting process for a fixed time span. In the present study, since 

phase change of a commercial material is the main concern, the volume of liquid melted is 
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evaluated by summing the volume fraction of melt in every cell in the liquid phase and in the 

partially melted mushy zone at each time step. For the above calculations, correct identification 

of the mushy region is important to correctly account for the liquid fraction in that region. 

Because of the existence of the mushy region, the total liquid fraction can be derived as follows: 

 

    

        Total volume of liquid = i

n

i

iCVf
1  

 

 

     Here, 'n' represents the total number of control volumes. 

 

 

 

The maximum stored energy within half of the annulus can be evaluated from the following 

expression.  

Maximum storable energy, Qmax = MPCM [CPS (TS-Ti ) +     + CPL(TW-TL)]  

For example, for an initial 10
0
C sub-cooling and with the inner cylinder wall temperature at 

69.9
0
C for a commercial PCM, the maximum energy that can be stored is 666.18 kJ. It is to be 

noted that the PCM used here has a Prandtl number of 40.15 and the mass of this PCM (MPCM) 

for half of the annulus is 2.86 kg when the length of the cylinders is assumed to be one meter. 

Numerical simulations have been conducted by varying the various parameters associated 

with the model under consideration. The basic governing parameters of the system include 

Rayleigh number Ra, Stefan number Ste, radius ratio of the annulus R0/Ri, initial sub-cooling 

parameter Stei, and Prandtl number Pr.  The parameters, such as Rayleigh number, Stefan 

number, and Prandtl number appear in the non-dimensional governing equations. The radius 

ratio of the annulus and Stefan number appear in the boundary conditions. For the initial 

 
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condition, the initial sub-cooling parameter Stei appears in the modeled equations. For all the 

production runs reported here the Prandtl number is assigned a value of 40.15, which 

corresponds to commercial paraffin wax used in this study. The ratio of the outer radius to the 

inner radius of the pipes is assigned a value of 2.6. The remaining two parameters, namely, 

Rayleigh number and the initial Stefan number are varied. 

As mentioned earlier, in the present study emphasis is placed in asserting the melting 

behavior of paraffin wax for the purpose of thermal energy storage. For a fixed phase-change 

material (fixed Prandtl number), the Stefan number and Rayleigh number cannot be varied 

independently. During parametric study the diameter of the inner cylinder (Di) is fixed to a value 

of 0.04 m and the temperature differential ( ∆T= Tinner cylinder wall –TSolidus) is varied in order to 

assess the role of buoyancy-driven convection during melting. Table-4.1 gives the pertaining 

process parameters for the computed cases. When the Rayleigh number is fixed, the Stefan 

number is also consequently fixed, as a result for a specific PCM only inner cylinder wall 

temperature dictates the value of the Rayleigh number. The initial temperature of the PCM is 

also a parameter to be specified. When the initial temperature of the PCM is below the solidus 

temperature, this condition is referred to here as the sub-cooled condition. The initial temperature 

of the PCM is assumed to be at 41.2
0
C which is 10

0
C (∆T =Tsolidus –Tinitial) lower than the solidus 

temperature for one case and for the second case the initial temperature of the PCM is assumed 

to be at the solidus. The latter case is referred to as the zero sub-cooling condition. Following 

other researchers in this field, the porosity constant C in the Darcy term is set to 10
6
 kg/(m

3
 s) so 

that the fluid velocity in the momentum equation becomes zero in the solid region. 

Table 4.1:  Computational cases studied (Pr = 40.15, diameter of the inner cylinder, Di = 0.04m)  

Inner cylinder 

wall temperature 

TW [
0
C] 

∆T = 

(Twall –TSolidus)  

[
0
C] 

Rayleigh 

number (Ra)   

Stefan 

number (Ste) 
Melting time (t /  ) 

[min/dimensionless] 

69.9  18.7 1.09x10
6
   

 

0.2116 (a) 20/0.1  

(b) 41/0.2  

(c) 62/0.3  

(d) 83/0.4 

74.9 23.7 1.38x10
6
 0.2682 (a) 20/0.1  

(b) 41/0.2  

(c) 62/0.3  

(d) 83/0.4 
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79.9 28.7 1.67x10
6
 0.3248 

 

(a) 20/0.1  

(b) 41/0.2  

(c) 62/0.3  

(d) 83/0.4 

 

 

A set of simulations are carried out for the plain annulus considering the fixed initial 

sub-cooling [i.e., ∆T =Tsolidus –Tinitial] of 10
0
C, and 0

0
C and for various process parameters listed 

in Table-4.1. Numerical simulations results are presented pictorially in the form of velocity 

vectors and temperature contours. The quantitative values for the total stored energies, the total 

liquid fractions and the energy fractions are also provided. It is to be noted that, in selecting the 

various ranges of the relevant parameters, the primary consideration has been to clarify the 

influences of the sub-cooling parameter and the Rayleigh number. Accordingly, the simulations 

are carried out for three Rayleigh numbers, namely, 1.09x10
6
, 1.38x10

6
, and 1.67x10

6
. In order 

to avoid confusion, the simulation results for three Rayleigh numbers are discussed separately. 

The discussion of the velocity fields will be followed by a discussion of the temperature fields. 

The total stored energy, the total liquid fraction and the energy efficiency for the melting process 

are explained subsequently for three situations. 

 

4.2 Flow structure and melt shape for different Rayleigh numbers 

 

Instantaneous velocity fields in the liquid and mushy regions and the temperature 

distributions in both liquid and solid regions during the melting process in a plain annulus are 

given in Figs. 4.1 (a-c) for  ∆T = 18.7
0
C; in Figs. 4.2 (a-c) for  ∆T = 23.7

0
C; and in Figs. 4.3 (a-

c) for  ∆T = 28.7
0
C. In each figure three instantaneous plots are provided for dimensionless time 

of   = 0.2, 0.3 and 0.4 which correspond to the dimensional time of t = 41 min, 62 min, and 83 

min, respectively. The velocity patterns are shown on the left-half of each circular cross-section 

whereas the temperature contours are presented on the symmetric right-half separated by a 

vertical line passing through   = 0
0
 and  =180

0
. The simulations are carried out for a sub-

cooling parameter, Stei = 0.113. 
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4.2.1. Case (a) (Ra = 1.09x10
6
, which corresponds to the inner cylinder wall temperature 

of 69.9
0
C): 

 

Velocity and temperature fields for ∆T = 18.7
0
C and Stei = 0.113 (inner cylinder wall 

temperature of 69.9
0
C) are given in Figs. 4.1(a-c) for three dimensionless time instants (  = 0.2, 0.3, 

and 0.4).  

 

Velocity field 

Since the inner cylinder wall temperature for this case is 69.9
0
C, which is 10

0
C higher 

than the melting temperature of the PCM, the solid starts to melt initially due to conduction. As 

melting time progresses, the natural convection is intensifying, as a result, convection currents in 

the melt start to move around the inner cylinder wall from the bottom to the top until it reaches 

the upper symmetry plane. At this point, the melt is forced to bend and flows downward along 

the relatively cold outer cylinder prevailing on the inner surface of the outer cylinder. The heated 

downward melt meets with colder solid when moving down along the outer cylinder. The 

resistance force created by the solid causes the deceleration of the downward motion of the melt 

and melting proceeds on the top of the annulus in the angular and radial directions due to 

conduction and buoyancy driven convection. The velocity profile shows that throughout the 

melting process the natural convection flow in the melt region remains unicellular i.e., has only a 

single recirculation zone. Due to the small annulus gap, the Rayleigh number is relatively low for 

this case and the established buoyancy-driven convection is not strong in comparison to 

conduction. Thereafter, the recirculation zone do not shift downward with increase in melting 

time as needed, and as a result, the shape of the mushy region did not expand in the downward 

direction, thus hampering the progression of melting in the lower region of the annulus. From the 

velocity field it is clear that melting has been more intense in the top portion of the annulus. 

Figures 4.1a to 4.1c also show the history of the resultant maximum velocity in the melt. The 

maximum velocity represents the strength of the buoyancy force which appears at around 41 

minutes. At the beginning, the fluid flow is weak all over the thin circular annulus. As the 

melting process marches on, the melt gets hotter and gain strength, thereby the maximum 

resultant velocity increases with time. The melt velocity reaches approximately its maximum 

value at around 41 minutes. After this melting time the recirculation fluid cell at the top region    
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( ~90
0 

to 180
0
) of the annulus remains more or less stagnant due to the development of stratified 

temperature field there. The manifestation of the latter fact is that, with the increase of melting 

time the magnitude of the maximum velocity inside the annulus decreases. 

 

Temperature field 

Figures-4.1(a-c) show the temperature contours in a flooded format for the half of the 

cross-section of the annulus including the liquidus (59.9
0
C) and solidus (51.2

0
C) isotherms. The 

mushy layer, presented by the blue color, is located between these two isotherms. The 

concentrated temperature contours on the lower part of the inner cylinder wall indicates that the 

maximum heat transfer rate occurs in this part. This perfect cylindrical shape of the temperature 

contours during melting process indicating the dominance of the conduction mode of heat 

transfer. As the isotherms begin to follow the inner cylinder wall boundary, it starts to separate 

from the inner cylinder surface and deviate from the concentric ring patterns to form a pear-

shaped melted region, indicating that convection begins to affect the melting process. The 

separation of the isotherms from the inner cylinder wall indicates that the heat transfer between 

the melt and the inner wall decreases smoothly. Since the melting temperature is lower than the 

inner cylinder wall temperature and the isothermal boundary condition is imposed on the inner 

cylinder surface, the larger temperature difference between the melt and the heated surface 

results in a larger heat transfer rate near the lower portion of the inner cylinder wall. As the melt 

moves upward along the inner cylinder wall, the melt is being heated up. The temperature 

difference between the wall and the melt is reduced gradually during upward movement of the 

melt and as a consequence the heat transfer rate decreases. Convective current leads to the 

movements of the isotherms outward from the inner cylinder wall and thereby distorting the 

isotherms in the upper part of the annulus. While going down from the top of the annulus to 

bottom, the pear-shaped isotherms start to turn to become horizontal in shape suggesting that the 

convection has been replaced by the conduction mode of heat transfer. At the lower part of the 

annulus the heat transfer is controlled predominantly by conduction for all the three dimensional 

time instants (t = 41 min, 62 min, and 83 min) as shown in Figs. 4.1(a-c).  

Figure 4.1(c) shows that for a melting time of 83 min, the convective motion of the 

melt starts intensifying at the top. For example, the 68.15
0
C isotherm near the top of the annulus 
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( ~180
0
) is pear shaped and it is gradually decreasing in the downward direction, as is 

evidenced by the isotherm at 67.11
0
C ( ~150

0
), which is a deformed and almost horizontal-

shaped isotherm in the melt region. From the nature of the predicted isotherms one can clearly 

identify the established conductive and convective regimes inside the annulus. A further 

examination of this figure reveals that with the increase of melting time, the densely packed 

isotherms manifest in the same direction as gravity and as a result the heat transfer rate is 

enhanced in this region.  

With the increase of melting time the hot melt comes down along the cold mushy 

region. It then loses energy and thereby gets colder and finally arrives at the bottom of the solid 

zone.  In the bottom region ( ~0
0 

to 90
0
), the conduction mode of heat transfer is significant due 

to the horizontal geometrical configuration of the annulus and this conduction mode of heat 

transfer is further aggravated by the low thermal conductivity of the PCM. Looking at the point 

of onset of melting inside the annulus [Figs. 4.1(a-c)], it can be seen that as time progresses from 

41 min to 83 min, the mushy layer remains practically stagnant at the lower portion of the 

annulus ( ~80
0
). As a result, the melting rate in the bottom region ( ~80

0
) is significantly 

slower than any other regions within the annulus. A similar phenomenon has been reported by 

other researchers in the literature during melting of a pure PCM within horizontal concentric 

cylinders.  

These figures clearly demonstrate that with the progression of melting time the phase-

change process practically stops. This is not beneficial for energy storage since only sensible 

energy, which is much less compared to the latent energy, is stored during this time. 

 

4.2.2. Case (b) (Ra = 1.38x10
6
, which corresponds to the inner cylinder wall temperature of 

74.9
0
C): 

 

Velocity and temperature fields for ∆T = 23.7
0
C and initial sub-cooling parameter, Stei = 0.113 

(case (b) inner cylinder wall temperature of 74.9
0
C) are given in Figs. 4.2(a-c) for three dimensionless 

time instants (  = 0.2, 0.3, and 0.4).  
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Velocity field 

Figs. 4.2(a-c) show the resultant maximum velocity in the melt is enhanced compared to 

the case (a). The figures are indicating more intense melting in the top portion of the annulus 

gap. Since the Rayleigh number is high, fluid motion is stronger, which can be seen from the 

resultant values of the maximum velocities in the above mentioned three cases. For example, the 

resultant value of the maximum velocity is 0.00163 m/sec at the time instant of 41 min for Ra = 

1.38x10
6
 depicted in Fig. 4.2(a), whereas at Ra = 1.09x10

6
, the resultant value of the maximum 

velocity is only 0.0015 m/sec for the same time instant [Fig. 4.1(a)]. It is noted that the counter-

clockwise-rotating recirculation cell in the melt is relatively stronger when compared to case (a). 

The pattern of velocity field is similar to that of case (a). 

 

Temperature field 

 

As the inner cylinder wall temperature is enhanced by 5
0
C compared to case (a), a 

strong thermal plume originates near the top of the annulus and impinges perpendicularly on the 

top of the outer cylinder wall ( ~180
0
), shown in Figs. 4.2(a-c). Consequently, the progress of 

the melt front in the top region is greatly enhanced. At 41 min, the 68.15
0
C isotherm for Ra = 

1.38x10
6
 is at the middle of the annulus ( ~90

0
) and has appeared as a horizontal line which is 

seen in Fig. 4.2(a). The same isotherm for the same time instant for Ra = 1.09x10
6
, which has 

appeared at the top of the annulus ( ~180
0
), is a pear shaped melted regime which is seen in 

Fig. 4.1(a). It is evident from these figures that melting rate enhances with increase of Rayleigh 

number. The right-hand sides of the above mentioned figures [Figs. 4.2(a-c)] display the 

transient progressions of the temperature contours in the melt, mushy region and solid PCM. 

Next, attention is turned to the lower part of the annulus. Due to conduction 

dominated heat transfer in the bottom region, the mushy region represented by the blue color is 

practically stagnant. At this stage, the qualitative features of the movement of the mushy zone 

appear to be at the same position similar to case (a). Conduction dominated bottom regime of the 

annulus remains unaffected for a higher Rayleigh number, seen in case (b).  
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4.2.3. Case (c) (Ra = 1.67x10
6
, which corresponds to the inner cylinder wall temperature of 

79.9
0
C): 

 

Velocity and temperature fields for ∆T = 28.7
0
C and Stei = 0.113 are given in Figs. 4.3(a-c) for 

three dimensionless time instants (  = 0.2, 0.3, and 0.4).  

Velocity field 

This case represents a relatively high Rayleigh number, so the effects of buoyancy-

driven convection are more pronounced compared to the previous two cases. At the highest Ra = 

1.67x10
6
, the velocity field in the melt shows a stronger convection pattern compared to the 

cases (a) and (b). Although the recirculation zone is found to be almost in the same location as 

cases (a) and (b), but the strength of the recirculation zone is enhanced for this case. The 

resultant value of the maximum velocity is found to be 0.00194 m/sec at the melting time of 41 

min as seen in Fig. 4.3(a), which is the greatest compared to the previous two cases (a) and (b). 

Temperature field  

Compared to case (a) when the inner cylinder wall temperature is enhanced by 10
0
C, an 

accelerated melting occurs in the very top region and the melting rate is the greatest compared to 

the cases (a) and (b). This is due to the fact that because of the higher wall temperature there 

exist a high temperature gradient in the melt for the same time span compared to the other two 

cases. It follows that the most sensible energy is stored in the liquid region for this case. The 

Rayleigh number for this case being the largest among the three cases studied, but the mushy 

region which is bounded by the liquidus (59.9
0
C) and solidus (51.2

0
C) isotherms remains 

practically at the same angular and radial positions due to conduction-controlled zone prevailing 

in that region which can be seen from Figs. 4.3(a-c) and is very similar to cases (a) and (b). 

4.3. Total stored energy, total liquid fraction and energy efficiency for different Rayleigh 

numbers in plain annulus  

 

In order to assess the overall role of convection on the melting process, the total stored energy, 

the total liquid volume fraction and the thermal efficiency for three cases (a)-(c) are plotted in 
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Figs. 4.4(a,b) for case (a), in Figs. 4.5(a,b) for case (b), and in Figs. 4.6(a,b) for case (c). The 

numerical calculation procedure for the total stored energy, the total melt volume fraction and 

the fraction of energy stored are all given in Section 4.1 of this chapter. Figures 4.4(a), 4.5(a), 

and 4.6(a) present in graphical form the total stored energy and the total liquid volume fraction 

as a function of dimensional time for three prescribed temperatures of the inner cylinder wall. 

Figures 4.4(b), 4.5(b), and 4.6(b) present the curves of energy fraction as a function of 

dimensional time for the same wall boundary conditions as Figs. 4.4(a), 4.5(a), and 4.6(a) 

respectively. An inspection of the above figures reveal that at the early stage of the melting 

process the rate of melting is almost linear and the total stored energy, the total melt volume 

fraction, and the energy efficiency all increase rapidly as the melting time increases. This 

happens due to conduction and convection induced melting process. With time, as the melt gets 

heated the temperature difference between the inner cylinder wall and the melt reduces. As a 

result the heat transfer rate from the inner cylinder to the melt also decreases. With the further 

progression of time the melting rate of the PCM is greatly reduced, which can be seen from the 

flattening of the curves in the figures for all the three cases. It can be concluded that the melting 

proceeds efficiently in a concentric cylindrical annulus up to a fixed melting time. After this 

threshold time the thermal efficiency, total stored energy and the rate of melting increases very 

slowly because of the marked suppression of natural convection. The threshold melting time is 

found to be about 41 minutes for the three cases studied here. It has been found that for 1.09x10
6
 

  Ra   1.67x10
6
, the influence of the Rayleigh number on the amount of energy storage after 

this threshold melting time is insignificant because the heat transfer process is dominated by the 

conduction mode of heat transfer during which time predominantly sensible energy is stored in 

the melt and the above statement is particularly true for the bottom of the annulus. A quantitative 

comparison of the total stored energy, the total melt volume fraction and thermal efficiency is 

made in Table 4.2, showing the effect of Rayleigh number (wall temperature) for initial sub-

cooling parameter, Stei = 0.113 for a melting time of 41 minutes. From this table it is evident that 

for cases (b) and (c) representing wall temperature of 74.9
0
C, and 79.9

0
C respectively, at the 

threshold time of 41 min, all of the predicted quantities are enhanced considerably compared to 

the base case (a) (Ra = 1.09x10
6
, TWALL =69.9

0
C).  After the threshold time and at t = 62 min, the 

total stored energy is 442 kJ for case (a) (Ra = 1.09x10
6
), which in comparison to the melting 

time of 83 min, is only 0.9 % less. Whereas, at threshold time, t = 41 min, the total stored energy 
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is 422 kJ for the same case (a), which in comparison to the lower melting time of 20 min, is 40 %  

higher and in comparison to the higher melting time of 62 min, it is only 5% lower. From the 

above quantitative analysis it can be concluded that for the studied plain annulus it is not 

beneficial to store energy beyond the threshold melting time of about 41 minutes, since after this 

time mainly sensible heat storage takes place. 

Table-4.2: Effect of Rayleigh number (wall temperatures) on total stored energy, total liquid 

fraction and fraction of possible maximum sorted energy compared to the base case (a) 

for a melting time of 41 min.  

Quantity Ra = 1.09x10
6
 Ra =1.38x10

6
 Ra = 1.67x10

6
 

Total stored energy (kJ) 422 6 % higher than case (a) 12% higher than case (a) 

Total liquid fraction (%) 68 3 % higher than case (a) 5% higher than case (a) 

Energy fraction (%) 64 2 % higher than case (a) 3% higher than case (a) 

 

The overall findings for the plain annulus are summarized below in Table-4.3. 

Table-4.3: Summery of the findings along with the general remarks from the numerically 

predicted results for a plain annulus with initial sub-cooling parameter, Stei = 0.113. 

 

Geometry Parameters 

studied 

Effect of melting 

time 

Effect of inner 

cylinder wall 

temperature 

Remarks 

Plain 

annulus 

The inner cylinder 

wall temperature 

is assigned to 

69.9
0
C, 74.9

0
C, 

and 79.9
0
C. 

With the increase in 

time, initially the 

melting rate 

increases but the rate 

progressively 

decrease with time 

and reach almost a 

plateau with time in 

each case. 

For the increase 

of the inner wall 

temperature, the 

melting rate 

increases, and 

also the total  

energy stored and 

the energy 

fraction increases.   

 

Conduction 

dominated zone at 

the lower part of 

the annulus 

drastically inhibits 

the development of 

convection in the 

melt in all the three 

cases. 
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(a) 

(b) 

(c) 

Figure 4.1: Temperature contours (right) and velocity vectors (left) for inner wall temperature of 

69.9
0
C   for a plain annulus: Stei = 0.113,  at time, (a) 41min; (b) 62min; (c) 83min. 
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Figure 4.2: Temperature contours (right) and velocity vectors (left) for inner wall temperature of 

74.9
0
C  for a plain annulus: Stei =0.113, and at time, (a) 41min; (b) 62min; (c) 83min. 

at initial Ste=0.113, and at time:(a)41min; (b)62min; (C) 83min. 

 

(a) 

(b) 

 

(c) 
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Figure 4.3: Temperature contours (right) and velocity vectors (left) for inner wall temperature of 

79.9
0
C  for a plain annulus: Stei = 0.113, and at time, (a) 41min; (b) 62min; (c) 83min. 

 

(a) 

(b) 

 

(c) 
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Figure 4.4:  For TWALL= 69.9 

0
C, Stei = 0.113 for a plain annulus: (a) transient evolutions of total 

stored energy (kJ) and total liquid fraction; (b) transient evolutions of energy fraction.  

  
Figure 4.5:  For TWALL= 74.9 

0
C, Stei = 0.113 for a plain annulus: (a) transient evolutions of total 

stored energy (kJ) and total liquid fraction; (b) transient evolutions of energy fraction.  

  

Figure 4.6:  For TWALL= 79.9 
0
C, Stei = 0.113 for a plain annulus: (a) transient evolutions of total 

stored energy (kJ) and total liquid fractions, (b) transient evolutions of energy 
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CHAPTER – FIVE 

 

Melting of a Commercial PCM in a Finned Annulus  

 

5.1 Introduction 

 

Numerical results for a commercial paraffin wax embedded in a plain annulus are 

presented in Chapter-Four. For the horizontal concentric plain annulus it is found that the mushy 

region, which is bounded by the liquidus (59.9
0
C) and solidus (51.2

0
C) isotherms, is almost 

horizontal in shape and occupies a region close to the inner cylinder starting from about  ~80
0 

for all three different dimensional time spans, t = 41 min, 62 min, and 83 min.  The shape and 

position of the mushy zone remains almost stagnant after the threshold dimensional melting time 

of 41 min. In the concentric plain annulus case, it is noticed that the increase of Rayleigh number 

which indicates the enhancement of the strength of buoyancy-driven convection, the angular 

position of the mushy region did not shift in the gravitational direction. This means that with the 

increase in melting time, the melt in the upper core of the plain annulus approaches the inner 

cylinder wall temperature more quickly due to the development of the conduction dominated 

zone at the bottom of the annulus (about  ~0
0
 to 80

0
). For this reason, the double-pipe heat 

exchanger forming a horizontal plain annulus is an inefficient heat storage device.     

To resolve this inefficient heat transfer problem, the present study has specifically 

focused on a possible enhancement of the energy storage by convection at the bottom part of the 

annulus. It is well-known that heat transfer in a horizontal annulus is limited by the heated inner 

cylinder when the outer cylinder is insulated. Hence, fins can be attached to the outer surface of 

the inner cylinder to increase the heat transfer area. A number of experimental and numerical 

studies exist in the literature concerning singe-phase natural convection heat transfer in a finned 

annulus of various configurations of the fins. In this study, in order to alleviate the effect of 

dominant conduction mode of heat transfer in the lower part of the annulus, three longitudinal 

divergent radial fins with round tips are attached on the inner cylinder wall at the conduction 
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dominated zone of the annulus. These fins are placed at the symmetry plane ( = 0
0
), at  = 30

0
, 

and at  = 330
0 

at the bottom part of the annulus. Unfortunately, with regard to the numerical 

modeling of natural convection melting of a commercial PCM, no study seems to exist 

concerning a finned annulus. The reason for this is probably due to the complexity that arises in 

the numerical solution procedure for placing solid fins of high thermal conductivity in the solid 

or liquid PCM of low conductivity undergoing a convective-conductive meting process.   

In the present study concerning finned annuli, all the relevant process parameters are kept 

identical as presented in Chapter-Four. Computational cases which are given in Table-4.1 and 

studied for plain annulus, are also studied for the finned annuli. In this chapter two cases, where 

the fin height inside the annulus is arbitrarily set to 30% and 50% of the fixed annulus gap, are 

simulated. For the convenience of discussion, the fin height of 30% of the annulus gap will be 

referred to as the short-finned annulus and the fin height of 50 % of the annulus gap will be 

referred to as the long-finned annulus.  

Simulations were carried out for three Rayleigh numbers and for two values of the initial 

sub-cooling parameter for each of the two fin heights. This was done in order to isolate the effect 

of the fin height on the computed results. For the short-finned geometry, the effect of the 

governing parameter, such as Ra with Stei = 0.113 are discussed as cases (a), (b), and (c). For the 

long-finned geometry, the effect of the governing parameter, such as Ra with Stei = 0.113 are 

discussed as a whole. In both the cases, the predicted results are presented pictorially and 

quantitatively. Next, a comparison of the melting characteristics is made for the initial sub-

cooling and saturated conditions of the PCM for both plain and short-finned annuli. Finally, a 

comparison is made between the short-finned and plain annuli for Stei = 0.113 to assess the role 

of fins on the melting process. To improve the melting rates, aluminum is chosen for its high 

thermal conductivity as the fin material for both short and long solid fins. The physical properties 

and dimensions of the solid aluminum fins are given in Table 5.1 below: 

Table-5.1: Physical properties and thickness of the solid aluminum fin 

Properties Value 

Thermal conductivity (solid) (k) 0.1799 kW / (m-K) 
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Density (solid) (  ) 2712.6   kg/m
3
 

Specific heat (solid) (CP) 0.96 kJ/(kg-K) 

Width of the radial divergent solid fins 

Thickness (at base)  1.05 mm 

Thickness (at tip)-for long-fin 1.885 mm 

Thickness (at tip)-for short-fin 1.131 mm 

 

5.2 Short-finned Annulus 

 

When the fin height is considered as 30 % of the annulus gap (H=0.3L), this geometry is 

referred to as a short-finned annulus. For three cases, namely cases (a), (b), and (c), the 

instantaneous velocity vectors and temperature fields are shown pictorially for three non-

dimensional times,   = 0.2, 0.3, and 0.4. The total cumulative stored energy, the total melt 

volume fraction, and the thermal energy efficiency are also depicted quantitatively as a function 

of dimensional time. 

 

5.2.1. Flow structure and melt shape in the short-finned annulus for different Rayleigh 

numbers 

 

Instantaneous velocity fields in the liquid and mushy regions and the temperature 

distributions in both liquid and solid regions in short-finned annulus during the melting process 

are given in Figs. 5.1(a-c) for  ∆T = 18.7
0
C; in Figs. 5.2(a-c) for  ∆T = 23.7

0
C; and in Figs. 5.3(a-

c) for  ∆T = 28.7
0
C. Three instantaneous plots are provided for each case at dimensionless time   

(  ) = 0.2, 0.3 and 0.4 which correspond to the dimensional time of 41 min, 62 min, and 83 min, 

respectively. The velocity patterns are shown on the left half of each circular cross-section 

whereas the temperature contours are presented on the right half with a vertical line passing 

through   = 0
0
 and  =180

0
 separating the two fields. The simulations are carried out for the Stei 

= 0.113. 
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5.2.1.1. Case (a) (Ra = 1.09x10
6
, which corresponds to the inner cylinder wall temperature 

of 69.9
0
C) 

 

 

Velocity field 

Initially, commercial paraffin wax melts near the inner cylinder due to conduction heat 

transfer but as the melt layer starts to grow the convection heat transfer gradually takes over. 

Starting from the bottom fin placed at the symmetry axis ( = 0
0
), the melt gains heat and moves 

along the wall of the inner cylinder until it reaches the second fin at  = 30
0
. At this point, the 

melt is forced to bend and flows downward along the second fin. Figures 5.1a to 5.1c show that 

the melt in between the fins are trapped and is unable to follow the contour of the surface. This is 

due mainly to the blockage effect by the fins in the short-finned annulus. The lower surface of 

the second fin transfers heat only by conduction, preventing melt movement from the bay. The 

upper surface of the second fin enhanced the melt flow by convection and this can be clearly 

seen by focusing the attention on the vector plots in Figs. 5.1(a-c) adjacent to the inner cylinder 

wall. Because of the high thermal conductivity of aluminum, the two fins quickly attain the inner 

cylinder wall temperature. Due to the temperature difference, heat exchange takes place between 

the fins and melt and solid PCM by conduction and convection in between the fins and around 

the fins. The continuous heating of the downward moving melt faces an upward force as can be 

seen near the tip of the second fin in Figures 5.1(a-c), causing deceleration of the downward 

motion. As the melt approaches near the top of the inner cylinder the flow starts to bend and 

move downward along the outer cylinder. As a result, with the increase in melting time a 

recirculation cell starts expanding sideways as well as downwards. Figures 5.1a to 5.1c show the 

history of the resultant maximum velocity in the melt. At the melting time of 41 min, the 

maximum resultant velocity is 0.00133 m/sec, whereas with the increase in melting time (t=83 

min), the resultant maximum velocity decreases to 0.00051 m/sec. This is due to the fact that, for 

a fixed inner cylinder wall temperature, with the progress of the melting time, the melt 

temperature inside the annulus increases, as a consequence the buoyancy force decreases, 

thereby causing the magnitude of the velocity vector to decrease. 
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Temperature field  

Figures 5.1a to 5.1c display the transient progression of the isotherms for various time 

instants. The beneficial effect of the fins in the concentric annulus can be seen by comparing 

among the Figures 5.1(a), 5.1 (b), and 5.1 (c). It is evident from these figures that for finned 

annulus the mushy region propagates with time and gets thicker at the bottom part of the 

annulus. The thick mushy region ultimately settles at the lower portion of the annulus. The 

reason for this behavior is due to the greater convection currents in the melt at the bottom 

annulus zone created by the fins. The distorted melting front around the fin tip is also observed. 

The progress of isotherms in between the fins can be seen to have taken parabolic shape, 

indicating the blockage effect created due to the fins. The local heat transfer rate is high in the 

blockage region. Below the middle part of the annulus, a closely packed isotherms are found at a 

longer melting time (t=83 min) which results in a high heat transfer rate in this region.  

 

5.2.1.2. Case (b) (Ra = 1.38x10
6
, which corresponds to the inner cylinder wall temperature 

of 74.9
0
C) 

 

Velocity and temperature fields for ∆T = 23.7
0
C and initial Stefan number, Stei = 0.113 

representing case (b) (inner cylinder wall temperature of 74.9
0
C) are given in Figs. 5.2(a-c) for 

three dimensionless time instants (  = 0.2, 0.3, and 0.4).  

 

Velocity field 

Due to the fact that Ra is relatively high in this case compared to case (a), t the 

buoyancy-driven convection manifests a bit earlier and is stronger in comparison to the previous 

case. In this case, fluid flow is strong and a single recirculation cell develops in the melt which is 

spreading more inside the annulus with time. The magnitude of the maximum resultant velocity 

vector inside the annulus increases compared to case (a) but decreases with the increase of 

melting time from t= 41 min to t = 83 min, presented in Figs. 5.2 (a-c). 
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Temperature field  

The movement of the mushy region represents the progression of melting inside the 

annulus. Here, additional heat is transferred from the inner cylinder wall compared to case (a) 

and leads the mushy region to march on in the gravitational direction. These results also indicate 

the difference between the low and high Ra. The blockage effect of the fins is evident here too. 

 

5.2.1.3. Case (c) (Ra = 1.67x10
6
, which corresponds to the inner cylinder wall temperature 

of 79.9
0
C) 

 

Velocity and temperature fields for ∆T = 28.7
0
C and initial Stefan number, Stei = 0.113 

representing case (c) (inner cylinder wall temperature of 79.9
0
C) are given in Figs. 5.3(a-c) for 

three dimensionless time instants (  = 0.2, 0.3, and 0.4).  

 

Velocity field 

Compared to the previous two cases as Ra increases further, the convective motion of 

the melt is intensifying as is evidenced by the velocity vectors inside the annulus, depicted in 

Figs. 5.3(a-c). The magnitude of the maximum velocity is also enhanced compared to the 

previous two cases. The high temperature difference ∆T = (Twall –TSolidus) inside the annulus 

causing the unicellular melt recirculation zone to expand sideways as well as downwards. 

 Temperature field  

When Ra increases, the more closely packed isotherms found inside the annulus and 

shown in Figs. 5.3(a-c), indicate that the local heat transfer rate is enhanced in this region. These 

densely packed isotherms also move toward the lower part of the annulus with the increase of 

melting time. The position of the mushy region is shifted more downward compared to cases (a) 

and (b), due to the increased convection. The blockage effect of the fin at 030  is also 

prominent here. 
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5.2.2. Total stored energy, total liquid fraction and energy efficiency in short-finned 

annulus for different Rayleigh numbers  

 

Transient evolutions of the total stored energy, the total liquid volume fraction and the 

thermal energy storage efficiency for cases (a), (b) and (c) for the short-finned annulus are given 

in Figs. 5.4(a, b) – 5.6(a, b) for different Rayleigh numbers. The numerical values of Rayleigh 

number and of the total melting time are summarized in columns 3 and 5, respectively of Table 

4.1 in Chapter-Four. In order to gain a better understanding of the role of the fins during the 

melting process, the process parameters such as the Prandtl number, radius ratio and the initial 

Stefan number were all kept the same as the plain annulus studied earlier. The trend‟s of the 

curves of the total stored energy, the total liquid fraction and the energy storage efficiency as a 

function of dimensional time are similar in nature to  those seen in the plain annulus case. 

Comparisons of the three cases [Ra = 1.09x10
6
, Figs. 5.4(a,b); Ra =1.38x10

6
, 5.5(a,b); Ra = 

1.67x10
6
, 5.6(a,b)] indicate significant variations in each of the above quantities are achieved for 

a fixed time span. There is a threshold time for the three cases. This time is about 41 min and is 

identical to the plain annulus situation. After this threshold time, the curves show very slow rate 

of increase with time, which in comparison to the plain annulus shows a bit more upward trend. 

After an elapsed time of 62 min, the total stored energy is 537 kJ for case (a) (Ra = 1.09x10
6
), 

which in comparison to the melting time of 83 min, is only 5 % less. Whereas, at threshold time 

of 41 min, the total stored energy is 490 kJ for this case, which in comparison to the lower 

melting time of 20 min, is 36 % higher and in comparison to the higher melting time of 62 min, 

is only 9% less. In other words, after the elapsed melting time of 41 min, the total energy stored 

is only 9% and 5% higher for the subsequent two additional incremental time span of 21 min. 

The total stored energy is 490 kJ at a melting time of 41 min for case (a) [Ra = 1.09x10
6
], which 

in comparison to the plain annulus is 16 % higher. 

Table-5.2 shows the effect of Ra in terms of quantitative analysis of the total stored 

energy (kJ), the total melt volume fraction and the thermal efficiency for initial sub-cooling, Stei 

= 0.113. From this table it is evident that in the three cases where the inner cylinder wall 

temperatures are arbitrarily set at 69.9
0
C, 74.9

0
C, 79.9

0
C, all of the above mentioned quantities 
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are enhanced considerably for the higher values of Ra in comparison to the base case with Ra = 

1.09x10
6
.  

Table-5.2: Total stored energy, total liquid fraction and energy efficiency at time t=41 min for 

short-finned annulus at various Rayleigh numbers. 

Quantity Ra = 1.09x10
6
 

case (a) 

Ra =1.38x10
6
 Ra = 1.67x10

6
 

Total stored energy (kJ) 490 10 % higher than case (a) 19% higher than case (a) 

Total liquid fraction (%) 78 5 % higher than case (a) 9% higher than case (a) 

Energy fraction (%) 74 5 % higher than case (a) 8% higher than case (a) 

 

The overall findings for the short-finned geometry are summarized in Table 5.3. 

 

Table-5.3: Overall findings and remarks on the numerically predicted results for the short-finned 

annulus for 10
0
C initial sub-cooling of the PCM. 

Geome 

try 

Governing 

parameters 

Effect of melting 

time 

Effect of 

inner 

cylinder 

wall 

temperature 

Remarks 

Short-

finned 

annulus 

The inner 

cylinder wall 

temperature are 

assigned to 

69.9
0
C, 74.9

0
C, 

and 79.9
0
C 

With the increase 

in time, the 

increase in 

melting rate 

depends on the 

temperature 

difference (TWall-

TSolidus). 

Increasing 

the inner 

wall 

temperature 

increases the 

melting rate. 

 

As melting progressed, up to 

the threshold time of about 

41 min during which 

convection is the 

predominant mode of heat 

transfer. Beyond that time, 

the conduction mode of heat 

transfer progressively takes 

over convection and the 

thickness of the mushy 

region moves downward very 

slowly along the lower part 

of the annulus. 
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5.3 Long-finned Annulus 

 

When the fin height is considered as 50 % of the annulus gap (H=0.5L), this fin 

arrangement is referred to as long-finned annulus. The instantaneous velocity and temperature 

fields are shown pictorially in Figs.5.7(a-c)-5.9(a-c) at three non-dimensional times,   = 0.2, 

0.3, and 0.4 for three Rayleigh numbers ranging from 1.09x10
6
 to 1.67x10

6 
 all for an initial sub-

cooling parameter, Stei = 0.113. The velocity patterns are shown on the left-half of each circular 

cross-section whereas the temperature contours are presented on the right-half with the vertical 

line passing through   = 0
0
 and  =180

0
 separating the two fields. 

 

5.3.1. Flow structure and melt shape in the long-finned annulus for different Rayleigh 

numbers  

 

In this part, the analysis is based on the velocity and temperature fields that are presented 

to clarify the flow and heat transfer characteristics inside the domain during the melting process 

for different operating conditions. Figures 5.7(a-c), 5.8(a-c), and 5.9(a-c) depict the computed 

results at dimensional time, t = 41, 62, and 83 minutes for Ra = 1.09x10
6
, 1.38x10

6
, and 1.67x10

6
 

, respectively. In general, the increase in the fin surface area which is employed to transfer the 

heat into the domain is supplying increased heat, as a consequence the melting rate as well as the 

melt flow is enhanced. Here, the convection flow is accelerated by the increase of fin height 

which can clearly be seen from the increase in length of the velocity vectors prevailing near the 

upper surface of the second fin. The long fins with identical conditions and process parameters as 

the short-finned annulus bring almost similar flow and melting patterns. The magnitude of the 

maximum resultant velocity is enhanced compared to the short-finned geometry due to the 

increased in fin length and also due the increase of Rayleigh number. Figures 5.7(a-c) show that 

for an increase in melting time from   = 0.2, to   = 0.4, the melting front shifted downward, 

which can be observed by following the 64.4
0
C isotherm. The melting front is changed from 

being the classical pear-shaped to the more horizontally-uniformed profile at the middle of the 

annulus. The profile takes this horizontal shape if only a conduction mode of heat transfer is 

considered. With the increase of melting time and with the increase of Ra for the long-finned 

annulus, the mushy region presented by the blue color has changed the position considerably in 
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the gravitational direction (downward), which is a very desirable characteristic for this process. 

All of the temperature distribution figures show that the accelerated heat which is imposed at the 

inner cylinder wall pushes the mushy region more downward than does the short-finned annulus, 

which can be seen by comparing the Figures 5.7(a-c)-5.9(a-c) , for long-finned annulus with 

those of the corresponding Figs.5.1(a-c)-5.3(a-c) for short-finned annulus.  

 

5.3.2 Transient evolution of total stored energy for different Rayleigh numbers for the 

long-finned annulus 

 

The quantitative values of the total stored energy in kJ for Ra = 1.09x10
6
, 1.38x10

6
, and 

1.67x10
6
, for the case of a long-finned geometry are given in Fig. 5.10 in the form of a bar chart 

for four non-dimensional times,   = 0.1, 0.2, 0.3, and 0.4. In order to gain a better understanding 

of the role played by the fins during the melting process, the process parameters such as the 

Prandtl number, the radius ratio and the initial Stefan number are all kept same as the plain 

annulus. A comparison of the three Rayleigh numbers (Ra = 1.09x10
6
, 1.38x10

6
, and 1.67x10

6
) 

indicates that the total energy storage increases with the increase of buoyancy effect at each time 

span. The total stored energy is 496 kJ for the melting time of 41 min for Ra = 1.09x10
6
, which 

in comparison to the plain annulus, is 17 % higher. Table-5.4 shows the effect of Rayleigh 

number in terms of the total stored energy for initial Stefan number, Ste = 0.113. Results in 

Table-5.4 show that for the three cases where the inner cylinder wall temperature is arbitrarily set 

to either 69.9
0
C or  74.9

0
C or 79.9

0
C, the total energy storage capability of the PCM filled 

annulus space is enhanced remarkably at dimensional time span of 41 min with respect to the 

base case of Ra = 1.09x10
6
.   

Table-5.4: Total stored energy in kJ at instantaneous time t = 41 min for long-finned annulus at 

various Rayleigh numbers. 

Quantity Ra = 1.09x10
6
 Ra =1.38x10

6
 Ra = 1.67x10

6
 

Total stored energy (kJ) 496 17 % higher than           

Ra = 1.09x10
6
 

26% higher than           

Ra = 1.09x10
6
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5.4. Comparison between short-finned and long-finned geometry (in terms of total stored 

energy at Rayleigh number, Ra = 1.09x10
6
 and initial Stefan number, Stei = 0.113) 

 

In order to get a clear understanding of the role played by the fin height inside an annulus 

during the melting process, two cases are run with two different fin heights, and the process 

parameters for these cases are listed in Table 4.1 of Chapter-Four. The other basic parameters 

such as the Prandtl number, the radius ratio and the initial sub-cooling parameter are all kept 

constant as mentioned in the plain annulus study. Figure 5.11 shows the transient evolution of 

the total stored energy through a bar chart for both short-finned and long-finned geometries for a 

∆T = 18.7
0
C. The results presented in the Table-5.5 can explain the transient phenomenon more 

clearly which is shown in graph 5.11. From Table-5.5 it is seen that an increase in fin height 

causes a substantial amount of increase in total stored energies for the melting time span, t = 20 

and 83 minutes. In time, t = 41 and 62 minutes the rate of increments are insignificant compared 

to the melting time of 20 min and 83 min. This may be due to the blockage effect on the melt 

flow created by the fin. Similar to earlier geometries, one can see from Table 5.5 that the 

threshold time is also approximately 41 min for the long-finned geometry. 

In the long-finned annulus, after a melting time of 62 min, the total stored energy is 540 kJ 

for Ra = 1.09x10
6
, which in comparison to the melting time of 83 min, is only 10 % less. 

Whereas, at threshold time, t = 41 min, the total stored energy is 496 kJ for Ra = 1.09x10
6
, which 

in comparison to the lower melting time of 20 min, is 30 % higher and in comparison to higher 

melting time at t = 62 min, is only 8% less for same time difference of 21 min. So, in the case of 

long-finned geometry, after an elapsed melting time of  t = 41 min, the total stored energies are 

10% and 8%  higher for the subsequent two incremental melting time difference of 21 minutes.  

The influence of fin height on the melting flow and front patterns for Ra = 1.09x10
6 

are 

presented in Figs. 5.1(a-c) for short-finned annulus and in Figs. 5.7(a-c) for long-finned annulus. 

An inspection of the temperature isotherms clearly indicates the effect of blockage in between 

the fins. Before the threshold time, the development of natural convection in the melt for the 

short-finned annulus appears to be substantially more than long-finned annulus due to the 

smaller blockage created by the short fins. In short-finned annulus for a time span of 21 min 

(from 20 min to 41 min) the total heat stored is 130 kJ, whereas in the  long-finned annulus for 
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the same time span the total stored energy is 116 kJ, which is 12 % higher in comparison to the 

long-finned annulus. In short-finned geometry, 6.8 % more and 44% less total energies are stored 

in between the melting time of 41 and 62 min and in between the melting time of and 62 and 83 

min, respectively  compared to the  long-finned annulus. The opposite phenomena occur in the 

case of storing of energies in short-finned annulus up to the time difference between 20 and 63 

minutes. As melting proceeds in the short-finned geometry, with the increase in time due to the 

smaller fin height, the melt at the bottom of the annulus can mix with the melt in the upper part 

of the annulus without any flow resistance offered by the fin height, as a consequence the heat 

transfer rate is increased between these initial time differences. These phenomena have changed 

with the time difference in between 62 and 83 min, as it is observed that the total stored energy is 

44 % higher in long-finned annulus than short-finned annulus due to well mixing of the melt 

between the bottom and top parts of the annulus in long-finned geometry at the higher melting 

time (t = 83 min).  

Therefore, in terms of energy storage, the long-finned annulus is always more profitable for 

the melting process than the short-finned annulus. When fin cost is of a concern, the short-finned 

is more advantageous than long-finned during the initial stages of melting. If melting takes place 

for a longer time, the long-finned geometry should be more desirable than the short-finned 

geometry.  

 

Table-5.5: Total stored energy in kJ for short-finned and long-finned annuli for Rayleigh number, 

Ra = 1.09x10
6 

at four melting time spans. 

Geometry t =  20 

min 

t =  41 min t =  62 

min 

t =  83 

min 

Total stored energy in short-finned annulus (kJ) 360  490  537  566  

Total stored energy in long-finned annulus (kJ)  380 496 540 592 

Percentage enhancement with respect to short-

finned annulus 

5.5  1.2  0.6  4.6  
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5.5. Effect of initial sub-cooling parameter at  Ra = 1.09x10
6
 

 

From a more practical point of view, it is also interesting to determine the influence of 

the degree of initial sub-cooling of the PCM during the melting process. For this purpose, two 

cases for plain and finned annuli comparable to case (a) in subsection 4.2.1 for plain annulus and 

case (a) of subsection 5.2.1.1 for short-finned annulus are simulated and the process parameters 

for these cases are listed in the first row of Table 4.1. In order to observe the initial sub-cooling 

parameter effect, the Prandlt number, the radius ratio, the Rayleigh number and the Stefan 

number are all kept constant for both annuli. The Stei is only changed, assigned a value of 0 (no 

sub-cooling) and 0.113 (10
0
C sub-cooling). Figures 5.12(a-c) and Figs. 5.13(a-c) illustrate the 

melt flow patterns and temperature distributions for plain and short-finned annuli for Stei = 0, for 

three non-dimensional times,   = 0.2, 0.3, and 0.4 and for Ra = 1.09x10
6
. The velocity patterns 

are shown on the left half of each circle whereas the temperature contours are presented on the 

right half with the vertical line passing through    = 0
0
 and  =180

0
 separating the two fields. 

Upon examination of the results for these cases and of those of the corresponding cases 

presented in Figs.4.1(a-c) for plain annulus and in Figs.5.1(a-c) for short-finned annulus with Stei 

= 0.113, it can be concluded that the flow and thermal fields are very similar for both of these 

two cases. The only differences are in the radial and angular positions of the mushy region for 

the two cases. Although, the initial sub-cooling parameter plays a significant role in the melting 

process, but it‟s influence is much less on the melt flow patterns than the Rayleigh number. For 

both plain and finned annuli, a thicker mushy region formed, which is located near the lower part 

of the geometry, for Stei = 0 compared to the case for Stei = 0.113. In the following subsection a 

comparative study is made for both plain and short-finned annuli in terms of transient evolution 

of total stored energy (kJ):  

 

1. Comparison between plain and short-finned annuli with an initial sub-cooling parameter, 

Stei = 0. 

2. Comparison of two different initial sub-cooling parameter, Stei = 0, and 0.113 for plain 

and short-finned annuli. 
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5.5.1. Comparison between plain and short-finned annuli with no sub-cooling, Stei = 0 

 

Figure 5.14 shows the total energy stored in kJ as a function of dimensional total melting 

time in minutes in the form of a bar chart for a plain and short-finned annuli for Stei = 0. The 

quantitative values of the total stored energy for both annuli are given in Table 5.6. From Fig. 

5.14 and Table-5.6, it is evident that for the zero initial Stefan number, the short-finned annulus 

stores much more heat than plain annulus at every time instant for an inner cylinder wall 

temperature of 69.9
0
C and the rate of the total stored energy increases with the progression of 

melting. The total stored energy is 593 kJ for a melting time of 83 min for short-finned annulus, 

which in comparison to the plain annulus is 28% higher, suggesting that a stronger overall 

convection effects are at play during the melting process for the short-finned annulus.   

Table-5.6: Total stored energy in kJ for Ra = 1.09x10
6 

at four time spans for plain and short-

finned annuli with Stei = 0.  

Geometry t =  20 

min 

t =  41 

min 

t =  62 

min 

t =  83 

min 

Total stored energy in plain annulus (kJ) 347  445  458  463  

Total stored energy in short-finned annulus (kJ)  396 506 549 593 

Percentage of enhancement in short-finned annulus 14  13.7  20  28  

 

 

5.5.2. Effect of two different initial Stefan numbers, Ste = 0, and 0.113 for plain  and 

finned annuli 

 

Figures 5.15 (a) and (b) represent the time history of the total stored energy in kJ in a bar 

chart format for the minimum initial Stefan number Stei = 0 and for the maximum initial Stefan 

number Stei = 0.113 for plain and short-finned annuli. From the bar charts it is found that when 

the initial temperature of the PCM is assumed to be at the solidus temperature (Ste = 0), the 
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higher is the total stored energy for both plain and finned annuli  in comparison to the case with 

the initial temperature of the PCM 10
0
C lower than the solidus temperature (Ste = 0.113). 

The total stored energy for Stei = 0 is 13 % higher at melting time, t = 20 min; 5.5 % 

higher at melting time, t = 41 min; 3.6 % higher at melting time, t = 62 min; 3.8 % higher at 

melting time, t = 83 min; when compared to the corresponding values for Stei = 0.113 for the 

plain annulus.  

The total stored energy for Stei = 0 is 10 % higher at melting time, t = 20 min; 3.3 % 

higher at melting time, t = 41 min; 2.2 % higher at melting time, t = 62 min; 4.8 % higher at 

melting time, t = 83 min; when compared to the corresponding cases for Stei = 0.113 for short-

finned annulus. 

From the above predicted results, it can be concluded that for Stei = 0 for both plain and 

finned annuli, the melting rate is enhanced because for this case right from the beginning the heat 

supplied through the inner cylinder wall and the fins has gone to melt the PCM, thereby storing 

more energy in the form of latent heat, With the initial sub-cooling of the PCM some sensible 

energy is required to achieve the solidus temperature before the solid PCM starts to melt.  During 

this time heat is transferred through the solid PCM via the slow conduction mode of heat 

transfer. 

5.6. A comparative study between plain and short-finned annuli with 10
0
C sub-cooling 

temperature 

 

The comparative studies between the plain and finned annulus have been performed in this 

section on the following aspects: 

1. Effect of melting time for both plain and short-finned annuli. 

2. Effect of Rayleigh and Stefan numbers for both plain and short-finned annuli.  

3. Difference in melting characteristics between plain and short-finned annuli. 

Two cases are chosen to compare the predicted results for plain and finned annuli. These cases 

are listed in the second and fourth rows in Table 4.1. For the initial sub-cooling parameter, Stei = 
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0.113, the Prandtl number and the radius ratio are both kept constant and are identical to the 

parametric values reported in Chapter-Four.  

 

5.6.1. Effect of melting time for both plain and short-finned annuli  

 

For comparison purposes, the temperature distributions are shown on the left-half of 

each circular cross-section at non-dimensional time,   = 0.2 whereas the temperature contours 

are presented on the right-half at non-dimensional time,   = 0.4 with a vertical line passing 

through   = 0
0
 and  =180

0
 separating the two temperature fields. Figures 5.16(a) and 5.16 (b) 

illustrate the temperature patterns for plain and short-finned annuli for Ra = 1.09x10
6
. Figure 

5.16(a) shows the 67
0
C isotherm as well as the mushy region movement for the case of plain 

annulus at two melting times, t = 41, and 83 min. A comparison of these two cases (   = 0.2, and 

0.4) indicates that  the 67
0
C temperature contour moves significantly in the downward direction 

with the increase in melting time, and the shape and position of the mushy region practically 

remains the same throughout the melting progression from time 41 to 83 minutes. Figure 5.16(b) 

shows the 67
0
C isotherm as well as the mushy region‟s location and thickness for the case of 

short-finned annulus at two melting times, t = 41, and 83 min. A comparison of these two cases  

(   = 0.2, and 0.4) indicates that the 67
0
C isotherm and the shape and position of the mushy 

region move significantly downward in the gravitational direction with the increase in melting 

time from 41 to 83 minutes.  

Figures 5.17(a) and 5.17(b) show the total stored energy and the total liquid fraction 

versus melting time for plain and short-finned annuli. The total energy stored and the total melt 

volume fraction are 6 % and 3 % higher, respectively for the  melting time of  83 min compared 

to the melting time of  41 min for the plain annulus geometry. Whereas, for short-finned annulus, 

the total stored energy is 16 % higher and the total melt volume fraction is 14 % higher for the 

melting time of 83 min when compared to the melting time of  41 min, as shown in Fig. 5.17 (b).   

The higher the melting time, the larger is the progression of melting in both plain and short-

finned annuli. For the finned annulus, the total stored energy is much greater than the plain 
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annulus for the same time span. This enhancement occurs due to the increase in natural 

convection intensity with the increase in melting time for the fins.     

 

5.6.2. Effects of Rayleigh and Stefan numbers in plain and short-finned annuli 

 

To ascertain the effect of the Rayleigh number on the melting process, two cases are 

simulated, one for Ra = 1.09x10
6
, and other for Ra = 1.67x10

6
. The temperature distributions are 

shown on the left-half of each circle for Ra = 1.09x10
6
, whereas the temperature contours are 

presented on the right-half for Ra = 1.67x10
6
 with the vertical line passing through   = 0

0
 and 

=180
0
 separating the two temperature fields. Figures 5.18(a) and 5.18 (b) illustrate the 

temperature patterns for plain and short-finned annuli for a melting time of 83 min. Figure 

5.18(a) shows the 67
0
C isotherm as well as the mushy region represented by the blue color for 

the case of plain annulus for two Rayleigh numbers, Ra = 1.09x10
6
, and 1.67x10

6
. A comparison 

of the two cases (Ra = 1.09x10
6
, and 1.67x10

6
) indicates that the 67

0
C isotherm moves 

significantly in the downward direction with the increase in Ra, and the shape and position of the 

mushy region do not change much throughout the melting progression for the increase in Ra 

from  1.09x10
6
 to 1.67x10

6
. Figure 5.18(b) shows the 67

0
C isotherm as well as the mushy 

region‟s location and thickness for the case of short-finned annulus for the same two Rayleigh 

numbers as the plain annulus. A comparison of the two cases indicates that the 67
0
C isotherm 

and the shape and position of the mushy region all changed, all have moved significantly 

downward in the gravitational direction with the increase in Ra. 

Figures 5.19(a) and 5.19(b) show in the form of a bar chart the transient evolution of 

total stored energy for the plain and short-finned annuli. For a melting time of 83 min, the total 

stored energy is 11 % higher for Ra = 1.67x10
6
 when compared to the Ra = 1.09x10

6
 for the 

plain annulus geometry (Fig. 5.19 (a)). For short-finned annulus, the total stored energy is 13 % 

higher for Ra = 1.67x10
6 
compared to Ra = 1.09x10

6  
(Fig. 5.17 (b)) for the same melting time.   

So, the higher the Rayleigh number, the larger is the melting of PCM in both plain and short-

finned annuli. For the finned annulus, the total stored energy is larger than the plain annulus for 
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the same melting time. This enhancement has occurred due to the increase in natural convection 

intensity with the increase in Ra and also for the fins.     

 

5.6.3. Difference between plain and short-finned annuli in terms of temperature 

patterns and transient evolution of total stored energy   

 

In order to compare the predicted results between the plain and short-finned annuli, 

contours of the instantaneous temperature fields and total stored energies have been selected. 

Here, temperature patterns are shown on the left half of each circular cross-section for plain 

annulus whereas the temperature contours are presented on the right half for short-finned annulus 

with the vertical line passing through   = 0
0
 and  =180

0
 separating the two temperature fields. 

Figures 5.20(a) and 5.20 (b) illustrate the temperature patterns at non-dimensional time,   = 0.2, 

and 0.4 for Rayleigh number, Ra = 1.09x10
6
. Figure 5.20(a) shows the 67

0
C isotherm, as well as 

the position of the mushy region at the melting time of 41 min for the case of plain and short-

finned annuli. A comparison of these two cases at two instantaneous melting times of 41 and 83 

min, indicate that the 67
0
C isotherm moves only a little-bit more in the downward direction and 

the mushy region shifts downward compared to the plain annulus. The mushy region expanded 

sideways as well as downwards and appeared in the bottom zone and consequently this has lead 

to cause an enhanced melting of the PCM in the bottom region for the short-finned annulus.   

Figures 5.21(a) and 5.21(b) show a graphical comparison of plain and finned annuli 

in terms of the total energy stored and the total melt fraction for four non-dimensional times,   = 

0.1, 0.2, 0.3, and 0.4 for Ra = 1.09x10
6 

and initial Stefan number Stei = 0.113. From these bar 

charts it is observed that the total stored energy and the total melt volume fraction are much more 

higher in finned annulus than in the plain annulus at each time period This is due to the 

replacement of conduction regime which prevails near bottom region of the plain annulus with 

the convection mode of heat transfer favored by the fins.  

The total stored energy for short-finned annulus is 20 % higher at melting time, t = 20 

min; 16 % higher at melting time, t = 41 min; 22 % higher at melting time, t = 62 min; 27 % 

higher at melting time, t = 83 min; compared to the corresponding values for plain annulus. 
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The total liquid fraction for short-finned annulus is 15 % higher at melting time, t = 20 

min; 15 % higher at melting time, t = 41 min; 20 % higher at melting time, t = 62 min; 23 % 

higher at melting time, t = 83 min; when compared to the corresponding values for plain annulus. 

 From the above quantitative findings it is clear that a finned annulus is much more 

advantageous than a plain annulus. The longer the fin, the better is the thermal efficiency. The 

fins increased the natural convection intensity at the bottom zone of the annulus, thereby leading 

to the enhancement of the thermal efficiency of the LHTES devices.  
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Figure 5.1: Temperature contours (right) and velocity vectors (left) for inner wall temperature of 

69.9
0
C for short-finned annulus: Stei = 0.113, and at time, (a) 41min; (b) 62min; (c) 83 min. 

 

(a) 

(b) 

 

(c) 
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Figure 5.2:  Temperature contours (right) and velocity vectors (left) for inner wall temperature of 

74.9
0
C for short-finned annulus: Stei =0.113, and at time, (a) 41min; (b) 62min; (c) 83min. 

time= 1hr 23min.  

 

(a) 

 

(b) 

 

(c) 

 



81 
 

 

Case-2 Figure 5.3: Temperature contours (right) and velocity vectors (left) for inner wall temperature of 79.9
0
C 

for short-finned annulus: Stei =0.113, and at time, (a) 41 min; (b) 62 min; (c) 83 min. 

 

 

(a) 

 

(b) 

 

(c) 
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Figure 5.4:  For TWALL= 69.9 
0
C, Stei = 0.113 for short-finned annulus: (a) transient evolutions of 

total stored energy (kJ) and total liquid fraction; (b) transient evolutions of energy 

fraction.  

  

Figure 5.5:  For TWALL= 74.9 
0
C, Stei = 0.113 for a plain annulus: (a) transient evolutions of total 

stored energy (kJ) and total liquid fraction; (b) transient evolutions of energy fraction.  

  

Figure 5.6:  For TWALL= 79.9 
0
C, Stei = 0.113 for a plain annulus: (a) transient evolutions of total 

stored energy (kJ) and total liquid fraction; (b) transient evolutions of energy fraction.  
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.  

 
Figure 5.7:  Temperature contours (right) and velocity vectors (left) for inner wall temperature of 69.9

0
C 

for long-finned annulus: Stei =0.113, and at time, (a) 41min; (b) 62min; (c) 83 min. 

(a) 

 

(b) 

 

(c) 
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Figure 5.8: Temperature contours (right) and velocity vectors (left) for inner wall temperature of 

74.9
0
C for long-finned annulus: Stei =0.113, and at time, (a) 41 min; (b) 62 min; (c) 83 min. 

 

(a) 

 

(b) 

 

(c) 
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Figure 5.9:   Temperature contours (right) and velocity vectors (left) for inner wall temperature of 79.9

0
C 

for long-finned annulus: Stei = 0.113, and at time, (a) 41 min; (b) 62 min; (c) 83 min.  

 

(a) 

 

(b) 

 

(c) 
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Figure 5.10:  Total stored energy (kJ) at different times with Stei = 0.113 for three different inner 

cylinder wall temperatures, 69.9
0
C, 74.9

0
C , 79.9

0
C  for a long-finned annulus. 

 

 
Figure 5.11:  Comparison between short finned and long-finned annuli in terms of total stored 

energy (kJ) at different times for TWALL= 69.9
0
C and Stei = 0.113. 
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Without subcooling temperature in short-fin annulus Figure 5.12:   Temperature contours (right) and velocity vectors (left) for inner wall temperature of 

69.9
0
C for a plain annulus: Stei = 0, and at time, (a) 41 min; (b) 62 min; (c) 83 min. 

time= 83min.  

 

(a) 

 

(b) 

 

(c) 
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Figure 5.13:  Temperature contours (right) and velocity vectors (left) for inner wall temperature of 

69.9
0
C for short-finned annulus: Stei = 0, and at time, (a) 41 min; (b) 62 min; (c) 83 min. 

(a) 

 

(b) 

 

(c) 
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Figure 5.14 :      Comparison between plain and short-finned annuli in terms of total stored energy 

(kJ) at different times for TWALL= 69.9
0
C and Stei = 0. 

 

  
Figure 5.15:  For TWALL = 69.9 

0
C: (a) comparison between Stei =0 and Stei =0.113 in terms of 

transient evolution of total stored energy (kJ) for plain annulus, (b) comparison 

between Stei =0 and Stei = 0.113 in terms of transient evolution of total stored energy 

(kJ) for short-finned annulus.  

 

0

100

200

300

400

500

600

700

800

900

1000

20 41 62 83

To
ta

l E
n

e
rg

y 
(K

J)

Time (minutes)

Without Fin Fins

0

100

200

300

400

500

600

700

800

900

1000

20 41 62 83

To
ta

l E
n

e
rg

y 
(K

J)

Time (minutes)

Tini=Tsolid Tini=41.2 C

0

100

200

300

400

500

600

700

800

900

1000

20 41 62 83

To
ta

l E
n

e
rg

y 
(K

J)

Time (minutes)

Tini=Tsolid Tini=41.2 C

(a) 

 

(b) 

 



90 
 

 
 

Figure 5.16:  For TWALL = 69.9 
0
C, and Stei = 0.113: (a) temperature contours (left) at 41 minutes 

and temperature contours (right) at 83 minutes for plain annulus, (b) temperature 

contours (left) at 41 minutes and temperature contours (right) at 83 minutes for short-

finned annulus. 

 

 

 
 

Figure 5.17:  Evolution of total stored energy (kJ) and total liquid fraction at different melting times 

for TWALL = 69.9 
0
C, and Stei = 0.113: (a) plain annulus, (b) short-finned annulus. 
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Figure 5.18:  For 83 minutes of melting, and Stei = 0.113: (a) temperature contours (left) at TWALL 

= 69.9 
0
C and temperature contours (right) at TWALL = 79.9 

0
C for plain annulus,    

(b) temperature contours (left) at TWALL = 69.9 
0
C and temperature contours (right) 

at TWALL = 79.9 
0
C for short-finned annulus. 

 
Figure 5.19:  Transient evolution of total stored energy (kJ) for two different inner cylinder wall 

temperatures, 69.9 
0
C and 79.9 

0
C and Stei = 0.113: (a) plain annulus (b) short-finned 

annulus. 
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Figure 5.20:   For TWALL = 69.9 
0
C and Stei = 0.113: (a) temperature contours (left) for plain annulus 

and temperature contours (right) for short-finned annulus at 41 minutes (b) 

temperature contours (left) for plain annulus and temperature contours (right) for 

short-fin annulus at 83 minutes. 

 
Figure 5.21: (a) Comparison between the plain and short-finned annuli in terms of transient 

evolution of total stored energy (kJ) at TWALL = 69.9
0
C and Stei = 0.113. (b) 

Comparison between the plain and short-finned annuli in terms of total liquid 

fraction at TWALL= 69.9
0
C and Stei = 0.113.  
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CHAPTER – SIX 

 

Concluding Remarks and Suggestions for Future Work 

 

6.1 Overall Conclusions 

 

A computational model for the prediction of the thermal energy storage characteristics of 

a commercial paraffin wax during melting (charging phase) when it is embedded in plain and 

finned annuli formed between two horizontal concentric cylinders has been presented. The 

model rests on solving the Navier-Stokes equations and energy equation using a single domain 

enthalpy-porosity approach. An isothermal condition at the inner cylindrical surface and an 

adiabatic condition at the outer cylindrical surface of the annulus have been considered.  

Transient progressions of velocity vector and temperature distribution fields are obtained from 

the numerical solutions of the governing equations for plain and finned annuli. The obtained 

results have revealed the conductive and the complex conductive-convective heat transfer 

phenomena existing in the solid, the mushy zone, and the molten phases, respectively. The 

performance of the present model is verified with the available experimental findings of natural 

convection of a single phase fluid in a horizontal cylindrical annulus under steady state 

condition. The predicted results show good agreement with the experimental results.    

Based on the findings of the present computational study of the combined conduction and 

buoyancy-driven melting of a commercial PCM within plain and finned annuli, the following 

conclusions are drawn: 

1. Initially, with the increase in melting time melting rate is enhanced in all the cases. 

2. As the buoyancy-driven convection is strengthened due to the growth of the melt zone, it 

is observed that melting in the top region of the annulus is much fastest than other regions 

for both geometries.  
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3. After a while, the melting response of the PCM is very slow. This is because with the 

increase in time, the melt temperature reaches very close to the inner cylinder wall 

temperature thereby reducing the heat transfer rate. 

4. The strength of natural convection in the melting process is controlled by the Rayleigh 

number, as indicated from the pictorial views of the flow patterns where it is seen that the 

overall convective effects change markedly with the change in Rayleigh numbers. An 

increase in Rayleigh number leads to the increase of the thermal efficiency for both plain 

and finned annuli at each instant of time.  

5. The computational results show that for various values of the sub-cooling parameter, the 

efficiency of the heat exchanger is enhanced compared to the case when the initial 

temperature of the PCM is at the solidus temperature, which is true for both plain and 

finned annuli. 

6. At the later part of the melting process only conduction takes place in the lower part of 

the plain annulus. This makes the melting process very slow and as a result the 

development of melting zone is nearly stopped. The complex nature of the melting 

process for the concentric horizontal plain annulus is further aggravated due to the fact 

that the thermal conductivity of the commercial PCM used in this study is very low.  

7. The high thermal conductivity aluminum fins at the lower part of the annulus play an 

important role in the melting process by generating strong convective and conductive 

modes of heat transfer near the bottom of the annulus. The finned cylinder, with identical 

boundary conditions as the plain annulus promote more heat transfer and bring about 

totally different melt flows and melting patterns. The presence of fins increased the 

thermal efficiency of the heat exchanger by increasing the melting rate of the PCM 

compared to the plain geometry.  

8. When fin height is taken into consideration, it is observed that at the beginning of the 

melting process up to a certain time, the short fins show a better performance than the 

longer fins. If the cost of the fins is a concern, the above aspect of the melting process 

should be taken into consideration in designing a finned annulus. For shorter fins, due to 

the limited blockage, the convective melt flow between the fins is not hindered and a 
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good mixing of the melt between the top and bottom parts of the annulus still prevails. 

For a larger fin height, the flow blockage is higher and as a result initially the longer 

finned geometry is not able to open a flow channel in the solid PCM existing between the 

top and bottom zones of the annulus. As melting proceeds, melts overcome this barrier in 

the long-finned annulus and shows a better performance than the short finned geometry. 

Thus, overall the long-finned annulus stores more thermal energy during the charging 

process compared to the short-finned annulus. When the fin cost is of concern, the short-

finned geometry is more advantageous than the long-finned geometry for the higher 

initial rate of melting. 

   

9. From this study, it is revealed that for a horizontal cylindrical storage system a good way 

to enhance the latent heat thermal storage capacity is by placing long fins with high 

thermal conductivity at the lower part of the annulus. 

 

6.2  Contributions to Knowledge   

 

The following aspects of the present numerical modeling study concerning a double-pipe LETES 

system can be considered new: 

1. To the best of the author's knowledge, the melting behavior of a commercial PCM in a 

horizontal cylindrical annulus has not been studied before either experimentally or 

numerically.  

2. The melting characteristics of a PCM, either pure or reagent grade, in a cylindrical 

annulus with strategically placed longitudinal radial fins on the outer surface of the inner 

cylinder has not been studied earlier. 

3. A comparative study with regard to the thermal energy storage efficiency of a plain 

versus finned annuli filled with a commercial PCM is a novel undertaking.    

4. This study revealed for the first time the complex nature of the buoyancy-driven melting 

heat transfer in a partially finned annulus filled with an impure PCM.  
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6.3   Suggested Future Work 

 

In order to increase the thermal storage efficiency, a number of possible modifications and 

extensions of the double-pipe LHTES system are suggested below: 

1. High porosity and high thermal conductivity solid matrix should be considered in the 

lower part of the annulus to improve the thermal performance of a PCM energy storage 

system. 

2. The implications of both local thermal equilibrium and non-equilibrium assumptions 

should be compared if high a thermal conductivity solid matrix is used in the lower part 

of the annulus. 

3. The present study is restricted for a fixed value of the diameter of the inner pipe and also 

for a fixed value of the diameter ratio of the outer to the inner pipes. The energy storage 

efficiency should be further studied by varying the above two geometrical parameters of 

the problem.  

4. Both melting (charging) and solidification (discharging) cycles should be consecutively 

considered to establish the overall thermal energy storage performance of the system. 

5. The vertical orientation of the double-pipe LHTES system should be studied and the 

energy storage efficiency should be compared with the horizontal LHTES system. 

6. In order to establish the effects of the inlet temperature and mass flow rate of the heat 

transfer fluid (HTF) through the inner pipe, the convective melting process in the 

annulus should be considered as a conjugate fluid flow and phase-change heat transfer 

problem. 

7. With regard to the energy storage efficiency, an interesting numerical exercise would be 

to investigate two parallel (half length and equal heat capacity) LHTES instead of a one 

long LHTES.   

8. From the energy storage point of view it would be interesting to see the outcome of 

placing a high melting point PCM near the inner cylinder and a lower melting point PCM 

in series between the first PCM and the outer wall of the annulus. 

9. An interesting numerical undertaking would be to use two immiscible PCMs, one having 

a lower melting point and a higher density compared to the other, which will fill the 
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annulus gap with the lower melting point PCM at the bottom and the higher melting 

point PCM at the top portion of the annulus. 
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